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Claude CAMBON, Directeur de recherche, École Centrale de Lyon
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Abstract

Computational fluid dynamics (CFD) is a valuable tool to investigate complex flows, and may provide detailed
information about fluid phenomena that is not accessible through experimental or theoretical approaches. How-
ever, aside from possible errors arising during the physical modelling or discretization processes, uncertainties
in the input quantities required by the CFD solver may prevent from an accurate estimation of the considered
flow. For example, the numerical reproduction of the flow past an airfoil needs, among others, proper knowledge
of the angle of attack and Mach number, which are rarely known with accuracy in real applications. Besides,
the more complex the flow is, the harder is the prescription of appropriate initial and boundary conditions for
numerical simulation.

In this thesis, we investigate the use of various data assimilation (DA) techniques in the context of CFD, with
the ultimate goal of enhancing the prediction of real-world flows. DA consists in merging numerical predictions
and experimental observations in order to improve the estimation of the CFD solver inputs. Both methodological
aspects of DA and its potential application to physics investigations are explored for various flow configura-
tions. First, DA is considered for the theoretical analysis of grid turbulence decay. Fundamental aspects of
anisotropic homogeneous turbulence are also investigated through spectral modelling. Various DA methodolo-
gies are deployed in conjunction with a Navier-Stokes solver and are assessed for the reconstruction of unsteady
compressible flows with large control vectors. Sensor placement strategies are developed to enhance the perfor-
mances of the DA process. Finally, a first application of DA to Large Eddy Simulations of full-scale urban flows
is proposed with the aim of identifying source and wind parameters from concentration measurements.

Résumé

La mécanique des fluides numérique (MFN) est devenue un outil indispensable dans les milieux académique et
industriel dans la mesure où elle permet d’obtenir des informations sur des écoulements complexes qui sont dif-
ficilement accessibles par des approches expérimentales ou théoriques. Toutefois, mis à part d’éventuels défauts
dans la modélisation physique ou dans le processus de discrétisation, la prescription de mauvais paramètres
d’entrée peut être à l’origine d’erreurs significatives dans la prédiction numérique de l’écoulement étudié. A titre
d’exemple, la simulation numérique d’un écoulement autour d’un profil d’aile nécessite, entre autres, une con-
naissance précise des valeurs de l’angle d’attaque et du nombre de Mach. En outre, l’identification de conditions
initiale et aux limites appropriées est d’autant plus difficile que l’écoulement étudié est complexe.

Dans cette thèse, l’application de l’assimilation de données (AD) à la MFN est étudiée, avec comme objec-
tif global de contribuer à l’amélioration de la prévision numérique d’écoulements complexes. L’AD consiste
à fusionner les outils de prévision numérique avec des données expérimentales afin d’améliorer l’estimation
des paramètres d’entrée du code MFN. Les aspects méthodologiques de l’AD et son application pour des
études physiques sont tous deux examinés dans cette thèse. Dans un premier temps, l’AD est utilisée pour
une étude théorique de la turbulence de grille. Un modèle spectral pour les écoulements turbulents homogènes et
anisotropes est également proposé. Plusieurs méthodes d’AD sont ensuite implémentées pour un code MFN et
appliquées à la reconstruction d’écoulements instationnaires et compressibles en présence d’incertitudes sur des
paramètres d’entrée de grandes dimensions afin d’évaluer les forces et faiblesses respectives de ces techniques.
Des stratégies pour le placement optimal de réseaux de capteurs sont élaborées afin d’améliorer les performances
du processus d’AD. Enfin, l’AD est appliquée à l’identification de sources de polluants et à la reconstruction de
conditions météorologiques pour des écoulements en milieu urbain prédits par Simulation des Grandes Échelles.
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au jury.

Je souhaite exprimer ma gratitude envers ceux avec qui j’ai échangé au cours de cette thèse et qui ont permis
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Chapter 1

Global introduction

1.1 Motivations and objectives of the study

Computational fluid dynamics (CFD) is a valuable tool to investigate fluid mechanics problems, since it may
provide detailed information about fluid phenomena that is not accessible through experimental or theoretical
approaches. Accordingly, CFD has achieved widespread use in both fundamental studies and engineering ap-
plications. However, despite having reached a certain level of maturity, the reproduction of real-world flows
through CFD remains challenging. The difficulties encountered in the numerical prediction of complex flows
may originate from at least three main factors:

1. Physical modelling: the prediction of fluid phenomena requires the determination of appropriate math-
ematical models that capture the physics of the flow. These models are generally expressed in terms of
partial differential equations that reflect conservation laws. For some complex flows, such as reacting or
multiphase flows, deriving appropriate model equations is still an open issue.

2. Numerical methods: once the model equations of the flow are established, numerical schemes and dis-
cretization techniques are used to translate them into a numerical algorithm. Errors arising during the
discretization process may originate from a variety of factors ranging from a lack of stability of the nu-
merical schemes to an inadequate mesh given the geometry of the flow.

3. Inputs of the simulation: the numerical integration of the model equations generally requires the prescrip-
tion of initial and boundary conditions, since partial differential equations are solved. The mathematical
model may also involve adjustable parameters, whose values have to be specified. A wrong specification
of the CFD solver inputs may induce significant errors in the prediction of the flow.

Issue 1 may not be the most serious problem in CFD, since conservation laws of fluid systems are well known,
at least for single-phased flows, while issue 2 can be addressed through the improvement of numerical methods,
even if accurate and robust schemes are already available. Accordingly, issue 3 appears to be prominent in CFD
applications. For example, the numerical reproduction of the flow past an airfoil needs, among others, proper
knowledge of the angle of attack and Mach number, which are rarely known with accuracy in real applications.
Besides, the more complex the flow is, the harder is the prescription of appropriate initial and boundary con-
ditions for numerical simulation. Therefore, there is a need for the development of methodologies providing
appropriate estimations of the CFD solver inputs from external information.

Experimental fluid dynamics (EFD) is another way to study fluid mechanics problems, and is by essence ap-
propriate to investigate real-world flows. However, EFD suffers from other limitations than those encountered
in CFD. In particular, measurements are usually fragmentary in the sense that they are restricted in time and
space, and thus can not provide a full description of the flow. Advanced interpolation techniques [34, 92] may
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Chapter 1. Global introduction 2

be considered in order to complete sparse experimental data, but such methods usually do not allow to satisfy all
the physical constraints on the flow.

A promising strategy to obtain detailed and accurate information about real-world flows may consist in com-
bining the high resolution of CFD with observations from EFD [94]. This is precisely the principle of data
assimilation (DA) [133], which consists in incorporating EFD information in CFD predictions through the de-
termination of suitable inputs for the CFD solver. In other words, the aim of DA is to infer initial and boundary
conditions and/or model parameters from limited experimental data. From the perspective of numericists, DA
allows to drive CFD predictions towards real-world flows of interest. From the perspective of experimentalists,
DA is an efficient methodology to complete sparse experimental data through CFD, thus allowing a proper en-
forcement of conservation laws. From a broader perspective, DA may be considered as an efficient tool to solve
inverse problems.

In this thesis, we consider DA methodologies as used in earth sciences, which stem from the efforts of the
meteorological community to determine appropriate initial conditions for climate prediction models from various
sources of data [197]. These techniques have been developed in the context of large-scale and nonlinear systems,
and therefore appear appropriate for fluid systems and CFD. Two main classes of DA methodologies may be
distinguished. The first one relies on a deterministic formulation of the DA problem where the goal is to minimize
the squared norm of the discrepancies between observations and numerical prediction [128]. The second class
of techniques is derived in a stochastic framework from Bayes’ theorem [224]. It is worth keeping in mind that
the stochastic formulation of DA has been used in meteorological applications partly to take into account badly-
known dynamics and imperfect models, since it remains difficult in earth sciences to derive model equations
that reflect the full complexity of the physics of oceanographic and atmospheric systems. One might therefore
wonder if the stochastic approach in DA, which requires more prior information than the deterministic one, is
the most appropriate to CFD where governing equations are generally well known. However, both approaches
are investigated in this thesis.

So far, two DA techniques have been applied to CFD, namely variational DA, which is based on optimal control
[128, 137], and Kalman filtering, directly derived from the Bayesian formulation of DA [77, 111]. These two
approaches have been investigated separately, while they vastly differ in their implementations and may produce
distinct results. Moreover, recent hybrid DA approaches, which have not yet been considered in CFD, deserve
attention due to their interesting combination of deterministic and stochastic techniques. Lastly, only a few
studies have been dedicated to fully unsteady flows. Accordingly, further investigations are required to study
methodological aspects of DA in the context of CFD, with the aim of identifying suitable approaches to determine
initial condition, boundary conditions or model parameters for the numerical prediction of unsteady flows and
characterizing their relative performances and advantages.

Along with the CFD solver used to estimate the flow and the assimilation methodology, observations are one of
the primary components in DA. Since measurements represent the only available knowledge about the reference
flow to be reconstructed, observation networks should be carefully designed in order to extract as much relevant
information as possible. Despite the existence of several techniques for sensor placement in DA proposed in
the meteorological community, the determination of efficient strategies for CFD applications is still an open
question, while the choice of the observation locations may significantly deteriorate or enhance the results of the
DA procedure.

As mentioned above, a required characteristic of the DA techniques considered here is their ability to solve
inverse problems for large-scale and nonlinear systems. Accordingly, in addition to allow to enhance CFD and
EFD results, DA may be considered as an appropriate tool to perform physical investigations of fluid mechanics
problems. In particular, variational DA techniques provide the gradient of the flow solution with respect to all the
components of a vector of interest such as the initial field, thus allowing to perform detailed sensitivity analyses
of systems of large dimension. There is therefore significant potential to perform theoretical analyses through
DA.

According to the above discussion, the aim of this thesis is threefold:
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• Methodological aspects of DA are investigated in the context of unsteady fluid mechanics, with the aim
of identifying appropriate techniques to infer large-dimensional inputs for CFD solvers from external
information.

• Sensor placement strategies are developed for DA in order to maximize the efficiency of the assimilation
process.

• The potential of DA to perform physical studies and sensitivity analyses is explored.

Flows of increasing complexity are considered in order to address the issues mentioned above. Homogeneous
isotropic turbulence (HIT) and the use of the 1D eddy-damped quasi-normal Markovian (EDQNM) spectral
model to compute HIT decay are first considered. The low computational cost of this model makes it appropriate
for preliminary DA studies, while HIT decay remains a subject of great interest for turbulence theory. DA is here
employed to identify the characteristics of the initial kinetic energy spectrum that lead grid turbulence decay.
Next, various DA schemes are implemented in conjunction with a Navier-Stokes solver for bidimensional un-
steady compressible flows, allowing to investigate inverse problems of higher dimensions. These DA techniques
are here used to identify appropriate initial and boundary conditions from various types of observations of the
flow past a cylinder in the presence of coherent gusts or performing rotary oscillations around its axis. As a final
test case, the possibility of reconstructing complex turbulent urban flows through DA is investigated. Computa-
tions rely on a high-fidelity Large Eddy Simulation (LES) solver, and the issue of inferring characteristics of a
pollutant source and meteorological conditions from measurements of concentration in an actual urban area is
examined.

In addition to the study of DA in the context of fluid mechanics, spectral modelling of homogeneous turbulence
is also considered in this thesis. The aim is to develop a model for anisotropic turbulence in the presence of
mean velocity gradients that combines a spherically-averaged level of description with a rigorous description of
anisotropy and EDQNM-based modelling for nonlinear terms. This approach allows to obtain a spectral model
that can be used to calculate anisotropic turbulent flows at both very high and low Reynolds numbers, with good
resolution of both large and small scales and over very long evolution times. This model is used to study both
the interactions of turbulence with mean flows and its return to isotropy.

1.2 Thesis layout

The thesis is structured as follows:

• In chapter 2, a review of DA methods is provided.

Part I is dedicated to the study of homogeneous turbulence through spectral approaches and DA.

• In chapter 3, variational DA is used with the EDQNM model for the identification of the scales governing
grid turbulence decay. The issue of anomalous decay regimes is examined.

• In chapter 4, a spectral model for homogeneous sheared turbulence is proposed and validated against grid
turbulence experiments and Direct Numerical Simulations (DNS).

Part II is dedicated to the application of DA to CFD.

• In chapter 5, various DA techniques are implemented and assessed with a Navier-Stokes solver for bidi-
mensional unsteady compressible flows. Different reconstruction scenarios for the flow past a cylinder in
the presence of coherent gusts are investigated.
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• In chapter 6, an adjoint-based sensor placement procedure is developed and assessed for the reconstruction
of flows past a rotationally oscillating cylinder.

• In chapter 7, DA is applied to the identification of source characteristics and meteorological conditions in
an urban environment with a LES solver. A sensor placement strategy based on global sensitivity methods
is proposed.



Chapter 2

Review of data assimilation techniques

2.1 Introduction

This chapter is dedicated to a review of data assimilation (DA) techniques as developed in the atmospheric,
oceanic and hydrologic communities. A more elaborate and exhaustive introduction to DA and discussions about
its application to earth sciences may be found in textbooks such as [79, 112, 126, 133, 175, 199]. This chapter
is organized as follows. The DA problem is defined in §2.2, in both deterministic and stochastic frameworks.
Various DA techniques are then described in §2.3-§2.8, with an emphasis on the methods deployed in the present
work.

2.2 Statement of the data assimilation problem

2.2.1 Deterministic formulation

DA basically aims at combining measured observations with a dynamical model in order to improve the estima-
tion of the state of the system under consideration, such as the atmosphere or a newtonian fluid [197]. There
are thus two primary components in DA: the dynamical model used to perform predictions about the state of the
system, and observations of the system. In the present chapter, for the sake of clarity and to facilitate the use
of an unified notation in the presentation of the different DA schemes, we adopt a discrete formulation of the
DA problem, i.e. we consider state of the model, model operator (governing equations) and observations that
are discretized in both space and time. The continuous formulation of the DA problem, which is possibly more
appropriate for the derivation of variational schemes, is employed in chapters 3 and 6. In the discrete framework,
it is assumed that the state of the system, such as a flow field, is described by the vector xk ∈ R

Ns at discrete time
k, where Ns is the dimension of the state of the system after spatial discretization. The vector xk is advanced in
time according to

xk+1 = mk(xk) 0 ≤ k ≤ N − 1, (2.1)

where N is the number of time steps, the operator mk denotes the fully discretized governing equations of the
system, which are possibly non-autonomous and nonlinear. In a deterministic framework, given (2.1), the state
xk is uniquely specified by the initial condition x0. Again for the sake of conciseness, the case where the model
operator mk contains adjustable/badly-known parameters, such as boundary conditions or model parameters, is
not considered in the present chapter. However, the extension of the DA schemes exposed in the following to the
reconstruction of adjustable parameters in (2.1) is straightforward, and is performed in chapters 5-7. Aside from
the dynamical model (2.1) that allows to predict the state of the system, it is assumed that observations of the
system yk ∈ R

No are available, with No the dimension of the observations. These observations can be related to
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the state of the system according to
yk = h(xk), (2.2)

where h is the operator that maps the state space to the observation space. In a deterministic framework, available
observations could be used to determine an accurate initial state in order to improve the prediction of the state of
the system based on (2.1). This leads to the following least-square problem, where the initial state x0 is searched
as a minimizer of a cost function defined as

J =
1
2

N∑
k=0

∥∥∥yk − h(xk)
∥∥∥2
, (2.3)

where ‖·‖ denotes the Euclidean norm. Observations are not necessarily available at all discrete times, but it is
assumed so in the following for the sake of simplicity, without loss of generality. The cost function J in (2.3) is
minimized under the dynamical constraint (2.1), and this deterministic formulation of the DA problem provides
an appropriate framework for the variational methods exposed in §2.3.

2.2.2 Stochastic formulation

An implicit assumption in the deterministic formulation of the DA problem is that the model operator in (2.1)
accurately reflects the dynamics of the system. However, in meteorological applications, where the considered
systems are highly multi-scale and difficult to model faithfully, and whose dynamics are possibly noisy and
chaotic, the assumption of perfect model in (2.1) is not necessarily adapted. Besides, observations may also be
corrupted by noise or may contain errors. Equations (2.1) and (2.2) may be modified accordingly to take into
account additive, possibly random, error terms

xk+1 = mk(xk) + εm
k+1, yk = h(xk) + εo

k . (2.4)

where εm
k and εo

k refer to model and observation errors respectively. In a stochastic framework, both state vector
and observations are fully characterized by probability distributions. The problem of estimating the state of the
system from available observations can be thus formulated via Bayes’ theorem [216, 224]

p
(
(xl)N

l=0|(yl)
N
l=0

)
=

p
(
(yl)

N
l=0|(xl)N

l=0

)
p
(
(xl)N

l=0

)
p
(
(yl)

N
l=0

) , (2.5)

with the notation (xl)N
l=0 = (x0, x1, · · · , xN). In (2.5), p

(
(yl)

N
l=0|(xl)N

l=0

)
is the data distribution, i.e. the distribution

of the measurements conditioned by the observed system. This probability distribution quantifies the errors and
noise in the observation process. p

(
(xl)N

l=0

)
is called the prior distribution, and reflects the knowledge about the

state of the system before taking account observations. The probability p
(
(yl)

N
l=0

)
is the marginal distribution of

the data, and can be thought of as a normalizing constant in (2.5) according to

p
(
(yl)

N
l=0

)
=

∫
R(N+1)Ns

p
(
(yl)

N
l=0|(xl)N

l=0

)
p
(
(xl)N

l=0

)
dx0dx1 · · · dxN . (2.6)

The posterior distribution p
(
(xl)N

l=0|(yl)
N
l=0

)
in (2.5) is the primary quantity of interest in the DA problem, since

it quantifies the knowledge about the state of the system conditioned by the available data. The DA problem
may thus be solved by identifying the state (xl)N

l=0 that maximizes the posterior distribution. The Bayesian
formulation of the DA problem (2.5) furnishes an appropriate framework for the unification of the different
DA techniques, and is well adapted to the case of noisy observations and badly-known dynamics. However,
compared to the deterministic framework, the Bayesian approach requires more information about the system
and the observations since (2.5) needs the prescription of prior and observation statistics, which may be difficult
to characterize.
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2.3 Variational schemes

2.3.1 Deterministic formulation

Variational DA schemes, as proposed in [128], address DA as an optimal control problem [137]. Using a classical
result of constrained optimization [3], the minimization of the cost function J in (2.3) under the dynamical
constraint (2.1) is performed through the introduction of the following Lagrangian

L =
1
2

N∑
k=0

∥∥∥yk − h(xk)
∥∥∥2
−

N−1∑
k=0

(xk+1 − mk(xk))T x̃k+1, (2.7)

where the superscript T indicates the transpose operator. Equation (2.7) involves the Lagrange multipliers, or
adjoint variables, x̃k. The first-order optimality conditions

∂L

∂x̃k
= 0 1 ≤ k ≤ N,

∂L

∂xk
= 0 0 ≤ k ≤ N (2.8)

lead respectively to the direct model (2.1) and to the following adjoint problem:

x̃N =

(
∂h
∂xN

(xN)
)T (

h(xN) − yN
)
, (2.9a)

x̃k =

(
∂mk

∂xk
(xk)

)T

x̃k+1 +

(
∂h
∂xk

(xk)
)T (

h(xk) − yk
)

0 ≤ k ≤ N − 1. (2.9b)

Equation (2.9) involves the adjoint, here transpose, operators associated to the gradient matrices ∂mk
∂xk

(xk) and
∂h
∂xk

(xk), which depend on the state xk in the case of nonlinear model and observation operators. The gradient
of the Lagrangian with respect to the initial condition x0, which forms the control vector in this optimization
problem, is evaluated according to

∂L

∂x0
= x̃0. (2.10)

Once computed through a backward evaluation of (2.9), the gradient (2.10) can be used in a gradient-based de-
scent algorithm in order to obtain the minimizing initial state. It can be noticed that equation (2.8) only provides
necessary optimality conditions, and second-order conditions should be considered to ensure the optimality of
the retrieved initial condition. Second-order information can be obtained through the use of a second-order
adjoint model [130, 221], which may also be employed in a Newton method, or to solve meta-optimization
problems. An example of such a problem is given in chapter 6 [55]. However, the numerical implementation
of the first-order adjoint model

(
∂mk
∂xk

(xk)
)T

in (2.9) may already be difficult, and the coding of the second-order
adjoint model requires a fortiori significant efforts and computational resources. Accordingly, the second-order
adjoint model is hardly ever used in practical applications, and, when employed, variational schemes rely on the
first-order adjoint model only.

2.3.2 Stochastic formulation

The equations in §2.3.1 form the DA scheme known as 4DVar in the meteorology community, even if the standard
formulation of the 4DVar scheme [65] includes a prior information term in the cost function in (7.2), which
originates from the stochastic formulation of the DA problem exposed in §2.2.2. However, contrary to (2.4), the
standard 4DVar formulation assumes a perfect dynamical model, so that (2.4) is rewritten as

xk+1 = mk(xk), yk = h(xk) + εo
k . (2.11)
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Accordingly, the state of the system at a given time is completely determined by the initial state x0, but DA is
performed with noisy observations, which may justify the need of adding prior information about the initial state
during the assimilation and to rely on the use of the Bayesian formulation of the DA problem. In order to simplify
the derivation of the 4DVar scheme, it is assumed that the initial state x0 is Gaussian distributed with mean xb

0 and
covariance matrix B. The observation error εo

k in (2.11) is also assumed to be Gaussian distributed, uncorrelated
in time, with zero mean and covariance matrix R (see also §2.4.1). The Gaussian assumption allows to consider
the denominator in (2.5) as only a normalizing constant, and the posterior statistics of interest p

(
x0|(yl)

N
l=0

)
can

be computed through

p
(
x0|(yl)

N
l=0

)
∝ p (x0) p

(
(yl)

N
l=0|(xl)N

l=0

)
∝ e−J , J =

1
2

∥∥∥x0 − xb
0

∥∥∥2
B−1 +

1
2

N∑
k=0

∥∥∥yk − h(xk)
∥∥∥2

R−1 , (2.12)

with ‖·‖B−1 = ·TB−1· and ‖·‖R−1 = ·TR−1·. According to (2.12), finding the initial state x0 that maximizes
the posterior distribution is equivalent to the determination of a minimizing initial state of a cost function. As
in §2.3.1, this minimization problem is solved using optimal control techniques, and the gradient of the cost
function J in (2.12) is evaluated through

L =
1
2

∥∥∥x0 − xb
0

∥∥∥2
B−1 +

1
2

N∑
k=0

∥∥∥yk − h(xk)
∥∥∥2

R−1 −

N−1∑
k=0

(xk+1 − mk(xk))T x̃k+1, (2.13a)

x̃N =

(
∂h
∂xN

(xN)
)T

R−1 (
h(xN) − yN

)
, (2.13b)

x̃k =

(
∂mk

∂xk
(xk)

)T

x̃k+1 +

(
∂h
∂xk

(xk)
)T

R−1 (
h(xk) − yk

)
0 ≤ k ≤ N − 1, (2.13c)

∂L

∂x0
= x̃0 + B−1

(
x0 − xb

0

)
. (2.13d)

2.4 The Kalman filter

2.4.1 Linear model and observation operators

The Kalman filter [111] may be derived from the Bayesian formulation of the DA problem given in §2.2.2. In its
original formulation, the Kalman filter relies on the assumption of linear model and observations. Accordingly,
equation (2.4) is rewritten as

xk+1 = Mkxk + εm
k+1, yk = Hxk + εo

k , (2.14)

where Mk and H are the model and observation matrices respectively. The Kalman filter is a sequential DA
scheme: observations are taken into account as soon as they are available to improve the estimation of the state
of the system, allowing to perform ‘real-time’ DA. On the contrary, the 4DVar scheme exposed in §2.3 is referred
to as a ‘off-line’, or retrospective method, since the observations over discrete times 0 ≤ k ≤ N are used all at
once, and the retrieved estimation of the system (through the determination of an optimal initial state) at a given
time benefits from the assimilation of both past and future observations. Before proceeding further, the following
assumptions about the random terms εm

k and εo
k in (2.14) are made. It is assumed that these terms have zero mean,

are uncorrelated in time, and that model and observation errors are independent random variables

E
[
εm

k

]
= 0, E

[
εo

k

]
= 0, E

[
εm

k ε
oT
l

]
= 0, E

[
εm

k ε
mT
l

]
= Qkδkl, E

[
εo

kε
oT
l

]
= Rδkl 0 ≤ k, l ≤ N, (2.15)

with no summation over repeated indices (as in the whole chapter), Qk and R refer to the covariance matrices
associated to model and observation errors statistics respectively. It is also assumed that the predicted state of the
system, both before and after assimilation, is an unbiased estimation of the ‘true’ state of the system xt

k. Besides,
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observations are also supposed to be unbiased, and we can write

x f
k = xt

k + ε f
k , xa

k = xt
k + εa

k , E
[
yk

]
= Hxt

k 0 ≤ k ≤ N, (2.16)

where x f
k and xa

k refer to the estimation of the state of the system before (forecast or prior information) and
after assimilation respectively. The random error terms ε f

k and εa
k are thus supposed to have zero mean, and the

forecast and assimilated covariance matrices P f
k and Pa

k are defined as

E
[
ε f

k

]
= 0, E

[
εa

k

]
= 0, E

[
ε f

k ε
f T
k

]
= P f

k , E
[
εa

kε
aT
k

]
= Pa

k 0 ≤ k ≤ N. (2.17)

The Kalman filter consists of two steps: an assimilation step where available observations are used to improve the
estimation of the state of the system, and a forecast step where the state vector and its statistics are propagated in
time relying on (2.14). The assimilation step may be obtained from the Bayesian formulation of the DA problem
(2.5), supplemented by the Gaussian assumption for both forecast (prior) and observation statistics. For this
sequential filter, posterior statistics at discrete time k are quantified through the distribution p

(
xk|yk

)
, which is

found as
p
(
xk|yk

)
∝ p (xk) p

(
yk|xk

)
∝ e−J , J =

1
2

∥∥∥∥xk − x f
k

∥∥∥∥2

P f −1
k

+
1
2

∥∥∥yk −Hxk
∥∥∥2

R−1 . (2.18)

Finding the assimilated state xa
k that maximizes the posterior distribution is thus equivalent to the determination

of the state that minimizes the cost function J in (2.18). Since this cost function is quadratic, the solution of the
minimization problem is easily found as

xa
k = x f

k +
(
P f −1

k + HTR−1H
)−1

HTR−1
(
yk −Hx f

k

)
. (2.19)

Using (
P f −1

k + HTR−1H
)−1

HTR−1 = P f
k HT

(
R + HP f

k HT
)−1

, (2.20)

equation (2.19) can be rewritten as

xa
k = x f

k + Kk
(
yk −Hx f

k

)
, Kk = P f

k HT
(
R + HP f

k HT
)−1

. (2.21)

The covariance matrix of the assimilated state xa
k is derived using (2.15)

Pa
k = (I −KkH) P f

k =

∂2J
∂x2

k

−1

. (2.22)

Equations (2.18)-(2.22) illustrate the equivalence between the assimilation step of the Kalman filter and vari-
ational methods as depicted in §2.3.2 in the case of sequential DA, linear model and observation operators,
Gaussian statistics for the additive random error terms, and unbiased observations and estimations of the state of
the system [136, 142, 197]. The solution (2.21)-(2.22) of the DA problem with the above assumptions, which
is here equivalent to a minimum variance solution, is also known as the best linear unbiased estimator (BLUE).
The second step of the Kalman filter consists in propagating both the assimilated state and its covariance matrix
until the next time of observation according to

x f
k+1 = Mkxa

k + εm
k+1, P f

k+1 = MkPa
kMT

k + Qk+1. (2.23)

If observations are available at discrete time k + 1, they are assimilated by using (2.21)-(2.22), replacing k by
k + 1.
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2.4.2 Nonlinear dynamics

In the context of nonlinear dynamics, the propagation equation (2.23) is not valid anymore, and one should con-
sider the evolution of a full probability density function according to Kolmogorov’s (or Fokker-Planck) equation
[107]. To ease the computational burden associated to the propagation of a probability density, a common as-
sumption is to consider the evolution of a few moments only, along with ad hoc approximations to solve the
closure problem that arises in this case. A simple and well-known extension of the Kalman filter as described
in §2.4.1 to nonlinear dynamics is the so-called extended Kalman filter, where only the mean and the covari-
ance matrix of the state vector are propagated in time, and the closure approximation consists in neglecting all
moments with higher orders than the covariances. Accordingly, considering nonlinear model and observation
operators as in (2.4), the assimilation step of the extended Kalman filter is given by

xa
k = x f

k +Kk
(
yk − h(x f

k )
)
, Pa

k =

(
I −Kk

∂h
∂xk

(x f
k )

)
P f

k , Kk = P f
k

(
∂h
∂xk

(x f
k )

)T R +
∂h
∂xk

(x f
k )P f

k

(
∂h
∂xk

(x f
k )

)T−1

,

(2.24)
and the forecast step is performed according to

x f
k+1 = mk(xa

k) + εm
k+1, P f

k+1 =
∂mk

∂xk
(xa

k)Pa
k

(
∂mk

∂xk
(xa

k)
)T

+ Qk+1. (2.25)

Further discussion about the extended Kalman filter and presentation of more elaborate extensions of the Kalman
filter to nonlinear dynamics may be found in [59, 79, 133].

2.5 Ensemble Filtering

2.5.1 The ensemble Kalman filter

At least two problems may arise in the application of the Kalman filter to large-scale nonlinear systems such
as those encountered in fluid mechanics applications. Firstly, the storing and the propagation in time of the
covariance matrix associated to the statistics of the state vector according to (2.25) (or (2.23) for linear systems)
become costly to perform if the dimension of the state vector is large. Secondly, the approximations to extend
the Kalman filter to nonlinear dynamics do not ensure the stability of the filter in this case, as illustrated in [76].
To overcome these difficulties, it was proposed in [77] to describe and propagate the statistics of the state vector
through the use of Monte Carlo techniques, instead of relying on approximate explicit evolution equations for the
moments of the distribution. In this framework, prior, or forecast, statistics of xk are evaluated via an ensemble
of realizations that are gathered in the matrix A f

k defined as

A f
k =

(
x f (1)

k , x f (2)
k , · · · , x f (Nen)

k

)
, (2.26)

where Nen is the number of members in the ensemble. The ensemble Kalman filter, as the Kalman filter, relies on
the Gaussian assumption for the statistics of the state vector, allowing to consider only its mean and covariance
matrix, which can be evaluated through the following Monte Carlo estimates

E
[
x f

k

]
'

1
Nen

Nen∑
i=1

x f (i)
k = x f

k , P f
k '

1
Nen − 1

A f ′

k A f ′ T
k , A f ′

k =

(
x f (1)

k − x f
k , x

f (2)
k − x f

k , · · · , x
f (Nen)
k − x f

k

)
.

(2.27)
The assimilation step of the ensemble Kalman filter is derived similarly to that of the Kalman filter in §2.4.1, and
if observations are available at discrete time k, the ensemble of realizations is updated according to

Aa
k = A f

k + A f ′

k H f ′ T
k

(
(Nen − 1)R + H f ′

k H f ′ T
k

)−1 (
Yk −H f

k

)
, (2.28)
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with

H f
k =

(
h(x f (1)

k ), h(x f (2)
k ), · · · , h(x f (Nen)

k )
)
, H f ′

k =

(
h(x f (1)

k ) − h(x f
k ), h(x f (2)

k ) − h(x f
k ), · · · , h(x f (Nen)

k ) − h(x f
k )

)
.

(2.29)
The ensemble of observations Yk is obtained from perturbations with zero mean and covariance matrix R that
are added to available data yn [35]. An alternative to the update equation (2.28) that avoids the perturbation of
the measurements, which may add a source of sampling error, was proposed with the ensemble square root filters
[4, 25, 78, 141, 205, 223]. In these DA schemes, the assimilation step is performed separately for the ensemble

mean x f
k and the ensemble perturbation matrix A f ′

k in (2.27). Following, e.g., [78], the ensemble mean is updated
through a standard Kalman filter assimilation step

xa
k = x f

k + A f ′

k H f ′ T
k

(
(Nen − 1)R + H f ′

k H f ′ T
k

)−1 (
yk − h(x f

k )
)
. (2.30)

Concerning the ensemble perturbation matrix, using

Aa′
k Aa′ T

k = A f ′

k

(
I −H f ′ T

k C−1
k H f ′

k

)
A f ′ T

k , Ck = (Nen − 1)R + H f ′

k H f ′ T
k , (2.31)

and performing the eigenvalue decomposition

Ck = ZkΛkZT
k , (2.32)

followed by the singular value decomposition

Λ
− 1

2
k ZT

k H f ′

k = UkΣkVT
k , (2.33)

lead to the following update equation

Aa′
k = A f ′

k Vk
(
I − ΣT

k Σk
) 1

2 VT
k ΘT

k , (2.34)

with Θk is a mean-preserving random orthogonal matrix, which may be chosen as the identity matrix. Variants
of (2.34) are discussed in [141, 205]. The forecast step of the ensemble Kalman filter, both in its standard form
and in its square-root version, is performed through the propagation in time of each member in the matrix Aa

k
with the dynamical model in (2.4) (or (2.1) if model errors are not directly taken into account), allowing to form
the matrix A f

k+1.

2.5.2 The ensemble smoother and ensemble Kalman smoother

The ensemble Kalman filter described in §2.5.1 is a sequential filter, as the Kalman filter of §2.4, in the sense
that observations are taken into account as soon as they are available to improve the estimation of the state of
the system at the same time. The extension of the ensemble Kalman filter to retrospective DA is performed by
considering available observation at all times, the corresponding posterior statistics of interest are thus

p
(
(xl)N

l=0|(yl)
N
l=0

)
∝

(
(yl)

N
l=0|(xl)N

l=0

)
p
(
(xl)N

l=0

)
. (2.35)

Again, the assumption of Gaussian statistics allows to consider the denominator in (2.5) as a normalizing con-
stant. The ensemble smoother [216] directly solves the DA problem from (2.35). In a first step, an ensemble
of realizations are propagated from discrete time 0 to time N in order to compute prior, or forecast, statistics.
In a second step, the assimilation of observations is performed through an update equation of the same form as
(2.28), except that time dimension is now taken into account. Accordingly, the assimilation step of the ensemble
smoother is obtained by replacing in (2.28) the matrices A f

k and H f
k with

A f =

((
(x f (1) T

l )N
l=0

)T
,
(
(x f (2) T

l )N
l=0

)T
, · · · ,

(
(x f (Nen) T

l )N
l=0

)T
)
, (2.36)
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H f =

((
(h(x f (1)

l )T)N
l=0

)T
,
(
(h(x f (2)

l )T)N
l=0

)T
, · · · ,

(
(h(x f (Nen)

l )T)N
l=0

)T
)
, (2.37)

with a similar extension to time dimension of the matrices A f ′

k , H f ′

k , Yk and R in (2.28). The so obtained
assimilated ensemble stored in the matrix Aa thus corresponds to a minimum variance solution to the DA problem
in both space and time. However, it was observed in [80] that the Gaussian assumption for the statistics of the
state vector over the complete time interval from discrete time 0 to time N could be too crude for strongly
nonlinear systems. This led to the introduction of the ensemble Kalman smoother in [80], where observations
are assimilated sequentially, as in the ensemble Kalman filter. Nevertheless, measurements are used in order
to improve the estimation of the state of the system at both present and past times, similarly to the ensemble
smoother. The ensemble Kalman filter is derived from a sequential evaluation of the posterior statistics in (2.35).
Assuming that the model evolution given in (2.4) is a first-order Markov process, and that the observations
at different times are independent and conditional only on the state at the same time, (2.35) can be evaluated
according to

p
(
(xl)k

l=0|(yl)
k
l=0

)
∝ p

(
(xl)k−1

l=0 |(yl)
k−1
l=0

)
p(xk|xk−1)p(yk|xk) 1 ≤ k ≤ N. (2.38)

At discrete time k, (2.38) can be decomposed [64] into a forecast step

p
(
(xl)k

l=0|(yl)
k−1
l=0

)
= p

(
(xl)k−1

l=0 |(yl)
k−1
l=0

)
p(xk|xk−1), (2.39)

and an assimilation step
p
(
(xl)k

l=0|(yl)
k
l=0

)
∝ p

(
(xl)k

l=0|(yl)
k−1
l=0

)
p(yk|xk). (2.40)

As in the ensemble Kalman filter, prior statistics p
(
(xl)k

l=0|(yl)k−1
l=0

)
are evaluated through ensemble forecasting

from time k−1 to time k. The assimilation step of the ensemble Kalman smoother is derived from (2.40), relying
again on the Gaussian assumption. The corresponding update equation is identical to (2.28), except that the
ensemble matrix A f

k has to be replaced with

A f
k =

((
(xa(1) T

l )k−1
l=0 , x

f (1) T
k

)T
,
(
(xa(2) T

l )k−1
l=0 , x

f (2) T
k

)T
, · · · ,

(
(xa(Nen) T

l )k−1
l=0 , x

f (Nen) T
k

)T
)
, (2.41)

with a similar modification to the matrix A f ′

k in (2.28). The members of the ensemble are consequently updated
from time 0 to time k using measurement at time k, and the resulting ensemble is gathered in a matrix Aa

k . The
different realizations are then propagated from time k to time k + 1 using (2.4) to form the matrix A f

k+1. The
ensemble Kalman smoother proved to achieve a better reconstruction of the state of the system than both the
ensemble Kalman filter and the ensemble smoother in experiments with the Lorenz equations [80].

2.5.3 Localization and inflation

The use of a finite ensemble size to describe the statistics of the state vector may lie at the origin of spurious
correlations between the components of the state vector, or between the state vector and the observations, due to
sampling errors. These spurious correlations between variables known to be uncorrelated or separated by long
spatial distances (and/or by a large time interval in the case of a smoother) entail unphysical updates of the state
vector during the assimilation step, potentially leading to a drastic reduction of the variance of the ensemble and
to filter divergence. Covariance inflation procedures [8] were first proposed to counteract the variance reduction
associated to spurious correlations. Inflation may simply consist in pushing the members of the ensemble away
from the mean according to

x f (i)
k → ρ

(
x f (i)

k − x f
k

)
+ x f

k , (2.42)

where ρ is the inflation factor with ρ > 1. In (2.42), ρ is an arbitrarily fixed scalar, but Bayesian-based algorithms
may be used in order to determine the value of the inflation factor adaptively [6], and further refinement may be
achieved through assigning a different inflation factor to each component of the state vector [7].



Chapter 2. Review of data assimilation techniques 13

A second way of reducing the effects of spurious correlations is localization [103], which amounts to replace the
update equation (2.28) of the ensemble Kalman filter with

Aa
k = A f

k + L1 ◦
(
A f ′

k H f ′ T
k

) (
(Nen − 1)R + L2 ◦

(
H f ′

k H f ′ T
k

))−1 (
Yk −H f

k

)
, (2.43)

where ◦ denotes the element-wise (or Hadamard or Schur) product. L1 is a localization matrix acting on the cor-
relations between the state vector and the observations, while L2 acts on the correlations between observations.
These matrices may be used in order to impose a decay of correlation with distance, or to force a zero correlation
between two independent variables. The extension of (2.43) to the ensemble smoother and ensemble Kalman
smoother is straightforward, noticing that temporal localization may also be achieved by considering a lagged
smoother [80, 167], where observations available at discrete time k are used to update the ensemble only from
time k − L to k, with L the lag parameter. However, the prescription of appropriate localization functions and
parameters such as characteristic length and time scales may become very difficult in the case where complex
multivariate models are considered [5].

2.6 Merging variational schemes and ensemble filtering

2.6.1 Hybrid schemes

The stochastic formulation of the DA problem exposed in §2.2.2, which is generally adopted in meteorological
applications, requires the prescription of prior statistics, which reflect the knowledge about the discrepancies
between the first-guess, or forecast, state and the true state of the system, as detailed in §2.3.2 and §2.4.1.
Of course, in practical applications, the true state of the system is unknown, and prior statistics are generally
difficult to characterize. However, it is clear from equations (2.13d), (2.21) or (2.28) that prior information
directly influences the results of the assimilation through the matrices B, P f

k and A f
k respectively. Accordingly,

the determination of proper prior statistics is a major research area in the DA community [17, 18, 177]. This
issue motivated the combined use of variational techniques (§2.3.2) and ensemble filtering (§2.5.1) in order
to derive efficient composite methods with the advantages of both approaches. The ensemble Kalman filter
allows to propagate in time the statistics of the state vector, naturally providing forecast (prior) statistics for the
assimilation of next observations. However, the ensemble Kalman filter is subject to sampling errors, which
may lead to significant adjustments and tuning in order to ensure the stability of the filter. On the other hand,
variational techniques, as the 4DVar scheme, are more stable and adapted to large-scale systems thanks to the
adjoint technique, but do not directly provide updated statistics of the state vector, and rely on a static covariance
matrix for prior statistics (matrix B in §2.3.2). Hybrid approaches [57, 123, 143, 220, 233] propose to incorporate
in a variational scheme information from an ensemble method. More precisely, a forecast covariance matrix B f

derived from the ensemble method is added to the static covariance matrix in the variational scheme, and the
matrix B in (2.12) is replaced according to

B→ βB + (1 − β)B f β ∈ [0, 1] . (2.44)

The variational scheme is used to update the mean of the ensemble while the latter is propagated in time with
the ensemble method, and both schemes are thus run in parallel while feeding into each other. Comparisons with
uncoupled variational and ensemble filtering schemes suggest the superiority of such hybrid approaches [233].

2.6.2 Ensemble-based variational schemes

Aside from the issue of the prescription of proper prior statistics in the stochastic formulation of the DA problem,
a difficulty in the use of variational schemes is that they require the coding of the adjoint model involved in (2.9)
or (2.13), which may be a tedious task, in particular in the case where the model operator is nonlinear and/or
presents discontinuities. However, the variational framework has advantages compared to ensemble filtering, and
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has desirable properties such as scalability and robustness, as discussed in §2.6.1. This motivated the introduction
of ensemble-based variational schemes [33, 140, 182, 203, 218, 219], which rely on a variational framework
but use an ensemble of realizations to circumvent the need of an adjoint model. A closely related method to
ensemble-based variational schemes, but derived from the ensemble Kalman smoother, can be found in [28].
In the ensemble-based variational schemes, starting from the stochastic formulation of the variational schemes
exposed in §2.3.2, the initial state x0 is searched in a subspace spanned by an ensemble of realizations [140].
After choosing the first-guess initial state xb

0 and Nen samples around this vector, the initial state x0 is expressed
as

x0 = xb
0 + E

′

β, E
′

=
(
x(1)

0 − xb
0, x

(2)
0 − xb

0, · · · , x
(Nen)
0 − xb

0

)
. (2.45)

The vector β in (2.45) forms the control vector in the ensemble-based variational schemes. From the lineariza-
tions

h(xk) ' h(xb
k) +

∂h
∂xb

k

(xb
k)
∂xb

k

∂xb
0

(xb
0)E

′

β, (2.46a)

∂h
∂xb

k

(xb
k)
∂xb

k

∂xb
0

(xb
0)E

′

'
(
h(x(1)

k ) − h(xb
k), h(x(2)

k ) − h(xb
k), · · · , h(x(Nen)

k ) − h(xb
k)
)

= H
′

k, (2.46b)

where xb
k , x(1)

k , x(2)
k , · · · , x(Nen)

k are the states of the system propagated at time k using the dynamical model (2.1)
and the initial states xb

0, x(1)
0 , x(2)

0 , · · · , x(Nen)
0 respectively, the cost function in (2.12) can be rewritten as

J =
1
2

(Nen − 1)βTβ +
1
2

N∑
k=0

∥∥∥h(xb
k) − yk + H

′

kβ
∥∥∥2

R−1 , (2.47)

using

B '
1

Nen − 1
E
′

E
′ T. (2.48)

Since J in (2.47) is quadratic, the gradient and Hessian of J are easily found as

∂J
∂β

= (Nen − 1)β +

N∑
k=0

H
′ T
k R−1

(
h(xb

k) − yk + H
′

kβ
)
,

∂2J

∂β2 = (Nen − 1)I +

N∑
k=0

H
′ T
k R−1H

′

k, (2.49)

allowing to readily compute the minimizing vector β. Such scheme is degenerated to the deterministic case by
considering the cost function

J =
1
2

N∑
k=0

∥∥∥h(xb
k) − yk + H

′

kβ
∥∥∥2
. (2.50)

Even if the use of finite-size ensembles inevitably implies a loss of precision compared to the adjoint technique,
the variational framework ensures a greater stability with respect to the characteristics of the ensemble (size and
statistics) than the ensemble filtering approach, as illustrated in chapter 5. Combined with the ease of implemen-
tation of such schemes, the ensemble-based variational technique is thus an appealing substitute to adjoint-based
or ensemble-Kalman-based schemes. Variants of ensemble-based variational methods based on the singular
value decomposition or on the proper orthogonal decomposition are discussed in [182, 203, 204] and consid-
ered in chapter 7. Similarly to the hybrid schemes discussed in §2.6.1, which are based on standard variational
schemes relying on an adjoint model, hybrid ensemble-based variational schemes that use a combination of static
and ensemble-based covariance matrices as in (2.44) have been proposed in the literature [72, 118, 138, 144]. In
practice, adding a static covariance matrix in ensemble-based variational schemes might be useful to counteract
the degeneracy of the ensemble-based covariance matrix.
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2.7 Nudging

Nudging [101] consists in adding to the equations of the dynamical model a forcing term proportional to the
difference between the actual estimation of the state of the system and available measurements in order to force
the model toward the observations. Applying nudging to (2.1) leads to

xk+1 = mk(xk) + Nk+1
(
yk+1 − h(mk(xk))

)
. (2.51)

The nudging matrix Nk may be considered as constant [101], or be determined through optimal control [217,
236]. Nudging may be used in order to take into account model errors and to relax the strong constraint (perfect
model) assumption in a variational scheme. Variants of the nudging technique and possible hybridization with
variational methods are also proposed in [13, 14].

2.8 Particle filtering

All the DA schemes derived from the stochastic formulation of the DA problem that are discussed above in this
chapter rely on the Gaussian assumption for the statistics of the state vector. This assumption greatly simplifies
the derivation of DA methods, and allows to consider only the mean and the covariance matrix associated to the
state vector of the system. However, for strongly nonlinear systems such as those encountered in geophysical
applications, it may be argued that the full probability density function of the state vector should be considered
instead of only a few moments [29]. In this case, Monte Carlo, or particle methods, may be used to propagate
the distribution of the state vector in time [214]. In particle filtering, the expected value of any function f of the
trajectory (xl)k

l=0 until time k after taking into account available observations from time 0 to k is approximated
by

E
[
f ((xl)k

l=0)
]

=

∫
R(k+1)Ns

f ((xl)k
l=0)p

(
(xl)k

l=0|(yl)
k
l=0

)
dx0dx1 · · · dxk '

Nen∑
i=1

w(i)
k f ((x(i)

l )k
l=0), (2.52)

or equivalently, the posterior distribution is expressed as a weighted sum of Nen Diracs centered on realizations
of the trajectory (xl)k

l=0

p
(
(xl)k

l=0|(yl)
k
l=0

)
'

Nen∑
i=1

w(i)
k δ

(
(x(i)

l )k
l=0 − (xl)k

l=0

)
,

Nen∑
i=1

w(i)
k = 1, (2.53)

where x(i)
k refers to the ith particle a time k. Starting from a particle representation of the prior of the initial state

p(x0) = 1
Nen

∑Nen
i=1 δ

(
x(i)

0 − x0
)
, the weights w(i)

k are updated each time new observations are available from the
sequential formulation of (2.52)

E
[
f ((xl)k

l=0)
]

=

∫
R(k+1)Ns

f ((xl)k
l=0)p

(
(xl)k−1

l=0 |(yl)
k−1
l=0

)
p (xk|xk−1)

p
(
yk|xk

)
p
(
yk

) dx0dx1 · · · dxk, (2.54)

assuming first-order Markov dynamics and independent observations. A straightforward way to sequentially
evaluate the weights w(i)

k from (2.54) consists in sampling the state vector at time k from the transition distribution
p (xk|xk−1). Accordingly, the weights are recursively found as

w(i)
k ∝ w(i)

k−1 p
(
yk|x

(i)
k

)
. (2.55)

The proportionality coefficient in (2.55) takes into account the normalization to one of the sum of the weights. In
proceeding in this way, only the weights w(i)

k are updated when new observations are available, while the particles
x(i)

k are left unchanged. Many particles may thus move away from the observations, their associated weights tend
to zero, and a lot of statistical information is lost. This partly explains the huge number of realizations required
by the particle filter, making its application to large-scale applications very challenging. In order to reduce the



Chapter 2. Review of data assimilation techniques 16

somewhat unaffordable computational cost in particle filtering, (2.54) may be modified through the introduction
of a density that allows the incorporation of observation information during the propagation of the particles. This
may be simply peformed as

E
[
f ((xl)k

l=0)
]

=

∫
R(k+1)Ns

f ((xl)k
l=0)p

(
(xl)k−1

l=0 |(yl)
k−1
l=0

)
p (xk|xk−1)

p
(
yk|xk

)
p
(
yk

) q
(
xk|xk−1, yk

)
q
(
xk|xk−1, yk

)dx0dx1 · · · dxk, (2.56)

where q
(
xk|xk−1, yk

)
is referred to as the proposal density. The only constraint on the choice of this distribution

is that its support is equal or superior to that of the posterior distribution of the state vector to avoid division by
zero. Sampling the state vector at time k from q

(
xk|xk−1, yk

)
instead of p (xk|xk−1) allows to push the particles

toward the observartions, leading to the following recursive estimation of the weights

w(i)
k ∝ w(i)

k−1

p
(
yk|x

(i)
k

)
p
(
x(i)

k |x
(i)
k−1

)
q
(
x(i)

k |x
(i)
k−1, yk

) . (2.57)

The sampling of the state vector from the chosen proposal density may be performed either through the addition
of a nudging term in the model equations [215], as in (2.51), or based on ensemble Kalman filtering [174]. Aside
from the question of the choice of the proposal density, further adjustments and modifications to the particle filter
based on (2.57) may be still required in the case of large-scale systems in order to avoid filter divergence [214].
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Introduction

The free decay of homogeneous isotropic turbulence (HIT) is one of the most important test cases in turbulence
studies due to its relevance in understanding the physical behaviour of turbulent flows and its implications in
turbulence modelling. Freely decaying HIT has been therefore extensively investigated in the literature, and
exhaustive reviews may be found in [19, 69, 132, 188]. In standard approaches, the decay of statistical quantities
is represented by a power law, such as K v tnK for the turbulent kinetic energy K . Theoretical analyses suggest
an algebraic relation between the exponent nK and the slope of the kinetic energy spectrum at large scales, which
is in good agreement with numerical simulations performed with the eddy-damped quasi-normal Markovian
(EDQNM) model [56, 62, 154]. However, an important point is that significant discrepancies between theoretical
predictions about the value of the exponent nK and results obtained in grid turbulence experiments remain, as
illustrated in figure 1 of [154]. Therefore, bridging the gap between experimental data and analytical results
dealing with freely decaying HIT is still a prominent issue in turbulence theory. Factors that may influence the
decay of turbulence and possibly explain the above mentioned discrepancies are enumerated below:

• Initial condition effects: it has been confirmed by recent studies that there is no loss of memory of the
initial or upstream conditions in turbulent flows [85, 155]. On the contrary, as previously mentioned,
turbulence decay appears to be fixed by the initial shape of the energy spectrum at large scales. More
precisely, dimensional analysis and EDQNM simulations performed in [154] indicate that HIT decay is
governed by the features of the large scales close to the peak of the energy spectrum, and not by the largest
scales of the flow, as generally stated in the literature. In addition to this study, a detailed, scale-by-scale
sensitivity analysis of HIT decay with respect to the characteristics of the initial kinetic energy spectrum
could provide a deeper insight and quantitative information about the influence of each scale of the flow
on the intensity of the decay.

• Production mechanisms and time-lasting effects: turbulence production mechanisms in grid turbulence
experiments are intimately related to the shape of the upstream kinetic energy spectrum, or initial spectrum
according to Taylor’s frozen turbulence hypothesis. These production effects are far from being universal
in experimental studies, and a detailed investigation of the sensitivity of HIT decay as discussed above
could help to correlate the way of generating turbulence in experiments and the observed value of the
decay exponent. Moreover, the issue of the influence of production mechanisms on turbulence decay has
been recently renewed by experimental studies dealing with fractal-generated turbulence [96, 104, 122,
151, 166, 202, 212], where possible exponential turbulence decay [86] and anomalous decay exponents
that are not in the range predicted by classical approaches are observed. Recent theoretical and numerical
studies [153, 156] suggest that anomalous decay exponents may originate from the unusual bumped shape
of the energy spectrum produced by a multi-scale forcing, while exponential decay may be observed in the
case of slowly vanishing production effects.

• Reynolds number effects: due to technological limitations, a huge number of experimental studies are
conducted at moderate Reynolds numbers. In such intermediate regimes, decay exponents of statistical
quantities exhibit a dependence on the Reynolds number, while the analytically predicted values of these
exponents are constant for sufficiently low or high Reynolds numbers. Clearly, these effects, which are
investigated in [74, 155], do not facilitate the comparisons between experimental and analytical studies.
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• Influence of anisotropy: it is well known that grid-generated turbulence is not perfectly isotropic [62].
Instead, it may be considered as weakly axisymmetric with slightly more kinetic energy in the axial di-
rection than in the transverse ones. Numerical investigations of axisymmetric turbulence [46, 70, 161]
suggest that, after the return to isotropy of the small scales, the anisotropy of the flow has no influence on
the value of the decay exponents. Nonetheless, anisotropy could still induce non-trivial transient effects
that affect the decay.

• Breakdown of homogeneity: at last, a lack of homogeneity in experimental devices could corrupt com-
parisons with predictions concerning HIT decay. Indeed, it has been confirmed by Direct Numerical
Simulations (DNS) [75] that turbulence remains inhomogeneous even far downstream of the grid.

All these observations may encourage the blending of numerical tools able to recover classical theoretical predic-
tions with experimental data in order to take into account the various factors discussed above, with the ultimate
goal of reconciling experimental and analytical results about freely decaying HIT. Data assimilation (DA) tech-
niques seem particularly appropriate for operating this coupling and for the identification of the most important
factors that affect HIT decay. In chapter 3, it is thus proposed to employ a variational DA scheme as discussed
in §2.3.1 in order to perform a scale-by-scale sensitivity analysis of HIT decay with respect to the features of the
initial kinetic energy spectrum. The results thus obtained may constitute valuable informations to address the
first two points above and to identify the detailed characteristics of the energy spectrum that lead HIT decay. Em-
ploying a variational DA scheme instead of other DA methods discussed in chapter 2 is motivated by the fact that
the variational technique, through the adjoint equations, furnishes the gradient of the flow solution with respect
to all the components of the control vector in the DA problem, allowing to readily perform first-order sensitivity
analyses. This study is based on the use of the EDQNM model for isotropic turbulence [172], which proved to
be a valuable tool for the study of HIT [132, 188], but also of more complex homogeneous flows such as rotating
turbulence [20, 37], and stably [87] and unstably [36] stratified turbulence. It is noteworthy that Reynolds effects
can be easily taken into account with the EDQNM model due to its capacity to investigate turbulent flows from
high to low Reynolds number regimes and over long evolution times. Moreover, the tractability of the EDQNM
model makes it an appropriate numerical method for DA purposes. In addition to the analysis of §3.1 [160] for
the identification of the scales governing grid turbulence decay, complementary DA experiments are performed
in §3.2, which allow to confirm the relation between unusual shapes of the initial energy spectrum and anomalous
decay regimes observed in, e.g., fractal-generated turbulence experiments. Appendix A furnishes details about
the derivation of the adjoint EDQNM model.

In chapter 4 [162], a spectral model adapted to moderately anisotropic homogeneous flows, which seem more
representative of grid-generated turbulence than strictly isotropic turbulence, is proposed. This model is based
on anisotropic EDQNM modelling and involves spherical descriptors, which depend only on the modulus of the
wavenumber, to describe directional and polarization anisotropies. Even if this description unavoidably entails
a loss of information compared to a full 3D level of description in Fourier space, the associated reduction in
computational complexity and cost is highly valuable to perform detailed parametric studies. As illustrated in
chapter 4 and [32], the proposed model is appropriate for the study of moderately anisotropic turbulent flows in
the presence of mean flow gradients inducing production effects and their return to isotropy. An extension to the
passive scalar case is proposed in [31]. In addition to chapter 4, a more detailed derivation of the proposed model
is provided in appendix B.



Chapter 3

Data assimilation-based analysis of grid
turbulence decay

3.1 Is isotropic turbulence decay governed by asymptotic behavior of large
scales? An eddy-damped quasi-normal Markovian-based data assimilation
study

20
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The present paper deals with the identification of the scales and features of the
initial kinetic energy spectrum that govern the decay regime of freely decaying
homogeneous isotropic turbulence (HIT). To this end, a Data Assimilation (DA)
study is performed, which is based on a variational optimal control problem with
the eddy-damped quasi-normal Markovian (EDQNM) model whose adjoint equation
is derived in the present work. The DA procedure consists in reconstructing the
initial kinetic energy spectrum in order to minimize the error committed on some
features of decaying turbulence with respect to a targeted EDQNM simulation. The
present results show that the decay of HIT over finite time is governed by a finite
range of large scales, i.e., the scales ranging from the initial to the final integral
scales (or equivalently by wave numbers comprised between the initial and the final
location of the peak of the energy spectrum). The important feature of the initial
condition is the slope of the energy spectrum at these scales, if such a slope can
be defined. This is coherent with previous findings dealing with decay of non-self-
similar solutions, or with the key assumptions that underly the Comte-Bellot–Corrsin
theory. A consequence is that the finite time decay of HIT is not driven by the
asymptotic large-scale behavior of the energy spectrum E(k → 0, t = 0) or the
velocity correlation function f(r → +∞, t = 0), or even scales such as kL � 1 or
L/r � 1. Governing scales are such that kL(t) = O(1) for values of the integral scale
L(t) observed during the finite time decay under consideration. As a matter of fact, a
null sensitivity of finite time decay of turbulence with respect to the asymptotic large
scale features of the initial condition is observed. Therefore, the asymptotic features
of the initial condition should not be investigated defining an inverse problem based
of features of turbulence decay observed over a finite time. C© 2014 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4901448]

I. INTRODUCTION

Homogeneous isotropic turbulence (HIT) decay has been among the most important issue in
turbulence theory, since isotropic turbulence is the framework in which the deepest investigations
of nonlinear features of turbulence can be performed. As a consequence, HIT decay is a very active
field of research since about one century, and many issues related to this phenomenon remain to
be investigated and clarified. Among them, the question of identifying the features of the initial
condition that govern the turbulent kinetic energy decay rate still deserves further investigations.
More precisely, one should find which scales and which features associated to these scales control
the decay of turbulence. These questions have received a continuous attention since the seminal
works carried out in the early 20th century (see classical books, e.g., Refs. 1–4), and has been
renewed by recent discussions5, 6 dealing with the possible occurrence of anomalous decay regimes
if fractal/multiscale grid topologies are used in grid turbulence experiments. It is also important

1070-6631/2014/26(11)/115105/28/$30.00 C©2014 AIP Publishing LLC26, 115105-1
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keeping in mind that this topic is also relevant for practical engineering purposes, since HIT decay
is one of the cornerstone of statistical turbulence modeling for engineering applications.

The common wisdom, expressed in almost all textbooks, monographs, and research papers that
address decaying HIT is that the turbulent kinetic energy K follows an algebraic decay law, i.e.,
K(t) ∝ tnK , where the decay exponent nK is assumed to be time-independent after a possible transient
relaxation phase when an asymptotic decay regime is reached. The question of the dependence of
nK to some specific features of the initial condition has raised some controversies, but the most
recent works7 indicate that there is no universal decay regime (the solution K(t) ∝ t−1 has been
advocated in several papers and books, e.g., Refs. 8–10) and that the decay rate is definitely
governed by the details of the initial conditions, showing, as advocated by George,11, 12 that “initial
(and/or upstream) conditions do matter.” An almost ubiquitous statement in devoted papers and
book chapters is that the decay exponent nK is related to the large-scale asymptotic behavior of the
longitudinal velocity correlation function f(r, t = 0) in the physical space, or equivalently, to the
asymptotic behavior of the kinetic energy spectrum E(k, t = 0). Assuming that f(r → +∞, t =
0)∝r−m or equivalently that E(k → 0, t = 0)∝kσ , several theories/approaches yielded the derivation
of expressions of the form nK(m) or nK(σ ) (since σ and m are tied by an exact non-trivial relation13).
Several famous theories dealing with isotropic turbulence decay rely on this asymptotic behavior
and related assumptions about the analyticity of E(k) which lead to consider low-k expansions of the
form E(k → 0) = Lk2

4π2 + Ik4

24π2 + . . ., where L and I refer to the Saffman and Loitsyansky integrals
and are linked to linear and angular momentum conservations, respectively (see, e.g., Refs. 14–16).

But it is important noting that this common statement is not fully supported by existing data
since:� All physical systems are bounded in space and can be observed over finite times only. Therefore,

real-life turbulent flows are driven by a limited range of finite-size scales, and they are observed
over a finite time. Therefore, a direct link with asymptotic behavior at k → 0 or r → +∞ cannot
be established. Therefore, the asymptotic limit is usually understood in practice as defining
very large scales such that kL � 1 or L/r � 1 where L refers to the longitudinal integral velocity
scale of turbulence or the turbulent scale K3/2/ε.� Due to technological limitations, it is very difficult to measure experimentally the energy
spectrum and the correlation function for scales larger than a few integral scales. And it should
be kept in mind that the measured spectrum is usually the 1D spectrum, not the 3D spectrum.
In a similar way, Direct Numerical Simulation provides a pretty poor description of very large
scales, due to limitations in the computational domain size, with some possible significant
effects on the decay features.17 Therefore, the exact behavior of the high Reynolds number 3D
energy spectrum and the velocity correlation function at scales much larger than the integral
scale escapes both experimental and numerical investigation at present time.� Among the most useful and powerful existing predictive theory for decaying HIT, one should
mention the Comte-Bellot–Corrsin theory (further extended by several researchers to account
for different initial spectrum shapes,18, 19 saturation effect,19 and Reynolds number regimes7, 20),
that relies on a single length scale, L, which is associated to the peak of the kinetic energy spec-
trum. Its recent extension21, 22 to non-self-similar initial energy spectra with two characteristic
large scales seems to indicate that HIT decay is governed by the detailed features of the energy
spectrum for scales that are close to the integral length scale, not by the asymptotic behavior at
the largest scales. This result raises a consistency problem between the different approaches,
since it seems to indicate that important scales are such that kL ∼ 1, not kL � 1.

The goal of the present study is to further investigate the issue of identifying the scales that govern
HIT decay of finite time. To this end, it is proposed to use advanced mathematical tools, namely,
Data Assimilation methods (e.g., see Refs. 23 and 24). These methods have been developed in the
fields of meteorology and oceanography to reconstruct optimal initial conditions using information
dealing with the time evolution of the solution. In the present case, it is proposed to reconstruct the
optimal initial 3D kinetic energy spectrum E(k, t = 0) considering an arbitrarily fixed turbulence
decay law which is determined numerically, and to look at the parts of the initial spectrum that
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are reconstructed by the optimization loop. More precisely, since an optimal-control-based Data
Assimilation method is used, the gradient of the solution during its evolution with respect to the
features of the initial condition can be computed, giving a deep insight into the sensitivity of the flow
evolution with respect to the initial condition. This procedure will allow for a clear, mathematically
grounded identification of the features and scales of the initial solution that govern the decay over
an arbitrarily fixed finite time.

In order to investigate a wide range of initial conditions and flow regimes, it is chosen to use
the eddy-damped quasi-normal Markovian2, 4, 25 (EDQNM) model to compute time evolution of the
kinetic energy spectrum in the Data Assimilation procedure. The EDQNM model is also used to
calculate reference decay laws. This highly versatile model is known to yield very accurate results
for isotropic turbulence decay with good resolution at both large and small scales, ensuring the
reliability of the results. The adjoint EDQNM problem is derived in the present work for the purpose
of the optimization procedure for the reconstruction of the initial energy spectrum. The development
of the adjoint EDQNM model in the Data Assimilation procedure will allow to obtain the gradient
of the EDQNM solution with respect to the characteristics of the initial energy spectrum. Using
this gradient, the scale-by-scale sensitivity of the decay regime can be precisely quantified, allowing
a detailed and rigorous identification of the characteristics of the energy spectrum that lead the
decay. In addition, the present work will allow to determine which are the features of the energy
spectrum that can be inferred from the knowledge of the temporal evolutions of different statistical
quantities. To the knowledge of the authors, this is the first time that a optimal control theory based
scale-by-scale sensitivity analysis of decay regime, including decay regime exponents, is provided.

It should be kept in mind that the role of very large scales in HIT decay has been intrinsically
addressed in works dealing with time evolution of three-range initial energy spectra and possible
existence of non-self-similar decay regimes over arbitrary time. The most recent work on that topic
is Meldi and Sagaut,22 in which dimensional analysis and EDQNM simulations were performed
considering an arbitrary three-range initial energy spectrum. Results reported in this paper show that
the governing scales are the ones comprised in the large scale range located near the spectrum peak,
not the asymptotically large ones. The present work yields a much deeper insight into this topic,
since it provides: (i) a mathematically grounded evaluation of the scale-by-scale gradient of decay
exponents and (ii) a rigorous identification of scales that govern the HIT decay over a finite time.
These two informations were not present in previous works, since they require the use of the optimal
control theory.

The paper is organized as follows. The EDQNM model for solving Lin’s equation is briefly
recalled in Sec. II. The modeling of the initial energy spectrum E(k, t = 0) is discussed in Sec. III.
The Data Assimilation method used in the present paper is presented in Sec. IV, along with the
derivation of the adjoint EDQNM problem. Results are displayed and analyzed in Sec. V.

II. EQUATIONS OF THE ISOTROPIC EDQNM MODEL

In this section, we briefly recall the underlying hypotheses and the equations of the EDQNM
model for HIT. The reader may refer to Refs. 2,4, and 25 for an exhaustive description of the EDQNM
model. The different moments of velocity fluctuations obey an infinite hierarchy of open equations
where the partial time derivative of moments of order n is governed by moments of order n + 1. The
Quasi-Normal (QN) approximation, which is based on the assumption that the fluctuating velocity
probability distributions are normal distributions, can be used to close the evolution equations of
second and third-order moments. This hypothesis implies that the fourth order cumulants of the
velocity field, which represent the difference between the velocity distribution and the normal
distribution, are identically zero. In the classical version of the EDQNM model for HIT, the fourth
order cumulants are instead supposed to be linearly dependent on the third-order moments of
the velocity field. This assumption is equivalent to the introduction of an eddy-damping term, as
proposed by Orszag.25 The evolution equation of third-order moments is further simplified by the
Markovian assumption, which implies that the characteristic evolution time of the eddy-damping
rate can be considered negligible with respect to the turbulence evolution time. Once the expression
thus obtained for the third-order moments is included in the evolution equation of second-order
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moments, the latter is closed. After spherical integration, an evolution equation for the energy
spectrum is finally obtained. The equations of the EDQNM model for HIT are

∂ E

∂t
(k) + 2νk2 E(k) = T (E, k), (1)

T (E, k) =
∫∫

�k

θkpq Gkpq E(q)
(
k2 E(p) − p2 E(k)

)
dpdq, (2)

Gkpq = xy + z3

q
; x = − p.q

pq
; y = −k.q

kq
; z = −k.p

kp
, (3)

θkpq = 1 − e−μkpq t

μkpq
; μkpq = ν(k2 + p2 + q2) + ηk + ηp + ηq ; ηk = A

√∫ k

0
r2 E(r )dr , (4)

where E(k) is the spectral kinetic energy at wavenumber k (for the sake of readability, the time
dependency is omitted in the above expressions), ν is the kinematic viscosity, �k refers to the area
in the plane (p, q) so that k + p + q = 0. The expression here used for the damping factor η(k) in
(4) is the proposal by Pouquet et al.,26 we take A = 0.355.27

III. FUNCTIONAL FORMS FOR THE INITIAL ENERGY SPECTRUM

In order to ensure the realizability condition for the energy spectrum (E(k) ≥ 0 ∀k) during
the numerical data assimilation procedure, a functional form is prescribed for the initial energy
spectrum. Two functional forms are considered in this paper. The first one is the proposal by Meyers
and Meneveau.28 This functional form accounts for all known features of the energy spectrum, and
it is written as follows:

E(k) = Ck−5/3(k/kL2 )−β fL (k/kL2 ) fη(k/kη), (5)

fL (x) =
(

x

[x p + α5]1/p

)5/3+β+σ2

; fη(x) = exp(−α1x)

[
1 + α2(x/α4)α3

1 + (x/α4)α3

]
. (6)

σ 2 refers to the slope of the energy spectrum at large scales. Both kL2 and α5 govern the position of
the peak of the spectrum, and the parameter p prescribes its shape. β is the intermittency correction.
kη sets the position of the Kolmogorov scale, while the parameters α1-α4 govern the shape of the
spectrum at small scales and the bottleneck correction. The constant C, which includes the dissipation
rate and the Kolmogorov constant, is here used for normalization. To get a better insight into the
influence of large scales on the decay, Eq. (5) is modified in the following way:

E0(k) =
{

Bkσ1 k < kL1

Ck−5/3(k/kL2 )−β fL (k/kL2 ) fη(k/kη) k ≥ kL1

(7)

with

Bkσ1
L1

= Ck−5/3
L1

(kL1/kL2 )−β fL (kL1/kL2 ) fη(kL1/kη) (8)

by the continuity of the energy spectrum at k = kL1 . Equation (7) allows to distinguish the very large
scales (k < kL1 ), which are characterized by the slope σ 1, from the large scales close to the peak
of the initial energy spectrum E0(k), which are characterized by the slope σ 2. When the functional
form (7) is used, the control vector (see Secs. IV A and IV B) is of dimension 11 and contains the
parameters σ 1, σ 2, p, β, kL2 , kη, and α1-α5. The separation between large and very large scales is
fixed at kL1/kL2 = 10−3. With this value, at least one decade between the wavenumber kL1 and the
final position of the peak of the energy spectrum is granted (see Sec. V A). The advantage of the
functional form (7) is that a small number of parameters is used for the description of the initial energy
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spectrum, which may facilitate optimization in the same way as the use of non-uniform rational basis
splines (NURBS) in classical aerodynamic shape optimization.29, 30 On the other hand, the non-local
character of these parameters precludes a detailed scale-by-scale analysis of the sensitivity of the
turbulence decay with respect to the characteristics of the initial energy spectrum. Because of this,
we also consider a second functional form which is written as

E0(k) = B(k)ks(k), (9)

where s(k) refers to the local slope of the initial energy spectrum and forms the control vector, while
B(k) ensures the continuity of the spectrum. The discrete form of (9) for the ith energy mode is given
by

E0
i = Bi k

si
i ; Bi = Bi−1ksi−1−si

i . (10)

In this way, the dimension of the control vector, which is formed by the slopes si, is equal to the
number of resolved modes, which ranges from 150 to 200 in the present work. The functional form
(9) therefore allows a scale-by-scale description of the initial energy spectrum while ensuring the
realizability condition.

IV. DATA ASSIMILATION METHOD FOR OPTIMAL RECONSTRUCTION
OF THE INITIAL SOLUTION

A. Variational formulation and gradient with respect to the initial condition

The variational formulation of the data assimilation problem for the EDQNM model is derived
in the present section. The reader may refer to Refs. 23 and 31 for a detailed description of variational
methods applied to data assimilation. Recent applications of variational data assimilation in the field
of fluid mechanics may be found in Refs. 24, 32, and 33. Given a reference realization of decay
of HIT, i.e., a reference EDQNM simulation in our case, and the observation y of this decay, we
evaluate the discrepancies between this reference decay and another decay denoted by the energy
spectrum (depending on time) E thanks to the functional, or cost function, defined by

J (E) = 1

2
‖y − H (E)‖2

O . (11)

Following the classical terminology used in the data assimilation community, the reference
decay is referred to as the true state, and the solution associated to the energy spectrum E is referred
to as the estimated state. H is the observation operator from the model space, denoted by M, to the
observation space, denoted by O. This operator allows to compare E to the available information y
on the true state. The inner product for the observation space O depends on the type of available
observations. The inner product of two vectors a and b in the model space is defined by

〈a, b〉M =
∫ T f

0

∫ ∞

0
a(k, t)b(k, t)dkdt, (12)

where Tf is the finite duration of the decay under consideration. Tf also refers to the size of the
assimilation window. Before proceeding further in the derivation, let us introduce a few notations.
Given an operator � from vector space A to vector space B, the Gâteaux derivative of � at E in the
direction F, with both E and F in A, is denoted by〈∂�

∂ E
(E), F

〉
A

= ∂�

∂ E

∣∣∣
E

(F) = lim
ε→0

d

dε
�(E + εF). (13)

The adjoint operator of � is denoted by �* and is defined by

〈�(E), G〉B = 〈E, �∗(G)〉A ∀E ∈ A,∀G ∈ B. (14)

The aim of data assimilation is to minimize the cost function J defined by Eq. (11) in order to recover
the true state starting from the estimated state using the observation y. In the variational framework,
this problem is formulated as an optimal control problem. In this paper, we choose the initial energy
spectrum as the control vector. In other words, we aim to recover the true initial energy spectrum, or
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more precisely the set of parameters of the functional form prescribed for the latter. This problem
of optimal control of the initial condition is similar to those described in Refs. 34 and 35. The
minimization of the cost function J is performed by the computation of its gradient with respect
to the initial condition coupled with a descent method. This gradient may also be used to conduct
a sensitivity analysis. When computing the gradient, we want the energy spectrum E to obey the
EDQNM equations (1)–(4). This leads to the introduction of the Lagrangian L defined by

L(E, Ẽ) = J (E) +
〈
Ẽ,

∂ E

∂t
+ 2νk2 E − T (E)

〉
M

= 1

2
‖y − H (E)‖2

O

+
〈
Ẽ,

∂ E

∂t
+ 2νk2 E − T (E)

〉
M

, (15)

where the Lagrange multiplier Ẽ will be referred to as the adjoint spectrum in the following.
Necessary conditions for (E, Ẽ) to be a minimizer of L are given by〈 ∂L
∂ E

(E, Ẽ), F
〉
M

=
〈∂ H

∂ E

∣∣∣
E

(F), H (E) − y
〉
O

+
〈
Ẽ,

∂ F

∂t
+ 2νk2 F − ∂T

∂ E

∣∣∣
E

(F)
〉
M

= 0 ∀F ∈ M,

(16)

〈 ∂L
∂ Ẽ

(E, Ẽ), F̃
〉
M

=
〈∂ E

∂t
+ 2νk2 E − T (E), F̃

〉
M

= 0 ∀F̃ ∈ M. (17)

After integration by parts, these conditions take the final form〈 ∂L
∂ E

(E, Ẽ), F
〉
M

=
〈(∂ H

∂ E

∣∣∣
E

)∗
(H (E) − y) − ∂ Ẽ

∂t
+ 2νk2 Ẽ −

( ∂T

∂ E

∣∣∣
E

)∗
(Ẽ), F

〉
M

+
∫ ∞

0

(
Ẽ(k, T f )F(k, T f ) − Ẽ(k, 0)F(k, 0)

)
dk = 0 ∀F ∈ M,

(18)

〈 ∂L
∂ Ẽ

(E, Ẽ), F̃
〉
M

=
〈∂ E

∂t
+ 2νk2 E − T (E), F̃

〉
M

= 0 ∀F̃ ∈ M. (19)

Equation (18) involves the adjoint of the gradient of the observation operator and that of the
gradient of the energy transfer term defined by Eq. (2), whose expressions will be precised later on.
We introduce the following notations for these two adjoint operators:

T̃ |E (Ẽ, k) =
( ∂T

∂ E

∣∣∣
E

)∗
(Ẽ, k); H̃ |E (y, k) =

(∂ H

∂ E

∣∣∣
E

)∗
(y, k). (20)

By setting

∂ E

∂t
(k) + 2νk2 E(k) − T (E, k) = 0, (21)

− ∂ Ẽ

∂t
(k) + 2νk2 Ẽ(k) − T̃ |E (Ẽ, k) = H̃ |E

(
y − H (E), k

) = f̃ (E, y, k); Ẽ(k, T f ) = 0, (22)

we deduce the gradient of L with respect to the initial condition E0(k) = E(k, 0) from (18)

∂L
∂ E0

(E, Ẽ, k) = −Ẽ(k, 0). (23)

The term f̃ introduced in Eq. (22) is referred to as the adjoint forcing in the following. Equations
(21)–(23) allow to design an optimization procedure which is described in Sec. IV B. The gradient
(23) can also be used to quantify the sensitivity, or the variation �L, of the Lagrangian L with
respect to a perturbation �E0 of the initial energy spectrum, according to the following first-order
approximation:

�L(E, Ẽ) �
∫ ∞

0

∂L
∂ E0

(E, Ẽ, k)�E0(k)dk. (24)
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In the case where the initial energy spectrum is perturbed only at the wavenumber k = kp

(�E0(k) = δ(k − kp)�Ep in (24) where δ is the Dirac distribution), �L = ∂L
∂ E0 (k = kp)�E p, so the

gradient ∂L
∂ E0 (k = kp) gives directly the sensitivity of the Lagrangian L when only the energy mode

E0(kp) is perturbed. We now provide the expression of the gradient of the energy transfer term and
that of its adjoint. The expression of the Gâteaux derivative of the transfer term at E in the direction
F is given by

∂T

∂ E

∣∣∣
E

(F, k) =
∫∫

�k

θkpq Gkpq

[
F(q)

(
k2 E(p) − p2 E(k)

) + F(p)k2 E(q) − F(k)p2 E(q)
]
dpdq

+
∫∫

�k

Dkpq

{∫ k
0 r2 F(r )dr

ηk
+

∫ p
0 r2 F(r )dr

ηp
+

∫ q
0 r2 F(r )dr

ηq

}
dpdq,

(25)

where the factor Dkpq is defined by

Dkpq = A2

2

−1 + (μkpq t + 1)e−μkpq t

μ2
kpq

Gkpq E(q)
(
k2 E(p) − p2 E(k)

)
. (26)

The definition of the different terms involved in Eqs. (25) and (26) are given in Eqs. (3) and (4).
By using the definition (14) of an adjoint operator, and by several applications of Fubini’s theorem,
we deduce the following expression for the adjoint transfer term T̃ |E involved in Eq. (22):

T̃ |E (Ẽ, k) =
∫∫

�k

[
θpkq G pkq Ẽ(p)p2 E(q) + θqpk Gqpk Ẽ(q)

(
q2 E(p) − p2 E(q)

)
− θkpq Gkpq Ẽ(k)p2 E(q)

]
dpdq

+
∫ ∞

k

∫∫
�r

Ẽ(r )
Drpq

ηr
k2dpdqdr +

∫ ∞

k

∫∫
�p

Ẽ(r )
Drpq

ηp
k2drdqdp

+
∫ ∞

k

∫∫
�q

Ẽ(r )
Drpq

ηq
k2dpdrdq. (27)

A remarkable feature of Eq. (27) is the presence of triple sums which make T̃ |E costly to
evaluate compared to the original transfer term. From a practical point of view, one has to implement
the adjoint of the discrete version of the gradient of the transfer term given by Eq. (25), instead of the
discrete version of Eq. (27). However, the expressions obtained by these two approaches are similar.

B. Optimization procedure

As noted above, Eqs. (21)–(23) allow the computation of the gradient of the Lagrangian L
defined by (15) with respect to the initial condition E0 of the estimated decay. Since we impose
a functional form for the initial energy spectrum, we need the gradient of L with respect to the
different parameters of the functional forms defined by Eq. (7) or Eq. (9). The gradient of L with
respect to the control vector a, which contains the parameters of Eq. (7) or Eq. (9), is formally given
by

∂L
∂a

= ∂L
∂ E0

∂ E0

∂a
. (28)

The gradient ∂ E0

∂a is determined analytically using Eq. (7) or Eq. (9). In order to recover the true
initial condition whose only observation y is available about the associated decay, we employ the
following iterative optimization procedure to minimize L:

1. Start with a first guess for the set of parameters a and compute the corresponding initial energy
spectrum (i.e., the estimated initial energy spectrum) with Eq. (7) or Eq. (9).
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2. At the ith iteration, solve the forward EDQNM problem defined by Eq. (21) from t = 0
to t = Tf.

3. Solve backward from t = Tf to t = 0 the adjoint problem defined in (22) with the spectrum
E calculated at the previous step. The adjoint spectrum at t = 0 gives the gradient of L with
respect to the initial energy spectrum according to Eq. (23).

4. Compute the gradient of L with respect to the set of parameters of Eq. (7) or Eq. (9) thanks
to Eq. (28). This allows for the determination of a descent direction d (i). We choose the quasi-
Newton Broyden-Fletcher-Goldfarb-Shanno (BFGS) method31 to compute d (i). Accordingly,
the set of parameters is updated in the following way:

a(i+1) = a(i) + γ (i)d (i), (29)

where γ (i) is the step length which is determined by the use of bicomplex numbers. The use of
bicomplex numbers with the BFGS method is detailed in the Appendix A.

5. Return to step 2 until convergence.

C. Types of observations

In this paper, we consider several types of observations of the true decay, which are denoted
by y in the expression of the cost function given by (11). A first possibility is to observe the energy
spectrum itself at different times during the decay. In this way, we get a priori as much information as
possible about the decay. However, the complete energy spectrum is rarely accessible experimentally.
So we also consider the observations of statistical integral quantities with physical meaning such as
the kinetic energy K, the integral scale L, and the dissipation rate ε, which are more easily measured
in grid turbulence experiments. These quantities are defined as

K =
∫ ∞

0
E(k)dk ; L = 3π

4

1

K

∫ ∞

0

E(k)

k
dk ; ε =

∫ ∞

0
2νk2 E(k)dk. (30)

The issue of deriving exact values for these integral quantities from truncated solu-
tions/measurements is not addressed in the present study (see Ref. 36), since the EDQNM approach
enables a very good spectral resolution (9 decades in the present work).

In Sec. V C 4, we also use the observation of the power-law exponent nK driving the decay of
K according to the following relation:

K(t) ∼ tnK . (31)

Using the evolution equation of K in the case of freely decaying HIT

∂K
∂t

= −ε, (32)

we deduce the following expression for nK:

nK = −
(

∂

∂t

(K
ε

))−1

=
(

1 + K
ε2

∂ε

∂t

)−1

. (33)

Starting from the Lin equation, the exact expression of ∂ε
∂t in freely decaying isotropic turbulence

is given by

∂ε

∂t
= −

∫ ∞

0
4ν2k4 E(k)dk +

∫ ∞

0
2νk2T (E, k)dk, (34)

where we use Eq. (2) for the transfer term T(E, k). We do not expect the optimization procedure
presented in Sec. IV B to recover all the features of the true initial energy spectrum when observing
these statistical quantities. For example, we may reasonably suppose that it will be difficult to recover
details of the shape of the initial spectrum in the dissipative range when observing the kinetic energy
K since decay of turbulent kinetic energy is expected to be mainly driven by large scales. In contrast,
we expect the optimization procedure to be very sensitive to large scales, whatever the type of
observations. Indeed, the temporal evolutions of K, L, and ε are expected to follow power laws, as
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TABLE I. Analytical formulae for the prediction of the power-law exponents driving the decay of the flow statistical
quantities, in the case of isotropic turbulence. The high Reλ formulae are proposed by Comte-Bellot and Corrsin37 and
revisited by Meldi and Sagaut,22 while the low Reλ formulae are elaborated by Clark and Zemach.20

nK nε nL

High Reλ −2
σ − q + 1

σ − q + 3
− 3(σ − q) + 5

σ − q + 3

2

σ − q + 3

Low Reλ −σ + 1

2
−σ + 3

2

1

2

the one given by (31), whose the theoretically predicted exponents are summarized in Table I. These
exponents depend on the slope at large scales σ and on the coefficient q, which is a measure of
the intensity of the non-local triadic interactions in the back-scatter energy transfer. The coefficient
value is q = 0 for σ = 1, 2, 3 and q ≈ 0.52 − 0.55 for σ = 4, see Ref. 22. In the formulae of
Table I, it is implicitly assumed that large scales are described by a unique slope σ . The optimization
procedure will allow to determine if the largest scales and the large scales close to the peak of the
energy spectrum play a similar role in the decay or not. It is worth keeping in mind that the results
of the data assimilation experiments of this paper are relative to the chosen types of observations. In
particular, it would be possible to consider scalar quantities of the form D = ∫ ∞

0 E(k)k−ndk with
n � 1, which give more weight to the largest scales than K, L, and ε. However, we focused on the
latter quantities in the present work, since they have a clear physical meaning.

We consider three ways of distributing observations in time. For the first one, the size of the
assimilation window, i.e., the final time considered for the decay, is fixed at Tf = 104τ 0, where
τ 0 is the initial eddy turn-over time defined by L(0)/K(0)1/2. An observation of the true decay
is performed every 103τ 0 from t = 103τ 0 to t = Tf = 104τ 0. Starting the observations from t
= 103τ 0 ensures that we witness a fully developed isotropic turbulence, and avoids the transient
regime reported in EDQNM simulations.2, 7 This transient regime is related to the approximation
represented by the use of a functional form which is not an exact solution of the EDQNM model to
describe the initial energy spectrum. Accordingly, the expressions of the observation operator and
of the inner product between two elements a and b in observation space, for example, in the case
where the dissipation rate is observed, are

H (E, t) = ε(E, t) =
∫ ∞

0
2νk2 E(k, t)dk; 〈a, b〉O =

∫ T f

0

10∑
n=1

δ(t − n103τ0)a(t)b(t)dt. (35)

The adjoint of the gradient of H as defined by Eq. (35) is

H̃ |E (y, k, t) = 2νk2
10∑

n=1

δ(t − n103τ0)y(t). (36)

Expressions similar to Eq. (36) are easily derived for the other types of scalar observations. However,
we notice that H̃ |E as defined by Eq. (36) does not depend on the spectrum E, since ε is a linear
operator on the model space. This would not be the case if the integral scale L or the exponent nK
were observed. In the case where the energy spectrum is observed, i.e., H(E, k, t) = E(k, t), the
expression of the inner product in observation space and that of the adjoint of the gradient of H are

〈a, b〉O =
∫ T f

0

10∑
n=1

δ(t − n103τ0)
∫ ∞

0
a(k, t)b(k, t)dkdt ; H̃ |E (y, k, t) =

10∑
n=1

δ(t − n103τ0)y(k, t).

(37)
Concerning the two other ways of distributing observations in time, they correspond to the two
assimilation window sizes Tf = 103τ 0 and Tf = 104τ 0, with only a single observation of the true
decay performed at t = Tf. In these two cases, the expressions of 〈·, ·〉O and H̃ |E are deduced from
Eqs. (35) to (37) by replacing

∑10
n=1 δ(t − n103τ0) with δ(t − Tf).
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Since the statistical quantities defined by (30) evolve in time according to power-laws, the error
(y − H(E)) might be several orders of magnitude larger or less at t = 103τ 0 than at t = Tf = 104τ 0.
Large differences in the order of magnitude among the terms in the cost function defined in (11) may
also be encountered when observing simultaneously several statistical quantities. Consequently, we
define a slightly different cost function which involves relative errors instead of absolute errors. In
this way, all terms in the sum are significant, even if we expect an amplification in time of the value
of relative errors. The use of such cost function instead of that defined by Eq. (11) does not change
the derivation in Sec. IV A, except for the expression of the adjoint forcing f̃ in (22). The expression
of this new cost function and that of the corresponding adjoint forcing term are

J (E) = 1

2

∥∥∥∥ y − H (E)

y

∥∥∥∥
2

O
; f̃ (E, y) = H̃ |E

( y − H (E)

y2

)
. (38)

The cost function defined by Eq. (38) is used when the kinetic energy K, the integral scale L,
the dissipation rate ε, or a combination of these are observed. When the exponent nK is observed,
the cost function defined by Eq. (11) may be used without modification since the value of nK is
supposed to be constant during the decay. In the case where the energy spectrum is observed, the
error is normalized by the kinetic energy related to the true spectrum. The expression of the cost
function and that of the adjoint forcing term are in this case

J (E) = 1

2

∥∥∥∥∥ y − H (E)

(
∫ ∞

0 y(k)dk)
1
2

∥∥∥∥∥
2

O
; f̃ (E, y) = H̃ |E

( y − H (E)∫ ∞
0 y(k)dk

)
. (39)

V. DATA ASSIMILATION RESULTS

A. Setup of the data assimilation experiments

The principle of the data assimilation experiments presented in this paper is the following.
After choosing the characteristics of a true initial energy spectrum and the type of the observations
of the associated decay, we employ the optimization procedure described in Sec. IV B in order to
recover the true initial energy spectrum, starting from an initial guess (i.e., an estimated initial energy
spectrum). The setup of these different numerical data assimilation experiments is described in the
present section.

The duration of the EDQNM simulations in this paper is equal or inferior to 104 initial eddy
turn-over times τ 0. The smallest wavenumber of the mesh k0 is chosen so that k0 = 10−5kL, where
kL is the wavenumber associated to the initial position of the integral scale. This choice ensures that
there is at least three decades of resolution between k0 and the position of the integral scale at the end
of the simulations. The largest resolved wavenumber kM is chosen such that a resolution of at least
one decade at the small scales, with respect to the initial position of the Kolmogorov scale, is granted.
The total number of elements M + 1 is recovered so that kM = rMk0 , where r represents the constant
aspect ratio between contiguous elements of the mesh. In the present work, r = 1.122, which means
that each decade in the spectral space is discretized by 20 mesh elements. The temporal integration
is made by a forward Euler scheme, which is self-adjoint, and the Courant-Friedrichs-Lewy (CFL)
condition is based on the Kolmogorov scale.2 The Lagrangian L defined by Eq. (15) is minimized
in the way depicted in Sec. IV B and the Appendix A. The optimization procedure is stopped after
achieving a substantial reduction by 6 orders of magnitude in the value of the cost function J in
Eq. (11).

In Sec. V B, we consider the set 1 of numerical data assimilation experiments where the func-
tional form defined by (7) is prescribed for the initial energy spectrum. The size of the assimilation
window is fixed at Tf = 104τ 0 and an observation of the true decay is performed every 103τ 0 from
t = 103τ 0 to t = Tf. The separation between large and very large scales is determined so that at least
one decade between the wavenumber kL1 and the position of the peak of the energy spectrum at the
end of the assimilation window is granted. According to Comte-Bellot–Corrsin analysis, the maxi-
mum value of the exponent nL in Table I is 0.5. So the maximum value of the integral scale at the end

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  134.157.69.114 On: Wed, 20 Apr

2016 15:32:29



115105-11 Mons et al. Phys. Fluids 26, 115105 (2014)

TABLE II. Undimensional (if necessary) values of the different parameters of the functional form (7) for the true initial
energy spectrum. The separation between large and very large scales is fixed at kL1 /kL2 = 10−3.

σ 1 σ 2 β p kL2 α1 α2 α3 α4 α5 kη

2 2 0 1.5 1 4.2 1.8 3 0.2 1 3834

of the assimilation window is L(t = T f ) ≈ (T f /τ0)0.5L(t = 0) = 102 L(t = 0) ≈ 102/kL2 , which
leads to kL1/kL2 = 10−3. The true initial energy spectrum corresponds to a Saffman turbulence at
high Reynolds number (σ 1 = σ 2 = 2 in Eq. (7)). The initial value of the Reynolds number based on
the Taylor microscale λ = √

10Kν/ε is chosen so that Reλ(t = 0) = 800. At t = Tf = 104τ 0, Reλ

≈ 400, which ensures converged values of the power-law exponents in Table I in the high-Reynolds
regime over the entire decay.7 The estimated initial energy spectrum is obtained by perturbing by
±10% the values of the parameters of Eq. (7) chosen for the true spectrum. The latter are reported
in Table II. The runs of the set are differentiated by the use of various types of observations: the
energy spectrum E(k), the kinetic energy K, the integral scale L, the dissipation rate ε, K and L
simultaneously, and K, L, and ε simultaneously.

In Sec. V C, the functional form defined by (9) is prescribed for the initial energy spectrum.
We consider three types of estimated initial energy spectra. The first one (type A) corresponds to
a constant perturbation of −25% of the true value of the slope at large scales. The inertial and the
dissipative ranges are, respectively, defined by a constant slope. For the second type of estimated
initial energy spectra (type B), a random slope is assigned for the initial energy spectrum each
half-decade. The slopes at large scales are uniformly picked between 1 and 4, so the corresponding
mean is 2.5. The third type (type C) corresponds to the assignment of a random local slope for
each of the energy modes. These three different initial energy spectra are illustrated in Figure 1.
For the sets 2-8 of assimilation experiments, the true state represents a Saffman turbulence at high
Reynolds number. The cases where the slope of the true initial energy spectrum verifies σ = 1 (exact
self-similar decay) or σ = 4 (Batchelor turbulence) are investigated in the set 9. The initial value
of the Reynolds is adjusted so that Reλ ≈ 400 at the end of the assimilation window. For the set 2
of assimilation experiments, the estimated initial energy spectrum of type A is employed and the
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FIG. 1. First row: true (dotted line) and estimated (dashed line) initial spectra for the types A (a), B (b), and C (c). Second
row: corresponding local slope in Eq. (9) for the types A (d), B (e), and C (f).
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TABLE III. Characteristics of the different sets of numerical data assimilation experiments considered in this paper. Ns is
the number of runs in a given set. The column F.F. indicates the functional form used for the different sets. Tf refers to the
size of the assimilation window. No is the number of observations of the true decay. H refers to the type of the observations.
Reλ(t = 0) is the initial Reynolds number based on the Taylor microscale. σ refers to the unique slope at large scales
(E(k → 0) ∼ kσ ) of the true initial energy spectra. The column E.I.C indicates the type of the estimated initial energy
spectrum (see Sec. V A and Figure 1).

Set Ns F.F. Tf No H Reλ(t = 0) σ E.I.C

1 6 Eq. (7) 104τ 0 10 various 800 2 ±10%
2 6 Eq. (9) 104τ 0 10 various 800 2 A
3 3 Eq. (9) 104τ 0 10 K 800 2 A,B,C
4 3 Eq. (9) 104τ 0 1 K 800 2 A,B,C
5 3 Eq. (9) 103τ 0 1 K 800 2 A,B,C
6 3 Eq. (9) 104τ 0 10 nK 800 2 A,B,C
7 3 Eq. (9) 104τ 0 1 nK 800 2 A,B,C
8 3 Eq. (9) 103τ 0 1 nK 800 2 A,B,C
9 2 Eq. (9) 104τ 0 10 K 400, 2000 1, 4 A

different runs of the set correspond to the use of different types of observations. The size of the
assimilation window is fixed at Tf = 104τ 0 with 10 observations of the true decay between t = 103τ 0

and t = Tf. The sets 3-5 of assimilation experiments use only the observation of the kinetic energy K,
and for each of these sets the three types of initial energy spectra described above are employed. The
size of the assimilation window and the frequency of the observations for the set 3 are the same as
for the set 2, while only one observation is performed at the end of the assimilation window for the
sets 4 and 5 where Tf = 104τ 0 and Tf = 103τ 0, respectively. Concerning the sets 6-8, the exponent
nK is observed and the three types of initial energy spectra are employed. These three different
sets allow to investigate various window assimilations sizes and frequencies of observations. The
kinetic energy is observed for the set 9 of simulations, where the assimilation window is fixed at Tf

= 104τ 0 with 10 observations of the true decay between t = 103τ 0 and t = Tf. A summary of the
characteristics of the different sets of assimilation experiments is reported in Table III.

For the sake of clarity, the results reported in the figures are sometimes scaled on the initial
position of the integral scale kL(t = 0) or on its final position kL(t = Tf). We define the · operator by

F(k) = F(k)/ max
p

(|F(p)|). (40)

The energy spectrum may also be scaled by max kEt(k), where Et(k) is the true initial energy
spectrum. In the tables and figures, the relative error ε(i)

a j
on the parameter aj of the functional form

chosen for the initial energy spectrum at the ith iteration of the optimization procedure is defined by

ε(i)
a j

= |at
j − a(i)

j |
|at

j |
, (41)

where at
j and a(i)

j are the true value of the parameter aj and that obtained at the ith iteration of the
optimization procedure, respectively. The partial derivatives of the Lagrangian L with respect to
the different parameters aj are reported in absolute value and are normalized by the norm of the
gradient of the Lagrangian with respect to the set of parameters a = (a1 a2 . . .)T at the beginning
of the optimization procedure (iteration (1)). For the sake of simplicity, we introduce the following
notation:

∇a jL(i) =
∣∣∣∣∣ ∂L
∂a j

(i)
∣∣∣∣∣
/ ∥∥∥∥∥∂L

∂a

(1)
∥∥∥∥∥ . (42)
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FIG. 2. (a) Derivatives of the Lagrangian L with respect to the different parameters in (7) ( σ 1, —— σ 2, - · - · β, - · - · p,
kL2 , -�- α1, -�- α2, -•- α3, –�– α4, ········· α5, and -×- kη) versus the number of iterations of the optimization procedure

for the run of the set 1 (see Table III) where the kinetic energy K is observed. (b) True (dotted line), estimated (dashed line),
and retrieved at the end of the optimization procedure (full line) initial energy spectra. The vertical dashed grey line marks
the limit at k = kL1 in Eq. (7) between the largest scales and the large scales close to the peak of the energy spectrum.

B. Assimilation experiments based on the Meyers–Meneveau spectrum model

In this section, we consider the set 1 of numerical data assimilation experiments, in which the
functional form defined by Eq. (7) is prescribed for the initial energy spectrum. The corresponding
control vector contains 11 parameters. This set is illustrated by Figures 2, 3, 4(a), and 4(c). The true
state corresponds to a Saffman turbulence at high Reynolds number, the estimated initial condition
is obtained by perturbing by ±10% the true values of the parameters of (7), and various kinds of
observations are used to perform the different data assimilation experiments of the set. We first
consider the particular run where the kinetic energy K is observed. Results concerning this run
are illustrated by Figure 2. The partial derivatives of the Lagrangian L defined by Eq. (15) with
respect to the different parameters in (7) and their evolutions according to the iterations of the
optimization procedure described in Sec. IV B are displayed in Figure 2(a). We notice that the
derivative of the Lagrangian at the beginning of the minimization varies widely depending on the
parameter considered. The four leading parameters are the slope at large scales close to the peak of
the energy spectrum σ 2, kL2 , and α5, which both govern the initial position of the peak of the initial
energy spectrum, and the intermittency correction β. The fact that σ 2 is the leading parameter is not
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FIG. 3. Results from the different data assimilation experiments of the set 1 (see Table III). (a) Value of the cost function J
normalized by its initial value and (b) relative errors on the slope at the largest scales σ 1 (grey lines) and on the slope at the
large scales close to the peak of the initial energy spectrum σ 2 (black lines) versus the number of iterations of the optimization
procedure. The six types of lines (besides color) correspond to different types of observations: —— E(k), - · - · - · K, - - - - L,
········· ε, –�– K + L , and –�– K + L + ε.
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FIG. 4. First row: estimated energy spectra at t = 0 (full lines) and at t = Tf = 104τ 0 (dashed lines) at the first iteration
of the optimization procedure. Second row: gradient with respect to the initial energy spectrum E0 of the Lagrangian L
for different types of observations: —— E(k), - · - · K, - - - - L, ········· ε, –�– K + L , and –�– K + L + ε. The first column
corresponds to the use of the Meyers-Meneveau functional form defined in Eq. (7) (set 1 of data assimilation experiments,
see Table III), while the functional form defined in Eq. (9) is employed for the results of the second column (set 2, see
Table III). The predictions of Eqs. (44) and (46) (see the discussion in Sec. V B) are also reported in Figures (c) and (d) (small
full grey lines). Notice that for the sets 1 and 2, the slope σ b of the estimated energy spectrum at large scales is inferior to the
slope σ t of the true spectrum.

surprising when considering the formulae of the power-law exponents driving the decay of the flow
statistical quantities reported in Table I. Figure 2(a) also indicates that the shape of the peak of the
energy spectrum p plays an intermediate role, in agreement with results obtained in Refs. 19 and
38, and that the influence on the Lagrangian of α1 − α4, which parametrize the shape of the energy
spectrum at small scales, is negligible with respect to the leading parameters. The same applies to
the initial position of the Kolmogorov scale kη. Small scales do not drive the decay and do not carry
a significant amount of energy, so their influence is marginal. At the end of the assimilation window
kL (t = TF )/kL1 ≈ 101.5, and it appears that the sensitivity of the Lagrangian with respect to the
slope at very large scales σ 1 is also negligible. Contrary to the large scales close to the peak of the
energy spectrum, the largest scales do not seem to play a significant role in the decay. This result
is in accordance with the findings of Meldi and Sagaut,22 and indicates that the asymptotic infrared
behavior of the energy spectrum does not govern finite time HIT decay.

We now consider the performances of the different data assimilation experiments of set 1 with
Figure 3(a), which displays the evolution of the cost function J in Eq. (11) observed when using
various observations, i.e., direct observation of the full spectrum E(k, t) or linear combinations of
integral quantities (namely, kinetic energy K, dissipation rate ε, and integral lengthscale L). The
latter have all achieved a reduction by six orders of magnitude in the value of the cost function,
corresponding to a fully converged solution. The reduction in the relative errors, which are defined
by Eq. (41), on the slope at the largest scales σ 1 and on the slope at the large scales close to the peak
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TABLE IV. Results for the different data assimilation experiments of the set 1 (see Table III) where different types of
observations are used for the different runs. The partial derivatives of the Lagrangian L (defined in Eq. (42)) with respect to
the slope at the largest scales σ 1, the slope at large scales close to the peak of the initial energy spectrum σ 2, the intermittency
correction β, the shape p of the peak of the initial energy spectrum, and the parameter α1 for small scales, are reported. The
displayed values are those at the beginning, iteration (1), and at the end, iteration (M), of the optimization procedure. The
relative errors (defined in Eq. (41)) at the end of the optimization procedure on those same parameters are also reported,
starting from 10−1 at the beginning of the minimization for all parameters.

E(k) K L ε K + L K + L + ε

∇σ1L(1) 1 × 10−6 3 × 10−6 7 × 10−4 8 × 10−10 2 × 10−4 1 × 10−4

∇σ2L(1) 7 × 10−1 7 × 10−1 8 × 10−1 6 × 10−1 7 × 10−1 7 × 10−1

∇β L(1) 3 × 10−1 3 × 10−1 3 × 10−1 3 × 10−1 3 × 10−1 3 × 10−1

∇p L(1) 7 × 10−2 7 × 10−2 6 × 10−2 7 × 10−2 7 × 10−2 7 × 10−2

∇α1L(1) 1 × 10−3 1 × 10−3 9 × 10−4 1 × 10−3 1 × 10−3 1 × 10−3

∇σ1L(M) 1 × 10−8 2 × 10−10 1 × 10−8 1 × 10−13 6 × 10−8 7 × 10−8

∇σ2L(M) 3 × 10−4 7 × 10−6 4 × 10−5 2 × 10−4 2 × 10−5 5 × 10−4

∇β L(M) 1 × 10−4 3 × 10−6 1 × 10−5 2 × 10−4 2 × 10−6 3 × 10−4

∇p L(M) 4 × 10−5 6 × 10−8 3 × 10−6 3 × 10−5 5 × 10−7 5 × 10−5

∇α1L(M) 5 × 10−7 9 × 10−9 4 × 10−8 6 × 10−7 7 × 10−9 1 × 10−6

ε
(M)
σ1 1 × 10−1 1 × 10−1 1 × 10−1 1 × 10−1 1 × 10−1 1 × 10−1

ε
(M)
σ2 6 × 10−4 5 × 10−3 2 × 10−3 3 × 10−3 9 × 10−4 4 × 10−4

ε
(M)
β 8 × 10−2 5 × 10−2 1 × 10−1 4 × 10−2 3 × 10−2 1 × 10−2

ε
(M)
p 5 × 10−3 5 × 10−2 1 × 10−1 1 × 10−2 2 × 10−2 4 × 10−3

ε
(M)
α1 1 × 10−1 1 × 10−1 1 × 10−1 1 × 10−1 1 × 10−1 1 × 10−1

of the energy spectrum σ 2 during the optimization procedures are reported in Figure 3(b), in grey and
black lines, respectively. Actually, no error reduction is achieved for σ 1, even when quantities which
are a priori the most sensitive to large scales such as the energy spectrum itself or the integral scale
are observed. In contrast, the true value of σ 2 is recovered with a good accuracy in all cases. The
value of the relative errors on a few other parameters at the end of the optimization procedures are
also reported in Table IV. In all cases, the Lagrangian L appears to be insensitive to the largest scales
(slope σ 1) and to the small scales (parameter α1), in comparison with the large scales close to the
peak of the energy spectrum (slope σ 2). For parameters of secondary importance, as the initial shape
of the energy peak p and the intermittency correction β, performances in terms of error reduction are
intermediate. Observing the complete energy spectrum or several global quantities simultaneously
leads to a better recovery of the true parameters than observing a single global quantity. This is not
surprising given that the latter case provides less information than observing the complete spectrum
or a combination of integral quantities. Results concerning the observation of the dissipation rate
ε are interesting. Indeed, the “instantaneous” sensitivity of ε, i.e., the instantaneous change in ε(t)
resulting from a change in the spectrum E(k, t) in (30), is maximum around the Taylor microscale,
which corresponds to the typical scale at which viscous dissipation acts, and is negligible at large
and very large scales. However, its temporal evolution is driven by large scales. Observing ε allows
to uncouple the “instantaneous” sensitivity and the “dynamical” sensitivity (sensitivity with respect
to the features of the initial energy spectrum in the sense of (24)) of the Lagrangian L with respect
to large scales. Concerning the kinetic energy K and the integral scale L, they are mainly sensitive
to large scales both “instantaneously” and “dynamically.” Table IV indicates that the gradient (at the
beginning of the optimization procedure) of the Lagrangian with respect to the slope at the largest
scales σ 1 is much inferior when observing the dissipation rate ε than in the other cases. In contrast,
the sensitivity of the Lagrangian with respect to the slope σ 2 is roughly the same for all the types
of observations. This result is further evidence that only the large scales close to the peak of the
energy spectrum lead the decay. Figure 2(b) reports the true initial energy spectrum, estimated initial
spectrum, and initial spectrum obtained at the end of the optimization procedure for the run where
the kinetic energy K is observed. The spectrum obtained at the end of the optimization procedure
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well coincides with the true spectrum, except at very large and very small scales. This result is
similar for all the types of observations.

Figure 4(c) illustrates the gradient of the Lagrangian L with respect to the different modes of the
initial energy spectrum for the different types of observations. These gradients vanish at small scales
in roughly the same way, but exhibit different shapes at large scales. The latter may be recovered by
considering the expressions of K, L, and ε when taking into account the geometric series distribution
of the mesh points in spectral space

K �
∑

i

Ei ki dr ; L � 3π

4

∑
i Ei dr∑

i Ei ki dr
; ε �

∑
i

2νEi k
3
i dr, (43)

where the index i refers to the ith mode and dr is related to the quadrature method used. The gradient
of these quantities at large scales is immediately deduced from (43)

∂K
∂ Ei

∝ ki ;
∂L

∂ Ei
∝ constant;

∂ε

∂ Ei
∝ k3

i . (44)

In the case where the observation y of the true state is a scalar, the ith component of the adjoint
forcing term in the adjoint problem defined in (22) is given by

f̃i (E, y, k) ∝ (y − H (E))
∂ H

∂ Ei
, (45)

where the coefficient of proportionality only depends on the normalization of the error (y − H(E))
in the cost function J (see Sec. IV C). Therefore, when K, L, or ε is observed, the shape at large
scales of the adjoint forcing term is given by (44). When the energy spectrum is observed, it is easy
to derive that at large scales

f̃i (E, y, k) ∝ ks
i ; s = min(σ t , σ b), (46)

where σ t and σ b are the slope at large scales for the true and estimated initial energy spectra,
respectively (we have assumed a constant slope at large scales for the sake of simplicity). Moreover,
it can be shown that, in the discrete case, performing an observation at the end of the assimilation
window amounts to initialize the backward integration of the adjoint problem defined by Eq. (22)
with the adjoint forcing term f̃ at t = Tf (instead of 0 in the continuous case as stated in (22)).
The reader may refer to Ref. 31 for the discrete formulation of variational data assimilation. So, at
time t = Tf the adjoint spectrum is initialized at large scales with a slope depending on the type of
observations in the way depicted by (44) and (46). We now consider Figures 5(a) and 5(b) where are
reported the temporal evolution of the energy spectrum during a forward integration and that of the
adjoint spectrum during the corresponding backward integration. The kinetic energy K is observed.
For these particular figures, only one measurement is performed at t = Tf. In this configuration,
the adjoint forcing term in Eq. (22) is zero during the entire backward integration and only adjoint
energy transfers and dissipation act. At t = Tf, the adjoint spectrum verifies Ẽ(k, T f ) ∝ k ∀k, in
accordance with Eq. (44) ( ∂K

∂ Ei
∝ ki is actually verified ∀ki). It appears from Figure 5(b) that adjoint

energy transfers preserve the adjoint energy at large scales in a similar way as energy transfers for
E(k). Thus, only the adjoint forcing term might eventually affect large scales. Figures 5(c) and 5(d)
illustrate the temporal evolution of E(k) and Ẽ(k) when the adjoint forcing term is not always zero,
i.e., when several observations are performed before the end of the assimilation window. Performing
observations before t = Tf results in the addition of a term proportional to k to the adjoint spectrum
at large scales due to the adjoint forcing during the backward integration. Therefore, the adjoint
forcing affects the value of the adjoint spectrum at large scales but not his slope. It is worth noting
that the slope at large scales of the gradients of the observation operators in Eq. (44) does not depend
either on the characteristics of the true initial energy spectrum or on those of the estimated spectrum.
All of this implies that, in the case where the observation of the true decay is a scalar such as K,
L, or ε, the gradient of the Lagrangian L defined in (15) with respect to the initial energy spectrum
E0 has a shape at large scales which depends only on the type of the observations. For example,
when the kinetic energy K is observed, ∂L

∂ E0 ∝ k at large scales whatever the features of the true
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FIG. 5. Temporal evolutions of (a) the energy spectrum E and (b) the adjoint energy spectrum Ẽ when the adjoint forcing
term f̃ in Eq. (22) is zero during the backward integration (only one observation at the end of the assimilation window);
and temporal evolutions of (c) the energy spectrum E and (d) the adjoint energy spectrum Ẽ when the adjoint forcing term
f̃ is non-identically zero (10 observations between t = 103τ 0 and t = Tf = 104τ 0). The curves have been sampled at
the normalized times: —— t

τ0
= 1; - - - t

τ0
= 10; - · - · t

τ0
= 102; ········· t

τ0
= 103; t

τ0
= 104. The kinetic energy K is

observed.

energy spectrum, those of the estimated spectrum or the frequency of the observations. This result
is subsequently confirmed in Secs. V C 1–V C 5.

Figure 4(c) also indicates that the maximum of the sensitivity of the Lagrangian is reached
at the wavenumber k such that k/kL(t = 0) ≈ 10−1.5 for the different types of observations, with
kL(t = 0) the initial position of the integral scale. This value roughly coincides with the position of the
peak of the energy spectrum at t = Tf = 104τ 0, which is reported in Figure 4(a), and the theoretical
value of the position of the integral scale at t = Tf predicted by the formulae of Comte-Bellot and
Corrsin37 (see Table I with σ = 2 and q = 0)

kL (T f )

kL (0)
=

(
L(T f )

L(0)

)−1

≈
(

T f

τ0

)− 2
5

= 10−1.6. (47)

This observation is further discussed in Secs. V C 1–V C 5.

C. Assimilation experiments based on a scale-by-scale description
of the energy spectrum

1. Experiments with various types of observations

From now on, we use the functional form defined in Eq. (9) which allows a local, scale-by-
scale description of the initial energy spectrum. The control vector is formed by the local slopes
associated to the resolved energy modes, and its dimension ranges from 150 to 200. We consider
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FIG. 6. Results from the different data assimilation experiments of the set 2 (see Table III). First row: (a) Value of the cost
function J normalized by its initial value and (b) difference between the local slope of the initial energy spectrum obtained
at the end of the optimization procedure (iteration (M)) and that of the spectrum at the first iteration (i.e., the estimated
spectrum). The six types of lines correspond to different types of observations: —— E(k), - · - · - · K, - - - L, ········· ε, -�-
K + L , and –�– K + L + ε. Second row: true (black dotted line), estimated (black dashed line), and retrieved at the end
of the optimization procedure (black full line) initial energy spectra when the energy spectrum E(k) (c) and K, L, and ε

simultaneously (d) are observed. The energy spectra at t = 103τ 0 (dashed-dotted grey lines) and at t = Tf = 104τ 0 (dashed
grey lines) are also reported in the figures.

the set 2 of numerical data assimilation experiments. The true state considered here without loss of
generality is a Saffman turbulence at high Reynolds number, the estimated initial condition is of
type A (see Figures 1(a) and 1(d) and Sec. V A), and various kinds of observations are used for
the different assimilation experiments of the set. The results are illustrated in Figures 4(b), 4(d),
and 6. The evolution of the cost function J during the different minimization procedures is reported
in Figure 6(a). Except in the case where the energy spectrum is observed, the optimization procedure
has achieved a reduction by 6 orders of magnitude in the value of the cost function in less than 30
iterations. This performance is largely identical to that when the functional form defined by Eq. (7)
is used (see Figure 3(a)). So, when global quantities are observed, we do not notice a significant
influence of the dimensionality of the control vector on the optimization procedure. Figures 6(c)
and 6(d) report the true, estimated, and obtained at the end of the optimization procedure initial
energy spectra when the energy spectrum or K, L, and ε simultaneously are observed. In these two
cases, we have access to a substantial information about the decay. A striking observation is that the
optimization procedure has only recovered the true shape of the initial spectrum at scales located
between the initial position of the peak of the energy spectrum and one decade before the position
of the peak of the energy spectrum at the end of the assimilation window. This is also visible in
Figure 6(b) which reports the difference between the local slope defined in Eq. (9) of the initial
energy spectrum at the end and at the beginning of the optimization procedure. For all the runs,
the maximum correction is made around the position of the peak of the energy spectrum at the end
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of the assimilation window. The slight differences among the different types of observations are
explained by the fact that, for example, the integral scale is naturally more sensitive to large scales
than the dissipation rate. But in all cases, the optimization procedure has not corrected the shape of
the estimated initial energy spectrum at the largest scales even though this shape significantly differs
from the true one. Furthermore, the shape of the initial energy spectrum at small scales does not
appear to be of significant importance. The gradient of the Lagrangian L with respect to the initial
energy spectrum is reported in Figure 4(d) for the different types observations. As in Figure 4(c),
the shape at large scales of these gradients is given by relations (44) and (46) and the maximum of
the sensitivity of the Lagrangian L is located around the position of the peak of the energy spectrum
at the end of the assimilation window. The use of a different functional form for the initial energy
spectrum has no effect on the shape of the gradient of the Lagrangian L with respect to the initial
energy spectrum. These results, which are in line with those of Sec. V B, suggest that the measured
quantities in grid turbulence experiments cannot allow to have access to the shape of the energy
spectrum at the largest scales, since the latter do not seem to have a significative influence on the
decay. The robustness of this finding is tested in Secs. V C 2–V C 5.

2. Experiments with various estimated initial energy spectra

We study the sensitivity of the previous results with respect to the shape of the estimated
initial energy spectrum by considering the set 3 of assimilation experiments which is illustrated by
Figure 7. The kinetic energy K is observed and three different estimated initial energy spectra are
used for the runs of the set. The three estimated spectra are illustrated in Figure 1. Figure 7(a)
indicates that the performances of the optimization procedure are not significatively affected by
the characteristics of the estimated spectrum. The true, estimated, and retrieved at the end of the
optimization procedure initial energy spectra are reported for each run of the set in Figures 7(d)–
7(f). For the three runs, the optimization procedure recovers the same part of the true initial energy
spectrum, which is also visible in Figure 7(b). The maximum correction of the local slope of the
estimated energy spectrum is made at the scales close to the peak of the energy spectrum at the
end of the assimilation window. The shape of the energy spectrum at small scales and at the large
scales bigger than ten times the integral scale at the end of the assimilation window seems to have
no impact on the value of the kinetic energy K during the considered decays. Figure 7(c) reports
the gradient of the Lagrangian L with respect to the initial energy spectrum for the three runs of
the set. In all cases, this gradient verifies ∂L

∂ E0 ∝ k at large scales and the maximum of sensitivity is
located at scales corresponding to the position of the peak of the energy spectrum at the end of the
assimilation window. The results of the optimization procedure do not seem to depend on the choice
of the estimated initial energy spectrum.

3. Experiments with various assimilation window sizes

In Secs. V B, V C 1, and V C 2, it was found that the maximum sensitivity of the Lagrangian
L defined in (15) is located at the scales corresponding to the peak of the energy spectrum at the
end of the assimilation window, which was fixed at Tf = 104τ 0 with ten observations of the true
decay between t = 103τ 0 and t = Tf. In order to check the robustness of this result, we first consider
the set 4 of assimilation experiments where only one observation of the true decay is performed at
t = Tf = 104τ 0. The three different types of estimated initial energy spectra illustrated in Figure 1 are
used for the different runs of the set. The results are reported in Figures 8(a) and 8(c). The comparison
between Figures 8(c) and 7(c) indicates that the frequency of the observations has no influence on
the position of the maximum sensitivity of the Lagrangian L. When only one observation of the
true decay is performed, the optimization procedure reduces the value of the cost function J by 6
orders of magnitude in less than 5 iterations for all the runs of the set. By comparing Figures 8(a)
and 7(b), it appears that the extent of the corrected part of the estimated initial energy spectrum does
not significantly depend on the frequency of the observations. We now consider the set 5 where only
one observation of the true decay is performed at the end of the assimilation window whose size is
Tf = 103τ 0. The results for this set are illustrated in Figures 8(b) and 8(d). In both Figures 8(a)
and 8(b), the maximum correction is made around the final position of the integral scale. Besides, it
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FIG. 7. Results from the different data assimilation experiments of the set 3 (the kinetic energy K is observed, see
Table III). First row: (a) Value of the cost function J normalized by its initial value, (b) difference between the local
slope of the initial energy spectrum obtained at the end of the optimization procedure (iteration (M)) and that of the spectrum
at the first iteration (i.e., the estimated spectrum), and (c) gradient with respect to the initial energy spectrum E0 of the
Lagrangian L (at the first iteration of the optimization procedure). The three types of lines correspond to different estimated
initial spectra: —— type A, - - - type B, ········· type C (see Figure 1). Second row: true (black dotted line), estimated (black
dashed line), and retrieved at the end of the optimization procedure (black full line) initial energy spectra when the estimated
initial energy spectrum is of type A (d), B (e), and C (f). The energy spectra at t = 103τ 0 (dashed-dotted grey lines) and at t
= Tf = 104τ 0 (dashed grey lines) are also reported in the figures. A zoom of Figures (d)-(f) in the vicinity of the peak of the
energy spectrum at t = Tf is reported in Figures (g)-(i).

appears from Figures 8(c) and 8(d) that the maximum of sensitivity of the Lagrangian L is located
around the position of the peak of the energy spectrum at the end of the assimilation window for
both Tf = 103τ 0 and Tf = 104τ 0. This confirms that it is the size of the assimilation window Tf that
determines the position of the maximum of sensitivity of the Lagrangian L at k ≈ kL(Tf) = 1/L(Tf).

4. Observation of the exponent nK

The exponent nK defined by Eq. (31), which characterizes the decay of the kinetic energy K,
is not directly accessible in grid turbulence experiments but is deduced from the measurements of
the kinetic energy or other integral quantities. The interest of using the observation of the exponent
nK in the present work is that nK furnishes a purely dynamical information about the decay that
can be easily compared with most experimental results, unlike the observations used in Secs. V B
and V C 1–V C 3. We consider the set 6 of assimilation experiments where the exponent nK is
observed, the true state corresponds to a Saffman turbulence at high Reynolds number, the different
estimated initial energy spectra of Figure 1 are used for the different runs of the set and the size of
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FIG. 8. Results from the different data assimilation experiments of the sets 4 and 5 (the kinetic energy K is observed, see
Table III). First row: difference between the local slope of the initial energy spectrum obtained at the end of the optimization
procedure (iteration (M)) and that of the spectrum at the first iteration (i.e., the estimated spectrum). Second row: gradient
with respect to the initial energy spectrum E0 of the Lagrangian L (at the first iteration of the optimization procedure). The
first column corresponds to the window assimilation size Tf = 104τ 0 (set 4) and the second column to Tf = 103τ 0 (set 5).
The three types of lines correspond to different estimated initial spectra: —— type A, - - - - type B, ········· type C (see Figure 1).

the assimilation window is fixed at Tf = 104τ 0 with 10 observations of the true decay between t =
103τ 0 and t = Tf. Results are reported in Figure 9 and are quite similar to those illustrated in Figure
7 where the kinetic energy K is observed. In particular, the maximum sensitivity of the Lagrangian
L is still located at the scales corresponding to the position of the integral scale at the end of the
assimilation window. It appears that the gradient of the Lagrangian with respect to the initial energy
spectrum verifies ∂L

∂ E0 ∝ k at large scales as in the case where the kinetic energy is observed. This
result may be recovered by considering the expression of the Gâteaux derivative of nK using relation
(33) at the spectrum E in the direction F

∂nK
∂ E

∣∣∣
E

(F) = −nK(E)2

ε(E)2

[(
K(F) − 2K(E)

ε(F)

ε(E)

)∂ε

∂t
(E) + K(E)

∂

∂ E

(∂ε

∂t

)∣∣∣
E

(F)

]
, (48)

where the expression of the Gâteaux derivative of the operator ∂ε
∂t defined in (34) is given by

∂

∂ E

(∂ε

∂t

)∣∣∣
E

(F) = −
∫ ∞

0
4ν2k4 F(k)dk +

∫ ∞

0
2νk2 ∂T

∂ E

∣∣∣
E

(F, k)dk. (49)

The expression of ∂T
∂ E |E (F, k) is given for the EDQNM model in Eqs. (25) and (26). When taking

into account the geometric series distribution of the mesh points in spectral space, the gradient of
nK with respect to the ith energy mode at large scales (ki → 0) is then

∂nK
∂ Ei

� −n2
K

ε2

∂ε

∂t
ki dr. (50)
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FIG. 9. Results from the different data assimilation experiments of the set 6 (the exponent nK is observed, see Table III).
First row: (a) Value of the cost function J normalized by its initial value, (b) difference between the local slope of the initial
energy spectrum obtained at the end of the optimization procedure (iteration (M)) and that of the spectrum at the first iteration
(i.e., the estimated spectrum), and (c) gradient with respect to the initial energy spectrum E0 of the Lagrangian L (at the first
iteration of the optimization procedure). The three types of lines correspond to different estimated initial spectra: —— type
A, - - - type B, ········· type C (see Figure 1). Second row: true (black dotted line), estimated (black dashed line), and retrieved at
the end of the optimization procedure (black full line) initial energy spectra when the estimated initial energy spectrum is of
type A (d), B (e), and C (f). The energy spectra at t = 103τ 0 (dashed-dotted grey lines) and at t = Tf = 104τ 0 (dashed grey
lines) are also reported in the figures. A zoom of Figures (d)-(f) in the vicinity of the peak of the energy spectrum at t = Tf is
reported in Figures (g)-(i).

We emphasize the fact that ∂nK
∂ Ei

∝ ki at large scales is independent of the features of the considered
energy spectrum. By a similar reasoning as in Sec. V B, we can deduce that the gradient of the
Lagrangian L with respect to the initial energy spectrum has the same slope at large scales as in
Eq. (50). So, whatever the characteristics of the true initial spectrum, those of the estimated spectrum,
or the frequency of the observations, the sensitivity of the Lagrangian L defined in (15) vanishes
like k as k → 0 when the exponent nK is observed. This confirms that only the energetic large scales
close to the peak of the energy spectrum have a significant influence on the intensity of the decay
measured by the exponent nK. This also confirms that the slope σ in the formulae of Table I refers
only to the slope of the spectrum at the large scales close to the peak of the spectrum. It is interesting
to compare the ways in which the optimization procedure has corrected the shape of the estimated
initial energy spectrum in the cases where the kinetic energy K or the exponent nK are observed. For
example, we can compare Figures 7(e) and 7(h) with Figures 9(e) and 9(h). When the kinetic energy
is observed, the true and retrieved at the end of the optimization procedure initial energy spectra
well coincide at the large scales close to the peak of the spectrum at t = Tf, while only the slope of
the estimated spectrum has been corrected in the same area when nK is observed. This is consistent
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FIG. 10. Results from the different data assimilation experiments of the sets 7 and 8 (the exponent nK is observed, see
Table III). First row: difference between the local slope of the initial energy spectrum obtained at the end of the optimization
procedure (iteration (M)) and that of the spectrum at the first iteration (i.e., the estimated spectrum). Second row: gradient
with respect to the initial energy spectrum E0 of the Lagrangian L (at the first iteration of the optimization procedure). The
first column corresponds to the window assimilation size Tf = 104τ 0 (set 7) and the second column to Tf = 103τ 0 (set 8).
The three types of lines correspond to different estimated initial spectra: —— type A, - - - - type B, ········· type C (see Figure 1).

with the fact that observing the decay exponent only, one has no control of the absolute value of
the kinetic energy. It also shows that, if the kinetic energy is high enough to sustain high-Reynolds
number evolution without transition to low-Reynolds number regime (which exhibits different decay
exponent values), only the shape of large scale energy spectrum matters.

Figures 10(a), 10(c), 10(b), and 10(d) report the results for the sets 7 and 8 of assimilation
experiments, respectively. For these two sets, only one observation of the true decay is performed
at the end of the assimilation window, the sizes of the assimilation window Tf = 103τ 0 and Tf =
104τ 0 are considered. Concerning the sensitivity of the Lagrangian with respect to the initial energy
spectrum, the comparison between Figures 9 and 10 do not suggest a dependence of the results with
respect to the size of the assimilation window or the frequency of the observations. It appears from
Figures 10(a) and 10(b) that the value of the exponent nK at a given time seems determined by a
narrow area of the energy spectrum. The initial shape of the peak of the spectrum, that in the inertial
and dissipative ranges, and the large scales ten times bigger than the integral scale seem to have no
significative influence on the value of nK.

5. Experiments with various true initial energy spectra

In Secs. V B and V C 1–V C 4, the true initial energy spectrum corresponds to a Saffman
turbulence (constant slope σ = 2 at large scales) at high Reynolds number. We investigate the
robustness of the previous results with respect to the shape of the true initial energy spectrum
by considering the set 9 of assimilation experiments. The kinetic energy K is observed, and 10
observations of the true decay are performed between t = 103τ 0 and the end of the assimilation
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FIG. 11. Results from the different data assimilation experiments of the set 9 (the kinetic energy K is observed, see
Table III). First row: (a) difference between the local slope of the initial energy spectrum obtained at the end of the
optimization procedure (iteration (M)) and that of the spectrum at the first iteration (i.e., the estimated spectrum), and (b)
gradient with respect to the initial energy spectrum E0 of the LagrangianL (at the first iteration of the optimization procedure).
The three types of lines correspond to different true initial spectra with a constant slope σ at large scales: ········· σ = 1, — σ =
2, - - - σ = 4. Second row: true (black dotted line), estimated (black dashed line), and retrieved at the end of the optimization
procedure (black full line) initial energy spectra when the true initial energy spectrum verifies σ = 1 (c) and σ = 4 (d). The
energy spectra at t = 103τ 0 (dashed-dotted grey lines) and at t = Tf = 104τ 0 (dashed grey lines) are also reported in the
figures.

window t = Tf = 104τ 0. Two true initial energy spectrum are considered: the first one with a
constant slope σ = 1 at large scales (exact self-similar decay), and the second one with σ = 4 which
corresponds to Batchelor turbulence. The initial Reynolds number is adjusted so that Reλ ≈ 400 at t
= Tf. The estimated initial spectra are of type A (see Figures 1(a) and 1(d)). The results are illustrated
in Figure 11. To ease the comparison with previous findings, results concerning Saffman turbulence
(specifically, the results concerning the run of the set 3 where the estimated initial spectrum is of
type A) are also reported in Figures 11(a) and 11(b). It appears from Figure 11(b) that the gradient
of the Lagrangian L in Eq. (15) with respect to the initial energy spectrum verifies ∂L

∂ E0 ∝ k at large
scales whatever the shape of the true initial energy spectrum as predicted in Sec. V B. The maximum
of sensitivity of the Lagrangian is located at the scales close to the integral scale at the end of the
assimilation window in all cases. The analysis of Figures 11(a), 11(c), and 11(d) indicates that, as
in the case of Saffman turbulence, the shape of the spectrum at the largest scales does not affect
the value of the kinetic energy during the considered decays. The fact that the permanence of large
eddies (E(k, t) = E(k, 0), k/kL(t) � 1) holds true (i.e., when the slope at large scales σ verifies 1 ≤
σ ≤ 3) or not does not seem to have an influence on the results. For the sake of brevity, the studies
of the influences on the results of the shape of the estimated initial energy spectrum, the frequency
of the observations and the size of the assimilation window when the true energy spectrum has a
constant slope σ = 1 or σ = 4 at large scales are not exposed, since the conclusions are exactly the
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same than for Saffman turbulence. We have also checked that the results of Sec. V C 4 are valid
whatever the shape of the true initial energy spectrum as predicted. In particular, it has been verified
that the gradient of the Lagrangian L with respect to the initial energy spectrum verifies ∂L

∂ E0 ∝ k at
large scales when the exponent nK is observed, irrespective of the characteristics of the true initial
energy spectrum.

VI. CONCLUDING REMARKS

The present paper was devoted to the analysis of decaying HIT, with the purpose of identifying
scales and related features that govern the decay regime. To this end, a Data Assimilation based
approach was used, that relies on a variational approach for the optimal control of the shape of the
initial energy spectrum. Following this approach, the elements on which the sensitivity of the Data
Assimilation method is maximal are interpreted as the scales that govern turbulence decay.

The present results show that HIT decay is governed by scales ranging from the initial location
of the peak of the energy spectrum (or the integral scale) to the final location of this peak. A
significant sensitivity is observed for scales larger than up to one decade the final integral scales.
Scales smaller than the integral scales play a negligible role. This can be understood by reminding
that the dissipation amplitude, which mainly occurs at small scales, is modulated by the amount
of energy transferred at small scales from the large ones by the nonlinear kinetic energy cascade
process. The fact that the energy cascade amplitude is governed by large scales close to the peak
of the energy spectrum can be understood looking at the expression of the nonlinear transfer term.
Using asymptotic analysis, Brasseur and Wei39 have shown that the rate of change of kinetic energy
at a small scale k due to a distant triadic interaction with a large scale p is proportional to

√
pE(p).

Therefore, the amount of kinetic energy available to be dissipated at small scales is mostly driven by
large scales such that

√
pE(p) is maximum, i.e., scales located near the peak of the energy spectrum.

An important point is that this conclusion is robust, since it is observed in all cases considered
in the present paper, that mix both full energy spectrum and integral observations and both Meyers-
Meneveau parametric spectrum model and local scale by scale initial spectrum model. An open
question is the dependency of present results with respect to the spectral closure used to solve the
Lin equation, the EDQNM model in the present case. Since only EDQNM has been used in the
present work, this question cannot be fully answered. But the accuracy, the robustness, and the
versatility of EDQNM for isotropic turbulence has been demonstrated by many authors in a large
number of works during the last 40 years, showing that present results can be considered in a positive
way. It should also be reminded that it has been demonstrated that EDQNM represents the minimal
closure level that is able to handle all features of decaying HIT,40, 41 since it is based on a closure of
the evolution equation for the third-order velocity correlations, and therefore it does not assume any
arbitrary shape of T(k) or dissipation rate.

Therefore, looking at present results, it is reasonable to state that:

1. HIT decay is not governed by the asymptotic large scale behavior of the energy spectrum, E(k
→ 0, t = 0), or the velocity correlation function, f(r → ∞, t = 0). The decay regime over
finite time is governed by large scales ranging approximately from the initial integral scale to
the final integral scale, a vanishing sensitivity being observed for large scales located within
one decade outside these bounds. The most important feature is the shape of the spectrum in
this range. If a slope can be identified, then Comte-Bellot–Corrsin’s formula yield an accurate
prediction of the decay regime. This is coherent with previous results dealing with evolution
of initially non-self-similar energy spectra21, 22 and also with the recent observation that initial
spectra with a large flat plateau may lead to anomalous high decay exponents over a finite
time.42 It should also be emphasized that, according to present observations, large scales should
be understood as scales slightly larger than L(t) such that kL(t) = O(1), for the range of values
taken by L(t) during the finite time evolution under consideration. How large are these scales
can be illustrated considering the classical evolution law

L(t) = L0

(
1 + t

t0

)nL

, (51)
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where L0 and t0 = K(t = 0)/ε(t = 0) denote the initial value of the integral scale and the
characteristic turbulent time scale, respectively. The time needed to reach a given value of the
ratio ζ = L(t)/L0 is

t � t0ζ
1/nL . (52)

We now consider the same example as Clark and Zemach,20 i.e., a wind tunnel with mean bulk
velocity U = 20 m s−1 generating an isotropic turbulence with a kinetic energy equal to one-
tenth of the mean velocity kinetic energy, i.e., K0 = 20 m2 s−2, with a mesh of 1 cm generating
an initial peak in the energy spectrum at wave number k0 = 100 m−1. Considering air at classical
atmospheric conditions, one has ν = 1.5 × 10−5 m2 s−2 for viscosity. The initial Reynolds
numbers are ReL = √K0/k0ν = K2

0/ε0ν = 3 × 103 and Reλ = √
20/3

√
ReL � 141, which

is close to values reported in many experiments, corresponding to the lower bound of the
range of validity of high-Reynolds Comte-Bellot–Corrsin analysis.7 The associated values are
ε0 = k0K3/2

0 � 8944 m2 s−3 and t0 = k−1
0 K−1/2

0 � 2 × 10−3 s. According to Comte-Bellot–
Corrsin analysis, one has 0.3 ≤ nL ≤ 0.5, leading to a minimum value of 1/nL equal to 2.
Therefore, the minimum time needed to reach the ratio ζ is t � 2 × 10−3ζ 2 s. For a one
decade variation, ζ = 10 and t = 0.2 s, corresponding to a minimal duct length equal to
20 × 0.2 = 4 m, which is of the order of the duct available in most existing grid turbulence
experiments. For ζ = 100, one obtains t = 20 s and a duct length equal to 400 m, which is
obviously not reachable in practice. Therefore, in many available experiments, the range of
scales that governed turbulence decay are very close to the initial integral length scale, leading
to kL0 = O(1), not to kL(t) � 1.

2. The asymptotic features of both E(k) and f(r) escape both experimental and numerical inves-
tigations, since asymptotically large scales cannot be directly measured or computed. And
present results show that the decay regime is not sensitive to those scales over finite time
(i.e., real-life) realizations. Therefore, they cannot be investigated by some “inverse problem”
approach based on the observed features of the decay, especially if only evolution of integral
quantities is reported.

3. Another point here is that in wind tunnel grid turbulence the largest scales are anisotropic
and non-homogeneous due to wall effects, but this breakdown of homogeneity at very large
scales is not observed to significantly corrupt the nearly isotropic behavior reported by many
researchers. This is coherent with the present conclusions. The role of anisotropy could also be
investigated using Data Assimilation via a procedure similar to the present one, if the isotropic
EDQNM model is replaced by an anisotropic one. Some “direct mode” analyses were recently
carried out43 that show that global decay exponent are not very sensitive to a weak initial
anisotropy, but no systematic analysis of existing wind tunnel data was possible due to the lack
of reconstruction of anisotropic initial conditions starting from experimental data via an inverse
problem. Future works will deal with Data Assimilation coupled to anisotropic EDQNM,
enabling a re-analysis of existing experimental databases (but omitting inhomogeneous effects)
to get a deeper insight into the role of initial anisotropy on turbulence decay.

APPENDIX: USING BICOMPLEX NUMBERS ALONG WITH THE BFGS METHOD
FOR OPTIMIZATION

The step 4 of the optimization procedure described in Sec. IV B to minimize the Lagrangian in
Eq. (15) consists in updating the set of estimated parameters a of the functional form chosen for the
initial energy spectrum according to the following relation:

a(i+1) = a(i) + γ (i)d (i). (A1)

First, the descent direction d (i) is chosen to minimize L(a(i) + d (i)). By using Newton’s method, d (i)

can be determined with the following relation:

d (i) = −
(∂2L

∂a2

)−1 ∂L
∂a

(a(i)). (A2)
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The gradient ∂L
∂a is given by the steps 2 and 3 of the optimization procedure. However, the Hessian

∂2L
∂a2 is unknown. The BFGS method proposes an approximation of the Hessian which is updated at
each iteration using the values of the Lagrangian and of its gradient. The reader may refer to Ref. 31
for a complete presentation of the BFGS method with those of other quasi-Newton methods. Once
the approximate Hessian is obtained, the descent direction d (i) can be determined from relation (A2).
To make the method more robust, the step length parameter γ (i) is now introduced. The best choice
for the value of γ (i) is that which minimizes the function F defined by

F(x) = L(a(i) + xd (i)). (A3)

By again using Newton’s method with the first guess x = 1, which would be the optimal value if the
Hessian was computed exactly, γ (i) is determined with the following relation:

γ (i) = 1 − F ′(1)

F ′′(1)
. (A4)

In this paper, we choose to use bicomplex variables for the computation of the first and second
derivates of the function F in (A4). The use of multicomplex variables allows to extent the complex-
step differentiation for the estimation of first-order derivatives of real functions44 to the computation
of higher-order derivatives. The reader may refer to Refs. 45 and 46 for an exhaustive description
of multicomplex numbers and their use for the computation of derivatives. The set C2 of bicomplex
numbers is defined as

C2 := {Z = z1 + z2i2/z1, z2 ∈ C} := {Z = x0 + x1i1 + x2i2 + x12i1i2/x0, x1, x2, x12 ∈ R} (A5)

with i2
1 = i2

2 = −1. In this way, higher-order multicomplex scapes are defined recursively. We define
the operators Im1 and Im12 from C2 to R in the following manner:

I m1(Z ) = x1; I m12(Z ) = x12, (A6)

where Z = x0 + x1i1 + x2i2 + x12i1i2 ∈ C2 with x0, x1, x2, x12 ∈ R. The following expansion in a
Taylor series of the real function F is performed in order to compute its derivatives at the real x:

F(x + (i1 + i2)h) = F(x) + (i1 + i2)hF ′(x) + (i1 + i2)2

2
h2 F ′′(x) + (i1 + i2)3

6
h3 F (3)(x) + O(h4)

= F(x) + (i1 + i2)hF ′(x) + (−1 + i1i2)h2 F ′′(x)− 2

3
(i1 + i2)h3 F (3)(x) + O(h4)

(A7)

with h a small real parameter. We can get the following expressions of F ′(x) and F ′′(x) from (A7):

F ′(x) = I m1(F(x + (i1 + i2)h))

h
+ O(h2); F ′′(x) = I m12(F(x + (i1 + i2)h))

h2
+ O(h2). (A8)

Thus, following on from a bicomplex forward integration of the problem defined in Eq. (21) with
the set of parameters a(i) + (1 + (i1 + i2)h)d (i), the step length γ (i) is obtained from relations (A3),
(A4) and (A8) taking x = 1.
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3.2 Anomalous decay exponents

The present section is devoted to DA experiments performed to supplement the cases of §3.1. Firstly, the possi-
bility of reconstructing a Gaussian-like initial energy spectrum from observations of the turbulent kinetic energy
K is studied. Contrary to the DA experiments of §3.1 where the reference energy spectrum exhibits a constant
(or nearly constant) slope at large scales, a transient regime can be noticed with such an initial condition where
the shape of the energy spectrum changes from a Gaussian shape to E(k) ∝ k4 at large scales due to backscat-
ter effects [132]. Such a case may thus appear appropriate to further test the robustness of the results of §3.1.
Secondly, anomalous decay regimes are studied. These regimes, which do not fall within the predictions of the
Comte-Bellot–Corrsin theory (§3.1), have been identified in both experimental [96, 212, 213] and numerical
[153, 156] studies dealing with fractal-generated turbulence. Here, we investigate the possibility of reproducing
such regimes through the determination of appropriate initial conditions. In what follows, the value of the initial
Reynolds number based on the Taylor microscale is similar to that in §3.1 (Reλ(t = 0) = 800), which ensures
converged values of the decay exponents in the high Reynolds number regime [155].

The results of figure 3.1 are first examined. The reference initial kinetic energy spectrum is here chosen with a
Gaussian shape given by

E0(k) = C exp
(
−

(
log(kL)

)2
)
, (3.1)

with C a normalizing constant and L the initial integral scale. The turbulent kinetic energy K is observed
between t = 103τ0 and t = T f = 104τ0 every 103τ0. The first-guess, or estimated, initial spectrum is chosen with
a functional form as proposed in [157] with a slope σ = 4 at large scales (Batchelor turbulence). Despite the
existence of a transient regime where the reference spectrum changes from a Gaussian shape to a slope σ = 4
at large scales [56], results illustrated in figure 3.1 are similar to those obtained in §3.1. Only the shape of the
initial spectrum at the most energetic scales has been satisfactorily reconstructed (3.1(a)), and large scales of
the first-guess spectrum beyond the integral scale L(t = T f ) at the end of the assimilation window have been
left unchanged (3.1(c)). As illustrated in figure 3.1(b), the position of the peak of sensitivity of the decay well
coincides with L(t = T f ). Accordingly, the robustness of the results discussed in §3.1 is once again confirmed
by this experiment using a less conventional initial spectrum.

The principle of the DA experiments to investigate anomalous decay regimes, whose results are illustrated in
figures 3.2 and 3.3, is slightly different from that of the experiments of §3.1 and figure 3.1. Instead of imposing
a reference initial kinetic energy spectrum, performing observations of the corresponding evolution, and then
identifying the parts of the initial spectrum that are reconstructed by the DA procedure, values of the decay
exponent for the turbulent kinetic energy nK are directly imposed at given times. Since decay exponent values
that are not in the range predicted by the Comte-Bellot–Corrsin theory are prescribed, the solution of the cor-
responding inverse problem is actually unknown, and DA is expected to bring valuable information concerning
the shape of the energy spectrum in the case where anomalous decay exponents are observed. The case where
the value nK = −1.5 is imposed between t = 103τ0 and t = T f = 104τ0 is investigated in figure 3.2. It can be
noticed that the lower bound for the value of nK in classical theories is −10/7 ' −1.43, and that the value −1.5
is imposed over a significant time interval. The first-guess initial spectrum for the optimization procedure corre-
sponds to a Saffman turbulence (slope σ = 2 at large scales). The initial energy spectrum obtained through the
DA procedure is reported in figure 3.2(a). As confirmed by figure 3.2(c), the optimization process has drastically
altered the shape of the first-guess spectrum at large scales smaller than ten times L(t = T f ). The emphasized
shape of the peak of the energy spectrum engenders an enhanced loss of energy at large energetic scales, while
energy transfers seem unchanged at small scales compared to the first-guess evolution (figure 3.2(d)). Figure
3.2(e) illustrates the fact that the DA procedure has successfully driven the turbulent solution from an asymptotic
regime with nK = −1.2 to nK = −1.5 between t = 103τ0 and t = T f = 104τ0. This test case suggests that initial
condition effects, and thus production mechanisms in grid turbulence experiments, may explain alone departures
from classical predictions, even over significant evolution times that are not accessible in experiments.

An additional DA investigation, which is possibly more representative of some grid turbulence experiments, is
illustrated in figure 3.3. The value nK = −3 is imposed at t = 10τ0. Even if transitory effects are already present
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Figure 3.1: DA results when the turbulent kinetic energy K is observed with an initial Gaussian spectrum for
the reference flow: (a) reference (dotted line), first-guess (dashed line) and assimilated (full line) initial spectra,
(b) gradient of the Lagrangian involved in the optimization procedure with respect to the initial spectrum, (c)
reference (dotted line), first-guess (dashed line) and assimilated (full line) local slopes of the corresponding

initial spectra, (d) cost function versus the iteration of the optimization procedure.

in the first-guess evolution, which are due to the fact that the chosen initial energy spectrum is not a solution
of the Lin equation combined with the neglect of a virtual origin (see dashed line in figure 3.3(e)), nK = −3
corresponds to a highly anomalous value of the decay exponent that is relatively close to the ones reported in
[96, 212]. The initial energy spectrum retrieved from the DA process, starting from the same first-guess spectrum
as in figure 3.2, exhibits a pronounced bump at the most energetic scales (figure 3.3(a)). This particular shape of
the peak of the initial energy spectrum lies at the origin of a significant modification of energy transfers at large
scales (figure 3.3(d)), inducing a drastic intensification of the decay at small times, as confirmed by figure 3.3(e).
However, for longer evolution times, the assimilated solution converges towards a more conventional exponent
decay value. Such a bumped shape of the initial energy spectrum inducing rapid turbulence decay is coherent
with direct EDQNM analyses performed in [153, 156], and is also observed in the DNS of [89]. The present
results thus confirm that initial condition effects alone can engender drastic deviations from classical values for
the decay exponents.
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Figure 3.2: DA results when we impose nK = −1.5 between t = 103τ0 and t = T f = 104τ0: (a) initial energy
spectrum, (b) energy spectrum at t = T f , (c) local slope for the initial energy spectrum, (d) transfer term at t = T f

and (e) power-law exponent for the first-guess (dashed line) and assimilated (full line) solutions, symbols in (e)
correspond to the synthetic observations; (f) cost function versus the iteration of the optimization procedure.
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Figure 3.3: DA results when we impose nK = −3 at t = T f = 10τ0: (a) initial energy spectrum, (b) energy
spectrum at t = T f , (c) local slope for the initial energy spectrum, (d) transfer term at t = T f and (e) power-law
exponent for the first-guess (dashed line) and assimilated (full line) solutions, symbols in (e) correspond to the

synthetic observations; (f) cost function versus the iteration of the optimization procedure.
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3.3 Conclusion

In this chapter, the decay of grid turbulence has been investigated through variational DA. In §3.1, the adjoint
EDQNM model has been developed, and it has been shown through DA experiments that HIT decay over fi-
nite time is governed by large scales ranging approximately from the initial integral scale to the final integral
scale, a vanishing sensitivity being observed for large scales located within one decade outside these bounds.
This conclusion is robust, since it is observed in all cases considered, which use various types of observations,
parameterizations of the initial kinetic energy spectrum and reference and first-guess spectra. This analysis that
considers classical decay regimes predicted by the Comte-Bellot–Corrsin theory has been extended to the study
of anomalous regimes in §3.2. The present results indicate that initial condition effects can engender alone sig-
nificant departures from classical predictions of the value of the decay exponent. A characteristic bumped shape
of the energy spectrum encountered in studies dealing with fractal-generated turbulence is recovered through
DA.

In order to refine the present analysis of anomalous decay and to take into account time lasting production effects
in future DA studies, one could consider the assimilation of not only the initial energy spectrum, but also of a
spectral forcing term F(k, t), parameterized or not, involved in the dynamics of the energy spectrum according to(

∂

∂t
+ 2νk2

)
E(k, t) = T (k, t) + F(k, t). (3.2)

A good first-guess for the shape of F(k, t) to take into account fractal forcing could be found in [152, 153, 156].
Adding such a term in DA studies could allow to recover possible exponential decay as observed in [153, 156],
while initial condition effects alone can engender only deviations of the value of the exponent in a decay power
law.

In chapter 4, a spectral model adapted to moderately anisotropic homogeneous flows, which seem more represen-
tative of grid-generated turbulence than strictly isotropic turbulence, is proposed. The versatility of the present
modelling, which is based on a spherically-averaged level of description and EDQNM, makes it a suitable can-
didate to incorporate anisotropy in future DA-based investigations of the decay of grid turbulence. Finally,
taking into account inhomogeneity effects will require the use of other numerical techniques than those based on
EDQNM approaches.
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A nonlinear spectral model in terms of spherically averaged descriptors is derived
for the prediction of homogeneous turbulence dynamics in the presence of arbitrary
mean-velocity gradients. The governing equations for the tensor R̂ij(k, t), the Fourier
transform of the two-point second-order correlation tensor, are first closed by an
anisotropic eddy-damped quasinormal Markovian procedure. This closure is restricted
to turbulent flows where linear effects induced by mean-flow gradients have no
essential qualitative effects on the dynamics of triple correlations compared with the
induced production effects in the equations for second-order correlations. Truncation
at the first relevant order of spectral angular dependence allows us to derive from
these equations in vector k our final model equations in terms of the wavenumber
modulus k only. Analytical spherical integration results in a significant decrease in
computational cost. Besides, the model remains consistent with the decomposition
in terms of directional anisotropy and polarization anisotropy, with a spherically
averaged anisotropic spectral tensor for each contribution. Restriction of anisotropy
to spherically averaged descriptors, however, entails a loss of information, and
realizability conditions are considered to quantify the upper boundary of anisotropy
that can be investigated with the proposed model. Several flow configurations are
considered to assess the validity of the present model. Satisfactory agreement with
experiments on grid-generated turbulence subjected to successive plane strains is
observed, which confirms the capability of the model to account for production of
anisotropy by mean-flow gradients. The nonlinear transfer terms of the model are
further tested by considering the return to isotropy (RTI) of different turbulent flows.
Different RTI rates for directional anisotropy and polarization anisotropy allow us to
correctly predict the apparent delayed RTI shown after axisymmetric expansion. The
last test case deals with homogeneous turbulence subjected to a constant pure plane
shear. The interplay between linear and nonlinear effects is reproduced, yielding the
eventual exponential growth of the turbulent kinetic energy.

Key words: homogeneous turbulence, turbulence modelling, turbulent flows
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1. Introduction

Homogeneous anisotropic turbulence is a very important topic in turbulence
theory, since it allows for a detailed analysis of linear and nonlinear effects of
the mean-flow gradient on turbulence dynamics. A key point is the description
of anisotropy, and the derivation of evolution equations that retain most of the
structural and dynamical information on the flow evolution. The usual starting point
for Fourier-space description is to consider the spectral tensor R̂ij(k, t), which is
defined as the Fourier transform of the two-point second-order correlation tensor
Rij(r, t)=〈ui(x, t)uj(x+ r, t)〉. Evolution equations can be found for this tensor, which
require some closures for nonlinear cubic terms and pressure–velocity correlation
terms. A few closed forms have been proposed based on Heisenberg’s transfer
models, e.g. Canuto & Dubovikov (1996a,b,c). These models do not give a detailed
insight into anisotropy, since they rely on a strictly isotropic transfer term as in
homogeneous isotropic turbulence. A more general model can be obtained using
higher-order closures in place of the quasilocal energy flux, as illustrated in Weinstock
(2013), who used the eddy-damped quasinormal Markovian (EDQNM) closure for the
isotropic turbulence of Orszag (1970) to derive expressions for the nonlinear transfer
term and the nonlinear pressure–strain contribution. This work also relies on an exact
treatment of the linear operators induced by mean-velocity gradients in the governing
equation for the spectral tensor R̂ij(k, t), which is permitted by the k-space level of
description of the proposed model. The latter was used to perform an exhaustive
analytical study of homogeneous turbulence subjected to a constant pure plane shear
without limitations on time or wavenumber.

As in Weinstock (2013), this level of description in k-space is the first step of
the present model, which entirely includes the nonlinear closure for transfer terms.
First, instead of considering the spectral tensor with all of its components, we use
its decomposition in terms of directional anisotropy and polarization anisotropy
(Cambon & Rubinstein 2006). A more general representation, say (E , Z, H )(k, t),
first introduced by Cambon & Jacquin (1989), also includes a helicity contribution
generated by a helicity spectrum H (k, t). The helicity spectrum, which is associated
with the imaginary part of R̂ij(k, t), is not considered here because it remains zero in
homogeneous turbulence if it is not initialized or forced, usually in an unphysical way
(see also the trivial helicity equation in Cambon & Jacquin (1989) and Cambon et al.
(2013)). In addition to their mathematical origin, the recourse to the two different
terms E (k, t) and Z(k, t) has physical meaning. For instance, the structure-based
single-point modelling of Kassinos, Reynolds & Rogers (2001) can be related to
these spectra, the dimensionality tensor being derived from the angular dependence
of E (k, t), and the stropholysis tensor from Z(k, t). This structure-based modelling is
in contrast to other single-point models where anisotropy is characterized by the sole
deviatoric tensor associated with the Reynolds stress tensor which is used to express
the ‘rapid’ and ‘slow’ parts of the pressure–strain rate tensor. The linkage between
our spectral approach based on the directional–polarization anisotropy decomposition
and the structure-based single-point modelling of Kassinos et al. (2001) is detailed in
appendix A of the present paper, along with discussions concerning other single-point
models.

The compact decomposition of the spectral tensor discussed above simplifies,
without any loss of generality, the derivation of dynamical equations, here Lin
equations for E (k, t) and Z(k, t), and that of closure relations. On the other
hand, the numerical treatment of the angular dependence of E (k, t) and Z(k, t)
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remains a challenge. As an example, the numerical cost of axisymmetric EDQNM
models (Godeferd & Cambon 1994; Bellet et al. 2006; Favier et al. 2011) is much
higher than that of the basic EDQNM for isotropic turbulence. These models were
developed, from the first case of rotating turbulence (Cambon & Jacquin 1989), for
flows dominated by interacting dispersive waves and without explicit linear effect in
the governing equation for the energy density E (k, t), requiring the use of the most
complicated EDQNM version to handle the effects induced by the mean flow on triple
correlations, such as the inhibition of the energy cascade in the case of rotating flows.
This configuration is no longer considered here, and we focus in the present paper
on turbulent flows interacting with mean-velocity gradients with a symmetric part,
hence leading to energy production. At least for the flow configurations considered
in this paper (turbulent flows in the presence of mean strain/shear), these production
effects induced by the mean flow, which originate from the linear contributions in
the equations for second-order correlations, prevail in the evolution of anisotropy
compared with the ones that affect triple correlations (Sagaut & Cambon 2008). A
self-consistent nonlinear model will be built accordingly, based on fully tensorial
EDQNM closure for an arbitrary anisotropic second-order spectral tensor but with no
explicit mean-gradient effect in the expression of the nonlinear transfer terms.

Our second step for deriving our final model equations does not include further
closure assumptions, it is purely technical but essential to derive a tractable model,
especially in terms of numerical treatment. The computational cost of the models
in 3D Fourier space discussed above can be significantly reduced by deriving a 1D
problem through integration over spheres with arbitrary radius in Fourier space, Sk.
This yields expressions of governing equations for the spherically averaged tensor
ϕij(k, t) = ∫ ∫Sk

R̂ij(k, t) d2k that depend on the wavevector modulus, k, instead of
k. This was done by Clark & Zemach (1995) in their diffusion-approximation-based
model, where the prescription of a scale-dependent relaxation rate leads to satisfactory
comparisons with experimental data and to a good description of partial return to
isotropy, which is confirmed in, e.g., Chasnov (1995). However, discussions in Choi
& Lumley (2001), Kassinos et al. (2001) and Zusi & Perot (2013, 2014) about
possible nonlinear return to isotropy can eventually motivate the use of anisotropic
EDQMN closure and the distinction between directional anisotropy and polarization
anisotropy. One can also mention the model of Cambon, Jeandel & Mathieu (1981),
where a closure for nonlinear terms using anisotropic EDQNM was proposed, but
without a separation of directional anisotropy and polarization anisotropy. Spherical
integration requires a parametrization of the second-order spectral tensor to restore at
least a part of its angular dependence, leading to a mathematically consistent model
reduced to spherically averaged descriptors. This will be done in our final model
by using truncated expansions in terms of angular harmonics of the second-order
spectral tensor. A similar approach was considered by Herring (1974) in the context
of the direct-interaction approximation (DIA) of Kraichnan (1959). In this work,
the question of the number of spherical harmonics necessary to accurately describe
the return to isotropy of axisymmetric turbulence is investigated numerically, and
a scale-by-scale relaxation rate is identified. This truncation of spherical harmonic
series lies at the origin of a loss of information that restricts the present model to
moderate anisotropy. Realizability conditions will be considered in order to quantify
the upper boundary of anisotropy intensity that can be investigated with the proposed
model. A complementary approach to the models described above can be found in
Kassinos & Akylas (2012), where explicit angular dependence is preserved, whereas
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scale information is lost after integration along rays of fixed orientation in Fourier
space.

The key spherical descriptors of our spectral model are now introduced. Starting
from a trace–deviator splitting of the real part of the spectral tensor R̂ij(k, t) restricted
to the plane normal to the wavevector k by virtue of incompressibility,

R̂ij(k, t)= 1
2

R̂nn(k, t)P ij(k)+Re
(

R̂ij(k, t)− 1
2

R̂nn(k, t)P ij(k)
)
, P ij(k)= δij − kikj

k2
,

(1.1a,b)

the following threefold decomposition in terms of isotropic, directional and polarization
parts is obtained:

R̂ij(k, t)= E(k, t)
4πk2

P ij(k)
︸ ︷︷ ︸

R̂
(iso)
ij (k,t)

+ E (dir)(k, t)P ij(k)︸ ︷︷ ︸
R̂
(dir)
ij (k,t)

+R̂
(pol)
ij (k, t), (1.2)

by separating the trace of R̂ij(k, t) into purely isotropic and directional anisotropy
contributions, according to

E (k, t)= 1
2

R̂nn(k, t), E (dir)(k, t)= E (k, t)− E(k, t)
4πk2

, E(k, t)=
∫∫

Sk

E (k, t) d2k,

(1.3a,b)

where E(k, t) corresponds to the kinetic energy spectrum. The polarization part
R̂
(pol)
ij (k, t) in (1.2) can be expressed in terms of a complex-valued scalar Z(k, t).

This decomposition yields the following splitting of the spherically averaged tensor
ϕij(k, t):

ϕij(k, t)=
∫∫

Sk

R̂ij(k, t) d2k= 2E(k, t)
(

1
3
δij + H(dir)

ij (k, t)+ H(pol)
ij (k, t)

)
. (1.4)

The dimensionless deviatoric part of the spherically averaged spectral tensor is
therefore H ij(k, t)= H(dir)

ij (k, t)+ H(pol)
ij (k, t), with

2E(k, t)H(dir)
ij (k, t)=

∫∫

Sk

R̂
(dir)
ij (k, t) d2k, 2E(k, t)H(pol)

ij (k, t)=
∫∫

Sk

R̂
(pol)
ij (k, t) d2k.

(1.5a,b)

The aim of this paper is to propose a model based on the decomposition (1.4) of
the averaged tensor ϕij(k, t), yielding a system of 11 equations for the global state
vector (E, EH(dir)

ij , EH(pol)
ij )(k, t). This system is obtained in two steps. The first step

is based on an anisotropic EDQNM closure for the equations that govern the whole
spectral tensor R̂ij(k, t), or equivalently the scalar spectra E (k, t) and Z(k, t) from the
directional–polarization anisotropy decomposition. This closure is restricted to flows
where linear effects induced by mean-velocity gradients lie at the origin of energy
production which prevails in the evolution of anisotropy compared with the induced
effects on the dynamics of triple correlations. The mean flow is taken into account
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through the linear operators, which reflect rapid distortion theory (RDT) if considered
alone, in the governing equations for second-order moments, as done in Weinstock
(2013). The second step consists in parametrizing the angular dependence of E (k, t)
and Z(k, t) in terms of the spherically averaged spectral descriptors H(dir)

ij (k, t) and
H(pol)

ij (k, t) in order to derive a more tractable model in k-space. Even if spherical
integration entails a loss of information that restricts the present model to moderate
anisotropy and prevents a complete resolution of the flow in 3D Fourier space as
in Weinstock (2013), the model developed in the present paper can be used to
calculate homogeneous anisotropic flows in a wide range of configurations, without
any restriction to a particular symmetry, including when non-stationary mean-velocity
gradients are considered. This point will be illustrated by the different applications
of the model considered in this paper.

The paper is organized as follows. In § 2, the governing equations for the spectral
tensor R̂ij(k, t) are recalled along with those for the scalar spectra E (k, t) and Z(k, t).
The latter are then closed via an anisotropic EDQNM procedure. The spectral model
in terms of spherically averaged descriptors is derived in § 3. Section 4 is devoted
to the validation of the present model. To this end, several flow configurations are
considered. First, multiple straining processes are addressed and comparisons with
various experiments are performed. Several cases of return to isotropy (RTI) are
then considered, to assess the capability of the model to account for slow pressure
terms and possible lack of RTI with separate investigation of directional anisotropy
and polarization anisotropy. The last test case deals with homogeneous turbulence
subjected to a constant pure plane shear, to check the capability of the model to
recover the asymptotic stage of exponential growth of kinetic energy predicted by,
e.g., Weinstock (2013). The linkage between single-point models and the model of
the present paper is discussed in appendix A.

2. Closed equations for the second-order spectral tensor in sheared turbulence
We consider incompressible homogeneous turbulence. In the presence of a

mean-velocity gradient, the Navier–Stokes equation for the fluctuating velocity
ui(x, t) includes additional advection and deformation terms linked to the mean –
or large-scale – velocity field Ui(x, t):

(
∂

∂t
+ uj

∂

∂xj

)
ui +Uj

∂ui

∂xj
+ ∂Ui

∂xj
uj =− ∂p

∂xi
+ ν∇2ui. (2.1)

In (2.1), p(x, t) is the pressure divided by a reference density, and ν is the kinematic
viscosity of the fluid. In § 2.1, we give the governing equation for the second-order
spectral tensor R̂ij(k, t). The (E , Z) decomposition is applied to the latter tensor in
§ 2.2 and to its governing equation in § 2.3. Transfer terms appear from the latter
decomposition, which are closed via the EDQNM procedure described in § 2.4.

2.1. Craya’s equations
The mean flow U(x, t) is characterized by a space-uniform gradient λij(t) =
(∂Ui/∂xj)(t) in accordance with homogeneity for the fluctuations. For the sake
of readability, and without loss of generality, we will omit the time dependence of
λij in the following. In anisotropic homogeneous turbulence, all information about
two-point second-order correlations is provided by the second-order spectral tensor
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R̂ij(k, t), which is the Fourier transform of the two-point second-order correlation
tensor Rij(r, t) = 〈ui(x, t)uj(x + r, t)〉, with r the vector separating the two points in
physical space. This tensor is defined as

〈û∗i (p, t)ûj(k, t)〉 = δ(k− p)R̂ij(k, t), (2.2)

where ûi(k, t) is the Fourier transform of the fluctuating velocity ui(x, t), and the
operators ∗ and 〈 〉 denote complex conjugate and ensemble average respectively. From
the counterpart of (2.1) in Fourier space and using definition (2.2) one derives the
governing equation for the tensor R̂ij(k, t) (see, e.g., Sagaut & Cambon (2008)),
(
∂

∂t
− λlnkl

∂

∂kn
+ 2νk2

)
R̂ij(k, t)+M in(k)R̂nj(k, t)+M jn(k)R̂ni(k, t)= T ij(k, t), (2.3)

with the linear operator induced by mean-velocity gradients

M ij(k)=
(
δin − 2

kikn

k2

)
λnj. (2.4)

The transfer tensor T ij(k, t) in (2.3) accounts for triadic interactions between vectors
k, p and q so that they form a triangle. It is possible to disentangle contributions
from the tensorial transfer term, with zero integral over k, and contributions from the
fluctuating pressure W ij(k, t) as follows:

T ij(k, t)=P in(k)τnj(k, t)+P jn(k)τ ∗ni(k, t)= τij(k, t)+ τ ∗ji (k, t)−
kikn

k2
τnj(k, t)− kjkn

k2
τ ∗ni(k, t)

︸ ︷︷ ︸
W ij(k,t)

.

(2.5)
The tensor W ij(k, t) contains a possible RTI mechanism, its integral over k gives

the nonlinear – so-called slow – pressure–strain rate tensor, and both the T ij(k, t) and
W ij(k, t) terms originate from the same tensor τij(k, t). In the same way, the tensor
τij(k, t),

τij(k, t)= kn

∫∫∫
Sijn(k, p, t) d3p, (2.6)

is given from the third-order three-point spectral tensor Sijn(k, p, t), defined by

i〈ûi(q, t)ûj(k, t)ûn(p, t)〉 = δ(k+ p+ q)Sijn(k, p, t), (2.7)

and the closure is applied to the equation that governs the latter tensor, as shown in
§ 2.4.

2.2. The (E , Z) decomposition

A general decomposition of the second-order spectral tensor R̂ij(k, t), for arbitrary
anisotropy, results from a trace–deviator splitting, restricted to the plane normal to
the wavevector k by virtue of incompressibility. It is consistent with the threefold
decomposition in terms of the isotropic contribution, directional anisotropy and
polarization anisotropy, from (1.2) (Cambon & Jacquin 1989; Cambon & Rubinstein
2006; Sagaut & Cambon 2008). The first term in the decomposition (1.2) of R̂ij(k, t)
corresponds to its isotropic part. The second term characterizes ‘directional anisotropy’
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via the scalar E (dir)(k, t)=E (k, t)−E(k, t)/(4πk2), which corresponds to the difference
between the energy density E (k, t) and its spherical average. The third term, which is
generated by the scalar Z(k, t), characterizes the ‘polarization anisotropy’, or tensorial
anisotropy, at a given wavevector.

Following Cambon & Jacquin (1989), the contribution from the polarization
anisotropy is generated by the single complex-valued pseudoscalar term Z(k, t)
as follows:

R̂
(pol)
ij (k, t)=Re(Z(k, t)Ni(k)Nj(k)), (2.8)

with
Z(k, t)= 1

2 R̂mn(k, t)Nm(k)∗Nn(k)∗, (2.9)

where the vector N(k), introduced by Cambon & Jacquin (1989) and recovered
independently by Waleffe (1992) as the helical mode, is defined by

N(k)= e(2)(k)− ie(1)(k), e(1)(k)= k× n
|k× n| , e(2)(k)= e(3)(k)× e(1)(k), e(3)(k)= k

k
.

(2.10a−d)
Here, (e(1)(k), e(2)(k), e(3)(k)) is an orthonormal right-handed frame of reference

associated with a privileged direction n, which is often referred to as the Craya–
Herring frame (Herring 1974; Sagaut & Cambon 2008). The realizability condition,
or condition for the Hermitian covariance matrix R̂(k, t) to be definite-positive, can
be written as (Cambon, Mansour & Godeferd 1997)

|Z(k, t)|6 E (k, t) ∀k, t. (2.11)

2.3. Lin equations for the (E , Z) decomposition
When taking into account the decomposition (1.2) of the second-order spectral tensor
R̂ij(k, t) with equation (2.8), (2.3) is equivalent to the following set of two equations
in terms of E (k, t) and Z(k, t):
(
∂

∂t
− λlnkl

∂

∂kn
+ 2νk2

)
E (k, t)−E (k, t)Sijαiαj+Re(Z(k, t)SijNi(k)Nj(k))=T (E )(k, t),

(2.12)
(
∂

∂t
− λlnkl

∂

∂kn
+ 2νk2

)
Z(k, t)− Z(k, t)Sijαiαj

+E (k, t)SijN∗i (k)N
∗
j (k)− 2iZ(k, t)

(
Wl

2
αl −ΩE

)
= T (Z)(k, t), (2.13)

where αi= ki/k, Sij= (λij+ λji)/2 is the symmetric part of the mean-velocity gradient
and Wi = εijnλnj refers to its antisymmetric part (mean vorticity). The rotation vector
component ΩE expresses the solid-body motion of the local Craya frame with respect
to a fixed frame of reference, following characteristic lines. The expression of ΩE is
given by

ΩE =− k
|k× n|λlnnle(1)n − λlne(2)l e(1)n . (2.14)

The derivation of the above expressions may be found in Cambon et al. (2013), but
with an error of sign in front of the rotation terms in (2.13). The nonlinear transfer
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terms on the right-hand sides of (2.12) and (2.13) are obtained by applying the (E ,Z)
decomposition to the transfer term T ij(k, t) in (2.3):

T (E )(k, t)= 1
2 T ii(k, t)= 1

2(τii(k, t)+ τ ∗ii (k, t)), (2.15)

T (Z)(k, t)= 1
2 T ij(k, t)N∗i (k)N∗j (k)= 1

2(τij(k, t)+ τ ∗ji (k, t))N∗i (k)N∗j (k), (2.16)

where the tensor τij(k, t) is defined by equations (2.5) and (2.6). As mentioned earlier,
T ij(k, t) includes both the ‘true’ transfer tensor, with zero integral, and the contribution
W ij(k, t) involved in the RTI effect. The latter tensor can be generated from a scalar
transfer term T (RTI)(k, t) according to

W ij(k, t)=−Re(T (RTI)(k, t)(αiNj(k)+ αjNi(k))), (2.17)

consistently with τij(k, t)kj = 0, τij(k, t)ki 6= 0 and

T (RTI)(k, t)= αi(τij(k, t)+ τ ∗ji (k, t))N∗j (k)= αiτij(k, t)N∗j (k). (2.18)

2.4. The EDQNM closure for transfer terms
In this section, a ‘triadic’ closure is applied to the equations governing the third-order
spectral tensor Sijn(k, p, t) defined by (2.7), from which the term τij(k, t) in (2.6)
is derived. From the counterpart of (2.1) in Fourier space and (2.7), its dynamics is
obtained via

(
∂

∂t
+ ν(k2 + p2 + q2)− λlm

(
kl
∂

∂km
+ pl

∂

∂pm

))
Sijn(k, p, t)+M im(q)Smjn(k, p, t)

+M jm(k)Simn(k, p, t)+Mnm(p)Sijm(k, p, t)= T ijn(k, p, t), (2.19)

where k+ p+ q= 0 and T ijn(k, p, t) is expressed in terms of a fourth-order spectral
tensor

T ijn(k, p, t) = P imp(q)
∫∫∫

Smpjn(r, k, p, t) d3r+ P jmp(k)
∫∫∫

Smpin(r, q, p, t) d3r

+Pnmp(p)
∫∫∫

Smpij(r, q, k, t) d3r, (2.20)

with
〈ûm(r)ûp(r′)ûj(k)ûn(p)〉 = Smpjn(r, k, p)δ(r+ r′ + k+ p). (2.21)

So far, the expressions that have been given for the governing equations for the
second- and third-order spectral tensors are exact. They strictly reproduce the infinite
hierarchy of moments up to N = 3, with equations for N-order moments having
both linear closed terms and contributions from N + 1 moments being induced by
basic nonlinearity. We now want to break this infinite hierarchy at the order N = 3.
Equation (2.19) can be rewritten in the following form:
(
∂

∂t
+ ν(k2 + p2 + q2)

)
Sijn(k, p, t)= T ijn(k, p, t)+ Lijn(k, p, t)= Rijn(k, p, t), (2.22)

where the tensor Rijn(k, p, t) gathers the linear operators induced by mean-velocity
gradients through Lijn(k, p, t) and the fourth-order spectral tensor T ijn(k, p, t).
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The problem then is to determine a closed expression for Rijn(k, p, t). The
historical procedure, developed for homogeneous isotropic turbulence, starts from
the quasinormal (QN) approximation (Millionschikov 1941; Proudman & Reid 1954),
which states that the fluctuating velocity probability distributions are not too far
from normal laws, in order to close the nonlinear contributions in Rijn(k, p, t). This
assumption translates into vanishing fourth-order cumulants and can be written as

〈ûm(r)ûp(r′)ûj(k)ûn(p)〉 = 〈ûm(r)ûp(r′)〉〈ûj(k)ûn(p)〉 + 〈ûm(r)ûj(k)〉〈ûp(r′)ûn(p)〉
+ 〈ûm(r)ûn(p)〉〈ûp(r′)ûj(k)〉. (2.23)

Injecting (2.23) into (2.20) and using definitions (2.2) and (2.21) leads to the
quasinormal contribution of the transfer term T ijn(k, p, t):

T (QN)
ijl (k, p, t) = 2 (P imn(q)R̂mj(k, t)R̂nl(p, t)+ P jmn(k)R̂ml(p, t)R̂ni(q, t)

+P lmn(p)R̂mi(q, t)R̂nj(k, t)), (2.24)

with P inm(k) = 1/2(kmP in(k) + knP im(k)); the projector P ij(k) is defined in (1.1).
However, it was shown by O’Brien & Francis (1963) and Ogura (1963) that the
purely quasinormal approximation fails in decaying isotropic turbulence for long
elapsed times, yielding negative energy spectra at small k. Orszag (1970) showed that
the improper treatment of relaxation effects in the purely quasinormal approximation
lies at the origin of this lack of realizability. Consequently, he introduced an eddy
viscosity, or eddy-damping (ED), term in the governing equation for third-order
correlations. Without any additional assumption, Rijn(k, p, t) from (2.22) can be
written as

Rijn(k, p, t)= T (QN)
ijn (k, p, t)+ T (IV)

ijn (k, p, t)+ Lijn(k, p, t). (2.25)

In this equation, the only unknown, and unclosed, term is T (IV)
ijn (k, p, t), which

represents the contribution from fourth-order cumulants. A natural extension of
Orszag’s introduction of eddy damping is to write

T (IV)
ijn (k, p, t)=−(η(k, t)+ η(p, t)+ η(q, t))Sijn(k, p, t), (2.26)

while keeping in mind that fourth-order cumulants may act as a linear relaxation
of triple correlations, which will reinforce the dissipative operator in (2.22) when
added to the purely viscous terms on its left-hand side. The simple relationship
(2.26), which is isotropic with a single eddy-damping scalar term, can be discussed
with respect to two-time triadic theories as follows. In isotropic turbulence, the
EDQNM is possibly derived from the basic DIA (Kraichnan 1959). However, such
a derivation of η(k, t) from the two-time response tensor is unsatisfactory and yields
an inappropriate ‘sweeping’ time scale, so that more complicated Lagrangian theories
must be called into play, such as Lagrangian-history DIA (LHDIA) (Kraichnan &
Herring 1978) and Lagrangian renormalized approximation (LRA) (Kaneda 1981). The
identification of a possible anisotropic shear-dependent alternative to (2.26) from
these theories is a difficult task because they are essentially non-Markovian, and
reduction to a single-time expression was only performed at very weak anisotropy
(see, e.g., Yoshida, Ishihara & Kaneda (2003) for LRA). Finally, the test-field model
(Kraichnan 1972), as an almost Markovian theory, is fully consistent with a linear
relationship such as (2.26), but with a possibly more complex tensorial structure,
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too intricate here to be applied to a practical model. Concerning the choice of
the relevant time scale to evaluate η(k, t), many proposals exist, with ‘sweeping’,
‘straining’, linear and nonlinear time scales, see, e.g., Schiestel (1987), Kim & Chen
(1989), Rubinstein (1996) and Zhou (2010). In the presence of mean shear, one
can introduce a scalar mean straining time scale based on

√
λijλij, with λij the

mean-velocity gradient. However, the effects of mean shear/strain are explicit and
closed (in terms of third-order correlations) in (2.22) via the operator Lijn(k, p, t). The
contribution of the latter tensor was considered and analytically solved in previous
EDQNM versions, which are mentioned in the introduction (such as, e.g., the model
of Cambon & Jacquin (1989) for rotating flows). However, this approach will not
be considered here for three reasons: (i) it was motivated and really needed for
the study of anisotropic flows without energy production and in the presence of
interacting dispersive waves leading the dynamics of triple correlations, which is not
the general case here; (ii) it renders the tensorial structure of the EDQNM model
much more complicated, via a threefold product of Green’s functions, and explicitly
dependent on the type of mean shear, preventing easy further projection on spherical
harmonics; (iii) it is not correct when the direct (linear) effect of the mean shear/strain
yields exponential growth, with a lack of convergence of the time integral (Cambon
& Scott 1999). The eddy-damping coefficient η(k, t) is finally chosen as

η(k, t)= A

√∫ k

0
p2E(p, t) dp, (2.27)

following Pouquet et al. (1975), which is an improved variant of Orszag (1970)’s
proposal. The constant is fixed at A = 0.36 to recover a well-admitted value of
the Kolmogorov constant (André & Lesieur 1977). The same equation is used in
Weinstock (2013). Equation (2.22) can be now integrated using (2.25), (2.24) and
(2.26), (2.27), and neglecting the contribution of Lijn(k, p, t). The solution thus
obtained involves time integrals that are further simplified by a Markovianization
procedure, which amounts to truncating the proper time memory of triple correlations.
Even in the isotropic case, the eddy damping allows a posteriori Markovianization
to be justified, arguing that the time variation is much more rapid in the exponential
eddy-damping term than in the second-order moments present in the quasinormal
term. Further details can be found in Cambon et al. (1981) and Sagaut & Cambon
(2008). In the end, this anisotropic EDQNM closure for the tensor τij(k, t) defined
by (2.6) amounts to

τij(k, t)= kl

∫∫∫
θkpqT (QN)

ijl (k, p, t) d3p, (2.28)

where

θkpq = 1− e−µkpqt

µkpq
, µkpq = ν(k2 + p2 + q2)+ η(k, t)+ η(p, t)+ η(q, t). (2.29a,b)

The expression (2.28) of τij(k, t) obtained from the EDQNM approximation is
injected into (2.15) and (2.16) in order to obtain closed-form expressions of the
transfer terms T (E )(k, t) and T (Z)(k, t):

T (E )(k, t) =
∫∫∫

θkpq2kp [(E ′′ +Re X′′)[(xy+ z3)(E ′ − E )− z(1− z2)(Re X′ −Re X)]
+ Im X′′(1− z2)(x Im X − y Im X′)] d3p, (2.30)
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T (Z)(k, t) =
∫∫∫

θkpq2kpe−2iλ [(E ′′ +Re X′′) [ (xy+ z3)(Re X′ − X)− z(1− z2)(E ′ − E )

+ i(y2 − z2)Im X′] + i Im X′′(1− z2)[x(E + X)− iy Im X′]] d3p, (2.31)

with E = E (k, t), E ′ = E (p, t), E ′′ = E (q, t), X = Z(k, t)e2iλ, X′ = Z(p, t)e2iλ′ , X′′ =
Z(q, t)e2iλ′′ , x=−p · q/(pq), y=−k · q/(kq) and z=−k · p/(kp). Here, λ, λ′ and λ′′
are angles that characterize the rotation of the plane of the triad around k, p and q
respectively; x, y and z refer to the cosines of the internal angles of the triangle formed
by the triad. The above expressions for the transfer terms T (E )(k, t) and T (Z)(k, t) are
also derived in Cambon et al. (1997) in a different way. Similarly, one can deduce
a closed-form expression of the transfer term T (RTI)(k, t) defined by (2.18), which
generates the ‘slow’ component of the pressure–strain rate tensor:

T (RTI)(k, t) =
∫∫∫

θkpq2e−iλp(xy+ z)
√

1− z2(E ′′ +Re X′′)

×[(E + X)(zk− qx)− k(z(E ′ +Re X′)− i Im X′)] d3p. (2.32)

3. Dynamical equations for spherically averaged descriptors
Strictly speaking, the Lin equations (2.12) and (2.13) with the closed-form

expressions (2.30) and (2.31) of the transfer terms can be solved. However, important
practical difficulties arise from the k dependence of the second-order spectral tensor
R̂ij(k, t), or equivalently from those of E (k, t) and Z(k, t). In order to circumvent
these difficulties, one solution is to integrate analytically the closed Lin equations
over a sphere of radius k. This analytical integration requires a representation of the
tensor R̂ij(k, t), which is described in § 3.1. This representation involves spherically
averaged descriptors whose governing equations, which are the main result of this
paper, are derived in the remainder of this section. Limitations of the model in terms
of anisotropy intensity are quantified in § 3.5.

3.1. Representation of the second-order spectral tensor in terms of spherically
averaged descriptors

Here, we use for R̂ij(k, t) the representation proposed by Cambon & Rubinstein
(2006). This representation involves spherically averaged descriptors and is obtained
by treating directionality and polarization anisotropy separately. It is written as

R̂ij(k, t) = E(k, t)
4πk2

P ij(k)
︸ ︷︷ ︸

R̂
(iso)
ij (k,t)

−15
E(k, t)
4πk2

P ij(k)H(dir)
pq (k, t)αpαq

︸ ︷︷ ︸
R̂
(dir)
ij (k,t)

+ 5
E(k, t)
4πk2

(
P ip(k)P jq(k)+ 1

2
P ij(k)αpαq

)
H(pol)

pq (k, t)
︸ ︷︷ ︸

R̂
(pol)
ij (k,t)

, (3.1)

or equivalently

E (k, t)= E(k, t)
4πk2

(1− 15H(dir)
ij (k, t)αiαj), Z(k, t)= 5

2
E(k, t)
4πk2

H(pol)
ij (k, t)N∗i (k)N

∗
j (k),

(3.2a,b)
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where the tensor P ij(k) is defined in (1.1) and αi = ki/k. The tensors R̂
(iso)
ij (k, t),

R̂
(dir)
ij (k, t) and R̂

(pol)
ij (k, t) identify the isotropic, directional and polarization parts of

R̂ij(k, t) respectively. The representation (3.1) is constructed so that the trace-free
tensors H(dir)

ij (k, t) and H(pol)
ij (k, t), which depend only on k, measure the directional

anisotropy and polarization anisotropy according to (1.5). Injecting the representation
of E (k, t) and Z(k, t) (3.2) into (2.12) and (2.13) and (2.30) and (2.31) allows us to
integrate the latter analytically over a sphere of radius k and to derive a system of
governing equations in terms of the spherically averaged descriptors E(k, t), H(dir)

ij (k, t)
and H(pol)

ij (k, t). In view of (3.1), (3.2) and (1.4), the latter completely determine the
second-order spectral tensor R̂ij(k, t) and its spherically integrated counterpart ϕij(k, t),
however restricted to moderate anisotropy. This point is discussed in § 3.5.

3.2. Dynamics, final closure
The system of governing equations for the spherically averaged descriptors E(k, t),
H(dir)

ij (k, t) and H(pol)
ij (k, t), which is the main result of this article, is written as

follows:
(
∂

∂t
+ 2νk2

)
E(k, t)= SL(k, t)+ T(k, t), (3.3)

(
∂

∂t
+ 2νk2

)
E(k, t)H(dir)

ij (k, t)= SL(dir)
ij (k, t)+ SNL(dir)

ij (k, t), (3.4)
(
∂

∂t
+ 2νk2

)
E(k, t)H(pol)

ij (k, t)= SL(pol)
ij (k, t)+ SNL(pol)

ij (k, t), (3.5)

with

2
(
δij

3
T(k, t)+ SNL(dir)

ij (k, t)+ SNL(pol)
ij (k, t)

)
= Sij(k, t)+ P ij(k, t). (3.6)

The tensors SL(k, t), SL(dir)
ij (k, t) and SL(pol)

ij (k, t) account for the linear terms
corresponding to the interactions with the mean flow, whereas T(k, t), SNL(dir)

ij (k, t)
and SNL(pol)

ij (k, t) correspond to nonlinear transfer terms. The tensor P ij(k, t) is the
spherically integrated spectral counterpart of the slow pressure–strain rate tensor, to
which an RTI is conventionally attributed. The tensor Sij(k, t) corresponds to a ‘true’
transfer tensor with

∫∞
0 Sij(k, t) dk= 0 ∀t. Since the tensors H(dir)

ij (k, t) and H(pol)
ij (k, t)

are symmetric and trace-free, the system (3.3)–(3.5) forms a set of 11 independent
equations.

3.3. Closure for the linear terms induced by mean-gradient effects
These terms are exact and linear in the equation governing the full spectral tensor,
or equivalently E (k, t) and Z(k, t). Taken independently with zero contribution from
third-order correlations, they reflect the RDT limit for the evolution of two-point
second-order velocity correlations. In order to obtain the corresponding spherically
averaged terms SL(k, t), SL(dir)

ij (k, t) and SL(pol)
ij (k, t), one has to analytically solve the

spherical averaging of tensorial products of vectors α = k/k. This is done following
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the procedure described in Cambon et al. (1981). Performing the spherical integration
of the linear terms in (2.3) or that of the linear terms in (2.12), (2.13) with the
representation (3.1) or (3.2) leads to

SL(k, t)=−2Slm
∂

∂k
(kEH(dir)

lm )− 2ESlm

(
H(dir)

lm + H(pol)
lm

)
, (3.7)

SL(dir)
ij (k, t) = 2

15
SijE− 2

7
E
(

SjlH
(pol)
il + SilH

(pol)
jl −

2
3

SlmH(pol)
lm δij

)

+ 2
7

(
Sil
∂

∂k
(kEH(dir)

lj )+ Slj
∂

∂k
(kEH(dir)

li )− 2
3

Slm
∂

∂k
(kEH(dir)

lm )δij

)

− 1
7

E
(

SjlH
(dir)
li + SilH

(dir)
lj −

2
3

SlmH(dir)
lm δij

)
+ E

(
AjnH(dir)

ni + AinH(dir)
jn

)

− 1
15

Sij
∂

∂k
(kE), (3.8)

SL(pol)
ij (k, t) = −2

5
ESij − 12

7
E
(

SljH
(dir)
li + SilH

(dir)
lj −

2
3

SlmH(dir)
lm δij

)

− 2
7

(
Sjl
∂

∂k
(kEH(pol)

il )+ Sil
∂

∂k
(kEH(pol)

lj )− 2
3

Sln
∂

∂k
(kEH(pol)

ln )δij

)

+ 1
7

E
(

SilH
(pol)
lj + SjlH

(pol)
li −

2
3

SlmH(pol)
lm δij

)

− 1
3

E
(

AilH
(pol)
lj + AjlH

(pol)
li

)
, (3.9)

with E = E(k, t), H(dir)
ij = H(dir)

ij (k, t), H(pol)
ij = H(pol)

ij (k, t), Sij = (λij + λji)/2,
Aij = (λij − λji)/2; λij refers to the mean-flow gradient as previously stated.

3.4. Closure for the terms mediated by third-order correlations

The transfer terms T(k, t), SNL(dir)
ij (k, t) and SNL(pol)

ij (k, t) are obtained from the spherical
integration of the expressions of the transfer terms T (E )(k, t) and T (Z)(k, t) closed
by the EDQNM procedure (2.30) and (2.31) and using the representation (3.2) for
E (k, t) and Z(k, t). It is consistent to retain only linear contributions from the tensors
H(dir)

ij (k, t) and H(pol)
ij (k, t) in the terms present on the right-hand sides of the system

(3.3)–(3.5) in view of the discussion in § 3.5. Their low contribution is checked in
§ 4.7. In anisotropic triadic closure, the new difficulty is to solve the integral over the
orientation of the plane of the triad (Cambon et al. 1997; Sagaut & Cambon 2008),
which is performed analytically. The final results are

T(k, t)=
∫∫

∆k

θkpq16π2p2k2q(xy+ z3)E ′′0 (E
′

0 − E0) dp dq, (3.10)

SNL(dir)
ij (k, t) =

∫∫

∆k

θkpq4π2p2k2qE ′′0 [(y2 − 1)(xy+ z3)(E ′0 − E0)H
(pol)′′
ij

+ z(1− z2)2E ′0H(pol)′
ij ] dp dq
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+
∫∫

∆k

θkpq8π2p2k2q(xy+ z3)E ′′0 [(3y2 − 1)(E ′0 − E0)H
(dir)′′
ij

+ (3z2 − 1)E ′0H(dir)′
ij − 2E0H(dir)

ij ] dp dq, (3.11)

SNL(pol)
ij (k, t) =

∫∫

∆k

θkpq4π2p2k2qE ′′0 [ (xy+ z3)((1+ z2)E ′0H(pol)′
ij − 4E0H(pol)

ij )

+ z(z2 − 1)(1+ y2)(E ′0 − E0)H
(pol)′′
ij + 2z(z2 − y2)E ′0H(pol)′

ij

+ 2yx(z2 − 1)E0H(pol)′′
ij ] dp dq

+
∫∫

∆k

θkpq24π2p2k2qz(z2 − 1)E ′′0 [ (y2 − 1)(E ′0 − E0)H
(dir)′′
ij

+ (z2 − 1)E ′0H(dir)′
ij ] dp dq, (3.12)

P ij(k, t) =
∫∫

∆k

θkpq16π2p2k2q(yz+ x)E ′′0 [E ′0 (y(z2 − y2)(6H(dir)′′
ij + H(pol)′′

ij )

− (xz+ y)H(pol)′′
ij )−y(z2 − x2)E0(6H(dir)′′

ij + H(pol)′′
ij )] dp dq, (3.13)

with E0= (E(k, t))/(4πk2), E ′0= (E(p, t))/(4πp2), E ′′0 = (E(q, t))/(4πq2), H()
ij =H()

ij (k, t),
H()′

ij = H()
ij (p, t) and H()′′

ij = H()
ij (q, t), where H()

ij may refer to either H(dir)
ij or H(pol)

ij . The
integrals over p and q are performed over the domain ∆k, so that k, p and q are the
lengths of the sides of the triangle formed by k, p and q. The expression of the ‘true’
transfer Sij(k, t) can be deduced from (3.6) and (3.10)–(3.13).

3.5. Properties of the model
Spherical averaging of the Lin equations (2.12)–(2.13) allows us to obtain a model
for anisotropic turbulence that can be used to calculate anisotropic turbulent flows
at both very high and low Reynolds numbers, with good resolution of both large
and small scales and over very long evolution times. Besides, (3.3)–(3.5) remain
consistent with the decomposition of R̂(k, t) in terms of directional anisotropy and
polarization anisotropy. However, spherical integration also has a drawback since
it implies a loss of information, which restricts the present model to moderately
anisotropic flows. Looking at expansions of the scalars E (k, t) and Z(k, t) in terms
of powers of α = k/k, the first approach by Cambon & Rubinstein (2006) can be
translated into the following:

E (k, t)= E(k, t)
4πk2

(
1+ U(dir)2

ij (k, t)αiαj + U(dir)4
ijmn (k, t)αiαjαmαn + · · ·

)
, (3.14)

Z(k, t)= 1
2

E(k, t)
4πk2

(
U(pol)2

ij (k, t)+ U(pol)3
ijm (k, t)αm + U(pol)4

ijmn (k, t)αmαn + · · ·
)

N∗i (k)N
∗
j (k).

(3.15)

The latter form is consistent with both scalar (for (3.14)) and tensor (for (3.15))
spherical harmonic expansion generated by the rotation group SO3 decomposition, in
agreement with Rubinstein, Kurien & Cambon (2015). With the identification

U(dir)2
ij (k, t)=−15H(dir)

ij (k, t), U(pol)2
ij (k, t)= 5H(pol)

ij (k, t), (3.16a,b)
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the representation (3.2) is interpreted as the first-order truncation of expansions (3.14)
and (3.15). The truncation of (3.14) and (3.15) lies at the origin of the loss of
information, which limits the degree of anisotropy that can be investigated with the
present model. The degree of anisotropy permitted by the representation (3.1) can
be derived from realizability conditions. One may use condition (2.11). In order to
derive a simple condition in terms of the tensors H(dir)

ij (k, t) and H(pol)
ij (k, t), one may

also consider the weaker condition E (k, t)> 0 ∀k, t, which already proves to be very
restrictive. In view of (3.2), this condition is equivalent to

max
i
Λi(H

(dir)(k, t))6 1
15 ∀k, t, (3.17)

where Λi(H(dir)(k, t)) refers to the eigenvalues of H(dir)
ij (k, t). Condition (3.17) can

help to quantify the upper boundary of anisotropy intensity to ensure that the present
model represents correctly the corresponding turbulent flow. In § 4.7, criterion (3.17)
is computed for the different flow configurations studied in this paper in order to
check whether the representation (3.2) and the governing equations (3.3)–(3.5) can
describe the corresponding turbulent flow. Since the representation (3.2) is restricted
to the description of moderate anisotropy, we discard quadratic contributions from
the tensors H(dir)

ij (k, t) and H(pol)
ij (k, t) which appear when the representation (3.2) is

injected into (2.30)–(2.32). It is also important to keep in mind that the nonlinear
transfer terms of the system (3.3)–(3.5) are not relevant when the mean flow acts only
on triple correlations such as in the case for solid-body rotation, but are restricted
to mean flows leading to linear production effects in the equations for second-order
correlations. This is due to the specific EDQNM version used in § 2.4. In the end,
the present model is suited for the study of turbulent flows where the anisotropy
is moderate and where linear effects induced by mean-velocity gradients play a
negligible role in the dynamics of triple correlations compared with those directly
induced in the equations for second-order correlations. Since only flows dominated
by production effects induced by a mean strain or shear are considered in § 4, we
expect the EDQNM closure of § 2.4 to be valid in these configurations. Besides, the
linear contributions in (3.4) and (3.5) originate from the exact linear terms of (2.12)
and (2.13). Accordingly, it is inferred that the main source of possible discrepancies
between the predictions obtained with (3.3)–(3.5) and experimental/direct numerical
simulation (DNS) results is due to the loss of information following the first-order
truncation of (3.14) and (3.15).

4. First applications and results: RTI and effect of mean shear
4.1. Physical and numerical set-up

The predictions of the model presented in § 3 are first compared with data from
the experiments of Gence & Mathieu (1979, 1980). In these studies, two successive
plane strains with different orientations are applied to grid-generated turbulence, and
the RTI of the turbulence thus obtained is investigated in the latter experiment. We
then consider the experiment of Chen, Meneveau & Katz (2006), where turbulence
is subjected to a non-stationary straining–relaxation–destraining cycle. Both linear
and nonlinear phenomena come into play in the response of turbulence to this
particular straining. The case of turbulence subjected to an axisymmetric expansion
or contraction is then investigated. The set-up of the numerical simulations performed
with the present model is similar to that of the DNS of Zusi & Perot (2014). In
particular, we want to check the ability of the present model to capture the initial
increase of anisotropy when the strain is removed, only in the case of axisymmetric
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expansion, which is observed in the above-mentioned study. The next test case deals
with an initially isotropic flow which is suddenly subjected to a mean shear and
is then released. A comparison with the use of RDT to initialize the anisotropy of
the flow will allow us to validate the linear part of the present model in the case of
homogeneous shear turbulence. This case will also allow us to confirm the consistency
between the present model and the permanence of large eddies (PLE). Finally, we
consider the case where the mean shear is maintained during the evolution of the
flow. Homogeneous shear turbulence has been studied experimentally (Tavoularis &
Corrsin 1981; Tavoularis 1985; Rohr et al. 1988; Tavoularis & Karnik 1989; Shen
& Warhaft 2000), numerically (Rogers, Moin & Reynolds 1986; Ishihara, Yoshida
& Kaneda 2002; Brethouwer 2005; Isaza & Collins 2009) and theoretically (Lumley
1967; Leslie 1973; Yoshida et al. 2003; Weinstock 2013), and the results obtained
with the system (3.3)–(3.5) will be compared with the predictions of these different
studies. In the last subsection, it is checked that condition (3.17) is verified for all of
the flow configurations discussed above.

As briefly mentioned above, concerning the study of the RTI of shear-released
turbulence, the anisotropy of the flow can be initialized in two ways. A first possibility
consists in deriving analytically an initial anisotropic condition thanks to RDT. The
other option is to start with an isotropic field and to generate the anisotropy with the
linear terms of (3.3)–(3.5) that account for the interactions with a mean flow. For
St� 1, where S refers to the characteristic shear rate, these two ways of introducing
anisotropy must be equivalent. This will help to validate the model developed in this
paper. The complete RDT solution for homogeneous shear turbulence can be found in
Townsend (1976), Piquet (2001) and Sagaut & Cambon (2008). The energy spectrum
used for the RDT calculations, or directly to initialize the simulations, is written as

E(k)=Cε2/3k−(5/3)f (kL)g(kη), (4.1)

with

f (x)=




x
(

x1.5 + 1.5− σ
4

)1/1.5




(5/3)+σ

, g(x)= exp(−5.2((x4 + 0.44)1/4 − 0.4)).

(4.2a,b)

The functions defined by (4.2) have been proposed by Pope (2000) and Meyers &
Meneveau (2008) respectively. Here, ε refers to the dissipation rate, L to the integral
length scale, η to the Kolmogorov scale, and σ is the slope at large scales of the
energy spectrum (E(k→ 0)∝ kσ ). In all simulations we set σ = 2, which corresponds
to Saffman turbulence. The integral scale L and the Reynolds number are prescribed
at the beginning of the simulation. As a consequence, η is initialized thanks to the
relation η= ((3/20)Re2

λ)
−(3/4)L, where Reλ is the Reynolds number based on the Taylor

microscale λ =√10K ν/ε. The constant C in (4.1) is adjusted in order to impose
the initial value of the turbulent kinetic energy K so that K (t= 0)/ ˜K0 = 1, where
˜K0 is a reference energy. The spectral mesh used to perform the simulations covers

a very broad wavenumber range in the spectral domain. The smallest wavenumber
of the mesh k0 (which roughly corresponds to the largest resolved scale) is chosen
so that k0 = 10−8kL(t = 0), where kL = 1/L is the wavenumber associated with the
integral length scale L. The largest resolved wavenumber kN is chosen such that a
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resolution of at least one decade at small scales, with respect to the initial value of
the Kolmogorov scale η(t= 0), is granted. The relation kN = 10kη(0) is thus imposed,
where kη = 1/η. The total number of elements N + 1 is recovered so that kN = rNk0,
where r represents the constant aspect ratio between contiguous elements of the mesh.
In the present work, r= 1.122, which means that each decade in the spectral space is
discretized by 20 mesh elements. The temporal integration is made by a forward Euler
scheme, and the Courant–Friedrichs–Lewy condition is based on the Kolmogorov scale
(Lesieur 2008).

The anisotropy at the spectral level is evaluated with the deviatoric tensors
H(dir)

ij (k, t) and H(pol)
ij (k, t) introduced in § 3.1, and H ij(k, t) = H(dir)

ij (k, t) + H(pol)
ij (k, t).

The global anisotropy is quantified via the tensors b(dir)
ij (t), b(pol)

ij (t) and bij(t) =
b(dir)

ij (t) + b(pol)
ij (t), which originate from the (E , Z) decomposition of the Reynolds

stress tensor:

〈uiuj〉(t)= 2K ij(t)= 2K (t)
(
δij

3
+ b(dir)

ij (t)+ b(pol)
ij (t)

)
, K (t)= K ii(t). (4.3)

The tensors b(dir)
ij (t) and b(pol)

ij (t) are calculated from the tensors H(dir)
ij (k, t) and

H(pol)
ij (k, t) according to

b(dir)
ij (t)=

∫ ∞

0
E(k, t)H(dir)

ij (k, t) dk/K (t), b(pol)
ij (t)=

∫ ∞

0
E(k, t)H(pol)

ij (k, t) dk/K (t).

(4.4a,b)

We define the invariants II(t) and III(t) as

II(t)= bij(t)bji(t), III(t)= bik(t)bkj(t)bij(t). (4.5a,b)

In order to quantitatively characterize the RTI process, we introduce the ratio ρ(t)
between a characteristic time of turbulence decay and a characteristic time of RTI,
namely

ρ(t)=
K (t)

/
dK

dt
(t)

II(t)
/

dII
dt
(t)

. (4.6)

For the comparison with the experiment of Chen et al. (2006), we use a
two-component surrogate of the anisotropic tensor bij(t), defined as

b̃ij(t)= K ij(t)/K ij(t0)

K 11(t)/K 11(t0)+ K 22(t)/K 22(t0)
− 1

2
δij (i, j= 1, 2), (4.7)

where t0 refers to the time at which strain starts. The budget terms of the governing
equation for the spherically integrated second-order spectral tensor ϕij(k, t) defined by
(1.4),

∂

∂t
ϕij(k, t)=−2νk2ϕij(k, t)+ P ij(k, t)+ Sij(k, t)+ Lij(k, t), (4.8)

are also considered. The tensor P ij(k, t) is the spherically integrated spectral
counterpart of the slow pressure–strain rate tensor and Sij(k, t) is a true transfer
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tensor with zero integral over k, the expressions of these two tensors are given in § 3.
The term Lij(k, t), defined as

Lij(k, t)= 2
(
δij

3
SL(k, t)+ SL(dir)

ij (k, t)+ SL(pol)
ij (k, t)

)
, (4.9)

includes all contributions of the linear terms of (3.3)–(3.5). The results reported in the
figures are often scaled with an initial turbulent characteristic time τ0, defined as τ0=
K (0)/ε(0). The kinetic energy spectrum E(k, t) is scaled by kmax and Emax, defined
by

max
k

E(k, t)= Emax(t)= E(kmax(t), t). (4.10)

A similar scaling is used for the cross-correlation spectrum ϕ13(k, t).

4.2. Comparison with the experiments of Gence and Mathieu
In the experiments of Gence & Mathieu (1979, 1980), a plane strain is first applied to
quasi-isotropic grid turbulence. A second strain is then applied, whose principal axes
have been rotated by an angle α in the plane of the first strain. The mean-velocity
gradients corresponding to the first and second strains are respectively

λ=



0 0 0
0 S 0
0 0 −S


 , λ=




0 0 0
0 S cos(2α) −S sin(2α)
0 −S sin(2α) −S cos(2α)


 . (4.11a,b)

In Gence & Mathieu (1980), the original experimental device is extended in such
a way that the turbulence can develop downstream without a mean-velocity gradient.
For these experiments, S' 2.9τ−1

0 with τ0=K (0)/ε(0), where the origin corresponds
to the entrance of the distorting duct. The simulations are initialized with Reλ = 60.
No detailed spectral information is available in these works, and we assume that
the turbulence is weakly axisymmetrically dilated at the entrance of the distorting
duct. The initial condition is obtained from RDT and the degree of anisotropy
is adjusted so that it coincides with the first measured values of the invariant II
defined by (4.5). Experimental data for the downstream evolution of the invariant II
are reported in figure 1 along with numerical results obtained with the system of
governing equations (3.3)–(3.5). This figure shows a satisfactory agreement between
experimental and numerical results, especially taking into account the uncertainty in
the initial condition and a possible homogeneity fault in the experimental device.
The first-order truncations in the description of anisotropy (§ 3.5) may also lie at
the origin of discrepancies between experimental and numerical results. The system
of governing equations (3.3)–(3.5) allows us to correctly capture the evolution of
anisotropy, both in the straining regions and during the relaxation phases. Only the
period of RTI for the angle α = π/4 is not fully satisfactory, mainly because the
boundary between the straining and relaxation regions in the experiments does not
appear to be as clear as in the simulations. The case of straining without rotation
in the second part of the distorting duct (α = 0), followed by a relaxation phase,
is further illustrated in figure 2. The present model properly captures the evolution
of the anisotropy indicators bij and that of the turbulent kinetic energy, both in the
region dominated by linear effects and in the purely nonlinear one.
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FIGURE 1. Evolution of the invariant II versus the position in the distorting duct of
length Ld for the experiments of (a) Gence & Mathieu (1979) and (b) Gence & Mathieu
(1980). Symbols correspond to experimental data and lines are obtained with the system
of governing equations (3.3)–(3.5). Various values of the angle α between the principal
axes of the two successive plane strains are investigated: α = 0 (@, – - – - –), α =π/8 (+,
· · · · · ·), α =π/4 (E, ), α = 3π/8 (1, – – – –) and α =π/2 (×, ——).
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without rotation in the second part of the distorting duct (α = 0). Symbols correspond
to experimental data and lines are obtained with the system of governing equations
(3.3)–(3.5).

4.3. Turbulence subjected to a straining–relaxation–destraining cycle
The present model is further tested by comparing its predictions with the experiment
of Chen et al. (2006), where a piston is used to apply plane straining and destraining
on turbulence generated by active grids. The mean-velocity gradient in the experiment
is of the form

λ(t)=



S(t) 0 0
0 −S(t) 0
0 0 0


 , (4.12)

where the temporal evolution of S(t) is given by figure 3(a). Initially, the mean
flow corresponds to plane straining (S(t) > 0), until t/τ0 ' 0.5. After a relaxation
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FIGURE 3. (a) Temporal evolution of the strain S(t) applied to the turbulence; (b)
experimental values (E), numerical values obtained with the present model (——) and
RDT prediction (– – – –) for the temporal evolution of the anisotropy indicator b̃11(t) in
the experiment of Chen et al. (2006).

phase (0.5 6 t/τ0 6 0.7), destraining (S(t) < 0) is applied to the turbulence. In this
experiment, the Taylor-microscale-based Reynolds number at the beginning of the
straining cycle is Reλ ' 400. The maximum value of the strain S(t) reached in the
experiment is '9.5τ−1

0 . Figure 3(b) illustrates the temporal evolution of the anisotropy
indicator b̃11(t) defined by (4.7). Experimental and numerical values obtained with
the present model are reported, along with the RDT prediction, provided by Chen
et al. (2006), corresponding to the mean flow defined by (4.12) and figure 3(a). The
temporal evolution of b̃11(t) shows good agreement between the experiment and the
present model. From the comparison with RDT results, it appears that nonlinear
phenomena are significant on a quantitative level. This is partly due to the presence
of a relaxation phase in the straining cycle. Thus, the validity of both linear and
nonlinear contributions in the system of governing equations (3.3)–(3.5) can be
confirmed by the comparison with this experiment.

4.4. Turbulence subjected to axisymmetric expansion or contraction
We now consider the case of turbulence subjected to an axisymmetric expansion or
contraction. The corresponding mean-velocity gradients are respectively

λ=



S/2 0 0
0 S/2 0
0 0 −S


 , λ=



−S/2 0 0

0 −S/2 0
0 0 S


 , (4.13a,b)

with S > 0. These two configurations have been recently investigated in the DNS of
Zusi & Perot (2014), where both effects of axisymmetric expansion and contraction
on initially approximately isotropic turbulence and its subsequent relaxation have been
studied. We want to check whether the present model is able to reproduce one of the
main observation of this paper: the two-stage RTI of turbulence after an axisymmetric
expansion. In this configuration, it has been observed that the anisotropy continues to
increase after the release of the strain during a short period of time, before decreasing
in a more conventional way. The reader has to keep in mind that the microscale-
based Reynolds number in this work is moderate (Reλ ' 50) and that two-stage RTI
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FIGURE 4. Time evolution of the different components of the global anisotropy tensor
bij(t) (– – – – b11, – - – - – b22, —— b33) for (a) axisymmetric expansion and (b) contraction.
The thick black lines correspond to numerical values obtained with the present model,
while the thin black and grey lines refer to the DNS results of Zusi & Perot (2014) for
two different initial conditions. The vertical dotted line marks the time at which strain is
released.

is observed only after an expansion with sufficiently high strain rate (S > 3τ−1
0 ). A

complete parametric study of this two-stage RTI should be performed, but this is
beyond the scope of the present paper. Detailed numerical analyses of the RTI of
axisymmetric turbulence can be found in Herring (1974), Chasnov (1995), Davidson,
Okamoto & Kaneda (2012) and Mons, Meldi & Sagaut (2014).

First, a quantitative comparison between the predictions of the present model and
the DNS results of Zusi & Perot (2014) is performed. Zusi & Perot (2014) use two
different initial conditions in their work which are difficult to characterize. Besides,
these initial fields are anisotropic and non-axisymmetric. Predictions concerning the
time evolution of the different components of the tensor bij(t) obtained with the
present model and the DNS of Zusi & Perot (2014) are reported in figure 4. Both
expansion and contraction cases are investigated with S' 3.4τ−1

0 , and simulations are
initialized with Reλ= 50. The production periods are well recovered by the model. In
the RTI regions, significant discrepancies between the DNS results obtained with the
two initial fields can be noticed, and the results obtained with the present model lie
between these two predictions. Thus, given the uncertainties in the initial condition
and a potential additional source of discrepancies originating from the limitation to
moderate anisotropy of the present model (§ 3.5), these comparisons are relatively
satisfactory. In particular, the major difference between the expansion and contraction
cases is recovered: after the release of the strain, the anisotropy immediately
decreases in the contraction case, whereas it slightly increases in the expansion
case before decreasing. To further illustrate this observation, complementary runs are
performed starting from initially isotropic turbulence, instead of an anisotropic and
non-axisymmetric field, in order to get clearer results.

Figures 5 and 6 illustrate numerical results obtained with the present model for
initially isotropic turbulence submitted to an axisymmetric expansion or contraction
and then released. Simulations are initialized with Reλ = 50 and we set S = 5τ−1

0 .
The axisymmetric expansion or contraction is maintained from t = 0 to St = 1. We
first consider the results for axisymmetric expansion, which are reported in figures
5(a,b) and 6(a). The temporal evolution of the anisotropy indicator b33(t) is given in
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33 (k, t) (– – – –) with that of their time

derivatives; (a,b) and (c,d) correspond to the axisymmetric expansion and contraction cases
respectively. The vertical dotted line marks the time at which strain is released.

figure 5(a). Since we consider axisymmetric turbulence, the tensor bij(t) is diagonal,
with b33(t)=−b11(t)/2=−b22(t)/2. As observed above, b33(t) slightly increases after
the release of the strain before decaying. Further insight into this two-stage RTI is
given by figure 5(b), where the temporal evolution of the directivity and polarization
components of b33(t)= b(dir)

33 (t)+ b(pol)
33 (t) is reported, along with their time derivatives.

Contrary to b33(t), both b(dir)
33 (t) and b(pol)

33 (t) immediately decay in magnitude after the
release of the strain. However, since b(dir)

33 (t) is negative, whereas both b(pol)
33 (t) and

b33(t) are positive, and it first decreases in magnitude at a faster rate than b(pol)
33 (t),

the total anisotropy indicator b33(t) increases. As soon as the polarization component
decays at a faster rate than the directivity one, the global anisotropy decreases. The
difference in the relaxation rates between directional anisotropy and polarization
anisotropy in the present model, which lies at the origin of the increase of the
total anisotropy, may be related to the difference in the relaxation rates between the
dimensionality and circulicity tensors in Kassinos & Reynolds (1997) and Kassinos
et al. (2001) (see appendix A for further details).

The case of RTI after an axisymmetric contraction is illustrated in figures 5(c,d)
and 6(b). The anisotropy indicator b33(t) decays in magnitude immediately after the
release of the strain, as b(dir)

33 (t) and b(pol)
33 (t) do. The polarization component, of the

same sign as b33(t), decays in magnitude at a faster rate than the directivity one as
soon as the strain is released. The qualitative difference in the RTI between expansion
and contraction is even more striking by looking at figure 6(a,b), where the evolution
of the invariant II(t) is indicated for the expansion and contraction cases respectively.
The temporal evolution of the invariant III(t) and that of the ratio ρ(t) between the
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characteristic times of decay and RTI defined by (4.6) are reported in figure 6(c,d).
The expansion case is associated with a positive value for III(t) (axial component
〈u3u3〉(t) greater than the transverse ones), whereas III(t) is negative in the contraction
case. Figure 6(d) indicates that the RTI process is slower in the expansion case than
in the contraction case (ρ(t) takes a greater value if the RTI is faster and is negative
during the slight increase of anisotropy in the expansion case). This result is consistent
with the discussions in Gence (1983) and Choi & Lumley (2001).

4.5. The RTI of shear-released turbulence
The RTI of initially isotropic (Saffman) turbulence that is suddenly subjected to a
mean shear and is then released is investigated. The mean-velocity gradient that
corresponds to the application of a shear on the turbulent flow is

λ=



0 0 S
0 0 0
0 0 0


 . (4.14)

The simulations are initialized with Reλ = 104. The anisotropy of the flow is
introduced by using either the RDT solution for homogeneous shear flow with
St= 0.42 (this value allows us to observe a significant departure from isotropy of the
diagonal components of the Reynolds stress tensor) or the linear terms of (3.3)–(3.5)
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limit at t= 0.042τ0 after which the shear is released when the linear terms are used.

with S= 10τ−1
0 if t< 0.042τ0 and S= 0 if not, starting from an isotropic field. Results

are illustrated in figures 7–9.
It appears from figure 7 that solutions initialized with RDT or with the linear terms

(3.7)–(3.9) coincide, which confirms the validity of the linear terms of the present
model in the case of homogeneous shear turbulence. The evolution of anisotropy
is similar to that in the case of axisymmetric Saffman turbulence (Chasnov 1995;
Davidson et al. 2012; Mons et al. 2014). After a transient regime which corresponds
to the RTI of small scales, an asymptotic anisotropic state is reached due to the
fulfilment of the PLE hypothesis (E(k, t)= E(k, 0) for k� kmax(t) if 1 6 σ 6 3 with
E(k→ 0, t) ∝ kσ ). A similar behaviour was also observed with the model of Clark
& Zemach (1995) for the relaxation of turbulence after the release of plane strain.
Even the off-diagonal component b13(t) converges towards a non-zero value, which
means that the cross-correlation 〈u1u3〉(t) is maintained even though the mean shear
is released.

The RTI of small scales during the transient regime is illustrated in figure 8 for the
components of the spherically integrated second-order spectral tensor defined by (1.4),
ϕ13(k, t) and ϕ33(k, t). Both the directional anisotropy and the polarization anisotropy
become negligible in the inertial range for t > 10τ0. This result is also valid for the
diagonal components ϕ11(k, t) and ϕ22(k, t) that are not illustrated here. Figure 8(b)
indicates that the initial cross-correlation spectrum ϕ13(k, 0) given by RDT evolves
like k−5/3 in the inertial range. Then, due to purely nonlinear processes, this shape
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FIGURE 8. (a) Energy spectrum E(k, t), (b) cross-correlation spectrum ϕ13(k, t) and spectra
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13 (k, t), (d) H(pol)
13 (k, t), (e) H(dir)

33 (k, t) and (f ) H(pol)
33 (k, t) for shear-released Saffman

turbulence. The RDT is used for the initialization. The curves have been sampled at the
normalized time: t/τ0 = 0; t/τ0 = 10−3; – - – - – t/τ0 = 10−2; · · · · · · t/τ0 = 10−1;
– – – – t/τ0 = 1; —— t/τ0 = 10.

is modified and evolves like k−7/3 at t = 10τ0. This result is consistent with the
predictions of Lumley (1967), Leslie (1973), Yoshida et al. (2003) and Weinstock
(2013).

The budget terms of the governing equation (4.8) are reported in figure 9 for the
spectra ϕ13(k, t) and ϕ33(k, t) at t = 0.1τ0 and t = 10τ0. During the transient regime
corresponding to the RTI of small scales (t = 0.1τ0), the nonlinear pressure–strain
rate tensor P ij(k, t) has a significant influence in the inertial range. Its contribution
is positive for the negative cross-correlation spectrum ϕ13(k, t), which would be
identically zero in the isotropic case, and also positive for the spectrum ϕ33(k, t),
since this component has been relatively damped by the mean shear via linear
effects. Once small scales have returned to isotropy (t = 10τ0), the contribution of
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component ϕ13(k, t), whereas (b,d) refer to the component ϕ33(k, t). The budget terms
have been sampled at the normalized time t/τ0 = 10−1 (a,b) and t/τ0 = 10 (c,d).

P ij(k, t) is negligible ∀k for the component ϕ33(k, t) (as well as for the other diagonal
components), even though large scales have not returned to isotropy. The shape of
the transfer term S33(k, t) is then virtually identical to that in the isotropic case.
Concerning the cross-correlation component, nonlinear terms act predominantly at
scales close to the integral length scale. These results are consistent with previous
studies dealing with the RTI of Saffman turbulence, where it is observed that small
scales quickly return to isotropy after the release of the shear/strain, whereas large
scales fully retain anisotropy due to the fulfilment of the PLE hypothesis.

4.6. Homogeneous shear turbulence
Finally, we address the case of homogeneous turbulence subjected to a constant
maintained mean shear. The corresponding mean-velocity gradient is given by (4.14).
Weinstock (2013) performed an exhaustive analytical study of this configuration in
3D Fourier space, without limitations on time or wavenumber. In this subsection, it
is checked that the present model is able to recover results established in this prior
work, among others. The corresponding simulation realized with the present model
is initialized with Reλ = 50, the shear rate is fixed at S= 2τ−1

0 and the turbulence is
initially isotropic. The temporal evolutions of the components of the deviatoric tensor
bij(t) and that of the kinetic energy K (t) are reported in figure 10. The different
components bij(t) and the ratio ε(t)/SK (t) reach constant values after St ≈ 20, as
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shear turbulence. The grey curves are plotted with γ = 0.337.

observed in, e.g., Weinstock (2013). Considering the governing equation for the
turbulent kinetic energy K (t),

d
dt

K (t)=−2SK (t)b13(t)− ε(t), (4.15)

one can deduce that for St > 20

K (t)∼ eγ St, γ = const.=−2b13 − ε

K S
. (4.16)

As illustrated in figure 10(b), the results obtained with the present model are
consistent with such an exponential growth of the kinetic energy. The model also
predicts the temporal evolutions of the peak of the energy spectrum Emax and
the corresponding wavenumber kmax defined in (4.10) as Emax(t) ∼ e(3/2)γ St and
kmax(t) ∼ e−γ St/2. All of these results are consistent with dimensional analysis and
with the study performed in Weinstock (2013), in which γ = 0.115. The estimated
value of the growth rate γ in a set of experiments (Tavoularis & Corrsin 1981;
Tavoularis & Karnik 1989) ranges between 0.08 and 0.12, whereas values between
0.1 and 0.2 can be found in DNS studies (Rogers et al. 1986; Brethouwer 2005;
Isaza & Collins 2009). Although a clear consensus about the value of the growth
rate γ cannot be found in the literature, and its sensitivity with respect to initial
conditions, Reynolds number and shear rate has to be further investigated, the present
model overestimates γ (' 0.337) in comparison with values found in the literature.
This lack of quantitative agreement originates from the first-order truncations in the
description of anisotropy (§ 3.5). Compared with previous test cases considered in the
present paper, the cumulated shear reached in the simulation illustrated in figures 10
and 11 is much higher (see § 4.7), which provides asymptotic information at high
Reynolds numbers. Concerning results in spectral space, the kinetic energy spectrum
E(k, t) at St= 50 (figure 11a) displays a −5/3 slope in the inertial range, as reported
in experiments or DNS. Figure 11(b) reports the cross-correlation spectrum ϕ13(k, t)
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FIGURE 11. (a) Energy spectrum E(k, t) and (b) cross-correlation spectrum ϕ13(k, t)
at St = 0 (thick black line) and St = 15 (thin black lines). (c–f ) Budget terms
of the governing equation (∂/∂t)ϕij(k, t) = −2νk2ϕij(k, t) + P ij(k, t) + Sij(k, t) +
Lij(k, t), premultiplied by k (– - – - – kSij(k, t); · · · · · · −2νk3ϕij(k, t); – – – – kP ij(k, t);
—— kLij(k, t); k(∂/∂t)ϕij(k, t)), and normalized by maxk(|k(∂/∂t)ϕij(k, t)|). The
curves are sampled at St = 50 for homogeneous shear turbulence and refer to the
components (c) ϕ11(k, t), (d) ϕ13(k, t), (e) ϕ22(k, t) and (f ) ϕ33(k, t). The position of the
shear scale Ls is also shown by vertical grey dashed lines.

at St= 50. The latter evolves like k−7/3 in the inertial range, as predicted theoretically
(Lumley 1967; Leslie 1973; Yoshida et al. 2003; Weinstock 2013) and observed in
the experiments of Shen & Warhaft (2000) and the DNS of Ishihara et al. (2002).
This result supports a posteriori the choice of eddy damping (2.26) and (2.27). The
budget terms of the governing equation (4.8) are illustrated in figure 11(c–f ). The
position of the shear scale Ls =

√
ε/S3 (Corrsin 1958) is also reported in the figures.

For 1/L 6 k 6 1/Ls, the flow is expected to be dominated by production terms,
whereas for k > 1/Ls, the contribution of nonlinear transfers should prevail. This
interpretation is reasonably well supported by the present results. Figure 11(c–f ) can
help in visualizing the nonlinear process that lies at the origin of the exponential
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FIGURE 12. Energy spectrum (a–c) and maximal eigenvalue of the tensor H(dir)
ij (k, t) (d–f )

for the different test cases investigated in this paper. The value 1/15 from the criterion
(3.17) is displayed as dashed lines. (a,d) The case of plane straining (case α = π/8 of
figure 1a); the curves are sampled at the end of the simulation (St' 1.4). (b,e) The case
of axisymmetric expansion of figure 4(a) (St= 0.5). (c,f ) Results concerning homogeneous
shear turbulence (figures 10 and 11); the curves are sampled at St= 50.

growth of the turbulent kinetic energy. Since the component ϕ33(k, t) is less fed than
the other diagonal components by the mean shear, the nonlinear pressure–strain rate
tensor P33(k, t) is strongly positive and redistributes energy from the components
ϕ11(k, t) and ϕ22(k, t) to ϕ33(k, t) (P ii(k, t) = 0 ∀k, t). Since the cross-correlation
component of the Reynolds stress tensor 2K 13(t) is fed by the mean shear via the
term −2SK 33(t), its production is enhanced, allowing an increase of the growth rate
of the turbulent kinetic energy K (t) via the term −2SK (t)b13(t)=−2SK 13(t).

4.7. Realizability condition
Due to spherical integration and truncation of expansions (3.14) and (3.15), the
present model is limited to moderate anisotropy, and the criterion (3.17) is derived
in § 3.5 in order to quantify the upper boundary of anisotropy intensity that can be
investigated with the representation (3.2) and the corresponding system of governing
equations (3.3)–(3.5). In this last subsection, it is checked that the different test
cases considered in this paper can be described using the representation (3.2) and
(3.3)–(3.5). Figure 12 reports the criterion (3.17) for typical flow configurations
investigated in this paper: plane straining, axisymmetric expansion and pure plane
shear. Rather than the absolute value of the typical strain or shear rate S, it is the
accumulated strain/shear St that gives a good estimation of the anisotropy introduced
in the flow. The interplay between linear and nonlinear contributions in (3.3)–(3.5)
also affects the evolution of anisotropy in the flow, but this effect must be studied
on a case-by-case basis in view of the significant differences that exist between, e.g.,
rotational and irrotational mean flows (Sagaut & Cambon 2008). It is worth keeping
in mind that for the purpose of spherical integration, the same representation (3.2)
is used for both linear contributions and transfer terms in (2.12) and (2.13), the
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latter being closed by the EDQNM. The different cases of plane straining/destraining
investigated in this paper are associated with small values for the accumulated strain.
Figure 12(d) illustrates the case α=π/8 of figure 1(a) from the experiments of Gence
and Mathieu. This configuration corresponds to the accumulated strain St ' 1.4, and
the anisotropy of the flow at all scales is significantly lower than the upper bound
of (3.17). This result is similar for the other cases of plane straining/destraining
in this paper. The case of axisymmetric expansion of figure 4(a) is investigated in
figure 12(e). The accumulated strain is St = 0.5 and the criterion (3.17) is respected
at all scales. The same applies to the axisymmetric contraction case. Finally, the case
of homogeneous shear turbulence is illustrated in figure 12(f ) at St= 50, and criterion
(3.17) is verified at all scales. Thus, all of the flow configurations considered in the
present paper can be described by the representation (3.2) and the corresponding
system of governing equations (3.3)–(3.5).

5. Conclusion and perspectives
Modelling of anisotropy in homogeneous flows has been considered at two different

levels. The first one is the three-dimensional spectral level, in which a decomposition
of the spectral tensor for arbitrary anisotropy lends support to a splitting of anisotropy
at any subsequent level in terms of directional anisotropy and polarization anisotropy.
In a second step, a model for spherically integrated quantities has been proposed,
which is based on 11 coupled equations. It is dedicated to turbulent flows where the
anisotropy is moderate and where linear effects induced by mean-velocity gradients
play a negligible role in the dynamics of triple correlations compared with the induced
production effects in the equations for the second-order correlations. This model is
not restricted to a particular symmetry and can be used for a wide range of flow
configurations, as illustrated by the different applications of the model considered in
this paper. A satisfactory agreement with the experiments of Gence & Mathieu (1979,
1980) has been observed, which confirms the capability of the model to account for
production of anisotropy by mean-flow gradients.

Concerning the RTI of initially deformed or sheared turbulence, the model is
consistent with the PLE and ensures correct rapid RTI of the smallest scales. Different
relaxation rates for directional anisotropy and polarization anisotropy allow us to
correctly interpret the apparent delay in the RTI after axisymmetric expansion (Zusi
& Perot 2014). In addition, our model fits well the recent experiment of Chen et al.
(2006) with a non-stationary straining cycle. For turbulence continuously subjected
to a pure plane shear, the model ensures a correct asymptotic regime with constant
values for the components of the dimensionless deviatoric tensor bij(t) associated
with the Reynolds stress tensor. In addition, it can reproduce the exponential growth
of the turbulent kinetic energy mediated by nonlinear pressure redistribution terms.
However, first-order truncations in the description of anisotropy, which are the main
sources of possible discrepancies between the present model and DNS/experimental
results, prevent a good quantitative agreement with typical values of the growth
rate found in the literature. For this configuration, an alternative approach, which is
entirely formulated in 3D Fourier space and without limitation in time, can be found
in Weinstock (2013).

Beyond moderate anisotropy, a more complex version of the model could possibly
combine exact linear operators in k-vectors, as in the left-hand side of (2.12)–(2.13),
with transfer terms only generated by low-order angular harmonic expansions. Such
a model could reproduce the dominant RDT dynamics for the largest scales, and the
quasi-isotropic behaviour for scales smaller than a Corrsin scale.
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Appendix A. Relationships between two-point spectral tensors and single-point
tensors

The equations addressed in this paper involve several tensors: production by
mean-velocity gradients, dissipation, transfer, pressure–strain rate. In the following,
we give their expressions systematically in terms of k, then in terms of k, obtained by
spherically averaging the first one, and their final single-point contribution obtained
by integrating on k, as in full Reynolds stress models (RSMs) with an additional
structure-based tensor. Time dependence is implied (not explicitly written below).

A.1. Production term by space-uniform mean-velocity gradient
The production term by the space-uniform mean-velocity gradient in (2.3) is
λilR̂lj(k) + λjlR̂li(k). By using the representation (3.1), its spherically integrated
counterpart is
∫∫

Sk

λilR̂lj(k)+λjlR̂il(k) d2k= 4
3

SijE+2E
(
λilH

(dir)
lj + λjlH

(dir)
li

)
+2E

(
λilH

(pol)
lj + λjlH

(pol)
li

)
,

(A 1)
with E = E(k), H(dir)

ij = H(dir)
ij (k) and H(pol)

ij = H(pol)
ij (k). The single-point counterpart of

the production term is given by
∫∫∫

λilR̂lj(k)+ λjlR̂il(k) d3k = 4
3

SijK + 2K
(
λilb

(dir)
lj + λjlb

(dir)
li

)

+ 2K
(
λilb

(pol)
lj + λjlb

(pol)
li

)
, (A 2)

where the tensors b(dir)
ij and b(pol)

ij are defined by (4.4).

A.2. Dissipation term

The dissipation term in (2.3) is 2νk2R̂ij(k). Its spherically integrated counterpart is
∫∫

Sk

2νk2R̂ij(k) d2k= 4νk2E
(
δij

3
+ H(dir)

ij + H(pol)
ij

)
. (A 3)

The corresponding single-point contribution is
∫∫∫

2νk2R̂ij(k) d3k= 2
3
δijε+ ε(dir)

ij + ε(pol)
ij , (A 4)

where ε(dir)
ij =

∫∞
0 4νk2E(k)H(dir)

ij (k) dk, with a similar definition for ε(pol)
ij .

A.3. ‘Rapid’ contribution of the pressure–strain rate tensor

The rapid contribution of the pressure–strain rate tensor is given by 2λlnαl(αiR̂nj(k)+
αjR̂ni(k)). Its spherically integrated counterpart is

∫∫

Sk

2λlnαl(αiR̂nj(k)+ αjR̂ni(k)) d2k

= 4
5

ESij − 12
7

E
(

SljH
(dir)
li + SliH

(dir)
lj −

2
3

SlmH(dir)
lm δij

)
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+ 4E
(

AjlH
(dir)
il + AilH

(dir)
jl

)
+ 12

7
E
(

SljH
(pol)
li + SliH

(pol)
lj −

2
3

SlmH(pol)
lm δij

)

+ 4
3

E
(

AilH
(pol)
lj + AjlH

(pol)
li

)
. (A 5)

Similarly to the transition from (A 1) to (A 2), the single-point contribution of the
rapid component of the pressure–strain rate tensor is obtained from (A 5) by replacing
E(k), H(dir)

ij (k) and H(pol)
ij (k) with K , b(dir)

ij and b(pol)
ij respectively. The closure of the

rapid pressure–strain rate tensor in RSMs is generally applied to the tensor M ijpq,
defined by

M ijpq =
∫∫∫

αpαqR̂ij(k) d3k, (A 6)

and made non-dimensional by the turbulent kinetic energy. The closure is usually in
terms of the deviatoric tensor bij. Tensorial expansions range from linear (Launder,
Reece & Rodi 1975; Lumley 1975) with a single tuned constant, to quadratic
(Speziale, Sarkar & Gatski 1991) and even cubic (Craft, Ince & Launder 1996; Craft
& Launder 2001) with increase in the number of tuned constants as the degree of
nonlinearity increases.

A.4. Transfer tensor from linear origin

The spherically averaged version of the term λlnkl(∂R̂ij/∂kn)(k) is
∫∫

Sk

λlnkl
∂R̂ij

∂kn
(k) d2k= 4

7

(
Sil
∂

∂k
(kEH(dir)

lj )+ Slj
∂

∂k
(kEH(dir)

li )− 3Slm
∂

∂k
(kEH(dir)

lm )δij

)

− 4
7

(
Sjl
∂

∂k
(kEH(pol)

il )+ Sil
∂

∂k
(kEH(pol)

lj )− 2
3

Sln
∂

∂k
(kEH(pol)

ln )δij

)
− 2

15
Sij
∂

∂k
(kE).

(A 7)

The k integral of the above expression is 0.

A.5. Transfer tensor from nonlinear origin and ‘slow’ part of the pressure–strain
rate tensor

The expression of the ‘true’ nonlinear transfer tensor, with zero integral over k,
is τij(k) + τ ∗ji (k), and that of the slow part of the pressure–strain rate tensor is
−αiαnτnj(k) − αjαnτ

∗
ni(k), with τij(k) defined by (2.6). The spherically integrated

counterparts of these tensors are given by (3.6) and (3.10), (3.13). Concerning RSMs,
the slow pressure–strain rate tensor is generally closed as −Cεbij in order to relax
the dimensionless deviatoric part of the Reynolds stress tensor bij weighted by the
dissipation rate ε. More or less complicated expressions were proposed instead of the
constant C.

A.6. Kassinos et al. (2001) structure-based tensors
The dimensionality tensor can be derived from a special index contraction of the
tensor M ijpq defined by (A 6), as Dij=M llij, whereas the two other contractions give 0
or the Reynolds stress tensor itself. Accordingly, it is found that

Dij =
∫∫∫

αiαjR̂mm(k) d3k=
∫ ∞

0
2E(k)

(
1
3
δij − 2H(dir)

ij (k)
)

dk= 2K

(
1
3
δij − 2b(dir)

ij

)
.

(A 8)
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The circulicity tensor F ij is not independent and is given by

F ij = 2K
(

1
3δij + b(dir)

ij − b(pol)
ij

)
. (A 9)

The last relevant tensor used by Kassinos et al. (2001) is the ‘stropholysis’ one,
derived from Qijk = εipqM jqpk, which can be expressed in the present formalism as

Qijk =K
(

1
3εikj − 2εipjb

(dir)
kp + 4

3εikpb(pol)
jp + 2

3εipjb
(pol)
kp

)
. (A 10)

In a fully symmetrized form, the spectral counterpart (k-vector) of this third tensor
is given by contributions from αk Im (Z(k)Ni(k)Nj(k)) (Sagaut & Cambon 2008). The
latter expression is related to the term U(pol)3

ijm (k) in (3.15), and the contribution from
our final model is zero, because of the truncation of the development of Z(k) in terms
of second-order angular harmonics. The true ‘stropholysis’ effect, which breaks mirror
symmetry but is distinct from helicity, is given by the imaginary part of Z(k): it is
dynamically created by the last term on the left-hand side of (2.13) in the presence
of rotational mean flows.

A.7. Towards the ε-equation
An equation for εij can easily be found, in which dεij/dt results from the balance
of different terms, obtained by integrating, over k then over k, nonlinear transfer
terms, purely viscous contributions and linear mean-gradient terms. Only the scalar
ε-equation is considered now, for comparison with RSMs. It reduces to

dε
dt
= 2ν

∫ ∞

0
k2T(k) dk−

∫ ∞

0
(2νk2)2E(k) dk+ 2ν

∫ ∞

0
k2SL(k) dk. (A 11)

In single-point models, the two first terms on the right-hand side are globally
closed as −Cε2ε

2/K , whereas the last term is closed as −Cε1λmn〈umun〉ε/K . It
should be noted that

∫∞
0 T(k) dk = 0, but that its integral weighted by k2 is positive,

at least in isotropic turbulence, and corresponds to 〈(∂ui/∂xj)ωiωj〉 or a nonlinear
vortex stretching term in physical space, with ωi the fluctuating vorticity.
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Introduction

Data assimilation (DA) is being increasingly applied to computational fluid dynamics (CFD) due to its multiple
possibilities of applications, as mentioned in chapter 1. DA can be used to determine initial condition, boundary
conditions or model parameters for a CFD code from experimental fluid dynamics (EFD) observations of a given
flow, thus improving the numerical prediction of complex realistic flows [94]. Among other possible uses, flow
reconstruction through DA can be employed to complete experimental observations through the enforcement
of dynamical constraints [97], to build robust reduced-order models [12, 117], or to perform detailed sensitivity
analyses, with an example given in chapter 3 [160]. DA can be also considered in flow control problems to design
efficient estimators [23]. Applications may range from aeronautics [115] to environmental fluid mechanics [93].

Two classes of DA methods as discussed in chapter 2 have been applied so far to fluid mechanics problems:
variational DA (§2.3) [12, 23, 67, 83, 91, 173] and the Kalman filter in its standard (§2.4) [51, 100, 196] and
ensemble formulations (§2.5) [60, 114, 115, 117]. These two DA schemes vastly differ in their implementations,
and may produce distinct solutions in the case of nonlinear dynamics and/or observations. Kalman filter tech-
niques are easy to implement due to their non-intrusive character, and provide not only an assimilated state of
the flow but also the associated statistics. However, the assimilation process requires the prescription of prior
statistics, which may be difficult to characterize while they may have dramatic impact on the results, as discussed
in §2.6.1. An additional problem with ensemble filtering, which is however more suited to nonlinear large-scale
systems than the standard Kalman filter, is that it is subject to finite ensemble size effects requiring ad hoc adjust-
ments to ensure the stability of the filter (§2.5.3). On the other hand, the use of adjoint techniques in variational
DA provides robustness and scalability to the assimilation procedure. However, the development of the adjoint
model associated to the CFD code [176] is thus required, which may be a particularly tedious task in the case of
complex flow solvers.

Only a few studies have been dedicated to the application of DA to Navier-Stokes solvers for fully unsteady
flows [91, 196]. Moreover, despite the significant differences between variational DA and Kalman filtering
mentioned above, these two techniques have always been investigated separately (see table 4.1). Accordingly,
a comparative study between variational DA and Kalman filtering to fully delineate the pros and cons of these
methods and quantify their relative performances in the context of CFD is still lacking.

Furthermore, other DA methodologies of chapter 2 than the two mentioned above could also be worthy of consid-
eration in the context of CFD. In particular, hybrid techniques, ensemble-based variational schemes and particle
filters are emerging methods in the meteorological community that have not yet been used in conjunction with
Navier-Stokes solvers. Hybrid schemes (§2.6.1) aim at improving the estimation of prior statistics in variational
DA through the incorporation of ensemble information, allowing to consider flow-dependent prior covariance
matrix in the assimilation process. While the determination of better prior statistics may indeed enhance the
results of variational DA, such approaches still require an adjoint model, and are therefore as demanding as stan-
dard variational schemes in terms of computational efforts. Particle filters (§2.8) allow to avoid the use of the
Gaussian assumption and consider the propagation of the full probability density function of the system. How-
ever, one may wonder about the need of considering a fully stochastic formulation of DA in the context of CFD,
especially given the number of adjustments required to ease the computational burden associated to the use of
full probability density functions to characterize large scale systems. Recent applications of particle filtering to
a shallow water model and to proper orthogonal decomposition-based reduced-order models can nevertheless be
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found in [61] and [117] respectively. Finally, ensemble-based variational schemes (§2.6.2) still use a variational
framework, but rely on the propagation of an ensemble of realizations to avoid the need of an adjoint code. Such
techniques may be the most interesting alternatives to variational DA and Kalman filtering among the methods
discussed above, since they seem to combine the robustness of the former and the non-intrusive character of the
latter. Ensemble-based variational DA, which has been recently applied to the shallow water model in [230], has
not yet been considered in conjunction with Navier-Stokes solvers.

In compliance with the above discussion, a methodological study to determine appropriate DA techniques in
the context of CFD is performed in chapter 5. Variational DA, ensemble Kalman filters, and ensemble-based
variational schemes are deployed with a Navier-Stokes solver for unsteady bidimensional compressible flows,
which is presented in appendix C along with the corresponding adjoint code. DA is used to infer initial and
boundary conditions for flows past a cylinder in the presence of coherent gusts from observations ranging from
the aerodynamic coefficients to the full velocity field. The influence of the DA setup on the performances of
the three DA schemes is thoroughly addressed in various reconstruction scenarios with large control vectors,
allowing a detailed assessment of the considered methodologies.

Aside from the question of the choice of the DA methodology, we also examine the issue of sensor network
design for DA purposes. This problem is of crucial importance since measurements represent the only available
information about the reference flow to be reconstructed, and observations should be thus required to provide
as much information as possible about the reference flow. The determination of efficient strategies for sensor
placement in the contexts of DA and CFD applications has not yet been investigated and is still an open question
despite the existence of several techniques proposed in the meteorological community. An adjoint-based sensor
placement procedure is proposed in chapter 6, which aims at identifying the regions of the flow that have the
greatest sensitivity with respect to a change in the initial condition, boundary conditions or model parameters.
The developed methodology is applied to the reconstruction of flows past a rotationally oscillating cylinder
with the same direct and adjoint codes than in chapter 5. More precisely, the possibilities of identifying the
rotational speed of the cylinder and the initial flow from observations of the velocity field at discrete locations
are investigated through variational DA, with the expectation that optimal sensor placement will allow to improve
the performances of the assimilation procedure.

As a final test case, we investigate the possibility of reconstructing urban flows through DA in chapter 7, allow-
ing to consider much more complex flows than in previous chapters and to tend towards real-world applications.
Computations rely on a Very Large Eddy Simulation (VLES)/Lattice Boltzmann Method (LBM) solver, which
provides high-fidelity predictions of turbulent flows in an actual urban area that has already been considered
in [148]. From the results of chapter 5, an ensemble-based variational DA scheme is implemented with this
solver for the identification of the characteristics of a pollutant source and meteorological conditions from mea-
surements of concentration. A sensor placement procedure is also developed to guide the design of observation
networks. This methodology relies on uncertainty quantification techniques proposed in [150], see also appendix
E, and is complementary to the strategy of chapter 6 in the sense that it is non-intrusive, while the methodology
of chapter 6 requires an adjoint model. However, both approaches consist in placing sensors at locations in the
flow with maximum sensitivity with respect to the control vector in the DA process, and they differ in the way in
which sensitivity is evaluated.



Chapter 5

Reconstruction of unsteady viscous flows
using data assimilation schemes
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This paper investigates the use of various data assimilation (DA) approaches for the 
reconstruction of the unsteady flow past a cylinder in the presence of incident coherent 
gusts. Variational, ensemble Kalman filter-based and ensemble-based variational DA 
techniques are deployed along with a 2D compressible Navier–Stokes flow solver, which 
is also used to generate synthetic observations of a reference flow. The performance of 
these DA schemes is thoroughly analyzed for various types of observations ranging from 
the global aerodynamic coefficients of the cylinder to the full 2D flow field. Moreover, 
different reconstruction scenarios are investigated in order to assess the robustness of 
these methods for large scale DA problems with up to 105 control variables. In particular, 
we show how an iterative procedure can be used within the framework of ensemble-
based methods to deal with both non-uniform unsteady boundary conditions and initial 
field reconstruction. The different methodologies developed and assessed in this work give 
a review of what can be done with DA schemes in computational fluid dynamics (CFD) 
paradigm. In the same time, this work also provides useful information which can also 
turn out to be rational arguments in the DA scheme choice dedicated to a specific CFD 
application.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Data assimilation (DA) techniques [1,2], which have been mainly developed in the fields of meteorology and oceanog-
raphy, are increasingly considered in fluid mechanics. They provide a relevant mathematical framework to combine exper-
imental observations with computational fluid dynamics (CFD) predictions in order to obtain a better description of the 
model inputs like initial condition, boundary conditions or model parameters [3,4]. DA can also be used to complete sparse 
observations [5] or to solve inverse problems [6]. Two different classes of DA techniques have been applied to fluid mechan-
ics: variational methods [7], which are based on the use of the optimal control theory [8] to minimize the error between 
observations of a reference flow and a numerical estimation, and Kalman filter methods [9], which directly originate from 
the Bayesian formulation of the DA problem [10,11] and rely on the propagation in time of the statistics of the state vector. 
Variational-based DA techniques have been applied to proper orthogonal decomposition-based surrogate models [12,13], 
turbulence spectral models [6], and to the Navier–Stokes equations [3,14]. Foures et al. [14] performed DA experiments with 
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the 2D steady Reynolds-averaged Navier–Stokes equations where the Reynolds stress tensor term forms the control vector, 
while Gronskis et al. [3] used experimental data to determine optimal initial and boundary conditions for 2D unsteady 
direct numerical simulations (DNS). Both studies considered the wake flow behind a circular cylinder at Reynolds numbers 
between 125 and 170. Kalman filter techniques have also been applied to Navier–Stokes solvers. Suzuki [5] implemented a 
reduced-order extended Kalman filter to complete particle image velocimetry data of a planar-jet flow at a Reynolds number 
of Re = 2 · 103 using 2D unsteady DNS. As for the original Kalman filter, this DA scheme relies on an update formula for 
the covariance matrix associated to the statistics of the state vector that is costly to evaluate and not necessarily adapted to 
high-dimensional and nonlinear problems. Accordingly, ensemble Kalman filters (EnKF) [15], where statistics are propagated 
with an ensemble of realizations, have also been considered [16,17,4]. Colburn et al. [16] used the EnKF to estimate the 
statistical steady state of a 3D turbulent channel flow at Re = 100 with DNS. Kato et al. [4] estimated the angle of attack, 
Mach number and turbulent viscosity field for a CFD code with a variant of the EnKF to fit parietal pressure measurements 
for 2D and 3D steady transonic flows past airfoils at Reynolds numbers up to 1.2 · 107.

Variational and Kalman filter techniques vastly differ in their implementations, and, in particular in the case of nonlinear 
dynamics, may produce different solutions. Variational methods need the development of an adjoint code [18] to compute 
the gradient of a cost function that quantifies the discrepancies between observations and numerical estimation with respect 
to a control vector. On the other hand, Kalman filters are easy to implement due to their non-intrusive character, and can 
provide posterior statistics. However, the smoothness of the assimilated state and the stability of the DA algorithm are more 
difficult to ensure in Kalman filter applications. Besides, EnKF results are subject to finite-ensemble-size effects leading to 
spurious correlations, and supplementary adjustments may be needed if only small ensembles can be afforded [19,20]. To 
the authors’ knowledge, only a few studies have been dedicated to unsteady flows [5,3], which do not involve solid bound-
aries inside the computational domain. In particular, a comparative study between variational and Kalman filters techniques 
for CFD based analysis of unsteady flows is still lacking. A third class of DA methods, namely ensemble-based variational 
(EnVar) schemes [21–23], also deserves attention. To the authors’ knowledge, these techniques, recently applied to the shal-
low water model [24], have not yet been considered for CFD applications. EnVar schemes combine an optimization-based 
analysis step as in variational methods with the propagation of an ensemble of realizations, similarly to the EnKF, to eval-
uate the sensitivity of a cost function, avoiding the need for an adjoint code. The aim of the present work is to propose a 
first comparative study between variational methods, Kalman filter techniques, and EnVar schemes in the context of high-
dimensional DA analysis for unsteady CFD. To this end, we consider 2D unsteady DNS computations of the flow around 
a cylinder at Re = 100 in the presence of incident coherent gusts [25]. Considering synthetic observations of a reference 
evolution, these three DA methods are used to reconstruct initial conditions and/or unsteady and potentially non-uniform 
boundary conditions. In other words, we are mainly interested in solving an inverse/parameter estimation problem and we 
focus in the present study on the use of retrospective/non-sequential DA techniques, not on purely sequential methods such 
as the EnKF. Various observations of the reference state are considered: the pressure distribution around the cylinder, lift 
and drag coefficients, or the entire velocity field. It must be kept in mind that global aerodynamic coefficients and discrete 
pressure measurements at cylinder surface are realistic from engineering point of view. The influence of the size and the 
type of the control vector on the performances of the three methods is examined in detail. The sensitivity of the results 
with respect to observation and prior statistics, and to the size of the ensemble for ensemble methods, is also thoroughly 
addressed.

The paper is structured as follows. The different DA methods used in this paper are presented in section 2, and their 
numerical implementation is detailed in section 3. The CFD code is described in section 4, along with the setup of the 
different DA experiments performed in this study. The corresponding results are reported in section 5. Section 6 is dedicated 
to conclusions and perspectives.

2. Data assimilation methods

2.1. The data assimilation problem

We consider the following dynamical model under the fully discrete form: 

qn+1 = mn(qn,αn) 0 � n � N − 1 (1)

where qn is the state vector, mn is an operator that maps the state vector from time tn to tn+1, and αn represents a 
set of parameters, such as boundary conditions or shape design parameters, that are potentially time-dependent. In the 
deterministic framework, given (1), the temporal evolution (qn)N

n=1 = (q1, q2, · · · , qN) would be uniquely specified by the 
vector γ defined by: 

γ =
(

qT
0, (α

T
n)

N−1
n=0

)T
(2)

This vector gathers the initial condition q0 and the nonstationary parameters of (1), where the superscript T indicates 
the transpose operator. In a stochastic context, one may consider an additive random error term in (1) so that the state 
vector qn becomes a random variable. In addition, we suppose that observations (yn)N

n=0 of a reference trajectory (qn)N
n=0

are available according to: 
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yn = h(qn) + εn 0 � n � N (3)

where h is the observation operator that maps the state space to the observation space and εn is the possibly random 
measurement error. Even though these observations are not necessarily available at all times tn , we will assume so in the 
following for the sake of simplicity, and without loss of generality. Here, the data assimilation (DA) procedure consists in 
estimating the temporal evolution (qn)N

n=1 and the corresponding vector γ in (2) given the observations (yn)N
n=0. In the 

probabilistic formulation of the DA problem [10,11], if γ , (qn)N
n=1 and (yn)N

n=0 are considered as random variables, Bayes’ 
theorem allows to combine a prior distribution p(γ , (qn)N

n=1) (knowledge about the reference evolution before taking into 
account observations) and the data distribution p((yn)N

n=0|γ , (qn)N
n=1) (measurements conditioned by the observed reference 

evolution) to get a posterior distribution p(γ , (qn)N
n=1|(yn)N

n=0) (knowledge about the reference evolution conditioned by the 
data) according to: 

p
(
γ , (qn)

N
n=1|(yn)

N
n=0

)
∝ p

(
γ , (qn)

N
n=1

)
p

(
(yn)

N
n=0|γ , (qn)

N
n=1

)
(4)

The coefficient of proportionality for (4) is the marginal distribution of the data p((yn)N
n=0) and may be seen here as 

only a normalizing constant. Once the posterior distribution is obtained thanks to (4), the DA problem is solved by finding 
the trajectory (qn)N

n=1 and the vector γ that maximize this probability (maximum likelihood analysis).

2.2. Variational data assimilation (4DVar)

The four-dimensional variational (4DVar) method [7] addresses DA as an optimal control problem [8]. The classical 
formulation of the 4DVar method [26,27] is first obtained by considering the dynamical model (1) without any random 
additional term. Accordingly, (4) may be rewritten as: 

p
(
γ |(yn)

N
n=0

)
∝ p (γ ) p

(
(yn)

N
n=0|(qn)

N
n=0

)
(5)

since in this case the relation between (qn)N
n=1 and γ is deterministic. It is next assumed that the vector γ is Gaussian 

distributed with mean γ (e) and covariance matrix B. The error term εn in (3) is also assumed to be Gaussian distributed 
with zero mean and covariance matrix C. Accordingly, maximizing the posterior distribution in (5) is equivalent to minimize 
the following cost function: 

J = 1

2
‖γ − γ (e)‖2

B−1 +
N∑

n=0

1

2
‖yn − h(qn)‖2

C−1 (6)

with ‖ · ‖2
B−1 = ·TB−1· and ‖ · ‖2

C−1 = ·TC−1·. The cost function J in (6) is minimized under the equality constraint (1). This 
leads to the introduction of the Lagrangian L defined by: 

L = 1

2
‖γ − γ (e)‖2

B−1 +
N∑

n=0

1

2
‖yn − h(qn)‖2

C−1 −
N−1∑
n=0

(
qn+1 − mn(qn,αn)

)T q̃n+1 (7)

The expression (7) involves the Lagrange multipliers, or adjoint variables, q̃n . First-order necessary conditions for the 
direct and adjoint evolutions (qn)N

n=1 and (q̃n)N
n=1 to minimize the Lagrangian L lead to the direct problem (1) and to the 

following adjoint problem: 

q̃N =
(

∂h

∂qN
(qN)

)T

C−1 (
h(qN) − yN

)
(8)

q̃n =
(

∂mn

∂qn
(qn,αn)

)T

q̃n+1 +
(

∂h

∂qn
(qn)

)T

C−1 (
h(qn) − yn

)
0 ≤ n ≤ N − 1 (9)

Evaluating backward in time (9) with the terminal condition (8) allows to compute the gradient of the Lagrangian with 
respect to the control vector γ in (2) according to: 

∂L
∂q0

= q̃0 + B−1
q0

(
q0 − q(e)

0

)
(10)

∂L
∂αn

=
(

∂mn

∂αn
(qn,αn)

)T

q̃n+1 + B−1
αn

(
αn − α(e)

n

)
0 ≤ n ≤ N − 1 (11)

with Bq0 and Bαn the covariance matrices associated respectively to the initial condition and parameters αn if we assume 
they are uncorrelated. Once available, these gradients can be used in a descent algorithm to search the minimizing vector 
γ , as described in section 3.1.
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2.3. Ensemble Kalman smoother (EnKS)

The ensemble Kalman smoother (EnKS) [28] can be viewed as an extension of the ensemble Kalman filter (EnKF) [15]
where the information from observations is propagated backward in time. Both for computational reasons and to better 
deal with nonlinear dynamics, the posterior distribution in (4) can be evaluated sequentially (each time observations are 
available) according to [28]:

p
(
(αl)

n−1
l=0 , (ql)

n
l=0|(yl)

n
l=0

)
∝

p
(
(αl)

n−2
l=0 , (ql)

n−1
l=0 |(yl)

n−1
l=0

)
p(αn−1)p(qn|qn−1,αn−1)p(yn|qn) 1 ≤ n ≤ N

(12)

The derivation of (12) requires that the stochastic counterpart of (1) is a first-order Markov process, and that the obser-
vations at different times are independent and conditional only on the state at the same time. At time t = tn , equation (12)
can be decomposed [29] into a forecast step 

p
(
(αl)

n−1
l=0 , (ql)

n
l=0|(yl)

n−1
l=0

)
= p

(
(αl)

n−2
l=0 , (ql)

n−1
l=0 |(yl)

n−1
l=0

)
p(αn−1)p(qn|qn−1,αn−1) (13)

and an analysis step: 

p
(
(αl)

n−1
l=0 , (ql)

n
l=0|(yl)

n
l=0

)
∝ p

(
(αl)

n−1
l=0 , (ql)

n
l=0|(yl)

n−1
l=0

)
p(yn|qn) (14)

In the case where no model error is considered, as in the present study, the probability p(qn|qn−1, αn−1) in (12) and 
(13) is a delta function. All the probabilities in (14) are assumed to correspond to normal distributions, so that we only 
have to consider their associated means and covariance matrices. As in the EnKF, prior statistics p 

(
(αl)

n−1
l=0 , (ql)

n
l=0|(yl)

n−1
l=0

)
in (13) and (14) are obtained through Monte Carlo sampling and integration of the dynamical model in (1) from time tn−1

to tn . Thus, prior statistics are evaluated from the matrix A( f )
n defined by: 

A( f )
n =

(
p(1)

n , p(2)
n , · · · , p(Nen)

n

)
, pn =

(
(αT

l )
n−1
l=0 , (qT

l )
n
l=0

)T
(15)

where Nen is the number of members of the ensemble. Since we consider normal distributions in (14), finding the maximum 
likelihood analysis is equivalent to the determination of a variance minimizing analysis. Accordingly, if observations are 
available at time t = tn , the matrix A( f )

n is updated as [2]: 

A(a)
n = A( f )

n + A( f )′
n H′ T

n

(
(Nen − 1)C + H′

nH′ T
n

)−1
(Yn − Hn) (16)

with 

A( f )′
n =

(
p(1)

n − pn, · · · , p(Nen)
n − pn

)
, Hn =

(
h(q(1)

n ), · · · ,h(q(Nen)
n )

)
(17)

H′
n =

(
h(q(1)

n ) − h(qn), · · · ,h(q(Nen)
n ) − h(qn)

)
, Yn =

(
y(1)

n , · · · , y(Nen)
n

)
(18)

where the operator · denotes ensemble average. The ensemble of observations Yn is obtained from perturbations added 
to available data with zero mean and covariance matrix C [30]. The EnKS is initialized by prescribing statistics (mean and 
covariance matrix) to the control vector γ in (2). Nen realizations of this vector are sampled and propagated in time with (1). 
If observations are available at time t = tn , all the trajectories of the ensemble are updated according to (16), including the 
realizations of γ . The updated ensemble A(a)

n is then propagated from time tn to the next time of observation. The analysis 
step for the EnKF is recovered by replacing the definition of pn in (15) by pn = (

αT
n−1,qT

n

)T
.

2.4. Ensemble-based variational data assimilation (4DEnVar)

The four-dimensional ensemble-based variational (4DEnVar) scheme [21] combines the formulation of the 4DVar method 
with the use of a Monte Carlo ensemble to evaluate prior statistics as in the EnKF, avoiding the need of adjoint operators. In 
the 4DEnVar scheme, an optimal vector γ in (2) is searched in a subspace spanned by an ensemble of realizations [21,31,
32,24]. After choosing a first-guess, or prior, vector γ (e) and Nen samples around this first guess, the vector γ is expressed 
as: 

γ = γ (e) + E′β, E′ =
(
γ (1) − γ (e),γ (2) − γ (e), · · · ,γ (Nen) − γ (e)

)
(19)

Equation (19) involves the new control vector β with dim(β) = Nen . After two successive linearizations:

h(qn) � h(q(e)
n ) + ∂h

∂q(e)
n

(q(e)
n )

∂q(e)
n

∂γ (e)
(γ (e))E′β (20)
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Table 1
Schematic representation of the different DA algorithms considered in this paper.

4DVar EnKS 4DEnVar

1. start with a first guess for the 
control vector γ (2) and prescribe 
prior and observation statistics

1. start with a first guess for the control vector γ (2)
and prescribe prior and observation statistics

1. start with a first guess for the control vector 
γ (2) and prescribe prior and observation 
statistics

2. solve direct problem (1) 2. sample Nen realizations of γ 2. sample Nen realizations of γ
3. solve adjoint problem (8)–(9) 3. propagate the ensemble with (1) until the next time 

of observation
3. propagate the ensemble with (1)

4. use the gradients (10)–(11) to 
update γ according to (25)

4. update the ensemble trajectories with (16) (or with 
(27) if localization is used)

4. minimize cost function (22) using (24)

5. return to step 2 until stopping 
criterion reached

5. return to step 3 until the end of the assimilation 
window

5. update γ according to (19)

6. return to step 2 until stopping criterion reached 6. return to step 2 until stopping criterion 
reached

∂h

∂q(e)
n

(q(e)
n )

∂q(e)
n

∂γ (e)
(γ (e))E′ �

(
h(q(1)

n ) − h(q(e)
n ), · · · ,h(q(Nen)

n ) − h(q(e)
n )

)
= H′

n (21)

the cost function J in (6) can be rewritten as: 

J = 1

2
(Nen − 1)βTβ +

N∑
n=0

1

2
‖h(q(e)

n ) − yn + H′
nβ‖2

C−1 (22)

using 

B � 1

Nen − 1
E′E′ T (23)

Since the cost function in (22) is quadratic in β , explicit expressions of the gradient and Hessian of J are available: 

∂ J

∂β
= (Nen − 1)β +

N∑
n=0

H′ T
n C−1

(
h(q(e)

n ) − yn + H′
nβ

)
,

∂2 J

∂β2
= (Nen − 1)I +

N∑
n=0

H′ T
n C−1H′

n (24)

where I is the identity matrix. Relations (24) are used to minimize the cost function in (22) with one iteration of the Newton 
method, and the so-obtained optimal vector β is used to update the prior vector γ (e) according to (19). A new ensemble E′
around the updated estimation of γ might then be sampled in order to further improve the analysis. This iterative form of 
the 4DEnVar algorithm, where the result of the assimilation is used as the first guess for the next iteration, is summarized 
in Table 1. The stopping criterion is a maximum number of iterations that is tuned to fix the total number of direct runs 
Nrn performed during the complete assimilation procedure. In this work, the EnKS is also tested in such an iterative form.

3. Practical implementation

3.1. Adjoint code and optimization procedure

For the purposes of the 4DVar scheme (section 2.2), the exact expressions of the different operators in equations (8)–(9)
and (11) are hand-coded. This corresponds to the discrete adjoint approach [33,34,18]. In the present work, the operator mn

in (1) is nonlinear, and the operators in equations (8)–(9) and (11) depend on the direct solution qn , which has to be stored 
at all times for the backward integration of the adjoint problem. To minimize memory requirements, the direct solution is 
stored only at a few times tn during the integration of the direct problem (1), and the missing qn are recomputed during 
the backward integration of (8)–(9). In order to minimize the Lagrangian in (7), the gradients (10)–(11) obtained with the 
adjoint code are used in a descent algorithm. This iterative optimization procedure is initialized with a first guess for the 
control vector γ . At the ith iteration, direct (1) and adjoint (8)–(9) problems are solved to compute the gradients (10)–(11). 
These gradients allow for the determination of a descent direction d(i) , and the control vector γ (i) is updated according to: 

γ (i+1) = γ (i) + η(i)d(i) (25)

The low-memory formulation of the quasi-newton BFGS method [35] is used to compute d(i) . The step length η(i) is 
evaluated with a backtracking-Armijo line search [36]. The optimization procedure is stopped after a given number of 
iterations that is tuned to fix the computational cost of the complete assimilation process. The 4DVar scheme is summarized 
in Table 1.
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3.2. Observation and prior (or ensemble) statistics

Both the EnKS and 4DEnVar methods rely on the propagation of an ensemble of realizations, while the 4DVar scheme 
also requires the prescription of prior statistics. For the three schemes, the vector γ in (2) is assumed to be Gaussian dis-
tributed. The mean of this normal distribution corresponds to an estimated, or prior, vector γ (e) . In order to obtain smooth 
samples of the vector γ , a non-diagonal covariance matrix is prescribed. For an estimated quantity with characteristic value 
b, such as the x-wise component u of the initial velocity field at all control volumes, the covariance matrix � is chosen of 
the form:

�i j = σ 2b2 exp

(‖xi − x j‖
lc

)
(26)

where xi = (xi, y j)
T refers to the position of the ith control volume, lc is a correlation length and σ 2 a relative (dimension-

less) variance. Similarly to (26), a correlation time tc is introduced to characterize the statistics of the unsteady boundary 
conditions. In this paper, the sensitivity of the results obtained with the different DA schemes with respect to the relative 
variances σ 2 related to the estimated quantities in γ will be studied. In the following, σ (ic) and σ ( f f ) refer to the relative 
standard deviations associated to initial and boundary (far-field) conditions, respectively. On the other hand, the correlation 
time tc and length lc are regarded as constants, since they are introduced only to smooth the samples of γ . The charac-
teristic length lc is based on the diameter dr of the cylinder (see section 4.2), the correlation time tc and the characteristic 
values b for the different estimated physical quantities are based on lc and on characteristic inflow conditions. For example, 
b = ur with ur a reference inlet velocity if we consider the x-wise component u of the initial velocity field, and tc is based 
on dr/ur . Concerning observation errors in (3), they are assumed to be Gaussian distributed with zero mean, uncorrelated, 
and are characterized by the relative standard deviation σ (ob) .

3.3. Localization, inflation and smoother lag

The use of relatively small ensembles in EnKF techniques lies at the origin of spurious components (in particular 
off-diagonal ones) in the approximated correlation matrices involved in the update (16). To counteract these finite-ensemble-
size effects, several techniques such as localization [19] and inflation [20] have been proposed in the literature. Localization 
may amount to replace the update equation (16) with 

A(a)
n = A( f )

n + L1 ◦ (A( f )′
n H′ T

n )
(
(Nen − 1)C + L2 ◦ (H′

nH′ T
n )

)−1
(Yn − Hn) (27)

where ◦ denotes the element-wise (or Hadamard or Schur product), L1 is a localization matrix acting on the correlations 
between the vector pn defined in (15) and observations, while L2 acts on the correlations between observations. Since 
the vector pn includes the parameters and the state vector in (1) from t = t0 to t = tn , the matrix A( f )′

n H′ T
n accounts for 

spatio-temporal correlations between the components of pn and the observations available at time t = tn . Another way to 
enforce temporal localization is to consider a lagged smoother [28,37] where observations available at time t = tn are used 
to update the ensemble only from t = tn−L to t = tn with L the lag parameter. The determination of proper matrices L1
and L2 and/or lag L for state estimation may already be difficult, since it requires a good knowledge of the characteristic 
length and time scales of the problem to guarantee the optimality of the localization. Besides, for parameter estimation, the 
interpretation of localization is far from being straightforward in the general case.

In the present study, we are primarily interested in estimating an optimal vector γ defined in (2). The parameters αn

correspond here to boundary conditions (see section 4.1). If observations are performed close to the center of the compu-
tational domain (which is the case here when the pressure distribution around the cylinder is observed, see section 4.2), 
introducing a correlation length for spatial localization has no real meaning since it should of the same order of magnitude 
as the size of the whole computational domain. Accordingly, only temporal localization is potentially considered here (this 
will not be the case for the following results unless otherwise stated). Using a lagged smoother is not the best choice for 
the present study because we have to take into account the time required for information to propagate from the boundaries 
of the computational domain to the observation locations. In the end, when localization is used, we take a all-ones matrix 
as matrix L2 (no localization for the correlations between observations). The components of L1 corresponding to correla-
tions between the state vector are set to 1, while the components of L1 corresponding to correlations between parameters 
αl at time tl with 0 � l � n − 1 and the observations performed at time tn are set to exp

(−(tl + Tbc − tn)2/(κTbc)
2
)
. Tbc

refers to the estimated time of propagation of information based on characteristic inlet conditions and the distance from 
the boundaries of the computational domain to the observation locations, and κ is a constant which is introduced to tune 
the temporal localization.

Multiplying inflation factors [20] between 1.01 and 1.05 were also considered in this study, but without significant 
improvement of the results. Therefore, the corresponding results are not shown here.
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Fig. 1. Validation of the adjoint code: relative difference δ between the variations of the cost function J predicted by the adjoint code and finite differences 
versus the parameter ε in (32). The direction θ corresponds to a perturbation of either the initial condition (©) or the boundary conditions (�).

4. Numerical setup

4.1. Governing equations and finite volume formulation

We consider the integral form of the two-dimensional compressible Navier–Stokes equations for perfect gas over a 
bounded domain of interest 
: 

∂

∂t

∫



wdV +
∫
∂


(F(w) − G(w)) · ndS = 0 (28)

with 

w =

⎛
⎜⎜⎝

ρ
ρu
ρv
E

⎞
⎟⎟⎠ , F (w) =

⎛
⎜⎜⎝

ρu ρv
ρu2 + p ρuv

ρuv ρv2 + p
u(E + p) v(E + p)

⎞
⎟⎟⎠ , G(w) =

⎛
⎜⎜⎝

0 0
τxx τxy

τxy τyy

uτxx + vτxy − qx vτyy + uτxy − qy

⎞
⎟⎟⎠ (29)

τxx = μ

(
2
∂u

∂x
− 2

3
(
∂u

∂x
+ ∂v

∂ y
)

)
, τyy = μ

(
2
∂v

∂ y
− 2

3
(
∂u

∂x
+ ∂v

∂ y
)

)
, τxy = μ(

∂u

∂ y
+ ∂v

∂x
) (30)

qx = −κ
∂T

∂x
, qy = −κ

∂T

∂ y
, p = ρrT = (γ − 1)ρe, E = ρ

(
e + 1

2
(u2 + v2)

)
(31)

where n, ρ , u, v , p, e, T , γ , μ, κ and r refer to the outer unit normal vector to the boundary ∂
, density, x-wise and y-wise 
components of the velocity vector, pressure, specific internal energy, temperature, ratio of specific heats, dynamic viscosity, 
thermal conductivity and a constant in the ideal gas law, respectively. Equation (28) is discretized using a cell-centered 
finite-volume formulation on unstructured grids. Convective fluxes F (w) are evaluated using Roe’s approximate Riemann 
solver [38]. Second-order spatial accuracy is achieved with the reconstruction procedure of Jawahar and Kamath [39]. Time 
integration is performed with a fully implicit second-order scheme that combines dual time stepping [40] and the LU-SGS 
method [41,42]. Thus, the state vector qn in (1) is formed by the vector of conservative variables w at all control volumes, 
and the operator mn refers to the fully discretized counterpart of (28). Inlet boundary conditions are considered as tunable 
parameters αn . The correct implementation of the corresponding adjoint code is assessed in Fig. 1 where is reported the 
relative difference δ between the variations of the cost function � J (A) and � J (F ) in various directions θ obtained with the 
adjoint code and finite differences respectively. These quantities are defined by: 

� J (A) =
(

∂L
∂γ

)T

θ , � J (F ) = J (γ + εθ) − J (γ )

ε
, δ =

∣∣∣∣∣� J (A) − � J (F )

� J (A)

∣∣∣∣∣ (32)

where the gradient ∂L
∂γ is formed by the gradients in (10) and (11). For the two directions θ investigated in Fig. 1, the 

difference δ converges like ε as ε → 0 until machine precision, which validates the adjoint code. The computational cost of 
the adjoint code is 4.5 times that of the direct code, including the recomputation of the direct solution (see section 3.1).

4.2. Flow configuration and data assimilation experiments setup

The principle of the DA experiments presented in this paper is the following. First, a reference numerical simulation with 
associated boundary and initial conditions is performed, and observations of this reference trajectory are performed. In a 
second step, the DA methods described in section 2 are used to recover the reference evolution and its associated boundary 
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and initial conditions. These methods are initialized with a first-guess, or estimated run, and the state resulting from these 
procedures is referred to as the assimilated state.

We consider the flow around a circular cylinder at a Reynolds number of Re = 100 and a Mach number of Ma =
0.2, which are based on a reference inlet velocity ur and the diameter of the cylinder dr . The physical time step �t for 
the simulations is chosen as �t = 1.3 · 10−3dr/(St ur), where St = 0.165 is the Strouhal number at Re = 100 [43]. The 
unstructured mesh is formed by 1.4 · 104 triangular elements, and the typical duration of a direct simulation is 500 seconds 
in CPU time with a 2.10 GHz Intel Xeon E5-2658 processor. In the following assimilation experiments, the reference runs 
correspond to an incoming gust of the form [44,45,25]: 

u(t) = ur + A
t2(t − T )2

(T /2)4
sin

(
2π

T
(3t + T )

)
, t ∈ [0, T ] (33)

where A = 0.2ur and T = 6.4dr/ur refer to the maximum gust amplitude and duration of the gust, respectively. Three types 
of DA experiments are performed in this study. In section 5.1, the initial condition and the direction of the gust for a 
reference state are assumed to be known. The direction of the gust is the same than that of the vortex shedding (in the x
coordinate direction). However, the reference temporal evolution of the gust is considered to be unknown. Accordingly, the 
aim of the DA procedure consists in reconstructing an unsteady and uniform inlet velocity, and the dimension of the control 
vector γ in (2) is dim(γ ) = 2 · 103. In sections 5.2 and 5.3, we consider that both the reference temporal evolution of the 
incoming gust and the reference initial flow field are unknown, and dim(γ ) = 5.7 · 104. Finally, in section 5.4, the reference 
gust has an arbitrary direction, and DA is used to recover the non-uniform and unsteady boundary conditions and the initial 
flow field of the reference run. In this case, dim(γ ) = 4.4 · 105, the reference run is chosen so that the incoming gust has 
an incidence angle to the direction of the vortex shedding of 45◦ . For all these configurations, the estimated run is chosen 
without incoming gust (uniform and steady boundary conditions).

Various types of observations of the reference run are considered. In sections 5.1, 5.2 and 5.4, the pressure distribution 
around the cylinder C P (θ) of the reference run is observed. This quantity is defined by: 

C P (θ) = p(θ) − pr
1
2ρru2

r
(34)

where ρr and pr are reference density and pressure respectively, p(θ) refers to the pressure on the periphery of the cylinder 
at angular coordinate θ (the origin is taken at the center of the cylinder). 30 measurement points are considered [46]. The 
observation of the aerodynamic coefficients CL and C D is performed in section 5.3. These coefficients are also used to 
evaluate the reconstruction of the reference state, and their expression is given by: 

C D = f · ex
1
2ρru2

r dr
, CL = f · e y

1
2ρru2

r dr
, f =

∫
�

(−pI + τ ) · ndS (35)

where ex and e y are the unit vectors in the x and y coordinate directions, � is the boundary of the cylinder, and the 
components of the symmetric matrix τ are given in (30). Finally, the velocity field of the reference evolution at all control 
volumes of the computational domain is observed in sections 5.3 and 5.4. The time interval between two observations is 
always 0.2dr/ur , except in one DA experiment of section 5.3 where the reference state is observed continuously in time. In 
all the figures that illustrate the temporal evolution of the inlet velocity or that of the coefficients CL and C D , the frequency 
of the symbols coincides with that of observations, except in the second row of Fig. 19. A summary of the DA experiments 
performed in this paper is given in Table 2.

In addition to the cost function J defined in (6), two other indicators are considered to evaluate the reconstruction of 
the reference flow obtained with the different DA procedures. The first one is the cost function J ob defined by 

J ob =
N∑

n=0

1

2
‖yn − h(qn)‖2 (36)

where ‖ · ‖ denotes the Euclidean norm. The cost function J ob measures only the discrepancies between the observations of 
the reference flow and the estimated one, without prior term, contrary to J . Another indicator, εRM S E , is used to quantify 
the discrepancies between the estimated and reference velocity fields over the whole computational domain, thus enabling 
a global evaluation of the reconstruction. It is defined by 

εRM S E =
(

N∑
n=0

‖u(r)
n − u(e)

n ‖2 +
N∑

n=0

‖v(r)
n − v(e)

n ‖2

) 1
2

(37)

where un and vn refer to the x-wise and y-wise components of the velocity vector over the whole computational domain 
at time t = tn , the superscripts (r) and (e) are introduced to distinguish between the reference and estimated flow fields 
respectively. The values of J , J ob and εRM S E are generally compared to their values at the beginning of the assimilation 
procedure, J0, J ob

0 and εRM S E
0 respectively.
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Table 2
Summary of the different DA experiments performed in this paper, which are characterized by the control vector γ (the corresponding section is also 
reported), observations of the reference state yn (aerodynamic coefficients, pressure distribution around the cylinder or whole velocity field), the DA 
scheme, the relative standard deviations σ (ob) , σ ( f f ) and σ (ic) associated to observation, boundary (far-field) and initial conditions statistics respectively, 
the number Nen of members in the ensemble, and the intensity κ of the localization.

γ (section) yn Scheme σ (ob) σ ( f f ) σ (ic) Nen κ

Uniform and unsteady 
boundary conditions (5.1)

C P (θ) 4DVar [10−3,10−1] [10−3,10−1]
EnKS [10−3,10−1] [10−3,10−1] [50,100] ∅, [1,2]
4DEnVar [10−3,10−1] [10−3,10−1] [20,100]

Initial condition + uniform 
and unsteady boundary 
conditions (5.2 and 5.3)

CL , C D 4DVar 10−2 10−1.5 10−2

4DEnVar 10−2 10−1.5 10−2 200
C P (θ) 4DVar [10−2,10−1] [10−2,10−1] [10−2.5,10−2]

EnKS [10−2,10−1] [10−2,10−1] [10−2.5,10−2] [100,200] ∅, [1,2]
4DEnVar [10−2,10−1] [10−2,10−1] [10−2.5,10−2] [20,200]

u, v 4DVar 10−2 10−1.5 10−2

4DEnVar 10−2 10−1.5 10−2 200

Initial condition +
non-uniform and 
unsteady boundary 
conditions (5.4)

C P (θ) 4DVar 10−2 10−1.5 10−2

4DEnVar 10−2 10−1.5 10−2 200
u, v 4DVar 10−2 10−1.5 10−2

4DEnVar 10−2 10−1.5 10−2 200

Fig. 2. Results obtained with the 4DVar method for gust reconstruction: temporal evolution of the inlet velocity (first column) and coefficients C D (second 
column) and CL (third column) for reference (©), estimated (- - -) and assimilated (—) runs. Different observation and prior statistics are investigated: 
σ (ob) = 10−2 and σ ( f f ) = 10−1.5 (first row), and σ (ob) = 10−1 and σ ( f f ) = 10−2 (second row).

5. Results of data assimilation experiments

5.1. Uniform and unsteady gust reconstruction

In this section, the control vector γ is formed by the uniform and unsteady inlet boundary velocity u∞(t), with dim(γ ) =
2 · 103. The reference and estimated runs are initialized with the same flow field. The pressure distribution around the 
cylinder is observed. First, we consider results obtained with the 4DVar method that are reported in Figures 2–4. The 
reconstruction of the reference flow is illustrated in Fig. 2 for two sets of relative variances σ (ob) and σ ( f f ) associated to 
observation and prior statistics (far-field conditions) respectively. When σ (ob) = 10−2 and σ ( f f ) = 10−1.5 (Figs. 2(a)–2(c)), 
starting from a steady inlet velocity for the estimated run, the 4DVar algorithm successfully reconstructs the unsteady profile 
(33) and fits well the reference temporal evolution of the aerodynamic coefficients CL and C D . In the case σ (ob) = 10−1
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Fig. 3. Results obtained with the 4DVar method for gust reconstruction: (a) reduction in the value of the cost function J ob/ J ob
0 at the end of the optimization 

procedure for different relative standard deviations σ (ob) and σ ( f f ) associated to observation and prior statistics respectively; (b) cost functions J (black 
lines) and J ob (grey lines) versus the iteration of the optimization procedure for σ (ob) = 10−1 and σ ( f f ) = 10−2 (- · - ·), σ (ob) = 10−2 and σ ( f f ) = 10−1.5

(—), and in the case of perfect observations ( J = J ob , · · · · · · ).

Fig. 4. Results obtained with the 4DVar method for gust reconstruction: dimensionless vorticity (left column) and pressure (right column) fields at tur/dr = 8
for reference (first row), estimated (second row) and assimilated (third row) runs, σ (ob) = 10−2 and σ ( f f ) = 10−1.5.

and σ ( f f ) = 10−2 (Figs. 2(d)–2(f)), the weight of prior information in the cost function J in (6) is more important than 
that of observations, and the assimilated solution is still far from the reference one. Fig. 3(b) illustrates the evolution of 
the cost functions J and J ob in (36) during the optimization procedure for both situations. In the case σ (ob) = 10−2 and 
σ ( f f ) = 10−1.5, the optimization procedure achieves a reduction by 3.5 orders of magnitude in the value of the cost function 
J ob in 18 iterations. On the other hand, when σ (ob) = 10−1 and σ ( f f ) = 10−2, J ob/ J ob

0 � 0.28 at the end of the optimization 
process. For the sake of comparison, the case where perfect observations are considered is also reported in Fig. 3(b), and 
a reduction by almost 7 orders of magnitude in the value of the cost function J ob is then achieved in 18 iterations. The 
influence of observation and prior statistics on the results in terms of error reduction J ob/ J ob

0 is further investigated in 
Fig. 3(a). As expected, the reference solution can not be recovered when σ (ob)/σ ( f f ) � 1, i.e. with too noisy observations 
and high confidence in the prior estimate, and the reconstruction improves as σ (ob) decreases and σ ( f f ) increases. The 
good reconstruction of the gust in the case where σ (ob) = 10−2 and σ ( f f ) = 10−1.5, which will be considered as reference 
values in the rest of this section, can be also visualized in Fig. 4 where is reported the pressure field at tur/dr = 8 for 
the reference, estimated and assimilated runs. The gust does not seem to significantly interact with the detached vortices, 
however, it slightly affects the repartition of vorticity around the cylinder.

We now address the use of the EnKS to perform the assimilation. First, the sensitivity of the results of the assimilation 
procedure, in terms of error reduction J ob/ J ob

0 , with respect to the size Nen of the ensemble and to the relative variances 
σ (ob) and σ ( f f ) is studied in Figs. 5(a)–5(b). As with the 4DVar method, it appears that the choice of statistics affects the 
quality of the reconstruction. However, the way the results depend on these statistics when the EnKS is used is not always 
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Fig. 5. Results obtained with the EnKS for gust reconstruction: (a)–(b) reduction in the value of the cost function J ob/ J ob
0 when the EnKS is used one time 

with (a) Nen = 50 or (b) Nen = 100 for different relative standard deviations σ (ob) and σ ( f f ) associated to observation and ensemble statistics respectively; 
(c) reduction in the value of the cost function J ob/ J ob

0 obtained with Nrn direct runs. The EnKS is used either one time with Nrn = Nen (�) or iteratively 
with Nrn = Nen × i, where i is the iteration number and Nen = 50 (�) or Nen = 100 (+), σ (ob) = 10−2 and σ ( f f ) = 10−1.5.

Fig. 6. Results obtained with the EnKS for gust reconstruction: temporal evolution of the inlet velocity (first column) and coefficients C D (second column) 
and CL (third column) for reference (©), estimated (- - -) and assimilated (—) runs. The EnKS is used iteratively with Nen = 50 (first row) or Nen = 100
(second row), in both cases the total number of direct runs for the assimilation is Nrn = 200, σ (ob) = 10−2 and σ ( f f ) = 10−1.5.

intuitive contrary to 4DVar. If the weight of observations is relatively too important (σ (ob)/σ ( f f ) � 1), the analysis step 
(16) entails spurious updates and a drastic reduction of the ensemble variance, potentially leading to filter divergence, and 
no satisfactory error reduction can be obtained. This phenomena may be amplified by finite-ensemble-size effects. Results 
improve when σ (ob) increases and σ ( f f ) decreases, i.e. when the weight of prior information in the assimilation process 
increases with respect to that of observations. However, though the ratio σ (ob)/σ ( f f ) has to be sufficiently high to ensure 
the stability of the EnKS, the value of σ ( f f ) can not be too low either compared to that of σ (ob) if we want the observations 
to be taken into account in the assimilation process. In that respect, the EnKS appears to be more sensitive to observation 
and ensemble (or prior) statistics than the 4DVar scheme. This may be problematic since the determination of proper prior 
statistics is a challenging topic [47,48]. As expected, Figs. 5(a)–5(b) also illustrate that the stability of the EnKS and the 
results slightly improve when the size of the ensemble increases. In Fig. 5(c), the sensitivity of the results with respect 
to the size of the ensemble is further investigated. For ensemble size Nen ≥ 100, there is no significant improvement in 
the results in terms of error reduction when the EnKS is used one time. On the other hand, for a same number Nrn of 
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Fig. 7. Results obtained with the EnKS for gust reconstruction: temporal evolution of the inlet velocity for reference (©), estimated (- - -) and assimilated 
(—) runs. The EnKS is used iteratively with Nen = 50 and 4 iterations (Nrn = 200), σ (ob) = 10−2 and σ ( f f ) = 10−1.5. The localization procedure described 
in section 3.3 is used with either (a) κ = 1 or (b) κ = 2.

Fig. 8. Results obtained with the 4DEnVar method for gust reconstruction: (a)–(b) reduction in the value of the cost function J ob/ J ob
0 when the 4DEnVar 

is used one time with (a) Nen = 50 or (b) Nen = 100 for different relative standard deviations σ (ob) and σ ( f f ) associated to observation and ensemble 
statistics respectively; (c) reduction in the value of the cost function J ob/ J ob

0 obtained with Nrn direct runs. The 4DEnVar algorithm is used either one time 
with Nrn = Nen (�) or iteratively with Nrn = Nen × i, where i is the iteration number and Nen = 20 (×), Nen = 50 (�) or Nen = 100 (+), σ (ob) = 10−2 and 
σ ( f f ) = 10−1.5.

direct runs performed during the complete assimilation process, the value of the cost function J ob continues to decrease 
when the EnKS is used iteratively (see Table 1). Here, for a total number of direct runs Nrn = 200, the reduction in the 
value of this cost function is at least 19 times greater when the EnKS is used iteratively with Nen = 50 or Nen = 100 than 
in the case where the EnKS is used one time with Nen = 200. As illustrated in Fig. 6, using iteratively the EnKS allows a 
reconstruction of the reference temporal evolution of the coefficients CL and C D that is comparable to that obtained with 
the 4DVar method. The gust is also satisfactorily recovered with Nen = 100. However, for Nen = 50, finite-ensemble-size 
effects are significant and lead to spurious oscillations in the reconstruction of the inlet velocity. In order to enhance the 
quality and the smoothness of the assimilated solution when Nen = 50, the localization procedure described in section 3.3
is used to obtain the results illustrated in Fig. 7. The smoothness of the reconstructed inlet velocity is improved compared 
to the results of Fig. 6(a). The best reconstruction seems to be obtained with κ = 2 (less severe localization).

Figs. 8–9 report results obtained with the 4DEnVar algorithm. The sensitivity of the results in terms of error reduction 
J ob/ J ob

0 with respect to both observation and ensemble statistics is first studied in Figs. 8(a)–8(b). As with the 4DVar 
scheme, the reconstruction is better with lower values for σ (ob) and higher values for σ ( f f ) , and contrary to the EnKS, the 
4DEnVar method can be used with σ (ob)/σ ( f f ) � 1, i.e. with almost perfect observations. Thus, the 4DEnVar scheme seems 
more robust with respect to observation and ensemble statistics than the EnKS. The sensitivity of the 4DEnVar scheme with 
respect to the size of the ensemble is investigated in Fig. 8(c). It appears that the 4DEnVar algorithm can be used with 
Nen = 20, whereas it was checked in this study that the EnKS is not able to produce an assimilated state with Nen < 50 in 
this configuration. As the EnKS, the 4DEnVar algorithm is tested in an iterative form, which proves to be superior (at least 
with Nen = 50 or Nen = 100) than using the 4DEnVar scheme only one time with bigger ensembles. In particular, using 
4DEnVar with Nen = 50 and 4 iterations of the algorithm allows to obtain a reduction in the value of the cost function J ob

that is 16 times greater than when using 4DEnVar one time with Nen = 200. The reconstruction of the reference temporal 
evolution of the inlet velocity and that of the coefficients CL and C D is illustrated in Fig. 9 for different ensemble sizes, 
the 4DEnVar algorithm is used iteratively. Even with Nen = 20, the reconstruction is correct, and results improve when the 
iterations are performed with larger ensembles. For Nen = 50 and Nen = 100, the results are comparable with those obtained 
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Fig. 9. Results obtained with the 4DEnVar method for gust reconstruction: temporal evolution of the inlet velocity (first column) and coefficients C D (second 
column) and CL (third column) for reference (©), estimated (- - -) and assimilated (—) runs. The 4DEnVar algorithm is used iteratively with Nen = 20 (first 
row), Nen = 50 (second row) or Nen = 100 (third row), in all cases the total number of direct runs for the assimilation is Nrn = 200, σ (ob) = 10−2 and 
σ ( f f ) = 10−1.5.

with the 4DVar method. The robustness of the 4DEnVar scheme with respect to the size of the ensemble and to its statistics 
is confirmed in section 5.2.

However, as with the EnKS, the error reduction J ob/ J ob
0 achieved at the end of the assimilation procedure is not as large 

as for the 4DVar scheme for the same statistics and computational cost. The χ2-test [49–51] can also be considered to 
assess and compare the assimilated solutions obtained with the different DA schemes. If the nonlinearities in the dynamics 
and the observations are moderate and the Gaussian assumption is valid, and if both prior and observation statistics are 
correctly modeled, the value of the quantity χ2 = 2 J (a)/Nob should be close to 1, where Nob refers to the dimension 
of the observations multiplied by the number of observation times and J (a) is the value of the cost function in (6) for 
the assimilated state. Since the amplitude of the gust (33) corresponds to a perturbation of 20% of the reference velocity 
ur , we choose to compare the DA schemes with σ ( f f ) = 10−1 in order to correctly reflect prior uncertainties, the value 
of σ (ob) is arbitrarily fixed to 10−2. With this choice of parameters, we obtain χ2 = 1.3 with the 4DVar scheme and a 
computational cost equivalent to a total number of direct runs Nrn = 100. This result is satisfactory given the nonlinearity 
of the Navier–Stokes equations (28)–(31) and confirms both the validity of the hypotheses of the DA problem and the quality 
of the assimilated solution obtained by 4DVar. On the other hand, χ2 = 77.9 for the EnKS and χ2 = 47.0 for the 4DEnVar 
scheme with the same computational cost, which indicates that the assimilated states thus obtained are still relatively far 
from the optimal one with Nrn = 100. However, as illustrated in Figs. 5(c) and 8(c), using the EnKS and 4DEnVar schemes in 
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Fig. 10. Results obtained with the 4DVar method for gust and initial condition reconstruction: temporal evolution of the inlet velocity (first column) and 
coefficients C D (second column) and CL (third column) for reference (©), estimated (- - -) and assimilated (—) runs. Different sets of observation and prior 
statistics are investigated: σ (ob) = 10−1.5, σ ( f f ) = 10−1.5 and σ (ic) = 10−2.5 (first row), and σ (ob) = 10−2, σ ( f f ) = 10−1.5 and σ (ic) = 10−2 (second row).

Fig. 11. Results obtained with the 4DVar method for gust and initial condition reconstruction: (a)–(b) reduction in the value of the cost function J ob/ J ob
0

at the end of the optimization procedure for different relative standard deviations σ (ob) and σ ( f f ) with (a) σ (ic) = 10−2.5 or (b) σ (ic) = 10−2; (c) cost 
functions J (black lines) and J ob (grey lines) versus the iteration of the optimization procedure for σ (ob) = 10−2, σ ( f f ) = 10−1.5 and σ (ic) = 10−2 (- · - ·), 
σ (ob) = 10−1.5, σ ( f f ) = 10−1.5 and σ (ic) = 10−2.5 (—), and in the case of perfect observations ( J = J ob , · · · · · · ).

an iterative way allows to achieve a further error reduction (but it is more difficult to use the χ2-test in this case since the 
prior estimate changes along the iterations, thus making comparisons between the different DA schemes less consistent).

5.2. Gust and initial condition reconstruction

In this section, we consider the case where both the inlet velocity and the initial condition of the reference run are poorly 
known. Thus, the control vector γ in the assimilation procedure is formed by the uniform and unsteady inlet velocity u∞(t)
and the complete initial field, its dimension is dim(γ ) = 5.7 · 104. The reference run corresponds to an inlet velocity given 
by (33), and the initial field contains a smaller gust (see Fig. 10(b) or 10(e)). The estimated run is chosen with a steady inlet 
velocity, the initial field contains no gust, and there is a shift in the vortex shedding compared to the reference evolution 
(see Fig. 10(c) or 10(f)). As in section 5.1, the pressure distribution around the cylinder C P (θ) of the reference evolution is 
observed. Figs. 10–12 illustrate results obtained with the 4DVar method. It appears from the comparison between Figs. 3
and 11 that the dimension of the control vector strongly affects the rate of convergence of the optimization procedure. 
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Fig. 12. Results obtained with the 4DVar method for gust and initial condition reconstruction: dimensionless vorticity field at tur/dr = 16 (left column) and 
pressure field at tur/dr = 8 (right column) for reference (first row), estimated (second row) and assimilated (third row) runs, σ (ob) = 10−2, σ ( f f ) = 10−1.5

and σ (ic) = 10−2.

Fig. 13. Results obtained with the EnKS for gust and initial condition reconstruction: (a)–(b) reduction in the value of the cost function J ob/ J ob
0 when the 

EnKS is used one time with Nen = 100 for different relative standard deviations σ (ob) and σ ( f f ) with (a) σ (ic) = 10−2.5 or (b) σ (ic) = 10−2; (c) reduction 
in the value of the cost function J ob/ J ob

0 when the EnKS is used iteratively with σ (ob) = 10−1.5, σ ( f f ) = 10−1.5, σ (ic) = 10−2.5 and Nen = 100 (+) or 
Nen = 200 (©).

Here, after 73 forward/backward integrations of the direct and adjoint problems, the optimization procedure achieves a 
reduction by 4 orders of magnitude in the value of the cost function J ob in the case of perfect observations, while a 
reduction by 7 orders of magnitude in 18 iterations was obtained in section 5.1. The impact of observation and prior 
statistics on the results is examined in Figs. 10–11. Similarly to the results of section 5.1, the reconstruction of the reference 
evolution is satisfactory if the relative variances σ ( f f ) and σ (ic) associated to far-field and initial conditions respectively 
are sufficiently high and the relative variance σ (ob) associated to observation statistics sufficiently low. Using σ (ob) = 10−2, 
σ ( f f ) = 10−1.5 and σ (ic) = 10−2 (see Figs. 10(d)–10(f)), the reconstruction of the inlet velocity is very good and the reference 
temporal evolution of the coefficients CL and C D is almost perfectly recovered, excepted at the very beginning of the 
solution where spurious oscillations are present. This does not question the correct implementation of the adjoint code, 
since the assimilated solution passes through the reference values at observation times in the case of perfect observations. 
The influence of the frequency of observation on these oscillations is studied in section 5.3. Fig. 12 indicates that the 4DVar 
algorithm has successfully modified the shift in the vortex shedding and confirms the proper reconstruction of the gust.

Results obtained with the EnKS are illustrated in figures 13–15. The sensitivity of the results in terms of error reduction 
J ob/ J ob

0 with respect to the relative variances σ (ob) , σ (ic) and σ ( f f ) is studied in Figs. 13(a)–13(b). As in section 5.1, the 
statistics of the ensemble and those of the observations have a strong influence on the stability of the EnKS, and for some 
values of these relative variances, the EnKS is not able to produce an assimilated state (no error reduction). Again, it appears 
that, for fixed observation-error statistics, the variances σ (ic) and σ ( f f ) have to be low enough in order to stabilize the EnKS 
algorithm, while these variances can not be too low either if we want the observations to be used to improve the estimated 
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Fig. 14. Results obtained with the EnKS for gust and initial condition reconstruction: temporal evolution of the inlet velocity (first column) and coefficients 
C D (second column) and CL (third column) for reference (©), estimated (- - -) and assimilated (—) runs. The EnKS is used iteratively with Nen = 100
(first row) or Nen = 200 (second row), in both cases the total number of direct runs for the assimilation is Nrn = 400, σ (ob) = 10−1.5, σ ( f f ) = 10−1.5 and 
σ (ic) = 10−2.5.

inlet or initial conditions. From this study, we set σ (ob) = 10−1.5, σ ( f f ) = 10−1.5, σ (ic) = 10−2.5 for the results illustrated 
in Figs. 13(c) and 14–15. The convergence of the EnKS, when used iteratively, is reported in Fig. 13(c) for Nen = 100 et 
Nen = 200. Assimilation experiments with Nen < 75 were also conducted, but failed. As for the 4DVar method, if we compare 
Figs. 5(c) and 13(c) for a same number of direct runs Nrn , it appears that the dimension of the control vector γ has a strong 
influence on the convergence of the EnKS. Beyond Nrn = 400, there is no real cost-effective improvement of the results. The 
assimilated trajectories obtained with Nrn = 400 are reported in Fig. 14. The reconstruction of the temporal evolution of the 
coefficients CL and C D is very good on the whole, even if it is not as good as with the 4DVar method. However, spurious 
oscillations due to finite-ensemble-size effects in the assimilated temporal evolution of the inlet velocity can be noticed, in 
particular for Nen = 100. As in section 5.1, the localization procedure of section 3.3 is tested to improve the quality of the 
reconstruction by the EnKS. Fig. 15 illustrates results for two ensemble sizes, and for κ = 1 and κ = 2. Here, contrary to 
section 5.1, the best results seem to be achieved with the most severe localization (κ = 1). This suggests a lack of robustness 
in the tuning of the localization procedure.

We now consider results obtained with the 4DEnVar algorithm that are reported in Figs. 16–17. The sensitivity of the 
results (in terms of error reduction J ob/ J ob

0 ) with respect to ensemble and observation statistics is studied in Figs. 16(a)–16b 
when the 4DEnVar algorithm is used one time with Nen = 100. As in section 5.1, it appears that the 4DEnVar scheme is more 
robust with respect to these statistics compared to the EnKS and that it can be used in a context of perfect observations. 
It also appears that better results are obtained if the value of σ (ic) is not too important compared to that of σ ( f f ) . This 
behavior is not observed in 4DVar results, and the facts that the assimilated solution is searched in a subspace spanned by 
an ensemble of realizations in the 4DEnVar scheme and that the estimated solution corresponds to greater perturbations of 
the far-field conditions of the reference flow than of its initial condition may explain this difference. Fig. 16(c) illustrates the 
convergence of the 4DEnVar algorithm, when used iteratively, with ensembles of size from Nen = 20 to Nen = 200. A strong 
result is that 4DEnVar is able to produce an assimilated state with only Nen = 20 while the dimension of the control vector 
is dim(γ ) = 5.7 · 104. Even if the 4DEnVar scheme converges faster when bigger ensembles are used, this suggests that DA 
can be performed while only very few direct runs are affordable, and that the quality of the assimilation is, to a certain 
extent, tunable, with the possibility to perform further iterations of the algorithm with very small ensembles. The difference 
in the robustness with respect to the ensemble size between the 4DEnVar scheme and the EnKS stems from the difference 
in the analysis step. The update (16) of the EnKS requires a reasonable estimate of the spatio-temporal covariance matrix 
of prior statistics, which is unrealistic to achieve with Nen = 20. On the other hand, the optimization-based analysis step 
of the 4DEnVar allows to extract an assimilated state even from limited information. As for the 4DVar method and the 
EnKS, the rate of convergence of the 4DEnVar algorithm in Fig. 16(c) is smaller than in Fig. 8(c). Fig. 17 confirms that it is 
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Fig. 15. Results obtained with the EnKS for gust and initial condition reconstruction: temporal evolution of the inlet velocity for reference (©), estimated 
(- - -) and assimilated (—) runs. The EnKS is used iteratively with Nen = 100 (first row) or Nen = 200 (second row), in both cases the total number of direct 
runs for the assimilation is Nrn = 400, σ (ob) = 10−1.5, σ ( f f ) = 10−1.5 and σ (ic) = 10−2.5. The localization procedure described in section 3.3 is used with 
either κ = 1 (first column) or κ = 2 (second column).

Fig. 16. Results obtained with the 4DEnVar method for gust and initial condition reconstruction: (a)–(b) reduction in the value of the cost function J ob/ J ob
0

when the 4DEnVar algorithm is used one time with Nen = 100 for different relative standard deviations σ (ob) and σ ( f f ) with (a) σ (ic) = 10−2.5 or (b) 
σ (ic) = 10−2; (c) reduction in the value of the cost function J ob/ J ob

0 when the 4DEnVar algorithm is used iteratively with σ (ob) = 10−1.5, σ ( f f ) = 10−1.5, 
σ (ic) = 10−2.5 and Nen = 20 (�), Nen = 50 (�), Nen = 100 (+) or Nen = 200 (©).

better to use the 4DEnVar scheme with large ensembles, however, as mentioned above, 4DEnVar is capable of dealing with 
very small ensembles and to provide significant improvement with respect to the estimated state in this case. The results 
obtained with Nen = 200 and two iterations of the algorithm are very good, however, they are still not as good as those 
obtained with the 4DVar method. As with the EnKS, there is no real cost-effective improvement of the reconstruction of the 
reference evolution beyond Nen = 400. The fact that the adjoint method furnishes the gradient of the Lagrangian in (7) with 
respect to all the components of the vector γ in (2), whereas the EnKS and 4DEnVar algorithms rely on the propagation of 
ensembles of size Nen � dim(γ ), may explain that the 4DVar scheme can achieve a greater error reduction J ob/ J ob

0 than 
the EnKS and the 4DEnVar for similar computational cost. Nevertheless, the error reduction obtained with the 4DEnVar 
scheme, or with the EnKS after careful tuning of observation and prior statistics, is sufficiently large to produce satisfactory 
assimilated states.
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Fig. 17. Results obtained with the 4DEnVar method for gust and initial condition reconstruction: temporal evolution of the inlet velocity (first column) and 
coefficients C D (second column) and CL (third column) for reference (©), estimated (- - -) and retrieved at the end of the DA procedure (—) runs. The 
4DEnVar algorithm is used iteratively with Nen = 20 (first row), Nen = 100 (second row) or Nen = 200 (third row), in all cases the total number of direct 
runs for the assimilation is Nrn = 400, σ (ob) = 10−1.5, σ ( f f ) = 10−1.5 and σ (ic) = 10−2.5.

5.3. Data assimilation experiments with various types of observations

The setup of the DA experiments of this section is identical to that in section 5.2, and two other types of observa-
tions of the reference state are considered: the aerodynamic coefficients CL and C D , and the velocity field over the whole 
computational domain. Results obtained with the 4DVar scheme are reported in Figs. 18(a) and 19. The dimension of the 
observations has a strong influence on the rate of convergence of the optimization procedure (Fig. 18(a)), at least in the 
first iterations. When the coefficients CL and C D are considered, the dimension of the observations yn is 2, and the opti-
mization procedure converges at the fastest rate (in the first iterations), while dim(yn) = 2.8 · 104 when the complete flow 
field is observed, and the slowest convergence rate is observed in this case. However, it appears from Fig. 18(a) that the 
flaw in the observations due to stochastic perturbations tends to moderate the differences in the error reduction J ob/ J ob

0
between the different types of observations at the end of the optimization procedure, and a relatively similar final error 
reduction between 2 and 3 orders of magnitude is obtained for the different observations. It has been checked that in the 
case of perfect observations (results not shown here for the sake of brevity) the error reduction J ob/ J ob

0 reached at the 
end of the optimization procedure is much more important in the case where the coefficients CL and C D are observed 
(reduction by 6 orders of magnitude) than in the case where the whole velocity field is observed (reduction by 3 orders of 
magnitude), while results obtained with the pressure distribution are intermediate (reduction by 4 orders of magnitude). As 
illustrated in Fig. 19, a good convergence of the optimization procedure does not necessarily imply a good reconstruction. 
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Fig. 18. Results for gust and initial condition reconstruction: reduction in the value of the cost function J ob/ J ob
0 versus (a) the iteration of the optimization 

procedure in the 4DVar method or (b) the number Nrn of direct runs performed with the 4DEnVar scheme. Different types of observations of the reference 
evolution are considered: the aerodynamic coefficients CL and C D (· · · · · · , �), the pressure distribution around the cylinder C P (θ) (—, ©) and the complete 
velocity field (- - -, �). A complementary experiment is performed with the 4DVar method where the coefficients CL and C D are observed continuously in 
time (- · - ·). σ (ob) = 10−2, σ ( f f ) = 10−1.5 and σ (ic) = 10−2 for these experiments.

Table 3
Results obtained with the 4DVar and 4DEnVar schemes for gust and initial condition re-
construction: reduction in the error εRM S E defined in (37) obtained with different types of 
observations, the corresponding DA experiments are also illustrated in Figs. 18–20.

Scheme

4DVar 4DEnVar

yn CL , C D C P (θ) u, v CL , C D C P (θ) u, v
εRM S E /εRM S E

0 0.83 0.63 0.04 0.95 0.70 0.44

In Figs. 19(b)–19(c), the reference temporal evolution of the coefficients CL and C D , which are directly observed, is perfectly 
recovered, excepted at the very beginning of the assimilation window where spurious oscillations are noticed, this point is 
further investigated in the following. However, the optimization procedure has not recovered the reference temporal evo-
lution of the inlet velocity, and the amplitude of the gust is still largely underestimated (Fig. 19(a)). This means that the 
observation of the integrated quantities CL and C D does not bring enough information to reconstruct an unsteady inlet 
velocity. The reconstruction of the gust is better when the pressure distribution around the cylinder is observed (Fig. 10), 
but the best results are obtained when the complete velocity field is observed (Figs. 19(g)–19(i)). The influence of the type 
of observations on the quality of the reconstruction is further illustrated in Table 3 where is reported the reduction in the 
value of the global error indicator εRM S E defined in (37) reached at the end of the different DA experiments discussed 
above. As expected, in terms of error on the whole velocity field, the best results are achieved when the latter is directly 
observed, while the poorest global reconstruction is obtained when the coefficients CL and C D are observed. A complemen-
tary DA experiment is performed where the coefficients CL and C D are observed continuously in time (Figs. 19(d)–19(f)). 
As expected, the spurious oscillations at the beginning of the assimilation window that were noticed in the present section 
and section 5.1 are no longer present. This confirms that these oscillations are only due to a finite frequency of observation. 
It also appears that increasing the frequency of observation allows to improve the reconstruction of the gust.

The sensitivity of the results obtained with the 4DEnVar scheme with respect to the type of observations is now in-
vestigated in Figs. 18(b) and 20. As for the 4DVar method, the rate of convergence is slower when the complete velocity 
field is observed than in the case where observations of smaller dimension are performed. In Figs. 20(b)-20(c), the temporal 
evolution of the coefficients CL and C D , which are directly observed, is very well reconstructed. In contrast, the evolution 
of the inlet velocity is poorly recovered (Fig. 20(a)), which confirms the conclusions drawn from the 4DVar results. Results 
obtained with the 4DEnVar scheme when the velocity field is observed over the whole computational domain are reported 
in Figs. 20(d)–20(f). The reconstruction of the reference temporal evolution of the drag coefficient C D is correct, but that 
of the reference evolution of the lift coefficient CL is less satisfactory, in particular at the beginning of the assimilation 
window. When interpreting this relatively poor performance, one has to keep mind that in this case the cost function J
in (6) or (22) measures the discrepancies between the observations of the reference state and the estimated state over the 
whole computational domain, whereas the coefficient CL represents a relatively local quantity. In that respect, the 4DVar 
scheme seems superior, since it achieves an excellent reconstruction of the evolution of the coefficient CL even when the 
complete velocity field is observed. The better performances of 4DVar as compared to the 4DEnVar scheme in terms of 
global reconstruction are confirmed in Table 3. Nevertheless, the 4DEnVar scheme achieves a good reconstruction of the 
incoming gust, which is better than that obtained in the case where the coefficients CL and C D or the pressure distribution 
C P (θ) (Fig. 17) are observed, as for the 4DVar scheme.



274 V. Mons et al. / Journal of Computational Physics 316 (2016) 255–280

Fig. 19. Results obtained with the 4DVar method for gust and initial condition reconstruction: temporal evolution of the inlet velocity (first column) and 
coefficients C D (second column) and CL (third column) for reference (©), estimated (- - -) and assimilated (—) runs. Different types of observations of the 
reference evolution are considered: the aerodynamic coefficients CL and C D (first and second rows) or the complete velocity field (third row). Observations 
are performed continuously in time for the results shown in the second row. σ (ob) = 10−2, σ ( f f ) = 10−1.5 and σ (ic) = 10−2 for these experiments.

5.4. Non-uniform and unsteady boundary conditions and initial field reconstruction

We now address the case where the gust has an arbitrary direction. Boundary conditions are thus unsteady and non-
uniform, and, as in sections 5.2 and 5.3, we suppose that the reference initial field is also poorly known. Accordingly, the 
dimension of the control vector γ in (2) is dim(γ ) = 4.4 · 105. The reference run corresponds to an incoming gust with an 
incidence angle to the direction of the vortex shedding of 45◦ , and the pressure distribution C P (θ) is observed. The 4DVar 
and 4DEnVar schemes are used to perform the assimilation (Figs. 21–23). Even if the 4DVar algorithm achieves a greater 
global error reduction, both methods satisfactorily reconstruct the reference temporal evolution of the coefficients CL and 
C D (Figs. 21–22). It is worth noting that in this configuration dim(γ )/Nrn ≈ 103, with Nrn the total number of direct runs 
performed with the 4DEnVar scheme. The reconstruction of the gust obtained with the two methods is evaluated in Fig. 23
where is reported the pressure field at two instants for reference, estimated and assimilated runs. Contrary to previous 
sections where boundary conditions are assumed to be uniform, the 4DVar and 4DEnVar schemes correctly recover the 
gust only in a region close to the cylinder and oriented in the direction of the reference gust (third and fourth rows of 
Fig. 23). This means that the 4DVar and 4DEnVar schemes can recover the reference boundary conditions only at locations 
that are aligned in the direction of the flow with the cylinder, i.e. where pressure is measured, since parietal pressure is 
not directly affected by the flow far from the cylinder. Complementary DA experiments are performed where the complete 
velocity field is observed. The corresponding results are reported in the fifth and sixth rows of Fig. 23. Since in this case 
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Fig. 20. Results obtained with the 4DEnVar method for gust and initial condition reconstruction: temporal evolution of the inlet velocity (first column) and 
coefficients C D (second column) and CL (third column) for reference (©), estimated (- - -) and assimilated (—) runs. Different types of observations of the 
reference evolution are considered: the aerodynamic coefficients CL and C D (first row) or the complete flow field (second row). σ (ob) = 10−2, σ ( f f ) = 10−1.5

and σ (ic) = 10−2 for these experiments.

Fig. 21. Results obtained with the 4DVar method for non-uniform and unsteady boundary conditions and initial field reconstruction: (a) cost function 
J ob versus the iteration of the optimization procedure; temporal evolution of the coefficients (b) C D and (c) CL for reference (©), estimated (- - -) and 
assimilated (—) runs. σ (ob) = 10−2, σ ( f f ) = 10−1.5 and σ (ic) = 10−2 for this experiment.

information about the flow is available over the whole computational domain, the 4DVar and 4DEnVar schemes can recover 
the reference boundary conditions at all locations, leading to a better reconstruction of the gust. The results illustrated in 
the sixth row of Fig. 23 confirm the ability of the 4DEnVar scheme to deal with both control vectors and observations of 
high dimension.

5.5. Comparisons between data assimilation schemes

Table 4 summarizes results for different DA experiments of previous sections. Concerning the 4DVar scheme, the com-
putational cost Nrn of the complete assimilation procedure in terms of direct runs is evaluated considering that the 
computational cost of solving the adjoint problem is equivalent to that of 4.5 direct runs. Ensemble methods are used 
with Nen = 100 when the pressure distribution C P (θ) is observed in sections 5.1 and 5.2 and Nen = 200 in all other cases 
for the results reported in Table 4. The different DA schemes are compared with similar prior and observation statistics in 
Table 4. For the three DA schemes, the convergence rate of the assimilation procedure, in terms of error reduction J ob/ J ob

0 , 
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Fig. 22. Results obtained with the 4DEnVar method for non-uniform and unsteady boundary conditions and initial field reconstruction: (a) reduction in 
the value of the cost function J ob/ J ob

0 obtained with Nrn direct runs (the 4DEnVar scheme is used iteratively with Nen = 200); temporal evolution of 
the coefficients (b) C D and (c) CL for reference (©), estimated (- - -) and assimilated (—) runs. σ (ob) = 10−2, σ ( f f ) = 10−1.5 and σ (ic) = 10−2 for this 
experiment.

Table 4
Error reduction J ob/ J ob

0 for different DA experiments in this paper that are characterized by the control vector γ (the 
corresponding section is also reported), observations of the reference state yn , the DA scheme and the computational cost 
Nrn of the complete assimilation procedure in terms of direct runs.

γ (section) dim(γ ) yn dim(yn) Scheme Nrn J ob/ J ob
0

Uniform and unsteady 
boundary conditions (5.1)

2.0 · 103 C P (θ) 30 4DVar 100 3.6 · 10−4

EnKS 200 1.8 · 10−3

4DEnVar 200 9.4 · 10−4

Initial condition + uniform 
and unsteady boundary 
conditions (5.2 and 5.3)

5.7 · 104 CL , C D 2 4DVar 400 4.7 · 10−3

4DEnVar 400 1.2 · 10−2

C P (θ) 30 4DVar 400 1.9 · 10−3

EnKS 400 1.8 · 10−2

4DEnVar 400 1.6 · 10−2

u, v 2.8 · 104 4DVar 400 1.4 · 10−2

4DEnVar 600 2.0 · 10−1

Initial condition + 
non-uniform and 
unsteady boundary 
conditions (5.4)

4.4 · 105 C P (θ) 30 4DVar 600 2.1 · 10−3

4DEnVar 600 1.7 · 10−2

u, v 2.8 · 104 4DVar 600 1.6 · 10−2

4DEnVar 600 3.5 · 10−1

generally decreases when the dimension of the control vector or that of observations increases. This is particularly clear if 
we compare results of sections 5.1 and 5.4. In all configurations, for a similar computational cost, the 4DVar scheme achieves 
a greater error reduction than the EnKS or the 4DEnVar scheme. Nevertheless, this does not prevent from a satisfactory re-
construction of the reference trajectory with these methods (see, e.g., Figs. 6, 9 and 22). Even if the DA experiments have 
been conducted so that the required CPU time is similar for the three DA schemes for a given setup, it is worth noting 
that the parallelization of ensemble methods is much more straightforward than for 4DVar. Direct and adjoint solutions 
must be evaluated in a purely sequential way in the 4DVar scheme, while the solutions associated to the different members 
of the ensemble can be calculated simultaneously for the EnKS and the 4DEnVar scheme. In terms of error reduction, the 
performances of the EnKS and 4DEnVar schemes may seem similar, but one has to keep in mind that the statistics of the 
ensemble have to be carefully tuned (Figs. 5 and 13) for the EnKS before obtaining the results reported in Table 4. More-
over, the 4DEnVar scheme appears much more robust with respect to the size of the ensemble than the EnKS. However, an 
advantage of the EnKS compared to both 4DVar and 4DEnVar schemes is to provide the statistics of the assimilated solution. 
Fig. 24 illustrates the posterior statistics associated to far-field conditions obtained with the EnKS for one DA experiment of 
section 5.1 and one of section 5.2. The drastic reduction in the variance of the ensemble (σ ( f f ) = 10−1.5 for the estimated 
run while σ ( f f ) ≈ 10−3 for the assimilated run in the two experiments illustrated in Fig. 24) confirms the convergence of 
the ensemble towards the assimilated solution. However, given the remaining discrepancies between the reconstructed and 
reference inlet velocities (see e.g. Fig. 24(c)), it appears that the EnKS largely underestimates the posterior statistics (σ ( f f )

should be closer to 10−1.5 at the end of the assimilation procedure to correctly reflect the errors between the reference and 
assimilated states). The benefits and drawbacks of the different DA schemes used in this paper are further discussed in the 
following section.
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Fig. 23. Results obtained with the 4DVar and 4DEnVar methods for non-uniform and unsteady boundary conditions and initial field reconstruction: dimen-
sionless pressure field at tur/dr = 8 (left column) and tur/dr = 9.3 (right column) for reference run (first row), estimated run (second row), assimilated 
run obtained with the 4DVar (third row) or 4DEnVar (fourth row) methods when C P (θ) is observed, assimilated run obtained with the 4DVar (fifth row) 
or 4DEnVar (sixth row) methods when the complete velocity field is observed. σ (ob) = 10−2, σ ( f f ) = 10−1.5 and σ (ic) = 10−2 for these experiments.

6. Conclusion

In the present work, three different data assimilation (DA) schemes have been considered within the framework of the 
Navier–Stokes equations. It has been demonstrated that these techniques can be successfully used for the reconstruction 
of initial and boundary conditions for 2D unsteady flows around a cylinder in the presence of coherent gusts at Re = 100. 
Various reference states, control vectors, whose dimension ranges from ≈ 103 to ≈ 105, and types of observations have 
been considered. In all configurations, the variational scheme (4DVar) has achieved the largest error reduction between ob-
servations and estimation for a given computational cost and fixed observation and prior statistics. This may be explained 
by the fact that the adjoint method furnishes the gradient of the cost function that quantifies the discrepancies between 
observations and numerical estimation with respect to all the components of the control vector. On the contrary, the en-
semble Kalman smoother (EnKS) and ensemble-based variational (4DEnVar) scheme rely on the propagation of ensembles 
of size that is largely inferior to the dimension of the control vector to evaluate the sensitivity of the flow solution. Another 
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Fig. 24. Results obtained with the EnKS for gust reconstruction (first row, Nen = 100, Nrn = 200, σ (ob) = 10−2 and σ ( f f ) = 10−1.5) and gust and initial 
condition reconstruction (second row Nen = 200, Nrn = 400, σ (ob) = 10−1.5, σ ( f f ) = 10−1.5 and σ (ic) = 10−2.5): (a) and (c) temporal evolution of the inlet 
velocity for reference (©), estimated (- - -) and retrieved at the end of the DA procedure (—) runs, black lines refer to the mean of the ensemble while grey 
line refer to the mean plus or minus the standard deviation; (b) and (d) relative standard deviation σ ( f f ) for estimated (- - -) and assimilated (—) runs.

advantage of the adjoint method is the physical interpretation of adjoint variables since the latter provide the first-order 
sensitivity of the cost function with respect to a change in the control variables. However, the implementation of the ad-
joint code may require significant efforts, in particular when the direct model is nonlinear or presents discontinuities. On 
the other hand, the EnKS and 4DEnVar schemes are non-intrusive DA methods that are easy to implement. Even if the EnKS 
and 4DEnVar schemes do not achieve an error reduction as significant as 4DVar for a similar computational cost, the recon-
struction of the reference trajectory obtained with these methods can be very satisfactory. These two schemes have been 
tested in an iterative form, and it has been shown that the results thus obtained are better than in the case where only 
one loop on the main algorithm is performed with the same total number of direct runs performed during the assimilation 
procedure.

However, it has been observed that the EnKS may be more sensitive to prior and observation statistics, which are 
generally difficult to characterize, than the 4DVar and 4DEnVar schemes. Nevertheless, in the case where proper prior 
statistics are available, a benefit of the EnKS is to provide posterior statistics and not only an assimilated state. In contrast, 
the 4DEnVar scheme may be used in a deterministic framework and appears to be less sensitive to the statistics of the 
ensemble and to its size than the EnKS. The fact that the analysis step of the EnKS relies on a good estimation of the 
spatio-temporal covariance matrix of prior statistics, while 4DEnVar is primarily an optimization-based scheme, may explain 
the difference in the sensitivity to ensemble characteristics between the EnKS and 4DEnVar methods. Localization and 
inflation techniques may be considered to potentially enhance the robustness of the EnKS, but they introduce supplementary 
parameters that have to be tuned on a case-by-case basis. DA experiments with the 4DEnVar scheme have been successfully 
conducted with small ensembles down to 20 members, illustrating its robustness. Its ability to deal with control vectors and 
data with ensembles containing thousand times less members than the dimension of these quantities has been confirmed 
in the case where non-uniform and unsteady boundary conditions and the initial field are reconstructed from observations 
of the reference velocity field.

The robustness of the 4DEnVar scheme compared to the EnKS and its non-intrusiveness compared to 4DVar make it 
appealing for computational fluid dynamics (CFD) applications. Its use for 3D steady and unsteady flows could be considered 
in future work, possibly along the coupling with surface response-techniques to further decrease the number of direct runs 
performed during the assimilation procedure.



V. Mons et al. / Journal of Computational Physics 316 (2016) 255–280 279

References

[1] J.M. Lewis, S. Lakshmivarahan, S.K. Dhall, Dynamic Data Assimilation: A Least Squares Approach, Encyclopedia of Mathematics and Its Applications, 
vol. 104, Cambridge University Press, 2006.

[2] G. Evensen, Data Assimilation: The Ensemble Kalman Filter, 2nd ed., Springer-Verlag, 2009.
[3] A. Gronskis, D. Heitz, E. Mémin, Inflow and initial conditions for direct numerical simulation based on adjoint data assimilation, J. Comput. Phys. 242 

(2013) 480–497.
[4] H. Kato, A. Yoshizawa, G. Ueno, S. Obayashi, A data assimilation methodology for reconstructing turbulent flows around aircraft, J. Comput. Phys. 283 

(2015) 559–581.
[5] T. Suzuki, Reduced-order Kalman-filtered hybrid simulation combining particle tracking velocimetry and direct numerical simulation, J. Fluid Mech. 

709 (2012) 249–288.
[6] V. Mons, J.-C. Chassaing, T. Gomez, P. Sagaut, Is isotropic turbulence decay governed by asymptotic behavior of large scales? An eddy-damped quasi-

normal Markovian-based data assimilation study, Phys. Fluids 26 (2014) 115105.
[7] F.X. Le Dimet, O. Talagrand, Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects, Tellus 38A (1986) 

97–110.
[8] J.L. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Springer-Verlag, 1971.
[9] R.E. Kalman, A new approach to linear filtering and prediction problems, J. Basic Eng. 82 (1960) 35–45.

[10] P.J. van Leeuwen, G. Evensen, Data assimilation and inverse methods in terms of a probabilistic formulation, Mon. Weather Rev. 124 (1996) 2898–2913.
[11] C.K. Wikle, L.M. Berliner, A Bayesian tutorial for data assimilation, Physica D 230 (2007) 1–16.
[12] J. D’Adamo, N. Papadakis, E. Mémin, G. Artana, Variational assimilation of POD low-order dynamical systems, J. Turbul. 8 (2007) 1–22.
[13] G. Artana, A. Cammilleri, J. Carlier, E. Mémin, Strong and weak constraint variational assimilations for reduced order fluid flow modeling, J. Comput. 

Phys. 231 (2012) 3264–3288.
[14] D.P.G. Foures, N. Dovetta, D. Sipp, P.J. Schmid, A data-assimilation method for Reynolds-averaged Navier–Stokes-driven mean flow reconstruction, 

J. Fluid Mech. 759 (2014) 404–431.
[15] G. Evensen, Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics, J. Geophys. 

Res. 99 (1994) 10143–10162.
[16] C.H. Colburn, J.B. Cessna, T.R. Bewley, State estimation in wall-bounded flow systems. Part 3. The ensemble Kalman filter, J. Fluid Mech. 682 (2011) 

289–303.
[17] H. Kato, S. Obayashi, Approach for uncertainty of turbulence modeling based on data assimilation technique, Comput. Fluids 85 (2013) 2–7.
[18] J.E.V. Peter, R.P. Dwight, Numerical sensitivity analysis for aerodynamic optimization: a survey of approaches, Comput. Fluids 39 (2010) 373–391.
[19] P.L. Houtekamer, H.L. Mitchell, A sequential ensemble Kalman filter for atmospheric data assimilation, Mon. Weather Rev. 129 (2001) 123–137.
[20] J.L. Anderson, S.L. Anderson, A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts, Mon. 

Weather Rev. 127 (1999) 2741–2758.
[21] C. Liu, Q. Xiao, B. Wang, An ensemble-based four-dimensional variational data assimilation scheme. Part I: technical formulation and preliminary test, 

Mon. Weather Rev. 136 (2008) 3363–3373.
[22] C. Liu, Q. Xiao, B. Wang, An ensemble-based four-dimensional variational data assimilation scheme. part II: observing system simulation experiments 

with Advanced Research WRF (ARW), Mon. Weather Rev. 137 (2009) 1687–1704.
[23] C. Liu, Q. Xiao, An ensemble-based four-dimensional variational data assimilation scheme. Part III: antarctic applications with advanced research WRF 

using real data, Mon. Weather Rev. 141 (2013) 2721–2739.
[24] Y. Yang, C. Robinson, D. Heitz, E. Mémin, Enhanced ensemble-based 4DVar scheme for data assimilation, Comput. Fluids 115 (2015) 201–210.
[25] I. Afgan, S. Benhamadouche, X. Han, P. Sagaut, D. Laurence, Flow over a flat plate with uniform inlet and incident coherent gusts, J. Fluid Mech. 720 

(2013) 457–485.
[26] A.C. Lorenc, Analysis methods for numerical weather prediction, Q. J. R. Meteorol. Soc. 112 (1986) 1177–1194.
[27] P. Courtier, J.-N. Thépaut, A. Hollingsworth, A strategy for operational implementation of 4D-Var, using an incremental approach, Q. J. R. Meteorol. Soc. 

120 (1994) 1367–1387.
[28] G. Evensen, P.J. van Leeuwen, An ensemble Kalman smoother for nonlinear dynamics, Mon. Weather Rev. 128 (2000) 1852–1867.
[29] E. Cosme, J. Verron, P. Brasseur, J. Blum, D. Auroux, Smoothing problems in a Bayesian framework and their linear Gaussian solutions, Mon. Weather 

Rev. 140 (2012) 683–695.
[30] G. Burgers, P.J. van Leeuwen, G. Evensen, Analysis scheme in the ensemble Kalman filter, Mon. Weather Rev. 126 (1998) 1719–1724.
[31] M. Buehner, P.L. Houtekamer, C. Charette, H.L. Mitchell, B. He, Intercomparison of variational data assimilation and the ensemble Kalman filter for 

global deterministic NWP. Part I: description and single-observation experiments, Mon. Weather Rev. 138 (2010) 1550–1566.
[32] M. Bocquet, P. Sakov, An iterative ensemble Kalman smoother, Q. J. R. Meteorol. Soc. 140 (2014) 1521–1535.
[33] S.K. Nadarajah, A. Jameson, Studies of continuous and discrete adjoint approaches to viscous automatic aerodynamic shape optimization, AIAA Paper 

No. 2001-2530, 2001.
[34] G. Carpentieri, B. Koren, M.J.L. van Tooren, Adjoint-based aerodynamic shape optimization on unstructured meshes, J. Comput. Phys. 224 (2007) 

267–287.
[35] J. Nocedal, Updating quasi-Newton matrices with limited storage, Math. Comput. 35 (1980) 773–782.
[36] L. Armijo, Minimization of functions having Lipschitz continuous first partial derivatives, Pac. J. Math. 16 (1966) 1–3.
[37] L. Nerger, S. Schulte, A. Bunse-Gerstner, On the influence of model nonlinearity and localization on ensemble Kalman smoothing, Q. J. R. Meteorol. Soc. 

140 (2014) 2249–2259.
[38] P.L. Roe, Approximate Riemann solvers, parameter vectors, and difference schemes, J. Comput. Phys. 43 (1981) 357–372.
[39] P. Jawahar, H. Kamath, A high-resolution procedure for Euler and Navier–Stokes computations on unstructured grids, J. Comput. Phys. 164 (2000) 

165–203.
[40] A. Jameson, Time-dependent calculations using multigrid, with applications to unsteady flows past airfoils and wings, AIAA Paper No. 91-1596, 1991.
[41] D. Sharov, K. Nakahashi, Reordering of 3-D hybrid unstructured grids for vectorized LU-SGS Navier–Stokes computations, AIAA Paper No. 97-2102, 

1997.
[42] H. Luo, J.D. Baum, R. Löhner, An accurate, fast, matrix-free implicit method for computing unsteady flows on unstructured grids, Comput. Fluids 30 

(2001) 137–159.
[43] C. Liang, S. Premasuthan, A. Jameson, High-order accurate simulation of low-Mach laminar flow past two side-by-side cylinders using spectral differ-

ence method, Comput. Struct. 87 (2009) 812–827.
[44] W. Bierbooms, P.-W. Cheng, Stochastic gust model for design calculations of wind turbines, J. Wind Eng. Ind. Aerodyn. 90 (2002) 1237–1251.
[45] W. Bierbooms, A gust model for wind turbine design, JSME Int. J. Ser. B Fluids Therm. Eng. 47 (2004) 378–386.
[46] O. Cadot, A. Desai, S. Mittal, S. Saxena, B. Chandra, Statistics and dynamics of the boundary layer reattachments during the drag crisis transitions of a 

circular cylinder, Phys. Fluids 27 (2015) 014101.



280 V. Mons et al. / Journal of Computational Physics 316 (2016) 255–280

[47] R.N. Bannister, A review of forecast error covariance statistics in atmospheric variational data assimilation. I: characteristics and measurements of 
forecast error covariances, Q. J. R. Meteorol. Soc. 134 (2008) 1951–1970.

[48] R.N. Bannister, A review of forecast error covariance statistics in atmospheric variational data assimilation. II: modelling the forecast error covariance 
statistics, Q. J. R. Meteorol. Soc. 134 (2008) 1971–1996.

[49] A.F. Bennett, L.M. Leslie, C.R. Hagelberg, P.E. Powers, Tropical cyclone prediction using a barotropic model initialized by a generalized inverse method, 
Mon. Weather Rev. 121 (1993) 1714–1729.

[50] R. Ménard, L.-P. Chang, Assimilation of stratospheric chemical tracer observations using a Kalman filter. Part II: χ2-validated results and analysis of 
variance and correlation dynamics, Mon. Weather Rev. 128 (2000) 2672–2686.

[51] A. Tarantola, Inverse Problem Theory and Methods for Model Parameter Estimation, SIAM, 2005.



Chapter 6

Optimal sensor placement for variational data
assimilation of unsteady flows past a
rotationally oscillating cylinder

6.1 Introduction

In any data assimilation (DA) study, one may wonder which measurements of the reference flow to be recon-
structed are the most appropriate to solve the DA problem. This question may arise in the design of an ex-
perimental sensor network, and is of crucial importance since these measurements represent the only available
information about the reference flow. Of course, the issue of determining an ‘optimal’ observation network goes
beyond the DA framework and may be relevant in any estimation problem. For example, efficient sensor place-
ment has been considered in the context of flow reconstruction based on the proper orthogonal decomposition
[58, 159, 225, 232]. This is also a topic of interest to the flow control community [2, 21, 48, 110] since the
locations of sensors used to measure the flow are critical for the design of the estimator, and thus determines the
success of the control strategy.

As regards DA applications, the impact of the observations on the DA process, or observation sensitivity, was of-
ten examined relying on the adjoint-based techniques developed in [16, 127] for ‘3D’ (static) DA and in [68, 129]
for ‘4D’ (dynamic) DA. In these studies, observation sensitivity is understood as the gradient of the solution of
the DA problem (the assimilated state), i.e. the flow solution that minimizes the discrepancies with the available
measurements, with respect to the values or to the locations of the observations. In this framework, optimal mea-
surements may be obtained through the minimization of a cost function that quantifies the discrepancies between
the solution of the DA problem and a ‘verification’ state (reference assimilated state). Solving this optimization
problem constrained by both the governing equations of the flow and the first-order optimality condition associ-
ated to the DA problem involves the use of a second-order adjoint model [130, 221], implying additional coding
effort and computational burden. Such methodology was developed and applied to the optimization of observa-
tion locations with the two-dimensional shallow-water equations in [55]. Aside from the above techniques, one
may wonder how it is possible to optimize observation locations a priori, i.e. before assimilating measurements.
This question was examined by [113] where appropriate observation locations are derived from the optimization
of an empirical observability Gramian matrix. The proposed methodology proved to be efficient with the Burgers
equation in a low-dimensional test case (the dimension of the control vector in the DA problem is 13), but its
extension to high-dimensional systems may be problematic, since evaluating observability for nonlinear large-
scale systems remains difficult. On the other hand, an important advantage of the adjoint technique is to provide
sensitivities at a computational cost similar to that of a forward integration of the dynamical model, regardless
of the dimension of the problem.

122
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In this chapter, an optimal sensor placement procedure for DA of viscous unsteady flows is investigated. The
proposed approach can be performed before assimilating measurements and independently of the DA problem
as in [113], i.e. is dedicated to the a priori design of an observation network. It relies on the use of adjoint-
based techniques as in [55, 68, 129], but without the need of a second-order adjoint model. Indeed, the present
methodology is designed to use the first-order adjoint model only, which is already involved in the variational
scheme used to perform DA in this chapter. The proposed technique is applied to the reconstruction of flows
in the presence of a cylinder performing rotary oscillations [15, 53, 125, 200, 201, 206]. This relatively simple
configuration is of interest for, e.g., drag reduction purposes [52], and has been examined with adjoint-based op-
timal control in [22, 81, 95, 102, 180]. In this chapter, we investigate the possibility of reconstructing the forcing
signal, i.e. the rotational speed of the cylinder, and the upstream flow, here included in the initial condition, from
observations of the flow downstream or around the cylinder via variational DA. The proposed observation opti-
mization procedure is used to identify optimal locations for velocity sensors, allowing a better reconstruction of
the flow and/or a decrease in the computational cost in terms of calls to the adjoint code compared to a first-guess
observation network.

This chapter is organized as follows. The observation optimization procedure is derived in §6.2. The physical
setup of the DA experiments is presented in §6.3, along with the numerical method used. §6.4 is dedicated
to the results of DA experiments, and the possibilities of reconstructing flows in the presence of a rotationally
oscillating cylinder are delineated. The optimal sensor placement procedure is deployed and assessed by DA
experiments in §6.5. §6.6 is dedicated to conclusions. Appendix D furnishes the discrete formulation of the
observation optimization procedure, along with details about its numerical implementation.

6.2 Observation optimization, variational data assimilation and sensor selec-
tion procedures

The present optimal sensor placement procedure is derived as follows. First, a response function of the sys-
tem under consideration, here flow obeying to the Navier-Stokes equations, is defined as the squared norm of
observations of the system. The observation operator, which maps the state space to the observation space, is pa-
rameterized by a vector here formed by locations of sensors. The sensitivity (gradient) of this response function
with respect to initial/boundary conditions and/or model parameters, which will form the control vector in the
DA problem, is then computed using the adjoint technique. In a second step, the parameters of the observation
operator are optimized through the maximization of the sensitivity of the response function, relying again on
the adjoint technique. This method also provides a way to quantify the impact of each sensor in the sensitivity
of the observations and to select the most important ones. Besides the derivation of the proposed methodology,
the principle of variational DA is also recalled in this section, and optimization algorithms to solve the optimal
sensor placement and DA problems are discussed.

6.2.1 Dynamical model

For the sake of generality in the derivation of the proposed observation optimization procedure, we consider a
dynamical model under the generic form

∂q
∂t

= f (q, β), (6.1)

where q refers to the model variables, here a flow field, which are defined for a spatial domain Ω of any dimension
(typically one to three) and a time interval [0,T ]. q belongs to the model space denoted by M whose scalar
product is defined by

〈q, p〉M =

∫ T

0

∫
Ω

q(x, t)p(x, t)dxdt ∀q, p ∈ M. (6.2)
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The associated norm is given by ‖q‖M =
√
〈q, q〉M ∀q ∈ M. Equation (6.1) also involves the nonlinear operator

f , which corresponds here to the Navier-Stokes equations, and the vector β belonging to the parameter space
denoted by P. β may refer to parameters of the dynamical model, boundary conditions, or shape design parame-
ters. Here, β refers to the rotational speed of the cylinder. Given (6.1), the solution q is uniquely specified by the
initial condition q0 (q0(x) = q(x, 0) ∀x ∈ Ω) and the parameters β. Before proceeding further, let us introduce a
few notations. Given an operator g from vector spaceA to B, the Gâteaux derivative of g at a in the direction c,
with both a and c inA, is denoted by

∂g
∂a

∣∣∣∣
a
(c) =

〈
∂g
∂a

(a), c
〉
A

= lim
ε→0

d
dε

g(a + εc). (6.3)

If g is a linear operator, one can define the adjoint operator g∗ according to

〈g(a), b〉B =
〈
a, g∗(b)

〉
A ∀a ∈ A, ∀b ∈ B. (6.4)

6.2.2 Sensitivity of observations

We now examine observations of the state q and their sensitivity with respect to a change in the initial condition
q0 or the parameters β. More precisely, we consider a response R of the model defined as the norm of the
observations of the state vector q

R =
1
2
‖h(q, λ)‖2

O
. (6.5)

In (6.5), h is the observation operator that maps the model spaceM to the observation space O. This operator
will allow to compare the estimation of the state q with available measurements in the data assimilation (DA)
procedure described in §6.2.4. It is assumed that the operator h is parameterized by the vector λ. This vector
allows to tune the operator h, and thus to tune the observations performed on the system (6.1). In this chapter, λ
will refer to the observation locations. To evaluate the change in the values of the observations resulting from a
change in the state q, and more precisely to quantify the first-order sensitivity of the response R with respect to
the initial condition q0 and the parameters β, the adjoint technique [137] is employed to compute the gradient of R
with respect to q0 and β. The constraint (6.1) on the dynamics of q is taken into account through the introduction
of the Lagrangian L1 defined by

L1 =
1
2
‖h(q, λ)‖2

O
−

〈
q̃,
∂q
∂t
− f (q, β)

〉
M

, (6.6)

where q̃ is referred to as the adjoint state. The variation of L1 in the direction p ∈ M is given by〈
∂L1

∂q
, p

〉
M

=

〈
h(q, λ),

∂h
∂q

∣∣∣∣
q,λ

(p)
〉
O

−

〈
q̃,
∂p
∂t
−
∂ f
∂q

∣∣∣∣
q,β

(p)
〉
M

=

〈(
∂h
∂q

∣∣∣∣
q,λ

)∗
(h(q, λ)), p

〉
M

−

〈
−
∂q̃
∂t
−

(
∂ f
∂q

∣∣∣∣
q,β

)∗
(q̃), p

〉
M

−

∫
Ω

(q̃(x,T )p(x,T ) − q̃(x, 0)p(x, 0)) dx.

(6.7)

The derivations in (6.7) involve the tangent linear model operator ∂ f
∂q

∣∣∣∣
q,β

and its adjoint, which both depend on

the state q if the model operator f is nonlinear, as is the case here. From (6.7), we can deduce the gradient of the
Lagrangian L1 with respect to the initial condition q0 and the parameters β of the model (6.1) according to the
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following system of equations

q̃(x,T ) = 0 ∀x ∈ Ω, (6.8a)

−
∂q̃
∂t
−

(
∂ f
∂q

∣∣∣∣
q,β

)∗
(q̃) = h̃(λ), h̃(λ) =

(
∂h
∂q

∣∣∣∣
q,λ

)∗
(h(q, λ)), (6.8b)

∂L1

∂q0
= q̃0, q̃0(x) = q̃(x, 0) ∀x ∈ Ω, (6.8c)

∂L1

∂β
=

(
∂ f
∂β

∣∣∣∣
q,β

)∗
(q̃). (6.8d)

The governing equation (6.8b) for the adjoint state has to be solved backward in time with the terminal condition
(6.8a) in order to obtain the gradients (6.8c)-(6.8d). This backward integration requires the storing of the state q,
as detailed in §6.3.2 and appendix D. The gradients (6.8c)-(6.8d) allow to quantify the first-order sensitivity of
the response R defined in (6.5). For example, the change ∆R in the value of R resulting from a change ∆β in the
parameters in (6.1) can be estimated through the first-order approximation

∆R '
〈
∂L1

∂β
,∆β

〉
P

. (6.9)

6.2.3 Observation optimization problem

In any control or DA problem, it is crucial that the observation operator h, which represents the available in-
formation on the system (6.1), allows to effectively measure the state q. A desirable property of h is thus its
sensitivity with respect to a change in the control variables, here the initial condition q0 and the parameters β.
Indeed, if a variation in the control vector entails no change in the values of the observations, i.e. changes in the
system are not observable, the DA problem can not be solved satisfactorily. It is therefore preferable to design
the operator h with maximum sensitivity with respect to the control vector. The first-order sensitivity of the
observations with respect to the initial condition q0 and the parameters β can be estimated through the gradients
(6.8c)-(6.8d). Accordingly, we propose to formulate the observation optimization problem as the maximization
of the norm of these gradients with respect to the vector λ that parameterizes the observation operator h. More
precisely, this problem is expressed as

max
λ

G =
1
2

∫
Ω

(
∂L1

∂q0

)2

(x)dx +
1
2

∥∥∥∥∥∂L1

∂β

∥∥∥∥∥2

P

 . (6.10)

Once again, we use the adjoint technique to solve (6.10) and define the following Lagrangian L2 using (6.8)

L2 =
1
2

∫
Ω

q̃2
0(x)dx +

1
2

∥∥∥∥∥∥
(
∂ f
∂β

∣∣∣∣
q,β

)∗
(q̃)

∥∥∥∥∥∥2

P

−

〈
r,−

∂q̃
∂t
−

(
∂ f
∂q

∣∣∣∣
q,β

)∗
(q̃) − h̃(λ)

〉
M

−

∫
Ω

s(x)q̃(x,T )dx,

(6.11)
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where r and s are Lagrange multipliers that are introduced to take into account the constraints (6.8a) and (6.8b)
on the dynamics of the adjoint variable q̃, the operator h̃ is defined in (6.8b). By setting〈

∂L2

∂q̃
, p̃

〉
M

=

∫
Ω

q̃0(x) p̃(x, 0)dx +

〈(
∂ f
∂β

∣∣∣∣
q,β

)∗
(q̃),

(
∂ f
∂β

∣∣∣∣
q,β

)∗
( p̃)

〉
P

+

〈
r,
∂ p̃
∂t

+

(
∂ f
∂q

∣∣∣∣
q,β

)∗
( p̃)

〉
M

−

∫
Ω

s(x) p̃(x,T )dx

=

〈
∂ f
∂β

∣∣∣∣
q,β

((
∂ f
∂β

∣∣∣∣
q,β

)∗
(q̃)

)
, p̃

〉
M

+

〈
−
∂r
∂t

+
∂ f
∂q

∣∣∣∣
q,β

(r), p̃
〉
M

+

∫
Ω

((q̃0(x) − r(x, 0)) p̃(x, 0) + (r(x,T ) − s(x)) p̃(x,T )) dx

=0 ∀p̃ ∈ M,

(6.12)

we obtain the system of equations that allows to compute the gradient of the Lagrangian L2 with respect to λ

r(x, 0) = q̃0(x) ∀x ∈ Ω, (6.13a)

∂r
∂t
−
∂ f
∂q

∣∣∣∣
q,β

(r) =
∂ f
∂β

∣∣∣∣
q,β

((
∂ f
∂β

∣∣∣∣
q,β

)∗
(q̃)

)
, (6.13b)

∂L2

∂λ
=

(
∂h̃
∂λ

∣∣∣∣
λ

)∗
(r). (6.13c)

Once equation (6.13b) is integrated forward in time with the initial condition (6.13a), the gradient (6.13c) is avail-
able and can be used in a gradient-based optimization procedure to solve the maximization problem (6.10), as
described in §6.2.5. Equation (6.13c) can be also employed to select the most important sensors in a observation
network, as detailed in §6.2.6.

6.2.4 Data assimilation problem

In this subsection, the type of observations is fixed (operator h with fixed parameters λ), and it is assumed that
observations y of a reference flow realization are available. To reconstruct the reference solution, the DA problem
is formulated as the minimization of the discrepancies between the observations y and the estimation of the state
q, as proposed by [128]. Accordingly, if both the initial condition q0 and the parameters β for the reference
evolution are unknown, the DA problem is expressed as (§2.2.1)

min
q0,β

{
J =

1
2
‖h(q, λ) − y‖2

O

}
. (6.14)

As in §6.2.2 and §6.2.3, the problem (6.14) is solved with the adjoint technique, and the corresponding adjoint
equations are similar to those in (6.8) but with a different forcing term in (6.8b). Following the derivations of
§6.2.2, see also [128, 133] and §2.3.1, the gradient of the cost function J in (6.14) with respect to the initial
condition q0 and the parameters β is computed from the following system of equations

q̂(x,T ) = 0 ∀x ∈ Ω, (6.15a)

−
∂q̂
∂t
−

(
∂ f
∂q

∣∣∣∣
q,β

)∗
(q̂) =

(
∂h
∂q

∣∣∣∣
q,λ

)∗
(h(q, λ) − y), (6.15b)

∂L3

∂q0
= q̂0, q̂0(x) = q̂(x, 0) ∀x ∈ Ω, (6.15c)

∂L3

∂β
=

(
∂ f
∂β

∣∣∣∣
q,β

)∗
(q̂), (6.15d)
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Observation optimization procedure (problem (6.10))

1. choose initial condition q0 and parameters β and compute the corresponding
solution q with a forward integration of the dynamical model (6.1);

2. choose the observation operator h and start the optimization procedure with a
first guess for its parameters λ;

3. at the ith iteration, solve backward the adjoint equations (6.8a)-(6.8b) with the
direct solution q evaluated in step 1;

4. solve forward equations (6.13a)-(6.13b) using the adjoint solution q̃ obtained at
step 3;

5. compute the gradient (6.13c) in order to update the parameters λ according to
(6.17);

6. return to step 3 until stopping criterion reached (minimum relative difference in
the value of the cost function G in (6.10) between two successive iterations).

Table 6.1: Summary of the proposed observation optimization procedure.

with

L3 = J −
〈
q̂,
∂q
∂t
− f (q, β)

〉
M

. (6.16)

After the backward integration of (6.15b) with the terminal condition (6.15a), the gradients (6.15c)-(6.15d) can
be used in a gradient-based optimization procedure to solve (6.14) in order to recover the initial condition q0 and
parameters β associated to the observations y.

6.2.5 Optimization algorithms

The gradients (6.13c) and (6.15c)-(6.15d) obtained with the adjoint method can be used in a generic gradient-
based iterative procedure to solve the observation optimization and DA problems defined in (6.10) and (6.14)
respectively. For these two optimization problems, the corresponding control vector γ is updated every iteration
according to

γ(i+1) = γ(i) + θ(i)d(i). (6.17)

γ(i) refers to the parameters λ of the observation operator h for the observation optimization problem, while
it refers to the initial condition q0 and the parameters β of the dynamical model (6.1) for the DA problem,
evaluated at the ith iteration of the optimization procedure. d(i) is the ascent/descent direction which is obtained
by the quasi-Newton Broyden-Fletcher-Goldfarb-Shanno (BFGS) method in its low-memory formulation [168].
The step length θ(i) is evaluated with a backtracking-Armijo line search [11]. The iterative procedures to solve
the observation optimization and DA problems are summarized in tables 6.1 and 6.2 respectively.

6.2.6 Sensor selection procedure

In the case where the vector λ in (6.5) refers to the locations where the observations are performed (sensors) as
is the case here, the gradient (6.13c) can be also used to quantify the change in the sensitivity of the observations
with respect to the initial condition q0 and the parameters β that results from a change in the location of each
sensor. In other words, equation (6.13c) provides the first-order sensitivity with respect to each sensor of the
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Variational DA with synthetic observations (problem (6.14))

1. choose reference initial condition q0 and parameters β, compute the correspond-
ing solution q with a forward integration of the dynamical model (6.1), and gen-
erate the observations y;

2. start the optimization procedure with a first guess for the reference initial condi-
tion q0 and parameters β;

3. at the ith iteration, solve forward the direct problem (6.1);

4. solve backward the adjoint equations (6.15a)-(6.15b) using the direct solution q
obtained at step 3;

5. compute the gradients (6.15c)-(6.15d) in order to update the initial condition q0
and the parameters β according to (6.17);

6. return to step 3 until stopping criterion reached (maximum decrease in the value
of the cost funcion J in (6.14) or maximum number of iterations).

Table 6.2: Summary of the variational DA algorithm.

sensitivity of the observations, enabling to identify the sensors that contribute the most to the observability of
changes in the state q. The importance of the ith sensor in the sensitivity of the observations can be thus estimated
through the quantity ρi defined by

ρi =

(
∂L2

∂xi

)2

+

(
∂L2

∂yi

)2

, ρ1 > ρ2 > · · · > ρNs , (6.18)

where ∂L2
∂xi

and ∂L2
∂yi

are the derivatives of the Lagrangian L2 defined in (6.11) with respect to the coordinates
(xi, yi) of the ith sensor in the 2D case, these derivatives correspond to components of the gradient in (6.13c). The
scalars ρ1, ρ2, · · · , ρNs are sorted in decreasing order, and Ns refers to the total number of sensors. Accordingly,
the number Nδ of the most important sensors that account for a ratio δ of the squared norm of the gradient in
(6.13c) is given by

Nδ = min

k

∣∣∣∣∣∣∣
∑k

i=1 ρi∑Ns
i=1 ρi

> δ

 , 0 < δ 6 1. (6.19)

Equations (6.18)-(6.19) allow to define a sensor selection procedure that is parameterized by the scalar δ.

6.2.7 Comments on the present observation optimization procedure

We can make the following comments about the observation optimization procedure proposed in §6.2.3 and
§6.2.5. Firstly, as for other sensor placement strategies [55, 113] applied to nonlinear systems, the results of
this procedure depend on the chosen direct solution q in (6.5) that is fixed in the optimization process. Several
solutions q will be thus considered in this chapter to test the present observation optimization procedure. Sec-
ondly, the choice of the cost function G in (6.10) is not unique. In particular, one may want to optimize the
sensitivity of the observations with respect to only some components of the control vector for the DA problem.
For example, if we are only interested in recovering parameters β of the dynamical model (6.1) for an observed

reference solution, G may be defined as G = 1
2

∥∥∥∥∂L1
∂β

∥∥∥∥2

P
. This will be the case in the numerical experiments where

the observation optimization procedure is used to increase the sensitivity of the observations with respect to only
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Figure 6.1: Schematic of the flow configuration and distance between inflow conditions and the cylinder in the
computational domain.

the rotational speed of the cylinder. In terms of numerical implementation, if an adjoint code with the tangent
linear model ∂ f

∂q

∣∣∣∣
q,β

is already available, the system (6.13) only requires the development of the operator in the

right-hand-side of (6.13c). The practical implementation of the present osbervation optimization procedure is
further discussed in §6.3.2 and appendix D.

6.3 Physical and numerical setup of the numerical experiments

6.3.1 Flow configuration and numerical method

We consider the bidimensional flow around a cylinder of diameter dr. The oncoming flow is assumed to be
uniform at infinity and the corresponding velocity magnitude is ur. The Reynolds number of the flow is defined
as Re =

urdr
ν where ν is the kinematic viscosity of the fluid. The cylinder can rotate around its axis with the

rotational speed ω(t). This flow configuration is illustrated in figure 6.1. We consider rotary oscillations of the
form [15, 53, 125, 200, 201, 206]

ω(t) = A sin(2π f t + ϕ), α(t) =
ω(t)dr

2ur
, A =

Adr

2ur
, F =

f dr

ur
. (6.20)

These oscillations are characterized by their dimensionless amplitude A and frequency F . We also introduce
a phase term ϕ since flows with finite-time evolution are considered. It is assumed that the flow is solution of
the two-dimensional unsteady compressible Navier-Stokes equations for perfect gas, their integral form over a
bounded domain of interest Ω is given by

∂

∂t

∫
Ω

wdV +

∫
∂Ω

(F(w) −G(w)) · ndS = 0, w = (ρ ρu ρv E)T , (6.21a)

F(w) =


ρu ρv

ρu2 + p ρuv
ρuv ρv2 + p

u(E + p) v(E + p)

 , G(w) =


0 0
τxx τxy

τxy τyy

uτxx + vτxy − qx vτyy + uτxy − qy

 , (6.21b)

τxx = µ

(
2
∂u
∂x
−

2
3

(
∂u
∂x

+
∂v
∂y

)
)
, τyy = µ

(
2
∂v
∂y
−

2
3

(
∂u
∂x

+
∂v
∂y

)
)
, τxy = µ(

∂u
∂y

+
∂v
∂x

), (6.21c)

qx = −κ
∂T
∂x
, qy = −κ

∂T
∂y
, p = ρrT = (γ − 1)ρe, E = ρ

(
e +

1
2

(u2 + v2)
)
, (6.21d)

where n, ρ, u, v, p, e, T , γ, µ, κ and r refer to the outer unit normal vector to the boundary ∂Ω, density, x-wise
and y-wise components of the velocity vector, pressure, specific internal energy, temperature, ratio of specific
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Figure 6.2: Lock-on (#) and non lock-on ( ) regions in (A,F ) space for the unsteady flow past a rotating
cylinder at Re = 100. The configurations of the reference (triangles) and first-guess (squares) flows of table 6.4
are also reported. Solid lines approximately denote the boundary between the lock-on and non lock-on regions

obtained by [53].

heats, dynamic viscosity, thermal conductivity and a constant in the ideal gas law, respectively. Equation (6.21)
is discretized using a cell-centered finite-volume formulation on unstructured grids. Convective fluxes F(w) are
evaluated using Roe’s approximate Riemann solver [185]. Second-order spatial accuracy is achieved with the
reconstruction procedure of [106]. Time integration is performed with a fully implicit second-order scheme that
combines dual time stepping [105] and the LU-SGS method [145, 190]. The same Navier-Stokes solver is used
in chapter 5 [163]. The unstructured mesh is formed by 1.4 · 104 elements with 96 nodes over the surface of
the cylinder. The physical time step ∆t of the simulations is chosen as ∆t = 1.33 · 10−3dr/(0.165ur), where the
value 0.165 refers to the dimensionless frequency of the oscillations in the vortex shedding at Re = 100 when
the cylinder is stationary [226]. The simulations are performed with a Mach number of 0.2, corresponding to a
nearly-incompressible flow dynamics in which acoustic waves are taken into account. In what follows, we define
the drag coefficient CD and the lift coefficient CL as

CD =
f · ex

1
2ρru2

r dr
, CL =

f · ey
1
2ρru2

r dr
, f =

∫
Γ

(−pI + τ) · ndS , (6.22)

where ρr and pr are reference density and pressure respectively, ex and ey are the unit vectors in the x and y
coordinate directions (the inflow is along the x-axis), Γ is the boundary of the cylinder, I is the identity matrix,
and the components of the symmetric matrix τ are given in (6.21).

Figure 6.2 and table 6.3 report results obtained with the present numerical method for flows past a cylinder under
rotary oscillation according to (6.20) at Re = 100. These predictions are compared with those of [53] where
the same flow configuration was investigated numerically. Two flow regimes can be identified. In the lock-on
regime, the frequency of the vortex shedding is identical to that of the oscillations of the cylinder. On the other
hand, for flows in the non lock-on regime, the vortex shedding is not synchronized with the rotary oscillation
forcing. The regions of lock-on and non lock-on in (A-F ) space are given in figure 6.2. The effect of rotary
oscillation on characteristic flow quantities is further investigated in table 6.3. For the sake of comparison, the
case where the cylinder is stationary (A = 0) is also reported. WithA = 2 and F = 0.4, the flow is in the lock-on
regime and the decrease in the value of the drag coefficient compared with the stationary case is significant, there
is also a decrease in the maximum amplitude of the lift coefficient. In the case where A = 1.4 and F = 0.5, the
decrease in the value of the drag coefficient is less important and the maximum amplitude of the lift coefficient
is increased. The flow is in the non lock-on region, and the frequency of the vortex shedding is close, but not
identical, to the natural frequency.
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A F regime study CD C
′

L Fvs

0 [139] 1.350 0.339 0.165
[73] 1.356 0.287 0.166

[178] 1.350 0.331 0.167
[183] 1.326 0.310 0.166
[53] 1.327 0.326 0.165

present study 1.355 0.326 0.165
2 0.4 lock-on [53] 1.231 0.299 0.4

present study 1.266 0.313 0.4
1.4 0.5 non lock-on [53] 1.253 0.340 0.154

present study 1.289 0.374 0.156

Table 6.3: Time-averaged drag coefficient CD, maximum amplitude of the lift-coefficient fluctuations C
′

L, and
dimensionless frequency of the vortex shedding Fvs for Re = 100 and various dimensionless amplitudes A and
frequencies F obtained in several studies. When possible, the results of previous studies corresponding to the
spatial and temporal resolutions that are the closest to the present ones are reported (run Lb|i/D = 20 in [178] and

run D4 in [183]).

configuration
reference flow first-guess flow

A F regime A F regime
A 1.8 0.2 lock-on 2 0.165 lock-on
B 0.45 0.55 non lock-on 0.5 0.5 non lock-on
C 2.5 0.475 lock-on 2 0.375 lock-on
D 0.8 0.12 lock-on 1 0.1 lock-on

Table 6.4: Different configurations of reference and first-guess flows considered in the DA experiments of table
6.5. These flows correspond to a rotationally oscillating cylinder at Re = 100 with a rotational speed given by

(6.20), the corresponding flow regime is reported.

6.3.2 Adjoint code

The observation optimization and DA procedures discussed in §6.2 require the development of the tangent linear
operator associated to the Navier-Stokes equations (6.21) and that of its adjoint, respectively. In addition, due to
the nonlinearity of (6.21) and due to the fact that equations (6.1) and (6.13b) are evaluated forward in time while
(6.8b) and (6.15b) are evaluated backward, the storage of the direct solution q is required for the adjoint problems
(6.8) and (6.15), while both q and the adjoint variable q̃ need to be stored for the adjoint problem (6.8) associated
to the observation optimization procedure. In order to decrease memory requirements, the formulation of the
observation optimization procedure proposed in appendix D is used. This formulation avoids the storage of the
adjoint variable q̃ and involves the adjoint of the tangent linear operator of (6.21). Accordingly, the gradients

(6.8c)-(6.8d), (6.13c) and (6.15c)-(6.15d) are all obtained with the adjoint operator
(
∂ f
∂q

∣∣∣∣
q,β

)∗
associated to (6.21)

and different forcing terms. To further limit memory requirements for the backward integrations with the adjoint
operator, the direct solution q is stored only at a few times during the integration of the direct problem (6.21),
and the missing snapshots are recomputed during the backward integrations. The adjoint operator for (6.21) is
hand-coded following the discrete adjoint approach [44, 165, 176]. The same adjoint code is used and assessed
in chapter 5.

6.3.3 Setup of the observation optimization and data assimilation experiments

The different methodologies presented in §6.2 are applied to the reconstruction of flows past a rotationally os-
cillating cylinder at Re = 100. More precisely, they are used for the determination of optimal initial flow field
and/or rotational speed of the cylinder given observations of a reference flow. Unless otherwise stated, the size
of the assimilation window T , i.e. the duration of observation of the reference flow, is fixed to T = 16dr/ur,
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experiments γ dim(γ) y dim(y) runs (configurations) principle
1 q0 + (A, f , ϕ) 5.5 · 104 u, v (continuum) 2.2 · 103 1A,B DA
2 q0 + ω(t)∀t 5.7 · 104 u, v (continuum) 2.2 · 103 2A,B DA
3 q0 + (A, f , ϕ) 5.5 · 104 CL,CD 2 3A,B DA
4 ω(t)∀t 2 · 103 u, v (4 probes) 8 4A,C OSP, DA
5 q0 + (A, f , ϕ) 5.5 · 104 u, v (4 probes) 8 5A,C,D OSP, DA
6 q0 + (A, f , ϕ) 5.5 · 104 u, v (20 probes) 40 6A,C OSP, DA

Table 6.5: Different types of numerical experiments performed in this chapter, which are characterized by the
control vector γ in the optimization procedure for the DA problem (initial state q0 and/or rotational speed of the
cylinder, parameterized or not), the type of observations y (velocity field or aerodynamic coefficients), and the
different configurations of reference and first-guess flows investigated (see table 6.4). Experiments of type 1-3
correspond to generic twin-experiment DA procedures, while experiments of type 4-6 also involve optimal sensor
placement (OSP). Note that dim(λ) = dim(y) in the latter experiments, where λ refers to the parameters of the

observation operator.

and the time interval between two observations is always 0.2dr/ur. Since the distance between inflow conditions
and the cylinder in the computational domain is 20dr (see figure 6.1), the initial flow field here encompasses
upstream conditions if observations are performed close to or downstream of the cylinder. Accordingly, there
was here no need to consider boundary conditions in the control vector for the DA problem. Various reference
flow realizations and first-guess flows (flow solutions used to initialize the optimization procedure in table 6.2),
which are summarized in table 6.4, are considered in the numerical experiments. They may belong to either the
lock-on or the non lock-on region. Three types of observations of the reference flow are considered: (i) the ve-
locity field in a continuous region, (ii) the velocity field at discrete locations (probes), and (iii) the aerodynamic
coefficients CL and CD. After spatial discretization, the qualifying term continuous refers to the case where the
velocity field is observed at all the elements of the mesh in a given region. Various control vectors for the DA
problem are considered. In the numerical experiments of type 4, the control vector is formed by the rotational
speed ω(t) of the cylinder at all times, and the initial condition of the reference flow is assumed to be known. In
the numerical experiments of type 1, 3 and 5-6, the control vector is formed by the initial condition of the flow
and by the rotational speed of the cylinder parameterized by the amplitude A, the frequency f and the phase ϕ
of the oscillations according to (6.20). Finally, in the experiments of type 2, the control vector is formed by the
initial condition of the flow and by the rotational speed of the cylinder at all times. Given the present spatial
and temporal discretizations, the initial flow field is a vector of dimension 5.5 · 104, while the unparameterized
rotational speed of the cylinder is a vector of dimension 2 · 103.

Two categories of numerical experiments can be identified. The first one corresponds to experiments of type
1-3 where generic twin-experiment DA procedures, as described in table 6.2, are carried out. The corresponding
results are reported in §6.4, which allow to delineate the possibilities of flow reconstruction in the presence of
a rotationaly oscillating cylinder. For the second set of numerical experiments, the observation optimization
procedure depicted in table 6.1 is used to find optimal locations for velocity sensors. It is combined with DA
experiments, which are performed in order to assess its efficiency. This observation optimization/DA procedure is
applied in experiments of type 4-6, whose results are discussed in §6.5. A summary of the numerical experiments
performed in this chapter is given in table 6.5. In the following, the performances of the observation optimization
and DA procedures can be estimated through the evolution of the cost functions G in (6.10) and J in (6.14),
respectively, during the corresponding optimization processes. Since the observations of the reference flow are
here generated synthetically, the quality of the reconstruction of the reference flow in the DA experiments may be
evaluated using the L2 norm of the discrepancies between the reference rotational speed of the cylinder denoted
by ω(r) and the assimilated one (i.e. obtained at the end of the DA procedure) ω(a) according to

εω =

(∫ T

0

(
ω(r)(t) − ω(a)(t)

)2
dt

) 1
2

. (6.23)
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The values of G, J and εω are generally compared to the ones at the beginning of the corresponding optimization
process, G0, J0 and εω0 respectively.

6.4 Analysis of data assimilation experiments

In this section, we consider the numerical experiments of type 1-3 (see table 6.5), which correspond to generic
twin-experiment DA procedures. In a first step, a reference numerical simulation of the flow past a rotating
cylinder is carried out, and observations of this reference flow are performed. In a second step, the minimization
problem (6.14) is solved in order to recover the initial condition and/or the rotational speed of the cylinder for
the reference flow, starting from a first-guess flow. This DA procedure is summarized in table 6.2. The ability
of flow reconstruction past a rotationaly oscillating cylinder are investigated by varying the observations of the
reference flow, the control vector in the DA optimization process, and the regime (lock-on/non lock-on) of the
reference and first-guess flows.

6.4.1 Observation of the flow in a continuous region

6.4.1.1 Control on the initial condition and the parameterized rotational speed of the cylinder (type 1)

The results of the DA experiments of type 1 are first examined. For these simulations, the velocity field of the
reference flow is observed in a continuous region which is located downstream of the cylinder (see, e.g., figure
6.3(a)). The control vector in the DA procedures is formed by the initial condition of the flow and the triplet of
parameters (A, f , ϕ) characterizing the rotary oscillations of the cylinder according to (6.20). The corresponding
results are reported in figure 6.3. The case where both the reference and first-guess flows in the DA procedure
belong to the lock-on region (run 1A) is investigated in figures 6.3(a), 6.3(c), 6.3(e) and 6.3(g). It appears that the
DA procedure successfully reconstructs the rotational speed of the reference flow starting from a first-guess flow
corresponding to an error of 10% on the amplitude of the oscillations and an error of 17.5% on their frequency.
The good reconstruction in the case where both the reference and first-guess flows are in the lock-on region was
expected, since in this case the frequency of the vortex shedding is imposed by the frequency of the oscillations
of the cylinder, which are actually the same. In addition, observing the velocity field in a continuous region
downstream of the cylinder provides extensive information on the reference flow. Other reference and first-guess
flows in the lock-on region are considered in §6.5.

The case where both the reference and first-guess flows lie in the non lock-on region (run 1B), i.e. when the
frequency of the vortex shedding is not directly related to that of the oscillations of the cylinder, is addressed in
figures 6.3(b), 6.3(d), 6.3(f) and 6.3(h). The first-guess run corresponds to an error of ≈ ±10% on the amplitude
and frequency of the oscillations of the cylinder for the reference flow. If we only consider figures 6.3(b) and
6.3(f), the reconstruction of the reference flow seems correct. In particular, the DA procedure has properly
modified the slight shift in the vortex shedding between the reference and first-guess flows. However, it appears
from figure 6.3(h) that the DA procedure has not recovered the reference rotational speed of the cylinder. It can be
noticed that the optimization procedure has drastically damped the amplitude of the oscillations. Such behavior
was expected because the frequency of the vortex shedding is close to the natural one (i.e. when the cylinder is
stationary) in the non lock-on region. This means that the DA procedure has been able to fit the observations
of the reference flow but has failed to solve the corresponding inverse problem, which may be ascribed to the
physics of the flow in the non lock-on region. Note that additional DA experiments (results not shown here for
the sake of brevity) were performed with a better first guess for the optimization process or with other reference
flows in the non lock-on region. They confirmed the difficulty of correctly solving the DA inverse problem in the
non lock-on regime.



Chapter 6. Optimal sensor placement for variational data assimilation 134

(a) (b)

(c) (d)

(e) (f)

0 4 8 12 16
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

tur/dr

α

(g)

0 4 8 12 16

−0.4

−0.2

0

0.2

0.4

0.6

tur/dr

α

(h)

0 20 40 60 80 100

10
−3

10
−2

10
−1

10
0

i

J
/
J
0

(i)

Figure 6.3: Results for DA experiments of type 1: dimensionless vorticity field at tur/dr = 10 for (a)-(b) refer-
ence, (c)-(d) first-guess and (e)-(f) assimilated flows, the observation domain is delineated in white lines; (g)-(h)
dimensionless rotational speed α of the cylinder for reference (#), first-guess ( ) and assimilated ( )
runs; (i) cost function J in (6.14) versus the iteration of the optimization process for runs 1A ( ) and 1B
( ). Figures (a), (c), (e) and (g) (left column) refer to run 1A (lock-on), while figures (b), (d), (f) and (h)

(right column) refer to run 1B (non lock-on).

6.4.1.2 Control on the initial condition and the rotational speed of the cylinder at all times (type 2)

We now consider the type 2 of numerical experiments where no particular form is prescribed to the rotary
movement of the cylinder, and the control vector in the DA procedure is formed by the initial flow field and
the rotational speed of the cylinder at all times (table 6.5). The velocity field of the reference flow is observed
in a continuous region located downstream of the cylinder as in the experiments of type 1. Results for the
configurations A and B of table 6.4 are reported in figure 6.4. It appears from the comparisons between figures
6.3(i) and 6.4(e) that increasing the size of the control vector and allowing more flexibility in the form of the
rotational speed of the cylinder significantly slows down the convergence rate of the DA procedure. After 200
iterations of the optimization process, while experiments of type 1 were performed with 100 iterations, the
assimilated solution is still far from the reference solution as illustrated in figure 6.4. Differences between the
lock-on and non lock-on regimes are still visible in figures 6.4(c) and 6.4(d). The optimization procedure has
significantly modified the first-guess rotational speed in the case where both the reference and first-guess flows
are in the lock-on region (run 2A, figure 6.4(c)) and the assimilated rotational speed seems to get closer to the
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Figure 6.4: Results for DA experiments of type 2: (a)-(b) dimensionless vorticity field at tur/dr = 10 for assim-
ilated flows, the observation domain is delineated in white lines; (c)-(d) dimensionless rotational speed α of the
cylinder for reference (#), first-guess ( ) and assimilated ( ) runs; (e) cost function J in (6.14) versus
the iteration of the optimization process for runs 2A ( ) and 2B ( ). Figures (a) and (c) refer to run 2A

(lock-on), while figures (b) and (d) refer to run 2B (non lock-on).

reference one. On the other hand, when both the reference and first-guess flows are in the non lock-on region
(run 2B, figure 6.4(d)), the optimization procedure has altered only slightly the amplitude of the signal without
shifting its temporal evolution in order to correct its frequency. The fact that in both cases the DA procedure
has not modified the rotational speed at the end of the assimilation window is due to the distance between the
cylinder and the region where observations are performed (see figures 6.4(a)-6.4(b)). According to the present
results, it seems difficult to satisfactorily reconstruct the reference flow in the case where the initial flow field is
unknown and no functional form is prescribed to the rotational speed of the cylinder. Indeed, since the rotational
speed of the cylinder at a given time has less weight in the DA procedure than one parameter of (6.20), the
optimization procedure is more likely to modify the initial condition of the first-guess flow, which amounts here
to adjust upstream conditions. As illustrated in figures 6.4(a)-6.4(b), the DA procedure has significantly altered
the initial condition for both experiments 2A and 2B, which balances the limited reconstruction of the reference
rotational speed and allows to fit the observations of the reference vorticity field (see reference vorticity fields in
figures 6.3(a)-6.3(b)). This suggets a lack of unicity in the solution to the DA problem in this configuration, even
in the case where both the reference and first-guess flows lie in the lock-on region. The case where the initial
condition of the reference flow is assumed to be known and the control vector in the DA procedure is formed by
the rotational speed of the cylinder at all times is investigated in §6.5.1.

6.4.2 Observation of the aerodynamic coefficients (type 3)

DA experiments of type 3 investigate the abality of reconstructing flows past a rotationally oscillating cylinder
from the observation of integrated quantities such as the aerodynamic coefficients CL and CD. As in §6.4.1.1,
the control vector in the DA procedures is formed by the initial flow field and the three parameters in (6.20). We
can notice in figure 6.5 the qualitative difference in the evolution of the aerodynamic coefficients between the
lock-on and non lock-on cases (runs 3A and 3B respectively). For example, concerning the lift coefficient CL, its
time evolution corresponds to a periodic signal with a single frequency identical to the forcing one in the lock-on
case (figure 6.5(a)), whereas CL oscillates in a compound manner in the non lock-on region (figure 6.5(d)). If we
now consider the results of the DA procedures, it appears that, except at the very beginning of the assimilation
window, the assimilated temporal evolution of the coefficients CL and CD almost perfectly match the reference



Chapter 6. Optimal sensor placement for variational data assimilation 136

0 4 8 12 16
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

tur/dr

C
L

(a)

0 4 8 12 16
1

1.5

2

2.5

3

tur/dr

C
D

(b)

0 4 8 12 16
−3

−2

−1

0

1

2

3

tur/dr

α

(c)

0 4 8 12 16
−0.5

0

0.5

tur/dr

C
L

(d)

0 4 8 12 16
1.31

1.32

1.33

1.34

1.35

1.36

1.37

1.38

1.39

1.4

tur/dr

C
D

(e)

0 4 8 12 16

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

tur/dr

α

(f)

0 20 40 60 80 100

10
−6

10
−4

10
−2

10
0

i

J
/
J
0

(g)

Figure 6.5: Results for DA experiments of type 3: temporal evolution of the lift coefficient ((a) and (d)), drag
coefficient ((b) and (e)) and dimensionless rotational of the cylinder ((c) and (f)) for reference (#), first-guess
( ) and assimilated ( ) runs; (g) cost function J in (6.14) versus the iteration of the optimization process
for runs 3A ( ) and 3B ( ). Figures (a)-(c) refer to run 3A (lock-on), while figures (d)-(f) refer to run

3B (non lock-on).

ones for both runs 3A and 3B. The spurious oscillations at the beginning of the assimilation window are due to
the finite frequency of observation, as illustrated in chapter 5, and we can notice that the assimilated solution
always passes through the reference values at observation times. However, for both runs, even in the case where
both the reference and first-guess runs are in the lock-on region (run 3A), the optimization procedure fails to
recover the rotational speed of the reference flow. Similarly to the results of §6.4.1.2, the optimization procedure
has modified the initial condition of the first-guess flow in order to match the observations of the reference
flow, which compensates for the lack of reconstruction of the reference rotational speed. The good fit to the
observations is confirmed in figure 6.5(g), and it appears from the comparison between figures 6.3(i) and figure
6.5(g) that, for the present case, the low dimension of the observations allows to obtain a greater error reduction
than in the experiments of type 1 with the same computational cost. The present results suggest that there is no
unicity of the solution of the DA problem in the case where both the initial condition (encompassing upstream
conditions) and the rotational speed of the cylinder (even parameterized) of the reference flow are unknown
and the aerodynamic coefficients are observed. This may be due to the very low dimension of the observations
compared to that of the control vector in this case.
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6.5 Data assimilation experiments enhanced by optimal sensor placement

In this section, the observation optimization procedure introduced in §6.2.3 is employed to optimize locations
of velocity sensors in order to improve the DA process applied to the reconstruction of flows past a rotationally
oscillating cylinder. The principle of the numerical experiments of type 4-6 (see table 6.5) is the following. For
all these experiments, the observations of the flow are performed using a finite number of velocity sensors. The
corresponding observation operator h in (6.5) is parameterized by the locations of these velocity sensors, which
form the control vector λ in the observation optimization problem (6.10). Firstly, an optimal observation network
is determined, starting from a first guess for the locations of the sensors and using the observation optimization
procedure summarized in table 6.1. In a second step, two DA experiments are carried out. The first one relies
on the first-guess configuration of sensors, while the second one uses the optimized configuration. Comparisons
between the results obtained with these two DA experiments allows to assess the improvement in the sensitivity
of the sensors with respect to a change in the initial flow and/or in the rotational speed of the cylinder. The same
reference and first-guess flows are used for the two DA experiments. Besides, the first-guess flow corresponds
to the same flow solution than that used in the observation optimization procedure, i.e. the solutions used in step
1 of table 6.1 and in step 2 of table 6.2 are the same. From the results of §6.4.1.1, we only consider reference
and first-guess flows that lie in the lock-on region to assess the performances of the optimal sensor placement
procedure. Concerning the control vector in the DA experiments, two situations are considered. In the first one,
the control vector is formed by the rotational speed ω(t) of the cylinder at all times, and, based on the results of
§6.4.1.2, the initial field is assumed to be known. For the second configuration investigated, the control vector is
formed by the initial condition of the flow and by the three parameters characterizing the rotational speed of the
cylinder according to (6.20).

6.5.1 Control on the rotational speed at all times

6.5.1.1 Experiments with four sensors (type 4)

We first examine the results of the numerical experiments of type 4 where the control vector in the DA procedure
is formed by the rotational speed of the cylinder at all times, the initial condition of the reference flow is assumed
to be known. Accordingly, the observation optimization procedure is used to increase the sensitivity of the
observations, here four velocity sensors, with respect to a change in the rotational speed of the cylinder. Results
for the configuration A (A = 2 and F = 0.165 for the first-guess flow) of table 6.4 (run 4A) are reported in
figure 6.6. The first step of this experiment, i.e. the observation optimization procedure, is illustrated in figures
6.6(a) and 6.6(b). The initial configuration of sensors, which is reported in white dots in figure 6.6(a), is chosen
symmetrical and close to the centerline of the wake. Figure 6.6(b) illustrates the evolution of the cost function G
defined in (6.10) during the corresponding optimization process, and its value is increased by a factor of almost
five in three iterations. The corresponding optimized configuration of sensors is reported in black dots in figure
6.6(a). The sensors which were the closest to the cylinder have been placed further upstream by the optimization
procedure, which automatically increases the sensitivity of the sensors with respect to the rotational speed of the
cylinder at the end of the assimilation window. On the whole, it seems that the four sensors have been brought
closer to the shedded vortices. It is noticeable that the optimized configuration of sensors is asymmetrical,
contrary to the initial one. This may be explained by the finite size of the assimilation window, and it is expected
that the optimized configuration tends to be symmetrical for longer assimilation windows. This statement is
confirmed in §6.5.1.2.

We now consider the second step of this experiment. Two different DA experiments are performed in order to
assess the efficiency of the observation optimization procedure, the results of which are illustrated in figures
6.6(c)-6.6(d). The DA experiment using the optimized configuration of sensors achieves a better reconstruction
of the reference solution than the one using the first-guess configuration, in particular at the end of the assim-
ilation window. This is due to the fact that sensors are placed further upstream in the optimized configuration
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Figure 6.6: Results for experiment 4A (A = 2 and F = 0.165 for the first-guess flow). Results of the observation
optimization procedure: (a) initial (white dots) and optimized (black dots) positions of velocity sensors in the
vorticity field of the first-guess flow; (b) cost function G in (6.10) versus the iteration of the optimization process.
Results of DA procedures: (c) dimensionless rotational speed α of the cylinder for reference (#), first-guess
( ) and assimilated runs obtained with the initial ( ) and optimized ( ) configurations of velocity
sensors; (d) cost function J in (6.14) versus the iteration of the optimization process with the initial ( ) and

optimized ( ) configurations of velocity sensors.

(figure 6.6(c)). This is confirmed in table 6.6 where is reported the reduction in the error on the reference rota-
tional speed achieved by the two DA procedures. Besides, for the same final error reduction in the cost function
J in (6.14) (J/J0 = 10−2), the DA procedure using the optimized configuration converges in less iterations than
the one using the first-guess configuration. As indicated in table 6.6, even when taking into account the computa-
tional cost of the observation optimization procedure, the complete process of observation optimization followed
by a DA procedure requires less calls to the adjoint code than directly performing a DA experiment with the
initial configuration of sensors. Accordingly, the observation optimization procedure is efficient in terms of both
computational cost and reconstruction of the reference flow in this case.

Now, the observation optimization procedure is further tested with the experiment 4C where reference and first-
guess flows different from those in run 4A are used (A = 2 and F = 0.375 for the first-guess flow). The
observation optimization procedure whose results are illustrated in figures 6.7(a)-6.7(b) is initialized with the
same first-guess configuration of sensors than for run 4A. In this case, the observation optimization procedure
has increased by two orders of magnitude the value of the cost function G in (6.10) in three iterations of the
optimization process (figure 6.7(b)). The corresponding optimized configuration of sensors is indicated in figure
6.7(a). It could be expected that such an increase in the value of G implies significant differences between the
results of the DA procedures performed with the initial and optimized configurations of sensors, as confirmed in
figures 6.7(c)-6.7(d). The DA procedure using the first-guess configuration has great difficulties to retrieve the
reference solution, and the time evolution of the assimilated rotational speed of the cylinder is very spiky. In fact,
the error on the reference rotational speed has increased during the optimization procedure, and the value of the
cost function J in (6.14) has decreased by less than an order of magnitude in 300 iterations, as indicated in table
6.6. In contrast, the DA procedure performed with the optimized configuration of sensors achieves a reduction in
the value of the cost function J by three orders of magnitude in the same number of iterations. Moreover, even if
the assimilated rotational speed still does not perfectly match the reference one, the reduction in the error εω in
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DA experiment
reference sensors optimized sensors

NDA J/J0 εω/εω0 NDA J/J0 εω/εω0 NOO G/G0 Ntot

4A 153 10−3 0.68 132 10−3 0.45 3 4.8 135
4C 300 0.34 1.32 300 10−3 0.53 3 104.8 303
5A 54 10−2 0.14 16 10−2 0.11 11 16.0 27
5C 163 10−2 0.54 29 10−2 0.11 3 260.4 32
5D 27 10−2 0.17 20 10−2 0.04 3 1.9 23
6A 74 10−2 0.23 50 10−2 0.09 5 1.2 55
6C 70 10−2 0.05 11 10−2 0.04 8 1.4 19

Table 6.6: Number of iterations of the DA procedure NDA, reduction in the value of the cost function in (6.14)
J/J0, and reduction in the error on the reference rotational speed defined in (6.23) εω/εω0 achieved by DA ex-
periments performed with the first-guess configuration of sensors and with the configuration obtained by the
observation optimization procedure in experiments of type 4-6. For the DA experiments using the optimized con-
figurations of sensors, the number of iterations of the observation optimization procedure NOO and the increase
in the cost function in (6.10) G/G0 are also reported, along with the total number of calls to the adjoint code

Ntot = NDA + NOO.
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Figure 6.7: Results for experiment 4C (A = 2 and F = 0.375 for the first-guess flow). Results of the observation
optimization procedure: (a) initial (white dots) and optimized (black dots) positions of velocity sensors in the
vorticity field of the first-guess flow; (b) cost function G in (6.10) versus the iteration of the optimization process.
Results of DA procedures: (c) dimensionless rotational speed α of the cylinder for reference (#), first-guess
( ) and assimilated runs obtained with the initial ( ) and optimized ( ) configurations of velocity
sensors; (d) cost function J in (6.14) versus the iteration of the optimization process with the initial ( ) and

optimized ( ) configurations of velocity sensors.
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Figure 6.8: Results for complementary observation optimization procedures performed with a similar setup to
that of experiment 4A (figure 6.6). (a)-(b): procedure with a different initial configuration of sensors; (c)-(d):
procedure where the size of the assimilation size has been doubled. (a) and (c): initial (white dots) and optimized
(black dots) positions of velocity sensors in the vorticity field of the first-guess flow; (b) and (d): cost function G

in (6.10) versus the iteration of the optimization procedure.

(6.23) is significant. In the present case, the observation optimization procedure is thus particularly useful, since
the optimized configuration of sensors allows to correctly solve the DA problem, whereas the DA experiment
performed with the first-guess configuration failed to retrieve the reference flow realization.

6.5.1.2 Sensitivity to the data assimilation setup

Two complementary observation optimization procedures are performed to investigate the influence of the choice
of the first-guess configuration of sensors and that of the size of the assimilation window on the optimized
configuration. The setup of these computations is similar to that of experiment 4A, and the corresponding results
are reported in figure 6.8. For the case illustrated in figures 6.8(a)-6.8(b), a different first-guess configuration
of sensors is employed, and the sensors are initially placed outside of the wake of the cylinder. Similarly to
figure 6.6(a), the observation optimization procedure tends to place the sensors closer to the shedded vortices.
However, the optimized configurations in figures 6.6(a) and 6.8(a) are not identical while all the parameters of
the corresponding experiments are the same. This suggests that the cost function G has multiple local maxima
and that the solution of (6.10) is not unique. In figures 6.8(c)-6.8(d), the initial configuration of sensors is the
same as in figure 6.6(a) but the size of the assimilation window has been doubled (simulations are performed
until t = T = 32dr/ur instead of 16dr/ur). As anticipated, the optimized configuration of sensors appears less
asymmetrical in this case than in figure 6.6(a).
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Figure 6.9: Results for experiment 5D (A = 1 and F = 0.1 for the first-guess flow). Results of the optimization
procedure: (a) initial (white dots) and optimized (black dots) positions of velocity sensors in the vorticity field
of the first-guess flow; (b) cost function G in (6.10) versus the iteration of the optimization process. Results of
DA procedures: (c) dimensionless rotational speed α of the cylinder for reference (#), first-guess ( ) and
assimilated runs obtained with the initial configuration of velocity sensors ( ) and optimized configuration
with merged sensors ( ); (d) cost function J in (6.14) versus the iteration of the optimization process with
the initial configuration of sensors ( ), optimized configuration ( ) and optimized configuration with

merged sensors ( ).

6.5.2 Control on the initial condition and the parameterized rotational speed of the cylinder

6.5.2.1 Experiments with four sensors (type 5)

For the experiments of type 5-6 (see table 6.5) the control vector in the DA procedure is formed by the initial
flow field and the three parameters characterizing the rotational speed of the cylinder according to (6.20). In
these experiments, the optimization observation procedure of table 6.1 is thus used to increase the sensitivity of
velocity sensors with respect to both the initial flow field and the rotational speed of the cylinder. The exper-
iments of type 5 are first examined. Four velocity sensors are used to observe the flow, and various reference
and first-guess solutions are considered. Results for configuration D (A = 1 and F = 0.1 for the first-guess
flow) of table 6.4 (run 5D) are illustrated in figure 6.9. The initial configuration of sensors for the observation
optimization procedure (see figures 6.9(a)-6.9(b)) seems to be a relatively good first guess since the cost function
G has been increased by a factor of two by the optimization process, which is relatively low compared with the
experiments of type 4. It is noticeable that the observation optimization procedure has clustered the sensors of
the optimized configuration in a single location. In order to assess the previous results, three DA experiments are
performed: the first one uses the first-guess configuration of sensors, the second one directly uses the optimized
configuration with 4 sensors, and the third experiment employs the optimized configuration where the 4 sensors
are merged into one single sensor. Even with a merged single sensor, the DA experiments performed with the op-
timized configuration achieve a better reconstruction of the reference rotational speed of the cylinder (see figure
6.9(c) and table 6.6) than the DA experiment using the first-guess configuration. Besides, the DA experiments
performed with the optimized configuration reach the same error reduction J/J0 in slightly less iterations than
with the initial configuration.
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Figure 6.10: Results for experiment 5A (A = 2 and F = 0.165 for the first-guess flow). Results of the optimiza-
tion procedure: (a) initial (white dots) and optimized (black dots) positions of velocity sensors in the vorticity
field of the first-guess flow; (b) cost function G in (6.10) versus the iteration of the optimization process. Results
of DA procedures: (c) dimensionless rotational speed α of the cylinder for reference (#), first-guess ( ) and
assimilated runs obtained with the initial configuration of velocity sensors ( ) and optimized configuration
with merged sensors ( ); (d) cost function J in (6.14) versus the iteration of the optimization process with
the initial configuration of sensors ( ), optimized configuration ( ) and optimized configuration with

merged sensors ( ).

Results for experiment 5A are illustrated in figure 6.10. This experiment uses the same first-guess flow and
first-guess configuration of sensors as experiment 4A, and it is interesting to note the differences between the
obtained optimized configurations of sensors when the observation optimization procedure is used to increase
the sensitivity of the sensors with respect to only the rotational speed of the cylinder (see figures 6.6(a)-6.6(b))
or with respect to both the initial flow field and the rotational speed of the cylinder (see figures 6.10(a)-6.10(b)).
Compared to the former case, the observation optimization procedure has placed the velocity sensors further
upstream in the latter case, which may be explained by the fact that the region of the initial flow in front of the
cylinder can be here thought of as upstream conditions. The sensors of the optimized configuration are also much
closer to the cylinder than those of the initial configuration. Two pairs of close sensors can be identified above and
below the cylinder in the optimized configuration, and, similarly to experiment 5D, the optimized configuration
is used in the DA experiments either directly or with two merged sensors. As indicated in table 6.6 and illustrated
in figures 6.10(c)-6.10(d), the DA experiments using the optimized configuration of sensors achieve almost the
same reduction in the error on the reference rotational speed as with the first-guess configuration, but three times
less iterations of the optimization process are required in the former case. As for experiment 5D, merging the
close sensors does not significantly degrade the optimality of the observation network.

The use of the configuration C of table 6.4 (run 5C) is examined in figure 6.11. Similarly to experiment 4C where
the same first-guess flow is considered, the observation optimization procedure has increased the value of the
cost function G by two orders of magnitude. The optimized configuration of sensors of figure 6.11(a) appears
more symmetric than in figure 6.7(a). As illustrated in figure 6.11(d), the DA procedure performed with the
optimized configuration of sensors converges at a much faster rate toward the reference flow than the one using
the first-guess observation network. Indeed, 29 and 163 iterations of the optimization process are required in the
former and latter cases respectively to achieve the error reduction J/J0 = 10−2. Besides, the error reduction on
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Figure 6.11: Results for experiment 5C (A = 2 and F = 0.375 for the first-guess flow). Results of the optimiza-
tion procedure: (a) initial (white dots) and optimized (black dots) positions of velocity sensors in the vorticity
field of the first-guess flow; (b) cost function G in (6.10) versus the iteration of the optimization process. Results
of DA procedures: (c) dimensionless rotational speed α of the cylinder for reference (#), first-guess ( ) and
assimilated runs obtained with the initial ( ) and optimized ( ) configurations of velocity sensors; (d)
cost function J in (6.14) versus the iteration of the optimization process with the initial ( ) and optimized

( ) configurations of velocity sensors.

the reference rotational speed at the end of the optimization procedure is five times greater in the case where the
optimized sensors are used than in the case where the first-guess configuration is employed. As summarized in
table 6.6, the use of the observation optimization procedure is largely cost efficient in terms of both total number
of calls to the adjoint code and reconstruction of the reference flow in this case.

6.5.2.2 Experiments with 20 sensors, sensor selection (type 6)

Finally, we consider experiments of type 6, whose setup is similar to that of the experiments of type 5, but now
20 velocity sensors are used to perform the observations of the flow. Generally speaking, when increasing the
number of sensors to observe a given system, one could expect discrepancies in the sensitivity with respect to
changes in the system between the different sensors. In this respect, it may be interesting to quantify the impor-
tance of each sensor and to indentify the most sensitive ones. The sensor selection procedure described in §6.2.6
is here used to select the most important sensors in the optimized observation networks. Results for experiment
6A are reported in figure 6.12. Starting from the first-guess configuration of sensors illustrated in figure 6.12(a),
the configuration of figure 6.12(b) is obtained with the observation optimization procedure. The increase in the
value of the cost function G achieved by the optimization procedure is moderate (by a factor 1.2) compared
with the previous experiments using four sensors. Performing the observations with 20 sensors actually provides
much more information about the flow than with four sensors, and it is expected that the gain in sensitivity
obtained with observation optimization strategies becomes less drastic as the number of sensors increases. The
most important sensors of the optimized configuration in the sense of equations (6.18)-(6.19) are selected with
δ = 0.997 in figure 6.12(c). With this value, only 11 sensors remain, and we can notice that the removed sensors
coincide with the ones of the first-guess configuration that have not been moved by the optimization process and
were located the furthest from the shedded vortices. Three DA experiments are peformed to assess the results
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Figure 6.12: Results for experiment 6A (A = 2 andF = 0.165 for the first-guess flow). Results of the observation
optimization procedure: (a) initial configuration of velocity sensors (white dots), (b) optimized velocity sensors
(black dots), and (c) optimized configuration with only the most important sensors; (d) cost function G in (6.10)
versus the iteration of the optimization process. Results of DA procedures: (e) dimensionless rotational speed α
of the cylinder for reference (#), first-guess ( ) and assimilated runs obtained with the initial configuration
of velocity sensors ( ) and optimized configuration with only the most important sensors ( ); (f) cost
function J in (6.14) versus the iteration of the optimization process with the initial configuration of sensors
( ), optimized configuration ( ) and optimized configuration with only the most important sensors

( ).

of the observation optimization procedure, each using a sensor configuration among the three ones illustrated in
figures 6.12(a)-6.12(c). The corresponding results are reported in figures 6.12(e)-6.12(f). The DA experiment
performed with only the most important sensors of the optimized configuration achieves a better reconstruction
of the reference rotational speed of the cylinder than the DA experiment using the first-guess configuration, and
in less iterations, as summarized in table 6.6. Only retaining the most sensitive sensors does not appear to have
significantly degrade the optimality of the observation network.

We finally consider the results of experiment 6C, which are illustrated in figure 6.13. The configuration of sen-
sors obtained with the observation optimization procedure is illustrated in figure 6.13(b) starting from the same
first-guess configuration as in experiment 6A. Some of the sensors have been placed far from the cylinder and
upstream, and when considering this result we have to keep in mind that the observation optimization procedure
is used here to increase the sensitivity of the sensors with respect to both the rotational speed of the cylinder and
the initial flow field. Equations (6.18)-(6.19) with δ = 0.95 are considered to select the most important sensors
in the optimized configuration. The value of δ is adjusted in order to remove nearly half of the sensors, as in
run 6A. The resulting configuration is illustrated in figure 6.13(c), where 10 sensors remain. Results for DA
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Figure 6.13: Results for experiment 6C (A = 2 andF = 0.375 for the first-guess flow). Results of the observation
optimization procedure: (a) initial configuration of velocity sensors (white dots), (b) optimized velocity sensors
(black dots), and (c) optimized configuration with only the most important sensors; (d) cost function G in (6.10)
versus the iteration of the optimization process. Results of DA procedures: (e) dimensionless rotational speed α
of the cylinder for reference (#), first-guess ( ) and assimilated runs obtained with the initial configuration
of velocity sensors ( ) and optimized configuration with only the most important sensors ( ); (f) cost
function J in (6.14) versus the iteration of the optimization process with the initial configuration of sensors
( ), optimized configuration ( ) and optimized configuration with only the most important sensors

( ).

procedures performed with the three configurations of sensors of figures 6.13(a)-6.13(c) are reported in figures
6.13(e)-6.13(f) and table 6.6. The DA experiments performed with the first-guess configuration and the opti-
mized configurations of sensors have achieved a similar reduction in the error on the reference rotational speed
of the cylinder. However, the DA experiment with only the most important sensors of the optimized configu-
ration has reached this error reduction in almost seven times less iterations than the DA experiment performed
with the first-guess configuration. Even with two times less sensors than the first-guess configuration of sensors,
the optimized configuration proves to be superior for DA purposes.

6.6 Conclusion

In this chapter, an optimal sensor placement procedure for variational DA of unsteady flows has been proposed.
This approach is dedicated to the a priori design of an observation network. It is based on the maximization of
the norm of the gradient with respect to initial condition, boundary conditions or model parameters of a response
function of the flow system. This response function is defined as the norm of observations of the flow. In other
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words, this procedure is aimed at identifying the regions of the flow that have the greatest sensitivity with respect
to a change in control variables such as the initial condition, boundary conditions or model parameters in obser-
vation space. This methodology relies on the use of a first-order adjoint technique, and can be naturally coupled
with variational DA. However, since observation optimization is performed before assimilating measurements,
it is hoped that the proposed procedure will be of interest for a broader range of estimation problems, such as
those encountered in flow control.

This method has been applied to the reconstruction of unsteady bidimensional flows past a rotationally oscil-
lating cylinder at Re = 100. First, preliminary DA experiments have been conducted in order to delineate the
possibilities of solving inverse problems in the context of forced wake flows. The present results suggest that, in
the case where the flow lies in the non lock-on regime, it is difficult to retrieve the rotational speed of the cylinder
and the initial flow field, which encompasses here upstream conditions, from observations of the velocity field
downstream of the cylinder. More precisely, the DA procedure satisfactorily fits the available measurements, but
does not correctly identify the associated initial condition and rotational speed. This result may be explained by
the fact that the frequency of the wake flow is not directly related to the forcing one in this case, and actually
tends to the natural frequency as the flow deviates from the lock-on region, possibly inducing a lack of unicity of
the solution to the inverse problem. On the other hand, when the flow lies in the lock-on regime, the frequency of
the wake flow is imposed by the forcing one, and the DA procedure is able to correctly retrieve both the rotation
parameters and the initial field. The present study also suggests that the observation of global quantities such as
the aerodynamic coefficients does not bring enough information to correctly solve the DA inverse problem.

In a second step, the proposed observation optimization procedure has been used for the design of optimal net-
works of velocity sensors downstream of the cylinder, allowing to improve the performances of the DA process.
It has also been employed to identify and select the most important sensors in a given network. Compared to the
corresponding first-guess configuration of sensors, in all the DA experiments considered, the use of the optimized
network has allowed a significant decrease (up to five times less, run 5C) in the number of calls to the adjoint code
(even when taking into account the supplementary cost associated to the observation optimization procedure) that
are necessary to reach a given error reduction for the DA problem. Besides, the DA experiments performed with
the optimal observation networks achieved a greater accuracy in the reconstructed flow. A case was indentified
(run 4C) where the reconstructed rotational speed of the cylinder obtained with the first-guess network of sensors
was worse than the first guess for the DA procedure, while the optimized sensors allowed to significantly improve
the estimation of the rotational speed. Accordingly, the results obtained with the proposed methodology are en-
couraging, both in terms of quality of the reconstructed flow and computational cost-efficiency, making possible
its application to the reconstruction of more complex flows. The use of an adjoint technique makes the present
approach well adapted to high-dimensional problems, but other strategies for efficient sensor placement could
be considered in the framework of other DA techniques such as ensemble Kalman filtering or ensemble-based
variational DA, as illustrated in chapter 7.



Chapter 7

Data assimilation-based reconstruction of
urban flows

7.1 Introduction

Reconstructing pollutant or contaminant source characteristics, such as location and intensity, from observations
of the toxic gas concentration in urban areas is a problem of great interest for population protection and envi-
ronmental preservation. Such an inverse problem is also a challenging one in several aspects. Firstly, in actual
practice, only a limited number of measurements of the gas concentration is available, which may prevent from
an accurate identification of the source, or, in the worst case, may render the problem severely ill-posed. Sec-
ondly, the dynamics of the flow and the dispersion of the gas in urban areas are complex due to the complex
geometry of such environments. Achieving sufficiently high-fidelity predictions of urban flows may thus re-
quire significant computational ressources and the use of advanced computational fluid dynamics (CFD) solvers.
Thirdly, in addition to the pollutant source characteristics, other types of uncertainties have to be considered for
the resolution of the inverse problem. In particular, meteorological conditions such as the intensity and direction
of the wind entering into the urban area, which have a dramatic impact on the velocity field and thus on the
gas dispersion, are not accurately known in real applications. Consequently, the development of methodologies
for source reconstruction in urban areas that are able to deal with the above difficulties is still an open issue, as
discussed below.

Due to its importance in public safety, the identification of sources of pollutants dispersed in atmospheric en-
vironments has been largely investigated in the literature, and numerous techniques have been proposed and
applied to this inverse problem. Among others, derivative-free optimization techniques such as pattern search
methods [235], genetic algorithms [42], simulated annealing and hybrid variants [146] have been considered.
Alternative optimization methods rely on the assumptions of known velocity field and linear relation between
the concentration at measurement points and the parameters of the source [1, 191]. Stochastic techniques such as
Bayesian inference and Markov chain Monte Carlo sampling have also been used for source reconstruction [231].
However, either because of the prohibitive computational cost when used in conjunction with CFD solvers, or
because of the assumption of known velocity field, the above techniques do not appear well suited for realistic
urban flow applications. As a matter of fact, these methods have been mainly applied to contaminant dissemi-
nation at a regional scale and Gaussian plume or puff dispersion models, but rarely to full-scale urban problems,
with noticeable exceptions in [54, 121, 124, 231]. Moreover, all these studies still rely on the assumption of
known velocity field, which is evaluated through Reynolds-averaged Navier-Stokes (RANS) approaches.

On the other hand, data assimilation (DA) techniques as developed in the meteorological community [43, 133]
and discussed in chapter 2, can virtually deal with any type of uncertainty, and seem appropriate to solve large-
scale inverse problems such as encountered in urban flows. Variational techniques [128], based on optimal
control, and ensemble Kalman filters [77], which directly originate from the Bayesian formulation of the DA

147
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problem, are currently the most commonly used DA methods due to their high scalability and ease of imple-
mentation respectively. Recent applications of variational DA and ensemble Kalman filtering to source indenti-
fication may be found in [24] and [234] respectively, but these studies still consider simple Gaussian models for
atmospheric gas dispersion.

In the present chapter, it is proposed to employ DA for urban flow reconstruction. More precisely, the use
of an ensemble-based variational DA technique [140, 204] is considered, which combines the robustness of
variational schemes with the ease of implementation of ensemble methods [163]. This DA scheme is deployed in
conjunction with a Very Large Eddy Simulation (VLES)/Lattice Boltzmann Method (LBM) solver. This method,
which appears more efficient in the prediction of urban flows than RANS models [90, 169, 207], provides high-
fidelity estimations of the gas dispersion in an actual urban area. The proposed methodology is applied to
the identification of both pollutant source characteristics and approaching wind conditions, and is assessed in
terms of accuracy in the identified parameters and corresponding concentration field in various reconstruction
scenarios.

In addition to the question of the inverse problem methodology when dealing with urban flows, the problem of
identifying appropriate locations to perform observations of the concentration field is also examined in order
to improve the performances of the DA process. In the contexts of pollutant release and DA, various sensor
placement strategies have been proposed in the literature, which are based, among others, on specific risk-based
criterions [50, 131], maximization of posterior statistics [1], observability concept [82, 113], variational tools,
see [55] and chapter 6, or Kriging-based spatial interpolation [227]. In the present chapter, a sensor placement
procedure is proposed, which is based on a global (in parameter space) sensitivity analysis of the concentration
field with respect to source and wind parameters. This methodology is general in the sense that it may be applied
to any inverse/DA problem, and appears robust thanks to the global character of the sensitivity analysis.

This chapter is structured as follows. The DA scheme used in this study is introduced in section 7.2. The
considered urban area is described in section 7.3 along with the VLES/LBM solver for flow computation. The
sensitivity analysis-based sensor placement procedure is developed in section 7.4. The setup of the DA experi-
ments is presented in section 7.5, while results are reported in section 7.6. Section 7.7 is dedicated to conclusions
and perspectives.

7.2 POD-ensemble-based variational (POD-EnVar) data assimilation scheme

A computational fluid dynamics (CFD) solver is represented by an operator m that maps an input vector γ, which
may be formed by initial and boundary conditions and by model parameters, to a flow field q, discretized in both
space and time, according to

q = m(γ). (7.1)

Aside from the numerical model (7.1), it is assumed that observations y of a reference flow are available. The
observation operator denoted by h allows to compare the estimation of the flow q with available observations. In
the standard variational formulation of data assimilation (DA) [133], the problem is to determine the input vector
γ that minimizes the discrepancies between the estimation of the flow q and observations y. The solution of this
problem is referred to as the assimilated input vector in the following, with corresponding assimilated flow. The
discrepancies between estimation and observations are evaluated through the cost function J defined by (§2.2)

J =
1
2
‖y − h(q)‖2R , (7.2)

where ‖·‖2R = ·TR·, the superscript T indicates the transpose operator, and the matrix R is used to weight the
different terms in J. In particular, in the case of noisy observations, R may be chosen as the inverse of the
covariance matrix associated to the noise in the measurements. In order to enforce the dynamical constraint
(7.1) on the flow realization q during the minimization of the cost function J, standard variational methods [128]
rely on the use of an adjoint model [176] to evaluate the gradient of J with respect to the input vector γ (§2.3).
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Here, we consider the use of ensemble-based variational schemes, see [140, 163, 204, 230] and §2.6.2, where the
constraint (7.1) is taken into account implicitly through the propagation of an ensemble of realizations around
a first-guess γ f . Such methodology thus allows to avoid the tedious coding of the adjoint model, while the
optimization framework of these schemes ensures a greater stability with respect to the size of the ensemble
compared to other ensemble DA methods such as the ensemble Kalman filter [77]. This robustness with respect
to ensemble characteristics, which is illustrated in chapter 5, is particularly valuable in the case where expensive
numerical models are used, as in the present study. In this framework, the minimizing input vector γ is searched
in a subspace spanned by the ensemble of realizations, and is expressed as

γ = γ f + Aw, (7.3)

where w is the new control vector in the minimization process, and the matrix A contains a set of suitable basis
vectors built from the ensemble perturbation matrix E defined as

E =
(
γ(1) − γ f ,γ(2) − γ f , · · · ,γ(Nen) − γ f

)
, (7.4)

where γ(1), γ(2), · · · , γ(Nen) are Nen samples of the input vector that are centered around the first-guess γ f . A
straightforward choice for the matrix A in (7.3) is A = E, see [140] and §2.6.2. However, following [204], further
refinement may be achieved through the use of the proper orthogonal decomposition (POD) and the method of
snapshots [192]. Employing POD allows to derive an optimal basis from the ensemble in the sense that the most
energetic perturbations with respect to the first guess γ f are kept, smoothes the resulting representation, and
improves the condition number of the Hessian matrix associated to J that is inverted to solve the minimization
problem. The POD step may be avoided in relatively simple and smooth problems, while it is useful to smooth
noisy quantities of interest, here time-averaged scalar and velocity fields of a 3D turbulent flow, when solving the
DA problem [150]. As in [204], the POD step is performed in the observation space in order to obtain orthogonal
base vectors to fit the available measurements, instead of possibly linearly dependent vectors in the case where
POD is not performed. The first-guess input vector and the Nen samples in (7.4) are propagated using the model
(7.1), allowing to form the ensemble perturbation matrix in the observation space H

H =
(
h(q(1)) − h(q f ), h(q(2)) − h(q f ), · · · , h(q(Nen)) − h(q f )

)
, (7.5)

where q(i) = m(γ(i)) i ∈ {1, 2, · · · ,Nen} and q f = m(γ f ). The POD representation of the ensemble is obtained by
solving the eigenvalue problem

Cv(i) = λ(i)v(i), C =
1

Nen
HTH. (7.6)

The Nen eigenvalues λ(i) are sorted by decreasing order, and a truncated basis of eigenvectors v(i) is defined as

V =
(
v(1), v(2), · · · , v(NPOD)

)
, NPOD = min

k

∣∣∣∣∣∣∣
∑k

i=1 λ
(i)∑Nen

i=1 λ
(i)
> εPOD

 , (7.7)

with 0 < εPOD ≤ 1. Accordingly, the matrix
HPOD = HV (7.8)

contains orthogonal ensemble perturbations in the observation space. Choosing the matrix A in (7.3) as

A = EV, (7.9)

allows to rely on the linear approximation

h(q) ' h(q f ) + HPODw, (7.10)

and to rewrite the cost function J in (7.2) as

J =
1
2

∥∥∥h(q f ) − y + HPODw
∥∥∥2

R . (7.11)
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1. start with a first guess γ f for the input vector

2. sample Nen realizations around γ f

3. propagate the realizations using the model (7.1)

4. construct the POD representation of the ensemble in observation space from (7.6)-
(7.7)

5. compute the minimizing control vector w with (7.12)

6. update the estimation of the input vector γ using (7.3) with (7.9)

7. set the updated estimation as a new first-guess γ f and return to step 2 until stop-
ping criterion reached

Table 7.1: Schematic representation of the iterative POD-EnVar data assimilation algorithm.

Since the cost function in (7.11) is quadratic, the minimizing vector w is easily found as

w =
(
HT

PODRHPOD
)−1

HT
PODR

(
y − h(q f )

)
. (7.12)

From (7.12), an assimilated input vector γ can be computed using (7.3) with (7.9). The latter may be then
considered as the first guess for a new assimilation cycle in order to further improve the estimation of γ. The
corresponding iterative procedure is summarized in table 7.1.

7.3 Urban toxic gas dispersion

7.3.1 Urban flow CFD simulations

A general trend of last decades shows an increase of population living in urbanized areas. As a consequence,
there is growing interest in the scientific communities to improve predictions in case of accidental or intentional
releases of chemical, biological, radiological or nuclear (CBRN) products. The problem can be considered at
different scales, and we will focus in the present study on medium range dispersions, i.e. we will consider an
urban area of 1km2. Recently, CFD has become the new standard for this kind of applications [27, 45, 99, 164].
However, urban flows are very complex in terms of numerical simulations: a real urban area is a complex
array of bluff bodies invested by the atmospheric boundary layer, and the resulting flow is characterized by
unsteadiness and separations. Consequently, researchers tried in the last decade to establish guidelines for such
simulations. The most exhaustive guidelines for the application of CFD to flows in the urban environment
are the ones proposed by the Architectural Institute of Japan (AIJ) [210] and by the COST action 743 [84].
Although LES proved to be more accurate, most of the CFD applications in the literature still rely on RANS
turbulence models due to the associated reduced computational cost. However, the non-stationarity of LES has
proved to be important to study CBRN releases and their dispersions, in particular in the span-wise direction
[26, 90, 207, 208]. Aside from the quality of the turbulence model and the fidelity of the predictions, another
important requirement for the CFD code is its ability to deal with the detailed geometry of urban environments.
For these reasons, the Lattice Boltzmann Method (LBM) code PowerFLOW (Exa Corporation) was considered in
the present study. The main advantages of the LBM methodology [47, 49, 120] are the massively parallelization
capacity and the handling of complex geometries as required to simulate medium range CBRN dispersion in
urban areas. The application of LBM is quite recent and there are few applications to urban flows [71, 169].
PowerFLOW employs a Very Large Eddy Simulation (VLES) turbulence model [194], where the large eddies
are solved, thus preserving the unsteady nature of the solution and ensuring a high-fidelity prediction of the
flow, while the smaller ones are modeled through a modified k − ε RNG model [228]. This allows a decrease in
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(a) (b)

(c) (d)
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Figure 7.1: VLES/LBM prediction of gas dispersion in Shinjuku area [210]: (a)-(b) computational grid of the
simulations ((a) top and (b) lateral views), (c) velocity magnitude field and (d) isosurface containing concentration
levels higher than 1 ppm for a typical flow realization, and (e) wind and scalar source parameters along with
ranges of variation considered in the sensitivity analysis of section 7.4.1. Blue dot refers to the reference position
of the source, while green and red dots indicate the location of the source for the first and second first-guesses

respectively, as reported in table 7.2.

computational cost compared to high-resolved LES, which is valuable in the case where many simulations have
to be performed, as in the present study. Validations of the PowerFlow solver on urban flows may be found in
[148, 149].
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7.3.2 Gas dispersion in the Shinjuku area

In this study, we will focus on the dispersion of a non-reacting agent with density ρ comparable to air. The
dynamics of the gas concentration C is modeled as a passive scalar according to

∂ρC
∂t

+ ∇ · (ρUC) = ∇ · (ρD∇C), (7.13)

where U is the mean velocity vector and D is the diffusion coefficient, which is modeled in the case of VLES as

D =
νt

S ct
+ ν, (7.14)

where νt is the eddy viscosity, ν is the molecular viscosity and S ct is the turbulent Schmidt number. In the
present application, we consider a continuous release from a pond-like source in a square-like area surrounded
by high-rise buildings. The assumption of continuous release may be relevant for the study of pollutant releases
[231, 235], and allows to consider time-averaged results if the physical duration of the simulation is long enough.
Accordingly, all the velocity and concentration fields considered in this study are averaged in time. The reference
geometry is the Shinjuku area of Tokyo, which is taken from the AIJ open source database [210]. The dimensions
of the corresponding simulation domain are 2 km×2 km×0.6 km, and the computational grid counts 6 ·106 cells
with a smallest cell size of 2 m and 6 levels of variable resolution. Mesh refinement is set through embedded
volumes. The characteristic time to obtain averaged results with a mean wind speed at the averaged building
height UH = 5 m/s is about 60 minutes of simulation in physical time, corresponding to about 105 time steps. The
geometry of the urban environnement can be visualized in figures 7.1(a)-7.1(b), along with the mesh used in the
present computations and examples of simulated velocity (figure 7.1(c)) and scalar (figure 7.1(d)) fields. About
8 hours on 96 2.4Ghz AMD Opteron 8431 cores are required for each simulation with no gas dispersion. Note
that the computational cost can double in case of many passive scalar solutions. Regarding boundary conditions,
the buildings and the floor are considered as smooth solid surfaces, while the lateral and top boundaries are set to
be frictionless impermeable planes. Profiles for the inlet mean velocity and turbulent kinetic energy are obtained
by interpolating experimental data conditions, while the inlet turbulent dissipation rate is recovered following
the AIJ guidelines [210]. These inflow conditions are parameterized by the angle α which indicates the direction
of the mean profile and by the characteristic mean flow intensity UH . Outlet boundary conditions are set by
imposing a static pressure. The gas is released from the floor with a zero injection speed, mimicking evaporation
of a liquid pollutant reservoir, and the corresponding source is modeled as a solid wall with a Dirichlet condition
C = 106 ppm applied on its surface at the source location. The release of the gas is therefore governed by the
coordinates xs and ys of the source and by its diameter ds which determines the quantity of gas that is injected in
the flow. Accordingly, the input vector γ in (7.1) for the present simulations is

γ = (α,UH , xs, ys, ds)T , (7.15)

where α and UH allow to tune inlet boundary conditions (wind parameters), while xs, ys and ds characterize the
release of the gas (scalar source parameters). These input parameters are illustrated in figure 7.1(e).

The mean velocity magnitude and scalar fields for the input vector γre f whose components are reported in table
7.2 are illustrated in figure 7.2. This flow realization is referred to as the reference flow in the following, and
the aim of the data assimilation experiments of section 7.6 will be to reconstruct this reference flow and the
corresponding input parameters γre f . In figure 7.2(a), instead of directly considering the concentration C of the
gas, we use a modified concentration C∗ which is defined as follows. In toxic gas dispersion problems, the main
interest is on the map of concentration in logarithmic scale, from which one can obtained areas corresponding
to a given toxic level threshold. In order to prevent the occurance of infinite values and to clip low levels of
concentration, which are affected by errors from the finite averaging time, we apply an ad hoc transformation to
the concentration C so that values < 1 ppm are kept on a linear scale while values > 1 ppm are in a log scale

C∗ =

log10(10C) C ≥ 1 ppm
C C < 1 ppm

. (7.16)
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γi γmin
i γmax

i γ
re f
i γ

f 1
i γ

f 2
i

α (◦) −30 30 0 0 −30
UH (m/s) 3 7 5 5 7

xs (m) 90 170 130 90 70
ys (m) 30 110 70 30 10
ds (m) 2 10 6 10 12

Table 7.2: Ranges of parameters
[
γmin

i , γmax
i

]
considered in the sensitivity analysis of section 7.4.1, and input

vectors γre f , γ f 1 and γ f 2 for the reference and first-guess flows of the DA experiments of section 7.6.
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Figure 7.2: (a) Modified concentration C∗ and (b) velocity magnitude (m/s) fields for the reference flow to be
reconstructed in the DA experiments. The corresponding input vector γre f is reported in table 7.2.

In the following, all the reported results correspond to the plane z = 10 m. This altitude is relevant for pedestrian
level applications, and is the same as that of measuring points used in field experiments conducted in the actual
urban area of Shinjuku [209].

7.4 Sensitivity analysis-based placement of sensors

7.4.1 Sensitivity analysis of the gas concentration

In the present study, we consider measurements of the gas concentration for the reconstruction of the reference
flow through data assimilation. Of course, in practical applications, the concentration field is not available
over the full urban area, but only at a few measurement points. Accordingly, one may wonder how a small
number of sensors could be appropriately placed to measure the flow. In any DA framework, the determination
of an efficient observation network is a problem of crucial importance, since measurements represent the only
available information about the reference flow to be reconstructed. A desirable property of the observations is
their sensitivity with respect to a change in the input vector γ. Indeed, if a variation in γ entails no change in
the values of the observations, i.e. changes in the flow are not observable, the DA problem can not be solved
satisfactorily. It is therefore preferable to design the observation network with maximum sensitivity with respect
to γ. Before specifying an appropriate criterion to design optimized measurements, we first need to evaluate the
sensitivity of the flow solution in observation space with respect to the input vector. In the present study, this is
performed through the computation of Sobol´ indices [193], which allow to estimate the global sensitivity of a
quantity of interest X(γ) that will be here the modified concentration field C∗, considering that the components
of the input vector γ are random variables.

The main statistics that are required to compute the Sobol´ indices are obtained through quasi Monte Carlo
(Sobol sequences) estimators [189]. As we rely on high-fidelity unsteady CFD simulations, the computational
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costs do not allow to directly compute the estimators, which require too many function calls (i.e. simulations).
Therefore, a meta-modelling approach is preferred in this study: the c-APK method presented in [150], which is
based on an efficient hybridization of c-ANOVA [147, 229] and POD/Kriging-based response surface methods
[30]. The c-APK surrogate model relies on an adaptive strategy to achieve a conveniently desired global accuracy
in complex realistic applications as the urban gas dispersion application. Once the meta-model is built, the mean
estimate µ of X(γ) is calculated as [150]

µ =
1

qMC

qMC∑
i=1

Xs(γ(i)), (7.17)

where qMC is the number of quasi Monte Carlo samples γ(i) of the input vector, and Xs(γ) refers to the c-APK
surrogate model of X(γ). The variance σ2 is computed as

σ2 =
1

qMC − 1

qMC∑
i=1

(Xs(γ(i)) − µ)2. (7.18)

First-order sensitivity indices are derived from two independent sampling matrices A and B of dimensions qMC×

N with N = dim(γ). These sets are obtained from a quasi Monte Carlo sampling matrix of dimensions qMC×2N,
and they are used to estimate the partial variance σ2

i for the i-th component of γ according to [189]

σ2
i =

1
qMC

qMC∑
j=1

Xs((B)( j))
(
Xs((Ai

B)( j)) − Xs((A)( j))
)

(7.19)

where Ai
B is the matrix where all columns are from A except the i-th column which is from B, and (A)( j) denotes

the j-th row of matrix A, i.e. the j-th sample in A. Once computed, these partial variances allow to form the
first-order Sobol´ indices S i defined as

S i =
σ2

i

σ2 , S ∗i =
S i∑N

j=1 S j
. (7.20)

The index S i thus allows to quantify the first-order sensitivity of the quantity of interest X(γ) with respect to
the i-th parameter relatively to the total variance of X(γ). In the following, we will also consider the indices S ∗i
defined in (7.20) where the Sobol´ indices S i are normalized by the sum of the first-order effects. This is done
mainly to re-scale the Sobol’ indices as if there were no higher order interactions and to smooth the estimators
when their sum slightly exceeds 1. Thanks to this operation we will be able to directly use the normalized Sobol’
indices in the sensor optimization framework.

Taking the modified concentration field C∗ as the quantity of interest X(γ), its mean µ, total variance σ2 and
normalized Sobol’ indices S ∗i are evaluated according to the above procedure, and the resulting statistics are
illustrated in figures 7.3 and 7.4. The input vectors γ(i) needed in the estimators (7.17)-(7.19) are obtained
assuming that the j-th component of γ follows the normal law with mean γre f

j and standard deviation (1/4)(γmax
j −

γmin
j ). The components of the vectors γre f , γmin and γmax are reported in table 7.2. The investigated ranges of

parameters correspond to typical ranges of uncertainties in field measurements, which are also used in other
uncertainty quantification studies [10, 88]. Huge variations in the sensitivity of the concentration field can be
identified from figures 7.3 and 7.4, both spatially and among the parameters in γ. As illustrated in figure 7.3, the
variability in the concentration is negligible in the north part of the city, while total variance reaches maximum
values in the region close to the reference position of the scalar source and in the wake of the tallest buildings.
Figure 7.4 shows that the most important parameter is the wind angle α (figure 7.4(a)), which determines the
global direction of the dispersion. These results also highlight the importance of the coordinate xs of the scalar
source on the repartition of the gas (figure 7.4(c)), which may be explained by the fact that the x−direction
corresponds, in average, to the direction orthogonal to that of the mean flow in the present study. The parameters
ys and ds seem to play intermediate roles (figures 7.4(d) and 7.4(e)), even if the coordinate ys appears to have
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Figure 7.3: (a) Mean and (b) standard deviation of the modified concentration field C∗ with a normal law over the
ranges

[
γmin

i , γmax
i

]
in table 7.2 and obtained through the forward uncertainty quantification procedure of section

7.4.1.

more influence on the concentration in the region around the reference location of the scalar source. Finally, this
sensitivity analysis indicates that the intensity of the wind UH has little impact on the gas concentration (figure
7.4(b)), whatever the considered location in the urban area. These results will facilitate the interpretation of the
assimilated solutions obtained in the DA experiments of section 7.6.

7.4.2 Standard and optimized sensor networks

From the above sensitivity analysis, it is possible to propose a criterion for the identification of optimized sensor
networks before performing DA. A first requirement for efficient sensors may be that they are placed at locations
where the gas concentration is not too low. In particular, in the case of toxic gas dispersion, we are indeed more
interested in the good reconstruction of regions of high concentration than in the reconstruction of regions in
which the gas is almost absent. A second requirement is that sensors are placed at locations with sufficiently
high total variability. As mentioned above, if changes in the input parameters entail no variation in the values of
the gas concentration at observation locations, measurements used in the DA process are worthless. Finally, it
may be useful to favor locations where sensitivity is primarily determined by a particular parameter, thus allowing
to improve the conditioning of the inverse problem and facilitating the reconstruction of chosen parameters. In
the present case, the sensitivity of the concentration is mostly determined by the wind angle α in a large portion
of the urban area, and, in a context of source identification, one could choose to privilege sensitivity with respect
to the scalar source parameters. Accordingly, in the present study, we choose to define appropriate domains Ω

for sensor placement as

Ω = {(x, y) ∈ V | µ > a, σ/µ > b}

∩
{{

(x, y) ∈ V
∣∣∣ S ∗(ds) > c

}
∪

{
(x, y) ∈ V

∣∣∣ S ∗(ys) > d
}
∪

{
(x, y) ∈ V

∣∣∣ S ∗(xs) > e
}}
,

(7.21)

whereV refers to the flow domain restricted to the plane z = 10 m (see section 7.3). The scalars a, b, c, d and e
are adjustable parameters that allow to tune the domain Ω. Here, a is fixed to 1, which means that concentration
levels < 1 ppm in average are not considered for sensor placement. We impose b = 0.1, thus ensuring that the
relative standard deviation of the gas concentration at observation locations is at least 10%. The scalars c, d
and e, which allow to specifically enhance the sensitivity of the sensors with respect to the scalar parameters,
are chosen as c = d = 0.33 and e = 0.4. A slightly superior value is chosen for xs, since the sensitivity of
the gas concentration with respect to xs is generally more important than with respect to ys and ds in the urban
area. The domain Ω as defined in (7.21) is reported in figure 7.5. The locations of the sensors used in field
experiments performed in the Shinjuku area [209] are also reported in blue crosses. The corresponding sensor
network is referred to as the standard configuration of sensors in the following. This network contain 33 points
of measurement, almost all of which are outside the domain Ω. Besides, a significant number of these sensors
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Figure 7.4: Normalized first-order Sobol´ indices of the modified concentration field C∗ for the parameters (a) α,
(b) UH , (c) xs, (d) ys and (e) ds with a normal law over the ranges

[
γmin

i , γmax
i

]
in table 7.2 and obtained through

the forward uncertainty quantification procedure of section 7.4.1.

are located in the north part of the urban area, where both the concentration of the gas and its sensitivity with
respect to the input parameters are negligible. According to the present sensitivity analysis, these sensors used in
field experiments do not therefore appear particularly appropriate for DA purposes. However, it may be noticed
that these sensors were used to perform velocity measurements, and no gas dispersion was considered [209].
For a fair comparison with the use of the standard configuration of sensors, an optimized observation network is
obtained by randomly picking 33 measurements points in the domain Ω while imposing a minimal distance of
40 m between these points. The thus obtained optimized observation network is reported in blue circles in figure
7.5. Both standard and sensitivity analysis-based optimized observation configurations are considered in the DA
experiments of section 7.6, and it is expected that the proposed methodology for sensor placement will allow to
improve the quality of the urban flow that is reconstructed through DA.
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Figure 7.5: Domain Ω for appropriate sensor placement defined by (7.21) with a = 1, b = 0.1, c = d = 0.33
and e = 0.4 (yellow region). Standard (blue crosses) and optimized (blue circles) sensor configurations are also

reported.

7.5 Setup of the data assimilation experiments

7.5.1 Observations and reconstruction scenarios

Various DA experiments, namely cases A-E, are performed in this study in order to assess the ability of the
present POD-EnVar scheme to deal with the reconstruction of urban flows as described in section 7.3. For all
these experiments, the aim is to recover the reference flow illustrated in figure 7.2, and whose corresponding
input parameters γre f are reported in table 7.2, from observations of the modified concentration C∗ defined in
(7.16). Measurements are performed at discrete locations that are reported in figure 7.5. Experiments rely on
either the standard configuration of sensors (cases A, C and E), or the optimized network derived in section 7.4
(cases B and D), allowing to assess the impact of sensitivity analysis-based sensor placement on the performances
of the DA process. The observation of the velocity field U with the modified concentration C∗ is also considered
in experiment E.

In the experiments A and B, the wind parameters α and UH of the reference flow are assumed to be known.
Accordingly, the control vector γ in the DA process is formed by the three scalar parameters xs, ys and ds. The
first guess flow used to initialize the POD-EnVar scheme is obtained with the input vector γ f 1 reported in table
7.2. It corresponds to a perturbation of a magnitude of 40 m of the reference position of the source in both x− and
y−directions, and to an error of 4 m on its diameter. The discrepancies between the reference and first guess flows
are moderate, and cases A and B are performed primarily to validate the present methodology with relatively
low computational cost, since the velocity field is fixed in these experiments, and only the scalar fields of the
different flow realizations have to be computed. Concerning experiments C-E, both wind and scalar parameters
are reconstructed via the DA procedure, and the first guess solution with input vector γ f 2 is considered for the
initialization. This first guess corresponds to an error of 60 m on the reference position of the source in both x−
and y− directions, an error of 6 m on its size, of 30◦ on the wind angle and of 2 m/s on its intensity. These errors
are more substantial than for the first guess of cases A and B, and it can be noticed that the position of the source
in γ f 2 is outside the range investigated in section 7.4. Accordingly, cases C-E are suitable experiments to further
test the robustness of the DA procedure by complexifying the physics of the flow and adding variability due to
badly known wind parameters. These experiments also allow to assess the robustness of the sensitivity analysis-
based placement of sensors by considering a first guess realization slightly outside the range of parameters
investigated in the sensitivity analysis. In all the experiments, the discrepancies between the reference and first
guess flows correspond to typical uncertainties in the scalar and wind parameters [10, 88]. The setup of the
different cases discussed above is summarized in table 7.3.
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case γ y sensors first guess Nrn

A xs, ys, ds C∗ standard γ f 1 60
B xs, ys, ds C∗ optimized γ f 1 40
C α,UH , xs, ys, ds C∗ standard γ f 2 60
D α,UH , xs, ys, ds C∗ optimized γ f 2 40
E α,UH , xs, ys, ds C∗,U standard γ f 2 60

Table 7.3: Summary of the DA experiments performed in this study, which are characterized by the control vector
γ in the assimilation process, the observations y of the reference flow and associated sensor network, and the first
guess used to initialize the POD-EnVar scheme (see table 7.2). The total number Nrn of CFD computations

performed in each experiment is also reported.

7.5.2 Choice of the POD-EnVar scheme parameters

All the DA experiments are performed using ensembles of size Nen = 20. Such a number of realizations remains
affordable for intensive CFD simulations as the ones considered here, while results obtained in the DA experi-
ments of chapter 5 relying on two-dimensional CFD computations suggest that Nen = 20 is a sufficiently high
ensemble size to ensure the stability of ensemble-based variational schemes, even in the case of control vectors
γ in the DA process of large dimension (up to ≈ 105 variables). The Nen samples of the input vector in (7.4) are
generated assuming that the realizations obey to a normal distributionN

(
γ f ,Λ

)
centered on a first guess γ f and

whose covariance matrix Λ is given by

Λ = diag
(
Σ2

1,Σ
2
2, · · · ,Σ

2
N

)
, Σi = 0.33

γmax
i − γmin

i

2
, (7.22)

with N = dim(γ), and the components of the vectors γmin and γmax are given in table 7.2. The choice of
a normal distribution for the ensembles is standard in DA applications [133, 163]. It can be noticed that the
reference input vector γre f verifies |γre f

i − γ
f
i | > Σi, with γ f that refers to either γ f 1 or γ f 2, for each ith

parameter to be reconstructed. Moreover, concerning the error on the position of the source in the x− and
y−directions for the first guess flow used in experiments C-E, the components of the corresponding input vector
verify |γre f

i − γ
f 2
i | = 1.5(γmax

i − γmin
i )/2. In other words, the standard deviations associated to the ensembles

of realizations are underestimated given the actual discrepancies between the parameters of the reference and
first-guess flows. This situation may be representative of real-word applications where these discrepancies are
generally unknown, since the reference input parameters to be reconstructed are, by definition, not available. Fur-
thermore, experiments performed in chapter 5 indicate that the performances of the ensemble-based variational
schemes may be relatively insensitive to the statistics of the ensemble.

When only the modified concentration C∗ is observed, no particular weighting in the cost function in (7.2) is
considered, and the matrix R is taken as the identity matrix. In the case where both C∗ and the velocity field u
are observed, the different terms in (7.2) are normalized, through R, by characteristics values of C∗ and of the
components of U, that are chosen as the maximum absolute values of these quantities among the observations
of the reference flow. The parameter εPOD of the POD representation (7.7) is fixed to εPOD = 0.999 in the
experiments. This value ensures the derivation of an appropriate basis in (7.3) while significant information about
the ensemble is kept. The iterative procedure summarized in table 7.1 is stopped after two or three iterations
in order to limit the number of runs realized during the complete assimilation procedure. Accordingly, with
Nen = 20, between 40 and 60 CFD simulations are performed in each DA experiment.
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Figure 7.6: First guess flow used in cases A (figure 7.7) and B (figure 7.8): (a) modified concentration C∗ and (b)
error ∆C∗ fields. The corresponding input vector γ f 1 is described in table 7.2. Both standard (blue crosses) and

optimized (blue circles) observation networks are reported.

7.6 Results of the data assimilation experiments

7.6.1 Reconstruction of scalar source parameters

In this subsection, the wind parameters α and UH of the reference flow illustrated in figure 7.2 are assumed
to be known, and the POD-EnVar methodology is employed to reconstruct the reference values of the scalar
parameters xs, ys and ds from observations of the modified concentration C∗. The first guess flow that is used
to initialize the DA process for cases A and B is illustrated in figure 7.6, where both the modified concentration
field C∗ and error field ∆C∗ are reported. The error ∆C∗ is defined by

∆C∗ = |C∗ −C∗ re f |, (7.23)

where C∗ re f refers to the modified concentration of the reference flow (figure 7.2(a)). The discrepancies between
the reference and first guess flows appear to be mainly concentrated in the vicinity of the reference position of
the scalar source.

We first consider the use of the standard configuration of sensors for the assimilation, which corresponds to case
A of table 7.3. The results of the corresponding DA procedure are illustrated in figure 7.7. In particular, the
modified concentration field C∗ that is obtained after three iterations of the POD-EnVar scheme is reported in
figure 7.7(a). As confirmed by the comparison between figures 7.6(b) and 7.7(b), the discrepancies between
the reference and estimated C∗ fields have been significantly reduced by the assimilation process. However, it
appears from figure 7.7(c) that the reconstructed scalar source does not well coincide with the reference one.
While the reference position of the scalar source in the x−direction has been satisfactorily recovered, the DA
procedure has not significantly improved the estimation of its position along the y−direction compared to the
first guess flow. This is confirmed in figure 7.7(d) where is reported the evolution of the errors on the reference
input parameters along the iterations of the POD-EnVar scheme. These errors are defined as

ε(γi) = |γi − γ
re f
i |, (7.24)

for the ith parameter, and are normalized by their values at the beginning of the assimilation process ε0(γi). The
evolution of the square root of the cost function J in (7.2) normalized by its initial value is also indicated. The
fact that the DA procedure achieves a better reconstruction of the position of the source in the x−direction than
in the y−direction is consistent with the results of the sensitivity analysis of section 7.4, which attributes a more
important role to xs than to ys in the variability of the modified concentration field C∗, as shown in figures 7.4(c)
and 7.4(d). Moreover, the results of figure 7.7 are satisfactory in the sense that the estimation of the field C∗ is
globally improved and that the errors on the three scalar source parameters have been reduced. A better precision
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Figure 7.7: Results for case A in table 7.3 (reconstruction of the scalar source parameters, use of the first guess
of figure 7.6, observations performed with the standard sensor network): (a) modified concentration C∗ and (b)
error ∆C∗ fields of the assimilated flow obtained at the end of the assimilation procedure; (c) location of reference
scalar source, first-guess source, intermediate assimilated sources, and assimilated source obtained at the end of
the DA process. Blue crosses refer to the positions of the observations. (d) Errors on the input parameters and

cost function J versus the iteration i of the POD-EnVar scheme.

in the location of the scalar source would be nevertheless appreciated. However, it seems unlikely to significantly
improve the estimation of the input parameters by performing more computations with this DA setup given the
relative stagnancy of the error indicators ε(γi) and J between the second and third iterations of the POD-EnVar
scheme, as illustrated in figures 7.7(c)-7.7(d). Besides, figure 7.7(b) indicates that the discrepancies between the
assimilated and reference C∗ fields at observation locations are very low (∆C∗ < 1), except for one sensor that is
located at x ' 50 m and y ' −37 m, near to the biggest building close to the center of the area (see figures 7.7(b)-
7.7(c)). At this location, the Sobol´ indices associated to the scalar source parameters are negligible (figures
7.4(c)-7.4(e)). Accordingly, the standard observation network does not appear appropriate to further improve
the estimation of xs, ys and ds, since the corresponding sensors do not allow to identify significant discrepancies
between the reference and assimilated flows and/or are placed at locations where C∗ is not sensitive to a change
in the scalar source parameters.

This leads to the consideration of case B where the optimized observation network obtained through the sen-
sitivity analysis of section 7.4 is used. As illustrated in figure 7.6(b), much more sensors of the optimized
configuration than of the standard network are located in regions of high discrepancies between the reference
and the first guess flows. This confirms the good sensitivity-based placement of the sensors. Results of the
assimilation procedure for case B are illustrated in figure 7.8. From the very first iteration of the POD-EnVar
scheme, the reconstruction of the location of the scalar source is very good, both in x− and y− directions, as
confirmed by figures 7.8(c)-7.8(d). The error on the estimation of the diameter ds of the source has been slightly
increased during the DA process, but ds is the less imortant scalar parameter. Accordingly, the results obtained



Chapter 7. Data assimilation-based reconstruction of urban flows 161

x

y

 

 

−500 −250 0 250 500
−500

−250

0

250

500

C
∗

0

1

2

3

4

5

6

7

(a)

x

y

 

 

−500 −250 0 250 500
−500

−250

0

250

500

∆
C

∗

0

1

2

3

4

5

6

7

(b)

−100 0 100 200 300

−100

0

100

200

300

x

y

 

 

reference
first guess

intermediate
assimilated

(c)

0 1 2
0

0.2

0.4

0.6

0.8

1

2

i

ǫ
(γ

i)
/
ǫ
0
(γ

i)
,√

J
/
J
0

 

 

xs
ys

ds
J

(d)

Figure 7.8: Results for case B in table 7.3 (reconstruction of the scalar source parameters, use of the first guess
of figure 7.6, observations performed with the optimized sensor network): (a) modified concentration C∗ and (b)
error ∆C∗ fields of the assimilated flow obtained at the end of the assimilation procedure; (c) location of reference
scalar source, first-guess source, intermediate assimilated source, and assimilated source obtained at the end of
the DA process. Blue circles refer to the positions of the observations. (d) Errors on the input parameters and

cost function J versus the iteration i of the POD-EnVar scheme.

with the optimized configuration of sensors are very satisfactory in terms of reconstruction of the input param-
eters, and the POD-EnVar scheme is stopped after only two iterations given the moderate decrease in the cost
function J between the first and second iterations. The corresponding assimilated C∗ and ∆C∗ fields are reported
in figures 7.8(a) and 7.8(b) respectively. At all observation locations, it is observed that ∆C∗ < 1, which confirms
the good reconstruction of the reference C∗ field. The present results validate the present DA methodology and
the choice of parameters for the POD-EnVar scheme, while they illustrate the impact of sensor placement on
the performances of the DA procedure. The final errors on the reference values of xs and ys achieved at the
end of the DA procedure, starting both from 40 m, are of 12.0 m and 37.1 m respectively for case A, where 60
CFD computations are performed, while these final errors are of 2.0 m and 4.3 m respectively for case B, which
uses a total of 40 runs. These results thus support the efficacy of the proposed sensitivity analysis-based sensor
placement procedure, which is further tested in the following.

7.6.2 Reconstruction of wind and scalar source parameters

We now consider the case where both wind and scalar source parameters are reconstructed with the POD-EnVar
scheme. The first guess used in the following DA experiments (C-E) is illustrated in figure 7.9, and the corre-
sponding input parameters γ f 2 are reported in table 7.2. The latter correspond to a larger error on the position
and diameter of the scalar source compared to the first guess used in section 7.6.1, and the errors on wind pa-
rameters are also relatively important. In particular, the error on the position of the source is of 60 m in both
x− and y−direction, and that on the wind angle α is of 30◦ with respect to the reference flow. The comparison
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Figure 7.9: First guess flow used in cases C (figure 7.10) , D (figure 7.11) and E (figure 7.12): (a) modified
concentration C∗ and (b) error ∆C∗ fields. The corresponding input vector γ f 2 is described in table 7.2. Both

standard (blue crosses) and optimized (blue circles) observation networks are reported.

between figures 7.6(b) and 7.9(b) confirms that adding variability in the wind angle α has a drastic influence on
the repartition of the modified concentration C∗, and huge discrepancies between the first guess and reference
flows can be noticed over large parts of the city area.

The results of case C are first examined in figure 7.10, where the standard configuration of sensors is used
for the assimilation. The comparison between figures 7.9(b) and 7.10(b) indicates that, in three iterations, the
POD-EnVar scheme has effectively reduced the error on C∗. According to figures 7.10(c) and 7.10(d), the
reference values of the wind angle α and of the coordinate xs of the scalar source, which are the most influential
parameters according to the sensitivity analysis of section 7.4, are satisfactorily recovered. The reconstruction
of the diameter of the source ds is also satisfactory, results concerning the wind intensity UH are intermediate
but surprisingly correct given the low sensitivity of C∗ with respect to UH , while the error on the coordinate ys

has been only slightly decreased during the assimilation procedure. Accordingly, the assimilated flow obtained
with the POD-EnVar scheme is satisfactory on the whole, and the DA process has successfully dealt with this
more complex inverse problem due to the consideration of the wind parameters. However, as in case A, a lack
of precision in the identification of the position of the scalar source is noticed (figures 7.10(c)-7.10(d)), which
originates from the insufficient improvement in the estimation of ys. 60 CFD simulations have been performed
to obtain these results, and it is not clear from figures 7.10(c) and 7.10(d) if significant further improvement in
the quality of the assimilated flow could be obtained with more iterations of the POD-EnVar scheme.

The case where the optimized configuration of sensors is used in the DA process is investigated in figure 7.11,
which corresponds to results of case D. As illustrated in figure 7.11(c) and 7.11(d), the reference input parameters
are well recovered by the POD-EnVar scheme with this setup, and the identification of the location of the scalar
source is very satisfactory. The errors on the wind angle α and on the coordinates xs and ys have been decreased
by more than an order of magnitude in only two iterations of the assimilation procedure. The reconstruction
of the diameter of the source ds is not as good as for α, xs and ys, but remains correct. Only the estimation
of the wind intensity UH has not been improved by the POD-EnVar scheme, but UH plays a negligible role in
the sensitivity of the flow, as illustrated in figure 7.4. The discrepancies between the reference and assimilated
C∗ fields given in figure 7.11(b) have almost vanished compared to those between the reference and first guess
flows reported in figure 7.9(b), except in a very narrow region that is not covered by the sensors. This confirms
the excellent reconstruction of the flow and the fact that a bad estimation of UH has no significant influence
on the repartition of C∗. The observation of the velocity field U in addition to that of C∗ could ensure a good
estimation of UH if needed, which is investigated in section 7.6.3. The comparison between the results of case
C and D confirms the benefit of using sensitivity analysis-based placement of sensors. In particular, concerning
the reconstruction of the three main input parameters, the final errors on α, xs and ys achieved at the end of the
assimilation procedure are of 4.2◦, 14.6 m and 44.0 m respectively for case C, while these errors are of 0.9◦, 5.9 m
and 0.2 m respectively for case D, starting from an error of 30◦ on α and of 60 m on both xs and ys. Besides,
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Figure 7.10: Results for case C in table 7.3 (reconstruction of wind and scalar source parameters, use of the first
guess of figure 7.9, observations performed with the standard sensor network): (a) modified concentration C∗

and (b) error ∆C∗ fields of the assimilated flow obtained at the end of the assimilation procedure; (c) location
of reference scalar source, first-guess source, intermediate assimilated sources, and assimilated source obtained
at the end of the DA process. Blue crosses refer to the positions of the observations. (d) Errors on the input

parameters and cost function J versus the iteration i of the POD-EnVar scheme.

60 CFD simulations are performed in case C, while 40 runs are required in case D. As in section 7.6.1, the
proposed methodology for sensor placement appears efficient in terms of both accuracy of the reconstructed flow
and computational cost of the DA procedure.

7.6.3 Observation of both concentration and velocity fields

Finally, the observation of the velocity field U in addition to the modified concentration field C∗ is considered
in case E whose corresponding results are reported in figure 7.12. The standard configuration of sensors is used,
and the assimilation procedure is initialized with the same first guess than in cases C and D (see figure 7.9). As
expected, the observation of the velocity field allows to achieve a better reconstruction of the wind parameters
α and UH than in cases C and D. In particular, if we compare with case C which relies on the same sensor
configuration and number of realizations, the errors reached at the end of the DA process on α and UH are of
4.2◦ and 0.9 m/s respectively in this case, while they are of 0.4◦ and 0.4 m/s respectively in case E, starting
from errors of 30◦ and 2 m/s. Unavoidably, adding information about the velocity field in the cost function J
in (7.2) reduces its sensitivity with respect to the scalar source parameters. This is illustrated in figures 7.12(c)
and 7.12(d), which indicate that the DA process has left the estimation of xs and ys almost unchanged at the first
iteration of the POD-EnVar scheme. However, after three iterations, the errors on xs and ys have been reduced
nearly by half, with final errors of 32.5 m and 26.8 m respectively, compared to 14.6 m and 44.0 m respectively
in case C, which roughly corresponds to the same distance between the reference and assimilated locations of
the scalar source. Besides, the decrease in the error on the diameter ds is quite satisfactory. According to the
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Figure 7.11: Results for case D in table 7.3 (reconstruction of wind and scalar source parameters, use of the first
guess of figure 7.9, observations performed with the optimized sensor network): (a) modified concentration C∗

and (b) error ∆C∗ fields of the assimilated flow obtained at the end of the assimilation procedure; (c) location of
reference scalar source, first-guess source, intermediate assimilated source, and assimilated source obtained at the
end of the DA process. Blue circles refer to the positions of the observations. (d) Errors on the input parameters

and cost function J versus the iteration i of the POD-EnVar scheme.

γ f /case ε(α) (◦) ε(UH) (m/s) ε(xs) (m) ε(ys) (m) ε(ds) (m) sensors Nrn

γ f 1 0 0 40.0 40.0 4.0 − −

A 0 0 12.0 37.1 1.6 standard 60
B 0 0 2.0 4.3 6.8 optimized 40
γ f 2 30.0 2.0 60.0 60.0 6.0 − −

C 4.2 0.9 14.6 44.0 0.4 standard 60
D 0.9 4.2 5.9 0.2 2.7 optimized 40
E 0.4 0.4 32.5 26.8 2.4 standard 60

Table 7.4: Errors ε(γi) defined in (7.24) on the input parameters reached at the end of experiments A-B using first
guess γ f 1 and experiments C-E using first guess γ f 2, the initial errors corresponding to the first guesses are also
reported for the sake of comparison. The total number Nrn of CFD computations performed in each experiment
and the configuration of sensors used are also indicated. Note that both velocity and concentration fields are

observed in experiment E, while only the concentration field is measured in experiments A-D.

present results, after a few iterations of the POD-EnVar scheme, adding information about the velocity field in
the cost function allows a relatively similar reconstruction of the scalar source parameters, while it significantly
improves the estimation of the wind parameters.
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Figure 7.12: Results for case E in table 7.3 (reconstruction of wind and scalar source parameters, use of the first
guess of figure 7.9, observations of both concentration and velocity fields performed with the standard sensor
network): (a) modified concentration C∗ and (b) error ∆C∗ fields of the assimilated flow obtained at the end of
the assimilation procedure; (c) location of reference scalar source, first-guess source, intermediate assimilated
sources, and assimilated source obtained at the end of the DA process. Blue crosses refer to the positions of
the observations. (d) Errors on the input parameters and cost function J versus the iteration i of the POD-EnVar

scheme.

7.6.4 Measure of effectiveness

Table 7.4 summarizes the final errors ε(γi) defined in (7.24) reached at the end of the different DA experiments
performed in this study, which may be compared with the initial errors for the corresponding first guesses. The
use of the optimized sensor network allows to obtain a very satisfactory reduction in the error on the estimation
of the coordinates xs and ys, and on that of the angle α in the case where wind parameters are considered.
In addition to achieving a better reconstruction of these input parameters compared to the use of the standard
sensors, less iterations of the POD-EnVar scheme are required in the former case. Results obtained with the
optimized sensors concerning the diameter of the source ds and the intensity of the wind UH are less satisfactory,
but these parameters are less important in the sensitivity of the gas concentration. One may wonder if even
more precise results could be obtained concerning the estimations of α, xs and ys with more iterations of the
DA procedure and using the optimized sensor configuration. However, given the results obtained so far, the
improvement in the accuracy would be only marginal and hardly cost-effective. Besides, even if observations
are generated synthetically, they can not be strictly perfect due to the finite duration of the simulations that
is considered to perform time averaging (see section 7.3.2). Accordingly, keeping in mind that an expensive
CFD solver is used, the present results obtained with the optimized sensors may be viewed as almost optimal.
Moreover, the robustness of ensemble-based variational DA schemes with respect to noise in the observations is
also confirmed in chapter 5.
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Figure 7.13: Measure of effectiveness (MOE) for the thresholds (a) CMOE = 1 ppm and (b) CMOE = 103 ppm.
Triangles refer to the DA experiments with the scalar source parameters only, dots to those with both scalar and
wind parameters, while blue symbols correspond to the first guesses, green ones to the DA results obtained with
the standard sensors, red ones to those obtained with the optimized configuration, and purple dots refer to the

observation of both concentration and velocity fields.

Another way of assessing the performances of the DA process that is suitable for toxic gas dispersion appli-
cations is to consider the measure of effectiveness (MOE) discussed in [222], which allows a two-dimensional
visualization of the global discrepancies between the assimilated and reference concentration fields. Given a pre-
dicted modified concentration field C∗, the reference field C∗ re f , and a threshold of interest C∗MOE , we define
the reference area Are f , predicted area Apr and overlap area Aov as

Are f =

"
Vre f

dxdy, Vre f =
{
(x, y) ∈ V

∣∣∣C∗ re f ≥ C∗MOE
}
, (7.25a)

Apr =

"
Vpr

dxdy, Vpr =
{
(x, y) ∈ V

∣∣∣C∗ ≥ C∗MOE
}
, (7.25b)

Aov =

"
Vov

dxdy, Vov =
{
(x, y) ∈ V

∣∣∣C∗ re f ≥ C∗MOE,C∗ ≥ C∗MOE
}
, (7.25c)

and the two-dimensional MOE in the plane with x− and y−axes is evaluated according to

MOE = (x, y) =

(
Aov

Are f ,
Aov

Apr

)
. (7.26)

This representation provides relatively detailed information about the quality of the predicted concentration field
as follows. According to the above definitions, we have 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1. Point (0, 0) corresponds to
the case where there is strictly no overlapping between the predicted and reference regions where the modified
concentration is above the threshold C∗MOE, while point (1, 1) corresponds to a perfect agreement with Aov =

Apr = Are f . In the region defined by x > y, the area where the concentration is above C∗MOE is overestimated
compared to the reference one, while in the case y > x there is underestimation of the size of the region where
the gas lies. Along the line x = 1, the reference field is completely included in the predicted one, while for y = 1
the reference field completely envelops the predicted one.

The MOE for the two first guess flows considered in this study and for the assimilated flows obtained at the
end of the DA process in experiments A-E are reported for the thresholds C∗MOE = 1 (⇔ CMOE = 1 ppm)
and C∗MOE = 4 (⇔ CMOE = 103 ppm) in figures 7.13(a) and 7.13(b) respectively. Considering the threshold
CMOE = 1 ppm allows to assess the reconstruction of the whole area where gas is present (if concentrations
< 1ppm are considered as negligible). It appears from figure 7.13(a) that the first guess with corresponding input
vector γ f 1, which is used in experiments A and B where only the scalar source parameters are reconstructed,
already correctly predicts the area where the gas is present. The DA process still allows to further improve this
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estimation, and the MOE values for the assimilated flows obtained with the standard (experiment A) and opti-
mized (experiment B) configurations of sensors are both very close to point (1, 1). Experiments C-E where both
wind and scalar parameters are reconstructed rely on the first guess with input vector γ f 2, which corresponds
to a significantly poorer estimation of the region of presence of the gas. This estimation is greatly improved by
the DA process, and experiments C-E achieve relatively similar MOE values close to point (1, 1), with slightly
better results obtained with the optimized sensors. The reconstruction of regions with high concentration levels
(CMOE = 103 ppm) is investigated in figure 7.13(b). It appears from the comparison between figures 7.13(a) and
7.13(b) that the error on the identification of the area of high concentration levels is higher than the error on the
area of presence of the gas for the two first guesses. In particular, the first guess with input vector γ f 2 corresponds
to a very crude identification of the high concentration regions. Experiments A and B achieve similar enhance-
ment in the estimation of the area of high concentration levels, and the reference high concentration regions
are almost completely included in the assimilated ones. Concerning the results of experiments C-E, a drastic
improvement in the prediction of the high concentration regions is obtained compared to the corresponding first
guess. Experiments C and E give comparable predictions, which confirms that adding velocity information in
the cost function in (7.2) does not degrade the quality of the reconstructed concentration field in favor of that
of the velocity field. The best results are obtained in experiment D where the optimized sensor network is em-
ployed. This indicates that a lack of precision in the identification of the parameters ds and UH has no significant
influence on the quality of the assimilated concentration field.

7.7 Conclusion

The application of data assimilation (DA) to the reconstruction of urban flows has been investigated in this
chapter. An ensemble-based variational scheme has been implemented in conjunction with a Very Large Eddy
Simulation (VLES)/Lattice Boltzmann Method (LBM) solver providing high-fidelity estimations of the flow in
an actual urban area. The present results indicate that the proposed methodology is suitable for the identification
of source characteristics and wind parameters from measurements of the gas concentration at discrete locations.
In particular, with an appropriate DA setup, the position of the source and the direction of the wind are identified
with an accuracy of only a few meters and better than one degree respectively, starting from uncertainties of
almost a hundred meters in terms of distance from the reference source and of 30◦ on the wind angle. Besides, the
computational cost associated to the DA process remains affordable since between 40 and 60 CFD simulations
are performed to obtain the above results. Accordingly, this study demonstrates both the practicability and
effectiveness of using DA in conjunction with high-fidelity CFD to solve inverse problems in full-scale urban
environments (medium range dispersion in an area of 1km2).

The present results also highlight the importance of the locations of the sensors to measure the flow in the
performances of the DA process. A sensor placement methodology based on sensitivity analysis results has been
proposed and assessed in this study. Both reduction in the computational cost and significant improvement in
the quality of the reconstructed input parameters is achieved through appropriate sensor placement. Such results
encourage the consideration of uncertainty quantification/sensitivity analysis methods in large-scale DA/inverse
problem studies, both for the a priori design of the DA setup and as diagnostic tools of the assimilation results.

Even if the five parameters considered here are sufficient to obtain meaningful results, future studies could
include more variables for the inverse problem in order to, among others, allow a more detailed parameterization
of the wind profile, including time variability, or to take into account atmospheric stability. Such refinements
could facilitate the use of real experimental data.



Chapter 8

Global conclusions and perspectives

8.1 Data assimilation and spectral modelling for the study of homogeneous tur-
bulence

In part I, data assimilation (DA) and eddy-damped quasi-normal Markovian (EDQNM)-based modelling have
been used to investigate the physics of homogeneous turbulence. Main results are:

• In chapter 3, detailed results about grid turbulence decay have been obtained through the combination of
DA with the EDQNM model for homogeneous isotropic turbulence (HIT). The adjoint EDQNM model has
been developed, and the scale-by-scale first-order sensitivity of HIT decay with respect to initial conditions
has been quantified thanks to optimal control techniques. The results thus obtained confirm the major role
of the peak of the energy spectrum in turbulence decay, and indicate that small scales and scales larger than
ten times the integral scale have a negligible influence on turbulence dynamics. The present results also
suggest that initial condition effects may possibly explain alone anomalous decay regimes encountered in,
e.g., fractal-grid turbulence experiments.

• In chapter 4, a spectral model for homogeneous turbulence in the presence of mean velocity gradients has
been developed. This model combines: i) a spherically-averaged level of description fully consistent with
the irreducible anisotropic decomposition of the spectral tensor, ii) Rapid Distortion Theory-based linear
term modelling and iii) EDQNM-based modelling for nonlinear terms. The proposed model is suited to
the study of sheared turbulence and its return to isotropy, as confirmed by the various comparisons with
experimental and Direct Numerical Simulation results.

DA has thus proved to be a valuable and efficient tool to identify the characteristics of the energy spectrum that
lead HIT decay, encouraging the extension of such a study to more complex turbulent flows. The spectral model
of chapter 4 seems a suitable candidate to incorporate anisotropy effects in future DA-based investigations of
grid turbulence decay. Indeed, analytical spherical integration results in a significant decrease in computational
cost compared to spectral models in 3D Fourier space, which is valuable in the case where the direct model, and
possibly its adjoint, are called numerous times, as in DA algorithms. Other quantities than initial conditions could
be considered in the assimilation process, such as the mean flow gradient or another external forcing term. More
generally, DA could be used to perform detailed sensitivity analyses of the dynamics of other turbulent flows
of theoretical or practical interest. EDQNM modelling would be still a numerical method of choice for more
complex homogeneous turbulent flows such as rotating flows or with stable/unstable stratification due to their
relatively low computational cost compared to DNS and their ability to investigate flows in the high Reynolds
regime. Ensemble methods could be considered in the case of too complex direct solvers instead of variational
DA.

168
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8.2 Data assimilation in the context of computational fluid dynamics

In part II, the potentiality of applying DA to computational fluid dynamics (CFD) is explored along with method-
ological aspects. Main results are:

• In chapter 5, variational DA, ensemble Kalman filters and ensemble-based variational schemes have been
implemented in conjunction with a Navier-Stokes solver for unsteady compressible flows. In particular,
the corresponding adjoint code has been developed. These techniques have been used to infer initial and
boundary conditions from various types of observations of the flow past a cylinder in the presence of co-
herent gusts. DA has been considered in both deterministic and stochastic frameworks. It is found from
extensive investigations with large control vectors up to ≈ 105 variables that, in a context of nearly per-
fect model and observations, variational techniques achieve the best identification of the observed flows.
Ensemble Kalman filters allow to avoid the tedious coding of the adjoint code, but significant ad hoc
adjustments have to be considered to ensure the stability of the filter. According to the present results,
ensemble-based variational schemes appear less sensitive with respect to the characteristics of the en-
semble, and their robustness compared to ensemble Kalman filters and non-intrusiveness compared to
variational schemes make them appealing for complex CFD applications.

• In chapter 6, an adjoint-based sensor placement procedure has been proposed and applied to the reconstruc-
tion of flows past a rotationally oscillating cylinder. It is found that both reduction in the computational
cost of the DA procedure and improvement in the accuracy of the identified rotational speed of the cylinder
are achieved through optimal sensor placement. Gains may be as large as a reduction by a factor five in
the number of calls to the direct and adjoint codes required in the assimilation process, while achieving a
reconstruction that is five times better in terms of discrepancies with the reference flow.

• In chapter 7, ensemble-based variational DA has been successfully deployed in conjunction with a Large
Eddy Simulation solver for the identification of pollutant source characteristics and meteorological condi-
tions from concentration measurements in an actual full-scale urban environment. A non-intrusive sensor
placement procedure, which relies on global sensitivity analysis methods, has been developed to guide the
design of observation networks. In the present results, the location of the source is identified within a few
meters through DA and appropriate sensor placement, and wind conditions are also reconstructed with
high accuracy, with a total number of 40 CFD simulations in the assimilation process.

As illustrated through the various test cases considered here, DA appears as a valuable tool to infer appropriate
inputs for CFD solvers from external information, thus allowing to enhance the prediction of flows of interest.
However, despite encouraging results obtained in the present thesis, a remaining obstacle to the use of DA for the
most intensive CFD applications may be computational cost. Concerning variational techniques, reduced order
modelling approaches discussed in [66] that are based on the projection of both direct and adjoint models onto
proper orthogonal decomposition (POD) bases could allow to speed up the assimilation process. Such methods
may nonetheless still require the development of an adjoint code. In the framework of ensemble methods, non-
intrusive meta-modelling techniques such as Kriging [109] could be considered in order to avoid too many calls
to the CFD solver. An advantage of Kriging is that it provides an estimation of the error associated to the response
surface, thus facilitating the simultaneous use of the direct code and surrogate model in ensemble-based DA.

However, the development of response surface methodologies that are appropriate for large-scale systems in the
presence of high-dimensional uncertainties such as encountered in DA is still an open issue. Efficient strate-
gies could be based on [116, 150, 198], where stochastic representations such as polynomial chaos expansion
or analysis of variance representation, possibly allowing dimension reduction in the meta-modelling process,
are combined with Kriging and/or POD techniques along with adaptive criteria for refinement in order to sig-
nificantly decrease the computational cost for the construction of the surrogate model. In a purely probabilistic
framework, fully coupled DA schemes and stochastic representations could be considered. An example is the
probabilistic collocation-based Kalman filter (PCKF) [134, 135] where a polynomial chaos expansion is used
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instead of the direct model in an ensemble Kalman filter, allowing to avoid finite ensemble size effects during
the assimilation process. This methodology could be extended to particle filtering, thus possibly facilitating its
use in the context of CFD.

Generally speaking, DA could benefit from the coupling with sensitivity analysis and uncertainty quantification
(UQ) techniques in order to, among others, perform meta-optimization of the DA setup. A first application is the
design of efficient observation networks, which may significantly improve the performances of the DA process,
as illustrated in chapter 7 with the methodologies developed in [148, 150]. A second application could be the
determination of an ‘optimal’ form for the control vector in the DA problem through the a priori identification of
the most important control variables. Sensitivity analysis techniques [63] could be considered in order to reduce
the size of the control vector, thus possibly allowing to speed up the convergence of the assimilation procedure.
Both DA and UQ with potential coupling are thus promising methodologies to go beyond direct analysis in CFD
through the evaluation and reduction of the uncertainties in numerical prediction of complex flows due to badly
known input parameters.



Appendix A

Derivation of the adjoint EDQNM model

Both continuous and discrete adjoint EDQNM models for isotropic turbulence are derived in this appendix.
Validation aspects are also illustrated. More details may be found in chapter 3.

A.1 Continuous adjoint model

The continuous adjoint EDQNM model is derived in this section. First, notations of chapter 3 are recalled. Given
an operator Ψ from vector space A to vector space B, the Gâteaux derivative of Ψ at E in the direction F, with
both E and F inA, is denoted by〈∂Ψ

∂E
(E), F

〉
A

=
∂Ψ

∂E

∣∣∣∣
E

(F) = lim
ε→0

d
dε

Ψ(E + εF). (A.1)

If Ψ is a linear operator, its adjoint operator is denoted by Ψ∗ and is defined by

〈Ψ(E),G〉B = 〈E,Ψ∗(G)〉A ∀E ∈ A,∀G ∈ B. (A.2)

In the following, M and O refer to model and observation spaces respectively, and the inner product of two
vectors a and b in the model space is defined by

〈a, b〉M =

∫ T f

0

∫ ∞

0
a(k, t)b(k, t)dkdt. (A.3)

The EDQNM model for isotropic turbulence is

∂E
∂t

(k) + 2νk2E(k) = T (E, k), (A.4a)

T (E, k) =

"
∆k

θkpqGkpqE(q)
(
k2E(p) − p2E(k)

)
dpdq, (A.4b)

Gkpq =
xy + z3

q
, θkpq =

1 − e−µkpqt

µkpq
, µkpq = ν(k2 + p2 + q2) + ηk + ηp + ηq, (A.4c)

ηk = A

√∫ k

0
r2E(r)dr. (A.4d)

For the sake of readability, time dependency is omitted in the above expressions. We consider the Lagrangian L
defined by

L(E, Ẽ) =
1
2
‖y − H(E)‖2

O
+

〈
Ẽ,
∂E
∂t

+ 2νk2E − T (E)
〉
M
, (A.5)
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where Ẽ is the adjoint spectrum, y refers to observations of a reference decay and H is the observation operator
that maps the model space to the observation space. Using (A.2) and after integration by parts, first-order
optimality conditions are given by

〈∂L
∂E

(E, Ẽ), F
〉
M

=
〈(∂H
∂E

∣∣∣∣
E

)∗
(H(E) − y) −

∂Ẽ
∂t

+ 2νk2Ẽ −
(∂T
∂E

∣∣∣∣
E

)∗
(Ẽ), F

〉
M

+

∫ ∞

0

(
Ẽ(k,T f )F(k,T f ) − Ẽ(k, 0)F(k, 0)

)
dk = 0 ∀F ∈ M,

(A.6a)

〈∂L
∂Ẽ

(E, Ẽ), F̃
〉
M

=
〈∂E
∂t

+ 2νk2E − T (E), F̃
〉
M

= 0 ∀F̃ ∈ M, (A.6b)

which may be translated into
∂E
∂t

(k) + 2νk2E(k) − T (E, k) = 0, (A.7a)

−
∂Ẽ
∂t

(k) + 2νk2Ẽ(k) − T̃ |E(Ẽ, k) = H̃|E
(
y − H(E), k

)
, (A.7b)

Ẽ(k,T ) = Ẽ(k, 0) = 0, (A.7c)

with
T̃ |E(Ẽ, k) =

(∂T
∂E

∣∣∣∣
E

)∗
(Ẽ, k), H̃|E(Ẽ, k) =

(∂H
∂E

∣∣∣∣
E

)∗
(Ẽ, k). (A.8)

The most difficult part in the derivation of the adjoint EDQNM model is the determination of the adjoint operator
T̃ |E(Ẽ, k). We consider the following splitting〈

Ẽ,
∂T
∂E

∣∣∣∣
E

(F)
〉
M

= I1 + I2, (A.9a)

I1 =

∫ T

0

∫ ∞

0
Ẽ(k)

"
∆k

θkpqGkpq
[
F(q)

(
k2E(p) − p2E(k)

)
+ F(p)k2E(q) − F(k)p2E(q)

]
dpdqdkdt, (A.9b)

I2 =

∫ T

0

∫ ∞

0
Ẽ(k)

"
∆k

∂θkpq

∂E

∣∣∣∣
E

(F)GkpqE(q)
(
k2E(p) − p2E(k)

)
dpdqdkdt. (A.9c)

The contribution I1 is first examined. Concerning the term in F(p), the following simplications can be made
through the use of Fubini’s theorem∫ T

0

∫ ∞

0
Ẽ(k)

"
∆k

θkpqGkpqF(p)k2E(q)dpdqdkdt =

∫ T

0

∫ ∞

0

"
∆k

Ẽ(k)θkpqGkpqF(p)k2E(q)dpdqdkdt =∫ T

0

∫ ∞

0

"
∆p

Ẽ(k)θkpqGkpqF(p)k2E(q)dkdqdpdt =

∫ T

0

∫ ∞

0
F(p)

"
∆p

Ẽ(k)θkpqGkpqk2E(q)dkdqdpdt =∫ T

0

∫ ∞

0
F(k)

"
∆k

Ẽ(p)θpkqGpkq p2E(q)dpdqdkdt.

(A.10)

Using similar results for the term in F(q), I1 can be rewritten as

I1 =

∫ T

0

∫ ∞

0
F(k)

{ "
∆k

θpkqGpkqẼ(p)p2E(q)dpdq +

"
∆k

θqpkGqpkẼ(q)
(
q2E(p) − p2E(q)

)
dpdq

−

"
∆k

θkpqGkpqẼ(k)p2E(q)dpdq
}

dkdt.
(A.11)
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Concerning the contribution I2, we first use

∂θkpq

∂E

∣∣∣∣
E

(F) =
−1 + (µkpqt + 1)e−µkpqt

µ2
kpq

(∂ηk

∂E

∣∣∣∣
E

(F) +
∂ηp

∂E

∣∣∣∣
E

(F) +
∂ηq

∂E

∣∣∣∣
E

(F)
)
, (A.12a)

∂ηk

∂E

∣∣∣∣
E

(F) =
A2

2

∫ k
0 r2F(r)dr

ηk
. (A.12b)

I2 can thus be rewritten as

I2 =

∫ T

0

∫ ∞

0
Ẽ(k)

"
∆k

Dkpq


∫ k

0 r2F(r)dr

ηk
+

∫ p
0 r2F(r)dr

ηp
+

∫ q
0 r2F(r)dr

ηq

 dpdqdkdt, (A.13a)

Dkpq =
A2

2
−1 + (µkpqt + 1)e−µkpqt

µ2
kpq

GkpqE(q)
(
k2E(p) − p2E(k)

)
. (A.13b)

Similarly to the derivations in (A.10), the term in 1
ηp

in (A.13a) is simplified as

∫ T

0

∫ ∞

0
Ẽ(k)

"
∆k

Dkpq

ηp

∫ p

0
r2F(r)drdpdqdkdt =

∫ T

0

∫ ∞

0

"
∆k

∫ p

0
Ẽ(k)
Dkpq

ηp
r2F(r)drdpdqdkdt =∫ T

0

∫ ∞

0

"
∆p

∫ p

0
Ẽ(k)
Dkpq

ηp
r2F(r)drdkdqdpdt =

∫ T

0

∫ ∞

0

∫ p

0

"
∆p

Ẽ(k)
Dkpq

ηp
r2F(r)dkdqdrdpdt =∫ T

0

∫ ∞

0

∫ ∞

r

"
∆p

Ẽ(k)
Dkpq

ηp
r2F(r)dkdqdpdrdt =

∫ T

0

∫ ∞

0
F(r)

∫ ∞

r

"
∆p

Ẽ(k)
Dkpq

ηp
r2dkdqdpdrdt =∫ T

0

∫ ∞

0
F(k)

∫ ∞

k

"
∆p

Ẽ(r)
Drpq

ηp
k2drdqdpdkdt.

(A.14)

Accordingly, using similar results for terms in 1
ηk

and 1
ηq

, I2 can be rewritten as

I2 =

∫ T

0

∫ ∞

0
F(k)

{∫ ∞

k

"
∆r

Ẽ(r)
Drpq

ηr
k2dpdqdr+

∫ ∞

k

"
∆p

Ẽ(r)
Drpq

ηp
k2drdqdp+

∫ ∞

k

"
∆q

Ẽ(r)
Drpq

ηq
k2dpdrdq

}
dkdt,

(A.15)
and the final expression of T̃ |E(Ẽ, k) is

T̃ |E(Ẽ, k) =

"
∆k

[
θpkqGpkqẼ(p)p2E(q) + θqpkGqpkẼ(q)

(
q2E(p) − p2E(q)

)
− θkpqGkpqẼ(k)p2E(q)

]
dpdq

+

∫ ∞

k

"
∆r

Ẽ(r)
Drpq

ηr
k2dpdqdr +

∫ ∞

k

"
∆p

Ẽ(r)
Drpq

ηp
k2drdqdp +

∫ ∞

k

"
∆q

Ẽ(r)
Drpq

ηq
k2dpdrdq.

(A.16)

A.2 Discrete adjoint model

We now consider the discrete adjoint approach. Given the spatio-temporal discretization

El
i = E(ki, tl), ki = k0ri−1 tl+1 = tl + ∆tl, i ∈ {1; ...; N}, l ∈ {0; ...; M}, (A.17)

The discretized EDQNM model using an Euler scheme for time integration is

El+1 = ml(El), (A.18a)
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ml
i = El

i + ∆tl(T l
i − 2νk2

i El
i
)
, (A.18b)

T l
i =

N∑
p=1

N∑
q=1

θl
ipqCipqEl

q
(
El

pkpk2
i − El

ik
3
p
)
dS ipq, (A.18c)

Cipq = xipqyipq + z3
ipq, (A.18d)

θl
ipq =

1 − e−µ
l
ipqtl

µl
ipq

, µl
ipq = ν(k2 + p2 + q2) + Nl

ipq, Nl
ipq = ηl

i + ηl
p + ηl

q, (A.18e)

ηl
i = A

√√√ i∑
r=1

k3
r El

rdS ′ri. (A.18f)

The terms dS ipq et dS
′

ri refer to ponderation factors of quadrature rules taking into account the geometric dis-
cretization and the constraint on the vector triads. We consider the following Lagrangian

L =
1
2

M∑
l=0

(
yl − h(El)

)T (
yl − h(El)

)
−

M−1∑
l=0

(
El+1 − ml(El)

)T
Ẽl+1

. (A.19)

First-order optimality conditions are
El+1 = ml(El) 1 ≤ l ≤ M, (A.20a)

ẼM
= f M, (A.20b)

Ẽl
= M̃lẼl+1

+ f l 0 ≤ l ≤ M − 1, (A.20c)

Ẽ0
= 0, (A.20d)

with

f l =

(
∂h
∂El (El)

)T (
h(El) − yl

)
, M̃l

=

(
∂ml

∂El (El)
)T

. (A.21)

The components of the adjoint operator M̃l are given by

M̃l
i j = δi j + ∆tl(∂T l

j

∂El
i

− 2νk2
jδi j

)
, (A.22)

with

∂T l
i

∂El
j

=

N∑
p=1

N∑
q=1

−1 + (µl
ipqtl + 1)e−µ

l
ipqtl

(µl
ipq)2

∂Nl
ipq

∂El
j

CipqEl
q
(
El

pkpk2
i − El

ik
3
p
)
dS ipq +

N∑
q=1

θl
i jqCi jqEl

qk jk2
i dS i jq

+

N∑
p=1

θl
ip jCip j

(
El

pkpk2
i − El

ik
3
p
)
dS ip j − δi j

N∑
p=1

N∑
q=1

θl
ipqCipqEl

qk3
pdS ipq,

(A.23a)

∂Nl
ipq

∂El
j

=



i < j i > j
0 A2

2ηl
i
k3

j dS
′

ji p < j , q < j

A2

2ηl
p
k3

j dS
′

jp
A2

2 k3
j
(dS

′

ji

ηl
i

+
dS
′

jp

ηl
p

)
p > j, q < j

A2

2ηl
q
k3

j dS
′

jq
A2

2 k3
j
(dS

′

ji

ηl
i

+
dS
′

jq

ηl
q

)
p < j, q > j

A2

2 k3
j
(dS

′

jp

ηl
p

+
dS
′

jq

ηl
q

) A2

2 k3
j
(dS

′

ji

ηl
i

+
dS
′

jp

ηl
p

+
dS
′

jq

ηl
q

)
p > j, q > j

(A.23b)
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Equation (A.20c) can be thus rewritten as

Ẽl
i = Ẽl+1

i − 2∆tlνk2
i Ẽl+1

i + ∆tl
{∑

j>i

N∑
p=1

N∑
q=1

θ̃l
jpqC jpqẼl+1

j El
q
(
El

pkpk2
j − El

jk
3
p
)k3

i

ηl
j

dS
′

i jdS jpq

+
∑
p>i

N∑
j=1

N∑
q=1

θ̃l
jpqC jpqẼl+1

j El
q
(
El

pkpk2
j − El

jk
3
p
) k3

i

ηl
p

dS
′

ipdS jpq +
∑
q>i

N∑
p=1

N∑
j=1

θ̃l
jpqC jpqẼl+1

j El
q
(
El

pkpk2
j − El

jk
3
p
)k3

i

ηl
q

dS
′

iqdS jpq

+

N∑
j=1

N∑
q=1

θl
jiqC jiqẼl+1

j El
qkik2

j dS jiq +

N∑
j=1

N∑
p=1

θl
jpiC jpiẼl+1

j
(
El

pkpk2
j − El

jk
3
p
)
dS jpi −

N∑
p=1

N∑
q=1

θl
ipqCipqẼl+1

i El
qk3

pdS ipq

}
+ f l

i
(A.24a)

θ̃l
ipq =

−1 + (µl
ipqtl + 1)e−µ

l
ipqtl

(µl
ipq)2

A2

2
(A.24b)

A.3 Validation of the adjoint code

In this section, we both illustrate the correct implementation of the adjoint code based on the discrete adjoint
approach and the differences with the continuous adjoint approach. Given a cost function J, the prediction of
its gradient with respect to the initial energy spectrum ∂J

∂E0 that is obtained with the adjoint model (A.24), which
corresponds to the discrete adjoint approach, is compared to first-order finite differences with step ε through the
error δ defined as

δ(ε) =

∣∣∣∣∣∣∣∣∣
J(E0+εF0)−J(E0)

ε −
(
∂J
∂E0

)T
F0(

∂J
∂E0

)T
F0

∣∣∣∣∣∣∣∣∣ . (A.25)

Two cost functions are considered
J1(E0) =

1
2
(
EM)TEM, (A.26a)

J2(E0) =
1
2

M∑
l=0

(
El

)T
El. (A.26b)

The cost function J1 only involves the adjoint operator M̃l during the backward integration (A.20c), while an
adjoint forcing term f l has to be considered for J2. Various perturbations F0 in (A.25) are used, which are
illustrated in figure A.1. Type 1 is the initial energy spectrum used in the simulations itself, while types 2-6
correspond to perturbations of specific regions of the initial spectrum. The validation of the adjoint code is
illustrated in figure A.2. Simulations are performed until ten initial eddy turn-over times. The error δ converges
like ε as ε → 0 until machine precision in all the test cases considered, which confirms the correct implementation
of the adjoint code. It is worth keeping in mind that the largest scales of the initial spectrum have no influence
on the decay given the physical duration of the simulations.

In figure A.3(a), the continuous adjoint approach, where (A.7b) is discretized similarly to the direct model
(A.18), is compared to the discrete adjoint approach. Perturbation of type 1 is used along with cost function J1
and simulations are performed until one initial eddy turn-over time. Due to the geometrical spatial discretization,
the continuous adjoint approach fails to accurately compute the gradient of the direct EDQNM code. In figure
A.3(b), we investigate the case where both adjoint and direct models use a third-order Runge-Kutta scheme for
temporal integration, which is not self-adjoint contrary to the Euler scheme, while the adjoint model is derived as
(A.20c) concerning spatial discretization. Again, there is a loss of precision in the evaluation of the gradient with
this hybrid discrete/continuous adjoint approach, but the effects of temporal discretization appear less significant
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Figure A.1: Directions F0 considered for the validation of the adjoint code.
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FigureA.2: Error δ(ε) for various directions F0 and cost functions J1 (first row) and J2 (second row). Simulations
are performed either in double (first column) or quadruple precision (second column).

than those of spatial discretization from the comparison of figures A.3(a) and A.3(b). Thanks to consistency,
continuous and discrete approaches become equivalent as ∆t → 0. In this thesis, we only use the discrete adjoint
approach for applications.
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FigureA.3: (a) Error δ(ε) for continuous and discrete approaches with the Euler scheme, (b) error δ(ε) in the case
where both direct and adjoint models use a third-order Runge-Kutta scheme for time integration. Simulations are

performed in double precision.



Appendix B

Anisotropic EDQNM modelling

In this appendix, a more detailed derivation of the spectral model discussed in chapter 4 [162] is provided. In
particular, the derivation of the closed-form expressions for the generalized transfer terms is given, the spherical
integration step is detailed, and the quadratic contributions of the anisotropic tensors in the spherically averaged
transfer terms are evaluated. As shown in chapter 4, the present spectral model is derived in two steps. First,
the governing equations for the second-order spectral tensor are closed via the EDQNM approximation, which
is detailed in §B.1. In a second step, these closed equations are integrated analytically over spheres in Fourier
space, and the final governing equations of the model are derived in §B.2.

B.1 Closed equations for the second-order spectral tensor in sheared turbu-
lence

We consider incompressible, homogeneous turbulence. In the presence of a mean velocity gradient, the Navier-
Stokes equation for the fluctuating velocity ui(x, t) includes additional advection and deformation terms linked
to the mean — or large-scale — velocity field Ui(x, t):(

∂

∂t
+ u j

∂

∂x j

)
ui + 2εin jΩnu j + U j

∂ui

∂x j
+
∂Ui

∂x j
u j = −

∂p
∂xi

+ ν∇2ui. (B.1)

In view of the importance of rotating flows, we also consider an additional Coriolis force with angular velocity
Ω. p(x, t) is the pressure divided by a reference density, and can incorporate the centrifugal force in a rotating
frame. ν is the kinematic viscosity of the fluid. In §B.1.1, we give the governing equation for the fluctuating
velocity in Fourier space ûi(k, t) and that for the second-order spectral tensor R̂i j(k, t). The (E,Z) decomposition
is applied to the latter tensor in §B.1.2 and to its governing equation in §B.1.3. Generalized transfer terms appear
from the latter decomposition, which are closed via the EDQNM procedure described in §B.1.4. Final results
are given in §B.1.5.

B.1.1 Craya’s equations

The mean flow U(x, t) is characterized by a space-uniform gradient λi j(t) = ∂Ui/∂x j in accordance with homo-
geneity for the fluctuations. For the sake of readability, and without loss of generality, we will omit the time
dependence of λi j in the following. Accordingly, the counterpart of equation (B.1) in Fourier space is(

∂

∂t
− λlnkl

∂

∂kn
+ νk2

)
ûi(k, t) + Mi j(k)û j(k, t) + iPimn(k)ûmun(k, t) = 0, (B.2)
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with

Mi j(k) =

(
δin − 2

kikn

k2

)
λn j + 2Pinεnm jΩm. (B.3)

The following elementary properties of the Fourier transform are used to obtain (B.2)-(B.3):

∂̂ui

∂x j
(k, t) = ik jûi(k, t), x̂ jui(k, t) = i

∂ûi

∂k j
(k, t) (B.4)

Equation (B.3) involves the tensor Pi j(k), which is the projection operator onto the plane perpendicular to the
wave vector k. The Kraichnan’s projector Pimn(k) in (B.2) may be expressed in terms of the projection operator
Pi j(k) as

Pinm(k) =
1
2

(
kmPin(k) + knPim(k)

)
, Pi j(k) = δi j −

kik j

k2 . (B.5)

The convolution product in equation (B.2)

ûiu j(k, t) =

$
p+q=k

ûi(p, t)û j(q, t)d3 p, (B.6)

lies at the origin of triadic interactions between wave vectors k, p and q so that they form a triangle. In anisotropic
homogeneous turbulence, all information about two-point second-order correlations is provided by the second-
order spectral tensor R̂i j(k, t), which is the Fourier transform of the two-point second-order correlation tensor
Ri j(r, t) = 〈ui(x, t)u j(x + r, t)〉, with r the vector separating the two points in physical space. By using〈

û∗i (p, t)û j(k, t)
〉

= δ(k − p)R̂i j(k, t), (B.7)

where the operators ∗ and 〈〉 denote complex conjugate and ensemble average, respectively, one derives the
governing equation for the tensor R̂i j(k, t) from equation (B.2):(

∂

∂t
− λlnkl

∂

∂kn
+ 2νk2

)
R̂i j(k, t) + Min(k)R̂n j(k, t) + M jn(k)R̂ni(k, t) = Ti j(k, t). (B.8)

In the tensor Ti j(k, t) in (B.8), it is possible to disentangle contributions from the exact tensorial transfer term,
with zero integral over k, and contributions from fluctuating pressure Wi j(k, t) as follows:

Ti j(k, t) = Pin(k)τn j(k, t) + P jn(k)τ∗ni(k, t) = τi j(k, t) + τ∗ji(k, t)−
kikn

k2 τn j(k, t) −
k jkn

k2 τ∗ni(k, t)︸                                ︷︷                                ︸
Wi j(k,t)

(B.9)

The tensor Wi j(k, t) underlies a possible return-to-isotropy mechanism, its integral on k gives the nonlinear —
so-called slow — pressure-strain rate tensor, and both Ti j(k, t) and Wi j(k, t) terms originate from the same tensor
τi j(k, t). In the same way, the tensor τi j(k, t)

τi j(k, t) = kn

$
S i jn(k, p, t)d3 p (B.10)

is exactly given from the third-order three-point spectral tensor S i jn(k, p, t), defined by

i〈ûi(q, t)û j(k, t)ûn(p, t)〉 = δ(k + p + q)S i jn(k, p, t), (B.11)

and the closure is applied to the equation which governs the latter tensor, as shown in §B.1.4.
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B.1.2 The (E,Z) decomposition

An optimal decomposition of the second-order spectral tensor R̂i j(k, t), for arbitrary anisotropy, results from a
trace-deviator splitting, restricted to the plane normal to the wave vector by virtue of incompressibility [37, 38,
188]. Here, the contribution of helicity is disregarded. This is equivalent to consider only the real part of R̂i j(k, t).
Accordingly, this decomposition is written as:

R̂i j(k, t) =
1
2

R̂nn(k, t)Pi j(k) + R

(
R̂i j(k, t) −

1
2

R̂nn(k, t)Pi j(k)
)
. (B.12)

Equation (B.12) may be rewritten in terms of scalar quantities as follows:

R̂i j(k, t) =
E(k, t)
4πk2 Pi j(k) +

(
E(k, t) −

E(k, t)
4πk2

)
Pi j(k) + R

(
Z(k, t)Ni(k)N j(k)

)
, (B.13)

where
E(k, t) =

1
2

R̂ii(k, t), Z(k, t) =
1
2

R̂i j(k, t)N∗i (k)N∗j (k), (B.14)

and the radial energy spectrum E(k, t) is obtained from E(k, t) by

E(k, t) =

"
S k

E(k, t)d2 k, (B.15)

where
!

S k
d2 k denotes integration over a spherical shell of radius k. The first term in the decomposition (B.13)

of R̂i j(k, t) corresponds to its isotropic part. The second term characterizes ‘directional anisotropy’ via the scalar
(E(k, t)−E(k, t)/(4πk2)), which corresponds to the difference between the energy density E(k, t) and its spherical
average. The third term, which is generated by the scalar Z(k, t), characterizes ‘polarization anisotropy’, or
tensorial anisotropy at a given wavevector. The decomposition (B.13) also involves the projection operator
Pi j(k) defined by (B.5) as well as the helical mode N(k), defined below. By virtue of incompressibility, a two-
component decomposition of the fluctuating velocity can be written as

û(k, t) = u(1)(k, t)e(1)(k) + u(2)(k, t)e(2)(k), (B.16)

or equivalently
û(k, t) = ξ+(k, t)N(k) + ξ−(k, t)N∗(k) , (B.17)

with

N(k) = e(2)(k) − ie(1)(k), e(1)(k) =
k × n
|k × n|

, e(2)(k) = e(3)(k) × e(1)(k), e(3)(k) =
k
k
, (B.18)

where (e(1)(k), e(2)(k), e(3)(k)) is an orthonormal right-handed frame of reference associated to a privileged direc-
tion n, this frame is often referred to as Craya-Herring frame (see e.g. Herring [98], Sagaut and Cambon [188]).
The realizability condition, or condition for the Hermitian covariance matrix R̂i j(k, t) to be definite-positive, can
be written as [40]:

| Z(k, t) |≤ E(k, t) ∀k, t. (B.19)

B.1.3 Generalized Lin equations

When taking into account the decomposition (B.13) of the second-order spectral tensor R̂i j(k, t), equation (B.8)
is equivalent to a set of two equations in terms of E(k, t) and Z(k, t), so that Lin’s equation in isotropic turbulence
is generalized as(

∂

∂t
− λlnkl

∂

∂kn
+ 2νk2

)
E(k, t) − E(k, t)S i jαiα j + R

(
Z(k, t)S i jNi(k)N j(k)

)
= T (E)(k, t), (B.20)
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(
∂

∂t
− λlnkl

∂

∂kn
+ 2νk2

)
Z(k, t)−Z(k, t)S i jαiα j+E(k, t)S i jN∗i (k)N∗j (k)−2iZ(k, t)

(
2Ωlαl +

Wl

2
αl −ΩE

)
= T (Z)(k, t),

(B.21)
where αi = ki/k, S i j = (λi j + λ ji)/2 is the symmetric part of the mean-velocity gradient, and Wi = εi jnλn j refers
to its antisymmetric part. The rotation vector component ΩE expresses the solid-body motion of the local Craya
frame with respect to a fixed frame of references, following characteristic lines. The expression of ΩE is given
by:

ΩE =
1
2
I

N j

∂N∗j
∂kn

 λlnkl = −λlnkl
npαp

|k × n|
e(1)

n = −
k

|k × n|
λlnnle

(1)
n − λlne(2)

l e(1)
n . (B.22)

The derivation of the above expressions may be found in Cambon et al. [41], but with an error of sign in front of
the rotation terms in (B.21). The nonlinear transfer terms in the right-hand-sides of equations (B.20) -(B.21) are
obtained by applying the (E,Z) decomposition to the transfer term Ti j(k, t) in equation (B.8):

T (E)(k, t) =
1
2

Tii(k, t) =
1
2

(τii(k, t) + τ∗ii(k, t)), (B.23)

T (Z)(k, t) =
1
2

Ti j(k, t)N∗i (k)N∗j (k) =
1
2

(τi j(k, t) + τ∗ji(k, t))N∗i (k)N∗j (k), (B.24)

where the tensor τi j(k, t) is defined by equations (B.9)-(B.10). As mentionned earlier, Ti j(k, t) includes both the
‘true’ transfer tensor, with zero integral, and the contribution Wi j(k, t) involved in the return-to-isotropy effect.
The latter tensor can be generated from a scalar transfer term T (RT I)(k, t) according to

Wi j(k, t) = −R
(
T (RT I)(k, t)(αiN j(k) + α jNi(k))

)
, (B.25)

consistently with τi j(k, t)k j = 0, τi j(k, t)ki , 0, and

T (RT I)(k, t) = αi(τi j(k, t) + τ∗ji(k, t))N∗j (k) = αiτi j(k, t)N∗j (k) (B.26)

B.1.4 EDQNM closure for transfer terms

In this section, a ‘triadic’ closure is applied to the equations governing the third-order spectral tensor S i jn(k, p, t)
defined by equation (B.11), from which the term τi j(k, t) in equation (B.10) is derived. From the counterpart of
(B.1) in Fourier space and (B.11), its dynamics is obtained via(

∂

∂t
+ ν(k2 + p2 + q2) − λlm

(
kl

∂

∂km
+ pl

∂

∂pm

))
S i jn(k, p, t) + Mim(q)S m jn(k, p, t)

+ M jm(k)S imn(k, p, t) + Mnm(p)S i jm(k, p, t) = Ti jn(k, p, t),
(B.27)

where k + p + q = 0 and Ti jn(k, p, t) is expressed in terms of a fourth-order spectral tensor

Ti jn(k, p, t) = Pimp(q)
$

S mp jn(r, k, p, t)d3r+P jmp(k)
$

S mpin(r, q, p, t)d3r+Pnmp(p)
$

S mpi j(r, q, k, t)d3r,
(B.28)

with
〈ûm(r)ûp(r′)û j(k)ûn(p)〉 = S mp jn(r, k, p)δ(r + r′ + k + p). (B.29)

So far, the expressions which have been given for the governing equations for the second- and third-order spectral
tensors are exact. They strictly reproduce the infinite hierarchy of moments up to N = 3, with equations for N-
order moments having both linear closed terms and contribution from N + 1 moments being induced by basic
nonlinearity. We now want to break this infinite hierarchy at the order N = 3. Equation (B.27) can be rewritten
in the following form:(

∂

∂t
+ ν(k2 + p2 + q2)

)
S i jn(k, p, t) = Ti jn(k, p, t) +Li jn(k, p, t) = Ri jn(k, p, t), (B.30)
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where the tensor Ri jn(k, p, t) gathers the linear operators induced by mean velocity gradients throughLi jn(k, p, t)
and the fourth-order spectral tensor Ti jn(k, p, t). The problem then is to determine a closed expression for
Ri jn(k, p, t). The historical procedure, developed for homogeneous isotropic turbulence, starts from the Quasi-
Normal (QN) approximation [158, 181], which states that the fluctuating velocity probability distributions are not
too far from normal laws, in order to close the nonlinear contributions in Ri jn(k, p, t). This assumption translates
into vanishing fourth-order cumulants and can be written as:

〈ûm(r)ûp(r′)û j(k)ûn(p)〉 = 〈ûm(r)ûp(r′)〉〈û j(k)ûn(p)〉 + 〈ûm(r)û j(k)〉〈ûp(r′)ûn(p)〉 + 〈ûm(r)ûn(p)〉〈ûp(r′)û j(k)〉.
(B.31)

Injecting (B.31) into (B.28) and using definitions (B.7) and (B.29) lead to the quasi-normal contribution of the
transfer term Ti jn(k, p, t):

T
(QN)
i jl (k, p, t) = 2

(
Pimn(q)R̂m j(k, t)R̂nl(p, t) + P jmn(k)R̂ml(p, t)R̂ni(q, t) + Plmn(p)R̂mi(q, t)R̂n j(k, t)

)
, (B.32)

with Pinm(k) = 1/2 (kmPin(k) + knPim(k)), the projector Pi j(k) is defined in (B.12). However, it was shown
in [170, 171] that the purely quasi-normal approximation fails in decaying isotropic turbulence for long elapsed
times, yielding negative energy spectra at small k. Orszag [172] showed that the improper treatment of relaxation
effects in the purely quasi-normal approximation lies at the origin of this lack of realizability. Consequently, he
introduced an eddy viscosity, or Eddy-Damping (ED) term, in the governing equation for third-order correlations.
Without any additional assumption, Ri jn(k, p, t) from (B.30) can be written as

Ri jn(k, p, t) = T
(QN)
i jn (k, p, t) + T

(IV)
i jn (k, p, t) +Li jn(k, p, t). (B.33)

In this equation, the only unknown, and unclosed, term is T (IV)
i jn (k, p, t) that represents the contribution from

fourth-order cumulants. A natural extension of Orszag’s introduction of eddy-damping is to write

T
(IV)
i jn (k, p, t) = − (η(k, t) + η(p, t) + η(q, t)) S i jn(k, p, t), (B.34)

with keeping in mind that fourth-order cumulants may act as a linear relaxation of triple correlations, which will
reinforce the dissipative operator in equation (B.30) when added to the purely viscous terms in its left-hand-side.
The eddy-damping coefficient η(k, t) is chosen as

η(k, t) = A

√∫ k

0
p2E(p, t)dp, (B.35)

following [179], which is an improved variant of [172]’s proposal. This choice restricts the present modelling to
turbulent flows where linear effects induced by mean velocity gradients play a negligible role in the dynamics of
triple correlations. The form of the eddy-damping contribution and its application to anisotropic flows is further
discussed in chapter 4. The constant is fixed at A = 0.36 to recover a well admitted value of the Kolmogorov
constant [9]. Equation (B.30) can be now integrated using (B.33), (B.32) and (B.34)-(B.35), and neglecting the
contribution of Li jn(k, p, t). The solution thus obtained involves time integrals that are further simplified by a
Markovianization procedure, which amounts to truncate the proper time-memory of triple correlations. Further
details can be found in [39, 188]. In the end, this anisotropic EDQNM closure for the tensor τi j(k, t) defined by
(B.10) amounts to

τi j(k, t) = kl

$
θkpqT

(QN)
i jl (k, p, t)d3 p, (B.36)

where

θkpq =
1 − e−µkpqt

µkpq
, µkpq = ν(k2 + p2 + q2) + η(k, t) + η(p, t) + η(q, t). (B.37)

The expression (B.36) of τi j(k, t) obtained from the EDQNM approximation is injected into (B.23)-(B.24) in
order to obtain closed-form expressions of the transfer terms, as detailed in §B.1.5
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B.1.5 Closed-form expressions of the generalized transfer terms

B.1.5.1 Geometrical relationships

In this section, the derivation of the closed-form expression of the transfer terms T (E)(k, t), T (Z)(k, t) and
T (RT I)(k, t) is provided. First, various relationships about triadic geometry are given, which will be used in
the derivation. In the following, the scalars x, y and z refer to the cosines of the internal angles of the triangle
formed by the triad, and are defined as:

x = cos(α) = −p · q/(pq), y = cos(β) = −k · q/(kq), z = cos(γ) = −k · p/(kp). (B.38)

In addition to the Craya-Herring frame defined in (B.18), appropriate reference frames to derive geometrical
coefficients may be defined with respect to the normal unit vector of the triad [188]. These frames are formed
from the following vectors:

γ =
k × p
|k × p|

, β = α × γ, β
′

= α
′

× γ, β
′′

= α
′′

× γ, (B.39)

which can be related to the Craya-Herring frame according to

N = eiλ(β + iγ) = eiλW, N
′

= eiλ
′

(β
′

+ iγ) = eiλ
′

W
′

, N
′′

= eiλ
′′

(β
′′

+ iγ) = eiλ
′′

W
′′

, (B.40)

with N = N(k), N
′

= N(p), N
′′

= N(q), α = k/k, α
′

= p/p and α
′′

= q/q. λ, λ
′

and λ
′′

are angles that
characterize the rotation of the plane of the triad around k, p and q, respectively. Useful relations are:

W∗i W∗j = e2iλN∗i N∗j , NiN∗j = Pi j − iεi jlαl, (B.41)

α
′

= −zα −
√

1 − z2β, α
′′

= −yα +

√
1 − y2β, (B.42)

β
′

=
√

1 − z2α − zβ, β
′′

= −

√
1 − y2α − yβ, (B.43)

W
′

=
√

1 − z2α +
1 − z

2
Ne−iλ −

1 + z
2

N∗eiλ, W
′′

= −

√
1 − y2α +

1 − y
2

Ne−iλ −
1 + y

2
N∗eiλ, (B.44)

q sin(β) = p sin(γ), k sin(β) = p sin(α) (B.45)

k(1 − y2) = p(xy + z), k(1 − z2) = q(xz + y), k(yz + x) = py(1 − z2) + qz(1 − y2) (B.46)

k(1 − 2z2y2 − xyz) = p(xy + z3) + q(xz + y3) (B.47)

B.1.5.2 Splitting of the quasi-normal approximation

The expression of the tensor τi j(k, t) closed by the EDQNM procedure in (B.36) is decomposed according to:

τi j(k, t) = 2
$

θkpq(τ+
i j+τ

−
i j)d

3 p, τ−i j =
(
P
′

imnR̂m jR̂
′′

nl + P
′

lmnR̂
′′

miR̂n j
)

kl, τ+
i j =

1
2

(
P jmnR̂

′

mlR̂
′′

ni + P jmnR̂
′′

mlR̂
′

ni

)
kl,

(B.48)
with R̂i j = R̂i j(k, t), R̂

′

i j = R̂i j(p, t), R̂
′′

i j = R̂i j(q, t), Pi jl = Pi jl(k) and P
′

i jl = Pi jl(p). This decomposition facilitates
the derivation of the closed-form expression of the generalized transfer terms, as detailed in the following. The
contribution τ−i j originates from the first and third terms in the right-hand-side of (B.32), using$

f (k, p, q)d3 p =

$
f (k, q, p)d3 p (B.49)
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with k + p + q = 0 and f an integrable function on R9. The contribution τ+
i j comes from the second term in

(B.32), and is written in a symmetrized form according to (B.49). Using

P
′

imnR̂
′′

nlkl =
1
2

(
−P

′

imknR̂
′′

nlkl + pm

(
R̂
′′

ilkl +
pi

p2 knR̂
′′

nlkl

))
, P

′

lmnR̂
′′

nikl =
1
2

klR̂
′′

li

((
1 −

2zk
p

)
pm − km

)
, (B.50)

the contribution τ−i j can be rewritten as

τ−i j =
1
2

klR̂
′′

lnkn
(
−R̂i j + 2α

′

iα
′

mR̂m j
)

+
1
2

klR̂
′′

li

(
2qxα

′

m − km
)

R̂m j. (B.51)

From (B.51), useful simplifications are:

klR̂
′′

liki = kp(xy + z)
(
E
′′

+ RX
′′
)

(B.52)

klR̂
′′

liNi = keiλ sin(β)
(
y
(
E
′′

+ RX
′′
)

+ iIX
′′
)
, klR̂

′′

liN
∗
i = ke−iλ sin(β)

(
y
(
E
′′

+ RX
′′
)
− iIX

′′
)

(B.53)

pmR̂m jN j = −p sin(γ)
(
Eeiλ + Z∗e−iλ

)
, pmR̂m jN∗j = −p sin(γ)

(
Ee−iλ + Zeiλ

)
, (B.54)

with E = E(k, t), E′ = E(p, t), E′′ = E(q, t), X = Z(k, t)e2iλ, X′ = Z(p, t)e2iλ′ and X′′ = Z(q, t)e2iλ′′ . Similarly,
the contribution τ+

i j can be simplified as:

τ+
i j =

1
2

klR̂
′

mlkm
(
R̂
′′

i j − 2αnα jR̂
′′

ni

)
+

1
2

knR̂
′′

niklR̂
′

jl, (B.55)

and the following relations can be used further in the derivation:

αlR̂
′

lmαm = (1 − z2)
(
E
′

+ RX
′
)
, R̂

′′

i jN
∗
i N∗j = e−2iλ

[
(1 + y2)

(
E
′′

+ RX
′′
)
− 2E

′′

− 2iyIX
′′
]

(B.56)

knR̂
′

niN
∗
i = −k sin(γ)e−iλ

(
z
(
E
′

+ RX
′
)
− iIX

′
)
, knR̂

′′

niN
∗
i = k sin(β)e−iλ

(
y
(
E
′′

+ RX
′′
)
− iIX

′′
)

(B.57)

R̂
′′

i jNiN∗j = E
′′

(1 + y2) − RX
′′

(1 − y2), knR̂
′

niNi = −k sin(γ)eiλ
(
z
(
E
′

+ RX
′
)

+ iIX
′
)
. (B.58)

B.1.5.3 Transfer term T (Z)(k, t)

From (B.52)-(B.54) and (B.56)-(B.58), the contribution of τ−i j to the transfer term T (Z)(k, t) is found to be:

τ−i jN
∗
i N∗j = kp

(
E
′′

+ RX
′′
) [
−(xy + z3)Z + z(1 − z2)Ee−2iλ

]
+ iIX

′′

kp(1 − z2)x
(
Ee−2iλ + Z

)
, (B.59)

while the contribution of τ+
i j is given by

τ+
i jN
∗
i N∗j =

1
2

k2e−2iλ(1 − z2)
(
E
′

+ RX
′
) [

(1 + y2)
(
E
′′

+ RX
′′
)
− 2E

′′

− 2iyIX
′′
]

−
1
2

k2e−2iλ(x + yz)
(
y
(
E
′′

+ RX
′′
)
− iIX

′′
) (

z
(
E
′

+ RX
′
)
− iIX

′
)
,

(B.60)

which can be replaced by the following expression, according to (B.49):

τ+
i jN
∗
i N∗j =

1
4

k2e−2iλ(1 − z2)
(
E
′

+ RX
′
) [

(1 + y2)
(
E
′′

+ RX
′′
)
− 2E

′′

− 2iyIX
′′
]

+
1
4

k2e−2iλ(1 − y2)
(
E
′′

+ RX
′′
) [

(1 + z2)
(
E
′

+ RX
′
)
− 2E

′

− 2izIX
′
]

−
1
2

k2e−2iλ(x + yz)
(
y
(
E
′′

+ RX
′′
)
− iIX

′′
) (

z
(
E
′

+ RX
′
)
− iIX

′
)
.

(B.61)
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Using geometrical relations such as (B.46)-(B.47) allows to further simplify (B.61):

τ+
i jN
∗
i N∗j =e−2iλkp(xy + z3)

(
E
′

+ RX
′
) (
E
′′

+ RX
′′
)
− e−2iλkp(xy + z)

(
E
′′

+ RX
′′
)
E
′

+ ie−2iλkp(y2 − z2)
(
E
′′

+ RX
′′
)
IX

′

+ e−2iλkpy(1 − z2)IX
′

IX
′′

.
(B.62)

Combining (B.59) and (B.62) leads to the final closed-form expression of the transfer term T (Z)(k, t):

T (Z)(k, t) =

$
θkpq2kpe−2iλ

[
(E
′′

+ RX
′′

)
[
(xy + z3)(RX

′

− X) − z(1 − z2)(E
′

− E) + i(y2 − z2)IX
′]

+ iIX
′′

(1 − z2)
[
x(E + X) − iyIX

′]]
d3 p.

(B.63)

B.1.5.4 Transfer term T (E)(k, t)

From the relations
T (E)(k, t) =

1
4

(
τi j(k, t) + τ∗ji(k, t)

) (
N∗i N j + NiN∗j

)
, (B.64)

τ−i jNiN∗j = kp(xy + z)
(
E
′′

+ RX
′′
) (
−E + (1 − z2)

(
E + Ze2iλ

))
− kp(1 − z2)x

(
y
(
E
′′

+ RX
′′
)

+ iIX
′′
) (
E + Ze2iλ

)
,

(B.65)
τ−i jN

∗
i N j = kp(xy+z)

(
E
′′

+ RX
′′
) (
−E + (1 − z2)

(
E + Z∗e−2iλ

))
−kp(1−z2)x

(
y
(
E
′′

+ RX
′′
)
− iIX

′′
) (
E + Z∗e−2iλ

)
,

(B.66)
the contribution of τ−i j to the transfer term T (E)(k, t) is found to be:

1
2
τ−ii =

1
4
τ−i j

(
NiN∗j + N∗i N j

)
=

1
2

kp
(
E
′′

+ RX
′′
) [
−(xy + z3)E + z(1 − z2)RX

]
+

1
2

kp(1 − z2)xIXIX
′′

. (B.67)

Similarly, using

τ+
i jNiN∗j =

1
2

(1−z2)
(
E
′

+ RX
′
)

k2
[
E
′′

(1 + y2) − RX
′′

(1 − y2)
]
−

1
2

(x+yz)k2
(
y
(
E
′′

+ RX
′′
)

+ iIX
′′
) (

z
(
E
′

+ RX
′
)
− iIX

′
)
,

(B.68)

τ+
i jN
∗
i N j =

1
2

(1−z2)
(
E
′

+ RX
′
)

k2
[
E
′′

(1 + y2) − RX
′′

(1 − y2)
]
−

1
2

(x+yz)k2
(
y
(
E
′′

+ RX
′′
)
− iIX

′′
) (

z
(
E
′

+ RX
′
)

+ iIX
′
)
,

(B.69)
one can find the contribution of τ+

i j to T (E)(k, t):

τ+
i j

(
N∗i N j + NiN∗j

)
= k2

(
E
′

+ RX
′
) (
E
′′

+ RX
′′
)

(y2−2y2z2−xyz)+k2(1−z2)
(
E
′

+ RX
′
) (
E
′′

− RX
′′
)
−k2(yz+x)IX

′

IX
′′

.

(B.70)
After symmetrization using (B.49), (B.70) can be replaced by

τ+
i j

(
N∗i N j + NiN∗j

)
=k2

(
E
′

+ RX
′
) (
E
′′

+ RX
′′
)

(1 − 2y2z2 − xyz) − k2(1 − y2)
(
E
′′

+ RX
′′
)
RX

′

− k2(1 − z2)
(
E
′

+ RX
′
)
RX

′′

− k2(yz + x)IX
′

IX
′′

,
(B.71)

which may be further simplified as

τ+
i j

(
N∗i N j + NiN∗j

)
= 2kp(xy + z3)

(
E
′

+ RX
′
) (
E
′′

+ RX
′′
)
− 2kp(xy + z)

(
E
′′

+ RX
′′
)
RX

′

− 2kpy(1− z2)IX
′

IX
′′

.

(B.72)
Using (B.67) and (B.72) allows to derive the closed-form expression of the transfer term T (E)(k, t):

T (E)(k, t) =

$
θkpq2kp

[
(E
′′

+RX
′′

)
[
(xy + z3)(E

′

−E)− z(1− z2)(RX
′

−RX)
]
+IX

′′

(1− z2)(xIX − yIX
′

)
]
d3 p.

(B.73)
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B.1.5.5 Transfer term T (RT I)(k, t)

The contributions of τ−i j and τ+
i j to the transfer term T (RT I)(k, t) are respectively given by:

αiτ
−
i jN
∗
j = e−iλk(1 − y2)

√
1 − z2

(
E
′′

+ RX
′′
)

(E + X) (zk − qx), (B.74)

αiτ
+
i jN
∗
j =

1
2

e−iλk2(1 − z2)
√

1 − y2
(
E
′

+ RX
′
) (

y(E
′′

+ RX
′′

) − iIX
′′
)

−
1
2

e−iλk2(1 − y2)
√

1 − z2
(
E
′′

+ RX
′′
) (

z(E
′

+ RX
′

) − iIX
′
)
.

(B.75)

Equation (B.75) may be replaced by the following expression, according to (B.49):

αiτ
+
i jN
∗
j = −e−iλk2(1 − y2)

√
1 − z2

(
E
′′

+ RX
′′
) (

z(E
′

+ RX
′

) − iIX
′
)
. (B.76)

From (B.74) and (B.76), one can deduces the final closed-form expression of T (RT I)(k, t):

T (RT I)(k, t) =

$
θkpq2e−iλp(xy + z)

√
1 − z2(E

′′

+ RX
′′

)
[
(E + X)(zk − qx) − k

(
z(E

′

+ RX
′

) − iIX
′
)]

d3 p.
(B.77)

B.2 Dynamical equations for spherically-averaged descriptors

Strictly speaking, generalized Lin equations (B.20)-(B.21) with closed-form expressions (B.63) and (B.73) of
the tranfer terms can be solved. However, important practical difficulties arise from the k dependence of the
second-order spectral tensor R̂i j(k, t), or equivalently of that of E(k, t) and Z(k, t). In order to circumvent these
difficulties, one solution is to integrate analytically the closed Lin equations over a sphere of radius k. This
analytical integration requires a representation of the tensor R̂i j(k, t), which is exposed in §B.2.1. This represen-
tation involves spherically-averaged descriptors whose governing equations are derived in the remainder of this
section.

B.2.1 Representation of the second-order spectral tensor in terms of spherically-averaged de-
scriptors

Here, we use for R̂i j(k, t) the representation proposed by Cambon and Rubinstein [38]. This representation
involves spherically-averaged descriptors and is obtained by treating directionality and polarization anisotropy
separately. It is written as:

R̂i j(k, t) =
E(k, t)
4πk2 Pi j(k)︸          ︷︷          ︸

R̂(iso)
i j (k,t)

−15
E(k, t)
4πk2 Pi j(k)H(dir)

pq (k, t)αpαq︸                                    ︷︷                                    ︸
R̂(dir)

i j (k,t)

+ 5
E(k, t)
4πk2

(
Pip(k)P jq(k) +

1
2

Pi j(k)αpαq

)
H(pol)

pq (k, t)︸                                                             ︷︷                                                             ︸
R̂(pol)

i j (k,t)

,

(B.78)
or equivalently

E(k, t) =
E(k, t)
4πk2

(
1 − 15H(dir)

i j (k, t)αiα j
)
, Z(k, t) =

5
2

E(k, t)
4πk2 H(pol)

i j (k, t)N∗i (k)N∗j (k), (B.79)

where the tensor Pi j(k) is defined by (B.5) and αi = ki/k. The tensors R̂(iso)
i j (k, t), R̂(dir)

i j (k, t) and R̂(pol)
i j (k, t)

identify the isotropic, directional and polarization parts of R̂i j(k, t), respectively. The representation (B.78) is
constructed so that the trace-free tensors H(dir)

i j (k, t) and H(pol)
i j (k, t), which depend only on k, measure directional
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and polarization anisotropies according to

2E(k, t)H(dir)
i j (k, t) =

"
S k

R̂(dir)
i j (k, t)d2 k, 2E(k, t)H(pol)

i j (k, t) =

"
S k

R̂(pol)
i j (k, t)d2 k, (B.80)

These tensors generate directly the spherically integrated second-order spectral tensor ϕi j(k, t):

ϕi j(k, t) =

"
S k

R̂i j(k, t)d2 k = 2E(k, t)
(
δi j

3
+ H(dir)

i j (k, t) + H(pol)
i j (k, t)

)
. (B.81)

Injecting the representation of E(k, t) and Z(k, t) (B.79) into equations (B.20)-(B.21), (B.63) and (B.73) allows to
integrate analytically the latter over a sphere of radius k and to derive a system of governing equations in terms of
the spherically-averaged descriptors E(k, t), H(dir)

i j (k, t) and H(pol)
i j (k, t). In view of (B.78)-(B.79) and (B.81), the

latter completely determine the second-order spectral tensor R̂i j(k, t) and its spherically integrated counterpart
ϕi j(k, t), however restricted to moderate anisotropy. This point is discussed in chapter 4.

B.2.2 Dynamics, final closure

The final system of governing equations is written as follows:(
∂

∂t
+ 2νk2

)
E(k, t) = SL(k, t) + T (k, t), (B.82)

(
∂

∂t
+ 2νk2

)
E(k, t)H(dir)

i j (k, t) = S
L(dir)
i j (k, t) + S

NL(dir)
i j (k, t), (B.83)(

∂

∂t
+ 2νk2

)
E(k, t)H(pol)

i j (k, t) = S
L(pol)
i j (k, t) + S

NL(pol)
i j (k, t), (B.84)

with

2
(
δi j

3
T (k, t) + S

NL(dir)
i j (k, t) + S

NL(pol)
i j (k, t)

)
= Si j(k, t) + Pi j(k, t). (B.85)

The tensors SL(k, t), SL(dir)
i j (k, t) and SL(pol)

i j (k, t), inherited from Rapid Distortion Theory (RDT), account for the
linear terms corresponding to the interactions with the mean flow and the rotation of the frame, whereas T (k, t),
S

NL(dir)
i j (k, t) and SNL(pol)

i j (k, t) correspond to nonlinear transfer terms. The tensor Pi j(k, t) is the spherically inte-
grated spectral counterpart of the slow pressure-strain rate tensor, to which a return-to-isotropy is conventionally
attributed. The tensor Si j(k, t) corresponds to a ‘true’ transfer tensor with

∫ ∞
0 Si j(k, t)dk = 0 ∀t. Since the ten-

sors H(dir)
i j (k, t) and H(pol)

i j (k, t) are symmetric and trace-free, the system (B.82)-(B.84) forms a set of 11 different
equations.

B.2.3 Closure for the terms inherited from RDT

In order to obtain the terms SL(k, t), SL(dir)
i j (k, t) and SL(pol)

i j (k, t), one has to analytically solve the spherical
averaging of tensorial products of vectors α = k/k. This is done as [39]:"

S k

αi1αi2 · · ·αi2N d2 k =
4πk2

1 · 3 · · · (2N + 1)
δN

i1i2···i2N
, (B.86)

where δN
i1i2···i2N

is defined by:

δ1
i j = δi j, δN

i1i2···i2N
=

2N−1∑
r=1

δiri2Nδ
N−1
i1i2···ir−1ir+1···i2N−1

. (B.87)
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A relatively efficient method to derive the expressions of SL(k, t), SL(dir)
i j (k, t) and SL(pol)

i j (k, t) may consist, in
a first step, in performing the spherical integration of the linear contributions of (B.8). In a second step, after
taking half the trace of (B.8) and multiplying by the operator Pi j = Pi j(k), spherical integration provides both
isotropic and directional contributions. Polarization terms are obtained through the difference between the total
contribution obtained in the first step and the isotropic and directional terms. Useful results are:"

S k

H()
mnαmαnPi jd2 k = −

8πk2

15
H()

i j,

"
S k

H()
mnN∗mN∗n NiN jd2 k =

16πk2

5
H()

i j (B.88)

"
S k

H()
mnαmN∗nαiN jd2 k =

4πk2

5
H()

i j, λln

"
S k

αiα jαlαnd2 k =
4πk2

15

(
λi j + λ ji

)
, (B.89)

λlnH()
pq

"
S k

αiα jαlαnαpαqd2 k =
8πk2

105

[(
λli + λil

)
H()

l j +
(
λl j + λ jl

)
H()

li + λlnH()
lnδi j

]
(B.90)"

S k

λlnkl
∂

∂kn

(
H()

pqαpαq
)
d2 k =

8πk2

15

(
k
∂

∂k
(
H()

ln
)

+ 3Hln
)
λln, (B.91)"

S k

λlnkl
∂

∂kn

(
H()

pqαpαqαiα j
)
d2 k =

8πk2

105

[(
λli + λil

)(
k
∂

∂k
(
H()

l j
)

+ 3H()
l j

)
+

(
λl j + λ jl

)(
k
∂

∂k
(
H()

li
)

+ 3H()
li

)
+ λln

(
k
∂

∂k
(
H()

ln
)

+ 3Hln
)
δi j

]
,

(B.92)

where H()
i j may refer to either H(dir)

i j (k, t), H(pol)
i j (k, t), H(dir)

i j (p, t), H(pol)
i j (p, t), H(dir)

i j (q, t) or H(pol)
i j (q, t). The final

expressions of SL(k, t), SL(dir)
i j (k, t) and SL(pol)

i j (k, t) can be written as:

SL(k, t) = −2S lm
∂

∂k
(
kEH(dir)

lm
)
− 2ES lm

(
H(dir)

lm + H(pol)
lm

)
, (B.93)

S
L(dir)
i j (k, t) =

2
15

S i jE −
2
7

E
(
S jlH

(pol)
il + S ilH

(pol)
jl −

2
3

S lmH(pol)
lm δi j

)
−

1
15

S i j
∂

∂k
(
kE

)
+

2
7

(
S il

∂

∂k
(
kEH(dir)

l j
)

+ S l j
∂

∂k
(
kEH(dir)

li
)
−

2
3

S lm
∂

∂k
(
kEH(dir)

lm
)
δi j

)
−

1
7

E
(
S jlH

(dir)
li + S ilH

(dir)
l j −

2
3

S lmH(dir)
lm δi j

)
+ E

(
A jnH(dir)

ni + AinH(dir)
jn

)
,

(B.94)

S
L(pol)
i j (k, t) = −

2
5

ES i j −
12
7

E
(
S l jH

(dir)
li + S ilH

(dir)
l j −

2
3

S lmH(dir)
lm δi j

)
−

1
3

E
(
AilH

(pol)
l j + A jlH

(pol)
li

)
−

2
7

(
S jl

∂

∂k
(
kEH(pol)

il
)

+ S il
∂

∂k
(
kEH(pol)

l j
)
−

2
3

S ln
∂

∂k
(
kEH(pol)

ln
)
δi j

)
+

1
7

E
(
S ilH

(pol)
l j + S jlH

(pol)
li −

2
3

S lmH(pol)
lm δi j

)
−

4
3

E
(
εilrΩlH

(pol)
r j + ε jlrΩlH

(pol)
ri

)
,

(B.95)

with E = E(k, t), H(dir)
i j = H(dir)

i j (k, t), H(pol)
i j = H(pol)

i j (k, t), S i j = (λi j + λ ji)/2, Ai j = (λi j − λ ji)/2.

B.2.4 Closure from the terms mediated by third-order correlations

The transfer terms T (k, t), SNL(dir)
i j (k, t) and SNL(pol)

i j (k, t) are obtained from the spherical integration of the ex-
pressions of the transfer terms T (E)(k, t) and T (Z)(k, t) closed by the EDQNM procedure (B.63) and (B.73) and
using the representation (B.79) for E(k, t) and Z(k, t). It is consistent to retain only linear contributions from the
tensors H(dir)

i j (k, t) and H(pol)
i j (k, t) in the terms present in the right-hand-sides of the system (B.82)-(B.84) in view

of the discussions in [38, 162]. Quadratic contributions of these tensors are nevertheless evaluated in §B.2.5. In
anisotropic triadic closure, the new difficulty is to solve the integral over the orientation of the plane of the triad.
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The integral
#

S (k, p, t)d3 p is simplified as$
S (k, p, t)d3 p =

"
∆k

pq
k

(∫ 2π

0
S̃ (k, p, q, λ)dλ

)
dpdq, (B.96)

using the new variables (k, p1, p2, p3) → (k, p, q, λ). This system of bipolar variables is classical in isotropic
turbulence, the integral over p and q is performed over the domain ∆k so that k, p and q are the lengths of the
sides of the triangle formed by k, p and q. At fixed k, p and q give the geometry of the triad around k, and
the angle λ fixes the orientation of the plane of the triad around k, and therefore the azimutal angle of p (or q)
around k. In isotropic turbulence, the λ-integral amounts to a multiplication by 2π. Here, the anisotropic part of
the closure needs integrals such as:

2π∫
0

α
′

iα
′

jdλ = π
[
(1 − z2)δi j + (3z2 − 1)αiα j

]
,

2π∫
0

W
′

i W
′

jdλ = π(z2 − 1)(δi j − 3αiα j), (B.97)

2π∫
0

e−2iλα
′

iα
′

jdλ = π
1 − z2

2
N∗i N∗j ,

2π∫
0

e−2iλW
′

i W
′

jdλ = π
(1 + z)2

2
N∗i N∗j , (B.98)

2π∫
0

e−2iλW
′∗
i W

′∗
j dλ = π

(1 − z)2

2
N∗i N∗j , (B.99)

2π∫
0

e−iλα
′

iα
′

jdλ = πz
√

1 − z2(αiN∗j + α jN∗i ),

2π∫
0

e−iλW
′

i W
′

jdλ = −π(1 + z)
√

1 − z2(αiN∗j + α jN∗i ), (B.100)

2π∫
0

e−iλW
′∗
i W

′∗
j dλ = π(1 − z)

√
1 − z2(αiN∗j + α jN∗i ). (B.101)

Similar results for α
′′

i α
′′

j and W
′′

i W
′′

j (or conjugate) are obtained by replacing z by y in equations (B.97)-(B.101)
and by multiplying by −1 the right-hand-sides of (B.100)-(B.101). Since the above expressions depend only on
k and the geometry of the triad, they allow to perform spherical integration using (B.88)-(B.89). Final results
are:

T (k, t) =

"
∆k

θkpq16π2 p2k2q(xy + z3)E
′′

0 (E
′

0 − E0)dpdq, (B.102)

S
NL(dir)
i j (k, t) =

"
∆k

θkpq4π2 p2k2qE
′′

0

[
(y2 − 1)(xy + z3)(E

′

0 − E0)H(pol)′′

i j + z(1 − z2)2E
′

0H(pol)′

i j

]
dpdq

+

"
∆k

θkpq8π2 p2k2q(xy + z3)E
′′

0

[
(3y2 − 1)(E

′

0 − E0)H(dir)′′
i j + (3z2 − 1)E

′

0H(dir)′
i j − 2E0H(dir)

i j

]
dpdq,

(B.103)

S
NL(pol)
i j (k, t) =

"
∆k

θkpq4π2 p2k2qE
′′

0

[
(xy + z3)

(
(1 + z2)E

′

0H(pol)′

i j − 4E0H(pol)
i j

)
+ z(z2 − 1)(1 + y2)(E

′

0 − E0)H(pol)′′

i j + 2z(z2 − y2)E
′

0H(pol)′

i j + 2yx(z2 − 1)E0H(pol)′′

i j

]
dpdq

+

"
∆k

θkpq24π2 p2k2qz(z2 − 1)E
′′

0

[
(y2 − 1)(E

′

0 − E0)H(dir)′′
i j + (z2 − 1)E

′

0H(dir)′
i j

]
dpdq,

(B.104)

Pi j(k, t) =

"
∆k

θkpq16π2 p2k2q(yz + x)E
′′

0

[
E
′

0

(
y(z2 − y2)

(
6H(dir)′′

i j + H(pol)′′

i j
)
− (xz + y)H(pol)′′

i j

)
− y(z2 − x2)E0

(
6H(dir)′′

i j + H(pol)′′

i j
)]

dpdq,
(B.105)
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with E0 =
E(k,t)
4πk2 , E

′

0 =
E(p,t)
4πp2 , E

′′

0 =
E(q,t)
4πq2 , H()

i j = H()
i j(k, t), H()′

i j = H()
i j(p, t) and H()′′

i j = H()
i j(q, t), where H()

i j may

refer to either H(dir)
i j or H(pol)

i j . The expression of the ‘true’ transfer Si j(k, t) can be deduced from equations (B.85)
and (B.102)-(B.105).

B.2.5 Quadratic contributions

In this last section, the quadratic contributions from the tensors H(dir)
i j (k, t) and H(pol)

i j (k, t) are derived. They
should be needed only in the case of highly anisotropic turbulent flows and used in conjunction with a finer rep-
resentation than (B.78), involving higher order terms [162, 186]. Intermediate results concerning the integration
over the orientation of the plane of the triad for isotropic and directional contributions are:∫ 2π

0
H(dir)′′

i j H(dir)′

lm α
′′

i α
′′

jα
′

lα
′

mdλ = 2πH(dir)′′
i j H(dir)′

lm

{
αiα jαlαm

[
y2z2 −

1
2

y2(1 − z2) + 2yz(yz + x) −
1
2

z2(1 − y2) +
3
8

(1 − y2)(1 − z2)
]

−
1
2

yz(yz + x)
[
αiαmδ jl + αiαlδ jm + α jαmδil + α jαlδim

]
+

1
8

(1 − y2)(1 − z2)
[
δilδ jm − α jαmδil − αiαlδ jm + δimδl j − α jαlδim − αiαmδl j

]}
,

(B.106)

∫ 2π

0
H(pol)′′

i j H(dir)′

lm R
{
W
′′∗
i W

′′∗
j

}
α
′

lα
′

mdλ = 2πH(pol)′′

i j H(dir)′

lm

{
αiα jαlαm

[
z2(1 − y2) −

1
2

(1 − y2)(1 − z2) − 2yz(yz + x) −
1
2

z2y2 +
3
8

y2(1 − z2) +
1
2

z2 −
1
8

(1 − z2)
]

+
1
2

yz(yz + x)
[
α jαlδim + α jαmδil + αiαlδ jm + αiαmδ jl

]
+

1
8

(1 − z2)(1 + y2)
[
δilδ jm − δilα jαm − δ jmαiαl + δimδl j − δimα jαl − δl jαiαm

]}
,

(B.107)

∫ 2π

0
H(pol)′′

i j H(pol)′

lm R
{
W
′′∗
i W

′′∗
j

}
R

{
W
′∗
l W

′∗
m

}
dλ = 2πH(pol)′′

i j H(pol)′

lm

{
αiα jαlαm

[
2(1 − z2)(1 − y2) + 2yz(yz + x) +

3
8

(y2z2 + 1) −
1
8

(y2 + z2)
]

−
1
2

yz(yz + x)
[
α jαlδim + α jαmδil + αiαlδ jm + αiαmδ jl

]
+

1
8

(y2z2 + 1 + y2 + z2)
[
δilδ jm − δilα jαm − δ jmαiαl + δimδl j − δimα jαl − δl jαiαm

]}
,

(B.108)

∫ 2π

0
H(pol)′′

i j H(pol)′

lm I
{
W
′′∗
i W

′′∗
j

}
I

{
W
′∗
l W

′∗
m

}
dλ = 2πH(pol)′′

i j H(pol)′

lm

{
αiα jαlαm

[
2(yz + x) +

1
2

yz
]

−
1
2

(yz + x)
[
α jαlδim + α jαmδil + αiαlδ jm + αiαmδ jl

]
+

1
2

yz
[
δilδ jm − δilα jαm − δ jmαiαl + δimδl j − δimα jαl − δl jαiαm

]}
,

(B.109)
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while the polarization contributions can be derived from:∫ 2π

0
e−2iλH(dir)′′

i j H(dir)′

lm α
′′

i α
′′

jα
′

lα
′

mdλ = 2πH(dir)′′
i j H(dir)′

lm

{
1
4

y2(1 − z2)αiα jN∗l N∗m +
1
4

z2(1 − y2)αlαmN∗i N∗j −
1
8

(1 − y2)(1 − z2)
[
N∗i N∗jαlαm + N∗l N∗mαiα j

]
−

1
4

yz(yz + x)
[
αiαmN∗j N∗l + αiαlN∗j N∗m + α jαmN∗i N∗l + α jαlN∗i N∗m

]}
,

(B.110)

∫ 2π

0
e−2iλH(pol)′′

i j H(dir)′

lm R
{
W
′′∗
i W

′′∗
j

}
α
′

lα
′

mdλ = 2πH(pol)′′

i j H(dir)′

lm

{
1
4

(1 − y2)(1 − z2)αiα jN∗l N∗m +
1
4

z2(y2 + 1)αmαlN∗i N∗j

+
1
4

yz(yz + x)
[
α jαlN∗i N∗m + α jαmN∗i N∗l + αiαlN∗j N∗m + αiαmN∗j N∗l

]
−

1
8

y2(1 − z2)
[
αlαmN∗i N∗j + αiα jN∗l N∗m

]
+

1
8

(1 − z2)
[
αiα jN∗l N∗m − αlαmN∗i N∗j

]}
,

(B.111)

∫ 2π

0
e−2iλH(pol)′′

i j H(pol)′

lm R
{
W
′′∗
i W

′′∗
j

}
R

{
W
′∗
l W

′∗
m

}
dλ = 2πH(pol)′′

i j H(pol)′

lm

{
1
4

(z2 + 1)(1 − y2)αiα jN∗l N∗m +
1
4

(y2 + 1)(1 − z2)αlαmN∗i N∗j

−
1
4

yz(yz + x)
[
α jαlN∗i N∗m + α jαmN∗i N∗l + αiαlN∗j N∗m + αiαmN∗j N∗l

]
−

1
8

(y2z2 − 1)
[
αlαmN∗i N∗j + αiα jN∗l N∗m

]
+

1
8

(z2 − y2)
[
αiα jN∗l N∗m − αlαmN∗i N∗j

]}
,

(B.112)

∫ 2π

0
e−2iλH(pol)′′

i j H(pol)′

lm I
{
W
′′∗
i W

′′∗
j

}
I

{
W
′∗
l W

′∗
m

}
dλ = 2πH(pol)′′

i j H(pol)′

lm

{
1
4

(yz + x)
[
α jαmN∗i N∗l + αlα jN∗i N∗m + αiαmN∗j N∗l + αiαlN∗j N∗m

]}
,

(B.113)

∫ 2π

0
e−2iλiH(dir)′′

i j H(pol)′

lm α
′′

i α
′′

jI
{
W
′∗
l W

′∗
m

}
dλ = 2πH(dir)′′

i j H(pol)′

lm

{
−

1
2

y2zαiα jN∗l N∗m +
1
4

z(1 − y2)αiα jN∗l N∗m

−
1
4

y(yz + x)
[
αiαmN∗j N∗l + αiαlN∗j N∗m + α jαmN∗i N∗l + α jαlN∗i N∗m

]}
,

(B.114)

∫ 2π

0
e−2iλiH(pol)′′

i j H(pol)′

lm R
{
W
′′∗
i W

′′∗
j

}
I

{
W
′∗
l W

′∗
m

}
dλ = 2πH(pol)′′

i j H(pol)′

lm

{
−

1
2

z(1 − y2)αiα jN∗l N∗m +
1
4

z(y2 − 1)αiα jN∗l N∗m

+
1
4

y(yz + x)
[
αiαmN∗l N∗j + αiαlN∗j N∗m + α jαmN∗i N∗l + α jαlN∗i N∗m

]}
.

(B.115)

Spherical integration is performed relying on the following relations:"
S k

H(dir)′′
i j H(dir)′

lm δilδ jmPrsd2 k =
8πk2

3
H(dir)′′

lm H(dir)′

lm δrs, (B.116)

"
S k

H(dir)′′
i j H(dir)′

lm αiαmδ jlPrsd2 k =
4πk2

15

[
4H(dir)′′

lm H(dir)′

lm δrs − H(dir)′′

sl H(dir)′

lr − H(dir)′′

rl H(dir)′

ls

]
, (B.117)"

S k

H(dir)′′
i j H(dir)′

lm αiα jαlαmPrsd2 k =
16πk2

105

[
3H(dir)′′

lm H(dir)′

lm δrs − H(dir)′′

sl H(dir)′

lr − H(dir)′′

rl H(dir)′

ls

]
, (B.118)
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"
S k

H(dir)′′
i j H(dir)′

lm N∗i N∗jαlαmNrNsd2 k = −
32πk2

35

[
H(dir)′′

rl H(dir)′

ls + H(dir)′′

sl H(dir)′

lr −
2
3

H(dir)′′

lm H(dir)′

lm δrs
]
, (B.119)"

S k

H(dir)′′
i j H(dir)′

lm αiαmN∗j N∗l NrNsd2 k =
24πk2

35

[
H(dir)′′

rl H(dir)′

ls + H(dir)′′

sl H(dir)′

lr −
2
3

H(dir)′′

lm H(dir)′

lm δrs
]
. (B.120)

In the end, if quadratic contributions are taken into account, the system (B.82)-(B.84) may be rewritten as(
∂

∂t
+ 2νk2

)
E(k, t) = SL(k, t) + T (k, t) + Q(k, t), (B.121)

(
∂

∂t
+ 2νk2

)
E(k, t)H(dir)

i j (k, t) = S
L(dir)
i j (k, t) + S

NL(dir)
i j (k, t) + Q(dir)

i j (k, t), (B.122)(
∂

∂t
+ 2νk2

)
E(k, t)H(pol)

i j (k, t) = S
L(pol)
i j (k, t) + S

NL(pol)
i j (k, t) + Q(pol)

i j (k, t), (B.123)

where SL(k, t), SL(dir)
i j (k, t), SL(pol)

i j (k, t), T (k, t), SNL(dir)
i j (k, t) and SNL(pol)

i j (k, t) are given in (B.93)-(B.95) and

(B.102)-(B.104) respectively, and the quadratic contributions Q(k, t), Q(dir)
i j (k, t) and Q(pol)

i j (k, t) are defined as:

Q(k, t) =

"
∆k

θkpq20π2k2 p2qE
′′

0

{
12(xy + z3)H(dir)′′

lm

[
E
′

0H(dir)′

lm (3x2 − 1) − E0H(dir)
lm (3y2 − 1)

]
− 6(xy + z3)H(pol)′′

lm

[
E
′

0H(dir)′

lm (1 − x2) − E0H(dir)
lm (1 − y2)

]
+ 6z(1 − z2)H(dir)′′

lm

[
E
′

0H(pol)′

lm (1 − x2) − E0H(pol)
lm (1 − y2)

]
− z(1 − z2)H(pol)′′

lm

[
E
′

0H(pol)′

lm (1 + x2) − E0H(pol)
lm (1 + y2)

]
+ 2xy(1 − z2)H(pol)′′

lm

[
E
′

0H(pol)′

lm − E0H(pol)
lm

]}
dpdq,

(B.124)

Q(dir)
i j (k, t) =

"
∆k

θkpq
20
7
π2k2 p2qE

′′

0

{
12(xy + z3)

[
E
′

0

{
H(dir)′′ ,H(dir)′

}
i j

(3xyz + 1) − E0
{
H(dir)′′ ,H(dir)

}
i j

(1 − 3y2)
]

− 6(xy + z3)
[
E
′

0

{
H(pol)′′ ,H(dir)′

}
i j

(1 − 2z2 − xyz) − E0
{
H(pol)′′ ,H(dir)

}
i j

(y2 − 1)
]

+ 6z(1 − z2)
[
E
′

0

{
H(dir)′′ ,H(pol)′

}
i j

(1 − 2y2 − xyz) − E0
{
H(dir)′′ ,H(pol)

}
i j

(1 − y2)
]

− z(1 − z2)
[
E
′

0

{
H(pol)′′ ,H(pol)′

}
i j

(1 − 2x2 − 3xyz) − E0
{
H(pol)′′ ,H(pol)

}
i j

(1 + y2)
]

− y(1 − z2)
[
E
′

0

{
H(pol)′′ ,H(pol)′

}
i j

(x + 3yz) + E0
{
H(pol)′′ ,H(pol)

}
i j

2x
]}

dpdq,

(B.125)

Q(pol)
i j (k, t) =

"
∆k

θkpq
60
7
π2k2 p2qE

′′

0

{
− 2(xy + z3)

[
E
′

0

{
H(dir)′′ ,H(pol)′

}
i j

(3xyz + 2z2 − 1) − E0
{
H(dir)′′ ,H(pol)

}
i j

(2 − 6y2)
]

− (xy + z3)
[
E
′

0

{
H(pol)′′ ,H(pol)′

}
i j

(1 + xyz) − E0
{
H(pol)′′ ,H(pol)

}
i j

(2 − 2y2)
]

− 12z(1 − z2)
[
E
′

0

{
H(dir)′′ ,H(dir)′

}
i j

(xyz + 2x2 − 1) − E0
{
H(dir)′′ ,H(dir)

}
i j

(y2 − 1)
]

+ 2z(1 − z2)
[
E
′

0

{
H(pol)′′ ,H(dir)′

}
i j

(3xyz + 2y2 − 1) + E0
{
H(pol)′′ ,H(dir)

}
i j

(1 + y2)
]

+ (y2 − z2)
[
E
′

0

{
H(pol)′′ ,H(pol)′

}
i j

(z + yx) + E
′

0

{
H(dir)′′ ,H(pol)′

}
i j

(6yx + 2z)
]

+ y(1 − z2)
[
E
′

0

{
H(pol)′′ ,H(pol)′

}
i j

(yz + x) − E0
{
H(pol)′′ ,H(dir)

}
i j

4x
]}

dpdq,

(B.126)
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with the notation {
H(dir)′′ ,H(pol)′

}
i j

= H(dir)′′

il H(pol)′

l j + H(dir)′′

jl H(pol)′

li −
2
3

H(dir)′′

lm H(pol)′

lm δi j. (B.127)



Appendix C

A Navier-Stokes solver for compressible flows
and its adjoint code

In this appendix, the Navier-Stokes solver used in chapters 5 and 6 is detailed, along with the methodology to
derive the corresponding adjoint code.

C.1 A Navier-Stokes solver for compressible flows

C.1.1 Finite volume formulation

The integral form over a bounded domain of interest Ω of the two-dimensional unsteady compressible Navier-
Stokes equations for perfect gas is given by

∂

∂t

∫
Ω

QdV +

∫
∂Ω

(F(Q) −G(Q)) · ndS = 0, Q = (ρ ρu ρv E)T , (C.1a)

F(Q) =


ρu ρv

ρu2 + p ρuv
ρuv ρv2 + p

u(E + p) v(E + p)

 , G(Q) =


0 0
τxx τxy

τxy τyy

uτxx + vτxy − qx vτyy + uτxy − qy

 , (C.1b)

τxx = µ

(
2
∂u
∂x
−

2
3

(
∂u
∂x

+
∂v
∂y

)
)
, τyy = µ

(
2
∂v
∂y
−

2
3

(
∂u
∂x

+
∂v
∂y

)
)
, τxy = µ(

∂u
∂y

+
∂v
∂x

), (C.1c)

qx = −κ
∂T
∂x
, qy = −κ

∂T
∂y
, p = ρrT = (γ − 1)ρe, E = ρ

(
e +

1
2

(u2 + v2)
)
, (C.1d)

where n, ρ, u, v, p, e, T , γ, µ, κ and r refer to the outer unit normal vector to the boundary ∂Ω, density, x-wise
and y-wise components of the velocity vector, pressure, specific internal energy, temperature, ratio of specific
heats, dynamic viscosity, thermal conductivity and a constant in the ideal gas law, respectively.

In the present solver, a cell-centered finite-volume formulation on an arbitrary unstructured triangular grid is
used. We consider a triangular cell Ωi whose boundary ∂Ωi is defined by a finite number N f = 3 of faces Γl

according to

∂Ωi =

N f⋃
l=1

Γl. (C.2)

194
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i
jQL QR

rL
rR

Figure C.1: Cell-centered linear reconstruction

For a second-order accurate spatial discretization, the line integral in (C.1a) is approximated according to∫
Γl

(F(Q) −G(Q)) · ndS ' |Γl| (F(Q(xl, t)) −G(Q(xl, t))) · nl, (C.3)

where xl is the midpoint of face Γl. Accordingly, the semi-discrete finite volume formulation of (C.1a) written
for cell Ωi is written as

dQ̄i

dt
= −

1
|Ωi|

N f∑
l=1

|Γl| (F(Q(xl, t)) −G(Q(xl, t))) · nl = Ri(Q̄), (C.4)

with
Q̄(t) =

1
|Ωi|

∫
Ωi

Q(x, t)dV. (C.5)

Hereafter the bar symbol will be dropped for the sake of readability. Thus, Q refers to the flow solution at all
control volumes while Qi corresponds to the solution at the ith centroid.

C.1.2 Estimation of convective fluxes

Convective fluxes in (C.4) are replaced according to

[F(Q(xl, t)) · nl]i j ' Fnum(QL,QR, ni j), (C.6)

where subscripts L and R indicate the states of the flow properties at the right- and left-sides of the cell face
between elements i and j as illustrated in figure C.1. The states QL and QR are estimated via

WL = Wi +
∂W
∂x

∣∣∣∣∣
i
· rL, (C.7a)

WR = W j +
∂W
∂x

∣∣∣∣∣
j
· rR, (C.7b)

Wi = (ρi ui vi pi)T , (C.7c)

where the gradient ∂W
∂x |i is evaluated through the procedure described in §C.1.3. Roe’s approximate Riemann

solver [185, 211] is used to compute Fnum, which is expressed as

Fnum(QL,QR, n) =
1
2

(
FL + FR − A

)
, (C.8a)

FL =


ρLûL

ρLûLuL + nx pL

ρLûLvL + ny pL

ûLρLHL

 , FR =


ρRûR

ρRûRuR + nx pR

ρRûRvR + ny pR

ûRρRHR

 , (C.8b)
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m

a

b
c

1 3

2

Figure C.2: Stencil used for the Jawahar-Kamath reconstruction [106].

A =


α̃1|λ̃1| + α̃2|λ̃2| + α̃3|λ̃3|

|λ̃1|
[
α̃1ū + ρ̃(∆u − nx∆û)

]
+ α̃2|λ̃2|(ū + ãnx) + α̃3|λ̃3|(ū − ãnx)

|λ̃1|
[
α̃1v̄ + ρ̃(∆v − ny∆û)

]
+ α̃2|λ̃2|(v̄ + ãny) + α̃3|λ̃3|(v̄ − ãny)

|λ̃1|
[
α̃1

1
2 Ṽ2 + ρ̃(ū∆u + v̄∆v − ũ∆û)

]
+ α̃2|λ̃2|(H̃ + ũã) + α̃3|λ̃3|(H̃ − ũã)

 , (C.8c)

V =

(
u
v

)
, V2 = u2 + v2, H =

E + p
ρ

, ∆u = uR − uL, ûR = uRnx + vRny, v̂R = −uRny + vRnx, (C.8d)

ρ̃ =
√
ρLρR, ũ =

√
ρLûL +

√
ρRûR

√
ρL +

√
ρR

, ṽ =

√
ρLv̂L +

√
ρRv̂R

√
ρL +

√
ρR

, H̃ =

√
ρLĤL +

√
ρRĤR

√
ρL +

√
ρR

, ã =

[
(γ − 1)(H̃ −

1
2

Ṽ2)
] 1

2

,

(C.8e)

ū =

√
ρLuL +

√
ρRuR

√
ρL +

√
ρR

, v̄ =

√
ρLvL +

√
ρRvR

√
ρL +

√
ρR

, (C.8f)

λ̃1 = ũ, λ̃2 = ũ + ã, λ̃3 = ũ − ã, (C.8g)

α̃1 = ∆ρ −
∆p
ã2 , α̃2 =

1
2ã2

[
∆p + ρ̃ã∆û

]
, α̃3 =

1
2ã2

[
∆p − ρ̃ã∆û

]
. (C.8h)

C.1.3 Linear reconstruction and viscous fluxes

The high-resolution Jawahar-Kamath procedure [106] is used to compute the gradient ∂W
∂x |i in (C.7). A typical

stencil of this scheme is illustrated in figure (C.2). The gradient at the ith centroid is computed using the area-
weighted average of the corresponding face gradients

∂W
∂x

∣∣∣∣∣
i
=

1
S 1a3c2b

[
(S 13m + S 1a3)

∂W
∂x

∣∣∣∣∣
Γ13

+ (S 3m2 + S 3c2)
∂W
∂x

∣∣∣∣∣
Γ32

+ (S 2m1 + S 2b1)
∂W
∂x

∣∣∣∣∣
Γ21

]
, (C.9a)

∂W
∂y

∣∣∣∣∣
i
=

1
S 1a3c2b

[
(S 13m + S 1a3)

∂W
∂y

∣∣∣∣∣
Γ13

+ (S 3m2 + S 3c2)
∂W
∂y

∣∣∣∣∣
Γ32

+ (S 2m1 + S 2b1)
∂W
∂y

∣∣∣∣∣
Γ21

]
, (C.9b)

where the area of the polygon S 1a3c2b is computed into elementary triangles according to S 1a3c2b = S 1a3 + S 3c2 +

S 2b1 + S 132. The face gradients are evaluated using an area-weighted average of gradients of a triangle formed
by the two vertices of the cell face and a cell centroid. For instance, the gradient of face Γ13, which involves
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triangles T13m and T1a3 is expressed as

∂W
∂x

∣∣∣∣∣
Γ13

=
1

2(S 13m + S 1a3)
[
(Wa −Wm)(y3 − y1) + (W1 −W3)(ya − ym)

]
, (C.10a)

∂W
∂y

∣∣∣∣∣
Γ13

= −
1

2(S 13m + S 1a3)
[(Wa −Wm)(x3 − x1) + (W1 −W3)(xa − xm)] . (C.10b)

These face gradients are also directly used to compute viscous fluxes in (C.4). Equation (C.10) requires the flow
solution at nodes, which is evaluated through pseudo Laplacian weighting [119, 184]. The value of W at node α
is obtained from the N centroids i sharing this node according to

Wα =

∑N
i=1 wiWi∑N

i=1 wi
, (C.11a)

wi = 1 + λx(xi − x j) + λy(yi − y j), λx =
IxyIy − IyyIx

IxxIyy − I2
xy
, λy =

IxyIx − IxxIy

IxxIyy − I2
xy
, (C.11b)

Ix =

N∑
i=1

(xi − x j), Iy =

N∑
i=1

(yi − y j), Ixx =

N∑
i=1

(xi − x j)2, Ixy =

N∑
i=1

(xi − x j)(yi − y j), Iyy =

N∑
i=1

(yi − y j)2.

(C.11c)

C.1.4 Time integration

Time integration of (C.4) is performed with a fully implicit second-order scheme that combines dual time step-
ping [105] and the LU-SGS method [145, 190]. First, discretization of (C.4) with physical time step ∆t gives

3Qn+1 − 4Qn + Qn−1

2∆t
= R(Qn+1). (C.12)

Equation (C.12) is solved through the introduction of a fictitious time τ

∂Qn

∂τ
= R̂n, R̂n = R(Qn) −

3Qn − 4Qn−1 + Qn−2

2∆t
, (C.13)

and a stationary solution of (C.13) is searched using variable local time steps [105], which are represented
through the scalar ∆τ in (C.14)-(C.15) for the sake of simplicity. Discretization of (C.13) leads to

∆Qn,m+1

∆τ
= R̂n,m+1 ' R̂n,m +

(
∂R̂
∂Q

)n,m

∆Qn,m+1, ∆Qn,m+1 = Qn,m+1 −Qn,m, (C.14)

which is rearranged into ((
1

∆τ
+

3
2∆t

)
I −

(
∂R
∂Q

)n,m)
∆Qn,m+1 = R̂n,m. (C.15)

Equation (C.15) is solved with the LU-SGS method [145, 190]

∆Q∗i = D−1
i

|Ωi|R̂n,m
i −

∑
j<i

1
2

(
∆F∗j − λ ji∆Q∗j

)
|Γi j|

 , (C.16a)

∆Qn,m+1
i = ∆Q∗i − D−1

i

∑
j>i

1
2

(
∆F j − λ ji∆Qn,m+1

j

)
|Γi j|, (C.16b)

Di =
|Ωi|

∆τi
+

3|Ωi|

2∆t
+

1
2

∑
j

λi j|Γi j|, (C.16c)
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∆F∗i =
(
F(Qn,m

i + ∆Q∗i ) − F(Qn,m
i )

)
· ni j, ∆Fi =

(
F(Qn,m

i + ∆Qn,m+1
i ) − F(Qn,m

i )
)
· ni j, (C.16d)

λi j = |Vn,m
i · ni j| + an,m

i + max
{

4
3ρn,m

i
,
γ

ρn,m
i

}
µ

Pr|Γi j|
C, (C.16e)

∆τi = CFL ·min

 Li

Vn,m
i + an,m

i + Ci
4
3

µ

ρn,m
i Pr

, 0.5∆t

 . (C.16f)

where C is an adjustable parameter, Ci and Li refer to a geometrical factor and a characteristic length of element
Ωi respectively, and the CFL number is chosen as 500. The sums in (C.16) are performed over the elements j
that are neighbours to element i. Pseudo-time integration is stopped after achieving a reduction by three orders
of magnitude in the norm of the residual R̂.

C.1.5 Boundary conditions

Boundary conditions are elaborated using a ghost cell framework [211]. Wall boundary conditions still use Roe’s
solver [185] for convectives fluxes, while far-field conditions rely on the approach developed in [195].

C.2 Implementation of the adjoint code

C.2.1 Backward temporal integration

The adjoint code is obtained according to the discrete adjoint approach [44, 165, 176], i.e. the adjoint code is
determined from the adjoint formulation of the fully discretized equations (C.16). The adjoint problem may be
derived from the following optimization problem. Given a cost function J(Q) that depends on the flow solution
Q at all centroids and physical times, the following Lagragian L is defined in order to perform its optimization

L =J(Q)

−

Nt−1∑
n=0

Nτ−1∑
m=0

NΩ∑
j=1

∆Q∗j − D−1
j

|Ω j|R̂n,m
j −

∑
k< j

1
2

(
∆F∗k − λk j∆Q∗k

)
|Γ jk|


 · ∆Q̃∗j

−

Nt−1∑
n=0

Nτ−1∑
m=0

NΩ∑
j=1

∆Qn,m+1
j − ∆Q∗j + D−1

j

∑
k> j

1
2

(
∆Fk − λk j∆Qn,m+1

k

)
|Γ jk|

 · ∆Q̃n,m+1
j

−

Nt−1∑
n=0

Nτ−1∑
m=0

NΩ∑
j=1

(
Qn,m+1

j − ∆Qn,m+1
j −Qn,m

j

)
· Q̃n,m+1

j ,

(C.17)

where ∆Q̃∗j and ∆Q̃n,m
j are referred to as adjoint increments in the following, and Q̃n,m

j is the adjoint flow solution.
These variables are introduced to take into account the dynamical constraint (C.16) on Q during the optimization
process. The passage to next physical time step is performed according to

Qn,Nτ = Qn+1 = Qn+1,0, (C.18)

where the number of dual iterations Nτ may possibly depend on n, even if this dependency is omitted in the
following for the sake of simplicity. In (C.17), Nt and NΩ refer to the number of physical time steps and the
number of elements of the mesh respectively. From the first-order optimality conditions

∂L

∂Qn,m
j

= 0,
∂L

∂∆Q∗j
= 0,

∂L

∂∆Qn,m+1
j

= 0, (C.19)
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the following backward integration scheme for the adjoint variable is deduced

∆Q̃n,m+1
i = Q̃n,m+1

i −
∑
j<i

1
2

D−1
j |Γ ji|

 ∂∆Fi

∂∆Qn,m+1
i

− λi jI
T

· ∆Q̃n,m+1
j , (C.20a)

∆Q̃∗i = ∆Q̃n,m+1
i −

∑
j>i

1
2

D−1
j |Γ ji|

(
∂∆F∗i
∂∆Q∗i

− λi jI
)T

· ∆Q̃∗j , (C.20b)

Q̃n,m
i = −

∂D−1
i

∂Qn,m
i

∑
j>i

1
2

(
∆F j − λ ji∆Qn,m+1

j

)
|Γi j|

 · ∆Q̃n,m+1
i −

∑
j<i

1
2

D−1
j |Γ ji|

( ∂∆Fi

∂Qn,m
i

)T

−
∂λi j

∂Qn,m
i

∆Qn,m+1
i

 · ∆Q̃n,m+1
j

−
∂D−1

i

∂Qn,m
i

∑
j<i

1
2

(
∆F∗j − λ ji∆Q∗j

)
|Γi j|

 · ∆Q̃∗i −
∑
j>i

1
2

D−1
j |Γ ji|

( ∂∆F∗i
∂Qn,m

i

)T

−
∂λi j

∂Qn,m
i

∆Q∗i

 · ∆Q̃∗j

+ Q̃n,m+1
i +

∂D−1
i

∂Qn,m
i
|Ωi|R̂n,m

i · ∆Q̃∗i −
3

2∆t
D−1

i |Ωi|∆Q̃∗i

+

NΩ∑
j=1

D−1
j |Ω j|

(
∂R j(Qn,m)
∂Qn,m

i

)T

· ∆Q̃∗j

+

 ∂J
∂Qn,m

i
+

2
∆t

Nτ−1∑
p=0

(
D−1

i |Ωi|∆Q̃∗i
)∣∣∣∣n+1,p

−
1

2∆t

Nτ−1∑
p=0

(
D−1

i |Ωi|∆Q̃∗i
)∣∣∣∣n+2,p

 δmNτ .

(C.20c)

The last contribution in (C.20c) allows to distinguish physical time steps. The majority of the gradients in (C.20)
are simply obtained by deriving expressions in (C.16), while the most demanding part is the computation of the

term
∑NΩ

j=1 D−1
j |Ω j|

(
∂R j(Qn,m)
∂Qn,m

i

)T
·∆Q̃∗j in (C.20c), i.e. the contribution from the numerical fluxes, which is detailed

in §C.2.2. Since (C.20) is evaluated backward in time, the flow solution Qn,m
i , the increments ∆Qn,m

i and ∆Q∗i and
the residuals R̂n,m

i have to be stored at all physical and dual times. In order to minimize memory requirements,
the flow solution is stored only at a few times during the integration of the direct problem (C.16), and the missing
snapshots are recomputed during the backward integration. Accordingly, after a forward integration of (C.16)
where the direct solution has been stored every ∆n physical steps, the following pseudo-algorithm is used to
perform the backward integration for the adjoint flow field Q̃n,m

i :

1. Set ns = Nt − ∆n.

2. From physical time n = ns to n = ns + ∆n, recompute direct solution at all dual times according to (C.16).
The quantities Qn,m

i , ∆Qn,m
i , ∆Q∗i and R̂n,m

i have to be stored at all times.

3. From physical time n = ns + ∆n to n = ns, perform the following backward integration over dual time m:

(a) compute adjoint residual ∆Q̃n,m+1
i with (C.20a);

(b) compute adjoint residual ∆Q̃∗i with (C.20b);

(c) evaluate the contribution
∑NΩ

j=1 D−1
j |Ω j|

(
∂R j(Qn,m)
∂Qn,m

i

)T
· ∆Q̃∗j as detailed in §C.2.2;

(d) compute adjoint flow field Q̃n,m
i with (C.20c).

4. Replace ns with ns − ∆n and return to step 2 until ns = 0.
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C.2.2 Contributions from the numerical fluxes

In this subsection, time indices are omitted for the sake of readability. We consider contributions from convective
fluxes in (C.20c), which are given by

R̃c
i =

NΩ∑
j=1

∂R̄c
j

∂Qi

T

· ∆Q̄∗j , R̄c
i = |Ωi|Rc

i , Rc
i = −

1
|Ωi|

N f∑
l=1

|Γl|Fnum(QL,QR, nl), ∆Q̄∗i = D−1
i ∆Q̃∗i . (C.21)

An efficient way to compute the residual R̃c
i may consist in transforming the sum over the elements into a sum

over the edges of the domain according to

R̃c
i = −

NΩ∑
j=1

N f∑
l=1

|Γl|

(
∂Fnum(QL,QR, nl)

∂Qi

)T

· ∆Q̄∗j = −

Ne∑
e=1

|Γe|

(
∂Fnum(QL(e),QR(e), ne)

∂Qi

)T

·
(
∆Q̄∗l(e) − ∆Q̄∗r(e)

)
,

(C.22)
with the convention that ne is oriented from left to right element, Ne refers to the total number of edges in the
mesh, l(e) and r(e) are the indices of the elements at the left and right sides of edge e, while L(e) and R(e) refer
to the left and right states that are used in the evaluation of the convective fluxes, as illustrated in figure C.1. The
gradient of the numerical fluxes is developed according to the chain rule

∂Fnum(QL(e),QR(e), ne)
∂Qi

=
∂Fnum

∂WL(e)

∂WL(e)

∂Wi

∂Wi

∂Qi
+
∂Fnum

∂WR(e)

∂WR(e)

∂Wi

∂Wi

∂Qi
. (C.23)

The gradients ∂Fnum

∂WL(e)
and ∂Fnum

∂WR(e)
are obtained by deriving (C.8) with respect to the states WL(e) and WR(e). Deriving

with respect to primitive variables appears easier than deriving with respect to conservative variables. An useful
result, among others, is

∂FL

∂WL
=


ûL ρLnx ρLny 0

ûLuL ρL(ûL + uLnx) ρLuLny nx

ûLvL ρLvLnx ρ(ûL + vLny) ny
1
2 ûLV2

L ρL(nxHL + ûLuL) ρ(nyHL + ûLvL ûL
γ
γ−1

 . (C.24)

This gradient is also used in (C.20). The other contributions in (C.8) are derived in a relatively similar and
straightforward way. Concerning the gradients ∂WL(e)

∂Wi
and ∂WR(e)

∂Wi
in (C.23), they correspond to the gradient of the

reconstruction procedure detailed in §C.1.3. Since both the Jawahar-Kamath and pseudo Laplacian weighting
methodologies correspond to linear operators, the states WL(e) and WR(e) can be expressed as

WL(e) = Wl(e) +

NΩ∑
k=1

LLR
l(e)kWk, (C.25a)

WR(e) = Wr(e) +

NΩ∑
k=1

LLR
r(e)kWk, (C.25b)

where the factors LLR
r(e)k are the components of the matrix associated to the linear reconstruction, which are only

expressed in terms of geometrical factors corresponding to the Jawahar-Kamath and pseudo Laplacian weighting
procedures. The gradients ∂WL(e)

∂Wi
and ∂WR(e)

∂Wi
are thus easily found as

∂WL(e)

∂Wi
=

(
δl(e)i + LLR

l(e)i

)
I, (C.26a)

∂WR(e)

∂Wi
=

(
δr(e)i + LLR

r(e)i

)
I. (C.26b)
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The gradient ∂Wi
∂Qi

in (C.23) simply corresponds to the gradient matrix associated to the change from conservative
variables to primitive variables, and is given by

∂Wi

∂Qi
=


1 0 0 0
−

ui
ρi

1
ρi

0 0
−

vi
ρi

0 1
ρi

0
γ−1

2 V2
i −(γ − 1)u −(γ − 1)v γ − 1

 . (C.27)

Given the above results, equation (C.22) may be rearranged into

R̃c
i = −

Ne∑
e=1

|Γe|

(
∂Wi

∂Qi

)T (δl(e)i + LLR
l(e)i

) ( ∂Fnum

∂WL(e)

)T

+
(
δr(e)i + LLR

r(e)i

) ( ∂Fnum

∂WR(e)

)T · (∆Q̄∗l(e) − ∆Q̄∗r(e)

)
. (C.28)

From a practical point of view, instead of performing a sum over all the edges of the domain for each element i
as suggested by (C.28), only one loop over the edges of the mesh is performed in order to compute the adjoint
residuals R̃c

i according to the following pseudo-algorithm:

From edge e = 1 to e = Ne:

1. Evaluate the gradients ∂Fnum

∂WL(e)
and ∂Fnum

∂WR(e)
, and compute ∆F̃L(e) = |Γe|

(
∂Fnum

∂WL(e)

)T
·
(
∆Q̄∗l(e) − ∆Q̄∗r(e)

)
and

∆F̃R(e) = |Γe|

(
∂Fnum

∂WR(e)

)T
·
(
∆Q̄∗l(e) − ∆Q̄∗r(e)

)
2. Add contributions −

(
∂Wl(e)
∂Ql(e)

)T
·∆F̃L(e) and −

(
∂Wr(e)
∂Qr(e)

)T
·∆F̃R(e) to adjoint residuals R̃c

l(e) and R̃c
r(e) respectively.

3. Identify elements i such that LLR
l(e)i , 0 or LLR

r(e)i , 0, and add contributions −LLR
l(e)i

(
∂Wi
∂Qi

)T
· ∆F̃L(e) and

−LLR
r(e)i

(
∂Wi
∂Qi

)T
· ∆F̃R(e) to the corresponding residuals R̃c

i .

Taking into account boundary conditions is performed by replacing (C.22) with

R̃c
i = −

∑
e|int

|Γe|

(
∂Fnum(QL(e),QR(e), ne)

∂Qi

)T

·
(
∆Q̄∗l(e) − ∆Q̄∗r(e)

)
−

∑
e|BC

|Γe|

(
∂Fnum,BC(Q, ne)

∂Qi

)T

· ∆Q̄∗l(e), (C.29)

where sums are restricted either to interior edges or to edges corresponding to boundary conditions. The con-
tributions of viscous fluxes are derived similarly to those of convectives fluxes, and the corresponding gradients
are easily obtained using the following change of variables

Vi =

ui

vi

Ti

 , ∂Vi

∂Wi
=


0 1 0 0
0 0 1 0
−

pi

rρ2
i

0 0 1
rρi

 . (C.30)

C.2.3 Gradients with respect to the control variables

The adjoint model discussed in this section allows to obtain the gradient of the Lagrangian L in (C.17) with
respect to the control variables of the considered optimization problem. In the context of data assimilation, we
are often interested in the gradient of L with respect to the initial condition Q0 = Q0,0, which is given by

∂L

∂Q0 = Q̃0. (C.31)
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In the case where the numerical fluxes depend on adjustable parameters βn, such as unstationary boundary
conditions, the gradient of L with respect to βn is given by

∂L

∂βn =

Nτ−1∑
m=0

NΩ∑
j=1

D−1
j |Ω j|

(
∂R j(Qn,m,βn)

∂βn

)T

· ∆Q̃∗j . (C.32)

The procedure to validate the adjoint code is identical to that described in appendix A, and the correct imple-
mentation of the adjoint model is illustrated in chapter 5.



Appendix D

Discrete formulation of the observation
optimization problem

The discrete version of the observation optimization procedure described in chapter 6 is given in this appendix,
along with an alternative formulation for the computation of the gradient in (6.13c). The fully discretized coun-
terpart of the dynamical model in (6.1) can be written as

qn+1 = mn(qn,βn) 0 6 n 6 N − 1, (D.1)

where mn is a nonlinear operator that maps the spatially discretized state vector qn from discrete time n to n + 1
and is parameterized by the vector βn. The time interval [0,T ] is discretized by N + 1 time steps. The discrete
Lagrangian used to evaluate the sensitivity of the observations, with associated operator h parameterized by λ,
is given by

L1 =
1
2

N∑
n=0

‖h(qn, λ)‖2 −
N−1∑
n=0

(
qn+1 − mn(qn,βn)

)T q̃n+1, (D.2)

where ‖·‖ and ·T denote the Euclidean norm and the transpose operator respectively. Similarly to the derivations in
§6.2.2, the following system of equations can be deduced to compute the first-order sensitivity of the observations

q̃N =

(
∂h
∂qN

(qN , λ)
)T

h(qN , λ), (D.3a)

q̃n =

(
∂mn

∂qn
(qn,βn)

)T

q̃n+1 +

(
∂h
∂qn

(qn, λ)
)T

h(qn, λ) 0 ≤ n ≤ N − 1, (D.3b)

∂L1

∂q0
= q̃0, (D.3c)

∂L1

∂βn
=

(
∂mn

∂βn
(qn,βn)

)T

q̃n+1 0 ≤ n ≤ N − 1. (D.3d)

The system (D.3) involves the transpose of gradient matrices associated to the model and observation operators.
The system of adjoint equations for the discrete version of the DA problem exposed in §6.2.4 is obtained by
replacing h(qn, λ) with (h(qn, λ) − yn) in (D.2) and (D.3), where yn is the observation of a reference state at
time n. As in §6.2.3, the observation optimization problem is formulated as the maximization of the norm of
the gradients (D.3c)-(D.3d) with respect to the vector λ that parameterizes the observation operator h. The

203
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expression of the discretized counterpart of the Lagrangian L2 in (6.11) is given by

L2 =
1
2
‖q̃0‖

2 +
1
2

N−1∑
n=0

∥∥∥∥∥∥∥
(
∂mn

∂βn
(qn,βn)

)T

q̃n+1

∥∥∥∥∥∥∥
2

−

N−1∑
n=0

q̃n −

(
∂mn

∂qn
(qn,βn)

)T

q̃n+1 − h̃n(λ)

T

rn − (q̃N − h̃N(λ))Ts

, (D.4a)

h̃n(λ) =

(
∂h
∂qn

(qn, λ)
)T

h(qn, λ) 0 ≤ n ≤ N, (D.4b)

while its gradient with respect to the parameters λ is obtained with

r0 = q̃0, (D.5a)

rn+1 =
∂mn

∂qn
(qn,βn)rn +

∂mn

∂βn
(qn,βn)

(
∂mn

∂βn
(qn,βn)

)T

q̃n+1 0 6 n 6 N − 1, (D.5b)

∂L2

∂λ
=

N∑
n=0

(
∂h̃n

∂λ
(λ)

)T

rn. (D.5c)

The systems of equations (D.3) and (D.5) are the discrete counterparts of (6.8) and (6.13) respectively. Equation
(D.5b) is evaluated forward and involves the tangent linear operator ∂mn

∂qn
, while equation (D.3b) is evaluated

backward and involves the adjoint of this operator. Accordingly, the computation of the adjoint variables q̃n in
(D.3) and rn in (D.5) needs to be performed in a sequential way, and the vector q̃n at all discrete times tn has
to be stored for the integration of (D.5b), as the direct solution qn at all discrete times has to be stored for the
computation of q̃n in (D.3). However, it appears from the inspection of (D.3) that the gradient of L2 with respect
to λ may also be obtained through the following system of equations

∂q̃N

∂λ
=
∂h̃N

∂λ
(λ), (D.6a)

∂q̃n

∂λ
=

(
∂mn

∂qn
(qn,βn)

)T ∂q̃n+1

∂λ
+
∂h̃n

∂λ
(λ) 0 ≤ n ≤ N − 1, (D.6b)

∂L2

∂λ
= q̃T

0
∂q̃0

∂λ
+

N−1∑
n=0

(∂mn

∂βn
(qn,βn)

)T

q̃n+1

T (
∂mn

∂βn
(qn,βn)

)T ∂q̃n+1

∂λ
. (D.6c)

From the computational point of view, solving (D.6b) may require more memory than solving (D.5b) since a
gradient matrix ∂q̃n

∂λ is propagated in time in the former case instead of a vector. On the other hand, since (D.6b) is
evaluated backward, the adjoint variable q̃n in (D.3) and the gradient in (D.6c) can be computed simultaneously,
which may save computational time, and avoids to store q̃n at all times. If dim(λ) < N + 1, which is the case
in the present study, the formulation (D.6) is therefore more economical in terms of memory requirements than
(D.5) in the end. The system of equations (D.6) will be used instead of (D.5) in the present work to solve the
observation optimization problem. Accordingly, computing gradients for the evaluation of the sensitivity of the
observations and for the observation optimization problem amounts to propogate backward in time the variables
q̃n and ∂q̃n

∂λ simultaneously with the adjoint operator
(
∂mn
∂qn

)T
and different forcing terms.



Appendix E

The c-APK method for uncertainty
quantification and sensitivity analysis

The anchored-ANOVA/POD/Kriging (c-APK) method for meta-modelling proposed in [148, 150] and used in
chapter 7 to determine appropriate sensor locations is summarized in this appendix. This approach is based on a
hybridization between the anchored-ANOVA representation and POD/Kriging methods along with the determi-
nation of efficient sampling and refinement strategies to limit computational cost.

E.1 The anchored-ANOVA decomposition

We consider a vectorial quantity of interest X(γ) that depends on the vector γ of dimension N whose components
are here considered as random variables with associated measure µ(γ). The analysis of variance (ANOVA) [193]
decomposition of X(γ) is defined as

X(γ) = X0 +
∑

i1

Xi1(γi1) +
∑

1≤i1<i2≤N

Xi1,i2(γi1 , γi2) + · · · + X1,2,··· ,N(γ1, γ2, · · · , γN), (E.1)

with
X0 =

∫
X(γ)dµ(γ), (E.2a)∫

Xi1,i2,··· ,is(γi1 , γi2 , · · · , γis)dµ(γir ) = 0 1 ≤ r ≤ s. (E.2b)

Equation (E.2) thus ensures the orthogonality of the decomposition, and total and partial variances of X(γ) are
obtained from the integral of the squared terms in (E.1)

σ2(X) =

∫
X2(γ)dµ(γ) − X2

0, (E.3a)

σ2(Xi1,i2,··· ,is) =

∫
X2

i1,i2,··· ,is
(γi1 , γi2 , · · · , γis)dµ(γi1 , γi2 , · · · , γiN ), (E.3b)

σ2(X) =
∑

i1

σ2(Xi1) +
∑

1≤i1<i2≤N

σ2(Xi1,i2) + · · · + σ2(X1,2,··· ,N), (E.3c)

where the ith component of the vector X2(γ) is given by (Xi(γ))2, with similar notations for σ2(X), X2
0 and the

contributions X2
i1,i2,··· ,is

(γi1 , γi2 , · · · , γis) and σ2(Xi1,i2,··· ,is). In practice, it may be reasonable to assume that the
low-order interactions between the components of the input vector γ have the main impact upon X(γ) [193, 229].
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Accordingly, (E.1) is truncated up to second order and is approximated by

X(γ) ' X0 +
∑

i1

Xi1(γi1) +
∑

1≤i1<i2≤N

Xi1,i2(γi1 , γi2). (E.4)

In order to further decrease computational complexity, and in particular to avoid the evaluation of multidimen-
sional integrals such as in (E.2), the measure µ(γ) is chosen as the Dirac measure located at a reference, or
anchor, point c [147, 229]

dµ(γ) = δ(γ − c)dγ. (E.5)

The anchor point may be chosen as the centroid of the uncertain space. Using (E.2) and (E.5) allows to estimate
recursively the terms in (E.4) according to

X0 = X(c1, c2, · · · , cN), (E.6a)

Xi1(γi1) = X(c1, c2, · · · , γi1 , · · · , cN) − X0, (E.6b)

Xi1,i2(γi1 , γi2) = X(c1, c2, · · · , i1, · · · , i2, · · · , cN) − X0 − Xi1(γi1) − Xi2(γi2). (E.6c)

The anchored-ANOVA representation truncated to second order thus allows to decompose the original N-dimensional
problem in mono- and bi-dimensional contributions that are evaluated by exploring hyper-lines and hyper-planes
only, which greatly facilitates the handling of high-dimensional uncertain spaces.

E.2 The POD/Kriging sub-meta-models

E.2.1 POD representation of the anchored-ANOVA decomposition terms

Each term of the decomposition (E.4) is interpolated relying on the proper orthogonal decomposition (POD)/Kriging
approach [30]. Considering the first-order term Xi1(γi1), its POD representation is given by

Xi1(γi1) = Xi1 +

NPOD∑
n=1

βn(γi1)ψ(n), (E.7)

where the vectors ψ(n) form the POD basis, and Xi1 is the mean value of Xi1(γi1), which should be zero according
to (E.2). The POD basis is obtained with the snapshot method [192] where the vectors ψ(n) are found as linear
combinations of Nen available samples of Xi1(γi1). These samples are stored in the matrix S defined as

S =
(
X
′

i1(γ(1)
i1

), X
′

i1(γ(2)
i1

), · · · , X
′

i1(γ(Nen)
i1

)
)
, X

′

i1(γ( j)
i1

) = Xi1(γ( j)
i1

) − Xi1 , Xi1 =
1

Nen

Nen∑
j=1

Xi1(γ( j)
i1

). (E.8)

The POD modes are found by maximizing the quantity 1
Nen

∑Nen
j=1

(
ψ(n) TX

′

i1(γ( j)
i1

)
)2

where ψ(n) is searched as

ψ(n) ∝
∑Nen

j=1 v(n)
j X

′

i1(γ( j)
i1

) with the constraint ‖ψ(n)‖2 = 1. This leads to solve the following eigenvalue problem
for the determination of the vectors v(n)

Cv(n) = λ(n)v(n), C =
1

Nen
STS, (E.9)

and the NPOD vectors ψ(n) are found as

ψ(n) =
1√

Nenλ(n)

Nen∑
j=1

v(n)
j X

′

i1(γ( j)
i1

), (E.10a)
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NPOD = min

k

∣∣∣∣∣∣∣
∑k

n=1 λ
(n)∑Nen

n=1 λ
(n)
> εPOD

 , (E.10b)

where both
(
ψ(1),ψ(2), · · · ,ψ(NPOD)

)
and

(
v(1), v(2), · · · , v(NPOD)

)
are sets of orthonormal vectors. The parameter

εPOD allows to adjust the smoothness and the quantity of information kept in the POD basis.

E.2.2 Kriging-based interpolation of the coefficients

If the coefficients βn(γi1) in the POD representation (E.7) are known for the samples and are given by

βn(γ( j)
i1

) =
√

Nenλ(n)v(n)
j , (E.11)

they are unknown at unsampled input parameters. Ordinary Kriging [108, 187] is used to obtain the coefficients
βn(γi1) through interpolation. In this framework, βn(γi1) is modeled as a mean value ρ plus a stochastic deviation
Z(γi1) whose statistics are given by

βn(γi1) = ρ + Z(γi1), (E.12a)

E
[
Z(γi1)

]
= 0, E

[
Z(γi1)2

]
= σ2, E

[
Z(x)Z(y)

]
= σ2C(x, y). (E.12b)

If the correlation function C(x, y) is assumed to be known, the values of the mean ρ and the variance σ2 are
obtained through the maximization of the likelihood of the samples

ρ =
1TR−1βs

1TR−11
, σ2 =

(
βs − 1ρ

)T R−1 (
βs − 1ρ

)
Nen

, (E.13a)

1 = (1, 1, · · · , 1)T , dim(1) = Nen, βs =
(
βn(γ(1)

i1
), βn(γ(2)

i1
), · · · , βn(γ(Nen)

i1
)
)T
, Rlm = C(γ(l)

i1
, γ(m)

i1
). (E.13b)

A linear predictor β̂n(γi1) of βn(γi1) as modeled in (E.12) is searched as

β̂n(γi1) = c(γi1)Tβs. (E.14)

The determination of the vector c(γi1) that minimizes the esperance E
[
(β̂n(γi1) − βn(γi1))2

]
with the constraint

E
[
(β̂n(γi1)

]
= E

[
(βn(γi1)

]
(unbiased estimator) leads to

β̂n(γi1) = ρ + r(γi1)TR−1 (
βs − 1ρ

)
, (E.15a)

E
[
(β̂n(γi1) − βn(γi1))2

]
= σ2

1 − r(γi1)TR−1r(γi1) +

(
r(γi1)TR−11 − 1

)2

1TR−11

 , (E.15b)

r(γi1) =
(
C(γi1 , γ

(1)
i1

),C(γi1 , γ
(2)
i1

), · · · ,C(γi1 , γ
(Nen)
i1

)
)T
. (E.15c)

E.3 Refinement and validation strategies

The convergence of the sub-meta-models is checked with the leave-one-out method, and a quad-tree-like re-
sampling strategy is used for refinement, similarly to [30]. Keeping in mind that the c-APK method is applied to
high-fidelity expensive simulations, in the case where X(γ) corresponds to a physical field discretized in space,
the convergence is only checked in regions of interest where partial and/or global variances are sufficiently high.
Besides, second-order terms are kept and refined only if the associated estimated partial variance is sufficiently
high, following [147, 229]. More details are found in [148, 150].
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[54] F. K. Chow, B. Kosović, and S Chan. Source Inversion for Contaminant Plume Dispersion in Urban
Environments Using Building-Resolving Simulations. Journal of Applied Meteorology and Climatology,
47:1553–1572, 2008.

[55] A. Cioaca and A. Sandu. An optimization framework to improve 4D-Var data assimilation system perfor-
mance. Journal of Computational Physics, 275:377–389, 2014.

[56] T. T. Clark and C. Zemach. Symmetries and the approach to statistical equilibrium in isotropic turbulence.
Physics of Fluids, 10:2846 – 2858, 1998.

[57] A. M. Clayton, A. C. Lorenc, and D. M. Barker. Operational implementation of a hybrid ensemble/4D-Var
global data assimilation system at the Met Office. Quarterly Journal of the Royal Meteorological Society,
139:1445–1461, 2013.

[58] K. Cohen, S. Siegel, and T. McLaughlin. A heuristic approach to effective sensor placement for modeling
of a cylinder wake. Computers & Fluids, 35:103–120, 2006.

[59] S. E. Cohn. An introduction to estimation theory. Journal of the Meteorological Society of Japan, 75:
257–288, 1997.

[60] C. H. Colburn, J. B. Cessna, and T. R. Bewley. State estimation in wall-bounded flow systems. Part 3. The
ensemble Kalman filter. Journal of Fluid Mechanics, 682:289–303, 2011.
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