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Notations

Generic notations

x(t), X(ν) scalar (complex or quaternion-valued) signals in time and frequency domains

x(t),X(ν) vector signals in time and frequency domains

9x(t), 9X(ν) augmented vector signals in time and frequency domains

m(t),M(ν) matrices in time and frequency domains

9m(t), 9M(ν) augmented matrices in time and frequency domains

Spaces

R, C,H Real, complex and quaternions numbers

U(), SU() Sets of unitary and special unitary 2-by-2 complex matrices

SO() Special orthogonal group, i.e. rotations matrices of R

Lp(R;H) Lp space of functions x ∶ R→ H

H(R;H) Hardy space of square integrable functions x ∶ R→ H p. 105

Quaternion calculus

Assumption Let q = a + ib + jc + kd ∈ H and µ ∈ H s.t. µ = −.
Re, Imi , Im j , Imk real and imaginary parts operators

S(q),V(q) scalar (real) and vector (imaginary) parts of q = S(q) + V(q)
q = a − ib − jc − kd Conjugate of q. For p, q ∈ H, pq = q p
qµ = −µqµ Involution by µ

eµα = cos α + µ sin α Quaternion exponential, µ ∈ H s.t. µ = − and α ∈ R
q = ∣q∣e iθ e−k χe jφ Euler polar form of q p. 35

Cµ = span{, µ} complex sub�eld ofH isomorphic to C

ProjCi
{q} = q+q i

 Projection of q onto Ci

Polarization related quantities

a, θ , χ Amplitude, orientation and ellipticity of the polarization ellipse p. 16

S , S , S , S Stokes parameters p. 17

Φ Degree of polarization p. 58

s , s , s Normalized Stokes parameters s i ≜ S i/S, i = , ,  p. 60

Spectral analysis

Assumption x(t) = u(t) + iv(t) is a second-order stationary random bivariate signal.

Ruu(τ), Ruv(τ) Autocovariance of u, cross-covariance between u and v

Puu(τ), Puv(ν) PSD of u, cross-PSD between u and v

Rxx(τ), R̃xx(τ) Autocovariance of x, complementary-covariance of x

Pxx(ν), P̃xx(ν) PSD of x, complementary-PSD of x
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γxx(τ), γx y(τ) Quaternion autocovariance of x, quaternion cross-covariance between x and y p. 54, 55

Γxx(ν), Γx y(ν) Quaternion PSD of x, quaternion cross-PSD between x and y, p. 53, 55

Γ̂(p)xx (ν), Γ̂(mt)xx (ν) periodogram and multitaper estimates of the quaternion PSD of x p. 65, 66

Time-frequency analysis

x+(t) Quaternion embedding of the bivariate signal x p. 105

H {x} Hilbert transform of x p. 106

Fgx(τ, ν) Quaternion Short-Term Fourier Transform of x using a window g p. 110

Wx(τ, s) Quaternion Continuous Wavelet Transform of x p. 113

WVx(τ, ν) Quaternion Wigner-Ville transform of x p. 118

Acronyms

C-PSD Complementary Power Spectral Density

LTI Linear Time-Invariant

PSD Power Spectral Density

Q-CWT Quaternion Continuous Wavelet Transform

Q-STFT Quaternion Short-Term Fourier Transform

QFT Quaternion Fourier Transform



0Introduction

In many areas of science there is the need to jointly analyze two observed
real-valued signals: eastward and northward velocities of oceans currents
(Gonella, 1972; ¿omson and Emery, 2014) and winds (Hayashi, 1982; Tanaka
and Mandic, 2007); polarized waves in optics (Brosseau, 1998; Born and Wolf,
1980) and seismology (Samson, 1983; Pinnegar, 2006); pairs of electrode record-
ings in EEG or MEG (Sakkalis, 2011; Sanei and Chambers, 2013); gravitational
waves (Misner, ¿orne, and Wheeler, 1973) and many more. Fig. 1 depicts
three examples of bivariate signals.
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Figure 1: ¿ree examples of bivariate signals.
¿e time-evolution of the two components
u(t) and v(t) as well as the trace in the u− v
plane are represented. (a) polarized seismic
wave (b) horizontal current velocities mea-
sured by an oceanic dri er (c) gravitational
wave polarizations emitted by a precessing
coalescing binary.

A bivariate signal can be either modeled as a vector signal x ∶ R→ R or as
a complex-valued signal x ∶ R→ C such that

x(t) = [u(t)
v(t)] or x(t) = u(t) + iv(t) (1)

where u(t) and v(t) are real-valued signals corresponding e.g. to eastward and
northward ocean current velocities. ¿e vector and complex representations
equivalently encode trajectories in the 2D plane, see Fig. 2. ¿e choice of
one over the other representation usually depends on the application area:
vector-valued signals are more common in optics and geophysics. ¿e complex
representation is more common in oceanography (Gonella, 1972; Mooers,
1973), which has popularized a decomposition of bivariate signals into counter-
rotating components known as rotary components. Many recent methods
developed in the signal processing literature (Schreier, 2008; Lilly and Olhede,
2010a; Walden, 2013; Sykulski, Olhede, and Lilly, 2016) also use the complex
representation. It shall be noted that perhaps the �rst to recognize the potential
of the complex representation to study bivariate signals were Blanc-Lapierre
and Fortet (1953).

u

v

x(t), x(t)

Figure 2: A bivariate signal de�ned by (1) cor-
responds to a trajectory in the 2D plane.

¿e use of the complex representation over the vector representation has
o en been advocated for in the signal processing community. While this has
sparked some heated debates, see for instance the discussion between Picin-
bono (1996) and Johnson (1996), this choice seems to be well accepted today by
the signal processing community. ¿e o en quoted advantages of the complex
representation include: a preserved relation between the two real univariate
components, simpli�ed expressions, the direct availability of fundamental
notions such as amplitude and phase and the geometric insights o�ered by
complex numbers. See e.g. the recent books of Mandic and Goh (2009) and
Schreier and Scharf (2010) for a detailed discussion of these advantages.

¿is thesis aims at providing an unifying framework for the processing
of bivariate signals. For this purpose, Section 0.1 introduces key concepts
thanks to the very �rst example of the monochromatic bivariate signal. ¿en
Section 0.2 reviews the usual vector and complex approaches for processing
bivariate signals. Section 0.3 presents the limitations of these two approaches
and discusses the requirements that an ideal framework should satisfy. Section
0.4 outlines the contributions of this thesis on a chapter-by-chapter basis.
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0.1 A first example: the monochromatic bivariate signal

¿e simplest example of bivariate signal is themonochromatic bivariate signal:
it carries a single frequency ν. Still, it enables the introduction of many key
concepts related to the study and understanding of bivariate signals.

0.1.1 Vector and complex representations

A monochromatic bivariate signal is given in its vector representation by

x(t) = [u(t)
v(t)] = [au cos (πν t + φu)

av cos (πν t + φv)] , (2)

where au , av ≥  and φu , φv ∈ [, π) are the amplitudes and phases of the
respective components. ¿e complex representation of this signal writes

x(t) = au cos (πν t + φu) + iav cos (πν t + φv)
= a+e iθ+ e iπν t + a−e−iθ− e−iπν t (3)

where a+ , a− ≥  and θ+ , θ− ∈ [, π) are the amplitude and phase of each
phasor1 , respectively. Eq. (3) describes the signal x(t) as a sum of two counter- 1. A phasor is here understood as a signal

of the form t ↦ e iπνt , where ν ∈ R.rotating phasors at frequencies ν and −ν. ¿ese are also called the rotary
components of the signal (Schreier and Scharf, 2010).

u

v
x(t), x(t)

χ

θ

φ

•

∣a∣ cos χ

∣a∣ sin ∣χ∣

↺ χ > ↻ χ < 

S
S

S
S

S
S

θ

χ

a b

Figure 3: (a) ¿e monochromatic bivariate
signal describes an elliptical trajectory in the
2-dimensional plane. (b) Poincaré sphere of
polarization states. To any point on the sphere
is associated a unique polarization state ei-
ther described by spherical angular coordi-
nates (θ , χ) or normalized Stokes parame-
ters S/S , S/S and S/S .

Fig. 3a depicts the elliptical trajectory in the 2-dimensional plane de�ned
by the monochromatic bivariate signal (2). ¿is trajectory is described by
four natural parameters. Two of them encode the geometry of the ellipse. ¿e
orientation θ ∈ [−π/, π/] gives the angle between the major axis of the
ellipse and the horizontal axis. ¿e ellipticity χ ∈ [−π/, π/] characterizes
the shape of the ellipse: it is directly related to the ratio between minor and
major axes. For χ =  the ellipse degenerates into a line segment, while for
χ = ±π/ it becomes a circle. Importantly the sign of χ gives the running
direction within the ellipse: counter-clockwise if χ >  and clockwise for χ < .
¿e two remaining parameters are classical: the amplitude a ≥  controls the
size of the ellipse and the phase φ ∈ [, π) gives the initial position of the
signal within the ellipse.
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0.1.2 ¿e concept of polarization: Stokes parameters and Poincaré sphere

In optics the signal x(t) de�ned by (2) or x(t) de�ned by (3) would describe
the instantaneous position of the electric �eld in the transverse plane, i.e. in the
plane orthogonal to the direction of propagation of the light. As it describes
an elliptical trajectory, the electric �eld is said to be elliptically polarized. Po-
larization is a fundamental concept related to wave propagation, which can
be found in various domains such as optics and electromagnetics (Born and
Wolf, 1980), seismology (Aki and Richards, 2002) or gravitational wave theory
(Misner, ¿orne, and Wheeler, 1973).

¿e polarization ellipse is usually described in optics by Stokes parameters.
¿ey form a set of four real-valued parameters S , S , S and S which are
experimentally accessible via intensity measurements. ¿ey are related to
ellipse parameters a, θ and χ like Expressions (4)–(7) correspond to the par-

ticular case where the signal is fully polar-
ized. ¿e case of partially polarized or un-
polarized signals will be discussed in more
detail in Chapter 2.

S = a (4)

S = a cos θ cos χ (5)

S = a sin θ cos χ (6)

S = a sin χ . (7)

¿e �rst parameter S is purely energetic; remaining parameters S , S and S
describe the polarization state of the monochromatic bivariate signal. Being a
phase term, φ does not appear in Stokes parameters.

Fig. 3b depicts the Poincaré sphere, �rst introduced by Poincaré (1892).
¿is powerful geometric representation of polarization states directly connects
Stokes parameters to the natural parameters a, θ and χ of the ellipse. To any
point on the surface of the 2-dimensional unit sphere one associates a unique
polarization state. Its spherical angular coordinates (θ , χ) give the geometric
parameters of the ellipse. Its Cartesian coordinates provide the corresponding
normalized Stokes parameters S/S , S/S and S/S. ¿e north and south
pole of the Poincaré sphere describe counter clockwise and clockwise circular
polarization, respectively. ¿e equator describes linearly polarized states: the
orientation θ evolves with the longitude. As one moves towards the poles, the
ellipticity χ increases in absolute value and one tends to circular polarization.

0.1.3 Expressions for ellipse parameters

It is natural to search for the expression of the ellipse trajectory parameters
a, θ , χ and φ in terms of the standard parameterization of each representation
(vector or complex). Starting from Eq. (2) the amplitude a and phase φ read

a = √
au + av and φ = φu + φv


. (8)

¿e orientation θ and ellipticity χ are given by

tan θ = auav
au − av cos(φu − φv) and sin χ = auav

au + av sin(φu − φv) (9)

when au ≠ av . ¿e case au = av corresponds to circular polarization: it follows
that χ = ±π/ and θ is unde�ned for this case.
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¿e amplitude a and phase φ are obtained from the complex representation
(3) as

a = √

√
a+ + a− and φ = θ+ + θ−


. (10)

¿e orientation θ and ellipticity χ write

θ = θ+ − θ−


, and tan χ = a+ − a−
a+ + a− . (11)

If one compares expressions (9) and (11) for θ and χ we see that (11) decouples
the contribution from the amplitude and phases from each rotary component.
¿is apparent simplicity is sometimes used as an argument supporting the use
of the complex representation (11) over the vector representation (9), see e.g.
Schreier and Scharf (2010).

0.1.4 Natural descriptors for bivariate signals

One could argue whether or not a, θ , χ and φ represent natural parameters
for the elliptical trajectory depicted in Fig. 3a. ¿ese parameters appear tradi-
tionally in optics (Brosseau, 1998; Born andWolf, 1980) thanks to the Poincaré
sphere representation and the associated Stokes parameters expressions. More-
over they also appeared as quantities of interest in the signal processing litera-
ture, see e.g. Schreier (2008) and Walden (2013). ¿ese parameters are natural
in the sense that they directly embody the joint structure of the two univariate
signals that constitute the monochromatic bivariate signal. One associates
a common amplitude a, a common phase φ and two geometric parameters
θ and χ to the signal x(t) or x(t). ¿is contrasts with parameterizations(au , av , φu , φv) or (a+ , a− , φ+ , φ−) which involve two amplitudes and two
phases. In fact Eqs. (2) and (3) can be interpreted as the decomposition of the
signal into, respectively, horizontal and vertical linearly polarized components
and counter-clockwise and clockwise circularly polarized components. ¿e
natural or canonical parameters (a, θ , χ, φ) are very generic in the sense that
they are not attached to any particular representation, i.e. to any choice of
orthogonal polarizations decomposition.

0.2 An overview of signal processing for bivariate signals

Nowwe review the two usual approaches for the processing of generic bivariate
signals. ¿ey are based either on the use of vector representation x(t) or the
complex representation x(t) of bivariate signals.

Section 0.2.1 and Section 0.2.2 �rst consider the case of second-order sta-
tionary random bivariate signals: they form an important category of random
bivariate signals whose second-order statistical properties (i.e. mean and co-
variances functions) are invariant to any given time-shi . In this setting, at
any given frequency the spectral contribution of the signal takes the form
of a random ellipse (Walden, 2013): its orientation, ellipticity, or amplitude
vary over realizations. In particular we put the emphasis on the notion of
(im)properness of random complex signals.

Section 0.2.3 and Section 0.2.4 then describe one of the most fundamen-
tal signal processing task, i.e. linear time-invariant (LTI) �ltering, in both
representations.



introduction 19

Finally, Section 0.2.5 presents existingmethods towards the characterization
of instantaneous attributes of bivariate signals, and how it relates to time-
frequency analysis techniques.

0.2.1 Random bivariate signals in the vector representation

For sake of simplicity, second-order stationarity is simply referred to as station-
arity in what follows, and signals are assumed to be zero-mean. Consider a
stationary random bivariate signal x(t) = [u(t), v(t)]⊺ where u(t) and v(t)
are jointly stationary real-valued signals and where ⊺ is the transpose operator.
¿e covariance matrix function of the vector signal x(t) is (Priestley, 1981)

Rxx(τ) = E{x(t)x⊺(t − τ)} = [Ruu(τ) Ruv(τ)
Rvu(τ) Rvv(τ)] (12)

where Ruu , Rvv denote the autocovariances of u and v, and where Ruv denotes
the cross-covariance between u and v. ¿ese are de�ned like

Ruu(τ) = E{u(t)u(t − τ)} , Rvv(τ) = E{v(t)v(t − τ)} , Ruv(τ) = E{u(t)v(t − τ)} . (13)

Note that Ruu and Rvv are even functions of τ, and that for all τ, Rvu(τ) =
Ruv(−τ). ¿e entry-wise Fourier transform (denoted symbolically byF) of the
covariance matrix function Rxx(τ) de�nes the power spectral density (PSD)
matrix of x(t)

Pxx(ν) = FRxx(ν) = [Puu(ν) Puv(ν)
Pvu(ν) Pvv(ν)] , (14)

where Puu and Pvv are the PSD of u and v and where Puv is the cross-PSD
between u and v. ¿e PSD matrix Pxx is Hermitian positive semide�nite since
PSDs Puu and Pvv are real-valued nonnegative and Pvu(ν) = Puv(ν) for every
ν. See e.g. Priestley (1981) for more details on spectral analysis using the vector
representation.

0.2.2 Random bivariate signals in the complex representation

Complex-valued random variables and random signals have been widely stud-
ied in the signal processing literature (Picinbono, 1994; Amblard, Gaeta, and
Lacoume, 1996a, 1996b; Picinbono and Bondon, 1997; Ollila, 2008; Adalı,
Schreier, and Scharf, 2011). Many simulation procedures of such signals have
been also proposed (Rubin-Delanchy andWalden, 2007; Chandna andWalden,
2013; Sykulski and Percival, 2016).

¿e complete statistical characterization of the second-order properties of
a stationary complex signal x(t) involves two quantities: the usual autocovari-
ance function Rxx(τ) and the complementary or pseudo-covariance R̃xx(τ).
¿ey are de�ned as

(autocovariance) Rxx(τ) ≜ E{x(t)x(t − τ)} , (15)

(complementary-covariance) R̃xx(τ) ≜ E{x(t)x(t − τ)} . (16)

¿e autocovariance function is Hermitian Rxx(−τ) = Rxx(τ) and the com-

Remark that the pseudo-covariance R̃xx(τ)
is simply the covariance function between
x(t) and its conjugate x(t).
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plementary covariance is even R̃xx(τ) = R̃xx(−τ). In the spectral domain one
de�nes the PSD and complementary PSD (C-PSD) of the signal x as

(PSD) Pxx(ν) = FRxx(ν) , (17)

(C-PSD) P̃xx(ν) = F R̃xx(ν) . (18)

¿ePSD Pxx(ν) is real nonnegative but not necessarily even Pxx(−ν) ≠ Pxx(ν)
as x is complex-valued. ¿e C-PSD is complex-valued P̃xx(ν) ∈ C and even
P̃xx(−ν) = P̃xx(ν).

Usually (Schreier and Scharf, 2003b) one introduces the augmented com-
plex vector signal 9x(t) = [x(t), x(t)]⊺. ¿en the corresponding augmented
covariance matrix reads

9Rxx(τ) ≜ E{9x(t)9x†(t − τ)} = ⎡⎢⎢⎢⎢⎣
Rxx(τ) R̃xx(τ)
R̃xx(τ) Rxx(τ)

⎤⎥⎥⎥⎥⎦ , (19)

with † the conjugate-transpose operator. Its entry-wise Fourier transform
de�nes the augmented PSD matrix

9Pxx(ν) =
⎡⎢⎢⎢⎢⎣
Pxx(ν) P̃xx(ν)
P̃xx(ν) Pxx(−ν)

⎤⎥⎥⎥⎥⎦ . (20)

Note that the augmented PSD matrix involves expressions of the PSD at both
positive and negative frequencies. ¿e augmented PSD matrix is directly
related to the PSD matrix (14) of the real vector x(t) like

9Pxx(ν) = T Pxx(ν)T† (21)

where T is de�ned as

T = [ i
 −i] . (22)

A signal x(t) is said to be second-order circular or proper if its complemen-
tary covariance vanishes, i.e. R̃xx(τ) =  for all τ. Otherwise x(t) is said to be
improper. ¿e term propermay refer to the fact that proper complex-valued sig-
nals behave very similarly to real-valued signals (Schreier and Scharf, 2003b).
Equivalently, a proper signal is characterized by a null C-PSD P̃xx(ν) =  for
all ν. Using (21), we found that a proper signal is characterized by

Puu(ν) = Pvv(ν) and Re Puv(ν) =  for all ν (23)

Or equivalently in the time-domain:

Ruu(τ) = Rvv(τ) and Ruv(−τ) = −Ruv(−τ) for all τ . (24)

Stationary analytic signals without a DC component are examples of proper
complex signals, see for instance Schreier and Scharf (2010, p. 57).

Remark: random ellipses ¿e contribution of a single frequency to a station-
ary random bivariate signal takes the form of a random ellipse. ¿e statistical
properties of random ellipses have been widely investigated in the signal pro-
cessing community (Walden andMedkour, 2007; Rubin-Delanchy andWalden,
2008; Medkour and Walden, 2008; Chandna and Walden, 2011; Walden, 2013).
See also Barakat (1985) and Brosseau (1995) for similar results regarding the
statistical properties of Stokes parameters. ¿ese results will be reviewed in
Section 2.4.2 in our discussion on the estimation of polarization parameters.
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0.2.3 LTI �ltering in the vector representation: matrix-valued �lters

Back to the vector representation of bivariate signals, consider the input x(t)
and the output y(t) of an arbitrary LTI �lter. Such a �lter is described by its
matrix impulse responsem(t), a real-valued 2-by-2 matrix such that

y(t) =m ∗ x(t) (25)

where ∗ denotes entry-wise convolution. If
m(t) = [m(t) m(t)

m(t) m(t)] and x(t) = [x(t)
x(t)] (26)

then the matrix-vector LTI �ltering relation (25) reads explicitly

y(t) = [m ∗ x(t) +m ∗ x(t)
m ∗ x(t) +m ∗ x(t)] . (27)

¿e �ltering relation (25) can be rewritten in the frequency domain as the
simple matrix-vector relation

Y(ν) =M(ν)X(ν) (28)

where Y,X andM denote entry-wise Fourier transforms of y, x andm. Note
that (28) describes, for each frequency, a linear relationship between 2 dimen-
sional complex-vectors. Using (28) the relationship between PSD matrices of
y and x is given by

Py y(ν) =M(ν)Pxx(ν)M†(ν) . (29)

In optics, the spectral domain relation (28) is usually preferred over the
time-domain relation (25). ¿is arises since most light sources (e.g. lasers)
can be assumed narrow-band; explicit frequency-dependence is o en omitted.
¿e study of linear relationships between 2 dimensional complex-vectors as in
(28) is called Jones calculus. ¿is formalism permits to describe interactions Jones calculus is named a er R. C. Jones, who

introduced this formalism in a series of pa-
pers published in 1941, see Jones (1941).

between polarized light and non-depolarizing linear optical systems (e.g quater-
wave plates, polarizers, etc.) and is still widely used. See e.g. Gil (2007) and Gil
and Ossikovski (2016) for more details.

0.2.4 LTI �ltering in the complex representation: widely linear �lters

¿emost generic LTI �lter in the complex representation of bivariate signals
takes the form of a widely linear �lter:

y(t) = h ∗ x(t) + h ∗ x(t) , (30)

where h(t) and h(t) are two complex-valued impulse response functions.
¿e signal x(t) and its conjugate x(t) are �ltered separately to produce the
output signal y(t). ¿is approach was �rst proposed by Brown and Crane ¿e term ‘‘widely linear �ltering‘ is due to

Picinbono and Chevalier (1995).(1969) who coined the term ‘‘conjugate linear �ltering’’. Aspects regarding
optimum mean-square linear estimation using such �lters were developed
subsequently by several authors, see Gardner (1993), Picinbono and Chevalier
(1995), and Schreier and Scharf (2003b).
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¿e widely linear �ltering relation (30) can be rewritten in the augmented
vector representation. Introduce the spectral domain augmented matrix of the
�lter as

9H(ν) ≜ [ H(ν) H(ν)
H(−ν) H(−ν) .] (31)

¿e relation between augmented PSD matrices of y(t) and x(t) then is
9Py y(ν) = 9H(ν)9Pxx(ν)9H†(ν) . (32)

From the augmented PSD matrix de�nition (20) and Eqs. (31)–(32) one sees
that the �ltering relation in the complex-representation involves simultane-
ously positive and negative frequencies. ¿e equivalence between the widely
linear �ltering relation (32) and the matrix-vector �ltering relation (29) is
readily obtained using transformation (21).

0.2.5 Instantaneous ellipses and time-frequency analysis

In practical situations where a narrowband bivariate signal is acquired, the
signal trajectory will in general take the form of a time-varying ellipse. Instan-
taneous ellipse parameters then characterize the nonstationary behavior of the
signal. For deterministic signals, Lilly and Gascard (2006) have proposed the
modulated elliptical signal model in the complex representation

x(t) = e iθ(t) [c(t) cosφ(t) + id(t) sinφ(t)] (33)

where c(t) ≥  andwhere d(t) can take any sign. ¿e angle θ(t) ∈ [−π/, π/]
encodes the instantaneous orientation of the ellipse; φ(t) ∈ (−π, π) gives the
instantaneous phase, i.e. the instantaneous position of x(t) around the ellipse.
Quantities c(t) and ∣d(t)∣ describe the instantaneous major and minor axes
of the ellipse, respectively. ¿e sign of d(t) re�ects the direction of circulation
around the ellipse. As shown by Lilly and Olhede (2010a), these instantaneous
parameters can be obtained from pairs of analytic signals: either from the
analytic signal of the vector [u(t), v(t)] or from the analytic signal of the
complex augmented vector [x(t), x(t)].

For the characterization of generic, i.e. wideband, nonstationary bivariate
signals various methods have been proposed. For the nonstationary random
case (Hindberg and Hanssen, 2007; Schreier, 2008), it consists in examining
suitable correlations or coherences using pairs of time-frequency represen-
tations of complex-valued signals. Alternative approaches using the vector
representation have been proposed in the deterministic case, mainly by the
geophysics community (Diallo et al., 2005; Roue�, Chanussot, andMars, 2006;
Pinnegar, 2006). We also note that bivariate extensions (Rilling et al., 2007;
Tanaka and Mandic, 2007) of the empirical mode decomposition (EMD)
(Huang et al., 1998) have also attracted much interest in recent years.
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0.3 An ideal framework for bivariate signal processing?

0.3.1 Limitations of existing methods

Existing approaches are based on the use of either the vector x = [u(t), v(t)]⊺
or complex x(t) = u(t) + iv(t) representation of bivariate signals. Such
approaches exhibit intrinsic limitations which prevent to consider them as an
ideal framework for processing bivariate signals. Below we detail point-by-
point these limitations.

No direct description in terms of natural ellipse parameters As already dis-
cussed in Section 0.1 for the simple monochromatic bivariate case, neither the
vector nor complex representation permits a direct description of bivariate
signals in terms of natural elliptical trajectory parameters a, θ , χ and φ. ¿is
issue propagates to even more challenging scenarios, e.g. non-stationary or
random signals. Parameters must be determined from pairs of amplitude-
phase quantities, a procedure which implicitly implies a decomposition of the
bivariate signal into a peculiar orthogonal polarizations basis. In the vector
representation, natural ellipse parameters are obtained from the amplitude
and phase of the linear horizontal (au , φu) and linear vertical polarization(av , φv). ¿e complex representation yields amplitude and phase of circularly
polarized components, counter-clockwise (a+ , φ+) and clockwise (a− , φ−).

An ideal framework should feature this direct description in terms of nat-
ural ellipse parameters, in order not to be subject to a particular orthogonal
polarizations decomposition. ¿is would provide straightforward interpreta-
tions and greatly simplify the synthesis of bivariate signals with prescribed
physical properties.

Interpretability of positive frequencies only in the complex representation For ¿is issue is speci�c to the complex represen-
tation of bivariate signals. ¿e Fourier trans-
form of the vector signal x(t) exhibits Her-
mitian symmetry and one can consider only
positive frequencies Fourier vectors.

a physicist it is natural to consider positive frequencies only as, per de�nition,
frequency is the number of oscillations per time unit (Cohen, 1995). For real-
valued signals this can be mathematically justi�ed thanks to the Hermitian
symmetry X(−ν) = X(ν) of their Fourier transform: ‘‘negative frequencies’’
do not convey any supplementary information to positive ones. ¿is authorizes
useful identi�cations, e.g. between the cosine model cos(πνt) and the com-
plex exponential exp(iπνt). It also enables the construction of the analytic
signal of a real signal (Gabor, 1946; Ville, 1948), which is the foundation for
time-frequency analysis (Flandrin, 1998).

To that extent, the complex representation of bivariate signals is not satisfac-
tory as both positive and negative frequencies have to be considered: the Fourier
transform of a complex signal x(t) no longer satis�es Hermitian symmetry.
Negative frequencies are associated to clockwise rotating components and pos-
itive frequencies are attached to counter-clockwise rotating components. ¿is
refers to the so-called rotary spectrum analysis popularized by oceanographers
(Gonella, 1972). At a given (physical) frequency ∣ν∣ the circulation direction in
the ellipse is recovered by comparing amplitudes at −ν and ν, see Eq. (11).

An ideal framework using the complex representation of bivariate signals
should feature a nice correspondence between mathematical (positive and
negative) and physical (positive only) frequencies. ¿is would allow natural
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interpretations of the spectral content of bivariate signals.

Physical interpretations of (im)properness ¿e notion of (im)properness of
complex-valued variables and signals has been of fundamental importance in
the signal processing literature: see e.g. Adalı, Schreier, and Scharf (2011) for a
review. Impropriety surely is meaningful when considering complex signals
created from real (univariate) signals, e.g. analytic signals or complex baseband
representation of real signals. It is particularly useful in communications,
where impropriety arises from in-phase/quadrature imbalance due to receiver
or channel imperfections, or when the transmitted signal is non-stationary2.

2. Analytic signals of nonstationary ran-
dom real signals are known to be improper
(Picinbono and Bondon, 1997; Schreier and
Scharf, 2003a).

Many works (see e.g. Schreier and Scharf (2010) for a review) have shown that
taking into account impropriety of complex signals increases performances of
detection and estimation algorithms.

However one could question the physical relevance of this notion for (ran-
dom) bivariate signals, i.e. for signals such as polarized waves, surface wind or
ocean currents measurements.

a

b

c

fully polarized

partially polarized

unpolarized

Figure 4: ¿ree proper complex signals with
very di�erent polarization properties. (a) a
fully circularly polarized monochromatic sig-
nal with frequency ν . (b) signal in (a) cor-
rupted by additive proper white Gaussian
noise. ¿e signal is partially polarized at fre-
quency ν (c) proper white Gaussian noise is
unpolarized.

Fig. 4 supports our discussion by depicting three proper signals which how-
ever carry very di�erent physical properties. Fig. 4a represents a monochro-
matic bivariate signal with frequency ν that is fully circularly polarized. Fig.
4b displays this signal corrupted by additive proper white Gaussian noise. ¿e
signal is then said to be partially polarized at frequency ν. Fig. 4c shows
a realization of proper white Gaussian noise, which corresponds to an un-
polarized signal (at all frequencies.) As these three examples demonstrate,
(im)properness seems not to be the most relevant feature when dealing with
physical properties, e.g. polarization, of bivariate signals.

In our opinion an ideal framework should provide a direct description of
bivariate signals in terms of relevant physical parameters. ¿is should provide
a straightforward classi�cation or discrimination of bivariate signals based on
physically interpretable properties, such as the degree of polarization.

Interpretation of LTI �ltering relations A common limitation of both the vec-
tor and complex representation is the lack of direct interpretability of �ltering
relations (25) and (30). Similar issues arise with relations between PSDs (29)
and (32). For the univariate case, �lters are described in the spectral domain
by the usual �ltering relation

Y(ν) = G(ν)X(ν) (34)

whereG(ν) is frequency response of the �lter. Its magnitude ∣G(ν)∣ and phase
argG(ν) have a natural interpretation in terms of gain and phase delay of the
�lter, respectively. Such physical interpretations are lacking in the bivariate
case, as shown by LTI �ltering expressions in the vector (25) and complex (30)
representations.

A ideal framework must be able to provide such interpretations. It will
improve the ability to specify desired behavior of �lters for bivariate signals,
and to tailor their use to the physical properties of bivariate signals.

Systematic time-frequency analysis Acomprehensive and generic time-frequency
analysis theory for bivariate signals does not exist in the vector setting, neither
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representation does the complex representation. As already mentioned, exist-
ing approaches rely on the simultaneous processing of pairs of time-frequency
representations (Hindberg and Hanssen, 2007; Schreier, 2008; Roue�, Chanus-
sot, and Mars, 2006; Diallo et al., 2005) Data-driven methods such as bivariate
extensions of the EMD (Rilling et al., 2007; Tanaka and Mandic, 2007) have Note that by spectrogramwemean a quadratic

or bilinear time-frequency representation
based on a short-term Fourier transform.

also been proposed. However, fundamental notions such as the spectrogram of
a bivariate signal are not yet de�ned.

One foundation for the time-frequency analysis of bivariate signals was
described by Lilly and Gascard (2006) and Lilly and Olhede (2010a) with
the modulated ellipse model (33). However as pointed out by the authors in
Lilly and Olhede (2010a) this model is not able to separate multicomponent
bivariate signals, as it is based on pairs of analytic signals. It may also appear
that the modulated ellipse model (33) is somehow arbitrary and not completely
theoretically grounded.

An ideal framework should providemeaningful and physically interpretable
time-frequency representations for bivariate signals. ¿ose should encompass
and extend well-known concepts from usual time-frequency analysis such
as analytic signals, spectrograms, scalograms as well as generic (i.e. bilinear)
time-frequency representations.

0.3.2 Summary of requirements

To summarize, an ideal and complete framework for processing bivariate
signals should exhibit three distinctive and equally important features:▸ straightforward physical descriptions: usual quantities from signal processing

e.g. power spectral densities, LTI �lters or time-frequency representations
should be de�ned directly in terms of meaningful physical parameters. In
addition, the framework should feature a desirable correspondence between
negative and positive frequencies. ¿ese properties would allow direct
interpretations and greatly simplify the design of many standard operations,
such as �ltering.▸ mathematical guarantees: the approach should gather all necessary and
desirable mathematical properties such as the conservation of energetic
quantities or the inversion of time-frequency representations.▸ computationally fast implementations: the proposed framework should
come with tools that are as numerically e�cient as existing approaches.

¿e last two requirements are crucial factors: the physical interpretability of the
framework must preserve mathematical properties and numerical e�ciency.
Ful�lling these three requirements from, respectively, physics, mathematics
and computer science would make the proposed approach a true signal pro-
cessing framework (Flandrin, 2018).

0.4 Contributions and outline

This thesis provides an unifying framework for the processing of bivariate
signals. ¿e proposed approach addresses all aforementioned limitations of
existing approaches. It relies on two key ingredients. First, just like real-valued
or univariate signals are usually embedded in complex numbers for ease of
study, we embed bivariate signals – seen as complex-valued signals – in their
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natural extension, the set of quaternionsH. Second the de�nition of a dedicated
quaternion Fourier transform o�ers a meaningful spectral representation to
bivariate signals. ¿us the approach yields elegant, compact and e�cient
computations. Physical parameters describing the polarization properties
of bivariate signals are naturally embedded in the proposed framework. It
enables straightforward generalizations of usual signal processing notions such
as spectral densities, �lters, analytic signals or spectrograms to the bivariate
case.

¿e proposed framework sheds light upon the physics of bivariate signals.
More importantly, it does not sacri�ce any fundamental mathematical guaran-
tees nor computationally fast implementations. Any new quantity introduced
within the proposed framework is validated by a theorem or a proposition.
A companion open-source Python package called BiSPy3 implements our 3. BiSPy: Bivariate Signal Processing in

Python.
Documentation, tutorials and code at

É bispy.readthedocs.io/
� github.com/jflamant/bispy

�ndings for the sake of reproducible research.

¿e potential of quaternion algebra and its relatives – such as Pauli matrices
– has been recognized for long time in optics (Richartz andHsü, 1949; Marathay,
1965; Whitney, 1971; Pellat-�net, 1984). ¿is stems from its ability to give an
insightful geometric treatment of polarization states. Many works, recently
reviewed by Tudor (2010a, 2010b), have taken advantage of this fact to provide
a pure operatorial, ‘‘matrix-free’’ formalism for the geometric description
of polarization states and their interaction with linear (optical) systems. In
fact this potential was even recognized long time ago by Hamilton (1844), the
inventor of quaternions, in a letter to his friend Graves (17th October, 1843)

å ¿ere seems to me to be something analogous to polarized intensity in the
pure imaginary part; and to unpolarized energy (indi�erent to direction) in
the real part of a quaternion: and thus we have some slight glimpse of a future
Calculus of Polarities. æ

As pointed out by Karlsson and Petersson
(2004), if Hamilton had developed such
‘‘calculus of Polarities’’ he would have pre-
ceded Jones (1941) and Mueller (1943) by al-
most a century.

As we shall see in Chapter 2, Hamilton’s prediction was almost correct: the
only di�erence is that the real part of the quaternion power spectral density
contains the sum of contributions from the unpolarized and polarized parts of
the signal, respectively.

However we note that existing results are not directly applicable to the case
of bivariate signals. Relations presented by Tudor (2010a, 2010b) and refer-
ences therein are only given at the power spectral density level. Global phase
e�ects are omitted and no direct or practical �ltering relations are available. In
addition as it focuses mainly on the monochromatic case, the formalism lacks
a nice time-frequency duality which would make easy the handling of generic
wideband bivariate signals.

Le Bihan, Sangwine, and Ell (2014) made a �rst step towards handling bi-
variate signals (seen as complex numbers) with a quaternion Fourier transform.
¿ey studied some of its properties and de�ned a bivariate analogue to the
analytic signal, a key step towards the time-frequency analysis of bivariate sig-
nals. Unfortunately, the physical interpretation of their approach was limited
to speci�c cases and thus lacked generality. Nonetheless these preliminary
results form the starting point of this thesis.

¿is manuscript is divided into 5 chapters that describe the systematic
construction of a complete framework for the processing of bivariate signals.

https://bispy.readthedocs.io/
https://github.com/jflamant/bispy
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At the end of each chapter, appendices gather related complementary results
and proofs.

Chapter 1 introduces the two ingredients of the proposed framework: quater-
nion algebra and the quaternion Fourier transform (QFT). In particular the
properties of the QFT are studied in detail. We provide new results show-
ing that the QFT is a well-de�ned mathematical object similar to the usual
Fourier transform. We notably demonstrate a generalized Parseval-Plancherel
theorem, which reveals that the QFT not only preserves energy but also an-
other quadratic geometry-related quantity. ¿e end of this chapter settles our
framework for the processing of bivariate signals. ¿e use of the QFT makes it
possible to give a meaningful and physically interpretable quaternion-valued
spectral representation of bivariate signals seen as complex-valued signals.
¿e material presented in this chapter has been published in an international
journal (Flamant, Le Bihan, and Chainais, 2017e).

Chapter 2 discusses the spectral analysis of bivariate signals. It focuses
mainly on the case of second-order stationary random bivariate signals. We
prove a spectral representation theorem for harmonizable signals. ¿is key
result introduces the quaternion power spectral density (PSD) of a bivariate
signal. Another key quantity, the quaternion autocovariance of a bivariate
signal, is de�ned thanks to aWiener-Khintchine-like theorem for the QFT.¿e
quaternion PSD has a direct interpretation in terms of polarization features,
namely frequency-dependent Stokes parameters. We also discuss the role of
the degree of polarization, a natural parameter which quanti�es the dispersion
of the polarization ellipse at each frequency. Nonparametric spectral estima-
tion is investigated in detail and we show that the estimation of polarization
quantities requires special care. Numerical experiments and illustrative exam-
ples support our �ndings. ¿is chapter includes material from publications
in an international journal (Flamant, Le Bihan, and Chainais, 2017c) and a
contribution to the national conference GRETSI 2017 (Flamant, Le Bihan,
and Chainais, 2017a).

Chapter 3 deals with the theory of linear time-invariant (LTI) �ltering for
bivariate signals. Based on an usual decomposition from polarization optics,
we decompose LTI �lters into unitary and Hermitian ones. Each class has
natural interpretation in terms of fundamental properties of optical media:
unitary �lters model birefringence whereas Hermitian �lters model diatten-
uation e�ects. ¿e proposed framework directly gives �ltering relations in
terms of the eigenvalues and eigenvectors of the �lter. It reveals the physical
speci�city of each �lter and makes it easy to prescribe or design �lters for bi-
variate signals. We demonstrate the relevance of the approach on two standard
tasks of signal processing: spectral synthesis of stationary Gaussian signals
and Wiener �ltering. It also yields original decompositions of bivariate signals
in two parts with prescribed properties. ¿ese promising results have been
accepted for publication in an international journal (Flamant, Chainais, and
Le Bihan, 2018a). ¿ey were also presented at the international conference
SSP 2018 (Flamant, Chainais, and Le Bihan, 2018b) where we received a Best
Student paper award.
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Chapter 4 addresses the time-frequency analysis of bivariate signals. We
de�ne a bivariate analogue of the analytic signal called the quaternion embed-
ding of a complex signal. It allows for direct identi�cation of instantaneous
amplitude and phase, as well as instantaneous polarization attributes. We
introduce the short-term quaternion Fourier transform and quaternion contin-
uous wavelet transform to overcome the inherent limitations of the quaternion
embedding. ¿eir properties are studied in detail. Two fundamental theorems
guarantee their inversion. ¿ey also ensure the interpretability of associated
time-frequency-polarization representations, namely polarization spectrogram
and polarization scalogram, respectively. An asymptotic analysis ensures that
these time-frequency-polarization representations localize meaningfully. ¿e
last part of this chapter develops a generic approach to the construction of
time-frequency-polarization representation. We de�ne the quaternionWigner-
Ville distribution and provide a construction of the Cohen class of bilinear
representations. Numerical experiments from simulated and real-world data
support our analysis. ¿e majority of these results has been published in an
international journal (Flamant, Le Bihan, and Chainais, 2017e). It was pre-
sented at the international conference ICASSP 2017 (Flamant, Le Bihan, and
Chainais, 2017b) and at the national conference GRETSI 2017 (Flamant, Le
Bihan, and Chainais, 2017d).

Chapter 5 explores the potential of the framework for the characterization
of the polarization pattern of gravitational waves (GW) emitted by precessing
binaries. ¿is work results from a collaboration with Eric Chassande-Mottin
and Fangchen Feng. Precession of emitting GW sources induces a modulation
of the polarization pattern of the GW. We show that the framework developed
in this thesis grants a new nonparametric characterization method for these
e�ects. Importantly the approach does not assume any dynamical model for
precession. Hence it is very promising for the future of GW characterization
as it has the potential of revealing any dynamical e�ect that a�ects the GW
polarization pattern. Our �ndings are illustrated on simulated data in noise-
free and in realistic simulated noise contexts. ¿ese results have been presented
at the international conference EUSIPCO 2018 (Flamant et al., 2018).

The concluding chapter, page 145, presents conclusions and discusses
some of the prospects triggered by the work presented in this manuscript.

The appendix, page 169 describes the main results from a collaboration with
Rémi Bardenet and Pierre Chainais. ¿is joint work was performed in parallel
with the research framework for bivariate signals developed in this thesis. We
have studied the distribution of the zeros of the spectrogram of white Gaussian
noise when the window is itself Gaussian. Our contributions are threefold: we
rigorously de�ne the zeros of the spectrogram of continuous white Gaussian
noise, we explicitly characterize their statistical distribution, and we investigate
the computational and statistical underpinnings of the practical implemen-
tation of signal detection based on the statistics of spectrogram zeros. ¿is
appendix reproduces the article “On the zeros of the spectrogram of white
noise,” Bardenet, Flamant, and Chainais (2018), currently under review at
Applied and Computational Harmonic Analysis.
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1Quaternion Fourier transform
for bivariate signals
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for the analysis and �ltering of bivariate signals. ¿is framework relies on two
key ingredients: quaternions and the quaternion Fourier transform. We will �rst
take a step back to gather the mathematical properties of these two elements
in a generic setting. ¿en we will show that quaternions and the quaternion
Fourier transform provide a natural embedding for bivariate signals viewed
as complex-valued signals. ¿e overall approach can be compared to the
case of real-valued or univariate signals: these are usually embedded in the
complex domain thanks to the Fourier transform, leading to many quantities
of interest such as amplitude and phase. Here the fruitful combination of
quaternions and quaternion Fourier transform yields an e�cient, rigorous and
easily interpretable framework for the handling of bivariate signals.

Quaternions form a four-dimensional algebra. A quaternion-valued signal
can thus convey up to four channels simultaneously, giving rise to many signal
processing applications. Examples include three-channel signal processing
in geophysics (Le Bihan and Mars, 2004; Miron, Le Bihan, and Mars, 2006;
Rehman and Mandic, 2010) and more generic four-channel signal processing
(Took and Mandic, 2009, 2010; Vía, Ramírez, and Santamaría, 2010). Quater-
nions also appear in the representation of the monogenic signal (Felsberg
and Sommer, 2001; Clausel, Oberlin, and Perrier, 2015), which is an extension
of the analytic signal to the case of (bi-dimensional) images. In contrast to
these existing approaches, quaternions are used in this manuscript as a natural
embedding for bivariate signals viewed as complex-valued signals.

¿e name quaternion Fourier transform does not refer to a single mathe-
matical instance. ¿e set of quaternions exhibits two additional dimensions
compared to the usual complex �eld thus providing a large choice of quaternion
Fourier transform de�nitions. Motivated by applications in image processing
(Sangwine, 1996; Ell and Sangwine, 2007; Bülow and Sommer, 2001), most Quaternion Fourier transforms have been

widely used in color image processing, since
RGB information can be stored in the vector
part (imaginary part) of a quaternion, see Ell,
Le Bihan, and Sangwine (2014) and references
therein.

de�nitions concern signals x ∶ R → H, i.e. two-dimensional quaternion
Fourier transforms. See e.g. Hitzer (2007) for possible de�nitions and their
resulting properties. In general, two-dimensional quaternion Fourier trans-
forms lack some usual properties of the complex Fourier transform, whichmay
have hampered their widespread use. In contrast we study here the generic
one-dimensional quaternion Fourier transform �rst introduced by Jamison
(1970) in his PhD dissertation. ¿is quaternion Fourier transform exhibits
properties similar to the usual complex Fourier transform and enjoys a numer-
ically e�cient implementation relying on FFTs only. We demonstrate that the
quaternion Fourier transform builds a solid ground for the representation and
analysis of bivariate signals by a suitable choice of its free-parameter, its axis.
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¿e formal construction of the proposed framework has been published in
an international journal (Flamant, Le Bihan, and Chainais, 2017e):

N J. Flamant, N. Le Bihan, and P. Chainais. 2017e. “Time-frequency analysis of
bivariate signals.” In Press, Applied and Computational Harmonic Analysis.
doi:10.1016/j.acha.2017.05.007

In this paper we reviewed some known properties of the quaternion Fourier
transform and proved some additional ones, including the generalized Parseval-
Plancherel ¿eorem 1.1 and the Gabor uncertainty principle (¿eorem 1.2).
¿is paper also discusses the choice of the axis of the quaternion Fourier
transform to e�ciently process bivariate signals, as well as the use of a speci�c
quaternion polar form to build meaningful interpretations.

First, we review quaternion algebra in Section 1.1. ¿en Section 1.2 studies
the generic mathematical properties of the quaternion Fourier transform.
Section 1.3 combines these two elements to establish a meaningful framework
for the spectral description of bivariate signals. Appendices 1.A to 1.C gather
complementary elements. Proofs of the main properties of the quaternion
Fourier transform are collected in Appendix 1.D.

1.1 Quaternions

In this section we only cover the necessary material on quaternions for this
manuscript and refer to dedicated textbooks for more details. References
include the original work of Hamilton (1866) and more recent textbooks such
as Ward (1997) and Conway and Smith (2003). Historical aspects can be found
in Crowe (1967) and Baez (2002). See also Ell (2013) for a recent review on the
use of quaternions in signal processing.

Quaternions were �rst described by Sir William Rowan Hamilton in 1843. We recommend the musical video of A
Capella Science (2016) for a narrative of
Hamilton’s life and achievements.

Hamilton had understood the tight link between complex numbers and 2-
dimensional geometry and has thus tried for many years to �nd the corre-
sponding algebra to handle 3-dimensional geometry. His quest for a system of
algebraic triplets however failed until he discovered on the 16th of October 1843 Even his children asked him ‘‘Well, Papa, can

you multiply triplets?’’, to which he answered
‘‘No, I can only add and substract them’’.

that he needed a fourth dimension to handle them, leading to the quaternions.
He immediately carved the rule for quaternion multiplication into the stone
of the Brougham bridge in Dublin. ¿is carving has now disappeared and has
been replaced by a plaque honoring his discovery. Hamilton devoted his last 20
years to the study of his quaternions which culminated in his book, Elements
of quaternions. A er his death in 1865 quaternions remained fashionable for
some time, but they were rapidly superseded by the advent of modern vector
calculus through the work of Gibbs and Heaviside. Since the end of the 20th

century, quaternions have however regained some attention primarily due to
their ability to e�ciently represent 3D rotations. ¿ey are used in numerous
applications, ranging from computer graphics to robotics.

1.1.1 De�nition

¿e set of quaternions is denoted by H in honor of Hamilton. Quaternions
form a four-dimensional noncommutative division ring over the real numbers.
Any quaternion q ∈ H reads in its Cartesian form

q = a + bi + c j + dk (1.1)

http://dx.doi.org/10.1016/j.acha.2017.05.007
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where a, b, c, d ∈ R are its components. Imaginary units i , j, k satisfy the
fundamental formula for quaternion multiplication

i = j = k = i jk = − (1.2)

from which one deduces
i j = − ji = k
jk = −k j = i
ki = −ik = j.

(1.3)

¿ese cyclic relations (1.3) highlight the noncommutative nature of quaternion
multiplication, i.e. for q, q′ ∈ H in general qq′ ≠ q′q. However usual operations
such as addition, scalar multiplication and equality behave similarly to the
complex case. Let q = a + bi + c j+ dk and q′ = a′ + b′ i + c′ j+ d′k denote two
quaternions, one has

(addition) q + q′ = q′ + q = (a + a′) + (b + b′)i + (c + c′) j + (d + d′)k
(scalar multiplication) ∀λ ∈ R, λq = qλ = λa + λbi + λc j + λdk

(equality) q = q′⇔ a = a′ , b = b′ , c = c′ , d = d′ .
Any quaternion q ∈ H can be decomposed into its scalar part S(q) and its
vector part V(q) such that

q = S(q) + V(q), (1.4)

where S(q) = a V(q) = bi + c j + dk, (1.5)

¿e scalar part is real-valued S(q) ∈ R, whereas the vector part V(q) ∈ S(q) and V(q) are also called the real and
imaginary parts of q. When S(q) = , q is
called a pure quaternion.

span{i , j, k} is purely imaginary . ¿is vector part V(q) can be uniquely
identi�ed to a vector of R.

¿e product of two quaternions q, q′ ∈ H reads using the scalar-vector
decomposition

qq′ = S(q)S(q′) − ⟨V(q),V(q′)⟩ + S(q)V(q′) + S(q′)V(q) + V(q) × V(q′) (1.6)

where ⟨⋅, ⋅⟩ and ⋅ × ⋅ denote the usual inner product and cross product of R.
Eq. (1.6) emphasizes the noncommutative nature of the quaternion product,
since the cross-product V(q) × V(q′) is noncommutative.

1.1.2 Quaternion operations

¿e quaternion conjugate of q is denoted by q and is obtained by reversing the
sign of its vector part

q = S(q) − V(q) = a − bi − c j − dk. (1.7)

Importantly the order of the quaternion product is �ipped by conjugation, i.e.
for q, q′ ∈ H one has

qq′ = q′ q. (1.8)

¿e modulus of a quaternion q ∈ H is When ∣q∣ = , q is called a unit quaternion.

∣q∣ = √
qq = √

qq = √
a + b + c + d . (1.9)
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¿e modulus of a product qq′ is simply the product of the moduli:
∣qq′∣ = ∣q′q∣ = ∣q∣∣q′∣. (1.10)

SinceH is a division algebra, any nonzero quaternion has an inverse q− such
that

q− = q∣q∣ . (1.11)

¿e involution with respect to an arbitrary pure unit quaternion µ is de�ned A pure unit quaternion µ is such that µ = −
by

qµ ≜ −µqµ (1.12)

¿e set of three canonical involutions q i , q j , qk together with the associated

For instance qi = a + bi − c j − dk

quaternion q allow to recover the real and the three imaginary parts of any
quaternion. Unlike quaternion conjugation, involutions preserve ordering
when applied to a product

qq′µ = qµq′µ (1.13)

¿e combination of conjugation with an arbitrary involution is denoted by

q∗µ ≜ q µ = qµ = −µqµ. (1.14)

¿is operation can be interpreted as a conjugation along a particular pure unit

For instance q∗i = a − bi + c j + dk

quaternion µ.

1.1.3 Complex sub�elds

Quaternions encompass complex numbers. Given any pure unit quaternion µ
such that µ = − the set

Cµ = {α + βµ ∣ α, β ∈ R} (1.15)

is a complex sub�eld ofH isomorphic to C. ¿ere exists an in�nite number of ¿is in�nite number of roots of − contrasts
with the usual complex algebra. In C only
−i and i are roots of −, with i the standard
complex imaginary unit.

such sub�elds since there is an in�nite number of roots of − in the quaternion
algebra.

As a result given a complex sub�eldCµ and a pure unit quaternion µ⊥ such
that S(µµ⊥) = , any quaternion can be decomposed into a pair of complex S(µµ) = ⇔ µ is orthogonal to µ
numbers. For instance, the following decompositions

q = q + q j, q , q ∈ Ci or q = q′ + iq′ , q′ , q′ ∈ C j (1.16)

will be used extensively in this manuscript.

1.1.4 Polar forms

Alike complex numbers, any quaternion q ∈ H can be written in polar form.
Its standard polar form reads

q = ∣q∣eµθ = ∣q∣ (cos θ + µ sin θ) (1.17)

where µ is a pure unit quaternion and θ ∈ [, π). Unit quaternions, i.e. q ∈ H
such that ∣q∣ =  correspond to quaternion exponentials q = exp(µθ). For the
particular case of pure unit quaternions one gets µ = exp(µπ/), as with usual
complex imaginary units.
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Due to the multiplicity of roots of − inH, polar forms involving speci�c
axes can also be de�ned. ¿e Euler polar form of q reads

q = ∣q∣e iθ e−k χe jφ (1.18)

where θ ∈ [−π/, π/), χ ∈ [−π/, π/] and φ ∈ [−π, π). See Appendix 1.A
¿is particular polar form was �rst intro-
duced by Bülow and Sommer (2001) to ana-
lyze the local phase in images. It corresponds
to a xzy-Euler angle parameterization of the
unitary part of q – a common description
of 3D rotations as three successive rotations
around canonical axes (Altmann, 2005).

for an e�cient computation of this Euler polar form. ¿e polar form (1.18)
will later appear as a cornerstone of our framework as it provides a direct and
simple way to identify meaningful physical parameters of bivariate signals.

1.1.5 Quaternions and 3D rotations

¿e ability to handle 3D rotations easily is one of the most famous features of
quaternions. 3D rotations are encoded using unit quaternions. Let q ∈ H and More precisely, the set of unit quaternions

form the group SU() which is a two-fold
covering of the rotation group SO() (Alt-
mann, 2005).

v a unit quaternion, the rotation of q by v is given by

Rvq = vqv . (1.19)

Since v is a unit quaternion it reads in exponential form v = exp(µβ/) and
the rotationRvq reads

Rvq = eµ β
 qe−µ β

 = S(q) + eµ β
 V(q)e−µ β

 . (1.20)

¿e pure unit quaternion µ is identi�ed with a vector of R and denotes the
axis of the rotation, and β gives its angle. Eq. (1.20) shows that the transform
(1.19) only a�ects the vector part of q: it is indeed a 3D rotation. A special case of
3D rotations are involutions. Comparing (1.12) with (1.19) for v = µ, involutions
correspond to rotations of angle π around axis µ. More on the connection

For instance the involution

qi = a + bi − c j − dk

is the rotation of q by angle π around axis i.between quaternions and rotations can be found in Altmann (2005).

1.2 Quaternion Fourier transform

1.2.1 De�nition, existence, inversion

¿e Quaternion Fourier Transform (QFT) of axis µ of a signal x ∶ R → H is
de�ned by

X(ν) ≜ ∫ +∞
−∞ x(t)e−µπνtdt (1.21)

¿is de�nition matches closely the usual Fourier transform. However it di�ers
in two fundamental aspects. First, the position of the Fourier atom e−µπνt
with respect to the quaternion-valued signal x(t) is crucial due to the non-
commutative nature of the product in H. By convention and to agree with Correspondence between right-sided and le -

sided de�nitions of the QFT can be found in
Ell, Le Bihan, and Sangwine (2014).

usual Fourier transform notation we choose to place this Fourier atom on the
right side of the signal. Second, the axis µ of the QFT is a free parameter. It is
only restricted to be a pure unit quaternion, or stated di�erently, a quaternion
imaginary unit µ = −. Details on the choice of this axis µ to process bivariate
signals are given in Section 1.3.

¿e QFT (1.21) was �rst studied by Jamison (1970) in his PhD dissertation Although he uses a le -sided convention, his
results are easily transposed to the right-sided
de�nition.“Extension of some theorems of complex functional analysis to linear spaces

over the quaternions and Cayley numbers.”
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¿e existence and invertibility of the QFT for functions in L(R;H) and ¿e space Lp(R;H) denotes the set of
quaternion-valued functions x ∶ R→ H with
�nite p-norm, i.e. such that

∥x∥p = (∫
+∞

−∞
∣x(t)∣pdt)


p <∞ ,

and where functions which agree almost ev-
erywhere are identi�ed.

L(R;H) was proven by Jamison (1970). ¿e inverse Quaternion Fourier
transform reads

x(t) = ∫ +∞
−∞ X(ν)eµπνtdν (1.22)

Jamison did not extend the QFT to generalized functions, i.e. distributions. It
can however be worked out easily by transposing proofs from the usual FT
to the case of the QFT, see for instance Appel and Kowalski (2007) or Simon
(2015).

Existence and inversion properties of the quaternion Fourier transform
(1.21) are essentially the same as the standard (complex) Fourier transform.
Indeed a direct inspection of (1.21) shows that the restriction of the QFT to
signals x ∶ R → Cµ is simply the usual complex Fourier transform. Let us
decompose an arbitrary quaternion-valued signal x(t) into a pair ofCµ-valued
signals x(t) and x(t) such that

x(t) = x(t) + µ⊥x(t) , (1.23)

where µ⊥ is a pure unit quaternion orthogonal to µ. By (le -)linearity of the
QFT (1.21) one gets

X(ν) = X(ν) + µ⊥X(ν) (1.24)

where X and X are the standard Cµ-valued FTs of x and x. In other terms,
the QFT of x is obtained by combining two standard FTs according to (1.24).
¿is ensures the valid manipulation of usual signals such as sine, Dirac delta
functions, etc. in the context of the quaternion Fourier transform.

1.2.2 Properties of the Quaternion Fourier transform

We study the basic properties of the quaternion Fourier transform of arbitrary
axis µ. Most QFT properties are similar to the usual FT. ¿is is a comforting
fact. Nonetheless special care to the ordering of terms is required due to
noncommutativity of the quaternion product. Proofs corresponding to known
results are omitted for brevity and can be found in Ell, Le Bihan, and Sangwine
(2014). Results regarding convolution properties, ¿eorem 1.1 and¿eorem 1.2
are new results published in Flamant, Le Bihan, and Chainais (2017e). Proofs
can be found in Appendix 1.D.

Linearity ¿e quaternion Fourier transform is le H-linear, i.e.

αx(t) + βy(t) QFT←→ αX(ν) + βY(ν) (1.25)

for every α, β ∈ H. It is also right Cµ-linear, i.e. Importantly this second type of linearity de-
pends on the choice of the axis µ in the expo-
nential kernel of the QFT.x(t)γ + y(t)δ QFT←→ X(ν)γ + Y(ν)δ (1.26)

for every γ, δ ∈ Cµ .

Shi s ¿e quaternion Fourier transform pair corresponding to a shi in time
by τ is

x(t − τ) QFT←→ X(ν)e−µπντ (1.27)

and to a shi in frequency by ν

x(t)eµπν t QFT←→ X(ν − ν). (1.28)
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Scaling ¿e quaternion Fourier transform pair corresponding to a scaling
α ∈ R∗ is

x (t/α) QFT←→ ∣α∣X(αν). (1.29)

Time reversal ¿e quaternion Fourier transform pair corresponding to time
reversal is

x(−t) QFT←→ X(−ν). (1.30)

Di�erentiation ¿e quaternion Fourier transform pair corresponding to dif-
ferentiation with respect to time is

dnx(t)
dtn

QFT←→ X(ν)(µπv)n (1.31)

and to di�erentiation with respect to frequency

x(t)(−µπt)n QFT←→ dnX(ν)
dνn

. (1.32)

Convolution Convolution is perhaps one of the most fundamental operation
in signal processing. ¿e convolution product in time between two quaternion-
valued signals x(t) and y(t) is de�ned by

x ∗ y(t) = ∫ +∞
−∞ x(u)y(t − u)du. (1.33)

Considering quaternion-valued signals however implies some constraints on
this standard operation. It is no longer commutative, i.e. x ∗ y ≠ y ∗ x in
general. Moreover it is not possible to write the QFT of (1.33) as a mere product
of respective QFTs without some assumptions on the nature of y.

Let y ∶ R → Cµ , that is y(t) and its QFT Y(ν) take their values into the
same complex sub�eld ofH as the Fourier atom e−µπνt . ¿en the quaternion
Fourier transform pair corresponding to the convolution product in time is

⎧⎪⎪⎨⎪⎪⎩
x ∶ R→ H

y ∶ R→ Cµ
x ∗ y(t) QFT←→ X(ν)Y(ν). (1.34) Proof. See Appendix 1.D.1.

¿e same restriction holds for its dual property, the convolution product in
frequency of two signals. ¿e quaternion Fourier transformpair corresponding
to the convolution product in frequency is

⎧⎪⎪⎨⎪⎪⎩
x ∶ R→ H

y ∶ R→ Cµ
x(t)y(t) QFT←→ X ∗ Y(ν). (1.35)

¿e condition y ∶ R→ Cµ should not seem too restrictive. In fact Eqs. (1.34) –
(1.35) encompass usual smoothing operations in the time or frequency domain.
Filtering relations involving geometric operations can not be written simply in
terms of convolutions. ¿is will be discussed in Chapter 3.

Parseval-Plancherel identities ¿e usual Fourier transform can be seen as
a linear operator on the Hilbert space of complex-valued square integrable
functions L(R;C). ¿is perspective proves to be particularly fruitful in signal
processing, leading to geometric and intuitive reasoning.
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However the de�nition ofHilbert spaces involving non-commutative scalars
such as quaternions requires special care (Jamison, 1970). Fortunately, it can
be shown that L(R;H) is a le Hilbert space over H; see Appendix 1.B for
details. ¿e inner product between two signals x , y ∈ L(R;H) is

⟨x , y⟩L = ∫ +∞
−∞ x(t)y(t)dt, (1.36)

which induces the L-norm

∥x∥L = ⟨x , x⟩L = ∫ +∞
−∞ ∣x(t)∣dt. (1.37)

¿e following theorem extends fundamental results concerning invariants
of the quaternion Fourier transform. It also introduces a second invariant of
geometric nature.

Theorem . (Parseval-Plancherel theorem for the QFT). Let x , y ∈ L(R;H). ¿en the
following holds

∫ +∞
−∞ x(t)y(t)dt = ∫ +∞

−∞ X(ν)Y(ν)dν (1.38)

∫ +∞
−∞ x(t)µy(t)dt = ∫ +∞

−∞ X(ν)µY(ν)dν (1.39)

In particular for x = y:
∫ +∞
−∞ ∣x(t)∣dt = ∫ +∞

−∞ ∣X(ν)∣dν (1.40)

∫ +∞
−∞ x(t)µx(t)dt = ∫ +∞

−∞ X(ν)µX(ν)dν (1.41)

Proof. See Appendix 1.D.2.¿is theorem shows that the QFT de�nes an isometry of L(R;H). Indeed
Eqs. (1.38) and (1.40) are extensions of usual Parseval and Plancherel formu-
las. ¿is theorem also shows that another quantity, of geometrical nature, is
preserved by the QFT. Let f (⋅) = x(t) or X(ν). Focusing on (1.41), the terms
f (⋅)µ f (⋅) denote 3D rotations, up to a scaling factor. To see this, write f in Similarly, it can be shown that (1.39) corre-

sponds to a 4D rotation up to a scaling factor.
See Conway and Smith (2003) for more on
4D rotations.

quaternion polar form f (⋅) = ∣ f (⋅)∣eµ f (⋅)θ f (⋅). ¿en

f (⋅)µ f (⋅) = ∣ f (⋅)∣eµ f (⋅)θ f (⋅)µe−µ f (⋅)θ f (⋅) (1.42)

corresponds to the combination of a scaling by ∣ f (⋅)∣ and a 3D rotation of
axis µ f (⋅) and angle θ f (⋅) of the QFT axis µ.

¿e preservation of geometric quantities of the form (1.42) by the QFT is a
new result which is central in the proposed framework for bivariate signals.
¿eorem 1.1 is essential to build meaningful spectral densities (Chapter 2) or
time-frequency densities (Chapter 4).

Uncertainty principle Also known as the Gabor-Heisenberg uncertainty prin-
ciple, this fundamental property extends to the quaternion Fourier transform
setting. Consider a �nite energy signal x ∈ L(R;H). Its temporal mean ⟨t⟩ is
de�ned by

⟨t⟩ = ∥x∥ ∫
+∞

−∞ t∣x(t)∣dt, (1.43)

and the mean frequency ⟨ν⟩ as
⟨ν⟩ = ∥x∥ ∫

+∞
−∞ ν∣X(ν)∣dν. (1.44)
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Spreads around these mean values are de�ned like

σ t = ∥x∥ ∫
+∞

−∞ (t − ⟨t⟩)∣x(t)∣dt, (1.45)

σ ν = ∥x∥ ∫
+∞

−∞ (ν − ⟨ν⟩)∣X(ν)∣dν. (1.46)

Theorem . (Gabor-Heisenberg uncertainty principle). Given a signal x ∈ L(R;H) with
QFT X and time (resp. frequency) spread σ t (resp. σ ν ). ¿e following holds:

σtσν ≥ 
π

. (1.47)

Functions that exhibit minimal uncertainty σtσν = /(π) are of the form
x(t) = αe−k(t−t) eµπν t , k > , t , ν ∈ R, α ∈ H, (1.48)

where t = ⟨t⟩ and ν = ⟨ν⟩.
Proof. See Appendix 1.D.3.

We proved this theorem in Flamant, Le Bihan, and Chainais (2017e). It
shows that the QFT behaves exactly as the usual Fourier transform regarding
the tradeo� between time and frequency localizations.

Discretization ¿e aforementioned properties demonstrate that the quater-
nion Fourier transformprovides a valid and rigorousmathematical operator for
continuous-time quaternion-valued signals. Similarly, a discrete-time quater-
nion Fourier transform (Q-DTFT) can be de�ned to account for discrete-time
quaternion-valued signals. Moreover, the quaternion Fourier transform would
be rather unattractive if it did not admit an e�cient numerical implementation.
It turns out that the discrete quaternion Fourier transform (Q-DFT) can be
e�ectively computed based on the sole use of fast Fourier transforms (FFT).
¿e derivation of the Q-DTFT and Q-DFT follow closely the usual derivation
of the DTFT and DFT from the standard FT. See Appendix 1.C for details.

1.3 Processingbivariate signalswiththequaternionFourier
transform

A systematic study of the fundamental properties of the quaternion Fourier
transform (1.21) was conducted in the last section. ¿ese properties are very
similar to the usual complex Fourier transform. ¿e main di�erence lies
in handling non-commutativity properly. Building upon these convenient
mathematical properties, the purpose of this section is now to demonstrate
that the QFT provides an e�cient framework for bivariate signals.

¿e key ideas are: (i) to consider bivariate signals as complex-valued signals
and (ii) to use a dedicated QFT to process bivariate signals, ensuring a mean-
ingful embedding of these signals intoH. ¿ese ideas were �rst proposed by
Le Bihan, Sangwine, and Ell (2014). We further explored this proposition in
Flamant, Le Bihan, and Chainais (2017e) to build a meaningful and e�cient
representation of bivariate signals.
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1.3.1 Bivariate signals

A bivariate signal x(t) is described by two real-valued orthogonal components
denoted by u(t) and v(t). ¿us a bivariate signal can be either represented by
a 2-dimensional vector-valued signal [u(t), v(t)]⊺, or by the complex-valued
signal

x(t) = u(t) + iv(t). (1.49)

¿e choice of the complex-valued representation over the vector-valued repre-
sentation is o en advocated for in signal processing (Schreier and Scharf, 2010).
¿is is mainly due to the ability of the complex representation to manipulate
amplitude and phase easily with polar forms.

¿e bivariate signal x(t) in its complex representation (1.49) can be viewed
as a special type of quaternion-valued signal1. ¿is signal takes its values in 1. ¿at said, we see that the choice of i

as the imaginary unit in (1.49) is only a mat-
ter of convention. Any pure unit quaternion
µ could have been chosen, leading to a Cµ
complex-valued representation of the bivari-
ate signal x(t).

span{, i} ≜ Ci ⊂ H. Considering bivariate signals as complex-valued signals
embedded in quaternions is a cornerstone of our analysis since it allows to
process bivariate signals using the QFT studied in Section 1.2.

1.3.2 Choice of the axis of the QFT

¿e de�nition of the quaternion Fourier transform (1.21) introduces a free
parameter, the axis µ of the transform. By choosing µ = i one recovers the
usual complex Fourier transform. ¿is shows that the QFT de�nition (1.21)
encompasses the usual complex case, but that it o�ers other choices as well.
¿us the pure unit quaternion µ has to be chosen wisely so that the QFT yields
interesting additional properties for bivariate signals of the form (1.49).

Starting with arbitrary µ, the QFT of x(t) reads
X(ν) = U(ν) + iV(ν) (1.50)

whereU and V areCµ-valued and correspond to the usual Fourier transforms
of u and v. One natural requirement is thatU(ν) and iV(ν) should live in non-
intersecting subspaces ofH. ¿en the QFT (1.50) simply becomes isomorphic
to the usual FT of the 2-dimensional vectors [u(t), v(t)]T . ¿is requirement
is easily ful�lled provided that µ is orthogonal to i, i.e. S(µi) = . ¿is means
that any axis of the form µ = a j + bk with a, b ∈ R such that a + b =  is a
valid choice. For the sake of simplicity we choose µ = j.

¿e de�nition of the quaternion Fourier transform we will use in this work
is then

X(ν) ≜ ∫ +∞
−∞ x(t)e− jπνtdt . (1.51)

With this choice, the QFT exhibits a Hermitian-like symmetry for bivariate
signals:

Proof. Property (1.52) arises from the sepa-
ration of U and V components in (1.50). Let
x(t) = u(t) + iv(t) a bivariate signal. ¿en
its QFT of axis j is X(ν) = U(ν) + iV(ν).
Since u and v are real-valued functions and
that U and V are their usual C j-valued FT,

U(−ν) = U(ν) and V(−ν) = V(ν)

so that X(−ν) = U(ν) + iV(ν). ¿en using
that for all z ∈ C j , iz = zi one gets (1.52).

x ∶ R→ Ci
QFT←→ X(−ν) = −iX(ν)i = X(ν)i . (1.52)

¿is is the i-Hermitian symmetry property of the QFT of bivariate signals.
It can be seen as the generalization of the well-known fact that the Fourier
transform of a real-valued signal obeys Hermitian symmetry. ¿is is a very
desirable property, as it allows to attach a physical meaning to positive fre-
quencies only. ¿e quaternion-valued spectrum X(ν) restricted to positive
frequencies only contains the complete information about the bivariate signal
x(t).
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As a result any bivariate signal x(t) can be reconstructed from the restric-
tion of its QFT to positive frequencies: ¿e Ci -part of a quaternion q is computed

using

ProjCi
{q} = (q + qi)/x(t) = ProjCi

{∫ +∞


X(ν)e jπνtdν} , (1.53)

where the factor  arises from the i-Hermitian symmetry (1.52). In fact, the
quantity appearing in the right-hand side of (1.53) is called the quaternion
embedding x+(t) of the bivariate or complex signal x(t) such that

x+(t) = ∫ +∞


X(ν)e jπνtdν . (1.54)

It can be viewed as a bivariate counterpart of the usual analytic signal of a real
signal. Chapter 4 will provide a thorough study of this �rst building block for
the time-frequency analysis of bivariate signals.

1.3.3 Monochromatic bivariate signals

¿e quaternion Fourier transform of axis j (1.51) enjoys numerous desirable
mathematical properties making it a well-behaved tool for the analysis of
bivariate signals. Using quaternion algebra, we show that the connection with
the physics and the geometry of bivariate signals is straightforward.

Consider a monochromatic bivariate signal x(t) of frequency ν > . ¿en
its QFT is necessarily of the form

X(ν) = λδ(ν − ν) + λ iδ(ν + ν) (1.55)

where λ ∈ H and where the negative frequency term is such that (1.52) holds.
¿en taking the inverse QFT of (1.55) and writing λ in Euler polar form (1.18)
one gets

x(t) = ProjCi
{ae iθ e−k χe j(πν t+φ)} , (1.56)

which explicitly reads

x(t) = ae iθ [cos(χ) cos(πν t + φ) + i sin(χ) sin(πν t + φ)] (1.57)

Figure 1.1 depicts the trajectory drawn in the u-v plane by the signal x(t)
de�ned by (1.57). In fact, Eq. (1.57) corresponds to the parametric equation
of an ellipse. ¿e ellipse is parameterized by its orientation θ ∈ [, π) and
its ellipticity angle χ ∈ [−π/, π/]. When χ = ±π/ the ellipse becomes a
circle and for χ =  the ellipse reduces to a line segment. ¿e sign of χ gives
the direction of travel within the ellipse, i.e. clockwise for χ <  and counter-
clockwise for χ > . ¿e remaining parameters are classical: the amplitude a
controls the size of the ellipse, while φ gives the phase delay corresponding to
frequency ν.

In physics, the monochromatic signal x(t) depicted in Fig. 1.1 would be
called amonochromatic polarized signal. ¿is stems from the interpretation of
x(t) as a descriptor of the two components of the �eld of a transverse elastic or
optical plane wave. ¿is link with polarization is explored further in Chapter
2 and subsequent chapters.

Let us consider an arbitrary bivariate signal x(t). Writing its QFT X(ν) in
Euler polar form the inverse QFT reads

x(t) = ∫ +∞
−∞ a(ν)e iθ(ν)e−k χ(ν)e jφ(ν)e jπνtdν. (1.58)
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Figure 1.1: A monochromatic bivariate signal
x(t) draws an ellipse in the u-v plane. ¿e
ellipse is parameterized by its size a, its orien-
tation θ and its shape given by the ellipticity
angle χ. ¿e angle φ gives the phase delay
associated to the corresponding frequency.

Eq. (1.58) highlights the fact that the QFT performs a decomposition of any
bivariate signal into a sum of monochromatic polarized components. As the
usual Fourier transform decomposes univariate signals into a sum of (scalar)
plane waves, the QFT decomposes bivariate signals into a sum of polarized
plane waves. ¿e identi�cation of ellipse or polarization parameters for each
wave is straightforward thanks to the Euler polar form (1.18).

For reference, Table 1.1 collects the properties of theQFT of axis j for generic
quaternion-valued signals and for bivariate signals.

1.4 Conclusion

¿is chapter has presented the two key ingredients of the proposed frame-
work for the analysis and �ltering of bivariate signals: quaternions and the
quaternion Fourier transform. ¿e generic properties of the QFT have been
studied. ¿e QFT exhibits usual Fourier transform properties (linearity, shi s,
di�erentiation, etc.) which sometimes require special care due to noncommu-
tativity. We have shown that the QFT features generalized Parseval-Plancherel
identities (¿eorem 1.1), which state that energy but also an additional geomet-
ric quantities are preserved. We showed that the QFT obeys the usual time-
frequency tradeo� of Gabor-Heisenberg inequality (¿eorem 1.2). Section 1.3
has demonstrated the relevance of the QFT for the study of bivariate signals.
¿e quaternion-valued spectrum of bivariate signals exhibits Hermitian-like
symmetry, a very desirable property that allows to attach physical interpre-
tation to positive frequencies only. As shown on the simple example of the
monochromatic bivariate signal, the quaternion Euler polar form provides
a straightforward natural ellipse parameterization. ¿e construction of this
framework has been published as part of an international journal paper (Fla-
mant, Le Bihan, and Chainais, 2017e).

Next chapters will demonstrate the full generality of the proposed approach
for the handling of bivariate signals. ¿e subsequent Chapter 2 provides an
answer to the next natural question: How to de�ne the notion of spectral density
in this framework?
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Property Time-domain Frequency domain Comments

Le linearity αx(t) + βy(t) αX(ν) + βY(ν) α, β ∈ H
Right linearity x(t)γ + y(t)δ X(ν)γ + Y(ν)δ γ, δ ∈ C j

Shi in time x(t − τ) X(ν)e−µπντ
Shi in frequency x(t)eµπν t X(ν − ν)
Scaling x (t/α) ∣α∣X(αν) α ∈ R∗

Time reversal x(−t) X(ν)
Di�erentiation in time

dnx(t)
dtn

X(ν)(µπv)n
Di�erentiation in frequency x(t)(−µπt)n dnX(ν)

dνn

Convolution in time x ∗ y(t) X(ν)Y(ν) y ∶ R→ C j

Convolution in frequency x(t)y(t) X ∗ Y(ν) y ∶ R→ C j

Standard Plancherel equality ∫ +∞
−∞ ∣x(t)∣dt = ∫ +∞

−∞ ∣X(ν)∣dν
Geometric Plancherel equality ∫ +∞

−∞ x(t)µx(t)dt = ∫ +∞
−∞ X(ν)µX(ν)dν

Gabor-Heisenberg uncertainty σtσν ≥ 
π

i-Hermitian symmetry x ∶ R→ Ci X(−ν) = −iX(ν)i
Table 1.1: Properties of the quaternion Fourier
transform of axis j.
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Appendices

1.a Euler polar form computation

We describe a numerically stable and e�cient method for the computation of
the Euler polar form (1.18) of any quaternion q ∈ H. ¿is method relies on the
use of quaternion quadratic forms.

Let q ∈ H. Recall its Euler polar form:
q = ae iθ e−k χe jφ . (1.59)

¿e amplitude a is easily obtained

a = √
qq = ∣q∣. (1.60)

If a =  then by convention θ = χ = φ = . Assume a ≠ . Angles θ and χ are
obtained by computing q jq:

(a) ∀x , y ∈ H, (xy) = y x

(b) ∀x ∈ Ci , x j = jx and ∀y ∈ Ck , y j = jy

q jq = ae iθ e−k χe jφ je iθ e−k χe jφ (1.61)
(a)= ae iθ e−k χe jφ je− jφek χe−iθ (1.62)
(b)= ae iθ e−k χe iθ j (1.63)
(b)= a (e iθ cos χ − k sin χ) j (1.64)

= a (i sin χ + j cos θ cos χ + k sin θ cos χ) (1.65)

Denoting by Imi , Im j , Imk the three canonical imaginary parts of a quaternion,
one gets the following expressions for θ and χ:

θ = 

arctan

Imk (q jq)
Im j (q jq) , (1.66)

χ = 

arcsin

Imi (q jq)
a

. (1.67)

¿e last angle φ is obtained by taking the usual complex argument of q′ such
that

φ = arg q′ where q′ = e iθ e−k χq = ae jφ . (1.68)

Using expressions (5) – (7) of Stokes parameters S, S and S given in Chapter
0, we see that (1.65) is simply the combination of these three Stokes parameters.
¿us the computation of angles θ and χ directly involves Stokes parameters.
¿is link between quaternion quadratic forms (∣q∣ and q jq) and Stokes pa-
rameters is discussed in detail in the next Chapter 2.

1.b Hilbert spaces over quaternions

Hilbert spaces over quaternions were �rst studied by Teichmüller (1936) in his Oswald Teichmüller called Hilbert spaces
over quaternions ‘‘Wachsschen Raum’’ af-
ter their construction was suggested by Her-
mannWachs, one of his fellow students. Be-
sides being a mathematician Teichmüller was
also a commited nazi (Segal, 2014, pp. 442–
450). He joined the NSDAP in 1931, and he
reportedly lead in 1933 the boycott of Edmund
Landau’s classes in Göttingen. He died on the
eastern front in 1943.

PhD dissertation. ¿ey were later studied by Finkelstein et al. (1962) in the
development of quaternion quantum mechanics. ¿e material presented in
this section can be found in the PhD dissertation of Jamison (1970), in which
a thorough treatment of Hilbert spaces over quaternions is presented.

Let us start by the de�nition of a vector space over quaternions. Such
spaces are said either le or right vector spaces, depending from which side
quaternion scalar multiplication is considered. We focus on le vector spaces,
but de�nitions for right vector spaces can be deduced directly.
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Definition . (Left vector space overH). A (le ) vector spaceS overH is an additive
abelian group in which the operation of scalar multiplication by elements ofH
is de�ned. Scalar multiplication is assumed to obey the following laws for all
x , y ∈S and a, b ∈ H
1. a(x + y) = ax + ay
2. (a + b)x = ax + bx
3. (ab)x = a(bx)
4.  ⋅ x = x (  is the unit scalar quaternion)

Linear functionals over a le vector space are de�ned accordingly

Definition . (Linear functionals). Let S be a le vector space over H. A mapping
f ∶S→ H is called a linear functional if
1. f (x + y) = f (x) + f (y), ∀x , y ∈S
2. f (αx) = α f (x), ∀x ∈S and ∀α ∈ H
Definition . (Inner product space). Let S be a le vector space over H. S will be
called an inner product space if there exists a function ⟨⋅, ⋅⟩ ∶S ×S→ H with
the properties
1. ⟨x , y + z⟩ = ⟨x , y⟩ + ⟨x , z⟩
2. ⟨αx , y⟩ = α ⟨x , y⟩
3. ⟨x , y⟩ = ⟨y, x⟩
4. ⟨x , x⟩ > , x ≠ 
where this has to be true ∀x , y, z ∈S and ∀α ∈ H.

Le inner product spaces feature the usual Cauchy-Schwartz inequality.

Lemma . (Cauchy-Schwartz inequality). If x , y are two elements ofS then

∣ ⟨x , y⟩ ∣ ≤ ⟨x , x⟩/ ⟨y, y⟩/ Proof. See Jamison (1970, p. 69)

Importantly, any le inner product space overH is a le normed space. It
su�ces to de�ne ∥x∥ = ⟨x , x⟩/ ∀x ∈S (1.69)

A le inner product spaceS equippedwith themetric d(x , y) = ⟨x − y, x − y⟩/
that is complete is a le Hilbert space.

¿e Hilbert space L(R;H) ¿e set of square integrable quaternion-valued
functions x ∶ R→ H, denoted L(R;H), and equipped with the inner product

∀x , y ∈ L(R;H), ⟨x , y⟩L ≜ ∫ x(t)y(t)dt (1.70)

is a le Hilbert space. ¿e proof is analogous to the classical case and can
be found in Jamison (1970). Note that the inner product ⟨⋅, ⋅⟩L satis�es the
requirements of De�nition 1.3, and is in particular le -quaternion linear.

1.c Discretization of the quaternion Fourier transform

For simplicity, we only consider the quaternion Fourier transform of axis j
de�ned by

X(ν) = ∫ +∞
−∞ x(t)e− jπνtdt (1.71)
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¿e inverse transform is de�ned according to (1.22). Write the signal x(t) as a
pair of 2 C j-valued components u(t) and v(t) such that x(t) = u(t) + iv(t).
¿en the QFT of x(t) reads

X(ν) = U(ν) + iV(ν) (1.72)

where U(ν) and V(ν) are standard complex C j-valued Fourier transforms
of u(t) and v(t). It shows that the QFT is simply obtained by performing
two standard Fourier transforms. ¿us extending the continuous-time QFT
de�nition to discrete-time and discrete �nite sequences is straightforward. Def-
initions follow directly from usual Fourier transform results, see e.g. Percival
and Walden (1993) or Vetterli, Kovačević, and Goyal (2014).

1.C.1 Discrete-time quaternion Fourier transform

Let {x[n]}n∈Z be a discrete-time signal, sampled at intervals ∆t such that
sampled instants are tn = n∆t . Let νN = /(∆t) denotes the Nyquist critical
frequency. ¿en, the discrete-time quaternion Fourier transform (Q-DTFT)
of x reads

X(ν) ≜ ∆t

+∞∑
n=−∞ x[n]e− jπνn∆ t . (1.73)

¿e Q-DTFT is periodic with period νN . ¿erefore the inverse Q-DTFT is

x[n] = ∫ νN

−νN X(ν)e jπνn∆ tdν (1.74)

Properties of the Q-DTFT follow from direct adaptation of the properties of
the continous-time QFT.

1.C.2 Discrete quaternion Fourier transform

Consider a sequence {x[n]}n=,,⋯,N− of length N sampled at intervals of ∆t .
¿e discrete quaternion Fourier transform (Q-DFT) of x is

X[m] = N−∑
n= x[n]e− jπ

nm
N , m = , ,⋯,N −  (1.75)

where X[m] is associated to the frequency fm = m/(N∆t). ¿e inverseQ-DFT
is

x[n] = 
N

N−∑
m= X[m]e jπ nm

N (1.76)

Again, properties of the Q-DFT follow directly from the properties of the
continous-time QFT. Importantly, remark that thanks to (1.72) the Q-DFT can
be e�ciently computed using two standard FFTs.

1.d Proofs of quaternion Fourier transform properties

We gather in this section several proofs regarding the properties of the quater-
nion Fourier transform of arbitrary axis µ introduced in Section 1.2.
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1.D.1 Convolution properties (1.34) and (1.35)

Let us prove (1.34). ¿e dual property (1.35) is proven analogously. Let x ∶ In the next sections, we use the notation ∫

instead of ∫
+∞

−∞
to ease expressions.R → H and y ∶ R → Cµ two signals. We suppose that they satisfy su�cient

conditions so that their QFT is well-de�ned. By direct calculation, one gets

∫ (x ∗ y)(t)e−µπνtdt = ∫ (∫ x(u)y(t − u)du) e−µπνtdt (1.77)

= ∫ x(u)Y(ν)e−µπνudu (1.78)

= X(ν)Y(ν). (1.79)

¿e last expression is obtained using the fact that Y(ν) and e−µπνu commute
since y(t) and Y(ν) are Cµ-complex valued.

1.D.2 ¿eorem 1.1 (Parseval-Plancherel)

First, remark that Plancherel formulas (1.40) and (1.41) can be obtained directly
with x = y in Parseval formulas (1.38) and (1.39). ¿us we only give a proof
for Parseval’s formula, and particularly we focus on the proof of (1.39) as it is
peculiar to the QFT. ¿e classical Parseval formula (1.38) is proven along the
same lines.

Let x , y ∈ L(R;H). One has

(a) ∀x , y ∈ H, (xy) = y x

∫ +∞
−∞ x(t)µy(t)dt = ∫ (∫ X(ν)eµπνtdν) µy(t)dt (1.80)

(a)= ∬ X(ν)µ(y(t)e−µπνt)dtdν (1.81)

= ∫ X(ν)µ(∫ y(t)e−µπνtdt)dν (1.82)

= ∫ X(ν)µY(ν)dν. (1.83)

1.D.3 ¿eorem 1.2 (Gabor-Heisenberg uncertainty principle)

We use the same notations as in¿eorem 1.2. Let x ∈ L(R;H). We also sup-
pose that its derivative x′(t) is in L(R;H) and that tx(t) is also in L(R;H).
It is su�cient to give a proof for the case ⟨t⟩ = ⟨ν⟩ =  since any other case can
be retrieved by a change of variables. ¿e proof is very similar to the proof of
the uncertainty principle for the standard Fourier transform (Mallat, 2008).
First let us note that

σ t σ ν = ∥x∥ ∫ ∣tx(t)∣dt∫ ∣νX(ν)∣dν (1.84)

Since X(ν)µπν is the quaternion Fourier transform of x′(t), using the
Plancherel identity applied to X(ν)µπν yields

σ t σ ν = 
π∥x∥ ∫ ∣tx(t)∣dt∫ ∣x′(t)∣dt (1.85)
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¿en using Cauchy-Schwartz inequality one gets

σ t σ ν ≥ 
π∥x∥ ∣∫ x′(t)tx(t)dt∣ (1.86)

≥ 
π∥x∥ [∫ S (x′(t)tx(t))dt] (1.87)

≥ 
π∥x∥ [∫ t


(x′(t)x(t) + x(t)x′(t))dt] (1.88)

≥ 
π∥x∥ [∫ t(∣x(t)∣)′dt] (1.89)

Now, using integration by parts we obtain

σ t σ ν ≥ 
π∥x∥ [∫ ∣x(t)∣dt] = 

π
. (1.90)

¿e lower bound of the inequality is attained in the equality case of the Cauchy-
Schwarz inequality (1.86), that is for x′(t) = λtx(t), where λ ∈ H. However,
the minimal uncertainty σtσν = /(π) is only obtained for λ ∈ R. To see this,
remark that (1.86) and (1.87) are in fact equalities if and only if

[∫ ∣x(t)∣ ∣λ∣dt] = [∫ S (∣x(t)∣λ)dt] ⇐⇒ ∣λ∣ = S(λ) ⇐⇒ λ ∈ R (1.91)

Solving now the di�erential equation x′(t) = −ktx(t) and restricting to k > 
so that x ∈ L(R;H) one gets the usual Gaussian functions ¿e fact that the lower bound /(π) can

only be obtained for λ ∈ R is similar to the
usual Fourier transform. See Flandrin (1998,
p. 15) for instance. Taking λ ∈ H yields sig-
nals with Gaussian amplitude but also with
quadratic phase. Intuitively, this increases the
frequency spread σν and thus σtσν exceeds
/(π).

x(t) = αe−kt , k > , α ∈ H. (1.92)

¿e general form of these functions including arbitrary time and frequency
shi s reads

x(t) = αe−k(t−t) eµπν t , t , ν ∈ R. (1.93)
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random bivariate signals in the quaternion Fourier transform framework.
¿e quaternion spectral density of a bivariate signal is de�ned in terms of the
two Parseval invariants of the quaternion Fourier transform. ¿is ensures its
interpretation as a density as well as a natural separation between the energetic
and geometric contents. Remarkably, we show that the quaternion spectral
density is directly related to meaningful parameters describing polarization
known as Stokes parameters in physics. It also provides further geometric
interpretations thanks to the associated Poincaré sphere representation and an
explicit decomposition of the spectral density into polarized and unpolarized
parts. ¿e proposed approach o�ers an original and powerful characterization
of the energetic or second-order properties of bivariate signals.

Section 2.1 �rst tackles the simpler case of deterministic signals. It intro-
duces the notion of quaternion spectral density for �nite energy and �nite
power signals.

Section 2.2 deals with stationary random bivariate signals and addresses
the second-order characterization of their statistical properties. A fundamen-
tal spectral representation theorem for the quaternion Fourier transform is
proven. It permits a rigorous de�nition of the quaternion power spectral den-
sity (PSD) of a stationary random bivariate signal, as well as the related notions
of quaternion (cross-)covariance and quaternion cross-spectral properties.

Section 2.3 illustrates the usefulness of the formalism by providing clear,
elegant and natural interpretations of the quaternion PSD in terms of frequency-
dependent polarization parameters. Several examples with detailed computa-
tions demonstrate the practical use of this original framework.

Section 2.4 introduces nonparametric spectral estimates of the quaternion
power spectral density. ¿ese are obtained by leveraging usual univariate
periodogram or multitaper estimates. ¿e estimation of polarization parame-
ters requires special care and is discussed in detail. Examples and numerical
illustrations support the presentation.

Section 2.5 gathers concluding remarks. Appendices provide complemen-
tary results and proofs.

¿e major part of the material of this chapter has been published in an
international journal and presented at a national conference:

N J. Flamant, N. Le Bihan, and P. Chainais. 2017c. “Spectral analysis of station-
ary random bivariate signals.” IEEE Transactions on Signal Processing 65 (23):
6135–6145. doi:10.1109/TSP.2017.2736494

� J. Flamant, N. Le Bihan, and P. Chainais. 2017a. “Analyse spectrale des sig-
naux aléatoires bivariés.” In GRETSI 2017. Juan-les-Pins, France

http://dx.doi.org/10.1109/TSP.2017.2736494
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2.1 Quaternion spectral density
for deterministic bivariate signals

2.1.1 Finite energy signals

Consider a continuous-time bivariate signal x ∶ R→ Ci which reads explicitly
x(t) = u(t)+ iv(t) with u and v real-valued signals. Let us assume that x is of
�nite energy, that is x ∈ L(R;H). ¿e Parseval-Plancherel theorem 1.1 states
that the quaternion Fourier transform has two invariants:

∫ +∞
−∞ ∣x(t)∣dt = ∫ +∞

−∞ ∣X(ν)∣dν (2.1)

∫ +∞
−∞ x(t) jx(t)dt = ∫ +∞

−∞ X(ν) jX(ν)dν (2.2)

Eq. (2.1) is classical and shows that energy is preserved. Eq. (2.2) is speci�c to
the QFT. It shows that an additional quadratic or energetic quantity related
to geometric content is preserved.

Eqs. (2.1) and (2.2) guarantee the interpretation of quantities ∣X(ν)∣ and
X(ν) jX(ν) as spectral domain densities. Moreover since

∣X(ν)∣ ≥  and X(ν) jX(ν) ∈ span{i , j, k} (2.3)

they can be suitably combined to de�ne the quaternion-valued energy spectral
density of x as

Superscript E stands here for ‘‘energy’’.
ΓExx(ν) = ∣X(ν)∣´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶

energy

+X(ν) jX(ν)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
geometry

. (2.4)

¿is de�nition of ΓExx(ν)makes use of the scalar-vector part decomposition of
quaternions. It provides a natural separation between energetic content (scalar
part) and geometric content (vector part).

x(t)

u(t)

v(t)

time → t

Figure 2.1: Windowed monochromatic signal
example for θ = π/ and χ = −π/ and a
Hanning window. ¿e 3D trajectory (time-
unwrapped) of the bivariate signal x(t) is
shown. Projection panels display the complex
trace of x(t) and its univariate components
u(t) and v(t).

Example: windowed monochromatic signal Fig. 2.1 shows an example of a
windowed monochromatic bivariate signal x. ¿e window g(t) is real-valued
and square integrable ∥g∥L <∞ such that x ∈ L(R;H). ¿e signal x reads

x(t) = ProjCi
{g(t)e iθ e−k χe jφeπν t}

= g(t)e iθ [cos χ cos(πν t + φ) + i sin χ sin(πν t + φ)] . (2.5)

¿e parameters θ and χ de�ne the elliptical trajectory of x(t) in the 2D-plane.
¿e energy spectral density (2.4) associated to x is

ΓExx(ν) = ∣G(ν − ν)∣ ( + µx) + ∣G(ν + ν)∣ ( + iµx i) (2.6)

where G is the QFT of g and µx is called the polarization axis of x:

µx = sin χi + cos θ cos χ j + sin θ cos χk. (2.7)

¿e energy spectral density given in (2.6) is symmetric in ν, so that we can
focus on positive frequencies only. As it is a pure phase delay term, φ does not
appear in the energy spectral density expression (2.6). ¿e quantity ∣G(ν−ν)∣
provides the repartition of the energy in the spectral domain. Moreover, the
polarization axis µx carries the information about the geometry of x(t), i.e.
the ellipse described by x(t). Further physical and geometric interpretations
of the polarization axis will be given in Section 2.3 for the case of random
bivariate signals.
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2.1.2 Finite power signals

Extending the de�nition of the quaternion spectral density (2.4) to bivariate
signals with �nite power follows the usual derivation. Namely, let x be a �nite
power signal, that is such that

lim
T→∞


T ∫

T


− T


∣x(t)∣dt <∞. (2.8)

De�ne xT(t) = x(t)1[− T
 ,

T
 ](t) and denote by XT(ν) its quaternion Fourier 1[− T

 ,
T
 ]

(t) denotes the indicatrix function
on the time interval [− T

 ,
T
 ]transform. ¿en the quaternion power spectral density of x is

Γxx(ν) = lim
T→∞


T

(∣XT(ν)∣ + XT(ν) jXT(ν)) (2.9)

As for the energy spectral density (2.4), the scalar part of Γxx(ν) is a pure
power quantity. ¿e vector part describes geometric or polarization properties
in terms of power-homogeneous quantities. We will detail them later on.

2.2 Stationary random bivariate signals

Random signals appear in many signal processing applications, e.g. when the
signal of interest is corrupted by noise or when mechanisms producing the
signal carry some randomness themselves. We focus here on an important
class of random bivariate signals: second-order stationary random bivariate
signals. Such signals exhibit some kind of regularity, i.e. their �rst and second- Second-order stationarity is also referred to

as wide-sense stationarity by many authors
(Schreier and Scharf, 2010).

order moments are invariant to time-shi s. ¿e goal of this section is to de�ne
the notion of second-order properties, namely covariances and power spectral
densities, in the quaternion Fourier transform (QFT) framework. To this aim,
Section 2.2.1 introduces a spectral representation theorem for the QFT. Section
2.2.2 de�nes the quaternion power spectral density (PSD) of a stationary ran-
dom bivariate signal. Section 2.2.3 de�nes its time-domain counterpart, called
the quaternion autocovariance. Finally, Section 2.2.4 explores the concepts
of quaternion cross-covariance and quaternion cross-PSD to characterize the
joint properties of two second-order stationary random bivariate signals.

¿e quaternion PSD encodes the complete second-order statistical structure
of random bivariate signals. Compared to usual PSD or augmented PSD
matrices (see Section 0.2.1 and Section 0.2.2), it has a straightforward geometric
and physical interpretation in terms of frequency-dependent polarization
parameters. However for the sake of clarity we concentrate in this section on
mathematical and statistical aspects only. Detailed physical interpretations
and examples are postponed to Section 2.3.

Discussions below stand for continuous-time bivariate signals. ¿e corre-
spondence with the discrete-time case follows directly from the discrete-time
quaternion Fourier transform presented in Appendix 1.C. Second-order sta-
tionary random bivariate signals can be de�ned as follows (Priestley, 1981).
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Definition . (Second-order stationary randombivariate signals). Let x be a continuous-time
random bivariate signal such that x(t) = u(t) + iv(t), where u and v are real-
valued random signals. A random bivariate signal x is second-order stationary
if u and v are jointly second-order stationary:
1. ¿e mean of x is constant

E{⋅} denotes the mathemetical expectation.mx(t) = E{x(t)} = E{u(t)} + iE{v(t)} = m, t ∈ R (2.10)

2. ¿e variance of x is �nite and constant:

σ x (t) = E{∣x(t)∣} = E{∣u(t)∣} + E{∣v(t)∣} = σ u + σ v <∞ (2.11)

3. ¿e auto- and crosscovariances of u and v depend only on the time lag τ:

Ruu , Rvv , Ruv denote usual autocovariance
and crosscovariance sequences of real-valued
random signals.

Ruu(t, τ) = E{u(t)u(t − τ)} = Ruu(τ), t, τ ∈ R (2.12)

Rvv(t, τ) = E{v(t)v(t − τ)} = Rvv(τ), t, τ ∈ R (2.13)

Ruv(t, τ) = E{u(t)v(t − τ)} = Ruv(τ), t, τ ∈ R (2.14)

For convenience, second-order stationarity is simply referred to as station- In de�nition 2.1, Condition 3 is equivalent to
the requirement that the covariance function
and the complementary-covariance of x de-
pend on τ only, i.e. Rxx(t, τ) = Rxx(τ) and
R̃xx(t, τ) = R̃xx(τ).

arity unless di�erently stated. In the remaining of this chapter bivariate signals
are stationary in the sense of De�nition 2.1 with zero-mean m = .

2.2.1 Spectral representation theorem

To generalize the quaternion spectral density de�nition to random bivariate
signals, one �rst needs to extend the concept of quaternion Fourier transform
to random signals. ¿e spectral representation¿eorem 2.1 below answers this
key point. It plays the same role as the Cramér-Loève spectral representation
theorem for univariate signals.

Theorem . (Spectral representation of stationary bivariate signals). Let x(t) = u(t)+ iv(t)
be a zero-mean stationary random bivariate signal. Suppose that x is harmo-
nizable. ¿en there exists a quaternion-valued process X(ν) with orthogonal We say that the bivariate signal x(t) = u(t)+

iv(t) is harmonizable if the real univariate
signals u and v are harmonizable, i.e. if they
both admit a standard spectral representation
(Priestley, 1981).

increments dX(ν) ≜ X(ν + dν) − X(ν) such that
x(t) = ∫ +∞

−∞ dX(ν)e jπνt , (2.15)

the equality being in the mean-square sense. ¿e process X(ν) has the following
properties:
1. ∀ν,E{dX(ν)} = ,
2. ∀ν,E{∣dX(ν)∣} + E{dX(ν) jdX(ν)} = dΓ(I)xx (ν) where Γ(I)xx (ν) is the in-

tegrated power spectrum of x,
3. For any ν ≠ ν′, the process X(ν) has orthogonal increments:

E{dX(ν)dX(ν′)} = E{dX(ν) jdX(ν′)} = .
¿e quaternion Fourier-Stieltjes integral (2.15) is called the quaternion Proof. See Appendix 2.D.1.

spectral representation of the random bivariate signal x(t). It shows that
any random bivariate signal x(t) can be interpreted as an ‘‘in�nite’’ sum of
monochromatic signals at frequency ν with associated random quaternion-
valued coe�cients dX(ν). ¿ese are called the spectral increments of the
random bivarite signal x(t).
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¿e existence of the spectral representation (2.15) directly follows from the
existence of usualC j-complex-valued spectral increments of u and v. In short,
one requires the random signals u and v to be harmonizable , see Appendix See Blanc-Lapierre and Fortet (1953, p. 344)

or Loeve (1978, p. 140) for details on harmo-
nizable signals.

2.D.1 for details. Spectral increments of x directly read

dX(ν) = dU(ν) + idV(ν) , (2.16)

wheredU anddV are the usualC j-valued spectral increments of real univariate
signals u and v. It illustrates that the quaternion spectral representation (2.15)
is obtained as a linear combination of usual spectral representations of real-
valued signals.

Properties 1 to 3 of the spectral increments dX(ν) encode the self and joint
properties of the spectral increments of u and v. In particular property 3
illustrates that the spectral increments dX(ν) are twice orthogonal: it yields
interesting second-order circularity properties for the case of bivariate signals.
See Appendix 2.A for details.

2.2.2 Quaternion power spectral density

Property 2 of ¿eorem 2.1 introduces the quaternion integrated spectrum Γ(I)xx

of x such that

dΓ(I)xx (ν) = E{∣dX(ν)∣} + E{dX(ν) jdX(ν)} . (2.17)

¿e integrated spectrum can be decomposed1 into two parts such that 1. ¿e decomposition (2.18) is in fact the
Lebesgue decomposition of the integrated
spectrum, see e.g. Percival andWalden (1993).
In full generality this decomposition includes
a third term which is continuous with deriva-
tives vanishing almost everywhere. Follow-
ing standard practice (Hannan, 1970) this
pathological term is neglected in decomposi-
tion (2.18).

Γ(I)xx (ν) = Γ(I),cxx (ν) + Γ(I),dxx (ν) (2.18)

where Γ(I),cxx is absolutely continuous and Γ(I),dxx is a step function. ¿ese two
quantities identify with the continuous and discrete part of the spectrum, re-
spectively.

When it exists, the derivative dΓ(I)xx /dν de�nes the quaternion power spec-
tral density (PSD) Γxx . In full generality it can be de�ned only when the
integrated spectrum features no discrete component. However, a useful abuse
is to consider the discrete part of the spectrum to be di�erentiable in the
sense of distributions by using Dirac delta functions. ¿e quaternion PSD
corresponding to the integrated spectrum (2.18) is

Γxx(ν) = Γcxx(ν) +∑
ℓ
cℓδ(ν − νℓ) , (2.19)

where Γcxx is the spectral density associated to Γ
(I),c
xx and cℓ , νℓ are respectively

the quaternion-valued coe�cients and frequencies associated to jumps in
Γ(I),dxx .
In practice one prefers to work with the quaternion PSD Γxx instead of

the quaternion integrated spectrum Γ(I)xx . Keeping in mind that Γxx(ν) is in
general a mixture of continuous and discrete components, see Eq. (2.19), we
consider from now on the following de�nition for the quaternion PSD

Γxx(ν)dν = E{∣dX(ν)∣} + E{dX(ν) jdX(ν)} . (2.20)

It involves two second-order moments of the spectral increments, of the same
form as the two invariants of the quaternion Fourier transform. ¿e combi-
nation of these two moments in Γxx provides a natural separation between
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purely energetic and geometric information, similarly to the deterministic case
discussed in Section 2.1. To see that Γxx(ν) is indeed a power spectral density,
remark that

∫ +∞
−∞ Γxx(ν)dν = E{∣x(t)∣} + E{x(t)} j. (2.21)

¿e right-hand side of (2.21) contains the complete second-order properties Remark that the right-hand side of (2.21) in-
volves explicitly the covariance E{∣x(t)∣}
and complementary covariance E{x(t)}
appearing in the study of the circularity of
complex random variables (Picinbono, 1994;
Adalı, Schreier, and Scharf, 2011).

of the random variable x(t), i.e. the instantaneous second-order properties of
the random signal x(t).

Since x(t) is a Ci-valued bivariate signal, the spectral increments of x
satisfy the same i-Hermitian symmetry as the QFT of Ci-valued signals:

dX(−ν) = −idX(ν)i . (2.22)

As a result, the quaternion power spectral density (2.20) has the following
symmetry ¿is symmetry means that , j and k compo-

nents of Γxx(ν) are even whereas its i com-
ponent is odd.

Γxx(−ν) = −iΓxx(ν)i (2.23)

¿is symmetry is essential to the physical interpretation of Γxx(ν). It shows
that the study of bivariate signals can be carried out using only the positive
frequencies of its quaternion-valued power spectral density. It contrasts with
approaches relying on second-order circularity of complex-valued processes
where both positive and negative frequencies carry information, see Section
0.2.2 of the introduction.

2.2.3 Quaternion autocovariance

¿e study of random univariate signals o en starts with the notion of autoco-
variance. ¿e spectral density is introduced next, and some authors de�ne it as
the Fourier transform of the autocovariance, thanks to the Wiener-Khintchine
theorem. ¿us autocovariance and spectral density functions are Fourier trans-
form pairs – a convenient feature one would like to keep for the analysis of
bivariate signals with the quaternion Fourier transform.

For random bivariate signals we have proceeded di�erently. ¿e quaternion
power spectral density has been de�ned thanks to the spectral representation
¿eorem 2.1. ¿e notion of quaternion autocovariance remains to be de�ned.

We de�ne the quaternion autocovariance γxx as the inverse quaternion
Fourier transform of the quaternion spectral density Γxx

γxx(τ) ≜ ∫ +∞
−∞ Γxx(ν)e jπντdν. (2.24)

¿e quaternion autocovariance and the quaternion power spectral density thus
form a natural quaternion Fourier transform pair. ¿e autocovariance γxx(τ)
can be explicitly written in terms of usual covariance functions of components
u and v: See Appendix 2.B for details.

γxx(τ) = Ruu(τ) + Rvv(τ) + j (Ruu(τ) − Rvv(τ)) + kRvu(τ) . (2.25)

¿e autocovariance function (2.25) contains the complete second-order in- In fact, Eq. (2.25) results from the
le -linearity of the QFT and from the
component-wise application of the usual
Wiener-Khintchine theorem in (2.24).

formation about the bivariate signal x. It takes its values in span{, j, k}. It
is not symmetric with respect to τ, since the cross-covariance Rvu(τ) is not
symmetric in general.
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It is legitimate to wonder whether it is possible to rewrite (2.25) as an expres-
sion involving the signal x only. Using (2.21), the value of the autocovariance
at the origin reads

γxx() = E{∣x(t)∣} + E{x(t)} j . (2.26)

¿is expression involves usual covariance and complementary-covariance For a complex random signal x one usually
de�nes its covariance function as

Rxx(τ) ≜ E{x(t)x(t − τ)}

and its complementary-covariance function
as

R̃xx(τ) ≜ E{x(t)x(t − τ)} .

See Section 0.2.2 and Schreier and Scharf
(2010) for details.

of complex random variables. Unfortunately this does not extend to τ ≠ ,
since there is no simple expression of γxx(τ) in terms of covariance and
complementary-covariance functions of complex random signals. However
¿eorem 2.2 below provides a direct link between x(t) and its quaternion
spectral density (2.4).

Theorem .. Let x be a second-order stationary random bivariate signal. ¿en
one has

S (Γxx(ν)) = ∫ +∞
−∞ E{x(t)e− jπντx(t − τ)}dτ (2.27)

V (Γxx(ν)) = ∫ +∞
−∞ E{x(t)e− jπντ jx(t − τ)}dτ (2.28)

Proof. See Appendix 2.D.2.In particular, by a straightforward integration of (2.27) and (2.28) over fre-
quencies one recovers (2.21), i.e. the interpretation of Γxx as a spectral density.
¿is Wiener-Khintchine �avored theorem 2.2 will also inspire the formal con-
struction of generic bilinear time-frequency-polarization representations, see
Section 4.4.

2.2.4 Cross-covariances and cross-spectral densities

Let x(t) = ux(t) + ivx(t) and y(t) = uy(t) + ivy(t) be two continuous-time,
jointly2 stationary and zero-mean random bivariate signals. Two equivalent 2. ¿is means that x and y are stationary

bivariate signals in the sense of De�nition 2.1,
and that the four cross-covariances between
ux , uy , vx and vy depend only on the time-
lag τ.

notions are introduced to characterize the joint second-order properties of
x and y: the quaternion cross-spectral power density in the spectral domain
and the quaternion cross-covariance in the time-lag domain. In particular the
uncorrelatedness condition between two random bivariate signals is easily
formulated in both domains.

De�nitions Suppose that x and y are both harmonizable, so that their quater-
nion spectral representation is given by ¿eorem 2.1. ¿e quaternion cross
power spectral density Γx y is de�ned as

Γx y(ν)dν = E{dX(ν)dY(ν)} + E{dX(ν) jdY(ν)} (2.29)

where dX and dY are the spectral increments of x and y, respectively.
¿e quaternion-valued cross-covariance function γx y is de�ned by the

inverse quaternion Fourier transform of Γx y given by (2.29). It explicitly reads
in terms of usual covariances functions between ux , uy , vx and vy :

γx y(τ) = Ruxu y(τ) + Rv yvx (τ) + i [Rvxu y(τ) − Rv yux (τ)]+ j [Ruxu y(τ) − Rv yvx (τ)] + k [Rvxu y(τ) + Rv yux (τ)] . (2.30)

It is clear from (2.30) that γx y encodes the complete covariance structure
between real and imaginary parts of x and y. ¿e following theorem links
the spectral and time domain cross properties of x and y. It can be seen as a
generalization of ¿eorem 2.2.
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Theorem .. Let x and y be two continuous-time jointly stationary random bi-
variate signals. Suppose that x and y are harmonizable. ¿en

E{dX(ν)dY(ν)} /dν = ∫ +∞
−∞ E{x(t)e− jπντ y(t − τ)}dτ (2.31)

E{dX(ν) jdY(ν)} /dν = ∫ +∞
−∞ E{x(t)e− jπντ jy(t − τ)}dτ (2.32)

where dX and dY are the spectral increments of x and y. Proof. See Appendix 2.D.2.

Symmetries Since x and y areCi-valued, their spectral increments satisfy the
i-Hermitian symmetry (2.22). ¿erefore the quaternion cross power spectral
density exhibits the following symmetry

Γx y(−ν) = −iΓyx(ν)i (2.33)

which reduces to (2.23) when x = y. Just like the quaternion autocovariance,
the quaternion cross-covariance γx y(τ) does not exhibit any particular sym-
metry.

Uncorrelatedness From the explicit expression (2.30) of the quaternion cross-
covariance, we see that two jointly stationary random bivariate signals are
uncorrelated if and only if their quaternion cross-covariance vanishes, i.e.

∀τ, γx y(τ) = ⇐⇒ x and y are uncorrelated. (2.34)

It is sometimes more practical to express this condition in the spectral domain,

∀ν, Γx y(ν) = ⇐⇒ x and y are uncorrelated . (2.35)

¿anks to (2.33), we also see that if Γx y(ν) =  for all ν, then one has also
Γyx(ν) =  for all ν. ¿ese spectral domain expressions will be useful later on
for the computation of �lters with speci�c output correlation properties, see
Section 3.3.4.

Usual properties regarding the sum of two signals are then recovered. Given
two signal x and y, the quaternion power spectral density x + y is

Γx+y ,x+y(ν) = Γxx(ν) + Γy y(ν) + Γx y(ν) + Γyx(ν) . (2.36)

When x and y are uncorrelated, the quaternion power spectral density of the Note that Γx+y ,x+y(ν) = Γxx(ν)+ Γy y(ν) is
not equivalent to x and y being uncorrelated.
In fact it only implies that Γx y = Γyx , that is
using (2.33), Γx y(ν) = −iΓx y(−ν)i.

sum is the sum of quaternion power spectral densities. A similar result holds
for the autocovariance γx+y .

2.3 The quaternion spectral density in practice

¿e last section precisely de�ned the notion of quaternion power spectral
density as well as quaternion autocovariance for stationary random bivariate
signals. So far only mathematical and statistical aspects have been discussed.
Section 2.3.1 to Section 2.3.3 below explore the physical interpretation of these
novel quantities. Unlike descriptors from standard approaches (matrix PSD or
augmented matrix PSD) the quaternion PSD o�ers straightforward and e�-
cient descriptions of bivariate random signals in terms of frequency-dependent
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polarization properties. ¿e power and interpretability of the approach is
demonstrated by several examples provided in Section 2.3.4.

We focus on continuous-time, stationary random bivariate signals x(t) as
in De�nition 2.1. ¿e quaternion autocovariance γxx(τ) and the quaternion
power spectral density Γxx(ν) form a quaternion Fourier transform pair:

γxx(τ) QFT←→ Γxx(ν). (2.37)

¿is correspondence between time-lag and frequency domain turns out to
be very convenient for the calculation of quaternion spectral densities for
(time-domain) models of random bivariate signals.

2.3.1 Stokes parameters

¿e quaternion spectral density Γxx de�ned by (2.20) is directly related to a set
of four real-valued parameters called Stokes parameters. ¿ese parameters were
introduced by Stokes (1852) to describe the polarization state of light. Stokes
parameters are energetic quantities and thus experimentally3 measurable. ¿e 3. In optics, one can only perform inten-

sity or energetic measurements, since it is not
possible to ’sample’ fast enough the electro-
magnetic �eld, which oscillates typically at
 −  ×  Hz for visible light.

de�nition of Stokes parameters in terms of usual spectral densities of u(t) and
v(t) can be found in Born and Wolf (1980) and in Schreier and Scharf (2010).

Definition. (Stokesparameters). Stokes parameters are denoted by S(ν), S(ν), S(ν)
and S(ν). ¿ey are related to spectral densities of u and v by

S(ν) = Puu(ν) + Pvv(ν) (2.38)

S(ν) = Puu(ν) − Pvv(ν) (2.39)

S(ν) = Re{Puv(ν)} (2.40)

S(ν) = Im{Puv(ν)} (2.41)

Using the expression of the quaternion power spectral density in terms of
Puu(ν), Pvv(ν) and Puv(ν) given by (2.96) in Appendix 2.B one obtains the
following remarkable equation:

Γxx(ν) = S(ν) + iS(ν) + jS(ν) + kS(ν). (2.42)

Eq. (2.42) shows that the quaternion power spectral density Γxx is isomor-
phic to the frequency-dependent4 Stokes vector, widely used by physicists (Gil, 4. In optics the frequency dependence is

o en dropped due to an (implicit) narrow-
band signal assumption.

2007). ¿us Γxx(ν) gives a frequency-dependent description of the polariza-
tion properties of any stationary random bivariate signal x(t).

Stokes parameters provide a natural separation between contributions from
unpolarized and polarized components. ¿e scalar part of Γxx(ν) is the �rst
Stokes parameter S(ν). It gives the total power spectral density, i.e. the sum
of the power spectral density of the unpolarized part and the polarized part.
¿e three remaining Stokes parameters S(ν), S(ν) and S(ν) constitute the
vector part of Γxx(ν), and describe the frequency evolution of the polarization
properties of x, i.e. the properties of its polarized part.

Let us introduce the normalized Stokes parameters s , s , s such that

s(ν) ≜ S(ν)
S(ν) , s(ν) ≜ S(ν)

S(ν) , s(ν) ≜ S(ν)
S(ν) (2.43)

when S(ν) ≠ . Normalized Stokes parameters (s , s , s) encode the polar-
ization state at a given frequency ν. Fig. 2.2 depicts examples of polarization
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Polarization
ellipse

normalized
Stokes

parameters(s , s , s)
(, , ) (, , ) (, , ) (,−√

 ,
√

 )

Figure 2.2: Polarization ellipses and their as-
sociated normalized Stokes parameters.

ellipses and their corresponding normalized Stokes parameters. ¿e parameter
s describes the amount of circular polarization; it can be positive (counter-
clockwise circular polarization) or negative (clockwise circular polarization).
Parameters s and s control the amount of linear horizontal and linear 45○
polarization, respectively. Normalized Stokes parameters can be further in-
terpreted thanks to a geometric representation of polarization states called
Poincaré sphere. See details in Section 2.3.3 below.

2.3.2 Degree of polarization. Unpolarized and polarized parts decomposition.

¿e degree of polarization of x is the frequency-dependent quantity Φx(ν)
de�ned as the ratio

Φx(ν) = ∣V {Γxx(ν)} ∣S {Γxx(ν)} =
√
S(ν) + S(ν) + S(ν)

S(ν) . (2.44)

Using the de�nition of Stokes parameters in terms of usual spectral densities,
see Eqs. (2.38) – (2.41), one can show that  ≤ Φx(ν) ≤  for every ν. When
Φx(ν) = , x is said to be fully polarized at frequency ν; when Φx(ν) = ,
x is said to be unpolarized at frequency ν. Otherwise,  < Φx(ν) <  and x
is said to be partially polarized at frequency ν. Figure 2.3 summarizes these
denominations. ¿e degree of polarization is invariant with respect to the
choice of basis in which the polarization parameters are measured. It is thus
a robust parameter, which has raised interest in many applications, see e.g.
Kikuchi (2001) and Shirvany, Chabert, and Tourneret (2012).

 Φx(ν)

partially polarized fully polarizedunpolarized

Figure 2.3: Denominations corresponding to
values of the degree of polarization.

¿e degree of polarization rules the power repartition between the unpo-
larized and polarized part of the spectral density. Remark indeed that the
quaternion PSD (2.42) can be rewritten as

Γxx(ν) = ( −Φx(ν)) S(ν)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Γuxx(ν), unpolarized part

+Φx(ν)S(ν) + iS(ν) + jS(ν) + kS(ν)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Γpxx(ν), fully polarized part

. (2.45)

¿us one has From the de�nition (2.44) of the degree of
polarization, it is easy to see that, for every
ν, Γuxx(ν) has a null degree of polarization
Φu
x(ν) =  and that Γ

p
xx(ν) has a unit degree

of polarization Φp
x(ν) = .

∀ν, Γxx(ν) = Γuxx(ν) + Γpxx(ν) (2.46)

where the u and p superscripts stand for unpolarized and (fully) polarized
parts, respectively. ¿is decomposition is unique and corresponds to the usual
decomposition given in optics textbooks, see e.g. Brosseau (1998, p. 127) or
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⋯

⋯u

v
Φ
=.


Φ
=

      realizations

Figure 2.4: At a given frequency ν, the degree
of polarization Φ(ν) quanti�es the statistical
stability of the corresponding elliptical trajec-
tory in the u − v plane. ¿e closer Φ(ν) is
from , the more stable is the elliptical tra-
jectory. For Φ(ν) = , ellipses are drawn
uniformly under Gaussianity.

Born andWolf (1980, p. 551). ¿e main di�erence is that Eqs. (2.45)-(2.46) use
quaternions in place of usual Stokes vectors.

Figure 2.4 illustrates the interpretation of the degree of polarization as a
measure of ‘‘stability’’ or ‘‘dispersion’’ of the polarization ellipse’’ for the case
of a monochromatic bivariate signal. Polarization ellipses corresponding to an
arbitrary frequency ν are represented for di�erent realizations of a Gaussian5 5. ¿e fact that the signal has Gaussian

statistics is key in the interpretation of these
�gures. Gaussian statistics implies that the
distribution of polarization states of unpolar-
ized monochromatic components is uniform
on the Poincaré sphere (Ellis and Dogariu,
2004). ¿is topic is further discussed in Ap-
pendix 2.C.

monochromatic signal in the case of a strongly partially polarized monochro-
matic signal Φ(ν) = . and unpolarized monochromatic signal Φ(ν) = .
¿e distribution of polarization ellipses is visualized by superimposing polar-
ization ellipses obtained for 100 realizations. Note the uniform distribution of
polarization ellipses for Φ(ν) = .

Note that the above discussion stands for the case of a single frequency,
or more generally for the case where Γxx features only discrete spectra, see
Eq. (2.19). Gaussian signals x(t) having discrete spectra are known to be non-
ergodic (Koopmans, 1995) and thus it is not possible to conclude on the value
of Φx(ν) given a single realization. For signals with continuous quaternion
PSD Γxx , an ergodic interpretation of the degree of polarization is however
possible. Consider for instance a narrow-band partially polarized signal with
constant polarization properties. Replacing in Figure 2.4 the realization indices
1, 2, ... by time instants, one observes the slow evolution of the instantaneous
polarization ellipse compared to the average frequency. ¿e closer Φx to 1, the
more stable the ellipse with time.

Traditionally in optics the degree of polarization is de�ned in the time-
domain, see e.g. Born and Wolf (1980). In contrast, the degree of polarization
(2.44) is de�ned here in the spectral domain. For brevity, we do not investigate
further this subject here. In fact, no simple relationship exists between the
temporal and spectral de�nition of the degree of polarization; see for instance
the discussion in Setälä, Nunziata, and Friberg (2010) and Réfrégier, Setälä,
and Friberg (2011).

2.3.3 Poincaré sphere representation

Apowerful geometric representation of polarization states has been introduced
in 1892 by Poincaré in his treatise¿éorie mathématique de la lumière (Poincaré,
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1892). It provides a geometric interpretation for normalized Stokes parameters,
which corresponds to Cartesian coordinates of a point lying inside the 2D
sphere of unit radius.

¿e so-called Poincaré sphere representation of polarization states moti-
vates an alternative parameterization of the quaternion power spectral density.
Observe that (2.42) can be rewritten like

Γxx(ν) = S(ν) + S(ν)Φx(ν)µx(ν), (2.47)

where Φx(ν)µx(ν) is a pure quaternion which reads in terms of normalized
Stokes parameters:

Φx(ν)µx(ν) = is(ν) + js(ν) + ks(ν). (2.48)

Given any ν, the quantity Φx(ν)µx(ν) identi�es a vector of R.

i , SS

j, SS

k, SS

Φµ

θ

χ

Figure 2.5: Poincaré sphere representation
of polarization states. Spherical coordinates
(θ , χ) gives the orientation θ and the ellip-
ticity χ of the polarization ellipse. ¿e degree
of polarizationΦ gives the radius of the polar-
ization state encoded by the pure quaternion
Φµ. Cartesian coordinates correspond to the
normalized Stokes parameters.

Figure 2.5 displays the so-called Poincaré sphere of polarization states
(Brosseau, 1998; Born and Wolf, 1980). ¿e pure quaternion Φx(ν)µx(ν)
is represented as a point inside the Poincaré sphere of unit radius. ¿e polar-
ization axis µx(ν) is a pure unit quaternion encoding the polarization ellipse.
It is identi�ed with a unit vector of R of spherical coordinates (θ , χ) corre-
sponding to the orientation θ and the ellipticity χ of the polarization ellipse.
For instance, µx(ν) = i corresponds to counter-clockwise circular polarization,
whereas µx(ν) = − j denotes vertical linear polarization. In full generality, nor-
malized Stokes parameters s , s and s are related to the degree of polarization
Φx , the orientation θ and the ellipticity χ by means of a Cartesian-to-spherical
coordinates transformation:

s = Φx cos χ cos θ , (2.49)

s = Φx cos χ sin θ , (2.50)

s = Φx sin χ . (2.51)

Orthogonal polarizations are an important concept. Given two polarization
ellipses denoted by (θ , χ) and (θ , χ) respectively, they correspond to or-
thogonal polarizations if and only if θ = θ + π/ and χ = −χ. Orthogonal
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polarizations are thus identi�ed with antipodal points on the Poincaré sphere
of unit radius, e.g. clockwise and counter-clockwise circular polarizations are
orthogonal polarizations. While it may sound disturbing at �rst, two polariza-
tion axes µ and µ correspond to two orthogonal polarizations when they are
anti-aligned ⟨µ , µ⟩ = −.

2.3.4 Examples

¿is section presents several examples of stationary random bivariate signals.
We demonstrate the usefulness of the approach by providing explicit calcula-
tions of the quaternion autocovariance and quaternion PSD. We also discuss
its relation to standard spectral analysis of complex-valued random signals.

Proper and improper signals Second-order circularity of complex-valued
signals, also called properness has attracted a wide interest in the signal pro-
cessing community over the last two decades, see Picinbono and Bondon
(1997), Adalı, Schreier, and Scharf (2011), and Schreier and Scharf (2010) and
references therein. We recall some results from Section 0.2.2. To account for
the full second-order statistical structure of a second-order stationary complex
signal x(t), one has to consider both the usual autocovariance Rxx(τ) and the
complementary covariance R̃xx(τ) such that:

Rxx(τ) = E{x(t)x(t − τ)} (2.52)

R̃xx(τ) = E{x(t)x(t − τ)} (2.53)

Proper signals are characterized by a zero complementary covariance, meaning
that a signal x(t) is uncorrelated with its complex conjugate x(t − τ), for all τ.
It follows that

∀τ, Ruu(τ) = Rvv(τ) and Rvu[−τ] + Rvu(τ) = . (2.54)

A direct consequence is that the quaternion power spectral density (2.20) of a
proper signal x(t) reads

Γxx(ν) = S(ν) + iS(ν) (2.55)

as conditions (2.54) are equivalent to S(ν) = S(ν) =  for all ν. Eq. (2.55)
shows that a proper signal is in general partially circularly polarized.

a

b

Γxx(ν) = S( + i)δ(ν − ν)

Γxx(ν) = σ 

fully polarized

unpolarized

Figure 2.6: Two proper signals may capture
two very di�erent physical situations. (a) fully
circularly polarized signal. (b) unpolarized
signal – simply proper complex white Gaus-
sian noise. Expressions for Γxx are restricted
to positive frequencies only.

Fig. 2.6 presents two extreme cases, where two proper signals represent
two very di�erent physical interpretations. One is fully circularly polarized
whereas the other one is unpolarized. ¿is demonstrates that properness of
complex random signals may not be the most relevant feature when dealing
with physical properties of random bivariate signals such as polarization.

Monochromatic bivariate signals Let x(t) be the continuous-time, random
phase, monochromatic bivariate signal de�ned by

x(t) = ae iθ [cos χ cos(πν t + φ) + i sin χ sin(πν t + φ)] . (2.56)

Quantities a, θ , χ are assumed to be �xed. ¿ephase φ is randomwith uniform Recall ellipse parameters:
Scale a ≥ 
Orientation θ ∈ [−π/, π/]
Ellipticity χ ∈ [−π/, π/]

distribution on [, π), whichmakes x(t) a stationary random bivariate signal.
¿e autocovariance of x(t) is computed using (2.25) and reads
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γxx(τ) = a


{cos(πντ) + js cos(πντ) + k (s cos(πντ) + s sin(πντ))} (2.57)

where s , s , s are the normalized Stokes parameters6 such that 6. ¿ese are the normalized Stokes param-
eters for fully polarized signals, see Eqs (2.49)
– (2.51).s = cos(θ) cos(χ), s = sin(θ) cos(χ), s = sin(χ). (2.58)

¿e autocovariance is not symmetric. ¿e value of s, i.e. the amount of
circular polarization controls the odd contribution, whereas the remaining
terms are all even. It therefore follows that the autocovariance function of
a monochromatic bivariate signal is even if and only if the signal is linearly
polarized, i.e. if s = . ¿e quaternion power spectral density Γxx(ν) is
obtained by the QFT of γxx(τ) given in (2.57):

Γxx(ν) = a


( + is + js + ks) δ(ν − ν) + a


( − is + js + ks) δ(ν + ν). (2.59)

From the expression of normalized Stokes parameters above, the degree of
polarization at frequency ν is

Φ(ν) = ∣V(Γxx(ν))∣S(Γxx(ν)) = √
s + s + s =  (2.60)

which highlights the fact that a monochromatic bivariate signal with random
phase is fully polarized. ¿e shape and orientation of the ellipse remain the
same realization a er realization. In fact, this could have already been intuited
from the fact θ and χ are �xed for this example. However if at least one of
these two angles is drawn at random in the model (2.56) it will in general yield
a partially polarizedmonochromatic signal. See Appendix 2.C for an example
of unpolarizedmonochromatic signal.

Bivariate white Gaussian noise White noise is ubiquitous in signal processing.
¿e proposed framework enables an interesting description of bivariate white
Gaussian noise (wGn) in terms of polarization properties. It also leads to new
insights on the structure and simulation of bivariatewGnusing the unpolarized-
polarized parts decomposition. ¿is section uses discrete-time signals. ¿is
choice is motivated by the fact that continuous-time white Gaussian noise
is much harder to de�ne than discrete-time white Gaussian noise, which is
merely a sequence of i.i.d. Gaussians random variables. See e.g. Holden et
al. (2010, Chapter 2.1) for more on the construction of continuous-time white
noise.

Let w[n] denote the zero-mean discrete-time bivariate white Gaussian
noise such that w[n] = u[n] + iv[n] where u and v are zero-mean real white
Gaussian noises with covariances Kronecker’s delta function: δk ,

δk , =
⎧⎪⎪⎨⎪⎪⎩

 if k = 
 otherwise

Ruu[k] = σ uδk ,; Rvv[k] = σ v δk ,; Rvu[k] = ρuvσuσvδk , , (2.61)

where ρuv ∈ [−, ] is the correlation coe�cient between u and v. ¿e autoco-
variance of w is obtained using (2.25):

γww[k] = [σ u + σ v + j(σ u − σ v ) + kρuvσuσv] δk , . (2.62)

¿e spectral density is obtained by QFT:

Γww(ν) = σ u + σ v + j(σ u − σ v ) + kρuvσuσv . (2.63)
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¿is spectral density is constant. It has no i-component, so that S(ν) =  for Alternatively, one can de�ne the notion of
bivariate white noise as a signal having a con-
stant quaternion PSD. Symmetry condition
(2.23) shows that i-component should be an
odd function of ν. ¿erefore to have a con-
stant quaternion PSD, this i-component has
to be zero.

all ν. As a consequence, a bivariate white Gaussian noise is either unpolarized or
linearly polarized (fully or partially). ¿e polarization properties are identical
at all frequencies.

¿e degree of polarization de�ned by (2.44) is:

Φw =
√(σ u − σ v ) + ρuvσ uσ v

σ u + σ v , (2.64)

where we see that w[n] is unpolarized at all frequencies if and only if σu = σv
and ρuv = . In this case, w[n] corresponds to proper or second-order circular
white noise, see e.g. Picinbono and Bondon (1997) and also Section 0.2.2.
When Φw ≠ , the angle θw of the linear polarization is given by θw =  if
ρuv =  and by

θw =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩


atan [ ρuvσuσv(σ u − σ v )] if σu ≠ σv
π


if σu = σv (2.65)

when ρuv ≠  and where atan denotes the four-quadrant inverse tangent.
Fig. 2.7 depicts the evolution of the degree of polarization Φw (2.64) and

linear polarization angle θw (2.65) with the ratio σu/σv for several values of ρuv .
¿e degree of polarization is minimum when σu = σv , and increases together
with the imbalance between σu and σv . ¿e minimum value of the degree of
polarization is �xed by ρuv , and increases as ∣ρuv ∣ → . When ∣ρuv ∣ = , the
degree of polarization is always equal to one. ¿e polarization angle evolves
from θw = π/ for σu/σv →  to θw =  for σu/σv → ∞ for strictly positive
values of ρuv . For strictly negative values of ρuv the evolution is symmetric
about the σu/σv-axis. ¿e absolute value of ρuv controls the sharpness of the
transition. For ρuv = , θw =  everywhere.

0.0

0.2

0.4

0.6

0.8

1.0

D
e
g
re

e
 o

f 
p
o
la

ri
za

ti
o
n
 Φ

10
-1

10
0

10
1

Ratio σu/σv

0

π/4

π/2

P
o
la

ri
za

ti
o
n
 a

n
g
le

 θ

0.0

0.2

0.4

0.6

0.8

1.0

ρ
u
v

Figure 2.7: Evolution of the degree of polariza-
tion and polarization angle of bivariate white
noise with ratio σu/σv for di�erent values of
ρuv = , ., ., ., ., . Negative values
of ρuv are omitted: Φw(−ρuv) = Φw(ρuv)
and θw(−ρuv) = −θw(ρuv).

¿e decomposition (2.46) of the quaternion power spectral density in unpo-
larized and polarized parts provides a simple procedure to simulate bivariate
white Gaussian noise with desired polarization properties. Let  ≤ Φw ≤  be
the desired degree of polarization, θw ∈ [−π/, π/] the linear polarization
angle and S >  the total power or variance. Let wu[n] be a Ci-valued unpo-
larized white Gaussian noise with unit variance, i.e. such that Rwuwu[k] = δk ,.
Let wp[n] be a real-valued white Gaussian noise with unit variance. Assume
further that wu[n] and wp[n] are independent. ¿en the bivariate white Gaus-
sian noise w[n] constructed as

w[n] = √
 −Φw

√
Swu[t] +√

Φw
√
Se iθwwp[t] (2.66)

has spectral density

Γww(ν) = S [ +Φw ( j cos θw + k sin θw)] . (2.67)

Identifying (2.67) with (2.47), one recognizes a linear polarization state corre-
sponding to spherical coordinates (Φw , θw , ) in the Poincaré sphere repre- ¿e polarization state of a bivariate wGn

thus always lies in the equatorial plane of the
Poincaré sphere.

sentation, see Fig. 2.5. Fig. 2.8 illustrates this synthesis procedure.

Fractional Gaussian noise, time-reversibility of Gaussian processes. ¿e quater-
nion PSD and its straightforward interpretation in terms of meaningful physi-
cal parameters permit new insights and an original characterization of more
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= +
w[n] √

 −Φwu[n] √
Φeiθ wp[n]

bivariate white noise unpolarized white noise polarized white noise

Φw = .
θw = π

Φwu =  Φwp = 
θwp = π



θw

Figure 2.8: Simulation of bivariate whiteGaus-
sian noise with prescribed degree of polariza-
tion Φw = . and linear polarization angle
θw = π/. Bivariate white Gaussian noise is
synthetized using the unpolarized - polarized
parts decomposition (2.66).

sophisticated random bivariate signals. For instance, Lefèvre, Le Bihan, and
Amblard (2018) have recently demonstrated the relevance of Stokes parameters
for the geometric characterization of bivariate fractional Gaussian noise (fGn).
Based on fGn covariances functions developed in Amblard et al. (2012), the
explicit expression of the quaternion PSD can be derived. ¿is provides new
indications of the correlation structure in the spectral domain. In addition,
Lefèvre, Le Bihan, and Amblard (2018) proposed to simulate bivariate fGn
as a sum of unpolarized and polarized fGn. ¿is shows the generality and
usefulness of the unpolarized-polarized parts decomposition (2.46) for the
synthesis of arbitrary random bivariate signals.

Lefèvre, Le Bihan, and Amblard (2018) show as well that Stokes parameters
enable an elegant characterization of the time-reversibility ofGaussian bivariate
signals. Such a signal x is time-reversible when changing the time t into −t
does not a�ects its statistical properties. ¿is important invariance property is
easily formulated in the proposed framework: a Gaussian bivariate signal is
reversible i� it is linearly polarized at all frequencies, i.e. S(ν) =  for every
frequency ν. ¿ese �ndings highlight the potential of the proposed framework
towards the generic study of random bivariate processes.

2.4 Nonparametric spectral estimation

¿e aim of this section is to show that the quaternion power spectral density
(2.20) can be estimated using conventional nonparametric spectral estima-
tors. ¿e adaptation of usual tools such as the periodogram or themultitaper
estimates to the quaternion Fourier transform setting presents no particular
di�culty. Moreover, we put the emphasis on the statistical properties of the
estimators of the degree of polarization and natural ellipse parameters. We note
that the presentation of these results involves some unavoidable technicalities.

¿roughout this section only discrete-time stationary random bivariate
signals are considered. ¿e time sampling size is ∆t , so that the nth sample
corresponds to t = (n − )∆t , and the signal is assumed to be zero-mean. We
also assume that its quaternion power spectral density Γxx is a continuous
function of the frequency ν. We consider a realization x[], x[],⋯, x[N] of
length N of such a signal.
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2.4.1 Conventional spectral estimators

First the estimation of the quaternion spectral density Γxx given the realization
x[], x[],⋯, x[N] of a random signal x is considered.

Polarization periodogram ¿is naive quaternion spectral density estimator
is derived using the same technique as the usual periodogram (Percival and
Walden, 1993). One starts by computing an estimator γ̂(p)xx [k] of the quaternion
autocovariance sequence γxx[k]. Using (2.25), such an estimator is obtained
by combining usual estimators of autocovariances and cross-covariances Estimators R̂(p)

uu [k], R̂(p)
uu [k], R̂(p)

uu [k] are
usual biased estimators of autocovariances
and crosscovariance. ¿e choice of these bi-
ased estimates over unbiased estimates is dis-
cussed in detail by Priestley (1981, Section
5.3).

R̂(p)
uu [k] ≜ ⎧⎪⎪⎨⎪⎪⎩


N ∑N−∣k∣

n= u[n]u[n + ∣k∣] ∣k∣ < N
 ∣k∣ ≥ N , (2.68)

¿e estimator R̂(p)
vv [k] is de�ned similarly. ¿e cross-covariance estimator is

R̂(p)
vu [k] = 

N

N−k∑
n= v[n + k]u[n],  ≤ k < N (2.69)

where R̂(p)
vu [k] = R̂(p)

uv [−k] for k = −, . . . ,−(N − ) and R̂(p)
vu [k] =  for ∣k∣ ≥

N . ¿en combining these estimators according to (2.25) yields the quaternion
autocovariance estimate γ̂(p)xx [k]:

γ̂(p)xx [k] = R̂(p)
uu [k] + R̂(p)

vv [k] + j (R̂(p)
uu [k] − R̂(p)

vv [k]) + kR̂(p)
vu [k] (2.70)

¿e quaternion Fourier transform of the autocovariance estimate (2.70) reads

Γ̂(p)xx (ν) = ∆t

N
∣ N∑
n= x[n]e− jπνn∆ t ∣ + ∆t

N
( N∑
n= x[n]e− jπνn∆ t) j⎛⎝

N∑
n= x[n]e− jπνn∆ t

⎞⎠ (2.71)

We call Γ̂(p)xx (ν) the polarization periodogram of the realization x[], x[],⋯, x[N]
by analogy with the usual periodogram. It shares many of its statistical proper-
ties.

¿e polarization periodogram is a biased and inconsistent estimator of the
quaternion power spectral density. More precisely,

νN = 
∆ t

is the Nyquist frequency.E{Γ̂(p)xx (ν)} = ∫ +νN
−νN FN(ν − ν′)Γxx(ν′)dν′ (2.72)

where FN(⋅) is known as Fejér’s kernel:
FN(ν) = ∆t sin(πNν∆t)

N sin(πν∆t) (2.73)
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Figure 2.9: Fejér’s kernel for∆t =  andN = 
(top) and N =  (bottom).

¿is kernel has large sidelobes, as seen in Fig. 2.9. Fejér’s kernel behaves as
a Dirac delta function as N →∞ (Percival and Walden, 1993). Since Γxx(ν) is
a continuous function of ν, then

lim
N→∞E{Γ̂(p)xx (ν)} = Γxx(ν) (2.74)

meaning that the polarization periodogram is an asymptically unbiased esti-
mator of the quaternion power spectral density.

For bivariate white Gaussian noise, the quaternion power spectral density
is constant. ¿erefore, the polarization periodogram of white Gaussian noise
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is unbiased for any N . ¿is is a bivariate counterpart of a classical result, see
e.g. Percival and Walden (1993, p. 202).

Just like in the spectral analysis of univariate signals, data tapers can be
employed to produce direct spectral estimators with better bias properties
than the naive polarization periodogram. In a nutshell, given a real-valued
sequence h[], h[],⋯, h[N], one can construct a direct spectral estimator
Γ̂(d)xx such that

Γ̂(d)xx (ν) = ∆t ∣ N∑
n= h[n]x[n]e− jπνn∆ t ∣ + ∆t ( N∑

n= h[n]x[n]e− jπνn∆ t) j⎛⎝
N∑
n= h[n]x[n]e− jπνn∆ t

⎞⎠ (2.75)

¿e window h is called a data taper and permits to reduce bias. ¿e derivation
of the statistical properties of direct spectral estimators (2.75) follows from
standard spectral analysis (Percival and Walden, 1993). As a consequence, we
shall not dwell much further into this topic here.

Multitaper estimates ¿emultitaper approachwas �rst proposed by¿omson
(1982). It is a well established spectral estimationmethod (Percival andWalden,
1993; Walden, 2000) that allows to design spectral density estimates with
controlled bias-variance tradeo�. ¿e basic idea is to compute a series ofM
direct estimators Γ̂mxx(ν), m = , . . .M that are approximately uncorrelated
(Percival and Walden, 1993) and to average them out to obtain the multitaper
estimate. ¿e mth spectral estimator reads

Γ̂mxx(ν) = ∆t ∣ N∑
n= hm[n]x[n]e− jπνn∆ t ∣ + ∆t ( N∑

n= hm[n]x[n]e− jπνn∆ t) j⎛⎝
N∑
n= hm[n]x[n]e− jπνn∆ t

⎞⎠ (2.76)

where the hm ’s are orthonormal real-valued sequences of length N :

N∑
n= hm[n] =  and

N∑
n= hm[n]hm′[n] = δm ,m′ . (2.77)

¿e multitaper estimate is obtained by averaging: ¿is is the simplest form of average, although
other choices are possible. See e.g.¿omson
(1982) and Percival andWalden (1993, Section
7.4).Γ̂(mt)

xx (ν) = 
M

M∑
m= Γ̂

m
xx(ν). (2.78)

¿e expected value of the multitaper estimate Γ̂(mt)
xx is written as

E{Γ̂(mt)
xx (ν)} = ∫ +νN

−νN H(mt)(ν − ν′)Γxx(ν′)dν′ (2.79)

where the spectral windowH(mt) is

H(mt)(ν) = 
M

M∑
m=Hm(ν), Hm(ν) = ∆t ∣ N∑

n= hm[n]e− jπνn∆ t ∣ . (2.80)

By an appropriate choice of the sequences hm one is able to control the bias
properties of the multitaper estimate. For instance, to minimize broad-band
bias, i.e. bias introduced by sidelobes ofH(mt), then the hm ’s are chosen to
be Slepian tapers (Slepian, 1978). ¿ese are also known as discrete prolate ¿e choice of the class of data tapers depends

on the type of bias one wants to address. E.g.
to minimize local bias or smoothing bias, sine
tapers are to be used (Riedel and Sidorenko,
1995) instead of Slepian tapers.

spheroidal sequences (DPSS) and concentrate their energy in a given frequency
band [−W ,W], see Fig. 2.10 for an example. Moreover as explained in Percival
and Walden (1993), if the spectral estimators Γ̂mxx have common variance and
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are pairwise uncorrelated7 then the variance of Γ̂(mt)
xx is smaller than that of 7. Approximate uncorrelatedness of the

m-direct spectral estimators Γmxx follows from
the orthogonality of sequences (2.77) un-
der some regularity conditions on Γxx(ν),
namely Γxx(ν) should not vary too rapidly
over the interval [ν −W , ν +W] (Percival
and Walden, 1993, Section 7.3).

Γ̂mxx by a factor /M.
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Figure 2.10: Multitaper spectral window
H(mt)(ν) for N = , NW =  and
∆t =  corresponding to K =  Slepian ta-
pers. Note that H(mt)(ν) is approximately
constant over the selected bandwidth interval
[−W ,W] withW = /.

Let us �nally detail the choice of the number of tapersM. Given a resolution
bandwidth W corresponding to frequency band [−W ,W], the number of
Slepian tapers we use is M = NW∆t −  (Walden, 2000). In practice, the
bandwidth-duration product NW∆t is typically chosen between NW∆t = 
and NW∆t =  leading toM ≤  tapers.

To summarize, usual practice and tradeo�s from univariate spectral analy-
sis apply to the nonparametric estimation of the quaternion power spectral
density. We now consider the more complicated problem of the estimation
of polarization parameters from realizations of a stationary random bivariate
signal.

2.4.2 Estimation of polarization parameters

One of the speci�cities of the bivariate case is that polarization features – which
are relevant physical parameters – need to be estimated. ¿is estimation
requires some speci�c e�ort. One is interested in the decomposition (2.47) of
the quaternion power spectral density into its scalar and vector parts:

Γxx(ν) = S(ν) + S(ν)Φx(ν)µx(ν). (2.81)

¿is decomposition is of considerable importance, since it directly gives the
description of (i) the frequency distribution S(ν) of the total8 power of the 8. i.e. the sum of the power of unpolarized

and polarized parts.signal x and (ii) the dependence of polarization properties on frequency ν.
In the following, we investigate the problem of the estimation for a given

frequency ν of the degree of polarization Φx(ν) and to a lesser extent, the esti-
mation of the polarization axis µx(ν). For simplicity, we consider a situation
where nonparametric spectral estimators are unbiased. Such a situation arises
when the length N of the recorded sequence tends to in�nity.
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Figure 2.11: ¿e pdf (2.84) for M =  and
M =  independent realizations and for two
values of the true degree of polarizationΦx =
. andΦx = . – indicated by dashed black
lines ( ).

Degree of polarization ¿e estimation of the degree of polarization (2.44) has
attracted interest in the signal processing community (Medkour and Walden,
2008; Santalla del Rio et al., 2006) in relation to many �elds (Kikuchi, 2001;
Shirvany, Chabert, and Tourneret, 2012). ¿e degree of polarization Φx(ν)
is de�ned (2.44) as a ratio of statistical averages. ¿us remark that a naive
estimator based upon the polarization periodogram (2.71) or the direct spectral
estimate (2.75) would be trivial since:

Φ̂(e)
x (ν) = ∣V(Γ̂(e)xx (ν))∣

S(Γ̂(e)xx (ν)) = , where e = p or d (2.82)

which is systematically biased, except for frequencies where the signal x is
fully polarized. To overcome this issue we must consider a situation where
M approximately uncorrelated estimates of the spectral density are available –
having multiple realizations of x or using a multitaper estimate (2.78). ¿en
one can form a new estimate of the degree of polarization as

Φ̂M
x (ν) = ∣∑M

m= V(Γ̂mxx(ν))∣∑M
m= S(Γ̂mxx(ν)) , (2.83)
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which is a better estimator of Φx(ν) than (2.82). Santalla del Rio et al. (2006)
and Medkour and Walden (2008) have studied theoretically this estimator for
the case of Gaussian signals. We recall here some of their results.

Let us drop the frequency dependence for notational simplicity and remove
the superscript M to avoid confusion with exponentiation. ¿e probability
density function (pdf) for the estimated degree of polarization Φ̂x obtained
by (2.83) using M independent realizations of a Gaussian signal is (Santalla
del Rio et al., 2006; Medkour and Walden, 2008)

p(Φ̂x ;Φx ,M) = −M( −Φ
x)MΦ̂x( − Φ̂

x)M−B(M ,M − )Φx
[( − Φ̂xΦx)−M − ( + Φ̂xΦx)−M] (2.84)

withB(a, b) the Beta function. Fig. 2.11 depicts this pdf forM =  andM = 
independent realizations and for two values of the true degree of polarization
Φx = . and Φx = .. ¿e variance is majored for Φx →  and decreases as
M increases.

¿e bias E{Φ̂x}−Φx can be directly computed from the pdf (2.84). Expres-
sions are rather involved and can be found in Medkour and Walden (2008).
Fig. 2.12 shows the bias of this estimator as a function of the true degree of
polarization for increasing values ofM = , ,  and . Results are obtained
by numerical integration of the pdf (2.84). GivenM, the bias increases as the
true degree of polarization goes to zero. ¿e bias decreases with larger values of
M. It becomes negligible forM →∞, meaning that Φ̂x is asymptotically (w.r.t.
M) unbiased. Note that for typical values of M (2 to 10) used in multitaper
estimation, the bias remains signi�cant up to Φx ≃ ..
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Figure 2.12: Bias in the estimation of the de-
gree of polarization. ¿e bias decreases asM
increases and Φx → .

Polarization axis ¿e estimation of the polarization axis µx involves the esti-
mation of the natural ellipse parameters θ , χ or, equivalently, the normalized
Stokes parameters s , s , s. ¿ese two equivalent estimation problems have
been already studied in detail in the literature. We brie�y survey these results
and, for the sake of brevity, we omit a complete treatment of these estimation
problems.

Results available in the literature focus on Gaussian signals. Regarding
the estimation of natural ellipse parameters, pdfs of the orientation θ and
the aspect ratio ε = tan χ were derived by Walden and Medkour (2007) and
Rubin-Delanchy and Walden (2008). Similar results were obtained by Barakat
(1985) in the context of optics. Statistics of normalized Stokes parameters have
been studied by Brosseau (1995) and detailed statistics for s such as bias or
con�dence interval were obtained by Chandna and Walden (2011). Remark
that the third normalized Stokes parameter s is also known as the rotary
coe�cient to oceanographers. In a nutshell, distributions tend to spread as
the degree of polarization tends to zero. ¿is makes the estimation of the
polarization axis particularly di�cult for bivariate signals with low degree of
polarization. One can however expect to mitigate this issue by averaging out
multiple uncorrelated spectral estimates to reduce bias and variance.

2.4.3 Illustration

To conclude this chapter, we consider the problem of the estimation of the
quaternion power spectral density of a narrow-band signal x corrupted by
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Figure 2.13: (a) Realization of a stationary
narrow-band partially elliptically polarized
signal x. (b) Corresponding spectral pro�le
S,x(ν) and polarization parameters (Φx =
., θx = π/, χx = π/).

bivariate white Gaussian noise w. Observations are constructed as y = x +w
where x is a zero-mean stationary narrow-band bivariate signal with constant
polarization features. Fig. 2.13a depicts a realization of this signal. ¿e length of
the realization is N = , and the time-sampling step ∆t = . ¿e quaternion
PSD of this signal x is

∀ν > , Γxx(ν) = S,x(ν) + S,x(ν)Φxµx (2.85)

Negative frequencies are obtained by symmetry (2.23). Fig. 2.13 shows the total
power spectral density S,x(ν) and polarization parameters of x. ¿is signal is
chosen to have a high degree of polarization Φx = . and with �xed elliptical
polarization parameters θx = π/ and χx = π/. ¿e resulting polarization
axis is µx = √


 i − 

 j − √

 k.

¿e bivariate white Gaussian noisew has quaternion power spectral density

Γww(ν) = S,w +ΦwS,w [cos θw j + sin θwk] . (2.86)

We consider a degree of polarization Φw = . and a linear polarization angle
θw =  so that w exhibit partial linear horizontal polarization.

Since we assume x and w uncorrelated, plugging (2.35) into (2.36) one gets
the quaternion power spectral density of the observations y

∀ν > , Γy y(ν) = Γxx(ν) + Γww(ν) (2.87)

= S,y(ν) + S,y(ν)Φy(ν)µy(ν) (2.88)

where

S,y(ν) = S,x(ν) + S,w and Φy(ν)µy(ν) = S,x(ν)Φxµx + S,wΦwµw
S,x(ν) + S,w . (2.89)

¿e polarization properties of y depend on the frequency ν due to the interac-
tion between second-order properties of x and w. In particular it shows that
in the frequency band related to x, the polarization axis of y is not equal to
the polarization axis of x. Since the noise w is polarized, it corrupts also the
observed polarization properties. ¿is e�ect is majored for strongly polarized
noise and small values of signal-to-noise ratio.

Fig. 2.14 investigates the spectral estimation of the quaternion power spec-
tral density Γy y . We simulate K =  independent realizations of the process
y. ¿en for each realization we compute its polarization periodogram and a
multitaper estimate with bandwidth parameter NW = . ¿en to reduce bias
we compute an averaged polarization periodogram and an averaged multitaper
estimate. As expected the averaged multitaper estimates exhibits less variance
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Figure 2.14: Nonparametric spectral density
estimation of the signal y = x + w where x
is a narrow-band bivariate signal and w is a
bivariate white Gaussian noise. Averaged po-
larization periodogram and averaged multita-
per estimate (computed withM =  Slepian
tapers) are shown. ¿ey are constructed by av-
eraging single estimates obtained via K = 
independent observations of the process y.
Red lines indicate theoretical values.

and better bias properties than the average polarization periodogram. Results
indicate a good agreement with theoretical values and show that spectral esti-
mates have limited bias. Frequencies . < ν ≤ .Hz have not been displayed
to enhance the visualization.

2.5 Conclusion

¿is chapter has introduced a powerful and relevant framework for an inter-
pretable and e�cient spectral analysis of bivariate signals. ¿e richness of
the quaternion algebra and the QFT properties permits the construction of
physically meaningful quantities that remain mathematically valid and easy
to compute. ¿e quaternion power spectral density (PSD) of a stationary
random bivariate signal is the cornerstone of the proposed approach. Its de�-
nition appears naturally from the quaternion-valued spectral representation
of a stationary random bivariate signal (¿eorem 2.1). It has a straightfor-
ward interpretation in terms of common tools of physicists, namely Stokes
parameters and Poincaré sphere representation. It enables also a natural dis-
crimination between energetic and polarization features thanks to the degree
of polarization of a stationary random bivariate signal. Quantities related to
the quaternion PSD (autocovariance, cross-correlation properties) are also
de�ned to provide a complete and practical characterization of second-order
stationary bivariate signals. Simple examples demonstrate the relevance of the
approach. Nonparametric spectral density estimation of the quaternion PSD
has been investigated and resembles the usual univariate case. ¿e issue of
the estimation of the degree of polarization and polarization attributes has
been raised. ¿e proposed framework can be used for the spectral analysis
of deterministic or random bivariate signals, even though the estimation of
polarization properties calls for some special care.
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¿ese new tools are made publicly available thanks to the companion
Python package BiSPy. ¿ese �ndings have been published in an interna-
tional journal (Flamant, Le Bihan, and Chainais, 2017c) and presented at a
national conference (Flamant, Le Bihan, and Chainais, 2017a).
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Appendices

2.a Circularity of spectral increments

Consider a continuous-time stationary random bivariate signal x(t). If x is
harmonizable, it has a quaternion spectral representation given by¿eorem 2.1.
Corresponding spectral increments dX(ν) form a collection of quaternion-
valued random variables.

Usually, the description of the second-order statistics of a quaternion ran-
dom variable q is carried by four moments, e.g. Note that for a complex valued random vari-

able z, the second-order statistics are given
by

E{∣z∣} and E{z}
See e.g. Picinbono and Bondon (1997).

E{∣q∣} , E{qiq} , E{q jq} , E{qkq} , (2.90)

although any set of linearly independent moments are equally valid. Like for
complex random variables, the second-order moments in (2.90) may satisfy
some invariance or symmetry properties. ¿is leads to the notion of second-
order circularity or properness of quaternion random variables. ¿is topic has
been investigated by several authors (Vakhania, 1999; Amblard and Le Bihan,
2004; Vía, Ramírez, and Santamaría, 2010) and was reviewed recently by Le
Bihan (2017).

Recall that the spectral increments of x satisfy the double orthogonality
property

∀ν ≠ ν′ , E{dX(ν)dX(ν′)} = E{dX(ν) jdX(ν′)} =  (2.91)

In addition, since x isCi-valued its spectral increments satisfy the i-Hermitian
symmetry dX(−ν) = −i dX(ν)i. Plugging this symmetry into (2.91) for
ν′ = −ν yields

∀ν, E{dX(ν)idX(ν)} = E{dX(ν)kdX(ν)} =  (2.92)

It shows that the spectral increments are (, j)-proper in the denomination
of Le Bihan (2017), also denoted as C j-properness by Amblard and Le Bihan
(2004). If x is Gaussian, then following Le Bihan (2017) it means that for every
frequency ν ¿e notation d= stands for equality in distribu-

tiondX(ν) d= dX(ν) j (2.93)

that is spectral increments are invariant by right isoclinic rotations (Altmann,
2005) of axis j and angle π/. ¿is result can be seen as a generalization of
the properness of the complex-valued spectral increments of a real-valued
stationary process (Picinbono, 1994).

¿eonly nonzero second-ordermoments areE{∣dX(ν)∣} andE{dX(ν) jdX(ν)},
precisely those that appear in the de�nition of the quaternion power spectral
density (2.20). It shows that with this de�nition, the quaternion power density
contains the complete second-order structure of x.

2.b Expressions for the quaternion power spectral density
and the quaternion autocovariance

Let x(t) = u(t)+ iv(t) be an harmonizable stationary random bivariate signal.
Its spectral increments are dX(ν) = dU(ν) + iV(ν). ¿e quaternion power
spectral density is de�ned by (2.20). It involves the following two moments
which explicitly read



spectral analysis of bivariate signals 73

E{∣dX(ν)∣} = E{∣dU(ν)∣} + E{∣dV(ν)∣} , (2.94)

E{dX(ν) jdX(ν)} = [E{∣dU(ν)∣} − E{∣dV(ν)∣}] j + kE{dV(ν)dU(ν)} . (2.95)

Now using Puu , Pvv to denote the usual power spectral density of u and v Recall that

Puu(ν)dν = E{∣dU(ν)∣}
Puu(ν)dν = E{∣dV(ν)∣}

Pvu(ν)dν = E{dV(ν)dU(ν)}

Remark also that kPvu(ν) = Pvu(ν)k =
Puv(ν)k since Pvu is C j-valued.

respectively, and Pvu to denote the cross-power spectral density between v and
u, one gets

Γxx(ν) = Puu(ν) + Pvv(ν) + j [Puu(ν) − Pvv(ν)] + kPvu(ν). (2.96)

¿e quaternion autocovariance is obtained by inverse quaternion Fourier
transform of (2.96):

γxx(τ) = Ruu(τ) + Rvv(τ) + j [Ruu(τ) − Rvv(τ)] + kRvu(τ). (2.97)

2.c Unpolarized signals and non-Gaussianity

Consider for simplicity a stationary unpolarized monochromatic signal x(t).
Consider a realization xk(t) of x(t). ¿e corresponding polarization ellipse
can be characterized by a polarization axis, say µk , which can be represented
as a point on the Poincaré sphere of unit radius S. For many realizations of
x(t) one thus obtains a distribution of polarization states on S. Since x(t)
is unpolarized – and if x(t) has Gaussian statistics – this distribution is the
uniform distribution on S, as illustrated in Fig. 2.4.

However with no assumption on the statistics of unpolarized monochro-
matic x(t) the corresponding distribution of polarization states is not neces-
sarily uniform on the Poincaré sphere of unit radius. In fact, Ellis and Dogariu
(2004) give a su�cient condition which is that the corresponding pdf p(⋅) on
S should have an equal probability of antipodal points, i.e. p(−µ) = p(µ).
For instance, a monochromatic signal x(t) with polarization axis µx drawn
either as µ or −µ with equal probability will be unpolarized.

¿is subtlety in the interpretation of unpolarization can be explained by
noticing that the degree of polarization Φx only involves second-order mo-
ments of the spectral increments. ¿us, for non-Gaussian signals Φx =  does
not entirely speci�es the underlying pdf on S.

Example Let us consider a monochromatic bivariate signal x(t) such that
x(t) = e iθ cos(πν t + φ) (2.98)

where φ ∼ U([, π]) and θ are independent random variables. ¿e probabil-
ity density function for θ is denoted by π(⋅) and is le unspeci�ed for now.
For a given realization, this signal appears to be linearly polarized with linear
polarization angle or orientation θ. However upon speci�c choices for π(⋅),
this signal can be unpolarized.

¿e signal x(t) = u(t)+ iv(t) is second-order stationary due to the random
phase φ. Covariances involving u(t) and v(t) are given by

Ruu(τ) = 

Eπ {cos θ} cos πντ (2.99)

Rvv(τ) = 

Eπ {sin θ} cos πντ (2.100)

Rvu(τ) = 

Eπ {sin θ} cos πντ (2.101)
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¿e autocovariance function (2.25) reads:

γxx(τ) = 

[ + jEπ {cos θ} + kEπ {sin θ}] cos πντ (2.102)

¿e quaternion power spectral density is obtained by quaternion Fourier trans-
form

Γxx(ν) = 

[ + jEπ {cos θ} + kEπ {sin θ}] [δ(ν − ν) + δ(ν + ν)]

(2.103)
¿e degree of polarization at frequencies ±ν is thus

Φx(±ν) = √(Eπ {cos θ}) + (Eπ {sin θ}) (2.104)

¿us the signal x(t) is unpolarized if and only if the two expectations appearing
above are zero. ¿is is the case e.g. when π(⋅) = U([−π/, π/]). ¿e signal
x(t) is unpolarized, but is not Gaussian since it has a �xed amplitude a = 
in (2.98). ¿e distribution of polarizations states of each realization is the Such distribution is referred to as Type-II un-

polarized light in Ellis and Dogariu (2004).uniform distribution on the equator of the Poincaré sphere of unit radius.

2.d Proofs

2.D.1 Proof of the spectral representation ¿eorem 2.1

Let x(t) = u(t) = iv(t) a continuous-time random stationary bivariate signal
in the sense of De�nition 2.1. We assume that x has zero-mean. ¿e proof
is divided in two parts. We �rst state under which conditions the random
bivariate signal x admits the spectral representation (2.15). ¿en we study the
properties of its spectral increments.

Existence of the spectral representation Let x(t) = u(t) + iv(t) a continuous-
time random stationary bivariate signal. Suppose that u(t) and v(t) are har-
monizable (Loeve, 1978; Blanc-Lapierre and Fortet, 1953). ¿ese real processes
admit a spectral representation, such that Mean square (m.s.) equality

x m.s.= y⇔ E{∣x − y∣} = 
u(t) m.s.= ∫ +∞

−∞ dU(ν) exp( jπνt),
v(t) m.s.= ∫ +∞

−∞ dV(ν) exp( jπνt), (2.105)

where dU , dV are the C j-valued spectral increments of u and v respectively.

Lemma . (Existence of the spectral representation). Let u and v be harmonizable with
spectral increments dU and dV . De�ne the quaternion-valued spectral increment
process dX(ν) = dU(ν) + idV(ν). ¿en for all t,

x(t) m.s.= ∫ +∞
−∞ dX(ν)e jπνt (2.106)

and we say that x is harmonizable.

Proof. If u and v are harmonizable, then for all t

E{∣u(t) − ∫ +∞
−∞ dU(ν)e jπνt∣} = , (2.107)

E{∣v(t) − ∫ +∞
−∞ dV(ν)e jπνt∣} = . (2.108)
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Now one has directly for all t

E{∣x(t) − ∫ +∞
−∞ dX(ν)e jπνt∣} (2.109)

= E{∣u(t) − ∫ +∞
−∞ dU(ν)e jπνt ∣} (2.110)

+ E{∣v(t) − ∫ +∞
−∞ dV(ν)e jπνt∣} (2.111)

= . (2.112)

Properties of the spectral increments ¿e approach below follows from Priest-
ley (1981). ¿e properties of the spectral increments dX(ν) are a direct con-
sequence of the properties of the spectral increments of u and v, respectively.
Since x is assumed zero-mean and stationary,

∀t, E{x(t)} = ∫ +∞
−∞ E{dX(ν)} e jπνt =  (2.113)

which immediately yields

∀ν, E{dX(ν)} = E{x(t)} = . (2.114)

Turning to the second-order properties of the spectral increments, let us con-
sider the spectral representation of u and v. Second-order stationarity implies
that

∀ν ≠ ν′ ,⎧⎪⎪⎪⎨⎪⎪⎪⎩
E{dU(ν)dU(ν′)} = 
E{dV(ν)dV(ν′)} =  (2.115)

and autocovariance functions of u and v read

E{u(t)u(t − τ)} = ∫ +∞
−∞ E{∣dU(ν)∣} e jπντ , (2.116)

E{v(t)v(t − τ)} = ∫ +∞
−∞ E{∣dV(ν)∣} e jπντ . (2.117)

To fully characterize the spectral increments of x, we also need the covari-
ance between the spectral increments of u and v. Since u and v are jointly
second-order stationary,

∀ν ≠ ν′ ,E{dV(ν)dU(ν′)} = , (2.118)

and the cross-covariance function reads

E{v(t)u(t − τ)} = ∫ +∞
−∞ E{dV(ν)dU(ν)} e jπντ . (2.119)

Using expressions from Appendix 2.B Eqs. (2.115) and (2.118) can be written
directly in terms of spectral increments of x:

∀ν ≠ ν′ , E{dX(ν)dX(ν′)} = , (2.120)

∀ν ≠ ν′ , E{dX(ν) jdX(ν′)} = . (2.121)

When ν′ = ν, the second-order properties are summarized by introducing the
quaternion integrated spectrum Γ(I)xx (ν):

E{∣dX(ν)∣} + E{dX(ν) jdX(ν)} = dΓ(I)xx (ν) (2.122)

which separates in quaternion algebra the information contained in the two
moments of the spectral increments. ¿is theorem holds also for quaternion-
valued stationary signals by simply adapting the proof.
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2.D.2 Proof of ¿eorems 2.2 and 2.3

We give only a proof for¿eorem 2.3. By taking x = y one obtains the proof for
2.2. Let x(t) = ux(t) + ivx(t) and y(t) = uy(t) + ivy(t) be two continuous-
time jointly stationary random bivariate signals. In order to prove (2.31) and
(2.32), we compute each side of the equation separately and show that there
are equal.

Start with the le -hand side of (2.31). We drop explicit frequency depen-
dence for notational convenience. One has

E{dXdY} = E{[dUx + dVx] [dUy − idVy]} (2.123)

= E{dUxdUy} + E{dVydVx}
+ i [E{dVxdUy} − E{dVydUx}] (2.124)

= (Puxu y + Pv yvx + i [Pvxu y − Pv yux ])dν (2.125)

For the right-hand side of (2.31) one gets

∫ +∞
−∞ E{x(t)e− jπντ y(t − τ)}dτ (2.126)

= ∫ +∞
−∞ E{(ux(t) + ivx(t))e− jπντ(uy(t − τ) − ivy(t − τ)}dτ (2.127)

= ∫ +∞
−∞ Ruxu y(τ)e− jπντdτ + ∫ +∞

−∞ Rvx v y(τ)e jπντdτ
+ i ∫ +∞

−∞ Rvxu y(τ)e− jπντdτ − i ∫ +∞
−∞ Rux v y(τ)e jπντdτ (2.128)

= Puxu y(ν) + Pvx v y(−ν) + i [Pvxu y(ν) − Pux v y(−ν)] (2.129)

= Puxu y(ν) + Pv yvx (ν) + i [Pvxu y(ν) − Pv yux (ν)] (2.130)

which proves (2.31). ¿e same approach is used for the proof of (2.32) and will
not be reproduced here.
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¿is chapter studies one of the most fundamental signal processing operations, Chapter contents
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i.e. linear time-invariant (LTI) �ltering, in the quaternion Fourier transform
(QFT) framework. Usually, the LTI �ltering theory of bivariate signals in for-
mulated using either linear algebra – leading to the Jones calculus in optics
(Gil, 2007) – or widely linear �lters, depending on the choice of the represen-
tation, vector or complex. However, as explained in Chapter 0, these current
approaches do not allow for straightforward physical or geometric interpre-
tations of �ltering operations. In contrast, the QFT framework provides, at
no extra cost, an elegant, compact and insightful calculus which highlights
the geometric treatment of polarization states. Filtering relations are explicitly
given in terms of eigenproperties, making it easy to interpret or prescribe any
desired physical behavior. ¿anks to the notion of quaternion power spectral
density developed in Chapter 2, the proposed formalism o�ers a new generic
and meaningful approach to the �ltering of bivariate signals.

Section 3.1 describes the derivation of quaternion �lters for bivariate signals.
Starting from the usual matrix representation of LTI �lters we obtain their
corresponding quaternion representation. We take advantage of the polar
decomposition of matrices and identify two important classes of �lters, unitary
and Hermitian ones, respectively.

Section 3.2 then provides a thorough study of LTI �lters in the quaternion
representation. Sections 3.2.1 and 3.2.2 deal with unitary �lters and Hermi-
tian �lters, respectively. In particular, they feature parameters related to two
fundamental properties of optical media: unitary �lters model birefringence,
which corresponds to phase delays that depend on the input polarization state;
Hermitian �lters encode diattenuation, which describes how the gain of a �lter
depends on the input polarization state. Section 3.2.3 then discusses the general
form of LTI �ltering as a combination of unitary and Hermitian �lters.

Section 3.3 intends to demonstrate the generality and relevance of the pro-
posed approach for standard signal processing operations as well as for original
treatments speci�c to bivariate signals. A fast but approximate spectral syn-
thesis method is presented in 3.3.1. Section 3.3.2 presents the unpolarizing -
whitening �lter. Wiener denoising is addressed by Section 3.3.3: the proposed
formalism sheds some new light on this well-known �lter in terms of polar-
ization attributes. Section 3.3.4 shows that the QFT framework makes natural
various original descriptions of bivariate signals in two components with spe-
ci�c geometric or statistical properties. Finally Section 3.3.5 illustrates how
unitary �lters can model polarization mode dispersion, a phenomenon which
appears in many applications such as optical �ber transmission or seismology.
Numerical experiments are given throughout to support our discussion.
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3.1 Frommatrix to quaternion representation of LTI filters

In order to formulate a generic linear time-invariant (LTI) �ltering theory
for bivariate signals in the proposed framework, we start with a natural ap-
proach which uses standard multivariate �ltering theory. ¿e corresponding
quaternion expressions can be derived a erwards. ¿is back-and-forth proce-
dure is made possible by the formal identi�cation between quaternions and
2-dimensional C j-complex vectors:

x = [x , x]T ∈ C
j ←→ x = x + ix ∈ H, x , x ∈ C j . (3.1)

We call x the 2-d vector representation of the quaternion x. ¿e approach can
be summarized as follows. We recall �rst the general matrix form of LTI �lters
for bivariate vector-valued signals. ¿en we identify two special types of LTI
�lters, respectively unitary andHermitian ones. Finally we give the quaternion
representation of these �lters in the frequency domain, leaving the thorough
study of their respective properties for Section 3.2.

Notations ¿e derivation below involves several notations to disambiguate
between matrix, vector and quaternion-valued quantities. First, time-domain
quantities are given in lowercase letters and frequency domain quantities in
uppercase letters. Scalar quantities are denoted by standard case letters e.g. x
or X. ¿ey are either quaternion-valued or C j-valued. Vectors are denoted
by bold straight letters, e.g. x or X and matrices are written as bold straight
underlined letters, e.g. m or M. Vectors and matrices are always complex
C j-valued.

3.1.1 LTI �ltering of bivariate signals using linear algebra

LTI �lters for bivariate signals are described by 2-by-2 complex matrix-valued
functions, see e.g. Priestley (1981, Chapter 9 ). In the time-domain a LTI �lter
is described by its matrix impulse functionm ∶ R→ C×

j such that for a vector
input x(t) the vector output y(t) reads Explicitly, if

m(t) = [m(t) m(t)
m(t) m(t)

] and x(t) = [x(t)x(t)
]

then y(t) reads

y(t) = [m ∗ x(t) +m ∗ x(t)
m ∗ x(t) +m ∗ x(t)

]

y(t) =m ∗ x(t) . (3.2)

¿e notation ∗ denotes entry-wise convolution. Equivalently, this �ltering
relation can be given in the frequency domain. It reads

Y(ν) =M(ν)X(ν), (3.3)

http://dx.doi.org/10.1109/TSP.2018.2855659
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where Y and X are respectively the Fourier transforms of y and x, and where
M is the entry-wise Fourier transform ofm. Eq. (3.3) shows that a LTI �lter
introduces for every frequency ν a linear relationship between the Fourier
transforms of the input and the output.

Polar decomposition For frequency ν, the matrixM(ν) embodies the linear
relation between Fourier vectors Y(ν) and X(ν). Let us �x ν and drop now
this dependence for ease of notation. ¿e generic linear relation Y = MX
can be further characterized using the polar decomposition (Lancaster and
Tismenetsky, 1985) ofM. It reads

M = UH, (3.4)

where U is unitary and H is Hermitian positive semi-de�nite, i.e. H† = H H† denotes the conjugate-transpose ofH.

and its eigenvalues are nonnegative. Geometrically (3.4) decomposesM as a
stretch (Hermitian matrixH) followed by an isometry (unitary matrix U).

¿e polar decomposition (3.4) suggests to study separately two fundamental
transforms, respectively unitary andHermitian ones. Remarkably, it will appear
that the quaternion representation of these two transforms seizes directly their
respective eigenproperties.

3.1.2 From matrices to quaternions

Unitary transform Let U() denote the set of 2-by-2 C j-complex unitary
matrices, i.e. for U ∈ U() one has UU† = U†U = I. Lemma 3.1 gives the I denotes the 2-by-2 identity matrix.

quaternion representation of the unitary transform Y = UX, where Y,X ∈ C
j .

Lemma . (Unitary transform). Let U ∈ U(). ¿en

Y = UX⇐⇒ Y = eµb β
 Xe jφ (3.5)

where µb ∈ span{i , j, k} with µb = −, and β, φ ∈ [, π).
Proof. See Appendix 3.C.2.A unitary transform is described by three parameters: a pure unit quater-

nion1 µb and two angles β and φ. ¿e parameter φ is the argument of detU. 1. ¿e subscript b stands for the physical
interpretation of unitary �lters as birefringent
�lters, see Section 3.2.1 below.

¿e parameter µb is related to the eigenvectors of U, while β encodes its eigen-
values, see Appendix 3.C.2. Section 3.2.1 will provide detailed evidence of this
connection with eigenproperties. Note that for φ = , the matrix U becomes
unitary with unit determinant, i.e. U ∈ SU(). In this case (3.5) becomes the
familiar unit quaternion representation of special unitary matrices (Altmann,
2005).

Hermitian transform Consider a positive semi-de�nite Hermitian matrixH.
Lemma 3.2 gives the quaternion representation of the Hermitian transform
Y = HX.
Lemma . (Hermitian transform). LetH ∈ C×

j be Hermitian positive semi-de�nite.
¿en

Y = HX⇐⇒ Y = K[X − ηµdX j] (3.6)

where µd ∈ span{i , j, k} with µd = −, K ∈ R+ and η ∈ [, ].
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Proof. See Appendix 3.C.3.A Hermitian transform is thus described by three parameters: a pure unit
quaternion2 µd and two scalars K and η. As shown in Appendix 3.C.3, the 2. ¿e subscript d stands for the physical

interpretation of Hermitian �lters as diatten-
uation �lters, see Section 3.2.2 below.

parameters K and η depend directly on the eigenvalues ofH. ¿e parameter
µd encodes the eigenvectors ofH. Section 3.2.2 will provide detailed evidence
of this connection with eigenproperties.

Unitary and Hermitian transforms are described in the quaternion domain
each by a dedicated set of three parameters. Each set conveys explicitly the
eigenstructure of each transform and thus enables an e�cient design of unitary
and Hermitian �lters. Before studying in detail each �lter in Section 3.2, we
brie�y give some associated physical interpretations.

3.1.3 Quaternions and physics

¿e polar decomposition (3.4) shows that a generic LTI �lter can be expressed
as a combination of two �lters: one is unitary and the other is Hermitian.
¿e �eld of polarization optics (Brosseau, 1998; Gil and Ossikovski, 2016) has
for long time taken advantage of this decomposition to provide meaningful
interpretations to these two classes of �lters.

Fig. 3.1 summarizes the decomposition of a generic LTI �lter into suc-
cessive Hermitian and unitary �ltering operations. Hermitian �lters model
diattenuation: there exist at each frequency two orthogonal eigenpolarizations
corresponding to maximum and minimum values of the gain. ¿e gain of
this �lter depends in general on the alignment between the input polarization
axis and the �lter axis µ. As a limiting case, when the output polarization axis
does not depend on the input polarization axis, this �lter is called a polarizer.
Unitary �lters model birefringence: there exist at each frequency two fast and
slow orthogonal eigenpolarizations which are delayed di�erently by the �lter.
Such a �lter preserves the power and degree of polarization of the input. For
an arbitrary polarized input, it performs a 3D rotation of the polarization axis.
For presentation purposes, Fig. 3.1 depicts the special case where Hermitian
and unitary axes coincide (µd = µb = µ). In full generality, a generic LTI �lter
may exhibit di�erent axes µd ≠ µb: see Section 3.2.3 for further discussion. Fig.
3.1 displays for completeness the �ltering relations associated to unitary and
Hermitian �lters. ¿e next section aims at establishing these expressions and
deciphering their physical implications.

3.2 Quaternion filters for bivariate signals

¿e de�nition of unitary and Hermitian �lters relies on the quaternion repre-
sentation of unitary and Hermitian transforms, as given by Lemmas 3.1 and 3.2,
respectively. Section 3.2.1 and Section 3.2.2 explore in detail each type of �lter,
unitary and Hermitian ones, respectively. We give input-output �ltering rela-
tions in the spectral domain as well as relations between respective quaternion
power spectral densities. ¿ese relations permit meaningful interpretations
for the case of stationary random bivariate signals. Section 3.2.3 then discusses
the generic LTI �ltering case by combination of a unitary and a Hermitian
�lter.
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D rotation of µy

Figure 3.1: A generic LTI �lter for a bivariate
signal x results from the combination of a uni-
tary �lter and a Hermitian �lter. For every fre-
quency each �lter has two orthogonal eigen-
polarizations encoded by the axis µ. Unitary
�lters model birefringence, i.e. eigenpolariza-
tions are delayed di�erently. Hermitian �lters
model diattenuation, i.e. eigenpolarizations
are attenuated or ampli�ed asymmetrically.
To emphasize the geometric operations per-
formed by the unitary and the Hermitian �l-
ter, values of the usual gain K and phase φ are
chosen to limit their incidence. Note that in
full generality, unitary and Hermitian �lters
may exhibit di�erent axes µd ≠ µb .

In the following the explicit form of the quaternion PSD of a stationary
randombivariate signal x in terms of polarization parameterswill be intensively
used:

Γxx(ν) = S,x(ν) + S,x(ν)µx(ν)Φx(ν) . (3.7)

Moreover strictly speaking, spectral-domain �ltering relations between sta-
tionary random signals x(t) and y(t) should involve their respective spectral
increments dX(ν) and dY(ν), see ¿eorem 2.1. However to keep expres-
sions digestible and with little abuse, we write �ltering relations as if the QFT
X(ν),Y(ν) of these random signals existed. ¿is does not change any of the
fundamental results presented in this chapter.

3.2.1 Unitary �lters

A unitary �lter performs a unitary transform at each frequency. Such �lter
makes the polarization axis of the input rotate and leaves the total power
spectral density S,x(ν) and degree of polarization Φx(ν) invariant. ¿is is
known as birefringence, see e.g. (Gil, 2007; Gil and Ossikovski, 2016).

¿ree frequency-dependent quantities de�ne unitary �lters. Two model
birefringence: the birefringence axis µb(ν) and the birefringence angle β(ν).
¿e third parameter is the phase φ(ν). It is classical and quanti�es the time
delay associated to each frequency.

Proposition 3.1 below gives the unitary �ltering relation for bivariate signals
and the corresponding relation between input and output quaternion power
spectral densities.

Proposition . (Unitary filter). Let x ∶ R→ Ci be the input and y be the output of the
unitary �lter, with respective QFTs X and Y . ¿e �ltering relation is

Y(ν) = eµb(ν) β(ν)
 X(ν)e jφ(ν) , (3.8)

with µb(−ν) = −iµb(ν)i, β(−ν) = β(ν) and φ(−ν) = −φ(ν) for all ν ∈ R. Symmetry conditions on µb , β and φ ensure
that the output y remainsCi -valued for aCi -
valued input x. ¿is ensures in particular that
the i-Hermitian symmetry (1.52) is satis�ed
for Y(ν).

¿e quaternion power spectral density of y is

Γy y(ν) = eµb(ν) β(ν)
 Γxx(ν)e−µb(ν) β(ν)

 (3.9)

Sketch of proof. Eq. (3.8) is obtained directly
from Lemma 3.1. To obtain (3.9) replace QFTs
by spectral increments in (3.8). ¿en thanks
to the quaternion PSD de�nition (2.20) one
gets (3.9).

Inserting the explicit expression of the quaternion PSD (3.7) in terms of
polarization features into (3.9) yields

Γy y(ν) = eµb(ν) β(ν)
 S,x(ν)[ +Φx(ν)µx(ν)]e−µb(ν) β(ν)



= S,x(ν) +Φx(ν)eµb(ν) β(ν)
 µx(ν)e−µb(ν) β(ν)

 .
(3.10)
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Eqs. (3.9)–(3.10) illustrate the geometric operation performed by the unitary
�lter: a 3D rotation of the input quaternion PSD Γxx(ν). It a�ects only the
imaginary components of the quaternion PSD, see Section 1.1.5 for details. ¿is
operation is physically interpreted as birefringence. It can be visualized on
the Poincaré sphere in Fig. 2.5: the output polarization axis µy(ν) is given by
the rotation of the input polarization axis µx(ν). ¿is rotation is de�ned by
the birefringence axis µb(ν) and the birefringence angle β(ν). Eq. (3.10) also
highlights that both the total PSD and the degree of polarization are rotation
invariant: S,y(ν) = S,x(ν) andΦy(ν) = Φx(ν). ¿is emphasizes the unitary
nature of the �lter.

Eigenpolarizations At a given ν, unitary �lters have two orthogonal eigenpo-
larizations. When the polarization of the input is an eigenpolarization, input
and output polarization axes coincide: inputs are simply delayed by the �lter.
Let us write the birefringence axis µb(ν) in terms of its spherical coordinates(θ(ν), χ(ν)) on the Poincaré sphere:
µb(ν) = i sin χ(ν) + j cos θ(ν) cos χ(ν) + k sin θ(ν) cos χ(ν) . (3.11)

Consider Z+(ν) and Z−(t) two spectral components at frequency ν associated
with orthogonal polarization axes µZ±(ν) = ±µb(ν): We use that

µb(ν)↔ (θ(ν), χ(ν))
−µb(ν)↔ (θ(ν) + π/,−χ(ν))Z+(ν) = e iθ(ν)e−k χ(ν) and Z−(ν) = e i(θ(ν)+ π

 )ek χ(ν) (3.12)

¿ese fully polarized spectral components de�ne eigenpolarizations since To prove (3.13)-(3.14) use the fact that

µb = e iθ e−k χ jek χe−iθ
eµb(ν) β(ν)

 Z+(ν)e jφ(ν) = Z+(ν)e j(φ(ν)+β(ν)/) , (3.13)

eµb(ν) β(ν)
 Z−(ν)e jφ(ν) = Z−(ν)e j(φ(ν)−β(ν)/) . (3.14)

Clearly, the birefringence axis µb(θ , χ) encodes the eigenvectors of the �l-
ter. ¿e associated eigenvalues are unit C j-complex numbers exp[ j(φ(ν) ±
β(ν)/)]. Eqs. (3.13)–(3.14) provide an additional characterization of bire-
fringence. Unitary �lters introduce a phase di�erence β(ν) between the fast
eigenpolarization Z+(ν) and the slow eigenpolarization Z−(ν).
Identi�cation Eigenpolarizations properties (3.13)–(3.14) yield a simple iden-
ti�cation method of unitary �lters. ¿e approach generalizes a well known
procedure of experimental optics (Gil and Ossikovski, 2016) to frequency
dependent parameters. Working with monochromatic signals of increasing
frequency, one can adjust the input polarization axis until it coincides with
the output polarization axis. It gives immediately the birefringence axis µb(ν).
Measuring phase delays with respect to fast and slow eigenpolarizations then
permits using (3.13)–(3.14) to identify the birefringence angle β(ν) and the
phase φ(ν). Section 3.B discusses an additional identi�cation method using
unpolarized white Gaussian noise.

3.2.2 Hermitian �lters

A Hermitian �lter performs a Hermitian transform at each frequency. ¿is
second type of �lter modi�es both power and polarization properties of the
input signal. ¿e gain of the �lter is a function of the input polarization
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axis: eigenpolarizations correspond to maximum and minimum values of this
gain. ¿is �lter represents diattenuation e�ects, see e.g. Gil (2007) or Gil and
Ossikovski (2016) and references therein.

¿ree frequency-dependent quantities parameterize a Hermitian �lter. Two
are related to diattenuation: the polarizing power η(ν) and the diattenuation
axis µd(ν). ¿e third quantity is the homogeneous gain K(ν) ≥ . When
η(ν) = , diattenuation e�ects are removed and K(ν) is interpreted as an
usual �lter gain.

Proposition 3.2 below gives the Hermitian �ltering relation for bivariate
signals. It also presents the expression of the output quaternion PSD Γy y . ¿e
use of the explicit expression (3.7) of Γxx provides a direct interpretation of the
spectral properties of y.

Proposition . (Hermitian filter). Let x ∶ R → Ci denote the input and y denote the
output of the Hermitian �lter with respective QFTs X and Y . ¿e �ltering relation
is

Y(ν) = K(ν)[X(ν) − η(ν)µd(ν)X(ν) j] (3.15)

with K(−ν) = K(ν), η(−ν) = η(ν) and µd(−ν) = −iµd(ν)i for all ν ∈ R. ¿ese symmetry requirements ensure that
y(t) remains Ci -valued for x ∶ R →
Ci . ¿ey are obtained by enforcing the i-
Hermitian symmetry (1.52) on Y(ν).

Using (3.7), the quaternion PSD of y is then given by (dropping ν dependence for
convenience)

S (Γy y) = S,xK [ + η + ηΦx ⟨µd , µx⟩] (3.16)

V (Γy y) = S,xK [ηµd +Φx[µx − ηµdµxµd]] (3.17)

where ⟨µ , µ⟩ = S(µµ) is the usual inner product of R.

Sketch of proof. Eq. (3.15) is obtained di-
rectly from Lemma 3.2. To obtain (3.16)-(3.17)
replace QFTs by corresponding spectral in-
crements in (3.15). Plugging (3.15) into the
quaternion PSD de�nition (2.20) with the use
of (3.7) yields (3.16)-(3.17).

To avoid notational clutter the explicit dependence in frequency ν is now
dropped in most expressions. Unless otherwise stated, discussions below are
for a single frequency. ¿is means that statements such as ‘‘x is partially
polarized’’ are to be interpreted as ‘‘x is partially polarized at frequency ν’’.

Gain ¿e power gain G of the �lter is de�ned by the ratio

G = S (Γy y)S (Γxx) = S,y
S,x

≥  . (3.18)

Using (3.16) this gain becomes

G = K [ + η + η Φx ⟨µd , µx⟩] . (3.19)

When η =  the power gain reduces to its usual expression G = K. When
η ≠ , the gain depends on K and η but most importantly, on the alignment⟨µd , µx⟩ between diattenuation and input polarization axes.
Eigenpolarizations Hermitian �lters have two orthogonal eigenpolarizations.
When the polarization of the input is an eigenpolarization, input and output
polarization axes coincide: inputs are simply attenuated or ampli�ed by the
�lter.

Using the same ingredients as for the unitary �lter case, write the diat-
tenuation axis µd = µd(θ , χ) in spherical coordinates as in (3.11). Next con-
sider two spectral components Z+ and Z− with orthogonal polarization axes
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µZ± = ±µd(ν). ¿ese fully polarized spectral components de�ne eigenpolar-
izations: Identically to the unitary �lter:

Z+ = e iθ e−k χ

Z− = e i(θ+
π
 )ek χK[Z+ − ηµdZ+ j] = K[ + η]Z+ (3.20)

K[Z− − ηµdZ− j] = K[ − η]Z− (3.21)

¿e diattenuation axis µd(θ , χ) directly encodes the eigenvectors of the Her-
mitian �lter. ¿e remaining parameters de�ne the eigenvalues K[ ± η]. Eqs.
(3.20)–(3.21) show that eigenpolarizations have di�erent gain values depending
on the polarizing power η when η ≠ . ¿is characterizes diattenuation (Gil,
2007; Gil and Ossikovski, 2016).

Identi�cation using eigenproperties Just like for the unitary �lter, the param-
eters of an Hermitian �lter are easily identi�ed thanks to eigenpolarization
properties (3.20)–(3.21). ¿e identi�cation method follows directly from ex-
perimental optics. Eigenpolarizations Z+ and Z− are obtained as maximum
and minimum values of the gain G, see (3.19) for µx = ±µd. Once these eigen-
polarizations have been identi�ed the remaining parameters K and η are given
by

η
 + η = Gmax −Gmin

Gmax +Gmin
and K = Gmax −Gmin

η
, (3.22)

where Gmax = G(µx = µd) and Gmin = G(µx = −µd) denote the maximum
and minimum gain values. Repeating the operation for a wide range of fre- Identi�cation procedures using unpolarized

wGn are described in Section 3.B.quencies completes the characterization procedure.

Role of the polarizing power η ¿e parameter η rules the strength of interac-
tion between the input polarization properties and the �lter parameters. ¿e
two extreme cases η =  and η =  illustrate the ability of Hermitian �lters to
produce rich and interpretable behaviors.
• Null polarizing power η = . ¿e �ltering relation (3.15) becomes Y = KX
and thus Γy y = KΓxx . ¿e input is simply ampli�ed or attenuated and
polarization properties are not modi�ed.

• Maximal polarizing power η = . Borrowing the term from optics, the
Hermitian �lter becomes a polarizer. ¿e output is always fully polarized
Φy =  and its polarization axis is directly the diattenuation axis µy = µd. To see this rewrite the term µx − µdµx µd in

(3.17) as

µx − µdµx µd =  ⟨µx , µ⟩ µd .

Polarizers performaprojection of µx onto the
diattenuation axis µd . Properties Φy =  and
µy = µd follow directly from (3.16)–(3.17).

¿e gain G (3.19) quanti�es the ‘‘closeness’’ between µx and µd:

G = S,xK[ +Φx ⟨µx , µd⟩] . (3.23)

In particular, for the eigenpolarizations Z± of the �lter:
Y+ = KZ+ and Y− =  (3.24)

meaning that the output cancels out for a fully polarized signal with input
polarization axis µx = −µd (orthogonal polarization). ¿is e�ect is purely
geometric since the homogenous gain K does not need to be zero.

¿ese two simple cases illustrate that as soon as η >  the output polarization
properties of a Hermitian �lter result from the intertwining between input
polarization properties and diattenuation parameters.
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Output degree of polarization ¿e generic expression for Φy reads ¿is expression is obtained using that
(Φyµy) = −Φ

y and with

Φyµy =
ηµd +Φx[µx − ηµdµx µd]

 + η + ηΦx ⟨µx , µd⟩
,

see Eqs. (3.16)–(3.17).

Φy = ⎡⎢⎢⎢⎢⎣ −
( −Φ

x) (η − )( + η) + ηΦ
x ⟨µd , µx⟩ + η( + η)Φx ⟨µd , µx⟩

⎤⎥⎥⎥⎥⎦



. (3.25)

A straightforward check shows that Φy(η = ) = Φx and Φy(η = ) =  as
already discussed above. Eq. (3.25) also shows that Φy =  for a fully polarized
inputΦx = . It relates to the fact that Jones matrices are nondepolarizing , i.e. a Depolarizing linear media requires to intro-

duce Mueller calculus, see e.g. Gil and Os-
sikovski (2016). In short, Mueller calculus
models the linear relationship between in-
put and output Stokes parameters usingR×

matrices. It gives �ltering relations between
power spectral densities, but not directly be-
tween signals x(t) and y(t).

fully polarized input always remains fully polarized. Note that nondepolarizing
does not mean at all that the degree of polarization Φy cannot be less than
Φx for partially polarized inputs: this can be readily checked from (3.25). See
also Simon (1990) for a discussion of this in the context of optics. For an
unpolarized input Φx =  the output degree of polarization reads

Φy(Φx = ) = η
 + η , (3.26)

i.e. Φy depends directly from η. ¿is expression is particularly useful for the
spectral synthesis of bivariate signals from unpolarized wGn, see Section 3.3.1.

3.2.3 General form of LTI �lters

A generic LTI �lter results from a combination of a unitary and an Hermitian
�lter. Let µb , α, φ denote the parameters of the unitary �lter and letK , µd , η de- Subscripts ‘b’ and ‘d’ refer to ‘‘birefringence’’

and ‘‘diattenuation’’, respectively.note the parameters of the Hermitian �lter. Following the polar decomposition
(3.4) the generic LTI �ltering relation is

Y(ν) = eµb(ν) β(ν)
 K(ν) [X(ν) − η(ν)µd(ν)X(ν) j] e jφ(ν) . (3.27)

¿e output quaternion PSD is given by (dropping again ν for simplicity)

S(Γy y) = S,xK [ + η + ηΦx ⟨µd , µx⟩] (3.28)

V (Γy y) = S,xKeµb
β
 [ηµd +Φx[µx − ηµdµxµd]] e−µb β

 (3.29)

¿e scalar part of Γy y gives the total PSD. It only depends on the features of the
Hermitian �lter. ¿e vector part of Γy y carries the geometric and polarization
attributes of the output. ¿ey result from the application of the Hermitian
�lter on x followed by the unitary �lter. In particular, the generic LTI �ltering
relation (3.27) would describe a linear media that simultaneously exhibits two
very di�erent physical e�ects: birefringence (unitary �lter) and diattenuation
(Hermitian �lter). Fig. 3.1 summarizes this generic LTI �ltering relation for
the case µb = µd = µ.
Linear and time-invariance properties Eq. (3.27) describes the generic LTI
�ltering relation for bivariate signals. However, the term ‘linear’ should be
speci�ed since quaternion multiplication is noncommutative. Let x and x
denote two bivariate signals. Denote by y and y the corresponding outputs
resulting from the �ltering relation (3.27). ¿en clearly, if x = x + x then one
has y = y + y. It is straightforward to check that for any λ ∈ C j the input
xλ yields output yλ. Hence ‘linear’ should be understood as ‘right-C j-linear’.
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¿is directly shows that (3.27) is time-invariant. Indeed if y is the �lter response
to x, then for any τ ∈ R

x(t − τ) (3.27)Ð→ y(t − τ) since x(t − τ) QFT←→ X(ν)e− jπντ . (3.30)

¿e fact that (3.27) is not ‘quaternion-linear’ emphasizes that it induces geo-
metric operations on the input signal. ¿e only ‘quaternion-linear‘ �ltering
relations correspond to usual (gain-phase) univariate �lters:

Y(ν) = X(ν)K(ν)e jφ(ν) , (3.31)

i.e. when no geometric operation is performed (β = η =  in (3.27)). Note
�nally that (3.31) is the only case where the �ltering relation admits a simple
form as a convolution in time-domain. Namely, let g be the inverse QFT of
G(ν) = K(ν)e jφ(ν). ¿en the time-domain equivalent of (3.31) reads

y(t) = x ∗ g(t) , (3.32)

which is the usual convolution operation associated with univariate LTI �lters.
¿is relation does not hold in general for (3.27).

Unitary-Hermitian or Hermitian-Unitary? Eq. (3.27) is obtained following
the polar decomposition of matrices (3.4). However a matrixM ∈ C×

j can be
equivalently decomposed (Lancaster and Tismenetsky, 1985) asM = UH = LU,
where L is Hermitian positive semide�nite. ¿is means that the Hermitian
�ltering followed by unitary �ltering in (3.27) is somewhat arbitrary. Eq. (3.27)
could be rewritten in the reverse order. Diattenuation parameters require
however to be adapted so that the reverse decomposition corresponds to the
same �lter de�ned by (3.27).

Eigenvectors In general the �lter (3.27) does not admit orthogonal eigenpo-
larizations. It only arises when Hermitian and unitary �lters share the same
eigenvectors, i.e. when µb = µd. ¿en Hermitian and unitary �ltering opera-
tions commute. In optics such �lters are called homogeneous (Lu and Chipman,
1994) or normal (Gil and Ossikovski, 2016) since diattenuation and birefrin-
gence axes coincide. ¿ey usually represent the optical properties of bulk
media: a media that would mix birefringence and diattenuation at the in-
�nitesimal scale with µb ≠ µd has a priori no physical meaning (Pellat-�net,
1984).

¿e study of the eigenproperties of the case µb ≠ µd is out of the scope
of the present manuscript. ¿is topic has been widely studied in optics: it In particular µb ≠ µd can yield degenerate

�lters, with only one linearly independent
eigenpolarization (Gil and Ossikovski, 2016).

corresponds to inhomogeneous or non-normal Jones matrices, see e.g. Lu and
Chipman (1994), Sudha and Rao (2001) or Gil and Ossikovski (2016) and
references therein. As an example, a composite media with one diattenuation
(Hermitian) layer followed by a birefringent (unitary) layer would be described
by a �lter with µb ≠ µd.

3.3 Some applications of quaternion filters

3.3.1 Spectral synthesis by Hermitian �ltering

We propose a new simulation method for Gaussian stationary random bi-
variate signals by �ltering of bivariate white Gaussian noise. ¿is method
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is fast and approximate and extends a well-known simulation algorithm for
univariate signals (¿ompson, 1973; Percival, 1992) to the case of bivariate
random signals. It can also be seen as a special case of the algorithm proposed
by Chambers (1995) for multivariate Gaussian signals. However the present
algorithm provides an explicit control of the power and polarization features of
the simulated signal by exploiting the quaternion representation of LTI �lters.

Consider an unpolarized white Gaussian noisew(t). Its quaternion PSD is With slight abuse we consider w to be
continuous-time (CT), although CT white
Gaussian noise does not formally exist.

then Γww(ν) = σ , where σ  >  is the noise variance. Let x denote the signal
obtained by the Hermitian �ltering (3.15) of w. ¿en by Eqs-(3.16)–(3.17) the
quaternion PSD of x is

Γxx(ν) = σ K(ν)[ + η(ν)] [ + η(ν)
 + η(ν) µd(ν)] . (3.33)

Eq. (3.33) shows that any stationary Gaussian bivariate signal x with arbitrary
spectral density Γxx can be obtained by Hermitian �ltering of unpolarized
whiteGaussian noise. More precisely set Γ(ν) = S(ν)[+Φ(ν)µ(ν)] as the
target quaternion PSD. ¿e following choice of parameters for the Hermitian
�lter ensure that Γxx(ν) = Γ(ν) for any ν

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

µd(ν) = µ(ν)
η(ν) =  −√

 −Φ
y(ν)

Φy(ν) (Φy(ν) ≠ )
K(ν) = ( S,y(ν)

σ  ( + η(ν)))



(3.34)

and η(ν) =  when Φ(ν) = .
¿ese results give a straightforward procedure to simulate realizations of

the signal x(t). ¿e implementation of the discrete Hermitian �ltering relation
corresponding to (3.33)-(3.34) is numerically e�cient as it relies on FFTs only.
However just like the standard univariate method (¿ompson, 1973; Percival,
1992) this method is only approximate. ¿is means that the spectral properties
of the simulated sequence x[], x[],⋯, x[N] of length N will only approxi-
mately match those of Γ. Another downside of the approach is that x[] and
x[N] will be close in value due to the periodic nature of the DFT. Following
usual practice (Percival, 1992; Chambers, 1995), these e�ects can be mitigated
by simulating a sequence of sizeM > N and keeping only a subsample of size
N .

Example Figure 3.2a depicts a realization of a narrow-band stationary ran-
dom bivariate signal with constant polarization properties. ¿e simulation
is of length N =  and was obtained using aM = N length unpolarized
white noise sequence. ¿e signal is partially polarized Φx = . and exhibits
elliptical polarization axis. ¿e power is distributed in a Gaussian-shaped
fashion around normalized frequency ν = ., see Figure 3.2b for details.
Note that the instantaneous polarization state evolves with time. ¿is is a
feature of partial polarization for quasi-monochromatic signals with constant
polarization axis.
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Figure 3.2: (a) Partially elliptically polarized
narrow-band signal simulated using the spec-
tral synthesis method described in Section
3.3.1. ¿is signal is a reference for subsequent
illustrations. (b) Power spectral distribution
and polarization parameters used in (a). (c)
Reference signal in partially (Φw = .) ver-
tically polarized white noise with SNR = −
dB. (d) Output of the Wiener denoising �l-
ter described in Section 3.3.3. Dashed lines
indicate the original signal of (a).

3.3.2 Whitening and unpolarizing �lter

Given a bivariate signal x(t) with quaternion PSD Γxx(ν) is it possible to
design a �lter so that the output y(t) has the same second-order properties as
unpolarized white noise? Such �lter, when it exists, is called the unpolarizing
whitening �lter of x.

¿e output y(t) has required spectral density Γy y(ν) = σ  where σ  is the
noise variance. Since unitary �lters do not a�ect the degree of polarization, y
is necessarily obtained by Hermitian �ltering of x. Suppose that x is not fully
polarized nor unpolarized  < Φx(ν) <  for all frequencies. ¿en imposing
Φy(ν) =  in (3.25) is equivalent to

µd(ν) = −µx(ν) and η(ν) =  −√
 −Φ

x(ν)
Φx(ν) (3.35)

¿is arises from the fact that Φy is minimum for ⟨µx , µd⟩ = −, see (3.25). To
impose that Γy y(ν) = σ , the homogeneous gain K is set by plugging (3.35)
into (3.16). One �nds that

K(ν) = σ(S,x(ν)) 


Φx(ν)
[ −Φ

x(ν)] 
 [ −√

 −Φ
x(ν)] 


(3.36)

where we shall further require that S,x(ν) >  for all ν, which means that x
contains power for all frequencies. Remark that K is obtained by the product
of 2 terms in (3.36): a power term and a pure geometric term depending only
on the degree of polarization of x.
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Figure 3.3: Unpolarizing-whitening �lter of a
stationary Gaussian signal x with constant po-
larization properties (Φx(ν) = ., µx(ν) =
−−/(i+k)) and �rst-order spectral pro�le
S,x(ν) ∝ ( + ν/ν) . Here ν = . and
K(ν) is set thanks to (3.36) such that σ  = .

¿e unpolarizing whitening �lter only exists if two conditions are met: (i)
x has no fully polarized spectral component, i.e. Φx(ν) <  for all ν and (ii) x
exhibits power at all frequencies, i.e. S,x(ν) >  for all ν. ¿e �lter parameters
K(ν), η(ν) and µd(ν) are given by (3.35)–(3.36) when  < Φx(ν) < . For
frequencies such that Φx(ν) = , simply set η(ν) =  and K(ν) = σS−/,x . Fig.
3.3 illustrates the unpolarizing whitening �lter of a Gaussian signal x with
constant polarization properties and �rst-order spectral pro�le. ¿e output is
unpolarized white Gaussian noise with power adjusted to σ  = .
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3.3.3 Wiener �ltering

¿eWiener �lter produces a linear estimate x̂(t) from a signal of interest x(t)
givenmeasurements y(t). Its quaternion representation yields insightful inter- ¿is direct link with polarization parameters

is one the advantages of the quaternion rep-
resentation over the usual matrix representa-
tion.

pretations and a straightforward design in terms of polarization parameters.
We restrict our attention to the denoising case, i.e. where y(t) is of the form

y(t) = x(t) +w(t) (3.37)

where w(t) is bivariate noise supposed independent from x(t). All signals
are assumed to be zero-mean, second-order stationary with known spectral
densities. ¿eWiener �lter output x̂(t) is optimal in the sense that it solves
the minimum-mean-square-error (MMSE) problem

On account of second-order stationarity the
MSE error is independent from t.

min E{∣x̂(t) − x(t)∣} . (3.38)

Intuitively the Wiener �lter should behave like a polarizer when the signal
of interest x(t) is deterministic (hence fully polarized) and the noise w(t) is
unpolarized. ¿e output x̂ is constructed by the projection of every spectral
component of the measurements y along the polarization axis µx(ν) of the
signal of interest. Fortunately, this intuition is proven right by the generic
expression of the Wiener �lter.

Frequency-domain expression We omit frequency dependence for notational
convenience. See Appendix 3.D for the complete derivation of the Wiener
�lter. ¿eWiener denoising �lter is a Hermitian �lter : We use the explicit form (3.7) of Γy y(ν) =

Γxx(ν) + Γww(ν) to simplify notations:

Γy y(ν) = S,y(ν)[ +Φy(ν)µy(ν)]X̂ = S,x ( −ΦxΦy ⟨µx , µy⟩)
S,y[ −Φ

y]
⎡⎢⎢⎢⎣ Y − Φxµx −Φyµy

 −ΦxΦy ⟨µx , µy⟩Y j
⎤⎥⎥⎥⎦ . (3.39)

¿e homogeneous gain K(ν), the polarizing power η(ν) and the diattenua- See Proposition 3.2 for theHermitian �ltering
relation.tion axis µd(ν) of this Hermitian �lter can be readily identi�ed from (3.39).

Unpolarized noise case ¿e expression of the Wiener Filter (3.39) simpli�es
greatly when w(t) can be assumed unpolarized for every frequency. ¿en
Γww(ν) = σ (ν) ∈ R+ and the quaternion PSD of y is

Γy y(ν) = S,x(ν) + σ (ν)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
S,y(ν)

+ S,x(ν)Φx(ν)µx(ν)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
S,y(ν)Φ y(ν)µ y(ν)

(3.40)

¿e polarization axis is not a�ected by the noise: µy(ν) = µx(ν) for all ν.
Introduce the frequency-domain signal-to-noise ratio (SNR) α = S,x/σ . ¿e
degree of polarization of the measurement y is then

Φy(ν) = α(ν)
 + α(ν)Φx(ν). (3.41)

¿eWiener �lter (3.39) then simpli�es to Remark that for large SNR (α ≫ ),

X̂(ν) ∼ Y(ν) ∼ X(ν)

i.e. the Wiener �lter recovers directly the sig-
nal of interest x.

X̂ = α + α[ −Φ
x]

 + α + α[ −Φ
x] [Y − Φx

 + α[ −Φ
x] µxY j] . (3.42)

¿e diattenuation axis of the �lter is the polarization axis µx of the signal of
interest. Homogeneous gain and polarizing power depend on its degree of



90

polarization Φx and on frequency-domain SNR α. In particular, when x is
deterministic (hence totally polarized at all frequencies) then the Wiener �lter
reduces to

X̂(ν) = S,x(ν)
S,x(ν) + σ (ν) [Y(ν) − µx(ν)Y(ν) j] . (3.43)

Eq. (3.43) de�nes a polarizer and validates our initial intuition. Each spectral
component of y is projected along the polarization axis µx(ν).
Expression of the MMSE ¿e optimal MSE is εopt = E{∣x̂(t) − x(t)∣} with
x̂(t) given by (3.39). As explained in Appendix 3.D theMMSE can be rewritten
as a frequency domain integral

εopt = ∫ +∞
−∞ εopt(ν)dν (3.44)

where εopt(ν) is the MMSE per frequency:

εopt(ν) = S,x ⎛⎝ − S,x
S,y

 +Φ
x − ΦxΦy ⟨µx , µy⟩

 −Φ
y

⎞⎠ (3.45)

= S,x  −Φ
w + α[ −Φ

x]
 −Φ

w + α[ −Φ
x] + α[ −ΦxΦw ⟨µx , µw⟩] . (3.46)

Eqs (3.45)-(3.46) illustrate the dependence of the optimal error in terms of
polarization properties of the signal x, observation y or noise w. Fixing all
parameters excepted ⟨µx , µw⟩ in (3.46), the optimal error is minimum when
signal and noise exhibit orthogonal polarizations, i.e. when their polarization
axes are anti-aligned ⟨µx , µw⟩ = −. ¿e error is maximum when signal and
noise have same polarization ⟨µx , µw⟩ = . Given α, asymmetry between
minimum and maximum values is accentuated for strongly polarized signal
and noise (Φx , Φw ≃ ). For α ≫  (3.46) becomes εopt(ν) ≈ S,x(ν)/α(ν),
while for α ≪  one gets εopt(ν) ≈ S,x(ν), as expected. Fig. 3.4 displays this
behavior of the optimal MSE in two di�erent con�gurations. In particular, the
optimal MSE εopt is maximum for Φw = Φx and ⟨µx , µw⟩ = , i.e. when the
polarization properties of noise and signal coincide.
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Figure 3.4: Illustrations of the behavior of the
optimal MSE per frequency given by (3.45)–
(3.46) for S,x = . (top) evolution w.r.t.
alignment ⟨µx , µw⟩ and SNR α in the case
(Φx = , Φw = .) (bottom) evolution w.r.t.
alignment ⟨µx , µw⟩ and noise degree of po-
larization Φw in the case (Φx = ., α = ).
¿e red dot indicate the maximum value of
the optimal MSE.

Example Figs. 3.2c and 3.2d provide an example of Wiener �lter denoising.
¿e signal of interest x(t) is taken as the synthetized signal of Fig. 3.2a. It is
a partially elliptically polarized narrow-band signal whose spectral density
parameters are given in Fig. 3.2b. Measurements y(t) are constructed using
(3.37) with w(t) a partially vertically (Φw = ., µw = − j) polarized white
Gaussian noise. Noise variance is adjusted so that SNR = − dB. Fig. 3.2c
represents the measurements y(t). Noise level is larger on the vertical axis
because of the partial vertical polarization of w(t). Figure 3.2d shows the
output of theWiener �lter. ¿e reconstruction SNR is  log(∥x(t)∥/∥x̂(t)−
x(t)∥) = . dB, where ∥ ⋅ ∥ is the standard 2-norm. It illustrates the good
performances in recovering the original signal x(t).

3.3.4 Some decompositions of bivariate signals

Given a bivariate signal x(t) we search for its decompositions into 2 parts
xa(t) and xb(t) such that

x(t) = xa(t) + xb(t) . (3.47)
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¿e 2 parts xa(t) and xb(t) are bivariate signals with distinct spectral proper-
ties. ¿ey are obtained by linear time-invariant �ltering of x(t). ¿e search for
such decompositions is motivated by the possible physical interpretations of
decomposition (3.47): e.g. unpolarized - polarized parts, orthogonally polarized
parts or uncorrelated parts.

Unitary �lters do not modify the degree of polarization nor are able to
uncorrelate two signals: it is necessary to use a Hermitian �lter. ¿e �ltering
relations read

Xa(ν) = K(ν) [X(ν) − η(ν)µd(ν)X(ν) j] , (3.48)

Xb(ν) = X(ν) − Xa(ν)
= [ − K(ν)]X(ν) + η(ν)K(ν)µd(ν)X(ν) j. (3.49)

¿e second part xb(t) is simply such that (3.47) holds. ¿e choice of the gain
K(ν), polarizing power η(ν) and diattenuation axis µd(ν) rules the nature of
the decomposition (3.47).

Various �avors of unpolarized-polarized decompositions Widely mentioned
in optics (Brosseau, 1998; Born and Wolf, 1980), the decomposition of the
spectral density of a bivariate signal x(t) as the sum of unpolarized and fully
polarized spectral densities is ¿is decomposition was already introduced

in Section 2.3.2.

Γxx(ν) = [ −Φx(ν)]S,x(ν) +Φx(ν)S,x(ν)[ + µx(ν)]
= Γuxx(ν) + Γpxx(ν), (3.50)

where superscripts u and p stand respectively for unpolarized and polarized
parts. ¿e decomposition (3.50) is unique. It motivates the study of decom-
positions of the form (3.47) where xa(t) is fully polarized along µx(ν). In
addition we shall require that (i) xa(t) has spectral density Γpxx(ν) and (ii)
xb(t) is unpolarized for every frequency with spectral density Γuxx(ν); Unfor-
tunately no such LTI �lter performing exactly this decomposition exists. Each
requirement corresponds to a distinct �lter: only one requirement at a time
can be met.

¿e requirement for xa(t) to be fully polarized along µx(ν) imposes that
η(ν) =  and µd(ν) = µx(ν) for every ν. ¿en the choice of the gain K(ν)
permits to satisfy either condition (i) or (ii).

Table 3.1 summarizes expressions of the gain and spectral densities of xa(t)
and xb(t) for requirements (i) and (ii). We also give their cross-correlation
properties. To meet (i) the gain K(ν) is adjusted thanks to (3.16) such that
Γxa ,xa(ν) = Γpxx(ν). However xb(t) is partially polarized and components are
correlated. For (ii) starting from (3.49) and using (3.17) with µd(ν) = −µx(ν)
one computes the vector part of Γxb ,xb(ν). ¿en the gain K(ν) is obtained by
imposingΦb(ν) =  for every ν. Fortunately the corresponding expression for
K(ν) yields Γxb ,xb(ν) = Γuxx(ν). ¿e �rst component xa(t) is fully polarized
like x(t), but has weaker intensity than that of Γpxx(ν). Components are also
correlated.

¿is discussion answers an important and natural question: starting from
(3.50), is it possible to decompose by linear �ltering any bivariate signal into
uncorrelated unpolarized and polarized components? Unfortunately the an-
swer is negative. ¿e uncorrelatedness requirement leads to a very di�erent
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K(ν) Γxa ,xa(ν) Γxb ,xb(ν) correlation

(i)

¿ÁÁÀ Φx(ν)
( +Φx(ν)) S,x(ν)Φx(ν)[ + µx(ν)] κ(ν)S,x(ν) [ −Φ(ν)µx(ν)]

with κ(ν) = ( +Φx(ν) − (Φx(ν) + )K(ν))
Φ(ν) =  − Φx(ν) + [Φx(ν) + ]K(ν)

 +Φx(ν) − [Φx(ν) + ]K(ν)

correlated

(ii)  − Φx(ν)
Φx(ν) +  −√

 −Φ
x(ν) S,x(ν)K(ν)[ +Φx(ν)][ + µx(ν)] S,x(ν)[ −Φx(ν)] correlated

Table 3.1: Various �avors of unpolarized-
polarized parts decompositions. ¿e choice
of the gain K(ν) rules the nature of the de-
composition of a bivariate signal x into two
parts xa and xb such that x(t) = xa(t) +
xb(t). (Here µd(ν) = µx(ν) and η(ν) = .)

answer, as explained below. Nevertheless this hypothetical decomposition can
still be used as a synthesis tool, see e.g. the synthesis method of bivariate wGn
described in Section 2.3.4.

Orthogonal polarizations decomposition In many situations it is useful to
resolve bivariate signals into a pair of orthogonal fully polarized components,
e.g. linear horizontal and vertical polarization. ¿is decomposition can be gen-
eralized to any arbitrary polarization axis µ(ν), possibly frequency-dependent.
Note that for µ(ν) = ±i one obtains the decomposition of x(t) into counter-
clockwise and clockwise circular polarization. ¿is is precisely the rotary
components widely used in both signal processing and oceanographic commu-
nities, see e.g. Gonella (1972) or Walden (2013).

¿e two parts xa(t) and xb(t) are obtained by Hermitian �lters with re-
spective axis µ(ν) and −µ(ν). Since xa(t) and xb(t) are required to be fully
polarized this imposes that (3.48) and (3.49) de�nes polarizers. ¿en one has
directly η(ν) =  from (3.48). Eq. (3.48) constrains the value of the gain to
K(ν) = 

 . ¿e quaternion PSD of the two parts are then

Γxa xa(ν) = S,x(ν)


[ +Φx(ν) ⟨µx(ν), µ(ν)⟩] [ + µ(ν)] , (3.51)

Γxb xb(ν) = S,x(ν)


[ −Φx(ν) ⟨µx(ν), µ(ν)⟩] [ − µ(ν)] . (3.52)

Parts xa(t) and xb(t) are in general correlated with quaternion cross-spectral
power density given by

Γxa xb(ν) = Φx(ν)


[µx(ν)µ(ν) − µ(ν)µx(ν)] [ − µ(ν)] . (3.53)

Uncorrelated parts Another possibility is to impose xa(t) and xb(t) to be
uncorrelated. ¿is is expressed in the spectral domain by

∀ν, Γxa ,xb(ν) = Γxb ,xa(ν) =  . (3.54)

Suppose that η(ν) >  for all ν. Using the �lters expressions (3.48)–(3.49) a When η(ν) =  for all ν there is no geomet-
ric interaction. Uncorrelatedness is then ex-
pressed as in the usual univariate case:

∀ν, Γxa ,xb (ν) = [ − K(ν)]K(ν)Γxx(ν) = 

which is immediately satis�ed if the gain
K(ν) is either 1 or 0 for all frequencies.

direct calculation shows that (3.54) implies that

∀ν, K(ν) = 


and η(ν) =  . (3.55)

¿ese are the same parameters as for the orthogonal polarization decompo-
sition: Γxa ,xb(ν) is given by (3.53). If x(t) is unpolarized at each frequency,
then any choice of diattenuation axis µ will provide xa(t) and xb(t) uncorre-
lated. Otherwise, it is easy to check that (3.53) is identically zero if and only
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Figure 3.5: ¿ree di�erent decompositions of
the bivariate signal represented in a. See text
for details.if µd(ν) = ±µx(ν) for all ν. ¿is means that xa(t) and xb(t) are the eigenpo-

larizations of x(t): fully polarized signals with orthogonal polarizations axes±µx(ν). ¿eir respective spectral densities3 are for µd(ν) = µx(ν) 3. ¿e choice of µd(ν) = −µx(ν) simply
swaps the role of xa and xb .

Γxa xa(ν) = S,x(ν)


[ +Φx(ν)][ + µx(ν)] (3.56)

Γxb xb(ν) = S,x(ν)


[ −Φx(ν)][ − µx(ν)] (3.57)

¿e power of each part is balanced by the degree of polarization Φx(ν).
Illustrations Fig. 3.5 illustrates the three kind of decompositions presented
in this section. Fig. 3.5a depicts the signal to be decomposed – which has been
previously studied in Fig. 3.2. Its spectral properties are given in Fig. 3.2b. Fig.
3.5c and 3.5d represent the unpolarized-polarized parts decomposition of x(t).
It corresponds to case (ii) in Table 3.1. Note that the two parts are correlated.
Fig. 3.5e and 3.5f illustrate the decomposition of x(t) into orthogonal circu-
larly polarized components. ¿is is precisely the celebrated rotary component
decomposition. ¿ese two components are also correlated. Fig. 3.5g and 3.5h
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Figure 3.6: Illustration of shear wave split-
ting. (a) the elliptically polarized impulse in-
put. (b) corresponding unitary �lter output
for µb = j. (c) corresponding unitary �lter
output for µb = j. ¿e two �lters have com-
mon birefringence angle β(ν) = πντβ . ¿e
interaction between a polarized impulse sig-
nal and a birefringent media exhibiting �rst-
order PMD causes the output signal to sepa-
rate into the fast and slow eigenpolarizations
of the �lter.

�nally give the uncorrelated parts decomposition of x(t). ¿e two parts are
orthogonally polarized, along µx and −µx , respectively.

3.3.5 Modeling Polarization Mode Dispersion

So far only applications involving Hermitian �lters have been presented. As
a prospect, we explore now the potential of unitary �lters to model polar-
ization mode dispersion (PMD). ¿is linear phenomenon is of fundamental
importance in many �elds of application such as geophysical monitoring or
�ber telecommunications. PMD appears when birefringence is a function
of the frequency: variations of birefringence angle β(ν) and birefringence
axis µ(ν) introduce speci�c and intriguing e�ects. We review two popular
phenomenons. ¿e �rst is shear wave splitting – one manifestation of PMD in
geophysical sciences, see e.g. Silver and Chan (1991), Silver and Savage (1994),
and Wolfe and Silver (1998). ¿e second is pulse distortion, which arises in
optical telecommunications when the optical �ber is subject to PMD, see e.g.
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Poole and Wagner (1986), Karlsson (1998), Gordon and Kogelnik (2000), and
Damask (2004).

¿ese two examples illustrate the potential of the approach to model and
understand distinctive physical e�ects relevant to bivariate signals. More
importantly, together with adequate identi�cation methods, the proposed
framework would allow to extract meaningful information about a material
structure, using e.g. measurements exhibit shear-wave splitting. It would also
provide a complete toolbox for the design of compensators of PMD-induced
distortion in optical �bers. One can expect to reduce e.g. the impact of PMD
on the transmission rate.

Shear wave splitting We consider the propagation of a narrow-band polarized
pulse x(t) through birefringent media. ¿e e�ects of birefringent media onto
the signal can be modeled by a unitary �lter. Let x(t) be de�ned by

x(t) = ProjCi
{a(t)e iθ e−k χe jπν t} (3.58)

where a(t) is the pulse envelope, θ and χ de�ne the signal polarization state
and ν is the mean frequency of the pulse. Consider a unitary �lter with
parameters β(ν), µb(ν) and φ(ν). ¿e phase delay is related to the mean time
τ of propagation in the media such that φ(ν) = −πντ. ¿e simplest form of
PMD is �rst order PMD:

β(ν) = πντβ , ∀ν >  (3.59)

and with constant birefringence axis µb(ν) = µb for positive frequencies. To
give an explicit expression for the output y(t) of the �lter, we �rst decompose
x(t) into orthogonal polarizations de�ned by the eigenpolarizations of the
�lter µb and −µb:

x(t) = xµb(t) + x−µb(t) . (3.60)

¿en, by the eigenpolarization properties (3.13)–(3.14) of the unitary �lter

Y(ν) = Xµb(ν)e− jπν(τ− τβ
 ) + X−µb(ν)e− jπν(τ+ τβ

 ) , (3.61)

so that the output y(t) reads explicitely
y(t) = xµb (t − τ + τβ


) + x−µb (t − τ − τβ


) . (3.62)

Eq. (3.62) shows that the output y is the superposition of the two orthogonally
polarized parts of x with di�erent delays. If τβ is su�ciently large compared
to the support of the signal (controled by the envelope a(t)) one will observe
polarization splitting or shear-wave splitting: orthogonally polarized compo-
nents corresponding to eigenpolarizations of the �lter will be ‘‘separated’’ by
the unitary �lter.

Fig. 3.6 illustrates this phenomenon for two di�erent choices of the bire-
fringence axis µb. Fig. 3.6a shows the elliptically polarized input signal. Fig.
3.6b displays the corresponding output for µb = j, i.e. the fast and slow eigen-
polarizations are linear horizontal polarization and linear vertical polarization.
Fig. 3.6c depicts the corresponding output for µb = i, i.e. the fast and slow
eigenpolarizations are counter-clockwise circular polarization and clockwise
circular polarization. In both cases one observes a mean delay τ and more
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Figure 3.7: Illustration of pulse distortion in-
duced by PMD in single-mode optical �bers.
See text for details.importantly, a splitting of the input signal into the two eigenpolarizations of the

�lter. ¿e separation between these two orthogonally polarized components is
controlled by τβ : the larger τβ is, the larger the separation. ¿ese two cases
con�rm the expression (3.62) of the output y(t) for �rst-order PMD.

Pulse distortion in single-mode optical �bers As another illustration of the
critical importance of PMD, we consider optical pulse transmission in single-
mode optical �bers. PMD in optical �bers can arise as a result of stress-induced
birefringence (Poole and Wagner, 1986; Damask, 2004). It causes pulse dis-
tortion leading to many impairments, such as transmission rate reduction
(Francia et al., 1998; Gordon and Kogelnik, 2000).

Fig. 3.7a and 3.7b represent transmitted pulse trains (blue lines) along fast
and slow eigenpolarizations, respectively. Green dashed lines indicate the
initial pulse train. Only envelopes are represented for simplicity. ¿e �lter
exhibits �rst-order PMD with birefringence axis µ = j. Note that value of τα
in optical �bers is typically much smaller than in shear wave splitting. Fig.
3.7c depicts the distorted pulse train obtained when the input polarization is
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elliptic, i.e. is not aligned with one of the eigenpolarizations of the �lter. We
observe that, due to PMD, the output pulses tends to broaden and are distorted.
¿is e�ect is accentuated for short pulses.

Fig. 3.7d illustrates the e�ects of the concatenation of two optical �ber
segments that exhibits �rst order PMD – but with nonaligned eigenpolar-
izations. ¿is is a typical case in optical telecommunications. It is known
(Damask, 2004) that such concatenation can lead to higher-order PMD e�ects,
increasing distortion (Damask, 2004). ¿e pulse train has the same elliptical
polarization as in Fig. 3.7c. It passes through a concatenation of two unitary
�lters with respective axis µ = j (fast axis: linear horizontal polarization) and
µ = i (fast axis: counter- clockwise circular polarization). Both �lters have
the same value for τα . Remarkably this simple concatenation already yields
dramatic distortion of the input pulse train.

3.4 Conclusion

¿is chapter introduced a complete and powerful description of the linear
time-invariant �ltering of bivariate signals in the quaternion Fourier transform
framework. Unlike standard approaches based on linear algebra, it features a
direct description of �ltering in terms of physical quantities borrowed from
polarization optics. Building on an usual decomposition from polarization
optics, a generic LTI �lter is described as a combination of two distinct �lters:
a unitary and a Hermitian one. ¿e detailed study of these two classes of
�lters enables strong physical interpretations in terms of birefringence and
diattenuation e�ects, as well as a powerful geometric handling of linear �lter-
ing. ¿e proposed formalism reveals the speci�city of bivariate signals and is
crucial to the physical understanding of even basic operations such as linear
�ltering. ¿e natural and elegant expression of each �lter directly in terms of
its eigenproperties and relevant physical parameters simpli�es modeling, de-
sign, calculations and interpretations. It makes straightforward many standard
operations that would be otherwise complicated to obtain using conventional
approaches presented in Section 0.2.3 and Sections 0.2.4, e.g. widely linear
�ltering. ¿e e�cient numerical implementation of the QFT (based on 2 FFTs)
guarantees practical and computationally fast �ltering relations.

Several fundamental applications of signal processing demonstrate the gen-
erality and usefulness of the approach. A spectral synthesis method to simulate
any Gaussian stationary random bivariate signal with desired spectral and
polarization properties has been presented. It has been shown that the Wiener
denoising problem can be e�ciently designed in the quaternion domain, lead-
ing to new interpretations for the bivariate case. Original decompositions
of bivariate signals into two parts with speci�c properties (orthogonal polar-
izations, unpolarized and polarized, uncorrelated) have been studied. ¿e
potential of unitary �lters to model physical e�ects relevant to optical �ber
telecommunications, e.g. polarization mode dispersion has been illustrated.

¿is complete description of linear �ltering theory paves the way to further
developments in estimation, detection simulation andmodeling of bivariate sig-
nals. It has been accepted for publication in an international journal (Flamant,
Chainais, and Le Bihan, 2018a) and has been presented at an international
conference (Flamant, Chainais, and Le Bihan, 2018b).
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Appendices

3.a Output-input cross-spectral properties

Let x(t) and y(t) denote the input and output of a LTI �lter, respectively.
Suppose that both x and y are second-order stationary and harmonizable, so
that their quaternion-valued spectral representation is given by¿eorem 2.1.
¿e cross-spectral properties between y and x are encoded by the quaternion
cross-spectral power density Γyx de�ned Section 2.2.4. We give an explicit ex-
pression for Γyx for unitary and Hermitian �lters. ¿ese results are of practical
interest for the identi�cation of �lter parameters as discussed in Section 3.B.

Unitary �lters ¿e unitary �ltering relation (3.8) becomes for harmonizable
signals

dY(ν) = eµb(ν) β(ν)
 dX(ν)e jφ(ν) (3.63)

¿en by de�nition of Γyx , see Eq. (2.29) one gets We drop frequency dependence for nota-
tional convenience.

Γyx = E{dYdX} + E{dY jdX} (3.64)
(3.63)= eµb

β
 E{dXe jφdX} + eµb β

 E{dXe jφ jdX} (3.65)

= eµb β
 [cosφ (E{∣dX∣} + E{∣dX jdX})

− sinφ (E{∣dX∣} − E{∣dX jdX})] (3.66)

which yields the �nal result in compact form:

Γyx = eµb β
 (cosφΓxx − sinφΓxx) . (3.67)

Hermitian �lters We proceed as above. ¿e Hermitian �ltering relation (3.15)
becomes for harmonizable signals

dY(ν) = K(ν) [dX(ν) − η(ν)µd(ν)dX(ν) j] (3.68)

Dropping again frequency dependence for convenience, the quaternion cross-
spectral power density Γyx reads

Γyx = E{dYdX} + E{dY jdX} (3.69)
(3.68)= K [E{∣dX∣} − ηµdE{dX jdX} + E{dX jdX} + ηµdE{∣dX∣}]

(3.70)

which gives the �nal result

Γyx = K [Γxx + ηµdΓxx] . (3.71)

3.b Filter identification using unpolarized white Gaussian
noise

We now discuss a practical identi�cation method which uses the cross-spectral
properties between the output y and input x when the input is unpolarized
white Gaussian noise. ¿e method uses the quaternion cross-spectral power
density expressions for unitary and Hermitian �lters given in Appendix 3.A.
Let x be an unpolarized bivariate white Gaussian noise. Its quaternion PSD is
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Γxx(ν) = σ  where σ  is the noise variance. Plugging Γxx into (3.67) one �nds
for the unitary �lter

Γyx(ν) = σ √ sin [π

− φ(ν)] eµb(ν) β(ν)

 . (3.72)

¿e quaternion polar form of (3.72) gives directly access to the parameters of
the �lter: µb , β are given by the axis and angle of Γyx and φ is related to the
modulus of Γyx like

∣Γyx(ν)∣ = σ √ ∣sin [π

− φ(ν)]∣ . (3.73)

¿e phase φ(ν) is not uniquely de�ned. ¿is minor technical issue can be
solved by imposing continuity constraints on �lter parameters using that (i)
e.g. sign changes of φ(ν) can be compensated by phase unwrapping of β(ν)
into φ(ν) and (ii) using the fact that φ() =  on account of the symmetry
φ(−ν) = −φ(ν), see Proposition 3.1.

ForHermitian �lters, the identi�cation is straightforward. Inserting Γxx(ν) =
σ  in (3.71) one �nds that

Γyx(ν) = σ K(ν) [ + η(ν)µd(ν)] . (3.74)

Filters parameters are then obtained in cascade by relations

K(ν) = 
σ 
S(Γyx(ν)) (3.75)

η(ν) = 
σ K(ν) ∣V(Γyx(ν))∣ (3.76)

µd(ν) = 
σ K(ν)η(ν)V(Γyx(ν)) (3.77)

Note that µd(ν) is not de�ned when η(ν) =  or K(ν) = . Similarly, η(ν) is
unde�ned for K(ν) = .

3.c Linear algebra and quaternion equivalence

3.C.1 Matrix-vector and quaternion operations

Eq. (3.1) shows that quaternions can be represented as complex C j-vectors.
Let X = [X , X]T and Y = [Y ,Y]T be complex C j-vectors corresponding to
quaternions X = X + iX and Y = Y + iY. ¿emost generic linear transform
of C

j is given by the matrix-vector relation Y =MX, whereM ∈ C j
× is an

arbitrary 2-by-2 complex matrix.
¿e corresponding relation between quaternions Y and X is obtained by

writing explicitly the matrix-vector relation

(Y
Y

) = (a b
c d

)(X

X
) = (aX + bX

cX + dX
) (3.78)

where a, b, c, d ∈ C j . Using (3.1) and that for any q = q + iq ∈ H, q , q ∈ C j

one has q = (q + q j)/ and iq = (q − q j)/:
Y = Y + iY = aX + bX + i (cX + dX)
= 

(a − bi + ic − id i)X

− 

(a + bi + ic + id i) jX j. (3.79)
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Eq. (3.79) is the quaternion domain representation of a generic linear transform
of vectors of C

j .

3.C.2 Unitary transforms

Let U ∈ U() ⊂ C j
×, i.e. such that UU∗ = U∗U = I. Remark that U =

Ũdet(U) where Ũ ∈ SU() and detU = exp( jφ) ∈ C j .
Using notations from (3.78), the matrix Ũ is characterized by d = a, c = −b

and ∣a∣ + ∣b∣ = . ¿us (3.79) simpli�es for Ũ to

Y = (a − bi)X = exp(µbβ/)X . (3.80)

Since ∣a∣ + ∣b∣ = , a − bi is a unit quaternion which can be reparameterized
in polar form by its axis µb and angle β such that

µb = −iRe b + jIm ja + kIm jb∣ − iRe b + jIm ja + kIm jb∣ , (3.81)

β =  arccosRe a (3.82)

Back to U ∈ U(), remark that
Y = UX = Ũ [Xe jφ

Xe jφ
] , (3.83)

so that replacing X by the quaternion Xe jφ in (3.80) yields,

For U ∈ U(), Y = UX⇐⇒ Y = eµb β
 Xe jφ . (3.84)

3.C.3 Hermitian transforms

Let H be Hermitian, i.e. such that H† = H. Using notations from (3.78) one
has a, d ∈ R and c = −b ∈ C j . Positive semide�niteness is given by Sylvester
Criterion: a ≥  ad − ∣b∣ ≥ , which also implies that d ≥ . Eq. (3.79)
becomes

Y = 

(a + d)X − 


(bk + (a − d) j)X j (3.85)

which can be reparameterized such as

K = a + d


∈ R+ (3.86)

µd = (a − d) j + bk
[(a − d) + ∣b∣]/ , µ = − (3.87)

η = [(a − d) + ∣b∣]/
a + d ∈ [, ] (3.88)

Respective domains of K , µd , η ensure that the change of variable de�nes a
valid one-to-one mapping. Finally, the input-output relation reads

Y = K (X − ηµdX j) . (3.89)

Parameters K and η can be expressed in terms of eigenvalues λ , λ (λ ≥ λ ≥
) of the matrixM:

K = λ + λ


η = λ − λ
λ + λ . (3.90)
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3.d Wiener filter derivation

We keep notations from Section 3.3.3. Let y(t), x̂(t), x(t) denote C
j-vector

representations of quaternion-valued signals y(t), x̂(t) and x(t). Remark that
(3.38) is equivalent to its vector form:

min E{∥x̂(t) − x(t)∥} , (3.91)

where ∥ ⋅ ∥ is the Euclidean norm of C
j . ¿e solution to (3.91) in the Fourier

domain is well known, see e.g. Schreier and Scharf (2010):

X̂(ν) = Pxy(ν)P−yy(ν)Y(ν) (3.92)

wherePxy(ν),Pyy(ν) are the usual (cross-) spectral densitymatrices of x(t), y(t),
respectively. ¿eWiener �lter for the denoising problem (3.37) is

X̂(ν) = Pxx(ν)P−yy(ν)Y(ν) (3.93)

Eq. (3.93) shows that X̂(ν) is obtained from Y(ν) by 2 successive Hermitian
�lters, since spectral density matrices are Hermitian – and so are their sum
and inverse. Introducing an intermediate variable Z one gets

Z(ν) = P−yy(ν)Y(ν) (3.94)

X̂(ν) = Pxx(ν)Z(ν) (3.95)

Quaternions equivalents are readily obtained using (3.79) and de�nitions
of matrix spectral densities in terms of Stokes parameters S i , i = , , ,  (see
Eqs. (2.38)–(2.41))

Z(ν) =  [( −Φ
y(ν))S,y(ν)]−

× (Y(ν) +Φy(ν)µy(ν)Y(ν) j) (3.96)

X̂(ν) = −S,x(ν) (Z(ν) − µx(ν)Φx(ν)Z(ν) j) (3.97)

since Stokes parameters and polarization axis are related like SΦµ = iS+ jS+
kS, see Section 2.3.1. Plugging (3.96) into (3.97) and reorganizing terms yields
to the general Wiener �lter expression (3.39). To obtain the error expression
remark that by¿eorem 2.2

ε = ∫ ∞
−∞ S(Γee(ν))dν (3.98)

where e(t) = x̂(t) − x(t). Using the quaternion power spectral density def-
inition (2.20) together with the Wiener �lter expression (3.39) one gets the
optimal error expression (3.45) by developing (3.98). To obtain (3.46) start by
writing explicitly Γy y(ν) = Γxx(ν)+Γww(ν) such that (ν-dependence omitted):

Γy y = S,x + S,w + S,xΦxµx + S,wΦwµw (3.99)

= S,y[ +Φyµy], (3.100)

where, using α = S,x/S,w the frequency domain SNR:
S,y = S,x + S,w (3.101)

Φyµy = α
 + αΦxµx + 

α + Φwµw . (3.102)

Plugging (3.101) and (3.102) into (3.45) yields (3.46).
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bivariate signals. It extends usual time-frequency notions – such as the analytic
signal, spectrograms or scalograms – to the case of bivariate signals. ¿ese
novel tools are tailored to the analysis of the instantaneous features of bivariate
signals and provide clear and meaningful interpretations. Usual practice from
time-frequency analysis directly applies and the implementation is numerically
e�cient.

We focus on deterministic signals. Recall that from Chapter 2, deterministic
signals are interpreted as fully polarized bivariate signals. ¿e extension of
time-frequency analysis to the case of random and thus partially polarized
signals is le for future work.

Section 4.1 develops a bivariate analogue of the analytic signal called the
quaternion embedding of a bivariate signal. ¿is quaternion-valued signal has
a one-to-one correspondence with the original bivariate signal. Its spectrum is
supported on positive-frequencies only. Its de�nition relies on the i-Hermitian
symmetry (1.52) of the QFT of Ci-valued signals. It provides a unique way to
de�ne instantaneous features for bivariate signals: besides usual instantaneous
amplitude and phase parameters, the instantaneous orientation and ellipticity
parameters are also introduced. ¿ese two extra parameters are speci�c to the
setting of bivariate signals: they describe the instantaneous polarization state
of the signal. Our analysis yields a natural bivariate or polarized amplitude
modulated - frequency modulated (AM-FM) model, which can serve as a
elementary block for the description of non-stationary bivariate signals.

Section 4.2 overcomes the limitations of the quaternion embedding ap-
proach by introducing two time-frequency-polarization representations. ¿ese
representations are based on a quaternion short-term Fourier transform (Q-
STFT) and a quaternion continuous wavelet transform (Q-CWT) respectively.
We de�ne the energy spectrogram (resp. scalogram) which is interpreted as
an usual time-frequency energy density. We also de�ne the polarization spec-
trogram (resp. scalogram), a novel quantity that reveals the time-frequency-
polarization features of bivariate signals. Two fundamental theorems for the
Q-STFT andQ-CWT guarantee the invertibility and interpretation as densities
of such quantities.

Section 4.3 explores further the notion of ridges of the Q-STFT and the
Q-CWT using an asymptotic analysis. Loosely speaking we show that the local
maxima of the energy spectrogram and energy scalogram concentrate around
lines of instantaneous frequency.

Section 4.4 provides a starting point towards the generic time-frequency-
polarization representation of bivariate signals. We �rst introduce the quater-
nion Wigner-Ville distribution, a bilinear time-frequency-polarization repre-
sentation which perfectly localizes polarized linear chirps. Its properties are
studied. ¿en a general class of bilinear time-frequency-polarization represen-
tations is introduced. We adopt a parameterization close to the usual Cohen
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class of bilinear time-frequency representations. ¿is broad class of solutions
allows to design new and �exible time-frequency-polarization representations.

Section 4.5 �nally performs a time-frequency-polarization analysis on a
real-data example from geophysics.

¿e material in Section 4.1 and Section 4.2 has been published in an inter-
national journal (Flamant, Le Bihan, and Chainais, 2017e). Some parts were
presented at an international conference (Flamant, Le Bihan, and Chainais,
2017b) and at national conference (Flamant, Le Bihan, and Chainais, 2017d).
¿e application to seismic data was also developed in Flamant, Le Bihan, and
Chainais (2017e):

N J. Flamant, N. Le Bihan, and P. Chainais. 2017e. “Time-frequency analysis of
bivariate signals.” In Press, Applied and Computational Harmonic Analysis.
doi:10.1016/j.acha.2017.05.007

� J. Flamant, N. Le Bihan, and P. Chainais. 2017b. “Polarization spectrogram
of bivariate signals.” In IEEE International Conference on Acoustics, Speech,
and Signal Processing (ICASSP), 2017, New Orleans, USA

� J. Flamant, N. Le Bihan, and P. Chainais. 2017d. “Spectrogramme de polari-
sation pour l’analyse des signaux bivariés.” In GRETSI 2017. Juan-les-Pins,
France

¿e de�nition of the quaternion Wigner-Ville transform (Section 4.4.1) and
the original construction of the class of bilinear time-frequency-polarization
representations (Section 4.4.2) constitute prospects and have not yet been
published.

4.1 Quaternion embedding of bivariate signals

For simple real-valued signals, a natural and interpretable model is x(t) =
a(t) cosφ(t) where a(t) ≥  is the instantaneous amplitude and φ(t) is the
instantaneous phase (Cohen, 1995; Flandrin, 1998). ¿is amplitude-modulation
and frequency-modulation (AM-FM) model is the very �rst building block
of time-frequency analysis. Superposition of AM-FM components are widely
used, e.g. to model audio or speech signals (Dimitriadis, Maragos, and Potami-
anos, 2005).

Given a real-valued signal x(t), a unique pair of instantaneous amplitude
a(t) and instantaneous phase φ(t) is obtained by considering the analytic
signal of x(t) (Gabor, 1946; Ville, 1948). ¿e complex-valued analytic signal
enables a one-to-one correspondence between x(t) and the canonical pair[a(t), φ(t)]. It is obtained by suppressing negative frequencies from the spec-
trum (Boashash, 1992; Picinbono, 1997). ¿is operation is motivated by the
Hermitian symmetry of the Fourier transform of real signals: the negative fre-
quencies spectrum carries no additional information with respect to positive
ones.

Just like univariate or real-valued signals are associated with their complex-
valued analytic signal representation, bivariate or Ci-valued signals can be
associated with their quaternion embedding representation, namely

bivariate signal x(t)
x ∶ R→ Ci

←→ quaternion embedding x+(t)
x+ ∶ R→ H

(4.1)

http://dx.doi.org/10.1016/j.acha.2017.05.007
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¿is one-to-one mapping relies on the desirable properties of the quaternion
Fourier transform of bivariate signals. ¿e quaternion nature of x+(t) provides
a straightforward identi�cation of meaningful instantaneous parameters. It
also generalizes the AM-FMmodel to the bivariate case.

¿e idea of associating a quaternion-valued signal to a complex or bivariate
signal roots in the work of Le Bihan, Sangwine, and Ell (2014). ¿ey introduce
the formal construction of the quaternion embedding by suppressing the
negative frequencies from the spectrum.. ¿ey obtain instantaneous attributes ¿e quaternion embedding is called the hy-

percomplex representation of a complex signal
in Le Bihan, Sangwine, and Ell (2014)

using the polar Cayley-Dickson form of quaternions (Sangwine and Le Bihan,
2010). It yields a canonical pair [a(t), φ(t)], with a(t) and φ(t) complex-
valued functions. While it is possible to interpret a(t) as the instantaneous
complex amplitude, the meaning of the complex instantaneous phase φ(t) is
not clear. Le Bihan, Sangwine, and Ell (2014) restrict φ(t) to be real, which
prevents from considering generic bivariate signals.

We �rst review the construction of the quaternion embedding of a bivariate
signal. Using the Euler polar form (1.18), we obtain meaningful instantaneous
parameters for bivariate signals. ¿e proposed approach solves previous issues
of interpretability.

4.1.1 De�nition

Let x ∶ R→ Ci an arbitrary bivariate signal. Its quaternion Fourier transform
satis�es the i-Hermitian symmetry

X(−ν) = −iX(ν)i . (4.2)

It shows that the negative frequencies of the quaternion-valued spectrum of
x(t) do not carry supplementary information to positive ones. ¿is motivates
the �rst de�nition 4.1 of the quaternion embedding x+(t) of x(t) below. We choose to call x+(t) the quaternion em-

bedding of x(t). We avoid terms such as
quaternion analytic or hyperanalytic as the
construction of x+(t) does not involve any re-
sult on analytic functions of quaternion vari-
ables.

Definition . (Quaternion embedding of bivariate signals). Let x ∶ R → Ci a bivariate
signal. Its quaternion embedding x+(t) is de�ned as

x+(t) ≜ ∫ +∞


X(ν)e jπνtdν (4.3)

where X ∶ R→ H is the quaternion Fourier transform of x.

¿e quaternion embedding of a bivariate signal has a one-sided spectrum
and for positive frequencies ν ≥ , x+(t) and x(t) share the same frequency
content. De�ne the Hardy space on the real line H(R;H)

H(R;H) ≜ {x ∈ L(R;H) ∣ X(ν) =  for all ν < } . (4.4)

By construction for a bivariate signal x ∈ L(R;Ci), its quaternion embed-
ding x+(t) belongs to H(R;H). ¿e quaternion embedding representation
establishes a one-to-one mapping between L(R;Ci) and H(R;H).

Alternatively, the quaternion embedding x+(t) can be de�ned in the time
domain thanks to Proposition 4.1.
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Proposition . (Time-domain expression). Let x ∶ R→ Ci a bivariate signal. Its quater-
nion embedding x+(t) de�ned by (4.3) reads

x+(t) = x(t) +H{x}(t) j (4.5)

whereH{⋅} denotes the Hilbert transform
H{x}(t) ≜ 

π
p.v.∫ +∞

−∞
x(τ)
t − τ dτ . (4.6)

Proof. We show that (4.5) and (4.3) are identical de�nitions. Let x(t) = u(t)+
iv(t) be a bivariate signal, with u and v real signals. Denote symbolically byF the quaternion Fourier transform. ¿en one has Sign function

sign(ν) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

 ν > 
 ν = 
− ν < 

F{H{u}}(ν) = −sign(ν)U(ν) j (4.7)

F{H{v}}(ν) = −sign(ν)V(ν) j (4.8)

By linearity of the Hilbert transform,H{x}(t) =H{u}(t)+ iH{v}(t) so that
F{H{x}}(ν) = −sign(ν) (U(ν) + iV(ν)) j = −sign(ν)X(ν) j (4.9)

and �nally the quaternion Fourier transform of (4.5) reads Heaviside unit step function

U(ν) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

 ν > 
/ ν = 
 ν < 

X+(ν) = ( + sign(ν))X(ν) = U(ν)X(ν). (4.10)

Taking the inverse quaternion Fourier transform of (4.10) yields (4.3) and
concludes the proof.

Eq. (4.5) shows that the quaternion embedding x+(t) is obtained by adding
two components in quadrature to x(t), along the remaining imaginary axes j
and k. One also recovers the original signal x(t) by projection of its quaternion
embedding x+(t) onto Ci

x(t) = ProjCi
{x+(t)}. (4.11)

¿is shows that the quaternion embedding x+(t) for bivariate signals plays
the same role as the usual analytic signal for univariate or real signals.

4.1.2 Instantaneous parameters

Canonical quadruplet One can associate a unique canonical pair [a(t), φ(t)]
to any real signal using the polar form of its analytic signal. Similarly one can as-
sociate to any bivariate signal x(t) a unique canonical quadruplet [a(t), θ(t), χ(t), φ(t)]
thanks to the Euler polar form (1.18) of its quaternion embedding x+(t):

x+(t) = a(t)e iθ(t)e−k χ(t)e jφ(t) . (4.12)

Using (4.11) one obtains the bivariate AM-FMmodel of x(t)
x(t) = a(t)e iθ(t) [cos χ(t) cosφ(t) + i sin χ(t) sinφ(t)] (4.13)

¿e canonical quadruplet of x(t) consists of four real-valued functions. ¿ese
instantaneous parameters can be meaningfully interpreted when x(t) is a
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narrow-band bivariate signal. Broadly speaking, this means that φ(t) varies
much more rapidly than the other canonical quadruplet components, that is

∣φ′(t)∣ ≫ ∣χ′(t)∣, ∣θ′(t)∣, ∣a′(t)/a(t)∣ . (4.14)

Under this assumption (4.13) describes a bivariate signal which exhibits locally
an elliptical trajectory in theu−v plane. It extends themonochromatic bivariate
signal model (1.57) to time-dependent ellipse parameters. ¿e quantity a(t)
de�nes the instantaneous amplitude of x(t). ¿e instantaneous orientation is
given by θ(t) and the instantaneous ellipticity is given by χ(t). ¿e quantity
φ(t) is called the instantaneous phase of x(t), and its time-derivative φ′(t)
gives the instantaneous frequency.

Given a quadruplet [a(t), θ(t), χ(t), φ(t)], it is natural to ask under which
conditions it corresponds to a canonical quadruplet. ¿at is, under which
conditions the quaternion signal constructed from this quadruplet forms a
quaternion embedding? Appendix 4.A discusses this important point. In
particular it speci�es requirement (4.14) by proving a Bedrosian-like theorem
for the quaternion embedding.

Figure 4.1: Trace of a bivariate signal with
slowly evolving orientation and constant el-
lipticity.

Figure 4.2: Trace of a bivariate signal with
slowly evolving ellipticity and constant orien-
tation.

Instantaneous Stokes parameters ¿e instantaneous ellipse parameters a(t),
θ(t) and χ(t) describe the instantaneous polarization state of the bivariate sig-
nal x(t). In physics polarization states are usually given by Stokes parameters,
as explained in previous chapters. Instantaneous Stokes parameters of x(t)
are directly obtained from its quaternion embedding x+(t) like

∣x+(t)∣ = S(t), x+(t) jx+(t) = iS(t) + jS(t) + kS(t) . (4.15)

Remark that S (t)+S(t)+S(t) = S(t)meaning that x(t) is fully polarized.
It is a consequence of the deterministic nature of x(t). Note that instantaneous
Stokes parameters are instantaneous energetic quantities, and thus their expres-
sion does not involve the instantaneous phase φ(t). ¿ey can be combined to
form the quaternion instantaneous energy E(t)

E(t) = ∣x+(t)∣ + x+(t) jx+(t)
= S(t) + iS(t) + jS(t) + kS(t) (4.16)

¿is quantity forms an instantaneous energy density, since by the Parseval-
Plancherel theorem 1.1 one has for �nite energy signals

∫ +∞
−∞ E(t)dt = ∫ ∞


[∣X(ν)∣ + X(ν) jX(ν)]dν = E ∈ H . (4.17)

4.1.3 Examples

Eq. (4.13) provides a natural and explicit AM-FMmodel for bivariate signals.
In particular, we note that it is a reparameterization in terms of natural ellipse
parameters θ , χ of the Modulated Elliptical Signal (MES) model (33) proposed
by Lilly and Gascard (2006) and Lilly and Olhede (2010a). In some sense,
the quaternion embedding method provides an a posteriori justi�cation to
their model. ¿e possibilities o�ered by the bivariate AM-FMmodel (4.13) are
illustrated below. In particular, it provides a precise control of the instantaneous
geometry of bivariate signals.
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Figure 4.3: (a) Example of a bivariate AM-FM
signal generated using (4.13). (b) Instanta-
neous amplitude, orientation, ellipticity and
frequency associated with this signal.

Consider the model (4.13) with a constant amplitude a = a and a con-
stant frequency ν such that φ(t) = πν t. Suppose that the instantaneous
orientation θ(t) and instantaneous ellipticity evolve slowly with respect to
φ(t).
Fig. 4.1 displays the trajectory of such a bivariate signal with a constant

ellipticity χ(t) = π/ and an orientation evolving from θ = −π/ to θ = π/.
Fig. 4.2 depicts the trajectory obtained for a constant orientation χ(t) = π/
and ellipticity evolving from χ =  (linear polarization) to χ = −π/ (clockwise
circular polarization). Recall that the sign of χ encodes the circulation direction
in the ellipse, counter-clockwise for χ >  and clockwise for χ < .

More generally, the bivariate AM-FM model (4.13) provides a broad and
�exible design of bivariate signals with speci�c instantaneous features. Fig. 4.3
shows a bivariate signal which exhibits simultaneously: (i) an instantaneous
frequency increasing linearly (linear chirp) (ii) a slowly rotating instantaneous
orientation θ(t) and (iii) a slowly decreasing ellipticity, from χ >  to χ ≈ 
and (iv) a slight modulation of its amplitude a(t). ¿e quaternion embedding
method provides a simple and e�cient way to determine these instantaneous
canonical parameters without any ambiguity. It appears as a generalization of
the analytic signal to the case of bivariate signals.
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4.2 Spectrograms and scalograms for bivariate signals

Limitations of the quaternion embedding ¿e analytic signal does not pro-
vide useful information when considering multicomponent real signals. As
expected, the quaternion embedding su�ers from the same pitfalls. Consider a
two component bivariate signal x(t) = cos πν t + cos πν t with ν > ν > .
It is a sum of two horizontally linearly polarized bivariate signals at frequencies
ν and ν. Its quaternion embedding reads

x+(t) = e jπν t + e jπν t =  cos(π ν − ν
t) e jπ ν+ν

 t , (4.18)

which gives immediately the Euler polar form, with the canonical parameters
given by χ(t) = θ(t) = , a(t) = ∣ cos (π ν−ν

 t) ∣ and φ(t) = π ν+ν
 t +

πsign[a(t)]. Although the values of θ(t) and χ(t) show that the polarization
state is correctly obtained, the values of a(t) and φ(t) do not correspond
to the instantaneous features of each component of x(t). Note that when
polarization states of each component di�er, a polarization beating e�ect will
also occur. Since the quaternion embedding performs a global operation on
frequencies – and not a local one –, it is unable to identify the instantaneous
parameters of each component separately.

Multicomponent bivariate signals A generic bivariate signal x(t) with k com-
ponents can be written as a sum of elementary bivariate AM-FM signals
(4.13) such that

x(t) = K∑
k= ak(t)e iθ k(t) [cos χk(t) cosφk(t) + i sin χk(t) sinφk(t)] , (4.19)

and where [ak(t), θk(t), χk(t), φk(t)] is the canonical quadruplet associated
to the kth component. We assume that each component satis�es the narrow-
band condition (4.14).

¿e goal of time-frequency analysis of bivariate signals is to extract and
estimate the canonical parameters of these k components. To this aim we intro-
duce two novel time-frequency-polarization representations based respectively
on a quaternion short-term Fourier transform and on a quaternion continuous
wavelet transform. ¿e mathematical validity of these novel representations is
guaranteed by two fundamental theorems.

4.2.1 Quaternion short-term Fourier transform

¿e very �rst tool for the time-frequency analysis is the quaternion short-time
Fourier transform.

De�nition Let g ∈ L(R;R) a real and symmetric g(t) = g(−t) window. We
assume that g is normalized such that ∥g∥L = . For τ, ν ∈ R the translated
and modulated version of this window g is

gτ ,ν(t) = g(t − τ)e jπνt . (4.20)

¿e functions gτ ,ν ∶ R → C j de�ne time-frequency-polarization atoms. Al-
though this de�nition is classical, the term polarization emphasizes that these
functions take their values in C j .
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¿e quaternion short-term Fourier transform (Q-STFT) of a signal x ∈
L(R;H) is given by

Fgx(τ, ν) = ⟨x , gτ ,ν⟩ = ∫ +∞
−∞ x(t)g(t − τ)e− jπνtdt . (4.21)

Properties

Theorem . (Inversion formula and energy conservation). Let x ∈ L(R;H) and consider
a window g ∈ L(R;R), real and symmetric g(−t) = g(t) such that ∥g∥L = .
¿en the inversion formula reads

x(t) = ∫ +∞
−∞ ∫ +∞

−∞ Fgx(τ, ν)g(t − τ)e jπνtdτdν, (4.22)

and the energy of x is conserved,

∫ +∞
−∞ ∣x(t)∣dt = ∫ +∞

−∞ ∫ +∞
−∞ ∣Fgx(τ, ν)∣dτdν, (4.23)

as well as the polarization properties of x:

∫ +∞
−∞ x(t) jx(t)dt = ∫ +∞

−∞ ∫ +∞
−∞ Fgx(τ, ν) jFgx(τ, ν)dτdν. (4.24)

¿is fundamental theorem ensures that the Q-STFT de�nes a valid and Proof. See Appendix 4.C.1.

meaningful time-frequency-polarization representation of bivariate signals.
¿e quantity ∣Fgx(τ, ν)∣ is called the energy spectrogram of x. ¿anks to

(4.23) it de�nes a valid time-frequency energy density. ¿equantityFgx(τ, ν) jFgx(τ, ν)
is called the polarization spectrogram of x. Its interpretation as a time-frequency
density is guaranteed by (4.24).

¿e energy spectrogram and the polarization spectrogram correspond to
time-frequency Stokes parameters of the signal x:

∣Fgx(τ, ν)∣ = S(τ, ν) and Fgx(τ, ν) jFgx(τ, ν) = iS(τ, ν) + jS(τ, ν) + kS(τ, ν) (4.25)

¿is provides a direct and natural interpretation of the energy spectrogram Note that the modulus of the polarization
spectrogram is simply the energy spectro-
gram, since x is fully polarized (being deter-
ministic).

and polarization spectrogram.
¿e Q-STFT has a reproducing kernel Hilbert space (RKHS) structure.

Plugging the inversion formula (4.22) in the expression of the Q-STFT (4.21)
at time-frequency point (τ , ν) ∈ R it shows that the image of L(R;H) by
the Q-STFT is a RKHS with reproducing kernel ¿is kernel is identical to the kernel of the

STFT, excepted that it takes its values in C j
and not in Ci .K(τ, ν, τ , ν) = ⟨gτ ,ν , gτ ,ν⟩ . (4.26)

¿e Q-STFT of a signal x is redundant representation, just like the usual STFT:

Fgx(τ , ν) = ∫ +∞
−∞ ∫ +∞

−∞ Fgx(τ, ν)K(τ, ν, τ , ν)dτdν . (4.27)

When x(t) is Ci-valued, the Q-STFT exhibits i-Hermitian symmetry in
the frequency variable, i.e. Note that the window g is assumed to be a

real-valued function.

Fgx(τ,−ν) = −iFgx(τ, ν)i . (4.28)

¿is allows to consider positive frequencies only when representing energy
and polarization spectrograms.
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Examples An analytical example and a synthetic numerical example are
presented below. ¿ey correspond to usual examples of signals found in time-
frequency textbooks (Flandrin, 1998; Mallat, 2008) adapted to the case of
bivariate signals and the Q-STFT: monochromatic bivariate signals and two
polarized linear chirps. ¿is approach is very generic and usual practice from
time-frequency analysis of univariate signals is easily transposed in theQ-STFT
setting.

Monochromatic bivariate signal Consider �rst a monochromatic bivariate
signal at frequency ν de�ned by its quaternion embedding x+(t) such that Recall that a is the amplitude, θ is the ori-

entation and χ is the ellipticity.
x+(t) = ae iθ e−k χ e jπν t (4.29)

Its Q-STFT reads

Fgx+(τ, ν) = ae iθ e−k χG(ν − ν)e− jπ(ν−ν)τ (4.30)

where G is the Fourier transform of the window g. ¿e Q-STFT is localized
around frequency ν = ν in the time-frequency plane, as expected. ¿e energy
spectrogram of x is

∣Fgx+(τ, ν)∣ = a∣G(ν − ν)∣ (4.31)

and gives S(τ, ν), the �rst time-frequency Stokes parameter. ¿e polarization
spectrogram of x is

Fgx(τ, ν) jFgx+(τ, ν) = a∣G(ν − ν)∣ [i sin χ + j cos θ cos χ + k sin θ cos χ] , (4.32)

which gives the three time-frequency Stokes parameters S , S and S that
describe the polarization properties of x.

Two polarized linear chirps Fig. 4.4a shows a composite signal x(t) = x(t)+
x(t) constructed as a superposition of two polarized linear chirps. Each chirp
has its own polarization properties given by (4.33) and (4.34) below

θ(t) = π

, χ(t) = π


− t, φ(t) = πt + πt (4.33)

θ(t) = π

t, χ(t) = −π , φ(t) = πt + πt (4.34)

¿is signal can be seen as a polarized version of the classical parallel linear
chirps signal (Mallat, 2008). It is de�ned on the time interval [, ] byN = 
equispaced samples. Its Q-STFT is computed with a Hanning window of size
 samples, providing good time-frequency clarity.

Fig. 4.4b shows the energy spectrogram (S) and the normalized polar-
ization spectrogram (s , s , s). ¿e energy spectrogram corresponds to an
usual time-frequency density. It permits the identi�cation of the two linear
chirps. ¿e polarization spectrogram has to be normalized by the energy
spectrogram to be meaningfully interpreted. ¿e three normalized Stokes Our choice of normalization is

is + js + ks =
Fgx(t, ν) jF

g
x(t, ν)

∣Fgx(t, ν)∣ + α

with α = .maxt ,ν ∣Fgx(t, ν)∣ .

parameters provide a reading of time-frequency-polarization properties of
the two chirps. Note that since s is directly an image of the χ one directly
recovers the ellipticity modulation law from the s time-frequency map. ¿e
orientationmodulation law is recovered by simultaneously inspecting the three
time-frequency normalized Stokes parameters. Fig. 4.4c shows the instanta-
neous orientation and ellipticity extracted from the ridge of each chirp. ¿e See Section 4.3 for a detailed discussion on

ridges.polarization properties of each chirp are correctly recovered.
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Figure 4.4: Sum of two polarized linear chirps
example. (a) the bivariate signal (b) energy
spectrogram and polarization spectrogram of
this signal (c) instantaneous orientation and
ellipticity extracted from the ridge of each
component. Top chirp is elliptically polarized
with a varying orientation, whereas the bot-
tom chirp shows a slowly varying ellipticity
with constant orientation.

4.2.2 Quaternion continuous wavelet transform

¿e time-frequency atoms underpinning the Quaternion short-term Fourier
transform atoms have a constant time-frequency localization. ¿is prevents
from using the Q-STFT to analyze a large range of frequencies over short time
scales. To address this limitation, it is natural to introduce the quaternion
continuous wavelet transform (Q-CWT). Its derivation closely follows the
usual CWT theory (Daubechies, 1992; Mallat, 2008) excepted that wavelets
are C j-valued to analyze the time-frequency-polarization content of signals.

De�nition ¿e analysis of the time-frequency (or time-scale) content of sig-
nals requires the use of complex analytic wavelets (Mallat, 2008). For bivariate
signals, let ψ ∈ H(R;C j) be such a wavelet, which is additionally normalized∥ψ∥L = . Assume that the wavelet ψ(t) is admissible, i.e.

Cψ ≜ ∫ +∞


ν−∣Ψ(ν)∣dν <∞ . (4.35)

¿e admissibility condition implies in particular that ψ(t) has zero mean,
hence it is an oscillating function of t.

GeneralizedMorsewavelets (Daubechies andPaul, 1988; Olhede andWalden,
2002) form a wide class of analytic and admissible wavelets. ¿eir expression
in the frequency domain is

Ψβ ,γ(ν) ≜ U(ν)αβ ,γν−βe−νγ , (4.36)

where U(⋅) is Heaviside’s unit step function. Parameters β, γ >  control the
wavelet properties (Lilly and Olhede, 2009; Lilly and Olhede, 2012) and αβ ,γ is
a normalizing constant.

For τ ∈ R and s >  the translated - dilated version of the wavelet ψ is
ψτ ,s(t) ≜ √

s
ψ ( t − τ

s
) . (4.37)



time-frequency representations 113

¿is de�nition ensures that the time-scale atoms ψτ ,s remain normalized∥ψτ ,s∥L = . ¿e dilation permits to visit all frequencies. ¿e quaternion
continuous wavelet transform (Q-CWT) of a signal x ∈ L(R;H) is

Wx(τ, s) ≜ ⟨x ,ψτ ,s⟩ = ∫ +∞
−∞ x(t) √

s
ψ ( t − τ

s
)dt . (4.38)

Properties

Theorem . (Inversion formula and energy conservation). Let x+ ∈ H(R;H) and an ana-
lytic wavelet ψ ∈ H(R;C j). Suppose that ψ is admissible such that (4.35) holds.
¿en the following inverse reconstruction formula is valid:

x+(t) = C−ψ ∫ +∞

∫ +∞
−∞ Wx+(τ, s)ψτ ,s(t)dτdss , (4.39)

and the energy of x+ is conserved,

C−ψ ∫ +∞

∫ +∞
−∞ ∣Wx+(τ, s)∣dτdss = ∥x+∥L , (4.40)

as well as the polarization properties of x+:

∫ +∞
−∞ x+(t) jx+(t)dt = C−ψ ∫ +∞


∫ +∞
−∞ Wx+(τ, s) jWx+(τ, s)dτdss (4.41)

Proof. See Appendix 4.C.2.¿erestriction to quaternion embedding signals x+ ∈ H(R;H) is purely for
notational convenience. Since there is a one-to-one correspondence between
a bivariate signal x ∈ L(R;Ci) and its quaternion embedding x+ ∈ H(R;H)
one has

Wx(τ, s) = 

Wx+(τ, s) . (4.42)

In particular, the reconstruction formula (4.39) becomes for x ∈ L(R;Ci)
x(t) = ProjCi

{C−ψ ∫ +∞
−∞ ∫ +∞


Wx(τ, s)ψτ ,s(t)dτdss } . (4.43)

¿e quantity ∣Wx(τ, s)∣ is called the energy scalogram of x. Eq. (4.40)
shows that it de�nes a time-scale energy density. ¿equantityWx+(τ, s) jWx+(τ, s)
is the polarization scalogram of x and de�nes a time-scale density thanks to
(4.41). ¿ese two quantities are related to the time-scale Stokes parameters of
x the following way:

∣Wx(τ, s)∣ = S(τ, s) and Wx(τ, s) jWx(τ, s) = iS(τ, s) + jS(τ, s) + kS(τ, s) . (4.44)

¿eQ-CWT exhibits a RKHS structure. Consider x+ ∈ H(R;H). Plugging
the inversion formula (4.39) into the Q-CWT de�nition (4.38) shows that the
image of H(R;H) by the Q-CWT is a RKHS with reproducing kernel

K(τ, s, τ , s) = ⟨ψτ ,s ,ψτ ,s⟩ . (4.45)

Similarly to the usual CWT , the Q-CWT is a redundant representation such
that for (τ , s) ∈ R ×R∗+

Wx+(τ , s) = C−ψ ∫ +∞

∫ +∞
−∞ Wx+(τ, s)K(τ, s, τ , s)dτdss . (4.46)
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Figure 4.5: Sum of two polarized hyperbolic
chirps example. (a) the bivariate signal (b) en-
ergy scalogram and polarization scalogram of
this signal (c) instantaneous orientation and
ellipticity extracted from the ridge of each
component. Top chirp shows positive elliptic-
ity, whereas the bottom chirp shows a nega-
tive one.

Examples An analytical example and a synthetic numerical example are
presented below. ¿ese are bivariate versions of examples of signals frequently
encountered in the literature (Mallat, 2008) to illustrate the straightforward
connection between usual practice and the behavior of the Q-CWT.

Monochromatic bivariate signal Let x(t) be a bivariatemonochromatic signal
de�ned by its quaternion embedding x+(t) as given by (4.29). ¿e Q-CWT of
x+(t) reads

Wx+(τ, s) = ae iθ e−k χ s 
Ψ(sν)e jπντ . (4.47)

If ∣Ψ(⋅)∣ attains its maximum value at frequency νp , then the Q-CWT is local- As given by Lilly and Olhede (2009) for gen-
eralized Morse wavelets Ψβ ,γ (4.36),

νp = ( β
γ
)


γ
.

ized in the time-scale plane around s = νp/ν . ¿e energy scalogram of x+ is

∣Wx+(τ, s)∣ = sa∣Ψ(sν)∣ (4.48)

and its polarization scalogram is

Wx+(τ, s) jWx+(τ, s) = sa∣Ψ(sν)∣ [i sin χ + j cos θ cos χ + k sin θ cos χ] . (4.49)

From these two equations one immediately obtains the four time-scale Stokes
parameters that describe the energetic and polarization properties of x.

Two polarized hyperbolic chirps Fig. 4.5a depicts the signal x(t) = x(t) +
x(t)made of two hyperbolic chirps with their own polarization properties:

θ(t) = −π , χ(t) = π

, φ(t) = π

. − t (4.50)

θ(t) = t, χ(t) = − π , φ(t) = π
. − t . (4.51)

It is de�ned on the time interval [, ], with N =  samples. ¿e Q-CWT
was computed using a Morse wavelet (4.36) with β =  and γ = .
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Fig. 4.5b shows the energy scalogram (S) and the normalized polarization
scalogram (s , s , s). ¿e energy scalogram is an usual time-scale energy
density and yields a direct identi�cation of the two hyperbolic chirps. Again, Normalization is performed similarly to the

Q-STFT

is + js + ks =
Wx(t, s) jWx(t, s)
∣Wx(t, s)∣ + α

with α = .maxt ,ν ∣Wx(t, s)∣ .

the polarization scalogram needs to be normalized by the energy scalogram to
be meaningfully interpreted. ¿e three normalized Stokes parameters provide
the time-scale-polarization properties of the two chirps. Fig. 4.5c show that the
instantaneous orientation and instantaneous ellipticity are correctly recovered
from the ridge of each chirp.

4.3 Asymptotic analysis and ridges

Spectrograms and scalograms tend to concentrate around lines of maxima
called ridges that carry most of the signi�cant information. Ridges form a set
of points in the time-frequency (resp. time-scale) plane from which the instan-
taneous properties of the signal can be recovered. For univariate signals such
results have �rst been developed by Delprat et al. (1992). Several theoretical
results were developed in a more general setting by Mallat (2008) and in the
context of the analytic wavelet transform by Lilly and Olhede (2010b). ¿is
section provides similar results on the ridges of the Q-STFT and the Q-CWT.

We extend the approach proposed by Delprat et al. (1992) which was also
discussed by Torrésani (1995) to the case of bivariate signals. It essentially
relies on asymptotic arguments. For the sake of simplicity we only consider
monocomponent bivariate signals x(t). We require that (4.14) holds: x is said
to be asymptotic, or in other terms the instantaneous phase vary much faster
than the other instantaneous quantities. Under such conditions, we will show
that the Q-STFT and the Q-CWT concentrate on ridges de�ned in terms of
the instantaneous frequency of the signal. Expressions of these transforms on
ridges involve explicitly the quaternion embedding of the signal, providing a
simple way to extract instantaneous parameters. Finally, we will discuss how
well known algorithms in ridge analysis can be applied to the bivariate setting.

4.3.1 Ridges of the quaternion short-term Fourier transform

In order to simplify the discussion we restrict our analysis to points (τ, ν) ∈
Ω ⊂ R ×R∗+ such that the time-frequency-polarization atoms gτ ,ν belong to
the Hardy space H(R;C j) . ¿is restriction ensures that gτ ,ν is analytic in See Eq. (4.4) for the de�nition of H(R;C j).
the sense that it is supported on positive frequencies only. As a result for every(τ, ν) ∈ Ω one has For practical reasons this section use the fol-

lowing de�nition for gτ ,ν(t)

gτ ,ν(t) = g(t − τ)e jπν(t−τ)

which add a phase term e− jπντ to de�nition
(4.20).

Fgx(τ, ν) = 

Fgx+(τ, ν) . (4.52)

¿eQ-STFT of x is obtained using the polar form of the quaternion embedding
x+

Fgx(τ, ν) = 
 ∫

+∞
−∞ a(t)e iθ(t)e−k χ(t)g(t − τ)e j(φ(t)−πν(t−τ))dt. (4.53)

Eq. (4.53) is an oscillatory integral which can be approximated using the
method of stationary phase described in Appendix 4.B. De�ne Φτ ,ν(t) =
φ(t)−πν(t−τ), and denote by τs = τs(τ, ν) a stationary phase point such that
Φ′
τ ,ν(τs) = . We assume that τs(ν) is unique1 for each ν and thatΦ′′

τ ,ν(τs) ≠ 

1. If there are multiple stationary points,
one must sum their contributions. Also, if
Φ′′τ ,ν(τs) = , thenwe search the smallest k ≥
 such that Φ(k)

τ ,ν (τs) ≠ . Formula follow by
straightforward adjustment.
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for simplicity. ¿e stationary phase approximation of (4.53) is

Fgx(τ, ν) ≈ x+(τs)√π

g(τs − τ)√∣φ′′(τs)∣ e j

π
 sign φ

′′(τs)e− jπν(τs−τ) . (4.54)

Ridge of the Q-STFT ¿e set of points (τ, ν) ∈ Ω such that τs(τ, ν) = τ
de�nes the ridgeR of the Q-STFT. On the ridge, one has

νR(τ) = 
π

φ′(τ), (4.55)

which is precisely the instantaneous frequency of the bivariate signal x(t). ¿e
restriction of the Q-STFT to the ridge is

Fgx(τ, νR(τ)) ≈ x+(τ)√π


g()√∣φ′′(τ)∣ e j
π
 sign φ

′′(τ)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

C j-valued corrective factor

. (4.56)

¿is shows that the Q-STFT on the ridge is simply the quaternion embedding
of x up to some corrective factor on the right taking values in C j : it means
that the instantaneous amplitude, orientation and ellipticity can be readily
obtained from the Euler polar form of the ridge of the Q-STFT.

4.3.2 Ridges of the quaternion continuous wavelet transform

Let uswrite thewaveletψ ∈ H(R;C j) in polar formψ(t) = aψ(t) exp[ jφψ(t)].
Using (4.42), the Q-CWT of x reads

Wx(τ, s) = 

√
s ∫

+∞
−∞ aψ ( t − τ

s
) a(t)e iθ(t)e−k χ(t)e j(φ(t)−φψ[(t−τ)/s])dt , (4.57)

where we have used the Euler polar form of its quaternion embedding x+(t).
As above, this oscillatory integral can be evaluated using a stationary phase
approximation, see Appendix 4.B. For (τ, s) ∈ R × R∗+ we assume that τs =
τs(τ, s) is the unique stationary point of Φτ ,s(t) = φ(t) − φψ[(t − τ)/s] such
that Φ′

τ ,s(τs) =  and Φ′′
τ ,s(τs) ≠ . ¿en

Wx(τ, s) ≈ x+(τs)
√
π√

s∣Φ′′
τ ,s(τs)∣ψ ( τs − τ

s
)e j π sign Φ′′τ ,s(τs) . (4.58)

Ridge of the Q-CWT ¿e set of points (τ, s) ∈ R ×R∗+ such that τs(τ, s) = τ
de�nes the ridgeR. By de�nition of τs it follows that Remark that

Φ′τ ,s(t) = φ′(t) −

s
φ′ψ ( t − τ

s
)

sR(τ) = φ′ψ()
φ′(τ) , (4.59)

which corresponds to the instantaneous frequency of the analyzing wavelet
at the origin divided by the instantaneous frequency of x. On the ridge, the
Q-CWT can be approximated by

Wx(τ, sR(τ)) ≈ x+(τ)
√
π√

sR∣Φ′′
τ ,sR(τ)∣ψ ()e j π sign Φ′′τ ,sR(τ)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
C j-valued corrective factor

. (4.60)

Similarly to the Q-STFT, on the ridge the Q-CWT corresponds to the quater-
nion embedding of x up to some corrective factor on the right taking values in
C j . ¿erefore instantaneous amplitude, orientation and ellipticity are directly
given from the Euler polar form of the Q-CWT coe�cients on the ridge.
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4.3.3 Ridge extraction

¿emost natural approach towards ridge extraction is to in detect local max-
ima of the energy spectrogram ∣Fgx(τ, ν)∣ or the energy scalogram ∣Wx(τ, s)∣.
However this approach can su�er from biased estimates due to strong fre-
quencymodulation. For instance forQ-STFT, Eq. (4.54) shows2 that ∣Fgx(τ, ν)∣ 2. We assume that the window g(t) is

maximum at t = .is not necessarily maximum on the ridge τs = τ due to the term φ′′(τs) in the
denominator of the corrective factor. A similar phenomenon is observed for
the Q-CWT.

Similarly to the STFT and CWT case (Delprat et al., 1992; Torrésani, 1995),
the j-phase of the Q-STFT and Q-CWT coe�cients allows to locate the ridge
more precisely. However in the univariate case this approach is known to
have shortcomings when the signal-to-noise ratio is low, and other approaches
have to be used instead (Carmona, Hwang, and Torrésani, 1997; Carmona,
Hwang, and Torrésani, 1999; Lilly and Olhede, 2010b). ¿ose approaches can
be thoroughly adapted to the bivariate setting.

For instance, it was proposed by Carmona, Hwang, and Torrésani (1997)
to estimate the ridge using a variational approach based on minimizing an
energy functional, which we can formulate for the Q-STFT as follows. ¿e
goal is to obtain a function ζ minimizing the energy functional

Ex(ζ) = −∫ +∞
−∞ ∣Fgx(τ, ζ(τ))∣dτ + ∫ +∞

−∞ [αζ′(τ) + βζ′′(τ)]dτ (4.61)

where α and β are real-valued parameters enforcing the smoothness of the
function ζ by a penalization on its variations. Eq. (4.61) de�nes a nonconvex
optimization problem which can be solved using e.g. a simulated annealing
scheme as in Carmona, Hwang, and Torrésani (1997).

Since existing ridge extractions methods can be directly used with the
Q-STFT and the Q-CWT, we shall not dwell further into this topic. In our
simulations we have used a heuristic method which identi�es at each instant τ
local maxima of the energy density, and which computes ridges by chaining
those points according to a prescribed maximal distance between consecutive
points. ¿is method – which is certainly not optimal – provides reasonably
good results for our purpose.

4.4 Generic time-frequency-polarization representations

As an original contribution of this manuscript, this section answers an im-
portant question: what is the most generic class of bilinear time-frequency-
polarization representations for bivariate signals? Once answered, it also asks
for a careful study of the properties of each member of this class. ¿is o�ers
the liberty to pick a speci�c representation whose properties are tailored to
the features of the signal considered.

Section 4.4.1 introduces as a starting point the quaternion Wigner-Ville
distribution. Unlike spectrograms or scalograms based respectively on the
Q-STFT and Q-CWT, this new time-frequency-polarization representation
perfectly concentrates on polarized linear chirps. In addition it extends many
properties of the usual Wigner-Ville transform to bivariate signals, e.g. its time
and frequency marginals are the quaternion spectral density and quaternion
energy, another property missed by spectrograms and scalograms.
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Section 4.4.2 then introduces a generic class of bilinear time-frequency-
polarization representations. We call it theCohen class for bivariate signals. Any
representation in this class can be expressed as a smoothing of the quaternion
Wigner-Ville distribution: the quaternion spectrogram introduced in Section
4.2.1 makes no exception. ¿e parameterization is straightforward and follows
the univariate Cohen class derivation.

4.4.1 Quaternion Wigner-Ville distribution

Guided by our previous results, see e.g. ¿eorem 1.1 and ¿eorem 2.2, we
propose a de�nition for the quaternionWigner-Ville distribution. Its properties
are studied and are similar to the usual Wigner-Ville distribution. In particular,
the quaternion Wigner-Ville distribution of polarized linear chirps is perfectly
localized.

De�nition Let x ∈ L(R;H). We de�ne the quaternion Wigner-Ville distri-
bution of x as

WVx(t, ν) ≜ ∫ +∞
−∞ x (t + τ


) e− jπντx (t − τ


)dτ
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energy Wigner-Ville, EWVx(t ,ν) ∈R

+ ∫ +∞
−∞ x (t + τ


) e− jπντ jx (t − τ


)dτ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
polarization Wigner-Ville, PWVx(t ,ν) ∈span{i , j ,k}

. (4.62)

¿e de�nition of the quaternion Wigner-Ville distribution di�ers from the
univariate Wigner-Ville de�nition in two points. First this expression contains
two separate terms to describe simultaneously the energy and polarization
features of the signal x. Second, note the position of the complex- j exponential,
which is ‘‘sandwiched’’ by x in the two terms. ¿is position is crucial due to
noncommutative multiplication inH and permits to recover many properties
of the univariate Wigner-Ville distribution.

¿e �rst term called energy Wigner-Ville is real-valued and gives the en-
ergy time-frequency representation of the signal. It corresponds to the real
part ofWVx(t, ν) and is denoted by EWVx(t, ν). ¿e second term is called
polarization Wigner-Ville and denoted by PWVx(t, ν). It corresponds to the
vector part ofWVx(t, ν) and takes its values in span{i , j, k}. It encodes the
polarization features of x.

¿e quaternion Wigner-Ville distribution of x can be rewritten

WVx(t, ν) = EWVx(t, ν) + PWVx(t, ν) , (4.63)

which is simply the scalar-vector part decomposition of the quaternion-valued
functionWVx(t, ν). By decomposing x = u(t) + iv(t), with u, v R ∶→ C j

signals, the quaternion Wigner-Ville distribution relates to univariate Wigner-
Ville distributions of u and v as follows For u, v ∶ R→ C j :

W̃Vu(t, ν) = ∫ u (t + τ

) e− jπντu (t − τ


)dτ

is the univariate Wigner-Ville distribution of
u and

W̃Vvu(t, ν) = ∫ v (t + τ

) e− jπντu (t − τ


)dτ

is the univariate cross-Wigner-Ville distribu-
tion between v and u.

EWVx(t, ν) = W̃Vu(t, ν) + W̃Vv(t, ν) , (4.64)

PWVx(t, ν) = j [W̃Vu(t, ν) − W̃Vv(t, ν)] + kW̃Vvu(t, ν) . (4.65)

¿is direct link with usualWigner-Ville distributions of components of x yields
many properties of the quaternion Wigner-Ville distribution as detailed below.
In particular since W̃Vu and W̃Vv are real-valued (Flandrin, 1998) and W̃Vvu

is C j-valued, one can verify from (4.64) and (4.65) that EWVx is real-valued
and that PWVx is purely imaginary.
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¿e energy Wigner-Ville and polarization Wigner-Ville distributions form
respectively the scalar part and vector part of the quaternion Wigner-Ville
distribution i.e. EWVx = SWVx and PWVx = VWVx . ¿us they live in
di�erent subspaces of H. For simplicity any equation below involving these
two distinct quantities stands for ‘‘scalar-scalar equality’’ and ‘‘vector-vector
equality’’ otherwise speci�ed.

Frequency domain de�nition ¿e quaternion Wigner-Ville distribution can
be de�ned in the frequency domain by replacing x by its quaternion Fourier
transform:

WVx(t, ν) ≜ ∫ +∞
−∞ X (ν + ξ


) e jπξtX (ν − ξ


)dξ + ∫ +∞

−∞ X (ν + ξ

) e jπξt jX (ν − ξ


)dξ . (4.66)

Symmetries For bivariate signals x ∶ R → Ci , the quaternion Wigner-Ville
distribution exhibits the same symmetry (2.23) as the quaternion spectral
density

WVx(t,−ν) = −iWVx(t, ν)i . (4.67)

In particular this means only positive frequencies of the quaternion Wigner-
Ville distribution can be considered as they carry the complete information
about the bivariate signal x(t).
Marginals ¿e quaternion Wigner-Ville distribution satis�es the marginal
requirement, unlike the (quaternion) spectrogram and (quaternion) scalogram.
A simple calculation shows that

∫ +∞
−∞ WVx(t, ν)dt = ∣X(ν)∣ + X(ν) jX(ν) , (4.68)

∫ +∞
−∞ WVx(t, ν)dν = ∣x(t)∣ + x(t) jx(t) . (4.69)

¿e timemarginal is simply the quaternion energy density (2.4). ¿e frequency
marginal is the quaternion instantaneous energy, already encountered in (4.16)
in the case of quaternion embedding signals. As a consequence the quaternion
Wigner-Ville distribution preserves also the quaternion energy of the signal

∫ +∞
−∞ ∫ +∞

−∞ WVx(t, ν)dνdt = E ∈ H (4.70)

where E is de�ned thanks to the generalized Parseval-Plancherel theorem 1.1
for the QFT:

E ≜ ∫ +∞
−∞ ∣x(t)∣dt + ∫ +∞

−∞ x(t) jx(t)dt. (4.71)

Interferences ¿e quaternion Wigner-Ville distribution is a quadratic func-
tional of the signal x. For multicomponent signals it causes interferences that
deteriorate the time-frequency clarity. Given a signal x + y, its quaternion
Wigner-Ville distribution is

WVx+y(t, ν) =WVx(t, ν)+WVy(t, ν)+WVx y(t, ν)+WVyx(t, ν) (4.72)

whereWVx y(t, ν) andWVyx(t, ν) are quaternion cross-Wigner-Ville distri-
butions de�ned by
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WVx y(t, ν) ≜ ∫ +∞
−∞ x (t + τ


) e− jπντ y (t − τ


)dτ
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cross-energy Wigner-Ville EWVx y(t ,ν) ∈H

+ ∫ +∞
−∞ x (t + τ


) e− jπντ jy (t − τ


)dτ
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cross-polarization Wigner-Ville PWVx y(t ,ν) ∈H

. (4.73)

¿e cross-energy and cross-polarization Wigner-ville terms are quaternion-
valued and cannot be identi�ed directly fromWVx y(t, ν) alone; computing
WVyx(t, ν) permits the identi�cation3. Interference terms a�ect simultane- 3. To see this, remark that

EWVx y = EWVyx (Hermitian)
PWVx y = −PWVyx (anti-Hermitian)

so that

WVx y +WVyx = SEWVx y + VPWVx y ,

WVx y −WVyx = SPWVx y + VEWVx y .

ously the energy Wigner-Ville and polarization Wigner-Ville:

SWVx+y(t, ν) = SWVx(t, ν) + SWVy(t, ν) + SEWVx y(t, ν) (4.74)

VWVx+y(t, ν) = VWVx(t, ν) + VWVy(t, ν) + VPWVx y(t, ν) (4.75)

¿e scalar part of the cross-energy Wigner-Ville appears in the energy Wigner-
Ville of x + y. ¿e vector part of the cross-polarization Wigner-Ville appears
in the polarization Wigner-Ville of x + y.

Note that bivariate signals x ∶ R→ Ci are a special type ofmulticomponents
signals since x(t) = (x+(t)−ix+(t)i)/where x+ is the quaternion embedding
of x. ¿us looking at x one will observe interferences at null frequency due to
the bivariate nature of x. ¿ose can be removed by considering its quaternion
embedding x+(t) instead. ¿is is a bivariate analogue of an usual procedure
which consists in replacing an univariate signal by its analytic version to reduce
interferences, see e.g. Flandrin (1998, p.252).

Time and frequency support ¿e quaternion Wigner-Ville distribution also
preserves time and frequency supports of signals:

∀ν, supp
t

WVx(t, ν) ⊂ supp x(t) (4.76)

∀t, supp
ν

WVx(t, ν) ⊂ supp X(ν) (4.77)

¿is result follows directly from time and frequency support of univariate
Wigner-Ville distributions , see Claasen and Mecklenbraüker (1980).

Positivity ¿e scalar part of the quaternion Wigner-Ville distribution, the
energy Wigner-Ville distribution, is not necessarily positive. It limits the
interpretation of the energy Wigner-Ville as a time-frequency energy density.
¿is can be seen from (4.64) since univariate Wigner-Ville distributions of u
and v are known to be not necessarily positive (Flandrin, 1998). Let us note that A theorem fromWigner (1971) shows actually

that there is no positive quadratic energy dis-
tribution that satis�es the marginal require-
ments.

for bivariate signals the lack of positivity has another consequence: since one
needs to normalize the polarization Wigner-Ville by the energy Wigner-Ville,
some sign issues could arise when the energy Wigner-Ville is locally negative.

Polarized linear chirps: perfect time-frequency localization Consider the po-
larized linear chrip signal x(t) de�ned by its quaternion embedding x+(t) =
ae iθ e−k χe jπ(α+β/t)t , with α, β ∈ R+. A quick computation of its quaternion
Wigner-Ville transform yields

WVx+(t, ν) = aδ(α + βt − ν) + ae iθ e−k χ jek χe−iθδ(α + βt − ν) . (4.78)

¿e quaternion Wigner-Ville distribution perfectly concentrates onto the in-
stantaneous frequency line ν(t) = α+ βt. In addition one recovers from (4.78)
both energetic properties (�rst term) and polarization properties (second term)
of the polarized linear chirp.
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4.4.2 Cohen class for bivariate signals

¿is section aims to provide a general class of bilinear time-frequency-polarization
representations for bivariate signals. ¿is general family of representations
obeys a covariance principle, meaning that the representation is invariant to
any time-frequency shi s. Our approach closely follows the construction of
the Cohen class for univariate signals as presented by Flandrin (1998). However
the geometric nature of bivariate signals adds an extra layer of complexity in
the de�nition of such representations. ¿ose de�nitions also require special
care to properly handle the noncommutativity of quaternions.

We search for a general family of quaternion-valued, time-frequency-polarization
representations ρx(t, ν) such that

∫ +∞
−∞ ∫ +∞

−∞ ρx(t, ν)dtdν = E ∈ H (4.79)

where E is the quaternion energy of the signal x ∈ L(R;H) de�ned by
E = ∫ +∞

−∞ ∣x(t)∣dt + ∫ +∞
−∞ x(t) jx(t)dt . (4.80)

Since the quaternion energy E provides a natural separation between energetic
and polarization quantities, we decompose ρx into an energetic part ρEx and a
polarization part ρEx such that

ρx(t, ν) = ρEx (t, ν) + ρPx (t, ν) (4.81)

and where we require that Note that we do not require ρEx (t, ν) to be
real-valued nor ρPx (t, ν) to be purely imag-
inary. ¿is topic is discussed later on and
correspond to separability.∫ +∞

−∞ ∫ +∞
−∞ ρEx (t, ν)dtdν = ∫ +∞

−∞ ∣x(t)∣dt ∈ R+ , (4.82)

∫ +∞
−∞ ∫ +∞

−∞ ρPx (t, ν)dtdν = ∫ +∞
−∞ x(t) jx(t)dt ∈ span{i , j, k} . (4.83)

¿e search for quadratic time-frequency representations suggests the generic
bilinear4 form for ρEx and ρPx : 4. More precisely, bilinear with respect to

real multiplication.

ρEx (t, ν) =∬ x(s)K(t, ν, s, s′)x(s′)dsds′ (4.84)

ρPx (t, ν) =∬ x(s)K(t, ν, s, s′) jx(s′)dsds′ (4.85)

where K ∶ R → H is an arbitrary kernel function. Note that we use the
same kernel K for both the energetic part ρEx and polarization part ρEx . In full
generality it could be possible to consider separate kernels, although it remains
unclear which advantages it would provide.

To satisfy constraints (4.82) and (4.83) one should choose K such that

∬ K(t, ν, s, s′)dtdν = δ(s − s′) . (4.86)

More stringent conditions on K can be derived using a covariance principle
(Flandrin, 1998) adapted to the bivariate case.

Covariance principle Let x ∈ L(R;H) be an arbitrary signal. Consider its
time-translated and frequency modulated version xt′ ,ν′ such that

xt′ ,ν′(t) = x(t − t′)e jπν′ t . (4.87)
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¿e covariance principle essentially means that

ρx t′ ,ν′ (t, ν) = ρx(t − t′ , ν − ν′) , (4.88)

that is the quaternion density of xt′ ,ν′ is simply the quaternion density of x
translated in time from t′ and in frequency by ν′. By writing ρx t′ ,ν′ explicitly
one gets

ρx t′ ,ν′ (t, ν) =∬ x(s)e jπν′(s+t′)K(t, ν, s + t′ , s′ + t′)e− jπν′(s′+t′)x(s′)dsds′
+∬ x(s)e jπν′(s+t′)K(t, ν, s + t′ , s′ + t′)e− jπν′(s′+t′) jx(s′)dsds′ (4.89)

One can hardly go further without an additional hypothesis on the kernel K.
We now require K to be C j-valued so that C j-complex exponentials and K
commute. ¿is requirement on K seems rather reasonable if one considers K
as a smoothing kernel. Moreover one gets

ρx t′ ,ν′ (t, ν) =∬ x(s)K(t, ν, s + t′ , s′ + t′)e jπν′(s−s′)x(s′)dsds′
+∬ x(s)K(t, ν, s + t′ , s′ + t′)e jπν′(s−s′) jx(s′)dsds′ (4.90)

By the covariance principle this latter quantity should be equal to

ρx(t − t′ , ν − ν′) =∬ x(s)K(t − t′ , ν − ν′ , s, s′)x(s′)dsds′
+∬ x(s)K(t − t′ , ν − ν′ , s, s′) jx(s′)dsds′ (4.91)

In particular for t = t′ and ν = ν′ one gets
K(t, ν, s + t, s′ + t)e jπν(s−s′) = K(, , s, s′) , (4.92)

or equivalently with K(s, s′) = K(, , s, s′):
K(t, ν, s, s′) = K(s − t, s′ − t)e− jπν(s−s′) . (4.93)

We obtain a general relation for ρx(t, ν) by the following change of variables
s ← s + τ

 and s
′ ← s′ − τ

 :

ρx(t, ν) =∬ x (s + τ

)K (s − t + τ


, s − t − τ


) e− jπντx (s − τ


)dsdτ

+∬ x (s + τ

)K (s − t + τ


, s − t − τ


) e− jπντ jx (s − τ


)dsdτ
(4.94)

General parameterization To closelymatch the notation fromFlandrin (1998),
we replace the kernel K by its quaternion Fourier transform in the s variable
such that

K (s − t + τ

, s − t − τ


) = ∫ +∞

−∞ f (τ, ξ)e jπξ(s−t)dξ . (4.95)

¿e general parameterization for the Cohen class of quadratic time-frequency-
polarization representations is then

ρx(t, ν) =∭ x (s + τ

) f (τ, ξ)e jπξ(s−t)e− jπντx (s − τ


)dξdsdτ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
energetic part ρEx (t ,ν)

+∭ x (s + τ

) f (τ, ξ)e jπξ(s−t)e− jπντ jx (s − τ


)dξdsdτ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
polarization part ρPx (t ,ν)

(4.96)
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¿e parameter function f (τ, ξ) isC j-valued and is identical to the parame-
ter function of the Cohen class for univariate signals (Flandrin, 1998). ¿us, by
an appropriate choice of f (τ, ξ) one recovers bivariate analogue of well-known
time-frequency representations, as illustrated below. ¿is tight link with the
univariate Cohen class shows that tuning the properties of parameter function
in terms of usual conditions (causality, marginals, etc.) is straightforward.
We will not address this ‘‘Troïka of Parameterizations-De�nitions-Properties’’5 5. ¿is expression is due to Flandrin

(1998).here, focusing instead our analysis on some examples of distributions and on
an important property of separability.

Separability between energetic and polarization parts ¿e general de�nition
of the Cohen class consists in two terms, namely

ρEx (t, ν) =∭ x (s + τ

) f (τ, ξ)e jπξ(s−t)e− jπντx (s − τ


)dξdsdτ (4.97)

ρPx (t, ν) =∭ x (s + τ

) f (τ, ξ)e jπξ(s−t)e− jπντ jx (s − τ


)dξdsdτ (4.98)

which de�ne the energetic part ρEx (t, ν) and the polarization part ρPx (t, ν)
of the quaternion time-frequency-polarization distribution ρx(t, ν). In full
generality, ρEx (t, ν) and ρPx (t, ν) are quaternion-valued functions.

It may be desirable to have a nice interpretation of the scalar part of ρx as a
measure of energy and of its vector part as measure of the polarization features.
¿is is the case when one has for every (t, ν) ∈ R

⎧⎪⎪⎨⎪⎪⎩
Sρx(t, ν) = ρEx (t, ν) ∈ R,Vρx(t, ν) = ρPx (t, ν) ∈ span{i , j, k}. (4.99)

¿us this separability condition ensures that ρEx is real and that ρPx is purely
imaginary. Conditions (4.99) are equivalent to ρEx (t, ν) = ρEx (t, ν) and ρPx (t, ν) =−ρPx (t, ν). Each of these conditions is su�cient to imply that ¿is condition on f corresponds to the reality

requirement for the univariate Cohen Class,
see Flandrin (1998, p. 117).f (τ, ξ) = f (−τ,−ξ) , (4.100)

that is the parameter function f (τ, ξ) is Hermitian.
Now we give some examples of distributions belonging to the Cohen class.

¿ree of them are separable: the quaternion Wigner-Ville distribution, the
quaternion spectrogram and the quaternion Choi-Williams. ¿e last example,
the quaternion Rihaczek distribution is not separable.

Quaternion Wigner-Ville Letting f (τ, ξ) =  one recovers the quaternion
Wigner-Ville distribution introduced in the last section:

ρWV
x (t, ν) =WVx(t, ν) . (4.101)

In particular, Eq. (4.96) shows that any Cohen class member can be seen as
smoothed version of the quaternion Wigner-Ville distribution. Unlike for the
univariate case (Flandrin, 1998) this smoothing cannot be expressed in terms
of convolution operation due to noncommutativity of the quaternion product.
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Quaternion spectrogram ¿is time-frequency-polarization representation
was the �rst introduced in Section 4.2.1 of this chapter. ¿e quaternion spec-
trogram ρSx(t, ν) relies on the Q-STFT Fgx with window g such that

ρSx(t, ν) = ∣Fgx(t, ν)∣ + Fgx(t, ν) jFgx(t, ν) (4.102)

¿is representation also belongs to the Cohen class de�ned by (4.96). It is
obtained just like in the univariate case, by taking f (τ, ξ) to be the ambiguity
function of the real window g

f (τ, ξ) = Ag(τ, ξ) ≜ ∫ +∞
−∞ g (r + τ


) g (r − τ


) e− jπξrdr (4.103)

Plugging (4.103) into (4.96) yields (4.102) a er some usual calculations.

Quaternion Choi-Williams distribution ¿e quaternion Choi-Williams distri-
bution is de�ned by the choice of the parameter function f (τ, ξ) = exp(−(πσ ξτ))
where σ >  is a smoothing parameter. Since f is Hermitian, this distribu-
tion is separable. When σ → , f (τ, ξ) →  so that for small values of σ ,
the quaternion Choi-Williams distribution is close to the quaternion Wigner-
Ville distribution. Larger values of σ increase the smoothing of the quaternion
Wigner-Ville distribution thus reducing interferences at the price of a degraded
resolution.

QuaternionRihaczek distribution ¿is last distribution is obtained for f (τ, ξ) =
exp( jπξτ). Since f is not Hermitian, it is not a separable time-frequency-
polarization distribution. ¿e quaternion Rihaczek distribution of x is

ρRx (t, ν) ≜ x(t)e− jπνtX(ν) + x(t)e− jπνt jX(ν) (4.104)

¿e two terms correspond respectively to the energetic part and to the polar-
ization part of the Rihaczek distribution. ¿ese are both quaternion-valued
functions, which limits a direct interpretation of ρR . ¿e usefulness of such
non-separable representations will be addressed in future work.

4.5 An application to seismic data

To conclude this chapter we perform a time-frequency-polarization analysis
on a seismic trace from the 1991 Solomon Islands Earthquake. ¿e original Data is available as part of JLab (Lilly, 2016).

recording is a 3D seismic measurement leading to three channels u, v ,w. We
choose to analyze the bivariate signal x(t) = u(t) + iv(t), where u is the
vertical component and v is the radial component in the frame of the received
wave. ¿is bivariate signal has been already studied by several authors in the
literature (Lilly and Park, 1995; Olhede andWalden, 2003; Sykulski, Olhede,
and Lilly, 2016).

Fig. 4.6a displays this signal. ¿e part of the signal which is represented
contains N =  samples, equispaced by . s. ¿e trace of x(t) in the u−v
plane suggests that x(t) is on average elliptically polarized. ¿e time-evolution
of each component also suggests that the instantaneous frequency of x(t) is
increasing with time.

We compute both the quaternion spectrogram and quaternion scalogram
for this signal. ¿e Q-STFT of the signal has been computed using a Hanning
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Figure 4.6: Seismic trace example from the
1991 Solomon Islands Earthquake. (a) bivari-
ate signal corresponding to vertical (u) and
radial (v) components of the original 3D sig-
nal. (b) energy and polarization spectrogram
(c) energy and polarization scalogram.

window of size  samples, with window spacing equal to  samples. ¿e
Q-CWT of the signal has been computed on  scales using a Morse wavelet
(4.36) with β =  and γ = .

Fig. 4.6b shows the energy and polarization spectrogram of x. Fig. 4.6c
displays its energy and polarization scalogram. Time-frequency energy maps
describe this signal as a slow linear chirp in frequency. ¿e polarization spectro-
gram and polarization scalogram show that polarization properties are almost
constant in the most energetic part, i.e. for s < t < s. In particular s
gives the instantaneous ellipticity χ which remains constant (χ ≈ π/) in this
region. It con�rms the elliptical polarization obtained by visual inspection of
Fig. 4.6a. ¿e orientation is much harder to identify since the signal is strongly
elliptically polarized (hence s and s are close to zero). A ridge extraction
reveals that θ ≈ π/ in the region s < t < s.

4.6 Conclusion

¿is chapter has presented a new and generic approach towards the time-
frequency analysis of bivariate signals. It extends naturally usual univariate
time-frequency analysis and obeys the same issues of localization, as supported
by the Gabor-Heisenberg uncertainty principle for the QFT (¿eorem 1.2).
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Since the quaternion-valued spectrum of a bivariate signal is symmetric, con-
sidering positive frequencies only permits to de�ne a bivariate analogue of
the analytic signal of real or univariate signals. ¿is quaternion embedding
of a bivariate signal yields an instantaneous polarization ellipse description
of the signal thanks to the Euler polar form. Turning to time-frequency rep-
resentations to process multicomponent bivariate signals, we have de�ned a
quaternion short-term Fourier transform (Q-STFT) and a quaternion con-
tinuous wavelet transform (Q-CWT) by using the QFT in place of the usual
Fourier transform. Two fundamental theorems guarantee the conservation of
energy and polarization quantities as well as reconstruction formulas. ¿ey
permit to de�ne the energy spectrograms and energy scalograms, which are
interpreted as classical time-frequency energy maps. More importantly these
theorems provide a natural de�nition of polarization spectrograms and polar-
ization scalograms which characterize the evolution of the polarization state in
the time-frequency plane. ¿e ridges of these spectrograms and scalograms
have been studied, and similar to the univariate case these ridges are shown to
carry most of the signi�cant information about the signal. We also addressed
the construction of a generic class of bilinear time-frequency-polarization
representation. ¿ese theoretical developments o�er the possibility to tailor
the representation to the features of the signal. Synthetic as well as real-world
data examples have demonstrated the e�ciency of the proposed approach. ¿e
resulting graphical representations make the time-frequency-polarization con-
tent of bivariate signals very readable and intelligible. On a practical ground,
the numerical implementation remains simple and cheap since it relies on the
use of a few fast Fourier transforms.

¿e �ndings of Section 4.1 to Section 4.3 have been published in a interna-
tional journal (Flamant, Le Bihan, and Chainais, 2017e). ¿ey have been also
presented at an international conference (Flamant, Le Bihan, and Chainais,
2017b) and at a national conference (Flamant, Le Bihan, and Chainais, 2017d).
¿e de�nition of the quaternion Wigner-Ville transform (Section 4.4.1) and
the original construction of the class of bilinear time-frequency-polarization
representations (Section 4.4.2) constitute ongoing work which has not yet been
published.
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Appendices

4.a Canonical quadruplet of bivariate signals

Consider the bivariate AM-FMmodel given by (4.13)

x(t) = a(t)e iθ(t) [cos χ(t) cosφ(t) + i sin χ(t) sinφ(t)] , (4.105)

where [a(t), θ(t), χ(t), φ(t)] is a quadruplet characterizing x(t). One of
the outstanding questions arising from (4.105) is: when does the quadruplet[a(t), θ(t), χ(t), φ(t)] form a canonical quadruplet ? ¿at is, under which
conditions x(t) de�ned by (4.105) has a quaternion embedding x+(t) which
reads

x+(t) = a(t)e iθ(t)e−k χ(t)e jφ(t) . (4.106)

A �rst (partial) answer to this question is found thanks to a Bedrosian theorem
for the QFT.

Bedrosian theorem for the QFT ¿eorem 4.3 below extends the well-known
Bedrosian theorem (Bedrosian, 1963) to the case of the quaternion Fourier
transform.

Theorem . (Bedrosian). Let x ∶ R → H and y ∶ R → C j. Suppose that X and
Y have disjoint frequency support, i.e. suppX(ν) ⊂ [−B, B] and suppY(ν) ⊂(−∞,−B′] ∪ [B′ ,+∞). Assume that B′ > B >  so that x is slowly varying
compared to y. ¿en the Hilbert transform of the product x(t)y(t) reads

H{xy}(t) = x(t)H{y}(t) (4.107)

Proof. ¿e proof is similar to the usual Bedrosian theorem. Denote by F the
QFT. ¿en,

By the product property of the QFT

We use that sign(ν) = sign(ν − ξ) for values
of ξ such that X(ξ)Y(ν − ξ) is nonzero.

FH{xy}(ν) = −sign(ν)F{xy}(ν) j (4.108)

= −sign(ν)(X ∗ Y)(ν) j (4.109)

= −∫ +∞
−∞ X(ξ)Y(ν − ξ)sign(ν) jdξ (4.110)

= −∫ +∞
−∞ X(ξ)Y(ν − ξ)sign(ν − ξ) jdξ (4.111)

= (X ∗FH{y})(ν) (4.112)

and by inverse QFT one founds the desired result

H{xy}(t) = x(t)H{y}(t) . (4.113)

Back to bivariate signals Recall the de�nition in the time domain of the
quaternion embedding x+(t)

x+(t) = x(t) +H{x}(t) j (4.114)

Let us assume that λ(t) = a(t)e iθ(t) cos χ(t) is slowly varying and with
disjoint frequency support with cosφ(t). Similarly assume that λ(t) =
ia(t)e iθ(t) sin χ(t) is slowly varying and with disjoint frequency support with
sinφ(t). ¿en, by¿eorem 4.3 one has
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x+(t) = λ(t) cosφ(t) + λ(t) sinφ(t) +H{λ(t) cosφ(t) + λ(t) sinφ(t)}(t) j (4.115)

= λ(t) [cosφ(t) +H{cosφ(t)} j] + λ(t) [sinφ(t) +H{sinφ(t)} j] . (4.116)

As pointed out by Picinbono (1997), Bedrosian’s theorem does not imply at all
that H{cosφ(t)} = sinφ(t) or equivalently that H{sinφ(t)} = − cosφ(t).
¿ese relations are satis�ed provided that the phase signal z(t) = exp( jφ(t))
is analytic. ¿is is case when z(t) is of the form (Picinbono, 1997)

z(t) = e j(πν t+φ)∏
n

t − tn
t − tn (4.117)

where the tn ’s belong to the upper-half complex plane.
Assuming that φ(t) is such that (4.117) holds then one obtains

x+(t) = λ(t)e jφ(t) − λ(t)e jφ(t) j (4.118)

= a(t)e iθ(t) [cos χ(t) − k sin χ(t)] e jφ(t) (4.119)

= a(t)e iθ(t)e−k χ(t)e jφ(t) . (4.120)

Together with Bedrosian’s theorem assumptions on a(t), θ(t) and χ(t) the
technical condition (4.117) on the phaseφ(t) ensure that [a(t), θ(t), χ(t), φ(t)]
is a canonical quadruplet.

4.b Stationary phase approximation

¿e asymptotic analysis carried out in Section 4.3 relies on a stationary phase
approximation to study the localization of ridges in quaternion spectrograms
and quaternion scalograms. ¿is approach has �rst been used by Delprat
et al. (1992) in the context of time-frequency analysis of univariate signals. ¿e
same arguments are used in our study, with straightforward adjustments to
the quaternion context.

¿e stationary phase approximation (Dingle, 1973) provides an approxima-
tion to the integral

I = ∫ +∞
−∞ A(t)e jφ(t)dt, (4.121)

where A ∈ C∞ (R;H), which ensures that ∣A(t)∣ →  as t → ±∞, and φ ∈
C∞(R;R). We assume moreover that the function φ is varying much faster
than variations of A.

Let τs be a stationary point of φ such that is φ′(τs) = . Assume that τs is
unique, otherwise the contributions of all stationary points must be summed
up. Rewrite the integral I as

I = (∫ +∞
−∞ A(t)e j(φ(t)−φ(τs))dt) e jφ(τs) , (4.122)

where we have factorized on the right of the exponential due to the noncom-
mutativity of the product inH. Let us introduce a new variable u, and suppose
that φ′′(τs) > . ¿is way, φ(t) − φ(τs) behaves as (t − τs) as t → τs and
write

−u = (φ(t) − φ(τs)) and u ∼τs −(t − τs)φ′′(τs). (4.123)
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¿e integral I then reads

I = [∫ +∞
−∞ A(t(u)) (du

dt
)− e− ju

du] e jφ(τs) . (4.124)

Let us denote Ã(u) = A(t(u)) (du/dt)−. A Taylor series expansion of Ã(u)
leads to

I = ∞∑
k=

Ã(k)()
k!

[∫ +∞
−∞ uk e− ju

du] e jφ(τs) . (4.125)

¿e integral is classical, related to Fresnel oscillatory integrals. It is zero for
odd values of k, and for even values of k one has

∫ +∞
−∞ uk e− ju

du = Γ(k + /)e j π e j π k , (4.126)

so that

I = ∞∑
k=

Ã(k)()(k)! Γ(k + /)e j π e j π k e jφ(τs) . (4.127)

For k = , the �rst termof the expansion is found to be Ã() = /∣φ′′(ts)∣−/A(ts)
so that �nally,

I ≈ √
π A(τs)√∣φ′′(τs)∣ esign(φ

′′(τs)) j π e jφ(τs) . (4.128)

4.c Proofs

¿e proofs of ¿eorem 4.1 and¿eorem 4.2 are very similar to the proofs of
the usual univariate case. We thus follow the presentation given in Mallat
(2008), with the additional requirement of handling properly quaternions
valued expressions due to noncommutativity.

4.C.1 Proof of ¿eorem 4.1

Inversion formula ¿e time-frequency-polarization atoms are of the form
gτ ,ν(t) = g(t − τ) exp( jπνt), where g is a real and symmetric window. Let
us rewrite the Q-STFT coe�cients Fgx(τ, ν) like

Fgx(τ, ν) = ∫ +∞
−∞ x(t)g(t − τ)e− jπνtdt

= (∫ +∞
−∞ x(t)g(t − τ)e jπν(τ−t)dt) e− jπντ

= (x ∗ g,ν)(τ)e− jπντ (4.129)

where g,ν(t) = g(t) exp( jπνt). ¿e QFT of this expression yields

We use that g is symmetric g(−t) = g(t).

∫ +∞
−∞ Fgx(τ, ν)e− jπξτdτ = ∫ +∞

−∞ (x ∗ g,ν)(τ)e− jπ(ξ+ν)τdτ
= X(ξ + ν)G,ν(ξ + ν)
= X(ξ + ν)G(ξ) (4.130)

thanks to the convolution property of the QFT, see Table 1.1. Using Parseval’s
formula with respect to τ yields

∫ +∞
−∞ Fgx(τ, ν)g(t−τ)dτ = 

π ∫
+∞

−∞ [X(ξ + ν)G(ξ)] e jπξtG(ξ)dξ (4.131)
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Since g is real, its QFT is C j-valued and commutes with the complex expo-
nential, i.e. e jπξtG(ξ) = G(ξ)e jπξt . Using that g is a normalized window∥g∥ =  one gets
∫ +∞
−∞ ∫ +∞

−∞ Fgx(τ, ν)g(t − τ)e jπνtdτdν = ∫ +∞
−∞ ∫ +∞

−∞ [X(ξ + ν)G(ξ)]G(ξ)e jπ(ξ+ν)tdξdν
= ∫ +∞

−∞ ∫ +∞
−∞ X(ξ + ν)∣G(ξ)∣e jπ(ξ+ν)tdξdν

= ∫ +∞
−∞ x(t)∣G(ξ)∣dξ

= x(t) , (4.132)

which concludes the proof of the inversion formula (4.22).

Energy and polarization conservation From (4.130) the QFT with respect to
τ of Fgx(τ, ν) is X(ξ + ν)G(ξ). ¿en using the usual Plancherel’s formula in τ
yields

∬ ∣Fgx(τ, ν)∣dτdν =∬ ∣X(ξ + ν)G(ξ)∣dξdν
= ∫ ∣X(ξ)∣dξ
= ∥x∥ . (4.133)

which concludes the proof of the energy conservation property (4.23). ¿e
polarization conservation property (4.24) is proven along the same lines using
the conservation of polarization properties, see Eq. (1.41).

4.C.2 Proof of ¿eorem 4.2.

Let ψ ∈ H(R;C j), i.e. ψ is C j-valued and analytic. Suppose also that ψ is
admissible,

∫ +∞


∣Ψ(ν)∣
ν

dν < +∞ . (4.134)

We use the notation ψs(t) = s−/ψ(t/s). We �rst prove a preliminary result.
Compute the QFT with respect to τ of the Q-CWT coe�cientsWx(τ, s):
∫ +∞
−∞ Wx(τ, s)e− jπξτdτ = ∫ +∞

−∞ ∫ +∞
−∞ x(t)ψs(t − τ)e− jπξτdτdt

= ∫ +∞
−∞ x(t) (∫ +∞

−∞ ψs(t − τ)e− jπξτdτ)dt
= (∫ +∞

−∞ x(t)e− jπξtdt)Ψs(ξ)
= X(ξ)²∈H

Ψs(ξ)²∈C j

(4.135)

Now, since Ψ(ξ) =  for ξ <  and that X+(ξ) = X(ξ) for ξ ≥ , we get from
(4.135) that for all ξ

X(ξ)Ψs(ξ) = 

X+(ξ)Ψs(ξ), (4.136)

and therefore by inverse QFT of (4.136)

Wx(τ, s) = 

Wx+(τ, s). (4.137)
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Inversion formula For simplicity, we prove the inversion formula for the case
of a quaternion embedding signal x+. Introduce an intermediate quantity c(t)

c(t) = ∫ +∞
−∞ ∫ +∞


Wx+(τ, s)ψs(t − τ)dτdss (4.138)

Taking the QFT of c(t) yields
C(ξ) = ∫ +∞

−∞ (∫ +∞
−∞ ∫ +∞


Wx+(τ, s)ψs(t − τ)dτdss ) e− jπξtdt

= ∫ +∞
−∞ ∫ +∞


Wx+(τ, s) (∫ +∞

−∞ ψs(t − τ)e− jπξtdt)dτdss
= ∫ +∞

−∞ ∫ +∞


Wx+(τ, s)Ψs(ξ)e− jπξτdτdss
= ∫ +∞

−∞ ∫ +∞


Wx+(τ, s)e− jπξτΨs(ξ)dτdss
= ∫ +∞


X+(ξ)Ψs(ξ)Ψs(ξ)dss (4.139)

One gets

C(ξ) = X+(ξ)∫ +∞


∣Ψ(ν)∣
ν

dν = X+(ξ)Cψ . (4.140)

Since the wavelet is admissible x+(t) and C−ψ c(t) have the same quaternion
Fourier transforms. ¿is proves the inversion formula (4.39):

x+(t) = 
Cψ ∫

+∞
−∞ ∫ +∞


Wx+(τ, s)ψs(t − τ)dτdss . (4.141)

Conservation of energy and polarization According to Plancherel’s formula
(1.40) for the energy


Cψ ∫

+∞
−∞ ∫ +∞


∣Wx+(τ, s)∣dτdss = 

Cψ ∫
+∞

−∞ ∫ +∞


∣X+(ξ)Ψs(ξ)∣dξdss
(4.142)

Since the wavelet is normalized ∥ψ∥L =  this expression can be simpli�ed as

Cψ ∫

+∞
−∞ ∫ +∞


∣Wx+(τ, s)∣dτdss = ∫ +∞

−∞ ∣X+(ξ)∣dξ = ∥x+∥ (4.143)

which proves (4.40). ¿e conservation of polarization properties (4.41) is
obtained following the same lines.
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terization of gravitational waves polarizations emitted by precessing compact
binaries. We demonstrate that the Stokes parameters computed from the
quaternion embedding of the (complex) gravitational waveform provide new
and relevant nonparametric observables for the diagnostic of precession. ¿ey
allow to �nely decipher the geometric con�guration of the source, which would
be very di�cult to obtain otherwise.

¿e material presented in this chapter is the �rst outcome from a collab-
oration with Eric Chassande-Mottin and Fangchen Feng, both with the As-
troparticule and Cosmologie laboratory in Paris. It has been presented at the
international conference EUSIPCO 2018 (Flamant et al., 2018)

� J. Flamant, P. Chainais, E. Chassande-Mottin, F. Feng, and N. Le Bihan. 2018.
“Non-parametric characterization of gravitational-wave polarizations.” In
26th European Signal Processing Conference (EUSIPCO), 2018, 1–5. September

¿is chapter has been essentially adapted from (Flamant et al., 2018). Section
5.1 introduces gravitational waves and precessing binaries. Section 5.2 describes
the modeling of the gravitational wave emitted by precessing binaries. Section
5.3 shows on a special case how Stokes parameters encode dynamical precession
e�ects. We also discuss the generic case. Section 5.4 �nally illustrate the
approach on simulated gravitational waveforms in the noiseless and realistic
noise settings. Appendices gather technical details and computations.

5.1 Gravitational waves and precessing binaries

A new kind of astronomy is born with the �rst advanced LIGO and advanced
Virgo discoveries (Abbott et al., 2017a, 2017b, 2017c, 2016a, 2016b). ¿ose
gravitational wave detectors allow the observation of astrophysical systems,
such as binary black-holes, that have so far escaped conventional astronomy
based on electromagnetic radiation.

propagation time, the events have a combined signal-to-
noise ratio (SNR) of 24 [45].
Only the LIGO detectors were observing at the time of

GW150914. The Virgo detector was being upgraded,
and GEO 600, though not sufficiently sensitive to detect
this event, was operating but not in observational
mode. With only two detectors the source position is
primarily determined by the relative arrival time and
localized to an area of approximately 600 deg2 (90%
credible region) [39,46].
The basic features of GW150914 point to it being

produced by the coalescence of two black holes—i.e.,
their orbital inspiral and merger, and subsequent final black
hole ringdown. Over 0.2 s, the signal increases in frequency
and amplitude in about 8 cycles from 35 to 150 Hz, where
the amplitude reaches a maximum. The most plausible
explanation for this evolution is the inspiral of two orbiting
masses, m1 and m2, due to gravitational-wave emission. At
the lower frequencies, such evolution is characterized by
the chirp mass [11]

M ¼ ðm1m2Þ3=5

ðm1 þm2Þ1=5
¼ c3

G

!
5

96
π−8=3f−11=3 _f

"
3=5

;

where f and _f are the observed frequency and its time
derivative and G and c are the gravitational constant and
speed of light. Estimating f and _f from the data in Fig. 1,
we obtain a chirp mass of M≃ 30M⊙, implying that the
total mass M ¼ m1 þm2 is ≳70M⊙ in the detector frame.
This bounds the sum of the Schwarzschild radii of the
binary components to 2GM=c2 ≳ 210 km. To reach an
orbital frequency of 75 Hz (half the gravitational-wave
frequency) the objects must have been very close and very
compact; equal Newtonian point masses orbiting at this
frequency would be only ≃350 km apart. A pair of
neutron stars, while compact, would not have the required
mass, while a black hole neutron star binary with the
deduced chirp mass would have a very large total mass,
and would thus merge at much lower frequency. This
leaves black holes as the only known objects compact
enough to reach an orbital frequency of 75 Hz without
contact. Furthermore, the decay of the waveform after it
peaks is consistent with the damped oscillations of a black
hole relaxing to a final stationary Kerr configuration.
Below, we present a general-relativistic analysis of
GW150914; Fig. 2 shows the calculated waveform using
the resulting source parameters.

III. DETECTORS

Gravitational-wave astronomy exploits multiple, widely
separated detectors to distinguish gravitational waves from
local instrumental and environmental noise, to provide
source sky localization, and to measure wave polarizations.
The LIGO sites each operate a single Advanced LIGO

detector [33], a modified Michelson interferometer (see
Fig. 3) that measures gravitational-wave strain as a differ-
ence in length of its orthogonal arms. Each arm is formed
by two mirrors, acting as test masses, separated by
Lx ¼ Ly ¼ L ¼ 4 km. A passing gravitational wave effec-
tively alters the arm lengths such that the measured
difference is ΔLðtÞ ¼ δLx − δLy ¼ hðtÞL, where h is the
gravitational-wave strain amplitude projected onto the
detector. This differential length variation alters the phase
difference between the two light fields returning to the
beam splitter, transmitting an optical signal proportional to
the gravitational-wave strain to the output photodetector.
To achieve sufficient sensitivity to measure gravitational

waves, the detectors include several enhancements to the
basic Michelson interferometer. First, each arm contains a
resonant optical cavity, formed by its two test mass mirrors,
that multiplies the effect of a gravitational wave on the light
phase by a factor of 300 [48]. Second, a partially trans-
missive power-recycling mirror at the input provides addi-
tional resonant buildup of the laser light in the interferometer
as a whole [49,50]: 20Wof laser input is increased to 700W
incident on the beam splitter, which is further increased to
100 kW circulating in each arm cavity. Third, a partially
transmissive signal-recycling mirror at the output optimizes

FIG. 2. Top: Estimated gravitational-wave strain amplitude
from GW150914 projected onto H1. This shows the full
bandwidth of the waveforms, without the filtering used for Fig. 1.
The inset images show numerical relativity models of the black
hole horizons as the black holes coalesce. Bottom: The Keplerian
effective black hole separation in units of Schwarzschild radii
(RS ¼ 2GM=c2) and the effective relative velocity given by the
post-Newtonian parameter v=c ¼ ðGMπf=c3Þ1=3, where f is the
gravitational-wave frequency calculated with numerical relativity
and M is the total mass (value from Table I).

PRL 116, 061102 (2016) P HY S I CA L R EV I EW LE T T ER S week ending
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061102-3

Figure 5.1: Estimated gravitational wave
strain recorded at the Hanford detector dur-
ing the �rst detection event GW150914. Insets
show the binary black-hole coalescence. Re-
produced from (Abbott et al., 2016b) under
the Creative Commons licence.

Fig. 5.1 displays the estimated gravitational wave strain recorded at the
Hanford detector during the �rst detection event GW150914. Insets on top
of Fig. 5.1 show the binary black-hole coalescence. Gravitational waves carry
information about the bulk motion of the emitting system relative to the
observer: e.g. the wave frequency is related to the orbital or spinning period of
the source mass distribution. ¿e resulting ‘‘power-law chirp’’-like waveform
is characteristic of gravitational waves emitted by coalescing compact binaries
(¿orne, 1987).

Gravitational waves are polarized and admit two orthogonal polarizations,
denoted by h+ and h×. ¿ey form a basis similar to the linear horizontal and
vertical polarizations of electromagnetic waves. Gravitation-wave detectors
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do not measure the two gravitational-wave polarizations independently but
rather a linear mixture of them. However observations from two or more non-
coaligned detectors allow to reconstruct the two gravitational-wave polariza-
tions. We assume here that h+ and h× from a binary merger are reconstructed
from LIGO and Virgo observations, as explained e.g. in Feng et al. (2018).

¿e amplitude and phase relationship between the two polarizations com-
ponents h+ and h× predicted by general relativity is related to the source
orientation with respect to the observer. ¿e evolution of the polarization
pattern thus provides evidence for changes in the orientation due to precession
or nutation of the system. Precession of the binary orbital plane is an important
information as it indicates that at least one binary component has a large spin,
misaligned with the orbital angular momentum. In turn, this provides decisive
hints on how the binary has formed.

¿e gravitational wave strain h is usually written as the complex signal
h(t) = h+(t) − ih×(t), which makes it interpretable as a bivariate signal.
Using the time-frequency analysis tools developed in Chapter 4 we will be able
to characterize the instantaneous polarization state of h(t). ¿e associated
instantaneous Stokes parameters provide a set of new and nonparametric
observables that characterize precession. ¿is contrasts with conventional
approaches, where the presence of precession in the detected signal is classically
tested by �tting the data with waveforms obtained from precessing binary
physical models. ¿is procedure does not test precession e�ects alone, but
rather a full description of the binary orbital dynamics, which thus includes
many other dynamical e�ects. ¿e approach described in the following is not
bound to any dynamical model and hence is very generic.

5.2 Modeling the emitted gravitational waveform

Following (Babak, Taracchini, and Buonanno, 2017), we assume quasi-circular
orbits and introduce a set of two frames to model the sensing of gravitational
waves. ¿e modeling of the GW signal from the precessing binaries is usually
done in two steps. First, the computation of the GW modes is done in the
frame P instantaneously co-precessing with the binary orbital plane. ¿ose
modes are the result of the decomposition of the signal in the spin −weighted
spherical harmonics. In the second step, the modes are rotated to the inertial
frame I associated with the binary con�guration at some �ducial time (which
is usually associated with the time when the signal enters the observational
band of the detector). ¿is inertial frame is then associated with the position
and orientation of the GW detectors (LIGO, Virgo).

In the precessing frame attached to the binary, the complex gravitational
wave strain hP = hP+− ihP× can be decomposed into spherical harmonics hPℓm(t)
such that

hP(t;Ω) = ∞∑
ℓ=

ℓ∑
m=−ℓ h

P
ℓ ,m(t)−Yℓ ,m(Ω) (5.1)

where Ω is the (time-varying) angle of the observer in the precessing frame
and −Yℓ ,m are the -2-spin weighted spherical harmonics. See Appendix 5.A.1 for explicit expressions of

-2-spin weighted spherical harmonics.¿e key idea of Babak, Taracchini, and Buonanno (2017) is that the gravita-
tional wave modes in the precessing frame resemble that of a non-precessing
binary. ¿e dominant modes correspond to (ℓ = ,m = ±) and they can be
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Figure 5.2: (a) ¿e relation between precess-
ing and inertial frames is parameterized by
Euler angles α, β, γ in the zyz-convention.
Spherical coordinates (ι, φ) denote the po-
sition of the observer in the inertial frame.
(b) Waveforms of the two polarizations h+
and h× for a strongly precessing binary sys-
tem formed by a neutron-star and a 10-solar
mass black-hole with misaligned spin s =
(., ., ). ¿e binary is face-on and lo-
cated at a distance of 10 Mpc. (c) Recon-
structed polarizations from simulated LIGO
and Virgo observations of the same binary
system, see Feng et al. (2018) .

approximated as
hP,±(t) = a(t)e∓iΦ(t) . (5.2)

While Babak, Taracchini, and Buonanno (2017) derives explicit expressions for
the instantaneous amplitude a(t) and phase Φ(t) by resolving the binary
orbital motion, we do not assume here any speci�c evolution for a(t) and
Φ(t). We only note that the instantaneous a(t) typically varies much slowly
than the instantaneous phase Φ(t) – this arises from the dynamics of the
binary orbital motion.

¿e modes are rotated from the precessing frame P to the inertial frame
labelled with I using the (time-dependent) Euler angles α, β and γ, see Fig. 5.2a.
¿is change of frame involves the following correspondence between spherical
harmonics coe�cients of the gravitational waves expressed in each frame:

hIℓ ,m = ℓ∑
m′=−ℓ h

P
ℓ ,m′ Dℓ ,∗

m′m(−γ,−β,−α) (5.3)

where Dℓ
m′m are the Wigner-D functions (Rose, 1957).¿e superscript ∗ here

denotes complex conjugation. When the binary does not precess, the frames See Appendix 5.A.2 for explicit expressions
of Wigner-D functions.P and I coincide and α = β = γ = . Since there are only ℓ = modes in the

frame P , only ℓ = modes will contribute in the frame I . However, allmmodes
contribute to the observed signal, which therefore reads

hI(t; ι, φ) = ∑
m=− h

I
,m(t)−Y,m(ι, φ) (5.4)

where (ι, φ) are the spherical coordinates of the observer . In the geocentric frame, ι therefore corre-
sponds to the inclination of the binary orbital
plane with the line of sight.

By combining Eqs (5.1–5.4), we can express the two polarizations h+ and h×
of the incident gravitational wave in the observation frame as a generic function
of the binary orbital dynamics and the orientation of the binary. For a strongly
precessing binary system composed of a neutron star and a 10 solar-mass
black-hole with misaligned spin s = (., ., ), this results in the waveforms
shown in Fig. 5.2b. Precession causes changes in the orientation of the binary’s
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orbital plane with respect to the line of sight, that leads to the characteristic
amplitude modulations clearly seen on the waveform envelop. It also leads
to less obvious interrelationships between the ‘‘+’’ and ‘‘×’’ phases that we
intend to discriminate with the time-frequency analysis tools introduced in
Chapter 4.

5.3 Stokes parameters characterization of precession

¿e gravitational wave strain in the inertial frame hI(t; ι, φ) forms an non-
stationary bivariate signal. Its instantaneous polarization attributes can be
obtained from its its quaternion embedding, as described in Section 4.1. ¿is
set of descriptors provides a straightforward characterization of polarization
evolution for precessing binaries. We consider �rst the special case of face-
on (ι, φ) = (, ) binaries. ¿e generic case (ι, φ) ≠ (, ) is discussed
a erwards.

¿e special case of face-on binaries Consider the observed signal (5.4) ob-
tained for face-on (ι, φ) = (, ) binaries, that is when the observer is in
direction zI . From calculations detailed in Appendix 5.B, the waveform (5.4)
is explicitly given by (5.18), which further simpli�es in the face-on case as

hI(t) = ka(t)e−iα(t) [( + cos β(t)) cosΦγ(t) − i cos β(t) sinΦγ(t)] (5.5)

where k >  is a constant and Φγ(t) = Φ(t) + γ(t). For most cases of astro-
physical relevance the orbital dynamics can be described by osculating orbits
where the precession timescale is much longer than the orbital timescales. ¿is
means that Euler angles [α(t), β(t), γ(t)] vary much slowly than the phase
Φγ(t). It thus allows a direct1 identi�cation of instantaneous polarization 1. More technically, we assume that the

conditions of the Bedrosian theorem for bi-
variate signals (seeAppendix 4.A) are ful�lled,
and that the instantaneous phase Φγ(t) can
be factorized as (4.117). In practice, the dy-
namics of the physical model ensure that
these conditions are ful�lled, at least in the
inspiral (prior to merger) part. ¿ese condi-
tions allow a direct identi�cation of instanta-
neous parameters from (5.5).

parameters by comparing (5.5) with the bivariate AM-FMmodel (4.13):

a(t) = ka(t) [( + cos β(t)) +  cos β(t)]/ (5.6)

θ(t) = −α(t) (5.7)

χ(t) = − arctan  cos β(t)
 + cos β(t) (5.8)

φ(t) = Φ(t) + γ(t) (5.9)

Eqs. (5.6)–(5.9) highlights the direct relation between standard descriptors
of bivariate signals and GW parameters. In particular, Eqs. (5.7) and (5.8)
explicitly show how precessing binaries generate polarization modulation
e�ects on the observed signal hI(t). Remarkably, the face-on case features
a nice decoupling between orientation θ(t) – depending only on α(t) and
ellipticity χ(t) – depending only on β(t). Note that γ(t) only a�ects the phase
φ(t) and does not produce polarization modulation e�ects.
General case: arbitrary observer position In the general case (ι, φ) ≠ (, ),
the direct identi�cation of instantaneous parameters [a(t), θ(t), χ(t), φ(t)]
from the expression of hI(t) is no longer straightforward. ¿is is due to the
complexity of the expression of hI(t), see for instance Eq. (5.18). Rather,
precession and polarization modulation e�ects in hI(t) can be easily char-
acterized using instantaneous Stokes parameters. In particular, normalized
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Stokes parameters S/S , S/S , S/S provide a convenient description of the
instantaneous polarization state of hI(t). ¿eir explicit expressions can be
obtained from the quaternion embedding of the generic model (5.4). ¿e
quaternion embedding hIH is computed like To disambiguate with the gravitational wave

‘‘+’’ polarization we use the notation hH in-
stead of h+ (as used in Chapter 4) to denote
the quaternion embedding of a complex sig-
nal h.

hIH(t) = hI(t) +H {hI(t)} j . (5.10)

¿en as explained in Section 4.1, the �rst instantaneous Stokes parameter is
given by S(t) = ∣hIH(t)∣. It encodes the instantaneous energy of the signal.
¿e three remaining Stokes parameters describe the instantaneous polarization
state and are given by hH(t) jhH(t) = iS(t) + jS(t) + kS(t). Expressions
are given in Appendix 5.C.2. ¿ese are highly voluminous, but nonetheless
highlight a direct connection between precession parameters, Euler angles
α, β, and the instantaneous polarization state of hI(t). Note that γ only a�ects
the instantaneous phase of hI(t), as for the special case of face-on binaries.

5.4 Application to precession diagnosis

We illustrate our �ndings on simulated gravitational waveforms from precess-
ing binaries. Simulations are carried out using the generic SEOBNRv3 model
of a (strongly) precessing black-hole/neutron star binary (Pan et al., 2014).
¿is precessing case is somehow extreme and is not favored by current binary
formation models. However it is not excluded and remains physically possible.
Above all, waveforms presented in Fig. 5.2b serve our illustrative purposes.
Fig. 5.2b depicts the two polarizations h+(t) and h×(t) of a gravitational wave
emitted by this binary system.

Stokes parameters provide a straightforward diagnosis of precession. ¿e
theoretical relation between normalized Stokes parameters and Euler angles
can be explicitly derived, see e.g. expressions (5.26)–(5.29). Eqs (5.7)-(5.8)
give the corresponding geometric parameters for the case of face-on binaries.
For non-precessing binaries, Euler angles α(t), β(t), γ(t) are identically zero.
In this case, the instantaneous polarization state of hI(t) is constant since
Stokes parameters remain constant: this can be directly checked from (5.26)–
(5.29) Since they are readily computed from the quaternion embedding of the
observed signal hI(t), they provide a useful and sensitive tool for the analysis
of precession e�ects.

Fig. 5.3a shows the instantaneous normalized Stokes parameters obtained
from the quaternion embedding hH(t) of the bivariate signal hI(t) = h+(t) −
ih×(t) with waveforms presented in Fig. 5.2b. ¿ese gravitational waveforms
correspond to a strong precessing binary observed face-on (ι, φ) = (, ).
¿e non-parametric estimates of Stokes parameters (thin white lines) from
simulated hI(t) close to perfectly match the values expected from the ex-
plicit physical model involving Euler angles (thick blue lines): the 2 curves
are superposed. ¿e presence of oscillations indicates that the instantaneous
polarization state of hI(t) is modulated. ¿is polarization modulation is di-
rectly explained by the precession dynamics. In particular for face-on binaries
S(t)/S(t) is a function of the precession angle β(t) only, see (5.33).
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Figure 5.3: (a) Non-parametric estimates of
normalized instantaneous Stokes parameters
S/S , S/S and S/S (thin white lines)
computed from computed hI(t) depicted
in Fig. 5.2b. ¿ey close to perfectly match
the values expected from the explicit physi-
cal model involving Euler angles (thick blue
lines). Oscillations characterize the dynamics
of precessing binary. (b) Non-parametric esti-
mates of normalized instantaneous Stokes pa-
rameters S/S , S/S and S/S (thin white
lines) obtained from the reconstructed polar-
izations shown in Fig. 5.2c. Expected values
from the explicit physical model involving
Euler angles (thick blue lines) are depicted
for comparison.

Fig. 5.3b presents the normalized Stokes parameters obtained for the bi-
variate signal hI(t) = h+(t) − ih×(t) using reconstructed polarizations de-
picted in Fig. 5.2c. ¿e polarization reconstruction from LIGO/Virgo obser-
vations requires solving an inverse problem. Here, this is performed using
sparsity-promoting regularization techniques (LASSO) presented in Feng et
al. (2018). ¿e reconstructed polarizations are obtained from observations of
the black-hole/neutron-star binary system considered in Fig. 5.2c in simulated
LIGO/Virgo noise using sensitivity curves comparable to that of the last O2
science run. Stokes parameters are extracted from the ridge of a quaternion
continuous wavelet transform presented in Section 4.2.2. ¿is is necessary in
order to overcome the remaining noise in reconstructed polarizations in Fig.
5.2c, which hinders the direct use of the quaternion embedding method. On
the ridge, one approximately recovers the quaternion embedding of the noise-
less signal hI(t), as explained in Section 4.3. ¿e extracted ridge corresponds
to the end of the inspiral (−. s ≤ t ≤ ) since SNR increases and becomes
large enough as the binary comes close to the merger. ¿e good agreement be-
tween reconstructed normalized Stokes parameters and their explicit physical
model involving Euler angles (thick blue lines) demonstrate the relevance of
use of Stokes parameters to diagnosis and characterize precession.

5.5 Conclusion

We have shown that Stokes parameters estimated from the observed gravita-
tional wave directly connect waveform features to dynamical properties of the
source. When applied to the case of coalescing compact binaries, they permit
to test the presence of precession of the orbital plane prior to the merger (when
the binary collapses). Most importantly these new observables are non para-
metric and bring robust information to provide a support tomore conventional
waveform �tting procedures based on a comprehensive and detailed model of
the binary dynamics. In some sense, Stokes parameters are a reparametrization
that directly encodes orbital properties of the source which are very di�cult
to obtain individually. In the case of the observation of a simulated simple
face-on binary, with dominating ℓ = ±modes, our results show a remarkable
agreement between theoretical predictions and numerical estimations. ¿ey
can be extended to arbitrary binary orientations and higher-order modes. ¿is
approach could also yield the detailed physical parameters from the Stokes
observables by reverting a system of non-linear equations.
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¿ese results will be presented at an international conference (Flamant
et al., 2018). Together with the reconstruction of polarizations described in
Feng et al. (2018), it provides a complete procedure to analyze polarization-
related e�ects in experimental data from LIGO and Virgo detectors. It has the
potential of revealing any dynamical e�ect that a�ects the gravitational-wave
polarization pattern, i.e., not only precession but also e.g., orbital eccentricity.
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Appendices

5.a Harmonic analysis in spherical coordinates

5.A.1 Spin weighted spherical harmonics

¿e s-spin-weighted spherical harmonics functions sYℓ ,m form a basis for
square integrable signals on the sphere S. ¿ey are de�ned in e.g. Goldberg
et al. (1967). For our purpose we only need their expressions for −Y,m , m =−,−, , , :

−Y,−(ι, φ) = 


√

π
( − cos ι)e−iφ , −Y,−(ι, φ) = 



√

π
( − cos ι) sin ιe−iφ ,

−Y,(ι, φ) =
√



√

π
sin ι ,

−Y,(ι, φ) = 


√

π
( + cos ι) sin ιe iφ , −Y,(ι, φ) = 



√

π
( + cos ι)eiφ

(5.11)

5.A.2 Wigner-D functions

¿eWigner-D functions Dℓ
m′m form a basis for square integrable functions on

the rotation group SO(). ¿eir generic expression is given in e.g. Rose (1957)
or Varshalovich, Moskalev, and Khersonskii (1988). For our purpose, we only
need the D

m′m ’s functions, with m′ = ± and m = −,−, , , , as given in
Table 5.1 below.

m
2 1 0 -1 -2

m
′ 2 ( +cos β

 ) e−i(α+γ) −  +cos β
 sin βe−i(α+γ) √


 sin

 βe−iα −  −cos β
 sin βe i(−α+γ) ( −cos β

 ) ei(−α+γ)
-2 ( −cos β

 ) ei(α−γ)  −cos β
 sin βe i(α−γ) √


 sin

 βe iα  +cos β
 sin βe i(α+γ) ( +cos β

 ) ei(α+γ)
Table 5.1: Wigner-D functionsD

m′m(α, β, γ)
for m′ = ± and m = −,−, , , .

5.b Gravitational waveform in the inertial frame

5.B.1 Calculation of the emission modes in the inertial frame

We give explicit expressions for modes hIm in the inertial frame using the
correspondence (5.3) with modes hPm in the precessing frame. Recall that only
m = ±modes are assumed to be present in the P frame, such that hP− = hP ,∗

and

hP,±(t) = a(t)e∓iΦ(t) . (5.12)

For readability we omit time-dependence in the following calculations.
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hI-mode

hI = hP−D,∗−(−γ,−β,−α) + hPD,∗
 (−γ,−β,−α)

= hP ,∗ e
−i(α−γ) [  − cos β


] + hPe−i(α+γ) [  + cos β

]

= e−iα


(Re [hPe−iγ] ( + cos β) + iImi [hPe−iγ]  cos β)
= ae−iα


(( + cos β) cos(Φ + γ) − i cos β sin(Φ + γ)) (5.13)

hI-mode

hI = hP−D,∗−(−γ,−β,−α) + hPD,∗
 (−γ,−β,−α)

= −hP ,∗ e
i(γ−α) sin β  − cos(β)


+ hPe−i(γ+α) sin β  + cos(β)= e−iα sin β (cos βRe [hPe−iγ] + iImi [hPe−iγ])= ae−iα sin β (cos β cos(Φ + γ) − i sin(Φ + γ)) (5.14)

hI-mode

hI = hP−D,∗−(−γ,−β,−α) + hPD,∗
 (−γ,−β,−α)

= hP ,∗

√


sin βe iγ + hP

√


sin βe−iγ

= a
√



sin β cos(Φ + γ) (5.15)

hI−-mode
hI− = hP−D,∗−−(−γ,−β,−α) + hPD,∗

−(−γ,−β,−α)
= −hP ,∗ e

i(γ+α) sin β  + cos(β)


+ hPe i(−γ+α) sin β  − cos(β)= e iα sin β (− cos βRe [hPe−iγ] + iImi [hPe−iγ])= ae iα sin β (− cos β cos(Φ + γ) − i sin(Φ + γ)) (5.16)

hI−-mode
hI− = hP−D,∗−−(−γ,−β,−α) + hPD,∗

−(−γ,−β,−α)
= hP ,∗ e

i(α+γ) [  + cos β


] + hPei(α−γ) [  − cos β
]

= eiα


(Re [hPe−iγ] ( + cos β) − iImi [hPe−iγ]  cos β)

= aeiα


(( + cos β) cos(Φ + γ) + i cos β sin(Φ + γ)) (5.17)

5.B.2 Waveform expression

Plugging Eqs. (5.13) – (5.17) into the -2-spin weighted spherical harmonic
expansion (5.4) we obtain the waveform hI = hI+ − ihI× in the inertial frame for
a �xed observer speci�ed by angular coordinates (ι, φ). For ease of notation,
we introduce Φγ = Φ + γ. Tedious calculations yield to
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hI+ − ihI× = aeiα


(( + cos β) cos(Φγ) + i cos β sin(Φγ)) 

√

π
( − cos ι)e−iφ

+ ae iα sin β (− cos β cos(Φγ) − i sin(Φγ)) 
√


π
( − cos ι) sin ιe−iφ

+ a
√



sin β cos(Φγ)

√



√

π
sin ι

+ ae−iα sin β (cos β cos(Φγ) − i sin(Φγ)) 
√


π
( + cos ι) sin ιe iφ

+ ae−iα


(( + cos β) cos(Φγ) − i cos β sin(Φγ)) 
√


π
( + cos ι)eiφ .

Reorganizing terms yields

hI+ − ihI× = a 
√


π
{ ei(α−φ)


( + cos β)( − cos ι) − e i(α−φ) sin β cos β( − cos ι) sin ι

+ sin β sin ι + e−i(α−φ) sin β cos β( + cos ι) sin ι + e−i(α−φ)


( + cos β)( + cos ι)} cosΦγ

+ ia 
√


π
{ei(α−φ) cos β( − cos ι) − e i(α−φ) sin β( − cos ι) sin ι

−e−i(α−φ) sin β( + cos ι) sin ι − e−i(α−φ) cos β)( + cos ι)} sinΦγ . (5.18)

5.c Instantaneous Stokes parameters

To identify polarization modulation e�ects in the waveform expression (5.18)
for an arbitrary observer described by spherical coordinates (ι, φ) we �rst
compute its quaternion embedding hIH(t). ¿en instantaneous Stokes parame-
ters are directly obtained from quantities ∣hIH∣ and hIH jhIH.

5.C.1 Quaternion embedding of the emitted waveform

For simplicity we assume that: (i) Euler angles [α, β, γ] as well as a vary much
slowly that the instantaneous phase Φ, so that Bedrosian theorem’s can be
applied and (ii) the phaseΦγ can be factorized as (4.117). ¿e �rst condition en-
sures that any su�ciently smooth function f , one hasH{ f (α, β, γ, a) cosΦγ} =
f (α, β, γ, a)H{cosΦγ} where H{⋅} is the Hilbert transform. ¿e second
condition yieldsH{cosΦγ} = sinΦγ .

¿e quaternion embedding hIH of hI given by (5.18) reads

hH = a 
√


π
{ ei(α−φ)


( + cos β)( − cos θ) − e i(α−φ) sin β cos β( − cos ι) sin ι

+ sin β sin ι + e−i(α−φ) sin β cos β( + cos ι) sin ι + e−i(α−φ)


( + cos β)( + cos ι)
−iei(α−φ) j cos β( − cos ι) + ie i(α−φ) j sin β( − cos ι) sin ι
+ie−i(α−φ) j sin β( + cos ι) sin ι + ie−i(α−φ) cos β( + cos ι) j} e jΦγ (5.19)

¿is can be further simpli�ed as

hH = a 
√


π
(U + iV)e jΦγ
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where

U = cos[(α − φ)]( + cos β)( + cos ι) +  sin β sin ι + cos(α − φ) sin β sin ι
+ j ( sin[(α − φ)] cos β( + cos ι) +  sin(α − φ) sin β sin ι) (5.20)

V = − sin[(α − φ)]( + cos β) cos ι −  sin(α − φ) sin β sin ι
+ j ( cos[(α − φ)] cos β cos ι +  cos(α − φ) sin β sin ι) . (5.21)

5.C.2 Stokes parameters expressions

Stokes parameters are obtained like:

S = a 



π
(∣U ∣ + ∣V ∣) (5.22)

S = a 



π
(∣U ∣ − ∣V ∣) (5.23)

S = a  πRe{UV} (5.24)

S = a  π Im j{UV} (5.25)

Plugging expressions (5.20)–(5.21) for U and V one gets the following (awful)
expressions for Stokes parameters:

S = a 



π
{((cos (β) + ) sin (α − φ) cos (ι) + sin (β) sin (ι) sin (α − φ))

+ ((cos (ι) + ) sin (α − φ) cos (β) + sin (β) sin (ι) sin (α − φ))
+ (sin (β) sin (ι) cos (α − φ) + cos (β) cos (ι) cos (α − φ))
+ ((cos (β) + ) (cos (ι) + ) cos (α − φ) +  sin (β) sin (ι) + sin (β) sin (ι) cos (α − φ))} (5.26)

S = a 



π
{− ((cos (β) + ) sin (α − φ) cos (ι) + sin (β) sin (ι) sin (α − φ))

+ ((cos (ι) + ) sin (α − φ) cos (β) + sin (β) sin (ι) sin (α − φ))
− (sin (β) sin (ι) cos (α − φ) + cos (β) cos (ι) cos (α − φ))
+ ((cos (β) + ) (cos (ι) + ) cos (α − φ) +  sin (β) sin (ι) + sin (β) sin (ι) cos (α − φ))} (5.27)

S = a 



π
{ (− (cos (β) + ) sin (α − φ) cos (ι) −  sin (β) sin (ι) sin (α − φ))

× ((cos (β) + ) (cos (ι) + ) cos (α − φ) +  sin (β) sin (ι) + sin (β) sin (ι) cos (α − φ))
+ ( (cos (ι) + ) sin (α − φ) cos (β) +  sin (β) sin (ι) sin (α − φ))
× ( sin (β) sin (ι) cos (α − φ) +  cos (β) cos (ι) cos (α − φ))} (5.28)

S = a 



π
{ (− (cos (β) + ) sin (α − φ) cos (ι) −  sin (β) sin (ι) sin (α − φ))

× ( (cos (ι) + ) sin (α − φ) cos (β) +  sin (β) sin (ι) sin (α − φ))
− ( sin (β) sin (ι) cos (α − φ) +  cos (β) cos (ι) cos (α − φ))
× ((cos (β) + ) (cos (ι) + ) cos (α − φ) +  sin (β) sin (ι) + sin (β) sin (ι) cos (α − φ))} (5.29)
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In particular, for the case of face-on (ι, φ) = (, ) binaries :
S = a 



π
( sin (β) −  sin (β) + ) (5.30)

S
S

= (− cos (β) + ) cos (α)
 sin (β) −  sin (β) +  (5.31)

S
S

= − (cos (β) − ) sin (α)(cos (β) − ) +  cos (β) +  (5.32)

S
S

= −  (cos (β) + ) cos (β)
cos (β) +  cos (β) +  (5.33)

In particular, remark that S/S depend only on the precession angle β.



Conclusion

¿is thesis has developed a new generic framework for the analysis and �lter-
ing of bivariate signals. ¿e proposed approach relies on two key ingredients.
Just like univariate or real-valued signals are naturally embedded in the set of
complex numbers thanks to the Fourier transform, bivariate signals – viewed
as complex-valued signals – are naturally embedded into the set of quaternions
H. ¿en the de�nition of a dedicated quaternion Fourier transform enables a
meaningful spectral representation of bivariate signals. It permits the de�ni-
tion of many standard signal processing quantities such as spectral densities,
linear �lters or spectrograms that simultaneously feature: (i) straightforward
physical and geometric interpretations, (ii)mathematical guarantees and (iii)
computationally fast numerical implementations.

a general approach for the analysis and filtering
of bivariate signals

Chapter 1 presented the two key ingredients of the proposed framework:
quaternions and the quaternion Fourier transform. We studied the generic
properties of the quaternion Fourier transform (QFT). ¿ese are very similar
to properties of the usual Fourier transform (FT) (linearity, shi s, di�erentia-
tion, etc.) but they sometimes require special care due to noncommutativity
of the quaternion product. Two fundamental theorems constitute the main
contributions of this chapter. ¿e generalized Parseval-Plancherel ¿eorem 1.1,
which states that two quantities are preserved: the usual energy and an addi-
tional geometric quantity. ¿eorem 1.2 gives the Gabor-Heisenberg uncertainty
principle, which shows that the QFT obeys usual time-frequency tradeo�s.
¿e QFT features a computationally e�cient numerical implementation using
two standard FFTs.

u

v

x(t) = u(t) + iv(t)

χ

θ

φ

•

|a| c
os

χ

|a| sin |χ|

⟲ χ > 0

⟳ χ < 0

Figure 5.4: A monochromatic bivariate sig-
nal x(t) has a direct expression in terms of
natural ellipse parameters a, θ , χ and φ, see
Section 1.3.

As a �rst example of the high potential of the approach, we showed that the
QFT naturally decomposes bivariate signals into a sum of polarized monochro-
matic bivariate signals. ¿e use of the Euler polar form of quaternions directly
yields natural ellipse parameters. ¿e quaternion-valued spectrum of bivari-
ate signals additionally exhibits Hermitian-like symmetry, a very desirable
property which makes it possible to attach physical interpretations to positive
frequencies only. ¿e elements presented in this chapter were published as the
�rst part of Flamant, Le Bihan, and Chainais (2017e).

Chapter 2 described the spectral characterization of the second-order prop-
erties of deterministic and stationary random bivariate signals. ¿e quaternion
power spectral density (PSD) of a stationary random bivariate signal is intro-
duced thanks to the quaternion-valued spectral representation of a stationary
random bivariate signal (¿eorem 2.1). ¿is fundamental quantity enables
a straightforward characterization of stationary bivariate signals in terms of
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frequency-dependent polarization properties. ¿e quaternion PSD has an
elegant expression in terms of Stokes parameters. It also provides an insightful
geometric handling of polarization properties thanks to the Poincaré sphere
representation and quaternion algebra. ¿e proposed framework naturally
separates the quaternion PSD into an unpolarized part and a polarized part,
where respective contributions are ruled by the degree of polarization.

i , SS

j, SS

k, SS

Φµ

θ

χ

Figure 5.5: ¿e quaternion PSD Γxx(ν) of
a second-order stationary bivariate signal
x(t) has a natural geometric interpretation in
terms of the Poincaré sphere of polarization
states, see Section 2.3.3.

To provide a complete and practical characterization of second-order station-
ary bivariate signals, we also de�ne the notion of quaternion autocovariance, as
well as the concepts of quaternion cross-covariances and quaternion cross-PSD.
On a practical ground, we investigated the nonparametric spectral density
estimation of the quaternion PSD. Standard estimators (periodogram, multi-
taper) from univariate spectral analysis are readily extended to the proposed
framework. We noted that the estimation of polarization parameters (degree
of polarization, polarization ellipse) is not straightforward and requires spe-
cial care. Simple explicit examples and synthetic experiments demonstrated
the relevance of the approach. ¿ese results have been presented in Flamant,
Le Bihan, and Chainais (2017c, 2017a).

Chapter 3 addressed one of the most fundamental signal processing tasks:
linear time-invariant (LTI) �ltering. We provide in this chapter a complete,
generic and insightful description of LTI �lters for bivariate signals. ¿e
proposed framework allows the direct description of linear �lters in terms of
meaningful physical quantities. We take advantage of an usual decomposition
from polarization optics to give a description of any generic LTI �lter as the
combination of two distinct �lters: a unitary and a Hermitian one. ¿ese two
classes of �lters relate to the birefringence and diattenuation e�ects in linear
media, respectively. ¿e QFT spectral domain �ltering relations demonstrate
their superiority to standard matrix-based approaches by providing clear and
simple expressions featuring eigenproperties. ¿ese expressions carry naturally
strong physical and geometric interpretations. All together, these remarkable
properties make it easy to design, model or prescribe linear �lters in the QFT
formalism.
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Figure 5.6: Decomposition of a second-order
stationary bivariate signal into its polarized
and unpolarized parts, see Section 3.3.4.

¿e power and generality of the approach has been illustrated on several
fundamental applications of signal processing. We introduced a new spectral
synthesis method to simulate any Gaussian stationary random bivariate signal
with desired spectral and polarization properties. ¿e celebrated Wiener
denoising problem can be e�ciently designed in the proposed framework. It
yields a new insightful perspective on its performances, in particular on the
impact of the interplay between polarization properties of the signal and noise.
Original decompositions of bivariate signals in two components with speci�c
properties were also provided, which permit e.g. the natural decomposition of
any stationary bivariate signal into its unpolarized part and its polarized part by
hermitian �ltering. We also emphasized the potential of unitary �lters tomodel
intriguing physical e�ects speci�c to the bivariate case such as polarization
mode dispersion. ¿ese results have been described in Flamant, Chainais, and
Le Bihan (2018a, 2018b).
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Chapter 4 presented a thorough study of time-frequency representations
for bivariate signals. We introduced a bivariate analogue of the analytic signal
of univariate signals, called quaternion embedding. Its de�nition builds on the
Hermitian-like symmetry property of the QFT of bivariate signals to provide a
canonical set of instantaneous attributes in one-to-one correspondence with a
bivariate signal. It enables a natural instantaneous polarization ellipse descrip-
tion for narrow-band bivariate signals. It also enables a straightforward and
interpretable model for nonstationary bivariate signals, called the bivariate or
polarized amplitude modulated-frequency modulated (AM-FM) model. ¿e
processing of multicomponent bivariate signals requires, as in the univariate
case, to introduce time-frequency representations. For this purpose two linear
transforms are introduced, namely the quaternion short-term Fourier trans-
form (Q-STFT) and the quaternion continuous wavelet transform (Q-CWT).
De�nitions mirror the usual case by using the QFT in place of the Fourier
transform. ¿eorem 4.1 and¿eorem 4.2 constitute an important contribution
of this chapter. ¿ey guarantee the conservation of energy and polarization
quantities as well as reconstruction formulas. ¿ey directly yield de�nitions
of energy spectrograms and energy scalograms corresponding to usual time-
frequency energy density maps. Remarkably, these theorems also introduce
novel graphical representations, namely polarization spectrograms and polariza-
tion scalograms, which characterize the time-frequency-polarization content
of bivariate signals.
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Figure 5.7: ¿e polarization spectrogram of
a bivariate signal is a novel time-frequency-
polarization representation introduced in Sec-
tion 4.2.1. It reveals the evolution in the
time-frequency plane of the polarization state
of the signal (here the two polarized linear
chirps example of Fig. 4.4).

Just like their univariate counterparts, these novel time-frequency-polarization
representations are not perfectly localized. ¿ey spread around sets of time-
frequency points called ridges, which are shown to carry most of the signi�cant
information about the signal. ¿e original construction of a generic class
of bilinear time-frequency-polarization representations has been presented.
¿is broad class of solutions o�ers the possibility to tailor the time-frequency
representation to the features of the signal. ¿e power and intelligibility of
the proposed time-frequency-polarization representations have been demon-
strated on both synthetic and real-world data. Most of the �ndings of this
chapter have been published in (Flamant, Le Bihan, and Chainais, 2017e, 2017b,
2017d). ¿e construction of the class of bilinear time-frequency-polarization
representations is an original contribution of this manuscript.

Chapter 5 presented an applicative contribution to the nonparametric char-
acterization of gravitational waves polarizations. In collaboration with Eric
Chassande-Mottin and Fangchen Feng, we have shown that the proposed
framework enables to decipher complex dynamical properties of the grav-
itational wave source. Gravitational waves emitted by coalescing compact
binaries are polarized. ¿ey form non-stationary bivariate signals that can be
characterized using the generic time-frequency analysis methods developed
in Chapter 4.
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Figure 5.8: Instantaneous normalized Stokes
parameters s , s and s encode the dynam-
ical properties of the orbital motion of pre-
cessing compact binaries, see Section 5.3.

We showed that instantaneous Stokes parameters bring new nonparametric
observables that permit to test the precession of the orbital plane of the emitting
source. ¿ey naturally encode orbital properties that would be cumbersome
to obtain individually. Numerical experiments using synthetic noise-free and
realistic noises fromLIGOandVirgo detectors showed a remarkable agreement
between theoretical predictions and numerical estimations. ¿e approach is
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very generic and can be extended to more challenging scenarios, e.g. when
higher-order modes have to be considered. By bringing new observables
that do not require a speci�c dynamical model of the source, the proposed
approach provides support to current state-of-the art techniques performing
(parametric) waveform �tting. It may also help to reveal any dynamical e�ect
a�ecting the gravitational-wave polarization, e.g. orbital eccentricity. ¿is
chapter has been adapted from Flamant et al. (2018).

A companion open-source Python package called BiSPy: Bivariate Sig-
nal Processing in Python implements our �ndings for the sake of reproducible
research. Documentation, tutorials and code are available at

É bispy.readthedocs.io/ � github.com/jflamant/bispy

Perspectives

¿e generality of the proposed approach for the analysis and �ltering of
bivariate signals allows to consider various prospective works, from method-
ological aspects to applications involving such signals. However, it triggers
this very �rst natural question.

Can we extend the approach to multivariate signals? ¿e promising results
obtained in the case of bivariate signals naturally raise the question of the
generalization of this geometric approach to the case of n-variate signals. Our
approach essentially relies on an embedding argument of bivariate signals into
the set of quaternions, which mimics the embedding of real-valued or univari-
ate signals into complex numbers. If one wants to extend this ‘‘embedding
approach’’ to n-variate signals, then its ‘‘natural’’ embedding should have at
least dimension n, in the sense that each univariate component should be
associated to two quantities: an amplitude and a phase. However this naive
approach is likely to fail for dimensions greater than n ≥ , since Frobenius
¿eorem (Baez, 2002) states that any division algebra over the real numbers
is isomorphic to either R(dim = ), C(dim = ), H(dim = ) or the set of
octonionsO(dim = ). Note that for octonionsO the multiplication operation
is also non-associative, which may hamper the use of octonions in practical
Fourier analysis. If one accepts the existence of zero divisors2, one could turn 2. It is unclear how much this condition

would a�ect signal processing practice.to standard geometric embeddings of n-dimensional real-vectors, called Clif-
ford algebras (Hestenes and Sobczyk, 2012). ¿ose algebras have dimension
n , but lack apparently some nice interpretable features, such as polar forms.
As of today, it remains unclear how far Cli�ord algebras could be bene�cial to
the analysis and �ltering of multivariate signals.

¿e non-trivial extension of our approach to the multivariate case also
emphasizes the peculiarity of the bivariate case, as well as the central role played
by quaternions. For bivariate signals, it is natural to think of a framework
where correlation or geometric properties are readily apparent. However,
for multivariate signals – perhaps excepted for the case of trivariate signals –
one can legitimately wonder which improvements or advantages would arise
from the explicit speci�cation of the joint signal structure, compared to e.g. a
pairwise comparison between the signals components.

https://bispy.readthedocs.io/
https://github.com/jflamant/bispy
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Leaving out the di�cult question of multivariate signals for future work,
we turn back to the case of bivariate signals. We list below some related
perspectives, ranked from short-term to long-term prospects.

Robust estimation of polarization parameters Section 2.4 studied the estima-
tion of the spectral properties of second-order stationary random bivariate
signals. Whereas the estimation of the quaternion PSD essentially follows
the usual univariate case, the estimation of associated meaningful physical
parameters (e.g. polarization axis µx(ν) and degree of polarization Φx(ν))
raises some speci�c issues. In fact, such parameters require a normalization
step. Naive estimates of such quantities can be strongly biased, increasing the
di�culty of the estimation problem. ¿e proposed framework still lacks a
complete statistical characterization of the properties of estimators of polar-
ization features. Building on previous work in optics (Barakat, 1987; Brosseau,
1995) and spectral analysis (Walden, 2013; Walden and Medkour, 2007), future
work should explore the detailed statistical behavior of polarization estimates
(bias, variance, con�dence intervals, etc.). It should also provide e�cient and
robust strategies for their estimation. ¿is point is crucial to demonstrate
the relevance of polarization parameters to the characterization of generic
stationary bivariate random signals.

Identi�cation of LTI systems Chapter 3 demonstrated the relevance of the pro-
posed framework for the description of LTI �lters. Appendix 3.B proposed an
identi�cation method of unitary and Hermitian �lters using unpolarized white
Gaussian noise. However a systematic approach to the identi�cation of generic
LTI �lters is missing. A possible path could be inspired by ellipsometry or
polarimetry techniques in optics (Azzam and Bashara, 1987): a su�ciently
large set of outputs obtained from inputs with di�erent polarization states
would allow to recover the parameters of �lter thanks to �ltering relations
(3.8) (unitary) and (3.15) (Hermitian) and (3.27) (generic). Another possibility
could root in the notion of ‘‘impulse response’’, which remains to be de�ned
in the proposed framework. ¿e related (time-domain) identi�cation proce-
dures would complete the toolbox for the generic identi�cation of LTI systems
involving bivariate signals.

Properties of LTI systems ¿e in�uence of the parameters of LTI �lters on
fundamental properties such as stability or causality has not been investigated
yet. In particular, Kramers-Kronig relations ensuring that a bivariate signal x
is causal (i.e. x(t) =  for t < ) could be derived. ¿ese relations on the QFT
of a signal x essentially encode the dual property of the quaternion embedding
and would follow by adapting the discussion presented in Section 4.1.1. ¿e
derivation of relations similar to Bayard-Bode equations (Raymond, 1951) for
the bivariate case would provide considerable insights on the interplay between
causality and the parameters of LTI �lters – especially those encoding physical
e�ects such as birefringence or diattenuation. It would also allow to formulate
causal solutions to �ltering or denoising problems, e.g. a causal solution for
the Wiener �lter presented in Section 3.3.3.
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Optimization in the quaternion domain ¿eWiener denoising �lter described
in Section 3.3.3 involves a mean square error criterion. Its resolution thus
involves solving an optimization problem in the quaternion domain, which
was carried out in Appendix 3.D using the corresponding vector form. ¿is
is only partly satisfactory since one could have expected to �nd the optimal
�lter directly in the quaternion domain. However, such optimization problems
require the notion of quaternion derivatives, i.e. derivatives with respect to
quaternion variables. To this aim,HR-calculus (Mandic, Jahanchahi, and Took,
2011) and the generalized HR-calculus (Xu et al., 2015) have been recently
introduced. ¿ey play the same role as the Wirtinger or CR-calculus (see
e.g. Adalı, Schreier, and Scharf (2011) for a review) in the complex case. Just
like Wirtinger calculus brings economical and elegant optimization of cost
functions of complex variables, one can expect the HR-calculus to provide
e�cient optimization procedures for cost functions appearing in the QFT
framework.

Link with data-driven time-frequency approaches Among those methods, the
bivariate empirical mode decomposition (EMD) (Tanaka and Mandic, 2007;
Rilling et al., 2007) is one of the most popular ones. It aims at decomposing a
bivariate signal into a sum of bivariate AM-FMmodes called intrinsic mode
functions (IMFs). Remarkably, the quaternion embedding o�ers a straightfor-
ward characterization of the instantaneous amplitude, phase and polarization
properties of these IMFs. By combining the quaternion embedding method
with one of the existing bivariate EMD algorithms, one could directly de�ne a
bivariateHilbert-Huang transform3. It has the potential to reveal instantaneous 3. For univariate signals, the term Hilbert-

Huang transform relates to two operations:
(i) the decomposition of a signal into IMFs
thanks to the EMD algorithm and (ii) the
extraction of instantaneous features of each
IMFs using its analytic signal. For bivariate
signals, we simply replace the EMD by the bi-
variate EMD and use the quaternion embed-
ding method in place of the analytic signal.

features that would have been complicated to obtain otherwise. Since the
bivariate EMD algorithm is used in many applications, the quaternion em-
bedding method could provide robust physical interpretation to the bivariate
IMFs extracted from real-world measurements.

Applications Being very generic and essentially nonparametric, the approach
permits to consider many potential applications, such as wide-band polari-
metric characterization of physical or biological media thanks to LTI �lters.
Another area where the potential of the framework could be demonstrated is
blind source separation. For instance, stereophonic signals in audio processing
can be viewed as bivariate signals. As they provide a geometric perspective on
the correlation structure of such signals, the time-frequency-polarization rep-
resentations introduced in Chapter 4 may provide useful descriptors relevant
to source separation or direction of arrival estimation (Arberet, Gribonval, and
Bimbot, 2010).

Vector �eld processing using the 2D QFT ¿e extension of the proposed frame-
work to signals x ∶ R → Ci , that is bidimensional bivariate signals or 2D vector
�elds, requires the introduction of the 2-dimensional QFT. ¿e formal con-
struction of this new tool is expected to closely match the construction of the
Fourier analysis of images. Guided by our study in Chapter 1 of the properties
of the QFT, its 2D extension should present no particular theoretical di�culty.
However, the usefulness and interpretability of the resulting representations
remains an open question. Most likely, the 2D QFT should decompose a 2D
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vector �eld into a sum of polarized waves. Still, numerous questions need to be
answered. For instance, does the 2D QFT feature interesting decompositions
of vector �elds in terms of e.g. curl-free and divergence-free components?
Also, does it permit to build ‘à la Gabor’ �lters for the �ltering of 2D vector
�elds?





Résumé en français

Les signaux bivariés apparaissent dans de nombreuses applications, dès lors que
l’analyse jointe de deux signaux à valeurs réelles est nécessaire. Par exemple,
citons: l’analyse jointe des vélocités des courants de surface en océanographie
(Gonella, 1972; ¿omson and Emery, 2014) et météorologie (Hayashi, 1982;
Tanaka andMandic, 2007); l’analyse des ondes polarisées en optique (Brosseau,
1998; Born andWolf, 1980) et sismologie (Samson, 1983; Pinnegar, 2006); le
traitement de signaux EEG enregistrés en deux électrodes di�érentes (Sakkalis,
2011; Sanei andChambers, 2013) ou encore l’analyse des ondes gravitationnelles
– qui sont elles aussi polarisées.

Un signal bivarié admet deux représentations équivalentes, soit sous la
forme d’un signal vectoriel x ∶ R→ R, soit sous la forme d’un signal à valeurs
complexes x ∶ R→ C. Plus précisément, en dénotant par u(t) et v(t) les deux
composantes à valeurs réelles correspondant par exemple aux composantes
orthogonales d’un champ de vitesse, nous avons

x(t) = [u(t)
v(t)] ou x(t) = u(t) + iv(t) . (5.34)

Indépendamment de la représentation choisie, un signal bivarié décrit une
trajectoire dans le plan 2D. L’analyse de la dynamique temporelle et de la
géométrie de cette trajectoire dé�nit une première tâche essentielle du traite-
ment des signaux bivariés.

L’application visée impose souvent le choix de l’une ou l’autre représenta-
tion. L’approche vectorielle est le plus souvent utilisée en optique et sismologie,
tandis qu’en océanographie le choix se porte sur la représentation complexe
des signaux bivariés. D’un point de vue traitement du signal, la représentation
complexe apparaît comme la plus ‘‘naturelle’’, en raison notamment de la
simpli�cation des expressions qu’elle procure, mais aussi de par sa connexion
directe avec des notions fondamentales de traitement du signal comme les
concepts d’amplitude et de phase.

Toutefois, les approches existantes – fondées sur l’utilisation de la représenta-
tion vectorielle ou complexe – présentent des limites inhérentes qui empêchent
de les considérer comme des cadres de travail idéaux pour le traitement des sig-
naux bivariés. En e�et, ces approches ne permettent pas une paramétrisation
directe en termes des quantités physiques d’intérêt telles que les paramètres
naturels de l’ellipse de polarisation permettant de spéci�er, à chaque fréquence,
la structure jointe entre les composantes u et v d’un signal bivarié. Par exem-
ple, dans la représentation vectorielle ces paramètres sont estimés à partir des
amplitudes et phases de chaque composante via des expressions non-triviales.
Une autre limitation propre à la représentation complexe des signaux bivariés
concerne la nécessité de considérer à la fois les fréquences positives et négatives.
L’absence de symétrie Hermitienne entre le spectre des fréquences positives
et négatives empêche, par exemple, de dé�nir directement l’équivalent du
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signal analytique pour les signaux bivariés – le premier outil d’analyse du
signal non-stationnaire. Mentionnons en�n le problème de l’interprétabilité
physique des relations de �ltrage. Si dans le cas univarié la notion de gain et
phase d’un �ltre linéaire temps-invariant est bien connue, la généralisation de
telles quantités au cas des �ltres pour les signaux bivariés reste une question
ouverte.

Ainsi, même si les approches existantes o�rent des cadres d’étude bien dé�-
nis mathématiquement et numériquement e�caces, l’interprétabilité physique
directe leur fait défaut. Nous considérons que ce lien avec la physique est
particulièrement important. En e�et, un formalisme dédié doit permettre la
simpli�cation drastique de nombreuses tâches typiques en traitement du signal
: analyse, synthèse ou encore �ltrage. Nous pensons aussi que l’adaptation
du formalisme à la nature physique des signaux bivariés renforce l’intuition,
et rend ainsi possible des traitements originaux. En résumé, un cadre idéal
pour le traitement des signaux bivariés doit répondre simultanément à trois
exigences fondamentales:▸ interprétabilité physique directe : les quantités usuelles du traitement du

signal telles que densités spectrale de puissance, �ltres linéaires ou en-
core représentations temps-fréquence doivent être dé�nies directement
en terme des paramètres physiques d’intérêt. Soulignons aussi, dans ce
même but d’interprétabilité, la nécessité d’une correspondance simple entre
fréquences positives et négatives.▸ garanties mathématiques : l’approche proposée doit rassembler toutes les
propriétés mathématiques nécessaires à la dé�nition et l’interprétation
rigoureuse des quantités introduites, telles que la conservation des quantités
énergétiques ou l’inversibilité des représentations temps-fréquence.▸ implémentations numériquement e�caces : les di�érents outils associés
au cadre proposé doivent admettre une implémentation rapide et e�cace,
n’entrainant pas de surcoût computationnel par rapport aux méthodes
existantes.
Cette thèse propose un cadre répondant simultanément aux trois exigences

physique, mathématique et computationnelle mentionnées ci-dessus. Au cours
des 5 chapitres de ce manuscrit nous décrivons de manière progressive la
construction systématique d’un cadre complet pour l’analyse et le �ltrage
des signaux bivariés. Ce travail répond aux limitations des approches exis-
tantes, en proposant un cadre de travail directement interprétable en termes
de paramètres physiques pertinents, sans rien sacri�er aux garanties mathéma-
tiques ni à l’e�cacité numérique des outils proposés.

L’approche proposée repose sur deux éléments essentiels : l’ensemble des
quaternions et la notion de transformée de Fourier quaternionique (QFT). Le
chapitre 1 est consacré à l’étude de ces deux notions. Nous montrons en parti-
culier qu’en usant de quelques précautions liées à la non-commutativité du
produit quaternionique, la QFT se comporte de manière similaire à la transfor-
mée de Fourier usuelle. Parmi ses nombreuses propriétés, citons : un théorème
de Parseval-Plancherel généralisé montrant la conservation de l’énergie ainsi
que d’une quantité quadratique supplémentaire s’interprétant géométrique-
ment; un théorème de Gabor-Heisenberg illustrant la dépendance de la QFT
aux compromis temps-fréquence usuels. La �n de ce chapitre pose le cadre
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de l’utilisation des quaternions et de la QFT pour le traitement des signaux
bivariés. Nous démontrons que la QFT permet une représentation spectrale
quaternionique directement interprétable physiquement des signaux bivariés –
pris comme signaux à valeurs complexes. Les chapitres suivants étendent ces
premiers résultats fondamentaux dans di�érentes directions a�n de développer
un formalisme complet et général pour le traitement des signaux bivariés :
analyse spectrale au chapitre 2, théorie du �ltrage linéaire au chapitre 3 et anal-
yse temps-fréquence au chapitre 4. Le chapitre 5 démontre la pertinence du
formalisme proposé par l’étude de la polarisation des ondes gravitationnelles
émises lors de la coalescence de systèmes binaires en précession.

Analyse spectrale Le chapitre 2 considère la question importante de la car-
actérisation spectrale des signaux bivariés. En particulier, nous dé�nissons
la notion de densité spectrale quaternionique d’un signal bivarié, dans le cas
déterministe et dans le cas stationnaire à l’ordre deux. Dans ce dernier cas,
un théorème de représentation spectrale pour la QFT permet d’introduire la
notion de densité spectrale de puissance (PSD) quaternionique. Une extension
du théorème deWiener-Khintchine au contexte de la QFTmène à la dé�nition
d’une seconde quantité fondamentale appelée auto-covariance quaternionique
d’un signal bivarié. Le lien immédiat entre PSD quaternionique et paramètres
de Stokes fréquentiels lui confère une interprétation naturelle en termes de
paramètres de polarisation. En particulier, nous insistons sur le rôle du de-
gré de polarisation, paramètre naturel qui quanti�e la dispersion à chaque
fréquence de l’ellipse de polarisation. L’étude détaillée de la question de
l’estimation non-paramétrique de la PSD quaternionique montre que celle-ci
se comporte de manière similaire au cas univarié, à la di�érence notable que
l’estimation des paramètres de polarisation requiert en général des précautions
particulières. Les di�érents résultats théoriques de ce chapitre sont illustrés
par des expériences numériques sur données synthétiques.

Filtrage linéaire temps-invariant (LTI) Le chapitre 3 étudie en détail la notion
de �ltrage linéaire des signaux bivariés, qui constitue l’une des tâches les plus
fondamentales en traitement du signal. Nous empruntons à l’optique une
décomposition courante des �ltres LTI en deux types, respectivement �ltres
unitaire et Hermitien. Chaque classe est liée à une interprétation physique
spéci�que, liée à une propriété fondamentale des milieux optiques. Les �ltres
unitaires modélisent un phénomène de biréfringence, tandis que les �ltres
Hermitiens encodent un phénomène de diatténuation. Nous démontrons
que la formulation quaternionique de ces �ltres permet d’écrire les relations
de �ltrage correspondantes directement en termes des vecteurs et valeurs
propres de la matrice associée. Cette propriété remarquable révèle de manière
naturelle l’interprétation physique et géométrique de chaque �ltre, simpli�ant
grandement en pratique leur conception. La formulation dans ce cadre de deux
tâches standard de traitement du signal, précisément la synthèse spectrale de
processus Gaussiens stationnaires et le �ltrage deWiener, renforce l’attractivité
de l’approche quaternionique de par sa simplicité et son interprétabilité. De
plus, l’approche proposée mène naturellement à des décompositions originales
de signaux bivariés en deux parties (non polarisée - polarisée, décorréllées)
annonçant des traitements prometteurs.
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Analyse temps-fréquence Le chapitre 4 présente nos contributions relatives à
la caractérisation des signaux bivariés non-stationnaires. Nous commençons
par dé�nir un premier outil analogue au signal analytique appelé plongement
quaternionique d’un signal complexe. A l’instar de son homologue univarié, le
plongement quaternionique permet une identi�cation directe de l’amplitude
et phase instantanée d’un signal bivarié, mais aussi des paramètres de polarisa-
tion (orientation, ellipticité) instantanés. A�n de remédier aux limitations de
ce premier outil, nous dé�nissons une transformée de Fourier à court terme
quaternionique, ainsi qu’une transformée en ondelettes continue quaternion-
ique. Deux théorèmes fondamentaux garantissent leur inversibilité ainsi que
l’interpretabilité des représentations temps-fréquence-polarisation associées,
respectivement appelées spectrogramme quaternionique et scalogramme quater-
nionique. Une étude basée sur une méthode de phase stationnaire montre
que ces représentations temps-fréquence-polarisation se concentrent autour
de l’information pertinente. Dans une dernière partie, nous montrons com-
ment dé�nir des représentations temps-fréquence-polarisation génériques.
La discussion s’articule autour de la dé�nition d’une transformée de Wigner-
Ville quaternionique et de l’étude de ses propriétés, avant la construction
formelle d’une classe de Cohen pour les signaux bivariés. Des expériences
numériques utilisant des données réelles et simulées illustrent les di�érents
résultats théoriques de ce chapitre.

Caractérisation de la polarisation des ondes gravitationelles Le chapitre 5
présente une étude de la polarisation des ondes gravitationnelles émises lors
de la coalescence de systèmes binaires en précession. Cette contribution ap-
plicative illustre le fort potentiel du formalisme quaternionique développé
lors des chapitres précédents. Ce travail résulte d’une collaboration avec Eric
Chassande-Mottin et Fangchen Feng, du laboratoire Astroparticule et Cos-
mologie à Paris. En présence de précession, l’onde gravitationnelle émise par
un système binaire subit une modulation de sa polarisation instantanée. Les
techniques d’analyse temps-fréquence-polarisation développées au chapitre 4
permettent alors une caractérisation non-paramétrique de ces e�ets de préces-
sion. Il s’agit à notre connaissance de la première proposition d’une méthode
non-paramétrique, c’est à dire ne nécessitant pas de modèle dynamique de la
source d’émission. Nous illustrons nos résultats dans des contextes sans bruit
et en présence de bruit réaliste simulé. Notons que l’approche proposée est
susceptible de révéler, en théorie, tout phénomène a�ectant la polarisation de
l’onde gravitationnelle. Celle-ci s’avère très prometteuse pour le futur de la
caractérisation des ondes gravitationnelles.

Perspectives Nous récapitulons en�n les di�érentes contributions de cette
thèse avant de dresser de nombreuses pistes théoriques et applicatives. En parti-
culier, soulignons la question de l’estimation robuste et e�cace des paramètres
de polarisation ou encore la problématique fondamentale de l’identi�cation sys-
tématique des systèmes LTI bivariés à l’aide, par exemple, d’outils empruntés
à la polarimétrie.
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Recherche reproductible Nous mettons à disposition une implémentation
e�cace des outils proposés dans ce manuscrit via un package open-source
Python dénommé BiSPy4. 4. BiSPy: Bivariate Signal Processing in

Python.
Documentation, tutoriels et code disponibles

É bispy.readthedocs.io/
� github.com/jflamant/bispy

https://bispy.readthedocs.io/
https://github.com/jflamant/bispy
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Appendix
‘‘On the zeros of the spectrogram of white noise’’

R. Bardenet, J. Flamant, P. Chainais

In parallel with the research program of my thesis which has developed a
complete framework for the analysis and �ltering of bivariate signals, I have
been also involved in a collaboration with Rémi Bardenet and Pierre Chainais.
¿e main results of this collaboration are reproduced here in the form of
the following paper, accepted for publication in Applied and Computational
Harmonic Analysis:

N R. Bardenet, J. Flamant, and P. Chainais. 2018. “On the zeros of the spec-
trogram of white noise.” manuscript accepted for publication in Applied and
Computational Harmonic Analysis. eprint: arXiv:1708.00082. 0.0 5.0 10.0 15.0 20.0
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Figure 9: Spectrograms (Gaussian window)
of (a) real white Gaussian noise and (b) com-
plex circular white Gaussian noise. White
dots show the zeros of spectrograms. See Fig.
1 of the appended paper for details.

¿is work studies the distribution of the zeros of the spectrogram of white
Gaussian noise when the window is itself Gaussian. Fig. 9 displays such zeros
for a realization of real and complex (circular) white Gaussian noise, respec-
tively. Our interest in this topic has been triggered by recent works of Flandrin
(2015, 2016) who proposed an heuristic �ltering method using spectrogram
zeros. We demonstrate in the appended paper that the zeros of spectrograms
of white Gaussian noise correspond to zeros of Gaussian analytic functions
(GAFs). In particular it appears that the point process formed by the zeros
is not a determinantal point process (DPP) as one may have originally ex-
pected. Still, its main statistical properties can be investigated. Second, we
leverage methods from spatial statistics to implement practical detection and
reconstruction of signals corrupted by white Gaussian noise based on the statis-
tics of spectrogram zeros. Numerical experiments demonstrate the feasibility
of the approach. Supporting code is made publicly available on GitHub�

github.com/jflamant/2018-zeros-spectrogram-white-noise.

arXiv:1708.00082
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On the zeros of the spectrogram of white noise

Rémi Bardenet1∗, Julien Flamant1, Pierre Chainais1
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Abstract

In a recent paper, [1] proposed filtering based on the zeros of a spectrogram with Gaussian
window. His results are based on empirical observations on the distribution of the zeros of the
spectrogram of white Gaussian noise. These zeros tend to be uniformly spread over the time-
frequency plane, and not to clutter. Our contributions are threefold: we rigorously define the zeros
of the spectrogram of continuous white Gaussian noise, we explicitly characterize their statistical
distribution, and we investigate the computational and statistical underpinnings of the practical
implementation of signal detection based on the statistics of the zeros of the spectrogram. The
crux of our analysis is that the zeros of the spectrogram of white Gaussian noise correspond to
the zeros of a Gaussian analytic function, a topic of recent independent mathematical interest [2].

1 Introduction

Spectrograms are a cornerstone of time-frequency analysis [3]. They are quadratic time-frequency
representations of a signal [4, Chapter 4], associating to each time and frequency a real number that
measures the energy content of a signal at that time and frequency, unlike global-in-time tools such
as the Fourier transform. Since it is natural to expect that there is more energy where there is more
information or signal, most methodologies have focused on detecting and processing the local maxima
of the spectrogram [5, 3, 4]. Usual techniques include ridge extraction, e.g., to identify chirps, or
reassignment and synchrosqueezing, to better localize the maxima of the spectrogram before further
quantitative analysis.

In contrast, recent works have shown that the zeros of a spectrogram play a central role. They
appear in the context of reassignment [6] or in the study of the characteristic structure of the phase
derivative of the spectrogram around its zeros [7]. Moreover [1] recently observed that the location of
zeros of a spectrogram in the time-frequency plane almost completely characterizes the spectrogram.
He then proposed filtering and reconstruction procedures based on the point pattern formed by the
zeros. This proposition stems from the empirical observation that the zeros of the short-time Fourier
transform of white noise are uniformly spread over the time-frequency plane, and tend not to clutter,
as if they repelled each other. Without going into details yet, this repulsive behaviour of the zeros
can be seen in Figure 1, where we plot the spectrograms of a real and proper complex white noise,
respectively. In the presence of a signal, zeros are absent in the time-frequency support of the signal,
thus creating large holes that appear to be very rare when observing pure white noise. This leads to
testing the presence of a signal by looking at statistics of the point pattern of zeros, and trying to

∗Corresponding author: remi.bardenet@gmail.com
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identify holes. In this paper, we attempt a formalization of the approach of [1]. To this purpose, we
put together notions of signal processing, complex analysis, probability, and spatial statistics.

Our contributions are threefold: we rigorously define the zeros of the spectrogram of continuous
Gaussian white noise, we explicitly characterize their statistical distribution, and we investigate the
computational and statistical underpinnings of the practical implementation of signal detection and
reconstruction. The crux of our analysis is that the zeros of the spectrogram of Gaussian white noise
correspond to the zeros of a Gaussian analytic function, a topic of recent independent mathematical
interest [2].

In short, our approach starts from the usual definition of white noise as a random tempered dis-
tribution. Using a classical equivalence between the short-time Fourier transform with a Gaussian
window and the Bargmann transform, we show that the short-time Fourier transform of white noise
can be identified with a random analytic function, so that we can give a precise meaning to the zeros
of the spectrogram of white noise. It turns out that real and complex Gaussian white noises lead
to recently studied random analytic functions, the zeros of which have been completely character-
ized. We then investigate how to leverage probabilistic information on these zeros to design statistical
detection procedures. This includes linking probability and complex analysis results to the discrete
implementation of the Fourier transform.

The rest of the paper is organized as follows. In Section 2, we introduce the relevant notions of
complex analysis, probability, and spatial statistics. In Section 3, we characterize the zeros of the
short-time Fourier transform of real white noise, and we deal with the complex and the analytic case
in Section 4. In Section 5, we investigate the relation between our theoretical results for continuous
white noise and the usual discrete implementation of the Fourier transform, and we demonstrate the
detection and reconstruction of a signal using the zeros of the spectrogram.

2 Spectrograms, complex analysis, and point processes

In this section, we survey the relevant notions from signal processing, probability, and spatial statistics.

2.1 The short-time Fourier transform

Let f, γ ∈ L2(R), the evaluation at (u, v) ∈ R2 of the short-time Fourier transform (STFT) of f with
window γ reads

Vγf(u, v) =

∫
f(t)γ(t− u)e−2iπtvdt = 〈f,MvTuγ〉, (1)

with 〈·, ·〉 denoting the inner product in L2(R), Mvf = e2iπv·f(·) and Tuf = f(· − u). We copy our
notation from [4, Chapter 3], to which we refer for a thorough introduction. The squared modulus of
the STFT (1) is called a spectrogram, and it is commonly interpreted as a measure of the content of
the signal f around time u and frequency v. In contrast, the usual Fourier transform only provides
the global frequency content of a signal, that is, not localized in time.

The right-hand side of (1) permits a natural extension of the STFT to tempered distributions, see
[4, Section 3.1]. This is relevant to us, as white noise will be defined in Sections 3 and 4 as a random
tempered distribution.
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2.2 The Bargmann transform

Let a > 0 and consider the Gaussian window γa(x) ∝ exp(−πa2x2), where ∝ means “proportional to”
and γa is normalized so that ‖γa‖2 = 1. The parameter a measures the inverse of the width of the
support of the analysis window γa. Equivalently, it measures the width of the support of the Fourier
transform of γa. When a = 1, we drop the subscript and write γ(x) = γ1(x) = 21/4e−πx

2

. We closely
follow the textbook by [4], only introducing arbitrary window width, and gather the important results
in the following proposition.

Proposition 1. [4, Section 3.4] Let f ∈ L2(R), u, v ∈ R and z = au+ i
v

a
, then

Vγa(f)(u,−v) ∝ e−iπuve−
π
2 |z|2B (f(·/a)) (z), (2)

where the Bargmann transform B is defined by

Bf(z) = 21/4

∫
f(t)e2πtz−πt2−π2 z2dt. (3)

Proof. The particular shape of the window allows us to write

Vγa(f)(u, v) ∝
∫
f(t)e−πa

2(t−u)2e−2iπtvdt

=

∫
f(t)e−πa

2t2e−πa
2u2

e2a2πtue−2iπvtdt

= e−iπuve−
π
2 (a2u2+ v2

a2
)

∫
f(t)e−πa

2t2e2aπt(au−i va )e−
π
2 (au−i va )2dt. (4)

Making the change of variables s = at and denoting

z = au+ i
v

a
, (5)

we obtain

Vγa(f)(u, v) ∝ e−iπuve−
π
2 |z|2

∫
f
( s
a

)
e−πs

2

e2πsz̄e−
π
2 z̄

2

ds,

or equivalently

Vγa(f)(u,−v) ∝ e−iπuve−
π
2 |z|2

∫
f
( s
a

)
e−πs

2

e2πsze−
π
2 z

2

ds

∝ e−iπuve−
π
2 |z|2B (f(·/a)) (z), (6)

where the Bargmann transform is defined as in (3).

Equation (6) means that the zeros of the spectrogram u, v 7→ |Vγa(f)(u, v)|2 of f are the zeros of
the Bargmann transform of s 7→ f(s/a), up to a symmetry with respect to the real axis. Moreover,
Equation (6) also readily extends to tempered distributions.
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2.3 Hermite functions

Some functions turn out to have a very simple closed-form Bargmann transform. Informally, if we had
an orthonormal basis of L2(R) formed by such functions, then we could decompose a white noise onto
this basis, and easily compute the STFT of white noise using closed-form Bargmann transforms. We
now introduce Hermite functions, which will play this exact role in later sections.

Let (Hn)n∈N be the Hermite orthonormal polynomials with respect to the Gaussian window γ,
usually called the Hermite polynomials in the literature [8]. Then, making the change of variables
x′ = ax, it comes

∫
Hk(ax)H`(ax)γa(x)dx ∝

∫
Hk(x′)H`(x

′)γ(x′)dx′ = δk`.

The Hermite functions ha,k ∝ Hk(a·)
√
γa(·), normed so that ‖ha,k‖2 = 1, form an orthonormal basis

of L2(R) [8]. When a = 1, we again drop a subscript and denote hk = h1,k. To compute the STFT of
an Hermite function using (6), first note that for all s, ha,k(s/a) ∝ hk(s), so that

Vγa(ha,k)(u,−v) ∝ e−iπuve−
π
2 |z|2B(hk)(z) (7)

= e−iπuve−
π
2 |z|2 π

k/2zk√
k!

, (8)

see [4, Section 3.4] for the last equality.

2.4 Point processes on C
The zeros of the spectrogram of a random signal form a point process. Formally, a point process over C
is a probability distribution over configurations of points in C, i.e., unordered sets of complex numbers.
In particular, the cardinality of a point process is random. In this section, we introduce point processes
and basic descriptive statistics.

2.4.1 Generalities

One of the most basic point processes over C is the Poisson point process with constant rate λ ∈ R+.
It is defined as the unique point process such that, for any B ⊂ C with finite Lebesgue measure |B|,
(i) the number of points in B is a Poisson random variable with mean λ|B|, and (ii) conditionally on
the number of points in B, the points are drawn independently from the uniform measure on B. For
existence and further properties, see e.g. [9, Chapter 3].

More general point processes can be characterized by their k-point correlation functions ρ(k) for
k ≥ 1, informally defined by

ρ(k)(x1, . . . , xk)dx1 . . . dxk = P
(

There are at least k points, one in each of the
infinitesimal balls B(xi, dxi), i = 1, . . . , k

)
, (9)

for all x1, . . . , xk in C, see [10, Section 5.4] for a rigorous treatment. The interpretation (9) is valid
only when the considered point processes are simple, that is, the points in each sampled configuration
are all distinct. All point processes in this paper will be simple.

Of particular interest to us will be the first and second-order interaction between the points in
a realization of a point process, encoded by ρ(1) and ρ(2), respectively. The first order correlation

4



function ρ(1) is often called the intensity of the point process, for its integral over any Borel set B ⊂ C
is the average number of points falling in B under the point process distribution. For the Poisson point
process with constant rate λ, for instance, the intensity is precisely λ, and thus constant over C.

The two-point correlation function ρ(2) is often renormalized to obtain the so-called pair correlation
function

g(x, y) =
ρ(2)(x, y)

ρ(1)(x)ρ(1)(y)
, (10)

see [9, Chapter 4]. For a Poisson point process with constant rate, g is identically 1. When g(x, y) > 1,
(9) indicates that pairs are more likely to occur around (x, y) than under a Poisson process with the
same intensity function. Similarly g(x, y) < 1 indicates that pairs are less likely to occur. When
g(x, y) < 1 for all x, y, we speak of a repulsive point process. Finally, when the point process is
both stationary (i.e., invariant to translations) and isotropic (i.e., invariant to rotations), then g only
depends on the distance r = |x − y|, and we denote it by g0(r) = g(x, y). We plot in Figure 2(a) the
g0 of a few point processes, which are introduced later in the paper.

2.4.2 Determinantal point processes and the Ginibre ensemble

We give here another example of a point process on C, in order to demonstrate a non-constant pair
correlation function. If there exists a function κ : C × C → C such that the correlation functions (9)
defined by

ρ(k)(x1, . . . , xk) = det
[
κ(xi, xj)

]
1≤i,j≤k (11)

consistently define a point process, then this point process is called a determinantal point process
(DPP) with kernel κ. DPPs were first introduced by [11], and we refer the reader to [12, 13] for
modern introductions and conditions of existence. A classical example of DPP over C is the infinite
Ginibre ensemble. It is defined by its kernel

κGin(z, w) = e−
π
2 |z|2eπzw̄e−

π
2 |w|2 . (12)

The Ginibre ensemble is stationary and isotropic, its intensity is constant equal to 1, and its pair
correlation is

gGin
0 (r) = 1− e−πr2 ,

see [2, Section 4.3.7] for these properties, noting that our version is rescaled to have unit intensity. We
also plot gGin

0 in Figure 2(a). Importantly for us, gGin
0 (r) ≤ 1 for all r = |x − y|, which shows that

Ginibre is a repulsive point process: for any x, y ∈ C distant of r, finding a zero in a neighborhood of
x and another in a neighborhood of y is less likely than for a Poisson process. Since this happens for
all r, we say that Ginibre is repulsive at all scales. Actually, most DPPs are repulsive like Ginibre:
by definition (11), if a DPP is stationary and isotropic, and if it has an Hermitian kernel, that is
κ(x, y) = κ(y, x), then g0 ≤ 1.

The Ginibre point process is intimately related to the STFT introduced in Section 2.1; indeed, the
image of L2(R) by the STFT with Gaussian window is a reproducing kernel Hilbert space, and κGin

is its kernel. For this and a generalization to the so-called Weyl-Heisenberg ensembles with arbitrary
windows, we refer the reader to [14]. Since the zeros of the spectrogram of white noise have been
observed to be repulsive by [1], DPPs naturally come to mind as a good candidate for describing the
zeros of spectrograms of random processes. However, we shall see in Section 4 that the zeros of the
spectrogram of white Gaussian noise are close to Ginibre, but cannot be a DPP, at least not a DPP
with a Hermitian kernel.
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2.4.3 Zeros of Gaussian analytic functions

Another natural way to obtain point processes on C is to look at zeros of random analytic functions.
Analytic functions indeed have isolated zeros [15, Theorem 2.3.6]. The simplest random analytic
functions are those with Gaussian coefficients (GAFs; see the recent monograph [2]). For instance,
letting (an) be a sequence of i.i.d. complex unit Gaussians, then with probability one

∑
an

zn√
n!

(13)

converges uniformly on compact subsets of C, see e.g. [2, Lemma 2.2.3]. The limit of (13) thus almost
surely defines an entire function. The latter function was first investigated in physics under the name
of chaotic analytic GAF by [16], but in probability it is more commonly known as the planar GAF
[2]. The zeros of (13) have multiplicity one [2, Lemma 2.4.1], so that the point process of the zeros is
simple. Moreover, the correlation functions (9) are known [2, Corollary 3.4.2], and the name planar
relates to the fact that (13) is the only GAF such that the point process formed by its zeros is invariant
to isometries of the complex plane z 7→ eiθz + b, θ ∈ R, b ∈ C. In other words, the zero set of (13) is
stationary and isotropic, as can be seen in Figure 1(b).

A variant of GAFs are symmetric GAFs, which can be defined as GAFs, but with real i.i.d.
unit Gaussians as coefficients. In particular, the limit of (13) is still almost surely a well-defined
analytic function [17], but its zero set now includes real zeros and pairs of conjugate complex zeros,
see Figure 1(a). Since they will turn out to be central in our study, more will be said in Section 4 on
the zeros of the planar and the symmetric planar GAF, and their relation to the Ginibre point process
introduced in Section 2.4.2.

2.4.4 Functional statistics

We will need to investigate how repulsive a stationary and isotropic point process on C like Ginibre is,
given one of its realizations over a compact window of observation. While estimators of g0 have been
investigated [9, Section 4.3], practitioners usually prefer estimating Ripley’s K function

K(r) = 2π

∫ r

0

tg0(t)dt, r > 0, (14)

and then the so-called variance-stabilized L functional statistic

L(r) =
√
K(r)/π, (15)

which equals r for a unit rate Poisson process. K is proportional to the expected number of points at
distance r of the origin, given that there is a point at the origin. Estimating K from data is relatively
straightforward and involves counting pairs distant from a collection of values of r. Furthermore,
sophisticated edge corrections have been proposed to take into account the fact that the observation
window is necessarily bounded [9, Section 4.3]. Estimating L after one has obtained an estimate of K
is straightforward. L is not as easy to interpret as K, but is more commonly used in applications, see
[18] for a justification.

We plot in Figure 2(b) the r 7→ L(r) − r statistic of the stationary point processes introduced in
this paper, so that a Poisson process corresponds to a constant zero statistic. Visual inspection of such
plots allows identification of scales at which the point process is repulsive, in the sense that we can
observe a relative lack of pairs within a given distance compared to a Poisson process. For instance,
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in Figure 2(b), there is a clear deficit of pairs at small scales for the Ginibre point process introduced
in Section 2.4.2, compared to the constant zero of a Poisson process. Note that the cumulative nature
of K and L makes large-scale behaviour harder to see on such plots.

There are many more functional statistics for stationary point processes [9, Section 4.2]. In par-
ticular, we mention for later reference the so-called empty space function F and the nearest neighbour
function G. For r > 0, F (r) is defined as the probability that a ball of radius r centered at 0 contains
at least one point. Stationarity implies that the center of the ball can be chosen arbitrarily, so that F
encodes the distribution of hole sizes in the point process. Similarly, G is the cumulative distribution
function of the distance from a typical random point of the point process to its nearest neighbour in
the point process.

3 The spectrogram of real white noise

In this section, we examine the zeros of the spectrogram of a continuous real white noise, and we
recognize in Section 3.2 a recently studied point process called the zeros of the symmetric planar GAF.
To rigorously establish this fact, we first need to review in Section 3.1 how mathematicians define
continuous real white noise.

3.1 Definitions

To define white noise, we closely follow [19, Chapter 2.1] through a classical approach that does not
require defining Brownian motion first. We denote by S = S(R) the Schwartz space of rapidly decaying
smooth complex-valued functions of a real variable. The dual S ′ = S ′(R), equipped with the weak-star
topology, is the space of tempered distributions. The topology yields the Borel sigma-algebra B(S ′) on
S ′. Now, the Bochner-Minlos theorem [19, Theorem 2.1.1] states that there exists a unique probability
measure µ1 on (S ′,B(S ′)) such that

∀φ ∈ S, Eµ1
ei〈·,φ〉 = e−

1
2‖φ‖22 . (16)

We call this measure white noise, and (S ′, B(S ′), µ1) the white noise probability space. In particular,
(16) implies that for a random variable1 ξ with distribution µ1 and a set of real-valued orthonormal
functions ϕ1, . . . , ϕp in S, the vector (〈ξ, ϕ1〉, . . . , 〈ξ, ϕp〉) follows a real multivariate Gaussian, with
mean zero and identity covariance matrix, see [19, Lemma 2.1.2]. This is in accordance with the usual
heuristic of white noise having a Dirac delta covariance function.

Let ξ be a random variable with distribution µ1. The Gaussian window γ(x) = 21/4e−πx
2

is in S,
so that (u, v) 7→MvTuγ is in S, and we can define the STFT of ξ as the random function

u, v 7→ 〈ξ,MvTuγ〉.

We are interested in defining and studying the zeros of the random spectrogram

S : u, v 7→ |〈ξ,MvTuγ〉|2. (17)

As we shall see in Section 3.2, even if ξ does not have smooth realizations, it turns out that the random
spectrogram (17) is almost surely an analytic function, so that its zeros are isolated points and can be
defined as the zeros of the spectrogram of ξ.

1We use the term random variable ξ, but it is also customary to call ξ a generalized random process in the literature.
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3.2 Characterizing the zeros

We work in two steps: in Proposition 2, we identify each value S(u, v) in (17) as a limit in L2(µ1), and
we then show in Proposition 3 that the resulting random field defines an entire function, the zeros of
which are known.

Proposition 2. Let u, v ∈ R2, and write z = u+ iv ∈ C. Then

〈ξ,MvTuγ〉 =
√
πeiπuve−

π
2 |z|2

∞∑

k=0

〈ξ, hk〉
πk/2zk√

k!
(18)

where (hk) denote the orthonormal Hermite functions of Section 2.3, and convergence is in L2(µ1).

Remark 1. Note that in Proposition 2, u and v are fixed, and the equality is a limit in L2(µ1). It is
still too early to identify the zeros of the function of the left-hand side to the zeros of the function on
the right-hand side.

Remark 2. The proof of Proposition 2, along with Sections 2.2 and 2.3, immediately yield that for
a non-unit Gaussian window γa(x) ∝ exp(−πa2x2), Proposition 2 is unchanged, provided that z is
defined as z = au + iv/a and a constant is prepended to the RHS of (18). In other words, given
a particular value of a, it is always possible to dilate/squeeze the time-frequency axes to obtain the
results detailed here for a = 1.

Proof. Let u, v ∈ R2. Decomposing MvTuγ in the Hermite basis (hk) of L2(R), it comes

〈ξ,MvTuγ〉 =
∞∑

k=0

〈ξ, hk〉〈MvTuγ, hk〉

=

∞∑

k=0

〈ξ, hk〉Vγ(hk)(u, v) (19)

where the limits are in L2(µ1). The STFT of Hermite functions is well-known, see e.g. the proof of [4,
Proposition 3.4.4] or our Section 2.2, and it reads

Vg(hk)(u, v) = e−iπuve−
π
2 (u2+v2)π

k/2

√
k!

(u− iv)k. (20)

Plugging (20) into (19) yields the result.

Now we focus on the regularity of the right-hand side of (18) as a function of z = u+ iv.

Proposition 3. The random series
∞∑

k=0

〈ξ, hk〉
πk/2zk√

k!
(21)

µ1-almost surely defines an entire function.

Proof. By [19, Lemma 2.1.2], (〈ξ, hk〉)k≥0 are i.i.d. unit real Gaussians. We then apply [2, Lemma
2.2.3], which shows that almost surely, the (entire) partial sums of (21) converge uniformly on every
compact of C, so that the limit is entire.
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(a) Real white noise/symmetric GAF
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(b) Complex white noise/planar GAF

Figure 1: The spectrogram of (a) a realization of real white noise, and (b) a realization of complex
white noise. Zeros are in white. The right and top plots on each panel show marginal histograms
of the imaginary and real part of the zeros, respectively, superimposed with the theoretical marginal
density, see Section 3.2 for details.

Since both L2 and almost sure convergence imply convergence in probability, L2 and almost sure
limits have to be the same. In particular, Propositions 2 and 3 together yield that the distribution
of the zeros of the spectrogram S in (17) is the same as the distribution of the zeros of the random
entire function (21). This answers Remark 1. In particular, as noted in Section 2.4.3, the zeros of S
are isolated and form a point process known as the zeros of the symmetric planar Gaussian analytic
function (GAF), and a few of its properties are known [17]. However, its zeros do not define a stationary
point process.

Figure 1(a) depicts in blue levels the spectrogram of a realization of real white noise, see later in
Section 5.1 for computational details. White dots show the zeros of the spectrogram, or equivalently,
a realization of the zeros of the symmetric planar GAF. The marginal distributions of the real and
imaginary parts of the zeros are shown on top and on the right, respectively. On these marginal
histograms, we have superimposed the theoretical densities from [17]. The non-stationarity is obvious:
the pattern of zeros is symmetric with respect to the real axis, and a portion of the zeros actually
concentrate on the real axis. Intuitively, one can approximate the zeros of (21) by the zeros of the
random polynomial obtained from truncating the series. The resulting polynomial has real coefficients,
and it is thus expected to have real zeros as well as pairs of conjugate complex zeros. This explains
both the symmetry and the Dirac delta that can be seen at zero in the marginal histogram of the
imaginary parts of zeros. As a side note, the number of real zeros is a topic of study on its own, see
e.g. [20].

Coming back to the problem of detecting signals, this non-stationarity makes it difficult to approach
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via traditional spatial statistics techniques, which often rely on spatial averaging and thus assume some
degree of stationarity. However, we shall see in Section 4 that the zeros of the STFT of complex white
noise are a stationary point process, and are a good approximation of the zeros of the symmetric planar
GAF.

4 The case of complex white noise

In this section, we justify why the zeros of the spectrogram of real white Gaussian noise can be
approximated by the zeros of the spectrogram of complex white Gaussian noise. The latter are also
called the zeros of the planar GAF and are a stationary point process. From a practical point of view,
this section investigates to what extent we can apply spatial statistics techniques requiring stationarity
to the zeros of the spectrogram of real white noise. In Section 4.4, we consider characterizing the zeros
of the spectrogram of an analytic white noise.

4.1 The complex white Gaussian noise

Consider the two-dimensional white noise of [19, Section 2.1.2], that is, the space S ′×S ′, with the Borel
σ-algebra associated to the product weak star topology, and measure µ1 × µ1. A draw ξ = (ξ1, ξ2) ∼
µ1 × µ1 consists of two independent white noises. Following [19, Exercise 2.26], we let Φ = (φ1, φ2) in
S × S, and we define the smoothed complex white noise as

ξ,Φ 7→ 〈ξ1, φ1〉+ i〈ξ2, φ2〉,

where ξ ∼ µ1×µ1. It is called “smoothed” because we define it using a pair of test functions Φ, which
will be enough for our purpose. Note also that in signal processing, this is typically called a proper or
circular Gaussian white noise [21].

Now, if we let both test functions be t 7→ MvTuγ, we recover what can reasonably be called the
STFT of complex white noise

u, v 7→ 〈ξ1,MvTuγ〉+ i〈ξ2,MvTuγ〉. (22)

4.2 Characterizing the zeros

The same arguments as in the proofs of Propositions 2 and 3 lead to

Proposition 4. With µ1×µ1 probability 1, the zeros of the STFT (22) are those of the entire function

1√
2

∞∑

k=0

(〈ξ1, hk〉+ i〈ξ2, hk〉)
πk/2zk√

k!
, (23)

where z = u+ iv.

We note that under µ1 × µ1, the random variables 2−1/2(〈ξ1, hk〉 + i〈ξ2, hk〉) are i.i.d. unit com-
plex Gaussians, and the entire function (23) is the planar Gaussian analytic function introduced in
Section 2.4.3. In particular, the planar GAF is one of the three fundamental GAFs in the monograph
of [2], and more is known about its zeros than for the symmetric planar GAF in Proposition 3. We
group some known results in Proposition 5, selecting results that could be of immediate statistical use
in signal processing.
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(b) r 7→ L(r)− r functional statistics

Figure 2: Comparison of the Ginibre point process, the zeros of the planar GAF, and a realization of
the zeros of the spectrogram of complex white noise, using (a) pair correlation functions g0, and (b)
the L functional statistic, see Section 2.4 for definitions.

Proposition 5 ([2, 22]). The planar GAF satisfies the following properties:

1. The distribution of its zeros is invariant to rotations and translations in the complex plane [2,
Proposition 2.3.7]. In particular, it is a stationary point process.

2. Its correlation functions are known [2, Corollary 3.4.2]. In particular, the intensity is constant
equal to 1, and with the notation of Section 2.4, for z, w ∈ C such that |z − w| = r, the pair
correlation function reads

ρ(2)(z, w) = g0(r) =

[
sinh2

(
πr2

2

)
+ π2r4

4

]
cosh

(
πr2

2

)
− πr2 sinh(πr

2

2 )

sinh3
(
πr2

2

) . (24)

3. The hole probability

pr = P(no points in the disk of radius r centered at 0)

scales as
r−4 log pr → −3e2/4 (25)

as r → +∞ [22].
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Figure 2 illustrates Proposition 5. We plot the pair correlation function (24) of the planar GAF,
along with the pair correlation functions of the Poisson and Ginibre point processes introduced in
Section 2.4. We also superimpose an estimate of g0 obtained from the spectrogram of a realization of a
complex white noise, see Section 5 for computational procedures. Finally, we also plot the L functional
statistic for the same point processes, as introduced in Section 2.4.

Both the zeros of the planar GAF and Ginibre are repulsive at small scales: their g0 is smaller than
1, and the r 7→ L(r)− r statistic has a well-marked decrease close to zero. But the planar GAF alone
has a small ring of attraction around r = 1, well visible in Figure 2(a) where the corresponding ρ0 is
larger than the constant 1 of a Poisson process, as can also be checked from the closed form (24). If
we remember that the pair correlation of a DPP with Hermitian kernel cannot exceed 1 by definition
(11), this implies that the zeros of the planar GAF cannot be a DPP with Hermitian kernel, unlike
what we and [23] may have intuited, see Section 2.4.2. Note that strictly speaking, it is still possible
that the zeros of the planar GAF are a DPP with a non-Hermitian kernel.

Even if they are not a DPP with Hermitian kernel, the zeros of the planar GAF are often compared
to the Ginibre process introduced in Section 2.4.2, which is a DPP. Both the zeros of the planar GAF
and the Ginibre process are invariant to isometries of the plane [2, Section 4.3.7]. Furthermore, the
decay of the log hole probability (25) is also in r4 for the Ginibre process [2, Proposition 7.2.1]. This is
to be compared to the slower decay in r2 of a Poisson process with constant rate. This is an indication
that the size of holes in sampled zeros of the planar GAF and samples of the Ginibre ensemble will be
similarly distributed, and that both will have significantly fewer large holes than Poisson. There are
other intriguing similarities between the two point processes, see [24], where Ginibre is shown to be
the zeros of a GAF with a randomized kernel.

4.3 The zeros of the planar GAF approximate those of the symmetric pla-
nar GAF

To sum up, the spectrogram of real white noise is described by the symmetric planar GAF, but the
zeros of the planar GAF are more amenable to further statistical processing. In this section, we survey
results by [17] and [25] that support approximating the zeros of the symmetric planar GAF by those
of the planar GAF.

To apply the results in [17], we first need to make the symmetric planar GAF stationary. More
precisely, the zeros of the symmetric planar GAF (21) have the same distribution as the zeros of

fsym(z) = e−
π
2 z

2
∞∑

k=0

ak√
k!
πk/2zk, (26)

where ak are i.i.d. unit real Gaussians. Note that the covariance kernel of fsym is

Ksym(z, w) , Efsym(z)fsym(w)

= e−
π
2 z

2

e−
π
2 w̄

2

eπzw̄

= e−
π
2 (z−w̄)2 . (27)

This hints some invariance of fsym to translations along the real axis. By a limiting argument, see e.g.
[2, Lemma 2.3.3], (26) is indeed a stationary symmetric GAF in the sense of [17]. Namely, for any
n ≥ 1, any z1, . . . , zn ∈ C, and any t ∈ R, (fsym(z1 + t), . . . , fsym(zn + t)) has the same distribution as
(fsym(z1), . . . , fsym(zn)). Now [17] derives the intensity of the zeros of general stationary symmetric
GAFs. In the symmetric planar case, we apply [17, Theorem 1] to (26) and obtain Proposition 6.
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Proposition 6 ([17]). Let nsym([0, T ] × A) be the random number of zeros of fsym in a “vertical”
Borel set of C. Almost surely, the following weak convergence of measures holds as T →∞:

nsym([0, T ]×A)

T
→
∫

A

[dS(v) + δ0] , (28)

where
S(v) =

v√
1− e−4πv2

. (29)

Equation (28) characterizes the marginal density of zeros along the vertical axis, averaged across
the horizontal axis. The Dirac mass in (28) relates to the accumulation of zeros on the real axis
discussed in Section 3 and visible in Figure 1(a). The numerator of the continuous part S in (28) is the
unnormalized cumulative density of a uniform distribution, and the denominator quickly converges to
1 as v grows.

Now compare (28) to the horizontal counting measure of the zeros of the planar GAF, which is
simply the uniform dv, without any atom, see e.g. [17, Theorem 1] again. We observe that the
two counting measures are quickly approximately equal, as one goes away from the real axis. More
precisely, for A ⊂ [1,+∞), the ratio of S(A) to the Lebesgue measure of A is within 2 · 10−6 of 1.
For Gaussian windows of arbitrary width, the change of variables (5) yields that the approximation is
tight for Im(z) ≥ a. For signal processing, this means the approximation is tight for high frequencies,
where “high” means larger than the width a in frequency of the Gaussian window γa. Actually, in
practice, spectrograms are never considered at low frequencies, that is, within the frequency spread
of the observation window from the real axis. This practical habit is in strong agreement with the
theoretical results of [17]. Finally, Figure 1 shows a realization of both the symmetric planar GAF
and the symmetric GAF. The continuous part of the marginal density (28) can be seen as a thick blue
line on the vertical marginal histogram in Figure 1(a). We note the decrease of the continuous part
around 0, and the Dirac mass can be seen on the empirical histogram on the right. In comparison, the
marginal densities of the zeros of the symmetric GAF are flat, see Figure 1(b).

A natural question is whether the approximation is also accurate for higher-order interactions in the
two point processes. This question can be addressed by comparing k-point correlation functions. The
case of the planar GAF was derived by [16], and closed-form formulas are derived for the symmetric
planar GAF in [25, Equation (12)]. The latter are not easy to interpret as they involve nonstandard
combinatorial combinations of matrix coefficients. Still, [25, Equation 25] shows that when Im(z)� 0,
the k-point correlation functions of the zeros of the symmetric planar GAF are well approximated by
those of the zeros of the planar GAF.

To conclude, the distribution of the zeros of the STFT of real white Gaussian noise is well ap-
proximated by that of complex white Gaussian noise, as long as the observation window is sufficiently
far from the time axis. This is easy to satisfy in practice, by restricting the observation of zeros to
frequencies that are larger than the frequency spread a of the observation window.

4.4 On the analytic white noise

A real-valued function f ∈ L2(R) has an Hermitian Fourier transform. In signal processing, it is thus
common to cancel out the negative frequencies of a real-valued signal f ∈ L2(R) by defining another
complex-valued function f+ ∈ L2(R) called its analytic signal,

f+(x) = 2F−1(1R+
Ff)(x),∀x ∈ R. (30)
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where F is the usual Fourier transform. The term “analytic” is related to the alternative definition
of f+ as the boundary function of a particular holomorphic function on the lower half of the complex
plane, see e.g. [26, Section 2.1] for a concise and rigorous treatment. In signal processing practice,
beyond removing redundant frequencies, the modulus and argument of f+ have meaningful interpre-
tations for elementary signals [27]. Since our initial goal is to understand the behaviour of the zeros of
a real white noise, it is tempting to define and consider an analytic white noise to represent this real
white noise. If this approach led to a simple statistical characterization of zeros, then we would avoid
the approximation by the complex white noise of Section 4.1.

While folklore has it that the analytic white noise is the circular white noise of Section 4.1, this
is not the case for the most natural definition of the analytic signal of a distribution. Following [26,
Section 3.3], we define in this paper the analytic white noise by its action on L2(R): letting ξ ∼ µ1 be
a real white noise2, we take

〈ξ+, f〉 , 2〈ξ,F−1(1R+
Ff)〉, ∀f ∈ L2(R). (31)

For our purpose, it is enough to consider ξ+ through its action (31). In particular, if we want to follow
the lines of Sections 3 and 4 and identify the general term of a random series corresponding to the
STFT of ξ+, we need an orthonormal basis (ζk) of L2(R) and a window γ such that

〈ζk,F−1(1R+
FMvTuγ)〉 (32)

is known in closed-form and simple enough. Hermite functions and the Gaussian window definitely
do not satisfy our criteria anymore, and [28] actually prove that the Gaussian is the only window γ
such that the range of the STFT is a subset of the space of analytic functions. Consequently, it is not
even clear that the STFT of analytic white noise would have isolated zeros in the first place. We leave
this as an open question. Still, we have the following heuristic argument: when γ is the unit-norm
Gaussian, FMvTuγ = TvM−uγ, so that (32) becomes

〈ζk,F−1(1R+
TvM−uγ)〉. (33)

When v is large enough, say a few times the width of the window γ, TvM−uγ puts almost all its
mass on R+, and the indicator function in (33) can be dropped. The Hermite basis then satisfies our
requirements, giving the planar GAF of Section 4. Intuitively, far from the real axis, the spectrogram
of the analytic white noise will look like that of proper complex white noise. This heuristic is to relate
to standard time-frequency practice, where one leaves out of the spectrogram a band that is within
the width of the window of the lower half plane. This is meant to avoid border effects that result from
taking into account both positive and negative frequencies of the signal simultaneously.

5 Practical spatial statistics using the zeros of the STFT

This section aims at using previous theoretical results on the zeros of the spectrogram of white Gaussian
noise to design and implement a practical approach to the detection and reconstruction of a signal
from its noisy observation. Section 5.1 discusses how to relate the continuous complex plane C with the
practical discrete implementation of the short-term Fourier transform. Sections 5.2 and 5.3 investigate

2As a side note, [26, Section 3] investigates the random field that would be the formal equivalent to the holomorphic
continuation of the classical analytic signal of a function in L2(R). But this time, the limit on the real axis is rather
ill-behaved.
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simple hypothesis tests for signal detection and signal reconstruction based only on the distribution
of the zeros of the spectrogram, in the spirit of [1]. Code to reproduce all experiments is available at
http://github.com/jflamant/2018-zeros-spectrogram-white-noise.

5.1 Going discrete

To fully bridge the gap with numerical signal processing practice, there is an additional level of ap-
proximation that needs to be discussed: continuous integrals are replaced by discrete fast Fourier
transforms. We first describe an experimental setting to numerically study the zeros of the spectro-
gram of Gaussian white noise. In particular, we explain how to reach an asymptotic regime where the
noise occupies an arbitrary large range both in time and frequency and the spectrogram is infinitely
well resolved. Second, we investigate practical issues related to the detection and reconstruction of a
signal in white noise by using its influence on the distribution of zeros of the spectrogram.

5.1.1 Zeros of noise only

Let Fs be the sampling frequency, ∆t = 1/Fs the time sampling step size. Let N be the number of
samples, and we define the duration T = N∆t.3 Let σt = 1/(a

√
2π) and σν = 1/(2πσt) denote the

spreads of the Gaussian analysis window γa in time and frequency, respectively. Note that the scale
a serves as a fixed reference for scales in the sequel. Let K be the length of the discretized Gaussian
analysis window, i.e. its duration is K∆t; therefore ∆ν = Fs/K = 1/K∆t is the frequency sampling
step. In practice, the spectrogram obtained from a discrete STFT is then an array of size (N,K/2+1).

Figure 3(a) illustrates the computation of the STFT of a noisy signal. Figure 3(b) illustrates the
relative scales of the duration T = N∆t, the frequency range K/2∆t (for ν ≥ 0), the resolution of the
time-frequency kernel corresponding to the window γ(t) with Gabor spread (σt, σν) as well as the time
and frequency resolutions ∆t and ∆ν.

We consider the time-frequency domain [0, T ]× [0, Fs/2] only; it corresponds to the analytic signal.
This is due to the Hermitian symmetry of the Fourier transform of real signals: negative frequencies
do not carry any additional information with respect to positive frequencies, see also Section 4.4. This
Hermitian symmetry can also be seen on the zeros of the symmetric GAF in Figure 1(a), where signal
processing practitioners would have considered the upper half-plane (ν ≥ 0) only.

From [17]’s results, see (28), we know that the expected number of zeros of the continuous spec-
trogram is close to TFs/2 if we neglect the (asymptotically negligible) region |ν| ≤ a close to the
time axis, see Section 4.3. Assuming that we are able to extract every zero, the expected number of
zeros in the discrete spectrogram is then TFs/2 = N/2 in very good approximation. We would like to
retain the stationary properties of the planar GAF in our discrete STFTs. We thus require that, in
the discrete setting, the resolution – in number of points – should be the same in time and frequency,
that is

σt
∆t

=
σν
∆ν
⇐⇒ σt · Fs = σν ·K∆t (34)

This leads to (recall that σtσν = 1/2π)

( σt
∆t

)2

=
K

2π
⇔ σt =

√
K

2π
∆t. (35)

3It is customary to call this T a duration, although strictly speaking it is the period of the discrete signal. The
corresponding duration of the continuous signal would be (N + 1)∆t.
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Figure 3: (a) Illustration of the STFT: the noisy signal is projected on a Gaussian analysis window
that is translated in time and frequency. (b) discrete time-frequency plane [0, N∆t] × [0, K2 ∆ν]: the
effective resolution of the spectrogram is controlled by the Gabor parameters (σt, σν) of the analysis
window g.

If we want to study the spectrogram of continuous white noise over an infinite time-frequency domain,
numerical simulations must obey two necessary conditions:




infinite duration ⇔ fine frequency resolution:
σt
T

=
∆ν

2πσν
=

1

N

√
K

2π
→ 0 as N,K →∞,

infinite frequency range ⇔ fine time resolution:
σν
Fs

=
∆t

2πσt
=

1√
2πK

→ 0 as N,K →∞.
(36)

These two conditions imply that both N,K →∞ and K ∝ N , where ∝ means “proportional to”.
Note that in practice, to avoid border effects, one chooses N ≥ 2K and keeps the N −K samples

whose time index n is such that K/2 ≤ n ≤ N − K/2. Then, σν/Fs = 1/
√

2πK ∝ 1/
√
N , σt/T ∝

1/
√
N ; note that ∆t/σt = ∆ν/σν ∝ 1/

√
N → 0 as well. The analysis window is thus more and more

finely resolved and the spectrogram gets close to a continuous description. As a result, simulations
can asymptotically well approximate the continuous spectrogram of Gaussian white noise over an
infinite domain. In parallel, the expected number of zeros in the spectrogram of the white noise
is FsT/2 = N/2 and tends to ∞ with N . Therefore, assuming perfect zero detection, statistics
such as Ripley’s K function or the variance-stabilized L functional statistic of Section 2.4.4 can be
asymptotically perfectly well estimated.

Figure 4 depicts the whole numerical simulation procedure. It represents the simulated spectrogram
and the corresponding extracted area when border effects are taken into account. For a given value
of a, one has σt = 1/(a

√
2π) and ∆t =

√
2π/Kσt, see (35). For a = 1 one has ∆t = 1/

√
K so that

u = n/
√
K and v = k/

√
K are the coordinates of the continuous time-frequency plane corresponding

to the discrete time-frequency samples (n, k). The bound ` fixes how many samples close to the zero-
frequency axis should be removed. For a = 1, we have chosen ` =

√
K, at it corresponds to y = 1
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Figure 4: Numerical simulation procedure whenN = 2K and ∆t = 1/
√
K. Black ticks indicate discrete

samples, blue ticks show continuous time-frequency units (see text for details). In other words, blue
ticks are the coordinates in the complex plane that are implicit in the mathematical results of Sections 3
and 4. The dashed region corresponds to the area used in subsequent simulations.

in (28). Our illustrations will only show a square region of side K/2− ` samples both in time and in
frequency. Note that one could actually extend the shaded square in Figure 4 horizontally to cover a
duration of K∆t.

Then we need to define a numerical procedure to detect zeros. It appears that zeros are local
minima among their eight neighbouring bins: these local minima are very close to zero. Moreover, we
found that the number of detected zeros was consistent with what we expected from Proposition 5,
even if we did not impose a threshold on the value of the spectrogram at the local minimum.

Remark 3. We have implicitly assumed that the discrete Fourier transforms involved in the compu-
tation of the discrete spectrogram converge to their continuous counterpart in the limit of an infinite
observation window and an infinite sampling rate. We mathematically justify in what sense this con-
vergence can be expected. Denote by χn the indicator of the nth interval [(n − 1)∆t, n∆t]. Let

PN,T : S → L2 attach to a Schwartz function f the “sampled” simple function
∑N
n=1 f(n)χn. Then

PN,T f → f in L2 as T and N go to infinity and T/
√
N → α > 0, which is the setting described above.

Moreover,

〈ξ, PN,TMvTug〉 =
N∑

n=1

〈ξ, χn〉e−2iπvn∆tg(n∆t− u) (37)

is what we call the discrete STFT at (u, v) of a realization of white noise. Note that in distribution,
(〈ξ, χn〉)n is a sequence of i.i.d. Gaussian variables with variance ∆t. To see how (37) is a good
approximation to our initial continuous STFT, we note that for all u, v,

Eµ1 |〈ξ,MvTug〉 − 〈ξ, PN,TMvTug〉|2 = Eµ1 |〈ξ,MvTug − PN,TMvTug〉|2
= ‖MvTug − PN,TMvTug‖2L2

→ 0.
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5.1.2 Zeros of signal plus noise

When a signal is present, its specific scales destroy the scale invariance property of Gaussian white noise
and deprives us from any asymptotic regime in our numerical simulations. Let AS denote the typical
time and frequency area occupied by the considered signal. The presence of this signal creates a region
of the spectrogram of size AS where a decrease in the number of zeros is expected due to the positive
amount of energy corresponding to the signal. For instance, Figure 5 shows various spectrograms of
linear chirps with various AS and various signal-to-noise ratios (SNRs): there are clearly less zeros
where the signal lives. The approach proposed in the next section roots in this intuition to build
statistical detection tests based on the distribution of zeros in the spectrogram. To this purpose one
needs to quantify how far the presence of a signal can influence the statistics so that we can maximize
this influence and the efficiency of the proposed test.

Given a sampling rate Fs and a duration of observation T , the unit intensity in Proposition 5 yields
that the expected number of zeros in the spectrogram of a real white noise is Fs ·T/2 = N/2, neglecting
what happens at small frequencies close to the time axis. Note that this number is independent of the
width (σt, σν) of the Gaussian analysis window γa. If one wants to increase the number of zeros in the
spectrogram to get better statistics, it is enough to increase either Fs or T . The expected decrease in
the number of zeros due to the presence of a signal is of the order of the finite time-frequency area
AS corresponding to the region of the spectrogram describing the signal alone. As a consequence, an
excessive increase in either Fs and/or T would result in an asymptotically complete dilution of the
influence of the signal on the considered statistics. Thus, our purpose is to build statistics over one or
more patches P of the spectrogram of maximal time-frequency area AP such that AS/AP ' 1.

On one hand, a maximal area AP is necessary to ensure that the estimate of the chosen statistics
is as accurate as possible (in particular in the presence of noise only, to take into account as many
zeros as possible and minimize the false positive detection rate). On the other hand, this statistic will
be more sensitive if it mostly depends on the influence of the signal on the distribution of zeros in the
spectrogram (in particular, in the presence of signal, we maximize the true positive detection rate).
In practice, note that one can hope to detect signals such that AS � σtσν = 1/2π only, which means
signals with a time-frequency support that affects more than σt/∆t · σν/∆ν = K/2π samples of the
spectrogram.

5.2 Detecting signals through hypothesis testing

In this section, we present a hypothesis test that checks whether a given pattern of zeros can be
attributed to the spectrogram of a realization of Gaussian white noise.

5.2.1 Monte Carlo envelope tests

In Section 2.4.4, we reviewed some popular functional statistics for stationary isotropic point processes.
We focus here on L, the variance-stabilized version of Ripley’sK function, and the empty space function

F (r) = P (There is at least one point in the ball of radius r and center 0) ,

see Section 2.4. We follow classical Monte Carlo testing methodology based on functional statistics,
which we now sketch, see e.g. [29] for a less concise introduction.

The methodology is independent of the test statistic used, so we introduce it for a general functional
statistic r 7→ S(r), which we later instantiate to be L or F . Let Ŝ denote an empirical estimate obtained
from the spectrogram of data, possibly using edge corrections, see [9]. Let S0 be the theoretical
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functional statistic corresponding to complex white noise. For S = L, L0 can be easily computed from
(24). Note that our noise is real white noise in the applications, but we approximate the corresponding
2-point correlation function by that of complex white noise far from the real axis, as explained in
Section 4.3. Detection of signal over white noise can be formulated as testing the null hypothesis H0

that Ŝ was built from a realization of a real white noise, versus the alternate hypothesis H1 that it
was not. Note that we do not put yet any a priori knowledge in the design of H1, and simply define
it by the negation of H0. To design our test, we review Monte Carlo envelope-based hypothesis tests,
which are popular across applications of spatial statistics.

In a Monte Carlo envelope test, we define a test statistic T ∈ R that summarizes the difference
r 7→ S(r)− S0(r) in a single real number, for instance a norm

T∞ = sup
r∈[rmin,rmax]

|S(r)− S0(r)| or T2 =

√∫ rmax

rmin

|S − S0|2. (38)

Let texp denote the realization of T corresponding to the experimental data to be analyzed. The test
consists in 1) simulating m realizations of white noise, 2) computing the corresponding functional
statistics estimates S1, . . . , Sm, 3) computing the realizations t1, . . . , tm of the test statistic, and 4)
rejecting H0 whenever the observed texp is larger than the k-th largest value among t1, . . . , tm. Without
loss of generality, we assume t1, . . . , tm are in decreasing order, so that tk is the k-th largest. In a
nutshell, we reject H0 if and only if texp ≥ tk.

Symmetry considerations show that this test has significance level α = k/(m + 1). Furthermore,
when S0 is not available in closed form, one can replace it by a pointwise average

S̄0(r) =
1

m+ 1
(S1(r) + · · ·+ Sm(r) + Ŝ(r)) (39)

while preserving the significance level, see [29].
To illustrate the testing procedure, we consider a synthetic chirp as a signal, to which we add

white noise with SNR= 100. Note that we define here SNR to be the ratio of A2/2σ2, where A is
the maximum amplitude of the chirp, and σ2 the variance of the noise. Figure 5 shows vignettes with
example spectrograms of such signals, the zeros are depicted as white disks. The rest of Figure 5 shall
be explained in Section 5.2.2. Figure 6 illustrates why this test is called an envelope test, in the case
of S = L. The two panels respectively represent the cases T = T∞ and T = T2 defined in (38). Let
k = 10 and m = 199, so that the significance is α = 0.05. We further take rmin = 0 and let rmax

vary, showing for each rmax the corresponding tk as the upper limit of the green shaded envelope. The
black line shows texp at each rmax, for the same realizations of the tested signal and the white noise
spectrograms. To interpret these plots, imagine the user had fixed rmax to some value, then he would
have rejected H0 if and only if the corresponding intersection of the black line with r = rmax was
above the green area. Note that the significance of the test is only guaranteed if rmax is fixed prior
to observing data or simulations. Still, Figure 6 gives a heuristic to identify characteristic scales of
interaction after H0 is rejected. For instance, characteristic scales could be values of rmax where the
data curve in black leaves the green envelope4. The user can thus identify regions of the spectrogram
that possibly correspond to signal (defined as “different from white noise”). To illustrate this, consider
again both plots of Figure 6. There is a hint of an interaction between zeros – an excess or deficit of
pairs– between rmax = 0.5 and rmax = 1 since the data curve in black leaves the green envelope in
this region. This interaction cannot be explained by noise only. In Section 5.3, we investigate how

4Caveats have been issued against overinterpreting these scales of interaction, see [29].
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Figure 5: Assessing the power of the test on detecting a linear chirp with various SNRs across columns.
The top row corresponds to a support of the chirp that is approximately the width of the observation
window, while the bottom row corresponds to a chirp support that is half that. Each panel contains the
estimated power for both S = L and S = F , using T2. We also plot a realization of the corresponding
spectrograms for illustration.

the knowledge of such a scale can be used to filter out noise, but before that, we investigate how the
power of the test varies with parameters.

5.2.2 Assessing the power of the test

The significance α of the test – the probability of rejecting H0 while H0 is true – is fixed by the user as
in Section 5.2.1. It remains to investigate the power β of the test, that is, the probability of rejecting
H0 when one should. Following Section 5.1.2, we expect β to increase with SNR, which should be
large enough to “push” zeros away from the time-frequency support of the signal to be detected. We
also expect the power to be larger when the observation window is not too much larger than the
time-frequency support AS of the signal; in the notation of Section 5.1: if AP /AS ≈ 1.

We back these claims by the experiment in Figure 5. To quantify β, we consider the task of
detecting a signal that is a linear chirp. Still taking m = 199 and k = 10, so that α = 0.05, we build
each of the six panels as follows: we simulate a mock signal made using a linear chirp plus noise,
with SNR indicated on the plot, growing from left to right. We then repeat 200 times: 1) simulate m
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Figure 6: Envelope plots for the detection test of Section 5.2 for the supremum and 2-norm of the
deviation of the L functional statistic from its pointwise average (39).

white noise spectrograms, 2) compute the estimates S1, . . . , Sm, 3) compute the realizations t1, . . . , tm,
and 4) check wether H0 is rejected for each value of rmax. We can thus estimate the probability β of
rejecting H0 for various choices of rmax the user could have made. We plot both the power using S = L
or S = F , choosing the 2−norm in (38) and the empirical average (39). We estimate the functional
statistics using the spatstat R package5. We emphasize that to estimate β, we assumed that signals
are linear chirps; however, our testing procedure does not rely on this a priori knowledge.

We need to give a confidence interval for the power. We give Clopper-Pearson intervals for four
values of rmax in all panels of Figure 5. Note that since we use the same realizations of white noise
across 4 different values of rmax and for both L and F , we have to correct for the 8 multiple tests
we perform, which we do using Bonferroni correction, see e.g. [30]. Finally, the top row of Figure 5
corresponds to a signal support that matches the size of the observation window, while the bottom
row is half that. On each panel, an inlaid plot depicts the spectrogram for one realization of the signal
corrupted by white noise. Zeros of spectrograms are in white.

Results confirm our intuitions: power increases with SNR, and decreases as the size of the support
of the signal diminishes with respect to the observation window. In all experiments, the best power is
obtained by taking rmax to be as large as possible, which here means half of the observation window.
This makes sure that as many points/pairs as possible enter the estimation of the functional statistic
S. Concerning the choice of functional statistic, the empty space function F performs significantly
better for high SNR and large enough rmax. The peaks of power at low rmax for S = L and some
combinations of SNR and support are due to the excess of small pairwise distances introduced by the
chirp signal. Indeed, zeros tend to clutter on the boundary of the support of the signal, and repulsion

5Version 1.51-0, see http://spatstat.org/
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seems to be lower around this boundary, as can be seen on the depicted spectrograms in Figure 5. The
power vanishes quickly once larger pairwise distances are considered, due to the cumulative nature of
L. It is dangerous to rely on these peaks for signal detection as they do not appear systematically
and would require a careful hand-tuning of rmax that would likely defeat our purpose of automatic
detection. Overall, we recommend using F and large rmax, which appears to be a robust best choice.
We also found (not shown) first that F is superior or equal to the other functional statistics described in
Section 2.4 for chirp detection. Second, we found that the tests using the average (39) are consistently
more powerful than those using the closed form L0 of L. We believe this is due to the edge correction
that is implicitly made in (39), while the analytic L0 corresponds to an infinite observation window.
Third, we also observed the 2−norm in (38) to be consistently more powerful than the supremum
norm.

5.3 Reconstruction from the empty space function

We now give a proof of concept that the tests in Section 5.2 can be turned into a reconstruction
algorithm, guided by the theory of Section 4. In a nutshell, we look for unlikely holes in the time-
frequency plane, where by hole we mean a disk containing no zero of the spectrogram.

To reconstruct a signal from its time-frequency representation, one often requires a mask gathering
the relevant region of the time-frequency plane. One then recovers the signal by inverting the time-
frequency representation with this mask. Such masks are usually obtained by thresholding of local
maxima called ridges [31]. In contrast, using zeros avoids specifying a model for signals, or parameters
like a threshold for the numerical definition of maxima. Furthermore, [1] points out that the geometric
rationale behind using the zeros is rotation-invariant in the time-frequency plane, with a similar ability
to deal with impulse-like transients signals (with almost “vertical” time-frequency signatures) and AM-
FM-type waveforms (with almost “horizontal” ones). The approach described in this paper can be seen
as a point process counterpart of the method proposed by [1]. To this aim, we replace the histograms
of edge lengths obtained by Delaunay triangulation in [1] by standard tools from spatial statistics.

Consider a linear chirp as in Section 5.2 with SNR= 20. The corresponding spectrogram and its
zeros are shown in Figure 7(a). Remember from Section 2.4 that the spatial statistic r 7→ F (r) used
in the tests of Section 5.2 is the probability that a disk of radius r contains at least one zero. If the
hypothesis H0 that the spectrogram is that of a realization of white noise is rejected during a test
using F , it is because there are too many holes in the pattern of zeros. To locate these abnormal
holes, let us pick a value r0 such that empty disks with radius larger than r0 are rare under H0. For
instance, Figure 2(a) hints that we should pick r0 around 1, since pairs of zero distant by 1 are very
likely – more likely even than in a Poisson point process – while distances smaller than 1 are rare, see
Section 2.4. Another method would be to look for characteristic scales in the envelope plots of the
test, as done in Section 5.2.1 for the L-statistic. We found both methods to give roughly consistent
answers, so we set r0 = 1.

To locate areas of the time-frequency plane that correspond to signal, we sweep through the time-
frequency plane, and mark bins of the discrete spectrogram such that there are no zeros in the disk of
radius r0 centered at the bin center. These bin centers are marked in beige in Figure 7(b). Now, to be
conservative, we add to the beige area every point of the time-frequency plane that is within r0/2 = 0.5
of it. This value is chosen to be approximately half the typical distance between two zeros and can
be interpreted as a resolution, see Figure 2(a). Computing the envelope of this augmented beige area
yields the green contour in Figure 7(c), and inverting the STFT with a mask corresponding to this
envelope gives us the reconstruction in Figure 7(d), which very accurately picks up the properties of
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Figure 7: Reconstruction of a signal by zero-based segmentation.
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the original signal. Finally, we emphasize that while we depicted the spectrogram in Figures 7(a) and
7(c), the whole construction of the mask only relies on the location of the zeros of the spectrogram.

6 Discussion

The main purpose of the present work was to explore the potential of using the zeros of a spectrogram
for the detection and reconstruction of a signal in white Gaussian noise. The intuition is based on
the duality between maxima and zeros pointed out by [1]: the presence of a signal may be detected
as an anomaly in the distribution of zeros in the time-frequency plane. The main idea was to exploit
the description of the zeros of the spectrogram of white Gaussian noise as a point process, i.e., a
random set of points in the complex plane. In particular, we have shown that determinantal point
processes (DPPs) with Hermitian kernels, despite some similarity, do not provide a relevant model for
the distribution of the zeros of the spectrogram of white Gaussian noise.

We have also shown how to give a mathematical meaning to the zeros of the spectrogram of white
Gaussian noise. We have investigated their statistical distribution for real, complex, and – to a lesser
extent – analytic white noise. We have related these zeros to the zeros of Gaussian analytic functions
(GAFs), a topic of booming interest in probability. The connection with GAFs puts signal processing
algorithms based on the zeros of spectrograms on firm ground, and further progress on GAFs is bound
to be fruitful for signal processing. Perhaps less obviously, we believe that signal processing tools can
also bring insight into probabilistic questions on GAFs. For instance, the Bargmann transform, zeros
of spectrograms, and the fast Fourier transform give a novel way to approximately simulate the zeros
of the planar GAF, or even the zeros of random polynomials.

More pragmatically, we have investigated the computational issues raised by implementing statisti-
cal tests based on the distribution of the zeros of a spectrogram, the null hypothesis being that there is
white Gaussian noise only (no signal). Numerical experiments have demonstrated a simple denoising
task that relies on the segmentation of the spectrogram based on zeros only. We have investigated the
application of standard frequentist testing tools. They showed good power for sufficiently high SNR
and sufficiently large signal support compared to the observation window. For an optimized appli-
cation, there are various leads to improve on these two points. First, we could transform our global
test into several local tests, trying to adapt the tested patch to the support of the signal. Second,
if some prior knowledge is available, models for signals could be fed to Bayesian techniques, allowing
to explore all signals compatible with a given pattern of zeros. The optimization of practical signal
processing procedures based on the proposed approach is the subject of ongoing work.

One limitation of this work is that we have considered spectrograms computed using a Gaussian
window only. This choice was motivated by the feasibility of its theoretical study. It remains an open
question to determine to what extent our results apply to other analysis windows. A negative result is
given by [28], who essentially show that the Gaussian is the only window that makes the STFT map
L2(R) to a set of analytic functions. Yet, it may be that the range of the STFT with some carefully
chosen windows is not too different from a space of analytic functions. For instance, Gabor transforms
with Hermite windows map to polyanalytic functions [32]; see also [33] for a signal-oriented review of
spaces of polyanalytic functions. Polyanalytic functions do not have isolated zeros, but there is still
a wealth of analytic tools available to characterize the zero sets [34]. Another lead to generalize the
results in this paper is to see the Hermite functions as the eigenfunctions of a particular localization
operator [35, 36], and try to explore how much freedom we have on the choice of the localization
operator while still controlling the location of the zeros of the associated spectrogram.
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A general approach for the analysis and �ltering of bivariate signals

Bivariate signals appear in a broad range of applications where the joint analysis of two real-valued signals is required:
polarized waveforms in seismology and optics, eastward and northward current velocities in oceanography, pairs of
electrode recordings in EEG orMEG or even gravitational waves emitted by coalescing compact binaries. Simple bivariate
signals take the form of an ellipse, whose properties (size, shape, orientation)may evolve with time. ¿is geometric feature
of bivariate signals has a natural physical interpretation called polarization. ¿is notion is fundamental to the analysis and
understanding of bivariate signals. However, existing approaches do not provide straightforward descriptions of bivariate
signals or �ltering operations in terms of polarization or ellipse properties. To this purpose, this thesis introduces a new
and generic approach for the analysis and �ltering of bivariate signals. It essentially relies on two key ingredients: (i) the
natural embedding of bivariate signals – viewed as complex-valued signals – into the set of quaternionsH and (ii) the
de�nition of a dedicated quaternion Fourier transform to enable a meaningful spectral representation of bivariate signals.
¿e proposed approach features the de�nition of standard signal processing quantities such as spectral densities, linear
time-invariant �lters or spectrograms that are directly interpretable in terms of polarization attributes. ¿ese geometric
and physical interpretations are made possible by the use of quaternion algebra. More importantly, the framework does
not sacri�ce any mathematical guarantee and the newly introduced tools admit computationally fast implementations.
By revealing the speci�city of bivariate signals, the proposed framework greatly simpli�es the design of analysis and
�ltering operations. Numerical experiment support throughout our theoretical developments. We demonstrate the
potential of the approach for the characterization of (polarized) gravitational waves emitted by compact coalescing
binaries. A companion Python package called BiSPy implements our �ndings for the sake of reproducibility.

Keywords: bivariate signal, polarization, quaternion Fourier transform, spectral analysis, linear �ltering, time-frequency
analysis, gravitational waves

Une approche générique pour l’analyse et le �ltrage des signaux bivariés

Les signaux bivariés apparaissent dans de nombreuses applications, dès lors que l’analyse jointe de deux signaux
réels est nécessaire : ondes polarisées en sismologie et optique, courants marins de surface en océanographie, paires
d’enregistrements en EEG et MEG, et même ondes gravitationnelles émises par des binaires coalescentes. Les signaux
bivariés simples ont une interprétation naturelle sous la forme d’une ellipse dont les propriétés (taille, forme, orientation)
peuvent évoluer dans le temps. Cette propriété géométrique des signaux bivariés correspond à la notion de polarisation
en physique. Elle est fondamentale pour la compréhension et l’analyse des signaux bivariés. Les approches existantes
n’apportent cependant pas de description directe des signaux bivariés ou des opérations de �ltrage en termes de
polarisation ou de propriétés géométriques. Cette thèse répond à cette limitation par l’introduction d’une nouvelle
approche générique pour l’analyse et le �ltrage des signaux bivariés. Celle-ci repose sur deux ingrédients essentiels : (i) le
plongement naturel des signaux bivariés – vus comme signaux à valeurs complexes – dans le corps des quaternionsH et
(ii) la dé�nition d’une transformée de Fourier quaternionique associée pour une représentation spectrale interprétable
de ces signaux. L’approche proposée permet de dé�nir les outils de traitement de signal usuels tels que la notion de
densité spectrale, de �ltrage linéaire temps-invariant ou encore de spectrogramme ayant une interprétation directe en
termes d’attributs de polarisation. Ces multiples interprétations géométriques et physiques sont rendues possibles par
l’utilisation de l’algèbre quaternionique. Nous montrons la validité de l’approche grâce à des garanties mathématiques et
une implémentation numériquement e�cace des outils proposés. En exploitant la spéci�cité du cas des signaux bivariés,
le cadre de travail proposé simpli�e grandement la conception d’outils d’analyse et de traitement du signal dédiés. Les
développements théoriques présentés dans ce manuscrit sont illustrés par des expériences numériques. En particulier,
nous démontrons le potentiel de l’approche pour la caractérisation des ondes gravitationnelles – polarisées – émises
par des systèmes binaires en coalescence. Un module Python nommé BiSPy accompagne nos travaux en vue d’une
recherche reproductible.

Mots-clés : signal bivarié, polarisation, transformée de Fourier quaternionique, analyse spectrale, �ltrage linéaire,
analyse temps-fréquence, ondes gravitationnelles
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