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Chapter 1
Introduction

In 1851, Jean Bernard Léon Foucault suspended a pendulum1 in the Salle Cassini
(also known as Meridian room), located in the historical building of Observatoire
de Paris, to demonstrate Earth’s rotation. Foucault later coined the term gyro-
scope to describe an apparatus consisting of a rotor mounted in a gimbal frame
(see Fig.1.1), which he used to provide a simpler demonstration of the Earth’s ro-
tation. In the modern usage, a gyroscope is a device that measures a rotation or

Figure 1.1 A model of the gyroscope built by Foucault in 1852 (Cred-
its: Musée des Arts et Métiers, Paris).

rotation rate with respect to an inertial frame. Over the past century, gyroscopes
have evolved considerably, ever since they were first used as navigational aids.
Although, inertial navigation [1] is the main impetus behind the development
of gyroscopes, rotation rate sensors also have a place in geophysical studies and
fundamental tests of physics. In geophysical measurements, linear displacements
of Earth’s surface are measured through seismometers. However, the motion of
the Earth due to seismic activity can be fully described only by measuring the

1The so called Foucault’s pendulum.
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2 Chapter 1. Introduction

local rotation using a gyroscope [2]. As far as fundamental tests of physics are
concerned, Einstein’s General Relativity (GR) predicts that a gyroscope orbiting
a massive rotating body (for e.g. Earth) undergoes precession with respect to
an inertial frame (for e.g. a distant star) due to: Geodetic and frame-dragging
effects [3]. These effects were recently verified by the Gravity Probe B (GP-B)
satellite launched by NASA. The results of the gyroscopes present in the satellite,
confirm the predictions of GR up to few percent [4].

Figure 1.2 An illustration of the precession of the gyroscope used in
GP-B experiment. The precession due to geodetic and frame-dragging
effects are orthogonal to each other. Drift rates expressed in units of
milliarcseconds/year are measured with respect to the star IM Pegasi
[4].

Today, a wide range of gyroscopes are available at various levels of sophisti-
cation and technical specifications. Gyroscopes can be broadly put into one of
the following categories:

Mechanical gyroscopes

Mechanical gyroscopes work on the same principle as Foucault’s gyroscope and
measure rotations. The frictionless gimbal frame holds the rotor and guards it
from any external torque, hence the orientation of the rotor remains fixed with
respect to an inertial frame due to the law of conservation of angular momentum.
If the platform on which the device is mounted rotates, by measuring the angle
between the gimbal frame and the axis of the rotor, we can measure the rotation.
Since, these gyroscopes use rotating objects, friction between the gimbal frame
and the rotor is unavoidable and causes wear and tear. Moreover, friction and
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temperature changes lead to a drift in the measured angle.

MEMS gyroscopes

Micro-electro-mechanical-system (MEMS) based gyroscopes make use of the Cori-
olis force to measure rotations. In these devices, an object of mass m, moving in
a rotating frame with a velocity v experiences a force

F = −2mΩ× v , (1.0.1)

where Ω is the rotation rate of the frame with respect to an inertial frame. If the
mass oscillates in a plane, the Coriolis force excites the motion in the orthogo-
nal plane. By measuring the amplitude of the excited motion, we can infer the
rotation rate Ω. MEMS based gyroscopes consist of a micro-machined vibrating
structure. Thanks to the advances in silicon fabrication technology, MEMS gyro-
scopes are inexpensive and compact. They are widely used in applications where
precision is not needed (e.g. smart phones). The state-of-the-art commercially
available MEMS gyroscopes have a sensitivity of about 3×10−5 rad/s/

√
Hz [5].

Interferometric gyroscopes

Gyroscopes based on the interference phenomena work on the Sagnac effect

Figure 1.3 Sagnac effect: light is launched into an optical fibre with
a beam splitter located at point A. Due to rotation, the counter prop-
agating photons reach the beam splitter at point B.

[6]. To understand this effect, let us consider a loop of fibre with radius r as il-
lustrated in Fig.1.3. Suppose that a light beam is launched into the fibre in both,
clockwise and counter-clockwise directions using a beam splitter located at point
A. If the loop rotates with an angular velocity Ω in the counter-clockwise direc-
tion, the light travelling in both directions reach the beam splitter at B (which
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is nothing but point A after rotation) with a relative phase shift. This phase
shift arises from the different times taken by the clockwise and counter-clockwise
light beams to arrive at point B

φlight = 2πω∆t = 2πω[ 2πr
c− rΩ −

2πr
c+ rΩ] (1.0.2)

≈ 8πAΩ
λc

,

where A = πr2 is the enclosed interferometer area. As we can see from Eq.1.0.2,
the acquired phase shift φlight carries a signature of the rotation rate. A proper
explanation of the Sagnac phase shift using electrodynamics can be found in
the works of Arditty and Lefèvre [7, 8]. Although the above phase shift is only
valid in vacuum, it can be shown that the Sagnac phase shift is independent
of the medium in which the light propagates [7]. Note that the Sagnac phase
shift increases linearly with the number of loops and it can be increased by
winding a large number of loops. Fibre optic gyroscopes benefit from this large
scale factor, which enormously increases the sensitivity of the device. For in-
stance, the fibre optic gyroscope developed by iXBlue achieved a sensitivity of
7× 10−11 rad/s/

√
Hz using a three kilometre long optical fibre [9].

Another closely related gyroscope using light is the ring laser gyroscope, where
the counterpropagating modes of a laser in a ring cavity are frequency shifted
due to rotation. Here, the angular velocity is related to the frequency difference
δν of the counter propagating modes through the relation [10]

δν = 4AΩ
nλ0L

, (1.0.3)

where L is the perimeter of the ring laser cavity, λ0 is the average of the wave-
lengths of the counter propagating modes and n is the refractive index of the
optical medium that fills the cavity2. The well-known realisation of this kind of
gyroscopes is the giant ring laser gyroscope in Germany, aimed at geophysical
studies. It reported a sensitivity of 6× 10−13 rad/s/

√
Hz with an enclosed area

of 16 m2 [11].
Instead of photons, if we consider the above situation with massive particles

like atoms, the resulting phase shift is given by [12]

φatom = 8πmAΩ
h

, (1.0.4)

where m is the mass of the atom. Note that we can obtain φatom from φlight by
replacing λ with the De Broglie’s wavelength of the atom and c with the velocity

2Contrary to the fibre optic gyroscope where the phase shift is independent of the refractive
index of the medium.
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of atom. If we compare the phase shifts of the interferometers with light and
atoms, for the same enclosed area, we get3

φatom
φlight

= mλ

hc
= mc2

~ω
∼ 1011 . (1.0.5)

This huge ratio highlights the advantage of atom based gyroscopes over optical
gyroscopes and it is the driving force behind the development of high precision
atom gyroscopes4.

Atom gyroscopes
In the 1980’s, after the demonstration of the Sagnac effect with neutrons [13] and
electrons [14], the experiment of Reihl et al. [15] using calcium atomic beams
marked the beginning of atom gyroscopes. In 1997, two experiments using inde-
pendent techniques, reported the measurement of rotation rates, of the order of
ΩEarth ∼ 73 µrad/s. Using nano fabricated gratings to diffract atoms, Lenef et al.
[16] achieved a short term sensitivity of 3×10−6 rad/s/

√
Hz, whereas Gustavson

et al. [17] used two photon Raman transitions to coherently split and recombine
atoms (the equivalent of beam splitter) and achieved a short term sensitivity of
2 × 10−8 rad/s/

√
Hz. These experiments suggest that Raman transitions of-

fer better control of atoms (hence a better sensitivity) compared to diffraction
gratings which require a careful handling. For instance, it is difficult to isolate
the gratings from the vibrations of the vacuum chamber. The performance of
atomic beam gyroscopes was greatly improved with time, owing to the availabil-
ity of large atom flux, reaching a short term sensitivity of 6× 10−10 rad/s/

√
Hz

[18].
After achieving results comparable to the state-of-the-art fibre optic gyro-

scopes, the emphasis shifted towards building atom gyroscopes for practical ap-
plications. It became clear that the long term stability of atomic beam gyro-
scopes, which is important for metrological needs, was limited due to the lack
of precise control of the velocity of the atomic beams. Using colder atoms (few
micro kelvin) is a way to overcome this limitation. In 2000, a new generation
atomic gyroscope experiment, using cold atoms, started at SYRTE. This experi-
ment demonstrated the first cold atom gyroscope capable of measuring rotations
and accelerations along the three axes (see Fig.1.4) [19]. The experiment used
two counter propagating clouds of Cs atoms with the Raman beams along the
three orthogonal directions. The phase shift of the interferometer depends on
the acceleration a and rotation rate Ω through the relation

Φ = keff · [a − 2Ω× v]T 2 , (1.0.6)
3Considering an alkali atom and a visible photon.
4However, as stated earlier, the scale factor of the fibre optic gyroscopes can be increased

by winding more loops and comparable precision can be achieved.
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Figure 1.4 Six axis cold atom interferometer developed at SYRTE in
2006. The central image shows the parabolic trajectory of atoms. The
images (a)-(d) show the configuration of Raman lasers that make the
interferometer sensitive to accelerations and rotations along different
directions [19].

where keff is the difference between the wavevectors of the Raman beams that
split, reflect and recombine the atom clouds. Combining the results of the two
interferometers allows to distinguish the effect of accelerations from rotations.
In fact, as demonstrated by Dickerson et al. [20] two interferometers are not
strictly needed to separate the contribution of accelerations from rotation. The
presence of the velocity dependent term in the phase shift (see Eq.1.0.6) can be
exploited and the velocity dependence can be converted into a position depen-
dence by imaging the atom cloud after some free expansion. The phase shift due
to rotation can then be seen as a spatial modulation in the atom density [21].

A problem in cold atom based gyroscopes is the preparation time or dead
time (i.e. the time needed for atom trapping and cooling) between two successive
measurements, which limits the stability of the device. However, this limitation
can be overcome. For instance, a four pulse configuration was recently used
to demonstrate a joint operation of the interferometer, by sharing the Raman
pulses between two successive measurements (see Fig.1.5). Such a configuration
reduces the dead time [23] and this experiment eventually achieved a long term
stability of 1 nrad/s [22], with an enclosed area of 11 cm2 , to date this is the
largest realised area for a cold atom gyroscope. The main limitations of the
present day cold atom gyroscopes are: limited interrogation time (which limits
the sensitivity) and the distortion of wavefronts of the Raman beams (which
affects the stability of the sensor) [24].

Instead of freely falling atoms, which is the case with the above mentioned
cold atom gyroscopes, we can guide the atoms by holding them against gravity.
Here, the interrogation time will no longer be a limit. Moreover, by controlling
the position of the atoms precisely, the effect of wavefront distortion can be
minimized.
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Figure 1.5 A schematic of the joint interrogation sequence using
four pulses that removes the dead time of the interferometer [22].
The last π/2 pulse of a sequence is shared with the first π/2 pulse
of the successive sequence, enabling a continuous operation of the
interferometer.

The key elements needed for a guided atom interferometer are: coherent
waveguide and beam splitters. Waveguides for atoms can be created by magnetic
[25, 26, 27, 28, 29, 30] or optical fields [31, 32, 33]. Interferometers based on
guided atoms have already been demonstrated [34, 35, 36], as well as coherent
splitting [37]. In table 1.1, a compilation of the related investigations on guided
atom interferometers is presented.

Radius Method Support Temperature Status Reference
Strathclyde 4.8 cm magnetic coils BEC demonstrated [25]
Strathclyde ∼ 5 mm induction coils 40 µK demonstrated [38]

Berkeley 1.25 mm magnetic coils 22 nK demonstrated [26]
Crete 0.4-2.6 mm rf dressing coils 2 µK demonstrated [27]

Oxford 0-85 µm rf dressing coils ∼80 nK demonstrated [28]
Georgia Tech 1 cm magnetic coils 3.4 µK demonstrated [29]
US Airforce - magnetic chip - proposed [30]
Los Alamos 10&25 µm optical AOD BEC demonstrated [32]
Singapore ∼550 µm magnetic SC chip - proposed [39]

St. Andrews 10 µm optical LG beam BEC proposed [31]
Queensland 150 µm optical AOD BEC demonstrated [33]

Table 1.1 A list of proposed or demonstrated ring guides around the
world. Abbreviations of the terms used in the table: SC= Supercon-
ducting, AOD=Acousto optic deflector, LG= Laguerre-Gauss.

GyrAChip project
With a goal to develop a guided Sagnac interferometer using ultra cold atoms,
the SYRTE started the gyroscope on an atom chip (GyrAChip) project in 2011.
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Figure 1.6 A configuration of wires to generate a circular waveguide
using microfabricated wires on an atom chip (credits: Wenhua Yan).

The long term goal of the project is to establish a roadmap for the realisation
of compact and mobile inertial sensors with guided cold atoms on a chip. The
project envisages to use a magnetic waveguide (see Fig.1.6) to guide 87Rb atoms
in a circular path (analogous to the fibre optic gyroscope), which enables the mea-
surement of angular velocities exploiting the Sagnac effect. Circular waveguides
for atoms were demonstrated or proposed using different techniques (Tab.1.6).

In order to address the portability and low power consumption requirements
which are essential for practical applications, the experiment is based on an atom
chip [40, 41]. The guide is generated from the magnetic fields of micrometer sized
wires which help to create a potential with strong confinement. As stated earlier,
the interest behind guiding atoms lies in the fact that it permits relatively long
interrogation times (> 1 s). The quantum projection noise limited expected
sensitivity of the device in terms of interrogation time is given by [42]

δΩ = hπ2

C
√

2Nmv2
r(2T )2 sin(θlat)

, (1.0.7)

where C is the contrast of the interferometer, N the atom number, vr the launch
velocity, 2T the interrogation time and θlat the latitude of the place where the
device is located5. To have an order of magnitude of the expected sensitivity,
let us consider a guide of radius 500 µm, with 104 atoms, launched at a velocity
of 2vr = 11 mm/s. Under these conditions, we get a short term sensitivity of
3.4×10−8 rad/s/

√
Hz for an interrogation time of 3 seconds (or 12 turns around

the guide). Alternatively, by using large momentum transfer techniques [43], the
atoms can be launched at higher velocities and similar sensitivity can be obtained
by reducing the duration of the interferometer (interrogation time).

The goal of this thesis is to study the propagation of atoms in a magnetic
waveguide. The principle of the GyrAChip waveguide, based on the current
modulation technique [44] is discussed in Chapter 3. An important emphasis is
given to the understanding of the effects of the guiding potential on the Sagnac

5Assuming that the experiment is measuring Earth’s rotation rate.
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phase and the contrast of the interferometer. A model for a completely trapped
Sagnac interferometer, considering the trapping potential was recently discussed
by Stevenson et al. [45]. To our knowledge, for a guided Sagnac interferometer
(where the azimuthal direction is free) a similar study does not exist in the liter-
ature. We quantify the systematic effects arising from the guiding potential with
a simple model both for an ultra cold gas and a thermal gas. On the experimen-
tal side, the thesis describes the realisation and characterisation of a cold atom
source and the atom detection systems. This thesis is organised as follows:

Chapter 2: Existing and new configurations of magnetic waveguides

Microfabricated atomic waveguide is a very key aspect of this experiment. Physi-
cal principles of the magnetic waveguides are discussed in this chapter. A review
of the existing waveguide technology is presented with a special emphasis on
circularly symmetric waveguides. Two configurations of already demonstrated
guides using macroscopic coils are presented with a discussion on how to imple-
ment them with three wires on an atom chip.

Chapter 3: Novel modulated waveguide and simulation of atom dy-
namics

A novel configuration to generate circular guide with a combination of the mag-
netic fields from three wires on an atom chip and an external bias field perpen-
dicular to the chip is presented. An important aspect of the guide is the use
of alternating currents for the atom chip wires. This technique allows to simul-
taneously solve the problem of Majorana losses and coherence loss due to wire
corrugation, thus overcoming a major technical challenge for waveguides based
on atom chips. Results of a numerical simulation of classical atom dynamics in
the modulated potential taking into account the spin dynamics are discussed.

Chapter 4: Matterwave interferometry with propagating atoms

Atom propagation in a toroidal guide is addressed both classically and quantum
mechanically assuming that the radial potential of the waveguide is harmonic.
Atom motion is shown to be multimode. A model for guided atom interferome-
ter neglecting the inter-atomic interactions is discussed to quantify the effects of
multimode propagation both, for an ultra cold gas and a thermal gas.

Chapter 5: Description of the experiment and the characterisation
of cold atom source

This chapter presents an overview of the experimental apparatus as of now.
Schematics of the optics to realize the mirror Magneto Optical Trap (MOT),
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florescence imaging system, and absorption imaging system and their character-
isation are discussed here. A detailed characterization of the cold atom source
and a study of the pressure dynamics during the MOT phase of the experiment
are also presented here.

Chapter 6: Perspectives & Conclusion

This chapter discusses the physical design of the first atom chip of the experi-
ment and its fabrication. We present the detailed process used in its realisation,
taking into account critical problems such as the power dissipation by ohmic heat
and the quality of the microfabricated wires. We also present a schematic of the
Bragg system that will be employed to realise the beam splitter for the guided
wavepackets. A simulation of the cooling trap potential is presented, together
with the projected experimental sequence to produce the ultra cold atom sample.
Finally, we present an illustration of the wire configuration that will be used to
generate the ring guiding potential.



Chapter 2
Existing and new configurations of
magnetic waveguides

The use of magnetic fields to control the motion of atoms dates back to early
1920s. In the seminal Stern-Gerlach experiment [46], neutral silver atoms were
deflected by a non-uniform magnetic field. A paramagnetic atom with magnetic
moment µ, placed in an inhomogeneous field B(r), experiences a force

F = ∇(µ ·B(r)) . (2.0.1)

The interaction energy between the field and the atom is given by V (r) =
−µ · B(r), where the magnetic moment for an atom with total spin F is, µ =
−µBgFF1. If the magnetic moment is aligned (or anti aligned) with the mag-
netic field, the atom is said to be a high (or low) field seeker as the atom is
attracted towards a region of high (or low) magnetic field in order to minimize
the interaction energy. Therefore, atoms gather either at the maxima or minima
of magnetic field depending on the relative orientation of the atomic moment
with the local field.

2.1 Magneto-static guides
Maxwell’s equations do not allow local maxima in a static magnetic field. Hence
it is only possible to trap low field seekers using static fields [47]. However, a
high field seeking atom orbiting around a current carrying wire can be trapped
due to the balance between the centripetal and the magnetic forces [48, 49]. For
example, 87Rb atoms in |F = 2,mF = 1, 2〉 or |F = 1,mF = −1〉 states are low
field seekers (since gFmF > 0) and hence are trappable in a static field. If the
atomic spin follows the magnetic field adiabatically, the interaction potential is
proportional to the field magnitude. Therefore, under this adiabatic assumption,

1gF is the Landé factor.

11
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designing a potential amounts to designing a magnetic field of the correspond-
ing shape. Magnetic fields for atom trapping (or guiding) can be produced by
macroscopic coils or with microfabricated wires on a chip. Magnetic traps with
miniaturized wires were first proposed by Weinstein et al. [50] and they offer
interesting possibilities to explore low dimensional physical effects (collisions,
phase transitions etc.), given the achievable strong confinements due to the close
proximity of atoms to the chip surface. In the following sections, waveguides
based on static fields generated from microfabricated wires are discussed.

2.1.1 Basic waveguide

X

Y

Z

Bias field

I

Figure 2.1 A simple configuration to generate a linear waveguide.

A linear quadrupole waveguide can be obtained by superimposing a homoge-
neous bias field perpendicular to a current carrying conductor [51]. This configu-
ration is often referred as a side guide. The position of the guide depends on the
current intensity in the conductor and the strength of the external bias field B0.
If we assume that the conductor is infinitesimally thin and infinitely long, the
magnetic field due to the conductor is exactly cancelled by the bias field along a
line located at a distance

d = µ0I

2πB0
, (2.1.1)

above the conductor. For a given current in the conductor, the position of the
guide can be controlled by changing the magnitude and the direction of the bias
field. The field gradient b, at the guide centre, is given by

b = µ0I

2πd2 , (2.1.2)

hence strong field gradients can be obtained by applying a strong bias field. In
the vicinity of the guide centre, the field can be approximated up to first order in
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coordinates as B(r′) = bx′i′−bz′k′ (note that ∇.B(r′) = 0) in a reference system
where the axes coincide with the symmetry axes of the quadrupole field. The
strength of the field depends only on the distance from the guide centre and it
possesses a cylindrical symmetry about the guide centre. As the atoms move in

Figure 2.2 Iso-B contours and field lines of a side guide.

a direction transverse to the guide, their spin precesses about the local magnetic
field at Larmor frequency ωL = µBgFmF |B(r′)|. Classically speaking, if the rate
of change of the local magnetic field direction θ is less than the Larmor frequency
(v · ∇θ = |θ̇| << ωL), atoms adiabatically follow the direction of the field while
preserving the spin component along the local magnetic field. Adiabatic following
is often violated in the regions where the magnetic field is weak, especially near
the guide centre, resulting in the loss of atoms due to spin flips (also called
Majorana losses) to an untrapped state. If we consider an atom orbiting with a
speed v at a distance r from the guide centre, the direction of the field changes
by 2π for every rotation. The rate of change of direction evaluates to v/r and
the Larmor frequency is µBgFmF br/~. Using the adiabaticity criteria we obtain
the following condition for a stable orbit

r > ( ~v
µBgFmF b

) 1
2 . (2.1.3)

Therefore, in a linear quadrupole guide the adiabaticity criteria fails within a cir-
cle of radius r0 = (~v/µBgFmF b)1/2. Early experiments with cold atoms loaded
in quadrupole traps reported a lifetime of few milliseconds, making them impos-
sible to trap very cold atoms. The energy spectra and the resonance widths that
characterise the lifetime of the eigen states of a quadrupole trap were computed
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by Bergeman et al. [52, 53] it was shown that the atoms in a low angular mo-
mentum number state have lower lifetime compared to the atoms with a higher
angular momentum number state as the probability of finding the atom near the
guide centre increases while the angular momentum quantum number decreases.
The quantized motion of atoms in a quadrupole waveguide was analysed by
Hinds et al. [54, 55, 56], where it was shown that the quadrupole guide does
not contain any stable bound state for spin 1/2 and spin 1 atoms and all the
low lying quasi bound states have a finite lifetime. In order to overcome atom
losses, a constant bias field Bbias is usually added along the guide. A strong bias
field provides a constant orientation to atomic spin, hence reduces the spin flip
losses. The spin flip rate was shown to drop exponentially with the magnitude
of the bias field [57]. The potential experienced by the atoms in a quadrupole
field in the presence of the additional bias field is given by V (r′) = −µ · B(r′),
where B(r′) = bx′i′ − bz′k′ + Bbiasj. Under the adiabatic approximation, the
potential simplifies to V (r) = |µ||B(r)| (here r denotes the position in the co-
ordinate system shown in Fig.2.2, which is rotated by 45◦ with respect to the
primed coordinates) i.e.

V (r) = µBgFmF

√
b2(x2 + z2) +B2

bias , (2.1.4)

Near the guide centre where b(
√
x2 + z2) << Bbias, the potential can be Taylor

expanded resulting in a harmonic potential

V (r) ≈ µBgFmFBbias[1 + 1
2
b2(x2 + z2)

B2
bias

] , (2.1.5)

with a trap frequency ωtrap = b
√
µBgFmF/mBbias. The bias field modifies the

form of the transverse potential from linear to quadratic. For an atom in the
transverse ground state (i.e. for a BEC 2), the Majorana loss rate is given by
[57]

γ = ωtrap
2π e

− 2µBBbias
~ωtrap . (2.1.6)

Note that the trap frequency is tunable with the bias field, lifetime of the guide
increases with the bias field at the cost of a reduction in the trap frequency. If
the effect of earth’s gravity is included, the total potential is given by

V (r) = µBgFmFBbias + 1
2mω

2
trap(x2 + z2)−mgz , (2.1.7)

which can be rewritten as

V (r) = µBgFmFBbias + 1
2mω

2
trap[x2 + (z − g

ω2
trap

)2]− 1
2m

g2

ω2
trap

. (2.1.8)

2For a thermal atom cloud at temperature T , Majorana loss rate is γ = ~ω2
trap

4πkBT e
−µBBbiaskBT .
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Therefore, gravity does not change the form of the potential it merely shifts the
position of the minimum potential by an amount g/ω2

trap. For example, in a guide
with a radial trap frequency of 1 kHz, the potential minimum gets displaced by
0.27 µm due to gravitational force. Hence the influence of the gravity needs to
be taken into account depending on the strength of the field gradient and the
bias field.

2.1.2 Waveguide with three wires
Using an atom-chip the bias field necessary to create the guide can be easily
generated by two additional wires located on the chip [58], meaning that the
guide can be created entirely from the wires on a chip. Consider three wires that
are parallel to y-axis located at x = 0, x = l and x = −l, as indicated in Fig.2.3.

X

Y

Z

I3

I1

I2

Figure 2.3 Configuration of currents to generate a waveguide with 3
wires.

If the direction of the currents in the external wires is opposite to that of the
central wire, a bias field is generated by the external wires. If the wires carry
currents I1, I2, I3 respectively, a linear guide is formed at a location given by the
coordinates

x = l

2
I2 − I3

I2 − I1 + I3
, z = l

2

√
4I2I3 − (I2 − 2I1 + I3)2

I2 − I1 + I3
. (2.1.9)

The guide coordinates scale linearly with the separation between the wires
l, which is usually few tens of microns. The position of the guide can be varied
considerably by changing the current intensities in the three wires under the
constraint 4I2I3 > (I2 − 2I1 + I3)2. If the two external wires carry the same
current i.e. when I2 = I3 a guide is formed at a distance d = l

√
I1/2I2 − I1
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Figure 2.4 Iso-B contours and field lines of a three wire guide with
equal but opposite currents between adjacent wires.

above the central wire. The field gradient close to the guide centre is given by

b = 2µ0I2l
2

π(l2 + d2)2 . (2.1.10)

A bias field may be added along the guide to stabilize the guide against Majorana
losses.

2.1.3 Waveguides with multiple wires
The bias field for the guide can in fact be created by multiple wires. Linear
guides using four or five wires offer relatively tighter confinement as steeper
field gradients can be generated. They have already been proposed [59] and
demonstrated [60, 61]. Let us consider four wires parallel to the y-axis, with the
inner wires located at x = −l and x = l and the external wires at x = −αl
and x = αl. Let the currents in the inner wires be I2 = I and I3 = −I and the
currents in the external wires be I1 = −βI and I4 = βI. A linear guide is formed
along the y-axis at a location given by the coordinates

x = 0 , z = l

2

√
α− β
β − 1/α . (2.1.11)

The field gradient close to the centre of the guide is

b = µ0I

2πl2
16

(α2 − 1)2β

√
(αβ − 1)5(1− β/α) . (2.1.12)



2.1. Magneto-static guides 17

The gradient of the quadrupole field attains an optimum value for βopt = u(u+√
1 + u2/2) with u = (3α2 − 1)/8α. Therefore, for a given separation between

the external wires and a given current in the internal wires, optimum gradient
can be obtained by running βoptI in the external wires.

A hexapole waveguide can be generated using five wires, the possibility of
having more zeros allows to split the atom cloud into two by varying the currents
responsible for the guide. In Esteve et al. [61], all the five wires were connected
in series and in this particular configuration we have common noise rejection
in the magnetic field generated by the five wires. Consider five wires that are
located at x = −3l, x = −l, x = 0, x = l and x = 3l.

Figure 2.5 Iso-B contours and magnetic field lines of a hexapole
guide generated with five wires.

By passing equal but opposite currents between any two adjacent wires a
guide is formed at a distance d =

√
3l above the central wire. Splitting is

achieved by ramping up the current in the central wire while decreasing the
current in the outer pair of wires. In general, with n parallel wires on a chip
utmost n zeros exist [62].

2.1.4 Waveguides with curvature
A curved waveguide can be obtained by simply bending the wires on the chip.
However, there are some difficulties: a) the bias field that is necessary to suppress
Majorana losses can be challenging to apply along the guide, b) the terminals
through which currents are supplied to the wires can perturb the symmetry of the
potential. Sauer et al. [29] demonstrated guiding of atoms in a ring waveguide of
diameter 2cm, generated from two wires with co-propagating currents. A guide
is formed between the wires, atoms were shown to go around the ring guide upto
seven times. Luo et al. [63] demonstrated an omnidirectional spiral guide with
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two wires arranged in spiral geometry with counter propagating currents, and
a bias field perpendicular to the chip surface resulting in a quadrupole guide.
Using this configuration, thermal atoms were guided for more than two turns in
the spiral guide with a radius of curvature as short as 200 µm. Atoms spiralled
inwards and outwards after hitting the barrier at the centre of the spiral. The
problem of Majorana losses is not addressed in both these guides and hence are
not suitable to guide ultra cold atoms or a BEC. To overcome the perturbing
effects of the terminals some elegant solutions were already proposed [64, 30,
65]. It is worth mentioning that in the proposal of Baker et al. [30] the ring
waveguide is based on a multilayered chip with seven concentric wires, such that
the terminals of a set of three wires lie on one end of the guide and the terminals
of the remaining four wires lie on the diametrically opposite end of the guide.
As the atoms approach a set of terminals, the atoms are adiabatically loaded
to a ring guide created by the wires from the farthest terminals, minimizing the
perturbation. Jiang et al. [65] proposed a ring guide using an Archemedian spiral.
Another promising approach to reduce the terminal effect is to generate currents
in a perfect loop through magnetic induction [66]. This configuration will be
discussed in another section. In the following section, a strategy to generate the
rotating field in an integrated way using the three wire configuration (Fig.2.3)
on an atom chip is discussed in detail.

2.2 Waveguides with time dependent magnetic fields
By employing time dependent magnetic fields, traps can be realized both for
high field and low field seekers [67, 68, 69, 70]. Trapping or guiding potentials
created with time dependent fields can be divided into two categories depending
on the frequency at which the fields oscillate: i) if the oscillation frequencies are
well below the Larmor frequency, atoms experience a potential which is the time-
average of the instantaneous potential; ii) if the oscillation frequencies approach
the Larmor frequency, atoms experience a ’dressed potential’. In the subsequent
sections, both kinds of these potentials are discussed at length. Time orbiting
potentials (TOP) fall in the former category, whereas radio frequency (rf) guides
belong to the latter. We end the section describing time averaged adiabatic
potentials (TAAPs) which combine both these regimes.

2.2.1 TOP guides
The problem of Majorana losses associated with linear quadrupole traps can be
circumvented by introducing a rotating magnetic field which moves the zero of
the magnetic field in a circle of radius r = B0/b, where B0 is the strength of the
rotating magnetic field. If the magnetic field is rotated fast enough compared
to the time scale of the motion, atoms do not have the time to respond to the
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instantaneous potential and experience a time averaged potential. This config-
uration often called as a TOP trap allowed for the creation of the first BEC by
increasing the lifetime of a quadrupole trap [71, 72]. Similarly, waveguides with-

Figure 2.6 A configuration of coils to generate a TORT guide [26].

out Majorana losses can be created by adding a rotating bias field in a direction
transverse to the guide. An idea to create a circular waveguide with this strategy
was proposed by Arnold [73] using coplanar or coaxial loops and is referred as a
time orbiting ring trap (TORT). For instance a ring guide can be produced by
two pairs of coaxial coils in Helmholtz configuration such that the field due to
one pair opposes the field due to the other pair to create a ring of zeros. The
mechanism to rotate the zeros can be understood by considering the general form
of a cylindrically symmetric magnetic field Taylor expanded about a point which
can be taken as origin [74]

B(r, z) = [−B1r

2 − B2rz

2 ] r + [B3 +B1z + B2

2 (z2 − r2

2 )] k . (2.2.1)

If B3B2 > 0, the position of the ring of field zeros is given by the coordinates

r0 =

√√√√4B3

B2
− 2B2

1
B2

2
, z0 = −B1

B2
. (2.2.2)

The above expressions suggest that the field zeros can be moved axially by a
homogeneous field (B3) and radially by a quadrupole field (B1). Hence the field
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zeros can be rapidly moved in a closed trajectory by oscillating the homogeneous
field and the quadrupole field with a properly chosen phase relationship between
them. Both these fields can be produced by adding ac currents to the two pairs
of coils (see Fig.2.6). A thermal cloud of about 2 × 107 atoms was successfully
loaded in a few millimeter sized TORT and were evaporatviely cooled to produce
a BEC of 6× 105 atoms [26]. A TOP waveguide with microstructered wires was
first suggested in Luo et al. [63], but has not been experimentally demonstrated
until now. Another way to create a linear quadrupole guide is using two wires
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Figure 2.7 Configuration of currents and bias field to generate a
quadrupole guide with two wires.

carrying counter propagating currents and an additional bias field perpendicular
to the surface of the chip. Let the wires be at x = −l and x = l, with constant
currents I1, I2 respectively and a bias field B0 along z-axis as shown in Fig.2.7.
For this geometry, a guide is formed at

x = µ0

4πB0
(I1 − I2) , (2.2.3)

z =
√

µ0

2πB0
(I1 + I2)l − µ2

0

16π2B0
2 (I1 − I2)2 − l2 , (2.2.4)

if and only if 8πB0µ0(I1 + I2)l− 16π2B0
2l2 − µ2

0(I1 − I2)2 > 0. If the currents in
both wires are equal, the guide is formed exactly halfway between the wires at
a distance d = l

√
µ0I/πB0l − 1 above the chip surface and the bias field must

be less than a critical value given by Bc = µ0I/πl. The magnitude of the field
gradient at the guide centre is b = (2πB0

2/µ0I)
√
I/I0 − 1, with I0 = πB0l/µ0.

The position of the guide centre can be moved by adding an alternating current
in each wire of frequency ω with an amplitude Im and a phase difference of π/2
between them, i.e. by choosing I1 = I + Im sinωt and I2 = I − Im cosωt. The
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position of the field zero as a function of time is given by

x = µ0Im

2
√

2πB0
sin (ωt+ π

4 ) , (2.2.5)

z = d

√√√√1 + µ0Iml√
2πB0d2

sin (ωt− π

4 ) + µ2
0I

2
m

8π2B0
2d2 sin2 (ωt+ π

4 ) . (2.2.6)

From the above equations it is evident that the x coordinate varies about the
centre of the guide with an amplitude proportional to the amplitude of the os-
cillating current and the z coordinate varies periodically about d. Therefore, the
guide moves typically in a region of size r0 ≈ µ0Im/

√
2B0. If the amplitude of

the modulation is small, i.e. Im << I, Taylor expansion of z upto first order in
Im gives

x = µ0Im

2
√

2πB0
sin (ωt+ π

4 ) , z = d+ µ0Im

2
√

2πB0
sin (ωt− π

4 ) . (2.2.7)

Therefore, the position of the zero moves approximately in a circle of radius
r0 = µ0Im/2

√
2πB0. If the distance between the guide and the chip surface is

half the separation between the wires, i.e. d = l, the trap frequency is given by,

ωtrap = 2π
µ0

√√√√gFmFµBB0
3

√
2mIIm

, (2.2.8)

and the Larmor frequency at the centre of the guide is,

ωL = gFmFµB√
2~

Im
I
. (2.2.9)

In this situation, the radius of the circle simplifies to r0 = (
√

2Im/I)l. The trap
depth, which is defined as the difference between the time-averaged potentials at
a distance r0 and the guide centre

Vdepth = ( 4
π
− 1) Im√

2I
gFmFµBB0 . (2.2.10)

For the adiabaticity condition to be fulfilled the guide parameters have to be
chosen such that ωtrap << ω << ωL, the first inequality ensures that the modu-
lation does not lead to transverse mode excitations, whereas the second inequality
concerns the adiabatic following of the spin.

Waveguides based on two wires with counter propagating currents need an
external bias field perpendicular to the chip surface. The external bias field can
be avoided altogether and a TOP guide can be generated using the three wire
configuration. Consider the linear waveguide with currents I1 and I2 = I3 = I.
A quadrupole guide is formed at a distance d = l

√
I1/(2I − I1) from the chip
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surface. The zero can be moved around by a rotating field in the transverse
direction, which can be generated by adding oscillating currents to the external
wires with a phase difference of π/2 i.e. by choosing I2 = I + Im sin(ωt) and
I3 = I − Im cos(ωt). If the amplitude of the oscillating current is small i.e. if
Im << 2I − I1. The position of the field zero can be obtained by a Taylor
expansion of the exact expression, and upto first order in Im, it gives

x ≈ l√
2

Im
2I − I1

sin(ωt+ π/4) , z ≈ d+ d√
2

Im
2I − I1

sin(ωt− π/4) . (2.2.11)

As the fields generated by the two external wires near the guide centre are not
orthogonal, the rotating field’s magnitude changes with time. Therefore, the zero
of the field moves nearly in an ellipse around the guide centre. However, if the
dc currents in all the three wires are chosen to be equal i.e. I1 = I. The guide
is formed at a distance l above the chip surface, which is equal to the separation
between the wires. And the fields due to the external wires are orthogonal
with equal magnitude, in which case the field zero moves in a nearly circular
trajectory of radius r0 = (Im/

√
2I)l. If we consider, for example, three straight

wires separated by 15 µm, the central wire carrying a current of I = 30 mA,
and the external ones carrying an ac current of amplitude 2 mA, the field zero
rotates in a circle of radius 2 µm (see Fig.2.8). Magnetic field lines around the

Figure 2.8 Time-averaged potential of a TOP guide generated from
three straight wires with I = 30 mA,Im = 6 mA and l = 15 µm. The
red ◦’s show the trajectory of the instantaneous field zeros, trap depth
is approximately 20 µK.

TOP guide centre for the above mentioned parameters can be seen in Fig.2.9.
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Figure 2.9 Field lines due to TOP guide created by three wires, at
times t = π/2ω, π/ω, 3π/2ω, 2π/ω. We consider the parameters:
I = 30 mA, Im = 2 mA and l = 15 µm. The variation of currents
in the central and external wires over one modulation period can be
seen in the bottom figure.

The magnitude of the rotating bias field is given by B0 = µ0Im/2
√

2πl. The field
close to the guide can be expressed as

B(x, z, t) = (bz +B0 sin(ωt− π/4) i + (bx+B0 sin(ωt+ π/4)) k , (2.2.12)

where the field gradient is b = µ0I/2πl2. The Larmor frequency at the trap
centre is

ωL = µBgFmF

~
µ0Im

2
√

2πl
. (2.2.13)

If the oscillating currents are modulated fast enough (i.e. ωtrap << ω << ωL),
atoms experience a time-averaged potential which is approximately harmonic
with a trap frequency given by

ωtrap = I

l
3
2

√
µ0µBgFmF

2
√

2πmIm
, (2.2.14)

and the depth of the trap which is the difference between the potential energy at
the guide centre and the potential energy over the circle of death, depends solely
on the amplitude of the oscillating currents in the external wires. This energy is
given by

Vdepth = ( 4
π
− 1)µBgFmF

2
√

2π
µ0Im
l

. (2.2.15)
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l(µm) I(mA) Im(mA) ωL/2π(MHz) ωtrap/2π(kHz) r0(µm) Vdepth(µK)
15 250 100 13.19 6.52 4.24 158.32
15 200 100 13.19 5.22 5.33 158.32
30 300 120 7.91 2.52 8.48 94.99
30 300 150 9.89 2.26 10.60 118.74
50 200 100 3.95 0.85 17.67 47.49
50 300 120 4.75 1.17 14.14 56.99
50 300 150 5.93 1.05 17.67 71.24

Table 2.1 Characteristics of a TOP guide generated using three wires
for a set of experimentally realisable parameters using atom chip for
a 87Rb atom in |F = 2,mF = 2〉 state.

The guide parameters can be varied over a considerable range by adjusting the
separation between the wires and the currents in the wires (see Table 2.1). For
instance, if we take a wire separation of 15 µm by passing 200 mA of dc currents
in the three wires and with a modulating current of 100 mA in the external
wires, we can obtain a very tight (ωtrap/2π = 5.2 kHz) and deep guide (Vdepth =
158.32 µK). The main interest in TOP guide stems from the fact that using
atom chips almost arbitrarily curved waveguides can be produced without spin
flip losses as this does not require a bias field. On the other hand, dc currents in
the wires can create a rough potential (a detailed description of the roughness
problem is presented in another section) and fragment the cloud. Nevertheless,
fragmentation can be minimized by increasing the distance between the atoms
and the chip.

2.2.2 Rf dressed waveguides
Rf dressing proposed by Zobay and Garraway [75, 76], allow for the creation of
versatile potentials by coupling different Zeeman sublevels of a given hyperfine
level. Atoms move in a adiabatic potential resulting from the dressing of a
static field. If the static potential is an Ioffe-Pritchard trap the iso-B surface
resulting from dressing with a linearly polarized rf field is an ellipsoid. The first
experimental demonstration of atoms trapped in a rf dressed potential is done
by Colombe et al. [77]. The observation of the shell structure is difficult in
the presence of gravity, due to which the atoms were collected at the bottom
of the egg-shell potential. Only a brief introduction to the subject of rf dressed
potentials is given here, a thorough discussion of rf dressed potentials can be
found in the recent review article by B. Garraway and H. Perrin [78].

The Hamiltonian of an atom in a weak magnetic field B(r, t) is governed by
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the equation

H = p2

2m + gFµBF ·B(r, t) , (2.2.16)

where the spin operators Fx, Fy and Fz are of dimension 2F + 1, for an atom in
an hyperfine level F . Let us suppose that the magnetic field B(r, t) is composed
of a static field Bs(r) and an oscillating field BRF cos(ωt). Static field gives a
well defined local quantization axis and also provides a trapping potential in
the absence of rf field. Let us first consider the case when the static part is
homogeneous and the rf field linearly polarized. Without loss of generality, the
coordinate system can be chosen such that the static field is aligned with the z-
axis and the component of rf field perpendicular to the static field is along x-axis
i.e. Bs(r) = B0 k and the rf field can be expressed as [BRF⊥ i +BRF‖ k] cos(ωt)
and the Hamiltonian is3

H = gFµB[B0 +BRF‖ cos(ωt)]Fz + gFµBBRF⊥ cos(ωt)Fx , (2.2.17)

which can be written as

H = ~[εωL + gFµBBRF‖

~
cos(ωt)]Fz + ~εΩ cos(ωt)Fx , (2.2.18)

where ωL = |gF |µBB0/~, the Rabi frequency Ω = |gF |µBBRF⊥/~ and ε = gF/|gF |
is the sign of the Landé factor. In the representation where Fz is a diagonal
operator, Fz does not mix the Zeeman levels, whereas the operators Fx and Fy
mix the Zeeman levels of the hyperfine state F . Therefore, the component of the
rf field parallel to the static field can be ignored, giving

H = ~εωLFz + ~εΩ cos(ωt)Fx . (2.2.19)

To diagonalize the above Hamiltonian, we first move to a coordinate system
which rotates about z by an angle εωt. This can be done by applying the time
dependent unitary transformation U = exp(−iεωtFz). The effect of this unitary
transformation U , is to replace H by U †HU − i~U † ∂U

∂t
, which transforms the

Hamiltonian as

H = ~ε(ωL − ω)Fz + ~εΩ[cos2(ωt)Fx − ε sin(ωt) cos(ωt)Fy] . (2.2.20)

Using the rotating wave approximation4, which essentially means to replace the
oscillating terms with their time averages, we obtain,

H = ~ε(ωL − ω)Fz + ~ε
Ω
2 Fx . (2.2.21)

3Here, we neglect the kinetic energy operator. Including the momentum operator leads to
additional gauge potentials whose effect is normally negligible.

4RWA is valid if
√

(ωL − ω)2 + Ω2/4 << ω.



26 Chapter 2. Existing and new configurations of...

Hence, in the presence of a rf field, atoms experience an effective time indepen-
dent magnetic field

Beff(r) = ~
gFµB

√
(ω − ωL)2 + Ω2

4 u , (2.2.22)

where the direction of the effective field is along u

u = Ω/2√
(ω − ωL)2 + Ω2/4

i + ωL − ω√
(ω − ωL)2 + Ω2/4

k . (2.2.23)

Therefore, the effective potential depends only on the frequency of the rf field and
the component of the rf field perpendicular to the static field (BRF⊥). Interesting
potentials can be generated by employing an inhomogeneous static field in a
spatially varying and arbitrarily polarized rf field. For example, dressing a biased
2D quadrupole field Bs(r) = bzi + B0j + bxk, with a linearly polarized rf field
BRF = BRF i generates a double well [79]. The effective potential in this case
can be evaluated from BRF⊥, which is given by

BRF⊥(r) = |Bs(r)×BRF|
|Bs(r)| =

BRF

√
b2x2 +B2

0√
b2(x2 + z2) +B2

0

, (2.2.24)

and the potential is5,

VAP (x, z) = m′FgFµB

√√√√[ ~ω
|gF |µB

−
√
b2(x2 + z2) +B2

0 ]2 + B2
RF (b2x2 +B2

0)
4(b2(x2 + z2) +B2

0) .

(2.2.25)
Depending on the strength of the rf field the above potential has either one or
two minima. For a sufficiently strong rf field, it can be shown that the above
adiabatic potential has two minima located above and below x-axis at z = ±z0,
where

z0 = 1√
2b

√
B2
RF − 4 B0~∆

|µBgF |
, (2.2.26)

and ∆ = |µBgF |B0/~ − ω. The two wells are formed at the points where the
rf field and the quadrupole field are parallel [79], as the rf coupling is minimum
at these points. The double well can be rotated dynamically about y- axis by
adiabatically changing the polarization of the rf field. The necessary fields can be
simply generated with a three wire configuration on an atom chip. A quadrupole
field can be obtained by passing dc currents in the three wires, whereas the rf
field polarized along x-axis can be obtained from the central wire. A double well
potential obtained from rf dressing can be seen in Fig.2.10.

5m′F here corresponds to the Zeeman sublevels in the effective magnetic field.
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Figure 2.10 Double well adiabatic potential of a 87Rb atom in
|F = 2,m′F = 2〉 for a quadrupole gradient of b = 2000 G/cm with
a bias field B0 = 0.75 G, dressed with a rf field of magnitude 0.51 G
and frequency 500 kHz, the energy barrier between the wells is about
20 µK.

If a homogeneous static field B = B0 k is dressed by an elliptically polarized
rf field BRF = BRFx cos(ωt) i +BRFz sin(ωt) k, the resultant adiabatic potential
after rotating wave approximation is given by

VAP = m′FgFµB

√
( ~ω
|gF |µB

−B0)2 + (BRFx +BRFz)2 . (2.2.27)

If we now consider the adiabatic potential of a biased 2D quadrupole field
B(r) = bρ r+B0 k dressed with a circularly polarized rf field BRF = BRF cos(ωt) i+
BRF sin(ωt) k, the resulting adiabatic potential can be obtained by finding the
rf components perpendicular to the static field’s direction and we obtain

VAP = m′FµBgF

√√√√√( ~ω
|gF |µB

−
√
b2ρ2 +B2

0)2 + B2
RF

2 [1 + B0√
b2ρ2 +B2

0

− b2ρ2

2(b2ρ2 +B2
0) ] ,

(2.2.28)
which is radially symmetric. Under the approximation bρ << B0, the radial
coordinate of the potential minima can be expressed as

ρ0 = 1√
2b

√
2B2

RF − 4B0
~∆
|µBgF |

. (2.2.29)

If BRF >
√

2~∆/|µBgF |, we get a ring potential (see Fig.2.11), whereas if
BRF <

√
2~∆/|µBgF | we obtain a single well. A longitudinal confinement

can be achieved by using a rf field whose magnitude varies along y-axis, re-
sulting in a circular waveguide. For example, a spatial dependence of the form,
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Figure 2.11 Ring adiabatic potential of a 87Rb atom in
|F = 2,m′F = 2〉 for a quadrupole gradient of b = 2000 G/cm
and bias field B0 = 0.5 G, dressed with a circularly polarized rf field
of magnitude 2 G and frequency 1.26 MHz. The radius of the ring
is approximately 9 µm. Note that the confinement along y-axis is
absent here.

BRF (y) = BRF + bRFy
2 creates a nearly harmonic longitudinal confinement. The

radius of circular guide can be tuned in several ways, by varying the parameters
of rf field (amplitude and frequency) or by changing static fields (b and B0).
The ring potential can also be generated with a three wire configuration on an
atom chip, the rf field with circular polarization can be generated by the two
external wires. The spatial dependence in the rf field along the y direction can
be introduced by varying the separation between the wires.

The adiabatic potentials discussed here are obtained after a RWA, however
experimentally one can be in a situation where the rf frequency is far from
resonance and the Rabi coupling can be comparable to the rf frequency. In both
these cases, the RWA breaks down and one must resort to a full calculation. The
effects on the potential beyond the RWA can be computed using the dressed
state formalism by quantizing the rf field [80].

2.2.3 Waveguide based on TAAPs

We can notice in the above section that the adiabatic potential of a static field
dressed with a linear rf field depends on the rf coupling, strength of the static field
and the frequency of the rf field. If one of these parameters are modulated at a
frequency smaller than the Larmor frequency, but faster than the trap frequency
of the adiabatic potential (ωtrap << ωm << ωL), atoms experience a TAAP [81].
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The TAAP can be expressed as

VTAAP (r) = ωm
2π

∫ 2π/ωm

0
VAP (r, t)dt . (2.2.30)

Time averaging extends further the realm of adiabatic potentials, and a complex
set of tunable potentials can be generated. A three dimensional quadrupole field
BQ(r) = bρ cosφ i+ bρ sinφ j−2bz k dressed with linear rf field aligned with the
axis of the quadrupole field creates a shell shaped trap. The adiabatic potential
is given by

VAP (r) = m′F~

√
(ωL − ω)2 + Ω2

RF

4 , (2.2.31)

where the Larmor frequency ωL = |gF |µB|BQ(r)|/~ and the Rabi frequency
ΩRF = |gF |µB|BQ(r)/|BQ(r)| × BRF|/~. The iso-potential surface is defined
by surface over which |BQ(r)| is a constant and is an ellipsoidal shell. If an
additional field B0(t) = B0 cos(ωmt)k is added to BQ(r), the equipotential shell
oscillates along z-axis with an amplitude B0/2b. The introduction of the new
field modifies the position at which the rf field is at resonance and makes the
Rabi coupling term time dependent, these effects can be avoided by using a rf
field with appropriate frequency and amplitude modulation [81]. The integral to
compute the time average needs to be done numerically and the resultant TAAP
gives a circular waveguide as is evident from the axial symmetry of the adiabatic
potential. The radius of the circular waveguide is the position where the rf field
is at resonance, which is given by

ρ0 = ~ω
|gF |µBb

, (2.2.32)

and depends on the rf frequency and the quadrupole gradient. For a given rf
frequency, the radius of the guide can be increased by decreasing the quadrupole
gradient. However, the radius can not be increased indefinitely as a minimum
gradient is necessary to hold the atoms against gravity. An experimental demon-
stration of a circular guide using TAAP was first done by C. Foot’s research
group in Oxford [82] where a circularly polarized rf field was used for dressing
a three dimensional quadrupole trap with the modulating field along the axis of
the quadrupole. A BEC of 4× 105 atoms with a small fraction of thermal atoms
was loaded in circular guides of various sizes. Lifetimes of more than 11 seconds
were observed for guide radii greater than 200 µm, and guides of shorter radii
suffered spin flip losses which limited the lifetime. A more recent demonstra-
tion of a TAAP circular guides of diameter in the range 400 µm− 2.6 mm were
reported in Crete [27]. There are at least two research groups (in Crete and Not-
tingham) in the pursuit of a guided Sagnac interferometer using a TAAP. Apart
from the usual guided Sagnac interferometer, these research groups also envisage
a fully trapped Sagnac interferometer, where atoms are completely trapped in
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all directions in a state dependent trap (atoms in different hyperfine levels see a
different potential) and moved around in a circular trajectory [45]. Although the
waveguide and moving traps necessary for the interferometer were successfully
demonstrated, interference fringes are yet to be seen.

2.3 Modulated waveguides

The effects of fabrication defects in the wires pose a serious threat to the atom
chip based waveguides. Modulating the currents was shown to be quite effective
in combating the roughness in the potential. In this section, a description of the
roughness problem is given followed by a discussion on waveguides produced by
alternating currents.

2.3.1 Roughness due to wire corrugation and the concept of
current modulation

The magnetic field due to a conductor, carrying a current I, at a distance l
typically scales as ∼ I/l, its gradient scales as ∼ I/l2 and the field curvature
scales as ∼ I/l3. The above scaling laws indicate that strong fields can be applied
on atoms by passing relatively low currents if the atoms are brought close to the
conductors producing them. Microfabricated wires on atom chips allow to trap
atoms close to the wires. For example, a wire with 100 mA current produces
a field of about 200 G and a gradient of ∼ 2 × 104 G/cm at a distance of
100 µm from the wire. The availability of strong gradients allows the creation
of waveguides with very tight transverse confinement (ωtrap/2π ∼ kHz) as is
required in the studies of 1D physics. This tight confinement might be also
necessary for a guided Sagnac interferometer.

Most atom chip experiments in 2000’s reported (see Fig.2.13 for a compari-
son) the presence of an anomalous field along the waveguide which led to cloud
fragmentation, especially when the atoms are brought closer to the chip sur-
face [83]. However, cloud fragmentation was not observed when atoms are far
(> 200 µm) from the chip surface. Fragmentation was observed to be propor-
tional to the currents in the wire indicating that it is magnetic in origin. It was
later found that this undesired magnetic field is produced by the deformation
of the current flow in the wires caused by fabrication defects [85]. Wang et al.
addressed the microscopic nature of the problem by assuming a deformed sur-
face. The authors estimated the strength of the anomalous field and showed that
the rough potential ∆V scales with the atom to wire separation as d−5/2 which
is close to the experimentally observed law d−2.2. A detailed calculation of the
mean squared fluctuations of the longitudinal field due to lateral edge and top
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Figure 2.12 a) An ideal rectangular wire on an atom chip, b) top
surface meandering and c) edge surface meandering change the direc-
tion of the flow of current and lead to an unwanted rough potential
(image taken from [84]).

surface corrugations of a rectangular wire gives the following scaling laws [84]

< B2
z >edge= 0.044Je

(µ0I)2

2d5 , < B2
z >surface= 0.044Js

πW

6H2
(µ0I)2

d5 , (2.3.1)

where Je and Js are the power spectral densities of the edge and surface roughness
(assuming white noise power spectrum) and W and H are the mean width and
height of the wires respectively. These scaling results were also experimentally
tested by measuring the cold atom density distributions. The field due to the
edge roughness is independent of the dimensions of the wire. It was also found
that the root mean squared roughness to a large extent depends on the fabrication
process. In general, wires grown by evaporation technique are better in terms
of surface quality compared to the wires grown by the eletroplating technique,
as the grain size of evaporated gold is generally lower than the one obtained in
electrodeposited gold [84].

Let us consider the side wire guide with a bias field along the wire (to avoid
Majorana spin flips). If the bias field is strong enough, the transverse and longi-
tudinal potentials are uncoupled. Kraft et al. [83] measured the potential due to
wire corrugation and showed that the role of maxima and minima of the rough
potential (along the wire) were exchanged when the currents in the wire are re-
versed. This observation suggests that the rough potential can be averaged if
the currents in the wires are modulated. Therefore, if the atoms are sufficiently
close to the wires generating the field, the use of alternating currents is almost
inevitable to avoid fragmentation. In the following sections, some configurations
to generate guides using modulated currents are discussed.
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Figure 2.13 Comparison of the magnitude of the roughness measured
in various atom chip experiments (image taken from [40]).

2.3.2 Waveguide based on induction
A ring waveguide based on inductively coupled coils is a good candidate to remove
the effects of the terminals, feeding the current in the loop wires. In this kind of
waveguides, the coil producing them is current supplied through induction and
does not require external wires. In addition, since the induced currents are by
default alternating, the resulting potential is automatically free from roughness
due to wire corrugations [44]. A ring guide based on induction was proposed by
Griffin et al. [66]. To understand the working principle, let us consider a small
wire loop of radius r placed in a homogeneous field B0 perpendicular to the plane
of the loop (the homogeneous field can be created by a Helmholtz pair). If the
field oscillates in time B(t) = B0 cos (ωt), the magnetic flux φ = πr2B0 cos (ωt)
through the loop changes, inducing an ac current Iind(t) in the loop with a phase
lag δ

Iind(t) = − πr2B0ω√
R2 + L2ω2

cos(ωt+ δ) , (2.3.2)

where R and L are the resistance and the inductance of the loop, respectively6.
The phase lag depends on the modulation frequency of the field, resistance and
the inductance of the loop and is given by δ = tan−1(R/ωL). The induced
current in the loop generates a field which cancels the external field producing a

6Assuming that the loop has a circular cross-section of radius r0 and is made up of material
of resistivity ρ, R = 2ρr/r2

0 and L ≈ µ0r[ln(8r/r0)− 1.75].
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Figure 2.14 A configuration of coils to generate a ring guide using
induction [66]. Currents in a pair of coils are oscillated inducing a
current in the wire loop placed at the centre. The other pair of coils
generate a quadrupole field to push the field zeros.

ring of zeros in the plane of the loop. The total field is then given by

Btot(r, t) = B0 cos (ωt) k + Bind(Iind, r, z) . (2.3.3)

The field due to the loop can be expressed in terms of the elliptic integrals and can
be evaluated numerically [74]. If the field is modulated relatively fast, the atoms
experience a potential averaged over one period which is a ring potential, because
of the axial symmetry. As the fields are time dependent, the instantaneous
position of the field zero changes with time. Since, the zeros are always formed
in the plane of the loop, the zero goes through the time averaged minimum of
the potential once per modulation period. This effect is therefore a loss channel.
However, it can be mended by superposing a quadrupole field, which displaces
the zero from the trapping region. All the necessary fields can be generated by
two pairs of coils as in TORTs with a small additional loop placed between the
coils, as shown in Fig.2.14. One pair can be used to generate the oscillating field
and the other pair can be used to produce the quadrupole field. An experimental
demonstration of the inductively coupled ring trap was reported by Pritchard et
al. [38]. A small copper loop of inner diameter 7 mm and outer diameter 12 mm
was placed in a homogeneous field of 110 G, which was modulated at 30 kHz,
inducing a current of 140 A in the copper loop. The resulting circular guide has
a radius of 5 mm. Instead of a quadrupole field, a constant bias field of 5 G was
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employed to push the field zeros from the location of the time averaged potential
minima.

A systematic study of the lifetime of the trapped atoms as a function of the
strength of the bias field was done and the lifetime was observed to increase with
the bias field reaching a maximum of 220 ms as the guide becomes more adia-
batic. This approach to create a ring guide has its own drawbacks, as remarked
in [38]. Indeed, the heat dissipation in the copper loop (about 4 W ) led to an
increase in the background pressure reducing the lifetime of the trapped atoms.
Secondly, considering the macroscopic coils and power requirements, it may not
be a viable approach to develop a compact and low power consuming device, for
terrain and mobile applications like inertial navigation.

Another approach to produce ring potential is based on the use of rf fields with
oscillation frequencies in the MHz regime. In this regime static magnetic fields
are dressed by rf radiation. Radio frequency dressed ring guides using induction
were recently proposed using macroscopic coils [86]. The homogeneous oscillating
field, combined with the induced field, dress a static field to create a ring guide.
Another version of rf dressed potentials using induction was proposed in [87]
and might be possible to realise it using an atom chip. Though this approach
looks promising, an experimental demonstration of rf dressed guides based on
induction is still lacking.

2.3.3 Modulated TOP: New guide concept for an atom chip
In the usual TOP guide configuration, a rotating field is added to a static
quadrupole field. Modulating the quadrupole field along with the rotating bias
field with a properly chosen phase difference moves the field zero back and
forth above the cloud of atoms. Reeves et al. [88] demonstrated such a lin-
ear guide to create a weak transverse confinement while supporting the atoms
against gravity by modulating the quadrupole field. Linear guide with trans-
verse trapping frequencies as low as few tens of Hz were loaded with conden-
sate of about 104 atoms. The underlying mechanism can be understood by
considering the magnetic fields close to the guide centre. Let the modulated
quadrupole field be BQ(r,t) = bz cos(ωt) i + bx cos(ωt) k, and the rotating field
be BT(t) = B0 cos(ωt) i + B0 sin(ωt) k. The position of the magnetic field zero
is given by the coordinates

x = −B0

b
tan(ωt) , z = −B0

b
, (2.3.4)

and the field zero moves along a line parallel to x-axis. The instantaneous po-
tential under adiabatic approximation is

Vinst(x, z, t) = µBgFmF

√
(B0 + bz)2 cos2(ωt) + [bx cos(ωt) +B0 sin(ωt)]2 .

(2.3.5)
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The time-averaged potential experienced by the atoms upon Taylor expansion
upto second order in x and z is7

Vavg(x, z) =< Vinst >= µbgFmF [B0 + b

2z + b2

16B0
(3x2 + z2)] . (2.3.6)

The transverse potential is asymmetric and the trapping frequency along the

Figure 2.15 Time-averaged potential of a modulated TOP guide (in-
cluding gravitational energy) generated by three straight wires with a
separation of 50 µm. The red ◦’s define the line along which the in-
stantaneous field zero moves and the position of the guide centre is
denoted by +. Gravity is along positive z-axis, and pulls atoms away
from the field zeros.

direction of the gravity is weaker than the frequency along x direction, the trap
frequencies are given by

ωx = b

√
3µBgFmF

8mB0
, ωz = b

√
µBgFmF

8mB0
. (2.3.7)

If the gravity is along positive z direction, the total potential energy including
the gravitational potential is

Vtotal(x, z) = µBgFmF [B0 + b2

16B0
(3x2 + z2)] + µBgFmF

b

2z −mgz . (2.3.8)

By choosing an appropriate quadrupole gradient (b = 2mg/µBgFmF ), the effect
of the gravity can be cancelled and the field zero moves above the atomic cloud

7This is only valid in the region where b
√
x2 + z2 << B0 and can be ensured by applying

a sufficiently strong rotating field.
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along a line parallel to the x-axis, as can be seen in Fig.2.15. The distance
between atoms and the "line of death" is given by z0 = −µBgFmFB0/2mg. The
resulting trap frequencies are

ωx =
√

3mg2

2µBgFmFB0
, ωz =

√
mg2

2µBgFmFB0
. (2.3.9)

The trap depth of this modulated TOP guide can be defined as

Vdepth = Vtotal(0, z0)− Vtotal(0, 0) = µBgFmFB0

16 , (2.3.10)

where the modulation frequencies of the field need to satisfy the following stable
trapping conditions

ωx, ωz << ω << ωL = µBgFmFB0

~
. (2.3.11)

The first inequality is required for the adiabaticity of the motional degree of the
freedom, whereas the second inequality guarantees that the atomic spin follows
the changing direction of the magnetic field. Increasing the bias field B0 keeps
the field zero far from the trapping region and makes the guide more adiabatic,
on the other hand, this increase in B0 reduces the trapping frequencies. Reeves

l(µm) I(mA) Im(mA) ωx/2π(Hz) ωz/2π(Hz) z0(µm)
15 0.34 1 77.60 44.80 30.91
15 0.34 0.5 109.75 63.36 15.45
30 1.4 0.5 155.2 89.61 7.72
30 1.4 1 109.75 63.36 15.45
60 5.5 2 109.75 63.36 15.45
60 5.5 3 89.613 51.73 23.18

Table 2.2 Transverse trapping frequencies of a modulated TOP guide
generated using three straight wires for a set of experimentally real-
isable parameters on an atom chip. These values are obtained for a
87Rb atom in |F = 2,mF = 2〉 state.

et al. [88] used four macroscopic rods (each of them is a coaxial pair) of outer
diameter 5 mm and length 5 cm, located at the four corners of a square of size
15 mm to generate the quadrupole field as in an Ioffe type trap.

Let us now address the realisation of a modulated TOP guide on an atom
chip. This study will be done using straight wires, a configuration that allows to
obtain analytical results valid for a ring trap geometries with relatively large radii
as required for large sensitivity Sagnac atom interferometer. We have verified
the validity of the analytical results using numerical simulations for a ring trap
of 500 µm, corresponding to the atom chip we are developing.
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In this novel configuration, the modulated quadrupole field can be created
by passing a current I cos(ωt) in the central wire and a current I cos(ωt+ π) in
the external wires. The rotating field can be generated by passing additional ac
currents in the external wires as in the TOP guide. In order to create a rotating
field that compensates gravity, the phases of the additional oscillating currents
have to be chosen with a very well defined values. For example, the following
choice of currents in the wires generates a modulated TOP guide

I1 = I cos(ωt) ,
I2 = I cos(ωt+ π) + Im sin(ωt− π/4) ,
I3 = I cos(ωt+ π)− Im cos(ωt− π/4) .

(2.3.12)

The magnitude of the rotating bias field is B0 = µ0Im/2
√

2πl and the current
I, needed to compensate gravity is only defined by the distance between the
wires I = 4πmgl2/µ0µBgFmF . Although this current need to be held fixed at
this value, the trap frequencies can be tuned by varying the amplitude of the
additional modulating currents in the external wires. They can be expressed as

ωx =

√√√√ 3
√

2πmg2l

µBgFmFµ0Im
ωz =

√√√√ √
2πmg2l

µBgFmFµ0Im
. (2.3.13)

Here, the line of death is at a distance z0 = µBgFmFµ0Im/4
√

2πmgl from the
minimum of the total potential, we can also define a trap depth that can be
expressed in terms of Im as

Vdepth = µ0µBgFmF Im

32
√

2πl
. (2.3.14)

The oscillating current Im responsible for the rotating bias field has to be chosen
so as to keep the line of death as far as possible from the atoms. On the other
hand increasing Im reduces the trap frequencies. From an implementation point
of view, the currents in the wires can be rewritten as

I1 = I cos(ωt) ,
I2 = I0 cos(ωt+ φ+ π) ,
I3 = I0 cos(ωt− φ+ π) ,

(2.3.15)

where I0 =
√
I2 + I2

m +
√

2IIm and the phase shift is φ = sin−1(Im/
√

2I0). Re-
alistic parameters for a modulated TOP guide using atom chip can be seen in
Table 2.2.

We can notice that, the currents required to generate the modulated TOP
guide can be of the order of a few milliamperes, when the wire separation is less
than 20 µm. This result is important when considering compact and embedded
applications of atom interferometers. However, given the current levels involved,
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we need very low noise and stable current sources to generate the guide, as the
noise in the current source translates into a noise in the trapping frequencies.
Low noise current sources with a relative stability of 10−5 are readily available in
SYRTE. It was shown by Barnowski et al. [89] that such a stability is required
in order to achieve a coherence time of one second for interferometric purposes.
Since the modulated TOP guide does not require a bias field a circular guide can
also be produced by bending the wires.

2.3.4 Palaiseau solution to remove the waveguide roughness
As remarked earlier, overcoming the problem of roughness is very crucial for
guided atom interferometry. A method to reduce the longitudinal roughness
was first demonstrated by Trebbia et al. [44] at Institut d’Optique in Palaiseau.
Following the suggestion of [83], all the currents that are responsible for the
hexapole guide created by five wires were modulated at few tens of kHz and
the effect of roughness was shown to be reduced by at least a factor of ten. In
particular, the cloud fragmentation was not observed when a BEC was brought
as close as 5 µm to the chip surface.

This modulation technique can be understood by analysing a simple linear
guide generated by three wires. Let us consider the quadrupole field generated by
the three wires, biased with a strong field B0 k along the longitudinal direction.
The total field near the guide centre is given by

B(r) = bz i + (B0 + u(y)) j + bx k , (2.3.16)

where b is the quadrupole gradient and u(y) is a spatially varying longitudinal
component of the unwanted fields due to wire imperfections. Both these terms
are proportional to the currents in the wires, and the potential seen by the atoms
is

V (x, y, z) = µBgFmF{b2(x2 + z2) + [B0 + u(y)]2}1/2 . (2.3.17)

If the currents are modulated keeping the bias field B0 constant, the instanta-
neous potential experienced by the atoms is

Vinst(x, y, z) = µBgFmF{b2(x2 +z2) cos2(ωt)+[B0 +u(y) cos(ωt)]2}1/2 , (2.3.18)

which in the case of a strong bias field, i.e. b
√
x2 + z2 << B0,8 allows a Taylor

expansion of the instantaneous potential. Up to second order in x and z, we
obtain9

Vinst(x, y, z) = µBgFmFB0[1 + b2

2B2
0

(x2 + z2) cos2(ωt) + u(y) cos(ωt)
B0

] . (2.3.19)

8Usually u(y) << B0.
9The contribution due to the second order terms in u(y) is negligible.
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Therefore, in the presence of a strong bias field the transverse and longitudi-
nal potentials are uncoupled. If the currents are modulated at sufficiently high
frequencies, atoms see the time-averaged potential

Vavg(x, z) = µBgFmFB0[1 + b2

4B2
0

(x2 + z2)+ <
u(y) cos(ωt)

B0
>] . (2.3.20)

Since the longitudinal potential is proportional to the currents, it averages to
zero (< u(y) cos(ωt) >= 0) over one modulation period. Hence, modulation of
currents produces a trapping potential free from roughness. A word of caution
is necessary here, the modulation technique does not suppress the roughness
entirely. A longitudinal potential scaling as10 (∂u/ω∂y)2 still remains [90, 91].
However, the residual roughness can be made as low as possible by increasing
the modulation frequency. For example, in the Palaiseau experiment the residual
roughness was estimated to be eight orders of magnitude less than the transverse
potential. Bounds to the modulation frequency can be obtained from the adia-
baticity criteria √

µBgFmF

mB0
b << ω <<

µBgFmFB0

~
. (2.3.21)

A detailed analysis of the limitation of the modulation technique can be found
in Bouchoule et al. [92], where the modulation of currents was found to heat the
atomic cloud. A quantum mechanical calculation using Floquet’s theory shows
that the heating rate can be as high as 3 µK/s for a cloud at a temperature of
0.7 µK, when the modulation frequency is 1 kHz. On the other hand, the heating
rate drops significantly with the modulation frequency, for example heating rate
can be as low as 64 nK/s for a cloud temperature of 1.8 mK when the modulation
frequency is 50 kHz.

The modulation also increases the Majorana transitions as one approaches
the Larmor frequency. The approximate expression for the Majorana loss rate
in the modulated guide is [92]

γ = π3

2
~ω3

trapω
2

(kBT )3 e
−~∆/kBT , (2.3.22)

where the detuning ∆ is the difference between the modulation frequency and
the Larmor frequency at the guide centre, ∆ = µBB0/~ − ω. Therefore, for a
given modulation frequency, loss rate can be kept low by applying a large enough
bias field along the guide. Experimentally, a Larmor frequency of few MHz can
be achieved with a bias field of few Gauss and modulation frequencies of few tens
of kHz. Such a choice guarantees the adiabaticity of the atomic spin.

Modulation frequencies in the above guide are deliberately kept well below
the Larmor frequency so that atoms adiabatically follow the instantaneous field

10This requires an analysis beyond a simple time-averaged description.
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preserving their Zeeman state. If the modulation frequencies approach Larmor
frequency, the linear quadrupole field can be seen as a rf field coupling the Zee-
man levels (associated to the bias field B0 which provides the quantization axis)
and atoms experience an adiabatic potential. The double well and the circu-
lar potentials discussed earlier result from dressing an inhomogeneous field with
a homogeneous rf field, in contrast to the present case where a homogeneous
field is dressed with an inhomogeneous rf field to produce the adiabatic trapping
potential.

2.4 Conclusion
In this chapter, we reviewed the proposed and realized magnetic waveguides. In
particular when considering the realization of a circular waveguide on an atom
chip, the TOP configuration is the straight forward one to implement as it does
not require any external bias field. However, the TOP guide is prone to cloud
fragmentation due to the use of dc currents. Nevertheless it is still possible to
avoid this problem by positioning the guide sufficiently far (> 100 µm) from the
chip surface. The minimal distance depends on the root mean squared roughness
of the wires, which depends on the fabrication technique.

Here we also discussed a novel solution to generate a circular waveguide on
an atom chip, the modulated TOP guide. Although the presented results are
obtained for a linear waveguide, they remain valid for a large radius ring trapping
potentials as confirmed from our numerical simulations. The modulated TOP
guide is naturally free from roughness due to the use of alternating currents, but
the requirement of gravity compensation by a field gradient results in a reduction
of the transverse trapping frequencies. They are on the order of few hundred Hz,
relatively large compared to the typical frequencies of cold atom experiments but
one order of magnitude smaller than the typical atom chip trapping frequencies.
The depth of the modulated TOP guide is of the order of 1 µK, which still
allows the confinement of Bose-Einstein condensed atoms. In Chapter 4, we will
discuss the effect of this relatively low trapping frequencies on the monomode
propagation of cold atoms in the ring waveguide.

We can also generate a toroidal guide with trapping frequencies on the order
of kHz for the guided Sagnac interferometry on an atom chip. This requirement
is important to reduce possible biases when using the interferometer for inertial
sensing. The next chapter will be devoted to this investigation and we will discuss
a new configuration to generate a smooth toroidal tight guide using three wires.



Chapter 3
Modulated waveguides and simula-
tion of the atom dynamics

In this chapter, we present a novel magnetic waveguide using three wires on
an atom chip. This guide is based on the current modulation technique [44]
which allows to address simultaneously the problem of Majorana losses and cloud
fragmentation due to the proximity of the waveguide to the chip surface. The
new solution that we found to tackle simultaneously both problems is to add a
small phase shift to the phase difference between the central and the external
microwire currents. This idea allows the realisation of an intermediate regime
where the roughness is still suppressed to a level compatible with matterwave
propagation, generating at the same time a non zero bias field. This chapter
also includes a study of the adiabaticity of atomic spin, in the time dependent
magnetic field of our proposed modulated guide.

3.1 Generation of bias field through modulation
We will start by considering the configuration of three wires to generate the
linear guide discussed in the previous chapter. Let the currents in the wires be
modulated at a frequency ω so as to overcome the roughness problem. In order to
create a bias field that is needed for the guide, the currents in the external wires
need to be modulated with a phase difference of π with respect to the current
in the central wire. Suppose that the currents in the central and external wires
have the form I1 = A1 cos(ωt) and I2 = A2 cos(ωt + π + φ) respectively, where
φ is an additional phase shift. Then, the field due to the external wires cancels
that of the central wire at a distance d from the chip surface, which is given by

d(t) = l

√√√√ A1 cos(ωt)
2A2 cos(ωt+ φ)− A1 cos(ωt) . (3.1.1)

If the phase shift is exactly equal to zero (φ = 0) the time dependence in the
position of the guide vanishes. And the guide is formed at the same distance
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as in the unmodulated case. On the other hand, if a small phase shift φ << π
is introduced, the position of the guide becomes time dependent. Therefore,
modulating the currents with a phase shift slightly different from zero moves the
position of the guide centre. The time dependence in the position of field zero
can be seen as arising from an additional field generated at the guide centre. To
see this, let us write the total magnetic field in terms of the field generated by
each wire

B(r, t) = B1(r) cos(ωt) + B2(r) cos(ωt+ φ) + B3(r) cos(ωt+ φ) , (3.1.2)

where r = x i + z k and B1(r) is the field due to the central wire with an
amplitude A1 and B2(r), B3(r) are the fields due to the external wires with an
amplitude A2. If the phase difference φ is small, we can approximate the total
field as

B(r, t) ≈ BQ(r) cos(ωt) + φBb(r) sin(ωt) , (3.1.3)
where BQ(r) = B1(r)+B2(r)+B3(r) is the quadrupole guide field and Bb(r) =
−B2(r)−B3(r) is the field generated by the two external wires. Therefore, we
find that current modulation with a phase shift generates an extra field at the
trap centre, with an amplitude scaling linearly with the additional phase shift
φ. Close to the trap center Bb(r) can be taken as a constant and is equal to the
field due to the central wire

Bb(r) = Bb = −µ0A1

2πd i . (3.1.4)

Although this approximation is not valid if the phase shift φ between the currents
is relatively large or if we consider a region far from the guide centre it allows
to gain some physical intuition on the guide seen by the atoms during their
motion. When the above approximation is not valid, a full calculation of the
magnetic fields is necessary. Therefore, to obtain completely reliable results we
use the exact expressions of the fields in all the results and plots in the subsequent
sections.

3.2 Adiabatic guide with tunable radius
If we modulate the currents with a non zero phase difference φ, the instantaneous
field zero goes through the trapping region twice (line of red crosses) in every
modulation period as we can see in Fig.3.1(a). This can reduce the lifetime of the
guided atoms due to Majorana losses. However, the problem can be circumvented
simply by applying an additional bias field B0 perpendicular to the chip, which
can be produced by a pair of Helmholtz coils. The effect of this additional bias
field can be understood, by considering the total magnetic field around the guide
centre

B(r, t) = BQ(r) cos(ωt) + φBb sin(ωt) +B0 k , (3.2.1)
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using BQ(r) ≈ bz i + bx k we can approximate the total field as

B(r, t) = [bz cos(ωt) + φBb sin(ωt)] i + [bx cos(ωt) +B0] k . (3.2.2)

The position of the field zeros as a function of time is given by

x = − B0

b cos(ωt) , z = −φBb

b
cot(ωt) . (3.2.3)

We can see the trajectory followed by the field zero in Fig.3.1, and in particular
we can see how the additional bias field pushes the field zeroes from the trap-
ping region, improving the guide stability against spin losses. If the fields are
modulated faster than the typical transverse oscillation frequencies, the atoms
experience a time-averaged potential. Under this adiabatic approximation, the
potential experienced by the atoms is

Vavg(r, φ, B0) = 2π
ω
µBgFmF

∫ 2π/ω

0
|B(r, t)|dt . (3.2.4)

From the equations 3.2.3 and the numerical results obtained using Eq.3.2.4, we

(a) (b)

Figure 3.1 Time-averaged potential in the absence of the bias field
(a) and in the presence of a 1.2 G bias field (b). In both cases currents
are modulated with amplitudes A1 = 400 mA and A2 = 267 mA with
a phase difference of φ = π/50. The path followed by the field zeros
is shown in red, and the exclusion of the field zeros from the trapping
region can also be seen in Fig.3.1(b).

observed as expected that the waveguide becomes more adiabatic as the strength
of the bias field B0 and the phase shift φ are increased.

So far we have considered fixed radius toroidal guide configurations. The
guide radius is mostly determined by the radius of the central wire and the sep-
aration between the wires, which are fixed once the chip is fabricated. However,



44 Chapter 3. Modulated waveguides and simulation...

having a guide with adjustable radius can be advantageous, as we will see in the
next chapter. In fact, the tunability of the guide radius can be achieved simply
by adding an additional oscillating field B1 cos(ωt) perpendicular to the chip. To
understand how this tunability works, let us consider the field close to the guide
centre

B(r, t) = [φBb sin(ωt) + bz cos(ωt)] i + [bx cos(ωt) +B0 +B1 cos(ωt)] k . (3.2.5)

Notice that the additional field can be simply produced by adding an ac current
to the Helmholtz coils. However, this oscillating current must be phase locked
to the current in the central wire. The time dependent coordinates of the field
zero is now given by

x = −B1

b
− B0

b cos(ωt) , z = −φBb

b
cot(ωt) . (3.2.6)

Due to the additional oscillating field, the field zero oscillates about a point
x = −B1/b excluding a region of size B0/b on either side of it, i.e. the position
of the guide gets displaced by an amount proportional to the strength of the
oscillating field. The effect of this oscillating field can be verified by comparing
Fig.3.2 with Fig.3.1(b).

Figure 3.2 Time-averaged potential of a guide after the addition of a
0.7 G oscillating magnetic field perpendicular to the chip. The guide
is shifted by approximately 1.5 µm.

An important feature of this configuration is that the additional oscillating
field merely shifts the position of the guide while the gradient at the trap centre
is still the same.
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3.3 Semiclassical simulations of the atom dynamics

Time dependent potentials are usually described by considering a time average of
the magnetic field, which is only valid in the adiabatic limit. To understand the
adiabaticity of the atomic spin in the modulated waveguide proposed here, we
numerically integrate the classical equations of motion taking into account the
spin dynamics. The equations of motion of an atom in the direction transverse
to the guide are given in our case by [93, 94, 95, 96]

m
d2x

dt2
= µ∂x(n ·B(r, t)) , (3.3.1)

m
d2z

dt2
= µ∂z(n ·B(r, t)) , (3.3.2)

dn
dt

= γµn×B(r, t) , (3.3.3)

where γ = 1/~ and n is a unit vector in the direction of the magnetic moment. As
we saw previously, the time dependent magnetic field generated by three straight
wires with modulated currents is

B(r, t) = [bz cos(ωt) + φBb sin(ωt)] i + [bx cos(ωt) +B0]k . (3.3.4)

Substituting this field in the equations of motion, we get the following expressions

m
d2x

dt2
= −µBgFnzb cos(ωt) , (3.3.5)

m
d2z

dt2
= −µBgFnxb cos(ωt) , (3.3.6)

dnx
dt

= −γµBgFny[bx cos(ωt) +B0] , (3.3.7)
dny
dt

= −γµBgF{nz[bz cos(ωt) + φBb sin(ωt)]− nx[bx cos(ωt) +B0]} , (3.3.8)
dnz
dt

= γµBgFny[bz cos(ωt) + φBb sin(ωt)] . (3.3.9)

To integrate the equations numerically, we first rewrite the above equations in
dimensionless form. The spacing between the wires l, gives a length scale and
the inverse of modulation frequency gives a time scale. Therefore, we introduce
the dimensionless variables X = x/l and T = ωt which automatically define a
scale for velocity Vx = vx/lω, Vz = vz/lω. With this definitions, we end up with
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the following set of dimensionless coupled equations
dX

dT
= Vx , (3.3.10)

dVx
dT

= −α1nz cos(T ) , (3.3.11)

dZ

dT
= Vz , (3.3.12)

dVz
dT

= −α1nx cos(T ) , (3.3.13)

dnx
dT

= −α2ny(X cos(T ) + α4) , (3.3.14)

dny
dT

= −α2[nz(Z cos(T ) + α3 sin(T ))− nx(X cos(T ) + α4)] , (3.3.15)

dnz
dT

= α2ny[Z cos(T ) + α3 sin(T )] , (3.3.16)

with the dimensionless constants given by

α1 = µBgF b

mlω2 , (3.3.17)

α2 = γµBgF bl

ω
, (3.3.18)

α3 = φBb

bl
, (3.3.19)

α4 = B0

bl
. (3.3.20)

We numerically solve the above coupled equations for a given set of initial con-
ditions. To check the stability of the guiding, we placed the atom at different
locations and align initially the atomic spin along the local direction of the in-
stantaneous field. Notice that the magnitude of unit vector n is a conserved
quantity and can be used to test the numerical accuracy of the simulation.

3.3.1 Determination of a set of guide parameters for stable
dynamics

Currents in the wires, phase shift between the currents, the strength of the bias
field perpendicular to the chip and the modulation frequency of the currents
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must be chosen so that the guide is stable for the atom internal and external
degrees of freedom dynamics with tight and deep transverse confinement. Using
numerical simulations of the time-averaged potential and the atom dynamics, we
identify the parameter range, for which a stable guide is possible.

Choice of currents

The presence of the bias field and the phase shift significantly reduce the
trapping frequencies. In order to achieve trapping frequencies of the order of few
kHz, our numerical simulations suggest that it is necessary to use currents in
the order of few hundreds of milliamperes. For instance, we take the amplitudes
of the oscillating currents to be 400 mA and 267 mA in the central and external
wires, respectively. For these parameters the guide is formed approximately at a
distance 26 µm from the chip surface and the quadrupole field gradient close to
the guide centre is b = 3 kG/cm.

(a) Transverse coordinates of an atom moving
in the modulated guide.

(b) Angle between the atomic spin and the in-
stantaneous field seen by the atoms.

Figure 3.3 Results obtained from a numerical simulation of atom
dynamics in a guide with currents modulated at ω = 2π × 15 kHz.

In the figure 3.3, we show the external and internal degree of freedom dynam-
ics. In this simulation, the temperature of the atom cloud is taken to be 500 nK
and the observed, from these trajectories (see Fig.3.3(a)), transverse trapping
frequencies are ωx = 2π× 1.4 kHz and ωz = 2π× 3.5 kHz. Micro motion about
the mean trajectory, are visible in Fig.3.3(a) are due to non-adiabatic effects.
They are due to imperfect adiabatic following of the magnetic field by the spin.
For the parameters considered in the simulation, we observe that the angle be-
tween the atomic spin and the local magnetic field is always less than 1◦ (see
Fig.3.3(b)).



48 Chapter 3. Modulated waveguides and simulation...

Phase φ and bias field B0

The adiabaticity of the atom spin depends on φ and B0 as demonstrated in
Fig.3.4(a).
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Figure 3.4 Numerical computation of the fields due to the three
straight wires separated by 15 µm. a) Trajectory of the field zero
over one modulation period for different φ and B0. Both these pa-
rameters have to be chosen to keep the field zero as far as possible
from the trapping region. b) Time-averaged potential for φ = π/30
and B0 = 1.5 G, the field zero’s trajectory is shown in red color. The
point marked in cyan has the lowest potential in the path traversed by
the field zero and it is used to compute the trap depth.

The choice of the guide parameters determines how far the instantaneous field
zeros are located with respect to the trap centre. The phase difference between
the currents in the central and external wires has to be chosen carefully, and as
mentioned earlier, the perpendicular bias field helps to push the magnetic field
zeros away from the trapping region. IncreasingB0 moves the field zero trajectory
farther from the trapping region, consequently the guide becomes more elongated
along the x-axis as we can see in Fig.3.4(a). On the other hand, increasing the
phase difference φ also makes the guide more adiabatic while weakening the
confinement along the vertical axis. If we increase φ and B0 indefinitely, the
time-averaged potential opens up and the guide breaks down. Moreover, the
approximation of small phase difference (Eq.3.1.3) is not valid for large phase
shifts.

To investigate the effect of the φ and B0 on trap depth we numerically evalu-
ated the time-averaged potential. A point on the field zero trajectory that has the
lowest time-averaged potential is used to compute the trap depth (see Fig3.4(b)).
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From these results we can see that the trap depth usually increases with φ and
B0 up to about 8 µK (for the chosen guide parameters) before the guide fails.
We observe stable motion, when φ ∈ (π/150, π/30) and B0 ∈ (0.7 G, 2 G).
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Figure 3.5 Trap depth of the time-averaged potential measured from
a numerical computation of the fields due to three straight wires sep-
arated by 15 µm. a) Trap depth vs. phase difference between the
currents with a bias field of 1.5 G. b) Trap depth vs. bias field per-
pendicular to the chip with a phase difference of π

70 rad.

Modulation frequency ω

The trap frequencies in the transverse direction are estimated from the atom
trajectories computed for φ = π/70 rad and B0 = 1.5 G. The obtained values
are ωx = 2π× 1.4 kHz and ωz = 2π× 3.5 kHz. The magnetic field at the guide
centre is always greater than B0, therefore close to the guide centre at any given
time the instantaneous Larmor frequency is at least ωL = µBgFmFB0

~ . Choosing
the modulation frequency such that ωx, ωz << ω << ωL automatically guaran-
tees the adiabaticity of the atomic spin and the external degree of freedom. We
found stable atom motion for frequencies above 10 kHz. However, increasing
modulation frequencies beyond 30 kHz was found to increase both, the ampli-
tude of oscillations, and the angle between the spin and the magnetic field. In
fact stable trapping was observed upto frequencies as high as few hundred kHz,
but the angle between the instantaneous field and the spin was found to oscillate
with an amplitude as high as 40◦, indicating a mixing of Zeeman levels. The usual
time-averaged description of the potential is not valid in this regime. Though the
modulation frequency is much less than the Larmor frequency ωL/2π = 2 MHz
for a bias field B0 as the one considered here, equal to 1.5 G.

The angle between the instantaneous field and atomic spin was used to check
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Guide parameter value
Current in the central wire (A1) 400 mA
Current in the external wires (A2) 267 mA

Quadrupole gradient (b) 3 kG/cm
distance between guide and chip (d) 26 µm

Bias field (B0) 1.5 G - 2 G
Phase difference (φ) π/30 - π/150

Modulation frequency (ω) 10 kHz - 30 kHz

Table 3.1 A set of parameters for which modulated guide is adiabatic
for a 87Rb atom in |F = 2,mF = 2〉 state.

the adiabaticity of the atomic spin. For the guide parameters we used here,
the angle is found to be less than one degree which indicates that the guide is
adiabatic and shows the validity of the time-averaged potential description (see
Fig.3.3(b)). Theoretical studies of the motion of atoms in a TOP trap predicted
small oscillations about the mean trajectory due to the non-adiabatic spin dy-
namics in the time-dependent magnetic field [95]. Numerical simulations of the
atom trajectory show similar effects in our guide as we can see in Fig.3.3(a).

Toroidal waveguide

Because of the important computational costs associated to the elliptic inte-
grals determining the magnetic field of a ring waveguide, we focussed here on the
simulations of the atom dynamics in linear modulated guides. To estimate the
accuracy of the quantitative results we obtained, we compute the guide charac-
teristics that change when going from a linear geometry to a toroidal one. This
characteristics are the guide height and position, and the magnetic field gradi-
ents. Indeed, the waveguide gets displaces slightly towards the centre and this
descends towards the chip surface due to the ring curvature.

A toroidal waveguide can be created with three concentric wires with radii r1,
r2 = r1+l and r3 = r1−l, by choosing the direction of the currents in the wires as
shown in Fig.3.6. In Fig.3.7 we plot the guide position and height as a function
of the central microwire radius r1. As we can see in this figure, when we increase
r1 (approaching the linear waveguide limit), the trap height tends towards a
constant value which coincides with the one obtained for a linear waveguide. On
the other hand, the form of the potential close to the trap centre is found to
be independent of the radius of the central loop for r1/l >> 1. Therefore, if
the guide radius satisfies r1/l >> 1, the formula for the guide height and the
field gradient close to the trap centre in the linear guide are still applicable to
the toroidal guide. As long as the radius of the central loop is much larger than
the separation between the wires, the effect of the curvature of the loops will
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Figure 3.6 Configuration of the wires showing the toroidal guide.

be limited to produce a deflection, bending of the trajectories of the atoms such
that they remain guided in the torus. As we will see in the next chapter, the
guide curvature will be responsible for a transverse heating experienced by the
atoms during their propagation in the guide. This effect and its consequences
for atom interferometry are investigated classically and quantum mechanically.
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Figure 3.7 Toroidal guide position in units of the separation between
the wires for I1

I2
= 1.5 at constant separation between the wires.

Practical considerations

From the implementation point of view, we plan to fabricate a chip with a central
wire radius of 500 µm and the separation between the wires of 15 µm. Each wire
has a square cross-section of size 3 µm× 3 µm. By neglecting the resistance due
to the terminals (assuming perfectly closed loops), the resistance1 of the inner

1We compute the resistance with the equation R = 2πρr0
A and the resistivity of gold at
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wire is 7.4 Ω, central wire is 7.6 Ω and the outer most wire has a resistance of
7.9 Ω. The self inductance of the wires are 3.3 nH, 3.42 nH and 3.54 nH for the
inner, central and outer wires, respectively. With the above values, the cut-off
frequency R/L is on the order of 1 GHz, which is well above the modulation
frequencies (∼ kHz) that are necessary for the modulated guide.

3.4 Conclusion
A magnetic waveguide using the current modulation technique is presented. The
use of alternating currents to generate the waveguide helps to overcome the
roughness problem, which is a critical technical limitation in the realisation of
circular waveguides for wavepacket propagation on an atom chip. A novel solu-
tion is introduced here base on the modulation to generate a bias field with a
same micro wires used to produce the guide. With an additional bias field per-
pendicular to the chip surface we improve the guide stability against Majorana
losses.

We have also discussed in this chapter a scheme to tune the position of the
guide by the addition of an oscillating field perpendicular to the chip. Using
numerical simulations of the atoms dynamics, we identified the range of param-
eters for which the guide is tight and the atomic motion is stable and adiabatic.
The numerical tools discussed in this chapter are essential as they can serve as
a roadmap to the optimal design and realization of a circular waveguide.

300 K is 2.2× 10−8.



Chapter 4
Matterwave interferometry with prop-
agating atoms

Guided Sagnac interferometry is a promising solution for inertial sensing ap-
plications owing to the allowed long interrogation times. However, the coherent
guiding of the matterwaves requires a careful study of the guiding potential. The
guiding potential should not induce any systematic phase shifts or any such ef-
fects must be well quantified and removed in order to extract the interferometric
signal. In section 4.1, we discuss the motion of an atom in a toroidal guide from
the classical and quantum mechanical points of view. In section 4.2, using a 2D
model we investigate the heating of the atoms in the guide and the conditions for
the transverse monomode matterwave propagation. This study allows to obtain
corrections to the Sagnac phase and the scale factor of the interferometer. We
consider the two situations when the interferometer is operated with an ultra
cold gas and with a cloud of thermal atoms. In both cases the effect of the atom
temperature on the interference signal contrast is analysed.

4.1 Atom propagation in a toroidal guide

In a toroidal waveguide, the transverse and longitudinal motion of the atoms are
coupled due to the centrifugal force. If an atom is launched tangentially along the
guide, for an azimuthal free propagation, due to the interplay between the radial
and longitudinal degrees of freedom, the transverse energy of the atom increases.
Therefore, a study of the consequences of this "transverse heating" is necessary in
the design of a circular waveguide for Sagnac interferometry [97, 98]. This heating
can excite the transverse modes of the waveguide. In order to achieve a good
fringe contrast, atom propagation in the guide has to be monomode. Motivated
by a need to identify the guide parameters and the launching conditions for which
atom propagation is monomode, we analyse the motion of atoms in a toroidal
guide, classically and quantum mechanically .

53
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4.1.1 Excitation of transverse modes: Classical analysis
Let us consider a waveguide of radius r0, and let us suppose that the transverse
potential of the guide is harmonic with trapping frequencies ωr and ωz in the
radial and vertical directions, respectively. The magnetic potential of an atom
in the toroidal guide can be taken as [99]

V (r, z) = 1
2mω

2
r(r − r0)2 + 1

2mω
2
zz

2 . (4.1.1)

We will assume that the atoms are initially held at a given location on the guide
at r = r0 and z = 0. We assume that the atoms are launched in the guide
with an exact speed v0 tangential to the guide, without any radial component
i.e. ṙ(0) = 0. As there are no forces in the azimuthal direction, the angular
momentum (l = mv0r0) of the atom is an integral of motion. In fact since l
is an integral of motion, the atoms launched in a plane XY, located at a given
coordinate Z, will remain on this plane. The motion of the atom in the vertical
z direction is trivial and therefore, it will not be considered hereafter. The
equations governing the radial motion of the atom are therefore

mr̈ = −mω2
r(r − r0) + mv2

t

r
, (4.1.2)

mvtr = l , (4.1.3)

where vt is the velocity of the atom along the guide, such that vtr = const and
vt = v0 when r = r0. Notice that vt changes as the atom moves radially and
this leads to an exchange of energy between the transverse and the longitudinal
motion. After eliminating vt in the above equations we obtain

mr̈ = −mω2
r(r − r0) + l2

mr3 . (4.1.4)

To compute the amount of energy that is transferred to the transverse direction,
we first Taylor expand 1/r3 about r0 up to first order in r − r0, which is valid
if the displacement from the centre of the guide is smaller than the guide radius
i.e., if |r − r0| < r0

mr̈ = −mω2
r(r − r0) + l2

mr3
0
− 3l2
mr4

0
(r − r0) . (4.1.5)

By introducing the effective radial trapping frequency ωeff ≡ ωr

√
1 + 3l2

m2r4
0ω

2
r
, the

above equation can be written as

mr̈ = −mω2
eff (r − r0 − ε) , (4.1.6)

where the guide centre displacement ε is defined by the equation

ε ≡ l2/ω2
effm

2r3
0 . (4.1.7)
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Figure 4.1 Classical trajectory of an atom launched in a guide of
radius r0. The atom position oscillates radially about r0 + ε, where
the amplitude of the motion ε depends on the launch velocity and the
radial trap frequency. Note that the radial coordinate of the atom is
always greater than r0.

Therefore, the motion of the atom is approximately harmonic with an effective
radial trapping frequency ωeff about a point at a distance r0 + ε. Solving Eq.
4.1.6, using the initial conditions r(0) = r0 and ṙ(0) = 0, we obtain the radial
coordinate of the atom as a function of time

r(t) = r0 + 2ε sin2(1
2ωeff t) . (4.1.8)

Therefore, after a tangential velocity kick atoms oscillate radially such that r(t) ≥
r0 as depicted in Fig.4.1.

The deflection of the atom trajectories induced by the guide curvature trans-
lates into a transverse heating of the cloud. Indeed, let us consider that the
atoms are initially located at r = 0. Since ṙ(0) = 0, the initial transverse energy
is E(0) = 0. After a time t, the increase in the transverse energy is given by

∆E = E(t)− E(0) = 1
2mṙ

2 + 1
2mω

2
r(r − r0)2 , (4.1.9)

which can be approximated as

∆E ≈ 2mε2ω2
r sin2(1

2ωrt) . (4.1.10)

Therefore, from the Eq.4.1.10 we can see that the transverse energy oscillates
periodically, due to the exchange of energy between the transverse and longi-
tudinal motional degrees of freedom. The time-averaged transverse energy over
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one oscillation period evaluates to

〈∆E〉 = mv4
0

ω2
rr

2
0
. (4.1.11)

We can notice from the above expression that the transverse heating 〈∆E〉 in-
creases rapidly with the launch velocity (∝ v4

0), while heating decreases with the
guide radius and radial trapping frequency, as expected. As an example, for a
guide of 500 µm radius, the transverse heating as a function of the launch veloc-
ity and trapping frequency is shown in Fig.4.2. Thus, for a given waveguide, the
launch velocity must be chosen so as to keep the heating as low as possible. The
effect of the heating can be estimated by comparing the transverse energy to the
energy separation En+1 − En = ~ωr between the radial modes, if the problem
would have been treated quantum mechanically. For single mode propagation,
we expect the transverse heating to be lower than the energy separation, i.e.

mv4
0

ω2
rr

2
0
≤ ~ωr . (4.1.12)

For a given launch velocity and guide radius, the above inequality defines a

Figure 4.2 Time-averaged transverse heating 〈∆E〉 of the atom in
a guide of radius 500 µm. The dashed line shows the critical trap
frequency ωc for a given launch velocity. Transverse energy increases
rapidly with the launch velocity.

critical radial trapping frequency, at which the transverse heating is enough to
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excite a transverse mode

ωc = 3

√√√√mv4
0

~r2
0
. (4.1.13)

Alternatively, the critical trap frequency can be obtained from a simple scaling
argument. The extent of the wavefunction in a harmonic oscillator of frequency
ωr is

√
~/mωr. We expect that the transverse excitations are negligible if the

displacement in the equilibrium position ε due to the velocity kick is smaller than√
~/mωr, i.e.

ε = l2

ω2
effm

2r3
0
≈ v2

0
ω2
rr0

<

√
~

mωr
(4.1.14)

=⇒ ωr ≥ ωc = 3

√√√√mv4
0

~r2
0
. (4.1.15)

Therefore, the radial trapping frequency ωr must be greater than the critical
trap frequency ωc for monomode transverse propagation. For instance, if we
consider a 87Rb atom launched in a guide of 500 µm radius with twice the recoil
velocity v0 = 11 mm/s, then the critical radial trapping frequency ωc/2π comes
out to be 92 Hz. The above semi-classical results give an indication as to when
the transverse heating is significant. In the next section, we present a quantum
mechanical calculation of the excitation probability after a sudden tangential
velocity kick along the azimuthal direction.

4.1.2 Excitation of transverse modes: Quantum mechanical
analysis

The time independent Schrodinger equation of an atom in a toroidal guide can
be expressed in cylindrical coordinates as

[− ~2

2m(∂2
r + 1

r
∂r + 1

r2∂
2
θ +∂2

z )+ 1
2mω

2
r(r−r0)2 + 1

2mω
2
zz

2]Ψ(r, θ, z) = EΨ(r, θ, z) .
(4.1.16)

Using the ansatz, Ψ(r, θ, z) = R(r)Θ(θ)Z(z), justified by the decoupling of the
dynamics of the different degrees of freedom, the eigenvalue problem can be
expressed as

[− ~2

2m(R̈ + 1
r
Ṙ− l2θ

r2 ) + 1
2mω

2
r(r − r0)2]R(r) = ErR(r) , (4.1.17)

Θ̈(θ) = −l2θΘ(θ) , (4.1.18)

− ~2

2mZ̈(z) + 1
2mω

2
zz

2Z = EzZ(z) , (4.1.19)

Er = E − Ez . (4.1.20)
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In the azimuthal direction, periodic boundary conditions constrain the quantum
number lθ to be an integer and the corresponding eigenfunctions are the plane
waves exp(±ilθθ). Along the vertical axis, the equation is an harmonic oscillator
with energy levels Ez = (nz+ 1

2)~ωz, where nz is a non negative integer. The non
trivial equation for the radial wavefunction can be recast as a harmonic oscillator
equation by using the transformation R̃ =

√
rR, which results in

− ~2

2m
¨̃R + [12mω

2
r(r − r0)2 + ~2(4l2θ − 1)

8mr2 ]R̃ = ErR̃ . (4.1.21)

Further analysis can be simplified, if we treat the motion along the guide classi-
cally considering a large orbital angular momentum quantum number lθ. Indeed,
in a guide of radius 500 µm, lθ = mv0r0/~ >> 1 if the launch velocity is 11 mm/s.
We can therefore replace ~lθ with the classical parameter value l. Initially the
atoms are localized at a given position in the guide and therefore l = 0

− ~2

2m
¨̃R + [12mω

2
r(r − r0)2 − ~2

8mr2 ]R̃ = ErR̃ . (4.1.22)

The effect of the term ~2/8mr2 in the above equation can be neglected if the
radius of the guide is much larger than the typical size of the wavefunction, i.e.,
if r0 >>

√
~/mωr. In fact this term merely shifts all the energy levels by ~2/8mr2

0
and under this approximation the lowest energy state is a Gaussian

R̃ ∝ e−
mωr
2~ (r−r0)2

, (4.1.23)

R ∝ 1√
r
e−

mωr
2~ (r−r0)2

. (4.1.24)

The wavefunction is usually localized around r0 for a sufficiently tight guide, and
the integral to normalize the radial wavefunction R can be approximated as

N−2 =
∫ ∞

0
r|R|2dr ≈

∫ ∞
−∞

r|R|2dr =
√

π~
mωr

. (4.1.25)

Finally, the radial ground state wavefunction can be approximated as

R0 = (mωr
π~r2 )1/4exp(−mωr2~ (r − r0)2) . (4.1.26)

Notice that the radial wavefunction differs from the harmonic oscillator wave-
function only in the normalization constant. After the tangential velocity kick,
the equation for the radial wavefunction can be approximated as

− ~2

2m
¨̃R + [12mω

2
r(r − r0)2 + l2

2mr2 ]R̃ = ErR̃ , (4.1.27)
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which is valid, since l = mv0r0 >> ~ for launching velocities of few millimetres
per second in a 500 µm guide. The term l2/2mr2 can be Taylor expanded about
r0 up to second order

− ~2

2m
¨̃R+{1

2mω
2
r(r−r0)2 + l2

2mr2
0
[1−2r − r0

r0
+3(r − r0)2

r2
0

]}R̃ = ErR̃ , (4.1.28)

which can be rewritten as

− ~2

2m
¨̃R + [12mω

2
eff (r − r0 − ε)2]R̃ = E ′rR̃ , (4.1.29)

E ′r = Er −
l2

2mr2
0

+ 1
2mω

2
effε

2 . (4.1.30)

The effect of the velocity kick can be seen as a change in the radial trapping
frequency with a slight displacement in the equilibrium position, which we have
already noticed in the classical treatment.

In summary, the effective radial Hamiltonian experienced by the atom is given
by (a similar treatment can be found in Dutta et al. [100] except that the authors
consider terms up to first order in the Taylor expansion of the centrifugal term)

Hr =

−
~2

2m
¨̃R + 1

2mω
2
r(r − r0)2R̃ t ≤ 0

− ~2

2m
¨̃R + 1

2mω
2
eff (r − r0 − ε)2R̃ t > 0

, (4.1.31)

the above assumption is valid if we assume that the tangential velocity change
happens at a time scale much shorter than the time scale of the radial oscillations.

Having derived the Hamiltonian governing the wavefunction dynamics, we are
now in the position to obtain the quantum mechanical behaviour of the atoms in
the toroidal guide. Suppose that the atoms are initially cold enough to occupy
the ground state of the Hamiltonian at t = 0, i.e.

Ψ0(r) = R0 = (mωr
π~r2 )1/4exp[−mωr2~ (r − r0)2] . (4.1.32)

Then, after the velocity kick, the atoms evolve under a new harmonic potential,
and the state |Ψ0〉 can be expressed as a linear combination of the new eigenstates
of the Hamiltonian, Hr(t > 0).

|Ψ0〉 =
∞∑
n=0

an |Ψ′n〉 , (4.1.33)

where an is the probability amplitude for the atom to be in the nth state after the
velocity kick. The probability amplitudes can be straightforwardly evaluated, in
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particular for the ground and three first excited states we obtain1

a0 = 〈Ψ′0 |Ψ0〉 =
√

2 (ωrωeff )
1
4

(ωr + ωeff )
1
2
e
−m2~

ωrωeff
ωr+ωeff

ε2

, (4.1.34)

a1 = 〈Ψ′1 |Ψ0〉 = −2ε
√
m

~
ω

5
4
r ω

3
4
eff

(ωr + ωeff )
3
2
e
−m2~

ωrωeff
ωr+ωeff

ε2

, (4.1.35)

a2 = 〈Ψ′2 |Ψ0〉 = − (ωrωeff )
1
4

(ωr + ωeff )
5
2

[ω2
r(1− 2mωeff

~
ε2)− ω2

eff ]e
−m2~

ωrωeff
ωr+ωeff

ε2

,

(4.1.36)

a3 = 〈Ψ′3 |Ψ0〉 = ε

√
2m
3~

ω
5
4
r ω

3
4
eff

(ωr + ωeff )
7
2

[3(ω2
r − ω2

eff )−
2mωeff

~
ω2
rε

2]e−
m
2~

ωrωeff
ωr+ωeff

ε2

.

(4.1.37)

For a guide radius of 500 µm, and for velocities in the range of [1 vr; 20 vr], the
effective radial trapping frequency can be approximated as ωr and the probability
amplitudes can be simplified as,

a0 = e−
mωr
4~ ε2 , (4.1.38)

a1 = −ε
√
mωr
2~ e−

mωr
2~ ε2 , (4.1.39)

a2 = 1√
8
mωr
~

ε2e−
mωr
4~ ε2 , (4.1.40)

a3 = −ε3
√

(mωr)3

48~3 e−
mωr
4~ ε2 . (4.1.41)

In general, the amplitude probability to be in the nth state is [101],

an = (−1)nεn
√

(mωr)n
2nn!~n e

−mωr4~ ε2 . (4.1.42)

The occupational probabilities of the first four transverse states after a velocity
kick are plotted in Fig.4.3. The probability to be in the excited states increases
with the launching velocity and decreases with the radial trapping frequency.
For instance, the probability to be in the ground state is given by

|a0|2 = e
−

mv4
0

2~r20ω
3
r = e

− ω3
c

2ω3
r . (4.1.43)

The Eq.4.1.43 implies that the critical trap frequency obtained from the semi-
classical arguments corresponds to a ground state occupation probability of
1/
√
e ≈ 0.6065. Iso-probability contours to be in the transverse ground state
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(a) Ground state probability. (b) First excited state probability.

(c) Second excited state probability. (d) Third excited state probability.

Figure 4.3 Density plots of the atomic occupation probability in the
v0−ωr plane. The ground and the first three excited states are plotted
for a guide of radius 500 µm. The dashed line in each plot indicates
the critical trap frequency given by the equation Eq.4.1.13.



62 Chapter 4. Matterwave interferometry...

2 4 6 8 10
launch velocity(2v

r
)

0.5

1

1.5

2

2.5

3
tr

ap
 fr

eq
ue

nc
y,
ω

r/2
π

(k
H

z)

0.1

0.1

0.6065

0.6065

0.9

0.9

0.9

critical trap frequency

Figure 4.4 Iso-probability lines to be in the ground state for a guide
of radius 500 µm. The iso-probability line 1/

√
e ≈ 0.6065 coincides

with the critical trap frequency (Eq.4.1.13) obtained by semi-classical
arguments.

after the velocity kick are shown in Fig.4.4. Expressing the probabilities to be
in the excited states, in terms of the critical trap frequency we get

|a1|2 = ω3
c

2ω3
r

e
− ω3

c
2ω3
r , (4.1.44)

|a2|2 = 1
8
ω6
c

ω6
r

e
− ω3

c
2ω3
r , (4.1.45)

|a3|2 = 1
48
ω9
c

ω9
r

e
− ω3

c
2ω3
r . (4.1.46)

Following Eq.4.1.42, the probabilities to be in the nth excited state can be ex-
pressed as

|an|2 = 1
n! [

ωc
2ωr

]3ne−
ω3
c

2ω3
r , (4.1.47)

which is nothing but a Poissonian distribution if we set α =
√

ω3
c

2ω3
r

|an|2 = α2n

n! e
−α2

. (4.1.48)

1Probability amplitudes are computed by extending the integration limits from −∞ to ∞
assuming that the wavefunctions are sufficiently localized around r = r0.
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The appearance of the Poissonian distribution suggests that the radial state can
be expressed as a coherent state. Indeed using Eq.4.1.42 the radial wavefunction
after the velocity kick can be written as a coherent state

|Ψ0〉 =
∞∑
n=0

an |Ψ′n〉 = e−
α2
2

∞∑
n=0

(−α)n√
n!
|n〉 = |−α〉 , (4.1.49)

where {|n〉} denote the usual number states of a harmonic oscillator. As long
as the trap frequency is well above the critical trap frequency, the excitation
probability can be kept relatively low, which preserves the monomode character
of the matterwave propagation in the guide.

4.2 Matterwave interferometry
In this section, we discuss the Sagnac effect in a guided atom interferometer
considering the effect of the guiding potential. We study the relevance of the
multimode propagation to the Sagnac phase shift and the contrast of the in-
terferometer. We focus here on a specific implementation, using double Bragg
diffraction where the internal states of the atoms are unchanged during the in-
terferometer sequence [102, 103]. In particular, the different stages of a guided
interferometer using Bragg pulses are shown in Fig.4.5. A π/2 Bragg pulse splits
an atom cloud into two, which is initially at rest in the lab frame. This pulse
launches the atoms along the guide with equal and opposite velocities in the lab
frame. The two counter propagating clouds come back to the launch point after
some time, where a second π/2 pulse is applied to interfere the clouds.

The rotation rate of the lab can then be obtained by measuring the population
of atoms in the different output momentum states of the interferometer. In fact,
the different momentum modes of the interferometer, after the application of a
π/2 pulse transform according to the equations

|0〉 π/2−−→ i√
2

(|−2~k〉+ |2~k〉) , (4.2.1)

|−2~k〉 π/2−−→ 1
2(− |2~k〉+ |−2~k〉) + i√

2
|0〉 ,

|2~k〉 π/2−−→ 1
2(|2~k〉 − |−2~k〉) + i√

2
|0〉 ,

that allows to read the phase information imprinted by the light pulses. We are
interested in this signal which carries the inertial effects acting on the interfer-
ometer. In section 4.2.1, we introduce the mathematical framework required to
analyse the operation of this guided atom interferometer, by assuming that the
guide is infinitely tight. In section 4.2.2, we present a more realistic model that
takes into account the radial potential of the guide. Finally, the effect of the
finite temperature of the atoms on the interferometer contrast is discussed in
section 4.2.3.
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a) b)
c)

d) e) f)

Figure 4.5 Illustration of the interferometry sequence as seen from
the lab frame. Images are to be read from left to right and from top
to bottom: a) input state of the interferometer; b) after the first π/2
pulse the cloud is split into two with momentum ±2~k; c) the position
of the two wavepackets after a time t = T/2; d) after completing one
rotation around the waveguide (t = 2T ), the wavepackets |2~k〉 and
|−2~k〉 acquire a relative phase Φ proportional to the lab’s angular
velocity; e) output state of the interferometer after the second π/2
pulse, where the phase information is imprinted on the population
of atoms in different states; f) the population in each state can be
extracted by imaging the clouds after a given separation time.
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4.2.1 1D interferometer model
We first consider a simple model, where the atoms are assumed to be confined
to a ring of radius r0, while the azimuthal direction is free. The Hamiltonian
describing the atom dynamics in the inertial reference frame is therefore

H = − ~2

2mr2
0
∂2
θ , (4.2.2)

whose eigenfunctions are plane waves characterized by an integer lθ and energy
Elθ

ψlθ = 1√
2π
eilθθ , (4.2.3)

Elθ = ~2l2θ
2mr2

0
. (4.2.4)

Let us assume that the lab frame is rotating about z axis with an angular velocity
Ω with respect to the inertial frame. If the atoms are launched in the guide with
a Bragg pulse, the three states involved in the interferometer are

ψl0 = 1√
2π
eil0θ ; l0 = mΩr2

0
~

, (4.2.5)

ψl+ = 1√
2π
eil+θ ; l+ = 2~kr0 +mΩr2

0
~

, (4.2.6)

ψl− = 1√
2π
eil−θ ; l− = −2~kr0 +mΩr2

0
~

. (4.2.7)

Initially, we assume that the atoms are at rest in the lab frame, i.e. ψ(t = 0) =
ψl0 . The wavefunction of the atoms after the first π/2 pulse is

ψ(t = 0+) = i√
2

(ψl+ + ψl−) . (4.2.8)

which after a free evolution of duration 2T = πmr0/~k seconds transforms into

ψ(t = 2T ) = e−i
H2T
~ ψ(t = 0+) . (4.2.9)

The wavefunction can be written as

ψ(t = 2T ) = i√
2
e−iEl+

2T
~ (ψl+ + eiΦψl−) , (4.2.10)

where the Sagnac phase Φ acquired due to the rotation of the lab frame (the
device) is given by

Φ = 8πmAΩ
h

, (4.2.11)
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and A = πr2
0 is the area enclosed by the interferometer. When the atoms return

to the launch point, another π/2 Bragg pulse is applied to recombine the two
counter propagating clouds. The wavefunction at the end of the interferometer
sequence up to an arbitrary global phase factor is

ψ(t = 2T+) = i(1 + eiΦ)
2 ψl0 + 1− eiΦ

2
√

2
(ψl+ − ψl−) , (4.2.12)

and the Sagnac phase Φ, is imprinted on the population of atoms in different
output momentum states with probabilities

Pl0 = Nl0

Nl+ +Nl0 +Nl−

= 1 + cos Φ
2 , (4.2.13)

Pl± = Nl+ +Nl−

Nl+ +Nl0 +Nl−

= 1− cos Φ
2 . (4.2.14)

After the interferometric sequence, the population of atoms in different output
momentum states can be determined by imaging the clouds after a free evolu-
tion, sufficient enough to spatially discriminate atoms in the different angular
momentum states.

Matrix formalism

Alternatively, we can model the interferometer using matrices. This formal-
ism allows to easily explore from the theoretical point off view different ways to
operate the interferometer. Let us consider the interferometer sequence previ-
ously discussed. The effect of a π/2 pulse on the different angular momentum
states involved in the interferometer can be taken into account with the matrix

Sπ
2

=


1
2

i√
2 −

1
2

i√
2 0 i√

2
−1

2
i√
2

1
2

 , (4.2.15)

where the 1st row corresponds to the state
∣∣∣ψl+〉, the 2nd row to the state |ψl0〉

and the 3rd row to the state
∣∣∣ψl−〉. With this convention, the initial state of the

interferometer is

|Ψin〉 =

0
1
0

 . (4.2.16)

The time evolution of the states during the free propagation, for a duration of
2T = πmr0/~k seconds is then given by the diagonal matrix

S2T =


e−i

(2~k+mΩr0)2
2m

2T
~ 0 0

0 e−i
(mΩr0)2

2m
2T
~ 0

0 0 e−i
(−2~k+mΩr0)2

2m
2T
~

 , (4.2.17)
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by factoring out the term e−i[
(2~k+mΩr0)2

2m + (−2~k+mΩr0)2
2m ]T~ , we can write S2T in terms

of the Sagnac phase Φ as

S2T = e−i
(mΩr0)2+(2~k)2

2m
2T
~

e
iΦ

2 0 0
0 e−i2πkr0 0
0 0 e−i

Φ
2

 . (4.2.18)

A second π/2 pulse is applied to recombine the counter propagating clouds.
The final state |Ψout〉 at the output of the interferometer can be computed by
multiplying the matrix Sπ/2S2TSπ/2 with the initial state |Ψin〉, which up to an
arbitrary global phase factor is given by,

|Ψout〉 = Sπ/2S2TSπ/2 |Ψin〉 =


1−eiΦ
2
√

2
i(1+eiΦ)

2
−1−eiΦ

2
√

2

 . (4.2.19)

Now, let us suppose that, instead of shining the second π/2 pulse we let the clouds
to freely propagate in the guide. Both the clouds meet again at the launching
point after another 2T seconds, if a π/2 pulse is now applied the output state is
given by

|Ψout〉 = Sπ/2S2TS2TSπ/2 |Ψin〉 =


1−e2iΦ

2
√

2
i(1+e2iΦ)

2
−1−e2iΦ

2
√

2

 , (4.2.20)

which is expected as the enclosed area of the interferometer is twice enlarged. In
general, if the clouds are recombined after 2nT seconds (or after n round trips)
the accumulated phase shift is simply nΦ i.e.

|Ψout〉 = Sπ/2(S2T )nSπ/2 |Ψin〉 =


1−eniΦ

2
√

2
i(1+eniΦ)

2
−1−eniΦ

2
√

2

 . (4.2.21)

This formalism is relevant for the study of quantum metrology protocols using
O(3) matrices to describe the engineering of atomic quantum states like, for
instance a spin squeezing.

4.2.2 2D interferometer model
The model discussed in the previous section neglects the motion in the radial
direction. Atom clouds propagating in a curved guide wiggle radially due to non
negligible centrifugal forces and has been observed experimentally in a curved
optical potential [104]. If we analyse the problem from an inertial frame, it is
clear that the centrifugal forces are different for the clockwise and the counter
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clockwise moving clouds, as they propagate with different angular momentum.
Therefore, the radial motion is different for both the clouds. As we will see, this
asymmetry in the radial motion leads to additional phase shifts and a loss in the
contrast of the interferometer if the counter propagating clouds do not overlap
at the end of the interferometer, especially when the radial trapping frequencies
are relatively low. To quantify such phenomena, we consider a realistic situation,
where the transverse potential of the waveguide is taken to be harmonic2

V (r) = 1
2mωr(r − r0)2 . (4.2.22)

If we neglect the interatomic interactions, the Hamiltonian governing the dy-
namics of the atom in an inertial frame is

H = − ~2

2m(∂2
r + 1

r
∂r + 1

r2∂
2
θ ) + V (r) . (4.2.23)

The eigenvalue problem can be simplified by using the ansatz ψ(r, θ) = 1√
r
R(r)Θ(θ),

which gives

− ~2

2m
d2R

dr2 + 1
2mω

2
r(r − r0)2R + (4l2 − 1)~2

8mr2 R = ER , (4.2.24)

d2Θ
dθ2 = −l2Θ . (4.2.25)

The solution of the azimuthal wavefunction is a plane wave, where l takes integer
values due to periodic boundary conditions. The equation for the radial wave-
function can be written as a harmonic oscillator equation by Taylor expanding
the centrifugal term3 l2~2/2mr2 about r0 up to second order, which results in

− ~2

2m
d2R

dr2 + 1
2mω

2
l (r − r0 − εl)2R = ElR , (4.2.26)

where the effective trap frequency ωl and the displacement in the equilibrium
position εl are defined by the expressions (see section 4.1)

ωl ≡ ωr

√√√√1 + 3l2~2

m2r4
0ω

2
r

, (4.2.27)

εl ≡
l2~2

m2r3
0ω

2
r

, (4.2.28)

2We ignore the potential in the z direction, as the motion in this direction is not coupled to
the azimuthal and radial motion and does not induce any excitations due to the propagation
along the guide.

3The term (4l2−1)~2

8mr2 can be approximated as l2~2

2mr2 if the launch velocities are of the order
of few millimeters per second for a guide of radius ∼ 500µm.
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and the eigenenergies are given by

E = El + l2~2

2mr2
0
− 1

2mω
2
l ε

2
l . (4.2.29)

The solution of Eq.4.2.26 can be expressed in terms of the Hermite polynomials
and El = (n + 1

2)~ωl. Therefore, for a given angular momentum number l, the
eigenfunctions of Eq.4.2.23 can be written as

ψn,l(r, θ) = 1√
2πr

Rn,l(r)eilθ , (4.2.30)

where Rn,l(r)4 denote the wavefunction of the nth excited state of the harmonic
potential 1

2mω
2
l (r − r0 − εl)2

Rn,l = (mωl
π~

)1/4 1√
2nn!

e−
mωl
2~ (r−r0−εl)2

Hn[
√
mωl
~

(r − r0 − εl)] . (4.2.31)

The eigenenergy of ψn,l is

En,l = (n+ 1
2)~ωl + l2~2

2mr2
0
− 1

2mω
2
l ε

2
l . (4.2.32)

At the beginning of the interferometer sequence, the atoms are at rest in the lab
frame. We assume that the atoms are cold enough to occupy only the ground
state of the radial potential with angular momentum l0, i.e.5

ψ(t = 0) = 1√
2πr

R0,l0e
il0θ . (4.2.33)

The wavefunction after the first π/2 pulse is

ψ(t = 0+) = 1
2
√
πr
R0,l0(eil+θ + eil−θ) . (4.2.34)

To compute the evolution of the wavefunction between the two π/2 pulses, we
need to evaluate the action of the operator e−2iHT/~ on each term in Eq.4.2.34,
which can be done easily if we express the radial part R0,l0 in the basis {Rn,l+}
and {Rn,l−} as

ψ(t = 0+) = 1
2
√
πr

[
∞∑
n=0

a+
n0Rn,l+e

il+θ +
∞∑
n=0

a−n0Rn,l−e
il−θ] , (4.2.35)

4The normalization constant (mωlπ~ )1/4 is obtained under the approximation,
∫∞

0 R2
n,ldr ≈∫∞

−∞R2
n,ldr = 1 and is valid if the wavefunction is sufficiently localised around r0 i.e., if√

~
mωl

<< r0.
5Here after, we do not indicate the explicit dependence of the radial wavefunction on r.
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where a+
n0 and a−n0 are the overlap integrals given by

a+
n0 =

∫ ∞
0

Rn,l+R0,l0dr , (4.2.36)

a−n0 =
∫ ∞

0
Rn,l−R0,l0dr . (4.2.37)

The wavefunction at t = 2T is then given by

ψ(t = 2T ) = 1
2
√
πr

[
∞∑
n=0

a+
n0e
−iEn,l+

2T
~ Rn,l+e

il+θ +
∞∑
n=0

a−n0e
−iEn,l−

2T
~ Rn,l−e

il−θ] ,

(4.2.38)
by noting that En,l± = (n+ 1

2)~ωl± + ~2l2±
2mr2

0
− 1

2mω
2
l±ε

2
l± , we can express Eq.4.2.38

by factoring the term exp[−i( ~2l2+
2mr2

0
− 1

2mω
2
l+ε

2
l+)2T

~ ] as

ψ(t = 2T ) = 1
2
√
πr

[
∞∑
n=0

a+
n0e
−i(2n+1)ωl+TRn,l+e

il+θ + eiΦT
∞∑
n=0

a−n0e
−i(2n+1)ωl−TRn,l−e

il−θ] ,

(4.2.39)

where the phase ΦT is

ΦT = Φ +m(ω2
l+ε

2
l+ − ω

2
l−ε

2
l−)T

~
. (4.2.40)

ΦT consists of the expected Sagnac phase Φ and a correction. The wavefunction
after the second π/2 pulse can be written as

ψ(t = 2T+) = 1
2
√
πr

[ i√
2

∞∑
n=0

(a+
n0e
−i(2n+1)ωl+TRn,l+ + eiΦT a−n0e

−i(2n+1)ωl−TRn,l−)eil0θ

(4.2.41)

+1
2

∞∑
n=0

(a+
n0e
−i(2n+1)ωl+TRn,l+ − eiΦT a−n0e

−i(2n+1)ωl−TRn,l−)(eil+θ − eil−θ)] ,

and therefore, the probabilities to be in different output momentum states at the
end of the interferometer sequence are6

Pl0 = 1
4

∞∑
m,n

[a+
m0a

+
n0δmne

i(m−n)2ωl+T + a−m0a
−
n0δmne

i(m−n)2ωl−T + 2a+
m0a

−
n0bmn cos(θmn + ΦT )] ,

(4.2.42)

Pl± = 1
4

∞∑
m,n

[a+
m0a

+
n0δmne

i(m−n)2ωl+T + a−m0a
−
n0δmne

i(m−n)2ωl−T − 2a+
m0a

−
n0bmn cos(θmn + ΦT )] ,

(4.2.43)
6δmn is the usual Kronecker delta.



4.2. Matterwave interferometry 71

where we introduce for the sake of compactness

θmn = (m+ 1
2)2ωl+T − (n+ 1

2)2ωl−T , (4.2.44)

bmn =
∫ ∞

0
Rm,l+Rn,l−dr . (4.2.45)

The summation on the first two terms in the probabilities can be done by noting
that ∑n a

+2
n0 = ∑

n a
−2
n0 = 1, and we get

Pl0 = 1
2[1 +

∞∑
m,n

a+
m0a

−
n0bmn cos(θmn + ΦT )] , (4.2.46)

Pl± = 1
2[1−

∞∑
m,n

a+
m0a

−
n0bmn cos(θmn + ΦT )] . (4.2.47)

To compute the contrast of the interferometer we rewrite the above probabilities
as

Pl0 = 1
2[1 + C cos(ΦT + Φ0)] , (4.2.48)

Pl± = 1
2[1− C cos(ΦT + Φ0)] , (4.2.49)

where the contrast C and the phase shift Φ0 can be expressed in terms of the
overlap integrals between the eigenstates

C = [[
∞∑
m,n

a+
m0a

−
n0bmn cos θmn]2 + [

∞∑
m,n

a+
m0a

−
n0bmn sin θmn]2]1/2 , (4.2.50a)

Φ0 = cos−1[ 1
C

∞∑
m,n

a+
m0a

−
n0bmn cos θmn] . (4.2.50b)

Due to the multimode propagation of the wavepackets, the contrast of the in-
terferometer depends on the angular velocity of the lab frame, the launching
velocity and the guide parameters (i.e. guide radius and radial trap frequency)
and gives rise to an additional phase Φ0. The additional phase Φ0, should either
be much below the Sagnac phase or well characterized in order to extract the
angular velocity of the lab frame. Despite the fact that the overlap integrals
between arbitrary states can be computed exactly [105, 101], it is hard to obtain
analytical expressions for the contrast. Nevertheless, numerical computations
can be done using the following analytical expressions for the overlap integrals

a+
n0 = 1√

n!
(−1)n∆n

+e
−

∆2
+
2 , (4.2.51)

a−n0 = 1√
n!

(−1)n∆n
−e
−

∆2
−
2 , (4.2.52)
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bmn =

√√√√ 2γ1/2

1 + γ
e[− γ

1+γ∆′2] m!n!
2m+n (γ − 1

γ + 1)
m+n

2

[m,n]∑
k=0

1
k!(n− k)!(m− k)!(

4γ1/2

γ − 1)k

(4.2.53)

Hm−k(∆′(
2γ2

γ2 − 1)1/2)Fn−k(∆′(
2γ

γ2 − 1)1/2) ,

where Fn(x) = inHn(ix) is a real polynomial, γ = ωl+/ωl− , [m,n] denotes the
minimum of the two integers (m,n) and

∆+ = (εl+ − εl0)
√
mωl0
2~ , (4.2.54)

∆− = (εl− − εl0)
√
mωl0
2~ , (4.2.55)

∆′ =
√
mωl−

2~ (εl+ − εl−) . (4.2.56)

Despite the complexity of the above expressions, the expressions for contrast
Eq.(4.2.50a) and the additional phase Eq.(4.2.50b) can be simplified if the trap
frequencies are approximately equal (tight guide approximation), but with an
appreciable difference in the displacements of the equilibrium position i.e., ωr =
ωl0 = ωl+ = ωl− and εl+ 6= εl−

7. First of all, the term θmn can be approximated as
θmn ≈ 2(m− n)ωrT . Secondly, the overlap integral bmn can be expressed simply
as [105, 101]8

bmn =


√

n!
m!∆

m−nLm−nn (∆2)e−∆2
2 , m > n

(−1)n−m
√

m!
n! ∆n−mLn−mm (∆2)e−∆2

2 , n > m

(4.2.57)

where Lnm denote the generalized Laguerre polynomials and ∆ = ∆+−∆−. Under
these approximations and with the help of the exact formulae for overlap inte-
grals, the contrast loss can be computed numerically by considering a sufficient
number of radial modes.

To gain some insight, let us consider the problem within the above men-
tioned approximations. In fact, the contrast loss and additional phases can be
analytically computed by rewriting the problem as a forced harmonic oscillator.
In the tight guide approximation, the radial wavefunction R0,l0 with an angular
momentum l±~ evolves according to the Hamiltonian

H± = −~
2

2m
d2

dr2 + 1
2mω

2
r(r − r0 − εl±)2 + l2±~2

2mr2
0
− 1

2mω
2
rε

2
l± . (4.2.58)

7This is a valid approximation if l2±~
2

m2r4
0ω

2
r
<< 1 and if ε± ∼

√
~/mωr. This approximation

amounts to considering only the first order Taylor expansion of the centrifugal term l2~2/2mr2.
8We remark once again that these integrals are obtained by extending the limits of the

integration from −∞ to ∞.
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By introducing the ladder operators a =
√

mωr
2~ [(r − r0 − εl0) + ~

mωr
d
dr

] and a† =√
mωr
2~ [(r − r0 − εl0)− ~

mωr
d
dr

], we can rewrite the above Hamiltonian as

H± = ~ωr[a†a+ 1
2 −∆±(a† + a)] + E± , (4.2.59)

where E± = l2±~
2

2mr2
0

+ ~ωr∆2
± − 1

2mω
2
rε

2
l± . The time evolution of the radial wave-

function R0,l0 (which we represent with |0〉 hereafter) is given by

|Ψ±〉 = ei
2TH±

~ |0〉 = e2iE±T/~e2iωrT [a†a+ 1
2−∆±(a†+a)] |0〉 . (4.2.60)

In order to compute the time evolution we multiply both sides with the displace-
ment operator D(−∆±) (a short introduction to the displacement operator and
some useful properties needed for this calculation are given in the Appendix)

D(−∆±) |Ψ±〉 = e2i(E±~ + 1
2ωr)TD(−∆±)e2iωrT [a†a−∆±(a†+a)]D(∆±)D(−∆±) |0〉 ,

(4.2.61)
using the properties of the displacement operator 9 we can simplify the above
expression in terms of coherent state,

D(−∆±) |Ψ±〉 = e2i[E±~ +( 1
2−∆2

±)ωr]T
∣∣∣−∆±e2iωrT

〉
. (4.2.62)

Finally, the radial state after a free evolution of 2T seconds is obtained by mul-
tiplying on both sides with D(∆±)10

|Ψ±〉 = e2i[E±~ +( 1
2−∆2

±)ωr]T ei∆
2
± sin(2ωrT )

∣∣∣∆±(1− e2iωrT )
〉
. (4.2.63)

The probability for the atoms to have an angular momentum l0~ after the last
π/2 pulse can be written as

Pl0 = 1
4 | |Ψ+〉+ |Ψ−〉 |2 , (4.2.64)

which upon simplification gives

Pl0 = 1
2[1 + C cos(φT + Φ0)] . (4.2.65)

9Here we make use of the following relations:

D(−∆±) |0〉 = |−∆±〉 ,

e2iωrTa†a |−∆±〉 =
∣∣−∆±e2iωrT

〉
,

D(−∆±)aD(∆±) = a+ ∆± ,
D(−∆±)a†D(∆±) = a† + ∆± .

10D(∆±)
∣∣−∆±e2iωrT

〉
= ei∆

2
± sin(2ωrT ) ∣∣∆±(1− e2iωrT )

〉



74 Chapter 4. Matterwave interferometry...

The contrast of the interferometer in the above equation is given by

C = | 〈Ψ+ |Ψ−〉 | = exp[−|(∆+ −∆−)(e2iωrT − 1)|2/2] = e−2∆2 sin2(ωrT ) .
(4.2.66)

Expressing ∆ in terms of the launch velocity and rotation rate of the lab frame,
the contrast can be finally written as

C = e
−

16mv2
0Ω2

~ω3
r

sin2(ωrT )
. (4.2.67)

Here we define the phases ΦT and Φ0 as

ΦT = 2[E− − E+

~
+ (∆2

+ −∆2
−)ωr]T = Φ +mω2

r(ε2l+ − ε
2
l−)T/~ , (4.2.68)

Φ0 = (∆2
− −∆2

+) sin(2ωrT ) . (4.2.69)

and these definitions of Φ0 and ΦT allow a clear physical interpretation of ΦT .
Particularly striking in Eq.4.2.67 is the periodic variation in the contrast with
respect to the trap frequency and launch velocity. We can understand the vari-
ations in the contrast and the additional phase shift Φ0 by considering the ex-
pectation value of the radial coordinate of both the clouds. The time dependent
mean position of the wavepacket going in the anti-clockwise direction is

〈r〉l+ =
∑
m,n

a+
m0a

+
n0

∫ ∞
−∞

rRm,l+Rn,l+e
i(m−n)2ωrTdr . (4.2.70)

To compute this integral, note that the wavefunctions {Rn,l+} are centred around
r0 + εl+ . Therefore, we first do a change of variable r′ = r − r0 − εl+

〈r〉l+ =
∑
m,n

a+
m0a

+
n0

∫ ∞
−∞

(r′ + r0 + εl+)Rm,0Rn,0e
i(m−n)2ωrTdr′ , (4.2.71)

where {Rn,0} are the eigenfunctions of the harmonic oscillator centered around
the origin. Since ∑n a

+2
n0 = 1, integrating the constant terms we obtain

〈r〉l+ = r0 + εl+ +
∑
m,n

a+
m0a

+
n0e

i(m−n)2ωrT
∫ ∞
−∞

r′Rm,0Rn,0dr
′ , (4.2.72)

and the remaining integral can be computed by expressing r′ in terms of the
ladder operators11 as

〈r〉l+ = r0 + εl+ +
√

~
2mωr

∑
m,n

a+
m0a

+
n0e

i(m−n)2ωrT (
√
n+ 1δm,n+1 +

√
nδm,n−1) ,

(4.2.73)

11∫∞
−∞ r′Rm,0Rn,0dr

′ =
√

~
2mωr 〈m| (a

† + a) |n〉 =
√

~
2mωr (

√
n+ 1δm,n+1 +

√
nδm,n−1).
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which can be simplified as

〈r〉l+ = r0 + εl+ +
√

2~
mωr

∑
n

√
n+ 1a+

n0a
+
n+10 cos(ωrt) . (4.2.74)

Using the expressions in Eq.4.2.52 we get

〈r〉l+ = r0 + εl+ +
√

2~
mωr

cos(ωrt)
∑
n

(−∆+)2n+1e−∆2
+ , (4.2.75)

which can be simplified using ∆+ = (εl+ − εl0)
√

mωr
2~ as12

〈r〉l+ = r0 + εl+ + (εl0 − εl+) cos(ωrt) . (4.2.76)

Similarly, the mean position of the cloud moving in the clockwise direction is

〈r〉l− = r0 + εl− + (εl0 − εl−) cos(ωrt) . (4.2.77)

The mean separation between the packets is therefore

〈δr〉 = 〈r〉l+ − 〈r〉l− = 2(εl+ − εl−) sin2(ωrt2 ) . (4.2.78)

If we consider the mean separation of the wavepackets at the end of the interfer-
ometer, i.e. when the last π/2 pulse is applied, we obtain

〈δr〉t=2T = 2(εl+ − εl−) sin2(ωrT ) . (4.2.79)

It is evident that whenever ωrT = nπ, the wavepackets overlap perfectly and
if ωrT = (2n + 1)π/2 the mismatch is maximum (see Fig.4.6). An imperfect
overlap of the wavepackets results in the loss of contrast.

Lastly, let us examine the phase ΦT

ΦT = Φ +mω2
r(ε2l+ − ε

2
l−)T/~ , (4.2.80)

assuming a launch velocity v0, the phase ΦT can be written as

ΦT = 8πmΩA
h

[1 + 2( v2
0

ω2
rr

2
0

+ Ω2

ω2
r

)] . (4.2.81)

The above expression can be seen as the usual Sagnac phase shift but with an
effective area Aeff given by

Aeff = A[1 + 2( v2
0

ω2
rr

2
0

+ Ω2

ω2
r

)] . (4.2.82)

Note that Aeff is nothing but the average of the areas enclosed by the clockwise
moving and the anti-clockwise moving clouds13. In principle, large launch and
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Figure 4.6 An illustration of the paths followed by the clockwise
(blue) and the counter clockwise (green) moving wavepackets in a cir-
cular waveguide. Two cases are shown, where there is: a) a maximum
overlap (ωrT = nπ) and b) a minimum overlap (ωrT = (2n+1)π/2),
between the wavepackets, when the last π/2 pulse is applied. In case
b), the mismatch in the radial direction is highlighted in red. The two
plots (not to scale) are obtained for a fixed interrogation time 2T and
they only differ in the radial trap frequency. ∠BOA = ∆θ = 2ΩT is
the angle rotated by the lab frame during the interferometer sequence.
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Figure 4.7 Contrast of the interferometer computed for different
launching conditions by assuming a lab rotation of 2 rad/s for a
waveguide radius of 500 µm.

angular velocities increase the sensitivity of the interferometer as long as the
radial trapping forces are stronger than the centrifugal forces (this condition is
essential for guiding).

We turn our attention towards the implications of the obtained results. We
consider radial trap frequencies in the range of 50− 500 Hz (we point out that
the radial trap frequencies of the modulated TOP guide are about 100 Hz) and
launch velocities14 between 0.1 and 10 recoil velocities. Theoretically speaking,
contrast loss and additional phase shifts arise due to the asymmetric radial mo-
tion caused by the rotation of the lab frame and is noticeable when the angular
velocity is sufficiently high. Considering the potential applications of a guided
Sagnac interferometer in inertial navigation and geophysical studies, we take two
cases where the lab frame angular velocity is Ω = 2 rad/s (commercially avail-
able tactical grade gyroscopes typically have a dynamic range of few radians per
second) and Ω = ΩEarth. The contrast loss of the interferometer for a rotation
rate Ω = 2 rad/s is shown in Fig.4.7. We can notice that the contrast of the
interferometer attains the maximum possible value when the trap frequency is

12It is worth noting that, 〈r〉l+ is the classical trajectory of an atom launched tangentially
into the guide.

13Aeff = (A+ +A−)/2 where A± ≈ A(1 + 2εl±
r0

).
14In the derivation l± are defined assuming a momentum kick of 2 ~k, the formulae are valid

for any other launch velocity v0 by redefining l± as ±mv0r0 +mΩr2
0.
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(a) Contrast vs. ωr. (b) Additional phase vs. ωr.

(c) Contrast vs. v0. (d) Additional phase vs. v0.

Figure 4.8 Dependence of the additional phase Φ0 and contrast due
to multimode propagation, considering a lab frame angular velocity
Ω = 2 rad/s. The red curve in each plot is a quantity proportional
to the separation between the wavepackets at the end of the interfer-
ometer.
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high and the launch velocity is low, whereas the contrast decays with a decrease
in the trap frequency and an increase in the launch velocity with some peaks in
the contrast. The maxima in the contrast of Fig.4.7 correspond to the situation
when ωrT is an integer multiple of π or when r0ωr/v0 is an integer (see Fig.4.8(a)
and Fig.4.8(c)).

The additional phase Φ0 can be seen to approach zero when ωrT is an integer
multiple of π/2 (see Fig.4.8(b) and Fig.4.8(d)), which essentially means that the
phase difference accumulated due to multimode propagation of the wavepackets
exactly gets compensated at these specific points when r0ωr/v0 is a half integer,
i.e. when the wavepackets overlap perfectly or when the relative velocity of the
atomic wavepackets is zero. In other words, this additional phase is due to a
separation in the phase space, since it is proportional to both the wavepacket
radial separation and the relative radial velocity when the last pulse is applied.
In the figure 4.8, we can notice that the contrast can be as low as 50% and
can impact the dynamic range of the interferometer if the launching conditions
are not properly chosen. Similarly, the additional phase can be significant (∼
10 rad). This result stresses the importance of operating the interferometer
such that r0ωr/v0 is an integer. By doing so, we can suppress the additional
phase and contrast loss, which can help to achieve a good dynamical range for
the interferometer. If the angular velocity of the lab frame is as low as earth’s

(a) Additional phase vs. launch velocity. (b) Additional phase vs. trap frequency.

Figure 4.9 Dependence of the additional phase Φ0 caused by the
multi modal propagation, on the radial trap frequency and the launch
velocity, for a lab frame angular velocity equal to the earth’s rotation
rate.

rotation rate, which is the case for geophysical applications. The contrast loss due
to multimode propagation is negligible, though the additional phase Φ0 maybe
detectable depending on the sensitivity of the interferometer. As can be seen in
Fig.4.9, the additional phase can be of the order of 0.5 mrad. For comparison,
the Sagnac phase for a lab frame rotation rate Ω = ΩEarth = 7.29× 10−5 rad/s
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is about 300 mrad with an enclosed area of 0.78 mm2 (for a guide radius of
500 µm).

4.2.3 Interferometer with thermal atoms
We now consider the effects of multimode propagation with thermal atoms under
the tight guide approximation. We assume that the initial state of the atoms
before the first π/2 pulse to be a mixed state at temperature θ, where the prob-
ability to be in the nth radial state is given by the Boltzmann distribution

Pn = (1− e−~ωr/kBθ)e−n~ωr/kBθ . (4.2.83)

To evaluate the contrast, it is convenient to use the basis of coherent states {|α〉}
and the corresponding occupation probability given by the Glauber-Sudarshan
distribution (more details are provided in the Appendix)

P (α) = 1
π

(e~ωr/kBθ − 1)exp[−|α|2(e~ωr/kBθ − 1)] . (4.2.84)

If the temperature is sufficiently high, i.e. kBθ >> ~ωr, we can approximate the
distribution as

P (α) = 1
π

~ωr
kBθ

e
−|α|2 ~ωr

kBθ . (4.2.85)

Using the density matrix ρ =
∫
P (α) |α〉 〈α| d2α, the interferometer signal15 can

be written as

Cθ cos(Φ′) = Tr{ρe2iH+
T
~ e−2iH− T~ } (4.2.86)

=
∫
P (α) 〈α| e2iH+

T
~ e−2iH− T~ |α〉 d2α ,

where Cθ is the thermal contrast of the interferometer and Φ′ is the accumu-
lated phase. To evaluate the above expression, let us first compute the term
e−2iH± T~ |α〉, which is

|Ψ±α〉 = e2iE±T/~e2iωrT [a†a+ 1
2−∆±(a†+a)]D(α) |0〉 . (4.2.87)

This can be simplified using the same method as before, i.e., by exploiting the
properties of displacement operator and we get

|Ψ±α〉 = e2i[E±~ +( 1
2−∆2

±)ωr]T ei∆±Im(α)e−i∆±Im[(α−∆±)e2iωrT ]
∣∣∣∆± + (α−∆±)e2iωrT

〉
.

(4.2.88)

Let us define a constant Cα, which is the overlap between |Ψ+α〉 and |Ψ−α〉

Cα = 〈Ψ+α |Ψ−α〉 = 〈α| e2iH+
T
~ e−2iH− T~ |α〉 , (4.2.89)

15Which is the probability difference to be in different output states of the interferometer
i.e. Pl0 − Pl± = Cθ cos(Φ′).
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which can be written as

Cα = ei(Φ0+ΦT )e−i∆[−Re(α) sin(2ωrT )+2Im(α) sin2(ωrT )]〈
∆+ + (α−∆+)e2iωrT

∣∣∣∆− + (α−∆−)e2iωrT
〉
. (4.2.90)

The overlap between the coherent states in the above expression evaluates to〈
∆+ + (α−∆+)e2iωrT

∣∣∣∆− + (α−∆−)e2iωrT
〉

=

Ce−i∆[−Re(α) sin(2ωrT )+2Im(α) sin2(ωrT )] , (4.2.91)
where C is the zero temperature contrast of the interferometer that we obtained
in the previous section. Finally, Cα can be expressed as

Cα = Cei(Φ0+ΦT )e−2i∆[−Re(α) sin(2ωrT )+2Im(α) sin2(ωrT )] . (4.2.92)
The interferometer signal can be obtained by averaging Cα over all coherent
states with a weight given by the Glauber-Sudarshan distribution

Cθ cos(Φ′) =
∫ ∞
−∞

∫ ∞
−∞

P (α)CαdRe(α)dIm(α) , (4.2.93)

after evaluating the Gaussian integrals we obtain

Cθ cos(Φ′) = Ce−
4kBθ
~ωr

∆2 sin2(ωrT ) cos(ΦT + Φ0) , (4.2.94)

= e
−

16mv2
0Ω2

~ω3
r

sin2(ωrT )[1+ 2kBθ
~ωr

] cos(ΦT + Φ0) .
Therefore, the thermal contrast of the interferometer is

Cθ = e
−

16mv2
0Ω2

~ω3
r

sin2(ωrT )[1+ 2kBθ
~ωr

]
, (4.2.95)

and Φ′ = ΦT + Φ0. This result also shows that, apart from the phase Φ0 that
we already noticed in the ultra cold gas case, operating the interferometer with
thermal atoms does not introduce any additional phase shifts. However, it is
clear from the above expression that the contrast decay is amplified when the
temperature increases. Nevertheless, there is a striking feature contained in
the Eq.4.2.95. Indeed, we can still have a maximum contrast in the worst case
scenario corresponding to the use of a thermal gas in a guide with a radial guiding
frequency way below the critical frequency.

For example, let us consider an important number of populated excited trans-
verse states associated to a thermal gas of temperature 1 µK, launched with a
velocity of 10 vr in a guide of 500 µm radius. With these conditions, if we
choose the radial guide frequency such that ωrT = (2n + 1)π/2, for instance
ωr ≈ 2π × 50 Hz, way below the critical trap frequency ωc = 2π × 92 Hz then
we realize the worst case scenario shown in Fig.4.10. We observe in this figure
that the interferometer contrast decays quite rapidly with the rotation rate Ω,
in particular it approaches zero at angular velocities Ω ∼ 30 mrad/s . However,
if we choose ωr such that ωrT is an integer multiple of π, then we recover the
maximum interferometer contrast.
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Figure 4.10 Contrast as function of the rotation rate in an interfer-
ometer using a thermal gas at 1 µK temperature, assuming a max-
imum mismatch between the interfering clouds. We consider here a
radial trap frequency of 50 Hz.

4.3 Conclusion
We studied in this chapter the propagation of atoms in a circular guide. We de-
rived the conditions under which we have monomode propagation of matterwaves
in the guide. In particular, a critical radial trap frequency is found, above which
the deflection of the atom trajectories imposed by the guide curvature does not
introduce heating of the cloud. On the other hand, a model for guided Sagnac
interferometer is discussed. The effect of the finite radial potential and the non
negligible centrifugal forces and their impact on the guided Sagnac interferom-
eter are also quantified. In summary, the effective area of the interferometer is
shown to be slightly more than the area of the toroidal guide, thereby marginally
increasing the sensitivity of the interferometer. On the other hand, multimode
propagation along the guide affects the fringe contrast and induces additional
phases apart from the Sagnac phase. This result was found using a 2D model for
the transverse dynamics of the atoms in the guide, from a quantum mechanical
point of view.

An important result is the demonstration of the existence of an additional
phase caused by the difference in the angular momenta of the counter propagating
clouds. The obtained analytical expressions demonstrate that not only we can
make this additional phase zero by choosing the launch velocity and trapping
frequency satisfying the condition r0ωr/v0 = n, where n is a positive integer, but
also we can make the interferometer immune to systematics associated to the use
of thermal cloud. These effects, like for instance the Coriolis effect and the finite
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momentum width of the atom source, are completely suppressed restoring the
value of the interference contrast to its nominal value when a zero T source is
used. The key consequence of this being the possibility to realise a large dynamic
range cold atom gyroscope for inertial applications.
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Chapter 5
Description of the experiment and
characterisation of cold atom source

This chapter describes the current status of the GyrAChip experiment. Apart
from the optical bench, all the optics for the realization of the mirror-MOT [106],
the fluorescence and absorption imaging systems were designed and built during
this thesis. The first mirror-MOT of the GyrAChip project was realised towards
the end of January, 2015. In the following sections, after briefly discussing the
basic principle of the MOT, we present the optics needed in the realisation of a
mirror MOT and the atom detection systems. We optimized and performed a
detailed preliminary characterisation of the mirror-MOT using absorption and
florescence imaging systems. The results are discussed in Section 5.3. Finally,
we present a study of the pressure dynamics in the vacuum chamber during the
MOT phase of the experiment.

5.1 Mirror MOT
The first stage of any cold atom experiment is the realisation of a MOT [107],
where atoms moving at few hundred Kelvin are trapped and cooled down to
few hundred micro Kelvin using a combination of magnetic and optical fields.
Conventional MOTs use six laser beams combined with a linear quadrupole field,
which give cooling and trapping forces along the three orthogonal directions. In a
typical experiment involving atom chips, in order to transfer the atoms efficiently
to micro magnetic traps produced by the wires on the chip, it is necessary to trap
the atoms close to the chip surface. If these wires carry currents in the order of
few amperes, then we typically use four beams such that, two beams are shone
at an angle of 45◦ with respect to the chip surface and the two other beams
parallel to the chip and orthogonal to the former beams [106]. If we consider a
region close to the chip surface, due to the beams reflection from the chip, atoms
experience forces in all six directions. If a quadrupole field is added such that the
axis of the quadrupole is along one of the 45◦ beams, atoms can be trapped in a

85
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(a) Configuration of beams along with their
polarisations necessary for mirror-MOT. Note
that the two beams at 45◦ degree have the same
polarization, due to the presence of the reflect-
ing mirror, also shown are the MOT coils in
anti-Helmholtz configuration.

Z

F=0

F=1 mF=0

mF=-1

mF=1

E

(b) Energy levels of an atom with a F = 0 to
F = 1 transition in a quadrupole field. An
atom moving along negative z-direction is reso-
nant with the beam propagating along positive
z-direction and vice-versa, hence the confine-
ment.

Figure 5.1 Working principle of MOT.

region near the chip surface common to the four beams. The trapping mechanism
can be understood by considering a simple case of the force, due to two counter
propagating beams along the z direction (see Fig.5.1(a)), acting on an atom with
a F = 0 to F = 1 transition. The average cooling force experienced by an atom
due to a laser of wave vector kz (propagating in the positive z direction) is given
by [108]

〈F 〉 = ~kz
Γ
2

s

1 + s+ 4 δ2

Γ2

, (5.1.1)

where δ is the detuning of the laser seen by the atom and s = I/Isat is the
saturation parameter of the transition. If we consider an atom moving at a
velocity v, the detuning seen by the atom due to Doppler effect is δD = ∓kzv.
In the presence of a linear quadrupole field the atomic levels are also Zeeman
shifted by ±µBgFmF

bz
~ . The sign depends on the position of the atom in the

quadrupole field and b is the quadrupole field gradient. In addition, if we also
consider the detuning of the laser δL from the cooling transition, which is an
experimentally controllable parameter, then the total detuning seen by the atom
is given by

δ± = ∓kzv ± µBgFmF
bz

~
+ δL . (5.1.2)

The combined force acting on the atom from two counter propagating beams is

Ftotal = 〈F+〉+ 〈F−〉 = ~kz
Γ
2 s[

1
1 + s+ 4 δ

2
+

Γ2

− 1
1 + s+ 4 δ

2
−

Γ2

] . (5.1.3)
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Substituting the value of δ+ and δ− in the above equation and assuming that the
Doppler shift and the Zeeman shift are small compared to Γ, the total force can
be written under the form [109]

Ftotal = −αv − κz , (5.1.4)

where the friction coefficient α and the spring constant κ are given by

α = −4~k2 I

Isat

2δL/Γ
[4δ2

L/Γ2 + (1 + 2I/Isat)]2
, (5.1.5)

κ = αgFµBb

~k
.

It is clear that, for red detuning (δL = ωL − ω < 0) the frictional force cools
the atom, whereas a blue detuning (δL > 0) heats the atom. Therefore, for
a red detuned cooling beam, velocity dependant term dissipates the energy of
a fast moving atom, whereas the position dependent restoring force confines
atoms around the quadrupole field zero. The reasoning can be extended to other
directions, and trapping is possible in all three directions. For a 87Rb atom
(the energy levels of 87Rb can be found in the Appendix), the cooling transition
is F = 2 → F ′ = 3. After absorbing a photon, the spontaneous emissions
bring back these atoms to either F = 1 or F = 2 hyperfine states. If an atom
reaches the F = 1 state, the cooling beam becomes ’invisible’ to the atom due
to the 6.8 GHz of frequency difference between the hyperfine levels and the
trap no longer works. In order to pump back the atoms to the F = 2 state, a
repumper beam (< 1 mW ) is added by superposing it on the four beams shown
in Fig.5.1(a)1. Although it is still possible to cool the atoms in the absence of
the magnetic field, atoms may diffuse out slowly due to the stochastic nature of
the light atom interaction. Such a configuration is called optical molasses and
it is used to cool the atoms in the MOT to lower temperatures. In the case of
87Rb, the typical cooling temperatures are the Doppler limit in a MOT equal
to 150 µK, and the molasses temperature is 350 nK set by the photon recoil
energy.

5.2 Experimental setup

5.2.1 Optical bench
Laser system

All the optical frequencies required for the experiment are generated from two
1It is strictly not necessary to have the repumper in all directions. However, by doing so,

we can optimize the cooling forces.
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home built Extended Cavity Diode Lasers (ECDL). The reference laser (ECDL1)
is frequency stabilized to the transition F = 1 → F ′ = 1 × 2 of the D2 line
(52S1/2 → 52P3/2) using Saturated Absorption Spectroscopy (SAS). The SAS
helps to overcome the Doppler broadening of the atomic transition which is typ-
ically few MHz at room temperature. A schematic of the SAS system can be
seen in Fig.5.2. A linearly polarized beam from ECDL1, which acts as a pump
beam is sent through a Rb vapour cell2, which is then reflected by a mirror. This
beam is made to double pass through a quarter waveplate, therefore the reflected
beam is orthogonally polarized with respect to the incident beam. The Doppler
shift (δD = k.v) is different for the two beams, as they propagate in opposite
directions. Hence, only the atoms which are at rest are resonant with the probe
and pump beam. If we take into account other atomic transitions, we can ob-
serve other resonances at crossover frequencies due to two photon transitions for
a given velocity class. For instance, let us consider a given velocity class v of
the atoms. If the atoms are resonant with the probe beam at frequency ω in a
transition F = 1→ F ′ = 1 i.e.

kv = ω − ωF=1→F ′=1 , (5.2.1)

and, if the reflected beam is resonant with the transition F = 1→ F ′ = 2

− kv = ω − ωF=1→F ′=2 . (5.2.2)

Solving for ω we obtain

ω = 1
2(ωF=1→F ′=1 + ωF=1→F ′=2) = ωF=1→F ′=1×2 . (5.2.3)

Therefore, in addition to the usual resonances at the existing atomic transitions,
we can observe additional peaks at the crossover of two transitions. ECDL1 is
precisely locked to the crossover transition F = 1 → F ′ = 1 × 2. The intensity
of the incident beam is usually well above the saturated intensity Is. Therefore,
the probe beam is nearly transparent, as the atom medium is saturated by the
pump beam. This results in a peak in the saturated absorption signal at the
crossover frequency. An error signal is generated by phase modulating the output
of ECDL1 with an Electro Optic Modulator (EOM) and a feedback correction
signal is fed to the diode laser [110].

In order to generate beams required for atom trapping and imaging, the
slave laser (ECDL2) is frequency locked to the F = 2→ F ′ = 3 transition with
a controllable detuning. The frequency difference between hyperfine levels of the
ground state is about 6.8 GHz. Therefore, ECDL2 can be frequency locked to
ECDL1 using a microwave frequency reference. The beat note between the two
lasers is acquired on a fast photo diode and another beat note is generated with

2The Rb cell is heated to increase the partial pressure in the cell, which allows to achieve a
strong absorption signal.
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Fiber Power
MOT (cooling+repumper) 60 mW

Imaging 200 µW
Optical pumping 200 µW
Raman beams 95 mW

Repumper (optical pumping) 150 µW

Table 5.1 Measured optical power at the output of the different fiber
collimators shown in Fig.5.2.

a 7 GHz microwave frequency which is generated via a frequency chain starting
from a 10 MHz input [110]. The resulting beat note at a frequency of 400 MHz,
is then divided by 4 and another beat note is generated around 100 MHz by a
Direct Digital Synthesizer (DDS). The detuning of the ECDL2 from the cooling
transition can be controlled with the frequency generated by the DDS. The fre-
quency of the ECDL1 is 78.48 MHz detuned from F = 1 → F ′ = 2 transition
and the frequency of ECDL2 is also 78.48 MHz detuned from F = 2→ F ′ = 3
transition and both these frequencies need to be compensated in order to use
them. A more detailed description of the lasers can be found in the thesis of W.
Yan [110].

Generation of optical frequencies

A schematic of the optical bench is shown in Fig.5.2. The optical frequencies
needed for atom trapping and manipulation are obtained by frequency shift-
ing appropriately the outputs of the two ECDLs with Acousto Optical Mod-
ulators (AOM), and by changing the frequency of the ECDL2 with the DDS.
The outputs of the ECDLs are superposed and simultaneously frequency up
shifted by 78.48 MHz with an AOM (MT80-B30A1-IR), to generate the cooling
(F = 2 → F ′ = 3) and repumper (F = 1 → F ′ = 2) beams required for the
MOT. The imaging beam is obtained from ECDL2 which is also frequency shifted
by 78.48 MHz using another AOM. The detuning from the cooling transition
is set to zero during the imaging phase with the help of the DDS. The MOT
beam (cooling and repumper) can also be used to address Raman transitions
between the hyperfine levels F = 1 and F = 2 by frequency down shifting them
about 750 MHz. This is achieved by double passing the beams through an AOM
(MT-350-A0.2-800). To optically pump the atoms into the F = 2,mF = 2 state
(magnetically most sensitive state of the F = 2 manifold), we use the transition
F = 2 → F ′ = 3. The optical power out of the ECDLs is about few tens of
mW and it is not sufficient for MOT and Raman beams. Therefore, we amplify
the power with a home made Master Oscillator Power Amplifier (MOPA). The
output power of MOPA can be controlled by changing the current that drives
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Figure 5.2 Schematics of the optical bench, ECDL1 is locked to the
F = 1→ F ′ = 1×2 transition using SAS (highlighted with a red box.),
ECDL2 is locked to ECDL1 by beat note to a 7 GHz reference. The
output of the lasers are amplified with a TA and frequency shifted with
AOMs before them coupling into single mode TM fibres that transport
the beams to the science chamber.
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the Tapered Amplifier (TA) in the MOPA. We typically operate the TA (m2k-
TA-0780-1000) with 1.6 A, higher currents may affect the longevity of the TA.

5.2.2 Vacuum chamber
The stainless steel vacuum chamber of your experiment (see Fig.5.4) is approxi-
mately 7 litres in volume and it is connected to an ion pump (a sputter ion pump
45S Gamma Vacuum) through a 40 cm long CS63 tube. The pumping speed of
the ion pump is 45 litres per second, and to determine the pressure P inside the
vacuum chamber (in units of millibar) we use the ionization current I and the
expression

P = 0.066× 5600× 1.33
7000× 40 × I (5.2.4)

= 0.0017556× I . (5.2.5)

For example, in Fig.5.3, the vacuum pressure can be seen to vary between 4.8×
10−10 mbar and 5× 10−10 mbar over few typical MOT loading cycles.
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Figure 5.3 Variation of pressure (ionization current) during MOT
loading cycles. The pressure is computed from the ionization current
acquired from the ion pump controller.

The vacuum chamber is also equipped with two getters for backup. They
can be triggered in case of any increase in the pressure or to further lower the
pressure in the vacuum chamber, if needed.

The atom chip will be held3 at the centre of the vacuum chamber with the
3For the time being we have a gold coated substrate as a mirror, which will be replaced by

an atom chip.
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help of a chip holder. This chip holder is a copper block which acts as a heat
sink to dissipate the ohmic heat generated on the atom chip. The quadrupole

Figure 5.4 An image of the vacuum system together with the ion and
getter pumps. The copper block which holds the chip, the MOT coils
that generate quadrupole field and the Rb metal dispenser can be seen
inside the vacuum chamber.

coils are fixed inside the vacuum chamber, so that the quadrupole axis is at 45◦
with respect to the copper block as we can see in Fig.5.4. Each of these coils
are made by winding copper wires (of cross sectional radius 0.5 mm) covered
with a vacuum compatible Kapton insulation. Both coils are approximately at
a distance of 5 cm from the chip centre. This close proximity allows to the
generate necessary quadrupole gradients for the MOT by passing relatively low
currents. For example, by running 1.3 A in the coils, they generate an axial
gradient of |dBz/dz| = 10.4 G/cm and radial gradient of |dBr/dr| = 5.2 G/cm.
These values are computed numerically by considering few millimeters around
the quadrupole centre, and the computed fields are shown in Fig.5.5. The in-
vacuum coils act as an atom source when they are switched on continuously
for few hours. They liberate the absorbed Rb. Running a constant current
of 1.3 A for two days (unintentionally) led to an increase in the pressure from
9 × 10−10 mbar to 1.9 × 10−8 mbar. Therefore, we normally ensure that the
quadrupole coils are turned off between two experimental cycles, leaving enough
time for the coils to cool down.

Two Rb dispensers (from SAES) attached to the copper block on either side
supply Rb atoms. The dispensers liberate Rb atoms from a reduction reaction
which is triggered after reaching a certain critical temperature. We typically
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Figure 5.5 Variation of the total field of the quadrupole coils along
the axial and radial directions. A current of 1.3 A is run through the
coils in anti-Helmholtz configuration.

observe the MOT when the current in the dispenser is over 3 A.

5.2.3 Optics for the MOT
Cooling and repumper beams are superposed on the optical bench (see Fig.5.2).
They are brought to the science chamber, which is located on another optical
table, with a single mode TM fibre. We use a Schafter Kirchhoff’s fibre port
cluster 1 to 4 to split this beam into four beams needed for the mirror MOT.
This fibre port cluster is equipped with a photodiode and about one percent of
the input power is used for monitoring purposes. The powers of the four output
beams can be equilibrated by rotating the half waveplates present before each
PBS (see Fig.5.6). The input fibre of the fibre port cluster was replaced with
a 2 m long fibre, as it was rather short to connect the optical bench with the
science chamber. The maximum achievable coupling efficiency after realigning
the new fibre is about 50% (increasing the coupling efficiency up to 80% may
require a re-alignment of the four output fibres). According to the manufacturer’s
specification, the beam diameter after the collimator (60FC-4-A7.5-02) of the
optical fibre is about 1.35 mm. The experimentally measured beam diameter is
about 1.4 mm. In order to increase the capture volume of the MOT, we expand
the MOT beams by a factor of 12 using a telescope with two lenses of focal lengths
f = −15 mm and f = 175 mm separated by 150 mm. The final beam diameter
of the MOT beam after the telescope is about 16 mm. For a larger capture
volume it is favourable to increase the beam diameter, however the maximum
possible beam diameter for our setup is about 19 mm. This beam size is limited
by the inner diameter of the quadrupole coils, as one of the beams need to go
through the quadrupole coil in the vacuum chamber. Finally, the polarization of
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Figure 5.6 Schafter Kirchoff’s fibre port cluster 1 to 4 takes an input
fibre and divides the optical power among four output fibres. The four
half wave plates (HWP) can be used to distribute the power among
the output beams.

the cooling beam is set by a quarter wave plate. The two lenses of the telescope
along with other optical components (half waveplate, quarter waveplate and a
polarising beam splitter) are integrated in a 30 mm cage system using Thorlabs’
components (see Fig.5.7). The cage system is then housed on an optical bread
board which is fixed to the ELCOM posts holding the vacuum chamber. These
cage systems with pre-aligned optics allow an easy (un)installation of optical
elements around the vacuum chamber. Each cage system is designed to send an
additional beam (for instance, imaging beam or optical pumping beam/repumper
for optical pumping) with an orthogonal polarization, which is combined with
the MOT beam using a polarising beam splitter.

Out of the four MOT beams, three are sent into the vacuum chamber using
the cage system shown in Fig.5.7. Whereas, we use a different scheme to send
the fourth MOT beam due to the presence of the absorption imaging system
(part of the optical path is common to both MOT and imaging beams Fig.5.8).
The beam is expanded using a combination of two telescopes made of lenses of
focal lengths f = −20 mm, f = 60 mm and f = 75 mm, f = 300 mm, which
gives a combined magnification of 12 as shown in Fig.5.8. The two telescope
systems give a beam diameter of 16.2 mm (though this is not exactly the same
diameter as for the other three beams, the difference in the diameter is only
0.5 mm and it is negligible). The two beams which are at 45◦ with respect to
the chip surface are deflected from the two horizontal beams using mirrors of
50 mm diameter. They are glued to an aluminium block at an angle of 22.5◦
with respect to the optical bench (see Fig.5.9). Finally, the quarter waveplate
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Mount for fibre collimator

Half wave plate

Polarising beam splitter

Lens, f=-15mm

Lens, f=175mm

Quarter wave plate

Dielectric mirror

Figure 5.7 Collimator in a 30 mm cage system to expand the MOT
beam, two beams can be simultaneously sent into the vacuum chamber
using the cage system.

Figure 5.8 A schematic showing the path common to MOT beams
and the absorption imaging system. The two telescopes expand the
MOT beam by a factor 12 and the mirror steers the beam at an angle
of 45◦ towards the vacuum chamber.



96 Chapter 5. Description of the experiment...

Mirror

quarter wave plate

Lens, f=300mm

Figure 5.9 A 60 mm cage system, holding a quarter waveplate and
a 300 mm focal length lens. The mirror glued to an aluminium block,
to launch the beam at a 45◦ angle into the vacuum chamber can also
be seen.

along with the f = 300 mm lens is mounted on a 60 mm cage system (as shown
in Fig.5.9), which is fixed to a post at an angle of 45◦ with respect to the optical
bench. The maximum power available in each MOT beam is about 8 mW , and
it can be controlled with the TA current.

5.2.4 Bias coils
The vacuum chamber is surrounded by three pairs of square shaped coils in
Helmholtz configuration, each pair produces approximately a homogeneous field
at the centre of the vacuum chamber (see Fig.5.10). These three mutually orthog-
onal pairs of coils give a full control of the magnetic field near the chip surface
and are useful at different stages of the experiment. For instance, the zero of
the quadrupole coils coincides with the centre of the chip (by construction). If
the four MOT beams are aligned to intersect at the centre of the chip, then with
these coils the position of the field zero needs to be well centred with respect to
the volume common to the MOT beams. Half of the horizontal MOT beams get
reflected by the copper block that holds the chip (or gold mirror). This reduces
the capture volume which in turn decreases the number of trapped atoms in the
MOT. Therefore, we lower the horizontal MOT beams and the bias coils help to
move downwards the zero of the quadrupole field by half a centimetre. Despite
this functionality, these coils are in fact meant to produce the bias field during
the U MOT and Z-trap stages of the experiment.
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Figure 5.10 Three orthogonal pairs of square shaped coils in
Helmholtz configuration, surrounding the vacuum chamber help to
control the field near the trapping region. The coils along Y-axis
and Z-axis help to lower the quadrupole field zero by few millimetres
during the MOT phase of the experiment.

5.2.5 Low noise power supplies

Low noise current sources are indispensable for the experiment, as the noise
in the current sources can alter the trapping parameters, especially, during the
magnetic guiding stage of the experiment. The quadrupole coils, dispenser and
the compensation coils are supplied with home built ultra low noise current
sources. The power supplies can be controlled manually or with an analogue
signal. These current sources can give up to 3 A (with minor changes this can be
increased up to 5 A), with a relative noise of 10−5 and can deliver up to 20W . The
internal circuit of the current source can be altered, so that the power supply can
be operated in two configurations: grounded and floating. The measured noise in
the current source in these two configurations is shown in Fig.5.11. We typically
run at least 4 A in the dispenser, so we power the dispensers by combining a
commercial current source with the low noise power supply as shown Fig.5.12. In
order to increase the dynamic range of the dispenser, a constant current of 2 A
is run continuously through the dispenser using the commercial power supply.
During the MOT stage of the experiment another 2 A are added through the
home built power supply.
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Figure 5.11 Power spectral density of the current source noise at
Iout = 2.2 A in the grounded (gnd) and floating (flt) configurations.
The spike corresponds to the usual 50 Hz of the power line (taken
from [111]).

Figure 5.12 A simple circuit to add current sources for the dispenser.
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Figure 5.13 A snapshot of the LabView interface during a MOT
loading sequence. A treated image of the MOT from the absorption
imaging system can also be seen.

5.2.6 Computer control
The experiment is fully controlled with the LabView program. Different stages
of the experiment are synchronized up to 1 µs through two National Instruments
cards (NI-PCI-6733). Each card contains 8 channels, which generate the different
analogue and digital signals needed for the synchronization. A sample picture
of the interface can be seen in Fig.5.13.The LabView program was designed to
control the DDS (this sets the detuning of the cooling beam), RF drivers of
the AOMs (to turn on and off various beams), shutters (taking into account
the delay of 3 − 4 ms due to the slow response), current supplies of MOT coils
and dispenser. The program automatically treats the images taken by the CCD
during the absorption imaging sequence and it displays the treated image on the
screen.

5.2.7 Fluorescence imaging system
For the purpose of characterising the MOT, a florescence imaging system was
installed using the bottom window (facing the chip) of the vacuum chamber.
The schematic of the florescence system can be seen in Fig.5.14. A 75 mm
focal length lens of diameter 50.8 mm, was placed just below the window of the
vacuum chamber at a distance of approximately 150 mm from the chip surface.
This lens collects the florescence light from the atoms in the MOT with an
efficiency η (the fraction of the total photons falling on the photo diode). The
captured florescence light is then reflected by a mirror onto a fast photo diode
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Figure 5.14 Schematic diagram of the florescence imaging system.

(Hamamatsu S1337-66BR). The rise time of the photo diode is about 1 µs and
its photosensitive area has a cross-section 5.8 mm×5.8 mm. This photo diode is
mounted on a translational platform to precisely image the MOT. The 2f − 2f
imaging system replicates the image of the MOT on the photo diode without
any magnification.

The entire florescence system is covered to isolate the photo diode from ex-
ternal light. A photo current proportional to the number of fluoresced photons is
generated from the diode, and its usually of the order of few micro amperes (the
power due to fluoresced light from the MOT was found to be few tens of nano
watts). Therefore, we amplify the signal with a circuit shown in the Fig. 5.15.
The gain factor of the signal is given by the value of the resistance R = 1.2 MΩ.
The capacitance was chosen in order to keep the time constant of the RC circuit
τ = RC in the microsecond range, which is much smaller than the time scale at
which MOT dynamics occur.

Collection efficiency

In order to obtain the atom number from the fluorescence signal, it is necessary
to know what fraction of the photons emitted by the atoms reach the photo
diode. Atoms usually fluoresce in all directions i.e. over a solid angle 4π. But,
experimentally it is only possible to capture a fraction of the photons due to
various optical losses and finite Numerical Aperture (NA) of the imaging system.
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Figure 5.15 Schematics of the trans-impedance electronic circuit.
The resistance R = 1.2 MΩ was chosen to amplify the response of
the photo diode. The response time of the circuit is τ = 1.2 µs.

The collection efficiency of the imaging system takes into account these photon
losses. A technical detail in the calculation of collection efficiency in our setup is
the presence of the MOT coil (as shown in Fig.5.14) inside the vacuum chamber,
which obstructs the florescence light falling on the photo diode. In addition, the
usual solid angle has to be doubled as the photo diode captures light coming
from the MOT and its reflection in the chip surface (see Fig.5.16). In order
to compute the solid angle we measured the distance between the chip surface,
the MOT coil and the window of the vacuum chamber from the solid works file
of the setup. The solid angle is then numerically evaluated with a ray tracing
simulation (details of the calculation are given in Appendix).

In the figure 5.17, we show the part of the lens which accepts the light from
the MOT, only the solid angle subtended by the area of the part shown in red
has to be included (the blue part is the shadow of the MOT coil). The collection
efficiency computed from the simulation is η = 2× 0.0061, the factor 2 accounts
for the reflection of MOT in the mirror. We use this value to estimate the atom
number from the fluorescence signal.

Estimation of the atom number

The photo diode converts the photon counts (proportional to the atom number
Nat) to a current, which is acquired as a voltage signal on an oscilloscope. Atoms
in the MOT scatter photons at a rate given by

Rsc = 1
2

Γs
1 + s+ 4 δ2

Γ
, (5.2.6)
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Figure 5.16 Light from the MOT and its reflection are captured by
photo diode.

Figure 5.17 Result of a ray tracing simulation, of the light from the
MOT on the 2 inch lens. The shadow of the quadrupole coil is shown
in blue and the solid angle subtended by the region in red gives the
collection efficiency.
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where s = I/Isat is the saturation parameter proportional to the intensity of
the MOT beams seen by the atoms, δ is the detuning of the MOT beam from
resonance and Γ is the natural linewidth. The relation between voltage and the
atom number is given by,

Nat = (V − V0)λ
hcρRηRsc

, (5.2.7)

where ρ is the responsivity of the photo diode and we remove the contribution V0
due to stray light, i.e. V −V0 is the voltage due to fluoresced light from the atoms
in the MOT. The responsivity of the photo diode according to the manufacturer

Figure 5.18 Characterisation of the responsivity of the photo diode.

is 0.51. We experimentally characterized the responsivity of the photo diode by
shining a known power4 P on the photo diode. By measuring the voltage, we
can obtain responsivity through the relation

V = ρPR . (5.2.8)
The experimentally measured responsivity is about 0.47 A/W (the linear fit
is shown in Fig.5.18). Even after a perfect isolation, the voltage V obtained
from the photo diode includes photon counts from back ground light due to the
reflections of MOT beams inside the vacuum chamber (which we measure by
turning of the quadrupole coils) and it needs to be subtracted to extract the
atom number. A sample florescence signal measured during the MOT stage of
the experiment can be seen in Fig.5.19, about 2.2× 107 atoms are loaded in the
MOT in 8 seconds. The atom number is computed using a detuning of −2 Γ and
by neglecting the presence of the quadrupole field.

4Measured with OPHIR Nova II power meter.
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Figure 5.19 Fluorescence signal obtained from atoms in MOT, atom
number after removing the contribution from background light is also
shown.

5.2.8 Absorption imaging system
The fluorescence system described before uses a diode which integrates all the
photons falling on it. Therefore, the information of the spatial density of atoms
is lost. The spatial density of atoms can be useful, for instance, to estimate the
velocity distribution of atoms. We built an absorption imaging system using a
CCD camera (PIXIS 1024BR, Princeton Instruments), which gives the spatial
information of the cloud by integrating the density along one direction (imaging
axis). Thanks to the presence of the reflecting surface (or chip), if the imaging
axis is at an angle with respect to the chip, we simultaneously obtain the atom
density along the two orthogonal directions (see Fig.5.20). The basic principle
of absorption imaging is to shine the cloud of atoms with a beam and image the
shadow on a CCD. By measuring the amount of light absorbed, atom number
can be deduced. If we consider an imaging beam of intensity I, propagating
along z-axis and passing through an atomic medium of density n(x, y, z). The
variation of the intensity of the beam with the z coordinate is given by

dI

dz
= − nσ0

1 + δ2

Γ2 + I
Isat

I , (5.2.9)

where δ is the detuning of the imaging beam expressed in half linewidth units
and σ0 = ~ωΓ

2Isat is the resonance cross-section of the transition. Integrating the
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Figure 5.20 An image of the MOT obtained from the absorption
imaging system. The upper image is the real image and the lower
image is due to the reflection of the MOT in the chip surface.

above equation we obtain the column density of the atom cloud

N(x, y) =
∫ z1

z0
n(x, y, z)dz = 1

σ0
[(1 + δ2)OD + Iin

Isat
(1− e−OD)] , (5.2.10)

where the optical density OD = −ln( I(z1)
I(z0)). Therefore, by measuring the inten-

sity of the beam before I(z0) and after I(z1) passing through the atom cloud we
can estimate the atomic column density along the imaging axis.

Choice of the parameters

The power of the imaging beam and the duration of the imaging pulse has to be
chosen properly. During the imaging sequence, the atoms are pushed away due
to the transfer of momentum from the imaging beam. Secondly, each pixel of the
CCD has a finite well depth, which sets the maximal intensity that can be im-
ages. Imaging with intense beams washes the image due to spilling of electrons.
Considering the above effects, we typically use beam powers of about 100 µW
and a duration of 20 µs.

Optical system

The imaging beam is shone at an angle of 45◦ degree with respect to the chip
surface. The shadow of the atom cloud is then imaged onto the CCD with
a f − 2f − f optical system. The main advantage of this system is that it
creates an exact copy of the atom cloud outside the vacuum chamber without
any magnification. If the position of the atom cloud moves by a small distance,
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the position of the image also moves by the same amount while keeping the
magnification one. The focal length of the first lens is f = 300 mm and the
diameter of the lens is D = 50.8 mm, therefore the diffraction limited resolution
∆rdiff of the optical system given by the Rayleigh criterion is

∆rdiff = 1.22λf
D

= 5.7 µm , (5.2.11)

where f is the distance between the object and the first lens andD is the diameter
of the lens. Considering that the closest window of the vacuum chamber is

Figure 5.21 Schematics of the absorption imaging system, the focal
length is f = 300 mm.

f ∼ 300 mm from the chip surface. The first lens of the optical system can not
be closer than this distance. The diameter of the first lens is D ∼ 50.8 mm,
therefore, a resolution of ∼ 5.7 µm is the best we can achieve. The pixel size of
the CCD is 13 µm and is larger than the theoretical limit of the optical system.
Therefore, the resolution is limited by the pixel size of CCD and not by the
diffraction limit. To overcome this limitation, we magnify the image of atom
cloud with another lens of focal length f ′ = 60 mm such that the image of two
points separated by a distance ∆rdiff falls on several pixels of the CCD. The
necessary magnification M is given by the condition

M >>
∆rpixel
∆rdiff

= 2.33 . (5.2.12)

We chose a magnification of M = 5 and place a lens of diameter D′ = 25.4 mm
at a distance of 6f ′/5 = 72 mm from the image of the MOT. The CCD is placed
at a distance of 6f ′ from the lens. All the lenses used in the imaging system are
cemented achromatic doublets (from Thorlabs) free from chromatic and spherical
aberrations. They are also coated with an anti reflection coating for infra red
light. The spherical aberrations of the lenses are usually corrected for infinite
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Figure 5.22 Spot diagram obtained from a simulation of the optical
system in OSLO Edu, the green dots show the intersection of the
rays (emitted from the object) with the image plane and the black
circle defines the diffraction limit of the optical system.

conjugate ratios, whereas the lens with f ′ = 60 mm images the atom cloud at a
finite distance onto the CCD (hence the conjugated ratio is finite).

To understand the limitations due to the spherical aberrations of this lens,
we simulated the optical system in OSLO Edu taking into account the different
surfaces and the refractive indices of the doublets. The diffraction limit obtained
from the simulation is 6.84 µm. The simulation also shows that the imaging
system is mainly limited by the diffraction and not by spherical aberrations. All
the rays emitted from the object can be seen to intersect the image plane within
a circle of radius 6.84 µm, which is the diffraction limit (see Fig.5.22).

The camera has an internal shutter of about 25 mm in diameter. According to
the manufacturer’s specifications, internal shutter has a finite lifetime (typically
a million cycles) and it does not respond fast enough. Therefore, we designed a
box which covers part of the optical system (including the camera) and placed
a small mechanical shutter (typical response time of the shutter measured with
the help of the CCD is 3 − 4 ms) at the entrance of the box. This allows us
to leave the internal shutter of the CCD always open, when the experiment is
running and only the external shutter is triggered while taking the images.

Characterization of the imaging resolution

A replica of the imaging system has been mounted to characterize the resolution
of the imaging system. A one inch positive 1951 USAF target from Thorlabs
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(R1DS1P) was illuminated with a beam of diameter 7 mm and power 51 µW .
By placing the target at the object plane of optical system, image was recorded
on the CCD. The exposure time was chosen to be 100 ms and an optical density
(NE04A) with an attenuation factor of 10−4 was placed on the CCD in order not
to saturate the pixels of the CCD. USAF target has different sets of horizontal
and vertical lines, a set of 6 lines form an element and each group has 6 elements
with varying line spacings. The resolution of the imaging system is given by the
least resolvable set of lines in the image of the USAF target. Once the group and
element number is identified, the separation between the lines (in mm) is given
by the formula

∆r = 2group+ element−1
6 . (5.2.13)

In the Fig.5.23 obtained on the CCD, we can clearly see the separation between

Figure 5.23 Image of the USAF target obtained on the CCD using
the optical system identical to the absorption imaging system. The
separation between the lines in the group 5 and element 6 gives the
resolution of the imaging system, which is 8.76 µm.

the lines in the group number 5 and element 6. Therefore, the resolution of the
imaging system using Eq.5.2.13 is at least half the separation between the lines
i.e. 2−41/6 mm = 8.76 µm, which is close to the diffraction limited resolution
given by OSLO Edu.

Estimation of the atom number

In a typical absorption imaging sequence, we take three images. The first image
Iatoms is taken with the imaging beam in the presence of atoms, the second
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image Ilight is taken only with the imaging beam and the final image Idark is taken
without atoms and imaging beam to remove the contribution of photons due to all
other sources. The images obtained from the CCD are discrete with 1024× 1024
pixels. From the three images, Iz1 = Iatoms − Idark and Iz0 = Ilight − Idark can be
computed and the atom number in a pixel (i, j), can be written by multiplying
the atom density in each pixel with the area of the pixel,

N(i, j) =
∆r2

pixel

σ0
[(1 + δ2)OD(i, j) + Iz0(i, j)

Isat′
(1− e−OD(i,j))] , (5.2.14)

where ∆r2
pixel = 169 µm2 is the area of each pixel on the CCD and OD(i, j) =

−ln[ Iz1 (i,j)
Iz0 (i,j) ]. The constant Isat′ is the saturated intensity expressed in ADU counts

of the CCD, which is given by

Isat′ =
ητ∆r2

pixelλIsat

Ghc
, (5.2.15)

where η is the quantum efficiency of the CCD (which is 0.98 at 780 nm according
to the specifications provided by Princeton Instruments), τ is the exposure time
of the image and G is the number of the electrons generated in each pixel per
photon5. The total number can then be computed by summing over all the pixels

Natom =
N∑

i,j=1
Ni,j . (5.2.16)

A sample image of the MOT can be seen in Fig.5.20, the real image of the MOT
and it’s reflection in the chip surface can be seen. The distance between the atom
cloud and the chip surface d can be deduced from the distance between the two
images ∆rimages using the relation, d = ∆rimages√

2M , where M is the magnification
due to the optical system. Since, the size of the MOT is several hundred microns,
we directly image it on the CCD without magnifying the image with the 60 mm
lens that is shown in Fig.5.21 (i.e. M = 1). The measured distance between the
MOT and the mirror is about 5 mm.

5.3 Characterisation of the cold atom source

5.3.1 Phenomelogical models
The time evolution of the trapped atom number in the MOT can be understood
with phenomenological models [112]. This model helps to obtain experimentally,
the pressure in the vacuum chamber is normally measured with dedicated gauges

5We can select the value of G through the WinView program of the CCD, we normally
operate the CCD with G ≈ 1.
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or through the ionization current of the ion pump. Often such measurements are
not reliable when the pressure drops below 10−9 mbar and the MOT can be used
to estimate the vacuum pressure [113, 114]. The rate of change of atom number
in the MOT is described by the following equation

dN

dt
= R− γN − β

V
N2 , (5.3.1)

where N denotes the atom number in the MOT, R denotes the rate at which
the atoms are trapped that depends on several experimental parameters. Here,
γ denotes the loss rate due to the collisions between the trapped atoms and
background atoms, summed over all the different gas species in the vacuum
chamber (this also includes the un-trapped Rb atoms in the vacuum chamber)

γ = nRbσRb,RbvRb +
∑
i

niσRb,ivi , (5.3.2)

where ni, vi denote the atom density and average velocity respectively of a given
atom species i and σRb,i denotes the collisional cross-section. The term βN2

takes into account atom losses due to collisions among the trapped atoms, the
corresponding loss rate is given by β and V is the volume of the MOT region.
Solving Eq.5.3.1 with the initial condition N(0) = 0, we obtain

N(t) = Ns
1− e−γ′t

1 + N2
s β
V R

e−γ′t
, (5.3.3)

where γ′ = γ
√

1 + 4βR
V γ2 gives the characteristic loading time of the MOT. The

steady state atom number in the MOT, which arises from a balance (dN/dt = 0)
between the loading and loss rates is given by

Ns =

√
γ2 + 4βR

V
− γ

2β/V . (5.3.4)

If the density of atoms in the MOT is relatively low, we can neglect the losses due
to collisions between the trapped atoms and the atom number evolves according
to

dN

dt
= R− γN . (5.3.5)

Solving 5.3.5 we get
N(t) = Ns(1− e−γt) , (5.3.6)

and the steady state atom number is simply the ratio between the loading rate
and loss rate due to background atom collisions Ns = R/γ. Experimentally,
we acquire (see Fig.5.24) the florescence signal emitted from the trapped atoms
in the MOT. Therefore, we can compute the atom number in the MOT as a
function of time. By fitting the above model, we can obtain the loading rate and
the time constant.
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Figure 5.24 MOT loading vs. time for different currents in the dis-
penser.

5.3.2 Loading rate
As stated earlier, the loading rate in the MOT depends on several experimental
parameters: background pressure of Rb, effective capture volume of the MOT
beams, surface area of the trappable region, MOT beam power, its detuning
from resonance etc. Knowledge of the loading rate R helps to deduce useful
information of the above mentioned parameters. We can associate a capture
velocity vc to the MOT, which is the maximum trappable velocity of an atom
that depends on the beam parameters. The loading rate is nothing but the flux
of atoms with a velocity less than vc, that enter the volume of the MOT common
to all the beams. This quantity can be estimated as [115]

R =
∫ vc

0
nRbAvf(v)dv , (5.3.7)

where nRb is the density of background rubidium vapour in the vicinity of the
MOT region, A is the surface area of the MOT. We can suppose that the velocity
distribution of rubidium atoms in the vacuum chamber is given by the Maxwell-
Boltzmann distribution

f(v) = ( m

2πkBT
)3/24πv2e−mv

2/2kBT . (5.3.8)

Evaluating the integral under the approximation, where the capture velocity is
much smaller than the thermal velocity at temperature T (i.e. vc << vT =
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Figure 5.25 Dependence of the loading rate and the partial pressure
of Rb on the dispenser current.

(8kBT/πm)1/2), we obtain

R = 2
π
nRbA

v4
c

v3
T

. (5.3.9)

The loading rate R measured from the fit can be used to the compute the den-
sity of the background Rb atoms in the vacuum chamber. Eventually, the partial
pressure due to Rb in the MOT region can be estimated if all the other experi-
mental parameters used in the model are well known

PRb = nRbkBT . (5.3.10)

To experimentally measure the loading rates, we operated the dispenser with a
constant current in the range of 2.7 A−5.2 A. The detuning of the MOT beams
was set to −2Γ and a quadrupole gradient of 12 G/cm was used throughout
the experiment. For each chosen current, we waited about 30 − 40 minutes for
the pressure in the vacuum chamber to equilibrate before acquiring the data.
Between successive measurements we allowed the pressure to reach the normal
level (∼ 1 × 10−9 mbar), in order to minimize the pressure rise in the vacuum
chamber due to the previous measurement. For a given current, once a steady
state in the pressure is reached, we acquired the fluorescence signal from the
MOT and averaged it over 16 MOT loadings. The resulting averaged data for
each current is then fitted to the model in Eq.5.3.6, to extract the loading rate,
steady state atom number and characteristic loading time.

The steady state atom number and the loading time extracted from a data
of two different days are shown in Fig.5.26. The data shows that the steady
atom number and the loading time vary slightly from day to day, due to the
variation of the pressure in the vacuum chamber. Whereas, the MOT loading
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rates were observed to be quite reproducible over those two days Fig.5.25(a).
This suggests that the partial pressure in the vacuum chamber due to Rb is quite
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Figure 5.26 Dependence of the steady state atom number and the
characteristic loading on the dispenser current. The data acquired on
two different days is shown in the figures.

reproducible, whereas the pressure due to the remaining species may fluctuate
from day to day6. Partial pressure due to Rb is estimated from the loading rate
with the following parameters: the temperature of the Rb atoms liberated from
the dispenser is around 500 K, but the temperature quickly drops to 300 K
after few collisions with the walls of the vacuum chamber which are at room
temperature, therefore vT = 270 m/s. Assuming a trap region of size l = 1.5 mm,
capture velocity can be expressed7 as vc =

√
~kΓl/m = 18.3 m/s. The pressure

of Rb gas computed with the above parameters can be seen in Fig.5.25(b). The
characteristic loading time of the MOT decreases with an increase in the current
in the dispenser Fig.5.25(b) as the partial pressure of the Rb increases rapidly.
Loading time varies from 10 seconds at 2.7 A down to half a second for 5.2 A
in the dispenser. Though faster loading can be achieved with higher currents,
it may not be desirable owing to the increase in the pressure in the vacuum
chamber, which can limit the lifetime of atoms in magnetic trap.

5.3.3 Lifetime of the MOT
After loading the MOT, if we assume that the supply of rubidium atoms in the
MOT region is cut off (i.e. R = 0), the trapped atom number decays due to

6Adsorption and desorption gasses on the walls of the vacuum chamber can be reason.
7Considering the maximum possible laser force F = ~kΓ/2, the velocity of the atom that

can be brought to rest in a distance l.
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collisions with the background atoms. The trapped atom number dynamics are
then governed by

dN

dt
= −γN − β

V
N2 . (5.3.11)

Solving the above equation with the initial condition N(t) = Ns we obtain

N(t) = Ns
e−γt

1 + βNs
V

(1− e−γt)
. (5.3.12)

If the density of the MOT is negligible, we can ignore the two body losses and
we get N(t) = Nse

−γt. In our experiment, loading takes place due to background
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Figure 5.27 Lifetime of the atoms in the MOT vs. current. Lifetime
extracted by removing the first few seconds of the data, to remove the
effect of loading due to the dispenser and the background Rb atoms in
the vacuum chamber.

vapour pressure of Rb and we do not have a means to switch off the loading of
Rb atoms abruptly (which is possible in the experiments where the 3D MOT is
loaded using a beam of atoms from 2D MOT). If the current in the dispenser is
completely turned off, liberation of atoms does not stop until the temperature
of the dispenser drops below the critical value. In addition, even if the dispenser
stops emitting Rb atoms, loading takes place due to the presence of Rb atoms in
the vacuum chamber. This makes it hard to precisely estimate the lifetime of the
MOT in our setup. After a MOT loading sequence, the dispenser was switched
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off and we acquired the fluorescence signal. By removing the first few seconds
of the data8 we fit the atom number to the decay model. Results of the lifetime
measurement as a function of dispenser current are shown in Fig.5.27. The data
shows that the lifetime is at least 10 seconds for a constant dispenser current up
to 5 A.

5.3.4 Steady state atom number in the MOT
The atom number in the MOT needs to be optimized considering several pa-
rameters. The MOT is usually robust to the fine alignment of the beams, power
imbalance and imperfect polarizations of the MOT beams. We manually opti-
mized the alignment and polarizations so that the florescence signal is maximum.
The MOT beam power is balanced among the four beams up to few percent by
rotating the half waveplates of the Schafter-Kirchoff fibre port cluster. The criti-
cal parameters that need to be studied are, the detuning of the MOT beam from
the cooling transition and the quadrupole gradient. Additionally, characteriza-
tion of the atom number with MOT beam power is also useful to redistribute
the power of the ECDLs across different optical fibres.
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Figure 5.28 Dependence of the steady state atom number on the
MOT beam power.

Atom number vs. laser power

Steady state trapped atom number in a MOT typically increases with the MOT
beam power, as the cooling force increases. However, if the power is increased
indefinitely beyond the saturation intensity, cooling forces also saturate, so does
the number of trappable atoms. In a MOT loading sequence, the atom number

8To remove the effect of MOT loading due to the dispenser and the background.
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reaches a steady state due to the balance between the loading and loss rates and
is given by Ns = R/γ. If we substitute the expression for R we get

Ns = 2
γπ
nRbA

v4
c

v3
T

, (5.3.13)

where the capture velocity of the MOT depends on the cooling force and it is
easy to see that vc scales as

√
〈F 〉. The cooling force depends on the velocity of

the atom and its position in the MOT, if we assume a maximal cooling force, 〈F 〉
scales as s

1+s . Therefore, the steady state atom number varies with the saturation
parameter as

Ns ∝
s2

(1 + s)2 . (5.3.14)

A measurement of the atom number in the MOT with the beam power can be
seen in Fig.5.28. We varied the MOT beam powers in the range of 2 − 8 mW
keeping all other parameters fixed (a constant current of 3A was run through
the dispensers), and acquired the fluorescence signal. The atom number grows
with the saturation parameter as s2/(1 + s)2 and can be seen to saturate with
the MOT beam power. From the fit, we can deduce that the atom number in
the MOT saturates at 5× 106.

Atom number vs. detuning and quadrupole field gradient

To find the optimum value of quadrupole field gradient, we set the MOT beam
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Figure 5.29 Dependence of the steady state atom number on the
quadrupole gradient and the MOT beam detuning.
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detuning at −2 Γ and varied the quadrupole gradient from 9 G/cm to 13 G/cm.
For each value of field gradient, we obtained the images of 50 MOTs using absorp-
tion imaging system. Atom numbers extracted from these images9 can be seen
in Fig.5.29(a). Atom number reaches a maximum value between 11.5 G/cm and
12 G/cm. To find the optimum value of MOT detuning, we set the quadrupole
gradient at 12 G/cm and varied the detuning between −3 Γ and −0.75 Γ, flu-
orescence signal is used to extract the steady state number. Steady state atom
number is peaked around −2.25 Γ (see Fig.5.29(b)).

5.3.5 Estimation of the temperature
We estimated the temperature of the MOT using two independent techniques: a)
Release recapture method and b) Time of flight (TOF) method. The temperature
determination from release recapture method was done with the fluorescence
imaging system whereas absorption imaging system was used in the TOFmethod.

Release recapture method

In the release recapture method [116], we begin by loading atoms in the MOT.
After the atom number reaches a steady state, MOT beams are then switched
off (release) and switched on (recapture) after few milliseconds by controlling the
RF power of the AOM used to shift the frequency of the cooling beam. From the
fluorescence acquired signal (see Fig.5.30) we can compute the fraction of atoms
that remain in the trapping volume of the MOT. The fraction of atoms that
remain in the MOT region depends on the temperature of atoms in the MOT
and the release time. It is given by [117]

fr(∆t) = N(∆t)
N(0) = 4√

π

∫ vc/vT

0
u2e
− v2

c
v2
T du , (5.3.15)

where vc = D/∆t is the maximum velocity of the atoms that starting at the
centre of the MOT, to reach the edge of the trappable region defined by the
beam diameter D in ∆t seconds. Evaluating the integral yields

fr(∆t) = Erf [ D

∆tvT
]− 2√

π

D

∆tvT
e
− D2

∆t2v2
T . (5.3.16)

Experimentally, we can measure the fraction of the recaptured atoms for different
release times. By fitting the resulting curve to the Eq.5.3.16 we can compute
vT and the temperature of the MOT can be deduced. The uncertainty in the
temperature depends on the accuracy of the estimation of the size of the MOT
region. We considered release times between 10 ms and 150 ms. The fraction of
the atoms recaptured was measured with the fluorescence imaging system. By

9Atom numbers are computed from the MOT and its reflection in the chip.
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Figure 5.30 Fluorescence signal of a typical release recapture se-
quence. MOT beams are switched off at t1 = −50 ms and switched on
at t2 = 0 ms (i.e. a release time of δt = 50 ms). After the recapture
atom number increases slightly until it saturates in few milliseconds.
The saturated atom number is considered to compute the fraction of
atoms recaptured.
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Figure 5.31 The temperature of the MOT measured from the release
recapture method. For a beam diameter of 16mm, the temperature
computed from the fit is 490µK.
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using a beam diameter of 16 mm, the temperature obtained from the fit is about
490 µK.

Time of flight method
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Figure 5.32 Temperature of the MOT measured from a TOF mea-
surement. The temperatures of the image of the MOT and the reflec-
tion in the mirror are shown. Temperatures are not the same as the
quadrupole field gradients are different, along the two directions.

The basic idea of the TOF method is to image the cloud of atoms at different
time intervals after switching off the trapping fields. The information of the
velocity distribution of the atom cloud can be linked to the size of the cloud.
Knowing the size of the atom cloud at different instants, temperature of the cloud
can be accurately measured. Let us assume that the atom density distribution
is a Gaussian with a width σ0 at a time t = 0,

n(r, 0) = 1
(2πσ0)3/2 e

− r2
2σ2

0 . (5.3.17)

If the MOT beams are turned off at time t = 0, the atom cloud expands. The
atom density at a later time t = t′, can be computed from Eq.5.3.17 by knowing
the transition probability T (r, t′; r0, 0) of an atom located at a position r0 at
time t = 0 to be at a position r at time t = t′. It is nothing but the probability
for the atom to have a speed |r−r0|/t′ and it is given by the Maxwell-Boltzmann
distribution

T (r, t′; r0, 0) = [ m

2πkBTt′2
]3/2e−

m|r−r0|
2

2kBTt2 . (5.3.18)
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Finally, the atom density at a position r and a time t′ can be obtained by
integrating over the initial position r0

n(r, t′) =
∫
T (r, t′; r0, 0)n(r, 0)d3r0 . (5.3.19)

After the integration, atom density distribution at time t = t′ is,

n(r, t′) = 1
(2πσ(t′))3/2 e

− r2
2σ(t′)2 , (5.3.20)

where σ(t′)2 = σ2
0 + kBTt

′2

m
. If we consider the size of the atom cloud after a

sufficiently long interval we get,

σ(t′) ≈
√
kBT

m
t′ . (5.3.21)

By imaging the cloud at different time intervals, the information of the tem-
perature can then be extracted from the rate at which the Gaussian width of
the cloud increases. To characterize the temperature of the MOT, images were
acquired after a time interval. The interval was varied between 4.5 ms and 7 ms.
For each time interval we took a set of 50 images obtained from consecutive MOT
loading. The size of the cloud was computed by fitting a 2D Gaussian to the
atom density images. By fitting a linear curve to the average size of the cloud,
computed from the 50 images, we evaluated the temperature of the atom cloud
(see Fig.5.32 for the linear fit). Since, we image the cloud and its reflection in the
mirror, we simultaneously get the information of the cloud temperature in two
orthogonal directions. We can see in Fig.5.32 that the temperatures in the two
directions are 267.17 µK and 369.69 µK. The difference in temperatures can be
attributed to the different field gradients of the MOT coils in the two directions.

5.3.6 Pressure dynamics
In cold atom experiments that use single vacuum chamber, atoms are trapped
from the background vapour pressure in the vacuum chamber. During the MOT
loading stage of the experiment, it is necessary to raise the background pressure
of Rb atoms (with the help of dispenser), in order to increase the atom loading
rate. For an inertial sensor, a fast loading rate is desirable, as it reduces the dead
time of the device. However, after the MOT stage, if the background atoms
are not pumped out quickly, the increase in pressure can reduce the lifetime
of the magnetically trapped atoms. This limits the interrogation time of the
interferometer and it effects the sensitivity of the sensor. Therefore, an in-depth
study of the pressure variation near the atom chip can be helpful in finding an
optimal configuration to operate the dispenser.

With an aim to understand the pressure dynamics in our setup, we monitor
the pressure using the ion pump. Once the pressure at the ion pump location
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is determined from the ionization current. We can use pressure conductivity
models or a simulation software (for e.g. Molflow +) to estimate the pressure at
any point in the vacuum chamber. More specifically, the quantity of our interest
is the pressure near the atom chip.

Relation between pressure and ionization current

The pressure displayed on the ion pump controller is usually proportional to the
ionization current. When the pressure in the vacuum chamber drops below 10−9

mbar (i.e in the ultra high vacuum regime), the pressure given by the ion pump
controller is not reliable. To estimate the vacuum pressure more accurately, we
need to investigate closely the processes that take place inside the ion pump.

The basic principle of the ion pump operation is as follows, a set of permanent
magnets inside the ion pump guide and sustain electrons in a circular trajectory.
A high voltage (3000 − 7000 V ) applied across the electrodes, accelerates these
electrons inside the anodes. If an atom in the vacuum chamber collides with these
fast moving electrons, they get ionized and generate a current proportional to the
gas pressure in the anode region. The positive ion accelerates towards cathode
and the collision sputters matter on the cathode and holds ions. This phenomena
affects the linear relation between the ionization current and the pressure due to
leakage current and field emissions. If the ion pump is operated long enough, a
layer of alkali atoms gets deposited on the electrodes and it leads to a leakage
current. This extra current adds to the usual current from ionization and causes
a bias in the pressure measurement. When the free accelerated ions hit the
electrodes holding ions, also leads to an increase in the ionization current. Field
emissions arise due to the sputtered matter forming micro or nano antennas over
the electrodes. These structures add a random current noise to the pump current,
which depends on the high voltage applied across the electrodes. However, the
field emission effect can be suppressed by applying a high voltage (∼ 10000 V )
across electrodes. In our case, we do this by using the Hi-potting option in the
ion pump controller, which cleans the electrodes. The pressure dynamics at the
ion pump location considering these phenomena are described by

dP

dt
= −aP − aP × bI + (c1I − c2I) + L , (5.3.22)

where the first term take into account the pressure at the pump location, the
second term takes into account the probability for an atom or a molecule in the
gas to be trapped by the titanium being actually sputtered from the cathode,
the third term considers the competition between the relaxation of previously
trapped ions and the new ions being trapped in the cathode and finally the last
term takes into account the leaks in the vacuum chamber. Since the pressure
displayed on the pump controller is proportional to the ionization current, we
take Pdisp = kI and we assume a non linear relation P = hIn between the real
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Figure 5.33 A fit of the displayed pressure (blue) with the model
(green) in Eq.5.3.23, the dispenser is switched off at 79 seconds.

pressure and the ionization current. This leads to the following expression

dPdisp
dt

= −a′Pdisp − b′P 2
disp + (c′Pdisp + f ′)× P 1− 1

n . (5.3.23)

To obtain the real pressure in the vacuum chamber, we run a constant current
of 5 A in the dispenser until the pressure saturates. We turn off the current and
let the vacuum pressure to decay, by fitting the displayed pressure to the above
model we can obtain the value of n. The result of the fitting can be seen in
Fig.5.33. The value of n given by the fit is 1.04 and it allows for an accurate
estimation of the pressure. However, the value of n must be verified with an
alternative measurement of pressure, for instance, using the MOT.

Pressure variation during the experiment

Here we study the pressure variation at the ion pump during a typical experi-
mental cycle. We considered an experimental cycle of duration 8 seconds. We
run a constant current of 2 A in the dispenser and we add an additional 2 A of
current for a duration which is varied between 3 seconds and 8 seconds i.e. duty
cycle is varied between 37.5% and 100%. For a duty cycle of 62.5%, variation of
pressure at the ion pump location can be seen in Fig.5.34. After the addition of 2
A to the dispenser, pressure at the ion pump starts to increase after a time ∆t1.
Similarly, once the additional current is cut off, pressure starts to decrease with
a delay ∆t2. The delay ∆t1 (∆t2) arises due to the time needed to increase (de-
crease) the temperature of the dispenser to a level, sufficient enough to liberate
(stop the emission of) Rb atoms from the dispenser. ∆t1 and ∆t2 are experimen-
tally measured for different duty cycles and are found to be independent of the
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Figure 5.34 Variation of the pressure at the ion pump for a duty
cycle of 62.5%, the current in the dispenser is also shown in the figure.
The delay between the moments when the dispenser is turned on (off)
and the instant when the pressure starts to rise (drop) can be seen.

duty cycle and their values are 0.76 and 1.5 respectively (see Fig.5.35(a)). The
pressure difference between the minima and the maxima of the pressure cycle for
different duty cycles can be seen in Fig.5.35(b), the difference is at a level of few
10−11 mbar.

5.4 Conclusion
The current state of the GyrAChip’s experimental setup is described in this
chapter. The optical systems assembled for the realization of mirror MOT are
presented. The typical MOT loading rate in our experiment is about 2.1× 107/s
(for a dispenser current of 4 A). The typical steady state atom number in the
mirror MOT is about 3×107 atoms. The steady state atom number in the MOT is
found to be optimum for a quadrupole gradient of ∼ 11.5 G/cm and for a cooling
beam detuning of −2.25 Γ. The temperature of the MOT is measured from the
TOF method is about 267µK and 369µK along the axes of the quadrupole field,
whereas the temperature measure from the release recapture method is about
490µK. The measured lifetime of the atoms trapped in the MOT is at least 10
seconds. Two atom detection systems: a) florescence and b) absorption imaging
systems have been added to the setup, to facilitate the characterisation of cold
atom source. The resolution of the absorption imaging system is characterized
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Figure 5.35 Pressure variation in the vacuum chamber during a
MOT cycle.

with the USAF target. The measured resolution of the f-2f-f optical system is
about 8.76 µm, which is better than the resolution offered by the CCD. The
first steps towards a model explaining the pressure dynamics in our setup have
been discussed. The pressure dynamics study is still at a preliminary stage and
a systematic investigation using the MOT is required to fully characterize these
processes.



Chapter 6
Perspectives & Conclusion

We have presented in this thesis the theoretical elements required in the optimal
design of a magnetic roughness free waveguide, for guided atom interferometry on
an atom chip. The study of the dynamics of the atoms is also discussed in detail,
as well as the main implications of the motion of the atoms on an interferometric
signal meant for inertial sensing. The main result of this theoretical investigation
is the generation of a stable guiding in a ring geometry, using wires fabricated
directly on the chip. The experimental work focussed on the realisation of a
source of cold atoms with a microfabricated mirror, and the next step is to
replace it with the atom chip. The different wire structures on the chip will
allow, on one hand the realisation of the standard cooling processes including
the rf forced evaporation; on the other hand, the generation of the magnetic
guiding potential. In the following sections, we present the first version of the
atom chip that is currently under fabrication. We discuss the important elements
incorporated on the chip and their functionality. A schematic of the Bragg system
needed to launch atoms in the waveguide is also discussed. Finally, the planned
experimental sequence, starting from the mirror MOT is shown.

6.1 Atom chip
A key component of the GyrAChip experiment is the atom chip. Using this
atom chip, we envisage to generate a circular guide of 500 µm radius necessary
for the guided Sagnac interferometer. As a first step, with the first atom chip
(see Fig.6.1) that will be placed in the vacuum chamber, we plan to optimize the
experimental sequence up to the forced evaporative cooling in the Z-trap. The
three equally spaced linear wires (which go through the U and Z wires, shown
in Fig.6.1(c)) can be used to demonstrate the three ideas presented in Chapter
2 and 3. This opens up the possibility to experimentally verify the adiabaticity
of the guide within the parameter range identified numerically in Chapter 3.
The effect of wire corrugation and the efficiency of the modulation technique
can then be quantitatively measured. This preliminary detailed study can give

125
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us a deeper insight into the experimental challenges in the demonstration of the
circular waveguide. In the following, an overview of various wires present on the
first atom chip is given.

The layout of the mask used for chip fabrication can be seen in Fig.6.1.
The central part of the chip consists of U and Z wires and they will be used
in the initial cooling stages of the experiment. The two long wires on either
side of the legs of the U and Z wires will provide an additional longitudinal
confinement to the Z-trap. The two smaller U wires in the upper half of the
chip will be responsible for the precise control of the longitudinal position of the
atom cloud in the Z-trap at the beginning of the atom interferometric sequence.
As mentioned earlier, the three straight wires with a separation of 5 µm, can
be used to generate a linear guide. As proposed in [118, 119], a circular guide
is not the only geometry that can be used for a guided Sagnac interferometer.
An area enclosed interferometer may be realized with a linear waveguide by
simultaneously exciting the transverse and longitudinal [120, 121] motions of the
atoms. In the image of the mask, we can also see a small circular loop next to
the three wires. It can be used to generate, for instance a magnetic field which
can imprint a phase shift on the atom cloud.

a) b)

c)

Z

X

Figure 6.1 Mask of the first atom chip used in the chip fabrication,
relevant sections of the mask at the central part are zoomed to show
the details.

6.1.1 Fabrication of the atom chip
The atom chip fabrication is being carried out in the clean room facility of
Observatoire de Paris and also at Thales Research and Technology (TRT) under
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the OnACIS (On Atom-Chip Inertial Sensing) collaboration between SYRTE
and TRT.

Choice of the substrate

One of the important design and the fabrication criterion of an atom chip is the
microwire resistance. Indeed, depending on the resistance of the wires (which
depends on the cross-sectional area), the ohmic heat generated can significantly
increase the temperature of the chip and can even melt the wires if the excess heat
is not drained properly. The copper block holding the chip acts as a heat sink and
is the only way to dissipate the heat. The substrate plays therefore a key role in
the heat conduction between the wires and the copper block. A good substrate
would be electrically insulating in order not to short-circuit different wires on
the chip and at the same time it would be a good thermal conductor. We chose
Aluminium Nitride (AlN) substrates for the chip, in view of its relatively high
thermal conductivity (170− 280 W/m/K [40]). To minimize the wire roughness,
we use polished AlN substrates of 600 µm thickness, with a surface roughness of
few tens of nano meters. For the metallic wires on the substrate, we use gold for
its chemical neutrality and high conductivity.

Process

Depending on the technique with which the microwires are realised on the sub-
strate, there are two methods widely used in the fabrication of atom chips: a)
evaporation and b) electroplating [122]. Electroplating is often used when the
height of the wires is several microns, while evaporation is the preferred choice
for excellent wire quality. Nevertheless, it was shown that the evaporation tech-
nique can be used to grow wires as tall as 5 µm [122]. In our atom chip, all
wires were designed to be 3 µm high. Such a thickness allows us to run high
enough currents (sufficient for our needs), without destroying the wires. In order
to achieve better wire quality, which is very critical to avoid coherence loss or
cloud fragmentation, we use the evaporation technique1 [123]. The main steps
in our atom chip fabrication using evaporation are shown in Fig.6.2.

The two different metallization processes have been tested for the fabrication
of the trapping microwires. A comparison between the processes will allow us
to identify the one that produces wires with the smallest wall roughness, a crit-
ical fabrication limitation for the coherent propagation of atomic wavepacket in
magnetic guides. The results obtained so far for this test are presented in Fig.6.3
where we can see that both processes are equivalent and can be equally employed
for the fabrication of our atom chips.

1Nevertheless, steps have also been taken to produce atom chips with electroplating.
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Figure 6.2 Different stages in the development of our atom chip: 1)
A resin is spin coated on AlN substrate. 2) The sample is then covered
with a mask (glass piece with a chromium layer) and is exposed to UV
light. Part of the resin exposed to UV light is hardened. 3) The soft
part of the resin is then dissolved leaving a negative copy of the wires.
4) Substrate is then transferred to a vacuum chamber where gold is
evaporated. 5) The resin is lifted off leaving the wires on the chip.
6) Few microns of resin is coated to insulate the wires. 7) Finally, a
layer of gold is coated to create a reflecting surface.

Figure 6.3 Left, microwire fabricated by electroplating. Right, mi-
crowire fabricated by thermal evaporation. The observed wall rough-
ness has a typical spatial correlation length on the order of tens of
nm.
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6.2 Bragg system
For the realisation of atom interferometers, we need to implement matterwave
coherent beam splitters and mirrors. The splitting can be achieved either mag-
netically [124, 125, 35] or by using two photon transitions [126, 103]. Atoms
loaded into the guide from the Z-trap are in the state |F = 2,mF = 2〉. Since
the guiding potential depends on the internal state of the atom, any process used
to manipulate the interferometer propagation modes should not alter the internal
state of the atoms. The widely used two photon Raman transition [126] can be
used for splitting the atom cloud. But this process is associated with a change
in the internal state of the atoms, which is not desirable for magnetically guided
atoms. Therefore, double Bragg diffraction [103] is a natural choice to split and
launch the atoms along the guide. We have designed and built the Bragg system
for our experiment, and its schematic is shown in Fig.6.4.

,

Figure 6.4 Schematic of the Bragg bench. A beam which is approxi-
mately 7 GHz blue detuned to the cooling transition (F = 2→ F ′ =
3) is amplified with a TA, which is then split into two with a PBS. The
frequency difference between the beams is controlled with the AOMs
and the EOM can be used to compensate phase fluctuations between
the paths. The beams are then superposed and split again before cou-
pling into the single mode fibres.

To reduce the spontaneous emissions, the double Bragg diffraction uses beams
which are highly detuned from atomic transitions. An atom in F = 2 hyperfine
level, sees the repumper beam as a cooling beam blue detuned by about 7 GHz
and hence it can be used to generate Bragg beams. Therefore, part of the beam
from ECDL1 was chosen to generate the necessary beams. Since, the duration
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of the Bragg pulses is inversely proportional to the beam intensity, to achieve
short pulses the output of the ECDL1 is amplified (up to 300 mW ) with a TA.
The amplified beam is then split into two with a PBS, each of the two beams is
then frequency shifted with an AOM. To launch the atoms with twice the recoil
velocity 2vr = 11.77 mm/s, a frequency difference of about 15 kHz is necessary
to satisfy the resonance condition of the Bragg process. The frequency difference
between the two beams can be tuned by setting the frequency difference between
the rf sources (generated from a DDS) driving the AOMs. The EOM present in
one of the paths can be used to correct the phase fluctuations between the two
Bragg beams. The two beams are then overlapped with a PBS and are finally
coupled into single mode polarisation maintaining fibres to transport them to
the science chamber.

6.3 Projected experimental sequence
A typical experimental sequence leading to the production of an ultra cold gas
or a BEC using an atom chip can be found in the literature (for instance, in the
thesis of C. Aussibal [127]). A summary of the various stages of our experiment
after the mirror MOT is briefly discussed here.

6.3.1 U-MOT
To manipulate the atoms with the microwires on the chip, they need to be
brought closer to the chip surface. In our experiment, atoms are typically trapped
at a distance of 5 mm from the chip surface during the mirror-MOT stage. By
running a constant current IU in a U shaped wire on the atom chip, and by
applying a bias field BU parallel to the chip surface (which can be produced
by the three pairs of Helmholtz coils surrounding the vacuum chamber) and
perpendicular to the central part of the U-wire, we can generate a quadrupole
field above the chip surface (note that the field due to the legs of the U-wire
cancel at the point where the bias field balances the field due to the central
part [128]). The transfer of atoms is achieved by adiabatically ramping up the
currents in the U-wire and the bias coils while ramping down the current in
the external quadrupole coils. In our case, the central part of the U-wire has
dimensions 800 µm × 100 µm, such an aspect ratio gives the required capture
volume for an almost 100% efficient transfer of the atoms from the external MOT
to U-MOT [127]. Considering the non-negligible width of the wire, by ignoring
the height of the wire, the quadrupole gradient around the field zero is [129]

b = µ0

2π
IU

r2
0 + w2

4
, (6.3.1)

where w is the width of the wire and r0 = µ0
2π

IU
BU

is the distance between the



6.3. Projected experimental sequence 131

(a) Magnetic field in a plane parallel to the chip
surface at a distance of 330 µm.

(b) Magnetic field in the vertical plane x = 0.

Figure 6.5 Magnetic field due to the U-wire and a parallel bias field
BU considering the finite width and height of the wires. Fields are
computed for IU = 2 A and BU = 12 G.

field zero and the chip surface. For instance, with a bias field of BU = 12 G
and a current IU = 2 A, we can obtain a spherical quadrupole field at a distance
of 330 µm (see Fig.6.5). To transfer the atoms, the quadrupole field due to the
external bias field can be turned off and IU and BU ramped from zero to the
above values in few tens of milliseconds [127] while keeping the MOT beams on.
After transferring the atoms to the U-MOT, the atoms can be brought further
close to the chip surface by reducing the current IU .

6.3.2 Optical molasses and optical pumping
To transfer the atoms efficiently from U-MOT to Z trap, the temperature of
atoms needs to be reduced below the Doppler limit using molasses cooling. This
step typically lasts few milliseconds: the current in the U-wire and the bias field
BU are ramped down to zero while increasing the detuning of the cooling beam
to ∼ −15 Γ. At this point the atoms are cooled only by optical forces. After
molasses cooling, the atoms are optically pumped to the low field seeking state
|F = 2,mF = 2〉.

6.3.3 Z-trap
Following the optical pumping, the atoms need to be transferred to the Z-trap
for forced evaporation. Contrary to the U-MOT, the atoms are trapped in the
Z-trap due to the magnetic forces only. The Z-trap results from the cancellation
of the field due to the central part of the Z-wire with that of an external bias
field as in the U-MOT case, but the fields due to the legs add up to produce an
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Figure 6.6 Transfer of atoms between U-MOT and Z-trap requires
bias fields at an angle with respect to the chip surface.

additional bias field along the direction of the trap. This additional bias field
helps to lift the degeneracy of the Zeeman levels and prevents Majorana losses.
Thus, Z-wire in combination with a bias field generates a stable guide with the
help of the integrated bias field. Atoms in the U-MOT are localised above the
central part of theU-wire, in order to move the cloud towards the Z-wire requires
a bias field at an angle with respect to the chip surface (as shown in Fig.6.6). The
transfer can be achieved by simultaneously turning off IU and BU , and turning
on Iz and Bz. For instance, by taking IZ = 2 A and applying a parallel bias field

(a) Magnetic field in a plane parallel to the chip
surface at a distance of 230 µm.

(b) Magnetic field in the vertical plane x = 0.

Figure 6.7 Magnetic field due to the Z-wire and a parallel bias field
BZ considering the finite width and height of the wires. Fields are
computed for IZ = 1 A and BZ = 8 G.

BZ = 8 G, a trap is formed approximately at r = µ0IZ/2πBZ = 230 µm from
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the chip surface (see Fig.6.7).

6.3.4 Forced rf evaporation
After the atoms are transferred to the Z-trap, they need to be cooled to few
hundred nano Kelvin in order to them efficiently into the magnetic waveguide.
Taking advantage of the atom chip, a forced rf evaporation can be used to achieve
few hundred nano Kelvin within few seconds. Since, the U-wire is unused when
atoms are held in the Z-trap, it can therefore be used to generate the necessary
rf field for the evaporation.

6.3.5 Guided Sagnac interferometer

Figure 6.8 A possible wire configuration to realize a circular waveg-
uide using three concentric circular wires. Such a wire configuration
allows to transfer atoms from U-MOT to Z-trap and eventually to the
waveguide (note that the wires in the image are not shown to scale).

Finally, the ultracold atom cloud (∼ 300 nK) can be transferred to a circular
guide created by three concentric wires located adjacent to the Z-wire as depicted
in the Fig.6.8. These three concentric wires are not present in the first atom chip,
but they will be incorporated in the second version. The transfer can be achieved
by tilting the bias field of the Z-trap and by increasing the currents in the circular
wires. As explained in Chapter 4, once the atoms are loaded into the circular
guide, Bragg pulses can be used to split and recombine the atoms after one (or
several) round trip(s) around the guide. The angular velocity of the lab frame
can then be extracted by measuring atom population in different momentum
output states of the interferometer.
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This thesis discussed different strategies to generate a magnetic waveguide.
The three considered configurations can be achieved by using the same wire con-
figuration. Modulated waveguides use the current modulation technique, which
simultaneously solves the problem of coherence and Majorana losses. Assuming
that the transverse potential of the guide is harmonic, the propagation of the
atoms in the circular guide was shown to be multimode. The effects of multi-
mode propagation of the atoms and their finite temperature are quantified using
a simple model to be verified experimentally. Our calculations show that for
an ultra cold gas, launched at a velocity v0 in a guide of radius r0 and trans-
verse guiding frequency ωr, the multimode propagation leads to additional phase
shifts apart from the usual Sagnac phase. An important result of our study is
that this additional phase shift can be suppressed up to first order by operating
the interferometer such that the quantity r0v0/ωr is an integer. Operation of in-
terferometer with thermal atoms was shown to amplify the contrast loss, without
inducing any additional phase shifts. The contrast loss due to finite tempera-
ture can also be suppressed by choosing r0v0/ωr as an integer. Consequently, we
have found a necessary condition that allows the suppression of an intrinsic to a
circular waveguide phase shift, that can produce a systematic effect deleterious
for inertial sensing.
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A. Energy levels of 87Rb

Figure .9 An overview of the optical frequencies needed for trap-
ping, cooling, detection and interferometry. The frequency of ECDL1
is f0, δ is the detuning of the cooling transition and ∆ denotes the
detuning of the Raman transition (image taken from the thesis of W.
Yan[110]).

Rubidium naturally exists in two isotopes 85Rb and 87Rb with an abundance
of 72.2% and 27.8% respectively. Our experiment uses the isotope 87Rb. Grossly,
the energy levels of 87Rb are characterised by the principal and orbital angular
momentum quantum numbers n and L, of the outermost electron. The transi-
tions between these gross energy levels possess a fine structure due to the coupling
between orbital angular momentum L and the spin angular momentum S of the
outer electron. The fine structure levels are characterised by the total angular
momentum J = L+ S, which takes a value between |L− S| and |L + S|. The
ground state of 87Rb has L = 0 (since the electronic configuration is 5s1), by tak-
ing the electron spin S = 1/2, the total electron angular momentum is J = 1/2.
The ground state is succinctly written as 52S1/2, where 5 is the principal quantum
number, superscript denotes 2S + 1 and the subscript denotes J . Similarly, for
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the first excited state L = 1, J = 1/2 or J = 3/2 and the corresponding states
are 52P1/2 and 52P3/2. The transitions 52S1/2 → 52P1/2 and 52S1/2 → 52P3/2 are
usually referred as D1 and D2 lines. Each of these lines has a hyperfine structure
due to the coupling between the total electron angular momentum J and the nu-
clear angular momentum I. The total atomic angular momentum is F = J+I.
The hyperfine structure is characterised by F which takes values between |J− I|
and |J + I|. If we consider the D2 transition (all the optical frequencies of our
experiment are based on this transition), the ground state 52S1/2 has J = 1/2
and the nuclear angular momentum is I = 3/2, therefore F = 1 or 2. The excited
state 52P3/2 has J = 3/2 and the possible values of F are 0, 1, 2 and 3. The
hyperfine transitions of the D2 line are shown in Fig..9.

B. Calculation of collection efficiency

Figure .10 Schematic of the solid angle enclosed by the fluoresced
light from the MOT. Part of the solid angle blocked by the quadrupole
coil is shaded in grey color.

Numerical computation of the solid angle taking into account the obstruction
of the quadrupole coil is discussed here. A projection of the schematic can be
seen in Fig..10. The co-ordinate axis is chosen so that the MOT is at origin.
Quadrupole coil is at an angle of 45◦, with respect to the chip holder and the
centre of the coil is at distance d0 from MOT. The lens used to image fluoresced
light on the photo diode has a diameter D and is at a distance d below the chip
surface. To compute the solid angle we generate rays in all directions, if the ray
reaches the lens we add the contribution to solid angle due to that direction.
Let us consider a ray of light emitted from origin in the direction (θ, φ) where φ
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is the polar angle and θ is the azimuthal angle. The equation of a straight line
along (θ, φ) is

x

cos(θ) sin(φ) = y

sin(θ) sin(φ) = z

cos(φ) . (.0.2)

It is clear that the domain of interest in the computation of the solid angle is
θ ∈ [0, 2π) and θ ∈ [π − tan−1(D2d), π]. The equation of the plane defining the
MOT coil is x+z = −

√
2d0. The coordinates of the point of intersection between

the straight line (Eq..0.2) and the plane (x+ z = −
√

2d0) are

x1 = −
√

2d0 cos(θ) tan(φ)
1 + cos(θ) tan(φ) , (.0.3)

y1 = −
√

2d0 sin(θ) tan(φ)
1 + cos(θ) tan(φ) , (.0.4)

z1 = −
√

2d0

1 + cos(θ) tan(φ) . (.0.5)

Note that the coordinates of the centre of the quadrupole coil are (x0, y0, z0) =
(− d0√

2 , 0,−
d0√

2). A ray in a given direction intersects the quadrupole coil if and
only if

(x1 − x0)2 + (y1 − y0)2 + (z1 − z0)2 < r2
0 . (.0.6)

We discretize the domain of φ and θ, and for each direction we verify if the ray
reaches the lens. If it does, the infinitesimal solid angle dS = sin(φ)dθdφ is added.
For the parameters d0 = 49 mm, r0 = 40 mm, d = 150 mm and D = 50.8 mm,
the solid angle obtained from this algorithm is 0.0061. This value is used in the
calculation of collection efficiency of the florescence imaging system.

C. Some properties of Displacement operator
Here we provide the derivation of some properties of the Displacement operator,
that were used in the Section.4.2.2. Quantum mechanical harmonic oscillator can
be described elegantly with the ladder operators, a and a† satisfying [a, a†] = 1.
The Hamiltonian H = − ~2

2m
d2

dx2 + 1
2mω

2x2 can be written as

H = ~ω[N + 1
2] , (.0.7)

where N is a number operator defined as N = a†a. Number operator and the
Hamiltonian have common eigen vectors, which are denoted with |n〉, for n ≥ 0
such that

N |n〉 = n |n〉 . (.0.8)
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The eigen energies of the Hamiltonian are given by En = [n + 1
2 ]~ω. These

number states are related to each other by the ladder operators as follows

a† |n〉 =
√
n+ 1 |n+ 1〉 , (.0.9)

a |n〉 =
√
n |n− 1〉 . (.0.10)

A coherent state |α〉 is an eigen state of the operator a with the eigen value α

a |α〉 = α |α〉 , (.0.11)

where α is a complex number. Using Eq..0.11, expanding the coherent state in
terms of number states we obtain

|α〉 = e−
|α|2

2

∞∑
n=0

αn√
n!
|n〉 . (.0.12)

The time evolution of the coherent state |α〉 can be computed using the above
relation

eiH
t
~ |α〉 = e−

|α|2
2

∞∑
n=0

αn√
n!
e−iωt(a

†a+ 1
2 ) |n〉 , (.0.13)

which can be simplified as

eiH
t
~ |α〉 =

∣∣∣e−iωtα〉 . (.0.14)

Therefore a coherent state evolves into another coherent state or in other words
a coherent state moves on a circle of radius |α| with an angular velocity ω in the
complex plane. Let us define an operator called Displacement operator D(α) =
eαa

†−α∗a. Using the Backer-Campbell-Hausdorff (BCH) identity, Displacement
operator can be written as2

D(α) = eαa
†−α∗a = e−

|α|2
2 eαa

†
e−α

∗a = e
|α|2

2 e−α
∗aeαa

†
. (.0.15)

With the above result, we can compute the action of the Displacement operator
on the ground state

D(α) |0〉 = e−
|α|2

2 eαa
†
e−α

∗a |0〉 (.0.16)

= e−
|α|2

2 eαa
† |0〉

= |α〉 .

Therefore, displacement operator can be used to generate a coherent state from
the ground state.

2BCH identity is eA+B = e−[A,B]/2eAeB if [A, [A,B]] = [B, [A,B]] = 0. By taking A = αa†

and B = −α∗a we get D(α) = e−
|α|2

2 eαa
†
e−α

∗a. Exchanging the role of A and B, we can show
that D(α) = e

|α|2
2 e−α

∗aeαa
† .
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Let us now consider the displacement operator D(α + β) for some complex
numbers α and β. Using the BCH identity we get3

D(α + β) = eαa
†−α∗a+βa†−β∗a (.0.17)

= eαa
†−α∗aeβa

†−β∗ae−
1
2 [αa†−α∗a,βa†−β∗a]

= D(α)D(β)e−Im(αβ∗) .

The above identity helps to compute the overlap between two coherent states

〈α | β〉 = 〈0| D†(α)D(β) |0〉 (.0.18)
= eIm(αβ∗) 〈0| D(β − α) |0〉

= eIm(αβ∗)e−
|α−β|2

2 . (.0.19)

Lastly, let us consider a similarity transformation of a using Displacement op-
erator i.e. D†(α)aD(α). To evaluate this, we can make use of the following
identity

eABe−A = B + [A,B] if [A, [A,B]] = 0 . (.0.20)

By taking A = −αa† + α∗a and B = a we obtain

D†(α)aD(α) = a+ α . (.0.21)

Similarly, we have
D†(α)a†D(α) = a† + α∗ . (.0.22)

D. Density matrix in coherent state basis
A thermal state of a harmonic oscillator at temperature θ can be described by
the density matrix. Taking the occupation probability of a given number state
as the Boltzmann distribution, the density matrix is given by

ρ =
∞∑
n=0

Pn |n〉 〈n| . (.0.23)

where Pn = (1 − e−~ωr/kBθ)e−n~ωr/kBθ. Also, note that trace of the density op-
erator is one i.e. Tr(ρ) = 1. The above density matrix can be expressed in
the coherent state basis {|α〉}. To do so, we first compute the matrix element
〈α | ρ |α〉, which can be expressed as

〈α | ρ |α〉 =
∞∑
n=0

Pn| 〈α |n〉 |2 . (.0.24)

3Here we choose A = αa† − α∗a, B = βa† − β∗a.
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Substituting | 〈α |n〉 |2 = e−|α|
2 |α|2n

n! and summing over n we obtain

〈α | ρ |α〉 = (1− e−~ωr/kBθ)e−|α|2(1−e−~ωr/kBθ) . (.0.25)

Therefore, the density matrix in the basis of coherent states is

ρ = N
∫

(1− e−~ωr/kBθ)e−|α|2(1−e−~ωr/kBθ) |α〉 〈α| d2α , (.0.26)

where N is the normalisation constant. Since {|α〉} form an over complete basis,
the normalization constant N needs to be chosen so that trace of the density
matrix is equal to one. We can verify that it is achieved for N = 1/π. Finally,
the density matrix in the coherent state basis is given by

ρ =
∫
P (α) |α〉 〈α| d2α , (.0.27)

where P (α) = 1
π
(1− e−~ωr/kBθ)e−|α|2(1−e−~ωr/kBθ) is the Glauber-Sudarshan distri-

bution.
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Sujet : Propagation of atoms in a magnetic waveguide
on a chip

Résumé : In this thesis we study the propagation of atoms in a magnetic toroidal
waveguide, with the aim of developing an inertial sensor. Here, we present differ-
ent strategies to create the waveguide on an atom chip for a guided Sagnac atom
interferometer. We devised three solutions which can be achieved using the same
wire configuration. They use the current modulation technique, from a new point
of view, which simultaneously tackles the problem of wire corrugation and spin
dependent Majorana atom losses. The effect of the multimode propagation of the
atoms in the guide is also quantified in this thesis. Using a simple model, we cov-
ered the propagation of noninteracting ultracold and thermal gases. We identified
the operating conditions to realize a cold atom interferometer with a large dynamic
range essential for applications in inertial navigation. Experimentally, the thesis
describes the realisation and characterisation of the cold atom source close to a
gold coated substrate, as well as the implementation and the characterisation of the
atom detection systems.

Mots clés : cold atoms, atom chip, guided atom interferometry, inertial sensors,
magnetic waveguide, wavepacket propagation

Subject : Propagation d’atomes dans un guide
magnétique sur puce

Résumé : Dans cette thèse, nous étudions la propagation d’atomes dans un guide
magnétique toroïdal, dans le but de développer un capteur inertiel. Ici, nous présen-
tons différentes stratégies pour créer un guide sur une puce atomique pour un in-
terféromètre Sagnac atomique guidé. Nous avons mis au point trois solutions qui
peuvent être réalisées avec la même configuration des fils. Elles utilisent la technique
de modulation de courant avec un nouveau point de vue qui traite simultanément
la problème de rugosité des fils et les pertes de Majorana dépendantes du spin.
L’effet de la propagation multimode des atomes dans le guide est aussi quantifié
dans cette thèse. En utilisant un modèle simple, nous avons couvert les cas de la
propagation de gaz non interactif ultra froids et thermiques. Nous avons identifié les
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conditions opérationnelles pour réaliser un interféromètre à atomes froids avec une
grande gamme dynamique, essentielle pour les applications en navigation inertielle.
Expérimentalement, cette thèse décrit la réalisation et la caractérisation de la source
d’atomes froids proche d’un substrat avec un dépôt d’or, ainsi que l’implémentation
et la caractérisation des systèmes de détection.

Keywords : atomes froids, puce atomique, interféromètrie atomique guidé, capteurs
inertiels , guide magnétique, propagation des paquets d’ondes


