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Abstract
Granular media, such as sand, cereals and gravels are ubiquitous in our world.

Each of their constitutive particle is solid. However, considered as a whole, they

exhibit surprising behaviors: sometimes in a jammed "solid" state, they can under

certain conditions flow like a liquid, or even exhibit a gaseous regime. The character-

ization of this transition from one state to another is still an active field of research.

This thesis aims to characterize granular media in each of these two dense states,

"solid" and "liquid".

The first part is dedicated to the characterization of the flow of a granular

medium. Following preliminary studies by our team, we present a model taking

into account the collective aspect of granular flows, particularly the cooperative be-

havior of regions above and below this jamming transition. This topic is introduced

by a review paper in which we discuss the concept of fluidity in granular matter. We

then present an experiment of avalanche flow in a channel. We probe this model

on our experimental results and exhibit the non-local contributions on this three-

dimensional, frictional system. We then focus our interest on the definition of the

boundary condition in the vicinity of the free surface of such an avalanche flow. We

proceed by the mean of two-dimensional numerical simulation of rigid grains flowing

down an incline plane. This numerical chapter is divided into three sections: we

present the principles of the code and we use an original custom numerical set-up in

which we exhibit and quantify these non-local effects, and then we focus our interest

on the characterization of the flow at the free surface of the avalanche.

The second part of this thesis investigates the mechanical behavior of the "solid"

phase of granular media, in particular in the vicinity of the unjamming of the packing.

We present the acoustic anomaly which characterizes the change of phase in granular

media. We then present the experiment we built to measure elastic moduli at very

low confining pressures in order to get closer to the unjamming of the medium. We

propose a theoretical model in order to explain the constitutive dependence of the
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elastic modulus on the confining pressure and thus on the sound celerity in such

granular packings.
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Granular media, such as sand, cereals and gravels are ubiquitous in our world.

Each of their constitutive particle is solid. However, considered as a whole, they

exhibit surprising behaviors: sometimes in a jammed "solid" state, they can under

certain conditions flow like a liquid, or even exhibit a gaseous regime. The character-

ization of this transition from one state to another is still an active field of research.

This thesis aims to characterize granular media in each of these two dense states,

"solid" and "liquid".

The first part is dedicated to the characterization of the flow of a granular

medium. Following preliminary studies by our team, we present a model taking

into account the collective aspect of granular flows, particularly the cooperative be-

havior of regions above and below this jamming transition. This topic is introduced

by a review paper in which we discuss the concept of fluidity in granular matter. We

then present an experiment of avalanche flow in a channel. We probe this model

on our experimental results and exhibit the non-local contributions on this three-

dimensional, frictional system. We then focus our interest on the definition of the

boundary condition in the vicinity of the free surface of such an avalanche flow. We

proceed by the mean of two-dimensional numerical simulation of rigid grains flowing

down an incline plane. This numerical chapter is divided into three sections: we

present the principles of the code and we use an original custom numerical set-up in

which we exhibit and quantify these non-local effects, and then we focus our interest

on the characterization of the flow at the free surface of the avalanche.

The second part of this thesis investigates the mechanical behavior of the "solid"

phase of granular media, in particular in the vicinity of the unjamming of the packing.

We present the acoustic anomaly which characterizes the change of phase in granular

media. We then present the experiment we built to measure elastic moduli at very

low confining pressures in order to get closer to the unjamming of the medium. We

then propose a theoretical model in order to explain the constitutive dependence of

the elastic modulus on the confining pressure and thus on the sound celerity in such

granular packings.
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0.1 States of matter, change of states

0.1.1 States of matter

Matter is classically described by the three phase states: solid, liquid and gas. In a

solid, particles are closely packed together. Inter-particle forces are strong, hence

the atoms can not move freely. This is the reason why, at rest, a solid has a definite

shape and volume. An ideal liquid is also a dense state, but unlike the solid, its

shape can adapt to the container. Under constant pressure-temperature conditions,

its volume remains constant. In contrast to of dense states of matter, a gas in a

container occupies the whole volume: the dynamics of its constitutive particles is

governed by the kinetic energy and the matter is therefore dilute.

0.1.2 State variables

In thermodynamics, a system at equilibrium is characterized by physical quantities

called state variables. These can depend on the size of the system (such as the

volume, the mass, the intern energy...), in which case they are said to be extensive,

or on the contrary, intrinsic to the system (such as the temperature, the density...)

and they are then said to be intensive. The phase in which the object of the study

is, at equilibrium, is characterized by the equation of state that links all the intensive

physical quantities together. A very common example of equation of state in the

ideal gas law, that links the pressure P (that is intensive) to the temperature (also

intensive):

P = ρ
R

M
T

where ρ is the density (intensive, ratio of the two extensive quantities m and V

respectively the mass of the sample and its volume) ; M the molar mass (grams per

mole) and R the specific gas constant.

The change of state is governed by the evolution of these physical quantities that
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characterize the system. There are several types of transition.

0.1.3 Phase transitions

A phase transition occurs when one of the state variable of the system crosses

a certain threshold value. This transformation is a modification of the physical

properties of the system and can be described by thermodynamic tools and statistical

physics. From the mechanical point of view, we will show for the dense phases (see

next section) that phase changes exhibit very drastic macroscopic and mechanical

changes in the behavior of the material.

Solid

Gas

Liquid

A
C

Figure 1: Typical P -T phase diagram. The dashed line is the boundary between the
solid and the liquid phase for water and bismuth. A is the triple point at which the
three phases coexist ; C is the critical point of the system.

In thermodynamics, for common materials, changes of phase can be presented

using the pressure-temperature phase diagram (see figure 1). On this diagram, we

can easily see that at a given temperature T , an increase or decrease of the pressure

P can lead to the crossing of a state frontier and thus to a change of phase. Similarly,

at a given pressure P , a change of temperature can also lead to a change of phase.

Sometimes a material exhibits a phase transition regarding other physical prop-

erties: the Curie point1 characterizes the temperature above which some materials
1named after Pierre Curie (1859-1906)
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lose their permanent magnetism.

In the sample, the change of state of the material can occur in different ways.

There are two main categories for phase transitions.

Phase transitions appear when the characteristic energy of the system – the

free energy F – is no longer an analytical function (i.e. is not differentiable, or its

derivatives are not continuous) for all the state variables. Paul Ehrenfest2 was the

first to propose (in 1933) a classification of the phase transitions3. It is based on the

continuity of the successive derivatives of the free energy. First order transitions are

characterized by a discontinuity (a "jump") of the first derivative of the free energy

with respect to one of the state variables. Examples are the transitions between

solid-liquid-gas states: the volume, which is the first derivative of F with respect to

pressure P changes radically (discontinuously) during the phase changes.

Second order transitions, also called continuous phase transitions, are continuous

regarding the first derivative, but their second derivative (with respect to one of

the state variable) is discontinuous. A classical example is the para/ferromagnetic

transition in iron: at Curie Temperature, the magnetic susceptibility (which is the

second derivative of the free energy with respect to the applied magnetic field) change

discontinuously, unlike the magnetization (which is the first derivative). In the case

of change of phase between fluid and gas, note that there are certain conditions of

pressure and temperature for which the transition becomes of second order. Near

this critical point, the state of matter is not well defined and the density of the

medium fluctuates which scatters light and causes a milky aspect (called critical

opalescence). The material is said to be in a superfluidic state.

Spatially in the sample, the two kinds of phase transitions exhibit structural dif-

ferences. For the first order phase transition, there is coexistence of the two phases,

and the phase appearing becomes increasingly dominant with respect to the other

2Paul Ehrenfest (1880-1933)
3Nowadays, this classification has been slightly modified in order to take into account cases in

which derivatives of the free energy diverge (this is the case at the thermodynamic limit which is
defined by a diverging volume and number of particles in the system, and a fixed density).
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one that gradually disappears (the reader can think of melting ice in a pan: liquid

water and ice coexist). In contrast, during second order phase transitions, coexis-

tence of the two phases is impossible: the structure of the material changes radically.

This kind of transition, correlation lengths diverge. This gives rise to critical phe-

nomena, and thermodynamic potentials exhibit singularities characterized by critical

exponents.

In the framework of phase transitions, the concept of order parameter is key. It is

a physical quantity that only depends on the state variables of the system, and whose

value discriminates between the phases. For instance, in the liquid vapor transition,

the order parameter is the difference of densities. Providing some theoretical hypoth-

esis, once the order parameter ψ is determined, the free energy F of the system can

be written as a phenomenological function of ψ , and one can develop it as a Taylor

expansion in the order parameter. This is the approach used in our formulation of

the fluidity, as discussed in the first chapter of part 1. This approach is said to be

"mean-field", as it supposes that ψ is uniform in the system. However, close to the

transition, the fluctuations of the order parameter can be important, but this is not

the object of the present work.

Thermodynamic and statistical physics give a scope to study and understand

phase transitions. However at the macroscopic scale of the system, mechanical

aspects are also consequences of changes of the state of matter. In the following,

we will only focus on the dense states of matter.

0.1.4 Rigidity transition

Structural aspects

At the atomic scale, the different states of matter are characterized by their structure.

In a solid, molecules are ordered and form structures called crystals. They exhibit

long range translational order, unlike liquids for which disorder is dominant.

The pair correlation function provides a useful tool to characterize the structure of
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the material. It is defined as the probability of finding a particle at a given distance

r away from a given particle taken as reference. In other terms, it describes the

average spatial evolution of density within the sample. One can therefore see the

existence of a typical length above which the structure is repeated.

1.1. La transition de rigidité 9

très dense, alors que d’autres le représentaient comme une cristal défectueux. La

physique statistique a permis de proposer une nouvelle interprétation de la struc-

ture des liquides par l’intermédiaire de la fonction de corrélation de paire g(r) [8,9].

g(r) mesure la probabilité de trouver une particule à la distance r d’une autre par-

ticule donnée. La fonction de corrélation de paire est mesurée grâce à la diffusion

de neutrons, ou de rayons X[10]. Son allure, pour un liquide, présente un aspect

intermédiaire entre ce qu’on peut attendre pour un gaz et pour un solide.

Pour un gaz homogène, la fonction de corrélation de paire est constante et norma-

FIGURE 1.6 – Représentation schématique de la fonction de corrélation de paire pour un

solide cristallin idéal (a), et pour un fluide simple homogène (b).

lisée à g(r) = 1, i.e. dénuée de toute structure. La position des atomes ne montre

aucune corrélation spatiale. Dans un solide idéal, les atomes sont disposés sur les

noeuds d’un réseau géométrique de paramètre p, de sorte qu’on retrouve un atome

à chaque fois qu’on parcourt cette distance. Par conséquent, la fonction de corré-

lation de paire idéalisée est un peigne de Dirac (Fig. 1.6a) qui témoigne de l’ordre

structurel à longue distance.

Finalement, dans le cas d’un liquide, la fonction de corrélation de paire pré-

sente des oscillations amorties tendant vers 1 (Fig. 1.6b). Le liquide possède une

structure à courte portée évoquant celle d’un solide. Cet ordre disparaît au-delà de

quelques distances inter-atomiques. Ce point de vue fournit la base d’une théorie

fondée sur l’interaction de sphères interagissant à courte portée via un potentiel

répulsif[9], qui s’avère être une bonne approximation des liquides simples et ho-

Figure 2: Typical pair correlation function for (a) a solid crystal and (b) a homoge-
neous liquid. The solid exhibits a structural order at long range, whereas the liquid
does not. For liquids, the pair correlation function tends to 1, uniform probability
(Figure extracted from [1])

Figure 2 presents pair correlation functions for a solid crystal –the typical example

of an ordered molecular structure– and a typical disordered material: a homogeneous

liquid.

It is therefore worth mentioning that as previously explained, a variation of one

of the state variables can lead to a change of phase. This transition can be related

to evolution on the microscopic structure of the material. Figure 3 exhibits the

disappearance of the structural order during a phase change obtained by the increase

of temperature in a solid crystal.

These structural differences between the several states of matter have conse-

quences on the mechanical behavior. And change of states in matter can therefore

be studied with a mechanical approach, as we will do in this thesis.

Mechanical aspects

As previously seen, in a molecular solid, atoms are organized. Each particle’s position

is well defined. Under stress, solids present two types of response: when the applied
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Figure 3: Pair correlation function in respect of the temperature. When the temper-
ature increases, the order disappears. Simulation of CCP packing of Nickel. Data
from lecture of Matthieu Micoulaut (UPMC).

stress is sufficiently small, the network is slightly deformed and in a reversible way

(atoms and molecules recover their initial position) ; when the imposed stress passes

this elastic limit, a deformation remains after unloading of the sample. Figure 4

plastic (irreversible)

(remnant) plastic 
deformation

Figure 4: Typical stress-strain curve. In green, the cycle is reversible. Stress does not
rise over the elastic limit σe. In red, the cycle is irreversible as the stress goes over σe:
the material is plastically deformed and the sample exhibits a remnant deformation.

presents a stress-strain curve. From the initial state, the loading increases in a

reversible way: this is the elastic response. Over the elastic yield stress, a loading
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cycle exhibit a remnant deformation: the material has been plastically deformed.

When the relation between the stress and the strain is linear and the material

isotropic (physical properties are independent of the direction of space), the solid is

said to be Hookean and its constitutive equation is of the form:

σi j = Kεkkδi j + 2G

(
εi j −

1

3
εkkδi j

)
(1)

with K and G the elastic moduli, respectively in bulk (isotropic compression) and

in shear ; δi j the Kroenecker symbol ; while ε and σ are the strain and the stress

tensors.

Analogous developments can be made for the liquid state of matter. Rheology is

the study of the flowing characteristics of liquids. It seeks to relate stresses with strain

rates. One can for instance probe the fluid by imposing a shear rate and measure the

response in stress, or the opposite (at imposed shear stress, the deformation rate is

measured). The constitutive relation of such materials links these two quantities. In

the most simple case of incompressible Newtonian fluids, with homogeneous viscosity

in the whole sample, this relation is of the form:

σi j = −pδi j + µ

(
∂ui
∂xj

+
∂uj
∂xi

)
(2)

with p the hydrostatic pressure ; µ the viscosity of the fluid4 ; ui is the fluid’s velocity

along axis i and xi is the i-th spatial coordinate. This constitutive relation charac-

terizes the behavior of Newtonian fluids, for which the viscosity does not depend on

the shear rate nor evolves with time.

In crystalline solids and in fluids, the mechanical aspects are relatively well known

and identified. We have presented above the mechanical properties of solids (that are

characterized by their bulk and shear moduli) and liquids (whose flow properties are

given by the viscosity). What about the behavior of more "exotic material", such as

4in the case of non-isotropic fluids, the viscosity can be different according to the direction of
shear and can therefore be a tensor.
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foam, glass, and sand? These materials indeed share properties of a "liquid" and a

"solid" regime. They are dense and like liquids do not present any particular molecular

structure, but can present solid behavior such as elasticity. How to characterize such

materials and describe their mechanical properties?

0.2 Amorphous media

0.2.1 Definition

The term amorphous comes from the ancient Greek amorphos, "without shape". It

refers to the class of matter that is dense but without order (at mid or long range). In

an amorphous material, there is structural order, in contrast with solids, which as we

already explained exhibit a characteristic length in their structure. More practically,

it is the wide family of materials that gathers glass, elastomeres, pastes, emulsions,

foams, ... and granular media, which is the object of the present thesis.

Amorphous media are disordered assemblies of particles (atoms, molecules, drops,

bubbles, grains...). They share the structural disordered aspect of liquids. However,

they exhibit a rigidity transition that does not come with a change in the symmetries

of their structure.

0.2.2 Yield-stress fluids

Amorphous media present mechanical properties that diverge from those of Newto-

nian fluids. One of the most common is the shear rate dependence of their viscosity:

the viscosity decreases when the shear rate increases. This behavior is called shear

thinning. It is for instance the case for mayonnaise. Other fluid behaviors exist,

such as the increase of the viscosity with respect to the shear rate as in cornstarch

suspensions. We hence talk about shear thickening. In some cases, such as for sand,

the medium exhibits a yield stress.



32 0.2. AMORPHOUS MEDIA

yield stress fluid

shear thickening

Newtonian fluid

shear thinning

Figure 5: Typical fluid behaviors. Shear stress in respect to the shear rate.

Figure 5 presents different common fluid behaviors. Diverging from the Newto-

nian fluid, shear thickening and shear thinning respectively describe a hardening or a

easing of the shearing of the fluid for a given shear rate. Some fluids also present

a yield under which the shear stress is not sufficient to deform the material. For all

these material, the viscosity therefore varies with the shear rate.

Another very interesting fluid behavior is the thixotropy, defined as the dependence

of the fluid viscosity on the loading time. Example of thiroxotropic fluids are gels,

concrete and other liquids containing solid inclusions, etc. Research in this field is

very active [2, 3]. Note that in the present work, we do not focus our interest on the

time dependence of the physical parameters of our system. Some studies (e.g. [4, 5])

report thixodropic behavior in the rheology of dense granular flows. As long as we

need to prepare the granular matter to run an experiment (numerical or laboratory

experiment), the history of the system and the thixotropic effects might come into

play. However, this is not the object of the studies presented in this work.

0.2.3 Granular matter

The expression granular matter is quite uncommon in everyday life. An explana-

tion for this might be their wide variety and the fact that this type of material can
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be found in many diverse contexts. From asteroids to sugar, including boulders in

the mountains, gravels, sand, cereals, pills in the pharmaceutical industry... Grains

–round or not– are everywhere. Remarkably, granular matter represents the sec-

ond most common state of matter on Earth, after liquid (because of the oceans).

What characterizes this state of matter and unifies such systems under this single

expression?

A large number of particles

Rigorously, granular matter refers to any material constituted of a great number

of particles interacting only through contact forces. By great number we mean an

ensemble in which the study of the dynamics of each individual particle is prescribed.

Consider a handful of beach sand. It has a volume of order ∼ 100cm3. Say the grain

diameter is of order ∼ 0.1mm. We can therefore evaluate the number of grains we

have in hand at 100 million5! When dealing with such media, it is therefore justified

to deal with averaged, coarse-grained physical quantities and to describe the system

as continuous as we will do in this thesis. However, regarding the size of the particles,

this coarse-grained approach can seem questionable: what is the characteristic size

of interest under which this coarse grain approach is no longer relevant? We will

see in this thesis some questions about these issues, especially when dealing with the

rheology of dense granular flows: where and how can we define a pressure in the

medium, such as in a typical fluid? Where can we localize the free surface of an

avalanche?... are among the questions we will have to deal with in the first part of

this manuscript.

5here we make the assumption that the volume fraction of the granular media, i.e. the ratio
between the volume occupied by grains over the whole volume we consider, is about 60%. This is
a typical value for granular packings of grains of relative similar size diameter and without external
loading.
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Only contacts and mass interactions

It is also important to emphasize the importance of the nature of the interaction

governing the dynamics of such system. We just mentioned that particles only inter-

act through contacts (perfectly rigid or deformable, frictional or not...). This means

that only contact interactions and inertial (mass) effects are considered, because

they are dominant compared to the others (thermal fluctuations, capillary forces,

electrostatic interaction between particles...).

Figure 6: Classification of particulate matter as a function of the particle size. Picture
extracted from [6].

This statement differentiates between different types of heterogeneous media that

are composed of an ensemble of hard particles (see figure 6). Sufficiently large grains

(diameter greater than 100µm) only interacts through solid contact interactions.

Their dynamics is dominated by their inertia and the microscopic friction between

the particles. Below this size, additional interactions come into play, such as capillary

forces if the medium is wet, aerodynamical effects if the motion of the particles is

sufficiently important, van der Waals interactions, thermal fluctuations...

For instance, considering glass beads of 1mm diameter such as the one used for

the experiments of the present studies, the potential energy of each particle falling

from its own size under gravity g is of order mgd ' (ρgraind
3)gd ∝ 10−8J. In

contrast, energy from thermal fluctuations is of order kBT ∝ 10−21J in laboratory

conditions6.

6Actually, one can estimate the minimum particle size above which the system become athermal:
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Similarly, when the medium is slightly wet (or captures humidity from ambient

air, [7]), capillary bridges form between grains. This creates an attractive interaction

due to the surface tension of the fluid and the meniscus formed by the fluid between

the grain. Condensation around the grain can modify the behavior of the medium,

especially in the static phase as we will see in the second part of the thesis. In

contrast, in the flowing regime, capillary bridges are constantly broken, thus according

to [7] we can suppose that the flowing medium we study does not evolve with time

regarding this phenomena.

The medium we consider is therefore only governed by the weight of the grains and

contacts (with each other and walls). This means that such systems are dependent

on the microscopic friction between the beads. This also leads to erosion (especially

in our experiment of flowing grains in a channel, for which we used coated glass

beads). We did not focus our study on this phenomena in the present work because

we assume that the flowing beads remain perfectly rigid7.

A dissipative medium

It is also important to notice that shocks between particles are not completely elastic

(the restitution coefficient ε is not 1: the kinetic energy of two interacting particles is

not entirely conserved during a shock). The medium is therefore dissipative. Shocks

induce non-linearities in the dynamics of such systems. Another reason for which

granular media are very dissipative is their structural nature: within the medium,

contacts form chains. The dissipation is due to energy transfer through a growing

number of contacts along these chains. In some cases, these force chains to reach

the walls and the remaining part of the shock energy is transfered to the experimental

container.

thermal interactions start to be comparable to potential energy for grain size under dmin =
(

kBT
ρgraing

)1/4

which gives dmin ∝ 1µm, the colloidal limit.
7We will detail this issue in the section dedicated to the building of a rheology for dense granular

flows, first part of this manuscript
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Jamming transition

In analogy to the transition between solids and liquids, granular media exhibit a rigidity

transition when the number of contacts between the grains in the packing goes below

a critical value Ziso . This is based on the Maxwell criterion which states that a

system is rigid (resistant to shear and compression) when the number of contacts

forces becomes larger than the number of equation characterizing the mechanical

equilibrium. This counting argument yields the following exact result for frictionless

packing of spheres:

Z > Ziso = 2D, (3)

and for frictional packings:

Z > Ziso = D + 1, (4)

where D is the spatially dimension. When Z = Ziso , the system is said to be isostatic.

This value appears for a lot of material properties as a critical point, either in the

liquid or in the solid state.

0.3 Layout of the thesis

In this introduction, we have presented the different states of matter and given

an overview of thermodynamic and mechanical properties of phase transitions. We

have presented the rigidity transition between solids and liquids. We explained how

the microscopic structure leads to the mechanical response of these states and we

introduce another kind of material, amorphous media, which exhibit features from

both the solid and dense states. We then focused and defined granular media, which

present both behaviors, "liquid" and "solid".

This thesis proposes two topics of interest, each on either side of the jamming

transition that separates the "liquid" and the "solid" regime of dense granular matter.

In the first part, we present a study of the rheology of dense granular flows. We



37

particularly focus on recent models that propose to take into account collective or-

ganization of granular matter to describe the flow of granular matter in situations

where both the static and the liquid regime coexist. This topic is investigated us-

ing two approaches: an experiment of an avalanche flow in a narrow channel, and

numerical simulations of flowing hard particles.

The second part of this manuscript presents a study in which the elastic properties

of granular jammed assemblies are probed by the means of acoustics measurements.

We built an experimental setup which, installed on board of the Airbus ZeroG, con-

trols the confining pressure on a granular assembly and which can attain very low

confinement (∼ 10Pa).
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Part II

Non-local rheology of dense granular

flows
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Chapter 1

Determining a fluidity for dense

granular flows
We present in this chapter a review in which we discuss the concept of fluidity in

granular matter. We first introduce and define the local, µ(I)−-rheology and then

expose its lacks. We define the terminology non local and review different approaches

that attempt to model non-locality. In this context, we present our approach in

which we proceed by a gradient expansion of the constitutive equation. We explain

the choice we make in identifying the fluidity parameter f as the inertial number,

as opposed to the elasto-plastic approach for instance. We report the conceptual

differences between these constitutive relations proposed for granular matter. In the

limit of rigid particles, we present a linearization of the non-local equation in the

case of homogeneous shear stress profile. This approach will be used in the following

chapters in order to compute the complete flow profiles of the configurations we

investigate.
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Abstract. The aim of this article is to discuss the concepts of non-local rheology and fluidity, recently
introduced to describe dense granular flows. We review and compare various approaches based on different
constitutive relations and choices for the fluidity parameter, focusing on the kinetic elasto-plastic model
introduced by Bocquet et al. (Phys. Rev. Lett 103, 036001 (2009)) for soft matter, and adapted for
granular matter by Kamrin et al. (Phys. Rev. Lett. 108, 178301 (2012)), and the gradient expansion of
the local rheology µ(I) that we have proposed (Phys. Rev. Lett. 111, 238301 (2013)). We emphasise that,
to discriminate between these approaches, one has to go beyond the predictions derived from linearisation
around a uniform stress profile, such as that obtained in a simple shear cell. We argue that future tests
can be based on the nature of the chosen fluidity parameter, and the related boundary conditions, as well
as the hypothesis made to derive the models and the dynamical mechanisms underlying their dynamics.

1 Introduction

Since non-locality was introduced as an interpretive frame-
work for dense granular flows [1–4], it has become a
key concept to describe the rheology of complex fluids
in soft condensed matter. However, the connections be-
tween the various contributions to this subject, their sim-
ilarities and possible conflicts need clarification. In par-
ticular, among the pending questions that must be an-
swered, a fundamental and vivid issue is the possible
emergence of non-locality as the signature of a dynamical
phase transition [5–9]. This interrogation does not only
concerns granular matter but should be apprehended in
the more general context of amorphous solids undergoing
a rigidity transition. At present, different conceptual ap-
proaches have been put forwards to describe non-locality
and several non-local constitutive relations were proposed
for granular matter. It is thus fair to ask whether these
approaches are equivalent and to which extent, for exam-
ple, they are similar to phase field models [10–13] built on
an underlying liquid/solid phase transition. Also for gran-
ular matter, shear-banding and apparent “creeping zones”
are observed which are difficult to re-conciliate with a
simple local rheology [14], and this has been the start-
ing point of different propositions for non-local constitu-
tive relations. For many, the elements of proof validating

⋆ Contribution to the Topical Issue “Multi-scale phenomena
in complex flows and flowing matter” edited by Luca Biferale,
Massimo Cencini, Alessandra Lanotte and Mauro Sbragaglia.

a e-mail: andreotti@pmmh.espci.fr

these approaches has often been a mere “good fitting” of
the velocity profiles. A legitimate question is then to ask
whether this is sufficient to demonstrate the validity of a
particular model and moreover, what could be other more
stringent tests providing essential information on the dy-
namical mechanisms responsible for non-locality.

Our aim here is to propose a critical discussion of the
concepts of non-local rheology and fluidity in dense gran-
ular matter, based on recent progresses as well as older
results. In the next section, we first review the rheology
of dense granular flows, starting from the local rheology
towards evidence for non-local effects and describing non-
local approaches. In sect. 3, we discuss the concept of fluid-
ity. Section 4 is devoted to the differences among the non-
local constitutive relations proposed for granular matter.
We end the paper in sect. 5 with a discussion on further
possible tests that must be performed to better under-
stand the mechanisms at the origin of non-local effects.

2 On the rheology of dense granular matter

2.1 Rigidity transition

When sufficiently polydisperse to avoid crystallisation, a
granular packing at rest can be considered as an amor-
phous solid. By definition, amorphous solids refer here to
systems that may resist to a shear stress while they do
not present any long-range translational order at the mi-
croscopic scale, namely the grain size for granular matter.
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Let us consider, for clarity, an ideal rheometer in which
the material is submitted to a homogeneous shear stress
σ. The system behaves mechanically as a solid if it reaches
equilibrium at a finite strain γ. It is considered as elastic
if it returns to its original state, once the stress is removed
and plastic, otherwise. Conversely, the system behaves me-
chanically as a liquid if it flows permanently at a finite
strain rate γ̇. The system exhibits a rigidity transition if
its dynamical behaviour switches from solid-like to liquid-
like, when a control parameter crosses a threshold value.
Most soft amorphous solids present a rigidity transition
upon varying the shear stress, the threshold value being
named the yield stress σy. We hence define the yield pa-
rameter as the ratio of the shear stress to the yield stress

Y =
σ

σy
. (1)

We emphasise here that the existence of a yield stress is
not an intrinsic material property. It depends on the other
control parameters that are kept constant during the load-
ing. As an example, a granular material, dry or suspended
in a fluid, displays a yield stress when the particle-borne
pressure P is imposed, whereas it does not when the vol-
ume fraction φ is imposed. This is obviously a key issue
and often a source of confusion. This question was dis-
cussed recently in the context of different amorphous par-
ticulate materials [15].

The rigidity transition is intimately related to the
multi-stability of the energy landscape: the system has
to cross energy barriers to flow. The physical nature of
the mechanisms preventing irreversible plastic deforma-
tions allows to classify the soft amorphous materials and
their corresponding rigidity transition as:

– Entropic for glasses formed by thermal quenching [16–
18]; the rigidity transition is then called “glass transi-
tion” [19].

– Enthalpic for soft elastic particles at high volume frac-
tion [20–24]; the free energy may result from capillar-
ity (foam, emulsion), from electrostatics, from parti-
cle elasticity, etc. The rigidity transition is then called
elasto-plastic depinning transition [25–27].

– Geometric for hard grains submitted to a confining
pressure [28]; the rigidity transition is then called jam-
ming transition [29].

Although we focus here on the last case, we will frequently
discuss connections with other complex fluids in soft mat-
ter.

2.2 Local rheology

Following the seminal paper by GdR MiDi [30], major im-
provements were obtained to provide a consistent frame-
work to understand and model how granular matter flows.
In the rigid limit, granular matter does not present any
intrinsic energy scale and confining pressure P thus pro-
vides the only relevant scale of energy per unit volume. As

a consequence, P sets the yield stress as σy = µcP , where
µc is the “critical” friction coefficient, which depends on
microscopic material properties (e.g. packing polydisper-
sity, inter-granular friction, shape, etc). For a real granu-
lar material, the rigidity transition is actually subcritical,
a property associated with the presence of inter-granular
friction, and the hysteresis of the effective friction coef-
ficient has remained unexplained up to now. For grains
of mean diameter d and mass density ρg, the confining

pressure also sets the time scale T = d/
√

P/ρg for plas-
tic reorganizations at the granular level (microscopic time
scale). Following [30,31], one can define the rescaled strain
rate, or inertial number, as

I ≡ γ̇T =
γ̇d√
P/ρg

. (2)

Writing the yield parameter as

Y =
σ

σy
=

σ

µcP
, (3)

the constitutive relation for homogeneous steady flows
takes the generic form

Y =
µ(I)

µc
= 1 + aIn, (4)

n = 1 for grains presenting a standard friction coefficient
≃ 0.5 at contact, and n = 1/2 for frictionless grains. This
relation must be complemented by a law relating the vol-
ume fraction φ to the rescaled strain rate I

φ − φc = −bIn, (5)

with the same phenomenological exponent n; a and b are
constants that depend on the microscopic details of the
system. This derivation is simply based on dimensional
analysis, in the rigid limit where the grain elasticity is ir-
relevant. Empirical measurements indeed show a frictional
behaviour with the emergence of a yield stress.

Relation (4) is well suited to investigate pressure-con-
trolled situations. However, the same equations can en-
tirely be recast to handle situations where φ is fixed, and
then the yield stress disappears from the constitutive pic-
ture. Inverting eq. (5), one obtains

P = b2/n ργ̇2d2

(φc − φ)2/n
, (6)

σ = µcb
2/n

(
1 +

a

b
(φc − φ)

)
ργ̇2d2

(φc − φ)2/n
. (7)

In this representation, the shear stress clearly vanishes in
the limit γ̇ → 0, i.e. if φ < φc. From this derivation, we can
see that, even in the limit of rigid particles, i.e. without
any explicit elasticity, a granular material is compressible
under shear [32]. The pressure therefore requires time to
establish over the size of the system. Provided this time
scale remains short compared to γ̇−1, the pressure can
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be considered as defined “instantaneously” and thus can
be used as a state variable instead of φ. This is indeed
a central assumption to neglect compressibility (Boussi-
nesq approximation) when using the µ(I) formulation in
heterogeneous situations: it implicitly requires that pres-
sure is established macroscopically over a very short time
scale and varies slowly in time and space.

Using this close set of constitutive relations, a quan-
titative agreement with numerical or experimental mea-
surements has been reached in different configurations. In
particular, for avalanche flows of glass beads on a rough in-
clined plane —an important situation as the yield param-
eter Y is fixed by the inclination angle— Pouliquen [33]
has derived an effective flow rule consistent with the µ(I)
rheology. This has led to a three-dimensional extension of
the local rheology [34], yielding the correct scaling laws
characterising the chute flow geometry.

Dense granular suspensions have been shown to follow
the same rheology, with T = ηf/P , where ηf is the viscos-
ity of the suspending fluid, to form the so-called viscous
dimensionless number T γ̇ [35, 36] —sometimes noted J .
More generally, the rheology obeyed by a granular ma-
terial in a homogeneous steady state takes the very same
form as observed for soft material presenting a yield stress.
In those more general situations, the shear rate γ̇ can then
be rescaled by a plastic time scale T , to form a dimension-
less number akin to I ≡ γ̇T . This kind of rheology takes
the same generic form (4), often called a Herschel-Bulkley
constitutive relation, for all these systems.

2.3 Failure of the local rheology

Consider now a heterogeneous shear flow. Its rheology is
said local if the stress tensor at a given location is still a
function of the shear rate at the same place. Non-locality
refers to any deviation to such a local constitutive relation.
Before giving precise examples, let us discuss the choice
of such a name. It has been introduced in granular ma-
terial to describe the distant transmission of momentum
through the granular skeleton, during collisions [1–4]. In
the limit of rigid particles, this transport of momentum is
instantaneous so that a stress, which is a flux of momen-
tum, can be induced by distant collisions.

In hydrodynamics, the epitome of non-locality is pres-
sure. In a simple fluid, pressure is transmitted at the speed
of sound. At low mach numbers, the time needed for a
pressure signal to cross the entire flow is small compared
to γ̇−1. In this limit, pressure is determined by the incom-
pressibility condition ∇ · v = 0, where v is the velocity
field. Taking the divergence of the Navier-Stokes equation
one therefore obtains, for a Newtonian fluid, the Laplace
equation

∇2P = −ρ∇ · (v · ∇v). (8)

Pressure balances the potential part of inertial terms. The
Biot-Savart equation provides an explicit solution of this
equation under an integral form. The fact that pressure is
a function of the whole velocity field, and not only of the
local strain rate then appears explicitly. As a conclusion,

there are a priori two definitions of non-locality which are
not equivalent:

i) Momentum is transported over large distances on a
time scale small in comparison to γ̇−1 and to the plastic
rearrangement time scale T .

ii) The constitutive relation involves a second state
variable, which is not a function of the strain rate, and
whose evolution is controlled by an independent equation,
typically involving a Laplacian operator.

For instance, the kinetic theory, which is valid for di-
lute and rapid granular flows, is non-local in the weak
sense ii), since it introduces an independent field repre-
senting the mean squared velocity fluctuations (the so-
called granular temperature), which may control the stress
tensor [39]. However, the transmission of momentum re-
mains perfectly local in the sense i).

Non-locality in the weak sense ii) manifests itself
through different properties. The first one is the evidence
of a creeping flow in regions below the yield condition
(Y < 1) [30, 40–43]. Instead of the expected static zone
(i.e. a solid), one observes an exponential spatial relax-
ation of the shear rate γ̇. A second property is the fact
that the yield conditions are sensitive to the system size
and to the boundary conditions. In the case of granular
matter, the yield stress measured on an inclined plane
depends on the thickness of the deposit [30, 33]. Also,
in conditions where the grains should flow according to
the local rheology, jammed regions are identified below
the flow [44]. Furthermore, for self-channelised flows close
to jamming, quantitative departure from the local rheol-
ogy predictions are explicitly shown [45]. Finally, prop-
erties pointing on the existence of non-local effects are
revealed by micro-rheology experiments. For example, the
force-velocity relations assessed by an intruder plunged in
the material strongly depend on the presence of a distant
shear flow [46–48], or of a vibrating boundary [49]. Exam-
ples of manifestation of non-locality for soft and granular
matter are given in fig. 1 and fig. 2.

2.4 Reviewing non-local models

We review here the main approaches that were put for-
wards to tackle these problems.

2.4.1 Cosserat approach

In the framework of plastic theories developed for soil me-
chanics, the formation of localised shear bands is some-
times apprehended via a Cosserat extension of the contin-
uous elasto-plastic theory (see for example [50] and refer-
ences therein). To describe the quasi-static state of defor-
mations of a granular material, new fields are introduced
that couple stresses and rotations. This theory introduces
a microscopic length scale describing the range of influ-
ence of the microscopic granular rotations and provides a
non-local coupling for plastic deformations over this scale.
However, in spite of the fact that it may provide a useful
regularisation technique for numerical computation meth-
ods, its use is often seen as limited since the issue of assess-
ing objectively the constitutive parameters and providing
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Fig. 1. Experimental and numerical results for soft and granular matter displaying non-locality. (a) Velocity profile of the
flow of a jammed emulsion in a micro-channel with rough surfaces, data from [5]. Local rheology would predict a plug flow.
(b) Velocity profile of a granular flow in a 2D shear cell. Local rheology would predict a linear velocity profile. The numerical
data are from [37]. (c) Experimental (triangles) and numerical (squares) velocity profiles of a foam flow in a Couette cell, data
from [38] and [72], respectively. Local theory would predict a localised failure at wall.

Fig. 2. Evidences of non-local behaviour for granular matter. (a) Experimental measurements of the stopping (black symbols)
and starting (white symbols) heights on an inclined plane with glass beads, data from [30]. The dependence of stoppage and
onset of flow with the granular height are manifestations of the non-local character of the rheology. (b) Normalised creep velocity
of an intruder in a Couette cell filled with glass beads as a function of the normalised pulling force on the intruder, data from [47].
Data are taken in conditions where the intruder should be blocked (in the solid phase) in a local rheology picture based on a
Coulomb yield criterion. (c) Experimental velocity profile of a dry granular avalanche flow in a narrow channel with frictional
lateral walls. The dashed line is the prediction of the local rheology displaying a depth z where flow stops whereas the granular
continues to flow below this limit.

consistent boundary conditions for the fields, has so far
remained a shortcoming of the approach.

2.4.2 Phase field approach

As stated above, non-locality, in the weak sense, reflects
the existence of a state parameter, beyond the strain rate,
determining the stress values. As this parameter measures
how fluid the system is, following Derec et al. [51], we will
refer to it as the “fluidity” and will note it thereafter f .
We warn the reader that in different papers, fluidity may
refer to different physical quantities. Here, we keep the
name and its conceptual definition in relation to non-local

rheology. Importantly, we consider that for our purpose,
a relevant fluidity has to be selected on physical basis,
amongst all state variables.

From a phenomenological point of view, fluidity plays
the role of an order parameter describing the dynamical
transition from solid-like to fluid-like behaviour. It was
first proposed by Aranson and Tsimring to introduce a
phase field f which vanishes in the static state and which
tends to 1 in the fully fluidised state [10]. In this approach
f is therefore dimensionless. The overall shear stress is
then formally decomposed as the sum of a solid- and
liquid-like contributions weighted, respectively, by 1 − f
and f . Following Landau standard derivation, the order
parameter f is controlled by a reaction diffusion equation
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of the form
T ḟ = I(f) + ℓ2∇2f, (9)

where I is a function of f parametrised by the state vari-
ables and in particular by the rescaled shear rate I. Note
that I(f) can be designed to reflect a subcritical, hys-
teretic transition from solid-like to liquid-like behaviours,
as generically observed for granular matter. The micro-
scopic time T is a characteristic time for fluidization to
occur and ℓ an elementary length scale. The diffusion co-
efficient of the fluidity is ℓ2/T . The Laplacian operator re-
sults from a gradient expansion, assuming spatial isotropy.
This term is the transcription of a (weak) non-locality. As
a matter of fact, in the steady state, f is determined by
a non-linear Laplace equation, just like pressure in hydro-
dynamics.

This approach produces an effective rheology differ-
ent from µ(I) in the sense that Pouliquen’s flow rule [33],
valid for avalanches of spherical beads, is not recovered.
However, it yields a real solid/fluid phase transition semi-
quantitatively close to what is observed for sandy grains,
in particular the starting and stopping heights, flow rules
and erosion/deposition waves [13, 52–54]. Nevertheless, it
does not reproduce creep zones close to a shear band.

2.4.3 The elasto-plastic approach

The approach proposed by Kamrin et al. [55] to model
granular flows is directly adapted from the Kinetic Elasto-
Plastic (KEP) model introduced by Bocquet et al. [6] for
soft matter. The key concept is the fluidity, which can be
defined in a unified way as

f =
γ̇

Y . (10)

Wewill devote below an entire sub-section to this approach.

2.4.4 Mechanically activated plastic events

An original idea to describe non-locality has been pro-
posed by Forterre and Pouliquen [56]. It is based on
an analogy with Eyring’s transition state theory for
the viscosity of liquids, where mechanical fluctuations
—introduced here as a synonymous of heterogeneities—
would play the role of temperature in thermal systems.
Plastic rearrangements occur at a rate proportional to the
strain rate γ̇. They are assumed to generate at random a
new realisation of the forces on the contact network, al-
lowing for the formation of new weak zones where the next
rearrangement will occur.

At a semi-quantitative level, this approach improves
significantly the local visco-plastic approach as it proposes
a physical hint for microscopic processes inducing non-
locality for granular media. Moreover, it can predict de-
pendence of the stopping angle on flow height, shear bands
extension increasing with the flow rate. However, the the-
oretical outcomes are more difficult to quantitatively re-
conciliate with Pouliquen’s flow rule for the chute flow and

more importantly, it does not predict a thickness depen-
dence of the avalanche starting height. In the non-local
formulation proposed by Pouliquen and Forterre [56], the
shear rate γ̇ obeys an integral equation, which involves an
exponential kernel, function of the stress tensor and of the
distance, interpreted as a Boltzmann-like factor. Provided
the fact that for granular packing the stress fluctuations
take place generically over few grain sizes, the authors
assume a spatial dependence of the interaction kernel as
a Lorentzian function decaying algebraically (power −2)
over this granular size.

The relation between the shear stress and the strain
rate depends non-locally on two fields i.e. on two fluidity
parameters: the strain rate γ̇ and the confining pressure
P . The relatively fast decay of the chosen spatial kernel
makes possible a long-wavelength expansion of the rear-
rangement rate equation with respect to γ̇ and P . If P
varies slowly at the scale of the grain size, the expansion
generates at the first order a Laplacian operator, like other
models. More precisely, the constitutive relation presents
a dependence on ∇2γ̇, suggesting that the fluidity f is the
rate of plastic events γ̇.

2.4.5 The gradient expansion of the constitutive relation

We have ourselves followed an approach which is signif-
icantly different from the previous ones, and which sug-
gests possible candidates for the most appropriate fluidity
of dense granular flows [37,57]. Imagine the problem solved
and a fluidity f built, which vanishes in the solid phase
and increases with the ability to flow. We then follow the
standard vision of Maxwell rigidity transition as put for-
wards to understand jamming in granular matter. Due to
the cooperative motion of particles along soft modes, flow-
ing is facilitated when at a given point it is surrounded by
a more fluid zone. Conversely, the resistive stress is larger
when the point is surrounded by a more solid neighbour-
hood. Experimentally, the effect is particularly significant
close to the jamming transition, when f vanishes. There-
fore, one needs to define a relative fluidity, which compares
the degree of fluidity at one point and in its vicinity. As-
suming as before that the influence of fluidity is statis-
tically isotropic and results from short-range interactions
between shear zones, the relative fluidity can be defined as

κ =
ℓ2 ∇2f

f
, (11)

where ℓ is a length on the order of few grain diameters. The
Laplacian is indeed the lowest-order operator appearing in
a systematic expansion in a functional of f . The relative
fluidity κ remains finite when f goes to 0. The constitutive
relation can be expanded around the relation Y = µ(I),
valid in the homogeneous case, according to

Y = µ(I)χ(κ), with χ(κ) ≃ 1 − κ + O(κ2). (12)

κ is positive when the point considered is surrounded by
a more liquid region (higher f). This region flows more
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easily than expected from the local value of f , and the
corresponding shear stress is therefore lower. In this for-
mulation, χ(κ) must thus be a decreasing function of κ,
which justifies the minus sign in front of κ in eq. (12). Note
that the lack of multiplicative factor in eq. (12) defines
ℓ in a univocal way. Importantly, this phenomenological
derivation does not depend on the nature of the mechan-
ical interaction between the shear zones; the reader may
think of the analogy with the van der Waals gradient ex-
pansion of the Helmholtz free energy at a liquid-vapour
interface.

There are three obvious choices for the granular fluid-
ity. One would be to introduce the (coarse grained) num-
ber of contacts per grain Z and number of sliding contacts
per grain ζ. In the spirit of Maxwell rigidity transition the-
ory, the fluidity would then be defined as the distance to
isostaticity. A second possibility is to introduce the vol-
ume fraction φ, and to build the fluidity as the distance
φc − φ to the value φc that the volume fraction reaches in
the limit I → 0. This poses two problems: first, φc depends
on the fraction of sliding contacts; second, one would need
to introduce the mass conservation equation for φ i.e. to
consider explicitely the granular fluid as compressible. Fi-
nally, there is a last quantity that can play the role of the
fluidity: the inertial number I itself. It vanishes in the solid
state and increases with the degree of fluidity. Ockham’s
razor —law of parsimony— is obviously in favour of such
a choice, as the equations are closed without involving fur-
ther equations, in the dense limit φ ≃ φc. This does not
constitute a deep scientific argument, except that simple
models are better testable.

The constitutive relation (12) must actually be com-
plemented by another one for the volume fraction. As-
suming that φ is a local function of I, expressing the non-
local rheology with f = I with κ = ℓ2∇2I/I, and with
f = φc − φ with κ = ℓ2∇2φ/(φc − φ) are mathematically
analogous. The only subtlety is that compressibility must
be taken into account if the non-local constitutive relation
is expressed in terms of φ while the flow can be considered
as almost incompressible (i.e. in the Boussinesq approxi-
mation) if the non-local constitutive relation is expressed
in terms of I. In the later case, the pressure P is instan-
taneously determined and becomes a state variable.

To conclude this section, we rewrite the non-local rhe-
ology (12), with the choice of f = I = T γ̇ as a fluidity, as

0 =
IY
µ(I)

− I + ℓ2∇2I. (13)

This formulation, directly derived from eq. (12), makes it
easier to compare with the other approaches, as discussed
below.

3 The fluidity concept in soft elastic material

Since fluidity was introduced to describe granular flows,
it is important to review the physical basis of the recent
advances made to render the complex rheology of soft mat-
ter (foams, gels, emulsions, etc) using this concept. Many

amorphous materials, including granular matter, share the
same phenomenology, e.g. yield stress, Herschel-Bulkley
rheology. Although fluidity refers in standard rheology to
the inverse of viscosity, this name has been associated with
different quantities in the literature. In the recent concep-
tual picture derived from soft matter, fluidity appears as a
variable entering into the rheological constitutive relation
of the material. Qualitatively, low fluidity means closer
to a solid and large fluidity means closer to a fluid. Im-
portantly, in those approaches fluidity dynamics obeys an
auxiliary equation which sets in its temporal evolution.
This auxiliary equation reflects the microscopic or meso-
scopic processes at the heart of the physics that one seeks
to describe. We shortly review the propositions made in
the literature to define fluidity.

3.1 Fluidity and elastic deformation

Many complex fluids are visco-elasto-plastic. It is the case
of polymer melts, micelles and lamellar surfactant phases,
which are subject to shear-banding, but also the case of
foams and emulsions, which are yield stress fluids. In this
situation, an obvious state variable controlling the rhe-
ology is the elastic strain ϵ. The elastic deformation is
an intrinsic property describing for example, the polymer
chains extension or for a foam, the current bubble defor-
mation state. Importantly, ϵ is a field coarse grained in
space, in time, or averaged over realisations. The total
strain rate γ̇, determined from the subsequent positions
of the elements, can be formally written as the sum of the
elastic strain rate ϵ̇ and of a plastic contribution, equal
to γ̇ − ϵ̇. For convenience, we keep a scalar description
—the extension to a tensorial form does not present any
conceptual difficulty.

Non-locality in visco-elasto-plastic models was intro-
duced by Olmsted [14] who has added non-local terms
terms to the Johnson-Segalman model [58]. As in the
phase field approach, the overall stress is decomposed into
a fluid-borne stress, for instance Newtonian ηγ̇, and an
elastic-borne stress Gϵ, where η is a viscosity and G an
elastic shear modulus. The equation governing the evolu-
tion of the deformation ϵ reads

T ϵ̇ = T γ̇ − I(ϵ) + ℓ2∇2ϵ, (14)

where T ∼ η/G is the relaxation time scale of the com-
ponents (e.g. the polymer). The diffusion term ℓ2∇2ϵ is
responsible for non-locality. The function I reflects the
elastic properties of the components and determines the
constitutive relation measured in a homogeneous steady
state. For the Herschel-Bulkley relationship (4) (we recall
that I = T γ̇), one obtains

I(ϵ) =

[
1

a
max

(
0,

Gϵ

σy
− 1

)](1/n)

. (15)

The standard Johnson-Segalman model corresponds to
the exponent n = 1. The ratio ϵy = σy/G is the yield
strain above which plastic events nucleate. The same
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model has successfully been used to describe complex
fluids subject to shear-banding, with a vanishing yield
stress [14,59].

In the steady state, the elastic deformation obeys the
non-linear Laplace equation ℓ2∇2ϵ − I(ϵ) = −T γ̇, which
leads to exponential relaxations in space (see sect. 4). In
the limit where T becomes much smaller than γ̇−1, the
same equation holds at all times and the dynamics be-
comes truly non-local in the sense i).

The above relation was modified by Marmottant and
Graner to model dry foams [60], assuming that the elastic
part does not evolve over to the internal time T but over
the time scale γ̇−1, which is assumed to provide the only
time scale of the problem. This assumption is close to that
made by Forterre and Pouliquen [56] for granular flows.
Keeping the structure of eq. (14), the governing equation
then takes the form

ϵ̇ = γ̇
(
1 − I(ϵ) + ℓ2∇2ϵ

)
, (16)

where I is a function which is essentially 0 at low ϵ and
which sharply increases and crosses 1 at the yield strain
σy/G. Note that the derivation and tests proposed in [60]
actually do not take the non-local term into account (they
have ℓ = 0). We introduce it here, to clarify the connec-
tions between the various models.

3.2 Fluidity as a Maxwell relaxation rate

Considering again the ideal linear Couette cell controlled
at imposed shear stress σ, the mechanical response of a
soft material usually presents a transient in time. Over
time scales comparable to γ̇−1 or smaller, the structure
does not have time to evolve: the time dependence is said
to reflect visco-elasticity. If the rheology evolves over time
scales long compared to γ̇−1, the system is said thixotropic.
Thixotropy is very close for time dependence to non-
locality for space dependence. It reflects ageing, a prop-
erty often shared by many soft glassy materials arrested
in the glassy regime. Starting from a visco-elastic rheol-
ogy relation, Derec et al. have proposed a model suited
to describe such a thixotropic behaviour [51]. The fluidity
f is then introduced as a relaxation rate in a standard
Maxwell visco-elastic model

ϵ̇ = −fϵ + γ̇. (17)

The auxiliary equation that governs the evolution of f is
macroscopic and implies ageing and shear rejuvenation
processes. By contrast, Olmsted model assumes a con-
stant time for the relaxation and Marmottant and Graner
a time scale inversely proportional to γ̇. The three models
thus differ by the identification of the relevant strain re-
laxation time. Interestingly, in the solid phase (i.e. below
the Coulomb threshold) sheared granular packing display
ageing that can be described by this equation and the
fluidity parameter f is directly related to the rate of lo-
calised plastic events, called hot spots that were directly
visualised [61]. We will turn back to this point later.

3.3 Fluidity as the rate of plastic events

Close enough to the yield stress, flow occurs in concen-
trated emulsions and foams via a succession of reversible
elastic deformations [62,63] and avalanches of irreversible
plastic rearrangements (also called shear transformation
zones in the literature [64]). Such localised plastic events
induce a long-range anisotropic relaxation of the elastic
stress over the system, which constitutes an obvious source
of non-locality. Based on this observation, the fluidity in
a class of models has been associated to the rate of plastic
events, coarse grained in space and time. The physical pic-
ture assumes that the material is essentially in an elastic
state under stress but due to disorder or temperature or
mechanical fluctuations, localised plastic events nucleate,
which induce local irreversible stress relaxation processes.
The resulting deformation is absorbed elastically by the
medium. This is at the origin of a global plastic deforma-
tion rate. For a given fast and local relaxation process,
other plastic events may be triggered. When there is a
continuous rate of coupled plastic events spanning a sig-
nificant time, this is called an avalanche [25–27, 73]. This
avalanching process occurs preferentially at larger stress.
The exact account for avalanche dynamics as a net con-
tribution to the final plastic deformation rate is a difficult
issue and has therefore been, in most models, phenomeno-
logically modelled by means of non-linear terms entering
the fluidity equation.

The auxiliary equation for f can be a stochastic Smo-
luchowsky equation [65] but macroscopic —essentially
mean-field— models have also been derived explicitly. For
example Bocquet et al. [6] have proposed a model, called
KEP (kinetic elasto-plastic), which adds a spatial coupling
to the probabilistic framework introduced by Hébraud and
Lequeux [65]. The model describes the evolution of the
probability to observe locally a certain local “shear stress”
and furthermore assumes that plastic events are triggered
above a non-fluctuating “local yield stress”. The macro-
scopic rheology turns out to be controlled by the behaviour
of the shear stress probability distribution function in the
immediate vicinity of the local yield stress: in a steady
homogeneous state, a Herschel-Bulkley rheology is recov-
ered.

In the KEP model, plastic events lead to a noise
around them that helps to trigger other plastic events.
Non-locality therefore appears as a dependence of a “lo-
cal stress diffusion” on the rate of plastic events around
the region considered. Both the elastic strain (and there-
fore the stress) and the rate of plastic events stem from an
integral over the same probability distribution function. In
the steady state (but not during transients), they can be
related to each other. One recovers the relation between
the rate f of plastic events and elastic strain of eq. (17),
for ϵ̇ = 0

f =
γ̇

ϵ
. (18)

The non-local equation has been derived by Bocquet et al.
in the steady state (and only in this case) and takes the
form of a non-linear Poisson equation, analogous to that
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of Olmsted’s model (14) in the steady state

0 = γ̇ − T−1I(f) + ℓ2∇2f. (19)

We later refer to this equation as the KEP constitutive
relation or KEP model. However, a mathematical analogy
is not a physical equivalence: the fluidity defined as the
variable that appears in the non-local Laplacian term is,
in one case, the elastic deformation ϵ and in the other, its
relaxation rate f . Furthermore, to fully solve the problem
in association with a Laplacian term in the formulation,
it is necessary to provide boundary conditions for fluid-
ity [66]. The choice of the expression for the fluidity must
then be consistent with the physical boundary conditions.
We will turn later on the possible tests to determine which
fluidity is the relevant one.

Importantly, the macroscopic emergence of the auxil-
iary fluidity equation involves a Laplacian operator which
physically represents the spatial range of plastic relax-
ations. Mathematically, it is the source of non-locality in
the constitutive relation. A possible issue is that the stress
relaxation induced by plastic events can have in general
an anisotropic character, even in a statistical sense, which
is not reflected by the isotropic Laplacian term in (19). If,
in this triggering process, anisotropy is important, higher-
order terms must be included in the spatial expansion of
the stress propagator in [6]. Also, close to the yield con-
dition, long-range avalanches may take place and spatial
coupling can span large distances that eventually diverge
at the yield point. In this limit, the Laplacian, which is es-
sentially a mean-field operator, is unlikely to capture non-
locality, as it is well known that Landau-like approaches
generically fail in the vicinity of a critical point.

3.4 Fluidity as the inverse of viscosity

Bocquet et al. [6] have made a further, apparently inno-
cent, step: as the elastic stress σ is proportional to the
elastic strain ϵ, the structure of the equations does not
change if f is defined as

f =
γ̇

σ
(20)

instead of eq. (18). The fluidity f becomes the inverse of
the particle-borne viscosity. The equation governing f re-
mains of the form (19). We will discuss below the problems
associated with the change of variable ϵ → σ. We empha-
sise again that the relation between the rate of plastic
events and the fluidity is not trivial and must be tested.

To handle granular matter, Kamrin et al. [55] have
proposed to rescale this inverse viscosity by the yield stress
σy. If σy is constant, this does not change the shape of the
equation governing the new fluidity (eq. (19))

f =
σy

σ
γ̇. (21)

The fluidity f is then homogeneous to a strain rate. Again,
the function I can be determined from the constitutive

relation measured in a homogeneous steady state. For
the Herschel-Bulkley relationship, one obtains the implicit
equation

I(f)

1 + aIn(f)
= Tf, (22)

whose solution takes the form

I(f) = Tf + a(Tf)1+n + O(f1+2n). (23)

For the particular case of frictional granular material, for
which n = 1, one gets the analytical solution

I(f) =
Tf

1 − aTf
. (24)

4 What are the differences between non-local
constitutive relations proposed for granular
matter?

4.1 Fluidity, from soft-matter to granular matter

As seen above, the fluidity in Kamrin et al.’s model for
granular matter [55], derived from the results of Bocquet
et al. [6], writes

f =
σy

σ
γ̇ =

γ̇

Y =
µcP

σ
γ̇. (25)

The auxiliary equation for this parameter is derived from
eq. (19) by a linearisation that we discuss below in details,
as it is problematic.

The transposition from soft matter to rigid grains
poses a fundamental issue. The fluidity must obviously
be a state variable. By state variable, we mean that the
fluidity f must be a coarse-grained field (in space and
time) which can be determined from the state of the sys-
tem. It can for example depend on the strain, the strain
rate, the volume fraction, the mean number of contacts.
For a granular material, it can also involve the fraction
of sliding contacts or the orientation of the contacts. For
foams or emulsions, it can reflect the elastic deformation
of elementary cells. However, it cannot depend explicitly
on the stress tensor, which is not a state variable itself.
This directly results from Newton second’s law, which
tells that positions and velocities of the particles deter-
mines the state of a mechanical system, from which forces
are derived. Similarly, the (non-local) constitutive relation
must relate the stress tensor to the state variables —and
not the opposite. f as defined in eq. (25) was a state vari-
able for an elastic system, because it was fundamentally
based on the elastic deformation. It is no longer the case
for a granular system composed of rigid grains.

4.2 Does flowing granular matter exhibit plastic
events?

The transposition of models derived for elasto-plastic ma-
terial to granular systems obviously requires that granular
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matter behaves as hypothesised by elasto-plasticity. The
elasto-plastic picture assumes that the material behaves
most of the time like a solid, but presents local and short-
lived plastic events [26,64]. The associated scenario is a lo-
calised rupture initiation followed by a scale-free avalanche
of localised events. In order to investigate whether this pic-
ture constitutes an alternative to the jamming scenario to
interpret the non-local nature of the granular rheology, we
compare, by means of numerical simulations (Discrete El-
ement Method), the dynamics of two otherwise identical
systems composed of hard and soft grains.

The general numerical set-up is that used in [37]: we
consider a two-dimensional system composed of ∼ 2.103

spherical particles of a mean diameter d, with a ±20%
polydispersity. Such a choice ensures that the sample will
not crystalise. The particles can interact through contact
forces modelled as a viscoelastic force along the normal
contact direction and as a Coulomb friction along the tan-
gential direction. The corresponding coefficient of restitu-
tion is e ≃ 0.9. The Coulomb friction coefficient is set to
µp = 0.4 for fictional particles and µp = 0 for the friction-
less system. The particles are confined in a plane shear cell
composed of two rough solid walls made by the same par-
ticles, glued together. Periodic boundary conditions are
used along the shear direction x. The position of the wall
is controlled in order to impose a constant normal stress P
and constant and opposite velocities of the walls along x.
The system is in the asymptotic rigid limit when the ratio
kn/P of the normal spring constant with the pressure is
sufficiently large (typically above 103).

The presence of localised plastic events is usually based
on a visual inspection of different fields. The squared de-
viation from an affine deformation on a local scale has for
instance been proposed as a field indicating plastic activ-
ity [64, 67]. However, such a quantity, as well as all those
based on the non-affine velocity, characterises fluctuations
around the mean flow, and not the local contribution of a
certain area to the mean flow. We wish here to propose a
practical definition of these events, based on the quanti-
tative criterion that they must be separated in time and
localised in space. Importantly, to match their role played
in elasto-plastic models [6, 64, 67, 68], they must also con-
tribute additively to the average shear rate γ̇.

In order to detect localised plastic events, we have built
a coarse-grained field Γ̇ (r, t) reflecting, at time t, the local
contribution to γ̇ of a small region around the position r.
We impose that the time average of Γ̇ must everywhere
give γ̇. A coarse-graining method similar to that proposed
for the stress tensor [69,70] is adapted here to the compu-
tation of velocity differences and we take:

Γ̇ (r, t) =
∑N

j=1[ui(r, t) − uj(r, t)][zi(t) − zj(t)] exp
(

−||∆r||2
2δ2

)

∑N
j=1[zi(t) − zj(t)]2 exp

(
−||∆r||2

2δ2

) ,

(26)

where ui(r, t) is the velocity of the grain i at the time

t and ||∆r|| =
√

[zi(t) − zj(t)]2 + [xi(t) − xj(t)]2 denote

Fig. 3. Image sequence showing the temporal evolution of
the local shear rate Γ̇ for a system of frictional hard grains
(kn/P = 2 · 104) in the quasi-static limit (I = 5 · 10−4). Simi-
lar results are found for frictionless particles. Color code from
blue (Γ̇ = −40γ̇) to red (Γ̇ = 40γ̇). Time lapse between two
successive images: γ̇∆t = 10−3.

the distance between the grain i and j. δ is the coarse-
graining length, typically on the order of the grain size d.
We display in fig. 3 and fig. 4, for a system of rigid and soft
grains respectively, the map of the local contribution Γ̇ to
the shear rate γ̇ at different times. In fig. 5a,b we show the
corresponding spatio-temporal diagrams built on the cen-
tral line of the cell. We observe contrasted behaviours in
the two cases. In the soft system, nothing much happens
most of the time, except for short periods of intense activ-
ity, associated with a cascade of plastic events. Conversely,
the hard system presents more moderate but permanent
fluctuations even for asymptotically small γ̇.

To make these observations quantitative, fig. 5c shows
the probability distribution function (PDF) over time of

⟨Γ̇ ⟩, which is the space average of Γ̇ over the cell. In panel
(d), we similarly display the PDF of the spatial standard

deviation δΓ̇ . The hard-particle system presents a narrow
Gaussian distribution of ⟨Γ̇ ⟩ around γ̇, while the PDF cor-
responding to the soft system shows stretched tails, which
are due to a very intermittent behaviour associated with
these plastic events. The PDF of δΓ̇ provides informations
about spatial heterogeneities in the system. The peak of
the black line around 10γ̇ in fig. 5d indicates that they
are large and permanent in the hard system. For the soft
system, the PDF shows an algebraic decay, which means
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Fig. 4. Image sequence showing the temporal evolution of the
local shear rate Γ̇ for a system of frictional soft grains (kn/P =
10) in the quasi-static limit (I = 5 · 10−4). Similar results
are found for frictionless particles. Color code from blue (Γ̇ =
−40γ̇) to red (Γ̇ = 40γ̇). Time lapse between two successive
images: γ̇∆t = 10−3.

that the field Γ̇ is homogeneous most of the time. However,
when the computation of δΓ̇ is restricted to the periods
of time where plastic events occur (periods where |⟨Γ̇ ⟩| is
larger than a given value, here 5γ̇ in fig. 5d), its PDF also
presents a peak: in the soft system, plastic events are as-
sociated with a very heterogeneous field of Γ̇ . Conversely,
an assembly of rigid particles does not present local plas-
tic events when sheared permanently. Its dynamics is not
intermittent but presents spatial heterogeneities.

In conclusion, when constituted of rigid particles,
sheared granular systems do not present a succession of
elastic energy accumulation and sudden release. Their dy-
namics rather show permanent cooperative motions. As a
consequence, approaches explicitly based on elasto-plas-
ticity developed for soft systems, such as those discussed
above, cannot be transposed to granular flows, where elas-
ticity of the grains is irrelevant. The physical foundation
Kamrin et al.’s approach for granular matter [55] seems
already in this perspective, extremely problematic.

4.3 Linearisation in the case of a homogeneous shear
stress profile

The simplest situation in which the model predictions can
be tested is a shear cell inside which the shear stress,
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Fig. 5. Space-time diagrams showing the local contribution
of Γ̇ to the shear rate γ̇, measured on the central line of the
cell, for a system of sheared hard (a) and soft (b) grains. For
this example, the ratio of the grain contact stiffness kn to the
overall pressure P is 2 · 104 and 10 respectively; the shear rate
corresponds to an inertial number I = 5·10−4. Color code from
blue (Γ̇ = −40γ̇) to red (Γ̇ = 40γ̇). (c) Probability distribution
function (PDF) over time of the space average ⟨Γ̇ ⟩, for hard
(black line) and soft (red line) grains. (d) PDF of the spatial
standard deviation δΓ̇ . Red dotted line: δΓ̇ computed when
|⟨Γ̇ ⟩| ≥ 5γ̇ (soft system).

and therefore the yield parameter Y, are homogeneous.
In such a situation, a local rheology predicts a constant
shear rate, which, once rescaled by T , is denoted I∞. This
cell is driven by boundary layers on each side, whose prop-
erties are not necessarily those of the bulk. How to realise
this in practice for numerical simulations is for example
described in Bouzid et al. [37].

We first consider the case where I∞ does not vanish.
By definition, we have Y = µ(I∞). Making profit that Y
is constant, one can linearise the equations in I around
I∞. Using the gradient expansion model (eq. (13)), where
I is the fluidity, we obtain

ℓ2∇2(I − I∞) = n
(
(1 + aIn

∞)−1 − 1
)
(I − I∞)

= n
Y − 1

Y (I − I∞). (27)

Denoting by z the axis transverse to the flow, we obtain
exponential solutions of the form

I = I∞ + A+ exp(z/L) + A− exp(−z/L), (28)

where the relaxation length L is given by

L2 =
1 + anIn

∞
anIn∞

ℓ2 =
ℓ2Y

n(Y − 1)
for Y > 1. (29)
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Y → 1. (b), (d) Log-log plot of the same quantities.

It is important to emphasise the status of this length L.
As Y is the control parameter of this particular thought
experiment (or numerical simulation [37]), L can be ex-
pressed as a function of Y. It does not make Y a state vari-
able which would control another state variable L. Note
also that L can equally be expressed as a function of I∞.

Consider now the KEP equation (19) with the fluidity
f proposed by Kamrin et al. (25). As above, making profit
that Y is homogeneous, this equation can be linearised
around f∞ as

ℓ2∇2(f − f∞) =
ℓ2

L2
(f − f∞), (30)

where L is now given by

L2 = ℓ2
(

1

Y +
1

n(Y − 1)

)
for Y > 1. (31)

In the limit Y → 1, the relaxation length takes exactly the
same form L ∼ ℓ/

√
n(Y − 1) for the two models, despite

their differences.
The second case corresponds to Y < 1, so that I∞ = 0.

Again, the equations can be expanded around I = I∞ but
this linearization is completely different from the previ-
ous one, as I = 0 is not solution of the equations: one
needs the non-local term to get a solution. With the KEP
model (19), one obtains

ℓ2∇2f = (1 − Y)f, (32)

which gives exponential relaxations over a length L given
by

L2 =
ℓ2

(1 − Y)
for Y < 1. (33)

Using the gradient expansion model (13), we get

ℓ2∇2I = χ−1(Y)I. (34)

The shear rate therefore relaxes over a length L given by

L2 =
ℓ2

χ−1(Y)
for Y < 1. (35)
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Fig. 7. Function χ(κ) numerically measured for Y < 1 for
frictional (red circles) and frictionless (yellow circles) grains
—the system is that described [37]. The black solid line is a

fit with the empirical expression χ =

√
(1−κα)2+κβ(κα−1)

1−ακ
with

α = −15.95 and β = 16.30. Inset: zoom on the small values of
κ, in Lin-Lin axes.

In the vicinity of the critical conditions, κ is indeed small,
so that the linear approximation χ(κ) ≃ 1−κ can be used.
The divergence of L at Y → 1 is therefore given, again,
by eq. (33).

As an illustration, we display in fig. 6 such diverging
relaxation lengths extracted from numerical simulations
of sheared layer [37]. Velocity data, such as presented in
fig. 1b can be obtained systematically for Y values above
and below Y = 1. The fit of the velocity profiles is made
with a function of the form γ̇bz + C sinh(z/L), where C
and L are adjustable. This provides a direct measurement
of a relaxation length L, which effectively diverges on both
sides of the critical point Y = 1 according to the theoreti-
cal predictions (29) and (35). Figure 7 shows the shape of
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the function χ(κ). Its non-linear behaviour, which roughly
starts when κ > 0.1, is at the origin of the asymmetry of
L with respect to the yield point |Y| = 1 when sufficiently
far away from this point.

In conclusion, as far as linearisation is concerned, the
two models lead, despite their distinct starting point, ex-
actly to the same predictions for constant stress condi-
tions in the vicinity of the yield condition Y = 1. Because
two equations giving the same exponential solutions are
not necessarily equivalent, this shear cell configuration in
which the yield parameter Y is controlled and homoge-
neous thus cannot be used to discriminate between the dif-
ferent possibilities to build a fluidity. Further tests focus-
ing on time transients and on heterogeneous situations are
needed to test the starting constitutive equations, which
do not reduce to their linearised expressions.

4.4 Does the KEP rheology reflect a dynamical phase
transition?

An important claim made by Bocquet et al. in [6] is that
the KEP constitutive relation reflects a dynamic phase
transition controlled by the stress, in relation to the di-
vergence of the relaxation length L on both sides of Y = 1.
Because the model used by Kamrin et al. [55] is derived
from the KEP approach, this claim would also apply to
granular matter. On the opposite, in our framework, we
argue that the non-local rheology describes the same liq-
uid phase above and below the yield conditions. Because
this controversy concerns an essential point of physics, we
find it important to develop in this subsection some tech-
nical but essential details of this issue.

As already mentioned, the starting KEP equation (19),
when linearised around a homogeneous stress state corre-
sponding to a given constant Y, leads to the generic equa-
tion:

∇2f =
f − f∞

L2
. (36)

f∞ and L depend on the value of Y. This is the Ginsburg-
Landau equation used by Kamrin et al. [55] with the fluid-
ity given by eq. (25). A crucial point is that this equation
is used by these authors in non-homogeneous situations,
i.e. taking for Y the local value, with functions f∞(Y)
and L(Y) [68,71]. This would be a correct assumption for
a slowly varying stress field if Y was a state variable. We
have discussed above why it is not the case, even though
it is the control parameter of the considered linearisation.

Let us further illustrate the mathematical differences
between two seemingly equivalent derivations. Consider
the KEP constitutive relation (19) with γ̇ = fY (eq. (25)).
Associated with (22), which determines I(f) in the ho-
mogeneous case, and whose solution is given by (24) for
n = 1, we obtain

ℓ2∇2f = f

[
1

1 − aTf
− Y

]
. (37)

However, let us alternatively start from (36) and plug in
expressions of f∞ and L. f∞ is the solution of the equa-
tion γ̇ = T−1I(f∞), i.e. f∞(Y) = (Y − 1)/(aTY). The
expression for L depends on whether Y is larger (eq. (31))
or smaller (eq. (33)) than unity. To make it compact, let
us focus close to the yield condition Y = 1 for which both
cases can be summed up with L(Y)2 ∼ ℓ2/|Y − 1|. Doing
so, instead of (37), we obtain

ℓ2∇2f = |Y − 1|
[
f − Y − 1

aTY

]
. (38)

Equations (37) and (38) are obviously not the same. In
particular, their behaviour is very different when Y → 1
as the right-hand side vanishes in the second case but
stays finite in the first one. In other words, the original
KEP equation (19) and the final Ginsburg-Landau equa-
tion used by Kamrin et al. are irreducible one to the other:
the transformation is neither mathematically nor physi-
cally justified.

The divergence of the relaxation length L on both sides
Y = 1 has been interpreted as the signature of a dy-
namic phase transition controlled by Y. The region Y < 1
would correspond to the solid-like behaviour while the re-
gion Y > 1 would correspond to the liquid-like behaviour.
However, the original KEP model (37) was entirely based
on the description of a single liquid-like phase and the
Ginsburg-Landau equation (38) used by Kamrin et al. [55]
is not a controlled approximation of it. Y, which is not a
state variable, cannot be the parameter controlling the
phase transition. The liquid flowing phase can exist even
below the yielding conditions, for Y < 1.

4.5 Fluidity and boundary conditions

An important consequence of the choice of a particular flu-
idity f is the underlying assumption that f and its gradi-
ent ∇f are continuous, otherwise the use of the Laplacian
operator would not make any sense. This remark provides
a constraint on the nature of f , which can for example
be tested in a situation where the stress varies extremely
rapidly in space between two states. In this spirit, we
have performed numerical simulations where a secondary
micro-rheometer is placed in the bulk of a shear cell as pre-
sented previously (see figs.1b and 2 and details in Bouzid
et al. [74]). Shearing within the micro-rheometer is ob-
tained by means of localised bulk forces along two lines
which induce a discontinuity of the shear stress. We have
measured numerically the ratio R of the absolute value of
the shear rate on one side and on the other side of the
stress discontinuity. The pressure remains constant and
the direction of shearing is reversed (γ̇ changes sign at
the discontinuity). Figure 8 shows that |γ̇| is indeed con-
tinuous (R = 1) in both frictionless and frictional cases.
On the opposite, the fluidity proposed by Kamrin et al.
(eq. (25)) is not in agreement with the data, especially
when the yield parameter approaches zero.
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Fig. 8. Ratio R of the absolute value of the shear rate on the
outer and inner sides of a stress discontinuity, as a function
of the yield parameter Ym. Yellow circles are for frictionless
grains and gray lozenges are for frictional grains. Thick solid
line R = 1: prediction of the gradient expansion model [37]
using I as fluidity. Dotted line: prediction of fluidity theory [55]
using f = γ̇/σ as a fluidity parameter.

5 Further tests: the question of dynamical
mechanisms

We have presented a short review of non-locality in gran-
ular flows. We have mainly focussed on the comparison of
two models: the KEP model adapted for granular matter
by Kamrin et al. [55, 68] (see eq. (25)), and the gradi-
ent expansion that we have proposed [37] (see eqs. (12)
and (13)). The difference between these models has not
been recognised so far in the literature, essentially because
they lead to the same predictions for the velocity profile
in a situation where the stress is homogeneous. However,
our conclusion is that these models are fundamentally dif-
ferent and that their differences can be tested.

These tests must be performed in situations that are
strongly heterogeneous in space, like the one shown in
fig. 8, or to unsteady situations [75]. They can of course
concern the direct predictions of the model, but also the
choice for the fluidity, which is not necessarily the inverse
of viscosity, as well as the associated boundary conditions.
Importantly, these conditions should not be fitted, but
part of the physical analysis of the problem. More funda-
mentally, the difference between the models is to be found
in the hypothesis made to derive them and in particular
in the dynamical mechanisms underlying their dynamics.
For instance, many different explanations have been pro-
posed for the very same Herschel-Bulkley rheology. In the
context of non-locality, let us give several examples where
ingredients could be tested. Different models assume the
proportionality between the decay rate of fluidity and the
rate of plastic events. Such a proportionality can therefore
be investigated experimentally. Other models like KEP
prescribe not only the average fluidity but also its distri-
bution. The measurement of such a quantity is a more

severe test than the fit of velocity profiles. Would a model
assume the existence of microscopic yield conditions for
the nucleation of plastic events, it would then be neces-
sary to determine this quantity, to show that it exists and
that it is constant.

In the case of granular matter, we have shown that the
main point separating the KEP model and the gradient
expansion model, is the existence or not of elasto-plastic
localised events in the liquid regime. The KEP model is
directly adapted from soft matter and assumes that elas-
ticity dominates the dynamics. In the test presented here,
we have numerically shown that, in the rigid limit, there
are no localised plastic events and the flow is dominated by
non-affine collective motion along soft modes. One could
argue that the Coulomb friction condition at the contacts
between the grains may lead to plastic events. However,
comparing frictional and frictionless grains, we do not see
any difference neither on non-locality nor on the absence
of plastic events. Beyond other important reasons, we have
shown that the fluidity proposed by Kamrin et al. [55], as
an extension of the KEP model to rigid granular packings,
is not a state variable and is thus not continuous across a
stress discontinuity. We acknowledge that, in spite of the
fact that our choice of the fluidity parameter for dense
granular flows respects the state variable requirements and
quantitatively predicts some situations, it does not clarify
the understanding of the actual microscopic mechanisms
at work to definitely unravel the question of non-local rhe-
ology. We recently discussed some limitations on such a
choice and we pursue the work of identifying the micro-
scopic or mesoscopic processes associated with the flow of
hard grains [74,75].

Finally, amongst the points that have created a con-
fusion in the literature, is the fact that granular matter
does present localised plastic events, but only in the solid
regime [61, 76], not in the liquid regime discussed here,
were grain elasticity is irrelevant. Let us note that numer-
ical simulations performed with the standard Coulomb
model of friction at contacts, which perfectly reproduce
observations in the dense liquid regime and in particu-
lar non-locality, are not able to reproduce creep in the
solid regime. These two regimes (solid-like and liquid-like)
must eventually be described, but the transition between
these dynamical phases is known to be subcritical and to
present a hysteresis, a key aspect of granular matter that
remains unexplained at present. In this context, a non-
local transition between solid and liquid was addressed by
Wyart [77], based on the generic outcome of the Maxwell
rigidity transition for hard granular packing. Importantly,
the KEP model claims to describe this dynamical phase
transition as a critical transition controlled by the stress,
and the rheology both above and below the transition. The
gradient expansion, on the opposite, is based on the fact
that shear stress cannot be a control parameter for this
transition and describes the system as a unique continuous
liquid phase both above and below yield conditions. This
approach is therefore perfectly compatible with a subcrit-
ical transition to the solid regime, as it does not describe
the later.
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(1987).

51. C. Derec, A. Ajdari, F. Lequeux, Eur. Phys. J. E 4, 355
(2001).

52. F. Malloggi, J. Lanuza, B. Andreotti, E. Clément, Euro-
phys. Lett. 75, 825 (2006).

53. I.S. Aranson, F. Malloggi, E. Clément, Phys. Rev. E 73,
050302(R) (2006).

54. E. Clément, F. Malloggi, B. Andreotti, I.S. Aranson, Gran-
ular Matter 10, 3 (2007).

55. K. Kamrin, G. Koval, Phys. Rev. Lett. 108, 178301 (2012).

56. O. Pouliquen, Y. Forterre, Philos. Trans. R. Soc. A 367,
5091 (2009).

57. M. Bouzid, PhD Thesis, Comportement rhéologiques et ef-
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2.1 Motivations

As explained in [8], confined geometries (such as the heap or the narrow channel

flow) present certain interests as they exhibit several granular behaviors which allow

one to distinguish regions in the system: at the free surface, a so-called "gazeous",

almost collisionless regime where the particles have ballistic trajectories ; a flowing

("liquid"?) regime where the flow is dominated by the shear rate and a quasi-static

zone also mentioned as "creeping zone". Authors of [8] report two distinct regimes

in the quasistatic region: the upper one is dominated by the evolution of the volume

fraction and wall friction whereas the region beneath it is referred as a glassy zone,

where grains fluctuate within successive cages. On the one hand, as mentioned by

previous studies [9, 10, 11, 12], it enables to exhibit the role of wall friction and

the effect of wall confinement. On the incline plane (with no walls, or at least very

distant from each other [13]), the stress state is theoretically homogeneous along

the whole depth of the medium. The addition of the shear due to the wall friction

tends to slow down the flow in the depth, as the pressure on the walls –and therefore

the tangential component of their resisting force, caused by friction– increases. This

leads to the crossing of a theoretical flow limit initially predicted by the simple study

of the stress configuration in the system. The existence of a "creep zone" below the

flowing limit has been observed by Komatsu et al. [14]. Figure 2.1 presents different

averaging of the same film in which we monitored the flow in the narrow channel we

study in the following. Each image corresponds to a typical exposure time as it is

computed from different averaging times from the same image acquisition.

In this chapter, we will present the experimental set-up of the inclined narrow

channel we built in order to observe the granular flow in the whole range of depths,

including below the theoretical limit mentioned above. We will present the flow

predicted by the rheology usually used to model dense granular flows and exhibit its

shortcomings, mainly due to the fact that it lies on a local description of the flow.

The latter justifies the need to implement a correction in the previous rheology in
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exp. 0.025 sec exp. 0.25 sec exp. 1.5 sec

Figure 2.1: By changing the exposure time of the photo shot, we can see that it is
not obvious that a definite layer of grains flows. Indeed, there is a so-called "creep
motion" in the depth, even below the critical depth under which the yield parameter
Y < 1.

order to take into account the influence of the non-local effects in this system. We

will then bring insights to experimentally investigate this system in its entirety.

2.2 The experiment

2.2.1 Experimental set-up

The set-up we use is an inclined narrow channel within which we monitor the flow

with respect to the depth. The control parameters are the flow rate Q and the

dimensionless width of the channel W ∗ = W
d
(W and d being respectively the width

of the channel and the diameter of the beads). This system is interesting because

unlike the incline plane for which the yield parameter Y is fixed for the whole medium

(on the whole height of grains we have Y = tan θ
µc

), the (frictional) walls add a

negative shear on the flow that continuously decreases Y along the depth. As a

result, going from the flowing regime at the free surface to the so-called "creep" in

the depth, we can investigate the evolution of the yield parameter and the crossing

of the yield stress σy . Unlike the first 2D numerical experiment conducted in [15] and
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Figure 2.2: Photo of the narrow channel experiment. The optical axis of the Fast-
camera is perpendicular to the main axis of the channel. During the experiment,
stabilized yellow LED spots lights the observation windows on the channel wall.
Beads are all of the same kind (same reference from Silibeads) but in two different
colors in order to increase black and white contrasts on the images.

[16] this experiment is therefore an important step in probing the non-local rheology

we propose, in a geometry within which the yield parameter Y is not homogeneous.

The reader should note that at the output of the channel, a patch imposes a

certain height of grains even when there is no flow in the channel. This imposes

a static zone in the bulk, typically below the flowing limit predicted by SSH[9] and

where non-local effects are therefore dominant.

The granular media: For all our experiments, we use coated glass beads from

Silibeads1 of average diameter 1.15mm (with a factory polydispersity value of±0.15mm

which avoids crystallization). The coating provides better imaging conditions. We

1Silibeads references: 4504-288 LS for the blue and 4504-110 LS for the yellow beads.
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Figure 2.3: Flowing beads in the narrow channel. Side view. This picture has been
shoot with an SLR camera. The conversion in gray scale (right) shows an equivalence
of the contrast we get from the fast camera (Phantom M340).

first tried non-coated glass beads but issues with the lighting and multiple reflexions

within each bead2 lead us to change the material. Also, we used yellow fast cam

lighting spots we tinted in yellow. The yellow light, with the mixing of blue and

yellow coated beads enable better contrasts on the image and thus more signal (see

photo 2.3). The lighting comes from beneath (see picture) and from the sides. Ide-

ally, it should be homogeneous and therefore come from all around the lens, but we

had reflections on the glassy walls, hence this oblique and diffuse lightning.

All the experiments where conducted in relatively stable but not controlled at-

mospheric conditions: temperatures around 20 − 25◦C and humidity of 30 − 35%.

This might be important as we know that dry grains attract humidity from ambient

air and therefore capillary bridges can form [7] between the grains and affect the

cohesion of the medium, and thus the rheology we try to characterize.

2Reflexion spots within the bead varies with the position of the particle with respect to the lamps:
particles scintillates across the images and their individual images thus evolves during their passage
in front of the lens
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Control parameter: the flow rate

Flow regulation is ensure by the use of two reservoirs, one feeding the other. In 1895,

Janssen measured the pressure at the bottom of a silo filled with grains (see original

article translated by Sperl [17]). He observed that the pressure saturates when more

and more grains were added into the silo. In other words, the vertical stress in the

silo saturates above a certain height of particles in the reservoir because of the force

chains within the medium: the weight of the medium is supported by the walls of

the container. This saturation of the stress above a certain height from the aperture

of a reservoir explains the independence of the flow rate with respect to the high of

grains in the reservoir, above a critical height, in contrast of what would happen with

a liquid. We use this principle as a way to regulate the flow poured into the channel

(see figure 2.4): the main reservoir feeds the intermediate reservoir ("buffer"). In

the latter, the level of grain is kept constant at the level of the outlet of the tube3

by which grains are released from the main reservoir.

Regulation of the flow rate is controlled by changing the outlet diameter of the

buffer reservoir (see figure 2.4) and is monitored by a weighting scale linked to a

computer that continuously record the output weight. We therefore compute a

mass flow rate. This is important for several reasons: first it enables to make sure

the flow is constant through the channel. Also, controlling the flow rate by changing

the outlet diameter guaranties to have a relatively reproducible experiment. This will

be important when we will try to match the velocity profiles measured from both the

top and the side of the channel in order to have an estimate of the 3D structure of

the flow and monitor the flow from different side, at a given flowrate. Also, note

that we recover the Beverloo law4 [18] with our bin (see figure 2.5). This enables

3As this tube diameter is larger than any of which we use to control the flow rate at the outlet of
the smaller reservoir, the flow rate is imposed by the latter. Thus, the flow rate in the channel is set
by the diameter of the outlet tube of the intermediate bin.

4The Beverloo scaling links the flow rate Q to en effective diameter equal to the aperture diameter
minus a few grain sizes:

Q ∝ (D −Dm)5/2
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Narrow channel

opening of the 
main reservoir

Main reservoir

Intermediate 
reservoir

(regulation of  
the flow rate)

Removable 
outlet

Convergent
(inlet of the channel)

Figure 2.4: Reservoir and flow-rate control. The system is divided into three parts:
the main reservoir feeds the intermediate cylindric bin within which the Beverloo law
is verified. The outlet of the overall system is removable so we can adjust the tube
diameter D.

Figure 2.5: Measure of the flow rate (mass flow rate) with respect to the aperture
diameter D. Fit with the Beverloo law [18]. On the graph, we fit with an expression
a + bD and find a = −0.001864± 0.000163 and b = 0.85199± 0.0118

to match the aperture to the flow rate we want accordingly.
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Data measurements

Fast camera imaging To monitor the flow we record images with a Phantom

M340 fast-camera5 (mounted with a Nikkor 60mm lens of f = 2.8) settled on

the side of the channel and which optical axis is perpendicular to the channel glass

walls (see figure 2.2). The reader should therefore note that we only have access

to the beads located against the walls of the channel, not in the bulk. This will

be important in future developments, when comparing experimental data with the

theory (see section 2.4 starting page 69).

Angle of the free surface We built the channel in a way that the tilt angle

is adjustable according to the imposed flow rate, so that the flow is parallel to

the rough bottom: we seek to create a stationary flow, homogeneous along the

channel direction (direction ~x , see figure 2.2 page 60). Indeed the angle of the free

surface with the horizontal axis is selected by the system itself (see section 2.5.3 and

especially equation 2.32). We therefore measure this angle θ.

How to run the experiment

Set the fast camera We had issues in defining the free surface on our first

datasets for which the camera axis was precisely set perpendicular to the walls and

horizontal: in order to monitor the flow from the free surface to the bottom on a

single acquisition, we use to set the camera axis a bit too high and we hence also

monitor some grains at the free surface that were not in contact with the wall but

rather at the center of the channel. We therefore adjusted the position and the

orientation of the camera. First, we lowered the camera a little, and compensated

this by very slightly tilting the optical axis (∼ 3◦) in order to keep the same window on

the flow, from the free surface to the bottom of the channel. Second, we increased

the aperture of the lens at maximum. Doing so deteriorates the depth of field so we

5Phantom M340, 12 bits version. Sensor size: 2560x1600 ; full frame at maximum 800 frames
per second.
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are sure to only focus on a single layer of grains, the one against the wall. Increasing

the lens aperture also enables to have more light, hence more signal providing no

pixel saturation on the sensor (we adjust the aperture speed accordingly).

Initiate the flow and set the channel inclination so that the free surface is

parallel to the bottom of the channel. This ensures that we have an homogeneous

flow along the axis of the channel.

Wait until the flow rate is steady. We monitor the mass of grains at the

output of the narrow channel and plot it with respect to time. We can therefore see

when the flow is steady.

These two steps mix as they appears to be quite dependent: when changing the

tilt angle of the channel, it momentarily changes the output flow and therefore the

curve mass vs time which we use to consider whether or not the flow is stationary.

Also, especially for extreme flow rates, the metastable behavior of granular media is

exhibited: low flow rate means small angle θ and therefore the tilt angle gets closer

to the angle of arrest. The flow hence exhibits a bistable behavior, where avalanches

start from somewhere along the channel, propagate and stop. Any vibration (sound,

shock on the setup, etc.) can be the opportunity for the flow to start, without any

guaranty on its time life nor on its stationarity.

Calibrations of the images lies on two main measures: the calibration of the

length scale and the precise measure of the orientation of the flow with respect

to gravity. For the latter we use a plumb line and take an picture of it (actually,

the average image of a film so we can get rid of the remnant oscillations of the

pendulum). This gives the angle the camera sensor makes with the vertical axis. We

can then deduce the real angle of the free surface by adding this measure to the tilt

angle of the images. As we said, this measure is directly linked to the flow rate (see

relation 2.32). It is therefore crucial to measure parameters of the rheology.
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Calibration of the length scale is made using a millimetric paper sheet stuck at

the wall, on the inner surface of the side we monitor. For each flow measurement

we took a picture of this millimetric grid in order to provide a scaling reference. We

can therefore convert our data into SI base units.

2.2.2 Strategy of measurement of the velocity profiles

We want to measure the flow velocity along the main direction of the flow (i.e. along

the ~x−axis). As we tilted the images so that the free surface (and thus the means

flow) is along ~x , we built an algorithm to measure the velocity field with respect to

the depth, i.e. with respect to each line of the image.

The reader should note that we therefore measure the velocity of the grains

in contact with the wall, not in the bulk of the channel. Also, it is important to

emphasize the motivation and thus the choice of such a strategy of measurement:

we suppose the flow to be steady, and invariant along its dominant direction ~x . The

algorithm we choose to build is therefore orientated toward the measure of the mean

velocity profile as we consider that all the particle at a given depth have the velocity.

We therefore neglect their velocity fluctuations (in any direction).

The core of the algorithm lies on the comparison of two horizontal lines of pixels

that correspond to two different images – and thus instants – of the film. To do so

we use the χ2 test6 By adjusting the best match between line n at time t and line n

at time t + ∆t shifted by a known integer number of pixels, we manage to compute

a sub-pixel estimated best shift of the studied line between the instant of image i

and instant of image j that follows in the film and which delay with respect to image

i is known. From this we easily compute the translational velocity of this pixels line.

A schematic of the principle of this algorithm is given figure 2.6.

As we post-treated the images so that the mean flow is horizontal on the images,

6. The "chi square test" (or χ2 test) is a statistical test that probes the matching between two
data series. It is based on finding the shift between the two data series for which the sum of the one
to one squared difference is the smallest.
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Figure 2.6: Principle of the velocity profile algorithm. We compare the same pixel
line at two different time (i.e. same depth/line on the image but at t and t + dt)
and look for the dt that provides the best match (in this example a shift of dn = 3

images, so 3 times the opposite of the frame rate of the camera) with the pixel line
at time t. We hence deduce the velocity at which this line moved between the two
images.

we can assume this velocity is the average velocity of the grains at this depth, along

the horizontal axis on the image (which corresponds to the main axis of the channel,

axis ~x in the model, see section 2.4).

2.3 Post-treatment

The whole process for the data acquisition and the post-treatment can be summarized

as follow:

1. image acquisition (and measurement of the live mass flow rate)

2. compute an image of the average intensity of the whole film

3. free surface detection by a wavelet algorithm (convoluate each vertical line of

the image, transverse to the direction of the flow, with a wavelet, and take the

maximum). Fit this curve by a line of equation y = ax + b.

4. rotates all the images by an angle θrotate = tan−1
(
a
b

)
.

5. compute the velocity profile (see explanation of the algorithm section 2.2.2)



68 2.3. POST-TREATMENT

0.16

0.12

0.08

0.04

0.00
160012008004000

pixels

R
e
la

ti
v
e
 i
n
te

n
s
it

y
 (

%
)

Figure 2.7: Localization of the free surface. Superposition of an image average (over
the whole film) and the corresponding intensity profile. Images are on 12bits. Relative
intensity is computed so that the maximum possible value for a pixel 212 ≡ 100%.

Once we have the raw data of the velocity flow rate, we need to localize the free

surface in order to shift all the velocity profiles (with respect to each flow rate),

so the all share the same origin (with respect to the depth, z-axis). To do so, we

compute an average intensity profile of the tilted average image of the film (average

image which we computed to measure the tilt angle of the free surface with respect

to the camera sensor, see figure 2.7). Fitting with a phenomenological function

such as intensity(x) = A + B tanh (C (x −D)) provides a good estimation of the

localization of the inflexion point of the intensity profile. We choose to consider this

inflexion point as the position of the free surface on the image. Figure 2.8 shows

raw velocity profiles we obtain from the algorithm 2.2.2 and the position of the free

surface velocity. We can then shift the z-axis of all the velocity profiles so that they

all exhibit the same free surface z = 0 and convert the data to the International

System of Units.
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Figure 2.8: Raw velocity profiles (length are in pixels). Semilog scale. Crosses show
the velocity at the position of the free surface.

2.4 Continuous analytical model for dense granular

avalanches

2.4.1 Hypothesis

We consider the incline narrow channel set-up presented figure 2.9 (page 70). As

the dominant direction of the flow is along the axis of the channel, we choose a

reference frame accordingly: ~x is the axis of the channel, ~z toward the depth and ~y

in the direction of the width of the channel. Origin of the depth (~z axis) is at free

surface and y = 0 corresponds to the middle of the channel.

The flow is supposed to be steady and invariant along ~x (we assume that the

flow we consider is far enough from the injection in the channel).

The system, from the top view (in the (~x, ~y) plane) is the classical situation of

a parallel flow. As usual in such situation, we assume the flow to be unidirectional,

along axis ~x . The velocity therefore writes:

~v = v(y , z)~x
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2.4. CONTINUOUS ANALYTICAL MODEL FOR DENSE GRANULAR

AVALANCHES

We consider the medium as a viscous isotropic fluid of viscosity η(y , z), a function

a priori only of y and z (as the flow is permanent in invariant along the ~x direction).

The flow is supposed to be incompressible (i.e. the volume fraction φ is supposed to

be homogeneous in the whole medium7). The reader should note that the φ = cst

implies the fact that the medium density is as well constant in the medium, as linked

to the material grain density ρp by ρ = ρp φ. It is important to mention that some

previous studies report [8, 19] a dependency of the profile of volume fraction on the

tilt angle θ, with respect to depth. In the following, the main effort are devoted to

the description of the whole flow, especially the "creep regime" in the depth. As φ

saturates relatively quickly in depth at φ = 0.6, we consider in the following –as a

first assumption– that it is constant and at its saturation value (φ = 0.6 is commonly

assumed for dense granular packing at rest and with such polydispersity).

Reservoir

Figure 2.9: Schematic of the narrow channel set-up

7This hypothesis of the homogeneity of the volume fraction in the whole granular flow can be
controversial as it decreases a lot in the region near the free surface, also where the pressure tends
to zero and the shear rate is important. We will discuss this point later in the development of this
theoretical computation.
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2.4.2 Momentum balance

The momentum equation easily gives:

~∇ · ¯̄σ + ρ · ~g = ~0 (2.1)

from which we obtain the three equations:



∂σxy
∂y

+
∂σxz
∂z

+ ρg sin θ = 0 (x)

∂σyy
∂y

+
∂σyz
∂z

= 0 (y)

∂σzz
∂z

+
∂σzy
∂y

+ ρg cos θ = 0 (z)

(2.2)

We use the 3D formulation

σi j = −Pδi j + τi j = −Pδi j + η γ̇i j (2.3)

where γ̇i j = ∂iuj + ∂jui is the shear rate and η = τ/γ̇ (τ been the shear stress). We

draw the reader ’s attention to the isotropicity of the normal stresses we make the

assumption of, here. Indeed, we identify the "pressure" P as σi i = P (z), such as we

would naturally do with a Newtonian fluid.

So, we have: 
σxy = σyx = η∂yux

σxz = σzx = η∂zux
(2.4)

And σzz = −P (z)

All this, in the system (2.2) gives :



∂

∂y

σxy︷ ︸︸ ︷
[η∂yux ] +

∂σxz
∂z

+ ρg sin θ = 0 (x)

∂σyy
∂y

= 0 (y)

−
∂P

∂z
+ ρg cos θ = 0 (z)

(2.5)
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The momentum equation in (z) gives, after integrating8:

P (z) = ρgz cos θ (2.6)

In equation (2.2) we can integrate the first and the third terms, but not the second

one. In order to estimate this velocity profile in the width of the channel, we propose

to model the flow by a second order polynomial function:

ux(z) ' a(z) + b(z) y 2 (2.7)

and define the expression of the a and b functions. From equation (2.7) we have:

∂ux
∂y
' 2 b(z) y (2.8)

Boundary conditions: at the walls (y = 0 and y = W ) The friction at the walls

is modeled as: 
σxy(y = W/2) = µwσyy

σxy(y = −W/2) = −µwσyy
(2.9)

Into first equation of 2.4 we therefore get (at the walls):

η ∂zux = −2 η(z) b(z)
W

2
= µw P (z) (2.10)

and putting everything together into (x) we get:

b(z) = −
µw P (z)

η(z)W
(2.11)

and therefore:

ux ' a(z)−
µw P (z)

η(z)W
y 2 (2.12)

8As we consider a dry granular medium and thus the fact that air can be also find between the
grains, so that on the whole system air pressure can be assumed to be invariant, we can consider
P (z = 0) = 0 at the free surface and neglect the influence of air and atmospheric pressure.
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Using ∂yσxy = ∂y (η∂yux) = −2µw P (z)
W

we get:

ρg

(
sin θ −

2µw z cos θ

W

)
= −

∂

∂z
[σxz ] (2.13)

which integrates into:

σxz = ρg

(
µwz

2 cos θ

W
− z sin θ

)
(2.14)

The reader should notice that surprisingly, the shear stress, σxz , so as the pressure,

does not depend on y .

As a consequence, the yield parameter does not either depends on y and is only

a function of z . It writes:

Y =
−σxz
µc P

=
tan θ

µc
−

µw
µcW

z (2.15)

2.5 Local rheology approximation

Following the seminal publication by GDR Midi [20] and previous studies ([21]), we

first present the solution the local rheology would provide.

Following [15] and because we assume (and checked a posteriori) to be in the

same range of stresses and deformations, we recall the expression of the local rheology

for dense granular flow, in the frictional9 case:

µ = µ(I) = µc (1 + a I) , (2.16)

which links the stress state to the dimensionless shear rate I =
|γ̇| d√
P/ρp

(d being the

typical grain diameter in the medium).
9For such range of solicitations (I between 10−4 and 10−1), the data are perfectly described by a

law of the form:
µ(I) = µc(1 + aIα)

(the residuals form a statistical noise ; error bars are ≈ 5%). In the frictional case, it has been
empirically found that α ' 1 ; in the frictionless case, α ' 0.5. See also [22, 23].
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Since:

− σxz(z) = µ(I)P (z) (2.17)

The dominant contribution of I only depends on z . Thus we take |γ̇| = −∂zux

and neglect the ∂yux contribution as by symmetry in the channel, at the center y = 0

it can be considered as a marginal term10. The dimensionless equation is therefore:

tan θ

µc
− z̃ = (1 + aI) , (2.18)

where the relevant length scale is

L = W
µc
µw

. Therefore I reads:

I =
1

a

(
tan θ

µc
− 1− z̃

)
, (2.19)

i.e.

I =
1

a
(Y − 1) , (2.20)

2.5.1 Flow thickness

I vanishes at a depth

h̃ =
tan θ

µc
− 1 (2.21)

which coincides with the Coulomb criterion, allowing one to rewrite:

I(z̃) =
1

a

(
h̃ − z̃

)
. (2.22)

Note that dimensionally, this gives:

h = W
µc
µw

(
tan θ

µc
− 1

)
(2.23)

10However, this approximation can be tested a posteriori from the profile v(y , z) hence obtained.
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and

I(z) =
1

a

µc
µw

(h − z)

W
. (2.24)

2.5.2 Velocity profile

The velocity profile u(z) is related to I by:

I =

∣∣∣∣∣dudz
∣∣∣∣∣ d√

g φ z cos θ
. (2.25)

We define the dimensionless velocity as:

V =
L3/2
√
g φ cos θ

d
,

such that:

I = z̃−1/2dũ

dz̃
. (2.26)

The force balance equation integrates into:

ũ =

∣∣∣∣1a
[

2

3
h̃
(
h̃3/2 − z̃3/2

)
−

2

5

(
h̃5/2 − z̃5/2

)]∣∣∣∣ . (2.27)

The reader should note that this is expression of the velocity should only be valid

in the plane corresponding to the middle of the channel (y = 0). Here, ũ is in fact

ũ(y = 0, z). It coincides with the dimensional expression used to fit the data and

extract estimates of the parameters:

u(y = 0, z) =

∣∣∣∣∣ V

aL5/2

[
2

3
h
(
h3/2 − z3/2

)
−

2

5

(
h5/2 − z5/2

)]∣∣∣∣∣ . (2.28)

For the sake of simplicity, in the following, we choose to neglect the dependency of

the velocity profile with respect to y . Doing so, we consider that the velocity profile

along ~z is the same in the whole width of the channel (so-called "plug flow").

However, the reader should keep in mind that the 3-dimensional profile would be
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(using 2.12 and the relation between the viscosity and the dynamic friction coeffi-

cient11):

u(y , z) = u(0, z)− y 2 µw
Wd

I

µ(I)

√
P (z)/ρp , (2.29)

where I is given by 2.24, so:

u(y , z) = u(0, z)− y 2 µw
Wd

1

a2

√
P (z)/ρp

(
1

µc
+

W

µwz −W tan θ

)
. (2.30)

2.5.3 Flow rate

As said previously, we consider the plug flow profile (2.27). From the integration of

this velocity profile over the width of the channel and the flow height, the flow rate

writes:

Q =
4

35

V W

aL5/2
h7/2 =

4

35

V LW
a

h̃7/2 . (2.31)

Note that we get from the weighting scale the mass flow rate is ρpφQ (where Q is

the volumic flow rate). Using the expression of h̃, we get a relation between the flow

rate and the slope of the free surface:

tan θ = µc + B
(
Q

Q∗

)2/7

, (2.32)

where Q∗ is a characteristic flow rate:

Q∗ =
W 7/2

d
√
g
, (2.33)

and:

B = µc

(
µw
µc

)5/7
(

35

4

a√
gφ cos θ

)2/7

. (2.34)

In the following, we use these relations to fit our data and extract values of the

parameters of the rheology.

11Using σxz = η(z)
∣∣ dux
dz

∣∣ = µ(I)P (z) we can show that the effective viscosity of the medium

η(z) ≡
µ(I)

I
d
√
P (z) ρp.
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Figure 2.10: tan θ vs dimensionless flow rate Q̃. Fit of relation 2.5.3. We find
µc = 0.41353± 0.00303 and B = 0.22687± 0.00982

2.5.4 Toward an estimation of the rheology parameters

We now propose to fit the local rheology on our experimental data in order to estimate

the value of the rheological parameters. Relation 2.32 allows to fit the value of the

"critical" friction coefficient µc (see figure 2.10). We get µc ' 0.41. Even though

in B the dependence on θ can be ignored12, two parameters of the problem remain

unknown: the friction coefficient at the wall µw and a (from the local rheology 2.16).

We can then try to fit the velocity profiles with the local rheology (see figure 2.11).

In this process, the flowing height h is at the same time a fit parameter and a

cursor that sets the range of depth over which we compute the fit. We therefore

iterate the fit of the velocity profile in order to converge on an auto-coherent value

of h.

Figure 2.12 shows the linear fit of h (in SI base units) versus h̃. Using the relation

h = L h̃ we then have access to the characteristic length L = W
µc
µw

, which, with the

previous determination of µc (and W = 31.3mm), gives an estimation of the friction

coefficient of the glass walls: µw = 0.174± 0.004.

12We can take θ ≈ θc = tan−1 µc as a good approximation.
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Figure 2.11: Velocity profiles – side view. Fit with the local rheology (dashed lines)
for several flow rates. From purple to red, mass flow rates are: Qm = 130.2 −
95.46 − 74.50 − 48.61 − 29.07 − 16.61 − 9.435 − 4.994g/s (±0.04%). We get
V

aL5/2
= 12102 ± 1 and respectively h = 0.0185116 − 0.0160965 − 0.0148754 −

0.0127977− 0.0110859− 0.00911331− 0.00686528− 0.00640506 (in m).

Figure 2.12: Dimensional flowing height h versus dimensionless height h̃. From
definition 2.23 and relation 2.21, one can measure the characteristic length L.

From the fit of the velocity profile with the local rheology (figure 2.11 and for-

mula 2.27) we get an estimation of a = 2.59± 0.06.

Conclusion on the local rheology The plug flow hypothesis seems quite question-

able: we measure velocity profiles at the free surface (the flow is monitored from
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Figure 2.13: Relative error made with the plug flow assumption. Q̃ represents the
dimensionless flow rate measured from the weighting scale.

the top of the channel, in the (~x, ~y) plane) that exhibit a highly three dimensional

behavior (see figure 2.14). The estimation of the flow rate and the parameter values

we made from it is therefore approximative as it under-estimates the flow of granular

matter in the channel.

From these top view velocity profiles, we can estimate error made on the flow

rate: ∆Q̃
Q̃

is the relative error13 made by computing the flow rate from the integration

of the side velocity profiles and using the plug flow assumption. In this expression, Q̃

represents the dimensionless flow rate measured from the weighting scale. We see

on figure 2.13 that a nearly 40% of the flow is forgotten by the flat profile model.

Also, it is important to notice that the flow velocity is not zero under the flowing

layer (of height h̃) contrary to what predicted by the local rheology. Our detection

algorithm allows to measure velocities over nearly six order of magnitude, as seen on

figure 2.15. Clearly, one needs to take into account the non-local feature of the sys-

tem. In the next section, we propose to probe the non-local model initially proposed

by Bouzid et al [15] and tested in 2D numerical systems, within homogeneous stress

configurations14. Doing so, we aim at describing the flow on the total measurable

13∆Q̃ = Q̃− W
Q∗

∫
total height u(z)dz

14Here, the term "homogeneous" refers to the spatial invariance of stress state in the bulk region,
even if it is below the yield stress, Y < 1. Of course, this flow can only exist if there is a flowing
regime (Y > 1) somewhere in the system, therefore the Y is not literally homogeneous in the whole
system.
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Figure 2.14: Velocity profile measure from top, for several flow rates. From purple
to red, mass flow rates are: Qm = 130.2− 95.46− 74.50− 48.61− 29.07− 16.61−
9.435− 4.994g/s (±0.04%).
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Figure 2.15: Velocity profiles in semilog scale– side view (see same graph in linear
scale figure 2.11 page 78). The fit with the local rheology (dashed lines) predicts a
zero velocity below at depth h(θ). It therefore cannot describe the flow below this
limit. From purple to red, mass flow rates are: Qm = 130.2 − 95.46 − 74.50 −
48.61− 29.07− 16.61− 9.435− 4.994g/s (±0.04%).

range of velocities, i.e. over depths that are much larger than the typical flowing

layer h.
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2.6 Non-local rheology

As previously said, one of the main interest of the narrow channel set-up is the

coexistence of the flow above and below the flowing limit predicted by the local

rheology (see formula 2.21 or its dimensional form 2.23). Here, we therefore propose

to find an expression to describe the whole flow. We use the non-local rheology

proposed by [15] to model the non-local effects by taking into account the fluidity

environment. In this section, we propose to study the flow in the narrow channel in

the frame of this non-local model.

2.6.1 Non-local equation

We use the non-local rheology expression from [24]:

− σxz = µ(I)χ (κ)P (2.35)

where κ = `2∇2I
I

. The constitutive relation can be expanded around the relation

Y = µ(I), valid in the homogeneous case according to

Y =
µ(I)

µc
χ(κ), with χ(κ) ' 1− κ+O(κ2) (2.36)

The rheology therefore reads:

Y = −
σxz
µc P

= (1 + a I)

(
1−

`2

L2 I

d2I

dz̃2

)
(2.37)

From which we get (from the expression of the yield parameter 2.15) the non-local

equation:
d2I

dz̃2
=

(
1−

1 + h̃ − z̃
1 + a I

)
L2 I

`2
(2.38)

The reader should therefore note that, as the yield parameter 2.15 only depends

on z , the non-local equation is an ordinary differential equation on z only. According
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to our model, the flow in the depth is therefore independent of y .

This equation (2.38) is non-linear and should therefore be solved numerically. We

use a built-in Matlab Runge-Kutta method called ode4515 to do so. This resolution

needs to be initialized: we need to start the resolution from a finite depth z̃start

at which we know the value of I and its derivative dI
dz̃
. It is clear that the flow at

the surface is unknown16. We therefore choose to initiate the numerical resolution

from an arbitrary large depth (large with respect to the value of the supposedly

flowing height h̃ the local rheology predicts), at which we compute the value of the

inertial number I and dI
dz̃

using a reduction of the non-local equation in the case of

an infinitely small value of I and using an asymptotic estimation the corresponding

solution Iasympt its derivative
dIasympt
dz̃

when z̃ → +∞.

2.6.2 Asymptotic expansion

Boundary condition: in the depth, asymptotically when a I � 1 (i.e. when

z → +∞), equation 2.38 becomes:

d2I

dz̃2
= I

(L
`

)2 (
z̃ − h̃

)
(2.39)

As I must vanish in depth, one gets the asymptotic z̃ → +∞:

I ' C AiryAi
[(L
`

)2/3 [
z̃ − h̃

]]
, (2.40)

where AiryAi is the Airy function of the first kind. The expansion of the Airy func-

tion gives:

15ode45 is a very widely used Matlab solver. It is adapted for most classical (smooth, continuous)
problems. It is a Runge-Kutta method of order five (use of the Dormand-Prince integration scheme),
the error being given by the fourth-order estimate. The reader is referred to the dedicated online
MathWorks documentation.

16we recall that we used a rather arbitrary argument –on the intensity profile of our images– to
adjust the z̃ = 0 of the velocity profiles. Also we noticed the free surface is not described by the local
rheology as seen on figure 2.11 page 78. For all these reasons, no boundary condition at the free
surface can be given up to now.
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I '
C

2
√
π

(
`

L

)1/6

z̃−1/4 exp

(
−

2

3

(L
`

) (
z̃ − h̃

)3/2
)

(2.41)

where C is a constant that should be defined by a boundary condition to the system.

The expansion of the derivative of the Airy function gives:

dI

dz̃
' −

C
2
√
π

(
`

L

)−5/6

z̃1/4 exp

(
−

2

3

(L
`

) (
z̃ − h̃

)3/2
)

(2.42)

And finally, the integration of expansion 2.41 provides the corresponding velocity. It

reads:

ũ '
C

2
√
π

(
`

L

)7/6

z̃−1/4 exp

(
−

2

3

(L
`

) (
z̃ − h̃

)3/2
)

(2.43)

From which we get the dimensional expression of the asymptotic velocity:

u(z) '
C

2
√
π

(
Wµc
µw

)7/12

`7/6 z−1/4 exp

[
−

2

3
`3/2

√
µw
Wµc

(z − h)3/2

]
(2.44)

In this formula, C may depend on the control parameter of the experiment (θ, or

equivalently, the flow rate Q), but the parameters of the rheology (critical friction

coefficient µc and the non-local term `) are the same for all runs (i.e. any flow rate)

and should not depend on any control parameter of the experiment. Also, h = h(Q)

(or "h = h(θ)") so it is fixed and determined for each dataset17.

We write formula 2.44 by blocks, each of which is to be fit with respect to the

experimental data:

u(z) = C1 z
−1/4 exp

[
−

2

3
C2 (z − h)3/2

]
(2.45)

We tried to fit the tails of the velocity profiles all together, in an auto-coherent

(or "optimized") way by sharing the value of the rheological parameters among all

17This rises the question whether the fit with the local rheology can provide the measurement of
h(θ) and any other parameter of the rheology. In deed, it could be tempting to fit the values of the
(local) rheology and impose them in the fit of the non-local rheology. We argue here that this would
be a mistake, as we know that that the local µ(I)-rheology cannot properly describe the system.
Hence the values its fit would provide would obviously not match the non-local fit.
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the datasets, within the fit algorithm. Up to now, we did not manage to fit in an

auto-coherent way all the data: fixing the value of h for each dataset using the

values of h previously found (see fit figure 2.12 page 78) seem to constraint the fit

too much and prevent its convergence.

In order to obtain self-consistent values for the fit parameter over all the experi-

mental datasets, we follow a four steps procedure to fit the model (equation 2.45)

on the data:

1. fit each dataset individually ;

2. average the value of C2 and then fit again ;

3. get the value of h from the previous fit and fit h vs tan θ according to equa-

tion 2.23 (page 74). The slope isW/µw and we hence obtain a good estimation

of the friction coefficient at the wall µw = 0.17 (which is realistic considering

the values we can classically find in the literature for dry contacts).

4. average C2 (again) and impose the theoretical value of h obtained from the

previous fit (step 3) and then fit.

In this process, the values of h obtained from step 2 (fit of all the parameters

except C2 which is fixed at its mean value obtained from step 1) are of the order of the

millimeters, which is consistent with the prediction of the local rheology. However, it

appears that for the datasets at small flow rates (i.e. for reservoir outlet of diameter

10mm and smaller), the values of h computed by the fit algorithm are negatives,

if not smaller than one bead diameter. This is physically inconsistent and therefore

we cannot use these datasets to further compute the parameters of the rheology.

This issues might be explained by the large ratio "signal" over "noise in the raw data

measurements": the smaller the flow rate, the closer to the arrest condition we get.

The system becomes bistable, exhibiting random temporally distributed avalanches

that onset and stop in an random intermittent manner, following stress fluctuations
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in the system. The origin of these latter is still controversial and is not the purpose

of the current study.

We gather the fit values of the block parameters in the following table 2.1:

Bin: outlet diameter D (mm) C1 h (global fit, in m)
20 0.01644 0.00758

18 0.01564 0.00532

16 0.01250 0.00456

14 0.00974 0.00285

12 0.00848 0.00070

Table 2.1: Fit values from the optimized fitting of datasets corresponding to outlet
aperture 12 to 20mm.
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Figure 2.16: Asymptotic fit of the tails of the velocity profiles for aperture diameters
ranging from 12 to 20mm, i.e for several flow rates. From purple to light green,
mass flow rates are: Qm = 130.2− 95.46− 74.50− 48.61− 29.07g/s (±0.04%).

From these values, we can provide an estimation of the parameters of the non-

local rheology: µc = 0.47; µw = 0.17 which gives ` = 0.44 using the definition

of C2 (see equations 2.44 and 2.45). The values we find for µc and µw supports

what we found in the previous section using the local, µ(I)-rheology, which also

provided a value for the parameter a (' 2.6)18. This first experimental test of the

18Note that the value of a can not be provided by the fit of the asymptotic solution of the non-local
rheology we do here. However, as the fit of the non-local rheology provides values of µc and µw that
are consistent with what provides the local model, we can hope that the estimation of a is good.
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non-local model also provides a value of the non-local parameter `. It is found to be

quite smaller than what computed in previous work [15] which numerically predicted

(although for a 2D system) ` = 2.8.
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2.7 Discussion

In this section, we presented an experiment in which the yield parameter continuously

evolves spatially. We reviewed the technical tools we used to monitor the flow and

measure velocity profiles over five order of magnitudes. We developed and probed

the local rheology with our experimental data and gave some insights on the reasons

of its lacks in describing the whole flow. This led us to probe the non-local model

we presented in the previous chapter of this thesis, and to confront it with our

experimental data, especially regarding the so-called "creep flow" regime. We showed

encouraging results exhibiting the capacity of the non-local model to capture the flow

beneath the so-called "flowing zone". As the non-local model entails the local µ(I)

rheology, it is expected to be able to also predict the flow in the flowing zone as well.

As presented in the first section of this chapter, it has been shown [15, 24]

that the relaxation length of the velocity profile within the supposedly static zone

is characterized by a symmetric dependence in the yield parameter Y, around the

yield stress (i.e. Y = 1). In the present work, the fact that the non-local relation

we developed seems to be able to capture both zones of our experiment seems to

comfort this concept of a unique flowing zone.

To go further in the description of the flow in the narrow channel, a better

understanding of the 3D structure of the flow is needed. Due to the high confinement

and the influence of the walls, non-local effects clearly modify the flow also in the

transverse direction of the channel, hence its 3D features. This system appears

very complex because of the dominance of non-locality both in the depth and at

the surface, and along the transverse dimension (width of the channel). One could

therefore improve the theoretical model we used by implementing the dependence of

the velocity profile in y (dimension of the width of the channel) such as presented

earlier (see page 76 formula 2.30). Note that these velocity profiles from the top

may also be fit using a cosh function (better fit than with the quadric we used to

write the rheology, and still consistent with the latter at second order) such as shown
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figure 2.17.
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Figure 2.17: Velocity profile measure from top, for several flow rates. Fit with a
phenomenological cosh profile. From purple to red, mass flow rates are: Qm =

130.2− 95.46− 74.50− 48.61− 29.07− 16.61− 9.435− 4.994g/s (±0.04%).

As previously mentioned at the beginning of section 2.4 page 69, several hypoth-

esis we made in the theoretical development may be questioned. First, we made the

assumption of incompressibility, which has the direct consequence φ = cst (con-

stant and uniform volume fraction). The discontinuity that the free surface of the

avalanche flow seems quite obvious. This evolution of the volume fraction with re-

spect to the depth has for instance been measured by [19]. They mainly observe

a major evolution of φ in the so-called "flowing zone". The homogeneous volume

fraction hypothesis may therefore be problematic if we want to continuously describe

the flow from the depth to the flowing zone (and as close as possible to the free

surface). However, with respect to this observation by, our development on the

non-local rheology (with the asymptotic study) is valid as the volume fraction seems

rather homogeneous in the depth ("creep regime").

Another hypothesis we made was by taking the linear form of the µ(I) rheology.

By doing so, we have to keep in mind that the theory we write is only valid in the

limit of small values of the inertial number. We observed that the linear expression

of µ(I) is phenomenologically valid up to I ∼ 10−1, which is basically the order of



CHAPTER 2. NON-LOCAL RHEOLOGY: EXPERIMENTAL APPROACH 89

magnitude of the highest values of inertial number we estimated in our experiments,

near the free surface (on grain size below the latter). Even if this assumption of

small I seems questionable near the free surface, especially regarding the fact that at

the free surface, the pressure vanishes, it may still be valid as the values of I reached

in the region of the free surface seems rather small.

Also, because of steric effects, walls create important heterogeneities in the yield

parameter profile Y(y , z). It would therefore be interesting to link the non-local

behavior of this flow to the possible origins of non-locality. As we previously explained,

systems of rigid particles under constant shear display a permanent collective motion,

rather than localized plastic events that diffuse energy in the whole system during

sudden cascades. However, it is suggested that the non-local behavior of dense

granular media comes from an increase of the density of plastic rearrangements [25].

Some tools have been developed to experimentally measure the spatial distribution of

local plastic events, such as Diffusion Wave Spectroscopy (DWS). In dense granular

flows in channels, the non-local fluidity is therefore to be related to local plastic events

which density can be monitored using DWS. It would for instance be interesting to

link the nature of such "hot spots" (localized plastic rearrangements) to the non-local

parameter `.

An important parameter we did not vary yet is the width of the channel. Of

course, the wider the channel, the flatter the profile in the transverse direction ((~x, ~y)

plane). This would certainly provide more information in order to calibrate the friction

coefficient with the walls and the influence of the confinement of the wall on the 3D

structure of the flow (see [19] and references therein).

So as the widthW , the imposed height of grains at rest in the channel (imposed by

the patch at the outlet of the narrow channel) could also be varied in order to exhibit

the influence of the bottom on the non-local features of the flow. Furthermore,

removing this patch would allow one to probe the influence of the condition at a

rough wall. Some experiments of the "Chute Flow" such as Pouliquen’s [26] and

recent DEM simulations [27] have been made but they test different models than



90 2.7. DISCUSSION

ours. We are currently investigating this question of the definition of the boundary

condition using our non-local rheology and 2D DEM simulations. This work is still

under process. The whole logic to determine this theoretical issue is not so different

from the one we will present in the following on the incline plane, which we use to

find an a priori definition of the free surface boundary condition.

There are many other trails to investigate on this set-up: it could also be inter-

esting to focus on the effect of the history of the preparation. In this experiment,

between each run, we empty the channel, in order to renew the contacts and set the

stress network in a repetitive way as it is then set by the imposed flow rate that fills

in the channel.

It is also important to note that we realize after a little time that the coating

of the beads erodes: this can affect the microscopic friction (friction between the

beads), the stiffness of the contact forces, and also modify the asperities at the

surface of the grains (see part III of the present manuscript).

Is there aging on the contact network? Does erosion of the particles have an

influence on the aging of the whole medium?

For the sake of simplicity, in the following we leave these questions on the side

and we focus on the definition of the boundary condition at the free surface. This

question is crucial in order to be able to predict the flow profile in such systems.

Near the free surface, as a first model, we can assume the influence of the wall

confinement to be negligible compared to the inertia of the moving particles, hence we

choose to investigate the boundary condition by the mean of 2D Molecular Dynamics

simulations on a very elementary system: the incline plane.
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In the previous chapter we studied a dense granular flow in a 3D experimental

setup. We have shown the importance of the three-dimensionality of the system.

We exhibited the lacks of the local rheology in continuously describing the flow,

from the free surface to depth where we measured a creep motion of the granular

media over a wide range of velocities. We proposed an asymptotic development of

the non-local rheology in order to capture this creep flow in the depth. However

this resolution seems incomplete as it does not yet allow one to solve the complete

non-local equation on the whole domain.

In the following chapter, we investigate non-local effects in granular flows by the

mean of numerical simulations based on Discrete Element Methods.

The plane shear cell and the incline plane are two elementary systems which

exhibit a constant and homogeneous distribution of the yield parameter Y. In the

aim of measuring the boundary conditions at the free surface using the incline plane

set-up, we first probe our new numerical code on the shear-cell system previously

used by [15].

As non-locality is exhibited near the jamming transition, we use a custom numer-

ical system to calibrate the rheology in the vicinity of the transition. The system we

use is a two-dimensional plane shear cell. What makes our set-up original is the pos-

sibility to impose the profile of the yield parameter Y = τ/ (Pµc), hence to impose

the value of Y both above (Y > 1) and below (Y < 1) the jamming transition. The

calibration of the non-local rheology is based on the measure of the relaxation length

of the flow profiles, which diverges at the jamming transition.

We will then present another configuration which exhibits non-local effects. In

the incline plane set-up, the stress configuration is such that the yield parameter is

fixed by the inclination angle:

Y =
tan θ

µc
. (3.1)

It is therefore homogeneous on the whole height of grains, and independent of the

value of this parameter. The local rheology thus predicts a constant profile for the
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inertial number with respect to depth. This implies that the height of flowing grains

does not have any influence on the flow. However experimental studies (see [20]

and [28]) exhibit the existence of the hysteretic nature of granular flows: an initially

static layer of grains of height h starts flowing when a critical tilt angle θstart is

reached. Once the flow is ongoing, the decrease of the inclination angle shows

a second critical angle θstop at which the flow stops. Reciprocally, these critical

angles can be interpreted in terms of critical layer of thickness hstart(θ) and hstop(θ).

Figure 3.1 shows experimental measures on the incline plane. We clearly see the
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Figure 3.1: Existence domain of stationary uniform flows on an incline plane. h/d
vs θ, experimental results on glass beads, from Pouliquen 1999.

existence of two distinct domains, one of stationary uniform flows and the other

where the flow disappears. Here, we only focus on the flowing regime, and therefore

we only consider inclination angles θ > θstop for a given height of grains in the system.

The existence of such angle of arrest θstop is a clear manifestation of non-locality.

By varying h for a given value of θ, we can therefore exhibit the non-local effects at

a given value of the yield parameter Y, as it is only a function of the inclination θ.

In this study of the incline plane, we will therefore develop the non-local prediction

and show how its prediction allows one to define the boundary condition at the free

surface, where the non-locality is dominant. Measures of the relaxation length of
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the flow profile will be also compared to the calibration previously done on the plane

shear cell.

3.1 Numerical simulations of granular media

Numerical simulations appear as complementary to experiments. They allow to probe

a theoretical model and also to observe/measure some quantities that are not avail-

able in the experiments (for instance the number of contacts per grains in a granular

medium). They also allow to study fictional experiments, by removing some physical

interactions (for instance friction, of gravity). One of the advantages of numerical

simulations is the possibility to vary continuously the values of some control param-

eters and to separate the different effects of the model parameters. This is very

valuable in the understanding of the physics of material behavior, in which we try to

understand macroscopic phenomena by exploring the medium at microscopic scales.

However, it is important to keep in mind that conclusions drawn from numerical

methods are only valid in respect of the theory implemented in the code. These

theories are based on simplifying hypothesis that characterized a conceptual repre-

sentation of the medium. The comparison with the experiment is therefore only valid

if the model is appropriate (coherent) with respect to the physical system.

A numerical simulation contains two main ingredients: on the one hand a solving

algorithm and on the second hand a theoretical model.

Different methods (algorithms) exist to simulate the flow of granular media.

Some are based on the continuum representation of granular assemblies and solve

the continuous mechanics equations, most of the time by means of the finite element

method (such as the codes Gerris or Basilik developed at ∂’Alembert Institute at

Pierre-et-Marie-Curie University, see [29] and references therein). These attempts

are based on the µ(I)-rheology –which is a local model– and therefore cannot properly

render the behavior of granular medium in the regimes where non-local effects are

dominant.
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Another common way to simulate granular flows is using Discrete Element Method

("DEM", also sometimes called "Molecular Dynamics Simulations"): for each grain

the fundamental principle of the dynamics is solved. This methods enables to com-

pute different types of interaction between the particles. One of the drawbacks of

such method is the computation time which increase rapidly with the number of

particle in the numerical sample.In order to study non-local effects in dense granular

flows, we hence limit the size of our numerical system to ≈ 1300 particles.

3.1.1 Numerical method for Discrete Elements simulations

The core computation Molecular Dynamics, or Discrete Elements Method is a

quite simple and intuitive algorithm. It is based on solving the dynamics of each

particle individually. To do so, three steps are needed:

1. for each particle, search of the neighbor particles

2. computations of the applied forces on the particle and force total resultant ;

3. integration of the dynamic equations

In addition to the core computation, the solving algorithm also contains the boundary

conditions.For instance in a plane Couette cell, if the simulation is pressure imposed,

there is a feed-back loop in the code that adjusts the height of the cell in order to

maintain the pressure at the desired value.

The particle and boundary dynamics are integrated using a Verlet algorithm [30]

in our code.

In molecular dynamics, implementing the model consists in defining the interaction

between the elements. The three most common interactions are:

• attractive-repulsive, which most of the time is characterized by a Lennard-Jones

potential1 ;
1Lennard-Jones potential is a model of potential inter-atomic energy. It has the form:

VLJ = ε

[( rm
r

)12

− 2
( rm
r

)6
]
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• Hertzian repulsive interaction (a more elaborated type of contact that takes

into account the non-linearity in the contact between particles).

• harmonic repulsive interaction (the one we used in the present study) ;

Contact forces: harmonic potential For the sake of simplicity, and because this

conceptual representation is sufficient to reproduce the phenomenology we want to

observe [21], we chose to implement in our simulations a harmonic potential. It

corresponds to the most simple contact law [31] in which two deformable particles

inter-penetrate (cf. figure 3.2). This interaction is linear and based on a damped

spring system.

Figure 3.2: Model of so-called "soft spheres" (see [31]): Harmonic interaction be-
tween two grains. Dry contact model: kn is the normal spring constant ; kt is the
tangential spring constant ; gn is the normal viscous damping constant and µp is the
contact friction coefficient. δ stands for the inter-penetration.

the r−12 term is repulsive (Pauli repulsion) and is dominant at short range whereas the r−6 term is
attractive at long range (Van der Waals or dispersion force).
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Its potential therefore takes the form:

Vi j =
k

2
(ri + rj − di j)2 H (ri + rj − di j) , (3.2)

where H is the Heaviside function, so that forces are zero between the two particles

if they are not in contact with each other. ri and rj are the radius of the particles

and di j the distance between their center. In this expression, ri + rj − di j = δ is the

inter-penetration when the two particles are in contact and k is the spring constant

of the latter (for normal spring, k is kn).

According to the soft sphere model represented figure 3.2, during a contact

between a particle i and a particle j , the force resultant of the action of j over i

writes as the sum of a normal and a tangential contribution:

~Fj→i = ~F nj→i + ~F tj→i . (3.3)

The normal component writes:

~F nj→i =
(
knδ + gnδ̇

)
~ni j . (3.4)

In the latter, the first term of the right hand side characterizes a linear elastic contri-

bution while the second term describes viscous dissipation. During a collision between

two grains of mass mi and mj , at relative impact velocity v0, the inter-penetration is

hence solution of:

mef f δ̈ + gnδ̇ + knδ = 0 , (3.5)

where mef f =
mimj
mi+mj

is the effective mass of the system. Such an ordinary differential

equation is stable for

gn ≤ 2
√
mef f kn , (3.6)
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and its solution writes:

δ(t) = v0

τc
π

exp

(
−

gn
2mef f

t

)
sin

(
π
t

τc

)
, (3.7)

where τc is the time lapse of the contact:

τc =
π√

kn
mef f
−
(

gn
2mef f

)2
. (3.8)

This characteristic time of contact is crucial in the definition of the time step dt for

the computation of the equations2.

During the contact, one can characterize the energy dissipation by defining a

restitution coefficient ε as the ratio of the normal relative velocities after and before

the collision:

ε =

∣∣∣∣∣ δ̇(τc)

v0

∣∣∣∣∣ = e

(
− gn

2mef f

)
. (3.9)

From 3.8 and 3.9 we get gn = −2 ln (ε)
√

mef f kn
π2+(ln ε)2 . Restitution coefficient has a

value between 0 and 1, so the stability condition 3.6 is verified.

The tangential component is also given by a harmonic potential, of spring con-

stant kt . The tangential component is therefore proportional to the tangential rela-

tive displacement δt between the particles. In order to model friction between par-

ticles, we implement the Coulomb criterion which is based a critical force threshold

for the tangential force component:

~F tj→i = min (ktδt , µpF
n
j→i)~ti j , (3.10)

where µp is the microscopic friction coefficient (or "inter-particle friction"). The

maximum value of the tangential component is therefore limited to µpF nj→i . In all

our simulations, we take µp = 0.5 when dealing with frictional particle (µp = 0

2According to equation 3.8 we have τc ≈ 1/
√
kn. From [21] we know that for kn ≈ 104, for slow

deformations, we can take dt = τc/100.
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otherwise), and kt = kn/2 following [32].

3.1.2 Dimensional analysis

In order to analyze the physical quantities that characterize the granular system

and its rheology, it is important to consider the microscopic and the macroscopic

quantities describing the system.

The microscopic parameters are the normal and tangential spring stiffnesses kn

and kt , the viscous damping gn the restitution coefficient ε (for hard visco-elastic

spheres, ε = 0.9 but previous studies do not show a significant influence on the

dynamics for lower values, so we always take an intermediate value ε = 0.4 for our

computations), and the microscopic friction coefficient µp. The length unit is the

average grains diameter d (taken equal to 1) and the reference mass is the average

mass of the grain, taken at m = 1.

The macroscopic system is characterized by a shear strain γ̇, a confining pressure

P (which here is equal to the normal stress) and the compaction φ. Considering

dimensionless quantities allows to better understand how the physical parameters

come into play regarding the behavior of the system. Therefore they are used as

control parameters. For instance, the natural scale for pressure is kn, therefore we

can characterize the system by a dimensionless number: its softness S = kn/P . It

reflects the role of the elasticity of the grains. In the following, we only focus on

the limit of rigid non-deformable particles, which practically implies kn/P > 3.103

(see figure 3.3 which shows the evolution of the critical friction coefficient µc with

respect to the softness parameter S). Regarding the microscopic quantities, we

take the microscopic friction µp equal to 0 (frictionless particles) or 0.5. The order

microscopic quantities (kn, kt , gn) are set according to remain in the limit of rigid

particles, for a constant restitution coefficient ε = 0.4 and a softness parameter

S = 3.103.

These considerations are very important regarding the simulations we run, espe-
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Figure 3.3: Evolution of the critical friction coefficient µc with respect to the softness
parameter S = kn/P . Measures are made at fixed shear rate γ̇

√
m
Pd

and fixed pressure
P = 1. Data from [1].

cially when we consider a gravity field which introduce a pressure gradient within the

medium, hence a softness gradient. For our simulations of the incline plane, we set

these settings so that the maximum softness, at the very bottom of the medium, is

still in the regime of rigid particles.

From the point of view of the rheology, one seeks to find a relation between the

shear rate (we imposed for instance) and how the fluid resists to this deformation,

i.e. its shear stress. In the system, the only scale of energy is the pressure, therefore

at the stationary regime, the dimensionless shear stress is τ/P . And it must be a

function of the dimensionless shear rate I, hence the relation:

τ

P
= µ(I) (3.11)

The inertial number I = γ̇
√

m
Pd

compares the macroscopic shear rate to the ballistic

time of a grains moving of its diameter under confining pressure P . As in our

simulations m = 1 and d = 1, the inertial number writes I = γ̇/
√
P .

For similar reasons, the volume fraction φ – which is also a dimensionless quantity–

is also a function of the inertial number I (see first chapter and references therein).
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3.1.3 Preparation

The preparation process lies in generating particles which diameter that are randomly

distributed according to a uniform law. In our preparation, the polydispersity is of

20%. Particles are disposed along an hexagonal pattern in the domain, with a random

noise to their position in order to initiate the disorder of the preparation. Then we

let grains fall under gravity against the bottom wall in order to fill the numeric cell.

After the step of the generations of the particles, we let the system relax and reach

a stationary state (see next section).

3.1.4 Stationary state

Figure 3.4: Evolution of the kinetic energy (a) and the total number of contact in
the system (b) with respect to dimensionless time (γ̇−1 being the characteristic time
of the deformation), at the onset of the flow (example of the incline plane: from a
preparation at vertical gravity, we incline the latter by an angle θ = 0.2. Frictionless
case.)

In the present work, we study the system once it is at stationary state, which

means that all the observable quantities are constant with respect to time. Figure 3.4

presents the evolution of the kinetic energy (Ek = 1
2

∑N
i=1miv

2
i ) and the total number

of contacts in the system with respect to time. Each of these quantities reach a

stationary value after a certain time. From this moment, we assume that all the

average of the physical quantities characterizing the system (such as the velocity

field, the stresses and the strain) are independent of time. We therefore evaluate

them by computing there value averaged over time and space.
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3.2 Test case: non-local rheology in a plane shear cell

In the following, we present the process by which we calibrate the parameters of the

non-local rheology. This set-up has first been proposed by [15].

As non-local effects are exhibited in the vicinity of the transition, we first focus on

a custom set-up of a 2D planar shear cell, which boundaries at the top and bottom

walls are modified in order to be able to tune the yield parameter Yb in the bulk. The

two other boundaries (left and right side of the cell) are periodic.

In this section, we first present the numerical set-up of this customized plane

shear cell. We then compute the non-local rheology and present the process by

which we calibrate the non-local model.

3.2.1 Plane shear cell: setup

The plane shear cell setup we use is a 2D system with two parallel rough walls moving

in opposite directions, along axis ~x (see figure 3.5). Roughness of the walls is made

simply by sticking the outer 3 layers of grains one to the others on each sides. All

grains are of mass = 1. The distribution of diameters follows a square distribution

d = 1 ± 20%. Boundary conditions on the sides are periodic (along direction ~x).

The system we use has a width of ≈ 35d and a height of ≈ 50d , for a total particles

of 1300 particles (wall included). In the present study, we present our results for

frictionless particles.

Pressure in the cell is imposed by adjusting the position of the "top" wall (the

one that is also moving transversally to impose the shear rate), therefore the height

of the cell is fluctuating, but these fluctuations have an amplitude smaller than an

average grain diameter (see figure 3.6).

For a given stress configuration Yb, we compute the simulation until a stationary

regime is reached (see section 3.1.4). We present figure 3.7 the velocity, volume

fraction, stresses and µ profiles average on the duration of a simulation of a steady
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Figure 3.5: Setup for the plane shear cell. Pressure is imposed, so as the shear
strain (wall velocity). This is a snapshot of a simulation of hard frictionless particles.
Colors correspond to the instantaneous velocity along axis ~x .

Figure 3.6: Top wall position with respect to time. Fluctuations of the height of the
cell is negligible with respect to the grain diameter d .

shear in such a cell. As expected, we see that the stresses P and τ , hence their

ratio, are homogeneous in the whole cell (their profiles are flat). Similarly, the
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Figure 3.7: Mean profiles for the plane shear cell. (a) Velocity profile with respect to
the height z/d . Black line is the result from simulation. Green is the prediction of
the local rheology, red is the fit of the non-local rheology. (b) Corresponding profile
for the volume fraction φ. (c) Stress state. Normal (pressure P ) and shear stress
τ with respect to the height z/d . (d) Profile of the dynamical friction coefficient
µ = τ/P with respect to the height z/d . Colors represent the velocity of each
particle along the direction of the flow, ~x .

volume fraction φ can be considered as homogeneous, as its fluctuations are rather

small regarding the mean value, and we do not see any particular structural pattern

of the medium.

Recall that, above the flow threshold (i.e. when Y > 1), the local rheology

predicts a linear velocity profile ux = γ̇z corresponding to a finite and constant value

of the inertial number Ib, and static grains (ux = 0, corresponding to Ib = 0) when

Y < 1. On figure 3.7a, we clearly see that the local prediction (green dashed line)

does not match the numerical profile (black solid line): the profile exhibit some

deviation from the linear local prediction.
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As seen in the first chapter, the non-local rheology predicts velocity profiles of

form:
u√
P/ρg

= I∞z + δI sinh(z/L) (3.12)

The deviation of the velocity profile from the local contribution is characterized by

the term δI sinh(z/L) that measure the non-locality of the flow. Fitting the profile

by the non-local model hence means in particular to measure these relaxation length

L with respect to the control parameter Y.

In order to exacerbate these non-local effects, [15] proposed a custom set-up

for the plane shear cell that we present in the following and use as a check of our

DEM code and numerical protocol. We will then present the strategy we adopt

do calibrate the whole rheology, hence the non-local contribution, by fitting all the

runs we computed simultaneously (runs above and below the threshold Y = 1) and

therefore extract the parameters of the rheology.

3.2.2 Custom shear cell

Velocity profiles generated from simulations of plane shear can exhibit non-local

effects, but it is not the most obvious way to observe them as they are more marginal

in the flowing case (Y > 1). The idea here is therefore to study a system in

which several regions with different stress state communicate with each other and

mechanically interact.

By means of gravity-like forces applied to the grains located in two buffer zones

located close to the walls (see figure 3.8), we manage to impose the profile of the

yield parameter Y. These forces are oriented downward at the top of the cell, and

upward at the bottom. In the bulk of the cell, the pressure is constant. The shear

stress is not imposed in this set-up, but it is directly related to the shear rate we

impose by setting the transversal (top) wall velocity: uwall.

We can therefore tune the profile of the yield parameter Y in the bulk and set

it below the threshold. In the buffer zones Y > 1. Therefore, even though in the
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Figure 3.8: Setup for the plane shear cell. Pressure is imposed, so as the shear
strain (wall velocity). This is a snapshot of a simulation of hard frictionless particles.
Colors correspond to the instantaneous velocity along axis ~x .

bulk Y < 1, the buffer regions fluidize the medium. The velocity profile in the bulk

hence exhibit relaxation lengths which we can measure and that are the signature of

non-locality. In the following, we denote Yb the value of the yield parameter in the

bulk.

Figure 3.9b. shows that the volume fraction is homogeneous in the bulk, so as

the stresses P and τ (figure 3.9c). and the stress parameter τ/P (figure 3.9d).

As explained previously, we tune the buffer zones so that we can observe velocity

profiles even below the flow threshold and therefore exhibit non-local effects. Fig-

ure 3.10 presents the same graphs as for figure 3.9 but for a typical run below the

flow threshold (Yb < 1).

On both situation Y > 1 and Y < 1, we fit the velocity profile by the non-local

formula 3.12 that we recall here:

u√
P/ρg

= I∞z + δI sinh(z/L) (3.13)
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Figure 3.9: Mean profiles for the custom plane shear cell, for a run at Y > 1.
(a) Velocity profile with respect to the height z/d . Black line is the result from
simulation. Green is the prediction of the local rheology, red is the fit of the non-
local rheology. (b) Corresponding profile for the volume fraction φ. (c) Stress state.
Normal (pressure P ) and shear stress τ with respect to the height z/d . (d) Profile
of the dynamical friction coefficient µ = τ/P with respect to the height z/d .

In the following, we present the strategy we adopted to fit the non-local model.
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Figure 3.10: Mean profiles for the plane shear cell, for a run at Y < 1. Buffer
zones are close to the walls, in yellow. (a) Velocity profile with respect to the height
z/d . (b) Corresponding profile for the volume fraction φ. (c) Stress state. Normal
(pressure P ) and shear stress τ with respect to the height z/d . (d) Profile of the
dynamical friction coefficient µ = τ/P with respect to the height z/d .

3.2.3 Calibration of the rheology

We previously explained that in such configuration, the velocity profile writes 3.12:

u√
P/ρg

= I∞z + δI sinh(z/L) , (3.14)
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with L the relaxation length. According to whether the system is above (Y > 1) or

below (Y < 1) the flow threshold, we have:

• Y > 1 
I∞ 6= 0

` = L
√

(Y−1)
2Y

(3.15)

• Y < 1 
I∞ = 0

` = L
√
χ−1 (Y))

(3.16)

using the phenomenological expression of χ(κ) previously calibrated in [24].

Recall that the yield parameter is define by Y = τ
Pµc

. It thus depends on the value

of the critical friction coefficient µc , which is itself a parameter of the rheology we

are fitting. The adjustment of the rheology must therefore be iterative, as one has to

know whether the profile characterizes a configuration above or below the threshold

Y = 1. The fit function is hence implemented using the conditional statements

equations 3.15 and 3.16 and the expression of the velocity 3.12 and all the runs –at

different values of Y– are fit simultaneously by constraining the global parameters

of the model (i.e. µc , a and `) to be the same for all profile as they all exhibit the

rheological behavior of the same medium.

It the following, this fit technique by which we constrain the model to share some

parameter values on several datasets will be mentioned by the expression "global fit"

or "cofit".

From this fit process, we therefore extract the parameters of the rheology. We

find µc = 0.0953 ; a = 5.51 and ` = 4.22. These values are very close from

those found by [15]: they found µc = 0.094, a = 5.51 and ` = 2.8. The notable

difference is on the calibration of the non-local term `. This discrepancy may be due

to a different implementation of the microscopic interaction in each code. Also, in

order to better calibrate such parameter, one would run further more simulations on

systems exhibiting more non-local effects and a more dominant role of non-locality,
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Figure 3.11: Effective friction coefficient µ versus I∞. Data points are obtained from
the global fitting on all our runs. Solid line is the fit of the phenomenological law
µ(I), in which the critical friction coefficient is fixed at µc = 0.0953 obtained from
global fit. We get a = 5.25. Note that this result is slightly differs from the result
from the global fit.

hence larger values of the relative fluidity κ.

We can also extract the interim fit parameters that are I∞ and the relaxation

length L, in order to recover the µ(I) curve (as on figure 3.11) and exhibit the diver-

gence of the relaxation length in the vicinity of the transition Y = 1 (see figure 3.12).

Note that the difference of the value of the parameter a obtained from the global

fit and its value obtained from the fit of the µ(I) phenomenological law is no more

than 5% of the parameter value. This shift lies in the fact that in the global fit,

this parameter is fit by the simultaneous fit of all the datasets (above and below

Y = 1), whereas the µ(I) curve only characterizes the runs for which I∞ 6= 0, i.e.

the configurations in which the yield parameter is greater than 1.

The consistency of the model on both side of the transition is more visible when

we plot the measured relaxation lengths L in respect of the yield parameter in the

bulk (see figure 3.12). We would like to draw the attention of the reader to the

importance of finite size effects : the height of the cell we used in our simulations

is of ≈ 50d . It is therefore meaningless to consider datasets for which the apparent



112 3.2. TEST CASE: NON-LOCAL RHEOLOGY IN A PLANE SHEAR CELL

Figure 3.12: Relaxation lengths L relative to the yield parameter in the bulk. Values
of L are obtained from the global fit.

relaxation length is greater than the cell height. We therefore only consider in the

global fit process only velocity profiles for which L/d < 50.

In order to calibrate the medium more accurately, one could run more simulations

on configurations below the yield, so that we could reconsider the determination of

the non-local functional χ which is a function of the relative fluidity κ.

3.2.4 Conclusion on the test case

We have just presented the test case of the plane shear cell set-up, customized in

order to exhibit non-local effects. We showed how the velocity profiles in such system

display relaxation lengths and how to relate them to the non-local term of the model.

We used a novel implementation of the fit algorithm in order to optimize the fitting

of the theory on all our run simultaneously. We will now focus on the study of the

incline plane setup and use a similar approach to characterize the flow profiles. From

the description of the non-local model hence fit, we will present a measure of the

boundary condition at the free surface of the flow.
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3.3 Inclined plane: determining the boundary condi-

tions at the free surface

In this section, we study the incline plane set-up in the framework of the non-local

rheology, and we present a way to measure the boundary condition at the free surface.

3.3.1 Setup and parametrization

Figure 3.13: Setup of the incline plane. Gravity is inclined by an angle θ. Control
parameters of the numerical experiment are θ and the microscopic friction between
particles (µp = 0 or 0.5). On left and right sides of the cell, boundary conditions
are periodic, and the bottom of the cell is made of fixed grains (in black) in order
to create a rough/no slip boundary condition. On this graph, colors characterize the
velocity of each particle along the main flow direction ~x .

We consider an inclined plane with periodic boundary conditions on the left and

right and a rough wall at the bottom (see figure 3.13). Dimensions x and y are

respectively along the longitudinal dimension of the inclined plane and along its height.

Gravity ~g is downward and tilted with an angle θ with respect to the vertical.

In this section, we will first describe how we precisely locate the bottom of the

cell, from a physical point of view and how we compute the height of grains. The

system is 2D and described in the (~x, ~y) plane in the numerical code (hence in the

raw data). As the theoretical model we develop focuses on the free surface, we
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reverse and set the vertical axis, switching from axis ~y which is upward and which

zero does not correspond to any physical constrain, to axis ~z which is downward and

set so that z = 0 at the free surface.

In the following, we explain these steps on a typical frictionless run (1100 free

grain numbers in the cell + 64 in the wall ; cell widthW = 35d ; kn = 105 ; kt = 5.104

; gn = 191.833 ; µp = 0 ; gravity is inclined from vertical by an angle θ = 0.2).

Stress state

The momentum equation writes:

~∇ · ¯̄σ + ρ~g = ~0 (3.17)

Therefore we obtain the two equations:


∂zσxz + ρg sin θ = 0 (x)

∂zσzz + ρg cos θ = 0 (z)
(3.18)

We choose to localize the free surface at z = 0. Therefore the integration of the

previous equation assuming:


P (z = 0) = 0

τ(z = 0) = 0
(3.19)

implies: 
σzz = P (z) = ρg cos θ z

σxz = τ(z) = ρg sin θ z
(3.20)

Figure 3.14 presents the stress profiles and the effective friction coefficient µ = τ/P

along depth z , for a run at θ = 0.2. As specified on the figure, ~z axis is downward

and its origin z = 0 localizes the free surface. The linear fit of the stresses, from 3.20

also provides a value of ρg, where ρ = ρgφ. In our code, g = 1 and the average

mass of one grain of diameter d (taken at d = 1). The system is 2D therefore
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Figure 3.14: Stress state in the incline plane. Left axis: Pressure P and shear stress
τ vs z/d (z-axis being rescaled in order to set z = 0 at the free surface). Right axis:
µ = τ/P in dark red, dashed line is its theoretical value tan θ (see 3.21).

ρg = 4/π. The linear of the pressure profile hence provides an effective measure

of the average volume fraction in the bulk: φ = 0.81 which is consistent with the

profile of volume fraction we extract from the computations (see figure 3.15). From

Figure 3.15: φ vs z/d . Profile of the volume fraction with respect to the depth. We
see that φ saturates quickly at a constant value, below a couple layers of grains. The
bottom of the cell (on the right, large values on z/d) is layered because the bottom
has been made rough by numerically gluing the grains on the bottom wall.

these basic checks, we have verified that the stress configuration is well known.

The effective friction coefficient µ should therefore follow exactly the theoretical

prediction. However, on figure 3.14 we see a slight deviation of the numerical result.
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Similarly, a steep variation of the volume fraction φ in the vicinity of the free surface

(figure3.15) is observe. This motivates further investigations in the definition of the

free surface boundary condition of the system.

In the following, we explain how we model the flow using the non-local rheology

and we present a method to measure the boundary condition at the free surface. It

is therefore important to notice that, from system 3.20 we get:

τ

P
= tan θ. (3.21)

As the yield parameter is defined by Y = τ/(µcP ), we can therefore conclude that

Y is only a function of the tilt angle θ. The latter is therefore the control parameter

of this set-up.

However, it is important to remember that granular media exhibit a metastable

behavior, especially near the jamming transition.This metastable behavior is very

visible on the incline plane, at small heights of grains. When reaching a characteristic

height hstop which depends on the tilt angle, the flow tends to arrest ([33, 34, 35]).

For a given θ, decreasing h surprisingly tends to bring the system closer to arrest.

Numerical protocol

We therefore compute dense granular flows at diverse tilt angles θ, but also, for each

angle, we varied the height of grains, so that for each value of the yield parameter

Y, we have several runs. If we manage to adjust the flow curves for relatively high h,

with the full non-local equation, then tests of lower heights, closer to jamming and

in which the boundary condition at the free surface is predominant will be provide a

measure of the actual boundary condition in z = 0.

For each inclination angle θ, we start from the same preparation, at rest, with

∼ 1200 particles (on a cell width W/d ≈ 35). We incline the gravity and let the flow

become stationary (we call this first run, that is needed to reach the stationary flow

the "transitional run"). Once we made sure it is the case (see 3.1.4), we launch
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two runs. On the one hand, a long run, in the same conditions but starting from the

last configuration computed by the previous run (and which we are therefore sure is

in a stationary state). This run provides statistic in our flow measurements (stress

state, means velocity profiles...). In the following we will refer to such run by the

expression stationary run. On the other hand, we numerically extract some grains3

from the free surface in order to decrease h and then launch a new transitional run.

Doing so, little by little we decrease the height h of flowing grains, until the first

premise of the metastable state (arrest of the flow during the simulation) appear. In

the following, we present results only in the frictionless case.

Figure 3.16: Incline plane. Velocity profiles for θ = 0.2 for several flowing heights
h (all runs from h ≈ 30.3 and then −50 grains between each consecutive run).
Frictionless case.

We therefore obtain velocity profiles such as the ones presented figure 3.16.

Following the definition of the inertial number, we compute the corresponding

I(z) profiles (see figure 3.17).

3We chose to remove ∼ 50 grains, which corresponds to ≈ 1.5d on the flowing height.
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Figure 3.17: Incline plane. Inertial number profiles for θ = 0.2− 0.18− 0.16− 0.14

and for several flowing heights h (all runs from h ≈ 30.3 and then −50 grains between
each consecutive run). Frictionless case.

3.3.2 Local rheology

We recall the expression of the local rheology:

τ

P
= µ(I) = µc (1 + a In) . (3.22)

Which leads to:

I =

[(
tan θ

µc
− 1

)
1

a

]1/n

. (3.23)

We recover the fact that, for the inclined plane, the local rheology predicts a constant

inertial number. In the following, we will refer to this quantity by Ib. From the

definition of the inertial number the shear rate therefore writes:

γ̇ =
−
√
P

d


(

tan θ
µc
− 1

)
a

1/n

. (3.24)

(we know from the experiment γ̇ < 0)

By integration we then get the theoretical velocity profile according to this rhe-
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ology:

u(y)√
gd

=
2

3d


(

tan θ
µc
− 1

)
a

1/n√
4

π
φ cos θ

(h
d

)3/2

−
(
y

d

)3/2
 (3.25)

As all physical quantities in this expression (3.25) are known (providing we have

a calibration of the rheology, hence a value of µc), it therefore provides a completely

determined expression of the local velocity profile.
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Figure 3.18: Velocity profile on the incline plane (solid line). Prediction of the local
rheology (dashed line). Inset is the same graph but in semi-logarithmic scale. For
this runs, θ = 0.2 and h ≈ 30.3.

Figure 3.18 presents a typical velocity profile obtained for a simulation of a steady

flow on the incline plane, for a height of flowing grains ≈ 30.3 and an inclination

angle θ = 0.2. In dashed line is the prediction from the local rheology, using the

calibration we previously obtained (µc = 0.0953 and a = 5.51). We can clearly see

the discrepancy of the numerics from the prediction. This is particularly remarkable

in the region of the free surface. Inset figure 3.18 also shows a variance between the

local prediction and the numerical result. These inconsistency of the local rheology

to describe the flow on the incline plane justifies the following developments, where

we probe the non-local model in order to accurately describe the flow and define the

physical conditions at the boundaries of the system.
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The local rheology predicts an homogeneous value of the inertial number I = Ib in

the whole depth4. Also, we can see on figure 3.18 that the velocity profile it predicts

can not recover the whole flow, especially in the neighborhood of the free surface.

In the following, we apply the non-local rheology as an attempt to describe the flow

along the whole height of flowing particles.

3.3.3 Non-local rheology

We recall that the non-local rheology writes at linear order:

Y =
µ(I)

µc
(1− κ) (3.26)

where κ = `2∇2I
I
. In the current configuration the non-local equation is therefore:

(
1−

tan θ

µc (1 + aIn)

)
I

`2
=
d2I

dz2
. (3.27)

Above the critical conditions, the linearization of equation 3.27 around a base state

I = Ib + δI writes:

L2d
2δI

dz2
− δI = 0, (3.28)

where as said previously, L is the relaxation length:

L = `

√
Yb

n (Yb − 1)
, (3.29)

with Yb = τ
P µc

in the bulk.

Equation 3.28 has solutions of the form (z = 0 been the free surface):

δI(z) = C1 e
z/L + C2 e

−z/L. (3.30)

4As long as one has calibrated the rheology, i. e. as determined values of µc and a (and `, as the
rheology is calibrated as a whole: the calibration lies on the use of the non-local model), the value of
Ib is predictable.



CHAPTER 3. NON-LOCAL RHEOLOGY: NUMERICAL APPROACH 121

Figure 3.19: Incline plane. Inertial number with respect to depth. All runs at same
θ = 0.2.Dots : numerical data from simulations. Lines: cofit of all runs with the linear
model. For this particular inclination (θ = 0.2), we find Ib = 0.0455 and L = 1.54.
Frictionless case (µp = 0). Runs for heights H/d = 28.91− 22.01− 15.15− 10.95.
Inset is the same plot but in semilog scale. Top graph is the residuals of the cofits.

Therefore we fit the data by the following formula:

I(z) = Ib + C1 e
z/L + C2 e

−z/L. (3.31)

with L the same for all heights of grains H at fixed θ and therefore fixed Yb.This

expression of I(z) is the solution of a linearized equation (equation 3.28). It is thus

expected to be valid around the base state Ib.

We therefore cofit together all the inertial number profiles that are at the same

tilt angle θ. For each value of θ, we therefore extract the value of the inertial number

in the bulk, Ib, and the relaxation length, L. On figure 3.19 we present global fit

results on inertial profiles at same yield parameter (θ = 0.2) and for several heights

of grains.

On figure 3.20 we present inertial profiles obtained from steady flows on the

incline plane with the same height of grains but for several values of θ. The solutions

of the fit using formula 3.31.

We clearly recover the fact that all profiles of the inertial number I for a given θ
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Figure 3.20: Inertial number profiles for different θ at a given depth.

exhibit the same value in the bulk. Figure 3.20 reports the cofit values of Ib obtained

for global fit of all datasets at given θ, hence given yield stress Y. We report these

measure on the µ(I) calibration we previously obtained on the shear cell setup. The

data fit perfectly with the previous calibration.

Figure 3.21: Global fit results on inertial profiles at same yield parameter (θ = 0.2)
and for several heights of grains (H = 28.91− 22.01− 15.15− 10.95). Inset is the
same plot in semi-logarithmic scale. Top graph are the fit residuals.

However, plot of the residuals of the fit (as shown figure 3.19) show important

variance between the numerical data and the fit in the vicinity of each boundary of
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the domain: at the bottom and at the free surface. This suggests that the analytical

expression by which me fit the profile if not valid in these regions.

Figure 3.22: We report the fitted relaxation length L measured from the fitting of the
inertial profiles on the incline plane and report them on the calibration from the plane
shear cell. Corresponding values of Y are computed from its definition (Y = τ/(µcP )

using µc = 0.0953 we obtained from the previous calibration, section 3.2.3).

We also report the cofitted values of the relaxation length. Again, we recall that

L is a function of both Y and `, hence of the rheology. The value we obtain should

therefore be consistent with the test case of the shear cell. On figure 3.22 we report

the values of L we get from the global fit. From the consistency of the values of Ib

we found (as attested by figure 3.21) in respect to the yield stress parameter values

we probe, the discrepancy of the fitted values of L particlularly raises the question

of the validity of the adjustment of the non-local parameter `.

We recall that these cofit are done using the solution (3.31) of the linearized

equation (3.28). Therefore this is not the exact solution of the non-local equa-

tion(3.27).

The reader should note that equation 3.28 is the linearization of the non-linear

differential equation 3.27. As we cannot solve it analytically, it must be solved nu-

merically. We use the built-in Matlab Runge-Kutta method ode45 to do so. As seen

section 2.6, we need to initiate the numerical resolution. It is of course prescribed
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to start the code from the free surface as this is precisely what we are trying to

characterize here. The reader should also note that no assumption on a boundary

condition at the bottom was used in the theory. We hence emphasize the fact that

the theoretical problem here does not have an explicitly boundary condition at the

bottom: the only boundary condition we used is the one at the free surface, imposing

P (z = 0) = 0. One should therefore initiate the resolution from elsewhere.

The domain over which we fit the analytical expression is located around Ib. The

common fit parameters are Ib and L the relaxation length. Indeed, from the non-local

rheology, we recall that L is a function of ` (from the calibration of the rheology)

and Y (which contains the rheology and the stress state as Y = τ
µcP

).

We note that it has an inflexion point located at depth:

z0 =
L

2
log

(
−C2

C1

)
(3.32)

From the fit values of C1 and C2 for each run, and the measure of L and Ib, we try

to initiate the Runge Kutta numerical resolution of the complete non-local equation

by using the linear approximation around the base state, located in the vicinity of the

inflexion point. Up to now, we did not manage to recover the numerical results from

the DEM simulation.

However, using the fit formula provided by the linearized equation, we manage to

estimate the value of the inertial number at the free surface. As previously explained,

this result should not depend on the height of grains in the cell. On figure 3.23 we

present estimations of the value of the inertial number at the free surface with respect

to the distance from the yield.

On this figure, we check that the boundary condition does not depend on the

height of flowing grains. It seems that the value of the inertial number is selected

with respect to Y − 1. We can assume that the grains at the surface exhibit a

"tac-tac" behavior, which would also explain the non-zero value of a in the linear fit.

In order to measure more accurately the boundary condition at the free surface,
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Figure 3.23: Estimation of the value of the inertial number at the free surface with
respect to the distance from the yield parameter Y. Colors are for three different
height of grains: H/d = 28.91−22.01−15.15. Dashed line is a linear fit of expression
y = a + bx . We find a = −0.007895± 0.00196 and b = 0.1623± 0.0023

we now plan to used a shooting method.

3.4 Conclusion on the numerical approach and per-

spectives

In this chapter, we focused on two dimensional dense granular flows. We first ex-

plained how the numerical code we used is built. We then presented two numerical

systems which allowed us to exhibit non-locality in different ranges of the yield pa-

rameter Y, and calibrate the rheology. On the one hand, the plane shear cell permits

to calibrate the rheology in the vicinity and on both sides of the jamming transition,

i.e. for Y < 1 and Y > 1. On the other hand, the incline plane also exhibit non-local

effects, but a larger values of Y. We presented the process by which we quantify

the model coefficients. Up to now, we show that the linear approximation of the

non-local equation is non sufficient to properly measure the relaxation length L of

the rheological profile. Indeed, even if this approximation seems to phenomenologi-

cally recover the flow profile in the incline plane, we still did not manage to find an
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accurate numerical solution of the whole non-local model. For further investigation,

we prescribe to use a shooting method in order to solve the non-local equation and

hence to accurately measure the parameters of the model. Doing so would also pro-

vide a way to better define the boundary condition at the free surface and to relate

it to the yield parameter.
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130 1.1. ELASTICITY OF JAMMED GRANULAR MATTER

1.1 Elasticity of jammed granular matter

1.1.1 Elastic moduli in the vicinity of the jamming transition

Many (numerical) studies ([36, 37]) have been conducted to understand the jamming

of a granular packing and the relation to elastic response. In [36], A. J. Liu, S. R.

Nagel, C. S. O’Hern and collaborators have modeled granular packings by using

diverse types of repulsive potentials to model their interactions at short range. In

this approach, inter-particle friction is ignored. They use either an harmonic potential

(α = 2) or an Hertzian potential (α = 5/2):

Vi j =
k

2
(ri + rj − di j)α H (ri + rj − di j) , (1.1)

where H is the Heaviside function, so that forces are zero between the two particles

if they are not in contact with each other. ri and rj are the radius of the particles

and di j the distance between their center. In this expression, ri + rj − di j = δ is the

inter-penetration when the two particles are in contact and k is the spring constant

of the latter.

At zero temperature and with no shear, they show the existence a critical volume

fraction φc (sometimes written φj with "j" standing for "jamming") at which the

transition between the two phases occurs. This critical volume fraction is directly

related to the critical number of contacts Ziso defining the rigidity transition and

above the transition there is a general relation, whatever the interaction potential

and the spatial dimension):

Z − Ziso ∼ (φ− φc)1/2, (1.2)

where Ziso = 2D (D being the spatial dimension). For volume fractions below

this value (φ < φc), particles do not overlap, and therefore contact pressure is

zero. Elastic moduli of the packing are thus not defined, as it would for solids. For
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φ > φc , particles overlap so contact pressure and hence elastic moduli of the packing

are finite. They both increase with the distance from the jamming ∆φ = φ− φc .

In the solid phase, the elastic moduli of the packing present power law depen-

dences with the distance from jamming. Note that this is reminiscent to critical

phenomena as we mentioned before.
J. Phys.: Condens. Matter 22 (2010) 033101 Topical Review

1010
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Figure 12. Bulk (K ) and shear (G) modulus as a function of distance to jamming for two-dimensional bidisperse systems, with interaction
potential V ∼ δα (see equation (2)). The closed symbols denote moduli calculated by forcing the particles to move affinely and the open
symbols correspond to the moduli calculated after the system has relaxed. Slopes are as indicated (adapted from [2] with
permission—copyright by the American Physical Society).

It is worth noting that many soft matter systems (pastes,
emulsions) have shear moduli which are much smaller than
compressional moduli—from an application point of view, this
is a crucial property.

Putting all this together, we conclude that the affine
assumption gives the correct prediction for the bulk modulus
(since k ∼ δα−2 ∼ #φα−2), but fails for the shear modulus.
This failure is due to the strongly non-affine nature of shear
deformations: deviations from affine deformations set the
elastic constants [2, 20, 30, 43, 62]. As we will see below,
the correspondence between the bulk modulus and the affine
prediction is fortuitous, since the response becomes singularly
non-affine close to point J for both compressive and shear
deformations (section 3.5.5).

3.5.4. Non-affine character of deformations. Approaching
the jamming transition, the spatial structure of the mechanical
response becomes less and less similar to continuum
elasticity, but instead increasingly reflects the details of the
underlying disordered packing and becomes increasingly non-
affine [30]—see figure 4(a). Here we will discuss this in the
light of equation (8), which expresses the changes in energy
as a function of the local deformations u∥ and u⊥: #E =
1
2

∑
i, j ki j(u2

∥,i j − δi j

α−1 u2
⊥,i j).

To capture the degree of non-affinity of the response,
Ellenbroek and co-workers have introduced the displacement
angle αi j .4 Here αi j denotes the angle between ui j and ri j , or

tan αi j = u⊥,i j

u∥,i j
. (14)

The probability distribution P(α) can probe the degree of
non-affinity by comparison with the expected P(α) for affine
deformations. Affine compression corresponds to a uniform
shrinking of the bond vectors, i.e. u⊥,i j = 0 while u∥,i j =
−εri j < 0: the corresponding P(α) exhibits a delta peak at
α = π . The effect of an affine shear on a bond vector depends

4 Not to be confused by the power law index of the interaction potential.

on its orientation, and for isotropic random packings P(α) is
flat.

Numerical determination of P(α) shows that systems far
away from the jamming point exhibit a P(α) similar to the
affine prediction but that, as point J is approached, P(α)
becomes increasingly peaked around α = π/2 (figures 13(b)
and (c)). This is reminiscent of the P(α) of floppy
deformations, where the bond length does not change and P(α)
exhibits a δ peak at π/2. Hence deformations near jamming
become strongly non-affine, and, at least locally, resemble
those of floppy modes.
Non-affinity of floppy modes and elastic response. Wyart
and co-workers have given variational arguments for deriving
bounds on the energies and local deformations of soft (low
energy) modes starting from purely floppy (zero energy)
modes [54, 63]. They construct trial soft modes that are
basically floppy modes, obtained by cutting bonds around a
patch of size ℓ∗ and then modulating these trial modes with
a sine function of wavelength ℓ∗ to make the displacements
vanish at the locations of the cut bonds [30, 54]. In particular,
for the local deformations, they find [63]

u∥
u⊥

∼ 1
ℓ∗ → u∥

u⊥
∼ #z, (15)

where symbols without indices i j refer to typical or average
values of the respective quantities.

The question is whether the linear response follows this
prediction for the soft modes. The width w of the peak in P(α)
is, close to the jamming transition, roughly u∥/u⊥ because
|αi j − π/2| ≈ u∥,i j/u⊥,i j if u∥,i j ≪ u⊥,i j . It turns out
that the scaling behavior (15) is consistent with the width
w of the peak of P(α) for shear deformations, but not for
compression. There the peak of P(α) does not grow as much
and a substantial shoulder for large α remains even close to
jamming: the tendency for particles to move towards each
other remains much more prominent under compression.
Scaling of u∥ and u⊥. The scaling of the distributions of u∥
and u⊥ has also been probed. The key observation is that in

12

Figure 1.1: Bulk (K) and shear (G) modulus as a function of distance to jamming for
two-dimensional bidisperse systems, according to the potential. The closed symbols
denote moduli calculated by forcing the particles to move affinely and the open
symbols correspond to the moduli calculated after the system has relaxed. Data
from [36] and adapted by [37]

According to the implemented interactions (Harmonic α = 2 ; Hertzian α = 5/2),

authors report dependencies of the pressure and the elastic moduli (see figure 1.1)

on ∆φ following the power laws:


P ∼ (∆φ)α−1

K ∼ (∆φ)α−2

G ∼ (∆φ)α−3/2

(1.3)

From these considerations, we see that, whatever the potential of interaction, the

exponent of the shear modulus is always larger than the exponent of the bulk modulus,

so that:
G

K
∝ (∆φ)1/2 ∝ Z − Ziso . (1.4)

The shear modulus G gets progressively smaller than the bulk modulus when going
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to the jamming. This relation is called the shear anomaly and is a signature of the

approach of the rigidity transition.

In this framework, for frictionless grains, pressure hence appears as good control

parameter to reach the jamming transition.

However, for real granular material, the inter-particle interaction can be more

complicated due to the presence of contact roughness. This can have several im-

portant consequences, like the emergence of solid friction and also changes in in-

teraction laws. When the overlap between particles is at the scale of the contacts

asperities [38, 39], the interaction laws may not remain purely Hertzian.

Rigidity transition was generalized in the case of frictional contacts usually studied

with either harmonic or Hertzian interactions. For infinite friction, the critical number

of contacts is Ziso = D + 1. However for finite friction, it is more complicated

as one has to take into account the number of contacts in the Coulomb cone.

Authors like Ellenbroek [40] have defined a critical Zµiso , dependent of the microscopic

friction coefficient µ, such that D + 1 < Zµiso < 2D. An essential claim of this

team is that the critical character of the rigidity transition remains when Z − Ziso

vanishes. In particular the relation between the number of contacts and pressure can

be generalized Z −Ziso ∼ P 1/3 (for Hertzian contacts). At vanishing pressures, this

would imply an elastic anomaly as for frictionless particles. However, other authors,

like Magnanimo [41], claim that at vanishing pressure, the number of contacts would

saturate at a constant value eventually far from the generalized isostatic value. This

means that even though the shear modulus could be significantly smaller than the

bulk modulus, the scaling relation 1.4 would not be observed. Therefore a mean field

behavior for the elastic moduli as described in the following should be observed at

evanescent pressures.
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1.1.2 Mean field approach

The Mean field approach, or effective medium theory (EMT) [42, 43] is based on

the affine approximation that the motion of each grain follows linearly the macro-

scopic applied strain. Assuming a Hertzian interactions between spherical grains, at

a confining pressure P , the overlap δ scales as P 2/3. This means that the effective

inter-particle stiffness scales as P 1/3. As a consequence, the elastic moduli scales also

as P 1/3. The full mean field calculation for a granular packing of compact fraction

φ and number of contacts Z gives a dependence of the elastic moduli as:

K ∼ G ∼ E0 (φZ)2/3 (P/E0)1/3
, (1.5)

where E0 is the material Young’s modulus. The mean field theory thus does not

predict the anomaly on the elastic moduli previously described.

More explicitly for spherical grains made of material which properties are µg (shear

modulus) and νg (Poisson’s coefficient), EMT predicts:

K =

(
1

3π
√

2

µg
1− νg

Zφ

)2/3

P 1/3, (1.6)

and

G =
3

5

(
1 + ε

3(1− νg)

2− νg

)
K, (1.7)

where ε would be 0 in the frictionless case and ε is 1 in the infinite friction limit.

Note, EMT would also predicts sound velocities scaling as P 1/6.

However, Makse et al [44] have shown the failure of the mean field theory. They

compare the mean field prediction with DEM results of Hertzian granular packing.

He artificially introduces a parameter α in order to continuously vary the influence

of the tangential force contribution in contacts. He shows that the EMT prediction

qualitatively reproduces the evolution of the bulk elastic moduli K (EMT over es-

timates the simulation results by ≈ 10%) but fails to predict the evolution of the
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shear modulus at vanishing tangential contribution (which corresponds to frictionless

packing). However, in a second series of simulations, he constrains the rearrange-

ments of particles to be affine with respect to the applied strain rate, in order to

artificially impose the affine assumption of EMT at the scale of particles. He hence

manages to recover the EMT prediction, in particular for the shear modulus.

This finding is qualitatively coherent with the frictionless scaling of C. O’Hern

et al [36] we previously presented about the anomaly of the shear modulus in the

vicinity of the jamming transition.

On an experimental point of view, the dependence of elastic moduli with pressure

has been probed by the measure of sound celerities in packing of glass beads [42, 45,

46, 47]. These studies show that the mean field prediction is not valid and exhibit

an effective power law of c ∼ P 1/4, instead of the c ∼ P 1/6 expected from the mean

field of Hertz prediction [45] (see figure 1.2).

An empirical relation between the mean number of contacts Z and the confining

pressure Z(P ) in order to take into account this discrepancy.

There is however another way of thinking that introduces contact relations differ-

ent from the Hertz scaling. For example, de Gennes’ theory [38] takes explicitly into

account the softness of an outer shell which can model an oxide layer or asperities

inducing an effective reduced softness at the surface of the grains.

Noticeably, all these experiments were made under very high confining pressures

and in a limited pressure range. In the following, we present an experiment we

designed in order to reach very low confining pressures in a granular assembly of

glass beads. We measure sound velocities of plane compressive waves at pressures

down to ∼ 10Pa and propose a theoretical framework in which we revisit the nature

of particles contacts by taking into account the asperities at the surface of the grains

as a soft superficial layer.
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Figure 1.2: Compressive wave velocity c with respect to the confining pressure P . In
dashed line are the prediction from EMT (blue tight dashed line is with Z = 5, ε = 1,
green dashed line is with Z = 5, ε = 0); range squares are experimental results from
Domenico and red circles are experimental results from Makse. Black solid line is a
phenomenological curve in P 1/4. Data extracted from [47].
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Propagation of a plane wave in a
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2.1 Experimental set-up

We took the opportunity of three CNES parabolic flight campaigns (March/October

2015 and October 2016) to study the acoustic propagation of a wave packet in a

granular packing and probe the elastic response of a granular packing at low confining

pressure. Because in a lab experiment the gravity induces a pressure gradient within

the grain assembly, we need to be in a weightless environment in order to be able to

control the confining pressure at a lower value than the one induced by the gravity

gradient on Earth. The French national space agency (CNES) offers parabolic flight

campaigns dedicated to science, on board of the Airbus Zero-G (Airbus A300 until

late 2015 and since then A310).

2.1.1 Overview of the experiment

The principle of the experiment lies in propagating a sound wave through a cell

containing a granular medium confined at a controlled pressure. From a physical

point of view, the control parameters are the confining pressure within the medium

and the characteristics of the generated wave (amplitude of the signal and frequency)

; the measurements are the characteristics of the sound wave transmitted through

the cell.

In absence of gravity the confinement pressure can in principle be fixed at very low

values. However, one has to keep in mind that for real zero-G flights, there is always

a remnant G-jitter acceleration spanning ±5.0 10−3 g in amplitude. To compensate

for these acceleration variations, due to the ability of the pilot to adjust the plane

trajectory to the desired parabola, we set up a feedback loop suited to maintain a

constant pressure within the sample.

The experiment is thus composed of two racks, one containing the core experi-

ment (i.e. the cell with its sensors and actuators, and the confining system) and the

other embedding the power supplies for the electronics, the acquisition boards and
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the computer for user interface and the feedback program that controls the pressure

within the medium (see figure 2.1).

Linear stage 
(Newport)

Force sensors

Test cell
(contains granular sample)

Low frequency accelerometer

Fine linear stage 
(PI)

screen
(not used for
this experiment)

Laptop

Figure 2.1: The two racks of the experiment. The additional screen and the PC
desktop unit were used for another experiment we left aside for the moment.

2.1.2 The cell and its confining system

The cell contains glass beads with a diameter range 1 < d < 1.3m from Silibeads. It

is a parallelepiped box of height h = 11cm and of section dimensions W = 15.5cm,

L = 16cm and fill with about ∼ 3, 3kg of grains (depending on the flight campaign).

The inner walls and the top of the box are made of 3D-printed ABS. Their

external surface is plane but the core is a honey nest: this 3D printed structure,

in addition to the ABS material used, insures a phonic insulation from the exterior

of the box (no acoustic by-pass) and also prevents reflexion of the sound wave

studied within the box. The bottom of the box is a metallic plate mounted on three

synchronized piezoelectric pistons (P840.10 from PI) producing a tunable vertical

oscillating motion at frequencies up to several kHz .

In order to monitor the effective source shape, a 1D accelerometer is fixed un-

derneath the moving plate. Similarly, a 3D accelerometer is stuck in the lid, on the

side in contact with the beads. This allows to record the transmitted wave.
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Figure 2.2: CAD model of the test cell "BoxSon". One can distinguish the inner
walls and the lid 3D printed in ABS. The remaining parts, among which the vibrating
plate and the adjusted square around it are made of aluminum alloy.

The lid of the cell is also made of 3D-printed ABS (honey nest inside, smooth

surfaces on the outside) for the same reasons as for the walls of the box. The lid

is adjusted so that it barely slides on the walls, limiting the contact and therefore

the friction. Over the lid are four little cubes of ∼ 1cm sides. They play the role

of viscous dampers that isolate the lid from the discontinuous displacements of the

confining stage. Also, they filter the remnant g-jitter and the environment noise that

could be transmitted by a rigid coupling with the moving stage that composes the

confining system.

The latter is made of two linear stages mounted one on the other (see figure 2.1

page 139). The bigger stage, provided by Newport, is mounted of the frame base. It

allows to translate the smaller stage that pushes on the lid. The fine stage (from PI)

is fixed on the moving part of the Newport stage and allows a precise displacement

(minimum incremental motion to 0.1µm with 3.5nm resolution). It is only used

within the feed-back loop to accurately adjust the pressure while the Newport stage

is only used between parabola in order to set the micro-stage at the theoretical
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position for the confining pressure we wish to impose for the next parabola.

2.1.3 Feed-back loop

In this experiment, we probe the mechanical response of a granular packing at very low

confinement pressures, down to 10Pa. We therefore need to be very precise on the

control of the pressure on (and within) the grains. The main cause of fluctuations of

pressure within the medium is the remnant g-jitter caused by the human imprecision

of the pilot and the turbulence in which the aircraft evolves.

+

-

+

-

Figure 2.3: Control of the confining pressure: feed-back loop. The apparent gravity
is measured, as well as the confining force acting on the top of the box. The pressure
adjustment is made by the translation of the fine stage stage. Index N stands for
Newton and V for Volts.

The feed-back loop uses the value of the current effective gravity gcurrent measured

by the 3-axis low frequency accelerometer installed on the experiment frame, and

the force sensor that monitors the pushing force of the linear stage on the cell lid,

and therefore on the sample. The actuators are the two linear stages previously

mentioned.

The behavior of the feed-back loop is described in the bloc diagram figure 2.3.

The feed-back loop aims at controlling the pressure at the bottom of the box Pbot
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at the desired pressure. This guaranties a permanent contact between the source

(moving plate, at the bottom) and the granular medium despite the gravity fluctua-

tions.

From the target pressure Pset, one computes the corresponding force to impose on

the grains in the ideal case of perfect "zero-G" (gcurrent = 0). The g-jitter (gcurrent)

creates a resisting force Fbot = gcurrentMt on the force sensor, due to the momentum

of the moving components (granular sample, lid of the box, polymer cubes and the

aluminum plate that is the the support of the force gauge). The deviation εF from

the target force is then converted to a command tension Uset which is compared to

the tension characterizing the force on the medium. The linear stage only adjusts

the pressure when the following conditions are gathered:

• the deviation ε between the tensions characterizing respectively the force to

impose on the medium Uset and the output of the force sensor U ′real is out of a

defined range (we set the tolerance at 0.1V from the target which corresponds

to ±5Pa.

• the force sensor do not saturate

• we set the g-target to zero (when running experiment on the ground, to probe

the feedback loop when need to change this target, otherwise gcurrent remains

out of bounds).

Also, note that the experiment was also tested under terrestrial gravity (g = 1m/s2),

therefore there is a flag (a boolean) that enables to turn off the retroaction of the

feed-back loop is the case of laboratory tests.

Sensors

The main measurements lie on the comparison of the wave characteristics, before

and after it has propagated through the medium. To do so, a one-axis accelerometer
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is mounted on the vibrating plate (i.e. the source) and a three-axis accelerometer is

embedded on the lid of the cell.

Jitter accelerometer We use a dedicated mounting of 3 low frequency variable ca-

pacitance accelerometers (MEGGITT 7290E, bandwidth 0−15kHz ; one along

each axis) in order to monitor the environment apparent gravity. The z-axis

measurement (which is parallel to the axis along which we propagate the wave

and which corresponds to the yaw axis of the aircraft) is directly input to the

feed-back loop which acts on the fine translational stage.

Force gauges Up to now we have used four Futek LSB200 of 250grams capacity

each. They were displayed in a square, hanging on the stage plate and also

screwed to the plate which is used to load the polymer cubes and therefore the

cell lid. This set-up enables to reach a maximum pressure of 200Pa in so-called

"Zero-G" and a minimum load of 15Pa with a ±5Pa precision. A drawback

of using several sensors is the balance of the load on the plate (one sensor can

saturate and therefore the computed sum of forces does not reflect the actual

pressure the stage imposes). For last campaign we chose to replace these

forces sensors by a single weighting scale sensor. This choice offers a wider

range of forces with the same precision and only one sensor which simplifies

greatly the mechanical balance of the plates between which it is mounted, which

guaranties a more homogeneous pressure on the medium. We also replace

the pre-amplifier system with a compatible conditioner. This upgrade is also

improved the precision of our set-up (by a factor 2).

High frequency accelerometers To measure the wave packets we transmit through

the medium, we use two Brüel & Kjær high frequency accelerometers (band-

width 20Hz − 100kHz). The source accelerometer, mounted underneath the

vibrating plate is a 4705-B (unidirectional) ; the reception accelerometer is a

4735-B (3D). There sensibility is 1mV/G and their factory (and supposedly
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precise and accurate) calibration is embedded so that when connected to the

amplifier, it reads the accelerometer data and set it up properly.

Control of the confining pressure

The confining pressure is monitored by force gauges that are mounted between the

stage and the plate that sits on the top of the box (see figure 2.5 page 145). In the

ideal case of a perfect "Zero-G" (no jitter), the sum of the measured forces over the

area of the top wall in contact with the medium would give the confining pressure.

In reality the G-jitter has a double influence: on the one hand it creates a pressure

gradient within the medium while we assumed the pressure to be homogeneous within

the medium, and on the other hand it perturbs the feedback loop because of the

inertia of its components.

Figure 2.4: Jitter remnant acceleration during a parabola. Pressure is imposed on
top of the cell lid. a) Schematic of the cell, with confining pressure from at the top
σ0 ; b) Effective gravity (on the three axis) and pressure at the top σ0 and at the
bottom σB of the cell, with respect to time. The pressure at the top is controlled by
a feed-back loop in order to maintain σB at the desired value. c) Acceleration signal
at the source and at the reception, for one transmitted wave packet. The measure
of the flight time τf provides a value for the group velocity at which the wave travels.
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The feedback loop is therefore designed to maintain a fixed positive pressure

at the bottom of the sample Pbottom, i.e. at the level of the vibrating piston: it

guaranties a continuous contact between the granular packing and the vibrating

plate. To do so, the instantaneous gravity value g(t) is measured and the position

of the fine piezo-electric stage is shifted in order to accordingly adjust the force on

the top piston (see bloc-diagram on figure 2.3 on page 141). We have F (t) =

[Pbottom − ρ g(t) h] LW , where h, L and W are respectively the inner height, length

and width of the cell).

Wide range stage 
(Newport)

Fine step stage 
(PI)

Force gauges

Test cell
 

Damping cubes

Figure 2.5: Confinement system. Glued on top of the lid of the cell are four polymeric
cubes that enable a viscous damping of the external noise and smooth the constrains
imposed by the movement of the confining chain. The latter, sitting right on top
of these cubes is constituted by a metallic plate hanging from the force gauges is
order to guaranty a pre-constrain in traction in a 1G environment. This is a way
to optimize the range for the measurement (in compression) during the experiment.
On top of this the micro-metric stage is the actuator of the feedback loop. It is
itself fixed to the translation stage of the larger stage that enable a wider but less
fine displacement of the cell lid (adjustment for different pressure-imposed ranges).
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Figure 2.6: Current g and adjustment of the confining pressure by the feedback loop
during one parabola. Top graph: relative gravity (g0 = 9.81m/s2) felt in the aircraft,
along a parabola. Center graph: vertical g (along axis ~x) in the plane and position
of the linear fine stage with respect to it. Bottom graph: direct measure of the
confining pressure σ0 (at the top of the cell) and regulated pressure at the bottom,
σb.

2.1.4 Generation of a plane wave

We probe the medium by propagating a single frequency plane wave1 through it.

This plane wave is generated by vibrating a rigid plane plate in a direction normal to
1A plane wave is a field A(~x, t) which take the form:

A(~x, t) = f (
~n

c
~x − t)

with an arbitrary function f and ~n unit vector. The points of equal field value of A(~x, t) always form
a plane in space. This plane shifts with time t along direction ~n and with celerity c .
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Figure 2.7: Experimental data: source and reception.

its surface thanks to the piezo-electric pistons previously mentioned. We chose to

constrain the number of carrier wave oscillations within one wave packet. Therefore

the width σ of the Gaussian command is fixed by:

σ =
10

4f
√

2 log 2
(2.1)

The command signal sent to the actuators is a command in displacement, of form:

D(t) = A cos (ωt + φ) exp

[
−

1

2

(
t

σ

)2
]

(2.2)

It is important to underline the fact that this command is in displacement. We will

come back to this later but notice that when we will compare the emitted and

received waves, our measurements will be in terms of acceleration as the sensors are

accelerometers. Not displacement.

Choice of the wave carrier frequency We propagate a single frequency (carrier)

wave in the medium and probe several frequencies to check this hypothesis.

Therefore we need to choose the frequency of the carrier wave. It is limited by
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the two length scales of the system: the wavelength must be larger than the grain

diameter (so the mean field hypothesis is valid) and smaller than the height of the

box (which correspond to the length along which the wave propagates). Therefore:

d ≤ λ ≤ H (2.3)

where d is the diameter of the beads (distributed in a diameter range from 1mm to

1.3mm) ; H ' 8cm is the height of the box ; λ the wavelength. If we propagate the

trend extrapolated from Jia [45] data we can estimate the celerities for the pressures

we wish to test: cmin ' 10m/s at minimum and cmax ' 103m/s for highest pressures.

With H ' 8cm this leads to fmin ' 1.250kHz and fmax ' 10kHz .

Note that we also checked that this was compatible with the actuator frequency

domain. In order to make sure that the source stays away from its resonance we chose

frequencies closer to the fmin. In the following, we only presents results obtained at

a frequency (of the carrier wave) equal to 4kHz . The minimum sound celerity we

can propagate is therefore cmin = f d = 4000 × 0.001 = 4m/s and the maximum

cmax = f H = 4000× 0.08 = 320m/s.

2.1.5 Conducting the experiment

We developed a LabView program to control the experiment and compute the feed-

back loop to adjust the pressure in real time. The control parameters of the experi-

ment are loaded from a text file previously prepared. On each parabole, i.e. each line

of the ParabolaConfig.txt file, we choose the target pressure for the retroaction, the

carrier wave frequency, the frequency at which we send the wave packets (which we

maintain at 200Hz), and the amplitude of the generation of the wave packets. We

probe 3 different source amplitudes for each parabola as the code was made to load

and generate identical series of 3 wave packets. During each parabola we propagate

about 300 wave packets, therefore ∼ 100 wave packet for each imposed amplitude.

The ParabolaConfig.txt file is prepared prior to the flight as the ZeroG conditions
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are not viable for clear thinking and smart estimations of the setting for the control

parameters of the experiment.

Figure 2.8: User interface developed for the parabolic flight experiment.

Figure 2.8 presents the user interface of the experiment. The experimentalist

chooses the parabola number (on the left of the panel), loads the parabola param-

eters by clicking on the "select" button. During the loading of the parameters, the

larger linear stage adjusts its position to an estimated value corresponding to the

target pressure specified in the text file. If the retroaction is enabled (which we do

in normal situation, no debbugging etc.), the finer linear stage will adjust its position

during the zeroG phase. At the bottom right of the window we visulamize the esti-

mated pressure at the top and at the bottom of the cell. Pressure at the top (Ptop)

is simply computed from the measure from the force sensor over the lid surface.

Pressure at the bottom is estimated by Pbot = Ptop +MgrainsgcurrentS (where S is the

area corresponding to the horizontal cross section of the cell2). During the flight,

gcurrent is supposedly zero, therefore Ptop = Pbottom. When testing the experiment on

2it is assumed to be equal to the surface of the lid.
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the ground, we can simulate this condition by turning off the "keep g value" setting.

At the top of the window, the raw (tension) output of the force gauges are

monitored3, as well as their mean value in real time. We also this value with time,

and below in the window we monitor the raw output of the source and the reception

accelerometers in order to visualize in real time if we propagate wave packets. Note

that in the case of small amplitudes, the ratio signal over noise sometimes prevents

us from distinguishing the transmitted wave packet, by the filtering and the post-

treatment process we make enable to recover some usefull signal as we will see in

the next section.

2.2 Data processing and selection

2.2.1 Calibration of the wave sensors

The main question here is to rigorously define what physical quantities are measured

in the experiment, especially regarding the accelerometer embedded in the lid within

an envelope of silicon. This is a key question as we want to compare with a theoretical

model.

As shown on figure 2.9 the source signal comes from an accelerometer which

is fixed under the vibrating plate, at the bottom of the cell. Therefore it gives

a measurement of the acceleration of the latter, i.e. the second derivative of its

displacement.

At the opposite, the reception accelerometer (see figure 2.10) which is embedded

in the lid is isolated by a thin layer of silicon in its compartment. This was made to

prevent an acoustic bridge with the whole lid: we wanted to make sure we measure

the acceleration of the grains, not any other signal. The lid accelerometer is thus

3as we changed the force measurement setup by replacing the four Futek 250gr gauges by a 5kg

Scaime sensor, we chose du minimize the changes in the code, hence duplicating the value of the
single force sensor on the 4 channels and only modifying the αF coefficient that converts its output
tension to units of force. This also explains the "4" coefficient within the feedback loop diagram
figure 2.3 page 141.
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Figure 2.9: Setup of the source accelerometer. It is fixed to the vibrating plate, on
the opposite side from the granular medium. z-axis of the accelerometer is oriented
toward the top to the bottom of the cell.

Figure 2.10: Setup of the reception accelerometer. It is encrusted within the lid,
in a silicon bed, and it comes out a little from the bottom surface of the lid so we
make sure it is in contact with the grains. z-axis of the accelerometer is oriented
toward the top to the bottom of the cell. Note the polymer cubes that ensure the
damping of between Linear stage and the cell lid, in order to prevent rigid contact
and therefore an acoustic bridge with the medium.
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a damped mass-spring system, excited by the acoustic pressure of the grains. Note

that it is not the acceleration of the grains. Indeed, with respect to the wave or the

(low frequency) fluctuations of the effective g, the lid is supposed to be fixed (and

no displacement implies no acceleration). The reception accelerometer is therefore

a pressure sensor that we need to calibrate.
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Figure 2.11: We shock the accelerometer in its compartment in the lid. The system
is free to oscillated and beside the first shock pulse, received no other excitation.
Red is the time response and green is the theoretical prediction.

Probing the reception sensor A first test is to measure the free response of the

system. We settle the lid horizontally, with the accelerometer hanging in place and

we shock (hit) the sensor. Figure 2.11 shows the temporal response of the system.

For such system, Newton’s second law writes:

d2Z

dt2
+ 2ξω0

dZ

dt
+ ω2Z =

F (t)

m
(2.4)
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where F (t) = 0 in the present case as the is no driving force ; m being the mass of

the studied system (the accelerometer) ; ω0 the undamped angular frequency and ξ

the damping ratio. The damped oscillations hence take the form:

Z(t) = Ae−ξω0t sin

(
ω0

√
1− ξ2 t + φ

)
(2.5)

Amplitude A and phase φ being given by the initial conditions. Fitting with the data

(see figure2.11) gives ω0 ' 6740rad.s−1 and ξ ' 0.1. We find ξ < 1/
√

2 therefore

the system is underdamped. It therefore has a resonant frequency which is given

by ωr = 6663rad.s−1. ω0 and ωr respectively correspond to f0 = 1070Hz and a

resonant frequency of fr ' 1060Hz . One also likes to mention the corresponding

quality factor Q = 1
2ξ
' 4.8 which characterized the ratio of stored energy over the

energy lost per unit cycle4.

Figure 2.12: Response curve in amplitude, for the accelerometer. Propagation for
a sine wave through air (empty cell). The two colors correspond to two separated
data sets (me moved the lid and the set-up in the meantime).

A second and more complete test is to measure a whole frequency response of he

system, by exciting it with a sine signal spanning several frequencies, from the lowest

to the highest allowed by the actuation devices (the PZT). To do so, me empty the

cell and we propagate a wave from the source to the lid (within which the reception
4Q provides a rough idea of the number of oscillations during the exponential decay 1/(ω0ξ).
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accelerometer is embedded). This allows to only consider the cell itself and not the

granular medium. At constant source amplitude, we propagate a sine wave for which

we change the frequency. Figure 2.12 presents the frequency response of the system,

left completely free and without any contact with granular matter: the cell is empty

(see inset figure 2.12) and the lid is facing the vibrating plate without being in direct

contact with the cell (we mounted it over foam cubes, in yellow on the graphics).

We send sine waves of constant command amplitude and display here the restitution

coefficient with respect to the sine frequency.

In this test, the accelerometer is not in contact with any grain. It is free to

move in is slot. The contact with the granular medium might have an influence

on the dynamical response of the moving mass of the sensor, and hence modify its

vibrational response. However, in our tests in the cell filled with grains, we did not

see any evidence of a drastic change in the resonant frequency of the set-up.

We can then assume reasonably that the momentum equation on this mass-spring

system is dominated by the acceleration so that:

Γ = SlidP/m

where Γ is the acceleration of the moving mass m and P the acoustic pressure

provided by the grains.

2.2.2 Propagation model in the acoustic cell (compression)

In this section, we choose, at first order, to neglect the gravity. Therefore the stress

state is only characterized by σ = σzz with ~z axis along the vertical direction and

from the source (bottom plate) to the reception, at the lid of the box.

The momentum balance writes:

∂σzz
∂z

= ρ
∂2u

∂t2
(2.6)
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where u is the displacement of particles along ~z axis. The normal stress σzz is linked

to the longitudinal deformation ∂u
∂z

by the constitutive relation:

σzz = K
∂u

∂z
(2.7)

Equation (2.6) thus writes:
∂2u

∂t2
− c2∂

2u

∂z2
= 0 (2.8)

where

c2 =
K

ρ

is the celerity of sound in the effective continuous medium. K being the bulk modulus

and ρ the material effective density.

As K and c are actually the quantities we want to measure in this study, it is

preferable to express K with respect to ρ (that we can measure independantly) and

c :

K = ρc2

PDEs like (2.8) have solutions of form (plane progressive waves):

u(z, t) = f (t −
z

c
) + g(t +

z

c
)

This is a second degree PDE therefore the problem has only two boundary con-

ditions:

• u(0, t) = u0(t)

• u(H, t) = 0

Where φ is the phase (of the carrier wave of pulse ω) at the center tm of the Gaussian

wave packet (of displacement amplitude A and width σ).

The first BC (z = 0) of PDE (2.8) implies:

u(z, t) = u0(t −
z

c
) (2.9)
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Which is the solution for the propagation of a plane wave in a semi infinite guide (no

lid on the cell).

The second boundary condition characterizes the zero-displacement at the lid (at

z = H), at any time t. We are therefore looking for solutions of form:

u(z, t) = u0

(
t −

z

c

)
+ u1

(
t +

z

c

)
(2.10)

so that u(H, t) = 0 This implies that

u0(t −
H

c
) + u1(t +

H

c
) = 0

So:

u1(t) = −u0

(
t −

2H

c

)
(2.11)

This illustrates the fact that the wall (at z = H) acts like a mirror. Close to the

wall, the structure of the solution is finally:

u(z, t) = u0

(
t −

z

c

)
− u0

(
t −

2H

c
+
z

c

)
(2.12)

which gives the vertical stress:

σzz(z, t) = ρc

[
−u′0

(
t −

z

c

)
− u′0

(
t −

2H

c
+
z

c

)]
(2.13)

The vertical stress on the wall is:

σzz(z = H, t) = −2ρcu′0

(
t −

H

c

)
(2.14)

where in our case

u0(t) = A cos (ωt + φ) e−
1
2 ( t−tmσ )

2

(2.15)
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and therefore

u′0(t) = −Ae−
1
2 ( t−tmσ )

2
[
ω sin (ωt + φ) +

t − tm
σ2

cos (ωt + φ)

]
(2.16)

which gives at the source (z = 0, at time t), the acceleration:

u′′0 (t) = − Aω2 cos (ωt + ψ) exp

[
−

1

2

(
t − tm
σ

)2
]

(2.17)

+ 2Aω
(t − tm)

σ2
sin (ωt + ψ) exp

[
−

1

2

(
t − tm
σ

)2
]

+ A
(t − tm)2 − σ2

σ4
cos (ωt + ψ) exp

[
−

1

2

(
t − tm
σ

)2
]

Therefore the vertical stress at the wall is, in fine:

σzz(H, t) = +2ρcAe
− 1

2

(
t−tm−Hc

σ

)2

×[
ω sin

(
ω(t −

H

c
) + φ

)
+
t − tm − H

c

σ2
cos

(
ω(t −

H

c
) + φ

)]
(2.18)

At the limit at which the lid (top wall) of the box is completely non-mobile, the

momentum equation of the accelerometer settled in its compartment with a matrix

of silicon gel writes:

m
d2Z

dt2
= −kZ − α

dZ

dt
− σzz(H, t)S (2.19)

with S the surface of the accelerometer in contact with the grains (typically ∝ πD2/4

with D the dimension of the accelerometer) ; m, k and α respectively the moving

mass, spring and damping coefficient of the system.

According to the fact that ω >> ω0 (where ω0 ' 6700 s−1 is the natural of the

system {accelerometer + silicon} in the lid, see page 152 paragraph 2.2.1 "probing

the sensor"), we can make the assumption that the first two terms of the right hand

side of 2.19 are negligible with respect to the acoustic pressure force P (H, t)S.
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Therefore equation 2.19 leads to:

d2Z

dt2
= −

S

m
2Aρc e

− 1
2

(
t−tm−Hc

σ

)2

×[
ω sin

(
ω(t −

H

c
) + φ

)
+
t − tm − H

c

σ2
cos

(
ω(t −

H

c
) + φ

)]
(2.20)

by which we should fit the wave packet signal coming from the lid accelerometer

(reception), in the non-dispersive case.

In the dispersive case, the carrier wave do not necessarily travel at the same

celerity as the modulation (i.e. here the Gaussian envelope). We thus write cφ the

phase velocity, i.e. the celerity of the carrier wave and equation 2.20 becomes in the

dispersive case:

d2Z

dt2
= −

S

m
2Aρc e

− 1
2

(
t−tm−Hc

σ

)2

×[
ω sin

(
ω(t −

H

cφ
) + φ

)
+
t − tm − H

c

σ2
cos

(
ω(t −

H

cφ
) + φ

)]
(2.21)

2.2.3 Raw data and data treatment

Synchronization of the data During the whole flight, we constantly record the

time and any output from the force sensors and the accelerometers (along the 3

axis, at the position of the experiment which is slightly different from the acceleration

recorded by the plane equipment and is also sampled at a higher frequency). We also

record the displacement of each stage separately and of course the signals from the

high-frequency accelerometers that measure the source and reception of the wave

packet in the cell.

For each parabola, a folder is automatically created that contains signal.txt

(time, vertical source acceleration and the 3 axis of the reception acceleration), the

time origin for this parabola and the value of the control parameters in two other

.txt files.
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The synchronization lies in dividing the permanent recordings into the series of

parabola. It creates a data.mat file within each parabola folder that contains syn-

chronized signals of force measurements and accelerations, with time. It also contains

signals generated by/for the feed-back loop for the servo-mechanism (retroaction)

that control the confinement: the force command, the fine stage displacement and

the estimated pressure at the bottom of the cell.

Selection of the time windows (refine crop of the parabola) For each parabola

one needs to isolate the time window within which a criterion based on the "quality"

of the "zero-G" is satisfied: remnant variations of the gravity must stay in a 0±0.05G

range.

Also, because it is hard to predict whether the calibers of the accelerometers

will be properly set in advance, we allow the operator of the experiment to adjust

manually their value during the parabola, in real-time. It is therefore important to be

able to manually crop the previous time windows accordingly.

Filtering Beside the filtering role of the cubic polymers inserted between the lid of

the cell and the moving plate hanging on the force gauges, we need to filter the signal

in order to get rid of the remnant G-jitter and any other noise or parasite signal that

would jeopardize the fitting of the expected signals. We therefore use a band-pass

filter that only keeps frequencies within the range [f − 1500Hz ; f + 1500Hz]. Then

we use the Hilbert transform5 to get the envelope of the signal.

5The Hilbert transform is a linear operator that propagates a function (signal s(t)) to the complex
plane so that it satisfies the Cauchy-Riemann differentiability necessary and sufficient condition in this
space. It is often used to calculate instantaneous attributes of a time series, especially the amplitude
and frequency. It is defined by the convolution:

H(s)(t) =
1

π

∫ +∞

−∞

s(x)

t − x dx (2.22)

Here, we just use the Matlab function of the Hilbert transform, that provides the envelope for a given
signal.
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Computing the physical parameters: fit of the data

Recall from 2.23 that at the source (x = 0, at time t), the acceleration (and

therefore the function by we fit the signal from the accelerometer) writes:

u′′0 (t) = − Aω2 cos (ωt + ψ) exp

[
−

1

2

(
t − tm
σ

)2
]

+ 2Aω
(t − tm)

σ2
sin (ωt + ψ) exp

[
−

1

2

(
t − tm
σ

)2
]

+ A
(t − tm)2 − σ2

σ4
cos (ωt + ψ) exp

[
−

1

2

(
t − tm
σ

)2
]

Similarly, we recall that at the reception (x = H, at time t, see equation 2.21),

the signal has to be fit by:

d2Z

dt2
= −

S

m
2Aρc e

− 1
2

(
t−tm−Hc

σ

)2

×[
ω sin

(
ω(t −

H

cφ
) + φ

)
+
t − tm − H

c

σ2
cos

(
ω(t −

H

cφ
) + φ

)] (2.23)

We bring to the reader’s attention that in this formula, the phase of the carrier

wave (the cosine/sine parts) does not necessarily travels at the same speed as the

Gaussian envelope. When we derive the displacement field u(z, t) with respect to

time t, we implicitly assumed it was the case, i. e. that the medium was not

dispersive. In order to leave some flexibility on the fit, regarding this assumption, we

unconstrain the model by allowing the carrier wave to travel at a different speed then

the envelope. We therefore distinguish the group velocity c (at which the envelope

travels) from the phase velocity cφ at which the carrier wave travels.

The fit procedure we adopted lies on these considerations. First we fit the source:

1. Gaussian fit of the envelope of the source (first term of formula 2.23): it

provides a first estimate of the amplitude of the acceleration As ' −Aω2 (A is

the amplitude of the displacement, for the source ; ω its pulse), of the width

σ and center tm located at the maximum of the packet.

2. Fit of the source using formula 2.23. This fit measures the pulse ω, the value
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of tm, the width σ and the phase φ at the origin.

Then we fit the reception. Keep in mind that the phase φ does not change as the

wave travels through the medium, so as the carrier wave pulse ω. These quantities

are therefore constrained in the fit of the reception:

1. Again, Gaussian fit of the envelope of the signal: gives [A σ t0].

2. Fit of the reception signal with the formula 2.21: we fit
[
Ar σ

H
cφ

H
c

]
while ω

and φ are fixed (from the fit of source).

Table 2.1 details this fit algorithm and gives the parameters fit at each step.
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Process
step

Signal Operation Formula Parameters

1 Source
Detection
of max.

Provides as estimation of the
amplitude Asrc of the source
signal and its localization t0 src

2 Hilbert
envelope
of source
signal

Fit Gaussian Initial guess: amplitude
Asrc and t0 src

Measures: amplitude AGauss src

and center tm Gauss src

3 Source Fit Full
model
eq. 2.23

Initial guess: displacement am-
plitude6 Asrc, ω = 2πfset and
tm Gauss src

Measures: displacement ampli-
tude Asrc, true value for ω,
tm src, and phase at origin φ

4 Reception
Detection
of max.

Provides as estimation of the
amplitude Arcp of the source
signal and its localization t0 rcp

5 Hilbert en-
velope of
reception
signal

Fit Gaussian Initial guess: amplitude
Arcp and t0 src

Measures: amplitude AGauss rcp,
ω and tm Gauss rcp

6 Reception fit Full dis-
persive
model
eq. 2.23

Initial guess: displacement am-
plitude7 Arcp, ω = 2πfset and
t0 rcp

Imposed in fit: ω and φ
Measures: displacement ampli-
tude Asrc, tm rcp, and tmp rcp

(due to phase shift)

Table 2.1: Algorithm for the fitting of the wave packets



CHAPTER 2. PROPAGATION OF A PLANE WAVE 163

Source signal

Enveloppe (Hilbert transform)

Gaussian fit enveloppe

Dispersive Acc. fit

Reception signal

Enveloppe (Hilbert transform)

Gaussian fit enveloppe

Dispersive Acc. fit
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Figure 2.13: Fit of a typical wave packet. Successive fits of the signals according
to the fit strategy previously described in table 2.1. Fits of the source (top graph)
provides a measure of the actually frequency and the phase at origin. These remain
fixed in the fitting of the reception signal (bottom graph). Note the fit with the
non-dispersive expression of the response (assume cφ = c).

These fit values are of course all saved and we compute the group8 and the phase

velocity9. respectively from H
c
and H

cφ
(respectively the flight time of the wave packet

and of the carrier wave).

The phase of a sine wave being defined at modulo 2π, the phase shift corre-

sponding to −ω H
cφ

is therefore defined modulo 2π. Therefore, in order to properly

8Group velocity The group velocity of a wave corresponds to the velocity at which its overall
shape (i.e. its modulation, its envelope) propagates. In our system, it is the velocity travel of the
Gaussian-like packet. More generally, the group velocity is defined as:

c =
dk

dω

k and ω being respectively the wavenumber and the angular frequency. We have computed the group
velocity using the measurement of the flight time (i.e. the temporal shift) between the generation of
the wave and its arrival at the receptor.

9Phase velocity The phase velocity is defined as:

cφ =
k

ω

Physically, it corresponds to the celerity at which the information transmitted by the signal (also called
the carrier wave) propagates. It thus corresponds to the velocity at which a "phase event" travels
through the medium.
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compute the phase velocity we need to unfold the phase.

2.2.4 Measure of the phase velocity: unfolding of the phase

The computation of the phase velocity is made by first unfold the phase by the proper

number of 2π shifts and by assuming a continuity of δφ with respect to the confining

pressure. In the first place, by plotting δφ vs Ptop we use a phenomenological fit

formula to shift by 2nπ (n being an relative integer) and collapse all the values of

phi (one for each wave packet) on a main curve (more precisely in a range of ±π

around this curve).
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Figure 2.14: Phase shift δφ = H
cφ

vs confining pressure Ptop.Blue circles: raw values
of δφ ; black curve is the phenomenological fit (δφ = 4.44 tan−1 (1.5− 0.02 top) +

16.6); red dots: δφ after the unfolding process. Dashed lines define the limit around
the phenomenological fit ±π.

Once the phase has been unfold according to this continuity criterion, we can

properly compute the phase velocity as:

cφ =
H

δφ
(2.24)

This computation will be useful to check if c ∼ cφ, i.e. whether or not the non-
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dispersivity we assumed in the first place is a valid assumption and coherent with the

theory we developed.

2.2.5 Selection of the wave packets

In this experiment, many packets are transmitted (during each campaign, over 40000

wave packets), but the sources of noise and other perturbations are numerous. It is

therefore important to be able to evaluate the quality of the fits with respect to the

data and then to check the validity of the packets we considered with respect to the

theory we want to probe.

Success of the fit

We define a the following quantity χ2 in order to measure the quality of the fit, on

a purely mathematical point of view:

χ2 =

〈(
ysignal − yfit

max (ysignal)

)2〉
(2.25)

For each wave packet, a value of χ2 is therefore associated. The smaller, the more

accurate the fit. The fit is computed within a time range [t20%; t30%] where t20%

is the instant –before the max of the wave packet– after which the amplitude of

the signal is larger than 20% of the max of the wave packet (similarly, t30% is the

instant –after the max of the wave packet– before which the amplitude of the signal

is larger than 30% of the max of the wave packet). One can choose to evaluate this

χ2 over the same time range as the one over which we compute the fit. Thought

some wave packets exhibit a "twin" (such as the one figure 2.15). They can be the

consequence of some reflection of the wave packet against the lid and the bottom

plate. These packets must be discriminated in order to remove them in the selection

of the packet we keep for further treatment. Therefore we choose to compute the

χ2 value over an extended time range: [t20%; t30% + 5σ] (σ being the width of the

Gaussian envelope).
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Figure 2.15: Twin wave packets. For this wave packet, χ2 = 7.47 10−5 whereas
χ2
extended = 0.29.

Figure 2.16: Group velocity vs confining pressure at the top of the cell. Marker color
characterizes the value of χ2. (a) χ2 is computed only over the wave packet ; (b)
χ2 is computed over an extended time range. Red arrow points at the wave packet
we studied figure 2.15.

Also, the ratio signal/noise is sometimes rather small, and therefore the fit does

not capture the wave packet. Extending the time range over which χ2 is computed

enables to also remove the packets for which this is the case.

In the following, we will only mention χ2, and it will only refer to its definition

over the extended time range. Figure 2.17 presents the scatter plot of the group

velocity of the wave packets versus the confining pressure at the top of the box.

Maker color characterizes the value of χ2. Changing the colorbar range allows to
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Figure 2.17: Group velocity vs confining pressure P . Marker color according to χ2

which characterizes the success of the fit.
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Figure 2.18: Group velocity vs. confining pressure Ptop, for weakly distorted wave
packets.

distinguish the trend characterized by the more successful fits (in dark blue). We

hence define a threshold for χ2 and select the wave packets for which χ2 < 0.04.

Defining an acoustic limit

Once we made sure we kept in our selection only the wave packets well described by

formula 2.21, we can use the actual measurements we get to dig into the physics. The

validity of the packets is then evaluated with respect to the hypothesis we make within

the theoretical framework. First, we only consider the case on linear propagation.
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This implies that wave packets do not change shape during the propagation through

the medium. Therefore, by computing the distortion, one can select and extract

the very packets that are representative of a linear propagation (i.e. for which the

distortion is close to zero).

The Distortion Dσ. It characterizes the temporal stretching of the wave during

the propagation in the medium. We define it by the ratio of the respective widths of

the Gaussian envelopes:

Dσ =
σReception

σSource
− 1 (2.26)

Dσ = 0 means the propagation is linear as the wave packet is transmitted without

any deformation. We choose a threshold distortion of 20% as a selection criterion

for the wave packets we keep.

Small amplitudes. All the theoretical development we make are in the frame-

work of small perturbations. We therefore use the selected wave packets to extrap-

olate the value of the group velocity at source amplitudes Asrc → 0m/s2. To do so,

we gather wave packets by typical values of Ptop within a range of ±5Pa around each

focus values of P. Then, for each pressure, we make a linear fit of the group velocity

V g versus the source amplitude Asrc and we extract the value of V g(Asrc → 0) (see

an example for wave packets at 4kHz , 180Pa, figure 2.19).

We then have a dataset of group velocities for a range of pressure, at an acoustic

limit defined by small (zero) source amplitudes of linearly propagated wave packets.

We use the same process to compute the phase velocity at the acoustic limit

(results are displayed figure 2.21).

On figure 2.22 we superpose the group and phase velocity hence obtained. We see

that the phase velocity is quite superior to the group velocity, especially at highest

confining pressures. However, we need to consider this discrepancy with respect

to errors we have on the velocity measurements, such as regarding the fit of the

theoretical wavepacket formula, the precision of our measure of the cell height (which
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Figure 2.19: Linear fit of V g vs Asrc in order to measure the velocity at acoustic
limit (Asrc → 0). Example for Ptop = 180± 5Pa.
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Figure 2.20: Group velocity cφ vs Ptop at acoustic limit. Small squares are the wave
packets retained from the previous data selection. Colors reflects the amplitude of
the source. Blue squares are values at the acoustic limit (Asrc → 0). Error bars are
of the order given by the size of the markers.

precision of of the order of the millimeter) and the finite size effects in the box.
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Figure 2.21: Phase velocity cφ vs Ptop at acoustic limit. Small circles are the wave
packets retained from the previous data selection. Colors reflects the amplitude of
the source. Green circles are values at the acoustic limit (Asrc → 0). Error bars are
of the order given by the size of the markers.
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Figure 2.22: Group and phase velocity with respect to confining pressure P .

2.3 Granular contacts in jammed weakly confined gran-

ular media

Mindlin’s group has pioneered on the mechanics of granular system under compres-

sion. Using Hertz contact law, they have predicted a P 1/3 dependence of the elastic

modulus. However many experimental data (among which [45]) seem to give a dif-

ferent power law: E ∝ P 1/2. In 1996 De Gennes publishes a paper [38] in which he

presents a model of grain contact involving a soft shell on the outer surface. Using
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Figure 2.23: Soft Shell contact model: grain in contact with a plane surface. Both
the shell and the bulk of the grain deform under the compression.

the same arguments as before, using the contact area and the estimation of the

pressure, he predicts the effective elastic modulus of such a sphere assembly to be

proportional to P 1/2 at low confining pressure.

2.3.1 Building a mean field theory for granular contacts under

very low confinement

We consider a grain in contact with an infinite plane by a normal force ~FN. It has

a soft superficial layer of thickness e (see figure 3.1 page 181). The Hertz analysis

gives the contact area A = πRδ where δ is the overlap between particles and R the

radius. The bulk free energy takes dimensionally the form:

Fb ∼ E(Rδ)3/2 δ
2
b

Rδ

while the superficial energy reads:

Fs ∼ ηERδe
(δ − δb)2

e2
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η � 1 is the elasticity contrast. Minimizing the free energy with respect to δb, we

get:

δb =
δ

1 +
√
δc
δ

with

δc =
e2

η2R

and get the total free energy for one contact:

Fc =
ηERδ3

e
(

1 +
√

δ
δc

)

The isotropic pressure in the effective medium is defined by:

P = −
∂F
∂V

(2.27)

So here it satisfies:

P
4πR2dδ

φ
= Z dFc (2.28)

where Fc is the free energy of one contact and φ is the volume fraction of grains.

Therefore the pressure is:

P =
Zφ

4πR2

dFc
dδ

(2.29)

Notice that the normal force on one grain is given by:

FN =
dFc
dδ

(2.30)

Also, the compressibility is defined by:

K−1 = −
1

V

dV

dP
(2.31)
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Here, V = 4
3
π (R − δ)3 for one grain squeezed by a displacement δ. So:

dV

V
= −

3 dδ

R
(2.32)

The sound celerity is given by:

c =

√√√√R dP
dδ

3ρ
(2.33)

M where ρ is the density of the effective media thus ρ = ρg φ. Therefore we have an

implicite relation between the speed of sound and the pressure P. One can plot this

relation and find an equivalent empiric formula that will be used to fit the data.

Indeed, we can express the pressure with respect to δ:

P (δ) =

(
ZφEe3

8πη3R3

) (
6 + 5

√
δ
δc

)
(

1 +
√

δ
δc

) (
δ

δc

)2

(2.34)

= P

(
6 + 5

√
δ
δc

)
(

1 +
√

δ
δc

) (
δ

δc

)2

(2.35)

where

P =
ZφEe3

8πη3R3
=
ZφE

8π

(
δc
R

)3/2

(2.36)

And also the celerity:

c(δ) =

√
RP
δcρ

√√√√√√ δ

δc

24 + 37
√

δ
δc

+ 15 δ
δc

6
(

1 +
√

δ
δc

)3 (2.37)

We therefore get a universal relation between the rescaled celerity:

c√
RP
δcρ

=

√√√√√√ δ

δc

24 + 37
√

δ
δc

+ 15 δ
δc

6
(

1 +
√

δ
δc

)3 (2.38)
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and the rescaled pressure:

P

P =

(
6 + 5

√
δ
δc

)
(

1 +
√

δ
δc

) (
δ

δc

)2

(2.39)

The fit will therefore provide the independent measurement of R/δc and Zφ.

At small δ/δc , the expressions simplify into:

P

P = 6

(
δ

δc

)2

(2.40)

c√
RP
δcρ

= 2

√
δ

δc
=

(
8

3

P

P

) 1
4

(2.41)

Expanding the factors, we get:

c =

8

3

(
R

δcρ

)2

P P

 1
4

=

 Z
3πφ

√
R

δc

EP

ρ2
g

 1
4

=

(
Z

3πφ

ηR

e

EP

ρ2
g

) 1
4

(2.42)

Conversely, at large δ/δc , the expressions simplify into:

P

P = 5

(
δ

δc

) 3
2

(2.43)

c√
RP
δcρ

=

√
5

2

(
δ

δc

) 1
4

=

(
25

8

P

P

) 1
6

(2.44)

It is interesting to identify the elastic modulus E using the mean field calculation.

Starting from the normal force between grains:

f =
8

3

µg
1− νg

R2

(
δ

R

)3/2

(2.45)

one derives the mean field bulk modulus:

K = ρc2 =

(
1

3π

µg
1− νg

Zφ
)2/3

P 1/3 =

(
1

8π
EZφ

)2/3 (25

8
P

) 1
3

(2.46)
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where µg is the shear modulus and νg the Poisson ratio. From which we get:

E =
16
√

2

15

µg
1− νg

(2.47)

and then

P =
2
√

2Zφµg
15π(1− νg)

(
δc
R

)3/2

(2.48)

We estimate φ = 0.6, µg = 30 GPa, νg = 0.2, Z = 5.

G =
2
√

2Zφµg
15π(1− νg)

= 11.25 GPa

An excellent approximation can be obtained from a phenomenological cross-over

between these asymptotics as:

c√
RP
δcρ

=

 8
3
P
P

1 + 25

3 5
4
3

(
P
P

) 1
3


1
4

(2.49)

which we rewrite as:

c =

√
G

ρ

δcR
8
3
P
P

1 + 25

3 5
4
3

(
P
P

) 1
3


1
4

(2.50)

A Taylor expansion yields in the limit of P → 0:

c ∝ R1/4 P 1/4. (2.51)

If we fit by the relation c = AP 1/4 we find ADomenico = 20.734 and and on our data

ACNES = 38.254. The ratio ADomenico/ACNES = 1.844 which is close to the ratio of

the radius of beads radius in both sets of data Note P 1/4 which is consistent with all

the experimental results (see figure 3.3).

The experiment seems to show that, even down to very low confining pressures,

the Hertz scaling does not match the data. We show that the P 1/4 scaling relation

is very robust. We provide an interpretation consistent on data in higher pressures
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Figure 2.24: Compression wave velocity with respect to confining pressure. Measure-
ments on glass beads of diameter 45µm for experiments from Makse and Domenico
and 1.15mm (±0.15mm) in our experiment.

based on the softness of a outer shell.
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In a recent campaign not yet post-treated, we setup a shear vibration cell in

order to probe the scaling of the shear wave velocities at vanishing pressures. First

Figure 2.25: Base of the acoustic shear cell. Without (a) or wih (b) the vibrating
plate. The plate in contact with the granular media is fixed to a metallic frame
(figure a) which motion is controlled by a piezo-electric actuator and chrysocal blades
in order to create a restoring force to maintain the contact with the actuator that
only has a pushing work power. A setting screw (not visible here) enables to properly
set the prestress on this spring system.

measurements are presented figure 4.3 and seem encouraging. In deed, shear waves

are expected to travel at lower velocities that compression waves.

0 500 1000 1500 2000

P
top

 (Pa)

0

50

100

150

200

V
g
 
(
m
/
s
)

0

0.02

0.04

0.06

0.08

0.1

2

Figure 2.26: Preliminary results on the acoustic shear cell. Shear wave velocity with
respect to confining pressure. Colors of the markers according to the value of χ2

which characterizes the success of the fit of the wave packet.
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Mindlin’s group has pioneered on the mechanics of granular system under com-

pression. Using Hertz contact law, they have predicted a P 1/3 dependence of the

elastic modulus. However many experimental data (among which [45]) seem to give

a different power law: E ∝ P 1/2. In 1996 De Gennes publishes a paper [38] in which

he presents a model of grain contact involving a soft shell on the outer surface. Using

the same coarse-grained approach as before, and a contact model in which only the

shell of the grain deforms, he predicts the effective elastic modulus of such a sphere

assembly to be proportional to P 1/2 at low confining pressure.

3.1 Soft superficial layer

In the following, we present a theoretical framework which aims at describing the

mechanical properties of granular packing from high to weakly confining pressures.

We consider a grain in contact with an infinite plane by a normal force ~FN. It has

a soft superficial layer of thickness e (see figure 3.1 page 181). The Hertz analysis

gives the contact area A = πRδ where δ is the overlap between particles and R the

radius. The bulk free energy takes dimensionally the form:

Fb ∼ E(Rδ)3/2 δ
2
b

Rδ

while the superficial energy reads:

Fs ∼ ηERδe
(δ − δb)2

e2

η � 1 is the elasticity contrast (i.e. the ratio between the shell and the bulk elastic

moduli). Minimizing the free energy with respect to δb, we get:

δb =
δ

1 +
√
δc
δ
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Figure 3.1: Soft Shell contact model: a grain of radius R and soft superficial layer
of thickness e is pushed in contact with a plane surface by a normal force ~FN. Both
the shell and the bulk of the grain deform under the compression. δ is the total
deformation ; δb is the deformation of the bulk.

with

δc =
e2

η2R

and get the total free energy for one contact:

Fc =
ηERδ3

e
(

1 +
√

δ
δc

)
The isotropic pressure in the effective medium is defined by:

P = −
∂F
∂V

(3.1)

So here it satisfies:

P
4πR2dδ

φ
= Z dFc (3.2)

where Fc is the free energy of one contact, φ is the volume fraction of grains and Z

the average number of contact per grain in the medium. Therefore the pressure is:

P =
Zφ

4πR2

dFc
dδ

(3.3)
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Notice that the normal force on one grain is given by:

FN =
dFc
dδ

(3.4)

Also, the compressibility is defined by:

K−1 = −
1

V

dV

dP
(3.5)

Here, V = 4
3
π (R − δ)3 for one grain squeezed by a displacement δ. So:

dV

V
= −

3 dδ

R
(3.6)

The bulk modulus is given by:

K =
R dP
dδ

3
(3.7)

and assume the proportionality between the speed of P-waves c ∝
√
K/ρ where ρ

is the density of the effective media thus ρ = ρg φ. Therefore we have an implicit

relation between the speed of sound and the pressure P. As relations are defined within

a multiplicative constant, we can absorb this constant into the elastic modulus E,

which remains to be identified. We can express the pressure with respect to δ:

P (δ) =

(
ZφEe3

8πη3R3

) (
6 + 5

√
δ
δc

)
(

1 +
√

δ
δc

) (
δ

δc

)2

(3.8)

= P

(
6 + 5

√
δ
δc

)
(

1 +
√

δ
δc

) (
δ

δc

)2

(3.9)

where

P =
ZφEe3

8πη3R3
=
ZφE

8π

(
δc
R

)3/2

(3.10)
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And also the celerity:

c(δ) =

√
RP
δcρ

√√√√√√ δ

δc

24 + 37
√

δ
δc

+ 15 δ
δc

6
(

1 +
√

δ
δc

)3 (3.11)

We therefore get a universal relation between the rescaled celerity:

c√
RP
δcρ

=

√√√√√√ δ

δc

24 + 37
√

δ
δc

+ 15 δ
δc

6
(

1 +
√

δ
δc

)3 (3.12)

and the rescaled pressure:

P

P =

(
6 + 5

√
δ
δc

)
(

1 +
√

δ
δc

) (
δ

δc

)2

(3.13)

The fit will therefore provide the independent measurement of R/δc and Zφ.

At small δ/δc , the expressions simplify into:

P

P = 6

(
δ

δc

)2

(3.14)

c√
RP
δcρ

= 2

√
δ

δc
=

(
8

3

P

P

) 1
4

(3.15)

Expanding the factors, we get:

c =

8

3

(
R

δcρ

)2

P P

 1
4

=

 Z

3πφ

√
R

δc

EP

ρ2
g

 1
4

=

(
Z

3πφ

ηR

e

EP

ρ2
g

) 1
4

(3.16)

Conversely, at large δ/δc , the expressions simplify into:

P

P = 5

(
δ

δc

) 3
2

(3.17)

c√
RP
δcρ

=

√
5

2

(
δ

δc

) 1
4

=

(
25

8

P

P

) 1
6

(3.18)
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An excellent approximation can be obtained from a phenomenological cross-over

between these asymptotics as:

c√
RP
δcρ

=

 8
3
P
P

1 + 25

3 5
4
3

(
P
P

) 1
3


1
4

(3.19)

3.2 Identification of the elastic modulus E using the

mean field theory

It is interesting to identify the elastic modulus E using the mean field calculation.

From the normal force between grains of shear modulus µg and Poisson ratio νg:

FN =
8

3

µg
1− νg

R2

(
δ

R

)3/2

, (3.20)

one derives the mean field bulk modulus:

K =

(
1

3π
√

2

µg
1− νg

Zφ

)2/3

P 1/3 (3.21)

and the mean field shear modulus:

G =
3

5

(
1 + ε

3(1− νg)

2− νg

)
K (3.22)

where ε would be 0 in the no-friction case and ε is 1 in the infinite friction limit,

which is the best approximation here.

From Domenico[46], we have the expression of the celerity for the compressional

waves in terms of elastic moduli. Thus, using also relations 3.10 and 3.18:

ρc2 = K +
4

3
G =

3(10− 7νg)

5(2− νg)

(
1

3π
√

2

µg
1− νg

Zφ

)2/3

P 1/3 (3.23)

=

(
1

8π
EZφ

)2/3 (25

8
P

) 1
3

(3.24)
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From which we get:

E =

(
3(10− 7νg)

5(2− νg)

)3/2
16

15

µg
1− νg

(3.25)

and then

P = P∗
(
δc
R

)3/2

=

(
3(10− 7νg)

5(2− νg)

)3/2
2Zφµg

15π(1− νg)

(
δc
R

)3/2

(3.26)

with

P∗ =

(
3(10− 7νg)

5(2− νg)

)3/2
2Zφµg

15π(1− νg)
(3.27)

We can now rewrite the expression of the celerity (see formula 3.19):

c =

√
P∗
ρ

 8
3
P
P∗(

δc
R

)1/2
+ 25

54/3 3

(
P
P∗
)1/3

δc
R


1/4

(3.28)

3.3 Fit of the model

In the latter expression of the velocity, P∗ depends on the grain material (µg ; νg),

configuration (coordination number Z) and on the grain dimension (radius R). Also,

the parameter δc reflects characteristics about the soft superficial layer (its thickness

e and its elastic modulus ηKbulk). It is therefore hardly possible to compare our

experimental data with the one obtained by Makse and Domenico, as we have no

information about the genuine nature of the grains (roughness of their surface1...)

and on all the experimental parameters that were not directly controlled but which

can still have an influence on the nature of the contact (for instance the humidity

rate in the room, hence the condensation at the surface of the grains).

Figure 3.2 reproduces experimental and numerical measures of bulk and shear

moduli from Makse and Domenico (data extracted from [48]). All experimental data

1The roughness of the grains can be a direct consequence of their fabrication process and also on
their history (erosion).
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seem in rather good agreement between Makse’s and Domenico’s. The numerical

data were obtained by 3D simulation of Hertzian frictional packings2. The simulation

seems also in agreement with the experimental results, at least for higher pressures.

Below ∼ 107Pa, the numerics start to differ from the experiments. Authors invoke

a loss of the signal and experimental difficulties at lower pressures.

We hence propose to use our data (which were made at much lower pressures,

at least six orders of magnitude from Domenico’s and Makse’s) to compare with the

prediction from the numerics.
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Figure 3.2: Elastic moduli vs confining pressure. a) Bulk modulus K and b) shear
modulus G. Experimental data from Makse (filled circles ; experiments on glass
beads of diameter 45µm) and Domenico (opened squares ; experiments on sand,
which average grain diameter is 81µm) ; numerical simulations by Makse (black
linked circles). Extracted from [48].

In order to fit our experimental results (which were made at confining pressures

about six orders of magnitude smaller in our experiment), we proceed in two step:

in the first place, fitting of the parameter P∗, at high pressures, and then lock this

value of P∗ and fit the remaining parameter, δc/R. While P∗ characterizes the bulk

material properties of a Hertzian packing of beads, the parameter δc/R is determined

by the mechanical response of the packing at vanishing pressures, in the regime in

which the deformation of the soft superficial layer is dominant.

2Friction coefficient was set by the authors to a "large value" in order to avoid sliding at contact
and therefore only probe infinitesimal strain perturbations, i.e. the linear elastic regime.
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Thanks to Domenico [46] (see left hand side of expression 3.24), we can use

the numerical data from [48] to compute the celerity for the P-waves, in the case of

Hertzian contacts (we recall here that Makse’s simulations use a Hertzian potential of

interaction between the particles). These values are plotted figure 3.3 page 188, with

respect of the confining pressure. We then fit the first parameter of expression 3.28

with these numerical data for the lower pressures available and find P∗ = 41GPa.

This is the blue dashed line (it is a power law, following the Hertz prediction) on

figure 3.3. The reader should note the importance on fitting the parameter P∗ only

at lower pressures: P∗ depends of the average contact per grain in the packing Z,

which is a function of the confining pressure P . Following numerical simulations

by Makse [48], it seems that Z(P ) saturates at a minimum value for low confining

pressures, for frictional 3D packings. We therefore consider P∗ to be constant with

respect to the pressure range we consider. Then we lock this value into the fit

formula and fit the parameter δc/R (this is the continuous red line on figure 3.3).

We measure δc/R = 3.10−5.

The reader should note that P∗ is not the value of the pressure at which cross-

over between the two regimes occurs. However thanks to the values we got from

the fit of the model, we can estimate the cross-over at P ' 3500Pa, which seem to

be consistent with the plot figure 3.3.

3.4 Conclusion the experiment

In order to characterize the nature of the soft superficial layer we modeled, we made

Atomic Force Microscopy (AFM) measurements of the surface of the glass beads

we used in our main experiments. Figure 3.4 shows an AFM image of the surface

of the glass beads we used in our experiment. The typical height of the asperities,

which corresponds to the thickness e of the soft superficial layer in our theoretical

model, is of order ∼ 100nm.

The beads we consider have a millimetric diameter, therefore, from the fitted
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Figure 3.3: Celerity of compressive waves (group velocity) with respect to confining
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Hertzian part of the model (we get P∗ = 41GPa) ; red continuous line is the
complete fit of our theoretical model, after locking the value of the parameter P∗ to
the previously fitted value. We get δc/R = 3.10−5.

value of δc/R and the definition of δc = e2

η2R
, we can have an estimation of the value

of the elasticity contrast: η ' 10−6.

In order to have a more quantitative understanding of the elasticity contrast with

respect to the nature of the asperities of the grains, we need to look at the power

density spectrum of these roughness measurements. Also, it would be interesting to

simulate the effective contact area between the surfaces we measured by AFM. The

work is currently in progress.
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Figure 3.4: AFM measurements of the surface of the beads. The typical height of
the asperities is of order ∼ 100nm. Colors are function of the height.
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Chapter 4

Measure of the celerity of acoustic

shear waves. Preliminary results.

In a recent campaign not yet post-treated, we setup a shear vibration cell in order to

probe the scaling of the shear wave velocities at vanishing pressures.

Figure 4.1 shows the schematic of the new system. The vibrating plate is fixed

onto the aluminum frame. The latter is actuated by a single PZT (the same as the

one used for the cell dedicated to compressive waves).

Figure 4.1: Schematic of the shear cell. a) Schematic layout of the shear cell.
b) CAD representation of the system without the vibrating plate. We can see the
single piezo-actuator that vibrates horizontally the frame on which the plate is fixed
(removed for better visualization).

Figure 4.2 show a picture of the system without the walls of the cell (without

and with the vibrating plate). The walls, made of an ABS chamber confined between

aluminum plates is similar to the one used for the previous system, for similar acoustic
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insulation reasons. First measurements are presented figure 4.3 and seem encourag-

Figure 4.2: Base of the acoustic shear cell. Without (a) or wih (b) the vibrating plate.
The plate in contact with the granular media is fixed to a metallic frame (figure a)
which motion is controlled by a piezo-electric actuator and chrysocal blades in order
to create a restoring force to maintain the contact with the actuator that only has
a pushing work power. A setting screw (not visible here) enables to properly set the
pre-stress on this spring system.

ing. Indeed, shear waves are expected to travel at lower velocities that compression

waves.
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χ2 which characterizes the success of the fit of the wave packet.



Chapter 5

Conclusion on the acoustic in weakly

confined granular media

The present study aims at measuring the mechanical response of granular packings as

close as possible from the jamming point. For the sake of experimental concerns, we

chose to use the confining pressure as the main control parameter of our experiment.

The question of whether it is possible or not to reach the jamming point by only

decreasing the pressure is controversial. It seems that the friction within the packing

locks the configuration, even at vanishing pressures. The sample is very history-

dependent for hysteresis due precisely to friction in between the grains. We tried to

initialize our preparation before each flight, passing a grid through the whole sample

and by vibrating it for a finite time with a sine wave, but there is certainly aging in

the system, especially because of the successive 0 to 1.8G phases inherent to the

parabolic flights.

However, we have shown that going to vanishing pressures ensures to reach a

regime at which the mechanical response of the packing mainly relies on friction,

i.e. asperities at the surface of the grains. We proposed a theoretical model that

enables to qualitatively understand the nature of the contacts at such pressures. We

propose further developments that are currently on progress in order to have a more

quantitative understanding of the model and on the fit parameters it provides.
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This study of the propagation of plane compressive waves enlightens our un-

derstanding of the mechanical response of a granular packing in the vicinity of the

jamming transition: it defines a new framework in the interpretation of the elastic

moduli near the jamming transition. While the acoustic anomaly has been predicted

by numerical simulations of frictionless packings, the present studies (compressive

waves and shear waves) proposed a new framework for understanding the physics of

frictional packings close to the jamming transition.

The two acoustic studies we presented are complementary: on the one had, the

study of compressive waves provided new insights on the nature of contacts, while

on the other hand, the shear wave study aims at providing a direct measurement

of the shear modulus1. This experiment will also provide a better knowledge of the

mechanical response of the soft granular contacts to shear excitations.

1The celerity for shear wave is given by Domenico [46]:

cs =

√
G

ρ
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General conclusion
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In this thesis we presented several studies from both sides of the jamming transi-

tion. In the first part, we investigate the rheology of dense granular flows, especially

in the framework of non-locality which we detailed in the review, first chapter. We

have then presented an experiment of flow in a narrow channel, where non-local ef-

fects are exhibited. In this situation, the stress configuration is not homogeneous,

neither along the depth, nor along the width of the channel. However, we chose to

probe the non-local rheology model assuming a plug flow, i.e. neglecting the three

dimensionality of the system. We showed that the non-local rheology is capable of

describing the tails of the profiles, in the so called "creep regime", as well as the

flowing region. These supposedly two regimes are in fact altogether described by

a single rheological model: there is only one flowing regime. It exhibits non-local

effects, which the non-local model we presented describes.

In a second chapter, we present a numerical study which aims to measure the

boundary condition at the free surface of a dense granular flow. In order to validate

our code, we first recover results on the measurement of relaxation lengths in a

custom numerical set-up of a plane shear cell. We then focus on the study of the

incline plane. We use the linearization of the non-local rheology around a base state

in order to measure the parameters of the rheology. This linearization does not seem

valid on the whole height of grains, as seen by the discrepancy of the measurements

of the relaxation lengths previously obtained on the shear cell. However, we manage

to provide estimates of the boundary condition at the free surface using this linear

solution which appears to be a rather good phenomenological fit function of the

inertial profile in the incline plane. The value of the inertial number at the free

surface seems to be selected by the distance to the yield Y − 1 following an affine

relation.

In a second part of this thesis, we investigate the elastic properties of granular

packing under very low confining pressure. In a first chapter, we presented the state

of the art regarding the acoustic anomaly and the scaling expected for the elastic

moduli, with respect to the average number of contacts in the packing, and the
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confining pressure. We then presented the experimental set-up we designed and

used on board of the Airbus ZeroG during parabolic flight, which allowed us to reach

vanishing pressures in our granular sample. We then detailed the post-treatment of

the data and provided measurements of compression wave velocities with respect to

the confinement. We then proposed a theoretical framework in order to explain the

scaling of sound celerity with the pressure. In a last section, we presented preliminary

results of shear wave propagation.
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Appendix A

Physical principles of parabolic flights

As Isaac Newton published in 1687 in his Principia, the gravitational interaction is

unique and universal. As long as the studied body has a mass and is distant from

another massive body, both attract each other with the famous law:

~F12 = −G
m1m2

d2
~u12 (A.1)

where ~F12 is the gravitational force exerted by body 1 over body 2, G is the gravita-

tional constant (G = 6.674 10−11N.m2/kg), m1 and m2 are respectively the mass of

body 1 and body 2 separated by the distance d ; ~u12 is the unit vector pointing from

body 1 to body 2. The minus sign in the formula shows the two bodies are attracted.

Therefore it is impossible to avoid gravity. Even in space, any body feels the

distant force of gravity from the other bodies. This is exactly the case for a satellite

orbiting around Earth: it is only subject to gravity and thus constantly falls down on

our planet. Because it has initially been launched with an no-zero velocity tangent

to the direction of gravity, its trajectory is not a straight line pointing at the center

of Earth but rather an ellipsoid: it constantly missed the ground and keep rotating

around Earth . It is a constant free fall, with no friction.

As the state of weightlessness of a massive body is to be only submitted to its

weight (and no contact force), the key idea of parabolic flights is to launch the body
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and suppress any other force but its weight. Therefore, during the parabola, the

pilots manage both to cancel the lift force and to compensate the drag (from air

on the plane) respectively by canceling the pitch angle and by adjusting the thrust

provided by the reactors. This procedure requires 3 people in the cockpit: the pilot

controls the pitch ; the copilot cancels the roll and the flight engineer adjust the

thrust. In order to be able to maintain "zero-G" the longest possible, the pilots

decompose the parabola into 3 phases (see figure A.1):

1. the acceleration and lift: from a steady altitude of 6km the plane enter this

phase at maximum speed and rears up to an inclination of +47◦. During this

phase the apparent gravity within the aircraft is about 1.8g (i.e. 1, 8 times the

one felt on Earth) ;

2. the injection (at altitude 7.5km): the pilot pushes the joystick in order to cancel

the lift. Thrust is adjusted accordingly to the drag. This phase is the core of

the parabola: it correspond to the 22sec of "zero-G" (precision ±0.05g) ;

3. the pull-up (from an inclination of −45◦): the aircraft re-stabilizes by re-rearing.

Again, the apparent gravity is about 1.8g.

Figure A.1: Schematic of the three phases of the parabola.

During one flight, there are 31 parabola, numbered from 0 to 30. Figure 2.6

page 146 shows the measure of the vertical acceleration during an entire flight. We
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can distinguish the 31 parabola, divided by groups of 5 (6 for the first set, as there

is parabola 0). 1 min 30 separate two consecutive parabola, while 5 min breaks (or 8

min at the middle of the flight) enables the scientific teams to rest and adjust their

set-up. One campaign last 2 weeks, the flights take place starting the Tuesday of

week 2. The first week is dedicated to final adjustments and to the set-up of the

experiment within the aircraft.
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Appendix B

Real position of the bottom in the

incline plane simulations

In the numerical code, the bottom of the cell is characterized by y = 0 at a physically

arbitrary position. However, in order to create a rough wall, we numerically glued

the layers of grains at the bottom of the cell (in black on figure 3.13). The first

step is to measure the real position of the physical bottom, in order to compute,

in a second step, the height of flowing grains which is an important parameter in

the incline plane setup. Figure B.1 presents the raw profile of volume fraction. The

Figure B.1: Volume fraction profile, for a frictionless flow on an incline plane. In the
bulk, φ ≈ 0.82. Free surface is at the right on y/d axis.

bottom of the cell is located around y = 0. Figure B.2 presents the numerical count

of the number of contact with respect to y , over the whole cell height. Indeed: W
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Figure B.2: Localization of the bottom wall. Numerical count of the number of free
grains with respect to altitude y in the cell.

being the width of the cell (which we know because we choose it), the total surface

occupied by the particles, with respect to y if given by the product of W and the

integral of the volume fraction with respect to y . Then, by dividing this quantity by

the average area for one grain (πd2/4), one gets the count of particle with respect

to y .

This allows one to localize the physical position of the bottom of the numerical

cell and therefore to properly measure the height of grains in the numerical cell.



List of Figures

1 Typical P -T phase diagram. . . . . . . . . . . . . . . . . . . . . . 25

2 Pair correlation function. . . . . . . . . . . . . . . . . . . . . . . . 28

3 Pair correlation function with respect to the temperature. . . . . . 29

4 Typical stress-strain curve. . . . . . . . . . . . . . . . . . . . . . . 29

5 Typical fluid behaviors. . . . . . . . . . . . . . . . . . . . . . . . . 32

6 Classification of particulate matter as a function of the particle size. 34

2.1 Creep motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.2 Photo of the experiment . . . . . . . . . . . . . . . . . . . . . . . 60

2.3 Flowing beads in the narrow channel. Side view. . . . . . . . . . . . 61

2.4 Reservoir and flow-rate control . . . . . . . . . . . . . . . . . . . . 63

2.5 Calibration of the bin according to Beverloo law . . . . . . . . . . . 63

2.6 Velocity profile detection algorithm. . . . . . . . . . . . . . . . . . 67

2.7 Measure of the position of the free surface . . . . . . . . . . . . . 68

2.8 Raw velocity profiles. Semilog scale. . . . . . . . . . . . . . . . . . 69

2.9 Schematic of the narrow channel set-up . . . . . . . . . . . . . . . 70

2.10 tan θ vs Q̃ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

2.11 Velocity profiles – side view. Fit with the local rheology . . . . . . . 78

2.12 short . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

2.13 Error made with the plug flow assumption . . . . . . . . . . . . . . 79

2.14 Velocity profile – top view . . . . . . . . . . . . . . . . . . . . . . 80

2.15 Velocity profiles in semilog scale – side view. Fit with the local rheology. 80

207



208 LIST OF FIGURES

2.16 Asymptotic fit of the velocity profile tails. . . . . . . . . . . . . . . 85

2.17 Velocity profile – top view . . . . . . . . . . . . . . . . . . . . . . 88

3.1 h/d vs θ, experimental results. . . . . . . . . . . . . . . . . . . . . 94

3.2 Model of so-called "soft spheres" . . . . . . . . . . . . . . . . . . 97

3.3 Limit of rigid particles, µc vs S . . . . . . . . . . . . . . . . . . . . 101

3.4 Stationary regime. . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

3.5 Setup for the plane shear cell. . . . . . . . . . . . . . . . . . . . . 104

3.6 Top wall position with respect to time. . . . . . . . . . . . . . . . . 104

3.7 Plane shear cell mean profiles. . . . . . . . . . . . . . . . . . . . . 105

3.8 Setup for the plane shear cell. . . . . . . . . . . . . . . . . . . . . 107

3.9 Mean profiles for the custom plane shear cell, Y > 1. . . . . . . . . 108

3.10 Mean profiles for the custom plane shear cell, Y < 1. . . . . . . . . 109

3.11 µ(I) curve obtain from the global fitting on all our runs. . . . . . . 111

3.12 L vs. Yb curve. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

3.13 Setup of the incline plane. . . . . . . . . . . . . . . . . . . . . . . 113

3.14 Stress state – incline plane. . . . . . . . . . . . . . . . . . . . . . . 115

3.15 φ vs z/d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

3.16 Incline plane. Velocity profiles for θ = 0.2 for several flowing heights h.117

3.17 Incline plane. Inertial number profiles for several values of θ and for

several flowing heights h. . . . . . . . . . . . . . . . . . . . . . . . 118

3.18 Velocity profile on the incline plane. Prediction of the local rheology. 119

3.19 Incline plane. Cofit of all runs at same θ with the linear model. . . . 121

3.20 Inertial number profiles for different θ . . . . . . . . . . . . . . . . 122

3.21 Cofit of i profiles for several height of grains, for θ = 0.2 . . . . . . 122

3.22 L(Y data from the incline plane.) . . . . . . . . . . . . . . . . . . 123

3.23 Inertial number at the free surface . . . . . . . . . . . . . . . . . . 125

1.1 Evolution of the elastic moduli vs φ− φc . . . . . . . . . . . . . . 131

1.2 State of the art, c vs P . . . . . . . . . . . . . . . . . . . . . . . . 135



LIST OF FIGURES 209

2.1 Two racks of the CNES experiment . . . . . . . . . . . . . . . . . 139

2.2 CAD model of the test cell "BoxSon". . . . . . . . . . . . . . . . . 140

2.3 Feed-back loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

2.4 Jitter remnant acceleration during a parabola . . . . . . . . . . . . 144

2.5 Confinement system. . . . . . . . . . . . . . . . . . . . . . . . . . 145

2.6 Effect of the feedback loop during one parabola. . . . . . . . . . . 146

2.7 Experimental data after jitter filtering. Source and reception signals 147

2.8 User interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

2.9 Setup of the source accelerometer. . . . . . . . . . . . . . . . . . . 151

2.10 Setup of the reception accelerometer. . . . . . . . . . . . . . . . . 151

2.11 Time response of the damped mass-spring system. . . . . . . . . . 152

2.12 Response curve of the accelerometer in the lid (empty cell). . . . . 153

2.13 Fit of a wave packet. . . . . . . . . . . . . . . . . . . . . . . . . . 163

2.14 Phase shift vs confining pressure . . . . . . . . . . . . . . . . . . . 164

2.15 Twin packets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

2.16 Data selection on χ, extended version or not. . . . . . . . . . . . . 166

2.17 Group velocity vs confining pressure . . . . . . . . . . . . . . . . . 167

2.18 Group velocity vs. confining pressure, for weakly distorted wave packets.167

2.19 Linear fit of V g vs Asrc . . . . . . . . . . . . . . . . . . . . . . . . . 169

2.20 c(P ) at acoustic limit. . . . . . . . . . . . . . . . . . . . . . . . . 169

2.21 cφ(P ) at acoustic limit. . . . . . . . . . . . . . . . . . . . . . . . . 170

2.22 Group and Phase velocities vs pressure . . . . . . . . . . . . . . . . 170

2.23 Soft Shell contact model . . . . . . . . . . . . . . . . . . . . . . . 171

2.24 short . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

2.25 Acoustic shear cell . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

2.26 Preliminary results on the acoustic shear cell . . . . . . . . . . . . . 177

3.1 Soft Shell contact model . . . . . . . . . . . . . . . . . . . . . . . 181

3.2 Elastic moduli K and G vs P (from Makse and Domenico). . . . . . 186



210 LIST OF FIGURES

3.3 Final fit of c vs P . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

3.4 AFM measurements of the surface of the beads. . . . . . . . . . . 189

4.1 Schematic of the shear cell. . . . . . . . . . . . . . . . . . . . . . . 191

4.2 Acoustic shear cell . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

4.3 Preliminary results on the acoustic shear cell . . . . . . . . . . . . . 192

A.1 Schematic of the three phases of the parabola. . . . . . . . . . . . 202

B.1 Volume fraction profile – incline plane . . . . . . . . . . . . . . . . 205

B.2 Localization of the bottom wall. . . . . . . . . . . . . . . . . . . . 206



Bibliography

[1] Mehdi Bouzid. Comportement rhéologique et effets non-locaux dans les écoule-

ments granulaires denses. PhD thesis, October 2014. (Cited on pages 28

and 101.)

[2] Jan Mewis and Norman J Wagner. Advances in Colloid and Interface Science.

Advances in Colloid and Interface Science, 147-148(C):214–227, March 2009.

(Cited on page 32.)

[3] N Roussel, G Ovarlez, S Garrault, and C Brumaud. The origins of thixotropy of

fresh cement pastes. Cement and Concrete Research, 42(1):148–157, January

2012. (Cited on page 32.)

[4] L Staron, P Y Lagrée, and S Popinet. The granular silo as a continuum plas-

tic flow: The hour-glass vs the clepsydra. Physics of Fluids (1994-present),

24(10):103301–9, October 2012. (Cited on page 32.)

[5] E Rojas, M Trulsson, B Andreotti, E Clement, and R Soto. Relaxation pro-

cesses after instantaneous shear-rate reversal in a dense granular flow. EPL

(Europhysics Letters), 109(6):64002, April 2015. (Cited on page 32.)

[6] Bruno Andreotti, Yoël Forterre, and Olivier Pouliquen. Granular Media. Between

Fluid and Solid. Cambridge University Press, June 2013. (Cited on page 34.)

[7] F Restagno, H Gayvallet, L Bocquet, and E Charlaix. Humidity effects and

aging behavior in granular media. In Dynamics in small confining systems IV,

211



212 BIBLIOGRAPHY

volume 543, pages 363–368. Materials Research Society, 1999. Symposium at

the 1998 MRS Fall Meeting, Boston, MA, Nov 30-Dec 03, 1998. (Cited on

pages 35 and 61.)

[8] P Richard, A Valance, J F Métayer, P Sánchez, J Crassous, M Louge, and

R Delannay. Rheology of Confined Granular Flows: Scale Invariance, Glass

Transition, and Friction Weakening. Physical Review Letters, 101(24):248002,

2008. (Cited on pages 58 and 70.)

[9] Nicolas Taberlet, Patrick Richard, Alexandre Valance, Wolfgang Losert,

José Miguel Pasini, James T Jenkins, and Renaud Delannay. Superstable Gran-

ular Heap in a Thin Channel. Physical Review Letters, 91(26):264301, 2003.

(Cited on pages 58 and 60.)

[10] Pierre Jop, Yoël Forterre, and Olivier Pouliquen. Crucial role of sidewalls in gran-

ular surface flows: consequences for the rheology. Journal of Fluid Mechanics,

541(-1):167, October 2005. (Cited on page 58.)

[11] P A Lemieux and D J Durian. From Avalanches to Fluid Flow: A Continuous Pic-

ture of Grain Dynamics Down a Heap. Physical Review Letters, 85(20):4273–

4276, November 2000. (Cited on page 58.)

[12] R Delannay, M Louge, P Richard, N Taberlet, and A Valance. Towards a

theoretical picture of dense granular flows down inclines. Nature Materials,

6(2):99–108, February 2007. (Cited on page 58.)

[13] Pierre Jop, Yoël Forterre, and Olivier Pouliquen. A constitutive law for dense

granular flows. Technical report, April 2006. (Cited on page 58.)

[14] T S Komatsu, S Inagaki, N Nakagawa, and S Nasuno. Creep motion in a granular

pile exhibiting steady surface flow. Phys. Rev. Lett., 86(cond-mat/0008086.

9):1757, 2001. (Cited on page 58.)



BIBLIOGRAPHY 213

[15] M Bouzid, M Trulsson, P Claudin, and E Clement. Phys. Rev. Lett. 111, 238301

(2013) - Nonlocal Rheology of Granular Flows across Yield Conditions. Physical

Review Letters, 2013. (Cited on pages 59, 73, 79, 81, 86, 87, 93, 103, 106,

and 110.)

[16] Mehdi Bouzid, Martin Trulsson, Philippe Claudin, Eric Clément, and Bruno

Andreotti. Microrheology to probe non-local effects in dense granular flows.

EPL (Europhysics Letters), 109(2):24002, January 2015. (Cited on page 60.)

[17] Matthias Sperl. Experiments on Corn Pressure in Silo Cells – Translation

and Comment of Janssen’s Paper from 1895. Granular Matter, cond-mat.dis-

nn(cond-mat/0511618):59–65. 7 p, December 2005. (Cited on page 62.)

[18] W A Beverloo, H A Leniger, and J van de Velde. The flow of granular solids

through orifices. Chemical Engineering Science, 15(3-4):260–269, September

1961. (Cited on pages 62 and 63.)

[19] Nicolas Taberlet, Patrick Richard, and Renaud Delannay. The effect of side-

wall friction on dense granular flows. Computers & Mathematics with . . . ,

55(2):230–234, 2008. (Cited on pages 70, 88, and 89.)

[20] G D R Midi. On dense granular flows. pages 1–26, January 2004. (Cited on

pages 73 and 94.)

[21] Frederic da Cruz. Friction and jamming in dry granular flows. PhD thesis, Ecole

des Ponts ParisTech, February 2004. (Cited on pages 73, 97, and 99.)

[22] Frederic da Cruz, Sacha Emam, Michael Prochnow, Jean-Noel Roux, and Fran-

cois Chevoir. Rheophysics of dense granular materials: Discrete simulation of

plane shear flows. Physical Review E, 72(2):341–17, August 2005. (Cited on

page 73.)



214 BIBLIOGRAPHY

[23] Pierre-Emmanuel Peyneau and Jean-Noel Roux. Frictionless bead packs have

macroscopic friction, but no dilatancy. Physical Review E, 78(1):469–17, July

2008. (Cited on page 73.)

[24] Mehdi Bouzid, Adrien Izzet, Martin Trulsson, Eric Clément, Philippe Claudin,

and Bruno Andreotti. Non-local rheology in dense granular flows. The European

Physical Journal E, 38(11):125–15, November 2015. (Cited on pages 81, 87,

and 110.)

[25] A Pons, T Darnige, J Crassous, E Clement, and A Amon. Spatial reparti-

tion of local plastic processes in different creep regimes in a granular material.

Europhysics Letters, 113(2):28001, January 2016. (Cited on page 89.)

[26] O Pouliquen and R Gutfraind. Stress fluctuations and shear zones in quaistatic

granular chute flows. Physical Review E, 53(1):1–11, January 1996. (Cited on

page 89.)

[27] Qiong Zhang and Ken Kamrin. Microscopic Description of the Granular Fluidity

Field in Nonlocal Flow Modeling. Phys. Rev. Lett., 118(5):058001, January

2017. (Cited on page 89.)

[28] Adrian Daerr. Dynamique des Avalanches. 2000. (Cited on page 94.)

[29] L Staron, P Y Lagrée, and S Popinet. Continuum simulation of the discharge of

the granular silo: a validation test for the mu(I)-visco-plastic flow law. arXiv.org,

June 2013. (Cited on page 95.)

[30] L VERLET. Computer Experiments on Classical Fluids .I. Thermodynamical

Properties of Lennard-Jones Molecules. Physical Review, 159(1):98–+, 1967.

(Cited on page 96.)

[31] P A Cundall and ODL Strack. A discrete numerical model for granular assem-

blies. Geotechnique, 1979. (Cited on page 97.)



BIBLIOGRAPHY 215

[32] Charles S Campbell. Granular shear flows at the elastic limit. Journal of Fluid

Mechanics, 465(0):261–291, August 2002. (Cited on page 100.)

[33] O Pouliquen. Scaling laws in granular flows down rough inclined planes. Physics

of Fluids (1994-present), 11(3):542–548, March 1999. (Cited on page 116.)

[34] L Quartier, B Andreotti, S Douady, and A Daerr. Dynamics of a grain on a

sandpile model. Physical Review E, 62(6):8299–8307, December 2000. (Cited

on page 116.)

[35] Adrian Daerr. Dynamique des Avalanches. PhD thesis, 2000. (Cited on

page 116.)

[36] Corey S O’Hern, Leonardo E Silbert, Andrea J Liu, and Sidney R Nagel. Jam-

ming at zero temperature and zero applied stress: The epitome of disorder.

Physical Review E, 68(1):011306–19, July 2003. (Cited on pages 130, 131,

and 134.)

[37] M van Hecke. Jamming of soft particles: geometry, mechanics, scaling and

isostaticity - Abstract - Journal of Physics: Condensed Matter - IOPscience.

Journal of Physics: Condensed Matter, 2010. (Cited on pages 130 and 131.)

[38] P-G De Gennes. Static compression of a granular medium: the "soft shell"

model. EPL (Europhysics Letters), 35(2):145, 1996. (Cited on pages 132,

134, 170, and 180.)

[39] J D GODDARD. Nonlinear elasticity and pressure-dependent wave speeds in

granular media, 1990. (Cited on page 132.)

[40] Ellák Somfai, Martin van Hecke, Wouter G Ellenbroek, Kostya Shundyak, and

Wim van Saarloos. Critical and noncritical jamming of frictional grains. Physical

Review E, 75(2):020301, February 2007. (Cited on page 132.)



216 BIBLIOGRAPHY

[41] V Magnanimo, L La Ragione, J T Jenkins, P Wang, and H A Makse. Character-

izing the shear and bulk moduli of an idealized granular material. 81(3):34006,

February 2008. (Cited on page 132.)

[42] J Duffy. Mindlin RD. J. Appl. Mech., 1957. (Cited on pages 133 and 134.)

[43] K Walton. The effective elastic moduli of a random packing of spheres. Jour-

nal of the Mechanics and Physics of Solids, 35(2):213–226, 1987. (Cited on

page 133.)

[44] Hernán A Makse, Nicolas Gland, David L Johnson, and Lawrence M Schwartz.

Why Effective Medium Theory Fails in Granular Materials. Physical Review

Letters, 83(24):5070, December 1999. (Cited on page 133.)

[45] X Jia, C Caroli, and B Velicky. Ultrasound propagation in externally stressed

granular media. Physical Review Letters, pages 1–4, February 1999. (Cited on

pages 134, 148, 170, and 180.)

[46] S N Domenico. Elastic properties of unconsolidated porous sand reservoirs.

Geophysics, 42(7):1339–1368, February 2012. (Cited on pages 134, 184, 187,

and 194.)

[47] Hernán A Makse, Nicolas Gland, David L Johnson, and Lawrence Schwartz.

Granular packings: Nonlinear elasticity, sound propagation, and collective relax-

ation dynamics. 70(6):061302–061319, December 2004. (Cited on pages 134

and 135.)

[48] Hernán A Makse, Nicolas Gland, David L Johnson, and Lawrence Schwartz.

Granular packings: Nonlinear elasticity, sound propagation, and collective relax-

ation dynamics. Physical Review E, 70(6):061302–19, December 2004. (Cited

on pages 185, 186, 187, and 188.)


