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Titre : Conception et Mesure de systèmes multi-antennes pour les futures technologies 5G. 

 
Résumé : 
 

Dans le cadre de cette thèse nous étudions les technologies porteuses de la 5ème 

génération de communication mobile telle que le MIMO et Massive MIMO ainsi que les divers 

challenges amenés par l’apparition de ces nouvelles technologies.  

 

Le chapitre 1 présente l’évolution des systèmes de communication sans fil (2G, 3G, 4G et 

5G) ainsi que leurs principales caractéristiques. Le chapitre décrit ensuite les réseaux locaux 

de type « WLAN » Il donne ensuite les caractéristiques principales des Réseaux locaux ainsi 

que les types d’antennes généralement utilisées dans les terminaux mobile et les point d’accès 

sans fil. Ce chapitre se termine sur une conclusion donnant les objectifs des travaux réalisés 

dans la thèse. 

 

Le deuxième chapitre se consacre dans un premier temps à la comparaison de différentes 

méthodes de test permettant la caractérisation des performances des antennes MIMO. Dans 

un second temps, le chapitre décrit la mise en œuvre de deux bancs de mesure spécifiques 

pour la caractérisation des performances des antennes MIMO en WLAN et LTE. Le premier 

banc de mesure a été réalisé à partir d’instruments de mesures Rhodes & Schwarz 

(générateur de signaux et analyseur de spectre). L’opportunité de travailler avec EURECOM 

nous a amenés à développer un second banc de test en utilisant l’OpenAirInterface, une 

plateforme open-source exploitant des systèmes de radio par logiciel. 

 

Le chapitre 3 présente la conception et la réalisation d’une série de prototypes de routeur 

Wi-Fi constitués de huit antennes. Chaque prototype est réalisé à partir d’antennes différentes 

(imprimées, 3D…) ou présente une configuration différentes afin de mener des études 

comparatives. Nous avons également réalisé une seconde série prototypes de routeur Wi-Fi 

constitué de huit antennes imprimés sur plastique grâce à la technologie LDS. Les différents 

prototypes sont caractérisés expérimentalement en  mesurant l’adaptation, le gain, l’efficacité 

et le couplage entre éléments. Une campagne de mesure a ensuite été réalisée avec ces 

prototypes sur le banc de test évoqué ci-dessus pour extraire des critères de performance 

antennaire utiles pour les applications MIMO. Ces études ont pour objectif d’apporter des 

éléments d’optimisation sur les techniques MIMO d’un point de vue antennaire. Enfin dans la 

dernière partie du chapitre, l’étude se consacre à l’évaluation de l’influence du diagramme de 

rayonnement des antennes sur les performances du routeur multi-antenne. Une nouvelle 

structure d’antenne présentant un digramme directionnel est réalisée, caractérisée puis tester 

sur le banc de test dédié. 
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Le quatrième et dernier chapitre de cette thèse est dédié aux fréquences millimétriques 

qui sont au cœur de la 5G. Ce chapitre présenta la conception et la réalisation d’un prototype 

de téléphone constitué de quatre antennes millimétriques. Une mesure permettant de prendre 

en compte les interférences avec le corps humain a été mise en place pour étudier les 

contraintes liées à l’implantation d’antennes millimétriques dans les futurs terminaux mobiles. 

 
 

 
Mots clés : MIMO, Wi-Fi, 4G, 5G, Mesure d’antennes  
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Title: Design and measurement of multi-antenna systems toward future 5G technologies 

 
Abstract: 
 

In this thesis, we are studying the main technologies carrying the 5th generation of mobile 

communication such as MIMO and Massive MIMO as well as the various challenges brought 

by the appearance of these new technologies. 

 

Chapter 1 presents the evolution of wireless communication systems (2G, 3G, 4G and 5G) 

and their main features. The chapter then describes local area networks of the "WLAN" type. 

It then gives the main characteristics of Local Area Networks as well as the types of antennas 

generally used in mobile terminals and wireless access points. This chapter ends with a 

conclusion giving the objectives of the work done in the thesis. 

 

The second chapter focuses in a first time, to the comparison of different test methods 

allowing the characterization of the performances of the MIMO antennas. In a second step, the 

chapter describes the implementation of two specific measurement setup for the performance 

characterization of MIMO antennas in WLAN and LTE. The first test bench was made from 

Rhodes & Schwarz measuring instruments (signal generator and spectrum analyzer). The 

opportunity to work with EURECOM led us to develop a second test bench using the 

OpenAirInterface, an open-source platform exploiting software radio systems.  

 

Chapter 3 introduces the design and realization of a series of Wi-Fi router prototypes 

consisting of eight antennas. Each prototype is made from different antennas (printed, 3D ...) 

or has a different configuration to conduct comparative studies. We also made a second series 

of Wi-Fi router prototypes consisting of eight antennas printed on plastic using LDS technology. 

The different prototypes are experimentally characterized by measuring adaptation, gain, 

efficiency and coupling between elements. A measurement campaign was then carried out 

with these prototypes on the test bench mentioned above to extract antennal performance 

criteria useful for MIMO applications. These studies aim to provide optimization elements on 

MIMO techniques from an antenna point of view. Finally, in the last part of the chapter, the 

study is devoted to the evaluation of the influence of the antenna radiation pattern on the 

performance of the multi-antenna router. A new antenna structure presenting a directional 

diagram is realized, characterized and tested on the dedicated MIMO-OTA test bench.  

 

The fourth and final chapter of this thesis is dedicated to the millimeter frequencies that are 

at the heart of 5G. This chapter presented the design and realization of a mobile phone 

prototype consisting of four millimeter antennas. Measurements to take into account the 
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interference with the human body has been set up to study the constraints related to the 

implantation of millimeter antennas in future mobile terminals. 

 
 
 

 
Keywords: MIMO, Wi-Fi, 4G, 5G, OTA Measurement 
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Abstract 

In recent years, telecommunications witnessed exponential growth, especially in mobile 

communications. The increasing demand for high data-rates has led the telecommunication industries 

to increase transmission capacity, to improve the signal to noise ratio and to expand the operating 

bands of cellular communications. The 4G developed and deployed in the last ten years is close to 

reaching its full potential regarding throughputs and channel capacity. With 5G on the horizon, many 

new challenges emerged for antennas designers especially regarding the Massive MIMO technology 

and the new operating band in the millimetric spectrum.  

 

The main objective of this thesis is to study the problematics involving the improvement on actual 

Wi-Fi, LTE technology and the development of the future 5G network. More specifically, we will study 

the implementation of a large number of antennas in a small terminal and the way to experimentally 

characterize those multi-antenna systems in the low frequencies. Indeed, measurements of multi-

antenna systems become more and more challenging and expensive when increasing the number of 

antennas. Moreover, the integration of a large number of antennas within a device limited in volume 

needs to be carefully considered regarding the mutual coupling between elements and the correlation 

envelop. Considering the new 5G applications in frequency bands above 6 GHz, we wanted to explore 

the problematic of human interaction in handset devices at millimeter wave frequencies.  

 

Chapter 1 gives an introduction to the context surrounding the thesis and the different studies we 

conducted in this work. This chapter aims to presents the recent advancement in the mobile and local 

communication networks. An overview of the main standards is stated as well as the basis of antenna 

parameters and technology. This chapter introduces the motivations of the thesis. 

 

Chapter 2 focuses on measurement setup for MIMO antenna systems. We present an overview of 

the existing systems such as the two stage method, the reverberant chamber and the multi-probe 

technique with channel emulator.  Then, the chapter explicit the work conducted to develop our 

measurement system by presenting two approaches. The first setup was designed using Rhodes & 

Schwartz equipment. The second testbed leverage the OpenAirInterface, an open-source platform 

using Software Defined Radio boards.   
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In chapter 3, we present the design of several 8-antenna gateways for Wi-Fi and LTE applications. 

In a first time, the study aims to evaluate the performance of the Laser Direct Structuring technology, 

a method allowing to printed antennas directly on a plastic case. A set of multi-antenna gateways has 

been realized with PCB and LDS technology to compare the two techniques accurately. In the second 

time, we investigate the influence of directional antennas within a multi-antenna system. Two 

methods have been studied to realize directional antennas. It’s finally with a dipole and a reflector that 

we manage to compare an omnidirectional and a directional configuration. Each realized prototype 

has been evaluated in free-space and with a beamforming configuration thanks to the 

OpenAirInterface testbed presented in the second chapter.  

 

Eventually, chapter 4 presents the investigation of the hand effect on high frequency antennas for 

future 5G mobile phones. The study aims to evaluate the negative impact of the user’s hand on 

beamforming capabilities of 15 GHz antennas. We leverage a 3D spherical scanner with a fixed AUT to 

measure the antenna 3D radiation pattern in the presence of a real human hand.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 1: Context and Motivations 13 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Context and Motivations 

 

 

 

 

 

  

 

 

 

 

 

 

 

 



Chapter 1: Context and Motivations 14 

Table of content Chapter 1 

1.1. EVOLUTION OF WIRELESS COMMUNICATION NETWORKS ......................................................................... 15 

1.1.1. 2G Cellular Network ................................................................................................................ 15 

1.1.2. 3G Cellular Network ................................................................................................................ 16 

1.1.3. 4G Cellular Network ................................................................................................................ 17 

1.1.4. 5G Cellular Network ................................................................................................................ 20 

1.2. WIRELESS LOCAL AREA NETWORK (WLAN).......................................................................................... 22 

1.3. ANTENNAS FOR CELLULAR COMMUNICATIONS AND LOCAL NETWORKS ........................................................ 25 

1.3.1. Antenna Parameters ............................................................................................................... 25 

1.3.2. Mobile Phones and Access-point Antennas ............................................................................ 27 

1.3.3. Base Station Antennas ............................................................................................................ 30 

1.4. MOTIVATION OF THE THESIS .............................................................................................................. 31 

1.5. REFERENCES CHAPTER 1 .................................................................................................................... 32 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 1: Context and Motivations 15 

For centuries, humans created ways to communicate over very long distances. Many early 

telecommunication systems were used, from the Greek hydraulic semaphore systems to smoke 

signals, drums and homing pigeons have been used throughout history by different cultures. Chains of 

beacons were commonly used to relay signals in the Middle Ages. Despite the cleverness of those 

systems, they all suffered from the very few bit of information they could transmit. It’s only around 

the end of the 18th century that electricity has been involved in telecommunications, thanks to the 

work of several scientists including Laplace, Ampère or Gauss. The first operating electrical telegraph 

was built at the beginning of the 19th century. This technology saw a few evolution until the electric 

telephone was invented in the 1870s. In the same time, a series of experiments demonstrated the 

existence of the electromagnetic waves theorized by Maxwell. Since then it will not be long before the 

first wireless telephone call was conducted. The 20th century has seen an incredible acceleration in the 

electrical technology development resulting in the creation of the first cellular network. 

1.1. Evolution of Wireless Communication Networks 

It was almost forty years ago that the first generation (1G) of mobile communication network was 

launched in several countries over the world. Mobile 1G established the foundation of cellular 

communications [I-1]. Those cellular networks were primary analog systems designed only for voice 

communication using frequencies around 900 MHz. The technology was based on the frequency 

modulation technique (FM) to process voices signals and Frequency Division Multiple Access (FDMA) 

to assign a specific frequency for each user. 

  2G Cellular Network 

Mobile networks evolved every ten years or so to support the growing data-rate demands. Indeed 

at the beginning of the 90s, the second generation (2G) of mobile communication was announced with 

a digital modulation scheme [I-2]. Shifting from analog to digital allowed some improvements in system 

performance especially regarding spectral efficiency. Thanks to Code Division Multiple Access (CDMA) 

or Time Division Multiple Access (TDMA) the system can handle multiple numbers of users. The digital 

technologies allowed providing new services such as Short Message Service (SMS). The Global System 

for Mobile Communication (GSM) is the common standard for the 2G. One of the key features of the 

GSM is the Subscriber Identity Module (SIM) card which contains the phone number and the user’s 

subscription information. As presented in Fig. 1-1 [I-3], the GSM network is mainly composed of three 

parts: the Mobile Station with the mobile equipment and the SIM card, the Access network with the 

Base Transceiver Station (BTS) and the Base Station Controller (BSC) and the Core Network (CN). 

https://en.wikipedia.org/wiki/Smoke_signal
https://en.wikipedia.org/wiki/Smoke_signal
https://en.wikipedia.org/wiki/Drum_(communication)
https://en.wikipedia.org/wiki/Homing_pigeon
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The General Packet Radio Service (GPRS) standard is an evolution of the GSM standard which 

allows packet-based internet connections. The GPRS can be considered as an optional function 

implemented in the core network of the GSM. Often called 2.5G, GPRS was able to provide throughput 

up to 85 Kbit/s. This technology provided to users data services like MMS (Multimedia Messaging 

Service) and Wireless Application Protocol (WAP) to allow accessing the internet through mobile 

devices.  

 

The next step in the evolution of the GSM standard was the Enhanced Data rates for GSM Evolution 

(EDGE) allowing improved data transmission rates up to three times more than with GPRS. EDGE is 

considered as a pre-3G (or 2.75G) technology and was initially deployed in 2003. EDGE requires no 

hardware or software changes to be made in GSM core networks. Indeed the key of the technology is 

the use of a higher modulation scheme (8-PSK – Phase-Shift Keying) in addition to the GMSK (Gaussian 

Minimum-Shift Keying) modulation used in GPRS. 

 3G Cellular Network 

Around the year 2000, the third generation of mobile communication introduced high-speed 

Internet access, highly improved video and audio streaming capabilities by using technologies such as 

Universal Mobile Telecommunication System (UMTS) based on the Wideband Code Division Multiple 

Access (W-CDMA) [I-4]. The most popular radio interface is the W-CDMA, using 2100MHz frequency 

for transmission, a 5MHz bandwidth and Frequency Division Duplexing (FDD) for multiplexing. The 

Figure 1-1: Schema of a GSM Cellular Network [I-3]. 
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beginning of broadband communication is standardized by the International Telecommunication 

Union (ITU) with the IMT-2000 standard. Downlink data rates of several Mbit/s started are achieved.  

 

The downlink data rate was increased to 14Mbit/s, and 28Mbit/s with the improvements called 

High Speed Packet Access (HSPA) HSPA and HSPA+ around the year 2008. HSPA is an amalgamation of 

two mobile telephony protocols, High Speed Downlink Packet Access (HSDPA) and High Speed Uplink 

Packet Access (HSUPA), which extends and improves the performance of existing 3G mobile 

telecommunication networks utilizing WCDMA protocols. An improved 3GPP (3rd Generation 

Partnership Project) standard, Evolved HSPA (also known as HSPAC), was released in late 2008 with a 

worldwide utilization beginning in 2010. HSPA has been deployed in over 150 countries by more than 

350 communications service providers (CSP) on multiple frequency bands and is now the most 

extensively sold radio technology worldwide, although LTE is closing the gap rapidly. 

 

Another improvement on the 3G systems towards 4G was the LTE (Long Term Evolution, 3.9G), 

targeting downlink data rates up to 100Mbit/s. LTE specification allows the usage of QPSK, 16QAM and 

64QAM modulation types and a channel bandwidth of up to 20MHz, with FDD and TDD 

(Frequency/Time Division Duplexing) for duplexing schemes. The use of MIMO (Multiple Input Multiple 

Output) is allowed and can increase the maximum data rate from 100Mbit/s to 326Mbit/s. The 

downlink uses the OFDMA (Orthogonal Frequency Division Multiple Access) for access scheme. 

 4G Cellular Network 

In 2008 the ITU defined the International Mobile Telecommunications-Advanced (IMT-Advanced) 

standard surpassing the capabilities of the IMT-2000. IMT-Advanced is the fourth generation (4G) 

mobile communication technology [I-5]. LTE radio access technology offers a full 4G broadband 

platform. The key technology to support high data rates in 4G systems are MIMO systems. MIMO 

enables multi-streams transmission for high spectrum efficiency, improved link quality, improved 

Signal to Noise ratio (SNR) thanks to beamforming techniques using antenna arrays. To develop the 

existing LTE network, the 3GPP defined the LTE-Advanced (LTE-A or 4G+) standard to meet IMT-

Advanced requirements. LTA-A can theoretically achieve throughput rates of 1 Gigabit per second. LTE-

A supports heterogeneous networks with co-existing macro, micro, small cells, and Wi-Fi access points. 

Figure 1-2 presents the number of devices connected to each generation of mobile communication 

since 2016 and the prediction toward 2021 [I-6]. 4G has become this year the most used standard in 

the world.  
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As the demand for capacity in mobile broadband communications increases dramatically every 

year, wireless providers must be prepared to support up to a ten time increase in total mobile traffic 

by 2020, requiring researchers to seek higher capacity and to find new wireless spectrum beyond the 

4G standard. Indeed the number of connected objects is estimated to reach 50 billion by 2020 while 

the mobile data traffic is expected to grow from 2.5 Exabyte per month to 24.3 Exabyte per month by 

2019 as presented in figure 1-3 [I-7]. 

 

LTE is a 3GPP-based standard established as the next generation mobile technology interoperating 

with W-CDMA, GSM, and CDMA2000 systems. LTE addresses some of the critical issues in the network: 

spectrum flexibility and efficiency. The uplink and downlink channels are two to four times more 

Figure 1-2: Number of devices connected to each standard [I-6]. 

Figure 1-3: Estimation of the number of connected objects in 2020 and the Global 

Mobile Data Traffic in 2019 [I-7]. 
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spectrally efficient than (HSPA). LTE uses orthogonal frequency division multiple access (OFDMA) on 

the downlink and single carrier-frequency division multiple access (SCFDMA) on the uplink. The LTE-A 

use QPSK, 16QAM, and 64QAM modulation scheme to achieve 1 Gbps peak data rates for the low-

mobility users in downlink and 500 Mbps for uplink [I-8]. 

 

LTE supports flexible spectrum allocation and is defined in more than 40 frequency bands around 

the world supporting spectrum from 450 MHz to 3.8 GHz. Figure 1-4 [I-9] presents the allocation of 

LTE frequency bands in France per mobile service providers. Both Frequency Division Duplex (FDD) and 

Time Division Duplex (TDD) are supported, as well as different channel bandwidths of 1.4, 3, 5, 10, and 

20MHz in the available spectrum and up to 100 MHz with carrier aggregation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Carrier Aggregation provides the ability to combine across multiple carriers, multiple bands, as well 

as across licensed and unlicensed spectrum to increase the maximum data rates available for users. 

Figure 1-5 [I-10] presents three types of carrier aggregation. The first method is the contiguous intra-

band carrier aggregation (a) uses two adjacent frequency channel. The second method, the non-

contiguous intra-band carrier aggregation (b) aggregate two channel in the same band but separated 

Figure 1-4: Frequency bands Allocation in France per Mobile Service Providers [I-9]. 
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Figure 1-6: Key Performance Comparison between 4G and 5G [I-7]. 

by others channels. Finally, the inter-band carrier aggregation (c) uses two channels from two different 

bands. 

 

 

 

 

 

 

 

 

 

 

One of the key technology enabling fast data-rates is Multiple Input Multiple Output (MIMO) 

antennas, including beamforming and spatial multiplexing up to eight downlink and four uplink 

antennas. LTE-Advanced supports theoretical peak data rates up to 1Gbps is on the downlink when 

using Carrier Aggregation with 4x4 MIMO. The MIMO technology will be presented in more detail in 

the third chapter. 

 5G Cellular Network 

The fifth generation (5G) is today under development to support the predicted increased in mobile 

data traffic. The key performance indices are presented in figure 1-6 [I-7] with a comparison with 4G 

performance.  

 

 

 

 

 

 

 

 

 

 

The main differences compared to the 4G network will be the use of a much greater spectrum in 

millimeter-wave frequency bands and highly directive beamforming antennas at both the user 

Figure 1-5: Carrier Aggregation Methods in LTE-A [I-10]. 
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equipment and the base station with Massive MIMO antennas. 5G will benefit from a higher capacity 

for many simultaneous users in the covered area. Also, 5G will come with lower infrastructure costs 

since the backbone networks will move from copper and fiber to mm-wave wireless connections, 

allowing rapid deployment and mesh-like connectivity with cooperation between base stations. 

 

The main objective of 5G is to overcome the current limitations of 4G. This concept involves an 

evolution of wireless network to reach the expected demand for data and a revolution in the network 

architecture to design an economical and easily scalable network to anticipate the large scale 

deployment planned for 2022. Many challenges are ahead for the engineering community to reach the 

key performance required for the 5G network resumed by Huawei [I-11] in figure 1-7. 

 

 

 

 

 

 

 

The baseline of 5G systems is to provide gigabit-rate of data services regardless of a user’s location. 

5G network deployments are expected to be much denser compared to 4G networks to ensure this 

quality of service so making cost-effective implementation is a very important condition. Moreover, 

5G have to considerably enhance its capacity compared to 4G to enable massive connectivity to 

assimilate the increasing number of connected objects. 5G technology also aims to a very low latency 

below one millisecond and very low energy consumption. In terms of application, 5G will be more than 

the next generation of mobile communication delivering ultra-broadband services such as ultra HD 

video streaming. Indeed this network will open a new set of use cases and markets. 5G technology will 

contribute to the machine to machine (M2M) application like autonomous vehicles, wearable devices 

and to connect millions of industrial sensors for example.  

 

Regarding the spectrum, the actual bands below 6 GHz won’t be enough to support the growing 

demand for data when more spectrum is essential to achieve the 5G vision. As a result, some 

applications of 5G is likely to operate on much higher frequencies. Many frequency bands are discussed 

in the industry to support the future 5G applications such as 10 GHz, 28 GHz, 32 GHz, 43 GHz, 46 GHz 

to 50 GHz, 56 GHz to 76 GHz, and 81 GHz to 86 GHz. The amount of potential spectrum above 20 GHz 

is several GHz. The use of spectrum sharing and flexible spectrum usage techniques might be used to 

optimize the spectrum utilization. The main challenge will be to overcome the lousy propagation 

Figure 1-7: 5G Key Performance Assessment [I-11]. 
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characteristics in those frequencies caused by atmospheric attenuation, blockage, and reflections. It 

has been acknowledged that MIMO and beamforming will be required to overcome the propagation 

challenges. The beamforming will need to adapt to the users and the environment to deliver the signal 

to the user.  

 

Many challenges are yet to come to create a green network for 5G, but some key technologies are 

emerging to improve energy efficiency. We can cite for example the Centralized or Cloud RAN (C-RAN), 

a system that centralizes processing resources which already demonstrate its advantage regarding 

network deployment and energy saving. C-RAN is a suitable architecture for 5G networks to achieve 

the user-centric vision (“no-more cell”) of 5G theoretically providing higher data rate and less service 

variation between the cell-center and cell-edge regions. Moreover, the modulation and coding 

schemes need to evolve to achieve the desired link level performance. Turbo coding and Quadrature 

Amplitude Modulation (QAM) employed in the 3G and 4G systems are no longer suitable for 5G. 

Various promising advanced modulation and coding schemes have received considerable attention 

recently. Green Networks will need to use renewable energy, such as wind and solar energy as an 

alternative power supply for networks, and bioelectric, kinetic and thermal energy for terminals. 

 

Massive MIMO spatial multiplexing has the potential to become a game changing technology in 

the cellular communications space, allowing for increased cellular capacity and efficiency in high traffic 

urban areas [I-12]. The diversity that multipath propagation introduces is exploited to allow for data 

transfer between a base station and multiple users at the same time and frequency resource. Due to 

reciprocity of the channel between the base station antennas and the users, all the signal processing 

complexity can be kept at the base station, and the channel characterization can be done in the uplink.  

1.2. Wireless Local Area Network (WLAN) 

Most of the Wireless Local Area Networks (WLAN) are based on the 802.11 standards developed 

and frequently updated by the Institute of Electrical and Electronics Engineers (IEEE). IEEE 802.11  is a 

set of MAC and PHY specifications enabling the link between two or more devices using wireless 

communication in a limited and local coverage area both for personal or professional utilization. The 

first 802.11 (Infrared) protocol was created in 1997, but it is only 2 years later in 1999 that IEEE 802.11b 

become widely used. WLANs have become very popular under the brand Wi-Fi thanks to the ease of 

installation and use. Wi-Fi is a trademark of the Wi-Fi Alliance which can be used only for the product 

that respects a set of interoperability certifications.  
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As presented on figure 1-8, WLAN can provide a connection to the internet through a gateway or 

access point especially in the 2.4 GHz Industrial, Scientific and Medical (ISM) and 5 GHz Unlicensed 

National Information Infrastructure (U-NII) frequency bands but also in the 900 MHz, 3.6 and 60 GHz 

unlicensed bands. The Wi-Fi coverage can extend from a small area (apartment, house, restaurant…) 

to large area of several square kilometers if many access points are interconnected (airports, hotels…). 

Nowadays a lot of devices can use the Wi-Fi technology including computers, phones, tablets, video-

games consoles, smart TVs, speakers or printers. 

 

 

 

 

 

 

 

   

  

 

Many evolutions of the standard followed the first 802.11 protocol such as 802.11a, 802.11g, 

802.11n, 802.11ac, 802.11ad with significant improvement in data rates. The most relevant 

characteristics of the main protocols are resumed in table 1-1. Each standard presented uses either 

2.4 GHz, 5 GHz or both frequency bands. As we can see in this table 802.11b and 802.11g control their 

interference by using direct-sequence spread spectrum (DSSS) and Complementary Code Keying (CCK) 

modulation technique plus the orthogonal frequency-division multiplexing (OFDM) for the 802.11g 

release while other protocol only uses OFDM. We can note that the first 802.11 protocol could use 

Infrared (IR) and Frequency Hopping Spread Spectrum techniques. Moreover, we can see that the 

MIMO dimensions have been integrated into WLAN standards since the 802.11n release in 2009 by 

providing a protocol able to operate with 2 to 4 antennas.  

 

Other protocols and amendments have been released such as 802.11ad, 802.11ah, and 802.11ai 

respectively in 2012, 2016 and 2017. Wireless Gigabits Alliance (WiGig) promoted the 802.11ad 

protocol which provides data rates links up to 6.8 Gbps in the 60 GHz band with more than 2 GHz 

bandwidth. 802.11ah protocol opens the 900 MHz frequency band and provides and extended range 

and data rates up to 350 Mbps. It also benefits from low energy consumption to create large sensor 

network and support the Internet of Things (IoT) concept. Finally, the 802.11ai standardize a fast initial 

link setup (FILS) function that enables a wireless LAN client to achieve a secure link setup within 100 

Figure 1-8: Schema of a Wi-Fi Network. 

https://en.wikipedia.org/wiki/Direct-sequence_spread_spectrum
https://en.wikipedia.org/wiki/Orthogonal_frequency-division_multiplexing
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milliseconds in the 60 GHz frequency band. It should be noted that the next release of Wi-Fi is planned 

for the end of the year with the 802.11ax aiming for data rates over 10 Gbps in the 2.4 and 5 GHz 

bands. 

Table 1-1: Main Characteristics of WLAN Standard. 

 

 

Numerous types of access points are proposed in the market. The most common of them, set up 

in homes, are routers that incorporate a digital subscriber line and a Wi-Fi access point (provided by 

telecoms operators) which provide Internet access and easy interoperability of all devices connected 

to it. Other routers may include a cellular Internet radio modem and Wi-Fi access point which provides 

Internet access over 2G, 3G or 4G networks. The even modern smartphone can now act as a Wi-Fi 

access point. Those gateways use Wi-Fi chipset which takes into account more and more antennas to 

increase the throughput. The corresponding antenna array has an increasingly important role to play 

whereas design constraints are more and more restrictive in terms of volumes, size, coverage 

polarization diversity, and costs. 

 

Radiations of Wi-Fi devices are limited in France by a threshold on the Equivalent Isotropic 

Radiated Power (EIRP) resulting in a relatively short covering range for WLANs. The different limitations 

are presented in the following table 1-2. The table also highlights frequencies not allowed outdoor. 

Those limitations may involve the integration of regulation mechanism called Transmitter Power 

802.11 network PHY standards 

Protocol 
802.11-

1997 
802.11b 802.11a 802.11g 802.11n 802.11ac 

Release date Jun. 1997 Sep. 1999 Sep. 1999 Jun. 2003 Oct. 2009 Dec. 2013 

Frequency 2.4 GHz 2.4 GHz 5 GHz 2.4 GHz 2.4 / 5 GHz 5 GHz 

Bandwidth 22 MHz 20 MHz 20 MHz 20 MHz 
20 / 40 

MHz 

20 / 40 / 80 / 

160 MHz 

Modulation 
DSSS / 

FHSS / IR 

DSSS / 

CCK 
OFDM 

DSSS / 

CCK / 

OFDM 

OFDM OFDM 

Modulation 

 Scheme 

BPSK, 

QPSK 

BPSK, 

QPSK 

BPSK, 

QPSK, 

 16QAM, 

64QAM 

BPSK, 

QPSK, 

 16QAM, 

64QAM 

BPSK, 

QPSK, 

 16QAM, 

64QAM 

BPSK, QPSK, 

 16QAM, 

64QAM, 

 256QAM 

Max data 

rate 
2 Mbps 11 Mbps 54 Mbps 54 Mbps 600 Mbps 3.5 Gbps 

MIMO 

Streams 
- - - - 2 - 4 2 - 8 

Range (m) 

In. / Out. 
20 / 100 35 / 140 35 / 120 35 / 140 70 / 250 35 / 120 

https://en.wikipedia.org/wiki/Router_(computing)
https://en.wikipedia.org/wiki/Digital_subscriber_line
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Control (TPC) to automatically adjust the transmission power level in 5 GHz bands in access points. 

Moreover, Dynamic Frequency Selection (DFS) techniques are used to monitor operating frequencies 

of radars and to avoid any interferences with them. 

 

Table 1-2: Maximum Authorized Power in France in the 2.4 GHz and 5 GHz Frequency bands. 

 

 

 

 

 

 

Many cities around the world announced plans to construct citywide Wi-Fi networks. There are 

many successful examples such as Mysore which became India's first Wi-Fi-enabled city by setting up 

hotspots and covering the complete city. The city of Minneapolis deployed 117 free of use gateway 

and thus cover almost 100% of the city (more than 400 000 inhabitants over 150 km²).  The city of 

Helsinki in Finland also provides free Wi-Fi everywhere. The Wi-Fi citywide concept can compete with 

the cellular networks. 

1.3. Antennas for Cellular communications and Local networks 

 Antenna Parameters 

In this section, we present very succinctly the main characteristics used to describe and analyze 

antennas performance [I-13]. 

 

An antenna is often described with its radiation pattern which is defined as a mathematical 

function or a graphical representation of the radiation properties of the antenna as a function of space 

coordinates. The radiation pattern is determined in the far-field region and represented as a function 

of the directional coordinates. The radiation pattern can be classified as isotropic, directional or 

omnidirectional. An isotropic radiator is defined as “a hypothetical antenna having equal radiation in 

all direction.” This ideal radiation is not realizable, but it is often used as a reference for expressing the 

directive properties of a real antenna. The omnidirectional pattern represents an antenna radiating 

the same amount of energy in almost every direction while a directional pattern radiates more 

effectively in some direction than others. The directional pattern is defined as one “having the property 

Frequencies MHz Indoor EIRP Limit Outdoor EIRP Limit 

2400 - 2483,5 100 mW 100 mW 

5150 - 5250 200 mW - 

5250 - 5350 100 mW - 

5470 - 5725 500 mW 500 mW 
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Figure 1-9: Example of (a) directional and (b) omnidirectional pattern [I-13]. 

of radiating or receiving waves more effectively in one direction.” Figure 1-9 presents examples of 

directional and omnidirectional patterns. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From this pattern, we can get the directivity of the antenna which is the ratio of the radiation 

intensity in a given direction to the radiation intensity averaged over all directions. For an isotropic 

source, the directivity will be unity. 

 

The antenna gain of the antenna is closely related to the directivity. In addition to the directional 

capabilities, it accounts for the efficiency of the antenna. The gain does not take into account reflection 

losses and polarization mismatches. The total antenna efficiency is used to take into account losses at 

the input terminals and within the structure of the antenna. Such losses might be due to reflections 

because of the mismatch between the transmission line and the antenna as well as conduction and 

dielectric losses. 

 

The polarization of an antenna in a given direction is defined as “the polarization of the radiated 

wave when the antenna is excited.” The polarization of the antenna can be classified as linear, circular 

or elliptical. Polarization is called linear if the vector that describes the electric field at some point of 

space is always directed along a line. Linear and circular are in fact special cases of elliptic. Each type 

of polarization has its own advantages and disadvantages. An RF system designer is free to select the 

type of polarization, according to the system requirements. Figure 1-10 presents a graphic 

representation of each polarization. 
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Figure 1-10: Graphical illustration of linear, circular and elliptic polarization [I-13]. 

 

 

 

 

 

 

 

 

 

  

The input impedance is defined as “the impedance presented by an antenna at its terminals or the 

ratio of the voltage to current at a pair of terminals.” 

 

Finally, the bandwidth of an antenna expresses its ability to operate over a wide frequency range. 

The bandwidth is usually given as a percentage of the nominal operating frequency. The bandwidth 

can be considered to the range of frequencies where the antenna characteristics are in an acceptable 

value. The radiation pattern of an antenna may change dramatically outside its specified operating 

bandwidth. 

 Mobile Phones and Access-point Antennas 

Following the evolution of cellular networks, the characteristics of mobile phone antennas 

changed, driven by technical and esthetical requirements. More details about the evolution of mobile 

phones antennas and possible techniques are presented in [I-14]. Until the end of the 1990s, mobile 

phones were equipped with external antennas, generally helix type, monopole (whip) or a combination 

of both for dual band operations. Figure 1-11 shows two example of external antennas. Those 

antennas have a very good efficiency but a high Specific Absorption Rate (SAR). The SAR is a measure 

of the rate at which energy is absorbed by the human body when exposed to an electromagnetic field. 

 

 

 

 

 

 

 

https://en.wikipedia.org/wiki/Energy
https://en.wikipedia.org/wiki/Absorption_(electromagnetic_radiation)
https://en.wikipedia.org/wiki/Electromagnetic_field
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In the late 1990s, mobile phones designers started to integrate internal antennas in their devices 

[I-15], [I-16]. Inverted F-Antenna (IFA) and Planar Inverted F Antenna (PIFA) were the choice of 

predilection for mobile antenna designers. The IFA has basically folded monopole with a connection 

to the ground plane. IFA have inherently narrow bandwidths, but the wire element can be replaced by 

a plate to increase the bandwidth and then become a PIFA. Quickly, PIFAs took over monopoles 

because of its advantages like low SAR, compact size, easily tunable, simple structure, easy fabrication 

and low manufacturing cost and are now extensively used in mobile phones [I-17]. The position of 

shorting pin and feeding point can be optimized for matching. The bandwidth of PIFA can be improved 

by using various techniques like using a thick air substrate or by varying the size of ground plane. Figure 

1-12 presents three type of PIFA for mobile phones. 

 

 

 

 

 

  

 

 

 

 

 

 

 

Figure 1-11: Examples of External Antenna for Mobile Phones (a) Monopole and (b) Helix [I-14]. 

Figure 1-12: Examples of PIFA Used in Mobile Phones (a) PIFA concept, (b) folded metal sheet and (c) Flex technology [I-17]. 
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In recent years, wireless communication progressed very fast, introducing new standard and new 

frequency bands. This development brought many challenges in the design of mobile devices, 

especially for the antenna which must now support multiband operations while being small, light and 

efficient. LTE technology was once again a great challenge due to the low frequency used in its standard 

and the need for miniaturization.  

 

Many studies introduced multi-band antennas for GSM, UMTS, LTE, Bluetooth and Wi-Fi in mobile 

phones. A multiband antenna is basically designed to operate on several frequency bands [I-18]. For 

example, a lot of designs and tests have been presented to achieve multi-band operation from PIFA 

structure. Multiband behavior can be easily obtained by creating some slots in the rectangular plate 

to alter the current. There are a lot of techniques to design a multiband antenna that can cover the 

entire operating bands of the mobile phone application [I-19]. Using some parasitic elements (either 

connected to the ground plane or left floating) coupled by the main antenna can create additional 

resonances. This type of antenna is designed in such a way that one part of the antenna can be made 

active for one band. Another common technique is the usage of matching networks, either distributed 

along the antenna element or introduced directly at the feed to change the antenna input impedance 

in the desired way. The matching network can be realized with passive or active elements. 

 

Another major internal antenna type used in mobile phones was the planar monopole antennas, 

which do not have a direct connection to the system ground plane. This type of antennas may require 

a ground clearance region in the vicinity (generally on one edge of the PCB) for acceptable 

performance. Techniques, like adding parasitic elements or adding parallel branches to the radiating 

element, can be used for multiband operations. This type of antenna was not used in the mobile 

terminals until recently due to the high SAR values exceeding the limits. The opportunity to place the 

antenna at the bottom of the mobile phone enabled their usage since the SAR values were now 

suitable due to longer distance between the antenna and head when the antenna is on the bottom of 

the mobile terminal. Finally, wideband antennas are also a suitable solution thanks to their ability to 

cover very large band of the spectrum.  

 

The same kind of antennas can be found in Wi-Fi access points. Figure 1-13 shows 3 modern 

gateways. Fig 1-13 (a) presents an Asus router which proposes a classical but efficient solution with 

eight external antennas with high efficiency to increase coverage and reliability. On Fig. 1-13 (b), the 

Google OnHub with 7 integrated dual-polarization antennas on the upper side of a vertical device 

covering 360 degrees in the horizontal plane. Finally, Fig 1-13 (c) shows the inside of the Orange 

Livebox 4 with 7 integrated PIFA (3 at 2.4 GHz and 4 at 5 GHz) in the corner of a horizontal device. 
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Figure 1-14: Pictures of a printed IFA and a 3D PIFA used in a Orange Livebox. 

 

 

 

 

 

 

 

 

 

 

The figure 1-14 shows two antennas used in the Livebox, the mainstream Wi-Fi access-point 

developed by Orange.  

 

 

 

 

 

 

 

 

 

 Base Station Antennas 

A few constructors provide a base station for network deployment. It comes to the internet access 

provider to choose which base station is suitable for its network regarding a great number of criteria 

[I-20]. The first criterion is the frequency band of operation for each array because it directly affects 

the size of the base station. Of course, the return-loss which is the amount of energy reflected back 

from an antenna RF port, and the port-to-port isolation between different RF ports of the antenna are 

two fundamental antenna parameters. Regarding the application, the number of arrays (1 to 5 column 

in modern antennas) and the size of the array are decisive factors since it influences respectively the 

tilt range of the horizontal and vertical beam. Finally, the maximum gain in every direction is a crucial 

parameter for the choice of a 4G base station. Many other parameters are taken into account such as 

cross-pol isolation, the antenna polarization (two orthogonal polarizations from each array in most of 

the case), the level of the side lobes which is important for reducing system interferences, the width 

Figure 1-13: Three Different Type of Access Point from (a) Asus, (b) Google and (c) Orange. 
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of the antenna main beam, the front-to-back ratio (measure of how much energy is radiated behind 

the antenna).  

 

 

  

 

 

 

 

 

 

 

 

 

 

 

1.4. Motivation of the Thesis 

This chapter presented the fundamental knowledge of the antennas fields and the main 

technologies surrounding the evolution of mobile and local networks. In this context, the thesis focuses 

on MIMO antennas, one of this breakthrough technology of enabling high data rates for 4G and Wi-Fi 

technologies. The first idea driving this project was to create a new concept of Livebox for Orange, 

starting from improving the flaws of the existing device. The point was to exploit fully the capabilities 

of the WLAN 802.11 standard in terms of MIMO techniques. Especially we focus on 802.11n at 2.4 GHz 

and 802.11ac at 5 GHz. We also evaluated the concept of multi-antenna for femtocell using LTE 

standard at 2.6 GHz. For this purpose, we propose to study antenna implementation and 

manufacturing techniques inside a small access point to improve the efficiency of the global system. 

An important target of the thesis is the development of accurate testbed to assess the radiated 

performance of a system with beamforming capabilities. 

 

In the context of the ongoing 5G research, we will propose to study antennas for mobile phone in 

frequencies above 6 GHz. This study aims to analyze the losses caused by users at such frequencies 

and to evaluate the capabilities of beamforming techniques to compensate those losses.  

(a) (b) 

Figure 1-15: Picture of (a) a Tri-Sectorial Base Station and (b) the inside of a LTE base station. 
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2.1. MIMO Over-The-Air Measurement 

In the last few years, the wireless communication witnessed the emergence of new technologies 

subsequent to the exponential increase of the mobile traffic data [II-1]. Multiple Input Multiple Output 

(MIMO) techniques have been established as one of the spearheads of these new technologies, 

enhancing spectral efficiency and increasing channel capacity. The latest LTE release targets up to 8x8 

MIMO schemes as well as the 802.11ac WLAN standard. Multi-antennas techniques such as 

beamforming, spatial multiplexing, and diversity, aim to take advantage of channel characteristics to 

increase data rates or reliability [II-2] through SNR improvement. 

 

Characterizing this type of radiating system in a repeatable and controllable environment is very 

challenging. Indeed from the classical measurement results like S-parameters and radiation 

measurements, we are only able to check that our system is working in free space, which is needed 

but not sufficient [II-3]. Testing the mobile device in this way does not accurately describe the 

performance that the user might truly have.  

 

Multiple antenna systems need to be tested in real life conditions in order to understand the end-

to-end performance of a MIMO device. Assessment of MIMO antenna radiated performance needs to 

take into account the global telecommunication system and channel characteristics instead of 

considering the radiating element alone. The so-called Over-The-Air (OTA) measurements are 

performed at the system level and include modulation code schemes (MCS) and 3GPPP and IEEE 

standards [II-3]. 

 

To better predict the real-world performance of mobile devices, OTA tests have been developed 

to measure the RF performance of a mobile device. The developed systems are able to simulate various 

RF environments in a repeatable and controlled way. All critical parts of the mobile terminal design 

(antennas, RF front-end, baseband processing) are integrated into an OTA test in order to find the right 

antenna configuration. The radiated characteristics of the multipath channel and the MIMO antenna 

are included during the OTA measurement process. OTA testing can be used to identify whether the 

MIMO antenna design has acceptable performance over a wide variety of multipath environments. 

OTA tests, in addition to the classical handset tests, serve to provide a better feel for the real world 

performance of the mobile device. It has become necessary to include OTA testing of MIMO antenna 

performance. 
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In the ideal case, testing MIMO devices would be as simple as testing SISO devices, but since MIMO 

performance is closely tied to the channel characteristics, it makes MIMO OTA testing much more 

challenging and complex. The SISO test does not require a fading channel while MIMO OTA testing 

needs accurate channel models.  

 

 

Several over-the-air (OTA) test methods have been proposed to characterize the radiated 

performance of multiple input multiple output (MIMO) devices. We present in this thesis the three 

main OTA test methods: the two-stage OTA method, the multiple test probes OTA method and the 

reverberation chamber method. Industrial OTA test beds to assess MIMO performance often rely on 

radio channel emulators which are expensive equipment proposed only by few suppliers (Agilent, 

Rhodes&Schwarz, Satimo, Anite) and are still under development for Massive MIMO techniques [II-4]. 

It has been shown that the different OTA measurement techniques will have approximately the same 

performance. The selection of the OTA test system is then based on the complexity, flexibility, and cost 

to the end-user as explicated through [II-5], [II-6] and [II-7].  

 

 

 

 

 

Figure 2-1: Schema of a 2x2 MIMO system with multipath reflections [II-4]. 
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 MIMO OTA Measurement with Two-Stage Method 

The two-stage “Over-The-Air” (OTA) method provides an accurate and cost-effective 

measurement system for MIMO devices. The technique combines the benefits of a traditional anechoic 

chamber with the flexibility of the channel emulator. The channel emulator is a measuring instrument 

for reproducing the actual radio wave propagation environment of mobile communication. It 

reproduces the fading environment defined by 3GPP. The emulated channel is based on standard 

channel models describing the variations of the electromagnetic waves between a radio transmitter 

and a receiver, as a function of time, frequency, and space. 

The two-stage method is based on the knowledge that antenna characteristics can be measured 

independently and then mathematically combined [II-8]. The channel characteristic can also be 

mathematically added while combining antenna patterns. The first stage of the method is the 

acquisition of antennas array gain pattern in an anechoic chamber as shown in figure 2-2. Considering 

the configuration of the measured UE, the array gain can be measured passively using a VNA or actively 

using a base station emulator. Either 2D or full 3D far-field pattern measurement can be used for this 

method. The second stage in the two-stage OTA method consists of a conducted test of the UE using 

a base station emulator and a channel emulator. The channel emulator will combine the actually 

measured 2D or 3D antenna gains with the selected MIMO channel model.  Different results can be 

obtained with this method such as BER, FER, channel coefficient or correlations coefficient. The 

channel capacity can finally be calculated from those resulted elements. This method can also be run 

with simulated results on antennas gain. 

Figure 2-2: Test configuration using the two-stage OTA method for a 2x2 MIMO device [II-4]. 
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 MIMO OTA Measurement with Reverberant Chamber 

The second OTA measurement technique which is widely used to evaluate the performance of 

MIMO system in a realistic environment is the reverberation chamber.  A reverberation chamber is a 

metal cavity without absorber, completely shielded from the external signal and including a mode 

stirrer allowing creating different environment configurations. The mode stirrer consists of metallic 

plates that rotate during the testing phase. Movements of the plate create a statistical isotropic 

Rayleigh fading channel between reference antennas and the MIMO DUT. It means that over a 

complete mode-stirring sequence all different angle-of-arrivals to the DUT is equally probable and that 

the signal amplitude exhibits a Rayleigh distribution. The schema of a classic setup with the reverberant 

chamber is presented in figure 2-3. 

 

The reverberation chamber is particularly useful when evaluating MIMO devices developed for 

indoor communications. This measurements method allows acquiring several performance 

parameters for wireless terminals and electrically small antennas [II-9], [II-10] such as radiation 

efficiency, impedance mismatch, diversity gain, MIMO capacity, Total Radiated Power (TRP), Total 

Isotropic Sensitivity (TIS) or Average Fading Sensitivity (AFS). 

 

 

 

 

Figure 2-3: Test configuration for a 2x2 MIMO system using a reverberation chamber [II-4]. 
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 MIMO OTA Measurement with Multi-probe technique 

The last OTA test method presented is the multi-probes technique. This method requires an 

anechoic chamber and a large number of probes placed inside the chamber in order to surround the 

MIMO DUT. This method aims to emulate a multipath environment by managing spatial parameters 

the Angle of Arrival (AoA) and the Angular Spreads (AS). Figure 2-4 presents the configuration of a 

multi-probe system with an anechoic chamber. 

 

The signal generated by Base Station emulator is modified by the channel emulator that creates 

multi-path signals including path loss, fading, delay spread, Doppler spread or polarization. Those 

signals are then amplified by the amplification unit and transmitted simultaneously to different 

locations by probes. The probes can be used to represent the direct signal, multi-path signals or 

interferers, thus creating a specific RF propagation environment at the DUT position.  

 

This method is scalable from a single cluster to a full 3D implementation. MVG provides on the 

shelf compact multi-probes systems with their StarMIMO range [II-11].  

 

 

 

Figure 2-4: Test configuration for the multiple test probe OTA method using an anechoic chamber and channel 

emulator [II-4]. 
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2.2. MIMO OTA Measurement with Rhodes&Schwartz Instrumentation 

In this section, we present the design of an OTA test bed for MIMO access point using 

Rhodes&Schwarz (R&S) instrumentation such as vector signal generator (SMBV100A) and signal and 

spectrum analyzer (FSV, FSW).  As we described in the first part of this chapter, besides free space 

measurement (matching, isolation, gain...) additional relevant criteria on the antenna system need to 

be studied after in a real environment [II-12]. In this case, the EVM is monitored after the spatial 

demultiplexing, using a specific test bench [II-13], [II-14]. 

 Testbed Overview 

In order to provide information about the performance of a MIMO system in a real channel, we 

propose to use the dedicated test-bench using vector signal generators and spectrum analyzers. We 

intend to get the statistical result by performing a great number of measurements. The overview of 

the measurement setup is presented in figure 2-5. Some pictures of the different elements of the 

testbed are presented in the figure 2-6. 

 

Figure 2-5: Overview of the R&S measurement setup. 
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On the transmission side, the MIMO 2x2 setup consists of two vector signal generator 

synchronized in a master/slave configuration. The generators synchronization is crucial for spatial 

multiplexing transmission. Each generator is connected to one Rx antenna embedded on a 4 meters 

long rail. This rail allows moving the transmissions antennas and thus analyzing different propagations 

channels.  

 

On the other hand, the reception is ensured by two signal and spectrum analyzers. The two 

instruments are also synchronized in a master/slave configuration. The RF outputs of each spectrum 

analyzer are connected to a switch itself connected to an 8-antenna MIMO prototype. This setup aims 

to test all the possible MIMO 2x2 configurations available with the 8-antenna prototype. Each antenna 

can be paired with any other antenna to ensure the reception. In other terms with 8 antennas on the 

prototype, we can create 28 different configurations for the transmission.  

 

All the instruments are remotely controlled via a simple laptop and the Matlab software. The 

computer is connected to the rail via an RS322 output. Every R&S instruments are also connected to 

the laptop via LAN cables. The program developed on Matlab automatically manages the transmission 

on the signal generators, the reception and the acquisition on the spectrum analyzer, and the 

movement of the two transmission antennas on the rail. This automation allows performing a great 

number of measurements to get statistically reliable results. 

 

 

(a) (b) (c) 

Figure 2-6: Pictures of (a) the rail, (b) the two Vector Signal generators and (c) the two Spectrum Analyzers. 
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 System Configuration 

The measurement method is based on the demodulation of an 802.11.AC signal with 2 TX antennas 

2 Rx antennas chosen among 8. As we intend to extract data on the MIMO performance, the received 

signal level won’t be sufficient to characterize the quality of the MIMO transmission. In this measuring 

method, demodulation and quantification of the system’s performance are performed. The Error 

Vector Magnitude (EVM) criterion is studied as a performance indicator for spatial multiplexing. 

 

Error vector magnitude (EVM) is a measure of modulation quality and accuracy as well as a 

performance criterion for wireless systems. It provides a good picture of the modulation as well as an 

evaluation of the performance of both transmitter and receiver. It also is often used as an alternative 

to bit error rate (BER) which is the percentage of bit errors that occur for a given number of bits 

transmitted. EVM measurements are used with modulation methods like QPSK and QAM, widely used 

in WLAN and LTE systems.   

 

EVM take into account all the phase and amplitude errors as well as noise. Widely represented in 

the I/Q plane, EVM illustrates the ideal symbol vector location and size compared to the actually 

measured vector such as presented in the figure 2-7. The difference between the two is the EVM, 

which can be measured on transmitter modulator or receiver demodulator. 

 

Mathematically EVM is the ratio of the average error vector power (Perror) to the average ideal 

reference vector power (Pideal) expressed in decibels, as presented in the equation [2-1]. The averages 

are taken over multiple symbol periods. 

𝐸𝑉𝑀𝑑𝐵 = 10 𝑙𝑜𝑔 (
𝑃𝑒𝑟𝑟𝑜𝑟

𝑃𝑖𝑑𝑒𝑎𝑙
)           eq. [2-1] 

 

The measured signal is demodulated and compared to the ideal signal that is produced 

mathematically from the received signal. The difference between the reference signal and the 

demodulated signal is the error. The vector signal analyzer displays a constellation diagram of the 

modulation. The ideal case is a single point, but in practice, there is a cluster of measured points around 

the ideal point. The more spread the points are, the poorer the EVM is. In concrete terms, a very low 

decibel value (for example - 40 dB) express a very low error on the modulation.  
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MIMO performance relies and depends on the propagation channel. In our situation, we want to 

develop a measurement method in a real environment, without the help of a reverberation chamber 

neither an anechoic chamber. The main problem is to control the environment in order to keep a 

propagation channel stable during the measurement phase. The setup was installed in a large room, 

naturally isolated from external radiation, especially in the Wi-Fi band where the tests were conducted. 

The configuration of the room is presented in the figure 2-8. The transmitter was at around 5 meters 

from the receivers in a line of sight (LOS) configuration.  

(a) (b) 

Figure 2-7: (a) Example of a constellation for LTE QPSK modulation and (b) Schema of the EVM 

represented by the difference between the positions of the ideal signal and the actual received signal. 

Figure 2-8: Schema of the top view of the measurement room. 



Chapter 2: Over-The-Air Measurement Systems for MIMO Antennas 44 

Figure 2-9: Dispersion among 3 identical EVM measurements for the antenna set 5 and the minimum EVM 

among all antennas sets. 

 Validation of the Measurement Setup 

In order to validate the measurement setup and the methodology, we wanted to evaluate the 

reproducibility of the measurement. We performed three times the test with an identical configuration 

to estimate the average dispersion between several measurements. This experiment focuses on the 

acquisition of the EVM in a MIMO 2x2 configuration. We use an 8-antenna terminal at the receivers 

where all the possible antenna pairs are tested (28 pairs) over 200 positions of the transmitter.  

 

The results for the three runs are presented in figure 2-9 and 2-10. Figure 2-9 presents the EVM 

per position on the rail for one set of antennas (Antenna set n°5 arbitrary selected among the 28 set 

available) and the EVM minimum acquired on the 28 antenna pairs. The 200 points measured are 

presented and correspond to one point every 1.5 cm. We can observe that the results are very similar 

for each run as much for one antenna set as for the EVM minimum. Moreover we observe that the 

antenna set n°5 achieve the best performances in several positions (14 positions). It is interesting to 

notice that the measured EVM can vary significantly between two adjacent positions. For instance the 

EVM change from -8 dB on the position 128 to -25 dB on the position 126. We observe a maximum 

dispersion of 8 dB measured at the position n° 5 of the antenna set 5. This result shows the importance 

to acquire a large number of point to insure the reliability of the measurement. 
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Figure 2-10: CDF of the dispersion among three identical for antennas set 5 and the minimum EVM among 

all antennas sets. 

The figure 2-10 presents the cumulative distributed function (CDF) for the full 200 points on the 

rail. To plot this graph, the measured value are sorted by ascending order and are traced in ordinate 

between 0 and 1, with the 1 representing 100 % of the sample. Thus we can observe than in 50 % of 

the measured situations, the EVM can be increased by at least 4.5 dB. We also observe a good fit 

among the three measurements.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To determine the dispersion among the measurements, we calculate the difference between the 

EVM maximum and minimum measured on each position within the three runs. Then we average the 

dispersion over the 200 measurements. The average dispersion is calculated and presented in table 2-

1 for the antenna set 5, the EVM minimum and finally for the whole measurement. The average 

dispersion is +/- 1.3 dB. The validation result shows a good accuracy of the measurement setup and 

confirms the reproducibility of the method. 

 

Table 2-1: Average dispersion calculated on the EVM for the R&S measurement setup. 

 

Antenna Configuration Average Dispersion 

Antenna Set n°5 (figure 2-9 and 2-10) +/- 0.85 dB 

EVM Min (figure 2-9 and 2-10) +/- 0.96 dB 

Average on 28 Antenna Sets +/- 1.3 dB 
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Despite the good accuracy demonstrated above the measurement setup suffers from several 

constraints. The instruments used to design the testbed are very expensive. Testing all the possible 

configuration through the OSP switch requires a very long acquisition time. The sequential 

characteristics of the acquisition require a very stable propagation channel to ensure accurate 

measurements. Working on a higher MIMO scale (4x4, 8x8) would require additional generators and 

analyzers increasing substantially the cost and the complexity of the installation.  

 

Having the opportunity to start a collaboration with EURECOM who develop an open-source 

implementation of the 4G standard, we decided to investigate the OpenAirInterface. By leveraging 

both OAI software and low-cost RF front-end to create another MIMO OTA measurement system. The 

systems provide the ability to perform synchronous 8 channel acquisitions. 

2.3. MIMO OTA Measurements with OpenAirInterface 

In this part, we describe the design of a custom testbed using existing Software Defined Radio 

(SDR) boards. The general purpose of this work is to develop an Over-The-Air (OTA) measurement 

system to characterize a MIMO access point. The main idea is to leverage the OpenAirInterface (OAI) 

platform developed by EURECOM [II-15], interfaced with ExpressMIMO2 PCI Express (PCIe) boards, 

which are the default software radio frontends for OAI. This "soft-emulator" runs on a simple Linux 

machine allowing for a strong cost reduction. The effectiveness of the system is confirmed by the 

reproducibility of the measurements, which have been obtained using a plastronic gateway with eight 

antennas. 

 OpenAirInterface  

EURECOM has created OpenAirInterface Software Alliance (OSA), a non-profit consortium to 

develop an ecosystem for open source software/hardware development for the core network (EPC) 

and access-network (EUTRAN) of 3GPP cellular networks. OAI is now a very interesting tool used by 

both industry and academia. The alliance is positioning itself as a communication mechanism between 

the two to bring academia closer to complex real-world systems controlled by major industrial players 

of the wireless industry. In the actual telecommunication context OAI answers to the need of an open-

source tool to help along research and development, prototyping and rapid proof-of-concept designs. 

A great number of industrial and academics are currently using OAI for diverse collaborative projects.  
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OAI can be used to build and customize an LTE base station and core network on a standard PC. It 

allows connecting a commercial UE to test different configurations and network setups and monitoring 

the network and mobile device in real-time. With OAI, the transceiver functionality is realized via a 

software radio frontend connected to a host computer for processing. The software can be used with 

standard RF laboratory equipment available in many labs in addition to custom RF hardware provided 

by EURECOM. Currently, the OAI platform includes a full software implementation of the 3GPP LTE 

protocol stack, both for the RAN and the EPC.  

 

The RF frontend designed by EURECOM named EXPRESSMIMO2 is presented in the figure 2-11. 

The board features 4 parallel RF chains with bandwidths up to 20 MHz (4x5 MHz, 2x10 MHz, and 1x20 

MHz) per chain covering a very large part of the RF spectrum in the range of 350-3800 MHz. It 

interconnects with a baseband computing engine using Gen1 1-way PCI-express. The latest version of 

the ExpressMIMO2 board has also built-in amplifiers, LNAs, and switches for FDD and TDD operations. 

Each transceiver is controlled individually. 

   

 

For now, only LTE have been developed on OAI, but the implementation of Wi-Fi protocols are 

under investigation. In this work, we decided to consider our 8-antenna prototype as an LTE femtocell 

and not as a router anymore. 

 

 

 

 

Figure 2-11: picture of the EXPRESSMIMO2 board [II-15]. 
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 Testbed Overview 

In this section, we present the overview of the low-cost measurement method for MIMO antenna 

performance assessment based on the open-source OAI initiative. The measurement setup aims to 

characterize various antenna configurations for MIMO application in a beamforming configuration. We 

intend to get the statistical result by performing a great number of measurements. The figure 2-12 

presents the architecture of the measurement system.  

 

The system consists of three ExpressMIMO2 boards running on common Linux machines with two 

acting as Evolved Node B (eNB) and one as User Equipment (UE). The computer also controls the 

movement of the rail. The eNB is in a static position at 4 meters from the center of the rail. On the 

transmission side (eNB) a prototype with 8 antennas at 2.6 GHz integrated into a 135x135x35mm 

femtocell is used. For the receiving part (UE) we use a simple monopole antenna at 2.6 GHz embedded 

on an automated 4 meters long rail to perform statistic measurements in different propagation 

channels.  

 

 

 

Figure 2-12: Overview of the OAI measurement setup. 
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 System Configuration 

The proposed setup is configured to operate in Time Division Duplexing (TDD) mode in an 8x1 

MISO and 1x1 SISO communications at 2.6 GHz. The program switches between each configuration for 

each position of the monopole on the rail. Measurements are performed in a LOS configuration with 

the transmitter at around 4 meters from the receiver. The testbed works in simulation mode with the 

platform Octave to test the signal processing algorithms before integrating them into the OAI real-time 

environment. In this setup, the Signal to Noise Ratio (SNR) criterion is studied as a performance 

indicator for beamforming. 

 

The eNB transmits 10 LTE OFDM frames with a 5 MHz bandwidth and a transmitted power of 10 

dBm. The power is chosen to ensure a good level of reception in the whole room while avoiding 

saturation of receiving RF chains. For each position on the rail we test and retrieve the SNR for both 

8x1 MISO and SISO configuration. 

 

 As we already said, MIMO performance relies and depend on the propagation channel. This 

measurement method is developed without any anechoic or reverberant chamber so we must control 

the environment to keep the propagation channel stable while measuring. The setup is installed in a 

simple room whose configuration is presented in figure 2-13. This time the room is subject to radiation 

in both Wi-Fi and LTE bands but not in the 2.6 GHz band which still is not used by commercial devices 

in France.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-13: Schema of the top view of the measurement room. 



Chapter 2: Over-The-Air Measurement Systems for MIMO Antennas 50 

Figure 2-14: Dispersion among 3 identical MISO 8x1 and SISO SNR measurements. 

  Validation of the measurement setup 

In order to determine the reproducibility of the test method, we repeated three times the same 

test case. These latter consists of measuring SNR values for 200 positions with a 3 cm step on the rail. 

The rail is going forward for the first 100 positions and backward for the last 100. At each position, we 

retrieve the SNR for the eight antennas in a SISO configuration as well as the SNR in a MISO 8x1 

configuration.  

 

The figure 2-14 presents the beamforming results (MISO 8x1) along with one antenna 

measurement (SISO antenna n°5) for the 200 positions corresponding to one point every 3 cm on the 

rail. We observe that whatever the case, there is a very low dispersion among the measurements. The 

symmetrical pattern of the curve is explained by the two-way movement on the rail. It is interesting to 

notice that the measured SNR can vary significantly between two adjacent positions. We observe a 

maximum dispersion of 30 dB measured at the position n° 94 of the antenna 5. This result shows the 

importance to acquire a large number of point to insure the reliability of the measurement. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-15 presents the Cumulative Distributed Function (CDF) for the full 200 measurements. To 

plot this graph, the measured value are sorted by ascending order and are traced in ordinate between 

0 and 1, with the 1 representing 100 % of the sample. Thus we can observe than in 50 % of the 

measured situations, the SNR can be increased by at least 6 dB with a beamforming configuration. We 

also observe that beamforming gain is very similar for the three run.  
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Figure 2-15: Beamforming Gain between SISO and MISO 8x1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Finally the table 2-2 details the average dispersion calculated over the 200 positions and the three 

runs. To determine the dispersion among the measurements, we calculate the difference between the 

EVM maximum and minimum measured on each position within the three runs. The average dispersion 

is +/- 1.1 dB for the antenna 5 and +/- 0.67 dB for the beamforming measurement. The accuracy is 

satisfying compared to the level of the measured SNR. This accuracy might be improved by adding 

filters to the system.  

Table 2-2: Average Dispersion for 8 antennas SISO and MISO 8x1 Beamforming. 

 

 

 

 

 

 

 

 

 

 

 

The results show that measurements are repeatable with good accuracy of the measurement 

setup and validate the reproducibility of the method. The system is low-cost, very flexible and faster 

Antenna Configuration Average Dispersion 

SISO - Antenna 1 +/- 1.6 dB 

SISO - Antenna 2 +/- 1.6 dB 

SISO - Antenna 3 +/- 1.3 dB 

SISO - Antenna 4 +/- 1.3 dB 

SISO - Antenna 5 +/- 1.1 dB 

SISO - Antenna 6 +/- 1.5 dB 

SISO - Antenna 7 +/- 1.3 dB 

SISO - Antenna 8 +/- 1.2 dB 

MISO 8x1 Beamforming +/- 0.67 dB 
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than the R&S measurement setup developed in the first part. For now, we work in a simulation 

environment, but the setup can be extended to a real-time configuration. 

2.4. Synthesis of MIMO OTA Measurement and Conclusions 

The wireless industry has developed several tools to assess the Over-The-Air performance of multi-

antennas systems. Unfortunately, those methods are extremely expensive while the need for low-cost 

experimentation is increasing especially for an academic purpose. In this chapter, we presented the 

experimental validation of two different measurement testbeds.  

The first one has been developed through classic industrial RF instrumentation from 

Rhodes&Schwartz. This setup has shown a good accuracy allied with relative simplicity of use. The 

main problem rests the costs, increasing proportionally with the number of antennas in the MIMO 

system under test. The second testbed has been designed leveraging the OAI, an open-source software 

defined radio. The setup presents a similar accuracy, a much lower cost, and much more flexibility 

thanks to its open-source aspect. The table 2-3 present a comparison between all the setup discussed 

in this chapter in terms of complexity, flexibility, and costs.  

 

Table 2-3: Overview of different OTA Measurement setups in terms of Cost, Complexity, and Flexibility. 

Method Complexity Flexibility Cost Accuracy 

Two-Stage Medium Medium Medium Medium 

Reverberant 

Chamber 
Medium Low Medium High 

Multi-Probes High Medium Very high  (>500 k€) 
High (very sensitive 

to calibration) 

Rhodes&Schwartz Low Low 

Medium  

(~120 k€ for 2x2 MIMO) 

(~430 k€ for 8x8 MIMO) 

Low  

(very sensitive to 

channel variations)  

OAI High High Low (~25 k€)  Medium 

 

For the next part of the work, we choose to exploit the OAI measurements setup to test and 

evaluate the performance of our MIMO access points.  
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In this chapter, we present a project structured around the design of antenna systems for Wi-Fi 

and LTE applications. We propose to realize a router constituted of 8 dual-band antennas. Each 

antenna must work in two frequency bands at 2.4 - 2.7 GHz and 5.15 - 5.8 GHz to cover the WLAN 

802.11n and 802.11ac standards and the LTE Time Division Duplexing (TDD) band at 2.6 GHz. The 

system aims to combine MIMO and diversity techniques in order to increase the performance of 

wireless communication in terms of signal quality, robustness, and throughput.  

 

In a first time, we realized a set of PCB on a classic FR4 substrate with a maximum surface of 

135x135 mm². We studied different types of antennas (Monopole, PIFA, and IFA) but we kept the same 

configuration (number of antenna and implementation) for each prototype. The second step of the 

project is to investigate plastronic technology to move antennas from the PCB to the plastic box. 

Indeed the volume occupied by the antenna is a major constraint and using the casing as support for 

antennas comes with several advantages (volume optimization, miniaturization, design flexibility...).  

 

The second objective was to print the antennas directly on the plastic of the router’s case in order 

to save space and optimizes volumes. Indeed, new technologies such as 3D printing [III-1], Laser 

Induced Metallization (LIM) [III-2] or Laser Direst Structuring (LDS) [III-3, III-4] open new degrees of 

freedom in antenna design. All along this project, we worked with Smart Plastic Product (S2P) [III-4], a 

technical center for plastics and composites who provides expertise and skills in terms of plastronic. 

Plastronic applies "to bring intelligence to plastic parts.” They provide among other, skills with Laser 

Direct Structuring (LDS) technology which is a fast and reliable process to print RF component on 

various plastics. As presented in figure 3-1, plastronic is already used in several industries for different 

kinds of application such as antennas, sensors or LED lightning for example. 

 

 

 

 

 

 

 

The interest was to test and validate the performance of the LDS technology, a metallization 

process on a plastic material that would allow us to print our antennas directly on the router's case. 

The realization of this type of part is done in three stages. First the element is injected with the 

Figure 3-1: Examples of realization with LDS technology [III-4]. 
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activable material in a standard mold, then a laser activates the zones which will be metallized, and 

finally, the metallization is done with a chemical process. To properly asses the LDS technology, we 

designed a box able to host antennas printed with LDS as well as the classic PCB. In order to 

characterize all those systems in free space, we performed S-parameters and radiation simulations on 

HFSS before measuring the system with a VNA and a Satimo Star Lab. To go further, we use the OAI 

measurement system presented in the previous chapter to study and compare systems in a realistic 

environment.  

 

The last objective of this work is to use and explore the benefits of directive antennas. Indeed the 

system possesses more antennas than needed and we want to take advantage of this property to focus 

the radiation toward the user. Thus the cumulated radiation pattern must cover every direction.  

3.1. Multi Antenna Systems 

MIMO technology has emerged as a key technology for the high-data-rate wireless system. Many 

techniques have been developed to exploit multi antenna systems from the use of diversity [III-5] to 

more complex techniques such as spatial multiplexing or beamforming. Nowadays, several MIMO 

systems combine spatial multiplexing with space-time code (STC) or beamforming presented below. 

 MIMO Systems and characteristics 

When it comes to MIMO systems, the usual way to characterize antennas becomes inadequate. 

Indeed antennas are defined by a set of parameters such as the efficiency, the matching or the 

radiation pattern. The emergence of multi-antenna systems requires developing new ways to 

characterize antennas such as correlation coefficient and multiplexing efficiency. MIMO (Multiple 

Input Multiple Output) techniques use antenna array at the receiver and the transmitter to increase 

channel capacity [III-6], the signal to noise ratio, the throughput. The increased performance compared 

to SISO (Single Input Single Output) system can be seen more concretely as better coverage or a 

reduced transmitted power. Figure 3-2 illustrates the operating principle of a MIMO system. The 

received signal Rx (combination of Rx1 and Rx2) can be written as follows: 

 

         Rx = H.Tx + n      eq. [3-1]          with H = [
h11 h12
h21 h22

]   and n the noise 
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The independence of the signals received by the antennas of a system is estimated in terms of 

correlation coefficient or correlation envelope. The correlation envelope is the square root of the 

correlation coefficient. This criterion is the most used to characterize MIMO systems. The correlation 

between two antennas (element 1 and element 2) can be calculated according to [III-7], from S-

Parameters in eq. [3-2] but it can also be calculated from measured radiated fields [III-8, III-9]. 

 

                                                                                                 eq. [3-2] 

 

 

It can be shown that the distance between antennas has a strong relationship to the overall spatial 

correlation [III-10, III-11]. For example, if two omnidirectional antennas with the same polarization are 

placed in very close one from each other, there will probably be highly correlated. Unfortunately, many 

portable MIMO devices are physically small, thus limiting the antenna separation to less than a 

wavelength. There are many solutions to achieve a low spatial correlation between two closely spaced 

antennas such as cross polarizing the antennas [III-12] or bringing pattern diversity between the 

antennas. 

 Diversity Techniques 

Diversity techniques emerged to overcome the signal fading which is the main cause of a bad 

wireless transmission [III-13]. The global idea is to transmit the signal in several independent paths, his 

way if one path has a very weak signal, another path can compensate and take over the communication 

[III-14]. This technique can optimize the SNR by choosing the best path among all the paths. Diversity 

in this simple aspect is often used for MISO or SIMO systems. This diversity can be achieved with 

different solutions. The most spread in wireless communication is the spatial diversity, obtained by 

Figure 3-2: Schema of theoretical MIMO channel. 
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physically spacing as much as possible antennas from each other. Another solution is the polarization 

diversity which makes possible to strongly decorrelate two identical signals. Finally, the pattern 

diversity can be used by choosing antennas with different radiation pattern. There might be other 

diversity techniques that are not explained here.  

 

On the transmission side, the space-time code (STC) is a method employed to improve the 

reliability of the communication [III-15]. This signal processing technique consists in transmitting the 

same data on several antennas according to a specific repartition and repetition. This redundancy aims 

to exploit spatial diversity by creating independent fading conditions for each path. This method does 

not directly increase the throughput but allows the use of a higher modulation scheme, a better 

spectral efficiency or a lower transmitting power by increasing the transmission quality. The Alamouti 

STC is the most spread thanks to its orthogonal property [III-16]. 

 

These diversity techniques developed on antennas are used with combination techniques in the 

processing part of the receiver [III-17]. Each replica of the received signal is combined to improve 

performance. Several methods have been developed to combine the signals received. The Selection 

Combining (SC) method is easy to implement and very low-cost. Indeed it is the signal with the highest 

received power or the highest SNR which is selected among the different received signal. In the method 

of Maximum Ratio Combining (MRC) all received signals are weighted according to their signal-to-noise 

ratio and then summed. This technique allows for the optimum reception because all the received 

signals are used. This method can give a good SNR even if none of the paths gives a good signal, but it 

is complex to implement and expensive.  Finally, in the Equal Gain Combing (EGC) method the branch 

weights are all set to unity, but the signals from each branch are co-phased to provide equal gain 

combining diversity. This method allows the receiver to exploit signals that are simultaneously received 

on each branch. 

 

The gain in diversity is one of the most important parameters of a diversity system. It is defined as 

the improvement of the signal-to-noise ratio of the combined signals with respect to the signal 

received by an antenna alone. The diversity gain is commonly illustrated with the figure 3-3 [III-18]. 
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Figure 3-3: Illustration of the diversity Gain [III-18]. 

Figure 3-4: Diversity Gain as a function of correlation coefficient [III-19]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

The correlation coefficient presented in the previous section is important because it has a direct 

influence on the diversity gain. Diversity techniques need to be properly implemented at the antenna 

level in order to have an efficient multi antenna system. The figure 3-4 [III-18] presents the diversity 

gain as a function of correlation coefficient when the selection combining method is applied. We can 

see that the diversity gain decrease when the correlation coefficient tends to one. In a classic diversity 

system, the objective is to achieve a correlation coefficient below 0.707 (ECC below 0.5) because the 

diversity gain decreases rapidly beyond this value.  
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eq. [3-3] 

 Spatial Multiplexing 

In a MIMO system with spatial multiplexing, different data are transmitted over each antennas 

using the same resource in both frequency and time. The channel capacity and global throughput are 

then optimized and multiplied by the number of transmitting antennas. According to the Shannon 

capacity expression in eq. [3-1] we should have a 3 dB increase of the SNR when doubling the number 

of antennas at the transmitter.   

C = ∑ BW 𝑙𝑜𝑔2(1 + SNRi) 

min(M,N)

i=1

 

 

Where BW is the bandwidth, M and N the number of antennas at the receiver and the transmitter, 

respectively, and SNR represents the signal to noise ratio. 

 

This method is easy to implement at the transmitter but needs a very complex decoding system at 

the receiver. Indeed, each Rx antenna receives a superposition of the data transmitted by each Tx 

antenna. The receiver must dissociate those data to reconstruct the initial signal while suppressing 

interferences caused by the superposition. To achieve this reconstruction the receiver needs at least 

as much antenna than the transmitter. The figure 3-5 [III-19] illustrates a spatial multiplexing 

communication with 3 antennas at both transceiver and receiver. On the schema, each colored arrows 

represent a set of data simultaneously transmitted over the 3 antennas. The throughput is multiplied 

by three compared to a SISO system. 

 

 

 

 

 

 

 

 

 

Figure 3-5: Illustration of MIMO Spatial Multiplexing with 3 antennas at the transeiver and receiver [III-19]. 

 

Spatial multiplexing can be used to communicate either with one or several users [III-20]. Single-

user MIMO (SU-MIMO) requires multiple antennas both at the user equipment and the access point 

to spatially multiplex channels toward a single user. The main drawback is that the complex signal 
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Figure 3-6: Schematic illustration of beamforming for one and two users [III-19]. 

processing is done on the receiver’s side, limiting the benefits of the technology for small devices. 

Multi-user MIMO (MU-MIMO) enable a multi-antenna access point to simultaneously transmit 

multiple streams to different devices, instead of just one single device as in SU-MIMO. The user 

equipment does not need to have multiple antennas to benefits the technology. MU-MIMO does not 

increase peak user throughput, but it does increase average user throughput and sector capacity.  

 Beamforming  

Beamforming is the ability to adapt the radiation pattern of an antenna array to a particular 

scenario as illustrated in the figure 3-6. In contrast with STC or spatial multiplexing, the beamforming 

uses the knowledge of the different channel to optimize and focus the transmission in a very specific 

direction [III-21]. This technique is very adapted to low mobility system such as base station to base 

station communication link. TDD mode is also adapted because information about the downlink 

channel (DL), also called Channel State Information at the Transmitter (CSIT), can be obtained thanks 

to an estimation of the uplink channel (UL) [III-22]. Indeed the TDD technique relies on channel 

reciprocity between UL and DL. Channel reciprocity means that the BS can acquire knowledge of the 

channel just through UL channel estimates. The beamforming method allows reducing interferences 

generated by other cells by focusing the transmitted power in precise directions, improving at the 

same time the transmission quality and robustness. 

 

 

 

 

 

 

 

 

Beamforming can be implemented in different ways. The beamforming is often seen as a lobe of 

power transmitted in a specific direction thanks to relative amplitude and phase shifts applied to each 

antenna. Amplitude and phase are electronically chosen to increase radiation in a particular direction 

while cancelling radiation in undesired directions. This solution generally doesn’t consider the 

environment.  

 

A second solution to implement beamforming in a multi antenna system consists of using 

precoding techniques.  The time reversal or conjugate beamforming the simplest form of precoding 
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Figure 3-7: Illustration of the Massive MIMO concept [III-21]. 

compared to Minimum Mean Square Error (MMSE) or zero-forcing beamforming (ZF). In this thesis, 

we will use time reversal beamforming to perform MISO measurements. This signal processing method 

was originally used in optic to focus waves.  

 Massive MIMO Systems 

Massive MIMO refers to antennas array with tens or hundreds of antennas. The need to increase 

efficiency and capacity of wireless communication conducted the industry to widely study this 

technique for the future 5G network in [III-21] and [III-23] to [III-26]. As shown in figure 3-7, massive 

MIMO can be considered as a form of beamforming or an enhanced MU-MIMO connecting together 

tens of devices. It aims to create base stations that simultaneously communicate with a large number 

of users over the same frequency resource.  

 

The design of massive MIMO systems is really challenging in many aspects. In terms of hardware 

implementation, the problematic is to pack as much RF chains as antennas in a small space. The 

temperature from the power dissipation is also a concern. A second issue is the mutual coupling among 

antennas of the array because antennas could be compactly arranged in such systems. Finally, the cost 

of such systems must be considered regarding the increased hardware and computation needed for 

those very large arrays. 

 

 

 

 

 

 

 

 

 

 

 

 

Different structures have been proposed for massive MIMO system. The figure 3-8 (a) presents a 

2D T-shaped antenna array [III-23] with 160 dual polarized λ/2 patch elements. Figure 3-8 (b) shows a 

128-antenna base station consisting of four stacked double polarized 16 element circular patch arrays 

[III-22]. 
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Figure 3-8: Examples of (a) T-shaped [III-23] and (b) circular [III-22] Massive MIMO antenna structures. 

 

 

 

 

 

 

 

 

 

(a)         (b) 

 

 

3.2. Design of 8-Antenna Prototypes 

The original idea was to improve the RF systems integrated into the Orange Livebox after receiving 

several negative customers’ feedbacks regarding the coverage and the throughput of their equipment. 

By looking into the last version of the Livebox, we were able to notice a few flaws in the current system 

and extracting some research and development axis around MIMO antennas system for this type of 

device and application. Along the month we extended our work to routers, extenders, and small cell 

applications. Livebox 2 being our starting point we challenged ourselves by thinking about of new 

Livebox concept, smaller and integrating the maximum number of antenna defined in the WLAN 

standard.  

 

The first problem raised by those constraints was to optimize the volume of the system. To reduce 

the volume of the RF system, we choose to test the LDS technology which allows printing antennas 

directly on the plastic box containing the system. The first step was to design a box adapted to the 

Laser Direct Structuring (LDS) technology. We wanted to realize a compact box but with dimensions 

realistic and sufficient to integrate 8 antennas. We arbitrarily opted for maximum dimensions of 

135x135x35 mm3. These dimensions are significantly smaller than the Livebox Orange currently on the 

market (240x170x40 mm3) as we can see in the picture 3-9.  

 

The main objective of this study is to design a system for dual-band WIFI. The target bands are 2.4-

2.48 GHz (3.3% relative bandwidth) for the low band and 5.15-5.725 GHz (10% relative bandwidth) for 

the high band. Our antenna structure must have a correct level of performance (total efficiency higher 
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Figure 3-9: Box prototype (left) and actual Livebox from Orange (right). 

than 50%), very compact size and a low cost. We focus our design on a planar FR4 antenna to fulfill all 

these criteria. We studied two low-cost radiating elements printed on the PCB and their 

implementation on a gateway PCB. In the same way, we studied a 3D dual-band PIFA antenna. The 

position and interaction between 8 elements are studied and characterized. Each antenna needs to 

operate in two frequency bands at 2.4GHz and 5GHz to comply with the IEEE802.11n and IEEE802.11ac 

standard. When multiple antennas are placed together on a printed circuit board (PCB), the coupling 

effects and the antenna correlation have an important impact on the system performance.  

 

 

 

 

 

 

 

 

 

 

 Box Design for LDS Technology 

We decided to set the size of the box to 135x135 mm² to impose volume constraints to our design. 

We realized two chamfers at 45° on each front corner of the box for aesthetic purpose and to provide 

an additional orientation to support the antennas. The box is constituted of two part (top and bottom) 

fixed together via plastic screws. The top has been designed to host up to eight printed antennas while 

the bottom has been designed to support a classic PCB. Following the first exchanges by mail and 

telephone with an S2P engineer, we were able to understand some constraints related to the Laser 

Direct Structuring (LDS) method. The main problem was whether connectors (WFL or UFL) could be 

welded on the plastics used. Some materials offered us this possibility in return for a rougher surface 

and a less aesthetic general rendering.  

 

 The first version of the prototype is presented in figure 3-10. We designed this first box with three 

sides tilted. By using tilted sides, we intended to create more surfaces to print antennas with LDS 

technology, and it was supposed to facilitate laser activation. The back side of the box has been kept 

straight to fit with the current design of the Livebox where this face is dedicated to the different 

connectors (Alimentation, Ethernet, USB, ADSL, On/Off switch...).  
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After the first discussion with S2P in charge of the realization of the prototype, we designed the 

second version of the box according to the various constraints of the technology. The main 

modification was to straighten the sides of the box as presented in figure 3-11, 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-10: First version of the box prototype: (a) trimetric view, (b) top view, (c) front view and (d) side view. 

Figure 3-11: Second version of the box prototype: (a) trimetric view, (b) top view, (c) front view and (d) side view. 
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Figure 3-12: Final version of the box prototype: (a) trimetric view, (b) top view, (c) front view and (d) side view. 

Figure 3-13: Pictures of the prototype with and without the black conductive paint. 

Finally, with the help and expertise of S2P engineers, we compromise on a definitive design for the 

box presented in figure 3-12. The sides are slightly tilted to ease the laser activation of surfaces. Final 

touches were added for the sake of esthetics. Figure 3-13 shows pictures of the simple, transparent 

prototype and the black prototype covered with the conductive paint. 
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Figure 3-14: Layout of the hook shaped antenna 

(Dimensions in mm). 

Figure 3-15: Layout of the 8 antenna gateway 

(Dimensions in mm). 

 Hook Shaped Antenna printed on a PCB substrate  

The first 8-antenna prototype has been realized with a hook shaped antenna. The layout of the 

studied antenna is presented in Fig. 3-14. This antenna is a monopole printed on an FR4 substrate of 

thickness h = 1.6 mm, relative dielectric permittivity ɛr = 4.4 and dielectric loss tangent tanδ = 0.02. The 

structure is fed by a coplanar waveguide grounded (CPWG) 50 Ω line. The fed line is 1.4 mm wide and 

11.5 mm long, the gap is 0.3mm width and grounded via holes are placed all along the line. The dual-

band effect is obtained thanks to the two branch of this antenna. The upper branch is 2 mm wide and 

controls the resonance at 2.4 GHz, whereas the lower one is 1 mm wide and determines the higher 

frequency band at 5GHz. Each branch is folded in order to reduce the global size of the antenna. In the 

end, it is a compact device of 12.1x8.5mm2 (λ0/10*λ0/14 at 2.4GHz). The matching can be improved by 

tuning the width of each monopole. Both resonances can be adjusted independently, by changing the 

length of the monopoles L1 = 5.2 mm for the low-band and L2 = 4.9 mm for the high-band.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As presented in figure 3-16, the simulation of the antenna matched the two WLAN band with a -6 

dB criteria. The simulated radiation patterns of the hook antenna presented in figure 3-17 show a 

realized gain of 1 dB at 2.4 GHz and 2.3 dB at 5.15 GHz. The total simulated efficiency is 67% in the low 

band and 89% in the high band. This structure fulfills our specification regarding performance and size. 
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Figure 3-16: Simulated reflection coefficient for the hook antenna alone. 

(a) (b) 

Figure 3-17: Hook antenna simulated 3D radiation pattern at (a) 2.4 GHz and (b) 5.15 GHz. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The single structure presented has been duplicated to design a system with 8 antennas. The form 

factors of the WIFI gateway imply that the overall size of the PCB is 135x135 mm². As shown in figure 

3-15, different antennas orientations are chosen to optimize S-parameters and particularly the 

isolation between each element. The PCB is not symmetrical toward y-axis in order to find the best 

configuration considering matching and isolation of each antenna. Simulation presented in Figure 3-

18 shows that each antenna is matched on the target bands with a -6 dB criteria.  
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Figure 3-18: Simulated reflection coefficient of the 8 hook shaped antennas. 

Figure 3-19: Picture of the realized 8 hook antenna prototype. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The prototype presented in figure 3-19 has been realized on an FR4 epoxy substrate. This prototype 

will be referred as “PCB 1”. Each antenna is fed using U-FL connector. A 20cm cable is clipped at each 

connector. A VNA is used to measure the S-Parameters at the output of the cables. Antennas 1 to 4 is 

measured first as we used 4 ports VNA, while the other 4 are connected with a 50 Ω load. Then 

antennas 5 to 8 are measured using the same procedure.  

 

 

 

 

 

 

 

 

 

 

 

 

From Figure 3-20, we observed that the measurement shows better results than the simulated one 

in figure 3-18. In the lower frequency band, the reflection coefficients of each antenna match the 

simulation. Moreover, in the higher frequency band, the reflection coefficient are shifted to higher 

frequency and all 8 antennas have a much better matching than the ones simulated. These results 
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Figure 3-20: Measured reflection coefficient of the 8 hook shaped antennas. 

could be explained by the additional loss resulting from the U-FL cables and the FR4 substrate’s 

electromagnetic characteristics. Indeed the dielectric permittivity can vary with frequency, thus the 

permittivity around 5 GHz must be lower than the permittivity used in simulation. Oscillations 

observed in the higher band are due to the cables. Those cables were not includes in the simulation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Coupling and ECC between all antennas are shown in table 3-1. The transmission coefficient is 

always higher than 12 dB in the 5 GHz band while there is a minimum of isolation of 8.4 dB between 

antennas 1 and 2 in the low band. This table highlights the influence of the different antenna 

orientations presented in the figure 3-15. Antennas n°1 and n°2 are separated by the same distance 

than antenna n°7 and n°8 but the isolation between them is 2 dB higher in the 2.4 GHz band. The 

measured worst coupling are a bit high due to the lack of space available in the terminal.  

 

The ECC, calculated with the equation [3-2], are always below 0.5 in both bands with a maximum 

of 0.343 between antennas 7 and 8 in the low band and a maximum of 0.312 between antennas 6 and 

7 in the high band. The measured values of coupling and correlation are suitable for our application. 

Despite the high worst measured coupling, the calculated ECC is always under the 0.5 threshold  
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Table 3-1: Measured worst coupling and worst ECC for the 8 hook shaped antennas. 

Antenna 
Low band (2.4GHz) High band (5GHz) 

Worst Coupling Worst ECC Worst Coupling Worst ECC 

N°1 -8.6 dB (N°2) 0.091 (N°2) -15.2 dB (N°2) 0.158 (N°2) 

N°2 -8.6 dB (N°1) 0.275 (N°3) -12.5 dB (N°3) 0.279 (N°3) 

N°3 -11.3 dB (N°4) 0.275 (N°2) -12.5 dB (N°2) 0.309 (N°4) 

N°4 -10.8 dB (N°5) 0.330 (N°5) -15.4 dB (N°3) 0.309 (N°3) 

N°5 -10.8 dB (N°4) 0.330 (N°4) -12.2 dB (N°6) 0.175 (N°6) 

N°6 -10 dB (N°7) 0.269 (N°7) -12.2 dB (N°5) 0.312 (N°7) 

N°7 -10 dB (N°6) 0.343 (N°8) - 13.9 dB (N°6) 0.312 (N°6) 

N°8 -11.8 dB (N°7) 0.343 (N°7) -15.9 dB (N°7) 0.211 (N°7) 

  

In order to verify the radiation performance of our system, we measure it using a Satimo Starlab 

station. The efficiency values and the radiation diagram of the 8 antennas are collected. The table 3-2 

below shows the total efficiency and gain for each antenna in both bands. Average efficiency of 45 % 

(-3.44 dB) and 55 % (-2.63 dB) are obtained in the low and high band. 
 

Table 3-2: Gain and efficiency for the 8 hook shaped antennas in the lower and upper band. 

Antenna 
2,4 GHz 5,15 GHz 

Gain (dB) Efficiency (%) Gain (dB) Efficiency (%) 

N°1 2.45 51.8 2.97 57.1 

N°2 0.88 41.6 2.22 51.1 

N°3 1.01 44.9 1.51 48.0 

N°4 0.67 41.7 2.01 61.2 

N°5 1.30 42.0 2.68 61.0 

N°6 0.91 47.3 0.75 43.6 

N°7 1.78 45.5 1.48 50.7 

N°8 1.74 47.3 6.19 64.4 

Average 1.38 45.3 2.80 54.6 

 

Radiation patterns give interesting information on the radiation diversity of our system. Intuitively, 

we are looking for our 8 antennas to radiate as much as possible in different directions with different 

polarizations. Ideally, combining their different contributions, we would like to avoid any deep null in 

every direction. The radiation patterns measured are omnidirectional but with random variations in 
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every direction and thus are not presented because they offer very limited information regarding the 

gateway performance. 

 Printed IFA with PCB technology 

The second prototype was realized with eight dual-bands planar IFA. The layout of the antenna is 

presented in the figure 3-21. Antennas are printed on the same FR4 substrate (h = 1.6 mm, εr = 4.4, 

tanδ = 0.02) than the previous prototype. This planar IFA is fed by a CPWG 50 Ω line. The fed line is 1.4 

mm wide and 11.5 mm long, the gap is 0.3mm width and grounded via holes are placed all along the 

line. The antenna has a compact size of 16x9 mm² (λ0/8*λ0/14 at 2.4GHz). The upper branch controlling 

the lower frequency at 2.4 GHz is folded to keep a compact size. The second resonance at 5 GHz is 

obtained thanks to the matching line and its coupling with the main radiator. The matching can be 

improved by tuning the width (2 mm in this design) of the line. The lower resonance can easily be tune 

by changing the length of the higher branch. The second resonance can be adjusted by changing the 

distance between the matching line and the upper branch or the feeding line.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As presented in figure 3-22, the simulation of the antenna matched the low band with a -6 dB 

criteria and the high band with a -6 dB criteria. The simulated radiation patterns of the IFA are 

presented in figure 3-23 show a realized gain of 2.3 dB at 2.4 GHz and 3.7 dB at 5.15 GHz. The total 

simulated efficiency is around 90 % in both bands. This structure fulfills our specification regarding 

performance and size. 

Figure 3-21: Layout of the Printed Inverted F Antenna. 
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Figure 3-22: Simulated reflection coefficient for the IFA alone. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The single structure presented above, has been duplicated to design a system with 8 antennas with 

the same form factors and dimension (135x135 mm²) than the last PCB. This prototype will be referred 

as “PCB 2”. As shown in figure 3-24, the prototype has been realized on an FR4 epoxy substrate with 

each antenna fed using U-FL connector toward a 20 cm cable clipped at each connector. Once again, 

different antennas orientations are chosen to optimize S-parameters, and the same antenna 

implementation has been used to have an accurate comparison between prototypes.  

 

 

(a) (b) 

Figure 3-23: IFA simulated 3D radiation pattern at (a) 2.4 GHz and (b) 5.15 GHz. 
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Figure 3-25: Simulated reflection coefficient for the 8 planar IFA. 

 

Figure 3-24: Pictures of the realized 8 planar IFA prototype. 

 

 

 

 

 

 

 

 

 

 

Simulation presented in Figure 3-25 shows that each antenna is matched on the target bands with 

a -6 dB criteria in the low band and a -6 dB criteria in the higher band. Measurement presented in 

figure 3-26 match the simulation with a good agreement.  
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Figure 3-26: Measured reflection coefficient for the 8 planar IFA. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Coupling between antennas presented in table 3-3 shown that isolation is always higher than 10 dB 

in the 5 GHz band, with a minimum of isolation of 8.8 dB between antennas 5 and 6 in the low band. 

The measured worst coupling are a bit high due to the lack of space available in the terminal. The worst 

ECC presented in the same table is always lower than 0.5 with a maximum of 0.402 between antennas 

3 and 4 in the low band and a maximum of 0.253 between antennas 1 and 2 in the 5 GHz band. The 

measured values of coupling and correlation are suitable for our application. Despite the high worst 

measured coupling, the calculated ECC is always under the 0.5 threshold 

 

Table 3-3: Measured worst coupling and worst ECC for the 8 planar IFA. 

Antenna 
Low band (2.4GHz) High band (5GHz) 

Worst Coupling Worst ECC Worst Coupling Worst ECC 

N°1 -12.4 dB (N°2) 0.115 (N°2) -12.4 dB (N°2) 0.253 (N°2) 

N°2 -12.1 dB (N°3) 0.171 (N°3) -24.4 dB (N°3) 0.253 (N°1) 

N°3 -9.6 dB (N°4) 0.402 (N°4) -19.5 dB (N°4) 0.089 (N°1) 

N°4 -9.6 dB (N°3) 0.402 (N°3) -19.5 dB (N°3) 0.049 (N°3) 

N°5 -8.8 dB (N°6) 0.330 (N°6) -10.9 dB (N°6) 0.107 (N°6) 

N°6 -12.2 dB (N°7) 0.330 (N°5) -18.4 dB (N°7) 0.107 (N°5) 

N°7 -15.8 dB (N°8) 0.224 (N°6) -33.7 dB (N°8) 0.037 (N°5) 

 N°8 -15.8 dB (N°7) 0.146 (N°7) -33.7 dB (N°7) 0.024 (N°7) 

 



Chapter 3: MIMO Antenna Design for Multi-standard Gateway / Wi-Fi, LTE, 5G 77 

Radiation measurements are performed for each antenna of this prototype. The table 3-4 below 

presents the total efficiency and gain for each antenna in both bands. Average efficiency of 51% (-2.88 

dB) and 62% (-2.07 dB) are obtained in the low and high band. 

 

Table 3-4: Gain and efficiency for the 8 planar IFA in the lower and upper band. 

Antenna 
2,4 GHz 5,15 GHz 

Gain (dB) Efficiency (%) Gain (dB) Efficiency (%) 

N°1 1.78 54.0 3.40 74.1 

N°2 2.50 58.3 0.88 52.7 

N°3 2.01 61.7 1.81 55.2 

N°4 2.60 60.0 2.98 61.5 

N°5 0.61 41.4 2.30 54.0 

N°6 1.24 44.7 3.39 65.8 

N°7 1.41 38.2 3.46 69.5 

N°8 2.21 53.6 3.83 63.8 

Average 1.84 51.5 2.85 62.1 

 

 PIFA with PCB technology 

The third prototype is realized with eight dual-bands 3D PIFA. The design of the antenna is 

presented in figure 3-27. The antenna consists of patch plane, a shorting plate connected to the ground 

plane and feeding plate connected to a CPWG line. The dimensions of the PIFA are 20×8 mm with the 

patch located 8 mm above PCB. The antenna is cut out of copper, fold at the good dimension and then 

welded on the ground plane. The L-shaped slot is introduced on the patch plane in order to get dual 

resonance. The patch and the shorting pin dimensions determine the lower frequency at 2.4 GHz. The 

second resonance at 5 GHz is controlled with the L-shaped slot. The matching can be improved by 

changing the position of the shorting pin and the height of the gap between the patch and the ground 

plane. 
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Figure 3-28: Simulated reflection coefficient for the PIFA alone. 

 

 

 

 

 

 

 

 

 

 

 

As shown in figure 3-28, the simulation of the antenna matched the low band with a -6 dB criteria 

and the high band with a -6 dB criteria. The simulated radiation patterns of the PIFA are presented in 

figure 3-29 show a realized gain of 3.9 dB at 2.4 GHz and 5.5 dB at 5.15 GHz. The total simulated 

efficiency is around 95 % in both bands. This structure fulfills our specification regarding performance 

and size. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-27: Layout of the PIFA in (a) top view and (b) front view. 
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Figure 3-30: Picture of the 8 PIFA prototype. 

 

 

 

 

 

 

 

 

 

 

 

 

The single structure has been duplicated to design a system with 8 antennas with the same form 

factors and dimension (135x135 mm²) than the two prototype presented above. This prototype will be 

referred as “PCB 3”. As shown in figure 3-30, the prototype has been realized on an FR4 epoxy 

substrate with each antenna fed using U-FL connector toward a 20 cm cable clipped at each connector. 

Once again, different antennas orientations are chosen to optimize S-parameters, and the same 

antenna implementation has been used to have an accurate comparison between prototypes.  

 

 

 

 

 

 

 

 

 

 

 

Simulation presented in Figure 3-31 shows that each antenna is matched on the target bands with 

a -6 dB criteria in the low band and a -6 dB criteria in the higher band. We notice that the symmetrical 

characteristic of this prototype is seen is the reflection coefficient simulation. Indeed, S11 and S88 are 

identical as well as S22 with S77, S33 with S66 and S44 with S55. Measurement presented in figure 3-32 

match the simulation with a good agreement.  

 

(a) (b) 

Figure 3-29: PIFA simulated 3D radiation pattern at (a) 2.4 GHz and (b) 5.15 GHz. 



Chapter 3: MIMO Antenna Design for Multi-standard Gateway / Wi-Fi, LTE, 5G 80 

Figure 3-31: Simulated reflection coefficient for the 8 PIFA. 

Figure 3-32: Measured reflection coefficient for the 8 PIFA. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Coupling between antennas presented in table 3-5 shown that isolation is always higher than 10 dB 

in the 5 GHz band, with a minimum of isolation of 7.5 dB between antennas 3 and 4 as well as antennas 

5 and 6 in the low band. The measured worst coupling are a bit high due to the lack of space available 

in the terminal. The worst ECC presented in the same table is always lower than 0.5 with a maximum 

of 0.337 between antennas 5 and 6 in the low band and a maximum of 0.130 between antennas 4 and 

5 in the 5 GHz band. The measured values of coupling and correlation are suitable for our application. 
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Table 3-5: Measured worst isolation and worst ECC for the 8 PIFA. 

Antenna 
Low band (2.4GHz) High band (5GHz) 

Worst Coupling Worst ECC Worst Coupling Worst ECC 

N°1 -14.7 dB (N°2) 0.145 (N°2) -16.7 dB (N°2) 0.058 (N°2) 

N°2 -11.0 dB (N°3) 0.145 (N°1) -14.7 dB (N°3) 0.058 (N°1) 

N°3 -7.5 dB (N°4) 0.310 (N°4) -14.7 dB (N°2) 0.034 (N°4) 

N°4 -7.5 dB (N°3) 0.310 (N°3) -13.8 dB (N°5) 0.130 (N°5) 

N°5 -7.5 dB (N°6) 0.337 (N°6) -13.8 dB (N°4) 0.130 (N°4) 

N°6 -7.5 dB (N°5) 0.337 (N°5) -14.8 dB (N°7) 0.071 (N°7) 

N°7 -11.0 dB (N°6) 0.154 (N°6) -14.8 dB (N°6) 0.071 (N°6) 

N°8 -14.6 dB (N°7) 0.061 (N°7) -16.7 dB (N°7) 0.029 (N°6) 

 

Radiation measurements are performed for each antenna of this prototype. The table 3-6 below 

presents the total efficiency and gain for each antenna in both bands. Average efficiency of 52 % (-2.86 

dB) and 54 % (-2.70 dB) are obtained in the low and high band. 

 

Table 3-6: Gain and efficiency for the 8 PIFA in the lower and upper band. 

Antenna 
2,4 GHz 5,15 GHz 

Gain (dB) Efficiency (%) Gain (dB) Efficiency (%) 

N°1 3.01 67.8 4.08 61.7 

N°2 2.30 55.0 2.85 56.1 

N°3 1.52 48.2 3.27 54.1 

N°4 1.77 49.4 4.89 54.3 

N°5 2.40 49.8 4.48 52.4 

N°6 1.45 49.3 3.28 51.5 

N°7 1.71 56.6 3.14 60.8 

N°8 2.46 38.0 3.12 38.5 

Average 2.11 51.8 3.70 53.7 
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Figure 3-33: Pictures of the mixed prototype. 

 Mixed prototype with hook shaped antennas, PIFA and IFA on PCB technology 

The next prototype presented in figure 3-33 is a combination of the first three realizations. The 

idea is to get a maximum of diversity in the antenna system by using different kind of antenna: 3 hook-

shaped antennas, 3 PIFA and 2 IFA. This prototype represents the ideal system for mainstream routers, 

and it will be used as a reference for the performance assessment of LDS prototypes. This prototype 

has been designed to work with Wi-Fi bandwidth as well as in the 2.6 GHz LTE TDD bandwidth.  

 

The figure 3-33 presents the realized prototype on an FR4 epoxy substrate with each antenna fed 

using U-FL connector toward a 30 cm cable clipped at each connector. This prototype will be referred 

as “PCB 4”. Once again, different antennas orientations are chosen to optimize S-parameters, and the 

same antenna implementation has been used to have an accurate comparison between prototypes. 

 

 

 

 

 

 

 

 

 

 

 

 

Simulation presented in Figure 3-34 shows that each antenna is matched on the target bands with 

a -6 dB criteria in the low band whereas antennas 1, 3, 4 and 5 shows a mismatch in the higher band. 

The antennas 2, 6, 7 and 8 match The 5 GHz band with a -6 dB criteria. We observe similarities in the 

reflection coefficient for antennas of the same type. Indeed, the three hook antennas (1, 4 and 7) 

present equivalent return loss as well as the three printed IFA (3, 5 and 8). Finally the two PIFA present 

similar reflection coefficient in the low band but a significant difference in the 5 GHz band. This 

difference can be explain by the position of the two antennas regarding the ground plane and the other 

antennas. 
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Figure 3-35: Measured reflection coefficient for the 8 antennas of the mixed prototype. 

Figure 3-34: Simulated reflection coefficient for the 8 antennas of the mixed prototype. 

 

 

 

 

 

 

 

 

 

 

 

 

 

The measured matching presented in figure 3-35 is better than the simulated one. The additional 

losses in the cables along with the variations of the substrate dielectric characteristics might explain 

the differences between simulation and measurement. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Coupling between antennas presented in table 3-7 shown that isolation is always higher than 18 dB 

in the 5 GHz band, with a minimum of isolation of 10 dB between antennas 5 and 6 in the low band. 

The measured worst coupling are a bit high due to the lack of space available in the terminal. The ECC 

is always below 0.5 in both bands with a maximum of 0.484 between antennas 5 and 6 in the low band 
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and a maximum of 0.300 between antennas 4 and 5 in the high band. The measured values of coupling 

and correlation are suitable for our application. 

 

Table 3-7: Measured worst isolation and worst ECC for the 8 antennas of the mixed prototype. 

Antenna 
Low band (2.4GHz) High band (5GHz) 

Worst Coupling Worst ECC Worst Coupling Worst ECC 

N°1 -24.3 dB (N°2) 0.042 (N°2) -25.0 dB (N°2) 0.081 (N°5) 

N°2 -9.8 dB (N°3) 0.201 (N°3) -21.8 dB (N°3) 0.064 (N°1) 

N°3 -9.8 dB (N°2) 0.201 (N°4) -18.9 dB (N°4) 0.176 (N°4) 

N°4 -12.1 dB (N°5) 0.134 (N°5) -18.9 dB (N°3) 0.300 (N°5) 

N°5 -10.1 dB (N°6) 0.484 (N°6) -20.8 dB (N°4) 0.300 (N°4) 

N°6 -10.1 dB (N°5) 0.484 (N°5) -19.7 dB (N°7) 0.163 (N°5) 

N°7 -12.6 dB (N°8) 0.146 (N°8) -19.7 dB (N°6) 0.130 (N°8) 

 N°8 -12.6 dB (N°7) 0.146 (N°7) -27.8 dB (N°7) 0.130 (N°7) 

 

Radiation measurements are performed for each antenna of this prototype. The table 3-8 below 

presents the total efficiency and gain for each antenna in both bands. Average efficiency of 50 % (-3.04 

dB) and 50 % (-3.07 dB) are obtained in the low and high band. 

 

         Table 3-8: Gain and efficiency for the 8 antennas of the mixed prototype in the lower and upper band. 

Antenna 
2,4 GHz 5,15 GHz 

Gain (dB) Efficiency (%) Gain (dB) Efficiency (%) 

N°1 2.85 56.8 3.64 44.9 

N°2 1.81 44.7 4.01 62.5 

N°3 1.41 42.3 2.21 51.3 

N°4 2.46 51.5 3.33 45.0 

N°5 2.49 51.5 1.78 43.1 

N°6 1.32 54.2 3.73 50.6 

N°7 3.36 49.3 4.20 48.3 

N°8 3.33 47.1 2.82 48.8 

Average 2.44 49.7 3.29 49.3 
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 Hook-shaped printed on the sides of a plastic box with LDS technology (S1) 

This prototype introduces the LDS technology presented in the introduction of this chapter. The 

box designed in the section 3.2.1 is now used as a support to print antennas.  The first design we 

realized with LDS uses the hook-shaped antenna presented in figure 3-15. Dimensions of the antennas 

have been slightly adjusted to the permittivity of the polycarbonate substrate (εr = 2.7, tanδ = 0.013). 

The positions and orientations of antennas on the box match the first prototypes in order to have an 

accurate comparison between classic PCB technology and LDS technology. Antennas have been printed 

on the side of the gateway to favor vertical polarization which is known to be better for indoor 

communications.  

 

Figure 3-36 shows the prototype of a plastronic gateway fabricated with LDS technology, with 8 

hook-shaped dual-band antennas. This prototype will be referred as “Box Side.” The 2.4 GHz band 

includes a Wi-Fi and an LTE band (TDD). Antennas are connected with 17 cm coaxial cables. The main 

drawback of this design is the need to transfer a piece of the ground plane on the plastic box for each 

antenna. Indeed the cost of such technology has a strong dependence on the amount of surface 

metallized.  

 

Figure 3-36: Pictures of the realized prototype with 8 hook-shaped antennas printed on the side of the box. 

 

Simulation presented in Figure 3-37 shows that each antenna is matched on the target bands with 

a -6 dB criteria in the low band and a -6 dB criteria in the higher band. The matching is decrease 
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Figure 3-37: Simulated reflection coefficient for the 8 hook shaped antennas printed on the side of the plastic box. 

Figure 3-38: Measured reflection coefficient for the 8 hook shaped antennas printed on the side of the plastic box. 

compare to the hook antenna printed on FR4 substrate because of the smaller ground plane printed 

on the polycarbonate box. Measurement presented in figure 3-38 match the simulation with a good 

agreement. Oscillations are due to the cables 17 cm coaxial cables connected to each antenna.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Coupling between antennas presented in table 3-9 shown that isolation is always higher than 13 

dB in the 5 GHz band, with a minimum of isolation of 11 dB between antennas 5 and 6 in the low band. 

The measured worst coupling are a bit high due to the lack of space available in the terminal. The ECC 

is always below 0.5 in both bands with a maximum of 0.355 between antennas 5 and 6 in the low band 
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and a maximum of 0.107 between antennas 1 and 2 in the high band. The measured values of coupling 

and correlation are suitable for our application. 

 

Table 3-9: Measured worst isolation and worst ECC for the 8 Hook-shaped antennas printed on the side of the plastic box. 

Antenna 
Low band (2.4GHz) High band (5GHz) 

Worst Coupling Worst ECC Worst Coupling Worst ECC 

N°1 -12.0 dB (N°2) 0.198 (N°2) -14.4 dB (N°2) 0.107 (N°2) 

N°2 -12.0 dB (N°1) 0.198 (N°1) -14.4 dB (N°3) 0.107 (N°1) 

N°3 -15.2 dB (N°4) 0.158 (N°4) -13.8 dB (N°4) 0.083 (N°4) 

N°4 -15.2 dB (N°3) 0.324 (N°5) -13.8 dB (N°3) 0.083 (N°3) 

N°5 -11.2 dB (N°6) 0.355 (N°6) -13.2 dB (N°6) 0.102 (N°6) 

N°6 -11.2 dB (N°5) 0.355 (N°5) -13.2 dB (N°5) 0.102 (N°5) 

N°7 -13.0 dB (N°6) 0.245 (N°8) -14.4 dB (N°6) 0.053 (N°6) 

 N°8 -19.1 dB (N°7) 0.245 (N°7) -18.6 dB (N°7) 0.049 (N°7) 

 

Radiation measurements are performed for each antenna of this prototype. Table 3-10 below 

presents the total efficiency and gain for each antenna in both bands. Average efficiency of 58 % (-2.40 

dB) and 65 % (-1.87 dB) are obtained in the low and high band. Efficiency is increased by 10 %, and gain 

is 2 dB better than the prototype realized with PCB technology.  

 

Table 3-10: Gain and efficiency for the 8 hook-shaped antennas printed of the side of the plastic box in the lower 

and upper band. 

Antenna 
2,4 GHz 5,15 GHz 

Gain (dB) Efficiency (%) Gain (dB) Efficiency (%) 

N°1 4.4 75.0 5.49 70.0 

N°2 4.72 70.0 4.84 71.0 

N°3 3.93 49.0 3.83 65.0 

N°4 2.31 51.1 5.33 61.9 

N°5 2.61 50.0 3.50 60.0 

N°6 3.08 55.0 4.50 63.0 

N°7 2.62 61.9 4.01 67.0 

N°8 1.83 49.0 4.44 61.9 

Average 3.30 57.5 4.54 65.0 
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Figure 3-39: Pictures of the prototype with 8 hook-shaped antennas printed on the top of the plastic box. 

Figure 3-40: Simulated reflection coefficient for the 8 hook shaped antennas printed on the top of the plastic box. 

 Hook-shaped antenna printed on the top of a plastic Box with LDS technology (T2) 

The second prototype realized with the LDS technology uses the same hook-shaped antenna. The 

positions and orientations of antennas on the box match the first prototypes in order to have an 

accurate comparison between classic PCB technology and LDS technology. Antennas have been printed 

on the top of the gateway. Figure 3-39 shows the prototype of a plastronic gateway fabricated with 

LDS technology, with 8 hook-shaped dual-band antennas. This prototype will be referred as “Box Top.” 

The 2.4 GHz band includes a Wi-Fi and an LTE band (TDD). Antennas are connected with 17 cm coaxial 

cables. Once again, we had to transfer a piece of the ground plane on the plastic box for each antenna.  

 

 

 

 

 

 

 

 

 

 

 

Simulation presented in Figure 3-40 shows that each antenna is matched on the target bands with 

a -6 dB criteria in the low band and a -6 dB criteria in the higher band. Measurement presented in 

figure 3-41 match the simulation with a good agreement.  
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Coupling between antennas presented in table 3-11 shown that isolation is always higher than 11 

dB in the 5 GHz band, with a minimum of isolation of 10 dB between antennas 4 and 5 in the low band. 

The measured worst coupling are a bit high due to the lack of space available in the terminal. The ECC 

is always below 0.5 in both bands with a maximum of 0.205 between antennas 4 and 5 in the low band 

and a maximum of 0.293 between antennas 1 and 2 in the high band. The measured values of coupling 

and correlation are suitable for our application. 

 

    Table 3-11: Measured worst isolation for the 8 Hook-shaped antennas printed on the top of the plastic box. 

Antenna 
Low band (2.4GHz) High band (5GHz) 

Worst Coupling Worst ECC Worst Coupling Worst ECC 

N°1 -11.6 dB (N°2) 0.201 (N°2) -11.3 dB (N°2) 0.293 (N°2) 

N°2 -11.6 dB (N°1) 0.201 (N°1) -11.3 dB (N°1) 0.293 (N°1) 

N°3 -11.7 dB (N°2) 0.111 (N°4) -12.2 dB (N°4) 0.137 (N°4) 

N°4 -9.9 dB (N°5) 0.205 (N°5) -12.4 dB (N°3) 0.137 (N°3) 

N°5 -9.9 dB (N°4) 0.205 (N°4) -13.9 dB (N°6) 0.236 (N°6) 

N°6 -14.3 dB (N°7) 0.158 (N°5) -13.9 dB (N°5) 0.236 (N°5) 

N°7 -11.9 dB (N°8) 0.165 (N°8) -14.9 dB (N°8) 0.057 (N°6) 

 N°8 -11.9 dB (N°7) 0.165 (N°7) -14.9 dB (N°7) 0.056 (N°7) 

 

Figure 3-41: Measured reflection coefficient for the 8 hook shaped antennas printed on the top of the plastic box. 
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Radiation measurements are performed for each antenna of this prototype. The table 3-12 below 

presents the total efficiency and gain for each antenna in both bands. Average efficiency of 58 % (-2.82 

dB) and 45 (-3.41 dB) are obtained in the low and high band. Efficiency and gain are similar to the 

previous prototype.  

 

Table 3-12: Gain and efficiency for the 8 hook-shaped antennas printed of the top of the plastic box in the lower and 

upper band. 

Antenna 
2,4 GHz 5,15 GHz 

Gain (dB) Efficiency (%) Gain (dB) Efficiency (%) 

N°1 3.48 50.6 3.06 41.5 

N°2 3.85 59.6 4.94 49.4 

N°3 1.80 54.0 4.38 49.7 

N°4 3.56 49.3 3.39 47.2 

N°5 4.26 51.3 5.64 49.5 

N°6 2.15 42.9 1.01 22.5 

N°7 2.12 48.2 6.7 52.8 

N°8 5.56 62.2 4.33 52.4 

Average 3.52 52.2 4.47 45.6 

 

 Summary of the different prototypes 

Six prototypes with 8 dual-band antennas have been realized. The different realizations illustration 

the progression from classic solution with PCB technology to an innovative solution with LDS 

technology. PCB1 to PCB 2 has been realized with printed antennas which are easy to manufacture and 

very low-cost elements. Printed antennas are suitable for Wi-Fi application but are characterized by 

low efficiency and gain. PCB 3 has been designed with PIFA antennas, known to have good efficiency 

and gain but a higher cost than printed antennas. PCB 4 is a compromise between the three previous 

realizations. This solution allows increasing diversity between antennas while maintaining good 

performance in terms of efficiency and gain. Finally, the solutions presented with LDS technology come 

with a high cost but presents enhanced performance thanks to low losses in the substrate. Moreover, 

this solution allows to optimize significantly the volume occupied by antennas.   

 



Chapter 3: MIMO Antenna Design for Multi-standard Gateway / Wi-Fi, LTE, 5G 91 

The table 3-13 sums up the main characteristics measured in free space for each prototype. We 

can see the difficulty to improve isolation and correlation between antennas is such a small terminal 

no matter what technology is used. Nevertheless, the mixed prototype presents the lowest correlation 

in the low band among the prototypes realized with PCB technology. The gain and efficiency of 

antennas printed on the plastic box are slightly better than antennas printed on PCB technology. 

Unfortunately, the performance of LDS prototypes is degraded by the handmaid weld of the coaxial 

cable of the fed lines and ground plane.  

 

Table 3-13: Summary of the main characteristics measured for each prototype 

Prototype 

2.4 GHz 5 GHz 

Mean 
Gain (dB) 

Mean 
Efficiency 

(%) 
Mean ECC 

Mean Gain 
(dB) 

Mean 
Efficiency 

(%) 
Mean ECC 

PCB 1 - Hook 1.38 45.3 0.101 2.80 54.6 0.111 

PCB 2 - IFA 1.84 51.5 0.083 2.85 62.1 0.034 

PCB 3 - PIFA 2.11 51.8 0.069 3.70 53.7 0.029 

PCB 4 - Mix 2.44 49.7 0.058 3.29 49.3 0.060 

Box Side 3.30 57.5 0.096 4.54 65.0 0.025 

Box Top 3.52 52.2 0.062 4.47 45.6 0.042 

 

Each prototype achieves the performance required for Wi-Fi gateway applications regarding the 

free space results measured on antennas. In the next step of the study, the prototypes will be 

evaluated as a complete system and not as simple radiating elements. The objective is to see if the 

improvements in antennas performance bring by LDS technology will be perceptible when the gateway 

is used in a beamforming configuration. 
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Figure 3-42: Pictures of the antenna embedded on the rail and the OAI testbed connected to an 8 antenna prototype. 

3.3. Measurements Results with OpenAirInterface 

In this section, the measurement setup developed with OpenAirInterface and presented in chapter 

2 is used to test the different prototype in a realistic environment.  

The first part of the study aims to compare the performance between prototypes. Only four 

prototypes have been tested: PCB 1 (hook antenna), PCB 4 (mixed prototype), Box Side (hook antenna 

printed on the side of the plastic box) and finally the Box Top (hook antenna printed on the top of the 

plastic box). PCB 1 is used as a pure reference for comparison with the Box Side and the Box Top 

because the same antennas, orientation, and implementation have been used for the design of those 

prototypes. The PCB 4 is considered as an “ideal” case for PCB technology. For that study, PCB 2 (IFA) 

and PCB 3 (PIFA) doesn’t bring any value in terms of performance comparison.  

The second part of the study proposes to investigate antenna selection within multi-antennas 

devices. Based on an SNR measurement, this method allows choosing the best set of antennas among 

the 8 antennas to perform a MISO 2x1 or MISO 4x1 communication. The point is to evaluate if all 

antennas are needed to establish a strong link between transmission and reception.  

 Prototypes comparison 

In order to compare the performance of the four prototypes, we performed a set of measurement 

with OAI. Figure 3-42 shows pictures of the measurement setup. On the left picture, we can see a 

commercial monopole antenna acting as the user equipment and embedded on the top of the pole 

mounted on the rail. The right picture shows the computer controlling the whole setup, the PCI express 

frame supporting the three expressMIMO2 boards and an 8 antenna gateway connected to the RF 

front-ends.   
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Figure 3-43: CDF of the measured SNR in SISO configuration for the 8 antennas and MISO 8x1 configuration for the PCB 4. 

The proposed setup is configured to operate in Time Division Duplexing (TDD) mode in an 8x1 

MISO configuration at 2.6 GHz. The testbed aims to characterize beamforming gain through SNR 

measurements. The gateway transmits 10 LTE OFDM frames with a 5 MHz bandwidth and a 

transmitted power of 10 dBm. The power is chosen to insure a good level of reception in the whole 

room while avoiding saturation of receiving RF chains. Measurements are performed in a line of sight 

configuration. 

 

For each prototype, the measurement process consists of measuring SNR values for 200 positions 

with a 3 cm step on the rail. The rail is going forward for the first 100 positions and backward for the 

last 100. At each position, we perform SNR measurement in a MISO 8x1 configuration as well as 

retrieve the SNR in a SISO configuration for the eight antennas of the prototype. The figure 3-43 

presents the Cumulative Distributed Function (CDF) for the 200 SNR measurements for the 8 antennas 

(solid lines) as well as the measured SNR in the MISO 8x1 beamforming configuration (dotted line) for 

the PCB 4.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For a matter of visibility, we decided to average the SNR value measured on the 8 antennas for 

every position. Figure 3-45 presents the CDF for the average SNR measured in SISO configuration as 

well as the SNR measured in 8x1 MISO configuration. The graph illustrates the 9 dB increase on the 

SNR for the 8x1 MISO case compared to the SISO one.  
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Figure 3-44: CDF of the average SNR in SISO configuration and MISO 8x1 configuration for the PCB 4. 

Figure 3-45: CDF of the average SNR in SISO configuration and MISO 8x1 configuration for the PCB 1, PCB 4, Box Side and Box Top. 

 

 

 

 

 

 

 

 

 

 

 

 

 

The same measurement process has been performed for the three other prototypes (PCB 1, Box 

Side and Box Top). SNR in SISO configuration have been averaged for the 8 antennas at each position 

and beamforming MISO 8x1 have been performed in the same conditions for each prototype. Figure 

3-45 presents the results of the four prototype in the form of CDF. The figure highlights the different 

performance of each prototype. PCB 1 offers the lowest SNR, followed by the PCB 4, the Box Top and 

finally the box Side. We notice a 4 dB increase between the PCB 1 and its equivalent in LDS technology, 

the Box Side. This difference is higher than expected regarding the gain improvement of 2 dB obtained 

with the LDS prototype.  
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Several conclusions on antenna designs can be extracted from those results. Regarding the PCB 1 

and PCB 4, we could say that antenna diversity plays an important role in the beamforming 

performance. Indeed the average SISO seems quite similar between PCB 1 and PCB 4, but the MISO 

8x1 offers performance higher of 2 dB with the PCB 4. Moreover the Box side and box Top presents 

equivalent free space characteristics, but the Box Side seems to improve the beamforming efficiency 

significantly. This difference might be explained by the polarization involved in the two designs, mainly 

vertical for the Box Side and mainly horizontal for the Box Top. 

 

The set of measurements performed with OAI gives interesting information about antenna 

performance within a multi-antenna gateway. Indeed it appears that antenna free space 

characteristics have a major impact on the gateway performance as a system.  

 Antenna selection in multi-antenna devices 

Antenna selection within multi-antenna systems has been studied in the literature regarding 

channel capacity [III-27]. The optimization of the number of antennas in multi-antenna devices has 

also been studied in [III-28] and [III-29] in order to reduce the rank of the channel matrix [III-30]. In this 

section, we wanted to explore antenna selection in terms of SNR. Such techniques can be very 

interesting for the management of the energy consumption. Indeed the use of a high number of 

antennas at the transmitter implies a high consumption.  

 

In our experiment, the so-called adaptive beamforming aims to select the best set of antennas 

among the 8 antennas to perform a Beamforming MISO 2x1 or MISO 4x1 communications. The 

objective is to know the achievable performance with 2 or 4 antennas at the transmitter. For this 

purpose, we developed an algorithm on OAI able to select for each position on the rail, the 2 or the 4 

best antennas and used them for a MISO 2x1 and a MISO 4x1 beamforming communication. In order 

to evaluate the interest of this technique, we compare this adaptive scheme to a fixed scheme where 

a MISO 2x1 and MISO 4x1 beamforming communication are performed always using the same 

antennas for each position of the transmitter on the rail. We conduct this experiment with the best 

prototype measured in the previous section, the Box Side. Figure 3-46 presents which antennas have 

been chosen for the fixed scheme of beamforming. We decided to use the front antennas because 

they are facing the reception antenna in the LOS configuration of our measurement setup. Antennas 

4 and 5 are chosen for the MISO 2x1 communication and antennas 3, 4, 5 and 6 for the MISO 4x1. 
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Figure 3-46: Antennas chosen for the MISO 2x1 (blue) and 

4x1 (red) beamforming fixed scheme 

Figure 3-47: CDF of the SNR measured in MISO 2x1, 4x1 and 8x1 for a fixed and adaptive beamforming scheme with the Box 

Side prototype in LOS. 

 

 

 

 

 

 

 

 

 

 

 

 

The results of this experiment are presented in figure 3-47 in the form of a CDF. The blue lines 

present MISO 2x1 beamforming, the red lines presents MISO 4x1 beamforming, the green line presents 

the full 8x1 beamforming, the dotted lines present the adaptive scheme while the solid lines present 

the fixed beamforming scheme. We observe an average 3 dB increase on the SNR for the adaptive 

scheme for the MISO 2x1 and 4x1 beamforming compare to the fixed scheme. A second interesting 

observation is a very low gap (less than 1 dB) between the adaptive MISO 4x1 and the full MISO 8x1. 

This could be explained by the use of antennas providing a very weak signal in the MISO 8x1 

configuration, which penalizes the global performance of the system.  
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Figure 3-48: CDF of the SNR measured in MISO 2x1, 4x1 and 8x1 for a fixed and adaptive beamforming scheme with 

the Box Side prototype in NLOS. 

To strengthen those conclusions we decided to realize the same measurement but in a Non Line-

Of-Sight configuration (NLOS). To obstruct the direct view between transmitter and receivers we 

installed a metallic closet in the middle of the room.  Consequently, the path loss is increased and the 

propagation channel modified. The results of the measurement in NLOS are presented in figure 3-48 

in the form of a CDF. The first observation is that the SNR measured values are 10 dB lower than in 

LOS. Secondly, we find the same gap between the adaptive MISO 4x1 scheme and the full MISO 8x1 

than in the LOS configuration again. Finally, we observe that fixed MISO 4x1 comes closer to the 

adaptive MISO 4x1 with an average gap of 2 dB, while the fixed MISO 2x1 is way less performant than 

the adaptive MISO 2x1 with an average gap of 6 dB. As is, it is very difficult to explain this last 

observation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In order to provide more insight into the measurement results, we retrieved the number of usage 

for each antenna in the adaptive beamforming scheme. Indeed, for each position, the algorithm selects 

the best antennas in terms of SNR, so it is interesting to observe which antennas have been chosen all 

along the 200 positions of the Rx antenna on the rail. The figure 3-49 presents in a stick diagram how 

many times each antenna has been used during the 200 measurements for the adaptive beamforming 

in each configuration (LOS MISO 2x1, LOS MISO 4x1, NLOS MISO 2x1 and NLOS MISO 4x1). The hatched 

and solid sticks present the respectively NLOS and LOS configuration while blue and red sticks present 

MISO 4x1 and MISO 2x1 scheme respectively.  
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Figure 3-49: Number of usage per antenna and per configuration within the Box Side prototype. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From those results, we observe that every antenna is not used as much as other. For example 

antenna 3 has been the most used in every configuration even thought this element doesn’t provide 

the higher gain and efficiency among other antennas of the prototype. In LOS Antennas 3 and 6, placed 

in the two corner of the box, have been widely used. Their favorable positions regarding the receiver 

could explain the amount of usage of those two elements but the very low usage of elements 4 and 5, 

place in front of the box, and refute this hypothesis.   

 

The radiation pattern of those antennas has been left aside during this study. This parameter could 

bring more insight into the system performance with antenna selection. Unfortunately, the antennas 

designed in the six prototypes doesn’t present significant omnidirectional or directive pattern. 

Conclusions about the best pattern configuration can’t be established with those prototypes. In the 

next part, we will study with the same measurement setup, two prototypes presenting omnidirectional 

and directional radiation patterns.   

 

As a conclusion, the measurements setup developed with OAI shown its capabilities to compare 

various antenna designs and to implement and tests new functionalities. Indeed the results highlighted 

the improved performance of the LDS method compared to the PCB technology. Moreover, antenna 

selection within multi-antenna gateway has shown promising results to optimize energy consumption 

and to address users intelligently. One perspective of this work would be to test antenna selection in 

MU-MIMO configuration.  
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3.4. Directional antennas 

In this section, we want to evaluate the influence of antenna radiation pattern on the performance 

of the multi-antenna gateway. In this context, we kept working with the box designed in the previous 

section. The objective is to compare the performance of 8 omnidirectional antennas with 8 directional 

antennas. We aim to design antennas radiating in half a sphere in order to obtain spatial filtering of 

the receive signals. For this purpose, we explored two solutions. 

 

The first solution was to exploit Artificial Magnetic Conductors (AMC) as a reflector to modify and 

focus the radiation pattern of the hook-shaped antenna realized in the Box Side in a specific direction. 

The main advantage of this solution is that the AMC can be located very close to the antenna and thus 

allows keeping a very low volume occupied by antennas.  

 

The second solution consisted of designing a new dipole antenna and a reflector based on the 

layout of this antenna. The main advantage of this solution is that the dipole presents a clean 

omnidirectional pattern. When adding a reflector behind the antenna, the antenna radiate in half a 

sphere which allows a reliable and accurate comparison between an omnidirectional and a directive 

pattern. 

 Directivity enhancement with AMC  

AMC Artificial Magnetic Conductors are structures with periodic metallic patterns printed on a 

dielectric substrate. Generally used as a reflector plane, they possess the very interesting property of 

having the phase of the reflection coefficient varying from -180 ° to 180 ° by passing through 0 °, in 

contrast to a conventional ground plane which allows a reflection of 180 °. This phase reflection 

property is very important because it makes it possible to reduce the size of the antenna compared to 

a conventional ground plane. 

 

The most basic AMCs are therefore networks of square conductive elements. The patch 

dimensions fix the resonance frequency. Other parameters intervene in the design of an AMC including 

the spacing between each cell as well as the height and permittivity of the substrate. 

 

In the perspective of focusing the radiation towards the user, we envisaged integrating artificial 

magnetic conductors into the router. These structures are simulated under HFSS with a Floquet port 

and periodic conditions at the boundaries of the radiation box. 
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Figure 3-50: Simulated view of the (a) 2.4 GHz mono-band ring structure, (b) 5 GHz mono-band patch structure and 

(c) combined ring and patch dual-band structure. 

Figure 3-51: Dimensions of the (a) 2.4 GHz mono-band ring structure, (b) 5 GHz mono-band patch structure and (c) combined 

ring and patch dual-band structure. 

3.4.1.1. Design of a dual-band AMC 

According to the studies carried out on this type of structure, it is possible to create a dual-band 

AMC consisting of a central patch resonating at the high frequency and an external ring resonating at 

the low frequency. We, therefore, study in a first time single-band cells at 2.4 GHz and 5 GHz realized 

on a substrate FR4 of permittivity ɛr = 4.6 and thickness h=1.6 mm. We began by realizing the ring 

structure operating at 2.4 GHz and the patch resonating at 5 GHz as presented respectively in figure 3-

50(a) and 3-50(b). Then we combined the two structures to form the dual-band AMC is shown in Figure 

3-50(c). The gap between the patch and the ring plays an important role in the design of the AMC. In 

this design, the gap is fixed at 0.45 mm. The dimensions of each structure are presented in figure 3-51. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 3: MIMO Antenna Design for Multi-standard Gateway / Wi-Fi, LTE, 5G 101 

Figure 3-52: Simulated phase of the coefficient reflection for the three structures. 

Figure 3-53: Simulated 4x4 AMC with hook shaped antenna. 

By convention, we observe the phase of the reflection coefficient (the coefficient of the plane wave 

sent on the structure is observed) between 90 ° and -90 to evaluate the functioning of the AMC. Figure 

3-52 presents the phase of the reflection coefficient for each structure. We observe that the phase of 

the reflection coefficient passes through 0 ° in the useful frequency bands (red rectangle on the graph). 

The role of the reflecting plane of the structure is thus ensured in these two bands.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.4.1.2. AMC Array with hook-shaped antenna 

The previous results presented the cells alone in which the network effect was simulated by the 

Floquet port and the periodic conditions at the boundaries of the radiation box. The more complete 

the cell structure, the more effective the reflective plane effect will be. Thus we realize a 4x4 network 

presented in figure 3-53, integrating the hook-antenna over the structure with is a 1 mm air gap 

between the antenna and the AMC. 
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Figure 3-54: 3D radiation patterns of the simulated hook antenna over a 4x4 AMC at (a) 2.4 GHz and (b) 5.15 GHz. 

Figure 3-54 presents the simulated 3D radiation pattern of the hook-antenna for the 2.4 GHz and 

5 GHz frequency. We observe that in both frequencies, the hook-antenna forms a radiation pattern 

focus toward the z axis. The antenna has a maximum simulated gain of 4.26 dB at 2.4 GHz and 5.3 dB 

at 5 GHz. 

 

 

 

 

 

 

 

 

 

 

 

 

This step becomes very complex in terms of the adaptation of the antenna. Indeed these 

parameters S are modified in contact with the AMC, and all the dimensions (antennas and AMC) comes 

into play to re-adapt the antenna. The position of the antenna with respect to the AMC remains the 

major parameter. Therefore, we decided to concentrate our study on the radiation pattern obtained.  

 

Moreover, our housing having fixed dimensions, we cannot integrate a 4x4 cell network into the 

prototype of the router (the box has a height of 35 mm). We studied a technique of miniaturization of 

AMC. This method consists of making a spiral patch that resonates at 2.4 GHz and then adds a resonant 

ring at 5 GHz. We tested several topologies of spirals. The realization of this type of structure is very 

complex under HFSS because each dimension has to be parameterized in order to carry out parametric 

studies (variations of the dimensions). We managed to realize a 13.1x13.1 mm AMC structure, reducing 

the size of the initial square patch by nearly 20%. Despite this significant size reduction, it was not small 

enough to fit the plastic box.  

 

To further reduce the size of the AMCs, it is possible to increase the height of the substrate. The 

increase in height has the effect of shifting the frequency of operation towards the low frequencies. 

Thus we can reduce the dimensions of the structure to go back to the operating frequency of 2.4 GHz. 

We chose not to increase the height of the substrate to retain a small structure. So we explored 

another option, which is to create a flexible horizontal AMC network. 
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Figure 3-55: Schema of the AMC structure with a thin duroïd layer. 

Figure 3-56: Phase of the reflection coefficient for the AMC structure with and without the duroïd layer. 

3.4.1.3. Specific AMC Design for Box 

As the technique of miniaturization has not succeeded, we turn to another option. We had the 

idea to realize a horizontal network with the dual band cell presented previously. The idea is to create 

a flexible band that will come to rest on the walls of the box and thus directs the antenna radiation to 

the outside of the box. 

 

In order to obtain a flexible structure, we propose to print the square patterns on a layer of Duroïd 

of thickness h = 0.254 mm and of permittivity ɛr = 2.2. The ground plane of the AMC will be printed on 

FR4 and will be added by pieces into the box. Figure 3-55 presents a schematic of the structure. 

 

 

 

 

 

 

 

 

We studied the effect of the Duroïd layer on the dual band AMC cell already realized. In Figure 3-

56 we notice that the reflection coefficient undergoes a slight shift towards the low frequencies when 

adding a layer of Duroïd. In spite of all, the reflection coefficient remains adapted in the useful bands. 

This shift is explained by the permittivity of this material which is higher than that of the vacuum. 
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Figure 3-57: Simulated hook antenna over a 2x6 elements AMC dual-band AMC. 

Figure 3-58: 3D radiation patterns of the simulated hook antenna over a 2x6 elements AMC on duroïd substrate at 

(a) 2.4 GHz and (b) 5.15 GHz. 

To validate the hypothesis of operation of a horizontal network we realize a simulation of the 

antenna on a network of 2x6 elements presented in figure 3-57. We can see in Figure 3-58 that the 

hook-antenna radiation is focused in the vertical plane for both 2.4 GHz and 5 GHz frequencies. This 

type of radiation is suitable for our application. Indeed, considering the positioning of the antennas on 

the router, we will be able to cover all directions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We printed the 2x27 elements dual-band AMC on the duroïd substrate. Figure 3-59 presents the 

structure which has a dimension of 32x432 mm to fulfill the whole contour of the plastic box. The AMC 

has been embedded in the Box Side prototype with a 2 mm gap from antennas maintained thanks to 

a layer of foam material of permittivity ɛr = 1. 
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Figure 3-59: Pictures of the 2x27 elements AMC. 

Figure 3-60: Picture of the 8x10 elements AMC at 5 GHz. 

 

 

 

 

 

 

 

 

The radiation pattern and S-parameter of the prototype have been measured respectively on a 

Satimo Starlab and a VNA. Unfortunately, measurements where not conclusive and thus are not 

presented here. Antenna matching was not achieved as well as the expected radiation pattern.  

 

Several parameters can explain this failure. Indeed the alignment between AMC and antennas 

couldn’t be realized the same way than in simulation. Secondly, the whole shape of the box introduces 

some perturbations that destroy the radiation pattern. The last explanation is the lack of elements in 

the vertical dimension of the AMC. Only two element over the vertical axis was not enough to create 

the reflector effect of the AMC.  

 

To validate this last hypothesis we realized a 5 GHz AMC on a Neltec NY9220 substrate of 

permittivity ɛr = 2.2 and thickness h = 3.175 mm. By increasing the thickness of the substrate, we were 

able to significantly reduce the single element dimensions to a square of 3.2x3.2 mm. Then we realized 

an AMC prototype constituted of 8x10 elements for a total dimension of 25.6x32 mm. The realized 

prototype is presented in figure 3-60. AMCs were added to the Box Side behind every antenna with a 

1 mm gap realized with a layer of foam material. 
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Figure 3-61: Layout of the dipole antenna. 

Radiations measurements at 5 GHz indeed focused the radiation pattern of the antennas in the 

expected direction. This experiment validates the fact that the AMC needs a dense network of the 

patch to operate as a reflector. Unfortunately, the final objective is to measure the directional 

prototype with OAI which only operate between 350 MHz and 3800 MHz. Thus we need a prototype 

working with directional antennas in this frequency range. 

 Directivity enhancement using a reflector  

In this study, the main point is to explore the impact of antenna directivity in a multi-antenna 

gateway. In order to measure the system with the OAI measurement setup, we decided to work with 

a mono-band antenna targeting the 2.6 GHz band. We design a dipole antenna able to be printed on 

the side of the plastic box presented above in this chapter. Then the same dipole is shunted and placed 

behind the original dipole to act as a reflector.  

3.4.2.1. Omnidirectional Dipole Design 

In order to reduce the fabrication cost of the gateway antenna, a printed version of a dipole is 

studied with the major advantage of integrating a balun inside the dipole structure itself. This antenna 

design is very suitable for LDS technology because it presents a very low metallization surface 

compares to the previous studies antennas which need a ground plane transferred on the plastic. 

 

The layout of the dipole antenna is presented in figure 3-61. The antenna is printed on the 

polycarbonate substrate of thickness 2 mm, permittivity ɛr = 2.7 and loss tangent tanδ = 0,013. The 

antenna has a compact size of 25.5x12 mm2 (λ0/4xλ0/10 at 2.6 GHz). The structure is fed by a 50 Ω 

coaxial cable. The coaxial cable has to be modeled with a sufficient length in order to obtain an 

accurate result and to stabilize the input impedance around the resonance. 
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Figure 3-63: Smith chart of the reflection coefficient of the dipole with and without matching circuit. 

When the correct resonance is identified in the simulation, the structure can be tuned with 2 main 

parameters. The left arm dipole length is slightly tuning the frequency resonance and the matching. 

The right arm dipole length has a very large influence on the frequency resonance with a limited impact 

on the matching. However, considering the small size of the antenna, it needed to be matched with an 

LC circuit. The matching of the antenna is improved thanks to an inductor and a capacitor welded on 

the antenna such as presented in figure 3-62. The serial capacitor is represented by the red rectangle 

while the shunt inductor is represented by the blue rectangle. 

 

 

 

 

 

 

 

 

 

 

Figure 3-63 presents a smith chart of the reflection coefficient for the antenna alone (blue) and 

the antenna with the matching circuit (red). The figure also presents the schema of the matching circuit 

realized to match the antenna. We observe the matching improvement realized thanks to the LC 

circuit. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-62: Simulated dipole (a) alone and (b) with matching components. 
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Figure 3-64: Reflection coefficient for the dipole alone and the dipole with matching components. 

Figure 3-65: Radiation pattern of the dipole antenna in (a) x0y plane for θ = 90°, (b) 

y0z plane θ = 0°, (c) x0z φ = 0° plane and (d) in 3 dimensions. 

The return loss of the matched and unmatched configuration of the dipole is presented in figure 

3-64. We observe that the dipole is matched at 2.8 GHz. Even if the frequency is a bit higher than the 

2.6 GHz targeted frequency, we decided to continue the study with this dipole. Indeed we would need 

to increase the size of the antenna to get the 2.6 GHz operating frequency. 
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Figure 3-66: Simulated dipole with reflector. 

Figure 3-67: Simulated coefficient reflection of the dipole and reflector. 

The simulated radiation pattern is presented in figure 3-65. The figure shows the Gain Theta and 

Gain Phi in three in the x0y, y0z and x0z plane of the antenna as well as the total gain 3D radiation 

pattern. We observe that the antenna has a clear omnidirectional radiation pattern with a total gain 

of 1.1 dB. The simulated Front-to-Back ratio is 0.2 dB.  

3.4.2.2. Directive Dipole Design 

 In order to obatin a directional antenna, we use a reflector located  10 mm behind the antenna. 

The reflector is design with the same layout than the origanal antenna, but the two branch of the 

dipole are shunted as presented in the figure 3-66 below. The shunted dipole printed on a thin layer 

of duroïd( h=0.1 mm), act as a resonnator to focus radiation toward x axis. 

 

 

 

 

  

 

 

 

 

 

The reflection coefficient presented in figure 3-67 shows a slight mismatch of the antenna. Despite 

this perturbation, the antenna is matched with a -5 dB criteria at 2.8 GHz. 
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Figure 3-69: Pictures of the antennas realized on the duroïd substrate. 

The simulated radiation pattern is presented in figure 3-68. The figure shows the Gain Theta and 

Gain Phi in three in the x0y, y0z and x0z plane of the antenna as well as the total gain 3D radiation 

pattern. We observe that the antenna is focused toward the x axis with a total gain of 2.8 dB. The 

simulated Front-to-Back ratio is 13 dB. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.4.2.3. Realization of the 8 dipole antenna prototype 

In order to gain some time in the realization of the prototype, we printed 8 antennas on a very thin 

duroïd substrate. Then we welded the matching components and finally, we connected a 15 cm coaxial 

cable with each antenna as presented in figure 3-69. 

 

 

 

 

  

 

 

 

Figure 3-68: Radiation pattern of the dipole antenna in (a) x0y plane for θ = 90°, (b) y0z 

plane θ = 0°, (c) x0z φ = 0° plane and (d) in 3 dimensions. 
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Figure 3-70: Picture of the realized prototype with 8 omnidirectional antennas. 

Figure 3-71: Pictures of the reflector placed behind the antenna. 

Then we placed the antennas on the external face on the box, fixed with paper adhesive tape. The 

duroïd layer used to print the antennas is so thin regarding the thickness of the box that it becomes 

quasi transparent. The figure 3-70 shows a picture of the final realization.  

 

 

 

 

 

 

 

 

 

 

 

To realize the 8 antenna gateway, we printed 8 resonators shunted with a strip of copper welded 

on each arm of the dipole. As presented o figure 3-71, a reflector is placed within the box behind each 

antenna and maintained in position with a 10 mm foam cube and paper adhesive tape. Reflectors are 

located such as each antenna radiates toward the outside of the box. 

 

 

 

 

 

 

 

 

 

 

The final realization is presented in figure 3-72. The advantage of this method is that we can easily 

assemble or disassemble the reflector to switch from an omnidirectional configuration to a directional 

configuration.  
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Figure 3-72: Picture of the realized prototype with 8 directional antennas. 

Figure 3-73: Measured reflection coefficient for the 8 omnidirectional antennas. 

 

 

 

 

 

 

 

 

  

 

 

The measured reflection coefficient is presented in Figure 3-73 for the omnidirectional 

configuration and in figure 3-74 for the directional configuration. Both measurements show that each 

antenna is matched at 2.8 GHz. Return loss for the 8 directional antennas is significantly better than 

expected in the simulation.   
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Figure 3-74: Measured reflection coefficient for the 8 directional antennas. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Coupling and ECC between antennas are presented in table 3-14. The table shows that isolation is 

always higher than 21 dB (antennas 3 and 4) for the omnidirectional dipoles. We measured a minimum 

of isolation of 27 dB between antennas 3 and 5 for the directional configuration. We notice that the 

measured isolation for the two configurations is significantly higher than the previously realized 

prototypes in PCB or LDS technology. The ECC is always below 0.5 in both omnidirectional and 

directional configuration, with a maximum of 0.252 between antennas 4 and 5 for the single dipole 

and a maximum of 0.165 between antennas 3 and 5 for the dipole plus reflector configuration. The 

dipole present an average correlation of 0.059 while the configuration with reflector has an average 

correlation of 0.025. The correlation is decreased by a factor two when adding the reflector. The 

measured values of coupling and correlation are suitable for our application. 

Table 3-14: Measured worst coupling for the 8 dipole antennas in both configurations. 

Antenna 
Single Dipole Dipole + Reflector 

Worst Coupling Worst ECC Worst Coupling Worst ECC 

N°1 -23.9 (N°2) 0.057 -35.3 (N°4) 0.072 

N°2 -23.9 (N°1) 0.128 -39.3 (N°3) 0.072 

N°3 -21.9 (N°4) 0.100 -27.6 (N°5) 0.165 

N°4 -21.9 (N°3) 0.252 -34.2 (N°3) 0.069 

N°5 -23.7 (N°4) 0.252 -27.6 (N°3) 0.165 

N°6 -24.2 (N°7) 0.165 -29.4 (N°7) 0.058 

N°7 -24.2 (N°6) 0.149 -29.4 (N°6) 0.119 

 N°8 -25.5 (N°7) 0.149 -30.0 (N°8) 0.119 
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Radiation measurements are performed for each antenna of the prototype. The table 3-15 below 

presents the total efficiency and gain for each antenna for both omnidirectional and directional 

configuration. An average efficiency of -1.51 dB (70%) and -1.90 dB (65%) are obtained respectively in 

omnidirectional and directional configuration. Each antenna presents an omnidirectional pattern 

when used alone and a directional pattern matching the simulated one when used with the reflector. 

 

Table 3-15: Gain and efficiency for the 8 dipole antennas in both omnidirectional and directional configurations. 

Antenna 
Single Dipole Dipole + Reflector 

Gain (dB) Efficiency (dB) Gain (dB) Efficiency (dB) 

N°1 2.38 -1.16 3.00 -1.68 

N°2 2.78 -1.34 4.57 -1.79 

N°3 4.12 -1.33 4.75 -1.85 

N°4 3.95 -1.19 5.17 -2.16 

N°5 3.62 -1.37 4.27 -2.23 

N°6 3.76 -1.51 3.60 -1.67 

N°7 3.49 -1.44 5.17 -1.36 

N°8 3.05 -1.21 3.67 -1.22 

Average 3.30 -1.51 4.20 -1.90 

 

Figure 3-75 presents the measured radiation pattern of the antenna 1 in the omnidirectional and 

directional configuration. We observe that the radiation pattern is indeed focused in half a sphere. The 

same results are observed for each antenna but are not presented here. The directional antenna 

presents a Front-To-Back ration of 13 dB. 
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(a) (b) 

(c) (d) 

Figure 3-75: Measured radiation pattern for (a), (b) the omnidirectional and (c), (d) directional configuration of the 

antenna 1 in (a), (c) Horizontal plane theta = 90°, (b), (d) vertical plane phi = 90°. 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.4.2.4. Measurement with OpenAirInterface 

In order to investigate the influence of the radiation pattern on the global performance of the 

multi-antenna system, we tested the prototype with the OAI measurement setup. For this 

measurement campaign, we use the same configuration previously described. We performed the 

measurement MISO 8x1 beamforming as well as MISO 4x1 and MISO 2x1 in both adaptive and fixed 

scheme in LOS and NLOS configurations for 200 positions of the receiver antenna on the rail. 

 

To observe if antennas effectively filter spatially the received signal we tested three positions of 

the box regarding the Rx antenna. The three positions are illustrated in the figure 3-76. In position 1 

antennas n°3, 4, 5 and 6 are facing the receiver while in position 2 it is antennas n°1, 2 and 3 and 

antennas n°8, 7 and 6 in position 3. Logically, when using the adaptive beamforming scheme in LOS, 

the antenna selection should favor the use of antennas facing the receiver. 
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Figure 3-76: Schematic representation of the three tested orientations of the box. 

 

 

 

 

 

 

 

 

Measurement results are presented in the form of CDF. In the figure 7-77 to 7-82, we compare the 

performance of the omnidirectional and directional prototype in different measurement 

configurations. In those figures, the measurements retrieved with the omnidirectional prototype are 

presented with solid lines while the ones retrieved with the directional prototypes are presented with 

dotted lines. In each figure, the MISO 8x1 beamforming is presented with green lines, the MISO 4x1 

with red lines and the MISO 2x1 with red lines. In the legend of each figure the prototype and position 

used are referred as “O” for omnidirectional and “D” for directional followed by the prototype position 

1, 2 or 3. For example, the adaptive MISO 8x1 beamforming realized with the omnidirectional 

prototype in position 1 in a LOS configuration is referred as “O1 – LOS – Adapt MISO 8x1”. 

 

Figures 3-77 to 3-79 present the measurement results respectively for position 1, 2 and 3 in a LOS 

configuration. In positions 1 and 3 we observe that both prototypes achieve the same level of 

performance while the omnidirectional prototype achieves better performance in the position 2 with 

an average 5 dB increase on the measured SNR. The measurement results for position 1, 2 and 3 in an 

NLOS configuration are presented respectively in figure 3-80, 3-81 and 3-82. In positions 1, the 

omnidirectional prototype tends to be better with an average increase of 2 dB on the SNR. The results 

retrieved in position 2 tend to confirm the last observation with an average increase of 5 dB on the 

SNR measured with the omnidirectional prototype. Finally, in position 3, we observe that both 

prototypes achieve almost the same level of performance. However, the directional prototype which 

presents slightly better results with around 1 dB increase on the measured SNR In MISO 8x1 and MISO 

4x1 configuration.  

 

From those results, it seems difficult to draw a clear conclusion. The propagation conditions might 

be favorable for the omnidirectional prototype in position 2 whereas they seem more favorable to the 

directional prototype in position 3. In order to bring more insight to the analysis, we observed the 

measurements results obtained with a fixed beamforming scheme. In this configuration, antenna 4 

and 5 are used for MISO 2x1 and antennas 3, 4, 5 and 6 for MISO 4x1 no matter what configuration or 
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Figure 3-77: CDF of the measured SNR on the directional and omnidirectional prototypes in position 1 for a LOS configuration. 

Figure 3-78: CDF of the measured SNR on the directional and omnidirectional prototypes in position 2 for a LOS configuration. 

orientation of the box. The results are not presented here. Nevertheless, both prototypes present 

exactly the same behavior than with adaptive beamforming for each position. Indeed both prototypes 

achieve similar results in position 1 with only a 2 dB increase for the MISO 8x1 with the omnidirectional 

prototype in NLOS. In position 2, the omnidirectional prototype is significantly better with 5 dB 

increase in LOS and 6 dB in NLOS. The directional prototype works better is position 3 with a 2 dB 

increase in NLOS. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 3: MIMO Antenna Design for Multi-standard Gateway / Wi-Fi, LTE, 5G 118 

Figure 3-79: CDF of the measured SNR on the directional and omnidirectional prototypes in position 3 for a LOS configuration. 

Figure 3-80: CDF of the measured SNR on the directional and omnidirectional prototypes in position 1 for a NLOS configuration. 

Figure 3-81: CDF of the measured SNR on the directional and omnidirectional prototypes in position 2 for a NLOS configuration. 
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Figure 3-82: CDF of the measured SNR on the directional and omnidirectional prototypes in position 3 for a NLOS configuration. 

Figure 3-83: Number of usage per antenna in MISO 4x1 configuration in both LOS and NLOS with the directional prototype. 

 

 

 

 

 

 

 

 

 

 

 

 

 

In order to observe if a form of spatial filtering is achieved with the directive prototype, we observe 

which antennas have been selected with the adaptive beamforming scheme in each position. The 

figure 3-83 summarize the number of utilization for each antenna for the MISO 4x1 beamforming in 

every tested configuration. The position 1 in presented in green, the 2 in blue and the 3 in red while 

the LOS is presented with solid sticks and the NLOS with hatched sticks. Unfortunately, we can’t notice 

a pattern regarding the antenna selection. The adaptive beamforming doesn’t seem to favor the 

transmitting antennas facing the receiving antenna.  
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Figure 3-84: CDF of the measured SNR on the directional and omnidirectional prototypes in position 4 for the 

adaptive beamforming scheme. 

Figure 3-85: CDF of the measured SNR on the directional and omnidirectional prototypes in position 4 for the 

fixed beamforming scheme. 

In the last attempt to extract reliable conclusions, we performed on more set of measurement in 

a fourth position. For this experiment, we located the gateway outside the room, with the same 

orientation than in position 1 but with a 20 cm wall between transmitting and receiving antenna. We 

performed measurement with both prototypes with the fixed and adaptive beamforming scheme.  

 

Figure 3-84 presents the results for the adaptive beamforming and figure 3-85 for the fixed 

beamforming scheme. In both configurations, the directional prototype presents the better 

performance. 
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Regarding the whole results of this study, it is still difficult to draw a clear conclusion. However, 

the directivity improvement on antennas has shown some interesting capabilities to enhance the 

performance of the multi-antenna gateway. In order to bring more clarity to the study, much more 

measurements should be realized, especially with different location of the gateway. The reliability of 

the prototype might be improved by definitely printing antennas on the box with LDS technology. 

Moreover, a more controlled environment could improve the method accuracy. 

3.5. Conclusion and perspectives 

In this chapter, we studied different antenna configuration and implementation within a multi-

antenna gateway. In a first time, we design a set of 8-antenna prototypes on PCB technology and LDS 

technology. We compared the antenna performance by performing a set of free-space measurement 

with a VNA and a Satimo StarLab. The performance of the gateways has been studied as a system 

thanks to the OAI measurement setup. The results have shown the benefits of LDS technology thanks 

to the improvement brought on antennas efficiency and gain. Moreover, antenna selection has been 

implemented in the OAI setup and has shown interesting results. Indeed we demonstrated that a MISO 

4x1 beamforming performed with antenna selection achieve quasi equivalent performance than a 

MISO 8x1.  

 

 In a second time, we explore directional antenna and their influence on the performance of multi-

antenna gateway. We realized an omnidirectional dipole convertible to a directional dipole thanks to 

a reflector.  Free-space measurement has shown good results in gain and efficiency. Both 

omnidirectional and directional prototype have been measured with OAI setup. Despite a high number 

of measurement, we were not able to draw a very clear conclusion on any improvement brought by 

the antenna directivity. More experiments should be conducted to sharpen the conclusions. 

Nevertheless, an important point to observe is that depending on the gateway orientation we often 

observe that one configuration provides better performance than the other. An interesting perspective 

would be to test a hybrid configuration mixing omnidirectional and directional antenna. 

 

To go further, we intend to use a commercial smartphone as UE, since OpenAirInterface is a 3GPP 

LTE compliant platform. Moreover, the open-source aspect of OAI allows the development of various 

algorithms to test more scenarios such as MU-MIMO or carrier aggregation. OAI will be capable of 

accommodating various communication protocols without additional hardware.  
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eq. [4-1] 

This chapter presents the assessment of the hand effect on high frequency antennas for future 5G 

mobile phones. The study aims to evaluate the negative impact on beamforming capabilities due to 

user’s hand for frequencies above 10 GHz. A 3D spherical near field scanner with a fixed AUT is 

leveraged to measure the 3D radiation pattern with a real human hand impact. Antenna performance 

in term of S-parameters, radiation pattern and efficiency are presented.   

 

As a preliminary study, we designed the first prototype at 11 GHz to measure the impact of a real 

human hand on a single antenna. This band was chosen according to several studies on handset devices 

at 11 GHz. We also investigate the liability of a phantom hand in those frequencies.  Then to deal with 

this topic in depth, we designed a second prototype at 15 GHz enabling to perform beamforming 

measurements. We couldn’t perform measurements at 28 GHz because we didn’t possess the suitable 

equipment for this frequency. The main originality of our approach lays in the fact that we can use a 

real hand for the measurement of the amplitude and phase of the radiating fields.  

4.1. Evolution and Challenges for mobile devices toward 5G 

4.1.1. Millimeter-Wave Antenna for 5G Handset Devices 

The fast increase of the telecommunication traffic nowadays and for the years to come drives 

the industry to investigate new solutions to improve network capacity. The future 5G network aims to 

provide a solution to the ten time increase prediction of the mobile data traffic [IV-1]. The network 

capacity can be raised by increasing the network density, the spectral efficiency and the spectrum 

bandwidth [IV-2], [IV-3]. To address these issues, at the antenna level the two main technologies that 

are investigated are Multiple Input Multiple Output (MIMO) techniques and centimeter and millimeter 

waves (mmWave) antennas. Indeed it is known that centimeters and millimeters wave antennas offer 

larger bandwidth compared to the crowded sub-6GHz spectrum, which makes them good candidates 

for future networks. An important benefit dealing with high frequency antennas is the miniaturization, 

which allows easier integration of multiple antennas in a terminal. However, mmWave antennas come 

with higher path loss in the channel as can be seen in the well-known Friis’ formula: 

 

𝑃𝑅 = 𝑃𝑇 + 𝐺𝑇 + 𝐺𝑅 + 20 log (
𝑐

4𝜋𝑅𝑓
) . 
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In this equation, PR,T and GR,T are respectively the power and gain for receiving and transmitting 

antenna, c the speed of light, R the distance between the receiver and transmitter and f the carrier 

frequency. In order to balance this higher path loss without increasing PT, the antenna gains in handset 

terminals and base stations need to be much higher than in current sub-6 GHz mobile phones. 

Achieving a higher gain and reaching a higher range can be realized by using antenna array and 

beamforming technique. The narrowed beam resulting from the increased gain has to be compensated 

by the beam-steering algorithm introduced by the phased array configuration. Indeed the phased array 

allows, by controlling the phase and amplitude of each antenna, the generation of a radiation pattern 

pointing towards a specific direction, thus enabling the system to receive the incoming signal from 

different angles [IV-4].  

 

The steering angle range being limited, it is mandatory to cleverly think the antenna 

implementation on the handset device in order to achieve a good complete scan pattern and good 

coverage efficiency [IV-5]. Several studies have presented terminal antennas designed to highlight the 

importance of the antenna implementation and the coverage at 11 GHz and 13 GHz bands [IV-6]. In 

[IV-7] different topologies of high-gain steerable antenna array at mmWave frequencies are presented 

along with their total scan pattern and coverage efficiency. The feasibility of a low profile 28 GHz beam 

steering solution with high peak gain for handset device is also demonstrated in [IV-8], [IV-9] and [IV-

10] with various antenna designs. Figure 4-1 presents as an example one of those solutions.  

 

 

 

 

Figure 4-1: Design and analysis of a low-profile 28 GHz beam-steering antenna solution [IV-8]. 
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Figure 4-2: Performance investigation of a mobile terminal phased array with user effect at 3.5 GHz [IV-12]. 

4.1.2. User Effect and Body Loss below 6 GHz 

It is known that handset devices are strongly impacted by user’s blockage below 6 GHz. The 

influence of the hand depends on the antenna position in relation to user’s hand and the operating 

frequency. For instance, in [IV-11], more than 6 dB body loss have been measured on an antenna 

below 1 GHz. In the sub-6GHz bands, the hand effect is mainly disturbing and absorbing the antenna 

near field leading to an overall decreased in the antenna efficiency that is very hard to compensate. In 

[IV-12] the user effect is investigated on a phased array for mobile terminals at 3.5 GHz revealing a 5 

dB body loss as shown in Figure 4-2. Different phased array configurations are studied showing that 

antenna implementation can minimize the loss in terms of coverage efficiency and scanning angles. 

The interaction between the user hand and a MIMO antenna array below 6 GHz is presented for 

different scenarios in [IV-13] and [IV-14]. The study reveals a decrease of the total efficiency and a 

deterioration of the diversity gain for the higher bands at 5 GHz. However, at low frequencies, the 

article highlights a reduction of the envelope correlation resulting in enhancement of the diversity gain 

and the multiplexing efficiency. The impedance variation and efficiency reduction have been simulated 

in [IV-15] for different hand textures and positions. In [IV-16] and [IV-17], by studying different grip 

style, it is shown that human hand is the main cause for absorption and mismatch losses and that the 

position of the hand strongly affects radiation efficiency and causes radiation pattern deterioration. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 4: MIMO Antenna Design beyond 6 GHz for Hand Effect Investigation on Handset Devices 129 

Figure 4-3: mmWave phased array for 5th generation cellular handset [IV-18]. 

4.1.3. User Effect and body Loss beyond 6 GHz 

If the impact of the body has been deeply studied in low frequency, this topic just started being 

addressed at higher frequencies. This effect is quite different in centimeter and millimeter wave 

because of the reduced antenna size. The hand mainly masks some local areas, meaning that this effect 

could be mitigated with a smart positioning of the antenna. Indeed, in [IV-18] represented in the 

Figure 4-3, the simulated 28 GHz antenna array suffers a 9.5 dB decrease in gain when a finger is 

positioned above the antenna and the author claim that more losses are expected when the user’s 

hand fully covers the antenna region. In [IV-19], a measurement campaign is performed on a 15 GHz 

User Equipment (UE) for 5G mm-Wave communication system. Based on measured and calculated 

results, they present a shadowing effect around 20 to 25 dB at 15 GHz with a decrease of the coverage 

efficiency around 30%. Finally, in [IV-20], a measurement campaign has been led on a 28 GHz handset 

terminal with 12 different users to investigate the body impact on a 5G UE statistically. The paper 

focuses on only one antenna, speculating that the behavior of an antenna array could be accurately 

predicted from the performance of one antenna element.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Studies have clearly shown that human body dielectric properties vary along with frequency 

[IV-21]. The variations of relative permittivity and dielectric loss between 1 GHz and 20 GHz are 

presented in Figure 4-4 for human skin, blood, and bones. The first observation is that the dielectric 
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loss doubles in the high frequency bands. Secondly, we observe a 50% decrease in the permittivity 

value between 1 and 20 GHz. This clearly demonstrates that models used for body phantom below 3 

GHz are not suitable for frequencies higher than 10 GHz. 

 

4.2. Measurement Setup for hand effect investigation 

To perform measurements, we used the 3-axis scanner with a fixed Antenna Under Test (AUT) 

designed by NSI and presented in Figure 4-5 [IV-22]. This robotic positioning system consists of three 

rotational positioners. The first one, mounted on a large floor stand, defines the horizontal -axis of 

rotation. The second positioner is attached to the  rotation stage with a 90° angle to form the -axis. 

The last positioner is attached to the  rotation stage forms the -axis and manages the polarization 

rotation stage. The total region of motion is practically limited to -150    150 and -180    180 

by the AUT support stand. The main advantage of this setup is the fixed AUT which allows us to hold 

the device during the measurement. The main problem in experimentally characterizing the hand 

effect is to hold still while measuring the four antennas. 

 

 

Figure 4-4: Relative permittivity and dielectric loss in skin, bones and blood. 
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For the second study at 15 GHz, we managed to reduce as much as possible the measurement time 

by adding a Rhodes&Schwartz OSP switch that was remotely controlled with MATLAB. The switch 

introduced a 2.85 dB loss which had been added to each measurement afterwards. A specific antenna 

holder made of low-permittivity foam material has been designed and manufactured to limit as much 

as possible the interaction with the AUT.  

4.3. Preliminary study a with 11 GHz Prototype 

In this section, a 5G MIMO mobile phone prototype including four antennas working in the 10-13.2 

GHz band is designed. The objective of the study is to evaluate the negative impact due to the user’s 

hand in frequencies higher than 10 GHz. The measurement setup presented above is leveraged in order 

to measure a 3D radiation pattern with a real human hand impact. The results are compared to the 

measurement performed with the same configuration but with a phantom hand. S-parameters, 

radiation pattern and efficiency are presented and discussed for one antenna only.  

 

 

Figure 4-5: schema (a) and picture (b) of the measurement setup. 

(a) (b) 
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4.3.1. Single Antenna structure and dimensions 

In this section, the design of a high frequency MIMO handheld device to use for the tests is 

presented. The requirements are a total efficiency above 50%, compact size to fit in a mobile phone 

terminal and being low cost [IV-23]. We decided to implement four dipoles antennas working at 11 

GHz on a 70x140 mm² FR-4 PCB to fit with the dimension of a smartphone. The layout of the antenna 

is presented in the Figure 4-6. The dipole is printed on an FR-4 substrate of relative dielectric 

permittivity εr = 4.4 and thickness h = 1.6 mm. The radiating element is fed through a slot excited with 

a micro-strip line. It is a compact structure of 12x7.3 mm² (λ0/2.2xλ0/3.7 at 11.2 GHz, the center of the 

11 GHZ band). Optimal matching is achieved by tuning two different parameters: one parallel stub 

(Lslot) located between the two horizontal arms of the T dipole and one serial stub set at the end of 

the micro-strip line (Lstub).  

 

 

 

 

 

 

 

(a) (b) 

Figure 4-6: Top (a) and bottom (b) view of the antenna structure at 11 GHz with dimensions. 

 

Figure 4-7: Return Loss for various Lstub values. 
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A parametric simulation of the reflection coefficient for different micro-strip stub lengths (Lstub) is 

presented in Figure 4-7. For Lstub = 3.2mm, the antenna is matched over a 3 GHz bandwidth and 

almost covers the 10GHz, 11 GHz and 13 GHz band with a -6dB criteria. Based on full wave HFSS 

simulation, the total efficiency is 89% at 11 GHz. When integrated into a 140x70mm² terminal the 

antenna provides a 6 dBi directional radiation pattern. 

4.3.2. Mobile Phone Prototype at 11 GHz 

The mobile prototype presented Figure 4-8 has been realized with a circuit board plotter (LPKF 

ProtoMat S63) according to the dimensions presented in Fig. 1. We decided to implement four 

antennas in the top-right corner of the device, where the hand effect might be smaller considering the 

classic way of grabbing a mobile phone. The distance between each antenna is 0.8λ0 (21.5 mm).  In the 

first measurement campaign, only two front antennas have been connected through 130 mm rigid 

coaxial cables. A plastic casing was designed for this prototype and fabricated using a 3D printer with 

ABS material. 

 

4.3.3. Hand effect Measurement 

In this second part, we aim to present measurements with real users and hand phantom 

interferences. Measurements with the real human model have already been proposed for lower 

frequency. Millimeter wave add many challenges for this type of measurement, in particular, because 

of the shorter wavelength, the human model has to stay as stable as possible. At the stage of the study, 

we will focus on a single antenna to characterize the human body impact. As shown in Figure 4-9 we 

chose to adopt a position which maximizes the interference with a finger very close to the antenna 

under test. Furthermore, we mimic hand phantom position.  

(a) (b) (c) 

Figure 4-8: (a) Overview of the prototype with a 3D printed casing and the two connected antennas (b) 

bottom view of the prototype with the two connected coaxial cables and (c) top view zoom of the antennas. 
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Reflection coefficient has been measured at the output of the 130mm cable with deembedding. 

Figure 4-10 presents the simulated S11 (dotted line) and the measured S11 (solid lines) of one antenna 

for four different configurations: the PCB in free space, the PCB with, the prototype with casing and 

user’s hand and finally the prototype with casing and the hand phantom. Results show that casing and 

hands have a low influence on the antenna reflection coefficient, meaning that reactive field of the 

antenna is not modified by the casing and hand. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-9: Pictures of the hand (a) and the phantom (b) interacting with the prototype. The red dot mark 

the position of the antenna. 

(a) (b) 

Figure 4-10: Return loss of the prototype for four different configuration and simulation. 
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The Figure 4-11 presents the radiation pattern for each hand in the elevation (vertical) plane. We 

observe that the radiation pattern tend to be lower in the region where the hand was located. We can 

also notice the diversity of the results of each measurement and each hand which led us to average 

those results.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The figure 4-12 presents the free space radiation, with the hand phantom and with the average 

radiation pattern of 6 different hands (different size and shape from men and women test subject).  

From Figure 4-12, we observe that the radiation pattern is modified when the user or the hand 

phantom is holding the device especially in the direction where the hand is located (-90° elevation 

angle). It shows a maximum decrease of about 12 dB of the total peak gain for a real hand and about 

6 dB for the hand phantom. The decrease of the peak total gain for the user hand measurement is 

twice more than the phantom hand measurement.  

 

We can also observe in Figures 4-13(a) and 4-13(b) that HFSS simulation fit with measurement in 

free space. Figure 4-13(d) shows the radiation measurement with the perturbation caused by the hand; 

we observe that most of the radiated power is oriented to the top. The hand absorbs all the bottom 

radiation. Finally, Figure 4-13(c) shows the radiation measurement with the interferences caused by 

the hand phantom. We observe that the phantom doesn’t interact as much as a real human hand with 

the antenna. Table 4-1 sums up the important results and show a loss of 5.5 dB for the efficiency with 

the real hand and a loss of 2.3dB with the hand phantom. These results validate the need for higher 

frequency compatibles phantoms. 

Figure 4-11: Elevation measurement with hand effect for 6 different hands. 
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Figure 4-12: Comparison between radiation patterns in three configurations in the antenna perpendicular plane 

(elevation). 

(a) (b) 

(c) (d) 

Figure 4-13: Radiation pattern: (a) 2D HFSS simulation, (b) free space 2D measurement, (c) 

2D measurement with phantom hand and (d) 2D measurement including hand effect. 
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Table 4-1: Overview of the 3d Measurement results. 

 

4.3.4. Conclusion of the study at 11 GHz 

For this preliminary study, we designed and realized a mobile phone prototype according to future 

5G requirements. We have shown that body dielectric properties versus frequency are not constant 

and that an important impact of the hand on millimeter wave terminal can be expected.  

 

We studied the influence of a real user hand thanks to a spherical near-field scanner with fixed AUT. 

First results show a decrease of about 6 dB of the total efficiency at 11 GHz for a real human hand 

whereas it shows less than a 3 dB decrease for the hand phantom. Moreover, in the main lobe 

direction, the peak gain with hand effect is 9 dB lower than the peak gain in free space.  

 

As a primary conclusion, considering the constraint budget link in millimeter wave communications, 

the hand effect on the terminal has to be carefully considered. One perspective of this work is the 

development of a hand phantom in millimeter wave. A second important point will be the study of 

innovative techniques to reduce the hand effect. 

 

The 11 GHz prototype was not suitable enough for an advanced study because of some weaknesses 

in the design (antenna implementation, rigid coaxial cables...) so we decided to push the study with an 

upgraded new prototype at 15 GHz and using the same measurement approach. 

 

 

 

 

 

 Directivity (dB) Peak Gain (dB) Efficiency (dB) 

Free Space Simulation 4.8 4.3 -0.5 (89%) 

Free Space Measurement 5.8 4.0 -1.8 (66%) 

Casing + Phantom Meas. 6.3 2.2 -4.1 (39%) 

Casing + Hand Meas. 10 2.6 -7.3 (18%) 
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4.4. Advanced study with a 15 GHz Prototype 

For this study, we designed a low cost high frequency 4-element MIMO antenna system 

characterized by compact size to fit in a mobile phone terminal and with total efficiency above 50%. 

We implemented four T dipoles antennas [IV-23] working at 15 GHz on a 70 x 140 mm2 FR-4 PCB to fit 

with the dimension of a smartphone.  

 

This study evaluates the user’s impact on 4-element 15 GHz antenna array implemented on a 

smartphone. We consider the user’s blockage not only in terms of efficiency but also on the maximum 

gain achievable in a beam-steering configuration with real hand measurement on the 4 antennas. The 

15 GHz frequency band is the front door of the multiple band opportunities existing in the millimeters 

and centimeters wave. The main objective of this work is to characterize the influence of the user. The 

second objective is to evaluate the beamforming efficiency when the antenna array suffers from user 

shadowing. 

4.4.1. Single Antenna structure and dimensions 

Figure 4-14 presents the layout of the simulated antenna at 15 GHz. An FR-4 substrate of relative 

dielectric permittivity εr = 5 and thickness h = 0.8 mm is used to print the dipole. The radiating element 

is fed through a slot excited with a micro-strip line. We designed a compact structure of 8.5 x 5.5 mm2 

(λ/2.4 x λ/3.6 at 15 GHz). The parallel stub (Lslot) located between the two horizontal arms of the T 

dipole and the serial stub at the end of the microstrip line (Lstub) are tuned to achieve optimal 

matching. Based on full wave HFSS simulation, the total efficiency is 87% (-0.6 dB) at 15 GHz. When 

integrated into a 140 x 70 mm2 terminal, the antenna provides a 5.5 dBi directional radiation pattern 

and 4.7 dB realized gain. 

(a) (b) 

Figure 4-6: Top (a) and bottom (b) view of the antenna structure at 15 GHz with dimensions. 



Chapter 4: MIMO Antenna Design beyond 6 GHz for Hand Effect Investigation on Handset Devices 139 

4.4.2. Mobile Phone Prototype at 15 GHz 

We realized the mobile phone prototype with 4 antennas according to the dimensions presented 

in Figure 4-14. We decided to implement two arrays of two antennas, one on the top and one on the 

left side of the mobile, where the hand effect might be minimized considering the two classic way of 

grabbing a smartphone (”data mode” with two hands and ”call mode” with one hand). The distance 

between the antennas is 0.6λ (i.e., 12 mm). Each antenna is connected through a 170 mm semi-rigid 

coaxial cable.  

 

 

 

This prototype allows the implementation of MIMO techniques and beamforming thanks to the 

multiple antennas. A plastic case was designed for this prototype and fabricated using a 3D printer 

with ABS material. 

 

S-parameters have been measured at the output of the 170 mm cable. Deembedding is realized on 

a VNA by filtering the S11 parameter in the time domain. Figure 4-16(a) presents the measured versus 

the simulated return loss and isolation for antennas 1 and 2. The same data are presented for antennas 

3 and 4 in Figure 4-16(b). Measurements (solid lines) and simulations (dotted lines) are both performed 

including the casing. We observe that all antennas are matched at 15 GHz even if the measured results 

are slightly shifted down in frequency because of the actual substrate permittivity higher than the 

(a) (b) (d) 

(c) 

Figure 4-15: (a) Overview of the prototype with a 3D printed casing, (b) bottom view of the prototype with the four 

connected coaxial cables, (c) top view zoom on two antennas and (d) bottom view zoom on two antennas. 
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simulated one. We observe that all the prototype antennas offer more than 3 GHz bandwidth for an 

S11 < - 6 dB (Figure 4-16). Isolation better than -20 dB is obtained between antennas 1 and 2 as well 

as between antennas 3 and 4. 

 

Figure 4-17 shows the top view (plane at θ = 90°) of the 3D simulated radiation pattern for each 

antenna. This figure highlights the end-fire characteristic of the antennas. We observe a maximum 

total gain of about 4 dB in the main radiating direction for each antenna.  

(a) 

(b) 

Figure 4-16: Return loss and isolation for (a) antenna 1 and 2, (b) antenna 3 and 4. 
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Figure 4-17: Top view of the simulated radiation pattern for each antenna. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.4.3. Free Space Measurement 

This section is aimed at validating the measurement setup with respect to simulations. Figure 4-18 

shows the foam support (εr = 1.02) created to place and keep the device under test (DUT) in the right 

position. We had to create two different positions to overcome the range limitation of the positioner 

in the θ-axis. Indeed, we wanted to measure the radiation pattern at least from -90° to 90° around the 

center of the antenna in the horizontal plane. Some gaps have been dug around the two specific 

cavities enabling a user to grab the smartphone covering antennas 1 and 2. The Position 1 is the one 

presented in the figure 4-18 while in the position 2, the prototype is turned of 45° over the z axis. 
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Figure 4-18: Photo of the setup with foam support and prototype. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figures 4-19 to 4-22 present a comparison between simulated (dotted lines) and measured 

radiation patterns (solid lines) for all the antennas. Each figure shows the Gain-φ in blue and the Gain-

θ in red in the planes y0z at φ = 90° (vertical plane for antennas 1 and 2), x0z at φ = 0° (vertical plane 

for antenna 3 and 4) and x0y at θ = 90° (horizontal plane for each antenna). Due to the mechanic 

constraints of the scanner, and the two position created on the support, we present measurements 

between θ = -50° and θ = 230° in the x0z plane and between φ = -10° and φ = 190° in the x0y plane (for 

antennas 1 and 2) or between φ = -100° and φ = 100° in the x0y plane (for antennas 3 and 4). All the 

simulated results have been transferred in the same spatial coordinates presented in figure 4-18. 

Simulations are presented over 360° for both vertical and horizontal planes.  Moreover, we choose to 

center the maximum of the useful pattern (measured and simulated) on each plot. 
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Figure 4-19 shows a measured maximum gain of 3.5 dBi in the vertical plane (located at θ = 130°, 

φ = 90°) and 2.7 dBi maximum gain in the horizontal plane (located at θ = 90°, φ = 100°). Antenna 1 

has an 80 % simulated total efficiency versus a 58 % measured efficiency in the Satimo StarLab. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) 

(a) 

Figure 4-19: Antenna 1 simulated vs measured gain in the planes at (a) φ = 90° and (b) θ = 90°. 
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(a) 

(b) 

Figure 4-20: Antenna 2 simulated vs measured gain in the planes at (a) φ = 90° and (b) θ = 90°. 

Figure 4-20 shows a measured maximum gain of 2.1 dBi in the vertical plane (located at θ = 126°, 

φ = 90°) and 2.8 dBi maximum gain in the horizontal plane (located at θ = 90°, φ = 72°). Antenna 2 has 

an 80 % simulated total efficiency versus a 56 % measured efficiency. 
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(a) 

(b) 

Figure 4-21: Antenna 3 simulated vs measured gain in the planes at (a) φ = 0° and (b) θ = 90°. 

Figure 4-21 shows a measured maximum gain of 2.9 dBi in the vertical plane (located at θ = 119°, 

φ = 90°) and 2.9 dBi maximum gain in the horizontal plane (located at θ = 90°, φ = 18°). Antenna 3 has 

an 81 % simulated total efficiency versus a 65 % measured efficiency. 
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Figure 4-22 shows a measured maximum gain of 1.4 dBi in the vertical plane (located at θ = 60°, φ 

= 90°) and 3.9 dBi maximum gain in the horizontal plane (located at θ = 90°, φ = -19°). Antenna 4 has 

an 81 % simulated total efficiency versus a 55 % measured efficiency.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) 

(b) 

Figure 4-22: Antenna 4 simulated vs measured gain in the planes at (a) φ = 0° and (b) θ = 90°. 
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eq. [4-2] 

eq. [4-2] 

eq. [4-3] 

Those results are consistent with the expected antenna performance for this type of application 

and measurements match simulations with good accuracy. We observe a good agreement between 

simulations and measurements especially for the main polarization (Gain-φ). 

4.4.4. Beamforming Computation 

The terminal prototype is composed of 2 arrays of 2 antennas radiating towards the y-axis 

(antennas 1 and 2) and towards the x-axis (antennas 3 and 4). Each array can be used in beamforming 

mode to increase the gain towards a specific direction. The beamforming gain (or array gain) Garray for 

each array is obtained by computing a linear combination of the single element gains, i.e., as: 

 

𝐺𝑎𝑟𝑟𝑎𝑦 (𝜃; 𝜑) = 𝐺𝑎(𝜃; 𝜑) + 𝐺𝑏(𝜃; 𝜑)𝑒−𝑗𝛾. 

 

where a = {1, 3} and b = {2, 4} indicate the antenna element, Gi,j are the gain of the single elements, 

and γ is the phase difference that can be introduced between the 2 elements of the array (we are 

assuming here that no amplitude difference can be introduced). The beamforming gain can be 

maximized in each direction (θ,φ) by optimizing the phase difference γ. The result is the so-called Total 

Scan Pattern (TSP) gain, introduced in [IV-5], [IV-6] and [IV-19], and defined as: 

 

𝐺𝑇𝑆𝑃(𝜃, 𝜑) = max{𝐺𝑎𝑟𝑟𝑎𝑦(𝜃, 𝜑)}. 

 

Finally, in order to highlight the improvement given by the beamforming technique, we define 

ΔG(θ,φ) as the difference between GTSP and the best gain among the two antennas used to form the 

beam, i.e., 

∆𝐺(𝜃, 𝜑) = 𝐺𝑇𝑆𝑃(𝜃, 𝜑) − max{𝐺𝑎(𝜃, 𝜑), 𝐺𝑏(𝜃, 𝜑)}. 

 

Figure 4-23 shows the comparison between the simulated and the measured beamforming gain 

obtained considering antennas 1 and 2 (a = 1, b = 2) and γ = 0°. The numerical data are obtained directly 

from the HFSS simulations, while the experimental ones are computed from the measured single 

element antenna patterns G1(θ,φ) and G2(θ,φ) using (2).The good agreement between the curves 

validates the beamforming calculations as well as demonstrates the accuracy of the measurements for 

both the θ and φ components. The beamforming gain achieves a 5.8 dBi maximum value in the vertical 

plane (located at θ = 280°, φ = 90°) and a 4.8 dBi maximum value in the horizontal plane (located at θ 

= 90°, φ = 89°).  
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(a) 

(b) 

Figure 4-23: Antenna 1 and 2 simulated vs measured array gain in the planes at (a) φ = 90° and (b) θ = 90. 
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We observe similar results for the second array. Antennas 3 and 4 on Figure 4-24 achieve a 4.9 dB 

maximum gain in Theta plane (θ = 120°, φ = 90°) and a 5.3 dB maximum gain in horizontal plane (θ = 

90°, φ= - 13°). Those two graphs show a good match between the beamforming simulated and the 

measured one 

(b) 

(a) 

Figure 4-24: Antenna 3 and 4 simulated vs measured array gain in the planes at (a) φ = 0° and (b) θ = 90. 
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Figure 4-25 presents the TSP gain GTSP obtained using antennas 3 and 4. The array exhibits a 5.0 

dBi maximum gain in the vertical plane (at θ = 120°, φ = 90°) and a 5.8 dBi maximum gain in the 

horizontal plane (at θ = 90°, φ = -13°).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) 

(b) 

Figure 4-25: Antenna 1 and 2 Simulated vs Measured Beamforming Gain TSP in the planes at (a) φ = 90° and θ = 

90°. 
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(a) 

(b) 

Figure 4-26: Antenna 3 and 4 Simulated vs Measured Beamforming Gain TSP in the planes at (a) φ = 90° and θ = 90°. 

Antennas 3 and 4 on Figure 4-26 achieve a 5.0 dB maximum gain in vertical plane (θ= 120°, φ = 

90°) and a 5.8 dB maximum gain in Phi plane (θ = 90°, φ = - 13°). We also observe an average 2.3 dB 

beamforming gain in Theta plane and a 2.1 dB beamforming gain in the Phi plane for the main 

polarization Phi. The good agreement between simulations and measurements further confirm the 

beamforming computation method and the precision of the measurement setup. 
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(a) 

(b) 

Figure 4-24-7 : Antenna 1 and 2 measured gain and beamforming Gain TSP in the planes at (a) φ = 90° and (b) θ = 

90°. 

The figure 4-27 presents the gain for antenna 1 and 2 as well as the beamforming gain TSP. This 

figure illustrates the ΔG between the maximum gain achievable and the best gain among antenna 1 

and 2. We observe that the beamforming configuration can provide a better gain in every direction of 

θ and φ. 
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4.4.5. Measurement of hand effect 

Figure 4-29 shows the measured S-parameters of each antenna with the user effect, i.e., grabbing 

the smartphone as presented in Figure 4-28(a). We can observe that all the antennas still match the 

frequency band with good isolation between two elements of the same array. Casing and hands have 

a low influence on the antenna reflection coefficient, meaning that the reactive fields of the antennas 

are not distorted by the casing or the hand.  

 

 

For the radiation pattern measurement with hand effect, eight different people, men, and women 

volunteered in order to get results with hands of various sizes and shapes. For this experiment, we 

wanted to reduce the measurement time by focusing the acquisition in the antenna’s region of 

interest. Indeed it was difficult not to move while holding the device for a long period (a full 3D 

radiation pattern is measured in about 20 minutes). Therefore we swept only 240° around the antenna 

in the vertical plane and 200° in the horizontal plane. Despite this limitation, we are able to observe 

the impact of the hand in a reliable way. 

 

 

 

 

 

Figure 4-28: Photos of the grip in the two configurations (a) and (b) and a general view of the user holding the 

device. 
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Figure 4-30 presents the gain main component (Gain φ) of antenna 1 in both the planes at φ = 90° 

and θ = 90° for all the different user hands. The free space (FS) gain of antenna 1, already shown in Fig. 

9(a), is reported for comparison. First, we observe that the radiation pattern is modified when the 

user's hand is holding the device especially in the direction where the hand is located, with a radiated 

power oriented to the top of the antenna. The hand absorbs all the bottom radiation. We also notice 

the variety of the results, which confirms the necessity to produce a lot of measurements to obtain 

statistically reliable results. Differences in the measurement results are, indeed, caused by the various 

sizes and shapes of hands we used as well as by slight variations in the holding position.  

Figure 4-29: Return loss and isolation for each antenna for the measured prototype with hand effect. 
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For better visibility, we present in Figure 4-31 the average gain with hand blockage versus the free 

space measurements for antenna 1. Figure 4-31(a) clearly shows a decrease of the gain along the θ-

axis (solid blue line) that is coherent with the holding position. We observe a maximum loss of 20 dB 

where the palm of the hand is entirely covering the smartphone. Figure 4-31(b) shows a quite constant 

14 dB loss along the φ-axis. 

(a) 

(b) 

Figure 4-30: Antenna 1 free space and hand effect radiation measurement in the plane at (a) φ = 90° and θ = 90°. 
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(a) 

(b) 

Figure 4-31: Antenna 1 free space and Average hand effect measured gain in the plane at (a) φ = 90° and θ = 90°. 
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(a) 

(b) 

Figure 4-32: Antenna 2 free space and Average hand effect measured gain in the plane at (a) φ = 90° and θ = 90°. 

The same behavior described above for the antenna 1 is visible in Figure 4-32, where the results 

for antenna 2 are reported. 
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As expected, antennas 3 and 4 are not impacted at all by the hand. The results are reported for 

the sake of completeness in Figures 4-33 and 4-34. 

 

 

 

(a) 

(b) 

Figure 4-33: Antenna 3 free space and Average hand effect measured gain in the plane at (a) φ = 90° and θ = 90°. 
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(a) 

(b) 

Figure 4-34: Antenna 3 free space and Average hand effect measured gain in the plane at (a) φ = 90° and θ = 90°. 
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Table 4-2 and table 4-3 present the average and maximum loss in gain caused by the user’s hand 

on each antenna respectively for the plane at φ = 90° and θ = 90°, respectively. The user’s hand causes 

an average 14.7 dB loss in the vertical plane and 11.9 dB loss in the horizontal plane for the main 

polarization of antenna 1 with a maximum loss at 24.9 dB in the vertical plane. Antenna 2 is impacted 

the same way while antennas 3 and 4 maintain a similar gain as the one exhibited in free space. 

 

Table 4-2: Loss with user blockage in the vertical plane θ. 

 

 

 

 

 

 

 

 

Table 4-3: Loss with user blockage in the horizontal plane φ. 

 

 

 

 

 

 

 

 

4.4.6. Beamforming Computation with Hand Effect 

The beamforming computation method validated in a previous section is applied to measurements 

with hand effect. In this section, the analysis focuses on the array impacted by the user effect 

composed of antennas 1 and 2.  

 

Table 4-4 presents the average beamforming gain achieved in free space and for the different 

measurement with each hand. Antennas 3 and 4 are not impacted by the user’s body, so only the data 

for the beamforming achieved with antenna 1 and 2 are reported in this table. We observe that the 

beamforming is not as efficient as in free space when a user is holding the device. Indeed the best 

Antenna n° 
Avg. Loss 

Gain-φ (dB) 

Avg. Loss 

Gain-θ (dB) 

Max Loss 

Gain-φ (dB) 

Max Loss 

Gain-θ (dB) 

1 14.7 7.71 24.9 143 

2 13.5 7.35 21.8 16.4 

3 0.3 0.03 2.2 22.2 

4 0.8 0.4 2.1 10.7 

Antenna n° 
Avg. Loss 

Gain-φ (dB) 

Avg. Loss 

Gain-θ (dB) 

Max Loss 

Gain-φ (dB) 

Max Loss 

Gain-θ (dB) 

1 11.9 5.98 16.8 21.6 

2 13.1 5.64 20.0 13.7 

3 0.6 0.9 3.9 14.7 

4 0.05 0.03 5.4 17.7 
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beamforming gain achieved among the 8 measurements with the hand is 1.40 dB against 2.41 dB in 

free space in the vertical plane and 1.46 dB against 2.49 dB in the horizontal plane. Efficient 

beamforming cannot be achieved because user’s interference increases the gain imbalance between 

the two antennas of the same array. Even if a maximum of 3 dB ΔG can be achieved, this performance 

cannot be controlled meaning that we cannot create a beam in a chosen direction.  

 

Table 4-4: Beamforming gain and gain imbalance for the main polarization of antenna 1 and 2 in free 

space and with user blockage. 

 

 

Figure 4-35 presents a comparison between the TSP gain with the hand (solid lines) and in free 

space (dotted lines). In free space, antennas 1 and 2 achieve a 5.8 dBi maximum gain in the vertical 

plane (at θ = 128°, φ = 90°) and a 5.5 dBi maximum gain in horizontal plane (at θ = 90°, φ = 89°). We 

observe that GTSP with hand effect is 25 dB lower than GTSP in free space in the worst case. Around the 

direction at θ = -20°, GTSP with the hand becomes higher than GTSP in free space because the hand is not 

covering this area and the beamforming benefits of a small reflecting effect from the hand.  

 

 

 

 

 

Vertical Plane Horizontal Plane 

Average 

ΔG (dB) 

Max ΔG 

(dB) 

Avg. Gain 

Imbalance 

(dB) 

Max Gain 

Imbalance 

(dB) 

Average 

ΔG (dB) 

Max ΔG 

(dB) 

Avg. Gain 

Imbalance 

(dB) 

Max Gain 

Imbalance 

(dB) 

Free Space 2.52 3.0 1.33 7.29 2.44 3.0 1.41 3.53 

Hand 1 1.61 3.0 8.72 25.1 1.27 3.0 10.6 22.7 

Hand 2 1.73 3.0 5.09 13.5 1.16 3.0 13.5 27.9 

Hand 3 1.62 3.0 7.12 19.4 1.47 3.0 10.4 22.7 

Hand 4 1.64 3.0 11.6 26.3 1.15 3.0 11.8 25.2 

Hand 5 1.29 3.0 9.67 22.6 1.05 3.0 13.4 29.9 

Hand 6 1.70 3.0 10.1 23.8 1.55 3.0 9.06 21.3 

Hand 7 1.60 3.0 6.04 16.8 1.74 3.0 10.5 24.8 

Hand 8 1.42 3.0 19.7 25.1 1.43 3.0 14.6 30.0 
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(a) 

(b) 

Figure 4-35 : Antenna 1 and 2 measured beamforming gains TSP in free space vs measured gain TSP with hand 

effect in the planes at (a) φ= 90° and (b) θ = 90°. 
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Figure 4-36 presents the beamforming gain TSP versus the gain of the two antennas composing 

the array. This figure aims to show that the beamforming capabilities regarding the orientation of the 

beam, are considerably reduced.  Indeed when the user impact is too strong, it becomes impossible to 

choose a specific direction of transmission.  

 

(a) 

(b) 

Figure 4-36: Antenna 1 and 2 measured gain and measured beamforming gain TSP with hand effect in the planes at  

(a) φ = 90° and (b) θ = 90°. 
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Figure 4-37 presents the cumulated distributed function (CDF) of ΔG as a function of θ and φ for 

the case in free space (dotted lines) and with the hand (solid lines). The blue lines correspond to the 

array with antennas 1 and 2 while the red lines are for the array with antenna 3 and 4. The main result 

is the difference between the blue lines, which shows the efficiency of the beamforming in both the 

free space and with the hand blockage configurations. It is clear that the beamforming with the hand 

(a) 

(b) 

Figure 4-37: Cumulated Distributed Function of ΔG for both array in Free Space and with hand effect in the 

planes at (a) φ = 90° and (b) θ = 90°. 
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is at least twice less efficient than the beamforming in free space. For example, if we observe the blue 

lines in the horizontal plane, we can say that the probability that ΔG with hand effect becomes higher 

than 2 dB is only 20% while this probability rises to 85% in free space (30% vs. 100% in the vertical 

plane).  

4.4.7. Conclusion of the study at 15 GHz 

We designed and realized a mobile phone prototype at 15 GHz according to future 5G 

requirements to study the body loss impact on beamforming performance. We proposed a new 

measurement approach to investigate hand effect on a handset terminal. Influence of real user’s hands 

has been investigated thanks to a spherical near-field scanner with fixed AUT. Results are based on a 

measurement campaign involving 8 people. Body dielectric properties versus frequency are not 

constant, and an important impact of the hand on millimeter-Wave terminals has to be expected. 

Indeed, results show an average decrease of 12 dB of the gain at 15 GHz for a real human hand and 

loss up to 25 dB in the most impacted directions while the average body loss below 6 GHz is around 6 

dB. Moreover, imbalances caused by user’s interferences considerably reduce the beamforming 

performance and avoid creating a beam in a specific direction. Antenna implementation within 

handset device become crucial and must take into account real use cases when it comes to high 

frequency bands.  

4.5. Conclusion and Perspectives 

The study points out the limitations of millimeter wave handset devices and highlights the 

importance of a smart implementation of antennas in the future 5G cellular network. We observed 

that the beamforming gain is far from reaching the theoretical 3 dB expected for a two antenna array 

when the user is covering the antennas. We noticed that user interferences cause a great gain 

imbalance between antennas in an array, especially at millimeter-waves where antennas are physically 

close to each other (with respect to the hand dimension). Moreover, the radiation pattern degradation 

caused by user’s hand deletes the ability to choose the beamforming direction. Finally, the 

experiments confirmed that loss in human body increases at high frequency.  

 

We studied a 2-elements antenna array, but we can predict that similar behavior would be 

obtained for bigger arrays. Millimeters bands phased arrays are known candidates for 5G handset 

devices, but it has become obvious that user’s blockage is a great obstacle that must be overcome 
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before implementing this technology in smartphones. At this point, we can say that antenna 

configuration and implementation is a key parameter for the design of 5G handset devices. More than 

ever, use cases must be studied and anticipated to design efficient antenna arrays in mobile terminals. 

The optimal number of array and their location, as well as the number of antenna per array, should be 

optimized regarding the different use cases, the power consumption and the coverage efficiency. 

Furthermore at 28 GHz cables are very lossy or very expensive so RF front-end must be located just 

behind antennas. Those new constraints might lead to a complete revisit of the RF hardware 

architecture. This study might be generalized by testing implementations with more antennas on the 

device and higher order MIMO configurations. More use cases should be tested such as a two hands 

grip on the mobile device or the talk mode with the impact of the hand and the head. Finally, the 

measurement full 3D radiation pattern with hand effect might give more information. 
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Conclusion 

In the context of the ongoing 5G research, the thesis has focused on MIMO antennas, one of the 

breakthrough technology of enabling high data rates for 4G and Wi-Fi technologies. We axed the 

problematic around the design and the evaluation of multi-antenna systems for small devices such as 

a gateway, small-cell, and smartphones. 

 

In chapter 2, we presented the development of two OTA measurements setup to assess 

performances of those devices. To conduct the study on multi-antenna gateways we retained the 

testbed developed with OpenAirInterface because of its flexibility and low cost compared to the 

system developed with Rhodes&Schwarz instrumentations.  

 

In chapter 3, we presented several antenna designs based on the idea to create a new concept of 

Livebox for Orange. We intended to fully exploit the capabilities of the WLAN 802.11ac standard in 

terms of MIMO techniques. For this purpose, we studied antenna implementation inside a small access 

point to improve the efficiency of the global system. The originality of the work was the use of the LDS 

technology to print antennas on the plastic case. We compared this technology with the classic PCB 

solution by performing a set of free-space measurement with a VNA and a Satimo StarLab. To get 

deeper into the evaluation of the performance of the prototypes with performed OTA measurements 

thanks to the OAI measurement setup. The results have shown the benefits of LDS technology. 

Moreover, antenna selection has been implemented in the OAI setup and has shown interesting 

results. Indeed we demonstrated that a MISO 4x1 beamforming performed with antenna selection 

achieves quasi equivalent performance than a MISO 8x1. 

 

We also explored directional antenna and their influence on the performance of multi-antenna 

gateway through the realization of an 8 antenna prototype constituted of directional antennas. 

Despite a high number of measurement, we were not able to draw a very clear conclusion on any 

improvement brought by the antenna directivity. More experiments with different position of the 

gateway should be conducted to sharpen the conclusions.  

 

 In chapter 4, we conducted a study on high frequency mobile phone antennas. By leveraging a 3D 

measurement setup, we were able to assess the beamforming capabilities of a 2-elements antenna 

array in the presence of user blockage at 15 GHz. The first conclusion was that loss in human body 
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increases at high frequencies. Moreover, the study pointed out the limitations of millimeter wave 

handset devices and highlighted the importance of a smart antennas implementation and 

configuration in the future 5G cellular network. Indeed, we observed that the beamforming gain was 

considerably impacted by the user’s hand. Consequently, it becomes very difficult for the antenna 

array to radiate in a chosen direction. Even though the study was conducted only with 2 antennas at 

15 GHz with can predict similar behavior in a 28 GHz devices with 4 or 8 elements.  
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Figure Appendix-1: Picture of the polycarbonate sample. 

Figure Appendix-2: Measured Polycarbonate Dielectric Permittivity. 

Appendix:  

Polycarbonate Dielectric Properties Characterization. 

In order to characterize the polycarbonate dielectric properties, we used the “N1500A Keysight 

Material Measurement Suite” with the dielectric probe kit. The N1500A software controls a Keysight 

network analyzer which measures through the probe, the material’s response to RF and calculates 

results. The probe is used on a polycarbonate sample of dimensions 5x5x2.5 cm3 presented in figure 

1. The polycarbonate permittivity is measured between 2 GHz and 6 GHz. The measured permittivity 

is presented in figure 2. The estimated permittivity is εr = 2.8 at 2.4 GHz. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Appendix  173 

Figure Appendix-4: Simulated, Measured and Retro-Simulated Return Loss of the patch antenna. 

In order to validate the measured permittivity and to estimate the loss tangent of the 

polycarbonate, we realized a patch antenna radiating at 2.4 GHz. We simulated this patch of 

dimensions 35.5x43.5 mm² on a polycarbonate substrate of thickness h = 1mm, permittivity εr = 2.8 

and loss tangent tanδ = 0.02. The feeding coaxial cable is located at 6.6 mm from the center of the 

patch antenna on the y axis. The simulated and realized patch antenna are presented in figure 3(a) and 

figure 3(b) respectively. The return loss of the patch antenna is measured and compared to the 

simulation. Then the patch is retro-simulated to adjust the polycarbonate permittivity and loss 

tangent. The return loss of the simulated, measured and retro-simulated patch antenna are presented 

in figure 4. We determined the polycarbonate permittivity at εr = 2.69 and loss tangent tanδ = 0.013. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) (b) 

Figure Appendix-3: Pictures of (a) the simulated patch antenna and (b) the realized patch antenna on the polycarbonate substrate. 


