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Titre : Projection-based in-situ 4D mechanical testing

Mots clés : Tomographie, Mesure de Champs, Corrélation d’images numériques, Identification,
Problèmes inverses

Résumé : L’analyse quantitative de volumes 3D obtenus par tomographie permet l’identification et la
validation de modèles. La séquence d’analyse consiste en trois problèmes inverses successifs : (i) re-
construction des volumes (ii) mesure cinématique par corrélation d’images volumiques (DVC) et (iii)
identification. Les très longs temps d’acquisition nécessaires interdisent de capter des phénomènes
rapides.
Une méthode de mesures, Projection-based Digital Volume Correlation (P-DVC), raccourcit la sé-
quence précédente en identifiant les quantités clés sur les projections. Cette technique réduit jusqu’à
2 le nombre de radiographies utilisées pour le suivi de l’essai au lieu de 500 à 1000.
Cette thèse étend cette approche en réduisant la quantité d’informations acquises, rendant ainsi ac-
cessibles des phénomènes de plus en plus rapides et repoussant les limites de la résolution temporelle.
Deux axes ont ainsi été développés :
— d’une part, l’utilisation de différentes régularisations, spatiales et temporelles des champs 4D

(espace/temps) mesurés généralise la méthode P-DVC (avec volume de référence) à l’exploitation
d’une seule radiographie par étape de chargement. L’essai peut désormais être réalisé de façon
continue, en quelques minutes au lieu de plusieurs jours;

— d’autre part, la mesure du mouvement peut être utilisée pour corriger le volume reconstruit lui-
même. Cette observation conduit à proposer une nouvelle procédure de co-détermination du
volume et de sa cinématique (sans prérequis), ce qui ouvre ainsi de nouvelles perspectives pour
l’imagerie des matériaux et médicale où parfois le mouvement ne peut pas être interrompu.

Le développement de ces deux axes permet d’envisager de nouvelles façons de réaliser les essais, plus
rapides et plus centrés sur l’identification de quantités clés. Ces méthodes sont compatibles avec les
récents développements « instrumentaux » de la tomographie rapide en synchrotron ou laboratoire,
et permettent de reduire de plusieurs ordres de grandeurs les temps d’acquisition et les doses de
rayonnement.

Université Paris–Saclay
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Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France





Title: Projection-based in-situ 4D mechanical testing

Keywords: Tomography, Full field measurements, Digital Image Correlation, Identification, In-
verse problems

Abstract: The quantitative analysis of 3D volumes obtained from tomography allows models to be
identified and validated. It consists of a sequence of three successive inverse problems: (i) volume
reconstruction (ii) kinematic measurement from Digital Volume Correlation (DVC) and (iii) identi-
fication. The required very long acquisition times prevent fast phenomena from being captured.
A measurement method, called Projection-based DVC (P-DVC), shortens the previous sequence and
identifies the kinematics directly from the projections. The number of radiographs needed for tra-
cking the time evolution of the test is thereby reduced from 500 to 1000 down to 2.
This thesis extends this projection-based approach to further reduce the required data, letting faster
phenomena be captured and pushing the limits of time resolution. Two main axes were developed:
— On the one hand, the use of different spatial and temporal regularizations of the 4D fields (space
/ time) generalizes the P-DVC approach (with a known reference volume) to the exploitation of
a single radiograph per loading step. Thus, the test can be carried out with no interruptions, in a
few minutes instead of several days.

— On the other hand, the measured motion can be used to correct the reconstructed volume itself.
This observation leads to the proposition of a novel procedure for the joint determination of the
volume and its kinematics (without prior knowledge) opening up new perspectives for material
and medical imaging where sometimes motion cannot be interrupted.

The development of these two axes opens up new ways of performing tests, faster and driven to the
identification of key quantities of interest. These methods are compatible with the recent “hardware"
developments of fast tomography, both at synchrotron beamlines or laboratory, and save several
orders of magnitude in acquisition time and radiation dose.
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On ne saurait bien sûr oublier le laboratoire. Je souhaite remercier les membres gravitant

autour du tomographe, Amine Bouterf et Benjamin Smaniotto, pour leur disponibilité et
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enfin merci aux personnels du centre de calcul pour leur aide permanente et qui réussissent
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Chapter 1
Processing data-flow in tomography

1.1 Tomography

Tomography is an imaging technique that allows the visualization, inside of a specimen,

of the material microstructure as revealed by its local coefficient of absorption, in a non-

destructive way. Initially developed in the ’70s for medical imaging as it enables distin-

guishing the different tissues, organs and bones, tomography is now widely used in many

other fields (e.g., medical imaging for diagnosis [1], biology, material science [2, 3, 4], etc.)

and performed with many different waves (e.g., X-ray, neutron, electron[5], terahertz, op-

tics [6], ultrasound, etc.) depending on the experiment and material absorption and/or

scattering.

A large variety of imaging devices exists. For material sciences, tomography has been

first developed using bright synchrotron sources. Nowadays, X-ray Computed Tomography

scan (CT-scan) is a commonly available and accessible equipment in laboratories. The

development of in-situ testing machine (for mechanical, thermal, environmental purposes)

has also opened up new avenues in material sciences allowing the specimen to be imaged

during the experiment.

1.1.1 The resolution revolution

Many hardware developments of tomography [7] (e.g., use of sensitive CMOS detector,

new optics, very intense and monochromatic sources...) have pushed the limits of temporal

and spatial resolution, in synchrotron as well as lab-sources. Figure 1.1, extracted from

[3] shows the recent evolution of the tomography space and time resolution. The blue area

in the figure gives an order of magnitude of the LMT lab-CT characteristics.

1
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Figure 1.1: Evolution of the spatial and temporal resolution for X-ray imaging, extracted

from [3]. Red dashed curves denote white beam and dashed black curves correspond to

the monochromatic, both at synchrotron facilities. The red dotted curve refers to lab-scale

tomographs. The blue area corresponds to the LMT lab-CT resolutions.

In standard X-ray tomography, a basic assumption is that the sample should remain

static during the acquisition to enable a correct reconstruction. Decreasing the temporal

resolution is thus a crucial objective for the analysis of fast phenomenon. A slight motion

or absorption change of the sample during the scanning process and the reconstructed

volume becomes blurry and hard to exploit.

For many in-situ and in-vivo imaging applications, the temporal resolution is a limit.

Although the acquisition rate using synchrotron sources, especially using X-ray, can be

very high (e.g., [8] and [9, 10] where full 3D volumes were acquired at 20 Hz with 270,000

frames per second), it remains quite long in lab CT-scan (few minutes up to few hours [11]).

Moreover, many experiments require multiple full acquisitions of the same sample, at

different times, states, loading steps, in order to follow some evolutions. Such multiple

scan acquisitions increase the scanning time (e.g., [12, 13]) and are thus highly subjected

to artifacts: drifts of the beam, thermal changes, uncontrolled motions, etc.

In addition to the development of the experimental setups, software developments

operating as a post-processing on the acquired projections have also favored the reduction

of the number of required input data. With different regularizations on the reconstruction

algorithms (e.g., exploiting a small number of phases, texture sharpness etc.), the number

of required projections can be reduced. For example, with binary materials, the number

of required projections to reconstruct a 512×512 pixels image was reduced to 7 in [14] and

6-8 in [15]. The use of dictionary / learning also allows reducing the data input.
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1.1.2 Processing data-flow in tomography

Initially used predominantly as a means of acquiring 3D images from which diagnoses could

be made based on visual judgment, there has been a steady progression towards extracting

key parameters from these images, through quantitative analysis. The experiment is

indeed often driven by a precise experimental goal (i.e., specific scientific questions). Those

goals can be widely different depending on the experiment, on the scientific community, on

the material etc.For example, the identification of material parameters for a given model,

the position of cracks, the evolution of voids or the front of a fluid invasion can be such

scientific questions. Being able to anticipate the goal allows the experiment to be designed.

The acquisitions have thus to be quantitatively analyzed in order to extract the sought

answers.

The standard sequence to read tomography data, as performed for example in [16,

17, 18, 19] and presented in figure 1.2 aims to extract the quantities of interest. This

sequence first consists of the reconstructions of the stacks of radiographs into 3D volumes

for the different states. Those volumes are then analyzed to extract measurements (e.g.,

displacement fields, thermal fields, gray level variations, etc.). Finally, measurements are

reduced to parameters and quantities of interest, generally from a model. During this

sequence, three inverse problems are performed successively: reconstruction / kinematic

measurement / identification. For a correct and homogeneous analysis, it is required to

consider how the acquisition uncertainty circulates through the different elements of the

chain. Indeed the acquisition noise on the projections becomes reconstruction noise on

the volumes that affects the measurements and identification of parameters.

Figure 1.2: Standard data flow when reading tomography projections, composed of three

successive inverse problems.

The amount of data on each of the previous element of the sequence can be highlighted.

To specify orders of magnitude of an experiment composed of 10 scans:

• Radiographs of an acquisition are generally composed of a stack of 1000 approxi-

mately of size 1 MPix (12 MPix for the LMT lab-CT in full resolution). The total

number of data is hence 1010 values for the 10 scans.

• Volumes are composed generally of the same amount of data (depending on the

projection sampling) say 1010 unknowns.
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• Measurements exploit redundancy to increase the signal to noise ratio (very low

for each individual pixel in imaging compared to other sensors). Described on a

mesh, the average of [20, 21, 22, 23, 18] corresponds of approximately 105 degrees of

freedom that have to be identified.

• Parameters that drive the model, as described above are composed of very few

unknowns, say 10 unknowns.

The blue background of figure 1.2 shows the evolution of the degrees of freedom for the

sequence. It is interesting to ask the question of the relevance and necessity of the massive

amount of input quantity compared with the number of output parameters.

To begin answering this question, this first chapter is a state of the art organized as

follow: a first focus on the data acquisition (the image acquisition of radiographs to pro-

jections and the in-situ testing machines that enable capturing sensitive data) and on the

three inverse problems (reconstruction – measurement – identification) are described in the

following sections. Then, the introduction of projection-based measurements (section 1.6)

allows one to short-circuit the sequence and provides a more direct determination of the

kinematics, reducing drastically the acquisition data (time and doses).

1.2 Radiographs

1.2.1 Imaging technique

Projections are recorded from the relative beam intensity attenuation for each detector

position r = [r, z] (where z is parallel to the specimen rotation axis, and r is perpendicular

to it) and rotation angle. The Beer-Lambert law links the line integral of the material

absorption along the X-ray path L(r) from source to detector at position r, to the recorded

intensity I(r, t) at time t (and rotation rotation angle θ(t)):

I(r, t) = I0(r, t) exp

∫
x∈L(r)

µ(x)dx (1.1)

with µ(x) the linear attenuation coefficient (this absorption coefficient associated to a lo-

cation in the sample is generally steady in time. An fluid invasion case where the scanned

material evolves in time will be studied in the following) and I0(r, t), the intensity recorded

without the sample on the beamline called flatfield (or ’white field’). To obtain the pro-

jections, one has to normalize the recorded intensity with the flatfields (after possibly

subtracting off darkfields acquired in the absence of beam)

p(r, θ(t)) = − log[I(r, t)/I0(r, t)]. (1.2)

The collection of Nθ projections p(r, θ(t)) for each angle is called the sinogram. A flat-

field, a radiograph and a horizontal slice in the raw non-corrected sinogram of a rectangular

cast iron sample imaged with a parallel beam is shown figure 1.3. It can be seen that the

flatfield is composed of a vertical gradient and white patterns. The slice of the sinogram

shows vertical bright lines due to those white patterns. Because they are invariant in the
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(a) (b) (c)

Figure 1.3: (a) Flat-field projection showing a vertical gradient and white patterns (b)

Radiograph with the same background (c) slice of the raw sinogram at z = 256 pixels

without flat-field correction with bright vertical lines. Image extracted from [24]

t = θ direction, they may be related to the detector or optics (dust and scratches). If

non-corrected, those patterns will generate ring artifacts in the reconstruction.

The difficulty is that I and I0 cannot be acquired simultaneously. A standard assump-

tion is that I0 does not vary in time. A series of flatfields are hence generally acquired

before or after the experiment and averaged (otherwise the sample and testing machine

have to be moved outside of the beam for the acquisition of flatfields and repositioned).

It can be noticed that this is only an approximation [25] hence the flatfields I0 should be

estimated at each instant t, although they are not available1.

In addition to the flatfield evolution, different artifacts can affect the radiographs [26,

27]. Those artifacts will pollute all the elements of the sequence thus have to be corrected

if possible or at least taken into account. A non-exhaustive list of artifacts encontered in

the developed applications and possible correction is

• Beam hardening. This artifact can be identified from a non uniform texture in the

a phase depending on the edge distance (a darker halo in the bulk of the sample).

It corresponds to non-linearity in the beam absorption (often related to the spectral

width of the source). If all phases have the same absorption function, a non-linear

projection model allows the reconstruction to be corrected. Many different algo-

rithms exist [28, 29, 30]. A simple polynomial correction of the intensity will be

used in the following (as proposed in [31]).

• Acquisition noise are assumed in the following developments as white and Gaussian

(after the correction of the beam hardening). During the acquisition procedure, an

average of radiographs acquired at the same state increases the signal to noise ratio.

• Local patterns such as scratches and irregularities on the optics (see figure 1.3). Its

1A dynamic flatfield correction procedure has been proposed during this thesis [24] and enables, from

the edges of the projections that are not shadowed by the sample, to estimate an optimum combination

of the flatfields library.
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signatures can evolve and move with the beam drift [32] or intensity variations [25]

and generate for example ring artifacts after the reconstruction process2.

• Phase contrast. This artifact affects the edges of the reconstruction. It is associated

with the microstructure and its evolution, therefore it should not highly affect the

developed quantitative procedures that aims to track the microstructure motion.

It is noteworthy that many other artifacts can be enumerated (e.g., dead pixels in the

detector, metal artifacts, etc.) but are not described because they were not encountered

in the following developments. Motion artifact appearing in after the assumed static

reconstruction procedure due to motion or an uncalibrated tomograph will be discussed

in Chapter 7.

1.2.2 In-situ tests

The first generation of material and mechanical tests were performed ex-situ. The sam-

ple is loaded outside of the tomograph, unloaded and positioned to be scanned. This

method enables measurement of the remaining changes (cracks, plastic deformations, phase

changes [34, 35] etc.). For example, cracks in a carbon composite were observed in [36]

with the identification of delamination. However, because it is necessary to unload the

sample, it is not possible to measure, for example, elastic deformations or opened cracks.

Moreover moving the sample at each loading iteration takes time and often introduces

miss-positioning and bias.

The development of in-situ testing machines has allowed one to visualize inaccessible

phenomena. Developed for synchrotron beamlines [37], in-situ testing machines are also

available in lab-synchrotron where the space is generally smaller [38]. Testing machines

have been made for many different fields: crack propagation [23, 39], thermal or environ-

ment variation [40], fluid invasion and pressure driven flow [41], granular materials [42, 43],

biomechanics [44] etc.

One of the difficulty in designing an in-situ testing machine is to allow the sample

to rotate without seeing the frame of the testing machine. Different solutions have been

chosen, with transparent frames (for tension compression [45, 23], 3 point bending [46],

etc.) or with a rotating top and bottom grips. In this latter case, an other difficulty is

the correct alignment of the grips in order to not introduce unexpected stress and motion

during the rotation.

Supported by an Equipex MATMECA project3 the LMT has bought a new generation

testing machine able to perform tension – compression – torsion of large samples (10 cm

height loaded up to 20 kN/0.1 kN.m). With different grips, this machine can be used for

many different materials and tests. The stiff frame is fixed and the loaded sample rotates

thanks to the top and bottom motors. The development of calibration and alignment tools

are currently interesting on-going projects.

2 A correction procedure has been proposed in this thesis [33] and enables to separate the superposition

of moving scratches and the fixed low frequency background.
3’Investissements d’avenir’ Program under the reference ANR- 10-EQPX-37 MATMECA
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1.3 From Projections to Volumes

Reconstructing the 3D microstructure from the acquired sinogramm (i.e., an inverse

Radon transform) is a huge but very simple inverse problem [47].

First the projection operator has to be defined (i.e., 9 parameters for a conic beam [48,

49]). This operator is generally given by the tomograph after a calibration procedure.

This procedure can be offline (i.e., with a dedicated calibration system made of known

patterns [50]) or online (i.e., during the scanning process; based on the sample itself [51, 52]

or on a known frame [53]). At the LMT lab-CT, the offline calibration is performed with

a series of steel balls rotating before or at the end of the experiment (as in [54, 55]). The

parameters are generally identified only once, even for a multi-acquisition test in order not

to move the sample during repeated scans.

In the following the projections and reconstructions are performed using the ASTRA

toolbox [56]. Three main types of beam exist: (i) parallel beams in synchrotron facilities

(associated with 180◦ scanning rotation), (ii) conic beam in lab-sources and (iii) fan beam

in medical scanners. The projection operator Πθ defined, the problem can be written in

its discrete form with a simple linear system

p = Πθf (1.3)

with p the sinogramm composed of Nθ acquisitions and f the volume.

Despite the fact that this system is simple, it can not be easily inverted (the matrix

Πθ is of size 109 × 109). Different reconstruction algorithms have been proposed in the

literature and can be separated in two categories: Fourier space and Algebraic methods.

1.3.1 Fourier space reconstruction

A common reconstruction method is the Filtered Back-Projection (FPB) [47]. With this

method, each projection, p(r, θ) is first “filtered” with a ramp, or Ram-Lak filter, eventu-

ally windowed. Ignoring such windowing, in Fourier space, F [p(r, θ)](k, θ) is multiplied by

|k|. This ramp is used to normalize the frequency sampling, increasing the high frequen-

cies. Then the filtered “image” is inverse Fourier transformed, and then back-projected,

with Bθ the backprojection operator, in real space, thereby producing a field gθ(x) that

is invariant along the direction eθ. These fields gθ(x) are simply summed over all visited

angles θ, producing the sought initial image, f(x)

f(x) =

Nθ∑
θ=1

BθF−1 [F [p(r, θ)] (k, θ) · |k|] . (1.4)

FPB algorithms have been also developed for conic beam [57] (e.g., FDK algorithms).

Fourier space algorithms are efficient and fast but it is not easy to incorporate regular-

izations and a-priori knowledge (e.g., on the microstructure, number of phases, positivity

etc.) that would allow to under-sample the acquisition.
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1.3.2 Algebraic methods

Another type of reconstruction method consists in decoupling the inverse problem and

solving it iteratively [58]. Those methods, referred to as Algebraic Reconstruction Methods

(ART), are generally costly but provide a better quality reconstruction than FBP. They

are based on the minimization of the functional, ΓART[f ], equal to the quadratic norm of

the difference between the projected reconstructed volume and the acquired projections

ΓART[f ] =
∑
r,θ

‖Πθ[f(x)]− p(r, θ)‖2 (1.5)

then

f = Argmin
f†

ΓART[f †] (1.6)

Additional prior information may easily be added to this functional through regularization,

in order to compensate limited angle range for projections, or coarse sampling for example.

A standard SART [59] algorithm (Simultaneous ART) is reviewed. In this technique,

each projection is considered successively (in a random order as given by a permutation

of random angles π). The reconstruction sequence is in 3 steps: (1) projection of the

reconstructed volume, (2) comparison with the recorded projection at this angle and (3)

back-projection of the difference with the back-projection operator Bθ (i.e., the transpose

of the projection operator). A convergence criterion on the functional value can be used to

stop the number of iterations (ΓART[f ] < ε), with ε, a threshold value with respect to noise

and artifact acquisition. Generally few iterations (NART) are required for convergence (it

can be noted that for a faster convergence, the volume initialization can be performed

using an FBP algorithm).

The algorithm for this method is detailed in Algorithm 1.

Algorithm 1 Standard algebraic procedure, ART (p)

Initialization n← 1

Initialization f (n) ← 0

Choose a permutation, π, over Nθ indices

while ‖Πθ[f
(n)(x)]− p(r, θ)‖ > ε do

for k ← 1 to Nθ do

m← π(k)

ρ(r, θm)← p(r, θm)−Πθm [f (n)(x)]

∆f (n+1)(x)← Bθm [ρ(r, θm)]

f (n+1)(x)← f (n)(x) + ∆f (n+1)(x)

Implement additional constraints on f (n+1) (e.g., positivity)

n← n+ 1

end for

end while

Within this algorithm, different regularizations can be included. Those additional

constraints enable the reduction of needed projections and the reconstruction to be more
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physical or highlight specific features. This may come from prior knowledge on the different

phases of the sample (as DART algorithms proposed by [15], reconstruction with binary

images [14], Total Variation [60]), dictionary learning [61], etc.

The comparison of different reconstruction approaches and regularizations is presented

figure 1.4 and extracted from [9]. It is to be noted that this example is a specific test case

(2 phases and very few projections) and the performance of the methods are not the same

for other cases.

Figure 1.4: Reconstruction with different methods of a rat bone with (a) the ground truth,

(b) the FBP with 20 projections, (c) SART, (d) TV regularization and (e) DART from [15]

1.4 From Volumes to Kinematic Fields

From the acquired volumes at different states, quantitative analysis can be performed.

Between different non-rigid image registration methods, Digital Volume Correlation (DVC)

is a full field measurement technique developed in the two past decades [20] that aims to

capture the 3D displacement field between two (or more) volumes.

DVC has been highly developed in the literature for a large range of experiments and

materials; e.g., in bio-mechanics [20, 62], for textured or poorly textured metals [63],

woods [64], granular media [65], polymers [66] etc.

Extended from Digital Image Correlation (DIC) in 2D, DVC algorithms consist in

minimizing the weighted difference between the reference image f(x), defined for every

voxel x = [x, y, z] corrected by a displacement field u(x) and the deformed volumes g(x)

(although it is conventional to correct the deformed image by the displacement field (La-

grangian) so that it matches with the reference one, the reference image will be corrected

by the Eulerian displacement to be homogeneous with the manuscript notations). The

minimization has to be carefully chosen with respect to the acquisition noise [67]. With

the assumption of a white and Gaussian noise, the resulting functional is

ΓDVC(u) =
1

2γ2
fNΩ

∑
x∈Ω

‖f(x+ u(x))− g(x)‖2 (1.7)

with γf the standard deviation of the noise and NΩ the number of voxels in the region of

interest Ω. The solution of the DVC is given by the displacement field that minimizes the

functional

u(x) = Argmin
v

ΓDVC(v) (1.8)
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Digital Volume Correlation is an ill-posed problem. A solution to make it well-posed

is to regularize the displacement field: reducing the number of unknowns by introducing

a priori knowledge on the expected kinematics. Many different regularization techniques

have been developed in the literature. In local DVC, the kinematics is divided in indepen-

dent subsets driven by few degrees of freedoms (translations, rotations [68], warping [69]

etc.). The kinematics is finally interpolated from the subset motions.

Global DVC has been developed more recently [70]. The displacement field is here

expressed on a mesh kinematics. This choice offers continuous displacement fields and

constitutes an ideally suited interface with finite element computations if needed for in-

stance for future identification purposes. It is proposed to write the displacement field on

the basis of shape functions ψi(x)

u(x) =

Nu∑
i=1

uiψi(x) (1.9)

with ui the amplitude of the shape functions and Nu the number of degrees of freedom

in the mesh (three times the number of nodes) that is, for an order of magnitude, ap-

proximately 105. Different choices of 3D meshes and shape functions have been selected

in the literature: cubic C8 elements [70] (8-noded cube with tri-linear interpolation), T4

elements [22] (4-noded tetrahedra with tri-linear interpolation), X-FEM C8 elements [71]

etc.

It is crucial to reduce the number of parameters to describe the displacement fields,

but as this number is reduced, the risk of excluding the actual displacement from the

trial space increases, and hence it may induce a model error. Being able to quantify the

error is of utmost importance. The residual field (i.e., the error field at the end of the

procedure, with a correction by a displacement field ũ) allows one to (in)validate the

procedure and/or the kinematic model

ρ(x, ũ) = f(x+ ũ(x))− g(x). (1.10)

This field contains what was not captured by the kinematics correction: noise and artifacts,

model error (e.g., unexpected discontinuities in the kinematics), convergence problems,

gray level variations, etc. Looking at those 3D residual fields allows eventually the operator

to modify the kinematics model and enrich the basis. An example of application and result

is presented figure 1.5 and extracted from [67]. A 4-point bending test on plasterboard

samples was scanned in-situ (scanning time of 60 min). A continuous C8 mesh was used

to regularize the kinematics. Because of a discrepancy between the chosen kinematic

basis and the real displacement field (composed of cracks), errors appear in the gray level

residual field. In this volume, in addition to an homogeneous noise, a dozen of cracks are

visible. Otherwise, no spatial patterns are visible meaning that the global kinematics was

wall captured. The amplitude of the displacement field (approximately 2 vox) is very low

and highlights the accuracy of the method.

To solve the problem numerically, a gradient decent algorithm is employed. The

functional is linearized at iteration l around the current position ul = ul−1 + δu, with
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Figure 1.5: DVC application with on the top line the reference and deformed plasterboard

volumes and on the bottom line the residual field and the measured displacement field.

Figure extracted from [67]

f̃(x) = f(x+ ul−1(x)):

ΓDVC–lin(δu) =
1

2γ2
fNΩ

∑
x∈Ω

‖ρ(x,ul−1) +∇f̃(x)δu(x)‖2 (1.11)

thus the linear system that has to be solved is

Mijδuj = bi (1.12)

with [M ] the hessian of ΓDVC–lin and b the second member

Mij =
∑
x

(
∇f̃(x)ψi(x)

)(
∇f̃(x)ψj(x)

)
(1.13)

and

bi =
∑
x

ρ(x,ul−1)
(
∇f̃(x)ψi(x)

)
. (1.14)

In order to avoid updating the gradient of the advected volume, one may use the gradient

at theoretical convergence (i.e., ∇g(x)).

The regularized functional is generally quite smooth and convex around the global

minimum, allowing gradient-based methods to work efficiently. However, in case of large

displacements (large compared to the microstructure correlation length), the convergence

may be more difficult. Different methods can be applied such as rigid body motion (RBM)

initializations (performed in Fourier space for example) or multi-scale approach [72, 73].
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The latter consists in low-pass filtering the texture (e.g., convolution with a Gaussian ker-

nel) in order to depress the high-frequency patterns and thus smooth out the functional.

Downsizing (sub-sampling) can also be performed after the filtering to reduce the com-

putation time. Used recursively, this procedure is called a pyramidal algorithm, starting

from coarse filtered scales to finer scales, revealed very efficient. The final computation is

finally performed without filtering.

Different regularizations or penalizations can be added to the kinematics identification

for a better convergence or a more physical fields. An easily implementable penalization

method is the Tikhonov regularization [74] or Levenberg Marquardt algorithms [75] al-

though the amplitude factor may be difficult to tune. A more physical way to regularize the

displacement is to introduce a second functional based on the local elastic equilibrium [76].

The weight of this functional (i.e., corresponding to a regularization length) allows select-

ing an internal elastic length. Developed in material science, such regularizations are also

used in the image processing field and registration in medical imaging [77].

The above procedure can be performed in a 4D (i.e., 3D space and time) framework [23,

18, 62, 67]. The displacement field is hence written u(x, t) =
∑

i ui(t)ψi(x) and the

summation in the functional is in space x and time t. When studying space and time

fields, the time evolution can be regularized as it is the case for the space field. The

chosen time regularization can be weak (e.g., penalization on the time derivative to impose

smoothness) or strong (e.g., from a model, described in the next section).

Being able to quantify noise is essential when it comes to challenge the measured

results. The impact of the noise in the DVC procedure can be measured. A standard

procedure consists in acquiring few volumes in the same reference state (or after having

applied a known rigid body motion) and performing a DVC procedure between them. This

also measures the ability of the DVC code to register images (inter-voxel interpolation,

evaluation of gradients, ... )

1.5 From Fields to Parameters

1.5.1 Weighted identification

For the final step of the sequence, Na key parameters called a are to be extracted from

the measured fields. The model containing the parameters has to be adapted so that

the numerically generated field matches the measured one. Finite Element Updating

Method (FEMU) [78, 79, 80, 81] is an identification procedure based on the minimization

of the weighted quadratic difference between the experimental measured displacement field

u(x, t) and the computed field from the mechanical model uc(x, t, a). The functional is

performed for every voxels and every time steps.

ΓFEMU(a) =
1

NΩ

∑
x,t

‖u(x, t)− uc(x, t,a)‖2
Cov−1 . (1.15)

The ‖ • ‖Cov−1 denotes the inverse Covariance norm, weighted by the measurement un-

certainty.
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When the uncertainty matrix is defined for each degree of freedom of a mesh (it is for

global DIC the correlation matrix obtained in the previous section [82, 83]), the minimiza-

tion is performed for each displacement amplitude ui. Each measured nodal displacement

is hence weighted by the gray level gradient of the associated elements volume; a node in

a non-texture zone will not be considered in the identification as it is associated with high

uncertainty. Thus the functional is written:

ΓFEMU(a) =
1

2γrNn

∑
i,t

‖ui(t)− uci (t,a)‖2M . (1.16)

The convergence is performed with a simple gradient descent algorithm. Hence, with

H the Hessian of ΓFEMU(a) and h the second member

Hijaj = hi (1.17)

with S the displacement sensitivity field such that

Si =
∂uc(t,a)

∂ai
(1.18)

then

Hij = SiMSj (1.19)

and

hj = SjM(u(t)− uc(t,a)). (1.20)

An application of the procedure is presented figure 1.6, extracted from [84, 85]. The

experimental (top line) and numerical (middle line) are compared showing the residual

fields (bottom line).

Figure 1.6: Comparison between the measured (first line) and the identified displacement

fields (second line). The residual fields are presented in the third line. This figure is

extracted from [85]

In identification procedures, each available data is useful and may be (suitably) added

as constrained to the primal as it helps converging to an accurate optimal solution. First,
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one may cumulate many time steps to enhance redundancy and increase signal to noise

ratio (a typical 4D tomography experiment is composed of 5 to 15 scans). Then, every

other modalities can be added in the framework provided that they are weighted with

their own uncertainty. With this condition, different functional can be added easily to

the FEMU one. Because it is a standard available measurement in mechanical testing

machine, the force can be added in the functional [82, 86] (called FEMU–F, then FEMU–

UF when coupled with the displacement-based functional). With Nf the number of force

measurements, Cf the correlation matrix of the measured loads and Fm the measured

and F c the computed force

ΓFEMU–F(a) =
1

Nf

∑
t

‖Fm(t)− F c(t,a)‖2Cf . (1.21)

Many other modalities can be included in the identification process (strain gauges,

camera / X-ray, thermal, X-ray / Neutron DVC that could be performed in a single

step [87]).

Because the model is not always differentiable analytically, it is a common practice to

evaluate the finite difference

Si ≈
uc(t,a+ δai.Ei)− uc(t,a)

δai
(1.22)

with Ei a vector of Na values with 1 at index i and 0 elsewhere. The computation of the

sensitivity fields can be very costly. Other optimization procedures have been developed

to accelerate the convergence.

In most FEMU procedures, the numerical model is driven by the boundary conditions,

extracted from the full field measurement or force sensors. The minimization is hence

performed in the bulk of the images as if the boundaries did not evolve. However, boundary

conditions can also be considered as parameters to be identified. This solution is attractive

as boundary condition uncertainties are not often taken into account and are generally

assumed perfect. The procedure hence is able to update both model parameters and

boundary conditions.

1.5.2 Integrated methods

A first short-circuit of the above general scheme of data flow is to perform an integrated

identification [82]. Instead of performing successively the two last inverse problems, kine-

matic measurement and identification, the model can be used to warp the gray level

volumes and estimate the parameters values directly from the images. If the full field

measurement has well converged, the integrated solution should be rigorously equivalent

to the weighted FEMU measurement. It is noteworthy that this technique is natural as

the frontier between measurement and model is very fuzzy (should the amplitudes of a

polynomial fit be considered as measurement or identification?).

The functional of the integrated identification ΓInt is similar to the DVC functional

(i.e., based on images)

ΓIntegrated(a) =
1

2γ2
fNΩNt

∑
x,t

‖f(x+ uc(x, t,a))− g(x, t)‖2. (1.23)
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However the sought displacement field is not defined as the most general a mesh kine-

matics but from the model which can exploit the very same mesh. At iteration l:

u(x, t,al) = u(x, t,al−1) +
[
Sl(x, t)

]
δa (1.24)

with Sl(x, t) the sensitivity field defined for each voxel space and time.

Integrated approaches have been developed for crack identification using the analytic

and differentiable Williams’ series [88]. It provides the position of the crack tip and

evaluation of stress intensity factors, in 2D and 3D [89, 88, 90, 91, 92].

The residual field (in gray level for the integrated approach) allows (in)validating the

procedure. Model errors can thus be identified and the model be enriched until the result

is judged satisfactory [93].

1.6 P-DVC short-circuit – from Radiographs to Parameters

P-DVC for measurement A recently developed Projection-based Digital Volume Cor-

relation method [94] allows one to short-circuit the sequence by identifying the kinematics

directly on the projections and “helped” by an initial acquisition. Figure 1.7 shows the

projection-based measurement short-circuit.

Figure 1.7: Projection-based measurements: short-circuiting the data flow, from projec-

tions to measurement.

First, a reference volume is acquired once, before, during or after the experiment.

This volume has then to be positioned in the 3D space such that its projections match the

recorded deformed projections. This procedure is not performed through the minimization

of 3D residual fields but a stack of projected residuals at different angles. With Πθ the

projection operator [56] at angle θ, p(r, θ) the recorded deformed projections, Nθ the

P-DVC functional can be written

ΓP–DVC(u) =
1

2γ2
fNrNθ

∑
r,θ

‖Πθ[f(x+ u(x))]− p(r, θ)‖2 (1.25)

The linearized functional around the solution, at iteration l, with f̃(x) = f(x+ ul−1(x))

ΓP–DVC–lin(δu) =
1

2γ2
fNrNθ

∑
r,θ

‖Πθ[f̃(x)]− p(r, θ) + Πθ[∇f̃(x)δu]‖2 (1.26)
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The quantity ρP–DVC(r, θ,u) = Πθ[f̃(x)]− p(r, θ) defines the projected residual fields

for each angle, quantity to be minimized. Exactly like the 2D or 3D residual field defined in

DIC or DVC, the projected residuals highlight what was not captured by the 3D correction,

here projected in the 2D space detector. The displacement field can be regularized using

finite element mesh as in global DVC or using integrated approaches as it will be the case

in the following development of this thesis.

P-DVC has been developed, during the PhD of Thibault Taillandier-Thomas [95, 96,

97] for the study of a fatigue crack in a cast iron sample, imaged at the ESRF synchrotron

at different stages of the test. In [94], the comparison of P-DVC with a standard DVC

approach has shown that (i) P-DVC provided the same displacement field as DVC and (ii)

a large part of the projections could be unexploited without prejudice on the result. With

a mesh composed of 303 T4 elements, the displacement field comparison (see figure 1.8)

was performed using a P-DVC procedure with all the 600 acquired projections, 48 and

finally only 2 orthogonal ones. The displacement results are very close and prove that 600

projections are not necessary, and hence are highly redundant. They can be reduced to

only two projections which leads to a potential gain in acquisition time (thus data and

doses) of about 300.

Figure 1.8: Evolution of the vertical displacement field, measured from (a) DVC procedure,

(b) P-DVC with all the 600 projections, (c) 48 projections and (d) only two orthogonal

projections, extracted from [94]

The two last projections are selected to be orthogonal such that the nodal displace-

ments are sensitive to the 3 directions of the space. Indeed, the projection operator does

not offer sensitivity in the X-ray projection axis (e.g., a displacement along the direction

of the beam can not be seen). In the P-DVC procedure, because the minimization is per-

formed simultaneously with the two views, the solution can be found. It can be noted that

90◦ angle between two projections is not a requirement in the procedure. Even a small

angle can be enough to provide sensitivity in all space directions. An initial optimization,

prior to the experiment can be performed to select projection angles. This optimization

will be discussed in the manuscript.

The projections of the volume and residual fields are shown figure 1.9. The two projec-

tions of the sample at 0 and 90 degrees and two residual fields are shown on the first and

second line respectively. The top parts of the residual images are composed of very high
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positive and negative values (signature of motion) that have not been corrected. Those

parts were masked in the procedure thus correspond to the initial residual fields. The huge

decrease of the residual fields when motion is correctly accounted for can be seen clearly.

Figure 1.9: First line: two projections of the sample, at 0 and 90◦. Second line: projected

residual field at the end of the procedure. The top part of those residuals was masked

and has not been corrected in the procedure and shows the initial error. This figure is

extracted from [94]

P-DVC for identification In the same spirit as the integrated measurement performed

in DIC or DVC, P-DVC methods can be extended to the identification of model parameters

from projections.

Figure 1.10: Projection-based identification of model parameters
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A numerical model is hence included in the procedure and gives the (usually non-

linear) sensitivities used to create the new integrated Hessian matrix. Such development

have been introduced in the thesis (Chapter 4).

Alternative methods: It is interesting to note that this “multi-view” P-DVC frame-

work is similar to stereo-correlation methods that aims at measuring 3D surface fields from

multi-view cameras. In fact only the projection operator has to be changed to switch from

multi-view P-DVC to stereo.

Table 1.1: Comparison Stereo-Correlation / P-DVC

Stereo-Correlation P-DVC methods

Cameras X-ray / detector

Calibration matrices Projection operator Πθ

3D reference (e.g., CAD[98, 99]) Reference image f(x)

Mesh Mesh Φi

Set of images X-ray projections p(r, θ)

A similar method has been developed by Khalili et al. in 2016 for the measurement of

the rigid body motion of few individual grains in a compression test on a granular media

from a discrete projected DVC [100, 101] called Discrete Digital Projection Correlation

method (D-DPC). As in P-DVC, the motion is estimated from 2 orthogonal projections.

In a similar spirit, a method has been developed in the medical imaging namely 3D/2D

registration [102]. Developed in 2005 [103, 104], this technique has been used for example

for the calibration of scanners (often using affine transformation [105]), to track specific

moving patterns [106]. For the measurement of displacement fields (and sometimes the

correction of the reconstruction itself [107]), this method has been applied for the mea-

surement of moving thorax or head [108, 109, 110].

Different methods have been developed to speed up the computation time of Projection

based approaches (e.g., GPU in [94], Convolutional Neural Network in [111, 112]).

1.7 Structure of the dissertation

This manuscript aims to progressively introduce new developments in projection-based

identification allowing to reduce the number of acquired data. As for the space where it

is natural to couple the independent degrees of freedom (e.g., with Global procedures),

working on the time regularization is a key point as it unifies all time states in a single

identification framework. By relating all instants of time together, redundancies are not

only observed in space but also in time. The space data reduction performed in [94] can

be extended in time.

The document is structured in two parts. The first part (Chapter 2–3–4–5–6) extend

the P-DVC development using a reference image to identification and single-view ultra

fast procedures. The second part (Chapter 7–8–9) is dedicated to dynamic tomography.
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It uses the P-DVC results to correct the initial reconstruction procedure. This framework

is used to calibrate the tomograph and image moving samples.

The first part of the manuscript presents (as shown figure 1.11) 5 variations of the

P-DVC with the acquisition of a reference state

Figure 1.11: Projection-based measurement and identification procedures using a reference

volume

• Chapter 2: P-DVC is extended to cone beam in a lab-CT with 2 projections

per time state. The space is regularized with an elastic model. From 13 loading

steps, together boundary conditions, crack positions and 2 material parameters are

identified (the Young modulus and mode I toughness). The method is applied on a

plaster sample imaged in-situ with a DCDC (Double Cleavage Drilled Compression)

test on a tensile compression testing machine. A single reference state is acquired on

the virgin unloaded sample. The entire procedure takes 2.5 hours for the reference

acquisition and 13 loading states that took 35 second each. This chapter is extracted

from [113].

• Chapter 3: P-DVC is extended to a single projection per time step. The acquisition

of projections is continuous while the sample is loaded and rotates. The displacement

field is regularized in space and time such that each loading step contributes to the

global identification. The lack of sensitivity at some steps is hence retrieved at other

steps. Because of a large number of degrees of freedom, model reduction techniques

(PGD) are developed. The solution is identified mode by mode successively. The

application is performed with a tensile test on a slender cast iron sample until failure

and imaged in-situ in the LMT lab-CT. One reference state is acquired in 20 minutes

and the experiment composed of 127 loading steps is carried out in 6 minutes. This

chapter is a Part1 of a two part article extracted from [114].

• Chapter 4: P-DVC is extended to integrated approaches. This chapter is related

to Chapter 3 and is applied on the same data set. The sought displacement field is

described by a plastic beam model. Two different methods are described: FEMU
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identification using the displacement fields of Chapter 3 and integrated methods.

This chapter is the Part2 of a two part article extracted from [115].

• Chapter 5: The projection based measurement is here extended to “non-

mechanical” identification with gray level variation. The fluid invasion on a porous

sandstone sample has been imaged using neutron tomography. The moving 3D front

of the fluid is tracked using projections. The fluid front is parametrized in space (low

order polynomials), time and saturation profile. Because of numerous unknowns, the

3 coupled problems are solved using PGD methods. The result is a front tracked

at 5 Hz time resolution (300 times faster than standard 3D scans). This chapter is

extracted from the work performed at Lund University, Sweden [116].

• Chapter 6: P-DVC is extended to ultra fast in-situ vibration measurements. The

measurement of the modal basis of a vibrating sample is demonstrated. With a

random time sampling, and very few projection angles, the microstructure and a

small number of spatial modes of vibrations shared by all projections and hence

these common modes can be reconstructed since the microstructure is known. Two

numerical examples are presented and show the accuracy of the method. With

this method, the only speed limitation for vibrating phenomenon is no longer the

acquisition time but the exposure time (that is (or can be) extremely small).

The second part of the manuscript is dedicated to dynamical tomography. The

reference volume is here imaged with motion and the identified motion is used to correct the

reconstruction procedure (with an update of the calibration or by changing the calibration

parameters), as shown figure 1.12.

Figure 1.12: Projection-based DVC without reference image used for dynamic tomography.

• Chapter 7: The online calibration of the tomograph using P-DVC techniques is

performed. Because of approximate calibration parameters of the tomograph, the re-

construction of the scanned sample is very blurry. This low quality reconstruction is

used in a P-DVC framework with its own projections. The measured displacement
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field allows calibration to be perform and good and sharp volumes to be recon-

structed. The spatial displacements are regularized with rigid body motions and

their time evolution is regularized with polynomials and sinusoidal functions. A

PGD procedure is implemented to capture the first motion modes. This work is

extracted from [117].

• Chapter 8: A dynamic tomography method is developed in 2D with numerical

phantoms. From an initially blurry reconstruction, a coarse displacement can be

measured. Then, with a motion compensated reconstruction procedure based an

a SART algorithm, the volume can be progressively updated until it it reaches a

satisfactory quality. The procedure is applied on two numerical examples: a mov-

ing Shepp Logan phantom and a pulsating checkerboard. This work is extracted

from [118].

• Chapter 9: The dynamic tomography method is developed in 3D with a real test

case. The dynamic correction of a respiratory motion based on 10 full CT of a patient

lungs is performed in a multi-scale framework. The 10 scans have been acquired at

the CREATIS laboratory. The 4D motion identification allows the reconstruction

to be much shaper around the diaphragm.

Supplementary materials

Articles or preprints issued from published or submitted work, are sometimes aug-

mented by some additional comments. In such cases, the new text is added in a red box,

not to confuse it with the original version.
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Projection-based measurement

with a reference volume
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Chapter 2
Crack identification from multi-view

tomography

C. Jailin, A. Bouterf, M. Poncelet, S. Roux, In situ µCT-scan mechanical tests:

Fast 4D mechanical identification, Experimental Mechanics, 57(8):1327–1340,

2017

Reproduced from

A recently proposed “Projection-based Digital Volume Correlation” (P-DVC) method

is here extended to a cone-beam lab-tomograph in which a mechanical test is performed. It

consists in a crack propagation test for an elastic-brittle gypsum specimen. The kinematic

analysis is done based on a reduced finite element modeling for which the appropriate

boundary conditions, and crack propagation stage, are determined from the radiographs.

Considering only two projections per loading step, an integrated model-based analysis of

the entire test provides a full space and time identification of the kinematics, including the

crack position and the determination of two material parameters. This is achieved with a

drastic reduction in acquisition time as compared to classical Digital Volume Correlation

analysis. In the considered example, acquisition time is cut down by a factor of 350.
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2.1 Introduction

Identification and validation of mechanical models used to predict the behavior of materials

and structures has been and still is the central focus of experimental mechanics. However,

the ever increasing sophistication of mechanical models, and the multiplicity of scales

required to assess and quantify the microscopic phenomena at play present every day more

challenging demands to mechanical tests. During these last decades, this trend is balanced

by the accessibility to more and more powerful measuring and imaging techniques, (and

in a lesser extent, richer and more accurate loading setups), from which complex loadings,

specimen geometry and full-field measurements can benefit.

The development of Computed Tomography (CT) has been a revolution in materials

science [1, 2, 3]. Accessing the intimate micro-structure of solids in a non destructive way

has opened new horizons. The recent evolutions of these imaging techniques give access to

higher spatial and temporal resolution. First developed on synchrotron facilities with high

brightness monochromatic coherent X-ray beam, X-ray CT scanners are now an accessible

equipment in laboratories. Moreover, their state-of-the-art performance may in favorable

cases compare well with those of large scale synchrotron tomography.

The development of material tests coupled with tomographic images has been studied

in the recent years. After ex-situ testing where the materials are deformed outside of the

tomograph, the recent evolution of CT makes in-situ tests possible [4, 5, 6]. In the latter

case, material specimens are deformed inside of the tomograph. This method allows for

characterizing new mechanisms (i.e. crack opening [7, 8], shear banding, fast transforma-

tion [9, 10]). Recent works developed in synchrotron facilities reported 20 Hz scans for

the study of crack propagation [11]. Combined with imaging analysis techniques such as

full field measurement, X-ray CT becomes a powerful tool for experimental mechanics.

Digital Volume Correlation (DVC) [12, 13] is a full field measurement method that

aims at capturing the way a solid has been deformed between two states captured in 3D

images. Extended from 2D Digital Image Correlation, DVC permits to measure accu-

rately 3D displacement fields based on the micro-structure of registered volumes. As in

standard mechanical tests, an experiment is generally composed of several loading steps.

DVC can be performed with all deformed states of the same specimen. This space-time

analysis of the displacement field, called 4D-DVC [14, 15] permits for example to identify

a constitutive law exploiting all loading steps globally.

Nevertheless, the major limitation of CT imaging especially in lab-tomograph is the

acquisition time (around one hour).Demanding application for very high resolution can

reach more than 20 hours [16, 17].

This limit does not allow for the visualization of time-dependent behaviors that may

be considered as artifacts, blurring the reconstruction [18]. In [19, 7], 0.5 to 1 hour

were spent to wait for relaxation or creep behavior at each loading steps. Yet another

limitation is the study of biological materials where a low dose of x-rays is to be used

to avoid radiation induced damage [20]. One possible procedure to circumvent these

difficulties is the Projection-based DVC (P-DVC) [21]. Instead of working with full 3D

images for every loading step, P-DVC consists in operating directly on radiographs (i.e.,
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projection of the deformed volume). A very small number on radiographs turns out to be

sufficient to measure a displacement after a first complete 3D image of the reference state

has been (classically) reconstructed. In [22, 23], it has been shown that the measurement

of the 3D displacement field of a specimen of cast iron with a fatigue crack was obtained

from no more than two radiographs (instead of 600). The exploited experiment had been

performed in situ in the European Synchrotron Research Facility (ESRF) in Grenoble.

Ideas in a similar spirit for rigid grain tracking are recently proposed in [24].

The present paper aims at extending this P-DVC methodology on lab-tomograph im-

ages, addressing the identification of material properties from a complex geometry. In

Section 2.2 a brief overview of DVC and P-DVC procedures is given. This image pro-

cessing technique is regularized with a coupling to a mechanical model. In Section 2.3,

the Double Cleavage Drilled Compression (DCDC) test case is introduced. The proposed

methodology is applied in Section 2.4 to the test case, and the obtained displacement

fields and projection residuals are presented. The identification of model parameters is

discussed. Finally, Section 2.6 recapitulates the main results of the paper, and proposes a

discussion on possible ways to improve the proposed methodology.

2.2 Method

2.2.1 Digital Volume Correlation

Digital Volume Correlation (DVC) [12, 13] is a full field measurement technique for the 3D

displacement field that relates two 3D images, one for the reference state and one for the

deformed one. It consists in the registration of an image f(x) in the reference configuration

and a series of 3D images g(x, t) in deformed configurations indexed by time t. The term

x denotes the Cartesian coordinates of the reconstruction. The DVC procedure (written

here with the Eulerian transformation to unify notations considering the next section)

is the minimization of the quadratic difference between the reference image corrected by

the measured displacement u(x, t) and the image of the deformed state (called “deformed

image” for conciseness)

χ2
u(t) =

1

2|Ω|γ2
f

∑
x∈Ω

(f(x− u(x, t))− g(x, t))2 (2.1)

where γ2
f is an estimate of the noise variance over the image, and |Ω| the volume (number

of voxels) of the region of interest, Ω. A first kinematic regularization of the displacement

field can be introduced by global DVC. In global DVC [25], the displacement field is

expressed on a reduced basis composed of a set of fields Φi(x) such that

u(x, t) =
∑
i

ui(t)Φi(x). (2.2)

A general framework for kinematic bases well-suited to mechanical modeling is those used

in the framework of the finite element method. This choice offers continuous displacement

fields and constitutes an ideally suited interface with finite element computations if needed

say for future identification purposes.
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The displacement field is finally obtained from the minimization of the functional with

respect to the degrees of freedom ui(t) (i.e., nodal displacements)

ui(t) = Argminvi(χ
2
v(t)). (2.3)

2.2.2 Global P-DVC procedure

In order to reduce acquisition time (especially the acquisition of the entire sinogram for ev-

ery deformed states), it is proposed to work with few radiographs instead of reconstructed

3D volumes. The proposed method is Projection-based Digital Volume Correlation (P-

DVC) [21, 22, 23].

The first step of the procedure is the acquisition and reconstruction of a reference

image, f(x), (generally without loading) from a complete set of radiographs with a fine

sampling of all rotation angles. Then the deformed states are characterized through a much

reduced set of radiographs, sampled at a few, Nθ, selected angles. Because the number

Nθ of needed projections may be very small, the deformed image cannot be reconstructed

solely based on those radiographs. The idea is on the contrary to obtain it from the

reference image, by fitting the displacement field so that the projections of the deformed

volume match the few available radiographs.

To clarify our notations, it is recalled that reconstruction is based on images that are

computed as the cologarithm of intensities of radiographs normalized by a flat field (i.e.,

radiograph captured without specimen). The latter are denoted as s(r, θ, t), with r the

coordinates of the detector, θ the rotation angle and time t. In order to avoid the confusion

with the raw radiographs, they are referred to as “sinogram” in the following, irrespective

of the number of angles θ.

In the same spirit as DVC, the displacement field is obtained from the minimization of

the quadratic difference between the (re-)projected reference 3D image corrected by the

displacement field Πk[f(x − u(x, t))] and the sinogram in the deformed states at time t,

captured at just a few angles s(r, θk, t)

χ2
u(t) =

1

Nθ|Ξ|γ2
s

∑
k,r

(Πk[f(x− u(x, t))]− s(r, θk, t))2 (2.4)

where the double sum over (k, r) is the discrete integration over all pixels r ∈ Ξ at all

projection angles θk. γ
2
s is the variance of the sinogram noise, and |Ξ| the area (number

of pixels) of the detector (or its utilized part). At this step, the displacement field may

be expressed on the reduced basis as previously defined. Minimization of the functional

leads to the displacement field from the nodal values

ui(t) = Argminui(χ
2
u(t)). (2.5)

A Newton algorithm may be used to solve this problem iteratively by a progressive

correction of the displacement field, correction obtained from the tangent linear prob-

lem about the current point. Because the correction displacement field, δui, is in the
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range of small perturbations, the integrand in Eq. 2.4 reference image corrected by this

displacement field can be expressed as

Πk[f(x− ui(t)Φi(x))] ≈ Πk[f(x− u(t))− δui(t)Φi(x)∇f(x− u(t))]. (2.6)

Finally the linear system that has to be solved is

δui = N−1
ij nj (2.7)

with N the Hessian matrix and n the second member vector based on the residual field

Nij =
∑
θk,r

Πk[Φi(x)∇f(x− u(t))]Πk[Φj(x)∇f(x− u(t))] (2.8)

ni =
∑
θk,r

(s(r, θk, t)−Πk[f(x− u(t))])Πk[Φi(x)∇f(x− u(t))] (2.9)

As in DVC, the residual field at convergence, ρ(r, θk, t) ≡ (s(r, θk, t) − Πk[f(x − u(t))])

gives very precious information on the quality of the solution. However, in P-DVC the

residual fields (Nθ 2D images) are in the projected domain (parameterized by r). They are

also affected by acquisition noise and artifacts, reconstruction and projection inaccuracies

and mesh discretization errors (on a crack path for example).

Let us emphasize here a very attractive property of this approach. Because computa-

tions operate in the projection space, acquisition artefacts can be corrected and noise taken

into account. Noise for instance is close to being white, and Gaussian, what legitimates

the use of a simple L2 norm of the projection residuals. Some additional artefacts can

also be characterized (dead detector pixels, beam hardening, ...), and hence accounting

for these features is feasible. It is fair to add that some artifacts can be corrected in a

pre-processing stage, leading to enhanced quality of the reconstruction. However, it should

also be emphasized that for the present application, more that the reconstructed volume,

each individual projection is to be corrected, and this is very demanding. This contrasts

considerably with classical DVC, where, even after a pre-processing of the radiographs to

erase some artefacts, noise as well as uncorrected or partially corrected artefacts have been

processed in the reconstruction and hence spatial correlation have been built, and spatial

stationarity is broken. In this case, a complex metric (inverse of the covariance matrix)

should be used in DVC in order to compute the theoretically correct cost function. This

is so complex than no-one ever considers such a comparison metric in practice, and hence

registration is sub-optimal.

2.2.3 Integrated P-DVC

Aiming to reduce the number of degrees of freedom, another mechanical regularization

can be introduced. The displacement field can be expressed as a linear combination of

fields obtained from a finite element computation based on the same meshed domain

and exploiting a constitutive law. The kinematics is then controlled by fewer degrees of

freedom, pi, for example those parameterizing the boundary conditions of the test or a

specimen geometry including for example a crack front position.
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Depending on how the modeling (including the mechanical behavior) can be trusted

either a small weight can be given to the regularization, so that it acts as a mechanical

low pass filter [26, 23], or a large weight can be ascribed enforcing the mechanical be-

havior over the entire domain, and thereby reducing drastically the number of effective

degrees of freedom, and hence the computation time. In the application, only the limit

of an infinite weight will be considered, so that a homogeneous elastic behavior is strictly

prescribed. It is noteworthy that boundary conditions are understood here at large, and

may contain additional parameters such as the position of the crack tip. Moreover, be-

cause the displacement fields are directly expressed on mechanically admissible fields, the

present formulation allows for the identification of model parameters. In this framework,

the chosen unknown parameters, be they boundary conditions, geometry or constitutive

parameters, can be considered altogether as the unknown pi with 1 ≤ i ≤ N .

A similar Newton’s descent method is chosen as previously. However, as the expression

of the new degrees of freedom (or their incremental change) can be expressed from the

nodal displacements, the present formulation can be deduced from the previous one. It is

needed to compute the sensitivity fields

Sij =
∂ui({p})
∂pj

(2.10)

The corrections δpi to the current estimate of the parameters p reduces to

δpi = H−1
ij hj (2.11)

with a Hessian matrix H and second member h

Hij = SmiNmnSnj or H = S†NS (2.12)

and

hj = Sijni or h = S†.n (2.13)

After convergence, the residual fields are instrumental in evaluating the validity of the

mechanical model and the choice of boundary conditions. If deemed necessary, this choice

can be revisited in order to better capture the kinematics.

2.2.4 Use of load measurement

The previous procedure only takes into account images. However, purely kinematic in-

formation cannot set a stress scale and hence cannot provide access to parameters such

as the Young modulus for an elastic law. Therefore, it is useful to also take into account

any available measurement data such as that of a load cell. With the previous integrated

procedure, the load Fc(t;p) can be computed with any chosen set of parameters p and

compared to the measured ones Fm(t).

An additional term to the functional can be added [27, 28] in order to perform the

minimization in displacement and force

χ2(t) = χ2
u(t) + χ2

F (t) (2.14)
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with the force functional

χ2
F (t) =

1

γ2
F

(Fc(t)− Fm(t))2 (2.15)

where γ2
F is the noise variance of the load cell, (this formula assumes that only one mea-

surement is being used).

Let us stress that the extensive quantities are the cost functions χ2 times the number

of measurements they involve (provided they are statistically independent). Thus the joint

minimization of two sets of measurements A and B should be based on

χ2
A∪B =

NAχ
2
A +NBχ

2
B

NA +NB
(2.16)

where NA (resp. NB) is the number of measurements of A (resp. B). This ensures that

the expectation value of each χ2 is unity. Thus when combining different loading states,

individual χ2
u and χ2

F should be weighted by Nθ|Ξ| and 1 respectively. When several (Nt)

loading states are considered, because each instant involves the same expression, both NA

and NB are multiplied by Nt, and hence the above weighted means remains invariant, and

Nt can be ignored.

In the following, two strategies will be followed: in the first one, the measurements of

displacement are first performed at each loading step independently, and then from them

and the force values, the Young’s modulus will be estimated; A second strategy consists

in determining forces and displacement jointly with the above functional, that is coupling

different kinematic measurement when no damage is expected.

In the following test case, an elastic law will be used. The Young modulus, E, can be

easily identified considering all Nt loading steps in a spatio-temporal framework [29]. It

consists in the minimization of the total functional (summed over time) with respect to the

unknown parameter. Because the force is proportional to E, the force can be computed

with a unitary Young modulus, Fu(t), and hence Fc(t) = E.Fu(t). Minimizing the total

cost function with respect to E thus leads simply to∑
t

(Fm(t)− EFu(t))Fu(t) = 0 (2.17)

and hence

E =

∑
t Fu(t)Fm(t)∑

t Fu(t)2
(2.18)

2.3 Case study

2.3.1 DCDC test

The Double Cleavage Drilled Compression (DCDC) test refers to a parallelepipedic shaped

specimen with a square cross section normal to the sample length axis and a centered

cylindrical hole drilled in the center of one of its lateral face. The specimen is subjected to

a compressive load in the length direction (perpendicular to the hole axis). This type of

test permits to study the fracture of brittle materials (originally used for studying crack

propagation in glass [30, 31]). Under compression, due to the geometry, a tensile stress
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concentration is generated around the central hole and initiates two symmetric mode I

cracks that propagate on the mid-plane of the sample while the load increases [32, 33, 34].

2.3.2 Test case presentation

The DCDC specimen used for the present study is a 8.40×8.40×21.79 mm3 plaster sample

with 1.4 vol.% of copper powder (approximative size of 150 µm) in order to provide markers

well distributed in the bulk with a sharp contrast for X-Ray imaging (the X-ray absorption

of copper (Cu) is much higher than that of gypsum (CaSO4,2H2O)). Two notches (3.80 mm

long from the center and 200 µm thick) are introduced in the mold. Finally a 2.30 mm

diameter hole is drilled in the center.

(a) (b)

Figure 2.1: (a) Drawing and 3D reconstruction of the sample and (b) the in situ testing

machine [35] inside the tomograph with 1○, the testing machine with a carbon tube being

supported by the rotating stage, 2○, the X-ray source and 3○, the detector. Note that the

distance between the source and detector is not the one used in this article

The sample (figure 2.1(a)) is scanned at the LMT lab-tomograph (cone beam, 149.6 kV,

108.5 µA, W target) inside of an in-situ testing machine similar to the one designed by

Buffière and Maire [35] (figure 2.1(b)). The voxel size at full resolution is set to 15 µm.

The complete scan of the reference state consists of 1500 radiographs captured at equally

spaced angles ranging over a 360◦ revolution. One flat-field is acquired after conditioning

and before the experiment in order to perform a standard flat-field correction. One dark-

field is also acquired before the experiment. Because the reference volume is just to

be acquired once, in order to enhance its quality and reduce the acquisition noise, each

radiograph is an average over 50 projections. (This high number was found a posteriori

to be unnecessary because the procedure is not sensitive to uncorrelated noise). Finally

the entire reference scan (including storage time) requires 2.5 h to be completed.

Supplementary materials

One of the key quantity in the P-DVC measurement procedure is the projected

gray level sensitivity per degree of freedom (for the global procedure: σi(r) =

Πk[Φi(x)∇f(x)]). From these fields are computed the global Hessian matrix: N and
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the integrated one H as well as the covariance matrix og the measurement when a white

Gaussian noise affects the images: C = 2γ2
sH

−1. The gray level sensitivity is composed

of two terms: (i) the regularization choice (i.e., choice of a kinematics model) that has to

be carrefully selected before the experiment and (ii) the projected gray level texture. The

latter one depends on the scanned materials. Some materials have an very good X-ray

intrinsic texture because they are composed of particles (e.g., cast iron, reactive materials,

granular materials), fibers (e.g., wood, carbon composites) or because of their shapes (e.g.,

foams). However DVC or P-DVC on poorly textured materials can be difficult (e.g., iron,

aluminum, ...).

In this application, it was chosen to enhance the texture by adding a pinch of copper

powder (1.4 vol.%) before molding it. Because the sample was composed of plaster (light

elements: 1H, 8O, 16S, 20Ca), adding heavy (absorbing) particles would create a texture.

Different sizes and heavy elements have been tested (26Fe, 29Cu, 50Sn, 20Pb, 83Bi). Pro-

jections of two volumes loaded with Pb and Cu powder as acquired by the lab-CT NSI

software are presented figure 2.2(a,b). It can be seen that in (a), the Pb powder are ex-

tremely absorbent. The reconstruction of the Pb loaded sample is polluted with metal

artifacts. Concerning the size, particules should be reconstructed at least with 4-5 voxel-

length. Two sizes of particles are shown figure 2.2. The Fe particles were in this case

too small. Cu powder was finally selected because the reconstruction could be performed

without too much artifacts.

Other techniques could have been used to enhance the texture: modifying the geometry,

apply the powder or other tracers on the surface, etc.

It is noteworthy that enhancing the texture was performed for convenience. Because

the plaster is a material with an inner texture (particles, air bubbles, etc.) and kinemat-

ics is highly regularized, the natural texture would have worked as well (but with less

sensitivity thus a lower signal to noise ratio).
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(a) (b) (c)

Figure 2.2: (a,b) Projection of the sample loaded with respectively Pb and Cu powder

and (c) Different sizes of Fe and Pb powder (top and bottom)

2.3.3 Mechanical test

The in-situ testing machine [35] is a tensile/compression machine controlled by the axial

displacement of the lower part. The sample is placed on a composite tube that balances

the load exerted on the specimen. The load cell capacity is 1 kN with an uncertainty of

7 N.

The experiment is composed of loading steps using a P-DVC approach (i.e. without

acquisition and reconstruction of the deformed states). Previous works [21, 22, 23] have

shown that the procedure with a synchrotron beamline gave accurate displacement field

with 2 angles (chosen orthogonal). Similarly, angles for the P-DVC procedure are to be

selected. A high sensitivity to a degree of freedom allows for an accurate identification

of its amplitude. The sensitivity to the crack position is here chosen to be maximized.

Prior to the experiment, an elastic FE simulation with simple boundary conditions was

performed on a synthetic gray level volume with a microstructure representative of that

of the real sample, and the norm of the sensitivity bj was estimated for all integer angles

values so as to select the most sensitive one. First, the angle 0◦ (i.e. in the crack front

direction) gave the highest sensitivity due to an important orthogonal displacement around

the crack. However, because of projection, some information (i.e. displacement along the

projection axis) was lost. Therefore, the second angle was selected at 90◦ to provide the

lacking sensitivity.

Supplementary materials
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One key quantity in the measurement procedure is the projected sensitivity field Πk[f ]

The pre-computation of the sensitivity has been performed on a synthetic volume

composed of a light matrix and heavy absorbent particles (3D Gaussian). The volume

was generated from a matlab function due to Dr. Jan Neggers. The sensitivities were

computed using finite differences with a matlab-FEM script and were used to weight

the 3D gradient before projecting it with a guess of the conic projection operator. The

projection of the sensitivity at 0◦ with respect to the symmetrical advance of the cracks is

shown figure 2.3(a). The most important part of the residual is located in the central part

of the sample and is the signature of an horizontal motion. The norm of this sensitivity

with respect to the 360 degrees angle is plotted figure 2.3(b). It was chosen to optimize

the angles from the crack sensitivities thus 0◦ and its complementary 90◦ were selected.

(a) (b)

Figure 2.3: (a) Projection of crack propagation sensitivity and (b) norm of this sensitivity

fields for different angles;

Other criterion on the sensitivity could have been introduced. For example maximizing

the minimal eigenvalue of the Hessian matrix, or its determinant, would also have been a

possible criteria.

Eight radiographs (acquired with an average over 50 frames) at each loading state were

captured at every multiple of 45◦ (8 were chosen beforehand for caution but only two are

used in the following procedure, namely at 0◦ and 90◦). The acquisition time for each of

these steps is 35 s. The test is composed of two parts:

• 7 loading steps without crack (i.e. in an elastic regime), from 0 to 600 N, spaced by

approximately 100 N

• 6 loading steps with crack initiation and propagation.

The fast 8 radiograph acquisitions are performed after approximately 15 minutes hold

time to avoid possible relaxation phenomena. This procedure (again motivated by caution)

revealed unnecessary. At the end of the experiment, a final 3D scan (i.e. with a full
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acquisition of 1500 radiographs) was performed. This reconstruction was designed to

track possible non-planar crack propagation, and for possible validation of the P-DVC

results. Table 2.1 summarizes the main characteristics of each loading step.

Number 1 2 3 4 5 6 7

full 3D scan Yes No No No No No No

load [N] 0 91.8 188 305 393 488 609

visual crack No No No No No No No

Number 8 9 10 11 12 13

full 3D scan No No No No No Yes

load [N] 628 638 651 669 691 625

visual crack Yes Yes Yes Yes Yes Yes

Table 2.1: Loading steps information for the two parts of the experiment

2.3.4 Sinograms

In order to control the reconstruction as well as the projection processes, the reconstruc-

tion of the reference state is performed with the ASTRA toolbox [36] and cone-beam

projections. Because of computation time and GPU memory requirement for ASTRA,

the reconstruction from an FDK algorithm is carried out with different sinogram scales:

• Scale 2 : Gaussian filtering of the sinogram with a characteristic length of 2 pixels

followed by a down-sampling of 1 out of 2 pixels in both directions, so that at each

angle, the sinogram is a 751× 972 pixels image, and hence after reconstruction the

effective voxel size is doubled to 30 µm. This scale is used for the reconstruction

shown in fig. 2.1(a).

• Scale 4 : Gaussian filtering of the sinogram with a characteristic length of 4 pixels

followed by a down-sampling of 1 out of 4 pixels in both directions, resulting in

372×486 pixels images). This coarse scale is used for development and initialization

of the finer scale.

The multi-scale procedure is applied on the deformed sinogram too.

As can be seen in figure 2.4, the specimen contains a large air bubble on one of the

top corner. This bubble is meshed in the following finite element computation in order to

account for its possible influence on the crack propagation.

A bounding box around the sample (e.g. white dashed rectangle in the projections

fig. 2.5) on the residual is chosen to not bias the analysis with the still composite tube

and avoid the top and bottom artifacts on the loading plates. Finally the central hole and

notches are hidden by a mask (delineated by full white lines) on the projections because

of important phase contrast. The studied area, inside of the bounding box and excluding

the central mask is called region of interest (ROI). It is defined in 3D, and its projection

is considered on the sinogram (the exterior of the bounding box is considered to be void,

but the excluded inner parts mask their entire shadow).
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Figure 2.4: Sinogram of the reference state at (a) s(r, θ = 0◦, t = 1) and (b) s(r, θ =

90◦, t = 1). z is the rotation axis, centered with respect to the image. 1 pixel → 30µm

The sinogram and ROI for step 8 are shown in figure 2.5. The crack may be visible

at θ = 0◦ due to a phase contrast built along the optical path. This is to be contrasted

with the following P-DVC procedure that estimates the position of the crack from the

displacement field.

Figure 2.5: Sinogram of deformed specimen at ()a s(r, θ = 0◦, t = 8) and (b) s(r, θ =

90◦, t = 8). The vertical crack may be visible in (a) from the notches. The white dashed

rectangle is the bounding box boundaries and the full white lines are the central mask

boundaries.
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2.3.5 Residual fields

Artifacts residual fields

As shown in section 2.2.2, the P-DVC code minimizes the quadratic norm of the 2D resid-

ual fields ρ(r, θk, t) ≡ s(r, θk, t)−Πk[f(x− u)]. It is interesting to extend this procedure

to the initial state t = 1 where u is identically null per definition. Due to measurement

noise and slight inaccuracies of the reconstruction and re-projection algorithm, the arti-

fact residual ρ(r, θk, 1) ≡ s(r, θk, 0) − Πk[f(x)] is not 0. The initial artifact residual is

shown in fig. 2.6 with a divergent color map to highlight differently positive and negative

values. All residual fields are presented in percent of the initial projection amplitude, after

cutting out the highest and lowest 5% of gray levels. In this field, some features could

be clearly interpreted as detector artifacts and some due to phenomena neglected in the

reconstruction (beam hardening, phase contrast, metal artifacts). It was observed that

this artefact residual field could still be read in the following residuals ρ(r, θk, t). Because

ρ(r, θk, 1) appears to be a limit than cannot be overstepped, in the following, we will focus

on the difference ∆ρ(r, θk, t) = ρ(r, θk, t) − ρ(r, θk, 1), in order to minimize the effects of

this initial systematic bias.

Figure 2.6: Artifact residual (a) ρ(r, 0◦, 1) and (b) ρ(r, 90◦, 1). The four quadrants of the

detector are visible.

Minimized residual fields

∆ρ(r, θk, t = 8) is shown in Figure 2.7. The texture of this initial residual field displays

a characteristic pattern of alternating positive and negative values along a preferential

direction. This is the result of a displacement of the particles (vertical in this case). The

crack path appears more clearly on the residual fields but the exact position of the front is

hardly visible. A global criterion on the residual to appreciate the quality of the residual
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Figure 2.7: Residual fields (a) ∆ρ(r, 0◦, t = 8) and (b) ∆ρ(r, 90◦, t = 8). The negative

and positive patterns are the signature of a displacement

fields is the signal to noise ratio defined as the logarithm of the quotient between the

standard deviation of the projections and the residual fields

SNR(t) = 20 log

(
σ(s)

σ(∆ρ)

)
(2.19)

where the standard deviation is computed over the clipped and unmasked region of interest

in projection space.

2.3.6 Mesh and regularization

As previously explained, the displacement field is expressed as a combination of fields

related to the sensitivity to the selected parameters. These fields are computed based on

a mechanical model, here implemented with a finite element code. Because gypsum is an

elastic brittle material, the chosen mechanical behavior is an elastic law (2 parameters: the

unitary Young modulus, E = 1 MPa, conventional value chosen for identification purpose

and the Poisson ratio, ν = 0.2) and a possible crack propagation that “splits” the volume

into two parts.

According to the reconstruction of the deformed state at step 13, the crack path is

observed to remain flat in the mid-plane of the sample. Hence, as shown in figure 2.8 the

mesh is composed of two conforming parts that can be tightened (if there is no crack)

with a common displacement on facing nodes at the interface. The mesh is defined on

the reference and deformed images. It has 1343 nodes and 4248 T4 elements. The large

bubble observed in the corner is meshed as it may affect the specimen stiffness. In order

not to leave ‘floating voxels’ in the advection of the reference volume, the mesh is very

slightly larger than the specimen volume. The effective cross-section of the mesh is about

4 % larger than that of the volume itself.
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The chosen parameters to control the kinematics are

• 12 degrees of freedom that represent the applied loading (i.e. 6 dofs on each of the

top and bottom faces). They describe a rigid body motion of each of these faces.

Equivalently, they can be reorganized to describe the 6 degrees of freedom of the

mean rigid body motion of the specimen, and 6 others that correspond to different

elementary loadings: one tension and one torsion along the z axis, two shear and two

bending modes (x and y axes). The sensitivity to the latter six boundary conditions

are computed with a unitary displacement because of the linearity of the elastic law.

These modes are shown in figure 2.8.

• 2 degrees of freedom for the crack front position. The crack is assumed to be plane.

The sensitivity for this parameter is the difference in displacement field due to a

crack propagating from a crack length of pi (with i equal to 13 and 14 for the two

crack fronts) to a slightly longer one pi + dpi, normalized by the increment dpi.

Figure 2.8: T4 Mesh adapted to the reconstruction for the six degrees of freedom applied

on the upper face (while the bottom one is held fixed). On the first row: two shear and

one tension modes, on the second row: two bending and one torsion modes. The color

corresponds to the displacement amplitude

2.4 Results

2.4.1 Methodology

The results of the P-DVC procedure are now presented. First, in Section 2.4.2, the loading

steps are considered independently in order to identify the displacement field boundary
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conditions and crack position. In this part, the first loading step where the crack has

propagated, step 8, has been selected to display the results in more details. In Section 2.4.3,

once the different displacement fields have been independently evaluated for each loading

step, it is possible to identify the Young’s modulus. Section 2.4.4 shows a refined evaluation

of the displacement fields and crack position taking into account the previously determined

Young’s modulus and the measured load. Finally in Section 2.4.5, a minimum bound for

the toughness is evaluated using the 7th load step, just before crack propagation.

2.4.2 Independent analysis of load steps

The same analysis was performed for the 12 loading steps, and the entire series will be

presented for some global results, but when focusing on one loading step, the 8th one is

here systematically chosen, since it is the one of crack inception.

Convergence criteria are defined on both variations of the SNR and displacement field

(∆SNR < 10−3 and ‖∆u(x, t)‖2 < 0.3 µm or 0.01 voxels at scale 2) and the computation

stops when both conditions are satisfied. The P-DVC procedure is observed to converge

in 4 to 6 iterations depending on the loading step, as exemplified in Figure 2.9 for step 8.

Figure 2.9: Convergence of the variation of the mean SNR (left) and of the norm of the

displacement variation (right)

After convergence, the residual field for step 8 is shown in figure 2.10. The mean SNR

ratio before and after correction of the displacement field is respectively 16.49 and 21.89.

It can be seen that the residual field values are much smaller and smoother at the end of

the process than in the initial state shown in Figure 2.7. The previous alternating positive

and negative patterns (signaling a displacement) have been erased, confirming thereby

that the kinematics has been well captured. The crack path is much more apparent than

on the initial residuals. Even the central part of the sample, masked in the ROI, has been

well corrected because of regularization. Some horizontal and vertical lines are clearly

visible. They correspond to detector artifacts that are not corrected by our procedure.

The displacement field in the three directions is shown figure 2.11. This displacement

is composed of a large vertical rigid body motion of 4 voxels (due the positioning of the

sample and to the low rigidity of the testing machine), a compressive state and a bending



52 CHAPTER 2. CRACK IDENTIFICATION FROM MULTI-VIEW TOMOGRAPHY

Figure 2.10: 2D residual field at step 8 after the displacement field correction for (a) θ = 0◦

and (b) 90◦. The black disk in the center of the right image is a reconstruction artifact.

on the upper face. This bending may be the cause of non-parallelism of the top and

bottom faces of the sample. The obtained displacement field is not a trivial compressive

state and justifies a full field measurement.

Figure 2.11: Displacement field at convergence in voxels between the reference and step 8

in (a) X, (b) Y and (c) Z direction. The voxel size is 30 µm.

The two crack front positions were two degrees of freedom of our identification. At

step 8, they indicate that both top and bottom cracks have propagated up to the top and

bottom faces of the sample. This was unexpected as the DCDC geometry should lead to

a stable propagation for a displacement control, but the low rigidity testing machine may

be responsible for releasing an additional energy at the onset of propagation.

P-DVC computed at step 7 leads to no crack inception, (i.e., no further than the
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notch), and indeed, in the residual before and after convergence as shown in Figure 2.12,

no trace of a crack is apparent in contrast to step 8. This observation is interesting because

it provides a lower bound of the material toughness (see section 2.4.5). Moreover step 7

load is only 19 N smaller than that of step 8.

Figure 2.12: 2D residual field at step 7, before the crack initiation, for (a-c) θ = 0◦ and

(b-d) 90◦. The first line is before the displacement field correction and the second after.

The vertical lines that are apparent in (c-d) are a detector artefact (also noticeable at step

8).

Other loading steps give similar results for the improvement of the residual fields. The

SNR ratio before and after the procedure for each step is shown figure 2.13. As expected,

the initial SNR decreases with the loading step as the load and displacement increase.

Even the initial residual at step 2 can be well improved although it mostly corresponds to
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a rigid body motion.

It can be seen that after the crack propagation, at step 11 to 13, the SNR is lower

than before. With the reconstruction of the final 3D volume (step 13), one may see many

cracks due to damage at the top and bottom ends of the sample, as well as flexure cracks

transverse to the sample axis at the position of the central hole. Such damages are not

described in our modeling and hence they induce a degradation of the registration quality

and the SNR decreases.

Figure 2.13: Mean SNR before and after the displacement field correction for all loading

step.

2.4.3 Identification of elastic properties

The Young’s modulus identification has been performed with a space-time regularization

considering all previous analyzed loading steps. The measured forces are compared to

the computed ones at convergence of the 14 kinematic parameters. As shown previously,

the first 7 steps are considered to be in the elastic regime (no crack propagation), hence

they should give accurate estimate of E without significant model error. The following

steps (including the through crack) should be amenable to a similar elastic analysis until

a significant further damage appears. Exploring different ranges for such an analysis lead

to the conclusion that beyond step 11, the elastic model was not appropriate, and hence

the Young’s modulus was estimated based on the first 10 loading steps (including the

computed crack extension). Considering the force uncertainty, the uncertainty on the

Young modulus is 1.5 %. From Eq. 2.18, the estimate is E = 1.12 GPa. This value is low

compared to the literature [37, 38] (2 to 5 GPa) but corresponds to ex-situ pre-tests on

the same plaster and geometry (three tests with a Young modulus of [998, 931, 940] MPa.

A high water/plaster ratio was chosen for an easy moulding of the specimen. Inserting

back this value into the elastic model provides a computed force that can be compared to

the measured one as shown in Figure 2.14.
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Figure 2.14: Comparison between the measured and computed force considering the iden-

tified Young modulus for the 13 steps. From step 11 and on, (and possibly earlier) the

occurrence of damage is believed to make the comparison irrelevant

2.4.4 Further regularization using identified elastic property and force

signal

Once the Young’s modulus has been identified from all loading steps, it is possible to up-

date the displacement field considering in the P-DVC procedure the additional constraint

given by the force measurement (equation 2.14). This new 4D measurement gives a revised

displacement field that can be compared to the previous one. The comparison of the norm

of the nodal displacements for the 10 first steps are shown figure 2.15. The maximum

difference, 0.3 %, is small meaning that the kinematics was well captured even prior to

accounting for the force minimization. A small difference is visible in the 2 last considered

steps due probably to less accurate model assumptions.

2.4.5 Toughness evaluation

Because step 8 corresponds to crack inception, the analysis of step 7 gives a lower bound

for the sample toughness. In the same spirit, the loading of step 8 applied on a non-cracked

specimen gives a higher bound of the toughness. Moreover, step 7 is only 19N less than

step 8 and the crack geometry is known (notches) hence the bounds should be accurate.

The Gf parameter is obtained with an elastic computation performed in Abaqus® using

the J-integral method. The two bounds are Gf = [10.4, 11.1] J/m2.

This result can be compared with standard Gf measurements performed without full

field analysis. In these standard procedures, only the compressive force is considered

(hence the displacement field is assumed to be a uniform compressive state). In our

experiment, due to an important bending of the upper face, it is important to consider

full field measurements. When the standard formula (ignoring bending) [39] is applied to

the present case, it leads to Gf = [9.5, 10.1] J/m2, corresponding to 9% difference with
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Figure 2.15: Norm of the displacement field with the kinematic minimization only, ‖u1‖,
and with the force and kinematic minimization (including the identified Young modulus),

‖u2‖, expressed in voxels

the previous evaluation.

These values of Gf are high compared to the literature [37, 38]. However, the low

value of the identified Young modulus gives KIc = [0.108, 0.111] MPa.m1/2 that is in the

low range but compatible with literature values ranging from KIc ≈ 0.1 to 0.5 MPa.m1/2.

2.5 Discussion

This study is a first attempt to exploit a complete in-situ mechanical test using P-DVC,

in a lab-tomograph. This method is 4D, in the sense that one has access to the entire

displacement field, u(x, t), in space and time at each loading step. The fact that only two

projections (per step) are needed endows the methodology with a much enhanced time

resolution, by a factor of several hundreds.

This opens new horizons for biological tissues where a low dose of x-ray radiation is

needed to limit radiation damage. However, one should emphasize that it is necessary

that a reference volume has been reconstructed. Saving on x-ray dose only comes from

the subsequent tracking of the motion in time where the additional dose is very small.

Such a property may be used to add, at low additional cost,

It also allows considering time dependent phenomena that could not be captured with-

out P-DVC, prosaically because of the evolution of the sample during the scan time (several

hours or more). This may prevent a proper tomographic reconstruction and hence pre-

clude the usage of volume correlation (classical DVC) to track the motion, or any other

evolution of the sample. Hence, on this ground, the superiority of P-DVC over DVC is

obvious, as it renders possible the study of situations that were simply out of reach with

classical means.

Complex specimen shapes or microstructures can be handled by this technique, without

restrictions. It is also to be emphasized that when the geometry of the sample evolves
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during the test (as in the present case where the crack was not present in the initial

geometry but appeared along the test), one may resort to the final state to extract its very

precise geometry. More generally, possible non-planar cracks could be considered in their

final geometry and cohesive element implemented in the model in order to progressively

open the crack as called by the studied projections.

In the present study, a simple elastic model revealed appropriate (as judged from

the residuals). In the case of a more complex mechanical behavior measurement and

identification, a more sophisticated model could be used. In the same spirit as the crack

propagation that is a non-linear parameter, the finite element model as well as projected

sensitivities may have to be re-computed when needed and possibly at each iteration of

the procedure, that would increase the computation cost of the analysis.

Numerous artifacts are known to be detrimental to tomographic imaging. When work-

ing with raw projections, a number of possible corrections can be envisaged and tailored

to the specific conditions of acquisition of any given projections. In fact reading projection

residuals is typically easy to indicate if motion, or intensity modulation, or any other phe-

nomenon, be it localized in space or uniformly distributed, is needed to reduce their level.

Exploiting the above flexibility allows for a very precise adjustment of artifact corrections

that can hardly be incorporated prior to reconstruction as this would increase considerably

reconstruction time.

Noise is also a key feature often limiting the quality of reconstruction. Long-range

correlations, present in the latter, are the result of the reconstruction that processes the

noise. However, in the projections, noise is much less complex, and hence, taking it into

account by a relevant weighting of the input data is easily accessible. This is expected to

enhance the reliability and lower the uncertainty on projection registration.

The limits of the proposed technique mostly comes from our ability to model the test

with a reduced set of parameters. It is essential that no (or very small) model error is

introduced, otherwise one may not be in a position to approach the actual projections,

from the deformation of the reference volume. The appropriateness of the model can be

read in the fact that the residuals may be reduced to a low level that can be ascribed

to noise (or to small amplitude artifacts that would not warrant corrections). Another

potential limitation is the presence of large displacements that would violate the relevance

of small perturbation analysis. Although a multiscale approach may help correcting large

amplitude motion, it is wise to perform acquisitions of projections at small increments of

loadings.

In terms of acquisition time, one may consider a much faster time lapse than the one

used in the present study. First 8 angles were captured but only 2 were used. Moreover a

very long sequence (average over 50 projections) was acquired and is today not the limiting

factor for the proposed analysis. 10 projections are certainly sufficient, so that the two

projections could be acquired within about one second. One limit here may be the time

needed to rotate the sample in between the two views.

An appealing perspective to achieve a higher temporal resolution is to use the time

regularization to acquire a single radiograph at each loading step and perform a continuous

rotating test. With such a 4D procedure, the unknowns contribute for the mechanical
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response of several steps, and with a suitable design they can be determined with the

entire time series, challenging the computational aspects of the inversion.

2.6 Conclusion

The analysis of a complete DCDC test with 13 loading steps was performed successfully

allowing for the analysis of the entire kinematics, and for the identification of the Young’s

modulus as well as a bound on the critical elastic energy release rate. Identification of

the Young modulus has been performed considering all loading steps at once, a specific

feature made possible with the 4D space and time proposed procedure.

This analysis was performed taking the actual boundary conditions of the test rather

than assuming an ideal one which would have led to 9% error on the toughness. In this

measurement of a quasi-brittle sample, a simple elastic model with a crack propagation

has been chosen. This kinematic model has been validated because the low residuals

showed that the kinematic was well captured. The kinematic regularization (based on

only 14 parameters) has been chosen considering the studied sample and test. A scan of

the cracked specimen at the end of the experiment permits to design the mesh according

to the real geometry.

This basis could be enriched by additional freedom such as shrinkage of the bottom

and top part due to a Poisson effect, or a more complex crack path and front. However,

phase contrast may induce specific features in the projection of the crack faces that are

not modeled at present and that may limit the resolution of a much finer description.

This developed P-DVC procedure in a lab-tomograph permits, from only one reference

volume, to measure the displacement field of a “moving” specimen from two radiographs.

P-DVC required 350 times less acquisition than standard DVC procedures. Further elimi-

nation of extraneous (unused) projections and performing fewer frame averages for radio-

graphs, would further increase this ratio well above three orders of magnitude.
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Chapter 3
Measurement from a single projection per

state

C. Jailin, A. Buljac, A. Bouterf, F. Hild, S. Roux, Fast 4D tensile test moni-

tored via X-CT: Single projection based Digital Volume Correlation dedicated to

slender samples, Journal of Strain Analysis for Engineering Design, 2018

Reproduced from

The measurement of 4D (i.e., 3D space and time) displacement fields of in-situ tests

within X-ray Computed Tomography scanners (i.e., lab-scale X-CT) is considered herein

using projection-based Digital Volume Correlation. With one single projection per loading

(i.e. time) step, the developed method allows for loading not to be interrupted and to vary

continuously during the scan rotation. As a result, huge gains in acquisition time (i.e.,

more than two orders of magnitudes) to be reached. The kinematic analysis is carried out

using predefined space and time bases combined with model reduction techniques (i.e.,

Proper Generalized Decomposition with space-time decomposition). The accuracy of the

measured kinematic basis is assessed via gray level residual fields. An application to an in-

situ tensile test composed of 127 time steps is performed. Because of the slender geometry

of the sample, a specific beam space regularization is used, which is composed of a stack

of rigid sections. Large improvements on the residual, whose SNR evolves from 9.9 dB to

26.7 dB, validate the procedure.
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3.1 Introduction

The development of Computed Tomography (CT) has been a major breakthrough in mate-

rials science [1, 2, 3, 4], providing nondestructive measurements of the 3D microstructure

of imaged samples. Initially developed using synchrotron sources, it is now a common

equipment accessible in laboratories. In addition to the broad range of spatial resolutions

(from nanometer to few meter scans), significant progress has been achieved in ultra-fast

X-ray tomography as illustrated with the 20 Hz full scan acquisition for the study of crack

propagation [5].

Coupled with mechanical tests, these acquisitions become an attractive tool in exper-

imental mechanics. First used for ex-situ tests where the materials are deformed outside

of the tomograph [6], the recent evolution of testing machines and CT makes in-situ tests

possible [7, 8, 9]. In the latter cases, the sample is imaged inside a tomograph, either with

interrupted mechanical load or with a continuously evolving loading and on-the-fly acqui-

sitions. Visualization of fast transformation, crack opening, or unsteady behavior become

accessible. Combined with full-field measurements, in-situ tests coupled with X-ray CT

offer a quantitative basis for identifying a broad range of mechanical behavior.

A robust and accurate method to quantitatively measure kinematic data from the

acquired images is Digital Image Correlation (DIC) in 2D and its 3D extension, Digital

Volume Correlation (DVC). The latter aims at capturing the way a solid deforms between

two states from the analysis of the corresponding 3D images. The measured displacement

field is then used to calibrate model parameters from inverse problem procedures (e.g.,

finite element model updating [10], virtual fields method [11]). The more numerous the

acquisitions, the more accurate and sensitive the identification procedure. DVC methods

have hence been developed in a 4D space-time framework [12, 13, 14] using all available

volumes globally. In 4D analyses, an acquisition of 5 to 15 steps is usually performed.

However, the major limitation of CT imaging, especially in lab-tomographs is the

acquisition time. To give orders of magnitude, each reconstructed CT volume, being

composed of about one thousand 2D radiographs, takes approximately one hour to be

acquired. This duration limits the number of possible acquired scans and hence restricts

such identifications to time-independent behavior. Moreover, spurious motions may occur

during acquisitions, blur the projections and reconstructions. In some cases it is required

to wait 0.5 to 1 hour for relaxation or creep stabilization at each loading step, before each

scan [15, 16].

The recently developed Projection-based DVC (P-DVC) [17] is an interesting method

to circumvent these difficulties. Instead of working with a series of 3D volumes, it is

proposed to directly measure the 3D displacement field from few of those radiographs.

This procedure exploits the property that two projections at a given orientation of the

sample under different loads contain a partial information about the full 3D kinematics,

and sampling few angles may be sufficient to extract the entire displacement field. In a

similar spirit, and very recently, the 3D tracking of rigid grains was proposed using few

radiographs [18]. Previous works have developed the P-DVC method for the analysis of a

cracked cast iron sample imaged with a synchrotron X-ray source [19, 20]. It was shown
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that the measurement was possible with only two orthogonal projection angles, thereby

allowing for a huge gain in acquisition time (i.e., a factor 300). In Ref. [21], a spatiotem-

poral framework was proposed in order to analyze the kinematics with a single projection

per angle, provided a suited temporal regularization was used. This methodology was

applied to a lab-tomograph in-situ experiment where crack propagation in plaster was

monitored and quantified (via double cleavage drilled compression test).

In order to deal with space and time displacement field, a Proper Generalized Decom-

position (PGD) framework [22, 23, 24] will be used. The displacement field is decomposed

over a basis of separated functions, namely, spatial modes and time (or projection angle)

modes. The spirit of the approach, which is inspired from the PGD technique, consists

of a progressive enrichment of the space-time modes for displacement corrections. Modes

are progressively added until a convergence criterion based on the residual field is reached.

First introduced in DIC and DVC [25, 26] to provide a reduced basis for the displace-

ment field (separating different spatial directions), PGD has been extended to the P-DVC

framework for the calibration of material parameters in a lab-tomograph using a single

projection instead of two [27]. In that work, deviations from a perfect rotation were taken

into account over one scan in order to reach a good quality tomographic reconstruction.

The spurious motions were described as small amplitude rigid body motions over time in

addition to the ideally expected rotation. In the same spirit, a developed projection-based

approach allows the imbibition process to be followed in sandstone at a frequency of 5 Hz

using Neutron tomography [28].

In the sequel it is proposed to measure 4D (space and time) displacement fields based

on a series of projections acquired at different angles. Using only one projection per angle

allows the sample to be loaded and continuously rotated without hold and/or dwell time.

This reduction in the number of radiographs, which is offered by the mathematical for-

mulation, together with the now tolerable continuous loading leads to half the acquisition

time of the previous method. The analysis of a complex kinematics, up to localization,

with such an approach is a novelty.

In Section 3.2, a highly regularized PGD framework coupled with a P-DVC procedure

is introduced in order to capture the kinematics of the studied sample. Section 3.3

focuses on the specific formulation of the approach to slender samples, and the space and

time bases are discussed. Section 3.4 is devoted to the analysis of a tensile in-situ test

on nodular graphite cast iron with the proposed methodology. The experiment, which is

composed of 127 time steps, is performed in 6 minutes with a continuous loading until

failure. The measurement of the displacement field for each time step is presented and

shown to provide very low registration residuals. A gain in acquisition time of more than

two orders of magnitude compared with standard methods is obtained.
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3.2 Full-field measurement

3.2.1 Projection-based DVC

The proposed approach to fast 4D (space and time) measurements is called Projection-

based Digital Volume Correlation (P-DVC) [17, 20]. Instead of working with reconstructed

volumes as in standard DVC (whose acquisition time is one of the major limitations of CT

in laboratory facilities [29]), it aims to measure the 4D displacement field from a series of

2D projections acquired at different angles θ(t) and loadings.

The registration operation consists of minimizing the sum of squared differences be-

tween Nθ 2D projections g(r, t) of the deformed configuration at different times t, or

angles θ(t) and loading steps. The procedure makes use of the 3D reference image, F (x),

which is reconstructed using classical means. It provides for all voxels of the 3D space

x = (x, y, z) the local X-ray absorption coefficient. This reference volume, corrected by

the displacement, u(x, t), and projected with the orientation θ(t) should coincide with

the acquired projections, g(r, t) when the displacement, u(x, t), is correctly measured. In

other words, introducing the reference volume deformed by any trial displacement field,

v,

F̃v(x) ≡ F (x− v(x, t)) (3.1)

and the so-called residual field, ρ(r, t;v),

ρ(r, t;v) =
(

Πθ(t)[F̃v]
)
(r, t)− g(r, t) (3.2)

the 3D displacement field, u(x, t), is sought as the minimizer of the following cost function

χ2[v] =
∑
r,t

ρ(r, t;v)2 (3.3)

where Πθ(t) is the projection operator in the θ(t) angular direction, and r = (r, z) the

coordinates in detector space. The integrand of the previous functional can be linearized

considering small displacement field corrections δu compared to the microstructure cor-

relation length

χ2[u+ δu] =
∑
r,t

(
ρ(r, t;u)−

(
Πθ(t)[δu ·∇F̃u]

)
(r, t)

)2
(3.4)

with ∇ the 3D gradient operator. It is noteworthy that after each evaluation of the

displacement corrections δu from a known displacement u(n−1) such that u(n) = u(n−1) +

δu, a correction of the volume F̃u(x) is performed so that the previous equation is used

without approximation. The P-DVC framework requires the acquisition of one reference

volume in order to compute the correction terms. The latter is to be performed ideally in

the same conditions as for the experiment, but without load (or with a very modest one).

This only one classical tomographic scan is generally not challenging.

In order to validate the proper evaluation of the displacement, one should consider

the magnitude of the residual field that highlights all projection differences that are not



3.2. FULL-FIELD MEASUREMENT 67

captured by the measured displacement field (e.g., noise, artifacts of the detector, ill-

convergence, model error). Ideally, it should be statistically indistinguishable from noise.

The Signal to Noise Ratio (SNR) can also be defined to evaluate the residual quantitatively.

The higher the SNR, the better the solution. It is commonly defined as 20 times the

decimal logarithm of the ratio of the standard deviation of the projections over that of

the residual fields [30].

3.2.2 Regularization procedure

CT images are defined by a huge number of data (usually billions of voxels treated in-

dependently). However even if the displacement field is to be defined for all voxels, its

regularity legitimates the use of much less degrees of freedom so that it is sought in a

vector space generated by a reduced kinematic basis. In the following, it is proposed to

choose as reduced basis the product of separated space Φj(x) and time σi(t) fields for

which the sought amplitudes are uij

u(x, t) =

Nt∑
i=1

Ns∑
j=1

uijσi(t)Φj(x) (3.5)

with the space and time dimensionality respectively Ns and Nt. Such separated expression

is standard practice and implies no restrictions (provided Nm = Ns×Nt is large enough),

but it will reveal convenient for the following model reduction technique. The previous

displacement is written in a different way

u(x, t) =

Nm∑
l=1

(
Nt∑
i=1

aliσi(t)

) Ns∑
j=1

bljΦj(x)

 (3.6)

Hence the previous amplitude matrix is uij =
∑
l

alib
l
j .

Different regularization procedures of the displacement field have been introduced

in the literature for global DVC when the kinematics is discretized over finite element

meshes [31]. Spatially, local (elastic) equilibrium-gap penalty was proposed [32, 33, 34].

Other model-based regularizations can be used to calibrate model parameters [35, 13, 14,

29]. These regularizations lead to drastic reductions in the number of unknowns and en-

able for seamless experimental/numerical interfaces. They will not be considered herein.

A more generic approach will be followed hereafter.

3.2.3 Greedy approach to P-DVC

The entire problem composed of a large number of unknowns (i.e., 630 degrees of freedom

in the present application) may be costly. The method proposed to solve the minimization

problem is the Proper Generalized Decomposition (PGD) approach, where modes are

successively determined and added as long as the residual level is considered too high to

be explained by noise, which corresponds to detector artifacts or if the noise is assumed
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to be white and Gaussian: χ[u] > 2γfNpix, with γf the standard deviation of the noise

and Npix the total number of pixels on which the procedure is applied).

Proper Generalized Decomposition techniques [22, 36, 23, 24] consist of successive

enrichments of the displacement field u(x, t) adding a new contribution at each iteration,

each term of the sum being sought a priori in a separate representation. PGD-DIC and

PGD-DVC [25, 26] with one-dimensional space functions are here extended to 3D space

and time (i.e., 4D) analyses.

In the following progressive PGD procedure, the time and spatial modes are identified

successively, one per iteration, with a greedy approach [37]

ul(x, t) = ul−1(x, t) +

(
Nn∑
i=1

aliσi(t)

) Ns∑
j=1

bljΦj(x)

 (3.7)

Let us note that only the product alnb
l
j matters so that a convention such that ‖{al}‖ = 1

or ‖{bl}‖ = 1 can be freely chosen without consequences. A fixed point algorithm is used

to get the solution. Alternate minimizations of the two unknown column vectors {al} and

{bl} are proposed. The minimization of the functional leads to the determination of the

unknowns with two coupled equations

{al} = Argmin
{a}

(χ2
u({a}, {b})) (3.8)

{bl} = Argmin
{b}

(χ2
u({a}, {b})) (3.9)

i.e., the minimization of χ2
u with respect to the additional mode is considered.

It is proposed to write the projected sensitivity for each degree of freedom of each

section as

Si(r, t) = Πθ(t)[Φi(x
′) ·∇F (x′)] (3.10)

and the associated matrix

Bij(t) =
∑
r

Si(r, t)Sj(r, t) (3.11)

where x′ is the corrected position of any voxel x with the previously identified modes

such that x′ = x − u(l−1). The sensitivity Si(r, t) is composed of degrees of freedom i,

pixels of the detector r and angles θ(t) hence it is of size [Ns×Np×Nθ]. Computing and

storing this matrix is the longest operation in the procedure. The other quantities are

easily obtained from combinations of these projected 3D sensitivity fields. It can be noted

that Si(r, t) should be recomputed for each identified mode while x′ is updated. Because

the degrees of freedom per sections are quite independent, the sensitivity matrix can be

stored as a sparse matrix (and could be highly parallelized if the beam is non-diverging).

The two parts are obtained from the above linearized integrand using Newton’s scheme.

The derivative with respect to {bl} leads to

{bl} = [N l]−1{nl} (3.12)
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where [N l] is the spatial Hessian matrix of χ2
u with respect to {bl} (i.e., N l

ij = ∂bi∂bjχ
2
u)

and {nl} the second member vector based on the residual field, which is written as a

weighted sum over time of the sensitivities with αl(t) =

Nn∑
i=1

aliσi(t)

N l
ij =

∑
t

αl(t)Bij(t)α
l(t) (3.13)

and

nlj =
∑
r,t

ρ(r, t,ul−1)αl(t)Sj(r, t) (3.14)

Similarly, the derivative with respect to {al} leads to

{al} = [M ]−1{m} (3.15)

where, as previously, [M l] is the temporal Hessian matrix (i.e., M l
ij = ∂ai∂ajχ

2
u) and

{ml} the second member vector based on the residual fields

M l
ij =

∑
t

σi(t)b
l
nBnm(t)blmσj(t) (3.16)

and

ml
j =

∑
r,t

ρ(r, t,ul−1)σj(t)b
l
nSn(r, t) (3.17)

A general overview of the 4D PGD P-DVC procedure is shown in the algorithm 2.

Even though a maximum value of iterations or convergence criteria, εp and εα, can be

enforced to stop the fixed-point algorithm, this revealed unnecessary as the maximum

number of iterations to reach stagnation is usually quite low (i.e., 3-5).

Algorithm 2 4D-P-DVC fixed-point procedure

while High residual norm do

Initialize {al} and {bl}
Correction F (x)← F (x− ul−1)

Compute updated projected sensitivities Si(r, t), Equation (3.10)

while ‖
Ns∑
j=1

∆bljΦj(x)‖ < εp and ‖∆{αl}‖ < εα do

Compute spatial mode {bl}, Equation (3.12)

Compute temporal amplitude {al}, Equation (3.15)

end while

Update displacement field ul, Equation (3.7) l = l + 1

end while

3.3 Application to slender samples

It is proposed to analyze the kinematics of a nodular graphite cast iron dog bone sample

during in-situ tension until failure (Figure 3.1(a)). As many of the standard in-situ test



70 CHAPTER 3. SINGLE-PROJECTION-BASED MEASUREMENT

geometries, the proposed sample is slender and may be considered as a beam with one

dimension much higher than the other two. An appropriate kinematic regularization based

on a very small number of degrees of freedom is thus proposed.

3.3.1 Slender-shaped specimen kinematics

The slender geometry is axially divided into Ns undeformable beam sections, normal to

the beam axis, with trilinear interpolations. The displacement field is hence written in

this reduced basis

Φi(x) =

Ns∑
j=1

6∑
k=1

pj(z)ψk(x) (3.18)

with i = (j, k), ψk(x) the 6 rigid body motions of the entire sample, pj(z) the shape

functions that allow specific sections to be selected and interpolations to be performed

between them. For a linear interpolation, the shape function will be triangular functions

whose maxima are located at the section positions and its length will correspond to the

size of two sections. It can be noted that the shape functions are the same for all sections

(thus do not depend on mode j). The consequence is some coupling between rotation and

translation for the section far from the center of rotation. In the present application, the

beam is composed of 15 cross-sections (see Figure 3.1(c) for the depiction of few sections

on the slender sample used in the application), each animated with 6 Rigid Body Motions

(RBMs, i.e., 3 translations and 3 rotations).

(a) (b) (c)

Figure 3.1: (a) Radiograph of the sample (the rotation axis is at the center of the image).

Gray levels have been normalized so that the maximum log-attenuation is set to 1, and

that of air to 0. (b) Reconstructed volume, and (c) the proposed space regularization with

rigid body motions on few sections of the beam
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3.3.2 Time dependence

Generically, in the time dimension, σi(t) are chosen functions that also introduce temporal

regularizations [38, 39]. The availability of additional measurements, such as tensile loads,

T (t), also offers the possibility to define temporal variations that may depend on load

rather than time, or any combination that may be physically motivated. This is a very

convenient and non-intrusive way of incorporating some information, or some possible

relationship, in the measurement parameterization. Ultimately, no time regularization

can be introduced if wanted by choosing as elementary functions σi(t), functions valued

1 only for time step t = ti and 0 otherwise. Other basic examples are provided by tent

shaped (piecewise linear) functions, polynomials, Fourier modes and splines.

In the treated application, the time basis does not change with mode identification

thus does not depend on i, but such cases could be designed (if the goal was for example

to extract first the elastic part of the test).

3.4 Test case

3.4.1 Tomography acquisitions

The application case for this study is an in-situ tensile test on a nodular graphite cast

iron sample (similar sample geometry can be found in Refs. [40, 13, 14]). The geometry

of the sample is described in Figures 3.1(b) and 3.4.1. The central part was thinned with

a radius of 20.5 mm in order to ensure that the specimen would break in the ligament

area and not in the grips. The sample was mounted in an in-situ tensile testing machine

similar to that used by Buffière et al. [41] (see Figure 3.4.1) and was scanned in the LMT

equipment (X-View X50-CT, North Star Imaging, 180 kV, 130 µA, W target). The voxel

size (using 4× 4 binning at the acquisition stage) was set to 10.7 µm.

Two flat-fields and one dark-field were acquired after conditioning and before the ex-

periment in order to perform flat-field and dark-field corrections. Each radiograph was

averaged with 5 frames in order to reduce acquisition noise without loosing too much time

(it is noteworthy that a single frame would have been sufficient inasmuch as noise were

white and Gaussian). The radiographs had a definition of 954× 768 pixels and an initial

crop of the edges allowed its size to be reduced to 954 × 432 pixels (Figure 3.1(a)). All

the projections used herein have been normalized to 0 for air, and 1 for the maximum

log-attenuation, after dark-field and white field corrections as well as beam-hardening

corrections. In order to perform a multiscale approach, one lower scale was used in the

following procedure. Coarse graining of 2 × 2 elementary pixels into one superpixel was

carried out with the convolution of the projections by a Gaussian kernel with a character-

istic width of 2 pixels, and downsampling to a coarse 2 × 2 regular square grid to create

smaller images (called images at scale 2). The projections were obtained after flat field

normalization and standard (i.e., third order polynomial) beam hardening corrections [42]

due to the high absorption of the ferritic matrix. Reconstructions and projections were

performed with the ASTRA toolbox [43], using the Feldkamp-Davis-Kress (FDK) pro-

cedure suited for cone beams [44]. The initial projection f(r, θ) were compared with
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(a) (b)

Figure 3.2: In-situ tensile test with (a) the dog-bone sample used in the present procedure

(measured size of the rectangular cross section of 1.31×0.91 mm2). (b) Testing setup with

1○ the testing machine with a carbon fiber composite loading tube, 2○ the X-ray source,

and 3○ the X-ray detector

the re-projection of the reconstructed volume Πk[F (x)]. The SNR of these projection

residuals was 21.70 dB. These systematic reconstruction/reprojection residuals were then

subtracted to the projected volume in the following procedure after a 2D registration.

3.4.2 In-situ tensile test

The fast space-time in-situ experiment is composed of three phases:

1. loading to T = 250 N in order to remove the backlash that would introduce rigid

body motions,

2. a complete scan of the reference state (at 250 N) that consisted of 600 radiographs

captured at equally spaced angles ranging over a full 360° rotation. This scan took

22 min to be acquired,

3. continuous rotation of the sample with 50 projections per full rotation at a rate

of one projection every 2 s. One hundred twenty seven projections were acquired

during 2.5 full rotations ( as illustrated in Figure 3.3). The first full rotation (i.e.,

50 time steps or 100 s) was performed at constant load and was used to quantify

the uncertainty. The remaining rotation (starting after 100 s) was carried out with

a continuous load change (from 250 to 750 N), as shown in Figure 3.4, controlled

at a constant stroke velocity of 2 µm/s.

Figure 3.3 shows 3 selected projections at different times, angles and load. The

particular choice of these angles will be discussed after the analysis of the results. The

60-pixel wide right and left edges of the radiographs and 100-pixel long top and bottom



3.4. TEST CASE 73

parts were discarded. This operation avoided the top and bottom parts whose quality was

low because of the divergent X-ray beam and reconstruction process.

(a) (b) (c)

Figure 3.3: Projection at scale 1 of the sample at different angles and load during the tensile

experiment. Projections are normalized between 0 (air) and 1 (maximum attenuation over

a full rotation). (a) Time step 90, θ = 80◦, T = 630 N. (b) Time step 110, θ = −64.8◦,

T = 715 N. (c) Time step 123, θ = −158.4◦, T = 736 N.

The measured axial force T during the test at each radiograph acquisition is shown in

Figure 3.4. This signal is used in the work only as a component of the time basis. The

force measurement will play a much stronger role for the elastoplastic identification (see

the companion paper [45]).

Figure 3.4: One hundred twenty seven force measurements T (t) of the tensile test starting

from 250 N. A first rotation is performed at constant load (corresponding to the first

plateau until the 50th time step, or 100 s). Then the load is increased until failure. The

three red dots are the projections shown in Figure 3.3 for time steps 90, 110 and 123.
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The temporal basis used to measure the rigid body motions is composed of Nn = 7

time functions σn(t) (Table 3.1). The sine and cosine functions are introduced as they

are expected to occur for a slight misalignment of the sample with respect to the rotation

axis [27].

Table 3.1: Temporal basis chosen for the kinematic measurement.

σ1(t) σ2(t) σ3(t) σ4(t) σ5(t) σ6(t) σ7(t)

T (t) sin(θ(t)) cos(θ(t)) t0 = 1 t1 max((t− 50), 0) max((t− 50), 0)2

The initial residual field is shown in Figure 3.5 for the three selected angles at dif-

ferent time steps and loads of the procedure with a divergent color map that highlights

the positive and negative patterns (so as to ease the visual interpretation of a residual

displacement). Let us stress that here and in all subsequent figures showing residuals, the

gray level normalizations of the initial projections between 0 and 1 have been preserved so

that the color bar values can be compared. Large levels of the residual field are observed

at the edges of the sample corresponding to large rigid body motions. The initial SNR is

9.94 dB.

(a) (b) (c)

Figure 3.5: Initial residual field (keeping the projection normalization) composed of a

large motion for (a) time step 90, θ = 80°, T = 630 N, (b) time step 110, θ = −64.8°,
T = 715 N, (c) time step 123, θ = −158.4°, T = 736 N.

3.4.3 Rigid body motion measurement

It is first convenient to start erasing the mean RBMs that occurred during the mechanical

test, which are due to compensated backlash or the testing machine compliance. Instead of

studying each section independently, it is proposed to use pj(z) = 1. Six spatial degrees of

freedom (i.e., the 6 RBMs) are hence measured for each mode (i.e., the three translations
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and three rotations). This makes a total of 42 unknown amplitudes. The PGD approach

consists in sorting out all those 42 degrees of freedom in “modes,” such that the first is the

“major” one, in the sense that it allows the residual to decrease by the largest amount.

Eight rigid body modes are measured at scale 2 until the root-mean-square average

residual no longer decreases. Because of the successive updates of the non-linear problem

(image registration) after each mode acquisition, the identified modes are not expected

to be strictly orthogonal to each other. Hence, there is no reason to converge after the

6 modes that would result from the singular value decomposition of a full identification

procedure. The choice of scale 2 is a matter of convenience as long as it is much cheaper

computationally, and sufficient for RBM evaluations, as this is only a pre-correction. The

results are then applied to scale 1. The residual fields for the three selected angles are

shown in Figure 3.6. Note that the color scale is magnified by a factor of 4 since a large

part of the initial residual has been erased. It is observed that the edges of the projection

are composed of large vertical and horizontal scratches due to the registration process.

Those areas are not taken into account in the SNR measurement. The SNR at this step

of the procedure is 25.4 dB confirming this observation.

(a) (b) (c)

Figure 3.6: Residual field after the rigid body motion correction. Tensile patterns not yet

corrected are visible at (a) time step 90, θ = 80°, T = 630 N, (b) time step 110, θ = −64.8°,
T = 715 N, (c) time step 123, θ = −158.4°, T = 736 N.

What is visible from these images is that the central part has been properly corrected

by the rigid body motions. The top and bottom parts are composed of moving features

that will be corrected by the next procedure. The mean translation values are shown in

Figure 3.7, and designated as 〈ux〉, 〈uy〉 and 〈uz〉. The vertical 〈uz〉 component evolves

with the applied force and corresponds to the compliance of the testing machine, and the

motion of the bottom part of the sample by the grip. The 〈ux〉 component is a transverse

motion between the rotation axis and the sample, which accidentally almost coincides with
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the x-axis as can be seen from the fact that 〈uy〉 is much smaller.

Figure 3.7: Mean corrected translation measured with 8 rigid body motion modes for all

loading steps with (1), (2) and (3) respectively corresponding to 〈ux〉, 〈uy〉 and 〈uz〉.

3.4.4 Tensile deformations

From the previous corrected residual fields where the rigid body motions have been erased,

it is now possible to measure motions corresponding to a tensile deformation. Each section

of the beam is now considered as being independent. 4 deformation modes are measured

(for a problem composed of 630 degrees of freedom). The residual field at the end of the

procedure is shown in Figure 3.8 and reaches a mean SNR value of 26.7 dB.

(a) (b) (c)

Figure 3.8: Residual field at the end of the procedure. (a) Time step 90, θ = 80◦,

T = 630 N, (b) time step 110, θ = −64.8◦, T = 715 N, (c) time step 123, θ = −158.4◦,

T = 736 N.
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It is observed that the previous alternating positive and negative features have disap-

peared. The captured displacement field correctly reduces the residual and thus is deemed

trustworthy. Some residuals are still visible in the center of the sample and may be a

consequence of the shrinkage of the section expected from plastic incompressibility, but

not included in the chosen kinematics. The dark residual located in the central part for

the last steps (see Figure 3.8) is due to localized necking, a precursor to ductile fracture

that will break the sample shortly thereafter, at step 127.

The initial SNR for each step is shown in Figure 3.9. The time periodicity that is

seen on the graph, with a period of 25, is due to specific angles at which the residuals

are more sensitive to the displacement field (e.g., angles where the faces of the sample are

parallel to the X-ray beam). The significant improvement from the initial images shows

the accuracy of the proposed 4D approach. Step 50 has an accidentally low SNR value

and corresponds to the beginning of the load variation.

Figure 3.9: SNR of each projected residual field. The mean value, 9.9 dB for the initial

SNR (a), 25.4 dB for the RBM corrected (b) and 26.6 dB for the corrected residual (c)

shows an excellent description of the kinematics.

The vertical displacement field and the vertical strain εzz = ∂zuz(t) for each section

is shown in Figure 3.10. The mean tensile extension between the top and bottom part

reaches about 15 voxels. A large plastic strain concentration (i.e., not only proportional to

the force measurement) is visible in the central part as expected from the chosen geometry.

The very small displacement field in the first part [0;50] should be null. However it

cannot be considered as uncertainty because some real displacements due to creep for ex-

ample could appear. It can also be noted that the strain field displays some heterogeneities

(see e.g., Section 4 at the end of the experiment) that was not anticipated from the geom-

etry. Adding some regularizations (e.g., local mechanical regularization or directly from

models) would provide a smoother field.
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(a) 〈uz(z, t)〉(x,y) (b) 〈εzz(z, t)〉(x,y)

Figure 3.10: (a) Measured vertical displacement field for each sections without rigid body

motions, expressed in voxels, and (b) corresponding vertical strain. A large strained zone

of approximately 8− 9% appears in the central part.

3.5 Discussion

3.5.1 Kinematics

The kinematics was simplified in the spirit of that used in beam theory (i.e., slender body).

The displacement field was assumed to be well approximated by a rigid body motion for

each section of the sample, but these rigid body motions were slowly varying along the

longitudinal axis. This assumption is quite generic and believed to be applicable to many

uniaxial mechanical tests. In the present study, six parameters (i.e., three translations

and three rotations) for each rigid body motion defined at 15 cross-sections were linearly

interpolated along the sample axis. Hence 90 kinematic parameters defined the motion

at each instant of time. Seven time functions were introduced to account for the loading

history, namely, a discretization involving a total of 630 kinematic degrees of freedom to

be determined.

The choice of such a discretization is, by itself, a regularization. It was here designed to

suit a slender body loaded along its longitudinal axis. However, for other cases, additional

degrees of freedom may be introduced. Any information about the experiment may be

used to regularize the displacement field and find a ‘smart’ 4D-kinematic basis, e.g., crack

propagation, sudden motion (because of a shock), temperature variations. The number of

unknowns may not be the major limitation of the method when a PGD procedure is used,

yet including part of prior knowledge in a relevant kinematics is always beneficial. With

such a suited parameterization of the kinematics, the approach followed in the present

study can be generalized without notable restrictions. The only requirement is to keep

the evolution between consecutive radiographs progressive and that during the experiment,

the rotation has been large enough (a few full 360° rotations is appropriate), otherwise

uncertainty may be large in some directions.
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3.5.2 PGD

The proposed methodology relied on model order reduction, namely, PGD. By itself, PGD

is not restrictive (i.e., separated form for the time and space variations is not limiting) nor

does it rely on any smoothness assumption. It is meant to exploit the intrinsic “simplicity”

of the problem, which is however difficult to formulate in other terms than saying that

only few “modes” are needed for describing the kinematics. Additionally, this number of

modes is not a priori defined. Rather, being driven to lower the residuals, one may argue

that PGD is a smart technique able to pick up only those degrees of freedom, or modes,

that are relevant, hence making the algorithm very efficient but not intrinsically based on

smoothness. It has been shown that smoothness could independently be tuned through

regularization [45].

In the present case, instead of an exhaustive analysis of all 630 degrees of freedom,

PGD was used to select the relevant modes. Convergence was considered satisfactory

based on residuals after 8 rigid body modes and 4 deformation modes. Thus the efficiency

of this model reduction technique is very significant. Let us stress that a space and time

separation accounting for the deformation of samples is quite generic and is expected to

have a very broad range of applicability with a similar high level of efficiency.

3.5.3 Residuals

The residual field (i.e., differences at all angles between the projected and corrected volume

and the deformed radiographs) that were minimized are the key information to validate the

method. It gives a global and quantitative evaluation of the trustworthiness of the results

and — if and where relevant — allows error areas (due to noise, imperfect convergence,

sensor artifacts or model errors) to be visually localized and interpreted. In the present

case, it was observed that the residuals mostly showed imperfections of the X-ray detector.

From this observation, it was earlier suggested that the choice made prior to the experiment

of averaging over 5 frames each radiography could have been reduced presumably to a

single acquisition. Let us also note that the last residuals show localized features than can

be interpreted as the inception of a crack. This observation stresses once more the value

of such residual fields.

Additionally, residuals can also be quantified in terms of Signal-to-Noise Ratio (SNR).

In the reported example, the mean SNR of the residual fields increased from 9 dB to

26.6 dB along with the correction by the 4D displacement field. This residual change

highlights the accuracy of the results. The measured displacement field was presented

for the vertical component (although all other components were captured). A tensile

displacement amplitude of 15 voxels was measured at the end of the experiment and high

strain levels were concentrated in the central part of the specimen, as expected from its

geometry, until localization leads to ductile failure.
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3.6 Conclusion

The full 4D (i.e., 3D space and time) kinematics of the 6 min experiment was captured

with an extension of P-DVC that uses a model order reduction technique (PGD). Based

on regularized fields relying on the slender sample geometry as well as a dense sampling

in time, this method measures displacement fields from single projections at each time (or

load) step of the experiment instead of reconstructed volumes in standard DVC methods.

The procedure was tested with an in-situ tensile test on nodular graphite cast iron

composed of 127 radiographs with continuous load changes and rotation of the sample

until failure. The experiment was carried out in a lab tomograph with an X-ray cone

beam source. The entire experiment was carried out in 300 s, which is more than two

orders of magnitude faster than standard methods. This performance goes together with

the benefit of having a continuous (i.e., uninterrupted) loading so that load and rotation

can be varied simultaneously. PGD was used to only focus on important space and time

separated modes, thereby reducing the number of effective kinematic degrees of freedom,

not from prior judgment, but as called by the experiment itself.

The measurement of the kinematics is a first step toward mechanical identification,

which is one of the major goals of experimental mechanics [46]. Being able to measure

the 4D motions of the studied sample at fast rates is a major asset. From the estimated

displacement fields at each space and time steps, it is possible to use an inverse method

in order to calibrate the mechanical parameters of, say, an elastoplastic model. Another

variant called “integrated measurement” directly identifies the model parameters from the

images, here radiographs, and is presented in a companion paper [45].

Supplementary materials

Using the same experiment, another short application was performed on a review

article. The test was focused on the central plastic part. After the same RBM removing

procedure, the kinematics was not chosen as a single C8 element.

Extracted from:

A. Buljac, C. Jailin, A. Mendoza, J. Neggers, T. Taillandier-Thomas, A. Bouterf,

B. Smaniotto, F. Hild, S. Roux, Digital Volume Correlation: Review of Progress and

Challenges, Experimental Mechanics, 58(5):661–708, 2018

Because the behavior is expected to be that of a plastic hinge (i.e., uniform displace-

ment in the top and bottom part of the sample and large strains in the center), the chosen

space regularization for the vertical displacement is to use one single element (with 8

nodes of size 200×200×200 voxels), each composed of a single degree of freedom, vertical

displacement, with inside a trilinear interpolation, i.e., a reduced version of a C8 ele-

ment where transverse displacements are neglected (since the mean transverse translation

has already been corrected, this assumption neglects the transverse strains). In the top

and bottom parts, the (uniform) displacement is chosen as a constant extension from the
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central cube face by continuity. The element is located in the central part as shown in

Figure 3.11. The time regularization is based on second order polynomials of the force

measurement. A linear interpolation starting at time step 0 is added and another linear

function valued 0 during time steps [0, 49] and linear during the load increase part:

• σ1(t) = 1

• σ2(t) = T (t)

• σ3(t) = T (t)2

• σ4(t) = t

• σ5(t) = max(0, (t− 49))

The 4D problem is composed of 40 degrees of freedom (i.e., 5 time and 8 space shape

functions, σ(t) and Φ(x) respectively) and focuses on the region of interest corresponding

to the projected cube element. Figure 3.11 shows the residual field change before and after

registration. The residuals are rescaled to the dynamic range of the reference projection.

It can be seen that a large part of the residual has been erased meaning that the kinematics

has been well captured.

(a) (b)

Figure 3.11: Fig. 23 Projected residual field at angle θ = -150◦ for step 110 (a) with no

displacement field correction and (b) after the correction of the measured displacement.

The black lines are the projections of the central cube element. Note that the gray level

color bar (where gray levels are scaled to the full projection dynamic range) differs by a

factor 2

The measured displacement for the 8 nodes at each loading step is shown in Figure 3.12.

At the end of the experiment, the cube has been stretched in tension by about 11 voxels,

or about 110 µm. The gray level residual is quantified, in the region of interest (see

Figure 3.11), by the signal to noise ratio (SNR). The raw difference of projections leads

to an SNR of 11.0 dB. The periodicity of about 25 time steps, which is seen in the initial

residual, corresponds to the angles where the edges of the sample are aligned with the

x-ray beam, namely, where the sensitivity to the radial displacement field is high. After
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the transverse translation correction, it increases to 23.4 dB. Finally, when the axial strain

is accounted for as above described, the SNR reaches 26.8 dB.

(a) (b)

Figure 3.12: Fig. 24 (a) Measured displacement of the 8 nodes. During the first revolution

(t < 50) a slight compression is visible, which is attributed to a relaxation phenomenon.

In the increasing load part, the central region is stretched by approximately 11 voxels (or

110 µm). (b) SNR history for the initial residual fields (1), the residuals corrected by (x,y)

rigid body translations (2), and the final residual fields with all corrections (3)

The 3D displacement for the 127 loading steps has been captured. Run in 300 s, this 4D

procedure based on radiographs offers a fast measurement of the experiment with a gain

of three orders of magnitude as compared to standard techniques. The entire procedure,

including the experiment itself (after the initial tomography of the reference volume) and

its analysis, is performed in approximately 10-15 minutes. A more complex and refined

mesh could be used in order to characterize the kinematics more thoroughly. However, in

order to avoid the increase of the number of degrees of freedom, regularization based on a

mechanical model or other experimental observations would be welcome.
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Chapter 4
Identification from a single projection

C. Jailin, A. Buljac, A. Bouterf, F. Hild, S. Roux, Fast 4D tensile test moni-

tored via X-CT: Single projection based Digital Volume Correlation dedicated to

slender samples, Journal of Strain Analysis for Engineering Design, 2018

Reproduced from

A Projection-based Digital Image Correlation (P-DVC) method (presented in a com-

panion paper [1]) is extended to an integrated approach for an elastoplastic law identi-

fication based on a single radiograph per loading step. Instead of following a two-step

sequential procedure (i.e., first, measurement of the displacement field; second, identifi-

cation), the integrated method aims at identifying few model parameters directly from

the gray-level projections. The analysis of an in-situ tensile test composed of 127 load-

ing steps performed in 6 minutes is presented. An isotropic elastoplastic constitutive law

with free form hardening behavior (i.e., controlled by only 8 parameters) is identified and

shows a very ductile behavior (up to 6.3 % strain before failure). A large improvement

on the residual quality is shown and validates the proposed model and procedure. The

obtained displacement fields revealed to be similar to those measured with no mechanical

integration. A different parametrization of the constitutive law provides a very similar

result, assessing the robustness of the procedure.
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4.1 Introduction

The identification and validation of increasingly complex mechanical models is a major

concern in experimental solid mechanics [2]. Model refinements require ever more precise

and complex experimental protocols, from experimental setup and sample (e.g., complex

multiaxial loading, optimized geometry) to sensor and acquisition devices (such as in-

frared, X-ray, or neutron imaging coupled with full field measurements). Especially in 4D

situations (i.e., 3D space and time), the acquisition, processing and analysis of such a big

amount of data (for the most part redundant) is challenging [3].

Computed Tomography (CT) allows materials to be imaged in 3D, thereby revealing

their 3D microstructure in a non-destructive way [4, 5, 6]. Coupled with ex-situ or in-situ

mechanical tests [7, 8, 9, 10], it is possible to measure the deformation of a specimen

with full field measurement techniques (Digital Volume Correlation, or DVC [11, 12])

that provide a link with mechanical models and simulations. Intimate experiment-model

dialogue has been developed to study crack propagation [13, 14], plastic behavior [15],

damage model [16], and allows for model identification and validation [17].

The measured displacement fields are used to identify model parameters with inverse

methods (e.g., finite element model updating [18], virtual fields method [19]). Because

model identification is the final goal of the entire experiment (contrary to displacement

fields that are an intermediate step), one may identify and optimize model parameters

directly on the acquired images. This fusion of two steps into one, has been called “in-

tegrated approach” [20, 15] and leads to a drastic reduction of the number of unknowns.

The more loading steps are acquired in the experiment, the more accurate and sensitive

the identification procedure. DVC methods have hence been developed in a 4D space-time

framework [15, 21] using all available volumes globally. In lab-CT analysis, no more than

10 to 20 acquisitions are usually performed because of the acquisition time (approximately

1 hour is necessary to acquire the 1000 radiographs needed for one full 3D scan).

Projection-based DVC (P-DVC [22]) is a measurement method that aims to measure

the 3D displacement fields directly from few radiographs instead of 3D volumes. The out-

puts of this method are the same as DVC procedures but require two to three orders of

magnitude less data, and thus acquisition time. The comparison between two projections

of the sample at the same angle with different loadings can be read as due to 3D motion.

Previous works have developed this method for the analysis of a cracked cast iron sample

imaged with a synchrotron X-ray source [23, 24]. It was shown that the measurement was

possible with only two orthogonal projection angles leading to a huge gain in acquisition

time (of a factor 300). The identification of a brittle-elastic behavior of a plaster sam-

ple with crack propagation inside of a lab tomograph was performed within such a 4D

framework [25].

In a companion paper [1], a measurement of the kinematics from a series of single pro-

jections per loading step was presented. Coupling P-DVC and model reduction methods

provided a global measurement of the full 4D (i.e., space and time) displacement field.

These results will be used as comparison means of the present approach. It is proposed in

this paper to identify an elastoplastic model based on a fast 4D measurement. A standard
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approach would consist of performing the identification from the previously measured dis-

placement fields, using for instance a Finite Element Model Updating (FEMU) procedure.

In comparison with this pathway, it is shown that the fast 4D kinematic measurement and

the identification can be performed in a unique “integrated” procedure, leading to more

accurate determination of the constitutive parameters. A free form representation of the

hardening behavior is chosen and controlled by 8 parameters. A variant with 7 parame-

ters leads to a very similar hardening behavior showing the robustness of the procedure.

The test case that was chosen in the companion paper for the kinematic measurement [1]

is further used herein. A nodular graphite cast iron dog bone sample is tested in-situ

with 127 loading steps performed in 6 minutes through uninterrupted loading until failure

(leading to a gain in acquisition time of more than 2 orders of magnitude compared to

standard methods).

4.2 In-situ mechanical test

The main features of the test are summarized here. The interested reader will find addi-

tional details in Ref. [1]. The tested material is a cast iron sample (similar to those studied

in Refs. [26, 15, 17]). It is tested in uniaxial tension with a slender dog-bone geometry for

the sample. An in-situ tensile testing machine similar to that of Buffière et al. [27] was

used. The sample was scanned in a lab-tomograph (X-View X50-CT, North Star Imaging,

180 kV, 130 µA, W target). The voxel size (using 4× 4 binning at the acquisition stage)

was set to 10.7 µm. The radiographs of initial definition 954×768 pixels are cropped to

a region of interest of 954×432 pixels. They are further coarsened by a factor of 2 in all

directions (referred to as “scale 2”) for speed up. Reconstructions and projections are per-

formed with the ASTRA toolbox [28] with Feldkamp-Davis-Kress (FDK) procedure [29].

The initial projections f(r, θ) can be compared with the re-projection Πθ[F (x)](r) of the

reconstructed volume F (x). The SNR of these projection residuals is 21.70 dB.

A 3D scan of the reference state (subjected to a small load of 250 N) is first acquired

consisting of 600 radiographs captured at equally spaced angles ranging over a full 360°
revolution. The initial force is measured during the procedure (hence considered in the

following stress measurement) but the initial elastic deformation of the sample, assumed to

be very small are not considered in the displacement measurement. This scan is acquired

in 22 min. Then, a continuous rotation of the sample is set with 50 acquisitions per

turn. A total of 127 loading steps are acquired over 2.5 turns (see figure 4.1). A first

series (50 projections, up to 100 s) is performed at constant load and is used to quantify

the uncertainty. A second series (77 projections starting at 100 s) are carried out with

a continuous load increase (from 250 to 750 N), controlled at a constant stroke velocity

of 2 µm/s. Figure 4.1 shows 3 selected projections at different times (steps 90, 110 and

123). The first one (90) is representative of most of the test where the kinematics will

be very well captured. The second one (110) will correspond to a more heterogeneous

displacement field (strains not yet localized but concentrated in the central section), it is

a more difficult case but will be seen to be very well captured. The last one (123), with

a very similar load as the second, will be at the onset of localized strain (actually a crack
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has initiated). The axial force measurement κ during the procedure for each radiograph

acquisition is shown in Figure 4.2.

(a) (b) (c)

Figure 4.1: Projection at scale 1 of the sample at different angle and load during the

tensile experiment. (a) Time step 90, θ = 80°, κ = 630 N; (b) time step 110, θ = −64.8°,
κ = 715 N; (c) time step 123, θ = −158.4°, κ = 736 N

Figure 4.2: Applied force at steps of the tensile testing machine starting from 250 N. A

first rotation is performed at constant load (corresponding to the first plateau up to time

step 50, or 100 s) then the load is increased until failure. The three red dots are the

projections at time steps 90, 110 and 123 shown in Figure 4.1
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4.3 Full-field measurement method

4.3.1 Projection-based DVC

The herein proposed “integrated identification” is performed within the P-DVC frame-

work [22, 24]). The latter aims to evaluate the quantities of interest (be they kinematic

or mechanical parameters) directly from the radiographs (i.e., the projection at an angle

θ(t) of the 3D microstructure) acquired at different angles and loadings and not from the

reconstructed volumes as in standard DVC methods [11, 12, 30].

The registration consists of finding the appropriate 3D displacement field, u(x, t) by

minimizing the residual quadratic norm

χ2[u] =
∑
r,t

ρ(r, t;u)2 (4.1)

where ρ(r, t;u) is the residual field defined as the differences between Nθ 2D projections

g(r, t) of the deformed volume at different angles θ(t). The procedure makes use of the

3D reference image reconstructed using classical means, that provides for all voxels of the

3D space x = (x, y, z) the local x-ray absorption coefficient, F (x). This reference volume,

corrected by the displacement, u(x, t), and projected at orientation θ(t) should coincide

with the acquired projections when the solution is reached. In other words, introducing

the reference volume deformed with any arbitrary trial displacement field, u,

F̃u(x) ≡ F (x− u(x, t)) , (4.2)

the residual field defined as

ρ(r, t;u) =
(

Πθ(t)[F̃u]
)
(r, t)− g(r, t) (4.3)

with Πθ(t) the projection operator in the θ(t) direction angle and r = (r, z) the coordinates

in detector space.

The previous summand can be linearized considering small displacement field correc-

tion δu compared to the microstructure correlation length

χ2[u+ δu] =
∑
r,t

(
ρ(r, t;u)−

(
Πθ(t)[δu ·∇F̃u]

)
(r, t)

)2
(4.4)

with ∇ the 3D gradient operator. It is noteworthy that after each evaluation of the

displacement corrections δu from a known displacement u(n−1) such as u(n) = u(n−1)+δu,

a correction of the volume F̃u(x) is performed so that the previous equation is used

without approximation. The P-DVC framework requires the acquisition of one reference

3D volume in order to compute the correction term. The latter is to be performed ideally

in the same conditions as the experiment itself, with or without load. This single (classical)

tomographic scan is not challenging.

In order to validate the proper evaluation of the displacement, one should consider

the magnitude of the residual field that highlights all projection differences that are not

explained by the displacement field (e.g., noise, artifacts of the detector, ill convergence,

model error). Ideally, it should be statistically indistinguishable from noise.
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4.3.2 Beam regularization of the kinematics

Different regularization procedures of the displacement field have been introduced in

the literature for global DIC methods where the kinematics is expressed on a finite el-

ement mesh [31]. Model-based regularizations, called strong regularizations or integrated

methods with a reduced basis composed of elementary fields issued from a mechanical

model [20, 15] can be introduced. It is proposed, in the same spirit as global DVC, to

express the displacement field in a reduced basis where the entire kinematics is controlled

by the amplitude, ui(t), of a few Nf fields

u(x, t) =

Nf∑
i=1

ui(t)Φi(x) (4.5)

The chosen reduced basis exploits the slender geometry of the sample that makes it

amenable to a beam kinematics description [32]. Because of the slowly varying cross

section, it is chosen to parametrize the displacement field by rigid body motions of Ns

equally spaced cross-sections, with a linear interpolation of the displacement in between.

Because of the uniaxial tension imposed during the test, a single component of the motion

(i.e., axial displacement along the z tensile axis). Hence the spatial displacements of the

beam regularization, Φi(x), is defined as

Φi(x) = pi(z)ez (4.6)

where ez accounts for a uniform translation along the tensile axis and pi(z) the shape

functions selecting a specific section and interpolating between them. If required by a

poor quality of the final residual fields, additional degrees of freedom could easily be

added.

It can be noted that no restriction holds on the number of control sections, nor on the

type of axial interpolation, and hence the proposed discretization is very generic and is

suited to any slender sample geometry.

4.3.3 Mechanical identification

Because the goal is to identify a mechanical behavior with an integrated method, the un-

knowns of the displacement field are written considering a constitutive model depending

on Nγ constitutive parameters, gathered in the column vector {γ}. Knowing the consti-

tutive law, the local cross section and the loading at any time t (and possibly its complete

history if needed as for elastoplasticity with unloading), it is straightforward to compute

the mean axial displacement at control cross section, and its incremental variation for a

variation δγ of the constitutive parameters about a reference set γ0 for which the section

displacements are u0
i (t),

ui(t) = u0
i (t) + Γij(t)δγj (4.7)

where Γij denotes the kinematic sensitivity associated with each parameter γj .
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4.3.4 FEMU identification

Finite Element Updating Method (FEMU) [33, 34, 35] is an identification procedure based

on the minimization of the quadratic difference between the experimental measured dis-

placement field uexp
i (t) for each beam section i (identified for each analyzed section [36])

and the computed field from the mechanical model uci (t, γ)

χ2
FEMU =

∑
i,t

(uexp
i (t)− uci (t, γ))2 (4.8)

Here the most standard FEMU method is presented although a metric different from

L2 (rather based on the covariance matrix of the measurement data) would be more

appropriate [3].

The computed model has to be controlled by boundary conditions (generally the dis-

placement field measured on the edges). In this identification approach, the measured

load during the experiment is imposed and controls the kinematics of the beam. The

minimization of the linearized functional with respect to the parameters γ leads to

δγi =

[∑
t

Γij(t)Γjk(t)

]−1(∑
t

Γkl(t)(u
exp
l (t)− ucl (t, γ0))

)
(4.9)

This FEMU method will be compared with the results of the integrated approach based

on the gray level images, and is considered as a baseline reference.

4.3.5 Integrated identification

The integrated approach aims at identifying the model parameters directly on the images

hence minimizing the following functional

γ = Argminγ(χ2
u(x, T (t), {γ})) (4.10)

It can be noted that this cost function is similar to the one used in Ref. [1] for the P-DVC

procedure, at the exception that the displacement field is now parameterized with the

constitutive parameters directly. The derivative of this functional with respect to {γ}
gives an equation very close to FEMU-U but weighted by the gray level uncertainty of

each degree of freedom

{γ} = [H]−1{h} (4.11)

where [H] is the “gray level” Hessian of χ2
u with respect to {γ} and {h} the residual

vector. It is convenient to write the projected gray level sensitivity for each degree of

freedom of each section (i.e., the projected signature of a small motion for each degree of

freedom)

Si(r, t) = Πθ(t)[Φi(x) ·∇F (x)] (4.12)

and the associated matrix components

Bij(t) =
∑
r

Si(r, t)Sj(r, t) (4.13)
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Computing and storing this sparse matrix is one of the longest operation in the procedure.

However all the sensitivity fields for all parameters of the model are easily obtained from

combinations of these projected 3D gray level sensitivity fields. It follows that

Hij =
∑
t

Γim(t)Bmn(t)Γjn(t) (4.14)

and

hj =
∑
r,t

ρ(r, t)Γjn(t)Sn(r, t) (4.15)

Before applying this integrated approach, a first measurement and correction of the

Rigid Body Motions (RBMs) is convenient. A 4D analysis based on a regularized space

(including RBM) and time evolution is first performed using a Proper Generalized De-

composition approach [1]. Then a first estimate of the displacement field is based on scale

2 measurement, which allows large displacements to be coarsely captured (this scale is

particularly focused on the edge alignment of the specimen). When scale 2 has converged,

the measured displacement field is doubled and used to initialize scale 1 computations.

4.4 Application

4.4.1 Elastoplastic behavior

This paper aims at identifying an isotropic elastoplastic constitutive law. A “free form”

isotropic hardening is proposed with Nγ = 8 degrees of freedom to describe a piece-wise

linear stress strain curve. Such discrete model can be the input behavior for industrial

FE softwares. Contrary to some parametric models (e.g., Ludwik [37], Voce [38] or more

complex models [39]) whose parameters may lack of sensitivity in the measurement pro-

cedure, the chosen free form behavior can be designed for identification according to the

analyzed experiment.

The degrees of freedom are chosen to have a fixed stress level (imposed by the applied

load and sample geometry) while the corresponding strain is unknown. The parameters

and initial values are reported in Table 4.1. The last parameter is chosen as the ultimate

strength of all sections during the test. Therefore it controls all sections with high strain

levels (i.e., central part of the sample at the highest load). A cubic interpolation, in the

[σ, ε] space is performed between the control points. Other interpolations have been tested

in the procedure (e.g., linear) but show no appreciable difference.

Table 4.1: Eight initial control points of the free form hardening law (8 strain unknowns

are calibrated)

Parameters - γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8

σ [MPa] 0 235 335 435 525 555 595 605 620

ε [%] 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

Because of a low sensitivity on the elastic part, the behavior is focused on the plastic
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part (i.e., the first slope of the stress-strain curve will not be interpreted as the Young

modulus).

In addition to the 8 unknown parameters that control the elastoplastic behavior, a

vertical translation is introduced as an additional degree of freedom that may vary arbi-

trarily in time. Although the vertical motion had been corrected (with respect to gray

level residuals) prior to the identification procedure, this extra freedom allows a fine tuning

of the vertical position without any interference with mechanical identification.

In order to study the robustness of the identified plastic law with respect to the dis-

cretization, another identification based on 7 parameters, at different stress levels, is also

performed. The same overall behavior is expected.

4.4.2 Initially corrected residual fields

An initial measurement and correction of all rigid body motions is performed based on the

method described in Ref. [1]. The SNR increases very significantly from 9.9 to 25.4. The

residual field for the three selected angles is shown in Figure 4.3 with a diverging color

map to highlight positive and negative patterns.

(a) (b) (c)

Figure 4.3: Residual fields from volumes corrected by the rigid body motions. (a) Time

step 90, θ = 80°, κ = 630 N; (b) time step 110, θ = −64.8°, κ = 715 N; (c) time step 123,

θ = −158.4°, κ = 736 N

With this first procedure, the mean displacement field is corrected and hence the

motion appears to be well corrected in the center of the specimen, i.e., the top (resp.

bottom) part is moving upward (resp. downward). Alternating positive and negative

spots are visible on the top and bottom parts, which are signature of a vertical motion of

the sample. Those residuals will be corrected by the following procedure. Note that the

color bar amplitudes differ in the figures as they are adapted to the residual amplitude.
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4.4.3 Results of the integrated approach

From the initial guess of parameters (shown in Table 4.1), the procedure aims to identify

the set of parameters that leads to the residual field having the lowest norm. The procedure

converges in 5 to 7 iterations. A new set of parameters is found (Table 4.2). The values of

the parameters have significantly changed with respect to their initial guess (Table 4.1).

This result shows that even though the initialization was very far from the converged

solution, it did not prevent the algorithm to find a good solution (i.e., the gray level

residuals were significantly reduced).

Table 4.2: Calibrated values of the 8 strain control points of the free form hardening law

Parameters - γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8

σ [MPa] 0 235 335 435 525 555 595 605 620

ε [%] 0 0.20 0.32 0.50 1.42 1.62 4.26 5.96 6.16

This new set of parameters leads to a mean value of the SNR of 26.4 (the SNR for each

radiograph is shown in Figure 4.4, curve (b)). A decrease of the residuals (i.e., increase of

the SNR) is observed from step 80 on, where the displacement correction is large because

of the plastic yield. The SNR decreases at the end of the loading (120) step where the

model may not be adapted (i.e., high strains including localized features such as necking

and shear bands). Low SNRs are located every 25 time steps and correspond to angles

where the sample edges are “aligned” with the X-ray beam hence where the residual field

is very sensitive to radial positioning. A very small mis-positioning of the sample generates

large residuals. A small SNR at step 50 is due to the first load increase that may have

generated spurious vibrations.

Figure 4.4: SNR for all radiographs of the test with the different corrections. (a) Ini-

tial RBM-corrected residual fields, (b) residual fields with the kinematic measurement

proposed in Ref. [36], (c) at the end of the proposed integrated approach

Figure 4.5(a) shows the identified mechanical behavior of the studied sample using 3

different procedures (i.e., FEMU and Integrated P-DVC for the 8 parameter hardening law
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and Integrated P-DVC with the 7 parameter variant). The positions of the control points in

stress were selected at will, which allowed the hardening curve to be refined where needed.

The three approaches lead to very similar shapes especially for the higher strain part (that

also corresponds to a high displacement sensitivity after integration of the strain). The

difference between 7 and 8 control points (blue and black curves) is minimal, which means

that the procedure is not much sensitive to the chosen discretizations. These three results

are very different from the initial guess, which proves the robustness of the proposed

framework. The stress-strain curve shows a ductile behavior with a total strain reaching

approximately 6.3 % in the central part. The longitudinal space-time displacement field

obtained from the identified model is shown in Figure 4.5(b). A displacement amplitude

of 16 voxels (≈ 170 µm) is reached at the end of the experiment. High gradients appear

in the central part, as expected from the geometry.

(a) (b)

Figure 4.5: (a) Stress-strain curve reconstructed from the converged parameters with

different methods. (+, orange): initial guess, (∗, red): FEMU approach from displacement

results of Ref. [1], (�, blue): integrated approach with 7 unknowns, (•, black): integrated

approach with 8 unknowns. (b) Longitudinal displacement expressed in voxels (1 voxel↔
10.7 µm), obtained from the identification of the mechanical law with the integrated

approach with 8 parameters

The residual fields at the end of the analysis are presented in Figure 4.6. Most of the

previous patterns have been erased. Some residuals are still visible in the bottom part of

the sample, especially at the end of the experiment and may be due to the localization of

plastic strain and/or damage due to a softening behavior. This interpretation is supported

by a thin transverse mark at mid-height of the sample (z ≈ 500 pixels) at the end of the

experiment that is visible in Figure 4.6(c) and may be interpreted as damage localization.

This is also consistent with the fact that failure took place at the next scheduled radio-

graph. The onset of this localized strain band could be traced back to time step 115 where

a degradation of the SNR could be detected. Although such a phenomenon may occur

in reality, as it leads to a breakdown of uniqueness in the solution [40, 41, 42, 43], this

situation was excluded from the scope of identification, and the absence of softening was

enforced in the parametrization of the constitutive law.
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(a) (b) (c)

Figure 4.6: Residual fields from volumes corrected with the identified plastic law. (a) Time

step 90, θ = 80o, κ = 630 N; (b) time step 110, θ = −64.8o, κ = 715 N; (c) time step 123,

θ = −158.4o, κ = 736 N

4.5 Comparison with kinematic measurements

A comparison with the results obtained in Ref. [1] can be performed. A first point is that

the SNR whose mean value is 26.4 for the integrated approach and 26.3 with FEMU, is

barely smaller than that obtained from the kinematic measurement, namely, 26.7. The

temporal changes of the SNR with the two approaches are shown in Figure 4.4, curves (b-

c). Even though it is obtained with significantly larger amount of degrees of freedom the

kinematic approach has only slightly lower residuals. The accuracy of the plastic model

based on no more than 7 or 8 parameters is remarkable.

A second comparison has already been performed with the FEMU procedure using the

measured displacement field of Ref. [1]. The stress-strain curve is extremely close to the

integrated identification (the first two degrees of freedom are different but they correspond

to low displacement sensitivities). The two approaches lead to results that can hardly be

distinguished.

The relevance of the chosen model can also be judged from the difference in the iden-

tified displacement field. The latter is reported in Figure 4.7. The mean of the absolute

values of the difference is 0.37 voxel and the standard deviation is 0.56 voxel. The low

spatial frequency differences are due to model differences (i.e., the identified integrated

displacement cannot reproduce the localized behavior).
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Figure 4.7: Residual displacement field, expressed in voxels (1 voxel↔10.7 µm), obtained

from the difference between the displacement field obtained from the integrated approach

and that measured with the kinematic approach of Ref. [1]

The comparison of the two displacement fields is presented here to show a visual

appreciation of the correspondence. It cannot be considered as a judgment criterion of the

methods as none of the two fields can be considered as a reference since they are built on

different kinematic bases. The only objective comparison metric is given by the gray level

residual as discussed previously [17, 3].

4.6 Conclusion and Perspectives

An integrated identification method is developed within the Projection Based Digital Vol-

ume Correlation framework. Relying on a mechanical model with 8 unknown parameters,

the identification is carried out from radiographs (i.e., projections of the 3D microstruc-

ture) instead of 3D (reconstructed) volumes. As in the previous purely kinematic study [1],

this approach enables huge gains in acquisition time (about 2.5 orders of magnitude as

compared to standard approaches). Additionally, rather than providing a space-time dis-

placement field, the output of the integrated approach is the numerical estimate of the

parameters of the constitutive law, together with a mechanically admissible displacement

field.

An illustration is shown with an in-situ tensile test on a cast iron sample. The acqui-

sition is performed on the fly (i.e., with continuous rotation of the sample inside of the

tomograph and a continuous load history until failure). The 127 radiographs at different

loading steps are acquired in 300 s. The aim of this test is to identify a 1D elastoplastic

model of a sample treated as a beam. The (free form) constitutive law is controlled with

8 strain parameters associated to fixed stress values.

An initial analysis of the test is devoted to the measurement (and correction) of the

entire set of rigid body motions. Then the identification procedure shows an important

decrease of the residual norm. A large part of the residual fields is erased with the

kinematic correction, meaning that motions have been well captured by the model and this

validates the proposed constitutive law. The onset of strain localization can be guessed
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from the late residuals showing the benefit of using residuals to evaluate the success and

limitation of the identification procedure.

One requirement of P-DVC is that the 2D contrast obtained from the projections

of the imaged volume can be safely exploited. The gradient of this radiograph weighs

the sensitivity fields and is thus a key element of the identification procedure. In the

present application, nodular graphite cast iron is a very good candidate for P-DVC as it

is composed of graphite nodules (whose X-ray absorption is much lower than that of iron

and provides the needed contrast). The application of the method to weakly contrasted

samples is a challenging issue for future applications.
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Chapter 5
Fluid invasion tracking with neutron

tomography

This work has been performed in Lund University under the supervision of Pr. S.Hall

C. Jailin, M. Etxegarai, E. Tudisco, S. Hall, S. Roux, Fast tracking of fluid

invasion using time-resolved neutron tomography, Transport in Porous Media,

1–19, 2018

Reproduced from

Water flow in a sandstone sample is studied during an experiment in-situ in a neutron

tomography set-up. In this paper, a projection-based methodology for fast tracking of the

imbibition front in 3D is presented. The procedure exploits each individual neutron 2D

radiograph, instead of the tomographic-reconstructed images, to identify the 4D (space

and time) saturation field, offering a much higher time resolution than more standard

reconstruction based methods. Based on strong space and time regularizations of the fluid

flow, with an a priori defined space and time shape functions, the front shape is identified

at each projection time step. This procedure aiming at a fast tracking the fluid advance

is explored through two examples. The first one shows that the fluid motion that occurs

during one single 180° scan can be resolved at 5 Hz with a sub-pixel accuracy whereas

it cannot be unraveled with plain tomographic reconstruction. The second example is

composed of 42 radiographs acquired all along a complete fluid invasion in the sample.

This experiment uses the very same approach with the additional difficulty of large fluid

displacement in between two projections. As compared to the classical approach based

on full reconstructions at each invasion stage, the proposed methodology in the studied

examples is roughly 300 times faster offering an enhanced time resolution.
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5.1 Introduction

Studies of fluid flow and transport in porous rock have received increasing interest related

to a number of different resource engineering challenges, e.g., hydrocarbon production

and CO2 sequestration, amongst other applications. Standard laboratory approaches to

study such phenomena are based on ”global” flow evolution (e.g., total sample saturation

vs. time), which only provide spatial average measurements over the whole specimen.

Local measurements of the saturation field during a fluid invasion process would however

be highly desirable to validate and calibrate pressure driven flow and imbibition models,

especially in samples where a heterogeneous microstructure affects porosity, permeability

and wetting properties in an intimately coupled way, meaning that it is difficult to dis-

entangle the influence of each one. Heterogeneity is particularly important, for example,

in stratified media or mechanically deformed samples that may contain cracks or shear

bands. In such cases, the fluid flow process is intrinsically a 4D phenomenon that requires

dedicated 4D measurement methods [1, 2]. Being able to image this fast time dependent

fluid advance at high speed as in real cases is a challenge in the direction of the study of

pressure driven flow.

The recent developments of fast synchrotron tomography [3] allow one to image 3D

evolutions of fluid invasion inside samples at a fast rate (20 Hz in [4, 5]). Both X-ray [6, 7,

8, 9] and neutron [10, 11, 12] imaging are used to image absorbing fluid (e.g., zinc iodide

for X-rays [13, 14, 5] or water for neutrons). These two tomographic modalities can even

be combined to benefit from their different contrast sensitivities as shown by Hall [15].

Many methods have been developed to extract the position of the fluid from 3D vol-

umes or slices. From simple segmentation of the gray level images to more sophisticated

method based on model driven evolution such as history matching [16, 13, 17]. History

matching is an iterative inverse problem, commonly employed in petroleum reservoir en-

gineering, whereby a reservoir simulation model is tuned to be consistent with experiment

and accurately describes the fluid advance. However, since these identification methods

are based on 3D volumes, they require quasi-static flows (although this constraint becomes

less stringent with the progress towards increasingly fast 3D image acquisition). Fluid flow

during a tomographic scan leads to blurring in the reconstructed volume around the fluid-

front. Eventually, some acquired scans can not be reconstructed because of the discrepancy

between the initial and final saturation states over the scan duration. One way to circum-

vent such difficulties is to resort to samples prepared for being invariant in one direction,

and where the fluid advance is expected to be read easily in the radiographs [18, 19, 20].

Armstronget al.proposed in [21] a method based on radiograph differences to extract the

fluid advance with a higher time resolution.

Similar temporal issues to those described above can be found during mechanical test-

ing in-situ with tomography where the sample may evolve (due to viscous effects, creep,

relaxation, thermal variations, etc.) during the tomographic acquisition. These effects

lead to blurring that affects quantitative measurements based on the image contrast (i.e.,

full-field space-time measurement [22]). To address this problem, recent methods called

Projection-based Digital Volume Correlation (P-DVC) [23, 24] and Discrete Digital Pro-
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jections Correlation [25] have been developed for the measurement of 3D displacement

fields based on radiographs rather than volumes. The P-DVC method, after a first (clas-

sical) tomography performed before the mechanical test, does not require more than two

orthogonal radiographs per loading step of the mechanical test to identify the full 3D dis-

placement field. This method, enriched with a model-based regularization, and a model

reduction strategy to extract principal modes, makes fast-rate 4D imaging — even in

laboratory tomographs — possible [26].

The principle of the P-DVC method is, at first order (i.e., unless iterative methods are

used), the correction of a reference 3D volume by the weighted gradient of this volume so

that its projections match with radiographs of the deformed volume. The method proposed

in this paper, being a projection matching optimization, is in a similar vein. The final

shape of a fluid volume is obtained from an acquisition of the saturated sample. This

volume is then corrected iteratively to match, in the projected space, with radiographs

at all invasion states. This optimization method is based on the minimization of the

quadratic difference between the projected model of the fluid column and the real fluid

advance.

The resolution of space-time evolution can be carried out with a separation of space

description and time evolution using Proper Generalized Decomposition (PGD) tech-

niques [27, 28]. This method consists of successive enrichments of a field adding a new

space-time direction at each iteration, each term of the sum being sought a priori in sepa-

rate representations in space and time. This approach captures the most important modes

first and allows one to stop when enough fine details have been incorporated. The space-

time decomposition for measurement has been studied with PGD-DIC and PGD-DVC

developed in [29, 30] with one dimensional space functions.

The aim of this study is to capture the 4D evolution of fluid invasion (4D space-time

evolution of the saturation front) at each neutron radiography time, that is at a rate of

5 fps, for the particular example of the study. First, a description of the method based

on a space-time separation is proposed. This is followed by applications of the method

to two test cases, which are extracted from an experiment that was initially designed for

serial 3D measurements. This experiment involved imaging of water flow into a sandstone

specimen by neutron tomography. Because the studied porous sandstone is reasonably

homogeneous at the scale of the observations, the fluid flow can be pictured as a rather

steep variation from a fully saturated lower part of the sample to a dry upper part. Hence,

the fluid (or saturation) front is modeled as a moving 2D surface about which a saturation

gradient may be added as a further refinement. The first test aims at tracking the flow

at the radiography rate, i.e., 5 Hz, during a single 3D scan, while the sample was being

rotated. In this case, the front traveled by a short distance of about 8 voxels. This

evolution cannot be resolved by a classical reconstruction procedure with the assumption

that the front remains perfectly still during the full scan duration. The second test case

addresses the entire invasion process, where the front sweeps through the entire sample

height. The saturation profile and velocity field are described and compared with a front

detection method from 3D reconstructed volumes.
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5.2 Method

5.2.1 Projection based method

Tomography, be it obtained with X-rays or neutrons, consists of recording (two-

dimensional) radiographs ρ(r, t) where ρ is the intensity, r the position in the detector,

acquired at the rotation angle β(t) of the sample about the z axis at the time of capture

t.

To reconstruct a 3D volume from the radiographs, it is necessary to use a so-called

“flat field”, ρ0(r), that corresponds to the beam intensity at the same position in the

detector. According to standard reconstruction procedure, the ratio ρ/ρ0 is the dimen-

sionless beam attenuation, whose logarithm p(r, t) = log(ρ(r, t)) − log(ρ0(r)) is the line

sum of local absorption coefficient along the ray hitting the detector at position r. In the

following p is called a “projection”. In the present case of neutron tomography, the beam

is approximated as being parallel and the volume A(x), (where x = (x, y, z) designates

the 3D coordinates) can be obtained from an inverse Radon transform of the projections,

p(r, t).

For different reasons, the simple Beer-Lambert law used above to relate the length

of neutron ray through the material to the log of the attenuation may be corrected by

non-linear (so called “beam hardening”, BH) corrections [31]. This can be seen from

fully homogeneously saturated or dried sections of the sample that are not reconstructed

with a homogeneous gray level. This effect can however be exploited to compute the

projection correction. A first reconstruction and segmentation of the volume allows this

solid and fluid length to be measured. At this stage, the collected data should allow for

the determination of the intensity reduction after a length traveled through the pure solid

phase and in the mixed dry-fluid phase. It can be noticed that the dry part has a very

low absorption and does not exhibit significant beam hardening effects compare with the

fluid-filled part. Hence an intensity correction of the high absorption would correct the

beam hardening of the fluid part without changing the dry part. A simple beam hardening

correction proposed by Herman et al. [32] where the linear projection is used as part of

a higher order polynomial projection has been used in this work. The correction of the

projections as a function of a 5th order polynomial allows the beam hardening of the

fluid-invaded part to be removed without changing the intensity of the dry part.

The proposed approach for the identification of the fluid advance in a porous sample

is inspired by the Projection-based Digital Volume Correlation (P-DVC) technique [23].

It is important to note that the challenge here, in the fluid-tracking, is to achieve a 3D

description of the advancing fluid front at the same temporal rate as the 2D projection

acquisition, in contrast to the usual practice of performing a 3D reconstruction assuming

a still state during the acquisition.

The starting point of the method is a reference (”standard”) tomography scan, per-

formed at the beginning of the experiment and, ideally, with a dry sample. This reference

is used to extract a 3D image composed only of the shape of the projected fluid (as in [20]).

(Note however that the initial state in the experiment presented later was not perfectly

dry and a small layer of fluid was present at the bottom.) The aim is thus to determine a
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description of a scalar saturation field S(x, t) in 3D space.

Introducing the porosity φ(x) of the porous medium, the projection can be written

p(r, t)− p0(r, t) = Πβ(t)[φ(x)S(x, t)] (5.1)

where Πβ(t) is the projection operator at angle β(t).

This decomposition is illustrated in figure 5.1. The rotation axis of the sample, denoted

as z, is perpendicular to the neutron beam, and is one principal axis of the detector. A gray

level color coding has been chosen for radiographs and a diverging color palette (where 0

is encoded as white, while positive and negative values have a different dominant color) is

used for all residual images to facilitate reading.

(a) (b) (c)

Figure 5.1: Projections for (a) the reference state p0(r, t), (b) a state during the invasion

process p(r, t) and (c) the difference that shows the projection of the 3D column of fluid.

Based on the above description of the projections for a given saturation state, the

determination of the 4D saturation field is performed through the minimization of a cost

function that is chosen as the quadratic norm, χ2, of the residuals between the predicted

and the actual projection data

η(r, t) = p(r, t)− p0(r, t)−Πβ(t)[φ(x)S(x, t)] (5.2)

thus

χ2 =
∑
r,t

η(r, t)2 (5.3)

The minimized quantity is the norm of the residual field that gives a precious information

on the quality of the solution because it highlights all patterns that have not been correctly

captured (because of noise, artifacts, model error, ill-convergence, etc.) and it is based on

the raw acquired data, with a minimal influence of prior assumptions that could bias the

judgment.

5.2.2 Fluid field model and parametrization

Different descriptions of fluid flow in porous materials can be found in the literature, from

detailed models accounting for presence or not of the fluid in the pore space, or more
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homogenized versions where the fraction of the pore space invaded by the fluid, i.e., the

saturation S, is used. The choice of the description used is essential, as it enables tuning of

the number of needed parameters, which has a drastic impact on our ability to invert the

problem. The ideal choice is to restrict the saturation description to the smallest possible

number of parameters yet maintaining a sufficient representation of the reality.

To have an accurate model for the projections, it is necessary to know the amount of

fluid intersected by the neutron beam, which is given by the product of the saturation

S(x, t) and the (connected) porosity φ(x) (independent of time).

The saturation itself can be determined by exploiting the following assumptions:

- First, the fluid “front” is assumed to be an abrupt transition in the saturation field

where it drops to 0 in one pixel distance. It can be described by a single valued surface,

z = h(x, y, t), and hence S = 0 for z > h(x, y, t). This front moves upward as invasion

takes place

- Second, behind the front, z < h(x, y, t), saturation increases progressively in time and

finally reaches a full saturation. The saturation profile seems to be well described by a

function of the distance to the front h(x, y, t)−z, this property is not a universal property

of pressure-driven flow, but it is observed to be well obeyed in the studied case.

The surface of the fluid front can be expressed, with a separation of variables, as a sum

of modes, composed by the products of a spatial field and a temporal function, respectively

Fm and τm,

h(x, y, t) =

Nm∑
m=1

τm(t)Fm(x, y). (5.4)

From this general expression of the front, (that is not restrictive) the spatial field can be

specialized to a reduced space generated by Ns shape functions, ϕi(x, y) with i = 1, ..., Ns,

weighted by amplitudes fmi . Different levels of description are possible to regularize the

space front. One is “free-form” from a fine finite-element mesh description of the surface.

This description requires many degrees of freedom. A local “smoothing” can be added

to constrain all independent nodal degrees of freedom, and obtain a better conditioned

problem. Alternatively, a “strong” regularization can be defined extracting the saturation

parametrization from a pressure driven flow model. The latter is generically the best

choice, as it leads to very few degrees of freedom, although it does require a physically-

relevant model of the saturation consistent with the scale of observation.

It is desirable to reduce the number of degrees of freedom, to couple them together for

better conditioning and to ease dialogue with models. The fluid front can thus be written

as

h(x, y, t) =

Nm∑
m=1

τm(t)

Ns∑
i=1

fmi ϕi(x, y). (5.5)

The space shape functions, fmi , can be tuned to adjust their spatial resolution: from

voxels (Dirac) representation, to finite element shape function for a 2D mesh of the cross

section, or to polynomials of low order, for example. In the same spirit, the time evolution
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can be decomposed over temporal shape functions, θl(t),

h(x, y, t) =

Nm∑
m=1

(
Nt∑
l=1

gml θl(t)

)(
Ns∑
i=1

fmi ϕi(x, y)

)
. (5.6)

It can be noted that only the norm of the product gmfm matters so that an additional

convention such as: max ‖
Ns∑
i=1

fmi ϕi(x, y)‖ = 1, has to be chosen without consequence.

Parametrization of bulk saturation

Detailed study of the images of the invasion process indicates that (at least in the regime

relevant for our experiment) the saturation shows a rapid first increase from 0 to an

intermediate value followed by a slower second stage increase up to 1. This secondary

stage can be seen as being ruled by a unique 1D function of the vertical distance to the

front. Following this observation, the saturation can be written as

S(x, t) = ζp(h(x, y, t)− z), (5.7)

where ζp is a smooth function of its argument, null for negative values, providing the

abrupt cut-off at the front. This function ζp can be parametrized by a set of parameters,

collectively denoted as a vector p.

As a final step, to soften the very steep vertical variation occurring at the front, the

above saturation field is convoluted with a Gaussian along the z direction. An additional

component in the vector p will refer to the width of this Gaussian. Since ζ is a slowly

varying function in z except at the front where it is discontinuous, the effect of this last

smoothing operation only affects the immediate vicinity of the front and has no perceptible

influence on the bulk saturation.

5.2.3 Inverse problem resolution

The previous section described how the saturation field is described by the front (with

parameters gathered in two vectors f and g) and by the bulk saturation fields with pa-

rameters p. In this section, the solution to the inverse problem is described.

Although the best was done to introduce the fewest possible number of unknown

parameters to describe the fluid advance, their number is still too large for the problem

to be tractable. The PGD framework [27, 28] to progressive enrichment of the model

description with modes is both a very powerful and convenient approach. At each iteration

of the algorithm, the fluid front can be written as the sum of previously identified modes

plus a new one. Hence,

h(m)(x, y, t) = h(m−1)(x, y, t) +

(
Nt∑
l=1

gml θl(t)

)(
Ns∑
i=1

fmi ϕi(x, y)

)
. (5.8)
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The minimization of the functional leads to the determination of the unknowns from

3 coupled equations,

fm = Argminf (χ(f , g,p)2), (5.9)

gm = Argming(χ(f , g,p)2), (5.10)

p = Argminp(χ(f , g,p)2). (5.11)

To solve this coupled system, a fixed point procedure is used, solving for the above three

minimization problems successively, keeping the other two sets of parameters fixed, as

described in Algorithm 3. It was observed that a very low number (3–5) of iterations

was needed to reach a stable solution, and an ill-convergence escape condition based on

a maximum number of iterations was never reached. Even if the two space and time

unknown amplitudes are defined by the norm of their products, the fixed point algorithm,

composed of separated equations leads to a correct determination (from the choice of the

initialization of gm from which fm is computed) allowing convergence. The choice of a

norm affecting each unknown can finally be set (or reset) at the end without consequence.

Algorithm 3 General 3-step fixed-point procedure

while High residual norm do

Increment mode number m = m+ 1

Initialize fm, gm and p

while ‖∆fm‖ < εf and ‖∆gm‖ < εg and ‖∆p‖ < εp do

Compute spatial field fm

Update volume

Compute temporal amplitudes gm

Update volume

Compute intensity parameters p

Update volume

end while

end while

The three parts of the fixed points are obtained from the above functional using a

Newton algorithm. The derivative with respect to h leads to

f = N−1n, (5.12)

with N the spatial Hessian matrix of χ2 with respect to f (i.e., Nij = ∂fi∂fjχ
2), built

from the sensitivity field, Ψm
i (r, t), i.e., the variation of the projection for an infinitesimal

variation of input parameter,

Ψm
i (r, t) =

∂Πβ(t)[φ(x)S(x, t)]

∂fmi
, (5.13)
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n is the second member vector based on the residual field, which can be written

Nij =
∑
t,r

Ψm
i (r, t)Ψm

j (r, t), (5.14)

ni =
∑
t,r

η(r, t)Ψm
i (r, t). (5.15)

The exact same formulation is found for the derivative with respect to g and p. It is

noteworthy that p does not depend of m in the fixed point procedure. It is hence an

update of this parameter that is performed at each mode identification.

5.3 Applications

5.3.1 Presentation of the test

The studied sample is made of a porous sandstone from the Vosges mountains in the east

of France [33]. The sample shape is cylindrical (diameter 38 mm and height 80 mm) with

two opposing flattened surfaces on which two shallow notches were cut for a related study

on the formation of localized deformation under triaxial compression (see [15, 34]). The

sample geometry is shown in Figure 5.2(a).

(a) (b)

Figure 5.2: (a) Cylindrical sandstone sample with two, opposing flattened surfaces each

containing a notch, which are offset to each other. In the pressure-driven flow experiment,

the fluid entered the sample from the bottom. (b) Scheme of the experimental setup. The

water tank can be moved up and down to keep a constant pressure during the experiment

The fluid advance in the sample was imaged with neutron tomography at Helmholtz-

Zentrum facility in Berlin (HZB) [35]. For the experiments, the sample was wrapped

with thin PTFE tape then two Teflon inserts were placed on the flattened surfaces to

make the overall shape cylindrical and a heat-shrink FEP membrane, which is reasonably

transparent to neutrons, was shrunk to fit tightly around the sample and inserts. The

PTFE tape was placed between the sample and the inserts to avoid preferential flow

paths. The dry sample was placed and sealed with silicon in a cup that could be fed, by a
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tube from the bottom, with distilled water. The experimental setup, described in details

in [36], is shown figure 5.2(b). Water was supplied to the cup at the base of the sample

and the fluid advance was captured with 137 neutron tomography scans over a period of

2 hours.

The pressure of the water was given from the height of the water tank, which was

adjusted during the experiment to compensate the water loss and keep the pressure con-

stant. The fluid advance in the sample was driven more by the water pressure head than

by capillarity.

Neutron tomographies were acquired with an acquisition time of 0.2 sec per radiograph

and 307 projections over 180°, for a total scan time of 1 min. The rotation of the table

was continuous with a fixed velocity. 130 flat-fields and dark-fields were acquired and used

to perform a standard flat-field correction. The images are 541×648 pixels2 with a pixel

size of 110 µm. For a reduced computation time and because the front did not reveal any

high spatial frequencies, the images have been down-sampled with a factor of 4 (i.e., after

a Gaussian filtering of the images with a characteristic length of 4 voxel size, the smaller

images are created sampling 1 pixel out of 4 in all space directions). Hence the images

treated in the following are 138×162 pixels2 with a pixel size of 440 µm.

To estimate the actual porosity field of the sample, φ(x), the final state after steady

fluid invasion was reconstructed from a complete 180° scan reconstruction using an alge-

braic SIRT procedure from the ASTRA Toolbox [37] similar to the initial state reconstruc-

tion. Because the first scan was performed with a small quantity of fluid in the bottom

of the sample, a mask was applied to the bottom part of the projections. The following

surface height is defined from z0 = 20 voxels.

5.3.2 Choice of parameterization

Spatial parameters

The saturation front is described using a very simple model: a sum of low order bivariate

polynomials of order 3, thus 10 degrees of freedom for the surface function are allowed for

each mode.

Temporal parameters

A single projection cannot be used to identify all modes and indeterminacies would result

if each single time step (and hence projection angle) were treated independently. This can

be resolved by describing the time evolution by time shape functions — denoted as θl(t)

in Eq. 5.6 — that span several time steps or angles; these also introduce an additional

smoothness. Again, the limit is that this smoothening should be consistent with reality

and should not enforce an oversimplified definition of the front.

The time evolution is chosen to be expressed on a reduced basis composed of low order

polynomials. Because the first case example has a simple and low frequency fluid advance,

the time regularization was set using polynomials of order up to 2. The second test case is

more complex and was regularized in time with polynomials up to 4th order. The proposed
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regularizations can be decided to be valid, or not, based on the residual field at the end

of the identification procedure.

Bulk saturation parameters

The bulk saturation of the porous medium behind the invasion front σ(x, t, p) = ζ(h(x, t)−
z) is described with two parameters, p1 and p2, and an exponential function.

ζ(δh) =

 0 δh < 0

1− (1− p1) exp

(
−δh
p2

)
else

(5.16)

The saturation jump at the front is considered as a discontinuity from 0 to p1. Although

abrupt, the saturation evolution at the front is better described if the transition is smeared

over a small distance by a convolution of ζ with a vertical Gaussian kernel of width 2 voxels.

Note that this smoothing can be performed in the detector space for a faster computation.

The plot of the identified ζ(δh) at the end of the procedure can be used to validate

the chosen intensity model (in the example, p1 = 0.64 and p2 = 7.7 vox); for the current

example this is shown in Figure 5.3. The chosen and identified profile, especially after

the Gaussian smoothing are close to the profile extracted from the real data. Note that

the reconstructed 3D volume may have been blurred because of fluid motion during the

acquisition.

Figure 5.3: Comparison of the mean vertical intensity lines, from the model ζ ((a) black

dashed curve), the blurred model with a Gaussian of two vertical pixels ((b) black bold

plain curve) and experimental data ((c) red thin curve) extracted from a 3D reconstruction.

5.3.3 Case 1: during a scan rotation

The first test case involves the measurement of the fluid advance from the radiographs

acquired during a standard tomographic scan. The considered data were extracted from

the middle of entire experiment and involve 307 radiographs that were acquired at 5 Hz

frequency over 60 seconds during a continuous rotation of the sample from β = 0° to 180°.
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The projections of the fluid column for the first and last radiographs are shown in

Figure 5.4. The difference between the first radiograph and the mirror symmetry of the

last one indicate that the fluid front clearly moved during the 1 min acquisition. Such

an evolution would blur the reconstructed 3D fluid field and, therefore, influence any

subsequent 3D analysis.

(a) (b) (c)

Figure 5.4: Projection of the 3D column of fluid at the first (a) and last (b) angle. The

difference between the first and the (mirrored) last image in (c) shows the fluid advance

during the scan.

The identification procedure consists of 3 modes, each composed of 2 unknowns for

the saturation profile (vector p), 10 unknowns in the spatial domain fmi and 307 (resp.

3) unknowns in the time domain, gml , for a free identification (resp. for a 2nd order

polynomial).

Identification of the first mode for the fluid front

The first spatial and time evolution is shown in figure 5.5. The range of variation of the

(a) (b)

Figure 5.5: Results of the first mode identification with (a) the space field of the surface

and (b) the time evolution of the front g1(t) in black and the free identification in red.
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first spatial mode, about 0.1, is small relative to its mean value (about 0.9), and hence

the time evolution, to first order, reveals an invasion of the fluid into the sample that is

initially fast and then more slowly saturates the region of the sample by the end of the 60

s acquisition. The variation of the mean front position is a displacement of approximately

2 voxels at scale 4 (hence 8 voxels at scale 1, for a full resolution reconstruction). It is

possible to extract the amplitude at each single time step by taking into account only this

first spatial field and to use it to match projections. This provides a free-form estimate

of amplitudes f1
i for local time shape functions, f1

i (t) = δ(t − ti). Such amplitudes are

shown in red in Figure 5.5b. If instead, the time shape functions are chosen as polynomials

of order 2, the resulting determination of amplitudes is shown as the black curve. A fair

agreement is observed, in spite of the drastic reduction in the number of degrees of freedom

(from 307 down to 3). Moreover, this reduction comes with a much more robust (noise

resilient) behavior. In addition to describing the mean volume invasion, the non-trivial

front shape also captures a persistent non-uniformity of the front. However, higher mode

orders are expected to contribute significantly to a finer description of the front shape.

The true metric to evaluate the merit of our procedure is the residual field η(r, t) which

shows everything that has not been captured by the procedure (noise, artifact, model error

etc.). To evaluate the relevance of the non-trivial front shape of the first mode, it is easy

to perform the same analysis with only one mode, but restricting the spatial part of F , to

a single degree of freedom, namely a constant height (polynomial order equal to 0). An

arbitrary choice of the amplitude of the space and time function has to be chosen. It was

decided to set the maximum space amplitude to 1 to help for a visual understanding of the

surface evolution. At convergence, the final residual, is shown in figure 5.6 at the beginning

and end of the scan. The most critical part of this residual field that has to be scrutinized

is the fluid surface zone (interface between empty and saturated pore volume). It can be

seen that the mean evolution is well captured, but alternate positive and negative values

show that this description is still inaccurate. The value of χ2 reaches 144 for a flat front

fixed in time, and drops down to 103 when a variation in time is considered, showing that

the latter choice allows one to improve significantly the solution. Let us note that with a

single mode, when higher polynomial orders are considered in space, the residual decreases

only slightly to 102. When more modes are added, the spatial enrichment reveals much

more rewarding as detailed in the following.

Identification of additional modes

A comparison of the final residual field considering different time regularization is proposed

in table 5.1. From these results it can be seen that, a third order polynomial for the time

evolution is required to correctly capture the fluid advance.

Most of the residuals are erased with 3 modes, which indicates that a solution for the

front shape has been found. The final residual field is shown in figure 5.7. Some structure

can still be distinguished in the residuals below the front, which likely corresponds to

reconstruction artifacts from the projected final fluid column.

The identification procedure was been stopped after the identification of 4 modes

because the norm of the residual fields indicated convergence. The evolution of the norm
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(a) (b)

Figure 5.6: Selected residual fields at (a) β = 0° or t = 0 s and (b) β = 180° or t = 60 s

at convergence, with a flat and horizontal (constant height) surface.

(a) (b)

Figure 5.7: Evolution of the selected residual fields, after correction with the three modes

at (a) β = 0° or t = 0 s and (b) β = 180° or t = 60 s at the end of the procedure.

of the residual fields is presented table 5.1. It can be seen that the residual field does not

decrease further after mode 3, indicating that the main trends have been captured. The

space time evolution (with a product expressed in voxels) of the different modes is shown

in figure 5.8.

The final surface can be reconstructed from the three identified modes. In figure 5.9,

the front surface at two time steps are plotted. The evolution from time t = 0 s and

t = 60 s is shown with the same color coding. It can be noted that the surface curvature

changes progressively during invasion over the scan time.
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Table 5.1: Evolution of the norm of the all residuals at convergence for different spatial

fields polynomial orders and after successive mode identification

Number of modes

Spatial basis order 1 2 3 4

0 (flat) 103 101 101 101

1 102 84.1 83.7 83.5

2 102 74.5 74.2 73.8

3 102 69.4 68.7 68.5

(a) (b)

(c) (d)

Figure 5.8: Surface modes m = 2 and 3. (a-c) is the space surface Fm(x, y) and (b-d) is

the time evolution gm(t)

Comparison with 3D front extraction method

Using classical tomographic approaches, the beam hardening corrected projections can

be used to reconstruct a 3D volume (assuming implicitly a steady fluid), from which a

segmentation method, based on the value where the front saturation drops to 0 can be

used to extract the shape and position of the saturation front. The measurement of the
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(a) (b)

Figure 5.9: Evolution of the front at different times of the scan acquisition, in voxels,

reconstructed from the three modes for (a) t = 0 and (b) 60 seconds

surface height can thus be determined. Obviously, this method allows a single front to

be extracted for the time interval, which should be, in some way, an intermediate mean

position. If the 3D front is determined by standard segmentation procedures, its height

will be given with integer voxel resolution. Figure 5.10 shows the difference between the

interface extracted from the tomography and the time-averaged interface as identified with

the method presented in this paper. In this figure few steps are visible corresponding to

jumps due to voxel rounding. The difference is always less than 1 voxel, corresponding

to the 3D segmented uncertainty. The standard deviation of the difference is 0.36 voxel

showing a good agreement in those two results. However the time evolution cannot be

obtained with classical reconstruction procedures.

Figure 5.10: Difference, in voxels, of the surface height between the mean identified surface

with the proposed approach and the surface extracted from the segmented (voxelized) 3D

volume.
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5.3.4 Case 2: during the entire test

The above described identification procedure is now applied to identify the fluid front over

the entire pressure-driven flow experiment. The analyzed test is composed of 42 180°-scan

series. To simulate the acquisition of a fast 4D procedure, only a single projection per

invasion state has been selected from each scan in the series for a projection angle that

evolves constantly with time just as if the experiment would have been conducted in 4

full turns of the sample (approximately 10 projections per turn). Projections at 3 times

(7-21-40) and 3 different angles β =[240°, 0°, 292°] are shown figure 5.11.

(a) (b) (c)

Figure 5.11: Projections of the sample during the pressure-driven flow test (a) step 7,

β = 240°, (b) step 21, β = 0° and (c) step 40, β = 292°

The time regularization has been chosen as a 4th order polynomial function because

the front shape changes more rapidly during a full fluid advance as compared to a single

scan. 5 time unknowns are identified per mode. The entire identification is composed of 5

independent modes, after which the residual does not decrease any further. The residual

field after convergence is shown figure 5.12. The residuals are low around the interface at

the surface position, which validates the choice of surface regularizations.

(a) (b) (c)

Figure 5.12: Residual field at convergence of the procedure, with the correction of 5

identified modes during the test (a) step 7, β = 240°, (b) step 21, β = 0° and (b) step 40,

β = 292°
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The three first identified modes are shown figure 5.13. The first mode with a very high

amplitude, (from 20 to 120), is non linear in time and describes mostly the mean fluid

invasion of the volume. The other modes, with smaller amplitudes, act as corrections to

the first mode.

(a)

Ns∑
i=1

f1
i ϕi(x, y) (b)

Ns∑
i=1

f2
i ϕi(x, y) (c)

Ns∑
i=1

f3
i ϕi(x, y)

(d)

Nt∑
j=1

g1j θj(t) (e)

Nt∑
j=1

g2j θj(t) (f)

Nt∑
j=1

g3j θj(t)

Figure 5.13: Three first identified modes respectively (a-b-c) for the surface field and

(d-e-f) for the time evolution

5.4 Conclusion and discussion

In order to follow a fast invasion process (water invading a porous sandstone), a new

methodology has been introduced, based on a time regularization and a model reduction

technique. Such a procedure allows to resolve high rate invasion (up to 5 Hz) that cannot

be captured using classical tomographic acquisitions and reconstructions. The method

relies on a space and time regularization through a choice of a suited basis, and is based

on a projection-based identification of the unknown parameters.

To further reduce the sought parameters, a Proper Generalized Decomposition has

been designed, to capture “modes” one at a time until the residuals have been reduced

down to an acceptable level. The residual field at the end of the procedure permits a

validation of the chosen basis.

A first case example, addressed the question of a slow evolution during a 5 Hz scan. The

residual field, after convergence of the identification procedure, does not reveal any salient
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unresolved features at the fluid front, which indicates that the front was well captured by

the chosen description and the regularization is clearly well suited.

A second test case aimed at analyzing a fast pressure-driven flow experiment, and 40

radiographs acquired during about 4 full revolution of the sample were extracted from a

longer time series. In contrast to the previous example, large displacements were observed

and yet the proposed P-DVC algorithm could deal with such large changes.

The example applications of the method were performed at scale 4 (i.e., the volume

was reduced in size by a factor of 4), so only small data volumes were considered. For

the two test cases, because the surface was smooth, this resolution was enough to capture

the fluid shape. The measurement at full resolution would be in the same spirit, with a

higher computation time. With the actual procedure, each mode of case 1 is obtained in

55-65 minutes and each mode of case 2 in 4-6 minutes depending on the convergence rate

of the fixed point procedure.

The simplicity/complexity of the problem (i.e., the number of degrees of freedom, in

space and time) is conditioned by the scientific background of the experimentalist about

the observed phenomenon. For example, the knowledge of fluid flow models composed of

few parameters allows the problem to be easily solved with a small number of unknowns.

In the opposite, no expectation about the experiment requires to leave much more freedom

to the system (too many would lead to ill-conditioning). At convergence, the residual fields

enable the quality of the parametrization and chosen model to be appreciated. It is then

possible to enrich the studied basis (i.e., add an additional curvature of the front, space

or time discontinuities, evolution of the front width etc.).

The method could be applied to more complex cases such as imbibition or pressure-

driven flow of water, or other fluids, into sample with cracks or shear bands. In such cases,

the choice of the regularization basis would require particular attention (for example a

finite element mesh may be suited, and a model based approach may also open a promising

route).
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Chapter 6
Vibration measurements in a tomograph

This short chapter in an unpublished ongoing project that aims to develop a modal basis

identification method for a sample with in-situ measurements.

An in-situ vibration mode measurement method has been developed based on

Projection-based Digital Volume Correlation techniques. Three projection angles are se-

lected and a large number of radiographs of the vibrating sample are acquired at random

and unknown times with a small exposure time in order to ’freeze’ out the displacement,

without motion blurs. The measurement, based on an initial reconstruction acquired in

a static configuration, is performed using Proper Generalized Decomposition techniques.

All projections are related with the known microstructure and the unknown modal basis

associated with amplitudes. The key lies in being able to give a (weak) relationship to

link those amplitudes together. A statistical a priori was used assuming that the modal

participation is equal for each angle. The method was applied on two synthetic test cases

where the volume deformation (using chosen mode shapes and random amplitudes) and

projections where numerically performed. In both cases, the space modes were recovered

as well as the associated time amplitudes allowing the method to be validated.

127
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6.1 Introduction

Full field measurement is a key element for model validation and identification. The

measurement of the displacement field during an in-situ test in a tomograph is indeed very

rich [1]. With the aim to identify or validate a model, the experiment can be designed

to be discriminant, i.e., highly sensitive to parameter changes. Various techniques can be

used to enhance sensitivity: adding texture in the volumes (e.g., adding inert inclusions to

the materials, paint or surface marking, introducing surface roughness, etc.), optimizing

the shape of the sample (e.g., with holes or notches to enhance a plastic behavior as in [2]

or more sophisticated method based on topology optimization [3]), the loadings and crack

paths (e.g., in [4, 5]), the choice of more and more developed experiment procedures and

test (e.g., multi-axial, coupled loading with thermal, electrical or magnetic actions, cyclic

load/unload, vibrations) etc.

When designing an experiment, temporal resolution may be an issue. For example of

experimental time constants, a fatigue test is usually performed at say 5 to 30 Hz depending

on the material dissipation , a thermal test may have it variations occurring in few seconds,

creep in minutes. On the opposite, standard 3D full field measurement techniques (e.g.,

Digital Volume Correlation [6] (DVC)) require the acquisition of several volumes, each

taken, for example in a lab-CT, minutes or hours. Different methods have been developed

to be able to acquire tomography volumes in some of those fast applications. In fatigue

tests for example, the sample is loaded cyclically and the test is interrupted at some steps

for the scanning process.

An extension of DVC where the measured quantities are identified on projection is the

Projection-based DVC (P-DVC) [7, 8, 9, 10]. Those developments allows to follow a 4D

(space/time) kinematics from a single projection per state. The developed P-DVC tech-

niques could also be applied to follow the cyclic deformations, radiograph after radiograph,

while the sample is rotating. Nevertheless, the measurement of vibrations (say from 10

to 100 Hz) is not feasible because the experiment can not be stopped. Some dynamic

tomography techniques, detailed in the next part of this manuscript aim at imaging a

moving sample by capturing the kinematics and reconstructing the sample at the same

time. However the vibrations are too fast and could not be captured by such approaches

(especially if the sample has a high damping and hence can not be imaged during a long

time) unless constant phase is used to trigger acquisition, and a steady state vibration

regime is imposed.

Being able to measure the displacement fields (thus the modal basis) of a sample, in

3D, is an interesting challenge. More than identifying the kinematics, the modal basis of a

sample is extremely sensitive to the parameters of models. The identification of 2-3 modes

is hence very discriminating and would permit model (un)validation.

In [11], the modal basis of a vibrating plate was measured using a deflectometry setup

with a random and unknown (but numerous) sampling in time. The collection of images

were acquired using a short exposure time to freeze the displacement without motion blurs.

Without time information, frequencies cannot be measured. However, images are related

to each others by a kinematic field that is often composed of the first modes. From DIC
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analysis of those images, a weighted Principal Component Analysis could extract those

modes that were compared with numerical results.

A measurement method is proposed for an in-situ vibrating sample based on a P-DVC

procedure with reference volume in the same spirit as [11]. Three projection angles for

the multi–view P-DVC are selected and a standard static acquisition is performed in a

reference configuration. A large series of radiographs (150) is acquired at each angle,

at different and random vibrating states, using a short exposure time. To mention a

realistic order of magnitude, 1/72 second is available in the LMT lab-CT. The kinematics

identification is then performed with a PGD procedure mode by mode using statistical

assumption(s) on the displacement field. Two numerical applications show the accuracy

of the proposed method with a sample that is virtually deformed with 1 or 2 modes. With

the proposed approach, the identification enables the modal basis to be retrieved.

6.2 Modal measurement method

The method is based on a ’multi–view’ P-DVC procedure as described in the above Chapter

2 and in [12]. With f(x) the reference image, Πθ the projection operators [13] at angle θ,

p(r, θ) the recorded deformed projections, acquired at random times using the shortest

exposure time possible, the functional to minimize is

ΓVib(u) =
1

βf

∑
r,t

‖Πθ(t)[f(x+ u(x, t))]− p(r, t)‖2 (6.1)

with the implicit convention that the projection Πθ(t) of point x on the detector plane is r.

The displacement field can be written on the modal basis as

u(x, t) =
∑
i

αi(t)Φi(x) (6.2)

with Φi(x) spatial vibration modes, indexed by i, and α(t) the temporal amplitude of

each mode. Because the time acquisition is not known in our experiment, this amplitude

can not be regularized as sinusoidal functions (as we would do for experiment with a fine

sampling). The modal basis can be written on a finite element mesh kinematics, using

mesh shape functions ψj(x) as usually done in global DIC or DVC procedures [14]:

u(x, t) =
∑
i

αi(t)
∑
j

uijψj(x) (6.3)

In a PGD framework, each mode is identified successively (see Chapters 3 and 5). Thus

uk(x, t) = uk−1(x, t) + αk(t)
∑
j

ukjψj(x) (6.4)

The time evolution can not easily be written on a priori time basis as it is acquired at

random time. However, every additional sensor information (i.e., laser interferometry,

acoustic measurements) could be used as regularization.
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Vibration displacements are supposed to be small and centered around the reference

configuration (i.e., null mean displacement), hence the volume is not advected for each

deformed position. Thus the computed sensitivities do not have to be updated and are

computed once. This allows huge gains in computation time as the linearization is only

performed once at the reference state, no update are performed. The linearized functional

is hence, with βp the noise variance for the entire ROI:

ΓkVib(uk,α) =
1

βp

∑
r,t

∣∣∣∣∣
∣∣∣∣∣ρ(r, t,uk−1) + Πθ(t)

[
∇f(x)

∑
i

uki ψi(x)

]
αk(t)

∣∣∣∣∣
∣∣∣∣∣
2

(6.5)

with the projected residual fields ρ(r, t,u) = Πθ[f(x+ u(x, t))]− p(r, t). It can be noted

that because the volume is not advected, the residual fields can be computed simply as the

difference between deformed and reference projections. This mere difference allows one to

avoid the possible reconstruction and projection artifacts (e.g., inaccurate reconstruction

parameters).

Because the above space – time functional is coupled, it is proposed to solve it using

a fixed point algorithm. The two minimizations are

uk = Argmin
vk

ΓkVib(vk,α) (6.6)

α = Argmin
a

ΓkVib(uk,a) (6.7)

and gives the following linear systems, with l indexing the different Nl angles, each com-

posed of Nt projections

uki =

[
Nl∑
l=1

H l
ij

]−1 Nl∑
l=1

hlj (6.8)

with H l the hessians of ΓVib minimized with respect to uk for angle θl, indexed by l

H l
ij =

∑
r,tl

(
αk(t)Πθl [f(x)ψi(x)]

)(
αk(t)Πθl [f(x)ψj(x)]

)
(6.9)

and the second member

hli =
∑
r,tl

ρ(r, t,uk−1)
(
αk(t)Πθl [f(x)ψi(x)]

)
. (6.10)

The key to solve this problem is an assumption on α(t) because the acquisition times are

randomly sampled. It is proposed to resort to a statistical property that, with a large

number of snapshot, the 3D motion is similar for any angle hence
∑
tl

αk(t)2 = 1 with

the normality by convention. It is noteworthy that this condition is applied on the 3D

displacement and it is not similar to its expression in residual fields. If for example the

motion is parallel to a projection axis, i.e., zero sensitivity in a perpendicular projection

direction, the 3D amplitude is however the same for the different X-ray views. With this

assumption the Hessian matrices can be written

H l
ij = Nt

∑
r

(Πθl [f(x)ψi(x)]) (Πθl [f(x)ψj(x)]) (6.11)
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What is interesting is to see that this Hessian is exactly the same as the one described

in the Chapter 2 and in [12] with the multi-view P-DVC. Indeed the assumption on the

amplitude allows one to treat this measurement as if it were a static case (at least for

the Hessian). The system is hence well conditioned and the sensitivity to every node is

recovered with the different angles.

The very small problem in time is

αk(t) =

[
Nl∑
l=1

M l

]−1 Nl∑
l=1

ml (6.12)

with M l the scalar Hessians of ΓVib minimized with respect to α for angle l

M l =
∑
r

(
Πθl

[
f(x)Φk(x)

])(
Πθl

[
f(x)Φk(x)

])
(6.13)

and the second member

ml(t) =
∑
r

ρ(r, t,uk−1)
(

Πθl

[
f(x)Φk(x)

])
(6.14)

An interesting property of this PGD analysis is that it may be intrinsically linked to

the modal measurement. As explained in [15, 16, 17], the Principal Component Analysis

(PCA) of an infinite collection of displacement fields of a vibrating system corresponds to

the modal basis if the mass is an identity matrix. This can be easily generalized to an

arbitrary distribution considering the PCA decomposition of M1/2u instead of u so that

the L2 norm of this quantity is equivalent to an energetic norm. The obtained modes are

also orthogonal with respect to the mass product. In this tomography application, the

minimized quantity treated by PGD is the residual field. This quantity could be multiplied

by the image projection itself such that it would be exactly corresponding to a weighted by

the gray level intensity, in other words the exact mass of the volume. The measured PGD

modes should hence converge to vibration modes. The corresponding functional would

thus be

ΓVib(u) =
1

βf

∑
r,t

‖Πθ(t)[f(x+ u(x, t))]− p(r, θ(t))‖2 ·Πθ(t)[f(x)] (6.15)

Another assumption, optional, not required, is to impose that the mean amplitude of

the 3D displacement is null, for each angular sector. A Lagrangian multiplier λ(t) can be

added to the functional

ΓVib–Reg(u,α) = ΓVib(u,α) +
∑
l

λ(t)
∑
t

α(t) (6.16)

This assumption is used in the second application.

The modal measurement method is summarized in the following algorithm
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Algorithm 4 Modal P-DVC fixed-point procedure

Compute all sensitivities Si(r, t)← Πθ(t) [f(x)ψi(x)]

while High residual norm do

Initialize αk, such that ‖α‖2l = 1 and possibly
∑
tl

α(t) = 0

while ‖∆Φk‖ < εu and ‖∆αk‖ < εα do

Compute spatial mode uk (eq. (6.2))

Compute temporal amplitude αk (eq. (6.8))

Normalize to ‖α‖2l = 1 and possibly
∑
tl

α(t) = 0

end while

Update displacement field uk, or residual fields

k ← k + 1

end while

6.3 Application of the method

The method has been tested with two virtual examples. A numerically generated specimen

of size 384×384×386 voxels is used. The truncated cone shape is defined from a sample

scanned for another application in the LMT lab-CT. A 3D view of the sample is presented

figure 6.1. Its microstructure is a light matrix on which absorbing particles are included.

The particles are described by 3D Gaussian profile. The volume was generated using an

efficient matlab function provided by Jan Neggers.

Figure 6.1: 3D rendering of the generated volume composed of absorbing particles in a

light matrix.

The numerical test case is generated with 3 projection angles at [0−120−270]◦. Using

3 projections is indeed interesting because at least 2 will be sensitive. With a regular

angular sampling and a prime number of projections (min 3) the displacement can always

be correctly captured.

The set-up geometry is a cone beam (with parameters corresponding to a real experi-

ment from which the shape is extracted) and projections of the volume with the ASTRA

toolbox [13]. The volume is deformed considering mode shapes, with random amplitudes
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(obeying a normal distribution to be realistic).

First test. The modal basis of the first test case is composed of a single horizontal mode,

with ex and ey the vector of the x − y plane and z the normalized vertical coordinate

(ranging from 0 to 1). The standard deviation amplitude for each x and y direction is 0.1

voxel.

Φ(x) = 0.1 · z · (ex + ey) (6.17)

150 projections for each angle are generated at random amplitude of the mode with

the addition of a white Gaussian noise whose standard deviation is 0.1% of the gray

level dynamic of the projections (to be compared with the very small signal due to small

displacements). A projection of the volume and two residual fields are shown figure 6.3

and 6.2.

Figure 6.2: Projection of the synthetic volume.

(a) (b)

Figure 6.3: (a-b) two noisy residual fields at the same angle and different acquisition times.
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It can be seen in the residual fields patterns that the amplitude are different because

they have been acquired at random time. The direction is also different (the positive and

negative signature of the motion have an opposite sign).

The measurement is performed with a coarse T4 mesh (4 nodes element with tri-linear

interpolation) composed of 16 nodes. This corresponds to 48 degrees of freedom in space

and 450 in time. The measured displacement field of the first identified mode, after 6

iterations (measured field and α(t)) are compared with ground truth and shown figure 6.4

and 6.5. The displacement field corresponds to an ’in-plane’ motion whose amplitude

evolves with z. The amplitudes of two top nodes are not perfect as they are related to low

sensitivities (tangential to the cylindrical shape). Adding local mechanical regularization

or using models should help converging on more mechanically admissible fields.

Figure 6.4: Measured displacement field Φ(x) on the T4 mesh for the first test case.

(a) (b)

Figure 6.5: (a): comparison of the ground truth and measured amplitude for each pro-

jection α(t) of the three angles (1–2–3) respectively for the intervals [0–150–300–450] and

(b): the ground truth in (1) and the error in (2).
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The identification of the amplitude is really close to the reference. The plot has to be

read in three parts of 150 projections. Each third corresponds to a different projection

angle. It can be seen that the error is more important for the third part as the sensitivity

is low (incidence angle of 30◦). Although the error is high in amplitude, it has no conse-

quences in residuals, which is the minimized quantity. In fact, all angles do not need to

be sensitive to the mode kinematics as long as it can be identified with others. This is the

reason why three projection angles have been selected. This error is thus expected and

inevitable.

Second test. The second test case is composed of two modes: a first one which is a

vertical extension mode Φ1 and a quite similar horizontal mode as in the first test case Φ2.

The incidence angle for the third projection angle is nearly 0 and should result in an almost

(not exactly 0 and the beam is not parallel) null sensitivity.

Φ1(x) = 0.5 · z · ez (6.18)

Φ2(x) = 0.1 · z · (ex + 1.5 · ey) (6.19)

150 projections are also used and corrupted with the same white Gaussian noise. The

assumption of zeros mean amplitude is used and implemented in the standard procedure

as a normalization step. Two residual fields acquired for the same projection angle and

different times are shown figure 6.6. The first one is mainly composed of a large vertical

motion, the second one displaying an essentially horizontal motion.

(a) (b)

Figure 6.6: Two noisy residuals fields of the second test case acquired at the same angle

and different time acquisition.

The convergence of the first mode is obtained after 10 iterations. The norm of the

residual field decreases from 1192 to 447. The first modal displacement field and its

temporal amplitude are shown figure 6.7 and 6.8. Very good results are obtained because

the vertical displacement is very sensitive on the three projection angles.
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Figure 6.7: Measured displacement field Φ1(x) for the first mode of the second test case.

(a) (b)

Figure 6.8: (a): comparison of the ground truth and measured amplitude for each projec-

tion α1(t) of the three angles (1–2–3) respectively for the intervals [0–150–300–450] and

(b): the ground truth in (1–2–3) for the three angles and the error in (4)

The second mode displacement field and time amplitudes are shown figure 6.9 and

6.10.

With this second correction, the norm of the residuals decreases from 447 to 402. It

can be noted that the third angle is, as in the first application, not associated to high

sensitivities. The captured amplitudes are therefore not in accordance with the input

signal but have a small influence in the gray level minimization.
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Figure 6.9: Measured displacement field Φ2(x) for the second mode of the second test

case.

6.4 Conclusions and perspectives

An in-situ vibration mode measurement of a sample based on P-DVC has been developed.

After the acquisition of a reference volume, a large series of projections are acquired at

few angles using a fast exposure time that freezes out the displacements without motion

blurs. Because the vibration frequency may be much higher than the acquisition rate,

the radiographs can not be related in time and the concept of frequency is out of reach.

The time sampling is hence considered random and unknown (although other measure-

ments could help providing this missing information). What links all projections is the

microstructure (known) and the modal basis (unknown). Based on a PGD approach, each

mode is identified successively using the statistical assumption that the norm of the 3D

displacement amplitude is constant for each angle of acquisition (valid for a statistically

steady excitation, and a sufficiently abundant sampling).

The method has been applied to two numerical test cases. Each test is generated

by deforming a volume with vibration modes associated with random amplitudes. The

numerical experiment is performed with 3 angles and 150 projections per angle. A first

test is composed of a single horizontal mode. The kinematics of the second application

is composed of two different vibration modes. In both cases, the measured displacement

modes (i.e., field and amplitude) are compared with the ground truth. Both applications

allow us to validate the modal identification procedure.

This proposed procedure is very light to compute as the volume is never updated

and the sensitivity fields computed only once. A fine mesh could easily be designed

and is not a limit (and could be associated with some Tikhonov [18] or local elastic

regularizations [19] for example). In real cases, where the displacement would be very large

at some stages, a multi-scale procedure filtering out high frequencies in the microstructure
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(a) (b)

Figure 6.10: (a): comparison of the ground truth and measured amplitude for each pro-

jection α1(t) of the three angles (1–2–3) respectively for the intervals [0–150–300–450] and

(b): the ground truth in (1–2–3) for the three angles and the error in (4)

could be envisioned, or the corresponding projection library could be pruned out by erasing

those cases from projections.

From the Rayleigh-Ritz ratio, a coupling of the obtained results with assumptions on

the stiffness [K] and mass [M ] (given by the tomography though it has to be correctly

weighted) matrices enables the frequencies of the measured modes to be identified, such

that, with H the spatial Hessian matrix as defined previously that refers to the measure-

ment uncertainty (positive definite):(
ωk
)2

=
ΦkH1/2[K]H1/2Φk

ΦkH1/2[M ]H1/2Φk
(6.20)

In the two examples, the lack of sensitivity for two projection angles resulted in an

identification of the displacement amplitude that was more or less accurate depending on

the angle. However although the measurement is not perfect, because of a low sensitivity,

it does not affect the residual field thus the minimized quantity. Designing a test case,

i.e., choice of angles, surface texture, number of projection per angle, is an interesting per-

spective. This prior optimization could be performed with respect to an initial numerical

model (e.g., an elastic model).

Implementing a multi-scale approach may be crucial when dealing with large displace-

ments, especially because the volume is never advected. The procedure would be the same

as the one described in other Chapters: (i) low pass filter to smooth the functional shape

(convolution with a Gaussian kernel), (ii) downsizing to reduce computation time. As

performed in previous chapters, this pyramidal identification would be performed from

the coarsest to the finest scales.

Performing an in-situ measurement in a lab-CT is also an exciting perspective. As a

little teaser with order of magnitudes: the exposure time have to be approximately say 5-10

times shorter than the period to ignore motion blur. For the LMT lab-CT, an experiment
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to measure modes at 5-15 Hz could be designed. The sample could be soft, in gels or

silicons to have low frequency modes and the excitation (white if possible) performed with

for example acoustic excitations, air puffs, shocks, etc.Moreover, with the use of a low

absorbing sample, a X-ray beam chopper and an intense beam (i.e., a W source) one

could highly reduce the acquisition time and catch much faster phenomenon.

Because P-DVC has very strong links with stereo-steps, this modal measurement ap-

proach could also be implemented with ’camera projection’ and surface measurements. A

stereo-DIC setup composed of a single camera moved at different places for the acquisition

of snapshots could be designed.

Being able to couple this measurement with other modalities or sensor is promising.

With acoustic measurements or LASER velocimeter (based on Doppler effect), the frequen-

cies could be captured and would help measuring the displacement field with or without

models.

This developed method is insensitive to damping. Indeed if a large damping occurs,

the acquisition can be performed very quickly after the excitation. Moreover, repeating

the mode determination at different delay time after the excitation could provide modal

viscous damping.

Finally, the identification of material parameters could be performed with this modal P-

DVC framework. With a very high sensitivity, sample shapes could be designed and tested.

An identification procedure, for example based on a simple elastic modal computation,

would allow to identify both kinematics and parameters.
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Chapter 7
Online tomograph self-calibration

C. Jailin, A. Buljac, A. Bouterf, M. Poncelet, F. Hild, S. Roux, Self-calibration

for lab-µCT using space-time regularized projection-based DVC and model

reduction, Measurement Science and Technology, 29(2):024003, 2018

Reproduced from

An online calibration procedure for X-ray lab-CT is developed using projection-based

digital volume correlation. An initial reconstruction of the sample is positioned in the

3D space for every angle so that its projection matches the initial one. This procedure

allows a space-time displacement field to be estimated for the scanned sample, which

is regularized with i) rigid body motions in space and ii) modal time shape functions

computed using model reduction techniques (i.e., proper generalized decomposition). The

result is an accurate identification of the position of the sample adapted for each angle,

which may deviate from the desired perfect rotation required for standard reconstructions.

An application of this procedure to a 4D in situ mechanical test is shown. The proposed

correction leads to a much improved tomographic reconstruction quality.
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7.1 Introduction

Micro-Computed Tomography (µ-CT) is widely used for non-destructive imaging [1, 2].

It consists in reconstructing full 3D volumes of a sample from sets of radiographs and a

reconstruction algorithm [3]. From the first developments with parallel X-ray beams in

synchrotron facilities, it is now an accessible equipment in laboratories. Recent develop-

ments allow for imaging at high spatial and temporal resolutions [4, 5].

To deal with the reconstruction procedure (i.e., an inverse Radon transform), differ-

ent algorithms exist such as filtered back projection (FBP), its (Feldkamp-Davis-Kress)

extension [6] for cone beam geometries or algebraic methods [3]. All these reconstruction

methods require the geometric parameters of the tomograph (e.g., position and orientation

of the source, rotation axis and detector, pixel sizes) to be known. If the geometric pa-

rameters are not well calibrated or if they change in time, the reconstruction suffers from

artifacts that may create blur or magnification effects. They may forbid the quantitative

use of the acquired volumes (e.g., space-time full-field measurements [7]).

Various types of methods exist to estimate the 9 geometric parameters for cone-beam

X-ray CT [8]. These methods can be separated into two categories, namely, offline and

online calibration.

Offline procedures are calibrations using a perfectly known pattern with radiopaque

markers. Virtual projections of this geometry have to match the acquired projections.

In Refs. [9, 10, 11], the known patterns are composed of few steel balls whose orbits are

measured during the rotation of the turntable. In Refs. [12, 13, 14, 15], the authors used

an iterative procedure to identify geometric parameters from a known complex phantom

and a single projection. These offline methods, which are based on a known pattern

or phantom, often have to be performed before or after the real test. The parameters

are generally identified only once, even for a multi-acquisition test (e.g., a 4D in situ

mechanical test) in order not to move the sample during repeated scans. The parameters

are therefore assumed to be stable in time. However, in some cases, this assumption may

be violated and lead to blurred reconstructions. A variety of causes can be listed, such as

motions of the sample or the entire set-up due to unsteady thermal expansion [16], creep

(i.e., delayed mechanical response [17]) of the sample under load, motion of a mechanical

testing machine due to its compliance, accidental hitting, uncompensated backlash).

Online calibration is the measurement of the geometric parameters directly using the

projections by exploiting knowledge of the object being imaged. In the spirit of offline

procedures, Andò [18] used a known frame attached to the sample to find the geometric

parameters of the scan during acquisition. Pannetta et al. [19] proposed a calibration

method based on the minimization of the quadratic difference between projections at a

certain angle and the mirror projection at the opposed angle (for parallel beam). Kyriakou

et al. [20] developed an optimization of geometric parameters based on the minimization of

the information entropy of the reconstructed volume. With 3D-2D image registration [21,

22], Ouadah et al. [23] used a pre-scanned 3D image as the reference volume (hence a known

very complex pattern). In Ref. [24], a motion tracking system allows for measuring and

then compensating the in situ motion of the acquired image. A recent publication of Sun
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et al. [25] proposed an optimization procedure based on the initial reconstruction of the

volume with a first set of geometric parameters. Then the minimization of the “projection

residual” fields (i.e., the difference between the projected reconstructed volume and the

initial sinogram) with respect to rigid body motions of the volume, provides an estimate

of the motion of the scanned sample. This motion is finally used for the correction of

projections. For the application aimed by the authors, i.e., patient motion compensation

for medical imaging, the measured displacement field is large (5-20 voxels as an order of

magnitude), and cannot be smaller due to several assumptions or approximations (on the

sensitivities, on the axial displacement supposed to be null, on filtering).

A robust and accurate method that measures sub-pixel or sub-voxel displacements

of patterns between different images is provided via Digital Image Correlation (DIC) in

2D [26] and Digital Volume Correlation in 3D [27, 28]. A recently developed projection-

based Digital Volume Correlation (P-DVC) procedure, in the same spirit as 3D-2D image

registration, lies in between 2D DIC and 3D DVC as it deals with 3D displacement fields

of the reconstructed reference sample with respect to deformed radiographs with the min-

imization of a set of 2D error maps. This method was initially developed for the mea-

surement of uniform displacement fields during different steps of a mechanical test [29],

with possible cracks [30, 31] and finally for identification purposes in a lab-tomograph [32].

This procedure leads to huge savings in acquisition time. However, as such, P-DVC uses a

reconstructed 3D image to evaluate its motion, and is not designed to identify geometrical

reconstruction parameters.

In this paper, an online two-step iterative procedure is proposed. First, the rotation

axis is identified in the same spirit as Ref. [25], from a pattern that is the loaded sam-

ple itself, reconstructed from its projections hence without a perfectly known geometry.

Thanks to P-DVC, the sample is repositioned in the laboratory frame so that its projection

matches the corresponding acquired projections for every angle. The result is an identi-

fication of the sample position at each instant (i.e., projection angle) with a sub-voxel

uncertainty and thus projections can be corrected to coincide with nominal geometrical

parameters, and allow for reconstructing a new volume and iterate if needed. A major

advantage of this procedure is that an imperfect kinematics for the acquisition, such as

a precessing rotation axis, can be accounted for, thereby enhancing the reconstruction

quality without any additional demand on the acquisition protocol.

The displacement field is decomposed over a basis of separated functions, namely, spa-

tial modes (here chosen to be rigid body motions) and time (or projection angle) modes.

Even when restricted over few spatial modes, a large temporal flexibility leads to a poorly

conditioned system. Two routes for dealing with such issues are explored. Either few

temporal modes are introduced (with the difficulty of choosing a suited temporal basis),

or a model reduction technique is used. The spirit of the latter, which is inspired from

the Proper Generalized Decomposition (PGD) technique, consists in a progressive enrich-

ment of the space-time modes for displacement corrections. Based on the minimization of

the projection residual, a greedy approach extracts one mode per iteration. This model

reduction technique reveals very instrumental to determine the displacement modes.

The method based on 4D P-DVC is introduced in Section 7.2. In Section 7.3, the
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application to an in situ mechanical test with a cone-beam geometry is performed. The

rotation axis is determined with a single iteration of the procedure and the correction of

the axis shows significant improvement of the reconstructed volumes.

7.2 Method

7.2.1 General principle

In the following, raw radiographs acquired by the CT-scanner are first normalized by their

flat fields (i.e., radiographs acquired with the same conditions as the actual scan but

without the specimen) and their logarithm computed (i.e., Beer Lambert law) to produce

“projections” that constitute the sinogram. It is from such preprocessed data, which will

be referred to as “projections,” that reconstructions are performed using the Filtered Back

Projection (FBP) algorithm (or suited extensions for cone-beam geometries).

Starting with an initial reconstructed 3D image, hereafter also called “volume”, it is

positioned in the 3D space for every projection angle and its projection is computed so that

it matches at best the corresponding projection. This difference between initial projection

and projected volume is called projection residual field. Let us note that these residuals

can be interpreted as the sum of four contributions due to:

1. acquisition noise and artifacts (e.g., beam hardening, phase contrast, approximations

during reconstruction and projection);

2. approximate (or erroneous) geometric parameters of the tomograph in the recon-

struction and projection procedure;

3. rigid body motions of the scanned sample during acquisition (i.e., deformation of

the testing machine or turntable, uncompensated backlash);

4. deformations of the sample itself (e.g., thermal effects, relaxation). This latter effect

is assumed to be null (or extremely small) in the examined case.

7.2.2 Projection-based digital volume correlation

The proposed method for the identification of the displacement field based on radiographs

is Projection-based Digital Volume Correlation (P-DVC) [29]. The first step of the pro-

cedure is the acquisition and reconstruction of a reference volume, f(x), from a complete

set of Nθ projections s(r, θ) and an initial choice of geometric parameters. In the present

notations, x is a 3D vector in the sample frame, r is a 2D vector denoting positions in the

detector frame, and θ the rotation angle. The idea is to estimate the 4D displacement field

u(x, θ) so that each projection of the displaced volume f(x−u(x, θk)) matches the initial

projection, s(r, θk). After updating the reconstruction, from the corrected displacement,

the procedure is iterated until corrections of the geometrical parameters are less than a

predetermined threshold.

In the same spirit as global DVC [33], the displacement field is obtained from the mini-

mization of the quadratic difference, χ2
u, between the (re-)projected 3D image corrected by
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the displacement field Πk[f(x−u(x, θk))] and the initial sinogram for every angle s(r, θk),

with Πk being the conical projection operator along the θk direction

χ2
u =

1

Nθ|Ξ|γ2
s

∑
k,r

(
Πk[f(x− u(x, θk))]− s(r, θk)

)2
(7.1)

where the double sum over (k, r) stands for the discrete integration over all pixels r ∈ Ξ of

the detector (or its utilized part, which will be referred to as region of interest or ROI) and

all Nθ projection angles θk. γ
2
s denotes the variance of the sinogram noise, and |Ξ| the area

(number of pixels) of Ξ. The normalizing parameters of Equation 7.1 are chosen in such

a way that when the residuals ρ = Πk[f(x−u(x, θk))]− s(r, θk) are only associated with

acquisition noise, χu = 1. Any deviation from 1 (i.e., χu > 1 is an indication of model

error (i.e., the chosen kinematic basis is not fully consistent with the studied experiment).

When small displacement levels are assumed compared to the correlation length of

the imaged microstructure, a small perturbation expansion is written about the current

estimate ũ of the displacement field, with ∇f(x) the gradient of the 3D image

χ2
u ≈

1

Nθ|Ξ|γ2
s

∑
k,r

(Πk[f(x)−∇f(x− ũ(x, θk)) · δu(x, θk)]− s(r, θk))2 (7.2)

so that the minimization operates on a quadratic function of the unknowns, thereby leading

to easily accessible search directions. It is noteworthy that after each evaluation of the

displacement corrections δu, a correction of the volume is performed so that Equation 7.1

is used without approximation.

7.2.3 4D Regularization

Different regularization procedures of the displacement field have been introduced in the

literature for global DIC methods where the kinematics is expressed on a finite element

mesh. Spatially, a local mechanical elastic constraint, in 2D [34, 35] or 3D [36, 37], strong

regularizations or integrated methods with a reduced basis composed of elementary fields

from mechanical computation [38, 7]. These regularizations lead to a drastic reduction in

the number of unknowns and enable for seamless experimental/numerical procedures.

The displacement field is expressed as a combination of Nm spatial modes Φi(x) that

are weighted for each angle by αi(θk). Such a separated expression is standard practice

and as such bears no consequence, but it will reveal convenient for the following model

reduction technique

u(x, θk) =

Nm∑
i=1

αi(θk)Φ
i(x). (7.3)

The spatial modes are expressed as a reduced basis composed of the 6 Rigid Body Motions

(RBMs) ψj(x)

u(x, θk) =

Nm∑
i=1

6∑
j=1

αij(θk)ψj(x). (7.4)

The time changes αij(θ) can similarly be constrained by additional temporal regular-

izations [39, 40]. This constraint may come from previous knowledge or anticipation of the
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motions. The Nn temporal modes are expressed as elementary functions σn (e.g., Dirac

distribution if no regularization (free) is considered, polynomials, sinusoidal functions)

αij(θk) =

Nn∑
n=1

aijnσn(θk) (7.5)

where aijn are the amplitudes of elementary basis functions being the product of the Nn

temporal and Nm spatial modes. In the treated application, the time basis does not change

with mode identification thus does not depend on i, but such cases could be designed. The

displacement field is finally written as

u(x, θk) =

Nn∑
n=1

6∑
j=1

ajnσn(θk)ψj(x). (7.6)

Two methods are proposed to solve the minimization problem, depending on the com-

plexity and number of degrees of freedom:

• A full determination of the displacement field, in Section 7.2.3. This method is the

most complete but requires an appropriate prior knowledge of time and space basis

functions, which may involve many degrees of freedom, and hence possibly poor

conditioning. It is referred to as “full identification” in the following.

• A PGD approach, where additional modes are successively determined as long as

the residual level is considered too high to be explained by noise (i.e., χu > 1). This

method is presented in Section 7.2.3.

Full measurement

Because the x referential frame is linked to the rotating sample, a choice of time functions

can, for example, be low order Fourier modes, plus possibly linear motions to account for

a slow and steady drift that would break periodicity. The full determination of all space

and time amplitudes, ain, (the Nn time modes times the Nm = 6 spatial modes) may be

accessible; the risk being here that the system become poorly conditioned. The following

subsection will describe a method to reduce the number of modes to only those that are

needed.

The problem is rewritten as

u(x, θk) =
∑
n,j

ajnσn(θk)ψj(x) (7.7)

so that its minimization is achieved with Newton’s descent method. A single uncoupled

system is obtained in terms of the corrections δain

δain = T
−1
injmtjm (7.8)

with

T injm =
∑
k,r

σn(θk)Πk[ψi(x
′) ·∇f(x′)]σm(θk)Πk[ψj(x

′) ·∇f(x′)] (7.9)
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and

tjm =
∑
k,r

(s(r, θk)−Πk[f(x′)])σm(θk)Πk[ψj(x
′) ·∇f(x′)] (7.10)

Free modal measurement

An integrated approach is proposed along the line of Proper Generalized Decomposition

(PGD) techniques [41, 42, 43], which consists in successive enrichments of the displacement

field u(x, θk) summing an additional contribution at each iteration, each term of the sum

being sought a priori in a separate representation. PGD-DIC and PGD-DVC [44, 45] with

one-dimensional space functions is here extended to 3D space-time (angles) analyses.

In the following progressive PGD procedure, the spatial modes, which are defined as

Φi(x) = pijψj(x), will be identified successively, one per iteration, with a greedy ap-

proach [46].

ul(x, θk) = ul−1(x, θk) +

(
Nn∑
n=1

alnσn(θk)

) 6∑
j=1

pljψj(x)

 . (7.11)

Let us note that only the product alnp
l
j matters so that an additional convention (but just

1) such as ‖al‖ = 1 or ‖pl‖ = 1, could be freely chosen without consequence.

A fixed point algorithm is used to get the solution. Alternate minimizations of the two

unknown vectors al and pl are proposed. The minimization of the functional leads to the

determination of the unknowns with two coupled equations

pl = Argminpl(χu(α,p)2) (7.12)

al = Argminal(χu(α,p)2) (7.13)

i.e., minimization of χ2
u with respect to the additional mode is considered.

A general overview of the 4D PGD P-DVC procedure is shown in the algorithm 5. Even

though a maximum value of iterations or convergence criteria εp, and εα can be enforced

to stop the fixed-point algorithm, this revealed unnecessary as the maximum number of

iterations to reach stagnation is usually quite low (i.e., 3-5).

Algorithm 5 General 4D-P-DVC fixed-point procedure

while High residual norm do

Initialize al and pl

Correction f(x)← f(x− ul−1)

while ‖∆Φi‖ < εp and ‖∆αl‖ < εα do

Compute spatial mode pl, Equation 7.14

Compute temporal amplitude al, Equation 7.17

end while

Update displacement field ul, Equation 7.11 l = l + 1

end while
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The two parts of the fixed point algorithm are obtained from the above linearized

functional using Newton’s scheme. The derivative with respect to p leads to

pl = N−1n (7.14)

with N the spatial Hessian matrix of χ2
u with respect to p (i.e., Nij = ∂pi∂pjχ

2
u) and n

the second member vector based on the residual field

Nij =
∑
k,r

αl(θk)
2Πk[ψi(x

′) ·∇f(x′)]Πk[ψj(x
′) ·∇f(x′)] (7.15)

and

ni =
∑
k,r

αl(θk)(s(r, θk)−Πk[f(x′)])Πk[ψi(x
′) ·∇f(x′)] (7.16)

where x′ is the advected position of the volume with the previously identified modes such

that x′ = x− ul−1.

Similarly, the derivative with respect to al leads to

al = M−1m (7.17)

where, as previously, M is the temporal Hessian matrix (i.e., Mij = ∂ai∂ajχ
2
u) and m the

second member vector based on the residual field

Mij =
∑
k,r

σi(θk)Πk[Φ
l(x′) ·∇f(x′)]σj(θk)Πk[Φ

l(x′) ·∇f(x′)] (7.18)

and

mj =
∑
k,r

(s(r, θk)−Πk[f(x′)])σj(θk)Πk[Φ
l(x′)∇f(x′)] (7.19)

The residual field at convergence, ρ(r, θk) ≡ (s(r, θk) − Πk[f(x)]) for the Nθ 2D pro-

jections, gives a very precious information on the quality of the solution in the projected

domain, which is parameterized by r. Its norm is the minimized quantity and defines the

convergence criterion. Ideally, it consists of acquisition noise and artifacts. It is thus a

natural place to judge whether some spurious displacement is to be corrected for.

7.2.4 Comparison metric

In order to show the improvement provided by the method, comparisons at 2 steps are

performed. The first one is the measurement of the norm of the residual between the

projections of the final reconstructed volume and the acquired radiographs. This norm is

the minimized quantity of interest hence this is the true metric of the present procedure.

The Signal to Noise Ratio (SNR) can also be defined to evaluate the residual quantitatively.

The higher the SNR, the better the solution. It is defined as 20 times the decimal logarithm

of the ratio of the standard deviation of the projections σ(s) over that of the residual fields

σ(ρ)

SNR(t) = 20 log10

(
σ(s)

σ(ρ)

)
(7.20)
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One may also be interested in the quality of the reconstructed volume itself. A visual

estimation of the sharpness of the image can be supported by the value of the Shannon

information entropy that has to be minimized,

S = −
∑
f

p(f) log10[p(f)] (7.21)

where p(f) is the gray level distribution (i.e., probability of observing a gray level equal

to f).

7.3 Application

7.3.1 Test case

The application case where the set of radiographs has been extracted is an in situ ten-

sile test on a cast iron sample. The sample (Figure 7.1(a)), which was mounted in an

in situ testing machine similar to that used by Buffière et al. [47], was scanned at LMT

lab-tomograph (X-View X50-CT, North Star Imaging, 129 kV, 95 µA, W target). The

voxel size at full resolution was set to 2.8 µm. The complete scan of the reference state

consists of 1,000 radiographs captured at equally spaced angles ranging over a full 360°
revolution. Two flat-fields are acquired after conditioning and before the experiment in

order to perform flat-field corrections. One dark-field has also been acquired before the

experiment. Each radiograph is averaged over 30 frames in order to reduce acquisition

noise. The acquired radiographs have a definition of 1944×1536 pixels2 but the following

procedure deals with two lower scales. Coarse graining into superpixels of size 2×2 (and

4×4) is carried out with the convolution of the images by a Gaussian kernel with a char-

acteristic width of 2 (and 4) pixels. The resulting image is downsampled over a coarse

2×2 (resp. 4×4) regular square grid to create smaller images (called image at scale 2 and

scale 4). The projections are obtained after flat field normalization and standard beam

hardening correction [48] due to the high absorption of the cast iron with a third order

polynomial.

Reconstructions and projections are performed with ASTRA toolbox [49]. It is ob-

tained with Feldkamp-Davis-Kress (FDK) procedure suited for cone beams [6]. The geo-

metric parameters for the initialization are given by the offline (i.e., standard) calibration

of the tomograph that uses a pattern composed of vertical calibrated steel balls. This

offline procedure is very fast (i.e., approximately one minute) and has been performed

once at the beginning of the experiment. It can be noted that this initialization is not

needed and could be replaced by the use of the proposed approach only.

The entire test of 16 loading steps has been performed over few days because each

acquisition requires about 2 h. The acquired projections and the reconstructed volume

are shown in Figure 7.1(a,b). Because of cone beam artifacts at the top and bottom

of reconstructions, the projected ROI definition is 90 < z < 897 pixels for scale 2, and

45 < z < 449 pixels for scale 4.

Overnight, the grip displacements are held at a fixed value and nothing is supposed

to move. In spite of this assumption, a DVC analysis of the test shows large motion and
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(a) (b)

Figure 7.1: (a) Acquired projections for θ = 0°. (b) Corresponding reconstruction

residuals between two scans separated by one night, which will be called steps 1 and 2.

Because of the presence of the testing machine, the standard calibration procedure based

on the rotation of a known target (made of steel balls) is impossible during the in situ

process. A reconstruction of these two steps with ASTRA shows a very large change on

the reconstruction parameters. The reconstruction at step 1 gives a very good (i.e., sharp)

result. With the very same parameters, scan 2, which was acquired the day after, is poorly

reconstructed. Slices of the reconstructions of step 1 and 2 in Figures 7.2 and 7.3 show

the effect of overnight parameter variations. The Shannon entropy of the two volumes is

5.93 and 6.12, respectively for steps 1 and 2. This marked increase corresponds to drift of

geometrical parameters.

(a) (b)

Figure 7.2: Slices of the reconstruction of step 1 for (left) y = 500 voxels and (right)

z = 150 voxels. The top and bottom parts are slightly blurred due to motion or tilted

rotation axis
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Figure 7.3: Slices of the reconstruction of step 2 for (left) y=500 voxels and (right)

z=150 voxels. The top and bottom parts are severely blurred due to motion or tilted

rotation axis

The proposed application procedure deals with the two scans in order to find the

correct geometric parameters. The two previous identification methods are used. The

first test case, in Section 7.3.2, is step 2 at scale 4. For this calibration the correction is

large hence it may require many displacement modes. However because the total number

of degrees of freedom is small (i.e., 6 RBMs × 4 time functions), a full measurement is

performed. The second application, in Section 7.3.3, is the correction of step 1 at scale 2.

Because the displacement level is not very high, the kinematics is captured with the modal

decomposition constrained by time functions. It is shown that three modes are sufficient

to capture almost all the kinematics. Instead of working with the 1,000 radiographs, for

computation cost and because no high frequency displacement is expected, a subset of 100

regularly spaced radiographs is used.

As previously discussed, the amplitude vector a can be scaled by an arbitrary factor

if p is scaled by its inverse. To make the results comparable and easily understandable,

this scale factor was chosen so that α(θk) varies within the interval [−1, 1]. The associated

space mode amplitude thus corresponds to the maximum displacement amplitude.

7.3.2 Full identification

The first test case is step 2. Overnight, the geometric parameters changed. Because large

motions are anticipated, the analysis is performed at scale 4 and a full identification (i.e.,

determination of all space and time degrees of freedom, as earlier defined) is performed.

The space regularization used in the modal measurement approach is composed of the six

RBMs, and the temporal shape functions consist of sine and cosine functions with a period

of 2π, a constant offset and a linear change. The sine and cosine functions are suited to

model for example a steady rotation axis in the lab frame. The linear component captures

the kinematics of non-periodic motions such as sample motions. Thus, the kinematic basis

is composed of 24 degrees of freedom (i.e., 6 RBMs × 4 time functions).

The initial and final residuals are shown in Figure 7.4. The mean SNR increases from

20.3 to 28.5. This huge enhancement means that a very large part of the actual kinematics

is captured. The residuals on the edges of the sample are not totally corrected but may
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come from the blurred volume itself.

(a) (b)

(c) (d)

Figure 7.4: Initial and final residual fields after the correction of the three modes when

(a) θk = 90°and (b) θk = 330°

The angular SNRs before and after displacement field correction are shown in Fig-

ure 7.5. They are measured on a smaller scale thus their level is not really comparable

with the previous values.

The axis of rotation is extracted from the displacement field. It is plotted in Figure 7.6

with the previously identified axis at step 1. It can be seen that the displacement is

composed of a large translation (i.e., radius of 3.9 voxels) and a rotation that is similar to

the previous identification. The displacement consists of an important motion along the

X direction because the procedure is not very sensitive to motions in the direction of the

X-ray beam (i.e., the X direction of the laboratory frame is that of the central axis of the

cone beam).

The corrected volume shows huge improvements in terms of visual quality (Figure 7.7)

with sharp nodules and edges. The Shannon entropy (initially at 6.12) decreases to 5.79.
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Figure 7.5: Initial and final angular SNRs for step 2 with the full measurement approach.

The two arrows show the position of the extracted residuals of Figure 7.4

Figure 7.6: Mean displacements of the top, center and bottom parts of the sample in the

laboratory frame and their projections in the detector frame. The projected blue line is

the next identified rotation axis for the first step in the next section

7.3.3 Modal measurement

Initial residual fields and regularization

The second test case is step 1. Because small motions are expected, the analysis is per-

formed with a modal measurement at scale 2. The initial residual fields are shown in

Figure 7.8. In these fields, the top and bottom parts are composed of high values due to

cone beam reconstruction and projection artifacts. These areas are not taken into account

in the identification procedure and are masked. The residual field is made of positive and

negative patterns, which is a signature of displacements, and more precisely, a rotation on

the top and bottom parts. The mean SNR level is 24.5.
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(a) (b)

Figure 7.7: Zoom on the reconstruction of step 2 at slice z = 100 voxels (a) for the initial

state and (b) after correction of the rotation axis

(a) (b)

Figure 7.8: Initial residual fields when (a) θk = 90°and (b) θk = 330°with the same color

bar. A high positive and negative residual is the signature of motion

Displacement mode identification

The identification is composed of three space-time modes. The mean SNR after the

correction of each mode is shown in Table 7.1. Three modes are sufficient to capture the

kinematics because the SNR does not increase much after mode 3.

Table 7.1: Mean SNR as a function of the number of correction modes. A fast convergence

with three modes is noted
Mode l 0 1 2 3 4

<SNR>l 24.5 25.8 26.7 26.8 26.8

The angular SNR is shown in Figure 7.9. Low SNRs at every π/2 increment (i.e.,

alignment of the sample edges with the beam direction) are interpreted as phase contrast.
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It is worth noting that the first two modes are complementary and affect different angular

sectors.

Figure 7.9: SNR(θ) for all treated angles after successive additions of modes. The two

arrows show the position of the extracted residuals of Figure 7.10

The final residual fields after corrections with the measured displacement field are

shown in Figure 7.10. They are much smoother and a part of the rotation motion has

been corrected.

(a) (b)

Figure 7.10: Final residual fields after the correction with three modes for (a) θk = 90°and

(b) θk = 330°

The space and time functions of the three modes are shown in Figures 7.11, 7.12

and 7.13. The spatial mode is shown on a mesh of the sample and expressed in voxels.

The scanned part of this mesh is the curved zone in the center. The top and bottom parts

are outside of the projections and correspond to the entire tested specimen.
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(a) (b)

Figure 7.11: First mode. (a) Temporal mode with (black circles) and without (blue points)

time constraints. (b) Spatial mode in the x, y, z directions, expressed in voxels on the mesh

(1 voxel ≡ 5.6 µm)

(a) (b)

Figure 7.12: Second mode. (a) Temporal mode with (black circles) and without (blue

points) time constraints. (b) Spatial mode in the x, y, z directions, expressed in voxels on

the mesh (1 voxel ≡ 5.6 µm)

(a) (b)

Figure 7.13: Third mode. (a) Temporal mode with (black circles) and without (blue

points) time constraints. (b) Spatial mode in the x, y, z directions, expressed in voxels

on the mesh (1 voxel ≡ 5.6 µm). The difference between the free and constrained time

history is due to a lack of sensitivity on the displacement field at angles π/2 and 3π/2
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In order to validate the choice of the time basis, the result of the mode identification

with Dirac time functions (i.e., with no temporal regularization) is shown in the same

plot. This temporal measurement is performed with the same spatial modes (it can be

noted that in the case of a purely free identification, the results would have been different

because of different spatial modes). It is observed that, for the first two modes, the free and

constrained temporal histories are close to each other. Hence the chosen time functions

provide an appropriate basis. For mode 3, the vertical component of the displacement field

is close to zero, so that the sensitivity is low for some projection angles. The difference of

time history between the free and constrained functions is on these non-sensitive projection

angles (i.e., π/2 and 3π/2). For those angles, the time regularization is important to

correctly capture the kinematics. Because these angles lack sensitivity, they bear very

little weights in the procedure (see Figure 7.13) and the regularized time function is not a

mere least squares fit of the free form but is weighted by sensitivities. These results also

show the benefit of reducing the number of temporal modes so that the conditioning of

the system is enhanced and physically realistic modes are extracted.

Correction and reconstruction

The 3D displacement of the volume gives access to the position of the real rotation axis.

Because it is defined in a basis linked to the rotating sample, the motion has to be projected

to the laboratory frame. The mean projected displacements of the top, center and bottom

parts of the sample are shown in Figure 7.14. The red line is the mean position of the

sample axis during rotation.

Figure 7.14: Mean displacement of the top, center and bottom parts of the sample in the

laboratory frame and its projection on the detector frame. The axis of the X-ray cone

beam is X



160 CHAPTER 7. ONLINE TOMOGRAPH SELF-CALIBRATION

The volume can now be corrected with the projection motions. Hence a new set of

projections is obtained and the reconstructed volume is updated accordingly. Figure 7.15

shows the corrected reconstruction. The information entropy for this corrected volume is

5.74 (to be compared to the initial value of 5.93), meaning that the edges and microstruc-

tural details are sharper. After this step, a new correction iteration can be performed.

However, because the displacement magnitude is small, most of the kinematics was cap-

tured in this first step.

(a) (b)

Figure 7.15: Zoom on the reconstruction of step 1 for slice z = 100 voxels (a) for the initial

state, (b) after correction of the rotation axis

7.4 Conclusion

An online calibration procedure for cone beam X-ray tomography based on projection-

based Digital Volume Correlation has been proposed. This technique, which does not

require any change from the standard acquisition protocol, repositions an initially recon-

structed volume in a given 3D frame so that each of its projection matches, for each angle,

the initial sinogram. The position is given by a displacement field decomposed over space

(i.e., rigid body motions) and time (i.e., angular) basis functions. The identified position

of the volume over time reveals the instantaneous rotation axis while scanning the sample

and the drift of the set-up.

In order to preserve a good conditioning of the system, a model reduction technique

based on Proper Generalized Decomposition is introduced so that key modes are progres-

sively added to reduce the projection residuals.

The two application tests, which are extracted from a 4D mechanical test, with two

different calibration procedures show very significant improvements in the reconstruction

quality and much lower residual fields, thereby proving that the corrections account for

most of the initial inconsistencies. With much less reconstruction artifacts, the updated

volumes can be further used for quantitative kinematic measurements. In addition to the

norm of the residual fields, Shannon entropy is used to assess the calibration improvement
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on the updated volume.

The method works with small displacements compared to the microstructure length

and yields sub-pixel uncertainties. In cases of larger displacements, the 3D volume can first

be updated with a coarse initialization (e.g., obtained from previous computations, multi-

scale procedures or cross-correlations). An update of the procedure with the corrected

reconstruction could reveal necessary if the displacement is not well captured at the first

iteration.

An additional improvement of the present procedure would be to use algebraic recon-

struction methods for which the metric is already an L2-norm between the re-projected

reconstructed volume and the available projections.

In the presented test cases, a simple spatial regularization composed of rigid body

motions is used (and is sufficient) to reposition the volume. However, the method is

not limited to such cases. For instance when analyzing mechanical tests with continuous

loading [5], the spatial regularization could be complemented with other elementary modes

including deformations (e.g., tension or compression). This could also be performed to

account for viscoelasticity or viscoplasticity during the scan.

Coupled with fast acquisition devices and applied to the measurement of displacement

fields during continuously loaded mechanical tests, this method could give access to ultra-

fast mechanical identification that could not be performed with classical means such as

3D or 4D DVC.
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Chapter 8
Dynamic 2D tomography

C. Jailin, S. Roux, Dynamic tomographic reconstruction, submitted, 2018
Reproduced from

The motion of a sample while being scanned in a tomograph prevents its proper vol-

ume reconstruction. In the present study, a procedure is proposed that aims at estimating

both the kinematics of the sample and its standard 3D imaging from a standard acquisi-

tion protocole (no more projection than for a rigid specimen). The proposed procedure is

a staggered two-step algorithm where the volume is first reconstructed using a “Dynamic

Reconstruction” technique, a variant of Algebraic Reconstruction Technique (ART) com-

pensating for a “frozen” determination of the motion, followed by a Projection-based Dig-

ital Volume Correlation (P-DVC) algorithm that estimates the space/time displacement

field, with a “frozen” microstructure and shape of the sample. Additionally, this procedure

is combined with a multi-scale approach that is essential for a proper separation between

motion and microstructure. A proof-of-concept of the validity and performance of this

approach is proposed based on two virtual examples. The studied cases involve a small

number of projections, large strains, up to 25%, and noise.
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8.1 Introduction

Tomography is a non-destructive imaging technique that enables the visualization of the

bulk of the observed specimen. Tomography is now widely used in many fields (e.g., med-

ical imaging for diagnostic[1], biology, material science [2], etc.), performed with various

waves (e.g., X-ray, neutron, electron[3], terahertz, optics, ultrasound, etc.) depending on

the experiment and material absorption and or scattering. Different instruments have

been developed with different flux, space and time resolutions (e.g., for X-rays medical

scanners, synchrotron, lab-CT, etc.) giving access to a wide range of imaging devices and

performances.

In order to image the 3D structure, the specimen rotates over 180° or 360° with respect

the source-detector pair and at a series of distributed angles radiographs are acquired. Ra-

diographs are transformed with dark-fields and white-fields, to extract the relative beam

absorption, transformed with a logarithm (Beer-Lambert law) or more sophisticated treat-

ments for beam hardening, in order to obtain so-called projections of the local coefficient of

absorption of the sample. The collection of projections at all angles constitutes a so-called

sinogram. Then, from the sinogram, reconstruction algorithms [4] have been developed

to reconstruct the 3D imaged volume. This technique relies on the strict satisfaction of

conditions, in particular concerning the geometry of the set-up and the motion of the

sample as a rigid rotation with the prescribed axis and angles.

The required time for a full 3D scan varies depending on the flux (and exposition time),

type of camera and rotation speed of the device. Since the beginning of the development

of these techniques, the time required to acquire a tomographic scan has constantly de-

creased [5]. Recent papers have reported on ultra-fast tomographies, at up to 20 Hz in

synchrotron beamlines, that allow extremely fast processes to be captured [6, 7].

Motion of the sample during the scan is one of the main issue of tomography that leads

to poor quality, blurry volumes[8]. This is the case for medical imaging (as the patient or

imaged organ may move), in vivo measurements [9], for electron tomography [3] (because

of the extremely small scales of observation, one cannot guarantee a fixed rotation axis at

nanometer accuracy) for usually minute to hour long acquisitions, fast mechanical behavior

or continuous in-situ experiments [6]. Wrong or imprecise estimates of the calibration

parameters (that may even vary along the scan) can also be seen as motions in the sinogram

space and have the same deleterious consequences for the volume reconstruction.

Sophisticated methods have been developed to avoid or limit motion perturbations [10]

especially for periodic motion, for instance using a trigger for acquisition of radiographs

based on a specific signal to captures always the same phase as can be done for cardiac or

respiratory motion in medical imaging [11].

Many works have been devoted to correcting imperfect acquisitions as a post-processing

treatment. For automatic (re)calibration, online methods have been applied as a post-

process after reconstruction to evaluate a corrected set of calibration parameters [12].

The identified motion of the specimen is often regularized as being rigid body motions [13,

14]. Very early, corrections were also applied in the sinogram space ([15]), with affine

transforms [16].
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Projection-based measurement methods (e.g., Projection-based Digital Volume Corre-

lation (P-DVC) [17], 3D–2D registration [18, 19]) have been developed to correct for rigid

body motions (due to a rigid patient motion or variation of calibration parameters) from

the radiograph data directly.

Yet, a deforming body with a significant strain and variation in time is a much more

demanding case. Projection-based Digital Volume Correlation (P-DVC) has been shown

to address part of the problem with complex 4D — 3D space + time — kinematic iden-

tification [20, 21, 22]. First if the reference 3D geometry is well known, the displacement

field can be evaluated on the fly as the sample is being deformed. This method requires

a high quality reference volume and a series of deformed projections. A single projection

per motion state is required to capture the full 4D (space-time) kinematics. Alternatively,

imperfect acquisition conditions (but no sample strain) can also be corrected using a sim-

ilar technique, without a pre-determined 3D reference geometry [17], considering that the

deforming projection stack is the one used for the reconstruction.

Similar developments have been carried out very early in the context of medical imaging

where periodic motion is frequent (heart beat, breathing). In particular, Refs. [23, 24, 25,

26, 27] have proposed to determine the motion of the sample from projection data. Small

amplitude displacement fields with a periodic modulation in time were considered and

identified using highly regularized kinematic models.

However, very often, a reference reconstructed volume is known, and is used as a

prior for determining the motion [23, 24, 28, 25, 27]. This is often the case for radio-

therapy treatment where the key issue is to irradiate the targeted region, in spite of a

spurious motion, and hence the goal is to identify the displacement field in 3D, and a fast

determination is more valuable than a very precise one.

In a similar spirit [25, 29, 30] do not consider a reference to be known but rather use a

phase signal (say from an electrocardiogram) to extract from a long sinogram projections

coming from a similar phase of the motion, and reconstruct a low quality volume for a

series of phase. Registration of the reconstructed volumes [29, 30] allows the displacement

field to be estimated and interpolated for the entire range of accessed phase. Then, back-

correcting for this motion a deformed reconstruction grid is obtained [31] on which the

projection data can be backprojected using a classical FBP/FDK algorithms[4]. In this

way, each ray follows the deformed sample at each projection angle. The obtained volume

has a better quality than the initial one (more details and sharper edges). Ruhlandf et

al.[32] recently proposed an approach along the same vein without prior knowledge of a

phase for each angle, nor of a reference volume, developed for phase contrast imaging at

a synchrotron facility.

In most of these studies, the displacement and strain fields between scans was relatively

small (strain of approximately 1% and uniformly distributed), and often the time (or

phase) is believed to be known.

The present study proposes a strategy to reconstruct both the reference geometry

and its large motion from a single sinogram. No periodic signal is used to constrain

the kinematics. The recorded projections are the data that drive the measurement of

the kinematic field, as is proposed in P-DVC. This however requires a “model,” here a
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reconstructed 3D volume, to be known in order to measure the displacement field. It

is proposed here to “learn” this model from the projection data itself using a multiscale

approach.

The standard reconstruction methods are briefly presented in section 8.2, so that the

introduction of motion can be cast in a similar framework. Section 8.3 details the joint

determination of the reconstructed image and the motion experienced during the scan.

The latter algorithm makes use of ideas comparable to those of P-DVC for the motion,

and Algebraic Reconstruction Techniques (ART) for the microstructure and exploits a

multiscale approach to disentangle microstructure and motion from the sinogram. Two

virtual test cases of moving samples validate the procedure (section 8.4). The first example

is performed with the Shepp-Logan phantom with large deformation up to 20%. The

second example is a checkerboard with a more complex temporal pulsating motion.

8.2 Motionless X-ray tomography

Tomography reconstruction is based on the relative beam intensity attenuation for each

discrete detector position r = [r, z] (where z is parallel to the specimen rotation axis, and

r is perpendicular to it) and rotation angle. For simplicity, and because the present paper

is a proof of concept, the displacement field is assumed to lie in a plane perpendicular to

the rotation axis, so that each slice z remains independent from its neighbors, and the

problem turns two dimensional. Hence, only one line of the detector is considered, for a

unique value of z (omitted from now on).

Let us briefly recall the principle of tomography for a parallel beam: a projection

p(r, θ) is defined as the line integral of f(x) along a direction eθ, or

p(r, θ) =

∫
D(r,θ)

f(x) dx (8.1)

where D(r, θ) is the line parallel to eθ hitting the detector plane at position r. Different

projection and interpolation algorithms exist. In the following procedure, the Matlab

function radon.m is used.

Tomography consists of recording a set of Nθ projections p(r, θ) for a collection of

angles θ(t) as the sample is rotated over a complete (or half) rotation about a fixed axis

parallel to the detector plane. For a still sample, and a continuous rotation, p(r, θ(t)),

written p(r, θ), is the Radon transform of f(x), p(r, θ) = R[f(x)] and hence the f(x) can

be computed from an inverse Radon transform, f(x) = R−1[p(r, θ)]. The transpose of the

projection operator, divided by the length of the intersection of the ray with the domain

where the reconstruction is sought, called backprojection for any angle, θ, is written Bθ.
Tomography is now a very mature field and numerous powerful algorithms have been

devised in order to deal with a discrete set of angles, with fan-bean or cone-beam projec-

tions [33], with laminography, etc. However, f(x) is always assumed to stand for a rigid

and still object (independent of time or rotation angle). From the collection of acquired

projections, different algorithms exist to reconstruct the 3D volume [4] and fall into two

categories: Fourier-domain algorithms and algebraic algorithms.
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Fourier space reconstructions With Filtered Back-Projection (FBP), each projec-

tion, p(r, θ) is first “filtered” with a ramp, or Ram-Lak filter, eventually windowed. Ignor-

ing such windowing, in Fourier space, F [p(r, θ)](k, θ) is multiplied by |k|, inverse Fourier

transformed, and then back-projected in real space, thereby producing a field gθ(x) that

is invariant along the direction eθ. These fields gθ(x) are simply summed over all visited

angles θ, producing the sought initial image, f(x)

f(x) =

Nθ∑
θ=1

gθ(x) (8.2)

Iterative reconstructions Other reconstruction methods have received much atten-

tion, namely iterative algebraic approaches which tolerate deviations from the ideal con-

ditions of the previous Fourier space reconstruction such as for instance having access to

a continuous range of angles, covering the entire half (or full) rotation. Those methods

exploit the linear structure of the problem to solve, but for computational efficiency, they

avoid the writing of the linear system. They are based on the minimization over volumes,

ψ(x), of the functional, ΓART[ψ], equal to the quadratic norm of the difference between

the projected reconstructed volume and the acquired projections

ΓART[ψ] =
∑
r,θ

‖Rθ[ψ(x)]− p(r, θ)‖2 (8.3)

then

f = Argmin
ψ

ΓART[ψ] (8.4)

Additional prior information may easily be added to this functional through regularization,

in order to compensate limited angle range for projections, or coarse sampling for example.

This generally leads to better quality reconstructions than FBP algorithms at the expense

of a higher computational cost.

To solve this huge linear inverse problem, ART algorithms essentially consist of itera-

tive updates of the volume. Successively visiting each angle, the projection of the volume

is compared with the acquired one. The difference is back projected and used to correct

the volume (sometimes multiplied by a damping coefficient, not considered in our case).

Faster convergence rate is observed when angles are not sampled in consecutive order but

rather with a large difference between successive angles. This can be achieved for instance

with a permutation of the angle order. A convergence criterion on the functional value

can be used to stop the number of iterations (ΓART[f ] < ε), with ε, a threshold value with

respect to noise and artifact acquisition. Generally few iterations (NART) are required for

convergence. The algorithm for this method is detailed in Algorithm 6.
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Algorithm 6 Standard algebraic reconstruction procedure, ART (p)

Initialization n← 1

Initialization f (n) ← 0

Choose a permutation, π, over Nθ indices

while ‖ρ(r, θ)‖ > ε do

for k ← 1 to Nθ do

m← π(k)

ρ(r, θm)← p(r, θm)−Rθm [f (n)(x)]

∆f (n+1)(x)← Bθm [ρ(r, θm)]

f (n+1)(x)← f (n)(x) + ∆f (n+1)(x)

Implement additional constraints on f (n+1) (e.g., positivity)

n← n+ 1

end for

end while

During the reconstruction procedure, additional information, defined as constraints,

can be added. Those regularizations allow the reconstruction of high quality volume with

few or missing angles, noisy projections and artifacts etc.. This may come from prior

knowledge on the different phases of the sample (as DART algorithms proposed by [34],

reconstruction with binary images [35], Total Variation [36]), dictionary learning [37],

etc.. However, because those regularizations are independent from the following proposed

reconstruction with motion compensation, it is not considered hereafter apart from the

positivity constraint ψ(x)← max(ψ(x), 0).

8.3 Data driven reconstruction of non-rigid samples

It is proposed to study a specimen that moves during the acquisition with a space/time

displacement field u(x, t) such that, at any time, the sample is expressed with respect to

a reference state f(x+ u(x, t)).

For a still object f and p are bijectively related to each other, hence the introduction of

motion makes the problem ill-posed. The reconstruction of the volume from the previously

introduced algorithms leads to a low quality, blurry, volume.

It is to be noted that the FBP reconstruction procedure has been extended to take

motion into account in [29, 30, 32] The driving idea is to apply the back-projection step

on the currently deformed geometry of the to-be-reconstructed sample, or equivalently to

transport the back-projection onto the initial geometry, unwarping the motion, so that the

X-ray beam would then follow non-straight paths. In Ref. [32], the motion is estimated

from the registration of two reconstructions of the volume at different instant of time and

linear interpolation.

f(x) =

Nθ∑
t=1

gθ(t)(x− u(x, t)) (8.5)

Because this approach requires different volumes to estimate the displacement field,

it is not suited when the motion is very fast and when a single scan can be acquired.
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Moreover, it is difficult to estimate a quality criterion but visual on the reconstructed

volumes thus on the measured kinematics.

A recently developed Digital Volume Correlation (DVC) procedure called Projection-

based DVC [20] allows one to identify the 4D (space-time) displacement field of sample

from an initially reconstructed volume and its moving projections. An extension of this

method has been applied to an online calibration of the tomograph [17]. An initial (blurry)

reconstruction was performed from a set of initial parameters. The comparison between

the projection of the blurry sample and the acquired projections is, in addition to the

acquisition noise and artifacts, the signature the erroneous projection geometry param-

eters that can be identified and corrected. The sample could be re-positioned for each

angle by a rigid body motion. Because the motion was simple and of low amplitude, the

correction could be applied on the sinogram itself leading to very significant improvement

on the quality of the reconstruction. However, more complex displacements, or larger am-

plitudes (involving larger displacement variations perpendicular to the ray) would render

the corrections on the projection inaccessible.

It is proposed to introduce here a new two-step algorithm based on ART reconstruction

on the one hand and P-DVC on the other hand to identify both a complex and large

displacement field and volume texture with a single scan performed on a moving and

deforming object. The ART functional is naturally extended to account for the motion as

Γmotion-ART[ψ,v] =
∑
r,t

‖Rθ(t)[ψ(x+ v(x, t))]− p(r, θ(t))‖2 (8.6)

where the summation over time extends over the Nt acquired projections (and not just a

full rotation) then

(f,u) = Argmin
ψ,v

Γmotion-ART[ψ(x),v(x, t)] (8.7)

The updating procedure (indexed by l) is split into two parts that are repeated alter-

natively:

• a volume reconstruction from an iterative dynamic ART algorithm assuming a known

motion (described in section 8.3.1)

• an update of the motion from P-DVC with a given reconstructed sample (described

in section 8.3.2)

However, as such, this procedure does not tolerate large displacement amplitudes. To

increase the robustness and fast convergence, a multi-scale approach is coupled to the

previous two-step procedure, resolving first the large scale features of both microstructure

and motion, and progressively enriching the description with finer details. The complete

multi-scale procedure is described in section 8.3.3.

8.3.1 Dynamic reconstruction

The dynamic reconstruction used in this article is an extension of the standard ART

algorithm, and will follow the same structure as algorithm 6. Considering the inner “for”
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loop, at time t (and angle θ(t), the volume is warped with the measured displacement field

f̃ (n−1)(x, θ) = f (n−1)(x+ u(x, t)) (8.8)

(initially u(x, t) = 0). The computed projection of f̃ (n−1) along θ(t) is compared with the

recorded projection and the residual (i.e., their difference)

ρ(n)(r, θ(t)) = p(r, θ(t))−Rθ(t)f̃ (n−1)(x, θ(t)) (8.9)

is normalized and back-projected ∆f̃ (n) = Bθ(t)[ρ(n)(r, θ(t))].

Finally the correction term is unwarped to the frame of the undeformed state,

∆̂f
(n)

(x) = ∆f̃ (n)(x − u) so that it matches the reference configuration and it is added

to the volume, f (n) = f (n−1) + ∆̂f
(n)

. Let us emphasize that theoretically, ∆̂f
(n)

should

have been defined implicitly as obeying ∆̂f
(n)

(x + u) = ∆f̃ (n)(x). The two expressions

are equivalent only for small strains and rotations, otherwise the unwarping should involve

the Eulerian rather than the Lagrangian displacement, and one can be computed from the

other. Let us also note that for not too large strains and rotations, ignoring the difference

between Eulerian and Lagrangian displacements simply slows down the convergence, but

the final solution is not affected. In the present case, the choice was made to use the

Eulerian registration to achieve the convergence for engineering strains as large as 20%.

A convergence criterion has to be chosen as in the ART procedure. Nevertheless, the

criterion based on the functional value can not be used in this case as the reconstruction is

unperfect. A convergence criterion based on the variation of the functional or a maximum

number of iteration NDynART can be set. The procedure is described in Algorithm 7.

Algorithm 7 Proposed motion-corrected algebraic reconstruction procedure,

DynART(p,u)

Initialization n← 1

Initialization f (1) ← 0

Choose a permutation, π, over Nt acquisition times

for i← 1 to NDynART do

for t← 1 to Nt do

τ ← π(t)

f̃ (n)(x, τ) = f (n)(x+ u(x, τ)) . warp

ρ(r, τ)← p(r, θ(τ))−Rθ(τ)[f̃
(n)(x, τ)]

∆f̃ (n+1)(x) = Bθ(τ)[ρ(r, τ)]

∆̂f
(n+1)

(x) = ∆f̃ (n+1)(x− u(x, τ)) . unwarp

f (n+1)(x) = f (n)(x) + ∆̂f
(n+1)

(x)

Implement additional constraints on f (n+1) (e.g., positivity)

n← n+ 1

end for

end for

As earlier mentioned, additional priors can be added in this procedure at the end of
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the inner “for” loop. In the following, only a positivity constraint for f is added at each

iteration.

8.3.2 Motion identification

The full procedure is a staggered two-step process where alternatively the volume is recon-

structed from a frozen displacement, and the motion is identified from a frozen estimate

of the microstructure. The second step is described now.

At step l, the reconstructed volume, fl(x), although imperfect, is now considered

as reliable. The projected residual fields ρl(x, t) (computed at the end of the previous

procedure when the volume is no more updated) contains patterns that are the signature

of an incomplete motion correction. For the identification of the displacement field, the

functional for a given f can be linearized around the previously identified displacement

field ul = ul−1 + δu

δu = Argmin
δv

∑
r,t

‖Rθ(t)[∇f̃l(x, t)δv(x, t)]− ρl(r, t)‖2 (8.10)

For a better conditioning, the space and time dependencies of motion may be regu-

larized, either using “weak regularization”, with a penalty on spatial or temporal rapid

variation of the displacement field to be added to the above cost function, or reverting to

“strong regularization” by choosing a parametrization space composed of smooth functions

of space and time. At this regularization step, any additional information pertaining to

the experiment (e.g., synchronous measurements from sensors of different modalities such

as force, pressure or temperature measurements, cardiac phase etc.) can be incorporated

in the kinematic model through functional dependencies on such parameters. Qualitative

features may also be incorporated, for instance, the sudden occurrence of a crack, may be

accounted for by allowing a temporal discontinuity in concerned degrees of freedom for

the kinematics.

The chosen reduced basis is composed respectively of Nτ time functions, ϕi(t),

and Ns vector spatial shape functions Φj(x) such as

u(x, t) =

Nτ∑
i=1

Ns∑
j=1

αijϕi(t)Φj(x) (8.11)

with αij the time and space amplitudes that weight the basis functions. Setting ϕi(0) = 0,

the reference state is at initial time or angle θ = 0, u(x, 0) = 0.

The minimization of the functional with respect to the displacement parameters δα

is performed using Newton’s descent method. This procedure requires the computation

of the advected image gradient and Hessian of Γ. They are built from the projected

sensitivities

Sij(r, t) =
∂Rθ(t)f̃(x, t)

∂αij
= ϕi(t)Rθ(t)[Φj(x)∇f̃(x, t)] (8.12)

Numerically, the sensitivities are computed from finite differences. The Hessian matrix
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and second member built from those sensitivities is

Hijkl =
∑
r,t

Sij(r, t)Skl(r, t) (8.13)

bij =
∑
r,t

ρ(r, t)Sij(r, t) (8.14)

thus the vector of displacement amplitude correction is the solution of the linear system

[H]δα = b (8.15)

8.3.3 Multi-scale approach

If displacement magnitude is bounded by a length scale λ, one expects that the recon-

struction is fair at a scale larger than λ. Hence, if the original image is convoluted with a

Gaussian of width λ, it should well match its sinogram. One convenient property of the

projection is that the projection of the convoluted image is the convolution of the original

projection with a Gaussian of the same width. However, because of motion, this matching

is not perfect but just fair. It means that one may estimate a better match by treating

the deformation as a slight perturbation.

More precisely, the recorded projections are convoluted by the Gaussian of width λ,

p̆λ(r, θ) =
∑
r′

Gλ(r′)p(r − r′, θ) (8.16)

where, Gλ(r) = 1/(2πλ2) exp(−|r|2/(2λ2)). The reconstructed volume from convoluted

projections is written fλ(x).

Using the progressively identified displacement field, a more accurate determination of

f can be achieved using the above described reconstruction. Because a large part of the

displacement is expected to be captured in u, the idea is to repeat the above procedure

but with a smaller gaussian filter, namely cutting down λ by a factor of two. Thus at

each iteration, the displacement correction being smaller and smaller, convergence to the

actual displacement field is expected. A convergence criterion is chosen on the norm of

the residual variation or on the norm of the displacement correction.

The summary of the complete procedure is described in Algorithme 8.
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Algorithm 8 Displacement identification procedure

u(x, t)← u0(x, t) . Displacement initialization

while Residual > ε do

p← p̆λ . Gaussian filtering

fλ(x)← DynART(p,u) . Algo. 7

Compute ρl(r, t) . Projection residual

for i← 1 to Nt do

for j ← 1 to Ns do

f̃(x, t)← fλ(x+ u(x, t)) . Volume advection

χj(x, t)← Rθ(t)[Φj(x)∇f̃(x, t)]

Sij(r, t)← ϕi(t)χj(x, t) . Projected sensitivities

end for

end for

H ←
∑

r,t S ⊗ S . Hessian

b←
∑

r,t ρS . Second member

α←H−1b . Motion identification

end while

8.4 Test case

Two numerical test case are proposed to validate the procedure. In order to build the

input data, two geometries are chosen, and two kinematics (one per case) deformed and

projected at all considered angle. The obtained projections are then corrupted by a white

Gaussian noise (standard deviation of 1% of the gray level dynamic of the projections and

are used as the virtual experimental inputs for our procedure.

Both examples are carried out on 512 × 512 pixel images. The beam is parallel, and

only Nθ = 300 projections are acquired over a single 360° rotation.

• The first application corresponds to a moving Shepp-Logan phantom with large

displacement magnitude (up to 37 pixels) and large engineering strains (27%). Large

strains are chosen here in order to highlight the robustness of the proposed procedure

as compared with previously studied examples where strains were about 1% [32].

• The second test is performed on a checkerboard with smaller displacements but

a more complex time evolution composed of two separated modes: a steady drift

superimposed to a high frequency pulsating motion.

In both test cases, the displacement bases chosen for the inverse problem were similar

to the ones used for performing the direct problem, so that no additional model error

(apart from noise) is introduced. The space functions Φ(x) are composed of four C4 mesh

elements (4-node square elements with bilinear interpolations). The space basis Ns is

hence composed of 18 degrees of freedom.
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(a) (b)

Figure 8.1: a) Reference image and the 9-node mesh the node of which are subjected to

a random displacement, assumed to be linear in time; b) deformed phantom at final time

Nθ.

8.4.1 Shepp-Logan phantom case

In this test case, the Shepp-Logan phantom is used and deformed up to 27%. For this test

case, a single time evolution (linear drift in time) is applied. The imposed displacement

field can be written

v(x, θ) = θ/Nθ · V (x) (8.17)

The reference and deformed phantoms are shown figure 8.1. The maximum displace-

ment amplitude (on the central node) is 37 pixels. The first reconstruction of the image

(standard ART procedure), presented figure 8.2(a) is very blurry. Some parts of the phan-

tom are split in two. The initial projected residual fields are very high and stresses that

the reconstruction is not properly performed.

Before using the proposed procedure, the multi-scale procedure presented section 8.3.3

is applied to the projections to willingly blur the reconstruction. After 60 iterations

(i.e., volume updates), the displacement field has converged. The corrected reconstructed

volume is presented figure8.3. The edges are sharp and the gray level amplitudes are

correct. The projected residual fields (true metric of our procedure) is mostly composed

of the white Gaussian noise meaning that the proposed procedure has been successful.

The displacement error computed on the nodal values displays a standard deviation of

3.10 pixel. This result validates the procedure.

As a last validation of the phantom reconstruction quality, the reconstruction is com-

pared to the reference volume f . It is shown in figure 8.4 that the reconstructed shape

and positioning is very good. The final difference displays a “ghost” of the phantom that

points out a small intensity error that does not appear in the residual fields.
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(a) (b)

Figure 8.2: a) Initial reconstruction with u(x, t) = 0; b) initial projected residual fields

ρ(r, t). Note that the color amplitude that is saturated in this image has been selected to

be the same with the corrected residuals shown further down (figure 8.3)

(a) (b)

Figure 8.3: a) Reconstructed image with the identified displacement field; b) final projected

residual fields ρ(r, t)
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(a) (b)

Figure 8.4: Difference between the reference volume and the (a) initial (i.e., ART(p)) and

(b) final ones (i.e., DynART(p,u)).

8.4.2 Pulsating checkerboard case

This second test case is here based on a checkerboard composed of 8 × 8 squares of

35× 35 pixels each. This square shaped pattern is chosen to exhibit reconstruction errors

very clearly since sharp and straight boundaries are very easily detected, and hence the

visual perception is a very severe test.

In this example, the imposed (supposed unknown) displacement field is composed of

the sum of two parts

• a pulsating motion: Temporally, a shifted cosine function (1− cos(...)) (obeying the

constraint of being null at time 0) evolution with a non-integer number of periods

to avoid symmetry (here 2.35 periods during the full-rotation scan). Spatially, the

displacement field is a centered dilatation/contraction.

• a linear drift in time for all nodes with random directions and amplitudes

The applied displacement field can be written

u(x, θ) = (1− cos(2.35 · 2π · θ/Nθ)) · V1(x) + θ/Nθ · V2(x) (8.18)

The nodal displacement vectors V1(x) and V2(x) are shown in figure 8.5(a). The maximum

amplitude of u is 30 pixels. The reference image, the deformed one at the end of the scan

and the chosen C4 mesh are shown in figure 8.5. The maximum strain is about 25%.

Because of the large motion amplitude, the initial reconstruction (i.e., obtained from

a standard ART procedure for which u(x, θ) = 0) is fuzzy and the quality is very poor as

can be judged from Figure 8.6. The projection of this blurred volume is compared with

the initial projection to generate the initial projected residual fields ρ(r, t).

The first reconstruction without displacement field correction and the corresponding

projected residual field are shown in figure 8.6. The initial residuals are very high. After

60 iterations, (i.e., 60 updates of the reconstruction) — performed in approximately 2
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(a) (b)

Figure 8.5: a) Reference image (unknown) and applied nodal displacement field V1(x) in

red and V2(x) in light blue; b) deformed checkerboard at time Nt.

(a) (b)

Figure 8.6: a) Initial reconstruction with u(x, t) = 0; b) initial projected residual fields

ρ(r, t)
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(a) (b)

Figure 8.7: a) Reconstructed image with the identified displacement field; b) final projected

residual fields ρ(r, t)

hours — the 38 degrees of freedom that drive the displacement field (18 spatial times 2

temporal degrees of freedom) have converged to a steady value. A small standard deviation

of the displacement field error with respect to the prescribed displacement of less than 1.2

pixel remains at the end. Considering the large imposed motion amplitude, the estimated

kinematics is deemed quite satisfactory.

The final reconstruction and projected residuals are shown in figure 8.7. The recon-

struction has sharp edges and its constituting squares have been correctly reconstructed.

Zooms in the initial and corrected specimen are shown in figure 8.8. The projected resid-

ual field, where all features of the initial sinogram have been completely erased, and only

white Gaussian noise remains, means that the reconstruction has been quite successful.

In order to correctly appreciate the quality of the achieved volume, a difference with

the initial perfect one is shown figure 8.9. This difference highlights a perfect positioning

of the reconstruction, and only slight discrepancies of the gray level intensity on the bright

squares are visible.

8.5 Discussion and Conclusion

An innovative algorithm is presented to perform simultaneously a dynamic reconstruction

of a moving sample with the identification of the full 2D space and time displacement field.

The method is derived from Algebraic Reconstruction Techniques coupled with Projection

based Digital Volume Correlation. The iterative algorithm is based on two steps

• for a given displacement field, a dynamic algebraic reconstruction algorithm is pro-

posed. Each iteration of the procedure consists in comparing the acquired projection

with the projected warped volume (deformed with current displacement field). The

projected residual is backprojected, unwarped to match the reference space and

added to the volume.
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(a) (b)

Figure 8.8: Zoom in the reconstructed volume (a) with a standard non-corrected volume

and (b) with the proposed procedure

(a) (b)

Figure 8.9: Difference between the initial and perfect image and (a) the initial reconstruc-

tion (i.e., ART(p)) and (b) the achieved volume (i.e., (i.e., DynART(p,u))). A good

positioning is reached at the end.
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• for a given reference volume, a P-DVC analysis allows the displacement field to

be identified. The projection of the (unperfect) warped volume is compared with

the acquired projections. The residual can be read as motion using the computed

sensitivity fields. An update of the displacement field is then performed.

A multiscale procedure has been proposed as an essential ingredient to properly correct

large displacements. The acquired projections are first convoluted with a Gaussian kernel

of large width (low pass filter) to increase its correlation length and capture large cor-

rections from the linearized P-DVC functional. The Gaussian filter is then progressively

reduced, following the residual norm evolution, to identify finer details.

The post treatment procedure, that exploits the same data as a standard acquisition

(same number of projections and standard projection operator), has been tested with two

challenging numerical examples (with large displacements and strains). The first is a Shepp

Logan phantom with large displacement fields (up to 1/4 of the phantom length). The

second is a checkerboard with a pulsating motion in time. Both examples are corrupted by

a white Gaussian noise that probes the robustness with respect to the acquisition noise.

The two applications show a nearly perfect identification of the displacement field and

dynamic reconstruction. Performed with a parallel projection algorithm for simplicity,

the exact same method can be applied with any projection model.

The proposed dynamic reconstruction algorithm has been devised as an extension of

the ART algorithms. It is convenient with those approaches to include in the process an a

priori knowledge of the scanned specimen (assumption on the gray levels, its variations, the

number of phases, its sizes, etc.). Many different regularization have been proposed in the

literature that enable to obtain high quality reconstructions, with less artifacts, from less

projections or missing angles, etc.. Because those regularizations are independent of the

current algorithms, it was chosen not to implement them and focus on the proposed method

performances without any ’additional help’. Nevertheless, they are fully compatible with

the proposed approach and can be implemented in a transparent fashion. When aiming

to perform ultra-fast acquisitions with few angles, they would certainly be very precious

to accelerate convergence, and improve reconstruction quality.

In the proposed examples, the optical flow was kept constant. Some applications may

require to include a gray level variation model. A perspective of this work could be the

scan of in situ mechanical test with high strains, the identified deformation could be used

to correct for absorption evolution of the material considering a constant beam intensity.

The proposed procedure shows performances that can be beneficial to numerous fields.

The clear reconstruction of the moving sample allows for qualitative and quantitative

analyses:

• combined with Digital Volume Correlation [38] between well reconstructed volumes

• combined with image segmentation for diagnosis from radiology

• combined with ultra-fast tomography acquisition as recently available from some

synchrotron beam-lines [39, 6].
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This is key for data assimilation [40] and model identification and validation in material

science [41] with CT-scan as already developed with MRI [42].
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[5] L. Salvo, M. Suéry, A. Marmottant, N. Limodin, and D. Bernard. 3d imaging in mate-

rial science: Application of x-ray tomography. Comptes Rendus Physique, 11(9):641–

649, 2010.

[6] E. Maire, C. Le Bourlot, J. Adrien, A. Mortensen, and R. Mokso. 20 hz x-ray

tomography during an in situ tensile test. International Journal of Fracture, 200(1):3–

12, 2016.

[7] K.J. Dobson, S. B. Coban, S. A. McDonald, J.N. Walsh, R. C. Atwood, and P. J.

Withers. 4-d imaging of sub-second dynamics in pore-scale processes using real-time

synchrotron x-ray tomography. Solid Earth, 7(4):1059, 2016.

[8] P. Milanfar. A model of the effect of image motion in the radon transform domain.

IEEE Transactions on Image Processing, 8(9):1276–1281, 1999.

[9] S.M Walker, D. A Schwyn, R. Mokso, M. Wicklein, T. Müller, M. Doube, M. Stam-

panoni, H.G. Krapp, and G.K. Taylor. In vivo time-resolved microtomography reveals

the mechanics of the blowfly flight motor. PLoS biology, 12(3):e1001823, 2014.

[10] M. Berger. Motion-Corrected Reconstruction in Cone-Beam Computed Tomography

for Knees under Weight-Bearing Condition. PhD thesis, 2016.



186 CHAPTER 8. DYNAMIC 2D TOMOGRAPHY

[11] S. Bonnet, A. Koenig, S. Roux, P. Hugonnard, R. Guillemaud, and P. Grangeat.

Dynamic x-ray computed tomography. Proceedings of the IEEE, 91(10):1574–1587,

2003.

[12] M. Ferrucci, R. K. Leach, C. Giusca, S. Carmignato, and W. Dewulf. Towards geo-

metrical calibration of x-ray computed tomography systems—a review. Measurement

Science and Technology, 26(9):092003, 2015.

[13] J.H. Kim, J. Nuyts, A. Kyme, Z. Kuncic, and R. Fulton. A rigid motion correction

method for helical computed tomography (ct). Physics in Medicine and Biology,

60(5):2047, 2015.

[14] T. Sun, J.H. Kim, R. Fulton, and J. Nuyts. An iterative projection-based motion

estimation and compensation scheme for head x-ray ct. Medical physics, 43(10):5705–

5716, 2016.

[15] W. Lu and T.R. Mackie. Tomographic motion detection and correction directly in

sinogram space. Physics in Medicine and Biology, 47(8):1267, 2002.

[16] S. Roux, L. Desbat, A. Koenig, and P. Grangeat. Exact reconstruction in 2d dynamic

ct: compensation of time-dependent affine deformations. Physics in Medicine and

Biology, 49(11):2169, 2004.

[17] C. Jailin, A. Buljac, A. Bouterf, M. Poncelet, F. Hild, and S. Roux. Self-calibration

for lab-µct using space-time regularized projection-based dvc and model reduction.

Measurement Science and Technology, 29(2):024003, 2018.

[18] Y. Otake, S. Schafer, J.W. Stayman, W. Zbijewski, G. Kleinszig, R. Graumann, A.J.

Khanna, and J.H. Siewerdsen. Automatic localization of vertebral levels in x-ray

fluoroscopy using 3d-2d registration: a tool to reduce wrong-site surgery. Physics in

Medicine and Biology, 57(17):5485, 2012.

[19] S. Ouadah, J.W. Stayman, G.J. Gang, T. Ehtiati, and J.H. Siewerdsen. Self-

calibration of cone-beam ct geometry using 3d–2d image registration. Physics in

Medicine and Biology, 61(7):2613, 2016.

[20] H. Leclerc, S. Roux, and F. Hild. Projection savings in ct-based digital volume

correlation. Experimental Mechanics, 55(1):275–287, 2015.

[21] T. Taillandier-Thomas, S. Roux, and F. Hild. A soft route toward 4d tomography.

Physical Review Letters, 117(2):025501, 2016.

[22] C. Jailin, A. Bouterf, M. Poncelet, and S. Roux. In situµ ct-scan mechanical tests:

Fast 4d mechanical identification. Experimental Mechanics, 57(8):1327–1340, 2017.

[23] R. Zeng, J.A. Fessler, and J.M. Balter. Respiratory motion estimation from slowly

rotating x-ray projections: Theory and simulation. Medical physics, 32(4):984–991,

2005.



BIBLIOGRAPHY 187

[24] R. Zeng, J.A. Fessler, and J.M. Balter. Estimating 3-d respiratory motion from

orbiting views by tomographic image registration. IEEE Transactions on Medical

Imaging, 26(2):153–163, 2007.

[25] T. Li, A. Koong, and L. Xing. Enhanced 4d cone-beam ct with inter-phase motion

model. Medical physics, 34(9):3688–3695, 2007.

[26] V. Delmon, J. Vandemeulebroucke, R. Pinho, M. Vila Oliva, D. Sarrut, and S. Rit.

In-room breathing motion estimation from limited projection views using a sliding

deformation model. In Journal of Physics: Conference Series, volume 489, page

012026. IOP Publishing, 2014.

[27] Y. Suzuki, G.SK. Fung, Z. Shen, Y. Otake, O. Lee, L. Ciuffo, H. Ashikaga, Y. Sato,

and K. Taguchi. Projection-based motion estimation for cardiac functional analysis

with high temporal resolution: a proof-of-concept study with digital phantom exper-

iment. In Medical Imaging 2017: Physics of Medical Imaging, volume 10132, page

1013230. International Society for Optics and Photonics, 2017.

[28] T. Li, E. Schreibmann, Y. Yang, and L. Xing. Motion correction for improved target

localization with on-board cone-beam computed tomography. Physics in Medicine

and Biology, 51(2):253, 2006.

[29] M. Prummer, L. Wigstrom, J. Hornegger, J. Boese, G. Lauritsch, N. Strobel, and

R. Fahrig. Cardiac c-arm ct: Efficient motion correction for 4d-fbp. In Nuclear Science

Symposium Conference Record, 2006. IEEE, volume 4, pages 2620–2628. IEEE, 2006.

[30] M. Prummer, J. Hornegger, G. Lauritsch, L. Wigstrom, E. Girard-Hughes, and

R. Fahrig. Cardiac c-arm ct: a unified framework for motion estimation and dy-

namic ct. IEEE Transactions on Medical Imaging, 28(11):1836–1849, 2009.

[31] S. Rit, D. Sarrut, and L. Desbat. Comparison of analytic and algebraic methods for

motion-compensated cone-beam ct reconstruction of the thorax. IEEE Transactions

on Medical Imaging, 28(10):1513–1525, 2009.
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Chapter 9
4D dynamic CT

This chapter is an ongoing work deliberately concise that aims at developing a complete

dynamic reconstruction framework applied to medical images.

This paper proposes a 4D dynamic tomography framework that allows a moving sam-

ple to be imaged in a tomograph as well as the associated space-time kinematics to be

measured with nothing more than a standard scan acquisition. The method exploits the

consistency of the projection/reconstruction operations through a multi-scale procedure.

The iterative procedure is split into two coupled parts: a motion compensated reconstruc-

tion algorithm and a projection-based measurement procedure that reads the displacement

field directly on each individual projection. The procedure is tested on the moving to-

mography of a breathing chest, generated synthetically from static 10 real CT-scans of

a breathing patient. At convergence, the initially blurry reconstructed volume has been

cleaned from motion artifacts resulting in an improved reconstruction quality showing

sharper edges and finer details.

189
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9.1 Introduction

Being able to capture the inner structure of a sample in a non destructive way is of utmost

importance for medical diagnoses or for quantitative measurements. Among many different

3D imaging techniques (Magnetic Resonance Imaging (MRI), Ultrasound imaging, ...),

tomography is the most frequently used. Initially developed for medical imaging [1, 2]

as it enables distinguishing the different soft and hard biological tissues , tomography is

now widely used in many other fields (e.g., biology [3], material science [4, 5, 6], etc.).

Performed with different instruments (e.g., X-rays medical scanners, synchrotron beams,

lab-CT, etc.) and waves (mostly X-rays but also neutron, optical, positron, etc.), a wide

range of imaging (space and time) resolutions and contrast suited to almost any material

is accessible.

A tomography scan is performed as follows, the specimen rotates over 180◦ or 360◦ with

respect to the source-detector pair (often a rotating sample in material science and rotating

source/detector in medical imaging) and a series of radiographs at distributed angles

are acquired and normalized into projections. The collection of projections at all angles

constitutes a so-called sinogram. From the latter, inverse reconstruction algorithms [7]

have been developed to reconstruct the 3D imaged volume. The technique relies on the

strict satisfaction of conditions, in particular concerning the geometry of the set-up and

the motion of the sample as a perfectly controlled rigid rotation with prescribed axis and

angles.

Motion in tomography is a complex topic that offers the two sides of the same coin:

• If the motion happens during the imaging process, it leads to a poor quality recon-

struction with blurry edges [8]. The reconstruction can hardly be exploited, even

visually. This displacement may come from various reasons: motion of the sample

itself (e.g., due to the experiment itself, creep, heartbeat and breathing [9], etc.),

unexpected motion of the setup, uncalibrated tomograph (although this is not ex-

actly motion, it can be translated to such an artifact), or related to quick phase

and texture changes [10, 11]. If the motion is not too fast with respect to the ac-

quisition time (sub-second scale in a synchrotron, minutes/hours in a lab µCT),

the experiment can be performed continuously. Otherwise different solutions have

been found to reduce the scanning motion: using smart sampling in time for peri-

odic motions (e.g., based on phase measurements [12, 13]), accelerating the scanning

procedure (e.g., faster setup, brighter sources [14], multi-sources [15, 16], developing

ultrafast scanning procedure in the synchrotron [17, 18]), using, in medical imaging,

sedative, beta-blocker to reduce the heartbeat rate (especially for babies or small

children [19]), requesting the patient not to move, apnea etc.

• On the contrary, if this motion is measured and controlled, it gives access to ex-

tremely rich quantitative data that are precious pieces of information for diagnoses,

model identification and data assimilation (e.g., in material science [5, 20, 21], bio-

mechanics [22, 23, 24]). Finding a way to image the microstructure and not be

polluted bu the displacements during the scan is a challenge. The solution is often
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to image the sample at different static states (i.e., performing a 4D (space/time)

measurement procedure [21, 25, 9]). Spatio-temporal deformable registration has re-

ceived considerable attention in literature, in material science for the identification

and validation of mechanical models (e.g., [26, 21]) and in medical imaging, mostly

in cardiac image analysis [27, 28], but more recently also for respiratory-correlated

imaging of the thorax [25, 9]. Those space-time procedures take time and the scanned

samples are subjected to huge quantities of radiation doses. Those techniques lead to

highly redundant acquisitions as the same microstructure is imaged multiple times

(only its deformation evolves but its complexity is generally low compared to the

microstructure).

Although the sample is imaged with motion or an uncalibrated tomograph, different

methods have been developed in the literature to get a satisfactory reconstruction quality.

The methods are often composed in two successive procedures:

(P1): evaluate the motion (or calibration parameters), based on either additional sensors,

or full field measurement methods on the acquired images (e.g., image registration

techniques such as digital image/volume correlation [29]).

(P2): correct the reconstruction procedure from the results.

For the calibration of tomograph parameters (i.e., positions of the detector, source and

sample at any time), online procedures [30, 31, 32, 33, 34] use the scanned moving sample

itself to retrieve all the calibration parameters. Those measurements are often based on

affine transforms. The obtained corrected parameters improve the quality of the specimen

reconstruction [35].

When the sample is subjected to a more complex motion, the reconstruction can

not be corrected by only hanging the calibration parameters. After having measured

the displacement field, the inverse reconstruction algorithm has to be enriched with mo-

tion. Techniques using a motion-compensated Filtered Backprojection (FPB) algorithms

have been developed [36, 37, 38]. Each filtered back-projection is warped with the time-

associated measured space-time displacement field so that the sum of all those warped

back-projections gives access to the volume in a static configuration.

The topic of dynamic tomography is currently attracting a lot of interest. Three very

recent papers tackle the CT imaging of moving samples. In [39], the authors studied a

burning match stick imaged at the PSI synchrotron. With 18800 acquired fast projections

(in 18.8 s), many 3D motion-blurred volumes could be reconstructed. When applying

optical flow analysis, the measured displacement between the volume at time t − 1 and

t + 1 is linearly interpolated at time t and thereby allowing the central volume at time

tt to be corrected. A full 4D space-time ‘movie’ of the phenomenon could be obtained.

This method however requires the use of many acquired 3D volumes (at least 3) thus

a high dose. The measured displacement has a relatively small amplitude compared to

the volume texture characteristic scale. A criterion based on the image reconstruction

quality is not easy to set and the quality has to be appreciated visually. A similar recent

technique [40] deals with the correction of a volume using Digital Volume Correlation
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and an extended Simultaneous Algebraic Reconstruction Technique (SART) algorithm.

To be able to correct a single rotation volume, the authors sub-sampled the acquired

projections in 2 sub-acquisitions from which the motion is evaluated and further involved

in the reconstruction strategy. This method is however not suited to large and irregular

displacements. In [41], the volume sub-sampling is performed more easily because of

a specially designed sampling acquisition strategy with many rotations (that cannot be

adapted to any tomography). One displacement field, constant in time, is estimated

each successive pair of reconstructed volumes and is used to correct the reconstruction

procedure. In this latter reference, although the tackled displacements and deformations

are important during the entire test, an important quantity of reconstructions could be

performed thanks to the acquisition procedure leading to small incremental displacements.

In all those presented very recent developments, the displacement field measurement

(carried out from 3D registration methods) and corrected reconstruction can hardly be

performed with a single 360◦ acquisition if the motion is important and irregular. More-

over, the final quality has to be appreciated qualitatively and no objective criteria on the

reconstruction quality or on the motion estimation are proposed.

A recently developed full field measurement procedure consists in reading the displace-

ment field of the sample directly from the acquired projections. The projection-based mea-

surement is very well fitted to the above mentioned first point (P1) dynamic tomography

as it provides a space-time displacement for each frame [42]. Developed in the medical

imaging field and called 2D/3D image registration [43, 44, 45, 46, 47], a similar approach

has also been developed in material science and called Projection-based Digital Volume

Correlation, P-DVC. In those approaches [48, 49, 50, ?], an initially well reconstructed

volume is warped in space and time such that its projections match the recorded deformed

projections. This procedure offers huge savings in acquisition time because the experiment

is followed by few projections (only two projections per state in [48, 49, 50] and a single

one in [33]) instead of complete volumes.

It is to be noted that the projection-based measurement functional is very similar to

the one used in standard algebraic reconstruction techniques (ART). A coupling between

ART and P-DVC appear thus natural. It is proposed to combine both of them to achieve

the desired dynamic tomography. An initially motion-blurred reconstructed volume is

used as the reference volume and leads to an evaluation of the displacement field. The

measured motion is then included in a motion-compensated ART algorithm and these

two steps are performed iteratively. In [33, 34], the calibration of parameters of the

tomograph was estimated using affine transforms on the sample. In [51], the coupled

measurement/compensated-reconstruction framework was developed with 2D synthetic

examples of moving phantom with known simple motions. Those synthetic test cases

resulted in high quality reconstructions as well as the full space-time kinematics to be

identified.

We propose in the present paper a fully coupled projection-based measurement method

with a motion-compensated ART algorithm embedded in a multi-scale framework. The

method is applied on the CT-scan of the chest of a breathing patient. The proposed

method provides the 4D regularized motion of the lungs along the 4 respiratory cycles and



9.2. COUPLED RECONSTRUCTION-MEASUREMENT PROBLEM 193

the un-blurry reconstruction to be carried out.

9.2 Coupled reconstruction-measurement problem

The collected intensity for each detector position r = [r, z] (where z is parallel to the

specimen rotation axis, and r is perpendicular to it) and rotation angle is to be related to

the relative beam intensity attenuation. The Beer-Lambert law relates the line integral of

the material absorption along the X-ray path L(r) from source to detector at position r,

to the recorded intensity I(r, t) at time t (and rotation angle θ(t)):

I(r, t) = I0(r, t) exp

∫
x∈L(r)

µ(x, t)dx (9.1)

with µ(x, t) the linear attenuation coefficient and I0(r, t), the intensity recorded without

the sample on the beamline called often flatfield or white field. To obtain the projections,

one has to normalize the recorded intensity with the flatfields (after possibly subtracting

off darkfields acquired in the absence of beam), and compute the co-logarithm, as written

in (9.2)

p(r, t) = − log[I(r, t)/I0(r, t)] (9.2)

Possibly standard tomography artifacts [52, 53] (e.g., beam hardening, intensity variations,

etc) can be corrected at this stage. The collection of Nθ projections p(r, θ(t)) for each

angle is called the sinogram.

The problem can be written in its discrete form as a simple linear system. In the

present work, the projection operator as defined in [54] is performed using the ASTRA

toolbox and in particular, its GPU implementation. When motion u(x, t) is considered

during the experiment, the projection of the deformed volume, defined for every voxel

x = [x, y, z] is written

p(r, t) = Πθ[f(x+ u(x, t))ψ(u(x, t))] (9.3)

with ψ(u(x, t)) = 1 − Tr(E) the local volume variation, computed from the Green-

Lagrange deformation tensor E. This correction term is used to modify the gray level

with respect to the absorption (thus µ(x, t)) changes of the material. The functional that

can be defined is then, based on a least square minimization

Γ(f,u) =
∑
r,t

(Πθ[f(x+ u(x, t))ψ(u(x, t))]− p(r, t))2 (9.4)

This functional exploits the so called consistency equation [34] and provides a validation

metric of the procedure (e.g., quality of the reconstruction and measured displacement

field): the residual field ρ(r, t) = Πθ[f(x + u(x, t))ψ(u(x, t))] − p(r, t). The general

coupled problem is split to two minimizations and solved in a fixed point framework,

iteratively such that

f = Argmin
φ

Γ(φ,u) (9.5)

u = Argmin
v

Γ(f,v) (9.6)

Figure 9.1 is a scheme of the staggered two step procedure.
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Figure 9.1: Scheme of the procedure that required only the commonly acquired sinogram.

The framework is separated in two iterative procedures: the measurement of the motion

from a reconstructed volume and the corrected reconstruction. At the beginning, the

motion is initialized at 0.

9.2.1 Reconstruction with motion

The first part of the two step procedure consists in reconstructing the 3D microstructure

of the sample from the acquired sinogram and the measured displacement field (initialized

at 0 unless additional sensors information or initial guess can be exploited). The use of

an ART reconstruction algorithm is natural as it results from equation (9.5).

It was chosen here to use a SART algorithm. At each iteration, indexed by (n) the

volume is warped with the measured displacement field and compared with the recorded

projection, the difference of which defines the residual field that generates the projected

residual fields

ρ(n)(r, t) = p(r, t)−Πθ[f
(n−1)(x+ u(x, t), t)ψ(u(x, t))] (9.7)

which is normalized and back-projected ∆f (n) = Bθ[ρ(n)(r, t)] with the backprojection

operator Bθ. Finally the correction term is unwarped to the frame of the undeformed

state, so that it matches the reference configuration and it is added to the volume, f (n) =

f (n−1) +∆f (n)(x−u). A convergence criterion has to be chosen as in the ART procedure.

However, functional value can not be used directly in this case as the reconstruction is

imperfect. A convergence criterion based on the incremental variation of the functional

(or an escape condition limiting the maximum number of iterations) can be set.

9.2.2 Projection based measurements

The second part of the two step procedure is the projection-based displacement field

measurement based on Projection-based-DVC. This procedure uses as reference volume
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the previously reconstructed volume and minimizes, with respect to the displacement field,

the difference between the projection of this warped volume with the recorded projections.

DVC algorithms are known to be ill-posed [20], consequently the displacement field has

to be regularized. Among many possible choices to regularize the displacement field, our

choice is to write the displacement field on a reduced kinematic basis composed of few

degrees of freedom

u(x, t) =
∑
ij

aijφi(x)σj(t) (9.8)

with aij unknown amplitudes associated with φi(x) and σj(t) respectively space and time

functions that characterizes the space-time evolution. Those fields may come from a

prior knowledge on the kinematics. The space can be expressed on subsets (called local

DIC [55]), on a mesh kinematics (called global DIC [57]), on b-spline interpolations, etc.

The time can be, for example, imposed by additional sensors measuring the force measure-

ments (used in most of mechanical experiments) or a phase signal (accessible in cardiac

imaging). Finally, both space and time evolutions can be coupled using a model-based

kinematics (called integrated DIC [58]) or using knowledge from prior similar experiments

then reduced with singular value decomposition [59].

The choice of the two space and time functions φi(x) and σj(t) and their numbers are

very important. Too many degrees of freedom and the system becomes ill conditioned

and too few introduces model errors. The residual fields of this procedure ρ, as defined

previously, inform on the quality of the procedure and on the chosen model. From those

residual fields, the model and procedure can be (un)validated and if required, the model

can be enriched with additional degrees of freedom.

The non-linear problem is solved using a Newton-descent algorithm, i.e., successive

linearizations around the found solution, until a convergence criterion is reached. All

components of the gradient of the cost function with respect to all degrees of freedom are

computed using finite differences. Because of a small number of degrees of freedom, each

linearized problem can be easily inverted (contrary with other convergence procedures

based on multiple research directions on separated spaces [60])

9.2.3 Multi-scale procedure

The key to be able to solve the previous two step framework, even with large displacements,

is to apply a multi-scale coarse-to-fine procedure. Indeed with large displacements, the

above linearized functional will not be able to converge. The measurement procedure has

first to rely on the global shape of the scanned sample (e.g., the low spatial frequency

patterns) and progressively refine on the fine-scale detail texture. For that, a pyramidal

approach (see figure 9.2), starting with the coarse scales and ending with the finest is used

with two parallel enrichments

• the projections are smoothed from the convolution with a Gaussian kernel whose

characteristic length can be adapted to the displacement amplitude. The high fre-

quency patterns of the projection and reconstruction are erased and the functional is

hence driven by the global shape motion. The projections can also be downsized, in
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Figure 9.2: Multi-scale framework starting from the coarse scales to the finest. The

volumes are blurred with a Gaussian kernel (and downsized) to enhance the sensitivity to

the global kinematics. The model also starts with a coarse resolution and is progressively

enriched with respect to the residual fields. In the following application, the two last

meshes at scale ‘medium’ and ‘fine’ are the same.

space and time to accelerate the procedure as downsampled images carry the same

information as the filtered one.

• the kinematic model can also start from a very coarse kinematics (e.g., simple rigid

body motions, affine transforms) and progressively be enriched while the microstruc-

ture appears.

For each scale, the procedure (with a chosen mesh and volume resolution) is computed until

convergence of the residual fields and displacement variation. In the following application,

3 scales in images and 2 in models are used (the two last volume scales are computed with

the fine mesh).

9.3 Results

The application is performed on the CT scan of a breathing patient. The data are gen-

erated synthetically from 10 real reconstructed CT-scans [9, 12] of the respiratory phases

from the CREATIS laboratory1. The initial volumes where obtained from a time sampling

based on the acquisition of a respiratory surrogate signal (Pneumo Chest pressure belt).

We propose in this paper to re-generate a moving sinogram by projecting the 10 volumes

of 256 × 256 × 141 voxels successively at 360 different angles. Each displacement state

1https://www.creatis.insa-lyon.fr/rio

https://www.creatis.insa-lyon.fr/rio
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(a) (b)

Figure 9.3: Synthetic test case generated from 10 real CT-scans. (a) comparison of the

projection at 90◦ of two 3D scans (the two red dots in the right figure) and (b) sequence

of the simulated projections. Each one of the 8 angles is the projection of the same state

so that the entire test is composed of 4.5 respiratory cycles that is realistic.

is projected 8 times successively at 8 angles (and then this projection operation is iter-

ated) in order to be correctly sampled in time without too many respiratory cycles (that

would not be realistic). The obtained sinogram is hence the input of our procedure. The

projection operator used to generate the data is a parallel beam for simplicity issues and

performed with the ASTRA toolbox [54]. Although common medical CT beams can be

modeled by a fan beam, it only affects the projection Πθ and does not modify the principle

of the current procedure. Figure 9.3(a) shows the difference of two respiratory state at

one projection (90◦) highlighting the vertical motion of the diaphragm. This displacement

is essentially vertical and localized at the diaphragm. The right plot (b) is the projection

sequence showing the way the 10 CT scans are projected on the 360 projections.

9.3.1 4D kinematic measurements

The time evolution can be based on external sensors (force measurements, breathing sig-

nal, etc). It was proposed in this application not to include any additional information.

Because the bottom part of the scan moves with the breathing, the mean intensity of the

image, computed over a region that contains mostly the bottom part of the image, varies

and is assumed, at first order, to be proportional to the motion. This measured signal is

hence used to regularize the time evolution. In addition, the absolute value and square of

this signal and a 1 period sinusoidal function (that could be related in real cases to the

scan rotation issues) are added to the time library.

The space kinematic model is embedded in a multi-scale framework. The kinematics

starts for the first kinematic scale with a simple C8 element (i.e., 8 noded-cube elements

with tri-linear interpolations) composed of 24 degrees of freedom (i.e., a total of 96 dofs

for aij for the 4 time steps). Then, when the kinematics allows a better reconstruction

of the volume, a finer mesh composed of 75 T4 (i.e., 4 noded-thetraedra elements with

tri-linear interpolation) is used creating 900 degrees of freedom. In the application, the
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Figure 9.4: Measured displacement field for the time acquisition at angle 48◦. In the left

image, the vector field is plotted on a coronal slice and in the left image, the vertical

displacement field is shown. The displacement is expressed in voxels with 1 voxel in

[x, y, z] ↔ [1.95,1.95,2.0] mm. In (c), the final displacement field is plotted with arrows

on the coronal view.

volume has 3 scales (downsizing of 4 – 2 – 1) and are associated with mesh (coarse C8 –

fine T4 – fine T4). Each scale is computed until convergence (4-5 iterations)

The measured displacements are shown figure 9.4. The vertical motion is important

around the diaphragm and almost 0 at the top part of the chest. A maximum vertical

displacement amplitude is measured at approximately 7 voxels and corresponds to 14 mm.

9.3.2 Reconstruction

Three image scales are used where the projections are filtered and downsized by a factor 4,

2 and 1 (initial projections). The time sampling is also downsampled by the same factor.

The fine reconstruction is performed with all the 360 angles. No additional regulariza-

tions are added in the procedure. Slices of the reconstructed volume before and after are

shown in figure 9.5. The correction naturally focuses on the large displacements area, i.e.,

the bottom of the chest around the diaphragm. It can be noted that the diaphragm is

much better reconstructed after the displacement correction. Initially smooth and blurry,

the improved edges become much sharper. The bottom plot shows two intensity curves

corresponding to the two yellow lines in the zoomed areas. After the displacement field

correction, the diaphragm is clearly visible while the initial curve is much more fuzzy.

Segmenting the volume for example would be easier with the corrected volume.

9.3.3 Objective quality criterion

The true metric of our procedure is the norm of the projected residual field. This residual

field is expected to be null at convergence (see figure 9.6 before and after the procedure

correction). The residual field contains what was not captured by the kinematic correction

procedure thus can be composed of convergence issues, noise and artifacts but includes

also all model errors (approximate kinematic model, inaccurate interpolations, etc). It can
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Figure 9.5: Sagittal and coronal slices of the reconstructed chest without (left) and with

(right) motion correction (the two red lines indicates the slice positions). It can be observed

(especially in the zoomed area) that the diaphragm is better reconstructed and sharper

(as pointed out by the two white arrows). On the sagittal view, a horizontal plane that

polluted the reconstruction disappeared (white arrow). The bottom plot shows 2 intensity

curves extracted from the left and right volume on the zoomed area (yellow lines). The

dashed curve, corresponding to the non-corrected volume, is smooth. The solid curve is

sharper because of the displacement correction.

be seen that the residual values are very high in the beginning. On the bottom part, large

positive and negative values are visible resulting from the oscillating respiratory motion.

At the end of the procedure, most of the oscillating motion has been erased meaning

that the estimated displacement field was trustworthy. The norm of these residual fields

decreased from 3.2 down to 1.1 at the end of the procedure. Because the projection of

the warped volume corresponds to the recorded deformed projections, the procedure is

deemed validated.
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Figure 9.6: Projected residual fields (sinogram of 2D projections + angle) before (left) and

after (right) correction by the measured displacement field. The oscillating positive and

negative patterns are the signature of the periodic respiratory motion. After correction

by the measured displacement field, a large part of the error has been corrected.

Discussion

A 4D displacement field measurement coupled with a motion compensated reconstruction

procedure framework has been developed. The method is based on nothing more than a

standard sinogram of a moving sample. The procedure consists in two parts: (i) a motion

compensated procedure extended from a SART algorithm and (ii) a displacement field

measurement from the reconstructed volume and the initial sinogram.

The procedure is tested from an artificial time series composed of projections issued

from 10 real volumes acquired at different phases og the respiratory motion. Mixing all

states together, a moving sinogram is synthetically generated whose reconstruction leads

to motion blur artifacts. The kinematics is regularized with 4 time functions and a 75

noded T4 unstructured mesh creating a 900 degrees of freedom problem. The multi-scale

procedure, performed for the volume and model, results in a fast convergence. Finally the

quality-improved reconstruction was cleaned from a large part of the motion blur artifacts

leading to projected residual fields of very small amplitude.

This procedure opens up new avenues in dynamic tomography enabling to image mov-

ing samples, even if the displacement is large and without additional data as compared to

a standard measurement. Moreover, any additional sensors and detectors could be used

transparently in the above method to regularize, either the volume reconstruction (e.g.,

assumptions on the phases [61, 62], TV regularizations, dictionnary of commonly encoun-

tered tissue morphology, etc.) or on the kinematic model (e.g., force and displacement

sensors, etc.). Using dual sources scanners is also a promising perspective, especially when

the sources are orthogonal [15, 16] so the displacement field could be completely estimated

for each acquisition time (i.e., a better conditioned problem).
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Chapter 10
Conclusions and perspectives

The common thread of this manuscript is the data reduction in the initial Radiographies

– Volume reconstruction – Measurement – Parameter identification sequence presented in

the Introduction. Being able to short-cut the standard reading sequence with projection-

based measurements opens up new opportunities when designing a mechanical (or more

general) test. The quantity of required data has been drastically decreased with the

successive developments (leading to less acquisition time and reduced doses).

This PhD dissertation is composed of two parts: different developments of the

projection-based identification when a reference volume is either known (Part I) or un-

known (Part II).

The first part, comparable with stereo-setups, offers gains of more than two orders of

magnitudes in acquisition times and doses. From multi-view identification in Chapter 2,

the procedure has been developed with a single acquisition per state, carried out continu-

ously with simultaneous loading and rotation of the sample. Fast behaviors (time constant

longer than 1-2 s) can be measured in a lab-CT (Chapter 3-5).

The second part aims at identifying both the kinematics and microstructure. The

method called dynamic tomography is a coupling between P-DVC methods using a single

projection and a motion-compensated reconstruction procedure. These extremely promis-

ing developments have a huge potential in materials and medical imaging.

In figure 10.1, the diagram proposed by E. Maire and P.J. Withers [1] has been enriched
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with 4 experiments reported in this dissertation (blue crosses) and one that is only based

on a virtual (synthetic) test (yellow cross). Few remarks are to be made: (1) The points

do not take into account the reference acquisition (required in the development of the

first part). (2) The target of the previous work was focused on the methodology and

development and not on the acquisition time (e.g., acquisition of 8 projections instead of

2 in [2], average of 5 frames in [3, 4] even if a single one could have been used, etc.). (3) The

dynamic tomography of the medical CT has not been added as the data were re-generated

synthetically and because the helicoidal acquisition is a different experimental technique.

(4) Space resolution has never been a goal with P-DVC procedures. (5) Even if the 3D

volume is not imaged in the deformed state, it could be computed using the reference one,

the displacement field and possible gray level variations.

Figure 10.1: Evolution of the spatial and temporal resolution for X-ray imaging, extracted

from [1] and enriched with 5 crosses corresponding to the developments of this thesis. Blue

crosses stand for actually performed experiments, yellow cross corresponds to a synthetic

trial. The different cases are defined in Table 10.1.

The values are summarized in the Table 10.1. The number (5) is not related to a real

experiment. However it has a huge potential when dealing with periodic motions and has

been tentatively included in the diagram.

Table 10.1: Resolution enrichments
Name Ref. Space resolution Time resolution

(1) Multi-view P-DVC [2] 15 µm 35 s

(2) Online calibration [5] 2.8 µm 7.2 s

(3) Single view P-DVC [3, 4] 10.7 µm 2.5 s

(4) Single view neutron tracking [6] 110 µm 200 ms

(5) Lab-CT modal P-DVC — >10 µm up to 10 ms
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10.1 Conclusions

10.1.1 P-DVC with reference volume

The first part of the manuscript is dedicated to the development of Projection-based ap-

proaches with the use of a reference volume. The target of the successive chapters is to

reduce the quantity of data required in the identification procedure (kinematics, materials

and fluid shape). Initially performed with 2 projections per state [7, 8, 9, 10] (multi-view

framework), a single projection has been shown to be sufficient thanks to time regular-

ization, offering the opportunity of a continuous evolution (i.e., continuous acquisition,

loading and rotation). Applied to different experiments (compression with cracks, tension

with non-linearities (plasticity), imbibition, vibration) and materials (plaster, cast iron,

sandstone, synthetic materials), the developments lead to huge gains in required data and

acquisition time.

• Chapter 2: extracted from [2], P-DVC was extended with cone beam in a lab-CT

with 2 projections per time state. The application of the method was performed on

a DCDC plaster sample, filled with copper powder to enhance the contrast. With

a 14 degrees of freedom kinematics: 12 boundary conditions of a Finite Element

elastic model and 2 crack positions, the measurement was performed on 13 loading

steps with and without cracks. The measured displacements were used in a weighted

FEMU-UF identification procedure to extract 2 material parameters: E and KIC

that turned out to be in accordance with ex-situ measurement values. The very low

level of residuals at the end of the procedure validates the method (some detector

artifacts could even be seen in the projections meaning that most of the kinematics

residuals were corrected). In this experiment, a gain of 350 in saved data was reached

compared with standard DVC requirements. Nevertheless, few points were limiting

and were improved in latter works: (i) the acquisition of 8 radiographs when only 2

are required, (ii) the experiment was stopped at each acquisition, (iii) an average of

50 frames was performed to increase the signal to noise ratio (unnecessary because

the procedure is not sensitive to uncorrelated noise).

• Chapter 3: extracted from [3], P-DVC was extended to a regularized framework

where the identification could be performed using a single projection per time step.

The development of time regularization allows imposing both space and time evo-

lutions. As in space where it is very natural to couple all individual pixel/voxel

information (e.g., in a Global framework), coupling time steps enables a global res-

olution of the problem. This means that all (or at least more than 1) time steps

/ projection angles contribute in the identification of the reduced time basis. For

example with the use of polynomial time evolutions, even if some degrees of freedom

have no sensitivities in a direction of the space, the previous and the next direction

will allow solving the problem. The method was applied to the measurement of the

kinematics for a slender sample. The kinematics basis was chosen to be vertical

sections animated by rigid body motions, in the spirit of the beam theory (although

a global FE mesh could have been used as well). The identification was performed
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using a PGD algorithm: the displacement field was written as a sum of space/time

modes which are identified successively. This modal identification naturally starts

with the most salient to the least sensitive modes and thus can be stopped when

a residual convergence criterion is reached. The application is performed with two

steps measurements: a rigid body motion measurement that cleaned up a large part

of the residuals and the deformation field. The results show the large top and bottom

displacements of the sample and the central non-linearities (plastic deformations).

Although only the vertical displacement was plotted, the horizontal displacements

(bending, torsion, etc.) was also captured. The signal to noise ratio (thus resid-

ual fields) evolution with the successive displacement field corrections validates the

procedure. Because a single projection per state was required, the experiment was

performed with a continuous load rotation and acquisition. This continuous method

is thus not affected by relaxation or creep that happened in similar experiments

performed for sequence volumes measurements. This 5-minute P-DVC experiment

which consisted of 127 loading steps allowed gains in the experimental time of more

than two orders of magnitude.

• Chapter 4: extracted from [4], P-DVC is extended to integrated approaches. Based

on the same experiment and full field measurement results of Chapter 2, two iden-

tification procedures of a model have been developed: FEMU and Integrated ap-

proaches. The chosen model was a simple 1D free-shape plastic beam model driven

by 8 control points in the (εzz,σzz) space. The FEMU procedure uses the measured

displacements to identify the behavior. The small displacement residual at the end

of the identification allowed the model to be validated. The integrated approach

identified the 8 unknowns directly from the projections. The parameter variations

that have a signature in motion are here ‘decorated’ with the microstructure and

projected in order to generate the gray level sensitivities of the constitutive param-

eters. With this approach, the time evolution is driven by the force measurement

and the variation of the control points modify the kinematics. The short-circuit

of the entire reading sequence is here completed. The residual fields at the end of

the procedure are in the same range as obtained with the kinematic measurements

showing that the model was both relevant and well identified.

• Chapter 5: extracted from the work performed in Lund University, Sweden [6],

in collaboration with Pr. S.Hall and his team, the projection based measurement

was here extended to gray level variation tracking. The fluid invasion on a porous

sandstone sample was imaged using neutron tomography at 5 fps. With neutron, the

high fluid absorption is visible on the projections and evolves from the bottom of the

sample to the top. The residual fields could thus not be corrected with the gradient

of the microstructure. In order to model the phenomenon, the design of a fluid

column was performed based on a time evolution (low order polynomials), the 3D

height of the front (low order bivariate polynomials) and a front saturation profile.

The three coupled problems were solved using a PGD framework. Two examples

were treated: (i) measurement of the front during a single 3D scan (i.e., radiographs
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acquired at 5 Hz) and (ii) during the entire experiment with the fluid starting from

the top to the bottom of the sample. In both examples, the measurements allowed

the projected residual field to be cleared. The identification performed 300 times

faster than the 3D methods allowed small variations of the front (less than 1 voxel)

to be captured. A comparison with 3D analysis showed very good agreement.

This work is very different from the previous developments as the correction model

is not restricted to the advection of an initial microstructure but could be designed

with a gray level variation correction model. Being able to modify the 3D gray

level is interesting for example when dealing with phase transition, cracks voids or

cavity or bubble nucleation, etc. It is thus to be noted that the reference volume is

performed at the end and only used to give an initial fluid column intensity. This 3D

scan was not necessary and everything could have been performed without reference

volume. (and this chapter transfered to Part2).

• Chapter 6: is a proof of concept to perform an in-situ vibration modal measure-

ment in a tomograph. Because an appropriate sampling in time is not possible

(neither with volumes nor with radiographs), this goal is challenging. However such

sampling is not required. Because the motion is periodic, every projections acquired

at random times are linked with the modal basis that could be retrieved with a

large number of projections. The projections should also be acquired at different

angles to have sensitivity in the different space directions. The key lies in being able

to give a link to bind the different angles together. A statistical assumption on a

representative sampling per projection angle of a steady state distribution is made

and allows the procedure to work. The measurement of the modal basis and the

random amplitudes is performed on a synthetic test case with 3 projection angles

and 150 frames per angle. The results validate the developed measurement proce-

dure. Because all projection angles may not be equally sensitive to the displacement

(e.g., the displacement of one mode may be predominantely in the direction of the

projection), the measured amplitude of each mode may not be equally accurate but

this leads to no detrimental consequence on the identification of spacial vibration

modes.

10.1.2 Dynamic tomography

The second part of the manuscript is the development of dynamic tomography. For phe-

nomena that can not be stopped (e.g., heart beating, respiratory motion, material melt-

ing etc.), the P-DVC procedure described in the previous chapters can not work as the

reference image can not be acquired. However, because it is possible to measure the dis-

placement field from projections, this motion can be used to correct the reconstruction

procedure. The motion blur generated by a static reconstruction procedure is cancelled

and the reconstruction can be made much sharper.

• Chapter 7: extracted from [5], the online calibration of the tomograph using P-

DVC techniques is performed. The application is extracted from a 4D in-situ test
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performed by Amine Bouterf and Ante Buljac. During the night the sample is main-

tained loaded in the tomograph. Because of uncontrolled motion, thermal variations

etc., the calibration of the tomograph changed leading to a blurry reconstruction.

A P-DVC procedure is performed between the blurry reconstructed volume and

its own radiographs highlighting the inconsistencies in the reconstruction procedure

(i.e., the motion or wrong calibration parameters). With the space regularized us-

ing rigid body motions and a time regularized using sinusoidal functions, a PGD

procedure is implemented to capture the first motion modes. Then after few modes

identification, the reconstruction is updated with the obtained calibration. The up-

dated volume is of good quality with sharp edges. The procedure, that does not

require more than a standard acquisition, is thus validated.

• Chapter 8: extracted from [11]. A dynamic tomography method is developed in 2D

with synthetic phantoms. The previously developed method for motion identifica-

tion from blurry volumes is extended in a framework where the identified motion is

used simultaneously in the reconstruction procedure. A motion compensated SART

procedure is hence coupled with P-DVC such that every identified displacement

field allows the reconstruction to be sharper. The method is applied on 2D exam-

ples using a parallel projection. The first test is a Shepp-Logan phantom with large

displacements and strains but a simple linear time evolution. The second test case

is a pulsating checkerboard with two temporal modes. In both examples, in which

noise has been added, from an initially blurry reconstruction with large projected

errors, the projected residuals are completely erased. Moreover the comparison of

the reconstructed images with the ground truth shows that the reconstruction is

almost perfect and well positioned and thus the approach is deemed validated. At

the end, the full 3D (2D space + time) kinematics and high quality microstructure

are identified altogether.

• Chapter 9: The developed dynamic tomography is extended to 4D for medical

imaging. A collection of 10 medical CT-scans of the different respiratory phases

(downloaded from the CREATIS website1) are used to generate a dynamic test case

with a patient breathing during the acquisition process. The method does not require

more than a standard sinogram acquisition. The dynamic tomography framework is

developed with gray level corrections related to the volume (thus X-ray absorption)

variation and carried out in a multi-scale procedure starting from coarse scales (i.e.,

downscaled volume and reduced model) to the finest (i.e., full resolution volume

with a complex T4 mesh). The clear improvement of the reconstruction quality

is visible especially in the large displacement areas around the diaphragm. The

edge of the diaphragm/lung fronter is sharper. The evolution of projected residual

fields (corresponding to a residual sinogram) highlights the accuracy of the method

because a large part of the oscillating motion error are corrected.

1 https://www.creatis.insa-lyon.fr/rio

https://www.creatis.insa-lyon.fr/rio


10.2. DISCUSSIONS 215

10.2 Discussions

10.2.1 Technical aspects

Unified reconstruction and measurement framework: The correct procedure

when dealing with a sequence of successive inverse problems is to transport the covariance

matrix, from the raw data to the final parameters. However, it is not easy to evaluate

the uncertainty for reconstructed volumes (corrupted with reconstruction artifacts e.g.,

rings). Being able to work directly with the projections provides a more easily accessi-

ble description of the noise. The dynamic procedure is indeed based on the exact same

functional split in two for the displacement and microstructure identification.

Computation time: Computation time can be an issue in P-DVC procedures. The

heaviest operations are: (i) computation of the gray level sensitivity fields (i.e., weighted

gradient), Πθ[∇f(x)ψi(x)], (ii) update of the volume (i.e., 1 full 3D registration per load-

ing step: 360 times per measurement iteration in the dynamic tomography of the lungs)

and (iii) projections (and reconstructions) performed with the ASTRA toolbox. Differ-

ent approaches can be implemented such as working with GPU (already performed with

ASTRA), update of the sensitivities and volumes at specific times, parallel computation,

smart initializations based on RBM measurements (computed in Fourier space), etc.The

use of PGD algorithm may be very useful when dealing with a large number of degrees of

freedom that can easily be computed (the fluid tracking test case for example).

10.2.2 Measurement accuracy

The measurement accuracy depends on various factors, a large part of which can be tuned

and optimized prior or during the experiment. Figure 10.2 shows 4 possible levers to

enhance the measurement accuracy: the choice of the kinematic regularization, the sample

shape and texture optimization, the imaging procedure (angles, frame rate, rotation speed,

frame average,etc.) and the mechanical test procedure (type of testing machine, loads).

Some other parameters are not considered in this figure such as the noise and artifacts

because they are associated to the acquisition itself and they can be reduced when dealing

with the frame averaging for example.

Figure 10.2: Different scientific levers to enhance the measurement accuracy.
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Regularization vs Freedom: One difficulty in the measurement procedure is to select

an appropriate kinematic basis. Too many degrees of freedom and the system will be ill

conditioned thus very difficult to solve and very long to compute using P-DVC. Not enough

freedom and it will introduce model errors that obviously pollute the entire identification.

The correct balance is not easy to find.

Different strategies can be developed:

• Penalizations: different penalizations can be introduced in the space and temporal

fields. The easiest to implement is the Tikhonov regularization [12] although the

amplitude factor may not be easy to tune. Local elastic constraints [13] can be

used instead and are more physical. Penalizing large velocities when dealing with a

space/time problem can also be implemented.

• Models (i.e., integrated approaches [14, 15]): with integrated methods, the regular-

ization is performed based on a physical model driven by very few parameters. With

a relevant model, the displacement field should match the observed kinematics. The

difficulty is to select a relevant model.

• Trial-error: based on the residual field with localized error, the user can update

the model and add progressively degrees of freedom [16]. This method is usually

performed with crack initiation and propagation. In such cases the mesh can be

opened, nodes can be added or removed, etc.

Sample texture: The sensitivity to the parameters to be identified is the key param-

eter that has to be carefully considered. Although we aim at reducing the number of

experimental data, we do not want to loose too much sensitivity. Sensitivity can thus be

tuned prior to the experiment. An optimization of the test would allow selecting specific

angles, loading rate, geometry, etc. Concerning the sample itself, it is possible to enhance

the sensitivity using tracers. These tracers need to have a different X-ray absorption than

the specimen to be visible. They can be included in the sample whenever possible, as

speckles (e.g., absorbing powder in melted specimen as in the plaster test case, medical

tracers, etc.), by modifying the geometry and shape of the sample (adding holes, notches,

using topology optimization, etc.) or applied on the surface (e.g., a simple white paint

composed of absorbing titanium dioxide, particles or aggregates). The two latter cases

would consist in a P-DVC based on the 3D surfaces of the specimen. Working with X-ray

untextured volume with (sensitive) edges could hence be possible.

It is noteworthy that the important term is, in P-DVC procedures, the projected

sensitivity Πθ[∇f(x)ψ(x)] and not the 3D sensitivity. A well textured sample with very

small and numerous particles (say 0.5% of the cross section size) could be (depending on

the kinematics ψ(x) of course) considered as a uniform projected gradient thus without

projected sensitivity.

Imaging procedure: The P-DVC procedure is based on selected projections in order

to identify parameters of a model. Many parameters could be optimized to enhance

sensitivity: the choice and number of angles, the rotation speed, the loading speed.
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All projections are not useful for the model identification. In the DCDC test case for

example, the projection facing the hole was the most important as this view was highly

sensitive to the crack opening. Although, the second projection angle had no sensitivity

to the crack, it enabled the whole kinematics to be captured. Being able to select the

most meaningful projections is a challenge when considering many parameters. A scalar

criterion has to be selected for the optimization procedure. Another strategy could consist

in selecting successively projections focused on the minimum parameter sensitivity until

all values are above the noise uncertainty.

For the optimization of the sample shape for the sensitivity to a multi-parameters

model (that is another topic), a criterion has been proposed in [17] where the minimum

eigenvalue of the Hessian matrix was maximized.

Selecting the rotation and loading speed is also a perspective. Coarsely, an appropriate

sampling (to limit redundancies) in time is successive complementary projections (e.g., 0◦–

90◦–180◦–270◦...). For the measurement of smooth time evolutions, the rotation does not

need to be fast and the sampling does not need to be important (in Chapter 2, 1.5 turns

during the loading evolution was enough).

10.2.3 New Experimental procedures

The use of P-DVC allows the test to be performed very quickly. Different experimental

procedures optimized up to now for standard full field measurements can be revisited.

Figure 10.3 presents 3 new fast experimental measurement protocols described above.

Figure 10.3: New experimental 4D procedure using P-DVC framework.

Various experimental procedure: The development of P-DVC opens up new way of

designing an experiment. Three possibilities:

• Multi-view: performed with a single beam and at least two acquisitions per step,

using a multi-source scan (as developed in medical scanners) or with a beam splitter.

The different fields of view do not necessarily need to be at 90◦. The rule is to have

enough sensitivity to be able to identify the motion (e.g., 10 degrees with a well

textured sample and a well regularized kinematics could be enough, at the expense

of an anisotropic resolution, see also TEM tomography where the tilting angle is

limited [18]) if a rotation is superimposed. Multiple beams also offer additional

benefits: two X-ray energy may provide an additional chemical contrast. X-ray and
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neutrons tomography can be combined as in the NeXT project. This last perspective

is discussed further down.

• Single view acquisition: the experimental setup is simpler but a strong knowledge

on the expected kinematics is needed to correctly choose the regularization. In this

kind of experiment, the rotation speed, the loading rate and acquisition rate have

to be correctly chosen. For the measurement of a smooth phenomenon, the rotation

can be slow but for a fast experiment, with time localized phenomenon, the higher

the rotation rate, the easier the identification.

• Dynamic tomography: still an ongoing project, dynamic tomography is a very

promising topic when dealing with very fast phenomenon and medical imaging.

In all of those applications, every additional data can be introduced to help the kinematics

to converge. An additional visible camera for example or a laser measurement are very

accessible setups that could easily be used.

Obviously the P-DVC procedure can also be included in a standard 4D DVC experi-

ment and would allow following the motion between acquisition steps (and follow a crack

evolution for example).

Unconventional in-situ machine testing: One limitation when designing an in-situ

testing machine is the frame of the machine that has not to move in front of the beam.

Three solutions are developed: using a transparent frame (for tensile test [19, 20] or 3

points bending [21]), enabling the sample to rotate in the machine (with at least one

motor) or using a laminography setup for thin samples. It is to be noted that almost all

mechanical in-situ testing machine are uniaxial testing machine.

However, with the developed P-DVC procedures, the sample has not to be imaged

and rotated during the experiment. This opens up new experimental in-situ procedures

with standard machines. The sample could be imaged before the experiment, without

the machine. Then, positioned in-situ , inside of the testing machine, the sample could

only rotate in the possible range such that the acquisition is not disturbed by the frame

shading. For example, one could even imagine using a bi-axial testing machine such as

the one used in laminography experiments and in [22, 23] as soon as few windows allow a

projection acquisition at different angles. A test performed with a small hexapod testing

machine that enables very complex multi-axial controls (see figure 10.4) could be a very

interesting experiment.
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Figure 10.4: Hexapod testing machine that could be positioned in-situ. The three red

arrows indicate the possible acquisition windows where the beam is not masked by the 6

actuators.

Real time tests: such as hybrid test that consists in driving a test, on the fly, from a

numerical simulation with specific quantity of interests measured or computed. A real dia-

logue between experiment, measurements and numerical simulation is performed. Among

the different categories,

• sub-structured hybrid tests [24, 25] where a large structure is simulated and a small

element of this structure that is critical or complex is tested experimentally. The

computed boundary conditions are injected physically in the experiment through

more or less complex actuators. The loop is closed when the measured quantities

that are injected in the simulation.

• clone hybrid tests, where the simulated sample is the same as the measured one [26,

27]. This method allows the boundary of a sample to be controlled from computed

quantities of interest (e.g., following a predefined crack path) and generates very

discriminant tests.

Both hybrid techniques are not suited for full 4D measurements because the acquisition

is too long. However, P-DVC could be an interesting way to control a standard 4D

experiment. The acquisition of the reference volume and sensitivity computation could be

performed in an offline phase. Then, at the beginning of the experiment the linearized

problem could be solved very quickly. During the acquisition of the full 3D scans, the

volume and sensitivities could be updated.

Developing hybrid tests may require the used of complex multi-axial testing machine

when modifying the boundary conditions in accordance with the numerical model (the use

of multi-axial force sensors may be useful too). This perspective could be coupled with

the unconventional in-situ machine testing one.
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Figure 10.5: Scheme of a sub-structured hybrid test where a small part of the structure is

simulated.

Being able to perform such real time controlled tests is very interesting for parameters

identification and to design very discriminating tests. Instead of acquiring volumes at

predefined [σ,ε] positions (and discovering the results maybe too late), the acquisition

states could be decided in accordance with the measured quantity evolution (e.g., damage,

plasticity, crack position, etc).

Moreover, depending on the results, with a conic beam, a displacement of the sample

and testing machine carried out with the turntable would allow zooming in interesting

regions such as the crack tip area or on the contrary move back to have a more global de-

termination of the boundary conditions. Then the projection operator should be updated

with respect to the time evolution and could be given (at first order) by the tomograph

sensors (as performed for stereo-vision in [28]).

10.3 Perspectives and future projects

NeXT-Grenoble: An extremely promising imaging instrument is the NeXT-Grenoble

project2 developed at the 3SR laboratory and Institut Laue-Langevin (ILL) where a sample

can be simultaneously imaged with neutrons and X-rays. Designed on the ILL neutron

tomography beamline, an additional lab X-ray source is positioned perpendicularly to

the neutron beam. Because of a large space in the casemate, sample can be imaged

in-situ (under loadings and/or fluid injection for example, as developed in the PhD of

Maddi Etxegarai at the 3SR - Grenoble). A multi-modality registration framework has

been developed with X-ray and Neutron tomography data [29] allowing to exploit the

complementarity between all modalities and find a ‘common language’ between X-Ray

and Neutron images. The comparison of absorptions is presented figure 10.6 and shows

the complementarity of the two waves. With this instantaneous double acquisition coupled

with P-DVC, high speed phenomenon could be imaged without having to rotate the sample

and exploiting all modalities advantages. A dried pine cone opening in a wet environment

2 https://next-grenoble.fr/

https://next-grenoble.fr/
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would be a funny (as funny as useless) and challenging kinematics–fluid measurement

application of moving samples with gray level changes.

Figure 10.6: Example of absorption with Neutron (top) and X-Ray (bottom) (images from

PSI)

In a similar spirit, medical dual-source or dual-energy CT [30, 31] have a simultaneous

acquisition with different energies (for example, 80 and 140 kVp), with orthogonal of com-

mon X-ray beam directions. This technology could also highly reduce the time resolution

of the measured phenomenon. Images of the NeXT project and a dual–energy CT are

shown figure 10.7.

Elastography in medical imaging: Biomechanical properties of living tissues and or-

gans are of great importance as they contribute to or are responsible for tissue health

and disease. The fine characterization of its properties (always elastic, often the Young

modulus, sometimes the Poisson ratio) allows quantitative diagnosis (i.e., Oncology: me-

chanical properties of tumor [34]; Opthalmology: eye pathologies [35, 36]; Applied to soft

tissues: kidneys, breasts, liver, prostate, cells, fascia tissues, etc).

Over the past 25 years, a range of elastography techniques that replace palpation have

been developed to image the mechanical properties of tissues [37, 38]. Identification of the

mechanical properties can be performed [39, 40, 41]. Two main categories [37, 38]: static

and dynamic approaches:

• Static / quasi static: Compression optical coherence elastography OCE [40, 42, 41].

https://www.psi.ch/niag/comparison-to-x-ray
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(a) (b)

Figure 10.7: (a) NeXT-Grenoble project combining X-ray and Neutron tomography and

(b) Dual-energy medical X-ray CT (Siemens Healthcare technology). Image extracted

from [32]. See also [33] for a material science example.

• Dynamic: Harmonic OCE [38], sono-elastography [43], Shear elastography [44, 39].

However, most of elastography methods are limited in depth (3-4cm for ultrasound

elastography, 1 up to 3mm for OCE depending on the material opacity, diffusion and

scattering).

CT images have not, to the best of my knowledge, been used for elastography purposes

and coupled with registration methods. A coupling between elastography and CT-P-DVC

would allow, based on very low dose X-ray CT scans for both static and dynamic, a

tissue characterization. This approach could be applied on standard CT scanners without

additional setup (possibly with a specimen enriched with standard medical tracers in order

to increase contrast and hence the sensitivity).

Dynamic tomography: Dynamic tomography has a huge potential in material and

medical imaging. It gives access to the correct reconstruction of moving volumes. Applied

in electron microscopy this would allow uncontrolled moving samples to be imaged. This

mechanical tests, the procedure could be performed completely continuously. In medical

imaging, the acquisition of fast moving phenomenon could be performed at low dose. This

low dose approach could also be used for in-vivo motion measurements (high speed wing

beats in a bee at approx. 120 Hz [45], modal in-vivo characterization of abdominal aortic

aneurysm sealing at approx 1-20 Hz [46]) as well as ear-drum frequency characterization

(much higher frequencies), etc.

10.4 Final words

The developed projection-based measurement allows, released from the volume reconstruc-

tions, the extremely fast 4D displacement field measurement of an experiment. The kine-

matics is read directly on the projections instead of volumes enabling a precious gain in ac-

quisition time. Moreover, when exploiting the consistency of the projection/reconstruction
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operator, the reconstruction can be corrected from the motion-artifacts and the method

can be extended to moving samples. Finally, when a gray level correction is included in

the model of the procedure, the material and phase changes can be identified.

The method applied on plaster, cast iron, sandstone and fluid, medical images for

various experiments: elastic brittle, plastic, capillary and pressure driven flow, vibration,

CT calibration, CT motion compensation, has huge potentials.

This projection-based approach opens up new avenues when performing a test, faster,

with reduced doses. The experiment are now focused on the key data (measurement,

model parameters, etc), allowing a large part of the redundancies to be cut down. Each

acquired data became thus more relevant for the experimental purpose. Coupled with

other orthogonal CT developments such as synchrotron setups (whose acquisition could

be performed at 270,000 frame rate!), multi-sources scanners, etc., or image regularizations

methods, the procedure performance could be very much increased.

The 4D imaging of first in all times phenomena can be dreamt of.
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Résumé : L’analyse quantitative de volumes 3D obtenus par tomographie permet l’identification et la validation
de modèles. La séquence d’analyse consiste en trois problèmes inverses successifs : (i) reconstruction des volumes
(ii) mesure cinématique par corrélation d’images volumiques (DVC) et (iii) identification. Les très longs temps
d’acquisition nécessaires interdisent de capter des phénomènes rapides.
Une méthode de mesures, Projection-based Digital Volume Correlation (P-DVC), raccourcit la séquence précédente
en identifiant les quantités clés sur les projections. Cette technique réduit jusqu’à 2 le nombre de radiographies
utilisées pour le suivi de l’essai au lieu de 500 à 1000.
Cette thèse étend cette approche en réduisant la quantité d’informations acquises, rendant ainsi accessibles des
phénomènes de plus en plus rapides et repoussant les limites de la résolution temporelle. Deux axes ont ainsi été
développés :
— d’une part, l’utilisation de différentes régularisations, spatiales et temporelles des champs 4D (espace/temps)

mesurés généralise la méthode P-DVC (avec volume de référence) à l’exploitation d’une seule radiographie par
étape de chargement. L’essai peut désormais être réalisé de façon continue, en quelques minutes au lieu de
plusieurs jours;

— d’autre part, la mesure du mouvement peut être utilisée pour corriger le volume reconstruit lui-même. Cette
observation conduit à proposer une nouvelle procédure de co-détermination du volume et de sa cinématique
(sans prérequis), ce qui ouvre ainsi de nouvelles perspectives pour l’imagerie des matériaux et médicale où
parfois le mouvement ne peut pas être interrompu.

Le développement de ces deux axes permet d’envisager de nouvelles façons de réaliser les essais, plus rapides et
plus centrés sur l’identification de quantités clés. Ces méthodes sont compatibles avec les récents développements
« instrumentaux » de la tomographie rapide en synchrotron ou laboratoire, et permettent de reduire de plusieurs
ordres de grandeurs les temps d’acquisition et les doses de rayonnement.

Title: Projection-based in-situ 4D mechanical testing
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Abstract: The quantitative analysis of 3D volumes obtained from tomography allows models to be identified and
validated. It consists of a sequence of three successive inverse problems: (i) volume reconstruction (ii) kinematic
measurement from Digital Volume Correlation (DVC) and (iii) identification. The required very long acquisition
times prevent fast phenomena from being captured.
A measurement method, called Projection-based DVC (P-DVC), shortens the previous sequence and identifies the
kinematics directly from the projections. The number of radiographs needed for tracking the time evolution of the
test is thereby reduced from 500 to 1000 down to 2.
This thesis extends this projection-based approach to further reduce the required data, letting faster phenomena be
captured and pushing the limits of time resolution. Two main axes were developed:
— On the one hand, the use of different spatial and temporal regularizations of the 4D fields (space / time) ge-

neralizes the P-DVC approach (with a known reference volume) to the exploitation of a single radiograph per
loading step. Thus, the test can be carried out with no interruptions, in a few minutes instead of several days.

— On the other hand, the measured motion can be used to correct the reconstructed volume itself. This observation
leads to the proposition of a novel procedure for the joint determination of the volume and its kinematics (without
prior knowledge) opening up new perspectives for material and medical imaging where sometimes motion
cannot be interrupted.

The development of these two axes opens up new ways of performing tests, faster and driven to the identification
of key quantities of interest. These methods are compatible with the recent “hardware" developments of fast tomo-
graphy, both at synchrotron beamlines or laboratory, and save several orders of magnitude in acquisition time and
radiation dose.
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