

Contrôles sur la répartition des argiles organiques dans les bassins profonds: cas de l'Atlantique central au Crétacé

Yannick Mourlot

► To cite this version:

Yannick Mourlot. Contrôles sur la répartition des argiles organiques dans les bassins profonds : cas de l'Atlantique central au Crétacé. Océanographie. Université Paul Sabatier - Toulouse III, 2018. Français. NNT : 2018TOU30058 . tel-01926930v2

HAL Id: tel-01926930 https://theses.hal.science/tel-01926930v2

Submitted on 18 Mar 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

En vue de l'obtention du

DOCTORAT DE L'UNIVERSITÉ DE TOULOUSE

Délivré par :

Université Toulouse 3 Paul Sabatier (UT3 Paul Sabatier)

Présentée et soutenue par : Yannick MOURLOT

le vendredi 16 mars 2018

Titre :

Contrôles sur la répartition des argiles organiques dans les bassins profonds : cas de l'Atlantique central au Crétacé.

École doctorale et discipline ou spécialité : ED SDU2E : Sciences de la Terre et des Planètes Solides

Unité de recherche :

UMR 5563 - Géosciences Environnement Toulouse

Directeur/trice(s) de Thèse :

Gérôme CALVES - Directeur de thèse Guillaume DERA - Co-directeur de thèse Martin RODDAZ - Responsable scientifique

Jury:

Maria-Angela BASSETTI, Professeur, Université de Perpignan - *Rapporteur* Jonathan REDFERN, Professeur, University of Manchester - *Rapporteur* Roberto VENTURA SANTOS, Professeur, Universidade de Brasília - *Rapporteur* Marc DE RAFELIS, Professeur, Université de Toulouse III - *Examinateur* Christian GORINI, Professeur, Université Pierre et Marie Curie - *Examinateur* Gérôme CALVES, Maître de conférence, Université de Toulouse III - *Directeur de thèse* Guillaume DERA, Maître de conférence, Université de Toulouse III - *Co-directeur de thèse* Martin RODDAZ, Maître de conférence, Université de Toulouse III - *Responsable Scientifique* François RAISSON, Ingénieur Géologue, TOTAL E&P - *Encadrant TOTAL, Invité*

Remerciements

Cet instant où, après avoir dégluti en quelques mois un peu plus de 100 000 mots censés faire honneur à 3 ans de dur labeur, vous vous dites : « la science, c'est bien, mais l'humain c'est bien aussi ». Parce que oui, sans les personnes qui m'ont épaulé à chaque étape de ce projet tant personnellement que scientifiquement, je ne suis pas sûr que mon travail aurait été le même surtout en prenant en compte mon fameux karma... Donc merci à ces personnes qui ont été là avant, pendant et après ce beau marathon, je m'excuse d'avance si jamais vous ne trouvez pas votre nom dans les quelques lignes qui vont suivre, ce n'est pas que je n'en avais pas envie, c'est juste que mon cerveau a décidé d'hiberner pendant quelques temps maintenant....

Avant tout, je souhaite remercier sincèrement les membres du jury, Maria-Angela BASSETTI, Jonathan REDFERN, Roberto VENTURA SANTOS, Marc DE RAFELIS, Christian GORINI, Gérôme CALVES, Guillaume DERA, Martin RODDAZ et François RAISSON d'avoir accepté de lire mon manuscrit et de me faire part de vos retours sur mon travail lors de ma soutenance.

A mes trois encadrants de Toulouse (même si à la fin ce n'était géographiquement plus très juste), **Gérôme**, **Guillaume** et **Martin**, merci d'avoir accepté ce projet et veillé au grain à ce que mon travail ne devienne pas n'importe quoi (car ça pouvait vite partir dans tous les sens dans ma tête), d'avoir été aussi impliqués dans ce projet et d'avoir fait preuve d'autant de patience. C'était vraiment très intéressant de travailler avec vous, j'ai énormément appris à vos côtés sur beaucoup d'aspects, aussi bien scientifiques (qui l'eût cru qu'un jour j'arriverais presque à comprendre quelque chose en géochimie !!!!), personnels (le coaching « rugby » hein Martin ;)) que logistiques. Eh oui, vous êtes bien la preuve que, malgré tout ce qui a pu être dit sur le projet du genre « Trois encadrants ? Trois méthodes différentes ? Une zone aussi vaste ? C'est irréalisable », il suffit d'un peu de volonté, de communication et d'écoute (même si des fois à 4 zozos ce n'est pas toujours facile) pour y arriver. Donc encore merci pour votre investissement !!!

Je souhaiterais remercier chaleureusement **François** qui a chapeauté mon travail (avec l'aide de Jean-Noël aussi) à la R&D à Total et qui a récupéré le volet Atlantique du « bébé PIE de Jean-Luc » en cours de route lors de ma première année de thèse. Merci François pour ta bienveillance et ta patience qui ont été sans faille depuis mon arrivée à Pau jusqu'à mes derniers instants pâlois. Je pense notamment à tout ce que tu as fait pour moi afin que mon arrivée au CSTJF à Pau se passe bien, à tes précieux conseils techniques aussi bien en géosciences que sur l'utilisation de SISMAGE, sur la vie pâloise, sur mes demandes de relecture de dernière minute ou encore concernant les ROPA hâtives et intempestives que je te demandais le jour même de la deadline.

Je pense également à **Jean-Luc** AUXIETRE, qui est à l'origine de ce beau projet sur la matière organique et qui a bien voulu me laisser ma chance. Merci Jean-Luc pour votre bonne humeur perpétuelle et d'avoir partagé votre immense savoir. Profitez bien de la *dolce vita* du sud-ouest !!

Comme j'ai été forcé pu largement vadrouiller à travers la France pendant ma thèse, il me semble plus judicieux de remercier les personnes par « secteur géographique ».

Tout d'abord, commençons par le début de ces 3 belles années : **PARIS** (là où les gens sont persuadés de parler correctement français et sans accent...à tous mes amis parisiens ⁽²⁾).

J'ai forcément une pensée pour ma **Clairoune** et mon **Pierrot**. Que dire, à part que cela fait 10 ans que vous vous coltinez ma sale trogne et que malgré tout, vous avez encore le sourire lorsque l'on se voit. Merci pour votre simplicité, votre générosité, votre amitié si précieuse. Merci aussi pour tous ces moments que l'on a passé ensemble, à faire les débiles, à rire, à stresser, à s'arracher les cheveux devant nos ordinateurs, à parler voyages, Afrique, chats, Kinder... Afin de ne pas être censuré par un comité d'éthique, je vais épargner au reste du monde nos moments partagés, on ne sait pas, des âmes sensibles peuvent être amenées à lire ces lignes... J'ai tellement hâte de vous retrouver !

Je tiens à remercier aussi **Nathy** et **Cam** (el hombre), merci au destin de vous avoir fait venir à Pau par la suite !!!!! Merci à tous les deux pour votre profonde bonté associée à un aspect fantasque-déjanté tellement attachant. Que de rires encore tous ensembles, merci de votre hospitalité à Rueil, de m'avoir fait aimé les jeux de société, de m'avoir confronté pour la première fois de ma vie aux champions du monde des mauvais perdants (non non Nathy, je ne te vise pas du tout.....), de nos pauses gastronomiques capables d'exploser notre taux de glycémie en quelques secondes (froyourts, macarons, glaces chez Georgio, et j'en passe...). Nathy j'attends toujours que l'on entreprenne notre étude sur les moustiques tigres porteurs de la dengue (non non je n'ai pas oublié !).

A ma **Rachou**, bon il est vrai que nous on s'est connu à Pau, suivi à Paris et séparé par la suite parce que Madame a décidé de partir au Qatar (quelle idée.... Tu ne peux pas savoir comme le COMA VB doit pleurer ton départ...). Ma Rachou, que dire à part que ton sourire a inondé de soleil la grisaille parisienne au 7^{ème} étage de la tour. En plus, je crois que tu es la seule personne au monde que j'ai rencontrée qui est, en une seule entité physique, un suppot informatique, logistique, technique, une base de données, un carnet d'adresse digne d'une centaine de botins. Bref, tu en connais beaucoup des gens à Paris qui croisent 15 amis par hasard en 3 stations de métro? C'est ça l'effet Rachou !!! Merci pour nos moments sportifs passés ensembles, nos petits restos, tu me manques beaucoup et j'ai hâte que tu rentres en France (et je ne suis pas le seul je pense..... hihi).

Je tiens également à remercier ma **Cam** (notre princesse sirène) et son **Nico**. Merci à tous les 2 pour votre bonne humeur, votre écoute et vos bons conseils de docteurs avisés. Ma Cam, j'attends toujours que tu me fasses visiter Sable d'Or les Pins, histoire que je puisse ENFIN voir de mes propres yeux ce sublime soleil breton que tu me vends depuis plus de 5 ans maintenant. J'ai vraiment hâte que tu m'y mettes la patée au Stand-up Paddle hihi. Merci également de m'avoir initié aux Polas !! Tu es vraiment une belle personne et apporte beaucoup de lumière aux autres (peut être à cause de tes cheveux ?) S'il te plait ne sois pas génée, je suis obligé d'écrire des choses gentilles quand même un petit peu, ce sont les remerciements quoi ... ©

Enfin, je souhaite dire merci du fond du cœur à **Cécile**. Le destin parfois te fait rencontrer des personnes exceptionnelles, et j'ai eu cette chance. Merci d'avoir cru en moi, de m'avoir énormément appris humainement, merci de ton appui, de ton soutien, merci de m'avoir porté depuis ces dernières années. Ton soutien a été précieux tout au long de mon parcours depuis que je suis sorti de l'école, je te l'ai déjà dit mais réitèrerai encore, j'ai eu beaucoup beaucoup de chance de croiser ta route. Je pense que je peux parler au nom de beaucoup de personnes en disant que tu inspires beaucoup de gens. Alors merci de m'avoir tendu la main, j'espère que l'on aura encore plein d'occasion pour aller au resto tous ensemble et papoter autour d'une bonne bière !!

Mes pérénigrations m'ont également amené à découvrir le monde obscur et inquétiant des laboratoires, notamment du GET et de sa redoutable « Salle Blanche » à **TOULOUSE** (juste au Nord d'une ville appelée Auterive, s'il vous plait, prononcez « Otriv »).

Je voulais remercier tout d'abord **Artiom**, « mon jumeau » comme disait Delphine. Artiom, heureusement que tu étais là à Toulouse pour égayer mes pauses entre 2 manips en salle blanche ou au TIMS. Merci beaucoup de ta gentillesse, de ta disponibilité et de ta générosité ! Je m'excuse si sur la fin, j'ai été moins disponible (rédac oblige...) mais sache que je n'ai passé que de supers moments en ta compagnie © Je nous revois discuter histoire, géopolitique, géologie, politique enfin de quasiment tout autour d'un chocolat chaud ou d'un café, autour d'un bon gros burger ou d'un asiat' ! Merci d'avoir partagé tout ça avec moi, ce sont des instants très précieux. Plein de courage pour la fin de ta thèse, mais sache que je ne me fais aucun soucis : tu es cultivé, courageux et intelligent (même si je t'entends déjà dire non...) donc il n'y a pas de raison à ce que tu n'ailles pas jusqu'au bout. Enfin, sache que j'admire beaucoup la dévotion que tu as pour ta famille, j'espère que plus tard, j'aurai les épaules aussi solides que les tiennes ©

Un grand merci à **Martin**, « mon petit souffre douleur stagiaire » qui s'est maintenant exilé en Irlande pour faire de la géochimie. A croire que je ne t'ai pas fait assez trimer pendant nos séances de salle blanche, de TIMS et de leaching... Plus sérieusement, un grand merci aussi pour ta bonne humeur et ton caractère jovial ! C'était vraiment hyper plaisant de travailler avec toi, je suis très très content que tu aies pu poursuivre en thèse, et j'espère que tu auras pu apprendre quelques trucs à mes côtés ! Enfin merci aussi pour tous tes précieux conseils sur la vie toulousaine.

Je tiens aussi à remercier **Jing**, notre jeune maman swag pour tous nos fous rires que ça soit à Pau ou à Toulouse. Jing, je pense que tu es un exemple de prise de recul et d'optimisme pour de nombreux thésards !! Merci de m'avoir fait relativiser sur beaucoup d'aspects, notamment sur le plan personnel afin de gérer mon anxieté. Je tenais aussi à te dire que je valide complètement ton manteau rose même si tout le monde pensait que c'était une robe de chambre [©]

Enfin, mes pensées vont à des personnes qui ont participé à ma vie au GET, je tiens notamment à te remercier **Eva** pour ton soutien et ta gentillesse, **Stéphanie** pour ta disponibilité et ton aide précieuse au TIMS avec toujours le sourire, **Jonathan** qui doit être maintenant exilé en Guyane pour tes conseils techniques et ton aide en salle blanche, **Charlotte** pour tes conseils et ton aide, et **Carine** pour ton aide et ta patience dans la bonne humeur malgré la distance, pour toute la logistique du GET. Un grand merci aussi à mes collègues doctorants géochimistes avec qui j'ai veillé pendant de longues heures en salle blanche à attendre que mes chromatos se terminent, **Simon** et **Maria-Christina**, merci pour tous ces fous rires (surement nerveux ou dus aux vapeurs d'acide, mais fous rires quand même) que nous avons eu trèèèèèèèèèè tard le soir au GET tous les 3. Je me rappelle

notamment la fois où nous avons ri aux éclats quand on a enchainé tous les 3 les échecs en séparation sur colonnes.

Au bout de quelques mois j'ai été expédié dans le Grand Sud-Ouest : le Béarn, à **PAU**. Pour les personnes qui ne connaissent pas, Pau est la seule ville de France où la température moyenne annuelle est de 28°C (certification par Mme V. Casenave, cf. carte ci-dessous).

J'aimerais tout particulièrement remercier mes copaings de la R&D au CSTJF, avec lesquels on prenait des petites pauses café sous un chêne peuplier (s'il vous plait demandez à AC. Chaboureau si vous avez des questions botaniques) pour nous aérer l'esprit, tranquillement assis sur notre muret en briques. Un grand merci donc à **Marie** (notre pro du SIG et meilleur annuaire palois, vous cherchez une personne ? Un restaurant ? Un bar ? Demandez à Marie !), à notre **Manue** nationale qui ne sait pas trop si elle est sédimentologiste ou géochimiste (mais sure d'être une bonne vivante amatrice d'hommes très mûrs), à notre papy modeur **Christophe**, qui nous a inondé de bon goût, de blagues bien grasses et douteuses (méfiez vous du bonhomme d'ailleurs, il a un passé trouble...), à notre pioupiou contourites **Antoine** (même s'il est un peu dégarni, il est très jeune !), vous avez déjà vu un phasme danser ? Non ? Alors allez en boite avec Antoine, sensations assurées !!

Merci aussi à **Kaveh** co-bureau d'un an, à qui je m'excuse profondément d'avoir été sa principale source de nuisances sonores lors de sa rédaction, à **Céline S**., ma maman sismique/mtc, merci pour ta simplicité, ta gentillesse et ton côté « funky baby » qui nous fait tous bien marrer ©, merci aussi à nos 2 bretons exilés à Rennes, **JPP** et **Antoine** avec qui on a bien rigolé en trinquant autour d'une bonne bière ! Enfin, qu'aurait été la thèse sans l'aide oh comment précieuse de **Cathy**, **Véro** et **Maryvonne**, notre trio de choc sans qui, il faut le dire, la R&D ne pourrait tourner... ou encore à notre **Jean-Loup** national qui prendra toujours le temps pour venir vous aider lorsque vous êtes perdus dans les limbes de la sédimento, merci Jean-Loup !

Un autre bout de la France où j'ai posé mes valises, principalement les weekends (pour des raisons personnelles assez vagues...) depuis maintenant quasiment 5 ans, c'est la charmante ville de LILLE. <u>Nb</u> : pour les sudistes, Lille est à la fois la capitale de la bière, mais aussi et surtout du Pôle Nord.

Une pensée donc à nos mes deux Chupitas, Aida et Orane, tellement importantes et précieuses pour nous, qui nous ont apporté beaucoup beaucoup de joie et de rires. Je pense à nos weekends volley (et à ceux qui vont suivre), à nos brunchs, petits restos et supers moments passés ensembles dans les rues du Vieux Lille ou dans le centre lillois. Vous êtes

parties loin de nous maintenant, mais on sait tous les 4 que la distance n'est rien. Un énorme merci mes deux chupies pour votre soutien (et celui que vous avez apporté à Paupau) lors de ces 5 dernières années. Vous êtes des épaules solides sur qui s'appuyer et compter, donc vraiment on tient à vous remercier du fond du cœur.

Je souhaite remercier aussi **Angèle** et **Thomas** pour nos petites soirées apéros, à faire des blindtests où l'on est persuadé d'être hyyyyyper balèze (enfin surtout moi...), à papoter jusqu'à pas d'heure en se disant « Mince, mais il est quel heure là ? ». Merci à tous les 2 pour votre gentillesse et votre simplicité, pour avoir égayé nos weekends grisaille passés à Lille et nous avoir ouvert les portes de votre nouveau chez-vous. D'ailleurs, je crois que je n'ai jamais vu un bar aussi complet et fourni que le vôtre (pour notre plus grand bonheur mouahahaha). Bref, jespère que l'on aura encore plein de petits moments et soirées tels que l'on en a eu ces 3 dernières années. Merci beaucoup à tous les 2, et aussi au soutien que vous avez apporté à Paupau pendant mon absence ©

Même si, ces deux personnes n'habitent pas à Lille mais sont quand même dansle grand nord, merci à mon petit **Cha** et à **Marie D.** pour leur amitié, leur soutien de toujours sans faille et le bonheur qu'elles nous ont apporté ces dernières années !! Même si après l'école on a dû être expédiés aux quatre coins de la France (et de l'Europe), merci à toutes les deux de nous avoir soutenus et encouragés pendant ces dernières années.

Mes remerciements vont également à mes amis du sud-est, qui me supportent depuis plus de... en fait j'ai arrêté de compter ça vaut mieux ! Un énorme merci à mes copaings **Manon** et **Thibaut**, à **Caro**, à **petit Lolo** et **gros Laulau**, à **Nath** et **Dédé**, à **Laura** et **Gene** et enfin à **Pascale**. Merci sincèrement à vous tous pour tout (y aurait trop de choses à écrire depuis le temps....). Je pense énormément à vous, vous qui êtes pour la plupart loin de moi, et vous me manquez grave !!! Je souhaite remercier du fond du cœur mon **Cécé** et ma **Kaka** pour tout ce que vous m'avez apporté ces dernières années. Merci pour la confiance sans faille que vous avez eu et avez en moi, vous êtes des personnes en or et j'ai énormément de chance de vous avoir. Merci ! Finalement, après de nombreuses pages à remercier les personnes qui ont beaucoup compté pour moi avant, pendant et après cette thèse, je tenais à dire quelques mots plus particuliers à certaines personnes à qui cette thèse est fortement associée et cela malgré la distance qui parfois peut nous faire sentir le temps long, surtout loin de nos amis et de nos proches.

Ainsi, je pense que tu as été une personne très difficile à caser dans ces remerciements. Anne-Claire, ma notre **Chabou**, notre « maman PIE ». Où te mettre ? Au tout début ? à la toute fin ? C'était dur de faire un choix, et là, malheureusement pour moi je n'allais pas te demander ton avis et écouter tes précieux conseils. Alors, pour essayer de faire synthétique, puisque tu sais déjà tout ça, je vais résumer ça en quelques mots. **Merci pour tout ce que tu as été pour moi ces 4 dernières années** ^(C) (et merci à ton tes hommes aussi !!). Ma thèse n'aurait clairement pas eu la même saveur si tu n'avais pas été là.

Du fond du cœur, un énorme merci à ma Tata Kenzah Gougouche. C'était tellement de bonheur de t'avoir © j'ai juste un mot à te dire tmtc. Merci pour toute ton aide (pour que Jean-Luc me choisisse), tu as un fort pouvoir de persuasion ahaha. Merci également pour ton soutien lors des entretiens mais aussi pendant mes coups de mou. Je repense à nos petites soirées thé/goinfrerie, à nos apéros Monop', à nos hold-up dans les boutiques pâloises, à notre #passionchat ou le meilleur : #oui. J'espère que tu continues à faire la fashion police pâloise hein !! Bref, des heures de papotage, de rire, ma Gougouche, tu me manques déjà rien qu'en écrivant ces lignes... à nos futurs weekends voyages de folie ! Juste merci d'être là dans nos vies !

On dit toujours, jamais 2 sans 3. Alors oui, un immense merci à la troisième et pas des moindre notre **Vivi** nationale. Vous visualisez l'être humain ? Il peut être doué, c'est vrai. Mais au dessus des êtres humains, bah il y a Vivi. Quel est son super pouvoir ? C'est la seule personne au monde qui vous boucle en 3 ans et 3 mois une thèse. Vous me direz, jusque là, y a rien de surhumain. Bah oui. Sauf que Vivi, comme elle trouvait la thèse pas assez dure, elle en a profité aussi pour faire à côté trois petits bibous, acheter une maison et la retaper. Oui oui. C'est ça son super pouvoir. Ma Vivi, **merci d'avoir inondé quotidiennement le bureau**

et nos vies de soleil. Tu es uen des rares personnes avec une aura aussi solaire, et ce n'est pas prêt de s'arrêter hahaha.

Biniou. Ou Papy comme tu préfères, je sais bien que tu n'aimes pas les 2 de toute manière.... Déjà ronchon à ton âge.... C'est peut-être normal tu me diras ? Un énoooOooorme merci ! Merci d'avoir pris le temps depuis que je suis un tout petit stagiaire de m'expliquer la sédimento, merci d'avoir été un **sensei** en quelques sortes ⁽²⁾ Bon après, j'ai découvert les revers de la médaille (les pollutions olfactives, sonores diverses et variées), mais bon, on fait avec hein.... Non, sans plaisanter, merci du fond du cœur, heureusement que tu étais là avec Gougouche quand je suis arrivé sur Pau en stage, et pendant ma thèse. Je crois qu'il y a peu de gens qui seraient capables de se lever pour m'emmener tard dans la nuit enfiler un pyjama stérilisé... Merci de ta présence, de ton amitié et de ta gentillesse si précieuse pour moi !!!

Bon mon **gros**, tu croyais que j'allais t'oublier ?! Bah non mon **Tutur** sois un peu patient (c'est que 11 pages à lire après tout). Merci mon Tutur d'être là dans ma vie. Y en a beaucoup à dire entre toi et moi, la thèse c'est bien, ça t'aura au moins apporté un peu de domination physique sur moi pendant 7j. Merci d'être toi Tutur, tu me fais autant marrer qu'il y a 10 ans (eh oui, on vieillit et on devient gros...). J'espère que je vais pouvoir continuer à voir ta bouille de congolais albinos quotidiennement ces prochaines années ⁽ⁱ⁾

Mon **Fafa**. Je n'ai pas besoin de beaucoup de mots, le destin te fait croiser des gens qui sont aussi proches qu'un frère, voire plus. Malgré la distance, les années, tu restes la même et belle personne sur qui je peux compter et qui me fait repousser mes limites. **Merci d'être là encore maintenant !**

Maymay. C'est pareil que pour Fafa, mais avec un peu plus de boobs et de fesses. Tu me connais tellement par cœur pire qu'une **frangine**... Avec toi impossible de mentir, de tricher, tout est toujours limpide. Je crois qu'il y a peu de personnes avec qui je n'ai aucun filtre sur absolument TOUT. En vrai, tu es aussi la seule personne avec qui je peux rester 3 ou 4h au téléphone et terminer l'appel en me disant « quoi c'est fini ? déjà ?!!!! ». Merci d'être

toi, d'être présente dans tous les moments importants de ma vie et d'être cette petite bulle de champagne à la crinière incandescente. Du fond du cœur **Maymay**, **merci** !

A mes proches, ma belle-famille de Mayenne notamment **Jeannine** et **Glbert** pour votre soutien, je me sens tellement serein auprès de vous, vous êtes tellement géniaux, merci. Merci également à **Patrick** le frère de Paupau pour ses préceux conseils sur la gestion du stress et de la confiance en soi pendant la thèse, et aussi pour ses relectures de mes chapitres.

Un immense merci à ma famille cette fois. A mon frère, mon **Broté Cédric**, je t'aime frérot et suis hyper fier de toi. A mes parents, **Brigitte** et **Thierry**, que je n'arriverai jamais à remercier suffisamment pour leur témoigner toute ma gratitude, ma profonde reconnaissance. Merci de nous avoir inculqué vos valeurs, celle du travail, mais surtout de l'humain : la générosité, le respect et l'acceptation de l'autre quel qu'il soit. Merci à tous les 2 pour tous vos efforts et sacrifices afin de nous prodiguer le meilleur possible depuis notre enfance. Vous êtes des repères dans ma vie et il est grand temps maintenant de prendre soin de vous ! A mes grands-parents **Odette** et **Dédé**, **Claudie** et **Yves**, à mon grand-père **Roger**, merci tous les 5 de tout ce que vous avez fait pour moi. J'ai beaucoup de chance de vous avoir, d'avoir des grands-parents aussi ouverts, modernes et drôles que vous. Je vous aime fort, vous le dis peu, mais y pense tout le temps. Merci merci merci !! Merci également à mon parrain **Patrick**, ma tante **Régine** et à mon super zinzin de l'espace **Seb** pour tous les bons moments que vous m'offrez à chaque fois !!

Par ce que j'ai fait un pari merdique, à mes boules de poils d'amour **Arja** et **Fluffy**, merci de m'avoir réveillé tous les matins à 6h04 pour quémander lâchement des croquettes, merci d'avoir été des merveilleuses éponges à stress et surtout, merci d'avoir été des plaids absolument douillets et chauds quand je rédigeais mon manuscrit cet hiver.

Ma **Pou**, merci d'avoir été aussi patiente, d'avoir été d'un soutien et d'un réconfort intarissables. C'est fini les conneries je rentre à la maison maintenant. Je t'aime

Table des matières

LISTE DES FIGURES ET TABLES	5
INTRODUCTION GENERALE	
1.1. Généralités sur les <i>black shales</i>	19
1.1.1. Caractérisation et répartition stratigraphique	
1.1.2. Facteurs contrôlant la formation des black shales	
1.2. Les blacks shales du Crétacé de l'océan Atlantique central	24
1.2.1. Répartition et composition des niveaux organiques	
1.2.2. Hypothèses sur les conditions de formation des black shales albo-turoniens	
1.4. Problématique	
1.5. Objectifs et plan du manuscrit	40
Références	43
CHAPITRE 1. MATERIEL ET METHODES	51
1. Sélection, datation, et lithologie des puits	53
3. Etude de la provenance sédimentaire	57
3.1. Utilisation des éléments majeurs et traces	
3.2. Le traçage isotopique par $\varepsilon_{Nd(t)}$	61
3.3. Le traçage isotopique par ⁸⁷ Sr/ ⁸⁶ Sr	67
4. Compilation des données organiques et synthèse paléoenvironmentale	69
Références	71
CHAPITRE 2. PROVENANCE DES BLACK SHALES DU SEGMENT EST D	E L'OCEAN
ATLANTIQUE CENTRAL AU CRETACE: IMPLICATIONS SUR LE R	ESEAU DE
DRAINAGE	77
Résumé	77
Abstract	79
1. Introduction	
2. Geological settings and potential sources	83

2.1. Geological settings	8 <i>3</i>
2.2. Data sources	
3. Materials and Methods	
3.1. Sampling	85
3.2. Bulk organic geochemical analysis	87
3.3. Major and trace elements and Sr-Nd isotopes	87
3.3.1. Sample preparation	
3.3.2. Major and trace element analyses	
3.3.3 Nd-Sr isotopes compositions	
4. Results	90
4.1. Organic geochemistry and stratigraphic appraisal of $\delta^{13}C_{TOC}$ data	
4.2. Major elements, Large-Ion Lithophile Elements (LILE), High Field Strength Elements (H	FSE) and
Trace Transition Elements (TTE)	94
4.3. Rare Earth Elements (REE)	
4.4. Sr-Nd isotopes	
5. Discussion	
5.1. Influence of chemical weathering and marine authigenesis on provenance proxies	
5.2. Provenance of Cretaceous sediments in the eastern Central Atlantic Ocean	
5.2.1. Albian–Middle Cenomanian	
5.2.2. Late Cenomanian-Turonian	110
5.2.3. Campanian-Maastrichtian	111
5.3. Possible mechanisms for drainage reorganization	112
6. Conclusion	
Acknowledgments	115
References	

Résumé	
Abstract	
1. Introduction	
2. Data and Methods	
2.1. Seismic stratigraphy	
2.2. Mesozoic stratigraphy of the eastern Central Atlantic Ocean	
2.3. Backstripping and paleobathymetric estimates	
3. Results	
3.1. Margin geometry	

3.2. Seismic facies and associated deposits14	17
3.2.1. Mounded seismic feature nearby DSDP Site 367 during Jurassic to Lower Cretaceous	47
3.2.2. Base of slope seismic facies during Cenomanian to Late Cretaceous	49
3.2.3. Sediment remobilization by bottom-water currents from the Albian to the Late Cretaceous	51
3.3. Cretaceous palaeobathymetry of slope and deep-water basin domains	53
4. Discussion	;5
4.1. Evolution of the Cretaceous deep-water sedimentation	55
4.1.1. Initiation of distal bottom currents during the Lower Cretaceous	57
4.1.2. Evidence of Albian to Cenomanian bottom currents within a gravity-driven deep sedimentation setting 15	57
4.1.3. Abrupt changes in the Late Cretaceous deep-sea sedimentation influenced by bottom currents	58
4.2. Implications for Cretaceous oceanic paleocirculation pattern	59
5. Conclusions	i 3
Acknowledgments16	54
References	55

Résumé	172
1. Introduction	174
2.1. Contexte géodynamique du bassin du Guyana-Suriname	178
2.2. Sources potentielles	181
3. Matériel et méthodes	183
3.1. Echantillonnage au puits Arapaïma-1	184
3.2. Conversions temps-profondeur et création des cartes isopaques régionales	184
3.3. « Backstripping » et estimations paléobathymétriques	189
4. Résultats	191
4.1. Stratigraphie du puits Arapaïma-1	191
4.2. Contenu organique des sédiments crétacés du puits Arapaïma-1	192
4.3. Concentrations en éléments majeurs et traces des sédiments crétacés du puits Arapaïma-1	193
4.4. Concentrations en terres-rares des sédiments crétacés du puits Arapaïma	199
4.5. Compositions isotopiques en Nd-Sr	201
4.6. Géométrie de la marge et cartes d'épaisseurs	202
4.7. Paléobathymétries du domaine océanique du bassin du Guyana-Suriname au Crétacé	204
5. Discussion	206

5.1 Influence de l'altération chimique, de l'authigénèse et des conditions redox sur les traceur	s de
provenance	
5.1.1. Influence de l'altération chimique	
5.1.2. Influence de l'authigénèse	
5.1.3. Anomalies en Europium (Eu/Eu*) et conditions redox	
5.2. Provenance des sédiments crétacés du bassin du Guyana-Suriname	211
5.3. Evolution du bassin Guyana Suriname au cours du Crétacé	
5.4. Implications sur la formation des sédiments riches en matière organique	
5. Conclusion	
Références	
CHAPITRE 5. SYNTHESE ET DISCUSSION	240
1. Matière organique et évolution de la sédimentation profonde, deux cas d'études	
1.1. Bassins profonds nord-ouest africains	
1.2. Bassin du Guyana-Suriname	
1.3. Comparaison des segments africain et sud-américain de l'océan Atlantique central	
2. Facteurs favorisant l'enrichissement en matière organique dans le domaine océan	ique
profond de l'Atlantique central au Crétacé	
2.1. Configuration favorable à l'enrichissement en MO dans le bassin profond	
2.2. Configuration défavorable à l'enrichissement en MO dans le bassin profond	
Références	
CONCLUSION ET PERSPECTIVES	
Principaux résultats	
Secteur africain	
Bassin du Guyana-Suriname	
Conclusion	
Perspectives	
ANNEXES	
RESUME	
ABSTRACT	

INTRODUCTION

- Figure i.2. Répartition stratigraphique des niveaux de black shales et d'autres sédiments riches en matière organique au cours du Crétacé dans les sites DSDP de l'Océan Atlantique central, Pacifique et de la Mer des Caraïbes (simplifié et modifié d'après Arthur, 1979).
- Figure i.4. Cartes paléogéographiques simplifiées de la région est de l'océan Atlantique central illustrant la composition organique et le TOC des sédiments des intervalles (A) Albien Cénomanien (hors OAE2), (B) Cénomanien Turonien (OAE2) et (C) Turonien Maastrichtien (hors OAE2). Le cadre biostratigraphique de chaque puits est issu de son rapport initial de forage (Hayes et al., 1972 ; Lancelot et al., 1978 ; Shipboard Scientific Party et Bukry, 1978a ; Shipboard Scientific Party, 2004) à l'exception du site DSDP 369 (Cool et al., 2008). Les valeurs de TOC (% poids) correspondent à la moyenne calculée pour chaque intervalle d'après une compilation de données issues de la littérature (Tissot et al., 1980 ; Summerhayes, 1981 ; Herbin et al., 1986 ; Meyers et al., 2006 ; Wagner et al., 2013, voir annexe 1). Les données de palynofaciès ont été synthétisées et moyennées pour chaque période d'après Summerhayes (1981).
- Figure i.5. Caractéristiques des blacks shales albo-turoniens de l'océan Atlantique central et probables facteurs de contrôle associés à chaque secteurs (localisés sur la figure i.3.). D : Dilution. Nut. : Apports de nutriments. P : Préservation. Org. : Contenu organique. Sources : Lancelot et al., 1978 ; Tissot et al., 1979 ; Summerhayes, 1981 ; Einsele et Wiedmann, 1982 ; van Hinte et al., 1985 ; Herbin et al., 1986 ;

CHAPITRE 1.

de dépôts sédimentaires associés à un courant océanique de fond (d'après Stow et al, 2002).57

- **Table 1.1**. Comparaison des biais et avantages des approches pétrographiques et géochimiques dans l'étude dela provenance sédimentaire (d'après McLennan et al., 1993 ; modifiée et traduite par Roddaz, 2004). 58

- Figure 1.9. Diagramme εNd en fonction du temps (en Ga) illustrant la déviation du réservoir DM (depletedmantle) par rapport au réservoir CHUR (ligne horizontale car normalisé à lui-même donc εNd =0). Les échantillons issus de la croûte peuvent donc, pour un même εNd, présenter deux âges modèles différents en fonction du réservoir de référence choisi. La courbe d'évolution du modèle DM correspond à un polynôme du second degré dont l'équation est : 0,25T² - 3T + 8,5 où T est l'âge en Ga (d'après DePaolo, 1988).

CHAPITRE 2.

Figure 2.1. A) Location of study area in its Cretaceous paleogeographical context (Torsvik et al. 2012). The red rectangle indicates position of area shown on Figure 2.1B. B) Main geological units of the West African Craton (WAC) and location of studied boreholes including the exploration well CM1, DSDP leg 41 Sites 367, 368, 369, 370, leg 50 Sites 415A, 416 and leg 14 Site 137 (white circles). Source ages are simplified from Milesi et al., (2010). Coloured squares represent localities with published $\varepsilon_{Nd(0)}$ data compiled in our database of potential sources. Colours indicate the average $\varepsilon_{Nd(0)}$ values of sedimentary rocks for each locality (Supporting information Annexe 2). C) Averages and standard deviations of $\epsilon_{Nd(0)}$ values for the four main sources. The colour-coded scale indicates the range of $\epsilon_{Nd(0)}$ values from radiogenic in red to very unradiogenic in purple. n refers to the total number of available values. Data from Hercynian orogenic belts include values from the Moroccan Meseta, Anti-Atlas and High-Atlas, as well as the Bassarides, Souttoufides, Mauritanides, and Rokelides. MO: Morocco, Sen: Senegal, Ma: Figure 2.2.. Stratigraphic framework, $\epsilon_{Nd(0)}^{87}$, 87 Sr/ 86 Sr, $\delta^{13}C_{TOC}$ and CIA values of core samples from DSDP Sites 367, 368, 369, 415A, 370, 137, 138 and 416 located in deep-water environments of the eastern Central Atlantic Ocean. Age uncertainties are indicated by grey vertical lines. Absence of a vertical line means **Table 2.1.** Organic matter contents and stable carbon isotope values (TOC and $\delta^{13}C_{TOC}$) of sedimentary rocks Figure 2.3. Stratigraphic framework, lithology, $\varepsilon_{Nd(0)}$, ${}^{87}Sr/{}^{86}Sr$ and $\delta^{13}C_{TOC}$ values of Cretaceous sediments from the CM-1 well on the Casamance continental shelf. M, mudstone. W, wackestone. P, packstone. G, grainstone. Sh, shale. Cl, clay. S, silt. fSd, fine sandstone. mSd, medium sandstone. cSd, coarse Table 2.2. Major and trace element contents of sedimentary rocks analysed in this study. Uncertainties for all Figure 2.4. Major and selected trace element contents normalized to PAAS (Taylor and McLennan, 1985). From left to right on the diagram, the major elements (SiO₂, TiO₂, Al₂O₃, Fe₂O₃, MnO, MgO, CaO, Na₂O, K₂O and P₂O₅), LILE (Rb, Cs, Ba, Sr, Th and U), HFSE (Y, Zr, Nb, Hf), and TTE (Sc, Cr, Co, V Figure 2.5. Rare earth element (REE) contents normalized to PAAS (Taylor and McLennan, 1985) for DSDP **Table 2.3.** Nd–Sr isotopic systematics of sedimentary rocks analysed in this study. 2σ is the internal analytical

- Figure 2.6. HREE/LREE vs. MREE/MREE* diagram. HREE/LREE and MREE/MREE* values are calculated following Martin et al. (2010). The MREE bulge and "bell-shaped" REE profiles correspond to REE patterns observed in fish teeth, Fe-Mn oxides, organic matter and pore waters, while "HREE-enriched" profiles correspond to modern sea water (Huck et al., 2016; Moiroud et al., 2016). These end-members reflect the REE contents of marine sediments influenced by seawater or authigenic phases, while "flat" REE patterns are characteristic of continental clays (see Huck et al., 2016; Moiroud et al., 2016 for a review). Samples from each DSDP Site are represented by specific symbols used in Figures 2.4. and 2.5.

CHAPITRE 3.

Figure 3.1. Shaded bathymetric map of the eastern Central Atlantic Ocean showing the geomorphological and oceanographic framework of the studied margin between the Canary Island Seamount Province (CISP) and the Guinean Plateau (GP). Interaction between oceanic currents and terrestrial sedimentary export is illustrated by four regional seismic sections indicated by red lines through Deep Sea Drilling Project (DSDP) Sites 367 and 368. Grey hatched area represents the basement bulge off the margin identified by Patriat and Labails (2006) and the location of the Jurassic shelf edge mapped by Purdy (1989). Magnetic anomalies are reconstructed by Labails (2007). Cretaceous sediment waves observed by Dunlap et al. (2013) are indicated by the blue star. Present-day sediment wave fields are sourced from Wynn et al. (2000). Present-day oceanic circulation with GS–NAC: Gulf Stream–North Atlantic Current. CC: Canary Current. NEC: North Equatorial Current. ECC: Equatorial Counter–Current. ABW: Antarctic Bottom Water. Cretaceous oceanic currents correspond to the Tethys Circumglobal

- Figure 3.2. (A) Original map of the Site 367 in the Cape Verde Basin, with location of seismic reflection profiles (Shipboard Scientific Party, 1978). (B) Portion of VEMA 29 seismic profile crossing Site 367, Horizons A, B and C corresponds to targets prior of drilling, (C and D) Portions of seismic profile Valvidia 10, with seismic calibrated framework corresponding to (E.) Figure 5A. SF: Sea Floor; P: Base Paleocene; TC: Top Cenomanian; TA: Top Albian; TAp: Top Aptian; TLC: Top Lower Cretaceous; AB: Top Acoustic Basement.
- Figure 3.3. Lithostratigraphic chart of DSDP Sites 367, 368 (Mauritania Senegal Guinea Basin; Lancelot et al., 1978a; 1978b), DSDP Site 398 (NW Iberian Margin; Ryan et al., 1979) and sedimentary structures identified in this study area. Sediment waves and mass transport complex occurrence offshore Morocco is based on Dunlap et al. (2013) and contourite drift occurrences offshore the NW Iberian Margin is from Soares et al. (2014). Age uncertainties are illustrated by dashed-black arrows. TD: Total Depth; DbF: Debris Flow.
- Table 3.1. Lithology, porosity and density parameters for each sedimentary unit used for the backstripping of stratigraphic cross section illustrated in Figures 3.5. and 3.6.
 138

- Figure 3.7. (A) North-South two-way time seismic section along the Mauritanian shelf (east of DSDP Site 368, offshore Mauritania), courtesy of TGS. (B) Depth-converted interpreted geological section derived

from Figure 3.7A. (C) WNW-ESE two-way time seismic section through Guinean Plateau to deepwater, courtesy of TGS. (D) Depth converted interpreted geological section derived from Figure 3.7C. Legend is the same as Figure 3.6B. See Figure 3.1. for location......**146**

- Figure 3.12. Paleogeographic maps of the study area focused on the deep-water sedimentation. (A) Early Cretaceous period (Berriasian-Aptian), the sedimentation in the deep-water area is associated to channel-levees sourced from onshore via deltas and some sediment waves offshore Morocco and mounded drifts near DSDP Site 367. (B) the Albian-Cenomanian period records extensive slope deposits that covers most of the margins from Morocco to Guinea where contourite drift and upper slope erosion occurs. (C). the Upper Cretaceous period (Turonian to Maastrichtian) is a period of mass

CHAPITRE 4.

- Figure 4.1. A. Localisation de la zone d'étude dans le contexte paléogéographique au Crétacé (Torsvik et al., 2012). Le rectangle rouge indique la position de la Figure 4.1B. COA : Craton Ouest Africain. BG : Bouclier Guyanais. B. Principales unités géologiques constituant l'arrière-pays du bassin du Guyana-Suriname, principales unités morphologiques du domaine océanique atlantique actuel et localisation du site Arapaïma-1 (AR-1) ainsi que des sites ODP du leg 207 et du DSDP leg 78A site 543 (cercles noirs). TkB : Bassin du Takutu. PaB : Bassin de Parnaíba. Le canyon du Crétacé est localisé d'après l'étude de Yang et Escalona (2011).
- Figure 4.2. Séquence lithostratigraphique, $\delta^{13}C_{TOC}$, TOC, et taux de sédimentation des dépôts du Crétacé au puits Arapaïma-1. La position stratigraphique des échantillons utilisés dans cette étude est indiquée par les triangles oranges. M, mudstone. W, wackestone. P, packstone. G, grainstone. A : argile. S : silt. SF, sable fin. SM, sable moyen. SG, sable grossier. Les données de TOC sont issues du rapport de fin de sondage du puits et de nouvelles analyses faites dans cette étude. L'ouverture de l'Océan Atlantique Sud est datée d'après Nürnberg et Müller (1991) ; celle de l'Océan Atlantique Equatorial d'après Sibuet et Mascle (1978), le refroidissement crustal d'après Benkhelil et al. (1995), Greenroyd et al. (2007) et Yang et Escalona (2011) ; l'accélération de l'accrétion de la croûte océanique (Larson, 1991) ; la

formation de la Large Province Ignée des Caraïbes (Duncan et Hargraves, 1984) ; la convergence entre la plaque Caraïbes et la plaque sud-américaine (Pindell, 1991) et enfin la déformation andine (Kohn et al., 1984). Les données relatives au Plateau de Démérara (Site ODP 1260) sont représentées sur une Figure 4.3. Section régionale illustrant la morphologie de la marge du bassin du Guyana-Suriname entre le puits Arapaïma-1 et les sites ODP du leg 207 situés sur le Plateau de Démérara. Fe : fond de l'eau. P : base du Cénozoïque. TT : Toit du Turonien. TC : Toit du Cénomanien. mAU : Discontinuité intra-Albienne. TJ: Toit du Jurassique. TAB: toit du socle acoustique observé sur la section sismique réflexion 2D. Figure 4.4. Compilation des données de vitesse à partir des mesures faites par des bouées sonores sur le Plateau de Démérara, dans le bassin profond du Guyana-Suriname (Diebold, 1996) et des check-shots issus des sites ODP du leg 207 (Plateau de Démérara, Shipboard Scientific Party, 2004) et du puits Arapaïma-1 Figure 4.5. Cartes isopaques des sédiments du Crétacé dans le bassin du Guyana-Suriname. A. Période de l'Albien au Turonien. B. Période du Turonien au Maastrichtien. Guy : Guyana. Bra : Brésil. Sur : Figure 4.6. A. Carte illustrant la répartition du paramètre Te des lithosphères continentale et océanique (Watts, 2015). La délimitation du domaine continental et du domaine océanique est caractérisée par la limite Océan-Continent (OCB, Müller et al., 2016). B. Distribution et fréquence des valeurs Te des domaines **Table 4.1.** Contenu organique des sédiments prélevés au puits Arapaïma-1 (TOC et $\delta^{13}C_{TOC}$)......**192** Figure 4.7. Concentrations en éléments majeurs et traces normalisés au PAAS pour le puits Arapaïma-1 (Taylor et McLennan, 1985). De gauche à droite, les éléments majeurs (SiO₂, TiO₂, Al₂O₃, Fe₂O₃, MnO, MgO, CaO, Na₂O, K₂O et P₂O₅), les LILE (Rb, Cs, Ba, Sr, Th, U), les HFSE (Y, Zr, Nb, Hf), et les TTE (Sc, Figure 4.8. Variations des valeurs des compositions isotopiques en néodyme ($\varepsilon_{Nd(0)}$) et en strontium (⁸⁷Sr / ⁸⁶Sr), des âges T_{DM}, du CIA, de l'anomalie en europium (Eu/Eu*) et des rapports élémentaires Cr/Th et Th/Sc pour les sédiments du Crétacé prélevés au puits Arapaïma-1......196 Table 4.2. Concentrations en éléments majeurs et traces et anomalies en Europium (Eu/Eu*) et cérium (Ω Ce) Figure 4.9. Concentrations en Terres Rares normalisées par rapport au PAAS (Taylor et McLennan, 1985) pour Table 4.3. Compositions isotopiques en Néodyme et en Strontium pour les sédiments du Crétacé prélevés au

- Figure 4.10. Section 2D backstrippée décompactée d'après la Figure 4.7. illustrant l'évolution de la pléobathymétrie du plancher Océanique pendant le Crétacé. Les lignes en pointillés correspondent à un pas de temps défini (105 Ma, 93 Ma, 89 Ma) et le dégradé de gris correspond à la valeur du paramètre Te utilisée (0 km, 10 km, 20 km, 30 km). Le fond de l'eau actuel est représenté par la ligne noire continue. 205

- Figure 4.14. Carte paléogéographique (modifiée d'après Scotese et Golonka, 1997) illustrant les aires de drainage potentielles ainsi que le sens des apports sédimentaires ayant alimenté le bassin du Guyana-Suriname au Crétacé. TkB : Bassin du Takutu. AR-1 : puits Arapaïma-1. ε_{Nd}++ : Apports de matériel à ε_{Nd} radiogénique (p.e. LIP Caraïbes). Pour les données isotopiques des sources, voir l'Annexe 6. 217

CHAPITRE 5.

- Figure 5.2. Cartes paléogéographiques synthétisant les principaux résultats du manuscrit sur l'évolution du cadre sédimentaire du bassin du Guyana-Suriname et de la matière organique au Crétacé en Atlantique Central. La flèche associée aux diagrammes de proportions en MO indique l'évolution temporelle au cours de l'intervalle de l'origine de la MO et de son enrichissement dans les sédiments. Le cadre paléogéographique est modifié d'après la reconstruction à 90 Ma proposée par Scotese (2001).........245

Liste des annexes

Annexe 1. Compilation des données de TOC et de δ^{13} C issues de la littérature des sites DSDP situés dans le
bassin profond du secteur est de l'océan Atlantique central
Annexe 2. Compilation des données de ¹⁴³ Nd/ ¹⁴⁴ Nd, de ⁸⁷ Sr/ ⁸⁶ Sr et des valeurs de $\varepsilon_{Nd(0)}$ issues de la littérature
pour les unités qui composent le paysage continental nord-ouest africain (cratons et bassins
sédimentaires). HERCY : Ceintures hercyniennes
Annexe 3 .Incertitudes analytiques des concentrations en éléments majeurs et traces mesurées à l'ICP-OES et à
l'ICP-MS (CRPG Nancy)
Annexe 4. Covariations des compositions isotopiques analysées et des rapports élementaires utilisant le
coefficient de corrélation R ²
Annexe 5. Compilation des données lithologiques, de TOC et des taux de sédimentation (d'après le rapport
initial du Site ODP 1260, Shipboard Scientific Party, 2004), des valeurs de ENd(t) de la fraction
détritique (carrés rouges) et de l'eau de mer (cercles bleus) d'après Martin et al (2012). L'OAE 2 a pu
être identifié entre 415mbsf et 4132mbsf grâce à l'incursion positive du δ^{13} C (Forster et al., 2007). La
légende de la lithologie est identique à celle de la figure 4.2
Annexe 6. Compilation des données de ¹⁴³ Nd/ ¹⁴⁴ Nd, de ⁸⁷ Sr/ ⁸⁶ Sr et des valeurs de $\varepsilon_{Nd(0)}$ issues de la littérature
des sources pouvant alimenter le bassin du Guyana-Suriname en matériel sédimentaire
Annexe 7. Compilation des analyses de TOC, de δ^{13} C, des compositions isotopiques 143 Nd/ 144 Nd, et 87 Sr/ 86 Sr,
des valeurs de $\epsilon_{Nd(0)}$, des concentrations en éléments majeurs et traces, des anomalies en europium et en
cérium, du CIA et enfin des rapports élémentaires effectuées dans cette étude sur les sites DSDP au
large de la mage nord-ouest africaine

Introduction générale.

INTRODUCTION GENERALE

Les événements anoxiques océaniques (OAEs) sont des épisodes de forte réduction de la concentration en oxygène des océans, associés au dépôt de sédiments riches en matière organique (*e.g. black shales*) sur le plateau continental et dans le bassin océanique profond (Schlanger et Jenkyns, 1976 ; Jenkyns, 1980). Le caractère global des OAEs a longtemps impliqué la considération, par la communauté scientifique, d'une répartition spatiale homogène des *black shales* dans le domaine océanique. En réalité, la distribution de ces niveaux organiques est très variable puisque leur enregistrement n'est pas continu sur une même marge et que leur présence n'est pas toujours associée à des OAEs (Arthur et al., 1987). Plus particulièrement, l'enrichissement et l'origine du contenu organique des *black shales shales* peuvent être très hétérogènes pour un même intervalle de temps (Tissot et al., 1979 ; Arthur et al., 1987). Cela implique donc de comprendre la spatialisation de l'enregistrement des OAEs et à plus large sens, la distribution des *black shales* dans le domaine océanique.

Ce travail s'inscrit dans le cadre d'un projet de recherche initié par le service R&D du groupe TOTAL S.A. en collaboration avec plusieurs universités sur l'étude des sédiments riches en matière organique d'origine terrestre déposés dans les bassins océaniques profonds. Plus spécifiquement, ce projet tente de comprendre d'où provient la matière organique d'origine terrestre. Quels sont les processus d'accumulation et de distribution de cette matière organique et des sédiments associés ? Quelles sont leurs conditions de dépôt lors de leur sédimentation ? Comment ces différents aspects évoluent-ils au cours du temps ?

1.1. Généralités sur les black shales

1.1.1. Caractérisation et répartition stratigraphique

Au cours des cinquante dernières années, l'exploration par la communauté scientifique du domaine océanique profond, c'est-à-dire au-delà du talus continental, a permis de recenser des sédiments fins riches en composés organiques nommés *black shales* dans le

monde anglo-saxon. Le terme black shales désigne génériquement des roches sédimentaires de couleur sombre à granulométrie et litage fins dont les caractéristiques paléontologiques, minéralogiques, et géochimiques (e.g. absence de bioturbation et de faune benthique, présence de pyrite framboïde, enrichissements en Mo et U, rapports $\delta^{98/95}$ Mo et δ^{57} Fe élevés) suggèrent une formation en eaux de fond dysoxiques, anoxiques ou euxiniques favorables à la préservation de matière organique (MO) (Tyson, 1987 ; Wignall, 1994). La teneur en carbone organique totale (TOC, en % poids) dans les black shales peut varier de 0,4 à plus de 50 % (Tyson, 1995). Cependant, aucune définition générale ne s'accorde pour définir le seuil de TOC minimum au-dessus duquel il est possible de qualifier un black shale de « riche en MO ». La définition de la littérature utilisée dans ce manuscrit est celle qui qualifie les sédiments déposés dans des environnements marins profonds de « riches en MO » lorsqu'ils présentent des valeurs de TOC supérieures à 1 % (Summerhayes, 1981 ; Tissot et Welte, 1984 ; Tyson, 1995). Ce contenu peut se composer de quatre catégories de MO définies en fonction de la nature (bactérienne, algaire ou végétale) et de l'origine (lacustre, marine ou terrestre) des molécules préservées (Tissot et al., 1974). Généralement, lorsqu'un dépôt est qualifié de « type I » (ou sapropélique), il s'agit d'une roche constituée de matière organique bactérienne ou algaire produite en milieu lacustre (e.g. Lac Tanganyika ; Demaison et Moore, 1980) ou en environnement anoxique (e.g. milieu marin confiné de la Mer Noire, Demaison et Moore, 1980). Un niveau organique de « type II » (ou planctonique) se forme quant à lui dans les environnements marins et contient essentiellement de la matière organique issue de planctons, de micro-organismes ou d'algues. Généralement, ces dépôts de type II présentent une bonne extension régionale et sont souvent associés aux formations carbonatées ou aux marnes/argiles marines du plateau continental et du domaine marin profond (e.g. Formation Hanifa de la Péninsule Arabe, Droste, 1990). Les sédiments organiques de « type III » (ou humiques) contiennent majoritairement des débris de végétaux (e.g. plantes terrestres) ou d'autres composants organiques continentaux et sont fréquemment associés aux niveaux de charbons (e.g. les charbons carbonifères de la Mer du Nord, Leeder et al., 1990). Enfin, les dépôts de « type IV », moins caractéristiques et à plus faible caractère pétroligène (Durand, 1980 ; Tissot et Welte, 1984), correspondent à des roches souvent argileuses et constituées de débris de végétaux extrêmement dégradés (*e.g.* brûlés (fusinite) ou décomposés (inertinite)). Pour caractériser les environnements de dépôt de la MO ou son origine, plusieurs outils sont utilisés incluant par exemple les analyses pyrolytiques Rock-Eval, les analyses optiques de palynofaciès, les mesures de δ^{13} C, les biomarqueurs et analyses macérales ou encore les concentrations en éléments majeurs et traces (Tyson, 1995 ; Baudin et al., 2007). Dans ce manuscrit, la MO « marine » désigne entre autre le contenu organique d'origine bactérienne, algaire, planctonique ou issue de micro-organismes qui présente des caractéristiques géochimiques proches des types I et II (Tissot et al., 1974). La MO « terrestre » quant à elle, désigne le contenu organique issu de végétaux (pollens, cuticules, feuilles et autres débris ainsi que la fusinite ou l'inertinite) ayant des caractéristiques proches de la matière organique de type III ou IV.

D'un point de vue stratigraphique, les black shales de milieux marins profonds ont été observés dans des formations sédimentaires couvrant l'ensemble du Phanérozoïque (Figure i.1., Emery et Myers, 1996). En effet, les premiers black shales (référencés dans la catégorie des « roches mères » par l'industrie pétrolière, c'est-à-dire pouvant générer des hydrocarbures) déposés en domaine marin profond sont datés du Dévonien supérieur. Le nombre de formations comprenant des sédiments riches en MO recensés depuis le Dévonien supérieur jusqu'au Trias demeure assez faible (entre 1 et 7, Figure i.1.). En comparaison, ce nombre augmente fortement entre le Jurassique supérieur et le Crétacé supérieur (23 et 24 formations respectivement, Figure i.1.). Pendant le Mésozoïque, les black shales du Crétacé sont ceux déposés dans des environnements marins les plus variables, allant du domaine peu profond au domaine marin profond (Figure i.1.). Cependant, la majorité des formations pétroligènes du Crétacé présente des gammes paléobathymétriques (c-à-d, des profondeurs d'eau) imprécises et incertaines d'où leur caractère « marin indéterminé » (Figure i.1., Emery et Myers, 1996). De manière générale, la connaissance de la paléobathymétrie est importante car, en fonction de la profondeur d'eau, les facteurs favorables à la formation de black shales peuvent varier (Tyson, 1995; Baudin et al., 2007). Il apparait donc nécessaire d'améliorer notre compréhension des conditions favorables à la formation de niveaux riches en MO. Cela implique de caractériser leur environnement de dépôt et la paléobathymétrie associée et de
déterminer les mécanismes et processus impliqués dans la formation, le transport et le dépôt de ces sédiments riches en MO.

Figure i.1. Répartition des sédiments riches en MO et à caractère pétroligène recensés durant les temps géologiques (modifiée d'après Emery et Myers, 1996). PC : Précambrien, C : Cambrien, O : Ordovicien, S : Silurien, D : Dévonien, C : Carbonifère, P: Permien, Tr: Trias, J: Jurassique, K: Crétacé, T: Tertiaire.

1.1.2. Facteurs contrôlant la formation des black shales

Les hétérogénéités de composition et d'enrichissement organique sont dépendantes de plusieurs conditions, à la fois physiques, biologiques et chimiques qui peuvent être classées selon trois facteurs majeurs qui contrôlent la formation des *black shales* (Demaison et Moore, 1980 ; Ibach, 1982 ; Huc, 1988 ; Pedersen et Calvert, 1990 ; Hedges et Keil, 1995 ; Tyson,
1995 ; Tribovillard *et al.*, 1996 ; Thamban *et al.*, 1997 ; Kennedy *et al.*, 2002 ; Bohacs *et al.*,
2005 ; Katz, 2005 ; Berthonneau et al., 2016) :

(1) Une forte production organique est le premier facteur nécessaire à la formation d'un dépôt de type *black shale*. Cette production est souvent liée à une forte productivité primaire (*e.g.* algaire, bactérienne ou végétale) associée à un apport de nutriments conséquent dans les milieux terrestre, marin et lacustre. Dans le domaine océanique, cet apport peut être associé soit : 1) à la présence de cellules d'*upwellings* qui sont des remontées en surface d'eaux profondes chargées de nutriments issus des fonds marins ; 2) au ruissellement continental qui permet d'alimenter l'océan par l'apport de nutriments issus de l'érosion des continents ; 3) au volcanisme qui libère des particules inorganiques par voie aérienne ou sous-marine, fertilisant ensuite les eaux et favorisant la productivité primaire marine.

(2) la dilution de la matière organique au sein de la matrice sédimentaire inorganique va influencer la concentration en carbone organique du sédiment. La dilution est donc fortement dépendante du taux d'accumulation de sédiments (détritiques ou carbonatés) associé au contenu organique. Par exemple, dans les milieux de faible énergie où se forment les niveaux condensés notamment, un taux d'accumulation sédimentaire peu élevé (< 5 mg/cm²/an) va permettre de concentrer la matière organique dans le sédiment (Tyson, 1995). Cependant, lorsque ce taux est élevé (> 30 mg/cm²/an), la grande quantité de matériel inorganique va diluer la matière organique et appauvrir la roche en contenu organique (Tyson, 1995).

(3) la préservation de la matière organique est dépendante du potentiel de dégradation d'un environnement de dépôt. Cette dégradation est bien souvent liée à la présence d'organismes bioturbateurs qui consomment la matière organique et qui ont généralement besoin d'oxygène pour se développer et survivre. Outre les conditions physico-chimiques de l'eau (*e.g.* température, salinité), cette oxygénation est généralement associée soit à la formation d'une zone à oxygène minimum (ZOM) engendrée par une forte activité biologique de surface qui consomme l'oxygène (Demaison et Moore, 1980), soit à la physiographie d'un bassin qui, lorsqu'il est confiné, permet la stratification des masses d'eau et la formation d'une couche dysoxique ou anoxique de fond (< 0,2 mL/L de dioxygène, Schlanger et Jenkyns, 1976 ; Summerhayes, 1987). En fonction de leur intensité et de leur pérennité dans le temps, ces environnements anoxiques, voire euxiniques si les conditions deviennent réductrices et riches en soufre, sont donc propices à une bonne préservation. En complément, d'autres facteurs peuvent également intervenir. Par exemple, certaines argiles comme la smectite sont parfois associées aux particules organiques et forment des complexes organo-argileux empêchant la dégradation du contenu organique lors de son transport, de son dépôt et de son enfouissement (Keil, 1995 ; Berthonneau et al., 2016). Dans un milieu oxique ou dysoxique de forte énergie (> 0,5 mL/L de dioxygène) comme un delta, un fort taux de sédimentation (entre 30 et 100 mg/cm²/an) va permettre la préservation de la matière organique dans la mesure où un enfouissement rapide de MO limite son temps de résidence en milieu oxydant (Tyson, 1995).

La connaissance de ces facteurs de contrôle est donc essentielle pour contraindre, et prédire les hétérogénéités organiques et sédimentaires associées aux dépôts de sédiments organiques. Pour les *black shales* de milieux océaniques profonds, cela implique notamment : 1) d'identifier les zones de forte productivité primaire potentiellement liées à la présence d'upwellings, d'activité volcanique ou d'estuaires/deltas favorisant l'apport de nutriments ; 2) de mieux connaitre le taux de sédimentation et les bassins versants associés pour mesurer l'impact du facteur de dilution, et enfin 3) de caractériser les conditions redox, les mouvements de masses d'eaux, et la géométrie de la marge et des bassins pour déterminer les conditions de confinement nécessaires à une bonne préservation.

1.2. Les blacks shales du Crétacé de l'océan Atlantique central

Le segment central de l'océan Atlantique s'est ouvert à partir du Jurassique moyen il y a 170 Ma (Labails *et al.*, 2010). De fait, la plupart des marges continentales bordant cet océan sont passives depuis le Crétacé (Sahabi *et al.* 2004), ce qui permet la présence d'un domaine océanique profond où se déposent des sédiments organiques, notamment pendant l'intervalle Albien-Turonien.

1.2.1. Répartition et composition des niveaux organiques

Les niveaux de *black shales* crétacés sont présents en grand nombre dans l'océan Atlantique central (i.e., plus d'une vingtaine recensée, Jenkyns, 1980), ce qui fait de cette région du globe un cas d'étude particulièrement approprié pour identifier spécifiquement les processus responsables de la formation des dépôts organiques en domaines marins profonds. En effet, la matière organique y est observée en fortes concentrations (i.e., de 1 à 50 %) depuis le Valanginien jusqu'au Campanien (Figure i.2., Arthur, 1979).

Figure i.2. Répartition stratigraphique des niveaux de black shales et d'autres sédiments riches en matière organique au cours du Crétacé dans les sites DSDP de l'Océan Atlantique central, Pacifique et de la Mer des Caraïbes (simplifié et modifié d'après Arthur, 1979).

Certains intervalles comme l'Albien-Turonien présentent d'ailleurs des enregistrements continus de dépôts riches en MO sur toutes les marges de l'océan Atlantique central (Arthur, 1979 ; Figure i.3.).

Figure i.3. Reconstruction paléogéographique du Turonien (Scotese, 2001) illustrant la localisation des sites DSDP et ODP de l'océan Atlantique central pour lesquels sont recensés des niveaux riches en matière organique (points noirs). Les rectangles marrons numérotés localisent les différents secteurs d'enrichissement en matière organique discutés dans le texte (modifié d'après Arthur et al., 1990). TA : Bassin de Tarfaya

Afin de comprendre la distribution et l'origine de cette matière organique au large des marges nord-ouest africaines et sud-américaines, nous avons réalisé une compilation des données de palynofaciès et de TOC disponibles dans la littérature en collaboration avec Anne-Claire Chaboureau et Françoise Béhar (Table i.1.), qui a été synthétisée sous la forme de cartes paléogéographiques (Figure i.4.). Les données utilisées sont essentiellement issues des résultats de campagnes ODP (*Ocean Drilling* Program) et DSDP (*Deep Sea Drilling* Program) des *leg* 14, 41, 50 et 207. En détails, le secteur nord de la marge nord-ouest africaine a été caractérisé grâce aux sites DSDP 137, 369 et 370 des *leg* 14 et 41, la région sud de la marge nord-ouest africaine grâce aux sites DSDP 367 et 368 du *leg* 41, et la marge équatoriale de l'Amérique du Sud (plus particulièrement le Plateau de Démérara) grâce aux sites DSDP 144 du *leg* 14 et ODP du *leg* 207. A titre comparatif, nous avons également compilé les données des puits d'exploration pétrolière de Casamance-M-1 (CM1) situé sur le plateau continental du Sénégal et d'Arapaïma-1 (AR1) situé sur le plateau continental du

Guyana, de façon à comparer les résultats du domaine océanique profond et du plateau continental.

De l'Albien au Cénomanien (Figure i.4A.), les valeurs moyennes de TOC montrent une légère hétérogénéité dans le bassin profond entre le sud et le nord du secteur d'étude. Celles-ci varient de 4,2 à 7 % au sud, contre 1,2 à 4,5 % (Figure i.4A.). Les seules exceptions à cet enrichissement du secteur sud concernent les sites CM1 (TOC moyen = 0,8 %) et AR1 (TOC moyen = 0,7 %). Pendant l'événement anoxique de la limite entre le Cénomanien et le Turonien (OAE 2; 94 Ma – Schlanger et Jenkyns, 1976; Figure i.4B.), les sites DSDP 369 et 370 illustrent un hiatus lié à une lacune de sédimentation ou à une érosion (Shipboard Scientific Party et Bukry, 1978b ; Cool et al., 2008). Les sédiments associés à cet événement n'ont pas pu être datés sur le site DSDP 368 à cause de l'absence de marqueurs biostratigraphiques (Lancelot et al., 1978). Au nord-ouest du secteur, le site DSDP 137 (très distal) montre une augmentation négligeable du TOC moyen (+0,4 %) pendant l'OAE 2 (Figure i.4B., Summerhayes, 1981). En revanche, les valeurs de TOC des sites DSDP 367 (24,9 %) et 144 (20,9 %) et du puits CM1 (7,8 %) indiquent qu'un enrichissement organique majeur a affecté le secteur sud de l'océan Atlantique central dans cet intervalle (i.e., 3,5 à 10 fois plus en comparaison à la période précédente). Enfin, du Turonien (hors OAE2) au Maastrichtien, la majorité des sites étudiés sont appauvris en MO puisque les sédiments présentent un TOC moyen inférieur à 1 % (Figure i.4C.). Cela suggère une rupture des conditions favorables à leur formation (Tissot et al., 1980 ; Herbin et al., 1986 ; Wagner et al., 2013). Dans cet intervalle, seuls les sites DSDP 144 et 369 et le puits AR1 présentent des TOC moyens relativement élevés (>1,5 %) qui traduisent la persistance de bonnes conditions de préservation de la MO.

Figure i.4. Cartes paléogéographiques simplifiées de la région est de l'océan Atlantique central illustrant la composition organique et le TOC des sédiments des intervalles (A) Albien – Cénomanien (hors OAE2), (B) Cénomanien – Turonien (OAE2) et (C) Turonien – Maastrichtien (hors OAE2). Le cadre biostratigraphique de chaque puits est issu de son rapport initial de forage (Hayes et al., 1972 ; Lancelot et al., 1978 ; Shipboard Scientific Party et Bukry, 1978a ; Shipboard Scientific Party, 2004) à l'exception du site DSDP 369 (Cool et al., 2008). Les valeurs de TOC (% poids) correspondent à la moyenne calculée pour chaque intervalle d'après une compilation de données issues de la littérature (Tissot et al., 1980 ; Summerhayes, 1981 ; Herbin et al., 1986 ; Meyers et al., 2006 ; Wagner et al., 2013, voir annexe 1). Les données de palynofaciès ont été synthétisées et moyennées pour chaque période d'après Summerhayes (1981).

L'origine de la matière organique des dépôts crétacés de l'Atlantique central a été étudiée grâce à l'analyse optique des palynofaciès réalisée sur kérogène (Figure i.4. et Table i.1.; Summerhayes, 1981). De manière générale, notre synthèse montre que la matière organique amorphe est plutôt dominante sur l'ensemble des sites étudiés, à l'exception des séries du Crétacé supérieur dans lesquelles les composés organiques semblent mieux préservés. Plus surprenant, il apparaît que les teneurs en MO marine sont souvent négligeables par rapport à la MO terrestre. Néanmoins, diverses études de pyrolyse Rock-Eval, de biomarqueurs et d'analyses moléculaires indiquent que la matière amorphe des sites étudiés pourrait essentiellement résulter de la dégradation de MO d'origine marine (Tissot et al., 1980; Summerhayes, 1987; Holbourn et al., 1999; Kuypers et al., 2002; Forster et al., 2007). Compte tenu de cette transformation, les proportions relatives entre MO marine et terrestre doivent donc être considérées avec précaution, et une comparaison associant amorphe et marine d'un côté et terrestre de l'autre semble plus raisonnable. Par cette approche, il apparaît clairement qu'en faveur d'une augmentation des proportions de MO amorphe et marine, la contribution relative de MO d'origine terrestre décroit de 5 à 30 % selon les sites entre l'Albien et l'OAE2 (Figure i.4.). Après l'OAE2, la contribution de matière organique d'origine terrestre est dominante sur la majorité des sites où elle dépasse 50 %, à l'exception des sites DSDP 137 et 144 où la matière organique amorphe domine à plus de 60 % (Figure i.5C.). Cependant, de part les très faibles teneurs en carbone organique observées dans les black shales de cette période (< 0,5%), ces proportions doivent être utilisées avec précaution puisqu'elles sont caractéristiques de l'origine d'un « bruit de fond » organique plutôt que d'un réel enrichissement (Herbin et al., 1986 ; Summerhayes et al., 1987).

				Proportion de matière organique		
Âge	Epaisseur (m)	Site	TOC moyen %	Terrestre %	Marine %	Amorphe %
Albien-Cénomanien	40	144	4,7	30	0	70
Albien-Cénomanien	90	367	7	35	0	65
Albien-Cénomanien	1500	CM1	0,8	37	11	52
Albien-Cénomanien	80	368	4,2	47	3	50
Albien-Cénomanien	22	369	4,5	28	5	67
Albien-Cénomanien	140	137	1,8	75	5	20
Albien-Cénomanien	310	370	1,2	33	27	40
Albien-Cénomanien	300	AR1	0,7	15	5	80
OAE2	30	144	20,9	25	15	60
OAE2	50	367	24,9	25	0	75
OAE2	70	CM1	7,8	10	5	85
OAE2	35	137	2,2	52	0	48
OAE2	70	AR1	2,0	3	2	95
Turonien-Maastrichtien	80	144	6,4	35	0	65
Turonien-Maastrichtien	120	367	< 0,5	57	0	43
Turonien-Maastrichtien	800	CM1	< 0,5	80	2	18
Turonien-Maastrichtien	200	368	< 0,5	57	6	37
Turonien-Maastrichtien	50	369	3,3	51	6	43
Turonien-Maastrichtien	150	137	< 0,5	40	0	60
Turonien-Maastrichtien	1100	AR1	1,7	15	5	80

Table i.1. Valeurs de TOC moyens et proportions de matière organique calculées d'après une compilation de données issues de la littérature (Tissot et al., 1980 ; Summerhayes, 1981 ; Herbin et al., 1986 ; Meyers et al., 2006 ; Wagner et al., 2013, voir annexe 1). Les données de palynofaciès ont été synthétisées et moyennées pour chaque période d'après Summerhayes (1981).

La présence de matière organique d'origine terrestre en domaine abyssal questionne les modalités de transport et de diffusion de cette dernière depuis sa zone de formation sur le continent jusqu'à son dépôt dans les bassins océaniques profonds (Tissot et al., 1979 ; Herbin et al., 1986 ; Trabucho Alexandre et al., 2010). Les processus de transport associés à cette matière organique terrestre sont encore très discutés (Herbin et al., 1986 ; Trabucho Alexandre et al., 2010), et s'orientent soit vers un transport par des courants de turbidité initiés depuis le talus continental (Thurrow et Kuhnt, 1986) soit vers un transport de type éolien (Lever et McCave, 1983 ; Herbin et al., 1986). 1.2.2. Hypothèses sur les conditions de formation des black shales alboturoniens

Actuellement, les facteurs responsables de la formation des black shales crétacés de l'océan Atlantique central alimentent toujours les débats et ne sont pas tous clairement identifiés (Trabucho Alexandre et al., 2010). Néanmoins, les récentes données géochimiques et sédimentaires, incluant l'analyse des biomarqueurs, des isotopes du carbone (δ^{13} C) et du contenu fossilifère, suggèrent que les black shales de l'intervalle Albien-Turonien se sont principalement formés dans des conditions de préservation excellentes associées à des conditions anoxiques régionales assez pérennes en milieux profonds (Schlanger et Jenkyns, 1976). Selon de récentes simulations numériques combinées à des données isotopiques du néodyme de restes fossiles (Donnadieu et al., 2016), de telles anoxies auraient été favorisées par le confinement du bassin Atlantique central, déconnecté de tout apport de masses d'eau oxygénées en provenance de l'Atlantique Sud jusqu'au Turonien. Parmi ces dépôts de black shales, ceux déposés pendant l'OAE2 sont les plus importants en terme d'enrichissement en matière organique (TOC > 20%, Lancelot et al., 1978; Herbin et al., 1986). Comme les facies sédimentaires, la composition organique et l'enrichissement associés à ces niveaux sont très hétérogènes à l'échelle de l'océan Atlantique central (Tissot et al., 1979; 1980; Summerhayes, 1981; Trabucho Alexandre et al., 2010) et suggèrent une influence des facteurs de contrôle différente sur la formation de ces dépôts organiques. Parmi eux, des différences de conditions sédimentaires (e.g. transport, taux de sédimentation), paléoclimatiques, paléocéanographiques, redox et paléoenvironnementales pourraient en être la cause (Figures i.5. et i.6.). :

		Marge équatoriale Amérique du Sud (1)	Marge Est américaine (2) (Nord-ouest Océan Atlantique)	Marge Nord-ouest africaine secteur sud (3)	Marge Nord-ouest africaine secteur nord (4)	
	Géométrie de la marge Plateau continental Limite du plateau continental Bassin profond Site ODP/DSDP	AN Pisteau de Démérara Guyana	AN Example Baltimore Canyon Unit and the Canyo	AN Mauntame Sénégal Plateau Guarten Deep Carbonate Bank Margin	bassin bassin	
	Faciès	Argiles pélagiques et hémipélagites	Argiles pélagiques + turbidites	Niveaux condensés, hémipélagites turbidites, marnes, argiles pélagiques	Alternance mudstones pélagiques et lamines marneuses	
	Environnement	Marin (plateau continental et Plateau de Démérara ~700m)	Marin (bassin profond en sortie d'embouchure de canyon)	Marin (plateau continental et bassin profond)	Marin (plateau épicontinental, talus et bassin profond)	
Org.	Enrichissement (TOC moyen, %)	de 4,7 à 20,9 %	4,3 % (parfois > 20 %)	de 4,2 à 24,5 % (voire > 40 %)	de 1,2 à 16,4 %	
	Type de MO	Marine (type II)	Terrestre dominante + marin (types III et II)	Mélange marine + terrestre (types II et III)	Marine dominante + terrestre (types II et III)	
P	Anoxie/euxinie	Anoxie et euxinie (Plateau de Démérara)	Conditions anoxiques jusqu'à l'Albien	Anoxie et euxinie	Anoxie très localisée	
Nut.	Upwelling	Forts (équatoriaux + côtiers)	Côtiers	Très intenses (équatoriaux + côtiers)	Côtiers	
	Volcanisme	LIP Caraïbes	LIP Caraíbes + Western Interior Seaway (WIS)	Absence	Absence	
	Ruissellement	Très intense	Modéré	Intense	3	
D	Taux de sédimentation	de 1 à 5 m/Ma	de 1 à 5 m/Ma	<1 m/Ma	Hiatus	

Figure i.5. Caractéristiques des blacks shales albo-turoniens de l'océan Atlantique central et probables facteurs de contrôle associés à chaque secteurs (localisés sur la figure i.3.). D: Dilution. Nut.: Apports de nutriments. P: Préservation. Org.: Contenu organique. Sources: Lancelot et al., 1978; Tissot et al., 1979; Summerhayes, 1981; Einsele et Wiedmann, 1982; van Hinte et al., 1985; Herbin et al., 1986; Arthur et al., 1987; de Graciansky et al., 1987; Poag et Sevon, 1989; Kuhnt et al., 1990; Sinton et Duncan., 1997; Kuypers et al., 2002; 2004; Nzoussi Mbassani, 2003; Davison, 2005; Meyers et al., 2006; Labails, 2007; Sewall et al., 2007; Flögel et al., 2008; Hetzel et al., 2008; Jiménez Berrocoso et al., 2008; Miall et al., 2008; Sinninghe Damsté et al., 2008; Turgeon et Creaser, 2008; Jenkyns, 2010; Trabucho Wagner Alexandre et al., 2010; et al., 2013; Chaboureau et al., 2014; Kocsis et al., 2016

(1) Secteur sud de l'Atlantique Central (marge équatoriale sud-américaine, de 5°S à 5°N et de 27°O à 35°O, Figure i.3.). Il s'agit d'une marge constituée d'un bassin partiellement protégé par un proéminent plateau sous-marin, le Plateau de Démérara (Figure i.5.). Ce plateau, qui est un objet bathymétrique particulier dans le bassin du Guyana-Suriname, présente des niveaux de black shales hémipélagiques observés au DSDP leg 14 Site 144 et aux ODP leg 207 Sites 1257 à 1261. Ces black shales présentent un enrichissement en carbone organique exceptionnel avec des TOC moyens de 4,7 à 20,9 % depuis l'Albien jusqu'au Santonien (Meyers et al., 2006 ; Wagner et al., 2013). Les taux de sédimentation associés à ces niveaux varient de 1 à 5 m/Ma (de Graciansky et al., 1987). Plusieurs facteurs dans cette région sont favorables à la formation de ces sédiments riches en MO. Premièrement, une forte productivité primaire aurait pu être favorisée par: 1) la présence *d'upwellings* équatoriaux et/ou un fort ruissellement continental associés à un climat tropical comme suggéré par des modélisations couplées océan-atmosphère (Figure i.6., Arthur et al., 1987; Flögel et al., 2008; Wagner et al., 2013); 2) un épisode magmatique tel que la formation de la large province ignée des Caraïbes (Sinton et Duncan, 1997; Turgeon et Creaser, 2008; Trabucho Alexandre et al., 2010). Les conditions de préservation sont également très favorables car plusieurs zones d'anoxie voire d'euxinie dans la colonne d'eau ont été identifiées grâce à l'analyse des pyrites et des concentrations en fer et en soufre (Figure i.6., Hetzel et al., 2008 ; Jiménez Berrocoso et al., 2008).

(2) Secteur nord-ouest de l'océan Atlantique central (le long de la marge nord-est américaine, de 20°N à 40°N et de 30°O à 45°O, Figure i.3.). Il est constitué d'une marge avec un plateau continental très étroit, influencé par la mise en place d'un grand canyon distributaire dans la région du Baltimore Canyon (Figure i.5., Poag et Sevon, 1989). La matière organique est principalement d'origine terrestre mélangée à de la matière organique marine en proportions plus faibles. Elle est souvent observée dans des niveaux de sédiments turbiditiques et plus rarement dans des argiles pélagiques aux sites DSDP *leg* 93 Site 603 et DSDP *leg* 43 Sites 386 et 387 (Tissot *et al.*, 1980; Summerhayes, 1981; Trabucho Alexandre *et al.*, 2010). Les sédiments riches en matière organique dans ce secteur présentent des TOC moyens de 4,3 % (Figure i.5., Wagner et al., 2013). Les taux de sédimentation estimés pour ces dépôts sont de 1 à 5 m/Ma (de Graciansky et al., 1987). La formation de ces niveaux organiques semble principalement liée à la présence de zones sources apportant à la fois des nutriments et de la matière organique continentale (*e.g.* DSDP *leg* 93 Site 603 et *leg* 43 Site 387, Figure i.3. ; van Hinte *et al.*, 1985 ; Poag et Sevon, 1989 ; Miall *et al.*, 2008). D'après des modélisations climatiques, la région était soumise à des *upwellings* côtiers de plus faibles extension et intensité que les *upwellings* équatoriaux (Figure i.6., Arthur *et al.*, 1987 ; Trabucho Alexandre *et al.*, 2010). Ce facteur limitant ne semble donc pas être à l'origine de la productivité marine régionale, et ne peut être invoqué dans l'enrichissement en matière organique dans ce secteur.

Figure i.6. Synthèse cartographique illustrant les zones d'upwellings côtiers et équatoriaux, d'anoxie et d'euxinie, la circulation océanique de surface et intermédiaire de l'océan Atlantique central ainsi que la répartition des climats pour la période du Cénomanien supérieur au Turonien. La paléogéographie est simplifiée d'après la reconstruction à 90 Ma de l'océan Atlantique central proposée par Scotese (2001).Les références sources pour chaque facteur sont données dans le texte associé.

(3) Secteur sud-est de l'océan Atlantique central (Sud de la marge nord-ouest Africaine, de 20°O à 28°O et de 3°N à 15°N, Figure i.3.). Entre la Mauritanie et la Guinée-Bissau, la marge est constituée d'un plateau continental étroit jusqu'à Dakar qui s'élargit jusqu'au sud de la Guinée et forme une large plateforme carbonatée héritée du Jurassique (Purdy, 1989 ; Davison, 2005). La matière organique est mixte, associée à différents faciès sédimentaires, à la fois pélagiques et turbiditiques, présentant des TOC moyens de 4,2 % à 24,5 % dont certaines valeurs peuvent atteindre exceptionnellement plus de 50% (e.g. DSDP Site 367; Figure i.5.; Lancelot et al., 1978; Herbin et al., 1986; Kuypers et al., 2002; Nzoussi Mbassani, 2003 ; Sinninghe Damsté et al., 2008 ; Trabucho Alexandre et al., 2010). Le taux de sédimentation associé à ces black shales est extrêmement faible puisqu'il est inférieur à 1 m/Ma (de Graciansky et al., 1987). Globalement, l'enrichissement en matière organique s'affaiblit vers le Nord du secteur avec une diminution de la contribution de la matière organique d'origine marine (Tissot et al., 1979 ; Summerhayes, 1981 ; Herbin et al., 1986 ; Trabucho Alexandre et al. 2010). D'après l'étude des biomarqueurs, l'enrichissement en matière organique de ce secteur serait lié à des conditions anoxiques, voire parfois euxiniques, ayant atteint la zone photique (Kuypers et al., 2002; Jenkyns, 2010). Comme l'illustrent les modélisations climatiques (Wagner et al., 2013), le fort ruissellement dû à l'influence de la ceinture équatoriale humide permet l'apport de nutriments et de matière organique depuis le continent africain jusqu'au domaine océanique (Figure i.6.). De plus, la présence de cette ceinture humide permet la formation d'intenses cellules d'upwellings équatoriaux associés à quelques upwellings côtiers qui favorise la productivité primaire marine sur le plateau continental (Figure i.6., Arthur et al., 1987; Trabucho Alexandre et al., 2010).

(4) Secteur nord-est de l'océan Atlantique central (Nord de la marge nord-ouest Africaine, de 6°O à 25°O et de 12°N à 28°N, Figure i.3.). Il s'étend du Maroc jusqu'au Sahara Occidental. A l'exception des régions d'Essaouira-Agadir et de Tarfaya où des plateformes carbonatées épicontinentales se sont construites localement, la marge est constituée d'un plateau continental étroit avec un talus très abrupt (Purdy, 1989 ; Davison, 2005 ; Labails, 2007). Dans cette région, la matière organique est mixte, souvent associée à

des turbidites et des argilites pélagiques en alternance avec de fines lamines marneuses ou argileuses présentant des TOC de 5% à 20% (Figure i.5., Herbin et al., 1986 ; Kuhnt et al., 1990). Dans les bassins d'Agadir et d'Essaouira, les faciès dominants sont ceux de plateformes épicontinentales (e.g. carbonates) (Summerhayes, 1981; Kuhnt et al., 1990; Kuypers et al. 2004; Foster et al., 2007; Trabucho Alexandre et al., 2010). Au sein des plateformes épicontinentales nord-africaines (Figure i.6.), la production de matière organique est contrôlée par l'apport de nutriments grâce à la présence de cellules d'upwellings côtiers comme suggéré par les analyses biostratigraphiques, géochimiques (isotopes de l'oxygène et du néodyme) et les modélisations numériques (Einsele et Wiedmann, 1982; Arthur et al., 1987; Kocsis et al., 2016). Dans le bassin profond, un hiatus des séquences du Cénomanien supérieur au Maastrichtien génère un manque de données pour cet intervalle. Les taux de sédimentation dans le bassin profond ne peuvent donc pas être estimés pour la période étudiée. Néanmoins, dans le bassin de Tarfaya et lorsque les séries du Crétacé supérieur son préservées, les TOC moyens varient de 1,2 % à 16,4 % (Kuhnt et al., 1990 ; Wagner et al., 2013). Bien qu'il n'y ait pas à notre connaissance de travaux sur le ruissellement à terre, le climat de ce secteur semble avoir été moins humide qu'au sud puisqu'il est localisé en périphérie d'un arrière-pays désertique d'après des modélisations paléoclimatiques et des modélisations climatiques couplées à un modèle de végétation dynamique (Sewall et al., 2007; Wagner et al., 2013; Chaboureau et al., 2014).

1.4. Problématique

Quel que soit le secteur d'étude, les principaux arguments avancés pour expliquer les niveaux d'enrichissements en MO du Crétacé de l'Atlantique central sont principalement d'ordre paléocéanographique (*e.g.* absence d'une circulation océanique profonde, forte productivité primaire marine associée à des *upwellings*), paléoclimatique (*e.g.* fertilisation des océans par apports de nutriments issus de l'érosion des continents en contexte humide), ou relatifs aux conditions redox de la colonne d'eau (*e.g.* anoxie, euxinie). Ces facteurs sont donc essentiellement liés à la production *in situ* de matière organique marine et à sa préservation dans le domaine océanique. Néanmoins, ces arguments n'expliquent pas

complètement les fortes hétérogénéités spatiales observées en termes de TOC et de typologie de la MO, notamment celles associées à la forte proportion de matière organique d'origine terrestre présente dans le bassin profond.

De part sa contribution non négligeable, comprendre les processus de transport, de diffusion, et de stockage de la matière organique terrestre dans le domaine océanique profond demeure essentiel. Cela nécessite avant tout une bonne compréhension des modalités d'export des sédiments détritiques associés depuis leurs zones sources jusqu'au bassin profond et donc d'adopter une démarche « source to sink ». Il s'agit d'un élément essentiel puisque les apports terrigènes peuvent influencer le taux de sédimentation, la contribution en matière organique terrestre (voire sa dilution), ainsi que l'apport de nutriments favorables à la productivité marine. Dans ce contexte, une bonne compréhension de la géométrie de la marge, de la physiographie du bassin, et des paléoenvironnements associés se révèle complémentaire pour expliquer les zones sources, de transit et de dépôt des sédiments organiques (Figure i.7.). Notamment, le rôle des processus de transport océaniques profonds (e.g. courants océaniques de fond) reste à ce jour très peu investigué. Avant de pouvoir conclure sur les rôles respectifs de chaque facteur, il est donc nécessaire de préciser les zones sources qui alimentaient le bassin en sédiments et en matière organique, le cadre paléogéographique (e.g. environnement de dépôt, paléobathymétries) et la sédimentation associée (e.g. turbidites, remaniement par des courants de fond) pour chaque secteur (Figure i.7.).

1.5. Objectifs et plan du manuscrit

L'objectif de ce travail est donc de comprendre quels sont les facteurs qui contrôlent l'export depuis le continent de sédiments riches en matière organique et leur formation dans le bassin profond à travers l'étude des *black shales* de la période Albien-Turonien en Atlantique central. Pour répondre aux problématiques soulevées précédemment, plusieurs approches complémentaires seront abordées au travers de trois chapitres principaux (Figure i.7.) :

- Dans un premier temps, nous caractériserons la provenance des dépôts riches en matière organique (notamment terrestre) et les aires de drainage qui leur sont associées à l'échelle de la marge nord-ouest africaine. Cette approche permettra de préciser les régions du continent qui alimentent le bassin océanique en matériel détritique et d'appréhender les mécanismes associés à la variabilité de la matière organique. Pour cela, ce chapitre s'appuie sur l'utilisation des isotopes du néodyme et strontium et l'analyse des concentrations en éléments majeurs et traces de la fraction fine des sédiments. Ce chapitre fait l'objet d'un article soumis à *Geochemistry, Geophysics, Geosystems*.
- Dans un second temps, nous préciserons par une étude de bassin, quels sont les processus et chemins de distribution/remobilisation des sédiments associés à la matière organique identifiés dans le domaine *offshore* africain. Caractériser l'architecture sédimentaire et son évolution au cours du Crétacé a permis d'identifier les processus et les vecteurs d'acheminement et de remobilisation de la matière organique et des sédiments associés depuis le continent jusqu'à leur dépôt dans les bassins océaniques profonds. Cette étude se base sur l'analyse et la synthèse de données de subsurface (sismique réflexion 2D et données de puits). Ce chapitre se présente sous la forme d'un article en préparation pour *Earth and Planetary Science Letters*.

La troisième partie de ce manuscrit repose sur le couplage des approches utilisées sur le domaine africain (provenance et architecture sédimentaire) appliqué au bassin du Guyana-Suriname. En effet, il s'agit du secteur sud de l'océan Atlantique central pour lequel sont observés des *black shales* très enrichis en MO sur le Plateau de Démérara. L'objectif de cette partie sera de définir si le Plateau de Démérara est représentatif ou non du reste du bassin du Guyana-Suriname et si le modèle proposé pour expliquer la formation des *black shales* depuis l'Albien jusqu'au Santonien peut être étendu au reste du bassin du Guyana-Suriname.

Enfin, une dernière partie s'attachera à synthétiser et discuter les résultats de ce travail au regard des connaissances actuelles sur les facteurs qui contrôlent les conditions favorables à la formation des sédiments riches en matière organique dans le bassin océanique profond. Notamment, l'objectif de cette partie sera de comparer l'évolution du réseau de drainage et de la provenance sur le continent et celle de la sédimentation dans le domaine océanique profond des segments sud et est de l'océan Atlantique central pour, finalement, discuter les configurations du réseau de drainage, de l'architecture de la marge et des processus sédimentaires associés ainsi que de la paléocirculation océanique, favorables ou défavorables à l'accumulation de MO dans le bassin profond.

Figure i.7. A. Secteurs géographiques de l'océan Atlantique central au Crétacé étudiés dans ce manuscrit. B. Schéma illustrant l'approche globale utilisée pour contraindre les différents facteurs pouvant influencer le dépôt de black shales et celui de la matière organique d'origine terrestre dans le bassin océanique profond.

Références

- Arthur, M. A., 1979. North Atlantic Cretaceous black shales: the record at Site 398 and a brief comparison with other occurrences. Initial Reports of the Deep Sea Drilling Project, 47(Part 2), 45. doi: 10.2973/dsdp.proc.47-2.136.1979
- Arthur, M. A., Schlanger, S. T., et Jenkyns, H. C., 1987. The Cenomanian-Turonian Oceanic Anoxic Event, II. Palaeoceanographic controls on organic-matter production and preservation. Geological Society, London, Special Publications, 26(1), 401-420. doi: 10.1144/GSL.SP.1987.026.01.25
- Arthur, M.A., Jenkyns, H.C., Brumsack, H.J., et Schlanger, S.O., 1990. Stratigraphy, Geochemsitry and Paleoceanoraphy of organic carbon-rich Cretaceous sequences. In: Ginsburg and Beaudoin (eds.). Cretaceous Resources. Events and Rythms, 1990, 75-119. Khower Academic Publishers.
- Baudin, F., Tribovillard, N., et Trichet, J., 2007. *Géologie de la matière organique*. Société géologique de France: Vuibert.
- Bohacs, K. M., Grabowski Jr, G. J., Carroll, A. R., Mankiewicz, P. J., Miskell-Gerhardt, K. J., Schwalbach, J. R., Wegner, M.B., et Simo, J. T., 2005. Production, destruction, and dilution—the many paths to source-rock development. In: Deposition of Organic-Carbon-Rich Sediments: models, mechanisms, and consequences. Eds: Harris, NB, SPEM Special Publications, 61-101. doi: 10.2110/pec.05.82.0061
- Berthonneau, J., Grauby, O., Abuhaikal, M., Pellenq, R. J. M., Ulm, F. J., et Van Damme, H., 2016. Evolution of organo-clay composites with respect to thermal maturity in type II organic-rich source rocks. Geochimica and Cosmochimica Acta, 195, 68-83.
- Chaboureau, A. C., Sepulchre, P., Donnadieu, Y., et Franc, A., 2014. Tectonic-driven climate change and the diversification of angiosperms. Proceedings of the National Academy of Sciences, 111(39), 14066-14070. doi: 10.1073/pnas.1324002111
- Cool, T., Katz, B., Dignes, T., Reimers, D., Fleisher, R., 2008. Hydrocarbon Source Rock Assessment and Revised Biostratigraphy of Dsdp Site 369a, Offshore Northwest African Margin. Journal of Petroleum Geology 31, 117–133. doi:10.1111/j.1747-5457.2008.00411.x
- Davison, I., 2005. Central Atlantic margin of North West Africa: Geology and hydrocarbon potential (Morocco to Guinea), J. Afr. Earth Sci., 43, 254–274, doi:10.1016/j.jafrearsci.2005.07.018.
- Demaison, G. J., et Moore, G. T., 1980. Anoxic environments and oil source bed genesis. Organic Geochemistry, 2(1), 9-31. doi: 10.1016/0146-6380(80)90017-0
- Droste, H., 1990. Depositional cycles and source rock development in an epeiric intraplatform basin: the Hanifa Formation of the Arabian peninsula. Sedimentary Geology, 69(3-4), 281-296. doi: 10.1016/0037-0738(90)90054-W
- Durand, B., 1980. Sedimentary organic matter and kerogen. Definition and quantitative importance of kerogen. Kerogen-Insoluble organic matter from sedimentary rocks, 13-34.
- Einsele, G., et Wiedmann, J., 1982. Turonian black shales in the Moroccan coastal basins: first upwelling in the Atlantic Ocean?. In Geology of the northwest African continental margin (pp. 396-414). Springer, Berlin, Heidelberg.

- Emery, D., et Myers, K. 1996. Sequence stratigraphy. Eds: Blackwell Science Ltd. doi: 10.1002/9781444313710
- Flögel, S., Beckmann, B., Hofmann, P., Bornemann, A., Westerhold, T., Norris, R.D., 2008. Evolution of tropical watersheds and continental hydrology during the Late Cretaceous greenhouse; impact on marine carbon burial and possible implications for the future. Earth and Planet. Sci. Lett. 274(1–2),1–13. doi: 10.1016/j.epsl.2008.06.011
- Forster, A., Schouten, S., Baas, M., et Sinninghe Damsté, J. S., 2007. Mid-Cretaceous (Albian–Santonian) sea surface temperature record of the tropical Atlantic Ocean. Geology, 35(10), 919-922. doi: 10.1130/G23874A.1
- de Graciansky, P. D., Brosse, E., Deroo, G., Herbin, J. P., Montadert, L., Müller, C., Sigal, J., et Schaaf, A., 1987. Organic-rich sediments and palaeoenvironmental reconstructions of the Cretaceous North Atlantic. Geological Society, London, Special Publications, 26(1), 317-344.
- Hayes, D.E., Pimm, A.C., Benson, W.E., Berger, W.H., von Rad, U., Supko, P.R., Beckmann, J.P., Roth, P.H., 1972. Site 137. Deep Sea Drilling Project, leg 14. Initial Reports of the Deep Sea Drilling Project 14, 85–134. doi:10.2973/dsdp.proc.14.104.1972
- Hedges, J. I., et Keil, R. G., 1995. Sedimentary organic matter preservation: an assessment and speculative synthesis. Marine chemistry, 49(2-3), 81-115.
- Herbin, J. P., Montadert, L., Müller, C., Gomez, R., Thurow, J., et Wiedmann, J., 1986. Organic-rich sedimentation at the Cenomanian-Turonian boundary in oceanic and coastal basins in the North Atlantic and Tethys. Geological Society, London, Special Publications, 21(1), 389-422.
- Hetzel, A., Böttcher, M. E., Wortmann, U. G., et Brumsack, H. J., 2009. Paleo-redox conditions during OAE 2 reflected in Demerara Rise sediment geochemistry (ODP Leg 207). Palaeogeography, Palaeoclimatology, Palaeoecology, 273(3), 302-328. doi: 10.1016/j.palaeo.2008.11.005
- Holbourn, A., Kuhnt, W., El Albani, A., Pletsch, T., Luderer, F., et Wagner, T., 1999. Upper Cretaceous palaeoenvironments and benthonic foraminiferal assemblages of potential source rocks from the western African margin, Central Atlantic. Geological Society, London, Special Publications, 153(1), 195-222. doi: 10.1144/GSL.SP.1999.153.01.13
- Huc, A. Y., 1988. Aspects of depositional processes of organic matter in sedimentary basins. Organic Geochemistry, 13(1-3), 263-272. doi: 10.1016/0146-6380(88)90045-9
- Ibach, L. E. J., 1982. Relationship between sedimentation rate and total organic carbon content in ancient marine sediments. AAPG Bulletin, 66(2), 170-188.
- Jenkyns, H. C., 1980. Cretaceous anoxic events: from continents to oceans. Journal of the Geological Society, 137(2), 171-188. doi: 10.1144/gsjgs.137.2.0171
- Jenkyns, H. C., 2010. Geochemistry of oceanic anoxic events. Geochemistry, Geophysics, Geosystems, 11(3). doi: 10.1029/2009GC002788
- Jiménez Berrocoso, Á., MacLeod, K. G., Calvert, S. E., et Elorza, J., 2008. Bottom water anoxia, inoceramid colonization, and benthopelagic coupling during black shale deposition on Demerara Rise (Late Cretaceous western tropical North Atlantic). Paleoceanography, 23(3). doi: 10.1029/2007PA001545

- Katz, B. J., 2005. Controlling factors on source rock development—a review of productivity, preservation, and sedimentation rate.
- Kennedy, M. J., Pevear, D. R., et Hill, R. J., 2002. Mineral surface control of organic carbon in black shale. Science, 295(5555), 657-660. doi: 10.1126/science.1066611
- Kocsis, L., Gheerbrant, E., Mouflih, M., Cappetta, H., Ulianov, A., Chiaradia, M., et Bardet, N., 2016. Gradual changes in upwelled seawater conditions (redox, pH) from the late Cretaceous through early Paleogene at the northwest coast of Africa: Negative Ce anomaly trend recorded in fossil bio-apatite. Chemical Geology, 421, 44-54. doi: 10.1016/j.chemgeo.2015.12.001
- Kuhnt, W., Herbin, J. P., Thurow, J., et Wiedmann, J., 1990. Distribution of Cenomanian– Turonian organic facies in the western Mediterranean and along the adjacent Atlantic margin. In Deposition of organic facies (Vol. 30, pp. 133-160). AAPG Studies in Geology Tulsa, Oklahoma.
- Kuypers, M. M., Pancost, R. D., Nijenhuis, I. A., et Sinninghe Damsté, J. S., 2002. Enhanced productivity led to increased organic carbon burial in the euxinic North Atlantic basin during the late Cenomanian oceanic anoxic event. Paleoceanography, 17(4). doi: 10.1029/2000PA000569
- Kuypers, M. M., van Breugel, Y., Schouten, S., Erba, E., et Sinninghe Damsté, J. S., 2004. N2-fixing cyanobacteria supplied nutrient N for Cretaceous oceanic anoxic events. Geology, 32(10), 853-856. doi: 10.1130/G20458.1
- Labails, C., 2007. La marge sud-marocaine et les premières phases d'ouverture de l'océan Atlantique central. Thèse de Doctorat, Université de Bretagne Occidentale.
- Labails, C., Olivet, J. L., Aslanian, D., et Roest, W. R., 2010. An alternative early opening scenario for the Central Atlantic Ocean. Earth and Planetary Science Letters, 297(3), 355-368.
- Lancelot, Y., Seibold, E., Cepek, P., Dean, W.E., Eremeev, V., Gardner, J.V., Jansa, L., Johnson, D., Kasheninnikov, V., Pflaumann, U., Graham, J., Bukry, D., 1978. Site 367: Cape Verde Basin. Initial Reports of the Deep Sea Drilling Project 41, 163–232. doi:10.2973/dsdp.proc.41.103.1978
- Lever, A., et McCave, I. N., 1983. Eolian components in Cretaceous and Tertiary North Atlantic sediments. Journal of Sedimentary Research, 53(3).
- Meyers, P. A., Bernasconi, S. M., et Forster, A., 2006. Origins and accumulation of organic matter in expanded Albian to Santonian black shale sequences on the Demerara Rise, South American margin. Organic Geochemistry, 37(12), 1816-1830. doi : 10.1016/j.orggeochem.2006.08.009
- Miall, A. D., Balkwill, H. R., et McCracken, J., 2008. The Atlantic margin basins of North America. Sedimentary Basins of the World, 5, 473-504.
- Nzoussi-Mbassani, P., 2003. Le Cénomano-Turonien de l'Atlantique Nord (bassin du Sénégal): environnement de dépôt et évolution diagénétique: implications pétrolières Thèse de doctorat, Université d'Orléans.
- Pedersen, T. F., et Calvert, S. E., 1990. Anoxia vs. productivity: what controls the formation of organic-carbon-rich sediments and sedimentary Rocks?(1). Aapg Bulletin, 74(4), 454-466.

- Poag, C. W., et Sevon, W. D., 1989. A record of Appalachian denudation in postrift Mesozoic and Cenozoic sedimentary deposits of the US middle Atlantic continental margin. Geomorphology, 2(1), 119-157. doi: 10.1016/0169-555X(89)90009-3
- Purdy, E.G. 1989. Africa Geology and Hydrocarbons Map. Exploration of Africa Project.
- Sahabi, M., Aslanian, D., et Olivet, J. L., 2004. Un nouveau point de départ pour l'histoire de l'Atlantique central. Comptes Rendus Geoscience, 336(12), 1041-1052.
- Schlanger, S., Jenkyns, H., 1976. Cretaceous Oceanic Anoxic Events: causes and consequences. Geologie en Mijnbouw 55, 179–184.
- Scotese, C. R., 2001. Atlas of earth history. University of Texas at Arlington. Department of Geology. PALEOMAP Project.
- Sewall, J. V., Van De Wal, R. S. W., Van Der Zwan, K., Van Oosterhout, C., Dijkstra, H. A., et Scotese, C. R., 2007. Climate model boundary conditions for four Cretaceous time slices. Climate of the Past, 3(4), 647-657. doi: 10.5194/cpd-3-791-2007
- Shipboard Scientific Party et Bukry, D., 1978a. Site 370: deep basin off Morocco. Initial Rep. Deep Sea Drill. Proj, 41, 421-491. doi: 10.2973/dsdp.proc.41.106.1978
- Shipboard Scientific Party et Bukry, D., 1978b. 5. Site 369: Continental Slope off Cape Bojador, Spanish Sahara. Initial Rep. Deep Sea Drill. Proj, 41, 327-420. doi: 10.2973/dsdp.proc.41.106.1978
- Shipboard Scientific Party, 2004. Leg 207 summary. J. Erbacher, D.C. Mosher, M.J. Malone, et al. (Eds.), Proceedings of the Ocean Drilling Program, Initial Reports, vol. 207, Ocean Drilling Program, College Station, TX (2004), pp. 1-89. doi : 10.2973/odp.proc.ir.207.101.2004
- Sinninghe Damsté, J. S., Kuypers, M. M., Pancost, R. D., et Schouten, S., 2008. The carbon isotopic response of algae,(cyano) bacteria, archaea and higher plants to the late Cenomanian perturbation of the global carbon cycle: Insights from biomarkers in black shales from the Cape Verde Basin (DSDP Site 367). Organic Geochemistry, 39(12), 1703-1718. doi: 10.2973/dsdp.proc.41.105.1978
- Sinton, C. W., et Duncan, R. A., 1997. Potential links between ocean plateau volcanism and global ocean anoxia at the Cenomanian-Turonian boundary. Economic Geology, 92(7-8), 836-842. doi: 10.2113/gsecongeo.92.7-8.836
- Summerhayes, C. P., 1981. Organic facies of Middle Cretaceous black shales in deep North Atlantic. AAPG Bulletin, 65(11), 2364-2380.
- Summerhayes, C. P., 1987. Organic-rich Cretaceous sediments from the North Atlantic. Geological Society, London, Special Publications, 26(1), 301-316. doi: 10.1144/GSL.SP.1987.026.01.21
- Thamban, M., Rao, V. P., et Raju, S. V., 1997. Controls on organic carbon distribution in sediments from the eastern Arabian Sea margin. Geo-Marine Letters, 17(3), 220-227. doi: 10.1007/s003670050030
- Thurow, J., et Kuhnt, W., 1986. Mid-Cretaceous of the Gibraltar Arch area. Geological Society, London, Special Publications, 21(1), 423-445.
- Tissot, B., Durand, B., Espitalie, J., et Combaz, A., 1974. Influence of nature and diagenesis of organic matter in formation of petroleum. AAPG Bulletin, 58(3), 499-506.

- Tissot, B., Deroo, G., et Herbin, J. P., 1979. Organic matter in Cretaceous sediments of the North Atlantic: contribution to sedimentology and paleogeography. Deep Drilling Results in the Atlantic Ocean: Continental Margins and Paleoenvironment, 362-374. doi: 10.1029/ME003p0362
- Tissot, B., Demaison, G., Masson, P., Delteil, J. R., et Combaz, A., 1980. Paleoenvironment and petroleum potential of middle Cretaceous black shales in Atlantic basins. AAPG Bulletin, 64(12), 2051-2063. doi: 10.1306/2F919738-16CE-11D7-8645000102C1865D
- Tissot, B., et Welte, D. H., 1984. Diagenesis, catagenesis and metagenesis of organic matter. In Petroleum Formation and Occurrence (pp. 69-73). Springer Berlin Heidelberg.
- Trabucho Alexandre, J., Tuenter, E., Henstra, G. A., van der Zwan, K. J., van de Wal, R. S., Dijkstra, H. A., et de Boer, P. L., 2010. The mid-Cretaceous North Atlantic nutrient trap: Black shales and OAEs. Paleoceanography, 25(4). doi: 10.1029/2010PA001925
- Tribovillard, N. P., Caulet, J. P., Vergnaud-Grazzini, C., Moureau, N., et Tremblay, P. 1996. Lack of organic matter accumulation on the upwelling-influenced Somalia margin in a glacial-interglacial transition. Marine geology, 133(3-4), 157-182. doi: 10.1016/0025-3227(96)00034-5
- Tucholke, B. E., et Mountain, G. S., 1979. Seismic stratigraphy, lithostratigraphy and paleosedimentation patterns in the North American Basin (pp. 58-86). American Geophysical Union. doi: 10.1029/ME003p0058
- Turgeon, S. C., et Creaser, R. A., 2008. Cretaceous oceanic anoxic event 2 triggered by a massive magmatic episode. Nature, 454(7202), 323-326. doi: 10.1038/nature07076
- Tyson, R. V., 1987. The genesis and palynofacies characteristics of marine petroleum source rocks. Geological Society, London, Special Publications, 26(1), 47-67.
- Tyson, R. V., 1995. Abundance of organic matter in sediments: TOC, hydrodynamic equivalence, dilution and flux effects. In Sedimentary organic matter (pp. 81-118). Springer Netherlets.
- Van Hinte, J. E., Wise, S. W., Biart, B. N., Covington, J. M., Dunn, D. A., Haggerty, J. A., Johns, M.W., Meyers, P.A., Moullade, M.R., Muza, J.P., Okamura, M., Sarti, M., von Rad, U., et Ogg, J. G., 1985. DSDP Site 603: First deep (> 1000-m) penetration of the continental rise along the passive margin of eastern North America. Geology, 13(6), 392-396. doi: 10.1130/0091-7613(1985)13<392:DSFDMP>2.0.CO;2
- Wagner, T., Hofmann, P., et Flögel, S., 2013. Marine black shale deposition and Hadley Cell dynamics: A conceptual framework for the Cretaceous Atlantic Ocean. Marine and Petroleum Geology, 43, 222-238. doi: 10.1016/j.marpandgeo.2013.02.005

Wignall, P. B., 1994. Black shales (No. 30). Oxford University Press, USA.

CHAPITRE I

Matériel et méthodes.

Dans une optique *Source to Sink*, ce projet repose sur une approche intégrée couplant deux méthodes complémentaires (introduction section 1.5) :

- La première approche est une analyse de bassin permettant de préciser l'architecture de la marge et la dynamique des dépôts sédimentaires associés. Les données utilisées incluent des campagnes de sismique réflexion 2D auxquelles TOTAL S.A. a donné accès et qui couvrent la quasi-totalité de la zone d'étude (avec une couverture partielle dans le domaine océanique profond, Figure 1.1.).
- 2) La seconde approche est une étude de la provenance sédimentaire basée sur la géochimie élémentaire (éléments majeurs et traces) et isotopiques (ε_{Nd} et ${}^{87}Sr/{}^{86}Sr$) des fractions fines (argiles et silts) déposées dans le bassin Atlantique central. Dans cette perspective, plusieurs puits des sites des programmes DSDP et ODP, mais également des puits d'exploration pétrolière patrimoniaux, ont été sélectionnés pour être échantillonnés (Figure 1.1.).

Parallèlement, une synthèse des données sédimentaires, organiques, et géochimiques disponibles à l'échelle du bassin atlantique a été réalisée de façon à contraindre les hétérogénéités paléo-environnementales du secteur d'étude et préciser la répartition et la composition de la matière organique.

Figure 1.1. Carte bathymétrique et topographique centrée sur l'océan Atlantique illustrant la localisation des sites des programmes ODP et DSDP, et forages pétroliers étudiés et échantillonnés ainsi que la couverture des campagnes sismiques réflexion 2D (source NOAA, <u>https://www.ngdc.noaa.gov/mgg/global/relief/ETOPO1/data/</u>). AR1 : Arapaima-1 et CM-1 : Casamance-M-1.

1. Sélection, datation, et lithologie des puits

Les puits sélectionnés pour l'échantillonnage et les analyses géochimiques (i.e. TOC, δ^{13} C, concentrations en éléments majeurs et traces, compositions isotopiques en néodyme et strontium) correspondent à des forages DSDP situés dans le domaine océanique profond (leg 14 Sites 137 et 138 ; leg 41 Sites 367 à 370 ; leg 50 Sites 415 et 416) et des puits pétroliers d'exploration patrimoniaux de la compagnie Total S.A localisés sur le plateau continental (Casamance-M-1 et Arapaïma-1, Figure 1.1.). Outre leur localisation, le principal critère de sélection de ces derniers a été la disponibilité d'un cadre biostratigraphique robuste nous permettant d'identifier les séries sédimentaires du Crétacé à une résolution suffisante pour notre étude ; c'est-à-dire à l'échelle des étages ou sous-étages (Figure 1.2). En l'absence de données biostratigraphiques suffisantes, nous avons au mieux tenté de regrouper deux étages consécutifs, voire différencier le Crétacé inférieur, le Crétacé supérieur et si possible l'évènement OAE2. Chaque échantillon a été daté d'après le cadre stratigraphique défini pour chaque site (Hayes et al., 1972; Cepek, 1978; Foreman, 1978; Lancelot et al., 1978; Williams, 1978; Lancelot and Winterer, 1980; Pflaumann and Cepek, 1982), à l'exception du site DSDP 369 dont la biostratigraphie a été réévaluée plus récemment (Cool et al., 2008). Afin d'affiner le modèle d'âge de certains puits, nous avons également analysé le $\delta^{13}C_{TOC}$ des échantillons prélevés pour compléter les données isotopiques du carbone existantes et comparer nos résultats chimiostratigraphiques aux courbes de référence de la littérature (Friedrich et al., 2012 ; Bodin et al., 2015). Ces analyses ont été effectuées au Korean Polar Research Institute (Corée du Sud) par Jung-Hyun Kim. Ces nouvelles analyses sont présentées spécifiquement dans chaque chapitre.

Les séries sédimentaires étudiées des sites DSDP situées au large de la marge nordouest africaine sont généralement constituées de sédiments à granulométrie fine (*e.g.* argilites et *black shales*) parfois associés à des séquences distales de turbidites. En revanche, les séries albo-cénomaniennes des sites DSDP 137 et 415A, le Crétacé inférieur du site DSDP 367 et les séries albo-maastrichtiennes du site DSDP 369 sont essentiellement carbonatées (*e.g.* marnes, calcaires, craies ; Jansa et al., 1978 ; Figure 1.2.).

Figure 1.2. Cadre stratigraphique et caractérisation sédimentologique des sites DSDP 367, 368, 369, 137, 415A et 370. Les logs sédimentaires des sites DSDP 138 et 416 n'ont fait l'objet que d'un échantillon et ne sont pas représentés. Les échantillons prélevés sont indiqués en rouge dans la numérotation des carottes.

2. Etude de bassin : transects régionaux de sismique réflexion 2D

Dans le cadre du secteur ouest africain, plusieurs sections de sismique réflexion 2D issues de plusieurs campagnes différentes ont été utilisées (>10 campagnes et >1000 sections, Figure 1.1.). Parmi celles-ci, quatre ont été sélectionnées et présentées dans ce manuscrit en fonction de leur représentativité du jeu de données global et de la possibilité d'effectuer un calage au puits. En effet, ces sections illustrent tous les objets sédimentaires que nous avons identifiés grâce à l'étude de bassin sédimentaire et deux d'entre elles passent notamment par les sites DSDP 367 et 368 (Figure 1.3.).

Figure 1.3. Carte de localisation des profils régionaux de sismique réflexion 2D présentés dans ce manuscrit pour illustrer l'architecture sédimentaire du bassin profond du secteur africain.

L'évolution de la paléogéographie et de l'architecture sédimentaire du bassin du Guyana-Suriname situé sur la marge équatoriale sud-américaine de l'océan Atlantique central est basée sur l'analyse du puits Arapaïma-1, des sites ODP du *leg* 207 et sur une coupe régionale (Figure 1.4.). Une section régionale composite a été utilisée afin d'illustrer la géométrie du bassin du Guyana-Suriname. Celle-ci s'étend depuis le puits Arapaïma-1 sur le plateau continental jusqu'au bassin océanique profond, et se prolonge plus à l'est jusqu'au Plateau de Démérara où sont localisés les sites ODP du leg 207 et le site DSDP 144 (Figure 1.4.). Cette partie a fait l'objet d'un encadrement de stage de Master 2 (Martin Nauton-Fourteu, 2016).

Figure 1.4. Carte de localisation du profil régional composite de sismique réflexion 2D présenté dans ce manuscrit pour illustrer l'architecture sédimentaire du bassin du Guyana-Suriname.

Dans ce travail, l'interprétation des sections de sismique réflexion 2D est basée sur les principes de la stratigraphie sismique qui consiste à observer les réflecteurs sismiques d'un profil pour y interpréter des événements continus ou discontinus (Mitchum et al., 1977 ; Vail et al., 1977). Nous utiliserons l'approche descriptive des systèmes sédimentaires déposés dans le domaine océanique profond proposée par Posamentier et Kolla (2003 ; Figure 1.5.). Ce canevas est complété par les faciès acoustiques de bassins profonds associés aux courant de fonds (Figure 1.5, Faugères et al., 1999; Stow et al., 2002).

Figure 1.5. A. Représentation schématique des principaux éléments de dépôt dans un environnement de bassin océanique profond et des faciès acoustiques associés (d'après Posamentier et Kolla, 2003). B. Modèles de dépôts sédimentaires associés à un courant océanique de fond (d'après Stow et al, 2002).

3. Etude de la provenance sédimentaire

Plusieurs méthodes incluant analyses pétrographiques, minéralogiques (minéraux lourds), géochronologiques (U/Pb sur zircon) et géochimiques (concentration en éléments majeurs, traces, et compositions isotopiques en Nd et Sr) peuvent être utilisées pour déterminer la provenance des sédiments (McLennan et al., 1993). Dans notre contexte, l'analyse géochimique (concentrations en éléments majeurs et traces ainsi que les compositions isotopiques en Nd et Sr) a été privilégiée car, à la différence des autres approches qui nécessitent entre autres de grandes quantités de sédiments fins (*e.g.* argiles ou silts) qui sont majoritaires dans le bassin océanique profond (McLennan et al., 1993; Garzanti et al., 2007). Les autres arguments favorables à une approche géochimique plutôt qu'à une approche pétrographique ou géochronologique sont résumés dans la table 1.1.
Processus/Provenance	Approche Pétrographique	Approche Géochimique	
Processus sédimentaires			
1. Altération	Ambiguë; quelques effets minéralogiques (transformation feldspaths en argiles)	Possiblité de quantifier: CIA, Rb/Sr, isotopes du Sr	
2. Diagenèse	Chronologie relative des réactions miné rales; intercroissance, albitisation, trans formation smertite/ilite	Peu d'études. Eléments majeurs (CIA), éléments redox, isotopes (Rb/Sr, U/Pb)	
3. Tri minéralogique	Maturité texturale, variétés et concentra tions de minéraux lourds	Eléments majeurs (SI/AI). Quantification du fractionnement des minéraux lourds comme le Zircon (Zr) la monazite (BEE)	
 Recyclage sédimentaire 	Teneur en Quartz; fragments de roches sédimentaires	Plusieurs approches géochimiques (CIA, Zr, Hf, Th/U), isotopes du Nd	
Provenance			
1. Type de roches	Fragments de roches; morphologie des grains de quartz	Peu d'information directe	
2. Type de terrains	diagramme Q-F-L (quartz, feldspaths, fragments lithiques)	Approche combinée éléments en traces/ isotopes du Nd	
3. Identification des terrains	Pas d'information	Composition isotopique en Pb des feldspaths et des roches totales	
4. Age de la source	Ages relatifs des composants dans des circonstances favorables	Age modèle Nd, âges U/Pb sur zircons	
5. Caractère crustal/mantélique	Pas d'information	Nature du mélange croûte/manteau (anomalies en Eu, appauvrissements en HREE). Nature des sources crustales/ mantelliques (Th/U)	

Table 1.1. Comparaison des biais et avantages des approches pétrographiques et géochimiques dans l'étude de la provenance sédimentaire (d'après McLennan et al., 1993 ; modifiée et traduite par Roddaz, 2004).

3.1. Utilisation des éléments majeurs et traces

Les concentrations en éléments majeurs et traces permettent de déterminer l'origine lithologique moyenne (*i.e.* mantellique ou crustale) des roches sources à l'origine des sédiments. Cela repose sur le fait que certains éléments comme les LILE (*Large-ion lithophile elements*) et HFSE (*High-Field-Strength Elements*) ont un comportement incompatible avec les phases solides, et s'incorporent dans les produits issus des processus de fusion partielle. Ces éléments sont donc plus concentrés dans les roches crustales, notamment celles de la croûte continentale (Hoffmann, 1988). Même si les LILE et les HFSE se comportent tous deux de la même manière pendant la fusion partielle, leur réponse aux processus post-magmatiques diffère cependant fortement. De part leur charge élevée et leur

petit rayon cationique, les HFSE sont plus facilement associés aux anions, ce qui leurs confère un comportement immobile. Cela implique qu'ils sont davantage résistants au métamorphisme et à l'altération hydrothermale. D'un autre côté, les LILE, plus gros, sont mobiles en solution et plus sensibles à l'altération hydrothermale et au lessivage (Hoffmann, 1988; McLennan et al., 1993). Par conséquent, les HFSE vont être principalement représentatifs de la composition de roche source alors que les LILE vont en partie refléter l'altération subie par cette source. D'un point de vue pragmatique, des rapports élémentaires entre éléments mobiles et immobiles (*e.g.* Th/Sc, Cr/Th ou Th/U) sont donc utilisés pour décrire au mieux la nature géochimique de la roche source entre des pôles felsiques et basiques (Cullers, 2000, Figure 1.6.). En particulier, l'indice d'altération chimique ou CIA (*Chemical Index of Alteration*) permet de mesurer l'intensité du degré d'altération chimique d'une roche (McLennan et al., 1993; Cullers, 2000) :

 $CIA = Al_2O_3 / [Al_2O_3 + K_2O + Na_2O + CaO^*] * 100$ en proportions molaires,

où CaO* représente la concentration en calcium dans la fraction silicatée de la roche (Nesbitt et Young, 1982).

Les terres rares sont des éléments immobiles, donc relativement résistants à la diagénèse et peu sensibles aux processus sédimentaires (McLennan, 1989). Elles sont regroupées sur un spectre en fonction de leurs masses atomiques croissantes, en partant des terres rares légères à gauche (LREE pour *Light Rare Earth Elements* : La, Ce, Pr et Nd) pour finir aux terres rares lourdes à droite (HREE pour *Heavy Rare Earth* Elements : Dy, Ho, Er, Tm, Yb et Lu), en passant par les terres rares intermédiaires au milieu (MREE pour *Middle Rare Earth* Elements incluant Pm, Sm, Eu, Gd et Tb) (Figure 1.6). Afin de faciliter les comparaisons, les concentrations en terres des sédiments sont normalisées à la composition des argiles australiennes post-archéennes (*Post-Archean Australian Shales ou* PAAS) considérée comme représentative de la composition géochimique moyenne de la croûte continentale (Taylor et McLennan, 1985). Ainsi, les profils des spectres normalisés peuvent être diagnostiques de la nature géochimique de la roche source (McLennan et al., 1993 ; Cullers, 2000, Figure 1.6.). Certains éléments comme l'europium (Eu) peuvent présenter des

anomalies dans leurs concentrations (exprimées par le rapport Eu/Eu* = $Eu_N / (Sm_N x Gd_N)^{1/2}$ où X_N est la concentration élémentaire normalisée à celle des chondrites, Condie, 1993) qui permettent de différencier une roche source d'origine basique (anomalie en Eu de 0,7 à 1,02, Cullers, 2000) ou felsique (anomalie en Eu de 0,32 à 0,83, Cullers, 2000, Figure 1.6.).

Contrairement aux cations des autres terres rares qui sont essentiellement trivalents, le cérium est rapidement oxydé sous la forme Ce⁴⁺ en contexte aqueux oxygéné (Piper, 1974). Dans l'eau de mer, ce dernier est donc rapidement et facilement piégé par les particules authigènes tels que les oxydes. Pour cette raison, l'eau de mer présente donc une anomalie négative en Ce caractéristique (notée Ω Ce), qui fluctue en fonction de son degré d'oxygénation (Figure 1.6.). Dans notre cas d'étude, ce proxy géochimique se révèle donc particulièrement approprié pour déterminer si les sédiments analysés sont essentiellement issus de l'érosion de roches sources ou incorporent des phases authigènes formées dans l'eau (*e.g.* oxydes ou argiles).

	Sédiments fins		Sédiments grossiers	
	Felsique	Basique	Felsique	Basique
Eu>Eu*	0,32 - 0,83	0,7 - 1,02	0,40 - 0,94	0,71 - 0,95
Th/Sc	0,64 - 18,1	0,05 - 0,4	0,84 - 20,5	0,05 - 0,22
Cr/Th	0,25 - 14,9	22,2 - 500	0,4 - 7,7	21,7 - 55,5

Figure 1.6. A. Spectres des concentrations en terres rares normalisées au PAAS illustrant la géométrie des différents profils en fonction de l'enrichissement en LREE ou HREE ainsi que des anomalies en europium et cérium. B. Variations des rapports Eu/Eu*, Th/Sc et Cr/Th pour les sédiments fins et grossiers d'origine basique et felsique (Cullers, 2000 ; modifié d'après Roddaz, 2004).

3.2. Le traçage isotopique par $\varepsilon_{Nd(t)}$

Le néodyme (Nd) est une terre rare, donc un élément chimique immobile peu sensible aux processus d'altération. Il présente cinq isotopes naturels (¹⁴²Nd, ¹⁴³Nd, ¹⁴⁵Nd, ¹⁴⁶Nd, ¹⁴⁸Nd). Parmi eux, les isotopes ¹⁴²Nd et ¹⁴³Nd sont radiogéniques et les isotopes ¹⁴⁴Nd et le ¹⁵⁰Nd sont radioactifs. Cependant ces derniers ont des demi-vies suffisamment longues (respectivement 2,29 x 10⁶ Ga et 6,8x10⁹ Ga) pour être considérés comme stables à l'échelle de l'histoire de la Terre. L'isotope radioactif 147 du samarium (¹⁴⁷Sm) possède une demi-vie de 106 Ga. Même longue, cette durée de demi-vie est suffisante pour produire, après désintégration du ¹⁴⁷Sm en ¹⁴³Nd, des variations d'abondances du ¹⁴³Nd mesurables sur des périodes de plusieurs millions d'années. L'évolution de la concentration en ¹⁴³Nd au cours du temps se calcule par l'équation suivante :

¹⁴³Nd_{actuel} = ¹⁴³Nd₀ + ¹⁴⁷Sm (e^{$$\lambda t$$} - 1)

où ¹⁴³Nd₀ représente l'abondance initiale en ¹⁴³Nd, *t* l'âge du système étudié et λ la constante de désintégration radioactive du couple ¹⁴⁷Sm-¹⁴³Nd égale à 6,54 10⁻¹² an⁻¹ (Lugmair et Marti, 1977). Dans un système naturel tel qu'une roche ignée, cette équation peut être résolue en normalisant chaque terme par la concentration en isotope stable ¹⁴⁴Nd qui est le second isotope naturel le plus abondant (et qui ne varie pas en fonction de ¹⁴⁶Sm comme cela peut être le cas pour l'isotope ¹⁴²Sm) :

$$\frac{{}^{143}\text{Nd}}{{}^{144}\text{Nd}} = \frac{{}^{143}\text{Nd}_0}{{}^{144}\text{Nd}} + \frac{{}^{147}\text{Sm}}{{}^{144}\text{Nd}} \ (e^{it} - 1)$$

Par conséquent, depuis sa cristallisation, toute roche voit son rapport ¹⁴³Nd/¹⁴⁴Nd augmenter au cours des temps géologiques (Figure 1.7).

Figure 1.7. Evolution du rapport isotopique ¹⁴³Nd/¹⁴⁴Nd en fonction du temps dans le manteau et la croûte continentale (mafique ou felsique) à partir de la composition initiale de la CHUR. REE. Terres-Rares (Rare Earth Element), les rectangles colorés illustrent le profil du spectre de terres-rares et les concentrations en Nd et Sm en fonction du réservoir (modifié d'après Dickin, 1995).

On considère que la Terre primitive (*i.e.* non différenciée) avait des rapports isotopiques en ¹⁴⁷Sm/¹⁴⁴Nd et ¹⁴³Nd/¹⁴⁴Nd identiques à ceux des chondrites car la Terre s'est créée par accrétion de chondrites (CHUR, *Chondritic Uniform Reservoir*; DePaolo et Wasserburg, 1976a ; DePaolo, 1981). Cependant, les processus de fusion partielle et de cristallisation fractionnée survenus au cours du temps ont initié une répartition différente du Sm et du Nd dans ces roches (Figure 1.7.). En effet, ces deux éléments aux comportements très proches sont généralement incompatibles avec la plupart des espèces minérales (*i.e.* cela implique qu'ils ont plus d'affinité avec les phases liquides). Cependant, le Nd est légèrement plus incompatible que le Sm. Par conséquent, les roches issues du manteau appauvri s'enrichissent en ¹⁴⁷Sm, qui après désintégration, accroit la concentration en ¹⁴³Nd et augmente le rapport ¹⁴³Nd/¹⁴⁴Nd des roches volcaniques de type MORB (Figure 1.7. ; O'Nions et al., 1978). Au contraire, les roches de la croûte continentale issue de fusions partielles successives sont progressivement enrichies en ¹⁴⁴Nd et appauvries en ¹⁴⁷Sm. Cela aboutit à des roches de croûte continentale, mafiques ou felsiques, présentant des rapports ¹⁴³Nd/¹⁴⁴Nd plus faibles que celle du manteau (Figure 1.7.).

Ainsi, toute roche est caractérisée par un rapport ¹⁴³Nd/¹⁴⁴Nd qui résulte de son origine (crustale ou mantellique) mais aussi de son âge (Figure 1.7.). En effet, les rapports Sm/Nd vont évoluer au cours du temps en fonction de la désintégration de l'isotope père (Sm) en son isotope fils (Nd).

Les différences de composition en ¹⁴³Nd/¹⁴⁴Nd étant faibles (seulement de l'ordre de 10⁻⁵ ou 10⁻⁶), on utilise par commodité la notation ε_{Nd} qui illustre la déviation du rapport isotopique ¹⁴³Nd/¹⁴⁴Nd mesuré dans une roche par rapport à la courbe d'évolution de la CHUR (Figure 1.7., DePaolo et Wasserburg, 1976b). Cette notation s'exprime en partie par 10⁴ et est définie par la relation suivante :

$$\varepsilon_{\mathrm{Nd}(t)} = \left[\underbrace{\frac{\begin{pmatrix} 143\mathrm{Nd} \\ 144\mathrm{Nd} \end{pmatrix}_{ech(t)}}{\begin{pmatrix} 143\mathrm{Nd} \\ 144\mathrm{Nd} \end{pmatrix}_{CHUR(t)}} - 1 \right] \times 10^4$$

où *t* indique le temps pour lequel la déviation ε_{Nd} est calculée, *ech* la valeur mesurée dans l'échantillon et *CHUR* la composition de référence de la chondrite (avec ¹⁴³Nd/¹⁴⁴Nd_{CHUR} = 0,512638 et ¹⁴⁷Sm/¹⁴⁴Nd_{CHUR} de 0,1966 ; DePaolo, 1981).

Si on fait l'hypothèse que les roches magmatiques se forment à partir d'une fusion du réservoir chondritique initial (CHUR), il est alors possible de calculer un âge théorique d'extraction à partir de ce réservoir (T_{CHUR} , McCullogh et Wasserburg, 1978). Le calcul de cet âge T_{CHUR} implique que le fractionnement du rapport Sm/Nd est lié à la fusion du réservoir chondritique (Figure 1.8). Ce fractionnement induit une déviation par rapport à la ligne d'évolution du réservoir chondritique (Figure 1.8). On peut calculer l'âge T_{CHUR} en utilisant l'équation suivante :

$$T_{\rm CHUR} = \frac{1}{\lambda} \ln \left[1 + \frac{\left(\frac{^{143}\rm{Nd}}{^{144}\rm{Nd}}\right)^0_{\rm ech} - \left(\frac{^{143}\rm{Nd}}{^{144}\rm{Nd}}\right)^0_{\rm CHUR}}{\left(\frac{^{147}\rm{Sm}}{^{144}\rm{Nd}}\right)^0_{\rm ech} - \left(\frac{^{147}\rm{Sm}}{^{144}\rm{Nd}}\right)^0_{\rm CHUR}} \right]$$

où 0 représente le rapport isotopique initial, *ech* la mesure effectuée sur l'échantillon, CHUR la valeur du réservoir chondritique, et λ la constante de désintégration radioactive du couple ¹⁴⁷Sm-¹⁴³Nd de 6,54 10⁻¹² an⁻¹.

Figure 1.8. Evolution schématique du rapport isotopique en Nd illustrant le fonctionnement des âges modèles calculés par rapport à la CHUR. T_{met} : âge d'un événement métamorphique. T_{sed} : âge d'un événement d'érosion-sédimentation. f: fractionnement du couple Sm/Nd relatif à la CHUR (représentant la composition initiale de la Terre [Bulk Earth]). D'après McCulloch et Wasserburg (1978).

La plupart des plutons archéens ont un âge modèle T_{CHUR} qui peut être expliqué par une extraction du réservoir chondritique au cours de l'archéen. Néanmoins, le fait que plusieurs roches volcaniques jeunes, issues de la fusion partielle du manteau, aient des valeurs d' ε_{Nd} très positives (ε_{Nd} entre +7 à +12) suggère que ces roches peuvent être issues de la fusion d'un réservoir mantélique appauvri (*Depleted Mantle*, DM) et non d'une extraction par rapport au réservoir chondritique initial (Figure 1.9).

Figure 1.9. Diagramme εNd en fonction du temps (en Ga) illustrant la déviation du réservoir DM (depletedmantle) par rapport au réservoir CHUR (ligne horizontale car normalisé à lui-même donc $\varepsilon Nd = 0$). Les échantillons issus de la croûte peuvent donc, pour un même εNd , présenter deux âges modèles différents en fonction du réservoir de référence choisi. La courbe d'évolution du modèle DM correspond à un polynôme du second degré dont l'équation est : $0,25T^2 - 3T + 8,5$ où T est l'âge en Ga (d'après DePaolo, 1988).

DePaolo (1988) propose donc de calculer les âges d'extraction par rapport à un réservoir mantellique appauvri (âge T_{DM} , DePaolo, 1988). Ces âges peuvent se calculer suivant la formule :

$$T_{\rm DM} = \frac{1}{\lambda} \ln \left[1 + \frac{\left(\frac{^{143}\rm{Nd}}{^{144}\rm{Nd}}\right)^{0}_{\rm ech} - \left(\frac{^{143}\rm{Nd}}{^{144}\rm{Nd}}\right)^{0}_{\rm DM}}{\left(\frac{^{147}\rm{Sm}}{^{144}\rm{Nd}}\right)^{0}_{\rm ech} - \left(\frac{^{147}\rm{Sm}}{^{144}\rm{Nd}}\right)^{0}_{\rm DM}} \right]$$

où *0* représente la composition isotopique initiale, *ech* la mesure effectuée sur l'échantillon, DM, la valeur du réservoir mantellique appauvri et λ , la constante de désintégration radioactive du couple ¹⁴⁷Sm-¹⁴³Nd de 6,54 10⁻¹² an⁻¹. La composition du réservoir mantellique appauvri DM peut être calculée à un temps T en utilisant le polynôme du second degré suivant : $\varepsilon_{Nd}(T) = 0.25 T^2 - 3 T + 8.5$ (DePaolo, 1988). Comme le Nd et le Sm sont deux terres rares légères qui sont peu sensibles aux processus sédimentaires, les âges T_{DM} peuvent être calculés pour les roches sédimentaires. Dans ce cas-là, l'âge T_{DM} d'un sédiment nous renseigne sur l'âge moyen d'extraction par rapport au manteau appauvri des sources qui ont alimenté ce sédiment.

*3.3. Le traçage isotopique par*⁸⁷*Sr*/⁸⁶*Sr*

La relation entre les compositions isotopiques en néodyme et strontium peut être pertinente pour caractériser la source d'une roche. En effet, sur le même principe que le couple Sm-Nd, la déviation de la composition isotopique en Sr (notée ⁸⁷Sr/⁸⁶Sr) par rapport à un réservoir mantellique uniforme, diffère selon la nature de la source de la roche étudiée. Le strontium possède quatre isotopes stables (⁸⁴Sr, ⁸⁶Sr, ⁸⁷Sr et ⁸⁸Sr) et les autres ont des demivies trop courtes pour présenter des abondances dans la nature significatives. Le rubidium (Rb) possède de nombreux isotopes dont un stable (⁸⁵Rb) et un avec une demi-vie très longue (⁸⁷Rb, 48,1 Ga). Le ⁸⁷Sr provient en partie de la désintégration du ⁸⁷Rb (relation père/fils similaire à celle du couple Sm/Nd) qui se traduit par l'équation suivante :

 ${}^{87}\text{Sr} = {}^{87}\text{Sr}_0 + {}^{87}\text{Rb}(e^{\lambda t} - 1)$ avec $\lambda = 1,42 \text{ x } 10^{-11} \text{ an}^{-1}$, ${}^{87}\text{Sr}_0$ la quantité initiale de ${}^{87}\text{Sr}_1$ et *t* l'âge de formation de la roche étudiée (Neumann et Huster, 1976). Pour permettre la résolution de cette équation dans un système naturel, chaque terme est normalisé au nucléide stable ${}^{86}\text{Sr}$:

$$\frac{{}^{87}Sr}{{}^{86}Sr} = \frac{{}^{87}Sr_0}{{}^{86}Sr} + \frac{{}^{87}Rb}{{}^{86}Sr}(e^{\lambda t} - 1)$$

Pour le couple Rb-Sr, c'est l'élément père (Rb) qui est plus incompatible que l'élément fils (Sr). Cependant, contrairement au Sm et au Nd, le Sr est un élément trace bien plus sensible aux processus d'altération et de diagénèse (Clarke et Cerny, 1987 ; Garçon et al., 2013) et peut aussi être contrôlé par le cycle hydrologique des fleuves (*e.g.* le fleuve Amazone ; Viers et al., 2008).

DePaolo et Wasserburg (1976b) ont mis en évidence une anti-corrélation entre les rapports isotopiques ¹⁴³Nd/¹⁴⁴Nd et ⁸⁷Sr/⁸⁶Sr à la fois dans les roches ignées de la croûte continentale et de la croûte océanique. Ainsi, la valeur actuelle du rapport ⁸⁷Sr/⁸⁶Sr d'une roche peut permettre, lorsqu'elle est utilisée dans un diagramme couplé ε_{Nd} -⁸⁷Sr/⁸⁶Sr, de

retrouver la nature de la roche initiale. Cette combinaison ε_{Nd}^{-87} Sr/⁸⁶Sr a surtout permis de mettre en évidence des « champs isotopiques » caractéristiques de certains types de roches sources (Figure 1.10). Ainsi, les roches basiques telles que les MORB vont présenter des valeurs d' ε_{Nd} très positives (radiogéniques) avec un rapport ⁸⁷Sr/⁸⁶Sr plus faible (peu radiogénique). Ces roches d'origine mantellique restent dans l'axe du *mantle array* (Figure 1.10) dans lequel s'observent la plupart des sources issues du manteau. Au contraire, les roches crustales ou felsiques auront un rapport ⁸⁷Sr/⁸⁶Sr radiogénique (plus élevé) pour une valeur d' ε_{Nd} peu radiogénique (très négative).

Figure 1.10. Diagramme couplé ¹⁴³Nd/¹⁴⁴Nd-⁸⁷Sr/⁸⁶Sr illustrant la distribution des champs isotopiques des principaux réservoirs. Les roches basiques et d'origine mantellique tendent vers le domaine mantle array qui est caractérisé par des rapports isotopiques ¹⁴³Nd/¹⁴⁴Nd élevés et ⁸⁷Sr/⁸⁶Sr faibles. Les roches felsiques ou crustales vont tendre vers le champ isotopique de la croûte continentale caractérisé par des rapports isotopiques ¹⁴³Nd/¹⁴⁴Nd faibles. Modifié d'après Dickin, 1995.

4. Compilation des données organiques et synthèse paléoenvironmentale

Afin de contraindre précisément le contexte sédimentaire du bassin Atlantique central et de caractériser l'évolution et la répartition des dépôts organiques au Crétacé, un travail de compilation de données a été réalisé en parallèle de nos analyses. Les données de matière organique disponibles dans la littérature, notamment celles de pyrolyse RockEval, de TOC, d'isotopie du carbone (δ^{13} C), et de biomarqueurs ont fait l'objet d'une compilation exhaustive à l'échelle du bassin et des marges associées. Les résultats de pyrolyses RockEval et TOC ont notamment été réévalués par Françoise Béhar et Anne-Claire Chaboureau (TOTAL S.A.) et sont l'objet de la synthèse présentée en introduction (section 1.2.). Afin de compléter cette base de données, de nouvelles analyses de TOC ont été effectuées en complément de celles déjà disponibles dans la littérature pour les sites DSDP et sur les deux forages pétroliers (Casamance-M-1 et Arapaima-1).

Comprendre les facteurs influençant la répartition de la matière organique nécessite de positionner ces données dans un cadre paléoenvironnemental et paléogéographique robuste. Or, il n'existe pas de reconstitution paléogéographique illustrant précisément les objets sédimentaires dans le bassin océanique profond de la marge nord-ouest africaine ou du bassin du Guyana-Suriname pendant le Crétacé. Pour le secteur africain, quelques auteurs proposent des reconstitutions paléogéographiques mais ces dernières sont pour la plupart très globales (Guiraud et al., 2005). Au contraire, certaines d'entre elles ne concernent qu'en partie le segment africain de l'océan Atlantique central, se limitant au Maroc et au Sahara Occidental (Stampfli, 2001 ; Lüning et al., 2004) ou aux segments africains de la Téthys ou de l'océan Atlantique équatorial (Stampfli, 2001 ; Lüning et al., 2004). A plus grande échelle, les cartes synthétiques montrant la paléogéographie globale des continents (zones émergées, plateau continental et bassin profond) ne permettent pas d'avoir une idée précise de l'évolution du remplissage sédimentaire de la marge nord-ouest africaine pendant le Crétacé (Scotese, 2001 ; Blakey, 2009). Ainsi, nous avons compilé toutes les reconstitutions disponibles et avons précisé les données existantes ou renseigné les lacunes en utilisant les données

disponibles en interne au sein de l'entreprise TOTAL S.A. (*e.g.* données de subsurface telles que des lignes de réflexion sismique 2D, des données de forages pétroliers, ou des synthèses régionales). Lorsque cela n'a pas été possible nous avons utilisé une reconstitution paléogéographique issue de la littérature (*e.g.* Scotese, 2001).

Références

- Bodin, S., Meissner, P., Janssen, N. M., Steuber, T., et Mutterlose, J., 2015. Large igneous provinces and organic carbon burial: Controls on global temperature and continental weathering during the Early Cretaceous. Global and Planetary Change, 133, 238-253.
- Blakey, R., 2009. Global Plate Tectonics and Paleogeography, Northern Arizona University. URL: http://jan.ucc.nau.edu/rcb7/index.html.
- Cepek, P., 1978. Mesozoic calcareous nannoplankton of the eastern North Atlantic, Leg 41. Initial Reports of the Deep Sea Drilling Project 41, 667–687. doi:10.2973/dsdp.proc.41.114.1978
- Clark, G. S., et Černý, P., 1987. Radiogenic 87Sr, its mobility, and the interpretation of Rb□ Sr fractionation trends in rare-element granitic pegmatites. Geochimica et Cosmochimica Acta, 51(4), 1011-1018.
- Condie, K.C., 1993. Chemical composition and evolution of the upper continental crust: Contrasting results from surface samples and shales. Chemical Geology 104, 1–37. doi:10.1016/0009-2541(93)90140-E
- Cool, T., Katz, B., Dignes, T., Reimers, D., Fleisher, R., 2008. Hydrocarbon Source Rock Assessment and Revised Biostratigraphy of Dsdp Site 369a, Offshore Northwest African Margin. Journal of Petroleum Geology 31, 117–133. doi:10.1111/j.1747-5457.2008.00411.x
- Cullers, R.L., 2000. The geochemistry of shales, siltstones and sandstones of Pennsylvanian– Permian age, Colorado, USA: implications for provenance and metamorphic studies. Lithos 51, 181–203. doi:10.1016/S0024-4937(99)00063-8
- DePaolo, D.J. and Wasserburg, G.J., 1976a. Nd isotopic variations and petrogenetic models. Geophys. Res. Lett. 3, 249-52.
- DePaolo, D.J. and Wasserburg, G.J., 1976b. Inferences about magma sources and mantle structure from variations of 143Nd/144Nd. Geophys. Res. Lett. 3, 743–6.
- DePaolo, D.J., 1981. Neodymium isotopes in the Colorado Front Range and crust-mantle evolution in the Proterozoic. Nature 291, 193–7.
- DePaolo, D. J., 1988. Age dependence of the composition of continental crust: evidence from Nd isotopic variations in granitic rocks. Earth and Planetary Science Letters, 90(3), 263-271. doi: 10.1016/0012-821X(88)90130-6
- Dickin, A. P., 1995. Radiogenic isotopes. Cambridge: Cambridge Uni.
- Faugères, J.–C., Stow, D.A.V., Imbert, P., Viana, A., 1999. Seismic features diagnostic of contourite drifts. Marine Geology 162, 1–38. doi:10.1016/S0025–3227(99)00068–7
- Foreman, H.P., 1978. Mesozoic Radiolaria in the Atlantic Ocean off the Northwest Coast of Africa, Deep Sea Drilling Project, Leg 41. Initial Reports of the Deep Sea Drilling Project. doi:10.2973/dsdp.proc.41.117.1978
- Friedrich, O., Norris, R.D., Erbacher, J., 2012. Evolution of middle to Late Cretaceous oceans—A 55 m.y. record of Earth's temperature and carbon cycle. Geology 40, 107– 110. doi:10.1130/G32701.1

- Garçon, M., Chauvel, C., France-Lanord, C., Huyghe, P., et Lavé, J., 2013. Continental sedimentary processes decouple Nd and Hf isotopes. Geochimica et Cosmochimica Acta, 121, 177-195.
- Garzanti, E., Vezzoli, G., Andò, S., Lavé, J., Attal, M., France-Lanord, C., DeCelles, P., 2007. Quantifying sand provenance and erosion (Marsyandi River, Nepal Himalaya). Earth and Planetary Science Letters 258, 500–515. doi:10.1016/j.epsl.2007.04.010
- Guiraud, R., Bosworth, W., Thierry, J., Delplanque, A., 2005. Phanerozoic geological evolution of Northern and Central Africa: An overview. Journal of African Earth Sciences, Phanerozoic Evolution of Africa 43, 83–143. doi:10.1016/j.jafrearsci.2005.07.017
- Hayes, D.E., Pimm, A.C., Benson, W.E., Berger, W.H., von Rad, U., Supko, P.R., Beckmann, J.P., Roth, P.H., 1972. Site 137. Deep Sea Drilling Project, leg 14. Initial Reports of the Deep Sea Drilling Project 14, 85–134. doi:10.2973/dsdp.proc.14.104.1972
- Hofmann, A. W., 1988. Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust. Earth and Planetary Science Letters, 90(3), 297-314.
- Jansa, L., Gardner, J.V., Dean, W.E., 1978. Mesozoic sequences of the Central North Atlantic. Initial Reports of the Deep Sea Drilling Project. doi:10.2973/dsdp.proc.41.138.1978
- Lancelot, Y., Seibold, E., Cepek, P., Dean, W.E., Eremeev, V., Gardner, J.V., Jansa, L., Johnson, D., Kasheninnikov, V., Pflaumann, U., Graham, J., Bukry, D., 1978. Site 367: Cape Verde Basin. Initial Reports of the Deep Sea Drilling Project 41, 163–232. doi:10.2973/dsdp.proc.41.103.1978
- Lancelot, Y., Winterer, E.L., 1980. Introduction and Summary of Results, Deep Sea Drilling Project Leg 50. Initial Reports of the Deep Sea Drilling Project 50, 5–11. doi:10.2973/dsdp.proc.50.101.1980
- Lugmair, G. W., & Marti, K. (1977). SmNdPu timepieces in the Angra dos Reis meteorite. Earth and Planetary Science Letters, 35(2), 273-284.
- Lüning, S., Kolonic, S., Belhadj, E. M., Belhadj, Z., Cota, L., Barić, G., et Wagner, T., 2004. Integrated depositional model for the Cenomanian–Turonian organic-rich strata in North Africa. Earth-Science Reviews, 64(1), 51-117.
- McCulloch, M.T. and Wasserburg, G.J., 1978. Sm–Nd and Rb–Sr chronology of continental crust formation. Science, 200, 1003–11.
- McLennan, S. M., 1989. Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes. Geochemistry and Minerology of Rare Earth Elements, 169-200.
- McLennan, S.M., Hemming, S., McDaniel, D.K., Hanson, G.N., 1993. Geochemical approaches to sedimentation, provenance, and tectonics. Geological Society of America Special Papers 284, 21–40. doi:10.1130/SPE284-p21
- Mitchum, R.M., Vail, P.R., et Sangree, J.B., 1977. Seismic stratigraphy and Global Changes of Sea Level, Part 6: Stratigraphic Interpretation of Seismic Reflection Patterns in Depositional Sequences. In: Seismic Stratigraphy – applications to hydrocarbon

exploration (Ed.: Payton, C.E.), American Association of Petroleum Geologist Memoir, 26, 117-133.

- Nesbitt, H., and Young, G. M., 1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299(5885), 715-717. doi: 10.1038/299715a0
- Neumann, W., et Huster, E., 1976. Discussion of the 87Rb half-life determined by absolute counting. Earth and Planetary Science Letters, Volume 33, Issue 2, p. 277-288.
- O'nions, R.K., Carter, S.R., Cohen, R.S., Evensen, N.M., Hamilton, P.J., 1978. Pb, Nd and Sr isotopes in oceanic ferromanganese deposits and ocean floor basalts. Nature 273, 435–438.
- Pflaumann, U., Čepek, P., 1982. Cretaceous Foraminiferal and Nannoplankton Biostratigraphy and Paleoecology Along the West African Continental Margin. Geology of the Northwest African Continental Margin 309–353. doi:10.1007/978-3-642-68409-8_13
- Piper, D.Z., 1974. Rare earth elements in ferromanganese nodules and other marine phases. Geochimica et Cosmochimica Acta 38, 1007–1022. doi :10.1016/0016-7037(74)90002-7
- Posamentier, H. W., et Kolla, V., 2003. Seismic geomorphology and stratigraphy of depositional elements in deep-water settings. Journal of sedimentary research, 73(3), 367-388.
- Roddaz, M., 2004. Transition des stades alimentés à suralimentés dans les systèmes de rétrobassin d'avant-pays: exemple du bassin amazonien. Thèse de l'Université Toulouse 3, Toulouse.
- Scotese, C. R., 2001. Atlas of earth history. University of Texas at Arlington. Department of Geology. PALEOMAP Project.
- Stampfli, G. M., 2001. The paleotectonic atlas of the Peritethyan domain. European Geophysical Society.
- Stow, D. a. V., Pudsey, C.J., Howe, J.A., Faugères, J.–C., Viana, A.R., 2002. Deep–water contourite systems: Modern drifts and ancient series, seismic and sedimentary characteristics. Geological Society Memoir.
- Vail, P.R., Todd, R.G., et Sangree, J.B., 1977. Seismic stratigraphy and Global Changes of Sea Level, Part 5: Chronostratigraphic Significance of Seismic Reflections. In: Seismic Stratigraphy – applications to hydrocarbon exploration (Ed.: Payton, C.E.), American Association of Petroleum Geologist Memoir, 26, 99-116.
- Viers, J., Roddaz, M., Naziano, F. Jr, Guyot, J-L.,Sondag, F., Brunet, P., Zouiten, C., Boucayrand, C., Martin, F., and Boaventura, G., 2008. Seasonal and provenance controls on Nd-Sr isotopic compositions of Amazon Rivers suspended sediments and implications for Nd and Sr fluxes exported to the Atlantic Ocean. Earth and Planetary Science Letters. 274. 511-523. doi : 10.1016/j.epsl.2008.08.011.
- Williams, G.L., 1978. Palynological biostratigraphy, Deep Sea Drilling Project Sites 367 and 370. Initial Reports of the Deep Sea Drilling Project. doi:10.2973/dsdp.proc.38394041s.402.1978

CHAPITRE II

Provenance des *black shales* du segment est de l'océan Atlantique central au Crétacé.

CHAPITRE 2. PROVENANCE DES *BLACK SHALES* DU SEGMENT EST DE L'OCEAN ATLANTIQUE CENTRAL AU CRETACE : IMPLICATIONS SUR LE RESEAU DE DRAINAGE

Les résultats de ce chapitre sont exprimés sous la forme d'un article intitulé « <u>Geochemical evidence for large-scale drainage reorganization in Northwest Africa during</u> <u>the Cretaceous</u> » publié dans *Geochemistry*, *Geophysics*, *Geosystems* (<u>https://doi.org/10.1029/2018GC007448</u>). A partir d'une étude de provenance se basant sur les concentrations en éléments majeurs et traces et sur les compositions isotopiques en néodyme et strontium de roches sédimentaires du Crétacé, l'objectif de ce chapitre est de déterminer la source sédimentaire des dépôts riches en matière organique et de leur architecture sédimentaire pour ensuite caractériser l'évolution du réseau de drainage sur le continent africain pendant le Crétacé.

Résumé

L'étude de la provenance des sédiments déposés dans l'océan Atlantique central est d'une importance primordiale pour comprendre les mécanismes conduisant à la réorganisation du drainage du Craton Ouest-Africain au fil du temps. Pour déterminer ces changements de provenance lors de l'ouverture de l'Atlantique, nous étudions les concentrations en éléments majeurs et en traces et les compositions isotopiques en strontium et en néodyme (exprimées en ε_{Nd}) des roches sédimentaires crétacées de huit sites *Deep Sea Drilling Project* (DSDP) et d'un puits d'exploration Casamance-M-1 (CM1). L'absence de différences significatives dans les concentrations en éléments majeurs et en traces indique que la nature géochimique des sédiments analysés, issus de l'érosion de la croûte continentale, est restée constante au cours du temps. Les valeurs de $\varepsilon_{Nd(0)}$ des sites DSDP montrent une diminution en trois étapes au cours du Crétacé supérieur. Les valeurs de $\varepsilon_{Nd(0)}$

des sédiments de l'intervalle Albien-Cénomanien moyen sont hétérogènes (-5,5 à -14,9), reflétant l'existence d'au moins trois bassins de drainage avec des sources sédimentaires distinctes (des sources d'âge hercynien/paléozoïque, des sources précambriennes ou un mélange de sources datant du Précambrien et du Paléozoïque). Au cours de l'intervalle Cénomanien supérieur-Turonien, les valeurs de $\epsilon_{Nd(0)}$ deviennent homogènes dans le bassin profond (-10,3 à -12,4), montrant une décroissance de 2 unités de $\varepsilon_{Nd(0)}$ impliquant une contribution croissante des apports provenant des sources précambriennes. Cette diminution généralisée de $\varepsilon_{Nd(0)}$ s'est poursuivie pendant l'intervalle Campanien-Maastrichtien ($\varepsilon_{Nd(0)} \sim -$ 15), indiquant que les sources précambriennes sont devenues prédominantes dans l'export sédimentaire. Ces changements de provenance semblent liés à l'ouverture des segments sud et équatorial de l'océan Atlantique et à la surrection de la marge nord-ouest africaine déclenchée par la convergence entre l'Afrique et l'Europe. Enfin, la différence entre les valeurs de $\epsilon_{Nd(0)}$ des sédiments crétacés du plateau continental sénégalais (puits CM1) et du bassin profond (sites DSDP 367 et 368) suggère la présence de courants océaniques qui ont empêché les apports sédimentaires issus des Mauritanides d'atteindre le bassin océanique profond.

GEOCHEMICAL EVIDENCE FOR LARGE-SCALE DRAINAGE REORGANIZATION IN

NORTHWEST AFRICA DURING THE CRETACEOUS

Yannick Mourlot^{1,2*}, Martin Roddaz¹, Guillaume Dera¹, Gérôme Calvès¹, Jung-Hyun Kim³,

Anne-Claire Chaboureau⁴, Stéphanie Mounic⁵ and François Raisson²

Key Points:

- Contrasting Nd isotope values of Cretaceous sediments in the eastern Central Atlantic Ocean
- Increasing contribution from inner Precambrian sources during the Late Cretaceous

Abstract

Investigating the provenance of sediments deposited in the Central Atlantic Ocean is of prime importance to decipher the mechanisms leading to the West African Craton drainage reorganization through time. To determine these changes in provenance during the opening of the Atlantic Ocean, we study the major and trace element concentrations and strontium and neodymium isotopic compositions (expressed as ε_{Nd}) of Cretaceous sedimentary rocks from eight Deep Sea Drilling Project (DSDP) Sites and one exploration well. The absence of significant differences in major and trace element concentrations indicates that the crustalderived nature of the sediments remained constant over time. The $\varepsilon_{Nd(0)}$ values from the DSDP Sites show a three-step decrease during the Late Cretaceous. The Albian–Middle Cenomanian $\varepsilon_{Nd(0)}$ values are heterogeneous (-5.5 to -14.9) reflecting the existence of at least three subdrainage basins with distinct sedimentary sources (Hercynian/Paleozoic, Precambrian and mixed Precambrian/Paleozoic). During the Late Cenomanian–Turonian

¹ Université Toulouse 3, Paul Sabatier, Géosciences Environnement Toulouse, 14 avenue Edouard Belin, 31400, Toulouse, France

² Total E&P, CSTJF Avenue Larribau, F-64018, Pau Cedex, France

³ Korea Polar Research Institute (KOPRI), 26 Songdomirae-ro, Yeonsu-gu, Incheon 21990, South Korea

⁴ CVA Engineering 9/11, allée de l'Arche, Tour Egée, 92671 Courbevoie, La Défense, France

⁵ Géosciences Environnement Toulouse, Observatoire Midi-Pyrénées, 14 avenue Edouard Belin, 31400, Toulouse

interval, $\varepsilon_{Nd(0)}$ values become homogeneous in the deep-water basin (-10.3 to -12.4), showing a negative shift by 2 epsilon units interpreted as an increasing contribution of Precambrian inputs. This generalized $\varepsilon_{Nd(0)}$ decrease continued in the Campanian–Maastrichtian (-15 epsilon units), indicating that Precambrian sources became predominant. These provenance changes seem related to the opening of the South and Equatorial Atlantic Oceans and tectonic uplift triggered by Africa–Europe convergence. Finally, the difference between $\varepsilon_{Nd(0)}$ values of Cretaceous sediments from the Senegal continental shelf (CM1 well) and from the deepwater basins (DSDP Sites 367 and 368) suggests that ocean currents prevented detrital material from the Mauritanides reaching deep-water areas.

1. Introduction

Geodynamic cycles of several hundreds of million years, known as Wilson cycles (Wilson, 1968), have driven the accretion and break-up of continents and lithosphere since ~ 3 billion years ago (Ga) (Shirey and Richardson, 2011). The stretching and thinning of continental lithosphere related to heat transfer in the mantle leads to magmatic activity and rifting, which can potentially evolve toward plate separation and the formation of oceanic crust (Dewey and Burke, 1974; Şengör and Burke, 1978). Conversely, plate convergence results in oceanic closure and continental collisions, which ultimately lead to the assembly of supercontinents (Valentine and Moores, 1970; Dewey et al., 1986). Due to their structural and metamorphic history, old and stable cratonic domains represent the archives of this geodynamic evolution because intra and peri-cratonic basins record the sedimentation and erosion associated with each cycle of divergence and convergence. The West African Craton (WAC, Figure 2.1A.) is one of the best examples of sedimentary archives that reflect geodynamic events since it shows a continuous record of successive Wilson cycles since the Paleoproterozoic (Burke et al., 1976).

One way to reconstruct the denudation history of cratons is to determine the provenance of well-dated siliciclastic sediments deposited in peripheral marginal basins. Indeed, any modification in clastic sediment sources will reflect changes in paleorelief, drainage configuration, as well as sediment transport associated with large-scale tectonic processes (e.g., Clift and Blusztajn, 2005). To supplement classic petrographic approaches based mainly on sand or coarser fractions (e.g. heavy mineral counting) (Garzanti et al., 2007), geochemical provenance proxies include major and trace elements (including Rare Earth Elements (REE) concentrations), U-Pb dating of detrital zircons and Sr-Nd isotopic composition of detrital fractions. The results of these methods can be biased by the effect of grain-size/mineralogical sorting during transport and deposition that may control the geochemical composition of the sediments (McLennan et al., 1993; Bouchez et al., 2011; Roddaz et al., 2014). In the case of provenance studies on zircons, despite the robustness of the U-Pb dating method (Fedo et al., 2003), this mineral is usually extracted from medium-tocoarse grained sandstones, which are more sensitive to sedimentary sorting than fine-grained sediments (McLennan et al., 1993; Bouchez et al., 2011; Roddaz et al., 2014). By contrast, the Sr and Nd isotope compositions of the sediment fine fraction ($<63 \mu m$) are not biased by grain-size sorting, so they can be used to establish a complete integration of drainage pathways from the most distant cratonic areas to oceanic basins (Goldstein et al., 1984; Patchett et al., 1999). This isotopic provenance approach may be suitable to determine the Cretaceous denudation history of the WAC because the lithogenic sediments are inherited from geological units with distinct radiogenic isotope signatures according to their age and composition (Boher et al., 1992; Gasquet et al., 1992; Deckart et al., 2005; Essaifi et al., 2014). Such a method has been successfully applied to trace the source of modern sediments deposited in the eastern Central Atlantic Ocean (Grousset et al., 1998; Meyer et al., 2011; Bayon et al., 2015). However, few studies have applied this method to characterize changes in sedimentary provenance during the major geodynamic events recorded in the WAC (Asiedu et al., 2005; Roddaz et al., 2007; Ali et al., 2014), especially during the Cretaceous phase of extension and opening of the Atlantic Ocean.

Figure 2.1. A) Location of study area in its Cretaceous paleogeographical context (Torsvik et al. 2012). The red rectangle indicates position of area shown on Figure 2.1B. B) Main geological units of the West African Craton (WAC) and location of studied boreholes including the exploration well CM1, DSDP leg 41 Sites 367, 368, 369, 370, leg 50 Sites 415A, 416 and leg 14 Site 137 (white circles). Source ages are simplified from Milesi et al., (2010). Coloured squares represent localities with published $\varepsilon_{Nd(0)}$ data compiled in our database of potential sources. Colours indicate the average $\varepsilon_{Nd(0)}$ values of sedimentary rocks for each locality (Supporting information Annexe 2). C) Averages and standard deviations of $\varepsilon_{Nd(0)}$ values for the four main sources. The colour-coded scale indicates the range of $\varepsilon_{Nd(0)}$ values from radiogenic in red to very unradiogenic in purple. n refers to the total number of available values. Data from Hercynian orogenic belts include values from the Moroccan Meseta, Anti-Atlas and High-Atlas, as well as the Bassarides, Souttoufides, Mauritanides, and Rokelides. MO: Morocco, Sen: Senegal, Ma: Mauritania, CAMP: Central Atlantic Magmatic Province.

Here, we determine the provenance of siliciclastic sediments deposited in the eastern Central Atlantic Ocean during the Cretaceous. Our study is based on major and trace element analyses and Sr-Nd isotopic data of forty-three samples of clay-rich sedimentary rocks from eight DSDP Sites along the Northwest African Margin and one exploration borehole (Figure 2.1B.). For the first time, we document major changes in the provenance of Atlantic sediments resulting from a large-scale reorganization of Northwest Africa drainage pathways during the Cretaceous.

2. Geological settings and potential sources

2.1. Geological settings

The WAC consists of two Archaean and Palaeoproterozoic shields, namely the Reguibat Shield to the North and the Leo-Man Shield to the South (Figure 2.1B.), which were merged together (along with the Amazonian Craton) during the Paleoproterozoic Eburnean Orogeny (Ledru et al., 1994; Villeneuve and Cornée, 1994; Zhao et al., 2002). The earliest erosion of the WAC is recorded in the thick Precambrian sedimentary succession of the Taoudeni Basin, which separates the two shields (Milesi et al., 2010). Younger collision phases are also well identified on the craton borders (Figure 2.1B.), corresponding to the Panafrican Orogeny towards the East which is a remnant of the Late Neoproterozoic to Early Cambrian collision with the Saharan and Congo cratons during the Gondwana assembly (Torsvik and Cocks, 2013 and references therein). Towards the West, the Hercynian Belts (represented by the Mauritanides, Souttoufides, Bassarides, Anti-Atlas and Meseta chains) result from the formation of Pangea around 300 Ma (Wegener, 1915; Drake, 1976; Villeneuve et al., 1993). Associated with these episodes, the Tindouf Basin, the Bowe Basin, the Senegal-Mauritania Basin, and the internal parts of the Taoudeni Basin record the erosion of Paleozoic massifs (Figure 2.1B.). Finally, the break-up of Pangea is characterized by a major episode of tholeiitic volcanism in the Central Atlantic Magmatic Province (CAMP) at 200 Ma (Marzoli et al., 1999; Olsen, 1999). This predates the opening of the Central Atlantic Ocean at ~185 Ma (Le Pichon, 1968; Torsvik et al., 2008; Labails et al., 2010), followed by the formation of the Equatorial Atlantic Ocean from 100 Ma to 80 Ma (Sibuet and Mascle, 1978; Binks and Fairhead, 1992). These Mesozoic events, implying a long-wavelength extensional regime with compressive stress and vertical movements (Guiraud and Bosworth, 1997; Leprêtre et al., 2015), are associated with sedimentary deltas and deep-sea fan deposits corresponding to clastic supply from the WAC to the Northwest African Margin and the deep-water basin (Emery and Uchupi, 1984; Davison, 2005).

2.2. Data sources

To characterize the sedimentary sources of the Cretaceous sediments deposited in the eastern Central Atlantic Ocean, we use a compilation of 794 published Sr and Nd isotope values measured on sedimentary and magmatic rocks of the WAC (supporting information Annexe 2, Allègre et al., 1981; Othman et al., 1984; Dupuy et al., 1988; Blanc et al., 1992; Boher et al., 1992; Gasquet et al., 1992; 2003; Taylor et al., 1992; Schaltegger et al., 1994; Dia et al., 1997; Kouamelan et al., 1997; Ajaji et al., 1998; Potrel et al., 1998; Le Goff et al., 2001; Thomas et al., 2002; Azzouni-Sekkal et al., 2003; El Baghdadi et al., 2003; Samson et al., 2004; Asiedu et al., 2005; Deckart et al., 2005; Peucat et al., 2005; Verati et al., 2005; D'Lemos et al., 2006; Pawlig et al, 2006; Roddaz et al., 2007; Ennih and Liégeois, 2008; Key et al., 2008; Soumaila et al., 2008; Errami et al., 2009; Tahiri et al., 2010; Meyer et al., 2011; Bea et al., 2013; 2015; Fullgraf et al., 2013; Toummite et al., 2013; Ali et al., 2014; Essaifi et al., 2014; Montero et al., 2014; Jakubowicz et al., 2015; Schoepfer et al., 2015; Tabeliouna et al., 2015). This database allows a comprehensive picture of differences in the isotopic composition of the main geological units present in the WAC (Figure 2.1C.). Four endmembers with characteristic Nd isotope signatures are defined according to age and geographical position. These include the Precambrian Reguibat Shield, the Precambrian Leo-Man Shield, the Paleozoic Hercynian domains, and the CAMP volcanic rocks, whose average $\epsilon_{Nd(0)}$ values and standard deviations correspond to -27.8±9.2, -17.9±10.3, -5.6±6.5, and -0.7±3.6, respectively. In comparison, modern Central Atlantic detritus yields $\epsilon_{Nd(0)}$ values comprised between -16 and -12 (mean value: -13.8±1.5). With the exception of the CAMP rocks, these potential sources display a great scattering of ⁸⁷Sr/⁸⁶Sr values (supporting

information Annexe 2), meaning that these isotopic compositions are unsuitable to reconstruct sedimentary provenances in the WAC.

3. Materials and Methods

3.1. Sampling

Forty-three Cretaceous fine-grained sedimentary rocks (i.e., shales and claystones) were sampled from cores recovered at eight DSDP Sites along the Northwest African Margin and from one exploration well (Figure 2.1B.). With the exception of well CM1 located on the continental shelf, the sedimentary rocks from the DSDP Sites were deposited in deep pelagic environments occasionally influenced by distal turbidity currents (Jansa et al., 1978). Samples from DSDP Sites were dated according to the biostratigraphical scheme defined for each DSDP Site (Hayes et al., 1972; Cepek, 1978; Foreman, 1978; Lancelot et al., 1978; Williams, 1978; Lancelot and Winterer, 1980; Pflaumann and Cepek, 1982; Cool et al., 2008). The time resolution of samples is at the sub-stage level (i.e., ~2 to 3 Ma) for the Late Albian–Turonian interval and at the stage level (i.e., ~5 to 10 Ma) for other intervals, which is sufficient to identify long-term trends in sedimentary provenance (Figure 2.2.). To reassess the age of these samples, we compare their $\delta^{13}C_{TOC}$ values (Total Organic Carbon: TOC) against isotopic trends from the literature (Friedrich et al., 2012; Bodin et al., 2015). Eight shale samples from the Casamance-M–1 exploration well (CM1, Figure 2.1B.) were analysed to obtain comparative data from a shelf paleoenvironment.

Figure 2.2. Stratigraphic framework, $\varepsilon_{Nd(0)}^{87}$ Sr/ 86 Sr, $\delta^{13}C_{TOC}$ and CIA values of core samples from DSDP Sites 367, 368, 369, 415A, 370, 137, 138 and 416 located in deepwater environments of the eastern Central Atlantic Ocean. Age uncertainties are indicated by grey vertical lines. Absence of a vertical line means that the uncertainty is less than the size of the symbol.

3.2. Bulk organic geochemical analysis

The TOC contents of sediments and their stable carbon isotopic compositions ($\delta^{13}C_{TOC}$) were analysed at the University of Hanyang (South Korea). Precisely weighed aliquots (0.5-16 g) of crushed and homogenized samples were decalcified by adding about 8 mL of 1M HCl. After shaking overnight (~12h) to remove carbonates prior to analysis, the TOC content and $\delta^{13}C_{TOC}$ values were determined by EA-IRMS (elemental analyzer-isotope ratio mass spectrometry, EuroEA-Isoprime IRMS, GV instruments, UK). The TOC content and isotope values were calibrated against a standard (IAEA-CH-6, TOC = 42.1 %, $\delta^{13}C = -10.44$ ‰). The analyses were performed at least in duplicate. The TOC data are given in weight percentage (wt%) and the $\delta^{13}C_{TOC}$ values are reported in the standard delta notation relative to the Vienna Pee Dee Belemnite (VPDB) standard. The analytical precision (as standard deviation for repeated measurements of the internal standard IAEA-CH-6, n=18) is 1.1 wt% for TOC and 0.2 ‰ for $\delta^{13}C_{TOC}$.

3.3. Major and trace elements and Sr-Nd isotopes

3.3.1. Sample preparation

Each sample was finely crushed in an agate mortar. About 3 g of the crushed sediment were placed into 50-ml centrifuge tubes for sequential leaching to remove the non-terrigenous sedimentary components following the method of Bayon et al. (2002). Three different solutions composed of 5% acetic acid, 15% acetic acid and hydroxylamine hydrochloride (0.05 M) and hydrogen peroxide (H₂O₂, 5%) were then added to remove the carbonates, Fe-Mn oxides and organic carbon, respectively. After the removal of non-terrigenous components, the residual fractions were cleaned with ultrapure water (MQ-H₂O, 18 MΩ). Clayey (<2 μ m) and silty (2-63 μ m) fractions were then separated by centrifugation in two steps. First, 25 ml of MQ-H₂O were added to the detrital residues in the tubes, shaken vigorously, and then centrifuged for 2 min at 1000 rpm (133 g). The clay-rich supernatants were immediately transferred into new 50 ml centrifuge tubes. Another 25 ml of MQ-H₂O was added to silt-rich detrital residues, mixed thoroughly again, centrifuged for 2.5 min at 800 rpm (85 g), and transferred into corresponding centrifuge tubes. Finally, clay-size fractions were collected after decantation (48 hours) and centrifugation at 3500 rpm (1630 g).

3.3.2. Major and trace element analyses

The major and trace element concentrations were measured at the Service d'Analyse des Roches et Minéraux (SARM, INSU facility, Vandoeuvre-Les-Nancy, France) by ICP-OES (Na, Mg, K, Ca, Sc, Ti, Mn, Fe, Al, Si and P) and ICP-MS (Rb, Cs, Ba, Sr, Th, U, Y, Zr, Nb, Hf, Cr, V, Co, Cu, Ni, Zn, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu and Ta) after alkali fusion. Analytical details are available on <u>http://helium.crpg.cnrs-nancy.fr/SARM/</u> and in Carignan et al. (2001). Uncertainties are lower than 5% for elements measured by ICP-OES, and lower than 10% for elements measured by ICP-MS (see supplementary material Annexe 3). These elements are grouped into conventional chemical categories including major elements (SiO₂, TiO₂, Al₂O₃, Fe₂O₃, MnO, MgO, CaO, Na₂O, K₂O and P₂O₅), Large-Ion Lithophile Elements (LILE: Rb, Cs, Ba, Sr, Th, U), High Field Strength Elements (HFSE: Y, Zr, Nb and Hf) and Trace Transition Elements (TTE: Sc, Cr, Co, V and Ni). The Cr/Th, Th/Sc and Zr/Sc ratios are calculated to assess whether the sediments are mantle derived vs. upper crust derived.

From the major element concentrations, we assess the degree of source-area weathering and the paleoweathering conditions of ancient sediments using the Chemical Index of Alteration (CIA) (Nesbitt and Young, 1982; Fedo et al., 1995) (Figure 2.2.). This index measures the weathering intensity of feldspars relative to unaltered protoliths, and is defined as: $CIA = (Al_2O_3/(Al_2O_3+CaO^*+Na_2O+K_2O))\times100$ (in molar proportions), where CaO* represents the CaO content in the silicate fraction. CIA values for unaltered plagioclase and K-feldspars typical of unaltered upper crustal rocks are approximately equal to 50, whereas higher CIA values represent higher degrees of weathering. For comparison, the CIA value of the Post Archean Australian Shales (PAAS) standard, which is representative of the upper continental crust composition, is equal to 67 (Taylor and McLennan, 1985).

To characterize the influence of marine authigenesis and hydrothermal influxes on the sediments, we calculate the Europium and Cerium anomalies, respectively Eu/Eu* and Ω Ce. To facilitate comparisons with sediments derived from basic or felsic sources (Cullers, 2000) and the PAAS (Taylor and McLennan, 1985), the Eu anomaly is calculated with respect to chondrites: Eu/Eu* = Eu_N/(Sm_N × Gd_N)^{1/2} where _N refers to the chondrite-normalized concentration value (Condie, 1993). The Cerium anomaly (Ω Ce) normalized to PAAS is calculated following De Baar et al. (1985): Ω Ce = 2 × (Ce_{sample}/Ce_{PAAS}) / ((La_{sample}/La_{PAAS}) + (Pr_{sample}/Pr_{PAAS})), where X_{sample} is the concentration of samples and X_{PAAS} refers to the concentrations of the PAAS standard (Taylor and McLennan, 1985).

3.3.3 Nd-Sr isotopes compositions

The Nd-Sr isotopic compositions were measured at Géosciences Environnement Toulouse (GET) in France. About 100 mg of the leached detrital residue fractions were accurately weighted in cleaned Savilex and then digested by several hot acid attacks. The analysed fractions were firstly digested in hydrogen peroxide for 24 hours at ambient temperature, and then digested in HNO₃ for 24 hours at 80°C followed by HF-HNO₃ for 24 hours at 80°C, and, finally HCl+HNO₃ for 24 hours at 115°C. Blank tests were performed to estimate the level of contamination induced by the acid digestion, but it was found to be negligible. Aliquots containing about 1000 ng of Sr and Nd were loaded into the ion exchange columns. Sr and Nd were separated using the Sr-SPEC, TRU-SPEC and LN-SPEC resins (Eichrom). Nd and Sr isotopic ratios were measured using a Finnigan Mat 261 thermal ionization mass spectrometer and a Triton Thermal Ionization Mass Spectrometer in dynamic mode. During the Nd runs, a ¹⁴⁶Nd/¹⁴⁴Nd ratio of 0.7219 was used to correct the signal for mass fractionation. For each sample, checks were made for the absence of samarium (Sm). The accuracy of the measurements was estimated on the Université de Rennes 1 standard for Nd (0.511961 \pm 14). This value was calibrated relative to the La Jolla standard by the Brest, Toulouse and Rennes laboratories (Lacan, 2002). During the Sr runs, 86 Sr/ 88 Sr = 0.1194 was used to correct the signal for mass fractionation. The accuracy of the measurements was checked against the NBS 987 standard (= 0.710240). The average values fall within the range

given for these standards, so that no instrumental bias needs to be taken into account. The repeatability on these standards is around 15 ppm. This value is adopted for the overall uncertainty of all measurements, even if some individual samples yield results with a lower internal precision. Total blanks (acid digestion plus column chemistry) for Nd and Sr were checked by ICP-MS and found to be negligible compared to the Nd and Sr amounts loaded onto the columns. The measured ¹⁴³Nd/¹⁴⁴Nd_{sample} ratios are expressed in epsilon notation as the fractional deviation in parts per 10⁴ (units) from ¹⁴³Nd/¹⁴⁴Nd value of in the Chondritic Uniform Reservoir (CHUR). This notation is defined as:

$$\varepsilon_{\text{Nd}(t)} = (({}^{143}\text{Nd}/{}^{144}\text{Nd})_{\text{sample}(t)} / ({}^{143}\text{Nd}/{}^{144}\text{Nd})_{\text{CHUR}(t)} - 1) \times 10^4$$

where *t* indicates the time at which ε_{Nd} is calculated. Here, no time correction is applied (*t* = 0) and the ¹⁴³Nd/¹⁴⁴Nd_{CHUR(0)} = 0.512638 (Jacobsen and Wasserburg, 1980).

4. Results

4.1. Organic geochemistry and stratigraphic appraisal of $\delta^{I3}C_{TOC}$ data

The TOC results for the DSDP Sites show a strong variability of values ranging from 0.07 to 11.84 wt% through the studied interval (Table 2.1.).

Leg-Site-Core	Age	δ13CTOC (% VPDB)	δ ¹³ C STD	TOC (wt%) TOC STD
14-137-6	Turonian - Campanian	-24,1	0,9	0,1	0,1
14-137-8	Late Cenomanian	-26,2	0,6	1,0	0,1
14-137-13	Early Cenomanian	-24,7	1,2	0,3	0,0
14-137-14	Early Cenomanian	-26,0	0,1	0,1	0,0
14-137-16	Late Albian	-25,6	0,5	3,1	0,1
41-367-15	Late Cretaceous - Paleogene (Campanian-Maastrichtian ?)	-22,8	0,2	0,3	0,0
41-367-16	No older than Turonian	-24,8	0,7	0,2	0,0
41-367-17	No older than Turonian	-25,1	0,7	1,1	0,0
41-367-18	Late Cenomanian - Early Turonian	-22,5	1,4	5,2	0,1
41-367-19	Late to Middle Cenomanian	-25,7	0,6	10,0	0,1
41-367-23	Albian	-24,0	0,2	0.7	0,4
41-367-26	Early Aptian to Hauterivian	-26,7	0,2	1,3	0,1
41-367-27	Early Aptian to Hauterivian	-27,1	0,6	2,6	0,3
41-367-31	Early Valanginian to Berriasian	-28,1	0,2	2,2	0,1
41-368-53	Late Cretaceous (und Not older than Campanian ?)	-26,3	0,5	0,1	0,0
41-368-55-2	Late Cretaceous (und Campanian ?)	-26,1	0,8	0,2	0,2
41-368-56	Late Cretaceous (und yougner than Turonian)	-25,1	0,9	0,2	0,1
41-368-57	Late Cretaceous (und younger than Turonian)	-25,1	0,9	0,2	0,1
41-369-A38	Campanian - Maastrichtian	-27,6	0,2	0,5	0,0
41-369-38F	Campanian - Maastrichtian	-27.7	0,3	0,6	0,1
41-369-39	Campanian	-28,3	0,7	0,5	0,0
41-369-A40	Campanian	-26,0	0,7	0,4	0,0
369-41-1	Campanian	-27,6	0,0	11,8	0,8
41-369-41-3	Campanian	-26,2	0,7	6,7	1,7
41-369-43	Late Albian	-25,9	0,9	4,5	0,1
41-369-47	Early Albian	-26,6	0,7	2,6	0,1
41-370-20	Late Albian - Early Cenomanian	-26,0	0,8	0,7	0,1
41-370-22	Late Albian - Early Cenomanian	-25,9	0,7	0,9	0,1
41-370-27	Albian	-26,1	0,5	4.9	0,3
50-415-7	Cenomanian-Coniacian	-25,8	0,6	0,2	0,0
50-415-9	Middle Cenomanian	-26,5	1,2	1.6	0,2
50-415-13	Early Cenomanian	-25,7	0,9	0,9	0,2
50-416-6	Late Aptian - Early Albian	-23,9	0,4	0,4	0,0
CM1-9	Santonian - Early Campanian (probable)	-26,2	1	0,4	1
CM1-7	Late Cenomanian - Early Turonian	-25,1	1	0.8	1
CM1-6	Late Cenomanian - Early Turonian	-26,1	1	1,3	10
CM1-5	Late Cenomanian - Early Turonian	-27,9	1	0,5	15
CM1-4	Late to Middle Cenomanian	-27,6	1	0,1	1
CM1-3	Early Cenomanian to Middle/Late Ceno.	-27,2	1	0,2	1
CM1-2	Middle Albian	-25,5	1	0,1	1
CM1-1	Early Aptian	-24,0	1	0,4	1

Table 2.1. Organic matter contents and stable carbon isotope values (TOC and $\delta^{13}C_{TOC}$) of sedimentary rocks analysed in this study. STD for standard deviation.

On average, samples from DSDP Sites 367 and 369 appear to be more enriched in organic matter compared with other sites. By merging the $\delta^{13}C_{TOC}$ data from all DSDP Sites, we observe a long-term trend, which can be correlated with recent compilations of NW Tethyan and Pacific $\delta^{13}C_{bulk}$ data showing characteristic patterns through the Cretaceous (Friedrich et al., 2012; Bodin et al., 2015). These literature data include: 1) an increase of $\delta^{13}C_{bulk}$ values from the Berriasian to the Early Aptian; 2) a stepped long-term decrease from the Early Aptian to the Early Cenomanian; 3) a sharp positive Cenomanian excursion

reaching a maximum at the Cenomanian–Turonian boundary; 4) a high isotopic plateau during the Turonian–Santonian interval; 5) a rapid decrease during the Campanian, and 6) a positive excursion during the Maastrichtian. Our data fit relatively well with this long-term evolution since the analysed $\delta^{13}C_{TOC}$ values record a progressive rise of $\delta^{13}C_{TOC}$ values from - 28.1‰ to -22.5‰ during the Berriasian–Turonian interval, followed by relatively stable values up to the Santonian, and an abrupt decrease reaching a minimum of -28.3‰ at the Campanian–Maastrichtian boundary (Figure 2.2.). The lack of positive carbon isotope excursion in the younger Cretaceous samples may exclude any Maastrichtian age from our study, except for one sample (namely 41-367-15) which has a distinct $\delta^{13}C_{TOC}$ value of - 22.8‰. Although the scarcity of $\delta^{13}C_{TOC}$ values from CM1 makes it more difficult to compare the data (Figure 2.3.), the progressive decrease of -4‰ recorded within the Early Aptian–Early Cenomanian interval and the rapid positive excursion of 3.5‰ observed at the Cenomanian–Turonian boundary are in agreement with results in the literature (Friedrich et al., 2012; Bodin et al., 2015).

Figure 2.3. Stratigraphic framework, lithology, $\varepsilon_{Nd(0)}$, ${}^{87}Sr/{}^{86}Sr$ and $\delta^{13}C_{TOC}$ values of Cretaceous sediments from the CM-1 well on the Casamance continental shelf. M, mudstone. W, wackestone. P, packstone. G, grainstone. Sh, shale. Cl, clay. S, silt. fSd, fine sandstone. mSd, medium sandstone. cSd, coarse sandstone.
4.2. Major elements, Large-Ion Lithophile Elements (LILE), High Field Strength Elements (HFSE) and Trace Transition Elements (TTE)

Figure 2.4. shows the elemental concentrations of major elements, LILE, HFSE and TTE of samples normalized to the PAAS concentration. As a whole, the elemental composition of the analysed shales is rather uniform and close to PAAS values. No apparent trend of major depletion or enrichment in elemental concentration is recorded whatever the location of the DSDP Site or the age of sediments. Compared with PAAS, the DSDP site samples have higher CIA values (70 to 86) typical of intense weathering, with the exception of four samples (i.e., 41-367-26, 41-369-41-3, 41-369-39 and 41-369-38F, Table 2.2.) whose CaO contents (1.9 to 12.7) are also higher than in PAAS (Table 2.2. and Figure 2.4.).

Leg-Sit	e-Core 1	4-137-6	14-137-8	14-07-0	14-137-14	14-137-16	14-138-6	#1-367-15	41-367-16	41-367-17	41-367-18	41-367-19	41-367-20	41-367-23	41-367-26	41-367-37	41-367-31	41-368-53 4	1-368-55-2	41-368-56	41-368-57	41-369-A38 4	1-369-38F	41-369-39 41	-309-A40	369-41-1	41-369-41-3 4	1-369-43 4	41-349-47	41-370-20	41-370-22	41-370-37	58-415-7	50-415-9	50-415-13	50-416-6	PAAS
SiO ₁ †	nt?%)	58,8	68,8	58,3	46,4	61,6	47,0	48,3	50,3	50,7	56,8	50,5	43,8	62,4	49,2	60,0	05,8	66,3	62,8	78,1	55,h	57.5	53,3	54,9	54.1	47.2	41,8	54,4	53,4	52,9	51,0	51,1	. 52,4	51,9	50,8	52,0	62,8
AlgOn	(wt%)	13.9	9,8	13.1	14.0	1120	11.8	20.0	19,8	10,5	12.5	14,9	14,8	13,9	9.4	13.9	11.6	10,9	13.0	7.5	16.6	13.6	13.2	14.5	14.2	12.8	81.8	16.0	16,3	18,6	19,7	17.0	16,1	38,1	17.9	19.8	18,9
FerO.	(MCTG)	6.4	5.5	6.8	13.0	6.4	5,0	9.8	8,5	8.4	7.1	5,3	6.8	6.1	3.2	4.5	3,8	4,3	5.0	3.0	0.9	4.8	4.6	5.2	3.6	5.5	3,9	5.9	5.9	7,4	7.4	6.5	7.1	7.2	7.3	7.4	6,5
MaO	(WETG)	0.1	0,0	0.0	0.0	0,0	0.0	0,1	0,0	0,0	0,0	0,0	0.0	0,0	0.1	0.0	0.0	0,0	0.0	0.0	0,0	0.0	0.0	0,0	0.0	0.0	0,0	0.0	-0.0	0,0	0.0	0.0	0,0	0,0	0.0	0.0	0,1
MgO	(with)	2.9	2.2	2.8	4.5	2.9	2.6	1.7	1.7	3.0	2.0	2.1	1.5	1.1	1.9	2.6	2.4	2.7	3.7	1.7	2.8	2.9	2.7	3.0	4.1	4.1	3.8	4.3	4.6	2.5	2.1	4.7	.3.3.	2.1	2.0	3.1	2.7
CaOT	w/963	0.6	0.1	1.2	0.4	0.0	0.4	0.7	0.1	0.1	0.0	0.1	0.1	0.1	12.7	0.5	0.6	17	0.1	0.7	0.1	1.5	4.5	1.4	1.4	1.1	4.9	0.1	0.7	0.6	0.6	0.3	0.0	1.0	0.7	0.1	1.1
Na-O I	(with)	0.2	0.1	0.1	0.1	0.1	0.1	0.0	0.1	0.1	0.1	0.7	0.7	0.6	0.3	0.7	0.7	0.1	0.7	0.7	0.1	0.7	0.7	0.4	0.3	0.7	0.7	0.7	0.2	0.1	0.1	0.7	0.1	0.1	0.1	0.1	1.2
8.01	METCH	7.4	1.8	2.6	2.0	3.7	1.0	2.5	1.0	35	2.2	1.6	2.4	1.0	1.6	2.0	2.4	1.1	2.2	0.8	7.1	1.5	15	14	3.0	2.6	7.1	3.4	2.7	1.5	1.3	1.8	1.8	1.0	1.4	4.7	3.7
TOU	-	67	0.1	0.4	0.8	0.0	0.5	0.7	0.7	0.6	0.5	2.6	0.6	in B	0.1	11.6	0.5	0.5	0.5	0.0	0.7	11.5	0.5	0.5	0.6	11-5	15.5	0.4	0.6	0.0	1.7	0.6	0.6	1.1	10	0.7	1.0
2.0.1	with h	0.0	0.3	0.1	0.2	0.1	0.5	0.1	0.0	0.2	0.2	0.1	0.0	0.0	0.7	0.0	0.1	0.7	0,0	0.2	0.0	0.7	0.6	0.5	0.6	0.5	3.0	0.0	0.1	0.1	0.1	0.7	0.0	8.1	0.2	4.1	0.2
1 1	11	12.0	10.7	54.0	18.0	13.0	11.0	16.3	16.7	15.4	10.7	24.7	28.6	14.2	21.0	15.1	12.0	13.2	13.2	9.6	15.3	12.3	10.6	16.7	16.6	35.3	76.0	16.7	16.8	15.0	17.5	16.2	14.7	17.1	17.0	17.6	W1=
1 10		13,3	10,2	24,0	100.7	13,0	100.4	1.05.0	100.0	100.4	100.0	100.0	100,0	101.7	23,07	100.4	1000 0	101.0	1.000 7	1.01.3	100.5	100.0	19.0	100.5	100.0	22,5	20.7	100.0	LOL 1	100.0	100.0	10.2	100.7	10.7	00.7	1000 7	
1.10	6.1		99,3	32,4	100,5	10,1	100,4	39.4	100.0	100,7	100,8	100,0	100,0	101.2	0.7	0.7	100,5	101.0	0.7	101,5	100.5	0.00,0	09.9	100,5	10.7	99,0	70.0	00.5	101.5	100,6	100.0	10.4	190.7	0.4	0.4	100.2	20.1
		0,5	0,2	0,3	0,5	0,2	0.2	0.5	0,5	0.4	0,3	0,5	10.00	0,5	0,2	0.5	0,2	10,2	0.2	44.4	0.2	0.3	0.5	10.2	0.3	0,1	10,5	0.5	10,00	10,10	10,04	0.4	0.4	0,0	10,0	0,0	0,5
	1000	80	20	14	84	13	80	80	38	3.5	81		100.0	10.0	21	10	10.0	190	81		34	13	38	0.7	10	10.0	21	78	179	80	85	100		30	200	18	0.9
Sc (p	(part)	20,5	12,0	14,0	7,0	1.2, /	12,7	23,0	21,3	20,3	12,3	18,0	17,4	18,0	9,2	12.9	10,0	18,3	10,9	9,4	18,1	14.7	14,1	10,2	11,5	14,2	14,0	1167	12,0	20,3	20,5	19,9	21,4	17.7	13,7	23,1	10,0
HP (F	spmi)	120.5	17.6	99,0	33;4	105.8	\$1.7	121,9	110.2	121,8	94.0	83,5	126,9	74,4	76.5	118.7	104,1	59,4	102,2	4.3,20	133,2	80.2	70,6	124.0	112.8	105,5	104,0	149,7	139,1	74,6	68,9	163,9	99,6	61,5	06,5	195,5	160.0
Cath	draup	7.2	4,1	2,1	1,1	5,1	4,3	6,5	6,5	8,5	0,7	6,2	7,3	3,5	4,3	0.7	3,8	3,2	4.8	2,5	0,3	4,5	3,8	0,3	7.2	7,0	3.8	7,0	2.1	4,5	4,3	B _c 7	4,9	4,5	4.5	9,8	15,0
Ba (g	(pm)	149,5	329,2	366,8	314,0	463.7	81,2	456,6	515,4	547,0	1302,0	792.3	694,7	672.5	213.6	452,0	253,3	335.0	341,0	457.3	409,3	219,9	247,6	\$76,7	-403,R	1033,5	1092,0	453,5	400,9	189,5	285.1	297,9	343,2	217,0	125,6	354,2	650,0
Sr (p	(pau)	59,8	28,6	44,1	17,1	34,4	20.8	115,9	139,0	165,7	133,0	143,6	85,0	118,2	90,0	64,9	38,1	.61,6	69,8	35,7	122,6	76,6	1.50,9	146,4	104,8	149,9	342,6	72.2	69,0	79,5	113,6	\$3,2	161,4	75,7	57,7	.93,3	200,0
Thip	(aus)	10.8	5,6	6,5	17,2	6.1	5,3	13,0	11,3	13,8	7,7	9,0	7.3	7.6	3,4	6,0	5,0	6,3	8,6	6.5	11.8	7.7	7,3	8.5	9,4	7,6	n,s	5,8	K.5	8,3	9,5	11,4	10,3	9,2	7,0	11,2	34,6
U (p	post)	11,1	1,9	1.0	4.6	2,1	2,0	1.0	0,8	2,4	1,3	2,9	5,3	1,5	2,3	2,3	2,8	2,5	1.1	0,8	1,4	2,1	2,5	3,5	6,4	5,8	8,3	1,0	1,4	1.2	1.3	2,3	0,9	1,2	1,3	1,5	3,1
Y (p	tem)	50,0	24,9	23,7	86,4	34,6	13.8	22,5	17,3	18,9	10,0	12.5	28,0	16,7	25,5	10,1	14,5	37.3	11,7	12.6	22,6	30,4	30,9	\$9,2	73,2	59,2	23,4	9,4	13.8	17,9	18,5	35,4	49,6	16,4	18,0	23,4	27,0
Zr (p	(pena)	103,0	60,1	79,4	195,8	68,5	74,9	107,0	92,6	98,1	29,5	92,5	120,5	183,6	52,5	89,8	72,7	56,8	82,4	#4,0	177,0	57,8	53,2	86,7	109,5	91,7	78,3	#2,2	85.7	137.5	150,7	105,0	86,4	144,0	149,1	97,5	210,0
Nh (p	span()	14,4	6,4	10,1	126,5	14,1	8,4	13,2	13,2	10,5	8,5	10,9	11,8	16,0	6,0	9,6	7,8	8,1	7.8	0,8	25,7	8,4	9,3	9;4	9,9	7,8	3.3	5,6	11,4	18,3	20,5	9.2	10,4	-19,9	0.01	10,0	19,0
HI (p	(prm)	3,0	1,6	2,0	18,0	2.3	2,8	3.2	2,7	2,7	2,3	2,5	3,0	4,8	1.4	2,5	2,0	1,5	2,4	1,2	3,6	1.6	1,6	2,5	2,9	2,5	2,0	2,4	2,5	3,8	4,2	2.9	2.n	4,3	3,7	3.0	5,0
Crip	(and)	142,5	97,9	87,4	21,5	119.5	129,6	216,6	244,6	176,n	278,6	272.8	452,5	284,2	54,1	127.5	R2,6	231.3	96,2	142,2	154,3	228,8	215,0	158,9	155,9	366,8	241,0	239,1	222,8	142,0	144,5	218,5	174,4	142,0	137,5	177,6	110,0
Vip	pom)	658,8	269,1	135,6	49.0	413,9	268,3	198,8	164.2	439,4	2055,0	1044,6	1489,8	165.4	92,9	157,1	118,9	195,4	94,7	107.3	168,1	148,0	137,1	115,5	202,5	379,5	692,0	222,9	250,9	163.5	167,6	273,5	164,5	154,9	164,8	154,9	150,0
Cety	(prm)	40,9	10,2	32,0	13,1	184,1	10.8	17,2	17,3	10,3	5,3	7,0	12,3	9,6	10,7	9,2	7,3	5.5	6.9	3.9	16,4	9.2	10,9	9,6	14.0	6,5	3,7	11,2	11,2	14,3	15,8	15.1	16,9	13,8	15.0	14,0	23,0
Cuty	speni)	153,8	41,0	130,8	17.7	149,8	52.6	26.8	35,4	150,8	131,5	150,6	93,6	32,7	50,8	.54.0	40,2	27,8	24,0	27,8	27,7	46,4	47,6	54,1	54.1	102,3	81,5	63,0	63,8	37,0	23,0	82,8	338.2	15,0	17.6	92,1	50,0
Ni (p	(pmi)	72,9	32,3	63,6	54,8	177.2	38,8	58.5	56,1	-43,3	17.1	53,1	117,2	21,8	31.0	33,7	21.T	19,6	26.8	13.1	57,7	38,9	47,9	34,7	43.0	43.9	66,8	45,4	46,4	37,9	38,4	67,0	70,3	35,1	37.1	36,7	55,0
Zaty	(pm)	149,8	82,3	82.2	115,3	203,5	71.6	123,0	129,3	130,6	57,7	153,9	437,4	39;9	41,4	75,8	05,8	101.0	81,4	52,3	113,3	89,9	89,4	84,3	101,6	377,3	194,5	171,4	136,4	91,2	90,2	130,1	144,8	109,8	92,7	102,5	85,0
1.4 ()	(pm)	49,6	26,0	22.6	57,7	36,3	12,4	37,5	32,0	35,0	19.1	23,0	32,8	31,6	32,2	21,1	18,2	37,3	20,7	17,1	38.5	32.5	34,0	47,2	57.5	47,0	24,1	16,3	21.0	27,3	30,4	37,8	47,8	27,4	28,0	35,8	38,0
Ceip	(pm)	120,9	-41.3	38,9	97,0	66,8	28,9	19.5	63,5	60,3	29,5	38,0	52,6	63,9	36,2	38.2	33,2	112,4	46.8	34,1	77.5	55,9	56.2	74,0	71.3	59,7	36.6	29,8	38,1	54,2	59,8	54,9	77,8	53,5	53,5	63,1	80,0
Pr (p	(pm)	13,2	6,6	6,5	11.8	9,5	3.8	8,9	6,8	6.3	3,4	4,3	7.5	7,0	3,6.	4.5	4,6	12.9	5,1	4.1	8,4	7.2	7,4	10,1	10,5	9.7	4,9	3,6	4.8	6.4	7.0	8.3	10,8	6,3	5,9	8,4	28,9
Nd (p	apeni)	52,1	25,2	26.2	44.1	37.2	14,3	32.7	24,5	22.4	11.4	15,4	29,1	25,8	23,2	16,6	18,7	47.3	18,4	15,1	30,0	27.3	28,2	39,8	42.1	36,4	18,2	12.7	17,3	23,4	25,9	30,7	41,3	23,3	22,3	31,3	19,0
Simil	opm)	11,2	3,0	5,6	10,2	7,6	2,8	6,1	4,7	4,1	1.9	3,0	5,6	4,9	4,9	3.1	3,8	8,8	3.6	2,9	5,5	5,1	5,4	7.9	8.2	7.2	3.5	2,2	3,1	4,5	4,9	5,8	8,2	4,5	4.4	6,0	5.6
Eat	open G	2.5	1.2	1.3	1.5	1.6	0.6	1.4	1.3	0.9	0,4	0,6	1.3	1.1	1.1	0.6	0,8	2,3	0.8	0.7	1.3	1.2	1.2	1.8	2.0	1.6	0.8	0.4	0.6	1,0	1.1	1.3	1.9	1.0	1.0	1.3	1.1
Gtig	(mqo	9,9	4,4	4.8	10,1	6,7	2.4	5,0	3.7	3,2	1.5	2.3	4.8	3.8	4,6	2,3	3.2	7.6	2.8	2,5	4.5	4.7	4.9	7.7	8,3	7.0	3.2	1,6	2,4	3,7	3,9	5.1	7.6	3.5	3.6	4,9	4,7
The	CON14 P	1.5	0,7	0.7	1.8	1.0	0.3	0.7	0,6	0.5	0.2	0.3	0.7	0,5	0.7	0.3	0,4	1.1	0.4	0,4	0,7	0.7	0.7	1.2	1.3	1.0	0.5	0.2	0.4	0,6	0.6	0.8	1.2	0,6	0.5	0.7	0,8
Dy (g	(OHO)	9,1	4,0	4,0	12.9	5.7	2.2	4.3	3.2	3.0	1.4	2.2	4.4	3.2	3.8	1.8	2.4	6,6	2.4	2.2	4.1	4.3	4.5	7,7	8.3	6.4	3.0	1.5	2.2	3,3	3.6	5.0	7.3	3.3	3.2	4.3	4,4
Het	(mag	1.9	0.8	0.8	2.9	1.2	0.5	0.9	0.7	0,7	0.3	0.5	0.9	0.7	0.8	0.4	0.5	1,3	0.5	0.4	45.8	0.9	1.0	1.7	1.9	1.4	0,7	0,3	0.5	0.7	0,7	1.1	1.6	0.7	0.7	0.9	1.0
Erm	COMO.	4.8	2.1	2.4	8.1	2.9	1.2	2.3	1.7	1.8	0.9	1.4	2.6	1.7	2.0	1.1	1.5	3.2	1.3	1.1	2.3	2.4	2.5	4.4	5.1	3.6	1.8	1.0	1.3	1.8	1.9	2.8	4.2	1.8	1.7	7.3	2.9
Tmi	(mont)	0.6	0.1	0.3	1.1	0.4	0.2	0.3	0.3	0.3	0.2	0.2	0.4	0.3	0.3	0.2	0.7	0.4	0.2	0.2	0.3	0.3	0.4	0.6	0.7	0.5	0.3	0.2	0.2	0.3	0.3	0.4	0.6	0.3	0.2	0.3	0.4
Ybu	(mage	4.1	1.9	1.8	6.9	2.5	1.3	2.2	1.8	2.0	1.1	1.6	2.6	1.7	1.7	1.1	1.1	2.4	1.3	1.0	2.4	2.0	2.3	3.6	43	2.7	1.9	1.1	1.4	1.8	2.0	2.6	4.1	1.8	1.6	2.2	2.8
Lada	(mint)	0.6	0.3	8.3	1.0	0.4	0.2	0.3	0.3	0.3	0.2	0.3	0.4	0.3	0.3	0.2	0.2	0.3	0.2	0.2	0.4	0.3	0.3	0.5	0.6	0.4	0.3	0.2	0.2	0.3	0.3	0.4	0.6	0.3	0.3	0.3	0.4
Tate	omb	1.7	0.5	0.7	11.8	1.0	0.7	1.2	1.1	0.9	0.7	0.9	1.0	1.3	0.5	0.8	0.0	0.6	0.7	0.5	1.6	0.6	0.0	0.8	0.8	0.7	0.7	0.8	1.1	1.5	1.7	0.9	0.0	1.7	1.5	0.9	0.0
Fail	Em*	0.7	0.5	0.8	0.5	0.7	0.7	0.8	0.8	0.7	0.7	0.7	-0.8	0.8	0.7	0.7	0.7	0.9	0.7	0.8	0.8	0.8	0.7	0.7	0.7	0.1	0 T	D T	0.7	0.8	0.8	0.7	0.7	0.8	0.7	0.7	0 T
00	Ce.	1.1	0.7	0.2	0.9	0.8	0.3	1.1	1.0	0.9	0.8	0.9	0.8	1.0	0.8	0.9	0.8	1.0.	1.0	0.9	1.0	0.8	0.8	0.8	0.7	0.7	0.8	0.9	0.9	1.0	0.9	0.7	0.8	0.9	1.0	0.8	1.0
6	Th	13.2	17.5	13.5	13	19.6	25.7	16.6	21.7	12.8	36.3	10.1	62.3	17.5	15.7	21.2	16.7	36.8	11.2	22.0	13.1	29.7	29.3	18.8	16.6	48.6	35.5	41.6	26.8	17.2	15.3	19.1	16.9	15.4	19.8	15.9	7.5
m	Se	0.5	0.5	0.4	2.5	0.5	0.4	0.6	0.5	0.7	0.5	0.5	0.4	0.4	0.4	0.5	0.5	0.3	0.5	0.7	0.6	0.5	0.5	0.5	0.5	0.5	0.5	0.3	0.5	0.4	0.5	0.6	0.5	0.5	0.4	0.5	0.9
2.	Se	5.0	5.0	5.4	99.4	7.0	5.0	47	4.3	4.8	5.1	\$1	6.0	10.2	5.7	7.0	7.3	3.1	4.9	17	47	3.0	1.8	51	0.3	65	5.0	3.6	50	÷.8	7.4	53	4.0	8.1	0.5	41	13.1
1.0	TT.	4.4	2.2	2.1	4.2	3.2	1.3	3.0	24	23	1.7	1.6	2.6	24	1.4	16	1.6	4.4	17	1.0	3.0	2.5	2.6	1.6	4.0	3.4	1.8	17	1.6	2.2	34	20	3.8	32	2.1	7.0	1000
110	1.1	1.0	2.1	1.9	7.5	3.7	14	23	1.0	22	1.2	1.7	2.8	1.8	1.8	13	4.2	3.7	1.4	17	3.5	2.2	2.4	4.0	4.7	3.1	3.0	1.7	1.5	1.0	3.1	2.8	4.2	20	1.8	2.4	
 E100 					1.00																						100 March 100 Ma				and the second sec	and the second sec	the second se	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
310	E.E. 1917	4,2	2.2	29	7.4	4.0	14	3.0	3.3	2.0	0.9	1.4	2.0	7.3	3.7	13	1.8	4.6	1.7	1.5	7.8	2.9	3.0	4.9	53	43	2.0	1.0	1.5	7.7	3.4	3.3	4.8	2.2	3.3	1.0	

Table 2.2. Major and trace element contents of sedimentary rocks analysed in this study. Uncertainties for all elements are given in the supplementary material (Annexe 3).

With the exception of one sample (14-137-14, Early Cenomanian), the analysed DSDP site samples have higher Cr/Th ratios (11.2 to 62) and lower Th/Sc ratios (0.3 to 0.8) than PAAS (Table 2.2.). The Early Cenomanian sample 14-137-14 has a lower Cr/Th ratio (1.3) and much higher Th/Sc ratio (2.5) in comparison with PAAS (Table 2.2.). At each DSDP site, there is no apparent variation of these ratios (CIA, Th/Sc and Cr/Th) as a function of the age of the sample (Table 2.2. and Figure 2.2.).

Figure 2.4. Major and selected trace element contents normalized to PAAS (Taylor and McLennan, 1985). From left to right on the diagram, the major elements (SiO₂, TiO₂, Al₂O₃, Fe₂O₃, MnO, MgO, CaO, Na₂O, K₂O and P₂O₅), LILE (Rb, Cs, Ba, Sr, Th and U), HFSE (Y, Zr, Nb, Hf), and TTE (Sc, Cr, Co, V and Ni) are plotted for DSDP Sites 367, 368, 369, 370, 137, 415A and 416.

4.3. Rare Earth Elements (REE)

With the exception of the Early Cenomanian sample 14-137-14, the analysed core samples from DSDP Sites have flat REE patterns typical of shales (Figure 2.5.). Their Eu/Eu* ratios are slightly higher (0.69-0.87) compared to the PAAS standard (i.e., Eu/Eu* = 0.66) and their Ce anomalies display variable values (0.66-1.13) around the PAAS standard (i.e., $\Omega Ce = 1$) (Table 2.2.). Despite the wide range of variation of cerium anomalies, the values are systematically higher than those measured in authigenic smectites and seawater ($\Omega Ce < 0.50$, De Baar et al., 1985). The Eu and Ce anomalies do not show any variation with stratigraphic position. Only the Early Cenomanian sample 14-137-14 is enriched in HREE compared to PAAS and shows a low Eu/Eu* ratio (0.46, Figure 2.5. and Table 2.2.).

Figure 2.5. Rare earth element (REE) contents normalized to PAAS (Taylor and McLennan, 1985) for DSDP Sites 367, 368, 369, 370, 137, 415A and 416.

4.4. Sr-Nd isotopes

Table 2.3. reports the Sr-Nd isotopic compositions of samples analysed in this study. Overall, the ⁸⁷Sr/⁸⁶Sr ratios of DSDP samples show a progressive decrease from 0.74000 to ~0.73000 through the Early Cretaceous, a net drop at the Albian-Cenomanian boundary, and relatively stable values (~0.71500) during the Late Cretaceous (Figure 2.2.). With the exception of the DSDP 137 site, all the DSDP samples show an overall lowering of their $\epsilon_{Nd(0)}$ values throughout the Cretaceous. If we exclude the few data points obtained for the Berriasian to Barremian interval, three steps can be observed in the evolution during the rest of the Cretaceous (Figure 2.2.): 1) The $\varepsilon_{Nd(0)}$ values are highly variable and generally more radiogenic in the Albian – Middle Cenomanian (-15 to -5.5); 2) they become homogeneous and close to -11 in the Late Cenomanian–Turonian; 3) the $\epsilon_{_{Nd(0)}}$ values become systematically more negative (i.e., between -14.3 and -15) in the youngest Campanian-Maastrichtian samples (Table 2.3.). With the exception of the Early Cenomanian sample, which yields a positive $\varepsilon_{Nd(0)}$ value (sample 14-137-14, $\varepsilon_{Nd(0)} \sim 0.5$), samples from the DSDP Site 137 show an opposite trend with the uppermost Turonian-Campanian sample having the least negative value $\varepsilon_{Nd(0)}$ value (sample 14-137-6, $\varepsilon_{Nd(0)} \sim$ -7.7). Overall, two trends can be observed in the $\varepsilon_{Nd(0)}$ variations recorded on the continental shelf (CM1 well) (Figure 2.3.). The Early Aptian to Early Turonian samples (CM1-1 to CM1-5) show a slight increase of 2.5 epsilon units through time. The two youngest samples of the Late Cenomanian-Early Turonian (CM1-6 and CM1-7) have significantly more radiogenic, less negative $\varepsilon_{Nd(0)}$ values (-3.6 and -5.1). These two samples also yield higher ⁸⁷Sr/⁸⁶Sr values.

Leg-Site-Core	Top Depth (mbsf)	Age	Sr (ppm)	⁸⁷ Sr / ⁸⁶ Sr	±2σ	Nd (ppm)	¹⁴³ Nd/ ¹⁴⁴ Nd	$\pm 2\sigma$	£ Nd(0)	E Nd(0) max	E Nd(0) min	± 2σ
14-137-6	218,31	Turonian – Campanian	59,8	0,727554	0,000011	52,1	0,512243	0,000026	-7,7	-7,2	-8,2	0,5
14-137-8	267,18	Late Cenomanian	28,6	0,730165	0,000011	25,2	0,512124	0,000013	-10	-9,8	-10,3	0,3
14-137-13	321,63	Early Cenomanian	44,1	0,722495	0,00001	26,2	0,512188	0,000021	-8,8	-8,4	-9,2	0,4
14-137-14	343,32	Early Cenomanian	17,1	0,717951	0,000015	44,1	0,512663	0,000015	0,5	0,8	0,2	0,3
14-137-16	376,98	Late Albian	34,4	0,729592	0,000028	37,2	0,512149	0,000018	-9,5	-9,2	-9,9	0,4
14-138-6	428,08	Cenomanian	20,8	0,73788	0,00001	14,3	0,512065	0,000014	-11,2	-10,9	-11,5	0,3
41-367-15	475,55	Late Cretaceous - Paleogene (Campanian-Maastrichtian ?)	115,9	0,715854	0,000009	32,2	0,511905	0,000027	-14,3	-13,8	-14,8	0,5
41-367-16	542,04	No older than Turonian	139,0	0,716095	0,000009	24,5	0,5119	0,000018	-14,4	-14	-14,8	0,4
41-367-17	621,54	No older than Turonian	165,7	0,713189	0,00001	22,4	0,512031	0,000017	-11,8	-11,5	-12,1	0,3
41-367-18	638,02	Late Cenomanian - Early Turonian	133,0	0,714679	0,000009	11,4	0,512002	0,000018	-12,4	-12,1	-12,8	0,4
41-367-19	646,53	Late to Middle Cenomanian	143,7	0,713916	0,000011	15,4	0,512028	0,000021	-11,9	-11,5	-12,3	0,4
41-367-23	779,54	Albian	118,2	0,710894	0,000009	25,8	0,512241	0,000026	-7,7	-7,2	-8,2	0,5
41-367-26	915,72	Early Aptian to Hauterivian	90,0	0,732661	0,000016	23,2	0,512097	0,000015	-10,6	-10,3	-10,9	0,3
41-367-27	940,28	Early Aptian to Hauterivian	64,9	0,726645	0,000013	16,6	0,512011	0,000021	-12,2	-11,8	-12,6	0,4
41-367-31	1053,33	Early Valanginian to Berriasian	38,1	0,740286	0,000012	18,7	0,512089	0,000015	-10,7	-10,4	-11	0,3
41-368-53	755,25	Late Cretaceous (und No older than Campanian ?)	61,6	0,724783	0,000053	18,4	0,511865	0,000014	-15,1	-14,8	-15,4	0,3
41-368-55-2	839,57	Late Cretaceous (und Campanian ?)	69,8	0,718791	0,000014	47,3	0,511961	0,000012	-13,2	-13	-13,4	0,2
41-368-56	847,06	Late Cretaceous (und younger than Turonian)	35,7	0,715137	0,000011	15,1	0,511925	0,000017	-13,9	-13,6	-14,2	0,3
41-368-57	896,09	Late Cretaceous (und younger than Turonian)	122,6	0,715087	0,000013	30,0	0,512047	0,000016	-11,5	-11,2	-11,8	0,3
41-369-A38	397,02	Campanian-Maastrichtian	76,6	0,717501	0,000009	27,3	0,511892	0,000015	-14,6	-14,3	-14,9	0,3
41-369-38F	397,02	Campanian-Maastrichtian	150,9	0,712316	0,00001	28,2	0,511893	0,000014	-14,5	-14,3	-14,8	0,3
41-369-39	405,2	Campanian	146,4	0,721748	0,000013	39,8	0,511894	0,000015	-14,5	-14,2	-14,8	0,3
41-369-A40	415,99	Campanian	104,8	0,718565	0,000016	42,1	0,51212	0,000014	-10,1	-9,8	-10,4	0,3
369-41-1	423,14	Campanian	149,9	0,716708	0,000012	36,4	0,512038	0,000015	-11,7	-11,4	-12	0,3
41-369-41-3	426,45	Campanian	342,6	0,711424	0,000028	18,2	0,511906	0,000011	-14,3	-14,1	-14,5	0,2
41-369-43	443,16	Late Albian	72,2	0,728915	0,00001	12,7	0,511873	0,000032	-14,9	-14,3	-15,5	0,6
41-369-47	481,08	Early Albian	69,0	0,730963	0,000012	17,3	0,51187	0,000014	-15	-14,7	-15,3	0,3
41-370-20	674,27	Late Albian - Early Cenomanian	79,5	0,712865	0,000012	23,4	0,512354	0,000022	-5,5	-5,1	-5,9	0,4
41-370-22	694,08	Late Albian - Early Cenomanian	113,6	0,710413	0,00001	25,9	0,512297	0,000046	-6,7	-5,8	-7.6	0,9
41-370-27	753,03	Albian	83,2	0,726263	0,000015	30,7	0,512062	0,000017	-11,2	-10,9	-11,5	0,3
50-415-7	509,69	Cenomanian-Coniacian	161,4	0,710719	0,000018	41,1	0,512008	0,000023	-12,3	-11,8	-12,7	0,4
50-415-9	645,22	Middle Cenomanian	75,7	0,711342	0,000014	23,3	0,512269	0,000041	-7,2	-6,4	-8	0,8
50-415-13	957,34	Early Cenomanian	57,7	0,715963	0,000017	22,3	0,512176	0,000037	-9	-8,3	-9,7	0,7
50-416-6	891,25	Late Aptian - Early Albian	93,3	0,727969	0,00001	31,3	0,511996	0,000017	-12,5	-12,2	-12,8	0,3
CM1-9	1	Santonian - Early Campanian (probable)	1	0,719789	0,000006	1	0,512142	0,000042	-9,7	-8,9	-10,5	0,8
CM1-7	1	Late Cenomanian - Early Turonian	1	0,722352	0,000007	1	0,512456	0,000018	-3,6	-3,2	-4	0,4
CM1-6	1	Late Cenomanian - Early Turonian	1	0,722165	0,000005	1	0,512377	0,00005	-5,1	-4,1	-6,1	1
CM1-5	1	Late Cenomanian - Early Turonian	1	0,714847	0,000005	1	0,512067	0,000048	-11,1	-10,2	-12	0,9
CM1-4	1	Late to Middle Cenomanian	1	0,715985	0,000005	1	0,512111	0,00002	-10,3	-9,9	-10,7	0,4
CM1-3	1	Early Cenomanian to Middle/Late Cenomanian	1	0,714537	0,000009	1	0,512031	0,000016	-11,8	-11,5	-12,1	0,3
CM1-2	1	Middle Albian	1	0,73457	0,000007	1	0,512063	0,000056	-11,2	-10,1	-12,3	1,1
CM1-1	ľ.	Early Aptian	1	0,719619	0,000005	1	0,51197	0,00001	-13	-12,8	-13,2	0,2

Table 2.3. Nd–*Sr* isotopic systematics of sedimentary rocks analysed in this study. 2σ is the internal analytical error.

5. Discussion

5.1. Influence of chemical weathering and marine authigenesis on provenance proxies

The REE contents, Eu anomaly, elemental ratios (Cr/Th and Th/Sc) and Sr-Nd isotopic compositions of sedimentary rocks prove to be useful tools for determining the provenance of sediments (McLennan et al., 1993). However, before drawing conclusions on provenance, the effects of chemical weathering and marine authigenesis should be carefully assessed as these processes may control the REE contents and radiogenic isotope composition of marine sediments. Despite the fact that individual samples have variable and high CIA values (Table 2.2., Figure 2.2.), the absence of any correlation with REE content, Eu/Eu*, Cr/Th, Th/Sc, Sr and Nd isotopes (see supplementary material Annexe 4) suggests that chemical weathering has not modified these provenance proxies. Any influence from carbonates, Fe-Mn oxides or organic matter formed under marine conditions may also be ruled out since these constituents are removed by the sequential leaching steps. Moreover, the REE patterns of authigenic smectites formed in deep-water environments are normally characterized by LREE depletion, HREE enrichment and strong negative Ce anomalies (Ω Ce < 0.50, De Baar et al., 1985) typical of seawater (Piper, 1974). Here, all the analysed DSDP samples have Ce anomalies higher than or equal to 0.66. This suggests that, even if authigenic smectites were incorporated during early diagenetic processes, its proportion was much less than the detrital fraction. REE abundance patterns support this conclusion, with the exception of one sample from DSDP Site 137 situated close to the mid-oceanic ridge (Figure 2.1B.), since all the other analysed samples (Figure 2.6.) plot outside the seawater field, suggesting a negligible influence of marine authigenesis. The Early Cenomanian sample from DSDP Site 137 plots in the seawater field, and is therefore considered as strongly affected by marine authigenesis. This sample is not taken into account for the provenance interpretations.

Figure 2.6. HREE/LREE vs. MREE/MREE* diagram. HREE/LREE and MREE/MREE* values are calculated following Martin et al. (2010). The MREE bulge and "bell-shaped" REE profiles correspond to REE patterns observed in fish teeth, Fe-Mn oxides, organic matter and pore waters, while "HREE-enriched" profiles correspond to modern sea water (Huck et al., 2016; Moiroud et al., 2016). These end-members reflect the REE contents of marine sediments influenced by seawater or authigenic phases, while "flat" REE patterns are characteristic of continental clays (see Huck et al., 2016; Moiroud et al., 2016 for a review). Samples from each DSDP Site are represented by specific symbols used in Figures 2.4. and 2.5.

High Eu anomalies and Th/Sc ratios are characteristic of felsic and more highly differentiated source rocks, whereas high Cr/Th and low Eu anomalies suggest more mafic and less differentiated source rocks (e.g., McLennan et al., 1993; Cullers, 2000). Here, the samples from the DSDP and CM1 sites have higher Cr/Th, but lower Th/Sc values and Eu anomalies compared to PAAS (Table 2.2.). This suggests that the detrital supply came from less differentiated sources than those of PAAS, the latter being considered as representative of the Upper Continental Crust (Taylor and McLennan, 1985). If we exclude the

diagenetically altered Early Cenomanian sample from DSDP Site 137, no temporal or spatial variations are observed in CIA values, Eu and Ce anomalies or in the elemental ratios used for provenance studies (Cr/Th and Th/Sc; Figures 2.4., 2.5. and Table 2.2.). Only the $\varepsilon_{Nd(0)}$ and ⁸⁷Sr/⁸⁶Sr values are found to vary through time, with a trend toward lower values during the Late Cretaceous (Figure 2.2.). Hence, this decrease reflects a progressive shift in the average age of source rocks rather than changes in the nature of the source (felsic as against basic). When plotted in a $^{87}\text{Sr}/^{86}\text{Sr}$ vs. $\epsilon_{_{Nd(0)}}$ diagram and compared with relevant source fields (Precambrian, Hercynian/Paleozoic and CAMP sources) and with present-day Central Atlantic Ocean sediments (Figure 2.7.), the Sr-Nd isotopic compositions of analyzed Cretaceous sedimentary rocks do not show any covariation with ⁸⁷Sr/⁸⁶Sr ratios. In detail, the two CM1 samples with the highest $\epsilon_{_{Nd(0)}}$ values do not yield the least radiogenic Sr isotopic composition, and the samples with the lowest $\varepsilon_{Nd(0)}$ values do not show the highest Sr radiogenic composition (Figure 2.7.). As Nd is not fractionated by sedimentary processes, this indicates some loss or gain of radiogenic ⁸⁷Sr during the erosion, weathering, transport and deposition of the sediments. Studies of the geochemistry of present-day Suspended Particulate Matters (SPM) transported by South American Equatorial rivers have pointed out the much higher variability of SPM Sr isotopic composition when compared with corresponding Nd isotopic composition over a one-year hydrological cycle (Viers et al., 2008; Rousseau et al., submitted). These studies also highlight that the SPM Nd isotopic composition is a much more robust provenance tracer than the Sr isotopic composition. Hence, the provenance interpretation given here is mainly based on the Nd isotopic composition of the analysed samples.

Figure 2.7. Cross plot of $\varepsilon_{Nd(0)}$ and ${}^{87}Sr/{}^{86}Sr$ values for well CM1 and DSDP Sites 367, 368, 369, 370, 137, 415A and 416. The isotopic fields of potential end-members are based on a compilation of published data (see supporting Annexe 2). Values for Cretaceous sediments in the Tarfaya Basin are taken from Ali et al. (2014).

5.2. Provenance of Cretaceous sediments in the eastern Central Atlantic Ocean

Based on $\varepsilon_{Nd(0)}$ variation, we can propose a three-step evolution for the paleogeographic evolution of the WAC (Figure 2.8.). Neodymium isotope values are presented on three distinct paleogeographic maps illustrating the reorganization of drainage patterns inferred for Northwest African Margin during the Albian-Middle Cenomanian period (Figure 2.8A.), in the Late Cenomanian–Turonian interval (Figure 2.8B.) and during the Campanian–Maastrichtian period (Figure 2.8C.).

5.2.1. Albian–Middle Cenomanian

Overall, the Albian–Middle Cenomanian DSDP samples yield the highest $\varepsilon_{Nd(0)}$ values and the largest range of variation (-5.5 to -15) when compared with other Cretaceous DSDP samples (Figure 2.8A.). This spatial heterogeneity implies distinct provenances and hence the co-existence of several small drainage basins restricted to peripheral domains of the WAC. The lowest $\varepsilon_{Nd(0)}$ values (-14.9 and -15) correspond to samples from DSDP Site 369 situated off the Mauritanian margin. These values are similar to those of modern detritus deposited in the Atlantic Ocean (Grousset et al., 1998; Meyer et al., 2011) and the Late Cretaceous-Early Eocene sedimentary rocks of the Tarfaya Basin in South-West Morocco (Ali et al., 2014). In comparison to present-day African catchment areas, such $\varepsilon_{Nd(0)}$ values are similar to the clays from the Congo River supplied predominantly by Precambrian terrains (Bayon et al., 2015). This suggests an unradiogenic Precambrian source as the main source of terrigenous sediments to the area of DSDP Site 369. The Proterozoic domains of the eastern Reguibat Shield seem the best candidates for this clastic supply since they have $\varepsilon_{Nd(0)}$ values that are closely similar to the DSDP site samples(Peucat et al. 2005).

In the northern WAC domains, the $\varepsilon_{Nd(0)}$ values are more radiogenic and increase from -11.2 to -5.5 at DSDP Site 370 and from -9 to -7.2 at DSDP Site 415A, suggesting a regional change in the provenance (Figure 2.8A.). The Albian $\varepsilon_{Nd(0)}$ values of -11.2 (DSDP Site 370) and -12.5 (DSDP Site 416) and the Eu anomalies (Eu/Eu*~0.71 to 0.73) are similar to those measured in modern clays from the "Niger sub delta" ($\varepsilon_{Nd(0)} = -11.9$ and Eu/Eu*~0.71; Bayon

et al., 2015). As the Niger River catchment drains both Paleozoic and Precambrian terrains (Milesi et al., 2010), we suggest that Albian sedimentation at the DSDP Site 370 was initially supplied by a mixed Paleozoic/Precambrian source. The lack of a significant change in Eu anomalies, or in Cr/Th and Th/Sc ratios, implies that the rise in $\varepsilon_{Nd(0)}$ is not caused by an increasing supply of more mafic detrital material from the same mixed Paleozoic/Precambrian source, but is rather linked to enhanced inputs from younger crustal sources. This could be related to a greater contribution from Hercynian and older Paleozoic rocks of the Meseta, Anti-Atlas and High Atlas Mountains, which show an average $\epsilon_{Nd(0)}$ value of -5.6 (Figure 2.8A. and supporting information Annexe 2).

The shallow marine samples of CM1 well yield $\varepsilon_{Nd(0)}$ values intermediate between modern Nile River clays ($\varepsilon_{Nd(0)} = -7.1$; Bayon et al., 2015) and modern Niger River clays ($\varepsilon_{Nd(0)} = -11.9$; Bayon et al., 2015), which are derived from the erosion of Paleozoic/Hercynian units and mixed Paleozoic/Precambrian domains, respectively (Milesi et al., 2010; Bayon et al., 2015). This suggests that the sediments in CM1 well were supplied by a drainage system eroding both Paleozoic and Precambrian rocks. On the one hand, the Precambrian sources may be located in the northwestern part of the Leo-Man domain (Figure 2.8A.). On the other hand, erosion of the Paleozoic sedimentary rocks of the Bowe Basin, as well as the Hercynian massifs of the Mauritanides could supply Paleozoic/Hercynian terrigenous detritus to the CM1 site, since these domains are considered to have been emerged from the Albian to the Cenomanian (Guiraud et al., 2005, Figure 2.8A.).

The deep-water DSDP samples from Sites 137 and 367 have $\varepsilon_{Nd(0)}$ values higher than those from the shallow marine CM1 well, suggesting that sediments from the latter were not supplied by the same drainage basin. These less negative $\varepsilon_{Nd(0)}$ values suggest an increased input of younger detritus to these deep-water sediments compared with the shallow marine CM1 well. We exclude a South American provenance because Cretaceous sediments deposited on the South American margin have much lower $\varepsilon_{Nd(0)}$ values (-15.2 to -16.2, Martin et al., 2012). A North American provenance can also be excluded because, if this hypothesis were correct, the samples from DSDP Sites 138 and 137 should all have the same isotopic signature. As the samples from deep-water DSDP Sites 137 and 367 have $\varepsilon_{Nd(0)}$ values close to the DSDP Site 415 samples, this rather suggests a similar provenance. If correct, this implies the influence of oceanic currents transporting detritus from the Moroccan Atlantic coast to the central part of the Equatorial Atlantic Ocean, while preventing the arrival of material from the Senegalese continental shelf (CM1). This scenario agrees very well with the southwestward oceanic dispersion of palygorskite clay minerals from Morocco (Pletsch et al., 1996).

Figure 2.8. Paleogeographic maps (modified from Guiraud et al., 2005) showing the $\varepsilon_{Nd(0)}$ values of sediments along the Northwestern African Margin for three periods: A) from the Albian to the Middle Cenomanian; B) from the Late Cenomanian to the Turonian; C) from the Campanian to the Maastrichtian. The $\varepsilon_{Nd(0)}$ values for samples at each site are represented in stratigraphic order. The $\varepsilon_{Nd(0)}$ data from the Demerara Rise and Tarfaya Basin are from Martin et al. (2012) and Ali et al. (2014), respectively. The colour-coded scale indicates ε_{Nd} values ranging from radiogenic in red to highly unradiogenic values. The average $\varepsilon_{Nd(0)}$ value of each potential source is illustrated by coloured ellipses. Source ages are simplified from Milesi et al. (2010). SA: South America.

5.2.2. Late Cenomanian-Turonian

A lowering and homogenization of $\epsilon_{Nd(0)}$ values is recorded in deep-water environments of the eastern Central Atlantic Basin during the Late Cenomanian-Turonian interval (Figure 2.8B.). Compared with data for the previous interval, the $\epsilon_{Nd(0)}$ values drop by -4.1 to -4.7 units for DSDP Site 367 and by -5.1 units for DSDP Site 415A. This contrasts with drops of -0.8 to -1.5 units recorded at DSDP Site 137 and -0.8 to -1.8 units on the Demerera Rise (Martin et al., 2012, Figure 2.8B.). A positive $\varepsilon_{Nd(0)}$ excursion of +8.3 units is observed in the Late Cenomanian-Turonian sediments from the CM1 well. Owing to the Late Cenomanian and Turonian hiatus at DSDP Sites 370, 416 and 369, this interval is only sparsely represented in Morocco (Figure 2.8B.). Nevertheless, one sample from DSDP Site 415A displays a low $\epsilon_{Nd(0)}$ value of -12.3 which is in the same range as recorded at DSDP Sites 367 and 368. This suggests that a long-term decrease of $\epsilon_{Nd(0)}$ values also occurred in the northern part of the WAC. When compared to the catchments of modern African rivers, the lack of significant differences in $\epsilon_{Nd(0)}$ values between the sedimentary rocks from DSDP Sites 415A, 137 and 367 and modern Niger River sediments suggests the existence of mixed Paleozoic/Precambrian sources. When compared with older sedimentary rocks, the shift toward more negative $\boldsymbol{\epsilon}_{Nd(0)}$ values argues for increasing inputs of Precambrian detrital material to the eastern Central Atlantic Basin during the Late Cenomanian-Turonian. The reduced contribution of Paleozoic sources and increasing contribution of Precambrian sources may result from an extension of drainage areas toward the cratonic basement of the Reguibat and Leo-Man shield areas. This is because most Paleozoic source areas such as the Meseta (Morocco) or the Bowe Basin were flooded during this time interval (Guiraud et al., 2005, Figure 2.8B.). However, this long-term decrease in $\varepsilon_{Nd(0)}$ values is not recorded by samples from the shallow marine CM1 well, which show a positive excursion of +8.5 to +6 epsilon units. This suggests a greater local contribution from younger Paleozoic/Hercynian terrains probably corresponding to the Mauritanides (Figure 2.8B.). Moreover, the discrepancy

between the $\varepsilon_{Nd(0)}$ values from CM1 well and DSDP Site 367 indicate that sediments at this deep-water site were still not sourced by clastic supply from the Mauritanides.

5.2.3. Campanian-Maastrichtian

At the end of the Campanian–Maastrichtian, the sedimentary rocks of the Northwest African Margin from DSDP Sites 367, 368 and 369 yield a narrow range of $\varepsilon_{Nd(0)}$ values (-14.3 to -15, Figure 2.8C.). Compared with the $\varepsilon_{Nd(0)}$ values for the previous time interval, this implies a negative shift of -1.9 to -4 units. A decrease of -6 units is also recorded in the CM1 sample on the platform, as well as in the Campanian–Maastrichtian sedimentary rocks of the Demerara Rise showing changes by -0.6 and -2.6 units towards more radiogenic neodymium isotopic composition (Martin et al., 2012). The $\varepsilon_{Nd(0)}$ values of Campanian–Maastrichtian DSDP sedimentary rocks are close to the Precambrian end-member (Figure 2.7.) and similar to values observed in present-day marine sediments off the Northwest African Margin (Grousset et al. 1998; Meyer et al., 2011) and modern sediments deposited by the Congo River (Bayon et al., 2015). As present-day sediments are supplied by Precambrian sources, this suggests that Precambrian terrains represent the predominant source of clastic supply along the Western African Margin during the Campanian–Maastrichtian.

The Campanian–Maastrichtian sedimentary rocks of DSDP Site 137 show an opposite trend with a positive shift of +2.6 units ($\varepsilon_{Nd(0)} \sim -7.7$, Figure 2.8C.). Compared with other values, this suggests that the source of the sedimentary supply may not be the West African Craton. This could reflect an increasing contribution of volcanic sediments/rocks from the mid-ocean ridge. However, the REE pattern of this sample is flat with respect to PAAS and we find no difference in Eu anomaly compared with the other analysed samples (Table 2.2.). Hence, we can rule out a significant contribution from volcanic sources. The potential source area for this sedimentary rock could lie farther to the North, since the $\varepsilon_{Nd(0)}$ value of -7.7 is within the range of NW Tethyan sediments (i.e., -12 to -6 ε_{Nd} units; Dera et al., 2015) or North American Appalachian rocks (-10 to -5 ε_{Nd} units, Patchett et al., 1999).

5.3. Possible mechanisms for drainage reorganization

Our provenance results indicate that the Albian-Middle Cenomanian interval is characterized by at least three main paleodrainage basins with restricted extensions toward the hinterland: two of them draining Paleozoic/Hercynian units in the northern and central parts of the WAC and another draining Precambrian units in the Reguibat Shield region (Figure 2.8A.). This drainage partitioning implies that catchment basins could have been separated by areas of relief on the periphery of the WAC. The existence of topographic highs acting as natural barriers dividing and limiting the extension of drainage areas suggests that significant uplift may have affected the WAC during the Albian-Middle Cenomanian. The mechanisms causing these uplifts may be related to the onset of opening of the South and Equatorial Atlantic Ocean during the Early Cretaceous and Late Albian (Förster, 1978; Flicoteaux et al., 1988; Moulin et al., 2010) or increasing compressive stress in northern, central, eastern and southern region of Africa induced by the anticlockwise rotation of Africa during this period (Guiraud and Maurin, 1991; Guiraud and Bosworth, 1997; Moulin et al., 2010) or a combination of all these factors. Whatever the mechanisms, the processes of uplift are likely to have created topographic barriers that may have led to the reorganization and separation of drainage basins supplying DSDP Sites 369, 415A, 370 and 367.

During the Late Cenomanian–Turonian, with the exception of the Senegalese continental shelf (CM1 well, Figure 2.8B.), there was an increased supply of Precambrian detritus to the deep-water basin (DSDP Sites 367, 137 and 415A), as shown by lower $\varepsilon_{Nd(0)}$ values compared with values for the Albian–Cenomanian (Figure 2.8B.). This change may be due to a reduced contribution of proximal Hercynian/Paleozoic units probably caused by paleogeographic and physiographic changes in the Mauritania-Senegal basin. These changes could be triggered by the decrease and subsequent cessation of the flexure of the western edge of the basin, resulting in the burial of its substratum and progressive flattening of the relief (Flicoteaux et al., 1988; Leprêtre et al., 2015). These events are coeval with crustal thinning occurring in the Mauritania-Senegal basin and in Guinea that could be related to the opening of the Equatorial Atlantic Ocean (Förster, 1978; Flicoteaux et al., 1988; Latil-Brun

and Lucazeau, 1988). In addition, the Cenomanian–Turonian boundary records the Cretaceous maximum flooding which led to the expansion of shelf seas (Schlanger and Jenkyns, 1976) towards the Mauritanides and the Reguibat Shield. Associated with a more flattened topography, this marine transgression may have flooded some of the Paleozoic and Hercynian proximal source areas (e.g., the Bowe Basin, Meseta, Guiraud et al., 2005) (Figure 2.8B.). This flooding may be responsible for paleogeographic changes in the Mauritania-Senegal basin and may have induced a reorganization of the drainage pathways. Indeed, Barnett-Moore et al., (2017) point out that the combined action of dynamic changes in topography and global sea-level fluctuations led to major incursions of the peripheral regions of Northwest Africa during this period. Thus, the maximum flooding of the Cenomanian–Turonian boundary, associated with changes in the paleo-topography, could also partly explain the decrease in Paleozoic inputs when compared with the Albian–Middle Cenomanian.

The Campanian–Maastrichtian is characterized by increasing inputs of Precambrian detritus along the Northwest African Margin (except at DSDP Site 137 and CM1, Figure 2.8C.). This implies an expansion of drainage areas toward the east and the inner units of the WAC. As recorded by low-temperature thermochronology data (Leprêtre et al., 2015), the Late Cretaceous to Early Paleogene uplift of the Saharan region of South Morocco may have caused increasing erosion of Precambrian rocks of the Reguibat Shield, which could explain the lowering of the $\varepsilon_{Nd(0)}$ values along the northern margin of the WAC. This uplift has been related to the onset of Africa/Europe convergence (Leprêtre et al., 2015) and could be correlated with the "Santonian Compressional Event" (84 to 80 Ma) (Binks and Fairhead, 1992; Guiraud and Bosworth, 1997). This compressional event is related to the convergence between Europe and Africa (Olivet et al., 1984; Rosenbaum et al., 2002) as well as the change in poles of rotation for the opening of the Atlantic Ocean (Klitgord and Schouten, 1986; Binks and Fairhead, 1992; Guiraud et al., 1992; Guiraud and Bosworth, 1997). Indeed, this compressive event led to the inversion of several sedimentary basins in Africa and the reactivation of some faults related to the Panafrican and Hercynian sutures in the WAC. Such

an event may also have impacted the drainage pathways leading to the severe erosion of Precambrian units in the hinterland of the WAC (e.g., the Reguibat Shield, the Leo-Man Shield, and the Taoudeni Basin, Figure 2.8C.).

Finally, our results on provenance also have some implications regarding oceanic circulation in the Central Atlantic basin during the Cretaceous. The difference in $\varepsilon_{Nd(0)}$ values between the shallow-marine CM1 samples and deep-water DSDP samples suggest that the Central Atlantic Ocean never received clastic inputs from the Senegal-Mauritanides (i.e., the drainage basin that supplied the CM1 samples) during the Cretaceous. This implies that, as early as the Middle Aptian, ocean currents may have existed along the eastern margins of the Central Atlantic Ocean which were capable of preventing the arrival of Senegal-Mauritanides clastic inputs to the Central Atlantic Ocean deep-water domain.

6. Conclusion

Based on the major and trace element contents and Sr–Nd isotopic composition of sedimentary rocks sampled in the eastern Central Atlantic Ocean, this provenance study highlights a large-scale reorganization of drainage pathways in Northwest Africa during the Cretaceous. Three steps are identified, with major implications regarding the evolution of WAC topography:

- The Albian–Middle Cenomanian is characterized by the presence of at least three restricted subdrainage basins with distinct provenances (Hercynian/Paleozoic, Precambrian and mixed Precambrian/Paleozoic) and limited extension toward the inner parts of the craton.
- The Late Cenomanian–Turonian DSDP sediments deposited in the deep-water domain have more homogeneous and more negative \varepsilon_{Nd(0)} values interpreted as reflecting an increasing supply of clastic detritus from the inner parts of the Precambrian cratons.

 The Campanian–Maastrichtian sediments deposited along the Northwest African Margin are characterized by a lowering of \varepsilon_{Nd(0)} values by -3 to -4 units. This is interpreted as the record of a shift from a mixed Paleozoic/Precambrian source to a Precambrian source.

The changes in provenance and drainage proposed here correspond to major geodynamic events of the WAC linked to the opening of the South and Equatorial Atlantic Oceans, followed by convergence of the African-Eurasian tectonic plates. The differences in $\varepsilon_{Nd(0)}$ values between shallow-marine CM1 samples and deep-water DSDP Sites throughout the Cretaceous suggests that the deep-water sediments of the Central Atlantic Ocean were not derived from the Mauritanian margin. This implies the existence of an ocean current capable of preventing the arrival of these sediments during the Cretaceous.

Acknowledgments

This study was funded by Total Exploration and Production through the R&D project "Sedimentology of organic matter in deep oceanic basins" and the Actions Marges project "Traçages des sources de la marge du nord ouest de l'Afrique" funded by INSU-CNRS, TOTAL, IFREMER and BRGM. Jung-Hyun Kim was also partly supported by a grant from the National Research Foundation of Korea (NRF) funded by the Korea government (MSIP) (No.2016R1A2B3015388). This work used samples provided by the Deep Sea Drilling Project (DSDP), which is sponsored by the US National Science Foundation and participating countries under the management of the Joint Oceanographic Institutions (JOI), Inc. We would like to thank the editor Dr. Janne Blichert-Toft and three anonymous reviewers for helpful comments on a previous version of this work. Dr Michael Carpenter post-edited the English style and grammar.

References

- Ajaji, T., Weis, D., Giret, A. and Bouabdellah, M. 1998. Coeval potassic and sodic calcalkaline series in the post-collisional Hercynian Tanncherfi intrusive complex, northeastern Morocco: geochemical, isotopic and geochronological evidence. Lithos, 45, 1, pp. 371-393. doi: 10.1016/S0024-4937(98)00040-1
- Ali, S., Stattegger, K., Garbe-Schönberg, D., Frank, M., Kraft, S., Kuhnt, W., 2014. The provenance of Cretaceous to Quaternary sediments in the Tarfaya basin, SW Morocco: Evidence from trace element geochemistry and radiogenic Nd–Sr isotopes. Journal of African Earth Sciences 90, 64–76. doi:10.1016/j.jafrearsci.2013.11.010
- Allègre, C. J., Dupré, B., Lambret, B., and Richard, P., 1981. The subcontinental versus suboceanic debate, I Lead-neodymium-strontium isotopes in primary alkali basalts from a shield area the Ahaggar volcanic suite. Earth and Planetary Science Letters, 52-1, pp. 85-92. doi: 10.1016/0012-821X(81)90210-7
- Asiedu, D.K., Hegner, E., Rocholl, A., Atta-Peters, D., 2005. Provenance of late Ordovician to early Cretaceous sedimentary rocks from southern Ghana, as inferred from Nd isotopes and trace elements. Journal of African Earth Sciences 41, 316–328. doi:10.1016/j.jafrearsci.2005.05.003
- Azzouni-Sekkal, A., Liégeois, J. P., Bechiri-Benmerzoug, F., Belaidi-Zinet, S., and Bonin, B., 2003. The "Taourirt" magmatic province, a marker of the closing stage of the Pan-African orogeny in the Tuareg Shield: review of available data and Sr–Nd isotope evidence. Journal of African Earth Sciences, 37-3, pp. 331-350. doi: 10.1016/j.jafrearsci.2005.05.003
- Barnett-Moore, N., Hassan, R., Müller, R. D., Williams, S. E. and Flament, N., 2017. Dynamic topography and eustasy controlled the paleogeographic evolution of northern Africa since the mid-Cretaceous, Tectonics, 36, 929–944, doi:10.1002/2016TC004280.
- Bayon, G., German, C.R., Boella, R.M., Milton, J.A., Taylor, R.N., Nesbitt, R.W., 2002. An improved method for extracting marine sediment fractions and its application to Sr and Nd isotopic analysis. Chemical Geology 187, 179–199. doi:10.1016/S0009-2541(01)00416-8
- Bayon, G., Toucanne, S., Skonieczny, C., André, L., Bermell, S., Cheron, S., Dennielou, B., Etoubleau, J., Freslon, N., Gauchery, T., Germain, Y., Jorry, S.J., Ménot, G., Monin, L., Ponzevera, E., Rouget, M.-L., Tachikawa, K., Barrat, J.A., 2015. Rare earth elements and neodymium isotopes in world river sediments revisited. Geochimica et Cosmochimica Acta 170, 17–38. doi:10.1016/j.gca.2015.08.001
- Bea, F., Montero, P., Haissen, F. and El Archi, A., 2013. 2.46 Ga kalsilite and nepheline syenites from the Awsard pluton, Reguibat Rise of the West African Craton, Morocco. Generation of extremely K-rich magmas at the Archean–Proterozoic transition. Precambrian Research, 224, pp. 242-254. doi: 10.1016/j.precamres.2012.09.024
- Bea, F., Montero, P., Haissen, F., Molina, J. F., Michard, A., Lazaro, C., Mouttaqi, A., Errami, A. and Sadki, O. 2015. First evidence for Cambrian rift-related magmatism in the West African Craton margin: the Derraman Peralkaline Felsic Complex. Gondwana Research. doi: 10.1016/j.gr.2015.07.017

- Binks, R.M., Fairhead, J.D., 1992. A plate tectonic setting for Mesozoic rifts of West and Central Africa. Tectonophysics, Geodynamics of Rifting, Volume II Case History Studies on Rifts: North and South America and Africa 213, 141–151. doi:10.1016/0040-1951(92)90255-5
- Blanc, A., Bernard-Griffiths, J., Caby, R., Caruba, C., Caruba, R., Dars, R., Fourcade, S. and Peucat, J. J., 1992. U-Pb dating and isotopic signature of the alkaline ring complexes of Bou Naga (Mauritania): its bearing on late Proterozoic plate tectonics around the West African Craton. Journal of African Earth Sciences (and the Middle East), 14-3, pp. 301-311. doi:10.1016/0899-5362(92)90034-A
- Bodin, S., Meissner, P., Janssen, N. M., Steuber, T., and Mutterlose, J. 2015. Large igneous provinces and organic carbon burial: Controls on global temperature and continental weathering during the Early Cretaceous. Global and Planetary Change, 133, 238-253. doi: 10.1016/j.gloplacha.2015.09.001
- Boher, M., Abouchami, W., Michard, A., Albarede, F., Arndt, N.T., 1992. Crustal growth in West Africa at 2.1 Ga. J. Geophys. Res. 97, 345–369. doi:10.1029/91JB01640
- Bouchez, J., Gaillardet, J., France-Lanord, C., Maurice, L., Dutra-Maia, P., 2011. Grain size control of river suspended sediment geochemistry: Clues from Amazon River depth profiles. Geochem. Geophys. Geosyst. 12, 1–24. doi:10.1029/2010GC003380
- Burke, K., Dewey, J.F., Kidd, W.S.F., 1976. Precambrian palaeomagnetic results compatible with contemporary operation of the Wilson cycle. Tectonophysics, Ancient Plate Margins 33, 287–299. doi:10.1016/0040-1951(76)90149-9
- Carignan, J., Hild, P., Mevelle, G., Morel, J., Yeghicheyan, D., 2001. Routine Analyses of Trace Elements in Geological Samples using Flow Injection and Low Pressure On-Line Liquid Chromatography Coupled to ICP-MS: A Study of Geochemical Reference Materials BR, DR-N, UB-N, AN-G and GH. Geostandards Newsletter 25, 187–198. doi:10.1111/j.1751-908X.2001.tb00595.x
- Cepek, P., 1978. Mesozoic calcareous nannoplankton of the eastern North Atlantic, Leg 41. Initial Reports of the Deep Sea Drilling Project 41, 667–687. doi:10.2973/dsdp.proc.41.114.1978
- Clift, P.D., Blusztajn, J., 2005. Reorganization of the western Himalayan river system after five million years ago. Nature 438, 1001–1003. doi:10.1038/nature04379
- Condie, K.C., 1993. Chemical composition and evolution of the upper continental crust: Contrasting results from surface samples and shales. Chemical Geology 104, 1–37. doi:10.1016/0009-2541(93)90140-E
- Cool, T., Katz, B., Dignes, T., Reimers, D., Fleisher, R., 2008. Hydrocarbon Source Rock Assessment and Revised Biostratigraphy of Dsdp Site 369a, Offshore Northwest African Margin. Journal of Petroleum Geology 31, 117–133. doi:10.1111/j.1747-5457.2008.00411.x
- Cullers, R.L., 2000. The geochemistry of shales, siltstones and sandstones of Pennsylvanian– Permian age, Colorado, USA: implications for provenance and metamorphic studies. Lithos 51, 181–203. doi:10.1016/S0024-4937(99)00063-8
- Davison, I., 2005. Central Atlantic margin basins of North West Africa: Geology and hydrocarbon potential (Morocco to Guinea). Journal of African Earth Sciences, Phanerozoic Evolution of Africa 43, 254–274. doi:10.1016/j.jafrearsci.2005.07.018

- De Baar, H.J.W., Bacon, M.P., Brewer, P.G., Bruland, K.W., 1985. Rare earth elements in the Pacific and Atlantic Oceans. Geochimica et Cosmochimica Acta 49, 1943–1959. doi:10.1016/0016-7037(85)90089-4
- Deckart, K., Bertrand, H., Liégeois, J.-P., 2005. Geochemistry and Sr, Nd, Pb isotopic composition of the Central Atlantic Magmatic Province (CAMP) in Guyana and Guinea. Lithos, Isotopes in Igneous PetrogenesisIV South American Symposium on Isotope Geology 82, 289–314. doi:10.1016/j.lithos.2004.09.023
- Dera, G., Prunier, J., Smith, P.L., Haggart, J.W., Popov, E., Guzhov, A., Rogov, M., Delsate, D., Thies, D., Cuny, G., Pucéat, E., Charbonnier, G., Bayon, G., 2015. Nd isotope constraints on ocean circulation, paleoclimate, and continental drainage during the Jurassic breakup of Pangea. Gondwana Research 27, 1599–1615. doi:10.1016/j.gr.2014.02.006
- Dewey, J.F., Burke, K., 1974. Hot Spots and Continental Break-up: Implications for Collisional Orogeny. Geology 2, 57–60. doi:10.1130/0091-7613(1974)2<57:HSACBI>2.0.CO;2
- Dewey, J.F., Hempton, M.R., Kidd, W.S.F., Saroglu, F., Şengör, A.M.C., 1986. Shortening of continental lithosphere: the neotectonics of Eastern Anatolia — a young collision zone. Geological Society, London, Special Publications 19, 1–36. doi:10.1144/GSL.SP.1986.019.01.01
- Dia, A., Van Schmus, W. R., and Kröner, A., 1997. Isotopic constraints on the age and formation of a Palaeoproterozoic volcanic arc complex in the Kedougou Inlier, eastern Senegal, West Africa. Journal of African Earth Sciences, 24-3, pp. 197-213. doi: 10.1016/S0899-5362(97)00038-9
- D'Lemos, R. S., Inglis, J. D., and Samson, S. D., 2006. A newly discovered orogenic event in Morocco: Neoproterozic ages for supposed Eburnean basement of the Bou Azzer inlier, Anti-Atlas Mountains. Precambrian Research, 147-1, pp. 65-78. doi: 10.1016/j.precamres.2006.02.003
- Drake, E.T., 1976. Alfred Wegener's reconstruction of Pangea. Geology 4, 41–44. doi:10.1130/0091-7613(1976)4<41:AWROP>2.0.CO;2
- Dupuy, C., Marsh, J., Dostal, J., Michard, A., and Testa, S., 1988. Asthenospheric and lithospheric sources for Mesozoic dolerites from Liberia (Africa): trace element and isotopic evidence. Earth and Planetary Science Letters, 87-1, pp. 100-110. doi:10.1016/0012-821X(88)90067-2
- El Baghdadi, M., El Boukhari, A., Jouider, A., Benyoucef, A., and Nadem, S. 2003. Calcalkaline arc I-type granitoid associated with S-type granite in the Pan-African Belt of Eastern Anti-Atlas (Saghro and Ougnat, South Morocco). Gondwana Research, 6-4, pp. 557-572. doi: 10.1016/S1342-937X(05)71007-8
- Emery, K.O., Uchupi, E., 1984. The Geology of the Atlantic Ocean. Springer Science & Business Media.
- Ennih, N., and Liégeois, J. P., 2008. The boundaries of the West African craton, with special reference to the basement of the Moroccan metacratonic Anti-Atlas belt. Geological Society, London, Special Publications, 297-1, pp. 1-17. doi: 10.1144/SP297.1
- Errami, E., Bonin, B., Laduron, D., and Lasri, L., 2009. Petrology and geodynamic significance of the post-collisional Pan-African magmatism in the Eastern Saghro area

(Anti-Atlas, Morocco). Journal of African Earth Sciences, 55-1, pp. 105-124. doi: 10.1016/j.jafrearsci.2009.02.006

- Essaifi, A., Samson, S., Goodenough, K., 2014. Geochemical and Sr–Nd isotopic constraints on the petrogenesis and geodynamic significance of the Jebilet magmatism (Variscan Belt, Morocco). Geological Magazine 151, 666–691. doi:10.1017/S0016756813000654
- Fedo, C. M., Nesbitt, H. W., and Young, G. M., 1995. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology, 23(10), 921-924. DOI : 10.1130/0091-7613(1995)023<0921:UTEOPM>2.3.CO;2
- Fedo, C.M., Sircombe, K.N., Rainbird, R.H., 2003. Detrital Zircon Analysis of the Sedimentary Record. Reviews in Mineralogy and Geochemistry 53, 277–303. doi:10.2113/0530277
- Flicoteaux, R., Latil-Brun, M.-V., Michaud, L., 1988. Histoire de la subsidence post-rift du bassin côtier mauritano-sénégalo-guinéen. Relation avec l'amincissement crustal pendant la période jurassique à Crétacé inférieur. Comparaison avec l'évolution des marges péri-atlantiques au niveau de l'Atlantique Central et Equatorial (côte est des U.S.A., Sud-Sahara, Côte d'Ivoire et Plateau du Demerara). Journal of African Earth Sciences (and the Middle East), The West African connection: Evolution of the central atlantic ocean and its Continental Margins 7, 345–359. doi:10.1016/0899-5362(88)90079-6
- Foreman, H.P., 1978. Mesozoic Radiolaria in the Atlantic Ocean off the Northwest Coast of Africa, Deep Sea Drilling Project, Leg 41. Initial Reports of the Deep Sea Drilling Project. doi:10.2973/dsdp.proc.41.117.1978
- Förster, R., 1978. Evidence for an open seaway between northern and southern proto-Atlantic in Albian times. Nature 272, 158–159. doi:10.1038/272158a0
- Friedrich, O., Norris, R.D., Erbacher, J., 2012. Evolution of middle to Late Cretaceous oceans—A 55 m.y. record of Earth's temperature and carbon cycle. Geology 40, 107– 110. doi:10.1130/G32701.1
- Fullgraf, T., Ndiaye, P. M., Blein, O., Buscail, F., Lahondère, D., Le Métour, J., Sergeev, S. and Tegyey, M., 2013. Silurian magmatism in eastern Senegal and its significance for the Paleozoic evolution of NW-Gondwana. Journal of African Earth Sciences, 78, pp. 66-85. doi: 10.1016/j.jafrearsci.2012.08.003
- Garzanti, E., Vezzoli, G., Andò, S., Lavé, J., Attal, M., France-Lanord, C., DeCelles, P., 2007. Quantifying sand provenance and erosion (Marsyandi River, Nepal Himalaya). Earth and Planetary Science Letters 258, 500–515. doi:10.1016/j.epsl.2007.04.010
- Gasquet, D., Leterrier, J., Mrini, Z., Vidal, P., 1992. Petrogenesis of the Hercynian Tichka plutonic complex (Western High Atlas, Morocco): Trace element and Rb&z.sbnd;Sr and Sm&z.sbnd;Nd isotopic constraints. Earth and Planetary Science Letters 108, 29– 44. doi:10.1016/0012-821X(92)90058-4
- Gasquet, D., Barbey, P., Adou, M., and Paquette, J. L., 2003. Structure, Sr–Nd isotope geochemistry and zircon U–Pb geochronology of the granitoids of the Dabakala area (Côte d'Ivoire): evidence for a 2.3 Ga crustal growth event in the Palaeoproterozoic of West Africa?. Precambrian Research, 127-4, pp. 329-354. doi: 10.1016/S0301-9268(03)00209-2

- Goldstein, S.L., O'Nions, R.K., Hamilton, P.J., 1984. A Sm-Nd isotopic study of atmospheric dusts and particulates from major river systems. Earth and Planetary Science Letters 70, 221–236. doi:10.1016/0012-821X(84)90007-4
- Grousset, F.E., Parra, M., Bory, A., Martinez, P., Bertrand, P., Shimmield, G., Ellam, R.M., 1998. Saharan wind regimes traced by the Sr-Nd isotopic composition of subtropical Atlantic sediments: Last Glacial Maximum vs today. Quaternary Science Reviews 17, 395–409. doi:10.1016/S0277-3791(97)00048-6
- Guiraud, R., Maurin, J.C., 1991. Le Rifting en Afrique au Cretace inferieur; synthese structurale, mise en evidence de deux etapes dans la genese des bassins, relations avec les ouvertures oceaniques peri-africaines. Bulletin de la Société Géologique de France 162, 811–823. doi:10.2113/gssgfbull.162.5.811
- Guiraud, R., Binks, R.M., Fairhead, J.D., Wilson, M., 1992. Chronology and geodynamic setting of Cretaceous-Cenozoic rifting in West and Central Africa. Tectonophysics, Geodynamics of Rifting, Volume II Case History Studies on Rifts: North and South America and Africa 213, 227–234. doi:10.1016/0040-1951(92)90260-D
- Guiraud, R., Bosworth, W., 1997. Senonian basin inversion and rejuvenation of rifting in Africa and Arabia: synthesis and implications to plate-scale tectonics. Tectonophysics, Structural Controls on Sedimentary Basin Formation 282, 39–82. doi:10.1016/S0040-1951(97)00212-6
- Guiraud, R., Bosworth, W., Thierry, J., Delplanque, A., 2005. Phanerozoic geological evolution of Northern and Central Africa: An overview. Journal of African Earth Sciences, Phanerozoic Evolution of Africa 43, 83–143. doi:10.1016/j.jafrearsci.2005.07.017
- Hayes, D.E., Pimm, A.C., Benson, W.E., Berger, W.H., von Rad, U., Supko, P.R., Beckmann, J.P., Roth, P.H., 1972. Site 137. Deep Sea Drilling Project, leg 14. Initial Reports of the Deep Sea Drilling Project 14, 85–134. doi:10.2973/dsdp.proc.14.104.1972
- Huck, C.E., van de Flierdt, T., Jiménez-Espejo, F.J., Bohaty, S.M., Röhl, U., Hammond, S.J., 2016. Robustness of fossil fish teeth for seawater neodymium isotope reconstructions under variable redox conditions in an ancient shallow marine setting. Geochem. Geophys. Geosyst. 17, 679–698. doi:10.1002/2015GC006218
- Jacobsen, S.B., Wasserburg, G.J., 1980. Sm-Nd isotopic evolution of chondrites. Earth and Planetary Science Letters 50, 139–155. doi:10.1016/0012-821X(80)90125-9
- Jakubowicz, M., Dopieralska, J., and Belka, Z. 2015. Tracing the composition and origin of fluids at an ancient hydrocarbon seep (Hollard Mound, Middle Devonian, Morocco): a Nd, REE and stable isotope study. Geochimica et Cosmochimica Acta, 156, pp. 50-74. doi: 10.1016/j.gca.2015.02.027
- Jansa, L., Gardner, J.V., Dean, W.E., 1978. Mesozoic sequences of the Central North Atlantic. Initial Reports of the Deep Sea Drilling Project. doi:10.2973/dsdp.proc.41.138.1978
- Key, R. M., Loughlin, S. C., Gillespie, M., Del Rio, M., Horstwood, M. S. A., Crowley, Q. G., Darbyshire, D.P.F. and Henney, P. J. 2008. Two Mesoarchaean terranes in the Reguibat shield of NW Mauritania. Geological Society, London, Special Publications, 297-1, pp. 33-52. doi: 10.1144/SP297.3

- Klitgord, K., Schouten, S., 1986. Plate kinematics of the central Atlantic. The Geology of North America 1000, 351–378.
- Kouamelan, A. N., Delor, C., and Peucat, J. J., 1997. Geochronological evidence for reworking of Archean terrains during the early Proterozoic (2.1 Ga) in the western Cote d'Ivoire (Man Rise-West African Craton). Precambrian Research, 86-3, pp. 177-199. doi: 10.1016/S0301-9268(97)00043-0
- Labails, C., Olivet, J.-L., Aslanian, D., Roest, W.R., 2010. An alternative early opening scenario for the Central Atlantic Ocean. Earth and Planetary Science Letters 297, 355–368. doi:10.1016/j.epsl.2010.06.024
- Lacan, F. 2002. Masses d'eau des Mers Nordiques et de l'Atlantique Subarctique tracées par les isotopes du néodyme (Doctoral dissertation, Université Paul Sabatier-Toulouse III). doi: 10.1.1.633.7605
- Lancelot, Y., Seibold, E., Cepek, P., Dean, W.E., Eremeev, V., Gardner, J.V., Jansa, L., Johnson, D., Kasheninnikov, V., Pflaumann, U., Graham, J., Bukry, D., 1978. Site 367: Cape Verde Basin. Initial Reports of the Deep Sea Drilling Project 41, 163–232. doi:10.2973/dsdp.proc.41.103.1978
- Lancelot, Y., Winterer, E.L., 1980. Introduction and Summary of Results, Deep Sea Drilling Project Leg 50. Initial Reports of the Deep Sea Drilling Project 50, 5–11. doi:10.2973/dsdp.proc.50.101.1980
- Latil–Brun, M.V. and Lucazeau, F., 1988. Subsidence, extension and thermal history of the West African margin in Senegal. Earth and Planetary Science Letters, 90(2): 204–220. doi: 10.1016/0012–821X(88)90101–X
- Le Goff, É., Guerrot, C., Maurin, G., Johan, V., Tegyey, M., and Zerga, M. B., 2001. Découverte d'éclogites hercyniennes dans la chaîne septentrionale des Mauritanides (Afrique de l'Ouest). Comptes Rendus de l'Académie des Sciences-Series IIA-Earth and Planetary Science, 333-11, pp.711-718. doi: 10.1016/S1251-8050(01)01694-9
- Le Pichon, X., 1968. Sea-floor spreading and continental drift. J. Geophys. Res. 73, 3661– 3697. doi:10.1029/JB073i012p03661
- Ledru, P., Johan, V., Milési, J.P., Tegyey, M., 1994. Markers of the last stages of the Palaeoproterozoic collision: evidence for a 2 Ga continent involving circum-South Atlantic provinces. Precambrian Research 69, 169–191. doi:10.1016/0301-9268(94)90085-X
- Leprêtre, R., Missenard, Y., Barbarand, J., Gautheron, C., Saddiqi, O., Pinna-Jamme, R., 2015. Postrift history of the eastern central Atlantic passive margin: Insights from the Saharan region of South Morocco. J. Geophys. Res. Solid Earth 120, 2014JB011549. doi:10.1002/2014JB011549
- Martin, E.E., Blair, S.W., Kamenov, G.D., Scher, H.D., Bourbon, E., Basak, C., Newkirk, D.N., 2010. Extraction of Nd isotopes from bulk deep sea sediments for paleoceanographic studies on Cenozoic time scales. Chemical Geology 269, 414–431. doi:10.1016/j.chemgeo.2009.10.016
- Martin, E.E., MacLeod, K.G., Jiménez Berrocoso, A., Bourbon, E., 2012. Water mass circulation on Demerara Rise during the Late Cretaceous based on Nd isotopes. Earth and Planetary Science Letters 327–328, 111–120. doi:10.1016/j.epsl.2012.01.037

- Marzoli, A., Melluso, L., Morra, V., Renne, P.R., Sgrosso, I., D'Antonio, M., Duarte Morais, L., Morais, E.A.A., Ricci, G., 1999. Geochronology and petrology of Cretaceous basaltic magmatism in the Kwanza basin (western Angola), and relationships with the Paranà-Etendeka continental flood basalt province. Journal of Geodynamics 28, 341–356. doi:10.1016/S0264-3707(99)00014-9
- McLennan, S.M., Hemming, S., McDaniel, D.K., Hanson, G.N., 1993. Geochemical approaches to sedimentation, provenance, and tectonics. Geological Society of America Special Papers 284, 21–40. doi:10.1130/SPE284-p21
- Meyer, I., Davies, G.R., Stuut, J.-B.W., 2011. Grain size control on Sr-Nd isotope provenance studies and impact on paleoclimate reconstructions: An example from deep-sea sediments offshore NW Africa. Geochem. Geophys. Geosyst. 12, Q03005. doi:10.1029/2010GC003355
- Milesi, J.-P., Frizon de Lamotte, D., Unesco, 2010. Carte tectonique de l'Afrique: Tectonic Map of Africa. CCGM/UNESCO.
- Moiroud, M., Pucéat, E., Donnadieu, Y., Bayon, G., Guiraud, M., Voigt, S., Deconinck, J.-F., Monna, F., 2016. Evolution of neodymium isotopic signature of seawater during the Late Cretaceous: Implications for intermediate and deep circulation. Gondwana Research 36, 503–522. doi:10.1016/j.gr.2015.08.005
- Montero, P., Haissen, F., El Archi, A., Rjimati, E., and Bea, F., 2014. Timing of Archean crust formation and cratonization in the Awsard-Tichla zone of the NW Reguibat Rise, West African Craton: A SHRIMP, Nd–Sr isotopes, and geochemical reconnaissance study. Precambrian Research, 242, pp. 112-137. doi: 10.1016/j.precamres.2013.12.013
- Moulin, M., Aslanian, D., Unternehr, P., 2010. A new starting point for the South and Equatorial Atlantic Ocean. Earth-Science Reviews 98, 1–37. doi:10.1016/j.earscirev.2009.08.001
- Nesbitt, H.W., Young, G.M., 1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 299, 715–717. doi:10.1038/299715a0
- Olivet, J.L., Bonnin, J., Beuzart, P., Auzende, J.-M., 1984. Cinématique de l'Atlantique Nord et Central. Publications du C.N.E.X.O. Série Rapports scientifiques et techniques 54, 1–108.
- Olsen, P.E., 1999. Giant Lava Flows, Mass Extinctions, and Mantle Plumes. Science 284, 604–605. doi:10.1126/science.284.5414.604
- Othman, D. B., Polvé, M., and Allègre, C. J., 1984. Nd—Sr isotopic composition of granulites and constraints on the evolution of the lower continental crust. Nature, 307, pp. 510 515. doi:10.1038/307510a0
- Patchett, P.J., Ross, G.M., Gleason, J.D., 1999. Continental Drainage in North America During the Phanerozoic from Nd Isotopes. Science 283, 671–673. doi:10.1126/science.283.5402.671
- Pawlig, S., Gueye, M., Klischies, R., Schwarz, S., Wemmer, K., and Siegesmund, S. 2006. Geochemical and Sr-Nd isotopic data on the Birimian of the Kedougou-Kenieba inlier (Eastern Senegal): Implications on the Palaeoproterozoic evolution of the West African craton. South African Journal of Geology, 109-3, pp. 411-427. doi: 10.2113/gssajg.109.3.411

- Peucat, J. J., Capdevila, R., Drareni, A., Mahdjoub, Y., and Kahoui, M., 2005. The Eglab massif in the West African Craton (Algeria), an original segment of the Eburnean orogenic belt: petrology, geochemistry and geochronology. Precambrian Research, 136-3, pp. 309-352. doi: 10.1016/j.precamres.2004.12.002
- Pflaumann, U., Čepek, P., 1982. Cretaceous Foraminiferal and Nannoplankton Biostratigraphy and Paleoecology Along the West African Continental Margin. Geology of the Northwest African Continental Margin 309–353. doi:10.1007/978-3-642-68409-8_13
- Piper, D.Z., 1974. Rare earth elements in ferromanganese nodules and other marine phases. Geochimica et Cosmochimica Acta 38, 1007–1022. doi:10.1016/0016-7037(74)90002-7
- Pletsch, T., Chamley, H., Daoudi, L., Deconinck, J. F., and Charroud, M., 1996. Palaeogeographic controls on palygorskite occurrence in mid-Cretaceous sediments of Morocco and adjacent basins. Clay Minerals, 31(3), 403-416. doi: 10.1180/claymin.1996.031.3.10
- Potrel, A., Peucat, J. J., and Fanning, C. M. 1998. Archean crustal evolution of the West African Craton: example of the Amsaga Area (Reguibat Rise). U-Pb and Sm-Nd evidence for crustal growth and recycling. Precambrian Research, 90-3, pp. 107-117. doi: 10.1016/S0301-9268(98)00044-8
- Roddaz, M., Debat, P., Nikiéma, S., 2007. Geochemistry of Upper Birimian sediments (major and trace elements and Nd–Sr isotopes) and implications for weathering and tectonic setting of the Late Paleoproterozoic crust. Precambrian Research 159, 197–211. doi:10.1016/j.precamres.2007.06.008
- Roddaz, M., Viers, J., Moreira-Turcq, P., Blondel, C., Sondag, F., Guyot, J.-L., Moreira, L., 2014. Evidence for the control of the geochemistry of Amazonian floodplain sediments by stratification of suspended sediments in the Amazon. Chemical Geology 387, 101–110. doi:10.1016/j.chemgeo.2014.07.022
- Rosenbaum, G., Lister, G.S., Duboz, C., 2002. Relative motions of Africa, Iberia and Europe during Alpine orogeny. Tectonophysics 359, 117–129. doi:10.1016/S0040-1951(02)00442-0
- Rousseau, T.C.C., Roddaz, M., Moquet, J-S., Calves, and G., Bayon, G., submitted. Controls on the geochemistry of suspended sediments from large equatorial South American rivers (Amazon, Orinoco and Maroni). Chemical Geology.
- Samson, S. D., Inglis, J. D., D'Lemos, R. S., Admou, H., Blichert-Toft, J., and Hefferan, K. 2004. Geochronological, geochemical, and Nd–Hf isotopic constraints on the origin of Neoproterozoic plagiogranites in the Tasriwine ophiolite, Anti-Atlas orogen, Morocco. Precambrian Research, 135-1, pp. 133-147. doi: 10.1016/j.precamres.2004.08.003
- Schlanger, S., Jenkyns, H., 1976. Cretaceous Oceanic Anoxic Events: causes and consequences. Geologie en Mijnbouw 55, 179–184.
- Schaltegger, U., Stille, P., Rais, N., Piqué, A., and Clauer, N., 1994. Neodymium and strontium isotopic dating of diagenesis and low-grade metamorphism of argillaceous sediments. Geochimica et Cosmochimica Acta, 58-5, pp. 1471-1481. doi: 10.1016/0016-7037(94)90550-9

- Schoepfer, S. D., Shen, J., Wei, H., Tyson, R. V., Ingall, E., and Algeo, T. J. 2015. Total organic carbon, organic phosphorus, and biogenic barium fluxes as proxies for paleomarine productivity. Earth-Science Reviews, 149, pp. 23-52. doi: 10.1016/j.earscirev.2014.08.017
- Şengör, A.M.C., Burke, K., 1978. Relative timing of rifting and volcanism on Earth and its tectonic implications. Geophys. Res. Lett. 5, 419–421. doi:10.1029/GL005i006p00419
- Shirey, S.B., Richardson, S.H., 2011. Start of the Wilson Cycle at 3 Ga Shown by Diamonds from Subcontinental Mantle. Science 333, 434–436. doi:10.1126/science.1206275
- Sibuet, J.-C., Mascle, J., 1978. Plate kinematic implications of Atlantic equatorial fracture zone trends. J. Geophys. Res. 83, 3401–3421. doi:10.1029/JB083iB07p03401
- Soumaila, A., Henry, P., Garba, Z., and Rossi, M., 2008. REE patterns, Nd-Sm and U-Pb ages of the metamorphic rocks of the Diagorou-Darbani greenstone belt (Liptako, SW Niger): implication for Birimian (Palaeoproterozoic) crustal genesis. Geological Society, London, Special Publications, 297-1, pp. 19-32. doi: 10.1144/SP297.2
- Tabeliouna, M., Cottin, J-Y., Bowden, P. and Renac, C. 2015. Petrogenesis of the postcollisional Bled M'Dena volcanic ring complex in Reguibat Rise (western Eglab shield, Algeria). Journal of African Earth Sciences. doi: 10.1016/j.jafrearsci.2015.04.003
- Tahiri, A., Montero, P., El Hadi, H., Poyatos, D. M., Azor, A., Bea, F., Simancas J.F. and Lodeiro, F. G. 2010. Geochronological data on the Rabat–Tiflet granitoids: their bearing on the tectonics of the Moroccan Variscides. Journal of African Earth Sciences, 57-1, pp. 1-13. doi: 10.1016/j.jafrearsci.2009.07.005
- Taylor, S.R., McLennan, S.M., 1985. The continental crust: Its composition and evolution.
- Taylor, P. N., Moorbath, S., Leube, A., and Hirdes, W., 1992. Early Proterozoic crustal evolution in the Birimian of Ghana: constraints from geochronology and isotope geochemistry. Precambrian Research, 56-1, pp. 97-111. doi: 10.1016/0301-9268(92)90086-4
- Thomas, R.J., Chevallier, L.P., Gresse, P.G., Harmer, R.E., Eglington, B.M., Armstrong, R.A., de Beer, C.H., Martini, J.E.J., de Kock, G.S., Macey, P.H. and Ingram, B.A., 2002. Precambrian evolution of the Sirwa Window, Anti-Atlas Orogen, Morocco. Precambrian Resarch, 118-1, 57p. doi: 10.1016/S0301-9268(02)00075-X
- Torsvik, T.H., Müller, R.D., Van der Voo, R., Steinberger, B., Gaina, C., 2008. Global plate motion frames: Toward a unified model. Rev. Geophys. 46, RG3004. doi:10.1029/2007RG000227
- Torsvik, T.H., Van der Voo, R., Preeden, U., Mac Niocaill, C., Steinberger, B., Doubrovine, P.V., van Hinsbergen, D.J.J., Domeier, M., Gaina, C., Tohver, E., Meert, J.G., McCausland, P.J.A., Cocks, L.R.M., 2012. Phanerozoic polar wander, palaeogeography and dynamics. Earth-Science Reviews 114, 325–368. doi:10.1016/j.earscirev.2012.06.007
- Torsvik, T.H., Cocks, L.R.M., 2013. Gondwana from top to base in space and time. Gondwana Research 24, 999–1030. doi:10.1016/j.gr.2013.06.012
- Toummite, A., Liégeois, J. P., Gasquet, D., Bruguier, O., Beraaouz, E. H., and Ikenne, M. 2013. Field, geochemistry and Sr-Nd isotopes of the Pan-African granitoids from the

Tifnoute Valley (Sirwa, Anti-Atlas, Morocco): a post-collisional event in a metacratonic setting. Mineralogy and Petrology, 107-5, pp. 739-763. doi: 10.1007/s00710-012-0245-3

- Valentine, J.W., Moores, E.M., 1970. Plate-tectonic Regulation of Faunal Diversity and Sea Level: a Model. Nature 228, 657–659. doi:10.1038/228657a0
- Verati, C., Bertrand, H., and Féraud, G., 2005. The farthest record of the Central Atlantic Magmatic Province into West Africa craton: Precise 40 Ar/39 Ar dating and geochemistry of Taoudenni basin intrusives (northern Mali). Earth and Planetary Science Letters, 235-1, pp. 391-407. doi: 10.1016/j.epsl.2005.04.012
- Viers, J., Roddaz, M., Naziano, F. Jr, Guyot, J-L.,Sondag, F., Brunet, P., Zouiten, C., Boucayrand, C., Martin, F., and Boaventura, G., 2008. Seasonal and provenance controls on Nd-Sr isotopic compositions of Amazon Rivers suspended sediments and implications for Nd and Sr fluxes exported to the Atlantic Ocean. Earth and Planetary Science Letters. 274. 511-523. DOI : 10.1016/j.epsl.2008.08.011.
- Villeneuve, M., Rochet, J., Faye, M., 1993. Heritages structuraux panafricains et hercyniens sur la marge africaine de l'ocean Atlantique, entre la Mauritanie et le Liberia. Bulletin de la Société Géologique de France 164, 851–860.
- Villeneuve, M., Cornée, J.J., 1994. Structure, evolution and palaeogeography of the West African craton and bordering belts during the Neoproterozoic. Precambrian Research 69, 307–326. doi:10.1016/0301-9268(94)90094-9
- Wegener, A., 1915, Die Entstehung der Kontinente und Ozeane: Vieweg and Sohr.,
 Braunschweig; 2nd ed., 1920; 3rd ed., 1922, translated into English in 1924; 4th ed.,
 1924, revised by A. Wegener and translated into English in 1929.
- Williams, G.L., 1978. Palynological biostratigraphy, Deep Sea Drilling Project Sites 367 and 370. Initial Reports of the Deep Sea Drilling Project. doi:10.2973/dsdp.proc.38394041s.402.1978
- Wilson, J.T., 1968. Static or Mobile Earth: The Current Scientific Revolution. Proceedings of the American Philosophical Society 112, 309–320.
- Zhao, G., Cawood, P.A., Wilde, S.A., Sun, M., 2002. Review of global 2.1–1.8 Ga orogens: implications for a pre-Rodinia supercontinent. Earth-Science Reviews 59, 125–162. doi:10.1016/S0012-8252(02)00073-9

CHAPITRE III

Evolution de l'architecture sédimentaire dans le domaine océanique profond nord-ouest africain au Crétacé.

CHAPITRE 3. EVOLUTION DE L'ARCHITECTURE SEDIMENTAIRE DANS LE DOMAINE OCEANIQUE PROFOND NORD-OUEST AFRICAIN AU CRETACE.

Les résultats de ce chapitre sont exprimés sous la forme d'un article intitulé « Seismic Stratigraphy of Cretaceous eastern Central Atlantic Ocean: basin evolution and palaeoceanographic implications » qui est, lors de la soumission de ce manuscrit, accepté avec corrections pour être publié à *Earth and Planetary Science Letter*. A partir d'une étude de bassin se basant sur l'analyse de sections 2D de sismique réflexion, l'objectif de ce chapitre est de caractériser l'architecture sédimentaire et son évolution au cours du Crétacé pour identifier les processus et les vecteurs d'acheminement et de remobilisation de la matière organique et des sédiments associés depuis le continent jusqu'à leur dépôt dans les bassins océaniques profonds.

Résumé

La morphologie et l'évolution d'une ride contouritique crétacée dans le bassin océanique profond du segment africain de l'océan Atlantique central sont étudiées de façon inédite à l'aide de section de sismique réflexion 2D et de coupes régionales calibrées au puits en fonction du cadre biostratigraphique. La marge nord-ouest africaine, depuis son plateau continental et son talus jusqu'à son domaine océanique profond, est construite par une succession de structures érodées et d'objets sédimentaires qui impliquent la présence de courants océanique de fond et le vannage des sédiments associé. La cartographie régionale de ces structures sédimentaires, incluant des drifts contouritiques, des *sediment waves* et des systèmes sédimentaires gravitationnels (*e.g. Deep sea fan, mass transport complex*), nous permet de tester et contraindre le modèle de paléocirculation du Crétacé supérieur proposé actuellement dans la littérature. Grâce au *backstripping* des sections régionales 2D, nous avons pu estimer les paléo-profondeurs d'eau auxquelles sont observées les structures

sédimentaires recensées dans le bassin océanique profond nord-ouest africain. Un éventuel système contouritique est observé pendant l'intervalle Albien- Turonien depuis le bassin profond de la Guinée jusqu'à celui de la Mauritanie. Le développement d'un système de circulation océanique profonde est un élément clé pour comprendre l'enregistrement sédimentaire dans le bassin profond. Cela a également des implications pour la paléocéanographie et la stratification de l'océan Atlantique central au Crétacé. L'intervalle géologique du Crétacé et le modèle océanique associé reflètent des similitudes avec la stratification actuelle des eaux de l'océan Atlantique et de la morphologie de son fond marin du large du Maroc à la Guinée.
SEISMIC STRATIGRAPHY OF CRETACEOUS EASTERN CENTRAL ATLANTIC

OCEAN: BASIN EVOLUTION AND PALAEOCEANOGRAPHIC IMPLICATIONS

Yannick Mourlot^{1,2,*}, Gérôme Calvès¹, Peter D. Clift³, Guillaume Baby¹, Anne-Claire Chaboureau⁴ and François Raisson²

⁴ CVA Engineering 9/11, allée de l'Arche, Tour Egée, 92671 Courbevoie, La Défense, France

<u>Keywords:</u> Seismic reflection, contourite, palaeobathymetry, palaeoceanography, Cretaceous, Central Atlantic Ocean.

Abstract

The evolution and resulting morphology of a Cretaceous contourite drift in the eastern Central Atlantic oceanic basin is investigated in unprecedented detail using seismic imaging and age-calibrated cross-margin sections. The margin, from the shelf, slope to deep–water and abyssal plain is constructed by a succession of erosive and depositional mounded structures that relate to bottom-water currents and sediment winnowing. The regional mapping of these drifts, sediment waves and gravitational sedimentary systems allows us to test the Upper Cretaceous paleocirculation model. Combined with flexural backstripping of the regional cross section, it reveals the water-depth range at which the observed sedimentary features occur. A possible late Albian to Turonian contourite drift system is observed from Guinea to Mauritania. The development of a shallow to deep oceanic circulation system is a key element in the rock record, with implications for the palaeoceanography and layering of the Cretaceous ocean. The Cretaceous geological interval and oceanic model mirrors the stratification of the modern ocean and the morphology of its seafloor from offshore Morocco to Guinea.

¹ Université Toulouse 3, GET–OMP, 14 Avenue Edouard Belin, 31400, Toulouse, France (*corresponding author: yannick.mourlot@gmail.com)

² Total E&P, CSTJF, Avenue Larribau, F–64018, Pau Cedex, France

³ Department of Geology and Geophysics and Coastal Studies Institute, E235 Howe-Russell, Louisiana State University, Baton Rouge, Louisiana 70803, USA

1. Introduction

The sedimentary architecture of passive margins is generally shaped by both gravitational processes (*e.g.* turbidites, debris flows) and along–slope oceanic bottom currents (contourite drifts) (*e.g.* Rebesco et al., 2017). The modern ocean seafloor records the interaction between surface and deep bottom-water currents through their expression in the erosion and deposition of sediments (Heezen and Hollister, 1964). Features such as mounded contourite drifts mark some of the most extensive expression of interactions between sediment and water masses across the seafloor of modern oceanic sedimentary basins (Faugères et al., 1999; Stow et al., 2002; Mosher et al., 2017). The acquisition of seafloor photography, subsurface seismic reflection profiles and the sampling of marine sediments has allowed the identification of sediment transport by bottom-water currents in various bathymetric domains (*e.g.* abyssal plain and shelf). This is particularly well known in the Atlantic, Pacific and Indian Oceans (Faugères et al., 1999; Hernández–Molina et al., 2008a and b; Rebesco et al., 2014).

During the Cretaceous, palaeoceanographic circulation patterns in the Tethys, Atlantic, Indian and Pacific Oceans have been inferred from the tracking of oceanic water masses using the neodymium (Nd) isotope character of fish teeth. In addition, global and regional modeling combining atmospheric and oceanic circulation has been performed to illustrate possible ocean circulation patterns and specify water mass exchanges between the different oceans (Poulsen et al., 2001; Donnadieu et al., 2016; Uenzelmann–Neben et al., 2016). However, these simulations could not resolve the full water column stratification because they investigated the surface and intermediate oceanic currents without any constraints on the paleo-seafloor and its interaction with deep bottom-water currents.

Studies based on Nd isotope character of Upper Cretaceous fish teeth sampled in the Equatorial Atlantic domain (MacLeod et al., 2008; Martin et al., 2012) propose two

intermediate oceanic currents: a first one originating in the Demerara Rise region (Demerara Bottom Water: DBW, Figure 3.1.) and a second initiating from the South Atlantic Ocean and circulating toward the Central Atlantic Ocean through the Equatorial Gateway (Southern Component Waters: SCW, Figure 3.1.) (Robinson and Vance, 2012). Other studies, also based on Nd isotopes, assume that in the northern Central Atlantic Ocean, a surface current originating in the Tethys Ocean would have run through the Central Atlantic to the lowest latitudes (Northern Component Waters: NCW, Figure 3.1.) (Pucéat et al., 2005; MacLeod et al., 2008). However, these Upper Cretaceous large-scale ocean circulation patterns remain debated because recent studies have emphasized the importance of paleobathymetric obstacles. Indeed, critical topographic barriers could have limited connections between the ocean basins, forcing water masses to evolve in more restricted areas (Voigt et al., 2013; Uenzelmann–Neben et al., 2016).

The present day water column in the eastern Central Atlantic Ocean is stratified into the following layers: shallow (0–500 m depth, *e.g.* South Atlantic Central Water – SACW), intermediate (500–1500 m depth, *e.g.* Antarctic Intermediate Water – AIW) and deep (1500 m–seafloor, *e.g.* Antarctic Bottom Water – ABW) water masses (Emery and Meincke, 1986). The present day shallow subsurface oceanic layers have been also well studied by the oceanographic and marine geology communities. Many sedimentary structures related to bottom-water currents and gravity-driven processes have been identified on the modern seafloor along the Northwest African Margin between Morocco and Mauritania (*e.g.* Wynn et al., 2000; Schwab et al., 2007). In contrast to these well documented features related to modern bottom-water currents, only a few examples of Cretaceous sedimentation related to bottom current processes are found. These studies are restricted to the northern Central Atlantic Ocean (Morocco: Dunlap et al., 2013; Northwest Iberia: Soares et al., 2014). Between 24° and 8° N from the Western Sahara to Guinea (Figure 3.1.) the authors found no studies that document Cretaceous sedimentation in relation to processes that involve interaction between the seafloor and deep bottom currents.

Figure 3.1. Shaded bathymetric map of the eastern Central Atlantic Ocean showing the geomorphological and oceanographic framework of the studied margin between the Canary Island Seamount Province (CISP) and the Guinean Plateau (GP). Interaction between oceanic currents and terrestrial sedimentary export is illustrated by four regional seismic sections indicated by red lines through Deep Sea Drilling Project (DSDP) Sites 367 and 368. Grey hatched area represents the basement bulge off the margin identified by Patriat and Labails (2006) and the location of the Jurassic shelf edge mapped by Purdy (1989). Magnetic anomalies are reconstructed by Labails (2007). Cretaceous sediment waves observed by Dunlap et al. (2013) are indicated by the blue star. Present-day sediment wave fields are sourced from Wynn et al. (2000). Present-day oceanic circulation with

GS-NAC: Gulf Stream-North Atlantic Current. CC: Canary Current. NEC: North Equatorial Current. ECC: Equatorial Counter-Current. ABW: Antarctic Bottom Water. Cretaceous oceanic currents correspond to the Tethys Circumglobal Current (TCC) proposed by Pucéat et al. (2005), the Demerara Bottom Water (DBW) proposed by Berrocoso et al. (2010), the North Component Waters (NCW) and the Southern Component Waters (SCW) proposed by Robinson and Vance (2012). MSB: Morocco Salt Basin. AB: Aaiun Basin. MSGB: Mauritania Senegal Guinea Basin. SLB: Sierra Leone Basin. SLR: Sierra Leone Rise. Base map sourced from the Geomapapp© (http://www.geomapapp.org/).

This study aims at understanding the occurrence of specific sedimentary features present in the deep-sea Cretaceous Ocean record and their implication for the oceanic circulation. This paper uses 2D seismic reflection profiles, borehole data from Deep Sea Drilling Project (DSDP) Sites 367 and 368 located along the Northwest African margin.

We document a variety of sedimentary features observed over a range of palaeobathymetry from the continental shelf, the slope to the deep abyssal plain during the Cretaceous. We also quantify paleobathymetric domains both in the shelf and the deep basin using flexural decompaction of regional geological sections where we have observed bottomwater current-related sedimentary features. These new results allow to understand deep-water oceanic circulation in the eastern Central Atlantic Ocean during the Cretaceous.

2. Data and Methods

2.1. Seismic stratigraphy

In this study, we use a combination of both 2D seismic sections and drilling data from the shallow to deep-water Central Atlantic margin $(30^{\circ}-10^{\circ} \text{ N}; \text{ Figure 3.1.}; \text{ Figure 3.2.},$ Shipboard Scientific Party, 1978) to reconstruct the sedimentary architecture of this margin with the objective of better understanding the Upper Cretaceous palaeoceanography. The average spacing between lines is ~10 km with exception in the distal offshore domain where only regional lines exist.

Figure 3.2. (A) Original map of the Site 367 in the Cape Verde Basin, with location of seismic reflection profiles (Shipboard Scientific Party, 1978). (B) Portion of VEMA 29 seismic profile crossing Site 367, Horizons A, B and C corresponds to targets prior of drilling, (C and D) Portions of seismic profile Valvidia 10, with seismic calibrated framework corresponding to (E.) Figure 5A. SF: Sea Floor; P: Base Paleocene; TC: Top Cenomanian; TA: Top Albian; TAp: Top Aptian; TLC: Top Lower Cretaceous; AB: Top Acoustic Basement.

The margin is described with standard seismic stratigraphic techniques based on reflection terminations and seismic reflection facies, as well as the relationship to the geometry of individual seismic reflections (terminations). This approach allows the seismic profile to be divided into chronostratigraphic packages. Thus, eight seismic surfaces were used to define seven seismic units in the studied interval. An age calibration was obtained using well data (*e.g.* Hardenbol et al., 1981; Davison, 2005; see Table 3.1.; Figures 3.1. and 3.3.).

Figure 3.3. Lithostratigraphic chart of DSDP Sites 367, 368 (Mauritania Senegal Guinea Basin; Lancelot et al., 1978a; 1978b), DSDP Site 398 (NW Iberian Margin; Ryan et al., 1979) and sedimentary structures identified in this study area. Sediment waves and mass transport complex occurrence offshore Morocco is based on Dunlap et al. (2013) and contourite drift occurrences offshore the NW Iberian Margin is from Soares et al. (2014). Age uncertainties are illustrated by dashed-black arrows. TD: Total Depth; DbF: Debris Flow.

These data provide important evidence for the timing of formation and the distribution of several sedimentary features related to channel-levees, deep-sea fans and mass transport complexes (Posamentier and Kolla, 2003). The data are also used to understand sediment remobilization by bottom ocean currents (*e.g.*, contourite drift) in both the basin and the slope (Faugères et al., 1999; Stow et al., 2002).

Section	Figure	Stratigraphic interval	Age (Ma)	Porosity (%)	Density (g/cc)	Lithology			
						% Sand	% Shaly sand	% Shale	% Limestone
		Base Cenozoic to present-day seafloor	65 to 0	58,5	2,69	43	10	15	32
Mauritania Basin	5A	Top Cenomanian to base Cenozoic	93 to 65	59,5	2,68	32	16	22	30
		Top Albian to top Cenomanian	100 to 93	58,1	2,68	50	0	20	30
		Top Lower Cretaceous to top Albian	125 to 100	59,5	2,68	30	30	0	40
		Top Jurassic to top Lower Cretaceous	145 to 125	55,3	2,67	40	45	0	15
		Top acoustic basement to top Jurassic	170 to 145	69,3	2,71	0	0	10	90
Senegal Basin		Base Cenozoic to present-day seafloor	65 to 0	66,8	2,71	10	0	15	75
		Top Cenomanian to base Cenozoic	93 to 65	57,7	2,69	45	0	40	15
	5C	Top Albian to top Cenomanian	100 to 93	65,6	2,70	13	0	23	64
		Top Aptian to top Albian	112 to 100	64,4	2,70	15	0	35	50
		Top Lower Cretaceous to top Aptian	125 to 112	66,5	2,71	10	0	20	70
		Top Jurassic to Lower Cretaceous	145 to 125	63,0	2,70	7	25	28	40
		Top acoustic basement to top Jurassic	170 to 145	69,3	2,71	0	0	10	90
Mauritania Basin		Base Cenozoic to present-day seafloor	65 to 0	58,5	2,68	43	10	15	32
		Top Cenomanian to base Cenozoic	93 to 65	59,5	2,69	32	16	22	30
	22	Top Albian to top Cenomanian	100 to 93	58,1	2,68	50	0	20	30
	0A	Top Aptian to top Albian	112 to 100	59,5	2,68	45	50	0	5
		Top Lower Cretaceous to top Aptian	125 to 112	\$5,3	2,67	30	30	0	40
		Top Jurassic to top Lower Cretaceous	145 to 125	69,3	2,71	0	0	10	90
Guinean Plateau		Base Cenozoic to present-day seafloor	65 to 0	64,0	2,71	10	0	50	40
	6C	Top Cenomanian to base Cenozoic	93 to 65	62,0	2,72	5	0	90	5
		Top Albian to top Cenomanian	100 to 93	64,0	2,72	0	0	80	20
		Top Aptian to top Albian	112 to 100	55,0	2,68	55	5	35	5
		Top Lower Cretaceous to top Aptian	125 to 112	64,0	2,72	20	0	20	60
		Top Jurassic to Lower Cretaceous	145 to 125	63,0	2,70	7	25	28	40
		Top acoustic basement to top Jurassic	170 to 145	69,0	2,17	0	0	10	90

Table 3.1. Lithology, porosity and density parameters for each sedimentary unit used for the backstripping of stratigraphic cross section illustrated in Figures 3.5. and 3.6.

Seismic reflection horizons, interpreted in the travel-time domain, to provide a seismic stratigraphic framework were depth-converted using a combination of velocities based on geophysical methods (sonobuoy records, check-shot) and regional isopach maps or depth cross-section from long–offset seismic records. Time-depth data and the depth conversion equation can be found in the supplementary files (Figure 3.4.).

Figure 3.4. (A) Time-depth plot of velocity measurements from radiosonobuoys located off Mauritania and Senegal compiled by Diebold (1996) and checkshot data sourced from DSDP Sites 368, 657 and 397 initial reports (Lancelot et al., 1978b; von Rad et al., 1979; Shipboard Scientific Party, 1988). (B) Porosity curves used for decompaction in FlexDecomp (Sclater and Christie, 1980).

2.2. Mesozoic stratigraphy of the eastern Central Atlantic Ocean

In the Senegal and Mauritania basins, DSDP Sites 367 and 368 sampled the post-rift Mesozoic stratigraphic sequences of the deep ocean basin (Figures 3.1. and 3.3.). DSDP Site 367 shows that the basalts of the oceanic crust are overlain by a Jurassic to Lower Cretaceous sedimentary unit consisting of interbedded limestone with marl and cherts (Figure 3.3., Lancelot et al., 1978a). These lithological units were deposited in a bathyal pelagic environment with the presence of clastic deposits input by turbidity currents during the Lower Cretaceous (Jansa et al., 1978). The Barremian to Aptian sequence comprises alternating limestone with marl and thin black shale. This shalier unit progressively grades into thick black shale deposits from the transition between the Barremian and the Aptian, as observed at DSDP Sites 367 and 368. These black shales are platform material remobilized by turbidity currents and deposited in the abyssal plain (Lancelot et al., 1978a; Jansa et al., 1978). The increase in proportion of shale during the Lower Cretaceous is also evidenced by drilling results at DSDP Site 398 in the northern Central Atlantic Ocean (Northwest Iberia). Soares et al. (2014) observed contourite drifts and sediment waves on seismic reflection profiles at this location (Figure 3.3.). The Albian to Upper Cretaceous sequence, deposited in a similar environment as during the Aptian, is composed of dominant black shale facies interbedded with more silty, less shaly layers, as illustrated in DSDP Sites 367 and 368 (Figure 3.3.). This lithology is different from that found at DSDP Site 398 where Upper Cretaceous formations correspond to limestone interbedded with claystone and marl units (Figure 3.3., Ryan et al., 1979). Cenozoic diabase sills intruded the Albian to Turonian black shales at DSDP Site 368. In the area of DSDP Sites 367 and 368, the Cretaceous sequence is of particular interest because it comprises turbidites deposited as a result of remobilization (Jansa et al. 1978).

2.3. Backstripping and paleobathymetric estimates

The aim of our backstripping study is to give constraints on the paleobathymetric range of deposition of contourite drift deposits that are observed in the deeper and distal parts of the margins. In these locations, there are limited or no core samples that allow calibration of absolute value of bathymetry. For this analysis, we use a flexural backstripping approach that has been used in various geological settings to infer paleodepth down to basement in sedimentary basins and to reconstruct vertical movements (*e.g.* Clift et al., 1995; Calvès et al., 2008). Subsidence of the study area has been investigated in two sedimentary basins: (1) to the north of the margin in the Aaiun Basin (Morocco) linked to DSDP Site 397 (von Rad and Einsele, 1980), and, (2) to the south in the Senegal Basin (Latil–Brun and Lucazeau, 1988). The studied stratigraphic interval is characterized by normal post-rift thermal subsidence (von Rad and Einsele, 1980; Latil–Brun and Lucazeau, 1988). The investigated period and study area has been calibrated with a thermal subsidence corresponding to a coefficient of extension of 1.2 (Latil–Brun and Lucazeau, 1988). This factor has been set as

an input in the backstripping computation. The 2D backstripping method is a standard basin analysis approach, with numerous published results attesting that this particular method is robust within the limits of the approach (*e.g.* Kusznir et al., 1995; Roberts et al., 1998).

In detail, the first step is the removal of the present-day water column covering the whole section leading to the computation of the flexural isostatic response specific to this removal. Then, the uppermost sedimentary layer (initially overlain by the water column) is also removed from the section. This involves the decompaction of underlying sediments in response to this removal and unloading, which is computed by the software from the physical parameters of the remaining sedimentary units (i.e. lithology, density and porosity, Table 3.1.). The 2D backstripping method provides several restored 2D-sections, which can be also corrected by the flexural strength of the lithosphere commonly expressed by the effective elastic thickness (T_{e_i} in km). This parameter expresses the thickness of a perfectly elastic layer with similar flexural properties to the lithosphere (e.g. Watts, 1978). Low values of effective elastic thickness (<5 km) illustrate a weak lithosphere which suffers from deformation because of the flexural isostatic response of the sedimentary load variation. In contrast, a high value of T_e (> 15 km) represents a strong lithosphere which is affected by moderate or low deformation during the flexural isostatic response of the sedimentary load (e.g. Roberts et al., 2009). The elastic thickness in the studied area has been estimated with global Te grid map (Figure 3.5) (e.g. Watts, 2015; Global T_e grid: the <u>ftp://ftp.earth.ox.ac.uk/pub/tony/TOG/global_te.grd</u>). The median T_e value for the oceanic domain is 26.6 km (s.d.: 6.6) and for the continental areas 17.5 km (s.d.: 8.7) (Figure 3.5.). We used different values of T_e (0, 10, 20 and 30 km) to compute paleobathymetric ranges depending on the flexural rigidity of the plate.

Figure 3.5. (A) Grid map illustrating the repartition of Te data of the continental and oceanic lithospheres sourced by Watts (2015). Delimitation of the continental and the ocean realms is characterized by the Ocean-Continent Boundary (OCB) sourced by Müller et al. (2016). (B) Distribution and frequency of Te values in the continental and ocean domains.

3. Results

3.1. Margin geometry

The present-day structure of the Northwest African margin is well documented (*e.g.* Emery and Uchupi, 1984). It is composed of four sedimentary basins between Morocco and Sierra Leone (Figure 3.1.) which are dominated by a large and flat continental shelf (>100 km) with a maximum water depth of 200 m (*e.g.* Senegal Shelf, Figures 3.6. and 3.7., Wynn et al., 2000; Davison, 2005). Offshore Morocco and Mauritania, the shelf becomes narrower and is affected by salt tectonics and volcanism (von Rad et al., 1982). Two E–W sections, one N–S section and one NW–SE section have been selected to illustrate the geometry of the margin and its evolution from the Jurassic to the Upper Cretaceous offshore Mauritania, Senegal and Guinea (Figures 3.6. and 3.7.). Offshore Mauritania, the E–W profile illustrates the Jurassic sequence that has a maximum extent of 200 km in width and a maximum thickness of 2.5 km in the basin (Figures 3.6A. and 3.7B.). This sequence is thicker under the shelf (up to 5 km of thickness, Figure 3.6B.). This Tethyan-type carbonate platform extends all around the Central Atlantic domain (Emery and Uchupi, 1984). During the Cretaceous, slopes had a low gradient (Figure 3.6B.) and the sedimentary thickness thinned into the basin towards DSDP Site 368 (from 4.5 km to 1.5 km thick, Figure 3.6B.).

Figure 3.6. (A) East-West two-way time seismic section through DSDP Site 368 (offshore Mauritania), data sourced from the Virtual Seismic Atlas (VSA; <u>link</u>). (B) Interpreted geological depth converted section of Figure 3.6A. SF: Sea Floor; P: Base Paleocene; TC: Top Cenomanian; TA: Top Albian; TAp: Top Aptian; TLC: Top Lower Cretaceous; AB: Top Acoustic Basement. (C) East-West depth converted seismic section through DSDP Site 367 (offshore Senegal), courtesy of TGS. (D) Interpreted geological section of the Figure 3.6C. Legend is the same as Figure 3.6B. See Figure 3.1. for location.

In the Senegal E–W section (Figure 3.6C.), the Jurassic sequence has a maximum thickness of 1 km in the deep basin and 3.5 km under the shelf, which is less than that

observed offshore Mauritania (Figure 3.6D.). The paleo–slope was steep which is characteristic of a deep carbonate bank margin, such as that of the modern Bahamas (Mullins and Neumann, 1979). During the Cretaceous, the sedimentary pile accumulated a maximum thickness of 5 km in the deep basin, that thinned further west, and reached <1 km thick at DSDP Site 367 (Figure 3.6D.). The paleo–slope remained steep during this period, consistent with a deep carbonate bank margin geometry. An erosional surface (SU) is observed between 220 and 245 km along the seismic reflection profile shown in Figure 3.6D. This surface is correlated to Senonian in age and illustrates the absence of Albian to Upper Cretaceous sedimentary cover under in outer shelf and the related slope.

The N-S section offshore Mauritania illustrates the structure of the Mauritanian Basin between the shelf in the region of Ras Nouadhibou to the north and the shelf in the region of Dakar to the south (Figure 3.7A.). The profile shown in Figure 3.7A. does not reach the base of the Jurassic sequence. Nevertheless, the steep paleo–slope seen in the top Jurassic reflection illustrates a typical carbonate-bank margin geometry in the region of Ras Nouadhibou between 420 and 500 km along the seismic profile shown in Figure 3.7B. The Lower Cretaceous sequence is thicker, up to 5 km, while the whole thickness of younger Cretaceous units does not exceed a maximum of 2 km in this region (Figure 3.7B.).

Figure 3.7. (A) North-South two-way time seismic section along the Mauritanian shelf (east of DSDP Site 368, offshore Mauritania), courtesy of TGS. (B) Depth-converted interpreted geological section derived from Figure 3.7A. (C) WNW-ESE two-way time seismic section through Guinean Plateau to deep-water, courtesy of TGS. (D) Depth converted interpreted geological section derived from Figure 3.7C. Legend is the same as Figure 3.6B. See Figure 3.1. for location.

The NW-SE section offshore Guinea illustrates the geometry of the Guinean Plateau (Figures 3.7C. and 3.7D.). The Guinean Plateau forms a prominent corner between the

Senegal and the Sierra Leone basins (Figure 3.1.). It corresponds to a submarine bathymetric high in ~700 m of water-depth (Figure 3.7D.). The base of the Jurassic could not be identified between 30 km and 160 km along this profile as the seismic data do not image to this depth (Figure 3.7C.). However, the Mesozoic unit (<6 km thick under the shelf and 3 km in the basin, Figure 3.7D.) is dominated by a Jurassic to the Cenomanian carbonate sequence from the. It turns into a mixed carbonate/clastic regressive sequence in the Upper Cretaceous which remains thin (<0.5 km) both under the plateau and in the basin (Figure 3.7D.). Until the top of the Cenomanian, the paleo–slope remains steep while it becomes gentler within the Upper Cretaceous and the Cenozoic (Figure 3.7D.).

3.2. Seismic facies and associated deposits

3.2.1. Mounded seismic feature nearby DSDP Site 367 during Jurassic to Lower Cretaceous

The DSDP Site 367 (Figure 3.1., 3.6C. and 3.8A.) has been drilled on a thin sedimentary section located on top of a basement high. This high is standing at a shallow level below the seafloor, 1.121 sTWT mbsf, compared to the surrounding deeper part at ~1.61 sTWT mbsf to the east and 1.475 sTWT mbsf to the west in the deep basin (legacy seismic images are included in Figure 3.2.; Shipboard Scientific Party and David Bukry, 1978). To the west of DSDP Site 367, the Lower Cretaceous sequence is thick (>620 m) compared to the east (400 m), and includes several moderate to high amplitude reflections that show onlap terminations on a positive topographic structure inherited from the underlying oceanic crust (Figure 3.8A.). Within the lower Cretaceous sequence the main seismic facies is composed of well-stratified sub-parallel reflection with moderate to high amplitude and good lateral continuity (Figure 3.8A.). A slight change of thickness is observed from the east to the west of DSDP Site 367. The Aptian sequence presents low to moderate amplitude reflections with terminations that onlap on the Lower Cretaceous thickened structure observed to the West of DSDP Site 367 (Figure 3.8B.). The sequence thins above the Lower Cretaceous mounded structure and is associated to top lap terminations in its upper section. The slight decrease in thickness laterally, internal seismic facies, the low-mounded geometry, and the location above a structural high suggest that these features could be sheeted drifts. These sheeted drifts forms a sedimentary drape above the irregularities of the oceanic basement observed in many deep-water distal margins (Hernández–Molina, et al., 2008a). The moat surrounding these basement-tectonic controlled drift cannot be yet mapped here due to the low spatial seismic coverage.

Figure 3.8. (A) Inset of the W–E regional section across the Senegal Basin (Figure 3.6C.) showing the thickening of the lower Cretaceous sediments on Jurassic deposits observed west of DSDP Site 367 (Courtesy of TGS). (B) Interpreted W–E oriented seismic line flattened along a continuous regional event (Top Aptian: TAp) allowing restoration of the basin geometry at the time of the drowning of the mounded structure associated to sheeted contourite drift. Legend is the same as Figure 3.6B. See Figure 3.1. for location.

3.2.2. Base of slope seismic facies during Cenomanian to Late Cretaceous

Two main seismic facies are observed at the base of slope of the NW African Margin. The first seismic facies consists of lenticular features with locally high amplitude reflections (HAR) packages within lower amplitude extensive continuous reflections packages (Figure 3.9A.). These facies corresponds to deep-sea fans architectural elements that are the channellevees complexes, with the channel (HAR) and the overbank deposits and levees (e.g. Flood et al., 1991)(Figure 3.9A.). The deep-sea fan apex ends updip with onlap terminations on the base of the continental slope (Figure 3.9A.). Cretaceous deep-sea fan complexes observed in the study area show a maximum thickness of 1 km over an average length of 60 km. Overall, they are thicker at the foot of the continental slope and become gradually thinner towards the deep basin.

Figure 3.9. (A) Inset of Cenomanian channel-levee complex deposited at the base of the slope observed on Figure 3.6C. (Courtesy of TGS). (B) Inset of Figure 3.7C. illustrating sediment wave and contourite drift deposits within the Albian and Cenomanian intervals. Note the change of scale between the sediment waves and the contourite drift deposits. Mass transport complexes are observed above, in the Upper Cretaceous interval. The crest migration of the sediment waves towards upslope indicates that the deposition of the sediment is controlled by an along slope bottom current. Legend is the same as Figure 3.6B. See Figure 3.1. for location.

The second seismic facies observed within or at the base of slope consists of composite facies such as chaotic to discontinuous seismic facies packages, bright steeplydipping reflections, rotated discontinuous stratal re-flections and low amplitude structureless facies (Figure 3.9.). Each of these facies can be interpreted as mass transport deposits/complexes (MTD/MTC) with its headscarp and toe (*e.g.* Bull et al., 2009). The mass-transport complexes (MTC) are the result from the destabilization of sedimentary material by gravitational processes. Most of the observed MTCs in this study area show on seismic sections an elongated geometry with chaotic and discontinuous reflections of variable amplitude (Figure 3.9.). The base and top of the MTCs are often associated with a high amplitude continuous seismic reflection that is better imaged in the downslope parts of the basin and gradually onlaps the slope (Figure 3.9A.). The MTCs within the study area have thicknesses ranging between 50 and 1000 m over an average length of 70 km.

3.2.3. Sediment remobilization by bottom-water currents from the Albian to the Late Cretaceous

Sedimentary features related to bottom-water currents have been observed both within the Albian-Cenomanian interval and in the Upper Cretaceous (Figures 3.9B. and 10.). The oldest structures are particularly observed at the base of the slope of the Guinean Plateau (Figures 3.7C. and 3.9B.). Albian sediment waves are characterized by draping continuous reflections of variable amplitudes leading to characteristic wavy structures (Figure 3.9B.). Their average length is about 2 km and their average thickness is 200 m. These sediment waves migrate upslope towards the east, as expressed by displacement of their crests (Figure 3.9B.) and are not associated to any turbiditic fan in this interval. On top of this deposit, elongated-mounded contourite drifts accumulated during the Cenomanian, shown as continuous low amplitude reflections with mounded geometry. These reflection packages are bounded by non-depositional zones, the moats, which are revealed by particular reflection terminations (*e.g.* toplaps and onlaps, Figure 3.9B.). These contourite drifts have an average thickness of 200 m and their length varies between 5 and 15 km.

Figure 3.10. (A) Inset of Upper Cretaceous sediment waves and mass transport complex observed east of DSDP Site 367 (Senegal) on Figure 3.6B. (Courtesy of TGS). Note the extensive erosional surface at the base of the sediment wave sequence. (B) inset from Figure 3.7A. of the offshore Mauritania Basin, the Cenomanian interval is characterized by channel-levee systems whereas the Upper Cretaceous is related to contourite drifts deposits. The crest migration of the contourite drift deposits indicates a sedimentation controlled by a potential oceanic current coming from the North. Legend is the same as Figure 3.6B. See Figure 3.1. for location.

Other examples of sedimentary features related to ocean bottom-water currents have been observed within the Upper Cretaceous in the Senegal and Mauritania basins (Figures 3.6C., 3.7A. and 3.10.). Numerous sediment waves with an average wavelength of 3 km and a thickness of 100 to 200 m were deposited in the proximal part of the Senegal deep-water basin seismic profile and the DSDP Site 367 (Figure 3.10A.). Some of them are coeval with the deposition of the MTC and show crest migration upslope towards the east (Figure 3.10A.). In southern Mauritania, several elongated mounded structures have been identified that indicate the action of bottom-water currents (Figure 3.10B.). These are associated with low angle incisions on their flank, which represent the moat where bottom-currents flow faster and mobilize sediment on the flank to build a contourite drift. No canyon or indication of downslope transport has been identified in trend with this moat. The moats are characterized by low to moderate continuous reflections which present terminations in downlap and toplap (Figure 3.10B.). The mound crests migrate southward (upslope). These contourite drifts are similar to those observed in Guinea within the Cenomanian section, where they have an average length of 5 to 15 km and a thickness ranging between 200 and 300 m (Figure 3.9B.).

3.3. Cretaceous palaeobathymetry of slope and deep-water basin domains

Flexural 2D backstripping of four seismic profiles illustrates the geometry of the margin in Senegal, Mauritania and Guinea (Figures 3.6. and 3.7.) and allows us to quantify the paleo water-depth in which the sedimentary features, generated by gravity process or ocean bottom current activity, were deposited. The result along the E-W Mauritania profile (Figures 3.7A. and 3.11A.) shows that the unloaded sediments at 93 Ma (top Cenomanian) were deposited at a maximum paleo-depth ranging between 3800 m ($T_e = 0$ Km) and 3750 m ($T_e = 30$ km) while at 100 Ma (top Albian), the maximum palaeobathymetry in the basin ranged from 4150 m ($T_e = 0$ km) to 4000 m ($T_e = 30$ km). Along the N–S Mauritania section (Figure 3.7A.), contourite drifts (Figure 3.10B.) are identified and interpreted as 100 Ma old from 2600 m $(T_e = 0 \text{ km})$ to 2200 m depth $(T_e = 30 \text{ km})$ and at 93 Ma between 2550 m $(T_e = 0 \text{ km})$ and 2300 m ($T_e = 30$ km, Figure 3.11B.). In the Senegal Basin where sedimentary bodies related to bottom-water current were deposited during the Lower Cretaceous (Figure 3.8.), the maximum of the estimated palaeobathymetry ranges from 5550 m ($T_e = 0$ km) to 5700 m (T_e = 30 km) at 145 Ma (base of the sheeted contourite drift, Figure 3.11C.). At 125 Ma (top of the sheeted contourite drift), the water depths are estimated to reach 5300 m ($T_e = 0$ km) or 5400 m (T_e = 30km, Figure 3.11C.). The sediment waves observed on this profile (Figure 3.10A.) were deposited after 93 Ma at a depth ranging from 5150 m ($T_e = 0$ km) to 5050 m $(T_e = 30 \text{km}, \text{Figure 3.11C.})$. The sediment waves observed offshore Guinea during the Albian (Figure 3.9B.) were formed in a water depth ranging between 4200 m ($T_e = 0$ km) and 4100 m

 $(T_e = 30 \text{ km}, \text{ Figure 3.11D.})$. During the Cenomanian, the estimated paleo-depth of the contourite drift (Figure 3.9B.) ranges from 4150 m ($T_e = 0 \text{ km}$) to 4050 m ($T_e = 30 \text{ km}$, Figure 11D.).

Figure 3.11. 2D sediment-unloaded sections along Figures 3.6. and 3.7. showing the palaeobathymetric evolution of the seafloor during the Cretaceous. Present day seafloor is marked by the continuous black line where as age $(Ma)/T_e(km)$ pairs are associated to different discontinuous lines of different grey scales. Displays are restricted to the areas where bottom current sedimentary features have been observed. (A) E-W Mauritanian section through DSDP Site 368. (B) N-S Mauritanian section. (C) E-W Senegal section through DSDP Site 367. (D) WNW-ESE Guinean Basin section.

4. Discussion

4.1. Evolution of the Cretaceous deep-water sedimentation

The margin geometry between Mauritania, Senegal and Guinea shows some differences during the Cretaceous (Figures 3.6. and 3.7.), which may influence sedimentation in the deep-water basin. Indeed, two types of sedimentary features have been observed: (1) those related to gravitational processes, including channel-levee complexes and mass transport complexes and (2) those related to the remobilization of sediments, either in suspension or from the seafloor, by oceanic bottom currents, including contourite drifts and sediment waves.

Based on the results of our study, a three-stage evolution of Cretaceous deep-water sedimentation is defined (Figure 3.12.). Three paleogeographic maps illustrating the evolution of sedimentation in the eastern Central Atlantic depict geological time intervals of the Lower Cretaceous (Neocomian to Albian, Figure 3.12A.), the Albian-Cenomanian (Figure 3.12B.) and the Upper Cretaceous (from the Turonian to the Maastrichtian, Figure 3.12C.).

Figure 3.12. Paleogeographic maps of the study area focused on the deep-water sedimentation. (A) Early Cretaceous period (Berriasian-Aptian), the sedimentation in the deep-water area is associated to channel-levees sourced from onshore via deltas and some sediment waves offshore Morocco and mounded drifts near DSDP Site 367. (B) the Albian-Cenomanian period records extensive slope deposits that covers most of the margins from Morocco to Guinea where contourite drift and upper slope erosion occurs. (C). the Upper Cretaceous period (Turonian to Maastrichtian) is a period of mass slope disturbance with mass transport complexes and important bottom-current sediment wave related fields and contourite drift from Guinea to south Morocco. In the north of the study area a regional hiatus potentially related to uplift/erosion of the margin sourced from the collision of North Africa with European plates.

4.1.1. Initiation of distal bottom currents during the Lower Cretaceous

During the Lower Cretaceous, few deep-sea fans formed along the slope and remained mostly located off Senegal (Figure 3.12A.). This finding suggests that basin sedimentation (from the base of the slope) was mainly influenced by turbidity currents. In addition, at DSDP Site 367 seismic interpretation and cored sediments show argillaceous and carbonate facies deposited in deep pelagic environments during the Lower Cretaceous (Aptian excluded), occasionally influenced by turbidity currents (Jansa et al., 1978). The Lower Cretaceous unit thickens towards the west, which is inconsistent with turbidity current-driven sedimentation and presents morphological characteristics similar to abyssal sheeted drifts (Faugères et al., 1999; Rebesco et al., 2014). Such bodies are also observed in the Namibian basin and off the NW Iberian Margin during the Cretaceous (Hopkins, 2006, Soares et al., 2014). We suggest that these deposits mark the presence of a bottom current driving remobilization and deposition of sediments near the location of DSDP Site 367. This bottom current would have developed at a water-depth of almost 4000 m, as indicated by the backstripped section (Figure 3.11C.). In the lower part of the Lower Cretaceous limestone sampled at DSDP Site 367, the 'filament microfacies' has been interpreted as an indicator of sediment reworking by bottom currents (Jansa et al., 1978) consistent with the sheeted contourite drift observed in the vicinity of DSDP Site 367 (Figure 3.8B.). In addition, the upper section drilled at this site shows remobilized turbidites (Jansa et al., 1978).

4.1.2. Evidence of Albian to Cenomanian bottom currents within a gravitydriven deep sedimentation setting

From the Albian to the end of the Cenomanian, sedimentation in the basin of the eastern Central Atlantic Ocean was mostly influenced by gravity-driven processes, particularly by turbidity currents. This influence is illustrated by regular and continuous deposition of deepsea fans exclusively located along the base of the continental slope (Figure 3.12B.). In comparison with the Lower Cretaceous, increasing number of deep-sea fan deposits illustrates an increase in the sedimentary material exported to the basin from the continent. This change in sedimentation is also evidenced by the sequence at DSDP Site 367 with Jurassic sedimentation predominantly pelagic and carbonate-rich but becoming detritaldominated in the Lower Cretaceous (Lancelot et al., 1978a). This change is related to higher sedimentary inputs by several deltas along the Northwest African coast since the Albian (Flicoteaux et al., 1988; Davison et al. 2005; Figure 3.12B.).

Increasing detrital contribution preserved at DSDP 367 is associated with turbidity currents supply to the basin with sediments that originated from the river mouth (Jansa et al., 1978). However, erosion surfaces and sharp contacts observed in the Albian-Cenomanian black shale sequence could also be related to remobilization processes. Indeed, it has been shown that sedimentation on most modern margins is influenced by the combined action of gravity-driven processes and bottom current related processes (Faugères et al., 1999; Calvès et al., 2013; Rebesco et al., 2017). In addition, our results clearly show the presence of contourite drifts and sediment wave fields related to bottom currents in the southern part of the NW African margin (Figures 3.9B. and 3.12B.). This observation indicates that bottomwater currents remobilized deep sea sediments in the Albian-Cenomanian offshore southern Senegal and downslope on the Guinean Plateau (Figure 3.12B.). These contour-current sedimentary features are observed to have formed further offshore than the depositional zone dominated by turbidity currents. Such bodies are coeval with deep-sea fan deposition, this indicates that the NW African Margin was influenced by mixed sedimentation in the basin since the Albian. This observation is consistent with prior work by Wynn et al. (2000), who demonstrated that the modern NW African margin is influenced by both gravity-driven and bottom current related processes (Figure 3.1.) in similar bathymetry to that reconstructed for the Albian-Cenomanian period, at 1500 and over 4000 m of water-depth (Figure 3.11.).

4.1.3. Abrupt changes in the Late Cretaceous deep-sea sedimentation influenced by bottom currents

Following the transgression of the early Turonian (~94 Ma), the formation of deep-sea fans in the deep basin ceased and several MTCs formed along the NW African margin

(Figure 3.12C.). MTCs are initiated by a loss of stability and then a destabilization of the sediments (Dott, 1963). This destabilization may be due, among others, to a vertical movement of the margin that caused sediments to fail, or to excessive sediment accumulation along the continental slope that caused instability and gravitational collapse of the underlying sedimentary cover. In the case of the NW African margin, several geodynamic events such as convergence between Africa and Europe were responsible for deformation and vertical movement in the northern margin (Guiraud and Bosworth, 1997). These forces could be appropriate triggers for MTCs. Indeed, during the Upper Cretaceous, many sediment waves that are laterally associated with MTCs were formed off Senegal in >4000 m water-depth, from the northern Guinean Plateau to the south of Mauritania (Figure 3.12C.). In comparison with the sediment waves deposited during the Albian, these are of greater wavelength and have an extent to the west into the deep basin (Figure 3.12C.). In addition, a contourite drift is located down the continental slope below 1700 m water depth in southern Mauritania is associated with a sediment wave field (Figure 3.12C.). These various elements illustrate the presence of bottom-water currents that appear to have had a stronger influence in Upper Cretaceous deep-water sedimentation compared to earlier since they are observed in greater number (Figure 3.12.).

4.2. Implications for Cretaceous oceanic paleocirculation pattern

Many studies agree on the nature of oceanic circulation patterns in the Central Atlantic Ocean during the Cretaceous. Indeed, it seems that the transition between the Cenomanian and the Turonian (~94 Ma) was a key period illustrating ocean circulation change between the Lower and Upper Cretaceous (Bralower and Thierstein, 1984; Poulsen et al., 2001; Pucéat et al., 2005; Trabucho Alexandre et al., 2010; Donnadieu et al., 2016). During the Lower Cretaceous, the Atlantic Ocean would have had a slow to sluggish oceanic circulation with very little renewal of water deeper than 1500 m (Barron, 1983; Bralower and Thierstein, 1984). This sluggish circulation would have favoured the development of anoxic and oxygen-depleted waters (Schlanger and Jenkyns, 1976; Bralower and Thierstein, 1984).

As a result, an important stratification of the ocean water column is inferred with little or no renewal of deep-water masses (Schlanger and Jenkyns, 1976; Bralower and Thierstein, 1984). The water mass circulation in the Central Atlantic Ocean during the Lower Cretaceous would have exclusively affected water-depths shallower than 500 m, with ocean currents originating from the Tethys Ocean and circulating into the eastern Central Atlantic Ocean (Poulsen et al., 2001; Pucéat et al., 2005). In contrast, palaeogeographic changes during the Turonian, 90-94 Ma (e.g., opening of the Equatorial Atlantic Ocean) would have progressively led to increasing oceanic circulation and better ventilation of the seafloor by bottom currents during the Upper Cretaceous in the whole Central Atlantic (Poulsen et al., 2001; Donnadieu et al., 2016). This change would have resulted in the formation of deep-water currents that originated from the eastern Pacific and the South Atlantic oceans, and flowed northward to the Central Atlantic Ocean (Poulsen et al., 2001; Trabucho Alexandre et al., 2010; Robinson and Vance, 2012; Voigt et al., 2013; Donnadieu et al., 2016). Our results show an evolution of deep-sea sedimentation with a similar timing to that currently proposed for the evolution of the palaeocirculation of the Central Atlantic Ocean during the Cretaceous. Indeed, we observe more sedimentary features related to bottom currents in the Upper Cretaceous sequence than during the preceding Mesozoic periods (Figures 3.12. and 3.13.). In addition, this study confirms the presence of bottom currents during the Upper Cretaceous as proposed by Robinson and Vance (2012) and constrains the palaeobathymetry at which these bottom currents affected the sedimentation (Figure 3.11.). These constraints help to reduce the great uncertainty about Cretaceous palaeobathymetry in the eastern Central Atlantic Ocean. Actually, the paleowater-depths of the Cretaceous bottom currents had been estimated by modeling and by neodymium isotope analysis in fish teeth, but it remained qualitative (Poulsen et al., 2001; MacLeod et al., 2008; Trabucho Alexandre et al., 2010; Donnadieu et al., 2016). It is now clear that the Central Atlantic Ocean palaeobathymetry was already close

to present-day depth since the Lower Cretaceous (>4000 m in the deep basin, Figure 3.11C.). Moreover, the organization of the modern water column on the NW African margin involves surface (0-~600 m), intermediate (~600-1500 m) and the deep-waters that extend down to 4000 m depth with specific temperatures and salinities (Figure 3.13A.). These water masses originate from other basins, including the South Atlantic and the Antarctic Oceans (Emery and Meincke, 1986). Bathymetry and water column stratification of the eastern Central Atlantic Ocean could be similar between the Upper Cretaceous and present-day, which is consistent with the establishment of a global circulation since the Upper Cretaceous (Poulsen et al., 2001).

Figure 3.13. Synthetic present day and Cretaceous oceanographic-seafloor model. (A) Present–day oceanographic properties along the Northwestern African Margin. (B) Cretaceous synthesis of observed sedimentary features occurrences related to bottom–water currents. (C) Evolution of Cretaceous bottom water sedimentary features record. Oceanographic data (temperature, salinity) are sourced from National Oceanic and Atmospheric Administration (NOAA) world ocean database (WOD13, Station 1550019(C): 21°W 14°N) (Boyer et al., 2013). Present–day water masses names and water depths are sourced from Emery and Meincke (1986). SACW: South Atlantic Central Water. ENACW: Eastern North Atlantic Central Water. AIW: Antarctic Intermediate Water. MW: Mediterranean Water. EASIW: Eastern Atlantic Subarctic Intermediate Water. ABW: Antarctic Bottom Waters. Paleobathymetries related to Cretaceous ocean currents are from: DBW – Demerara Bottom Water (Berrocoso et al., 2010); NCW – North Component Waters (MacLeod et al., 2008; Voigt et al., 2013); SCW – South Component Waters (Robinson and Vance, 2012) and TCC – Tethys Circumglobal Current (Pucéat et al., 2005).

However, our results do not support the hypothesis that proposes a sluggish to slow deep–water circulation for the Central Atlantic Ocean before the Upper Cretaceous (Barron, 1983; Bralower and Theirstein, 1984, Poulsen et al., 2001). Indeed, this work documents the presence of active bottom currents flowing since the Lower Cretaceous (Figures 3.8., 3.9., 3.12. and 3.13.) which suggests active deep oceanic circulation since the Early Cretaceous. This findings supported by other studies which have illustrated the movements of deep-water masses flowing in the Central Atlantic Ocean during the Cretaceous. For example, Soares et al. (2014) in a study of the northwest of the Iberia margin and in a study of Dunlap et al. (2013) offshore Morocco illustrated the presence of contourite drifts and sediment waves on the seafloor since the Lower Cretaceous. Dunlap et al. (2013) proposed that sediment waves and contourite drift development observed in this study offshore of Mauritania and Guinea (Figures 3.11B. and 3.13.B).

5. Conclusions

This study provides evidence of sedimentary features related to bottom current activity and layered oceanic circulation since the Lower Cretaceous in the central Atlantic offshore of Mauritania and Guinea. Lower Cretaceous contourite drifts formed in paleowaterdepths of >4000 m in the distal domain of the NW African margin near the location of DSDP Site 317. During the Albian-Cenomanian, contourite drifts and sediment waves formed along the base of the continental slope and combined with gravity-driven sedimentation in the Guinean and Senegal basins. From the Turonian to the Maastrichtian, an increase in the number of sediment wave fields is noted in the abyssal plain of the Senegal Basin. These particular features seem disconnected from gravity-driven sedimentation that affected the slope and the proximal parts of the abyssal plain. In addition, contourite drifts were identified in the Mauritanian Basin during this period. These results support an Upper Cretaceous oceanic model of a better ventilated Central Atlantic Ocean, and bottom current flow starting in the Lower Cretaceous which is inconsistent with hypotheses that call for a sluggish to stagnant ocean at that time. Heterogeneity of sediments associated with organic rich sediments in the eastern Central Atlantic domain has been unraveled by tracing methods (Mourlot et al., in press). More works of the Cretaceous deep-sea sediments and oceans circulation still need to be done.

Acknowledgments

Y.M. and G.B. thank Total E&P for funding their research project at the Université Toulouse 3 – Paul Sabatier. Thanks to François Leparmentier, Jean-Marc Pince (Total E&P) and Samuel Toucanne (IFREMER, LGS, Plouzané) for valuable discussions. We also thank Alan Roberts and Nick Kusznir for allowing us to use Flex–DecompTM. We are grateful to TGS for the permission to publish the seismic lines. Seismic data sourced from the Virtual Seismic Atlas (VSA; link) have been used to produce the Figure 3.6A. (survey: VER-01 MWT and VERMAU-01, seismic data property of CGG Veritas). PC thanks the Charles T. McCord Jr Chair in Petroleum Geology at LSU. We would also like to thank the editor Jean-Philippe Avouac, Joe Cartwright and an anonymous reviewer for their helpful comments.

References

- Barron, E. J., 1983. A warm, equable Cretaceous: The nature of the problem, Earth Sci. Rev., 19, 305–338
- Berrocoso, A.J., MacLeod, K.G., Martin, E., Bourbon, E., Londoño, C.I., and Basak, C., 2010. Nutrient trap for Late Cretaceous organic–rich black shales in the tropical North Atlantic: Geology, v. 38, p. 1111–1114. doi:10.1130/G31195.1.
- Boyer, T.P., J. I. Antonov, O. K. Baranova, C. Coleman, H. E. Garcia, A. Grodsky, D. R. Johnson, R. A. Locarnini, A. V. Mishonov, T.D. O'Brien, C.R. Paver, J.R. Reagan, D. Seidov, I. V. Smolyar, and M. M. Zweng, 2013. World Ocean Database 2013, NOAA Atlas NESDIS 72, S. Levitus, Ed., A. Mishonov, Technical Ed.; Silver Spring, MD, 209 pp., doi:10.7289/V5NZ85MT
- Bralower, T. J., and Thierstein, H. R., 1984. Low productivity and slow deep-water circulation in mid–Cretaceous oceans. Geology, 12(10), 614–618.
- Bull, S., Cartwright, J., and Huuse, M., 2009. A review of kinematic indicators from masstransport complexes using 3D seismic data. Marine and Petroleum Geology, 26(7), 1132–1151. https://doi.org/https://doi.org/10.1016/j.marpetgeo.2008.09.011
- Calvès, G., Clift, P. D., and Inam, A., 2008. Anomalous subsidence on the rifted volcanic margin of Pakistan: No influence from Deccan plume. Earth and Planetary Science Letters, 272(1–2). doi:10.1016/j.epsl.2008.04.042
- Calvès, G., Toucanne, S., Jouet, G., Charrier, S., Thereau, E., Etoubleau, J., Marsset, T., Droz, L., Bez, M., Abreu, V., Jorry, S., Mulder, T. and Lericolais, G., 2013, Inferring denudation variations from the sediment record; an example of the last glacial cycle record of the Golo Basin and watershed, East Corsica, western Mediterranean sea. Basin Res, 25: 197-218. doi:10.1111/j.1365-2117.2012.00556.x
- Clift, P. D., Turner, J., and Party, T. O. D. P. L. 152 S., 1995. Dynamic support by the Iceland Plume and its effect on the subsidence of the northern Atlantic margins. Journal of the Geological Society, 152(6), 935–941. doi:10.1144/GSL.JGS.1995.152.01.09
- Davison, I., 2005. Central Atlantic margin of North West Africa: Geology and hydrocarbon potential (Morocco to Guinea), J. Afr. Earth Sci., 43, 254–274, doi:10.1016/j.jafrearsci.2005.07.018.
- Donnadieu, Y., Pucéat, E., Moiroud, M., Guillocheau, F., Deconinck, J.–F., 2016. A better– ventilated ocean triggered by Late Cretaceous changes in continental configuration. Nature Communications 7, 10316. doi:10.1038/ncomms10316
- Dott, R.H., 1963. Dynamics of subaqueous gravity depositional processes. AAPG Bull., 47,104–128.
- Dunlap, D., Wood, L., Moscardelli, L., 2013. Seismic geomorphology of early North Atlantic sediment waves, offshore northwest Africa. Interpretation 1, SA75–SA91. doi:10.1190/INT–2013–0040.1
- Emery, K. O., and Uchupi, E, 1984. The geology of the Atlantic Ocean. Springer Science & Business Media. doi: 10.4319/lo.1986.31.3.0669
- Emery, W.J., and Meincke J., 1986. Global water masses: Summary and review, Oceanologia Acta, 9(4), 383–391.
- Faugères, J.–C., Stow, D.A.V., Imbert, P., Viana, A., 1999. Seismic features diagnostic of contourite drifts. Marine Geology 162, 1–38. doi:10.1016/S0025–3227(99)00068–7
- Flicoteaux, R., Latil–Brun, M.–V., Michaud, L., 1988. Histoire de la subsidence post–rift du bassin côtier mauritano–sénégalo–guinéen. Relation avec l'amincissement crustal pendant la période jurassique à Crétacé inférieur. Comparaison avec l'évolution des marges péri–atlantiques au niveau de l'Atlantique Central et Equatorial (côte est des U.S.A., Sud–Sahara, Côte d'Ivoire et Plateau du Demerara). Journal of African Earth Sciences (and the Middle East), The West African connection: Evolution of the central atlantic ocean and its Continental Margins 7, 345–359. doi:10.1016/0899–5362(88)90079–6
- Flood, R. D., Manley, P. L., Kowsmann, R. O., Appi, C. J., Pirmez, C., 1991. Seismic Facies and Late Quaternary Growth of Amazon Submarine Fan BT Seismic Facies and Sedimentary Processes of Submarine Fans and Turbidite Systems. In P. Weimer & M. H. Link (Eds.) (pp. 415–433). New York, NY: Springer New York. doi:10.1007/978-1-4684-8276-8_23
- Guiraud, R., Bosworth, W., 1997. Senonian basin inversion and rejuvenation of rifting in Africa and Arabia: synthesis and implications to plate–scale tectonics. Tectonophysics, Structural Controls on Sedimentary Basin Formation 282, 39–82. doi:10.1016/S0040–1951(97)00212–6
- Hardenbol, J., Vail, P. R., Ferrer, J., Montadert, L., and Blanchet, R., 1981. Interpreting paleoenvironments, subsidence history and sea–level changes of passive margins from seismic and biostratigraphy. Oceanologica Acta, Special issue, 2, 33–44.
- Heezen, B.C., Hollister, C., 1964. Deep-sea current evidence from abyssal sediments. Marine Geology 1, 141–174. doi:10.1016/0025–3227(64)90012–X
- Hernández-Molina, F. J., Maldonado, A., & Stow, D. A. V. 2008a. Chapter 18 Abyssal Plain Contourites. Developments in Sedimentology, 60, 345–378. doi:10.1016/S0070-4571(08)10018-8
- Hernández–Molina F.J., Llave E., Stow D.A.V., 2008b. Chapter 19 Continental Slope Contourites, Developments in Sedimentology, 60, 379–408. doi:10.1016/S0070– 4571(08)10019–X
- Hopkins, A.E., 2006. Seismic stratigraphic interpretation of contourite systems, Namibian continental margin. PhD Thesis, University of Cardiff, Cardiff.
- Jansa, L., Gardner, J.V., Dean, W.E., 1978. Mesozoic sequences of the Central North Atlantic. Initial Reports of the Deep Sea Drilling Project. doi:10.2973/dsdp.proc.41.138.1978
- Kusznir, N. J., Roberts, A. M., and Morley, C. K., 1995. Forward and reverse modelling of rift basin formation. Geological Society, London, Special Publications, 80(1), 33–56. doi: 10.1144/GSL.SP.1995.080.01.02
- Lancelot, Y., Seibold, E., Cepek, P., Dean, W.E., Eremeev, V., Gardner, J.V., Jansa, L., Johnson, D., Kasheninnikov, V., Pflaumann, U., Graham, J., Bukry, D., 1978a. Site 367: Cape Verde Basin. Initial Reports of the Deep Sea Drilling Project 41, 163–232. doi:10.2973/dsdp.proc.41.103.1978
- Lancelot, Y., Seibold, E., Cepek, P., Dean, W.E., Eremeev, V., Gardner, J.V., Jansa, L., Johnson, D., Kasheninnikov, V., Pflaumann, U., Graham, J., Bukry, D., 1978b. Site

368: Cape Verde Rise. Initial Reports of the Deep Sea Drilling Project 41, 233–326. doi:10.2973/dsdp.proc.41.104.1978

- Latil–Brun, M.V. and Lucazeau, F., 1988. Subsidence, extension and thermal history of the West African margin in Senegal. Earth and Planetary Science Letters, 90(2): 204–220. doi: 10.1016/0012–821X(88)90101–X
- Labails, C., 2007. La marge sud-marocaine et les premières phases d'ouverture de l'océan Atlantique Central. PhD Thesis. Université de Bretagne Occidentale).
- MacLeod, K.G., Martin, E.E., Blair, S.W., 2008. Nd isotopic excursion across Cretaceous ocean anoxic event 2 (Cenomanian–Turonian) in the tropical North Atlantic. Geology 36, 811–814. doi:10.1130/G24999A.1
- Martin, E.E., MacLeod, K.G., Jiménez Berrocoso, A., Bourbon, E., 2012. Water mass circulation on Demerara Rise during the Late Cretaceous based on Nd isotopes. Earth and Planetary Science Letters 327–328, 111–120. doi:10.1016/j.epsl.2012.01.037
- Mosher, D. C., Campbell, D. C., Gardner, J. V, Piper, D. J. W., Chaytor, J. D., and Rebesco, M., 2017. The role of deep-water sedimentary processes in shaping a continental margin: The Northwest Atlantic. Marine Geology, 393, 245–259. doi:10.1016/j.margeo.2017.08.018
- Mourlot, Y., Roddaz, M., Dera, G. Calvès, G., Kim, J.H., Chaboureau, A-C., Mounic, S., and Raison, F., in press, Geochemical evidence for large-scale drainage reorganization in Northwest Africa during the Cretaceous, G-Cubed, doi:10.1029/2018GC007448
- Mullins H.T., and Neumann, A.C., 1979. Deep carbonate bank–margin structure and sedimentation in the northern Bahamas. SEPM Publ., 27, 165–192.
- Patriat, M., and Labails, C., 2006. Linking the Canary and Cape–Verde hot–spots, northwest Africa. Marine Geophysical Research, 27(3), 201–215. doi: 10.1007/s11001–006–9000–7
- Posamentier, H. W., and V. Kolla, 2003. Seismic geomorphology and stratigraphy of depositional elements in deep-water settings, J. Sediment. Res., 73(3), 367–388.
- Poulsen, C. J., Barron E. J., Arthur M. A., and Peterson W. H., 2001. Response of the Mid-Cretaceous global oceanic circulation to tectonic and CO2 forcings, Palaeoceanography, 16(6), 576–592, doi:10.1029/2000PA000579.
- Pucéat, E., Lécuyer, C., Reisberg, L., 2005. Neodymium isotope evolution of NW Tethyan upper ocean waters throughout the Cretaceous. Earth and Planetary Science Letters 236, 705–720. doi:10.1016/j.epsl.2005.03.015
- Purdy, E.G. 1989. Africa Geology and Hydrocarbons Map. Exploration of Africa Project.
- Rebesco, M., Hernández–Molina, F.J., Van Rooij, D., Wåhlin, A., 2014. Contourites and associated sediments controlled by deep–water circulation processes: State–of–the–art and future considerations. Marine Geology, 50th Anniversary Special Issue 352, 111–154. doi:10.1016/j.margeo.2014.03.011
- Rebesco, M., Mosher, D., & Piper, D. J. W. 2017. Advancements in Understanding Deep-Sea Clastic Sedimentation Processes: a preface. Marine Geology, 393, 1–3. doi:10.1016/j.margeo.2017.10.007
- Roberts, A. M., Kusznir, N. J., Yielding, G., & Styles, P., 1998. 2D flexural backstripping of extensional basins: the need for a sideways glance. Petroleum Geoscience, 4(4), 327-338.

- Roberts, A. M., R. I. Corfield, N. J. Kusznir, S. J. Matthews, E.–Kåre Hansen, and R. J. Hooper 2009. Mapping palaeostructure and palaeobathymetry along the Norwegian Atlantic continental margin: Møre and Vøring basins, Petroleum Geoscience, 15(1), 27–43, doi:10.1144/1354–079309–804
- Robinson, S.A., Vance, D., 2012. Widespread and synchronous change in deep–ocean circulation in the North and South Atlantic during the Late Cretaceous. Palaeoceanography 27, PA1102. doi:10.1029/2011PA002240
- Ryan, W.B.F., Sibuet, J–C., Arthur, M.A., Lopatin, B.G., Moore, D.G., Maldonado, A.,
 Rehault, J–P., Iaccarino, S., Sigal, J., Morgan, G.E., Blechschmidt, G., Williams,
 A.C., Johnson, D., Barnes, R.O., and Habib, D., 1979. 2. Site 398. Initial Reports of
 the Deep Sea Drilling Project 47B, 25–233. doi:10.2973/dsdp.proc.47–2.102.1979
- Schlanger, S. O., and Jenkyns, H. C., 1976. Cretaceous oceanic anoxic events: causes and consequences. Geologie en mijnbouw, 55(3–4), 179–184.
- Schwab, A.M., Tremblay, S., Hurst, A., 2007. Seismic expression of turbidity–current and bottom–current processes on the Northern Mauritanian continental slope. Geological Society, London, Special Publications 277, 237–252. doi:10.1144/GSL.SP.2007.277.01.14
- Shipboard Scientific Party and David Bukry, 1978. Site 367: Cape Verde Basin, Part II: Site Reports, in: DSDP Volume 41 (ed. Lancelot et al.), 163–232, doi:10.2973/dsdp.proc.41.103.1978
- Soares, D.M., Alves, T.M., Terrinha, P., 2014. Contourite drifts on early passive margins as an indicator of established lithospheric breakup. Earth and Planetary Science Letters 401, 116–131. doi:10.1016/j.epsl.2014.06.001
- Stow, D. a. V., Pudsey, C.J., Howe, J.A., Faugères, J.–C., Viana, A.R., 2002. Deep–water contourite systems: Modern drifts and ancient series, seismic and sedimentary characteristics. Geological Society Memoir.
- Trabucho Alexandre, J., Tuenter, E., Henstra, G. A., van der Zwan, K. J., van de Wal, R. S., Dijkstra, H. A., and de Boer, P. L., 2010. The mid-Cretaceous North Atlantic nutrient trap: Black shales and OAEs. Palaeoceanography, 25(4). doi: 10.1029/2010PA001925
- Uenzelmann–Neben, G., Weber, T., Grützner, J., Thomas, M., 2016. Transition from the Cretaceous ocean to Cenozoic circulation in the western South Atlantic A twofold reconstruction. Tectonophysics. doi:10.1016/j.tecto.2016.05.036
- Voigt, S., Jung, C., Friedrich, O., Frank, M., Teschner, C., Hoffmann, J., 2013. Tectonically restricted deep–ocean circulation at the end of the Cretaceous greenhouse. Earth and Planetary Science Letters 369–370, 169–177. doi:10.1016/j.epsl.2013.03.019
- von Rad, U, and Einsele, G., 1980. The evolution of passive continental margins in the light of recent deep drilling results Mesozoic–Cainozoic subsidence history and palaeobathymetry of the northwest African continental margin (Aaiun Basin to D. S. D. P. Site 397). Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 294(1409), 37 LP–50.
- von Rad, U., Hinz, K., Sarnthein, M. and Seibold, E. 1982. (Eds.), Geology of the Northwest African Continental Margin, 107–131, 12 figs., Berlin, Heidel–berg, New York (Springer).

- Watts, A. B., 1978. An analysis of isostasy in the world's oceans 1. Hawaiian–Emperor Seamount Chain, J. Geophys. Res., 83(B12), 5989–6004, doi:10.1029/JB083iB12p05989.
- Watts, A. B., 2015. 6.01 Crustal and Lithosphere Dynamics: An Introduction and Overview A2 Schubert, Gerald BT Treatise on Geophysics (Second Edition) (pp. 1–44). Oxford: Elsevier, doi:10.1016/B978–0–444–53802–4.00110–X
- Wynn, R.B., Weaver, P.P.E., Ercilla, G., Stow, D.A.V., Masson, D.G., 2000. Sedimentary processes in the Selvage sediment–wave field, NE Atlantic: new insights into the formation of sediment waves by turbidity currents. Sedimentology 47, 1181–1197. doi:10.1046/j.1365–3091.2000.00348.x

CHAPITRE IV

Evolution de la provenance et de l'architecture sédimentaire du segment sud de l'océan Atlantique central au Crétacé.

CHAPITRE 4. EVOLUTION DE LA PROVENANCE ET DE L'ARCHITECTURE SEDIMENTAIRE DES DEPOTS DU SEGMENT SUD DE L'OCEAN ATLANTIQUE CENTRAL AU CRETACE : IMPLICATIONS SUR L'ENRICHISSEMENT EN MATIERE ORGANIQUE

Résumé

Le Plateau de Démérara et le bassin du Guyana-Suriname sont les segments conjugués de la partie sud de la marge Nord-ouest Africaine où sont observés des niveaux roches mères pendant le Crétacé. Le Plateau de Démérara, qui se situe dans un cadre paléogéographique particulier puisqu'il s'agit d'un plateau océanique isolé, présente des enrichissements en carbone organique exceptionnels (TOC>30%) au Crétacé supérieur. Bien que les conditions de dépôts de ces niveaux organiques sur le Plateau de Démérara soient connues, il est avant tout nécessaire de le situer dans le cadre paléogéographique du bassin sédimentaire du Guyana-Suriname au Crétacé. Or, l'évolution de l'architecture sédimentaire, de la provenance et des paléo-bathymétries associées aux sédiments déposés dans le bassin du Guyana-Suriname au Crétacé demeure peu ou mal connue à ce jour. Pour cela, les concentrations en éléments majeurs et traces, les compositions isotopiques en néodyme (Nd) et en strontium (Sr) ainsi que l'enrichissement en carbone organique total (TOC) et le contenu en isotope du carbone ($\delta^{13}C_{TOC}$) ont été déterminées sur 19 échantillons du puits Arapaïma-1, situé sur le plateau continental du bassin du Guyana-Suriname. Ces analyses géochimiques sont associées à une étude de bassin qui repose sur l'interprétation de données de sismique réflexion 2D et sur le backstripping d'une section régionale illustrant les paléobathymétries de dépôt des black shales et du cône-sous marin turbiditique. Les données géochimiques, notamment le rapport élémentaire Cr/Th et l'anomalie en europium (Eu) ont mis en évidence un changement vers une source sédimentaire plus juvénile et felsique dans

les sédiments turoniens et plus récents. Les analyses de $\delta^{13}C_{TOC}$ ont permis d'identifier l'incursion positive associée à l'événement anoxique 2 de la transition entre le Cénomanien et le Turonien sur le puits Arapaïma-1. La majorité des valeurs très peu radiogéniques d' $\epsilon_{Nd(0)}$ (< -15), celles de $^{87}{\rm Sr}/^{86}{\rm Sr}$ (de 0,714598 à 0,760897) et les âges modèles $T_{\rm DM}$ (de 1,8 à 2,6 Ga) ont permis d'identifier que les unités précambriennes du Bouclier Guyanais sont la source principale des apports sédimentaires au Crétacé. Trois phases d'activité volcanique, qui se caractérisent par des valeurs d' $\epsilon_{_{Nd(0)}}$ supérieures à -2,2 et des âges T_{DM} jeunes (de 0,8 à 0,9 Ga) sont enregistrées par les sédiments du bassin Guyana-Suriname. L'origine de ce volcanisme (LIP, volcanisme mésozoïque du Takutu ou volcanisme sous marin local) reste à déterminer. Certaines valeurs d' $\varepsilon_{Nd(0)}$ (de -12,2 à -13,6) illustrent des variations ponctuelles de la source impliquant une extension de l'aire de drainage vers le Sud du Bouclier Guyanais. Cela a permis d'apporter dans le bassin du Guyana-Suriname un matériel sédimentaire plus récent issu des unités paléozoïques ou mésozoïques observées notamment dans le bassin du Takutu. L'analyse des sections de sismique réflexion 2D a permis de caractériser le principal distributaire des apports terrigènes dans le domaine océanique qui correspond à un canyon probablement associé au paléo-Berbice, et qui se manifeste dans le bassin profond par la formation d'un cône sous-marin turbiditique à des paléo-bathymétries de plus de 4000 m. Ces résultats permettent de comparer les conditions de dépôt des sédiments riches en matière organique du Plateau de Démérara et du plateau continental guyanais, au site Arapaïma-1. Ainsi, le puits Arapaïma-1, situé à des paléobathymétries plus faibles que celles du Plateau de Démérara, semble bénéficier de conditions de préservation moins optimum et est influencé par une plus forte dilution de la matière organique, expliquant une différence d'enrichissement en contenu organique.

1. Introduction

Le bassin du Guyana-Suriname se situe le long de la marge passive équatoriale sudaméricaine. Il est ouvert sur l'Océan Atlantique Central et correspond au segment conjugué de la partie sud de la marge nord-ouest africaine compris entre la Guinée et le Sénégal (Figure 4.1A.). Ce bassin est délimité à l'Est par le Plateau de Démérara, au Sud par le Bouclier Guyanais, à l'Ouest par le Prisme de la Barbade et au Nord par la Plaine abyssale de Démérara (Figure 4.1B.). A l'instar du Craton Ouest Africain et de sa marge, le Bouclier Guyanais et le bassin du Guyana-Suriname sont de bons exemples illustrant comment les archives sédimentaires enregistrent les événements géodynamiques tels que l'ouverture de l'Océan Atlantique Equatorial ou la formation de la large province ignée des Caraïbes (LIP, Sibuet et Mascle, 1978 ; Duncan et Hargraves, 1984 ; Yang et Escalona, 2011, voir chapitre précédent). En particulier, l'étude de la provenance des sédiments utilisant les concentrations en éléments majeurs et traces ainsi que les compositions isotopiques en néodyme (Nd) et strontium (Sr) des sédiments détritiques est une méthode robuste permettant de caractériser la nature des apports sédimentaires et la source qui leurs sont associées (McLennan et al., 1993, voir chapitres précédents). De nombreuses études sur la composition géochimique des sédiments transportés par les fleuves amazoniens ont ainsi été menées pour (1) déterminer leur provenance (Basu et al., 1990 ; Martinelli et al., 1993 ; Vital et Stattegger, 2000 ; Roddaz et al., 2005; Roddaz et al., 2006; Guyot et al., 2007); (2) estimer les conditions d'altération dans la chaîne Andine ou dans la plaine amazonienne (Gibbs, 1967; Allègre et al., 1996; Gaillardet et al., 1997 ; Guyot et al., 2007 ; Viers et al., 2008) ; (3) déterminer le temps de résidence des sédiments dans le bassin amazonien (Meade et al., 1985 ; Dunne et al., 1998 ; Aalto et al., 2006 ; Dosseto et al., 2006) et (4) estimer la composition chimique de la croûte continentale érodée (Goldstein et al., 1984 ; Allègre et al., 1996 ; Gaillardet et al., 1997). D'autres travaux, utilisant essentiellement les compositions isotopiques en Sr et Nd des sédiments pour déterminer leur provenance ont permis une reconstitution du paléodrainage de l'Amazone au Néogène (Roddaz et al., 2005) ou pendant la transition entre l'Oligocène et le Miocène (Stewart et al., 2016).

Les sédiments provenant de l'érosion du Bouclier Guyanais ont fait l'objet de très peu d'études, à l'exception de l'analyse de la couverture sédimentaire sur le Plateau de Démérara grâce aux données acquises lors de la campagne ODP du leg 207 (Figure 4.1B., Shipboard Scientific Party, 2004). En détail, les niveaux du Crétacé de ce site ont été particulièrement étudiés par la communauté scientifique, principalement dans le but de caractériser les roches mères du Crétacé, préciser les conditions d'oxygénation de l'eau lors de l'événement anoxique du Cénomanien-Turonien (OAE2, ~ 94 Ma, Schlanger et Jenkyns, 1976) et comprendre le rôle de la circulation océanique dans l'Atlantique Central au Crétacé sur la formation des roches mères (Poulsen, 2001 ; Trabucho Alexandre et al., 2010 ; Jiménez Berrocoso et al., 2010; Donnadieu et al., 2016). Le Plateau de Démérara est un haut topographique déconnecté du plateau continental guyanais qui se situe à des bathymétries importantes (>1000 m, Arthur et Natland, 1979; Jiménez Berrocoso et al., 2008). Cela implique probablement que les modèles expliquant la présence ou l'absence de ces niveaux organiques sur le Plateau de Démérara, tels que l'apparition d'un courant chaud et salé de profondeur intermédiaire (Demerara Bottom Water, DBW, MacLeod et al., 2008) ou encore la présence d'une zone à oxygène minimum (Hetzel et al., 2008) ne pourraient pas être appliqués sur le reste du bassin du Guyana-Suriname. Certaines études proposent une contribution sédimentaire du Bouclier Guyanais sur le Plateau de Démérara pendant le Crétacé (MacLeod et al., 2008; Martin et al., 2012). Cependant, aucune étude ne s'est attachée à déterminer l'origine des sédiments qui constituent le remplissage sédimentaire du bassin du Guyana-Suriname. Cet aspect est essentiel puisque la majorité des hypothèses concernant la formation des roches mères du Crétacé dans cette zone sont faites à partir de l'analyse des sédiments du Plateau de Démérara. Le bassin du Guyana-Suriname et en particulier le puits Arapaïma-1 sont donc des endroits appropriés pour déterminer la provenance des sédiments du bassin du Guyana-Suriname puisqu'ils présentent un enregistrement sédimentaire continu depuis le Crétacé incluant la présence de roches mères contemporaines à celles observées sur le Plateau de Démérara (Yang et Escalona, 2011).

Frontières actuelles des pays

Figure 4.1. A. Localisation de la zone d'étude dans le contexte paléogéographique au Crétacé (Torsvik et al., 2012). Le rectangle rouge indique la position de la Figure 4.1B. COA : Craton Ouest Africain. BG : Bouclier Guyanais. B. Principales unités géologiques constituant l'arrière-pays du bassin du Guyana-Suriname, principales unités morphologiques du domaine océanique atlantique actuel et localisation du site Arapaïma-1 (AR-1) ainsi que des sites ODP du leg 207 et du DSDP leg 78A site 543 (cercles noirs). TkB : Bassin du Takutu. PaB : Bassin de Parnaíba. Le canyon du Crétacé est localisé d'après l'étude de Yang et Escalona (2011).

Il existe également de nombreuses incertitudes concernant les paléo-bathymétries du bassin profond dans lesquelles se sont développées les roches mères crétacées (Tissot et al., 1979 ; Trabucho Alexandre et al., 2010). Or ces éléments sont essentiels afin de confirmer ou non les modèles de formation de ces niveaux organiques qui impliquent le développement, sous des conditions anoxiques et de forte productivité marine primaire, d'une sédimentation hémipélagique avec de faibles apports terrigènes à des paléobathymétries de 1000 m de profondeur (Arthur et Natland, 1979; Shipboard Scientific Party, 2004; Hetzel et al., 2008; Jiménez Berrocoso et al., 2008 ; 2010). Afin de vérifier si la sédimentation est principalement hémipélagique ce qui implique la contribution quasi-exclusive de la matière organique marine et exclue en partie celle d'origine terrestre, il est nécessaire de localiser les dépocentres et les principaux points sources des apports terrigènes. Les paléobathymétries et le flux sédimentaire peuvent être caractérisés notamment par l'étude de l'architecture du Bassin du Guyana-Suriname à partir de l'analyse de sections de sismique réflexion 2D et de leur backstripping. En effet, cela permet de préciser l'évolution de la sédimentation sur le plateau continental, le talus continental, le bassin profond et sur le Plateau de Démérara. Ce type d'étude permet également de localiser les zones de dépôt et de non-dépôt du matériel terrigène, ce qui est complémentaire aux analyses de provenance. Certains travaux de ce type existent sur le Bassin du Guyana-Suriname mais ils concernent essentiellement le remplissage cénozoïque et proposent une évolution à basse résolution de l'architecture sédimentaire crétacée (Campbell, 2005 ; Yang et Escalona, 2011). Il est donc nécessaire de caractériser l'architecture sédimentaire à une plus haute résolution notamment pendant l'intervalle Albien-Santonien puisque c'est à cette période que se déposent les sédiments riches en matière organique. L'association de l'étude de provenance et de l'étude du remplissage du bassin du Guyana-Suriname permettra également de définir les sources de l'export sédimentaire sur le continent et les zones de dépôt du matériel terrigène dans le domaine océanique.

L'objectif de ce chapitre est donc de (1) déterminer la provenance des sédiments crétacés prélevés au puits Arapaïma-1 grâce aux concentrations en éléments majeurs et traces et aux compositions isotopiques en néodyme et en strontium, (2) caractériser l'architecture sédimentaire des dépôts dans le bassin du Guyana-Suriname et les paléo-bathymétries associées grâce à l'interprétation et au *backstripping* de profils de sismique réflexion 2D et (*3*) comparer la provenance des sédiments avec l'évolution de la sédimentation sur le plateau continental guyanais au puits Arapaïma-1 et sur le Plateau de Démérara afin de discuter les conditions de formation des niveaux organiques du Crétacé observés dans le bassin du Guyana-Suriname.

2. Cadre géologique et contexte géodynamique

2.1. Contexte géodynamique du bassin du Guyana-Suriname

L'évolution géodynamique du bassin du Guyana-Suriname est contrôlée par trois périodes tectoniques majeures liées à l'ouverture de l'Océan Atlantique. Trois segments de marge se sont développés, débutant par le segment central dès 170 Ma (Labails et al., 2010), se poursuivant par l'ouverture de la partie sud vers 145 Ma (Nurnberg et Müller, 1991) et se terminant par celle de la région équatoriale à 105 Ma (Sibuet et Mascle, 1978).

L'ouverture du segment central de l'Océan Atlantique est précédée par la formation il y a 200 Ma de la Central Atlantic Magmatic Province (CAMP) qui est une large province ignée (LIP) constituée essentiellement de basaltes recouvrant la partie nord de l'Amérique du Sud, la région nord-ouest de l'Afrique et l'est de l'Amérique du Nord (Marzoli et al., 1999). L'ouverture de l'Océan Atlantique Central présente une extension Est-Ouest qui s'illustre dans le domaine continental au Nord du Brésil par l'apparition de grabens qui structurent le remplissage sédimentaire du bassin du Takutu (TkB ; McConnell, 1969 ; Figure 4.1B.). Ce bassin est un bassin mésozoïque situé à la frontière entre le Guyana et le Suriname au centre du Bouclier Guyanais (Figure 4.1B). Il est caractérisé par un remplissage constitué de roches volcaniques du Jurassique inférieur et de roches sédimentaires déposées entre le Jurassique et le Crétacé inférieur (Figure 4.1B., Van der Hammen et Burger, 1965 ; Berrangé et Dearnley, 1975 ; Crawford et al., 1985). Les roches volcaniques correspondent à la formation Apoteri qui est constituée essentiellement de basaltes et de tholéiites qui recouvrent le socle précambrien par intrusions et extrusions. Ce volcanisme serait directement lié à l'ouverture

de l'Océan Atlantique Central et localement associé à la déformation extensive affectant le graben du Takutu (Berrangé et Dearnley, 1975).

L'ouverture de l'Océan Atlantique Sud débute au Crétacé inférieur (~145 Ma; Nurnberg et Müller, 1991) depuis le Sud vers les hautes latitudes et se poursuit progressivement vers le Nord en direction de l'équateur. Cette ouverture progressive est contrôlée par la rotation anti-horaire de la plaque africaine par rapport à la plaque sudaméricaine qui provoque, dans la région de Démérara, un événement compressif (Pindell, 1991 ; Gouyet et al., 1994 ; Mann et al., 1995). La fin de cette ouverture se traduit par une érosion régionale qui affecte le bassin du Guyana-Suriname et qui résulte par une rupture de l'enregistrement sédimentaire pendant l'intervalle Aptien supérieur-Albien inférieur (Figure 4.2., Lindsbeth et Beraldo, 1985).

Dès 105 Ma, le dernier segment de l'Océan Atlantique s'ouvre par la séparation des parties équatoriales de la plaque africaine et de la plaque sud-américaine provoquant une déformation extensive dans le bassin du Guyana-Suriname (Figure 4.2., Sibuet et Mascle, 1978). Cet événement se produit parallèlement au refroidissement crustal qui provoque la subsidence thermique du bassin du Guyana-Suriname (Benkhelil et al., 1995 ; Greenroyd et al., 2007 ; Yang et Escalona, 2011). Pendant le Crétacé supérieur, le bassin ne subit plus de déformations majeures. C'est durant cette période que se forme la LIP des Caraïbes dans la partie est de l'Océan Pacifique (Duncan et Hargraves, 1984). C'est également à cette période que se produit une accélération de l'accrétion de la croûte océanique de l'Atlantique Central (Larson, 1991) et que débute la convergence entre la plaque Caraïbes et Amérique du Sud (Kohn et al., 1984). Les premiers sédiments d'origine andine s'observent dans le bassin amazonien sud péruvien dès le Maastricthien supérieur (~68 Ma, Louterbach et al., 2017).

Figure 4.2. Séquence lithostratigraphique, $\delta^{13}C_{TOC}$, TOC, et taux de sédimentation des dépôts du Crétacé au puits Arapaïma-1. La position stratigraphique des échantillons utilisés dans cette étude est indiquée par les triangles oranges. M, mudstone. W, wackestone. P, packstone. G, grainstone. A : argile. S : silt. SF, sable fin. SM, sable moyen. SG, sable grossier. Les données de TOC sont issues du rapport de fin de sondage du puits et de nouvelles analyses faites dans cette étude. L'ouverture de l'Océan Atlantique Sud est datée d'après Nürnberg et Müller (1991) ; celle de l'Océan Atlantique Equatorial d'après Sibuet et Mascle (1978), le refroidissement crustal d'après Benkhelil et al. (1995), Greenroyd et al. (2007) et Yang et Escalona (2011) ; l'accélération de l'accrétion de la croûte océanique (Larson, 1991) ; la formation de la Large Province Ignée des Caraïbes (Duncan et Hargraves, 1984) ; la convergence entre la plaque Caraïbes et la plaque sud-américaine (Pindell, 1991) et enfin la déformation andine (Kohn et al., 1984). Les données relatives au Plateau de Démérara (Site ODP 1260) sont représentées sur une planche synthétique disponible en annexe 5.

2.2. Sources potentielles

Les sédiments déposés dans le bassin Guyana-Suriname peuvent provenir du Bouclier Guyannais ou des Andes pour les sédiments maastrichtiens à paléocènes (Yang et Escalona, 2011, Figure 4.1B.). L'arrière-pays du bassin correspond au Bouclier Guyanais qui est constitué de roches d'âges et de natures géochimiques variables. En effet, le craton est essentiellement composé de roches crustales archéennes et protérozoïques (Gruau et al., 1985), mais également de roches volcaniques plus récentes comme celles de la CAMP ou celles du volcanisme du Takutu qui forment des dykes en intrusion dans le socle précambrien (Berrangé et Dearnley, 1975; Deckart et al., 2005). A partir d'une étude bibliographique exhaustive, nous avons compilé les caractéristiques géochimiques et isotopiques de ces potentielles sources et des sédiments déposés sur marge équatoriales sud-américaine (Annexe 6). Les roches précambriennes (archéennes et protérozoïques) qui composent majoritairement le Bouclier Guyanais présentent des compositions isotopiques en Nd peu radiogéniques avec une valeur médiane d' $\epsilon_{Nd(0)}$ de -29,5 et des âges modèles T_{DM} variant de 2,2 à 3,36 (Gruau et al., 1985; Avelar et al., 2003; da Rosa Costa et al., 2006). Les roches volcaniques mésozoïques constituant la CAMP qui forment des intrusions par dykes dans le Bouclier Guyanais ont des valeurs d' $\epsilon_{Nd(0)}$ variant de -3,0 à 5.9 (valeur médiane = 3,5, Annexe 6), des compositions isotopiques en Sr fluctuant de 0,703184 à 0,707985 (médiane = 0,704185, Annexe 6) et des âges modèles T_{DM} de 0,320 à 1,714 Ga (moyenne = 0,741 Ga, Annexe 6) (Deckart et al., 2005 ; Merle et al., 2011 ; Klein et al., 2013). Le volcanisme mésozoïque qui provient de la LIP des Caraïbes constitue également un pôle très radiogénique en composition isotopique en Nd puisque la valeur médiane d' $\epsilon_{Nd(0)}$ des roches issues de ce volcanisme est de 11,5 pour un âge modèle T_{DM} variant de 0,449 à 1,087 Ga (moyenne = 0,601 Ga; Annexe 6) (White et al., 1985; Kerr et al., 2009). Le volcanisme mésozoïque sud-américain des Andes centrales présente une valeur médiane d' $\epsilon_{Nd(0)}$ de 3,2 (Rogers et Hawkesworth, 1989 ; Kay et al., 1994). Les âges modèles T_{DM} de ce volcanisme varient de 0,424 à 1,258 Ga (moyenne = 0,699, Annexe 6). Malheureusement, il n'existe pas de données géochimiques permettant de caractériser la signature de la formation volcanique mésozoïque Apoteri dans le bassin du

Takutu. Quelques compositions isotopiques du néodyme ont été mesurées sur les fractions détritiques des sédiments crétacés prélevés aux sites ODP du *leg* 207 situés sur le Plateau de Démérara (Martin et al., 2012). Les valeurs d' $\varepsilon_{Nd(0)}$ de ces sédiments varient entre -15,2 et - 19,6. Enfin, le dernier pôle compilé correspond aux sédiments modernes prélevés au Site DSDP 543 du *leg* 78A situé au large du prisme de la Barbade (Figure 4.1B.) et aux sédiments actuels obtenus par carottages sédimentaires d'interface eau-sédiments dans la Plaine de Démérara (Figure 4.1B.). Ces sédiments présentent des valeurs d' $\varepsilon_{Nd(0)}$ comprises entre -9,1 et -13,4 avec une valeur médiane de -11,9 (Annexe 6; White et al., 1985).

Les compositions isotopiques en Nd et Sr des matières en suspension transportées par les fleuves équatoriaux et amazoniens sud-américains peuvent être également utilisés afin de les comparer à celles des sédiments crétacés déposés sur la marge guyanaise. En effet, chaque fleuve présente des compositions isotopiques en Nd et Sr qui sont représentatives de la contribution moyenne des roches érodées dans leur bassin versant. Le Nd étant une terre rare peu sensible aux processus post-déposition qui affecte les sédiments, on peut donc comparer les compositions isotopiques des matières en suspension des fleuves modernes à celles des sédiments anciens dans le but d'avoir une idée de la composition moyenne des paleo bassins versants. La plupart des compositions isotopiques des fleuves modernes du bassin de l'Amazone et de leurs aires de drainage ont été étudiées par Allègre et al. (1996, Annexe 6) et Viers et al. (2008). Les fleuves Rio Negro, Urucara et Trombetas situés dans la partie nord du bassin amazonien drainent essentiellement le Bouclier Guyanais et présentent des valeurs d' $\epsilon_{Nd(0)}$ de -13,9, de -17,7 et de -22,2 et des valeurs de ${}^{87}Sr/{}^{86}Sr$ de 0,716980, de 0,728350 et de 0,746830 respectivement. Les fleuves localisés au sud du bassin amazonien ont des compositions isotopiques plus contrastées puisque le Solimões présente une valeur d' $\epsilon_{Nd(0)}$ de -9,3 et de ⁸⁷Sr/⁸⁶Sr de 0,714888 ; le fleuve Madeira de -11,5 et 0,732936 et enfin le Tapajos de -20,1 et 0,721460 (Allègre et al., 1996; Viers et al., 2008). Les fleuves Solimões et Madeira qui prennent leur source dans les Andes Centrales et drainent respectivement la partie nord et sud du bassin amazonien (Roddaz et al., 2005) ont des signatures isotopiques en Nd plus radiogéniques. Le fleuve Trapajos présente quant à lui une valeur d' $\epsilon_{Nd(0)}$ similaire

à celle du Trompetas signifiant que l'aire de drainage de ces deux fleuves érode des roches de même âge et/ou de même nature géochimique. C'est en effet le cas puisque le bassin versant du Trapajos draine principalement le Bouclier Brésilien qui est constitué de roches précambriennes à l'instar du Bouclier Guyanais (Figure 4.1.). Enfin, les matières en suspension (MES) du fleuve Amazone présentent une valeur d' $\varepsilon_{Nd(0)}$ de -10,6, un rapport isotopique ⁸⁷Sr/⁸⁶Sr de 0,721275 et un âge modèle T_{DM} de 0,755 Ga (Rousseau et al., soumis). L'Orénoque et le fleuve Maroni peuvent également être de bons analogues actuels pour caractériser les sources potentielles des sédiments du bassin du Guyana-Suriname. Les récents travaux de Rousseau et al. (soumis) ont permis de caractériser la composition isotopique ⁸⁷Sr/⁸⁶Sr de 0,728830 et un âge modèle T_{DM} de 0,880 Ga. Le fleuve Maroni quant à lui a une valeur d' $\varepsilon_{Nd(0)}$ de -23,7, un rapport isotopique ⁸⁷Sr/⁸⁶Sr de 0,733 Ga.

On peut donc distinguer les sources et fleuves cratonique qui vont présenter des valeurs d' $\varepsilon_{Nd(0)}$ très négatives (< -14,5, van Soelen et al., 2017) des fleuves et sédiments andins qui ont des valeurs d' $\varepsilon_{Nd(0)}$ comprises entre -13,8 et -7 (van Soelen et al., 2017; Roddaz et al., 2005) et des fleuves et sédiments d'origine volcanique (*e.g.* LIP des Caraïbes, CAMP ou volcanisme du Takutu) qui ont des valeurs d' $\varepsilon_{Nd(0)}$ proche de 0.

3. Matériel et méthodes

La méthodologie utilisée pour caractériser le contenu organique (TOC et δ^{13} C) et contraindre la provenance des sédiments à partir de leurs concentrations en éléments majeurs et traces et de leurs compositions isotopiques du Nd et du Sr est la même que celle présentée dans le chapitre 2. Le calcul et l'utilisation des âges modèles par rapport au manteau appauvri (T_{DM}) sont obtenus à partir de la méthode de De Paolo (1981) et expliqués dans le chapitre 1.

3.1. Echantillonnage au puits Arapaïma-1

Dix-neuf échantillons ont été prélevés sur des roches sédimentaires à granulométrie fine (argilites et *black shales*) de la séquence du Crétacé au puits Arapaïma-1 (Figure 4.2.). Ces roches se sont déposées dans des environnements marins à sédimentation mixte, à la fois carbonatée et/ou clastique. Le cadre biostratigraphique du puits se base sur les datations du rapport initial du puits qui ont fait l'objet d'une réévaluation interne dans une étude de 2013. Deux incertitudes demeurent à la limite entre l'Albien supérieur et le Cénomanien et celle entre le Santonien et le Campanien supérieur qui sont dues à un manque de données biostratigraphiques discriminantes pour localiser précisément la transition entre chaque étage (Figure 4.2.). Pour le reste du puits Arapaïma-1, le cadre biostratigraphique est suffisamment précis et contraint pour être comparé à la séquence crétacée des sites ODP du *leg* 207 situés sur le Plateau de Démérara (Figure 4.1B.).

3.2. Conversions temps-profondeur et création des cartes isopaques régionales

La principale connaissance du bassin sédimentaire du Guyana-Suriname concerne le Plateau de Démérara qui est une structure topographique particulière et donc probablement peu représentative de l'architecture sédimentaire du bassin du Guyana-Suriname. Afin de contextualiser le Plateau de Démérara par rapport à l'ensemble de la zone d'étude, les paléobathymétries et les épaisseurs de sédiments doivent être connues. Pour cela, la structure du bassin du Guyana-Suriname est illustrée par un profil régional de sismique réflexion 2D. Ce profil est calé par les datations biostratigraphiques du puits Arapaïma-1 et du ODP *leg* 207 (Figure 4.3.). Sur les principes de stratigraphie sismique, il a été défini sept unités stratigraphiques délimitées par sept surfaces en temps-double (Figure 4.3.).

Figure 4.3. Section régionale illustrant la morphologie de la marge du bassin du Guyana-Suriname entre le puits Arapaïma-1 et les sites ODP du leg 207 situés sur le Plateau de Démérara. Fe : fond de l'eau. P : base du Cénozoïque. TT : Toit du Turonien. TC : Toit du Cénomanien. mAU : Discontinuité intra-Albienne. TJ : Toit du Jurassique. TAB : toit du socle acoustique observé sur la section sismique réflexion 2D. AR-1 : puits Arapaïma-1.

Ces surfaces interprétées sur ce profil régional ont été converties en profondeur grâce à la compilation de données de vitesses issues de différentes méthodes d'acquisition géophysiques telles que des enregistrements de bouées sonores ou des données de *checkshots* (Figure 4.4.). A partir de ces données de vitesses, il a été possible de créer une loi de conversion temps-profondeur applicable à l'ensemble de la zone d'étude (Figure 4.4.).

Figure 4.4. Compilation des données de vitesse à partir des mesures faites par des bouées sonores sur le Plateau de Démérara, dans le bassin profond du Guyana-Suriname (Diebold, 1996) et des check-shots issus des sites ODP du leg 207 (Plateau de Démérara, Shipboard Scientific Party, 2004) et du puits Arapaïma-1 sur le plateau continental.

Ainsi, deux cartes régionales isopaques ont été crées (Figure 4.5.). La première carte d'épaisseur correspond à la période de l'Albien au Turonien (Figure 4.5A.) et a été obtenue à partir des surfaces de discontinuité intra-Albien (mAU, Figure 4.3.) et du toit du Turonien (TT, Figure 4.3.). La seconde carte isopaque, du Turonien au Maastrichtien, a été créée à

partir des surfaces du toit du Turonien (TT, Figure 4.3.) et du toit du Maastrichtien (P, Figure 4.3.). Une fois les surfaces temps-double du transect régional converties en profondeur (Figure 4.3.) il nous été possible de *backstripper* le profil afin d'obtenir les gammes paléobathymétriques correspondant à chaque surface interprétée.

Figure 4.5. Cartes isopaques des sédiments du Crétacé dans le bassin du Guyana-Suriname. A. Période de l'Albien au Turonien. B. Période du Turonien au Maastrichtien. Guy : Guyana. Bra : Brésil. Sur : Suriname. Guf : Guyane française.

3.3. « Backstripping » et estimations paléobathymétriques

L'objectif du backstripping (e.g. Kusznir et al., 1995; Roberts et al., 1998) est de pouvoir contraindre les paléoprofondeurs et paleobathymétries associées à l'accumulation de sédiments dans un bassin sédimentaire. Nous avons utilisé la méthode de backstripping flexural 2D qui permet de corriger les effets de la flexure et de mouvements verticaux de la croûte sur les estimations paléobathymétriques (e.g. Clift et al., 1995; Calvès et al., 2008). Nous avons utilisés pour cela le logicel FlexDecomp® sous licence académique (e.g. Kusznir et al., 1995; Roberts et al., 1998; 2009). Le régime subsidence de la zone d'étude a été estimé dans le bassin du Guyana-Suriname par Yang et Escalona (2011), celui-ci est normal et associé à la subsidence thermique. Le détail de la méthode a été expliqué dans le chapitre 3. La décompaction des couches sédimentaires est également fonction de l'épaisseur élastique effective de la lithosphère T_e (e.g. Watts, 1978). Les valeurs de T_e de la lithosphère continentale et de la lithosphère océanique dans la zone d'étude ont été compilées à partir de la cartographie de Watts (2015:Global T_{e} grid ftp://ftp.earth.ox.ac.uk/pub/tony/TOG/global_te.grd, Figure 4.6.). La valeur médiane de Te pour le domaine océanique du Guyana-Suriname est de 24,95 km (écart-type $\sigma = 4,7$) et celle du domaine continental est de 28,79 km (σ = 5,3, Figure 4.6.).

Te (km)

Figure 4.6. A. Carte illustrant la répartition du paramètre Te des lithosphères continentale et océanique (Watts, 2015). La délimitation du domaine continental et du domaine océanique est caractérisée par la limite Océan-Continent (OCB, Müller et al., 2016). B. Distribution et fréquence des valeurs Te des domaines océanique et continental.

4. Résultats

4.1. Stratigraphie du puits Arapaïma-1

La séquence sédimentaire du Crétacé inférieur au puits Arapaïma-1 est dominée par la mise en place de dépôts clastiques constitués d'une alternance de grès moyens à grossiers intercalés de bancs argileux ou carbonatés (Figure 4.2.). Cette sédimentation détritique laisse place progressivement à la formation de niveaux carbonatés depuis la fin du Crétacé inférieur jusqu'à l'Albien supérieur. Dès l'Albien supérieur la mise en place d'une séquence argileuse riche en matière organique (black shales) est associée à une diminution légère du taux de sédimentation (Figure 4.2.). L'Albien supérieur est en contact discordant sur l'Albien inférieur ce qui implique la présence d'une érosion ou une lacune de sédimentation (Lindseth et Beraldo, 1985). Cette unité se compose de carbonates massifs recouverts par des argiles silteuses ce qui marque les premiers apports détritiques caractérisés par l'alternance de niveaux de black shales, d'argiles et de grès depuis l'Albien supérieur jusqu'au Cénomanien moyen (Figure 4.2.). Cette formation détritique est associée à l'augmentation du taux de sédimentation, qui double par rapport aux séries précédentes (Figure 4.2.). Le Cénomanien se termine avec le dépôt de carbonates d'environnement de plateforme moyenne à externe impliquant le retour d'une sédimentation pélagique à Arapaïma-1. Du Cénomanien terminal au Coniacien, la sédimentation est dominée par la mise en place de niveaux de black shales en alternance avec des argiles silteuses (Figure 4.2.). Ce sont ces faciès qui présentent de forts TOC supérieurs à 2 % au puits Arapaïma-1 (Figure 4.2.) et pouvant atteindre plus de 30% aux sites ODP du leg 207 situés sur le Plateau de Démérara (Figure 4.1., Meyers et al., 2006 ; Nederbragt et al., 2007). La séquence sédimentaire du Santonien jusqu'au Paléocène est caractérisée par une sédimentation détritique sur le plateau continental qui s'illustre par une alternance de grès moyens à grossiers avec des interlits d'argiles silteuses voire de black shales (Figure 4.2.). L'augmentation du taux de sédimentation au Santonien est significative puisqu'il est au moins six fois plus important que celui estimé pour la période Aptien-Albien supérieur et trois fois plus important que celui de l'intervalle Cénomanien-Coniacien (Figure 4.2.).

4.2. Contenu organique des sédiments crétacés du puits Arapaïma-1

Sur Arapaïma-1, la limite entre le Cénomanien et le Turonien qui correspond à OAE2 (~94 Ma, Schlanger et Jenkyns, 1976) a pu être confirmée (en plus des datations biostratigraphiques) par l'incursion positive de près de 4 unités de $\delta^{13}C_{TOC}$ entre les échantillons AR1-11F à -28,43 ‰ et AR1-12A à -24,99 ‰ (Table 4.1. et Figure 4.2.). Comme observés dans les puits de la marge nord-ouest africaine et aux sites ODP du *leg* 207 du Plateau de Démérara, cette incursion positive est associée à une augmentation des valeurs de TOC dépasser 2 % dans le puits Arapaïma-1 (Table 4.1.). L'enrichissement en contenu organique pendant l'OAE2 demeure moins significatif que celui observé à la transition entre le Coniacien et le Santonien (Table 4.1. et Figure 4.2.) où les TOC peuvent atteindre des valeurs supérieures à 4 % qui correspondent au maximum d'enrichissement observé dans la séquence du Crétacé au puits Arapaïma-1.

Echantillon	Age	δ ^B C _{TCC} (‰ VPDB)	TOC (wt%)		
AR1-1	Crétacé inférieur	-26,72	0,2		
AR1-6	Aptien	-28,01	1,1		
AR1-7	Albien supérieur	-26,99	0,3		
AR1-8	Albien supérieur	-26,06	0,5		
AR1-9	Cénomanien	-27,95	1,0		
AR1-10	Cénomanien	-25,82	0,5		
AR1-11B	Cénomanien	-27,91	2,0		
AR1-11C	Cénomanien	-28,28	1,3		
AR1-11D	Cénomanien	-27,75	2,5		
AR1-11E	Cénomanien	-28,39	1,9		
AR1-11F	Cénomanien	-28,43	1,4		
AR1-12A	Turonien inférieur	-24,99	2,1		
AR1-14	Turonien	-27,87	1,6		
AR1-17A	Coniacian	-27,95	4,6		
AR1-17B	Coniacian	-27,81	4,0		
AR1-20	Santonien supérieur	-26,59	1,0		
AR1-21	Crétacé supérieur	-25,35	0,7		
AR1-23	Campanien supérieur	-26,28	0,4		
AR1-24	Paléocène	-25,91	1,6		

Table 4.1. Contenu organique des sédiments prélevés au puits Arapaïma-1 (TOC et $\delta^{13}C_{TOC}$)

4.3. Concentrations en éléments majeurs et traces des sédiments crétacés du puits Arapaïma-1

Les concentrations en éléments majeurs (SiO₂, TiO₂, Al₂O₃, Fe₂O₃, MnO, MgO, CaO, Na₂O, K₂O et P₂O₅) et en éléments traces (Large-Ion Lithophile Elements, LILE : Rb, Cs, Ba, Sr, Th, U; High Field Strength Elements, HFSE : Y, Zr, Nb et Hf; Trace Transition Elements, TTE : Sc, Cr, Co, V et Ni) ont été normalisées par rapport au Post-Archean Australian Shales (PAAS, Taylor et McLennan, 1985) qui sont des argiles représentatives de la composition géochimique de la croûte continentale. Les échantillons prélevés au puits Arapaïma-1 ne présentent aucune différence significative sur le contenu en éléments majeurs et traces. Les échantillons sont tous appauvris en MnO, CaO, K₂O, Rb, Cs, Sr, Th, Y, Zr, Nb, Hf et Co (Table 4.2. et Figure 4.7.). A l'exception des échantillons du Crétacé inférieur (AR1-1, AR1-7) et du Santonien-Paléocène (AR1-21, AR1-23, AR1-24), ils sont tous enrichis en Cr et V (Table 4.2. et Figure 4.7.) et présentent des concentrations contrastées pour certains éléments. En effet, deux échantillons du Crétacé inférieur (AR1-1, AR1-7) et du Cénomanien (AR1-11C, AR1-11D) sont enrichis en Na₂O alors que les autres sont appauvris (Table 4.2. et Figure 4.7.). De même, un échantillon du Crétacé inférieur (AR1-6), cinq échantillons du Cénomanien (AR1-9, AR1-10, AR1-11C, AR1-11E, AR1-11F), tous les échantillons du Coniacien (AR1-17A, AR1-17B) et un échantillon du Santonien-Paléocène (AR1-23) sont enrichis en P_2O_4 alors que le reste est appauvri (Table 4.2. et Figure 4.7.). Les concentrations en Ba sont également très contrastées puisqu'à l'exception de certains échantillons du puits Arapaïma-1 qui sont appauvris, tous les échantillons du Crétacé inférieur (AR1-1, AR1-6, AR1-7), deux échantillons du Cénomanien (AR1-9, AR1-10), un échantillon au Turonien (AR1-12A) et deux échantillons du Santonien-Paléocène (AR1-20, AR1-21) présentent un enrichissement en Ba. Enfin, certains échantillons du puits Arapaïma-1 ont une concentration en U plus importante que celle du PAAS alors que les autres demeurent appauvris (Table 4.2. et Figure 4.7.). Il s'agit d'un échantillon du Crétacé inférieur (AR1-6), de tous les échantillons à l'exception d'un pendant le Cénomanien (AR1-9), de tous

Figure 4.7. Concentrations en éléments majeurs et traces normalisés au PAAS pour le puits Arapaïma-1 (Taylor et McLennan, 1985). De gauche à droite, les éléments majeurs (SiO₂, TiO₂, Al₂O₃, Fe₂O₃, MnO, MgO, CaO, Na₂O, K₂O et P₂O₅), les LILE (Rb, Cs, Ba, Sr, Th, U), les HFSE (Y, Zr, Nb, Hf), et les TTE (Sc, Cr, Co, V, Ni).

L'index d'altération chimique ou *Chemical Index of Alteration* (CIA = $[Al_2O_3 + CaO + Na_2O + K_2O)$] x 100, en proportions molaires) qui permet de quantifier

l'altération chimique (Nesbitt et Young, 1982 ; voir chapitre 2), présente également des valeurs assez contrastées. En effet, à l'exception de l'échantillon AR1-7 (Albien supérieur) avec un CIA de 61 qui est inférieur à celui du PAAS (69, Taylor et McLennan, 1985), les échantillons du Crétacé inférieur (AR1-1, AR1-6, AR1-7) et du Cénomanien (de AR1-9 à AR1-11F) ont un CIA qui varie entre 70 et 78 (Table 4.2. et Figure 4.8.). A partir du Turonien, la majorité des échantillons ont un CIA supérieur ou égal à 80 à l'exception d'un échantillon au Coniacien (AR1-17A, CIA = 74) ce qui montre deux ensembles d'échantillons avec un degré d'altération chimique différent.

Figure 4.8. Variations des valeurs des compositions isotopiques en néodyme ($\varepsilon_{_{Nd(0)}}$) et en strontium (87 Sr / 86 Sr), des âges $T_{_{DM}}$, du CIA, de l'anomalie en europium (Eu/Eu*) et des rapports élémentaires Cr/Th et Th/Sc pour les sédiments du Crétacé prélevés au puits Arapaïma-1.

Plusieurs rapports élémentaires entre éléments mobiles et immobiles peuvent être utilisés pour déterminer la nature géochimique de la roche source (*e.g.* Th/Sc, Cr/Th, McLennan et al., 1993 ; Cullers, 2000, voir chapitre 2). Les échantillons du Santonien au Paléocène présentent des rapports Cr/Th 2 à 6 fois inférieurs (Figure 4.8.) à ceux des échantillons plus anciens (à l'exception de l'échantillon du Cénomanien AR1-11F). En effet, les sédiments les plus récents ont un rapport Cr/Th variant de 5,7 à 10,6 (Cr/Th_{PAAS} = 7,5, Taylor et McLennan, 1985) alors que les échantillons anté-Santonien ont des rapports Cr/Th compris entre 19,0 et 37,9. Les échantillons du puits Arapaïma-1 ont des rapports Th/Sc qui varient entre 0,27 et 1,12 et sont inférieurs à 0,56 pour la plupart ce qui est inférieur à celui du PAAS (Table 4.2., Th/Sc_{PAAS} = 0,91, Taylor et McLennan, 1985).

Echantillon	AR1-I	ARI-6	ARI-7	ARI-8	AR1-9	AR1-10	AR1-11B	ARI-HC	ARI-IID	ARI-IIE	AR1-11F	ARI-12A	AR1-14	ARI-17A	AR1-17B	AR1-20	AR1-21	AR1-23	AR1-24
Age	Crétacé inférieur	Albien sup.	Albien sup.	Cénomanien	Turonien inf.	Turonien	Coniacien	Conincien	Santonien sup	Santonien ?	Campanien sup.	Padéocêne							
V199305																2021020020020000011			1.54463820464
WE%																			
SIO ₂	57,09	52.54	64,90	55,92	55,48	56,28	53,10	56,19	36,59	57,79	53,10	49,47	61,86	57,11	61,77	52,75	51,21	53,19	50,80
Al ₂ O ₃	19,72	19.43	15,71	19,78	17,17	11,80	19,78	19,54	17,54	20,00	19,04	22,95	15,43	13,45	13,13	20,50	21,98	20,75	14,83
Fe ₇ O ₅	6.60	7.25	4,40	6.05	7.06	7.92	6,43	5.44	5.94	6,10	6.01	5.35	4.91	3,98	4.16	7.57	7,83	6.96	8,09
MnO	0,04	0.02	< L.D.	0.02	0.02	0.04	0,02	0,02	0.02	0,02	0,02	< L.D.	< L.D.	<1.D.	< L.D.	0,03	0.03	0.02	0,02
MgO	2.23	2.28	2,06	1.72	2,34	1.11	2,38	1.74	1.91	2,30	1.69	1,76	1.78	0,91	1,00	1.89	1,92	1,80	1,07
CaO	1,12	0.52	0,73	0,25	0.74	0,90	0.24	0,47	0,35	0,35	0,95	0,19	6,29	1,54	0,68	0.26	0,26	0,31	2,60
Na ₂ O	2.30	1.45	3.55	1.07	1.45	0.49	1.42	1.72	2.01	1.43	1.34	0.55	0.40	0,43	0.31	0.79	0,97	0.81	0.22
K.0	2.27	2.42	2.61	3.14	2.70	1.03	2.96	2.62	2.89	2.98	2.68	1.62	1.36	1.17	1.05	2.36	2.95	3.19	1.50
TIO-	0.91	0.94	0.70	1.06	0.88	0.69	1.78	0.95	1.27	1.54	1.07	0.95	8.65	0.50	0.47	1.02	1.08	0.95	0.68
P.O.	0.17	0.31	0.15	0.13	0.58	0.34	0.13	0.46	0.10	0.47	1.47	0.21	0.19	1.60	1.15	0.20	0.17	0.28	0.17
LOI	7.67	12.71	5.46	10.91	11.46	16.75	12.79	11.28	10.76	12.47	12.24	16.19	12.36	18 58	16.90	12.45	11.76	12.00	10.00
Total	100.11	00.86	100.27	100.04	99.86	97.14	100.33	100.42	99.17	99.75	09.60	99.22	99.23	00.26	100.62	99.80	100.16	100.26	00 ST
AUSI	0.39	0.42	0.27	0.4	0.35	0.24	0.42	0.39	0.35	0.43	0.41	0.53	0.28	0.27	0.24	0.44	0.49	0.44	0.33
CIA	70	77	61	78	72	77	77	75	71	76	74	89	85	7.4	82	83	81	80	60
ppm	67		1000					110	20	23		0.000	13544		100	656	0.52	1776	0550
Se	19.99	15.09	8.99	18.03	15.86	10.32	14.11	14.38	11.36	13.43	14.62	14.52	12.08	13.44	12.75	21.22	21.86	19.65	12.81
Rh	100.58	122.28	84.48	152.45	125.62	61.58	155.82	125.04	142.04	151.68	132.56	115.22	102.31	73.22	67.95	149 33	183.20	159.01	63.81
Ci	7.49	6.53	2.61	10,10	6.27	3.56	7.58	5.77	6.57	7.69	6.65	7.30	5.81	4.16	4.17	7.25	8.07	6.57	4.31
Ba	1836.12	1277.34	2383.46	666.73	2829.03	26793.14	342.00	341.76	394.32	340.37	308.91	946.30	664.12	446.69	369,73	877.89	810.99	415.59	410.19
Sr	206.01	109.76	195.54	103,58	123.21	269.75	82.50	100.41	106.65	87.07	101,91	61,06	57.60	113.04	72.26	83.53	84.92	76,10	58.28
Th	5.45	8.86	5.02	10.01	9.21	6.74	10,36	11.67	9.20	14,39	16.37	9.87	7.68	9.84	9.72	17.25	21.49	19.67	13.35
U	1.83	7.15	2.01	3,40	2,77	3.34	4,78	3,96	7.11	5,49	12.01	4.35	3,30	15,54	9.38	3.97	4.44	4,86	4.27
Y	14.2	11.0	9,0	16.5	14,1	10.8	8,0	8.8	7,4	8,3	13.0	10,0	8,0	39,3	23,5	25.8	32.0	26.6	24.6
Zx	113,51	125,81	111,17	180,52	135,19	134,04	155,75	172,29	208,16	177,27	174,12	107,77	72,74	92,63	75,43	129,46	151,13	183,69	133,55
Nb	8,31	9,68	7,19	11,07	9,59	10,24	13,45	9,91	13,72	13.81	12,86	10,98	8,21	7,30	6,43	17,58	21,42	19,01	13,49
Hf	3.08	3,65	3,04	5,06	3.90	3.53	4,59	4,88	5,96	5.27	4,86	3,30	2,28	2,70	2,20	4,09	4,73	5,67	3,46
Cr	188,87	241,18	129,11	237,96	189,08	223,43	318,57	222.02	306,20	319,80	228,02	230,77	195,32	372,85	354,00	175,32	122,98	150,74	82,26
v	131,11	170,71	96,99	149,10	189,91	224,00	328,04	253,35	261,33	263,30	220,20	645,18	421,17	210,40	199,49	144,34	127,21	122,75	76,96
Co	17,68	12,74	8,74	16,64	9,34	8,26	19,35	9,87	15,84	14,68	11,18	10,03	8,88	5,16	5,12	12,10	14,05	11,89	19,01
Cu	59,98	26,15	11,49	30,82	22,90	42.30	30,89	25.37	35,73	31,50	25,16	20,33	18,32	36,12	26,80	26,05	25,31	21,44	27,25
NI	83,74	58,08	37,68	50,53	50,53	41,69	84,40	53,40	83,96	75,29	53,16	56,40	47,64	73,86	60,67	37,91	35,60	31,67	49,59
Zn	75,66	97,99	53,24	54,71	103,01	89,60	92,53	142,13	114,22	106,40	80,21	68,22	67,48	114,85	98,88	79,63	74,47	69,55	53,10
La	21,07	18,82	14,63	36,97	22,94	17,86	13,87	13,48	10,28	12,36	22,79	19,02	16,84	38,51	26,80	54,96	68,63	54,75	47,31
Ce	40,70	36,29	28,68	70,13	45,19	36,16	22,10	28,02	15,76	21,60	49,30	32,55	31,18	61,50	46,51	107,93	1.38,54	109,94	96,33
Pr	4,53	4,41	3,31	8,08	5,43	4,50	2,55	3,53	1,77	2,59	6,28	3,84	3,60	7,87	5,75	12,22	15,76	12,56	11,14
Nd	16,46	16,49	12,62	29,99	20,68	16,94	9,08	13,69	6,25	9,85	23,89	13,67	13,03	29,58	21,46	44,25	57,53	45,55	40,74
Sm	2,95	3,27	2,46	5,20	3,96	3,32	1,69	2,69	1,26	1,92	4,76	2,47	2,30	5,79	4,08	7,86	10,39	8,15	7,50
Eu	0,77	0,80	0,73	1,24	1,01	1,23	0,41	0,61	0,33	0,46	1,07	0,58	0,51	1,28	0,87	1,53	1,98	1,56	1,53
Gđ	2,30	2,43	1,94	3,76	3,07	2,60	1,30	1,91	1,07	1,48	3,35	1,87	1,75	5,11	3,32	6,00	7,96	6,06	5,87
Tb	0,38	0,35	0,29	0,53	0,46	0,37	0,21	0.28	0,18	0,23	0,47	0,27	0,24	0,75	0,49	0,87	1,14	0,88	0,86
Dy	2,50	2,09	1,72	3,10	2,67	2,12	1,43	1,72	1,30	1,49	2,69	1,74	1,47	4,70	3,00	5,07	6,54	3,14	4,91
Ho	0,55	0,44	0,35	0,65	0,53	0,41	0,33	0,36	0,32	0,34	0.53	0,38	0,29	1,83	0.64	1,01	1,29	1,04	0,97
Er	1,60	1,21	0,99	1,76	1,46	1,07	1,02	1,03	1,01	1,04	1,40	1,10	0,84	2,80	1,76	2,74	3,41	2,83	2,49
Tm	0,25	0,18	0,15	0,26	0,21	0,15	0,17	0,17	0,17	0,17	0,20	0,17	0,13	0,38	0,24	0,39	0,48	0,41	0,35
YD	1.63	1,29	1,02	1,80	1,47	1,02	1,25	1,22	1,30	1,25	1,42	1,23	0,90	2,46	1,57	2,65	3,26	2,79	2,31
1.0	0,26	0,21	0,16	0,28	0,22	0,15	0,21	0,20	0,21	0,19	0,22	0,19	0,14	0,36	0,23	0,39	0,48	0,42	0,33
Ta	0,88	0,96	2,32	1,52	0,98	0,94	1,31	0,97	1,34	1,34	1,22	1,06	0,77	0,69	0,01	1,63	2,03	1,84	1,34
Factoria.	0.01	0.87	1.02	0.94	0.40	1.76	0.84	0.42	0.00	6.47	0.07	0.42	0.79	11.22	0.22	0.64	0.47	10.000	0.71
OC-	0.91	0.07	0.05	0.03	0,03	0.03	0.85	0.02	0.84	0,05	0.02	0.87	0,78	0.12	0.86	0.06	0.07	0.06	0.06
CeTh	34.64	37.74	35.71	35 77	70.57	13.17	10.75	10.03	13 70	22.22	11.91	71 10	25.44	17.80	36.41	10.16	\$ 73	7.66	6.16
Thise	0.27	0.50	0.56	0.55	0.58	0.65	0.71	0.81	0.81	1.07	1.17	0.68	0.64	0.73	0.76	0.81	0.04	1,00	1.04
765	5.49	8 34	17.17	10.01	8.47	17.00	11.04	11.05	18 11	11.2	11.01	7.47	6.07	6.20	5 117	6.1	5.01	0.75	10.43
LDEF	1.58	1.51	115	2.82	1.86	1.5	0.94	1.18	0.66	0.92	2.05	1.36	1.26	2.82	2.02	47	5.18	4.78	1.77
HREF	1.8	1.30	1.11	1.05	1.58	1.1	1.16	1 32	1.38	1.32	1.52	1.1	0.96	2.66	1.71	2.85	3.48	2.99	2.47
MRFF	1.55	1.43	1.18	2.2	1.85	1.52	0.88	1.16	0.76	0.95	1.91	1.15	1.02	3.13	2.03	3.56	4.66	1.6	1.48
MREE*	1.69	1.45	1.13	2.38	1.72	1.3	1.15	1.25	1.02	1.12	1.78	1.33	1.11	2.74	1.87	3.51	4.43	1.63	1.12

Table 4.2. Concentrations en éléments majeurs et traces et anomalies en Europium (Eu/Eu*) et cérium (ΩCe) des sédiments du Crétacé prélevés sur le puits Arapaïma-1.

4.4. Concentrations en terres-rares des sédiments crétacés du puits Arapaïma-

Les échantillons du puits Arapaïma-1 ont des profils en Terres Rares (REE) normalisés au PAAS relativement plats (Figure 4.9.). Les échantillons du Santonien au Paléocène sont cependant plus enrichis en Terres Rares légères (LREE) et en Terres Rares moyennes (MREE) que le PAAS (Table 4.2. et Figure 4.9.). Trois échantillons du Cénomanien (AR1-11B, AR1-11D, AR1-11E) présentent un enrichissement en Terres Rares lourdes (HREE) comparativement aux LREE et MREE (Table 4.2. et Figure 4.9.). L'anomalie en Cérium (Ω Ce) qui est un indicateur d'influence de processus authigéniques (Piper, 1974, voir chapitre 2) est proche de 1 pour tous les sédiments analysés (0,81-0,97, Table 4.2.). L'anomalie en Europium (Eu/Eu*) permet de caractériser la nature géochimique de la source (McLennan et al., 1993 ; Cullers, 2000). L'anomalie en Europium varie entre 0,78 et 1,26 (Table 4.2. et Figure 4.8.) et est moins développée que celle du PAAS (Eu/Eu*_{PAAS} = 0,66, Taylor et McLennan, 1985) pour les sédiments plus anciens que le Coniacien. Les sédiments d'âge Coniacien ou plus récents ont quant à eux une anomalie en Europium plus proche de 0,7 (0,67-0,72) (Table 4.2. et Figure 4.8.).

Figure 4.9. Concentrations en Terres Rares normalisées par rapport au PAAS (Taylor et McLennan, 1985) pour le puits Arapaïma-1.

4.5. Compositions isotopiques en Nd-Sr

La table 4.3. reporte l'ensemble des analyses en concentrations isotopiques du strontium (87Sr/86Sr) et du néodyme (144Nd/143Nd) des sédiments du Crétacé prélevés au puits Arapaïma-1 ainsi que leurs âges modèles T_{DM}. Le rapport isotopique ⁸⁷Sr/⁸⁶Sr et les valeurs de $\varepsilon_{Nd(0)}$ ne présentent aucune corrélation entre eux (R² = 0,17). Les valeurs de $\varepsilon_{Nd(0)}$ montrent de grandes variations entre -21,2 et -0,6 tout comme les compositions isotopiques en Sr qui varient entre 0,714598 et 0,774847 (Table 4.3. et Figure 4.8.). Cependant, à l'exception de l'échantillon datant du début du Turonien (AR1-12A, Table 4.3.) les échantillons de la période du Santonien-Paléocène présentent des rapports isotopiques ⁸⁷Sr/⁸⁶Sr plus élevés (0,749076 à 0,774847, Table 4.3.) que les échantillons les plus anciens (0,714598 à 0,746923, Table 4.3., Figure 4.8.). Dans l'ensemble, la majorité des échantillons ont des valeurs de $\varepsilon_{Nd(0)}$ inférieures à -15,8 (Table 4.3. et Figure 4.8.). Trois échantillons dont un au Crétacé inférieur (AR1-1), un au Cénomanien (AR1-11D) et un au Campanien supérieur (AR1-23) présentent des valeurs de $\varepsilon_{Nd(0)}$ beaucoup plus élevées que le reste des échantillons, respectivement à -2,2, -0,6 et -2,0 (Table 4.3. et Figure 4.8.). Un échantillon du Cénomanien (AR1-11E) et un échantillon du Santonien-Campanien (AR1-21) ont quant à eux des valeurs de $\varepsilon_{Nd(0)}$ plus intermédiaires de -12,2 et de -13,6 respectivement (Table 4.3. et Figure 4.8.).

Les âges modèles T_{DM} pour les échantillons analysés varient entre 0,84 et 2,59 Ga pour une valeur moyenne de 2,01 (Table 4.3., Figure 4.8.). Trois échantillons répartis sur toute la colonne sédimentaire présentent des âges T_{DM} jeunes proches de 0,80 alors que les seize autres échantillons analysés ont des âges T_{DM} plus anciens, supérieurs à 1,8 (Table 4.3.). Les âges T_{DM} diminuent pendant entre l'Albien et le Maastrichtien (Figure 4.8.). Plus précisément, l'âge T_{DM} des échantillons diminuent entre l'Albien supérieur et le Cénomanien inférieur puisqu'il décroit depuis 2,59 Ga (AR1-6) jusqu'à 0,84 Ga (AR1-9). Il augmente ensuite dans les échantillons d'âge Cénomanien jusqu'à 2,52 Ga (AR1-11D). Les âges T_{DM} des échantillons du Cénomanien supérieur (AR1-11E, AR1-11F) et du Turonien inférieur (AR1-12A) fluctuent entre 1,80 et 2,41 Ga et demeurent relativement constants pendant
l'intervalle Turonien-Santonien supérieur puisqu'ils varient entre 2,04 et 2,23 Ga (de AR1-14 à AR1-20). Enfin, les âges modèles T_{DM} des échantillons post-Santonien décroissent jusqu'au Campanien supérieur (0,89, AR1-23) et augmentent à nouveau au Paléocène (AR1-24). Globalement, les âges modèles T_{DM} sont moins importants dans les échantillons du Turonien et plus récents que ceux datant du Crétacé inférieur au Cénomanien. En effet, la valeur médiane de l'âge T_{DM} des échantillons les plus anciens est de 2,33 Ga (Crétacé inférieur-Cénomanien) alors qu'elle est de 2,1 Ga dans les échantillons les plus récents (Turonien-Paléocène, Table 4.3., Figure 4.8.).

Echantillons	Age	Sr (ppm)	87 Sr /86 Sr	$\pm 2\sigma (*10^{6})$	Nd (ppm)	143Nd/144Nd	$\pm 2\sigma (*10^{6})$	ENd(0)	T _{DM} (Ga)
AR1-1	Crétacé inférieur	206,01	0,726863	0,000010	16,46	0,512523	0,000031	-2,2	0,9
AR1-6	Albien sup.	109,76	0,730869	0,000010	16,49	0,511549	0,000009	-21,2	2,6
AR1-7	Albien sup.	195,54	0,721161	0,000006	12,62	0,51167	0,000016	-18,9	2,3
AR1-8	Cénomanien	103,58	0,732824	0,000006	29,99	0,511674	0,000016	-18,8	2,1
AR1-9	Cénomanien	123,21	0,730814	0,000010	20,68	0,512608	0,000022	-0,6	0,8
AR1-10	Cénomanien	269,75	0,714598	0,000010	16,94	0,511694	0,000008	-18,4	2,3
AR1-11B	Cénomanien	82,50	0,746371	0,000012	9,08	0,511599	0,000010	-20,3	2,3
AR1-11C	Cénomanien	100,41	0,746923	0,000010	13,69	0,511581	0,000012	-20,6	2,5
AR1-11D	Cénomanien	106,65	0,722602	0,000010	6,25	0,511614	0,000018	-20,0	2,5
AR1-11E	Cénomanien	87,07	0,738315	0,000010	9,85	0,512015	0,000049	-12,2	1,8
AR1-11F	Cénomanien	101,91	0,738174	0,000008	23,89	0,511669	0,000012	-18,9	2,4
AR1-12A	Turoni en inf.	61,06	0,760897	0,000010	13,67	0,51178	0,000020	-16,7	2,0
AR1-14	Turonien	57,60	0,736446	0,000010	13,03	0,511634	0,000163	-19,6	2,2
AR1-17A	Coniacien	113,04	0,725604	0,000010	29,58	0,5117585	0,000022	-17,2	2,2
AR1-17B	Coniacien	72,26	0,730986	0,000010	21,46	0,511827	0,000051	-15,8	2,0
AR1-20	Santonien sup.	83,53	0,753144	0,000008	44,25	0,511588	0,000012	-20,5	2,2
AR1-21	Santonien?	84,92	0,773011	0,000012	57,53	0,511939	0,000012	-13,6	1,8
AR1-23	Campanien sup.	76,10	0,774847	0,000012	45,55	0,512535	0,000016	-2,0	0,9
AR1-24	Paléocène	58,275	0,749076	0,000010	40,74	0,51159	0,000006	-20,4	2,3

Table 4.3. Compositions isotopiques en Néodyme et en Strontium pour les sédiments du Crétacé prélevés au puits Arapaïma-1.

4.6. Géométrie de la marge et cartes d'épaisseurs

Au Crétacé inférieur, le plateau continental présente une sédimentation mixte avec un talus continental très abrupt qui se développe au-delà de 200 m de profondeur d'eau, ce qui est caractéristique d'une géométrie de type « *deep carbonate bank margin* » similaire à celle de la plateforme carbonatée actuelle des Bahamas (Mullins et Neumann, 1979). Au pied du talus une structure volcanique marque le socle acoustique sur lequel les séries sédimentaires du Jurassique au Turonien se sont déposées. Cette zone marque la limite entre la croûte continentale et la croûte océanique (Ocean contient boundary : OCB, Müller et al., 2016 ;

Figures 4.3. et 4.6.). Les dépôts sédimentaires du Crétacé inférieur s'épaississent (~3500 m) au pied du flanc nord-ouest du Plateau de Démérara. Dans le reste du bassin profond, les unités du Crétacé inférieur sont moins épaisses (~200 m) que sur le Plateau de Démérara ou sur le plateau continental (Figure 4.3.).

L'intervalle Albien-Cénomanien est moins épais (<300 m) sur le plateau continental guyanais au puits Arapaïma-1 et sur le Plateau de Démérara que dans le bassin profond (~600 m ; Figure 4.3.). La marge présente toujours une géométrie de type « *deep carbonate bank margin* » héritée du Crétacé inférieur. Dans le bassin profond, les dépôts albo-cénomaniens s'amincissent vers le nord-est et se terminent en *onlap* sur la masse glissée du Crétacé inférieur (Figure 4.3.). Au Turonien, la géométrie de la marge reste similaire à celle des périodes précédentes : les dépôts sont réduits sur le plateau continental (~150 m) comparativement aux dépôts dans le bassin profond (~250 m, Figure 4.3.). De plus, le Turonien recouvre le haut topographique associé à la masse glissée du Crétacé inférieur (Figure 4.3.). La géométrie de la marge au Crétacé supérieur (du Coniacien au Maastrichtien) est très similaire à celle du Turonien à la seule différence que les dépôts sont plus épais (~900 m) sur le plateau continental et dans le bassin profond que sur le Plateau de Démérara (~50 m, Figure 4.3.).

La carte isopaque régionale de l'Albien au Turonien (Figure 4.5A.) illustre la présence d'un dépocentre de plus de 3000 m d'épaisseur de sédiments et de presque 100 km de large dans le bassin profond. Ce dépocentre est localisé l'embouchure du canyon crétacé dans le plateau continental (Figure 4.5A.). Dans le bassin profond, les apports détritiques associés au canyon se déposent selon un axe NO-SE (Figure 4.5A.) et correspondent à la mise en place d'un cône sous-marin constitué de lobes turbiditiques. Deux autres zones de dépôt de plus de 1000 m d'épaisseur de sédiments sont déconnectées des apports du canyon et situées sur le flanc NO du Plateau de Démérara. Elles correspondent aux dépôts turoniens qui ont comblé l'espace disponible entre la masse glissée du Crétacé inférieur et le Plateau de Démérara (Figures 4.3. et 4.5A.). Dans le bassin profond les dépôts terrigènes apportés par le canyon forment un cône sous-marin turbiditique moins épais (maximum 2000 m d'épaisseur) que celui observé pendant l'intervalle Albien-Turonien (Figure 4.5B.). Le bassin profond enregistre également un changement d'axe de sédimentation qui évolue depuis une direction NO-SE à l'Albien-Turonien à une direction N-S au Turonien-Maastrichtien (Figure 4.5.). Pendant le Turonien-Maastrichtien, le dépocentre est plus étroit et moins épais et rétrograde par rapport à celui de l'intervalle Albien-Maastrichtien. (Figure 4.5B.). Les dépôts sont cependant plus épais sur la plateforme qu'auparavant ce qui est cohérent avec les corps progradants observés sur le plateau continental au NO du puits Arapaïma-1 (Figure 4.5B.). En aval de ces progradations, l'absence de sédiments correspond à une érosion ou une lacune de sédimentation sur la pente du plateau continental au nord d'Arapaïma-1 (Figure 4.5B.).

4.7. Paléobathymétries du domaine océanique du bassin du Guyana-Suriname au Crétacé

Le profil régional illustrant la géométrie du bassin du Guyana-Suriname (Figure 4.3.) a été décompacté séquentiellement en utilisant la méthode du *backstripping*. Les gammes de profondeur d'eau auxquelles sont observés les éléments morphologiques et les objets sédimentaires peuvent ainsi être quantifiées. Nous avons utilisé différentes valeurs de T_e (0, 10, 20 et 30 km) afin d'obtenir toutes les valeurs de paléobathymétries dépendantes de la rigidité flexurale de la lithosphère (Figure 4.10.). Le résultat de cette méthode sur le profil régional montre que les sédiments décompactés lors de la discontinuité albienne (mAU, ~105 Ma, Figure 4.3.) ont été déposés dans le bassin profond entre un maximum de profondeur de 4200 m ($T_e = 0$ km) et 4900 m ($T_e = 30$ km) et sur le Plateau de Démérara entre 1000 m ($T_e = 30$ km) et 1150m ($T_e = 0$ km) (Figure 4.10.). Les sédiments décompactés à 93 Ma (toit Cénomanien, TC, Figure 4.3.) se sont déposés dans des paléobathymétries maximales comprises entre 3800 m ($T_e = 30$ km) et 4000 m ($T_e = 0$ km) dans le bassin profond et entre 1100 m ($T_e = 30$ km) et 1200 m ($T_e = 0$ km) sur le Plateau de Démérara (Figure 4.10.). Dès la fin du Turonien à 89 Ma (TT, Figure 4.3.), la sédimentation s'est effectuée dans le bassin profond à une profondeur d'eau maximum variant de 3500 m ($T_e = 30$ km) à 3700 m ($T_e = 0$

km) et enfin, sur le Plateau de Démérara, à des paléobathymétries estimées entre 1100 m (T_e = 30 km) et 1300 m (T_e = 0 km) (Figure 4.10.).

Figure 4.10. Section 2D backstrippée décompactée d'après la Figure 4.7. illustrant l'évolution de la pléobathymétrie du plancher Océanique pendant le Crétacé. Les lignes en pointillés correspondent à un pas de temps défini (105 Ma, 93 Ma, 89 Ma) et le dégradé de gris correspond à la valeur du paramètre Te utilisée (0 km, 10 km, 20 km, 30 km). Le fond de l'eau actuel est représenté par la ligne noire continue.

5. Discussion

5.1 Influence de l'altération chimique, de l'authigénèse et des conditions redox sur les traceurs de provenance

5.1.1. Influence de l'altération chimique

En fonction de la nature des roches, du climat et du temps de transport, l'altération chimique peut modifier fortement la composition géochimique initiale des roches, rendant plus complexe l'interprétation de la nature géochimique des roches altérées (Nesbitt et Young, 1982, McLennan et al., 1993, Fedo et al., 1995). Cela signifie qu'avant d'utiliser les concentrations en éléments majeurs et traces et les compositions isotopiques en Sr des sédiments pour interpréter leur provenance, il faut d'abord évaluer l'intensité de l'altération chimique. Celle-ci peut être quantifiée grâce au CIA qui mesure le degré d'altération du feldspath par rapport aux protolithes sains depuis une altération naissante (CIA = 50-60, *incipient*), intermédiaire (CIA = 60-80) et extrême (CIA > 80) (Fedo et al., 1995). La nature potassique ou calco-alcaline des roches sources peut être identifiée sur un diagramme ternaire A-CN-K (Al₂O₃-CaO+Na₂O-K₂O, Figure 4.11., Fedo et al., 1995). Lors de l'altération chimique, les sédiments ont tendance à s'enrichir en Al₂O₃ et donc à se déplacer vers le pôle alumineux (A). De même, certains sédiments peuvent s'enrichir en K₂O suite à la diagénèse et donc tendre vers le pôle potassique (K). Les flèches partant du pôle K et se dirigeant vers l'axe A-CN illustrent l'enrichissement en K₂O subi par le protolithe. En traçant une ligne parallèle à l'axe A-CN il est possible de retrouver la nature initiale du protolithe sain (représentée par les carrés blancs, Figure 4.11.). L'intersection entre l'axe A-CN et l'axe A-K indique la valeur de l'altération (Nesbitt et Young, 1982 ; McLennan et al., 1993 ; Fedo et al., 1995). Les échantillons du puits Arapïma-1 présentent des valeurs élevées et variables de CIA (de 70 à 89, Figure 4.8.) caractéristiques d'une altération intermédiaire à extrême (Figure 4.11., Fedo et al., 1995). La distribution des échantillons est cohérente avec un chemin d'altération d'une tonalite ou d'une granodiorite (pôles 3 et 4, Figure 4.11., Fedo et al., 1995). Bien qu'ils présentent un chemin d'altération similaire, les échantillons du Crétacé inférieur au Cénomanien (de AR1-1 à AR1-11F) présentent des CIA plus faibles que ceux de la période Turonien-Campanien supérieur (AR1-12A à AR1-23) ce qui implique une altération chimique plus forte à partir du Turonien. En effet, les CIA indiquent un degré d'altération intermédiaire pour les échantillons plus anciens que le Turonien et une altération chimique extrême pour les échantillons du Turonien ou plus récents (Figures 4.8. et 4.11., Fedo et al., 1995). Le CIA des échantillons analysés ne présente aucune corrélation avec les concentrations en terres rares (REE, R²=0,14), les rapports élémentaires Cr/Th (R²= -0,10) et Th/Sc (R²= 0,12), l'anomalie en Eu (R²= -0,36) ou avec les compositions isotopiques en Nd (R²= -0,07) et Sr (R²= 0,49). Cela suggère donc que l'altération chimique ne contrôle pas les valeurs de ces rapports élémentaires et donc qu'ils peuvent être utilisé pour déterminer la provenance des sédiments crétacés du puits Arapaïma.

Figure 4.11. Diagramme ternaire A-CN-K. Proportions en % des concentrations en moles de : $A = Al_2O_3$, C = CaO (seulement dans les silicates), $N = Na_2O$, $K = K_2O$ (Nesbitt and Young, 1984, 1989). Les flèches indiquent l'effet de l'enrichissement en K_2O par métasomatisme. Les carrés blancs indiquent les compositions initiales et les CIA originels des protolithes (Fedo et al., 1995).

5.1.2. Influence de l'authigénèse

L'authigénèse marine peut modifier les concentrations en REE et les compositions isotopiques du Nd et Sr (voir chapitre 2). Chaque échantillon a subi un *leaching* séquentiel pour enlever les carbonates, les oxydes Fe-Mn et la matière organique qui peuvent potentiellement avoir une composition géochimique proche de l'eau de mer selon la procédure développée par Bayon et al (2002). Il se peut néanmoins qu'une partie des argiles authigénes n'ait pas pu être totalement enlevée de la fraction analysée après ce leaching séquentiel Les argiles authigènes ont des compositions géochimiques proches de celles de l'eau de mer et donc elles peuvent modifier les concentrations en terres rares de la fraction détritique analysée. La smectite authigène est caractérisée par un enrichissement en HREE par rapport aux LREE et par une très forte anomalie négative en Ce caractéristique de l'eau de mer (Ω Ce<50, Piper et al., 1974 ; De Baar et al., 1985). Il est donc possible d'identifier une contribution potentielle de smectites authigènes grâce aux concentrations en REE et en calculant l'anomalie en Ce des sédiments analysés. Les anomalies en Ce de nos sédiments sont calculées par rapport au PAAS (voir chapitre 2) et sont très proches de 1 (Table 4.2.). Cette absence d'anomalie en Ce suggère une absence de contamination par des smectites authigènes. L'influence de l'authigénèse sur les concentrations en terres rares peut également être caractérisée grâce à un diagramme illustrant la relation entre les rapports HREE / LREE et MREE / MREE* (Martin et al., 2010; Huck et al., 2016). La dispersion des échantillons dans ce diagramme (Figure 4.12.) est centrée sur le pôle « flat » qui est caractéristique d'une argile détritique. Cela est donc cohérent avec les anomalies en Ce. Cependant, trois échantillons du Cénomanien se situent entre le pôle « *flat* » et celui intitulé « *HREE bulge* » qui correspond au profil de terres rares de l'eau de mer à l'actuel (Figure 4.12.). Cela suggère une potentielle influence de processus authigéniques sur ces trois échantillons mais qui demeurent relativement faible puisque leurs anomalies en Ce sont proches de 1.

Figure 4.12. Influence des processus diagénétiques et authigénétiques sur les échantillons prélevés au puits Arapaïma-1. LREE : Terres Rares légères. MREE : Terres Rares moyennes. HREE : Terres Rares lourdes. LREE = $La_{PAAS} + Pr_{PAAS} + Nd_{PAAS}$ (en ppm); MREE = $Gd_{PAAS} + Tb_{PAAS} + Dy_{PAAS}$ (en ppm); HREE = $Tm_{PAAS} + Yb_{PAAS} + Lu_{PAAS}$ (en ppm); MREE* = (HREE+LREE) 2 (Martin et al., 2010). Les profils « bell-shaped » et « MREE bulge » correspondent aux spectres de Terres Rares observés dans les dents de poisson, les oxydes Fe-Mn, la matière organique et le profil « HREE enrichment » correspond au spectre de Terres Rares de l'eau de mer à l'actuel qui correspond aux sédiments influencés par les processus diagénétiques et authigénétiques. Le profil « flat » est caractéristique d'une argile continentale (voir Huck et al., 2016 ; Moiroud et al., 2016).

5.1.3. Anomalies en Europium (Eu/Eu*) et conditions redox

L'anomalie en Eu (rapport Eu/Eu*) permet de caractériser la nature géochimique de la source sédimentaire. En effet, pour les sédiments fins, une anomalie en Eu comprise entre 0,32 et 0,83 indique une provenance felsique alors qu'une anomalie en Eu de 0,70 à 1,02 suggère une provenance basique (Cullers, 2000). Cependant, avant de pouvoir discriminer la nature géochimique de la source sédimentaire en utilisant l'anomalie en Eu, il faut s'assurer que certains processus n'aient pas modifié la concentration en europium dans les sédiments analysés. Plusieurs facteurs anté et post-dépôt tels que la disponibilité en oxygène, la température ou encore la composition minéralogique peuvent influencer les concentrations en Eu et générer des anomalies en Eu très contrastées. En effet, l'europium est la seule terre rare

qui peut présenter une forme bivalente (Eu²⁺) alors qu'il est généralement observé sous sa forme trivalente (Eu³⁺, Sverjensky, 1984). De ce fait, l'apparition de la forme bivalente de l'Eu va permettre un enrichissement de la concentration en europium dans la roche et générer une anomalie en Eu très positive. La présence de conditions réductrices ou un enrichissement en plagioclases (minéral ayant une forte affinité avec la forme bivalente de l'europium) sont également des processus pouvant provoquer un enrichissement en Eu²⁺ et par conséquent augmenter la concentration en Eu de la roche (Philpotts, 1970; Morris et Haskin, 1974; Möller et Muecke, 1984). Un enrichissement en plagioclase peut être associé soit à (1) la composition initiale du magma, soit (2) survenir lors d'un métamorphisme de haute température qui va provoquer la transformation de l'europium trivalent en sa forme bivalente ou soit (3) être associé à l'enrichissement de minéraux riches en plagioclases tels que l'apatite ou la monazite via des processus de recyclage sédimentaire (Philpotts, 1970 ; Mazzucchelli et al., 1992). Enfin, un sédiment déposé dans des conditions réductrices peut subir des processus diagénétiques qui vont réduire la forme trivalente de l'europium en forme bivalente et donc générer une anomalie en Eu très positive (MacRae et al., 1992). Dans ce chapitre, l'échantillon AR1-10 présente une anomalie en Eu très positive de 1,26 qui est rarement observée dans les sédiments fins (McLennan et al., 1993 ; Cullers, 2000). Cette anomalie positive peut provenir d'un enrichissement en plagioclases ou encore de l'influence de la diagénèse sous des conditions réductrices. Or, il est connu que pendant l'Albien jusqu'au Santonien des conditions réductrices affectent le Plateau de Démérara (Hetzel et al., 2008 ; Jiménez Berrocoso et al., 2008) et pourraient également être présentes sur le plateau continental du bassin du Guyana-Suriname. De telles conditions redox pourraient expliquer cette anomalie très positive en Eu. Cependant, le faible TOC (0,5 %) obtenu pour l'échantillon AR1-10 ne conforte pas cette hypothèse puisque des conditions réductrices sont aussi favorables à la préservation de la matière organique (Schlanger and Jenkyns, 1976) et qu'un TOC de 0,5 % demeure une valeur faible suggérant des conditions plutôt oxydantes. De plus, cela contraste avec les niveaux du Turonien et du Coniacien qui présentent de bons enrichissements en matière organique (TOC de 1,6 à 4,6 %, Figure 4.2.) qui se sont déposés dans des conditions réductrices, confirmées par des analyses en biomarqueurs (n-alkanes et rapports pristane/phytane ; Noyau, 1991, communication personnelle) au puits Arapaïma-1. Une autre hypothèse pouvant expliquer cette anomalie positive en Eu sur l'échantillon AR1-10 est une source ayant subit un enrichissement en plagioclases. Le Sr et la forme bivalente de l'Eu ont une affinité très forte avec le plagioclase et un tel enrichissement se manifesterait par des concentrations en Sr et Eu plus élevées (McKay, 1989). Or, l'échantillon AR1-10 présente une concentration en Sr largement supérieure à celle des autres échantillons analysés ([Sr]_{AR1-10} ~270 ppm alors que [Sr]_{moyenne} = 110 ppm, Table 4.2.). Cette anomalie positive en Eu est donc associée à une composition minéralogique initiale plus enrichie en plagioclases que celles des autres échantillons.

Les rapports Eu/Eu* des autres échantillons du puits Arapaïma-1 sont dans les gammes de valeurs proposées par Cullers (2000). Ces rapports ne covarient pas avec le CIA, l'anomalie en Ce, les rapports élémentaires Cr/Th et Th/Sc ou la composition isotopique en Nd puisque la meilleure corrélation obtenue est une anti-corrélation avec la composition isotopique en Sr ($R^2 = -0.67$). Les rapports Eu/Eu* des sédiments plus anciens que le Coniacien (de AR1-1 à AR1-14, Eu/Eu* = 0,78-1,26) sont supérieurs à ceux du PAAS (0,66, Taylor et McLennan, 1985) et à celles des sédiments plus récents (de AR1-17A à AR1-24, Eu/Eu* = 0,67-072, Figure 4.8.). Cette augmentation des anomalies en Eu après le Coniacien indique une contribution plus importante d'une source felsique (Cullers, 2000).

5.2. Provenance des sédiments crétacés du bassin du Guyana-Suriname

Nous avons pu montrer que l'altération chimique et l'authigénèse ne contrôlaient pas les rapports élémentaires tels que Cr/Th, les anomalies en Europium (Eu/Eu*), le CIA et les compositions isotopiques en Sr et Nd. Ces rapports et composition peuvent donc être utilisés pour caractériser la composition géochimique de la source des sédiments (McLennan et al., 1993 ; Cullers, 2000). Les compositions isotopiques en Sr et en Nd, les âges modèles T_{DM}, le Cr/Th et l'anomalie Eu/Eu* montrent des variations que l'on peut relier à des variations dans la composition de la source alimentant la marge équatoriale guyanaise au cours du Crétacé.

Les compositions isotopiques en Nd et Sr des échantillons crétacés analysés, des sources potentielles et des matières en suspensions transportés par les fleuves actuels amazoniens et de l'Amérique du Sud équatoriale sont reportées dans un diagramme isotopique couplé ⁸⁷Sr/⁸⁶Sr- $\varepsilon_{Nd(0)}$ (Figure 4.13.). Dans le détail, on note trois groupes d'échantillons : ceux qui ont des valeurs en $\varepsilon_{Nd(0)} >$ -2,2, ceux qui ont valeurs en $\varepsilon_{Nd(0)} >$ -13,6 et les échantillons ayant des valeurs de $\varepsilon_{Nd(0)}$ inférieures à -15 (Figures 4.8. et 4.13.).

Figure 4.13. Diagramme confrontant la composition isotopique en ⁸⁷Sr/⁸⁶Sr et les valeurs de $\varepsilon_{Nd(0)}$ du puits Arapaïma-1 et DSDP Site 543. Les champs isotopiques correspondent aux différentes unités géologiques pouvant alimenter le bassin du Guyana-Suriname ou ayant une signature isotopique très contrastée (voir Annexe 6). Les compositions isotopiques en Nd et Sr des fleuves modernes suivants sont issues des travaux de Allègre et al. (1996) : a : fleuve Amazone. m : fleuve Madeira. n : fleuve Rio Negro. s : fleuve Solimoes. t : fleuve Trompetas. t : fleuve Trapajos.Lengende des échantillons identique à la figure 4.8.

Trois échantillons se détachent fortement des autres échantillons analysés par une composition isotopique en Nd beaucoup plus radiogénique ($\varepsilon_{Nd(0)} > -2,2$ contre $\varepsilon_{Nd(0)} < -12,2$) et des âges modèles beaucoup plus récents (T_{DM} <0,91 Ga contre T_{DM} >1,76 Ga). Ces échantillons ne présentent pas d'autres différences géochimiques par rapport aux autres échantillons. De plus, ils ne se concentrent pas sur une période temporelle spécifique et sont répartis de manière aléatoire sur la colonne stratigraphique (Figure 4.8.). Il y a un échantillon au Crétacé inférieur (AR1-1), un autre au Cénomanien (AR1-9) et un dernier au Campanien supérieur (AR1-23). Les fortes baisses des âges modèles T_{DM} et augmentations des valeurs en $\epsilon_{Nd(0)}$ impliquent l'apport brutal de matériaux juvéniles dans le bassin. Il existe, selon nous, deux possibilités pour expliquer ces apports : 1), une mise à l'érosion d'une source juvénile ou 2), des phases d'activité volcanique. Les deux échantillons les plus anciens présentent une faible anomalie en Europium mais un ratio Cr/Th élevé et proche de ceux observés dans les dykes basaltique ou tholéiitique (e.g. la CAMP) qui pénètrent le Bouclier Guyanais au Suriname (Deckart et al., 2005). Les âges T_{DM} de ces deux échantillons (0, 90 Ga et 0,84 GA respectivement) sont également proches de ceux de ces dykes basaltiques (moyenne ~0,741 Ga). Cela peut donc suggérer un changement de nature géochimique de la roche source vers une source plus basique. C'est également cohérent avec les compositions isotopiques en néodyme puisque les valeurs d' $\epsilon_{Nd(0)}$ de ces deux échantillons sont très proches d'un pôle juvénile volcanique (Figure 4.13.). Cependant, l'érosion de terrains volcaniques ou de dykes présents dans le Bouclier Guyanais aurait été illustrée par des transitions progressives, notamment dans les valeurs d' $\epsilon_{_{Nd(0)}}$ et de $T_{DM},$ ce que nous n'observons pas. Les changements brutaux d' $\epsilon_{Nd(0)}$ et les changements brutaux d'âges T_{DM} (Figure 4.8.) impliquent la présence d'éruptions volcaniques dans la zone plutôt que par une mise à l'érosion d'une source juvénile. L'échantillon du Campanien supérieur ne présente pas quant à lui de ratio

Cr/Th élevé, de rapport Th/Sc faible ou d'une faible anomalie en Eu caractéristique d'un sédiment issu d'une roche basique (c-à-d pour Cr/Th de 22,5 à 500 et Eu/Eu* de 0,70 à 1,12, Cullers, 2000). Cet échantillon possède une anomalie en Europium (0,68) très similaire à celles des sédiments cénozoïques prélevés au site DSDP 543 du leg 78A (Eu/Eu* ~0,72 ; White et al., 1985) et des rapports Cr/Th et Th/ Sc proche de ceux du PAAS. Bien qu'ayant un spectre de REE, des rapports Cr/Th et Th/Sc et une anomalie en Eu différents des échantillons plus anciens AR1-1 et AR1-9, l'échantillon AR1-23 du Campanien supérieur présente une composition isotopique en Nd et un âge modèle T_{DM} similaires. En effet, même si sa valeur d' $\epsilon_{Nd(0)}$ est proche de celle des dykes de roches basiques observés en intrusion dans le Bouclier Guyanais, il ne partage pas d'autres caractéristiques géochimiques. Cela exclue un volcanisme basique comme source potentielle de cet échantillon. Les rapports Cr/Th, Th/Sc et l'anomalie en Eu/Eu* indiquent que le volcanisme était probablement plus felsique. La LIP des Caraïbes s'est formée vers 90 Ma et a progressivement migré vers l'Est, depuis la région Est de l'Océan Pacifique jusqu'à l'Ouest de l'Océan Atlantique Central (Duncan et Hargraves, 1984). Cependant, au Crétacé supérieur, la LIP était située au large de la partie nord-ouest du continent sud-américain (Yang et Escalona, 2011) et était donc très éloignée géographiquement du bassin du Guyana-Suriname. Bien que l'on ne puisse pas exclure une provenance issue de cette LIP, sa situation géographique au Campanien supérieur n'est pas favorable à l'identifier comme source volcanique principale de l'échantillon AR1-23. De plus, le volcanisme associé à cette LIP est essentiellement tholéiitique (Duncan et Hargraves, 1984). Nous suggérons que le volcanisme du Takutu ou celui associé à la structure volcanique observé sur la section régionale (Figure 4.3.) semblent être la meilleure hypothèse pour expliquer les compositions radiogéniques en Nd observées dans les sédiments du Campanien supérieur. Cette hypothèse est en accord avec la présence de clastes de tuffs et de brèches volcaniques témoignant de l'existence d'un volcanisme acide (Crawford et al., 1985) au moment du dépôt de la formation mésozoïque dans le bassin du Takutu notamment.

Dans le diagramme isotopique couplé Sr-Nd (Figure 4.13.), un second groupe d'échantillons montre une composition isotopique en Nd différente de celle des roches précambriennes du Bouclier Guyanais avec des valeurs d' $\epsilon_{_{Nd(0)}}$ beaucoup moins négatives (Table 4.3. et Figures 4.8. et 4.13.). En effet, deux échantillons au Cénomanien et au Santonien présentent des valeurs d' $\varepsilon_{Nd(0)}$ de -12,2 et -13,6 respectivement ce qui représente un écart de +5 à +6 unités d' $\varepsilon_{Nd(0)}$ par rapport à la médiane des échantillons. Cette différence pourrait être due à la contribution d'une roche source plus basique, cependant aucun des deux échantillons ne présente une anomalie en Europium ou un rapport Cr/Th caractéristiques d'un sédiment alimenté par une source plus basique. Ces variations sont donc représentatives d'un changement d'âge de la roche source et plus particulièrement de la contribution d'une roche plus récente que le Précambrien. Ces deux valeurs d' $\epsilon_{Nd(0)}$ sont similaires à celles des sédiments modernes de la Plaine abyssale de Démérara et de ceux du fleuve Amazone (Figure 4.13. et Annexe 6; White et al., 1985; Allègre et al., 1996; Roddaz et al., 2005; Roddaz et al., 2014; Rousseau et al. soumis). Ces échantillons ont des compositions isotopiques en Nd similaires à celles des matières en suspension (MES) du Madeira et d'une partie des sédiments de la plaine d'inondation amazonienne à l'actuel (Viers et al., 2008 ; Roddaz et al., 2014). Cela suggère donc que les échantillons du Cénomanien et du Santonien sont issus d'un mélange sédimentaire dont la contribution des sources précambriennes est moins importante dans les apports détritiques au détriment de celle de roches plus récentes (e.g. les sédiments mésozoïques du bassin de Takutu ou unités paléozoïques du Bouclier Guyanais, Figure 4.14.). Cela implique donc une extension de l'aire de drainage du paléo-Berbice vers le Sud du Bouclier Guyanais au-delà du bassin du Takutu (Figure 4.14.).

Figure 4.14. Carte paléogéographique (modifiée d'après Scotese et Golonka, 1997) illustrant les aires de drainage potentielles ainsi que le sens des apports sédimentaires ayant alimenté le bassin du Guyana-Suriname au Crétacé. TkB : Bassin du Takutu. AR-1 : puits Arapaïma-1. ε_{Nd} ++ : Apports de matériel à ε_{Nd} radiogénique (p.e. LIP Caraïbes). Pour les données isotopiques des sources, voir l'Annexe 6.

Enfin, la majorité des échantillons présentent des valeurs d' $\varepsilon_{Nd(0)}$ inférieures à -15, depuis l'Albien jusqu'au Paléocène (Figure 4.8.). Ils présentent une composition isotopique très similaire à celle des MES transportées par les fleuves amazoniens drainant les boucliers guyanais et brésiliens (Allègre et al., 1996 ; Rousseau et al 2017). Ces sédiments sont donc issus de l'érosion de ces roches précambriennes. Les compositions isotopiques de ces

sédiments sont similaires à celles obtenues dans les échantillons du Crétacé supérieur prélevés aux sites ODP du leg 207 (Plateau de Démérara, Martin et al., 2012 ; Figure 4.13.) eux aussi d'origine cratonique (Martin et al., 2012). Les compositions isotopiques en néodyme de ces sédiments crétacés sont très différentes de celles des sédiments modernes prélevés au large du Prisme de la Barbade et sur la Plaine abyssale de Démérara (Figure 4.13. ; White et al., 1985) qui proviennent en partie de l'Amazone. L'Amazone est devenue transcontinentale au Miocène supérieur et transporte les sédiments en provenance des Andes depuis cette période (Figueireido et al., 2010; Gorini et al., 2013; Hoorn et al., 2017; Van Soelen et al., 2017). Avant le Miocène supérieur, la paléo-Amazone transportait essentiellement des sédiments provenant de l'érosion des cratons précambriens (Stewart et al., 2016). Par conséquent, les valeurs d' $\epsilon_{Nd(0)}$ étaient beaucoup plus négatives qu'à l'actuel et étaient représentatives de la contribution dominante dans les apports sédimentaires amazoniens des roches (valeur médiane d' $\epsilon_{Nd(0)}$ ~ -18,3 ; Stewart et al., 2016). Cette valeur est similaire à la valeur médiane d' $\varepsilon_{Nd(0)}$ des sédiments crétacés analysés au puits Arapaïma-1 ($\epsilon_{Nd(0)}$ ~ -18,8 ; Table 4.3.) et confirme que les apports sédimentaires du Bassin du Guyana-Suriname étaient dominés par la contribution des sources précambriennes. L'analyse des sections régionales de sismique réflexion 2D confirme une alimentation des sédiments en provenance du craton guyanais. En effet, nous avons pu identifier un canyon situé à l'embouchure actuelle des fleuves du Berbice et du Corentyne au Guyana qui connectait le craton guyanais au bassin du Guyana-Suriname (Figure 4.5.). Ce canyon correspondrait à la partie la plus avale d'un fleuve drainant le craton guyanais, le paléo-Berbice. Ce fleuve aurait été la principale connexion entre les aires de drainage sur le continent, qui érodent le Bouclier Guyanais et la zone de dépôt des apports clastiques (cône sous-marin) dans le bassin profond pendant le Crétacé (Figures 4.5. et 4.14. ; Simakov et Fedynsky, 1965 ; Yang et Escalona, 2011). En ce sens, le bassin versant serait situé entre les deux unités du Bouclier Guyanais délimitées par le bassin sédimentaire du Takutu (Figure 4.14.). On remarque néanmoins une évolution de la composition géochimique des sédiments exportés par le paléo-Berbice au cours du Crétacé. En effet, les rapports élémentaires (Cr/Th, Th/Sc), les REE et notamment

l'anomalie en Eu montrent un changement de composition géochimique entre la source des sédiments de la période Coniacien-Paléocène et celle des sédiments plus anciens (Tables 2 et 3, Figure 4.8.). Les anomalies en Europium sont plus développées (Eu/Eu* plus faible) et les rapports Cr/Th sont plus faibles dans les sédiments du Coniacien-Paléocène que dans les sédiments anciens suggérant que les sédiments de l'intervalle Coniacien-Paléocène proviennent d'une source un peu plus felsique (Figure 4.8., Cullers, 2000) ou une contribution moins importante d'une source archéenne. Une source plus felsique pour les sédiments du Coniacien-Paléocène est aussi en accord avec les compositions isotopiques en Sr des sédiments du Coniacien-Paléocène qui sont plus radiogéniques que celles des sédiments plus anciens que le Coniacien (Table 4.3. et Figure 4.8.). Les anomalies en Eu peuvent également être utilisées pour discriminer une contribution de sources archéennes ou post-archéennes (McLennan et al., 1979 ; 1980 ; Taylor et McLennan, 1985 ; Roddaz et al., 2006). Ainsi, de faibles anomalies en Eu correspondent généralement à des sources basiques alors que de fortes anomalies impliquent la contribution d'une source felsique (Taylor et McLennan, 1985; Cullers, 2000). Les sédiments issus d'une source archéenne ont généralement une anomalie en Eu supérieure à 0,85 et un rapport élémentaire Gd_N/Yb_N (_N : normalisé au PAAS) supérieur à 2,0 (McLennan et al., 1993). Dans un diagramme couplé Eu/Eu* avec Gd_N/Yb_N tous les sédiments crétacés du puits Arapaïma-1 présentent un rapport élémentaire Gd_N/Yb_N inférieur à 2,0 et la majorité d'entre eux ont une anomalie en Eu inférieure à 0,85 à l'exception de 7 échantillons anté-coniaciens (AR1-1, AR1-6, AR1-7, AR1-8, AR1-9, AR1-10, AR1-11D) (Figure 4.15.). A l'exception de ces échantillons, une contribution strictement archéenne semble donc peu probable. Pour les échantillons antéconiaciens qui présentent des anomalies en Eu supérieure à 0,85, il est donc possible qu'une certaine proportion de la contribution sédimentaire soit d'origine archéenne. Ces rapports élémentaires, les anomalies en Europium et les compositions isotopiques en Sr mettent en évidence un changement de composition géochimique de la source sédimentaire qui alimente le bassin du Guyana-Suriname et qui survient pendant la transition entre le Turonien et le Coniacien. En effet, la contribution de matériel basique domine dans les apports sédimentaires anté-coniaciens alors que les sédiments coniaciens à paléocènes semblent alimentés par un matériel plus felsique. Ce changement de la nature de la source s'accompagne aussi d'un changement dans l'âge moyen de la source. En effet, la moyenne des âges modèles T_{DM} des échantillons anté-coniaciens (2,33 Ga) est plus ancienne que celle des échantillons coniaciens à paléocènes (2,09 Ga). Cela indique que les sédiments les plus anciens étaient alimentés par une source plus ancienne que celle des sédiments les plus récents. Ces données isotopiques sont cohérentes avec les anomalies en Eu moins développées des sédiments anté-coniaciens (Figure 4.15.).

Figure 4.15. Anomalies en europium (Eu/Eu*) et le rapport élémentaire $(Gd/Yb)_N$ normalisé au PAAS (Taylor et McLennan, 1985) des sédiments crétacés du puits Arapaïma-1. Les sédiments archéens ont généralement une anomalie en europium supérieure à 0,85 et un rapport élémentaire (Gd/Yb)N supérieur à 2,0 (McLennan, et al., 1993).

Ce changement dans la nature de la source s'accompagne par une migration du dépocentre en direction du Sud du bassin du Guyana-Suriname, vers les domaines les plus proximaux.

5.3. Evolution du bassin Guyana Suriname au cours du Crétacé

L'analyse de la provenance des sédiments prélevés au puits Arapaïma-1 a permis de caractériser un changement de source entre l'intervalle Crétacé inférieur-Turonien et la période Coniacien-Paléocène. Ainsi, bien que les sédiments semblent provenir pour la plupart de l'érosion du Bouclier Guyanais, les échantillons du Coniacien-Paléocène indiquent une contribution d'une source plus juvénile, notamment moins archéenne, que celle des sédiments du Crétacé inférieur-Turonien. Sachant que les terrains les plus récents se situent principalement dans la partie sud et ouest du Bouclier Guyanais (Figures 4.1B. et 4.14.), un tel changement de provenance implique une évolution de l'organisation du réseau de drainage et plus particulièrement une extension du bassin versant vers le Sud, à partir du Turonien (Figure 4.14.).

Ce changement de sources et de drainage est confirmé par les résultats obtenus grâce à l'analyse des données de subsurface puisqu'il a été mis en évidence une rétrogradation du dépocentre du cône sous-marin du paléo-Berbice à partir du Turonien. Pendant la période Albien-Turonien, les apports détritiques déposés dans le bassin profond du Guyana-Suriname présentaient un maximum d'épaisseur de plus de 3000 m principalement localisé au Nord-Est d'Arapaïma-1, au-delà du rebord du plateau continental (Figure 4.5A.). A partir du Turonien, les dépôts associés au cône sous-marin du paléo-Berbice rétrogradent et s'amincissent puisqu'ils atteignent 2000 m d'épaisseur au maximum (Figure 4.5B.). Cet amincissement du dépocentre est contemporain avec sa migration vers l'embouchure du canyon à la limite du plateau continental impliquant un déplacement vers le Sud du dépocentre. Il est possible que cette rétrogradation soit associée à une diminution des apports terrigènes du paléo-Berbice est contemporaine au changement de provenance et à la migration vers le Sud de l'aire de drainage entre le Turonien et le Coniacien (Figure 4.14.).

Enfin, l'analyse des sections de sismique réflexion 2D a permis d'identifier une structure volcanique mésozoïque (Figure 4.3.). Or, il est possible que ce volcanisme dans la partie *offshore* de la zone d'étude soit contemporain avec celui observé sur le domaine

onshore dans le bassin du Takutu à partir du Jurassique inférieur, qui est associé à un régime extensif provoqué par l'ouverture de l'Atlantique Central (Berrangé et Dearnley, 1975). Ainsi, ce volcan peut également être actif et les âges modèles T_{DM} jeunes, ainsi que les $\varepsilon_{Nd(0)}$ moins négatifs de trois échantillons pourraient être expliqués par trois phases d'activité volcanique de ce volcan au cours du Crétacé.

5.4. Implications sur la formation des sédiments riches en matière organique

L'étude de la provenance du bassin du Guyana-Suriname a mis en évidence un export détritique au Crétacé issu essentiellement du Bouclier Guyanais et a permis de caractériser un changement de source sédimentaire entre le Turonien et le Coniacien. A partir du Turonien, le matériel sédimentaire est issu d'une source en moyenne plus jeune ce qui implique une extension de l'aire de drainage vers le Sud du craton. Ce changement sur le continent s'accompagne dans le domaine océanique par une rétrogradation du dépocentre vers le Sud associée à une diminution des apports détritiques issus du paléo-Berbice. Ces changements de l'architecture sédimentaire et de la provenance des sédiments illustrent une évolution de la sédimentation dans le domaine offshore du bassin du Guyana-Suriname. L'étude de provenance et des données de sub-surface ont permis également d'illustrer que le Plateau de Démérara et le puits Arapaïma-1 sont alimentés par du matériel détritique issu de l'érosion du Bouclier Guyanais (Figure 4.13.) mais qu'ils restent en marge de la panache turbide détritique caractérisée par le dépocentre du paléo-Berbice (Figure 4.5.). Il nous est donc possible maintenant de discuter les conditions de dépôt des niveaux organiques observés sur le plateau continental guyanais au puits Arapaïma-1 et sur le Plateau de Démérara aux forages ODP du leg 207.

Plusieurs études récentes s'accordent sur le modèle de circulation océanique de l'Océan Atlantique Central pendant le Crétacé (MacLeod et al., 2008 ; Robinson et al., 2010 ; Voigt et al., 2013 ; Donnadieu et al., 2016 ; Moiroud et al., 2016). La transition entre le Cénomanien et le Turonien, marquée par l'OAE2 (~ 94Ma), est une période charnière précédant une intensification de la circulation océanique de l'Atlantique Central jusqu'alors lente voire stagnante pendant le Crétacé inférieur (Bralower et Thierstein, 1984 ; Poulsen et

al., 2001). Cette intensification se serait produit suite à un changement de configuration continentale engendrée par l'ouverture de l'Océan Atlantique Equatorial (Friedrich et Erbacher, 2006; Donnadieu et al., 2016). Bien qu'un courant de surface originaire de la Téthys semble exister depuis le Crétacé inférieur (Tethys Circumglobal Current, Pucéat et al., 2005), deux courants profonds (> 2000 m) se mettent en place dès la fin du Turonien, le premier provenant du Nord de l'Océan Atlantique (Northern Component Water, MacLeod et al., 2008), et le second issu de l'Atlantique Sud (Southern Component Water, Robinson et al., 2010). Un troisième courant océanique affectant les masses d'eau de la partie Sud de l'Océan Atlantique Central à des profondeurs intermédiaires (700 à 1100 m) a été identifié localement au Plateau de Démérara (Demerara Bottom Water, MacLeod et al., 2008 ; Jiménez Berrocoso et al., 2010 ; Martin et al., 2012). La mise en place de ces courants océaniques semble avoir engendré une meilleure ventilation du plancher océanique provoquant la disparition des conditions anoxiques favorables à la préservation de la matière organique présentes jusque-là sur le Plateau de Démérara pendant le Cénomanien et le Turonien (Donnadieu et al., 2016). En effet, une épaisse séquence de black shales datant de l'Albien au Santonien a été mise en évidence par les forages ODP du leg 207 sur le Plateau de Démérara (Shipboard Scientific Party, 2004, Figure 4.16.). Ces niveaux de black shales présentent des enrichissements en carbone organique exceptionnels depuis l'Albien jusqu'au Santonien et trouvent leur paroxysme pendant l'OAE2 (TOC de 5 à 30 %, Meyers et al., 2006 ; Nederbragt et al., 2007). Ces enrichissements en carbone organique sont rendus possibles par (1) une forte productivité primaire associée à la présence d'upwellings et d'apports de nutriments continentaux par le ruissellement (Arthur et al., 1987; Trabucho Alexandre et al., 2010) et (2) le contexte paléogéographique particulier du Plateau de Démérara. En effet, ce plateau se situe hors de la zone d'influence des courants océaniques profonds qui ventilent le plancher océanique pouvant ainsi dégrader la matière organique (Figure 4.16.) et il est suffisamment éloigné du panache turbide du paléo-Berbice le préservant ainsi d'un possible effet de dilution de la matière organique par les matières inorganiques en suspension (Figures 4.5 et 4.16.) (Jiménez Berrocoso et al., 2008 ; Hetzel et al., 2008). Le Plateau de Démérara, de par sa position physiographique particulière, serait sous l'influence d'une zone à oxygène minimum

(conditions anoxiques à euxiniques) affectant les tranches intermédiaires de la colonne d'eau depuis environ 500 m de paléobathymétrie (Jiménez Berrocoso et al., 2008). La présence de cette tranche d'eau anoxique semble essentielle pour permettre l'enrichissement exceptionnel en matière organique observé sur le Plateau de Démérara (Erbacher et al., 2005 ; Friedrich et al., 2006). Or, sur le Plateau de Démérara, cette zone minimum n'affecte pas les profondeurs d'eau inférieures à 500 m qui étaient quant à elles partiellement ré-oxygénées provoquant la mise en place ponctuelle de conditions suboxiques en surface, moins favorables à la préservation de la matière organique (Hetzel et al., 2008 ; Jiménez Berrocoso et al., 2008). Cette configuration particulière serait globalement pérenne pendant 15 millions d'années entre le Cénomanien et le Santonien (Meyers et al., 2006 ; Jiménez Berrocoso et al., 2012). De plus, les paléobathymétries obtenues dans cette étude qui situent le Plateau de Démérara à plus de 1000 m d'eau sont cohérentes avec celles utilisées dans ce modèle de conditions redox de la colonne d'eau (Arthur et Natlland, 1979 ; Hetzel et al., 2008 ; Jiménez Berrocoso et al., 2008).

Figure 4.16. Transect schématique illustrant les objets sédimentaires observés dans le bassin du Guyana-Suriname pendant le Crétacé et leurs paléobathymétries, les enrichissements en matière organique associés (TOC du puits Arapaïma-1 voir Table 4.1. et Figure 4.2.; TOC des Sites ODP du leg 207 : Meyers et al., 2006). Les conditions redox de la colonne d'eau sont synthétisées d'après Hetzel et al. (2008) et Jiménez Berrocoso et al. (2008) pour les sites ODP du leg 207 et d'après une étude interne de biomarqueurs pour le puits Arapaïma-1 (AR-1) (Noyau, 1991). Les courants du Crétacé supérieur sont indiqués pour les tranches d'eau de surface (0-500m) : le Tethys Circumglobal Current (Pucéat et al., 2005) ; pour les tranches d'eau intermédiaires (500-1100m) le Demerara Bottom Water (Jiménez Berrocoso et al., 2010) ; et pour les tranches d'eau profondes (>2000m) le Sourthern Component Water (Robinson et al., 2010) et le Northern Component Water (MacLeod et al., 2008).

Le puits Arapaïma-1 situé sur le plateau continental au large du Guyana présente également un bon enrichissement en matière organique contemporain à celui observé aux sites ODP du leg 207 sur le Plateau de Démérara (Figure 4.16.). Ainsi, bien que les TOC soient plus faibles dans les échantillons du puits Arapaïma-1 (TOC ~2 à 5%, Figure 4.2.), les niveaux riches en matière organique s'observent depuis l'Albien jusqu'au Santonien (Figure 4.2.). Cela suggère donc que ce site aurait bénéficié de conditions favorables à la formation de niveaux organiques, comme observées au Plateau de Démérara, mais que les conditions au niveau du puits Arapaïma-1 étaient moins favorable que celles du Plateau de Démérara. En effet, outre les résultats de provenance qui illustrent une source sédimentaire équivalente entre les deux sites (Figure 4.13.), le puits Arapaïma-1 se situe également en marge du cône sous-marin du paléo-Berbice (Figures 4.5. et 4.16.). Etant localisé sur le plateau continental, il ne semble pas influencé par les courants océaniques de fond qui évoluent au-delà du rebord de plateau dans le bassin profond et qui sont susceptibles de ventiler le plancher océanique (e.g. SCW et NCW, Figure 4.16.). Enfin, des analyses de biomarqueurs effectuées sur les niveaux organiques du Turonien et du Coniacien au puits Arapaïma-1 confirment la présence de conditions réductrices lors du dépôt de ces sédiments, favorables à la préservation de la matière organique (Noyau, 1991, rapport interne Total; Figure 4.16.). Par conséquent, la différence d'enrichissement en carbone organique entre les deux sites pourrait résulter du fait que le Plateau de Démérara évolue à des paléobathymétries bien plus importantes que le puits Arapaïma-1, qui lui permettent par exemple d'avoir de meilleures conditions de préservation ou être soumis à un taux de sédimentation plus faible favorisant la concentration de la matière organique. Ainsi, si le modèle redox de la colonne d'eau défini au Plateau de Démérara est applicable au plateau continental guyanais, le puits Arapaïma-1 serait soumis à des conditions de préservation moins favorables que sur le Plateau de Démérara. En effet, les sédiments riches en matière organique de la période Albien-Santonien au puits Arapaïma-1 se sont déposés à une paléo-bathymétrie caractéristique d'un plateau continental, inférieure à 200 m. Cela implique que le plateau continental guyanais pourrait probablement être exclu de la zone d'eau anoxique du Plateau de Démérara qui s'est développée à partir de 500 m de profondeur et qui serait alors présent dans la tranche d'eau de surface suboxique, ponctuellement reoxygénée (Figure 4.16.). Cette hypothèse semble cohérente avec les conditions réductrices observées au puits Arapaïma-1 et avec les paléo-bathymétries estimées grâce au *backstripping*. Au Plateau de Démérara, le taux d'accumulation sédimentaire entre l'Albien et le Santonien varie de 1 m/Ma à 9 m/Ma (de Grasciansky et al., 1987) alors qu'il est de 10 à 60 m/Ma au puits Arapaïma-1 (Figure 4.2.). Cela implique que l'effet de la dilution a également contribué à la différence d'enrichissement en matière organique entre le Plateau de Démérara et le puits Arapaïma-1 et peux expliquer la différence de TOC observée. Enfin, dans le bassin profond, bien que nous ne disposons pas de valeurs de TOC permettant de discuter l'enrichissement en matière organique, notre étude a permis d'apporter des contraintes sur les paléobathymétries puisque le cône sous-marin du paléo-Berbice s'est formé à une profondeur d'eau supérieure à 4000 m (Figure 4.16.).

5. Conclusion

D'après les concentrations en éléments majeurs et traces, les compositions isotopiques en néodyme et strontium des sédiments du Crétacé prélevés sur le puits Arapaïma-1 et à l'analyse de sections de sismique réflexion 2D, cette étude a permis de caractériser la provenance et l'architecture des apports sédimentaires qui ont alimenté le bassin du Guyana-Suriname depuis le Crétacé inférieur jusqu'au Paléocène ainsi que leurs paléobathymétries de dépôt. Les apports sédimentaires dans le bassin profond du Guyana-Suriname résultent essentiellement de la contribution en matériel clastique apporté par un canyon, le paléo-Berbice, qui s'exprime par la mise en place d'un large cône sous-marin turbiditique. Ce canyon, qui semble être la connexion principale entre le domaine continental et marin, draine majoritairement le Bouclier Guyanais pendant le Crétacé.

Cet aspect a pu être mis en évidence grâce à l'étude de provenance qui montre que les unités précambriennes qui constituent le Bouclier Guyanais sont les principales sources sédimentaires qui alimentent le bassin du Guyana-Suriname pendant le Crétacé. Ces unités précambriennes sont caractérisées par une majorité de valeurs très peu radiogéniques d' $\varepsilon_{Nd(0)}$ (< -15), de ⁸⁷Sr/⁸⁶Sr (de 0,714598 à 0,760897) et des âges modèles T_{DM} élevés (de 1,8 à 2,6 Ga). Trois phases d'activité volcanique, qui se caractérisent par des valeurs d' $\varepsilon_{Nd(0)}$ supérieures à -2,2 et des âges T_{DM} jeunes (de 0,8 à 0,9 Ga) sont enregistrées par les sédiments du bassin Guyana-Suriname. L'origine de ce volcanisme (LIP, volcanisme mésozoïque du Takutu ou volcanisme sous marin local) reste à déterminer. Certaines valeurs d' $\varepsilon_{Nd(0)}$ (de - 12,2 à -13,6) illustrent des variations ponctuelles de la source impliquant une extension de l'aire de drainage vers le Sud du Bouclier Guyanais. Cela a permis d'apporter dans le bassin du Guyana-Suriname un matériel sédimentaire plus récent issu des unités paléozoïques ou mésozoïques observées notamment dans le bassin du Takutu.

Enfin, la méthode de *backstripping* a permis de définir des gammes de paléobathymétries dans divers environnements de dépôt tels que le plateau continental (0-200 m), le Plateau de Démérara (> 1000 m) et le bassin profond (> 4000 m). Ces estimations de la profondeur d'eau confirment le modèle proposé dans la littérature pour expliquer la présence de *black shales* très enrichies en matière organique sur le Plateau de Démérara et permet de discuter la différence d'enrichissement en carbone organique des *black shales* albosantoniennes entre le site Arapaïma-1 et les sites ODP du *leg* 207. De fait, le plateau continental guyanais présente des conditions moins favorables qu'au Plateau de Démérara puisqu'il bénéficiait de moins bonnes conditions de préservation et était soumis à un taux de sédimentation plus important (jusqu'à 4 fois plus) provoquant la dilution du contenu organique. Les facteurs de contrôle principaux qui permettent ou non un enrichissement en matière organique dans les sédiments du bassin du Guyana-Suriname sont donc les conditions de préservation et le facteur de dilution.

Références

- Aalto, R., Dunne, T., and Guyot, J. L., 2006. Geomorphic controls on Andean denudation rates. The Journal of geology, 114(1), 85-99. doi: 10.1086/498101
- Allègre, C. J., Dupré, B., Négrel, P., and Gaillardet, J., 1996. Sr □ Nd □ Pb isotope systematics in Amazon and Congo River systems: constraints about erosion processes. Chemical Geology, 131(1-4), 93-112. doi : 10.1016/0009-2541(96)00028-9
- Arthur, M. A., and Natland, J. H., 1979. Carbonaceous sediments in the North and South Atlantic: The role of salinity in stable stratification of Early Cretaceous basins. Deep drilling results in the Atlantic Ocean: continental margins and paleoenvironment, 375-401. doi : 10.1029/ME003p0375
- Arthur, M. A., Schlanger, S. T., and Jenkyns, H. C., 1987. The Cenomanian-Turonian Oceanic Anoxic Event, II. Palaeoceanographic controls on organic-matter production and preservation. Geological Society, London, Special Publications, 26(1), 401-420. doi: 10.1144/GSL.SP.1987.026.01.25
- Avelar, V. D., Lafon, J. M., Delor, C., Guerrot, C., and Lahondère, D., 2003. Archean crustal remnants in the easternmost part of the Guiana Shield: Pb–Pb and Sm–Nd geochronological evidence for Mesoarchean versus Neoarchean signatures. Géologie de la France, 2, 3-4.
- Basu, A. R., Sharma, M., and DeCelles, P. G., 1990. Nd, Sr-isotopic provenance and trace element geochemistry of Amazonian foreland basin fluvial sands, Bolivia and Peru: implications for ensialic Andean orogeny. Earth and Planetary Science Letters, 100(1-3), 1-17. doi : 10.1016/0012-821X(90)90172-T
- Bayon, G., German, C.R., Boella, R.M., Milton, J.A., Taylor, R.N., Nesbitt, R.W., 2002. An improved method for extracting marine sediment fractions and its application to Sr and Nd isotopic analysis. Chemical Geology 187, 179–199. doi:10.1016/S0009-2541(01)00416-8
- Benkhelil, J., Mascle, J., and Tricart, P., 1995. The Guinea continental margin: an example of a structurally complex transform margin. Tectonophysics, 248(1), 117-137. doi : 10.1016/0040-1951(94)00246-6
- Berrangé, J. P., and Dearnley, R., 1975. The Apoteri volcanic formation—tholeiitic flows in the North Savannas Graben of Guyana and Brazil. Geologische Rundschau, 64(1), 883-899.
- Bralower, T. J., and Thierstein, H. R., 1984. Low productivity and slow deep-water circulation in mid–Cretaceous oceans. Geology, 12(10), 614–618.
- Calvès, G., Clift, P. D., and Inam, A., 2008. Anomalous subsidence on the rifted volcanic margin of Pakistan: No influence from Deccan plume. Earth and Planetary Science Letters, 272(1–2). doi :10.1016/j.epsl.2008.04.042
- Campbell, A. E., 2005. Shelf-geometry response to changes in relative sea level on a mixed carbonate– siliciclastic shelf in the Guyana Basin. Sedimentary Geology, 175(1), 259-275. doi : 10.1016/j.sedgeo.2004.09.003
- Clift, P. D., Turner, J., and Party, T. O. D. P. L. 152 S., 1995. Dynamic support by the Iceland Plume and its effect on the subsidence of the northern Atlantic margins.

Journal of the Geological Society, 152(6), 935–941. doi :10.1144/GSL.JGS.1995.152.01.09

- Crawford, F. D., Szelewski, C. E., and Alvey, G. D., 1985. Geology and exploration in the Takutu graben of Guyana Brazil. Journal of Petroleum Geology, 8(1), 5-36. doi : 10.1111/j.1747-5457.1985.tb00189.x
- Cullers, R.L., 2000. The geochemistry of shales, siltstones and sandstones of Pennsylvanian– Permian age, Colorado, USA: implications for provenance and metamorphic studies. Lithos 51, 181–203. doi :10.1016/S0024-4937(99)00063-8
- De Baar, H.J.W., Bacon, M.P., Brewer, P.G., Bruland, K.W., 1985. Rare earth elements in the Pacific and Atlantic Oceans. Geochimica et Cosmochimica Acta 49, 1943–1959. doi :10.1016/0016-7037(85)90089-4
- Deckart, K., Bertrand, H., Liégeois, J.-P., 2005. Geochemistry and Sr, Nd, Pb isotopic composition of the Central Atlantic Magmatic Province (CAMP) in Guyana and Guinea. Lithos, Isotopes in Igneous PetrogenesisIV South American Symposium on Isotope Geology 82, 289–314. doi :10.1016/j.lithos.2004.09.023
- DePaolo, D. J., 1981. Neodymium isotopes in the Colorado Front Range and crust-mantle evolution in the Proterozoic. Nature, 291(5812), 193-196.
- Diebold, J. B., 1996. Digitization and Reanalysis of Analog Sonobuoy Records (No. 5-21720). Trustees of Columbia Univ. New York
- Donnadieu, Y., Pucéat, E., Moiroud, M., Guillocheau, F., Deconinck, J.–F., 2016. A better– ventilated ocean triggered by Late Cretaceous changes in continental configuration. Nature Communications 7, 10316. doi :10.1038/ncomms10316
- Dosseto, A., Bourdon, B., Gaillardet, J., Allègre, C. J., and Filizola, N., 2006. Time scale and conditions of weathering under tropical climate: Study of the Amazon basin with U-series. Geochimica et Cosmochimica Acta, 70(1), 71-89. doi : 10.1016/j.gca.2005.06.033
- Duncan, R.A., and Hargraves, R.B., 1984. Plate tectonic evolution of the Caribbean region in the mantle reference frame. In: Bonini, W.E., Hargraves, R.B., Shagam, R. (Eds.), The Caribbean – South America Plate Boundary and Regional Tectonics: Geological Society of America Memoir, vol. 162, pp. 81–93.
- Dunne, T., Mertes, L. A., Meade, R. H., Richey, J. E., and Forsberg, B. R., 1998. Exchanges of sediment between the flood plain and channel of the Amazon River in Brazil. GSA Bulletin, 110(4), 450-467. doi : 10.1130/0016-7606(1998)110<0450:EOSBTF>2.3.CO;2
- Erbacher, J., Friedrich, O., Wilson, P. A., Birch, H., and Mutterlose, J., 2005. Stable organic carbon isotope stratigraphy across Oceanic Anoxic Event 2 of Demerara Rise, western tropical Atlantic. Geochemistry, Geophysics, Geosystems, 6(6). doi : 10.1029/2004GC000850
- Fedo, C. M., Nesbitt, H. W., and Young, G. M., 1995. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology, 23(10), 921-924. doi: 10.1130/0091-7613(1995)023<0921:UTEOPM>2.3.CO;2

- Figueiredo, J., Hoorn, C., Van der Ven, P., and Soares, E., 2009. Late Miocene onset of the Amazon River and the Amazon deep-sea fan: Evidence from the Foz do Amazonas Basin. Geology, 37(7), 619-622. doi : 10.1130/G25567A.1
- Figueiredo, J., Hoorn, C., van der Ven, P., and Soares, E., 2010. Late Miocene onset of the Amazon River and the Amazon deep-sea fan: evidence from the Foz do Amazonas Basin :Reply. Geology37, 619–622. doi : 10.1130/G31057Y.1
- Friedrich, O., and Erbacher, J., 2006. Benthic foraminiferal assemblages from Demerara Rise (ODP Leg 207, western tropical Atlantic): possible evidence for a progressive opening of the Equatorial Atlantic Gateway. Cretaceous Research, 27(3), 377-397. doi : 10.1016/j.cretres.2005.07.006
- Friedrich, O., Erbacher, J., and Mutterlose, J., 2006. Paleoenvironmental changes across the Cenomanian/Turonian boundary event (oceanic anoxic event 2) as indicated by benthic foraminifera from the Demerara Rise (ODP Leg 207). Revue de micropaléontologie, 49(3), 121-139. doi : 10.1016/j.revmic.2006.04.003
- Gaillardet, J., Dupre, B., Allegre, C. J., and Négrel, P., 1997. Chemical and physical denudation in the Amazon River Basin. Chemical geology, 142(3-4), 141-173. doi : 10.1016/S0009-2541(97)00074-0
- Gibbs, R. J., 1967. The geochemistry of the Amazon River system: Part I. The factors that control the salinity and the composition and concentration of the suspended solids. Geological Society of America Bulletin, 78(10), 1203-1232. doi : 10.1130/0016-7606(1967)78[1203:TGOTAR]2.0.CO;2
- Goldstein, S.L., O'Nions, R.K., Hamilton, P.J., 1984. A Sm-Nd isotopic study of atmospheric dusts and particulates from major river systems. Earth and Planetary Science Letters 70, 221–236. doi :10.1016/0012-821X(84)90007-4
- Gorini, C., Haq, B.U., dos Reis, A.T., Silva, C.G., Cruz, A., Soares, E., and Grangeon, D., 2014. Late Neogene sequence stratigraphic evolution of the Foz do Amazonas Basin, Brazil. Terra Nova 26, 179–185. doi : 10.1111/ter.12083.
- Gouyet, S., Unternehr, P., and Mascle, A., 1994. The French Guyana margin and the Demerara Plateau: geological history and petroleum plays. In Hydrocarbon and petroleum geology of France (pp. 411-422). Springer Berlin Heidelberg.
- de Graciansky, P. D., Brosse, E., Deroo, G., Herbin, J. P., Montadert, L., Müller, C., Sigal, J., and Schaaf, A., 1987. Organic-rich sediments and palaeoenvironmental reconstructions of the Cretaceous North Atlantic. Geological Society, London, Special Publications, 26(1), 317-344.
- Greenroyd, C. J., Peirce, C., Rodger, M., Watts, A. B., and Hobbs, R. W., 2008. Demerara Plateau—the structure and evolution of a transform passive margin. Geophysical Journal International, 172(2), 549-564. doi : 10.1111/j.1365-246X.2007.03662.x
- Gruau, G., Martin, H., Leveque, B., Capdevila, R., and Marot, A., 1985. Rb—Sr and Sm— Nd geochronology of lower Proterozoic granite—greenstone terrains in French Guiana, South America. Precambrian Research, 30(1), 63-80. doi : 10.1016/0301-9268(85)90029-4
- Guyot, J. L., Jouanneau, J. M., Soares, L., Boaventura, G. R., Maillet, N., and Lagane, C., 2007. Clay mineral composition of river sediments in the Amazon Basin. Catena, 71(2), 340-356. doi : 10.1016/j.catena.2007.02.002

- Hetzel, A., Böttcher, M. E., Wortmann, U. G., and Brumsack, H. J., 2009. Paleo-redox conditions during OAE 2 reflected in Demerara Rise sediment geochemistry (ODP Leg 207). Palaeogeography, Palaeoclimatology, Palaeoecology, 273(3), 302-328. doi: 10.1016/j.palaeo.2008.11.005
- Hoorn, C., Bogotá-A, G. R., Romero-Baez, M., Lammertsma, E. I., Flantua, S. G., Dantas, E. L., Dino, R., do Carmo, D.A., and Chemale, F., 2017. The Amazon at sea: Onset and stages of the Amazon River from a marine record, with special reference to Neogene plant turnover in the drainage basin. Global and Planetary Change, 153, 51-65. doi: 10.1016/j.gloplacha.2017.02.005
- Horbe, A. M. C., Motta, M. B., de Almeida, C. M., Dantas, E. L., and Vieira, L. C., 2013. Provenance of Pliocene and recent sedimentary deposits in western Amazônia, Brazil: Consequences for the paleodrainage of the Solimões-Amazonas River. Sedimentary Geology, 296, 9-20. doi : 10.1016/j.sedgeo.2013.07.007
- Huck, C.E., van de Flierdt, T., Jiménez-Espejo, F.J., Bohaty, S.M., Röhl, U., Hammond, S.J., 2016. Robustness of fossil fish teeth for seawater neodymium isotope reconstructions under variable redox conditions in an ancient shallow marine setting. Geochem. Geophys. Geosyst. 17, 679–698. doi :10.1002/2015GC006218
- Jiménez Berrocoso, Á., MacLeod, K. G., Calvert, S. E., and Elorza, J., 2008. Bottom water anoxia, inoceramid colonization, and benthopelagic coupling during black shale deposition on Demerara Rise (Late Cretaceous western tropical North Atlantic). Paleoceanography, 23(3). doi: 10.1029/2007PA001545
- Jiménez Berrocoso, Á., MacLeod, K.G., Martin, E.E., Bourbon, E., Londoño, C.I., Basak, C., 2010. Nutrient trap for Late Cretaceous organic-rich black shales in the tropical North Atlantic. Geology 38, 1111–1114. doi :10.1130/G31195.1
- Kay, S. M., Coira, B., and Viramonte, J., 1994. Young mafic back arc volcanic rocks as indicators of continental lithospheric delamination beneath the Argentine Puna plateau, central Andes. Journal of Geophysical Research: Solid Earth, 99(B12), 24323-24339. doi: 10.1029/94JB00896
- Kerr, A. C., Pearson, D. G., and Nowell, G. M., 2009. Magma source evolution beneath the Caribbean oceanic plateau: new insights from elemental and Sr-Nd-Pb-Hf isotopic studies of ODP Leg 165 Site 1001 basalts. Geological Society, London, Special Publications, 328(1), 809-827. doi : 10.1144/SP328.31
- Klein, E. L., Angélica, R. S., Harris, C., Jourdan, F., and Babinski, M., 2013. Mafic dykes intrusive into Pre-Cambrian rocks of the São Luís cratonic fragment and Gurupi Belt (Parnaíba Province), north–northeastern Brazil: Geochemistry, Sr–Nd–Pb–O isotopes, 40 Ar/39 Ar geochronology, and relationships to CAMP magmatism. Lithos, 172, 222-242. doi : 10.1016/j.lithos.2013.04.015
- Kohn, B. P., Shagam, R., Banks, P. O., and Burkley, L. A., 1984. Mesozoic-Pleistocene fission-track ages on rocks of the Venezuelan Andes and their tectonic implications. Geological Society of America Memoirs, 162, 365-384. doi: 10.1130/MEM162-p365
- Kusznir, N. J., Roberts, A. M., and Morley, C. K., 1995. Forward and reverse modelling of rift basin formation. Geological Society, London, Special Publications, 80(1), 33–56. doi: 10.1144/GSL.SP.1995.080.01.02

- Labails, C., Olivet, J. L., Aslanian, D., and Roest, W. R., 2010. An alternative early opening scenario for the Central Atlantic Ocean. Earth and Planetary Science Letters, 297(3), 355-368.
- Larson, R. L., 1991. Latest pulse of Earth: Evidence for a mid-Cretaceous superplume. Geology, 19(6), 547-550. doi : 10.1130/0091-7613(1991)019<0547:LPOEEF>2.3.CO;2
- Lindseth, R. O., and V. L. A. Beraldo, 1985, Late Cretaceous submarine canyon in Brazil: AAPG Memoir 62, p. 168–181.
- Louterbach, M., Roddaz, M., Antoine, P-O., Marivaux, L., Adnet, S., Bailleul, J., Dantas, E., Santos, R., Chemale, F., Baby, P., Sanchez, C., and Calderon, Y., 2017. Provenance record of late Maastrichtian-late Palaeocene Andean Mountain building in the Amazonian retroarc foreland basin (Madre de Dios basin, Peru). Terra Nova. . 10.1111/ter.12303.
- MacLeod, K.G., Martin, E.E., Blair, S.W., 2008. Nd isotopic excursion across Cretaceous ocean anoxic event 2 (Cenomanian–Turonian) in the tropical North Atlantic. Geology 36, 811–814. doi :10.1130/G24999A.1
- MacLeod, K.G., Isaza Londoño, C., Martin, E.E., Jiménez Berrocoso, Á., Basak, C., 2011. Changes in North Atlantic circulation at the end of the Cretaceous greenhouse interval. Nature Geosci 4, 779–782. doi :10.1038/ngeo1284
- MacRae, N. D., Nesbitt, H. W., and Kronberg, B. I., 1992. Development of a positive Eu anomaly during diagenesis. Earth and Planetary Science Letters, 109(3-4), 585-591. doi: 10.1016/0012-821X(92)90116-D
- Mann, P., Taylor, F. W., Edwards, R. L., & Ku, T. L. (1995). Actively evolving microplate formation by oblique collision and sideways motion along strike-slip faults: An example from the northeastern Caribbean plate margin. Tectonophysics, 246(1), 1-69. doi: 10.1016/0040-1951(94)00268-E
- Martin, E.E., Blair, S.W., Kamenov, G.D., Scher, H.D., Bourbon, E., Basak, C., Newkirk, D.N., 2010. Extraction of Nd isotopes from bulk deep sea sediments for paleoceanographic studies on Cenozoic time scales. Chemical Geology 269, 414–431. doi :10.1016/j.chemgeo.2009.10.016
- Martin, E.E., MacLeod, K.G., Jiménez Berrocoso, A., Bourbon, E., 2012. Water mass circulation on Demerara Rise during the Late Cretaceous based on Nd isotopes. Earth and Planetary Science Letters 327–328, 111–120. doi :10.1016/j.epsl.2012.01.037
- Martinelli, L. A., Victoria, R. L., Dematte, J. L. I., Richey, J. E., and Devol, A. H., 1993. Chemical and mineralogical composition of Amazon River floodplain sediments, Brazil. Applied Geochemistry, 8(4), 391-402. doi: 10.1016/0883-2927(93)90007-4
- Marzoli, A., Renne, P.R., Piccirillo, E.M., Ernesto, M., Bellieni, G. and De Min, A., 1999. Extensive 200-million-year-old continental flood basalts of the Central Atlantic Magmatic Province. Science 284 (5414), 616–618. doi : 10.1126/science.284.5414.616
- Mazzucchelli, M., Rivalenti, G., Vannucci, R., Bottazzi, P., Ottolini, L., Hofmann, A. W., and Parenti, M., 1992. Primary positive Eu anomaly in clinopyroxenes of low-crust gabbroic rocks. Geochimica et Cosmochimica Acta, 56(6), 2363-2370. doi : 10.1016/0016-7037(92)90194-N

- McConnell, R. B., 1969. Notes and Discussions, Fundamental Fault Zones in the Guiana and West African Shields in Relation to Presumed Axes of Atlantic Spreading. Geological Society of America Bulletin, 80(9), 1775-1782. doi : 10.1130/0016-7606(1969)80[1775:NADFFZ]2.0.CO;2
- McKay, G. A., 1989. Partitioning of rare earth elements between major silicate minerals and basaltic melts. Reviews in Mineralogy and Geochemistry, 21(1), 45-77.
- McLennan, S. M., Fryer, B. J., and Young, G. M., 1979. Rare earth elements in Huronian (Lower Proterozoic) sedimentary rocks: composition and evolution of the post-Kenoran upper crust. Geochimica et Cosmochimica Acta, 43(3), 375-388. doi : 10.1016/0016-7037(79)90202-3
- McLennan, S. M., Nance, W. B., and Taylor, S. R., 1980. Rare earth element-thorium correlations in sedimentary rocks, and the composition of the continental crust. Geochimica et Cosmochimica Acta, 44(11), 1833-1839. doi : 10.1016/0016-7037(80)90232-X
- McLennan, S.M., Hemming, S., McDaniel, D.K., Hanson, G.N., 1993. Geochemical approaches to sedimentation, provenance, and tectonics. Geological Society of America Special Papers 284, 21–40. doi : 10.1130/SPE284-p21
- Meade, R. H., Dunne, T., Richey, J. E., Santos, U. D. M., and Salati, E., 1985. Storage and remobilization of suspended sediment in the lower Amazon River of Brazil. Science, 228(4698), 488-490. doi : 10.1126/science.228.4698.488
- Merle, R., Marzoli, A., Bertrand, H., Reisberg, L., Verati, C., Zimmermann, C., Chiaradia, M., Bellieni, G., Ernesto, M., 2011. 40Ar/ 39Ar ages and Sr–Nd–Pb– Os geochemistry of CAMP tholeiites from Western Maranhao basin (NE Brazil). Lithos 122, 137–151. doi: 10.1016/j.lithos.2010.12.010
- Meyers, P. A., Bernasconi, S. M., and Forster, A., 2006. Origins and accumulation of organic matter in expanded Albian to Santonian black shale sequences on the Demerara Rise, South American margin. Organic Geochemistry, 37(12), 1816-1830. doi : 10.1016/j.orggeochem.2006.08.009
- Moiroud, M., Pucéat, E., Donnadieu, Y., Bayon, G., Guiraud, M., Voigt, S., Deconinck, J.-F., Monna, F., 2016. Evolution of neodymium isotopic signature of seawater during the Late Cretaceous: Implications for intermediate and deep circulation. Gondwana Research 36, 503–522. doi :10.1016/j.gr.2015.08.005
- Möller, P., and Muecke, G. K., 1984. Significance of europium anomalies in silicate melts and crystal-melt equilibria: a re-evaluation. Contributions to Mineralogy and Petrology, 87(3), 242-250. doi : 10.1007/BF00373057
- Morris, R. V., Haskin, L. A., Biggar, G. M., and O'hara, M. J, 1974. Measurement of the effects of temperature and partial pressure of oxygen on the oxidation states of europium in silicate glasses. Geochimica et Cosmochimica Acta, 38(9), 1447-1459. doi : 10.1016/0016-7037(74)90098-2
- Müller, R. D., Seton, M., Zahirovic, S., Williams, S. E., Matthews, K. J., Wright, N. M., Shephard, G.E., Maloney, K., Barnett-Moore, N., Hosseinpour, D.J., and Bower, D. J., 2016. Ocean basin evolution and global-scale plate reorganization events since Pangea breakup. Annual Review of Earth and Planetary Sciences, 44, 107-138. doi : 10.1146/annurev-earth-060115-012211

- Mullins H.T., and Neumann, A.C., 1979. Deep carbonate bank–margin structure and sedimentation in the northern Bahamas. SEPM Publ., 27, 165–192.
- Nederbragt, A. J., Thurow, J., and Pearce, R., 2007. Sediment composition and cyclicity in the mid-Cretaceous at Demerara Rise, ODP Leg 207. In Proc. ODP Sci. Results (Vol. 207, pp. 1-31). doi : 10.2973/odp.proc.sr.207.103.2007
- Nesbitt, H., and Young, G. M., 1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299(5885), 715-717. doi: 10.1038/299715a0
- Nesbitt, H. W., and Young, G. M., 1984. Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations. Geochimica et Cosmochimica Acta, 48(7), 1523-1534. doi : 10.1016/0016-7037(84)90408-3
- Nesbitt, H. W., and Young, G. M., 1989. Formation and diagenesis of weathering profiles. The Journal of Geology, 97(2), 129-147. doi : 10.1086/629290
- Noyau, A., 1991. Complementary geochemical study of Arapaima-1, Guyana. Communication personnelle.
- Nürnberg, D., and Müller, R. D., 1991. The tectonic evolution of the South Atlantic from Late Jurassic to present. Tectonophysics, 191(1), 27-53. doi : 10.1016/0040-1951(91)90231-G
- Philpotts, J. A., 1970. Redox estimation from a calculation of Eu2+ and Eu3+ concentrations in natural phases. Earth and Planetary Science Letters, 9(3), 257-268. doi: 10.1016/0012-821X(70)90036-1
- Pindell, J. L., 1991. Geologic rationale for hydrocarbon exploration in the Caribbean and adjacent regions. Journal of Petroleum Geology, 14(2), 237-258. doi : 10.1111/j.1747-5457.1991.tb00310.x
- Piper, D.Z., 1974. Rare earth elements in ferromanganese nodules and other marine phases. Geochimica et Cosmochimica Acta 38, 1007–1022. doi :10.1016/0016-7037(74)90002-7
- Poulsen, C. J., Barron E. J., Arthur M. A., and Peterson W. H., 2001. Response of the Mid-Cretaceous global oceanic circulation to tectonic and CO2 forcings, Paleoceanography, 16(6), 576–592, doi :10.1029/2000PA000579.
- Pucéat, E., Lécuyer, C., Reisberg, L., 2005. Neodymium isotope evolution of NW Tethyan upper ocean waters throughout the Cretaceous. Earth and Planetary Science Letters 236, 705–720. doi :10.1016/j.epsl.2005.03.015
- Roberts, A. M., Kusznir, N. J., Yielding, G., and Styles, P., 1998. 2D flexural backstripping of extensional basins: the need for a sideways glance. Petroleum Geoscience, 4(4), 327-338.
- Roberts, A. M., R. I. Corfield, N. J. Kusznir, S. J. Matthews, E.–Kåre Hansen, and R. J. Hooper., 2009. Mapping palaeostructure and palaeobathymetry along the Norwegian Atlantic continental margin: Møre and Vøring basins, Petroleum Geoscience, 15(1), 27–43, doi :10.1144/1354–079309–804
- Robinson, S.A., Murphy, D.P., Vance, D., Thomas, D.J., 2010. Formation of "Southern Component Water" in the Late Cretaceous: Evidence from Nd-isotopes. Geology 38, 871–874. doi :10.1130/G31165.1

- Roddaz, M., Viers, J., Brusset, S., Baby, P., and Hérail, G., 2005. Sediment provenances and drainage evolution of the Neogene Amazonian foreland basin. Earth and Planetary Science Letters, 239(1), 57-78. doi : 10.1016/j.epsl.2005.08.007
- Roddaz, M., Viers, J., Brusset, S., Baby, P., Boucayrand, C., and Hérail, G., 2006. Controls on weathering and provenance in the Amazonian foreland basin: insights from major and trace element geochemistry of Neogene Amazonian sediments. Chemical Geology, 226(1), 31-65. doi : 10.1016/j.chemgeo.2005.08.010
- Roddaz, M., Viers, J., Moreira-Turcq, P., Blondel, C., Sondag, F., Guyot, J.-L., Moreira, L., 2014. Evidence for the control of the geochemistry of Amazonian floodplain sediments by stratification of suspended sediments in the Amazon. Chemical Geology 387, 101–110. doi :10.1016/j.chemgeo.2014.07.022
- Rogers, G., and Hawkesworth, C. J., 1989. A geochemical traverse across the North Chilean Andes: evidence for crust generation from the mantle wedge. Earth and Planetary Science Letters, 91(3-4), 271-285. doi : 10.1016/0012-821X(89)90003-4
- da Rosa-Costa, L. T., Lafon, J. M., and Delor, C., 2006. Zircon geochronology and Sm–Nd isotopic study: further constraints for the Archean and Paleoproterozoic geodynamical evolution of the southeastern Guiana Shield, north of Amazonian Craton, Brazil. Gondwana Research, 10(3), 277-300. doi : 10.1016/j.gr.2006.02.012
- Scotese, C. R., and Golonka, J., 1997. Paleogeographic atlas (pp. 1-45). PALEOMAP Project, University of Texas at Arlington.
- Schlanger, S., Jenkyns, H., 1976. Cretaceous Oceanic Anoxic Events: causes and consequences. Geologie en Mijnbouw 55, 179–184.
- Shipboard Scientific Party, 2004. Leg 207 summary. J. Erbacher, D.C. Mosher, M.J. Malone, et al. (Eds.), Proceedings of the Ocean Drilling Program, Initial Reports, vol. 207, Ocean Drilling Program, College Station, TX (2004), pp. 1-89. doi : 10.2973/odp.proc.ir.207.101.2004
- Sibuet, J.-C., Mascle, J., 1978. Plate kinematic implications of Atlantic equatorial fracture zone trends. J. Geophys. Res. 83, 3401–3421. doi :10.1029/JB083iB07p03401
- Simakov, S.N, and Fedynsky, V.V., 1965. Report on the prospecting for oil in British Guiana. Bull. geol. Surv. Br. Guiana, No. 36, 48 pp.
- Stewart, J.A., Gutjahr, M., James, R.H., Anand, P., Wilson, P.A., 2016. Influence of the Amazon River on the Nd isotope composition of deep water in the western equatorial Atlantic during the Oligocene–Miocene transition. Earth and Planetary Science Letters 454, 132–141. doi :10.1016/j.epsl.2016.08.037
- Sverjensky, D. A., 1984. Europium redox equilibria in aqueous solution. Earth and Planetary Science Letters, 67(1), 70-78. doi : 10.1016/0012-821X(84)90039-6

Taylor, S.R., McLennan, S.M., 1985. The continental crust: Its composition and evolution.

- Tissot, B., Deroo, G., and Herbin, J. P., 1979. Organic matter in Cretaceous sediments of the North Atlantic: contribution to sedimentology and paleogeography. Deep Drilling Results in the Atlantic Ocean: Continental Margins and Paleoenvironment, 362-374. doi: 10.1029/ME003p0362
- Torsvik, T.H., Van der Voo, R., Preeden, U., Mac Niocaill, C., Steinberger, B., Doubrovine, P.V., van Hinsbergen, D.J.J., Domeier, M., Gaina, C., Tohver, E., Meert, J.G.,

McCausland, P.J.A., Cocks, L.R.M., 2012. Phanerozoic polar wander, palaeogeography and dynamics. Earth-Science Reviews 114, 325–368. doi :10.1016/j.earscirev.2012.06.007

- Trabucho Alexandre, J., Tuenter, E., Henstra, G. A., van der Zwan, K. J., van de Wal, R. S., Dijkstra, H. A., and de Boer, P. L., 2010. The mid-Cretaceous North Atlantic nutrient trap: Black shales and OAEs. Paleoceanography, 25(4). doi : 10.1029/2010PA001925
- Van der Hammen, T., & Burger, D. (1966). Pollen flora and age of the Takutu Formation (Guyana). Geologischen Mineralogisch Institut des Rijksuniversiteit.
- van Soelen, E. E., Kim, J. H., Santos, R. V., Dantas, E. L., de Almeida, F. V., Pires, J. P., Roddaz, M. and Sinninghe Damsté, J., 2017. A 30 Ma history of the Amazon River inferred from terrigenous sediments and organic matter on the Ceará Rise. Earth and Planetary Science Letters, 474, 40-48. doi: 10.1016/j.epsl.2017.06.025
- Viers, J., Roddaz, M., Naziano, F. Jr, Guyot, J-L.,Sondag, F., Brunet, P., Zouiten, C., Boucayrand, C., Martin, F., and Boaventura, G., 2008. Seasonal and provenance controls on Nd-Sr isotopic compositions of Amazon Rivers suspended sediments and implications for Nd and Sr fluxes exported to the Atlantic Ocean. Earth and Planetary Science Letters. 274. 511-523. doi : 10.1016/j.epsl.2008.08.011.
- Vital, H., and Stattegger, K., 2000. Major and trace elements of stream sediments from the lowermost Amazon River. Chemical Geology, 168(1), 151-168. doi : 10.1016/S0009-2541(00)00191-1
- Voigt, S., Jung, C., Friedrich, O., Frank, M., Teschner, C., Hoffmann, J., 2013. Tectonically restricted deep–ocean circulation at the end of the Cretaceous greenhouse. Earth and Planetary Science Letters 369–370, 169–177. doi :10.1016/j.epsl.2013.03.019
- Watts, A. B., 1978. An analysis of isostasy in the world's oceans 1. Hawaiian–Emperor Seamount Chain, J. Geophys. Res., 83(B12), 5989–6004, doi :10.1029/JB083iB12p05989.
- Watts, A. B., 2015. 6.01 Crustal and Lithosphere Dynamics: An Introduction and Overview A2 Schubert, Gerald BT Treatise on Geophysics (Second Edition) (pp. 1–44). Oxford: Elsevier, doi :10.1016/B978–0–444–53802–4.00110–X
- White, W. M., Dupré, B., and Vidal, P., 1985. Isotope and trace element geochemistry of sediments from the Barbados Ridge-Demerara Plain region, Atlantic Ocean. Geochimica et cosmochimica acta, 49(9), 1875-1886. doi : 10.1016/0016-7037(85)90082-1
- Yang, W., and Escalona, A., 2011. Tectonostratigraphic evolution of the Guyana Basin. AAPG bulletin, 95(8), 1339-1368. doi : 10.1306/01031110106
CHAPITRE V

Synthèse et discussion.

CHAPITRE 5. SYNTHESE ET DISCUSSION

1. Matière organique et évolution de la sédimentation profonde, deux cas d'études

1.1. Bassins profonds nord-ouest africains

L'évolution sédimentaire depuis le continent vers le bassin océanique profond africain a été analysée dans les <u>chapitres 2 et 3</u> de ce manuscrit. Les principaux résultats de ces travaux sont reportés sur trois cartes paléogéographiques définies pour :

- 1. la période de l'Albien au Cénomanien (anté-OAE2),
- 2. l'intervalle du Cénomanien supérieur au Turonien inférieur (OAE2)
- 3. du Turonien (post-OAE2) jusqu'au Maastrichtien

Ces résultats sont mis en parallèle avec la synthèse effectuée dans ce travail de thèse sur les données de matière organique du secteur nord-ouest africain (Figure 5.1.).

Figure 5.1. Cartes paléogéographiques synthétisant les principaux résultats de l'étude sur l'évolution du cadre sédimentaire nord-ouest africain et de la matière organique au Crétacé en Atlantique Central. A. Albien à Cénomanien moyen. B. Cénomanien supérieur à Turonien inférieur. C. Turonien (hors OAE2) à Maastrichtien.

De l'Albien au Cénomanien, la MO dans le bassin profond océanique, notamment celle d'origine terrestre, est associée à des sédiments provenant de l'érosion des unités paléozoïques du Craton Ouest Africain impliquant la présence de bassins versants aux aires de drainages peu étendues et localisées sur la bordure ouest du Craton Ouest Africain (Figure 5.1A.). Cette organisation du réseau de drainage est associée, dans le domaine océanique profond, à la mise en place de cônes sous-marins constitués de complexes de chenaux-levées turbiditiques et de plusieurs objets sédimentaires illustrant la présence de courants de fond (*e.g.* drift contouritique), notamment au large de la Guinée. La proximité des zones sources et la présence d'une sédimentation turbiditique ont contribué à favoriser l'apport de MO terrestre dans le bassin profond puisque les *black shales* présentent des proportions de MO terrestre supérieures à 30 %.

Du Cénomanien supérieur au Turonien inférieur (OAE2), l'absence de cône sousmarin turbiditique le long de la marge africaine suggère une diminution des apports sédimentaires détritiques continentaux dans le bassin profond. Cette diminution est contemporaine du maximum d'ennoiement de la marge et d'une première réorganisation du réseau de drainage qui se traduit par une chute de l' ε_{Nd} des sédiments vers des valeurs intermédiaires, illustrant une provenance sédimentaire associant des sources paléozoïques et précambriennes. Cela implique donc une extension des aires de drainage des bassins versants vers l'est, dans les domaines plus internes où sont localisées les sources précambriennes (*e.g.* Boucliers de Réguibat et de Leo-Man) (Figure 5.1B.). La diminution des apports détritiques dans le bassin profond ainsi que l'éloignement des points sources impactent la contribution de MO terrestre dans la composition des *black shales* puisque les proportions en MO terrestre semblent diminuer pendant l'OAE2 ou sont diluées par une contribution en MO marine et amorphe plus importante qu'auparavant ou oxydés en MO amorphe.

Du Turonien (hors OAE2) au Maastrichtien, une seconde réorganisation du réseau de drainage a été identifiée par la contribution encore plus importante des roches précambriennes dans l'enregistrement détritique. Ce changement implique une seconde extension des aires de drainage des bassins versants et leur migration vers l'est du Craton

Ouest Africain (Figure 5.1C.). Cette réorganisation du drainage sur le continent est contemporaine de la mise en place d'une sédimentation dominée par la construction de masses glissées (*Mass Transport Complex*, MTC) et associée à la remobilisation des sédiments par des courants océaniques de fond comme illustrée par la présence de champs de *sediment waves* et celle de drifts contouritiques (Figure 5.1.C.). Cette configuration semble être, avec d'autres facteurs tels que de moins bonnes conditions de préservation, défavorable à l'enrichissement en MO puisque les *black shales* présentent des TOC inférieurs à 1 %.

1.2. Bassin du Guyana-Suriname

L'étude de provenance couplée à une analyse sédimentaire du bassin du Guyana-Suriname (chapitre 4) a permis de mettre en évidence un changement de provenance sur le continent, contemporain d'un changement de sédimentation dans le domaine océanique profond pendant le Turonien (Figure 5.2.). En effet, de l'Albien au Turonien, les apports détritiques qui alimentent le bassin du Guyana-Suriname sont issus de l'érosion des unités précambriennes (notamment archéennes) du Bouclier Guyanais. Ces unités sont localisées sur la bordure nord du craton ce qui implique un réseau de drainage proximal (proche de la côte) dont le matériel sédimentaire est acheminé vers le bassin océanique profond par le canyon du paléo-Berbice et forme un cône turbiditique sous-marin.

Les sédiments du Coniacien-Maastrichtien proviennent, quant à eux, d'apports détritiques issus de l'érosion de roches précambriennes plus récentes, puisque la contribution des roches archéennes diminue en comparaison de l'intervalle précédent. Ce changement de source implique une extension du bassin versant vers les domaines plus internes du craton, situés au sud du Bouclier Guyanais, qui survient entre le Turonien et le Coniacien (Figure 5.2.). Cette réorganisation du drainage s'accompagne, dans le domaine océanique profond, par la rétrogradation du cône-sous marin turbiditique et du dépocentre du paléo-Berbice vers le sud (Figure 5.2.). La cause de cette rétrogradation pourrait être liée à un changement de dynamique sédimentaire associé à l'efficacité de production et/ou d'export du continent, impliquant une diminution des apports détritiques vers le bassin profond.

L'origine et la teneur en MO enregistrées au puits Arapaïma-1 et sur le Plateau de Démérara (sites ODP du *leg* 207) semblent peu influencées par les changements qui affectent la sédimentation de la marge guyanaise. En effet, les TOC restent généralement au dessus de 1% et la composition de la MO varie peu (Figure 5.2.). L'arrêt de l'enrichissement en MO au puits Arapaïma-1 et sur le Plateau de Démérara est diachrone par rapport aux changements de sédimentation puisqu'il survient pendant le Santonien (Meyers et al., 2006 ; <u>chapitre 4</u>). Cependant, ces deux exemples ne sont pas représentatifs du domaine océanique profond du bassin du Guyana-Suriname car le puits Arapaïma-1 est situé sur le plateau continental et que le Plateau de Démérara est un plateau océanique sous-marin localisé à une plus faible bathymétrie (~ 1000 m) que le bassin guyanais (> 4000 m).

Figure 5.2. Cartes paléogéographiques synthétisant les principaux résultats du manuscrit sur l'évolution du cadre sédimentaire du bassin du Guyana-Suriname et de la matière organique au Crétacé en Atlantique Central. La flèche associée aux diagrammes de proportions en MO indique l'évolution temporelle au cours de l'intervalle de l'origine de la MO et de son enrichissement dans les sédiments. Le cadre paléogéographique est modifié d'après la reconstruction à 90 Ma proposée par Scotese (2001).

1.3. Comparaison des segments africain et sud-américain de l'océan Atlantique central

Les résultats de ce travail illustrent des différences et similitudes entre l'évolution du cadre sédimentaire sur le continent, la sédimentation dans le domaine océanique et l'enrichissement en MO, nous permettant de mettre en évidence un calendrier d'événements globalement similaire pour les deux secteurs étudiés (marge nord-ouest africaine et bassin du Guyana-Suriname, Figure 5.3.).

L'étude de la provenance sédimentaire des segments africain et sud-américain de l'océan Atlantique central a montré que les aires de drainage des bassins versants s'étendent vers les domaines cratoniques plus internes (*i.e.* vers l'est en Afrique et vers le sud au Guyana-Suriname), à partir du Turonien et atteignent leur maximum d'extension au Crétacé supérieur. Cela implique deux paysages différents des continents :

- (1) de l'Albien au Turonien, les bassins versants aux petites aires de drainage contraintes par le relief des bordures externes des cratons, impliquant un système sédimentaire court depuis les bassins versants jusqu'à la zone de dépôt des sédiments dans le bassin océanique profond (Figure 5.3.)
- (2) du Turonien au Maastrichtien, les bassins versants caractérisés par de plus grandes aires de drainage englobent les domaines internes des cratons. Ce système sédimentaire est plus vaste et est caractérisé notamment par le développement de grandes zones d'érosion et de sédimentation qui vont permettre le dépôt de matériel détritique dans les parties plus intermédiaires du domaine océanique, notamment le talus continental et les systèmes turbides (Figure 5.3.). Ces changements du réseau de drainage à partir du Turonien peuvent être liés soit à des changements paléogéographiques majeurs qui se traduisent par l'ennoiement de certains domaines continentaux (*e.g.* plaines côtières, bordures externes des cratons) lors de la transgression du Turonien inférieur (Schlanger et Jenkyns, 1976), soit à un changement de configuration continentale suite à l'ouverture de l'océan Atlantique

équatorial et plus tardivement, à la convergence entre l'Afrique et l'Europe (Summerhayes, 1987 ; Donnadieu et al., 2016 ; <u>chapitres 2 et 4</u>).

La sédimentation en domaine océanique profond dans le bassin du Guyana-Suriname est identique sur l'ensemble de l'intervalle Albien-Maastrichtien et s'effectue par des courants de turbidité (e.g. cônes sous-marins) à l'exception du Plateau de Démérara où la sédimentation est principalement hémipélagique (Figure 5.3.; Shipboard Scientific Party, 2004). Ce transport est moins efficace après le Turonien puisque les systèmes sédimentaires associés aux processus turbiditiques rétrogradent vers le sud du bassin en direction du littoral. Dans le secteur africain, on observe un changement de sédimentation plus net dans le bassin profond puisque celle-ci est dominée par les courants de turbidité (cônes sous-marins) avant le Turonien et par les masses glissées (MTC) après le Turonien (Figure 5.3.). Les objets sédimentaires impliquant la présence de courants océaniques de fond sont également plus nombreux après le Turonien (Figure 5.3.). Ces changements de dynamique sédimentaire dans le domaine océanique profond peuvent être associés à des perturbations de la capacité d'export et/ou de production détritique des continents impliquant une diminution des apports terrigènes ou à un changement de circulation océanique. Dans les deux cas, ces changements semblent liés aux événements géodynamiques et eustatiques qui ont également affecté le réseau de drainage pendant le Turonien.

Pendant le Crétacé, la pente des marges au sud (Guyana-Suriname) et à l'est (Sahara Occidental, Mauritanie, Sénégal) de l'océan Atlantique central est de type « *deep carbonate bank margin* » (chapitres 3 et 4, Mullins et Neumann, 1979). Cette géométrie est héritée depuis la fin du Jurassique pour les bassins sédimentaires africains (Emery et Uchupi, 1984 ; Purdy, 1989 ; chapitre 3) et dès le Crétacé inférieur pour le bassin du Guyana-Suriname (Yang et Escalona, 2011 ; chapitre 4). Pour les deux secteurs, cette géométrie reste identique pendant le Crétacé comme illustré par le backstripping de coupes géologiques 2D. Les paléobathymétries du domaine océanique profond des secteurs sud et est de l'océan Atlantique central sont supérieures à 4000 m de profondeur d'eau depuis le Crétacé inférieur jusqu'au Crétacé supérieur (chapitres 3 et 4). De plus, cette configuration de marge stable au

cours du Crétacé a permis, pour la première fois, de caractériser la profondeur des masses d'eau crétacées ainsi que leur action dans la colonne d'eau jusqu'au plancher océanique.

Les deux secteurs étudiés présentent un enrichissement en MO supérieur à 1 % qui augmente de l'Albien au Turonien et qui peut atteindre localement plus de 40 % (Figure 5.1. et introduction section 1.2.). Pour le segment africain, cet enrichissement prend fin après le Turonien puisque les TOC sont inférieurs à 1 % (Figure 5.1.). A l'inverse, le segment sud-américain où le plateau continental guyanais (*e.g.* puits Arapaïma-1) et le Plateau de Démérara (sites ODP du *leg* 207) continuent à avoir des enrichissements en MO relativement élevés (de 1 à 5%) jusqu'au début du Santonien (Meyers et al., 2006 ; <u>chapitre 4</u> ; Figure 5.1.). La fin de l'enrichissement en MO pendant le Crétacé supérieur est expliqué par la perte, à partir du Turonien, des conditions favorables à la préservation de la MO à cause notamment de l'ouverture de l'océan Atlantique équatorial qui favorise l'arrivée de masses d'eaux depuis l'océan Atlantique sud oxygénant la colonne d'eau au niveau du plancher océanique de l'Atlantique central (Herbin et al., 1986 ; Summerhayes, 1987 ; Donnadieu et al., 2016).

Ces différences et similitudes entre le segment sud et est de l'océan Atlantique central permettent de caractériser des contextes généraux favorables et défavorables à la formation de *black shales* riches en MO dans le bassin océanique profond.

Figure 5.3. Charte synthétique des principaux résultats des chapitres 2, 3 et 4 illustrant l'évolution temporelle du réseau de drainage, de la sédimentation dans le bassin profond et de l'enrichissement et l'origine de la MO dans les secteurs africain et guyanais. Les croix rouges marquent l'arrêt de l'enrichissement en MO dans les sédiments, illustré notamment par des TOC inférieurs à 1%.

2. Facteurs favorisant l'enrichissement en matière organique dans le domaine océanique profond de l'Atlantique central au Crétacé

2.1. Configuration favorable à l'enrichissement en MO dans le bassin profond

Le cas favorable à l'enrichissement en MO peut être illustré par le segment africain de l'océan Atlantique central pendant l'intervalle Albien-Turonien et le Plateau de Démérara pendant la période Albien-Santonien. Cette étude a montré, qu'en plus de bénéficier d'une préservation et d'une production de MO excellentes (Tissot et al., 1979 ; Arthur et al., 1987 ; Kuypers et al., 2002 ; Jenkyns, 2010), le cas favorable à la formation de *black shales* riches en MO dans le bassin profond (Figure 5.4.) présente une configuration qui comporte :

(1) un réseau de drainage avec des bassins versants aux aires peu étendues et proximales à la zone de dépôt des sédiments dans le domaine océanique profond qui permet, avec un relief et un lessivage suffisamment importants, d'apporter du matériel sédimentaire et organique (notamment MO terrestre) dans le domaine océanique (Hovius, 1998 ; Meybeck, 2005 ; Baudin et al., 2007 ; Figure 5.4.) ;

(2) des processus de transport et de sédimentation favorables : *i*) à la mobilisation de la MO et à son export depuis le plateau continental jusqu'aux parties les plus distales du bassin océanique profond, et *ii*) à sa condensation dans la fraction sédimentaire fine. Lors d'un transport par un courant de turbidité, les sédiments fins sont généralement redéposés dans les termes les plus distaux des lobes turbiditiques. Ce processus est propice à l'export de matériel organo-sédimentaire dans les parties les plus distales du bassin profond (Stow et al., 2001, Figure 5.4.) ;

(3) la présence de hauts topographiques sur le plancher océanique tels que les plateaux océaniques sous-marins (*e.g.* Plateau de Démérara) va permettre le développement de conditions favorables à la formation de *black shales* riches en MO marine. En effet, s'il est à l'abri des apports détritiques dans le bassin profond, le plateau océanique préserve la MO d'un possible effet de dilution par la fraction sédimentaire (Tyson, 1995, Figure 5.4.). De plus, étant situés à des profondeurs d'eau plus faibles que le reste du bassin profond, les

plateaux océaniques bénéficient pendant plus de temps des bonnes conditions de production et de préservation de la MO marine (*e.g.* Plateau de Démérara, Summerhayes, 1987; Trabucho Alexandre et al., 2010);

(4) enfin, les courants océaniques de fond peuvent, dans certains cas, impliquer le transfert latéral et la remobilisation de particules minérales et/ou organiques apportées depuis la plateforme continentale (Stow et al., 2001; Figure 5.4.). En effet, certains courants océaniques lents, ayant des vitesses de déplacement inférieures à 0,3 m/s (Ashley, 1990; Stow et al., 2009) permettent la construction de corps sédimentaires essentiellement constitués de particules fines (*e.g.* argilites, *shales*). Ce type de courant peut donc être un bon vecteur de transport de sédiments fins et de particules organiques permettant leur dépôt dans le bassin océanique profond (Figure 5.4).

Figure 5.4. Bloc diagramme schématique (pas à l'échelle) illustrant la configuration favorable à la formation de black shales riches en MO dans le domaine océanique
profond. Exemples du DSDP Site 367 (Sénégal) et du Plateau de Démérara pendant la période Albien-Turonien.

2.2. Configuration défavorable à l'enrichissement en MO dans le bassin profond

Le cas défavorable à l'enrichissement en MO peut être illustré par le segment africain de l'océan Atlantique central lors de la période du Coniacien-Maastrichtien.

Bien que les conditions de préservation et de production de la MO dans le secteur africain ne soient plus aussi favorables qu'avant le Turonien (Herbin et al., 1986; Summerhayes, 1987; Donnadieu et al., 2016), ce travail a permis d'illustrer d'autres facteurs peu propices à l'enrichissement en MO dans les sédiments déposés en domaine océanique profond. Cette configuration défavorable comporte :

(1) des aires de drainage très étendues dans un paysage cratonique avec des bassins versants séparés de la zone de dépôt du bassin profond par un large plateau continental et des réseaux fluviatiles étendus (Figure 5.5). Ce réseau de drainage va produire plus de matériel détritique suite à un fort ruissellement (*e.g.* sous un climat humide) et potentiellement diluer la MO, soit stocker ou produire trop peu de matériel sédimentaire à cause de la faible intensité du ruissellement qui ne permet pas de mobiliser et d'exporter la MO, notamment terrestre, dans le domaine océanique profond (Hovius, 1998 ; Meybeck, 2005 ; Baudin et al., 2007) ;

(2) un processus de transport et de sédimentation, les masses glissées (*Mass transport complex*, MTC), peu favorable à la ségrégation de la fraction fine associée à la MO sur le plateau continental, à son export jusqu'au bassin profond puis à sa condensation dans la fraction sédimentaire (Figure 5.5) ;

(3) enfin, la mise en place d'une circulation océanique de fond intense peut impliquer une oxygénation du plancher océanique mais également, si le courant océanique est suffisamment rapide (*i.e.* vitesse supérieure à 0,4 m/s, Ashley, 1990 ; Stow et al., 2009) provoquer l'érosion et la remobilisation des sédiments dans le bassin profond. Cela implique un transfert latéral de particules organo-sédimentaires important empêchant leur export vers les zones distales du bassin profond et par conséquent, la diffusion ou la condensation de la MO au pied de la marge (Figure 5.5.).

Figure 5.5. Bloc diagramme schématique (pas à l'échelle) illustrant la configuration défavorable à la formation de black shales riches en MO dans le domaine océanique profond. Exemple du DSDP Site 367 (Sénégal) pendant l'intervalle Conaicien-Maastrichtien.

Références

- Ashley, G. M., 1990. Classification of large-scale subaqueous bedforms: a new look at an old problem-SEPM bedforms and bedding structures. *Journal of Sedimentary Research*, 60(1).
- Arthur, M. A., Schlanger, S. T., et Jenkyns, H. C., 1987. The Cenomanian-Turonian Oceanic Anoxic Event, II. Palaeoceanographic controls on organic-matter production and preservation. Geological Society, London, Special Publications, 26(1), 401-420. doi: 10.1144/GSL.SP.1987.026.01.25
- Baudin, F., Tribovillard, N., et Trichet, J., 2007. *Géologie de la matière organique*. (Eds) EDP Sciences.
- Donnadieu, Y., Pucéat, E., Moiroud, M., Guillocheau, F., et Deconinck, J.–F., 2016. A better–ventilated ocean triggered by Late Cretaceous changes in continental configuration. Nature Communications 7, 10316. DOI :10.1038/ncomms10316
- Emery, K. O., et Uchupi, E, 1984. The geology of the Atlantic Ocean. Springer Science & Business Media. doi: 10.4319/lo.1986.31.3.0669
- Herbin, J. P., Montadert, L., Müller, C., Gomez, R., Thurow, J., et Wiedmann, J., 1986. Organic-rich sedimentation at the Cenomanian-Turonian boundary in oceanic and coastal basins in the North Atlantic and Tethys. Geological Society, London, Special Publications, 21(1), 389-422.
- Hovius, N., 1998: Controls on sediment supply by large rivers. In: Shanley, K. W. (Ed.), *Relative Role of Eustasy, Climate, and Tectonism in Continental Rocks*, (Special publication / Society for Sedimentary Geology ; 59), Tulsa, Okla. : SEPM, pp. 3—16.
- Jenkyns, H. C., 2010. Geochemistry of oceanic anoxic events. Geochemistry, Geophysics, Geosystems, 11(3). doi: 10.1029/2009GC002788
- Kuypers, M. M., Pancost, R. D., Nijenhuis, I. A., and Sinninghe Damsté, J. S., 2002. Enhanced productivity led to increased organic carbon burial in the euxinic North Atlantic basin during the late Cenomanian oceanic anoxic event. Paleoceanography, 17(4). doi: 10.1029/2000PA000569
- Meybeck, M., 2005. Origins and behaviors of carbon species in world rivers. Soil erosion and Carbon Dynamics, edited by: Roose, E., Lal, R, 209-238.
- Meyers, P. A., Bernasconi, S. M., and Forster, A., 2006. Origins and accumulation of organic matter in expanded Albian to Santonian black shale sequences on the Demerara Rise, South American margin. Organic Geochemistry, 37(12), 1816-1830. doi : 10.1016/j.orggeochem.2006.08.009
- Mullins H.T., and Neumann, A.C., 1979. Deep carbonate bank–margin structure and sedimentation in the northern Bahamas. SEPM Publ., 27, 165–192.
- Pickering, K., Stow, D., Watson, M., and Hiscott, R., 1986. Deep-water facies, processes and models: a review and classification scheme for modern and ancient sediments. Earth-Science Reviews, 23(2), 75-174. doi: 10.1016/0012-8252(86)90001-2
- Purdy, E.G. 1989. Africa Geology and Hydrocarbons Map. Exploration of Africa Project.
- Schlanger, S., Jenkyns, H., 1976. Cretaceous Oceanic Anoxic Events: causes and consequences. Geologie en Mijnbouw 55, 179–184.

- Scotese, C. R., 2001. Atlas of earth history. University of Texas at Arlington. Department of Geology. PALEOMAP Project.
- Shipboard Scientific Party, 2004. Leg 207 summary. J. Erbacher, D.C. Mosher, M.J. Malone, et al. (Eds.), Proceedings of the Ocean Drilling Program, Initial Reports, vol. 207, Ocean Drilling Program, College Station, TX (2004), pp. 1-89. DOI : 10.2973/odp.proc.ir.207.101.2004
- Stow, D. A. V., Huc, A. Y., and Bertrand, P., 2001. Depositional processes of black shales in deep water. Marine and Petroleum Geology, 18(4), 491-498. doi : 10.1016/S0264-8172(01)00012-5
- Stow, D. A., Hernández-Molina, F. J., Llave, E., Sayago-Gil, M., del Río, V. D., & Branson, A., 2009. Bedform-velocity matrix: the estimation of bottom current velocity from bedform observations. *Geology*, 37(4), 327-330.
- Summerhayes, C. P., 1987. Organic-rich Cretaceous sediments from the North Atlantic. Geological Society, London, Special Publications, 26(1), 301-316. doi: 10.1144/GSL.SP.1987.026.01.21
- Tissot, B., Deroo, G., et Herbin, J. P., 1979. Organic matter in Cretaceous sediments of the North Atlantic: contribution to sedimentology and paleogeography. Deep Drilling Results in the Atlantic Ocean: Continental Margins and Paleoenvironment, 362-374. doi: 10.1029/ME003p0362
- Tyson, R. V., 1995. Abundance of organic matter in sediments: TOC, hydrodynamic equivalence, dilution and flux effects. In Sedimentary organic matter (pp. 81-118). Springer Netherlets.
- Trabucho Alexandre, J., Tuenter, E., Henstra, G. A., van der Zwan, K. J., van de Wal, R. S., Dijkstra, H. A., and de Boer, P. L., 2010. The mid-Cretaceous North Atlantic nutrient trap: Black shales and OAEs. Paleoceanography, 25(4). doi: 10.1029/2010PA001925
- Yang, W., and Escalona, A., 2011. Tectonostratigraphic evolution of the Guyana Basin. AAPG bulletin, 95(8), 1339-1368. doi : 10.1306/01031110106

Conclusion et perspectives.

CONCLUSION ET PERSPECTIVES

L'objectif de ce travail était de préciser le cadre sédimentaire des marges nord-ouest africaine et équatoriale de l'océan Atlantique central au Crétacé à travers une approche « *source to sink* » couplant une étude géochimique de provenance et une étude de bassin à partir de données de subsurface, afin de comprendre les processus de transport, de diffusion et de dépôt de la matière organique, notamment terrestre, dans le domaine océanique profond. Cela nécessite donc de :

- préciser les zones sources qui alimentent le bassin océanique de l'Atlantique central en sédiments et en matière organique ;
- caractériser le cadre paléogéographique et la sédimentation associée pour le secteur nord-ouest africain et le bassin du Guyana-Suriname pendant le Crétacé.

Ce travail s'est organisé en trois parties : (1) une étude de provenance des sédiments associés aux *black shales* crétacés déposés au large de la marge nord-ouest africaine, (2) une étude de l'architecture sédimentaire de la marge nord-ouest africaine et (3) une étude de provenance couplée à une étude de bassin pour le bassin du Guyana-Suriname. Les analyses géochimiques effectuées dans le cadre de ce travail de thèse sont compilées dans l'annexe 7 de ce manuscrit.

Principaux résultats

Secteur africain

Les <u>chapitres 2 et 3</u> ont permis de dresser un nouveau cadre de l'évolution de la sédimentation depuis le domaine continental vers la marge nord-ouest africaine jusqu'au domaine océanique profond. Les principaux résultats sont les suivants :

(1) De l'Albien au Cénomanien moyen, les sédiments sont essentiellement constitués par les produits de l'érosion de sources d'âge paléozoïque. Cela implique la présence de bassins versants aux aires de drainage peu étendues et de reliefs localisées sur la bordure ouest du Craton Ouest Africain ; (2) Le premier changement du réseau de drainage survient pendant l'intervalle Cénomanien supérieur-Turonien inférieur (enregistrant l'OAE2 et le maximum de niveau marin du Crétacé). Il se traduit par un changement de provenance où la contribution des sources précambriennes est plus importante que précédemment. Cela implique une extension de l'aire de drainage des bassins versants et leur migration vers l'est, où sont localisées les sources précambriennes (boucliers de Leo-Man et Réguibat) ;

(3) Au Coniacien-Maastrichtien, on note une contribution plus importante des roches précambriennes dans l'enregistrement détritique en comparaison à celles des périodes précédentes. Ce changement de provenance implique une seconde extension des aires de drainage des bassins versants et leur migration vers l'est du continent ;

L'étude du remplissage sédimentaire au Crétacé du bassin profond au large de la marge nord-ouest africaine (<u>chapitre 3</u>) a permis de mettre en évidence que :

 (1) Depuis le Berriasien jusqu'à l'Aptien, la présence des cônes sous-marins turbiditiques. Un drift contouritique est observé à l'Ouest du Site DSDP 367 en partie très distale de la marge ;

(2) La sédimentation est dominée de l'Albien au Cénomanien (hors OAE2) par la mise en place de cônes sous-marins constitués de complexes de chenaux-levées turbiditiques. Plusieurs évidences de figures sédimentaires associées à des courants de fond ont été identifiées au large de la Guinée, impliquant un remaniement des sédiments dans le bassin profond ;

(3) Lors de l'intervalle Cénomanien supérieur-Turonien inférieur (OAE2), aucun objet sédimentaire impliquant l'apport de matériel détritique dans le bassin profond n'a été recensé. La sédimentation dans le bassin profond est essentiellement hémipélagique. Des figures sédimentaires impliquant la présence d'un courant océanique de fond ont été identifiées au Sud de la Mauritanie ;

(4) Pendant l'intervalle Coniacien-Maastrichtien, la sédimentation au-delà du talus continental s'effectue par la construction de masses glissées (*Mass Transport Complex*,

MTC) associée à la remobilisation des sédiments par des courants de fond comme illustrée par la présence de champs de *sediment waves* et celle de drifts contouritiques en Mauritanie ;

(5) Enfin, le backstripping des sections régionales a permis d'illustrer dès le Crétacé inférieur, des paléobathymétries supérieures à 4000 m de profondeur d'eau. Le cadre sédimentaire du bassin océanique profond de l'Atlantique central au Crétacé et le modèle océanique associé montre des similarités avec la stratification actuelle des masses d'eaux du segment africain de l'océan Atlantique et avec la morphologie de son fond marin.

Bassin du Guyana-Suriname

L'étude de provenance couplée à une analyse de bassin dans le <u>chapitre 4</u> a permis de mettre en évidence que :

(1) la bathymétrie du bassin profond du Guyana-Suriname était supérieure à 4000 m
de profondeur d'eau, confirment la particularité paléogéographique du Plateau de Démérara
culminant sous 1000 m de profondeur d'eau ;

(2) la présence d'un canyon sous-marin, le *paléo-Berbice*, qui alimente en matériel détritique le bassin du Guyana-Suriname. Les apports terrigènes de ce canyon s'expriment dans le bassin profond sous la forme d'un cône sous-marin turbiditique ;

(3) la rétrogradation du dépocentre et du cône sous-marin vers le sud du bassin à partir du Turonien ;

(4) un changement de source sédimentaire, qui est plus juvénile à partir du Turonien impliquant un agrandissement des aires de drainage et une migration vers le sud du bassin versant du *paléo-Berbice*. Ce changement du bassin de drainage est contemporain à la rétrogradation du dépocentre du *paléo-Berbice*.

Conclusion

Ce travail portant sur l'étude du cadre sédimentaire des marges nord-ouest africaine et équatoriale de l'océan Atlantique central au Crétacé afin de comprendre les processus de transport et de dépôt de la matière organique, notamment terrestre, dans le domaine océanique profond permet de conclure que:

- Il se produit dès le Turonien, à la fois sur le segment africain et sur le segment guyanais, une réorganisation du drainage qui implique une extension des aires des bassins versants vers les domaines internes des cratons ;
- Les processus de sédimentation dans le domaine océanique profond au large du segment africain diffèrent avant et après le Turonien puisque la sédimentation est dominée respectivement par des courants de turbidité puis par une association de masses glissées et de courants océaniques de fond. Ce changement ne s'observe pas dans le bassin océanique profond du Guyana-Suriname, car bien que diminuée, la sédimentation est toujours dominée par des processus turbiditiques ;
- En comparant les deux marges, deux contextes sédimentaires sont identifiés : l'un permettant le développement de conditions favorables à la formation de sédiments riches en matière organique que l'on observe pendant la période Albien-Turonien sur le segment africain et guyanais (Démérara) ; et le second plus défavorable, qui correspond au contexte du segment africain pour l'intervalle Coniacien-Maastrichtien ;
- Le cas favorable bénéficie de meilleures conditions qui affectent notamment la dilution de la matière organique car : (1) les bassins versants et le relief associé génèrent un flux de matériel détritique et organique suffisant pour apporter de la matière organique dans le bassin profond; (2) le tri granulométrique des particules par les courants de turbidité sont des facteurs favorables pour transporter la matière organique dans le bassin profond et la condenser dans les sédiments les plus fins ;

- Le cas plus défavorable présente (1) un réseau de drainage plus étendu, qui, associé à une augmentation du taux de sédimentation apporte trop de particules sédimentaires dans le domaine océanique diluant la matière organique ; (2) des processus de sédimentation et de transport de particules organo-sédimentaires (masses glissées et courants océaniques de fond) moins propices à la condensation et à la préservation de la matière organique que les courants de turbidité ; (3) une intensification de la circulation océanique profonde qui implique de moins bonnes conditions de préservation et une remobilisation dans le bassin profond ;
- La différence entre les deux cas peut s'expliquer par une reconfiguration continentale (ouverture de l'océan Atlantique équatorial et convergence entre l'Afrique et l'Europe) à partir du Turonien qui provoque des changements de drainage sur les cratons nord-ouest africain et guyanais, un changement de sédimentation dans le domaine océanique en Afrique et enfin la rupture des conditions favorables à l'enrichissement en matière organique dans le bassin profond.

Perspectives

- Dans l'étude des contextes sédimentaires africain et guyanais, une plus grande disponibilité de données (sismique 2D et 3D, forages, échantillons), notamment dans le bassin profond, permettrait de préciser les variabilités de provenance, de sédimentation et de matière organique. Par exemple, avoir accès aux données de puits ayant foré les cônes sous-marins et systèmes contouritiques permettrait de connaître plus précisément la variation des faciès sédimentaires et organiques (enrichissement, typologie) sur un profil proximal-distal. Cela permettrait également de comparer les cônes sous-marins observés au large des zones étudiées.
- Les résultats de ce projet apportent de nouvelles contraintes sur le contexte sédimentaire (paléogéographie, réseau de drainage, bathymétries, processus sédimentaires) pouvant être implémentées dans des modélisations numériques régionales associant climat-océan-stratigraphie (*e.g., Dionisos organic rich sediment*; modèle climatique *Fast Ocean Atmosphere Model*, FOAM). Cela permettrait de tester les cadres climatique, océanographique et sédimentaire sur le secteur afin de pouvoir être plus prédictif sur les zones à contexte favorable à l'enrichissement en matière organique.
- Développer un consortium scientifique, dans la poursuite des objectifs de l'IGCP 619, pour trouver des analogues de dépôts sédimentaires associés à des courants océaniques de fond ayant une affinité avec la matière organique afin d'obtenir des données de faciès sédimentaires et organiques. Cela permettrait de déterminer la quantité de matière organique remobilisée par des courants.
- Tester cette approche couplée provenance-bassin sur l'étude des sédiments riches en matière organique sur les marges de l'océan Atlantique sud afin de caractériser la réponse à l'enrichissement en matière organique suite à la reconfiguration continentale qui survient au Turonien.

Annexes.

ANNEXES

Annexe 1.

Annexe 1. Compilation des données de TOC et de $\delta^{l3}C$ issues de la littérature des sites DSDP situés dans le bassin profond du secteur est de l'océan Atlantique central.

Leg	DSD P Site	Sample Label	Depth (mbsf)	Facies	TOC (wt%)	δ ¹³ C _{org} (‰PDB)	δ ¹³ C _{bulk} (‰)	δ ¹³ C _{keroge} _n (‰)	Reference
41	367	41-367-18-1,80- 85	638.3	/	30.86	/	/		<i>Deroo et al.</i> [1978]
41	367	41-367-18-2,104- 109	638.54	/	34.19	/	/		<i>Deroo et al.</i> [1978]
41	367	41-367-20-3,38- 48	687.88	/	9.71	/	/		<i>Deroo et al.</i> [1978]
41	367	41-367-22-6,0-10	728	/	6.13	/	/		<i>Deroo et al.</i> [1978]
41	367	41-367-23-2,0-10	777.5	/	4.15	/	/		<i>Deroo et al.</i> [1978]
41	367	41-367-59-1,97- 107	939.47	/	3.14	/	/		Deroo et al. [1978]
41	367	41-367-63-3,17- 27	978.17	/	6.92	/	/		<i>Deroo et al.</i> [1978]
41	367	41-367-17-2,102- 107	618.52	/	4	-25	/		Sinninghe Damsté et al. [2008]
41	367	41-367-17-3,68- 74	619.68	/	16.5	-22.6	/		Sinninghe Damsté et al. [2008]
41	367	41-367-18-1,120- 124	637.2	/	38.6	-21.5	/		Sinninghe Damsté et al. [2008]
41	367	41-367-18-2,6-9	637.56	/	23.4	-21.8	/		Sinninghe Damsté et al. [2008]
41	367	41-367-18-2,59- 62	638.09	/	25.4	-22.1	/		Sinninghe Damsté et al. [2008]
41	367	41-367-18-2,88- 91	638.38	/	26	-22.2	/		Sinninghe Damsté et al. [2008]
41	367	41-367-18-2,121- 125	638.71	/	25.1	-22.3	/		Sinninghe Damsté et al. [2008]
41	367	41-367-18-3,39- 42	639.39	/	19.4	-22	/		Sinninghe Damsté et al. [2008]
41	367	41-367-18-3,111-	640.11	/	32	-22	/		Sinninghe Damsté et

		114						<i>al.</i> [2008]
41	367	41-367-18-4,40- 43	640.9	/	27.9	-24.5	/	Sinninghe Damsté et al. [2008]
41	367	41-367-18-4,79- 83	641.29	/	19.7	-26	/	Sinninghe Damsté et al. [2008]
41	367	41-367-18-4,121- 125	641.71	/	18.3	-25.8	/	Sinninghe Damsté et al. [2008]
41	367	41-367-18-5,100- 106	643	/	19	-28.4	/	Sinninghe Damsté et al. [2008]
41	367	41-367-18-5,137- 142	643.37	/	4.1	-26.9	/	Sinninghe Damsté et al. [2008]
41	367	41-367-19-1,143- 147	645.93	/	7.1	-27.4	/	Sinninghe Damsté et al. [2008]
41	367	41-367-19-2,14- 18	646.14	/	10.5	-27.4	/	Sinninghe Damsté et al. [2008]
41	367	41-367-19-2,89- 94	646.89	/	4.4	-27.6	/	Sinninghe Damsté et al. [2008]
41	367	41-367-19-3,43- 47	647.93	/	8.8	-27.2	/	Sinninghe Damsté et al. [2008]
41	367	41-367-19-4,62- 66	649.62	/	5.5	-27.1	/	Sinninghe Damsté et al. [2008]
41	367	41-367-18-1,120- 124	637.2	/	38.6	-21.5	/	Forster et al. [2007]
41	367	41-367-18-2,6-9	637.56	/	23.4	-21.8	/	Forster et al. [2007]
41	367	41-367-18-2,59- 62	638.09	/	25.4	-22.1	/	Forster et al. [2007]
41	367	41-367-18-2,88- 91	638.38	/	26		/	Forster et al. [2007]
41	367	41-367-18-2,121- 125	638.71	/	25.1	-22.3	/	Forster et al. [2007]
41	367	41-367-18-3,18- 19	639.18	/	28.9	-24.7	/	Forster et al. [2007]

41	367	41-367-18-3,39- 42	639.39	/	19.4	-22	/	Forster et al. [2007]
41	367	41-367-18-3,88- 89	639.88	/	34.3	-21.6	/	Forster et al. [2007]
41	367	41-367-18-3,111- 114	640.11	/	32	-22	/	Forster et al. [2007]
41	367	41-367-18-3,123- 124	640.23	/	38.5	-22.9	/	Forster et al. [2007]
41	367	41-367-18-3,135- 136	640.35	/	45	-23.4	/	Forster et al. [2007]
41	367	41-367-18-4,19- 20	640.69	/	36.2	-24.6	/	Forster et al. [2007]
41	367	41-367-18-4,30- 31	640.8	/	19.2	-25.5	/	Forster et al. [2007]
41	367	41-367-18-4,40- 43	640.9	/	27.9	-24.5	/	Forster et al. [2007]
41	367	41-367-18-4,69- 70	641.19	/	38	-23.6	/	Forster et al. [2007]
41	367	41-367-18-4,79- 83	641.29	/	19.7	-26	/	Forster et al. [2007]
41	367	41-367-18-4,121- 125	641.71	/	18.3	-25.8	/	Forster et al. [2007]
41	367	41-367-18-5,24- 30	642.24	/	2.2	-27.6	/	Forster et al. [2007]
41	367	41-367-18-5,40- 41	642.4	/	4	-27.5	/	Forster et al. [2007]
41	367	41-367-18-5,60- 61	642.6	/	4.3	-27.2	/	Forster et al. [2007]
41	367	41-367-18-5,80- 81	642.8	/	12.8	-28.2	/	Forster et al. [2007]
41	367	41-367-18-5,100- 106	643	/	19	-28.4	/	Forster et al. [2007]

.

41	367	41-367-18-5,125- 126	643.25	/	3	-26.9	/	Forster et al. [2007]
41	367	41-367-18-5,137- 142	643.37	/	1.9	-26.5	/	Forster et al. [2007]
41	367	41-367-19-1,143- 147	645.93	/	7.1	-27.4	/	Forster et al. [2007]
41	367	41-367-19-2,14- 18	646.14	/	10.5	-27.4	/	Forster et al. [2007]
41	367	41-367-19-2,89- 94	646.89	/	4.4	-27.6	/	Forster et al. [2007]
41	367	41-367-19-3,43- 47	647.93	/	8.8	-27.2	/	Forster et al. [2007]
41	367	41-367-19-4,62- 66	649.62	/	5.5	-27.1	/	Forster et al. [2007]
41	367	367-25-1, 9-10	892	Hard gray limestone	/	/	0.62	Brenneke [1978]
41	367	367-25-1, 14-15	892	Dark gray marlstone	/	/	2.04	Brenneke [1978]
41	367	367-25-3, 59-61 (L)	895	Light gray limestone	/	/	0.82	Brenneke [1978]
41	367	367-25-3, 59-61 (D)	895	Dark gray marlstone	/	/	1.26	Brenneke [1978]
41	367	367-26-1, 50-51	911	Hard white limestone	/	/	1.05	Brenneke [1978]
41	367	367-26-1, 67-69 (GC)	911	Gray limestone	/	/	1.4	Brenneke [1978]
41	367	367-26-1, 67-69 (WC)	911	White limestone	/	/	1.09	Brenneke [1978]
41	367	367-27-2, 130- 131	942	Hard white limestone	/	/	1.39	Brenneke [1978]
41	367	367-27-2, 137- 139 (W)	942	White limestone	/	/	1.34	Brenneke [1978]
-		· · ·						

41	367	367-27-2, 137- 139 (G)	942	Gray clayey limestone	/	/	1.96	Brenneke [1978]
41	367	367-27-3,50-51	942	White limestone	/	/	1.42	Brenneke [1978]
41	367	367-28-1, 113- 114	969	Gray clayey limestone	/	/	1.98	Brenneke [1978]
41	367	367-28-1, 134- 136	969	Hard white limestone	/	/	1.86	Brenneke [1978]
41	367	367-28-3, 69-71	971	Dark gray marlstone	/	/	2.38	Brenneke [1978]
41	367	367-28-3, 108- 109	972	Hard whitish limestone	/	/	1.81	Brenneke [1978]
41	367	367-29-1, 109- 111	997	Chalk above chert	/	/	2.56	Brenneke [1978]
41	367	367-29-1, 109- 111 (LC)	997	Chalk below chert	/	/	2.6	Brenneke [1978]
41	367	367-29-1, 137- 139	997	Hard whitish limestone	/	/	2.67	Brenneke [1978]
41	367	367-30-1, 59-60	1026	White limestone	/	/	1.96	Brenneke [1978]
41	367	367-30-1, 72-73	1025	Black marlstone	/	/	2.17	Brenneke [1978]
41	367	367-30-1, 87	1025	Hard whitish limestone	/	/	1.98	Brenneke [1978]
41	367	367-30-1, 112- 113	1026	Gray marlstone	/	/	1.95	Brenneke [1978]
41	367	367-30-1, 137- 138	1026	Hard whitish limestone	/	/	1.96	Brenneke [1978]
41	367	367-30-2 97-99	1027	Hard whitish limestone	/	/	1.38	Brenneke [1978]
41	367	367-30-1, 139- 140	1027	Salt and pepper limestone	/	/	1.23	Brenneke [1978]
41	367	376-31-1, 65-67 (Cl)	1054	Chalk above chert	/	/	1.3	Brenneke [1978]
41	367	367-31-1, 65-67	1054	Chalk below chert	/	/	0.91	Brenneke [1978]
		(C2)						
----	-----	---------------------------	------	---------------------------	---	---	------	-----------------
41	367	367-32-3, 86-87 (WC1)	1085	White limestone	/	/	1.22	Brenneke [1978]
41	367	367-32-3, 86-87 (GC1)	1085	Green-gray marlstone	/	/	1.27	Brenneke [1978]
41	367	367-32-3, 86-87 (WC2)	1085	White limestone	/	/	1.37	Brenneke [1978]
41	367	367-32-3, 86-87 (GC2)	1085	Green-gray marlstone	/	/	1.29	Brenneke [1978]
41	367	367-32-3, 135- 136	1086	Hard white limestone	/	/	1.3	Brenneke [1978]
41	367	367-32-5, 50-51	1088	Hard white limestone	/	/	1.42	Brenneke [1978]
41	367	367-32-5, 55-56	1088	Hard pinkish limestone	/	/	1.41	Brenneke [1978]
41	367	367-32-5, 135- 136	1089	Red-brown marlstone	/	/	1.44	Brenneke [1978]
41	367	367-33-2, 67-69	1108	Pink limestone	/	/	1.48	Brenneke [1978]
41	367	367-33-2, 75-77	1108	Red-brown marlstone	/	/	1.42	Brenneke [1978]
41	367	367-33-3, 80-81	1109	Hard white limestone	/	/	1.03	Brenneke [1978]
41	367	367-34-1, 105- 106	1112	Greenish claystone	/	/	1.27	Brenneke [1978]
41	367	367-34-1, 107- 109	1112	Hard white limestone	/	/	1.63	Brenneke [1978]
41	367	367-34-1, 137- 139	1112	Hard white limestone	/	/	1.65	Brenneke [1978]
41	367	367-34-3, 104- 105 (W)	1115	White limestone	/	/	1.7	Brenneke [1978]
41	367	367-34-3, 104- 105 (R)	1115	Red-brown claystone	/	/	1.54	Brenneke [1978]

41	367	367-34-4, 20-23 (W)	1116	White chalk	/	/	1.55	Brenneke [1978]
41	367	367-34-4, 20-23 (G)	1116	Green claystone	/	/	1.62	Brenneke [1978]
41	367	367-34-4 20-23 (R)	1116	Red claystone	/	/	1.6	Brenneke [1978]
41	367	367-34-4, 124- 125	1117	Red marlstone	/	/	2	Brenneke [1978]
41	367	367-35-4,51-53	1125	Green-gray claystone	/	/	1.62	Brenneke [1978]
41	367	367-35-4,61-63	1125	Hard white limestone	/	/	2.07	Brenneke [1978]
41	367	367-35-4, 101- 102 (DG)	1125	Dark gray claystone	/	/	1.62	Brenneke [1978]
41	367	367-35-4, 101- 102 (B)	1125	Brown claystone	/	/	1.54	Brenneke [1978]
41	367	367-35-4, 101- 102 (W)*	1125	Gray-white claystone	/	/	1.69	Brenneke [1978]
41	367	367-36-3, 23-25 (G)	1131	Gray-white limestone	/	/	2.26	Brenneke [1978]
41	367	367-36-3, 23-25 (P)	1131	Pinkish marlstone	/	/	2.36	Brenneke [1978]
41	367	367-37-1,67-69	1136	Reddish marlstone	/	/	2.6	Brenneke [1978]
41	367	367-38-1, 143- 144	1143	Greenish-gray marlstone	/	/	2.28	Brenneke [1978]
41	367	367-38-1, 148- 149	1144	Greenish limestone	/	/	2.4	Brenneke [1978]
41	367	367-38-2, 9-10 (R)	1144	Reddish marlstone	/	/	2.29	Brenneke [1978]
41	367	367-38-2, 9-10 (G)	1144	Greenish marlstone	/	/	2.33	Brenneke [1978]
41	367	367-38-2, 35-36	1144	Greenish limestone	/	/	2.16	Brenneke [1978]

41	367	1-5, 144-150	6	/	0.582	/	/	Lancelot et al. [1978]
41	367	1-5, 144-150	6	/	0.57	/	/	Lancelot et al. [1978]
41	367	2-1, 83-84	8	Clay	1.132	/	/	Lancelot et al. [1978]
41	367	2-2,62-63	8	Clay	0.351	/	/	Lancelot et al. [1978]
41	367	4-3, 120-150	68	/	0.225	/	/	Lancelot et al. [1978]
41	367	8-3, 130-150	310	Clay	0.205	/	/	Lancelot et al. [1978]
41	367	8-4, 46-48	311	Black clay	0.335	/	/	Lancelot et al. [1978]
41	367	8-4, 50-52	311	Clay	2.59	/	/	Lancelot et al. [1978]
41	367	14-4,41-42	387	Clay	0.093	/	/	Lancelot et al. [1978]
41	367	14-4,51-52	387	Silty clay	0.131	/	/	Lancelot et al. [1978]
41	367	15-3, 130	480	Silty clay	0.154	/	/	Lancelot et al. [1978]
41	367	15-4,91-92	481	Silty clay	0.172	/	/	Lancelot et al. [1978]
41	367	15-4, 105-106	481	TAMU	0.099	/	/	Lancelot et al. [1978]
41	367	17-4,115-116	625	Black shale	0.139	/	/	Lancelot et al. [1978]
41	367	17-4, 118-119	625	LECO-Shell	3.897	/	/	Lancelot et al. [1978]
41	367	18-2, 144-145	640	TAMU	37.21	/	/	Lancelot et al. [1978]
41	367	19-4, 0-1	653	TAMU	6.699	/	/	Lancelot et al. [1978]
41	367	19-4, 20-25	653	TAMU	4.09	/	/	Lancelot et al. [1978]
41	367	19-4,44-45	653	Dark band	18.54	/	/	Lancelot et al. [1978]
41	367	20-2, 7-8	688	Limestone	16.29	/	/	Lancelot et al. [1978]
41	367	22-5, 104-105	728	Plant debris	21.06	/	/	Lancelot et al. [1978]
41	367	25-3, 38-39	898	Argillaceous	3.988	/	/	Lancelot et al. [1978]
41	367	25-3, 42-43	898	limestone	0.139	/	/	Lancelot et al. [1978]
41	367	26-4, 28-39	919	Argillaceous	25.07	/	/	Lancelot et al. [1978]
41	367	31-2, 37-38	1062	limestone	0.521	/	/	Lancelot et al. [1978]
41	367	32-5, 97-98	1090	Shale	0.046	/	/	Lancelot et al. [1978]
41	367	33-3, 92-93	1110	Siliceous	0.052	/	/	Lancelot et al. [1978]
41	367	33-3, 93-94	1110	Limestone	0.034	/	/	Lancelot et al. [1978]
41	367	41-367-25-3,64	895.14	Bioturbated white limestone	0.07	-27	/	<i>Rau et al.</i> [1987]
41	367	41-367-25-3,130	895.8	Bioturbated white	0.07	-27.3	/	<i>Rau et al.</i> [1987]

41 367 41-367-25-4,117 897.17 Laminated black maristone 2.38 -27.9 / Rau 41 367 41-367-26-1,88 911.38 Laminated black maristone 2.82 -27.7 / Rau 41 367 41-367-26-2,50 912.5 Bioturbated white limestone 0.04 -27.4 / Rau 41 367 41-367-26-2,63 912.5 Bioturbated white limestone 0.04 -27.4 / Rau 41 367 41-367-26-2,63 912.63 Bioturbated white limestone 0.04 -27.4 / Rau 41 367 41-367-26-2,70 912.7 Bioturbated white limestone 0.08 -27.7 / Rau 41 367 41-367-26-3,70 912.7 Bioturbated white limestone 0.06 -27.3 / Rau 41 367 41-367-26-3,70 914.2 Laminated black maristone 2.79 -28.1 / Rau 41 367 / 649.652 / 5.042 -30.412 / Kuype 41 <th></th> <th></th> <th></th> <th></th> <th>limestone</th> <th></th> <th></th> <th></th> <th></th>					limestone				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	41	367	41-367-25-4,117	897.17	Laminated black marlstone	2.38	-27.9	/	<i>Rau et al.</i> [1987]
41 367 41-367-26-2,50 912.5 Bioturbated white limestone 0.04 -27.4 / Rau 41 367 41-367-26-2,50 912.5 Bioturbated white limestone 0.04 -27.4 / Rau 41 367 41-367-26-2,63 912.63 marlstone 2.24 -28 / Rau 41 367 41-367-26-2,70 912.7 Bioturbated white limestone 0.08 -27.7 / Rau 41 367 41-367-26-3,13 913.63 Bioturbated white limestone 0.06 -27.3 / Rau 41 367 41-367-26-3,10 914.2 Laminated black marlstone 2.79 -28.1 / Rau 41 367 41-367-26-3,110 914.6 Laminated black marlstone 1.78 -28.3 / Rau 41 367 / 649.652 / 5.042 -30.412 / Kuppe 41 367 / 646.918 / 2.736 -31.392 / Kuppe 41 367 / 646	41	367	41-367-26-1,88	911.38	Laminated black marlstone	2.82	-27.7	/	<i>Rau et al.</i> [1987]
41 367 41-367-26-2,50 912.5 Bioturbated white limestone 0.04 -27.4 / Rau 41 367 41-367-26-2,63 912.63 minated black markstone 2.24 -28 / Rau 41 367 41-367-26-2,70 912.7 Bioturbated white limestone 0.08 -27.7 / Rau 41 367 41-367-26-3,13 913.63 Bioturbated white limestone 0.06 -27.3 / Rau 41 367 41-367-26-3,70 914.2 Laminated black markstone 2.79 -28.1 / Rau 41 367 41-367-26-3,110 914.6 Laminated black markstone 2.79 -28.1 / Rau 41 367 41-367-26-3,110 914.6 Laminated black markstone 1.78 -28.3 / Rau 41 367 / 649.652 / 5.042 -30.412 / Kuype 41 367 / 646.195 / 10.63 -30.558 / Kuype 41 367 / <td< td=""><td>41</td><td>367</td><td>41-367-26-2,50</td><td>912.5</td><td>Bioturbated white limestone</td><td>0.04</td><td>-27.4</td><td>/</td><td><i>Rau et al.</i> [1987]</td></td<>	41	367	41-367-26-2,50	912.5	Bioturbated white limestone	0.04	-27.4	/	<i>Rau et al.</i> [1987]
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	41	367	41-367-26-2,50	912.5	Bioturbated white limestone	0.04	-27.4	/	<i>Rau et al.</i> [1987]
41 367 41-367-26-2,70 912.7 Bioturbated white limestone 0.08 -27.7 / Rau 41 367 41-367-26-3,13 913.63 Bioturbated white limestone 0.06 -27.3 / Rau 41 367 41-367-26-3,70 914.2 Laminated black marlstone 2.79 -28.1 / Rau 41 367 41-367-26-3,110 914.6 Laminated black marlstone 2.79 -28.1 / Rau 41 367 / 649.652 / 5.042 -30.412 / Kuype 41 367 / 644.955 / 8.743 -30.236 / Kuype 41 367 / 646.918 / 2.736 -31.392 / Kuype 41 367 / 645.953 / 10.63 -30.558 / Kuype 41 367 / 642.98 / 19.842 -30.705 / Kuype 41 367 / 642.263 / 1.727 / /<	41	367	41-367-26-2,63	912.63	Laminated black marlstone	2.24	-28	/	<i>Rau et al.</i> [1987]
41 367 41-367-26-3,13 913.63 Bioturbated white limestone 0.06 -27.3 / Rau 41 367 41-367-26-3,70 914.2 Laminated black marlstone 2.79 -28.1 / Rau 41 367 41-367-26-3,110 914.6 Laminated black marlstone 1.78 -28.3 / Rau 41 367 / 649.652 / 5.042 -30.412 / Kuype 41 367 / 649.652 / 5.042 -30.412 / Kuype 41 367 / 646.918 / 2.736 -31.392 / Kuype 41 367 / 646.195 / 10.63 -30.558 / Kuype 41 367 / 643.341 / 2.89 -31.205 / Kuype 41 367 / 642.98 / 19.842 -30.705 / Kuype 41 367 / 642.98 / 19.896 -27.709 / Kuype	41	367	41-367-26-2,70	912.7	Bioturbated white limestone	0.08	-27.7	/	<i>Rau et al.</i> [1987]
41 367 41-367-26-3,70 914.2 Laminated black marlstone 2.79 -28.1 / Rau 41 367 41-367-26-3,110 914.6 Laminated black marlstone 1.78 -28.3 / Rau 41 367 / 649.652 / 5.042 -30.412 / Kuype 41 367 / 647.955 / 8.743 -30.236 / Kuype 41 367 / 646.918 / 2.736 -31.392 / Kuype 41 367 / 646.195 / 10.63 -30.558 / Kuype 41 367 / 643.341 / 2.89 -31.205 / Kuype 41 367 / 642.98 / 19.842 -30.705 / Kuype 41 367 / 642.263 / 1.727 / / Kuype 41 367 / 642.818 / 27.191 -26.542 Kuype 41 367	41	367	41-367-26-3,13	913.63	Bioturbated white limestone	0.06	-27.3	/	<i>Rau et al.</i> [1987]
41 367 41-367-26-3,110 914.6 Laminated black marlstone 1.78 -28.3 / Rau 41 367 / 649.652 / 5.042 -30.412 / Kuype 41 367 / 647.955 / 8.743 -30.236 / Kuype 41 367 / 646.918 / 2.736 -31.392 / Kuype 41 367 / 646.195 / 10.63 -30.558 / Kuype 41 367 / 645.953 / 5.804 -30.39 / Kuype 41 367 / 642.983 / 19.842 -30.705 / Kuype 41 367 / 642.263 / 1.727 / / Kuype 41 367 / 641.722 / 19.896 -27.709 / Kuype 41 367 / 641.353 / 18.704 -28.703 / Kuype 41 367 /	41	367	41-367-26-3,70	914.2	Laminated black marlstone	2.79	-28.1	/	<i>Rau et al.</i> [1987]
41 367 / 649.652 / 5.042 -30.412 /Kuype 41 367 / 647.955 / 8.743 -30.236 /Kuype 41 367 / 646.918 / 2.736 -31.392 /Kuype 41 367 / 646.195 / 10.63 -30.558 /Kuype 41 367 / 645.953 / 5.804 -30.39 /Kuype 41 367 / 643.341 / 2.89 -31.205 /Kuype 41 367 / 642.98 / 19.842 -30.705 /Kuype 41 367 / 641.722 / 19.896 -27.709 /Kuype 41 367 / 641.353 / 18.704 -28.703 /Kuype 41 367 / 640.818 / 27.191 -26.542 /Kuype 41 367 / 640.157 / 45.973 -25.376 /Kuype 41 367 / 639.372 / 22.416 -24.873 /Kuype	41	367	41-367-26-3,110	914.6	Laminated black marlstone	1.78	-28.3	/	<i>Rau et al.</i> [1987]
41 367 / 647.955 / 8.743 -30.236 / Kuype 41 367 / 646.918 / 2.736 -31.392 / Kuype 41 367 / 646.195 / 10.63 -30.558 / Kuype 41 367 / 645.953 / 5.804 -30.39 / Kuype 41 367 / 643.341 / 2.89 -31.205 / Kuype 41 367 / 642.98 / 19.842 -30.705 / Kuype 41 367 / 642.263 / 1.727 / / Kuype 41 367 / 641.722 / 19.896 -27.709 / Kuype 41 367 / 641.353 / 18.704 -28.703 / Kuype 41 367 / 640.818 / 27.191 -26.542 / Kuype 41 367 / 640.157	41	367	/	649.652	/	5.042	-30.412	/	Kuypers et al. [2002]
41 367 / 646.918 / 2.736 -31.392 / Kuype 41 367 / 646.195 / 10.63 -30.558 / Kuype 41 367 / 645.953 / 5.804 -30.39 / Kuype 41 367 / 643.341 / 2.89 -31.205 / Kuype 41 367 / 642.98 / 19.842 -30.705 / Kuype 41 367 / 642.263 / 1.727 / / Kuype 41 367 / 641.722 / 19.896 -27.709 / Kuype 41 367 / 641.353 / 18.704 -28.703 / Kuype 41 367 / 640.818 / 27.191 -26.542 / Kuype 41 367 / 640.157 / 45.973 -25.376 / Kuype 41 367 / 639.372	41	367	/	647.955	/	8.743	-30.236	/	Kuypers et al. [2002]
41 367 / 646.195 / 10.63 -30.558 / Kuype 41 367 / 645.953 / 5.804 -30.39 / Kuype 41 367 / 643.341 / 2.89 -31.205 / Kuype 41 367 / 642.98 / 19.842 -30.705 / Kuype 41 367 / 642.263 / 1.727 / / Kuype 41 367 / 641.722 / 19.896 -27.709 / Kuype 41 367 / 641.353 / 18.704 -28.703 / Kuype 41 367 / 640.818 / 27.191 -26.542 / Kuype 41 367 / 640.157 / 45.973 -25.376 / Kuype 41 367 / 639.372 / 22.416 -24.873 / Kuype	41	367	/	646.918	/	2.736	-31.392	/	Kuypers et al. [2002]
41 367 / 645.953 / 5.804 -30.39 / Kuype 41 367 / 643.341 / 2.89 -31.205 / Kuype 41 367 / 642.98 / 19.842 -30.705 / Kuype 41 367 / 642.263 / 1.727 / / Kuype 41 367 / 641.722 / 19.896 -27.709 / Kuype 41 367 / 641.353 / 18.704 -28.703 / Kuype 41 367 / 640.818 / 27.191 -26.542 / Kuype 41 367 / 640.157 / 45.973 -25.376 / Kuype 41 367 / 639.372 / 22.416 -24.873 / Kuype	41	367	/	646.195	/	10.63	-30.558	/	Kuypers et al. [2002]
41 367 / 643.341 / 2.89 -31.205 / Kuype 41 367 / 642.98 / 19.842 -30.705 / Kuype 41 367 / 642.263 / 1.727 / / Kuype 41 367 / 641.722 / 19.896 -27.709 / Kuype 41 367 / 641.353 / 18.704 -28.703 / Kuype 41 367 / 640.818 / 27.191 -26.542 / Kuype 41 367 / 640.157 / 45.973 -25.376 / Kuype 41 367 / 639.372 / 22.416 -24.873 / Kuype	41	367	/	645.953	/	5.804	-30.39	/	Kuypers et al. [2002]
41 367 / 642.98 / 19.842 -30.705 / Kuype 41 367 / 642.263 / 1.727 / / Kuype 41 367 / 641.722 / 19.896 -27.709 / Kuype 41 367 / 641.353 / 18.704 -28.703 / Kuype 41 367 / 640.818 / 27.191 -26.542 / Kuype 41 367 / 640.157 / 45.973 -25.376 / Kuype 41 367 / 639.372 / 22.416 -24.873 / Kuype	41	367	/	643.341	/	2.89	-31.205	/	Kuypers et al. [2002]
41 367 / 642.263 / 1.727 / / Kuype 41 367 / 641.722 / 19.896 -27.709 / Kuype 41 367 / 641.353 / 18.704 -28.703 / Kuype 41 367 / 640.818 / 27.191 -26.542 / Kuype 41 367 / 640.157 / 45.973 -25.376 / Kuype 41 367 / 639.372 / 22.416 -24.873 / Kuype	41	367	/	642.98	/	19.842	-30.705	/	Kuypers et al. [2002]
41 367 / 641.722 / 19.896 -27.709 / Kuype 41 367 / 641.353 / 18.704 -28.703 / Kuype 41 367 / 640.818 / 27.191 -26.542 / Kuype 41 367 / 640.157 / 45.973 -25.376 / Kuype 41 367 / 639.372 / 22.416 -24.873 / Kuype	41	367	/	642.263	/	1.727	/	/	Kuypers et al. [2002]
41 367 / 641.353 / 18.704 -28.703 / Kuype 41 367 / 640.818 / 27.191 -26.542 / Kuype 41 367 / 640.157 / 45.973 -25.376 / Kuype 41 367 / 639.372 / 22.416 -24.873 / Kuype	41	367	/	641.722	/	19.896	-27.709	/	Kuypers et al. [2002]
41 367 / 640.818 / 27.191 -26.542 / Kuype 41 367 / 640.157 / 45.973 -25.376 / Kuype 41 367 / 639.372 / 22.416 -24.873 / Kuype	41	367	/	641.353	/	18.704	-28.703	/	Kuypers et al. [2002]
41 367 / 640.157 / 45.973 -25.376 / Kuype 41 367 / 639.372 / 22.416 -24.873 / Kuype	41	367	/	640.818	/	27.191	-26.542	/	Kuypers et al. [2002]
41 367 / 639.372 / 22.416 -24.873 / Kuype	41	367	/	640.157	/	45.973	-25.376	/	Kuypers et al. [2002]
	41	367	/	639.372	/	22.416	-24.873	/	Kuypers et al. [2002]

41	367	/	638.704	/	27.281	-25.035	/		Kuypers et al. [2002]
41	367	/	638.103	/	24.285	-23.87	/		Kuypers et al. [2002]
41	367	/	637.613	/	26.122	-24.863	/		Kuypers et al. [2002]
41	367	/	637.191	/	37.026	-24.363	/		Kuypers et al. [2002]
41	368	41-368-58-2,106- 114	923,6	/	0,66	/	/	-25,01	Simoneit et al, [1978]
41	368	41-368-58/59- 2/3/4/3	934,5	/	2,33	/	/	/	Simoneit et al, [1978]
41	368	41-368-59-1,97- 107	939,47	/	3,14	/	/	/	Deroo et al, [1978]
41	368	41-368-59-1,97- 107	944	/	3,3	/	/	/	Simoneit et al, [1978]
41	368	41-368-59- 3,composite	947	/	11,61	/	/	-26,43	Simoneit et al, [1978]
41	368	41-368-60-1,121- 127	950,7	/	3,03	/	/	-24,62	Simoneit et al, [1978]
41	368	41-368-60-2,133- 140	952,4	/	1,52	/	/	-23,87	Simoneit et al, [1978]
41	368	41-368-60-3,48- 52	953	/	0,33	/	/	-24,5	Simoneit et al, [1978]
41	368	41-368-60-3,122- 126	953,7	/	6,78	/	/	-24,27	Simoneit et al, [1978]
41	368	41-368-60-4,37- 39,48-51	954,4	/	2,36	/	/	/	Simoneit et al, [1978]
41	368	41-368-60-5,12- 18	955,7	/	8,11	/	/	-23,87	Simoneit et al, [1978]
41	368	41-368-62-3,28- 34	971,8	/	0,07	/	/	-24,71	Simoneit et al, [1978]
41	368	41-368-62-3,109- 114	972,6	/	1,93	/	/	-36,62	Simoneit et al, [1978]
41	368	41-368-62-4, 44-	973,5	/	6,63	/	/	/	Simoneit et al, [1981]

		52							
41	368	41-368-62-4, 118- 126	974,2	/	1,93	/	/	/	Simoneit et al, [1981]
41	368	41-368-62-4,106- 110	974,1	/	6,7	/	/	-27,45	Simoneit et al, [1978]
41	368	41-368-63-1,48- 53	978,5	/	4,24	/	/	-27,16	Simoneit et al, [1978]
41	368	41-368-63-2,14- 19	979,7	/	3,59	/	/	-27,75	Simoneit et al, [1978]
41	368	41-368-63-2, 14- 19	980,8	/	1,55	/	/	/	Simoneit et al, [1981]
41	368	41-368-63-2,127- 132	980,8	/	6,56	/	/	-28,4	Simoneit et al, [1978]
41	368	41-368-63-3,110- 114	982,1	/	7,1	/	/	-27,44	Simoneit et al, [1978]
41	368	41-368-63-3/4	977,75	/	7,31	/	/	/	Simoneit et al, [1978]
41	368	41-368-63-3,17- 27	981,2	/	7,6	/	/	/	Simoneit et al, [1978]
41	368	41-368-63-3,17- 27	978,17	/	6,92	/	/	/	Deroo et al, [1978]
41	368	41-368-63-3, 147- 150	979,5	/	1,11	/	/	/	Simoneit et al, [1981]
41	368	41-368-63-4, 90- 98	983,4	/	3,43	/	/	/	Simoneit et al, [1981]
41	369	41-369-41		black shales	5,22	-28,32	/	/	Hofmann et al,, [2000]
41	369	41-369-41		brown-green marls	3,3	-28,26	/	/	Hofmann et al,, [2000]
41	369	40-4, 25	417,25	/	0,96	/	/	/	Cool et al, [2008]
41	369	40-4, 40	417,4	/	0,96	/	/	/	Cool et al, [2008]
41	369	40-4, 70	417,7	/	1,19	/	/	/	Cool et al, [2008]
41	369	41-1, 123	423,23	/	1,22	/	/	/	Cool et al, [2008]
41	369	41-2, 124	427,74	/	3,54	/	/	/	Cool et al, [2008]

41	369	41-2, 129,5	424,795	/	4,28	/	/	/	Cool et al, [2008]
41	369	41-2, 144	424,94	/	3,38	/	/	/	Cool et al, [2008]
41	369	41-3, 43	425,43	/	3,8	/	/	/	Cool et al, [2008]
41	369	41-3, 120	426,2	/	2,46	/	/	/	Cool et al, [2008]
41	369	41-4, 43	426,93	/	7,69	/	/	/	Cool et al, [2008]
41	369	41-4, 80	427,3	/	5,59	/	/	/	Cool et al, [2008]
41	369	41-4, 125	427,75	/	2,95	/	/	/	Cool et al, [2008]
41	369	42-1, 32	431,82	/	5,3	/	/	/	Cool et al, [2008]
41	369	42-1, 100	432,5	/	3,59	/	/	/	Cool et al, [2008]
41	369	42-2, 35	433,35	/	3,29	/	/	/	Cool et al, [2008]
41	369	42-2, 75	433,75	/	3,97	/	/	/	Cool et al, [2008]
41	369	42-2, 100	434	/	1,61	/	/	/	Cool et al, [2008]
41	369	42-2, 120	434,2	/	2,5	/	/	/	Cool et al, [2008]
41	369	42-3, 55	435,05	/	0,42	/	/	/	Cool et al, [2008]
41	369	42-3, 74,5	435,245	/	4,91	/	/	/	Cool et al, [2008]
41	369	43-1, 123,5	442,235	/	10,85	/	/	/	Cool et al, [2008]
41	369	43-2, 99	443,49	/	3,6	/	/	/	Cool et al, [2008]
41	369	43-3, 125	445,25	/	6,52	/	/	/	Cool et al, [2008]
41	369	43-4, 112	446,62	/	1,19	/	/	/	Cool et al, [2008]
41	369	44-1, 76	451,26	/	6,93	/	/	/	Cool et al, [2008]
41	369	44-2, 34	452,34	/	5,94	/	/	/	Cool et al, [2008]
41	369	44-3, 48	453,98	/	5,21	/	/	/	Cool et al, [2008]
41	369	45-1, 46	460,46	/	8,46	/	/	/	Cool et al, [2008]
41	369	45-2, 52	462,02	/	11,53	/	/	/	Cool et al, [2008]
41	369	45-2, 125	462,75	/	7,44	/	/	/	Cool et al, [2008]
41	369	45-3, 39,5	463,395	/	0,96	/	/	/	Cool et al, [2008]
41	369	45-3, 50	463,5	/	5,9	/	/	/	Cool et al, [2008]
41	369	46-1, 120	470,7	/	2,62	/	/	/	Cool et al, [2008]
41	369	46-2, 24	471,24	/	2,44	/	/	/	Cool et al, [2008]
41	369	46-3, 24	472,24	/	4,1	/	/	/	Cool et al, [2008]
41	369	46-4, 48	474,48	/	2,49	/	/	/	Cool et al, [2008]

41	369	46-5, 27,5	475,775	/	0,82	/	/	/	Cool et al, [2008]
41	369	47-1, 118	480,18	/	1,42	/	/	/	Cool et al, [2008]
41	369	47-2, 93	481,43	/	7,4	/	/	/	Cool et al, [2008]
41	369	47-3, 126	483,26	/	5,23	/	/	/	Cool et al, [2008]
14	137	/	257.33	/	/	/	2.37	/	Katz et al. [2005]
14	137	/	265.03	/	/	/	1.88	/	Katz et al. [2005]
14	137	/	265.04	/	/	/	2.3	/	Katz et al. [2005]
14	137	/	265.05	/	/	/	1.98	/	Katz et al. [2005]
14	137	/	265.06	/	/	/	2.47	/	Katz et al. [2005]
14	137	/	265.07	/	/	/	2.5	/	Katz et al. [2005]
14	137	/	265.08	/	/	/	2.54	/	Katz et al. [2005]
14	137	/	265.09	/	/	/	2.5	/	Katz et al. [2005]
14	137	/	265.1	/	/	/	2.35	/	Katz et al. [2005]
14	137	/	265.11	/	/	/	2.27	/	Katz et al. [2005]
14	137	/	265.12	/	/	/	2.25	/	Katz et al. [2005]
14	137	/	265.13	/	/	/	2.29	/	Katz et al. [2005]
14	137	/	265.14	/	/	/	2.19	/	Katz et al. [2005]
14	137	/	265.15	/	/	/	1.9	/	Katz et al. [2005]
14	137	/	265.16	/	/	/	1.85	/	Katz et al. [2005]
14	137	/	265.17	/	/	/	1.88	/	Katz et al. [2005]
14	137	/	265.18	/	/	/	1.66	/	Katz et al. [2005]
14	137	/	265.19	/	/	/	1.7	/	Katz et al. [2005]
14	137	/	265.21	/	/	/	1.7	/	Katz et al. [2005]
14	137	/	265.22	/	/	/	1.74	/	Katz et al. [2005]
14	137	/	265.23	/	/	/	1.77	/	Katz et al. [2005]
14	137	/	265.24	/	/	/	1.79	/	Katz et al. [2005]
14	137	/	265.25	/	/	/	2.08	/	Katz et al. [2005]
14	137	/	265.27	/	/	/	1.98	/	Katz et al. [2005]
14	137	/	265.29	/	/	/	2.31	/	Katz et al. [2005]
14	137	/	265.3	/	/	/	2.06	/	Katz et al. [2005]

14	137	/	265.31	/	/	/	1.85	/	Katz et al. [2005]
14	137	/	265.32	/	/	/	1.62	/	Katz et al. [2005]
14	137	/	265.34	/	/	/	1.65	/	Katz et al. [2005]
14	137	/	265.35	/	/	/	1.63	/	Katz et al. [2005]
14	137	/	265.36	/	/	/	1.55	/	Katz et al. [2005]
14	137	/	265.37	/	/	/	1.57	/	Katz et al. [2005]
14	137	/	265.38	/	/	/	1.52	/	Katz et al. [2005]
14	137	/	265.39	/	/	/	1.58	/	Katz et al. [2005]
14	137	/	265.4	/	/	/	1.53	/	Katz et al. [2005]
14	137	/	265.42	/	/	/	1.45	/	Katz et al. [2005]
14	137	/	265.43	/	/	/	1.54	/	Katz et al. [2005]
14	137	/	265.44	/	/	/	1.55	/	Katz et al. [2005]
14	137	/	265.45	/	/	/	1.24	/	Katz et al. [2005]
14	137	/	265.46	/	/	/	1.31	/	Katz et al. [2005]
14	137	/	265.47	/	/	/	1.22	/	Katz et al. [2005]
14	137	/	265.48	/	/	/	1.67	/	<i>Katz et al.</i> [2005]
14	137	/	265.49	/	/	/	1.36	/	<i>Katz et al.</i> [2005]
14	137	/	265.5	/	/	/	1.5	/	<i>Katz et al.</i> [2005]
14	137	/	265.51	/	/	/	1.56	/	<i>Katz et al.</i> [2005]
14	137	/	265.52	/	/	/	1.54	/	<i>Katz et al.</i> [2005]
14	137	/	265.53	/	/	/	1.57	/	<i>Katz et al.</i> [2005]
14	137	/	265.54	/	/	/	1.4	/	<i>Katz et al.</i> [2005]
14	137	/	265.56	/	/	/	1.29	/	<i>Katz et al.</i> [2005]
14	137	/	265.57	/	/	/	1.27	/	<i>Katz et al.</i> [2005]
14	137	/	265.58	/	/	/	1.59	/	<i>Katz et al.</i> [2005]
14	137	/	265.6	/	/	/	1.47	/	<i>Katz et al.</i> [2005]
14	137	/	265.61	/	/	/	1.6	/	<i>Katz et al.</i> [2005]
14	137	/	281.79	/	/	/	2.05	/	<i>Katz et al.</i> [2005]
14	137	/	282.78	/	/	/	1.86	/	<i>Katz et al.</i> [2005]
14	137	/	284.43	/	/	/	1.84	/	<i>Katz et al.</i> [2005]
14	137	/	286.9	/	/	/	1.95	/	Katz et al. [2005]

14	137	/	294.94	/	/	/	1.95	/	Katz et al. [2005]
14	137	/	298.8	/	/	/	2.02	/	Katz et al. [2005]
14	137	/	303.86	/	/	/	1.93	/	Katz et al. [2005]
14	137	/	307.89	/	/	/	1.84	/	Katz et al. [2005]
14	137	/	322.84	/	/	/	1.91	/	Katz et al. [2005]
14	137	/	325.65	/	/	/	1.81	/	Katz et al. [2005]
14	137	/	341.37	/	/	/	1.88	/	Katz et al. [2005]
14	137	/	345.67	/	/	/	1.91	/	Katz et al. [2005]
14	137	/	346.12	/	/	/	1.78	/	Katz et al. [2005]
14	137	/	350.72	/	/	/	2.33	/	Katz et al. [2005]

Annexe 2.

Annexe 2. Compilation des données de ¹⁴³Nd/¹⁴⁴Nd, de ⁸⁷Sr/⁸⁶Sr et des valeurs de $\varepsilon_{Nd(0)}$ issues de la littérature pour les unités qui composent le paysage continental nord-ouest africain (cratons et bassins sédimentaires). HERCY : Ceintures hercyniennes.

Unit	Domain	Reference	Sample	Area	Lithology	Stratigraphy	[Sr]	⁸⁷ Sr/ ⁸⁶ Sr	[Nd]	¹⁴³ Nd/ ¹⁴⁴ Nd	ε _{Nd(0)}
HERCY	North Morocco	<i>Tahiri et al.</i> [2010]	RB-1	Western Meseta	granitoid	Devonian	176,17	0,72138	35,85	0,51228	-7,0
HERCY	North Morocco	<i>Tahiri et al.</i> [2010]	RB-2	Western Meseta	granitoid	Devonian	173,2	0,72388	34,04	0,51234	-5,8
HERCY	North Morocco	<i>Tahiri et al.</i> [2010]	RB-3	Western Meseta	granitoid	Devonian	228,49	0,7153	7,25	0,51209	-10,7
HERCY	North Morocco	<i>Tahiri et al.</i> [2010]	RB-5	Western Meseta	granitoid	Devonian	168,85	0,72995	33,99	0,51229	-6,8
HERCY	North Morocco	<i>Tahiri et al.</i> [2010]	RB-6	Western Meseta	granitoid	Devonian	290,41	0,71762	14,37	0,51204	-11,7
HERCY	North Morocco	<i>Tahiri et al.</i> [2010]	RB-7	Western Meseta	granitoid	Devonian	311,06	0,71748	18,82	0,51205	-11,5
HERCY	North Morocco	<i>Tahiri et al.</i> [2010]	RB-8	Western Meseta	granitoid	Devonian	530,84	0,70935	24,82	0,51239	-4,8
HERCY	North Morocco	<i>Tahiri et al.</i> [2010]	RB-9	Western Meseta	granitoid	Devonian	84,91	0,73242	4,4	0,51229	-6,8
HERCY	North Morocco	<i>Tahiri et al.</i> [2010]	RB-10	Western Meseta	granitoid	Devonian	107,06	0,73571	8,79	0,51226	-7,4
HERCY	North Morocco	<i>Tahiri et al.</i> [2010]	RB-11	Western Meseta	granitoid	Devonian	137,58	0,72729	10,08	0,51194	-13,6
HERCY	North Morocco	<i>Tahiri et al.</i> [2010]	TF-1	Western Meseta	granitoid	Neoproterozoic	268,73	0,72114	23,53	0,51181	-16,2
HERCY	North Morocco	<i>Tahiri et al.</i> [2010]	TF-2	Western Meseta	granitoid	Neoproterozoic	262,94	0,71947	23,48	0,51204	-11,7
HERCY	North Morocco	<i>Tahiri et al.</i> [2010]	TF-3	Western Meseta	granitoid	Neoproterozoic	474,25	0,71366	33,82	0,51179	-16,5
HERCY	North Morocco	<i>Tahiri et al.</i> [2010]	TF-4	Western Meseta	granitoid	Neoproterozoic	322,14	0,71909	28,38	0,51175	-17,3
HERCY	North Morocco	<i>Ajaji et al.</i> [1998]	TA81	Eastern Meseta	Monzogabbros	Late Hercynian	842	0,706506	34,3	0,512384	-5,0
HERCY	North Morocco	<i>Ajaji et al.</i> [1998]	TA80	Eastern Meseta	Monzogabbros	Late Hercynian	712	0,70725	34,5	0,51238	-5,0
HERCY	North Morocco	<i>Ajaji et al.</i> [1998]	TA10	Eastern Meseta	Monzogabbros	Late Hercynian	896	0,706341	34,2	0,512373	-5,2
HERCY	North Morocco	<i>Ajaji et al.</i> [1998]	AT95012	Eastern Meseta	Monzogabbros	Late Hercynian	786	0,706135	32,2	0,512332	-6,0
HERCY	North Morocco	<i>Ajaji et al.</i> [1998]	AT95013	Eastern Meseta	Monzogabbros	Late Hercynian	761	0,706545	32,1	0,512332	-6,0
HERCY	North Morocco	<i>Ajaji et al.</i> [1998]	TA86	Eastern Meseta	Quartz monzonites	Late Hercynian	566	0,709794	40	0,512312	-6,4

HERCY	North Morocco	<i>Ajaji et al.</i> [1998]	TA11	Eastern Meseta	Quartz monzonites	Late Hercynian	633	0,707248	36,4	0,512352	-5,6
HERCY	North Morocco	<i>Ajaji et al.</i> [1998]	TA82	Eastern Meseta	Quartz monzonites	Late Hercynian	491	0,708205	37,1	0,512354	-5,5
HERCY	North Morocco	<i>Ajaji et al.</i> [1998]	AT95014	Eastern Meseta	Quartz monzonites	Late Hercynian	541	0,708269	38	0,512321	-6,2
HERCY	North Morocco	<i>Ajaji et al.</i> [1998]	AT95015	Eastern Meseta	Quartz monzonites	Late Hercynian	623	0,708551	39,5	0,512304	-6,5
HERCY	North Morocco	<i>Ajaji et al.</i> [1998]	TA59	Eastern Meseta	Quartz monzonites	Late Hercynian	507	0,709494	36,7	0,512416	-4,3
HERCY	North Morocco	<i>Ajaji et al.</i> [1998]	TA15t q	Eastern Meseta	Quartz monzonites	Late Hercynian	586	0,709006	42	0,512357	-5,5
HERCY	North Morocco	<i>Ajaji et al.</i> [1998]	TA24a	Eastern Meseta	Monzogranites	Late Hercynian	466	0,710262	29	0,512392	-4,8
HERCY	North Morocco	<i>Ajaji et al.</i> [1998]	AT9500	Eastern Meseta	Monzogranites	Late Hercynian	446	0,711008	32,3	0,512347	-5,7
HERCY	North Morocco	<i>Ajaji et al.</i> [1998]	TA63	Eastern Meseta	Quartz monzodiorites	Late Hercynian	423	0,708297	26,3	0,512341	-5,8
HERCY	North Morocco	<i>Ajaji et al.</i> [1998]	TA24b	Eastern Meseta	Quartz monzodiorites	Late Hercynian	619	0,70779	38,8	0,512416	-4,3
HERCY	North Morocco	<i>Ajaji et al.</i> [1998]	TA24bX	Eastern Meseta	Quartz monzodiorites	Late Hercynian	626	0,70771	41,9	0,512418	-4,3
HERCY	North Morocco	<i>Ajaji et al.</i> [1998]	TA54	Eastern Meseta	Quartz monzodiorites	Late Hercynian	380	0,708563	30,2	0,512376	-5,1
HERCY	North Morocco	<i>Ajaji et al.</i> [1998]	AT95006	Eastern Meseta	Quartz monzodiorites	Late Hercynian	618	0,707635	39,5	0,51242	-4,3
HERCY	North Morocco	<i>Ajaji et al.</i> [1998]	AT95019	Eastern Meseta	Quartz monzodiorites	Late Hercynian	396	0,70875	26,7	0,512306	-6,5
HERCY	North Morocco	<i>Ajaji et al.</i> [1998]	AT95022	Eastern Meseta	Quartz monzodiorites	Late Hercynian	489	0,708243	31,6	0,512364	-5,3
HERCY	North Morocco	<i>Ajaji et al.</i> [1998]	TA34	Eastern Meseta	Granodiorites	Late Hercynian	541	0,707068			
HERCY	North Morocco	<i>Ajaji et al.</i> [1998]	TA6	Eastern Meseta	Granodiorites	Late Hercynian	518	0,707121			
HERCY	North Morocco	<i>Ajaji et al.</i> [1998]	ТАЗ	Eastern Meseta	Granodiorites	Late Hercynian	501	0,707113	22,5	0,512428	-4,1
HERCY	North Morocco	<i>Ajaji et al.</i> [1998]	TA29	Eastern Meseta	Granodiorites	Late Hercynian	510	0,707027			
HERCY	North Morocco	<i>Ajaji et al.</i> [1998]	TA7	Eastern Meseta	Granodiorites	Late Hercynian	479	0,707755	27,7	0,512429	-4,1
HERCY	North Morocco	<i>Ajaji et al.</i> [1998]	ТАЗ	Eastern Meseta	Granodiorites	Late Hercynian	451	0,707487			
HERCY	North	Ajaji et al.	TA2	Eastern Meseta	Granodiorites	Late Hercynian	484	0,70693			

	Morocco	[1998]									
HERCY	North Morocco	<i>Ajaji et al.</i> [1998]	TA83	Eastern Meseta	Granodiorites	Late Hercynian	579	0,707447	17,7	0,512425	-4,2
HERCY	North Morocco	<i>Ajaji et al.</i> [1998]	TA35	Eastern Meseta	Granodiorites	Late Hercynian	452	0,707683			
HERCY	North Morocco	<i>Ajaji et al.</i> [1998]	TA4	Eastern Meseta	Granodiorites	Late Hercynian	448	0,707569			
HERCY	North Morocco	<i>Ajaji et al.</i> [1998]	TA5	Eastern Meseta	Granodiorites	Late Hercynian	309	0,709099			
HERCY	North Morocco	<i>Ajaji et al.</i> [1998]	TA31	Eastern Meseta	Granodiorites	Late Hercynian	332	0,709726	16,7	0,512373	-5,2
HERCY	North Morocco	<i>Ajaji et al.</i> [1998]	AT95007	Eastern Meseta	Granodiorites	Late Hercynian	483	0,707924	27,6	0,512334	-5,9
HERCY	North Morocco	<i>Essaifi et al.</i> [2014]	GK2	High Atlas (West)		Hercynian	15,88	0,704787	2,65	0,513237	11,7
HERCY	North Morocco	<i>Essaifi et al.</i> [2014]	GSK	High Atlas (West)		Hercynian	65,7	0,707867	4,68	0,513178	10,5
HERCY	North Morocco	Essaifi et al. [2014]	DK13	High Atlas (West)		Hercynian	12,98	0,711337	-	-	
HERCY	North Morocco	Essaifi et al. [2014]	DK23	High Atlas (West)		Hercynian	149	0,707341	11,9	0,512771	2,6
HERCY	North Morocco	Essaifi et al. [2014]	DK30	High Atlas (West)		Hercynian	187	0,711388	3,25	0,513003	7,1
HERCY	North Morocco	Essaifi et al. [2014]	GK3	High Atlas (West)		Hercynian	332,5	0,711756	-	-	
HERCY	North Morocco	Essaifi et al. [2014]	MK5	High Atlas (West)		Hercynian	94,8	0,717165	-	-	
HERCY	North Morocco	Essaifi et al. [2014]	DK25	High Atlas (West)		Hercynian	6,44	0,709952	-	-	
HERCY	North Morocco	Essaifi et al. [2014]	00M03	High Atlas (West)		Hercynian			17,1	0,512828	3,7
HERCY	North Morocco	Essaifi et al. [2014]	OH6	High Atlas (West)		Hercynian	144	0,707836	13,5	0,512844	4,0
HERCY	North Morocco	Essaifi et al. [2014]	EM4	High Atlas (West)		Hercynian	241	0,708887	10,1	0,512712	1,4
HERCY	North Morocco	Essaifi et al. [2014]	EM7	High Atlas (West)		Hercynian	145	0,710727	60	0,512505	-2,6
HERCY	North Morocco	Essaifi et al. [2014]	B45	High Atlas (West)		Hercynian	127	0,72556	65,4	0,512376	-5,1
HERCY	North Morocco	Essaifi et al. [2014]	01M24	High Atlas (West)		Hercynian			64,3	0,512343	-5,8
HERCY	North Morocco	<i>Essaifi et al.</i> [2014]	KAZ	High Atlas (West)		Hercynian	170	0,71863	-	-	

HERCY	North Morocco	<i>Essaifi et al.</i> [2014]	TBZ	High Atlas (West)	Hercynian	126	0,72053	-	-	
HERCY	North Morocco	<i>Essaifi et al.</i> [2014]	B34	High Atlas (West)	Hercynian	268	0,713682	65,47	0,512358	-5,5
HERCY	North Morocco	Essaifi et al. [2014]	3DI	High Atlas (West)	Hercynian	124,72	0,719472	-	-	
HERCY	North	Essaifi et al.	B44	High Atlas (West)	Hercynian	189,6	0,71799	-	-	
HERCY	North	Essaifi et al.	M24	High Atlas (West)	Hercynian	198,68	0,715354	-	-	
HERCY	North	Essaifi et al.	DD1	High Atlas (West)	Hercynian	292,9	0,711702	-	-	
HERCY	North	[2014] Essaifi et al.	MOH1	High Atlas (West)	Hercynian	322	0.715	54.77	0.512188	-8.8
HEBCY	Morocco North	[2014] Essaifi et al.	00M04	High Atlas (West)	Hercynian		-,	50.4	0 512194	-8.7
	Morocco North	[2014] <i>Essaifi et al.</i>		Lligh Atlas (Most)	Herevnian	014	0.710066	70.0	0,512104	0,7
HERC I	Morocco	[2014] Econifi et el		High Allas (West)	Hercyman	214	0,710066	70,2	0,512496	-2,0
HERCY	Morocco	[2014]	MBZN3	High Atlas (West)	Hercynian	238	0,714747	65,29	0,512474	-3,2
HERCY	North Morocco	Essaifi et al. [2014]	BZN3	High Atlas (West)	Hercynian	67	0,734452	53,2	-	
HERCY	North Morocco	Essaifi et al. [2014]	МТК	High Atlas (West)	Hercynian	379	0,71238	-	-	
HERCY	North	Essaifi et al.	MGTK	High Atlas (West)	Hercynian	348	0,711856	-	-	
HERCY	North	Essaifi et al.	00M01	High Atlas (West)	Hercynian			32,3	0,51225	-7,6
HERCY	North	Essaifi et al.	01M23	High Atlas (West)	Hercynian			35,8	0,5122	-8,5
HEBCY	North	Essaifi et al.	.103	High Atlas (West)	Hercynian	307	0 71419	31.2	0 51219	-87
	Morocco North	[2014] <i>Essaifi et al.</i>	100		llenemien	475	0,70000	01,2	0.51017	0,1
HERCY	Morocco	[2014]	108	High Atlas (West)	Hercynian	1/5	0,72336	35,8	0,51217	-9,1
HERCY	Morocco	[2014]	JO12	High Atlas (West)	Hercynian	338	0,7123	32,99	0,51228	-7,0
HERCY	North Morocco	Essaifi et al. [2014]	JO13	High Atlas (West)	Hercynian	230	0,71863	38,48	0,5122	-8,5
HERCY	North Morocco	Essaifi et al. [2014]	JO15	High Atlas (West)	Hercynian	679	0,70637	13,09	0,51249	-2,9
HERCY	North	Essaifi et al. [2014]	JO16	High Atlas (West)	Hercynian	642	0,70652	12,84	0,51251	-2,5
HERCY	North	Essaifi et al.	JO21	High Atlas (West)	Hercynian	318	0,7078	40,69	0,51242	-4,3

	Morocco	[2014]									
HERCY	North Morocco	<i>Essaifi et al.</i> [2014]	JO25	High Atlas (West)		Hercynian	541	0,70494	14,23	0,51272	1,6
HERCY	North Morocco	<i>Essaifi et al.</i> [2014]	JTa1	High Atlas (West)		Hercynian	78,4	0,75458	38,71	0,51222	-8,2
HERCY	North Morocco	<i>Essaifi et al.</i> [2014]	JTa4	High Atlas (West)		Hercynian	219	0,72058	40,15	0,51227	-7,2
HERCY	North Morocco	<i>Essaifi et al.</i> [2014]	JBa4	High Atlas (West)		Hercynian	89	0,74821	48,14	0,51223	-8,0
HERCY	North Morocco	<i>Essaifi et al.</i> [2014]	JBa5	High Atlas (West)		Hercynian	57,5	0,77866	41,85	0,51221	-8,3
HERCY	North Morocco	<i>Essaifi et al.</i> [2014]	JBr1	High Atlas (West)		Hercynian	118	0,73876	41,87	0,51214	-9,7
HERCY	North Morocco	<i>Essaifi et al.</i> [2014]	JO17	High Atlas (West)		Hercynian	54,3	0,77261	33,42	0,5121	-10,5
HERCY	North Morocco	<i>Essaifi et al.</i> [2014]	JBr5	High Atlas (West)		Hercynian	36,4	0,80455	4,52	0,51235	-5,6
HERCY	North Morocco	<i>Gasquet et al.</i> [1992]	GOU 68	High Atlas (West)	gabbros	Hercynian	580	0,7029			
HERCY	North Morocco	<i>Gasquet et al.</i> [1992]	Gou 0b	High Atlas (West)	gabbros	Hercynian	300	0,703	13,33	0,51292	5,5
HERCY	North Morocco	<i>Gasquet et al.</i> [1992]	GOU 43	High Atlas (West)	gabbros	Hercynian	530,6	0,703088	13,9	0,512894	5,0
HERCY	North Morocco	<i>Gasquet et al.</i> [1992]	TAG 77	High Atlas (West)	gabbros	Hercynian	704	0,703			
HERCY	North Morocco	<i>Gasquet et al.</i> [1992]	TAG 41b	High Atlas (West)	diorites	Hercynian	611	0,70406	18,49	0,51278	2,8
HERCY	North Morocco	<i>Gasquet et al.</i> [1992]	TAG 45	High Atlas (West)	diorites	Hercynian	537,3	0,704323	24,6	0,512641	0,1
HERCY	North Morocco	<i>Gasquet et al.</i> [1992]	TAG 478	High Atlas (West)	diorites	Hercynian	545	0,70469			
HERCY	North Morocco	<i>Gasquet et al.</i> [1992]	TAG 103b	High Atlas (West)	diorites	Hercynian	630	0,7042	28,67	0,51274	2,0
HERCY	North Morocco	<i>Gasquet et al.</i> [1992]	TAG 1068	High Atlas (West)	diorites	Hercynian	458	0,70398			
HERCY	North Morocco	<i>Gasquet et al.</i> [1992]	TAG 11ob	High Atlas (West)	diorites	Hercynian	370	0,70542	37,8	0,51263	-0,2
HERCY	North Morocco	Gasquet et al. [1992]	TAG 1128	High Atlas (West)	diorites	Hercynian	562	0,70435			
HERCY	North Morocco	Gasquet et al. [1992]	TAG 124	High Atlas (West)	diorites	Hercynian	717,7	0,703449	33,5	0,512806	3,3
HERCY	North Morocco	Gasquet et al. [1992]	TAG 151	High Atlas (West)	diorites	Hercynian	558,2	0,704061	34,9	0,512714	1,5

HERCY	North Morocco	<i>Gasquet et al.</i> [1992]	TAG 154	High Atlas (West)	diorites	Hercynian	755,7	0,703407	21,5	0,512869	4,5
HERCY	North Morocco	Gasquet et al. [1992]	TAM 20b	High Atlas (West)	diorites	Hercynian	428	0,7037	35,8	0,51281	3,4
HERCY	North Morocco	<i>Gasquet et al.</i> [1992]	TAM 308	High Atlas (West)	diorites	Hercynian	431	0,70398			
HERCY	North Morocco	Gasquet et al. [1992]	wou 768	High Atlas (West)	diorites	Hercynian	538	0,70464			
HERCY	North Morocco	Gasquet et al. [1992]	GOU 68	High Atlas (West)	granodiorites	Hercynian	402,5	0,705111	23,2	0,512629	-0,2
HERCY	North Morocco	Gasquet et al. [1992]	NFI 19	High Atlas (West)	granodiorites	Hercynian	437,2	0,705697	26	0,512594	-0,9
HERCY	North Morocco	Gasquet et al. [1992]	NFI 82b	High Atlas (West)	granodiorites	Hercynian	435	0,70567	20,72	0,5127	1,2
HERCY	North Morocco	Gasquet et al. [1992]	TAG 58	High Atlas (West)	granodiorites	Hercynian	380	0,70535			
HERCY	North Morocco	Gasquet et al. [1992]	TAG 258	High Atlas (West)	granodiorites	Hercynian	513	0,70581			
HERCY	North Morocco	Gasquet et al. [1992]	TAG 528	High Atlas (West)	granodiorites	Hercynian	378	0,706305			
HERCY	North Morocco	Gasquet et al. [1992]	TAG 79	High Atlas (West)	granodiorites	Hercynian	464,3	0,70441	28,59	0,512666	0,5
HERCY	North Morocco	<i>Gasquet et al.</i> [1992]	TAG 105	High Atlas (West)	granodiorites	Hercynian	406	0,705628	29	0,51263	-0,2
HERCY	North Morocco	Gasquet et al. [1992]	TAM 29a	High Atlas (West)	granodiorites	Hercynian	474	0,70464			
HERCY	North Morocco	<i>Gasquet et al.</i> [1992]	TAG 78	High Atlas (West)	monzogranites	Hercynian	273	0,70651			
HERCY	North Morocco	<i>Gasquet et al.</i> [1992]	TAG 28	High Atlas (West)	monzogranites	Hercynian	291	0,70555			
HERCY	North Morocco	Gasquet et al. [1992]	TAG 109	High Atlas (West)	monzogranites	Hercynian	217	0,708953	17,9	0,512628	-0,2
HERCY	North Morocco	<i>Gasquet et al.</i> [1992]	TAG 1148	High Atlas (West)	monzogranites	Hercynian	253	0,70906			
HERCY	North Morocco	<i>Gasquet et al.</i> [1992]	TAG 126	High Atlas (West)	monzogranites	Hercynian	317,6	0,705831	28	0,512607	-0,6
HERCY	North Morocco	<i>Gasquet et al.</i> [1992]	TAG 135	High Atlas (West)	monzogranites	Hercynian	239,8	0,707305	18,7	0,512624	-0,3
HERCY	North Morocco	Gasquet et al. [1992]	ASF 30	High Atlas (West)	biotite+amphibo le leucogranites	Hercynian	184,7	0,70815			
HERCY	North Morocco	Gasquet et al. [1992]	ASF 32	High Atlas (West)	biotite+amphibo le leucogranites	Hercynian	103,5	0,713821	9,9	0,512642	0,1
HERCY	North	Gasquet et al.	ASF 34	High Atlas (West)	biotite+amphibo	Hercynian	150,2	0,71064			

	Morocco	[1992]			le leucogranites						
HERCY	Y North Morocco	<i>Gasquet et al.</i> [1992]	ASF 38	High Atlas (West)	biotite+amphibo le leucogranites	Hercynian	25,8	0,755355	3,53	0,512742	2,0
HERCY	Y North Morocco	<i>Gasquet et al.</i> [1992]	NFI 72a	High Atlas (West)	biotite+amphibo le leucogranites	Hercynian	127	0,71111	11,89	0,512552	-1,7
HERCY	Y North Morocco	Gasquet et al. [1992]	NFI 99	High Atlas (West)	biotite+amphibo le leucogranites	Hercynian	53,3	0,7227	14,93	0,512708	1,4
HERCY	Y North Morocco	Gasquet et al. [1992]	TAM 27	High Atlas (West)	biotite+amphibo le leucogranites	Hercynian	75,8	0,71802			
HERCY	Y North Morocco	Gasquet et al. [1992]	ASF 39	High Atlas (West)	Leucogranites	Hercynian	65,3	0,7371	12,49	0,512438	-3,9
HERCY	Y North Morocco	Gasquet et al. [1992]	NFI 118	High Atlas (West)	I wo mica Leucogranites	Hercynian	26	0,7579	3,6	0,512653	0,3
HERCY	Y North Morocco	Ioummite et al. [2013]	TA1	Anti-Atlas (West)	Askaoun qz- diorite	Cambrian	544	0,708663	22,26	0,512567	-1,4
HERCY	Y Morocco	Ioummite et al. [2013]	TA2	Anti-Atlas (West)	Askaoun qz- diorite	Cambrian	368	0,710019	19,94	0,512532	-2,1
HERCY	Y Morocco	Ioummite et al. [2013]	PTN	Anti-Atlas (West)	Granodiorite	Cambrian	254	0,71686	25,66	0,512459	-3,5
HERCY	Y Morocco	[2013]	IM3	Anti-Atlas (West)	Granodiorite	Cambrian	230	0,715028	24,15	0,512592	-0,9
HERCY	Y Morocco	[2013]	IM4	Anti-Atlas (West)	Granodiorite	Cambrian	128	0,71977	26,66	0,512433	-4,0
HERCY	Y North Morocco	Ioummite et al. [2013]	Ab1	Anti-Atlas (West)	Granodiorite	Cambrian	319	0,710469	27,64	0,512475	-3,2
HERCY	Y Morocco	[2013]	Ab2	Anti-Atlas (West)	Granodiorite	Cambrian	273	0,71468	33,15	0,51245	-3,7
HERCY	Morocco	[2013]	Az1	Anti-Atlas (West)	Granodiorite	Cambrian	308	0,714135	24,03	0,512494	-2,8
HERCY	Y Morocco	[2013]	Az5	Anti-Atlas (West)	Granodiorite	Cambrian	109	0,706086	20,49	0,512511	-2,5
HERCY	Morocco	[2013]	As8	Anti-Atlas (West)	Granodiorite	Cambrian	380	0,711108	24,62	0,512499	-2,7
HERCY	Morocco	[2013]	AM3	Anti-Atlas (West)	granite	Cambrian	82	0,734146	25,6	0,512486	-3,0
HERCY	Morocco	[2013]	AM4	Anti-Atlas (West)	granite	Cambrian	37	0,743954	25,45	0,512482	-3,0
HERCY	Morocco	[2013]	LT1	Anti-Atlas (West)	granite	Cambrian	153	0,726105	18,16	0,5124	-4,6
HERCY	Y Morocco	[2013]	TA4 MME	Anti-Atlas (West)	granite	Cambrian	175	0,724464	20,36	0,512412	-4,4
HERCY	Y North Morocco	[2013]	IM2	Anti-Atlas (West)	granite	Cambrian	311	0,713296	41,39	0,512499	-2,7

HERCY	North Morocco	<i>Toummite et al.</i> [2013]	TA 6a	Anti-Atlas (West)	Ougougane granite	Cambrian	99	0,714552	26,25	0,512673	0,7
HERCY	North Morocco	Toummite et al. [2013]	TA 7	Anti-Atlas (West)	Ougougane granite	Cambrian	285	0,709844	17,96	0,512594	-0,9
HERCY	North Morocco	Toummite et al. [2013]	Ab 1 Encl	Anti-Atlas (West)	Ougougane granite	Cambrian	325	0,710366	31,55	0,512462	-3,4
HERCY	North Morocco	Toummite et al. [2013]	Ab6	Anti-Atlas (West)	Ougougane granite	Cambrian	357	0,714101	25,9	0,512479	-3,1
HERCY	North Morocco	Toummite et al. [2013]	TA-6b	Anti-Atlas (West)	Ougougane granite	Cambrian	280	0,71304	41,02	0,512599	-0,8
HERCY	North Morocco	Toummite et al. [2013]	AB3	Anti-Atlas (West)	Mafic dykes	Cambrian	498	0,705317	81,94	0,512656	0,4
HERCY	North Morocco	<i>Toummite et al.</i> [2013]	Az2	Anti-Atlas (West)	Mafic dykes	Cambrian	265	0,705518	19,03	0,512645	0,1
HERCY	North Morocco	Jakubowicz et al. [2015]	1036-m1	Anti-Atlas (East)	Seep carbonates	Devonian			3,366	0,512063	-11,2
HERCY	North Morocco	Jakubowicz et al. [2015]	1038a-m1	Anti-Atlas (East)	Seep	Devonian			3,708	0,512079	-10,9
HERCY	North Morocco	Jakubowicz et al. [2015]	1038b-m1	Anti-Atlas (East)	Seep	Devonian			1,474	0,512087	-10,7
HERCY	North Morocco	Jakubowicz et al. [2015]	1039-m1	Anti-Atlas (East)	Seep	Devonian			2,721	0,512116	-10,2
HERCY	North	Jakubowicz et al. [2015]	1041a-m1	Anti-Atlas (East)	Seep	Devonian			2,585	0,512037	-11,7
HERCY	North	Jakubowicz et al. [2015]	1041b-m1	Anti-Atlas (East)	Seep	Devonian			5,663	0,512083	-10,8
HERCY	North Morocco	Jakubowicz et al. [2015]	1042-m1	Anti-Atlas (East)	Seep	Devonian			4,109	0,512101	-10,5
HERCY	North Morocco	Jakubowicz et al. [2015]	HM 10B-m2	Anti-Atlas (East)	Seep	Devonian			3,097	0,511993	-12,6
HERCY	North	Jakubowicz et al. [2015]	1035a-ic1	Anti-Atlas (East)	Seep	Devonian			0,69	0,512068	-11,1
HERCY	North Morocco	Jakubowicz et al. [2015]	1035b-ic1	Anti-Atlas (East)	Seep	Devonian			0,334	0,511851	-15,4
HERCY	North Morocco	Jakubowicz et al. [2015]	1039a-ic1	Anti-Atlas (East)	Seep	Devonian			0,232	0,512072	-11,0
HERCY	North Morocco	Jakubowicz et al. [2015]	1039b-ic1	Anti-Atlas (East)	Seep carbonates	Devonian			1,161	0,512089	-10,7
HERCY	North Morocco	Jakubowicz et al. [2015]	1036-dca1	Anti-Atlas (East)	Seep carbonates	Devonian			2,253	0,512041	-11,6
HERCY	North Morocco	Jakubowicz et al. [2015]	1038-dca1	Anti-Atlas (East)	Seep	Devonian			1,523	0,512025	-12,0
HERCY	North	Jakubowicz et	1035-bc1	Anti-Atlas (East)	Seep	Devonian			0,558	0,511847	-15,4

	Morocco	<i>al.</i> [2015]			carbonates						
HERCY	North Morocco	<i>Jakubowicz et al.</i> [2015]	HM 10B-bc2	Anti-Atlas (East)	Seep carbonates	Devonian			0,17	0,51188	-14,8
HERCY	North Morocco	<i>Jakubowicz et al.</i> [2015]	EA-con	Anti-Atlas (East)	conodonte	Devonian			45,021	0,512306	-6,5
HERCY	North Morocco	Jakubowicz et al. [2015]	217-con	Anti-Atlas (East)	conodonte	Devonian			44,239	0,512113	-10,2
HERCY	North Morocco	<i>Jakubowicz et al.</i> [2015]	218-con	Anti-Atlas (East)	conodonte	Devonian			44,811	0,512154	-9,4
HERCY	North Morocco	<i>Jakubowicz et al.</i> [2015]	208-volc	Anti-Atlas (East)	volcanic	Devonian			25,017	0,512868	4,5
HERCY	Mauritanid s	<i>LeGoff et al.</i> [2001]	162b	Souttoufide Belt	Eclogite (bulk)	Hercynian			5,21	0,512614	-0,5
HERCY	Mauritanid s	<i>Bea et al.</i> [2015]	REG121	Souttoufide Belt	Granites	Cambrian		0,768689		0,512032	-11,8
HERCY	Mauritanid s	<i>Bea et al.</i> [2015]	REG122	Souttoufide Belt	Granites	Cambrian		0,811415		0,512143	-9,7
HERCY	Mauritanid s	<i>Bea et al.</i> [2015]	REG134	Souttoufide Belt	Granites	Cambrian		0,81114		0,51216	-9,3
HERCY	Mauritanid s	<i>Bea et al.</i> [2015]	REG135	Souttoufide Belt	Granites	Cambrian		0,796372		0,512116	-10,2
HERCY	Mauritanid s	<i>Bea et al.</i> [2015]	REG81	Souttoufide Belt	Granites	Cambrian		0,727273		0,511981	-12,8
HERCY	Mauritanid s	Fullgraf et al. [2013]	11/665/01	Bassaride Belt	Basalt	Ediacaria	166,94	0,7073	15,71	0,512703	1,3
HERCY	Mauritanid s	Fullgraf et al. [2013]	11/667/01	Bassaride Belt	Basalt	Ediacaria	267,78	0,70596	13,26	0,512686	0,9
HERCY	Mauritanid s	Fullgraf et al. [2013]	11/846/01	Bassaride Belt	Basalt	Ediacaria	212,27	0,70541	15,45	0,512732	1,8
HERCY	Mauritanid s	Fullgraf et al. [2013]	11/847/01	Bassaride Belt	Basalt	Ediacaria	298,19	0,70585	16,86	0,512729	1,8
HERCY	Mauritanid s	Fullgraf et al. [2013]	12/449/01	Bassaride Belt	Basalt	Ediacaria	238,25	0,70931	16,66	0,512551	-1,7
HERCY	Mauritanid s	Fullgraf et al. [2013]	12/793/01	Bassaride Belt	Basalt	Ediacaria	238,03	0,70561	15,71	0,512737	1,9
HERCY	Mauritanid s	Fullgraf et al. [2013]	12/449/01	Bassaride Belt	Basalt	Ediacaria	238,25	0,70931	16,66	0,512551	-1,7
HERCY	Mauritanid s	Fullgraf et al. [2013]	12/793/01	Bassaride Belt	Basalt	Ediacaria	238,03	0,70561	15,71	0,512737	1,9
HERCY	Mauritanid s	Fullgraf et al. [2013]	14/646/02	Bassaride Belt	Basalt	Ediacaria	327,62	0,70675	23,23	0,512529	-2,1
HERCY	Mauritanid s	Fullgraf et al. [2013]	17/099/01	Bassaride Belt	Basalt	Silurian	1464,5	0,70286	106,3	0,512331	-6,0

HERCY	Mauritanid s	Fullgraf et al. [2013]	12/085/03	Bassaride Belt	Basalt	Silurian	327,72	0,70399	35,98	0,512589	-1,0
HERCY	Mauritanid s	Fullgraf et al. [2013]	12/106/01	Bassaride Belt	Basalt	Silurian	195,4	0,70354	26,61	0,512665	0,5
HERCY	Mauritanid	Fullgraf et al.	12/121/02	Bassaride Belt	Basalt	Silurian	1199,7	0,70368	75,67	0,512453	-3,6
HERCY	Mauritanid	Fullgraf et al.	12/471/02	Bassaride Belt	Basalt	Silurian	401,54	0,70423	37,9	0,512683	0,9
HERCY	Mauritanid	Fullgraf et al.	32/586/03	Bassaride Belt	Basalt	Silurian	225,17	0,70489	11,26	0,512908	5,3
HERCY	Mauritanid	Fullgraf et al.	17/130/02	Bassaride Belt	Basalt	Silurian	276,23	0,70573	35,75	0,512639	0,0
HERCY	Mauritanid	Fullgraf et al.	17/130/03	Bassaride Belt	Basalt	Silurian	279,4	0,70555	32	0,512593	-0,9
HERCY	Mauritanid	Fullgraf et al.	17/139/01	Bassaride Belt	Basalt	Silurian	589,12	0,70333	48	0,512484	-3,0
HERCY	s Mauritanid	Fullgraf et al.	17/368/01	Bassaride Belt	Basalt	Silurian	586,09	0,70352	32,11	0,512615	-0,4
HERCY	s Mauritanid	Fullgraf et al.	19/374/01	Bassaride Belt	Basalt	Silurian	404,95	0,70355	32,01	0,512599	-0,8
HERCY	s Maroc	[2013] Schaltegger et	2988	Western Meseta	<0.2um	Middle Cambrian	17.92	0.921131	18.84	0.511877	-14.8
HEBCY	sedim Maroc	al. [1994] Schaltegger et	2988	Western Meseta	0.2-0.4	Middle Cambrian	24.2	0.840315	29.33	0.511838	-15.6
II EI IOI	sedim Maroc	al. [1994] Schaltegger et	2000		0,2 0,1		,_	0,010010	20,00	0,011000	10,0
HERCY	sedim	al. [1994]	2988	Western Meseta	0,4-1	Middle Cambrian	53,85	0,803434	38,02	0,511866	-15,1
HERCY	Maroc sedim	Schaltegger et al. [1994]	2988	Western Meseta	1-2	Middle Cambrian	53,85	0,772794	-	-	
HERCY	Maroc sedim	Schaltegger et al. [1994]	2988	Western Meseta	2-6	Middle Cambrian	19,73	0,772932	38,66	0,511861	-15,2
HERCY	Maroc	Schaltegger et	2990	Western Meseta	<0,2µm	Middle Cambrian	48,72	0,780288	21,73	0,511902	-14,4
HERCY	Maroc	Schaltegger et	2990	Western Meseta	0,2-0,4	Middle Cambrian	89,83	0,764153	44,7	0,51191	-14,2
HERCY	Maroc	Schaltegger et	2990	Western Meseta	0,4-1	Middle Cambrian	123,22	0,741566	72,58	0,511899	-14,4
HERCY	Maroc	Schaltegger et	2990	Western Meseta	1-2	Middle Cambrian	199,93	0,728613	127,82	0,51205	-11,5
HERCY	Maroc	Schaltegger et	2990	Western Meseta	2-6	Middle Cambrian	95,76	0,738299	58,67	0,511907	-14,3
HERCY	Maroc	Schaltegger et	2991	Western Meseta	<0,4µm	Middle Cambrian	128,74	0,746588	88,99	0,51141	-24,0
HERCY	Maroc	Schaltegger et	2991	Western Meseta	0.4-1	Middle Cambrian	193.54	0.74835	_	-	
		00			-,			,			

	sedim	<i>al.</i> [1994]									
HERCY	Maroc sedim	Schaltegger et al. [1994]	2991	Western Meseta	1-2	Middle Cambrian	90,89	0,744938	99,53	0,511852	-15,3
HERCY	Maroc sedim	Schaltegger et al. [1994]	2991	Western Meseta	2-6	Middle Cambrian	54,7	0,746908	30,47	0,51194	-13,6
HERCY	Maroc sedim	Schaltegger et al. [1994]	2995	Western Meseta	<0,4µm	Middle Cambrian	103	0,73045	267,29	0,511942	-13,6
HERCY	Maroc sedim	Schaltegger et al. [1994]	2995	Western Meseta	0,4-1	Middle Cambrian	92,03	0,735371	148,47	-	
HERCY	Maroc sedim	Schaltegger et al. [1994]	2995	Western Meseta	1-2	Middle Cambrian	117,54	0,734713	221,73	0,511967	-13,1
HERCY	Maroc sedim	Schaltegger et al. [1994]	2995	Western Meseta	2-6	Middle Cambrian	66,7	0,738645	46,08	0,511966	-13,1
HERCY	Maroc sedim	Schaltegger et al. [1994]	3014	Western Meseta	<0,4µm	Middle Cambrian	58,29	0,746377	66,75	0,51189	-14,6
HERCY	Maroc sedim	Schaltegger et al. [1994]	3014	Western Meseta	0,4-1	Middle Cambrian	63,93	0,753144	106,3	0,511917	-14,1
HERCY	Maroc sedim	Schaltegger et al. [1994]	3014	Western Meseta	1-2	Middle Cambrian	66,39	0,750788	124,39	0,511843	-15,5
HERCY	Maroc sedim	Schaltegger et al. [1994]	3014	Western Meseta	2-6	Middle Cambrian	57,84	0,747833	70,8	0,511854	-15,3
HERCY	Maroc sedim	<i>Ajaji et al.</i> [1998]	AT95017	Eastern Meseta	Metapelites	Late Carboniferous	88	0,744864	47,1	0,511878	-14,8
HERCY	Maroc sedim	<i>Ajaji et al.</i> [1998]	AT95025	Eastern Meseta	quartzite	Late Carboniferous	33	0,731216	13,4	0,511935	-13,7
HERCY	Souff sedim	<i>Bea et al.</i> [2015]	REG82	Souttoufide Belt	Metapelites	Cambrian		0,751099		0,512023	-12,0
HERCY	Souff sedim	<i>Bea et al.</i> [2015]	REG83	Souttoufide Belt	Metapelites	Cambrian		0,78209		0,512128	-9,9
HERCY	Souff sedim	<i>Bea et al.</i> [2015]	REG84	Souttoufide Belt	Metapelites	Cambrian		0,822367		0,51209	-10,7
HERCY	Souff sedim	<i>Bea et al.</i> [2015]	REG30	Souttoufide Belt	Metapelites	Cambrian		0,822367		0,510734	-37,1
HERCY	Souff sedim	<i>Bea et al.</i> [2015]	REG126	Souttoufide Belt	Metapelites	Cambrian		0,771143		0,510696	-37,9
HERCY	North Morocco	<i>Errami et al.</i> [2009]	E65a	Anti-Atlas (West)	Tagmout	Neoproterozoic	301	0,712038	21,65	0,512312	-6,4
HERCY	North Morocco	<i>Errami et al.</i> [2009]	R20a	Anti-Atlas (West)	Iknioun	Neoproterozoic	403	0,71014	15,25	0,512312	-6,4
HERCY	North Morocco	Errami et al. [2009]	OUS23b	Anti-Atlas (West)	Iknioun	Neoproterozoic	499,5	0,70854	12,71	0,512257	-7,4
HERCY	North Morocco	Errami et al. [2009]	T483b	Anti-Atlas (West)	Iknioun	Neoproterozoic	299,6	0,713331	17,93	0,51233	-6,0

HERCY	North Morocco	<i>Errami et al.</i> [2009]	E5a	Anti-Atlas (West)	Charnockite	Neoproterozoic	290	0,71335	10,84	0,512473	-3,2
HERCY	North Morocco	Errami et al. [2009]	E18a	Anti-Atlas (West)	Charnockite	Neoproterozoic	372	0,714589			
HERCY	North	Errami et al.	E39a	Anti-Atlas (West)	Charnockite	Neoproterozoic	166	0,720236	7,56	0,512265	-7,3
HERCY	North	Errami et al.	OUS1b	Anti-Atlas (West)	Charnockite	Neoproterozoic	350	0,711983	26,35	0,512457	-3,5
HERCY	North	Errami et al.	OUS5b	Anti-Atlas (West)	Charnockite	Neoproterozoic	465,3	0,710708	28,38	0,51244	-3,9
HERCY	North	Errami et al.	OUS13b	Anti-Atlas (West)	Charnockite	Neoproterozoic	351,4	0,722285	25,98	0,512425	-4,2
HEBCY	North	[2009] Errami et al.	OUS14b	Anti-Atlas (West)	Charnockite	Neoproterozoic	273.8	0.72226	33,96	0.512399	-4.7
HEBCY	Morocco North	[2009] Errami et al.	BT24	Anti-Atlas (West)	Bou Tealimt	Neoproterozoic	412	0 712728	14.8	0 512294	-6.7
	Morocco North	[2009] <i>Errami et al</i> .	0124				712	0,712720	14,0	0,012204	-0,7
HERCY	Morocco	[2009]	BT3	Anti-Atlas (West)	Bou Teglimt	Neoproterozoic	361	0,712266	23	0,512163	-9,3
HERCY	North Morocco	Errami et al. [2009]	BT30	Anti-Atlas (West)	Bou Teglimt	Neoproterozoic	224	0,717126	15,2	0,512138	-9,8
HERCY	North Morocco	<i>Errami et al.</i> [2009]	l18	Anti-Atlas (West)	Igoudrane	Neoproterozoic	304	0,711117	13,2	0,512408	-4,5
HERCY	North	Errami et al.	124	Anti-Atlas (West)	Igoudrane	Neoproterozoic	499	0,709841	19,9	0,512222	-8,1
HERCY	North	Errami et al.	120	Anti-Atlas (West)	Igoudrane	Neoproterozoic	574	0,710147	25	0,512239	-7,8
HERCY	North	Errami et al.	19	Anti-Atlas (West)	Igoudrane	Neoproterozoic	472	0,711069	16,7	0,512224	-8,1
HERCY	North	Errami et al.	Tz32	Anti-Atlas (West)	Taouzzakt	Neoproterozoic	463	0,710192	16,3	0,51225	-7,6
HERCY	North	Errami et al.	Tz7	Anti-Atlas (West)	Taouzzakt	Neoproterozoic	456	0.71017	19.4	0.512229	-8.0
HEBCY	Morocco North	[2009] Errami et al.	T720	Anti-Atlas (West)	Taouzzakt	Neoproterozoic	376	0 710425	22	0 5121	-10.5
TIERIOT	Morocco	[2009] El Baghdadi et	1220		Tabuzzani	Neoproterozoio	070	0,710420	22	0,0121	10,0
HERCY	Morocco	al. [2003]	-	Anti-Atlas (West)	Quartz diorite	Neoproterozoic		0,703		0,512538	-2,0
HERCY	North Morocco	El Baghdadi et al. [2003]	-	Anti-Atlas (West)	granodiorite	Neoproterozoic		0,708		0,51235	-5,6
HERCY	North Morocco	El Baghdadi et al. [2003]	-	Anti-Atlas (West)	SFBL	Neoproterozoic		0,712		0,512193	-8,7
HERCY	North Morocco	D'Lemos et al. [2006]	1	Anti-Atlas (West)	1. Augen granite gneiss	Neoproterozoic			1,94	0,512582	-1,1
HERCY	North	D'Lemos et al.	2	Anti-Atlas (West)	2. Medium	Neoproterozoic			0,94	0,512574	-1,2

	Morocco	[2006]			grained granite				
HERCY	North Morocco	D'Lemos et al. [2006]	34	Anti-Atlas (West)	3. Gabbro	Neoproterozoic	1,71	0,512602	-0,7
HERCY	North Morocco	D'Lemos et al. [2006]	5	Anti-Atlas (West)	4. Gabbro	Neoproterozoic	1,92	0,512564	-1,4
HERCY	North Morocco	D'Lemos et al. [2006]	6	Anti-Atlas (West)	5. Metagranite	Neoproterozoic	3,02	0,512667	0,6
HERCY	North Morocco	D'Lemos et al. [2006]	7	Anti-Atlas (West)	6. Fine grained granite	Neoproterozoic	1,9	0,512608	-0,6
HERCY	North Morocco	D'Lemos et al. [2006]	8	Anti-Atlas (West)	7. Granitic dike	Neoproterozoic	2,91	0,51249	-2,9
HERCY	North Morocco	Thomas et al. [2002]	RTM-154	Anti-Atlas (West)	Tazoult Quartz Porphyry	Neoproterozoic	60,76	0,51237	-5,2
HERCY	North Morocco	Thomas et al. [2002]	GM-171	Anti-Atlas (West)	Upper Ouarzazate rhyolite	Neoproterozoic	18,53	0,512403	-4,6
HERCY	North Morocco	Thomas et al. [2002]	GK-295	Anti-Atlas (West)	Lower Ouarzazate rhyolite	Neoproterozoic	36,81	0,5124859	-3,0
HERCY	North Morocco	Thomas et al. [2002]	CBM-100	Anti-Atlas (West)	Quartz keratophyre (Nqob ophiolite)	Neoproterozoic	15,16	0,5130139	7,3
HERCY	North Morocco	Thomas et al. [2002]	GK-195	Anti-Atlas (West)	Pyroxenite (Nqob ophiolite)	Neoproterozoic	13,61	0,5123639	-5,3
HERCY	North Morocco	Thomas et al. [2002]	GM-119	Anti-Atlas (West)	Iriri Migmatite	Neoproterozoic	9,466	0,5126769	0,8
HERCY	North Morocco	Thomas et al. [2002]	GM-122	Anti-Atlas (West)	Khzama ophiolite	Neoproterozoic	13,86	0,5124939	-2,8
HERCY	North Morocco	Thomas et al. [2002]	GM-168	Anti-Atlas (West)	Bleida basalt	Neoproterozoic	11,41	0,5128219	3,6
HERCY	North Morocco	Thomas et al. [2002]	RTM-117	Anti-Atlas (West)	Plagiogranite (Nqob ophiolite)	Neoproterozoic	2,664	0,512563	-1,5
HERCY	North Morocco	Samson et al. [2004]	99-05	Anti-Atlas (West)	Leucogranite pluton	Neoproterozoic	4,25	0,512656	0,4
HERCY	North Morocco	Samson et al. [2004]	99-06	Anti-Atlas (West)	Leucogranite	Neoproterozoic	3,17	0,512649	0,2
HERCY	North Morocco	Samson et al. [2004]	99,07	Anti-Atlas (West)	Leucogranite dike	Neoproterozoic	3,29	0,51255	-1,7
REGUIB AT	Reguibat	Potrel et al. [1998]	AG 41	Reguibat Shield	Orthogneiss	Archean	62,14	0,510376	-44,1
REGUIB AT	Reguibat	Potrel et al. [1998]	AG 82	Reguibat Shield	Paragneiss	Archean	13,06	0,510394	-43,8

REGUIB AT	Reguibat	<i>Potrel et al.</i> [1998]	AG 89	Reguibat Shield	Paragneiss	Archean	25,42	0,51029	-45,8
REGUIB AT	Reguibat	<i>Potrel et al.</i> [1998]	AG 173	Reguibat Shield	Paragneiss	Archean	31,43	0,509864	-54,1
REGUIB AT	Reguibat	<i>Potrel et al.</i> [1998]	AG 190	Reguibat Shield	Paragneiss	Archean	17,15	0,511592	-20,4
REGUIB AT	Reguibat	<i>Potrel et al.</i> [1998]	AG 190	Reguibat Shield	Paragneiss	Archean	17,86	0,511595	-20,3
REGUIB AT	Reguibat	<i>Potrel et al.</i> [1998]	AG 126	Reguibat Shield	Charnockitic gneisses	Archean	2,99	0,511099	-30,0
REGUIB AT	Reguibat	<i>Potrel et al.</i> [1998]	AG 128	Reguibat Shield	Charnockitic gneisses	Archean	2,331	0,51114	-29,2
REGUIB AT	Reguibat	<i>Potrel et al.</i> [1998]	AG 132	Reguibat Shield	Charnockitic gneisses	Archean	2,929	0,511701	-18,3
REGUIB AT	Reguibat	<i>Potrel et al.</i> [1998]	AG 166	Reguibat Shield	Charnockitic gneisses	Archean	1,704	0,5105	-41,7
REGUIB AT	Reguibat	Potrel et al. [1998]	AG 168	Reguibat Shield	Charnockitic gneisses	Archean	2,093	0,510784	-36,2
REGUIB AT	Reguibat	<i>Potrel et al.</i> [1998]	AG 169	Reguibat Shield	Charnockitic gneisses	Archean	1,683	0,510783	-36,2
REGUIB AT	Reguibat	<i>Potrel et al.</i> [1998]	AG 154	Reguibat Shield	Charnockitic gneisses	Archean	1,343	0,51089	-34,1
REGUIB AT	Reguibat	<i>Potrel et al.</i> [1998]	AG 158	Reguibat Shield	Migmatitic orthogneisses	Archean	1,237	0,510766	-36,5
REGUIB AT	Reguibat	<i>Potrel et al.</i> [1998]	AG 159	Reguibat Shield	Migmatitic orthogneisses	Archean	1,427	0,510992	-32,1
REGUIB AT	Reguibat	<i>Potrel et al.</i> [1998]	AG 162	Reguibat Shield	Migmatitic orthogneisses	Archean	1,923	0,510658	-38,6
REGUIB AT	Reguibat	<i>Potrel et al.</i> [1998]	AG 199	Reguibat Shield	Migmatitic orthogneisses	Archean	3,3	0,510949	-32,9
REGUIB AT	Reguibat	<i>Potrel et al.</i> [1998]	AG 200	Reguibat Shield	Migmatitic orthogneisses	Archean	3,646	0,510962	-32,7
REGUIB AT	Reguibat	<i>Potrel et al.</i> [1998]	AG 217	Reguibat Shield	Migmatitic orthogneisses	Archean	3,597	0,511429	-23,6
REGUIB AT	Reguibat	<i>Potrel et al.</i> [1998]	AG 235	Reguibat Shield	Migmatitic orthogneisses	Archean	1,804	0,510937	-33,2
REGUIB AT	Reguibat	<i>Potrel et al.</i> [1998]	AG 239	Reguibat Shield	Migmatitic orthogneisses	Archean	4,365	0,510967	-32,6
REGUIB AT	Reguibat	<i>Potrel et al.</i> [1998]	AG 242	Reguibat Shield	Migmatitic orthogneisses	Archean	3,45	0,510818	-35,5
REGUIB AT	Reguibat	<i>Potrel et al.</i> [1998]	AG 245	Reguibat Shield	Migmatitic orthogneisses	Archean	2,87	0,510722	-37,4
REGUIB	Reguibat	Potrel et al.	AG 8	Reguibat Shield	Migmatitic	Archean	4,025	0,510866	-34,6

AT		[1998]			orthogneisses						
REGUIB AT	Reguibat	<i>Potrel et al.</i> [1998]	AG 3	Reguibat Shield	Post-granulite gabbro	Archean			0,973	0,511349	-25,1
REGUIB AT	Reguibat	Potrel et al. [1998]	AI	Reguibat Shield	Post-granulite granite	Archean			11,91	0,510876	-34,4
REGUIB AT	Reguibat	Potrel et al. [1998]	AG 60	Reguibat Shield	Post-granulite granite	Archean			16,45	0,511013	-31,7
REGUIB AT	Reguibat	<i>Potrel et al.</i> [1998]	AG 67	Reguibat Shield	Post-granulite granite	Archean			13,46	0,510637	-39,0
REGUIB AT	Reguibat	<i>Potrel et al.</i> [1998]	AG 69	Reguibat Shield	Post-granulite granite	Archean			14,24	0,510901	-33,9
REGUIB AT	Reguibat	<i>Potrel et al.</i> [1998]	AG 71	Reguibat Shield	Post-granulite granite	Archean			9,26	0,510933	-33,3
REGUIB AT	Reguibat	<i>Potrel et al.</i> [1998]	AG 77	Reguibat Shield	Post-granulite granite	Archean			17,32	0,510998	-32,0
REGUIB AT	Reguibat	<i>Bea et al.</i> [2013]	REG20	Reguibat Shield	Syenite	Archean		0,702787		0,511103	-29,9
REGUIB AT	Reguibat	<i>Bea et al.</i> [2013]	REG21	Reguibat Shield	Syenite	Archean		0,702072		0,511017	-31,6
REGUIB AT	Reguibat	<i>Bea et al.</i> [2013]	REG19	Reguibat Shield	Syenite	Archean		0,703442		0,511001	-31,9
REGUIB AT	Reguibat	<i>Bea et al.</i> [2013]	REG26	Reguibat Shield	Syenite	Archean		0,703126		0,510883	-34,2
REGUIB AT	Reguibat	<i>Bea et al.</i> [2013]	REG25	Reguibat Shield	Syenite	Archean		0,702906		0,510984	-32,3
REGUIB AT	Reguibat	<i>Bea et al.</i> [2013]	REG23	Reguibat Shield	Syenite	Archean		0,702871		0,51063	-39,2
REGUIB AT	Reguibat	<i>Bea et al.</i> [2013]	REG22	Reguibat Shield	Syenite	Archean		0,703853		0,511125	-29,5
REGUIB AT	Reguibat	<i>Bea et al.</i> [2013]	REG24	Reguibat Shield	Syenite	Archean		0,703005		0,511256	-27,0
REGUIB AT	Reguibat	<i>Bea et al.</i> [2013]	REG18	Reguibat Shield	Syenite	Archean		0,702206		0,511553	-21,2
REGUIB AT	Reguibat	Schofield et al. [2012]	23120012	Reguibat Shield	granitic	Archean	376	0,7244245	5,17	0,510425	-43,2
REGUIB AT	Reguibat	Schofield et al. [2012]	211200139	Reguibat Shield	granitic	Archean	365	0,7509592	109	0,510996	-32,0
REGUIB AT	Reguibat	Schofield et al. [2012]	22120262	Reguibat Shield	granitic	Archean	182	0,7265048	43,4	0,510540	-40,9
REGUIB AT	Reguibat	Schofield et al. [2012]	22120276	Reguibat Shield	granitic	Archean	53,7	0,9259967	37,8	0,510470	-42,3
REGUIB AT	Reguibat	Montero et al. [2014]	REG01	Reguibat Shield		Archean			0,7159 74	0,511562	-21,0

REGUIB AT	Reguibat	<i>Montero et al.</i> [2014]	REG03	Reguibat Shield		Archean			0,7135 71	0,510695	-37,9
REGUIB AT	Reguibat	Montero et al. [2014]	REG08	Reguibat Shield		Archean			0,7205 13	0,511382	-24,5
REGUIB AT	Reguibat	Montero et al. [2014]	REG09	Reguibat Shield		Archean			0,7228 78	0,510503	-41,6
REGUIB AT	Reguibat	Montero et al. [2014]	REG13	Reguibat Shield		Archean			0,7094 51	0,510544	-40,8
REGUIB	Reguibat	Montero et al. [2014]	REG27	Reguibat Shield		Archean			0,7185 68	0,510631	-39,2
REGUIB	Reguibat	Montero et al. [2014]	REG28	Reguibat Shield		Archean			0,7155 52	0,510597	-39,8
REGUIB	Reguibat	Montero et al. [2014]	REG31	Reguibat Shield		Archean			0,7097 01	0,510354	-44,6
REGUIB	Reguibat	Montero et al. [2014]	REG32	Reguibat Shield		Archean			0,7181 75	0,51051	-41,5
REGUIB	Reguibat	Montero et al. [2014]	REG33	Reguibat Shield		Archean			0,7093 54	0,510944	-33,0
REGUIB	Reguibat	Montero et al. [2014]	REG34	Reguibat Shield		Archean			0,7068 25	0,510944	-33,0
REGUIB	Reguibat	Montero et al. [2014]	REG37	Reguibat Shield		Archean			0,7219 39	0,51041	-43,5
REGUIB	Reguibat	Montero et al. [2014]	REG70	Reguibat Shield		Archean			0,7020 57	0,511856	-15,3
REGUIB	Reguibat	Montero et al. [2014]	REG78	Reguibat Shield		Archean			0,7290 54	0,510556	-40,6
REGUIB	Reguibat	Montero et al. [2014]	REG80	Reguibat Shield		Archean			0,7174 58	0,510921	-33,5
REGUIB	Reguibat	Key et al. [2008]	Tasiast drill core	Reguibat Shield		Archean			10,2	0,510757	-36,7
REGUIB	Reguibat	Key et al. [2008]	201401598	Reguibat Shield		Archean			10,72	0,510635	-39,1
REGUIB	Reguibat	Key et al. [2008]	201401584	Reguibat Shield		Archean			26,5	0,510479	-42,1
REGUIB	Reguibat	Key et al. [2008]	201401619	Reguibat Shield		Archean			18,94	0,51131	-25,9
REGUIB	Reguibat	<i>Peucat et al.</i> [2005]	IG3	Reguibat Shield	Rhyolite	Paleoproterozoic	150	0,751531	34,14	0,511529	-21,6
REGUIB	Reguibat	Peucat et al. [2005]	CHIN16	Reguibat Shield	Dacite	Paleoproterozoic	394	0,722823	31,04	0,511529	-21,6
REGUIB	Reguibat	Peucat et al. [2005]	CH1	Reguibat Shield	Quartz gabbrodiorite	Paleoproterozoic	311	0,709353	10,83	0,511969	-13,1
REGUIB	Reguibat	Peucat et al.	HS1	Reguibat Shield	Leuco-gabbro	Paleoproterozoic	782	0,702886	3,37	0,511441	-23,3

AT		[2005]									
REGUIB AT	Reguibat	<i>Peucat et al.</i> [2005]	HS2	Reguibat Shield	Anorthosite	Paleoproterozoic	774	0,702839	3,4	0,511442	-23,3
REGUIB AT	Reguibat	Peucat et al. [2005]	HS3	Reguibat Shield	Gabbro	Paleoproterozoic	630	0,702582	2,04	0,51194	-13,6
REGUIB AT	Reguibat	Peucat et al. [2005]	GH10	Reguibat Shield	Trondhjemitic gneiss	Paleoproterozoic	170	0,705865	27,43	0,512542	-1,9
REGUIB AT	Reguibat	Peucat et al. [2005]	TOH1a	Reguibat Shield	Trondhjemitic gneiss	Paleoproterozoic	323	0,704544	36,96	0,510949	-32,9
REGUIB AT	Reguibat	Peucat et al. [2005]	TOH1b	Reguibat Shield	Quartzdioritic gneiss	Paleoproterozoic	380	0,701191	49,09	0,511771	-16,9
REGUIB AT	Reguibat	Peucat et al. [2005]	TOH6	Reguibat Shield	Granodioritic gneiss	Paleoproterozoic	318	0,722167	44,44	0,511384	-24,5
REGUIB AT	Reguibat	Peucat et al. [2005]	E32	Reguibat Shield	Monzogranitic gneiss	Paleoproterozoic	213	0,742698	48,21	0,510978	-32,4
REGUIB AT	Reguibat	Peucat et al. [2005]	BAL3	Reguibat Shield	Quartz-diorite gneiss	Paleoproterozoic	687	0,707827	24,08	0,511726	-17,8
REGUIB AT	Reguibat	Peucat et al. [2005]	BAL5	Reguibat Shield	Monzogranitic gneiss	Paleoproterozoic	165	0,766056	15,66	0,511373	-24,7
REGUIB AT	Reguibat	Peucat et al. [2005]	GH27	Reguibat Shield	Quartz-diorite (medium-K)	Paleoproterozoic	665	0,707372	39,22	0,511517	-21,9
REGUIB AT	Reguibat	Peucat et al. [2005]	GH35	Reguibat Shield	Quartz-diorite (medium-K)	Paleoproterozoic	756	0,706866	44,41	0,511595	-20,3
REGUIB AT	Reguibat	Peucat et al. [2005]	GR1	Reguibat Shield	Quartz-diorite (medium-K)	Paleoproterozoic	841	0,705108	23,04	0,511668	-18,9
REGUIB AT	Reguibat	Peucat et al. [2005]	DEG6	Reguibat Shield	Gabbro (high- K)	Paleoproterozoic	626	0,71148	14,72	0,511904	-14,3
REGUIB AT	Reguibat	<i>Peucat et al.</i> [2005]	DEG8	Reguibat Shield	Gabbro (high- K)	Paleoproterozoic	726	0,705839	10,41	0,511928	-13,8
REGUIB AT	Reguibat	<i>Peucat et al.</i> [2005]	TL4	Reguibat Shield	Gabbro (high- K)	Paleoproterozoic	369	0,710161	26,67	0,511926	-13,9
REGUIB AT	Reguibat	<i>Peucat et al.</i> [2005]	CHIN2	Reguibat Shield	Monzogranite (high-K)	Paleoproterozoic	133	0,794906	37,17	0,511402	-24,1
REGUIB AT	Reguibat	<i>Peucat et al.</i> [2005]	GH3	Reguibat Shield	Trondhjemite	Paleoproterozoic	390	0,716954	27,71	0,511306	-26,0
REGUIB AT	Reguibat	<i>Peucat et al.</i> [2005]	GH7	Reguibat Shield	Trondhjemite	Paleoproterozoic	542	0,706966	44,38	0,511151	-29,0
REGUIB AT	Reguibat	<i>Peucat et al.</i> [2005]	GH7-1	Reguibat Shield	Micro quartzdiorite enclave	Paleoproterozoic	842	0,70775	18,88	0,51189	-14,6
REGUIB AT	Reguibat	Peucat et al. [2005]	YT4	Reguibat Shield	Aplite	Paleoproterozoic	269	0,723989	24,47	0,511628	-19,7

REGUIB AT	Reguibat	<i>Peucat et al.</i> [2005]	YT7	Reguibat Shield	Quartz monzonite	Paleoproterozoic	550	0,719667	25,95	0,511435	-23,5
REGUIB AT	Reguibat	<i>Peucat et al.</i> [2005]	AL 9	Reguibat Shield	Granite	Paleoproterozoic			33,55	0,511467	-22,8
REGUIB AT	Reguibat	<i>Peucat et al.</i> [2005]	AL10	Reguibat Shield	Granodiorite	Paleoproterozoic	326	0,735772	21,61	0,511613	-20,0
REGUIB AT	Reguibat	Peucat et al. [2005]	AL10	Reguibat Shield	Duplicate	Paleoproterozoic			21,56	0,5116	-20,2
REGUIB AT	Reguibat	<i>Peucat et al.</i> [2005]	AL 14	Reguibat Shield	Monzogranite	Paleoproterozoic			25,55	0,511637	-19,5
REGUIB AT	Reguibat	<i>Peucat et al.</i> [2005]	AL1	Reguibat Shield	Rhyolite	Paleoproterozoic	256	0,740626	26,83	0,511441	-23,3
REGUIB AT	Reguibat	Tabeliouna et al. [2015]		Reguibat Shield	Dacite	Paleoproterozoic	988,8	0,70817	19,31	0,51152	-21,8
REGUIB AT	Reguibat	Tabeliouna et al. [2015]		Reguibat Shield	Dacite	Paleoproterozoic	770,9	0,70562	17,55	0,5116	-20,2
REGUIB	Reguibat	Tabeliouna et al. [2015]		Reguibat Shield	Dacite	Paleoproterozoic	755,9	0,70613	25,75	0,51137	-24,7
REGUIB AT	Reguibat	Tabeliouna et al. [2015]		Reguibat Shield	Andesite	Paleoproterozoic	850	0,70523	15,11	0,5116	-20,2
REGUIB AT	Reguibat	Tabeliouna et al. [2015]		Reguibat Shield	Andesite	Paleoproterozoic	712,8	0,70805	19,24	0,51162	-19,9
REGUIB AT	Reguibat	Tabeliouna et al. [2015]		Reguibat Shield	Andesite	Paleoproterozoic	1174,7	0,70707	23,87	0,51155	-21,2
REGUIB AT	Reguibat	Tabeliouna et al. [2015]		Reguibat Shield	Basaltic andesite	Paleoproterozoic	456,5	0,71352	13,3	0,51182	-16,0
REGUIB AT	Reguibat	Tabeliouna et al. [2015]		Reguibat Shield	Basaltic andesite	Paleoproterozoic	163,1	0,71872	11,23	0,51177	-16,9
REGUIB AT	Reguibat	Tabeliouna et al. [2015]		Reguibat Shield	basalte	Paleoproterozoic	446,6	0,71429	14,73	0,51184	-15,6
REGUIB AT	Reguibat	Tabeliouna et al. [2015]		Reguibat Shield	basalte	Paleoproterozoic	492	0,71082	14,05	0,51184	-15,6
REGUIB AT	Reguibat	Tabeliouna et al. [2015]		Reguibat Shield	basalte	Paleoproterozoic	831,8	0,70502	11,16	0,5118	-16,3
REGUIB AT	Reguibat	Boher et al. [1992]	IM 237	Reguibat Shield	granite	Paleoproterozoic	210	0,760553	68,79	0,511416	-23,8
REGUIB	Reguibat	<i>Boher et al.</i> [1992]	IM 315	Reguibat Shield	granite	Paleoproterozoic	139	0,847695	46,36	0,51131	-25,9
REGUIB AT	Reguibat	<i>Boher et al.</i> [1992]	MAS 219	Reguibat Shield	granite	Paleoproterozoic	111	0,922291	32,21	0,511588	-20,5
REGUIB AT	Reguibat	Boher et al. [1992]	MAS 76	Reguibat Shield	rapakivi granite	Paleoproterozoic	162	0,809848	41,65	0,511336	-25,4
REGUIB	Reguibat	Boher et al.	MAS 213	Reguibat Shield	rapakivi granite	Paleoproterozoic	96,9	0,925038	60,65	0,511545	-21,3

AT		[1992]									
REGUIB AT	Reguibat	<i>Boher et al.</i> [1992]	MAS 215	Reguibat Shield	rapakivi granite	Paleoproterozoic	38,8	1,589	66,04	0,51152	-21,8
REGUIB AT	Reguibat	<i>Boher et al.</i> [1992]	MAS 138	Reguibat Shield	granite	Paleoproterozoic	155	0,833885	23,84	0,511199	-28,1
REGUIB AT	Reguibat	<i>Boher et al.</i> [1992]	MAS 134	Reguibat Shield	granite	Paleoproterozoic	256	0,745932	37,23	0,511255	-27,0
REGUIB AT	Reguibat	<i>Boher et al.</i> [1992]	MAS 265	Reguibat Shield	granite	Paleoproterozoic	82,6	1,261891	59,05	0,511464	-22,9
REGUIB AT	Reguibat	<i>Boher et al.</i> [1992]	MAS 272	Reguibat Shield	gneiss	Paleoproterozoic			23,3	0,511592	-20,4
REGUIB AT	Reguibat	<i>Boher et al.</i> [1992]	MAS 241	Reguibat Shield	leptynite	Paleoproterozoic			6,09	0,511367	-24,8
REGUIB AT	Reguibat	<i>Boher et al.</i> [1992]	MAS 279	Reguibat Shield	leptynite	Paleoproterozoic			41,09	0,511926	-13,9
REGUIB AT	Reguibat	<i>Boher et al.</i> [1992]		Reguibat Shield	granite	Paleoproterozoic			31,47	0,511427	-23,6
REGUIB AT	Reguibat	<i>Boher et al.</i> [1992]		Reguibat Shield	granite	Paleoproterozoic			6,6	0,511196	-28,1
REGUIB AT	Reguibat	<i>Boher et al.</i> [1992]		Reguibat Shield	granite	Paleoproterozoic			8,31	0,511298	-26,1
REGUIB AT	Reguibat	<i>Boher et al.</i> [1992]	MAS 157b	Reguibat Shield	migmatite	Paleoproterozoic			24,82	0,511321	-25,7
REGUIB AT	Reguibat	<i>Boher et al.</i> [1992]	MAS 196	Reguibat Shield	leptynite	Paleoproterozoic			45,18	0,511354	-25,0
REGUIB AT	Reguibat	<i>Boher et al.</i> [1992]	MAS 206	Reguibat Shield	volcanite	Paleoproterozoic			10,84	0,51159	-20,4
REGUIB AT	Reguibat	<i>Boher et al.</i> [1992]	MAS 17lb	Reguibat Shield	-	Paleoproterozoic			75,5	0,511505	-22,1
REGUIB AT	Reguibat	<i>Boher et al.</i> [1992]	MAS 259c	Reguibat Shield	schist	Paleoroterozoic			21,98	0,511538	-21,5
LEO- MAN	Leo-Man- Kedougou	<i>Boher et al.</i> [1992]	9452	Kedougou-Kenieba	granodiorite	Paleoproterozoic			23,18	0,511526	-21,7
LEO- MAN	Leo-Man- Kedougou	<i>Boher et al.</i> [1992]	9457	Kedougou-Kenieba	granodiorite	Paleoproterozoic			39,87	0,511523	-21,8
LEO- MAN	Leo-Man- Kedougou	<i>Boher et al.</i> [1992]	9459	Kedougou-Kenieba	monzogranite	Paleoproterozoic			35,3	0,511597	-20,3
LEO- MAN	Leo-Man- Kedougou	<i>Boher et al.</i> [1992]	9460	Kedougou-Kenieba	monzogranite	Paleoproterozoic			32,42	0,511564	-21,0
LEO- MAN	Leo-Man- Kedougou	<i>Boher et al.</i> [1992]	9110	Kedougou-Kenieba	diorite	Paleoproterozoic			29,22	0,511586	-20,5
LEO- MAN	Leo-Man- Kedougou	<i>Boher et al.</i> [1992]	9111	Kedougou-Kenieba	monzodiorite	Paleoproterozoic			36,52	0,511542	-21,4

LEO- MAN	Leo-Man- Kedougou	Boher et al. [1992]	9113	Kedougou-Kenieba	tonalite	Paleoproterozoic			42,93	0,511513	-21,9
LEO-	Leo-Man-	Boher et al.									
MAN	Kedougou	[1992]	HL71	Kedougou-Kenieba	microgranite	Paleoproterozoic	141	0,704309	26,6	0,511453	-23,1
LEO-	Leo-Man-	Boher et al.		Kadaurau Kaniaha	miorograpito	Delegaratorazoia	107	0.700069	00	0 511500	01.6
MAN	Kedougou	[1992]	HL 90	Redougou-Remeba	microgramie	Paleoproterozoic	107	0,709068	20	0,511529	-21,0
LEO-	Leo-Man-	Boher et al.	HI 123	Kedougou-Kenieba	microgranite	Paleoproterozoic	354	0 718818	32.02	0 511346	-25.2
MAN	Kedougou	[1992]	112120	Reddugou Remebu	morograme		004	0,710010	02,02	0,011040	20,2
LEO-	Leo-Man-	Boher et al.	DJ*	Kedougou-Kenieba	granodiorite	Paleoproterozoic			29.17	0.511565	-20.9
MAN	Kedougou	[1992]			9				,	-,	,-
LEO-	Leo-Man-	Boner et al.	W17*	Kedougou-Kenieba	granite	Paleoproterozoic			15,54	0,511546	-21,3
	Kedougou	[1992] Rober et el		5	Ū				ŕ	,	
LEU-	Leo-Ivian-	10021	Y2C*	Kedougou-Kenieba	granite	Paleoproterozoic			20,4	0,511487	-22,5
	Leo-Man-	Roher et al									
MAN	Kedoudou	[1992]	9109(2)	Kedougou-Kenieba	granite	Paleoproterozoic			32,05	0,511105	-29,9
LEO-	Leo-Man-	Boher et al.									
MAN	Kedougou	[1992]	9208	Kedougou-Kenieba	diorite	Paleoproterozoic			12,29	0,511841	-15,5
LEO-	Leo-Man-	Boher et al.	0001	Kadawaay Kariaha		Deles aveterazia			10.04	0 511551	01.0
MAN	Kedougou	[1992]	9201	Kedougou-Kenieba	granodionite	Paleoproterozoic			19,94	0,511551	-21,2
LEO-	Leo-Man-	Boher et al.	0205	Kodougou Konioha	arapodiorito	Palaaprotorozoio			15 29	0 511519	21.0
MAN	Kedougou	[1992]	9205	Redougou-Remeba	granoulonite	Faleopioterozoic			15,20	0,511516	-21,0
LEO-	Leo-Man-	Boher et al.	9225	Kedougou-Kenieba	diorite	Paleoproterozoic			11.03	0 51205	-11.5
MAN	Kedougou	[1992]	0220	ricedeugee richlobe	diointo	1 000010102010			11,00	0,01200	11,0
LEO-	Leo-Man-	Boher et al.	9212	Kedougou-Kenieba	granodiorite	Paleoproterozoic			18.75	0.511645	-19.4
MAN	Kedougou	[1992] Deber et e/	-	····	3				-, -	-,	-,
LEO-	Leo-Man-	Boner et al.	9211	Kedougou-Kenieba	granite	Paleoproterozoic			19,62	0,51155	-21,2
		Boher et al									
MAN	Kedoudou	[1992]	87L	Kedougou-Kenieba	granodiorite	Paleoproterozoic			8,39	0,511648	-19,3
LEO-	Leo-Man-	Boher et al.									
MAN	Kedougou	[1992]	86624	Kedougou-Kenieba	pegmatite	Paleoproterozoic			18,19	0,511807	-16,2
LEO-	Leo-Man-	Boher et al.	0.404	Kaalawaa Kaalaha	and a set of the	Delessentences			07 70	0 511500	00.0
MAN	Kedougou	[1992]	9461	Kedougou-Kenieba	granodionite	Paleoproterozoic			27,73	0,511569	-20,9
LEO-	Leo-Man-	Boher et al.	0462	Kedougou-Kenieba	tonalito	Paleoproterozoio			14 36	0.511626	-10.7
MAN	Kedougou	[1992]	3402	Redougou-Remeba	tonalite				14,50	0,311020	-13,7
LEO-	Leo-Man-	Boher et al.	9463	Kedougou-Kenieba	aranodiorite	Paleoproterozoic			28 39	0 51201	-12.3
MAN	Kedougou	[1992]	0100	riouougou riomosu	granoalonito	i alcopiotorozolo			20,00	0,01201	,0
LEO-	Leo-Man-	Boher et al.	9464	Kedougou-Kenieba	granodiorite	Paleoproterozoic			12,61	0.511719	-17,9
MAN	Kedougou	[1992] Deber et s'			0				, -		, -
LEO-	Leo-Man-	Boner et al.	9466	Kedougou-Kenieba	granodiorite	Paleoproterozoic			11,91	0,511745	-17,4
IVIAIN	Redougou	[1992]	0007						17.00	0.544045	
LEO-	Leo-Man-	Boher et al.	8667	Kedougou-Kenieba	leucogranite	Paleoproterozoic			17,93	0,511912	-14,2

MAN	Kedougou	[1992]									
LEO- MAN	Leo-Man- Kedougou	<i>Boher et al.</i> [1992]	8668	Kedougou-Kenieba	leucogranite	Paleoproterozoic			20,32	0,511423	-23,7
LEO- MAN	Leo-Man- Kedougou	<i>Boher et al.</i> [1992]	8669	Kedougou-Kenieba	leucogranite	Paleoproterozoic			11,25	0,512152	-9,5
LEO- MAN	Leo-Man- Kedougou	<i>Boher et al.</i> [1992]	8670	Kedougou-Kenieba	leucogranite	Paleoproterozoic			28,62	0,511751	-17,3
LEO- MAN	Leo-Man- Kedougou	Boher et al. [1992]	8672	Kedougou-Kenieba	tonalite	Paleoproterozoic			39,19	0,511404	-24,1
MAN	Leo-Man- Kedougou	Boher et al. [1992]	9451	Kedougou-Kenieba	tonalite	Paleoproterozoic			50,9	0,511354	-25,0
LEO- MAN	Leo-Man- Kedougou	Boher et al. [1992]	36	Kedougou-Kenieba	Monzogranite	Paleoproterozoic			17,35	0,511443	-23,3
MAN	Leo-Man- Kedougou	Boner et al. [1992]	39EMD	Kedougou-Kenieba	Granodiorite	Paleoproterozoic			12,31	0,511597	-20,3
MAN	Kedougou	Boner et al. [1992] Boher et al	40	Kedougou-Kenieba	microdiorite	Paleoproterozoic			11,8	0,512105	-10,4
MAN	Kedougou	[1992]	53	Kedougou-Kenieba	andesite	Paleoproterozoic			34,03	0,511661	-19,1
MAN	Kedougou	[1992] [1992]	58B	Kedougou-Kenieba	Granodiorite	Paleoproterozoic			23,81	0,511674	-18,8
MAN	Kedougou	[1992]	75	Kedougou-Kenieba	Granodiorite	Paleoproterozoic			14,74	0,51166	-19,1
MAN	Kedougou	[1992] [1992]	83B	Kedougou-Kenieba	Diorite	Paleoproterozoic			8,8	0,512024	-12,0
MAN	Kedougou	[1992] Boher et al	86	Kedougou-Kenieba	Basalt	Paleoproterozoic			21,41	0,512092	-10,7
MAN	Kedougou	[1992] Boher et al	96L	Kedougou-Kenieba	Monzogranite	Paleoproterozoic			21,95	0,511659	-19,1
MAN	Kedougou	[1992] Boher et al	126	Kedougou-Kenieba	Monzogranite	Paleoproterozoic			14,42	0,511505	-22,1
MAN	Kedougou Leo-Man-	[1992] Boher et al.	170	Kedougou-Kenieba	Andesitic basalt	Paleoproterozoic			17,09	0,511998	-12,5
MAN LEO-	Kedougou Leo-Man-	[1992] Boher et al.	272B	Kedougou-Kenieba	Microgabbro	Paleoproterozoic			4,2	0,513407	15,0
MAN LEO-	Kedougou Leo-Man-	[1992] Boher et al.	279	Kedougou-Kenieba	Granitoid	Paleoproterozoic			3,96	0,511949	-13,4
MAN LEO-	Kedougou Leo-Man-	[1992] Boher et al.	286	Kedougou-Kenieba	Gabbro				31,85	0,511618	-19,9
MAN LEO-	Kedougou Leo-Man-	[1992] Boher et al.	8412B	Kedougou-Kenieba	Granodiorite	Paleoproterozoic	100	0 700000	14,92	0,511496	-22,3
MAN	Kedougou	[1992]	MP/	Kedougou-Kenieba	granitoids	Paleoproterozoic	422	0,706662	12,57	0,512317	-6,3

LEO-	Leo-Man-	Boher et al.	MP14	Kedougou-Kenieba	granitoids	Paleoproterozoic	262	0,706295	16,4	0,512176	-9,0
		[1992] Boher et al									
MAN	Kedoudou	[1992]	MP4	Kedougou-Kenieba	granitoids	Paleoproterozoic	642	0,714339	22	0,511834	-15,7
LEO-	Leo-Man-	Boher et al									
MAN	Kedougou	[1992]	MP16	Kedougou-Kenieba	granitoids	Paleoproterozoic	355	0,708883	7,22	0,511865	-15,1
LEO-	Leo-Man-									0 544000	
MAN	Kedougou	Dia et al. [1997]	MP16^	Kedougou-Kenieba	granitoids	Paleoproterozoic	357	0,708919	7,33	0,511868	-15,0
LEO-	Leo-Man-	D'+ -/ [4007]	MDO		and a factorial a	Delessentenesis	570	0.740704	01 70	0 511701	10.0
MAN	Kedougou	Dia et al. [1997]	MP8	Kedougou-Kenieba	granitoids	Paleoproterozoic	572	0,718784	21,72	0,511701	-18,3
LEO-	Leo-Man-	Dia at al [1007]		Kadaurau Kariaha	a ve a ita i da	Deles avetevensis	570	0.710700	01 51	0 511070	107
MAN	Kedougou	Dia et al. [1997]	INIP8	Kedougou-Kenieba	granitolos	Paleoproterozoic	5/3	0,718796	21,51	0,511679	-18,7
LEO-	Leo-Man-	Dia at al [1007]	MD15	Kadaugau Kapiaha	aranitaida	Balaapratarazaia	600	0 716040	20.90	0 511602	20.2
MAN	Kedougou	Dia el al. [1997]	INF 15	Redougou-Remeba	granitolus	Faleoproterozoic	023	0,710040	20,09	0,511605	-20,2
LEO-	Leo-Man-	Dia at al [1007]	MD15*	Kedougou-Kenieba	aranitoide	Paleoproterozoio	623	0 717061	21 / 3	0 511507	-20.3
MAN	Kedougou			Reddugdd-Remeba	granitolus		020	0,717001	21,40	0,011007	-20,5
LEO-	Leo-Man-	Dia et al [1997]	KO24	Kedougou-Kenieba	aranitoids	Paleoproterozoic	694	0 710707	15 94	0 511685	-18.6
MAN	Kedougou		11021	Redeuged Remesa	granitolao	1 410001010102010	001	0,710707	10,01	0,011000	10,0
LEO-	Leo-Man-	<i>Dia et al.</i> [1997]	K075	Kedougou-Kenieba	granitoids	Paleoproterozoic	622	0.707719	24.92	0.511562	-21.0
MAN	Kedougou	[]			grainterae			0,101110	,•_	0,011002	,•
LEO-	Leo-Man-	<i>Dia et al</i> . [1997]	M2	Kedougou-Kenieba	granitoids	Paleoproterozoic	416	0.727277	14.15	0.511661	-19.1
MAN	Kedougou				9			-,	,	-,	,.
LEO-	Leo-Man-	Dia et al. [1997]	M2*	Kedougou-Kenieba	granitoids	Paleoproterozoic	416	0,727296	14,28	0,511669	-18,9
	Kedougou			5	U						
	Leo-Mari-	<i>Dia et al</i> . [1997]	MP9	Kedougou-Kenieba	granitoids	Paleoproterozoic	297	0,71638	24,23	0,511922	-14,0
MAN	Kedoudou	<i>Dia et al</i> . [1997]	MP17	Kedougou-Kenieba	granitoids	Paleoproterozoic	374	0,724251	17,34	0,511707	-18,2
	Leo-Man-										
MAN	Kedoudou	<i>Dia et al</i> . [1997]	MP3	Kedougou-Kenieba	granitoids	Paleoproterozoic	609	0,708931	10,9	0,511736	-17,6
LEO-	Leo-Man-										
MAN	Kedougou	Dia et al. [1997]	MP12	Kedougou-Kenieba	granitoids	Paleoproterozoic	622	0,710581	12,03	0,511687	-18,6
LEO-	Leo-Man-	D:					400				
MAN	Kedougou	Dia et al. [1997]	MP10	Kedougou-Kenieba	granitoids	Paleoproterozoic	482	0,721096	10,66	0,511577	-20,7
LEO-	Leo-Man-	D'+ -/ [4007]	MDE		and a factorial a	Delessionersie	007	0 7074 40	F 00	0 511707	10.4
MAN	Kedougou	Dia et al. [1997]	MP5	Kedougou-Kenieba	granitoids	Paleoproterozoic	987	0,707148	5,02	0,511797	-16,4
LEO-	Leo-Man-	Pawlig et al.	MD5*	Kadaugau Kapiaha	aranitaida	Balaapratarazaia	004	0 707156	E 20	0 511722	177
MAN	Kedougou	[2006]	IVIP5	Kedougou-Kemeba	granitolos	Paleoproterozoic	964	0,707156	5,29	0,511733	-17,7
LEO-	Leo-Man-	Pawlig et al.	MD12	Kadaugau Kapiaha	aranitoide	Palaaprotorozoio	001	0 71041	0 70	0 511502	20.4
MAN	Kedougou	[2006]	IVIE 13	Redougou-Remeba	granitolus	i aleopioterozoic	201	0,71941	0,75	0,011092	-20,4
LEO-	Leo-Man-	Pawlig et al.	MK20	Kedougou-Konioba	aranitoide	Paleoprotorozoio	336	0 7/8506	28.67	0 510007	-32.0
MAN	Kedougou	[2006]	IVIT 23	Redudyou-Remeba	granitolus		550	0,740030	20,07	0,010337	-02,0
LEO-	Leo-Man-	Pawlig et al.	MK35	Kedougou-Kenieba	granitoids	Paleoproterozoic	309	0,736795	23,5	0,511246	-27,2

MAN	Kedougou	[2006]									
LEO- MAN	Leo-Man- Kedougou	<i>Pawlig et al.</i> [2006]	MP6	Kedougou-Kenieba	granitoids	Paleoproterozoic	53	1,04357	17,78	0,511874	-14,9
LEO- MAN	Leo-Man- Kedougou	<i>Pawlig et al.</i> [2006]	MP6*	Kedougou-Kenieba	granitoids	Paleoproterozoic	53	1,04335	17,64	0,511909	-14,2
LEO- MAN	Leo-Man- Kedougou	<i>Pawlig et al.</i> [2006]	M1	Kedougou-Kenieba	granitoids	Paleoproterozoic	63	0,822296	38,38	0,511854	-15,3
LEO- MAN	Leo-Man- Kedougou	<i>Pawlig et al.</i> [2006]	M1*	Kedougou-Kenieba	granitoids	Paleoproterozoic	63	0,822263	39,31	0,511833	-15,7
LEO- MAN	Leo-Man- Kedougou	<i>Pawlig et al.</i> [2006]	M12	Kedougou-Kenieba	granitoids	Paleoproterozoic	383	0,702674	17,36	0,51177	-16,9
LEO- MAN	Leo-Man- Kedougou	<i>Pawlig et al.</i> [2006]	KO23	Kedougou-Kenieba	granitoids	Paleoproterozoic	369	0,70267	11,24	0,512615	-0,4
LEO- MAN	Leo-Man- Kedougou	Pawlig et al. [2006]	M9	Kedougou-Kenieba	granitoids	Paleoproterozoic	463	0,722478	14,72	0,511512	-22,0
LEO- MAN	Leo-Man- Kedougou	Pawlig et al. [2006]	M9*	Kedougou-Kenieba	granitoids	Paleoproterozoic	463	0,722496	15	0,511517	-21,9
LEO- MAN	Leo-Man- Kedougou	Pawlig et al. [2006]	MP1	Kedougou-Kenieba	granitoids	Paleoproterozoic	353	0,714826	12,48	0,511908	-14,2
LEO- MAN	Leo-Man- Kedougou	Pawlig et al. [2006]	MP1*	Kedougou-Kenieba	granitoids	Paleoproterozoic	354	0,714814	12,49	0,511893	-14,5
LEO- MAN	Leo-Man- Kedougou	Pawlig et al. [2006]	MP2	Kedougou-Kenieba	granitoids	Paleoproterozoic	93	0,873491	27,9	0,511808	-16,2
LEO- MAN	Leo-Man- Kedougou	Pawlig et al. [2006]	MP2*	Kedougou-Kenieba	granitoids	Paleoproterozoic	93	0,873567	27,91	0,511815	-16,1
LEO- MAN	Leo-Man- Kedougou	[2006]	MP11	Kedougou-Kenieba	granitoids	Paleoproterozoic	404	0,708186	30,16	0,51179	-16,5
MAN	Leo-Man- Kedougou	Pawlig et al. [2006]	M1/04	Kedougou-Kenieba	granitoids	Paleoproterozoic	256	0,704348	9,79	0,512977	6,6
MAN	Kedougou	[2006]	M2/04	Kedougou-Kenieba	granitoids	Paleoproterozoic	408	0,702969	11,59	0,512653	0,3
MAN	Kedougou	[2006]	M4/04	Kedougou-Kenieba	granitoids	Paleoproterozoic	85	0,705292	5,68	0,512938	5,9
MAN	Kedougou	[2006]	M5/04	Kedougou-Kenieba	granitoids	Paleoproterozoic	98	0,707475	5,46	0,512957	6,2
MAN	Kedougou	[2006]	M5	Kedougou-Kenieba	granitoids	Paleoproterozoic	355	0,719431	21,36	0,511515	-21,9
MAN	Kedougou	[2006] Pawlig et al	M5*	Kedougou-Kenieba	granitoids	Paleoproterozoic	356	0,719347	21,08	0,511548	-21,3
MAN	Kedougou	[2006] [2006]	M6	Kedougou-Kenieba	granitoids	Paleoproterozoic	280	0,722463	31,01	0,511562	-21,0
MAN	Kedougou	[2006]	M6*	Kedougou-Kenieba	granitoids	Paleoproterozoic	283	0,722313	31,44	0,511551	-21,2

LEO- MAN	Leo-Man- Kedougou	<i>Pawlig et al.</i> [2006]	HL12	Kedougou-Kenieba	andesite	Paleoproterozoic			22,02	0,511674	-18,8
LEO- MAN	Leo-Man- Kedougou	Pawlig et al. [2006]	HL15	Kedougou-Kenieba	andesite	Paleoproterozoic			6,83	0,51239	-4,8
LEO- MAN	Leo-Man- Kedougou	Pawlig et al. [2006]	HL 97	Kedougou-Kenieba	rhyodacite	Paleoproterozoic			35,72	0,511486	-22,5
LEO- MAN	Leo-Man- Kedougou	<i>Pawlig et al.</i> [2006]	HL103	Kedougou-Kenieba	rhyodacite	Paleoproterozoic	45,3	0,706002	38,3	0,51129	-26,3
LEO- MAN	Leo-Man- Kedougou	<i>Pawlig et al.</i> [2006]	HL111	Kedougou-Kenieba	rhyodacite	Paleoproterozoic	64,6	0,706026	17,53	0,511638	-19,5
LEO- MAN	Leo-Man- Kedougou	<i>Pawlig et al.</i> [2006]	HL 104	Kedougou-Kenieba	rhyodacite	Paleoproterozoic	24,5	0,706052			
LEO- MAN	Leo-Man- Kedougou	Pawlig et al. [2006]	HL 108	Kedougou-Kenieba	rhyodacite	Paleoproterozoic	78,9	0,70538			
LEO- MAN	Leo-Man- Kedougou	<i>Pawlig et al.</i> [2006]	R5	Kedougou-Kenieba	andesite	Paleoproterozoic			19,24	0,511676	-18,8
LEO- MAN	Leo-Man- Kedougou	<i>Pawlig et al.</i> [2006]	M23	Kedougou-Kenieba		Paleoproterozoic			3,89	0,51272	1,6
LEO- MAN	Leo-Man- Kedougou	<i>Pawlig et al.</i> [2006]	T139	Kedougou-Kenieba	tuff	Paleoproterozoic			3,19	0,512595	-0,8
LEO- MAN	Leo-Man- Kedougou	Roddaz et al. [2007]	5444	Leo Rise (NE)	granite	Paleoproterozoic			23,44	0,511805	
LEO- MAN	Leo-Man- Kedougou	Roddaz et al. [2007]	5446	Leo Rise (NE)	granite	Paleoproterozoic			24,33	0,511388	
LEO- MAN	Leo-Man- Kedougou	Roddaz et al. [2007]	BN71A	Leo Rise (NE)	diorite	Paleoproterozoic			34,72	0,512598	-0,8
LEO- MAN	Leo-Man- Kedougou	Roddaz et al. [2007]	BN46	Leo Rise (NE)	trondhjemite	Paleoproterozoic			36,03	0,512526	-2,2
LEO- MAN	Leo-Man- Kedougou	Soumaila et al. [2008]	BN69B	Leo Rise (NE)	granophyre	Paleoproterozoic			33,26	0,512565	-1,4
LEO- MAN	Leo-Man- Kedougou	Soumaila et al. [2008]	BN75	Leo Rise (NE)	granophyre	Paleoproterozoic			36,38	0,512485	-3,0
LEO- MAN	Leo-Man- Kedougou	Soumaila et al. [2008]	5867	Leo Rise (NE)	granite	Paleoproterozoic			20,8	0,511401	-24,1
LEO- MAN	Leo-Man- Kedougou	Soumaila et al. [2008]	6868	Leo Rise (NE)	granite	Paleoproterozoic			35,85	0,511369	-24,8
LEO- MAN	Leo-Man- Kedougou	Soumaila et al. [2008]	6869	Leo Rise (NE)	granite	Paleoproterozoic			29,27	0,51177	-16,9
LEO- MAN	Leo-Man- Kedougou	Soumaila et al. [2008]	5430	Leo Rise (NE)	granite	Paleoproterozoic			13,96	0,511284	-26,4
LEO- MAN	Leo-Man- Kedougou	Soumaila et al. [2008]	5431	Leo Rise (NE)	granite	Paleoproterozoic			66,22	0,511379	-24,6
LEO-	Leo-Man-	Soumaila et al.	5433	Leo Rise (NE)	granite	Paleoproterozoic			32,07	0,511658	-19,1
MAN	Kedougou	[2008]									
-------------	----------------------	----------------------------------	----------	---------------	--	------------------	------	----------	--------	----------	-------
LEO- MAN	Leo-Man- Kedougou	<i>Soumaila et al.</i> [2008]	6875	Leo Rise (NE)	granite	Paleoproterozoic			22,47	0,511387	-24,4
LEO- MAN	Leo-Man- Kedougou	Soumaila et al. [2008]	5440	Leo Rise (NE)	granite	Paleoproterozoic			82,24	0,511252	-27,0
LEO- MAN	Leo-Man- Kedougou	Soumaila et al. [2008]	5443	Leo Rise (NE)	granite	Paleoproterozoic			113,86	0,510977	-32,4
LEO- MAN	Leo-Man- Kedougou	Soumaila et al. [2008]	6890	Leo Rise (NE)	granite	Paleoproterozoic			49,48	0,511196	-28,1
LEO- MAN	Leo-Man- Kedougou	Soumaila et al. [2008]	6894	Leo Rise (NE)	granite	Paleoproterozoic			19,59	0,511083	-30,3
LEO- MAN	Leo-Man- Kedougou	Soumaila et al. [2008]	6895	Leo Rise (NE)	granite	Paleoproterozoic			30,5	0,511128	
LEO- MAN	Leo-Man- Kedougou	Soumaila et al. [2008]	D 89-5	Leo Rise (NE)	enclave	Paleoproterozoic	658	0,713211	88,65	0,511507	
LEO- MAN	Leo-Man- Kedougou	Soumaila et al. [2008]	D51	Leo Rise (NE)	granite	Paleoproterozoic			57,49	0,511026	-31,4
LEO- MAN	Leo-Man- Kedougou	<i>Boher et al.</i> [1992]	D 89-76*	Leo Rise (NE)	Aplite	Paleoproterozoic	1024	0,707117	2,94	0,510603	-39,7
LEO- MAN	Leo-Man- Kedougou	<i>Boher et al.</i> [1992]	D 89-4	Leo Rise (NE)	granodiorite	Paleoproterozoic	991	0,707859	38,59	0,511479	-22,6
LEO- MAN	Leo-Man- Kedougou	<i>Boher et al.</i> [1992]	D60	Leo Rise (NE)	granite	Paleoproterozoic			11,08	0,511657	-19,1
LEO- MAN	Leo-Man- Kedougou	<i>Boher et al.</i> [1992]	D19	Leo Rise (NE)	granite	Paleoproterozoic			15,64	0,511315	-25,8
LEO- MAN	Leo-Man- Kedougou	<i>Boher et al.</i> [1992]	D65*	Leo Rise (NE)	-	Paleoproterozoic			18,6	0,511132	-29,4
LEO- MAN	Leo-Man- Kedougou	<i>Boher et al.</i> [1992]	216	Leo Rise (NE)	Metabasalt, amphibolites, micashists	Paleoproterozoic			10,52	0,5129	5,1
LEO- MAN	Leo-Man- Kedougou	<i>Boher et al.</i> [1992]	232	Leo Rise (NE)	Metabasalt, amphibolites, micashists	Paleoproterozoic			9,81	0,5128	3,2
LEO- MAN	Leo-Man- Kedougou	<i>Boher et al.</i> [1992]	348	Leo Rise (NE)	Metabasalt, amphibolites, micashists	Paleoproterozoic			8,23	0,5128	3,2
LEO- MAN	Leo-Man- Kedougou	<i>Boher et al.</i> [1992]	414	Leo Rise (NE)	Metabasalt, amphibolites, micashists	Paleoproterozoic			9,29	0,5127	1,2
LEO- MAN	Leo-Man- Kedougou	<i>Boher et al.</i> [1992]	420	Leo Rise (NE)	Metabasalt, amphibolites, micashists	Paleoproterozoic			16,73	0,5112	-28,1

					Motabasalt						
LEO-	Leo-Man-	Boher et al.	514	Leo Bise (NE)	amphibolites	Paleoproterozoic			6.04	0 5128	32
MAN	Kedougou	[1992]	011		micashists				0,01	0,0120	0,2
					Metabasalt.						
LEO-	Leo-Man-	Boher et al.	804	Leo Bise (NF)	amphibolites	Paleoproterozoic			37	0 5131	9.0
MAN	Kedougou	[1992]	001		micashists	1 4100010102010			0,7	0,0101	0,0
					Metabasalt						
LEO-	Leo-Man-	Boher et al.	810	Leo Rise (NE)	amphibolites	Paleoproterozoic			1 31	0 5128	32
MAN	Kedougou	[1992]	010		micachiete				4,34	0,5120	5,2
					Motobacalt						
LEO-	Leo-Man-	Boher et al.	812	Leo Rise (NE)	amphiholites	Paleoproterozoic			3 52	0 5132	11.0
MAN	Kedougou	[1992]	012		mioachists				5,52	0,5152	11,0
					Motobooolt						
LEO-	Leo-Man-	Boher et al.	001		MelaDaSall,	Palaanratarazaia			4.07	0 5121	0.0
MAN	Kedougou	[1992]	021		ampriloontes,	Faleoproterozoic			4,97	0,5151	9,0
	-				Matabasalt						
LEO-	Leo-Man-	Boher et al.	055		Melabasall,	Delegradorensia			140 7	0 5110	00.1
MAN	Kedougou	[1992]	255	Leo Rise (INE)	ampnibolites,	Paleoproterozoic			149,7	0,5112	-28,1
	Ŭ				micasnists						
LEO-	Leo-Man-	Boher et al.	000		Metabasait,	Delessentences			170.1	0.5444	00.0
MAN	Kedougou	[1992]	262	Leo Rise (NE)	ampnibolites,	Paleoproterozoic			178,1	0,5111	-30,0
					micashists						
LEO-	Leo-Man-	Boher et al.			Metabasalt,						
MAN	Kedougou	[1992]	268	Leo Rise (NE)	amphibolites,	Paleoproterozoic			11,97	0,5117	-18,3
		[]			micashists						
LEO-	Leo-Man-	Boher et al.			Metabasalt,						
MAN	Kedougou	[1992]	287	Leo Rise (NE)	amphibolites,	Paleoproterozoic			22,22	0,5116	-20,2
	riodougou	[]			micashists						
LEO-	Leo-Man-	Boher et al			Metabasalt,						
MAN	Kedoudou	[1992]	129	Leo Rise (NE)	amphibolites,	Paleoproterozoic			18,94	0,5116	-20,2
	riodougou	[]			micashists						
LEO-	Leo-Man-	Boher et al			Metabasalt,						
MAN	Kedoudou	[1992]	135	Leo Rise (NE)	amphibolites,	Paleoproterozoic			18,13	0,5117	-18,3
	Reddugou	[1002]			micashists						
LEO-	Leo-Man-	Boher et al.	R21	Leo Rise (NE)	trondhiemite	Paleoproterozoic	109	0 709958			
MAN	Kedougou	[1992]	DLI		trononjennite		100	0,700000			
LEO-	Leo-Man-	Boher et al.	164h	Loo Riso (NE)	lontynito	Paleoprotorozoio	385	0 710256	22 15	0 511812	-16.1
MAN	Kedougou	[1992]	1040		ieptyriite		505	0,710230	22,40	0,511012	-10,1
LEO-	Leo-Man-	Boher et al.	217Pl		quartzita	Palaaprotorozoio	77.6	0 725177	24 50	0 512071	11.1
MAN	Kedougou	[1992]	51401		qualizite	Faleopioleiozoic	77,0	0,755177	34,39	0,512071	-11,1
LEO-	Leo-Man-	Boher et al.	107'0		amphibologneis	Palaaprotorozoia	1176	0 701901	69.64	0.511224	25.4
MAN	Kedougou	[1992]	1970		S	raleoproterozoic	11/0	0,701091	00,04	0,311334	-25,4
LEO-	Leo-Man-	Boher et al.	107'd		amphibologneis	Palaaprotorozoia	701	0 704906	27 40	0.511640	10.2
MAN	Kedougou	[1992]	197 U		S		701	0,704090	57,49	0,511049	-19,5

LEO- MAN	Leo-Man- Kedougou	Boher et al. [1992]	BN 91	Leo Rise (NE)	trondhjemite	Paleoproterozoic	177	0,705082			
LEO-	Leo-Man-	Boher et al.									
MAN	Kedougou	[1992]	26lb	Leo Rise (NE)	leptynite	Paleoproterozoic	77,9	0,70332			
LEO-	Leo-Man-	Boher et al.	66.5		matarbualita	Deleonreterozoio	00.0	0 70010	07.0	0 511710	17.0
MAN	Kedougou	[1992]	008	Leo Rise (INE)	metamyonte	Paleoproterozoic	99,3	0,79018	27,9	0,511719	-17,9
LEO-	Leo-Man-	Boher et al.	660	Leo Rise (NE)	metarhvolite	Paleonroterozoic	330	0 71/59	23.86	0 511742	-175
MAN	Kedougou	[1992]	0001		metamyonte		000	0,71400	20,00	0,011742	-17,5
LEO-	Leo-Man-	Boher et al.	IWBT	Leo Bise (NE)	leptynite	Paleoproterozoic			25.75	0.51249	-2.9
MAN	Kedougou	[1992]							_0,.0	0,01210	_,0
LEO-	Leo-Man-	Boner et al.	Glf	Leo Rise (NE)	leptynite	Paleoproterozoic	21,4	0.812664	36,7	0.512343	-5.8
	Kedougou	[1992] Rober et al		()			, í	,	, í		, í
LEU-	Leo-Man-	Borier et al.	Gig	Leo Rise (NE)	leptynite	Paleoproterozoic	14,9	0,864269	28,97	0,512453	-3,6
		Boher et al									
MAN	Kedougou	[1002]	IDBN	Leo Rise (NE)	leptynite	Paleoproterozoic	46,1	0,710777	30,27	0,51249	-2,9
LEO-	Leo-Man-	Boher et al									
MAN	Kedoudou	[1992]	L2b	Leo Rise (NE)	leptynite	Paleoproterozoic	18,1	0,808555	34,15	0,512345	-5,7
LEO-	Leo-Man-	Boher et al.						/			
MAN	Kedougou	[1992]	B8	Leo Rise (NE)	leptynite	Paleoproterozoic	54,2	0,702994	26,29	0,512651	0,3
LEO-	Leo-Man-	Boher et al.	0.01			.	4	0 700005	40.00	0 54 0000	0.7
MAN	Kedougou	[1992]	G2b	Leo Rise (NE)	leptynite	Paleoproterozoic	55,4	0,703605	19,62	0,512829	3,7
LEO-	Leo-Man-	Boher et al.	Cab	Les Diss (NE)	anaiaa	Deleonreterozoio	E0 4	0 700010	7.04	0 510700	1 4
MAN	Kedougou	[1992]	G3D	Leo Rise (INE)	gneiss	Paleoproterozoic	59,4	0,706313	7,94	0,512708	1,4
LEO-	Leo-Man-	Boher et al.	G3d	Loo Rico (NE)	anoise	Paleoproterozoio	50 5	0 704884	13 56	0 512647	
MAN	Kedougou	[1992]	Gou		grieiss		55,5	0,704004	15,50	0,312047	
LEO-	Leo-Man-	Boher et al.	BN 208	Leo Rise (NE)	andesitic tuf	Paleoproterozoic			10.06	0 511979	-12.9
MAN	Kedougou	[1992]	DIVEOU						10,00	0,011070	12,0
LEO-	Leo-Man-	Boher et al.	BN 230	Leo Rise (NE)	lamprophyre	Paleoproterozoic			8.62	0.511701	-18.3
MAN	Kedougou	[1992]							-,	-,	,.
LEO-	Leo-Man-	Allegre et al.	CI2	Leo Rise (Central)	granitoid	Paleoproterozoic		0,7141		0,51115	-29,0
	Kedougou	[1980] Rober et al		, , , , , , , , , , , , , , , , , , ,	Ŭ						
	Leo-Ivian-		ST1b	Leo Rise (Central)	enclave	Paleoproterozoic			46,32	0,511725	-17,8
		Boher et al									
MAN	Kedoudou	[1992]	ST 34b	Leo Rise (Central)	enclave	Paleoproterozoic			179,39	0,511438	-23,4
LEO-	Leo-Man-	Boher et al									
MAN	Kedougou	[1992]	ST 35b	Leo Rise (Central)	enclave	Paleoproterozoic			31,13	0,51167	-18,9
LEO-	Leo-Man-	Boher et al.	D I(10								
MAN	Kedougou	[1992]	BK16	Leo Rise (Central)	granodiorite	Paleoproterozoic			11,3	0,511551	-21,2
LEO-	Leo-Man-	Boher et al.	OTAA		avera a ali a vit -	Delegareterezia			0.04	0 511115	00.7
MAN	Kedougou	[1992]	51440	Leo Rise (Central)	granodiorite	Paleoproterozoic			2,64	0,511115	-29,7
LEO-	Leo-Man-	Boher et al.	ST7	Leo Rise (Central)	granodiorite	Paleoproterozoic			17.62	0.511428	-23.6
220	200 man	_ 00. 0. an	017		granoalonito	. 410001010102010			.,	0,011120	20,0

MAN	Kedougou	[1992]									
LEO- MAN	Leo-Man- Kedougou	<i>Boher et al.</i> [1992]		Leo Rise (Central)	granite	Paleoproterozoic			5,4	0,51161	-20,1
LEO- MAN	Leo-Man- Kedougou	<i>Boher et al.</i> [1992]		Leo Rise (Central)	granite	Paleoproterozoic			21,66	0,511406	-24,0
LEO- MAN	Leo-Man- Kedougou	<i>Boher et al.</i> [1992]		Leo Rise (Central)	granite	Paleoproterozoic			28,32	0,511739	-17,5
LEO- MAN	Leo-Man- Kedougou	Boher et al. [1992]		Leo Rise (Central)	granodiorite	Paleoproterozoic			15,68	0,511439	-23,4
LEO- MAN	Leo-Man- Kedougou	<i>Boher et al.</i> [1992]		Leo Rise (Central)	granite	Paleoproterozoic			12,95	0,511931	-13,8
LEO- MAN	Leo-Man- Kedougou	<i>Boher et al.</i> [1992]		Leo Rise (Central)	granite	Paleoproterozoic			8,95	0,511413	-23,9
LEO- MAN	Leo-Man- Kedougou	<i>Boher et al.</i> [1992]		Leo Rise (Central)	granite	Paleoproterozoic			26,45	0,511581	-20,6
LEO- MAN	Leo-Man- Kedougou	<i>Boher et al.</i> [1992]		Leo Rise (Central)	granite	Paleoproterozoic			18,75	0,511485	-22,5
LEO- MAN	Leo-Man- Kedougou	<i>Boher et al.</i> [1992]		Leo Rise (Central)	granite	Paleoproterozoic			26,22	0,511415	-23,9
LEO- MAN	Leo-Man- Kedougou	<i>Boher et al.</i> [1992]		Leo Rise (Central)	granite	Paleoproterozoic			13,41	0,511416	-23,8
LEO- MAN	Leo-Man- Kedougou	<i>Boher et al.</i> [1992]	8.32	Leo Rise (Central)	granitoids	paleoproterozoic	277,4	0,720178	17,1	0,511249	-27,1
LEO- MAN	Leo-Man- Kedougou	<i>Boher et al.</i> [1992]	8.41	Leo Rise (Central)	granitoids	paleoproterozoic	147,8	0,749631	4,1	0,511446	-23,3
LEO- MAN	Leo-Man- Kedougou	<i>Boher et al.</i> [1992]	8.42	Leo Rise (Central)	granitoids	paleoproterozoic	646,5	0,711261	10	0,511538	-21,5
LEO- MAN	Leo-Man- Kedougou	<i>Boher et al.</i> [1992]	8.44	Leo Rise (Central)	granitoids	paleoproterozoic	1045,2	0,714666	73,7	0,511478	-22,6
LEO- MAN	Leo-Man- Kedougou	<i>Boher et al.</i> [1992]	8.6	Leo Rise (Central)	granitoids	paleoproterozoic	444,6	0,727967	7,8	0,51117	-28,6
LEO- MAN	Leo-Man- Kedougou	<i>Boher et al.</i> [1992]	8.7	Leo Rise (Central)	granitoids	paleoproterozoic	398,9	0,721391	24,9	0,511538	-21,5
LEO- MAN	Leo-Man- Kedougou	Boher et al. [1992]	8.9	Leo Rise (Central)	granitoids	paleoproterozoic	687,2	0,710593	24,4	0,511398	-24,2
LEO- MAN	Leo-Man- Kedougou	Boher et al. [1992]	8.43	Leo Rise (Central)	granitoids	paleoproterozoic	626,2	0,709046	32,2	0,511683	-18,6
MAN	Leo-Man- Kedougou	Boner et al. [1992]	8.10	Leo Rise (Central)	granitoids	paleoproterozoic	136,3	0,872574	10	0,511649	-19,3
MAN	Kedougou	[1992]	8.27	Leo Rise (Central)	granitoids	paleoproterozoic	188,7	0,799503	31,1	0,510967	-32,6
MAN	Kedougou	[1992]	8.45	Leo Rise (Central)	granitoids	paleoproterozoic	453,2	0,715302	13,9	0,511578	-20,7

LEO-	Leo-Man-	Boher et al.	8.33	Leo Rise (Central)	granitoids	paleoproterozoic	327,4	0,733704	19,9	0,511376	-24,6
	Leo-Man-	Roher et al	LInner West								
MAN	Kedougou	[1992]	Ghana granitoids	Leo Rise (Central)	granitoids	Paleoproterozoic	580	0,70823	14,861	0,511333	-25,5
LEO-	Leo-Man-	Boher et al.	Upper West								
MAN	Kedougou	[1992]	Ghana granitoids	Leo Rise (Central)	granitoids	Paleoproterozoic	1135	0,70436			
LEO-	Leo-Man-	Boher et al.	Upper West		and a table	Delessentenesis	017	0 750 40			
MAN	Kedougou	[1992]	Ghana granitoids	Leo Rise (Central)	granitoids	Paleoproterozoic	317	0,75349			
LEO-	Leo-Man-	Boher et al.	Upper West	Loo Pico (Control)	aranitaida	Palaapratarazaia	105	0.00620			
MAN	Kedougou	[1992]	Ghana granitoids	Leo hise (Central)	granitolus	Faleoproterozoic	125	0,90629			
LEO-	Leo-Man-	Boher et al.	Upper West	Leo Rise (Central)	aranitoide	Paleoproterozoio	600	0 71524			
MAN	Kedougou	[1992]	Ghana granitoids		granitolus	i aleopioteiozoic	030	0,71524			
LEO-	Leo-Man-	Boher et al.	Upper West	Leo Bise (Central)	aranitoids	Paleoproterozoic	674	0 71465	22 403	0 511058	-30.8
MAN	Kedougou	[1992]	Ghana granitoids		graintoido	i dicoprotorozoro	07.1	0,71100	,	0,011000	00,0
LEO-	Leo-Man-	Gasquet et al.	Upper West	Leo Rise (Central)	granitoids	Paleoproterozoic	806	0.7061	33.893	0.511353	-25.1
MAN	Kedougou	[2003]	Ghana granitoids		J			-,	,	-,	-,
LEO-	Leo-Man-	Gasquet et al.	Kumasi granitoids	Leo Rise (Central)	granitoids	Paleoproterozoic	105	0,74324			
	Kedougou	[2003]	· ·	, , , , , , , , , , , , , , , , , , ,	· ·						
	Leo-Man-		Kumasi granitoids	Leo Rise (Central)	granitoids	Paleoproterozoic	620	0,70921			
		Gasquet et al									
MAN	Kedoudou	[2003]	Kumasi granitoids	Leo Rise (Central)	granitoids	Paleoproterozoic	545	0,70599			
LEO-	Leo-Man-	Gasquet et al									
MAN	Kedougou	[2003]	Kumasi granitoids	Leo Rise (Central)	granitoids	Paleoproterozoic	670	0,70874			
LEO-	Leo-Man-	Gasquet et al.				.	450				
MAN	Kedougou	[2003]	Kumasi granitoids	Leo Rise (Central)	granitoids	Paleoproterozoic	450	0,72226			
LEO-	Leo-Man-	Gasquet et al.	Kumaai aranitaida	Les Diss (Central)	aronitoido	Deleonretorozoio	000	0 70011			
MAN	Kedougou	[2003]	Kumasi granitolus	Leo Rise (Central)	granitolus	Paleoproterozoic	330	0,73211			
LEO-	Leo-Man-	Gasquet et al.	Kumasi aranitoide	Leo Rise (Central)	aranitoide	Paleoproterozoic	690	0 70519	13 029	0 511575	-20.7
MAN	Kedougou	[2003]	Rumasi granitolas		granitolas		000	0,70010	10,020	0,011070	20,7
LEO-	Leo-Man-	Gasquet et al.	Kumasi granitoids	Leo Bise (Central)	granitoids	Paleoproterozoic			18,898	0.511597	-20.3
MAN	Kedougou	[2003]	ramaor gramorao		graintoido	i alcopiotorozoio			10,000	0,011001	20,0
LEO-	Leo-Man-	Gasquet et al.	Kumasi granitoids	Leo Rise (Central)	granitoids	Paleoproterozoic	138	0.83816			
MAN	Kedougou	[2003]	Cana Caast	(/ /	5			,			
	Leo-Man-	Gasquel el al.	Gape Coast	Leo Rise (Central)	granitoids	Paleoproterozoic	418	0,72813			
		[2003] Gasquet et al	Gana Coast								
MAN	Kedougou	[2003]	granitoids	Leo Rise (Central)	granitoids	Paleoproterozoic	566	0,72457	21,606	0,511545	-21,3
	Leo-Man-	Taylor et al	Cane Coast								
MAN	Kedoudou	[1992]	granitoids	Leo Rise (Central)	granitoids	Paleoproterozoic	601	0,71381			
LEO-	Leo-Man-	Taylor et al.	Cape Coast								
MAN	Kedougou	[1992]	granitoids	Leo Rise (Central)	granitoids	Paleoproterozoic	453	0,72119			
LEO-	Leo-Man-	Taylor et al	Cane Coast	Leo Rise (Central)	granitoids	Paleoproterozoic	439	0 73145			
	Loo Mar	rayior of an	Cupe Coust		granitolas	. 4100010102010	100	0,70140			

MAN	Kedougou	[1992]	granitoids								
LEO-	Leo-Man-	Taylor et al.	Cape Coast	Leo Rise (Central)	aranitoide	Paleoproterozoic	400	0 72502			
MAN	Kedougou	[1992]	granitoids	Leo Hise (Gential)	granitolus		400	0,72552			
LEO-	Leo-Man-	Taylor et al.	Cape Coast	Leo Rise (Central)	aranitoids	Paleoproterozoic	370	0 71172			
MAN	Kedougou	[1992]	granitoids		grantolao	1 000010102010	0/0	0,71172			
LEO-	Leo-Man-	Taylor et al.	Cape Coast	Leo Rise (Central)	granitoids	Paleoproterozoic	491	0 71856	41 084	0 511049	-31.0
MAN	Kedougou	[1992]	granitoids		graintoido	i alcopiotorozolo	101	0,71000	,	0,011010	01,0
LEO-	Leo-Man-	Taylor et al.	Cape Coast	Leo Rise (Central)	granitoids	Paleoproterozoic	376	0.70852			
MAN	Kedougou	[1992]	granitoids	(,	9			-,			
LEO-	Leo-Man-	l aylor et al.	Cape Coast	Leo Rise (Central)	granitoids	Paleoproterozoic	637	0,70871	15,872	0.511675	-18.8
MAN	Kedougou	[1992]	granitoids	()	5			,	,	,	
LEO-	Leo-Man-	Taylor et al.	Cape Coast	Leo Rise (Central)	granitoids	Paleoproterozoic	354	0,71864			
	Kedougou	[1992] Taular at al	granitoids	· · · · ·	Ŭ			,			
LEU-	Leo-Man-	Taylor et al.	Dixcove granitoids	Leo Rise (Central)	granitoids	Paleoproterozoic	1011	0,70666	33,084	0,51153	-21,6
		[1992] Taylor et al	· ·	· · · ·	J. J						
	Kodougou	[1002]	Dixcove granitoids	Leo Rise (Central)	granitoids	Paleoproterozoic	1082	0,70611			
		Taylor et al									
MAN	Kedougou	[1002]	Dixcove granitoids	Leo Rise (Central)	granitoids	Paleoproterozoic	747	0,70753			
	Leo-Man-	Taylor et al									
MAN	Kedoudou	[1992]	Dixcove granitoids	Leo Rise (Central)	granitoids	Paleoproterozoic	743	0,70669			
	Leo-Man-	Taylor et al									
MAN	Kedoudou	[1992]	Dixcove granitoids	Leo Rise (Central)	granitoids	Paleoproterozoic	647	0,70892			
I FO-	Leo-Man-	Taylor et al.				l					
MAN	Kedougou	[1992]	Dixcove granitoids	Leo Rise (Central)	granitoids	Paleoproterozoic	832	0,70351	9,954	0,511848	-15,4
LEO-	Leo-Man-	Tavlor et al.	Winneba								
MAN	Kedouaou	[1992]	granitoids	Leo Rise (Central)	granitoids	Paleoproterozoic	377	0,73826			
LEO-	Leo-Man-	Taylor et al.	Winneba		and a fact of a	Delessantenesis	010	0 75007			
MAN	Kedougou	[1992]	granitoids	Leo Rise (Central)	granitoids	Paleoproterozoic	316	0,75337			
LEO-	Leo-Man-	Taylor et al.	Winneba	Loo Diao (Control)	aranitaida	Palaantatatazaia	070	0 7660	20 541	0 511020	21.4
MAN	Kedougou	[1992]	granitoids	Leo hise (Ceriliai)	granitolus	Faleoproterozoic	213	0,7009	30,341	0,511029	-31,4
LEO-	Leo-Man-	Taylor et al.	Winneba	Loo Pico (Control)	aranitoida	Palaaprotorozoio	202	0.76166	17 577	0 511091	20.4
MAN	Kedougou	[1992]	granitoids	Leo nise (Gentral)	granitolus	r aleopioterozoic	202	0,70100	17,577	0,511001	-30,4
LEO-	Leo-Man-	Taylor et al.	Winneba	Leo Rise (Central)	aranitoide	Paleoproterozoic	360	0 74052			
MAN	Kedougou	[1992]	granitoids	Leo Mise (Gential)	granitolus		505	0,74032			
LEO-	Leo-Man-	Taylor et al.	Winneba	Leo Rise (Central)	aranitoids	Paleoproterozoic	396	0 73362			
MAN	Kedougou	[1992]	granitoids		granitolas		000	0,70002			
LEO-	Leo-Man-	Taylor et al.	Winneba	Leo Rise (Central)	aranitoids	Paleoproterozoic	336	0 74712			
MAN	Kedougou	[1992]	granitoids		granitolas		000	5,7 17 12			
LEO-	Leo-Man-	Taylor et al.	Winneba	Leo Rise (Central)	granitoids	Paleoproterozoic			9,206	0.512182	-8.9
MAN	Kedougou	[1992]	granitoids		granitolao				0,200	5,0.2.02	0,0
LEO-	Leo-Man-	Taylor et al.	Kibi-Winneba,	Leo Rise (Central)	volcanic belt	Paleoproterozoic			11,185	0.511942	-13.6
MAN	Kedougou	[1992]	Setwi, and Bole-						,	5,0.1012	,.

			Navrongo volcanic belt						
LEO- MAN	Leo-Man- Kedougou	<i>Taylor et al.</i> [1992]	Kibi-Winneba, Sefwi, and Bole- Navrongo volcanic belt Kibi-Winneba	Leo Rise (Central)	volcanic belt	Paleoproterozoic	5,379	0,512785	2,9
LEO- MAN	Leo-Man- Kedougou	<i>Taylor et al.</i> [1992]	Sefwi, and Bole- Navrongo volcanic belt Kibi-Winneba.	Leo Rise (Central)	volcanic belt	Paleoproterozoic	5,169	0,512594	-0,9
LEO- MAN	Leo-Man- Kedougou	<i>Taylor et al.</i> [1992]	Sefwi, and Bole- Navrongo volcanic belt Kibi-Winneba,	Leo Rise (Central)	volcanic belt	Paleoproterozoic	17,87	0,511718	-17,9
LEO- MAN	Leo-Man- Kedougou	<i>Taylor et al.</i> [1992]	Sefwi, and Bole- Navrongo volcanic belt Kibi-Winneba,	Leo Rise (Central)	volcanic belt	Paleoproterozoic	24,469	0,512766	2,5
LEO- MAN	Leo-Man- Kedougou	<i>Taylor et al.</i> [1992]	Sefwi, and Bole- Navrongo volcanic belt Kibi-Winneba	Leo Rise (Central)	volcanic belt	Paleoproterozoic	7,887	0,512241	-7,7
LEO- MAN	Leo-Man- Kedougou	<i>Taylor et al.</i> [1992]	Sefwi, and Bole- Navrongo volcanic belt Kibi-Winneba	Leo Rise (Central)	volcanic belt	Paleoproterozoic	8,483	0,512741	2,0
LEO- MAN	Leo-Man- Kedougou	<i>Taylor et al.</i> [1992]	Sefwi, and Bole- Navrongo volcanic belt Kibi-Winneba	Leo Rise (Central)	volcanic belt	Paleoproterozoic	12,135	0,511967	-13,1
LEO- MAN	Leo-Man- Kedougou	<i>Taylor et al.</i> [1992]	Sefwi, and Bole- Navrongo volcanic belt	Leo Rise (Central)	volcanic belt	Paleoproterozoic	5,499	0,512511	-2,5
LEO- MAN	Leo-Man- Kedougou	<i>Taylor et al.</i> [1992]	Sefwi, and Bole- Navrongo volcanic belt	Leo Rise (Central)	volcanic belt	Paleoproterozoic	6,489	0,512829	3,7
LEO- MAN	Leo-Man- Kedougou	<i>Taylor et al.</i> [1992]	Sefwi, and Bole- Navrongo volcanic belt	Leo Rise (Central)	volcanic belt	Paleoproterozoic	8,641	0,512816	3,5
LEO-	Leo-Man-	Taylor et al.	Kibi-Winneba,	Leo Rise (Central)	volcanic belt	Paleoproterozoic	7,783	0,512777	2,7

MAN	Kedoudou	[1992]	Sefwi and Bole-								
	Redeuged	[1002]	Navrongo								
			volcanic belt								
			Kibi-Winneba.								
LEO-	Leo-Man-	Tavlor et al.	Sefwi, and Bole-								
MAN	Kedougou	[1992]	Navrongo	Leo Rise (Central)	volcanic belt	Paleoproterozoic			15,974	0,511696	-18,4
	liouougou	[]	volcanic belt								
			Kibi-Winneba.								
LEO-	Leo-Man-	Tavlor et al.	Sefwi, and Bole-								
MAN	Kedougou	[1992]	Navrongo	Leo Rise (Central)	volcanic belt	Paleoproterozoic			17,188	0,511658	-19,1
			volcanic belt								
			Kibi-Winneba,								
LEO-	Leo-Man-	Taylor et al.	Sefwi, and Bole-		and a set of the state	Delessantenesis			05 0 4 4	0.544007	107
MAN	Kedougou	[1992]	Navrongo	Leo Rise (Central)	voicanic beit	Paleoproterozoic			25,944	0,511627	-19,7
	· ·		volcanic belt								
LEO-	Leo-Man-	Taylor et al.	1 12.	Loo Pice (Control)	anoina	Palaanratarazaia			17.94	0 511607	10.7
MAN	Kedougou	[1992]	LJ3•	Leo rise (Gentral)	grieiss	Faleoproterozoic			17,34	0,511627	-19,7
LEO-	Leo-Man-	Taylor et al.	1106	Leo Rise (Central)	andosito	Paleoproterozoio			11 63	0 511/27	-23.6
MAN	Kedougou	[1992]	0150		andesite				++,00	0,011427	-20,0
LEO-	Leo-Man-	Taylor et al.	L 219A	Leo Rise (Central)	rhvodacite	Paleoproterozoic			20.41	0 511375	-24.6
MAN	Kedougou	[1992]	LETON		ingoddono				20,11	0,011070	21,0
LEO-	Leo-Man-	Taylor et al.	D4M12	Leo Rise (Central)	rhvolite	Paleoproterozoic	330	0.716746	15.48	0.511543	-21.4
MAN	Kedougou	[1992]			,			-,	-, -	-,	, í
LEO-	Leo-Man-	Taylor et al.	V201 F	Leo Rise (Central)	rhyodacite	Paleoproterozoic			21	0,511366	-24,8
	Kedougou	[1992] Taylor et al		· · ·	·						
LEO-	Leo-Man-	[1002]	V2015	Leo Rise (Central)	rhyodacite	Paleoproterozoic			17,07	0,511425	-23,7
		Taylor et al									
MAN	Kedoudou	[1992]	6	Leo Rise (Central)	rhyodacite	Paleoproterozoic	196	0,754889	16,21	0,511519	-21,8
LEO-	Leo-Man-	Tavlor et al									
MAN	Kedougou	[1992]	V22D4	Leo Rise (Central)	basalte	Paleoproterozoic			31,61	0,511594	-20,4
LEO-	Leo-Man-	Boher et al.	01*			Delessantenesis			00.01	0.540000	00.0
MAN	Kedougou	[1992]	GI	Leo Rise (INVV)	granite	Paleoproterozoic			29,31	0,510968	-32,6
LEO-	Leo-Man-	Boher et al.	G0*	Leo Rice (NIM)	aranodiorito	Paleoproterozoio	525	0 71/151	18.25	0 511058	-30.8
MAN	Kedougou	[1992]	45		granouonte		525	0,714101	10,20	0,011000	-00,0
LEO-	Leo-Man-	Boher et al.	G10*	Leo Rise (NW)	enclave	Paleoproterozoic	497	0 71674	5.34	0 511377	-24.6
MAN	Kedougou	[1992]	GIU		onolavo	1 000010102010	107	0,71071	0,01	0,011077	21,0
LEO-	Leo-Man-	Boher et al.		Leo Rise (NW)	monzogranite	Paleoproterozoic			67.8	0.511349	-25.1
MAN	Kedougou	[1992]							,-	-,	,
LEO-	Leo-Man-	Boner et al.		Leo Rise (NW)	gneiss	Paleoproterozoic			27,29	0,511382	-24,5
MAN	kedougou	[1992] Deber et cl		()	J				, -		, -
LEO-	Leo-Man-	Boner et al.		Leo Rise (NW)	granite	Paleoproterozoic			50,84	0,511133	-29,4
IVIAIN	Redougou	[1992]		. ,	-						

LEO-	Leo-Man-	Kouamelan et	YAL1	Man Rise	granitoids	Archean	415	0.70508	18.68	0.51095	-32.9
MAN	Kedougou	al. [1997]			grainterde			0,10000	. 0,00	0,01000	0_,0
LEO-	Leo-Man-	Kouameian et	TON1	Man Rise	granitoids	Archean	329	0,711515	19,18	0,510741	-37,0
	Kedougou	al. [1997] Kawamalan at			Ũ			,	,		ŕ
LEU-	Leo-Man-	Kouameian ei	MANG1	Man Rise	granitoids	Archean	448	0,707737	40,93	0,510831	-35,2
		al. [1997] Kouamalan at			·						
	Leo-Mari-		TON3	Man Rise	granitoids	Archean	96	0,794387	4,18	0,51103	-31,4
		Kouamelan et									
MAN	Kedougou	a/ [1007]	YOR2	Man Rise	granitoids	Archean	263	0,745469	68,31	0,510513	-41,5
	Leo-Man-	Kouamelan et									
MAN	Kedoudou	al [1997]	KOUI1	Man Rise	granitoids	Archean	201	0,716057	30,39	0,511075	-30,5
	Leo-Man-	Kouamelan et									
MAN	Kedoudou	al [1997]	LAG1	Man Rise	granitoids	Archean	267	0,746221	52,77	0,510737	-37,1
LEO-	Leo-Man-	Kouamelan et									
MAN	Kedoudou	al. [1997]	NID1	Man Rise	granitoids	Archean	93	0,800192	10,07	0,511407	-24,0
LEO-	Leo-Man-	Kouamelan et				l					
MAN	Kedouaou	al. [1997]	TRO4	Man Rise	granitoids	Archean	288	0,741183	28,71	0,510441	-42,9
LEO-	Leo-Man-	Kouamelan et	1001	NA 51		· ·	o . =			0 540070	
MAN	Kedougou	<i>al</i> . [1997]	LOGI	Man Rise	granitoids	Archean	95	0,911935	32,85	0,510673	-38,3
LEO-	Leo-Man-	Kouamelan et		M B		• •	0.05	0 700044	17.01	0 54070	00.0
MAN	Kedougou	<i>al</i> . [1997]	GUE1	Man Rise	granitoids	Archean	265	0,726644	17,61	0,51078	-36,2
LEO-	Leo-Man-	Kouamelan et	T I C	Mar Dias	awa wita iala	Archeen	404	0 711500	10.00	0 511451	00.0
MAN	Kedougou	<i>al</i> . [1997]	IL5	Man Rise	granitoids	Archean	424	0,711522	18,33	0,511451	-23,2
LEO-	Leo-Man-	Kouamelan et	ТІО	Man Diag	arapitoido	Arabaan	007	0 721605	15 07	0 511410	<u></u>
MAN	Kedougou	<i>al</i> . [1997]	I LO	Mail Rise	granitolus	Archean	221	0,751095	15,67	0,511419	-23,0
LEO-	Leo-Man-	Othman et al.	NR 6164	Man riso	arapulites	Archean	272	0 74643	18 01/	0.51028	-46.0
MAN	Kedougou	[1984]	NIT OTO+	Marrise	granulles	Aichean	212	0,74040	10,014	0,51020	-+0,0
LEO-	Leo-Man-	Othman et al.	GCM 6224	Man rise	aranulites	Archean	209	0 73936	22 318	0.51106	-30.8
MAN	Kedougou	[1984]	GOWIOLET	Married	granditoo	, a choan	200	0,70000	22,010	0,01100	00,0
LEO-	Leo Ebu	Taylor et al.	MB 5•	Leo Rise (Central)	conglomerat	Paleoproterozoic			20.65	0.511412	-23.9
MAN	Sedim	[1992]		200 1 100 (00111 0.)	oongloniolat				_0,00	0,0	_0,0
LEO-	Leo Ebu	l aylor et al.	AN 406*	Leo Rise (Central)	arevwacke	Paleoproterozoic			25.81	0.51148	-22.6
MAN	Sedim	[1992]			g ,				,	-,	,•
LEO-	Leo Ebu	l aylor et al.	NZ 504*	Leo Rise (Central)	greywacke	Paleoproterozoic			18.53	0.511579	-20,7
MAN	Sedim	[1992]		· · · · · ·	0,				· · ·	i i	í.
LEO-	Leo Ebu	Taylor et al.	NZ 505*	Leo Rise (Central)	greywacke	Paleoproterozoic			27,34	0,51162	-19,9
	Seaim	[1992]		· · · · · ·	0,						
LEO-	Leo Ebu	[1000]	BO 101•	Leo Rise (Central)	greywacke	Paleoproterozoic			23,59	0,511429	-23,6
		[1992] Taylor et al									
LEO-	Sodim	[1002]	Jl6bis•	Leo Rise (Central)		Paleoproterozoic			4,88	0,512552	-1,7
MAN	Sedim	[1992]	0.101			D 4				0.540055	
LEO-	Leo Ebu	l'aylor et al.	S161•	Leo Rise (Central)		Paleoproterozoic			5,9	0,512653	0,3

MAN	Sedim	[1992]									
LEO-	Leo Ebu	Taylor et al.	AC 36c*	Leo Rise (Central)	black shale	Paleoproterozoic			18.63	0 511751	-173
MAN	Sedim	[1992]	A0 000	Leo Hise (Oential)	black shale				10,00	0,011701	-17,5
LEO-	Leo Ebu	Taylor et al.	AC 37c*	Leo Rise (Central)	black shale	Paleoproterozoic			10.65	0.511627	-19.7
MAN	Sedim	[1992]							-,	- ,	-,
MAN	Sedim	[1992]	J38	Leo Rise (Central)	black-shale	Paleoproterozoic			29,18	0,512139	-9,7
LEO-	Leo Ebu	Taylor et al.	Birimian								
MAN	Sedim	[1992]	sediments	Leo Rise (Central)		Paleoproterozoic			17,801	0,511585	-20,5
LEO-	Leo Ebu	Taylor et al.	Birimian	Leo Piso (Control)		Palaantatatazaia			22.205	0 511595	20 F
MAN	Sedim	[1992]	sediments	Leo hise (Gentral)		Faleoproterozoic			22,295	0,511565	-20,5
LEO-	Leo Ebu	Taylor et al.	Birimian	Leo Bise (Central)		Paleoproterozoic			15 49	0.511626	-197
MAN	Sedim	[1992]	sediments						10,10	0,011020	10,7
LEO-	Leo Ebu	l aylor et al.	Birimian	Leo Rise (Central)		Paleoproterozoic			21,05	0,51161	-20,1
	Leo Ebu	[1992] Taylor et al	Birimian	· · · ·							
MAN	Sedim	[1992]	sediments	Leo Rise (Central)		Paleoproterozoic			26,831	0,5116	-20,2
LEO-	Leo Ebu	Tavlor et al.	Birimian								
MAN	Sedim	[1992]	sediments	Leo Rise (Central)		Paleoproterozoic			26,823	0,511586	-20,5
LEO-	Leo Ebu	Taylor et al.	Birimian	Loo Pico (Control)		Palaaprotorozoio			22.200	0.511612	20.0
MAN	Sedim	[1992]	sediments	Leo hise (Gential)		r aleopioterozoic			33,399	0,511012	-20,0
LEO-	Leo Ebu	Boher et al.	G24*	Leo Rise (NW)	pelite	Paleoproterozoic			21.6	0.511425	-23.7
MAN	Sedim	[1992]	0.2.1		ponto				,•	0,011.20	_0,.
LEO-	Leo Ebu Sodim	Boner et al.	G31*	Leo Rise (NW)	pelite	Paleoproterozoic			5,48	0,511632	-19,6
	Leo Ebu	Boher et al									
MAN	Sedim	[1992]	5448	Leo Rise (NE)	argilo-schist	Paleoproterozoic			58,44	0,511622	-19,8
LEO-	Leo Ebu	Boher et al.	E4E0		eveile echiet	Dele en vete ve reie			00.00	0 511040	10.4
MAN	Sedim	[1992]	5450	Leo Rise (INE)	argiio-schist	Paleoproterozoic			93,98	0,511643	-19,4
LEO-	Leo Ebu	Boher et al.	5454•	Leo Rise (NE)	argilo	Paleoproterozoic			3 55	0 51186	-15.2
MAN	Sedim	[1992]	0101		sandstone				0,00	0,01100	10,2
LEO-	Leo Ebu	Boher et al.	AS 93*	Leo Rise (NE)	metasiltite	Paleoproterozoic			10,03	0,512172	-9,1
	Sedim	[1992] Rober et al							, i	í í	, í
MAN	Sedim	[1992]	AS 161*	Leo Rise (NE)	phyllade	Paleoproterozoic			13,4	0,511856	-15,3
LEO-	Leo Ebu	Boher et al.									
MAN	Sedim	[1992]	D 113•	Leo Rise (NE)	schist	Paleoproterozoic			14,64	0,511698	-18,3
LEO-	Leo Ebu	Boher et al.	Ach 2	Loo Pice (NE)	andimonta	Palaanratarazaia	55	0 950051	20.2	0 51000	0.0
MAN	Sedim	[1992]	ASHZ		seaments	Faleoproterozoic	55	0,659051	29,2	0,51222	-0,2
LEO-	Leo Ebu	Boher et al.	Ash3	Leo Rise (NF)	sediments	Paleoproterozoic	91.5	0.766606	107	0.512163	-9.3
MAN	Sedim	[1992]	, 10110		Sedimento		01,0	2,700000		0,012100	0,0
LEO-	Leo Ebu	Boher et al.	Ash5	Leo Rise (NE)	sediments	Paleoproterozoic	111	0,801583	62,5	0,512127	-10,0
IVIAIN	Seam	[1992]		. ,							

LEO- MAN	Leo Ebu Sedim	<i>Boher et al.</i> [1992]	Ash6	Leo Rise (NE)	sediments	Paleoproterozoic	213	0,839358	98,3	0,511968	-13,1
LEO- MAN	Kedougou	Pawlig et al.	HLS7	Kedougou-Kenieba	sandstone	Paleoproterozoic			25,89	0,511576	-20,7
LEO-	Kedougou	Pawlig et al.	HL121	Kedougou-Kenieba	quanzite	Paleoproterozoic			25,47	0,511473	-22,7
LEO-	Kedougou	Pawlig et al.	HL122	Kedougou-Kenieba	schist	Paleoproterozoic			24.57	0.511485	-22.5
LEO-	Kedougou	[2006] Pawlig et al.	HI 126	Kedougou-Kenieba	sandstone	Paleoproterozoic			31.37	0 511582	-20.6
MAN LEO-	Sedim Kedougou	[2006] Pawlig et al.	LI 107	Kodougou Konioba	aandatana	Palaaprotorozoio			22.01	0.511652	10.2
MAN	Sedim Kedougou	[2006] Pawlig et al	HLI27	Redougou-Remeda	sandstone				22,91	0,511652	-19,2
MAN	Sedim	[2006]	M35	Kedougou-Kenieba		Paleoproterozoic			30,07	0,512028	-11,9
MAN	Sedim	[2006]	M8	Kedougou-Kenieba	pelite	Paleoproterozoic			5,01	0,51294	5,9
LEO- MAN	Kedougou Sedim	Pawlig et al. [2006]	M36	Kedougou-Kenieba		Paleoproterozoic			19,02	0,511681	-18,7
LEO- MAN	Kedougou Sedim	<i>Pawlig et al.</i> [2006]	40E39*	Kedougou-Kenieba	schist	Paleoproterozoic			18,62	0,511774	-16,9
CAMP	CAMP	Deckart et al. [2005]	G1	CAMP	tholeiites	Triassic-Jurassic	244,2	0,704551	25,81	0,512808	3,3
CAMP	CAMP	Deckart et al. [2005]	G3	CAMP	tholeiites	Triassic-Jurassic	221,5	0,705387	13,65	0,512877	4,7
		Dookart of al									
CAMP	CAMP	[2005]	G43	CAMP	tholeiites	Triassic-Jurassic	260,3	0,704479	27,92	0,51284	3,9
CAMP CAMP	CAMP CAMP	[2005] Deckart et al. [2005]	G43 G48	CAMP	tholeiites tholeiites	Triassic-Jurassic Triassic-Jurassic	260,3 216,5	0,704479 0,703435	27,92 18,05	0,51284 0,512903	3,9 5,2
CAMP CAMP CAMP	CAMP CAMP CAMP	[2005] Deckart et al. [2005] Deckart et al. [2005]	G43 G48 G53	CAMP CAMP CAMP	tholeiites tholeiites tholeiites	Triassic-Jurassic Triassic-Jurassic Triassic-Jurassic	260,3 216,5 183,6	0,704479 0,703435 0,703686	27,92 18,05 9,17	0,51284 0,512903 0,512922	3,9 5,2 5,5
CAMP CAMP CAMP CAMP	CAMP CAMP CAMP CAMP	[2005] Deckart et al. [2005] Deckart et al. [2005] Deckart et al. [2005]	G43 G48 G53 200	CAMP CAMP CAMP CAMP	tholeiites tholeiites tholeiites tholeiites	Triassic-Jurassic Triassic-Jurassic Triassic-Jurassic Triassic-Jurassic	260,3 216,5 183,6 204,5	0,704479 0,703435 0,703686 0,704405	27,92 18,05 9,17 33,95	0,51284 0,512903 0,512922 0,512841	3,9 5,2 5,5 4,0
CAMP CAMP CAMP CAMP CAMP	CAMP CAMP CAMP CAMP CAMP	[2005] Deckart et al. [2005] Deckart et al. [2005] Deckart et al. [2005] Deckart et al. [2005]	G43 G48 G53 200 SIN53	CAMP CAMP CAMP CAMP CAMP	tholeiites tholeiites tholeiites tholeiites tholeiites	Triassic-Jurassic Triassic-Jurassic Triassic-Jurassic Triassic-Jurassic Triassic-Jurassic	260,3 216,5 183,6 204,5 385,9	0,704479 0,703435 0,703686 0,704405 0,704494	27,92 18,05 9,17 33,95 38,82	0,51284 0,512903 0,512922 0,512841 0,512803	3,9 5,2 5,5 4,0 3,2
CAMP CAMP CAMP CAMP CAMP CAMP	CAMP CAMP CAMP CAMP CAMP CAMP	[2005] Deckart et al. [2005] Deckart et al. [2005] Deckart et al. [2005] Deckart et al. [2005] Deckart et al. [2005]	G43 G48 G53 200 SIN53 SUR19	CAMP CAMP CAMP CAMP CAMP CAMP	tholeiites tholeiites tholeiites tholeiites tholeiites tholeiites	Triassic-Jurassic Triassic-Jurassic Triassic-Jurassic Triassic-Jurassic Triassic-Jurassic Triassic-Jurassic	260,3 216,5 183,6 204,5 385,9 255,1	0,704479 0,703435 0,703686 0,704405 0,704494 0,704224	27,92 18,05 9,17 33,95 38,82 19,31	0,51284 0,512903 0,512922 0,512841 0,512803 0,512835	3,9 5,2 5,5 4,0 3,2 3,8
CAMP CAMP CAMP CAMP CAMP CAMP CAMP	CAMP CAMP CAMP CAMP CAMP CAMP CAMP	[2005] Deckart et al. [2005] Deckart et al. [2005] Deckart et al. [2005] Deckart et al. [2005] Deckart et al. [2005] Deckart et al. [2005]	G43 G48 G53 200 SIN53 SUR19 GUI66	CAMP CAMP CAMP CAMP CAMP CAMP CAMP	tholeiites tholeiites tholeiites tholeiites tholeiites tholeiites tholeiites	Triassic-Jurassic Triassic-Jurassic Triassic-Jurassic Triassic-Jurassic Triassic-Jurassic Triassic-Jurassic	260,3 216,5 183,6 204,5 385,9 255,1 231	0,704479 0,703435 0,703686 0,704405 0,704494 0,704224 0,706745	27,92 18,05 9,17 33,95 38,82 19,31 8,9	0,51284 0,512903 0,512922 0,512841 0,512803 0,512835 0,512497	3,9 5,2 5,5 4,0 3,2 3,8 -2,8
CAMP CAMP CAMP CAMP CAMP CAMP CAMP	CAMP CAMP CAMP CAMP CAMP CAMP CAMP	[2005] Deckart et al. [2005] Deckart et al. [2005] Deckart et al. [2005] Deckart et al. [2005] Deckart et al. [2005] Deckart et al. [2005] Deckart et al. [2005]	G43 G48 G53 200 SIN53 SUR19 GUI66 GUI52	CAMP CAMP CAMP CAMP CAMP CAMP CAMP CAMP	tholeiites tholeiites tholeiites tholeiites tholeiites tholeiites tholeiites tholeiites	Triassic-Jurassic Triassic-Jurassic Triassic-Jurassic Triassic-Jurassic Triassic-Jurassic Triassic-Jurassic Triassic-Jurassic	260,3 216,5 183,6 204,5 385,9 255,1 231 177	0,704479 0,703435 0,703686 0,704405 0,704494 0,704224 0,706745 0,706836	27,92 18,05 9,17 33,95 38,82 19,31 8,9 12,6	0,51284 0,512903 0,512922 0,512841 0,512803 0,512835 0,512497 0,512508	3,9 5,2 5,5 4,0 3,2 3,8 -2,8 -2,5
CAMP CAMP CAMP CAMP CAMP CAMP CAMP CAMP	CAMP CAMP CAMP CAMP CAMP CAMP CAMP CAMP	[2005] Deckart et al. [2005] Deckart et al. [2005] Deckart et al. [2005] Deckart et al. [2005] Deckart et al. [2005] Deckart et al. [2005] Deckart et al. [2005]	G43 G48 G53 200 SIN53 SUR19 GUI66 GUI52 GUI57	CAMP CAMP CAMP CAMP CAMP CAMP CAMP CAMP	tholeiites tholeiites tholeiites tholeiites tholeiites tholeiites tholeiites tholeiites	Triassic-Jurassic Triassic-Jurassic Triassic-Jurassic Triassic-Jurassic Triassic-Jurassic Triassic-Jurassic Triassic-Jurassic Triassic-Jurassic	260,3 216,5 183,6 204,5 385,9 255,1 231 177 162	0,704479 0,703435 0,703686 0,704405 0,704494 0,704224 0,706745 0,706836 0,707282	27,92 18,05 9,17 33,95 38,82 19,31 8,9 12,6 11,99	0,51284 0,512903 0,512922 0,512841 0,512803 0,512835 0,512497 0,512508 0,512482	3,9 5,2 5,5 4,0 3,2 3,8 -2,8 -2,5 -3,0

		[2005]									
CAMP	CAMP	<i>Deckart et al.</i> [2005]	GUI76	CAMP	gabbro	Triassic-Jurassic	222,8	0,706112	1,9	0,512445	-3,8
CAMP	CAMP	Deckart et al. [2005]	GUI116	CAMP	gabbro	Triassic-Jurassic	192,4	0,707461	3,81	0,512366	-5,3
CAMP	CAMP	Deckart et al. [2005]	GUI118	CAMP	gabbro	Triassic-Jurassic	157,8	0,706807	1,5	0,512487	-2,9
CAMP	CAMP	Deckart et al. [2005]	GUI141	CAMP	gabbro	Triassic-Jurassic	197,5		2,97	0,512455	-3,6
CAMP	CAMP	Deckart et al. [2005]	GUI61	CAMP	gabbro	Triassic-Jurassic	197,9	0,706554	6,13	0,512455	-3,6
CAMP	CAMP	Deckart et al. [2005]	GUI1	CAMP	Ultramafic cumulates	Triassic-Jurassic	69,9	0,706316	4,66	0,512479	-3,1
CAMP	CAMP	Deckart et al. [2005]	GUI74	CAMP	Ultramafic cumulates	Triassic-Jurassic	82	0,705219	4,43	0,512592	-0,9
CAMP	CAMP	<i>Verati et al.</i> [2005]	Ta1	CAMP	mafic dykes	Triassic		0,70854		-	
CAMP	CAMP	<i>Verati et al.</i> [2005]	Ta15	CAMP	mafic dykes	Triassic		0,70644		0,51258	-1,1
CAMP	CAMP	<i>Verati et al.</i> [2005]	Ta20	CAMP	mafic dykes	Triassic		0,70776		-	
CAMP	CAMP	<i>Verati et al.</i> [2005]	Ta23	CAMP	mafic dykes	Triassic		0,707796		0,512405	-4,5
CAMP	CAMP	<i>Verati et al.</i> [2005]	Ta27	CAMP	mafic dykes	Triassic		0,70768		0,512495	-2,8
CAMP	CAMP	<i>Verati et al.</i> [2005]	Ta35	CAMP	mafic dykes	Triassic		0,707509		0,512451	-3,6
CAMP	CAMP	<i>Verati et al.</i> [2005]	Ta4	CAMP	mafic dykes	Triassic		0,70705		0,512575	-1,2
CAMP	CAMP	<i>Verati et al.</i> [2005]	Ta9	CAMP	mafic dykes	Triassic		0,70711		0,51256	-1,5
CAMP	CAMP	<i>Verati et al.</i> [2005]	Ta34	CAMP	mafic dykes	Triassic		0,707511		0,512563	-1,5
CAMP	CAMP	Fullgraf et al. [2013]	11/014/01	CAMP	Dolerite	Jurassic	268,43	0,70858	13,38	0,512766	2,5
CAMP	CAMP	Fullgraf et al. [2013]	11/240/02	CAMP	Dolerite	Jurassic	187,95	0,70696	12,11	0,512517	-2,4
CAMP	CAMP	Fullgraf et al. [2013]	11/806/01	CAMP	Dolerite	Jurassic	172,19	0,7081	13,97	0,512452	-3,6
CAMP	CAMP	Fullgraf et al. [2013]	12/292/01	CAMP	Dolerite	Jurassic	141,4	0,70957	16,06	0,512731	1,8
CAMP	CAMP	Fullgraf et al. [2013]	12/428/01	CAMP	Dolerite	Jurassic	160,09	0,70721	11,99	0,512511	-2,5

CAMP	CAMP	Fullgraf et al. [2013]	12/492/02	CAMP	Dolerite	Jurassic	193,09	0,70775	14,78	0,512523	-2,2
CAMP	CAMP	Dupuy et al. [1988]	6914	CAMP	dolerite	Mesozoic	172	0,70387	13,71	0,512878	4,7
CAMP	CAMP	Dupuy et al. [1988]	6910	CAMP	dolerite	Mesozoic	200	0,70378	18,73	0,512811	3,4
CAMP	CAMP	Dupuy et al. [1988]	6923	CAMP	dolerite	Mesozoic	210	0,70434	17,91	0,512792	3,0
CAMP	CAMP	Dupuy et al. [1988]	6937	CAMP	dolerite	Mesozoic	301	0,7042	27,24	0,512729	1,8
CAMP	CAMP	<i>Dupuy et al.</i> [1988]	6933	CAMP	dolerite	Mesozoic	395	0,70375	46,52	0,512704	1,3
CAMP	CAMP	<i>Dupuy et al.</i> [1988]	6935	CAMP	dolerite	Mesozoic	323	0,70431	47,37	0,512814	3,4
CAMP	CAMP	<i>Dupuy et al.</i> [1988]	6916	CAMP	dolerite	Mesozoic	208	0,70624	22,9	0,512596	-0,8
CAMP	CAMP	<i>Dupuy et al.</i> [1988]	6918	CAMP	dolerite	Mesozoic	328	0,70528	35,5	0,512733	1,9
CAMP	CAMP	<i>Dupuy et al.</i> [1988]	6921	CAMP	dolerite	Mesozoic	284	0,70673	44,3	0,512663	0,5
CAMP	CAMP	<i>Dupuy et al.</i> [1988]	6930	CAMP	dolerite	Mesozoic	235	0,70685	12,23	0,512438	-3,9
CAMP	CAMP	<i>Dupuy et al.</i> [1988]	6928	CAMP	dolerite	Mesozoic	241	0,70701	13,1	0,512482	-3,0
CAMP	CAMP	<i>Dupuy et al.</i> [1988]	6925	CAMP	dolerite	Mesozoic	291	0,70587	2128	0,512572	-1,3
CAMP	CAMP	<i>Dupuy et al.</i> [1988]	6922	CAMP	dolerite	Mesozoic	180	0,70681	25,88	0,512607	-0,6
CAMP	CAMP	<i>Dupuy et al.</i> [1988]	6915	CAMP	dolerite	Mesozoic	111	0,70655	7,84	0,512488	-2,9
CAMP	CAMP	<i>Dupuy et al.</i> [1988]	6912	CAMP	dolerite	Mesozoic	101	0,70772	7,8	0,512449	-3,7
CAMP	CAMP	<i>Dupuy et al.</i> [1988]	6908	CAMP	dolerite	Mesozoic	112	0,70938	11,79	0,512094	-10,6
MODERN	Marine cores	<i>Meyer et al.</i> [2011]	GeoB 4223	Morocco	0-10µm	modern	283,4	0,716003	45,02	0,512058	-11,3
MODERN	Marine cores	<i>Meyer et al.</i> [2011]	GeoB 4223	Morocco	0-10µm	African Humid period	424,2	0,713654	39,68	0,512042	-11,6
MODERN	Marine cores	<i>Meyer et al.</i> [2011]	GeoB 4223	Morocco	0-10µm	Younger Drias	439,8	0,712549	35,85	0,512028	-11,9
MODERN	Marine cores	<i>Meyer et al.</i> [2011]	GeoB 4223	Morocco	10-40µm	modern	204,4	0,71646	28,35	0,512071	-11,1
MODERN	Marine	Meyer et al.	GeoB 4223	Morocco	10-40µm	African Humid period	537,5	0,710725	26,11	0,512053	-11,4

	cores	[2011]									
MODERN	Marine cores	<i>Meyer et al.</i> [2011]	GeoB 4223	Morocco	10-40µm	Younger Drias	51,13	0,721564	1,85	0,511993	-12,6
MODERN	Marine cores	<i>Meyer et al.</i> [2011]	GeoB 7920	Mauritania	0-10µm	modern	68,57	0,729342	17,4	0,511876	-14,9
MODERN	Marine cores	<i>Meyer et al.</i> [2011]	GeoB 7920	Mauritania	0-10µm	African Humid period	195,8	0,72364	38,66	0,511925	-13,9
MODERN	Marine cores	<i>Meyer et al.</i> [2011]	GeoB 7920	Mauritania	0-10µm	Younger Drias	255,2	0,729979	28,62	0,511869	-15,0
MODERN	Marine cores	<i>Meyer et al.</i> [2011]	GeoB 7920	Mauritania	10-40µm	modern	208,1	0,718066	22,8	0,511942	-13,6
MODERN	Marine cores	<i>Meyer et al.</i> [2011]	GeoB 7920	Mauritania	10-40um	African Humid period	91.25	0.717148	8,95	0,511843	-15,5
MODERN	Marine cores	<i>Meyer et al.</i> [2011]	GeoB 7920	Mauritania	10-40um	Younger Drias	45.66	0.727354	3,16	0,511795	-16,4
MODERN	Marine	Meyer et al. [2011]	GIK 12379	Mauritania	0-10um	modern	137.5	0 72524	33,8	0,511911	-14,2
MODERN	Marine	Meyer et al. [2011]	GIK 12379	Mauritania	0-10um	African Humid period	226	0 725904	9,41	0,511848	-15,4
MODERN	Marine	Meyer et al. [2011]	GIK 12379	Mauritania	0-10µm	Younger Drias	82 82	0 730458	30,87	0,51191	-14,2
MODERN	Marine	Meyer et al. [2011]	GIK 12379	Mauritania	10-40um	modern	187	0 718471	33,8	-	
MODERN	Marine	Meyer et al.	GIK 12379	Mauritania	10-40um	African Humid period	165.8	0 720755	35	-	
MODERN	Marine	Meyer et al.	GIK 12379	Mauritania	10-40µm	Younger Drize	38.11	0,720756	30,87	-	
MODERN	Marine	Meyer et al.	GIK 12599	Mauritania	0.10um	modorn	145.2	0,72030	38,65	0,511897	-14,5
MODERN	Marine	Meyer et al.	CIK 12599	Mauritania	0.10µm	African Humid pariad	140,2	0,72042	6,33	0,511909	-14,2
MODERN	Marine	Meyer et al.	GIK 19500	Mauritania	0-10µm	Xaurger Driss	121,7	0,72043	33,35	0,511932	-13,8
MODERN	Marine	[2011] Meyer et al.	GIK 13588	Mauntania	0-10µm	Younger Dhas	151,1	0,72669	13,5	-	
MODERN	cores Marine	[2011] Meyer et al.	GIK 13588	Mauritania	10-40µm	modern	52,36	0,718345	35	-	
MODERN	cores Marine	[2011] Meyer et al.	GIK 13588	Mauritania	10-40µm	African Humid period	184,6	0,718634	1.45	-	
MODERN	cores Marine	[2011] <i>Meyer et al.</i>	GIK 13588	Mauritania	10-40µm	Younger Drias	23,35	0,712188	14 32	0 51192	-14 0
MODERN	cores Marine	[2011] <i>Meyer et al.</i>	GEOB 9508	Senegal	0-10µm	modern	58,13	0,724864	30.07	0 511922	-13.0
WODERN	cores	[2011]	GEOB 9508	Senegal	0-10µm	African Humid period	117,2	0,721935	50,07	0,511525	-13,9

MODERN	Marine cores	<i>Meyer et al.</i> [2011]	GEOB 9508	Senegal	0-10µm	Younger Drias	147,4	0,72597	30,48	0,511918	-14,0
MODERN	Marine cores	<i>Meyer et al.</i> [2011]	GEOB 9508	Senegal	10-40µm	modern	112,94	0,719875	12,24	0,511875	-14,9
MODERN	Marine cores	<i>Meyer et al.</i> [2011]	GEOB 9508	Senegal	10-40µm	African Humid period	156,4	0,719413	22,51	0,511862	-15,1
MODERN	Marine cores	<i>Meyer et al.</i> [2011]	GEOB 9508	Senegal	10-40µm	Younger Drias	73,43	0,723053	14,87	0,51189	-14,6

Annexe 3.

Annexe 3 .Incertitudes analytiques des concentrations en éléments majeurs et traces mesurées à l'ICP-OES et à l'ICP-MS (CRPG Nancy).

* The limit of determination (DL) is calculated as the mean + 6 times the absolute standard deviation on 100 measurements of blanks.

** Uncertainty on measurement is calculated for 200 mg of prepared sample. It becomes important (> 25%) over a concentration range

located between the limit of determination and the lowest concentration for which an error percentage is indicated.

Calculations for 5 certified reference materials in routine analysis over 6 to 12 months (n = 150 per material)

SARM

CRPG-CNRS : 15 rue Notre Dame des Pauvres, BP20, 54501 Vandoeuvre-lès-Nancy, France

Tél : 33 (0)3 83 59 42 41 ; Fax : 33 (0)3 83 51 17 98

	Determina	tion limit (*)	and uncertai	nties (**)		
ents	1.022	2212	0.000		5-2-220	201
>50 µg/g	>10 µg/g	$>1 \mu g/g$	>0.1 µg/g	>0.01 µg/g	>* D.L. µg	/g
<5 %	<15 %	<20 %	**		0,20	0
<5 %	<10 %	**			2,	0
<5 %	<15 %	<20 %	**		0,09	0
192201	<5 %	<10 %	<20 %	**	0,04	0
<10 %	<15 %	<20 %			0,04	0
<5%	<10 %	<15 %	<20 %	**	0,02	0
<5 %	<10 %	<20 %			0,07	5
	<5 %	<10 %	-20.82		0,50	0
-9 0/	-20 %	<13 %	~20 %	00000	0,02	0
>0.70	-20 %	~10.94	-20.9/		0.00	5
	5 70	<5 0/	<10.%	**	0,00	3
		~5 0%	<10 %	**	0,00	2
	<5.0%	<10.%	<20.94	**	0,00	<
	<5 %	<10 %	<20 %	**	0.00	5
<5 %	<10 %	<20.%	**		0.05	0
	<5 %	<10 %	<15 %	**	0.03	0
<5 %		<10 %	<20 %	**	0,00	1
<5 %		<15 %	**		0.02	0
	<5 %	<15 %	<20 %	**	0.04	0
	<5 %	<10 %	<20 %	**	0.00	1
<5 %	<15 %	<20 %	**		0.50	0
<5 %		<10 %	<20 %	**	0.02	0
<5 %	<15 %		<20 %	**	0.02	0
10.505.50	<5 %	**	0.00 M (C.50)		5.00	0
<10 %		<20 %	**		0.35	0
<5 %	<10 %		<20 %	**	0,00	5
<5 %	<15 %	<20 %	**		0,20	0
	<5 %	<10 %	<20 %	**	0,05	0
	<5 %	<15 %	<20 %	**	0,00	4
<5 %	<15 %	**			2,00	0
<5 %	<10 %	<20 %	**		0,70	0
<5 %		<10 %	<20 %	**	0,00	2
<5 %	<10 %	<15 %	<20 %	**	0,00	1
<5 %		<10 %	**		0,01	0
<5 %		<10 %	<20 %	**	0,00	1
<5 %	<10 %	<15 %	<20 %	**	0,01	0
<5 %	<10 %	<15 %	**		0,70	0
<5 %	<10 %	<20 %	**		0,70	0
<5 %		<15 %	**		0,03	0
<5 %	<10 %	<15 %	<20 %	**	0,00	2
<10 %	<20 %	**			5,00	0
<5 %	<10 %	<20 %	**		0,80	0
ients			000021400	102020200	100000000	1222321729
>10 %	>5 %	>1 %	>0.5 %	>0.1 %	>0.05 %	* D.L. %
<5 %			<10 %		**	0,050
	<10 %	<15 %		**		0,060
<2 %		<15 %	<20 %		**	0,030
		<5 %	<15 %		**	0,010
	<5 %	<10 %	<15 %		**	0,040
<2 %	<5 %	<15 %	**			0,100
	<5 %	<10 %	<15 %		**	0,030
	<5 %	<10 %	<25 %		**	0,080
	<5 %	<10 %	**			0,100
<5 %	<15 %	**				0,200
				1		
	state >50 $\mu g/g$ <5 %	Determina >50 $\mu g/g$ > 10 $\mu g/g$ <5 %	Determination limit (*) >50 $\mu g/g$ >10 $\mu g/g$ >1 $\mu g/g$ <5%	<t< td=""><td><t< td=""><td>Determination limit (+) and uncertainties (**) >50 $\mu g/g$ >10 $\mu g/g$ >0.1 $\mu g/g$ >0.01 $\mu g/g$ >*0.1 $\mu g/g$ >0.01 <0.02 <0.01 <0.02 <0.01 <0.02 <0.00 <0.00</td></t<></td></t<>	<t< td=""><td>Determination limit (+) and uncertainties (**) >50 $\mu g/g$ >10 $\mu g/g$ >0.1 $\mu g/g$ >0.01 $\mu g/g$ >*0.1 $\mu g/g$ >0.01 <0.02 <0.01 <0.02 <0.01 <0.02 <0.00 <0.00</td></t<>	Determination limit (+) and uncertainties (**) >50 $\mu g/g$ >10 $\mu g/g$ >0.1 $\mu g/g$ >0.01 $\mu g/g$ >*0.1 $\mu g/g$ >0.01 <0.02 <0.01 <0.02 <0.01 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00

Determination limit (*) and uncertainties (**)

Annexe 4.

	⁸⁷ Sr/ ⁸⁶ Sr	Е _{Nd(0)}	Eu/Eu*	ΩCe	Cr/Th	Th/Sc	Zr/Sc	LREE	HREE	MREE	MREE*	Al/Si	CIA
⁸⁷ Sr/ ⁸⁶ Sr	1	-0,10	-0,12	-0,23	-0,08	-0,13	-0,07	-0,12	-0,14	-0,03	0,29	-0,43	-0,27
E _{Nd(0)}		1	-0,47	0,02	-0,49	0,57	0,67	0,25	0,48	0,41	0,25	0,12	0,20
Eu/Eu*			1	0,27	0,28	-0,80	-0,80	-0,14	-0,58	-0,40	-0,06	-0,07	0,11
ΩCe				1	-0,18	0,00	-0,01	-0,04	-0,18	-0,17	-0,28	0,26	0,53
Cr/Th					1	-0,42	-0,37	-0,22	-0,38	-0,32	-0,28	-0,18	-0,15
Th/Sc						1	0,97	0,34	0,70	0,53	0,12	0,09	0,15
Zr/Sc							1	0,31	0,68	0,52	0,14	0,08	0,11
LREE								1	0,84	0,94	0,55	0,14	0,01
HREE									1	0,95	0,43	0,15	-0,01
MREE										1	0,64	0,04	-0,10
MREE*											1	-0,33	-0,43
Al/Si												1	0,35
CIA													1

Annexe 4. Covariations des compositions isotopiques analysées et des rapports élementaires utilisant le coefficient de corrélation R².

Note: Correlations based on correlation coefficient (R²). Based on a data matrix without outlier data. Significant correlations are represented in blue.

Annexe 5.

Annexe 5. Compilation des données lithologiques, de TOC et des taux de sédimentation (d'après le rapport initial du Site ODP 1260, Shipboard Scientific Party, 2004), des valeurs de $\varepsilon Nd(t)$ de la fraction détritique (carrés rouges) et de l'eau de mer (cercles bleus) d'après Martin et al (2012). L'OAE 2 a pu être identifié entre 415mbsf et 4132mbsf grâce à l'incursion positive du $\delta^{13}C$ (Forster et al., 2007). La légende de la lithologie est identique à celle de la figure 4.2.

Annexe 6.

Annexe 6. Compilation des données de ¹⁴³Nd/¹⁴⁴Nd, de ⁸⁷Sr/⁸⁶Sr et des valeurs de $\varepsilon_{Nd(0)}$ issues de la littérature des sources pouvant alimenter le bassin du Guyana-Suriname en matériel sédimentaire

GROUP	Source	Sample id	Unit	lithology	¹⁴⁴ Nd/ ¹⁴³ Nd	ε _{Nd(0)}	⁸⁷ Sr/ ⁸⁶ Sr	Т _{⊳м} (Ga)
MODERN	Allègre et al., 1996	Rio Negro	South America	Modern riverine SS	0,511925	-13,9	0,71698	
MODERN	Allègre et al., 1996	Solimões	South America	Modern riverine SS	0,512185	-8,8	0,71319	
MODERN	Allègre et al., 1996	Amazon 6	South America	Modern riverine SS	0,512235	-7,9	0,71327	
MODERN	Allègre et al., 1996	Madeira	South America	Modern riverine SS	0,512027	-11,9	0,73352	
MODERN	Allègre et al., 1996	Urucara	South America	Modern riverine SS	0,511732	-17,7	0,72835	
MODERN	Allègre et al., 1996	Trombeta s	South America	Modern riverine SS	0,511500	-22,2	0,74683	
MODERN	Allègre et al., 1996	Tapajos	South America	Modern riverine SS	0,511606	-20,1	0,7564	
MODERN	Allègre et al., 1996	Amazon 20	South America	Modern riverine SS	0,512094	-10,6	0,72146	
MODERN	Goldstein et al., 1997	OR514	Modern Orinoco River	Lower Orinoco SS	0,511926	-13,9		
MODERN	Goldstein et al., 1997	OR523	Modern Orinoco River	Apure SS	0,512040	-11,7		
MODERN	Goldstein et al., 1997	OR532	Modern Orinoco River	Meta SS	0,511949	-13,4		
MODERN	Goldstein et al., 1997	OR552	Modern Orinoco River	Upper Orinoco SS	0,511632	-19,6		
MODERN	Goldstein et al., 1997	OR528	Modern Orinoco River	Suapure SS	0,511617	-19,9		
MODERN	Goldstein et al., 1997	OR551	Modern Orinoco River	Ventuari SS	0,511587	-20,5		
MODERN	Goldstein et al., 1997	OR501	Modern Orinoco River	Aro SS	0,511063	-30,7		
MODERN	White et al., 1985	GS7605-	Barbados ridge -	Cored Sediments (bulk)	0,512057	-11,3	0,71221	

		6G	Demerara Plain				
	White et al., 1985	GS7605-	Barbados ridge -	Cored Sediments (bulk)	0.512172	-9.1	0.70895
MODERN		11	Demerara Plain		0)012172	5)1	0,70000
	White et al., 1985	GS7605-	Barbados ridge -	Cored Sediments (bulk)	0,512145	-9,6	0,70898
MODERN		48	Demerara Plain				
	White et al., 1985	GS7605-	Barbados ridge -	Cored Sediments (bulk)	0,512042	-11,6	0,70993
WODERN		53	Demerara Plain				
	White et al., 1985	GS7605-	Barbados ridge -	Cored Sediments (bulk)	0,512035	-11,8	0,70978
WODERN		55 GS7605-	Barbados ridgo -				
MODERN	White et al., 1985	55	Demerara Plain	Cored Sediments (bulk)	0,511969	-13,1	0,71044
MODERN		G\$7605-	Barbados ridge -				
MODERN	White et al., 1985	58	Demerara Plain	Cored Sediments (bulk)	0,512051	-11,5	0,72157
mobeliit		GS7605-	Barbados ridge -				
MODERN	White et al., 1985	58	Demerara Plain	Cored Sediments (bulk)	0,511992	-12,6	0,71722
		GS7605-	Barbados ridge -		0 540004	44.0	0 74 074
MODERN	White et al., 1985	61	Demerara Plain	Cored Sediments (bulk)	0,512034	-11,8	0,/18/1
	White at al 1095	GS7605-	Barbados ridge -	Carad Cadimants (bulk)	0 512061	11 2	0 71624
MODERN	White et al., 1985	61	Demerara Plain	Cored Sediments (bulk)	0,512061	-11,5	0,71034
	White at al 1085	GS7605-	Barbados ridge -	Carad Sadimants (bulk)	0 512071	_11 1	0 71068
MODERN	Wille et al., 1905	59	Demerara Plain	cored Sediments (bulk)	0,512071	-11,1	0,71908
	White et al 1985	GS7605-	Barbados ridge -	Cored Sediments (bulk)	0 511988	-12 7	0 7137
MODERN	Winte et al., 1909	59	Demerara Plain	corea seaments (baik)	0,011000	12,7	0,7137
	White et al., 1985	GS7605-	Barbados ridge -	Cored Sediments (bulk)	0.512026	-11.9	0.7181
MODERN	,	63	Demerara Plain		0,011010	,.	0)/ 202
	White et al., 1985	GS7605-	Barbados ridge -	Cored Sediments (bulk)	0,512069	-11,1	0,71925
MODERN	,	65	Demerara Plain	, , ,	,	,	,
MODERN	White et al., 1985	EN20-18	Barbados ridge -	Cored Sediments (bulk)	0,512019	-12,1	0,71711
MODERN	White at al. 1005	DC1E 100	Demerara Plain	Correct Continuorate (hullu)	0 511052	12.4	0 7005 2
MODERN	white et al., 1985	KC12-180	Barbados ridge -	Corea Seaments (DUIK)	0,511952	-13,4	0,70952

			Demerara Plain				
	White et al., 1985	RC16-44	Barbados ridge -	Cored Sediments (bulk)	0.511958	-13.3	0.71871
MODERN	1111111 et al., 1900	11010	Demerara Plain		0,011000	20,0	0)/ 20/ 2
	White et al., 1985	RC16-45	Barbados ridge -	Cored Sediments (bulk)	0,511985	-12,7	0,72153
MODERN			Demerara Plain Barbados ridgo -				
MODERN	White et al., 1985	RC16-47	Demerara Plain	Cored Sediments (bulk)	0,511960	-13,2	0,71326
MODENN			Barbados ridge -				
MODERN	White et al., 1985	RC16-168	Demerara Plain	Cored Sediments (bulk)	0,512090	-10,7	0,72559
	White at al 1095	PC10 25	Barbados ridge -	Carad Sadimants (hulk)	0 512171	0.1	0 71642
MODERN	White et al., 1965	NC19-25	Demerara Plain	Corea Seaments (baik)	0,512171	-9,1	0,71045
	White et al., 1985	RC19-26	Barbados ridge -	Cored Sediments (bulk)	0.512150	-9.5	0.71256
MODERN	,,		Demerara Plain		-,	-,-	-,
	White et al., 1985	V31-137	Barbados ridge -	Cored Sediments (bulk)	0,512045	-11,6	0,71276
WODERN			Barbados ridge -				
MODERN	White et al., 1985	V31-138	Demerara Plain	Cored Sediments (bulk)	0,512096	-10,6	0,7148
CENOZOIC	White et al., 1985	543-18-4	DSDP Site 543	Miocene sediments	0,512060	-11,3	0,71385
CENOZOIC	White et al., 1985	543-25-2	DSDP Site 543	Miocene sediments	/	/	0,7214
CENOZOIC	White et al., 1985	543-26-2	DSDP Site 543	Miocene sediments	0,511939	-13,6	0,71975
CENOZOIC	White et al., 1985	543-26-4	DSDP Site 543	Miocene sediments	0,511932	-13,8	0,71925
CENOZOIC	White et al., 1985	543-26-6	DSDP Site 543	Miocene sediments	0,511955	-13,3	0,71921
CENOZOIC	White et al., 1985	543-27-2	DSDP Site 543	Oligocene sediments	0,511960	-13,2	0,72051
CENOZOIC	White et al., 1985	543-27-4	DSDP Site 543	Oligocene sediments	0,511923	-13,9	0,71963
CENOZOIC	White et al., 1985	543-28-3	DSDP Site 543	Oligocene sediments	0,511892	-14,6	0,72199
CENOZOIC	White et al., 1985	543-28-5	DSDP Site 543	Oligocene sediments	0,511898	-14,4	0,72118
CENOZOIC	White et al., 1985	543-29-4	DSDP Site 543	Oligocene sediments	0,5118/1	-15,0	0,72049
CENOZOIC	white et al., 1985	543-29-7	DSDP Site 543	Cilgocene sediments	0,511874	-14,9	0,72191
CENUZUIC	white et al., 1985	543A-3-2	DSDP SILE 543	Eocene sealments	0,512023	-12,0	0,/1331

CENOZOIC	White et al., 1985	543A-7-3	DSDP Site 543	Eocene sediments	0,511963	-13,2	0,71287
	Stewart et al.,	926 B 46	DSDP Site 926	Oligo-Miocene Amazonian	0 511710	-18 1	
CENOZOIC	2016	4 W	D3D1 511C 520	sediments	0,511710	10,1	
	Stewart et al.,	926 B 47	DSDP Site 926	Oligo-Miocene Amazonian	0 511701	-18 3	
CENOZOIC	2016	1 W	D3D1 5110 520	sediments	0,511701	10,5	
	Stewart et al.,	926 B 47	DSDP Site 926	Oligo-Miocene Amazonian	0 511698	-18 3	
CENOZOIC	2016	2 W	D3D1 5110 520	sediments	0,311030	10,5	
	Stewart et al.,	926 B 47	DSDP Site 926	Oligo-Miocene Amazonian	0 511700	-18 3	
CENOZOIC	2016	6 W	D3D1 5110 520	sediments	0,311700	10,0	
	Stewart et al.,	926 B 48	DSDP Site 926	Oligo-Miocene Amazonian	0 511647	-193	
CENOZOIC	2016	4 W	5551 5116 520	sediments	0,011017	10,0	
	Stewart et al.,	926 B 48	DSDP Site 926	Oligo-Miocene Amazonian	0.511800	-16.3	
CENOZOIC	2016	6 W		sediments	0,011000	20,0	
	Stewart et al.,	926 B 49	DSDP Site 926	Oligo-Miocene Amazonian	0.511691	-18.5	
CENOZOIC	2016	4 W		sediments	0,011001	20,0	
	Stewart et al.,	926 B 50	DSDP Site 926	Oligo-Miocene Amazonian	0.511725	-17.8	
CENOZOIC	2016	4 W		sediments	0,0 = 1 = 0	_,,0	
	Stewart et al.,	927 B 50	DSDP Site 926	Oligo-Miocene Amazonian	0.511688	-18.5	
CENOZOIC	2016	5 W		sediments	0,011000	_0,0	
	Stewart et al.,	928 B 50	DSDP Site 926	Oligo-Miocene Amazonian	0.511698	-18.3	
CENOZOIC	2016	5 W		sediments	0,0 0 0	_0,0	
	Stewart et al.,	929 B 50	DSDP Site 926	Oligo-Miocene Amazonian	0.511702	-18.3	
CENOZOIC	2016	6 W		sediments	0,00_	_0,0	
	Stewart et al.,	926 B 51	DSDP Site 926	Oligo-Miocene Amazonian	0.511786	-16.6	
CENOZOIC	2016	2W		sediments	0,0 = 1,00	_0,0	
	Stewart et al.,	926 B 52	DSDP Site 926	Oligo-Miocene Amazonian	0.511771	-16.9	
CENOZOIC	2016	1 W		sediments	,, <u>,,,</u> ,,,	_0,0	
	Stewart et al.,	926 B 52	DSDP Site 926	Oligo-Miocene Amazonian	0.511733	-17.7	
CENOZOIC	2016	1 W		sediments	0,012,00	_,,,	

CENOZOIC	Stewart et al., 2016	926 B 52 5 W	DSDP Site 926	Oligo-Miocene Amazonian sediments	0,511700	-18,3
CENOZOIC	Stewart et al., 2016	926 B 53 3 W	DSDP Site 926	Oligo-Miocene Amazonian sediments	0,511786	-16,6
CENOZOIC	Stewart et al., 2016	926 B 46 4 W	DSDP Site 926	Fe-Mn Oxides	0,511859	-15,2
CENOZOIC	Stewart et al., 2016	926 B 47 1 W	DSDP Site 926	Fe-Mn Oxides	0,511831	-15,7
CENOZOIC	Stewart et al., 2016	926 B 47 2 W	DSDP Site 926	Fe-Mn Oxides	0,511909	-14,2
CENOZOIC	Stewart et al., 2016	926 B 47 6 W	DSDP Site 926	Fe-Mn Oxides	0,511887	-14,6
CENOZOIC	Stewart et al., 2016	926 B 48 4 W	DSDP Site 926	Fe-Mn Oxides	0,511793	-16,5
CENOZOIC	Stewart et al., 2016	926 B 48 6 W	DSDP Site 926	Fe-Mn Oxides	0,511917	-14,1
CENOZOIC	Stewart et al., 2016	926 B 49 4 W	DSDP Site 926	Fe-Mn Oxides	0,511860	-15,2
CENOZOIC	Stewart et al., 2016	926 B 50 4 W	DSDP Site 926	Fe-Mn Oxides	0,511852	-15,3
CENOZOIC	Stewart et al., 2016	927 B 50 5 W	DSDP Site 926	Fe-Mn Oxides	0,511849	-15,4
CENOZOIC	Stewart et al., 2016	928 B 50 5 W	DSDP Site 926	Fe-Mn Oxides	0,511866	-15,1
CENOZOIC	Stewart et al., 2016	929 B 50 6 W	DSDP Site 926	Fe-Mn Oxides	0,511846	-15,4
CENOZOIC	Stewart et al., 2016	926 B 51 2W	DSDP Site 926	Fe-Mn Oxides	0,511917	-14,1
CENOZOIC	Stewart et al.,	926 B 52	DSDP Site 926	Fe-Mn Oxides	0,511880	-14,8

CENOZOIC	2016 Stewart et al.,	1 W 926 B 52	DSDP Site 926	Fe-Mn Oxides	0,511818	-16,0		
CENOZOIC	2016 Stewart et al., 2016	926 B 52 5 W	DSDP Site 926	Fe-Mn Oxides	0,511874	-14,9		
CENOZOIC	Stewart et al., 2016	926 B 53 3 W	DSDP Site 926	Fe-Mn Oxides	0,511959	-13,2		
CARIBBEAN	White et al., 1985	543A-11- 2	DSDP Site 543	Maastrichtian basalts	0,513052	8,1	0,70328	
CARIBBEAN	White et al., 1985	543A-11- 2	DSDP Site 543	Maastrichtian basalts	0,513083	8,7	0,70283	
CARIBBEAN	White et al., 1985	543A-11- 2	DSDP Site 543	Maastrichtian basalts	0,513085	8,7	0,70281	
CARIBBEAN	White et al., 1985	543A-15- 3	DSDP Site 543	Maastrichtian basalts	0,513048	8,0	0,70298	
CARIBBEAN	White et al., 1985	543A-15- 3	DSDP Site 543	Maastrichtian basalts	0,513168	10,3	0,70274	
CARIBBEAN	White et al., 1985	543A-15- 3	DSDP Site 543	Maastrichtian basalts	0,513104	9,1	0,70282	
CARIBBEAN	White et al., 1985	543A-16- 7	DSDP Site 543	Maastrichtian basalts	0,513084	8,7	0,70304	
CARIBBEAN	White et al., 1985	543A-16- 7	DSDP Site 543	Maastrichtian basalts	0,513111	9,2	0,7028	
CARIBBEAN	White et al., 1985	543A-16- 7	DSDP Site 543	Campanian basalts	0,513083	8,7	0,70282	
	Kerr et al., 2009	Leg 165 Site 1001A	Cretaceous basalts	Leached basalt	0,513266	12,3	0,70267 3	1,087
CARIDDEAN		33N-2						

CARIBBEAN	Kerr et al., 2009	Leg 165 Site 1001A 53R-3	Cretaceous basalts	Leached basalt	0,513232	11,6	0,70266 1 0,492
CARIBBEAN	Kerr et al., 2009	Leg 165 Site 1001A 53R-4	Cretaceous basalts	Leached basalt	0,513248	11,9	0,70274 2 0,866
CARIBBEAN	Kerr et al., 2009	Leg 165 Site 1001A 54R-1	Cretaceous basalts	Leached basalt	0,513250	11,9	0,70276 1 0,604
CARIBBEAN	Kerr et al., 2009	Leg 165 Site 1001A 54R-3	Cretaceous basalts	Leached basalt	0,513232	11,6	0,70281 3 0,587
CARIBBEAN	Kerr et al., 2009	Leg 165 Site 1001A 54R-4	Cretaceous basalts	Leached basalt	0,513237	11,7	0,70292 6 0,603
CARIBBEAN	Kerr et al., 2009	Leg 165 Site 1001A 54R-5	Cretaceous basalts	Leached basalt	0,513235	11,6	0,70266 5 0,560
CARIBBEAN	Kerr et al., 2009	Leg 165 Site 1001A 54R-6	Cretaceous basalts	Leached basalt	0,513240	11,7	0,70250 6 0,449
CARIBBEAN	Kerr et al., 2009	Leg 165 Site	Cretaceous basalts	Leached basalt	0,513237	11,7	0,70275 8 0,545

IO01A 55R-1 Leg 165 Cretaceous basalts Leached basalt 0,513251 12,0 0,70283 1 0,696 CARIBBEAN S5R-1 Leg 165 Cretaceous basalts Leached basalt 0,513251 11,6 0,70288 1 0,696 CARIBBEAN S5R-1 Leg 165 Cretaceous basalts Leached basalt 0,513231 11,6 0,70288 4 0,452 CARIBBEAN S5R-1 Leg 165 Cretaceous basalts Leached basalt 0,513231 11,5 0,70287 7 0,612 CARIBBEAN S6R-2 Leg 165 Cretaceous basalts Leached basalt 0,513231 11,6 0,70287 7 0,612 CARIBBEAN S6R-3, 74 Leg 165 Cretaceous basalts Leached basalt 0,513231 11,6 0,70281 0,685 CARIBBEAN S6R-3, 74 Leg 165 Cretaceous basalts Leached basalt 0,513231 11,6 0,70280 0,661 CARIBBEAN S6R-3, 74 Leg 165 Cretaceous Devil Racecourse Iavas 0,513110 9,2 0,70439 CARIBBEAN Hastie et al., 2009 AHB101 Jamaica Iavas 0,513010 7,3 0,70439 CARIBBEAN Hastie et al.									
Kerr et al., 2009 Site 1001A Cretaceous basalts Leached basalt 0,513251 12,0 0,70283 1 CARIBBEAN 58R-2 Leg 165 Site Cretaceous basalts Leached basalt 0,513251 12,0 0,70283 1 CARIBBEAN Kerr et al., 2009 Site Cretaceous basalts Leached basalt 0,513251 11,6 0,70288 0,452 CARIBBEAN Kerr et al., 2009 Site Cretaceous basalts Leached basalt 0,513225 11,5 0,70287 0,612 CARIBBEAN Kerr et al., 2009 Site Cretaceous basalts Leached basalt 0,513231 11,6 0,70287 0,612 CARIBBEAN Kerr et al., 2009 Site Cretaceous basalts Leached basalt 0,513231 11,6 0,70281 0,663 CARIBBEAN Kerr et al., 2009 Site Cretaceous basalts Leached basalt 0,513231 11,6 0,70280 0,663 CARIBBEAN Hastie et al., 2009 AHBI01 Jamaica Cretaceous Devil Racecourse 0,513010 <td></td> <td></td> <td>1001A 55R-1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			1001A 55R-1						
CARIBBEAN Kerr et al., 2009 Site 1001A Cretaceous basalts Leached basalt 0,513231 11,6 0,70288 4 0,452 CARIBBEAN S6R-1 Leg 165 Site 1001A Cretaceous basalts Leached basalt 0,513231 11,6 0,70288 4 0,452 CARIBBEAN Kerr et al., 2009 Site 1001A Cretaceous basalts Leached basalt 0,513231 11,6 0,70287 7 0,612 CARIBBEAN Kerr et al., 2009 Site 1001A Cretaceous basalts Leached basalt 0,513231 11,6 0,70281 0,683 CARIBBEAN Kerr et al., 2009 Site 1001A Cretaceous basalts Leached basalt 0,513231 11,6 0,70281 0,683 CARIBBEAN S6R-3, 74 Leg 165 Cretaceous basalts Leached basalt 0,513231 11,6 0,70280 0,661 CARIBBEAN Hastie et al., 2009 AHBI01 Jamaica Leached basalt 0,513231 9,2 0,70439 CARIBBEAN Hastie et al., 2009 AHBI03 Jamaica Leached basalt 0,513010 9,2 0,70443 CARIBBEAN Hastie et al.,		Kerr et al., 2009	Site 1001A	Cretaceous basalts	Leached basalt	0,513251	12,0	0,70283 1	0,696
Kerr et al., 2009 Site 1001A SGR-1 Cretaceous basalts Leached basalt 0,513231 11,6 0,70288 4 0,452 CARIBBEAN Kerr et al., 2009 Site 1001A Cretaceous basalts Leached basalt 0,513231 11,6 0,70288 4 0,612 CARIBBEAN Kerr et al., 2009 J001A 1001A Cretaceous basalts Leached basalt 0,513231 11,6 0,70287 7 0,612 CARIBBEAN Kerr et al., 2009 J001A 1001A Cretaceous basalts Leached basalt 0,513231 11,6 0,70281 0,612 CARIBBEAN Kerr et al., 2009 J001A 1001A Cretaceous basalts Leached basalt 0,513231 11,6 0,70281 0,689 CARIBBEAN Kerr et al., 2009 J001A Cretaceous basalts Leached basalt 0,513234 11,6 0,70280 0,661 CARIBBEAN Hastie et al., 2009 AHBI01 Jamaica Cretaceous Devil Racecourse lavas 0,513010 9,2 0,70439 0,70439 CARIBBEAN Hastie et al., 2009 AHBI03 Jamaica Iavas <td>CARIBBEAN</td> <td></td> <td>55R-2 Leg 165</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	CARIBBEAN		55R-2 Leg 165						
CARIBBEANKerr et al., 2009Sok-1 Leg 165 Site 1001ACretaceous basaltsLeached basalt0,51322511,50,70287 70,612CARIBBEAN56R-2 Leg 165 Site 1001ACretaceous basaltsLeached basalt0,51323111,60,702810,689CARIBBEAN663,7,74 Leg 165 Site 1001ACretaceous basaltsLeached basalt0,51323111,60,702810,669CARIBBEAN56R-3, 1311001A S6R-3, 131Cretaceous basaltsLeached basalt0,51323411,60,70280 40,661CARIBBEANHastie et al., 2009AHBI01JamaicaCretaceous Devil Racecourse lavas0,5131009,20,70439CARIBBEANHastie et al., 2009AHBI03JamaicaCretaceous Devil Racecourse lavas0,5130008,80,70441CARIBBEANHastie et al., 2009AHBI03JamaicaCretaceous Devil Racecourse lavas0,5130107,30,70426CARIBBEANHastie et al., 2009AHBI27JamaicaCretaceous Devil Racecourse lavas0,5130107,30,70426		Kerr et al., 2009	Site 1001A	Cretaceous basalts	Leached basalt	0,513231	11,6	0,70288 4	0,452
Kerr et al., 2009 Site 1001A 56R-2 Cretaceous basalts Leached basalt 0,513225 11,5 0,70287 7 0,612 7 CARIBBEAN Kerr et al., 2009 Site 1001A Cretaceous basalts Leached basalt 0,513225 11,6 0,70287 7 0,612 CARIBBEAN Kerr et al., 2009 Site 1001A Cretaceous basalts Leached basalt 0,513231 11,6 0,70280 0,661 CARIBBEAN Kerr et al., 2009 1001A Cretaceous basalts Leached basalt 0,513234 11,6 0,70280 0,661 CARIBBEAN Kerr et al., 2009 1001A Cretaceous basalts Leached basalt 0,513234 11,6 0,70280 0,661 CARIBBEAN Hastie et al., 2009 AHBI01 Jamaica Cretaceous Devil Racecourse lavas 0,513100 9,2 0,70439 0,70439 CARIBBEAN Hastie et al., 2009 AHBI03 Jamaica Iavas 0,513000 8,8 0,70441 CARIBBEAN Hastie et al., 2009 AHBI03 Jamaica Iavas 0,513010 <	CARIBBEAN		56R-1 Leg 165						
CARIBBEAN56R-2 Leg 165 Site 1001ACretaceous basaltsLeached basalt0,51323111,60,702810,689CARIBBEAN56R-3,74 Leg 165 Site Kerr et al., 200956R-3,74 Leg 165 Site 1001ACretaceous basaltsLeached basalt0,51323111,60,70280 0,702800,661CARIBBEAN56R-3, 1311001A 56R-3, 131Cretaceous basaltsLeached basalt0,51323411,60,70280 40,661CARIBBEANHastie et al., 2009AHBI01JamaicaCretaceous Devil Racecourse lavas0,5131109,20,70439CARIBBEANHastie et al., 2009AHBI03JamaicaCretaceous Devil Racecourse lavas0,5130008,80,70441CARIBBEANHastie et al., 2009AHBI03Jamaicalavas0,5130107,30,70426CARIBBEANHastie et al., 2009AHBI13Jamaicalavas0,5130107,30,70426CARIBBEANHastie et al., 2009AHBI13Jamaicalavas0,5130107,30,70426		Kerr et al., 2009	Site 1001A	Cretaceous basalts	Leached basalt	0,513225	11,5	0,70287 7	0,612
Kerr et al., 2009Site 1001A S6R-3, 74 Leg 165 SiteCretaceous basaltsLeached basalt0,51323111,60,702810,685CARIBBEAN56R-3, 74 Leg 165 Site1001A S6R-3, 74 131Cretaceous basaltsLeached basalt0,51323411,60,70280 40,661CARIBBEANHastie et al., 2009AHBI01JamaicaCretaceous Devil Racecourse lavas0,5131109,20,70439CARIBBEANHastie et al., 2009AHBI03JamaicaCretaceous Devil Racecourse lavas0,5130908,80,70441CARIBBEANHastie et al., 2009AHBI03JamaicaCretaceous Devil Racecourse lavas0,5130908,80,70441CARIBBEANHastie et al., 2009AHBI03JamaicaIavas0,5130107,30,70426CARIBBEANHastie et al., 2009AHBI13JamaicaCretaceous Devil Racecourse lavas0,5130107,30,70426	CARIBBEAN		56R-2 Leg 165						
CARIBBEAN56R-3, 74 Leg 165 SiteLeg 165 SiteCretaceous basaltsLeached basalt0,51323411,60,70280 40,661Kerr et al., 20091001A 56R-3, 131Cretaceous basaltsLeached basalt0,51323411,60,70280 40,661CARIBBEAN131131Cretaceous Devil Racecourse lavas0,5131109,20,704390,70439CARIBBEANHastie et al., 2009AHBI01JamaicaCretaceous Devil Racecourse lavas0,5130908,80,70441CARIBBEANHastie et al., 2009AHBI03Jamaicalavas0,5130107,30,70426CARIBBEANHastie et al., 2009AHBI13Jamaicalavas0,5130107,30,70426CARIBBEANHastie et al., 2009AHBI27Jamaicalavas0,5130107,30,70426		Kerr et al., 2009	Site 1001A	Cretaceous basalts	Leached basalt	0,513231	11,6	0,70281	0,689
Kerr et al., 20091001A 1001A 56R-3, 131Cretaceous basaltsLeached basalt0,51323411,60,70280 	CARIBBEAN		56R-3, 74 Leg 165						
CARIBBEAN 131 Cretaceous Devil Racecourse 9,2 0,70439 CARIBBEAN Hastie et al., 2009 AHBI01 Jamaica Iavas 0,513110 9,2 0,70439 CARIBBEAN Hastie et al., 2009 AHBI03 Jamaica Iavas 0,513090 8,8 0,70441 Cretaceous Devil Racecourse Iavas 0,513010 7,3 0,70426 CARIBBEAN Hastie et al., 2009 AHBI13 Jamaica Iavas 0,513010 7,3 CARIBBEAN Hastie et al., 2009 AHBI27 Iamaica Cretaceous Devil Racecourse 7,3 0,70426		Kerr et al 2009	Site 1001A	Cretaceous basalts	Leached basalt	0.513234	11.6	0,70280	0.661
CARIBBEANHastie et al., 2009AHBI01JamaicaCretaceous Devil Racecourse lavas9,2 0,5131100,70439CARIBBEANHastie et al., 2009AHBI03Jamaicalavas0,5130908,8 0,70441CARIBBEANHastie et al., 2009AHBI13Jamaicalavas0,5130107,3 0,70426CARIBBEANHastie et al., 2009AHBI13Jamaicalavas0,5130107,3 0,70426CARIBBEANHastie et al., 2009AHBI13JamaicaCretaceous Devil Racecourse lavas7,3 	CARIBBEAN		56R-3,			0,0 - 0 - 0 - 0	,.	4	0,000
CARIBBEANHastie et al., 2009AHBI01JamaicaIavas0,5131105,20,70439CARIBBEANHastie et al., 2009AHBI03JamaicaIavas0,5130908,80,70441CARIBBEANHastie et al., 2009AHBI13JamaicaIavas0,5130107,30,70426CARIBBEANHastie et al., 2009AHBI27JamaicaCretaceous Devil Racecourse7,30,70426CARIBBEANHastie et al., 2009AHBI27JamaicaCretaceous Devil Racecourse0,5130108,40,70456	CANIDDLAN		131		Cretaceous Devil Racecourse		0.2		
CARIBBEANHastie et al., 2009AHBI03JamaicaIavas0,5130908,80,70441CARIBBEANHastie et al., 2009AHBI13JamaicaIavas0,5130107,30,70426CARIBBEANHastie et al., 2009AHBI27JamaicaCretaceous Devil Racecourse0,5130108,40,70456	CARIBBEAN	Hastie et al., 2009	AHBI01	Jamaica	lavas Crotosous Davil Decessoures	0,513110	9,2	0,70439	
Cretaceous Devil Racecourse CARIBBEAN Hastie et al., 2009 AHBI13 Jamaica Cretaceous Devil Racecourse 0,513010 7,3 0,70426 CARIBBEAN Hastie et al., 2009 AHBI27 Jamaica Cretaceous Devil Racecourse 0,513070 8,4 0,70456	CARIBBEAN	Hastie et al., 2009	AHBI03	Jamaica	lavas	0,513090	8,8	0,70441	
CARIBBEAN Hastie et al., 2009 AHBI27 Jamaica Cretaceous Devil Racecourse 0.513070 8.4 0.70456	CARIBBEAN	Hastie et al 2009	AHRI13	lamaica	Cretaceous Devil Racecourse lavas	0.513010	7,3	0.70426	
	CARIBBEAN	Hastie et al., 2009	AHBI27	Jamaica	Cretaceous Devil Racecourse	0,513070	8,4	0,70456	

				lavas				
MESOZOIC			Cretaceous Mafic			3.9	0,70355	
VOLCA.	Kay et al., 1994	V87	rocks South America	Mafic rocks	0,512839	3,3	2	
MESOZOIC			Cretaceous Mafic			5.2		
VOLCA.	Kay et al., 1994 Rogers and	SA3	rocks South America	Mafic rocks	0,512907	-,	0,70333	
MESOZOIC	Hawkesworth,		Negra Formation			4,5		
VOLCA.	1989 Rogers and	8077	(187 Ma)	Mafic rocks	0,512870		0,70644	0,600
MESOZOIC	Hawkesworth,		Negra Formation			3,6		
VOLCA.	1989	8078	(187 Ma)		0,512820		0,70654	0,690
	Rogers and							
MESOZOIC	Hawkesworth,		Negra Formation		0 = 4 0 = 0 0	2,8		
VOLCA.	1989 Rogers and	8086	(187 Ma)		0,512780		0,70474	0,800
MESOZOIC	Hawkesworth,		Negra Formation			5,5		
VOLCA.	1989 Rogers and	8084	(187 Ma)		0,512920		0,70562	0,524
MESOZOIC	Hawkesworth,		Negra Formation			4,9		
VOLCA.	1989 Rogers and	8092	(187 Ma)		0,512890		0,70962	0,519
MESOZOIC	Hawkesworth,		Negra Formation			3,9		
VOLCA.	1989	8093	(187 Ma)		0,512840		0,70785	0,668
	Rogers and							
MESOZOIC	Hawkesworth,		Negra Formation			4,5		
VOLCA.	1989 Rogers and	8097	(187 Ma)		0,512870		0,70601	0,627
MESOZOIC	Hawkesworth,		Negra Formation			4,7		
VOLCA.	1989	8098	(187 Ma)		0,512880		0,70559	0,598

	Rogers and						
MESOZOIC	Hawkesworth,				5,1		
VOLCA.	1989	8059	Gatico (158 Ma)	0,512900		0,70362	0,640
	Rogers and						
MESOZOIC	Hawkesworth,				5,9		
VOLCA.	1989	8062	Gatico (158 Ma)	0,512940		0,70368	0,616
	Rogers and						
MESOZOIC	Hawkesworth,				5,5		
VOLCA.	1989	8073	Gatico (158 Ma)	0,512920		0,70435	0,505
	Rogers and						
MESOZOIC	Hawkesworth,				3,0		
VOLCA.	1989	81075	Tocopilla (155 Ma)	0,512790		0,70491	0,764
	Rogers and						
MESOZOIC	Hawkesworth,				2,4		
VOLCA.	1989	81076	Tocopilla (155 Ma)	0,512760		0,70845	0,700
	Rogers and						
MESOZOIC	Hawkesworth,	04070	T (455 MA)	0.510000	3,7	0 70000	0.504
VOLCA.	1989	81078	Tocopilla (155 Ma)	0,512830		0,70699	0,594
	Rogers and						
MESOZOIC	Hawkesworth,	TOCA		0 513050	4,1	0 70424	0.645
VOLCA.	1989 Decers and	1004	Tocopilia (155 Ma)	0,512850		0,70424	0,615
	Rogers and				26		
WESUZUIC	1090	TOCE	Tocopilla (155 Ma)	0 513770	2,0	0 20020	0 725
VOLCA.	1909 Degars and	1005		0,512770		0,70828	0,725
	Howkosworth				2 2		
VOLCA	1020	TOCE	Tocopilla (155 Ma)	0.512800	5,2	0 70777	0 502
VOLCA.	Bogers and	1000		0,512800		0,70777	0,395
MESOZOIC	Hawkesworth				19		
VOLCA	1989	TOC7	Toconilla (155 Ma)	0 512800	4,5	0 70556	0 546
VOLCA.	1909	1007		0,512050		0,10550	0,540

	Rogers and						
MESOZOIC	Hawkesworth,		Cerro Colupito (155		2,6		
VOLCA.	1989	81094	Ma)	0,512770		0,70473	0,767
	Rogers and						
MESOZOIC	Hawkesworth,		Sierra de la Cruz (156		3,6		
VOLCA.	1989	81105	Ma)	0,512820		0,70506	0,624
	Rogers and						
MESOZOIC	Hawkesworth,		Sierra de la Cruz (156		3,2		
VOLCA.	1989	81106	Ma)	0,512800		0,7043	0,642
	Rogers and						
MESOZOIC	Hawkesworth,		Indio Muerto		-2,5		
VOLCA.	1989	81055	Formation (105 Ma)	0,512510		0,70617	1,138
	Rogers and						
MESOZOIC	Hawkesworth,		Indio Muerto		-0,5		
VOLCA.	1989	81056	Formation (105 Ma)	0,512610		0,70535	0,996
	Rogers and						
MESOZOIC	Hawkesworth,		Augusta Victoria		2,4		
VOLCA.	1989	81130	Formation (105 Ma)	0,512760		0,70489	0,528
	Rogers and						
MESOZOIC	Hawkesworth,		Augusta Victoria		3,6		
VOLCA.	1989	81131	Formation (105 Ma)	0,512820		0,70741	0,445
	Rogers and						
MESOZOIC	Hawkesworth,		Augusta Victoria		4,1		
VOLCA.	1989	81132	Formation (105 Ma)	0,512850		0,70514	0,424
	Rogers and						
MESOZOIC	Hawkesworth,		Augusta Victoria		2,8		
VOLCA.	1989	81134	Formation (105 Ma)	0,512780		0,70433	0,764
	Rogers and						
MESOZOIC	Hawkesworth,		Augusta Victoria		3,2		
VOLCA.	1989	81136	Formation (105 Ma)	0,512800		0,70415	0,751

	Rogers and						
MESOZOIC	Hawkesworth,		Cerro Negro		1,6		
VOLCA.	1989	81019	Formation (70 Ma)	0,512720		0,70586	0,559
	Rogers and						
MESOZOIC	Hawkesworth,		Cerro Negro		1,8		
VOLCA.	1989	81020	Formation (70 Ma)	0,512730		0,70514	0,710
	Rogers and		Cerros de				
MESOZOIC	Hawkesworth,		Montecristo (102		0,8		
VOLCA.	1989	81126	Ma)	0,512680		0,70548	0,744
	Rogers and		Cerros de				
MESOZOIC	Hawkesworth,		Montecristo (102		1,2		
VOLCA.	1989	81129	Ma)	0,512700		0,70501	0,719
	Rogers and		Cerros de				
MESOZOIC	Hawkesworth,		Montecristo (102		1,0		
VOLCA.	1989	81139	Ma)	0,512690		0,70684	0,782
	Rogers and						
MESOZOIC	Hawkesworth,		Cerritos Bayos (100		1,4		
VOLCA.	1989	81038	Ma)	0,512710		0,7068	0,786
	Rogers and						
MESOZOIC	Hawkesworth,		Cerritos Bayos (100		1,8		
VOLCA.	1989	81048	Ma)	0,512730		0,7058	0,876
	Rogers and						
MESOZOIC	Hawkesworth,		Cerritos Bayos (100		2,2		
VOLCA.	1989	81051	Ma)	0,512750		0,70476	0,740
	Rogers and						
MESOZOIC	Hawkesworth,				0,6		
VOLCA.	1989	81089	Pampa Negra (79 Ma)	0,512670		0,70547	0,998
	Rogers and						
MESOZOIC	Hawkesworth,				-0,4		
VOLCA.	1989	81091	Pampa Negra (79 Ma)	0,512620		0,70455	1,258
CRETACEO	US Martin et al., 2012	1260A 36- 2, 48-51	leg 207 Demerara Rise	Cretaceous sediments	0,511826	-15,8	
----------	------------------------	-----------------------------	----------------------------------	----------------------	----------	-------	
CRETACEO	Martin et al., 2012	1260A 38- 3 43-46	leg 207 Demerara Rise	Cretaceous sediments	0,511737	-17,6	
CRETACEO	US Martin et al., 2012	1260B 26- 7 10-12	leg 207 Demerara Rise	Cretaceous sediments	0,511633	-19,6	
CRETACEO	US Martin et al., 2012	1260B 35- 4 103-104	leg 207 Demerara Rise	Cretaceous sediments	0,511765	-17,0	
CRETACEO	US Martin et al., 2012	1260A 48- 4 10-12	leg 207 Demerara Rise	Cretaceous sediments	0,511805	-16,2	
CRETACEO	US Martin et al., 2012	1260A 49- 2 36.5-38	leg 207 Demerara Rise	Cretaceous sediments	0,511857	-15,2	
CRETACEO	US Martin et al., 2012	41-367- 14-3,11- 14	late Paleocene - early Eocene	Fish Teeth	0,512143	-9,7	
CRETACEO	US Martin et al., 2012	41-367- 14-3,125- 127	late Paleocene - early Eocene	FT	0,512126	-10,0	
CRETACEO	US Martin et al., 2012	41-367- 14-4,63- 65	late Paleocene - early Eocene	FT	0,512104	-10,4	
CRETACEO	US Martin et al., 2012	41-367- 14-4,100- 104	late Paleocene - early Eocene	FT	0,512071	-11,1	
CRETACEO	US Martin et al., 2012	41-367- 15-2,17- 20	Maastrichtian- Campanian	FT	0,511909	-14,2	
CRETACEO	US Martin et al., 2012	41-367-	Maastrichtian-	FT	0,511936	-13,7	

		15-3,84-	Campanian			
		88				
		41-367-	Maastrichtian-			
CRETACEOUS	Martin et al., 2012	15-4,117-	Campanian	FT	0,511884	-14,7
		119				
		41-367-	Maastrichtian-		0 544050	42.4
CRETACEOUS	Martin et al., 2012	15-5,87- on	Campanian	FI	0,511950	-13,4
		09 41-367-				
CRETACEOUS	Martin et al., 2012	16-2.100-	Maastrichtian-	FT	0.512000	-12.4
	,	102.5	Campanian		-,	,
		41-367-	Maastrichtige			
CRETACEOUS	Martin et al., 2012	16-3,61-	Maastrichtian-	FT	0,512039	-11,7
		65	Campanian			
		41-367-	Maastrichtian-			
CRETACEOUS	Martin et al., 2012	17-1,121-	Campanian	FT	0,512077	-10,9
		124				
CRETACEOUS	Martin et al 2012	41-507-	Conjacian	oxide	0 512120	-10 1
CRETACLOOD		139	comacian	UNICE	0,312120	10,1
		41-367-				
CRETACEOUS	Martin et al., 2012	17-4,137-	Coniacian	FT	0,512128	-9,9
		139				
		41-367-	Cenomanian/Turonia			
CRETACEOUS	Martin et al., 2012	18-1,63-	n	oxide	0,512140	-9,7
		69				
CRETACEOUS	Martin at al 2012	41-36/-	Cenomanian/Turonia	FT	0 512167	0.2
CRETACEOUS	wartin et al., 2012	-1,03- 69	n	FI	0,512167	-9,2
CRETACEOUS	Martin et al., 2012	41-367-	Cenomanian/Turonia	FT	0.512202	-8.5
0.12.17.02000					0,012202	-,-

		18-1,90- 104	n			
CRETACEOUS	Martin et al., 2012	41-367- 18-1,90- 104	Cenomanian/Turonia n	FT	0,512190	-8,7
CRETACEOUS	Martin et al., 2012	41-367- 18-1,125- 132	Cenomanian/Turonia n	FT	0,512208	-8,4
CRETACEOUS	Martin et al., 2012	41-367- 18-2,5-7	Cenomanian/Turonia n	oxide	0,512196	-8,6
CRETACEOUS	Martin et al., 2012	41-367- 18-2,71- 73	Cenomanian/Turonia n	oxide	0,512148	-9,6
CRETACEOUS	Martin et al., 2012	41-367- 18-2,71- 73	Cenomanian/Turonia n	FT	0,512158	-9,4
CRETACEOUS	Martin et al., 2012	41-367- 18-3,20- 22	Cenomanian/Turonia n	oxide	0,512210	-8,3
CRETACEOUS	Martin et al., 2012	41-367- 18-3,20- 22	Cenomanian/Turonia n	FT	0,512195	-8,6
CRETACEOUS	Martin et al., 2012	41-367- 18-4,23- 26	Cenomanian/Turonia n	oxide	0,512159	-9,3
CRETACEOUS	Martin et al., 2012	41-367- 18-4,23- 26	Cenomanian/Turonia n	FT	0,512179	-9,0
CRETACEOUS	Martin et al., 2012	41-367- 18-4,87.5-	Cenomanian/Turonia n	FT	0,512164	-9,2

CRETACEOUS	Martin et al., 2012	90.5 41-367- 18-4,87.5- 90.5	Cenomanian/Turonia n	FT	0,512165	-9,2	
CRETACEOUS	Martin et al., 2012	41-367- 18-5,99- 102	Cenomanian	FT	0,512142	-9,7	
CRETACEOUS	Martin et al., 2012	41-367- 19-2,5-10	Cenomanian	FT	0,512109	-10,3	
CRETACEOUS	Martin et al., 2012	41-367- 20-2,24- 27	Cenomanian	oxide	0,512127	-10,0	
CRETACEOUS	Martin et al., 2012	41-367- 20-2,24- 27	Cenomanian	FT	0,512126	-10,0	
CRETACEOUS	Martin et al., 2012	41-367- 20-4,47- 50	Cenomanian	oxide	0,512128	-9,9	
CRETACEOUS	Martin et al., 2012	41-367- 20-4,47-	Cenomanian	FT	0,512172	-9,1	
CRETACEOUS	Martin et al., 2012	41-367- 20-4,96-	Cenomanian	oxide	0,512117	-10,2	
CRETACEOUS	Martin et al., 2012	100 41-367- 20-4,96-	Cenomanian	FT	0,512102	-10,5	
		100					
CAMP	Deckart et al., 2005	G1	French Guyana, Surinam (CAMP	Tholeiites CAMP	0,512600	-0,7	0,70455 1 0,679

САМР	Deckart et al., 2005	G3	dykes) French Guyana, Surinam (CAMP dykes)	Tholeiites CAMP	0,512642	0,1	0,70538 7	0,768
САМР	Deckart et al., 2005	G43	French Guyana, Surinam (CAMP dykes)	Tholeiites CAMP	0,512629	-0,2	0,70447 9	0,62
САМР	Deckart et al., 2005	G48	French Guyana, Surinam (CAMP dykes)	Tholeiites CAMP	0,512677	0,8	0,70343 5	0,562
CAMP	Deckart et al., 2005	G53	French Guyana, Surinam (CAMP dykes)	Tholeiites CAMP	0,512669	0,6	0,70368 6	0,925
САМР	Deckart et al., 2005	200	French Guyana, Surinam (CAMP dykes)	Tholeiites CAMP	0,512628	-0,2	0,70440 5	0,629
САМР	Deckart et al., 2005	SIN53	French Guyana, Surinam (CAMP dykes)	Tholeiites CAMP	0,512610	-0,5	0,70449 4	0,575
CAMP	Deckart et al., 2005	SUR19	French Guyana, Surinam (CAMP dykes)	Tholeiites CAMP	0,512608	-0,6	0,70422 4	0,812
САМР	Klein et al., 2013	EK8	Parnaíba Province (Sao Luis Craton mafic dyke) Parnaíba Province	Diabase and microgabbro	0,512865	4,4	0,70521 4	0,690
CAMP	Klein et al., 2013	EK11	(Sao Luis Craton mafic dyke)	Diabase and microgabbro	0,512875	4,6	0,70515 4	0,630
CAMP	Klein et al., 2013	EK111	Parnaíba Province	Diabase and microgabbro	0,512869	4,5	0,70461	0,690

			(Sao Luis Craton mafic dyke)				5	
CAMP	Klein et al., 2013	EK10B	Parnaíba Province (Sao Luis Craton mafic dyke)	Diabase and microgabbro	0,512863	4,4	0,70359 9	0,710
CAMP	Klein et al., 2013	EK26B	Parnaíba Province (Sao Luis Craton mafic dyke)	Diabase and microgabbro	0,512866	4,4	0,70391 8	0,590
CAMP	Klein et al., 2013	EK30	Parnaíba Province (Sao Luis Craton mafic dyke)	Diabase and microgabbro	0,512874	4,6	0,70412 8	0,680
CAMP	Klein et al., 2013	JH321A	Parnaíba Province (Sao Luis Craton mafic dyke)	Diabase and microgabbro	0,512753	2,2	0,70421 4	0,750
CAMP	Klein et al., 2013	EK13	Parnaíba Province (Sao Luis Craton mafic dyke)	Diabase and microgabbro	0,512869	4,5	0,70459 1	0,620
CAMP	Klein et al., 2013	JH328C	Parnaíba Province (Sao Luis Craton mafic dyke)	Diabase and microgabbro	0,512860	4,3	0,70353 1	0,610
CAMP	Klein et al., 2013	EK16	Parnaíba Province (Sao Luis Craton mafic dyke)	Diabase and microgabbro	0,512823	3,6	0,70378 2	0,710
CAMP	Klein et al., 2013	EK42A	Parnaíba Province (Sao Luis Craton mafic dyke)	Diabase and microgabbro	0,512816	3,5	0,70370 2	0,770
CAMP	Klein et al., 2013	EK141	Parnaíba Province (Sao Luis Craton mafic dyke)	Diabase and microgabbro	0,512778	2,7	0,70389 7	0,620
CAMP	Klein et al., 2013	EK21	Parnaíba Province	Diabase and microgabbro	0,512646	0,2	0,70385	0,690

			(Sao Luis Craton mafic dyke)				2	
САМР	Klein et al., 2013	EK37A	Parnaíba Province (Sao Luis Craton mafic dyke)	Diabase and microgabbro	0,512778	2,7	0,70374 2	0,520
САМР	Klein et al., 2013	EK293	Parnaíba Province (Sao Luis Craton mafic dyke)	Diabase and microgabbro	0,512895	5,0	0,70415 6	0,320
CAMP	Klein et al., 2013	EK315	Parnaíba Province (Sao Luis Craton mafic dyke)	Diabase and microgabbro	0,512883	4,8	0,70354 4	0,660
САМР	Merle et al., 2011	M10	Western Maranhão basin (NE Brazil)	CAMP tholeiites	0,512867	4,5	0,70444 0	0,692
САМР	Merle et al., 2011	M12	Western Maranhão basin (NE Brazil)	CAMP tholeiites	0,512883	4,8	0,70441 4	0,621
CAMP	Merle et al., 2011	M13	Western Maranhão basin (NE Brazil)	CAMP tholeiites	0,512939	5,9	0,70318 4	0,825
CAMP	Merle et al., 2011	M15	Western Maranhão basin (NE Brazil)	CAMP tholeiites	0,512926	5,6	0,70324 2	0,868
CAMP	Merle et al., 2011	M19	Western Maranhão basin (NE Brazil)	CAMP tholeiites	0,512485	-3,0	0,70694 3	1,715
САМР	Merle et al., 2011	M26	Western Maranhão basin (NE Brazil)	CAMP tholeiites	0,512483	-3,0	0,70798 5	1,689
PRECAMBRIAN	Gruau et al, 1985	T100	Guiana Shield	peridotitic Komatiite	0,512182	-8,9		2,2
PRECAMBRIAN	Gruau et al, 1985	M111	Guiana Shield	peridotitic Komatiite	0,512162	-9,3		2,2
PRECAMBRIAN	Gruau et al, 1985	T160	Guiana Shield	peridotitic Komatiite	0,512302	-6,6		2,2
PRECAMBRIAN	Gruau et al, 1985	T188	Guiana Shield	peridotitic Komatiite	0,512070	-11,1		2,2
PRECAMBRIAN	Gruau et al, 1985	L303	Guiana Shield	peridotitic Komatiite	0,512505	-2,6		2,6

PRECAMBRIAN	Gruau et al, 1985	H919	Guiana Shield	peridotitic Komatiite	0,512825	3,6	
PRECAMBRIAN	Gruau et al, 1985	R372	Guiana Shield	Tholeiite	0,512781	2,8	
PRECAMBRIAN	Gruau et al, 1985	L200	Guiana Shield	Tholeiite	0,511440	-23,4	2,2
PRECAMBRIAN	Gruau et al, 1985	L365	Guiana Shield	Andesite	0,511722	-17,9	2,3
PRECAMBRIAN	Rosa Costa et al. 2006	JM-60	Guiana Shield (SE)	Precambrian crustal rocks	0,510475	-42,2	3,21
PRECAMBRIAN	Rosa Costa et al. 2006	MV-48	Guiana Shield (SE)	Precambrian crustal rocks	0,511032	-31,3	3,26
PRECAMBRIAN	Rosa Costa et al. 2006	MV-27A	Guiana Shield (SE)	Precambrian crustal rocks	0,510820	-35,5	3,19
PRECAMBRIAN	Rosa Costa et al. 2006	MV-39B	Guiana Shield (SE)	Precambrian crustal rocks	0,510940	-33,1	3,12
PRECAMBRIAN	Rosa Costa et al. 2006	LT-218	Guiana Shield (SE)	Precambrian crustal rocks	0,511207	-27,9	3,04
PRECAMBRIAN	Rosa Costa et al. 2006	LT-213	Guiana Shield (SE)	Precambrian crustal rocks	0,511103	-29,9	3,04
PRECAMBRIAN	Rosa Costa et al. 2006	JM-07	Guiana Shield (SE)	Precambrian crustal rocks	0,511115	-29,7	2,99
PRECAMBRIAN	Rosa Costa et al. 2006	MV-18A	Guiana Shield (SE)	Precambrian crustal rocks	0,511049	-31,0	3,01
PRECAMBRIAN	Rosa Costa et al. 2006	LT-40	Guiana Shield (SE)	Precambrian crustal rocks	0,510760	-36,6	2,83
PRECAMBRIAN	Rosa Costa et al. 2006	LT-216A	Guiana Shield (SE)	Precambrian crustal rocks	0,510784	-36,2	2,94
PRECAMBRIAN	Rosa Costa et al. 2006	LT-123A	Guiana Shield (SE)	Precambrian crustal rocks	0,510796	-35,9	2,92
PRECAMBRIAN	Rosa Costa et al. 2006	LT-11A	Guiana Shield (SE)	Precambrian crustal rocks	0,510939	-33,1	2,99
PRECAMBRIAN	Rosa Costa et al.	EK-89	Guiana Shield (SE)	Precambrian crustal rocks	0,511169	-28,7	2,3

	2006						
PRECAMBRIAN	Rosa Costa et al. 2006	MV-07	Guiana Shield (SE)	Precambrian crustal rocks	0,511415	-23,9	2,48
PRECAMBRIAN	Rosa Costa et al. 2006	LT-17	Guiana Shield (SE)	Precambrian crustal rocks	0,511424	-23,7	2,52
PRECAMBRIAN	Rosa Costa et al. 2006	JM-25	Guiana Shield (SE)	Precambrian crustal rocks	0,511000	-32,0	2,45
PRECAMBRIAN	Rosa Costa et al. 2006	MV-65A	Guiana Shield (SE)	Precambrian crustal rocks	0,511543	-21,4	2,45
PRECAMBRIAN	Rosa Costa et al. 2006	LT-206A	Guiana Shield (SE)	Precambrian crustal rocks	0,510886	-34,2	2,38
PRECAMBRIAN	Rosa Costa et al. 2006	LT-202A	Guiana Shield (SE)	Precambrian crustal rocks	0,511512	-22,0	2,44
PRECAMBRIAN	Rosa Costa et al. 2006	LT-196B	Guiana Shield (SE)	Precambrian crustal rocks	0,511422	-23,7	2,43
PRECAMBRIAN	Rosa Costa et al. 2006	LT-193	Guiana Shield (SE)	Precambrian crustal rocks	0,511583	-20,6	2,28
PRECAMBRIAN	Rosa Costa et al. 2006	LT-76	Guiana Shield (SE)	Precambrian crustal rocks	0,511512	-22,0	2,5
PRECAMBRIAN	Rosa Costa et al. 2006	LT-182C	Guiana Shield (SE)	Precambrian crustal rocks	0,511311	-25,9	2,4
PRECAMBRIAN	Rosa Costa et al. 2006	LT-61A	Guiana Shield (SE)	Precambrian crustal rocks	0,511664	-19,0	2,49
PRECAMBRIAN	Rosa Costa et al. 2006	LT-177	Guiana Shield (SE)	Precambrian crustal rocks	0,511199	-28,1	2,46
PRECAMBRIAN	Rosa Costa et al. 2006	LT207B	Guiana Shield (SE)	Precambrian crustal rocks	0,510993	-32,1	2,83
PRECAMBRIAN	Rosa Costa et al. 2006	LT-207B	Guiana Shield (SE)	Precambrian crustal rocks	0,511010	-31,8	2,82
PRECAMBRIAN	Rosa Costa et al.	LT-201	Guiana Shield (SE)	Precambrian crustal rocks	0,511382	-24,5	2,4

	2006						
PRECAMBRIAN	Rosa Costa et al. 2006	MV-70D	Guiana Shield (SE)	Precambrian crustal rocks	0,510571	-40,3	2,83
PRECAMBRIAN	Rosa Costa et al. 2006	LT-191A	Guiana Shield (SE)	Precambrian crustal rocks	0,511415	-23,9	2,32
PRECAMBRIAN	Rosa Costa et al. 2006	LT-185A	Guiana Shield (SE)	Precambrian crustal rocks	0,510938	-33,2	2,61
PRECAMBRIAN	Rosa Costa et al. 2006	MV-71A	Guiana Shield (SE)	Precambrian crustal rocks	0,510909	-33,7	2,68
PRECAMBRIAN	Rosa Costa et al. 2006	MV68A	Guiana Shield (SE)	Precambrian crustal rocks	0,510820	-35,5	2,63
PRECAMBRIAN	Avelar et al., 2003	CA13a	Guiana Shield (SE, Amapà)	Granulite	0,510909	-33,7	3,29
PRECAMBRIAN	Avelar et al., 2003	CA13b	Guiana Shield (SE, Amapà)	Granulite	0,510544	-40,8	2,92
PRECAMBRIAN	Avelar et al., 2003	CA17a	Guiana Shield (SE, Amapà)	orthogneiss	0,510747	-36,9	2,94
PRECAMBRIAN	Avelar et al., 2003	CA19b	Guiana Shield (SE, Amapà)	orthogneiss	0,511026	-31,4	2,96
PRECAMBRIAN	Avelar et al., 2003	BA14a	Guiana Shield (SE, Amapà)	Granulite	0,510542	-40,9	2,9
PRECAMBRIAN	Avelar et al., 2003	EG18	Guiana Shield (SE, Amapà)	Granite	0,510443	-42,8	3,06
PRECAMBRIAN	Avelar et al., 2003	EG02	Guiana Shield (SE, Amapà)	Tonalite	0,510508	-41,5	3,1
PRECAMBRIAN	Avelar et al., 2003	Sm- 03/80.4	Guiana Shield (SE, Amapà)	Gneiss	0,510737	-37,1	3,07
PRECAMBRIAN	Avelar et al., 2003	Sm- 03/87.2	Guiana Shield (SE, Amapà)	Gneiss	0,511071	-30,6	3,36

PRECAMBRIAN	Avelar et al., 2003	Sm- 03/72.5	Guiana Shield (SE, Amapà)	Gneiss	0,511128	-29,5	3,19
PRECAMBRIAN	Avelar et al., 2003	Sm- 03/52.0	Guiana Shield (SE, Amapà)	Gneiss	0,510752	-36,8	3,2
PRECAMBRIAN	Avelar et al., 2003	B85	Guiana Shield (SE, French Guyana)	Granodiorite	0,511543	-21,4	2,24
PRECAMBRIAN	Avelar et al., 2003	B25a	Guiana Shield (SE, French Guyana)	Granite	0,511417	-23,8	2,24
PRECAMBRIAN	Avelar et al., 2003	B107	Guiana Shield (SE, French Guyana)	Tonalite	0,511777	-16,8	2,32
PRECAMBRIAN	Avelar et al., 2003	B64a	Guiana Shield (SE, French Guyana)	Granodiorite	0,511653	-19,2	2,35
PRECAMBRIAN	Avelar et al., 2003	B34	Guiana Shield (SE, French Guyana)	Granite	0,511241	-27,3	2,36
PRECAMBRIAN	Avelar et al., 2003	B20	Guiana Shield (SE, French Guyana)	Paragneiss	0,511084	-30,3	2,41
PRECAMBRIAN	Avelar et al., 2003	B68a	Guiana Shield (SE, French Guyana)	Paragneiss	0,511405	-24,1	2,45
PRECAMBRIAN	Avelar et al., 2003	B99b	Guiana Shield (SE, French Guyana)	Granite	0,511256	-27,0	2,58

Annexe 7.

Annexe 7. Compilation des analyses de TOC, de δ^{13} C, des compositions isotopiques ¹⁴³Nd/¹⁴⁴Nd, et ⁸⁷Sr/⁸⁶Sr, des valeurs de $\varepsilon_{Nd(0)}$ des concentrations en éléments majeurs et traces, des anomalies en europium et en cérium, du CIA et enfin des rapports élémentaires effectuées dans cette étude sur les sites DSDP au large de la mage nord-ouest africaine.

Lee/Exp	Site	Hole	Core	Section	Half	Interv	al (cm)	Volume	Lithology	Organic	Sedimentary	513C (%.)	A ¹³ C STD	TOC (wt %)	TOC STD	17cr/46cr
to get to ap	Conte	more	Core	Section		Top	Bottom	(cm3)	Linited by	geochemistry	geochemistry	O O (ver)	0 0 510		100 010	347 34
14	137		5	1	W	50	60	10	Silty clay							
14	137		6	1	w	30	40	10	Silty clay	x	x	-24,1	0,9	0,13	0,06	0,727554
14	137		8	2	W	60	70	10	Marls	x	x	-26,2	0,6	1,02	0,08	0,730165
14	137		13	2	W	10	20	10	Maris	x	x	-24,7	1,2	0,29	0,00	0,722495
14	137		14	3	W	135	140	10	Marls	x	x	-26,0	0,1	0,08	0,00	0,717951
14	137		16	2	W	45	55	10	Marls	x	x	-25,6	0,5	3,14	0,10	0,729592
14	138		6	3	W	100	110	10	Clay		x					0,73788
41	367		15	2	W	50	60	10	Clay	x	x	-22,8	0,2	0,26	0,00	0,715854
41	367		16	2	W	50	60	10	Clay	x	x	-24,8	0,7	0,16	0,02	0,716095
41	367		17	4	Ŵ	100	110	10	Clay	x	x	-25,1	0,7	1,09	0,04	0,713189
41	367		18	2	W	50	60	10	Black shales	x	x	-22,5	1,4	5,16	0,09	0,714679
41	367		19	2	w	100	110	10	Black shales	x	x	-25,7	0,6	10,03	0,09	0,713916
41	367		20	4	W	50	60	10	Black shales	x	x	-26,5	0,4	13,49	0,02	0,726134
41	367		23	2	W	50	60	10	Clay	x	x	-24,0	0,2	0,73	0,35	0,710894
41	367		26	4	W	70	80	10	Maristones	x	x	-26,7	0,2	1,25	0,08	0,732661
41	367		27	1	W	125	130	10	Black shales	x	x	-27,1	0,6	2,59	0,32	0,726645
41	367		31	12	W	30	40	10	Marlstones	x	x	-28,1	0,2	2,18	0,12	0,740286
41	368		53	4	W	75	85	10	Silty clay	x	x	-26.3	0,5	0,08	0,00	0,724783
41	368		55	2	W	50	60	10	Silty clay	x	x	-26,1	0.8	0,22	0,16	0,718791
41	368		56	2	W	50	60	10	Black shales	x	x	-25.1	0.9	0,20	0.05	0,715137
41	368		57	3	W	60	70	10	Black shales	x	x	-25.1	0,9	0,21	0.06	0,715087
41	369	A.	38	2	w	30	40	10	Marlstones	x	x	-27,6	0.2	0,49	0.02	0.717501
41	369	A	38	3	W	50	60	10	Marlstones	x	x	-27,7	0,3	0,62	0.05	0,712316
41	369	A	39	2	w	70	80	10	Argillaceous chalkt	x	x	-28.2	0.7	0,50	0,03	0,721748
41	369	A	40	3	w	45	55	10	Marly clay	x	x	-26.0	0.7	0.41	0.01	0.718565
41	369	A	41	1	W	115	125	10	Marly clay	x	X	-27.5	0.0	11.84	0.81	0.716708
41	369	A	41	3	W	40	50	10	Marls	x	x	-26.2	0.7	6.67	1.65	0.711424
41	369	A	43	2	W	60	70	10	Marls	x	x	-25.9	0.9	4,47	0.09	0.728915
41	369	A	47	2	w	50	60	10	Silty marls and chalk	x	x	-26.6	0.7	2.63	0.13	0.730963
41	370		20	1	w	120	130	10	Black shales	x	x	-26.0	0.8	0.74	0.05	0.712865
41	370		22	2	W	50	60	10	Black shales	x	x	-25.9	0.6	0.90	0.11	0,710413
41	370		27	3	W	100	110	10	Black shales	x	X	-26.1	0.5	4,87	0,28	0.726263
50	415	A	7	1	W	20	30	10	Chalk	x	x	-25.8	0.6	0.19	0.00	0.710719
50	415	A	9	2	w	120	130	10	Silty clay	x	x	-26.5	1.2	1.55	0.21	0.711342
50	415	A	13	1	w	130	140	10	Marls	x	x	-25.7	0.9	0.92	0.15	0.715963
50	415	A	14	1	W	20	30	10	Silty clay	x	1.225	-26.1	0.1	0.89	0.04	1.540260.050
50	416	A	5	CC	w	25	15	10	Mudstone	x		-25.7	0.3	2.23	0.36	
50	416	A	6	1	w	15	25	10	Mudstone	x	x	-23.9	0.4	0.43	0.01	0.727969
50	416	A	9	1	W	10	20	10	Silty clay	x	1.5.5	-25.1	0.0	0.45	0.02	1
50	416	A	16	- 10 -	W	30	40	10	Silty clay	x		-26.6	0.7	0.39	0.00	
50	414		51		w	65	75	10	Silty class	x		-25.0	0.1	0.29	0.00	

	143 144	1000	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	As	Ba	Be	Bi	Cd	Ce	Co	Cr	Cs	Cu	Dy	Er	Eu
1 20	Nd/ Nd	1 20	E-Nd(0)	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
0.000011	0.512243	0.000026	-7.7	< L.D.	149.50	2.33	0.43	< L.D.	120.90	40.91	142.50	7.21	153.80	9.06	4.84	2.50
0.000011	0.512124	0.000013	-10.0	2.67	329.20	1.58	0.30	< L.D.	41.34	10.20	97.94	4.05	41.01	3.98	2.14	1.16
0.00001	0.512188	0.000021	-8.8	3,29	366,80	2.05	0.11	< L.D.	38,91	31.95	87.37	5.11	130.80	4.02	2.07	1.27
0.000015	0.512663	0.000015	0.5	89.42	314.03	1.19	0.28	0.18	97.04	13.07	21.50	1.13	17.66	12.90	8.07	1.53
0.000028	0.512149	0.000018	-9.5	37,34	463,70	2,13	0,20	0,30	66,76	184,10	119,50	5,14	149,80	5,74	2,94	1,61
0,00001	0.512065	0.000014	-11.2	6,18	81,21	1,37	0,22	< L.D.	28,90	10.75	129,60	4,29	52,64	2.17	1.23	0,63
0.000009	0.511905	0.000027	-14.3	2,56	456,60	2,34	0.37	< L.D.	89,82	17,19	216,60	6,45	26,83	4.33	2,27	1,39
0,000009	0,5119	0.000018	-14.4	1.56	515,40	2,13	0.23	< L.D.	63,49	17,34	244,60	6,46	35,39	3,20	1,74	1.07
0,00001	0,512031	0,000017	-11.8	30,85	547,00	1,97	0,56	0,17	60,34	10,27	176,60	8,52	150,80	2,99	1,83	0,87
0,000009	0,512002	0,000018	-12,4	39,24	1302,00	1,93	0,24	< L,D,	29,54	5,09	278,60	6,73	131,50	1,39	0,92	0,39
0,000011	0,512028	0,000021	-11,9	21,94	792,27	1,57	0,37	0,50	37,99	6,99	272,84	6,25	150,60	2,17	1,36	0,63
0,00001	0,512174	0,000176	-9,1	45,66	694,74	2,60	0,26	1,57	52,61	12,34	452,50	7,46	93,57	4,36	2,56	1,29
0,000009	0,512241	0,000026	-7.7	7,03	672,47	0,92	0,58	0,04	63,93	9,62	284,17	3,54	32,67	3,22	1,73	1,13
0,000016	0,512097	0,000015	-10,6	2,57	213,64	1,43	0,23	0,03	36,20	10,72	54,09	4,33	50,82	3,84	1,95	1,14
0,000013	0,512011	0,000021	-12,2	7,80	452,04	2,19	0,29	0,07	38,18	9,20	127,52	6,66	54,03	1,81	1,08	0,62
0,000012	0,512089	0,000015	-10,7	6,69	253,29	1,72	0,19	0,03	33,15	7,28	82,57	5,82	40,17	2,42	1,25	0,80
0,000053	0,511865	0,000014	-15,1	< L,D,	335,00	1,32	0,12	0,81	112,40	5,50	231,30	3,15	27,12	6,62	3,24	2,32
0,000014	0,511961	0,000012	-13,2	< 1,D,	341,00	1,99	0,33	< L,D,	46,75	6,87	96,16	4,79	24,01	2,41	1,26	0,77
0,000011	0,511925	0,000017	-13,9	< 1,D,	457,30	0,76	0,18	0,17	34,09	3,89	142,20	2,53	27,84	2,16	1,10	0,69
0,000013	0,512047	0,000016	-11,5	< 1,D,	409,30	2,41	0,19	< L,D,	77,49	16,37	154,30	6,33	27,74	4,05	2,28	1,26
0,000009	0,511892	0,000015	-14,6	< L,D,	219,90	1,54	< L,D,	< L,D,	55,91	9,19	228,80	4,13	46,36	4,34	2,38	1,20
0,00001	0,511893	0,000014	-14,5	< 1,D,	247,60	1,93	0,25	< L,D,	56,24	10,91	215,00	3,77	47,58	4,49	2,52	1,21
0,000013	0,511894	0,000015	-14,5	1,62	576,70	2,02	0,16	0,05	73,95	9,64	158,94	6,34	54,07	7,70	4,41	1,79
0,000016	0,51212	0,000014	-10,1	3,21	403,84	2,14	0,24	0,04	71,28	13,96	155,87	7,20	54,07	8,27	5,11	1,96
0,000012	0,512038	0,000015	-11,7	11,36	1033,50	2,24	0,59	0,17	59,72	6,50	366,78	7,01	102,25	6,36	3,63	1,64
0,000028	0,511906	0,000011	-14,3	5,15	1091,00	1,40	< L,D,	0,39	36,55	7,72	241,00	5,81	81,47	2,97	1,84	0,77
0,00001	0,511873	0,000032	-14,9	4,34	453,50	2,22	0,17	< L,D,	29,80	11,18	239,10	7,55	62,98	1,52	0,95	0,44
0,000012	0,51187	0,000014	-15,0	6,67	400,90	2,21	0,26	< L,D,	38,06	11,23	222,10	7,10	63,76	2,21	1,27	0,63
0,000012	0,512354	0,000022	-5,5	4,43	189,50	2,10	0,28	< L,D,	54,18	14,11	142,00	4,47	36,97	3,31	1,76	0,99
0,00001	0,512297	0,000045	-6,7	5,82	285,10	2,17	0,27	< L,D,	59,81	15,05	144,50	4,49	22,98	3,60	1,91	1,11
0,000015	0,512062	0,000017	-11,2	3,85	297,90	2,71	0,24	< L,D,	54,91	15,10	218,50	8,67	82,82	5,03	2,80	1,30
0,000018	0,512008	0,000023	-12,3	< L,D,	343,20	2,09	0,34	< L,D,	77,84	16,90	174,40	4,90	338,20	7,34	4,22	1,91
0,000014	0,512269	0,000041	-7,2	8,24	217,00	1,54	0,21	< L,D,	53,51	13,82	142,00	4,46	15,04	3,30	1,77	1,02
0,000017	0,512176	0,000037	-9,0	9,86	125,63	1,70	0,26	0,04	53,45	14,96	137,50	4,50	17,59	3,18	1,71	0,96
				7,15	157,10	2,16	0,19	< Ł,D,	54,43	14,96	134,30	5,46	21,49	3,34	1,74	1,07
				3,73	348,80	2,66	< L,D,	< L,D,	59,21	15,36	222,60	9,03	81,61	4,00	2,32	1,15
0,00001	0,511996	0,000017	-12,5	2,55	354,20	3,21	0,25	< L,D,	63,10	13,96	177,60	9,82	92,05	4,33	2,31	1,28
				6,60	381,33	3,49	0,32	0,04	88,52	14,85	129,42	12,58	33,08	3,20	1,98	1,03
				6,07	368,20	3,38	0,32	< L,D,	97,46	14,74	126,50	11,41	29,32	3,61	2,19	1,15
				8,52	364,90	3,38	0.45	< L,D,	89,81	16,28	116,90	10,09	34,06	3,97	2,37	1,20

Ga	Gd	Ge	Hf	Ho	In	La	Lu	Mo	Nb	Nd	Ni	Pb	Pr	Rb	Sc	Sb
ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
25,02	9,89	2,67	3,01	1,90	0,10	49,59	0,59	1,13	14,38	52,06	72,89	127,77	13,24	120,50	20,47	0,75
14,16	4,38	1.68	1,60	0.83	< L.D.	25,98	0,28	< L.D.	6,36	25,18	32,29	17,10	6,61	77,59	12,02	0,94
19,06	4,84	2.01	1,96	0.82	< L.D.	22,61	0,26	< L.D.	10,14	26,19	63,64	13,31	6,49	99,61	14,62	1,27
24,50	10,11	1.87	18.01	2,88	0.08	57,70	0,97	0,76	126,49	44.14	54,80	16,47	11,83	33,43	7,00	0,46
16,67	6,69	2.46	2,29	1,15	< L.D.	36,32	0,36	4,25	14,10	37,22	177,20	18,64	9,46	105,80	12,65	2,31
17.26	2,36	1.32	2.07	0.46	< L.D.	17,38	0.20	1.72	8.42	14.30	38.81	14.25	3,78	81.68	12.67	1.35
27,76	5,00	2,59	3,16	0.88	0.09	37,46	0.33	0,86	13,20	32,17	58.51	16.44	8,90	121,90	22,96	0,44
24,17	3,68	1,61	2,70	0.65	0,08	31,99	0,27	0,64	13,23	24,53	56,06	23,67	6,84	110,20	21,32	0,31
23,31	3,24	2.15	2.74	0.65	0.07	35.02	0.33	23,72	10.47	22.35	43.32	24,79	6.34	121.80	20,27	7,58
20,18	1.54	2.03	2,32	0.32	< L.D.	19,13	0.18	34,77	8,49	11.38	17,10	19,65	3,41	93,99	15.51	4.14
22.23	2,30	2.87	2.52	0.47	0.04	22,99	0.25	32,67	10.89	15.42	53.06	19,17	4.31	83.54	17.98	12,54
21.79	4.81	2.76	3.00	0.93	0.05	32.84	0.42	66,66	11.76	29.08	117,21	16.35	7.52	126.85	17.38	17,22
18.02	3.81	1.96	4.84	0.65	0.04	31.60	0.27	0.76	15.95	25.81	21.84	21.74	6.99	74.35	17.95	0.52
13.01	4,60	0.92	1.37	0.79	< L.D.	22.23	0.25	0.90	6.03	23.19	31.04	6.80	5.56	76.48	9.20	0.68
19.53	2.27	1.75	2.51	0.39	0.04	21.08	0.19	1.51	9,64	16.58	33.72	12.79	4,48	118,70	12.87	1.36
15.58	3.22	1.46	1.98	0.49	0.03	18.21	0.18	3,03	7,79	18.65	21.73	11.08	4.56	104.06	9.99	0.97
17.93	7.62	1.95	1.45	1.31	< L.D.	57.26	0.34	< L.D.	8.08	47,30	19.64	4.96	12.93	59.35	18.26	0.26
20,10	2,76	2,25	2,37	0,48	< L.D.	20,65	0,21	< L.D.	7,84	18,36	26,78	10,41	5,08	102,20	16,92	0,37
10,82	2,46	1,81	1,20	0,43	< L.D.	17,07	0,15	< L.D.	6,76	15,07	15,07	4,38	4,11	43,77	9,43	< L.D.
25,80	4,47	2,38	3,62	0,84	0,08	38,48	0,36	< L.D.	25,74	29,96	57,74	15,44	8,35	133,20	18,33	0,47
19,98	4,71	1,41	1,63	0,92	< L.D.	32,47	0,29	< L,D,	8,36	27,26	38,86	8,59	7,16	80,21	14,71	0,49
18.64	4,91	1.05	1.58	0.95	< L.D.	34.62	0.34	< L.D.	9.34	28.23	42.86	11.90	7.39	70.62	14.10	< L.D.
21.88	7,67	1.72	2,48	1.68	0.04	47.18	0.53	< L.D.	9.39	39,76	34,73	9.13	10.12	123.99	16.23	0.33
20,50	8.27	2.03	2.87	1.89	0.05	57,48	0.64	0,76	9,93	42.07	42.96	8.15	10.53	112,79	17.51	0.52
21.81	7,03	4.17	2,50	1,38	0.05	47,00	0.42	0,67	7,75	36,41	43,91	16,74	9,21	105,46	14,20	2.58
17,61	3,19	3,05	2,01	0,66	< L.D.	24,13	0,30	2,35	8,32	18,15	66.82	11,04	4,86	104,60	14,02	2,00
21,31	1,64	2,86	2,43	0,33	< L.D.	16,30	0,18	0,66	8,56	12,74	45,38	9,89	3,58	149,70	17,69	1,48
23,07	2,38	2,72	2,52	0,46	< L,D,	20,95	0,21	1,82	11,38	17,29	46,44	11,93	4,78	139,10	17,01	1,27
26,26	3,65	2,17	3,76	0,67	0,08	27,06	0,27	0.91	18,10	23,41	37,89	11,44	6,39	74,55	20,28	0,40
28,39	3,93	2,25	4,22	0,72	< L,D,	30,38	0,29	1,03	20,48	25,88	38,41	12,51	6,97	68,94	20,49	0,36
25,93	5,12	3,26	2,93	1,06	< L,D,	37,77	0,38	0,75	9,18	30,74	66,99	13,46	8,25	163,90	19,89	1,18
22,83	7,59	2,08	2,56	1,58	< L,D,	47,79	0,61	< L,D,	10,38	41,11	70,32	19,63	10,78	90,56	21,44	0,41
25,10	3,53	2.07	4,06	0,67	0,08	27,35	0,27	1,83	19,94	23,31	35,14	16,31	6,32	61,46	17,74	0,37
25,12	3,57	1,83	3,73	0,65	0,06	28,02	0,25	1,23	18,99	22,33	37,08	12,94	5,94	66,45	15,69	0,46
28,21	3,77	2,27	3,51	0,68	0,08	28,21	0,25	3,20	16,16	24,61	40,01	30,41	6,53	90,29	18,94	0,37
27,59	4,34	2,91	2,81	0,84	0,07	34,05	0,35	0,57	9,36	28,68	49,56	25,26	7,83	188,00	23,12	0,48
28,54	4,85	2,50	3,01	0,87	0,07	35,84	0,33	< L,D,	10,04	31,30	38,72	12,75	8,39	195,50	23,68	0,51
32,82	3,76	2,27	3,56	0,68	0,07	45,65	0,34	< L,D,	12,63	32,92	45,97	22,37	9,39	192,77	22,35	0,64
31,91	4,09	2,35	3,41	0,76	0,08	51,29	0,36	< L,D,	13,53	36,84	47,89	24,77	10,46	198,20	22,90	0,45
29,89	4,43	2,67	3,65	0,84	0,09	48,11	0,38	< L.D.	13,01	33,93	45,30	29,01	9,72	204,40	23,55	0,70

Sm	Sn	Sr	Та	ТЬ	Th	Tm	U	v	w	Y	Yb	Zn	Zr	SiO2	AI2O3	Fe2O3
ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	%	%
11,16	3,30	59,77	1.24	1,50	10,81	0,65	11.11	658,80	3.04	50,03	4,08	149,80	103,00	58,84	13,91	6,40
5.05	1,96	28,63	0,52	0,66	5,61	0.30	1,93	269,10	1,29	24,88	1,85	82,34	60.08	68,84	9,78	5,46
5.55	2,35	44,09	0,72	0,70	6,49	0.28	0.96	135.60	1.61	23.73	1.79	82.19	79,42	58.27	13.10	6,84
10,16	7,59	17,08	11,78	1.85	17.22	1.12	4,59	48,95	4,66	86,40	6,94	115,30	695.82	46.41	14,00	12,99
7,55	2,48	34,36	1.04	0.98	6.08	0,40	2.11	413.90	1.00	34,61	2,49	203,50	88,54	61.57	11.01	6,40
2,80	1,88	20,75	0,69	0,35	5,14	0,19	2,02	268,30	1,27	13,82	1,29	71,63	74,87	66,96	11,76	4,97
6,11	5,74	115,90	1.15	0,74	13.02	0.32	0.98	198,80	1.70	22,53	2.15	123.00	107.00	48,25	19,96	9,83
4,68	2,53	139,00	1,09	0,55	11,30	0,26	0,83	164,20	1,37	17,26	1,75	129,30	92,60	50,32	19,80	8,52
4.10	2,80	165,70	0.92	0,48	13.81	0.28	2.44	439,40	1.64	18,91	2.01	130,60	98.06	50,65	16.52	8,44
1.90	2.42	133.00	0,70	0.23	7.67	0.15	1.28	2055.00	1.58	9,99	1.11	57,71	79,54	56,80	12.48	7.09
2.96	2.20	143.65	0.89	0.34	8.99	0.21	2.90	1044,57	1.43	12.50	1.58	153,88	92,46	50.47	14.85	5,30
5.63	2.56	84,95	0.97	0.71	7.27	0.37	5.31	1489.81	1.49	28.04	2.61	437,42	120.54	43.78	14.83	6.80
4.93	2.04	118.18	1.26	0.54	7.57	0.25	1.47	165.42	1.21	16.74	1.65	39.87	183.64	62.44	13.85	6.09
4.91	1.74	89,98	0.53	0.66	3.44	0.26	2.34	92.88	1.21	25,46	1.65	41.37	52.53	49.18	9.44	3.23
3.09	2.69	64,86	0.81	0.32	6.02	0.16	2.28	157.12	1.85	10.05	1.13	75,83	89.84	60.03	13.89	4.53
3,82	2,14	38.05	0,63	0,43	4,95	0,17	2,81	118,88	1.22	14,45	1,12	65,79	72,70	66,79	11,58	3,82
8,79	1.57	61.64	0.58	1.12	6.29	0.42	2.53	195.40	0.80	37.28	2.42	101.00	56,76	66.34	10,94	4,26
3,61	2,42	69,83	0,72	0,41	8,60	0,19	1,11	94,65	1,27	11,69	1,30	81,38	82,43	62,76	12,99	4,96
2,92	1,15	35,68	0.51	0,36	6,45	0.15	0,76	107,30	0.72	12.57	0,99	52,10	44.01	78,06	7.30	2,95
5,54	2,60	122,60	1,59	0,67	11,80	0,34	1,37	168,10	1,81	22,59	2,36	113,30	177,00	55,61	16,55	6,86
5,14	2,29	76,63	0,64	0,69	7,71	0,33	2,12	148,00	1,69	30,35	2.00	89,90	57,75	57,49	13,59	4,77
5,43	4,80	150,90	0,62	0.73	7,33	0.35	2,47	137,10	1,51	30,89	2.27	89,36	53,15	53,25	13,16	4,55
7,88	2,41	146,41	0,80	1,19	8,45	0,58	3,50	115,52	13,71	59,24	3,57	84,34	86,72	54,86	14,50	5,19
8,16	2,40	104,83	0,82	1,25	9,39	0,68	6,43	202,46	25,92	73,23	4,33	101,58	109,53	54,05	14,15	5,64
7,19	3,05	149,93	0,65	1,01	7,56	0,45	5,80	379,54	1,31	59,20	2,71	177,11	91,71	47,16	12,78	5,48
3,49	2,90	342,60	0,68	0,46	6,79	0,26	8,29	692,00	1,42	23,39	1,86	194,50	70,29	41,75	11,77	3,90
2,22	2,82	72,19	0,78	0,24	5,75	0.15	0,99	222,90	1,15	9,39	1,09	171,40	82,15	54,40	15,98	5,91
3,06	2,73	69,04	1,10	0,36	8,53	0,19	1,35	230,90	1,07	13,77	1,38	136,40	85,66	53,38	16,29	5,87
4,52	2,96	79,45	1,49	0,55	8,26	0,26	1,17	163,50	1,20	17,85	1,80	91,23	137,50	52,91	18,60	7,43
4,92	3,50	113,60	1,74	0,61	9,45	0,28	1,27	167,60	1,45	18,46	1,95	90,16	150,70	50,96	19,72	7,37
5,78	5,13	83,19	0,85	0,80	11,42	0,41	2,32	273,50	1,26	35,41	2,59	130,10	105,00	51,09	17,04	6,50
8,20	2,63	161,40	0,90	1,17	10,34	0,62	0,89	164,50	1,66	49,56	4,11	144,80	86,35	52,37	16,13	7,13
4,54	3,87	75,66	1,68	0,55	9,19	0,27	1,23	154,90	1,49	16,37	1,84	109,80	144,00	51,88	18,08	7,19
4,39	3,04	57,74	1,52	0,53	6,95	0,24	1,33	164,76	1,35	17,98	1,58	92,69	149,10	50,83	17,92	7,31
4,66	3,65	73,32	1,41	0,57	10,13	0,25	1,45	145,60	1,36	17,47	1,73	119,60	120,40	51,27	20,23	7,60
5,29	3,38	88,25	0,86	0,66	9,52	0,34	1,85	214,40	1,36	24,53	2,29	144,30	93,46	51,66	19,51	7,38
6,01	3,37	93,25	0,93	0,72	11,20	0,33	1,53	154,90	1,38	23,42	2,20	102,50	97,48	52,04	19,79	7,40
5,53	4,45	140,08	1,09	0,53	13,45	0,31	2,04	169,45	1,65	17,24	2,16	108,07	124,44	49,80	21,83	6,75
6,00	4,48	144,20	1,23	0,59	13,89	0,34	2,11	171,50	1,71	19,67	2,36	115,40	114,10	49,22	23,03	7,20
5,78	3,90	124,70	1,19	0,66	16,21	0,36	2,30	142,20	1,55	21,62	2,48	115,70	120,20	49,69	21,53	8,11

MnO	MgO	CaO	Na2O	K20	TIO2	P205	PF	Total	AI/Si	CIA	Eu/Eu*	ΩCe	Cr/Th	Th/Sc	Zr/Sc
%	%	%	%	%	%	%	%	%							
0,06	2,93	0,37	0,20	2,38	0,71	< L,D,	13,86	99,66	0,27	80	0,73	1,08	13,18	0,53	5,03
0,03	2,21	0,53	0,09	1,75	0,33	0,08	10,19	99,29	0,16	77	0,76	0,72	17,47	0,47	4,99
0,04	2,81	1,21	0,08	2,55	0,41	0,09	13,96	99,35	0,26	72	0,75	0,73	13,46	0,44	5,43
0,04	4,50	0,37	0,12	1,97	0,75	0,22	18,90	100,28	0,34	82	0,46	0,85	1,25	2,46	99,40
0,04	2,85	0,60	0,09	2,68	0,38	0,12	12,96	98,70	0,20	73	0,69	0,83	19,64	0,48	6,99
0,03	2,61	0,44	0,12	1,84	0,49	0,14	11,01	100,38	0,20	80	0,74	0,82	25,2	0,41	5,91
0,06	1,72	0,19	0,12	2,49	0,74	0,06	15,33	98,75	0,47	86	0,76	1,13	16,64	0,57	4,66
0,02	1,71	0,33	0,11	1,82	0,67	0,04	16,65	99,98	0,45	88	0,78	0,99	21,65	0,53	4,34
0,03	3,00	0,09	0,29	2,52	0,59	0,23	18,35	100,70	0,37	83	0,73	0,92	12,79	0,68	4,84
0,02	1,96	0,04	0,34	2,17	0,54	0,16	19,17	100,77	0,25	81	0,70	0,83	36,33	0,49	5,13
< L,D,	2,05	0,12	0,20	1,62	0,57	0,14	24,70	100,02	0,33	87	0,74	0,87	30,34	0,50	5,14
0,02	1,52	0,34	0,20	2,36	0,62	0,88	28,60	99,96	0,38	81	0,76	0,77	62,26	0,42	6,94
0,02	1,11	0,10	0,61	1,92	0,87	< L,D,	14,18	101,20	0,25	81	0,79	0,99	37,53	0,42	10,23
0,05	1,91	12,71	0,13	1,55	0,31	0,16	21,01	99,67	0,22	27	0,73	0,75	15,74	0,37	5,71
0,02	2,60	0,48	0,25	2,91	0,57	< L,D,	15,09	100,36	0,26	76	0,72	0,90	21,19	0,47	6,98
< L,D,	2,39	0,59	0,17	2,50	0,46	0,14	12,02	100,45	0,20	74	0,70	0,84	16,67	0,50	7,28
0,02	2,69	1,15	0,11	1,13	0,48	0,65	13,22	100,98	0,19	76	0,87	0,95	36,79	0,34	3,11
0,03	3,65	0,14	0,17	2,22	0,49	< L,D,	13,23	100,65	0,23	82	0,74	1,01	11,18	0,51	4,87
0,01	1,66	0,22	0,20	0,79	0,38	0,21	9,55	101,33	0,11	82	0,79	0,94	22,03	0,68	4,67
0,03	2,81	0,27	0,13	2,26	0,71	0,04	15,28	100,54	0,34	84	0,78	0,99	13,08	0,64	9,66
0,02	2,89	1,50	0,16	1,48	0,52	0,30	17,33	100,04	0,27	75	0,75	0,84	29,67	0,52	3,93
0,02	2,65	4,30	0,17	1,25	0,45	0,56	19,56	99,92	0,28	58	0,72	0,81	29,34	0,52	3,77
0,02	2,98	1,91	0,37	2,89	0,50	0,64	16,68	100,53	0,30	67	0,70	0,78	18,81	0,52	5,34
0,02	4,10	1,40	0,27	2,95	0,61	0,57	16,63	100,41	0,30	70	0,73	0,66	16,6	0,54	6,26
0,02	4,11	1,12	0,18	2,57	0,47	0,45	25,30	99,64	0,31	71	0,71	0,66	48,57	0,53	6,46
0,02	3,75	4,89	0,21	2,11	0,45	2,86	26,94	98,66	0,32	51	0,71	0,77	35,49	0,48	5,01
0,03	4,33	0,25	0,20	3,48	0,60	0,04	15,68	100,90	0,33	78	0,71	0,90	41,57	0,33	4,64
0,03	4,60	0,25	0,22	3,18	0,60	0,08	16,77	101,27	0,35	79	0,71	0,87	26,03	0,50	5,04
0,02	2,47	0,62	0,09	1,51	0,94	0,11	15,91	100,61	0,40	86	0,75	0,95	17,2	0,41	6,78
0,02	2,09	0,59	0,08	1,33	1,08	0,10	17,26	100,57	0,44	88	0,77	0,94	15,28	0,46	7,35
0,03	4,28	0,31	0,18	3,76	0,59	0,17	16,24	100,20	0,38	77	0,73	0,71	19,13	0,57	5,28
0,03	3,30	0,94	0,13	1,80	0,62	0,04	18,16	100,66	0,35	81	0,74	0,79	16,87	0,48	4,03
0,02	2,06	0,96	0,07	1,03	1,05	0,26	17,08	99,66	0,40	86	0,78	0,94	15,44	0,52	8,12
0,02	2,00	0,66	0,10	1,41	1,02	0,22	17,86	99,34	0,40	86	0,74	0,95	19,79	0,44	9,50
0,02	1,69	0,74	0,12	1,77	0,92	0,21	16,64	101,20	0,45	85	0,78	0,92	13,26	0,53	32,95
0,03	3,14	0,19	0,21	4,57	0,67	0,11	13,43	100,89	0,43	78	0,74	0,83	23,38	0,41	27,68
0,03	3,14	0,08	0,25	4,72	0,71	0,06	12,47	100,68	0,43	78	0,73	0,84	15,86	0,47	28,95
0,02	2,70	0,15	0,31	4,21	0,75	0,11	13,44	100,09	0,50	10	0,69	1,84	9,63	0,60	27,98
0,04	2,78	0,22	0,31	4,27	0,85	0,12	11,55	99,58	0,53	81	0,71	0,96	9,11	0,61	25,47
0,04	3,45	0,21	0,30	4,80	0,82	0,08	11,97	101,00	0,49	78	0,72	0,95	7,21	0,69	30,84

RESUME

Les hétérogénéités de répartition de la matière organique (MO) du Crétacé de l'océan Atlantique central sont souvent liées à des facteurs d'ordre géodynamique et paléocéanographique. Or, la forte proportion de MO terrestre questionne l'hégémonie de ces mécanismes et appelle à mieux contraindre la dynamique sédimentaire des dépôts associés à cette MO. Par une approche *source to sink* couplant une étude géochimique de provenance à une étude de bassin à partir de données de subsurface, nous montrons une réorganisation du drainage sur les cratons ouest-africain et guyanais, caractérisée par une extension progressive des bassins versants vers les domaines internes pendant le Crétacé supérieur. En Afrique, ce processus s'accompagne d'un arrêt de la dynamique turbiditique dès le Turonien, et d'une diminution de celle-ci au Guyana Suriname. Dans les deux cas, ces changements ont été défavorables à l'accumulation de matière organique en domaine océanique profond.

MOTS-CLEFS : matière organique ; océan Atlantique central ; Crétacé ; Provenance ; Bassin sédimentaire ; Paléocéanographie

ABSTRACT

The distribution heterogeneities of Cretaceous organic matter (OM) in the Central Atlantic Ocean are often related to geodynamic and paleoceanographic factors. However, the high proportion of terrestrial OM questions the hegemony of these mechanisms and shows the need to better constrain the sedimentary dynamics of organic-rich sediments. Using a source-to-sink approach coupling a geochemical provenance study with a basin study from subsurface data, we show a reorganization of drainage on the West African Craton and the Guyana Shield, characterized by a gradual extension of watersheds to the inner areas during the Upper Cretaceous. In the African deep basin, this process is coeval to a break of the turbiditic sedimentation from the Turonian and to its decrease in the Guyana-Suriname deep basin. In both cases, these changes were unfavorable to the enrichment of OM in the deep oceanic domain of the Central Atlantic.

KEYWORDS: Organic-rich sediments; Central Atlantic Ocean; Cretaceous; Provenance; Sedimentary basin; Palaeoceanography