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Résumé : Cette these porte sur I'analyse mathématique de l'interaction d’un fluide
non-visqueux avec des structures immergées. Plus précisément, elle est structurée autour
de deux axes principaux. L’'un d’eux est l'analyse asymptotique du mouvement d’une
particule infinitésimale en milieu liquide. L’autre concerne I'interaction entre des vagues
et une structure immergée.

La premiere partie de la these repose sur 'analyse mathématique d’un systéme d’équa-
tions différentielles ordinaires non-linéaires d’ordre 2 modélisant le mouvement d’un solide
infiniment petit dans un fluide incompressible en 2D. Les inconnues du modele décrivent
la position du solide, c¢’est-a-dire la position du centre de masse et son angle de rotation.
Les équations proviennent de la deuxiéme loi de Newton avec un prototype de force de
type Kutta-Joukowski.

Plus précisément, nous étudions la dynamique de ce systeme lorsque l'inertie du solide
tend vers 0. Les principaux outils utilisés sont des développements asymptotiques multi-
échelles en temps. Pour la dynamique de la position du centre de masse, ’étude met
en évidence des analogies avec le mouvement d’une particule chargée dans un champ
électromagnétique et la théorie du centre-guide. En I'occurrence, le mouvement du centre-
guide est donné par une équation de point-vortex. La dynamique de l'angle est quant
a elle donnée par une équation de pendule non-linéaire lentement modulée. Des régimes
tres différents se distinguent selon les données initiales. Pour de petites vitesses angulaires
initiales la méthode de Poincaré-Lindstedt fait apparaitre une modulation des oscillations
rapides, alors que pour de grandes vitesses angulaires initiales, un movement giratoire
bien plus irrégulier est observé. C’est une conséquence particuliére et assez spectaculaire
de I'enchevétrement des trajectoires homocliniques.

La deuxieme partie de la theése porte sur le probleme des vagues dans le cas ou le
domaine occupé par le fluide est a surface libre et avec un fond plat sur lequel un objet
solide se translate horizontalement sous I’effet des forces de pression du fluide. Nous avons
étudié deux systemes asymptotiques qui décrivent le cas d’un fluide parfait incompressible
en faible profondeur. Ceux-ci correspondent respectivement aux équations de Saint-Venant
et de Boussinesq. Grace a leur caractere bien-posé en temps long, les modeles traités
permettent de prendre en compte certains effets de la mécanique du solide, comme les
forces de friction, ainsi que les effets non-hydrostatiques.

Notre analyse théorique a été complétée par des études numériques. Nous avons
développé un schéma de différences finies d’ordre élevé et nous 'avons adapté a ce prob-
leme couplé afin de mettre en évidence les effets d'un solide (dont le mouvement est limité
a des translations sur le fond) sur les vagues qui passent au dessus de lui. A la suite de
ces travaux, nous avons souligné 'influence des forces de friction sur ce genre de systemes
couplés ainsi que sur le déferlement des vagues. Quant a 'amortissement di aux effets
hydrodynamiques, une vague ressemblance avec le phénomene de 1’eau morte est mise en
évidence.
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Abstract: This PhD thesis concerns the mathematical analysis of the interaction of
an inviscid fluid with immersed structures. More precisely it revolves around two main
problems: one of them is the asymptotic analysis of an infinitesimal immersed particle,
the other one being the interaction of water waves with a submerged solid object.

Concerning the first problem, we studied a system of second order non-linear ODEs,
serving as a toy model for the motion of a rigid body immersed in a two-dimensional
perfect fluid. The unknowns of the model describe the position of the object, that is the
position of its center of mass and the angle of rotation; the equations arise from Newton’s
second law with the consideration of a Kutta-Joukowski type lift force. It concerns the
detailed analysis of the dynamic of this system when the solid inertia tends to 0.

For the evolution of the position of the solid’s center of mass, the study highlights
similarities with the motion of a charged particle in an electromagnetic field and the well-
known “guiding center approximation”; it turns out that the motion of the corresponding
guiding center is given by a point-vortex equation. As for the angular equation, its evo-
lution is given by a slowly-in-time modulated non-linear pendulum equation. Based on
the initial values of the system one can distinguish qualitatively different regimes: for
small angular velocities, by the Poincaré-Lindstedt method one observes a modulation
in the fast time-scale oscillatory terms, for larger angular velocities however erratic rota-
tional motion is observed, a consequence of Melnikov’s observations on the presence of a
homoclinic tangle.

About the other problem, the Cauchy problem for the water waves equations is consid-
ered in a fluid domain which has a free surface on the upper vertical limit and a flat bottom
on which a solid object moves horizontally, its motion determined by the pressure forces
exerted by the fluid. Two shallow water asymptotic regimes are detailed, well-posedness
results are obtained for both the Saint-Venant and the Boussinesq system coupled with
Newton’s equation characterizing the solid motion. Using the particular structure of the
coupling terms one is able to go beyond the standard scale for the existence time of
solutions to the Boussinesq system with a moving bottom.

An extended numerical study has also been carried out for the latter system. A high
order finite difference scheme is developed, extending the convergence ratio of previous,
staggered grid based models. The discretized solid mechanics are adapted to represent
important features of the original model, such as the dissipation due to the friction term.
We observed qualitative differences for the transformation of a passing wave over a moving
solid object as compared to an immobile one. The movement of the solid not only influ-
ences wave attenuation but it affects the shoaling process as well as the wave breaking.
The importance of the coefficient of friction is also highlighted, influencing qualitative and
quantitative properties of the coupled system. Furthermore, we showed the hydrodynamic
damping effects of the waves on the solid motion, reminiscent of the so-called dead water
phenomenon.

Fluid-structure interaction vii



Keywords: fluid-structure interaction, asymptotic analysis, fluid dynamics, Euler equa-
tion, immersed particule, Newton equation

viii Krisztian Benyo



Laboratoire d’accueil : Institut de Mathématiques de Bordeaux,
Université de Bordeaux
Bat. A33, 351, cours de la Libération,
33405 Talence CEDEX, France

Fluid-structure interaction

ix



Krisztian Beny6



Remerciements

Mes premiers remerciements vont vers mes deux encadrants, David Lannes et Franck
Sueur. C’est uniquement grace a leur dévouement, leur disponibilité et leurs conseils
professionnels ainsi que personnels que j’ai pu parvenir a conclure mes travaux de recherche
au sein de I'Institut de Mathématiques de Bordeaux. Je sais tres bien que j’étais loin de leur
meilleur étudiant, néanmoins j’espere que malgré mes nombreux défauts j’ai été capable
de récupérer tout mes occasions ratées.

J’aimerais également remercier Pascal Noble et Takéo Takahashi qui me font 'immense
honneur d’étre mes rapporteurs de these et, par conséquent, d’avoir consacré une partie
considérable de leur temps pendant les vacances estivales. Je tiens a remercier également
Afaf Bouharguane, Catherine Choquet et Emmanuel Audusse d’avoir accepter de faire
partie de mon jury de these.

Je tiens a remercier les personnels de I'IMB et les collegues de 1’'équipe EDP et physique
mathématique pour ’accueil chaleureux et pour les quotidiens vifs et dynamiques pendant
ces trois années. En pensant au laboratoire, mes premieres pensées vont vers Benjamin
et Stevan qui m’ont guidé et accompagné pendant ma premiere année bordelaise. Malgré
les difficultés et les inattendus, c¢’était grace a eux que j’ai pu établir une excellente base
a la fois sportive et scientifique.

Je voudrais ensuite remercier Benoit pour ses passages hilarantes, Stefano et Francesco
pour un bon gotit d’Italie pour les quotidiens, et Adrien pour sa présence trés occasion-
nelle. Je dois également remercier Paul et Xiaoming pour m’avoir supporté, surtout ces
derniers mois, en tant que collegue de bureau. Je remercie Edoardo pour les séjours et les
conférences un peu partout en France. Je tiens a remercier également les autres membres
de « I'’équipe CNRS » : Debayan, Marco et Jared pour les repas inoubliables. Finalement
un grand merci pour Olivier pour ses corrections et conseils de frangais.

Enfin je voulais remercier deux individus hongrois en particulier. Tout d’abord Kristof
pour m’avoir encourager (tres) longuement de partir sur ce chemin. Ensuite Janos qui m’a
servi comme un exemple pendant des années, qui m’a montré ce que cela signifie d’étre
un vrai mathématicien au XXIeme siecle.

Mes derniers remerciements appartiennent a ma famille. Sans eux, rien ne serait pos-
sible.

X1



Xii

Krisztian Beny6



Table of contents

Introduction (version francgaise) 1
1 Plandelathese . . . . . . . . . . . 2
2 Ladynamique du fluide . . . . .. .. ... ... .. 3
2.1 Les équations d’Euler . . . . . ... ... o000 4
2.2 L’équation des vagues . . . . . . .. .. oo 7
3 La mécanique dusolide . . . . . . . . . . . ... ... 10
3.1 La deuxiéme loi de Newton . . . . .. ... .. ... ... ..... 10
3.2 Des forces extérieures . . . . . . . . ... 11
4 Interaction fluide-structure . . . . . . . . .. ... L Lo 14
5 Les modeles asymptotiques . . . . . . . . . .. L 15
5.1 Perturbations régulieres . . . . . . . ... ... .. L. 16
5.2 Perturbations singulieres . . . . . . ... .. .. .o L. 18
Introduction (English version) 21
1 Outline of the thesis . . . . . . . . . . . ... .. ... . ... . 22
2 Fluid dynamics . . . . . . . . . . 23
2.1 The Euler equations . . . . . . . ... ... ... .. ..., 24
2.2 The water waves problem . . . . .. ... ... ... ........ 29
3 Solid mechanics . . . . . . . ... 31
3.1 Newton’ssecond law . . . . . . .. ... ... . ... ... . ..., 31
3.2 External forces . . . . . . . . ... . 32
4 Fluid-structure interaction . . . . . . . . ... ... ... ... ... ..., 35
5  Asymptoticmodels . . . ... L 36
5.1 Regular perturbation problems . . . . . .. ... ... ... .... 37
5.2 Singular perturbation problems . . . .. ... ... ... ...... 40

1 Multiple-scale analysis of the dynamics of a point particle in a two di-
mensional perfect incompressible and irrotational flow 43
Version francaise abrégée . . . . . . . ... L 44

Xiil



TABLE OF CONTENTS

1.1 Introduction . . . . . . . . . . . e 46
1.1.1 The model system . . . . .. ... .. ... ... ... 46
1.1.2 Outlineof thestudy . . ... ... ... . ... .. ... ..... 48
1.2 On the motion of a rigid body in a bidimensional perfect fluid . . . . . .. 48
1.2.1 The case of an unbounded irrotational flow . . . . . . ... ... .. 49
1.2.2  The case of a bounded fluid domain . . . . . . . . ... ... .... 53
1.3 The zero-mass limit of the massive point-vortex system . . . . . .. . ... o8
1.3.1 The results of this section . . . . . .. ... ... ... ....... 58
1.3.2 Proof of Theorem 1.3.2. . . . . .. ... . ... ... ........ 62
1.3.3 The proof of the convergence results . . . ... ... ... ..... 72
1.3.4 The proof of the quasi-periodicity . . . . . ... .. ... ... ... 73
1.4  Multiple-scale analysis of the angular equation . . . . . . . ... ... ... 75
1.4.1 An adapted scaling for the angular equation . . . . ... ... ... 75
1.4.2 The modulated phase shift . . . . . . ... ... ... ... ..... 76
1.4.3 Proof of the asymptotic development . . . . . . .. ... ... ... 78
1.5 Erratic behavior for a particular set of initial data . . . . . . . .. .. ... 83
1.5.1 Sensitivity to the initial data . . . . . . . .. . ... ... ... ... 84
1.5.2  The perturbed and unperturbed system . . . . . ... ... ... .. 86
1.5.3  Persistence of normally hyperbolic invariant manifolds . . . . . . . 89
1.5.4  The Smale horseshoe map . . . . . . ... ... ... ... ..... 89
1.5.,5 A Melnikov/Wiggins type theorem . . . . . ... ... ... .... 90
2 Wave-structure interaction for long wave models in the presence of a

freely moving object on the bottom 93
Version francaise abrégée . . . . . . . ... Lo oL 94
Introduction . . . . . . . . 97
2.1 The fluid-solid coupled model . . . . . . . .. ..o 99
2.1.1 The dynamics of a fluid over a moving bottom . . . . . . .. .. .. 99
2.1.2 A freely moving object on a flat bottom . . . ... ... ... ... 103
2.1.3 Dimensionless form of the equations . . . . . . ... ... ... ... 106
2.2 The O(u) asymptotic regime: The nonlinear Saint-Venant equations . . . . 109
2.2.1 The fluid equations in the asymptotic regime . . . . . . . . . .. .. 109

2.2.2  Formal derivation of a first order asymptotic equation for the solid
MOLION . . .« . . . L e 110
2.2.3 The wave-structure interaction problem at first order . . . . . . .. 112
2.2.4 Local in time existence of the solution . . ... ... ... .. ... 113
2.3 The O(u?) asymptotic regime: The Boussinesq system . . . . . . ... .. 124
2.3.1 Formal derivation of the corresponding solid motion equation . . . . 125
xiv Krisztian Benyo



TABLE OF CONTENTS

2.3.2  The coupled wave-structure model in the Boussinesq regime . . . . 127
2.3.3 A reformulation of the coupled fluid-solid system . . . . ... ... 128
2.3.4 A priori estimate for the Boussinesq system coupled with Newton’s
equation . . . . ..o 130
2.3.5 Local in time existence theorem . . . . . . . ... ... ... .... 141
2.3.6 Towards a more refined solid model . . . . . .. ... ... ..... 144
Conclusion . . . . . . . . . e 146
3 The incidence of a freely moving bottom on wave propagation 147
Version frangaise abregée . . . . . . . ... Lo L 148
Introduction . . . . . . ... 150
3.1 The governing equations . . . . . . . . ... L oo 153
3.1.1 The physical regime . . . . ... .. ... L oL 153
3.1.2  The coupled Boussinesq system . . . . .. .. ... ... L. 154
3.1.3 Relevant properties of the system . . . . .. ... ... ... .... 157
3.2 The discretized model . . . . ... .. L 158
3.2.1 The finite difference scheme on a staggered grid . . . .. .. .. .. 158
3.2.2 Time stepping with Adams-Bashforth . . .. ... ... ... ... 160
3.2.3 Time discretization for the solid motion. . . . . . . ... ... ... 161
3.2.4 The wave tank and its boundaries . . . . . . ... ... ... .. .. 163
3.2.5 Furtherremarks . . . . . . . . ... ... . 164
3.3 Numerical results . . . . . . . ... 165
3.3.1 Order of the numerical scheme . . . . . . . .. ... ... ...... 165

3.3.2 Transformation of a wave passing over a fixed and a moving obstacle 168
3.3.3 Amplitude of the transmitted wave for a fixed and moving obstacle 172

3.3.4 An effect of bottom displacement on the wave breaking . . . . . . . 177
3.3.5 Observations on the hydrodynamical damping . . . . . . ... ... 178
3.3.6  Measurements of the solid displacement . . . . . . .. ... ... .. 179

3.4 Conclusion . . . . . . . .. e e 183
Conclusion 185
1 Contributions of the thesis . . . . . . . . . .. .. ... ... .. 185
1.1 Multiple scale analysis of a toy model . . . . . . .. ... ... ... 185

1.2 Wave-structure interaction for shallow waters . . . . ... .. ... 186

2 Research perspectives . . . . . . . . . . . ... 187
2.1 Asymptotic analysis of the coupled toy model . . . . . . ... ... 187

2.2 Convergence iSSUes . . . . . . . . .. oo 188

2.3 Modeling underwater landslides . . . . . .. .. ... .. ... ... 188

Fluid-structure interaction XV



TABLE OF CONTENTS

2.4 Static and dynamic friction laws . . . . . . .. ..o L. 189
2.5 Coupling for more general shallow water models . . . . . . ... .. 189

A On Gronwall type inequalities

xvi Krisztian Benyo



Introduction (version francgaise)

Sommaire
1 Plandelathése .. .. ... ... ... oo, 2
2 La dynamique du fluide . . . . . ... ... .. 000000, 3
2.1 Les équations d’Euler . . . . ... ... Lo oo 4
2.2 L’équation des vagues . . . . . .. ... Lo 7
3 La mécanique dusolide . . . . ... ... ... .00 0oL, 10
3.1 La deuxieme loi de Newton . . . . ... ... ... ... .... 10
3.2 Des forces extérieures . . . . . . .. ..o 11
4 Interaction fluide-structure . ... ... ............. 14
5 Les modeéles asymptotiques . . . .. ... ... ... 0., 15
5.1 Perturbations régulieres . . . . . . . . ... Lo oL 16
5.2 Perturbations singulieres . . . . . . . . .. .. ... 18




1. Plan de la thése

Les problemes de l'interaction fluide-structure sont I'un des exemples les plus connus
des problemes multi-physiques. Ce sont des modeles qui impliquent plusieurs phénomenes
physiques simultanément. Dans un probleme d’interaction fluide-structure, on décrit I'in-
teraction entre le mouvement ou la déformation d’une structure solide et un fluide s’écou-
lant a l'intérieur ou a l'extérieur de cette structure. Il s’agit de contextes physiques com-
plexes dans lesquels le fluide et le solide interagissent a travers une surface de contact
(par exemple le bord du solide). Plus précisément, le fluide exerce une pression sur la
structure, ce qui engendre des changements dans I’état physique de celle-ci (sa position,
sa forme etc.). En conséquence, I’objet modifie le domaine du fluide et son flot. Cet effet de
couplage n’est pas stationnaire dans le sens ou il se manifeste comme une action-réaction
continument présente entre les deux milieux. Ainsi un échange d’énergie et de quantité
de mouvement (a priori non-constant) se maintient dans le systéeme complet.

Grace a 'augmentation de la puissance du calcul ainsi qu’a son acces simple et facile,
le domaine de I'interaction fluide-structure a connu un développement rapide ces dernieres
années. Des expériences et simulations numériques ont été mises en avant non seulement
pour soutenir les résultats des recherches scientifiques menées sur ce sujet mais également
pour venir en remplacement d’expérimentations cheres et inefficaces, typiques de ce do-
maine. Il était également d’un grand intérét de renforcer les connaissances théoriques.
Cependant ce domaine n’a pas été aussi remarquablement influencé par le développement
des moyens informatiques.

L’objectif principal de cette these est d’étudier deux problemes en particulier, pro-
venants de ce domaine de recherche tres dynamique. Nous avons basé notre approche a
des modeles asymptotiques qui conservent les caractéristiques essentielles des problemes
couplés complets et qui omettent des phénomenes physiques qui représentent des effets cu-
mulatifs négligeables ou non pertinents. Ces problemes s’inscrivent dans des directions de
recherche récentes a cause de l'intérét qu'’ils représentent pour des applications dans I'in-
génierie d’une part et pour leur pertinence par rapport a de nouvelles tentatives d’analyse
asymptotique d’autre part.

1 Plan de la these

Dans cette partie introductive, nous présentons les deux problématiques de ce travail.
D’abord nous introduisons les modeles principaux décrivant la dynamique du fluide ainsi
que le mouvement du solide. Ensuite nous détaillons certains paradigmes et aspects essen-
tiels liés au couplage de ces deux régimes. Enfin nous énoncons les principales techniques
et méthodes de I’étude asymptotique des systemes perturbés.

Le chapitre 1 présente ’analyse asymptotique d’un systeme d’équations différentielles
ordinaires non-linéaires. Ce systeme intervient comme un modele simplifié décrivant 1’évo-
lution d’un objet infinitésimal dans un milieu fluide parfait bi-dimensionnel. Une approche
de développement a plusieurs échelles est adaptée a ce probléeme en régime asymptotique
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lorsque l'inertie du solide tend vers 0.

Le chapitre 2 est largement inspiré de l'article [Benl7]. Nous détaillons le modeéle
couplé lié au probleme de l'interaction entre des vagues et un objet se déplacant au fond
du fluide. Nous analysons deux systemes asymptotiques en régime de faible profondeur.
Notamment, nous établissons le caractére bien-posé du systéme couplé de Saint-Venant
non-linéaire et de celui de Boussinesq faiblement non-linéaire.

Ensuite nous mettons en ceuvre un schéma aux différences finies d’ordre élevé afin d’ef-
fectuer des simulations numériques sur les équations de Boussinesq couplées avec 1’équa-
tion de Newton décrivant le mouvement du solide. Ce schéma numérique est une amélio-
ration du schéma préexistant. De plus, il est adapté a l'intégration de I'EDO discrétisée
qui caractérise le déplacement de 'objet. Enfin, la partie 3.3 présente les résultats de ces
simulations et leur interprétation, tirée de [Benl8b].

Nous terminons en résumant les contributions principales de cette these et en détaillant
quelques perspectives de recherche qui peuvent permettre de poursuivre les travaux preé-
sentés dans cette these. L’annexe complete les études présentées aux chapitre 2 et 3. Nous
y faisons quelques remarques concernant les inégalités de Gronwall utilisées dans ’analyse
des systemes couplés.

2 La dynamique du fluide

La dynamique du fluide décrit le flot d’un fluide, que ce soit un liquide ou un gaz. En
ce qui concerne le présent travail, nous nous intéressons en particulier a I’hydrodynamique
afin de décrire le mouvement d’un milieu liquide. Une des principales hypotheses suppose
que le liquide est décrit a I’échelle macroscopique, donc de maniére continue. Le considérer
comme un milieu continu permet de considérer les variables du flot et les propriétés du
systeme (densité, pression, champ de vitesse etc.) comme des fonctions définies sur des
éléments volumiques infinitésimaux. La structure moléculaire et une description discrete
se manifeste néanmoins a travers certains coefficients, certaines équations d’état et les
conditions aux limites.

Ainsi le mouvement du fluide peut étre décrit par des équations différentielles qui
caractérisent son évolution « continue ». Ces équations font suite a la description mathé-
matique des lois de conservations générales, notamment la conservation de la masse et
la conservation de la quantité de mouvement linéaire. Dans cette partie de I'introduction
nous établissons ces équations en partant du principe que le fluide est parfait afin de
mieux décrire la base dynamique de nos problémes principaux.

Fluid-structure interaction 3



2. La dynamique du fluide

2.1 Les équations d’Euler

Nous établissons ici de maniere plutot formelle des équations d’Euler incompressible.
Ce sont les équations de base pour décrire le mouvement d’un fluide parfait et incompres-
sible. Cette partie fait également office d’introduction a la partie modélisation du chapitre
2.

Nous commencons par supposer que le domaine du fluide est 1’espace R? tout entier,
avec d € N, ou d = 2 et 3 ce sont les dimensions physiquement pertinentes. Cela signifie que
les effets de bord seront dans un premier temps négligés. Dans une description Eulerienne,
nous associons a chaque point z € R et a chaque instant ¢ € R, des quantités telles que

e le champ de vitesse U = U(t,z) € R4,
e la densité o = o(t,z) € R4,

e la pression P = P(t,z) € R.

On peut aussi intégrer d’autres quantités, comme ’énergie interne (e(t, z) € R), 'entropie
(s(t,z) € R) ou la température (1" = T'(t,z) € R,). Nous avons énoncé ici ceux qui sont
relatifs aux études présentées dans ce texte.

Les équations elles-mémes proviennent des diverses lois de conservation de la méca-
nique classique et en général de la thermodynamique. L’interprétation de ces lois consiste
a décrire la conservation de certaines quantités le long des trajectoires des particules,
induites par le flot du champ de vitesse.

Définition 2.1. Le flot ¢ de U € C°(R, LipR%);RY) est l'unique solution de la classe
CHR,,CO(R?); RY) de I'équation différentielle ordinaire swivante

d

Ut 2) = Ut o(t2), £ >0, ¢(0,7) =z,

ou le point x € R? est un paramétre du systéme.

Pour un domaine w C R?, nous notons w; = ¥y (w) avec 9(z) = ¥(t,x). Le lemme
ci-dessous présente la réécriture adaptée a ’observation de la conservation des quantités
le long des trajectoires.

Lemme 2.1. Soient w un sous-ensemble ouvert, borné, conneze et régulier de R?, 1 le
flot de U € CH(R, x R%:RY) avec wy = Yy (w) et b € CHRT x REGRY). Alors on a

d

G | pltw)de = / (0b(t,2) + V- (b(t, 2)U(t, 2))) da

wt

= [ ab(t,x)dv+ [ (b(t,x)U(t,x)-n)d.

wt Owy

Ici, n désigne la normale unitaire sortante d'w; et 3 la mesure surfacique définie sur Ow;.
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Dans ce qui suit, nous considérons un w ouvert, borné et régulier pour représenter une
partie arbitraire du domaine du fluide.

Conservation de la masse : nous travaillons sur un systéme de fluide fermé dans lequel
il ne se passe aucune production ou perte de masse durant I’évolution en temps de la
dynamique du fluide. La masse d'une quantité du fluide qui se retrouve dans w a 'instant

t s’écrit
M, (t) :/Q(t,x) dx.

w

Puisque la masse est conservée, nous en déduisons que

d d
g M) = 7 | olt:7) =0

De ce fait, par Lemme 2.1 nous obtenons I’équation du bilan de masse :

B0+ V - (0U) = 0. (2.1)

Conservation de la quantité de mouvement : La deuxieme loi de Newton dit que la
force totale qui agit sur le fluide en w est égale au changement instantané de la quantité
de mouvement. Nous détaillerons cette loi plus précisément dans la Partie 3. La quantité
de mouvement linéaire du fluide s’exprime sous la forme suivante

P.(1) = /w (ou)(t, z) dz.

La force résultante exercée est constituée des forces a longue portée F.y (la gravité,
par exemple) et des forces surfaciques sur le bord du domaine (frottement ou pression
externe, par exemple). Les forces a courte portée peuvent étre représentées par un tenseur
d’ordre 2 o, dont la forme est précisée suivant des hypotheses physiques supplémentaires.
Néanmoins, nous écrivons

d

%Pwt (t ov)(t,z)dx = / (oF cpt)(t,z)dz+ | (0 -m)(t,x)d2.

wt Owt

)= |

L’équation du bilan de la quantité de mouvement linéaire est donc :
O(eU)+V - (0U®U) =gF .y + V-0, (2.2)

De la méme fagon, on peut écrire le bilan d’énergie interne par la premiere loi de la
thermodynamique, ou bien le bilan entropique fourni par la deuxieme loi de la thermody-
namique.

Afin d’obtenir les équations d’Euler, nous devons faire des hypotheses supplémentaires
sur le fluide. Notamment, nous considérons un fluide parfait, ce qui signifie d’abord que
celui-ci est isotrope, les quantités physiques principales ne dépendent que de (¢,x). De
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plus, nous supposons que le fluide n’admet pas de contrainte de cisaillement, qu’il n’est
pas visqueux et que, finalement, aucun échange de chaleur ne se produit. Cela implique
que le tenseur prend une forme assez simple : 0 = —PId.

Par conséquent, les lois de conservation de la masse et de la quantité de mouvement
s’écrivent

(2.3)

0 (0U)+ V- (0U®U) = =VP + gFy.

EN faisant ’hypothese supplémentaire que le fluide est homogene (g = cst), le systeme
simplifie au point de parvenir a I’écriture classique des équations d’Euler incompressible :

{V U=0 (2.4)

U+ (U-V)U =~ VP + Fey.

Le théoreme suivant est un résultat classique concernant 1’existence des solutions lo-
cales en temps de ce systeme sur ’espace tout entier :

Théoréme 2.1. Soit Uy € H*(R?), avec s > d/2+ 1 et V- Uy = 0, il existe un temps T

avec la borne supérieure
1

¢s|[Uoll s’

cs constante dépendante uniquement de s et de d, il existe une unique solution classique

U des équations (2.4) dans la classe C([0,T];C*(RY)) N C*([0, T];C(R)).

0<T <

Pour la démonstration, et pour des résultats plus généraux concernant la théorie gé-
nérale, nous renvoyons au livre de [MB03].

Nous avons introduit précédemment les équations d’Euler sur I'espace tout entier.
Maintenant nous voulons préciser le contexte de ce systeme dans le cas ou le domaine
du probleme est borné. Prenons () ouvert, borné, connexe et simplement connexe. Le
mouvement d’'un fluide parfait incompressible dans le domaine €2 fixe (qui ne bouge pas en
temps) est toujours décrit par les équations (2.4). Cependant, pour compléter le probléeme,
nous devons imposer des conditions sur le bord 0€). Supposons que ce bord est fixe, non-
déformable et imperméable. La condition de non-perméabilité, également connu sous le
nom de condition de non-pénétration, s’exprime mathématiquement par la relation ou le
composant normal de la vitesse vaut 0 sur le bord.

Notons par n la normale sortante unitaire. Nous avons

U.-n=0 sur o (2.5)

pour fermer le systeme d’équations.

Nous avons le résultat suivant concernant l'existence des solutions locales en temps
([KL&4))
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Theorem 2.1. Soit Q C RY ouvert et borné, avec un bord régulier 9. Soit s > d/2 + 1,
soit Uy € H*(Q;R?Y) avec V- Uy =0 et Fopy € C([0, To]; H¥(Q;R?)) telle que V- Feopy = 0
pout tout t € [0,Ty], Ty > 0. Alors il existe un temps T > 0, T < Ty tel qu’il existe une
unique solution U dans la classe C([0,T); H*(Q;R%)) du systéme (2.4) dans Q.

2.2 L’équation des vagues

Nous allons maintenant présenter les équations d’Euler a surface libre et leur réécriture
dans le cadre du probléme des vagues. Cela nécessite tout d’abord de préciser le domaine
du fluide qui est désormais une bande infinie avec des bornes qui évoluent au cours du
temps. Dans ce qui suit, nous désignons par ((t,z) I’élévation de la surface libre et par
b(t,x) les variations de la topographie du fond & un profondeur de base Hy. Avec cette
notation, le domaine du fluide est donné par

Q= {(r,2) ER*x R : —Hy+b(t,z) < 2 < {(t,7)},

zeR

domaine du fluide SZ,] g

FIGURE 1 — Le probleme des vagues avec un fond qui évolue au cours du temps

Pour éviter des cas physiques spécifiques liés aux irrégularités du domaine €); (comme
les iles, ou les plages), nous faisons I'hypothese que la profondeur totale du fluide a chaque
coordonnée horizontale est uniformément bornée inférieurement par une constante posi-
tive.

Dans le cadre du probleme des vagues, nous considérons un fluide qui se déplace sous
I'influence de la gravité dans le domaine €2;. Nous rappelons que la fonction U dénote
le champ de vitesse et P la pression du fluide. Les équations d’Euler incompressible et
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irrotationnel avec 'unique force extérieure due a la gravité s’écrivent

P

V‘U:O’ (2.6)
V xU=0,

valable sur Q. g = (0, —g)" désigne l'accélération gravitationnelle.

Les conditions aux limites peuvent étre résumeées ainsi :

e une condition cinématique (ou de non-pénétration) aux limites verticales (les parti-
cules du fluide ne peuvent pas pénétrer le bord) ;

e il n’y a pas de tension surfacique, la pression a la surface libre est donnée par la
pression atmosphérique, qui est une constante du systeme.

Nous reformulons ces conditions physiques en langage mathématique :

e nous rappelons que n est la normale unitaire montante. Nous écrivons donc, pour

le fond
Ob— /14 |Vb?U-n=0 sur{z=—Hy+b(t,x)}, (2.7)

et pour la surface libre

¢ — 1+ |V(PU-n=0 sur{z=((t,x)}; (2.8)

e si nous désignons par Py, la pression atmosphérique, nous avons la formule suivante
P =Py, sur{z=((t )} (2.9)

Le systeme (2.6), (2.7), (2.8) et (2.9) est appelé équations d’Euler a surface libre dans
le domaine du fluide €2,.

Nous remarquons que le traitement analytique d’un systéme d’équations aux dérivées
partielles sur un domaine €2; est complexe et nécessite beaucoup de subtilités. Toute-
fois nous constatons également que certaines reformulations de ce systéme peuvent étre
effectuées grace a des hypotheses supplémentaires. En particulier, par la supposition d’in-
compressibilité et d’irrotationalité, nous pouvons représenter le champ de vitesse par le
gradient d’un potentiel. Grace a la décomposition de Helmholtz, il existe une fonction
O(t, x), appelée potentiel de vitesse, telle que

U=V® dans ().

Ce potentiel vérifie une équation de Laplace sur le domaine du fluide. Avec des conditions
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au bord reformulées pour implémenter le potentiel, ® vérifie I’équation

AP =0 dans €y, (2.10)
¢)|z:C - @D» \/ I+ |vzb|28nq)|z:—Ho+b = atb7 '

ot ¢ = ®|,_¢ est une nouvelle inconnue du systeme. Par une méthode classique ([Mell5])
nous décomposons le potentiel ® en un composant « au fond fixe » et un composant « au
fond variable » de la fagon suivante

D =Py, + Dy,
ou
Ady =0 dans €,
Ppplo=c =9, 1+ |VibPOn®p|.=—mo4p =0,
et

{A(I)mb =0 dans §,

(Dmb‘z:C = 07 \/ 1+ ’be’28nq)mb‘z:—Ho+b = atb

De plus, nous avons la relation suivante ([Lan13])

\/ 1+ ’vx<|2anq)‘zzg' = GDN[C? b]?ﬁ + GNN[C7 b]atbu

ot nous avons introduit 'opérateur de type Dirichlet—Neumann GPV[(, b] associé au pre-
mier probléeme de Laplace :

GPNC, ] = b = 1+ |Vl |20 P o] =

et Popérateur de type Neumann—Neumann GV ¢, b] associé au second probléme de La-

place :
GNN[C? b] : atb = \/ I+ |Va:d28nq)mb|z:(-

Au moyen de cette notation, nous énoncgons enfin les équations des vagues avec un
fond qui évolue au cours du temps :

0 = G[C, bl = GMNIC, blowd,
1 (GI¢, bl + GNNC,BOb + Vol - Vop)? (2.11)
Op + 9¢ + 5| Vath]* — RN = 0.

Nous remarquons que ces équations ont déja été étudiées dans plusieurs contextes. Nous
faisons référence a Uarticle d’Alazard, Burq et Zuily [ABZ11] pour le caractére bien-posée
de ces équations pour des solutions locales en temps. Dans les travaux d’Iguchi [[gull]
et Melinand [Mell5] des régimes asymptotiques en faible profondeur ont été établis et
justifiés.
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3 La mécanique du solide

La mécanique du solide étudie le comportement des matériaux solides, plus précisé-
ment la description de leur mouvement et leurs déformations quand 'objet est soumis
a des acteurs extérieurs ou intérieurs tels que I'action d’une force, le changement de la
température, les réactions chimiques, etc. Tout comme dans le cas de I’hydrodynamique,
nous faisons ’hypothese de continuum que le solide est décrit de maniere continue par des
parametres et variables. En revanche, nous allons vite nous apercevoir que son mouvement
est beaucoup plus restreint que le flot d’un liquide.

Dans cette étude, nous considérons des solides qui sont rigides et non-déformables, ce
qui nous permet de négliger des effets de tension de toute sorte dans le systeme physique.
Sous ces hypotheses le mouvement du solide est essentiellement décrit par le vecteur
de déplacement du centre de masse et sa rotation par rapport a un point de référence
(origine du systeme) en 2 dimensions ou par rapport a des axes de rotations en plus
grandes dimensions.

3.1 La deuxiéme loi de Newton

A la suite des hypotheses précédentes, nous décrivons le solide comme un objet phy-
sique macroscopique individuel, dont le mouvement est soumis aux lois de la mécanique
classique. Il s’agit de trois (ou quatre, selon la littérature) principes physiques fondamen-
taux, établis par Newton en 1687.

1. Le principe d’inertie énonce que tout corps en repos ou en mouvement uniforme en
ligne droit persévere dans cet état, a moins qu’une force externe ne s’exerce sur lui
en le changeant d’état. La conséquence principale de ce principe est qu’a l'origine
de tout type de changement de vitesse se trouve toujours une force qui agit vers
I’extérieur.

2. Le principe fondamental de la dynamique de translation (la deuxieme loi de Newton)
a déja été introduit dans le contexte de la dynamique des fluides. Il énonce que le taux
de changement de la quantité de mouvement est proportionnel a la force résultante.
Sous I'hypothese que la masse du solide soit constante, cela implique que la force
résultante peut étre calculée comme le produit de la masse et de 'accélération de
I'objet.

3. Le principe d’action-réaction établit que les actions de deux corps I'un sur 'autre
sont toujours égales et de directions opposées. Ce principe est essentiellement der-
riere tout les effets liés au couplage dans nos systemes de fluide-solide.

4. On fait souvent référence a une quatrieme loi de Newton. Certains auteurs 'utilisent
pour indiquer la loi universelle de la gravitation, méme si celle-ci n’est pas censée
étre une véritable loi. Nous faisons plutot référence au principe de superposition
[Gre04], qui indique que le systéme des forces est un systéme linéaire, les forces
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agissant comme des vecteurs d’un point de vue mathématique. Cette « loi » est
plutot une conséquence de la formulation moderne de la mécanique classique.

Grace a ces principes fondamentaux, nous pouvons décrire le mouvement dun solide
par ’équation suivante

masolide(t) = Fres = Z Fi7 (31>

ot m désigne la masse de 1'objet (supposée constante), asqe I'accélération et F; les forces
(internes ou externes) exercées sur I'objet. Notons que l'accélération n’est rien d’autre que
la deuxiéme dérivée temporelle du déplacement du solide, qui implique que 1’équation (3.1)
est réellement une équation différentielle ordinaire du second ordre.

3.2 Des forces extérieures

Dans ces travaux, les effets internes dus a la structure moléculaire, aux réactions
chimiques, au changement de la température sont supposés négligeables. Dans ce qui suit,
nous détaillons des forces extérieures qui sont relatives aux études mathématiques de cette
these. L’objectif est de préciser le mieux possible les termes & droite dans I’équation (3.1).

Les forces a longue portée, comme l'effet de la gravité F,,, = mg, ne nécessitent pas
beaucoup de discussion. Représentant des actions constantes et uniformes sur I’ensemble
du solide, elles peuvent étre facilement représentées par des simples forces agissantes sur
le centre de la masse. En revanche, les forces a courte portée integrent des phénomenes
physiques bien plus complexes. Nous en préciserons trois en particulier, qui réunissent les
trois acteurs principaux de la mécanique du mouvement de I'objet.

3.2.1 Les effets hydrodynamiques

Quand on parle de l'interaction fluide-structure, les premieres idées qui viennent a
Iesprit sont les effets hydrodynamiques. Ces actions se manifestent quand un solide se
retrouve immergé (au moins partiellement) dans un milieu fluide. Elles sont déterminées
par la pression hydrodynamique exercée sur la surface mouillée du solide, qui est la partie
du bord du solide en contact direct avec le fluide.

Comme elles représentent des effets moyennés, on les calcule au moyen d’une inté-
gration le long de la surface mouillée de la pression P(t,z). Notons S; C Q lespace
occupé par le solide a l'instant ¢, et ¥; la surface de contact. Alors, les forces (linéaires)
hydrodynamiques s’expriment

thdro = /Pnsolide dza
3¢

ol Ngyqe €St la normale unitaire sortante de 9S;. Ce terme mathématique introduit le
couplage dans les équations décrivant le mouvement de ’objet.
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3.2.2 Des effets gyroscopiques

Dans la partie précédente nous avons détaillé les effets qui proviennent du change-
ment de la quantité du mouvement linéaire. Ces effets concernaient essentiellement le
mouvement linéaire du centre de masse. En regroupant les forces externes comme des
acteurs agissant sur ce centre, nous avons réussi a caractériser le mouvement de maniere
simple. En revanche, certains effets physiques nécessitent la prise en compte des grandeurs
physiques de 'objet, étant donné qu’il n’est pas ponctuel.

Le flot du fluide autour de I'objet immergé, ou du moins autour de la surface mouillée
Y, peut également engendrer des actions tangentielles. Le résultat de ces actions est
le moment de la force hydrodynamique, mais il peut également s’agir de phénomenes
plus complexes comme les trainées. Ce moment de force perturbe I’équilibre angulaire de
I’objet, ce que nous pouvons également formuler grace a la deuxiéeme loi de Newton.

Le moment cinétique (ou moment angulaire) est 1’équivalent du moment linéaire quand
on considere les rotations. Si nous fixons l'origine comme point de référence, le moment
cinétique d’une particule au point x est donné par le produit du moment d’inertie Z (qui
est analogue a la masse) et la vitesse angulaire (vg,g(2)). A cause du fait qu’il dépende
de la distance entre x et 'origine, le moment angulaire se réécrit de la maniere suivante

I' X Volides
ou r est le vecteur de déplacement du point. Donc le moment d’une force F est de la forme

r x F.

Pour toutes ces raisons, nous pouvons formuler le changement du moment cinétique
di aux effets hydrodynamiques le long de 3, :

ngration = /(23 — Xo (t)) X Pnsolide dZ,
OS;

ou x représente le centre de masse de 1'objet.

La nature du moment cinétique dépend de la dimension physique : en 2 dimensions il
est un scalaire; en revanche, en 3 dimensions c¢’est un vecteur. Dans notre modele océa-
nographique basé sur 1’équation des vagues, on a négligé les effets giratoires. Ils serviront
pour la dérivation du model simplifié du chapitre 1, qui est faite dans la Partie 1.2.

3.2.3 La friction séche

Le frottement sec se produit quand deux solides sont en contact direct I'un contre
I’autre ; il correspond a l'opposition au mouvement relatif de ces objets. C’est une force
non-conservatrice, qui représente un effet dissipatif dans le systéme parce que, physique-
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ment, pendant le mouvement, il y a toujours une perte d’énergie sous forme de chaleur,
qui n’est pas présente dans les équations. On explique cela par le fait que la friction n’est
pas une force fondamentale, dans ce sens qu’elle n’est pas due a une interaction élémen-
taire, mais qu’elle résulte de I'adhérence le long des surfaces de contact, de la rugosité et
de la déformation de ces surfaces. Cela implique que sa caractérisation est un probleme
physique de taille. Tout un domaine de la science (la tribologie) est dédié a I’étude de ce
sujet.

Nous décrivons la friction seche par les trois lois empiriques du contact entre solides

([Ber06]) :

1. Pour chaque point de contact z, 'action de contact exercé par un des solides sur
I’autre est une force dont la ligne d’action passe par x. Notamment, la force de
contact exercée par I'un des solides sur l'autre est décomposée en deux forces : une
force de résultante normale (F,mma) €t une force de résultante tangentielle. Cette
force tangentielle représente la résistance au glissement, elle est également appelée
la force de frottement (Fy,;.) et elle est entierement contenue dans le plan tangent
du contact.

2. La force de contact normale s’oppose a la pénétration d’un solide dans 'autre. Elle
est de méme direction que la normale entrante unitaire.

3. Généralement connue comme la loi de Coulomb dans la littérature, cette troisieme loi
établit qu’il existe un coefficient ¢y, positif appelé coefficient de friction, dépendant
des matériaux dont sont constitués les solides et de 1’état des surfaces en contact,
mais indépendant des mouvements ou de I'équilibre des solides, tel que a chaque
instant

|FfTiC| < Cf?"ic|Fno7’mal | .

Plus précisément, si I'un des solides glisse sur 'autre, donc si sa vitesse de glissement
relative n’est pas nulle, alors d’une part c¢’est I'égalité qui est vérifiée, d’autre part
F,;c est colinéaire avec la vitesse de glissement et de signe opposé. En revanche,
si le solide ne glisse pas sur l'autre, donc si sa vitesse de glissement est nulle, alors
c’est I'inégalité stricte qui est vérifiée.
Les lois de frottement ne sont applicables que dans le cas du frottement sec, donc
nous ne pouvons pas prendre en compte les effets lubrifiants. Cela implique que dans les
modeles considérés, le liquide ne passe pas entre les deux solides en contact.

De maniere générale on tient compte de la dépendance du coefficient de frottement
vis & vis de la vitesse. Un coefficient est désigné pour ’état de repos (friction statique)
et un autre, généralement plus petit, pour I’état de glissement (friction dynamique). La
considération mathématique de la friction statique fait intervenir une condition de saut
dans le cas ou la vitesse relative du solide s’annule. L’analyse précise de ce point reste un
probleme ouvert.
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4

Interaction fluide-structure

Les problemes d’interaction fluide-structure font partie des problemes multi-physiques

les plus étudiés et les plus complexes (au niveau des aspects de modélisation et de calcul).
Le couplage de ces deux milieux physiquement assez différents engendre les adaptations
nécessaires des systemes présentés précédemment. Nous en détaillerons ici trois en parti-
culier, qui sont des acteurs majeurs dans les systemes étudiés dans cette these.

1. Un domaine de fluide modifié : La présence de l'objet S; dans le domaine

de fluide représente un obstacle pour le flot qui se manifeste dans le fait que le
domaine du fluide est désormais donné par ; = Q\S;. Dans le cadre du probleme
des vagues, nous avons déja fait implicitement cette hypothese dans le sens ou 1€},
a été défini pour un fond b(¢, x) évoluant en temps, sans avoir explicitement précisé
cette dépendance. Quand on laisse une partie du fond évoluer librement, la forme
exacte de b va dépendre de ce mouvement, en faisant intervenir également un terme
de couplage dans les équations.

Méme pour la formulation du probleme dans le cas ott nous considérons un domaine
() fixe, introduire un solide S; dans ce systéeme implique une véritable dépendance
en temps du domaine réel du fluide ; = Q\S;. Cela implique notamment que nous
devons ajouter des conditions a ces nouvelles limites (sur 3;). Encore une fois, une
condition cinématique est intégrée dans le systéme, ce qui signifie que

U- Nsolide = Vsolide * Nsolide sur aSta

que la direction normale du champ de vitesse est donnée par la direction normale de
la vitesse du solide et que les particules du fluide ne peuvent pas pénétrer la surface
du solide.

. Les effets sur le moment linéaire du solide : Comme nous ’avons détaillé

dans la partie précédente, le couplage dans les équations du mouvement du solide
se manifeste a travers des forces hydrodynamiques. En particulier, la composante
normale de la pression exerce une action sur la surface mouillée qui pousse le solide
selon le flot du fluide.

. Les effets sur le moment angulaire du solide : Les effets giratoires de la

pression due au fluide a l'extérieur du solide ne doivent pas étre négligés non plus.
Nous pouvons les prendre en compte en établissant le bilan du changement du
moment cinétique, par la deuxieme loi de Newton également.

En outre, dans le cas d’un solide completement immergé, le flot du fluide peut
circuler autour du solide, ce qui influence le moment linéaire et angulaire. Ce dernier
effet peut étre mesuré notamment par la contribution totale de la vitesse tangentielle
du flot autour de 'objet :

v = U . 7dX,
aS;

avec T+ = Ngyq.. Pour plus de détails, nous faisons référence & la Définition 1.2.3.

14
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Au final, nous remarquons ’aspect numérique des problemes de l'interaction fluide-
structure. De nos jours, les logiciels dédiés a la mécanique des fluides numérique ou la
mécanique des structures numérique sont aussi équipés par des solveurs spécialisés dans
certains types d’interaction fluide-structure ([BS06]). L’approche générale pour traiter ce
genre de problemes d’un point de vue numérique est la suivante : on dédie des solveurs
spécifiques pour calculer le flot du fluide et I’évolution de la structure, puis des schémas nu-
mériques du couplage sont appliqués pour mettre a jour les données communes de ces deux
systémes (pression du fluide, position de I'objet, etc.) (voir par exemple [Pes05],[LB10]).
Mais cette fagon de traiter les deux problemes de maniere semi-découplée pose des ques-
tions manifestes, en particulier par rapport a la conservation (numérique) de la masse, de
la quantité du moment et de 1’énergie totale.

Pour celle-ci et pour bien d’autres raisons, les probléemes numériques de l'interaction
fluide-structure font partie d’une direction de recherches numériques majeure. La modé-
lisation de maniere efficace et optimale d’un tel couplage, ou I'uniformisation de certains
schémas discrets pour prendre en compte a la fois le flot et la géométrie de la structure
([CMO6], [CMMO8], ou [Dorl7] et ses références par exemple) restent encore des défis
considérables.

5 Les modeéeles asymptotiques

Dans I’étude des problemes venant de la physique ou d’autres domaines scientifiques,
on rencontre souvent des problemes de nature asymptotique, comme par exemple ’amor-
tissement, la perturbation, la stabilisation, etc. Pour résoudre ce genre de problémes, on
est amené a utiliser certaines techniques de l’analyse asymptotique et de la théorie des
perturbations. L’aspect théorique de ces domaines des mathématiques est désormais bien
établi, contrairement a ce qu’on pouvait constater il y a quelques décennies.

En 1963, Kruskal [Kru64] a défini asymptotologie comme « l'art de traiter des sys-
temes de mathématiques appliquées dans les cas limites ». L’idée générale n’a toujours
pas changé depuis lors, on souhaite toujours extraire des informations au moyen dune
approximation bien établie de la solution exacte du probléeme. Afin d’obtenir une telle
approximation, on intégre des parametres dans le systeme, dont certains apparaissent
naturellement et dont d’autres sont introduits de maniere artificielle. Grace a la varia-
tion de ces parametres on est capable de simplifier les équations, se sorte qu’on réduit
la complexité du probleme. L’outil mathématique principal est un développement limité
autour d'un état prétendument stable, a travers certaines fonctions de ces parametres de
petitesse.

En général ([CK96]), on fait la différence entre deux types de probleme qualitativement
différents. Dans cette partie, nous détaillons ces deux types, puisqu’ils sont impliqués
chacun dans les travaux de cette these.
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5.1 Perturbations régulieres

Dans les problemes du type de la perturbation réguliere, on peut faire un développe-
ment limité a l'ordre quelconque qui fournit une approximation de la forme d’une série
par rapport au parametre de petitesse. Les termes de cette série sont définis par des
équations (différentielles) et des conditions aux bords déduites du systeéme original au ni-
veau de I'ordre de grandeur souhaité du parametre. Ce systéme est résolu par récurrence,
les solutions ont des bornes uniformes, valables sur le domaine du probléeme tout entier.
L’exactitude de 'approximation s’améliore si 'on fait tendre le parametre de petitesse
vers 0.

Pour illustrer un probleme typique qui appartient & cette catégorie, nous présentons
les régimes asymptotiques en faible profondeur du probleme des vagues. Cet exemple est
loin d’étre le plus simple, mais il est tres pertinent par rapport aux études de la deuxieme
partie de cette these. A la base de ces modeles asymptotiques se trouve un développement
limité de la vitesse horizontale verticalement moyennée autour du gradient du potentiel a
la surface libre par rapport au parametre de faible profondeur.

Afin d’introduire ces reformulations, nous allons tout d’abord définir les tailles carac-
téristiques associées au probleme des vagues.

e H,, la profondeur de base,
e [, la taille horizontale d'une vague typique,
® a4, s, 'amplitude d'une vague typique,

® a4, la taille verticale du solide au fond.

L

Faible profondeur : p = %‘5

Non-linéarité : ¢ = =t
0

H, Topographie : 3 = “;T”:‘

FIGURE 2 — Les ordres de grandeur typique pour le probleme des vagues
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Les parametres de petitesse qui apparaissent dans I’adimensionnalisation sont les sui-
vants :

2
e parametre de faible profondeur pu = %

bl

Asyrf

e parametre de 'amplitude (de non-linéarité) e = ==~

e parametre de la topographie du fond § = abogi

Avec ces parametres, nous pouvons adimensionner les équations (2.11). Tout d’abord,
le probleme de Laplace sur le domaine €2;, désormais sans dimensions s’écrit

AP = pA,® +0?P =0, dans —1+6b< 2z <eC, (5.1)
(I)|z:ec =, I+ 62|Va:b|28n<bmb|z:—Ho+b = O;b. ‘

Comme dans la Partie 2.2, nous pouvons décomposer le potentiel de la vitesse & =
® 1, + D,y afin de définir les opérateurs de type Dirichlet-Neumann et Neumann-Neumann
associés a leurs problemes de Laplace respectifs :

GDN 8C Bb \/1+€2|V §|28 q)fb|z eCy

Gﬁ[N[gC, Bb]atb = 1+ 52|V$g|28n¢)mb|z:sg“'
Le probleme des vagues sans dimension prend alors la forme suivante :

8¢~ LGENec, it = D alec, prjoid,
(uGDN[ec BOlY + EGIN[eC, BB + Vo (e() - Vo)
” 21+ IV, CP) B

Outp + ¢ + |Vt -

Par I’équation (5.1), nous définissons la vitesse horizontale verticalement moyennée

V,.[eC, Bbly h/l% D(-,2) d, (5.2)

ou h =1+ e — Bb. Avec cette notation, on peut établir d’abord que ([Lan13])
Proposition 5.1. Soient s > d/2+ 1, {,b € H*(R?) telles que

Fhmin > 0, ¥YX € RY, 1+ C(X) — Bb(X) = homin- (5.3)

Soient ¥ € HYA(RY) = {f € L (RY), Vf € HPRY)} et & € PRY = {f

L2 (RY), Vf e H (RY?} la solution du probléme de Laplace (5.1). Alors on a

1+ 2V PO = Mfatb v - (7). (5.4)
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Cette proposition implique que nous pouvons réécrire les opérateurs de type Dirichlet—
Neumann et Neumann-Neumann en utilisant V.

La proposition qui établit le développement asymptotique de cette variable par rapport
a p est ([Lanl3)) :

Proposition 5.2. Soient to > %, s > 0, n € N, et (,b € H*(R?) N HPo2(RY)

telles qu’elles satisfont la condition de profondeur minimale précédente (5.3). Soit 1) €
Hs3+20(RY), 1 existe une suite (Vj)o<j<n telle que |[Vj|lgs < M(s + 25)||Vath|| s+
0<j<n)et

< M (s 42+ 2n) | V0|

HS

Hs+2+2n, (55)

avec une constante M(8) définie par

M(3) = C(Mo, [[C]las,

0]

H§)7 avec MQ =C <

hmin

Hoas |l [Vl o )

En particulier, on peut démontrer ([Lanl3]) que

V = Vo T Ve~ i (19,00 +<V.C0b) + O2)

ou

1 1
Th, BO]V = —%vx(hi”vx V) + 6oy (Va(h?Vab - V) = 2V, bV, - V) + B2V,bV,b - V.
Sur la base de ce développement, on peut reformuler le probléeme des vagues pour intro-
duire des modeles valables en faible profondeur. Pour plus de détails, de démonstrations
ainsi qu’une justification robuste de ces modeles, nous renvoyons a [Lanl13].

5.2 Perturbations singulieres

Il y a de nombreux problemes physiques qui ne nous rameénent pas a des problemes
de perturbation réguliere. Par exemple, un développement asymptotique par rapport au
parametre de petitesse ne reste pas valable sur le domaine tout entier, ou les termes
obtenus par le développement sont séculaires (ces termes deviennent non-bornés en temps
long) a cause de la présence des couches limites (au bord) ou bien & 'intérieur. Dans ce
cas, on dit que les problemes sont de type perturbation singuliére ou de type couche.

On peut facilement identifier les raisons générales de cette perte de la validité du
développement. Un parametre de petitesse devant le terme qui contient la dérivée a I’ordre
le plus élevé engendre une perte dans 'ordre de I'équation dans la limite asymptotique.
Notamment, une approximation du premier ordre fournit une équation caractéristique
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d’un ordre plus bas que I'ordre du sytéme originel, qui implique que certaines conditions
initiales ne peuvent pas étre garanties (le systeéme est sur-déterminé). Quand le probleme
du domaine est non-borné, les effets cumulatifs de certains termes « asymptotiquement
petits » peuvent devenir grands, lesquels font obstacle a des estimations uniformes.

Une méthode pour traiter ce genre de problemes consiste a définir des échelles de
temps supplémentaires pour le systeme et de faire un développement limité adapté a
ces différentes échelles. Mise a part I’échelle de temps originel ¢, d’autres échelles de
temps peuvent étre associées a un probléeme en prenant compte de la dépendance par
rapport a certains parametres de petitesse. Cette méthode a des racines dans la méthode
de Poincaré-Lindstedt ([Lin83], [P0i92]) développée originellement pour le probleme des
trois corps en mécanique céleste.

La premiere difficulté avec cette approche est de trouver les bonnes échelles de temps
supplémentaires. Dans certains cas, la perte de la validité vient du fait que 'approxi-
mation ne reste pas uniformément bornée sur le domaine. Proche du bord, elle devient
notamment non-bornée. La correction du développement asymptotique (externe) par un
développement asymptotique supplémentaire (interne) autour du point qui représente la
singularité asymptotique, afin d’en isoler la sécularité ([CK96]), peut fournir une approxi-
mation appropriée. L’échelle de temps supplémentaire requise par la méthode est donnée
par ce développement supplémentaire.

Des méthodes d’homogénéisation ou une restriction a certaines classes de solutions
souhaitées (par exemple des solutions périodiques) peuvent également donner une idée
de la nature de ’échelle de temps supplémentaire. Ces techniques sont particulierement
utiles quand on n’est pas capable de découpler explicitement ’approximation en plusieurs
séries selon les échelles de temps différentes, comme ce sera le cas au chapitre 1.

Notons que I'approche multi-échelle n’est pas la seule méthode pour traiter des pro-
blemes de type perturbation singuliere. Introduite originellement par Krylov et Bogoliu-
bov en 1937 ([KB43]), la méthode de moyennage est devenue un outil largement utilisé
pour des problemes physiques de ce genre. Il s’agit d'une technique tres générale et assez
constructive, applicable a une large famille de systemes ayant une structure Hamiltonienne
(comme la plupart des probléemes physiques par exemple).

Au chapitre 1, nous sommes amenés a considérer le systeme simplifié suivant concer-
nant la dynamique d’un solide infinitésimal dans un milieu liquide €2 :

14(t) = F(q,9), (5.6)

ou ¢ est la position du solide, I, dénote I'inertie, qui est un parametre de petitesse dans le
systeme, et F' représente les non-linéarités décrivant 1’évolution dynamique du mouvement.

Ce systeme d’équations différentielles ordinaires du second ordre est un exemple ty-
pique d’un probléme de perturbation singuliere. En faisant tendre € vers 0, I. disparait,
ce qui signifie qu’a la limite asymptotique le systeme devient d’ordre un uniquement. En
outre, un détail reste moins visible, c’est la complexité du terme a droite, qui engendre
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des difficultés additionnelles, la détermination d’une échelle de temps supplémentaire né-
cessitera donc des moyens analytiques autres que le développement externe-interne.
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1. Outline of the thesis

Fluid-structure interaction problems are one of the most well-known examples of multi-
physics problems. They involve the description of the interaction of some movable or
deformable structure with an internal or surrounding fluid flow. They represent complex
physical situations in which the flowing fluid exerts pressure on the object through a
contact medium (for example the boundary of the solid), causing it to change its physical
state (position, shape, etc.). In return the object alters the flow field by a change in the
fluid domain. This coupling effect is non-stationary in the sense that there is a continuous
action-reaction relation between the two physical media, maintaining an a priori non-
constant exchange of momentum and energy.

The recent increase in massive computational power as well as its easy and cheap
access has brought the domain of fluid-structure interactions to the fore as far as current
research trends are concerned. Furthermore, new engineering trends concerning complex
structures (such as off-shore structures and wave-energy converters in marine engineer-
ing) made it necessary to further our understanding of this domain. Numerical modeling,
numerical simulations have become more and more involved in order to support or even
replace experimental testing, especially in the case when engineering designs provide in-
efficient, costly or time consuming extensive experiments. The theoretical background of
the domain has also enjoyed an increased interest, although it was far less affected by the
skyrocketing hardware and software support.

The main objective of this thesis is to analyze two particular fluid-structure interaction
problems. Our approach is based on asymptotic models that retain the most important
characteristics of the full coupled problems, and neglect physical phenomena that have
negligible or irrelevant cumulative effects. They have arisen as recent research interests
due to new advancements in the corresponding theoretical analysis.

As far as the second half of this thesis is concerned, one can not avoid to discuss the
real life applications of the models presented here. Submerged wave-energy converters
have received relatively fewer attention as compared to their floating counterparts (such
as off-shore wind turbines, wave converter arrays, etc.). This is not only true from a
mathematical or modeling point of view but from an engineering point of view as well,
despite the fact they have the advantage of being less exposed to the elements (for a more
complete discussion of the advantages and drawbacks, we refer to [GIL"14]). Therefore,
another objective of the current works is to highlight these features of submerged energy
converters, mainly through the numerical analysis of our model in Chapter 3.

1 Outline of the thesis

This introduction presents the context of the fluid-structure interaction problems
treated in this thesis. After detailing the mathematical models for the dynamics of the
fluid flow as well as for the motion of the solid object we present some key aspects and
particular paradigms arising from the coupling of these two systems. We will also high-
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light the main methodology of asymptotic analysis implemented in the analysis to follow
in later chapters.

The introduction is followed by an abbreviated introduction in French. The main part
of the thesis consists of 3 independent chapters, presenting the two main problems of the
manuscript. Fach of these chapters starts with a French summary.

Chapter 1 presents a multiple-scale asymptotic analysis of a system of non-linear
ordinary differential equations. It serves as an approximative model to describe the motion
of an infinitesimal object in a bi-dimensional perfect fluid. The evolution equations of the
motion are analyzed in the asymptotic regime when the solid inertia tends to 0. It is
inspired by the article [Benl8al.

Chapter 2 is based on [Benl7]. It describes first of all a coupled model representing
the interaction of water waves with a freely moving object on the bottom. Moreover it
presents the analysis of this coupled water waves problem in two shallow water asymptotic
regimes. We establish the well-posedness of the nonlinear Saint-Venant and the weakly

nonlinear Boussinesq systems coupled with a Newton equation, describing the motion of
the solid.

As a follow-up, Chapter 3 concerns the numerical analysis of the latter Boussinesq
model. A high order accurate finite difference scheme is presented, improving on previ-
ous, staggered grid based numerical schemes, and adapted to incorporate a freely moving
bottom topography. Section 3.3 of Chapter 3 shows an extended array of numerical sim-
ulations originating from [Benl8b].

After that, the main contributions of this thesis are presented as part of the Conclusion,
followed by a detailed list of research perspectives. Finally, the Appendix contains some
remarks on the applied methods and estimates throughout Chapters 2 and 3.

2 Fluid dynamics

Fluid dynamics in general describes the flow of fluids, that is liquids and gases as well.
Concerning this thesis work, of particular interest is hydrodynamics, which concerns the
study of liquids in motion. It is based on the description of the flow on a macroscopic scale,
that is the so called “continuum assumption” is supposed. In reality liquids are composed
of molecules that collide with each other (or the boundary of the domain for example),
however by the continuum assumption we describe them as continuous media instead of
discrete ones. Consequently, system properties and variables such as density, pressure, or
flow velocity are well-defined at infinitesimal volume elements of the fluid domain, they
are described by functions defined on the domain, corresponding to the infinitesimally
averaged real physical quantities.

Hence, fluid movement can be described by differential equations capturing the “con-
tinuous evolution” of these variables. They arise as a mathematical implementation of
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general conservation laws, in particular the conservation of mass and the conservation of
(linear) momentum. In what follows we describe these equations under the hypothesis of
a perfect fluid, and we present the fluid-dynamical setting of the two main problems.

2.1 The Euler equations

Now we provide a brief and formal derivation of the (incompressible) Euler equations,
that serve as the basic equations describing the motion of the fluid flow throughout this
work. It is to complement the modeling aspects of Chapter 2 as well.

For the sake of simplicity, for now the fluid domain is supposed to be the whole space
R? (with d € N and d = 2, d = 3 being the relevant physical dimensions), thus boundary
effects are neglected. In the Eulerian description, one can associate with every material
point  in R? at time ¢ € R, the following physical quantities:

e the velocity field U = U(t,z) € R,
e the density o = o(t,x) € Ry,

e the pressure P = P(t,x) € R.

There are various other physical quantities as well, for example the internal energy
(e(t,z) € R), the entropy (s(t,z) € R) or the temperature (T'(t,z) € R*"), we only
named the relevant ones for the derivation of the equations.

The equations governing the motion of the fluid arise from the fundamental conserva-
tion laws of mechanics (and in general from thermodynamics as well). Let us introduce
the notion of the flow of the velocity field U; the mathematical interpretation of the con-
servation laws is based on the fact that certain physical quantities are conserved along
the particle trajectories.

Definition 2.1. The flow ¢ of U € C°(R,; Lip(R?)) is the C'(R;C°(R?)) solution of the
following ordinary differential equation

d

() = Ut D), $0.2) =2

(the point x € R? being treated as a parameter here).

For a domain w C R? let us denote w; = 1;(w), where 1;(x) = (¢, z). The lemma
below serves to rewrite the conservation laws in a more appropriate fashion.

Lemma 2.1. Let w be an open, bounded, connected, smooth subdomain of R, 1) be the
flow of U € CHRT x RY) with w; = y(w). Let b € CH(RT x R%:R) be a scalar function.
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Then we have

;lt /w bt w)dr = /w t (Gb(t, ) + V - (blt, 2)U(t, 2))) dar

:/ b(t,z)dw + [ (b(t,2)U(t,2) - n) dS.

Bwt

Here n denotes the unit outer normal vector at the boundary of €, pointing outwards,
and Y is the surface measure defined on Owy.

We consider an arbitrary w open subdomain of R? for the description of the conser-
vation laws.

Mass conservation: we are working with a closed fluid system, that is there is no
production or loss of mass inside any part of the fluid during the time evolution of the
motion. The mass of the fluid in w at time ¢ can be expressed by

M,(t) = /w o(t, z) dz.

Since the mass is conserved, we may deduce that

d d

v, t)y=2L [ ot.2)=o0.
g M) = 7 | olt7)

That is, by Lemma 2.1 we obtain the equation for the mass budget:
O+ V- (pU) =0. (2.1)

Momentum conservation: Newton’s second law states that all the forces acting on the
part of the fluid in w are to be equal to the force arising from the change of momentum.
We will discuss this law in detail later in Section 3. The momentum can be written in the
following integral form

P.(t) = /w (ou)(t, z) dz.

The change of the momentum equals the sum of all the forces acting on the body, that is
the long range forces F.,; (gravity for example) and the surface forces at the boundary
of the domain. This second force can be represented by the second order stress tensor o,
specified by further physical assumptions. So we obtain

CZPM@) - i/m(gv)(t,w) dr = /w(gFezt)(t,x) dr+ [ (o-m)(t.x)dz.

and by the lemma we have the equation for the momentum balance:

O(eU)+V - (0U®U) = gF .y + V- 0. (2.2)
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In a general setting, one writes in a similar fashion the conservation of internal energy
(as a consequence of the first law of thermodynamics), as well as the entropy balance
(dictated by the second law of thermodynamics).

In order to obtain the Euler equations, one makes the additional hypothesis of the fluid
being a perfect fluid, which means first of all that it is isotropic, the physical quantities
depend only on (¢,z). Furthermore we make the additional hypotheses that the fluid
has no shear stress, no viscosity, and no heat conduction. This in particular means that

c=—PId.

So the mass and momentum equations take the following form:

(2.3)

O(0U)+ V- (0U®U) = —=VP + gF 4.

By assuming that the fluid is homogeneous (¢ = cst), the system simplifies to the
well-known incompressible Euler equations:

{V U=0 (2.4)

OU+(U-V)U = —1VP + F,,.

A well-known result concerning the existence of a (local-in-time) solution to the Euler
equation in the whole space is the following:

Theorem 2.1. Given an initial condition Uy € H*(R?), with s > d/2+1 and V-U, = 0,
and Fopy € C([0,Tp); H¥(RY)) such that V -Fey = 0 for every t € [0, Ty] with Ty > 0. Then
there exists a time T' > 0 with an upper bound

1
T<max | ———, 1y |,
<cs|onr|Hs )

with c¢s constant depending only on s and d, such that there exists a unique (classical)
solution U of equations (2.4) in C([0,T];C*(R%)) N C*([0,T]; C(R)%).

For the proof, and for more details on the general theory, one could refer for instance
to [MBO3].

2.1.1 Equations on a bounded domain

Previously we introduced the Euler equations for the whole space domain R?. Here,
we will specify the context of the equations for a bounded domain. Let us suppose that
Q) is an open, bounded, connected, and simply connected subset of R

The motion of a incompressible perfect fluid confined to the fixed domain € is still
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described by the system (2.4). However, to close the problem, we have to impose con-
ditions on the boundary 0€2. We are considering a fixed, non-deformable fluid domain
) whose stationary boundaries are supposed to be impermeable. This impermeability, or
more commonly known as “no-penetration” condition, is expressed mathematically by the
simple fact that the normal component of the fluid velocity (at the boundary) is 0.

So by denoting n the outward unit normal vector of the boundary, 0f2, the boundary
condition

U.-n=0 onodQ2 (2.5)

completes the Euler equations on a bounded domain. For the corresponding well-posedness
theory, we have for instance that ([[KL84])

Theorem 2.2. Let us consider @ C R? an open bounded domain with smooth bound-
ary 0Q. Let s > d/2 + 1, an initial condition Uy € H*(Q;RY), with V - Uy = 0, and
Foo: € C([0,Tp]; H3 (4 RY)) such that V - Feopy = 0 for every t € [0,Ty] with Ty > 0.
Then there exists a time T' > 0, T < Ty, such that there exists a unique solution U in
C([0,T]; H*(Q;RY)) of equations (2.4) in .

For now we have made no further assumptions on the vorticity of the fluid. In this
work we will work with irrotational flows, verifying the additional hypothesis of

VxU=0 1in{.

Nevertheless let us make a simple remark on the general rotational flow in a fixed
domain ).

Remark 2.1. By defining &d(t,z) := V x U(t,z) and by applying the curl operator on
equation (2.4) we obtain the evolution of the vorticity, that is

@ﬁ—i—(UV)Q:((D'V)U—FVXF%t in €. (26)

According to Helmholtz’s third theorem, in the absence of any rotational external force
(V x Fepy = 0) the LP norm of the vorticity is preserved by the flow (for p > 1). This
implies that for an initially irrotational flow, it will stay irrotational, and that a control
on the vorticity at time t = 0 assures an overall control of the vorticity at any given time.

2.1.2 Free surface Euler equations

In order to formulate the free surface equations, first of all we have to precise the
domain of the fluid, given by an infinite horizontal layer. We denote by ((¢,z) the free
surface elevation function and b(t, ) describes the bottom topography variation at a base
depth of Hy. With this notation the fluid domain is given by

Q= {(x,z) cRYx R : —Hy+b(t,x) <z<§(t,x)},
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€); fluid domain g

Figure 3 — The water waves setting for a moving bottom

In order to avoid special physical cases arising from the fluid domain €2; (such as
islands or beaches, that are seen as vanishing shorelines), one usually makes use of the
assumption that the water depth is uniformly bounded from below by a positive constant.
Naturally, this is a considerable restriction, however a necessary one from an analytical
point of view, see for example [dP16], [LM17] for an alleviation of this hypothesis.

In the water waves setting, we consider a fluid moving under the influence of gravity
on the domain €2;. Denoting by U the velocity field and by P the fluid pressure, the
homogeneous, incompressible, irrotational Euler equations take the following form:

P
8tU+U~VU:—V7+g,
V'U:O7 (2.7)
V xU=0,

valid in the entire fluid domain €;. Here, g = (0,—g)" in the equations denotes the
gravitational acceleration as a downwards pointing vector.

Remark 2.2. The irrotationality condition allows us to reduce the problem to variables
and equations given on the free surface only (the Zakharov / Craig—Sulem formulation,
see below). It is not a necessary assumption for the mathematical analysis of the problem,
however the water waves problem with vorticity requires more delicate approaches. For
instance, a Lagrangian formulation ([Lin05]) does not require the irrotationality assump-
tion. The approach to reduce the dimension has nevertheless been generalized in order to
incorporate vorticity for the d =1 case ([CL15], [Mé17]).

The boundary conditions can be summarized as follows:
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e the kinematic (or no-penetration) boundary conditions (that is, the fluid particles
do not cross neither the bottom nor the free surface);

e there is no surface tension along the free surface, so the pressure at the surface is
given by the atmospheric pressure, and assumed to be constant.

A mathematical restatement of the aforementioned conditions is the following:

e denoting by n the unit normal vector of the fluid domain pointing upward, we have
the following reformulation for the no-penetration condition for the bottom

Ob— /14 |V,b?U-n=0 on{z=—Hy+b(t, )}, (2.8)

and for the free surface

0 — 14+ |VCPU-n=0 on{z=((t,z)}; (2.9)

e denoting by P, the atmospheric pressure, we have that
P =Py, on{z=((tzx)} (2.10)

The system of equations (2.7), (2.8), (2.9), and (2.10) together form the free surface
Euler equations for the fluid domain €2;.

2.2 The water waves problem

As a follow-up of Section 2.1.2; one can first of all remark that the free boundary
problem presented there requires the proper analytical treatment of a time dependent
boundary §2; which is a complex task. However one can also remark that the incompress-
ibility and irrotationality conditions assumed in the formulation of the free surface Euler
equations allow for a rather useful reformulation of the problem.

Owing to the Helmholtz-decomposition of vector fields, the velocity field U can be
represented by a velocity potential ®(¢, z). More precisely, we have that

U=Vd inQ,

where ® verifies a Laplace-problem on the same time-dependent domain:
A =0 in (. (2.11)

With this potential one can reformulate the momentum equilibria as well as the bound-
ary conditions to obtain the free surface Bernoulli equations. For more details we refer to
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Section 2.1.1 of Chapter 2. The main advantage of this reformulation becomes apparent
when one wishes to study the well-posedness of the water waves problem. It is possible
(see e.g. [Lan13]) to straighten the fluid domain by a well-chosen diffeomorphism to reduce
the complexity of the problem.

The previous Laplace equation requires boundary conditions as well. Therefore, we
are left with the following:

q)‘z:g' = % 1+ ’vxb’28n®|z:fHo+b = atba .

where ¢ = ®|,_, a priori an unknown of the system. This gives rise to the following
natural decomposition of ® into a “fixed bottom” and a “moving bottom” component

D = Py, + Dy,
where
A(I)fb =0 in Qt
Ppplo=c =0, 1+ |Vib|200®Psp].=—pp1s = 0,
and

{A@mb —0 inQ,

cI)mb|z:C = 07 \/ 1+ |v:pb|28nq)mb|z:—Ho+b = 8tb
V14 Vi P0n®loc = GPVIC, DY + GYNC, blOw,

where we introduced the Dirichlet-Neumann operator GPV[(, b] associated with the first

Laplace-problem:
GDN[va] : w = \V I+ |VIC‘26nq)fb‘z:g-

as well as the Neumann-Neumann operator GNV[(, b] associated with the second Laplace-

problem:
GNN[C; b] : atb — \/ 1 + ‘ngyzanq)mb‘zzc-

Based on these notations we can now establish the correct form of the water waves
problem with moving bottom:

This leads to

0i¢ — G[C, by = GNN[C, b]oyd,
(GIC, B + GMNIC, bOkb + Val - Vat))® (2.13)
Ocb + gC + 5| Vato? — s L) =0,

We remark that this case has already been studied on multiple levels and is relatively
well understood. For this particular formulation, the first results concerning the local-in-
time existence date back to [Lan05]. We refer to the article of Alazard, Burq, and Zuily
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[ABZ11] for the general local well-posedness theory. In the works of Iguchi [Igull] and
Melinand [Mell5] various shallow water regimes are examined (motivated by earthquake
generated tsunami research).

This formulation is based on the initial remark of Zakharov in 1968 ([Zak68]) who no-
ticed that the water waves problem can be represented as a set of evolution equations with
the appropriate variables (, and 1, in the case of infinite fluid depths. This observation

was extended later on by Craig, Sulem, and Sulem ([CSS92],[CS93]).

3 Solid mechanics

Solid mechanics studies the behavior of solid materials, that is their motion and their
deformation under external or internal effects (action of a force, temperature change,
chemical reactions, etc.). Much like with the fluid model, the solid is also treated as a
continuous material, although its evolution is much more restricted due to its different
fundamental state.

Throughout this study we consider the solid to be rigid and non-deformable, elimi-
nating any kind of stress actors from the physical models. Under these assumptions, the
solid motion can be essentially described by the displacement and the angular evolution
of the solid’s center of mass.

3.1 Newton’s second law

Since the solid is being described as a single macroscopic physical object, its motion is
subjected to the laws of classical mechanics. This principally entails a set of three (four,
depending on the literature) physical laws most commonly known as Newton’s laws of
motion:

1. The first law states that every object will remain at rest or in uniform motion in
a straight line unless an external force exerts its action on it, thus changing its
state. This is the basic principle of any inertia-based argument. A straightforward
consequence is that the origin of any change in the velocity lies in some kind of
(internal or external) force acting on the system.

2. The second law (also known as fundamental principle of dynamics) quantifies the
net forces as the associated rate of change of momentum. More exactly, one has that
the net forces acting on the body can be expressed as mass times acceleration of the
object, provided the mass of the solid is constant in time (which will be assumed

here).

3. Newton’s third law incorporates the so called “action-reaction” principle that was
already evoked in the beginning of the Introduction. It states that all forces acting
between two objects exist in equal magnitude and of opposite direction. In complex
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physical systems this law is the basis to describe the interaction of different media,
or in our case the coupling terms between the fluid and the solid.

4. Often one describes a fourth law as well, which represents the “principle of superpo-
sition” [Gre04]. It states that forces acting on an object add up like vectors, which is
more of a supplement than an actual law, it arises as a necessity in modern classical
mechanics.

By these laws one can describe the motion of the solid through the following equation

masolid(t) = Fnet = Z Fi7 (31)

where m denotes the mass of the object, a4 is its acceleration and F; represent the forces
acting on the solid (internal or external). Observing that the acceleration can be expressed
as the second derivative (with respect to time) of the solid displacement, equation (3.1)
is in fact a general ordinary differential equation.

3.2 External forces

In what follows we precise some of the more important external forces acting on the
solid object, that will appear throughout the analysis. The main objective is to clarify the
terms on the right hand side of equation (3.1).

Long range forces, like the gravitational force F,, = mg, require little to no dis-
cussion, since they represent a constant, uniform effect on the system as a whole. Short
range forces, or surface forces however represent a more complex phenomenon, so they
need to be addressed, especially since they are responsible for the interaction between the
contacting media.

3.2.1 Hydrodynamic effects

The single most important external actors on the object in a fluid-structure interaction
setting are the hydrodynamic forces. These arise when an object is at least partially
submerged in a fluid domain, and are determined by the hydrodynamical pressure exerted
on the wetted surface, the part of the boundary of the solid in direct contact with the
fluid.

These can be calculated by a surface integral of the fluid pressure P(t,z). For what
follows let us denote by S; C 2 the area occupied by the solid in the fluid domain at time
t. If we note by ¥; the part of 9S; in direct contact with the fluid, we have that the linear
hydrodynamical forces exerted by the fluid are

thdro = /Pnsolid dZ,

P
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where n,,;q is the unit normal vector of dS; pointing outwards. This is the principal
coupling term in the solid equation, since it clearly incorporates the effects of the fluid
flow on the object.

3.2.2 Gyroscopic effects

In the previous part we described effects arising from the variation of linear momentum.
This concerned the linear motion of the center of mass, regrouping external forces acting
on the solid as vector quantities originating from this center. However, as it was already
evoked before, not all such effects can be described this easily. Since the object S; has
physical dimension, certain effects will involve these dimensions as well.

We have already elaborated the hydrodynamic effects arising as a normal force exerted
by the pressure of the fluid. This took into account the impact of the normal component
of the fluid velocity field. However, the fluid flow around the solid (or at least around the
wetted surface) acts in the tangential direction as well, creating a torque of the hydro-
dynamical force. This creates a moment of force that introduces a rotational variation,
acting on the angular component of the solid position as opposed to the linear component.

Angular momentum is the rotational analog of linear momentum, therefore, for a
point particle at x, it is given by the product of angular inertia (Z) and angular velocity
(Vang()) around a particular reference point or axis. However, the angular momentum
depends on the distance of the point from the reference as well, since the angular velocity
is given by the normalized vector cross product of the position vector of the particle (r)
and the velocity. So the angular moment is given by

r X Volid,
implying that the torque, or rotational force by F is provided by

r x F.

This implies that the net change of angular momentum for the solid &; generated by
the pressure is given by

ngration = /(l’ - .To(t)) X Pnsolid dE,
OS:

where z( represents the center of mass of the object.

Angular momentum is described in a conceptually different way in 2 and 3 space
dimensions, with the angular momentum being a scalar in the former case and a vector in
the latter one. Since in our coupled water waves model, we neglected rotational effects on
the solid (see Section 2.1.2), we shall only make use of angular effects in the 2 dimensional
case, relevant to the toy model derived in Section 1.2 of Chapter 1.
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3.2.3 Dry friction

Dry friction is a force that opposes the relative motion of two solid surfaces in con-
tact. It represents a dissipative effect in the system, since it is accounted for as a non-
conservative force. During the whole process, some energy is always lost in the form of
heat. The reason for this is that friction itself is not a fundamental force, it arises as a
combination of inter-surface adhesion, contact surface roughness, and deformation. This
also implies that its determination is difficult, one is required to rely on empirical laws
for an analysis.

The dry friction is most commonly described through the three empirical laws of
friction ([Ber06]) that can be summarized as follows:

1. The first law (Amontons’ second law) incorporates that the force arising from the
contact of two solid media can be decomposed into two characteristically different
components, acting on the solid as a whole. One of them is called the normal force
(Frormat), its direction is given by the normal vector of the contact surface. The
other one is the friction force (Fy,;.), or the resistance to sliding, whose direction is
parallel to the contact plane.

2. The second law (Amontons’ first law) states that the normal force F,pma opposes
the penetration of the two solid into each other.

3. The third law (Coulomb’s law of friction) indicates that there exists a positive co-
efficient cgy. (coefficient of friction), depending on the material properties of the
two solids in contact, but independent of the motion of the objects, such that at all
times

|Ffric| < Cfric|Fnormal ‘ .

More precisely, as long as there is a relative motion between the two objects with
a non-zero sliding velocity, the equality holds in the above inequality (kinetic or
dynamic friction), furthermore the direction of Ff,;. is the exact opposite of the
sliding velocity’s. However if this velocity is zero, the strict inequality holds (static
friction).
These experimental laws are only applicable in the case of dry friction, that is when
there is no lubrication between the two solids. This implies that in particular no amount
of fluid is allowed between the two objects in contact.

It is important to remark that we have to distinguish between static and dynamic
friction from a practical point of view as well. Not only is the direction of F f,;. determined
in a different way, but physical experiments show that the corresponding coefficients of
friction differ as well, with the coefficient for static friction being generally larger than
the coefficient for dynamic friction.

34 Krisztian Benyo



Introduction (English version)

4 Fluid-structure interaction

Fluid-structure interaction problems are among the most important, and, with respect
to both modeling and computational issues, most challenging of multi-physics problems.
The coupling of these two systems can manifest in changes of the previously described
equations on many levels. As far as the works in this thesis are concerned, we specify
three effects in particular related to our coupled problems.

1. Modified fluid domain: The presence of the solid §; in the fluid domain represents
an obstruction in the fluid flow in the sense that the actual fluid domain is Q; = Q\S;.
In the water waves problem this was already implicitly assumed in the sense that
we defined the fluid domain €, for a moving bottom b(¢, z) without specifying its
actual evolution. When part of the bottom topography is allowed to move freely
(not in a prescribed way), the actual expression for b depends on the solid motion,
therefore introducing coupling in the system.

The general implication is that even for the fixed bounded domain formulation of
Q, part of the boundary 0€2; will depend on time for the coupled problem, therefore
introducing the additional complexity of the moving domain. Naturally, this means
that we have to prescribe boundary conditions on 0S; as well as for the fluid quan-
tities. The kinematic boundary condition is still valid, indicating that fluid particles
can’t enter the solid domain, represented by

U- Nsolid = Vsolid * Nsolid on aSta

which means that the normal velocity of the fluid is given by the normal component
of the solid velocity voq-

2. Linear momentum effects: As it was explained in the previous section, the main
coupling term for the solid equations is the force arising from the pressure of the fluid
flow. It incorporates a force acting on the normal direction of the wetted surface,
exerted by the fluid flow, giving rise to the hydrodynamic force term in the equation
for the solid motion (3.1).

3. Angular momentum effects: The fluid flow exerts a tangential force as well on
the wetted surface of the solid. This gave rise to a gyroscopic force term in the
Newton equation, acting on the angular variable.

Another consequence of the fluid flowing around the submerged object is that it
creates a circulation around the solid, influencing the angular momentum as well
as the linear momentum. The latter effect can be quantified by measuring the total
contribution of tangential fluid velocity around the solid:

v = U - 7dY%,
a5,

with 7+ = n,,;4. For more details, see also Definition 1.2.3.
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Therefore the coupled fluid-solid system can be written in the following generic form

VP
8tU—|—U~VU:—7+g, ith

V.U=0, in Q, (4.1)
mXSOlid(t) = / Pnsolid dz + Z Fz
¢

external forces

Finally, let us mention some of the numerical aspects of fluid-structure interaction
problems. Today’s software packages specialized for computational fluid dynamics or com-
putational structural mechanics often incorporate solvers to simulate more and more kinds
of fluid-structure interactions ([BS06]). This illustrates well the general approach towards
these kinds of problems, meaning that a separate, specialized solver is dedicated to com-
puting the fluid flow and the motion (or deformation) of the structure, and a certain
coupling scheme is applied to update the common data between the two systems (most
notably the pressure field and the solid position/velocity) (see for example [Pes05],[LB10]).
However this often raises the question of how well the (numerical) conservation of total
mass, momentum, and energy are respected.

Although a lot of research has been done in this direction for the past few years, some
questions still remain to be answered. In particular, modeling the coupling itself in an
efficient, optimal way, or adapting the discretization scheme to incorporate the flow and
the structure at the same time ([CMO0G], [CMMO8], or [Dor17] and references therein) still
prove to be relatively challenging.

5 Asymptotic models

When one is dealing with problems arising from physics, or other applied fields of sci-
ence, one can frequently run into problems of asymptotic nature, such as certain damping,
perturbation, stabilization, etc. problems. In order to solve these problems, one is led to
apply techniques from asymptotic analysis, and perturbation theory. The theoretical as-
pects of this field are much more established nowadays than they were some decades
ago.

In 1963, Kruskal [Kru64| defined asymptotology as “the art of dealing with applied
mathematical systems in limiting cases”. The general idea of the domain is still the same
after all these years, one wishes to extract information through an approximation of the
exact solution to a given problem. In order to derive such approximations, certain natu-
rally appearing or artificially introduced small parameters are varied to obtain simplified
equations, therefore reducing the complexity of the governing equations. The main math-
ematical tool is asymptotic expansion with respect to a suitable (asymptotic) sequence of
functions of these smallness parameters.
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One distinguishes in general ([CK96]) two types of qualitatively different problematics,
in what follows we detail both, since the two main problems of this thesis each fall into a
different category.

5.1 Regular perturbation problems

In a regular perturbation problem, one can carry out a straightforward Taylor ex-
pansion around a limiting case, leading to an approximation of the form of a series with
respect to the smallness parameter. The terms of this series are defined by a system of
(differential) equations and associated boundary conditions obtained for the correspond-
ing order of magnitude of the parameter. This system is then solved recursively, with
uniformly bounded terms on the whole domain of the problem, moreover the accuracy of
the approximation improves as the parameter gets smaller and smaller.

5.1.1 The shallow water asymptotic regime

A typical, albeit not the simplest example of a regular perturbation problem is the
derivation of shallow water asymptotic models for the water waves problem. It involves
the asymptotic expansion of the vertically averaged horizontal velocity field with respect
to the shallowness parameter associated with the domain 2.

First of all we present the dimensionless parameters relevant to the system, bearing in
mind that our aim is to derive (simpler) asymptotic models. For that we need to introduce
the various characteristic scales of the problem

e H, the base water depth,

e [, characteristic horizontal scale of the wave motion (both for longitudinal and
transversal directions),

® a4, s order of the free surface amplitude,

e ay,yy vertical scale of the solid (order of the bottom topography variation in general).

Using these quantities, we can introduce several dimensionless parameters:

HZ
e shallowness parameter = 74,

Agyrf

e nonlinearity (or amplitude) parameter ¢ = 7L,

e bottom topography parameter § = ag—oo“
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2
Shallowness: p = %
Qgurf

H;

Nonlinearity: € =

Topography: = “Il’{—"(;‘

Upott

Figure 4 — The characteristic scales for the coupled water waves problem

With these parameters, one can nondimensionalize the water waves problem (2.13).
First of all, the dimensionless Laplace-problem defining the velocity potential is

(I)|z:6C = 1/}7 \/ I+ 52|vxb|26nq)mb|z=—Ho+b = atb '

Decomposing the potential into two components ® = &, + ®,,;, just as in Section 2.2,
for the corresponding Laplace-problems one can once again define the Dirichlet—Neumann
and Neumann—Neumann operators:

G/?N[ggﬂ Bb]¢ =V 1+ 52|va|2an(bfb|z:6(7
G,L]:[N[EC7 ﬁb]atb =V 1+ 82|va|28nq>mb|z:5§-

With this, the nondimensionalized form of the water waves equations arising from (2.13)
Is

0 — LGPV, pbly = EGNN[eC, B0,
(LGN, Bb]Y + SGNN[eC, BB + Vo (2() - Va))*
2(1 + e2u|V.([?) a

O + ¢+ 5| Vatp|? —ep 0.
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5.1.2 Shallow water approximative models

By (5.1), one can define the vertically averaged horizontal component of the velocity

as
— 1 re¢
V=VueC.ale =5 [ V.0(2)dz, (5.2
h J-14pb
where h = 1 + ¢( — Bb. The main interest of this new variable lies in the following

proposition ([Lanl3])

Proposition 5.1. Let s > d/2+ 1 and ¢,b € H*(R?) such that
Fhmin > 0, VX € R 1+ (X)) — BU(X) = hin. (5.3)

Let ¢ € H3?(RY) = {f € L} (RY), Vf € HV2RH?} and & € H*RY) = {f €
L2 (RY), Vf € HY(RY} be the solution of the Laplace equation (5.1). Then the fol-

lowing relation holds

V142 Vi(|200P|eec = uf@tb —uV - (RV). (5.4)

This implies that one can rewrite the Dirichlet-Neumann and Neumann-Neumann
operators by using this expression of V.

The main motivation for this is that an asymptotic expansion can be obtained for this
variable, more precisely
Proposition 5.2. Let ty > 4,5 > 0, n € N, and (,b € H*"(R?) N H (R?) such
that they satisfy the previous minimal water depth condition (5.3). Let ¢ € H¥T3+2(R%).
One can construct a sequence (V;)o<j<n of class H*(R?), independent of u, such that
IVillms < M(s + 25)[[Vatd |2 (0 < j < n) and

< WM (s 42 + 2n)|| V0|
Hs

Hs+2+2n y (55)

with a constant M (3) defined by

1

M(3) = C(Mo. €]l [blle). with Mo = C (5= s, I zasr, [l s )

0]

Hs,

In particular, one has the following:

V = Vot~ uTlh, 60190 — 52 (319,00 +2V,000) + O(2),
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where

1 1
Tlh. BOY = — - Va(h*Ve - V) + B (Va(h?Vab - V) = 2V bV, - V) + B2V,bV,b - V.
From this one can derive the shallow water equations analyzed in the current work. For
more details as well as the demonstrations of the aforementioned propositions, we refer
to [Lanl13].

5.2 Singular perturbation problems

Many problems of physical interest however do not fall into the category of regular
perturbation problems. This manifests in the fact that a straightforward expansion fails
over the whole domain of the problem, the terms obtained from the development are
secular (they become unbounded), due to the presence of one (or more) thin layer(s) at
the boundary, or in the interior of the domain. In this case one is talking about singular
perturbation problems, or layer-type problems.

This failure is in general attributed to one of the two following main causes. The pres-
ence of the smallness parameter as a multiplier of the highest order derivative term in the
equations leads to the fact that in the asymptotic limit, the leading order approximation
is defined by a lower-order equation, which in turn can not satisfy all the initial and
boundary conditions of the original system. Often, problems are defined on an infinite
domain, in which small terms can have cumulatively significant effects, therefore uniform
estimates are not assured for the whole domain of the problem.

5.2.1 A multiple scale approach

A well-established method to overcome the difficulties arising from a singular pertur-
bation problem is the introduction of new timescales beyond the standard timescale t of
the problem itself. These new timescales are in general well-defined functions of the time
t and the smallness parameters of the problem. The foundations of this method date back
to 1883 when Lindstedt ([Lin83]) introduced the idea to analyze the three body problem
of celestial mechanics. It was justified later on by Poincaré ([P0i92]), therefore it became
known as the Poincaré-Lindstedt method.

The main issue with this approach is to find the appropriate timescales for the problem.
In some cases the failure of a regular asymptotic expansion comes from the fact that this
expansion ceases to be uniformly valid over the whole domain, in particular around part
of the boundary. Therefore, complementing the standard (external) asymptotic expansion
with a secondary (internal) asymptotic development around the problematic point or area,
and superposing the two expansions provides an adequate approximation for the whole
domain ([CK96]). These two expansions often involve different functions of the smallness
parameter, which in turn provides the two natural timescales of the original problem.
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In other cases, homogenization methods, or restricting the search for specific types of
solutions (for example periodic solutions) can give an idea of the nature of the additional
timescales. These techniques are useful in the case when the terms involving these different
times can’t be explicitly decoupled, as it is going to be the case in Chapter 1.

We remark that, apart from the multiple-scale approach, there exist other methods to
handle these problems. The method of averaging for instance is another well-established
approach. It was originally introduced by Krylov and Bogoliubov [KB43] in 1937 and
has been extensively applied to a variety of physical problems. Its main feature is that it
makes use of the Hamiltonian structure of the equations, providing a relatively general
and constructive method that applies to problems originating from a physical context.

5.2.2 The dynamics of an infinitesimal object

Following the derivation in Section 1.2, we have that the simplified first order system
describing the motion of an infinitesimal object in €2 is of the form

1e4(t) = F(q, 9), (5.6)

where ¢ stands for the position vector of the solid, I. represents the inertia, with € a
smallness parameter of the system, and F' on the right hand side incorporates the dynamics
and the nonlinearity of the system.

It is clear that this system of second order ordinary differential equations falls into
the case when a straightforward asymptotic development would fail, since by ¢ — 0, the
left hand side would disappear, meaning that the limiting equation would be only a first
order system. Moreover, due to the complexity of the nonlinearity, the internal-external
asymptotic expansion approach is not applicable, therefore we are required to ascertain
in a different way the natural timescales associated with this system.
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Chapter 1

Multiple-scale analysis of the dynamics of a
point particle in a two dimensional perfect
incompressible and irrotational flow
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Version francaise abrégée

Version francaise abrégée

Nous étudions un modele simplifié qui décrit le mouvement d’un solide dans un milieu
fluide parfait sur un domaine 2 C R?, qui est supposé borné, connexe et simplement
connexe. Les équations sont données par

ph” = (K —u(h))*, (1.0.1a)
e’ = Ry& - (W' —u(h)), (1.0.1b)
ol les variables principales sont le vecteur de déplacement du centre de masse du solide
h(t) € Q et sa position angulaire ¥(t) € [—m, 7]. Ry est la matrice de rotation par ¥,
et en particulier =R, /2T pour x € R?. La non-linéarité du systeme est décrite par

u € C*(£2) qui correspond essentiellement la vitesse de Kirchhoff-Routh. Les conditions
initiales sont h(0) = ho € Q, 1/(0) = hy € R?, 9(0) =9y € (—7, 7] et ¥'(0) =9, € R.

Dans cette étude, nous présentons trois résultats principaux, qui concernent a la fois
la dynamique de ces équations et leur développement asymptotique par rapport a des
parametres de petitesse p et €. Notons que p représente la masse de l'objet, ¢ sa taille.

Un premier résultat consiste a établir un développement d’ordre quelconque du vecteur
de déplacement h, caractérisé par ’équation (1.0.1a), qui est a priori découplée de 1'autre
équation du systeme. Par une estimation d’énergie, nous avons que pour chaque p >, la
solution existe pour un temps 7),. En nous rassurant que cette solution n’approche pas
trop le bord, nous définissons pour § > 0

Tys = sup{t € (0,T,)| dist(h(t),090) > 5},
nous obtenons le développement suivant :

Théoreme 1.0.1. Soit d € N, d > 1 et soient g > 0, 6 > 0 suffisamment petits.
Pour tout 0 < p < po, et pour tout indices (j, k), 1 < j < d, 0 < k <d-—j, il existe
hi(t) € C*([0,00)), hjr(t,7) € C=(]0,00),2j7T), qui sont périodiques en leur deuxiéme
variable, et (hr)uc(o o) une famille de fonctions uniformément bornées sur [0,7T),5] dans
le sens que pour tout 6 > 0 suffisamment petit, on a

sup  sup  ([|hgl|(t) + [[RR](2) < 400,
p#€(0,1) (0,7}, 5]

tels que pour tout t € [0,T),s] l'unique solution de (1.0.1a) avec données initiales h(0) =
ho € Q, ' (0) = hy € R? s’écrit

d—1 d d—j
. t
RO = holt) + 3" 1 het) + 3 5 1 (t, M) g, (1.02)
k=1 j=1k=0

Ce théoreme a des conséquences diverses. Tout d’abord, en étudiant les conditions
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initiales et leurs implications sur le développement (1.0.2), nous déduisons une condition
de compatibilité entre 1’équation (1.0.1a) et I’équation de limite vérifiée par hy (qui n’est
rien d’autre qu’une équation de point-vortex). Cette condition consiste a établir la relation
entre hj(0) et hy. En particulier, nous avons les résultats suivantes :

e si hy = u(hg), alors h — hy dans WhH>;
o si hy # u(hy), alors h't) # u(h(t)) pour tout ¢ tel que la solution h(t) existe:

e de plus, si hy # u(hg), alors g(t) := h't) — u(h(t)) se comporte de maniére quasi-
périodique dans le sens qu’ils existent A, v réels positifs et deux suites croissantes
{an}nen, {bn}tnen tels que Lg(t)] = X sur [a, — v,a, + v] et L]g(t)] < X sur
b, — v, by, + V).

Par rapport a la variable angulaire, nous établissons que, pour des données initiales
petites, nous avons I'approximation asymptotique suivante :

Théoréme 1.0.2. Iis existent ¢ € C*(RT) et 0 € C*°(RT) uniquement définies,

v =2+ ot

t = /e et ils existent O° € C>((—m,n],RT), O € C>®°((—m,n],R") telles que l'approxi-
mation

OA(T) = Oa(¥(7), (1)) = O°(¥,1) + VO (¢, 1) (1.0.3)
est périodique par rapport a sa premiére variable et qu’elle vérifie pour un temps T €
0,7/ /2]

%@(T)App = Ro(r)4,,& - 9(t) + Or=(e),

Oapp(0) = Yo+ Op=(e),  -Oap(0) = Ope=(e).

Ici, T est défini par Remarque 1./.1.

(1.0.4)

En revanche, nous obtenons des résultats différents tant que nous supposons que les
données initiales sont assez éloignées de l'origine. Dans ce cas il s’agit d'une étude dyna-
mique du systéme non-autonome (1.0.1b) pour mettre en évidence un caractére dynamique
assez complexe.

Cet étude dynamique repose sur 'analyse d'un systeme de trois équations du premier
ordre, obtenu de ’équation (1.0.1Db) :
e =,
v = [¢]lg(t)]sin(O + a(t)), (1.0.5)
=,

ou de maniere plus compacte :
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avec x = (0,0, 1) et f. = (f1, f2, £3)(O,v,t) = (v, [£]|g(t)|sin(O + a(t)), /). Ici a(t) est

I'angle orienté entre les vecteurs &4 et g(t).

Ce systeme, désormais autonome, ne peut pas étre traité par des techniques classiques
a cause de la dégénérescence dans la troisieme variable (t), par conséquent nous sommes
ammenés a introduire des outiles généralisés, suite a des travaux récents dans le domaine
de comportement chaotique des systéemes dynamiques ([CW15]).

Définition 1.0.1. Nous notons par X ’ensemble de Cantor des suites indexées par 7. de
deuz symboles (0 et 1). Soit o : 3 — X Uopérateur de décalage défini pour s = (s;)iez par

O'(S)Z‘ = Si+1-

Théoréme 1.0.3. Pour ¢ suffisamment petit, il existe une ligne non-horizontale N dans
R3, invariante sous laction de f., autour de laquelle il existe un ensemble invariant A, tel
que A, est topologiquement conjugué a X x N, A, est un ensemble de Cantor des lignes
non-horizontales, et un itéré de Uapplication de Poincaré associée a la restriction fo|a. est
topologiquement conjugué au décalage de Bernoulli o.

1.1 Introduction

Studies on the motion of rigid bodies immersed in a fluid domain have existed for the
past few decades, especially in the viscous fluid case, when the fluid motion is governed
by the Navier—Stokes equations (see for example [CSMT00],[TCO08], [GMO00], [GVH14],
[Bral8]). In the case of a perfect fluid, with the governing fluid equations being the
Euler equations instead of the Navier—Stokes equations, the literature is sparser; we re-
fer to [ORT07] concerning one of the first main results, or to a series of recent articles
([GLS14],[GMS18],[GS15],[GLS16]) covering the physically relevant cases in this setting.

Here we study a simplified model for this system with an emphasis on the angular
variable and its evolution, a quantity that a priori vanishes when the size of the solid
tends to 0 (see Theorem 1.2.4). As remarked in [Suel7], strong oscillations are present
in the system, hindering convergence of the solution in regular spaces. We establish the
exact nature of these oscillations, moreover a compatibility condition is obtained with
which these oscillatory terms can be cancelled out. Another focus concerns the sensitivity
to the body’s shape present in the correction terms when passing to the limit.

1.1.1 The model system

Let us fix €2, a bounded, open, regular, connected, and simply connected domain of
R?; the domain of the perfect fluid. Let us also fix Sy C §2 a non-empty, closed, connected,
and simply connected subset; the initial position of the solid, submitted to a rigid motion
inside the fluid domain. For a time ¢ > 0, let us denote by h(t) € Q the position of the
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center of mass of the solid, and by ¥(t) € (—m, 7| the angle of its rotation. The simplified
system describing the motion of the object is given by

ph” = (b —u(h))*, (1.1.1a)
e = Ryl - (h' — u(h)). (1.1.1b)

Here Ry is the rotation matrix by 1, that is

~ (cosI(t) —sind(t)
Rog) = (sinﬁ(t) cos (1) ) ’

and, in particular, for a vector x € R?, 2+ = R, /2.

The vector £ is the conformal center of the object, thus incorporating the essentials
on the geometry of the solid (see also Definition 1.2.5). The function v € C>*(Q) is the
nonlinearity of the system, a Kirchhoff-Routh velocity defined by

Definition 1.1.1. Let
u = V¥, (1.1.2)

where the Kirchhoff-Routh stream function vq is given by the trace
L
wﬂ(m) = §w (l’,iL’),

where the function °(h,-) is the solution of the following Dirichlet-problem
AW( 7

PO (h, )

Remark 1.1.1. As long as h € §, the Dirichlet boundary condition is a smooth function

for the system (1.1.3), thus the solution of this Laplace problem is reqular. In particular,
by the chain rule, the function u(h(t)) is as reqular as the function h(t).

)= in

1.1.3
In| - —hl on OS). ( )

L
2

We remark that the right hand side of equation (1.1.1a) corresponds to a Kutta—
Joukowski type lift force arising from the effects of the fluid pressure. The initial conditions
of the system are h(0) = hg € Q, '(0) = hy € R?, 9(0) = 9y € (—m, 7], and ' (0) =, €
R.

The two parameters of the system are u, representing the mass of the object, and ¢,
the size (diameter) of the solid. The asymptotic analysis involves at least one of these
quantities tending to 0, this will be clarified at the beginning of each section.

For further details, as well as the derivation of this system, we refer to Section 1.2.
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1.1.2 Outline of the study

The outline of this study is as follows. First of all, we present the origins of system
1.1.1. We detail the physical system describing the flow of a bidimensional fluid (on an
unbounded or a bounded domain) with the addition of a solid body within. We state
the reduction of this system to an ODE, and finally we detail the asymptotic limit of a
vanishing body (when the size of the solid tends to 0).

Section 1.3 is devoted to the analysis of the evolution of the position of the solid’s
center of mass, as well as the limiting point-vortex system which characterizes the zeroth
order expansion of the displacement vector of the solid. More precisely we show that,
given a massive point-vortex system (equation (1.1.1a)), by letting the mass p tend to
zero, one obtains indeed a classical point-vortex equation, following the ideas of Kruskal
([Kru58]) and Berkowitz and Gardner in [BG59]. A necessary compatibility condition is
established to connect these two point-vortex systems, based on which one can deduce
convergence in W1°, This has some important consequences not only on the behavior of
the displacement but on the equation describing the angle as well.

In Section 1.4 we address the asymptotic development of the angular equation (1.1.1Dh)
and we present the essential tools to handle the arising singular perturbation problem. We
analyze the equation for small initial data, when periodic trajectories can be observed,
and establish a power series expansion for two timescales simultaneously. Following the
ideas of Bourland and Haberman ([BHS88]) we describe the naturally appearing shift as
well as the modulation induced by the equations.

Section 1.5 presents a particular result on the angular equation, concerning the case
when the initial data is sufficiently large, leading to amplified instabilities from a dynam-
ical point of view. Applying a Wiggins type theorem ([Wig88b]) on the angular equation
we highlight the complexity of the underlying dynamics for this system. In particular, a
theorem involving the sensitivity to initial data is presented, followed by some existence
results on homoclinic and almost periodic orbits.

1.2 On the motion of a rigid body in a bidimensional
perfect fluid

Now we state some classical and some more recent results concerning the study of the
motion of a rigid body in a two-dimensional fluid flow. In general for a detailed discussion
and for more references on the origin of the system we refer to [Suel7], as well as to
[GLS14], [GLS16], [GMS18].
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1.2.1 The case of an unbounded irrotational flow

We considered the motion of a rigid body immersed in a 2 dimensional incompressible,
irrotational perfect fluid. The domain of the full fluid-solid system is taken to be the whole
space R2. Initially the solid occupies a non-empty, closed, connected, and simply connected
subset Sy C R2. We suppose that the body moves rigidly so that at time ¢ it occupies
the domain S(¢) which is isometric to Sp. Let us assume that the origin is the center of
mass for Sy. Initially the fluid occupies the domain Fy = R*\S, and at time ¢ the domain
F(t) = Q\S(1).

1.2.1.1 The equations of the system

Based on our physical assumptions on the fluid (it being incompressible, irrotational,
and inviscid), its dynamics are governed by the two dimensional incompressible irrota-
tional Euler equations

U+ (U -V U+VP =0 for t € (0,00),z € F(t), (1.2.1a)
V-U=0 for t € [0,00),z € F(t), (1.2.1b)
VxU=0 for t € [0,00),z € F(t), (1.2.1¢)

where U = (U, Us,)" is the fluid velocity field and P denotes the fluid pressure. The fluid
is supposed to be homogeneous with a density of 1 for the sake of simplicity.

The motion of the solid is governed by the forces exerted by the fluid (by Newton’s
second law), thus the balance of the linear and the angular momentum writes as follows

ph(t) = Pndx for ¢t € (0, 00), (1.2.2a)
aS(t)

T9"(t) = /a o T )" PrdS for € (0,00), (1.2.2h)

where h is the position of the center of mass of the solid with respect to a fixed point of
reference (the origin of the system), ¥ denotes the angle of its rotation with respect to its
initial position. In the equations, n = (ny,n,)" stands for the unit normal vector of the
surface of the solid (0S(t)) pointing outwards, p > 0 is the mass of the solid, Z > 0 the
momentum of inertia of the object.

We remark that, due to the isometric property of the solid displacement, we may
introduce the rotation matrix Ry in order to describe the exact position of the solid,
that is

S(t) = {h(t) + Rywyz, v € Sp}. (1.2.3)

Finally, for the boundary conditions of the system, we impose that the boundary of the
solid is impermeable (a kinematic boundary condition on 05(t)), as well as the hypothesis
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that the fluid is at rest at infinity. Thus we have that

U-n= () +0'#)(@—h(t)") n forte0o0)xzedSt), (1.2.4)
and
‘1|i£>n \U(t,z)|=0 fort e [0,00). (1.2.5)

The system (1.2.1)-(1.2.5) forms the coupled problem of the incompressible Euler
equations with a rigid body. The initial conditions can be stated as follows

Uli—o = U, for x € Fo;
=0 = U T , (1.2.6)
The position h and orientation ¥ of the solid is the basis of its movement (see the
characteristic equations of its motion in (1.2.2)), thus we shall make use of the position
vector ¢ = (h,9)". Let us denote its time derivative by the vector p. Since the solid

position is entirely described by the vector ¢ (due to (1.2.3)), we may also denote the
domains S(t) and F(t) by S(q) and F(q) respectively.

1.2.1.2 The geometry of the unbounded flow

In this part, we state the essential parts of the analysis of the case of an unbounded
irrotational flow ([Suel7]). Some of these expressions originate from complex analysis due
to the computations involved in the associated theorems. We introduce quantities defined
for the whole plane, that describe the fundamental geometry of the object and its impact
on the dynamics of the system.

In the potential case, the fluid velocity can be globally taken as a gradient. This
motivates the following particular extension.

Definition 1.2.1. The global Kirchhoff-potentials ®4 = (Pg;)iz1,23 are defined as the
solutions of the following Laplace problems

A(I)gm' =0 in RQ\S(),
Dy — 0 when |z| — oo, (1.2.7)
0Dy,

875’];’ = Kgl,i on 880;

where we have that

(Kgl,h Kgl,27 Kgl,3) = <n17 na, J:J_ . n)

These potentials contain information on the solid geometry which may be expressed
by introducing the added inertia matrix.
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Definition 1.2.2. Fori,j € {1,2,3} let us define
Mgliij = /R . V&g Vg ;dr, (1.2.8)

Then the matriz Mgy o, which has mgy.; ; as its entries, is called the global added inertia
matriz, that s
Mo = [Mygiijlijeq2s)-

This matrix actually encodes the so called added mass phenomenon and it shall serve
as an additional inertia in the soon-to-be-formulated solid equations, as opposed to the
genuine inertia matrix

oOr® O

W
M, =0
0

3 No o

We also define the extended rotational matrix

Ry = [ V) e s003).
(' 9) 0w

(V) as

0 1

An important parameter regarding the solid is the circulation of the fluid velocity
around the object Sy, defined by

Definition 1.2.3. The circulation of velocity around the solid is

v=[ U-rds, (1.2.9)
980

where T is the unit tangent vector of the solid surface verifying T+ = n.

Due to Kelvin’s theorem, the circulation is constant in time.

Much like the potential case giving rise to the global Kirchhoff-potentials, the circu-
lation motivates the introduction of a particular harmonic field as well.

Definition 1.2.4. Let us define by H the unique solution vanishing at infinity of the
following harmonic problem

V-H=0 in R2\807
VxH=0 in R%\S,,
H-n=0 on 08y, (1.2.10)
H-7d¥X=1.
880

The field H allows for the definition of the conformal center of the solid, yet another
important geometric parameter.
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Definition 1.2.5. The conformal center &€ = (£1,&)"7 of the solid Sy is defined by
€ +i& :]f 2H* dz, (1.2.11)
8So

where the integral is a complex line integral along the curve 0Sy.

With these definitions at our disposal, we have the following for an unbounded, bidi-
mensional, irrotational flow (Theorem 2.2. of [Suel7])

Theorem 1.2.1. The motion of a rigid body immersed in a two dimensional incompress-
ible and irrotational perfect fluid can be described by the following equation

(Mg + Mgl,a)QH + <Fgl,aa q, q/> = '7([/ X By. (1.2.12)
Here

e the Christoffel-symbol T, , is defined for p= (I,r)" by

P 0
<Fgl,aap7p> - = ( 0 ) Xp— rRﬂMgl,aR% (li> ;

where P, are the two first coordinates of RoMg oR5p;

i
o and By =Ry <_1>.

The fluid velocity is then determined as the unique solution of the associated div-curl
system, namely

U(t,z) = Ry (V(Qq - q)(t, RS (x — ) + 7V Upa(t,, RS (x — b)) (1.2.13)

For a proof, we refer to [Suel7].

1.2.1.3 The vanishing body problem for an unbounded fluid domain

We are interested in an asymptotic study in the sense that the body present in the
system has a vanishingly small size. So, the rigid body initially occupies the domain
S5 = €S for € € (0,1). This means that the solid at time ¢ is given by

Sg(t) = Rg(t)SS + h(t).

Then for a fixed €, we may establish the same systems of equations as the ones pre-
sented in the previous part: (1.2.1)-(1.2.5) as well as (1.2.12).
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The main interest is the asymptotic behavior of our variables as ¢ — 0. For a fixed
e, we have U¢ solution of the Euler equations (1.2.1), and (h*,1°) solutions to the New-
ton equations (1.2.2) with the appropriate boundary conditions. Notice that this general
problem depends on how we define the relation of the data with e.

The most notable interest is the definition of the inertia. We may distinguish two
different cases depending on whether the body shrinks to a massive or a massless limit:

1. The case of a point-mass particle: the mass and the moment of inertia of the solid
is assumed to have the form

pie) =p and ZI(e) =¢e’T,

with m > 0 and Z > 0 fixed.

2. The case of a massless point particle: the mass and the moment of inertia of the
solid is assumed to have the form

p(e) =e*n  and  ZI(e) = e*MT,

with ¢ > 0, Z > 0, and o > 0 fixed. In particular the case o = 2 corresponds to
the fixed solid density case, furthermore the limit case of @« = 0 would yield the
point-mass particle.
The initial solid velocity (h5,95) = (h1,9:) is taken independently of e. The circulation
of the solid, v is assumed to be a constant independent of € as well.

We have the following for the massive (and for the massless) limit cases (Theorem
2.16. of [GMS18])

Theorem 1.2.2. Let Sy C R?, (o > 0) v € R (respectively v € R*), (u, Z) € (0,00) X
(0,00), and (hy,01) € R? x R. Let, for each ¢ > 0, the solution h® € C>®([0,00);R?) of
equation (1.2.12) associated with an initial solid domain S5, with u(e) = p, Z(e) = T
(respectively pu(e) = e%p, I(e) = >, and initial data q(0) = 0, p(0) = (hy,91). Then,
for allT > 0, we have that as € — 0 in the case of a massive particle (respectively massless
particle):

e h° converges to h weakly-* in W2>([0, T]; R?) (respectively in W1>°([0,T]; R?));
o c° converges to 0 weakly-* in W2>([0, T];R) (respectively in W1°°([0,T]; R?)).

Moreover, the limit time-dependent vector h satisfies the equation ph" = v(h')* (respec-
tively h' =0).

1.2.2 The case of a bounded fluid domain

From now on we take €2 a bounded, open, regular, connected, and simply connected
domain of R?. This Q will represent the domain of our fluid-solid system in the bounded
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case. Initially the solid occupies a non-empty, closed, connected, and simply connected
subset Sy C €2; without loss of generality, we can assume that 0 €  and the origin is the
center of mass of the solid at the initial phase. Just as before, the solid at time ¢ occupies
the domain S(t) and the corresponding fluid domain is given by F(t) = Q\S(t).

For the new fluid domain, the incompressible, irrotational Euler equations (1.2.1) are
still valid. The same holds for the equations describing the solid motion (1.2.2). The
kinematic boundary condition on the solid boundary (1.2.4) still has to be verified, how-
ever the “rest at infinity” condition must be replaced by a second kinematic boundary
condition, this time on the boundary 0%:

u-n=0 on Of). (1.2.14)

It is essential to avoid collision with the boundary of the domain (0€2), thus we set
Q= {qe R : dist(S(q),00) > 0}.

By our assumptions, 0 = ¢(0) € Q.

1.2.2.1 Reformulation as an ODE

One can reduce the fluid-system to an ODE in the bounded case in a similar fashion

as it was presented previously in Theorem 1.2.1, although with more complicated terms
(Theorem 2.2. of [GMS18]).

Theorem 1.2.3. Let us take € open, reqular, connected, and simply connected, a Sy C 2
closed initial solid domain. Let us suppose that v € R, (le, Y1) € R? X R, and that Uy is
a compatible initial fluid velocity, meaning that it is the unique vector field satisfying the
following div-curl type system.:

V'U():O, VXU():O info

Uy -n= (Bl+191{L’J') -n  for x € 08,
faso UO‘TdE:")/,

Up-n=0 forz e .

(1.2.15)

There exists a C* mapping ¢ € Q — Mgy(q) € ST (R), depending only on Sy and
Q, and F € C>®(Q x R3R3) depending only on Sy, v, and 2, such that, up to the first
collision, the motion of a rigid body immersed in a two dimensional incompressible and
irrotational perfect fluid can be described by the following second order ordinary differential
equation

(Mg + Ma(a))q" + (Tala), ¢ d) = Fla.4), (1.2.16)
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Figure 1.1 — The infinitesimally small object in a fluid domain

with Cauchy data )
q(0)=0¢€ Q, p(0) = (hy,91)" € R? xR.

Here the assciated a-connection 'y, is given by

(Talq),p,p) = ( >, (Fa(q))ﬁjpipj) e R’

1<i,j<3

where for every i, j, k € {1,2,3} we have

1.2.2.2 Derivation of the equations at first order

Now we address the derivation of the coupled problem (1.1.1) by means of the first
order approximative system of equations (1.2.16) describing the solid movement. For de-
tailed arguments, we refer to [GLS14].

We start from the differential geometric reformulation of the system (Theorem 1.2.3),
recast for a shrunken solid of size ¢, that is

{ (@) =", (1.2.17a)
M) () = =), 7. 0°) + Fo (a5, %), (1.2.17h)

for the position (¢°) and velocity (p°) of the solid S§%(¢). The main idea is to perform
an asymptotic expansion of the various terms in the equation with respect to €. The
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motivation for this is that the leading order terms in these asymptotic developments are
in fact the corresponding global quantities presented in Section 1.2.1.2.

In order to establish proper boundedness, especially for properly estimating the error
terms of the approximation, it is imperative to assure a safe distance from the boundary
0€). So we introduce the following:

Definition 1.2.6. For 0 > 0, 9 > 0 let us define the set Ds., as follows

Dsep = {(£,9) € (0,20) x R?| dist(S7(q),02) > 6}.

By Proposition 3 of [GMS18], for § > 0 there exists a g9 and H, € L>(Ds., x R* R?)
(depending on Sy, 7, and €2, and weakly nonlinear) such that (1.2.17) has the following
form

{ () =%, (1.2.18a)
My(p°) = 7p° x By + el (e, 4", 0°), (1.2.18Db)
with p* = <€lrg>, and p = <€lre>, where I° = 1= — yu(h).

By computing the vectorial product (see definition of By in Theorem 1.2.1.) and by
neglecting the higher order terms in (1.2.18), we are left with the analysis of the following
system

p(he)" = y((h°) = yu(h?))* (1.2.19a)
eZ(V9°)" = Ry& - ((h°) — u(h®)), (1.2.19Db)
where we recall that Ry is the rotation matrix by ¥, € is the conformal center of the solid,

and the function v is a given function depending on 2. For v = Z = 1 this gives rise to
exactly (1.1.1).

1.2.2.3 The vanishing body problem for a bounded fluid domain

Finally, we state some recent results concerning the analysis of the vanishing body
problem for a bounded domain ([GLS14],[GLS16]).

The massive limit: In order to be able to state an asymptotic result for the bounded
regime, to define the limit equation for the solid displacement, recall the Kirchhoff-Routh
velocity, u, defined by Definition 1.1.1, which is a generalization of the drift velocity known
from the classical point-vortex system on R2.

We have that for a bounded domain €2 (Theorem 2.11. of [GMS18]):

Theorem 1.2.4. Let Sy C Q, v € R, (1,Z) € (0,00) x (0,00), and (hy, ;) € R? x R.
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o constant

e—0

Figure 1.2 — The connection between the systems

Moreover, let (h,T) be the mazximal solution to

b (1) = 3(H() = yu(h(t))) (1.2.20)

with h(0) = 0 and h'(0) = hy.

Then, for every ¢ € (0,1] sufficiently small so that S§ C 2, we denote by T the
mazimal lifetime of the solution given by Theorem 1.2.3. Thus we have that as € — 0
liminf 7° > T, h® converges to h weakly-* in W2>([0,T];R?), and e9° converges to 0
weakly-* in W>([0, T]; R).

The massless limit: When 2 is a bounded domain, again supposing the fluid is irro-
tational, we have the following for any a > 0 (Theorem 2.12. of [GMS18]):

Theorem 1.2.5. Let Sy C Q, v € R*, (1,Z) € (0,00) x (0,00), and (hy,0;) € R? x R,
Moreover, let h be the global solution to

1 (t) = yu(h(t)) (1.2.21)

with h(0) = 0.
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Then, for every ¢ € (0,1] sufficiently small so that S§ C €2, we denote by T° the
mazximal lifetime of the solution given by Theorem 1.2.3. Thus we have that as ¢ — 0
liminf 7° — oo, and h® converges to h weakly-* in W'*°([0, T];R?) for all T > 0.

Remark 1.2.1. Equation (1.2.21) has a global solution due to the Hamiltonian structure
of the equation. Since

2 (0alh(6) = K (0) - Tua(h(t) = 17 va(h(t)) - Tea(h(t)) =0,

the solutions are moving along the level sets of the Kirchhoff-Routh stream function, the
particle cannot touch the border of the domain, and as such, there is no finite time explo-
sion.

For further details and the proof of these theorems, we refer to [GMS18].

1.3 The zero-mass limit of the massive point-vortex
system

The basis of the analysis is the point-vortex system; notice the right hand sides of
equations (1.1.1a) and (1.1.1b), both are governed by the same quantity of the displace-
ment vector. Therefore, a deeper qualitative understanding of this quantity is necessary;
of particular interest will be whether it can become 0 or not. In this section we analyze
the equation characterizing the solid displacement (equation (1.1.1a)) when the mass p
tends to 0.

1.3.1 The results of this section

Let us recall the classical (massless) point-vortex system:

{hg(t) = u(ho(t)), (1.3.1)

with « the nonlinearity (given by Definition 1.1.1.) incorporating the evolution of the
vortex motion within the fluid domain 2. This is the well-known single vortex system and
has been extensively studied. In particular, we have the following existence and uniqueness
result, attributed to Turkington ([Tur87]).

Theorem 1.3.1. For hy € Q, with u € C®(Q) the Kirchhoff-Routh velocity defined in
Definition 1.1.1 there exists a unique solution hy € C*(0,+00;2) of the system (1.3.1).
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We also introduce the following massive point-vortex system:

{Mh"(t) = (#(t) — ulh(t))" (152
hO) =Ry, H(O) =,

with ;o > 0 corresponding to the mass of the object. We impose hy € Q and h; € R2.

Notice that this system is of order 2 with two initial conditions, as compared to the
classical point-vortex system (1.3.1) that is of order 1.

Similar to Theorem 1.3.1, we can establish existence and uniqueness for (1.3.2) as well:

Lemma 1.3.1. For any ho € Q, hy € R%, and for any u € (0,1), there exists a unique
(h,T,) mazimal solution of (1.3.2) on the interval (0,T,,), with h € C*([0,T,);2). Here
T, denotes the first collision time between the particle and the boundary of the domain €.

Proof: Let us fix € (0,1). The right hand side of (1.3.2), as a functional of (¢, h,v,,), is
continuous in time (since it is time-variable independent) and (locally) Lipschitz contin-
uous in its other variables, due to the assured regularity (the object is initially inside 2)
for h € €. So by the Cauchy—Lipschitz theorem, there exists a unique local solution for
some time t € (0,7),). By defining the energy associated with this system as

1

with Vi)q = u', it can be easily verified that this quantity is conserved, since

d

S B W (@)] = D"(1) - ph'(t) + Viba(h(1) - K'(t) = 0

by the equation. This implies that the velocity of the system can not become unbounded,
thus the only possibility for the solution to explode in finite time is if h hits the boundary
of €, thus making u (or equivalently 1) become unbounded. So the maximal solution
exists until the first collision with 0. OJ

Observe that by letting the mass p tend to 0, one formally expects to obtain (1.3.1)
from equation (1.3.2). However obtaining a first order differential equation as the limit of
a second order differential equation requires some attention. The question of the second
initial data that disappears in the limit, in particular, will imply that for higher order
convergence results, a compatibility condition has to arise. Furthermore, the existence
time 7}, of the system (1.3.2) clearly depends on p, and by the energy argument one could
assume that in fact it tends to +0o0 as p tends to 0. This will be addressed later on as
well.

As implied by Lemma 1.3.1, for a precise analysis it is important to secure a safe
distance from the boundary 0€2. For this, let us introduce the followings:
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Definition 1.3.1. For § > 0 let us define the compact set
D5 = {x € R?| dist(z,00) > 4},
as well as the existence time

Ty.s = sup{t € (0,T,,)| A(t) € Ds}.

The main theorem of this section is the following:

Theorem 1.3.2. Let d € N, d > 1 and let pup > 0, 6 > 0 sufficiently small. For 0 <
p< po, 1 <j<d, 0<k<d—yj, there exist hg(t) € C*([0,00)) and hj(t,7) €
C>([0,00),257T), periodic in the second variable, and independent of ; furthermore there
exists (hRr)uc(ou) uniformly bounded in Lipschitz-norm in [0,T,s] in the sense that for
any 0 > 0 sufficiently small, we have that

sup  sup ([|hgl[(t) + [[AR]I(t) < +oo,
E(0,u0) tE0, T, 5]

such that for every 0 < p < po, t € (0,7, 5] we have

d—1 d d—j
. t
h(t) = ho(t) + 3 " hi(t) + 33 1™ hy, (t, M) + 1 hp. (1.3.3)
k=1 j=1k=0

The hearth of the proof of this theorem is based on the work of Berkowitz and Gardner
([BGHY]) and it will take place in Section 1.3.2. The demonstration entails a thorough
asymptotic expansion, formerly elaborated by Kruskal in [Kru58]. For now we state some
straightforward consequences. First of all, let us turn our attention to the time of existence
for the solutions h. We know that hg is a global solution to (1.3.1). We also have that up
until the first collision that occurs at time 7),, the exact solution h exists as well.

Corollary 1.3.1. We have that lim_}(r)lf T, = +oo.
o

Proof: Let us choose an arbitrary p. By (1.3.3), we have that for sufficiently small 6 > 0,
h(t) = ho(t) + Ope () for any t € [0,7),5]. As such, there exists a K, independent of p,
such that |h(t) — ho(t)| < Kpu.

Now let us fix 7" > 0 and denote by dr the minimal distance between the solution hy(t)
and the boundary of 2 (which is strictly positive), that is dr = infe(o 1) dist (hg(t), 89).

For 1 < dp/(2K) and for t < inf(7),5,T) we have that dist (h(t), 69) > dr/2. Since
lims_,0 7, = T}, by the continuity in time, we have that 7, > T or else we could
extend the solution for a time 7, + €, with a small positive e. This means that for every
pw < dr/(2K), T, > T, and therefore T = liminf, ,cT, > T > 0. However T' > 0 was
chosen arbitrarily, implying that in fact T = +o0. U
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Now we turn our attention towards the exact nature of the convergence of h when
1 — 0. To this end, let us first of all examine the initial data. We have that

R'(0) = ha = Iy (0) + 0rha0(0,0) + Ope (1),

implying that the initial data for the fast time scale variation of the first order oscillatory
term is given by

:110(0,0) = Ty — B(0) = Ty — u(R). (1.3.4)

This quantity can also be interpreted as a natural measure of compatibility of the two
point-vortex systems (equations (1.3.1) and (1.3.2)) on the level of the initial conditions.

If we assume that this quantity is 0, in addition to the hypotheses of Theorem 1.3.2,
then we can conclude in a straightforward way that

Corollary 1.3.2. For every T > 0, if the compatibility condition hy = u(hy) is verified,
we have that h ho over (0,T).

The details of this corollary as well as its proof will be elaborated in Section 1.3.3.

On the other hand, if the aforementioned compatibility condition is not verified, one
can deduce first of all that

Corollary 1.3.3. If hy # u(hg), then there exists o € (0,1) such that for every § > 0,
1€ (0.p10), and for any & € [0, T glt) = 1(t) — u(h(t)) £ 0.

This corollary has multiple implications. It will be an essential tool for the asymptotic
analysis of Section 1.4. Furthermore it allows for a non-degenerate reformulation of the
angular system, detailed in Section 1.4.1.

Also, for every T > 0 we remark that we can not have a convergence in W for
h% by in (0,7).

Indeed, the non-compatibility condition assumed in the corollary (h; # wu(hg)) implies
that O;hio has a non-zero norm, and as such it hinders the proper convergence of the
derivative.

In fact, we can say even more concerning the right hand side of equation (1.3.2),
provided that the difference |h; — u(hg)| is different from zero. We have the following
proposition, that will be used in Section 1.5 to derive the results concerning the dynamics
of the angular equation.

Proposition 1.3.1. Let |hy — u(hg)| # 0. Then the quantity |g(t)| = |W(t) — u(h(t))|
changes monotonicity almost periodically, meaning that there exist A and n positive real
numbers, as well as two sequences of intervals, I,, = [a,—n, a,+n] and J,, = [b,—n, b+,
with a, and b, increasing, such that L|g(t)| > X on each I,, and %£|g(t)] < =X on each
In-
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For the proof of this proposition, we refer to Section 1.3.4.

1.3.2 Proof of Theorem 1.3.2.

The main goal is to establish the asymptotic representation of the exact solution of
the equation (1.3.2) up to an arbitrary order with uniformly bounded terms. The idea is
to make use of the structural similarities with a system describing the motion of a charged
particle in an electromagnetic field, and in particular apply the principles of the guiding
center theory. In 1958 Kruskal ([Kru58]) formally derived an asymptotic development to
arbitrary order for the corresponding system. By applying similar ideas regarding the
construction of the asymptotic development as well as the arguments of Berkowitz and
Gérdner ([BG5H9]) one can provide an adequate justification.

We will construct an approximation to the unique solution h for (1.3.2), bearing in
mind the fact that we wish to recover hg, solution to the classical point-vortex system
(1.3.1) when g — 0. One of the main issues is addressing the second boundary condition
in (1.3.2), since h{(0) is in general not equal to hy. This gave rise to the compatibility
condition elaborated in Section 1.3.1 and the multiple different consequences of Theorem
1.3.2.

1.3.2.1 The guiding center approximation

The general idea is to introduce terms in the fast time variable to ensure that the
compensation for hj can be done by terms that disappear in the asymptotic limit. The
fast time variable 7 = ¢/ arises naturally due to the smallness parameter in the second
derivative term of equation (1.3.2), implying oscillations in this time scale.

One can be more precise, remarking the structural similarities of equation (1.3.2) with
the equation characterizing the non-relativistic motion of a charged particle in an electro-
magnetic field ([Kru58]). The main idea is the so called “guiding-center approximation”
according to which the motion of the particle can be approximated as a gyration (uniform
circular motion) orthogonal to the magnetic field, of small radius but large frequency. For
more details one can consult for example [Sul05].

Hence, a straightforward first approach would be to search an approximation of the
form

h:ho—kuH(.),
I

where hq verifies the classical point-vortex equation (1.3.1), providing for the finite velocity
motion of the so called guiding center, and H is a periodic function (solution of a rotational
equation), incorporating the uniform circular motion, dictated by solely the dynamics of
the equation. The p factor signifies that the motion is of small scale (small radius) and
the 7 fast time variable implies a high frequency motion.
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The main issue is that this simple approach does not capture sufficiently the effect of
higher order oscillatory terms on lower order terms, meaning that with this approach the
error term is no longer bounded in Lipschitz norm. Furthermore, a straightforward gen-
eralization of the construction ceases to work starting from a second order approximation
due to the fact that the nonlinear term (through the Taylor expansion of u) can no longer
ensure the periodicity in the fast time variable on the O(pu) scale.

Therefore, as part of the formulation by Kruskal, the periodicity in the fast time scale
has to be prescribed. It is important for two reasons: first, it corresponds to the small
radius circular motion expected by the aforementioned physical background of the equiv-
alent system. Secondly the periodicity ensures boundedness over [0, c0) independently of
the time scale, therefore one can avoid a situation where the function may explode at
infinity in the fast time variable, which would imply that the existence time tends to 0 as
1 tends to 0.

To guarantee the periodicity in 7, we will prescribe the fast time scale dependence as a
linear combination of sine and cosine functions of 7. However, since the Taylor expansion
involves many multiplications, it is more convenient to present this combination with the
aid of complex analysis.

1.3.2.2 A higher order approximation

Let us fix d € N, d > 1. Following Kruskal, one writes:

d—1 d d—j ot ot
h~ hapy = ho+ Y p"Hor(t) + > > p** (Hj,k(f)ewﬁ + H—j,k(we_”;) , (1.3.5)
k=1 J=1k=0

here Hyr € R?, H;;, € C? for |j| > 1, making use of the inclusion R* < C?, and in
particular H_;) = H7 ) to ensure that the sum is real valued, the approximation is indeed
in R?. The first index (j) corresponds to the period in the fast time scale (with j = 0
signifying that there is no dependence on 7) and the second index (k) measures how far
one goes in the asymptotic development for each term.

Here, and in what follows, we will have to work with higher order derivatives of the
function u. For & € N, k > 1 we denote by DFu the total derivative of order k, as a k-
linear function from (R?)* to R%. Owing to the matrix representation of linear maps, this
definition can be extended in a straightforward way to the complex plane (associated of
the linear map), therefore D*u can also be interpreted as a k-linear map from (C?)* to C2,
and it shall be denoted the same way, in order to avoid overcomplicating the notations.

We have to define the functions H,; adequately in order to obtain the approximation
of h. By substituting this approximation in equation (1.3.2) and by regrouping the terms
according to the power of the factor p as well as separating the terms based on the
periodicity in the fast time variable (the power of the complex exponential) one obtains
the characterizing equations. The definition is by induction based on n = |j| + k.
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Remarks on the underlying linear operator: In order to establish the equations
determining the terms associated to the fast time variation (H, for |j| > 1) in general,
we have to use the following linear operator:

Opw = Op (lel) = —jw’ = ( e ) for w € C? (1.3.6)

2 —1w

which is a bijective operator from C? to C? with eigenvalues £1 and eigenvectors

o — (1) e = (_12> , (1.3.7)

hence the corresponding projector operators on the respective 1 complex dimensional
eigenspaces are

1 1
P = §(Id_ Op), Piw= §(Id+Op). (1.3.8)

1.3.2.3 The initial steps

The first step (n = 0): For n = 0 one finds exactly the point vortex system (1.3.1),
that is
(hy)™ — u(hg) = 0. (1.3.9)

The initial condition is simply ho(0) = ho due to the zeroth order term in f4,,(0).

The second step (n =1): Let us start with H; . Since H_; ¢ is its complex conjugate,
defining H; o defines it as well. We have that H,  verifies the following linear equation:

Hio+iHi, =0, (1.3.10)
from which one infers that

Ho(t) = c1o(t) (_12> . (1.3.11)

It is in fact the eigenvector e, of the associated linear operator (for more details, see
below)Op. Here ¢ o(t) € C*(R*;C) is a complex valued function verifying the following
complex scalar system of linear ordinary differential equations

2e4.¢h o(t) + Dlu(ho(t))ercio(t) = 0. (1.3.12)

The corresponding initial condition is determined by the initial data of (ha,)’, since

(Papp)'(0) = hy = ho(0) +i(H1,0(0) — H_10(0)) + O(n),
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from which one can establish that
Z.(HL()(O) — H_L()(O)) = —231'[1H170(O) = Bl — hg(O)

Owing to the particular structure of H;y we have

(i::éfé%) - _; (71 = 1(0)) (1.3.13)

As for the Hj; term, following a straightforward computation, it verifies the following
real valued linear ordinary differential equation:

H}y () — D (ho(t)) (Hoa (1) = — (o)™ (1) (1.3.14)
Let us look at the initial conditions. We have that

happ(0) = ho = ho(0) + 11(Ho,1(0) + Hy0(0) + H-10(0)) + O(*).
Therefore, from the O(yu) terms of ha,,(0) one obtains Hy1(0) as

Ho(0) = —Hi0(0) — H_10(0) = ~2%Re Hy0(0) = (R — hi(0)) . (1.3.15)

1.3.2.4 The induction step

Let us assume that we are at the n'® step (n > 2), that is, all H i ) terms are already
known for |j’|4+k" < n. We have to distinguish three characteristically different cases: terms
not involving 7, (j = 0), terms with the smallest period (|j| = 1), and the rest (|j] > 1). We
have that the |j| > 1 terms arise as a solution of a linear algebraic equation, determined by
terms of summed indices less than n. The |j| < 1 terms however are determined through
first order linear ordinary differential equations, whose initial conditions are dictated by
the initial conditions obtained from h 4,,, hence the order of determination (see also Figure
1.3).

For what follows, it is going to be necessary to determine the index set of the terms
involved in the higher order terms of the Taylor expansion of u. Therefore let us define

l
'/\[jT,Ll = { Z X N Z |Zm| n, Z Lom—1 = j, Vm € [l], |i2m,1’ + ’Z2m| > 1} .
m=1

Here we made use of the notation [I] :=={k e N : k <[}
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Determining the |j| > 1 terms: As mentioned before, we obtain the characterizing
equations for H;,_; by collecting all the terms with a factor u"~* and exp(ij/u). They
involve time derivative terms stemming from the two derivatives of h4,, as well as many
terms coming from the Taylor expansion of the nonlinearity u. Note that it is the O(u"™)
level equation that determines the terms of cumulative index n for the terms with a fast
time dependence.

More exactly, one has the followings. For j = n the only terms arising from the
equation (1.3.22) are the time derivatives of the exponential factors of H,, o, yielding

0= —iH, (t) — nH,o(t) = (Op —n1d)H,(t). (1.3.16)
Since n is not an eigenvalue of Op for n > 2, we have an invertible operator, resulting in

H,o=0. (1.3.17)

For 1 < j < n (n > 3) the equation incorporates the aforementioned operator but
with a source term, namely we have that for O(u") for the exp(ij/u) terms

J(Op —jId)Hjpj(t) = Rjn—j, (1.3.18)
where
Ry 1 =(Hy, )" (t) = 2(n — 1)iH,,_, o(t) — D" (ho(t))(Hp-1,0(t))",
Ry =(H},_ - () = 2jiH, 5 (t) — HY, oy o (t) — D (ho(t)) (Hjm—j—1(t))*

_Z:E:Dlho Uﬁwmf%mm”wm%mﬁﬁl

1216./\/'" !
2=V

which is a linear algebraic equation, the right hand side is already determined, since it
only depends on terms of index less than n. Therefore the functions H;,_; are given by
3 (Op =5 1d) ' Rjpj.

Determining the j = 1 term: Let us suppose that we are at an induction step n (with
n > 1). The idea is the same as before, we determine H; ,,—; by regrouping the terms with
factors ™! and exp(i/p).

Once again we will find ourselves with the operator (Op —Id) but contrary to the
previous part, 1 is an eigenvalue, so we have to change our reasoning, we can no longer
invert the operator.

We have that the corresponding characterizing equation is

(Op — Id)HLn,1<t) = lefl, (1319)
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where Ry ,,—1 is defined by

Ruy =(H o) (t) — 20H} o(t) — D (ho(t)) (Hio(t))"
Rus =(H, )" (8) = 20} ,_y(t) = HY,_3(t) — D' (ho(t)) (Hyms(8))*

B ni Z Dlu<h0(t)) (Hilﬂ'z (t)> His,izx (t)v te HiElfl»iZZ (t))L )

=2 ey

separating the cases n = 2, and n > 2. From this one can only determine part of H;,_;.
Decomposing C? into the eigenspaces associated with e_ and e, one writes

Hl,n—l(t) = Cl7n_1(t)€+ -+ 61771_1(15)6_. (1320)

Equation (1.3.19) defines the coefficient ¢, ,_1(t) associated with the other eigenvector of
Op (e-). In order to determine ¢ ,,_;(t) one has to remark that (1.3.19) is not necessarily
solvable. Indeed, a Fredholm-type criterion has to be satisfied in order to guarantee the
existence of a solution of the linear equation. This criterion is nothing else than R; ,,_; =
P, Ry ,_1, that is the source term is in the eigenspace of the eigenvector e,. Hence we are
left with a recursive condition concerning the solvability, which in turn provides for the
necessary differential equation to define ¢y ,,—1 ().

By induction, ¢ ,—o(t) was defined such that P_R; ,,_; = 0 is verified, which guarantees
that we can solve (1.3.19) to obtain ¢ ,_1(t). Then, ¢1,,_1(t) is defined by the consecutive
solvability condition, P_R,;, = 0, which is a complex scalar system of linear ordinary
differential equations, having the form of

Gna(t)es + et (DD (holt)) (e4) = s (t)et

B zn: Z Dlu(h0<t>> (Hil,iz (t)v Hi37l'4 (t>7 s 7Hi21717i21 <t>)J_ )

=2 ;‘eN{fl

where the additional terms on the right hand side have already been determined.

The initial condition, just as before, is provided by the initial value of (ha,,)" for the
O(u"1') terms, that is

1
Jm Hl,n—l(o) =—

S Hi 2 (0) + Re Y, _o(0) = Im Hoo(0)

n—1

+> (9% Hj,y1(0) = Jm Hlv”*l(o))

=2

which defines ¢ ,,-1(0) due to the special structure of Hy 1.

The ODE for the j =0 term: Once again let us suppose that we are at the induction
step n (with n > 1). In order to determine Hy,, we collect the terms with a factor p™ and

Fluid-structure interaction 67



1.3. The zero-mass limit of the massive point-vortex system

Figure 1.3 — The order of determination for the functions

without any exponential terms, resulting in
Hy,,(t) = Du(ho) Hou(t) = —(Hg, )™ (1)

- i Z Dlu(ho(t)) (Hh,iz (t)7 Hig,i4 (t)7 R H’i2l—17i2l (t)> :

=2 3N,

Notice that the right hand side only involves terms that have already been determined.
Therefore this linear ordinary differential equation defines completely the term Hy,. As
for the initial condition, evaluating ha,, at 0 on the O(u") level gives

HO,n(O) = —Qiﬂ{e Hl,n—l(o)' (1321)

=1

With this all the terms have been defined for the induction step.

1.3.2.5 A summary on the approximation

The aim was to satisfy the massive point-vortex equation (1.3.2) up to order d in p of
the form

{Mmpp)"(t) = (g (1) = wlloagy (1)) + Op (), (1.3.22)

happ(0) = ho,  (happ)'(0) = hy.

Proposition 1.3.2. For any T > 0 the approzimative solution ha,, € C*(0,+00) is
bounded in Lipschitz-norm over [0,T], moreover for 6 > 0 and p < po sufficiently small,
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we have that hay,(t) € Ds for any t € (0,T;,,).

Proof: The C* regularity follows from the definition, since each term was defined by
a linear or an algebraic equation. For any 7" > 0, by the defining equations, each term
in h4p, has bounded derivatives on [0, 77, since the derivatives of u(hg) are bounded on
the respective interval. Thus the boundedness of the Lipschitz-norm is assured on any
compact interval.

As for the distance to the boundary, let us choose § such that

5 < ; min_ dist(ho(t), 92).

te(0,00)

Then, since H,, are bounded on any (0,7") with 7" > 0, we can choose p < p sufficiently
small such that for the remainder term

posup [>T Hop () + >0t (Hj,k(t)ewu + H_;,(t)e ”u) < 55.
4€(0,Tg) | =1 i=1k=0

1.3.2.6 Error estimate

The approximation constructed in the previous part satisfies the massive point-vortex
system (1.3.2) up to an error term of order d. Now, with an error term hgr, we write

h(t) = happ(t) + u* " hi(t). (1.3.23)

Notice that albeit the approximation was up to order d, we allow for errors in the p?!
scale.

By working on [0, 7}, 5] we are assured that the solution stays away from the boundary
of €2, as such no regularity issues arise from the nonlinearity u. Therefore, the u(h) term
is developed according to a first order Taylor expansion with an exact error term around
happ, as a real vector. In order to avoid regularity issues with u, it is necessary to work
on the compact subset Ds C € for a § chosen to be sufficiently small. Thus for h € Ds

u(h) = u(hapy) + ur.(h, hg), (1.3.24)

where 7, is the first order remainder term, a (2, 0) tensor over R? with coordinate functions

Tu(ha hR)z = Z Ti,,@(h)hlﬁﬁ
BEN?,
|Bl=1

1
rig(h) = /0 (1— 8) DPOu(hapy + shr) ds,
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for i € {1, 2}, where 8 € N? is a multi-index and D” is the corresponding partial derivative
operator.

Remark 1.3.1. For the Taylor expansion, we used an exact integral remainder term. It
is worth mentioning that we have the following uniform estimate:

7; 5(x)| < max max |D*Q;u(y)| for x € Dj
la|=[8| yeDs

By substituting into the massive point-vortex system (1.3.2) and regrouping the terms,
we obtain the equation characterizing the error term:

{( r)" (}(L( )’)J‘+Tu(h7hR>+NTAPP(t>7 (1.3.25)

hr(0) = (hz)'(0) = 0.

Here we introduced the error of the approximation as p%ra,,(t), quantifying the Ope (u?)
term of (1.3.22), namely

NdTAPP ZM Z Z Z e H,Dl hO )) (H7417742( ) His,izl(t)?'"7Hi2zf17i2z<t>)J_'

k=d j_,dQ = 21€Nk

Notice that the time derivative of r4,, is of order u¢=! due to the fast timescale depen-
dence, this is the reason why we had to approximate up to an order of u.

Now we turn our attention towards analyzing this system. One may observe that the
system (1.3.25) has the same structure as the original massive point-vortex system, only
with some additional terms. It is at this point that we will make use of the results of
Berkowitz and Gardner ([BG59]).

First, we can rewrite equation (1.3.25) as follows:

{N(hR)”<t> - E(tv hR; M) + ((hRy)J_(t)’ (1326)

r(0) =0, 1'(0)=0,

with
E(t7 hR7 M) = ru(h) hR) + HT App,

where, according to the definition of r,, it is an affine function of hg. Furthermore, we
can also deduce that E is continuous in time and is well defined on [0, T}, ].

To ascertain correctly the solvability of the system, let us first show the uniform
boundedness of the variable of the system (1.3.25).

Proposition 1.3.3. Let hg be a solution of the equation (1.5.25). Then we have that for
6>0

Vi€ [0, Ths); ha(t)=Or=(1), (hg)(t) = Or=(1), (1.3.27)
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meaning the solution and its derivative are uniformly bounded in p. Here T, s denotes
the mazimal time of existence for the solution inside the compact subset of 2 which of
distance at least 0 away from its boundary OS).

Proof: Making use of the formulation introduced in (1.3.26), we can write it as a system

(hr) = vg, (1.3.25)
1 1 3.
(vr) = —E(t, hg; p) + —(vr)™.
I I
By introducing the so called drift velocity
V = V(t,hg) = (E(tmi )" (1.3.29)

with a shift in the velocity variable: w := vg — V' we can rewrite system (1.3.28):

(hR), =w + V,
W — le v (1.3.30)
1

Remark 1.3.2. The notation E and the term called drift velocity are not a coincidence.
They indicate the connection between system (1.3.26) and the equation describing the
movement of a particle in an electromagnetic field, treated in [BG59]. In fact, if we looked
at our system as a 3-dimensional system having 0s as the third coordinates, the - operator
could be interpreted as a vectorial product with the vector B = (0,0,1)". In this sense,
the drift velocity introduced before is just

Ex B
V= )
| BJ?

We remark that in our system, we have E - B = 0 which simplifies the case of Berkowitz
and Gardner.

Making use of some simple computations, one may see that

(jt(v(t, hi(t))) =0V + (V +w) - V)V

Thus, multiplying the second equation of (1.3.30) by w, we get

——(|lw) = —w- 0V —w- (V+w)-V,)V. (1.3.31)

Furthermore, by multiplying the first equation of (1.3.30) by hg, and adding it to the
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previous one, we obtain

1d
2dt

1d
(|hgr|*) + §£(’w’2) =w-hg+V -hg—w-0V —w-((V+w) V,,)V. (1.3.32)
The right hand side is a quadratic polynomial in (hg,w) with coefficients polynomial in
i, bounded in time over ¢t € [0,7), 5] and in spatial variables. This means that for some
constant ag, a;, ay independent of hg, t, and p one may write

a
dt

d

(1hal*) + = ([wf*) < arlhrl* + azlwl* + ao, (1.3.33)

so by Gronwall’s inequality

Qo

[hg]® + Jwl? () < e (|hg|*(0) + [w]*(0) + (emlanadlt — 1), (1.3.34)

max(ay, az)

implying a uniform bound on w and on hg for any t € [0,7), 5].

So, by definition, vg is also uniformly bounded over [0,7),;] (since V is bounded
independently of p). O

With this at our disposal, we are assured that system (1.3.25) admits a unique solution
over [0,7), 5], since a local solution is given, once again, by the Cauchy-Lipschitz theorem,
and the boundedness of hg and (hg)" implies that this local solution extends to the whole
interval at hand.

1.3.3 The proof of the convergence results

Now we proceed with the proof of Corollary 1.3.2. Let us assume the compatibility
condition

Let us examine the term H; ¢ of the approximation (1.3.5) involved in the fast timescale
development. We have that H; o(t) = ¢;,0(t)es, moreover the coefficient ¢y ¢ is defined by a
linear ordinary differential equation (1.3.12) without a source term, whose initial condition
is given by (1.3.13). By our assumption, this quantity is zero, therefore ¢; o = 0.

This means that H; ¢ = 0, the fast time scale compensation disappears at first order,
guaranteeing a convergence in W5,

We cannot say more about convergence due to the influence of the slow time quantities
on the fast time scale for the higher order terms. This can be easily seen from the defining
equation of Hp; (1.3.14). It is also a linear ordinary differential equation, but with a
source term —(hy) which is not constant zero. Even though the initial condition given
by (1.3.15) is also 0 due to the assumption on the compatibility condition, the solution of
the system, Hy; is not constantly zero.
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Moreover, for the n = 2 terms, we have that Hsy = 0, and that H is not zero for
the same reason as Hy ;. Finally, H; ; is not guaranteed to be zero either. This is deduced
from the corresponding initial condition

1
T .1 (0) = 5 Hy 1 (0) + Re H o 0)

that is not 0 due to the first term.

These imply that from n > 2 the source terms R;,_; contain nonzero terms as well,
which prevent us from establishing convergence results incorporating higher order deriva-
tives.

1.3.4 The proof of the quasi-periodicity

In order to prove Proposition 1.3.1. and Corollary 1.3.3. we turn our attention towards
the right hand side of the equation (1.3.2). The quantity we would like to examine is

g(t) := N'(t) — u(h(t)).

Let us prove first of all Corollary 1.3.3. Owing to Theorem 1.3.2, and in particular to
the approximation defined in (1.3.5), one has that

(Rapp)(£) = By(t) + i (Hyo(t)e's — Ho10(t)e”') + Opee (1),
as well as
u(hap(t)) = ulho(t)) + Ope(p).

This means that we have
g(t) = i(Hyo(t)e's — H_1o(t)e”') + uHpg, (1.3.35)

with Hp bounded over [0,7] for every T > 0. Here we made use of the point-vortex
equation (1.3.9). It is clear that the first term is dominant, since by choosing yu sufficiently
small the remainder term can be chosen arbitrarily small.

Following a straightforward computation, one has that

. it —ty ~ it Re Cl,O(t)
i(Hyo(t)e's — H_1p(t)e "») = —2TJm (HLO(t)@ u) = _QR%*ﬁ <jm610(t) . (1.3.36)

with Rx_: being the rotational matrix by the angle (m/2 —1t/p).
n

From the assumption of the non-compatibility condition h; # u(hg), one can deduce
by (1.3.13) that the initial condition ¢ ¢(0) is not 0, implying that ¢ o(t), a solution of
a homogeneous linear ODE, is never 0. Therefore the aforementioned quantity (1.3.36),
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being a rotation of this vector, will never be zero either. This concludes the proof of this
corollary. O

By the approximative solution (1.3.5), we have that for § > 0 sufficiently small, for
t € 10,7,

g(t)] =[i( Hyo(t)e™s — Hoyo(t)e™™) + puHj  (t)

b

+ p(Hg()e' + H. o (t)e™') + pi(Hia(t)e's — Hopa(t)e™'»)
— D1U((h0)(t>> (H()’l(t) + Hl’o(t)ei; + H,L()(t)e_i;) + MR(t)‘
where R is regular and uniformly bounded in Lipschitz norm on [0, 7}, 5]. We made use of
equation (1.3.9) to eliminate the other O(1) terms with respect to p.

Remark 1.3.3. Ouwing to the uniform boundedness of R on [0,T),s] as well as the global
regularity of hy, Ho1, and Hyyo, we have that for sufficiently small v the value |N(t)| is
almost constant, equaling approrimatively to

‘HI,O (t)eiﬁ — H_Lo(t)e_iﬁ

)

as it was established in Corollary 1.5.5.

We aim to prove a statement concerning the monotonicity of |g(t)|. For that, let us
calculate the derivative. We have that

d 1 ,
%lg(tﬂ = mg(t) -g'(t)
— |g(1t)| (—; (Hl,()(t)eiﬁ — H_l’o(t)e_ii) . (H1,0<t)6ii -+ H—l,o(t)e_ii) +R(t>>

where R is bounded on [0, 7}, 5]. Hence

d |Hio(t)?2 . 2t

—|g(t)| = ————sin — + Or=(1).

dt g » n
The first term is dominant for small values of i, moreover, since its first factor is always
positive, the sign is determined entirely by the sine function, which is ur periodic. Hence,
by choosing A sufficiently small and 7,, and J,, subintervals of each period of length pm,
we can conclude. O
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1.4 Multiple-scale analysis of the angular equation

Now we turn our attention towards the second part of the asymptotic analysis, that is
the study of the equation characterizing the angle (equation (1.1.1b)). Here our analysis
concerns the parameter ¢ tending to 0.

1.4.1 An adapted scaling for the angular equation

One of the first issues is to determine a good scaling for the variables with respect to
€. Just as before, remark the presence of the smallness parameter in the term involving
the second derivative, that is, we have £(¢)".

Let us suppose that h(t) is already given (determined by equation (1.1.1a)) and let us
look at the equation of the angle (1.1.1b). We get that

e(0)"(t) = Roy§& - (W'(t) — u(h(t))),

where ((h)'(t) —u(h(t))) is now a given function of time and Ry)¢ is a periodic function
of ¥ since it is a linear combination of sine and cosine functions. If we set O(t) = 9(c'/?t),
we get

d2

—50(7) = Ren§ - (W (Ver) — u(h(ver))) (1.4.1)

dr?

by defining the fast time variable as 7 = e~ /?t. The presence of two different timescales,
the fast time 7 and the slow time ¢, in the equations foreshadows nontrivial (asymptotic)
dynamical properties.

Nevertheless, this means that a reasonable scale for the angle, motivated by equation
(1.1.1b) is y/e.

Let us elaborate the influence of the point-vortex system on the angular system. Re-
calling that g(t) = h'(t) — u(h(t)), we reformulate equation (1.1.1b). We have that

oot -900 = (60 L mete) ()

= (£191(1) + €292(1)) cos O(7) + (£192(t) — £201(1)) sin O(7)

=& g(t)sinO(1) + € - g(t) cos O(7)

= [¢llg(®)]sin(O(7) + a(t)),
where a(t) is the oriented angle of the constant £1 vector and ¢(t), a continuous function
from R* to R with «(0) € (—m, 7).

The right hand side of (1.1.1b) becomes constant 0 if either £ = 0 or g(t) = 0. The
first case can be excluded since £ is a geometric constant of the solid, we suppose that it
is not 0 (in order to observe nontrivial geometric effects). The second case is excluded by
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Corollary 1.3.3. based on our hypothesis concerning the non-compatibility condition.

Remark 1.4.1. The function g(t) is well-defined for t € [0,1,5]. Owing to Corollary
1.3.1. the time T}, 5 can be chosen arbitrarily large by setting p and 0 sufficiently small.
Let us take an arbitrary T > 0 such that T' < T, 5 for sufficiently small . and 0.

1.4.2 The modulated phase shift

An important observation concerning the angular equation (1.1.1b) is that physically
speaking it falls into the type of equations which may experience modulated oscillations,
which means that the right hand side gives a (nearly) periodic structure over a time
interval comparable to a few cycles (in 7), however after sufficiently long time, the local
parameters with respect to the amplitude, frequency and even the shape can experience
significant changes ([Neul5]). This is even more apparent if one looks at equation (1.4.1)
where both the slow time variable ¢ and the fast time variable 7 are present in the
equations.

Systems with these type of strongly nonlinear slowly varying oscillators have already
been analyzed ([Kuz59], [Luk66]), we adapt one of the more recent techniques, detailed
in [BH88] and aptly called the modulated phase shift.

The aim is to introduce a phase shift alongside with the scaling /¢ in order to avoid
secular terms in the development. The equation concerning the angle (1.4.1), writes as

2
ddTQQ(T) — R@(T)f . g(t) =0, (1.4.2)
or equivalently
2
ddTQQ(T) — [€llg(t)|sin(O(7) + (t)) = 0. (1.4.3)

Here 7 is the fast time variable and ¢ = /27 is the slow time variable. This is a second
order nonlinear ODE, whose second term can be interpreted as a nonlinear term coming
from the potential V(O,t), where

V(O.1) = Rz.e& - g(t) = [€]|g(t)] cos(O + a(t)),
since with this choice, we have that

8@1/(8,15) = —R@é’ . g(t).

Notice that for a fixed ¢ equation (1.4.1) admits a periodic solution for @. The reasoning
for this is as follows: presented in the form of (1.4.3) it is a pendulum type system (for
more details, see also Section 1.5). More precisely, Theorem 1 of [KO85] applies due to
the fact that g(t) is bounded (by Corollary 1.3.3), V(©,t) is bounded and periodic in ©.
More precisely, we have that ([BPVMT06]):
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Lemma 1.4.1. For anyt € R, 0y € (—, ) there exists a family (O(r, t)rer of periodic
solutions to the problem

f20%.6 + 06V (0,1) =0, (1.4.4)
o 4.

0(0,t) =¥y, 0.0(0,t
Moreover the unique solution © depends on f in a continuously differentiable manner-

The energy associated with (1.4.4) for any t € R is

Bt) - ; P(0,0)2 +V(6,1). (1.4.5)

It is obtained by multiplying (1.4.4) with 9.0 and integrating with respect to 7. From
this one can deduce the extrema of O(7;t), that are independent of the value of f. For
an extremum @, we have that

E(t) = V(0,1) = [¢]lg(t)| cos( + a(1)),

that admits two solutions on the interval (—m, 7r] which correspond to the minimum (©,,;,,)
and the maximum values (6,,4.), defined by

i = arccos E(t> —
el e R (140

It is clear to see that O mar = @min,max(E (t),t) depends on t and FE (t) continuously.

Also, in order to make sense of formula (1.4.6), one needs to consider the domain of
definition of arccos being [—1, 1], which imposes an upper and lower bound for the energy
functional in the case when a periodic solution exists:

[E(t)] < [€llg(®)]. (1.4.7)
By the formal construction of [BH88], the main result of this section is the following

theorem:

Theorem 1.4.1. There exist ¢ € C°(RT), § € C®(R™), as well as ©° € C((—n, 7] x
RT), O € C>®°((—n,n] x RY) periodic with respect to their first variable, such that for
7€0,T]

Oa(r) = ( WD 4 o(er), o2 r>+\f@1< W 4 oo, var ) (1.45)

Fluid-structure interaction 77



1.4. Multiple-scale analysis of the angular equation

that satisfies

{azTeA(T) = Ro,(n& - g(t) + Or=(e), (1.4.9)

0.4(0) = g + Op<(c), 0,04(0) = O ().

1.4.3 Proof of the asymptotic development

As mentioned before, we follow the ideas presented in [BH88|, but in a more structured
manner. Also, some of the computations were adapted to fit our system. The structure of
the proof is as follows:

1. Definition of the energy: We define the energy associated with the nonlinear oscilla-
tor equation (1.4.4) and establish the bounds of a corresponding periodic solution.

2. Definition of the functions: We define # and ¢ that provide the shifted fast time
scale, as well as @° and ©' the two terms of the development.

3. Reformulation of the system: With the help of the approximation @4 defined in
(1.4.8) we reformulate equation (1.4.2) and separate the terms with different orders
of magnitude in +/z;

4. The zeroth order expansion: We verify the characterizing equation for ©°, and by
analyzing this system we deduce the formulas for the frequency and the fast variable
v;

5. The action of the system: In order to treat the higher order equations, we deduce
a Fredholm-alternative type argument to provide us with non-secularity conditions.
By defining the action of the system, we deduce the defining formula for the energy;

6. The higher order terms: By examining the equations that are verified by the higher
order terms, we deduce the formula for ©!;

7. Initial conditions: We remark how certain initial conditions are computed in order
to close all the systems.

Definition of the energy: By setting E(0) = V(1y,0) = [£]|g(0)| cos(Ig + a(0)), the
following formula implicitly defines an energy function F(t) associated with the general
problem:

Ormaz(E(1),1) 1/ Ormaz(E(0),0) /2
/ (B(t) — V(9,)"? d9 — / (B(0) — V(9,0)"? d9 = 0. (1.4.10)
Omin (E(t) vt) Omin (E(O)’O)

Since the potential V' is essentially a cosine function, these integrals are elliptic integrals
of the second kind (up to a change of variables). Therefore, from (1.4.10) we have that

F(E().1,90) = 0,

for a well-defined functional F with continuous partial derivatives, E(t) can be recovered
(locally in time t) by the implicit function theorem. This is due to the fact that the

78 Krisztian Benyo



1. Multiple-scale analysis of the dynamics of a point particle in a two dimensional
perfect incompressible and irrotational flow

derivative of F with respect to E is, by the chain rule:
d 1 [Omas(B):1) i
F=5 E(t) — V(9,1) "2 av,
dE 2 JOmin(E(t) ) (E() (9,2))

a complete elliptic integral of the first kind with modulus based on E(t)/(|¢]|g(t)|), which
is strictly positive. Notice that the energy must verify at all times ¢ the inequality

[E@)] < [€llg(2)] (1.4.11)

in order for the elliptic integrals to stay real, which imposes the locality condition, since
for the initial ¢ = 0 it is verified.

Definition of the functions: Given the well-defined energy function E(t), we define
first of all 0 as

" Omaz (E(t),t) -
o) = | (1 / = 1/2> ar. (14.12)
0 \ T JoninEw)t) (2[E(t) —V(9,1)])

This involves an elliptic integral of the first kind (up to a change of variables), hence the
formula (and consequently #) depends on E in a continuously differentiable manner. This
implies that in particular, the quantity dgf is well-defined.

Then ©°(-, t) is defined as the unique solution to the system (1.4.4) with f = f(E,t) =
0'(t) which is given by Lemma 1.4.1. From now on let us fix this f(F,t) frequency. Con-
tinuing the previous argument, one has that ©° also depends on E in a continuously
differentiable manner.

We define ¢(0) = 0, then ¢ is defined as

o) = [ EDEOL o) ["avew0.0m. a1

Finally, ©! is given by

o' = C1(t)0,0° + @%@0 + 6]

5 F L (1.4.14)

with

1
o —_ -
Podd f
+ ;a¢@0 /0 Y (00,00 + 2(0) 9u0°) (F056° + O f160,0°) i,

(fOR6° + O f10,0°) /0 ¢((9)"a¢@° +2(0)'0,,60°)9,0° dip
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and C(t) defined later.

Reformulation of the system: In order to analyze our strongly nonlinear, slowly
varying oscillator equation (1.4.1), we make use of the method of multiple scales by using
the fast time scale 1) and the slow time scale ¢ such that

_0(t) _
b = E Folt), t=+er (1.4.15)

Here the scaling 6 and the shift ¢ are defined by (1.4.12) and (1.4.13) . With these scales,
we have that

0-04(r) = (0'() + Ve (1)) 0,0 + VEDOL.

thus substituting ©,4 into equation (1.4.2) that we aim to satisfy up to order O (), we
get

(0 + VEY)20upOu + VE [(07 + V26" ) 0O + 20 + V2000 1]

(1.4.16)
+ 5att@A + 89V<@A, t) =0.

Remark 1.4.2. Multiplying equation (1.4.16) by 0,64 and integrating with respect to 1,
for solutions ©%5 2m-periodic in ¢, we may deduce the following, action related identity

d | , 27 9 2
y {(9 +VEd) [ (004) dw} #VE [ 00040,0.40 =0 (1.4.17)

Defining the perturbation expansion (1.4.8) as

Oa(v,t) = O°(¥,t) + VO (1) + Op=(e),

and plugging it into equation (1.4.16) leads to the nonlinear oscillator equation for the
O(1) part
(0/(1))204,0° + 00V (6°,1) = 0, (1.4.18)

and its higher order perturbations for O (51/ 2)
L(©®Y) = Ry, (1.4.19)

where L = (0')20yy+ 000V (0, t) is the linearization of the nonlinear operator in (1.4.18),
and R; is the remainder term such that

Ry = —20'¢/0,,0° — 0"9,0° — 20'9,,6°,

Here we made use of the asymptotic development

8@V(@A,t> = 89V(@0,t) + \/5916@@‘/(@0,15) + OLoo (6)
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In what follows, we will essentially search for the necessary and sufficient conditions
for the existence of solutions periodic in ¢ for the oscillation equation and its higher
order perturbation, since periodic solutions are admitted by the nonlinear potential V.
Furthermore, the periodicity condition guarantees their boundedness as well.

The zeroth order expansion: We start our analysis of the O(1) equation by multiply-
ing (1.4.18) by 9,60°. By integrating with respect to ¢ (for any ¢) we obtain the following
energy equation

;(9’(t))2(8¢80)2 L V(60 4) = E(b), (1.4.20)

with the energy E(t) slowly varying over time, given by (1.4.10). Since the potential V'
is periodic in its first variable, this equation defines closed curves on the phase plane
(0°,9,0°) for a fixed t. This means that ©° is periodic in ¢ and oscillates between some
well-defined 6,,;, and O,,,, values, satisfying V(Onin,t) = V(Opnaz,t) = E(t), as they
were defined for (1.4.10).

We have that ©° is an even function of 1, thus ¢» = 0 corresponds to ©°(0,t) =
Omin(E(t),t) and 9,0°(0,t) = 0.

By quadrature method on (1.4.20), we obtain that

6°(1,1) v
=¢ 4.
v=00 /emm(E@),t) Q2IE{t) — V (0, )Y (14.21)

so that the period of the fast variable is

Ymaz (E(t,t)
P(E,t) = 20/(1) / dv (1.4.22)

Dmin (E(L),t) (Q[E(t) _ V(ﬁ, t)])l/Q

By deriving the periodicity condition ©°(¢,t) = 0%t + P,t) with respect to time or
energy, it can be shown that the period is actually independent of the time (or else ©°
would blow up) and that 0gP is non zero for almost all ¢ in our case.

Furthermore we can normalize the period to any constant of time27, which leads us
to the frequency formula

o [ 1 [Omas(BOD) 49 1
f(Et)=0'(t) = {W /@mm(E(t),t) (2[E(t) — V(ﬁ,t)])l/z} ) (1.4.23)

that justifies our definition of . The initial condition is #(0) = 0.

The action of the system: Let us examine the linearized operator L.

Lemma 1.4.2. The differential operator L = (6')?0py + DoV (6°,t) admits the homoge-

Fluid-structure interaction 81



1.4. Multiple-scale analysis of the angular equation

neous solutions

8¢@0, and 6, = f@E@O + 8Ef¢8¢@0

Proof: Take the derivative with respect to ¢ in (1.4.18). It yield exactly L(9,60°) = 0,
thus 9,60° is an odd, periodic, homogeneous solution.

Take the derivative with respect to F in (1.4.18) we get that L(9p0°) = —2f0p f 0y 6°.
However by direct substitution we get that L(1/0,60°) = 2f20,,,60". This provides us with
O = fORO° + Ipf1d,60°, an even, non-periodic homogeneous solution. Its aperiodicity
is due to the fact that dg P # 0. O

A consequence of this lemma is that 9,60 is the only periodic homogeneous solution,
thus by the Fredholm alternative theorem, the remainder terms must be orthogonal to
this solution in the fast time space to assure the existence of periodic-in-1) solutions for
the non-homogeneous problem. This provides us with the condition

1
/ 0,6°R, dip = 0, (1.4.24)
0

an equivalent to the fact that we eliminate secular terms to assure the boundedness of
the approximation.

In particular, we get that

d 1
@ E,t/ 0,62 d ):o,
5 (r@n [o002av
by using parity argument. This is nothing else than the time derivative of the action of
the system, thus the action is conserved. By a simple change of variables this gives us
exactly the formula for the energy function

Omasz 1/2
2/@mm QE®) — V(6,))2 d6 = cx. (1.4.25)

Thus, up to an integration constant cg, and with the knowledge of the initial energy, the
energy constant F(t) was fully defined from this formula. We remark that this equation
is nothing else than the leading order expansion of (1.4.17).

The higher order terms: Due to Lemma 1.4.2. we already know the homogeneous
solutions of the operator L, so it is enough to find a particular solution for the perturbation
equation. Separating the terms in Ry with respect to parity in ¢ hints that

@1 _ ((b)/ 8 @0 @1
P _Tw WO+ O,
is a good candidate. Here the periodic odd part of the particular solution may be obtained

by variation of parameters.
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The general periodic solution ©! is a linear combination of the two homogeneous
solutions and the particular solution. Due to the presence of the coefficient v in the
homogeneous solution 6, we have a restriction in terms of the coefficients of the linear
combination (to assure the boundedness). Thus, we obtain a simplified expression

o' = C1(t)0,6° + @GEQO + 6,

5 F ! (1.4.26)

where C(t) can be determined from the action equation (1.4.17) in Op(1/2).

Closing arguments: The differential equation determining the phase shift ¢ arises
from the O(y/¢) analysis of the general action equation (1.4.17). So we deduce

(faEf)(Ea t)
(f0rf)(E(0),0)

we only need to determine the initial conditions.

o'(t) = #'(0), (1.4.27)

To close up the system, we only need to determine the initial conditions E(0) and
#(0). This can be done using the initial conditions on ©Y; since

6°(6(0),0) = o

1.4.28
0(0)0,6°(6(0), 0) = 0 1429)
forms a closed system for the only remaining parameters, £(0) and ¢(0).
The missing initial condition for ¢ is then given by
/ ! 6tv(@0(¢70)at)
#'(0) =0 E0,0~<;50/ i, 1.4.29
O

1.5 Erratic behavior for a particular set of initial data

In this section we examine the dynamical properties of the angular equation (1.1.1Db)
for small € parameter. More exactly, we study the equation

6" (7) = G(t)sin (O(7) + a(t)) (1.5.1)

that, for t = \/e7, is a slowly shifted, parametrically excited pendulum equation. Here, G
is continuously differentiable function on (0, c0), bounded away from 0 for all time, and
almost periodic in the sense of Proposition 1.3.1, and « is a continuously differentiable
function. From here on throughout this section, prime will denote the derivative with
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1.5. Erratic behavior for a particular set of initial data

respect to the fast time scale variable 7 as opposed to before. The initial conditions are
taken as ©(0) =y € (—m, 7], ©'(0) = v, € R.

Remark 1.5.1. By setting G(t) = [€||g(t)| and a(t) the signed angle between &+ and
g(t), one finds ezactly (1.4.1). By assuming hy # u(hg), Corollary 1.5.5. and Proposition
1.3.1, we obtain that we verify the aforementioned boundedness and periodicity condition
for G(t). The existence of g(t) is assured for a time t € [0,7),5]. However, by choosing
poand 6 sufficiently small, Corollary 1.5.1. guarantees that T, s is as large as we want,
indicating that for sufficiently small parameters we indeed obtain dynamical information
on the original (1.1.1b) system as well.

1.5.1 Sensitivity to the initial data

Equation (1.5.1) is not an autonomous system in this form due to the two different
timescales present in the equations. However, rewriting it as a three dimensional system,
one can consider it as an autonomous one:

O =,
v = G(t)sin(6 + «a(t)), (1.5.2)
t'= /e

With this one finds the classical structure of a 3 dimensional autonomous system

x' = f.(x), (1.5.3)

with x = (6,v,1)" and f. = (f1, fo, 3)(O, v, 1) = (v, G(t) sin(O + a(t)), V).
For a dynamical study, one is led to examine invariant structures:

Definition 1.5.1. Consider the differential equation ' = f(x) x € R™, with an associated
flow z(t) = ¢(xg) being the solution of the differential equation for x(0) = xy. A set
S C R"™ is called an invariant set for the differential equation if, for each xo € S the
solution t — ¢(x0), defined for its mazximal time of existence, has its image in S (the
orbit passing through each xo € S lies in S). In addition, S is called an invariant manifold
if it is an invariant set and a manifold.

It is for the dynamical system (1.5.3) that we can state sensitivity to the initial data.
For this, let us first of all define the source of the erratic behavior.

Definition 1.5.2. Let X denote the Cantor set of all bi-infinite sequences of two symbols:
%= {(s0)iez; 8i € {0,1}Vi € Z},

with the natural product topology. It is a compact metric space with no isolated points. Let
oYX — X be the shift map defined for s = (s;)icz as 0(s); = Siy1. This map is invertible
and uniformly continuous in the given topology.
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Definition 1.5.3. The generalised Poincaré map P., associated with the flow of f. is the
application mapping R? to R?, with

P (6,v)(0) — (6,v) (\5&) .

Remark 1.5.2. Since the function G is almost um periodic in the sense of Proposition
1.53.1, this indeed defines a generalized Poincaré map between the t = 0 and t = um level
sets.

Then, the main results of this section can be summarized in what follows:

Conjecture 1.5.1. There exists eg sufficiently small such that for every e € (0, ), there
exists a non-horizontal line N in R3, invariant under the action of f-, around which there
exists an invariant set A, such that A, is topologically conjugate to X x N, A, is a Cantor
set of non-horizontal lines.

Moreover, there exist n. € N such that the iterate of the generalised Poincaré map
restricted to Ae, P.(fe|a.)" is topologically conjugate to the Bernoulli shift o over two
symbols.

The reason why this is only a conjecture will be elaborated at the end of the series
of proofs given in the next sections. The missing step in its demonstration is at the very
end, in order to conclude the behaviour of the trajectories from what we can establish on
the local stable and unstable manifolds.

This implies a sensitivity to initial conditions around the invariant line N., which is
a necessary condition of deterministic chaos (albeit not a sufficient one). A particular
consequence of the theorem is that there are uncountably many erratic solutions of this
system, due to the symbolic dynamical property around the invariant set. These solutions
have initial conditions ¥ close to m — a(0) and ¥y close to 0, which means that they
are initially around the invariant line A.. Most notably one observes infinitely many
unstable periodic solutions of arbitrary high period, uncountably many unstable non-
periodic solutions as well as solutions whose trajectory is dense in A, meaning that it
approaches any element of A, arbitrarily closely ([Wig88h]).

This however does not necessarily imply that the system is chaotic in a dynamical
sense ([HM93]), since we have no information on whether the map f. is topologically
mixing or whether there exists any dense periodic orbits.

Definition 1.5.4. For a topological space X, the continuous map f : X — X is said to
be topologically mixing (or topologically transitive) if, for every pair of non-empty open
sets A, B C X, there exists an n € N such that f"(A) N B # 0.

We remark that G being only almost periodic requires a dynamical toolset that has
only recently been developed ([CW15],[CWO05]). For a periodic perturbation function G(t),
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1.5. Erratic behavior for a particular set of initial data

to some extent the original results of Melnikov ([Mel63]) apply as well (see also [Wig88b]).
Other, more exact methods have also been developed (see for example the shooting tech-
nique of Hastings and McLeod [HM93] and references therein), they are based on direct
computations with the associated energy functional of the system. However the presence
of a time-dependent shift o in our system complicates these types of reasoning.

The rest of this section is dedicated to the demonstration of the main steps of the
previous conjecture. The structure of the proof is as follows:

1. Analysis of the unperturbed system: In the next section we establish the basics
of the dynamics of this system and we reason why these equations require non-
classical tools to handle. Then we analyze the system corresponding to ¢ = 0 (the
unperturbed system).

2. Persistence for small parameters: We proceed with establishing some funda-
mental results on the dynamical structure of system (1.5.2). Most notably we show
the existence of a line invariant under the action of f., and an associated stable and
unstable manifold.

3. The generalized Smale-Birkhoff theorem: We state a classical result and its
more recent generalizations in Section 1.5.4. By regrouping the previously obtained
results we are then led to verify a single condition concerning the intersection of the
stable and unstable manifolds.

4. Intersection of the stable and unstable manifold: In Section 1.5.5 we show
that these manifolds intersect transversally, which is the condition with which one
would apply a generalized Smale—Birkhoff theorem. For this we present the essen-
tials of the theory introduced by Melnikov ([Mel63] in order to analyze tangential
intersections of homoclinic trajectories and to show what it implies for the overall
dynamics.

1.5.2 The perturbed and unperturbed system

A huge drawback of the formulation as a 3-dimensional first order system (1.5.4) is
that the associated map f. is not hyperbolic. This degeneracy is due to the fact that the
Jacobian matrix of f.,

0 1 0
Jac(f.) = [ G(¢) cos(O@ + a(t)) 8 G'(t)sin(@ + a(t)) + g(t) cos(@ + a(t))a/(t)

always has at least one 0 eigenvalue (associated with the artificial direction of ¢). This in
turn prevents one to perform a classical dynamical analysis, since essential notions like
hyperbolicity are by definition not verified.

In order to overcome this obstacle, one is led to consider the unperturbed system. This
means that we consider the case e = 0, or equivalently, the original system (1.5.1) for a
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fixed t. This yields the following

O =,
v = G(t)sin(O + alt)), (1.5.4)
t' =0,

now t is a constant, a parameter of the two dimensional system defined by the first two
equations.

In particular, normally hyperbolic invariant manifolds will play an essential part of
the analysis (see for example [HPS77]).

Definition 1.5.5. Let M be a smooth manifold, X a C" (r > 1) vector field on M, f,
the associated flow and D f, the differential of f;. An fi-invariant sub-manifold V' of M is
said to be a normally hyperbolic invariant manifold if the restriction to V' of the tangent
bundle of M (Ty M) splits into three continuous D f-invariant sub-bundles

TvM =TV & E* & B,

with TV being the tangent bundle of V', E® and E* the stable and unstable linear bundles,
respectively, meaning that the restriction of D f, to E® is a contraction, and the restriction
of Df; to E" is an expansion.

Remark 1.5.3. This one-parameter family of planar systems has a Hamiltonian struc-
ture, as it was remarked in the previous section, with the Hamiltonian (energy functional)

2

B(O,v;t) = % + G(t) cos(O + aft)). (1.5.5)

The main idea is the following: analyzing the unperturbed system is rather simple
since it permits to work with explicit quantities. We establish a normally hyperbolic
invariant structure for this system. Then, with a persistence theory one can show that
this structure, and the desired properties are preserved for the perturbed system.

1.5.2.1 Hyperbolic saddle points

Let us make some remarks on the unperturbed system (1.5.4). For each parameter
value of ¢, the planar system is nothing else than a shifted pendulum equation, whose
dynamics are well known, the solutions and trajectories can be explicitly calculated.

Figure 1.4a depicts the phase portrait of the planar equation for a single period of
27 in the horizontal (©) direction, restricted to not too large angular velocities (v). We
remark that the natural phase space for the planar equation is the cylinder (—m, 7| x R.

In the cylindrical phase portrait, there are two fixed points of the system, of which
one is always a center, the other one being a hyperbolic saddle point. The fixed points
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N
g

t=0

(a) A section of the periodic phase por-(b) The structure of the phase portrait of the unper-
trait of the classical pendulum equationturbed system

Figure 1.4 — The periodic phase portrait of the unperturbed system (1.5.4)

are given by
(0-(t),v-(t)) = (—a(t),0) (1.5.6)

associated with saddle points, with eigenvalues of the corresponding planar Jacobian
(Jac((fi, f2)T))
£y G),

that, by our hypothesis on G(t), stay away from zero uniformly for every parameter value
of t. The fixed points (¥, (t),v4(t)) = (—a(t) + 7, 0) are centers.

1.5.2.2 Normally hyperbolic invariant lines

For each value of ¢, the points (¥4 (t), v+ (t)) form an invariant set of the corresponding
planar problem of the unperturbed system. By grouping together these points from each
level of ¢ we obtain a natural parametrization of the invariant set of the complete (3
dimensional) unperturbed problem (1.5.4). More precisely, for the set of saddle points

No = {0 iult), 0,0); t € R}, (15.7)
we have that

Lemma 1.5.1. The set of hyperbolic saddle points Ny forms a normally hyperbolic one-
dimensional invariant manifold.

Proof: By definition, it is invariant under the action of fy;. The normally hyperbolicity
is a straightforward consequence of the definition and the fact that at each level ¢ they

correspond to hyperbolic saddle points, with eigenvalues uniformly bounded away from
zero ([Wig88b]). See also [HPS77].
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The consequences of being a normally hyperbolic invariant manifold are summarized
for instance in Theorem 4.1. of [HPS77]. From this we would like to cite only what is
relevant to our current analysis:

Proposition 1.5.1. For the unperturbed system (1.5.4), there exists a locally fo-invariant
2 dimensional sub-manifold Wi .(Ny) (called the stable manifold of Ny) that consists of all
the points whose forward fy-orbits stay e-close to Ny. Respectively, there exists a locally
fo-invariant 2 dimensional sub-manifold W.(Ny) (called the unstable manifold of Ny)
that consists of all the points whose backward fy-orbits stay e-close to N.

1.5.3 Persistence of normally hyperbolic invariant manifolds

The remarkable property of normally hyperbolic structures is that they are relatively
stable with respect to regular perturbations. We have that

Proposition 1.5.2. There exists ey sufficiently small, such that for ¢ < gq¢ the perturbed
system (1.5.2) possesses a normally hyperbolic invariant manifold, which is topologically
a line

N :={(z;¢) =V_ 1i(0;2) + Op=(e), 2 € RT}. (1.5.8)

Moreover, N has local stable and unstable manifolds Wi .(NZ) and WE.(N:) that are
e-close to the local stable and unstable manifolds of N', W (No) and W} (NG).

Proof: This is an immediate consequence of the persistence theory for normally hyperbolic
invariant manifolds. See Theorem 3 of [Fen71] for the classical persistence theory, Theorem
4.1. of [HPS77] for the general result on compact manifolds, and Proposition 3.3 [Rob83]
for the relaxation to unbounded invariant sets.

1.5.4 The Smale horseshoe map

Transverse homoclinic orbits, or in a more general sense transverse homoclinic invari-
ant manifolds indicate a complexity in the dynamics of the system. A well-known result
of Smale ([Sma65]) states the following

Theorem 1.5.1. Let P : R" — R"™ be a C" (r > 1) diffeomorphism having a hyperbolic
fized point p whose stable and unstable manifolds intersect transversely in q # p. Then,
in a neighborhood of q, there exist an invariant Cantor set of points, A, on which f is
topologically conjugate to the Bernoulli shift on a countable set of symbols.

With the notion of normally hyperbolic invariant manifolds ([HPS77]), this theorem
has been generalized for invariant tori (Theorem 4.2. of [Wig88b]), as well as for simpler
but unbounded structures (Theorem 2.3. of [Rob83], Theorem 5 of [MS86]).

The transverse intersection of the stable and unstable manifolds around N, are guar-
anteed by our a priori analysis on the Melnikov-function, therefore the second part of the
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conjecture would be consequence of the generalized Smale—Birkhoff homoclinic theorem
(By the main results of [CWO05], Theorem 2 of [CW15])

Conjecture 1.5.2. Let P : R® — R3 be a C" (r > 1) diffeomorphism having a 1-
dimensional normally hyperbolic invariant manifold, N, possessing 2-dimensional (locally
invariant) stable and unstable manifolds Wi .(N') and W (N). If Wi (N) and W (N)
intersect transversely, then there exists nN such that f™ contains an invariant Cantor set
of 1-dimensional manifolds on which it acts like a Bernoulli shift.

We remark that this invariant set A is often referred to as the Smale horseshoe map
([GH83]). By the persistence result of Proposition 1.5.2. we have already showed that
for f. there exists a normally hyperbolic invariant line N, whose stable and unstable
manifolds are well defined. In the final section we show that these manifolds intersect
transversely.

1.5.5 A Melnikov/Wiggins type theorem

In his article, Melnikov ([Mel63]) introduced a quantity to measure the relative orien-
tation of the local stable and unstable manifolds around a (normally) hyperbolic invariant
structure. He gave the general definition of this signed distance and provided an asymp-
totic development with respect to the smallness parameter ¢ in order to obtain computable
formulae. This gave rise to the so-called Melnikov-functional, a first order approximation
of the aforementioned quantity, that has been since re-adapted to many other scenarios
([Rob83], [MS86], [Wig88b] for example).

This allowed him to establish the dynamical properties of a large class of slowly varying
non-autonomous ODE systems. This theory was later extended to many other types of
systems, see for example Chapter 4 of [Wig88a].

The critical observation concerning our system is that homoclinic trajectories are often
the precursors of complex dynamics ([Poi90]). In particular, we remarked the presence of
the homoclinic trajectories in the unperturbed system (on a cylinder ((—m, x| x R)).
These are in fact a “fragile” particular state, one that breaks down into a special type of
bifurcation under perturbation, the so called homoclinic tangle ([GH83]), see also Figure
1.5.

1.5.5.1 The homoclinic trajectories

Let us remark that the unperturbed system (1.5.4) admits a pair of homoclinic orbits.
These solutions are explicit for each parameter value ¢, they are given by

O4(1) = £2sin" (tanh(G(t)7)) + 7 — a(t),

Vi(1) = +2G(t) sech(G(t)7), (1.5.9)
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Figure 1.5 — A section of the perturbed phase portrait

and connect the saddle point of the system at —a(t) by itself.

The corresponding unique pair of homoclinic trajectories on the plane R? will be
denoted by x4 o(7).

1.5.5.2 Geometry of the Melnikov function

First of all, the signed distance of the locally invariant manifolds W .(N.) and W, (N;)
is given by

Definition 1.5.6. For 0 < ¢ < 1, the separation of the manifolds W .(N) and W}.(Nz)
at level t is given by

1
d(t;e) = ————F1 (x4 0(0)) - (x“(t) —x5(1)), 1.5.10
(t;€) 0, o(0))] (x4.0(0)) - (x£(t) = x2(t)) (1.5.10)
where £ = (f1, f2), x5(t) (respectively x“(t)) is the first intersection point of WE_(N:)
(respectively W .(NZ)) with the line defined by £+(x10(0)).

We remark that the choice of the homoclinic trajectory does not influence this distance,
and that the intersection points x2(t) and x*(t) are well-defined (Theorems 4 and 5 of
[Mel63]).

By a Taylor expansion (Lemma 4.5.2 of [GH83]), one has that

NG n 0 0
d(t;e) = —Y— __f 0)) - [ =—x"(t)]cmo — —%(t)]oo | + Or(e),
( 75) ‘f(XJr,O(O))l (X+70( )) agxa( )‘ 0 88X8< )’ o] T0L (5)
where the first term of the asymptotic development defines the Melnikov-function M (¢):
M*(t) = f+(x;.0(0)) - gx“(tﬂefo - gxs(tﬂaf@ . (1.5.11)
’ Je ="/ 0e 7T
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This quantity, given the particular structure of our system (1.5.2), can be reformulated
into (Proposition 3.4 of [Rob83], Appendix A of [Wig88b])

M) = [ 7 (s o)) = ol o(r)ASi(x 1 0(r))) dr

—00

Therefore, using (1.5.9), the Melnikov-function (Section 5 of [Wig88b]) associated with
the perturbed system (1.5.2) is given by

M*(t) =— /O:O 27G(t)G' (t) sech(G(t)7) - sin(2sin ! (tanh(G(t)7))) d7

~ (1.5.12)
— / 27G(t)a/ (t) sech(G(t)T) - cos(2sin ! (tanh(G(t)7))) dr,
or, by calculating the integral, with a more explicit expression
G'(t)
M (t) = 1.5.13
(1) =15 (1513

This changes sign almost periodically in the sense of Proposition 1.3.1, since we have the
corresponding estimate on the nominator and the denominator stays bounded away from

0.
By the main theorem of Melnikov (see also Theorem 4.5.3. of [GH83])

Theorem 1.5.2. If M*(t) is almost periodic in the sense of Proposition 1.3.1, then for
sufficiently small e, W,.(N2) and W (NL) intersect transversely.

This concludes the demonstration of the main results of this section.
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Chapter 2

Wave-structure interaction for long wave
models in the presence of a freely moving
object on the bottom
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Version francaise abrégée

Version francaise abrégée

Le probleme des vagues consiste a décrire le mouvement des vagues d’un milieu fluide
non-visqueux, incompressible, irrotationel et a densité constante, soumises a la gravité.
Nous nous intéressons a I’étude d’une formulation particuliere de ce probléeme dans la-
quelle le fond du domaine de fluide évolue en temps de fagon non-forcée. Son évolution
est alors déterminée par les forces hydrodynamiques engendrées par les vagues. La théo-
rie mathématique d’une telle configuration n’a pas encore étée étudiée, par conséquent,
pour une premiere approche, le but de cet article est de dériver et analyser des modeles
asymptotiques de faibles profondeurs provenant de ce probleme a double frontiere libre.

En particulier, nous considérons un fond plat sur lequel un corps rigide peut se déplacer
horizontalement, dont le mouvement est completement déterminé par le mouvement des
vagues. Le principal intérét de ce modele simplifié concerne d’une part I’énergie maritime
cotiere et les nouvelles tentatives pour construire des convertisseurs de I'énergie des vagues
submergés ([AELS14], [GILT14]) et d’autre part les études océanographiques menées sur
les glissements de terrain sous-marins. En raison de cet intérét au niveau des applications,
des expériences physiques ([ACDNn17]) ainsi que des simulations numériques approfondies
([CMO6], [GNOT7], [Mit09], [DNZ15]) ont été effectuées.

Mise en équation du probléme : Pour introduire le systeme décrivant la dynamique
du fluide, notons par ((t, z) 1’élévation de la surface libre et par b(t,z) la fonction carac-
térisant la topographie du fond a une profondeur de base Hy. Le domaine de fluide s’écrit
comme

Q, = {(x,z) ER!XR : —Hy+b(t,z) < z<C(t,x)},

La fonction décrivant la profondeur totale du fluide h(t, x) = Ho+((t,x) —b(t, z) va jouer
un role important dans ’analyse. Nous supposerons en effet qu’elle a une borne inférieure
uniforme h,,;, > 0 pour éviter certaines situations physiques particulieres (comme les iles
ou les plages).

En raison des hypotheses physiques sur le fluide (notamment I'incompressibilité et
I'irrotationalité), nous exprimons le mouvement du fluide & travers le potentiel de vitesse
®. Ce potentiel vérifie une équation de Laplace :

AP =0 dans Qy, (2.0.1)
q>|z:C = 7507 \/ 1+ |va:b|28nq>|z:—Ho+b - atba o

ou ¥ est le potentiel de vitesse a la surface libre. En écrivant la loi de conservation du
moment ainsi que la condition au bord cinématique (a la surface libre), nous retrouvons
le probléeme de Bernoulli a surface libre, dans le domaine ;. Issue du probleme précédent,

94 Krisztian Benyo



2. Wave-structure interaction for long wave models in the presence of a freely moving
object on the bottom

la vitesse horizontale verticalement moyennée est une quantité importante :
v 1/< V,®(-,2)d (2.0.2)
= — (-, 2)dz, 0.
h J—Hy+b

cette variable est plus adaptée aux études asymptotiques dans le régime a faible profon-
deur. Avec cette notation, le probleme des vagues avec un fond qui évolue en temps s’écrit
sous la forme suivante

—V - (hV) + b 2C - V)2 2.0.3
R R 209

2(1 4+ |V.CP?) =0

Concernant le solide qui se déplace librement au fond, nous supposons qu’il est rigide,
homogene (de masse M), et que sa surface mouillée est décrite par une fonction de classe
C> a support (I(t)) compact. Le solide est contraint a un mouvement horizontal selon le
vecteur de déplacement Xg(t), avec une vitesse vg(t), les effets rotationnels sont exclus.
Gréace a cette notation, nous pouvons exprimer la topographie du fond par une translation ;
on a b(t,z) = b(x — Xg(t)) ou b correspond a 'état initial (voir également Figure 2.1).
D’apres la deuxieme loi de Newton sur la force totale agissant sur le solide, on obtient

Xs(t)
Xs(t)] + VoHus

MXS(t) = — Cric (Mg + /I(t) P|z:fH0+b(t,x) dl‘)

Pl.—_ ) Vabdx.
+/I(t) ’ H0+b(t7 ) £z

Ici, nous avons implémenté une loi de friction purement dynamique, dont la direction de
la force de frottement est opposée a la direction de vitesse vg (avec une § < 1 constante
mathématique régularisant cette fonction), et dont cgqi., appelé coefficient de friction,
représente les propriétés physiques du systeme couplé. En outre, P|.—_ gy p,0) signifie la
pression du fluide évaluée au fond.

Pour une analyse asymptotique, nous sommes amenés a réécrire les équations dans
une formulation sans dimensions (physiques), en utilisant des parametres sans dimensions.
Notamment, on pose que p = H3/L?, qui est le rapport de la profondeur de base (Hp) et
la taille horizontale caractéristique des vagues (L) au carré, qui représente le parametre de
faible profondeur. On a également € = ag,,.r/Hp, le parametre de non-linéarité, qui n’est
rien d’autre que le rapport entre 'amplitude caractéristique des vagues (asu, ) €t Hy. Avec
I’hypothese supplémentaire que les tailles caractéristiques du solide sont du méme ordre
de grandeur que celles des vagues, on peut introduire les équations sans dimensions de
notre probléme couplé (voir les équations (2.1.22), (2.1.24) et (2.1.26)).

Etude des régimes asymptotiques :  Nous nous intéressons a I’étude de deux régimes
asymptotiques, selon les hypotheses sur les parametres de petitesse p et €. Pour le cas
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des équations de Saint-Venant, nous réalisons une approximation a l'ordre O(u) de la
formulation sans dimensions des équations des vagues (2.0.3) en supposant que € vaut 1.
Par conséquent, les équations a surface libre avec un solide qui se déplace au fond dans
le cadre de Saint-Venant non-linéaire ont la forme suivante :

¢+ V- (V) = V,b(x — Xg) - X,
OV + V. +(V-V,)V =0,

Xg = \;r; (CsoluH— M/ > ’Xj -+ 7/ (V.b(x — Xg)dz. (2.0.4b)

(2.0.4a)

Le premier résultat consiste a établir le caractere bien-posé de ces équations. Plus
précisément

Théoreme 2.0.1. On suppose que ¢ = 1. Si les données initz’aleis Cin €t Vin sont dans
Uespace H*(R?) avec s € R, s > d/2 + 1, et que Xs(0) = 0, Xg5(0) = vg, € R? est
arbitraire, alors il existe une solution

(¢, V) ec(o,T]; H*(RT)) n C* ([0, T]; H*1(R7)),
Xg € C*([0,T)),

du systéme (2.0.4) pour un temps T > 0 suffisamment petit, indépendant de p € (0,1).

La démonstration s’appuie sur le théoreme de point fixe appliqué a un schéma itératif
construit du systeme (2.0.4). Ce schéma permet de découpler la partie EDO et la partie
EDP de ce systeme. Grace a la structure hyperbolique quasi-linéaire des équations de
Saint-Venant, nous établissons de maniere directe des estimations d’énergie pour I’'EDP.
Les points critiques concernent les estimations des termes de source venant du couplage
et 'estimation de la vitesse du solide.

Pour 'approximation de Boussinesq, on fait ’approximation des équations du fluide
(2.0.3) d’ordre O(u?) pour obtenir un systéme qui est consistant d’ordre 2 avec les équa-
tions originelles. En faisant I’hypothése supplémentaire de ¢ = O(u), nous regardons le
probleme couplé dans le cadre de Boussinesq faiblement non-linéaire suivant :

0,C+V, - (W) = O,
__ __ _ il 9 (205&)
(1 ~La, ) OV +V.C + (V- V)V = —Ev,02,
> Cfric 1~ 1
Xg = e (Ls dz V,b(z dr.  (2.0.5b
S \/ﬁ<50 1d+M I(t)C )‘Xs / ¢ Xs)dz. )

Le résultat principal de cet article établit I'existence d'une solution unique a longue
portée.

Théoréme 2.0.2. On suppose que € = O(u). On suppose également que pour les valeurs
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iniiiales Cin €t b il existe hpin > 0 tel que 1+ Gy — b = hypipn. St les données initiales (i
et Vin sont dans lespace H*(RY) avec s € R, s > d/2+ 1, et que Vs, € R?, alors il existe
un temps mazimal Ty > 0, indépendant de € tel qu’il existe une unique solution

¢, V)yecC ([0, 5%1 ;XS(Rd)> nct ([0, \7/21 ;Xs‘l(Rd)> :

du systéme (2.0.5) avec des données initiales (Cin, Vin) et (0,/Vs,). Les espaces X*(R?)
sont définis par la définition 2.5.1.

La preuve, contrairement au régime précédent, est basée sur une régularisation due a
Friedrichs. La raison de ce changement de méthode est motivée par le fait que certaines
annulations ne peuvent pas étre adaptées a un schéma itératif basé sur les équations de
Boussinesq, principalement a cause de leur terme dispersif. Cependant, ’établissement
d’une estimation d’énergie pour le modele couplé garantit I'existence d’une solution en
temps long. Cette estimation est obtenue pour la fonctionnelle d’énergie suivante

1 9 1 — = I
_§/Rdg dx+§/Rdh(V-V Yz + - Z/ B o,V aV)dx+—(XS

Y

qui n’est pas un Hamiltonien du systéme, puisqu’elle n’est pas conservée en temps, mais
est controlée en temps long.

Introduction

The water waves problem, which consists in describing the motion of waves at the
surface of an inviscid, incompressible, and irrotational fluid of constant density under
the action of gravity, has attracted a lot of attention in the last decades. The local well-
posedness theory is now well-understood following the works of Wu [Wu97, Wu99] estab-
lishing the relevance of the Taylor sign condition. In the case of finite depth, which is of
interest here, we refer for instance to [Lan05, Igu09, ABZ14]; the case where the bottom
is also allowed to depend on time has also been treated in [ABZ11, Igull, Mell5]. In this
paper, we are interested in a particular configuration where the bottom depends on time,
but instead of being in forced motion as in the above references, it evolves under the
action of the hydrodynamic forces created by the surface waves. Finding its evolution is
therefore a free boundary problem, which is coupled to the standard water waves problem,
itself being a free boundary problem. The mathematical theory for such a configuration
has not been considered yet; we refer however to [Lan17] for a related problem where the
moving object is floating instead of lying on the bottom, as it is in the present paper.

Here, our goal is not to address the local well-posedness theory for this double free
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boundary problem, but to give some qualitative insight on its behavior by deriving and
analyzing simpler asymptotic models. The focus is on a regime which is particularly
interesting for applications, namely, the shallow water regime, where the typical horizontal
scale of the flow is much larger than the depth at rest. For a fixed bottom, several models
arise in this setting such as the Korteweg—de Vries (KdV) equation (justified in [Cra85,
KN86, SW00]), the nonlinear shallow water equations (justified in [Ovs74, KN86, ASL08a,
Igu09]), the Boussinesq systems (justified in [Cra85, KN86, BCS02, BCL05]) — see also
[Per67, PR83, GKSW95, Cha07, CLS12] for particular focus on topography effects —
the Green—Naghdi equations [Li06, ASLO8b, HI15], etc. We refer to [Lanl3] for more
exhaustive references.

For a bottom with prescribed motion in general, the problem has already been con-
sidered, local well-posedness results ([ABZ11]) and long time existence results ([Mell5])
have been proven recently. Numerical experiments and attempts to adapt existing and
known shallow water models for a moving bottom regime have been present for a while
in literature, however lacking rigorous justifications. After observing successively gener-
ated solitary waves due to a disturbance in the bottom topography advancing at critical
speed ([Wu87]) they formally derived a set of generalized channel type Boussinesq sys-
tems ([TW92]), their work was extended later on in a formal study on more general long
wave regimes ([Che03]). Tsunami research has also proved to be an important motivating
factor with the consideration of water waves type problems with a moving bottom (see
for example [GNO7] or [Mit09] for an extensive numerical study). The mathematical jus-
tification of these models as approximations of the full problem was carried out not too
long ago ([Igull] for Saint-Venant type systems, or [HI15] for the precise Green—Naghdi
system).

Here, we present a new class of problems where the bottom is still moving, but its
movement is not prescribed, instead it is generated by the wave motion. A good approach
to this is to place a freely moving object on the bottom of the fluid domain. The main
physical motivation of this study lies in the recent development of submerged wave energy
converters (submerged pressure differential devices, [AELS14] and references therein) and
oscillating wave surge converters (WaveRollers and Submerged plate devices, [GILT14]),
as well as reef-evolution and submarine landslide modeling problems. Bibliography in the
more theoretical approach is rather lacking, existing studies are heavily oriented to phys-
ical experiments (most notably in [ACDNn17] where the authors investigate a submerged
spring-block system and its numerical simulation through an adapted level set method,
for further details, see for example [CMO06]), as well as numerical applications ([DNZ15]
for instance).

The structure of the article is as follows. In the first section the free surface fluid
dynamics system and its possible reformulations in the water waves setting are presented.
The equations governing the motion of an object lying on the bottom are established, they
derive from Newton’s second law and take into account the hydrodynamic force exerted
by the fluid and a dynamic friction force. The characteristic scales of the variables of the
system are also introduced in order to derive the nondimensionalized equivalents of the
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different equations and formulae, preparing for the study of the asymptotic models.

In Section 2, we detail the first order asymptotic regime with respect to the shallowness
parameter p; the resulting approximation is the well-known (nonlinear) Saint-Venant
equations, in the presence of a solid moving on the bottom of the fluid domain. A key
step is to derive an asymptotic approximation of the hydrodynamic force exerted on the
solid. Then we establish a local in time well-posedness result for the coupled system.

In the third section, we elaborate our study on a second order asymptotic regime with
respect to the shallowness parameter u. This study concerns the so called long wave regime
where the vertical size of the waves and of the solid are assumed to be small compared
to the mean fluid height. The resulting approximation is the so called (weakly nonlinear)
Boussinesq system. A local in time well-posedness is shown for this coupled system as well.
The standard existence time for a Boussinesq system with a moving bottom is O(1) with
respect to the nonlinearity parameter ¢, due to the presence of a source term involving
time derivatives of the topography, which can potentially become large (as remarked
in [Mell5]). By a precise analysis of the wave-structure coupling one is able to extend
the existence time to the O(¢7/2) time scale. This time scale is therefore intermediate
between the aforementioned O(1) scale, and the O(s7!) scale that can be achieved for
fixed bottoms ([ASL08a, Burl6]).

2.1 The fluid-solid coupled model

In this section we present our model in general, that is, the equations characterizing
the fluid dynamics as well as the equation describing the solid motion. The dimensionless
equations are formulated at the end of the section to prepare the upcoming analysis for
the shallow water asymptotic models.

2.1.1 The dynamics of a fluid over a moving bottom

As a basis for our model and our computations, we consider a fluid moving under the
influence of gravity. The fluid domain §2; (depending on the time t) is delimited from below
by a moving bottom and from above by a free surface. In our case the fluid is homogeneous
with a constant density g, moreover it is inviscid, incompressible, and irrotational.

To clarify the upcoming notations, the spatial coordinates take the form (z, z) € R¢xR
with x denoting the horizontal component and z the vertical one. Regarding differential
operators, x or z as a subscript refers to the operator with respect to that particular
variable, the absence of subscript for an operator depending on spatial variables means
that it is to be taken for the whole space (z,2) € R4l From a theoretical point of view
arbitrary horizontal dimensions d € NT can be considered even though the physically
relevant cases are d = 1 and 2 only.
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In what follows, we denote by ((t,z) the free surface elevation function and b(¢, z)
describes the bottom topography variation at a base depth of Hy. With this notation at
our disposal the fluid domain is

Q = {(z,2) ER' xR : —Hy+b(t,2) <z < ((t,2)},

Let us also introduce the height function h(t,z) = Hy + ((t,x) — b(t, z) that describes
the total depth of the fluid at a given horizontal coordinate z and at a given time t.

In order to avoid special physical cases arising from the fluid domain €, (such as islands
or beaches), throughout our analysis we suppose the following (or similar) minimal water
height condition

Fhmin > 0, Y(t,2) € [0,T) x R, h(t,z) = hpin, (2.1.1)

we refer to [dP16] for an analysis of the water waves equation allowing vanishing depth,
and to [LM17] where the evolution of the shoreline is considered for the one dimensional
nonlinear Saint-Venant and Serre-Green-Naghdi equations.

2.1.1.1 The free surface Bernoulli equations

To describe the fluid motion under the aforementioned physical assumptions, the free
surface Euler equations could be considered, however for what follows the formulation
involving a potential (the Bernoulli equations) is more adapted. Due to the fluid being
incompressible and irrotational, one can describe its dynamics by utilizing the velocity
potential ®, and with the knowledge of this potential one may recover the actual velocity
field as the gradient.

The velocity potential is obtained as a solution of the following Laplace equation

q)|z:C = ¢7 \/ 1 + |vxb|28nq)|z:—Ho+b - atba o

where 1) is the velocity potential on the free surface (an unknown of the problem). Here
we made use of the notation 0, signifying the upwards normal derivative (with n being
the unit normal vector of the fluid domain pointing upward). Notice that the Neumann
boundary condition on the bottom of the fluid domain corresponds to a kinematic (or
no-penetration) boundary condition (that is, the fluid particles do not cross the bottom).
Naturally the same condition applies to the free surface, meaning that

0 — /14 |ViC|2P0,® =0 on {z=((t,z)}. (2.1.3)

Additionally we also require that there is no surface tension along the free surface, so
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the pressure P at the surface is given by the atmospheric pressure P, hence
P =Py, on{z=C_(tzx)} (2.1.4)
By the momentum conservation of the fluid system we get that
1 9 1
at®+§|V®| +gZ: —E<P—Patm) (215)

in the domain €2;. Here g in the equation denotes the gravitational acceleration, further-
more o denotes the density of the fluid (constant due to the homogeneity assumption).

So the free surface Bernoulli equations are the system of equations (2.1.2)-(2.1.5).

Based on equation (2.1.5), we can recover the pressure in terms of the velocity poten-
tial:

1
P=—p (8th> + §|V<I>|2 + gz) + Potm. (2.1.6)

This relation allows to compute the hydrodynamical force exerted on the solid by the
fluid (derived from Newton’s second law in Section 2.1.2).

2.1.1.2 The Zakharov / Craig—Sulem framework

We present another formulation of the equations (also referred to as the water waves
problem). This formulation is attributed to Zakharov in his studies regarding gravity waves
[Zak68] and is based on the fact that the variables ¢ and ¢ = ®|,_, fully determine the
flow. More precisely, the water waves problem reduces to a set of two evolution equations
in ¢ and 1,

¢ — V1t V(P 0n®].—¢ = 0,

1 (V1 + |ValPOu®].oc + Vol - Vo)) (2.1.7)
oY + gC + §|V:ﬂ/}‘2 - 21+ Vo) =0,

where ® solves the boundary value problem (2.1.2).

In more general terms, one can introduce a natural decomposition of ® into a “fixed
bottom” and a “moving bottom” component which could be used to define the so-called
Dirichlet-Neumann and Neumann-Neumann operators associated to the Laplace problem
(2.1.2) (assuming sufficient regularity for the limiting functions), but we will not pursue
further this path, for more details we refer to the works of Craig and Sulem [CSS92, CS93].
For a more specific analysis of the moving bottom case we refer to the article of Alazard,
Burq, and Zuily [ABZ11] for the local well-posedness theory or to [Igull] for specific
studies motivated by earthquake generated tsunami research. For a comprehensive and
detailed analysis as well as the well-posedness of the water waves problem in the general
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setting, we refer to [Lanl13] and references therein.

Since our study focuses on shallow water regimes, it is convenient to bypass the afore-
mentioned technicalities by introducing the following variable:

Definition 2.1.1. The vertically averaged horizontal component of the velocity is given
by

v 1/< V,0(-,2)d (2.1.8)

= eV ,2)dz, 1.

where ® solves (2.1.2).
The interest of this new variable V is that a closed formulation of the water waves

problem in terms of ¢ and V' (instead of ¢ and 1) can be obtained, see for example [Lan17].
For our case, it is sufficient to observe that ([Lanl13])

Proposition 2.1.1. If ® solves (2.1.2) and V is defined as in (2.1.8), then

1+ | VaCP0n®|e = 80— V - (WV), (2.1.9)

assuming sufficient reqularity on the data concerning C, v, and b as well as the minimal
water depth condition (2.1.1).

Remark 2.1.1. Let (,b € Wl’oo(Rd_) such that they satisfy the minimal water depth
condition (2.1.1). Moreover, let ¢ € H¥?(RY) = {f € L}, : V.f € HY/?>(RY)}. Then the

loc

Laplace equation (2.1.2) can be solved with ® € H*(Q) = {f € L}, : V.f € H'(Q)} and
relation (2.1.9) holds true, where

Q={(X,2) eR*xR, —1+b(X) <2< ((X)} (2.1.10)

is a known fluid domain. For more details, we refer to Chapter 2 of [Lani3].

With this, the water waves problem with a moving bottom takes the following form

1 V- (AV) 4+ 0b + V(- Va1h)? 2.1.11
at¢+g<+2|vxw|2—( (RV) + 00+ V(- Vi)™ ( )

2(1 4 |V.CP?) =0

This system seemingly depends on three variables, namely ¢, V and %, but in fact the
Laplace equation provides a connection between the latter two. Exploiting this connection
to express (asymptotically) one variable with the other gives rise to various well-known
asymptotic equations under the shallow water assumption. In Section 2.1.3 detailing the
nondimensionalization of the system we shall provide the necessary tools as well as some
references concerning this asymptotic expansion.
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2.1.2 A freely moving object on a flat bottom

The aim of this paper is to understand a particular case in which the bottom of the
domain contains a freely moving object, the movement of which is determined by the
gravity driven fluid motion. We will work with a flat bottom in the presence of a freely
moving solid object on it (see Figure 2.1).

), fluid domain

z € RY

Figure 2.1 — The setting of the water waves problem in the presence of a solid on the
bottom

For the solid we suppose it to be rigid and homogeneous with a given mass M. The
surface of the object can be characterized by two components: the part of the surface in
direct contact with the fluid, denoted by >; and the rest, that is the part in direct contact
with the flat bottom, denoted by I(t). For convenience reasons we shall suppose that ¥,
is a graph of a C* function with compact support I(t) for any instance of t.

The solid moves horizontally in its entirety, we denote by Xg(¢) the displacement
vector, and vg(t) the velocity (with Xg = vg). We make the additional hypothesis that
the object is neither overturning, nor rotating so its movement is completely described
by its displacement vector, which will be restrained to horizontal movement only. In
particular, this means that the object is not allowed to start floating, the domain I(¢) has
a constant (nonzero) area.

Under these assumptions a simplified characterization of the function describing the
bottom variation is possible:

b(t,x) = b (x — Xs(t)), (2.1.12)

where b corresponds to the initial state of the solid at ¢t = 0 (so that we have Xg(0) = 0).
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Taking into account all the external forces acting on the object, Newton’s second law
provides us with the correct equation for the movement of the solid. The total force acting
on the solid is

Ftotal = Fgravity + Fsolidfbottom interaction T Fsolidfﬂuid interaction
= Mg + [Fnormal _I' Ffriction] + Fpressure-

Here we made use of the fact that the force emerging from the contact of the solid with
the bottom may be decomposed in two components: the normal force, perpendicular to
the surface of the bottom, expressing the fact that the bottom is supporting the solid, and
the (kinetic or dynamic) friction force, the tangential component, hindering the sliding
of the solid. By making use of the three empirical laws of friction [Ber06], most notably
the third law often attributed to Coulomb regarding the existence of a coefficient cg. > 0
of kinetic friction (describing the material properties of the contact medium), we may
reformulate the tangential contact force as follows

(S t
Ffriction - Fsliding friction — _Cfric|Fnorma1| |U (t)| f\)/‘m7
S 0

(2.1.13)

where § < 1 is a purely mathematical dimensionless parameter serving as a regularizing
term in order to avoid a singularity in the equation when the solid stops, that is when
vs(t) is equal to 0. Normally, when the solid comes to a halt, the kinetic friction detailed
just before turns into static friction, a tangential force component preventing the solid
from restarting its movement. The static friction has its own coefficient, which is usually
greater than cg;., and its direction is determined by the horizontal force component rather
than the velocity.

Remark 2.1.2. The coefficient of friction cuic is a dimensionless scalar constant, it de-
scribes a ratio proportional to the hindering effect generated by the parallel motion of two
surfaces. It is in fact a property of the system, in reality it not only depends on the material
of the two surfaces but their geometry (surface microstructure), temperature, atmospheric
conditions, velocity of the motion, etc. and as such it is impossible to accurately determine
it. To give the reader an idea, an almost frictionless sliding (for example objects on ice,
lubricated materials) corresponds to a coefficient of 1072 ~ 1073, while a frictional sliding
(for example rubber on paper) has a coefficient of order 1.

In order to prevent the complications that would arise by implementing the physically
more relevant threshold for vg(t) = 0 and the associated jump in friction force, we sim-
plify the system by regularizing the friction force, thus neglecting static effects. A more
specific modeling and analysis of the transition between static and dynamic friction will
be addressed in future works.

Treating the horizontal and vertical component of Fya = (F2 | F2. )T separately
and using the fact that the solid is constrained to horizontal motion, we have that the
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vertical components are in equilibrium, thus

0=—Mg+ Foomal + F° (2.1.14)

pressure’

and we obtain that the horizontal movement of the solid is given by

MXS<t) = Fsliding friction + Fh (2115)

pressure

Finally, by making use of the fact that

Vb
F ressure :/ P soli dx :/ P Zz=— T g d 5
b y,, [ sotia - | 2=~ Ho+b(t.0) <_1) &z

due to the fact that the inwards normal vector for the surface of the solid ng,;q = —n can
be easily expressed by the bottom variation b(t, z), since

1 (be>
Ngolid = 77— 1/
1+ |V.b[?
Therefore we obtain from (2.1.14) that
Frormal = Mg + /I(t) P|z:—Ho+b(t,w) dz, (2'1'16>

now as a scalar quantity since the vertical direction is one dimensional. Let us remark that
Frormal = 0, since the right hand side is nonnegative, due to the pressure being positive.
Therefore, by (2.1.13), (2.1.15) writes as

Xs(t) n
Xs(t)| + vgHod 10

MXS(t) - _Cfrianormal P|z:_HO+b(t7m)vmb dzx. (2117)

So we have that Newton’s equation characterizing the motion of the solid takes the
following form

Xs(t)
Xs(t)] + VgHyd (2.1.18)

MXS(t> = — Cfric <Mg =+ /I(t) P’z=7H0+b(t,:Jc) d.fL')

i / Pl.__ V.bdz,

A key step in our study is to handle the force term exerted by the fluid, which requires
the computation of the integral of the pressure on the bottom over the solid domain. For
this we will establish an appropriate formula for the pressure to be used in the integral.
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In both the case of the freely moving bottom (due to the moving object) and the free
surface, the kinematic no-penetration condition still applies, most notably we still have

that
Ob— /14 |V,b?U-n=0 for {z =—Hy+b(t,x)},

or equivalently, on the part of the surface of the solid in contact with the fluid (¥;), the
normal component of the fluid velocity field coincides with the normal component of the
velocity of the solid, that is

U - nyjiq = vg - ni’ohd for {z = —Hy +b(t,z)}. (2.1.19)

To sum up, the water waves problem in the presence of a solid on the bottom is given
by equations (2.1.11) and (2.1.2), where in the Neumann boundary condition, the bottom
function b and its time derivative are given by (3.1.1), with Xg arising from (2.1.18) and
the pressure P derived from (2.1.6).

2.1.3 Dimensionless form of the equations

The main part of the analysis consists of establishing and analyzing the wave-structure
interaction system for shallow water regimes, for that we need first of all the correct
parameters involving the characteristic orders of magnitude of our variables as well as the
dimensionless equations obtained with the help of these quantities.

2.1.3.1 The different scales of the problem

First of all we present the proper dimensionless parameters relevant to the system.
For that we need to introduce the various characteristic scales of the problem: as already
mentioned before, the base water depth is Hy. The characteristic horizontal scale of the
wave motion (both for longitudinal and transversal directions) is L, the order of the free
surface amplitude is agyf, and the characteristic height of the solid (order of the bottom
topography variation in general) is apogs.

Using these quantities, we can introduce several dimensionless parameters:

2
H() o Asurf

Upott
= ﬁ, g = HO s and 6 =

Hy’

W

where p is called the shallowness parameter, e stands for the nonlinearity (or amplitude)
parameter, and (3 is the bottom topography parameter.

Our goal in this paper is to examine asymptotic models when g is small (shallow water
regime), and under various assumptions on the characteristic size of € and g.

With these parameters in our hand, we may remark that the natural scaling for the
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horizontal spatial variable = is L, and for its vertical counterpart z it is Hy. Moreover the
natural order of magnitude for the function characterizing the free surface ( is agyf, and
for the bottom b it is apee. Thus the nondimensionalized form for the water depth is

h=1+e(—pb.

Furthermore, one can establish the correct scale of the velocity potential through linear

wave analysis, which gives rise to
Qgsurf
Oy = —=L\/gH,.
0 H, g

As for the pressure, we choose the typical order of the hydrostatic pressure, that is Py =
0gHy. For the time parameter, from linear wave theory one can deduce the scaling as

L
QHO'

to =

Finally, for the parameters concerning the solid, we impose that the characteristic hor-
izontal dimension of the solid is comparable to L (which was already implicitly assumed).
It would be relevant to consider solids with a smaller size, but this raises important diffi-
culties. Even in the case of a fixed bottom there is no fully justified model yet in general
(see for example [CLS12]).

Following this, by taking into account the volume integral of the density, the mass can
be rescaled by the nondimensionalisation parameter M:

M = MoM = oL%o M.

Thus the proper nondimensionalized parameters are obtained by

z ,_ G N
T = -, z = -, C et s @ et -, t = —, etc'
L HO Qsurf CI)O tO

For the sake of clarity we shall omit the primes on the variables from here on.

Our main interest will be to express the equations principally with the different orders
of magnitude of p (the shallowness parameter) to pass on to the different asymptotic
regimes. Given the particular structure of the asymptotic regimes we are going to examine
we shall make an a priori hypothesis concerning certain parameters.

Remark 2.1.3. Since all the regimes handled in this article involve the hypothesis that
€ and B are of the same order of magnitude we assume, without loss of generality, that

g =ce.

An additional precision shall be made concerning the quantities involving the bottom.
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The explicit form of the nondimensionalized form for the water depth is

h(t,z) =1+¢e({(t,z) — b(t,x)) (2.1.20)
with
b(t,z) =b(x — Xgs(t)). (2.1.21)
2.1.3.2 Nondimensionalized equations

Using the previous section and in particular taking ¢ = § as in Remark 2.1.3, one
easily derives the dimensionless version of (2.1.11), namely

i V(W) 4 0+ Vale0) - V) (2.1.22)
where V is now defined as
v—1/€< V(. 2)d (2.1.23)
=)V ,2)dz, 1.

with h = 1+ e( — eb, furthermore ® solves

{A”(IDZMAm(I)+8§CI>:0, on —1+¢eb< z<e(, (2.1.24)

(D|z:5C = ¢a (azq) - Hvx(gb) : vxq)> |z:—1+ab = ﬂ'atba

the nondimensionalized equivalent of the Laplace problem (2.1.2).

It is also necessary to nondimensionalize the formula describing the pressure (2.1.6),
thus

p_ Pan

0gH
Here we had to separate the horizontal and the vertical part of the gradient due to the
different scaling parameters for the different directions.

g2 g2
— 2 —e0,® — —|V,®|* — 0.9 (2.1.25)
2 2u

We remark that the normal derivative is given by

1 V.b
Nolid = (ﬁjl ) .
\/ 1+ €2M‘be‘2
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Thus we may reformulate Newton’s equation (2.1.18) in the following way

B Ctric (1 _ P’Z:71+€b dx> ﬂ
NASER (Xs(t)|+9 (2.1.26)

1
— P _1.4Vbdx,
+M/Rd 14eb T

Xs(t) =

taking into consideration the characteristic scales of the variables.

2.2 The O(u) asymptotic regime: The nonlinear Saint-
Venant equations

We shall now start our analysis for shallow water regimes, that is an asymptotic
analysis with respect to the shallowness parameter p for the nondimensionalized water
waves problem (2.1.22) coupled with Newton’s equation (2.1.26) for the solid. With our
notations, this means that we would like to consider systems that are valid for p < 1.

In this section we treat the general first order approximate system, more specifically
a model with O(u) approximation that allows large wave amplitudes and large bottom
variations (¢ = O(1)). So, the asymptotic regime writes as follows

O<pu<l e=1 (SV)

2.2.1 The fluid equations in the asymptotic regime

As mentioned before, the important step in deducing asymptotic models relies on how
we establish the connection between the variables V' and 1. More precisely, it is possible to
construct an asymptotic expansion of V with respect to p (depending on ¢, b and ). For
details, we refer to Chapter 3 of [Lan13]. One can equally obtain an asymptotic expansion
of ® with respect to u, depending on the aforementioned variables. Quite obviously the
equation A*® = 0 in (2.1.24) reduces to 9*® = 0 at leading order in z; since the Neumann
boundary condition in (2.1.24) is O(u), it follows that ® does not depend on z at leading
order, and therefore

see Proposition 3.37. in [Lan13] for a rigorous proof.

So the system (2.1.22) for the (¢, V) variables simplifies as follows

(2.2.1)

¢ + V- (BV) = 0;,
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where we considered the gradient of the second equation in (2.1.22), and then neglected
terms of order O(u). This system is known as the (nonlinear) Saint-Venant or nonlinear
shallow water equations.

2.2.2 Formal derivation of a first order asymptotic equation for
the solid motion

Our strategy is as follows: we establish an asymptotic formula of order O(u) for the
pressure P based on (2.1.25). With this at our disposal, we rewrite Newton’s equation
(2.1.26) at order approximately p describing the displacement of the solid.

For an O(u) approximation, we shall start with the corresponding development for
the velocity potential, that is

O =19+ O(p), (2.2.2)
where 1) = ®|,_.. as before, the restriction of the velocity potential on the free surface.

Knowing this we recover the following for the time derivative of ¢ (based on the second
equation of the water waves problem (2.1.22))

0 = ¢~ 3IV.u P + O).

So by substituting the first order asymptotic expansion of the velocity potential de-
scribed in (2.2.2) into the general nondimensionalized formula of the pressure (2.1.25) the
corresponding O(u) approximation for the pressure takes the form

Pam
P = t

= (0= 2) + O)

using the fact that ¢ does not depend on the variable z.

So in particular, at the bottom, we find that the pressure is given by the hydrostatic
formula

Patm
Pl = h . 2.2.
e = T R+ O(1) (223)

Thus for Newton’s equation (2.1.26),

5 Tic 1 Pam X
XS: _Cf <1+~ <t+h> dx) 75,
N M Jr \ ogH, ]XS\ +3

Patm 1 Cfric
_ [ v.bd T/ hV.bd O< 2 )
ogHo M Jaa ¥ v+ O\ Gy vH

Using the fact that b is of compact support, the integral of its (and b*’s) gradient on
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the whole horizontal space is 0, and the equation simplifies to

XS _ _Cfric (1 + |SUPP([’)| <Patm + 1> |V01unge,5’olzd| + T/ Cdl’) XS
1t) |Xs|+3

VI M 0gH M M

1 Cfric
- bd (9( . )
+M/Rd<v O Ve

Notice the presence of the friction term (the first term on the right hand side). Even
though it is of order ~'/2, it will not pose a problem when controlling the solid velocity,
as we are going to see in Lemma 2.2.5. later on (since it acts as a damping force).

Recalling that b is given by (2.1.21) the corresponding approximative equation char-
acterizing the motion of the body is

gt Ctric 1 X
Xo=— otid + — de | —25 / V. b(z dr, (2.2.4
s ﬁ( BTN Jsupp(o +XS< )\Xs\ T Jea Xs) (224)

where we made use of the following abbreviation:

| supp(b)] (Patm N 1) B | Volumeg,iq |
M 0gHy '

Csolid = 1+ (225)

We remark that the quantity corresponding to Fiormal,

1
Csolid T+ —= dr >0
tid M supp(b)+Xg g

positive, since it contains positive constants as well as the integral of the approximate
hydrostatic pressure P|,—_1., (given by (2.2.3), which is positive, by the minimal water
height assumption (2.1.1.

Therefore, we have the following concerning the consistency of the solid equation:

Proposition 2.2.1. Let sy > 0, and let us assume that ¢ € C([0,T]; H**T*(R%)) and that
b € Ho(RY) compactly supported. Let us suppose that V1) € C([0, T]; H0T4(R%)). The
solid equation (2.1.20) is consistent at order O(\/i) with the model (5.1.3) on [0,T] with
T > 0.

Proof: By the regularity assumptions (Lemma 3.42. of [Lan13]), we can write that ® =
b+ pRy with

Bl grs0 < CUICH 7 o025 1Bl rs0+2) IV atblll, prso+2
0Bl o0 < CUNCH 7 prs0+45 10121504, V2l prso+0)

here the second estimate is due to Lemma 5.4. of [Lan13]. This means that, following the

Fluid-structure interaction 111



2.2. The O(u) asymptotic regime: The nonlinear Saint-Venant equations

same computations as before, we have that

Patm
Pl = b+ puRpy
0gH,

IRpalllz 50 < CUNCH g0+, N0l rso+s; I Vatblll grsoa)-

Here the |||, , notation was adopted based on Definition 2.2.1.

Hence, in the equation for the solid motion (2.1.26), we recover the approximate equa-
tion (3.1.3) with the additional error terms

Xs

Ctric 1
— /U7 — R d +,LL7~ / R vxb Xs)d )
\/_M ‘+5 I(t) p1a% M Jiw) bl (x S) .

that can be estimated as an O(,/z) total error term, that is, it is less than

VHCM NS, 044, 1]

Hesot4, |||vl‘wH‘T,H50+4)'

2.2.3 The wave-structure interaction problem at first order

With (3.1.3) in our hand, we have all three equations for our coupled system. Indeed,
notice that for the first equation in the nonlinear Saint-Venant system (2.2.1), the right
hand side depends on Xg, since b(t, z) depends on it. Hence, by the chain rule the right
hand side is

Ob(t, ) = —V,b(z — Xs(t)) - Xg(t).

Our remark concerning the friction term present in the acceleration equation (3.1.3) be-
comes even more pertinent now, since we can observe a direct influence of the solid velocity
in the first equation of the fluid system (2.2.1). This implies that a careful attention has
to be paid on the velocity estimate for the solid.

To sum it up, the free surface equations with a solid moving at the bottom in the case
of the nonlinear Saint-Venant approximation take the following form

¢+ Vg (V) =V,b(z — Xg) - Xg, z€R?
OV +V.(+ (V- -V,)V =0, xERd

Xg = ;ﬁ (cwhﬁ M/ ) \Xs / (V.b(z — Xg)dx. (2.2.6b)

(2.2.6a)

In what follows, we proceed to the mathematical analysis of this system. We shall
establish a local in time existence result for the coupled equations.
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2.2.4 Local in time existence of the solution

The main result on the local well-posedness of the wave-structure interaction problem
(2.2.6) is the following:

Theorem 2.2.1. Suppose that € = 1, and that p is sufficiently small so that we are in the
shallow water regime (SV). Let us suppose that for the initial value (;, and b the lower
bound condition (2.1.1) is satisfied. If the initial values (i, and Vi, are in H*(R?) with
seR, s>d/2+1, and Xg(0) =0, Xg(0) = vs, € RY is an arbitrary initial condition
for the solid motion, then there exists a solution

(¢, V) € C([0, Ty); H*(RT)) N C'([0, To]; H*~ (R7)),
Xg € C*([0,Ty]),

to (2.2.6) for a sufficiently small time Ty > 0 independent of .

Proof: The demonstration is based on the fixed point theorem applied to an iterative
scheme presented in the following subsections. The brief outline of our proof is as follows:

1. Reformulation of the system,
2. Construction of the iterative scheme,
3. Existence and a priori estimates for the iterative scheme,

4. Convergence of the iterative scheme solutions.

2.2.4.1 Reformulation of the coupled fluid-solid system

Let us remark the following: the nonlinear Saint-Venant equations (2.2.1) admit a
quasilinear hyperbolic structure. More precisely, we have the following classical reformu-
lation using the new variable U = (¢, V)T € R4+

d
oU+> " A;U, Xs)0;U + BU, Xs) = 0. (2.2.7)
j=1

Let us take the following real valued (d + 1) x (d + 1) matrices

V| hi;

AU, Xg) = for 1 <7 <d, (2.2.8)

7|V, daa

J

where for every 1 < j < d we have I; = e¢; € R? the j* coordinate vector with respect to
the standard Euclidean basis of R?.

We recall that h = 1+ ¢ — b thus implying that the matrices A;(U, Xg) indeed depend
on Xg, however only through the bottom variation (2.1.21).
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Following the notation in (2.2.7), the additional term B(U, Xg) is the vector

BMU, Xs) = (-V - Vab(x — Xg) + V,b(z — Xg) - Xs,0,...,0) .

From here on, we shall also use the following uniform notation for the coordinate
functions of U:
Z/{ng, L{]:V]forlgjéd

As for the initial values, we have U(0,-) = Ui, = ((iny Vin) and X5(0) = 0, XS(O) =
vg,- There is no restriction necessary on the initial values concerning the solid motion.

There exists a symmetrizer matrix S(U, Xg) defined by

1| 0

SU, Xs) = (2.2.9)

0| hldgxa

such that the matrices S(U, Xg)A;(U, Xg) are symmetric. Moreover, based on our imposed
lower boundary condition on h;,, one can establish that

S Uin, 0) = min(L, Amin) Id(g41)x @41

which guarantees that the matrix is positive definite.

Owing to the existence of such a symmetrizer S, the local well-posedness for a bottom
with a prescribed motion follows from classical results [Tay97]. In our case and additional
step is needed due to the presence of the coupling with the equation describing the solid
motion.

Let us make one further remark, concerning the second order (nonlinear) ordinary
differential equation characterizing the displacement of the solid Xg in (2.2.6b). Let us
define the functional F{U](t,Y, Z) as

Ctric 1
- Csolid + = Z/{O dx

PRV 2) = =T =

1
- = = €T _Yd.
|Z’+§+M/Rduova(:c ) da

The coupled system (2.2.6) has the following equivalent form

d
OU+ > AU, Xs)0;U + BU, Xs) =0, (2.2.10a)
j=1
Xg = FlU] (t, X5, Xs) - (2.2.10D)
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2.2.4.2 The iterative scheme

To solve the coupled system (2.2.10) we construct a sequence ({Z/Ik(t, x)}, {Xk(t)})
of approximate solutions through the scheme

keN

d
SU*, XFY o + 37 S, XF)A;UF, XFYouk Tt =
j=1 (2211&)

= _S(uka Xk)B(ukv Xk)a
XA+ ]:[uk—H] (t xkt1 Xk:—i—l) .

. (2.2.11D)
uk+1(0> ) = z/{ina Xk+1(0) = 07 Xk+l(0) = Us;-

Here the matrices A; and S are the matrices defined in (2.2.8) and (2.2.9). In what follows
we will make use of the following abbreviations

St =Sk x*), A =A;U* XY), and B* = BU*, X*).

The main goal is to prove the existence and convergence of this sequence. We will
follow the footsteps of a classical method, presented by Alinhac and Gérard in [AGO7]
for instance, detailing only the parts where additional estimates are necessary due to the
coupling terms.

The iterative scheme works as follows: we choose the initial £ = 0 elements to be
(U° X% = (U,,0). From then on, at each step k (k € N) we have to solve a linear
symmetric hyperbolic PDE system (2.2.11a) to recover U**!, and then a second order
nonlinear ODE (2.2.11b) to obtain X**!.

2.2.4.3 Existence and a priori estimates

Now, the aim is to establish the existence of solutions (U*1, X*+1) (k > 0) for the
iterative scheme to justify their definition in (2.2.11). Furthermore we shall also obtain a
control of the velocity fields for our coupled system. In particular an upper bound on /**+!
in a “large norm”, partially in order to guarantee the boundedness conditions required for
the existence result presented, as well as to introduce certain inequalities which will be
useful for the convergence of the series.

In what follows, we will make use of the following notation

Definition 2.2.1. For an f(t,z) € L>([0,T]; X(R?)) function let us define

Il = sup [Lf(E )]l (2.2.12)
te[0,T]

With this definition at our disposal, we can state the induction hypothesis (/) for
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the boundedness of solutions (U!, X!);<p of (2.2.11):

foro<i<hk, U <y

\ul — U,

< 507 sup ‘Xl — Vs, < C’UT7 (Hk)

‘T7L°° te[0,1]

T,Hs

for a sufficiently large constant Cy = C’(M_l, Sy, HZ/Im~| s
constant to be defined, independent of k, and C, = C(M~1, ||b|

|6]| ), with dp > 0 a small
HSaCf)7

Proposition 2.2.2. For k > 0, assuming the induction hypothesis (Hy), there exists a
solution U*T1 € C([0,T); H*(RY)), X*+1 € C2([0,T]) of (2.2.11), moreover, by an adequate
choice of Cy, &y, and T (independent of k and of u)

(Hi) = (Hgs1)-

Proof: The proof goes by induction. For k = 0, (Hy) is clearly verified. For the induction
step, we shall treat separately the case of the PDE (part A) and the case of the ODE
(part B), for the sake of clarity.

Part A: existence and energy estimate for U/**!: The initial values U**1(0,-) are
bounded since they are equal to the original initial values U;,. Since we are operating by
induction with respect to k, for the respective * term we already have existence, moreover
we also have the large norm estimates (/) at hand, which in particular guarantees the
uniform bounds for U* (independently of the index k) for small time T" and ;. Also, given
the simple structure of S* and S kA;‘?, they are bounded as well in Lipschitz norm.

Lemma 2.2.1. For k > 0, with the initial condition U**1(0,-) = Uy, and the hypothesis
(Hy) there exists a C([0,T]; H*(R?)) solution U for the linear symmetric hyperbolic
PDE system defined in (2.2.11a).

Proof: Notice that (2.2.11a) has a particular symmetric structure which may be exploited
based on the following proposition:

Proposition 2.2.3. Let us consider the symmetric hyperbolic differential operator

d
L=250,+Y SA;0;

j=1

with S and SA; symmetric real valued and bounded in Lipschitz norm, with S > Syld,
where So > 0 over [0, T], with T > 0 independent of . Furthermore let us consider s € R,
s>d/2+1 and let us take

As=C H‘S”|T,L°°7 ) |Hats|”T,L°°

T,Hs

d
>S4
j=1
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Then, for any f € L*([0,T]; H*(RY)) and ¢ € H*(R?) the Cauchy problem

Lu=f 0<t<T
u=1 (2.2.13)
U(O, ) =¥,
admits a unique solution u € C([0,T); H*(RY)) that verifies the energy estimate
Ast r Ast! / /
So sup {e_ u(t, )] Hs} < |l as —|—2/ e ()| gsdt (2.2.14)
t€[0,T 0
For more details as well as a complete proof, we refer to [AG07].
Remark 2.2.1. Under the same reqularity assumptions, we can also infer that
A T ot
So sup {e M ult, i} S olle +2 [ e 78, (22.15)
t€[0,T 0

where

o = 250 Za (S4;) — 8,5

T,L°

We want to apply Proposition 2.2.3. to solve the linear PDE (2.2.11a) for U**! in
C([0,T]; H*(R?)). First of all, we have that U* and X* are continuous in time. So, since
Rin = hopin, by using (H),) for a &y sufficiently small, we obtain S* > SyId in [0, 7] for

= (1/2) min(1, Apip)-

By the regularity of &* and b, the source term S*BF* is also in H*. More exactly, we
have the following

Lemma 2.2.2. The source term of (2.2.11a) satisfies the following linear-in-time estimate

< Cp(1+T), (2.2.16)

with the constant Cr = C(||b|

u=; Cr, Cy), independent of k and of T.

Proof: We have

1S* B

o S (L4 U oo + 1100z ) - (1B + (1 + 1124 |
—k

< (1+ [l | we) - (6l (IV7)
using the special structure of the matrix S*, the Sobolev embedding H*(RY) — L>(R%)

(which is valid since s > d/2) as well as the fact that the Sobolev norm is translation
invariant. Then, the induction hypothesis (#},) provides a uniform bound C; for |[U*|| s,

i) - | B[l

HS

)

Hs
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as well as a linear-in-time estimate for | X*|, so, since b is still regular,

1S*B¥ |+ < C([[b]l g+ C, Co) (L + T).

Now we only need to verify that Ay is bounded. For this, we have that
Lemma 2.2.3. Assuming that (H,) holds,

< c([[b]

where ¢ is a continuous nondecreasing function of its arguments.

HS§Cf7Cv)(1 +T)’

Proof: Making use of the fact that S* and A? depend on X* in a very simple way,
throughout the function h*, thus it is present as a translation for the function b, which
obviously does not affect the L> or H* norms, we have that

STz oo < T4 Al Loc + ([0l 2,

and that

we <[] (|45

e+ |||

Ajllzee < e([[b]

U

Hs Hsy Hs)a

by the Sobolev embedding H*(R?) — L>*(R).

As for the estimate on [|0,S*||L~, we estimate the L> norm of d;h*, which is

ohk = oUl + Vv b(x — X*) - X*.

The second term is already controlled by (H}). Based on the corresponding equation
for U* (from equation (2.2.11a)), we have that

d
Ut +3 Atou* = —BF

J=1

which implies that
d A .
10 e < 30N AET OU e + [V Vab( = X571 4 Vob( — XY XRY|
7=1

d
Z (1 e e + H[’HLoo) A e + || (Hu’fflum " ’XIHD
=1

by (H}.) and the regularity of b, as well as the Sobolev embedding H*(RY) — W1 (R?)
(s > d/2+ 1). Therefore, ), is indeed a constant independent of k, and linear in 7. [
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Now, we turn our attention towards the first two estimates in (Hy41). For the large
norm estimate, the H® energy estimate (2.2.14) from Proposition 2.2.3. for equation
(2.2.11a) of U**! can be stated to obtain

So sup {e_’\st
te€[0,7

T
Ut )| ok 2 [ B
0

e b < (Ui

pedt. (2.2.17)

The right hand side of (2.2.11a) can be estimated by Lemma 2.2.2, so we obtain

e e+ T+ T)eTe(|)

’Z/{in’

Hs; Cf7Cv>-

AT
THs ST)€
For Cy sufficiently large the first term in the right hand side is less than C/2. Therefore,
for 7" small enough the second term will be less than C}/2 too. This proves the first
estimate of (Hgy1).

In order to obtain a uniform L estimate for U*+' — U, , we shall first of all control
OUM in L. Just as before for ||,4*|| 1, by the large norm estimate for U**! we have
that

104" [ < c(Ib]

Therefore we obtain

e+t 2|, , . < TlHOL e < (el

\T’Lw 103 Cr, C)T(1+T).
Hence, for a sufficiently small time T (independently of k& and of ) we get that the right
hand side is less than d.

Part B: existence and velocity estimate for X*!: For the existence of the solution
X*1 of the ODE (2.2.11b), we shall apply the Picard-Lindelof theorem.

Lemma 2.2.4. For k > 0, with the initial conditions X*t1(0) = 0, and X**t1(0) = vg,
and the hypothesis (H}.), there exists a continuously differentiable solution X*** for the

nonlinear second order non-homogeneous ODE defined in (2.2.11b) for t € [0,Ts|, where
Ts = C(u'?, |6l =; Cy).

Proof: For the Picard-Lindel6f theorem, we have to show that the nonlinear functional
on the right hand side of (2.2.11b) is continuous in time and uniformly Lipschitz in the
spatial variable.

We recall that the functional F[U*1](¢,Y, Z) has the form of

Tic ]-
FUM(t,Y, 7) = — e Cunta + / UM dr

supp(b)+Y

1
+ = /Rd UMY b(x — ) da.

Z
| Z|+6
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We already know that U5+ is of class C([0, T]; H*(R?), so it is continuous in the time
variable, regular in the spatial variable, moreover the function b is regular and with a
compact support, thus the integrals indeed exist and are bounded, furthermore based
on the well known theorem concerning the continuity of a parametric integral, it will be
continuous with respect to t.

All we need to show is that it is (locally) uniformly Lipschitz with respect to its second
variable (Y, Z). Examining F[U*T1](t,Y, Z), it is clear that the second term is Lipschitz
continuous due to the fact that b is regular. As for the first term, since it contains a product
of multiple terms with the variables Y and Z, by adding and subtracting intermediate
terms they can be separated.

Let us take a closer look on these two separate terms. The integral term can be

estimated due to

/ U (t,x) do = / UK (t,x —Y) da,

supp(b)+Y supp(b)

and the regularity of U™ Since we chose & > 0, the function

Z

7 —
|Z] +9

is Lipschitz continuous. So, putting all the estimates together, we obtain that

Scie (., Cylsupp(b)]
g\//_i solid Vi

<20 1 L0 (0)

f[uk+1](t7}/17zl>_f[z/{k+1]<t7}/2722> <

) | Z1 — Z]
Y1 = Yal;

where L denotes the Lipschitz constant of the corresponding function in the subscript.]

One of the most important parts of the proof is the control on the solid velocity, since
the solid equation contains an order p~'/? term which could potentially become huge,
making the system blow up. However,

Lemma 2.2.5. A control on the solid velocity is ensured by
(XFL)] < Jugy| + Ot (2.2.18)
with a constant C,, = C(M ™1, ||b||z+; Cf) independent of k, p and t.

Proof: By definition X**! satisfies the corresponding second order nonlinear nonhomo-
geneous equation in (2.2.11b) so we have that

Xk ]_—[ukﬂ] (t Xkt Xk+1>
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thus, multiplying by X**(t), we get that

‘Xk+1‘2
Skl xRt _

Cric 1 / k+1
— Csolid + —=; Uy dx
N lid T 7= 0
supp(b)+XF+1

1 .
+ = /du(ﬁ““vxb(a: _ XY g X
R

1 .
<0+ — /Rd UM, bz — XY . X g,

here the key remark is that the first, negative term disappeared from the equations. Thus,
we are left with
1d
2dt

‘Xk—i—l’Q

Y

1 k+1 ok+1 Cy k1
< 7 A 21V bl - [XF4 < o]l e | X

so by a Gronwall type lemma for X*, we may conclude that

. C
XE0)] < Jos, | + L lb]et

O

This concludes the velocity estimate for the object. Therefore, we have local-in-time
existence by the Picard-Lindeloff theorem, from which the existence time is of order /i
due to the associated Lipschitz constant. However our velocity estimate is guaranteed for
a time Ty independent of u, therefore the solution X**! of the ODE exists for a time Tj
independent of .

So we proved the existence of solutions (U*™, X**1) for the system (2.2.11), moreover
we established the necessary elements for the upper bounds concerning the velocities in

(Hgy1)- U

2.2.4.4 Convergence

We want to establish the convergence of the series from (2.2.11), for that we need the
L2-norm estimates for the difference between two subsequent elements for U*, for X* we
shall simply estimate in R%norm. We start by subtracting the equations corresponding
to the k™ element from the equations corresponding to the (k + 1)™ element.
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2.2. The O(u) asymptotic regime: The nonlinear Saint-Venant equations

After the subtraction we have

d
SEQ (UM —U*) + > SEAR; (UM —U) =
7 (2.2.19a)
— _(Sk o Skfl)atuk o Z(SkA§ o SkflAffl)ajuk . (SkBk - Sklekfl),
j=1

(uk+1 - uk)(o’ ) = 07
jﬁ (XFF— XR) = FA (8, XM XA — Fluf] (¢, X5, XF) (2.2.19D)
(XX =0, X x(0) =0

We provide separately an appropriate estimate in this small norm for the solutions
(U —UF) and (XFT — X*) of the system. The estimate for the ODE part (2.2.19b) is
given by the following lemma.

Lemma 2.2.6. For a solution X*' — X* of (2.2.19b), we have that

T
sup [XHH(t) = XH(#) S Cr—= sup (U, — U, )
te[0,7] K vefo,1)

+ ’Xk—i-l (t/) . Xk(t/)

).

(2.2.20)

L2

with a constant Cy = C'(M~1,]|b|

Notice that the right hand side of the estimate contains exactly the same differences
as the ones we would like to establish an upper bound for, but due to the presence of
the factor T', with T sufficiently small, it will be completely absorbed by the left hand
side. However, due to the factor ~'/2 these estimates are only valid for an asymptotically
vanishing time of T' = /muTy (with T, independent of ).

Proof: To treat the difference of products that arise multiple times, we introduce inter-
mediary terms, just as we did for the verification of the Lipschitz-property. So following
standard computations, we get that

XF() — XE ()] = Xk "X X8 () drds

dt(
t s
<// (1 + T U || g2 | X5 — XF|(7) drds
L s e e,
Ot'e[OT]

v,
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Here we estimate each term by the controls of (/) and the Lipschitz properties, in order
to obtain

LZ

XEH () - XE(0)] S ( sup [|UF(E, ) — UM, )

+ sup |XFHL() — XF(t )
e m X)X

t'€[0,T]
]

For the estimate for the PDE part we have the following.

Lemma 2.2.7. For a solution of (2.2.19a), we obtain

sup] Hl/{kﬂ(t, ) —U*(t,)

te[0,T

)
).

L SCT sup (b, ) —ur(t, )
t'€[0,T]

+CoT sup (|x*(t) — X1t

t'e€[0,T)

with a constant Cy = C(M~,||b]|zs; Cy, C,).

Proof: Once again we aim to use the energy estimate, since we have the linear system
(2.2.192) of the type of Proposition 2.2.3. for the variable U**! — U/*.

The same reasoning applies here as for the energy estimates section concerning the
applicability of the proposition, since )y is bounded, so we only need a sufficient upper
bound for the right hand side of (2.2.19a), denoted by F. We shall examine it term by
term.

The first two terms are handled with standard techniques to deduce
1(S* = S HoU |2 < lU* = UM + [ X7 = X,

< Huk Yyt

L2~

|(sFAY — st A Nout

ot |XF— XM,
And for the third term, we deal with the product via an intermediary term, so
848, — S B 1o < 8% = S5 el BH e + 184 | B — B*
then, by using the definition of the source term, we get that

JUd* = U g+ X = X[V Vb( = X1

HSkBk . SklekleLQ S (
+ (JU* = U g+ |XF = XEY) [ Wab( - XR) - X
+ (
+(

L [ ) [V - Vb (= XF) = VT Wb — XR
L (|5 poe) Vb (. = XF) - X* = W,b(. — X1y XR

L2

2’

Again, with the apparition of intermediary terms for each product, by utilizing Lemma
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2.2.5, we get that

HS’“B'“—S'“’IB'“’IIMQ5(1+T)t,i%pﬂ (led (¥, ) = U1 e + 1XF () = XEH(@)]) -

Applying the energy estimate to (2.2.19a), we obtain that

So sup {e U e ) = UL e < 2 / N NF ()

t€[0,T]
STA+T) sup {e (|, ) —ur (), + XM — X))}

t'e€[0,T7]

i

To sum up the results from the two previous lemmas, we obtained that for T'/,/u
sufficiently small, we have that

sup |UFTH(t, ) — Ukt )| + sup | XFTH(E) — XF(1)]
t€[0,T7] L2 t€f0,T]
<o s e =] s X0 - X))
t€[0,T] L* el

with a constant ¢ < 1. This ensures the convergence in L*([0, \/uTp]; L*(R%)) with Ty
independent of p.

Since we have that the H*-norm is bounded by Proposition 2.2.3, we may extract
a weakly convergent subsequence from the series, and since the limit in the sense of
distributions is unique, we have convergence for the whole series in H® too. Furthermore,
again by Proposition 2.2.3 and Lemma 2.2.5, we have uniform estimates of the velocities
X* and U* over a time Ty independent of p and of k, therefore the limit has similarly
velocity estimates over a time 7j independent of u, which in turn guarantees its existence
over such time Tj. O

This concludes the proof of the theorem, since, to deduce the regularity implied in the
statement, we only have to use the convexity of the norm, following classical regularity
arguments. Thus we obtained a classical solution of the coupled system (2.2.6) for a
sufficiently small time 7j.

2.3 The O(?) asymptotic regime: The Boussinesq sys-
tem

In this section, we move on to the next order regarding the asymptotic regime, that is
the approximations of order p2. In order to simplify the computations, we consider here
a weakly nonlinear regime, i.e. we assume that € = O(u). The fluid is then governed by a
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Boussinesq system. Thus, the asymptotic regime writes as follows
0 <pt < ez K1, €=0(p). (BOUS)

At second order, the asymptotic expansion of V' in terms of ¢ and V (based on Propo-
sition 3.37. of [Lanl3]) is given by

V=V, + Sﬁhvx(hi”vx V) — ghvxatb +O4R),
so by making use of the definition of h, once again taking the gradient of the second

equation in (2.1.22), and neglecting terms of order O(p?), equations (2.1.22) under the
Boussinesq regime (BOUS) take the form of

O+ V- (hV) = 0,b

’ ’ L 2.3.1
(1 - ’;Az) OV + V. +e(V - V)V = ~Ev,02, (2:3.1)

For the well-posedness of this Boussinesq system, see for instance [Lan13].

Remark 2.3.1. Without the smallness assumption on ¢ = O(u), it is still possible to
perform an asymptotic expansion at O(u?®). The resulting system is more general than
the Boussinesq system (3.1.2) but also more complicated, it is known as the Serre—Green—
Naghdi equations. For the justification of this general system in the fixed bottom case,
please refer to [ASLOS8a], or to [HI15] for a moving bottom under a forced motion.

It is well-known for the fixed bottom case that the good timescale of Boussinesq-type
systems is of order ! in order to be able to properly observe the nonlinear and dispersive
effects of equations (3.1.2) (see for instance [BCL05, SX12, Burl6]). However, for a time
dependent bottom (as it is in our case), one can only infer an existence time of O(1), due
to the source term ;b on the right hand side of the first equation in (3.1.2). Throughout
this section, we show that, with the presence of the solid in the system as well as with
better estimates, a time of existence in e~/2 is achievable.

2.3.1 Formal derivation of the corresponding solid motion equa-
tion

As we may observe from the Boussinesq system (3.1.2) the bottom related source terms
are respectively of order O(1) and O(u) for the first and second equations. To ensure at
least a reasonable level of consistency on the whole coupled system, we have to impose
(at least) the same precision in deriving formally the equation dealing with the solid; the
surface integral present in (2.1.26) will therefore be approximated at order O(u?).

Our strategy is exactly the same as for the first order approximation case in the
previous section, but it is carried out to the next order of approximation. However, it
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turns out that due to the additional hypothesis on €, the pressure formula (2.2.3) derived
in Section 2 still holds in this regime, namely

Lemma 2.3.1. Under the Boussinesq hypotheses (BOUS), the pressure takes the following
form

. Patm . 2
P = oo Ho + (e — 2) + O(p7). (2.3.2)

Proof: The residual in (2.2.3) is of size O(u) in the SV Saint-Venant regime; however
the parameter £ was set to 1 in this regime, and the same computations show that the
residual is actually of size O(eu), and therefore of O(u?) with the Boussinesq scaling
regime (BOUS). O

Remark 2.3.2. We remark that for the Serre—Green—Naghdi system, that is without the
smallness hypothesis on €, the situation would be completely different, the expression for
the pressure would take a more complex form, incorporating nonlinear effects which would
lead to added mass effect for the equation of motion characterizing the solid (for more
details we also refer to Section 2.3.6).

Therefore, following the same computations as in Section 2.2.2, we obtain the same
ODE for the solid displacement as (3.1.3), but with a dependence on ¢ as well,

O Cric 1~ 1 XS e
Xg =T 2o g+ — / d f+7/ V.b(z — Xg)dz. (2.3.3
S i ~Colia + 7 Cdx ’Xs+5 MWC (v s)dr. ( )
supp(b)+Xs

Here, we made use of the constant of the solid €04, similar to (3.1.5), defined by

6solid =&+ (234)

| supp(b)| [ Puim L) - €|V01U.mesolid|
M 09H, M '

The difference between the constants cgo;q and Ceoiq is the € coefficient in the latter one.
Due to the additional hypothesis € = 1 in (SV), it was not present in the previous section
for the Saint-Venant regime, but in the Boussinesq regime (BOUS) it has to be taken into
consideration.

Once again, notice the presence of the friction terms in the solid equation, which is
potentially of order (5\/ﬁ)*1, so we will have to reason carefully why this doesn’t pose a
problem for our system. First of all, we have the following concerning the consistency of
the solid equation:

Proposition 2.3.1. Let so > 0, and let us assume that ¢ € C([0,T]; H**T%(R?)) and that
b € HT(R) compactly supported. Let us suppose that V2 € C([0,T]; HT¢(R?)). In
the long wave Boussinesq regime (¢ = O(u)) the solid equation (2.1.20) is consistent at
order O(y/1) with the model (2.5.3) on [0,T] with T > 0.
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Proof: By the regularity assumptions and the additional hypotheses of (BOUS) (Lemmas
3.42. and 5.4. of [Lan13]), we can write that ® = v + p*Ry with

IRalllz o0 < CUICH T 045 101l zr50+) IV athlll 7 proos,
10:Ralllz, prso < CUICH 7 s150+05 [0l o0+, 1V el groo+s )

meaning that, we have

P atm

P‘z:—l-ﬁ-ab = + h + H’QRP,Qa
ogHy

IRe2ll 1150 < CUICHT gso+s 116]

11070 [[ Va7 prso o)

Hence, in the equation for the solid motion (2.1.26), we recover the approximate equa-~
tion (3.1.3) with the additional error terms

Ctric X S

1
Sy A Rd+2—~/Rbe — Xg) dz,
\/EM‘XS‘+5/I(1$) PRAET T Jr 02 (v = Xg)dz

that can be estimated as an O(,/u) total error term, that is, it is less than

VHC(M Y KNz prsovo. 1B

Hs0t6, |||V$77Z)|||T,HSO+6)‘

O

We remark that given the fact that the Boussinesq system is consistent at order u?
(Corollary 5.20. of [L.an13]), the consistency of the coupled fluid-solid system can only be
at most of order ,/u which is a considerable loss. In order to remedy the situation, we
will address some possible extensions of the solid model in Section 2.3.6.

2.3.2 The coupled wave-structure model in the Boussinesq regime

Here we present some remarks on the right hand side of the Boussinesq system (3.1.2).
Again, we have that
0b(t,r) = —V,b(x — Xs(t)) - Xs(2),

however we also have that
Ve OPb(t, x) = Va0, (= Vb (x = Xo(t)) - Xs(t))
= V.. (V2b (x — Xs(t)) Xs(t) - Xs(t) — Vb (v — Xs(1)) - Xs(1))
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To sum it up, the free surface equations with a solid moving at the bottom in the case
of the Boussinesq approximation take the following form

_ _ — 2.3.5
(1-50) 0V 4 V.C 4oV 97 = ~Lv.om, (2.3.50)
O Cric 1 ~ 1 XS
XS = - —Csolid + —= / Cdlﬂ T =
\/ﬁ c Msupp(b)—i—Xs ‘XS‘ + 0 (235b)
g
+ = /Rd (V.b(x — Xg) da.

2.3.3 A reformulation of the coupled fluid-solid system

Following the observations of Section 2.3.2, we may elaborate the source term of the
coupled system. The free surface equations with a solid moving at the bottom in the case
of the Boussinesq approximation can be written as

0iC + V- (WV) = —V,b (z — Xg) - X,
(1 - ‘;Ax) OV + Vol +e(V-V,)V = (2.3.6a)

— gvm (Vib (Zﬂ — XS> XS . XS — be (.T — Xs) . Xs) ,

. Ctric 1 - 1 X
Xs=— .  Csolid + i / Cdx — 5
\/ﬁ supp(b)+Xg 'XS‘ +9 (236b)

19
+ = /Rd (V.b(z — Xg) da.

First of all, let us remark that a more compact formulation can be derived, just like for
the nonlinear Saint-Venant equations coupled with Newton’s equation (2.2.6) in Section
2.2.4.1. This formula is obtained through the same means as in the previous section, so
we will apply similar notations as well. We have the following: the fluid equations (2.3.6a)
for the variable U = (¢, V) can be written as

d
D, oU + > AU, Xs)O;U + BU, Xs) =0, (2.3.7)

J=1

where the matrix A;(U, Xg) is the same as the one defined in the previous section, that
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is

eV | hi;

AU, Xg) = for 1 <j<d.

IT €Vj Iddxd

We remark that we have the following simple decomposition

Vil =b

Aj(u,Xs) :Tj +5Z]~(LI,XS) = (238)

Additionally, we have that

D= (1 - gﬁx) Idgxa ’

and the source term vector takes the following form

—EV - V,b (x — Xg) + Vb (2 — Xg) - Xg
B(U’XS) - gvm (Vib (I — Xs) XS : XS - Vb (ZI} - XS) ) XS) '

Remark 2.3.3. Once again, we can symmetrize equation (2.3.7) with the use of the

matrix
1| 0

SU.Xs)=1 h1dy,.

remarking that

0| 0

S(U, Xs) = Id(d+1)><(d+1) +sS(L[, XS) = Id(d+1)x(d+1) +e 0 (C B b) Td, .

Let us make one further remark, concerning the second order (nonlinear) ordinary
differential equation characterizing the displacement of the solid Xg in (2.3.6b). Let us
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adapt the definition of the functional F[U](t,Y, Z) introduced in Section 2.2.4.1.

Tic 1~ 1
FUIt,Y, Z) = - Csotia + 7 / Uy dx

9
— [ UV, b(x —Y)dx.
\/ﬁ +M/]Rd ov (ZL‘ )$

supp(b)+Y

The coupled system (3.1.6) has the following equivalent form

d
D, oU + > A;(U, Xs)O;U + BU, Xs) =0, (2.3.9a)
j=1
Xg=FU] (t, X5, Xs) . (2.3.9b)

2.3.4 A priori estimate for the Boussinesq system coupled with
Newton’s equation

In this part we present the energy estimate in a Sobolev-type function space for the
coupled system (3.1.6). This estimate is based on classical methods (Gréonwall type in-
equalities), but for an energy functional adapted to the fluid-solid system. In the nonlinear
Saint-Venant regime, we constructed an iterative scheme for the system which provided
the necessary tools to deduce a local in time existence theorem. The heart of the proof
was the energy estimate established on the linearized PDE system (Proposition 2.2.3)
and a separate velocity estimate (Lemma 2.2.5.) for the solid system. Due to the addi-
tional dispersive term as well as a more complicated source term on the right hand side of
system (2.3.6a), a refined analysis of the coupling terms is necessary. More precisely the
right hand side with ©V,0?b contains a term of ,uX s which is asymptotically singular by
equation (2.3.6b).

One additional remark concerns the time of existence of the system. We aim for a long
time existence result, which involves the parameter €. This scale was not present in the
previous section since for the Saint-Venant regime (SV), we made use of the additional
hypothesis of ¢ = 1. However this implies that in the Boussinesq regime (BOUS) more
careful estimates are needed; we establish an existence time over a large O(s71/2) scale,
while standard methods only provide an O(1) existence time when the bottom is moving,
because of the O(1) source term 0;b in the first equation of (3.1.2). It is however still
smaller than the O (¢7!) scale for a fixed bottom ([SX12, Burl6]).

By introducing the wave-structure energy functional

1 9 1 — = W
_i/RdC dx+§/Rdh(V-V Ve + - Z/ B,V - aV)dx+—]XS

?

we can establish first of all an L? type energy estimate for the coupled system (3.1.6),
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from which we will be able to deduce a certain control on the velocity of the solid.

So, we have the following:

Proposition 2.3.2. Let i < 1 sufficiently small and let us suppose that so > max(1,d/2).
Then any U € C*([0,T] x RY) NCH([0,T); H**(R?)), Xg € C*([0,T]) satisfying the coupled
system (2.3.9) (or equivalently (3.1.6)), with initial data U(0,-) = Uy, € C*(RT) N H*(R?)
and (X5(0), X5(0)) = (0,vs,) € R? x R? verifies the energy estimate

sup {eVE' Ep(t)} < 2E5(0) + pcoT[b] 35, (2.3.10)
t€[0,T]

where .
co = (Cries M WU 1 g0, NN 7 pyra.oe  1B][yrasoe )

Proof: We follow the standard steps of a general energy estimate, adapted for the Boussi-
nesq system with moving bottom, paying close attention to the parameters. We start by
multiplying the first equation of (2.3.6a) by ¢, and the second equation by hV, after which
we integrate on R? with respect to the spatial variable x. This yields the following system

/RdatCCda:—l—/Rde-(hV)Cdx: —/Rdgvzb(x—xs) dr - X,

PA ) no . v - O N\T T g
/Rdh<1—BAx)8,51/-Vd:v+/RthxCVda:+e/Rdh(V-Vx)V-de—

B g a Ve (V2b (2 — Xg) X5 - Xs) - Vda +%/R hV2b (2 — Xg) Xg - V da.

Our main interest is the terms on the right hand side that represent the coupling in the
source term, for the rest we shall reason briefly, since those estimates are part of the
classical analysis.

The time derivative term of the second equation can be reformulated by integration
by parts in the following way:

I 1d — = 1d /u
ni1—Ha do =50 [ BV Vydu+ 5 h(
/Rd ( . x)atv Ve =542 [ n(v-7) o 5 2 e 3 0,V - 0,V) du

1 Vvl Il
‘ngath( gZjav 8V>dx+ Z/ah@aﬂf V)dx

For the first equation, by making use of an integration by parts as well as equation
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(2.3.6b) on the right hand side, we get

M1d

1d 2 4 .2 _ _
la MLad / e / . _
S foa ST gdt\ S] + [,eVeC Vedo+ | h(Ve-V)Cda
- Megse (1 1 X
8/ V.b (ZL’—XS)-VCdl‘— o (ésolid+~/ (dx )‘S‘
Rd Sﬁ € M I(t) ‘X5’+5

K hvx(Vib(x—Xg)X5~Xg)-de+ﬁ/ hV2b (x — Xg) Xs - V da.
2 Jrd 2 Jrd

Notice that by equation (2.3.6b), we have been able to substitute part of the contribution
associated to the source term 0;b as a component of the energy Fp(t) on the left hand side
of the first equation. This is crucial to get an extended existence time. Moreover, on the
right hand side, a now nonpositive friction term appeared that can be easily controlled.

Now we add together these two equations and in what follows, by making use of term by
term estimates, we arrive to a Gronwall-type inequality concerning the energy functional
Eg(t) (for 0 < t < T) which then allows us to properly conclude the demonstration.
Hence we are left with

d
%EB() Agp+ B+ Cp+ D+ Fp + Gp, (2.3.11)
where

A -—1/ on [V 7+ L5 07 0,7)) d (2.3.12)

B.—2Rd t 3j:1 7 ' x; .

RS - o
5= _3]21 /]R 00,0,V - V) d, (2.3.13)
Cp = —/Rd €VIC~VCd:E—/Rd h(VI-V)Cdx—/Rd W,V da (2.3.14)
i / WV - V)V -V da, (2.3.15)
Rd
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~ y 2
- Megse (1 1 X
DB = 5/d vmb (l‘ - XS) ' VC dr — “ <6solid + = ( )Cdl‘) ‘75) (2316>
R I(t

eyt \€ M ‘XS’ +3
Fp=—5 [ 1V, (V2o (2 — Xg) Xs - Xs) - Vda, (2.3.17)
2 Jrd
Cp = %/ hV2b (z — Xs) Xs - V da. (2.3.18)
R

Now we proceed to estimate each term on the right hand side. By making use of the
first equation of the Boussinesq system (3.1.6), namely that

Oih = —V, - (hV),

we can establish that

J— ILL J—
Ap < sel[Ulwsoe, [ollwsow) (1713 + EIV IR )

As for the term Bpg, we aim to estimate the L? norm of the mixed derivative term
0;0,V. By making use of the second equation of the system (3.1.6), we have

boov = (1-28,)" (Bow) o (1-28,) e (Lo -vam) @319)

By _ K ‘1<_u. )z
+2(1 3A$) L0,9.) o,

~1
Let us estimate each term separately. Given the fact that (1 — %Ax) (—%@-Vﬁ is a
zeroth order differential operator whose symbol is uniformly bounded with respect to pu,
we can easily deduce that

(=58 (o)<

-1
For the second term, first of all, we have that the operator (1 — %Ax) 10; has a symbol
of order —1, uniformly bounded with respect to u, therefore

S ¢ e

L2

Sell(V-Va)V)lla-,

L2

((1-5a) < (<o v.7)

from which, by a classical product estimate, we have that for sq > d/2, —1 > —s
IV - Vo)WVl SV o IVe - V- S IV oo [V 2.

As for the third term from (2.3.19), we use the chain rule for 92b, as well as the fact that
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-1
(1 — %Ax) is uniformly bounded in p as an differential operator of order 0. This yields

M -1 . .
i (1= 500) (-0,9 08| S (el Xl + [[0]1] L)),

L2

where we made use of the fact that b is compactly supported. Here we can estimate /ﬂ|X s|
directly from equation (2.3.6b) due to the additional smallness parameter. More exactly
we have that

| Xs]

9 Cfric ~
—C oli < O Cric, b oo and — =X s
z sotid < /HHC (Caric, [|b] ) Xol 3

VHE

which allows us to infer that
/Lz,XS‘ < \/ﬁc(cfricv Hb”WLm? HCHL"O)

To sum it up, we have obtained the following estimate:

#e0) [V 22 + 12| Xs|* + /1l|B| . (2.3.20)

[L007| | Nclue + et
3 L2

Thus we get

— — . 2 J—
Bp < ec([[U]lwree, [|b]lwace) [HCHLQIIVHLQ + ec([[U]l o) IV 172 + | K|+ Vabllasl| V22 |

here the last term can be estimated as || V,b||3. + ||V |32 as well.

The integrals incorporating the nonlinear spatial derivative terms correspond to

d 14
Cp = ]Zl/R SA;U)U - U dx: = —2]21/]1@ 0;(SA;)UU - U du,

to which we can easily find an upper bound, giving

Cp < ec(|Ulwres, [|bllwree) U]
For the first two source terms for the system, basic L*°-norm estimates and Cauchy-
Schwartz inequalities provide the necessary means to conclude
Dpg
Fp

ec([|bllwr) 1€l z2IV]| 22 + 0,

<
-2
< pe([[Ullwr, [[b]lws.~) | X |

We remark that the friction term can be straightforwardly bounded above by 0 in the
estimate for Dp.
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We leave the last source term, Gp, as it is due to the presence of X s(t); according to
equation (2.3.6b), it requires some attention to avoid problems arising from the friction
part (the asymptotically singular terms).

So, to sum up the previous estimates, we get that

d o e o
s (t) <+ ec(Ullwa, Nollwr=) (V1= + 11V VIE2)

dt (
+ ec(Ullwroe, [0lwre) (€1 1Vl 2 + el o) IV 122 + VEIVIZ: + 413
+ ec([U|lwroe, [[Bllwace) [U]172 (12| Xs | + /A]6]130)
+ ec(|bllwre) €112 1Vl 22 + 0 + pre([Ullwrce, bllwae) [ Xs|
+ Gp.

So we may deduce that

d

S Bp(t) < ee(ld

o0, [Ullwroe, [Bllwase) (Ep(t) + albl3s) + G (2.3.21)

from which by integrating with respect to the time variable ¢ (keeping in mind that
0 <t<T), we obtain

t t
EB(t) — EB(O) < 800/0 EB(T) dr + \//_JJECOtHbH?{3 —|—/0 GB dT, (2322)
where we made use of the constant

co = (Ul grso - WA pp1.00 1Bl lwrace)-

Lemma 2.3.2. The remaining source term Gpg satisfies the following estimate for all
0<t<T,

t . —
LI [ n92 (@ = Xo) Ks - Vdwdr < pe[ollwaee, Ul ) (Ea(t) + En(0))
~ t
+ Vee(cse, M7 [ollwsoe, Wl oo Il ) [ En()

t
+ e(0llwoe, [Ullgr.e) | N6l dr.

Proof: To handle the source term, first of all we apply an integration by parts in the time
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variable. This yields
“/Rd /Othvib (x — Xg) Xg - Vdrde = “/Rd hV2b (x — Xs) Xs - V(t,2) dz

- 'u/IR{d hV2b (z — 0) vg, - Vin(x) dz — ,u/Rd OhV2b (x — Xg) Xs - V(t, z) dx
ny /Ot /]R WV ,(V2b (& — Xs(7)) Xs(r) - Xs(7)) - V da dr
— M/Ot /Rd hV2b (z — Xg(7)) Xs(7) - 0,V dx dr.

The first two boundary terms can be estimated similarly, for the first term we have that

p [ hV20 (@ = Xs) Xs - V(t) de < pe(follwene, [Ull) (X + IV2),
and we can deduce an identical estimate for the initial data. Here we used the fact that b
is compactly supported, and as such the integrals can be calculated on supp(b). Since we

assume that g is sufficiently small, this estimate with the energy term will be absorbed
by the energy term on the left hand side of (2.3.22).

Once again making use of the first equation of (3.1.6) we obtain
M/Rd 0hV3b (2 — Xs) Xs - V(t,x) de < pec(|[bllwess, [[U]lwr ) (IXs]” + [[V]72).
The integral on the support of b gives

u/d hV (V20 (x — Xg(7)) Xg - Xg) - Vdrdr <
R

< pre(][bl]zoe, 1124 oo )| X s 1 V201 2 supp(on 1V 1] 2 suppie))
< pe([[bllwsee, U] =) Xs .

Finally, by an integration by parts with respect to the spatial variable, we get that
t ) _
| [, V2@ = Xs(r)Xs(r) - OV dudr =
0o Jr

= [ L9t X)) Kslr) (T, -7
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from which we deduce that
¢ . _
,u/ /d hV2b (2 — Xg(7)) Xs - 0,V dovdr <
0o JR

o W —
< clllblbwaee, el ) [ VXl |52 07| doar
| Xs(r)

< Vee([[bllwee, 141, ) /0 NG (I¢lzz + ec(eh]]10) [V 2) dr
tXg(T — .
+ VEe(|lBllwaoes Wl z) | 'f”' (VA2 + 17 Xs1) dr.

t
+pre(lwsoe, [l [ 10150 dr

where we made use of our previous observation adapted to 4V, -0,V (inequality (2.3.20)).
Remarking that e~/2|Xg| < EY* by definition, we obtain

t . —
u/ /dhvgb (& — Xo()) Xs(7) - 8V da dr <
0 JR
~ t
< Veelenes M7 bl [Ull i) [ Es(r) dr
t
+ ae((lBllwroe, [Ullgy.e) | N6l .

which in turn allows us to conclude this lemma. O

So by Lemma 2.3.2. and inequality (2.3.22), we obtain that for p sufficiently small

t
Ex(t) < 2E5(0) + Ved /0 Eg(r) dr + péot]|b]|%s, (2.3.23)
with the constant

éo = c(cssies M7 U groo s 17 1Bl ).

Thus, by Gronwall’s inequality, we can conclude the energy estimate. 0

This concludes the L?-estimates (case s = 0). Let us mention some consequences
concerning the velocity of the solid.

Corollary 2.3.1. This energy estimate provides us with a natural control on the solid
velocity, namely

sup {e‘ﬁcot
te[0,7

. 2
Ko} < ellthallfo + s, + epacoT 6], (23.24)

where 3
co = (Ctric, M U g yprasse s U7 grso 5 116l lwrsce)-
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This implies that the solid velocity stays bounded on a O(e~/?) timescale as long as cg
stays bounded.

Remark 2.3.4. Following the steps of Lemma 2.2.5. we would have obtained the velocity

estimate ;
. u o5} ,00
|Xs(1)| < |USO|+€|| e 1\|~|4”W1 t, (2.3.25)

which is a worse estimate than the one presented in the previous corollary and it cannot
be used to obtain an extended existence time.

Remark 2.3.5. By the identity

Xs(t)
e

from (3.1.12) of Corollary 3.1.1, it is easy to see that if the initial velocity is of order \/z,
that is e~ /?vg, is uniformly bounded in p and e, then the scaled solid velocity e /2 X g(t)
stays uniformly bounded. Moreover, this uniform bound is valid up until a time of order
O(e7Y2) as long as ¢y remains bounded.

Xs(t) = e

For higher order energy estimates we are going to make use of this estimate and the
differential operator A* = (1—A,)*/2. The energy functional associated to these estimates

writes as 1

By(1) =5 [ (¢ dr +;/R AT - A7) da

1¢ 7 — — M. 2
= —h(0;AN°V - O;A°V)dx + — | X
+2;/Rd3(3 ATy do + 5 [X]
Due to the special structure of our system, let us define the following adapted Sobolev
space to provide a uniformly formulated energy estimate.

Definition 2.3.1. The Sobolev-type space X* is given by

X4 (R = {U = (¢, V) € L*(R?) such that ||

X5<OO}7

where

4]

v = Sl + Ve + Vel V]

Hs+1 .

The last term in the X® norm appeared due to the necessity to control the dispersive
smoothing through /i times the partial derivatives.

We have to modify certain parts of the proof, due to the fact that some of the cancel-
lations used above cease to work anymore. More precisely, we have that

Proposition 2.3.3. Let u < 1 sufficiently small and let us take s € R with s > d/2 + 1.
Let us take U € C([0,T]; X*(RY)) N CL([0, T); X5~ 1(RY)), X5 € CL([0,T)) satisfying the
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coupled system (2.3.9) (or equivalently (3.1.6)), with initial data U(0,-) € X*(R?) and
(Xs(0), Xs(0)) = (0,/eVs,) € RE x RY. Then U, X verifies the energy estimate

1
sup {e_‘/gc‘*t ( |||
] 2

tel0,T

/2\?5 +2 |‘/50|2 + \/ETCS||b|

2
Hs+3 9

1. 2
2
b+ oo [ ) b <20,

where

6]

Cs = ¢(Cric, M_17 ’HZ/[MT,HS? Ho+3)-

Remark 2.3.6. Notice that taking into account the coupling effect for the a priori estimate
ensured that the constant in the exponential stays of order /e, which guarantees a proper
control on the fluid velocity over a time O(e~Y?), which is better than what the general
theory would imply for a time dependent bottom variation.

Proof: We start by applying the operator A® on the symmetrized equation ((2.3.9) mul-
tiplied by S(U, Xs)), and we would like to use the techniques presented for the case of
s = 0, treating A*U as our new unknown. Thus we are left with

d
SU, Xs)D oMU+ > SA; (U, X)O; AU + A°SBU, Xs)

=1

. (2.3.26)
+ [A%, S(U, Xs)| Do + > [N, SA;(U, Xs)|0;U = 0.

j=1
Notice the presence of the additional commutator terms in the equation.

Our main idea is the same as before, after multiplying the equation by A*Y and
integrating over R%, we make use of similar estimates as in the first part for the L?
estimate to obtain a Gronwall type inequality for the corresponding modified energy
functional E%(t).

For the first two terms of our new equation, which correspond to the time derivative
and nonlinear terms of the original equation (2.3.30a), they may be treated similarly as
before, obtaining the same estimates with the same constants, only for H®*-norm instead
of L?-norm.

The main difference is the presence of the commutators in equation (2.3.26) due to
A®; and the treatment of the source term since the cancellation obtained by using the
ODE (2.3.6b) does not work anymore. We will make use of the well-known Kato-Ponce
inequality (for this we have s > 0) as well as Sobolev-embedding results (for these, the
condition s > d/2 + 1 is necessary) to establish commutator estimates. Namely, we have
that for f € H®, g € H5!

I[As; flglice S 11 f[]ae ae=t S |l

the latter inequality coming from the embedding H*(R%) < W1>°(R%). We also have that

gllze + 1 Fllwrolg] 9lls=1,
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for f € H*, g € H®, and s > d/2

[A(F9)llzz S 111

Hs g| Hs-

So, by the decomposition of the symmetrizer matrix, we may write that

‘ /]R A, S(U, Xs)|D,0U - AU da

_ ’ /]R A ES(U, X5)|D,0U - AU da

d

S e[|t gs + ||6]as) ZSAj(U,XS)ajU—i— SB(U, Xs) U s
J=1 Hs—1

5 €C(||u| Hs, |b| Hs) Z/{| %15 +€C(||Z/{| Hs, |b| HS) SB(Z/{,XSH Hs Z/{| Hs-

Here we made use of equation (2.3.9) to handle the time derivative. The additional term
will be absorbed by the source term in equation (2.3.26).

Additionally we have that

d
/]R OSIASA U, Xs)OU - AU da
j=1

d
= |/]RdZ[A87€SAJ(u’XS>]a]Z/{ . ASUd.CL’
j=1

O | = Ulls= < et e, 1Bl o) 1A ][

d
Sed||sA; x|,
j=1
In both these commutator estimates, we made use of the fact that the constant diagonal
matrix component trivially cancels out in the commutator.

Finally, attention has to be paid to the source term too, since for instance now we
can’t apply the ODE (2.3.6b) to treat the original right hand side of the first equation
due to the presence of the operator A°. Thus we are left with

V. b|

Hs Hs

y |X'S’
s s — . < L
/RdACA be(a: XS) dx XS\\/E\/E ||C|

< Vee(lU|

(2.3.27)

1 .
o) (1%l + V.8

2
Hs |-

Here we remark that | Xg|? < 2¢E%. Notice that it is at this point that we can no longer
use the cancellation, thus loosing a smallness factor.

Moreover, we are required to estimate terms which involve the operator A® applied to
a product, this is handled by the commutator estimates, giving us

E/Rd AS(V,b (z — Xs) - VINCdr < ec|[bl| o) U2
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and with a simple upper bound, we have

Xs

Hs+3)

o 2
&L AV (V26 (0 — Xo) Xs - Xs) - AV dir < pel[Ul ] |

At last, just as with Lemma 2.3.2. we can deduce the following estimate

t . —_
i, [ hAT2 (@ = Xs(r) Ks(r) - AV dr da < el e [oll2) (5 (8) + E3(0))

~ t
+ VEelesies M7 WUl g [0]leso) [ E(r)
+ (Ul e Nellwroe )] Vb

2
Hs+2 .

To sum it up, after an integration with respect to the time variable, with the definition
of the energy functional E3(t) and the velocity estimate obtained from the L? estimate
(Corollary 3.1.1.), we may write that

Ep(t) < 2E5(0) + vecst|b|

t
2 s+ V/E0s / B,(r) dr, (2.3.28)
0

with the constant N
¢s = (Cpic, M_l» |||u|||T,HS7

6]

Hs+3).
So we have the right terms in order to complete the estimate, again with Gronwall’s
lemma. U

2.3.5 Local in time existence theorem

The energy estimate allows us to establish the main existence theorem for the coupled
Boussinesq system, which states as follows

Theorem 2.3.1. Let us consider the coupled system defined by equations (3.1.6). Let us
suppose that for the initial value (3, and b the lower bound condition (2.1.1)

Fhmin > 0, VX € RY 1+ (X)) — b(X) = hpnin (2.3.29)

is satisfied. If the initial values (i, and Vi, are in X5(RY) with s € R, s > d/2 + 1, and
Vs, € RY then there exists a mazimal Ty > 0 independent of € such that there is a unique

solution
¢, VyecC (lo, j%] ;XS(Rd)> nct (lo, 505] ;Xs‘l(Rd)> ,

e (o]

with uniformly bounded norms for the system (5.1.6) with initial conditions (Cin, Vin) and

Fluid-structure interaction 141



2.3. The O(u?) asymptotic regime: The Boussinesq system

(07 \/EVSO)'

Proof: For this demonstration we shall follow the footsteps of a classical Friedrichs type
reasoning for (in general) symmetric hyperbolic systems, found for example in Chapter 16
of [Tay97]. The reason for this has already been evoked in the previous section, an iterative
scheme is not adapted to the nonlinear coupled Boussinesq system because it does not
allow for the cancellation of the coupling terms in the energy estimates. With a carefully
chosen Friedrichs smoothing of the equations, these cancellations can be preserved.

1. A regularized system: We shall first of all regularize the system with the help of
the Friedrichs mollifier Js.

Definition 2.3.2. For every u € L*(RY) we have that for ¢ € R?

Tsu(€) = p(66)a(),

with ¢ a reqular real valued even function defined on RY with compact support, such that
p(0) = 1.

A slightly modified classical property of the mollifier entails the followings

Lemma 2.3.3. (1) For every s,t € R, the operator Js acts from X* onto X*, moreover
there exists a constant C(s,t,0) such that

[ Jsullxe < C(s,t,0)]|ul

XS

for every u € X*. (2) Js as a linear operator is continuous every LP(RY), 1 < p < oo,
furthermore for all u € LP(R?)

[ sullr < Cllullze

with a constant C' independent of 9.

Using the mollifier, we propose the following symmetric regularized system

d
S(JU°, X3 Do’ + > JsS(JU°, X2 Aj(JsU°, X&) T50,U’ =

j=1 (2.3.30a)
= S(JsU°, X2 JsB(JsU°, X3),
X5(t) = FlIU) (1, X5, X3) (2.3.30b)

u5<07 ) = Uin, (ngxg) (0) = (077)50)'

Based on Lemma 2.3.3, we may deduce that the regularized system (2.3.30) is in fact
an ODE (in the Fourier space) on any X® Banach-space, the regularization guarantees
that the nonlinear operator on the right hand side in its canonical form is regular thus
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uniformly Lipschitz and continuous in time. So by the Picard-Lindelof theorem we may
deduce that there exists a solution U° € C([0, T5]; X*) and X € C?([0, Ty]).

2. A priori estimate for the regularization: Following the steps of the a priori
estimates proved in the previous section, the estimate in Proposition 2.3.3 holds for our
regularized system as well, since by the careful choice of regularization in system (2.3.30)
the cancellations are preserved. So we have that

1. 2
2115 + ~ [ X530 < X (IWhinll e + o5, + vVECat[BllFess) (2:3.31)

with A = \/ECS, t € [O,Tg]
3. Uniformization of the time interval: Here the hypothesis s > d/2+ 1 is important

since we want to make use of the Sobolev embedding H* «— Whee,

Lemma 2.3.4. The reqularized problem (2.5.30) has a solution on [0,e~'/*Tp] with T,
independent of 0 and €.

We have an estimate of the form

d -
%Eé(u67 Xg‘)(t) < \/gc(cfrim M_17

U] e 0

s (B X2)(0) + [

o)
Hs+3 9

just before using Gronwall’s lemma in the higher order energy estimates. By a change
of variable of the time parameter of the form ¢ = e~'/2¢, it is clear to see that we have
an uniform upper bound for a long time regime (with the variable ¢). This implies that
solutions to the regularized system (2.3.30) exist for a time e~1/2T; 5 with T 5 independent
of e.

Furthermore, we have that for every T > 0, t € [0, min{7T, 5*1/2T0’5}}

& (e B+ 2 K20 < F (10l + 2 i) (2332

with F' being a regular function independent of . By the Picard-Lindelof theorem, there
exists Ty > 0 (e7Y/?T, < T) such that the ordinary differential equation

{y’(t) = F(y(t))

y(0) = |[Usn %+ + |Vso|”

has a unique solution on [0,e7'/2Tp]. By Grénwall’s lemma and a standard comparison

theorem for ODEs we deduce that
1. 2
24t + - X500

< y(t).
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4. Convergence: Let us define the following supplementary function space

et (p o (o)

Solutions U° of the regularized problem clearly belong to E7, with X% € Wh. Thus,
the family {¢/°}s is bounded in E7, so it has a weakly convergent subsequence in E7,
towards a function U € EF, .

Since the inclusion H; (RY) — Hi '(R?) is compact, by the Arzela-Ascoli theorem

loc

we may extract a strongly convergent subsequence from it in C([0,eY2Tp); X;5-1) locally.

By interpolation inequalities we have that U € C7([0,e7/2Ty); X:.7) for each o €
(0,1). Moreover, since the inclusion H*~7(R?) — C*(RY) is also compact for sufficiently
small o > 0, we may deduce that the subsequence is converging in C([0, e~*/2Ty]; CL (R?)),
with X§ converging in C1[0, e~/2T;]. With this subsequence we shall no problem in passing
to the limit in § for the regularized system (2.3.30) in the sense of distributions, leading

to a solution of the problem in E7.

5. Additional regularity: In fact, by being more careful with the estimates, we may
deduce that the solution U is in

(o) (p o).

Essentially, the main idea is to prove that the norm [[U(¢,-)||xs is in fact a (Lipschitz-
)Jeontinuous function of ¢, since it is the limit of || JsU(t, )| xs. For more details, we refer
to Chapter 16 of [Tay97].

6. Uniqueness: By taking the difference of two solutions for the system (3.1.6), they
consequently satisfy a similar system, thus by the previous a priori estimate, with 0 right
hand side, we may conclude that this difference has to be 0 as well. U

This concludes the proof of the well-posedness theorem concerning the coupled fluid-
solid system in the Boussinesq regime (3.1.6). As one can clearly see from the demonstra-
tion, Remark 2.3.6. on the nature of the time of existence stays valid, so solutions are
guaranteed over a time of order O(e~'/?).

2.3.6 Towards a more refined solid model

As we remarked in the beginning of the analysis of the Boussinesq regime, the solid
equation was consistent with the full Newton equation only at O(,/z) (Proposition 2.3.1.).
In order to be more consistent with the equation, we have to continue the asymptotic
development of & with respect to u, since the loss of consistency is due to the integral
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term .
Tic X
— ~Cf : s ,/ Pz:—l-i-ub dx.
Mp3/? | Xg| + 6 Jiw)

For this, let us briefly elaborate an additional term in the asymptotic development.
By Proposition 3.37. of [Lanl13] we have that

2

O(z,2) =¢(z) — p (Z + z> Apth + pzdib + O(u?), (2.3.33)

which gives us

2

e0y® = eoph(x) — ep <22 + z) A Opp + epz0ub + O(ep?),

as well as )

v = SVl 0, S ol = o)
2 T 2 T Y 2“ z .
This means that the pressure formula (2.2.3) takes the form

2

Pt z
P =TT _ - — A ¢ — b 2
(x, 2) ooty z2+eC —epu < 5 -+ z) ¢ —epz0ub + O(epns),

so an evaluation at the bottom gives

Pt 1
Doy = Wt% +hot SepthaC + epdub + Ofeps®), (2.3.34)

and as such its integral over the support of the bottom (I(t)) is
(= EH 2
P e = M(egia —€) e [ Cdot 8 [ ACdo+ Ofeps).
/m e = M =€) ¢ | (ot [ ACdu+ Oers)

By keeping the approximation of the pressure for the pressure term in the Newton’s
equation (2.1.26), we can recover a solid equation consistent at order O(1*?) of the form

L e [ 1) 1 p Xs
XS = - —Csolid T —= / Cdl‘ t o= / Amg da | v =
\/ﬁ < Msupp(b)+Xs 2Msupp(b)+XS ‘XS‘ + 0 <2335>

g
+ = /R (V,b(x — Xs)d.

One may obtain the same results for this model as the ones presented in Theorem
2.3.1.

We would like to point out one particularity of the aforementioned computations. The
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integral of eud?b disappeared due to the fact that b is smooth and of support compact.
If one were to use the refined pressure formula (2.3.34) to compute the integral in the
pressure term of Newton’s equation as well, one would find an additional nonzero term,
namely

e [ (Vab- Xe)Viabdo = Mo, X, (2.3.36)

where the linear map My, can be represented as a matrix, that is, in addition, positive
semi-definite. In fact My, stands for the so called added mass effect, or virtual mass
effect, corresponding to an added inertia due to the solid accelerating/decelerating in
the fluid medium, thus deflecting/moving some volume of the surrounding fluid as well.
As one can see, in the weakly nonlinear Boussinesq regime (BOUS) this term was not
present since it was of order O(u?), however if one were to study the general second
order asymptotic regime (meaning the Serre-Green—Naghdi equations), that is without
the additional assumption of € = O(u), this term (and many other nonlinearities) would
be present.

Conclusion

In the present paper, we established a coupled physical model of the water waves
problem with a freely moving object on the bottom of the fluid domain. We deduced
the exact coupled system and analyzed two different shallow water asymptotic regimes
(with respect to the shallowness parameter p): the nonlinear Saint-Venant system and the
Boussinesq system. We established local in time existence results as well as a uniqueness
theorem for both cases and we improved the existence time for the weakly nonlinear
Boussinesq regime.

Another possible approach would be to consider the full Green-Naghdi system for the
O(p?) asymptotic regime and establish the coupled system and possibly well-posedness
results for it. This would yield a non-hydrostatic pressure formula, and consequently a
more complex equation for the solid motion, incorporating the added mass effect, briefly
elaborated in the last section.

An even more general scenario can be envisioned, that is to handle the full problem
formulated in the first section, treating the coupled problem (2.1.22) with (2.1.26).

To complement the theoretical results, a numerical study is to follow this article in
order to verify the applicability of the system as well as to compare it with other existing
methods to treat wave-structure interaction problems ([DNZ15], [ACDNn17]).
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Chapter 3

The incidence of a freely moving bottom on
wave propagation
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Version francaise abregée

Version francaise abregée

La compréhension et la prédiction de la génération et de I’évolution des vagues occupe
les ingénieurs marins et les océanographes depuis des années. En 1871 Joseph Boussinesq
([BouT71]) a introduit le premier modeéle du probleme des vagues intégrant des variables
horizontalement moyennées. Ce modele a été modifié et adapté pour de nombreux régimes
physiques et mathématiques différents ([Per67], [Nwo93], [BCS02], [Lan13]).

La mise en oeuvre d’un fond qui évolue en temps dans ces modeles pose des défis a
la fois théoriques et numériques. Il existe des adaptations basées principalement sur des
expériences physiques ([Wu87], [TW92], [Che03]), mais leur justification rigoureuse n’est
faite que pour certains modeles ([Igull]). L'objectif de cette étude est la mise en oeuvre
d’un schéma numérique pour un modele intégrant un objet qui se déplace au fond sous
l'action du mouvement des vagues ([Benl7]).

Bien que I'étude numérique d’un solide immergé ne soit pas nouvelle, notre approche
est motivée par une analyse théorique approfondie du systeme couplé, contrairement aux
considérations expérimentales ou aux motivations numériques qui sont présentes en géné-
ral dans la littérature.

Le systéme couplé : Nous nous intéressons a un modele de deux dimensions physiques,
une horizontale (coordonnée z) et une verticale (coordonnée z) (voir Figure 3.1). Les
variables (adimensionnées) du systéme sont 1’élévation de la surface libre (, la vitesse
horizontale verticalement moyennée V', et le déplacement du solide X. L’évolution du
fond du domaine du fluide est décrite par b(t,x) = b (z — X (t)), ou b correspond a I'état
initial du solide.

Il y a également trois parametres dans le systeme qui caractérisent le régime physique
dans lequel on se place : u est le parametre de faible profondeur, ¢ le parametre de
I’amplitude des vagues et 3 le parametre de la topographie du fond.

Donc, les équations a surface libre en présence d’un solide au fond dans le régime de
Boussinesq faiblement non-linéaire sont données par

a¢ = E((V, X, X),
oU=F(V,X,X,X),
X =G X, X), (3.0.1b)

(3.0.1a)

ou

T=UV)=V— gamv.
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Les termes & droite s’écrivent

E(,V,X,X)=—0,(hV) — f@xb(x - X)X,
S\ Cfric X i o
G(C7X7X)_ B\/ﬁFnormal(CyX)|X‘+5+M/Rcazb<l’ X)d[)?

Pour le dernier terme, cy,;. représente le coefficient de friction, le quatriéme parametre
du modele, 9 est un petit constant mathématique, de plus

Fnormal(X; C) = ﬁ + Csolid + % / Cdff, (302)

supp(b)+X

avec les notations suivantes :

P, ~ M
0O (Fam )8 f e M
M QgHO M supp(b) QLa'bott

Csolid =

Le schéma numérique : Nous mettons en oeuvre un schéma numérique de différences
finies qui repose sur une approche de maillage décalé ([LMO07]). Nous avons amélioré leur
modele en raffinant la précision de certaines sous-étapes afin d’obtenir un schéma qui
converge en ordre 4 en temps ainsi qu’en espace également pour les quantités du fluide.

Le maillage est décalé au sens ou l'élévation de la surface libre () et la fonction
décrivant la topographie du fond (b) sont définies sur les points du maillage, en revanche, la
vitesse moyennée (V) existe sur les points de milieu du maillage. Les équations d’évolution
seront définies sur les espaces correspondant aux espaces de définition de ces quantités du
fluide. Le passage entre un vecteur défini sur les point de la maille et un vecteur défini

sur les points du milieu est assuré par une interpolation centrée sur 4 points.

Pour la discrétisation en espace, nous appliquons des schémas de différences finies
centrales d’ordre 4. Pour la discrétisation en temps nous avons choisi 'algorithme de
prédiction-correction d’Adams qui consiste en deux sous-étapes :

1. L’étape de la prédiction par un schéma multi-étape explicite d’Adams—Bashforth
pour I'équation (3.0.1a)

G =at (23E —16E7 7" + 5B %),

~ Fn+1* N . . . o .
et de méme pour V', ». En outre, c’est a ce point qu’on applique une discrétisation
adaptée pour I’équation qui caractérise le mouvement du solide :

X =G, X X X, (3.0.3)
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avec G définie par (3.2.6). Notons que cette partie du schéma n’est que d’ordre 2
(contrairement au reste du schéma, qui est d’ordre 4 en temps)

2. La correction utilise un schéma multi-étapes implicite d’Adams—Moulton de la forme

At
24

—n+1*

=+ o (9B Vo, XY 4 19E] — 5E] T+ EP7?)

Quelques résultats des simulations numériques : Tout d’abord, nous remarquons
qu’il est possible d’effectuer une analyse de stabilité de von Neumann pour le systeme
linéarisé ([LMO7]). Cela nous fournit une condition de Courant—Friedrichs-Lewy de la
forme suivante :

At 1
Hy— < =,
TN S 9
a respecter dans les simulations.

Nous avons effectué une suite d’expériences numériques pour vérifier ’ordre de conver-
gence. Dans le cas d'un fond plat, ou le systéme admet une solution d’onde solitaire qui
permet de mesurer I'erreur de la solution exacte, nous avons trouvé un ordre de conver-
gence proche de 4, qui est la valeur théorique (Figures 3.2). Nous avons obtenu des résul-
tats similaires dans le cadre d’un fond fixe non-plat, cette fois en mesurant I’erreur relative
avec une solution approchée (Figure 3.3). Dans le cas d’un solide pouvant se déplacer au
fond, nous détectons une baisse d’ordre, 'ordre est de 3 en espace et de 2 en temps (Figure
3.4), ce qui reste cohérent avec nos attentes.

En suivant 'amplitude d’une vague qui passe au-dessus du solide (en regardant plu-
sieurs régimes physiques), nous apercevons une diminution légere dans le cas ou le solide
peut bouger (Figures 3.9, 3.10). Cette diminution devient plus importante pour de petites
valeurs du coefficient de friction (~ 1073).

Nous avons également mesuré les effets des vagues sur le mouvement du solide. Notam-
ment, nous avons mis en évidence des effets d’amortissement hydrodynamique pour de
petites valeurs cy,;.. La Figure 3.13 montre que le ralentissement di a la force de pression
joue un réle important dans la dynamique et I’évolution du mouvement de ’objet.

Nous avons réalisé des expériences en temps long aussi, c’est-a-dire des simulations
avec des trains de vagues qui s’approchent du solide, situé au fond. Les résultats (Figures
3.15 et 3.16) montrent une évolution quasi-périodique de la position avec un déplacement
total positif vers la direction du mouvement des vagues, dont 1’évolution temporelle n’est
pas linéaire.

Introduction

Understanding and predicting surface wave propagation and transformation has been
one of the central elements of coastal engineering and oceanography for the past few
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decades. In 1871 Boussinesq introduced the first depth averaged model ([Bou71]). It orig-
inally described a physical situation with horizontal bottom and was later generalized
for variable depths by Peregrine ([Per67]). This kind of models has played a crucial role
in water wave modeling, especially in shallow water regions (such as the shoaling zone
for coastal waves). From a mathematical point of view, these equations arise as shallow
water asymptotic limits of the full water waves problem (for a thorough discussion on the
subject, please refer to [Lanl3]) and incorporate (weakly) dispersive and (weakly) nonlin-
ear effects. Nowadays many reformulations and generalizations of the original Boussinesq
system exist: for example Nwogu’s extended equation ([Nwo93]) or the abed-system in-
troduced in [BCS02], to cite a few of the most important ones.

There has been some articles considering the case of moving bottoms. After observing
solitary waves by disturbances of the bottom topography advancing at critical speed
([Wu87]) Wu et al. formally derived a set of generalized channel type Boussinesq systems
([TW92]). Their work was extended later on in a formal study on more general long
wave regimes ([Che03]). Tsunami research has also proved to be a main motivation factor
for the consideration of time dependent topographies (see for instance [Igull], where
the asymptotic models are fully justified), as well as the study of waves generated by
submarine landslides [DK13, Mel15]. All these references share the assumption that the
motion of bottom is prescribed, and therefore not influenced by the propagation of the
waves.

In this work, we address the more complex situation of a bottom moving under the
pressure forces exerted by the waves as they propagate at the surface. Contrary to the
previous configuration, this is a two-way coupling: the motion of the solid influences
the motion of the wave as above, but the motion of the solid is itself governed by the
propagation of the waves. In [Benl17], a model was derived to model this wave-structure
interaction. It consists in a weakly nonlinear Boussinesq model with topography terms
coupled to a second order ODE describing the motion of the solid under pressure and
friction forces.

A first physical motivation for such a model stems, for example, from marine energy
engineering, and most notably submerged wave energy converters (submerged pressure
differential devices, see [AELS14] and references therein) and oscillating wave surge con-
verters (WaveRollers and Submerged plate devices, [GIL"14]). Note that there have also
been recent theoretical and numerical works on a related wave-structure interaction prob-
lem based on depth averaged models and where the object is not lying at the bottom
but floating at the surface [Lanl7], [Bocl8], [IL18] [BEKREL7]. One of the goals of this
work is to bring some qualitative and quantitative answers on wave induced motion at
the bottom. A second motivation is coastal protection. In order to diminish the impact of
storm waves on coastal structures, submarine structure are sometimes built to change the
topography and hereby the location of wave breaking. The possibility of having moving
and /or elastic structures to decrease the energy of the waves has also been considered re-
cently. This is another goal of this work to assess the influence of a freely moving bottom
on wave breaking.
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Although the numerical study of immersed structures is not entirely new, our approach
is heavily based on a theoretical analysis of the general system, rather than experimental
or numerical considerations usually present in the corresponding bibliography. An ap-
proach with numerous physical and biological applications was developed by Cottet et
al. ([CMO06], [CMMO8]) based on a level set formulation, adapting an immersed boundary
method and general elasticity theory (see also [FGGO7]). Modeling underwater landslides
provides for an excellent example of such systems, we refer to [DK13] and references
therein for recent developpments. Numerical models adapted to tsunami generation due
to seabed deformations were presented for example in [GNO7] or [Mit09]. From a control
theory point of view, Zuazua et al. ([DNZ15]) performed an analytical and numerical
analysis on underwater wave generator models. Perhaps one of the most relevant existing
studies concerns a submerged spring-block model and the associated experimental and
numerical observations ([AMMMI15], [ACDNn17]).

The structure of the article is as follows. After a brief introduction, we present the
weakly nonlinear Boussinesq system in a fluid domain with a flat bottom topography and
with a solid object lying on the bottom, capable of moving horizontally under the pressure
forces created by the waves. Following our previous work, this coupled system admits a
unique solution for a long time scale ([Benl17]).

In the third section we detail the finite difference numerical scheme adapted to this
system. We elaborate a fourth order accurate staggered grid system for the variables con-
cerning the movement of the fluid, following the footsteps of Lin and Man ([LMO7]). As
for the time discretization, an adapted fourth order accurate Adams—Bashforth predictor-
corrector method is implemented, incorporating the discretized ordinary differential equa-
tion characterizing the solid displacement via a modified central finite difference scheme.
We end this section with some remarks on the boundary conditions implemented and on
certain useful properties of our adaptation.

Section 4 details the numerical experiments concerning the model. The convergence of
the finite difference scheme is measured to be almost of order 4 in time and in space for
a flat bottom as well as for large coefficients of friction, greatly improving the reference
staggered grid model (of order 2 only) in [LMO07] over a flat bottom. An order 3 mesh
convergence and an order 2 convergence in time is observed for small coefficients of friction.
The transformation of a passing wave over the solid is detailed in various different physical
regimes. Wave shoaling effects are examined and compared to a system with the same
parameters admitting a fixed solid object on the bottom instead of a freely moving one.
The effects of the friction on the motion of the solid are also measured, revealing that
the solid comes to a halt after the wave has passed over it. Measuring the solid motion
also indicates hydrodynamical damping effects reminiscent to the ones attributed to dead-
water phenomena, closely tied to internal wave generation (for more details, we refer to
[Ekm04], [MVD11], [Ducll], [Ducl2]). Long term effects by a wave train test are also
presented at the end of the section.
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3. The incidence of a freely moving bottom on wave propagation

3.1 The governing equations

3.1.1 The physical regime

We work in two spatial dimensions, and denote the horizontal coordinate by x and
the vertical coordinate by z. The time parameter shall be ¢ € R*. The physical domain
occupied by the fluid is

Q={(z,2) eRxR: —Hy+b(t,z) < z < ((t,x)},

where Hj is the typical water depth at rest and the functions (¢, ) and b(t, z) stand for
the free surface elevation and the bottom topography variation respectively (see Figure
2.1).

The solid on the bottom is supposed to be moving only in the horizontal direction, its
displacement vector is denoted by X (t), consequently its velocity is given by v(t) = X (¢).
Therefore we have that

b(t,z) =b(x — X(t)), (3.1.1)

with b corresponding to the initial state of the solid, at t = 0 (without loss of generality,
we assume that X (0) = 0). This function b is of class C*°(R) and compactly supported.

The solid is supposed to be rigid and homogeneous with a given mass M, in frictional
contact with the flat bottom of the domain. Its motion is governed by Newton’s second
law, and the main difficulty consists in computing the hydrodynamical force exerted by
the fluid.

The fluid itself is assumed to be homogeneous, inviscid, incompressible, and irrota-
tional. In full generality Its dynamics are described by the full water waves problem, that
is, by the free surface Euler equations (see for instance [Lanl3]). As said in the intro-
duction we choose here to describe the fluid dynamics by a simpler asymptotic model,
namely, a Boussinesq system.

The weakly nonlinear Boussinesq system considered here is a shallow water asymptotic
model, and we therefore have to introduce characteristic scales of the problem to perform
shallow water asymptotics. First of all Hy denotes the typical base water depth at rest,
and L, the characteristic horizontal scale of the wave motion; the solid horizontal size
is assumed to be of the same order. Moreover we denote by ag,f, the order of the free
surface amplitude, and ay., the height of the solid.

Using these quantities, we can introduce several dimensionless quantities:

2
e shallowness parameter p = L—g,

a
e nonlinearity (or amplitude) parameter & = —2Z

0
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Apott

Hy '

e bottom topography parameter § =

These parameters play an important role in the formulation of the governing equations.

L

H‘!
Shallowness: p = 73

Nonlinearity: e = %5

Topography: = "]’{—""

pott

Figure 3.1 — The characteristic scales of the coupled water waves problem

3.1.2 The coupled Boussinesq system

We consider here a shallow water and weakly nonlinear regime, i.e. we assume that p
is small and that ¢ = O(u), and we also suppose that the height of the solid is relatively
small (meaning = O(u)). The fluid is then governed by a Boussinesq system. Thus, the
asymptotic regime writes as

0< 1< pinae < 1, £=0(), B=0(n). (BOUS)

In this regime, Boussinesq systems are known to approximate the full water waves
equations with a O(u?) precision (see for instance [Lanl3]). In the case of a moving
bottom, such a Boussinesq system is given by the equations

B
© B
(1 _ ’;am> OV + 0, +=(V - 9,)V = =E20,07,

O+ 0, (V) = =0,

(3.1.2)

with h = 1+ ¢ — 8b denoting the nondimensionalized fluid height while V' stands for the
(dimensionless) vertically averaged horizontal velocity

— 1 re¢
V(t,z) = 7 /—1+ﬂb V(t,z,z)dz,
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with V' being the dimensionless horizontal component of the velocity field of the fluid.
In the equation, the variables are classically the nondimensionalized forms of the cor-
responding physical quantities described in the previous section (see [Lanl3] and more
specifically [Benl17] for details on the non-dimensionalization process). To recover the
quantities with the proper dimensions, it is enough to multiply the function or variable
by its corresponding characteristic scale (e.g. { ~» agurfC, © ~» Lz, etc.).

Remark 3.1.1. Without the smallness assumption on €, and on 3, it is still possible to
perform an asymptotic expansion at O(u?). The resulting system is more general than
the Boussinesq system (3.1.2) but also more complicated, it is known as the Serre—Green—
Naghdi equations (see for example [HI15]).

Following the derivation presented in [Benl7], Newton’s second law for the solid dis-
placement can be written in dimensionless form as

B Ctric X
BﬁFnormal(Xv C) ‘X‘ 15

In this expression, the first term of the right-hand-side correspond to friction forces, and
the second one to the pressure forces exerted by the fluid on the solid.

In the formula for the friction forces, %Fmrmal denotes the norm of the normal force
exerted by the flat bottom on the solid,

.. £
X = + M/Rgawbdx. (3.1.3)

1 Csolid €
*Fnorma X7C =1+ + —=
B l( ) B BM Jsupp(b)+X

¢ dx, (3.1.4)

where c¢ypq and M are quantities that depend only on the physical parameters of the

solid,
| Supp(b)| < Patm ) B
Csolid = = +1| ——= bdzx, 3.1.5
e M \ogH, M Jsupp(o) (3.15)
and M
M =
o0Lapost

(Patm stands for the atmospheric pressure, ¢ the gravitational acceleration constant, p for
the volumic mass of the fluid, and M for the mass of the object). The friction coefficient
Cfric in the expression for the friction force plays an important role in the mathematical,
physical and numerical analysis of the problem. The actual measurement of this coefficient
is rather difficult, especially in a complex physical system such as the current one, mainly
because its value depends on many other physical parameters (like the material structure
of the surfaces, the temperature, the pressure, the velocity of the sliding, etc.). Generally
speaking a coefficient of 1072 ~ 1073 corresponds to a relatively frictionless sliding, and
values in the range of 1 signify an important friction between the contact media. Finally, o
is an artificial parameter introduced in [Ben17] to avoid the singularity in the friction force
when the solid stops (a more accurate description, left for further works, is to distinguish
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between static and dynamic friction forces); the value of this parameter is taken to be
sufficiently small (~ 107'°) in order to be much smaller than all the other parameters
considered here.

Remark 3.1.2. The first term in csq corresponds to the the contribution of the at-
mospheric pressure to the pressure at the bottom. The second term corresponds to the
hydrostatic pressure contribution due to the water column. It is of interest to consider
configurations where these two contributions are of comparable importance,

Patm
ogHy

1 = Hy ~ 10m,

for Pum ~ 1000hPa and p ~ 1000kg.m™>. In our numerical simulations, we shall therefore
take Hy = 10m; with smaller values, the effects of the atmospheric pressure would be
predominant and for larger values, this would be the pressure of the water column.

To sum it up, the Boussinesq equations coupled with a freely moving object at the
bottom take the following form

¢+ 0, (hV) = Lo,
¢ 5 (3.1.6a)
(1 _ gam) OV + 0,C + (V- 0,)V = —’;fgaxaﬁb,
% Ctric X €
X _Grep (6 X)— 4 = [ cobdr, 3.1.6b
ool X =< (3.1.6D)

where we recall that b(t,z) = b(z — X(1)).
With the numerical scheme in mind, we can rewrite this system in a more compact form

as follows o .
atg = E(C7 V7X7X)7

> S (3.1.7a)
U =F((,V,X, X, X),
X =G(( X, X), (3.1.7b)
where
T=UV)=V— gamv. (3.1.8)
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3. The incidence of a freely moving bottom on wave propagation

The remaining terms are given by

B

E((,V,X,X)=—0,(hV) — gagcb(:c - X)X, (3.1.9a)

FCV XX, %) = -0, — S0.7%) = 220, (e - X) (X

2¢e
“5 L Oable — X)X (3.1.9b)
y ric X
G(CuXv X) - _Bf\/ll—LFnormal(C;X> |X| T 5 + ]E\Z/Rcamb(x — X) dl’, (319C)

where we recall that F,,.mq is given by (3.1.4).

3.1.3 Relevant properties of the system

The mathematical analysis of the coupled system (3.1.6)-(3.1.6b) is performed in
[Ben17]. One of the difficulties to get a uniform existence time is the singular term 1/3, /1
in the expression (3.1.7b) for G. One has to take advantage of the structure of this term
to show that it is a dissipative term that does not contribute to the growth of the energy.
The numerical scheme we shall use to describe the wave-structure interaction must be
carefully chosen in order to reproduce this mechanism at the discrete level (otherwise
singular O(1/3,/1t) error terms would appear). Due to the importance of this issue, we
recall here the uniform L2-type a priori estimate for (3.1.6)-(3.1.6b) obtained in [Ben17].
Let us first introduce the wave-structure energy functional

/Cdm+ / Vdr + - /“haV) dm+— 1% 3110)

the first term accounts for the potential energy of the waves, the second and third for their
kinetic energy, and the last one for the kinetic energy of the solid. We have the following
([Benl7]):

Proposition 3.1.1. Let p < fiyae and so > 3/2. Then any U € C*([0,T]; H*®) and
X e CQ([O,T]) satisfying the coupled system (3.1.6), with initial data U(0, ) = Uy, € H™
and (X (0), X(0)) = (0,vs,) € R x R verify the energy estimate

sup {e_\/ECOtEB(t)} < 2E5(0) + 2p1e0T|b]2, (3.1.11)

t€[0,T

where
co = ¢ SUP 1L, ) #so, [|b][ws.e ).

te(0, T

Sketch of proof. 1t follows a standard energy estimate argument; we multiply the first
equation of (3.1.6) by ¢ and the second equation by hV, and we integrate over R with
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respect to z. We also multiply the equation on X by %X and add the three resulting
equations to obtain

d 3 : -1 | X|?
—Fkp=— / b X/ a:b - ricMiFnorma T <
it 5[ ObC+ X [ ¢Ob| — ¢ o XI 13

where l.o.t. stand for terms that can be controlled by a Gronwall type argument. Recalling
that b(t,z) = b(x — X(t)), the first term between brackets vanishes. The second term of
the right-hand-side being obviously negative, a control of Ep follows from a Gronwall type
argument (see [Ben17] for details). The fact that the contribution of the (singular) friction
term is negative is crucial to obtain the uniform estimate stated in the proposition. This
property should be preserved by the numerical scheme. O

+ lLo.t.,

Using this proposition, it is easy to obtain the following corollary that provides a
uniform control on the velocity. A numerical scheme that would not respect the sign
property used in the proof of the proposition would lead to considerable errors in the
solid velocity.

Corollary 3.1.1. This energy estimate provides us with a natural control on the solid
velocity, namely

2 2
sup {e_\/ECOtM ]X(t)f} < A4S Ep(0) + 45 om0 2, (3.1.12)

t€[0,T] 5 6

where cq is as before.

3.2 The discretized model

In this section we present the numerical scheme we use to compute numerical solutions
to (3.1.9a)-(3.1.9b). We follow the ideas of Lin and Man ([LMO07]) who used a staggered
grid approach for the numerical simulation of a Boussinesq system in the case of a flat
bottom. We improve their model by reaching a fourth order overall accuracy in space
and time, and extend the scheme in order to take into account non flat topographies.
We then propose a second order numerical scheme for the wave-structure interaction that
reproduces at the discrete level dissipative structure of the singular term used to derive
Corollary 3.1.1.

3.2.1 The finite difference scheme on a staggered grid

Since the solid motion is time dependent only (X (¢) does not depend on the horizontal
coordinate x), spatial discretization only concerns the fluid variables, for which we aim
for a fourth order precision.
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In their article, Lin and Man obtained a stable and accurate model for a Boussinesq
type system (the Nwogu equations). They observed good conservative properties for the
fluid system, attributed mainly to the staggered grid method they implemented, which is
an important factor for long-term measurements; furthermore this scheme is well-adapted
to accurate energy measurements of the system.

We implement their staggered grid method in which the “scalar” quantities, such as
the surface elevation (, the bottom topography b and the fluid height h, are defined on
the grid points, and the “vectorial” variable, the averaged velocity V (that is still a scalar
since we are only working in one horizontal dimension) is defined on the mid-points of the
mesh. The mesh size will be chosen as Az, numbered by ¢ = 1,2,... Ngpee. The discrete
equation for ¢ (based on (3.1.9a)) will be defined for mesh points and the equation for V'
(from equation (3.1.9b)) for the mid-points.

In order to be able to do this, we will have to define the “scalar” quantities for the
mid-points as well, we shall do so by a four point centered fourth order interpolation, that
is,

= Gi1+9G + 9Gi+1 — Gy
Gip1/2 = 16 :

In the reference article [LMO7], only a linear interpolation was used. Even though it was

not mentioned at all, we believe it to be one of the main reasons for the loss of mesh

convergence in their scheme (they observe only a second order convergence).

For the spatial discretization in general, we chose fourth order accurate central finite
difference schemes for the different orders of derivatives. In their work, Lin and Man chose
only second order schemes for the higher order derivatives which is another reason for the
resulted loss in mesh convergence in their case. In our implementation even higher order
derivatives are discretized by fourth order schemes.

Observing the right hand sides of equations (3.1.7a) we may separate four different
types of terms. Once again, we emphasize on the fact that the first equation will act on
mesh points while the second one will be defined on mid-points of the grid.

e First order derivative on grid points for a “scalar” quantity, this concerns the term
0,b, and equivalently first order derivative on mid-points for “vectorial” variables,

this concerns the term 8I(V2). For this case, the classical four point central difference
scheme of order 4 writes as

b;o —8b;_1 +8b;11 — biyo
12Azx ’

(0:6); = (3.2.1)

and similarly for the derivative of 7 with mid-points.

e First order derivative on mid-points for a quantity having values in grid points, this
concerns the term 0, (hV'), and equivalently first order derivative on grid points for
quantities having values in mid-points, this concerns the term 0,(. For this case,
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the adapted four point central difference scheme of order 4 writes as

Gim1 — 27G; + 27C41 — Gito

(axC)i+1/2 = N )

(3.2.2)

and similarly for the derivative of hV with mid-points.

e Second order derivative on mid-points for quantities having values at grid points,
this concerns both 0,,b and 0.,V . A classical fourth order accurate central finite
difference scheme is implemented, meaning

—bi_3/2 + 16b;_1/2 — 300,412 + 16b;13/2 — biys5/2

(axxb)z+1/2 = 12(A$)2 Y

(3.2.3)

and similarly for V.

e Third order derivative on mid-points for a term having values on grid points, this
concerns O,.,b. Once again, a fourth order accurate central scheme is applied,

bi_5/2 — 8b;_3/2 + 13b;_1/2 — 13bi43/2 + 8biy5/2 — bitr/2

(ax:m?b)i—i-l/Z - 8(AZE)3

(3.2.4)

The high accuracy guarantees that we can capture more precisely the nonlinear inter-
action between the fluid and the solid without posing problems for the numerical scheme
due to the necessity of information on many grid points, since the solid is localized to its
support (the middle section of the wave tank, as explained in Section 3.2.4).

3.2.2 Time stepping with Adams—Bashforth

As elaborated in [LMO07], we adapt a fourth order accurate Adams predictor-corrector
method. Starting from the initial condition at time ¢ = 0, the first two values of the
quantities may be generated by a fourth order classic Runge-Kutta (RK4) time stepping
algorithm. Let us suppose that currently we are at time step n > 2 and as such, all
information on the main variables (¢, V, and X) is known. The method consists of two
steps:

1. First, the predictor step is implemented on the fluid equations (equations (3.1.7a))
by the explicit third order Adams—Bashforth scheme

* At
G = Ty (2BED - 16E7 T 45,

+n+1* TN At n n— n—
Ui+1/2 = Ui+1/2 + 12 (23 i+1/2 16F¢+1}2 + 5F;+132) )

in addition we apply the algorithm for calculating the solid position (presented in
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the following section),
X" =G, xm, X X, (3.2.5)

2. With the knowledge of the predicted values, the next step is the correction by a
fourth order Adams—Moulton method

At A
G =G o (9B(CH Vi, XY + 19E) — 5EP™ + EF72),

F+n+1 5N At n+1* T>n+1* n
Ui+1/2 - Ui+1/2 T 24 (9F<< i Vi+1/27X H) +19 z+1/2 5Fz+1/2 + F+1/2)

Remark 3.2.1. Additionally, the predictor-corrector method can be iterated to guarantee
even more accuracy for the algorithm.

We remark that in [LMO07], the same algorithm was used in the case of a flat bottom
but with an observed convergence of order 2 instead of the theoretical order 4 in the time
variable.

3.2.3 Time discretization for the solid motion

Equation (3.1.7b) is an ODE which involves no further spatial discretization. We shall
discretize it in time, considering a time step At indexed by n = 1,2, ... Nyime. We have to
be careful though, since this equation is coupled to the first two equatlons of the system,
having the source terms depending on X, X, and X as well, and as such it is incorporated
in the Adams scheme presented in the previous section.

Notice the presence of integrals of the fluid variables in the expression G((, X, X ),

y ric X
G((, X, X) = —;Ji/ﬁmeal(g,m T ]\Z/Rgaxb(x ~ X)dz, (3.2.6)

which implies some restrictions for calculating the numerical integral since these variables
are only known for grid and mid-points. For further details, please refer to Section 3.2.5.

Another remark concerns the order of magnitude of G. We are working with a regime
where the shallowness parameter u is supposed to be small, meaning that the first term
in the expression for G is at least of order O(3~'y~'/2) while the second term is small, of
order O(e). The fact that G is large can lead to numerical instabilities in the computation
of the solid motion; as explained in Proposition 3.1.1, we have however a control on the
solid velocity inherited from dissipative properties of the coupled system. We want to
achieve a similar property for the discretized system, that is a similar dissipation of the
discrete energy which in turn ensures that oscillations or other instabilities do not appear
in the simulation.
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First of all, we can write that

) X _
G((, X, X)=-C((,X)—= + (¢, X), 3.2.7
(€.X,X) = =06 X) 5+ T(C X) (327)
where we introduced the following two quantities
Ctric Csolid €

C(, X) = 1+ + ~7/ dx) , 3.2.8a
€.X) Vi ( p Mpj Supp(b)+XC ( )

— €
O, X) = M/R(&Eb(a: ~ X)dz. (3.2.8b)

We wish to construct an appropriate numerical scheme. Let us suppose that we are
at time step n, so that quantities ¢", V"', and X™ are known up until the index n. This
implies that the constants C™ = C(¢", X™) and C"" = C(¢™, X™) are also known (since
they do not involve any time differentiation).

We base our discretization on the reformulation (3.2.7) of the equation at hand. Let
us apply a second order accurate central finite difference scheme on the acceleration X
and on the velocity X, furthermore let us apply a second order accurate backwards finite
difference scheme for its absolute value | X|. This yields

Xntl _gxn 4 xn-1 Xntl_xn—t .
7 =" e — + O (3.2.9)
(At) ‘3){ 4X2At +X +6

so by rearranging the terms we get that

cn
2 n+1
<1 Ty 3X7 — 4Xn1 4 Xn2| + 2At5>X

Cn
|3X7 —4Xn=1 4 Xn=2| + 2At0

= 2X" — <1 — (At)? ) X"t (AnC".

Notice that by the definition of C, the factor of X! is strictly positive, thus we may
multiply by its inverse to obtain an explicit formula for X! namely

XM =G X X X, (3.2.10)
where
n cn n— —n
é(cn Xn Xn—l Xn_Q) _ 2X - (1 - (At)2\3X"—4X"*1+X"*2\+2At(5> X ! + (At)2C'
’ ) ) - Ccn .
) (At)QI3X"—4X"—1+Xn—2|+2m5

Remark 3.2.2. Notice that we choose the same order for the central finite difference

162 Krisztian Benyo



3. The incidence of a freely moving bottom on wave propagation

schemes for the first and second order derivatives. The accuracy of the backwards finite
difference scheme for the absolute value of the velocity estimate was chosen accordingly,
and may be adapted.

The important property of this discretization is that the friction term plays also a
dissipative role at the discrete level, reproducing the property used to derive Corollary
3.1.1 in the continuous case. Note that the second term in (3.2.12) corresponds to the
time discretization of = I3 [ €O,b; if we were to perform a discrete energy estimate for
the full wave-structure system, this term would cancel as in the proof of Proposition 3.1.1
with the contribution of the source term in the equation on (.

Lemma 3.2.1. Owing to equation (3.2.9), the velocity associated to the displacement

. Xn+1 _ Xn—l
Xt 2.11
2At (3 )
verifies the following
1Xn+1_Xn2 1X1_X02 n*k'
—|———| < z|———— At X", 2.12
2’ (At) 2| (At) * ),;C (3 )

Proof: Let us multiply equation (3.2.9) by X™. Then, we obtain

(Xn+1 o Xn)Q . (Xn o Xn—1)2 _ o (Xn)Q _‘_6an
2(At)3 ‘3Xn—4)gzl+xn—2 1 ‘

Notice first of all that the first term on the right hand side is non-positive. Summing over
n, we therefore get

(XnJrl _ Xn)2 (Xl _ XO)Z n ——
P R CUP DS

which yields the result. ([l

3.2.4 The wave tank and its boundaries

Notice that the weakly nonlinear Boussinesq system (3.1.2) is cast on R which is clearly
not the case for numerical models. Hence we consider the discretized model in a wave tank
of sufficiently large size (it shall be detailed for each experiment in the next section). The
idea is to place the solid in the middle of the tank and numerically generate the waves
(soliton or wave train) near the solid, therefore allowing us to focus on the middle section
of the tank, the effects of boundary conditions imposed on the horizontal limits would be
negligible. In all the cases, the width of the wave tank is taken to be at least 100L with
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L being the wavelength of a wave, and the analysis is focused on the central 20L ~ 30L
wide region of the domain. As for the boundary conditions, for the sake of clarity, solid
walls are implemented, implying reflective boundaries for the fluid variables. This means
Neumann-type boundary condition for the “scalar” parameters ¢ and h (the derivative
equals to 0) and Dirichlet-type boundary condition on the fluid velocity V' (equals to 0).

Variables for the solid are not concerned by these limiting conditions since they are
independent of the spatial variable. The only technical effect is that the simulation is to
be stopped when the object touches the boundary. As evoked before, due to the size of
the wave tank, this scenario does not happen in the numerical experiments considered
here.

3.2.5 Further remarks

The first remark concerns a reference solution for the Boussinesq system with com-
pletely flat bottom topography. It is known that a solitary wave solution (soliton) exists
for this equation (see for example [BC16]). Naturally, by introducing a solid object on the
bottom of the fluid domain, this referential solution will not stay a solitary wave propa-
gating at a constant speed, it will be transformed, deformed according to the governing
equations and the change in bottom topography. Nevertheless it serves as a basic tool to
analyze the effects of the object on a single wave, as it will be done during the first half
of the next section.

Some words should be mentioned about the effect of the solid displacement X on the
fluid equations in (3.1.6a). Due to the horizontal motion of the object, it is present in
the variable b as a translation. Since there are multiple instances when derivatives of the
bottom topography function are taken, the order of the operations has to be established
with respect to the discretization.

In our algorithm, at each time step, the actual bottom surface shall be calculated via
the translation by X" of the initial state b and then it is discretized on the grid points and
the mid-points as well. If we were to discretize the initial bottom topography and then
translate it, it is clear that the fitting of the translated discrete bottom to the actual grid
would create additional error terms which could potentially decrease the overall accuracy.

However we shall mention that our approach works mainly because the initial bottom
surface b as a function defined on R is known, so that we can discretize any translated
instance of it. It would not be possible without accurate interpolations, if the solid height
was initially given only on grid points.

An important remark concerns the integral terms present in the solid equation (3.1.3).
Except for the volume of the solid, these integrals involve integration over the support of
the object (at its current state) of fluid variables that are initially only defined on mesh
points (or mid-points). As such the applicable accurate methods are somewhat limited.
In our situation we chose a third order Simpson method (resulting in a global error of

164 Krisztian Benyo



3. The incidence of a freely moving bottom on wave propagation

order 4) and it writes as follows

kAzx 1 k—1 k—1

Az I=j+1 1=j

3.3 Numerical results

In this part we present several numerical experiments for different one dimensional
wave propagation and transformation scenarios. The effects of a solid allowed to move
will be compared to a fixed solid case to highlight the main features of this new approach.

As explained in Remark 3.1.2; the appropriate base water depth for our case is (at
least) 10 meters (due to the difference in the order of magnitude of the coefficients). As
such, comparable physical experiments are not exactly available.

For our study in general, the wave tank is taken with the following physical parameters:
its width is exactly 1000 (meters), its height is Hy = 20. The attributed shallowness
parameter is then determined by the choice of the wavelength L, with the two main cases
being L = 40 for ;= 0.25, and L = 20v/10 for s = 0.1. This implies that the wave-tank
is 25 wavelengths long in the former case and approximately 16 wavelengths long in the
latter case. The principal observational area is in the vertical section [400, 600] of the wave
tank.

The solid will be considered to be given by a truncated Gaussian function, the discrete
truncation determined by an error term e = 1074, that is

b(z) = bo(x)1(by > €), where bo(x) = aport €Xp <—1O <;)2> .

As for its physical parameters, the default choice for the mass parameter is chosen to
be M = %, corresponding to an approximate solid density of og = 2-%5. The vertical size
as well as the coefficient of the friction will be varied during most of the simulations.

3.3.1 Order of the numerical scheme

The first set of tests concerns the verification of the convergence of the scheme. In
[LMO7] the overall algorithm for the fluid equations was second order accurate both in
time and in space. Since we made some adaptations on the original scheme, it is reasonable
to verify how this has affected the order of the convergence. In the case of a flat bottom,
we improve substantially the accuracy compared to [LMO7] since we observe a convergence
of order 3.5 in space and 3.8 in time. Moreover, these orders are conserved for a non-flat
topography. When the solid is allowed to move, the order of convergence becomes 3 in
space and 2 in time (which is not surprising since a proposed a second order discretization
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Figure 3.2 — Discretization error for solitary wave evolution over flat bottom
of the ODE for the solid motion).

3.3.1.1 Convergence of the scheme over a flat bottom topography

First of all, we consider the wave tank without the presence of the solid and its effects.
This means that we are considering the simplified algorithm for a flat bottom case. The
convergence is then checked numerically by the exact traveling wave solution for (3.1.2)
with b = 0. The existence of a solitary wave solution is a well known fact, for explicit
computations, please refer to [Che98], for a more general approach, one may see [BC16] for
example. By searching the solution for (3.1.2) as a solitary traveling wave with constant
speed c > 1 (¢ =(. = C(v—ct),V =V.=V.(x—ct)) it is easy to check that the velocity
profile has to satisfy

— 3 — 1 €—
—V)'=—V.lc——— - V.|, (3.3.1)
e c—¢eV, 2
with V. < c¢/e. From the velocity profile, the surface elevation then can be recovered
simply by
Ve

L= —. 3.3.2

C= (3.32)

With this at our disposal, the solitary wave solution serving as a reference can be

reconstructed by a fourth order Runge-Kutta method (in order to avoid any influence on
the accuracy of the overall scheme).
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As elaborated in Section 3.4 of [LMO07], a von Neumann stability analysis can be carried
out for the linearized system. Since no changes have been made in the time discretization
of the fluid equations (system (3.1.2)), their analysis can be adapted in a straightforward
way to our case too, leading to a CFL condition of the form:

At

In order to respect this stability condition, in what follows we set Az = 0.05 and
At = 0.001.

Two basic verification tests have been designed, each one testing for the wave-tank
and wave parameters @ = ¢ = 0.1. The simulation is run for a time 7" = 1.

The first test measures the error of the spatial discretization, compared to the solitary
wave solution, by fixing the time step At sufficiently small (At = 0.001) and varying the
spatial discretization’s step size, giving us Az = 27% for k € {0,1,2,3,4,5}. We measure
the L? and L*> norms of the error for the surface elevation ¢. Figure 3.2a shows the results,
on a logarithmic scale. The scheme is behaving as an algorithm of order 3.5 in the spatial
discretization.

The second test measures the total error, compared to the solitary wave solution,
by fixing the CFL-ratio at 0.05, varying the time discretization’s step size, giving us
At = 0.01-27% for k € {0,1,2,3,4,5}, and Az respectively. Once again we measure the
L? and L*™ norms of the error for the surface elevation (. Figure 3.2b shows the results,
on a logarithmic scale. The scheme is behaving as an algorithm of order 3.8 for the time
discretization, an almost order 4 convergence which would be the ideal scenario for the
applied Adams predictor-corrector method.

Therefore we have established a major improvement over [LMO07], by an accurate
interpolation, and more coherent accuracy in the finite difference schemes, one can indeed
obtain an almost fourth order convergence.

3.3.1.2 Convergence of the scheme for a non-flat bottom topography

Lacking an explicit solution for the non-flat bottom case, we performed a relative error
analysis to test the global convergence of the full coupled system as well, meaning that as
a reference solution we calculated the surface elevation for Az = 0.01, At = 10~* and we
compared it to the calculated surface elevations for less refined mesh sizes and time steps.
Two physically different testing parameters were chosen, the first one corresponding to an
immobile solid at the bottom, the second one representing the case of the fully coupled
problem where solid motion is observed. For the first case, the physical parameters of the
system were chosen to be y = ¢ = 0.1, 8 = 0.3, with a frictional coefficient of c,;. = 0.01.
The simulation is run for a time 7" = 5.

Figure 3.3 shows the relative error of the surface elevation compared to our choice
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Figure 3.3 — Discretization error for solitary wave evolution over non-flat bottom (5 = 0.3,
Cfric = 001)

of reference solution (in L? and L* norms), carried out for either a fixed time step
(At =0.001), or a fixed CFL-ratio (0.05) dividing by 2 the other step parameter for each
consecutive measurement. One can observe that the overall spatial discretization stays of
order 3.5, and the temporal error stays in the previously observed order of 3.8 too.

For the second case, the physical parameters of the system were chosen to be p =¢ =
0.2, 8 = 0.4, with a frictional coefficient of cf,;. = 0.001. The simulation is run until a
time T" = 5 allowing for sufficiently long interaction between the solid and the incoming
wave.

Figure 3.4 shows the relative errors (in L? and L* norms) for the surface elevation,
carried out once again for either a fixed time step (At = 0.001), or for a fixed CFL-
ratio (0.05). One can observe that the overall spatial discretization has stayed at an order
3.5, attributed to the loss in accuracy represented by the observable solid motion. Notice
also that we have a temporal convergence rate of 2, attributed to the fact that the time
discretization scheme for the solid was chosen to be only of order 2.

3.3.2 Transformation of a wave passing over a fixed and a mov-
ing obstacle

In this part we present the two main characteristic situations that have been observed
during the ensemble of the simulations, each with a passing wave and a breaking wave
case. Two representative examples were chosen, showing step by step the “transformation”
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Figure 3.4 — L? and L* error for a wave evolution over time T’ =5 (u = ¢ = 0.2, 8 = 0.4,
crrie = 0.001)

of a single passing wave over the solid, first for a highly frictional case, then for the almost
perfect sliding case. As initial conditions, the approaching wave is taken to be the solitary
wave solution for the flat bottom case.

3.3.2.1 The regime of a large coefficient of friction

The first example presents a wave passing over the solid (here essentially fixed because
of the large friction coefficient), getting slightly perturbed by the bottom topography irreg-
ularity (the presence of the solid) and continuing its trajectory with a modified amplitude
and an altered form. With a shallowness parameter of ;= 0.1, the initial wave amplitude
is taken as 4 (meaning € = 0.2). The solid has a maximal vertical size of 6 and is subjected
to a frictional sliding on the bottom, with a coefficient of cf;. = 0.5.

In Figure 3.5 this passing wave is plotted (red) at different time steps. As a reference,
the flat bottom solitary wave is also visualized ( ), propagating at a constant speed,
and allowing for a better qualitative comparison for the changes the approaching wave
undergoes. The solid is centered around the horizontal coordinate x = 500 with a numer-
ical support spanning through the interval [480,520], for a better visibility, it has been
omitted from the figure.

In the first figures the wave approaches the solid, and thus wave shoaling is observed
(its amplitude increases) until its peak at around time step 4200, after which the wave
crest passes over the peak of the solid and drops (step 5400), due to the drop in the
bottom topography. After this drop the initial wave, now slightly asymmetric, continues
onward, with an amplitude (slightly) less than its initial value.
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Figure 3.5 — Evolution of a passing wave (1 = 0.1, € = 0.2) over a small obstacle (5 = 0.3,
crric = 0.5); red curve is the passing wave, green curve is the reference soliton for flat
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Figure 3.6 — Evolution of an approaching large wave (u = 0.25, ¢ = 0.35 and breaking
when reaching the obstacle (8 = 0.5, ¢frie = 0.5); red curve is the approaching wave,
curve is the reference soliton for flat bottom

Moreover the wave became out of phase due to the “bump” in its motion. One can
also observe a backwards going small amplitude long wavelength wave created by the
drop after passing over the solid (starting from the back trough at around step 6500). It is
important to remark that due to the high frictional term, essentially no solid displacement
was observed.

The set of images in Figure 3.6 depict the wave breaking encountered during the sim-
ulations for regimes with a large coefficient of friction. In this case a numerical condition
was detected in the experiments that signals a possible wave-breaking due to a steepening
wave slope (for more details, see Section 3.3.4).

A plunging (or spilling) type wave-breaking is most commonly indicated by a critical
increase in steepness in the middle section of the front wave slope, and was observed for
relatively large wave amplitudes with a large object at the bottom. For a representative
test case, a wave of wavelength 40 is chosen over a base water depth of 20, with initial
amplitude 7. The solid has a maximal height of 10 and is sliding on the bottom with a
dynamical friction coefficient of cf.;c = 0.5. As represented in Figure 3.6, the wave ap-
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proaching the solid increases in amplitude, just like before, however this increase becomes
critical as the wave crest approaches the solid peak. The flat bottom solitary wave is
represented only as a reference.

3.3.2.2 The regime of a small coefficient of friction

We show here a second set of examples, with a much smaller friction coefficient so that
a solid displacement is observed. Such a displacement occurs regardless of the vertical
dimension of the solid and appears to be more relevant in intermediate to high wave
amplitude regimes. As a test case, we chose cy,;c = 0.001 for a solid height of 8. The wave
amplitude is chosen to be 4 with a shallowness parameter of the system p = 0.1.

As it can be seen from Figure 3.7 the incoming wave gains amplitude as it starts to
pass over the solid. At this moment, the friction term characterizing the solid motion
becomes less important than the pressure force created by the wave and, as a result, the
solid slides for a long distance.

In the meantime the solid starts propagating with increased velocity, thus further
amplifying its amplitude (time step 5400). When the wave peak finally passes over the
top of the solid, it drops due to the downwards slope in the bottom topography (time step
6000, generating secondary waves traveling backwards (time step 6400). Notice that the
passing wave has a significant loss in amplitude (almost 10%) and an attenuated shape
(time step 9000).

An interesting feature is the incidence of the fact that the solid can move on the type
of wave breaking we observe. We consider here an almost frictionless (¢ < 0.01) sliding
case for large solid objects and intermediate to large wave amplitudes (see Figure 3.8).
The approaching wave gains in amplitude due to the slope presented by the object, fur-
ther amplified by the fact that the solid starts propagating as well. In these critical cases
however, the solid velocity becomes comparable to the velocity of the wave, thus main-
taining the critical position of the wave (time step 4000 — 4500, the wave peak propagates
with the solid peak). A solid displacement of 5 to 20 meters can be detected. The critical
increase in steepness is detected closer to the front trough, implying a characteristically
different wave breaking (surging waves).

3.3.3 Amplitude of the transmitted wave for a fixed and moving
obstacle

The following simulations measure the effect of a bottom topography deformation (a
solid object) on a single passing wave, most notably the variation of the amplitude. We
will compare the amplitude of a single wave approaching the solid with the amplitude
of the transmitted leading wave. The main interest is to observe the difference between
the cases when the solid is allowed to move and the case where the solid is fixed to the
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3. The incidence of a freely moving bottom on wave propagation

bottom.

A solitary wave for the flat bottom case is taken as an initial condition, situated two
wavelengths from the solid object, traveling towards it. Throughout the simulations a
characteristic base wavelength of L. = 40 is taken for a uniform shallowness parameter of
w=0.25.

We consider 3 different (vertical) sizes for the solid, a small object corresponding to
£ = 0.1, a medium sized object with § = 0.3 and a relatively large object for g = 0.5.
For each of these three cases we examine the qualitative effects of the solid. We are
testing three different frictional domains as well, an almost frictionless, perfect sliding,
with ¢fe = 0.001, a relatively smooth sliding for ¢, = 0.01, and a hard frictional sliding
for cric = 0.5. The results will be compared to the two reference cases: one being the
simulation running for the same time for a flat bottom, giving a 1 to 1 ratio between the
entering and the leaving wave amplitude, the other one being the case when the same
initial object is fixed to the ground, not being allowed to move throughout the simulation,
meaning that b(¢,z) = b(z) is independent of the time.

For a small object (8 = 0.1, see Figure 3.9a) we observe that the 1 to 1 ratio for
amplitude variation for a flat bottom is essentially preserved for both the fixed bottom
and the cases of a solid with frictional motion with relatively large frictional coefficient.
Only an almost negligible (107%) drop in amplitude is detected in all these situations.

The decrease in amplitude is measurable however in the cf,;. = 0.001 regime for wave
amplitudes above 4. This relative drop in amplitude increases with the height of the
incoming wave.

For the § = 0.3 intermediate vertical solid scale, the simulation results are summarized
in Figure 3.9b. One can notice similar effects as the ones concluded in the previous case
for a small sized solid. Except for the almost perfect sliding, the other cases respect the
1: 1 ratio of wave amplitudes.

The impact of the solid is more visible in the almost perfect sliding case, since the
considerable drop in amplitude is observed for smaller waves as well. The drop in ampli-
tude amounts for up to 12% amplitude loss for the higher waves. Here we note that for
intermediate sized waves, the initial wave is completely absorbed by the new wave pro-
duced by the solid motion, which is a longer and much flatter wave (thus the remarkable
drop in amplitude). For small wave amplitudes, this is not observed, since the generated
pressure force on the bottom is not large enough to create significant solid motion.

Finally, the results for the § = 0.5 case (Figure 3.10) indicate an even more complicated
behavior. Amplitude decrease is observed for all the non flat bottom cases, with the drop
of the amplitude being more and more important the freer the object can move (the less
friction is imposed). The heavily frictional case (cf.c = 0.5) still matches quite well the
fixed bottom scenario but the other two test cases show a more important decrease in
wave amplitude.

Another feature, made clearer in the zoomed image (Figure 3.10b) is a slight layering

Fluid-structure interaction 175



3.3. Numerical results

T T
T T 7 L | —Flat bottom
7 || ——Flat bottom i Fixed bottom
Fixed bottom — 04 =05
_cmc=0.5 6l ""Cmc=0'01
61| === Gric =001 ——¢,,, =0.001
ric
—Cp =0.001 -
ric [
g E
° 2 5
25+ o
s §
£ @
@ L4l
04l T
3 2
= 2
E g_)g L
oS3t =
j=2}
5 o
(o)
2
2
1b
1k
\ \ | \ . | . 1 2 3 4 5 6 7
1 2 3 4 5 6 7 Incoming wave amplitude

Incoming wave amplitude

(a) Change in wave amplitude over a small Solid(].o) Chagge in wave amplitude over a medium
sized solid

Figure 3.9 — Wave amplitude variation for small (f = 0.1) to medium (8 = 0.3) sized
solid (p = 0.25)

between the cases in the presence of a solid, with the fixed bottom case being the closest
to preserving the amplitude, closely followed by the hard frictional case, signifying that
these two regimes are physically close to each other. Notice that the less important the
friction is in the system, the more the amplitude is dropping, especially for middle to high
wave amplitudes.

The main difference however is the newfound presence of wave breaking, meaning the
simulation was stopped because the numerical condition for the initial wave breaking
phase was observed (for more details, please refer to the next section). Not only can we
observe wave breaking for all non flat bottom cases, but also there is a slight difference
between the fixed and the moving bottom cases too (further examined in the next section).

For the nearly negligible friction (cgc = 0.001) surging waves are observed, highlight-
ing the fact that for a larger solid in almost perfect sliding, solid motion can also lead to
critical wave transformation. The phenomenon was already described in the last part of
the previous section.

To sum it up, we observed that allowing bottom motion, especially for an almost
frictionless sliding, accounts for a measurable decrease in wave amplitude. This is due to
the fact that part of the energy of the wave is transferred to the solid as a kinetic energy,
propelling its motion on the bottom.
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Figure 3.10 — Wave amplitude variation for a large (8 = 0.5) solid (u = 0.25)

3.3.4 An effect of bottom displacement on the wave breaking

In this section we summarize the numerical test cases related to the simulations in
which a numerical pre-condition for wave-breaking was observed. It manifested in the fact
that the wave became too steep, indicating that physically the wave entered in a wave
surging phase, closely followed by the breaking or plunging of the wave.

A sufficient, but rather lenient numerical condition for wave breaking in our case (based
on [Sou88]) is the following

Gi1 — Gi
— > 1 3.4
max —— > (3.3.4)

For a more detailed analysis on wave breaking conditions for Boussinesq type models,
we refer to [BCLT12] and [KR17].

With a series of experiments we now examine the position of the wave breaking point
according to this criteria for different parameter choices. We chose a maximal solid height
of Hy/2 giving us a topography parameter of 5 = 0.5. For this case wave breaking could
be observed for large wave amplitudes. We implement two different frictional situations
(¢fric = 0.001, and cgyie = 0.5), as well as the reference case for a fixed bottom.

A single traveling wave of wavelength L = 40 is sent 2L distance away from the solid
and with a wave amplitude as the principal parameter for the simulations. As a reference,
the position of the wave at the moment of the numerical wave breaking point is given by
the position of the wave crest. The simulations have also been carried out for the case of
a fixed bottom, having the topography of the initial solid state.
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Figure 3.11 — Wave breaking point for large amplitude incoming waves (x = 0.25, 5 = 0.5)

The main interest of this numerical experiment is to see the effect of a solid that is
allowed to move on the wave breaking point. As it can be seen from the results (Figure
3.11) the c¢gpic = 0.5 frictional case and the fixed bottom barely differ. Actually the same
was observed for other ¢y, values as well (in the range of 0.01 to 1).

In the case when the object is sliding almost frictionlessly (cfic = 0.001) however, the
position of the wave crest is much further away from the initial position. The qualitative
difference is due to the change of the nature of the wave breaking (as it was remarked in
Section 3.3.2). Nevertheless a measurable delay is observed for the wave breaking point,
owing to the fact that the initial wave loses some of its energy while the new, frontal wave
is created by the solid.

3.3.5 Observations on the hydrodynamical damping

The previous simulations gave us some insight on the effects of a moving solid on the
wave motion. Now we reverse our point of view, so to speak, in order to examine the
inverse, that is how the waves affect the solid motion.

Our numerical simulations show that if ¢y, is of order 10~* ~ 107°, the solid takes
and extended amount of time before finally coming to a halt (Figure 3.12), creating small
amplitude, large wavelength waves in front of and behind it. By creating such waves, its
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(a) Solid position (b) Solid velocity

Figure 3.12 — Solid motion for low coefficients of friction (u =¢ = 0.2, = 0.4)

motion is damped by a phenomenon similar to the dead-water phenomenon, described in
detail for Boussinesq type models for example in [Ducl2].

In the limiting situation of cf,;c = 0 it continues its motion without stopping. Notice
the rapidly stabilized oscillatory behavior in the velocity profile of the solid (Figure 3.12b),
further highlighting the small amplitude wave-generation around the peak of the solid.

The hydrodynamic effects are shown not only by the change in direction for the solid
motion as well as the increased changes in velocity. In Figure 3.13 we compared two
situations: as a reference the standard model was left running for the whole time (T = 24),
for the second simulation the pressure term was removed at the moment when the velocity
hit its maximal value, taking into consideration only the frictional damping of the system.

As it can be clearly seen, without the hydrodynamic effects the solid velocity decreases
essentially linearly, as it is dictated by the corresponding equation of motion, the solid
slowly comes to a halt. The hydrodynamic damping not only increases the deceleration
process but it also keeps the solid relatively close to its initial position.

3.3.6 Measurements of the solid displacement

Three additional sets of simulations were conducted in order to measure the effects of
friction on the system, as well as to highlight long term effects by means of simulating an
approaching wave train.
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Figure 3.13 — Solid motion with and without hydrodynamic damping (z = ¢ = 0.2,
B =04, cfrie = 0.0005)

3.3.6.1 Solid displacement for varying coefficients of friction

For the physical parameters f = 0.3 and £ = 0.25, while the friction coefficient is
varied from 0.001 to 0.003. Figure 3.14 shows the change in the solid motion for this case.

We remark a significant drop in the maximal solid displacement, attributed to the
qualitative change of the system from a frictional to a frictionless sliding. The critical
values for ¢y for this transformation depend on the shape of the object as well as its
physical parameters.

Furthermore we remark that the solid does in fact stop in its motion, a property due
to not only the damping effect of the frictional forces but to the hydrodynamic damping
as well. The latter one is clearly visible by the fact that the solid motion changes direction
after the wave peak passes over it and rapidly looses velocity by the time the wave leaves
the interaction zone.

3.3.6.2 Solid displacement for varying wave amplitudes

The second one consists of measuring the effect of a single traveling wave on the solid
motion, for a relatively frictionless sliding (¢ = 0.001). The maximal vertical size of the
solid is 6, with waves having an amplitude in the range [3, 5]. It also serves as a reference
case for the wave train simulations presented later on.

On Figure 3.15 we can see the almost perfect “oscillation circle” for the solid position,
meaning that after the approaching wave pushes the solid forward, it passes over the
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Figure 3.14 — Solid displacement for a varying coefficients of friction (u = ¢ = 0.25,
p=0.3)

object, and then it pushes the solid backwards, making it return nearly to its initial state.
Notice the slight asymmetry of the curves as well as the rather extended calming phase,
attributed mainly to the slowing effects of frictional forces.

The final set of numerical experiments concerns the long term effects of wave motion
on a solid that is allowed to move freely, subjected to a frictional sliding on the bottom
of the wave tank. This was carried out by simulations on a long time scale, it involves
sending a wave train consisting of 10 consecutive solitary waves in the direction of the
solid and measuring the evolution of the solid displacement.

The wave tank is now taken to be twice as large as before, with a length of 2000
to properly accommodate the wave train. A medium sized solid is chosen (5 = 0.3) for
intermediate wave amplitudes (e ranging from 0.15 to 0.25) with a wavelength of L = 40.
The simulation is run for a time of 7' = 54, allowing for 7 waves to pass over the solid.

The evolution of the position of the center of the mass is plotted in Figure 3.16,
corresponding to an almost perfect sliding (¢, = 0.001). We observe solid displacement
of order 1 for each passing wave, as well as some qualitative differences in the wave cycles.

There is a positive net solid displacement per incoming wave, resulting in the solid
getting further and further away from the initial position after each passing wave in the
train. We remark that the displacement per passing wave is not constant, attributing to
an overall nonlinear increase in distance. This is due to the fact that a passing wave is
perturbed by the solid, resulting in backwards traveling small amplitude long waves (as
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pointed out in Section 3.3.2), meaning that later members of the wave train get perturbed
even before reaching the interaction zone. This results in a non-constant incoming wave
amplitude even though initially it was constant.

Also, comparing the effects of a single wave (Figure 3.15) with a wave train (Figure
3.16), we can notice that, even though the elements of the wave train were launched
sufficiently apart to avoid undesired interactions with each other, due to the extended
period of time it takes for the frictional and hydrodynamic damping to slow down the
solid motion, nonlinear effects are observable in the solid displacement.

3.4 Conclusion

In the present paper, we propose a modeling of the interactions of waves with an ob-
ject lying on the bottom and allowed to move. To this end, we use the models developed
in ([Benl17]), propose a new numerical code to simulate these wave-structure interactions
(and which significantly extend and improve existing codes for fixed, flat, topographies).
We then use this code to exhibit new interesting features of this kind of wave structure
interaction, and in particular we show that the displacement of the solid object has an
incidence on the size of the transmitted wave and on wave breaking (more precisely on
its location and on its type). This is of particularly interest for applications to the pro-
tection of coastal areas from wave damages. We also exhibit interesting features of the
solid motion, such as nonlinear effects and hydrodynamical damping; these aspects are
interesting for applications to wave energies. This is to our knowledge the first time that
these phenomena are exhibited as they require to take into action the wave-structure cou-
pling in both ways (influence of the waves on the solid motion and vice versa); we believe
that they suggest several interesting developments, both from the PDE and numerical
viewpoints.
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Conclusion

This thesis was dedicated to a series of studies of two particular problems emerging
from the domain of fluid-structure interaction. The main emphasis was on an asymptotic
analysis concerning these problems, in order to ascertain qualitative and quantitative
properties of the associated coupled systems, as well as to further existing works in which,
in a certain sense, less degree of freedom was supposed.

1 Contributions of the thesis

The basic configuration of the two main problems involved the presence of an incom-
pressible, irrotational, perfect fluid in a certain domain with the addition of a rigid, solid
body in the system. The asymptotic analysis intervened through physical parameters,
supposed to be small, that describe not only the size or the inertia of the object but, in
certain cases, they incorporate information on the fluid domain as well.

The first, and often the most difficult, task was the establishment of the well-posedness
of the arising system of equations, a delicate problem due to the fact that it involves the
treatment of a coupled ODE-PDE system for which methods and hypotheses are not
necessarily compatible. The second task was to establish the effects of the coupling on
the system, more specifically to gain more understanding on the influence of the solid
motion on the fluid dynamics. In the case when the main difficulty was the complexity
of the underlying partial differential equations, numerical simulations were implemented.
On the other hand, in the case when the asymptotic analysis itself proved to be mathe-
matically challenging, ideas coming from other physical problems and associated formal
computations were applied.

1.1 Multiple scale analysis of a toy model

Chapter 1 detailed an asymptotic analysis based on a multiple-scale approach, of a
system of second order non-linear ordinary differential equations. This system arises as
a simplified model for the motion of a rigid body immersed in a two-dimensional perfect
fluid. The fluid is assumed to be irrotational and is confined in a bounded domain. The
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unknowns of the model represent the position of the object, that is the position of its
center of mass and the angle of rotation; the equations arise from Newton’s second law
with the consideration of a Kutta-Joukowski type lift force.

A detailed analysis is carried out on this system when the solid inertia (mass and/or
diameter) tends to 0. The study revolves around three main topics, each of them present-
ing a specific issue that often arises as part of a singular perturbation problem. First and
foremost, the evolution of the position vector of the center of mass is dictated by an equa-
tion reminiscent of the equation describing the trajectory of a charged particle in classical
electromagnetic field theory ([Kru58]). We established an asymptotic development up to
arbitrary order with respect to the (infinitesimal) mass parameter for the position by an
adaptation of the so called guiding center approximation. In particular, we have that the
motion is dictated by the classical point-vortex system at zeroth order.

The angular variable evolves according to a slowly-in-time modulated non-linear pen-
dulum equation, and experiences qualitatively different behavior depending on the initial
data. This is brought to light by Sections 1.4 and 1.5 of Chapter 1 in which the characteris-
tic behavior of a solution is established for small angular momentum (small diameter). For
small initial data, the dominant effect is the periodicity of the equation, a two-timescale
asymptotic development can be derived based on the results of [BH88]. The slow time
modulation can lead to instabilities due to the cumulated effects over a long timespan,
therefore we introduced an adapted shift and a corresponding scaling for the fast time
variable to ensure the boundedness of the terms in the development.

For larger initial data, the “trajectories” of the system (in a dynamical sense) are
dominated by the instabilities near the generalized homoclinic trajectories. Hence the
corresponding solution is propagated by the flow towards a neighborhood of the normally
invariant manifold in which the map behaves like a Smale horseshoe map, implying chaotic
behavior in the weakest sense.

1.2 Wave-structure interaction for shallow waters

Chapters 2 and 3 address the mathematical description of a setting in which the solid
object is lying at the bottom of a layer of fluid and moves under the forces created by
waves traveling on the surface of this layer. More precisely, the water waves problem is
considered in a fluid domain with a flat bottom topography and with an object lying on
the bottom, allowed to move horizontally under the pressure forces created by the waves,
and in frictional contact with the bottom itself.

Section 2.1 of Chapter 2 establishes the mathematical setting of the physical problem,
such as the dynamics of the fluid and the mechanics of the solid motion, and prepare
the terrain to the analysis of the models in shallow water asymptotic regimes. More
specifically, the case of the (nonlinear) Saint-Venant system, and the (weakly nonlinear)
Boussinesq system are examined as far as the fluid dynamics is concerned. An existence
and uniqueness theorem is proved for the coupled fluid-solid system in both cases. More-
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over, by making use of certain annulations in the corresponding energy estimates, as well
as the particular structure of the coupling terms, one is able to go beyond the standard
scale for the existence time of solutions to the Boussinesq system with a moving bottom,
resulting in long time existence results, improving on what the general theory would dic-
tate ([Mell5]), but still not as good as the ones obtained for the abed-system (in the case
of a fixed bottom) ([Burl6]).

Motivated principally by the latter results, a finite difference scheme is implemented for
the Boussinesq system coupled with the solid object. The fluid quantities are discretized
on a staggered grid, improving the results of [LMO07] in terms of precision and convergence
for the flat bottom case, as well as generalizing the algorithm for possible applications over
a generic moving bottom setting. The solid motion is discretized in time based on central
finite difference scheme of lower order than the scheme applied for the PDE part of the
coupled system, however it retains the overall dissipative characteristics of the equation
(originating from the friction).

A series of numerical experiments were carried out in Section 3.3 of Chapter 3. The
moving bottom case is compared with a system where the same object is fixed to the
bottom in order to observe the qualitative and quantitative differences in wave trans-
formation. In general a loss of wave amplitude is observed. The influence of the friction
on the whole system is also measured, indicating differences for small and large coeffi-
cients of friction. Overall, hydrodynamic damping effects reminiscent to the dead-water
phenomenon can be established. The simulations involving a wave train approaching the
solid show in particular the complex nature of the interaction between the object and the
waves.

2 Research perspectives

Naturally, one can envision many directions in which the works presented here can
be continued. These are, but not limited to, straightforward generalizations or natural
continuations of the preceding studies of which we would like to elaborate a couple.

2.1 Asymptotic analysis of the coupled toy model

The system (1.1.1), albeit a decoupled system of EDOs, involves two variables with
their respective smallness parameters that influence their corresponding evolution. Chap-
ter 1 highlighted the complex dynamical background of these variables when one treats
them separately. Therefore, a natural extension of this work would be to consider an
asymptotic expansion of the two variables at the same time. This would require a multiple-
scale approach incorporating the features of both the high frequency, low amplitude gy-
ration around the guiding center (essentially a point-vortex), as well as the shifted mod-
ulation of the angular variable.
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This perspective becomes even more interesting if one considers the more general
equations derived in Section 1.2. System (1.2.18) presents the full equations at order
O(e), that are fully coupled. The asymptotic analysis for this system would require a
thorough multiple-scale development in order to properly handle the coupling between
the two variables.

2.2 Convergence issues

Chapter 1 presents results for the convergence of the two variables of the model towards
their zeroth order approximation in their respective asymptotic regime. It was proven in
Corollary 1.3.2 that we have convergence in C* between the two point-vortex systems.
Theorem 1.4.1 prepares the ground for a first order asymptotic development. From this
point on, one hopes to obtain eventually a convergence result in W just as for the
massive point-vortex system, however establishing properly controled error estimate for
this nonlinear system is highly non-trivial. Furthermore, by continuing the development,
one expects to find a better approximation, therefore improving the associated convergence
results too.

2.3 Modeling underwater landslides

One of the main limitations of the physical model presented in Section 2.1 of Chapter
2 is that it is only applicable to a flat bottom surface. The limitation does not arise from
the fluid dynamics model, since it is capable of handling an arbitrary (but sufficiently
regular in the sense of Sobolev) bottom topography variation ([Mell5]). The restriction
comes from our physical considerations on the solid, most notably its rigidity. This implies
that the solid is non-deformable, meaning that in particular, if initially the part of the
solid in direct contact with the bottom is flat, it will stay flat during the entirety of its
motion. One can see that this excludes any type of angles, curves, or peaks concerning
the immovable part of the bottom.

The flat bottom hypothesis does not pose significant difficulties when one considers
applications originating from coastal engineering, where this assumption is quite com-
mon and not really restrictive. However, when one wishes to handle submarine landslides
([CKS11], [DK13]), slopes in the reference topography are unavoidable. This is especially
true when modeling underwater landslide generated tsunamis, which is an environmentally
important and physically complex issue ([TBCO1], [GWO05]). Therefore an extension of the
presented model is planned to incorporate nontrivial bottom topographies by alleviating
the rigidity assumption on the solid.
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2.4 Static and dynamic friction laws

Another issue with the solid model presented in Section 2.1 of Chapter 2 concerns the
friction law applied in the determination of the friction force in Newton’s second law. More
precisely, a kinetic (dynamic)-only friction law is applied to describe this force term. This
involves the implicit assumption that the friction force is zero if there is no solid motion
(the velocity of the solid is zero). However, it is well known ([Ber(06]) that this does not
reflect the physical reality properly. By the third law of Coulomb, one has that the friction
force at any instance verifies the inequality

‘Ffric‘ g Cfric|Fn0rmal | .

In particular, when the solid is not moving, a strict inequality is in effect, signifying that
the net force acting on the solid is not enough to surpass the static friction effects blocking
the solid motion. Mathematically speaking it is represented by a jump condition in the
motion, leading to discontinuities and non-uniqueness in the solution of the corresponding
ODE.

Another complication arises from the fact that the coefficient associated with the static
friction (the strict inequality) is in fact not equal to the coefficient of the dynamic friction
(when the solid is in motion), with the former being larger, according to experiments.

2.5 Coupling for more general shallow water models

A direct continuation of the works presented in Chapter 2 is to consider more precise
shallow water models. A natural step towards this goal would be to incorporate the Serre—
Green—Naghdi equations instead of the Boussinesq equations. The advantage is that in
this asymptotic regime no additional hypothesis is made on € or on [, we obtain the
general second order approximation of the form

(L+puT)0V + Vol +e(V - Vo)V + pe(Q(V) + Qp(V)) = pumb,

(2.1)

where we have the following operators

1
= ——V.(hV, -
TV 3hv$( V.-V)

1
+ 65y (Va(h?Vib- V) = BV,bV, - V) + F2V,bV,b - V;
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OV) = — -, (W (V- V)V, V) = (V.- T)2)).

3h
(V) = Zﬁh (Vx(h2(V S V2)2b) — B2(V - Vo) (Vs - V) — (Vs ~V)2)Vmb)
+ B2 ((V - V.)*b) Vs
and finally
mb = _5 (vx(ha%) + (eV.C + BV b)82b) _ ij (64h)?
2 t z z0)0¢ 9z Vu\0
~ g (=Vo(ObV. - (W) + V. - (W) V.04 + V.V, - (DY)

The aim would be to establish the coupled system with the solid moving on the
bottom just as in the case of the weakly nonlinear Boussinesq regime. Owing to structural
similarities, one hopes to obtain a good control on the associated energy which would
imply eventually a local existence and uniqueness result for the system, however proper
treatment of the nonlinear terms is highly challenging.

In this regime, the wave-solid interaction is expected to be more complex, and some
phenomena such as the added mass effect would be relevant, while they could be neglected
in the weakly nonlinear regime considered in this thesis.
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On Gronwall type inequalities

Throughout the different parts of this thesis we made use of inequalities and estimates
for differential equations (ordinary as well as partial) under the common designation of
“Gronwall’s inequality”. Here we would like to clarify this, since the applied inequalities
were not necessarily the classical Gronwall’s lemma nor a straightforward adaptation.

First of all, we have the following non-linear generalization of the original inequality
([Bih56]).

Proposition A.0.1. Let f : [a,b] — R™ be a continuous function that satisfies the integral
inequality

1) < A—I—/at\I/(s)qS(f(s))ds, tefab)], (A.0.1)

where A = 0, ¥ : [a,b] — RT is continuous, and ¢ : Rt — RT\{0} is continuous and
monotone increasing. Then the estimation

£(t) < o1 <<I>(A)+ / "w(s) ds), L€ [a,l] (A.0.2)

holds, where ® : R™ — R is given by

O(x) := /x: gb(ls) ds.

Proof: Let us denote by ¢(t) the following function:

o(t) = [ WEoS(s)) ds, 1€ fa]

We have that g(a) = 0, therefore by the definition g and inequality (A.0.1) we obtain

fzig(t) = U(O)o(f(1) < T()(A +g(1))
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for any t € [a,b]. So, integrating over [a, t] yields

f(t)il ds’ < t\I/ d
/0 S(AT ) s\/a s)ds

Hence, by the definition of ® we get that

t

DA+ [(1) ~ () < [ W(s)ds

a

for any t € [a, b]. Since the function ® is also monotone increasing, the result follows from

this estimate and (A.0.1).

g

This estimate was used for instance in the estimates in Lemma 2.3.2. of Section 2.3.4.

Another, more classical generalization of Gronwall’s lemma is the following, often used

for norm estimates for differential equations in Hilbert spaces.

Proposition A.0.2. Let f : [a,b] — R be a continuous function that satisfies the integral

inequality
S0 < g+ [uts € lab]
where fo >0, ¥ : [a,b] — R is continuous. Then the estimation
¢
1< 1ol + [ Wis)ds, te b
holds.

Proof: For € > 0 let g. be defined by

Mw:;ﬁ+ﬁ+E@@ﬂwm te o b,

a quantity that is always positive, since, by (A.0.3) we have

1
§f2(t) < ga(t)'
The chain rule yields
ge(t) = () f(t), te€a,b],
from which one infers that
go(t) < W(t)/29:(t).

By integrating over [a,t] we obtain that

\/296 \/29E —/ \/%dsg/:\ll(s)ds.

(A.0.3)

(A.0.4)
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Therefore we deduce that

7] < 2g(a) + [ w(s) ds
<Ifl+e+ [ u(s)ds

which is valid for every € > 0. This implies the desired estimate. ([l

This Gronwall type inequality was used in the demonstration of Lemma 2.2.5. in
Section 2.2.4.3 part B, throughout section 2.3.4 for the proof of the energy estimates in
Propositions 3.1.1 and 2.3.3, and in Lemma 3.2.1. of Section 3.2.3.
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