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CENTRE D’ÉCONOMIE DE LA SORBONNE

Thèse
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Stefano Marmi Professor, Scuola Normale Superiore di Pisa Examinateur
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The	research	work	presented	in	my	thesis	has	been	articulated	around	the	goal	
of	building	financial	crisis	indicators	with	the	ability	to	forecast	as	accurately	as	
possible	future	market	events	and	then	use	that	information	to	devise	systematic	
trading	strategies.	Those	financial	crisis	indicators	work	from	multiple	points	of	
view	that	complement	one	another.	They	rely	on	the	correlation	and	the	
volatility	inside	a	basked	of	asset	or	the	components	of	an	equity	index,	like	the	
SP500	and,	in	one	part	of	the	thesis,	we	also	develop	indicators	based	on	the	
distribution	of	the	spreads	of	the	components	of	a	CDS	index,	like	the	Itraxx	
Europe	125.	Those	financial	crisis	indicators	are	then	applied	to	many	different	
datasets,	large	and	small,	and	the	signal	that	they	provide	is	used	as	the	basis	for	
the	construction	of	an	active	trading	signal.		
This	thesis	is	made	of	three	research	papers	constituting	its	three	chapters.	Each	
of	those	three	papers	is,	at	the	date	of	my	defence,	about	to	be	independently	
submitted or already undergoing review at a peer reviewed publication, albeit

sometimes	in	a	shortened	form.			
The	first	chapter	deals	with	the	construction	of	two	kinds	of	financial	crisis	
indicators.	The	first	kind	of	financial	crisis	indicators	is	based	on	the	comparison	
of	the	empirical	spectrum	of	a	rolling	covariance	matrix	to	a	distribution	of	
reference	that	may	represent	either	a	calm	or	an	agitated	market	reference.	The	
second	kind	of	financial	crisis	indicators	is	based	on	the	computation	of	the	trace	
or	of	the	spectral	radius	of	the	covariance	matrix,	the	correlation	matrix	or	a	
weighted	version	of	the	correlation	matrix.	The	weights	that	we	use	in	this	first	
chapter	are	the	market	capitalization	and	the	volume	traded.	After	defining	a	
total	of	nine	financial	crisis	indicators,	of	both	kinds,	we	then	proceed	to	
demonstrate	out-of-sample	predictive	power	for	one	of	them, which	we	choose	
to	be	the	spectral	radius	of	the	correlation	matrix	weighted	by	volume	traded	
applied	on	our	best	and	most	detailed	dataset	that	contains	the	SP500	index	and	
its	stock	components.	The	most	interesting	aspect	of	the	demonstration	of	the	
prediction	power	of	our	financial	crisis	indicator	is	the	implementation	of	a	
successful	protective	put	systematic	trading	strategy	based	on	its	signal.	While	
the	worth	of	our	approach	is	demonstrated	and	the	prediction	power	of	our	
financial	crisis	indicators	clearly	established,	we	also	underline	the	limitations	of	
our	approach,	which	in	particular	may	take	the	form	of	a	significant	number	of	
false	positive	errors	in	the	signal	provided	by	our	financial	crisis	indicators.			
The	second	chapter	is	constituted	of	a	paper	that	builds	upon	the	framework	and	
financial	crisis	indicators	constructed	in	the	first	chapter.	In	this	second	paper,	
we	expands	the	use	of	our	financial	crisis	indicators	by	combining	the	signals	
provided	by	29	of	them	and	create	a	decision	process	designed	to	govern	a	
portfolio	constituted	of	a	mix	of	cash	and	ETF	shares.	Since	the	main	limitation	of	
our	financial	crisis	indicators,	while	considered	individually,	is	the	presence	of	
false	positives	in	their	predictions,	we	aim	in	this	paper	at	combining	the	signals	
provided	by	many	of	them	and	make	a	systematic	trading	strategy	act	on	the	
composition	of	the	portfolio,	selling	the	shares	when	the	risk	of	a	crisis	is	high	
and	converting	the	cash	into	shares	when	the	risk	of	a	crisis	is	low,	only	when	
the	indicators	reach	some	kind	of	consensus	in	their	forecasts.	We	then	apply	
this	approach	to	five	datasets	containing	the	stock	components	of	five	major	



equity	indices.	The	success	of	the	systematic	trading	strategies	based	on	our	
financial	crisis	indicators	is	demonstrated	by	comparing	their	performances	to	a	
buy	and	hold	strategy	as	well	as	to	a	large	number	of	paths	of	a	strategy	where	
the	choices	to	convert	the	cash	into	shares	or	the	shares	into	cash	is	random.	The	
main	result	in	this	chapter	is	the	validation	of	our	framework	and	the	
demonstration	of	the	usefulness	and	prediction	power	of	our	financial	crisis	
indicators	through	the	production	of	winning	investment	strategies	based	on	
those	financial	crisis	indicators.	The	added	value	of	our	systematic	active	
strategies,	both	in	comparison	to	the	static	buy	and	hold	references	and	to	the	
random	paths	is	clear	in	terms	of	Sharpe	ratio,	reduced	volatility,	increased	
overall	performance	and	Calmar	ratio.		
The	third	and	final	chapter	talks	about	another	and	novel	approach	to	financial	
crisis	indicators,	this	time	by	using	the	dynamic	evolution	of	the	distribution	of	
the spreads of the components of a CDS index, like the Itraxx Europe 125. After

establishing	some	results	that	allow	us	to	work	with	dynamic	distributions	on	
solid	theoretical	ground,	we	fit	the	empirical	distribution	of	the	spreads	of	the	
components	of	the	index	with	a	mixture	of	two	lognormal	distributions.	From	
the	study	of	the	dynamics	of	the	coefficients	of	the	decomposition	of	the	
empirical	distribution	of	the	spreads	on	the	basis	constituted	of	the	two	chosen	
lognormal	distributions,	we	then	build	a	lower	and	an	upper	boundary	around	
the	fitted	empirical	cumulative	distribution	function	of	the	spreads	of	the	
components	of	the	CDS	index.	This	approach	defines	a	Bollinger	band	around	the	
fitted	empirical	cumulative	distribution	function	and	the	crossing	of	either	
boundary	defining	by	that	band	is	interpreted	in	terms	of	risk	and	therefore	
translated	into	a	trading	signal.	While	the	establishment	of	a	complete	and	fully	
functional	active	trading	strategy	using	that	Bollinger	band	upper	and	lower	
boundary	crossing	signal	is	going	to	be	presented	in	a	mature	form	only	in	future	
revisions	of	this	work,	the	results	obtained	are	still	attractive	enough	to	be	
considered	by	the	asset	management	industry,	to	which	we	believe	this	work	can	
be	extremely	useful	in	order	to	navigate	through	a	globally	uncertain	
environment.			
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Abstract

The aim of this work is to build financial crisis indicators based on spec-
tral properties of the dynamics of market data. After choosing an optimal
size for a rolling window, the historical market data in this window is seen
every trading day as a random matrix from which a covariance and a cor-
relation matrix are obtained. The financial crisis indicators that we have
built deal with the spectral properties of these covariance and correlation
matrices and they are of two kinds. The first one is based on the Hellinger
distance, computed between the distribution of the eigenvalues of the empir-
ical covariance matrix and the distribution of the eigenvalues of a reference
covariance matrix representing either a calm or agitated market. The idea
behind this first type of indicators is that when the empirical distribution
of the spectrum of the covariance matrix is deviating from the reference in
the sense of Hellinger, then a crisis may be forthcoming. The second type of
indicators is based on the study of the spectral radius and the trace of the
covariance and correlation matrices as a mean to directly study the volatil-
ity and correlations inside the market. The idea behind the second type of
indicators is the fact that large eigenvalues are a sign of dynamic instability.
The predictive power of the financial crisis indicators in this framework is
then demonstrated, in particular by using them as decision-making tools in
a protective-put strategy.

Keywords: Quantitative Finance, Econometrics, Simulation Methods, Fore-
casting, Large Data Sets, Financial Crises, Random Matrix Theory
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1 Introduction

The objective of this paper is to build financial crisis indicators capable of pro-
ducing a useful forecast of future market events. The goal that we set for this
study is not to predict the actual occurrence of financial crises. What we aim to
achieve is rather to be able to evaluate at a given date whether the probability of
a financial crisis happening at the given time horizon is getting higher, because
the market conditions are ripe for a random adverse event from inside or even
outside the market, to trigger a destructive chain reaction. Examples of random
events capable of triggering a financial crisis are many. It may take the form of
the sudden failure of a critical company, the publishing of new macro-economic
data, a sovereign state defaulting on its debt, a major political event or even a
terrorist attack. To use an analogy, we do not pretend to be able to predict the
exact moment when a random spark will ignite the gas in the room, but we can
measure whether the gas concentration in the room is just right for a random spark
to cause a disaster. Since random adverse events happen all the time, measuring
whether the conditions are just right in the market for one such event to trigger
a crisis should be statistically equivalent to forecasting the actual occurrence of
financial crises.

We build nine original financial crisis indicators which are divided into two
kinds: those that study the distribution of the whole spectrum of the covariance
matrix and compare it to a reference distribution and those that compute a spe-
cific spectral property (namely the trace and the spectral radius) of the covariance,
correlation and weighted correlation matrix. Both kinds of indicators rely on the
study of the underlying correlation and volatility signals inside the market. This is
a novel approach because, while many different kinds of financial crisis indicators
do exist in the literature, we are not aware of any that use reference distributions
to compare the empirical spectrum of the covariance matrix to, nor any that use
a modified version of the correlation matrix where the assets have been weighted
with respect to the market capitalization of the corresponding companies or the
daily traded volume. This approach enables us to maximize the amount of infor-
mation coming from the market that is used by the financial crisis indicators, with
the goal of boosting their predictive power. We work with seven datasets, each
one designed with its own unique composition characteristics. This provides us
with original results about many different financial markets from North America
to emerging countries.

There is a large literature on financial crisis forecasting, especially works by
Sornette (2009), Sornette and Johansen (2010) , Jiang et al. (2010) and Maltritz
(2010) , which aim at producing a comprehensive model comprising the genesis,
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dynamics and eventual prediction of financial crises, especially using the powerful
tools of time-series analysis. Network theory has also been successfully applied
to financial crisis forecasting and the building of financial crisis indicators as in
Celik and Karatepe (2007) or Niemira and Saaty (2004). A machine learning
approach, based on K-means clustering, to forecasting financial turmoil, and espe-
cially sovereign debt crises, has been developed in Fuertes and Kalotychou (2007)
who also demonstrated that combining multiple forecasting methods improves the
quality of the predictions, as Clemen (1989) had underlined in a review and anno-
tated bibliography about combining forecasts. Cross sectional time series analysis
in a panel data framework was studied in Van den Berg et al. (2008) to predict
financial crises while Bussiere and Fratzscher (2006) chose to develop early warn-
ing systems of financial crises based on a multinomial logit model. Demyanyk and
Hasan (2010) summarized the results provided by several prediction methods of
financial crises, and especially bank failures, based on economic analysis, opera-
tions research and decision theory, while Drehmann and Juselius (2014) proposed
detailed evaluation criteria of the performance of early warning indicators of bank-
ing crises. Financial crisis forecasts can also be based on the quantitative study
of any kind of qualitative macro-economic data like the FOMC 1 minutes, or any
other qualitative forecasts. That approach was developed by Stekler and Syming-
ton (2016) as well as Ericsson (2016). Its main limitation resides in the quality of
the qualitative forecasts and the FOMC for example did not predict the 2007-2008
financial crisis in advance nor did it identify it quickly as a major systemic event.
From another point of view, Guégan (2008) used chaos theory and data filtering
techniques to make market forecasts. The approach that we adopt is more modest
in the sense that we do not pretend to explain the precise macro-economic mech-
anism that creates the many different kinds of financial crises and to predict the
precise date of the next crisis. The ambition of this work is merely to detect a
heightened risk of a crisis happening, not to predict its actual occurrence. The
approach we adopt is closer to the work of Sandoval Junior and De Paula Franca
(2012) who proved in their paper, using random matrix theory techniques, that
high volatility in financial markets is intimately linked to strong correlations be-
tween those financial markets.

Nonetheless, Sandoval Junior and De Paula Franca only used the Marchenko
Pastur distribution in their work, while we intend to build and use additional dis-
tributions in the framework of random matrix theory. We also address internal
correlations within the financial markets and not just the correlations between
market indices. Those new distributions are numerically computed as closed form

1Federal Open Market Committee, which is the branch of the Federal Reserve Board that
determines the direction of monetary policy
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formulas for them do not exist to our knowledge. They are introduced in order to
escape the restrictive framework of Marchenko-Pastur’s theorem, which assumes
uncorrelated Gaussian components. Indeed, the empirical covariance matrix of
assets inside a market in turmoil is dominated by strong correlation and a non-
Gaussian distribution of the log-returns. Of course, the objectives of this study are
also very different, since we attempt to build empirical financial crisis indicators,
which are almost ready for use by practitioners, while Sandoval Junior and De
Paula Franca were concerned with proving a result about volatility and correla-
tion reinforcing their effects during a financial crisis.

The approach and methods used in this study are also close to the work of
Bouchaud, Potters and Laloux (2005 and 2009). Indeed, in their 2005 physics pa-
per and 2009 review, they apply random matrix theory and principal component
analysis to the financial context in order to anticipate market events and produce
optimal portfolio allocations as well as risk estimations. Their idea to use, like
Sandoval Junior and De Paula Franca, the Marchenko Pastur distribution as a
reference distribution to which they compare empirical spectra is similar to the
framework that we have developed but they use an exponentially weighted moving
averages in place of the rolling matrix that we work with. The work of Singh and
Xu (2013) and of Snarska (2007) about the dynamics of the covariance matrix
in a random matrix theory framework was also inspirational to us. Indeed, the
approach we select uses as well rolling windows for dynamic correlation and covari-
ance matrices. Exploiting the spectra of those matrices forms the very foundation
of the framework of this study.

We can also see the financial crisis indicators that we build as market instability

indicators. Indeed, they are able to say at a given date whether the probability of
occurrence of a financial crisis within a given time horizon has increased, while it
is still possible that the probability of nothing happening remains very high. In
particular, one possible limitation of our approach is the relatively high ratio of
false positives. There is still usually a high probability that nothing will happen,
even when the indicators return red flags. From a practitioner’s point of view,
the information that the probability of a crisis occurring in the near future has
risen from, say, 0.1% to 10% has tremendous value, even though there is still a
90% chance of nothing happening. For us, a financial crisis indicator is a tool that
makes use of publicly available data to determine whether the market conditions,
measured by taking into account both correlation and volatility, are ripe in the
market for a crisis event to happen.

The robust methods used in this paper are applied to an intuitive principle of
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financial economics: when correlations between asset returns increase and develop
abnormal patterns, when volatility goes up, then something is not right inside the
market and a financial crisis event might be around the corner. Any kind of market
data can be used within the framework that we created. Depending on the order
of magnitude and scope of the financial crises that we intend to forecast, we have
the freedom to choose the geographical characteristics of the data. Indeed, we can
use prices time series restricted to assets located in one given country, one region
or the whole world. The nature of the data can also be freely defined depending on
the nature of the crisis events that we plan on forecasting. Stock prices and equity
index prices, as well as sector indices may be used to forecast stock market crashes.
Foreign exchange (FX) spreads may be used to forecast primarily monetary crises,
and the methods that we develop provide a complementary point of view to the
work of Guégan and Ielpo (2011) who used time-series models to forecast mon-
etary policy. However, we are not limited to any asset class. We may also use
bond yields, commodity prices or credit default swaps (CDS) spreads. Finally, it
is possible to choose the frequency of the data and adapt it to reflect the kind and
scope of the financial crises that we aim at forecasting, the only limitation being
data availability.

In this paper, we chose to mainly focus on global financial crises, most of which
are well known to the general public and the he data 2 has been selected accord-
ingly. The code has been written using Matlab and its various optional toolboxes
. The reader is very much encouraged to apply the methods developed in this
paper to their own datasets and to verify the reproducibility of their forecasting
power to various kinds and scopes of financial crises using data from many different
kinds of asset classes and of various frequencies. We look forward to feedback and
comments.

We propose in this paper a new approach regarding early warning financial
crisis indicators that we then illustrate using many different datasets of market
data. We also demonstrate the ability of the methods that we develop to make
out-of-sample predictions. From our point of view, it seems that no such work
has been published before with the same objectives and methodology. Therefore,
we cannot compare quantitatively in terms of accuracy and predictive power the
results that we have obtained to other existing studies. The work of Bouchaud,
Potters and Laloux (2005 and 2009) uses a methodology that is similar to the
one we chose, however we did not find detailed empirical results for their work,
that would have been suitable for comparison in a robust way with the numerical
results that we have obtained in this study.

2The data we use in this paper has been collected from Bloomberg and Yahoo Finance.
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Besides the present introduction and a general conclusion, the paper is di-
vided into four parts. We first describe how we built, collected and processed
the databases. Indeed, their quality and diversity constitutes a major part of the
interest of the study we conducted. In a second part, we detail the methodology
and then we build the financial crisis indicators. The third part is dedicated to the
qualitative analysis of the results provided by the financial crisis indicators over
the whole length of the datasets. Finally, in the fourth part, we demonstrate the
predictive power of the approach we developed by selecting two of the best per-
forming financial crisis indicators applied to the largest and most detailed dataset
that we possess. After dividing the data between an in-sample and an out-of-
sample period, we study in details the forecasting possibilities they provide, firstly
by using fixed dates of known financial crises and then by quantitatively defining a
financial crisis in terms of the crossing of a chosen maximum draw down threshold.

2 The Data

The data is constituted at each date of the log-returns with respect to the previous
trading day, computed from open or close prices. The prices have been adjusted
for dividends and splits beforehand. We have chosen daily data for this study
because of easy access and faster numerical handling. Further studies may explore
higher frequency data. The model that we develop requires the choice of a rolling
window in order to compute the financial crisis indicators. In order to limit aver-
aging effects and to have financial crisis indicators with enough responsiveness to
provide useful information to a practitioner, we chose the size of the rolling window
to be 150 days in the past. This represents roughly six months of trading since we
only take trading days into account. Using a relatively large rolling window means
that the covariance matrix will be degenerate sometimes since there will be more
observations than assets. This fact however is not going to be a problem because
for the first type of indicators, the distance between the empirical distribution and
the reference will be computed after truncating the empirical distribution around
zero and making it stick to the reference in order to eliminate the contribution of
the small eigenvalues. The motivations for this operation will be explained in the
next section where the methodology that we use is explained in detail. For the
second type of indicators, the presence of zeros, even quite a lot of them, in the
spectrum will not change anything for the computation of the trace and spectral
radius.

Seven datasets, each designed with its own unique properties and composition
are considered in this study :

6



• The first dataset (Dataset 1) is constituted of eleven stock indices represen-
tative of the Asian, European and American financial markets in order to
obtain a picture of the global financial system. It is a pure equity dataset
that is designed to capture contagion between major financial markets as a
way to forecast financial crises. It contains the Nikkei225 (NKY, Japan),
Hang Seng (HSI, Hong-Kong/China), Taiwan Stock Exchange Weighted In-
dex (TWSE, Taiwan) for the Asian market, the DAX30 (DAX, Germany),
FTSE100 (UKX, U.K), IBEX35 (IBX, Spain) for the European market, the
SP500 (SPX, U.S.A), Russel3000 (RAY, U.S.A), NASDAQ (CCMP, U.S.A),
Dow Jones Industrial Average (INDU, U.S.A), SP/TSX Composite Index
(SPTSX, Canada) for the North American market. Dataset 1 spans from
January 7th 1987 to February 5th 2015. In order to avoid contaminating the
data with time differences which might create bias and spurious correlations,
we matched at a same date t the close price in Asia at t, the close price in
Europe at t and the open price in America (East Coast) at t. In the absence
of intraday data, this appeared to be a reasonable choice. We considered
only the trading days and because of the different holidays specific to each
of the three markets considered (Asian, European and North American) and
the requirement to keep only the trading days that were common to all the
markets, the 252 trading days a year have been reduced to around 200 dates.
Comparison with the other datasets (particularly Dataset 3 and Dataset 4
below which do have around 250 entries a year since they are exclusively
American and European, respectively) shows that this is not a major issue
in practice.

• The second dataset (Dataset 2) is constituted of sixteen assets. It contains
all of the indices of Dataset 1, some commodity indices and some safe haven
or cash equivalent securities toward which investors tend to turn in a time of
crisis or impending crisis. It spans the same period as Dataset 1, from Jan-
uary 7th 1987 to February 5th 2015. The treatment of the data with regard
to time differences between geographical regions and non-trading days is the
same. On top of the content of Dataset 1, Dataset 2 includes: The Lon-
don Gold Market Fixing Index (GOLDLNPM, U.K), the Philadelphia Stock
Exchange Gold and Silver Index (XAU, U.S.A), Oppenheimer Limited-Term
Government Fund Class A (OPGVX, U.S.A), Sugar Generic Future Contract
(SB1, U.S.A), generic First Crude Oil WTI (CL1, U.S.A). The inclusion of
precious metal indices, cash equivalent short-government monetary funds,
representative agricultural as well as energy commodities (in the form of in-
vestable futures) is supposed to provide a longer fuse to the financial crisis
indicators. As a matter of fact, when the market starts to overheat, investors
may liquidate some of their equity positions but they will have to re-invest
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the cash somewhere and those cash equivalent securities are here to account
for that. Since those safer, cash equivalent securities are in Dataset 2, we an-
ticipate that the risk of a crisis happening will be detected sooner. Moreover,
when the market is becoming unstable, one typically witnesses an increase in
the correlations between commodity and energy securities (typically large oil
companies stocks included in the indices). Since we included some investable
commodity futures (like oil futures) in Dataset 2, we expect to capture that
effect which is indicative of the appearance inside the financial market of the
right conditions for a crisis to happen.

• The third dataset (Dataset 3) contains twelve assets which are the SP500 in-
dex and its ten sector sub-indices (consumer discretionary, consumer staples,
energy, financials, health care, industrials, information technology, materials,
telecommunication services, utilities) plus a small capitalization index, the
Russel 2000. This dataset should provide information about the inner work-
ings of the SP500 and enable us to detect "American" crises (for example the
Sub-Prime Crisis of 2007) sooner and with a higher precision than Dataset
1 or Dataset 2 which are global by design and include information about the
contagion between the three largest financial markets (Asia, Europe, North
America). However, since the North American market still leads the world
of finance, it is to be expected that the actual crises anticipated by the use
of either three of Dataset 1, Dataset 2 or Dataset 3 will be roughly the same.
The inclusion in the mix of a small capitalization index is to try to take
advantage of the fact that in the times leading up to a financial crisis, the
small caps tend to overheat and form speculative bubbles while they become
more and more correlated between themselves and stocks with larger market
capitalization. Dataset 3 spans from September 13th 1989 to December 27th
2013.

• The fourth dataset (Dataset 4) is the European counterpart of Dataset 3.
It contains eleven assets : the Bloomberg European 500 Index (BE500) and
its ten sector sub-indices, which are the same as for the SP500 (consumer
discretionary, consumer staples, energy, financials, health care, industrials,
information technology, materials, telecommunication services, utilities). As
we did not find any European-wide equivalent to the Russel 2000, it does
not include small caps however. It should enable us to better and sooner
detect "European" crises like the E.U Sovereign Debt Crisis of 2010 while
still containing enough information to detect all the other global financial
crises. It spans from January 1st 1987 to December 27th 2013.

• The fifth dataset (Dataset 5) is designed with the financial concept of flight

to quality in mind. Indeed, in the times preceding a financial crisis, the
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anxiety of market agents is building up and they tend to abandon equity
positions in favor of safer investment grade treasury or corporate bonds. In
that regard, the usual observed phenomenon is a positive correlation between
equity and bonds in a bull market and a negative correlation between equity
and bonds in a bear market. When the correlation between equity and bonds
is becoming too high, this may be a sign that the bull market is about to
burn itself out, that a bubble is about to burst, heralding the start of a
financial crisis. Dataset 5 is built with the detection of that phenomenon in
mind. It contains all of the data of Dataset 3 (SP500 index, its 10 sector
indices and the Russel 2000 as a small capitalization index) plus a number
of funds based on investment grade sovereign or corporate bonds. Much like
Dataset 3, Dataset 5 is U.S market oriented and is therefore more suited to
anticipate crises that originate from or directly affect the North American
market. For the long government bonds we have : Wasatch-Hoisington U.S.
Treasury Fund (WHOSX) and Thornburg Limited Term U.S. Government
Fund Class A (LTUCX). For the corporate bonds we have selected Lord
Abbett Bond Debenture Fund Class A (LBNDX) and Vanguard Long-Term
Investment-Grade Fund Investor Shares (VWESX) which have both enough
AUM (Assets Under Management) to be systemically significant and have
existed for a long enough time to be historically relevant. Dataset 5 contains
therefore 16 assets and spans from September 13th 1989 to December 27th
2013.

• The sixth dataset (Dataset 6) is constituted of 226 individual components of
the SP500 index. Because of the evolution over time in the composition of
the index, a balance had to be found between keeping a sufficient number of
components and having enough historical data. It spans from January 17th
1990 to May 15th 2015. The Apple Inc (AAPL) stock was chosen as the ref-
erence with regard to filtering out non-trading days and whenever another
element of data was unavailable (on rare seemingly random days it appears
that some individual stocks were not traded or the data was unavailable) we
carried over the last previously available value. We assumed that this manip-
ulation would not compromise the overall quality of the data. Besides those
considerations, a few stocks like for example Range Resources Corporation
(RRC UN) and The Charles Schwab Corporation (SHCW UN) presented
significant data gaps and were removed from the dataset. Since building a
dataset with exactly 500 components of the SP500, taking in account the
evolution in the composition of the index over time, proved an impossible
task due to its complexity and the availability of the data (mergers, corpo-
rate spin-offs and private equity acquisitions would have had to be taken into
considerations as well), we are aware of the fact that Dataset 6, especially
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when used in conjunction with financial crises indicators might suffer from
survivorship bias. As a matter of fact, especially in the times leading up
to a crisis, the failing companies drop below the capitalization threshold or
are acquired by others while new healthier firms enter the index. We built
Dataset 6 because, as we are going to see in the empirical section, working
with whole indices and/or limited number of individual securities like in all
the previous datasets we created (especially Dataset 3 which resembles a
scaled down version of Dataset 6), tends to have an averaging effect on the
correlations and renders the correlation signal too noisy and blurred to be
useful as a crisis detection method. For reference, the Bloomberg tickers of
all the stocks inside Dataset 6 are provided in appendix. Besides the daily
close price, from which we derive the log-returns, that is contained in all the
other datasets, Dataset 6 also includes daily volumes and market capitaliza-
tion. Those extra variables will enable us later to add appropriate weights
to the individual stocks in order to refine the computation of the indicators.

• The seventh dataset (Dataset 7) is constituted of the SP500, the Russel 2000
index and ten indices from emerging markets : Buenos Aires Stock Exchange
Merval Index (MERVAL, Argentina), Ibovespa Brasil Sao Paulo Stock Ex-
change Index (IBOV, Brasil), Mexican Stock Exchange Index (MEXBOL,
Mexico), Moscow Exchange Composite Index (MICEX, Russia), Hong Kong
Hang Seng Index (HSI, Hong Kong/China), Shanghai Stock Exchange Com-
posite Index (SHCOMP, China), Jakarta Stock Exchange Composite Index
(JCI, Indonesia), National Stock Exchange CNX Nifty Index (NIFTY, In-
dia), FTSE/JSE Africa All Share Index (JALSH, South Africa), Borsa Is-
tanbul 100 Index (XU100, Turkey). It spans from September 22nd 1997
to May 12th 2015. The relatively shallow depth of this dataset, which in
particular may render the study of the Asian crisis of the late 1990’ more
difficult, is due to gaps in data availability, especially for the Russian index
that we decided to keep anyway due to its importance for the global com-
modity and energy markets. All those emerging indices were expressed in the
local currency on Bloomberg and were therefore converted into U.S dollars.
This conversion was very important when dealing with emerging economies
where the exchange rate of the local currency against the U.S dollar can
fluctuate wildly and violently especially in the times leading up to, and dur-
ing a financial crisis. Unlike in advanced economies (we did not convert the
European and Japanese indices into U.S dollars in Dataset 1 for example),
the position of the currency of an emerging country against the U.S dollar is
also highly correlated to the health of the local real economy. This idea was
developed by Hawkins and Klau (2000) when they were working with the
Bank of International Settlements: in emerging markets, financial crises are
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often preceded by overvalued exchange rates and inadequate international
monetary reserves.

Regarding the selection of the financial crisis events on a global scale (for use
mainly with Dataset 1 and Dataset 2) or at least a regional scale (for use mainly
with Dataset 3, Dataset 4, Dataset 5, Dataset 6 and Dataset 7) of the last 30 years,
we compiled Table 1 below, which has no ambition of being exhaustive. Succinct
historical context will be discussed in the empirical results section when needed.
While categorizing the various kinds of financial crises goes far beyond the scope of
this paper, we strove to consider a wide selection in the kinds of crises. There are
stock market crashes like Black Monday in 1987 and the NASDAQ Crash in 2000.
There are financial crises that are rooted into a deep structural fragility of some
parts of the real economy, like the real estate sector in the case of the Japanese
Asset Price Bubble of the early 1990’ and the Sub-prime Crisis that started in
America during the summer of 2007 or the automobile industry in the case of the
bankruptcy of General Motors in June 2009, four years after Delphi Corporation,
which was General Motors’ main supplier of automotive parts. There are financial
crises for which the main trigger was a sovereign debt default like the Russian crisis
in 1998, the Argentine crisis in 2001 or the Eurozone crisis, triggered by the Greek
haircut in 2010. There are monetary crises as well, like Black Wednesday in 1992
when the British government was forced to withdraw the Pound Sterling from the
European Exchange Rate Mechanism (ERM) or the Mexican crisis triggered by
the devaluation of the peso against the U.S Dollar. Since none of the datasets
include foreign exchange data, we do not expect that any of the indicators will
perform well when it comes to anticipating monetary crises, however. There are
banking crises as well such as the S&L crisis in America that spanned from the
mid-1980’ to the mid-1990’ and during which almost one third of all American
savings and loans associations (financial institutions that are allowed to accept
savings deposits and to make loans) failed, including hundreds of banks of all sizes
and systemic significance. The dates chosen may sometimes seem a little arbitrary
but choices had to be made, especially for crises that, unlike Black Monday that
played out mostly within a few days of extreme market distress, took place over
many months or even years of sustained drop like the NASDAQ in early 2000,
which took nearly four months to lose almost two fifth of its March 10th peak.
Most financial crises do not happen in one day and instead result from a long
process of instability buildup inside the market, the kind of which the indicators
that we have built are detecting. When a crisis is best described by a clear ex-
plosion, then the date of that event was chosen (Black Monday, the day Lehman
Brothers failed, etc...). When a date for a crisis spanning months or years had
to be chosen for this study, we considered either the date of the most marking
event (the day the NASDAQ peaked, the day General Motors filled for Chapter 11
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bankruptcy 3, the day the Greek haircut was announced, etc...) or a date roughly
situated in the middle of the crisis process like January 1st 1990 for the S&L crisis.

Date (Y/M/D) Name
1987-10-19 Crisis 1 : Black Monday
1990-01-01 Crisis 2 : S&L Crisis
1990-08-01 Crisis 3 : Japanese Asset Prices Bubble Burst
1991-09-19 Crisis 4 : Scandinavian Banking Crisis
1992-09-16 Crisis 5 : Black Wednesday
1994-12-20 Crisis 6 : Mexican Crisis
1997-07-25 Crisis 7 : Asian Crisis
1998-08-17 Crisis 8 : Russian Crisis
2000-03-10 Crisis 9 : NASDAQ Crash (dot-com Bubble)
2001-02-19 Crisis 10 : Turkish Crisis
2001-09-11 Crisis 11 : 911 Attacks
2001-12-27 Crisis 12 : Argentine Default
2005-10-08 Crisis 13 : Delphi (G.M) Bankruptcy
2007-07-01 Crisis 14 : Sub-prime Crisis
2008-09-15 Crisis 15 : Lehman Brothers Collapse
2009-06-01 Crisis 16 : General Motors Bankruptcy
2010-04-23 Crisis 17 : European Sovereign Crisis
2011-08-05 Crisis 18 : US Sovereign Credit Degradation
2014-12-16 Crisis 19 : Russian Financial Crisis

(Table 1: Selection of Financial Crisis Events in the past 30 years)

3 Methodology

Using the seven datasets that we have built, the methodology is based on the use
of the spectrum of the covariance matrix, the correlation matrix and a weighted
version of the correlation matrix. At each date, for a sequence of rolling windows,
we either compare the whole spectrum to three reference distributions detailed
below (two of the reference distributions characterize a calm market and a third
one represents a market in turmoil), which gives us the indicators of the first
kind, or we merely compute the spectral radius and the trace, which gives us the
indicators of the second kind. We now details this methodology using Matlab’s
formalism and vector indexing conventions.

3Chapter 11 of Title 11 of the United States Code (also known as the United States
Bankruptcy Code) which permits reorganization. In contrast, Chapter 7 provides a legal frame-
work for liquidation.
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3.1 Framework

We decided to consider a rolling window T of 150 days in the past at each date and
for all datasets, irrespective of the number N of assets they contain. This choice
provides us with a good balance between the readability of the signals, favored by
a longer rolling window because of the averaging effect, and the responsiveness of
the indicators, favored by a shorter rolling window.

For each of the seven datasets, we build at each date t a rolling window ROL(t)
of length T . Then, we compute the rolling covariance matrix CV (t) and the rolling
correlation matrix CR(t) by using the following formulas written for every row (i.e
asset) j œ J1, NK:

ROLú(t)(j, :) = ROL(t)(j, :) ≠ mean(ROL(t)(j, :)) (1)

CV (t) =
1

T
.ROLú(t) ◊ (ROLú(t))

Õ

(2)

CR(t)(j, :) =
ROLú(t)(j, :)

Ò

var(ROL(t)(j, :))
(3)

While working with a covariance matrix instead of a correlation matrix, we of
course have to rescale the eigenvalues of CV (t). We perform this either by notic-
ing that the standard deviation of financial log-returns is typically in the order
of magnitude of a few percents (a œ [0.01, 0.03]) and therefore multiplying the
eigenvalues by 1

a2 , or by computing the mean of the variances of all the complete
time-series in advance and multiplying by the inverse of that value (for example,
we find a rescaling factor of 3410 for Dataset 2). This is what we decided to do
but it should not be considered as a violation of the measurability of the indicators
with respect to the natural time filtration (i.e knowledge of the future). It is just
a practical way of rescaling by choosing the most appropriate value and it could
just as well have been obtained from historical data predating the sample.

With regard to the reference distributions we use for the first type of indicators,
we have built three of them :

• Θ1: the theoretical Marchenko Pastur distribution. It is derived from Marchenko
Pastur’s theorem presented in the work of Marchenko and Pastur (1967). Let
X be a N ◊ T random matrix of i.i.d normal N (0, ‡2) coefficients (in this
study, each row represents an asset and each column represents an observa-
tion at a date t), then when N, T ≠æ Œ and the aspect ratio of the matrix,
N/T ≠æ “ < Œ, then the distribution of the eigenvalues of the covariance
matrix Y = 1

c
(XX

Õ

) is the Marchenko Pastur distribution with the density
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below. This formula (6) below is supposed to be valid for 0 < “ < 1, oth-
erwise in the degenerate case, an atom at zero has to be added, but since
we intend to truncate the computation of the Hellinger distance to exclude
the very small eigenvalues, as we will explain in the next section, this is the
formula we are going to use anyway for simplicity.

⁄+ = ‡2(1 +
Ô

“)2 (4)

⁄≠ = ‡2(1 ≠

Ô
“)2 (5)

f(x) =
1

2fi‡2“

Ò

(⁄+
≠ x)(x ≠ ⁄≠)

x
1[⁄≠,⁄+] (6)

The Marchenko Pastur distribution also provides thresholds ⁄+ and ⁄≠ that
we use even while working with other simulated reference distributions. Be-
cause of the stringent theoretical requirements of Marchenko Pastur’s the-
orem, that will never be even remotely satisfied by real financial data, the
Marchenko Pastur distribution has no vocation to be the best distribution
fulfilling the role of a calm market reference, but it is still going to be useful
in this study.

• Θ2: the distribution of the eigenvalues of the covariance matrix of a simu-
lated random matrix made of Gaussian N (0, 1) coefficients where the as-
sets, materialized as the rows, present some correlation to one another. Let
us consider a rolling matrix (Zi,j)(i,j)œJ0,NK◊J0,T K, containing T observations
(columns) and N assets (rows) and constituted of i.i.d Gaussian N (0, 1)
coefficients. We introduce correlation between the assets by adding the same
Gaussian coefficient to each of the assets at a given time. ’j œ J0, T K, Zj

0

is following a Gaussian N (0, 1) law. With those notations, ’i œ J0, NK and
’j œ J0, T K, each of the coefficients Xi,j of the rolling random matrix from
which we obtain the covariance matrix, is computed in the following manner:

Xi,j = flZj
0 +

Ò

(1 ≠ fl2)Zi,j (7)

Zi,j ≥ N (0, 1), Zj
0 ≥ N (0, 1) (8)

The coefficient fl is chosen as the mean of the long term correlation coefficients
between all the assets of the whole sample contained in the chosen dataset.
Like when we had to decide on a rescaling coefficient for the spectrum, this
choice of fl should not be considered as knowledge from the future, as it could
just as well have been obtained from historical data. As a matter of fact, we
find something very close to 50 % for all the datasets, which is what we had
expected. Θ2 is going to be the second, more realistic, calm market reference
distribution.
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• Θ3: the distribution obtained using the same blueprint as Θ2 but where
all the Gaussian N (0, 1) distribution have been replaced by Student (t=3)
distributions. This will be the reference distribution characterizing a market
in turmoil.

As an illustration, Figure 1 below contains the three reference distributions Θ1,
Θ2 and Θ3 for the number of assets contained inside Dataset 1 (eleven assets) and
a rolling window of 150 days. We also included in appendix the three reference
distributions computed for all the other datasets and the same rolling window of
150 days.

Figure 1: Reference distributions for Dataset 1. Blue: Marchenko Pastur (Θ1),
Green: Θ2, Red: Θ3

3.2 Financial Crisis Indicators

Using the tools described above, we build two kinds of financial crisis indicators:
the indicators of the A-series and the indicators of the B-series.

The indicators of the A-series compare at each date the empirical distribution
of the spectrum of the covariance matrix to the references that we introduced in
the previous subsection. We chose to use the Hellinger distance in its discrete form
as introduced by Hellinger (1909). We decided to use this metric on the space of
distribution instead of the Kullback–Leibler divergence introduced in Kullback and
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Leibler (1951), which is also of very common use in probability theory, because
we wanted a true metric, which the Kullback–Leibler divergence is not since it
does not satisfy the triangle inequality. The Kullback–Leibler divergence is also
not symmetric with respect to the two distributions considered. Moreover, since
we chose an empirical approach with a strong focus on the intuitive aspect of the
study, we felt that the Hellinger distance, which is plainly the Euclidean distance
of the square root of the components, was easier to see when drawing two distribu-
tions on the same graphic than the Kullback–Leibler divergence which is defined
as the expectation of the logarithmic difference between the two distributions.

We recall that the Hellinger distance D between two probability distributions
with densities P (x) and Q(x), which are both known at a number of points Xi,
(i œ J1, KK), is computed using the formula below :

D
2 =

K
ÿ

i=1

(
Ò

P (Xi) ≠

Ò

Q(Xi))
2 (9)

Considering any of the three reference distributions, we compute at each date
its Hellinger distance to the empirical distribution of the eigenvalues of the covari-
ance matrix. Our assumption is that the further away in the sense of the Hellinger
distance the empirical distribution drifts away from the calm market reference, and
the closer in the sense of the Hellinger distance the empirical distribution comes to
the market in turmoil reference, then the more likely it becomes that the market is
about to experience a crisis. Indeed, such movements tend to indicate a build-up
of correlation and volatility inside the market. There is however no way to study
those two effects, volatility and correlation, separately in the Hellinger distance
approach and the indicators of the A-series always lump those two instability fac-
tors together in their forecasts of financial crises.

Since all datasets except Dataset 6 only have a small number N of assets and
will therefore give us only a small number of eigenvalues at each date, we combine
at each date t the spectra obtained from the previous 20 days in order to have
20.N eigenvalues, which is enough observations, to derive a distribution by using
a normalized histogram. We then compute the Hellinger distance to the reference
distribution on a sufficiently large support in order to capture all of the spectral
distribution. In empirical studies such as Stanley and al. (2000), eigenvalues of
the covariance matrix have been observed to grow as large as twenty five times
the critical value ⁄+ of Marchenko Pastur’s distribution (4). In consequence, we
decided to consider 25 times the support [⁄≠, ⁄+] in order to account for all of the
empirical spectrum.
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The indicators of the first type are the following. There are three of them,
corresponding to the three reference distribution that we have introduced before:

• Indicator A1: It is the Hellinger distance between a modified version E ú
1 (x),

detailed below, of the empirical distribution E (x) of the eigenvalues of the
covariance matrix and the theoretical distribution of Marchenko Pastur Θ1.
Indeed, Indicator A1, as well as all the indicators based on the Hellinger
distance, needed to be adapted to filter out the effects of a parasitic phe-
nomenon consisting of an accumulation of small eigenvalues close to zero,
which deforms the unmodified empirical distribution and distorts the com-
putation of its Hellinger distance with respect to the reference distribution.
We illustrate this in Figure 2 and Figure 3:

Figure 2
Accumulation of Small Eigenvalues for Θ2

Figure 3
Accumulation of Small Eigenvalues for Θ3

In those two examples, which are very typical of the situations that we
encounter in practice for a given date t while using all the datasets, we see the
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reference distribution (in blue) and we see the empirical distribution of the
eigenvalues of the covariance matrix (in green). The empirical distribution
can differ from the reference distribution in two ways. It can overflow to
the right toward the higher eigenvalues: that’s the kind of behavior that we
are looking for in order to detect a financial crisis. It can also unfortunately
accumulate itself, sometimes most of the mass is even there, closer to zero
toward the very small eigenvalues. Such a behavior of the distribution of the
eigenvalues of the covariance matrix is more indicative of the prevalence of
risk free combinations of assets which equates to a very calm and diversified
market.

The solution was to define A1 and the A-series indicators in the following
way : instead of computing the Hellinger distance between the unmodified
empirical distribution E and the Marchenko Pastur reference Θ1, we compute
the Hellinger distance between Θ1 and the distribution E ú

1 defined in the
following way :

E
ú
1 (x) = min(E (x), Θ1(x)), x <

⁄+

10
(10)

E
ú
1 (x) = E (x), x >

⁄+

10
(11)

Therefore :
A1 = D{E

ú
1 , Θ1} (12)

For a given dataset, this indicator measures at each date by how much the
assumptions of Marchenko Pastur’s theorem (normal i.i.d coefficients of vari-
ance equal to 1) are violated. Since the finite size of the rolling covariance
matrix does not change over time, it will not be responsible for any dynam-
ical variations of the Hellinger distance although it does certainly account
for part of the distance between the theoretical asymptotic distribution of
Marchenko Pastur and the empirical distribution. This indicator lumps to-
gether the apparition of non-normality, correlations and volatility in the
log-return time series, it cannot differentiate between all those effects but it
is still very useful. As a matter of fact, the apparition of any of those phe-
nomena, whose effects are not expected to compensate one another, can be
interpreted as a warning that a crisis might be around the corner. Therefore
our assumption is going to be that the further away the modified empirical
distribution E ú(x) becomes from the reference Marchenko Pastur distribu-
tion in the sense of the Hellinger distance, the more likely a crisis is going to
happen in the near future.

18



Like we said earlier, using the Marchenko Pastur distribution for a given
aspect ratio as a reference distribution might not be optimal because it is an
asymptotic result and we deal with finite size matrices and because even a
perfectly calm financial market might be better modeled by random matrices
of coefficients with some natural correlations.

• Indicator A2: It is the Hellinger distance between the modified version E ú
2 (x),

detailed below, of the empirical distribution of the eigenvalues of the covari-
ance matrix E (x) and the simulated reference distribution Θ2. Since corre-
lated Gaussian coefficients are supposed to better model the market situa-
tion, we expect Θ2 to provide a better calm market reference from which to
measure a drift of the empirical distribution of the eigenvalues of the covari-
ance matrix in the times leading up to a financial crisis. Like with Indicator
A1, we decided to work on 25 times the support of the corresponding theo-
retical Marchenko Pastur distribution and the same issues of accumulation
of the empirical distribution toward the small eigenvalues in time of mar-
ket calm presented itself. There is no closed form formula for the reference
Θ2 and we cannot assume that its support is bounded like the support of
Marchenko Pastur’s distribution is bounded by ⁄≠ and ⁄+ so we decided to
keep ⁄ú = ⁄+

10
as a threshold, such that an abundance of very small eigenval-

ues would not make the Hellinger distance explode. Therefore, we compute
the Hellinger distance between Θ2 and E ú in the following manner :

E
ú
2 (x) = min(E (x), Θ2), x < ⁄ú (13)

E
ú
2 (x) = E (x), x Ø ⁄ú (14)

Therefore :
A2 = D{E

ú
2 , Θ2} (15)

• Indicator A3: It is the Hellinger distance between the modified version E ú
3 (x),

detailed below, of the empirical distribution of the eigenvalues of the covari-
ance matrix E (x) and the simulated reference distribution Θ3. We included
very fat tails (coefficients that follow a Student (t=3) distribution) as a way
to model crisis conditions, therefore Indicator A3 is an inverted indicator.
Indeed, it produces red flags when it is getting small, which means that the
empirical distribution of the eigenvalues of the covariance matrix is getting
very close to Θ3, with is extremely heavy tailed and represents a spectrum
entirely shifted toward the large eigenvalues, characterizing a market in deep
turmoil. When the market goes from a calm state to a crisis state, the mod-
eling that we make of the log-returns goes from a Gaussian to a Student
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(t=3) distribution. As a remark, we did not include skewness in the random
coefficients from which we derive the reference distributions because financial
log-returns do not typically present persistent skewness, especially over the
time periods considered for the rolling window, as demonstrated in the work
of Singleton and Wingender (1986). We retain for A3 the same method of
computation as in the other ones of the A-series. We compute it over 25 times
the support of the corresponding theoretical Marchenko Pastur distribution
and the threshold ⁄ú = ⁄+

10
is used to filter out the very small eigenvalues.

Indicator A3 then computes at each date t the Hellinger distance between
Θ3 and E ú such that :

E
ú
3 (x) = min(E (x), Θ3), x < ⁄ú (16)

E
ú
3 (x) = E (x), x Ø ⁄ú (17)

Therefore :
A3 = D{E

ú
3 , Θ3} (18)

We therefore have three indicators of the first type, called A1, A2 and A3. Each
possesses its own characteristics and looks at specific market conditions that may
be indicative of an impending financial crisis. We do expect the three indicators of
the first kind to be coherent with one another, especially since they are of similar
origin, but they also complement one another and the financial crisis forecasts that
we make need to take all three into consideration to be effective.

We now shift to the indicators of the B-series. At each date t, the centered
rolling matrix ROLú(t) in formula (1) contains two components: a volatility com-
ponent and a correlation component. The indicators of the B-series are based on
those two components. As we are going to see, both components are important,
but the relative strength of their signal will greatly depend on the choice of the
dataset we use. We build at each date t the three indicators of the second type in
the following way :

• Indicator B1: It is defined as the spectral radius of the covariance matrix
CV (t) in formula (2). It measures a mixed signal depending on both volatil-
ity and correlations in the market. A larger value for the spectral radius is
indicative of dynamical instability and increased correlations in the system
but it also takes the volatility effect into account since we are working with
a covariance instead of a correlation matrix. This indicator takes the effects
of both volatility and correlations into account and those two effects are not
supposed to compensate each other, on the contrary they are expected to
evolve in the same direction in the times leading up to a financial crisis as it
was demonstrated by Sandoval Junior and De Paula Franca (2012).
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• Indicator B2: It is defined as the trace of the covariance matrix CV (t). It
measures the volatility signal alone. While it may seem at first that B2 lacks
a very important aspect of what is happening inside the market, we will
see while discussing experimental results that it is still a very good financial
crisis indicator. It is also very easy and fast to compute. As a matter of
fact it is not even needed to compute the whole spectrum of the covariance
matrix to compute its trace.

• Indicator B3: It is defined as the spectral radius of the correlation matrix
CR(t) in formula (3). It measures the correlation signal alone. The useful-
ness of Indicator B3 greatly depends on the choice of the dataset. We will
discuss more about this in the section discussing the numerical results. Only
when used on Dataset 6, which contains a large number of assets, which are
individual stocks components of an index, does indicator B3 realize its full
potential. Indeed, there is a lot averaging effect inside an index and when
we use the value of the index itself as opposed to its individual components,
the correlation signal is generally smothered. The potential of Indicator B3
is great however, because unlike with the study of volatility alone, the study
of correlation may be the only way to give the indicators that we have built
real predictive power. Since Dataset 6 also features daily volume and daily
market capitalization data, we also build the following variations of indicator
B3, to be used on Dataset 6 exclusively:

– Indicator B3A: the spectral radius of the matrix CR1(t). Its coefficients
are those of CR(t) which have been weighted at each date t by the
market capitalization (cap(t)) expressed in dollars, in the following way
for a dataset containing F assets. ’(i, j) œ [1, F ]2 :

CR1(t)(i, j) = CR(t)(i, j).
cap(t)(i).cap(t)(j)

qF
k=1 cap(t)(k)2

(19)

– Indicator B3B: the spectral radius of the matrix CR2(t). Its coefficients
are those of CR(t) which have been weighted at each date t by the vol-
ume of stocks exchanged (volu(t)) expressed in dollars, in the following
way for a dataset containing F assets. ’(i, j) œ [1, F ]2 :

CR1(t)(i, j) = CR(t)(i, j).
volu(t)(i).volu(t)(j)

qF
k=1 volu(t)(k)2

(20)

– Indicator B3C: Since indicator B3B will prove useful but will also usu-
ally produce a noisy signal, B3C is computed at each date t as a moving
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average of B3B. We chose to average on 150 days, which is also the
length T of the rolling window.

B3C(t) =

qT
k=1 B3B(t ≠ k)

T
(21)

To conclude this section, we have therefore built nine financial crisis indicators
in all. There are three of the first kind (A1, A2, A3) and six of the second kind
(B1, B3, B3, B3A, B3B, B3C). Now we are going to use those indicators on the
seven datasets that we possess in order to detect the periods of crisis.

4 Empirical Results, Global Studies

In this section we look at the global profiles produced by the nine financial crisis
indicators that we have built for the seven datasets that we have chosen, and study
in a qualitative manner what happens around the crises that we presented in Table
1. A more quantitative approach will be taken in the next section. Starting with
the indicators of the A-series, we obtain the following results, the crisis events in
Table 1 have been added as vertical purple lines and A1 is in blue, A2 in green and
A3 in red. As a general remark, we can say that although useful global structures
do clearly appear, all the profiles also appear to be quite noisy. We cannot miss
the collapse of Lehman Brothers (Crisis 15) for example and it is a fact that
most other crises are accompanied by very noticeable patterns in the value of the
Hellinger distance, but there are also many false positives that blur the message of
the indicators of the A-series. A1 and A2 always produce profiles that are similar,
which is explained by the close resemblance between the reference distribution
Θ1 and Θ2 (as seen in Figure 1 and in appendix), while the inverted indicator
A3 produces radically different profiles. Many times we see A1 and A2 climb just
before a truly major crisis, while A3 plummets. Indeed, the distribution Θ3, which
was derived from the covariance matrix obtained from a random matrix made of
sums of very heavy tailed and correlated Student (t=3) coefficients is a good
reference for a market that is in the process of dislocation, with the preeminence
of very large eigenvalues in the covariance matrix that are indicative of dynamical
instability. With that point of view, the correct way to read the profiles is: if A1
and A2 go up, then we are moving away in the sense of Hellinger from a distribution
that is characteristic of a calm market, danger might be around the corner. If on
top of that A3 is going down, then we are moving closer in the sense of Hellinger
to a distribution of the eigenvalues of the covariance matrix that is characteristic
of a market in distress. If those two effects are happening at the same time, then
this pattern in the behavior of the indicators tends to indicate that the probability
of a truly major market event is getting dangerously high.

22



• For Dataset 1, the pure international equity dataset, we get Figure 4 below.
We observe elevated levels of A1 and A2 in the aftermath of Black Monday
and during the build-up toward the S&L crisis and Japanese Asset Price
Bubble of 1990. Then there is a relative period of calm in the early 1990’.
Monetary crises like Black Wednesday are not going to be visible using a
dataset that does not contain any foreign exchange (FX) data because, de-
spite causing a lot of pain, especially in the U.K, its long lasting influence on
the global financial system remained limited. Then there is a sharp increase
of A1 and A2 accompanied by a sudden characteristic drop of A3 just before
and during the terrible blow of the 1997 Asian Crisis (Crisis 7). The 2000
NASDAQ crash is not very visible on those profiles, even though the NAS-
DAQ is part of Dataset 1. Maybe this is due to the fact that it remained
primarily an "American crisis" that is not going to be very apparent in a
dataset that focuses primarily on contagion between international markets.
The bullish market period of the early 2000’s is characterized by mostly flat
profiles of A1, A2 and A3 indicating a globally stable market structure. Be-
fore the Lehman Brothers collapse of 2008, we see again that pattern of an
increase in A1 and A2 accompanied by a drop of A3.

Figure 4: A1 blue, A2 green, A3 red

• For Dataset 2, which is Dataset 1 augmented with commodities and safe,
cash equivalent securities, we obtain the profiles below (Figure 5). Those
profiles structurally resemble those obtained from Dataset 1 but they are
much tamer, probably because of the presence of safe haven securities inside
the dataset which provide a way for market agents to re-invest their money
as they liquidate equity positions in the times leading up to and during a
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financial crisis. Since Dataset 2 includes commodities, we observe a very
noticeable buildup in A1 and A2 leading up to the December 2014 Russian
crisis (Crisis 19). It is again accompanied by an ominous drop in A3. The
increased correlation between commodity and energy securities, which are
represented in the equity indices by the major U.S oil companies, in the
times leading up to a financial crisis, creates a strong build-up of market
instability which provides valuable beforehand information that a crisis is
becoming more likely.

Figure 5: A1 blue, A2 green, A3 red

• For Dataset 3, which is the "American" dataset, we get the following profiles
(Figure 6). Those profiles emphasize primarily, as anticipated, the events
when the U.S market is overheating. The Savings and Loans crisis (Crisis
2) is anticipated a few months in advance by a sharp increase in A1 and
A2. The indicators are mostly unresponsive during the Asian crisis of 1997
but the NASDAQ crash of March 2000 is this time accompanied by a spec-
tacular spike of A1 and A2 accompanied by a depression in A3. This very
good anticipation of the NASDAQ crash for this dataset which contains the
sector components of the SP500 could be explained in part by the fact that
the information technology sector component of the SP500 is correlated at
over 90% with the NASDAQ. In the wake of the dot-com bubble, the same
pattern reproduces itself around the 9-11 attacks. The same phenomenon
happens again in the times leading up to the Sub-prime Crisis of August
2007 (although the drop in A3 is less noticeable) and on an even grander
scale around the time of the Lehman Brothers collapse. The bankruptcy of
General Motors on June 1st 2009 and the U.S sovereign credit degradation of
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August 5th 2011, when Standard & Poor’s reduced the country’s rating from
AAA (outstanding) to AA+ (excellent), are also anticipated by a spike in A1
and A2 while the behavior of A3 is less easy to interpret in those instances.

Figure 6: A1 blue, A2 green, A3 red

• For Dataset 4, which is the "European" dataset, we get the following profiles
(Figure 7).

Figure 7: A1 blue, A2 green, A3 red

Since the U.S financial market still leads the world, the global structure of the
profiles of A1, A2 and A3 is somewhat similar to the structure of the profiles
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we had obtained for Dataset 1 and Dataset 3. There are however some very
interesting specificities, which are characteristic of the European nature of
Dataset 4. Events like the S&L crisis, the NASDAQ bubble burst and even
the Sub-prime Crisis of 2007 that preceded the Lehman Brothers collapse of
2008 are much less visible while the European sovereign debt crisis of April
23rd 2010 (Crisis 17) is spectacularly well anticipated with a huge spike in A1
and A2 accompanied by the ominous drop in A3. The U.S sovereign credit
degradation of 2011 is also very well anticipated. That could be explained
by the fact that the sovereign credit degradation of several leading European
countries (France was degraded as well from AAA to AA1 by Moody’s on
November 19th 2012) was also being discussed by the media and anticipated
by the financial markets.

• For Dataset 5, the flight to quality dataset which exploits the increasing
correlation between equity and bonds in the times leading up to a financial
crisis, we obtain the A1, A2 and A3 profiles below (Figure 8). In a way
they seem even tamer and noisier than those of Dataset 2 which included,
besides the commodities, some safe haven securities adding elements of flight

to quality to its design as well. In Dataset 5, the profiles of the indicators
of A-series present few remarkable features, besides the obvious ones that
all the others possess, like the spike in A1, A2 and the drop in A3 around
the failure of Lehman Brothers in 2008. Unfortunately it seems that the
inclusion of high quality sovereign and corporate bonds into the equity mix
produced a dataset that is a little too resistant to most financial crises and is
therefore, for the indicators of A-series at least, of limited interest as a way
to anticipate crisis events.

Figure 8: A1 blue, A2 green, A3 red
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• Dataset 6, the largest dataset containing 226 individual components of the
SP500 index, produces the following high quality profiles when used with
the indicators of the A-series (Figure 9). Black Monday is outside of the
span of Dataset 6 and the S&L crisis is surprisingly not visible (maybe it
is because the affected companies dropped out of the index which, like all
composite stock indices, shows some survivorship bias). The buildup to the
2000 NASDAQ crash is spectacular and characterized by the usual climb of
A1 and A2 and fall of A3 as the correlations and volatility simmer inside
the market and the spectrum of the covariance matrix is shifting to the
right, toward the larger eigenvalues, away from Θ1 and Θ2 and toward Θ3.
This pattern started well in advance of the actual crisis event, which we
chose to place on March 10th 2000 when the NASDAQ started its sharp and
sustained fall. The indicators did provide a valuable early warning in that
instance. Then we observe the period of bullish market in the early 2000’s
and again a slow buildup of correlations and volatility inside the market
characterized by an increase in A1 and A2 (but not a drop in A3 that seems
to only accompany truly catastrophic events) culminating during the Sub-
prime Crisis of August 2007 which sets into motion the pattern of A1 and A2
spiking while A3 plummets leading up to the collapse of Lehman Brothers.
Then there is some recovery in the market before the 2011 U.S sovereign
credit rating degradation, which is anticipated by an increase in A1 and A2.
Finally the Russian financial crisis of December 2014, which hit very hard
some of the largest firms inside the SP500 (energy companies), because of
the fall in the price of crude and gas, is anticipated by an increase in A1 and
A2 but we don’t observe much on A3 at the same time.

Figure 9: A1 blue, A2 green, A3 red
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• The A-series profiles for Dataset 7 are represented below (Figure 10). This
dataset contains international indices from emerging economies converted
from the local currency into U.S dollars. The usual features that dominated
all the other A-series profiles for all the other datasets look a bit diluted in
the case of Dataset 7: the collapse of Lehman Brothers is one unremarkable
bump among dozens of others and the NASDAQ crash is not visible, for
example. The Delphi bankruptcy of late 2005 ("Red October") did trigger
an economic crisis in many emerging countries due to the closure or expected
closure of many of the overseas factories of the American automotive parts
giant and this event is indeed anticipated by a rise in A1 and A2, but it
is difficult to differentiate it from the many false positives. The Argentine
sovereign default of late 2001 is surprisingly not visible although many South
American indices (and the MERVAL itself) are included in Dataset 7. The
Russian crisis of 2014 is however much more visible and better anticipated
now than with the previous datasets and we observe a large spike in indicators
A1 and A2 accompanied by a noticeable drop in indicator A3.

Figure 10: A1 blue, A2 green, A3 red

We now switch our attention to the indicators of the B-series. On all the pro-
files below, the crises of Table 1 are again represented as vertical purple lines. The
spectral radius of the covariance matrix (mixed volatility and correlation signal),
Indicator B1, is in green. The trace of the covariance matrix (volatility signal),
Indicator B2, is in red. The spectral radius of the correlation matrix (correlation
signal), Indicator B3, is in blue and is not represented on the same scale as the
others for better readability (we multiplied it by 20). For Dataset 6, the correlation
signal for the assets weighted by the market capitalization and volume traded, as
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defined in the previous section, is also going to be studied. We first remark that
all the profiles of the B-series feature many false positives, as those of the A-series
and the spikes are located, with specificities depending on the dataset used, in the
vicinity of the crisis events of Table 1 for B1 and B2. The structure of the B3
profiles is usually a little harder to interpret but it still holds valuable information.

For most datasets and most crises, B1 and B2 produce very similar profiles.
When the profiles of B1 and B2 get closer to one another (ie. for the covariance
matrix, the trace becomes close to the spectral radius) it means that correlations
are increasing inside the financial market because one eigenvector’s direction (the
direction of the spectral radius) is becoming dominant over all the other ones.
We do not however generally observe on the graphs that B3 is increasing when
B1 and B2 are getting closer and that is due to the fact that B3 is only taking
correlations into account while B1 is a mixed signal of volatility and correlation.
The correlation component of B1 is at each date an average correlation weighted
by the volatility of the assets constituting the dataset. In order to compare the
relative position of B1 and B2 to the behavior of B3, we could have weighted the
coefficients of the correlation matrix by the volatility of the assets. However doing
this would have defeated the goal to study the correlations alone. In other words,
when the relative position of B1 and B2 is not compatible with the behavior of B3,
then it means that the assets are becoming correlated or uncorrelated depending
on their volatility. For example when B1 and B2 are getting closer (correlations
are increasing) but B3 is not increasing in a clear manner, it means that the high
volatility stocks are becoming uncorrelated while the low volatility stocks are be-
coming correlated.

• For Dataset 1, we obtain the following results (Figure 11). This international
equity dataset produces profiles of B1 and B2 which are very similar, with
spikes in the vicinity of the major international crises like the NASDAQ
crash and the failure of Lehman Brothers. The relaxation in both volatility
and correlations after a crisis event is also much more noticeable than with
the profiles based on the Hellinger distance, especially after the NASDAQ
crash and the onset of the bullish market period. The B1 and B2 signals
are almost always co-monotonic, it is what we expected and it is coherent
with the work of Sandoval Junior and De Paula Franca (2012) who proved,
using data which was very different from the data that we used, that high
volatility in financial markets usually accompany a high level of correlations.
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Figure 11: B1 green, B2 red, B3 blue
(20x)

• For Dataset 2, we obtain the following results (Figure 12). The profiles are
very similar to those of Dataset 1, with less prominent features because of the
inclusion of safe haven securities in the dataset. The elevation in both volatil-
ity and correlations is a little more noticeable around the Russian sovereign
crisis of 1998, which may result from the inclusion of energy related com-
modities in this dataset. It also highlights the typically increased correlations
between energy (like oil companies stocks) and commodity securities in the
times leading up to a financial crisis.

Figure 12: B1 green, B2 red, B3 blue
(20x)
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• For Dataset 3, we obtain the following results (Figure 13). The profiles of
B1 and B2 highlight the American nature of Dataset 3. There are especially
visible features for the NASDAQ crisis, the 2008 global financial crisis and
the U.S sovereign credit degradation. The profile of B3 is again more difficult
to interpret. In particular there is an apparent massive drop in correlations
following the NASDAQ crisis that is not accompanied by a similar drop in
volatility.

Figure 13: B1 green, B2 red, B3 blue
(20x)

• For Dataset 4, we obtain the following results (Figure 14). It is the European
counterpart of Dataset 3 and produces better detection of crises that are
mostly or originally European in nature like the Eurozone sovereign debt
crisis.

Figure 14: B1 green, B2 red, B3 blue
(20x)
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• For Dataset 5, we obtain the following results (Figure 15). The inclusion of
high quality bonds to model the flight to quality effect in the times leading up
to a financial crisis has the effect, like for the A-series indicators, to produce
very tame profiles of B1 and B2. Only the truly momentous events like the
NASDAQ crash and the 2008 crisis are visible but all the other events are
difficult to see, even the Asian crisis of 1997 which is surprising. The volatility
signal B3 is still very noisy but some structure is starting to emerge with big
spikes in the vicinity of known crises and large drops afterwards when the
market is entering a post-crisis relaxation phase.

Figure 15: B1 green, B2 red, B3 blue
(20x)

• For Dataset 6, we obtain the following results (Figure 16,17,18,19).

Figure 16: B1 green, B2 red, B3 blue
(20x)
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The profiles for B1 and B2 are globally similar to those that we obtained
for Dataset 1 and Dataset 3. However, the buildup of leverage during the
sub-prime crisis is much more clearly visible and this time the correlation
signal B3 in blue is much more interesting and contains a lot of usable infor-
mation about the detection and anticipation of many of the financial crises of
Table 1. Indeed, this increased precision of the results that we obtain is not
surprising because Dataset 6 is constituted of a large number of individual
stocks instead of indices and there is no averaging effect on the correlations.

Figure 17
B3A : correlation signal B3 weighted by the capital of the companies

corresponding to the stocks. We see new patterns emerge and a possible
increase of the power of prediction for this indicator due to the weighting.

Figure 18
B3B : correlation signal B3 weighted by the volume traded. New patterns

emerge and the power of this indicator to preempt rather than merely
confirm the crises, as it was likely the case for most of the financial crisis

indicators we have studied until now, appears to have increased.
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Figure 19
B3C : averaged version of B3B for better readability and noise reduction.

• For Dataset 7, we obtain the following results (Figure 20).

Figure 20: B1 green, B2 red, B3 blue
(20x)

The profiles do not seem to possess much useful signal and few truly noticeable
features appear besides the obvious ones for B1 and B2 as well as for B3. The
Asian crisis of 1997 (located at the very edge of the dataset) seems to have been
much more visible when using Dataset 7 than when using the other datasets. This
is without any doubt due to the fact that Dataset 7 contains information about
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emerging markets. Unfortunately in this study, we can only see the aftermath of
the Asian crisis.

5 Predictive Power

In this section, we study in details the predictive power of indicators B3B and
B3C, which are those that are based on the correlations weighted by daily traded
volume of the assets. We decided to concentrate this study on those two indicators
for simplicity. It is however clear that the same work could have been done using
any of the nine indicators. We use Dataset 6, which contains the components of
the SP500 index. The choice of this particular dataset is justified by the fact that
it is the largest and most detailed of all the datasets we possess and therefore it is
the one for which we expect to obtain the best quantitative results. We rely on the
Maximum Draw Down (MDD) at horizon H = 100 days, which is commonly used
by practitioners in the financial industry. The reference asset price A for which
this quantity is computed at each date is the SP500 index.

MDDH(t) = maxtÆxÆyÆt+H

A

1 ≠

A(y)

A(x)

B

(22)

5.1 Historical Approach

We work with the scatter plots [B3B(t), MDDH(t)] and [B3C(t), MDDH(t)] for
all dates t covering the span of Dataset 6. We notice that the structure of each
of those two scatter plots is dominated by a double threshold. We are going to
exploit that fact in order to build a trigger for the indicators. At a given time t,
when the value of B3B (resp. B3C) is between those twin thresholds, we say that
we are in the danger zone, which is where the probability of a crisis happening
within 100 days is the highest. This makes also a lot of sense from a theoretical
point of view. As a matter of fact, when the weighted correlations are low, then
the probability of a crisis happening (i.e. experiencing a very high MDD over
the next 100 days) is low, but when it is extremely high that means that we are
already right in the middle of a crisis and the expected MDD at 100 days is low as
well because the market would be likely out of the crisis and already in full recovery.

A crisis from Table 1 happening at time t0 is (ex-post) considered to be pre-
dicted by B3B (resp. B3C) if at least 60% of the points [B3B(t), MDDH(t)] (resp.
[B3C(t), MDDH(t)]) such that t œ [t0 ≠ 100, t0] are in the danger zone of the indi-
cator. The false positive ratio is defined as the number of points inside the danger
zone that belong to one of the crisis of Table 1 over the total number of points
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inside the danger zone.

To define the danger zone, we separate Dataset 6 into two periods: one in-
sample calibration period between January 17th 1990 and December 31st 1999 and
one out-of-sample forecast period where the power of prediction of B3B and B3C
is going to be put to the test. For both indicators, the scatter plot restricted to the
calibration period and the scatter plot covering the whole sample are represented
below in Figure 21 and Figure 22. Both for B3B and B3C, the two scatter plots
have roughly the same global structure. That fact is quite reassuring with regards
to the validity of the approach that we have chosen. Indeed it means that whether
we are considering the in-sample calibration period of the whole span of Dataset
6, the behavior of the indicators is the same and the danger zone is stable. This
stationarity of the danger zone is crucial if we intend to make useful predictions
in the out-of-sample forecast period.

Figure 21: Calibration period / left: B3B, right: B3C

Figure 22: Calibration period: green, Whole sample: blue ; left: B3B, right: B3C

Using Figure 21, we set empirically the optimal values for the low and high
thresholds that define the danger zones of the indicators. We obtained the inter-
vals [0.41,0.8] for B3B and [0.50,0.70] for B3C. Using those values, we are now
able to count for each crisis of Table 1 inside the out-of-sample forecast period the
number of dates in a 100 days window preceding each crisis for which the value of
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B3B (resp. B3C) was inside the danger zone as well as the global proportion of
false positives.

We obtain the following results (Table 2) in which the crises inside the cali-
bration period have been put in italic (Crisis 1 and Crisis 2 are located before the
start of Dataset 6).

B3B B3C
Crisis 1 NA NA
Crisis 2 NA NA
Crisis 3 0 0

Crisis 4 51 18

Crisis 5 22 0

Crisis 6 41 0

Crisis 7 74 0

Crisis 8 98 100

Crisis 9 93 100
Crisis 10 94 100
Crisis 11 98 100
Crisis 12 100 100
Crisis 13 13 0
Crisis 14 15 0
Crisis 15 98 100
Crisis 16 99 100
Crisis 17 97 100
Crisis 18 96 100
Crisis 19 90 78
False Positive (%) 73.38 71.30

Table 2: Historical Crisis Prediction

We observe that using the indicators B3B and B3C properly calibrated would
have enabled us to predict and anticipate almost all the crises of Table 1 inside
the out-of-sample forecast period. Indeed there are very few false negatives. Only
the Bankruptcy of Delphi (Crisis 13) and the Sub-prime Crisis (Crisis 14) are not
properly forecasted. Those two events were however difficult to predict. Indeed,
the effects of the Bankruptcy of Delphi were not instantaneous on the U.S econ-
omy in general and on the SP500 in particular and the Sub-prime Crisis was a
months long process starting in August 2007 and on which we had to pin a date.
The proportion of false positives, while still relatively high, is unlikely to represent
an insurmountable obstacle for a practitioner as the information at a given date
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t that there is around a 30% chance of a crisis happening (and a 70% chance of
nothing happening) in the next 100 days is already an extremely valuable piece
of information and a much more precise one than what we had expected initially.
Indeed, in the introduction we where talking about a 10% chance of a crisis hap-
pening being already a very valuable piece of information from an investor’s point
of view.

5.2 Algorithmic Trading Approach

In this section we do not consider the historical financial crisis events of Table 1
anymore. Instead, we focus on the MDD at each date, computed ex-post using
the market data for the 100 days horizon. A financial crisis is defined here as a
market event where the MDD at 100 days exceeds a given threshold. We consider
MDD thresholds from 10% for a mild crisis to 25 % for a serious downturn. This
approach frees us of the sometimes arbitrary choice of a date for the financial crises
of Table 1 and the signal given by the various indicators is now going to be made
usable as the decision-making tool underlying an algorithmic trading strategy. In
this study to showcase the predictive power of the indicators that we have built,
we choose to consider Indicator B3B, but the same work could have be undertaken
using any of the nine indicators of either the A-series or B-series. The complete
construction of an optimal trading strategy based on those indicators will be the
topic of an upcoming paper and in this section we merely intend to demonstrate
that the red flags produced by B3B generate few false negatives, especially for
higher MDD thresholds, and an acceptable proportion of false positives. The bi-
nary signal produced by one of the indicators (i.e. "red flag" & "no red flag") can
afterwards interact with a set of predetermined rules to give at each date a "buy",
"sell" or "stay" recommendation.

We separate Dataset 6 into two periods again: one in-sample calibration period
and one out-of-sample period where the forecasting power of the financial crisis
indicators that we have built is going to be tested. The period spanning from Jan-
uary 17th 1990 to December 29th 2000 is chosen this time for the calibration of the
indicators. It is slightly larger than in the previous subsection and encompasses
the 2000 NASDAQ crisis in order to boost the predictive power of the indicator by
including a large market event in its calibration period (especially since the 1987
crash lies outside Dataset 6). We empirically chose the optimal interval [0.47,0.75]
for the danger zone using Figure 23 below.
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Figure 23 (Optimal danger zone for B3B / Green: calibration period, Blue:
forecast period)

We kept the rule that states that a red flag is given at a date t0 if at least 60%
of the points [B3B(t), MDDH(t)] such that t œ [t0 ≠100, t0] are in the danger zone
of the indicator and we obtain the following results (Table 3) for various thresholds
of MDD at the horizon 100 days.

MDD Threshold 10% 15 % 20 % 25 %
Crises 1281 794 400 268
Predicted crises 1201 751 400 268
False positives 1083 1533 1884 2016
False negatives 80 43 0 0

(Table 3: Crisis Prediction)

The forecast period is constituted of 3770 trading days. For a MDD thresh-
old of 10% there are 1281 crisis events in the forecast period and Indicator B3B
predicts 1201 of them while missing 80 and giving 1083 false positives. When the
MDD threshold is put at 25%, there are only 268 crisis events in the forecast pe-
riod and Indicator B3B predicts all of them while giving 2016 false positives. The
fact that Indicator B3B does not miss any crisis event characterized by the larger
MDD threshold (Ø 15%) is reassuring from a financial stability point of view: an
investor using a trading strategy based on the indicator that we have built would
not have been caught off guard by a serious market downturn. Of course there
are a lot of false positives, especially for the larger crises and there is room for im-
provement but, as we said in the introduction, the information that there is only
a 10% chance of a serious market event to happen within the next 100 days has
tremendous value for market agents. False negatives can spell disaster while false
positives might merely reduce profit and in that sense Indicator B3B is already
very useful for a traditional risk averse investor or a regulator. However, if profit
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maximization is the most important benchmark for a less risk averse investor, then
we could say that Indicator B3B performs best for the medium intensity crises (15
% to 20 % MDD threshold) because it is there that the proportion of false positives
remains smaller while the risk of a false negative is still acceptable.

The predictive power of the financial crisis indicators developed in this study can
also be demonstrated by considering European put options used as a protection
tool against market downturns. The use of listed options for portfolio structur-
ing had indeed become the norm among portfolio managers and many techniques
exist to use those derivatives in order to decrease risk or boost performance, as
explained in Bookstaber (1985). Bookstaber and Clarke (1981) also explained how
using different kinds of put and call options in a portfolio helps set the necessary
balance between risk and maximization of return.

Our purpose in this study is not to detail an elaborate structured portfolio but
rather to demonstrate the predictive power of our financial crisis indicators, there-
fore we will limit ourselves to a basic protective-put strategy where the purchase
and sale of European put options are merely used as a risk and volatility decreas-
ing techniques. The performance of the various test portfolios, while still evidently
an important benchmark, is not necessarily optimized like it would have been by,
for example, considering more elaborate strategies, like a covered call instead of a
protective put.

We work again with Indicator B3B and Dataset 6 because it is experimentally
the setup that works the best and produces the most useful results, but the same
study could have been conducted with any of our financial crisis indicators of either
the A-series or the B-series. The basic idea is to compare the performances of three
demonstration portfolios, which are updated monthly:

• A static buy and hold portfolio (BAH) constituted only of shares of an
Exchange Traded Fund (ETF) replicating the SP500 (SPX).

• A dynamic passive protective-put portfolio (PPP ) constituted of a mix of
equal proportions of SPX shares and SPX put options purchased every month
as a protection.

• A dynamic active protective-put portfolio (PPA) constituted either of a mix
of equal proportions of SPX shares and SPX put options, or of SPX shares
only, depending on the risk signal generated by indicator B3B. In this port-
folio, the put options are only purchased as a protection when our financial
crisis indicator forecasts a higher risk of a financial crisis happening withing
a given time horizon. In this study, the time horizon for the predictive power
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of the financial crisis indicators is 100 days, corresponding to the 100 days
horizon of the MDD that we consider and which was used to experimentally
obtain the danger zone of the indicator, as we have detailed previously.

The decisions dates are chosen every month as the third Friday of the month
between January 2000 and May 2015. Indeed, the third Friday of every month is
the day that put options with a maturity of one month or more traditionally reach
maturity. For accurate option quotes, we use a database of real historical option
prices for the SPX 4.

The process of decision on whether or not to buy a protective put option in
PPA is the following: at a given monthly decision date t0, we count the number
Nt0

of times when indicator B3B was inside its danger zone, as defined previously,
in the 100 days preceding t0.

The choice of an appropriate threshold T above which the value of Nt0
triggers

the purchase of the put option is crucial. If T is too high, we will not buy the
protection at dates when it would have been prudent, but on the other hand if
T is too low, we will buy many very expensive put options at dates when the
risk of a crisis was relatively low according to our indicator, thus destroying the
anticipated performance gain of PPA with respect to PPP and BAH.

After careful considerations, we choose T = 80. Such a value provides a good
balance between the need to maximize the performance of PPA and the need to
keep its risk withing reasonable bounds.

At t0, if Nt0
Ø 80 we interpret this signal as an indication of a heightened

probability of a crisis happening in the near future, thus triggering the purchase of
a put option for protection. On the other hand, if Nt0

< 80, then we interpret this
as a reassuring signal indicating that the probability of a crisis happening in the
near future is relatively low and thus that the money needed to buy a put option
for protection can be saved for increased performance of the portfolio.

The investors considered are price takers. Unlike a market maker, they have to
accept the prices that the market is offering them. Therefore, at a given monthly
decision date, any put option is bought at its last ask price and any put option is
sold at its last bid price, as provided by our database of real historical SPX option
quotes. The price of the underlying (the SPX shares) is always taken as the last
price of the day.

4The date was purchased from the website historicaloptiondata.com
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More precisely, once a strike S and a maturity M for the protective put option
has been chosen, and we will discuss about that below, the execution of our three
test strategies will be as follows:

• The investor holding BAH starts with a given number of SPX shares (nor-
malized at 1 share in our computations) and holds on to it for the duration
of the experience, which spans 185 months between January 2000 and May
2015.

• The investor who holds PPP starts with a given number of SPX shares and
purchases every month an equal number of put options (normalized at 1 in
our study), while selling the put option already present in the portfolio. All
the purchased options are kept only for one month and then they are sold
again to help cover the cost of the next option purchase. Therefore, every
month, the investor who holds PPP buys a put option of strike S and ma-
turity M and sell the option purchased the month before, which is also of
strike S and maturity M .

We do not include a cash allocation in our portfolios in order to boost perfor-
mance and in order to be always entirely invested in the market. Besides, as
explained in Harper (2003), the inclusion of cash in a portfolio is generally
counterproductive and, regardless of performance consideration, a riskless
security like U.S bonds is usually a better choice than plain cash anyway.
Since there is no cash in our study, the SPX shares, which are very liquid,
are used as cash-equivalent to purchase the options and the proceedings of
the option sales is immediately converted into SPX shares as well. Disre-
garding the small technical detail of having to consider fractional SPX shares
in the computations, we rebalance PPP at each decision date such that the
proportions of SPX shares and put options remain equal (i.e there is always
one unit of put option covering one unit of share).

• The investor who holds the dynamic active portfolio PPA adopts a strategy
with rolling put options to protect the SPX shares, similar in nature the
strategy governing the PPP portfolio, but with one fundamental difference:
at a given decision date, the decision to buy, or not to buy, the protective
put option is made according to the signal produced by indicator B3B. If at
a given decision date the financial crisis indicator recommends not to buy
the protective put option, then the investor sells the option purchased the
month before, if it is present, does not buy any other option and reverts to
a portfolio entirely made of SPX shares, like in the case of BAH.
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After the choice of the threshold T that establishes the desired balance be-
tween performance and safety in the active strategy, the choice of the strike S and
the maturity M of the rolling put options is the next important step that will
determine whether the active strategy PPA is a success or not.

The maturity M has to be long enough so that when the put option is sold
again after one month its value has not depreciated too much, but on the other
hand, in order for our study to have meaning, we should not take the maturity
so far away in the future that it goes beyond the horizon of prediction of the fi-
nancial crisis indicator, which is fixed at 100 trading days and which represents,
assuming 252 trading days per year, a little under five months. While taking this
into consideration, we chose the maturity for the rolling put option equal to four
months: M = 4 months

The strike S is chosen at 100% of the price of the underlying SPX share (put
option at-the-money). Our goal is to beat, both in terms of performance maxi-
mization and risk minimization, the static SPX portfolio BAH with our active,
financial crisis indicator controlled, portfolio PPA. Therefore, it is best not to
settle for a loss mitigation approach by choosing a strike S < 100. The risk has
also to be kept between reasonable bounds, but choosing to use more expensive
at-the-money options did not in practice increase the volatility of the portfolios,
while it did maximize overall performance.

For every decision date t œ J1, 185K, the riskless asset TB is chosen as the one
month U.S Treasury Bond (US0001M). Considering an asset A, which can rep-
resent either BAH, PPP or PPA, we define the following benchmarks, Sharpe
ratio and Calmar ratio, that we will use to compare the strategies to one another
and demonstrate the predictive power of Indicator B3B. We also recall the Max-
imum Draw Down (MDD), that we have already defined in Equation (22). Here
we consider MDD(A), which is the maximum draw down computed over the entire
period of study and not anymore at a given time horizon.

• To compute the yearly Sharpe ratio, we proceed in the following manner.
The Sharpe ratio measures the quotient of the excess performance with re-
spect to a riskless asset over the volatility. To achieve the desired highest
Sharpe possible, a strategy has to maximize return while at the same time
minimize volatility, which represents risk.

– ’t œ J1, 185K , ExcessReturnA(t) = A(t)
A(t≠1)

≠
T B(t≠1)

12
≠ 1
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– Perf(A) = (A(185)
A(1)

)
360

5550 ≠ 1 (Annualized performance, assuming 30 days

per month and 185 months in our experience)

– V ol(A) = stdev(ExcessReturnA).
Ô

12 (Annualized volatility)

Sharpe(A) = P erf(A)≠mean(T B)
V ol

(23)

• We define the yearly Calmar ratio as the quotient of the performance by the
maximum draw down (MDD).

Calmar(A) = P erf(A)
MDD(A)

(24)

In Figure 24, we draw the profiles of BAH, PPP and PPA as well the quan-
tity TR = P P A

BAH
, which represents the extra performance of the active strategy

governing portfolio PPA with respect to the static portfolio BAH (the tracking
error). The Performance, the Sharpe and the profile of TR are the main tools at
our disposal to illustrate the benefit of using PPA instead of all the alternatives
presented in this study and thus demonstrate the power of prediction of our finan-
cial crisis indicator B3B, and by extension the power of prediction of our original
approach to financial crisis indicators as a whole.

We immediately notice that PPP is a complete failure. It has a negative Sharpe
(anti performance with respect to the riskless asset) and while it does somewhat
reduce volatility and MDD with respect to BAH, which is a good thing and which
was expected given the very nature of the protective-put strategy, the complete
collapse of its performance under the crippling cost of having to buy a new put
option each and every month makes this strategy very unattractive. The cost of
having to buy the protection every month is not to be underestimated. Indeed,
as explained in Israelov and Nielsen (2015), the cost of buying the options in a
protective-put setting is usually very high. It is also often much higher than it
might seem, even during a calm market and low volatility period, unless the price
and fundamental value of the underlying are properly taken into consideration.

The strategy PPA is a success, both in terms of maximization of the return
and in terms of reduction of the risk. The performance of BAH was only 2.6%
and is boosted to almost 6% in PPA, while the volatility goes down from 18% to
13% and the MDD goes down from almost 50% to 33%. These MDD values in
particular show that the effects of the September 2008 financial crisis, with the
failure of Lehman Brothers in particular, had been correctly anticipated by our
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financial crisis indicator, allowing the strategy PPA to anticipate the fall by buying
protective put options in advance while also anticipating the post crisis recovery
and stop buying the protection to save money when it was no longer necessary.
The Sharpe ratio of PPA is 0.323 while it was only 0.047 for BAH, demonstrat-
ing a tangible gain of performance for our dynamic active protective-put portfolio
PPA and therefore demonstrating the power of prediction of our financial crisis
indicator.

While a Sharpe in the order of magnitude of 0.3 would still be considered
modest from the point of view of a hedge fund manager, it must be pointed out
that it is the result of a single and simple protective-put strategy, without any
diversification. In a real-world setting, diversification of the assets in the portfolio
and of the strategies as well as the choosing of more elaborate and realistic rules
for the purchase of options, which could also include call options to finance the
purchase of the put in a covered call framework, might very well produce much
more impressive Sharpe ratios. Also the Sharpe ratio that we have obtained for
PPA is computed over a very long period of 15 years that includes long phases of
market stagnation as well as several major financial crises, which reduce the overall
annualized performance. If we had truncated our study to make it start from 2007,
for example, the Sharpe ratio of PPA would have been much larger. The Calmar
ratio for its part goes from 5.2% in BAH up to 18% in PPA and demonstrates
that using our financial crisis indicator to pilot a protective-put strategy permits
to both increase performance and at the same time reduce the MDD, which is a
very desirable outcome for an asset manager.

The study of the profile of the TR coefficient is interesting as well. Like we have
said it measures the extra performance of PPA with respect to BAH. Since the
performance of TR is 3.3% it means that PPA is performing 3.3% above the SP500
ETF, which is already a very good result. The structure of the TR profile over time
is remarkable as well. It features a sequence of increasing plateaux corresponding
to the times of low market risk when Indicator B3B correctly recommends not
buying the protective put option in the PPA strategy. Those plateaux, besides
showing that our financial crisis indicator correctly anticipates most of the periods
of low risk calm market, as well as anticipating the crises of course, shows that a
correct selection of the threshold T at 80% instead of 60% enables us to limit the
occurrences of false positives, without of course eliminating them and they still
remain the main limitation in our framework. The Sharpe of TR, at around 0.278,
while the Sharpe of BAH was only 0.047, demonstrates also the added value that
the predictive power of our financial crisis indicator brings to portfolio PPA.
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We now switch our attention to Figure 25 and Figure 26 which show the com-
parison between PPA and two kinds of random strategies. The basic idea between
comparing PPA to random strategies is to show that the success of PPA compared
to BAH and PPP is not just due a stroke of luck and that the added value and
predictive power of our framework of financial crisis indicator is real. In the first
kind of random strategy, the choice to buy, or not, the protective put option is
random at each one of the 185 monthly decision dates in our study. We just flip a
coin at each date and decide accordingly whether to buy the protection or not. We
call those strategies random at every date (RED) strategies and they are shown
in Figure 25. In the second kind of random strategies, that we call random with

the same proportion (RSP), one random strategy is equivalent to performing a
random permutation on the signal that Indicator B3B provides for PPA (’1’ for
buy and ’0’ for don’t buy). Those strategies are compared to PPA in Figure 26.

We observe that indeed, both the RED and RSP strategies perform on average
much worse than PPA, which is very reassuring. They have on average higher
volatility, much lower performance and a significantly larger MDD. Visually, PPA
performs better than most random strategies of both kinds because it is "above"
most of them and it is located, most of the time, at the top of the area of the plane
defined by the superposition of all the random paths. PPA is not in the middle,
which would have suggested than on average the probability of doing better than
PPA by adopting a random strategy would have been around 50%, which would
have seriously damaged the credibility of our approach. PPA is not at the bottom
of the area defined by the random paths either, which would have been even worse
and implied that our active strategies, on average, would have been beaten by
random ones. In fact, while considering the 2000 simulated random strategies,
either RED or RSP, the strategy PPA beats them, in the sense that the final value
of the PPA portfolio is above the final value of the portfolio governed by the random
strategy, 1992 times for RED and 1989 times for RSP. That means that PPA is
better in terms of global return than a random strategy around 99.5% of the time.
Portfolio PPA perform even better when compared to a RED strategy than to a
RSP strategy since the RSP strategy, while random, do contain a little information
about the signal provided by Indicator B3B in the form of the global proportion
of purchases over the course of all the 185 decision dates. Computing the average
Sharpe ratio of the random strategies confirms that the good performance of PPA
is due to skill rather than luck. Indeed, while the Sharpe of PPA is 0.323, the
average Sharpe ratio of the 2000 paths of RED and RSP is very close to zero(-
0.0101 and +0.0034, respectively), which is still better than the Sharpe of PPP,
for which the cost of buying the protection every month destroys the performance
of the portfolio.

46



F
ig

u
re

24
(V

al
u
e

of
th

e
p

or
tf

ol
io

s
B

A
H

(b
la

ck
),

P
P

P
(b

lu
e)

an
d

P
P

A
(r

ed
).

T
h
e

ex
tr

a
p

er
fo

rm
an

ce
of

P
P

A
w

it
h

re
sp

ec
t

to
B

A
H

(t
ra

ck
in

g
er

ro
r)

is
re

p
re

se
n
te

d
in

gr
ee

n
an

d
is

n
ot

on
th

e
sa

m
e

sc
al

e
(x

10
00

).
)

47



F
ig

u
re

25
(C

om
p
ar

is
on

b
et

w
ee

n
P

P
A

(b
la

ck
)

an
d

20
00

ra
n
d
om

st
ra

te
gi

es
(g

re
en

)
fo

r
w

h
ic

h
th

e
ch

oi
ce

of
w

h
et

h
er

to
b
u
y,

or
n
ot

,
th

e
p
u
t

op
ti

on
is

ra
n
d
om

(c
oi

n
fl
ip

)
at

ev
er

y
m

on
th

ly
d
ec

is
io

n
d
at

e
(r

an
d
om

ev
er

y
d
at

e)
.)

48



F
ig

u
re

26
(C

om
p
ar

is
on

b
et

w
ee

n
P

P
A

(b
la

ck
)

an
d

20
00

ra
n
d
om

st
ra

te
gi

es
(g

re
en

)
fo

r
w

h
ic

h
th

e
ch

oi
ce

of
w

h
et

h
er

to
b
u
y,

or
n
ot

,
th

e
p
u
t

op
ti

on
is

ra
n
d
om

at
ev

er
y

m
on

th
ly

d
ec

is
io

n
d
at

e
an

d
th

e
sa

m
e

gl
ob

al
p
ro

p
or

ti
on

of
p
u
rc

h
as

es
as

in
P

P
A

ov
er

th
e

18
5

d
ec

is
io

n
is

p
re

se
rv

ed
(r

an
d
om

sa
m

e
p
ro

p
or

ti
on

).
)

49



6 Conclusion

As a general conclusion, we could start by saying that the nine financial crisis
indicators that we have built are all generally able to detect most of the financial
crises that we have studied. In both the historical approach, where we made use
of chosen dates for the crisis events, and the algorithmic trading approach, where
we used a more quantitative definition of the financial crises based on the MDD,
the indicators were indeed capable of confirming the occurrence of market turmoil.
Moreover, we demonstrated an out-of-sample predictive power for several of those
indicators, while using a dataset constituted of selected components of the SP500
index. We also demonstrated the predictive power of the indicators in our frame-
work by using a signal produced by Indicator B3B in order to build a successful
portfolio constituted of SPX shares and European put options and governed by an
active protective-put strategy.

We recall that we have built two sets of financial crisis indicators and that
we then applied them on seven datasets. The financial crisis indicators that we
have built are all based of the study of the spectrum of a covariance matrix, a
correlation matrix or a weighted correlation matrix. They measure the volatility
and correlations between a number of assets in order to evaluate whether the con-
ditions are right for adverse random events, which are happening all the time, to
trigger financial crises.

The first kind of indicators, that we called the A-series, comprises three indi-
cators. Indicator A1 and A2 are at each date the Hellinger distance between the
empirical distribution of the spectrum of the covariance matrix and two different
calm market reference distributions. Indicator A3 for its part is at each date the
Hellinger distance between the empirical distribution of the spectrum of the co-
variance matrix and a reference distribution characterizing a market in turmoil.
We found that one of the most useful patterns for financial crisis detection and
forecast in the profiles of the indicators of the A-series is characterized by a spike
in A1 and A2 accompanied by a drop in A3. Indeed, when this pattern occurs,
it means that the market is in the process of moving away from a calm state and
toward more turbulence.

We called the indicators of the second type the B-series. Indicator B1 is the
spectral radius of the covariance matrix and bases its forecasts on a mixed signal
of volatility and correlation. Indicator B2 is the trace of the covariance matrix and
relies on volatility only to make its predictions. Indicator B3 is the spectral radius
of the correlation matrix and relies on correlation only to make its predictions.
We also have built three additional versions of B3. B3A is the spectral radius
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of a correlation matrix where the assets have been weighted with regards to the
market capitalization of the firms they represent. B3B is the spectral radius of a
correlation matrix where the assets have been weighted with regards to their daily
traded volume and B3C is an averaged version of B3B. We found that the indica-
tors of the B-series, especially those that rely, in part or in whole, on correlation
performed better while using the components of an index rather than a basket of
indices. That probably has to do with the averaging effect that is a very strong
influence in the computation of an index. Used on Dataset 6, which contains the
components of the SP500, Indicator B3B is the one which gave us the best and
the most reproducible results.

In the last part of the study, we demonstrated that Indicators B3B and B3C
do possess, after proper calibration, a real out-of-sample power of prediction in
estimating the probability of a financial crisis happening at a given time horizon
in the future. While the approach that we adopted gave many false positives (a
red flag is returned and no crisis happens in the market) as well, the low number
of false negatives reinforced our conviction about the viability and usefulness of
the financial crisis indicators that we have built. For indicator B3B, we also devel-
oped a quantitative approach relying on defining a financial crisis in terms of the
crossing of an MDD threshold. Indicator B3B was also successfully used in order
to build a signal governing a protective-put strategy in a portfolio constituted of
a mix of options and ETF shares.

We are confident that our framework and the financial crisis indicators that we
have built are able to bring new insight on the topic of financial crisis detection and
prediction. In the future, one of the possible ways of applying these methods would
be to use them in order to build more elaborate systematic trading strategies, which
make use of all our nine indicators as well as new ones. Those strategies based
on the aggregated signals coming from many different financial crisis indicators in
our framework will be the topic of an upcoming paper.
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Appendix

Reference Distributions for all Datasets

(a) Dataset 2 (b) Dataset 3

(c) Dataset 4 (d) Dataset 5

(e) Dataset 6 (f) Dataset 7

Reference distributions computed for Dataset 2 to Dataset 7, with a rolling window
of 150 days (Blue: Marchenko Pastur (Θ1), Green: Θ2, Red: Θ3).54



Composition of Dataset 6 (226 assets)

AA, AAPL, ABT, ADM, ADSK, AEP, AFL, AIG, ALTR, AMAT, AMGN, AON,
APA, APC, APD, ARG, AVY, AXP, BA, BAC, BAX, BBY, BCR, BDX, BEN,
BHI, BK, BLL, BMY, C, CAG, CAT, CB, CCE, CELG, CI, CINF, CL, CLX,
CMA, CMCSA, CMI, CMS, CNP, COP, CPB, CSC, CSX, CTAS, CTL, CVS,
CVX, D, DD, DE, DHR, DIS, DOV, DOW, DTE, DUK, EA, ECL, ED, EFX,
EIX, EMC, EMR, EOG, EQT, ES, ETN, ETR, EXC, EXPD, F, FAST, FDO,
FDX, FISV, FITB, FMC, GAS, GCI, GD, GE, GIS, GLW, GPC, GPS, GWW,
HAL, HAR, HBAN, HCP, HD, HES, HOG, HON, HOT, HP, HPQ, HRB, HRL,
HRS, HSY, HUM, IBM, IFF, INTC, IP, IPG, IR, ITW, JCI, JEC, JNJ, JPM, K,
KLAC, KMB, KO, KR, KSU, L, LB, LEG, LEN, LLTC, LLY, LM, LNC, LOW,
LRCX, LUK, LUV, MAS, MCD, MDT, MHFI, MMC, MMM, MO, MRK, MSFT,
MSI, MUR, NBL, NEE, NEM, NI, NOC, NSC, NTRS, NUE, NWL, OKE, OXY,
PAYX, PBCT, PBI, PCAR, PCG, PCL, PCP, PEG, PEP, PFE, PG, PGR, PH,
PHM, PKI, PNC, PNW, PPG, PPL, PVH, R, ROST, RTN, SCG, SHW, SIAL,
SLB, SNA, SO, SPLS, STI, SWK, SWN, SYMC, SYY, T, TE, TEG, TGT, THC,
TIF, TJX, TMK, TMO, TROW, TRV, TSO, TSS, TXT, TYC, UNM, UNP, USB,
UTX, VAR, VFC, VMC, VZ, WEC, WFC, WHR, WMB, WMT, WY, XEL, XOM,
XRAY, XRX
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Abstract

The aim of this work is to create systematic trading strategies built upon several financial
crisis indicators based on the spectral properties of market dynamics. Within the limitations
of our framework and data, we will demonstrate that our systematic trading strategies are
able to make money, not as a result of pure luck but, in a reproducible way and while avoiding
the pitfall of over fitting, as a result of the skill of the operators and their understanding and
knowledge of the financial market. Using singular value decomposition (SVD) techniques
in order to compute all spectra in an efficient way, we have built two kinds of financial
crisis indicators with a demonstrable power of prediction. Firstly, there are those that
compare at every date the distribution of the eigenvalues of a covariance or correlation
matrix to a distribution of reference representing either a calm or agitated market reference.
Secondly, we have those that merely compute at every date a chosen spectral property (trace,
spectral radius or Frobenius norm) of a covariance or correlation matrix. Aggregating the
signals provided by all the indicators in order to minimize false positive errors, we then
build systematic trading strategies based on a discrete set of rules governing the investment
decisions of the investor. Finally, we compare our active strategies to a passive reference as
well as to random strategies in order to prove the usefulness of our approach and the added
value provided by the out-of-sample predictive power of the financial crisis indicators upon
which our systematic trading strategies are built.

Keywords :
Prediction Methods, Financial Crisis, Financial Forecasting, Random Matrix Theory.

1 Introduction

Our goal in this paper is to build active trading strategies that are able to make money in a
reproducible fashion, not as a result of luck but as a result of skill. While using only commer-
cially available data 1, we attempt to anticipate market movements and act on them beforehand
by using the financial crisis indicators based on random matrix theory that were developed in
the work of Douady and Kornprobst (2015). Simply speaking, our objective is to liquidate our
positions before the prices start to drop and to acquire them back before the prices go back up
again. The portfolios that we consider are constituted of a mix of ETF shares replicating an

∗Electronic address: antoinekor9042@gmail.com
1All the data in this study ha been obtained from Bloomberg
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equity index and cash. The financial crisis indicators will work on the stock components of the
equity index and make a determination about whether it is prudent to convert the shares into
cash because the probability of a crisis happening in the near future is getting higher, or on the
contrary whether it is advisable to convert the cash into shares because the market is in a calm
phase and the probability of a sudden price drop within a given forecast horizon is low. The
cash, if present in a portfolio, earns the risk-free Libor rate.

We consider that our actions have no direct influence on the market and that we are always
price takers. In other words, we consider that our trading operations are small enough to gen-
erate neither slippage nor feedback in the order book. This is of course a simplification, as even
the smallest trades have some kind of impact on the order book. Our assumption however, is
that this impact is negligible for our operations and that ignoring it does not change anything
to our approach and the validity of the situations that we are attempting to describe. In order
to focus entirely on demonstrating the power of predictions of our strategies and their potential
for making money, we decided against modeling market frictions like transaction fees associated
with our trading operations. While these market frictions do exist and represent a very real
cost for market agents, our ambition at this stage is not to build a realistic simulation of market
operation, which by the way would include many other variables than those we have considering
here, but rather to provide a credible technical framework and methods that are ready to be
applied by professionals.

There is a large literature, both applied and theoretical, on the topic of building successful
systematic trading strategies, especially for the hedge fund industry as explained in Fung and
Hsieh (1997). A first approach relies on what is commonly known in the financial world as
technical analysis. This mostly empirical approach aims at predicting market movements and
stock returns by identifying certain well known patterns in stock prices and other market vital
signs. Technical analysis shares a lot of similarities with our approach since our aim is also to
empirically detect reproducible crisis announcing patterns inside the market data and use that
knowledge as a financial crisis indicator. The efficiency of optimized systematic trading strategies
based on technical analysis has been demonstrated in the work of Gençay (1998). Indeed, clever
technical analysis is usually able to do better than passive buy-and-hold strategies. This pre-
dictability of stock returns as a way to establish successful investment strategies is also described
in details in the work of Pesaran and Timmermann (1995), who discuss from a historical point of
view how the predictability of U.S stock returns have been routinely exploited by investors since
the 1960’ and especially since the 1970’s. Indeed, it is at times of higher market volatility that
technical analysis strategies can reach their full potential. Technical analysis strategies of various
kinds (momentum, mean reverting, moving average, etc...) have also been successfully tested by
Ratner and Leal (1999) where they discuss systematic trading strategies based on technical anal-
ysis and applied to the Latin American and Asian equity markets. The relevance of systematic
trading strategies based on technical analysis, versus passive buy-and-hold strategies, has been
also statistically demonstrated in the work of Kwon and Kish (2002) about the predictability of
NYSE stocks.

Another approach successfully used in the financial industry in order to build systematic trad-
ing strategies is the dynamic time-series process and signal processing approach. This approach
also shares a lot of similarities with our systematic trading strategies based on financial crisis
indicators. Indeed we use a rolling window on market data time-series, which are constituted of
the log-returns of the stock components of an equity index. The financial crisis indicators that we
compute then produce a signal that is used in the decision-making process governing the active

2



trading strategy. This time-series based approach to trading is discussed in the work of Farmer
and Shareen (2002) about the price dynamics of trading strategies seen through the lenses of
signal processing theory. While some strategies based on technical analysis techniques might
increase undesirable noise inside a market and create volatility as well as instability, especially
when a large proportions of investors is using them at the same time, their efficiency and their
power to make money is usually proven beyond a reasonable doubt as demonstrated in the work
of Brock, Lakonishok and LeBaron (1992).

Our own approach to systematic trading strategies based on financial crisis indicators com-
bines elements from all of the approaches that we described previously: technical analysis, time-
series, signal processing, statistical considerations. We thus create a new framework that is
grounded in a solid theoretical background, while still remaining flexible enough in order to be
able to be applied in the real world and in order to be useful to traders and investors.

2 The Data

We work exclusively with daily data, because data with a daily frequency is more readily available,
but there is nothing in our framework that would prevent the use of intraday data. Besides, work-
ing with daily data was easier because intraday datasets can become extremely large and require
a lot of computing power to be properly exploited in a timely fashion. Our data is constituted of
five global equity indices. We use the Standard & Poor’s 500 (SP500), the Bloomberg European
500 (BE500), the Shanghai-Shenzhen CSI 300 (SHSZ300), the NASDAQ and the CAC40. For
all those equity indices, we also have at our disposal all of their respective components as well
as a matching time-series of the U.S Government Bond of maturity 1 month (US0001M) that is
going to be used as the riskless asset to compute what the cash earns, whenever it is present in
one of our portfolios, at a given date. The data for the equity indices themselves is comprised
of the closing price P0(t) at each date of the time period on which our study is conducted. The
data for the N the components is comprised, for all i œ J1, NK of the closing price Pi(t), the daily
volume traded Vi(t), the closing market capitalization Ci(t) and the closing financial leverage
Li(t), which is the quotient of the total debt by the market capitalization. All prices have been
adjusted for dividends and splits. At every time t, we compute the daily log-returns for both the
index itself and its components. It is defined as the log-return between a given trading day and

the previous trading day. For all i œ J0, NK: ri(t) = log(
Pt

Pt≠1
).

The composition of the equity indices is dynamic over time, but our datasets need to have a
stable composition. Indeed, if we consider a given index, companies regularly drop out and are
replaced by new ones that better fit the membership criteria, which are defined by a committee
and most often based on the listed companies’ market capitalization. In order to conduct our
study, we need to have for each of the five indices a stable set of index stock components over a
sufficiently long period of time. Therefore it was not possible to keep all the current components
of the indices. A compromise had to be found between keeping enough of the components of each
index in order to have a sample of companies that is representative of the state of the financial
market and the necessity to have a sufficient depth for our time-series in order to conduct a
statistical study over a long enough period of time. All our datasets span between June 13th
2006 and March 15th 2016. The details about the five datasets that we are going to use in our
study are the following. The exact composition of each dataset, given as a list of Bloomberg
tickers, is given in appendix for each of the datasets.
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• Dataset-SP500 is comprised of 420 components of the Standard and Poor’s 500 index,
plus the index itself, which contains 500 of the largest companies ranked by market capi-
talization, having stock listed on the NYSE or NASDAQ stock exchanges.

• Dataset-BE500 is made of 419 components of the Bloomberg European 500 index plus
the index itself, which is the European counterpart to the SP500 and contains 500 of the
largest companies listed on European stock exchanges.

• Dataset-SHSZ300 is comprised of 147 components of the Shanghai-Shenzhen CSI 300
index, plus the index itself. The composition of this index, which has only been in existence
since April 2005, is very much in a state of flux and its evolution reflects the profound
transformations of the Chinese economy over the past decade. For that reason, less than
half of the companies in the index today were already there at the time of its creation.
We still decided to go forward and keep using this basket of 147 Chinese companies which
are representative of the Chinese financial market since 2006 and which reflect its current
state.

• Dataset-NASDAQ is comprised of 69 components of the NASDAQ Composite Index,
plus the index itself which contains 100 of the largest companies, excluding financial com-
panies, with respect to market capitalization, listed on the NASDAQ stock exchange.

• Dataset-CAC40 is constituted of 37 components of the CAC40 index, plus the index itself,
which contains 40 of the most important (selection by a committee) companies among the
100 companies with the highest market capitalization listed on the Euronext Paris stock
exchange.

For all the datasets, we considered only the trading days, excluding week-ends and holidays.
Moreover, when a specific stock wasn’t traded on a given day or whenever an entry was missing
in the data, we carried over the last valid available value to fill the gap in order to avoid neu-
tralizing a large number of trading days in our study.

3 The Financial Crisis Indicators

The financial crisis indicators used as decision making tools in our systematic investment strate-
gies are based on the work of Douady and Kornprobst (2017). For a given dataset constituted of
the N stock components of an equity index, we start by choosing the length T of a rolling win-
dow. This choice has to be made carefully and is important for the quality of the financial crisis
forecasts and therefore important for the success of the systematic trading strategies based upon
those forecasts. T represents the number of observations of the log-returns of the components
of the equity index and it needs to be large enough for a given dataset to enable us to obtain
a whole meaningful spectrum of the covariance or correlation matrix of the stock components,
but it should also not be too large in order to preserve the responsiveness of the indicators and
avoid giving them a too long memory.

To obtain a whole spectrum of the matrices, we must have T > N otherwise the asset vectors
are not long enough (there are not enough observations inside the rolling window) and thus can
never be linearly independent and the covariance and correlation matrices will be degenerate. Al-
though that would have been a sufficient size for T , we discard the possibility of choosing T = N .
This is a technical requirement. Indeed, since we plan on using the singular value decomposition
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(SVD) of the rolling window to obtain the eigenvalues of the covariance and correlation matrices,
the rolling window cannot be a square matrix, as explained in Horn and Johnson (2013) as well
as in Golub and Van Loan (2013).

The requirement of having T > N may however be in theory somewhat relaxed because the
only part of the spectrum that really interests us is the larger eigenvalues. Larger eigenvalues
are indicative of dynamical instability and our financial crisis indicators are based on that prop-
erty. If T < N , we will not be able to obtain the whole meaningful spectrum of the matrices,
but as long as T is not too small, the eigenvalues that we will miss are going to be the smaller
ones, which are the ones that are less interesting to us. That is why the indicators in Douady
and Kornprobst (2017) do still work when applied on a dataset containing 226 components of
the SP500, while using a rolling window of only 150 days. In practice however in this study,
where we are going to aggregate the signals produced by many different indicators, truncating
the spectrum of the covariance or correlation matrix in any way did create technical problems
and tended to degrade the quality of the forecasts, especially for the indicators that are called
the A-series in Douady and Kornprobst (2017) and which compare the distribution of the whole
spectrum to chosen references that represents either a calm or an agitated market.

We therefore decided to choose from now on in this paper T = 1.1 ◊ N (1) for all the
datasets. Even though it means that the rolling window becomes quite large for the datasets
that contain the most assets, like Dataset-SP500 or Dataset-BE500, the benefit of working with
a spectrum that has not been truncated outweighs the drawbacks in terms of loss of respon-
siveness of our indicators due to their longer memory for some of our datasets. We therefore
choose for the whole study the following sizes for the rolling window of each of the datasets ; 462
days for Dataset-SP500, 461 days for Dataset-BE500, 162 days for Dataset-SHSZ300, 76 days
for Dataset-NASDAQ and 41 days for Dataset-CAC40.

For a given dataset and at a given date t0, we consider the matrix of the log-returns :

A(t0) = (ai,j(t0))iœJ1,NK;jœJt0≠T,t0≠1K

The rows of A(t0) represent time-series of individual stock component and the columns of
A(t0) represent the observation dates. The coefficients of this matrix are the scaled and centered
daily log-returns of the stock components of one of the equity indices considered in this study :

ai,j(t0) =
1Ô
T

{ri(j) ≠

qT

k=1 ri(t0 ≠ k)

T
} (2)

From the matrix A, we derive five matrices of interest :

• The unmodified matrix A(t0) itself enables us, through its singular value decomposition,
which we will write in details below, to compute the spectrum of the covariance matrix of
the N stock components over the time period T . The covariance matrix contains both the
correlation and volatility effects of the stock components of a given equity index and both
of those signals are going to be useful.

• The matrix B0(t0) = (b0
i,j(t0))iœJ1,NK;jœJt0≠T,t0≠1K is obtained by normalizing each coeffi-

cient of A with the standard deviation of the row to which it belongs. This normalization
removes the volatility information that was contained in A(t0) and B0(t0) contains only
the pure correlation effect between the stock components.
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b0
i,j(t0) =

ai,j(t0)

std(Jai,t0≠T . . . ai,t0≠1K)
(3)

From the singular value decomposition of B0(t0) we obtain the spectrum of the correlation
matrix of the N stock components over the time period T .

• The matrix B1(t0) = (b1
i,j(t0))iœJ1,NK;jœJt0≠T,t0≠1K is obtained by weighting each of the

coefficients of B(t0) by the relative importance of the corresponding stock’s daily traded
volume at t0 ≠ 1, with respect to all the other components of the index. The idea behind
B1 is to build a different flavor of the correlation matrix, one which gives more importance
to the stocks which are the most liquid and the most traded inside the index. Indeed,
those liquid stocks are more susceptible to drive the movements of the market, especially
the down movements during and preceding a crisis event.

b1
i,j(t0) = b0

i,j(t0)
Vi(t0)

qN

k=1 Vk(t0)
(4)

From the singular value decomposition of B1(t0) we will obtain the spectrum of the cor-
relation matrix of the N stock components over the time period T weighted by volume
traded.

• The matrix B2(t0) = (b2
i,j(t0))iœJ1,NK;jœJt0≠T,t0≠1K is constructed by applying to each of the

coefficients of B(t0) a weight proportional to the market capitalization of the corresponding
company. The idea is to give more importance in the computation of the spectrum of the
correlation matrix to the companies which have the largest market capitalization and which
may therefore drive the movements, though their sheer size, of their entire industry sector
or of the financial market as a whole. By computing the singular value decomposition of
B2(t0) we will obtain the spectrum of another flavor of the correlation matrix, one which
is weighted by market capitalization.

b2
i,j(t0) = b0

i,j(t0)
Ci(t0)

qN

k=1 Ck(t0)
(5)

• Finally, the matrix B3(t0) = (b3
i,j(t0))iœJ1,NK;jœJt0≠T,t0≠1K is another flavor of the weighted

correlation matrix. This time, we apply to the each of the coefficients a weight proportional
to the financial leverage of the corresponding firm. Since the financial leverage can be
interpreted as a measure of the financial health of a company, it provides us with a valuable
way of giving more importance in our computations to the firms which are, because of their
higher financial leverage, more exposed to the risk of suffering major adverse effects during
a crisis or to start a domino effect. Indeed, their higher proportion of debt with respect
to their own assets, puts them in a more precarious financial situation, or at least in a
situation where a sudden random downturn of the market would render them unable to
service that debt and therefore prone to failure. Many global financial institutions fell prey
to this vicious circle during the 2007-2008 financial crisis for example.

b3
i,j(t0) = b0

i,j(t0)
Li(t0)

qN

k=1 Lk(t0)
(6)
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We then apply the singular value decomposition (SVD) technique, as detailed in Horn and
Johnson (2013) as well as in Golub and Van Loan (2013), to our five rolling matrices (A, B0,
B1, B2 and B3) in order to obtain at each date t0 the spectrum of the corresponding covariance,
correlation or weighted correlation matrix. The main advantage that we obtain from using SVD
is that the algorithm computing the singular values does not require any matrix multiplication
like in Douady and Kornprobst (2017), where obtaining the covariance and correlation matri-
ces required the product of a matrix by its transpose. Therefore, there will not be any added
numerical errors during execution of the code on a computer. Indeed, a classical spectrum deter-
mination approach would start by computing the product of the rolling matrix by its transpose
before applying standard techniques, like numerically finding all the roots of the characteristic
polynomial using Newton-Raphson’s method or similar techniques as detailed in the work of Ab-
basbandy (2003). The SVD approach bypasses the need to use those multiplications of matrices.

Taking into consideration an N ◊ T , with (N < T ), matrix M with M = A or M = Bk for
k œ J0, 3K ), the singular value decomposition is written :

M = U ΣV T ; Σ =

S

W

W

W

U

‡1 0 . . . 0 0 . . . 0
0 ‡2 . . . 0 0 . . . 0
...

...
. . .

...
...

. . .
...

0 0 . . . ‡N 0 . . . 0

T

X

X

X

V

(7)

The eigenvalues ⁄i of MMT are obtained from the singular values ‡i found in Σ :

’i œ J1, NK, ⁄i = ‡2
i (8)

After computing the whole spectrum of the rolling matrices at each date t0, we can then
use the two kinds of financial crisis indicators described in the work of Kornprobst and Douady
(2017).

• Firstly, there are the indicators that compare the whole spectrum of the covariance, cor-
relation or weighted correlation matrices associated with our five rolling matrices, to a
reference spectrum distribution. We call these financial crisis indicators the –-series. The
reference distribution may represent either an agitated or a calm market reference. Fol-
lowing the work of Douady and Kornprobst (2017), we consider three different references
distributions. Two represent a calm market and one represents an agitated market. In
the sense of the Hellinger distance, which is the metric adopted, the observed empirical
distribution is expected to move away from a calm reference distribution and move closer
to an agitated reference distribution when the risk of a financial crisis is increasing in the
market. The main idea is to measure when the whole spectrum of the eigenvalues of the
covariance matrix, correlation matrix or weighted correlation matrix shifts towards the
higher eigenvalues, which is a situation indicative of instability in the market and therefore
may indicate the possibility of an upcoming crisis. The first reference distribution mod-
eling an ideal calm market, called R1, is the Marchenko-Pastur distribution, introduced
in Marchenko and Pastur (1967). It is the distribution of the spectrum of a correlation
matrix corresponding to a rolling matrix constituted of independent identically distributed
normal Gaussian coefficients. The second reference distribution, called R2 represents a
more realistic calm market. This numerically computed reference is the distribution of
the eigenvalues of the covariance matrix corresponding to a rolling matrix constituted of
Gaussian coefficients correlated to one another at the level of the mean of the long term
correlation coefficients between all the assets of the whole sample contained in the chosen
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dataset (around 50%), as explained in Douady and Kornprobst (2017). The distribution
R3 representing an agitated market reference is the numerically computed distribution of
the eigenvalues of a covariance matrix corresponding to a rolling matrix constituted of
Student (t = 3) coefficients which are correlated to one another by the same method as the
one used in R2. The resulting coefficients follow a fat tailed distribution and are correlated
and therefore constitute an adequate representation of an agitated market, where the log-
returns of the stock component of an equity index are highly volatile and prone to extreme
losses. These market conditions simulate the kind of situation we expect to exist in days
the days leading to a financial crisis. To summarize, we are considering five matrices (A,
B0, B1, B2 and B3) and three references (R1, R2 and R3), which therefore gives us 15
financial crisis indicators of the –-series.

• Secondly, there are the financial crisis indicators that compute a specific spectral property
of the covariance matrix, correlation matrix or weighted correlation matrices. We call these
financial crisis indicators the —-series. We take into consideration three spectral properties:
the spectral radius (the largest of the eigenvalues), the trace (the sum of the eigenvalues)
and the Frobenius norm (the sum of the squared eigenvalues). The basic idea behind
those indicators is similar than in the case of the indicators of the –-series, which compare
the whole distribution of the spectrum to a reference distribution. Indeed, a shift of the
spectrum to the right, toward the larger eigenvalues is indicative of market instability. It
means increased correlation and volatility in the market and therefore an increased risk of a
crisis taking place. These effects are studied under different points of views corresponding
to the five rolling matrices considered. We therefore take into consideration five matrices
(A, B0, B1, B2 and B3) and three spectral properties (spectral radius, trace and Frobenius
norm), which gives us 14 financial crisis indicators of the —-series. Indeed the trace of
the covariance matrix is useless as an indicator because it is constant and equal to the
number N of stock components in the equity index considered. The traces of the weighted
correlation matrices obtained from B1 (volume traded), B2 (market capitalization) and
B3 (financial leverage) are on the other hand perfectly valid indicators which bring their
unique point of view to the study and are therefore very valuable. Indeed, as written in
equations (4), (5) and (6), the weighting is applied to the coefficients of the rolling matrix
B0 and not to the coefficients of A. Therefore the normalization is applied before the
weighting and the sum of the eigenvalues of the weighted correlation matrices, which are
obtained par SVD decomposition of B1, B2 and B3, has no reason to be constant.

When aggregating the indicators of the –-series and of the —-series, we therefore obtain 29
financial crisis indicators overall. At a given date t0, when an investment decision needs to be
made, each of those financial crisis indicators is considered as a expert opinion. When a strategy
has to be defined, the core of our approach is going to be to attempt to find a consensus among
those 29 opinions.

4 Calibration

The daily results provided by our 29 financial crisis indicators are just numbers at the moment.
We need to translate those numbers in terms of financial crisis forecasts. We must define an
in-sample calibration period and recognize patterns in the values taken by the 29 indicators
during that calibration period that are reproducible and that we are going to use later in the
out-of-sample study to make previsions.
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In order to quantitatively define a financial crisis, we introduce at each given date t0 the
notion of maximum draw down (MDD(t0)) at a given time horizon H in the future. We will
choose H at 100 days for the remainder of our study since it’s a commonly used value, both in
the literature and in the industry. We define a financial crisis or market event as the crossing of
a chosen threshold of maximum draw down, which can be for example down to 5% if we want
to consider mild market events, or up to 40%, if our intention is to consider mostly very large
crises. The order of magnitude of the maximum draw down never climbs much higher than 40%
for most indices, not even at the height of the 2008 crisis during the failure of Lehman Brothers.
The choice of a maximum draw down threshold is an important part of the construction of a
successful systematic trading strategy in the framework that we are building. For a given dataset,
the reference asset for which the maximum draw down is computed is the index itself (or an ETF
replicating the index) and the price considered is the last price of the day P0(t0).

MDD(t0) = max
t0ÆtÆ·Æt0+H

{1 ≠

P0(·)

P0(t)
} (9)

Obviously, in the out-of-sample study, the value at a date t0 of MDD(t0) is not known at
t0, we would need knowledge from the future for that. Indeed, we want interpret the value of
our indicators as a probability of crossing a chosen maximum draw down threshold over the
course of the forecast horizon H in the future. In the in-sample, training period of our indi-
cators, we will however match the value of our indicators at a given date t0 with the value of
MDD(t0), computed in advance by using data from the future from the point of view of an ob-
server who exists at the date t0. We will do this in order to precisely learn which are the values
taken by our indicators which correspond to the crossing of a given MDD threshold in the future
within the forecast horizon H. That process is at the heart of the calibration of our 29 indicators.

We must choose two things in the calibration process. Firstly, we decide the size K of the in-
sample calibration period during which our indicators learn how to recognize which are the values
they take that match the largest MDD values. Obviously, the larger the calibration period, the
better in theory, but since our data spans only around 10 years, we must preserve a large enough
out-of-sample period to make previsions and validate the viability of our systematic trading
strategies. It is also necessary that the 2007-2008 financial crisis be included in that calibration
period because the indicators must be confronted at least once to a major crisis in order to learn
its signature and hopefully be able to recognize similar events in advance in the out-of sample
period. Besides all those considerations, the calibration period K must at the very least fit the
rolling window T for a given dataset, which as we explained before in Equation (1) is equal to
1.1 ◊ N , with N the number of stock components present in the dataset. Using those notations,
there are going to K ≠ T usable dates for the training of the indicators and the previsions will
be able to start at the date K + H. Figure 1 summarizes the situation of the calibration period
with the rolling window represented as an orange rectangle.

Figure 1 : Calibration period (red) and rolling window (orange)

In order to give the indicators the chance to have enough usable calibration dates for every
one of our five datasets and keeping in mind that we must try to treat them as equally as possible,
even though they are of very different sizes in terms of the number of stock components that
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they contain, we establish the following rule :

K = max(500, T + 50) (10)

This seems like a reasonable choice. Indeed, Formula (10) guarantees that the indicators will
encounter the 2007-2008 financial crisis for all the datasets, even the smaller ones like the CAC40.
It assures that the training period will not significantly be larger than 2 years (assuming around
250 trading days per year), even for the larger datasets like the SP500 and BE500. Finally, the
indicators are guaranteed at least 50 training dates for all the datasets, even the larger ones,
which is the minimum to guarantee their proper calibration. Using Formula (10), we obtain an
in-sample calibration period of 512 days for Dataset-SP500, 511 days for Dataset-BE500 and 500
days for Dataset-SHSZ300, Dataset-NASDAQ and Dataset-CAC40.

For a given dataset and for each of our 29 financial crisis indicators, we draw the scatter
plot of the maximum draw down at a given date versus the numerical value of the indicator at
the same date. The plots for all the five datasets and the 29 financial crisis indicators of both
the –-series and the —-series are provided in appendix. The points corresponding to the dates
of the in-sample calibration period are in red and the points corresponding to the dates of the
out-of sample prediction period are in blue. The most notable feature that immediately emerges
from observing all those plots is that they are all roughly bell-shaped and, most importantly,
that bell-shaped structure is present both in the calibration period and the prediction period.
The values of the indicator corresponding to the higher values of MDD are the same during the
in-sample training period and the out-of-sample prediction period. That means that it makes
sense to teach the indicators during their calibration period which ones are the values they take
that actually correspond to the highest values of MDD (i.e the financial crises). Those structures
are obviously easier to see when the number of usable dates inside the calibration period is larger
(i.e for the smaller datasets in terms of the number of stock components inside the equity index),
but it is almost always visible nonetheless.

We can interpret that bell-shaped structure from a financial point of view in the following
manner. When the value of an indicator is very small (resp. very high for the indicators based
on R3), it means that the probability of a crisis happening withing the chosen 100 days time
horizon H is very small. On the other hand, when the value of an indicator is very high (resp.
very small for the indicators based on R3), then it means that the market is very likely already
in the midst of a crisis and what the indicators are seeing at the H = 100 days horizon is the
post-crisis recovery. That leaves in the middle a danger zone which corresponds to the values
taken by an indicator which corresponds to the highest values of MDD at the 100 days horizon.
In light of the previous discussion, "calibrating the indicators" therefore means "finding the dan-
ger zone for each indicator " and in order to do this in a quantitative and reproducible manner,
we need to choose the first of the two parameters that define a systematic trading strategy in
our framework: the MDD threshold T . This choice is very important and will have profound
implications for the eventual success of a systematic trading strategy.

By choosing an MDD threshold T , we tell each of the 29 indicators to forget any point below
T in the scatter plot (value vs. MDD) graph drawn during the calibration period and then to
place its danger zone (which is of a fixed width equal to 15% of the total width of the graph,
after having discarded possible outliers) such that the number of points inside it, is maximum.
The choice of T determines whether we decide to design our strategies to attempt to detect in
advance a large number of small crises (we choose in that case a low T around 5% or 10%) or
whether we prefer to bet on the successful forecasts of a small number of large crises (we choose
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in that case a T of 15% or more). We must find the good balance because both cases, large or
small T , present advantages and drawbacks.

If we choose T to be small, then according to the work of Douady and Kornprobst (2017),
there is going to be some false positives (i.e. an indicator forecasts a crisis within its 100 days
horizon of previsions, but nothing actually happens) and some false negatives as well (i.e. an
indicator fails to predict a market event). The relatively low number of false positives for an
individual indicator is clearly an advantage and will give more focus to our systematic trading
strategies. The presence of some false negatives is potentially more dangerous but this may not
be a disaster however, because the market events that we are betting on forecasting in order to
build our strategy are typically small in that case, so even if a few of them are missed, we could
still obtain acceptable results in terms of performance. If on the other hand we choose T quite
high, then there is going to be much more false positives, further increasing the noise in the
signal of an individual indicator, but there is going to be only a small risk that the indicators
will miss a large market event. If we bet on accurately forecasting large financial crises, there
is a lower risk of missing one, however if the indicators still do fail to correctly forecast a large
market event, then in that case we would be instantly ruined.

As an illustration of the process of calibration of the indicators, we consider Dataset-CAC40
and the financial crisis indicator defined by the Hellinger distance between the empirical distri-
bution of the spectrum of the correlation matrix weighted by financial leverage and the reference
distribution R2 (calm market reference). In Figure 2a, we draw the scatter plot (indicator value
vs. MDD), with the MDD represented on the y-axis. The bell-shaped structure is clearly visible,
both for the red dots, which represent the calibration period and the blue dots, which represent
the out-of-sample forecast period. In Figure 2b, we have chosen T = 10% and all the red points
below T are forgotten. The danger zone is represented as the area between the two vertical
red lines and it is chosen automatically by the computer code, which maximizes the number of
remaining red points inside a vertical stripe of width 15% of the total width of the scatter plot.
In that example, the danger zone is defined by values of the indicator roughly between 224 and
238 for the Hellinger distance.

Figure 2a: MDD vs. Hellinger distance between R2 and the distribution of the eigenvalues of
the correlation matrix weighted by financial leverage for Dataset-CAC40
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Figure 2b: T is represented an horizontal orange line (10% in this example), any point below
T is not taken into consideration. The danger zone is represented as the area between the

vertical red lines.

5 Systematic Trading Strategies

The 29 financial crisis indicators, both of the –-series and of the —-series are now properly cal-
ibrated, which means that they each have discovered where their danger zone is located during
their in-sample training period, according to the choice that was made for the value of the MDD
threshold T . Like we have already stated, we view those 29 indicators as expert opinions and
we try to reach consensus among them at a given date t0 in order to make a trading decision.
Following the work of Clemen (1989), our intention is to combine multiple individual forecasts,
provided by our 29 indicators, in order to improve the quality and focus of our previsions and
therefore to increase to chances of success of the systematic trading strategies, which are based
on those previsions. Since it was stated in the work of Douady and Kornprobst (2017) that
one of the main limitations to the predictive power of each individual financial crisis indicator
of either the –-series or the —-series, was the presence of false positives inside the results, our
expectation is that combining the signals of many different indicators will reduce the influence
of those false positives. The strategies that are going to be considered in this study are applied
to a portfolio containing both cash, which earns the riskless Libor rate, and ETF stocks, which
replicates an equity index. At each date t0, according to the aggregated signal produced by our
financial crisis indicators, we can choose to do nothing if the situation is unclear, convert some
cash to shares if the market forecast is good or convert some shares to cash if the risk of a crisis
happening is increasing. There are no market frictions or transaction fees in our modeling and
there are no considerations of liquidity either, since major equity indices ETF (SP500, BE500,
SHSZ300, NASDAQ or CAC40) are extremely liquid securities in all market conditions.

We illustrate our approach with the drawing in Figure 3. At each date t0 of the active trading
period that starts at K + H, we look 100 days in the past and count for each of the 29 financial
crisis indicators the number of times it takes a value which is inside its danger zone. We have
talked about the MDD threshold T in the previous section and we now introduce the second
of the two parameters that define a systematic trading strategy in our framework: the indicator
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sensitivity S . This indicator sensitivity S is a number between 0 and 100 that defines a thresh-
old above which an indicator gives a red flag. For any one of our 29 indicators, if the indicator
takes values inside its danger zone more than S times inside the interval Jt0 ≠ 100, t0 ≠ 1K, then
it produces a red flag at t0, which indicates a higher risk of a financial crisis happening (defined
as the crossing of the threshold T ) during the time period Jt0 + 1, t0 + HK in the future. Like
the choice of T before, the choice of S is a very important part of the eventual success of a
systematic trading strategy based on our financial crisis indicators. Indeed the parameter S

controls the "aggressiveness" of a strategy, which is its tendency to react very quickly to the
first signs of deteriorating market conditions and convert shares to cash immediately or, on the
contrary, its tendency for showing patience and restraint and only act and sell shares when the
signs of an impending crisis in the market are more clear.

If S is chosen to be small (around 50% or 60%), then red flags are easier to achieve and the
strategy is going to be very aggressive and convert the shares to cash at the first sign of danger.
This behavior may be considered prudent in some circumstances, but it will also severely damage
the performance prospects of the strategy because there will often be only cash (which earns very
little) inside the portfolio and we will fail to take advantage of periods of market growth. On the
other hand if S is chosen very high (for example 85% or 90%), then the red flags are going to be
very hard to obtain and the strategy is going to be very patient and keep the shares inside the
portfolio until the signs indicative of an impending crisis become impossible to ignore. Such a
behavior might maximize profit in some cases because the shares are kept for as long as possible,
in particular during the periods of market growth, but the risk is to keep the shares for too long
while their value starts to decline and to have a strategy so apathetic that it follows the ETF
down during a crash and does not convert the shares into cash when it is needed. Like with the
choice of T before, the choice of the indicator sensitivity S is about finding the right balance
between responsiveness (low S ) and apathy (high S ).

Figure 3: Representation of the calibration period (red) and of the computation period at the
date t0 (purple).

We then count the total number of red flags produced by the indicators at the date t0. It
is an integer between 0 and 29 that we call Γ(t0). This number contains the aggregated crisis
forecasting signal of all the indicators of the –-series and of the —-series. Finally we define a set
of discrete rules that define what the strategy is going to do regarding the cash and ETF shares
mix inside the portfolio.

We had initially also pursued an approach where, instead choosing an indicator sensitivity S ,
then a function Γ and finally a set of rules on Γ, we chose a response function f : [0, 2900] ≠æ [0, 1]
that gave the percentage of cash inside the portfolio as a function of the total number of times
the 29 indicators were inside their respective danger zone in the time period Jt0 ≠ 100, t0 ≠ 1K.
This approach did not however prove itself viable as the performances of the resulting active
strategies were very sensitive to the exact form of the graph of the function f chosen empirically
by the operator. This lack of robustness of the approach relying on a response function seemed
unacceptable and moreover it would have invited concerns about over-fitting in our framework.
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The set of discrete rules on Γ are very robust and are chosen once and for all for five datasets
and for the duration of the study. The rules that we choose for this study may still probably be
refined and made more realistic in a real world situation, but they have experimentally proven
their worth for the all datasets and the time periods that we have studied. Dealing with a port-
folio constituted of a mix of cash and ETF shares, the discrete rules on Γ are the following at
the date t0 of the out-of-sample active trading period:

• Γ(t0) = 0 or Γ(t0) = 1: we buy 10% more of the ETF shares on top of those already present
inside the portfolio, unless there is already no more cash inside the portfolio because it has
already been entirely previously converted to ETF shares.

• Γ(t0) œ J2, 4K: we do nothing.

• Γ(t0) > 4: we sell 10% of the ETF shares present inside the portfolio, unless there is already
no more shares inside the portfolio because they have already been entirely previously con-
verted to cash.

Those rules on Γ are designed to filter out the false positives in the forecasts provided by
our financial crisis indicators, which are the main limitation of our framework, as explained in
Douady and Kornprobst (2017). We achieve this goal by combining the opinion of several of
them and try to reach a consensus before selling shares and act on the prevision that a market
downturn is becoming more likely within the given time horizon H = 100 days. The occurrence
of false negative errors on the other hand is rarer in our framework, but we did also design the
rules such that the indicators have to agree among themselves that the risk of a market downturn
is low before triggering the purchase of more shares.

We may now summarize our framework for the construction of systematic trading strategies
based on our financial crisis indicators. Once the rules for Γ have been fixed beforehand for the
whole study, the operator decides which parameters are the best given the dataset being studied
and the market conditions. The skills and experience of the person making the decisions for the
parameters T and S are a very important part of the potential for success of a strategy. We
recall that:

• The operator first chooses a MDD threshold T to calibrate the indicators (i.e. find their
danger zone) over the in-sample calibration period). A high T means that we bet on
accurately forecasting a small number of large market downturns and a low T means that
we bet on forecasting a large number of small market downturns.

• The operator then chooses an indicator sensitivity S . It determines the level of aggres-
siveness of the strategy. A high S means that the red flags are difficult to obtain and
therefore that the strategy is very apathetic. A low S means that the red flags are easier
to obtain and therefore that the strategy is very aggressive ans sells the shares at the first
sign of danger.

Once these choices have been made for a given equity index dataset, the systematic trading
strategy that we have designed is able to decide at every date of the out-of sample period
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what to do regarding the composition of the portfolio constituted of a mix of cash and ETF
shares replicating the index. We are now going to compare the performances of our active
trading strategies to a passive buy-and-hold strategy as well as to random strategies in order
to demonstrate their worth, which is built upon the predictive power of our 29 financial crisis
indicators of both the –-series and the —-series.

6 Numerical Results

We now switch our attention to the application of our systematic trading strategies inside the
framework defined in the previous sections to our five datasets: SP500, BE500, SHSZ300, NAS-
DAQ and CAC40. As usual, we compute the financial crisis indicators on the components of the
index present inside each dataset and the financial instrument that we trade is an ETF share
replicating the equity index.

For each dataset, we will consider three investors:

• A passive investor who hold the portfolio PP . That investor starts with 10.000 shares of
the ETF replicating the index and 10 millions in cash, which earns the riskless monthly
Libor rate. That investor keeps those assets for the duration of the study.

• An active investor who holds the portfolio PA. That investor starts with 10.000 shares of
the index and 10 millions in cash and then chooses a set of parameters (T , S ) in order
to create a systematic trading strategy governing the composition of PA and deciding
automatically what to do according the set of discrete rules that was detailed in the previous
section. We do not consider fractional ETF shares and round the number of shares to the
closest lower integer.

• An active investor who holds a portfolio PR and who starts with 10.000 shares of the
index and 10 millions in cash and adopts a random strategy. At each date, the random
strategy governing a path of PR chooses to buy more shares (unless there is already no
more cash), do nothing or sell some shares (unless there are already no more shares) in a
random fashion, but in such a manner that the proportion of "buy", "do nothing" and "sell"
orders is the same as in PA. Those random strategies are similar in nature to the random
same proportion (RSP) strategies described in Douady and Kornprobst (2017). The role
of the PR paths is to demonstrate that our active strategy PA does bring added value and
(hopefully, as we will discuss below) beats an average of random strategies.

For every decision date in the out-of-sample period, the riskless asset TB is chosen as the one
month U.S Treasury Bond (US0001M) and the cash, if present inside a portfolio, earns this rate
as well. Considering an asset A, which can represent either PP , PA or one path of PR, we define
the following benchmarks, Sharpe ratio and Calmar ratio. We also define the investment ratio
IR and we recall the Maximum Draw Down (MDD), that we have already defined in Equation
(9). Here, we compute the MDD(A) over the entire period of study and not at a 100 days horizon
like when we were calibrating the indicators.

• The investment ratio IR, that is computed for PA only, is simply a measure of the propor-
tion of riskless cash inside the active portfolio. It measures whether the strategy is choosing
to convert the cash into ETF shares or the ETF shares into cash. IR = 1 means we are
fully invested and IR = 0 means the strategy has decided to convert all the ETF shares
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into cash because, according to its parameters, it sees a high risk of a crisis happening
within the 100 days forecast horizon of the financial crisis indicators.

IR =
PA ≠ cash

PA
=

shares

PA
(11)

• To compute the yearly Sharpe ratio, we proceed in the following manner. The Sharpe
ratio measures the quotient of the excess performance with respect to a riskless asset over
the volatility. To achieve the desired highest Sharpe possible, a strategy has to maximize
return while at the same time minimize volatility, which represents risk.

– At every date t of the out-of-sample period, ExcessReturnA(t) = A(t)
A(t≠1) ≠

T B(t≠1)
12 ≠1

– With the notations of Figure 3, we compute the annualized performance, assuming

30 days per month Perf(A) = ( A(S)
A(K+H) )

360
S≠(K+H) ≠ 1

– V ol(A) = stdev(ExcessReturnA).
Ô

12 (Annualized volatility)

Sharpe(A) =
Perf(A) ≠ mean(TB)

V ol
(12)

• We define the yearly Calmar ratio as the quotient of the performance by the maximum
draw down (MDD).

Calmar(A) =
Perf(A)

MDD(A)
(13)

Regarding the set of parameters (T , S ) that we choose, we divide the five equity indices
studied into three groups, detailed below, with similar characteristics. Our intention is to stan-
dardize the choice of T and T and therefore demonstrate that our framework does not suffer
from over-fitting and the selection of ad-hoc parameters that would work only for a specific index
in a particular situation. Indeed the results that will be provided by our successful systematic
trading strategies are robust and able to be generalized to other datasets and many market
regimes.

• The first group contains the BE500, the CAC40 and the SP500. Those are are equity
indices containing stocks belonging to companies from all the sectors of activity in large
mature economies. We choose T = 20 and S = 75. According to the discussion in the
previous sections, it means that we intend to bet on the detection of a small number of large
crises and that we want the strategy to be relatively calm and patient. Indeed, market
events representing a MDD of 20% or more are already very significant and asking the
indicators to return a red flag when they are at least 75% of the time inside their danger
zone in the 100 days preceding a decision makes the red flags relatively hard to achieve
and therefore it makes the strategy less likely to sell the shares too early at the first sign
of danger.

• The second group contains the NASDAQ index only. This equity index contains many
high tech companies, which are often younger and sometimes more prone to volatility in
the prices of their respective shares. We choose T = 15 and S = 80. We therefore decide
to bet on relatively large market event that will however still be more numerous and smaller
than those we had decided to bet on for the large generalist equity indices like the SP500.
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The choice of S reflects our desire to have very patient strategies, that will not panic at
the first sign of danger and wait until the signs of an impending crisis are undeniable to
start converting the ETF shares into cash.

• Finally, the third group is constituted of the SHSZ300 index alone. Like we are going
to see when we will comment the results obtained, building a winning systematic trading
strategy for the Chinese index has been a challenging task. Indeed, the Chinese market has
undergone a lot of profound structural transformations, from being a large emerging market
to being the world’s second largest, during the period of study covered by Dataset-SHSZ300
(June 2006 to March 2016). This inherent instability is reflected in the very composition of
Dataset-SHSZ300, since it contains only 147 of the current 300 components, meaning that
more than half of the companies that are currently part of the index were not present ten
years ago. Because of all those uncertainties creating instability and volatility inside the
SHSZ300 index, we chose T = 10 and S = 70. Our choice is to bet on the detection of
a large number of small crises (MDD threshold = 10%) and to have relatively aggressive
strategies, with an indicator sensitivity of only 70% that will react quickly to signs indicative
of a higher risk of a crisis happening withing the forecast horizon and not wait to too long
to take action in a structurally chaotic financial market.

The results that we obtain for Dataset-BE500 with our systematic trading strategy, defined
by all the parameters chosen as discussed above (T = 20 , S = 75), are presented in Figure 4a,
Figure 4b and Figure 4c. We recall that the rolling window is of 461 days in length and that
the calibration period is 511 days. Over the course of the out-of-sample prediction period, the
active strategy governing PA issued 983 buy orders, 357 stay orders and 556 sell orders. By ex-
amining all the calibration graphs provided in appendix for the 29 indicators of both the –-series
and of the —-series, we notice that most of them have the expected bell-shaped structure, both
the in-sample calibration period (red dots) and the out-of-sample test period (blue dots). This
guarantees a proper calibration of the indicators and therefore the quality of the active strategy
based on their aggregated signals. In Figure 4a, the active portfolio PA does much better than
the passive portfolio PP in terms of Sharpe ratio (increase to 0.43 from 0.27), performance (in-
crease to 8.5% from 5.2%). PA does slightly better than PP in terms of Calmar ratio as well,
but it is less significant (increase to 0.28 from 0.26). This is due to the fact that PA has an
higher MDD over the course of the out-of-sample period than PP . This drawback of the active
strategy results from the fact than whenever IR = 1 (PA is fully invested), if there is drop in the
ETF share prices, PA suffers more locally than PP , which still contains its cash. Excluding the
considerations on the MDD, PA still beats PP on all the other market benchmarks. The graph
of Γ is represented in Figure 4c and has to be studied in concert with the graph of IR in Figure
4a. We notice that the active strategy, with its rules on Γ that we have detailed earlier, correctly
anticipates the the big crises, IR falls to zero at mostly the rights times, but it is a bit too bad
that the strategy decides to sell all the shares too early in 2014, which results in a performance
that does not reach its full potential. We talked a lot about the limitations in our framework
induced by the false positive signals sent by the indicators and combining the signals of 29 of
them to compute the function Γ did help a lot, but there is still room for improvement. In figure
4b, we have represented PA against 50,000 paths of PR. The average Sharpe of the random
strategies is only 0.29, while PA has a Sharpe of 0.43. PA beats 100% of the random paths on
that important benchmark. While the average MDD of the paths of PR is slightly smaller than
the MDD of PA for the reasons we have given just before (the presence of cash in PA does boost
the MDD at some point, unfortunately), the active portfolio PA still beats nearly 69% of the
random paths in terms of Calmar because PA features a better overall performance than most
random paths PR. The examination of the plane area (in green on Figure 4b) created by the
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random paths underlines the fact that the active strategy governing PA takes the right decisions
at the right time, especially in late 2011, but decides to sell the ETF shares too soon in early
2014, which somewhat reduced the overall performance of PA.

The results that we obtain for Dataset-CAC40 (T = 20 , S = 75) are presented in Figure
5a, Figure 5b and Figure 5c. We recall that the rolling window was 41 days in length and that
the calibration period was 500 days. Over the course of the out-of-sample forecast period, the
strategy governing PA has issued 1152 buy orders, 711 stay orders and only 36 sell orders, but
as we are going to discover, those few sell orders were given just at the right time, before a major
drop in price and have made all the difference, making PA on Dataset-CAC40 very successful.
The success of PA is rooted in the excellent calibration of the indicators, as highlighted by the
29 scatter plots provided in appendix. The danger zones were very accurately defined and the
structure of the (MDD vs. Indicator Value) scatter plots is for most indicators very regular,
both in the in-sample and out-of-sample periods. Moreover the small number of assets inside
Dataset-CAC40, resulting in a small rolling window, allowed the indicators the have many usable
calibration points inside the calibration period (the red dots in the scatter plots), which boosted
the accuracy of the determination of the danger zones even more for all the 29 financial crisis
indicators. In Figure 5a, we see that the Sharpe of PA is 0.40, while the Sharpe of PP is only
0.19. While PA has an annualized volatility similar to the one of PP , the overall performance
of PA jumps to 11%, while it was only 6% for PP . Even though PA and PA have a similar
MDD (the MDD of PA is slightly better: 0.31 against 0.32), the Calmar ratio of PA (0.37)
is much better than the Calmar ratio of PP (0.20). We also notice by examining IR that the
active strategy governing PA takes the right decisions at the right time. It does not sell the
ETF shares often, but when it does it is in anticipation of crises and drop in ETF prices that did
happen, especially in 2011 and late 2015. It is also fully invested (TR = 1) at the right times
of market growth, which boosted the performance of PA. This is confirmed by Figure 5c, which
shows the spikes in the value of Γ happening at the right times. When we switch our attention
to Figure 5b which shows PA and 50,000 paths of PR, the success of our active systematic
trading strategy is very impressive. Because the active strategy sold the shares in PA just at
the right moment in anticipation of a significant drop in the CAC40 index in late 2011, probably
a consequence of the the European Debt Crisis, the value of the active portfolio soars above
the random paths. PA beats 100% of the PR paths in terms of Sharpe ratio, and the average
of the Sharpe for the random paths is only 0.19. PA is also less volatile than all the random
paths, even though the volatility of PA at 0.26 is close to the average volatility of PR, which
is 0.28. PA performs better than all the random paths in terms of overall performance and in
terms of Calmar ratio. Even when we examine the MDD, which is usually the weak point of PA

because it may contain no cash at all, while PR does often keep some (we recall that PP always
keep its cash), the success of PA is striking. Indeed, PA has an MDD of 0.31 while the average
of the random paths’ MDD is 0.33 and it beats the PR paths in terms of MDD 99.9% of the time.

The results obtained for Dataset-SP500 (T = 20 , S = 75) are presented in Figure 6a,
Figure 6b and Figure 6c. For this dataset, the rolling window was made of 462 days and the
calibration period was therefore 512 days, according to Formula (10). The active trading strategy
governing PA issued 934 buy orders, 748 stay orders and 162 sell orders. The calibration of the
financial crisis indicators was generally good, as we can see with the graphs in appendix for the
SP500 index and the indicators of both the –-series and the —-series. Therefore, the forecasts
of the indicators were often accurate, which resulted in the right decisions taken at the right
times by the active strategy. Since there were few large drops in the value of the SP500 during
our out-of-sample prediction period, there were few sell orders given by the strategy and the IR
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graph on Figure 6a shows that we are most of time fully invested (i.e no cash left in PA). In the
rare instances when the strategy did decide the sell the ETF shares, those decisions were taken
at the right time, as seen in the graph of Γ in Figure 6c as well, in anticipation of significant
drops in the index, which is good and underlines the predictive power of the aggregated signal
produced by our 29 financial crisis indicators and the added value of the systematic trading
strategy based on them. The performance of PA is 19.3% and beats the performance of PP

which is only 16.6%. PA is slightly less volatile than PP , which again is a good result and the
Sharpe ratio of PA reaches 0.90 while PP had only 0.72 for a Sharpe ratio. As we have seen
with the previous indices, in the case of the SP500 too PA has a slightly higher MDD than PP .
This is due to the fact that PA is most of the time fully invested, while PP still holds its cash.
As a result, the Calmar of PA is similar and only marginally higher than the Calmar of PP .
Switching our attention to Figure 6b, we can compare PA to 50,000 paths of PR. PA beats
the random paths in terms of Sharpe ratio 100% of the time, is less volatile than all the random
paths as well and achieves a better performance 99.97% of the time. Those are very reassuring
results. In terms of MDD, as we expected, PA tends to be a little disappointing and beats the
random paths of PR only 22% of the time. However, since PA performs overall so much better
than the paths of PR, it still manages to beat the random paths 97.18% of the time in terms of
Calmar, which is a remarkable result.

We present the results for Dataset-NASDAQ (T = 15 , S = 80) in Figure 7a, Figure 7b and
Figure 7c. For this dataset, the rolling window was made of 76 days and the calibration period
was therefore 500 days, according to Formula (10). The active trading strategy governing PA

issued 1533 buy orders, 287 stay orders and 36 sell orders. The calibration of the 29 financial
crisis indicators was mostly good, as we can see in appendix for the NASDAQ, with most scatter
plots (MDD vs. Indicator Value) featuring the usual bell-shape. Besides, the structure of the
red dots (in-sample) and blue-dots (out-of-sample) is similar, which validates the possibility of
forecasting the future by studying the past in the case of the Dataset-NASDAQ. The NASDAQ
index was mostly in a pattern of growth from 2009 to 2016, without any large scale market
downturn, therefore our active investment strategy has issued mostly buy and stay orders and
very few sell orders, mostly in the first half of 2009, as we can see on Figure 7a and Figure 7c.
The consequence of this is that PA and PP perform in a similar fashion, with PA still keeping
a clear advantage, because the few sell orders were issued at an appropriate time. Those few sell
orders issued at the right time did not however have a massive positive impact on the quality of
the results provided by PA, like it was the case when considering the CAC40 index. It is a little
disappointing that the active strategy governing PA did not issue sell orders in late 2015 and
early 2016, when a possible larger drop in the value of the NASDAQ becomes a possibility, but
it did not change much the fact that PA and PP perform mostly in a similar fashion because
the out-of-sample forecasting period that we chose did not feature major market events that we
could have accurately predicted and acted upon. The overall performance of PA and PP is
very close, with a slight advantage for PA, essentially explained by the fact that PA was fully
invested (IR = 1) for most of the out-of-sample period, while PP was static and kept its cash,
which earned only the Libor. PA and PP have almost identical volatility as well, which explains
that they also have similar Sharpe ratios: 0.88 for PA and 0.84 for PP . PP has a slightly lower
MDD than PA because of the cash it contains which acts as a stabilizer, and that explains the
slight advantage in terms of MDD that PP holds over PA, while PA holds a slight performance
advantage as we have explained. The study of the random paths of PR and their comparison to
PA confirms our analysis that PA did not get a chance, for this index over this time period, to
predict many crises because there were indeed few to predict. The active strategy still manages
to do better than the random paths in a significant and reproducible manner, proving the validity
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of our approach. Indeed, PA beats the random paths 99.9% of the time in terms of Sharpe ratio,
has an overall performance better than the PR paths in 82% of the cases and achieves a better
Calmar ratio than the PR paths more than 66% of the time.

Finally, the results obtained for Dataset-SHSZ300 (T = 10 , S = 70) are presented in Figure
8a, Figure 8b and Figure 8c. For this dataset, the rolling window was made of 162 days and
the calibration period was therefore 500 days. The active trading strategy governing PA issued
1063 buy orders, 484 stay orders and 228 sell orders. Even though PA manages to produce
fairly good results over the whole period of the out-of-sample forecasting period, the study of
the graphs in Figure 8a and the graph of Γ in Figure 8c reveals that the quality of the financial
crisis forecasts provided by our 29 financial crisis indicators can probably be made better in
the case of the SHSZ300 index. Indeed, the large drop in the value of the index in 2015 is not
anticipated and the times when IR = 0 are not always perfectly well in sync with the times
when the SHSZ300 index experiences a drop in value. This relatively poor performance of our
financial crisis indicators when applied to the Chinese index, in comparison to their excellent
behavior when applied to the other four equity indices of this study, takes its roots in the poor
quality of the calibration of the indicators, as we can see in the appendix where the scatter plots
(MDD vs. Indicator value) are presented for all our 29 financial crisis indicators of both the
–-series and the —-series when applied to the SHSZ300 index. Indeed, many of those scatter
plots do not feature the usual bell shape, as we have discussed before, and the structure of
the in-sample graph (red dots) is not stable and preserved into the out-of-sample period (blue
dots), thus rendering the calibration useless and the determination of the danger zone of many
of the indicators meaningless for forecasting purposes. Fortunately, some of our financial crisis
indicators are properly calibrated, but many are not and extreme cases of deformities in the
scatter plots for our financial crisis indicators applied to the SHSZ300 index can be found, for
example, in the –-series, graph (n) (reference : R3; matrix: correlation weighted by market
capitalization) or in the –-series, graph (h) (trace of the correlation matrix weighted by market
capitalization). In those instances the scatter plot is almost bi-modal, with the high values
of MDD in the in-sample calibration period corresponding to completely different values of the
indicator than in the out-of-sample forecasting period. Of course, when there is little stability for
a given index in the behavior of our indicators over time, then accurately forecasting the future
by looking at the past becomes an impossibility. Regardless of the difficulties encountered in the
calibration of several of our financial crisis indicators, PA in the case of the SHSZ300 index still
manages to produce fairly good results. That is the advantage of using the aggregated signal
coming from our 29 financial crisis indicators. Even though a large amount of them might in some
cases fail to be calibrated properly, enough remain useful to provide the investor holding PA

with enough accurate previsions to beat PP and most the random paths PR. Indeed the Sharpe
of PA still reaches 0.49 while PP only had a Sharpe of 0.29, PA is slightly less volatile than PP

and the performance of PA (15%) beats the performance of PP (10%). While the MDD of PA

is marginally higher than the MDD of PP , the Calmar ratio of PA (0.32) still shows a significant
improvement with respect to the Calmar ratio of PP (0.23). When considering random paths
of PR, as shown in Figure 8b, the results that we obtain are very reassuring and attest to the
resilience of our framework that is still able to produce useful active trading strategies, even when
many of the financial crisis indicators upon which they rely are giving flawed signals. Indeed, PA

beats the PR paths 99.9% of the time in terms of Sharpe ratio and volatility and 99.5% of the
time in terms of performance. The MDD of the random paths are usually better than the MDD
of PA, but the advantage that PA hold over the 50,000 random paths in terms of performance
still permit our active strategy to beat the PR paths 97.2% of the time in terms of Calmar ratio.
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7 Conclusion

As a conclusion, we would like first to underline the excellent results provided by our systematic
trading strategies based on the forecasting power of our 29 financial crisis indicators, both of the
–-series and of the —-series. For every one of the five datasets that we have built by considering
a major equity index and its respective stock components (BE500, CAC40, SP500, NASDAQ,
SHSZ300), our systematic trading strategies are always able to beat in a clear and reproducible
fashion a passive buy-and-hold strategy. Our active systematic investment strategy is also able
to beat random strategies, which feature the same proportion of ’buy’, ’sell’ and ’stay’ orders, in
an overwhelming majority of the cases.

Indeed, for the equity indices that we have considered in this study, the active portfolio PA

beats the passive portfolio PP and the random paths PR in terms of Sharpe ratio, performance,
volatility and Calmar ratio. Only in terms of maximum-draw-dawn do the passive and random
strategies sometimes give better results than the active one but this is only because, by design
in this study, PP always contains some cash and a PR path usually contains cash as well, while
PA may be fully invested most of the time. Only in the case of the Chinese SHSZ300 index, did
some of our financial crisis indicators provide flawed predictions, regardless of the skills deployed
by the operator in choosing the right parameters T and S . That may have been due to the
poor quality of the historical data on the Chinese market or the fact, which definitely intro-
duced survivorship bias in our study, that we had to consider less than half of the current 300
components because of the profound transformations of the Chinese market over the last 10 years.

To summarize our method, we start by establishing a simple rule for the length of the rolling
window (Formula (1)) for all of our five datasets and we proceed to establishing another simple
rule for the length of the calibration period (Formula (10)). We then choose two parameters
that govern the behavior of a systematic trading strategy. The first parameter is the MDD
Threshold T , the value of which determines whether we wish to bet on accurately forecasting
a large number of small crises or a small number of large crises. The second parameter, the
Indicator Sensitivity S is then chosen and its value determines the level of aggressiveness of a
systematic trading strategy. Low value of S will produce very aggressive strategies that will
start converting the ETF shares into cash inside the active portfolio at the first sign of danger,
because the red flags provided by the indicators will be easier to obtain. Higher values of S will
make a systematic trading strategy more calm and patient because the red flags provided by the
financial crisis indicators will be harder to achieve and the strategy will therefore wait to take
action and start converting the shares into cash until the risk of a crisis happening within the
100 days forecasting horizon of our financial crisis indicators becomes impossible to ignore.

The choice of the two parameters T and S is robust and once an operator has chosen a value
for T and S , using his or her experience and knowledge of the equity index being considered,
then those parameters may be used for similar equity indices over large periods of time, excluding
any possibility of over-fitting our model. In other words, it is the skill of the operator setting-up
those strategies, not luck, which is the determining factor that makes the difference between a
winning and a failing active trading strategy.

Future developments of this work could include designing a real-time system of ratings in
order to give more weight in the decision and the computation of Γ at a given time to the
indicators, among the 29 we have built, that have had the most accurate forecasts in a given
past period. Indeed, in our work in its present form, all those expert’s opinions carry the same
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weight, regardless of the past accuracy of their prediction and their respective proportions of false
positive (more rarely false negative) errors regarding financial crisis prediction. In a future work,
one could envision giving all those indicators a rating on a given scale and then modulate in a
strategy’s decision process the importance of each indicator with respect to its rating. We also
plan to incorporate transaction costs and market frictions in our study. Indeed, those transaction
costs are especially important for smaller transactions and providing a proper modeling of their
influence is important to give our trading strategies a better chance of being useful regardless of
the size of the portfolio that they are being applied to. Concerning the question of scalability
again, we also plan to take into account the impact that the investors have on the market when
they execute sell or buy orders. Even though they are price takers and not market makers, their
actions do have a small influence on the order book and may in particular create slippage, no
matter how small the orders are in comparison to the size of the market. That effect will in the
future be integrated to our approach in order to make it fully scalable.
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Appendices

Dataset-SP500

A UN ; AA UN ; AAP UN ; AAPL UW ; ABC UN ; ABT UN ; ACN UN ; ADBE UW ; ADM UN ;
ADS UN ; ADSK UW ; AEE UN ; AEP UN ; AES UN ; AET UN ; AFL UN ; AGN UN ; AIG UN ;
AIV UN ; AIZ UN ; AKAM UW ; ALL UN ; ALXN UW ; AMAT UW ; AME UN ; AMG UN ;
AMGN UW ; AMP UN ; AMT UN ; AMZN UW ; AN UN ; ANTM UN ; AON UN ; APA UN ;
APC UN ; APD UN ; APH UN ; ARG UN ; ATVI UW ; AVB UN ; AVY UN ; AXP UN ; AZO UN ;
BA UN ; BAC UN ; BAX UN ; BBBY UW ; BBT UN ; BBY UN ; BCR UN ; BDX UN ; BEN UN ;
BF/B UN ; BHI UN ; BIIB UW ; BK UN ; BLK UN ; BLL UN ; BMY UN ; BRK/B UN ; BSX UN ;
BWA UN ; BXP UN ; C UN ; CAG UN ; CAH UN ; CAM UN ; CAT UN ; CB UN ; CBG UN ;
CBS UN ; CCE UN ; CCI UN ; CCL UN ; CELG UW ; CERN UW ; CF UN ; CHD UN ; CHK UN ;
CHRW UW ; CI UN ; CINF UW ; CL UN ; CLX UN ; CMA UN ; CMCSA UW ; CMG UN ;
CMI UN ; CMS UN ; CNP UN ; COF UN ; COG UN ; COH UN ; COL UN ; COP UN ; COST UW ;
CPB UN ; CRM UN ; CSCO UW ; CTAS UW ; CTL UN ; CTSH UW ; CTXS UW ; CVC UN ;
CVS UN ; CVX UN ; D UN ; DD UN ; DE UN ; DGX UN ; DHI UN ; DHR UN ; DIS UN ;
DISCA UW ; DLTR UW ; DNB UN ; DO UN ; DOV UN ; DOW UN ; DRI UN ; DTE UN ;
DUK UN ; DVA UN ; DVN UN ; EA UW ; EBAY UW ; ECL UN ; ED UN ; EFX UN ; EIX UN ;
EL UN ; EMC UN ; EMN UN ; EMR UN ; ENDP UW ; EOG UN ; EQIX UW ; EQR UN ;
EQT UN ; ES UN ; ESRX UW ; ESS UN ; ESV UN ; ETN UN ; ETR UN ; EW UN ; EXC UN ;
EXPD UW ; EXPE UW ; EXR UN ; F UN ; FAST UW ; FCX UN ; FDX UN ; FE UN ;
FFIV UW ; FIS UN ; FISV UW ; FITB UW ; FLIR UW ; FLR UN ; FLS UN ; FMC UN ; FRT UN ;
FTI UN ; GAS UN ; GD UN ; GE UN ; GILD UW ; GIS UN ; GLW UN ; GME UN ; GOOGL UW ;
GPC UN ; GPS UN ; GRMN UW ; GS UN ; GWW UN ; HAL UN ; HAR UN ; HBAN UW ;
HCN UN ; HCP UN ; HD UN ; HES UN ; HIG UN ; HOG UN ; HON UN ; HOT UN ; HP UN ;
HPQ UN ; HRB UN ; HRL UN ; HRS UN ; HSIC UW ; HST UN ; HSY UN ; HUM UN ; IBM UN ;
ICE UN ; IFF UN ; ILMN UW ; INTC UW ; INTU UW ; IP UN ; IPG UN ; IR UN ; IRM UN ;
ISRG UW ; ITW UN ; IVZ UN ; JBHT UW ; JCI UN ; JEC UN ; JNJ UN ; JPM UN ; JWN UN ;
K UN ; KEY UN ; KIM UN ; KLAC UW ; KMB UN ; KMX UN ; KO UN ; KR UN ; KSS UN ;
KSU UN ; L UN ; LB UN ; LEG UN ; LEN UN ; LH UN ; LLL UN ; LLTC UW ; LLY UN ; LM UN ;
LMT UN ; LNC UN ; LOW UN ; LRCX UW ; LUK UN ; LUV UN ; M UN ; MA UN ; MAC UN ;
MAS UN ; MCD UN ; MCHP UW ; MCK UN ; MCO UN ; MDT UN ; MET UN ; MHFI UN ;
MHK UN ; MKC UN ; MLM UN ; MMC UN ; MMM UN ; MNST UW ; MO UN ; MON UN ;
MOS UN ; MRK UN ; MRO UN ; MS UN ; MSFT UW ; MSI UN ; MTB UN ; MUR UN ; NBL UN ;
NDAQ UW ; NEE UN ; NEM UN ; NFLX UW ; NFX UN ; NI UN ; NKE UN ; NOC UN ; NOV UN ;
NRG UN ; NSC UN ; NTAP UW ; NTRS UW ; NUE UN ; NVDA UW ; NWL UN ; O UN ; OI UN ;
OKE UN ; OMC UN ; ORLY UW ; OXY UN ; PAYX UW ; PBCT UW ; PBI UN ; PCAR UW ;
PCG UN ; PCLN UW ; PDCO UW ; PEG UN ; PEP UN ; PFE UN ; PFG UN ; PG UN ;
PGR UN ; PH UN ; PHM UN ; PKI UN ; PLD UN ; PNC UN ; PNR UN ; PNW UN ; POM UN ;
PPG UN ; PPL UN ; PRU UN ; PSA UN ; PVH UN ; PWR UN ; PX UN ; PXD UN ;
QCOM UW ; R UN ; RAI UN ; RCL UN ; REGN UW ; RF UN ; RHI UN ; RIG UN ; RL UN ;
ROK UN ; ROP UN ; ROST UW ; RRC UN ; RSG UN ; RTN UN ; SBUX UW ; SCG UN ;
SEE UN ; SHW UN ; SIG UN ; SJM UN ; SLB UN ; SLG UN ; SNA UN ; SNDK UW ; SO UN ;
SPG UN ; SPLS UW ; SRCL UW ; SRE UN ; STI UN ; STJ UN ; STT UN ; STZ UN ; SWK UN ;
SWKS UW ; SWN UN ; SYK UN ; SYMC UW ; SYY UN ; T UN ; TAP UN ; TE UN ; TGNA UN ;
TGT UN ; THC UN ; TIF UN ; TJX UN ; TMK UN ; TMO UN ; TROW UW ; TRV UN ;
TSCO UW ; TSN UN ; TSO UN ; TSS UN ; TWX UN ; TXT UN ; TYC UN ; UDR UN ; UHS UN ;
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UNH UN ; UNM UN ; UNP UN ; UPS UN ; URBN UW ; URI UN ; USB UN ; UTX UN ; VAR UN ;
VFC UN ; VLO UN ; VMC UN ; VNO UN ; VRSN UW ; VRTX UW ; VTR UN ; VZ UN ; WAT UN ;
WEC UN ; WFC UN ; WFM UW ; WHR UN ; WM UN ; WMB UN ; WMT UN ; WY UN ;
WYNN UW ; XEC UN ; XEL UN ; XL UN ; XLNX UW ; XOM UN ; XRAY UW ; XRX UN ;
YHOO UW ; YUM UN ; ZBH UN ; ZION UW

Dataset-BE500

A2A IM ; AAL LN ; AALB NA ; ABBN VX ; ABE SM ; ABF LN ; ABI BB ; AC FP ; ACA FP ;
ACS SM ; ADEN VX ; ADM LN ; ADN LN ; ADS GR ; AGK LN ; AGN NA ; AGS BB ; AH NA ;
AHT LN ; AI FP ; AIR FP ; AKE FP ; AKZA NA ; ALFA SS ; ALO FP ; ALU FP ; ALV GR ;
AMEAS FH ; ANA SM ; ANDR AV ; ARM LN ; ASC LN ; ASML NA ; ASSAB SS ; ATCOA SS ;
ATL IM ; ATLN VX ; ATO FP ; AV/ LN ; AXFO SS ; AZN LN ; BA/ LN ; BAB LN ; BALDB SS ;
BALN VX ; BARC LN ; BAS GR ; BATS LN ; BAYN GR ; BBVA SM ; BDEV LN ; BEI GR ;
BG LN ; BILL SS ; BKG LN ; BKIR ID ; BKT SM ; BLND LN ; BMED IM ; BMW GR ; BN FP ;
BNP FP ; BNZL LN ; BOK LN ; BOKA NA ; BOL FP ; BOL SS ; BOSS GR ; BP LN ; BRBY LN ;
BT/A LN ; BTG LN ; BWY LN ; CA FP ; CAP FP ; CARLB DC ; CBK GR ; CFR VX ; CLN VX ;
CLS1 GR ; CNA LN ; CNP FP ; CO FP ; COB LN ; COLOB DC ; COLR BB ; CON GR ; CPG LN ;
CPI LN ; CPR IM ; CRDA LN ; CRH ID ; CS FP ; CSGN VX ; CWC LN ; DAI GR ;
DANSKE DC ; DB1 GR ; DBK GR ; DCC LN ; DEC FP ; DELB BB ; DG FP ; DGE LN ; DLG IM ;
DLN LN ; DMGT LN ; DNB NO ; DPW GR ; DSM NA ; DSV DC ; DSY FP ; DTE GR ;
DUFN SW ; DWNI GR ; EBS AV ; EDF FP ; EDP PL ; EI FP ; ELE SM ; ELI1V FH ;
ELUXB SS ; EMG LN ; EN FP ; ENEL IM ; ENG SM ; ENGI FP ; ENI IM ; EO FP ; EOAN GR ;
ERICB SS ; ETL FP ; EZJ LN ; FER SM ; FGR FP ; FME GR ; FNC IM ; FP FP ; FR FP ;
FRA GR ; FRE GR ; FUM1V FH ; G IM ; G1A GR ; GAM SM ; GAS SM ; GBLB BB ;
GEBN VX ; GEN DC ; GETIB SS ; GFS LN ; GKN LN ; GLB ID ; GLE FP ; GNK LN ; GPOR LN ;
GSK LN ; GTO NA ; HAV FP ; HEI GR ; HEIA NA ; HEIO NA ; HER IM ; HEXAB SS ; HGG LN ;
HLMA LN ; HMB SS ; HMSO LN ; HNR1 GR ; HO FP ; HOT GR ; HSBA LN ; HTO GA ;
HUH1V FH ; HUSQB SS ; HWDN LN ; IAG LN ; IAP LN ; IBE SM ; ICA SS ; IFX GR ; IGG LN ;
IHG LN ; III LN ; IMB LN ; IMI LN ; INCH LN ; INDUA SS ; INF LN ; ING FP ; INTU LN ;
INVEB SS ; ISAT LN ; ISP IM ; IT IM ; ITRK LN ; ITV LN ; ITX SM ; JD/ LN ; JMAT LN ;
JMT PL ; JYSK DC ; KBC BB ; KER FP ; KESBV FH ; KGF LN ; KINVB SS ; KN FP ;
KNEBV FH ; KNIN VX ; KPN NA ; KSP ID ; KU2 GR ; KYG ID ; LAND LN ; LGEN LN ;
LHA GR ; LHN VX ; LI FP ; LIN GR ; LLOY LN ; LONN VX ; LR FP ; LSE LN ; LUN DC ;
LUPE SS ; LUX IM ; LXS GR ; MAP SM ; MB IM ; MC FP ; MCRO LN ; MEDAA SS ; MEO GR ;
MEO1V FH ; MGGT LN ; MHG NO ; MKS LN ; ML FP ; MMB FP ; MRK GR ; MRW LN ;
MS IM ; MT NA ; MTX GR ; MUV2 GR ; NCCB SS ; NDA SS ; NESN VX ; NESTE FH ;
NG LN ; NHY NO ; NIBEB SS ; NOKIA FH ; NOS PL ; NOVN VX ; NOVOB DC ; NRE1V FH ;
NXT LN ; NZYMB DC ; OERL SW ; OML LN ; OMV AV ; OR FP ; ORA FP ; ORK NO ; ORP FP ;
PFC LN ; PFG LN ; PHIA NA ; PLT IM ; PMI IM ; PNN LN ; POM FP ; POP SM ; PPB ID ;
PROX BB ; PRU LN ; PSM GR ; PSN LN ; PSON LN ; PUB FP ; RAND NA ; RB/ LN ; RBI AV ;
RBS LN ; RCO FP ; RDSA LN ; REC IM ; REE SM ; REL LN ; REN NA ; REP SM ; REX LN ;
RGU LN ; RI FP ; RIO LN ; RMV LN ; RNO FP ; ROG VX ; RPC LN ; RR/ LN ; RRS LN ;
RSA LN ; RTO LN ; RWE GR ; RYA ID ; SAABB SS ; SAB LN ; SAB SM ; SAF FP ;
SAMAS FH ; SAN FP ; SAN SM ; SAND SS ; SAP GR ; SBMO NA ; SBRY LN ; SCAB SS ;
SCHA NO ; SCHP VX ; SCMN VX ; SCR FP ; SDF GR ; SDR LN ; SEBA SS ; SECUB SS ;
SGE LN ; SGO FP ; SGRO LN ; SHB LN ; SHBA SS ; SHP LN ; SIE GR ; SKAB SS ; SKFB SS ;
SKY LN ; SLHN VX ; SMDS LN ; SMIN LN ; SN LN ; SNH GR ; SOLB BB ; SOON VX ; SPM IM ;
SPR GR ; SPSN SW ; SREN VX ; SRG IM ; SSE LN ; STAN LN ; STERV FH ; STJ LN ;
STL NO ; STM IM ; SU FP ; SVT LN ; SW FP ; SWEDA SS ; SWMA SS ; SYNN VX ; SZU GR ;
TATE LN ; TDC DC ; TEC FP ; TEF SM ; TEL NO ; TEL2B SS ; TEMN SW ; TEN IM ;
TIT IM ; TKA AV ; TKA GR ; TL5 SM ; TLSN SS ; TNET BB ; TPK LN ; TRELB SS ; TRN IM ;
TRYG DC ; TSCO LN ; TW/ LN ; UBI IM ; UBM LN ; UBSG VX ; UCB BB ; UCG IM ; UG FP ;
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UHR VX ; ULVR LN ; UMI BB ; UPM1V FH ; US IM ; UTDI GR ; UU/ LN ; VER AV ; VIE FP ;
VIG AV ; VIV FP ; VOD LN ; VOE AV ; VOLVB SS ; VOW GR ; VPK NA ; VWS DC ; WCH GR ;
WDH DC ; WDI GR ; WG/ LN ; WKL NA ; WMH LN ; WOS LN ; WPP LN ; WRT1V FH ;
WTB LN ; YAR NO ; ZC FP ; ZOT SM ; ZURN VX

Dataset-SHSZ-CSI300

000001 CH ; 000002 CH ; 000009 CH ; 000027 CH ; 000039 CH ; 000046 CH ; 000060 CH ; 000061 CH ;
000063 CH ; 000069 CH ; 000100 CH ; 000157 CH ; 000400 CH ; 000402 CH ; 000413 CH ; 000415 CH ;
000423 CH ; 000425 CH ; 000503 CH ; 000538 CH ; 000539 CH ; 000540 CH ; 000559 CH ; 000568 CH ;
000581 CH ; 000598 CH ; 000625 CH ; 000629 CH ; 000651 CH ; 000686 CH ; 000709 CH ; 000712 CH ;
000725 CH ; 000728 CH ; 000729 CH ; 000738 CH ; 000768 CH ; 000778 CH ; 000792 CH ; 000793 CH ;
000800 CH ; 000825 CH ; 000826 CH ; 000858 CH ; 000876 CH ; 000883 CH ; 000898 CH ; 000917 CH ;
000937 CH ; 000983 CH ; 000999 CH ; 002007 CH ; 002008 CH ; 002024 CH ; 002038 CH ; 600000 CH ;
600005 CH ; 600008 CH ; 600009 CH ; 600010 CH ; 600011 CH ; 600015 CH ; 600016 CH ; 600019 CH ;
600021 CH ; 600028 CH ; 600029 CH ; 600030 CH ; 600031 CH ; 600036 CH ; 600038 CH ; 600050 CH ;
600060 CH ; 600066 CH ; 600068 CH ; 600085 CH ; 600089 CH ; 600100 CH ; 600104 CH ; 600109 CH ;
600111 CH ; 600115 CH ; 600118 CH ; 600150 CH ; 600157 CH ; 600166 CH ; 600170 CH ;
600177 CH ; 600188 CH ; 600196 CH ; 600208 CH ; 600221 CH ; 600252 CH ; 600256 CH ; 600271 CH ;
600276 CH ; 600309 CH ; 600317 CH ; 600332 CH ; 600340 CH ; 600350 CH ; 600352 CH ; 600362 CH ;
600373 CH ; 600398 CH ; 600406 CH ; 600415 CH ; 600485 CH ; 600489 CH ; 600518 CH ; 600519 CH ;
600535 CH ; 600547 CH ; 600549 CH ; 600570 CH ; 600578 CH ; 600583 CH ; 600585 CH ; 600588 CH ;
600600 CH ; 600642 CH ; 600648 CH ; 600660 CH ; 600663 CH ; 600674 CH ; 600688 CH ; 600690 CH ;
600717 CH ; 600718 CH ; 600739 CH ; 600741 CH ; 600783 CH ; 600795 CH ; 600804 CH ; 600820 CH ;
600827 CH ; 600837 CH ; 600839 CH ; 600863 CH ; 600867 CH ; 600873 CH ; 600875 CH ; 600886 CH ;
600887 CH ; 600895 CH ; 601607 CH ; 601988 CH

Dataset-NASDAQ

AAPL UW ; ADBE UW ; ADSK UW ; AKAM UW ; ALXN UW ; AMAT UW ; AMGN UW ;
AMZN UW ; ATVI UW ; BBBY UW ; BIDU UW ; BIIB UW ; BMRN UW ; CELG UW ;
CERN UW ; CHKP UW ; CMCSA UW ; COST UW ; CSCO UW ; CTRP UW ; CTSH UW ;
CTXS UW ; DISCA UW ; DISH UW ; DLTR UW ; EA UW ; EBAY UW ; ENDP UW ; ESRX UW ;
EXPE UW ; FAST UW ; FISV UW ; GILD UW ; GOOGL UW ; HSIC UW ; ILMN UW ;
INCY UW ; INTC UW ; INTU UW ; ISRG UW ; LBTYA UW ; LBTYK UW ; LLTC UW ;
LRCX UW ; MNST UW ; MSFT UW ; NFLX UW ; NTAP UW ; NTES UW ; NVDA UW ;
ORLY UW ; PAYX UW ; PCAR UW ; PCLN UW ; QCOM UW ; QVCA UW ; REGN UW ;
ROST UW ; SBAC UW ; SBUX UW ; SIRI UW ; SRCL UW ; SWKS UW ; SYMC UW ; TSCO UW ;
VRTX UW ; WFM UW ; XLNX UW ; YHOO UW

Dataset-CAC40

AC FP ; ACA FP ; AI FP ; AIR FP ; ALO FP ; BN FP ; BNP FP ; CA FP ; CAP FP ; CS FP ;
DG FP ; EI FP ; EN FP ; ENGI FP ; FP FP ; FR FP ; GLE FP ; KER FP ; LI FP ; LR FP ;
MC FP ; ML FP ; MT NA ; OR FP ; ORA FP ; PUB FP ; RI FP ; RNO FP ; SAF FP ; SAN FP ;
SGO FP ; SOLB BB ; SU FP ; TEC FP ; UG FP ; VIE FP ; VIV FP
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(a) R1covar (b) R1correl (c) R1correl-volume

(d) R1correl-mcap (e) R1correl-leverage (f) R2covar

(g) R2correl (h) R2correl-volume (i) R2correl-mcap

(j) R2correl-leverage (k) R3covar (l) R3correl

(m) R3correl-volume (n) R3correl-mcap (o) R3correl-leverage

BE500: Indicators of the –-series. Red: in-sample ; Blue: out-of-sample
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(a) rspec-covar (b) rspec-correl (c) rspec-correl-volume

(d) rspec-correl-mcap (e) rspec-correl-leverage (f) trace-covar

(g) trace-correl-volume (h) trace-correl-mcap (i) trace-correl-leverage

(j) froben-covar (k) froben-correl (l) froben-correl-volume

(m) froben-correl-mcap (n) froben-correl-leverage

BE500: Indicators of the —-series. Red: in-sample ; Blue: out-of-sample
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(a) R1covar (b) R1correl (c) R1correl-volume

(d) R1correl-mcap (e) R1correl-leverage (f) R2covar

(g) R2correl (h) R2correl-volume (i) R2correl-mcap

(j) R2correl-leverage (k) R3covar (l) R3correl

(m) R3correl-volume (n) R3correl-mcap (o) R3correl-leverage

CAC40: Indicators of the –-series. Red: in-sample ; Blue: out-of-sample
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(a) rspec-covar (b) rspec-correl (c) rspec-correl-volume

(d) rspec-correl-mcap (e) rspec-correl-leverage (f) trace-covar

(g) trace-correl-volume (h) trace-correl-mcap (i) trace-correl-leverage

(j) froben-covar (k) froben-correl (l) froben-correl-volume

(m) froben-correl-mcap (n) froben-correl-leverage

CAC40: Indicators of the —-series. Red: in-sample ; Blue: out-of-sample
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(a) R1covar (b) R1correl (c) R1correl-volume

(d) R1correl-mcap (e) R1correl-leverage (f) R2covar

(g) R2correl (h) R2correl-volume (i) R2correl-mcap

(j) R2correl-leverage (k) R3covar (l) R3correl

(m) R3correl-volume (n) R3correl-mcap (o) R3correl-leverage

SP500: Indicators of the –-series. Red: in-sample ; Blue: out-of-sample
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(a) rspec-covar (b) rspec-correl (c) rspec-correl-volume

(d) rspec-correl-mcap (e) rspec-correl-leverage (f) trace-covar

(g) trace-correl-volume (h) trace-correl-mcap (i) trace-correl-leverage

(j) froben-covar (k) froben-correl (l) froben-correl-volume

(m) froben-correl-mcap (n) froben-correl-leverage

SP500: Indicators of the —-series. Red: in-sample ; Blue: out-of-sample
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(a) R1covar (b) R1correl (c) R1correl-volume

(d) R1correl-mcap (e) R1correl-leverage (f) R2covar

(g) R2correl (h) R2correl-volume (i) R2correl-mcap

(j) R2correl-leverage (k) R3covar (l) R3correl

(m) R3correl-volume (n) R3correl-mcap (o) R3correl-leverage

NASDAQ: Indicators of the –-series. Red: in-sample ; Blue: out-of-sample

47



(a) rspec-covar (b) rspec-correl (c) rspec-correl-volume

(d) rspec-correl-mcap (e) rspec-correl-leverage (f) trace-covar

(g) trace-correl-volume (h) trace-correl-mcap (i) trace-correl-leverage

(j) froben-covar (k) froben-correl (l) froben-correl-volume

(m) froben-correl-mcap (n) froben-correl-leverage

NASDAQ: Indicators of the —-series. Red: in-sample ; Blue: out-of-sample
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(a) R1covar (b) R1correl (c) R1correl-volume

(d) R1correl-mcap (e) R1correl-leverage (f) R2covar

(g) R2correl (h) R2correl-volume (i) R2correl-mcap

(j) R2correl-leverage (k) R3covar (l) R3correl

(m) R3correl-volume (n) R3correl-mcap (o) R3correl-leverage

SHSZ300: Indicators of the –-series. Red: in-sample ; Blue: out-of-sample
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(a) rspec-covar (b) rspec-correl (c) rspec-correl-volume

(d) rspec-correl-mcap (e) rspec-correl-leverage (f) trace-covar

(g) trace-correl-volume (h) trace-correl-mcap (i) trace-correl-leverage

(j) froben-covar (k) froben-correl (l) froben-correl-volume

(m) froben-correl-mcap (n) froben-correl-leverage

SHSZ300: Indicators of the —-series. Red: in-sample ; Blue: out-of-sample
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Stochastic Evolution of Distributions - Applications to

CDS indices
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Abstract: We use mixture of percentile function to model credit spread evolution, which

allows to obtain a flexible description of credit index and their components at the same

time. We show regularity results in order to extend mixture percentile to the dynamic case.

We characterise the stochastic di↵erential equation of the flow of cumulative distribution

function and we link it with the ordered list of the components of the credit index. The

main application is to introduce a functional version of Bollinger bands. The crossing of

bands by the spread is associated with a trading signal. Finally, we show the richness of the

signals produced by functional Bollinger bands compared with standard one with a practical

example.

1 Introduction

The modelling of both market indices and their components is an open question
in finance. Notably, there have appeared many relevant papers (e.g. [15], [16])
focusing on the global evolution of a market and the assets composing it. However,
this analysis is generally applied to the class of stock assets but that cannot be
extended directly to other classes and mainly to credit risk market. The aim of
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this paper is to fill this gap proposing a model to describe the evolution of a credit
default swap (CDS) index and their components in a parsimonious but flexible way.
One of the most traded CDS index is the iTraxx Europe index composed of the
most liquid 125 CDS referencing European investment grade credits. A CDS is an
agreement that the seller of the CDS insures the buyer against a loan default, the
word swap indicates that the buyer pays regular premium payments, called spread,
to the seller. These spreads are the underlying in credit risk market, since market
quotes are usually expressed in terms of spread rather than bond price, in order to
ease the comparison of products. As a consequence the index is a synthetic asset, in
the sense that it cannot be reproduced using a static portfolio, for more details see
e.g. section 2.1 in [5]. Moreover, the spreads exhibit special features due to their
construction and the rules used to select the issuers.

Motivated by those issues we introduce a new, flexible and parsimonious represen-
tation of the evolution of credit indices and their components. The basic idea is to
seize some of the features of credit risk market transforming them from drawback to
advantage. Mainly, the specific rules used to select the issuers of the CDS composing
the index leads us to assume the interchangeability of the CDS. As a consequence,
we will set the issuers aside and rearrange at all time the CDS list by increasing
spread. Moreover, the very large number of components (i.e. 125) of CDS indices
justifies to consider, for all fixed times, the list of the CDS as a measure on R

+. As-
suming moreover that the measure is renormalised, that is considering probability
measures, the mean is linked to the index. Of course, many approaches are possible
and studied in literature, in particular we can use the chaos decomposition as in [12]
and [7]. The main drawback comes from the fact that the extreme flexibility of the
chaos decomposition leads up to a time consuming and less manageable for one of
the practical application of our model, that is anticipation of movements extending
Bollinger bands.

The problem of optimal investment in financial markets has been widely studied
in literature. Moreover, the techniques applied span a large class of mathematical
tools for instance by restricting to recent years (but without any claim to being
exhaustive), optimal switching [28], optimal investment with trend detection [10], [5]
and [6], adding jumps and over/under-reaction to information [9] or using techniques
from neural network [13]. The significant innovation of the present paper is to deal
with the whole components and not the only index. To the best of our knowledge,
this is the first paper dealing with the problem of trend detection in an infinite
dimensional framework.

We then decide to link the problem of market index and their components evolution
to the transport of measures. Several references on the question of deterministic
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or stochastic evolution of densities can be found across various fields of mathemat-
ics. The scope of applications encompasses statistics, biology, physics and finance.
Bellomo and Pistone [4] study the action of an abstract dynamical system on a prob-
ability density. From a statistical point of view, some authors analyse the density as
the outcome of a Dirichlet law: Ferguson [14] or Shao [23]. This question is also at
the core of the optimal transport, see for instance Villani [26], Alfonsi et al [2] and
the references therein. In this vein, Bass [3] studies the deformation of a parameter-
based family of densities. Another approach is based on the mixture of percentiles.
This method introduced by Sillitto [24] has been used, more recently, by Karvanen
[19] and Gouriéroux and Jasiak [17] to fit distributions of stock returns. This is the
approach that we will adopt in this paper.

Let us consider some integrable probability distribution on the positive half-line, rep-
resented by its percentile function. Assume that we have a breakdown the percentile
as a sum of percentile functions of distributions on the positive half-line. Then, we
can construct deformations of the initial distribution by considering weighted sums
of the percentile function with positive coefficients. Then, we replace the mixing
coefficients by correlated di↵usion processes.

This method construct a process with values in a space of probability distributions,
represented by their percentiles: hence a random measure on the positive half-line.
We show that, under mild assumptions on the underlying di↵usion, regularity results
hold for the distribution-valued process. First, the process is continuous in time
with respect to the expected Wasserstein distance, see Bass [3], which is a natural
metric in this context. Second, the stochastic di↵erential equation which drives the
cumulated distribution function is explicit. We also provide results on the average
and the variance of the cumulated distribution function.

Using this framework, at each date, we can calculate a confidence interval for the
percentile at a given (short) time horizon. We show that the upper and lower
boundaries of this interval are also percentile functions. We study trading signals
triggered when the realised percentile function crosses either the upper or the lower
band of this confidence interval. This method can be seen as a extension of the
widely used Bollinger bands, see for instance Kaufman [20], where the bands are
not only functions of the time, but functions of the time and of the level of the
percentile. Hence, it defines functional lower and upper bands. We also analyse the
link between the crossing of one of the bands and the measure of risk according to
the second order stochastic dominance.

In the first section, we introduce the mixture of percentiles method in a static setting
and analyse its properties. Topological aspects as well as di↵erentiability of the
cumulated distribution functions are studied. Insights on the notion of stochastic
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dominance, in relation with the possible deformations of the initial distribution, are
given. Then, in section 3, we use Markov di↵usion processes as mixing coefficients
and provide the dynamics of the distribution. Thus, we obtain a model where
both percentile and cumulative distribution functions have some explicit di↵usion
equation, and satisfies some regularity results. Last section is dedicated to a case
study for CDS indices.

2 Decomposition of probability distributions

This section is dedicated to the analysis of the mixture of percentiles, as defined in
Sillitto [24], in a static context. We prove regularity results that will be useful for
the dynamic case, detailed in section 3. After setting our framework, we present the
mixture method and study its properties. Then, we derive results on the derivatives
of the cumulative distribution function. Finally, we investigate the deformation of
the distribution in term of stochastic dominance.

First, let us define the setting under which we will work throughout the paper. Con-
sider the measured space

�

[0,+1),B([0,+1)), dx
�

, where B
�

[0,+1)
�

is the Bore-
lian sigma-field over [0,+1) and dx the Lebesgue measure. Let f be a probability
distribution function (hereafter p.d.f.) on this space, F the cumulative distribution
function (c.d.f.) of f , and q the percentile function, i.e. the inverse1 of F . We
denote by D the set of all probability distributions on

�

[0,+1),B([0,+1)), dx
�

and by (f, F, q) an element of D. Where there is no ambiguity, we will indicate
only one element among the p.d.f, the c.d.f or the percentile function. The next
straightforward Lemma highlights some properties of D.

Lemma 1 (Properties of percentile function) The set D is a convex cone i.e.
8(q1, q2) 2 D2 and (λ1,λ2) 2 (R+

⇤ )
2, λ1q1 + λ2q2 2 D. Moreover, it can be endowed

with a partial order relation on the set D, equivalent to the stochastic dominance of
first order, as defined by Quirk and Saposnik [22], see also Levy [21]: q1 ⌫ q2 if,
for any " 2 [0, 1), q1(") ≥ q2("), which is equivalent to, 8 x ≥ 0, F1(x)  F2(x), in
terms of c.d.f. For any q1 ⌫ q2 and q, q1 + q ⌫ q2.

Throughout the paper, we consider the set D0 ⇢ D of probability distributions
satisfying the following assumption:

Assumption 1 A probability distribution (f, F, q) 2 D is said to belong to D0 if:

1The notion of generalized inverse should be used at this stage, but, hereafter, we will restrict
our attention to distributions for which the c.d.f is actually invertible.
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1. Its p.d.f. is positive, almost everywhere (a.e.).

2. Its c.d.f. is a di↵eomorphism from [0,+1) onto [0, 1) and is twice continuously
derivable with right-derivatives at 0. Moreover, F (0) = q(0) = 0.

3. Its probability distribution has finite first two moments.

We can extend the previous Lemma 1 to show:

Proposition 1 The set D0 is a convex cone.

Proof: Let q1, q2 2 D0, since D0 ⇢ D, applying the results of Lemma 1 we have
that q := λ1q1 + λ2q2 2 D for all λ1,λ2 2 R

+
⇤ . Then we need to show the three

properties in Assumption 1:

1. The mapping q is strictly increasing, with q(0) = 0, and tends to +1 in 1−.
Thus, it defines a bijection from [0, 1) onto [0,+1). It is, therefore, invertible,
with an inverse denoted by F and strictly increasing. This implies that the
p.d.f is well defined and positive a.e.

2. By implied function theorem, the derivative of F exists. Moreover, as q1 and
q2 have derivatives of order up to two, so q has the same property and F too.

3. The existence of the moments of first and second orders stems from the fol-
lowing identity, obtained by the variable change x = q("), i.e. " = F (x): for
k = 1, 2 Z 1

0
xkf(x)dx =

Z 1

0
(q("))kd"

Thus, if (f, F, q) has a second order moment so has
⇣

1
λ
f
�

·
λ

�

, F
�

·
λ

�

, λq
⌘

, for any

λ > 0:
R 1
0 (λq("))

kd" = λk
R 1
0 (q("))

kd", k 2 {1, 2}. Therefore, it is sufficient to
show that, for q1, q2 2 D0, q1+q2 and (q1+q2)

2 are integrable. The integrability
of q1+ q2 is a consequence of the linearity of the integral. In order to show the
integrability of (q1+ q2)

2 = q21 + q
2
2 +2q1q2, it is sufficient to show that q1q2 is

integrable. This is a consequence of the Cauchy-Schwarz inequality. ⇤

In the following, we endow the space D0 with the second-order Wasserstein distance,
see for instance Vallander [25], which is defined, for any (q1, q2) 2 D0 by

W2(q1, q2) :=

sZ 1

0
[q1(")− q2(")]

2 d"
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This distance is well suited to the analysis of deformation of probability distributions,
and can be adapted in a dynamic setting. See, for instance, Bass [3] and Alfonsi et
al. [2].

2.1 Mixture of percentile functions

In this section, following Sillitto [24], we introduce the method to construct various
percentiles functions from an initial one. We provide results on the regularity of the
functions obtained by this method. In particular, we prove that they belong to D0.
In this section, we set out (f, F, q) 2 D0.

Definition 1 (Basis of percentile function associated to (f, F, q)) A n-uple of
mappings  := ( i)1in, is called a n-basis of percentile functions associated to
(f, F, q) if

1. The family is linearly independent;

2. For all i 2 {1, . . . , n}  i is non-decreasing, taking non-negative values, twice
continuously derivable on [0, 1) and

3. The total sum of the percentile functions  i reconstruct the percentile function
q, i.e.

Pn
i=1  i = q.

The set of all n-basis of percentile function associated to (f, F, q) will be denoted by
Pn(q).

The following Lemma summarizes some properties of the basis representation:

Lemma 2 Let  be a n-basis of percentile functions associated to (f, F, q) satisfying
Assumption 1. Then, we have

1. Initial value: For all i 2 {1, . . . , n}  i(0) = 0

2. Existence of a diverging term: There exists i⇤ 2 {1, . . . , n} such that
lim
"!1−

 i⇤(") =1.

Proof: The first property is a direct consequence of q(0) = 0 and the fact that the
functions  i take non-negative values. If the second property does not hold, the
limit of q, as " goes to 1−, would be finite. Hence a contradiction with point 1 in
Assumption 1. ⇤
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Now, let us introduce a method to generate a large class of probability distribution
based on a basis of percentile functions.

Definition 2 (Mixture Method) Let y := (yi)1in 2 (R+
⇤ )

n, and  2 Pn(q).
The mixing of  with coefficients y is defined by

8" 2 [0, 1), q(", y) = q(x, y1, . . . , yn) := hy,  (")i =
nX

i=1

yi i("). (1)

where h·, ·i stands for the Euclidean scalar product on R
n.

Note that q(") = he,  (")i = q(", e), where e := (1, . . . , 1)T 2 R
n. In order to

maintain consistent notations throughout the paper, the first variable " will always
denote the level of probability used in the percentile function and x and element of
[0,+1), i.e. the variable of the p.d.f. and c.d.f., whereas the element y of (R+

⇤ )
n will

represent a vector of mixing coefficients. The function " 7! q(", y) will be denoted,
for short, q(·, y). Accordingly, we denote by f(·, y) the p.d.f. and by F (·, y) the
c.d.f. associated to q(·, y). Both functions are defined on [0,+1). It is clear that
the mixing method defines an element of D. As we will see in Corollary 1, it also
defines an element of D0, this is a direct consequence of Proposition 1.

Corollary 1 Let y and  as in Definition 2. Then, the p.d.f associated to q(·, y),
given by Equation (1), satisfies Assumption 1. Moreover, if ymin = min{yi|1  i 

n}, we have, for 1  k  2,

ykmin

Z +1

0
xkf(x)dx 

Z +1

0
xkf(x, y)dx  hy, eik

Z +1

0
xkf(x)dx (2)

Proof: The first part of the proof is a direct consequence of Lemma 2. For the
integrability condition, let us write 8" 2 [0, 1), q(")ymin  q(", y)  q(")⇥ hy, ei.
Therefore, we have boundaries on q(·, y) for the first order stochastic dominance.
This can be translated into the inverse order for integral of any increasing mapping,
see Levy [21]. Taking x 7! xk, k 2 {1, 2} yields Equation (2). ⇤

Another result on the influence of the mixture method on the distribution is given
in Proposition 2. To this purpose, let us denote by | · | the Euclidean norm on R

n,
and by || · ||2 the L2-norm on D0.

Proposition 2 The mapping y 7! f(·, y), form (R+
⇤ )

n into D0, endowed with the
Wasserstein distance W2, is Lipschitz with coefficient ||q||2.
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Proof: For any y, z 2 (R+
⇤ )

n, the Wasserstein distance satisfies the following in-
equality, which is a consequence of Schwarz inequality in R

n:

W2

�

q(·, y), q(·, z)
�

=

Z 1

0
< y − z,  (") >2 d"

�

1

2



"
nX

i=1

Z 1

0
| (")|2 ⇥ |y − z|2d"

# 1

2

.

But, we have | (·)|  q(·) due to the non-negativity of  , and, thus, the following
inequality holds: W2(q(·, y), q(·, z))  ||q||2 ⇥ |y − z|. ⇤

With these result in hand, we can investigate the topological properties of the set
of all possible mixtures given a basis of percentile functions.

Lemma 3 Let  i 2 D0, for i 2 {1, . . . , n} and assume that the family  := ( )1in

is linearly independent. Let A :=
�

q(·, y) | y 2 (R+
⇤ )

n
 

be the set of mixtures
associated to the family ( i)1in. Then, the closure of A for W2 is the convex cone
spanned by the  i, i 2 {1, . . . , n} and an element of the closure is either 0 or an
element of D0.

Proof: Let (qk)k≥0 2 AN converging toward q⇤. For each qk, there exists yk 2
(R+

⇤ )
n. On the one hand, a converging sequence is also a Cauchy sequence, hence,

for any k ≥ 0, W2(qk, qk+p) tends to 0 as p goes to infinity. On the other hand,
W2

2 (qk, qk+p) = (yk+p− yk)
T (yk+p− yk) where  is the n⇥n-matrix, the elements

of which are given by  k,i :=
R 1
0  k(") i(")d" for (i, k) 2 {1, . . . , n}2. As the family  

is free, matrix  is definite positive: it is the matrix of the quadratic form associated
to the L2-norm, with respect to the basis  . Thus, it implies that (yk+p − yk) tends
to 0 (for any norm on R

n) as p tends to infinity. As Rn is complete, the sequence
(yk)k≥0 is converging towards y 2 (R+)n. It remains to show that q⇤(·) = q(·, y),
which is a direct consequence of the triangular inequality for W2. Hence, any limit
of a sequence of elements of A can be written as q(·, y) with y 2 (R+)n. This is
exactly the convex cone spanned by the  i for i 2 {1, . . . , n}. ⇤

A direct consequence of the previous lemma is the following:

Corollary 2 Let the assumptions of Lemma 3 prevail. Set, for U ✓ (R+
⇤ )

n, B :=
{q(·, y) | y 2 U}. Then, if U is closed (respectively, compact) the set B is closed
(respectively, compact) for W2.

We now turn our attention to investigate the form of the derivatives of the c.d.f.
that will be used to define the dynamics of the c.d.f. in Section 3.
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2.2 Derivatives of the c.d.f

Our purpose is to express the derivatives of the c.d.f. F (·, y), as given in Definition
2, in terms of y,  and F . These results will be at the core of the expression of the
stochastic evolution of the c.d.f. in Section 3. Indeed, in order to apply Itō calculus,
we need to obtain the expression of the first and second order derivatives.

Corollary 1 provides the di↵erentiability of F . In order to clarify the notations of
partial derivatives F , we set, Ḟx(x, y) :=

@F
@x
(x, y), the partial derivative with respect

to x and for y = (yi)1in, Ḟi(x, y) :=
@F
@yi
(x, y), the partial derivative with respect

to the ith component of the vector y, with i 2 {1, . . . , n}. Accordingly, we set
F̈x,j(x), with j 2 {1, . . . , n} and F̈i,j(x), with (i, j) 2 {1, . . . , n}2, the second order
derivatives. Concerning functions on the real line, such as the  i, i 2 {1, . . . , n}, the
successive derivatives will be denoted by  0

i and  
00
i .

Proposition 3 We have the two following derivatives.

Ḟx (x, y) =
1

hy,  0(F (x, y))i (3)

Ḟi (x, y) = −
 i (F (x, y))

⌦

y,  0 (F (x, y))
↵ (4)

Proof: As seen in the proof of Proposition 1, the mapping F (·, y) is the inverse of
q(·, y) and this relation writes, for any " 2 [0, 1),

F (q(", y), y) = " (5)

By derivation of (5) with respect to yi, i 2 {1, . . . , n}, we find out

 i(")Ḟx (q(", y), y) + Ḟi (q(", y), y) = 0 (6)

By derivation of (5) with respect to ", we find out

hy,  0(")i Ḟx (q(", y), y) = 1 (7)

Substituting (7) in (6) yields, for any i 2 {1, . . . , n},

Ḟi (q(", y), y) =
− i(")

hy,  0(")i (8)

We recall that, if x = q(", y), then " = F (x, y). Thus, Equation (8) gives us a
formulation of the first order derivatives of F with respect to yi, i 2 {1, . . . , n}, as
a function of F (x, y),  and y. ⇤
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Now, let us turn to the second order derivatives with similar arguments used in
Proposition 3.

Proposition 4 We have the following second derivatives.

F̈xx (x, y) = −
hy,  00(F (x, y))i

�⌦

y,  0(F (x, y))
↵�3 (9)

F̈x,i (x, y) =  i ((F (x, y))
hy,  00(F (x, y))i

�⌦

y,  0(F (x, y))
↵�3 −

 0
i ((F (x, y))

�⌦

y,  0(F (x, y))
↵�2 (10)

F̈i,j (x, y) =
 0
i ((F (x, y)) j ((F (x, y)) +  

0
j ((F (x, y)) i ((F (x, y))

�⌦

y,  0(F (x, y))
↵�2 (11)

− i ((F (x, y)) j ((F (x, y))
hy,  00 ((F (x, y))i
�⌦

y,  0(F (x, y))
↵�3

Now, let us state a result that will prove itself useful to describe the form of the
volatility in Section 3.

Lemma 4 For any y 2 (R+
⇤ )

n, we have the following limit

lim
x!+1

Ḟi(x, y) = 0

for i 2 {1, . . . , n} and this convergence is uniform with respect to y on any compact
set.

Proof: The existence of such a c.d.f and its di↵erentiability has been proved in
Proposition 1. As q is increasing in yi, i 2 {1, . . . , n}, F is decreasing in this variable.
This implies that the convergence of F (x, y1, . . . , yn) towards 1, when x tends to +1,
is uniform in yi, on interval of the form (0, yi]. Without loss of generality, let us
consider the case i = 1 for some given (y2, . . . , yn). For any y1 2 (⌘, y1 − ⌘], and for
any 0 < |h|  ⌘, set

g(x, h) :=
1

h

h
F (x, y1 + h, y2, . . . , yn)− F (x, y1, . . . , yn)

i

The function g converges to 0 when x tends to +1, uniformly in h. It also converges
to Ḟi+1(x, y1, . . . , yn) when h tends to 0. Therefore, we can permute the limits over
x and h to obtain the result. ⇤

Before turning to the study of dynamic distributions, i.e. stochastic processes with
values in D0, let us analyse the e↵ect of the mixture of percentiles on the risk of the
underlying distribution.
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2.3 Mixture and stochastic order

Let us consider a basis of percentiles ( i)1in. Let
�

y(1)
�

and
�

y(2)
�

be in (R+
⇤ )

n.

If, for any i 2 {1, . . . , n}, y(1)i ≥ y
(2)
i , then q

�

·, y(1)
�

⌫ q
�

·, y(2)
�

, i.e. the distri-

bution associated to y(1) dominates the distribution associated to y(2) for the first
order stochastic dominance. Now, let us investigate the case of the second order
stochastic dominance and answer the question: can we characterize a mixture which
dominates the initial distribution with respect to this order? First, let us recall that
(f1, F1, q1) 2 D0 dominates (f2, F2, q2) for the second order stochastic dominance if,
for any x ≥ 0, Z x

0
F1(x)dx 

Z x

0
F2(x)dx,

with a strict inequality for at least one value of x.

Lemma 5 Let q 2 D0 and  2 Pn(q). There exists h 2 R
n and bδ > 0, such that,

for any δ 2
⇣

0, bδ
i
, q(·, e+ δh) ⌫ q(·), if, and only if,

8" 2 [0, 1],
nX

i=1

hi

Z "

0
 i(u)du ≥ 0, (12)

and the inequality is strict for one ".

Proof: If q(·, e+ δh) ⌫ q(·) for any δ 2
⇣

0, bδ
i
, we have

8x ≥ 0,

Z x

0

h
F (u, e+ δh)− F (u)

i
du  0 .

If we divide the two members of the previous inequality by δ > 0, and let it goes to
0, we obtain

8x ≥ 0,

Z x

0

nX

i=1

Ḟi(u, e)hi du  0.

By Equations (3) and (4), it yields

8x ≥ 0,

nX

i=1

hi

Z x

0
 i(F (u, e))f(u, e)du =

nX

i=1

hi

Z F (x)

0
 i(v)dv ≥ 0.
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Hence, the sufficient condition. For the necessary condition, we write a second order
Taylor expansion: for any u 2 [0, x], there exists ✓(u) 2 [0, δ], such that

1

δ

Z x

0
[F (u, e+ δh)− F (u)] du =

Z x

0

nX

i=1

Ḟi(u, e)hi du

+ δ

Z x

0

X

i,j

F̈i,i(u, e+ ✓(u)h)hihj du

As F is twice continuously derivable, its second order derivatives are uniformly
bounded on [0, 1]⇥ [e, e+ δh]. Therefore, there exists K(h) > 0 such that

1

δ

Z x

0
[F (u, e+ δh)− F (u)] du 

Z x

0

nX

i=1

Ḟi(u, e)hidu+ δK(h)

This implies that, for δ small enough
R x

0 [F (u, e+ δh)− F (u)] du  0 and the in-
equality is strict if x 6= 0. ⇤

According, to Lemma 5, a deviation from the initial distribution q, with increasing
second order stochastic dominance, can decrease some mixture coefficients as long
as condition (12) prevails. Let us consider an example:

Example 1 Let us consider a basis of two log-normal percentiles, i.e.  i(") =
eσiΦ

−1("), i 2 {1, . . . , n}, where Φ is the c.d.f. of the standard normal law, 0 < σ1 <

σ2. We have
R "

0  i(u)du = Φ
�

Φ
−1(")− σi

�

⇥e
σ
2
i
2 . Assuming h2 < 0 < h1, condition

(12) writes, for any " 2 (0, 1),

h1

|h2|
≥

Φ
�

Φ
−1(")− σ2

�

Φ (Φ−1(")− σ1)
e

σ
2
2
−σ

2
1

2

The right hand side of the inequality is uniformly bounded by e
σ
2
2
−σ

2
1

2 on [0, 1) since
the numerator and denominator are equivalent in 0+. Hence, the existence of h1 and

h2. Besides, set h1 = 1 and h2 = − exp
⇣

(σ2
1
−σ2

2
)

2

⌘

. Condition (12) is satisfied and

the distributions f(·, e+h) and f(·) have the same expectation. In this case, the two
percentile functions do cross each over. The modified percentile function, q(·, e+ h)
is above q(·) on [0, "0) and below q(·) on ("0, 1), for a unique "0 > 0. It means that,
although q(·, e+ h) has the same expectation than q(·), it puts more weight on both
low and large values: it is a so called mean-preserving spread, see Levy [21].
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3 Dynamic distributions

We now turn to the dynamic extension of the previous analysis in order to model
the evolution of distributions.

Consider some f 2 D0, with c.d.f F and percentile function q. We also set-
out some  2 Pn(q). Let (⌦,F ,P) a probability space. The operator E [·] de-
notes the expectation under P. We consider a n-dimensional Brownian motion
{W (t) := (Wi(t))1in}t≥0, centred, with reduced volatilities, but a non-degenerated
correlation matrix C = [ci,j ]1i,jn on (⌦,F ,P). The natural filtration of W will
be denoted by F := {Ft}t≥0. We shall deal with a F-adapted di↵usion process, de-
noted by

�

Y (t) := (Yi(t))1in

 
t≥0
, with values in (R+

⇤ )
n. More precisely, set, for

i 2 {1, . . . , n}, Yi(0) = 1 and

dYi(t) = µi(Yi)dt+ σi(Yi)dWi(t)

where µi and σi are Borelian mappings. We will work in the remaining of the paper
under the following assumption.

Assumption 2 For any t ≥ 0, the process {Y (t)}t≥0 is a Markov di↵usion, square
integrable, with positive values P-a.s. Moreover, there exists K > 0 such that, for
any y > 0 and i 2 {1, . . . , n}, we have µi(y)

2 + σi(y)
2  K ⇥ (1 + y2).

Let us provide two examples of stochastic processes satisfying Assumption 2.

Example 2 (Log-normal di↵usion) Set, for any i 2 {1, . . . , n}, σi(x) = σi ⇥ x,
with σi > 0 and µi(x) = µi ⇥ x. We have

Yi(t) = exp

✓

µi −
σ2
i

2

◆

t+ σiWi(t)

�

The process Yi is positive and square integrable.

Example 3 (Jacobi process) Let 0 < m < µi < M , σi > 0, λi > 0, for any
i 2 {1, . . . , n}, with

σ2
i

2λi

µi −m

M −m
 1−

σ2
i

2λi

We set out

dYi(t) = λi(µi − Yi(t))dt+ σi

p
(M − Yi(t))(Yi(t)−m) dWi(t)
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The process Yi is a Jacobi process with values in (m,M),hence positive. It is also
square integrable. See, e.g., Delbaen and Shirakawa [11] or Ackerer et al. [1]. The
condition on drift and volatility functions in Assumption 2 is clearly satisfied because
the drift is linear and the volatility bounded.

Let us define the distribution-valued process.

Definition 3 We set, for any " 2 [0, 1), and t ≥ 0, eq(t, ") = q(", Y (t)), with q(·, y)
defined by Equation (1). The p.d.f, respectively, c.d.f., associated to eq(t, ·) is denoted
by ef(t, ·), respectively eF (t, ·).

The following lemma provides some boundaries on the expected Wasserstein distance
between the distributions at time s and t, with 0  t  T . In particular, it provides
the continuity with respect to time, in terms on the expected Wasserstein distance,
which is a natural tool to control the stochastic evolution of probability densities.
The reader can refer to Alfonsi et al. [2], for applications in the convergence of Euler
schemes.

Lemma 6 For any T ≥ 0, with K as in Assumption 2, there exist a constant,
Cn,T,K such that, for any 0  s < t  T ,

E
⇥

W2

�

eq(t, "), eq(s, ")
�⇤

 ||q||2Cn,T,K

p
1 + n

p
t− s

Proof: We use Jensen inequality and Proposition 2 to state

E
⇥

W2

�

eq(t, "), eq(s, ")
�⇤2

 E
⇥

W2
2

�

eq(t, "), eq(s, ")
�⇤

 ||q||22 ⇥ |Y (t)− Y (s)|2

Then, by Problem 3.15, p. 306, in Karatzas and Shreve [18], under Assumption 2,
we have the existence of a constant Ln,K,T such that E

⇥

|Y (t)− Y (s)|2
⇤

 LK,T

�

1+
|Y (0)|2

�

(t− s). But |Y (0)|2 = n, which yield the result. ⇤

Now, let us turn to the explicit dynamics of the c.d.f.

Proposition 5 For any x > 0, the process
� eF (t, x), Y (t)

�

t≥0
is a Markov di↵usion,

with values on [0, 1]⇥(R+
⇤ )

n, with eF (t, 0) = 0. The dynamics of
� eF (t, x)

�

t≥0
is given

by

d eF (t, x) =
nX

i=1

Ai(x, Y (t))dt+
nX

i=1

Bi(x, Y (t))dWi(t) (13)
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where the mappings Ai and Bi from (R+
⇤ )

n+1 into R are given by

Bi(x, y) =
− i(F (x, y))

hy,  0(F (x, y))iσi(yi)

Ai(x, y) =
− i(F (x, y))

hy,  0(F (x, y))iµi(yi) +
1

2
(σi(yi))

2Vi,i(F (x, y), y)

+σi(yi)
nX

j>i

ci,jσj(yj)yjVi,j(F (x, y), y)

with, for F 2 [0, 1] and y 2 (R+
⇤ )

n,

Vi,j(F, y) :=



 0
i(F ) j(F ) +  

0
j(F ) i(F )

hy,  0(F )i)2 −  i(F ) j(F )
hy,  00(F )i
(hy,  0(F )i)3

�

(14)

Proof: By applying Itō calculus, we have

d eF (t, x) =
nX

i=1

Ḟi

�

x, Y (t)
�

[µi(Yi(t))dt+ σi(Yi(t))dWi(t)]

+
1

2

nX

i=1

nX

j=1

F̈i,j

�

x, Y (t)
�

σi(Yi(t))σj(Yj(t))ci,jdt

(15)

Using Equations (8) and (9), we obtain, for i 2 {1, . . . , n}, the mappings Ai and Bi.
⇤

The fact that x 7! eF (x, t) is a c.d.f has some implication on its volatility (as a random
variable on (⌦,F ,P)), in particular, when x goes to to infinity. This property is
declined into two results, depending on the type of behaviour of the volatility of Y .

Corollary 3 Assume that

(i) For i 2 {1, . . . , n}, σi(x)  σix

(ii) There exists L > 0 such that, for all x 2 R
+ and y 2 (R+

⇤ )
n, 0  xf(x, y)  L

Then, for any T > 0 and i 2 {1, . . . , n}, lim
x!+1

E

Z T

0
B2

i

�

x, Y (s)
�

ds

�

= 0.
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Proof: By Problem 315 p. 306 in Karatzas and Shreve [18], we know that, under
Assumption 2, the random variable U⇤

i,T := max0sT Y
2
i (s) is integrable. We write

E

Z T

0
B2

i

�

x, Y (s)
�

ds

�

 σ2
iN

2
E



I{U⇤

i,T
N}

Z T

0
Ḟ 2
i (x, Y (s))ds

�

+ σ2
iL

2T P
⇥

U⇤
i,T ≥ N

⇤

Now, set ⌘ > 0 and choose N such that P
h
U⇤
i,T ≥ N

i


⌘

2σ2
i TL2 . As a consequence

of Lemma 4, there exists XN such that, for all x ≥ XN , for any y 2 ([0, N ])n,
�

�

�
Ḟi(x, Y (s))

�

�

�


⌘

2σ2
iT

Hence, E
hR T

0 B2
i

�

x, Y (s)
�

ds
i
 ⌘, for x ≥ XN . ⇤

Remark 1 Point (ii) of Lemma 3 is satisfied, for instance, for log-normal distri-
butions as can be seen in the proof of Proposition 6.

Corollary 4 Assume that, for i 2 {1, . . . , n}, the process Yi takes its values in the
finite interval (m,M). Then, for any T > 0 and i 2 {1, . . . , n},

lim
x!+1

E

Z T

0
B2

i

�

x, Y (s)
�

ds

�

= 0

Proof: By Assumption 2, we have the straightforward inequality

E

Z T

0
B2

i

�

x, Y (s)
�

ds

�

 K(1 +M2)T

"
sup

y2[m,M ]n
{Ḟi(x, y)}

#2

As a consequence of Lemma 4, the right-hand side converges to 0 as x goes to infinity.
⇤

We can provide a result on the regularity of the expected value of eF (t, ·) and its
link with the expected value of ef(t, ·). For technical reasons, we will work with a
basis of log-normal percentile functions. Indeed, in this setting, we can show that
the derivation with respect to x and the integration with respect to P do permute.

Proposition 6 Assume that, for all i 2 {1, . . . , n},  i : " 7! eγiΦ
−1("), with γi >

0, with the notations set out in Example 1. Assume that [hY (t), ei]−1 is square-
integrable. Then, M(t, ·) := E {F (·, Y (t))} is the c.d.f of an element of D0, with
p.d.f m(t, ·) = E {f(·, Y (t))}.
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Proof: First of all, it is clear that M(t, ·) is increasing and M(t, 0) = 0. By
Lebesgue monotone convergence theorem, we also haveM(t, x)! 1, when x! +1.
Therefore, it defines an element of D. In order to show that is is, actually, in D0,
we need to show that the derivatives of F (·, Y (t)) of order 1 and 2 are uniformly
bounded. Let us start with some facts deduced from the log-normal distribution.
Set φ := Φ

0. We have

 0
i(") =

γi i(")

φ (Φ−1("))
and  00

i (") =
γ2i  i(") + γi i(")Φ

−1(")

[φ (Φ−1("))]2

We also notice that q(12 , y) = hy, ei. We define γmin := min{γi | 1  i  n} and
γmax := max{γi | 1  i  n} and set out, for any z > 0,

K(x, z) :=

8
<
:

Φ

⇣

1
γmin

ln
�

x
z

�

⌘

if x ≥ z

Φ

⇣

1
γmax

ln
�

x
z

�

⌘

if x < z

We obtain the following inequality 0  F (x, y)  K(x, hy, ei). This shows that,
basically, the c.d.f. F (·, y) is below the log-normal c.d.f with the smallest volatility
if F (x, y) ≥ 1

2 and below the log-normal c.d.f with the largest volatility if F (x, y) <
1
2 .

Equations (7) and (9) and the calculations above yield the following inequality:

0  f(x, y) 
φ
�

Φ
−1(F (x, y))

�

γminx

Using the boundary K(x, hy, ei), we obtain

0  f(x, y) 
1

γminx

8
<
:

φ
⇣

1
γmin

ln
⇣

x
hy,ei

⌘⌘

if x ≥ hy, ei

φ
⇣

1
γmax

ln
⇣

x
hy,ei

⌘⌘

if x < hy, ei

In the left hand side we recognize the log-normal densities with mean ln(hy, ei) and
volatility γmin and γmax, respectively. By using the mode of these densities, we
obtain the following inequality:

0  f(x, y)  H(y) :=
e

γ
2
max
2

γmin

p
2⇡hy, ei

Hence, f(x, Y (t)) = Ḟx(x, Y (t)) is uniformly bounded in x by some P-integrable
random variable H(Y (t)). Hence, M(t, ·) is derivable and its derivative is m(t, ·).
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We can go one step further and compute the second order derivative. For x < hy, ei,
we have, for some constant c1 > 0,

|F̈xx(x, y)| 
1

γ3min

φ

✓

1

γmax
ln

✓

x

hy, ei

◆◆

⇥

γmaxx− x ln
⇣

x
hy,ei

⌘

x3

The maximum of the function in right hand side is achieved at

hy, ei exp
"
−γ2max +

γmax

2
−

r
γ4max +

3

2
γ3max +

5

4
γ2max

#
< hy, ei

At this point, the maximum is of the form v(γ)(hy, ei)−2, hence P-integrable, by
assumption. The same argument applies to the case x > hy, ei. This provides the
second order derivative as the expectation of F̈xx(x, Y (t)). ⇤

Now, we can characterize the form of the probability density of eq(t, ·) and eF (t, ·).
Let us introduce the following replacing function R : Rn ⇥ {1, . . . , n} ⇥ R ! R

n:
for any r 2 R

n, i 2 {1, . . . , n}, and u 2 R, R(r; i, u) = z where zj = rjIj 6=i + uIj=i.
That is the replacing function R transform the original vector r in the one in which
coordinate i has been replaced by u.

Proposition 7 Let Kt : (R
+
⇤ )

n ! R
+ be the density Y (t). Let ⌘(t, ", x) and ⇢(t, ", x)

denote, respectively, the derivative of the percentile and the p.d.f., at fixed time t.
Assume also that there exists i? 2 {1, . . . , n} such that  i? 2 D0.

Then, the derivative function satisfies, for any x ≥ 0 and " > 0,

⌘(t, ", x) =

Z

(R+
⇤
)n−1

Kt



R
✓

z; i?,
x−

P
i 6=i?  i(")zi

 i?(")

◆� Y

i 6=i?

dzi

Proof: The result is obtained by a change of variable zi? = h ("), yi, zi = yi, i 6= i?,
and the fact that  i?(") > 0 as soon as " > 0. ⇤

In order to construct the functional Bollinger bands, we need to be able to define
a confidence interval for F (t, x), seen as a random variable on (⌦,F ,P). For this
purpose, we use the following functions:

Definition 4 For any ⌘ 2 (0, 1), t > 0 and x > 0, H⌘(t, x) is the solution (in

H ≥ 0) of P
h
eF (t, x)  H

i
= ⌘. For any ⌘ 2 (0, 1), t > 0 and " 2 (0, 1), I⌘(t, x) is

the solution in 2 (0, 1) of P
⇥

eq(t, ")  I
⇤

= ⌘
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The functions x 7! H⌘(t, x) and " 7! I1−⌘(t, ") are, respectively, a (non random)
c.d.f and a (non-random) percentile function, associated to the same probability
distribution. This is, basically, what is proved in next proposition. These functions
can be used to define the confidence interval on eF (t, x) or eq(t, "), respectively.

Proposition 8 Let the assumption of Theorem 7 prevails. Assume that Y takes its
values in a open (possibly not bounded) subset of (R+

⇤ )
n, with unattainable bound-

aries, and, for every non empty ball B in this subset P[Y 2 B] > 0. Then,
the mapping " 7! I⌘(t, ") is derivable, increasing, with lim"!0+ I⌘(t, ") = 0 and
lim"!1− I⌘(t, ") = +1

Proof: First, let us denote by Kt(y) the density of Y (t). Set, for any " 2 [0, 1),
h ≥ 0,

Q(", h) := P [q(", Y (t))  h] =

Z

y2(R+
⇤
)d
I{q(",y)h}Kt(y)dy

First, if " > 0, the mapping h 7! Q(", h) is increasing, with Q(", 0) = 0 and
limh!+1Q(", h) = 1. The fact that Q(", 0) = 0 is clear, because q(", y) > 0 if
and only if " > 0. It is increasing because, if 0  h1 < h2, {q(", y)  h1} 6=
{q(", y)  h2}. Indeed, as at least one of the  i is not equal to 0 (because q(") > 0),
it is always possible to increase q(", y) by increasing the corresponding component
of y. Therefore, there is an open ball included in the second interval and not in the
first. By assumption of this proposition, it is given a positive weight by K(t, ·). The
limit when h goes to infinity is a consequence of the Beppo-Levi monotone conver-
gence theorem. Besides, the mapping (", h) 7! Q(", h) is also derivable. This is a
consequence of theorem 7.

The mapping Q(", ·) defines a (continuous) bijection form [0,+1) onto [0, 1). Hence,
⌘ 7! I⌘(t, ") is well defined and continuous with respect to both variable. It is increas-
ing because q(·, y) is increasing. Set Qmax(h) := P(hY (t), ei  h) and Qmin(h) :=
P
⇥

mini{Yi(t)}  h
⇤

. From the inequality mini{Yi(t)}⇥q(")  q(", Y (t))  hY (t), ei⇥
q("), we deduce that

Qmax

✓

I⌘(t, ")

q(")

◆

 ⌘  Qmin

✓

I⌘(t, ")

q(")

◆

The first inequality yields the limit when " goes to 0+ and the second the limit when
" goes to 1−. By definition of F (x, y), we have q(", y)  h ) "  F (h, y). Hence,
the inverse of I⌘(t, ·) is H1−δ(t, ·). ⇤

At this stage, we can define the functional Bollinger bands by
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Definition 5 Set ⌘ 2
�

0, 12
�

, the functional Bollinger bands, for the percentile, at
horizon t are defined by the mappings " 7! I⌘(t, ") (the lower band) and " 7! I1−⌘(t, ")
(the upper band). The functional Bollinger bands, for the c.d.f., at horizon t are
defined by the mappings x 7! H⌘(t, x) (the lower band) and x 7! H1−⌘(t, x) (the
upper band). These mappings are elements of D, as proved in Proposition 8.

An interesting property of this approach is that the lower and upper bands for
the percentile (respectively, the c.d.f) are percentiles (resp., c.d.f). Moreover, the
percentile upper band is the inverse of the c.d.f lower band (and symmetrically for
the other bands). Hence, the percentile eF (t, ·) can be compared to the lower and
upper bands H⌘(t, ·) and H1−⌘(t, ·) through the concept of second order stochastic
dominance. If eF (t, ·) dominatesH⌘(t, ·) for the second order stochastic dominance, it
implies that the distribution at time t involves more risk than what was expected at
time 0, with a confidence level of 2 ⌘. This situation can occur even if the averages of
the two distributions are the same. Such a situation could be a good trading signal.
This is what we want to illustrate in the following subsection.

4 Application to Credit Indices

In this section, we consider the evolution of the spreads of all the 125 components
of a the iTraxx Europe (with maturity 5 years). Although this index is rolled every
6 months, we will consider - for a purely illustrative purpose - a fixed composition,
corresponding to one given series of this index.

Given these samples, we can calculate, at each date tj , with t1 = 0 < · · · < tm, the
empirical percentiles function, denoted by q(tj , ·).
Consider n elements of D, represented by their percentile functions v := (vk)1kn,
assuming that one of those is in D0. We also assume that these elements are linearly
independent. As a typical example, we consider vk(") := exp(γkΦ

−1(")), where Φ

is the c.d.f of the standard normal law and the γk are positive, two by two distinct
real numbers. In this case, each vk is the percentile of a log-normal law.

A each date tj , we will perform a constrained regression of q(tj , ·) on v, using the
Wasserstein distance. A short calculation shows that it amounts solving the following
(constrained) quadratic program in R

n:

(R)j :
⇢

minz2Rn

⇥

zT · · z − 2Q(j)T · z
⇤

s.t. 8k 2 {1, . . . , p} zk ≥ δ > 0
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where  is defined in the proof of Lemma 3, and Q(j) is a vector of Rn with
Qk(j) =

R 1
0  k(")q(tj , ")d". As in Lemma 3, the matrix is invertible because the

family of log-normal percentiles is free as soon as the volatilities are distinct.

In many practical cases that we will analyse in this section, the constraints of
program (R)j are not binding and this program amounts to a classic least-square
method.

Let us denote by bz(j) the solution of program (R)j , and set bYk(tj) := bz(j)k ⇥ (bz(0)k )−1

and  k(·) = bz(0)k ⇥ vk(·), k 2 {1, . . . , n}. By definition,  is an element of Pp(bq0)
where bq0 := hbz(0), v(·)i 2 D0. Hence, we are in the framework developed above, and
we have obtained a sample path for Y , on the basis of which we can calibrate the
parameters defined in Section 3. For each date tj , we have bqj(·) = hv(·), bz(j)i.
Once the parameters of the di↵usion Y are calibrated, according to Definition 3, we
have the full dynamics of eq(t, ·).
In the following examples, we shall develop our method based on the function
Bollinger bands, defined in 5. Let us emphasize the analogy with the standard,
one dimensional case. For a single valued process, in the trading strategies area,
the Bollinger bands method consists, basically, to look at a confidence interval on
the price of a financial instrument, based on historical trailing volatility and aver-
age. Hence, implicitly a Gaussian case. Trading signals are triggered when the price
crosses the bands. See Kaufman [20], for definition and use in trading strategies, or
Bernis and Scotti [6] for applications to credit indices in the context of non-linear fil-
tering. In our setting, the equivalent of crossing the upper (respectively, lower) band
will be the case where the current distribution F (t, ·) dominates the upper (resp.,
lower) functional bandH⌘(t, ·) (resp. H1−⌘(t, ·)) for the second order stochastic dom-
inance. More precisely, we denote by F (tj , ·) the c.d.f. at time tj , stemming from
the fit of the empirical percentiles at this date. Given the calibration of the di↵usion
parameters for Y on the sample 0  ti  tm, we calculate at time tm, the lower
and upper functional bands, at horizon tm+l, H⌘(tm+l − tm, ·), H1−⌘(tm+l − tm, ·),
with l > 0 some fixed horizon. Then, we can compare F (tm+l − tm, ·) to the bands.
This formulation can be transposed to the lower and upper functional bands on the
percentiles.

As an example, we display in Figure 1 the upper and lower bands on July the 13th

2015 (tm+l), as well as the c.d.f at this date. We take n = 2, γ1 = 25% and γ2 = 85%.
The dynamics of Y1, Y2 is assumed to be log-normal, with no drift. Calibration on
market data (1 year) yields σ1 = 29%, σ2 = 80% and a correlation of some 23%.
The lower and upper bands are computed using a normal approximation over the
last 5 business days, according to formula (13). It can be interesting to observe that
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the drift has a second order e↵ect in this example. At this date, the c.d.f dominates
the upper band, for the SOSD, which means that the distribution is significantly
less risky than expected. In the same time, the average spread on July the 13th

2015 (tm) is around 75 bps (a rather high level over the last weeks) and is about 68
bps at tm+l. We can reasonably expect that the index average spread will keep on
tightening over the next few days: 5 business days later, it is around 63 bps.

Figure 1: Lower (5%) and upper (95%) bands, c.d.f on July the 13th 2015 and
July the 6th 2015.

We propose, for a deeper understanding of this example, to have a look at the form
of the volatility functions Bi(·, Y (tm)), 1  i  2. The two mappings are represented
in Figure 2, in the context of Figure 1. The volatility function B1(·, Y (tm)) is smaller
than B2(·, Y (tm)) for average and large values of x. This is due to the fact that the
mapping  2, associated to a large value of γ2, mainly controls the extreme percentiles
values. This basis function requires more volatility stemming from Y2, in order to
fit the percentiles in case of turmoil. In these periods, the extreme percentiles tend
to increase sharply, showing some decorrelation from the lower percentiles. The
same e↵ect is captured by B2, which remains larger than B1 for large values of x.
However, as given by Corollary 3, both functions tends to 0 as x goes to +1.
It may be interesting to investigate a criterion less restrictive than SOSD. For in-
stance, as displayed in Figure 3, on February the 1st 2016 the c.d.f began to cross
the lower band (even if not dominating it for SOSD). The average spread at tm is
close to its level at tm+l: respectively, 111 and 112 bps. However, the band crossing
detects the increase of the risk in the index distribution: 5 days later the average
spread is around 130 bps. The c.d.f. dominates the lower band in terms of SOSD
shortly after this date, but when it occurs most part of the spread widening has
already occurred.



23

Figure 2: Volatility functions Bi(·, Y (tm)), 1  i  2, where tm is July the 13th 2015.

Figure 3: Lower (5%) and upper (95%) bands, c.d.f on July the 13th 2015 and
July the 6th 2015.
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