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Titre. Propriétés statistiques du barycentre dans ’espace de Wasserstein.

Résumé. Cette thése se concentre sur 'analyse de données présentées sous forme de
mesures de probabilité sur R?. L’objectif est alors de fournir une meilleure compréhension
des outils statistiques usuels sur cet espace muni de la distance de Wasserstein. Une premiére
notion naturelle est 'analyse statistique d’ordre un, consistant en ’étude de la moyenne
de Fréchet (ou barycentre). En particulier, nous nous concentrons sur le cas de données
(ou observations) discrétes échantillonnées a partir de mesures de probabilité absolument
continues (a.c.) par rapport a la mesure de Lebesgue. Nous introduisons ainsi un estimateur
du barycentre de mesures aléatoires, pénalisé par une fonction convexe, permettant ainsi
d’imposer son a.c. Un autre estimateur est régularisé par I’ajout d’entropie lors du calcul de
la distance de Wasserstein. Nous nous intéressons notamment au controle de la variance de
ces estimateurs. Grace a ces résultats, le principe de Goldenshluger et Lepski nous permet
d’obtenir une calibration automatique des paramétres de régularisation. Nous appliquons
ensuite ce travail au recalage de densités multivariées, notamment pour des données de
cytométrie de flux. Nous proposons également un test d’adéquation de lois capable de
comparer deux distributions multivariées, efficacement en terme de temps de calcul. Enfin,
nous exécutons une analyse statistique d’ordre deux dans le but d’extraire les tendances
géométriques globales d'un jeu de donnée, c’est-a-dire les principaux modes de variations.
Pour cela nous proposons un algorithme permettant d’effectuer une analyse en composantes
principales géodésiques dans I’espace de Wasserstein.

Mots-clés. Espace de Wasserstein, Barycentre, Transport optimal régularisé, ACP, Test
d’hypothese
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Title. Statistical properties of barycenters in the Wasserstein space.

Abstract. This thesis focuses on the analysis of data in the form of probability mea-
sures on R?. The aim is to provide a better understanding of the usual statistical tools on
this space endowed with the Wasserstein distance. The first order statistical analysis is a
natural notion to consider, consisting of the study of the Fréchet mean (or barycentre). In
particular, we focus on the case of discrete data (or observations) sampled from absolutely
continuous probability measures (a.c.) with respect to the Lebesgue measure. We thus in-
troduce an estimator of the barycenter of random measures, penalized by a convex function,
making it possible to enforce its a.c. Another estimator is regularized by adding entropy
when computing the Wasserstein distance. We are particularly interested in controlling the
variance of these estimators. Thanks to these results, the principle of Goldenshluger and
Lepski allows us to obtain an automatic calibration of the regularization parameters. We
then apply this work to the registration of multivariate densities, especially for flow cytom-
etry data. We also propose a test statistic that can compare two multivariate distributions,
efficiently in terms of computational time. Finally, we perform a second-order statistical
analysis to extract the global geometric tendency of a dataset, also called the main modes of
variation. For that purpose, we propose algorithms allowing to carry out a geodesic principal
components analysis in the space of Wasserstein.

Keywords. Wasserstein space, Barycenter, Regularized optimal transport, PCA, Hy-
pothesis testing

Institute. Institut de Mathématiques de Bordeaux
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INTRODUCTION (FRANGAIS)

Dans cette introduction, nous présentons une revue - non exhaustive - de la littérature
sur le transport optimal, ainsi que ses nombreuses applications en analyse de données. Nous
introduisons également les définitions et notations qui serviront tout au long de cette thése.
Pour finir, nous exposons un résumé détaillé de nos travaux et le contenu de ce manuscrit.

A. Transport optimal et applications

A.1. Monge, Kantorovich et Wasserstein

Gaspard Monge a été le premier & introduire en 1781 le probléme de transfert de masses
dans son Mémoire sur la théorie des déblais et des remblais. Son but était de trouver le
moyen le plus efficace, c’est-a-dire demandant le moins d’effort possible, pour transporter
un tas de sable dans un trou de méme volume. Dans sa formulation moderne, le probléme
consiste & trouver ’application mesurable optimale permettant de transférer & moindre cofit
la masse d’une mesure de probabilité p a support dans un espace mesuré X', sur une autre
v a support dans ). Ainsi, le probléeme de Monge, revient a

minimiser /X c(z, T(x))dp(zx) (A1)

sur 'ensemble des fonctions mesurables T : X — Y telles que v = T#u. Cet opérateur
pushforward # est défini tel que pour tout ensemble mesurable B C ), on a v(B) =
w(T~*(B)). La fonction ¢ : X x ) — R U {+00} est une fonction de cotit mesurable. Un
exemple de transfert de masse, dans 'esprit du probléme de déblais et remblais de Monge,
est présenté dans la Figure A.1.

Toutefois, de telles applications 1" n’existent pas toujours, en particulier si la masse de
en un point doit se scinder en plusieurs morceaux. Pour palier cette restriction, Kantorovich
a étendu dans les années quarante le probléme (A.1) en introduisant un plan de transport
entre la mesure de départ et la mesure cible, qui contient le comportement du transfert de
masse, c’est-a-dire

minimiser //Xxy c(z,y)dr(z,y) (A.2)

sur I’ensemble des plans de transport 7 appartenant a II(u,v), i.e. 'ensemble des mesures
produit sur X x ) de marginales respectives y et v. Dans le cas de mesures discrétes, e.g.
Figure A.2, le plan de transport peut allouer de la masse d'un point du support de p en



A. Transport optimal et applications

FIGURE A.1. Transfert de la masse de p sur la masse de v par ’application
T telle que v = T#pu.

_)/)
1%
—
N

F1GURE A.2. Transfert de la masse de p sur la masse de v par un plan de
transport m € II(u, v).

différents points du support de v, ce qu'une application T n’est pas capable de faire. Les
notions de transport optimal, ainsi que les points de vue géométriques et différentiels de
ces problémes de minimisation, sont détaillés dans les ouvrages de Villani [Vil03, Vil08§|,
Ambrosio et Gigli [AG13] et Ambrosio et al. [AGS04].

Un cadre particuliérement intéressant du transport optimal se détache lorsque X’ est un
espace polonais muni de la distance d : X x X — R*. En effet dans ce cas, le probléme
de transfert de masse de Kantorovich entre deux mesures définit une distance pour un
colt ¢ := dP, dés lors que les mesures appartiennent au bon espace. Plus précisément,
pour p € [1,4+00), nous dénotons P,(X’) 'ensemble des mesures de probabilité boréliennes
(également appelées distributions) sur (X, B(X')) a support dans X', ou B(X) est la o-algébre
des sous-ensembles boréliens de X, admettant un moment d’ordre p. Autrement dit,

p € Pp(X) équivaut a / dP(zg,x)du(x) < +00 pour n’importe quel zg € X.
X

Remarquons que Pp(X) est inclu dans I’ensemble M(X') des mesures de Radon bornées.
Nous obtenons alors la définition suivante :

2 Elsa Cazelles



CHAPITRE . Introduction (Frangais)

DEFINITION A.l. La p-distance de Wasserstein (1969, Leonid Wasserstein) est donnée
pour p, v dans Pp(X) par

W, (1) ::( inf / d”(x,y)dﬂ(x,y))l/p (A.3)

rel(uw) J J xe2

ot Uinfimum est pris sur l'ensemble II(u,v) des plans de transport sur X x X de marginales
respectives | et v.

Cette distance a notamment ’avantage de caractériser la convergence faible de mesure
sur 'espace métrique (P,(X), W,) (voir e.g. Chapitre 7 de [Vil03]).

Kantorovich a également décrit le probléme de minimisation (A.3) dans sa formulation
duale, correspondant & une optimisation contrainte sur un espace de fonctions. Nous rappe-
lons que 'espace L, (p), pour p € [1,00) et p € M(X), est espace des fonctions f : ¥ - R
telles que |f|P est u-intégrable, et telles que toutes les fonctions égales p-presque partout
sont identifiées. Le probléme dual de (A.3) est alors donné par le théoréme suivant.

THEOREME A.2 (Théoréme du dual de Kantorovich). Soient p,v € Pp(X), alors on a

1/p
Wp(uw)=< sup /){¢(w)du(fc)+Aw(y)dV(y)> : (A4)

($:9)ECw,

ot Cyy, est I’ensemble des fonctions mesurables (¢,) € LLi(u) x Ly (v) satisfaisant

o(z) +¥(y) < d”(z,y), (A.5)
pour p-presque tout x € X et v-presque tout y € X.

A.2. La distance de Wasserstein sur la droite réelle

Le cas de mesures a support sur la droite réelle, c’est-a-dire lorsque X est un intervalle
(possiblement non borné) de R, est particuliérement intéressant car la distance de Wasser-
stein W), est alors égale & la distance L, des fonctions quantiles. Formellement, en notant
F,, la fonction de répartition de p et F, son quantile généralisé, la distance de Wasserstein
devient, pour i, v € Pp(R),

Wi = ([ () - R @)at) " (A.6)

Si p € Pg¢(R), l'espace des mesures de Pp(R) qui sont absolument continues, alors T :=
F;oF), est Papplication pushforward optimale de pu & v et dans ce cas, W} (i, v) = S IT*(z)—
x|Pdu(x).

La formulation de la distance de Wasserstein sur la droite réelle permet notamment de
mieux comprendre ce qui la différencie des distances LL,,. Considérons deux mesures u,v €
Py(R) admettant des densités de probabilité f,, f, : R — R. Alors une distance L, est
pertinente lorsque ces deux densités partagent le méme support, et permet de comparer
les variations en un point x € R. En revanche, dés lors que deux densités sont de support
disjoints, leur distance L, sera la méme qu’elles soient proches ou non sur la droite réelle.
Il est alors possible d’établir un parallele entre la distance de Wasserstein (A.6) (définie
comme une distance L, ([0,1]) sur les quantiles) et la distance L,(R). Afin d’illustrer les
déplacements de masse entre deux mesures pour les distances W5 et Lo, nous présentons
en Figure A.3 deux mélanges de gaussiennes, I'une comportant trois modes, 'autre deux,
et nous réprésentons les chemins géodésiques entre ces deux mesures. Il apparait que les
métriques se comportent de facon tout a fait différente. La métrique Lo déplace la masse
selon 'amplitude des mesures, et les densités de probabilité sur la géodésique présentent
donc toutes cinq modes. La métrique Wy quant a elle déplace la masse le long de la droite

Statistical properties of barycenters in the Wasserstein space. 3



A. Transport optimal et applications
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FIGURE A.3. Les densités rouges représentent deux mélanges de gaus-
siennes de support disjoints. Les dégradés de couleurs correspondent aux
chemins géodésiques entre ces deux mesures, respectivement pour les mé-
triques Lo (R) et Wa(R).

réelle, et une densité le long de la géodésique transforme sa géométrie, passant de trois modes
4 deux modes, de gauche a droite.

De méme, en dimensions supérieures, la distance de Wasserstein prend en compte la
distance parcourue lors d’un transfert de masse, ce dont n’est pas capable une distance L.
L’importance du support est d’autant plus évidente lorsque I'on considére deux mesures de
Dirac, pour lesquelles la distance de Wasserstein est donnée par la distance entre leur point
de support.

A.3. La distance de Wasserstein sur un espace fini

Dans le cas discret, c’est-a-dire lorsque les mesures p € P,(X) sont & support sur
un nombre fini de point, i.e. X = {x1,...,zx} C (X)V, on peut écrire u = Zil a;0g,
ot (ai,...,an) est un vecteur de poids positifs appartenant au simplexe Yy = {a =
(ai)i=1,..N € Rf tel que Zfil a; = 1} et 0, est la mesure de Dirac en x;. Comme espace
X est fixé, une mesure de probabilité sur X est entiérement caractérisée par un vecteur de
poids dans le simplexe. Par abus de notation, nous identifions donc une mesure discréte
p € Pp(X) & son vecteur de poids a = (a1,...,a,) € X (et nous nous permettons d’écrire
a = p). Le transfert de masse correspond alors & un probléme d’optimisation linéaire et
s’écrit pour a,b € X

1/p
W,(a,b) = (Tenl}l(fll ) (T, C>) (A.7)

ot (-, ) désigne le produit scalaire usuel entre matrices (i.e. soient A, B deux matrices réelles
carrées, alors (A, B) = trace(A'B)), et

- Ula,b) = {T € RN |T1y = a,TT1 5 = b} est 'ensemble des matrices de transport
de marginales a et b (avec 1 représentant le vecteur de R™ dont les entrées sont toutes
égales a 1) ,

4 Elsa Cazelles



CHAPITRE . Introduction (Frangais)

- C € RY*N est la matrice de cott éléments par éléments de X dont la (4, j)-éme
coordonnée correpond & C; j = d(z;, z;)P.

La version duale de ce probléme est alors donnée par

Wy(a,b) = ( (a,a) + (B, b)) 1/P. (A.8)

max
a,BERN, a;+8;<C ;
A.4. Le transport optimal régularisé par I’entropie

De nombreuses applications nécessitent de considérer des données sous la forme de
mesures discrétes (ou d’histogrammes) sur un espace euclidien R?. La distance de Was-
serstein s’est alors avérée étre une mesure statistique pertinente dans différents domaines
tels que le partitionnement de distributions discrétes [YWWL17], des modeéles Bayésien
non-paramétriques [Ngu13], la comparaison d’empreintes [SM16], apprentissage non su-
pervisé [ACB17], Panalyse en composantes principales [BGKL17,SC15], le traitement
d’images et I’apprentissage automatique [FPPA14, BCC*15, CP16b, DPR16], etc...

Dans ces cas, il est toujours possible de fixer une grille X = {z1,...,2x5} C (RN sur
laquelle sont définies les mesures. Cependant, le cotit de calcul d’une distance de transport
(A.7) est de l'ordre de O(N3log N). Il devient donc excessif pour des valeurs trop impor-
tantes de N. Régulariser un probléme avec un terme d’entropie afin de réduire sa complexité
est une approche classique en optimisation [Wil69]. Pour pallier le cott de calcul d’une dis-
tance de transport, Cuturi [Cut13] a donc proposé d’ajouter un terme de régularisation
entropique au probléme linéaire de transfert de masse, conduisant & la notion de transport
optimal régularisé par I’entropie, ou divergence de Sinkhorn, entre mesures de probabilités
discrétes. Initialement, le but de la régularisation était de calculer efficacement un terme
proche de la distance de Wasserstein entre deux mesures de probabilité, via un algorithme
itératif pour lequel chaque itération cotite O(N?). Nous verrons par la suite que ce probléme
a aussi des effets de régularisation pouvant étre bénéfique pour les données aberrantes (voir
(B.19)).

DEFINITION A.3. La divergence de Sinkhorn est définie pour a,b € Xn et € > 0 par

P — H _
Wiia.b) = min (U.C) = Ah(U) (A.9)

ou h(U) = =3, ; Uijlog Ui; est lentropie négative de la matrice de transport U € U(a, b).

Remarquons que la divergence de Sinkhorn ne définit pas une métrique sur l'espace de
mesures discrétes dans P, (X). En particulier, W7 _(a, a) n’est pas nul. La formulation duale
de (A.9) est alors donnée par [Cutl13,CD14|

WP _(a,b) = max ala+ pTb— Eefé(c”'*”‘i*ﬁf), A.10
Flot) = max ot 473 (4.10)
Il existe une relation explicite entre les solutions optimales des problémes primal (A.9) et
dual (A.10) ci-dessus. Ces solutions peuvent par ailleurs étre calculées par un algorithme
itératif appelé algorithme de Sinkhorn [CD14].
Le transport régularisé par ’entropie a récemment gagné en popularité dans ’apprentissa-

ge automatique et les statistiques, car il rend possible 'utilisation d’une approximation de
distances de transport pour ’analyse de données de grandes dimensions. Il a trouvé diverses
applications telles que les modeéles génératifs [GPC17]|, 'apprentissage multi-étiquettes
[FZM 15|, Papprentissage de dictionnaires [RCP16] ou encore le traitement d’images, voir
e.g. [CP16b, RP15], 'extraction de texte par comparaison de mots-clés [GCB16] et dans
le moyennage de données de neuro-imagerie [GPC15]. Le livre de Cuturi et Peyré [PFR12]
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A. Transport optimal et applications

présente une grande partie des applications propres au transport, et notamment au transport
régularisé.

A.5. Inférence et distance de Wasserstein
A.5.1. Limite de mesures empiriques en distance de Wasserstein

Le cadre considéré est celui de n variables aléatoires (X ;) =1,... », indépendantes et iden-
tiquement distribuées (7id) générées selon une mesure de probabilité inconnue p € P(R?).
On obtient alors la mesure dite empirique associée a I’échantillon d’observations, donnée par

Ky = Z 6Xj :
j=1

En particulier, nous utiliserons des notations en gras v, X, f, ... pour se référer a des objets
aléatoires. La dérivation des limites distributionnelles de la mesure empirique p,, vers son
équivalent en population p en distance de Wasserstein, c’est-a-dire I’étude asymptotique de
Wy (e, 1) quand n tend vers l'infini, est bien comprise pour des mesures de probabilités a
support sur R, voir [MC98, FMO05, DBCAMRR99, DBGU05, DBCAMT00] pour n’en
citer que quelques-uns. Ces résultats se basent sur la formulation quantile du transport en
1D. Par conséquent, les travaux menés ont permis de définir de nouvelles statistiques de
test d’adéquation a une loi. Le cas unidimensionel est également traité dans le manuscrit de
Bobkov et Ledoux [BL14]|, dans lequel ils fournissent une étude de la quantité E(W, (., ).
Ramdas et al. dans [RT'C17] ont aussi étudié le lien entre les tests non-paramétriques et la
distance de Wasserstein, mettant I’accent sur les distributions a support dans R. Ces résultats
ont été étendus a des distributions paramétriques spécifiques a support sur R? et appartenant
a une classe elliptique (cas gaussian en particulier), voir [RMS16] (et les références qui s’y
trouvent). Panaretos et Zemel présentent notamment une revue de la littérature des outils
statistiques dans l’espace de Wasserstein dans leur récent papier [PZ18|. Récemment, un
théoréme central limite a été établi en distance de Wasserstein dans [DBL17]| pour des
mesures empiriques échantillonées & partir de mesures absolument continues sur R%. Le
cas de mesures discrétes a support sur un espace métrique fini a également été considéré
dans [SM16], révélant la convergence (dans 'esprit du théoréme central limite) des distances
de Wasserstein empirique vers la valeur optimale d’un programme linéaire.

A.5.2. La moyenne de Fréchet dans ’espace de Wasserstein

Afin d’étudier un jeu de données composé de plusieurs sujets, le barycentre dans ’espace
de Wasserstein (P2(R%), Ws), correspondant & la notion de moyenne de Fréchet [Fré48,
est un outil statistique naturel. Cette moyenne est une extension du barycentre euclidien
usuel & des espaces non linéaires. Comme introduit par Agueh et Carlier dans [AC11], un
barycentre empirique de Wasserstein 2, d’un ensemble de n mesures de probabilité vy, ..., v,
dans Py (RY) est défini par

n
Uy, € aurgminl Z W2 (u,v5). (A.11)

uE'PQ(Q)n i—1
Une caractérisation détaillée de ces barycentres en termes d’existence, d’unicité et de ré-
gularité pour des mesures de probabilité dont le support est inclu dans R¢ est disponible
dans [AC11]. Le lien entre ces barycentres et la solution du probléme de multi-marginales

y est aussi étudié, ainsi que dans [Pas13].

Il est intéressant de remarquer que lorsque les mesures v, ..., v, sont des distributions
gaussiennes non dégénérées, leur barycentre est également une distribution gaussienne, et

6 Elsa Cazelles



CHAPITRE . Introduction (Frangais)

cela est toujours vérifié pour un ensemble de mesures appartenant & des familles translations-
dilatations (voir [AEdABCAM15b, AEABCAM16]).

La notion de barycentre de Wasserstein a été en premier généralisée dans [LGL16]
pour des mesures de probabilité aléatoires (voir aussi [AEdBCAM15a] pour des concepts
similaires). Une mesure de probabilité v dans P2 (R%) est dite aléatoire si elle est générée a
partir d’une distribution P sur (P2(R%), B (P2(R)), ot B (P2(R?)) est la o-algebre de Borel
générée par la topologie induite par la distance Ws.

DEFINITION .1. Soit Wa(P2(R%)) lespace des distributions P sur P2(RY) (muni de la
distance de Wasserstein W) tel que pour un (et donc tout) u € Po(2)

WE(BB) = EeWE ) = [ Whun)dP(w) < +oc,
P2 (R%)
ot v € Po(RY) est une mesure aléatoire de distribution P et §,, est la mesure de Dirac au point
p. Le barycentre de Wasserstein d’une mesure de probabilité aléatoire de loi P € Wo(Py(R?))
est donné par
pp € argmin / W3 (p, v)dP(v). (A.12)
nEP2(RY) JP2(R?)

Les auteurs de [LGL16] ont établi existence, 'unicité et la consistance de barycentres
de mesures de probabilité aléatoires & support sur un espace géodésique localement compact.
Lorsque la mesure P, = 1376, est discréte sur P2(R?), nous retrouvons bien pp, qui
correspond au barycentre empirique (A.11). Dans le cas ou vy, ...,v, sont des mesures de
probabilités aléatoires iid de loi P, le barycentre up est appelé le barycentre de population.

Le cas plus général de mesures de probabilité & support sur une variété riemannienne
a été étudié dans [KP17|. Par la suite, les trimmed barycenters dans 'espace de Wasser-
stein sur Po(R?) ont été introduits dans [AEdBCAMI15a], permettant de combiner des
informations & partir d’unités expérimentales dans le cadre d’estimations parallélisées ou
distribuées.

Le transport optimal est utilisé dans [PZ16] pour le recalage de processus ponctuels
représentants un échantillon d’observations organisées en sujets indépendants. Les auteurs
de [PZ16] ont proposé un estimateur consistent du barycentre de population de Wasserstein
de processus ponctuels dans le cas d = 1, et une extension de leur méthodologie pour d > 2
est considérée dans [PZ17]. Leur méthode présente deux étapes. Un lissage par noyau est
d’abord opéré sur les données, conduisant & un ensemble de mesures absolument contiues
(a.c.) dont on calcule le barycentre de Wasserstein dans un second temps. Enfin, sont discutés
dans [PZ16, BGKL18| des taux de convergence (pour la métrique de Wasserstein) du
barycentre empirique de Wasserstein de mesures discrétes a support sur la ligne réelle.

En revanche, I'analyse statistique de distances de Wasserstein régularisées, et celle de
barycentres également régularisés, est trés peu présente dans la littérature.

A.6. Le recalage d’histogrammes

Les problémes de recalade d’histogrammes trouvent des applications dans de nombreux
domaines. En bio-informatique, les chercheurs veulent notamment normaliser automatique-
ment de grands jeux de données pour comparer et analyser des caractéristiques au sein d’'une
méme population de cellules. Malheureusement, les informations acquises sont bruitées en
raison d’un mauvais alignement, provoqué par des variations techniques de l’environne-
ment. Le besoin de prendre en compte la variabilité de phase dans ’analyse statistique
de tels jeux de données est un probléme connu dans de nombreux domaines scientifiques.
On trouve des exemples dans le cas unidimensionnel (d = 1) : études biodémographiques
et génomiques [ZM11], économiques [KUO1], analyse de l'activité neuronale en neuros-
ciences [WS11] ou connectivité fonctionelle entre les régions du cerveau [PM T 16b|. En
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A. Transport optimal et applications

1940 1960

FIGURE A.4. Proportion d’enfants nés avec un certain prénom par an en
France de 1900 & 2013. Chaque courbe représente un prénom.
Source : INSEE.

dimension supérieure, i.e. d > 2, le probléme de recalage de données provient par exemple
de Panalyse statistique des processus ponctuels spatiaux [Ger16,PZ17] ou des données de
cytométrie de flux [HKB™10, PLW "14].

Le transport optimal permet de corriger les effets de mauvais alignements au sein d’un
jeu de données, cependant, son utilité n’a été exploitée que par peu d’auteurs [PZ17].

A.7. L’analyse en composantes principales d’histogrammes

11 est toujours possible d’appliquer une ACP (fonctionelle) standard sur un ensemble
de densités de probabilité (f;)i=1,...» vus comme des fonctions de Ly(R) en diagonalisant
Popérateur de covariance Cov : Ly(R) — Lo(R) défini par

1« . ~
Cov(h) = ;m = Fuh)(fi = fa). € La(R)
1=
ol f,, est la moyenne euclidienne de f1, ..., f, € La(R). Les vecteurs propres de Cov associés
aux plus grandes valeurs propres décrivent les principaux modes de variabilité des données
autour de la moyenne f,. Ainsi, les premier et second modes de variations sont donnés par
les courbes g) : R — Ly(R),j = 1,2 par

gt(j) = fnthwj, teR

ot wy € Ly(R) (resp. ws) est le vecteur propre associé a la plus grande valeur (resp. seconde
plus grande) propre de Popérateur de covariance Cov. Afin d’illustrer ces variations, nous
considérons le jeu de donnée de prénoms de la Figure A.4 (source : Insee). Ce jeu de donnée
est composé d’histogrammes représentant le nombre d’enfants nés par an pour un prénom
donné, entre 1900 et 2013 en France (chaque histogramme est normalisé sur le support
[1900,2013]), voir Figure A.5 pour des exemples. Ainsi un histogramme est la donnée de 114
années. Nous disposons dans ce jeu de données de n = 1060 prénoms, pour un ensemble
de personnes variant de 10077 & 1920210 par prénom. Les modes de variations dans Lo (R)
obtenus sont présentés dans la Figure A.G.

Les résultats d’ACP fonctionelle sont trés insatisfaisants pour plusieurs raisons. Premié-
rement, les fonctions obtenues g,gj ) ne sont pas des densités de probabilité, elles prennent
notamment des valeurs négatives. Deuxiémement, la métrique Ly ne prend en compte que
les variations d’amplitude des données.
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FIGURE A.5. Un histogramme représente la proportion d’enfants nés avec
un certain prénom par an en France de 1900 & 2013. Source : INSEE
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FIGURE A.6. Les deux premiers modes de variations dans Ly (R) pour les
données de prénoms obtenus via une ACP fonctionelle dans Ly(R). La
courbe rouge représente le barycentre euclidien des données.

Afin de pallier ces deux inconvénients, il est intéressant de travailler directement sur
lespace de mesures de probabilité (admettant un moment d’ordre deux fini) muni de la
distance 2-Wasserstein. Cet espace n’est cependant pas hilbertien. Par conséquent, ’ACP
standard, qui implique le calcul d’une matrice de covariance, ne peut pas étre appliquée
directement pour calculer les modes de variation principaux au sens de Wasserstein. Néan-
moins, une notion significative d’ACP peut encore étre définie en s’appuyant sur la structure
pseudo-riemannienne de I’espace de Wasserstein, qui a été largement étudiée dans [AGS04]
et [AGSO08]. Suivant ce principe, une structure pour ’analyse en composantes géodésiques
principales (ACGP) de mesures de probabilités a support sur un intervalle Q@ C R a été
introduite dans [BGKL17]. L’ACPG est définie comme le probléme de Pestimation d’un
sous-espace géodésique principal (d’une dimension donnée) qui maximise la variance de
la projection des données dans ce sous-espace. Dans cette approche, le point de base du
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B. Problématiques et principales contributions de la thése

sous-espace est le barycentre de Wasserstein fn des données f; tel qu’il a été introduit
dans [AC11|. L’existence, la cohérence et une caractérisation détaillée de 'ACPG dans
P2(€2) ont été étudices dans [BGKL17]|. En particulier, les auteurs ont montré que cette
approche équivaut a projeter les données dans 'espace tangent de P»(2) a la moyenne de
Fréchet, puis d’effectuer une ACP dans cet espace de Hilbert, tout en contraignant le pro-
bléme & un sous-ensemble convexe et fermé de fonctions. Projeter les données dans cet es-
pace tangent n’est pas difficile dans le cas unidimensionnel puisqu’il s’agit de calculer un en-
semble de cartes optimales T" entre les données et leur barycentre de Wasserstein, pour lequel
une forme explicite est disponible, via les fonctions de répartition et les fonctions quantiles
(voir par exemple [Vil03, §2.2]). Les auteurs de [BGKL17| n’ont pas proposé d’algorithme
pour résoudre le probléme d’ACGP, qui consiste & minimiser une fonction non-convexe et
non-différentiable, sur un espace de contraintes convexes. Dans [BGKL17], seule une ap-
proximation numérique du calcul des composantes géodésiques principales a été proposée.
L’approche consiste a appliquer une log-ACP, & savoir une ACP standard de I’ensemble de
données projetées préalablement dans l'espace tangent de P2(2) a sa moyenne de Fréchet
Up. La log-ACP des données de prénoms est présentée dans la Figure A.7. Les résultats sont
plus conformes aux attentes, représentant les effets de translation (premiére composante,
gauche) et les effets d’amplitude (deuxiéme composante, droite) du jeu de données.

[ 0
1880 1900 1920 1940 1960 1980 2000 2020 1880 1900 1920 1940 1960 1980 2000 2020

FIGURE A.7. Les deux premiers modes de variations pour les données de
prénoms obtenus la log-ACP d’histogrammes. La courbe rouge représente
le barycentre de Wasserstein des données.

B. Problématiques et principales contributions de la thése

Le cadre suivi dans cette thése est 'analyse d’éléments pouvant étre décrits pas des
mesures de probabilité (discrétes ou absolument continues) aléatoires a support sur R%. Nous
étudions donc des jeux de données composés de n mesures discrétes v, , ...,V obtenues
a partir d’observations aléatoires

X = (Xij)1<i<n; 1<i<pi» (B.13)

organisées sous la forme de n sujets (ou unités expérimentales), telles que v, est définie par

1 Pi
Vpo=— Y 0x, . (B.14)
et
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B.1. Barycentres de Wasserstein pénalisés par une fonction convexe

Le barycentre de Wasserstein &,,, défini en (A.11), de mesures (v, )i=1,....n (B.14) cons-
truites a partir d’observations aléatoires X (B.13) peut souffrir d’irrégularités dues par
exemple aux données aberrantes, ou encore au manque d’observations sur les mesures v/, .
Plus précisément, nous n’avons généralement accés qu’a un jeu de données de variables
aléatoires générées a partir de distributions inconnues absolument continues. La théorie
(voir [AC11]) assure que lorsqu’au moins une des mesures v; est absolument continue (a.c.)
par rapport & la mesure de Lebesgue, alors le barycentre de Wasserstein le sera également.
Cependant, il n’y a aucune raison que le barycentre obtenu & partir d’observations discrétes
vérifie cette régle, et une régularisation s’avére nécessaire pour forcer I’absolue continuité.

Prenons 'exemple de données de flux de cytométrie obtenues & partir du réseau de re-
cherche immune (Immune Tolerance Network') et présentées dans la Figure B.8. Cet échan-
tillon est constitué de 15 patients. Pour chacun d’eux, nous disposons d’un nombre réduit,
entre 88 et 2185, de mesures de cellules, pour lesquelles les valeurs des marqueurs FSC et
SSC sont récupérées (voir Section I1.1.2.3 pour plus de détails concernant ce jeu de données).
A partir d’un tel échantillon, nous aimerions retrouver la distribution bidimensionnelle sous-
jacente, a priori absolument continue, des marqueurs FSC (forward-scattered light) et SSC
(side-scattered light) des patients.

200 400 600 200 400 600 200 400 600 200 400 600 200 400 600
250

200
150
100
50
200 400 600 200 600 200 400 600
250 250 250
200 200 200
50 150 150
100 100 4 100
50 50 50
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FiGure B.8. Exemple de données de cytométrie de flux mesurées a par-
tir de n = 15 patients. L’axe horizontal (resp. axe vertical) représente les
valeurs du marqueur FSC (resp. SSC).

La premiére contribution de cette thése réside dans l'introduction du barycentre de
Wasserstein pénalisé par une fonction de pénalité convexe E pour des mesures définies sur

1http ://bioconductor.org/packages/release/bioc/html/flowStats.html
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B. Problématiques et principales contributions de la thése

un convexe ) de R¢ :

pp = arg min W3 (u,v)dP(v) +vE(u), (B.15)
HEP2(2) JP2(Q)

pour v > 0,P € Py(Q2) (possiblement discréte). Soulignons ici que ’on se concentre princi-
palement sur des fonctions de pénalité E qui forcent les minimiseurs (B.15) a étre a.c. et
de fonction de densité lisse. Ce probléme de pénalisation de barycentre est motivé par la
méthode non-paramétrique introduite dans [BFS12| dans le cas classique d’estimation de
densité a partir d’échantillons discrets.

Nous prouvons dans un premier travail, I’existence et 'unicité de ces minimiseurs pour
une large classe de fonctions E : P2 () — R, avec Q C R? convexe. Dans un se-
cond temps, nous montrons que l'introduction d’un terme de pénalisation dans le calcul
des barycentres de Wasserstein de mesures discrétes permet de construire un estimateur
consistent d’un barycentre de population a.c. Plus précisément, nous nous placons dans le
cadre de n mesures v, ..., v, de loi P définies en (B.14) pour un échantillon d’observations
X;1,...,X,p, dans Q définies en (B.13). Le barycentre pénalisé empirique de Wasserstein
est alors défini par

n
i, = argmin = > W, v,) + VE(u). (B.16)

peP2(Q) M i=1
Nous étudions alors la convergence de cet estimateur ﬂ:hp vers son équivalent en popu-
lation i (B.15) en terme de divergence de Bregman dp associé a la fonction de pénalité E.
Les divergences de Bregman sont en effet largement utilisées pour comparer des mesures a.c.
(par exemple en géomeétrie de U'information [ANOO]). Ainsi on obtient le théoréme suivant.

THEOREME B.4 (Théoréme 1.17). Pour Q C R? compact, et pour tout v > 0, on a
lim E(d3 (47, ,11)) = 0 (B.17)
n—oo n

Des résultats plus fins, donnant une borne sur la variance de I'estimateur [L?W du ba-
rycentre pénalisé ont également été obtenus, en invoquant plus de régularité via la fonction
de pénalité F.

En adaptant 'algorithme de [CP16b], qui se base sur une descente de gradient de
la version duale du probléme de transport, nous fournissons un algorithme permettant de
calculer ces barycentres.

B.2. Barycentres de Wasserstein régularisés par ’entropie

Une autre facon de régulariser un barycentre de Wasserstein consiste a utiliser la régu-
larisation entropique du transport présentée en (A.9). Cett approche méne au barycentre
de Sinkhorn [CD14,CP16b,CDPS17,BCCT15|. Pour cela, on considére n mesures aléa-
toires #d discrétes qq, ..., q, € X n générées a partir d’une distribution P € ¥ . Ainsi, pour

chaque 1 < ¢ < n, on suppose que les observations (X; j)i1<j<p; sont des variables aléatoires
itd de loi g,. Nous définissons alors pour € > 0

r® = arg min Eq p[W3 (1, q)] le barycentre population de Sinkhorn
reEXN
1 n
7, , = arg min — Z W3 (r,q"") le barycentre empirique de Sinkhorn (B.18)
’ rexsy 1 i—1 ’

qui correspondent & des moyennes de Fréchet par rapport a la divergence de Sinkhorn.Comme
on peut le voir sur la Figure B.9, le paramétre ¢ a un effet de lissage sur le barycentre empi-
rique f'f%p obtenu & partir de deux mélanges de gaussiennes. Plus le paramétre € augmente,
plus la masse du barycentre s’étale. Ainsi la pénalisation entropique n’a plus seulement un
intérét calculatoire (afin d’accélérer le calcul d’une distance de transport), mais devient un
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Ficgure B.9. Un exemple simulé de n = 2 sujets construits avec p; =
p2 = 300 observations générées a partir de mélanges de gaussiennes de
moyennes et variances aléatoires. (Gauche) Les graphes bleu et rouge sont
des histogrammes d’intervalles de variation égaux et petits. (Droite) 400
barycentres de Sinkhorn 77, , pour € variant de 1 & 5. Les couleurs encodent
la variation de €.

véritable outil de régularisation. Nous avons prouvé grace a la forte convexité de la diver-
gence de Sinkhorn qu’il est possible d’obtenir une borne sur la variance de I'estimateur de
ce barycentre de Sinkhorn. Pour cela, il est nécessaire de restreindre I’analyse & des mesures
discrétes appartenant a I'espace

So=<dreXy : min r; >
N { N 1<KN£/P7

et de considérer un barycentre appartenant & cet espace.

THEOREME B.5 (Théoréme 1.22). Soit p = minj¢;<n pi et € > 0. Alors

320 2L |N
5 ~E 2
E(|T’ 7rn,p| )< 2n +? ;7
avec
o\ 1/2
Lpe=| Y |2log(N)+ sup [Cps— Cre| — 2¢log(p) . (B.19)
1<m<N 1<0,k<N

B.3. Application a I’alignement d’histogrammes

Les barycentres régularisés peuvent notamment étre utilisés pour faire face au probléme
de recalage d’histogrammes, une mesure v; représentant alors un histogramme de données.
Cette approche différe de celle de [PZ16,PZ17] présentée en sous-section A.G car nous
incluons ici directement 1’étape de lissage dans le calcul du barycentre de Wasserstein.

Le probléme qui se pose alors est le choix des paramétres de régularisation v dans (B.16)
et € dans (B.18) lors du calcul des barycentres. Pour cela, la méthode de Goldenshuler-Lepski
(GL) (comme formulée dans [LM16]) propose une solution en se basant sur les bornes de
la variance des barycentres régularisés, permettant alors une calibration automatique des
paramétres de régularisation. Dans la Figure B.10, la fonction de compromis biais-variance

Statistical properties of barycenters in the Wasserstein space. 13



B. Problématiques et principales contributions de la thése

0018

0016

0014

0012

FIGURE B.10. (Gauche) Fonction de compromis biais-variance donnée par
la méthode de Goldenshuler-Lepski, associé aux mélanges de gaussiennes de
la Figure B.9. (Droite) Barycentre de Sinkhorn optimal associé a € = 2.55.

GL est tracée pour les barycentres de Sinkhorn de la Figure B.9, nous donnant le paramétre
optimal de régularisation € = 2.55, et le barycentre optimal associé (Figure B.10, gauche).

B.4. Tests statistiques

Au cours de la thése, nous avons également étudié la convergence en divergence de
Sinkhorn des mesures de probabilité empiriques & support sur un espace métrique fini. Ce
travail a été motivé par la nécessité de trouver des compromis aux tests statistiques basé sur
la distance de transport. En effet, hormis pour le cas unidimensionnel (d = 1), les distances de
transports ménent & des statistiques de test dont I'implémentation numérique peut devenir
excessive pour des mesures empiriques a support sur R? avec d > 2. Par conséquent, utiliser
des statistiques de tests basées sur les divergences de Sinkhorn peut présenter un intérét
pratique. Les travaux menés se concentrent donc sur I’étude de I'inférence statistique de
mesures discrétes en terme de transport régularisé par ’entropie.

Nous obtenons de nouveaux résultats sur la distribution asymptotique de ces divergences
pour des données échantillonnées a partir de distributions (inconnues) & support sur un
espace métrique fini. Nos résultats sont inspirés du travail de [SM16] sur la distribution
asymptotique de la distance de Wasserstein empirique sur un espace fini en terme de cofit de
transport non régularisé. L’application principale consiste & obtenir de nouvelles statistiques
de test (pour un ou deux échantillons) pour la comparaison de distributions de probabilité
multivariées.

Enfin, pour illustrer I'applicabilité de cette approche, nous proposons également une
procédure bootstrap pour estimer des quantités d’intérét inconnues dans le calcul de ces
statistiques de test.

B.5. Analyse en composantes géodésiques principales

Nous avons finalement proposé de comparer les méthodes de log-ACP et ’ACGP comme
introduites dans [BGKL17,SC15]. Dans notre approche, les histogrammes sont vus comme
des densités de probabilité constantes par morceaux & support sur un intervale 2 C R donné.
Dans ce contexte, les modes de variation d’un ensemble d’histogrammes peuvent étre étudiés
a travers la notion d’ACP géodésique de mesures de probabilité dans 'espace de Wasserstein

14 Elsa Cazelles
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P2(2) admettant ces histogrammes pour densité. Comme précisé précédemment en sous-
section (A.7), cette approche a été proposée dans la littérature statistique [BGKL17] pour
les mesures de probabilité sur la droite réelle et dans 'apprentissage automatique [SC15,
WSB*13] dans le cas de mesures de probabilité discrétes sur R?. Cependant, 1'exécution
de PACGP reste compliquée méme dans le cas le plus simple de densités de probabilité a
support sur R.

Nous avons alors fourni un algorithme rapide pour effectuer ' ACGP de mesures définies
sur la droite réelle, et nous comparons ses résultats a ceux de la log-ACP [FLPJ04,PM164a].
L’ACP géodésique consiste a résoudre un probléme d’optimisation non convexe. Pour le ré-
soudre approximativement, nous proposons un nouvel algorithme forward-backward. Nous
présentons aussi une comparaison détaillée entre la log-ACP et 'ACP géodésique d’histo-
grammes unidimensionnels, pour différents ensembles de données en dimensions 1 et 2.

C. Contenu de la thése

Chapitre I Dans un premier chapitre, nous introduisons deux barycentres régularisés, I'un via
une fonction de pénalité convexe, l'autre en utilisant le transport optimal régularisé
par lentropie. Une étude de ces moyennes et des résultats de convergence de leurs
estimateurs sont présentés, issus des papiers [BCP18b, BCP18a].

Chapitre IT Les barycentres régularisés du Chapitre I sont alors utilisés pour le probléme de recalage
d’histogrammes et nous proposons une méthode pour calibrer automatiquement les
paramétres de régularisation, [BCP18a].

Chapitre III Nous énongons un théoréme central limite du transport optimal régularisé par ’entropie
dans ce troisiéme chapitre. Nous en déduisons des statistiques de test d’adéquation a
des lois pour des histogrammes multivariés, [BCP17].

Chapitre IV Enfin, nous développons de nouveaux algorithmes pour le probléme d’analyse en com-
posantes géodésiques principales dans ’espace de Wasserstein, provenant du papier
[CSBT18|.

Statistical properties of barycenters in the Wasserstein space. 15






INTRODUCTION (ENGLISH)

In this introduction, we present a - non exhaustive - review of the literature on optimal
transport, as well as its many applications in data analysis. We also introduce the definitions
and notations that will be used throughout this thesis. We then present a detailed summary
of our work and the contents of this manuscript.

A. Optimal transport and applications

A.1. Monge, Kantorovich and Wasserstein

Gaspard Monge introduced in 1781 the problem of mass transfer in his Mémoire sur
la théorie des déblais et des remblais. He aimed to find the most efficient way, that is
requiring the least possible effort, to transport a pile of sand in a hole of the same volume.
In its modern formulation, the problem consists in finding the optimal measurable map for
transferring at a lower cost the mass of a probability measure p supported on a measure
space X on another measure v supported on ). Then, Monge’s problem boils down to

minimize / e(x, T(z))du(x) (A1)
x

over the set of measurable functions T : X — )Y such that v = T#pu. This pushforward
operator # is defined such that for any measurable set B C ), we have v(B) = u(T~1(B)).
The function ¢ : X x Y — RU {400} is a measurable cost function. An example of mass
transfer, in the spirit of the déblais et remblais problem of Monge, is presented in Figure
A.l.

However, such applications T" do not always exist, especially if the mass of y at a given
point in X musts split into several pieces. To overcome this restriction, Leonid Kantorovich
extended in the 1940s the Monge problem (A.1) by introducing a transport plan between
the starting measure and the target measure, which contains the behavior of mass transfer.
This corresponds to

minimize //Xxy c(z,y)dmr(z,y) (A.2)

over the set of transport plans 7 belonging to II(u, v), i.e. the set of product measures on
X x Y with respective marginals u and v. When considering discrete measures, e.g. Figure
A2, the transport plan can allocate the mass of a point of the support of u at different
points of the support of v, whereas it can not be done with a map 7. The notion of optimal

17



A. Optimal transport and applications

FIGURE A.1. Transfer of the mass of y onto the mass of v through the map
T such that v = T#pu.

_>/)
vV
—
N

FIGURE A.2. Transfer of the mass of y onto the mass of v through a trans-
port plan 7w € TI(p, v).

transport, as well as the geometric and differential points of view of these minimization
problems, are detailed in the works of Villani [Vil03, Vil08], Ambrosio and Gigli [AG13]
and Ambrosio and al. [AGS04].

A particularly interesting framework of optimal transport appears when X is a Polish
space endowed with a distance d : X x X — RT. Indeed, in this case, the Kantorovich
optimal transport problem between two measures defines a distance for a cost ¢ := dP,
as soon as the measures belong to a proper space. More precisely, for p € [1,400), we
denote P,(X) the set of Borel probability measures (also called distributions) on (X, B(X))
supported on X, where B(X) is the o-algebra of the Borel subsets included in X, admitting
a moment of order p. In other words,

[ € Pp(X) is equivalent to / dP(xo, x)dp(x) < +oo for any z € X.
x

Note that P,(X) is included in the set of bounded Radon measures M(X). We then get the
following definition.

18 Elsa Cazelles
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DEFINITION A.l. The p-Wasserstein distance (1969, Leonid Wasserstein) is given for

w, v in Py(X) by
1/p
Wy (11, ) :—( w ] dp<x,y>dw<x,y>) (A.3)
eIl (p,v) X2

where the infimum is taken over the set II(u,v) of transport plans on X x X with respective
marginals @ and v.

This distance has the advantage to characterize the weak convergence of measures on
the metric space (Pp(X), Wp) (see e.g. Chapter 7 in [Vil03]).

Kantorovich also described the problem of minimization (A.3) in its dual formulation,
corresponding to a constrained optimization over a function space. We recall that the space
L,(w), for p € [1,00) and p € M(X), is the space of functions f : X — R such that |f|P is
p-integrable, and such that all functions that are equal p-almost everywhere are identified.
The dual problem of (A.3) is then given by the following theorem.

THEOREM A.2 (Kantorovich’s duality theorem). Let p,v € P,(X), then we have

/p

W, v d dy A4
() = ((Jép%/qs u(z /¢ ) , (A4)

where Cyy, is the set of measurable functions (¢,1) € Ly(u) x Li(v) satisfying
o(z) +¥(y) < d°(z,y), (A.5)

for p-almost every x € X and v-almost every y € X.
A.2. The Wasserstein distance on the real line

The case of measures supported on the real line, namely when X is an interval (possibly
unbounded) of R, is significant since the distance of Wasserstein W), is then equal to the L,
distance of quantile functions. Formally, by denoting F), the distribution function of y and
F, its generalized quantile, the Wasserstein distance becomes, for u,v € Pp(R),

V) = ( /O 1 Fo () — Fl,(t)pdt>1/p. (A.6)

If € Pye(R), the space of measures in Py(IR) that are absolutely continuous, then 7 :=
F; o F,, is the optimal pushforward application from p to v, and in this case, W) (u,v) =
Ji 17" (2) — aldpu(a).

The formulation of Wasserstein distance on the real line makes it possible to better
understand its distinctions with L, distances. Consider two measures p,v € Pp¢(R) with
probability density functions (pdf) fu, f, : R = R. A L, distance is relevant when these two
densities share the same support, as it allows to compare the variations at a point x € R
of the support. On the other hand, if the supports of two densities are disjoint, their L,
distance will be the same whether they are close or not on the real line. It is possible to draw
a parallel between the Wasserstein distance (A.6) (defined as a L,([0,1]) distance on the
quantiles) and the distance L,,(R). In order to illustrate the mass displacements between two
measures for the W5 and L, distances, we present in Figure A.3 two mixtures of Gaussian,
one having three modes, the other two modes, and we represent the geodesic paths between
these two measures. The metrics have a completely different behavior. The Ly metric moves
the mass according to the amplitude of the pdf, and the pdfs on the geodesic thus all have
5 modes. On the other hand, the W5 metric moves the mass along the real line, and the
geometry of a density along the geodesic varies from three modes to two modes, from left
to right.

Statistical properties of barycenters in the Wasserstein space. 19
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F1GURE A.3. The red probability density functions represent two mixtures
of Gaussian with disjoint supports. Colors’ gradations correspond to the
geodesic paths between the two measures, for the Ly (R) and W5(R) metrics
respectively.

Similarly, in higher dimensions, the Wasserstein distance takes into account the distance
that a mass has to travel, which is not possible for a L, distance. The importance of the
support is all the more evident when one considers two Dirac measures, for which the
Wasserstein distance is given by the distance between their support point.

A.3. The Wasserstein distance on a finite space

In the discrete setting, when the measures p € P,(X) are supported on a finite number
of points, i.e. X = {x1,...,zx} C XN, one can write 1 = Zfil a;0y, where (ay,...,ay)isa
vector of positive weights belonging to the simplex Xy := {a = (a;)i=1,.. N € Rf such that
Zf\il a; = 1} and §,, is the Dirac measure at x;. As the space X is considered to be fixed,
a probability measure supported on X is entirely characterized by a vector of weights in the
simplex. By a slight abuse of notation, we thus identify a measure p € P,(X) by its vector

of weights a = (a1,...,a,) € Xy (and we sometimes write a = p). The optimal transport
problem (A.3) then corresponds to a linear optimization problem and reads for a,b € X

Wy(a,b) = min (T,C)'/? AT

p(a,b) = min (T.C) (A7)

where (-,-) denotes the usual inner product between matrices (i.e. let A, B be two real
squared matrices, then (A, B) = trace(A!B)), and
- Ula,b) = {T € RY*N |T1y = a, 771y = b} is the set of transport matrices with
marginals a and b (with 1 denoting the vector of RY with all entries equal to one),
-Ce RfXN is the pairwise cost matrix associated to the space X whose (i, j)-th entry
is C@j = d(:ti,:vj)p.
The dual version of this problem is then given by

Wy(a,b) = ( (a,a) + (B, b)) 1/p' (A.8)

max
a,BERN, a;+3;<C;,;
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A.4. The entropy regularized optimal transport

Many applications need to consider data in the form of discrete measures (or histograms)
on a Euclidean space R%. The Wasserstein distance then proved to be a relevant statisti-
cal measure in different domains such as clustering of discrete distributions [YWWL17],
non-parametric Bayesian models [Ngul3|, fingerprints comparison [SM16], unsupervised
learning [ACB17], principal component analysis [BGKL17,SC15], image processing and
machine learning [FPPA14, BCC 15, CP16b, DPR16], etc ...

In these cases, it is always possible to set a grid X = {z1,...,2x} C (RY)" on which the
measures are defined. However, the cost of computing a transport distance (A.7) is of order
O(N?log N). It thus becomes excessive for large values of N. Regularizing a problem with
an entropy term to reduce its complexity is a classic approach in optimization [Wil69]. To
overcome the cost of computing a transport distance, Cuturi [Cut13] has therefore proposed
to add an entropy regularization term to the linear optimal transport problem, leading to the
notion of entropy regularized optimal transport, or Sinkhorn divergence, between discrete
measures. Initially, the goal of the regularization was to efficiently compute a term close to
the Wasserstein distance between two probability measures, via an iterative algorithm for
which each iteration costs O(N?). We will see later that this problem also has regularization
effects that may be beneficial for outliers (see (B.18)).

DEFINITION A.3. The Sinkhorn divergence is defined for a,b € ¥ and € > 0 by

P — H _
Wy (a,b) Uergl(gﬁb)w, C) = An(U) (A.9)

where h(U) = — Z” Ui;log Us; is the negative entropy of the transport matric U € U(a,b).

Let us notice that the Sinkhorn divergence does not define a metric on the space of dis-
crete measures included in P,(X). In particular, W} _(a, a) is not zero. The dual formulation
of (A.9) is then given by [Cut13,CD14]

Wh (a,b) = a)rgggNaTa +67b — Z ez (cismai=hi) (A.10)
i
There is an explicit relationship between the optimal solutions of the primal (A.9) and dual
(A.10) problems above. These solutions can also be computed by an iterative algorithm
called Sinkhorn algorithm [CD14].

Entropy regularized optimal transport has recently gained popularity in machine learn-
ing and statistics because it makes it possible to use an approximation of transport distances
for the analysis of large dataset. It has found various applications such as generative mod-
els [GPC17] and more generally for high dimensional data analysis in multi-label learning
[FZM 15|, dictionnary learning [RCP16| and image processing (see e.g. [CP16b, RP15|
and references therein), text mining via bag-of-words comparison [GCB16], averaging of
neuroimaging data [GPC15]. The book by Cuturi and Peyré [PFR12] presents a large
part of applications specific to optimal transport, and in particular to regularized transport.

A.5. Inference and Wasserstein distance
A.5.1. Limit of empirical measures in Wasserstein distance

One can consider n random variables (X;);=1, .. , independent and identically dis-
tributed (iid) generated according to an unknown probability measure u € P(R?). We
then obtain the so-called empirical measure associated to the sample of observations, given
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by
M, = Z 5Xj .
j=1

In particular, we will use notations in bold v, X, f,... to refer to random objects. The
derivation of distributional limits of the empirical measure p, towards its equivalent in
population p in Wasserstein distance, namely the asymptotic study of W,(g,,, 1) when
n tends to infinity, is well understood for probability measures with support on R, see
[MC98, FMO05, DBCAMRR99, DBGU05, DBCAMT00] to name a few. These results
are based on the quantile formulation of the one-dimensional transport. Therefore, these
works have led to the development of new test statistics. The one-dimensional case is also
treated in the paper of Bobkov and Ledoux [BL14], in which they provide a study of the
quantity E(W,(p,,, ). Ramdas and al. in [RTC17] have also investigated the link between
non-parametric tests and Wasserstein distance, with an emphasis on distributions supported
on R. These results have been extended to specific parametric distributions with support
on R? and belonging to an elliptic class (Gaussian case in particular), see [RIVIS16] (and
references therein). Panaretos and Zemel present a review of the literature of statistical
tools in the Wasserstein space in their recent paper [PZ18]. Also, a central limit theorem
has been established in Wasserstein distance in [DBL17| for empirical measures sampled
from absolutely continuous measures on R%. The case of discrete measures with support
on a finite metric space has also been considered in [SM16], revealing the convergence (in
the spirit of the central limit theorem) of the empirical Wasserstein distances towards the
optimal value of a linear program.

A.5.2. The Fréchet mean in the Wasserstein space

In order to study a dataset composed of several subjects, the barycenter in the Wasser-
stein space (P2(R9), W3), corresponding to the notion of Fréchet mean [Fré48], is a natural
statistical tool. This average is an extension of the usual Euclidean barycenter to non-linear
spaces. As introduced by Agueh and Carlier in [AC11], a Wasserstein empirical barycenter
Uy of a set of n probability measures vy, ..., v, in Py(RY) is defined by

n
Uy € Eaurgminl Z W3 (p, ;). (A.11)
neP2() M5
A detailed characterization of these barycenters in terms of existence, uniqueness and reg-
ularity for probability measures with support included in R? is available in [AC11]. The
authors, as well as the author of [Pas13], study the link between these barycenters and the
solutions of multi-marginals optimal transport problem.

It is interesting to note that when the measures vy, ..., v, are non degenerate Gaussian
distributions, their barycenter is also a Gaussian distribution, and this is still true for a
set of measures belonging to translations-dilations families (see [AEABCAM15b, AEdB-
CAM16]).

The notion of Wasserstein barycenter has been generalized in [LGL16] for random prob-
ability measures (see also [AEdBCAM15a] for similar concepts). A probability measure v
in P2(R?) is called random if it is generated from a distribution P on (P2(R%), B (P2(R?)),
where B (Pg(Rd)) is the Borel o-algebra generated by the topology induced by the distance
Wa.

DEFINITION A.4. Let Wa(P2(R%)) be the space of distributions P on Pa(RY) (endowed
with the Wasserstein distance Wa) such that for one (and thus for any) p € P2(R?)

W0.P) = B Wi ) = [ WE G ap) < oo
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where v € P2(R?) is a random measure with distribution P and 6, is a Dirac measure at the
point 1. The Wasserstein barycenter of a random probability measure of law P € Wo(P2(R?))
18 given by

Hp € argmin / W2(p, v)dP(v). (A.12)
nEP2(Q) JP2(RY)

The authors of [LGL16] have established the existence, uniqueness, and consistency of
barycenters of random probability measures supported on a locally compact geodesic space.
When the measure P, = 1 37§, is discrete on P, (R?), we get yp, , which corresponds to the
empirical barycenter (A.11). In the case where vy, ..., v, are random probability measures
11d of law P, the barycenter up is called the population barycenter. The more general case of
probability measures with support on a Riemannian manifold has been studied in [KP17].
Subsequently, the trimmed barycenters in the Wasserstein space on Po(R?) were introduced
in [AEdBCAM15a] for the purpose of combining information from different experimental
units in a parallelized or distributed estimation setting.

Tools from optimal transport are used in [PZ16] for the registration of point processes
organized in samples from independent subjects (or experimental units). The authors of
[PZ16] have proposed a consistent estimator of the population Wasserstein barycenter of
point processes in the case d = 1, and an extension of their methodology is considered for
d > 2in [PZ17]. Their method contains two steps. First, a kernel smoothing is performed on
the data, which leads to a set of a.c. measures. A Wasserstein barycenter is then computed
from this set of measures. Finally, rates of convergence (for the Wasserstein metric) of
the empirical Wasserstein barycenter or discrete measures supported on the real line are
discussed in [PZ16, BGKL18].

However, there is a lack of statistical analysis of regularized Wasserstein distances and
regularized Wasserstein barycenters in the literature.

A.6. Registration of histograms

The problem of registering histograms finds applications in many fields. In bio-informatics,
researchers aims to automatically normalize large datasets to compare and analyze charac-
teristics within a single cell population. Unfortunately, the information acquired is noisy
due to misalignment, caused by technical variations of the environment. The need to take
into account phase variability in the statistical analysis of such datasets is a known prob-
lem in many scientific fields. There are examples in the one-dimensional case (d = 1):
biodemographic and genomic studies [ZM11], economics [KUO1], spike trains analysis
in neuroscience [WS11] or functional connectivity between the brain regions [PM T 16b].
In higher dimension, i.e. d > 2, the problem of data registration comes for example
from the statistical analysis of spatial point processes [Gerl6, PZ17| or flow cytometry
data [HKB*10,PLW ' 14].

Optimal transport allows to correct mis-alignment effects in a dataset, but has only
been exploited by a few authors [PZ17].

A.7. Principal component analysis of histograms

It is always possible to apply a standard (functional) PCA on a set of probability den-
sity functions (pdf) (fi)i=1,...,» seen as functions in Ly(R) by diagonalizing the covariance
operator Cov : Ly(R) — L2(R) defined by

n

Cov(h) = = S Ufi — Fur Wi — ), € La(R)

=1
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FIGURE A.4. Proportion of children born with a given name per year in

France between 1900 and 2013. Each curve represents a first name. Source:
INSEE

Carmen ~ Chantal - Pierre | Jesus
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Nicolas Pamela Emmanuel Yves

FIGURE A.5. A histogram represents the proportion of children born with
a given name by year in France between 1900 and 2013. Source: INSEE.

where f,, is the Euclidean mean of fy, ..., f, € La(R). The eigenvectors of Cov associated to
the largest eigenvalues describe the main modes of variation of the data around the mean f,,.
Hence the first and second modes of variation are given by the curves ¢(/) : R — L, (R),5 =
1,2 with
g9 = fo+tw;, teR

where wy € La(R) (resp. ws) is the eigenvector associated to the largest (resp. the second
largest) eigenvalue of the covariance operator Cov. To illustrate these variations, we consider
the dataset of given names in Figure A.4 (source: Insee). This dataset is composed of
histograms representing the number of children born per year for a given name, between
1900 and 2013 in France (each histogram is normalized on the support [1900,2013]), see
Figure A.5 for examples. A histogram thus contains information during 114 years. We have
in this dataset n = 1060 first names, for a set of people ranging from 10077 to 1920210 per
name. The mode of variations obtained with PCA in La(R) are presented in Figure A.6.
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Functional PCA results are very unsatisfactory for several reasons. First, the functions
obtained gﬁj ) are not pdf, in particular they take negative values. Secondly, the L, metric
only takes into account the amplitude variation of the data.

W,

L L L L L L L L
1900 1920 1940 1960 1980 2000 1900 1920 1940 1860 1980 2000

g = f, + twy, pour —0.15 <t < 0.12 g!* = f, + tw,, pour —0.16 < t < 0.09

FIGURE A.6. The first two modes of variations in Ly(R) for the names
dataset for a functional PCA in Ly(R). The red curve represent the Eu-
clidean barycenter of the dataset.

In order to overcome these two drawbacks, the idea would be to work directly on the
probability measures space (admitting a finite second order moment) endowed with the 2
-Wasserstein distance. Unfortunately, it is not a Hilbert space. Therefore, standard PCA,
which involves computing a covariance matrix, can not be applied directly to compute prin-
cipal mode of variations in a Wasserstein sense. Nevertheless, a meaningful notion of PCA
can still be defined by relying on the pseudo-Riemannian structure of the Wasserstein space,
which is extensively studied in [AGS04] and [AGS08]. Following this principle, a frame-
work for geodesic principal conponent analysis (GPCA) of probability measures supported
on a interval £ C R is introduced in [BGKL17]. GPCA is defined as the problem of esti-
mating a principal geodesic subspace (of a given dimension) which maximizes the variance
of the projection of the data to that subspace. In that approach the base point of that sub-
space is the Wasserstein barycenter 7, of the data f; as introduced in [AC11]. Existence,
consistency and a detailed characterization of GPCA in P5(Q) are studied in [BGKL17].
In particular, the authors have shown that this approach is equivalent to map the data in
the tangent space of Po(£2) at the Fréchet mean, and then to perform a PCA in this Hilbert
space, that is constrained to lie in a convex and closed subset of functions. Mapping the data
to this tangent space is not difficult in the one-dimensional case as it amounts to computing
a set of optimal maps T between the data and their Wasserstein barycenter, for which a
closed form is available using their quantile functions (see for example [Vil03, §2.2]). To
perform PCA on the mapped data, the authors of [BGKL17] fell short of proposing an al-
gorithm to minimize that problem, which has a non-convex and non-differentiable objective
function. Only a numerical approximation to the computation of GPCA has been proposed
in [BGKL17], which amounts to applying log-PCA, namely a standard PCA of the dataset
mapped beforehand to the tangent space of P2(Q) at its Fréchet mean 7,. The log-PCA
of the names dataset is displayed in Figure A.7. The results correspond more to the ex-
pectations, as they include translation effects (first component, left) and amplitude effects
(second component, right) of the dataset.
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F1GURE A.7. The first two modes of variations for the names dataset ob-
tained from the log-PCA of histograms. The red curve represent the Wasser-
stein barycenter of the dataset.

B. Problems and main contributions of the thesis

The framework followed in this thesis is the analysis of elements that can be described
by random probability measures (discrete or absolutely continuous) with support on R9.
We therefore study datasets composed of n discrete measures v, ,...,Vv,, obtained from
random observations

X = (Xij)1<i<n; 1<i<pi» (B.13)

organized in the form of n subjects (or experimental units), such that v, is defined by

1 Pi
Vo = > ox.,- (B.14)
3 j:1

B.1. Wasserstein barycenter penalized by a convex function

The Wasserstein barycenter &, defined in (A.11), of measures (Vp,)i=1,....n (B.14) con-
structed from random observations X (B.13) may suffer from irregularities due for example
to outliers, or lack of observations for the measures v,,. Specifically, we generally only
have access to a set of random variables generated from absolutely continuous unknown
distributions. The theory (see [AC11]) ensures that when at least one of the measures v;
is absolutely continuous (a.c.) with respect to the Lebesgue measure, then the Wasserstein
barycenter will also be a.c.. However, there is no reason that the barycenter obtained from
discrete observations satisfies this rule, and regularization is necessary to enforce absolute
continuity.

Consider the example of flow cytometry data available from the Immune Tolerance
Network' and presented in Figure B.8. This dataset consists of 15 patients. For each of
them, we dispose of a small number, between 88 and 2185, of cell measurements, for which
the values of the FSC and SSC markers are retrieved (see Section I1.1.2.3 for more details
on this dataset). From such a sample, we would like to find the underlying two-dimensional
distribution, which should be absolutely continuous, of the FSC (forward-scattered light)
and SSC (side-scattered light) cell markers of the patients.

1http ://bioconductor.org/packages/release/bioc/html/flowStats.html
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FiGUure B.8. Example of flow cytometry data measured from n = 15 pa-
tients (restricted to a bivariate projection). The horizontal axis (resp. ver-
tical axis) represent the values of the FSC (resp. SSC) cell marker.

The first contribution of this thesis lies in the introduction of Wasserstein barycenter
penalized by a convex penalty function E for measures defined on a convex set  C R%:

jip = arg min W3 (1, v)dP(v) + vE(p), (B.15)
HEP2() JPa(9)

for v > 0,P € P2(Q) (possibly discrete). Note that we mainly focus on penalty functions
E that enforce the minimizers of (B.15) to be a.c. with a smooth pdf. This barycenter
penalization problem is motivated by the non-parametric method introduced in [BFS12] in
the classical case of density estimation from discrete samples.

First we prove the existence and uniqueness of these minimizers for a large class of func-
tions E : P2(Q2) — R, with Q C R convex. Second, we demonstrate that the introduction
of a penalization term in the computation of the Wasserstein barycenter of discrete mea-
sures allows to build a consistent a.c. estimator of a population barycenter. More precisely,
we consider n measures v1,...,v, of law P defined in (B.14) for a sample of observations
Xii1,...,Xip, in Q defined in (B.13). The empirical penalized Wasserstein barycenter is
then defined by

n
i, = argmin = > W, v,,) +7E(u). (B.16)
neP2(Q) i
We study the convergence of this estimator [ﬂ%p towards its population counterpart
pp (B.15) in terms of Bregman divergence dp associated to the penalty function E. The
Bregman divergences are indeed widely used to compare a.c. measures (for example in
geometry of information [ANO0O]). Thus we obtain the following theorem.
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0.015

0.01

F1GURE B.9. A simulated example of n = 2 subjects obtained with p; =
p2 = 300 observations sampled from gaussian mixtures with random means
and variances. (Left) The red and blue bar graphs are histograms with bins
of equal and very small size to display the two sets of observations. (Right)
400 Sinkhorn barycenters f*fw for € ranging from 1 to 5. Colors encode the
variation of e.

THEOREM B.5 (Theorem 1.17). For Q C R? compact, and for all v > 0, we have
: 2 Yy TYV) —
Jim E(d (g, pp)) =0 (B.17)

Finer results, on the bound on the variance of the estimator /l:’w of the penalized
barycenter, have also been obtained, by relying on more regularity through the penalty
function F.

By adapting the algorithm of [CP16b], which is based on a gradient descent of the dual
version of optimal transport, we provide an algorithm to compute these barycenters.

B.2. Entropy regularized Wasserstein barycenters

Another way of regularizing a Wasserstein barycenter consists in using the entropy
regularization of the transport presented in (A.9). This approach leads to the Sinkhorn
barycenter [CD14,CP16b, CDPS17, BCC"15|. For this purpose, we consider n discrete
random measures q, . ..,q, € Xy id generated from a distribution P € ¥ . Thus, for each

1 < i < n, we assume that the observations (X; ;)1<j<p, are iid random variables of law g, .
We then define for € > 0

r® =arg min Eqp [WQQ’E(T, q)] the population Sinkhorn barycenter
TEXN
1 n
75, = arg ;nin - Z W3 (r,q") the empirical Sinkhorn barycenter (B.18)
TELN i=1

which correspond to Fréchet means with respect to the Sinkhorn divergence. As it can be
seen in Figure B.9, the parameter ¢ has a smoothing effect on the empirical barycenter f“fw
obtained from two Gaussian mixtures. The higher the parameter &, the more the mass of
the barycenter spreads. Thus the entropy penalization is no longer only of computational
interest (in order to speed up the computation of a transport distance), but becomes a real
tool of regularization. We have proved, thanks to the strong convexity of the Sinkhorn
divergence, that it is possible to obtain a bound on the variance of the estimator of this
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Ficure B.10. (Left) Bias-variance trade-off function given by the
Goldenshuler-Lepski method, associated to the Gaussian mixtures of Fig-
ure B.9. (Right) Optimal Sinkhorn barycenter in the GL sense, for which
€ = 2.55.

Sinkhorn barycenter. For this purpose, it is necessary to restrict the analysis to discrete
measures belonging to the space
¥ = € Xy : i > ,

N {T N 1<H}1<DN Te 2 p

and to consider barycenter that lies on this space.

THEOREM B.6 (Theorem 1.22). Let p = minjgi<n p; and € > 0. Then

22 2L [N
E(lr - 75, < S + 22y [,
P e2n c P
with 2\ /2
Lpe=| Y |2log(N)+ sup [Cps— Cie| — 2¢log(p) . (B.19)
1<m<N 1<0,k<N

B.3. Application to the registration of histograms

Regularized barycenters can be used to tackle the registration of histograms, a measure
v; then representing a histogram. This approach differs from the one of [PZ16,PZ17]
presented in subsection A.6 since we directly include the smoothing step in the computation
of the Wasserstein barycenter.

The problem that arises is the automatic choice of the regularizations parameters v in
(B.16) and € in (B.18) for the computation of the barycenters. The Goldenshluger-Lepski
(GL) method (as formulated in [LIM16]) suggests a solution based on the derivation of
upper bounds on the variance for the regularized barycenters, allowing a data-driven choice
for the regularization parameters. In Figure B.10 (left), the bias-variance trade-off function is
displayed for the Sinkhorn barycenters of Figure B.9, giving the optimal parameter e = 2.55,
and the associated barycenter (Figure B.10, right).

B.4. Statistic tests

During this thesis, we have also studied the convergence in entropy regularized optimal
transport of empirical probability measures supported on a finite metric space. This work
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was motivated by the need to find compromises for statistical tests based on transport
distances. Indeed, except for the one-dimensional case (d = 1), transport distances lead to
test statistics whose numerical implementation can become excessive for empirical measures
with support on R? with d > 2. Therefore, using test statistics based on Sinkhorn divergences
may be of practical interest. The work carried out thus focuses on the study of the statistical
inference of discrete measures in terms of Sinkhorn divergence.

We obtain new results on the asymptotic distribution of these divergences for data
sampled from (unknowns) distributions supported on a finite metric space. Our results are
inspired by the work of [SM16] on the asymptotic distribution of the empirical Wasserstein
distance over a finite space in terms of un-regularized transport cost. The main application
consists in developing new test statistics (for one or two samples) for the comparison of
multivariate probability distributions.

Finally, to illustrate the applicability of this approach, we also propose a bootstrap pro-
cedure to estimate unknown quantities of interest in the computation of these test statistics.

B.5. Geodesic principal component analysis

We finally propose to compare the methods of log-PCA and geodesic PCA (GPCA)
as introduced in [BGKL17,SC15]. In our approach, histograms are viewed as piecewise
constant pdf with support on a given interval 2 C R. In this context, the modes of variation
of a set of histograms can be studied through the notion of GPCA of probability measures
in the Wasserstein space P2(Q2) admitting these histograms as pdf. As previously stated in
subsection A.7, this approach has been proposed in the statistical literature [BGKL17] for
probability measures on the real line and in machine learning [SC15, WSB™ 13| for discrete
probability measures on R?. However, the computation of the GPCA remains difficult even
in the simplest case of probability density with support on R.

We then provided a fast algorithm to perform GPCA of measures defined on the real
line, and we compare its results to those of the log-PCA [FLPJ04,PM16a]. Geodesic PCA
consists in solving a non-convex optimization problem. To solve it approximately, we propose
a new forward-backward algorithm. We also present a detailed comparison between the log-
PCA and the GPCA of one-dimensional histograms, for different datasets in dimension 1
and 2.

C. Outline of the thesis

Chapter I We introduce two regularized barycenters. The first one is regularized by a convex
penalty function, the second using entropy regularized optimal transport. We study
some properties of these barycenters and we propose convergence results of their esti-
mators. This chapter is related to the papers [BCP18b, BCP18a].

Chapter IT The regularized barycenters of Chapter I are then used to tackle the histogram regis-
tration problem and we propose a method to automatically calibrate the regularization
parameters, as developed in [BCP18a].

Chapter IIT A central limit theorem for entropy regularized optimal transport is stated. We also
derive test statistics for multivariate histograms, [BCP17].

Chapter IV Finally, we develop new algorithms for geodesic principal component analyses in Wasser-
stein space, based on the paper [CSBT18].
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CHAPTER 1

REGULARIZED BARYCENTERS IN THE
WASSERSTEIN SPACE

In Section I.1 we analyze the existence, uniqueness, stability and consistency of penalized
Wasserstein barycenters (B.16) for various penalty functions F and any parameter v > 0.
This section corresponds to the paper [BCP18b]. In Section 1.2, we study the variance
of the Sinkhorn barycenter defined in (B.18). These developments are stated in the paper
[BCP18a|. The large majority of proofs is deferred in Section 1.3.

I.1. Penalized barycenters in the Wasserstein space

Introducing a convex penalization term in the definition (A.11) of a Wasserstein barycen-
ter for random measures supported on 2, a convex subset of Rd, is a way to incorporate some
prior knowledge on the behavior of its population counterpart. The existence and unique-
ness of penalized Wasserstein barycenters defined in (I.1) is first proved for a large class
of penalization functions E and for either a discrete distribution P, supported on Pa(2)
or its population counterpart P. The Bregman divergence associated to the penalization
term is then considered to obtain a stability result on penalized barycenters. Especially this
allows us to compare the case of data made of n absolutely continuous (a.c.) probability
measures vy, ..., Vy, with the more realistic setting where we have only access to a dataset
of random variables sampled from unknown distributions as in (B.13). The convergence of
the penalized empirical barycenter of a set of n iid random probability measures towards
its population counterpart is finally analyzed. This approach is shown to be appropriate
for the statistical analysis of either discrete or absolutely continuous random measures. It
also allows to construct, from a set of discrete measures, consistent estimators of population
Wasserstein barycenters that are absolutely continuous.

In this section, in the purpose of obtaining a regularized Wasserstein barycenter, we
consider the following convex minimization problem

in / W3 (1, v)dP(v) +~vE(u) (L.1)

where F is a convex penalty function, v > 0 is a penalization parameter and P is any
distribution on P2 (€2) (possibly discrete or not).
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1.1.1. Penalized barycenters of a random measure

The following assumptions are made on the penalty function E.

AsSsUMPTION L.1. A penalty function E : Po(2) — Ry is a proper and lower semicon-
tinuous function (for the Wasserstein distance Wa) that is strictly conver on its domain

D(E) = {u € P2(R) such that E(u) < +0o0}. (1.2)

We will often rely on the class of relative G-functionals (see Chapter 9, Section 9.4
of [AGS08]) defined below.

DEFINITION 1.2. The relative G-functional with respect to (w.r.t) a given positive mea-
sure A € M(Q) is the function E : Po(2) — Ry defined by

B = /QG (Z’;(x)> d\(z), if < A (L3)

400 otherwise,

where G : [0, +00) — [0, +00] is a proper, lower semicontinuous and strictly convex function
with superlinear growth.

Thanks to Lemma 9.4.3 in [AGS08], a relative G-functional is a lower semicontinuous
function for the Wasserstein distance Wy, so that it satisfies Assumption I.1.

When ) is the Lebesgue measure on Q C R?, choosing such a penalty function enforces
the Wasserstein barycenter to be a.c. Hence, a typical example of penalty function satisfying
Assumption 1.1 is the negative entropy [BFS12] (see e.g. Lemma 1.4.3 in [DE97]) defined
as

/(f(:r)(log(f(x)) — 1)+ 1)dz, if p admits a density f with respect to
E.(n) = Q the Lebesgue measure dx on €2,

+o00 otherwise.

(1.4)
It is of interest to use the negative entropy as a penalty function when one has only access to
discrete observations, that is in the setting where each v; is a discrete measure of the form
(B.14). Indeed in this case, the resulting Wasserstein barycenter minimizing (A.11) will not
necessary be a.c. (unless it is penalized) whereas we are interested in recovering a density
from discrete measures. In this case, a discrete barycenter will not represent in a satisfying
way the underlying measures v;.

Penalized Wasserstein barycenters of a random measure v € P5(2) are then defined as
follows.

DEFINITION 1.3. Let E be a penalizing function satisfying Assumption I.1. For a distri-
bution P € Wo(P2(2)) and a penalization parameter v > 0, the functional J3 : P2(Q) — Ry
is defined as

Jg () = o W3 (1, v)dP(v) + vE(), p € Pa(9). (L5)
P2
If it exists, a minimizer pg, of Jg is called a penalized Wasserstein barycenter of the random
measure v with distribution P.

In particular, if P is the discrete (resp. empirical) measure defined by P = P, =
LN (6, (resp. P = L3 1 6,,) where each v; € Pa(Q) (resp. v; € P2(Q) random),
then J7 becomes

1 n
T2 (1) = =D WE (s vi) + VB (). (1.6)
i=1
Note that JJ is strictly convex on D(E) by Assumption I.1.
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1.1.2. Subgradient’s inequality

In order to analyze the stability of the minimizers of J7 with respect to the distribution
P, the notion of Bregman divergence related to a sufficiently smooth penalizing function F
will be needed. To simplify the presentation, we shall now restrict our analysis to relative
G-functionals (1.3).

DEFINITION 1.4 (Subgradient). Let J : P2(Q) — R be a convex, proper and lower
semicontinuous function. Any subgradient £ € 0J(u) of J at u € D(J) satisfies the inequality

J(W) > J(u) + (&, v — uy for every v € Po(R), (I.7)

and the linear form in the right-hand side of (1.7) is understood as

(& — ) = /Q £(@)(dv(x) — du(z)).

If the function is differentiable, then the subdifferential 0J(u) is a singleton, and thus we
have 8J(p) = VJ(u), the gradient of J at point p.

In what follows, we will consider subgradients for two different purposes: (i) to define
a Bregman divergence with respect to E and (ii) to obtain the main result of this section
that involves subgradient of the Wasserstein distance.

DEFINITION L.5. A penalizing function E is said to be a smooth relative G-functional if
the function G is differentiable on [0,+00). We denote by VE(u) the subgradient of E at
u € D(E) taken as

d
VE(u)(z) = VG (CZ'L;(:U)> , x €.

DEFINITION 1.6 (Bregman divergence). Let E be a smooth relative G-functional. For

w,v € D(E) C P2(Q) the (symmetric) Bregman divergence related to E is defined by

A (1,v) = (VE(u) = VE(W),p — ). (L8)

REMARK 1.7. More generally, the Bregman divergence between p and v related to a

convex functional J : P2(Q) — R is defined for two particular subgradients £ € 0G(u) and
Kk € 0G(v) by

d5" (nv) = (€ = rop = v).

To illustrate the above definitions, let us assume that A is the Lebesgue measure dz,

and consider two a.c. measures p = py and v = v, with density f and g. An example of a

smooth relative G-functional is the case where G(u) = u?/2 for which E(uf) = %||f|\i2(ﬂ) =

3 Jo |/ (2)Pdz,

VE(us)(z) = f(z), VE(vy)(z) = g(x) and  dp(py,vy) =/Q(f(w)—g($))2dff'

REMARK 1.8. It should be noted that the case where E is the negative entropy E. defined
in (1.4) is critical. Indeed, the negative entropy is obviously a relative G-functional with
G(u) = u(log(u) — 1) + 1 and A = dx. However, as this function is not differentiable at
u =0, it does not lead to a smooth relative G-functional. To use such a penalizing function,
it is necessary to restrict the analysis of penalized Wasserstein barycenters to the set of
a.c. measures in Po(Q2) with densities that are uniformly bounded from below by a positive
constant o on the set ). In this setting, we have that

VEc(uy) =log(f(x)) and VE(vg) =log(g(x)), = €,

and the Bregman divergence is the symmetrized Kullback-Leibler divergence

de.nsvp) = [ (F(2) = gle) log (ﬁjj))) dr,
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where f(z) > a and g(z) > « for all z € Q.

Then, a key result to study the stability of penalized Wasserstein barycenters with
respect to the distribution P is stated below. It involves a subgradient ¢ of the Wasserstein
distance. As detailed in the proof given in the Section 1.3.1, this subgradient corresponds
to the Kantorovich potential introduced in Theorem A.2.

THEOREM 1.9 (Subgradient’s inequality). Let E be a smooth relative G-functional and
thus satisfying Assumption 1.1. Let v be a probability measure in P2(Q), and define the
functional

J 1 p € Pa(Q) = Wi(p,v) +vE(u)

where v = 0. If u € P2(Q) minimizes J, then there exists a subgradient ¢"* € Li(u) of
W3(-,v) at p and a potential 1 € Ly (v) verifying ¢ (x) +¥(y) < |z —y|? for all z,y in Q
such that (¢*¥ 1) is an optimal couple of the Kantorovich’s dual problem associated to u,v

(Theorem A.2). Moreover, for all n € P2(Q),

y (VE(u),p—n) < — / o d( —1). (L9)

1.1.3. Existence, uniqueness and stability of penalized barycenters

In this section, we present some properties of the minimizers of the functional .J; pre-
sented in Definition [.3 in terms of existence, uniqueness and stability.

We first consider the minimization problem (I.5) in the particular setting where P is a
discrete distribution on P2(2). That is, we study the problem

. ¥
min Jp

i () = [ W )P w) 4 B0 = S W) £ B() (L10)

i=1
where P, = L 3" 5, € Wa(P2(€2)) where vy,..., v, are measures in Pa((2).

THEOREM 1.10. Suppose that Assumption 1.1 holds and that vy > 0. Then, the functional
Jp, defined by (1.10) admits a unique minimizer on Py (Q) which belongs to the domain D(E)
of the penalizing function E, as defined in (1.2).

The proof of Theorem 1.10 is given in Section 1.3.2. Thanks to this result, one may
impose the penalized Wasserstein barycenter /‘%n to be a.c. on 2 by choosing a penalization
function E with value 400 outside of the space of a.c. distributions. For this choice, (I.10)
becomes a problem of minimization over a set of pdf.

The existence and uniqueness of (I.5) can now be shown in a general case. Since any
probability measure in P € Wy (P2(2)) can be approximated by a sequence of finitely sup-
ported measures P, (see Theorem .28 in Section 1.3.2), we can lean on Theorem I1.10 for
the proof of the following result, which is also detailed in the Section 1.3.2.

THEOREM L11. Let P € W5 (Pa(R2)). Suppose that Assumption I.1 holds and that v > 0.
Then, the functional Jg defined by (1.5) admits a unique minimizer.

When v > 0, we now study the stability of the minimizer of .Jj with respect to discrete
distributions P and the symmetric Bregman divergence dp (I1.8) associated to a smooth
relative G-functional E. Set v4,...,v, € P2(2) and n1,...,0, € P2(2). We denote by P
(resp. P7) the discrete measure L 37 5, (resp. L 37 | §,.) in Wa(P2(€2)).
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THEOREM 1.12. Let E be a smooth relative G-functional thus satisfying Assumption I.1.
Let iy, jiny € P2(Q) with p, minimizing Jg, and p, minimizing Jg, defined by (1.10). Then,
the symmetric Bregman divergence associated to E can be upper bounded as follows

dE(NIM/J'n < % Ulélg: ZWQ VZ7770(1 (I]-l)

where S, is the permutation group of the set {1,...,n}.

The proof of Theorem 1.12 is given in Section [.3.3. To better interpret the upper
bound (I.11), we need the notion of Kantorovich transport distance 7y, on the metric space
(P2(£2), Wa), see [Vil03]. For P,Q € Wa(P2(?)) endowed with the Wasserstein distance
Wy, we have that

Tw, (P, Q) := inf/ Wa(u, v)d(u, v),
I Jpy () x P2 ()

where the minimum is taken over all probability measures II on the product space P2(Q2) x
P2(2) with marginals P and Q. Since P¥ and P! are discrete probability measures supported
on Py (Q), it follows that the upper bound (I.11) in Theorem I.12 can also be written as (by
Birkhoff’s theorem for bi-stochastic matrices, see e.g. [Vil03])

2
dE(/J'W /~L77) < ;TW2 (Prym ]P)Z)

Hence the above upper bound means that the Bregman divergence between the penalized
Wasserstein barycenters p, and p, is controlled by the Kantorovich transport distance
between the distributions P/ and PJ.

Theorem [.12 is of particular interest in the setting where the v;’s and 7;’s are discrete
probability measures on R%. If we assume that v; = %Z?Zl 0x,, and n; = % ?:1 oy, ;
where (X j)i<i<nii<j<p and (Y ;)i<i<n;i<j<p are (possibly random) vectors in R9, then
by (L.11),

1/2

inf inf ¢ — X;
yn a.lensn —t Alélsp Z| ,J O'(Z )\(J)|

where computing W5 becomes an assignment task through the estimation of permutations
o and A.

Theorem [.12 is also useful to compare the penalized Wasserstein barycenters respec-
tively obtained from data made of n a.c. probability measures vq,...,1, and from their
empirical counterpart v, = i Zle dx,;, where (X ;)j=1,..p, are iid and generated from

v;. Denoting as [L;th the random density satisfying

Pi
/J’n = argmln - W Hy — 5X7 j + "YE(/L),
PP "21 \"p ; ’

it follows from inequality (I.11) that

n

£ (& (. ii],)) < %Z (W3 (wi,v,)) - (112)

This result allows to discuss the rate of convergence (for the squared symmetric Bregman
divergence) of [J,Z’p to /J%Z as a function of the rate of convergence (for the squared Wasser-
stein distance) of the empirical measure v, to v;, for each 1 < ¢ < n, in the asymptotic
setting where p = min;<;<, p; is let going to infinity.

As an illustrative example, in the one-dimensional case d = 1 and for absolutely contin-
uous measures, one may use the work in [BL14| on a detailed study of the variety of rates
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of convergence of an empirical measure on the real line toward its population counterpart
for the expected squared Wasserstein distance. For example, we obtain from Theorem 5.1
in [BL14], that

E (W3 (vi,vp,)) < x,

2 i ko [ B = F@)
R, it K = | S

where f; is the pdf of v;, and F; denotes its cumulative distribution function. Therefore,
provided that K (v;) is finite for each 1 < ¢ < n, one obtains the following rate of convergence
of it} , to pg, for d =1

X 8 = K(v; 8 (1 & _
E(d% (M%Z,ul,p»é%—w pi(—:—/i<’y2<n;K(Vi)>p L (1.13)

Note that by the results in Appendix A in [BL14]|, a necessary condition for J2(v;) to
be finite is to assume that f; is almost everywhere positive on the interval ). Rates of
convergence in Wy distance between a discrete measure and its empirical counterpart are
also given in one-dimension in [BL14].

I1.1.4. Convergence properties of penalized empirical barycenters

In this subsection, we study, for Q C R? compact, the convergence of the penalized
Wasserstein barycenter of a set vq,...,v, of independent random measures sampled from
a distribution P towards a minimizer of Jg, i.e. a population Wasserstein barycenter of the
probability distribution P € Wa(P2(€2)). Throughout this section, it is assumed that E is
a smooth relative G-functional so that it satisfies Assumption I.1. We first introduce and
recall some notations.

DEFINITION 1.13. For vy,...,v, iid random measures in Py(2) sampled from a dis-
tribution P € Wa(P2()), we set P, = 23" | 6,,. Moreover, we use the notation (with

v7>0)

2, = argmin 3 () = [ W3 ()P, (0) + 1 E () (114)
HEP2(R) o

ik = argmin J3() = [ W3 () dB(0) + 1 E(u) (L15)
HEP2()

p € argmin J2(u /W2 w, v)dP(v), (1.16)
HEP2(R)

that will be respectively referred as to the penalized empirical Wasserstein barycenter (1.14),
the penalized population Wasserstein barycenter (1.15) and the population Wasserstein barycen-
ter (1.16).

REMARK 1.14. Thanks to Theorem I.10, one has that the penalized Wasserstein barycen-
ters /VL%” and pf are well defined in the sense that they are the unique minimizers of JIP?” and
Jp respectively. By Theorem 2 in [LGL16], there exists a population Wasserstein barycenter

9 but it is not necessarily unique. Nevertheless, as arqued in [AC17], a sufficient condition
for the uniqueness of p3 is to assume that the distribution P gives a strictly positive mass
to the set of a.c. measures with respect to the Lebesque measure. Moreover, under such an
assumption for P, it follows that Y is an a.c. measure.

In what follows, we discuss some convergence results of the penalized Wasserstein
barycenters pp as v tends to 0 and pp as n tends to +oo. To this end, we will need
tools borrowed from the empirical process theory (see [VDVW96]).
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DEFINITION L.15. Let F = {f : U — R} be a class of real-valued functions defined on
a given set U, endowed with a norm || -||. An envelope function F of F is any function
u — F(u) such that |f(u)| < F(u) for every w € U and f € F. The minimal envelope
function is u v~ supy | f(u)|. The covering number N(e, F,| - ||) is the minimum number of
balls {||lg — fll < €} of radius € and center g needed to cover the set F. The metric entropy
1s the logarithm of the covering number. Finally, we define

§
16.7) =sup [ 1108 Nl Pl 7.1 oo (L.17)
0

where the supremum is taken over all discrete probability measures Q supported on U with

1FllL, @) = (f|F(u)|2dQ(u))1/2 > 0. The term I(6,F) is essentially the integral of the
square root of the metric entropy along the radius of the covering balls of F.

The proof of the following theorems are given in Section [.3.4.
I.1.4.1. Convergence of u} towards p.

We here present convergence results of the penalized population Wasserstein barycenter
pp toward pf as v — 0. This is classically referred to as the convergence of the bias term in
nonparametric statistic.

THEOREM 1.16. Suppose that Q is a compact of RY. Then, every limit of a subsequence
of (up)~ in the metric space (P2(2), Ws) is a population Wasserstein barycenter. If we
further assume that pY is unique, then one has that

lim, W (i, 1) = 0.
v—0
Moreover, if u3 € D(E) and VE(ul) is a continuous function on Q then
: v 0y
lim D (pp, pp) =0,
where Dg is the non-symmetric Bregman divergence defined by

D (ug, pup) = E(ug) — E(up) — (VE(up), iy — ). (1.18)
1.1.4.2. Convergence of pj towards y;.

We establish a general result about the convergence to zero of E(d%(ug ,pg)) that is
referred to as the variance term. Complementary results on the rate of convergence of this
variance term are then given. These additional results are shown to be useful to obtain a
data-driven choice for the regularization paper 7 as detailed in Chapter II where we provide
numerical experiments illustrating the use of penalized Wasserstein barycenters for data
analysis.

THEOREM 1.17. If Q is a compact of R, then, for any v > 0, one has that
lim E(d3 (47, 13)) = 0 (119)

The proof of this theorem leans on the subgradient’s inequality 1.9, and is deferred in
Subsection 1.3.4.2.

We can actually provide a rate of convergence for this variance term which deeply
depends on compactness properties of the space of measures considered in the minimization
problem (I.10). To this end, we introduce the class of functions

H={h,:veEPQ) = W3(u,v) € R for u € P2(Q)}.
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THEOREM 1.18. If Q is a compact of R?, then one has that

CI(LH)|[H @)

2

(1.20)

where C' is a positive constant depending on Q, H is an envelope function of H and I(1,H)
is defined in (I1.17).

To complete this result in a satisfying way, one needs to prove that I(1,7#) is bounded,
which depends on the rate of convergence of the metric entropy towards infinity as the radius
€ of the covering balls tends to zero.

1.1.4.3. The one-dimensional case.

The special case of probability measures vy, ...v, supported in R allows to obtain a
proper bound on E(d%(pg, ,p3)). Studying the metric entropy of the class H boils down to
studying the metric entropy of the space (P2(€2), W2). By approximating each measure by
discrete ones, this corresponds to the metric entropy of the space of discrete distributions
on €2, which is of order 1/e? where d is the dimension of {2 assumed to be compact (see
e.g. [Ngul3]). The term I(1,H) appearing in (I1.20) is thus finite in the one dimensional
case (see Section 1.3.4.2 for a rigorous proof).

THEOREM 1.19. If Q is a compact of R, then there exists a finite constant ¢ > 0 such
that

2 C
E(di(pp, , 1p)) < T

1.1.4.4. The d-dimensional case with additional penalization.

In the case d > 2, the class of functions H = {h, : p € P2(Q)} is too large to control
the metric entropy in such a way that I(1,H) < 4+o0o. To tackle this issue, we impose more
smoothness on the penalized Wasserstein barycenter. More precisely, we assume that ( is
a smooth and uniformly convex set, and for a smooth relative G-functional with reference
measure A = dx (that we denote by E¢) we choose the penalizing function

s § B+ 1By = Jo GUH@)de + |y i =2 and f2a, o
=1 . (L21)
o0 otherwise.

where || - || gr(q) denotes the Sobolev norm associated to the L?(Q) space and o > 0 is
arbitrarily small. Remark that we could choose a linear combination with different weights
for the relative G-functional and the squared Sobolev norm. Then, the following result
holds.

THEOREM 1.20. Suppose that Q) is a compact and uniformly convez set with a C* bound-
ary. Assume that the penalty function E is given by (1.21) for some a > 0 and k > d — 1.
Then, there exists a finite constant ¢ > 0 such that

Cc

E (dig (w3, 1)) <E(di (u3,.1)) < -
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1.2. Entropy regularized Wasserstein barycenters

In this section, we consider measures defined on fixed and finite discrete grid Qn =
{21,...,2x} C (R)N and we analyze the variance of the Sinkhorn barycenter defined in
(B.18).

1.2.1. Results on the variance of the Sinkhorn barycenters

For two discrete measures r,q € Xy, the Sinkhorn divergence is defined in (A.9). We
shall then use two key properties to analyze the variance of Sinkhorn barycenters which are
the strong convexity (see Theorem .24 below) and the Lipschitz continuity (see Lemma 1.25
below) of the mapping r — W3 _(r, q) (for a given ¢ € Xy).

However, to guarantee the Lipschitz continuity of this mapping, it is necessary to restrict
the analysis to discrete measures r belonging to the convex set

= {r cEXy : 18211\]77 2;)},
where 0 < p < 1 is an arbitrarily small constant. This means that our theoretical results
on the variance of the Sinkhorn barycenters hold for discrete measures with non-vanishing
entries. Nevertheless, we obtain upper bounds on these variances which depend explicitly
on the constant p, allowing to discuss its choice.

Hence, as it has been done for the penalized barycenters in Definition .13, we introduce
the definitions of empirical and population Sinkhorn barycenters (constrained to belong to
the set X%)).

DEFINITION 1.21. Let 0 < p < 1/N, and P be a probability distribution on X4;. Let
q,,.--,q, € X% be an iid sample drawn from the distribution P. For each 1 < i < n, we

assume that (X; j)1<j<p; @re 4d random variables sampled from q;. For each 1 <i < n, let
us define the following discrete measures

D . .
4 = i Y 6%, and @' =(1—-pN)g@' + ply,
i =1
where 1y is the vector of RN with all entries equal to one. Thanks to the condition 0 <

p < 1/N, it follows that ¢¥" € X% for all 1 < i < n, which may not be the case for some
@, i=1,...,n. Then, we define

re = argegplin Equ[Wis(r, q)] the population Sinkhorn barycenter — (1.22)
reaN
1 n
Ty = aigéggin - Z Wis (r,gt") the empirical Sinkhorn barycenter — (1.23)
N =1

In the optimization problem (I.23), we choose to use the discrete measures ¢* instead
of the empirical measures g7* to guarantee the use of discrete measures belonging to 3%, in
the definition of the empirical Sinkhorn barycenter f'i’p.

The following theorem is the main result of this section which gives an upper bound on
the variance of f*fw in terms of the expected squared Euclidean norm between elements of

YN

THEOREM 1.22. Let p = min;;<n p; and let € > 0. Then, one has that

3212 2L N
E(|r® — 75 %) < —25 + =—2= > +2p(N +VN) |, (1.24)

e2n €
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with
1/2

2
L,.= Z 2elog(N) + sup |Cpe — Cre| — 2elog(p) . (1.25)
L CmEN 1<0ESN

A few remarks can be made about the above result. The bound in the right-hand side
of (I.24) explicitly depends on the size N of the grid. This will be taken into account for
the choice of the optimal parameter ¢ (see Chapter II). Moreover, it can be used to discuss
the choice of p. First, if one take p = €*, the Lipschitz constant (Lemma 1.25) L, = L,
becomes

1/2

Le= Z (QE(IOg(N) —rlog(e)) + sup [Crpp — Cke|> )

1<meN 1<,k<N

which is a constant (not depending on p) such that

1/2

2
liH(l) L, = E ( sup  |Che — C’M|>
e—

1<ma N \ISEESN

If we further assume that p = ¢ < min(1/N, 1/p) we obtain the upper bound

3212 2L N N N
E(|r® — 7 |?) < £ < — 42 = —1]. 1.26
(Ir* =) < S5+ = (w/p+ <p+ p>> (1.26)

Finally, it should be remarked that Theorem 1.22 holds for general cost matrices C' that are
symmetric and non-negative.

1.2.2. Proof of the variance properties of the Sinkhorn barycenters

The proof of the upper bound (I.24) relies on the use of the strong convexity of the
functional r — sz’s(r, q) for ¢ € ¥, without constraint on its entries. This property can
be derived by studying the Legendre transform of r — W3 _(r,q). For a fixed distribution
q € ¥, using the notation in [CP16b]|, we define the function

Hy(r) == W3_(r,q), forallr € Xy.

Its Legendre transform is given for g € RV by H;(g) = max (g,r) — Hy(r) and its differen-

- reXn
tiation properties are presented in the following theorem.

THEOREM 1.23 (Theorem 2.4 in [CP16b]). For e > 0, the Fenchel-Legendre dual func-

tion Hy is C. Its gradient function VHy is 1/e-Lipschitz. Its value, gradient and Hessian
at g € RN are, writing a = exp(g/e) and K = exp(—C/e),

H;(g) = £(E(q) + (g.log(Ka))), VH; (g) = diag(a)K - € Sy

V2H;‘ (9) = é (diag (diag(a)KKLOé)) — édiag(a)K diag ((K(fx)2> K diag(a),

where the notation % stands for the component-wise division of the entries of q and r.
From this result, we can deduce the strong convexity of the dual functional H, as stated
below.

THEOREM 1.24. Let € > 0. Then, for any g € X, the function Hy is e-strongly convex
for the FEuclidean 2-norm.
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The proof of Theorem 1.24 is deferred to Section 1.3.5. We can also ensure the Lipschitz
continuity of H,(r), when restricting our analysis to the set r € ..

LEMMA 1.25. Let g € ¥n and 0 < p < 1. Then, one has that r — Hy(r) is L, .-Lipschitz
on ¥ with L, . defined in (1.25).

The proof of this Lemma is given in Section 1.3.6.
We can now proceed to the proof of Theorem [.22. Let us introduce the following
Sinkhorn barycenter

fargmmfZWQE rql)fargmmfZHl

TGZP i=1 TGZP —
of the iid random measures g, . . ., q,, (assumed to belong to 7). By the triangle inequality,
we have that
E(|r — 7, %) < 2E(|r® — 73 ]?) + 2E(|r5, — 77, ). (L.27)

To control the first term of the right hand side of the above inequality, we use that (for
any ¢ € Xn) r+— Hy(r) is e-strongly convex by Theorem .24 and L, .-Lipschitz on X%, by
Lemma .25 where L, . is the constant defined by equation (I.25). Under these assumptions,
it follows from Theorem 6 in [SSSSS09] that

1612,

2
B(Ir® =3 ) < —2

(1.28)

For the second term in the right hand side of (I.27), we obtain by the strong convexity of
H, that

n n

1 . 1 1< . € .
- Z Hg, (75,,) = - Z Hg,(r5) + - Z VHq, (r5)" (7, —75) + QITZ — i,
i=1

=1 =1

Theorem 3.1 in [CP16b] ensures that 1 Y. VHy, (r) = 0. The same inequality also holds
for the terms Hr:, and we therefore have

n

1 € .
*ZHI n) 2 3 Do Ha () 5l 7P

=1

n
ﬁz;qui( 12 o (75) |'r =l
1= =1

3

Using the symmetry of the Sinkhorn divergence, Lemma [.25 also implies that the mapping
q — Hy(r) is L, -Lipschitz on X4, for any discrete distribution r. Hence, by summing the
two above inequalities, and by taking the expectation on both sides, we obtain that

_ 2
eB(r5, — 75,1 ”ZlElql a

Using the inequalities

i

(N +VN),

lg;, — <lg; — +plln| < lg; -

we finally have that

(S, — %, %) < 2L, (;Z PJ2) 4 p(N + m) . (129)

Conditionally on g;, one has that p;g?" is a random vector following a multinomial distri-

bution M (p;, q;). Hence, for each 1 < k < N, denoting g, ;. (resp. E]ffk) the k-th coordinate
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of g; (resp. ¢¥"), one has that

E (flp,i 1) =q;, and E {( —4q; k)2 |q1:| = qi’k(lpi 9ix) < 4;-
Thus, we have
E(lg; — iE @ik —a73) ii ﬁ (1.30)
k=1 k=1
and we obtain from (1.29) and (1.30) th.
E(jrs — #5|%) < L% < % +2p(N + \/N)> . (1.31)

Combining inequalities (1.27), (I.28), and (I1.31) concludes the proof of Theorem I.22.

I.3. Proofs of Chapter I

1.3.1. Proof of the subgradient’s inequality, Theorem 1.9

The proof of Theorem 1.9 is based on the two succeeding lemmas.

LEMMA 1.26. The two following assertions are equivalent:

(1) € Pa(Q2) minimizes J over Pa(2),
(2) there exists a subgradient ¢ € OJ(u) such that (¢p,n — p) >0 for all n € P2(Q).

PROOF OF LEMMA 1.26. 2=1. Let ¢ € 9J(u) such that (¢, n—p) > 0 for all n € Pa(£2).
By definition of the subgradient, ¥ n € P2(2), we have J(n) > J(u) + {(¢,n — p) which is
greater than J(u) by assertion. Hence p minimizes J.
1=2. Take p1 € int(dom J) (that is J(u) < 400) such that p is a minimum of J over Py(€2).
Then the directional derivative of J at the point p along (n — u) exists (Proposition 2.22
in [Clal3]) and satisfies

J tin—p)—J
T — 1) = lim (1 A+t —p) — J () > 0. (1.32)
t—0 t
t>0
Remark that P»(2) is a convex set. By Proposition 4.3 of [Clal3], since J is a proper
convex function and p € dom(J), we obtain the equivalence

¢ €DJ(u) & (p,A) < J'(u;A) for all A € Po(9).

Moreover, since J is proper convex and lower semi-continuous, so is J'(f;-). Given that

P2(€2) is a Hausdorff convex space, we get by Theorem 7.6 of [ABO6], that for all (n —pu) €

Pa(Q), J' (w;n — u) = sup{(p,n — p) where ¢ is such that (¢, A) < J'(u; A),VA in P2(Q)}.

Hence by (I1.32) we get sup {(¢,n — p) > 0. We then define the ball B, = {n+ pu €
$€0.J (1)

M(£2) such that ||n|lrv < €}, where || - |7y is the norm of total variation. We still have

inf su ,n—pu) > 0.
n€EB.NP2(Q) ¢€6ﬁu)<¢ K ,U/>
Note that dJ(p) in a convex set. Moreover B, N Py(2) is compact, and (¢, 1) — (¢, n — )
is bilinear. Thus we can switch the infimum and the supremum by the Ky Fan’s theorem

(4.36 in [Clal13]). In that way, there exists ¢ € 0.J(f) such that inf  {(¢,n—pu) > 0.
nEB.NP2(Q)
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By convexity of P2(£2), any ¢ € P2(f2) can be written as t(n — ) + p for some t > 0 and
n € B N'P2(2). This concludes the proof of the lemma. O

LEMMA 1.27. Let p € P2(Q) and ¢ € Li(u), then
b€ W2 () & 3 € Ly(v) such that o(x) + ¥(y) < |z — yP
and W3 (p,v) = [ ¢du+ [¢dv where 0,W3(u,v) denote the subdifferential of the function
W3 (-, v) at p.

PROOF OF LEMMA [.27. («). We first assume that for ¢** € Li(u), there exists
Y € Ly (v) such that Wi (p,v) = [ ¢*Vdu+ [*Vdv and ¢V (x) + pH(y) < o —y|? .
Then for all € P(£2), denoting (¢™*,¢™") an optimal couple for n and v, we get

Wi = sw  fodys [var= [orans [urra

$(2)+9 (y) <[z —y|?
> W3 (v /cﬁ“ Yd(n — p).

Hence, from the definition of a subgradient, we have ¢p** € O, W3 (u,v).

(=). We denote by F the function p € Po(Q) — Wi(u,v). Let ¢* € OF (i), then by the
Legendre-Fenchel theory, we have that F*(¢*)+F(u) = [ ¢*du, where F* denote the Fenchel
conjugate of F'. We want to show that there exists ¢ € L;(v) verifying ¢* (x)+(y) < |x—y|?

such that
/ o dj — W (1, v / v,
which is equivalent to F*(¢*) = — [+dv. In this aim, we define ¥?(-) := infyeq{| - —y|> —
¢(y)} and H(¢) := — [¢®dv, and we recall that H*(u) = supgey{ [ ¢du — H(¢)}. H is

convex, l.s.c. on Y and proper since
1) =~ [v0dv = [ swplot) - |o - yP) dv(e)
ye

> /((b(yo) — 2|yo| — 2|z|?)dv(x) > —oc by definition of v,

where yo € Q is such that ¢(yp) is finite. We get H**(¢) = H(¢p) by Theorem 2.3.3.
in [Zal02]. Moreover, for u € Pa(2), we have by the duality formulation of Kantorovich
(e.g Lemma 2.1. of [AC11]) that

Wi(u,u)zsup{/ ¢du+/wdu; 6.1 € Coy $(x) +ly) < m—yP}

Jodus [ i o0 e vl <intlle - o - o)}

s
— s p{/ iy + w’} H* (1), (1.33)
) =

We deduce that H**(¢ sup {[ ¢du — Wi (u,v)} = F*(¢), which implies F*(¢*) =

fGPZ(Q
H(¢*). Thus we end up with the equality F(u) = [ ¢*du—F*(¢*) = [ ¢*du+ [ ¢® dv. This
exactly means that for ¢* € 9, W3 (u,v), there exists 1?" such that ¢* () +9? (y) < |z —y|?
and W3 (u,v) = [ ¢*du+ [¢® dv, which concludes the proof. O

From these lemmas, we directly get the proof of Theorem I.9.

PrROOF OF THEOREM 1.9. Let p € P2(2) be a minimizer of J. From Lemma [.26, we
know that there exists ¢ a subgradient of J in p such that (¢,n — p) > 0 for all n € Pa(£2).
Since ¢ — E(() is convex differentiable, ¢ — WZ(¢,v) is a continuous convex function and
p minimizes J, we have by the subdifferential of the sum (Theorem 4.10 in [Clal3]) that
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0J(u) = 1 W2 (u,v) +~ VE(u). This implies that all ¢ € 9.J(p) is written ¢ = ¢ + ¢2 with
@1 = ¢ optimal for the couple (i, v) (by Lemma 1.27) and ¢o = vV E(u). Finally, we have
that (¢"" +yVE(u), n—p) > 0 for alln € Po(Q) that is v (VE(u), u—n) < — [ ¢*Vd(u—n),
vn € P2(Q). ]

1.3.2. Proof of existence and uniqueness of penalized barycenters in 1.3

For the sake of completeness, we introduce the functional space Y := {g € C(Q) : x —
g(x)/(1 4 |x|?) is bounded} endowed with the norm ||g|ly = sup,cq |g(z)|/(1 + |z|?) where
C(9) is the space of continuous functions from Q to R. We finally denote as Z the closed
subspace of Y given by Z = {g € C(Q) : lim;| 00 g(2)/(1 + |2|?) = 0} . The space M(Q) of
bounded Radon measures is identified with the dual of Cy(Q2) (space of continuous functions
that vanish at infinity). Finally, we denote by L; (1) the set of integrable functions g : 2 — R
with respect to the measure pu.

PROOF OF THEOREM [.10. Let (u*), C P2(Q) a minimizing sequence of probability
measures of JA’ . Hence there exists a constant M > 0 such that Vk, J7 (uF) < M. It

follows that for all k, 25" W3(uF,v;) < M. By Lemma 2.1 of [AC11] we thus have

fZWQ vk —ZZsup {/Qfd,ukJr/QSf(x)dl/i(:r)} <M,

=1 fez
where Sf(z) = insfl{ﬁ|x—y|2—f(y)}. Since the function z — |z|* (with 1 < o < 2) belongs
ye

to Z, we have that [,, |z|*du*(z) is bounded by a constant L > 0 for all k. We deduce that
(1*)k is tight (for instance, take the compact K¢ = {z € Q such that |z|® > £}). Since
(u*)y is tight, by Prokhorov’s theorem, there exists a subsequence of (u*) (still denoted
(4*)) which weakly converges to a probability measure p. Moreover, one can prove that
€ P2(). Indeed for all lower semicontinuous functions bounded from below by f, we have
that liggg;f fQ fl@)du®(x) > fQ x) by weak convergence. Hence for f : x — |z|?, we

get [, [z[2dp(z) < hmlnf fQ |x\2du (gc) < 400, and thus u € P (Q).

Let (7F)1<i<ni<k be a sequence of optimal transport plans where 7%

~ is an optimal
transport plan between 1% and v;. Since supy, W3 (1, v;) = supy, [[o, o [ — y[?dnf (2, y) <
+00, we may apply Proposition 7.1.3 of [AGS08]: (7F);, is weakly relatively compact on the
probability space over €2 x 2 and every weak limit 7; is an optimal transport plan between
p and v; with, for all 1 < i <n, Wi(u,v;) < likrggf Jaxa |z —yldrk (2, y) < +oo. Since E

is lower semicontinuous, we get that

1 1<
lim inf J? k:]"f— 2ki Ek>* 2 i E(u) = JY .
iminf J (4*) = limin nZle(u i) +7E(u*) > nEWQ(N7V)+7 (1) = J3, (1)
Hence Jgn admits at least p € Po(Q)) as a minimizer. Finally, by the strict convexity of JV
on its domain, the minimizer is unique and it belongs to D(E) as defined in (I.2), which
completes the proof. O

PrROOF OF THEOREM [.11. First, let us prove the existence of a minimizer. For that
purpose, we decide to follow the sketch of the proof of the existence of a Wasserstein barycen-
ter given by Theorem 1 in [LGL16]. We suppose that (P,,),>0 C Wa(P2(Q)) is a sequence
of measures, such that u" € P(Q) is a probability measure minimizing Jg , for all n. Fur-
thermore, we suppose that there exists P € Wa(P2(Q2)) such that Wa(P,P,) el 0. We

then have to prove that (u™),>1 is precompact and that all limits minimize Jg. We denote
[t a random measure with distribution P and 1" a random measure with distribution P,,.
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Hence we get
Wa(p",62) = Wa(bun,d5,) < Wa(dun,Pn) + Wa(Py, ds, )
=E(WZ (" ~"))1/2+IE(VV (", 8,))"2.

Moreover, E(WZ(u™, i™))'/? < M for a constant M > 0 since p,, minimizes Jp and pi" is
of law P,,. Then for x € Q)

WZ(,unyaaf) S M + WQ(Pna(S(Sz) S M + WQ(]P)’rHP) + WZ(Pa 55;5) S L

since Ws(P,,,P) —+> 0 and P € W5 (P2(2)) by hypothesis. By Markov inequality, we have
n—-+oo

forr >0

By (IX — o) _ WE(u",6,)

X —z*>r?) < 5 3 ,

1 (B, 1)) = B

r r

and p"(B(x,r)¢) < f—j Hence (u™),, is tight: it is possible to extract a subsequence (still
denoted (p™)) which converges weakly to a measure p by Prokhorov’s theorem. Let us show
that p minimizes Jj. Let n € P2(Q) and v € Py(Q) with distribution P.

JE(n) = Ee(W5(n,v)) +~E(n)
= W3 (6,,P) +vE(n)

= lim W22(<5 ,Pn) +~vE(n) since by hypothesis Wy (P,,,P) — 0,
> hgl inf W3(,n,P,) +vE(u™) since p" minimizes Jg . (1.34)

Moreover, we have by the inverse triangle inequality that

liminf Wa(0,n,Py) = liminf (Wa(,n,P) — Wa(P, Py)).

n—-+oo n—-+oo

First, Ws(P,P,,) — 0 by assumption. Second, we have that

hg1+1nf Wa (6, P) > /hgl inf W3 (jin,v)dP(v) by Fatou’s Lemma
> /Wgz(u, v)dP(v) = W3(6,,P) by the equality (1.33)

Thus from (I.34) and by lower semicontinuity of E, we conclude that Jg (1) > W3(6,,P) +
vE(p) = JZ (p). Hence p minimizes JJ. To finish the proof of the existence of a minimizer,
we need the following result which proof can be found in [LGL16].

THEOREM 1.28. For all P € W5(P2(Q2)), there is a sequence of finitely supported distri-
butions P, (that is P, = Zszl A0y, where Zszl A\ = 1) such that W3(P,,,P) = 0.
n—-+oo
Now, by Theorem 1.28 it follows that for a given distribution IP, one can find a sequence
of finitely supported distributions P, such that for all n there exists a unique measure
p" € Po(2) minimizing J; using Theorem 1.10 and such that W3 (P,,,P) " 0 thanks to
n n—-—+oo

Theorem 1.28. Therefore there is a probability measure p which minimizes J;. Let us make

sure that p is indeed in the space Py(2). From Theorem 1.10, we also have that u™ € Py ()

for all n. Thus by weak convergence, [, |z[*du(x) < liminf Jo lz[?dp(2) < +oc. Finally,
n—-+0oo

the uniqueness of the minimum is obtained by the strict convexity of the functional p —

Ep(W$(p,v)) +vE (1) on the domain D(E), which completes the proof. O
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1.3.3. Proof of the stability’s Theorem 1.12

PROOF OF THEOREM 1.12. We denote by u,( € P2(Q2) the probability measures such
that p minimizes Jﬂ;yg1 and ¢ minimizes Jg,. For each 1 <4 < n, one has that 6 — Lw2(0,v:)
is a convex, proper and continuous function. Therefore, from Theorem 4.10 in [Clal3], we
have that 0Jpy (1) = = > | /W3 (1, v3)+vV E(u). Hence by Lemma 1.27, any ¢ € 8.Jpy (1)
is of the form ¢ = %2?21 ¢; +v VE(u) where for all i = 1,...,n, ¢; = ¢ is optimal
in the sense that (¢*¥i, ¢*"i) is an optimal couple associated to (u,v;) in the Kantorovich
formulation of the Wasserstein distance (see Theorem A.2). Therefore by Lemma 1.26, there
exists ¢ = L3 @i + yVE(u) such that (6,0 — p) > 0 for all § € Py(f2). Likewise,

there exists ¢ = L Y7 ¢ + 4V E(C) such that (4,0 — ) > 0 for all 6 € P(). Finally,
we obtain

WYBG) = VEQ.u—¢) < - [ (jl @ - ¢<,m->> A=)

Following the proof of Kantorovich duality’s theorem in [Vil03], we can restrict the supre-
mum over (¢, 1)) € Cy in Kantorovich’s duality Theorem A.2 to the admissible pairs (¢, ¢©)
where ¢¢(y) = inf,{|z — y|* — ¢(z)} and ¢°“(x) = inf,{|z — y|> — #°(y)}. Then, we replace

A Vi by (¢H7i)ee (resp. ¢S by (¢S7)¢ ) and YHvi by (¢HVi)€ (tesp. P& by (¢¢1)¢ )
and obtain

YV E(n) = VE(O), 11— C) <—f§j / (657 )°e() — (65 ()] d(pt — C)(x)

S— Kol YEC () (hST)EE (o Vi g Cmi (o
n;//MW’ (@) — (61 (@)] )9),

where 7% is an optimal transport plan on  x 2 with marginals p and v; for i € {1,...,n}
(and 76" optimal with marginals ¢ and 7;). Developing the right-hand side expression in
the above inequality, we get

YWVE(u) —VE(),un—¢) < — ;z: [// GV (@) dT Vi (0, ) / ¢C miyee( dﬂ'c i (g, y):|

[t [fio oo

From the condition (A.5) in the Kantorovich’s dual problem, we have that (¢*"i)%(x) <
|z —y|? = (¢")°(y) and (¢7)C(2) < |v — yl* = (¢7)(y) for all i € {1,...,n}. More-
over, we have that (¢*"*)°(z)dm (z,y) = [|x — y[* — (¢"")°(y)] dmt"i (z, y) and likewise
(¢S M) (2)dnS i (2, y) = [|z — y[2 — (¢7)°(y)] dnS"i (z,y). We therefore deduce that

1) = VE(Q), 1 —¢)

[ oo = @y an o+ [ L= o2 = (6500 dax )

[/ [lz = yI* = (@")°(y)] dr*" (2, y) + / [lz =yl = (¢~")°(y)] drm*s (x,y)}

YVE

~~

< -

3\}—'
M:

i=1

+
S|
NE

1

.
I

[(¢"7)(y) — (4™ ()] d(vi — i) (y)-

I
3
3
S~
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For all 1 < i < n, we have that (¢*"#)¢ and (¢¢")¢ are 1-Lipschitz by definition, which
implies that  [(¢#)¢ — (¢7)¢] is 1-Lipschitz for all 1 < < n. We then conclude

HVE() — VE() Zsup{/q> b€ Ll = oy <1}

= LS Wi < - S Walvim).
=1 1=1

by the Kantorovich-Rubinstein theorem presented in [Vil03], while the last inequality above
comes from Hoélder inequality between the distance W5 and the distance W; defined for 64, 62
(probability measures on 2 with moment of order 1) as

Wi (01, 02) — in / / & — yldn(z,y),
™ QJQ

where 7 is a probability measure on 2 x ) with marginals #; and 6. Since p and ( are

independent, we can assign to v; any 7, (;) for o € S, the permutation group of {1,...,n} to

obtain Y(VE(u)—VE((),p—() < 2 inéf >y Wa(vi, Mo (i), which completes the proof. [
gES

1.3.4. Proofs of penalized barycenters’s convergence properties
1.3.4.1. Convergence of ;] towards pj

PROOF OF THEOREM [.16. By Theorem 2.1.(d) in [Bra06|, J7 T-converges to J§ in

2-Wasserstein metric. Indeed for every sequence (fi), C P2(f2) converging to p € Pa(2),
JP(p) < liminf J7
p(n) < liminf Jp (uy),

by lower semicontinuity of .J; with respect to the W5 metric. Moreover, there exists a
sequence (fi), converging to u (for instance take (p,), constant and equal to p) such that
1in%),]];(u7) = hn%)Jﬂ;T(u) = Jg(1). One can also notice that Jg : P>(2) — R is equi-coercive:
y— y—
for all ¢ € R, the set {v € P(Q) such that JJ(v) < t} is included in a compact K; since
it is closed in the compact set Py(2) (by compactness of ). Therefore, we can apply
the fundamental theorem of I'-convergence (Theorem 2.10 in [Bra06]) in the metric space
(P2(£2), W) to obtain the first statement of Theorem I.16.

Let us now use this result to prove the convergence in non-symmetric Bregman diver-
gence of i under the assumption that the population Wasserstein barycenter is unique. By
definition (I.15) of ug, we get that

/ W2 (i, v)dP(v) — / W2(u0, v)dP(W) +4(E(ud) — E(u0)) <0, (1.35)

and by definition (I.16) of u2, one has that [ W3(ug,v)dP(v) — [ W3(up,v)dP(v) > 0.
Therefore, one has that E(uj) — E(ud) < 0 and thus, by deﬁmtlon (I.18) of the non-
symmetric Bregman divergence, it follows that

Dg(ug, pup) < (VE(up), up — ).

Since VE(u9) is assumed to be a continuous function on the compact set 2, the above
inequality and the fact that lin%) Wa(ug, p2) = 0 implies that lin% Dg(ug, ) = 0 since
y— y—

convergence of probability measures for the W5 metric implies weak convergence. |
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1.3.4.2. Convergence of pj towards uj

In what follows, C' denotes a universal constant whose value may change from line to
line.

PROOF OF THEOREM [.17. From the subgradient’s inequality (I.9) and following the
arguments used in the proof of the stability’s Theorem 1.12, we have that, for each v;, i =
1,...,n, there exists (/)”Hzn i integrable with respect to u%n (z)dx such that for all n € Py(Q):

I~ 0 o
<nZ¢““’"’ "+VE(pg,).n —uu”»”> > 0. (1.36)

i=1
By applying once again the subgradient’s inequality, we get
pp minimizes J§ < 3¢ € 0JF (up) s. t. (¢, n — ug) > 0 for all n € Pa(Q).

Let us explicit the form of a subgradient ¢ € 9.Jg (up) using the Theorem of the sub-
differential of a sum. We have that u — W3(u,v) is continuous for all v € P2(Q).
Moreover by symmetry, v — W3(u,v) is measurable for all p € Po(Q) and Wi (u,v) <
[[ |z—yPdu(z)dv(y) <2 [ |x\2du )+2 [ |y[*dv(y) < C is integrable with respect to dP(v).
Hence, by the Theorem of continuity under integral sign, we deduce that p — E[W2(u,v)]
is continuous. Thus we can deal with the sum of the subdifferential and one has that
I3 (up) = 01 [E(W3 (g, v))]+vVE(ug), where v is still a random measure with distribution
P. Also notice that the Theorem 23 in [Roc74] implies 01 E[W3 (ug, v)] = E[0; W3 (ugp, v)).
We sum up as

fp minimizes Jj < </q§“l¥"’d]}”(V) +VE(ug),n— M%> >0,V nePy(R). (1.37)

In the sequel, to simplify the notation, we use p := pp and 7 := pp. Therefore thanks
o (1.36) and (1.37), we get

dp(p,n) = (VE(u) = VE@n), p —n)

LIS e [ _
< 7<n;¢ /¢ dP(v), p 77> (1.38)

= (;;[/ o yinte) - [0 @auta)| + [[ o apwant - [[ i ))

We would like to switch integrals of the two last terms. In that purpose, we use that
J Wi (n,v)dP(v) < 400, since Pe WQ(IP’Q(Q))

As 0 < [Wi(n,v) = [([o"(x )+ [ (z)dv(y)) dP(v), we also have
that [ ¢"’”(a:)d77(m)d]P’( ) < +o00. Since x »—> d)”’ (x ) and v — ¢™"(x) are measurable,
we obtain by Fubini’s theorem [, [5,, oy ¢""dP(v)dn(z) = [p, ) Jo @ dn(z)dP(v). By the

same tools, since

i (o o)
/(/¢"” o) + [ 67 @iy ) P(w),

we get [ ([ 67 (@)dpu(x)) dP(v) < +00,50 [y [, oy O™ ABW)A(x) = [, g oy & dpa()dB(w).
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Therefore, by the dual formulation of Kantorovich, we have that

- [ wduto) = [wr vt - [[ 1o yPane oy (1.39)
- [orvan) = [urr @)~ [[ 1o - yPinr o), (1.40)

where ¥ and 7" are optimal transport plans for the Wasserstein distance. Also, ¢#*V:
and ¢ verify the Kantorovich condition, that is

PHYi(x) < =P i(y) + |z — yl? (1.41)
¢ (z) < —w"’”(y) + o —yl*. (1.42)
Next, the trick is to write [ ¢#¥i(z = [[ pH#¥i(x)dr" i (z,y) and [ ¢ (z)dp(x) =

[[ ¢"" (x)dm#¥ (z,y). Thus, by using the equahtles (L 59) (I 40) and the inequalities (I1.41)
and (L. 42) the result (I.38) becomes

i () s—{j//u yPdmh (2, ) + Z//m yPdr (z,y)

// |z — y|2dn?" (z,y)dP(v // |z — y|2dn™" (z,y)dP(v).
We denote

” 1 & 5
= |z — y|2dmt= " (2, y)dP(v) — | —y[Pdat e (zy)  (144)
TL

Z//|x_y| dm (@) (/ @ — y[Pdrt? ¥ (a, y)) (1.45)

and the previous inequality (1.43) finally writes

(1.43)

v (pg, i) < Spy + S (L46)

Taking the expectation with respect to the random measures, (1.46) implies
VE(d (3, 13)) < 2E(S); )+ 2E(IS], ). (L47)
The first term related to u%n is easy to handle, since for i = 1,...,n the random variables

[[ |z — y|?dm#? ¥ (x,y) are independent and identically distributed. From the law of large
numbers, we can notice that SZ7 — 0 almost surely when n — +o0o. In particular, we
P

observe that
1 2 wiw C
W = — — ’ gf. .
£ (153 nV</ & — ylPdr <x,y>) g (1.48)

Let us now study ]E(\S "w |?) thanks to the empirical process theory. We recall that the class
of functions H on P2(Q ) is defined as

H={h,:veEPyQ) > Wi(p,v) € R;p € Pa(Q)}, (1.49)

ant its associated norm is ||G||y := sup,,cy|G(h)| where G : H — R.
Therefore we obtain

SZ; = / h”gn (v)dP(v) — / hu{lﬂ (v)dP,(v) := (P — Pn)(hun;n) < sup|(P—P,) (h)|.
n Py Pa(Q) heH 150)

We define the envelope function of H by H : v € Pa() = sup,,ep, ) {Walu, v); W5 (1, v)},
which is integrable with respect to P by compacity of Q2. Let then #Hj,; be the class of
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functions h = hylpgg<y when h, ranges over H. By the triangle reverse inequality, we
have for h“, 1€ Hu

- - 1 &
Ay = PullLie,) = - Z [Wa(p, vi) = Wa(i', vi)| (Walp, vi) — Wap',vi)) L g

< Wa(p, 1! Z (Vi) Llacm < 2MWo(p, p').

3\1\3

We deduce that N (e, Har, L1 (Prn)) < N(55, K, Wa) where Ky = {p € P2(Q)} is compact.
Then from Borel-Lebesgue, we deduce that log N (e, H s, L1 (P,)) can be bounded from above
by a finite number which does not depend on n. Theorem 2.4.3 in [VDVW96] allows us to
conclude that |S”W | tends to 0 almost surely. By the mapping theorem, \S"7 |? also tends

to 0 a.s. Since it is bounded by a constant only depending on the diameter of Q, we have
that it is bounded by an integrable function. By the theorem of dominated convergence, we

get E (|SZ” |2) — 0. Gathering (1.47), (1.48), we get for all v > 0
Pn n—o00

E(d% (], 1)) — 0.

n—oo

O

Rate of convergence between “EPY% and yg. In order to have a rate a convergence, we
will need existing results on the notion of bracketing number, that is defined below.

DEFINITION 1.29. Given two real-valued functions | and r, the bracket [I,r] is the set
of all functions f with 1 < f < r. An e-bracket is a bracket [l,r] with ||l — r|| < e. The
bracketing number Ny(e, F, || - ||) is the minimum number of e-brackets needed to cover F.

ProOOF OF THEOREM [.18. This proof follows from the proof of Theorem 1[.17. We
recall from (1.47) that

VE(dE(pg 1p)) < 2IE(\SZQH 1) + 2E(|SZD;,| ), for S’”w ,S" defined in (1.44), (1.45) (1.51)
where by (1.48), E (‘SZ”P) < € and by (1.50) we have for H given in (1.49)
P
187 1 < sup|(P— P ()|
" heH

Rewriting this term, we get [S]}, | < ﬁHGnHH where G, (h) = v/n(P, —P)(h). We obtain
e

., 1 1
E (IS5 17) < ~E (IGal%) = 21l 1l ey- (1.52)
We then use the following Theorem 2.14.1. of [VDVW96] to control the last term in (I1.52).

THEOREM 1.30. Let H be a Q-measurable class of measurable functions with measurable
envelope function H. Then for p > 1, we have

[ 1GnllallL, @) < CI(L H) | Hl|L,y, (@) (L.53)
with C a constant, I(1,H) defined in (1.17) and H an envelope function.
Gathering the results of (1.47), (1.48), (1.52) and (1.53), we get

1
E(dy (g, 1p)) < n (C+CIL M) Hliye) (L54)
which is completely valid for any Q compact in R?. The norm ||H |y, (p) is clearly finite since
for all v € Py(Q), |h,(v)| < 4cd, with ¢ = sup|z|*. O
€N
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PROOF OF THE THEOREM I[.19. We assume here that 0 C R is compact. It remains to
study the term I(1,#) defined in (I.17) for H in (I.49). By the triangle reverse inequality,
we have

|hu (V) = hw (V)| = [Walv, 1p) — Wa(v, p1')| (Wa(v, i) + Wa(v, 1)) < Wa(p, p') 2H (v).

Then, from Theorem 2.7.11 in [VDVW96], and since Theorem 4 in [KT59] allows us to
bound the metric entropy by the bracket entropy, we get

IOg N(€HH”L2(Q)77‘[, ” : ||IL2(Q)) < log N[](EHHH]IQ(Q%Hv H : ||]L2(Q))
<log N(€,P2(2), W) <log Npj(e,P2(2), W2). (1.55)

Also, for d =1, we have
1 1/2
Wa(p, 1) = </0 |Fy () — FJ(t)Izdt) = 1F = FllLao,) (1.56)

where F) is the quantile function of the cumulative distribution function F), of u. We
denote by G = {F,n € P2()} the class of quantile functions of probability measures p
in P5(R), which are monotonic functions. Moreover, we can observe that F Wt [0,1] —
(£, (0), F 7 (1)] € Q, where Q is a compact included in R. Hence, G is uniformly bounded,
say by a constant M > 0. By Theorem 2.7.5. in [VDVW96| on the bracket entropy of the
class of monotonic functions, we obtain that log Ny (e, G, L2[0,1]) < %, for some constant
C > 0. Finally, from relations (I.55) and (1.56), we can deduce that

1 1
CM
I(l,?—l):sup/ \/1+logN(e||H||]L2(Q),”H,]Lg(Q))deS/ 1+ de < oo
Q Jo 0

PROOF OF THE THEOREM 1.20. We here consider that  is a compact of R? and that
E is given by (I.21). Let us begin by underlining that since the norm of a Sobolev space is
weakly™* lower semicontinuous, F is indeed lower semicontinuous for the Wasserstein metric.
Supposing that  has a C' boundary, we have by the Sobolev embedding theorem that
H*(Q) is included in the Holder space C™# () for any integer m and S €]0, 1] satisfying
m + = k — d/2. Hence, the densities of pp and pg given by (I.14) and (I.15) belong to
cm™B(Q).
From the Theorem 1.18, we will use that:

O

1
E(d: (12, 13)) < Vn (C+CI(LH)|H|Ly@)) -

Similarly, since 2 is compact, we have || H |, (g) < oo, where H(v) = sup {Wa(u,v); Wi (u,v)}
HED(E)
where D(FE) is defined by (I.2). Thus, instead of controlling the metric entropy N (e[| H||r,(q), X, ||
lLo(q)), it is enough to bound the metric entropy N (e, D(E), W3) thanks to Theorem 2.7.11
in [VDVW96].
To this end, since p, ' € D(E) are a.c. measures, one has that

1/2
Walp, 1) < (/ |T(x) — T’(z)|2dx) where T#A! = 1 and T'#\? = 1/,
Q

where A% denotes the Lebesgue measure on 2. Thanks to Theorem 3.3 in [DPF14] on the
regularity of optimal maps (results initally due to Caffarelli, [Caf92] and [Caf96]), the coor-
dinates of T and 7" are C™+1:%(Q)) functions AY—a.e. Thus, we can bound N (¢, D(E), W) by

the bracket entropy Njj(e, C™1#(Q), Lo (2)) since |T(z) —T"(z)]* = ijl |Tj(5) =T (x5)]?
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where T}, T} :  — R. Now, by Corollary 2.7.4 in [VDVW96], we get

1%
log Ve, C™(0). La(@) < £ ( 1)
€

for any V' > d/(m + 1). Hence, as soon as V/2 < 1 (for which the condition k > d — 1 is
sufficient if V' = d/(m + 1)), the upper bound in (1.20) is finite for H = {h, : v € P2(Q) —
W3(u,v) € Ryu € D(E)}, which yields the result of Theorem 1.20 by finally following the
arguments in the proof of Theorem .19 and since dg, < dg. O

1.3.5. Strong convexity of the Sinkhorn divergence, Proof of Theorem 1.24
The proof of Theorem 1.24 relies on the analysis of the eigenvalues of the Hessian matrix

V2H(g) of the functional H;.

PROPOSITION L1.31. For all g € RV, V2H;(g) admits A\y = 0 as eigenvalue with its
associated normalized eigenvector vy := \/%]lzv € RY, which means that rank(V>H} (g)) <
N —1 forallg € RN and g € Xn.

PRrROOF. Let g € RY, then by Theorem 1.23

1 1
VQH;‘(g)vN = diag(oz)KL - diag(a) K diag ( q ) Ka

Ka (Ka)?
— L diag() k=L — L diag(a)k-L — 0,
€ Ka ¢ Ka
and Ay = 0 is an eigenvalue of VZH (g). O

Let (vx)1<k<n be the eigenvectors of VZH (g), depending on both ¢ and g, with their
respective eigenvalues (Ag)i1<kgn- As the Hessian matrix is symmetric and diagonalizable,
let us now prove that the eigenvalues associated to the eigenvectors (vx)1<k<n—1 of V2H;(g)
are all positive.

PROPOSITION 1.32. For all ¢ € ¥ and g € RY, we have that
0=y < M forall 1<kE<N-1.
PRrROOF. The eigenvalue Ay = 0 associated to vy has been treated in Proposition [.31.
Let v € V = (Vect(vy))® (i.e. v does not have constant coordinates) an eigenvector of

V2H;k (9). Hence we can suppose that, let say v is its larger coordinate, and that there

exists i # j such that v) > (¥, Without loss of generality, we can assume that v() > 0.
Then

V2H: (g)0]; = E_ (diag (diag(a)K%)) UL _ E diag()K diag ( : K‘L)Q) Kdiag(a)v}

J

N N
; 1 dm (i)

= fa] ZKW Kal; —C Z Z o Kjm [Koz]?naiKmiv

i=1 m=1

1 N N

> ozj o) Z - Z Z a; K, KqZZ]Q ; Kmiv¥) since v > v v

i=1 m=1 m
=0  since Z @i Kim = [Kapm,

i=1
Thus M) = [V2H}(g)v]; > 0, and we necessarily have that A > 0. O

The set of eigenvalues of V2H, ;(g) is also bounded from above.
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PROPOSITION 1.33. For all ¢ € £ and g € RY we have that Tr(VZH}(g)) < L and
thus \p < 1/e for allk=1,...,N.

PRrROOF. We directly get from Theorem 1.23 that

1 . . q 1
2 rr* < = 1 ——
Tr(V H,(9)) < 6Tr diag (dlag(a)KKo)
—_ ——
€=n

O

We can now provide the proof of Theorem I.24. Since H, is convex, proper and lower-
semicontinuous, we know by the Fenchel-Moreau theorem that H;* = H,. Hence by Corol-
lary 12.A in the Rockafellar’s book [Roc74], we have that

VH, = (VH;)™", (1.57)

in the sense that VHy o VH,(r) = r for any r € Xy.

To continue the proof, we focus on a definition of the function H, restricted to the
linear subspace V. Let (vy,...,vx_1) be an orthonormal basis of V = (Vect(vy))* and
P =[v; --- vy_1] € RN*(N=1 the matrix of the basis. Remark that PPT is the matrix
of the orthogonal projection onto V, and that PPT = Iy — vyvk. If we define YN_g =
PTyy e ]RN_l, then for r € X, there exists 7 € iN_l such that r = Pr + TlﬁvN. Hence

we can introduce the functional ﬁq Y ~N—1 — R defined by

H,(7) == H, (PF + \/1N’UN> .

For § € RV~! we have that
Hy(g) = max (g,7) — Hy(F)

FEXN-1
1 (L, N
= max (g, PTr —uy) — Hy(r) where uy = v <§ U%z)’ N .7;1}](\3)_1)

= H;(Pg) — (g, un)-
Since H; is C*° (see Theorem 1.23), we can differentiate ﬁ; with respect to g to obtain that
[T*(~\ __ T * ~
VH;(g) = P"VH;(Pg) —un
217/~ _ DT 72 rr* ~
V H,(g) = P"V"H;(Pg)P.
By Proposition 1.32, we know that V2H; (Pg) € RV*N admits a unique eigenvalue equals to
0 which is associated to the eigenvector vy. All other eigenvalues are positive (Proposition
1.32) and bounded from above by 1/e (Proposition 1.33). Since VH; : RV=D — ROV=1 g
a C*°-diffeomorphism, using equality (1.57) (that is also valid for ﬂq), we have that
rrs\—1/~
v (Vi) ()
= [VPH ((VHy) ™ (7))~
= [V2H (VHy (7)™,

V2 H,(7)

where the second equality follows from the global inversion theorem, and the last one uses
again equality (I.57). Thus we get

Amin(V2H, (7)) > €.
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The above inequality implies the strong convexity of ﬁq which reads for 7o, 7, € Sp_1

. ~ ~ L - - [ -
Hy(71) = Hy(7o) + VHy(70)" (71 — 7o) + I =7ollz,
and this translates for H, and 79, € Xy to
€
Hy(r1) = Hy(ro) + VHy(ro)" PP (r1 — o) + §HPPT(7“1 —ro)*.

To conclude, we remark that (11 —rg) € V' (indeed one has that ry —rg = Zj\;l (vj,r1—70)v;
since (vy, 1 —79) = 0 and thus PPT (ry —ry) = r; — o). Hence, we finally obtain the strong
convexity of H,

Hy(r1) > Hy(ro) + VHy(ro)" (r1 — 7o) + %H(Tl — o).

This completes the proof of Theorem 1.24.
I.3.6. Lipschitz constant of H,, Proof of Lemma 1.25

We recall the dual version of the Sinkhorn minimization problem, stated in (A.10):

Wfs(r,q) max olr+pTq— Z ce = (Cme—am—p1) (1.58)
) o BERN
1<m <N

where C),, are the entries of the matrix cost C. We also recall the Lemma, 1.25 of interest.

LEMMA 1.34. Letq € ¥ and 0 < p < 1. Then, one has that r — Hy(r) is L, .-Lipschitz
on X, with

1/2

2
L,.= Z <28 log(N)+ sup |Chpe — Cre| — 2¢ log(p)> . (1.59)

L<men 1<6,kEN

PROOF. Let r,s,q € X. We denote by (a?”, 897) a pair of optimal dual variables in
the problem (I.58). Then, we have that

|Hy(r) — Hy(s)| = (Hy(r) — Hq(S))]lHq(r)>Hq(s) + (Hqy(s) = Hq(r))]lHq(r)éHq(S)

< | (@@, r) + (877 ¢ de S(Cme—afl™=BL") _ (07 g) — (B9T q)+
_1 _ ,T__R45T
Y e SO BN U ) 1, (51
+ | (a®®,s) + (87%,¢q de £ (Cme—aly®=B37) _ (a®® 1) — (B9%, ¢)+

_1 _ »S __ 398
> ee # OB g, (< (o)

m,{
< sup  [{a,r—8)| < sup ol |r —s]. (1.60)
ac{a®T,a"} ac{a®T a5}

Let us now prove that the norm of the dual variable %" (resp. a?*) is bounded by a constant
not depending on g and r (resp. ¢ and s). To this end, we follow some of the arguments in the
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proof of Proposition A.1 in [GCB16]. Since the dual variable a%" achieves the maximum
in equation (I.58), we have that for any 1 < m < N

o — E e~ £ (Cme—al"=B7") _ .
1<e<N

Let r € 3%,. Hence, r,, # 0, and thus one may define \,,, = £log(ry,,). Then, it follows from
1 ST T . . .
the above equality that 3, e~ = (CmetAm—a"=61") — 1 which implies that

_1 —BLr
a%;,T = —¢ 1Og Z e E(CnLZ+>\WL Bg )

1IN
Now, for each 1 < m < N, we define
a?” = min {C A — BE"Y = min {C,0 — BT A 1.61
m 1<£<N{ me T Am 1 } 1<£<N{ mé ¢ }JF m» ( )

and we consider the inequality

lal” —al"| < Jad’ —ad"| +|ad" —ab"| + api" — ol (1.62)
By equation (I.61) one has that &%" + 87"" — Cpe — Ay < 0. Hence we get
—all =clog Z e 2O g (AR BT = Cme=Am) | —ad’" 4+ elog(N). (1.63)
1SN
On the other hand, using the inequality
Z et Cometdm=B7") 5 =2 (CmetAm=B1") _ e~ TN
1<eKN
where £, is a value of 1 < £ < N achieving the minimum in (I.61), we obtain that
—all > —adr. (1.64)
By combining inequalities (1.63) and (1.64), we finally have
|Gl — bl < elog(N). (1.65)

To conclude, it remains to remark that, by equation (1.61), the vector (G%" — A\py)1<m<n 18
the c-transform of the vector (37"")1<e<n for the cost matrix C. Therefore, by using standard
results in optimal transport which relate c-transforms to the modulus of continuity of the
cost (see e.g. [Sanl5], p. 11) one obtains that

e —al" + X — Am| < sup [Chne — Chael,
1<EKN

which implies that

m

lad” —al"| < sup |Che — Cel + ellog(rm) — log(r)|. (1.66)
1SN
By combining the upper bounds (I.65) and (1.66) with the decomposition (I1.62) we finally
come to the inequality

< 2elog(N) 4+ sup |Cume — Crel| + €| log(r) — log(rx)|.

It

q,r _ 9T
o — o

Since the dual variables achieving the maximum in equation (I.58) are defined up to an
additive constant, one may assume that of’" = 0. Under such a condition, we finally obtain
that

1/2

2
la] < Z (2510g(N)—|— sup { sup |Cmg—CM|+E|log(rm)—log(rk)|}>

1<menN 1<k<N Ligegv
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Using inequality (I.60) and the assumption that r € X%, we can thus conclude that
r+ Hy(r) is L, .-Lipschitz on X4, for
o\ 1/2
L,.= Z (25 log(N)+ sup |Cpe— Cre| —2¢ 10g(p)>

1<meN 1<0,kEN
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CHAPTER I

USE OF REGULARIZED BARYCENTERS IN
ALIGNMENT TASKS

This chapter is based on the preprint [BCP18a].
I1.1. Introduction

I1.1.1. Motivations

This paper is concerned with the problem of aligning (or registering) elements of a
dataset that can be modeled as n random densities, or more generally, probability measures
supported on R?. As raw data in the form of densities are generally not directly available, we
focus on the setting where one has access to a set of random vectors (X; ;)1< i<p:; 1<ign it R4
organized in the form of n subjects (or multiple point clouds), such that X; 1, ..., X, ,, areiid
observations sampled from a random density f, for each 1 <4 < n. In the presence of phase
variation in the observations due to mis-alignment in the acquisition process, it is necessary
to use a registration step to obtain meaningful notions of mean and variance from the
analysis of the dataset. In Figure II1.1(a), we display a simulated example of n = 2 random
distributions made of observations sampled from Gaussian mixtures f, with two components
whose means and variances are randomly chosen for each distribution. Certainly, one can
estimate a mean density using a preliminary smoothing step (with a Gaussian kernel K
and data-driven choices of the bandwidth parameters (h;);=1,. ) followed by standard
averaging, that is considering

7 (m)—li ! iK T Xii) g emrd (IL1)
TP n & pihy = hi ’ . '

Unfortunately this leads to an estimator which is not consistent with the shape of the f,’s.
Indeed, the estimator f,, , (Euclidean mean) has four modes due to mis-alignment of the
data from different subjects.

I1.1.2. Contributions

In this work, in order to simultaneously align and smooth multiple point clouds (in the
idea of recovering the underlying density function), we average the data using the notion



II.1. Introduction
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FiGureg II.1. A simulated example of n = 2 subjects made of p; = py =
300 observations sampled from Gaussian mixtures with random means and
variances. The red and blue bar graphs are histograms with bins of equal
and very small size to display the two sets of observations. The red and blue
curves represent the kernel density estimators associated to each subject
with data-driven choices (using cross-validation) of the bandwidths. (a) The
dashed black curve is the Euclidean mean f;, ,, of the red and blue densities.
(b) The solid black curve is the entropy regularized Wasserstein barycenter
f'f%p (defined in (I1.4)) of the raw data using a Sinkhorn divergence and the
numerical approach from [CP16b], with a data-driven choice for € = 2.55.

of Wasserstein barycenter (A.11), as it has been shown to be a relevant tool to account
for phase variability in density registration [BGKL18,PZ16,PZ17]. In what follows, we
consider two approaches for the computation of a regularized Wasserstein barycenter of n
discrete probability measures given by

v 1 Pi
PP = > oy, for 1<i<n, (IL.2)
) j=1

from observations (X; ;)i<j<p:; 1<i<n-

The first one is presented in Section I.1 and consists in adding a convex penalization
term to the definition of an empirical Wasserstein barycenter [AC11]. We recall that it
leads to the estimator

. 1S .
iy, , = arg min — > W3 (u, 07) + v E(p), (I1.3)
nePa(Q) ™

where v > 0 is a regularization parameter, and E : Py(2) — R, is a smooth and convex
penalty function which enforces the measure ﬂ%m to be absolutely continuous. In this
chapter, we discuss the choice of the penalty function E, as well as the numerical computation
of ;lj%p (using an appropriate discretization of €2 and a binning of the data), and its benefits
for statistical data analysis.

Another way to regularize an empirical Wasserstein barycenter is to use the notion of
entropy regularized optimal transportation to compute an entropy regularized Wasserstein
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3
7 x10 .

FiGURE II.2. The GL’s trade-off function associated to the entropy regu-
larized Wasserstein barycenters of the dataset in Figure I1.1, for € ranging
from 0.1 to 5

barycenter, presented in Section [.2 and given by

1« s
7, , = arg min — Z W3 (r,a") (I1.4)
rext Mo
The selection of the regularization parameters - or € is the main issue for computing
adequate penalized or Sinkhorn barycenters in practice. We here rely on the Goldenshluger-

Lepski (GL) principle in order to perform an automatic calibration of such parameters.
11.1.2.1. Data-driven choice of the regularizing parameters

The main contribution in this work is to propose a data-driven choice for the regulariza-
tion parameters « in (I1.3) and € in (I1.4) using the Goldenshluger-Lepski (GL) method (as
formulated in [LIM16]), which leans on a bias-variance trade-off function, described in details
in Section I1.3.1. The method consists in comparing estimators pairwise, for a given range
of regularization parameters, with respect to a given loss function. It provides an optimal
regularization parameter that minimizes a bias-variance trade-off function. We displayed
in Figure 1.2 this functional for the dataset of Figure I1.1, which leads to an optimal (in
the sense of GL’s strategy) parameter choice & = 2.55. The entropy regularized Wasserstein
barycenter in Figure I1.1(b) is thus chosen accordingly.

From the results on simulated data displayed in Figure I1.1(b), it is clear that computing
the regularized Wasserstein barycenter f‘fl’p (with an appropriate choice for ¢) leads to the
estimation of mean density whose shape is consistent with the distribution of the data for
each subject. In some sense, the regularization parameters v and € may also be interpreted
as the usual bandwidth parameter in kernel density estimation, and their choice greatly
influences the shape of the estimators f) , and 7, , (see Figure I1.7 and Figure I1.8 in
Section I1.3).

To choose the optimal parameter, the GL’s strategy requires some variance information
through the knowledge of an upper bound on the decay to zero of the expected Lo (2) distance
between a regularized empirical barycenter (computed from the data) and its population
counterpart. These bounds have been proven in Chapter I, Section I.1 pour the penalized
Wasserstein barycenters and Section 1.2 for the entropy regularized Wasserstein barycenters.
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11.1.2.2. Computation issues: binning of the data and discretization of )

In our numerical experiments we consider algorithms for computing regularized barycen-
ters from a set of discrete measures (or histograms) defined on possibly different grids of
points of RY (or different partitions). They are numerical approximations of the regularized
Wasserstein barycenters ﬂ;{’p and f'fz,p by a discrete measure of the form Zszl W0y, using
a fixed grid Qn = {z1,...,2x5} of N equally spaced points x;, € R? (bin locations). For
simplicity, we adopt a binning of the data (I1.2) on the same grid, leading to a dataset of
discrete measures (with supports included in Q) that we denote

‘ 1 Pi B
q = — Zé& ,» Where X ; = arg min [z — X 5], (IL.5)
L ’

TEQN

for 1 <4 < n. In this paper, we rely on the smooth dual approach proposed in [CP16b] to
compute penalized and Sinkhorn barycenters on a grid of equi-spaced points in Q (after a
proper binning of the data).

Binning (i.e. choosing the grid Q) surely incorporates some sort of additional regular-
ization. A discussion on the influence of the grid size IV on the smoothness of the barycenter
is proposed in Section I1.3.1 where we describe the GL’s strategy. Besides, in our simula-
tions, the choice of N is mainly guided by numerical issues on the computational cost of the
algorithms used to approximate i, , and 7;, .

11.1.2.3. Registration of flow cytometry data

In biotechnology, flow cytometry is a high-throughput technique that can measures a
large number of surface and intracellular markers of single cell in a biological sample. With
this technique, one can assess individual characteristics (in the form of multivariate data)
at a cellular level to determine the type of cell, their functionality and their differentiation.
At the beginning of flow cytometry, the analysis of such data was performed manually by
visually separating regions or gates of interest on a series of sequential bivariate projec-
tion of the data, a process known as gating. However, the development of this technology
now leads to datasets made of multiple measurements (e.g. up to 18) of millions of indi-
viduals cells. A significant amount of work has thus been carried out in recent years to
propose automatic statistical methods to overcome the limitations of manual gating (see
e.g. [HKBT10,HAG "17,LMP16,PLW "14] and references therein).

When analyzing samples in cytometry measured from different patients, a critical issue
is data registration across patients. As carefully explained in [HKB™10], the alignment of
flow cytometry data is a preprocessing step which aims at removing effects coming from tech-
nological issues in the acquisition of the data rather than significant biological differences. In
this chapter, we use data analyzed in [HKB™ 10| that are obtained from a renal transplant
retrospective study conducted by the Immune Tolerance Network (ITN). This dataset is
freely available from the flowStats package of Bioconductor [GCB™'04] that can be down-
loaded from http://bioconductor.org/packages/release/bioc/html/flowStats.html.
It consists of samples from 15 patients. After an appropriate scaling trough an arcsinh
transformation and an initial gating on total lymphocytes to remove artefacts, we focus our
analysis on the FSC (forward-scattered light) and SSC (side-scattered light) cell markers
which are of interest to measure the volume and morphological complexity of cells. The
number of considered cells by patient varies from 88 to 2185. The resulting dataset is dis-
played in Figure I1.3. It clearly shows a mis-alignment issue between measurements from
different patients.
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The last contribution of the paper is thus to demonstrate the usefulness of regularized
Wasserstein barycenters to correct mis-alignment effects in the analysis of data produced by
flow cytometers.
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F1cure I1.3. Example of flow cytometry data measured from n = 15 pa-
tients (restricted to a bivariate projection). The horizontal axis (resp. ver-
tical axis) represent the values of the FSC (resp. SSC) cell marker.

I1.2. Penalized Wasserstein barycenters

In this section, we adopt the framework from Section I.1 in which the Wasserstein
barycenter is regularized through a convex penalty function as presented in (IL.3).

I1.2.1. Choice of the function E that penalized the barycenter fi) , in (I1.3)

The choice of a specific function F is driven by the need to retrieve an absolutely
continuous measure from discrete observations (X;;), as it is often done when approximating
data through kernel smoothing in density estimation. More precisely, assume that P €
Wa(P2(£2)) is a distribution which gives mass one to the set of a.c. measures (with respect
to the Lebesgue measure dz). Then, thanks to Remark 1.14 page 36, there exists a unique
population Wasserstein barycenter u$ which is an a.c. measure. We also assume that ) is
a compact and uniformly convex set with a C! boundary.

Thus we define the penalizing functional F by

E(p) = { ||f”%{k(g)a if f= ?Tl; and f > a,

11.6
+00 otherwise. (IL6)
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where we recall that || - || (o) denotes the Sobolev norm associated to the L*(Q2) space,
« > 0 is arbitrarily small and k£ > d — 1.

For two a.c. measures p1 = puy and v = v, with density f and g, it is easily seen that the
non-symmetric and symmetric Bregman divergences (I.18) related to E satisfy

1
de(py,vg) 2 Hf*9||12LZ(Q) and  Dp(uyf,vg) 2 5“]”*9”1%2(9)-

Let us now discuss the convergence of the measure ﬂz,p towards u9 with respect to the

squared IL2(£2) distance between their respective densities }'Z,p and f2, when both n and p
tend to infinity and ~ tends to 0. To this end, it is necessary to assume that f{ > «, and
we consider the decomposition

"y K
B (I1Fn, = 22 <3 B (3 (@0 0idy ) +3 B (3 (sdy 7)) +6 D (2, 49)
Stability term Variance term Bias term

Then, we gather the results on the stability’s Theorem [.12 combined with Theorem 1
in [FG15], Theorem I.18 (convergence of the variance term) and Theorem 1.16 (convergence
of the bias term) to prove the convergence to zero of the three terms in the right-hand side
of the above inequality.

Stability term. Recall that by inequality (I.12) one has that

B (b (i) < 3 ZE (WEwi,vp).

For each 1 < ¢ < n and conditionally on v;, the convergence to zero of E (W22 (v, l/pi)) as p;
tends to infinity can be controlled using the results in [FG15]. For instance, if the measure
v; has a moment of order ¢ > 4 then, by Theorem 1 in [FG15], it follows that there exists
a constant Cy 4 > 0 (depending only on ¢ and d) such that

E (W3 (i, vp)) < Coal (MZ9(vi)) p;*/?
provided that d < 4, and where M, (v;) = [, |#|?dv;(x). Hence, under such assumptions on
q and d, it follows that
N 1
E (dQE (ul,p,u%;)) <40 qE (qu/q('/l)) FEIYER (IL7)
Variance term. By Theorem 1.18 , one obtains that E (dQE (ﬂ%gg ,u%)) < ,Y%L
Bias term. By Theorem I.16, limO Dg(ug, u) = 0.
g

Let us finally assume that the distribution P is such that E (M,?/q(ul)) < +00. There-
fore, under the various assumptions made in this discussion, and by combining the above
results, the expected squared L2(Q) error E ( I }Z,p - f]PQHEZ(Q)) converges to zero provided
that v = v, is a sequence of regularizing parameters converging to zero such that

lim 72 p = F00 and lim 72 pp1/2 = +o00.
min(n,p)—oo min(n,p)—oco

We finally get

THEOREM IL.1. Let }'Z}p and fg be the density functions of fu), , and g, induced by the

choice (11.6) of the penalty function E. Then there exists a constant ¢ > 0 such that

=Y 1 1
I (Ilfn,p - f@\liz(g)) <c <w1/4 + W) (IL.8)

where p = miny i<, pi and provided that d < 4 and E (fQ |:r|qdu1(x)) < +o0 for some q > 4.
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11.2.2. Numerical computation

We provide in the last Section I1.4 of this chapter efficient minimization algorithms for
the computation of f:hp, after a binning of the data on a fixed grid Q. For € included in the
real line, a simple subgradient descent is considered. When data are histograms supported

on R?, d > 2, we rely on a smooth dual approach based on the work of [CP16b].

I1.3. Numerical experiments

In this section, we first present a method to automatically choose the parameters « in
(I1.3) and ¢ in (II.4), that we illustrate with one-dimensional datasets. Then, we report
the results from numerical experiments on simulated Gaussian mixtures and flow cytometry
dataset in R2.

11.3.1. Goldenshluger-Lepski method

By analogy with the work in [LIM16] based on the Goldenshluger-Lepski (GL) princi-
ple, we propose to compute a bias-variance trade-off functional which will provide an auto-
matic selection method for the regularization parameters for either penalized or Sinkhorn
barycenters. The method consists in comparing estimators pairwise, for a given range of
regularization parameters, with respect to a loss function.

Since the formulation of the GL’s principle is similar for both estimators, we only present
the theory for the Sinkhorn barycenter described in Section [.2. The trade-off functional
is composed of a term measuring the disparity between two estimators and of a penalty
term that is chosen according to the upper bounds of the variance in Theorem [.22. More
precisely, assume that we dispose of a finite collection of estimators (f'fL,p)s for € ranging in
a space A depending on the data at hand. The GL method consists in choosing a value é
which minimizes the following bias-variance trade-off function:

¢ =argmin B(e) + bV (e) (1I1.9)
e€EA
for which we set the “bias term” as
B(e) = sup [|f‘fw — - bV(e) (IL.10)
&<e ’ +

where zy = max(x,0) denotes the positive part. The authors in [LM16] propose a few
suggestions to properly choose both the parameter b > 0 and the functional V. This leads to
a “variance term” V' chosen proportional to the right-hand side of (I.24). Following [LIM 16|
and from our numerical experiments, we observed that bV has to depend on the size N of
the grid Qn in order to fit the scaling of the disparity term |7, , — f“i)p|2.

I1.3.2. Simulated data: one-dimensional Gaussian mixtures

We illustrate GL’s principle as well as the choice of the parameter b for the one-
dimensional example of Gaussian mixtures that is displayed in Figure II.4. Our dataset
consists of observations (X; ;)1<i<n ;1<p Sampled from n = 15 random distributions v; that
are mixtures of two Gaussian distributions with weights (0.35,0.65), random means respec-
tively belonging to the intervals [—6, —2] and [2, 6] and random variances both belonging to
the interval (0, 2]. For each random mixture distribution, we sample p = 50 observations.
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FIGURE II.4. A subset of 8 histograms (out of n = 15) obtained with
random variables sampled from one-dimensional Gaussian mixtures distri-
butions v; (with random means and variances). Histograms are constructed
by binning the data (Xi,j)lgign 1<p Ol & gI‘ld QN of size N = 28.

Thanks to inequality (I1.24), we choose to take the function V' defined by

3212 2L N
Vie) = —25+ =25 (/= +2p(N +VN) |,
e“n € D

and p = min(1/N,1/p).

By definition, see equation (I.25), the Lipschitz constant L, is of order v'N since the
term sup; </ < [Cme — Cre| = supi<or<n| [€m — xo|* — |z — 2¢|? | is not influenced by
the size of the grid but rather by the largest distances between points in the support. Hence
the variance function V clearly scales polynomially fast with V. To compensate this scaling
effect, we choose the parameter b = a/N? for some constant a > 0, as our experiments
suggest. Using this choice for b, we obtain data-driven regularization parameters € that
are of the same order for different grid size N as it can be seen from Figure 1.5, where
we display the function € — B(g) + bV (¢) for different values of a = bN? ranging from
1072 to 107% and grid sizes N = 25,28 210 (using the same data sampled from random
Gaussian mixtures before binning). For a better representation, we normalize the trade-off
functions since we are only interested in their minimizer. We also present in Figure I1.6
the Sinkhorn barycenters associated to the regularization parameters é that minimize the
trade-off functions displayed in Figure I1.5. Note that for a better visualization, we have
again normalized these barycenters with respect to the grid of size N = 2. The shapes
of these barycenters are very similar despite the change of grid size. Finally, we suggest to
choose a such that the trade-off curve has a minimum that is roughly in the center of the
parameter’s range of interest.

To define the variance function in the case of penalized barycenters }'Z’p of Section I1.2,
we use the upper bound in inequality (I1.8) leading to the choice
1 1

V(y) = Apt/A + An1/2
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FIGURE IL.5. Influence of the parameter b = a/N? on the shape of the
bias-variance trade-off function € — B(e) + bV (¢) for Sinkhorn barycenters
of the dataset in Figure I1.4. The range of ¢ is the interval [0.1,10]. A zoom
is performed for the two figures (¢) and (d). From left to right and top to
bottom, a = 1072,107%,1077,107%. The dotted red curve corresponds to
a grid size N = 25, the dashed green curve to N = 2% and the solid blue
curve to N = 210,

We remark that the size of the grid does not appear in the above variance function. Thus,
the parameter b is chosen independent of N in the trade-off function v — B(y) + bV (7).
From now on, we fix the size N = 2% of the grid, and we comment the choice of the
parameters € and 4. We display in Figure I1.7(a) the trade-off function B(e)+bV (¢), and we
discuss the influence of € on the smoothness and support of the Sinkhorn barycenter. From
Figure I1.7(b), we observe that, when the parameter ¢ = 0.18 is small (dotted blue curve),
then the corresponding Sinkhorn barycenter f'fhp is irregular, and it presents spurious peaks.
On the contrary, too much regularization, e.g. ¢ = 9.5, implies that the barycenter (dashed
green curve) is flattened and its mass is spread out. Here, the optimal barycenter (solid red
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F1GURE II.6. Sinkhorn barycenters of the dataset in Figure 1.4 associ-
ated to the regularization parameters ¢ minimizing the trade-off functions
displayed in Figure I1.5 for different values of a and different grid sizes N.

curve), that is 'f“fw for € = 1.94 minimizing the trade-off function (I1.9), seems to be a good
compromise between under and over-smoothing.

We repeat the same experiment for the penalized barycenter of Section I1.2 with the
Sobolev norm H'()) in the penalization function E (I1.6) . The results are displayed in
Figure I1.8. The advantage of choosing a Sobolev penalty function is that the mass of
the barycenter is overall less spread out and the spikes are sharper. However, for a small
regularization parameter 7 = 20 (dotted blue curve), the barycenter f) , presents a lot of
irregularities as the penalty function tries to minimize its Lo-norm. When the regularization
parameter increases in a significant way (v = 980 associated to the dashed green curve), the
irregularities disappear and the support of the penalized barycenter becomes wider. The
GL’s principle leads to the choice 4 = 520 which corresponds to a penalized barycenter
(solid red curve) that is satisfactory.

We compare these Wasserstein barycenters to the Euclidean mean f,, , (II.1), obtained
after a pre-smoothing step of the data for each subject using the kernel method. From
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FiGURE II.7. One dimensional Gaussian mixtures dataset and Sinkhorn
barycenters. (a) The trade-off function e — B(e) + bV (e) which attains
its optimum at € = 1.94. (b) Three Sinkhorn barycenters ffz,p associated
to the parameters € = 0.18,1.94,9.5.
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FiGURE II.8. One dimensional Gaussian mixtures dataset and penalized
barycenters. (a) The trade-off function v — B(v) + bV () which attains
its optimum at 4 = 520. (b) Three penalized barycenters f) , associated
to the parameters v = 20, 520, 980.

Figure 11.9, the density fn’p is very irregular and it suffers from mis-alignment issues. The
irregularity of this estimator mainly comes from the low-dimensional sampling per subject

(p = 50).
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FIGURE I1.9. Euclidean mean density f,, , of the one dimensional Gaussian

mixtures dataset using a preliminary smoothing step of each subject with
a Gaussian kernel.

I1.3.3. Simulated data: two-dimensional (Gaussian mixtures

In this section, we illustrate the validity of our methods for two-dimensional data. We
consider a simulated example of observations (X; ;)1<i<n 11<j<p Sampled from n = 15
random distributions v; that are a mixture of three multivariate Gaussian distributions
v, = 23:1 0;,N (m},T}) with fixed weights 6 = (1/6,1/3,1/2). The means m} and covari-
ance matrices I‘; are random variables with expectation given by (for j = 1,2, 3)

m1:(8>, m2:<1>, mgz(é), and F1:F2:F3:<1 O>

0 1

For each i = 1,...,n, we simulate a sequence (X; ;)ig;j<p of p = 50 iid random variables
sampled from v; = 23:1 O;N (m;,l";) where m; (resp. 1";) are random vectors (resp.
matrices) such that each of their coordinate follows a uniform law centered in m; with
amplitude +2 (resp. each of their diagonal elements follows a uniform law centered in I';
with amplitude £0.95). We display in Figure II1.10 the dataset (X; ;)i<j<p ;1<i<n. Each
X, ; is then binned on a grid of size 64 x 64 (thus N = 4096).

First, we compute 60 Sinkhorn barycenters by letting € ranging from 0.1 to 6. We draw in
Figure I1.11(a) the trade-off function, and we plot a zoom of this function in Figure I1.11(b)
around the minimizer £ = 3.6. The corresponding Sinkhorn barycenter f“fw is displayed in
Figure 11.12(a). We also present the Euclidean mean f,, , (after a preliminary smoothing
step) in Figure I1.12(b). The Sinkhorn barycenter has three distinct modes. Hence, this
approach handles in a very efficient way the scaling and translation variations in the dataset
(which corresponds to the correction of the mis-alignment issue). On the other hand, the
Euclidean mean mixes the distinct modes of the Gaussian mixtures. It is thus less robust
to outliers since the support of the barycenter is significantly spread out.

Finally, we display the penalized barycenter of this dataset in Figure I1.13(b) for the
Sobolev penalty function (II.6) and the data-driven choice of . In Figure I1.13(a), we plot
the trade-off function for + ranging from 1 to 140. This curve suggests to choose 4 = 80.

From Figure I1.13(b), we observe that the mass of j"'z’p is concentrated on three main modes.
The approach thus manages to keep the geometry of the underlying Gaussian mixtures.
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F1GURE I1.10. Dataset (X, ;)i<j<p ji<i<n generated from n = 15 two-
dimensional random Gaussian mixtures v; with p = 50.
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F1cure I1.11. Two-dimensional Gaussian mixtures dataset. (a) The trade-
off function € — B(e) + bV (¢) which attains its optimum at € = 3.6. (b)

A zoom of the trade-off function around the minimizer &.

11.3.4. Sinkhorn versus penalized barycenters

To conclude these numerical experiments with simulated data, we

has been first introduced in order to reduce the computational cost of a

would like to point
out that computing the Sinkhorn barycenter is much faster than computing the penalized
barycenter. Indeed, entropy regularization of the transport plan in the Wasserstein distance
transport distance.
Its computation requires O(N?3log N) operations for discrete probability measures with a
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FIreure I1.12. Two-dimensional Gaussian mixtures dataset. (a) The
Sinkhorn barycenter #;, , for ¢ = 3.6 chosen by the GL’s principle. (b)
The Euclidean mean fn,p (after a preliminary smoothing step).
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FIGURE I1.13. Two-dimensional Gaussian mixtures dataset. (a) The trade-
off function v — B(7) + bV () which attains its optimum at 4 = 80. (b)

Penalized barycenter flp associated to the parameter 4 = 80.

support of size N when the computation of a Sinkhorn divergence only takes O(N?) opera-
tions at each iteration of a gradient descent (see e.g. [Cut13]). We have also found that the
Sinkhorn barycenter yields more satisfying estimators in terms of smoothness. Therefore, in
the rest of this section, we do not consider the penalized barycenter anymore.
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FiGURE I1.14. Two dimensional flow cytometry dataset and Sinkhorn
barycenter. (a) The trade-off function € — B(e) 4+ bV () which attains
its optimum at é = 3.1. (b) Sinkhorn barycenter 7}, , associated to the

P
parameter € = 3.1.

11.3.5. Real data: flow cytometry

We have at our disposal data from flow cytometry that have been described in Section
I1.1.2.3, and we focus on the FSC and SSC cell markers resulting in the dataset that is
displayed in Figure I1.3. We again apply a binning of the data on a two-dimensional grid of
size N = 64 x 64. In Figure II1.14(a) we plot the trade-off function related to the Sinkhorn
barycenters for the parameter € ranging from 1 to 6. Its minimum is attained for € = 3.1. We
display the corresponding Sinkhorn barycenter in Figure I1.14(b). This barycenter clearly
allows to correct mis-alignment issues of the data.

Notice that we have also conducted experiments for Sinkhorn barycenters with non-equal
weights, corresponding to the proportion of measurements for each patient. The result being
analogous, we do not report them.

I1.4. Algorithms to compute penalized Wasserstein barycenters
presented in Section I.1 and Section I1.2

In this section we describe how the minimization problem
1 n
min — Z W3 (1, v5) +vE(p) over u € Pa(Q), (IL.11)
neon =

can be solved numerically by using an appropriate discretization and the work of [CP16b].
In our numerical experiments, we focus on the case where E(u) = +oo if u is not a.c. to
enforce the regularized Wasserstein barycenter to have a smooth pdf (we write E(f) = E(uy)
if 1 has a density f). In this setting, if the grid of points is of sufficiently large size, then
the weights f* yield a good approximation of this pdf. A discretization of the minimization
problem (II.11) is used to compute a numerical approximation of a regularized Wasserstein
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and Section I1.2

(a) (b)

F1cure II.15. Two dimensional flow cytometry dataset. (a) Euclidean
mean f,, of the data (after smoothing but without registration), (b) Lo-
mean of pre-processed data using kernel smoothing and density registration
by landmark alignment with the method in [HKB™10].

barycenter u%n. A fixed grid {%k}j]cvzl of equally spaced points ¥ € R? is considered and
u%n is approximated by the discrete measure Zivzl f¥6,. where the f* are positive weights
summing to one.

In what follows, we first describe an algorithm that is specific to the one-dimensional
case, and then we propose another algorithm that is valid for any d > 1.

Discrete algorithm for d = 1 and data defined on the same grid. We first propose to com-
pute a regularized empirical Wasserstein barycenter for a dataset made of discrete measures
Vi,...,Vn (or one-dimensional histograms) defined on the same grid of reals {xk}fle that
the one chosen to approximate H%n' Since the grid is fixed, we identify a discrete measure v
with the vector of weights v = (v(z'),...,v(z")) in RY (with entries that sum up to one)
of its values on this grid.

The estimation of the regularized barycenter onto this grid can be formulated as:

m}n%ZWf(f, vi) +vE(f) st Y fF =1, and f* = f(a*) >0, (IL.12)
=1 k

with the obvious abuse of notation Wi (f,v;) = Wi(uys,v;) and E(f) = E(uy).

Then, to compute a minimizer of the convex optimization problem (I1.12), we perform a
subgradient descent. We denote by (f(9)) ¢>1 the resulting sequence of discretized regularized
barycenters in RV along the descent. Hence, given an initial value f(!) € Rﬂ\_’ and for £ > 1,

we thus have
) (I1.13)

FED = 11g <f(@) — 7
where 79 is the ¢-th step time, and IIg stands for the projection on the simplex S = {y €
RY such that Z;\le y? = 1}. Thanks to Proposition 5 in [PFR12]|, we are able to compute
a sub-gradient of the squared Wasserstein distance W2(f (0, v;) with respect to its first
argument (for discrete distributions). For that purpose, we denote by Ry(s) = >, -, f(z?)

the cdf of py = Zivzl f(z%)8,x and by R, (t) =inf{s € R: Ry(s) > t} its pseudo-inverse.

1 n
VWE(F) + = > ViWE (19, m)

i=1
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PROPOSITION I1.2 ( [PFR12|). Let f = (f(z'), f(z?), ..., f(@)) andv = (v(z1),v(z?), ...

be two discrete distributions defined on the same grid of values z*, ...,z in R. Forp > 1,
the subgradients of f — WP(f,v) can be written as
VAWE(fov) cay = Y [a™ — |zt — Fmp, (IL.14)
m2j
where

{ Fm =P sz ( F=1) < Rp(a™) < R, ()
™ e 2P 2k if Ry(2™) = R, (a%).

Even if subgradient descent is only shown to converge with diminishing time steps
[BMO06], we observed that using a small fixed step time (of order 107°) is sufficient to
obtain in practice a convergence of the iterates (f (Z))@l. Moreover, we have noticed that
the principles of FISTA (Fast Iterative Soft Thresholding, see e.g. [BT09]) accelerate the
speed of convergence of the above described algorithm.

Discrete algorithm for d > 1 in the general case.

We assume that data vy, ..., v, are given in the form of n discrete probability measures
(histograms) supported on R? (with d > 1) that are not necessarily defined on the same
grid. More precisely, we assume that

Di
— J .
- Z Vi 5.7;3’
j=1

for 1 < i < n where the yf’s are arbitrary locations in Q C R?, and the Vf"s are positive
weights (summing up to one for each 7).

The estimation of the regularized barycenter onto a given grid {z* }27:1 of R¢ can then
be formulated as the following minimization problem:

1 n
min — W2(f,v;) +vE(f) st k=1, and f* >0, I1.15
s L WEU) B 6 DT / (IL.15)
with the notation f = (f%, 2, ..., fV) and the convention that WZ2(f,v;) denotes the

squared Wasserstein distance between py = ij:l fE6x and v;.

Problem (I1.15) could be exactly solved by considering the discrete p; x N transport
matrices S; between the barycenter py to estimate and the data v;. Indeed, problem (II.15)
is equivalent to the convex problem

mln mln 7222”% a|[287F N B(f) (IL.16)

i=1 j=1 k=1

under the linear constraints
Pi N
g,k _ rk gk _ 7 J.k
.,n,E S 7f,E S/t =v/, and S >0
j=1 k=1

However, optimizing over the p; x N transport matrices S; for 1 < 7 < n involves memory
issues when using an accurate discretization grid {#*}1_, with a large value of N. For this
reason, we consider subgradient descent algorithms that allow dealing directly with problem
(I1.15).

To this end, we rely on the dual approach introduced in [COO15] and the numerical
optimisation scheme proposed in [CP16b]. Following these works, one can show that the
dual problem of (II.15) with a regularization of the form E(K f) and K a discrete linear
operator reads as

n

Hy,(¢:) + E t KTy + ; =0, .17
oo D Hun(9i) + E3(d0) st Ko ;¢ (IL.17)
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where the ¢;’s are dual variables (vectors in RY) defined on the discrete grid {z*}&_,, E is
the Legendre transform of vE and H,,(.) is the Legendre transform of W3(.,v;) that reads:

1 .
1 J k|12 k
H,,(6) Zu i (Gl =P ).

Barycenter estimations f; can ﬁnally be recovered from the optimal dual variables ¢; solution
of (I1.17) as
fi € 0H,,(¢;), fori=1---n. (I1.18)

Following [COO15], one value of the above subgradient can be obtained at point z* as:
OH,, (¢:)k Zzﬂs]’“ (IL.19)

where Sf i any row stochastic matrix of size p; X N checking:
, 1 .
SPF £ 0 iff k € arg min (2||yf — x| - qﬁf) .
k=1.-N
Pi J

From the previous expressions, we see that flk =20V Sj K corresponds to the discrete
pushforward of data v; with the transport matrix S; with the associated cost:

H6)-3% (3l -1 - ot ) 7422
j=1k=1

Numerical optimization. Following [CP16b], the dual problem (I1.17), can be simplified
by removing one variable and thus discarding the linear constraint K7 ¢q + >, ¢i=0.In
order to inject the regularity given by ¢¢ in all the reconstructed barycenters obtained by
¢i, i = 1---n, we modified the change of variables of [CP16b] by setting 1; = ¢; + K” ¢o/n
for 2 = 1---n and ¥y = ¢y, leading to Zf 1¥i = 0. One variable, say v, can then be
directly obtained from the other ones. Observing that ¢, = —K Tty — > 1] i /n, we thus
obtain:

n—1
_min Hy, (i — KTpo/n) + H,, (=K 1ho — i/n) + EZ (o). I1.20
wz_; : Yo/n) + Hy, (—K" 4o ;wm 3 (t0) (1.20)
The subgradient (IT1.19) can then be used in a descent algorithm over the dual problem
(I1.20). For differentiable penalizers E, we consider the L-BFGS algorithm [ZBLN97,
Becl1] that integrates a line search method (see e.g. [BV04]) to select the best time step
70 at each iteration ¢ of the subgradient descent:
0+1 ¢ w1 (8
{ ot =) OB ) + df)

11.21
P =yl 7 0ge i=1--n—1, (IL.21)

where:

ds =K (0H,, (K™l /n— it ) = Sin o, (vl - KTy /n))

di =0, (0 = KT6{ fn) = 0H,, (=K /n— 15 w”).
The barycenter is finally given by (I1.18), taking ¢; = 1; — K 4y /n. Even if we only treated
differentiable functions F in the theoretical part of this paper, we can numerically consider
non differentiable penalizers E, such as Total Variation (K = V, E = |.|y). In this case,
we make use of the Forward-Backward algorithm. This just modifies the update of vy in
(I1.21), by changing the explicit scheme involving VE3 onto an implicit one through the
proximity operator of EJ:

SV = Prox O (wg@ - T(“dg) — argwmin ||¢“) Odb — p|? + EX ().
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Algorithmic issues and stabilization. As detailed in [COO15], the computation of
one subgradient in (I1.19) relies on the look for Euclidean nearest neighbors between vectors
(yf, 0) and (2%, \/c — @F), with ¢ = maxy, d)f. Selecting only one nearest neighbor leads to
bad numerical results in practice as subgradient descent may not be stable. For this reason,
we considered the K = 10 nearest neighbors for each j to build the row stochastic matrices
S; at each iteration as: S7* = wi*/S,, wgk/, with w!® = exp(—(%”yg — k|| - oF)/e) if k
is within the K nearest neighbors for j and data ¢ and wf ¥ — 0 otherwise.
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CHAPTER III

CENTRAL LIMIT THEOREM FOR ENTROPY
REGULARIZED OPTIMAL TRANSPORT ON
FINITE SPACES

This chapter corresponds to the preprint [BCP17].

I11.1. Introduction

We discuss in Section II1.2 the notion of directional derivative of the Sinkhorn diver-
gences in order to obtain our main result on a central limit theorem, for data sampled
from one or two unknown probability distributions, via an appropriate adaptation of the
delta-method. We also propose a bootstrap procedure in Section I11.3 in order to obtain new
test statistics for measuring the discrepancies between multivariate probability distributions.
The proof uses the notions of directional Hadamard differentiability and delta-method. It is
inspired by the results in the work of Sommerfeld and Munk in [SM16] on the asymptotic
distribution of empirical Wasserstein distance on finite space using un-regularized trans-
portation costs. Numerical experiments are respectively presented in Section II1.4 and
Section II1.5 for synthetic data and real data. We also illustrate the benefits of a boot-
strap procedure. A comparison with existing methods to measure the discrepancy between
multivariate distributions is finally proposed.

II1.2. Distribution limits for empirical Sinkhorn divergences

In this chapter we consider probability measures distributed on the finite space Qy =
{.131, .- 7l‘N}.

There exists an explicit relation between the optimal solutions of the primal (A.9) and
dual (A.10) problems of entropy regularized optimal transport in page 21, and they can be
computed through an iterative method called Sinkhorn’s algorithm [CD14].

ProprosITION III.1 (Sinkhorn’s algorithm). Let K = exp(—C/e) be the element wise
exponential of the matriz cost C divided by —e. Then, there exists a pair a vectors (u,v) €
RY x RY such that the optimal solutions Ty and (o, 87) of problems (A.9) and (A.10) are

7
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respectively given by
T = diag(u) K diag(v), and af = —Xlog(u), B = —Alog(v).
Moreover, such a pair (u,v) is unique up to scalar multiplication, and it can be recovered as
a fized point of the Sinkhorn map
Stapy : (u,0) € RY x RN 5 (a/(Kv),b/(K"u)). (I11.1)

where KT is the transpose of K and / stands for the component-wise division.
II1.2.1. Directional derivative of W3_

We recall that, if it exists, the Hadamard directional derivative of a function g : D, C R4
at z € Dy in the direction h is defined as

gh(z) = nlggog(z + tnil:) 9(2)
for any sequences (t,), such that ¢, \, 0 and h,, — h with z + ¢,h,, € D, for all n. As
recalled in [SM16], the derivative h — g}, (2) is not necessarily a linear map contrary to the
usual notion of Hadamard differentiability. A typical example being the function g(z) = |z|
(with Dy = R) which is not Hadamard differentiable at z = 0 in the usual sense, but
directionally differentiable with g} (0) = |A|.

THEOREM II1.2. The functional (a,b) — W3 _(a,b) is directionally Hadamard differen-
tiable at all (a,b) € Xy X Xy in the direction (h1,he) € ¥y X X, with derivative

W2, a,b) = max o, h) + (B, h
20t = s (o) + (5, o)

where N.(a,b) C RN x RY is the set of optimal solutions of the dual problem (A.10).

PROOF. From Proposition 1 in [CD14], a subgradient of the convex function (a,b) —
W3 (a,b) is any optimal solution (e, 8) of the dual problem (A.10). From Theorem 11
in [Roc74], we directly get the statement of the theorem. O

I11.2.2. Central limit theorem

We denote by £, the convergence in distribution of a random variable and 5 the

convergence in probability. We also recall that notation G £ a means that G is a random
variable taking its values in X with law a = (a4, ...,a,) € Xy (namely that P(G = z;) = a;
for each 1 < i < N). Let a,b € Xy. We denote by a, and b, the empirical measures
respectively generated by iid samples X1,..., X, £ ¢ and Yi,....Ym £b:

s a1y L, ,
Gp, = (% )zex, where a7 = ﬁz:l]l{szm} = ﬁ#{j : X =ua;} forall 1 <i<N.
j=

We also define the multinomial covariance matrix

gy (1 — gy ) Qg Ay e —Qg, Oz
Qg Qg Qzy (1 - aﬂEQ) e gy Qg
X(a) =
Qg Qg Qg Agy a’l‘N(l - CLIN)

and the independent Gaussian random vectors G ~ N (0,X(a)) and H ~ N(0,%5(b)). As
classically done in statistics, we say that

Hy a = b is the null hypothesis,
H; a # b is the alternative hypothesis.
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The following theorem is our main result on distribution limits of empirical Sinkhorn diver-
gences.

THEOREM II1.3. Recall that K = exp(—C/e) is the matriz obtained by element wise
exponential of —C'/e. Then, the following central limit theorems holds for empirical Sinkhorn
divergences.

(1) Null hypothesis, i.e. a =b. Let (u,v) € RfXN be a fized point of the Sinkhorn map
S{a,ay defined in (I11.1)
(a) Hy - One sample.

V(W3 (an,a) — Wi (a,a)) = (G, elog(u)). (I11.2)

(b) Hy - Two samples. Let ppm = /(nm/(n+m)). If n and m tend to infinity such
that n Am — oo and m/(n+m) — 6 € (0,1), then

P (W2 (s ) — W2 (a,a)) -5 (G, e log(u)). (I11.3)
(2) Alternative case, i.e. a #b. Let (u,v) € RfXN be a fixed point of the Sinkhorn map
S{ap}
(a) Hy - One sample.
VA(WS (an,b) = W3 (a,b) == (G,elog(u). (I1L4)

(b) Hy - Two samples. For py m = +/(nm/(n+m)) and m/(n+m) — 0 € (0,1),
P (W3 (i, bm) — W2 (a,b)) <55 VO(G, e log(u)) + VI — 0(H, e log(v)). (II1.5)

PRrOOF. Following the proof of Theorem 1 in [SM16]|, we have that (e.g. thanks to
Theorem 14.6 in [Was11])

Vi, — a) = G, where G £ N(0,5(a)),

since na, is a sample of a multinomial probability measure with probability a.

Therefore, for the one sample case, we apply the Delta-method for directionally differen-
tiable functions in the sense of Hadamard (see Theorem 1 of Romisch in [R6m05]). Thanks
to Theorem I11.2, we directly get:

V(Wi (an,a) = W (a,0) = max (G,a) (ITL.6)
’ ’ (a,8)€Nc(a,a)
V(W3 (a0, b) — Wi (a,b)) = max  (G,a) for a #b. (I1L.7)

(o,8)€Nc(a,b)

For the two samples case, we use that

. c —
pn,m((am bm) - (a" b)) — (\/iG’ 1- tH)v

where p,, , and t are given in the statement of the Theorem. Then, applying again the

delta-method for Hadamard directionally diffenrentiable functions, we obtain that for n and

m tending to infinity such that n Am — oo and m/(n+m) — t € (0,1),

pn(Wa o, bn) = W3 (a,0) == - max  VB(G,a) +VT=0(H,f).  (IL8)
? ’ a,B)EN.(a,

In the null hypothesis case (a = b), this simplifies into
J c
pTL’m(WQZ,E(an, bm) — W;E(a, a)) = max (G, a). (I11.9)
(a,8)€Nc(a,a)

Now, thanks to Proposition I11.1, we know that there exists positive vectors u € Rf
and v € Rf (unique up to scalar multiplication) such that an optimal solution in N, (a,b)
of Wis is given by

o = —¢clog(u), B* = —clog(v)
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for a and b equal or not. From such results, for (u,v) obtained through Sinkhorn’s algorithm
(IT1.1), we can deduce that
m,ﬁfré?v’f(a,b)(G’ a) & max (G, —elog(u) + 1) S max ((G, —¢log(u)) + (G, t1n)).

Moreover, we have

(G, t1x) & N1y E(G), 11y X(a)tly) & N (0, 21y E(a)Ly) & N(0,0) & 5,
since G is centered in 0 and 1’y X(a)1y = 0 for a in the simplex. Notice that (G, —¢log(u)) £
(G, elog(u)). Hence, let Y be a random variable of law dy9. By independence, we have that
(G, —¢clog(u)) + Y follows the same law as (G, elog(u)) since G is centered in 0. By the
same process, we get

max  VO(G,a) +V1—0(H,B) 5 VO(G, elog(u)) + V1 — 0(H,elog(v)).

(o, 8)€Nc(a,b)

Therefore we apply this result to the convergence in distribution obtained previously in
(IT1.8) and (II1.9), which concludes the proof. O

Distribution limits of empirical Sinkhorn divergences may also be characterized by the
following result which follows from Theorem 1 of Romisch [R6mO05] using the property that
YN X XN is a convex set.

THEOREM II1.4. The following asymptotic result holds for empirical Sinkhorn diver-
gences.

(1) One sample

i (W( D) — W2 (ab) -

max  (a, —a, a)) 0.
(a,8)€Nc(a,b)

(2) Two samples - For py m = +/(nm/(n+m)) and m/(n+m) — 6 € (0,1),

n,m W2 Anvl;m 7W2 >b - An* ) + I;m*ba >LO
oo (W2 i) = WEL(00) = o (= a.0) + (i~ 0,5)

I11.3. Use of bootstrap for statistical inference

The results obtained in Section II1.2 on the distribution of empirical Sinkhorn diver-
gences are only asymptotic, and it is thus of interest to estimate their non-asymptotic dis-
tribution using a bootstrap procedure. Bootstrap consists in drawing new samples from an
empirical distribution P,, that has been obtained from an unknown distribution P. There-
fore, conditionally on P, it allows to obtain new observations (considered as approximately
sampled from P) that can be used to approximate the distribution of a test statistics using
Monte-Carlo experiments. We refer to [ET93] for a general introduction to the bootstrap
procedure.

Nevertheless, as carefully explained in [SM16], for a test statistic based on functions
that are only Hadamard directionally differentiability, a classical bootstrap procedure is not
consistent. To overcome this issue, we decide to choose o and § in N.(a,b) (defined in
Theorem I11.2) such that their components sum up to zero. In this way the optimal solution
of the dual problem (A.10) becomes unique as initially remarked in [CD14]. We denote this
solution by (a?, 82), and we let N2(a,b) = {(a?, 3%)}. Under this additional normalization,
the previous results remain true. In particular, the directional derivative of W2275 at (a,b)
becomes

(WQZ,E)IE(aa b) : (hla hQ) = <Oég, h’1> + </Bg7 h2>7
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which is a linear map. Hence, by Proposition 2.1 in [FS14], the functional (a,b) — W3 _(a,b)
is Hadamard differentiable in the usual sense on Y5 x Xn. We can thus apply the Delta-
method to prove consistency of the bootstrap in our setting using the bounded Lipschitz
metric defined below.

DEFINITION II1.5. The Bounded Lipschitz (BL) metric is defined for u,v probability
dpr(p,v) = sup

measures on §) by
/hd,u /hdI/
heBL1(Q)

where BL1(2) is the set of real functions @ — R such that ||h|le + ”hHLip <1.

Our main result adapted on the use of bootstrap samples can be stated as follows.
THEOREM II1.6. For Xq,..., X, £ a and Yi,....Y, £ b, let a (resp. b *.) be bootstrap
versions of Gy, (resp. by,) of size n (resp. m).
(1) One sample case: /n(W3 (a5, b)—W3 (an,b)) converges in distribution (conditionally

on X1,...,X,) to (G, « ) for the BL metric, in the sense that
sup |E(h(\/ﬁ(W2275(dn,b) — W3 (a5,0)| X1, Xn] = E[R(G,ad)]| = 0
heBL;(R)

tionally on X1,..., X, Y1,...,Ym) to VO(G,a®) + 1 —0(H, 3°) for the BL metric,
in the sense that

sup ‘E( (pnm(W2s(an7 ) WQE( Ay s m)))|X13"'7XnaY17'~~aYm]
heBL: (R)

(2) Two samples case: pnm(W3 . (a b)) — ng(dn,l;m)) converges in distribution (condi-

~ E[h(VO(G,a®) + VI~ 6(H,B2)]| =0

PROOF. We only prove the one sample case since both convergence can be shown by
similar arguments. We know that \/n(d, — a) tends in distribution to G ~ N(0,X(a)).
Moreover /n(a¥ — a,) converges (conditionally on Xi,...,X,) in distribution to G by
Theorem 3.6.1 in [VDVW96]. Theorem 3.9.11 in the same book, on the consistency of the
Delta-method combined with bootstrap, allows us to conclude. O

I11.4. Numerical experiments with synthetic data

We propose to illustrate Theorem I11.3 and Theorem I11.6 with simulated data consisting
of random measures supported on a p X p square grid of regularly spaced points (x;);=1,.. .~
in R? (with N = p?) for p ranging from 5 to 20. We use the squared Euclidean distance.
Therefore, the cost C' scales with the size of the grid. The range of interesting values
for € is thus closely linked to the size of the grid (as it can be seen in the expression of
K = exp(—C/¢e). Hence, e = 100 for a 5 x 5 grid corresponds to more regularization than
e = 100 for a 20 x 20 grid.

We ran our experiments on Matlab using the accelerate version [TCDP17]" of the
Sinkhorn transport algorithm [Cut13]. Furthermore, we considered the numerical logarith-
mic stabilization described in [SHB ™ 18a] which allows to handle small values of e.

1http ://www.math.u-bordeaux.fr/ npapadak/GOTMI/codes.html
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II1.4. Numerical experiments with synthetic data

IIT.4.1. Convergence in distribution

We first illustrate the convergence in distribution of empirical Sinkhorn divergences (as
stated in Theorem IT1.3) for either the hypothesis Hy with one sample, or the hypothesis
H; with two samples.

Hypothesis Hy - One sample. We consider the case where a is the uniform distri-
bution on a square grid. We generate M = 10% empirical distributions d, (such that nas,
follows a multinomial distribution with parameter a) for different values of n and grid size.
In this way, we obtain M realizations of /n(W3 _(in,a) — W3 _(a,a)), and we use a kernel
density estimate (with a data-driven bandwidth) to compare the distribution of these real-
izations to the density of the Gaussian distribution (G, elog(u)). The results are reported
in Figure III.1.

It can be seen that the convergence of empirical Sinkhorn divergences to its asymptotic
distribution (n — o00) is relatively slow. Moreover, for a fixed number n of observations,
the convergence becomes slower as € increases. We can also notice that for various values
of (n, ), the non-asymptotic distribution of \/n(W3 _(an,a) — W3 (a,a)) seems to be non-
Gaussian. This justifies the use of the bootstrap procedure described in Section III.3.

S W
NI
S e

Grid 5 x5 Grid 20 x 20

Figure III.1. Hypothesis Hy with one sample. Illustration of the con-
vergence in distribution of empirical Sinkhorn divergences for a 5 x 5 grid
(left) and a 20 x 20 grid (right), for e = 1,10, 100 and n ranging from 10?
to 10°. Densities in red (resp. light blue) represent the distribution of

V(W3 (an, a) = W3 _(a,a)) (resp. (G, elog(u))).

Let us now shed some light on the bootstrap procedure described in Section II1.3. The
results on bootstrap experiments are reported in Figure I11.2. From the uniform distribution
a, we generate one random distribution @,. The value of the realization /n(W3 _(n,a) —
Wg’s(a, a)) is represented by the red vertical lines in Figure I11.2.
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Besides, we generate from @,,, a sequence of M = 103 bootstrap samples of random mea-
sures denoted by a; (such that na; follows a multinomial distribution with parameter a,,).
We use again a kernel density estimate (with a data-driven bandwidth) to compare the dis-
tribution of /n(W3 _(a, a) = W3 _(an, a)) to the distribution of \/n(W3_(an,a)—W3 _(a,a))
displayed in Figure II1.1. The green vertical lines in Figure I11.2 represent a confidence inter-
val of level 95%. The observation represented by the red vertical line is consistently located
with respect to this confidence interval, and the density estimated by bootstrap decently
captures the shape of the non-asymptotic distribution of Sinkhorn divergences.

n =103 n = 10* n = 10°
10
X 25 2
~ ; ;
e
=
(@)
n =106
=)
[a\]
X
o
(]
S
—
@)

FiGgure II1.2. Hypothesis Hy with one sample. Illustration of the boot-
strap with ¢ = 1 and two grids of size 5 x 5 and 20 x 20 to ap-
proximate the non-asymptotic distribution of empirical Sinkhorn diver-
gences. Densities in red (resp. light blue) represent the distribution of
V(W3 (an,a) — W3 (a,a)) (resp. (G,elog(u))). The green density repre-
sents the distribution of the random variable /(W3 _(a, a) = W3 _(in, a))
in Theorem III.6.

Hypothesis H; - Two samples. We consider now the setting where a is still a uniform

distribution, and
bx 1y +6(1,2,...,N)

is a distribution with linear trend depending on a slope parameter # > 0 that is fixed to 0.5,
see Figure I11.3.

As previously, we run M = 10 experiments to obtain a kernel density estimation of the
distribution of

pmm(WQQ,a (&na bm) - W22,(-: ((I,, b))v

that we compare to the density of the Gaussian variable with mean 0 and variance

£y/0log(u)tS(a)log(u) + (1 — ) log(v)!X(b) log(v).
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Ficure II1.3. Example of a distribution b with linear trend (with slope
parameter ¢ = 0.5 on a 20 x 20 grid).

The results are reported in Figure I11.4. The convergence of empirical Sinkhorn divergences
to their asymptotic distribution seems to be much faster under the hypothesis H;, but
increasing the regularization parameter still makes this convergence slower.

REMARK II1.7. A possible explanation for the slow convergence under the hypothesis H
is that, in this setting, the Sinkhorn divergence WQQ’E (a,a) is very close to 0, but as soon as we
generate an empirical measure a,, the value of Wis(dn, a) seems to explode in comparison
to the divergence between a and itself.

daidnd
il

Figure II1.4. Hypothesis H; - two samples. Illustration of the conver-
gence in distribution of empirical Sinkhorn divergences for a 5 x 5 grid
(left) and a 20 x 20 grid (right), for ¢ = 1,10, n = m and n ranging
from 103 to 107. Densities in red (resp. blue) represent the distribution of
P (W3 (i, b) = W3 (a,0)) (vesp. VO(G, elog(u)) + V1= 6(H,elog(v))
with 6 = 1/2).

We also report in Figure I11.5 results on the consistency of the bootstrap procedure
under the hypothesis H; with two samples. From the distributions a and b, we generate two
random distributions @, and b,,. The value of the realization V(W3 (an, bp) — W3 (a,b))
is represented by the red vertical lines in Figure II1.5. Then, we generate from a, and
Bm, two sequences of M = 103 bootstrap samples of random measures denoted by a
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and b*,. We use again a kernel density estimate (with a data-driven bandwidth) to com-
pare the green distribution of pp m (W3 (a;, br.) — W3 (i, b)) to the red distribution of
Prm (W3 (i, b)) — W3 _(a,b)) displayed in Figure IIL.5. The green vertical lines in Figure
IT1.5 represent a confidence interval of level 95%. The observation represented by the red
vertical line is consistently located with respect to this confidence interval, and the green den-
sity estimated by bootstrap captures very well the shape and location of the non-asymptotic
distribution of Sinkhorn divergences.

n=m=10° n=m = 10* n=m=10°

Grid 5 x5

Grid 20 x 20

FiGgure II1.5. Hypothesis H; - two samples. Illustration of the bootstrap
with € = 1 and two grids of size 5 x 5 and 20 x 20 to approximate the non-
asymptotic distribution of empirical Sinkhorn divergences. Densities in red
(resp. blue) represent the distribution of pn’m(WiE(dn,lA}m) — W3 _(a,b))
(resp. VO(G, elog(u)) + VT — 0(H,elog(v))). The green density is the dis-
tribution of the random variable py, ., (W3 _ (a5, bx,) — W3 (an, b)) in The-
orem II1.6.

111.4.2. Estimation of test power using the bootstrap

One sample - distribution with linear trend and varying slope parameter.
We illustrate the consistency and usefulness of the bootstrap procedure by studying the
statistical power (that is P(Reject Hy|H; is true)) of statistical tests (at level 5%) based on
empirical Sinkhorn divergences. For this purpose, we choose a to be a distribution with
linear trend whose slope parameter 6 is ranging from 0 to 0.15 on a 5 x 5 grid and b to be
uniform. We assume that we observe a single realization of an empirical measure a,, sampled
from a with n = 10%. Then, we generate M = 10 bootstrap samples of random measures
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a, ; from a, (with 1 < j < M), which allows the computation of the p-value

p-value = #{;j such that \/n|W3 (@, ;,b) = W3 (Gn, b)| = V/n|W3 (an,b) — W3 (a,b)|}/M.

n,j’
This experiments is repeated 100 times, in order to estimate the power (at level a = 5%) of
a test based on /n(W3 _(an,b) — W3 _(a, b)) by comparing the resulting sequence of p-values
to the value a. The results are reported in Figure I11.6.
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FIGURE II1.6. Test power (probability of rejecting Hy knowing that Hy
is true) on a 5 x 5 grid in the one sample case, as a function of the slope
parameter 6 ranging from 0 to 0.15 for e = 1 (blue), ¢ = 5 (orange) and
e = 10 (yellow), with n = 103.

It can be seen that this test is a good discriminant, especially when ¢ is small. As soon
as the slope € increases and b sufficiently differs from a, then the probability of rejecting
Hj increases. Moreover, for a fixed value of the slope parameter 6 of distribution b, the
test power becomes larger as € gets smaller. This suggests the use of a small regularization
parameter € to be more accurate for discriminating two measures using statistical testing
based on empirical Sinkhorn divergences.

IT1.5. Analysis of real data

We consider a dataset containing the locations of reported incidents of crime (with the
exception of murders) in Chicago in 2014 which is publicly available’, and that has been
recently studied in [BCP18b| and [Ger16]. Victims’ addresses are shown at the block
level only (specific locations are not identified) in order to (i) protect the privacy of victims
and (ii) have a sufficient amount of data for the statistical analysis. The city of Chicago
is represented as a two-dimensional grid X = {x,...,xn} of size N = 27 x 18 = 486 of

equi-spaced points z; = (:cgl),x?)) € [1,27] x [1,18] € R2. For each month 1 < k < 12 of

2https://data.cityofchicago.org/Public—Safety/Crimes—2001—to—present/ijzp—q8t2/data
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the year 2014, the spatial locations of reported incidents of crime in Chicago are available.
This yields to a dataset made of 12 empirical measures

N
=Y als,, for 1 <k <12,
i=1

where &gk) is the relative frequency of reported crimes for month k at location z;. We

denote by n = n; the number of reported crimes for month k. This dataset is displayed in
Figure I11.7 and II1.8. To compute the cost matrix C, we use the squared Euclidean distance
between the spatial locations z; € R2.
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F1aure II1.7. Spatial locations of reported incidents (relative frequencies)
of crime in Chicago for the first 6 months of 2014 over a two-dimensional
grid of size 27 x 18.
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I11.5.1. Testing the hypothesis of uniform distribution of crimes locations

We first test the null hypothesis that the distribution of crimes locations over the whole
year 2014 is uniform. To this end, we consider the Euclidean barycenter of the dataset
(ﬁk)lgkgn defined as

T N
M2 = 5 Zﬁk = Z&ﬂ&i
k=1 =1
which represents the locations of crime in 2014. This discrete measure is displayed in Figure
II1.9(a). It can be seen that 712 is a discrete empirical measure consisting of n = 16104
observations such that a; = 0 for many locations x;. We use the one sample testing procedure
described previously, and a bootstrap approach to estimate the distribution of the test
statistics
\/E(WZQ,E (dn? a‘) - W22,5 (CL, a’))
with @, = 712 and a the uniform distribution over the support of 7,2 defined as {x; : a; #
0,1 < i < N}, see Figure IT1.9(b). We report results for e = 1 and £ = 5 by displaying in
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FIGURE II1.8. Spatial locations of reported incidents (relative frequencies)
of crime in Chicago for the last 6 months of 2014 over a two-dimensional
grid of size 27 x 18.
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Figure I11.9(cd) an estimation of the density of the bootstrap statistics \/n(W3 _(a,,a) —
W3 (@n,a)). For both values of ¢, the value of /n(W3 _(an,a) — W3 _(a,a)) is outside the
support of this density, and the null hypothesis that crimes are uniformly distributed (over
the support of 7715 is thus rejected.

I11.5.2. Testing equality across months

We propose now to investigate the possibility of equal distributions of crime locations
between different months. To this end, we first compute a reference measure using data
from the first 6 months. Under the assumption that the distribution of crime locations does
not change from one month to another, it is natural to consider the Euclidean barycenter

18
=g > ik
k=1
as a reference measure to which the data from the last 6 months of 2014 can be compared.
The measure 7 is displayed in Figure II1.10(a) and Figure II1.11(a).
One sample testing. We use the one sample testing procedure described previously,
and a bootstrap approach to estimate the distribution of the test statistics

\/n_k(W22,5 (dnk ) (L) - W22,s(a7 a))

with ¢ = 7 and a,, = M, for 7 < k < 12. We report results for ¢ = 1 by displaying
in Figure I11.10 an estimation of the density of the bootstrap statistics /nx (W3 .(a, ,a) —
W3 (an,,a)), and the values of the observations \/nx (W3 . (an, ,a) — W3 (a,a)) for the last 6
months of 2014. It can be seen that, at level 5%, the null hypothesis that the distribution of
crime locations is equal to the reference measure 7 is accepted for the months of September,
October, November and December, but that it is rejected for the months of July and August.
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(a) (b)

0005

FIGURE II1.9. Testing uniform distribution of crimes locations. (a) Eu-
clidean barycenter 712 (empirical measure corresponding to locations of
crime in Chicago for the whole year 2014 over a two-dimensional grid of size
27 x 18), (b) Uniform distribution a over the support of ;2. Green densi-
ties represent the distribution of the bootstrap statistics \/n(W3 (s, a) —
W3 (G, a)) (vertical bars represent a confidence interval of level 95%) for
(c) e =1 and (d) € = 5. The value of /n(W3_(an,a) — W3 _(a,a)) (with
Gn, = 712) is outside the support [—100, 100] for each value of ¢, and it is
thus not represented.

Alternatively, one may think of using a smoothed Wasserstein barycenter 75 of the data
(k) 1<k<6 as a reference measure that is defined as

6

lg = arg min % > pe (i, m)-
n€Pp(X) ¥ 5

To compute such a smoothed Wasserstein barycenter, we use the algorithmic approach

proposed in [CP16b], and we display 7§ for € = 1 in Figure I11.10(b) and € = 0.3 in Figure

IIL.11(b).

For ¢ = 1, this smoothed Wasserstein barycenters is visually quite different from the
measures (M )7<kr<12 that are displayed in Figure II1.8. For ¢ = 1, we found that using 7§
as a reference measure in one sample testing (with a,, = 7, and a = 7j5) leads to reject the
null hypothesis that the distribution of crime locations is equal to 775 for all 7 < k < 12 (last
6 months of 2014). As a consequence we do not display the corresponding results.

For € = 0.3, the Wasserstein barycenter 7; is a slightly smoothed version of the Euclidean
one 7jg. We display in Figure II1.11 an estimation of the density of the bootstrap statistics
V(W3 (a3, ,a) — W3 (an,,a)), and the values of the observations \/ng(W3 .(an,,a) —
W3 _(a,a)) for the last 6 months of 2014, with a = 7j5 and & = 0.3. At level 5%, the null
hypothesis that the distribution of crime locations is equal to the reference measure 7§ is
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F1GURE II1.10. Testing equality of distributions over months for e = 1 with
the Euclidean barycenter as a reference measure. (a) Euclidean barycenter
fls (empirical measure corresponding to locations of crime in Chicago for
the first 6 months of 2014). (b) Smoothed Wasserstein barycenter 7§ of
the measures (7jx)1<k<e for € = 1. (c)-(h) Green densities represent the
distribution of the bootstrap statistics /ng(W3 _(a, , a) = W3 _(an,, a)) for
the last 6 months of 2014, with a = 7 and a,, = M, for 7 < k£ < 12.
The green vertical bars represent a confidence interval of level 95% for each
density. The red vertical bars represent the value of \/ng(W3_(n,,a) —
W3 (a,a)).

accepted for the months of November and December, just as in the case where the Euclidean
barycenter 7 is the reference measure. However, the null hypothesis is rejected for the four
others months July, August, September and October.

Two samples testing. We finally consider the problem of testing the hypothesis that
the distributions of crime locations between two months (from July to December) are equal
to the reference measure a = 7jg (Euclidean barycenter over the first 6 months of 2014)
using the two samples test statistic based on Sinkhorn divergence for ¢ = 1 and € = 5
combined with a bootstrap procedure. We report in Table 1 and Table 2 the estimated
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F1Gure III1.11. Testing equality of distributions over months for ¢ = 0.3
with the smoothed Wasserstein barycenter as a reference measure. (a)
Euclidean barycenter 7jg (empirical measure corresponding to locations
of crime in Chicago for the first 6 months of 2014). (b) Smoothed
Wasserstein barycenter 7§ of the measures (ix)i<rgs for € = 0.3. (c)-
(h) Green densities represent the distribution of the bootstrap statistics
V(W3 (a5, a) = W3 (Gn,,a)) for the last 6 months of 2014, with a = 7§
and ap, = N, for 7 < k < 12. The green vertical bars represent a confi-
dence interval of level 95% for each density. The red vertical bars represent
the value of \/nx (W3 _(Gin,,a) — W3 _(a,a)).

p-values corresponding to such tests for all pairs of different months from July to December
2014. For both values of ¢ the interpretation of the results is similar. They tend to support
the hypothesis that the distribution of crime locations is the same when comparing two
months among September, October, November and December, and that this distribution is
different when the comparison is done with the month of July. The results for August are
more difficult to interpret, as it can be concluded that the distribution of crime locations
for this month is equal to that of July, September, October and December.
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As remarked in [SM16], there exists a vast literature for two-sample testing using
univariate data. However, in a multivariate setting, it is difficult to consider that there exist
standard methods to test the equality of two distributions. We compare the results that
have been obtained using our approach with those given by a kernel based test proposed
in [AHT94]| that is implemented in the R package ks. The test statistics in [AHT94| uses
the integrated square distance between two kernel-based density estimates computed from
two empirical measures with a data-based choice of bandwidth. We report in Table 3 the
p-values corresponding to this test for all pairs of different months from July to December
2014. It can be seen that the p-values obtained with this test are larger than those obtained
with our testing procedure. Nevertheless, the conclusions on the equality of distributions of
crime locations between different months are roughly the same than previously.

July | August | September | October | November | December
July 1 0.07 0.04 0.01 <1072 0.08
August 1 0.16 0.14 0.01 0.12
September 1 0.18 0.07 0.20
October 1 0.06 0.05
November 1 0.10
December 1

TABLE 1. Two samples testing of equal distributions between pairs of differ-
ent months from July to December using a test statistic based on Sinkhorn
divergence for ¢ = 1 with reference measure a = 7jg (Euclidean barycen-
ter over the first 6 months of 2014). The table reports estimated p-values
using a bootstrap procedure for the test statistics pnk’n((Wis(&nk,l}W) -

W3 .(a,a)) (with a,, = 1) and b,, = i) for 7 < k < £ < 12.

July | August | September | October | November | December
July 1 0.12 0.04 0.01 <1072 0.05
August 1 0.25 0.11 0.01 0.10
September 1 0.40 0.06 0.20
October 1 0.06 0.05
November 1 0.06
December 1

TABLE 2. Two samples testing of equal distributions between pairs of differ-
ent months from July to December using a test statistics based on Sinkhorn
divergence for ¢ = 5 with reference measure a = 7js (Euclidean barycenter
over the first 6 months of 2014). The table reports estimated p-values
using a bootstrap procedure for the test statistics pnkm(WQQ)E(dnk,lA)m) —

W32 _(a,a)) (with a,, =7 and b,, = 7) for 7 < k < £ < 12.
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July | August | September | October | November | December
July 1 0.14 0.04 0.04 0.10 0.09
August 1 0.25 0.06 0.12 0.16
September 1 0.11 0.30 0.30
October 1 0.16 0.14
November 1 0.43
December 1

TABLE 3. Two samples testing with kernel smoothing. The table reports p-
values using the kernel based test proposed in [AHT94] for testing equality
of distributions between different pairs of months from July to December

2014.

Statistical properties of barycenters in the Wasserstein space.
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CHAPTER IV

PRINCIPAL COMPONENT ANALYSIS IN THE
WASSERSTEIN SPACE

This chapter corresponds to the published paper [CSB'18|. The code to reproduce the
results of this chapter is available online '.

IV.1. Introduction

Most datasets describe multivariate data, namely vectors of relevant features that can
be modeled as random elements sampled from an unknown distribution. In that setting,
Principal Component Analysis (PCA) is certainly the simplest and most widely used ap-
proach to reduce the dimension of such datasets. We consider in this chapter the statistical
analysis of data sets whose elements are histograms supported on the real line, and also dis-
cuss extensions to the general case of probability measures supported on the d-dimensional
Euclidean space. Just as with PCA, our main goal in that setting is to compute the princi-
pal modes of variation of histograms around their mean element and therefore facilitate the
visualization of such datasets. However, since the number, size or locations of significant
bins in the histograms of interest may vary from one histogram to another, using standard
PCA on histograms (with respect to the Euclidean metric) is bound to fail (see for instance
Figure IV.1). For the purpose of learning principal modes of variation, we consider the issue
of computing the PCA of histograms with respect to the 2-Wasserstein distance between
probability measures.

Previous work in the one-dimensional case. PCA of histograms with respect
to the Wasserstein metric has also been proposed in [VIB15] in the context of symbolic
data analysis. Their approach consists in computing a standard PCA in the Hilbert space
L2([0,1]) of the quantile functions associated to the histograms. Therefore, the algorithm
in [VIB15] corresponds to log-PCA of probability measures as suggested in [BGKL17], but
it does not solve the problem of convex-constrained PCA in a Hilbert space associated to an
exact GPCA in P2(€). A related problem, which can be referred to as geodesic regression
(considered in [Fle1l1,Flel3] for data on a Riemannian manifold), has been considered by
Jiang et al. in [JLG12] where the authors fit a single geodesic g; to indexed histograms in
order to model nonstationary time series. In the problem of finding principal geodesics, we
do not assume that the dataset is indexed.

1https ://github.com/ecazelles/2017-GPCA-vs-LogPCA-Wasserstein
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FIGURE IV.1. Synthetic example. (Right) A data set of n = 100 Gaussian
histograms randomly translated and scaled. (Top-left) Standard PCA of
this data set with respect to the Euclidean metric. The Euclidean barycen-
ter of the data set is depicted in blue. (bottom-left) Geodesic PCA with
respect to the Wasserstein metric using the iterative geodesic algorithm
(IV.13). The black curve represents the density of the Wasserstein barycen-
ter. Colors encode the progression of the pdf of principal geodesic compo-
nents in Py ().

PGA and log-PCA on Riemannian manifolds. The method of GPCA proposed
in [BGKL17] clearly shares similarities with analogs of PCA for data belonging to a Rie-
mannian manifold M of finite dimension. These methods, generally referred to as Principal
Geodesic Analysis (PGA), extend the notion of classical PCA in Euclidean spaces for the
purpose of analyzing data belonging to curved Riemannian manifolds (see e.g. [FLPJ04,
SLHN10]). This generalization of PCA proceeds by replacing Euclidean concepts of vec-
tor means, lines and orthogonality by the more general notions in Riemannian manifolds
of Fréchet mean, geodesics, and orthogonality in tangent spaces. In [FLPJ04], linearized
PGA, which we refer to as log-PCA, is defined as follows. In a first step, data are mapped
to the tangent space T; M at their Fréchet mean v by applying the logarithmic map log; to
each data point. Then, in a second step, standard PCA in the Euclidean space T; M can
be applied. This provides a family of orthonormal tangent vectors. Principal components
of variation in M can then be defined by back-projection of these tangent vectors on M
by using the exponential map at 7, that is known to parameterize geodesics at least locally.
Log-PCA has low computational cost, but this comes at the expense of two simplifications
and drawbacks:

(1): First, log-PCA amounts to substituting geodesic distances between data points by the
linearized distance in T; M, which may not always be a good approximation because
of the curvature of M, see e.g. [SLHIN10].

(2): Secondly, the exponential map at the Fréchet mean parameterizes geodesics only locally,
which implies that principal components in M obtained with log-PCA may not be
geodesic along the typical range of the dataset.
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Numerical approaches to GPCA and log-PCA in the Wasserstein space. Com-
putational methods have been introduced in [SC15, WSB'13] to extend the concepts of
PGA on Riemannian manifolds to that of the space P3(R?) of probability measures sup-
ported on RY endowed with the Wasserstein metric. [WSB™ 13] propose to compute a notion
of template measure (using k-means clustering) of a set of discrete probability measures, and
to consider then the optimal transport plans from that template measure to each measure in
the data set. Computation of the barycentric projection of each optimal transport plan leads
to a set of Monge maps over which a standard PCA can be applied, resulting in an orthonor-
mal family of tangent vectors defined on the support of the template measure. Principal
components of variation in R? can then be obtained through the push-forward operator,
namely by moving the mass along these tangent vectors. This approach, analog to log-PCA
on Riemannian manifolds, suffers from the main drawbacks mentioned above: for d > 1,
the linearized Wasserstein distance may be a crude approximation of the Wasserstein dis-
tance, and there is no guarantee that the computed tangent vectors parameterize geodesics
of sufficient length to summarize most of the variability in the dataset. Losing geodesicity
means that the principal components are curves in P2 (R9) along which the mass may not be
transported optimally, which may significantly reduce the interpretability of these principal
components. A different approach was proposed in [SC15], in which the notion of gener-
alized geodesics in Py(R?) (see e.g. Chapter 9 in [AGS08]) is used to define a notion of
PGA of discrete probability measures. In [SC15], generalized geodesics are parameterized
using two velocity fields defined on the support of the Wasserstein barycenter. The authors
proposed to minimize directly the distances from the measures in the dataset to these gen-
eralized geodesics, by updating these velocity fields which are constrained to be in opposite
directions. This approach is more involved computationally than log-PCA, but it avoids
some of the drawbacks highlighted above. Indeed, the resulting principal components yield
curves in Py (R%) that are approximately geodesics. Nevertheless, the computational method
in [SC15] uses a heuristic projection on the set of optimal velocity fields, which results in a
algorithm which has no convergence guarantees. Moreover, by optimizing over generalized
geodesics rather than geodesics, it does not solve exactly the problem of computing geodesic
PCA in Py(R%).

In this chapter, we focus on computing an exact GPCA on probability measures sup-
ported on © C R% We mainly focus on the case d = 1 (discussing extensions in the last
section), which has the advantage that the linearized Wasserstein distance in the tangent
space is equal to the Wasserstein distance in the space Po(£2). The main challenge is thus
to obtain principal curves which are geodesics along the range of the dataset.

The first work in this chapter is to propose two fast algorithms for GPCA in Py(Q2).
The first algorithm finds iteratively geodesics such that the Wasserstein distance between the
dataset and the parameterized geodesic is minimized with respect to Po(€2). This approach
is thus somewhat similar to the one in [SC15]. However, a heuristic barycentric projection
is used in [SC15] to remain in the feasible set of constraints during the optimization pro-
cess. In our approach, we rely on proximal operators of both the objective function and the
constraints to obtain an algorithm which is guaranteed to converge to a critical point of the
objective function. Moreover, we show that the global minimum of our objective function
for the first principal geodesic curve corresponds indeed to the solution of the exact GPCA
problem defined in [BGKL17]. While this algorithm is able to find iteratively orthogonal
principal geodesics, there is no guarantee that several principal geodesics parameterize a
surface which is also geodesic. This is the reason we also propose a second algorithm which
computes all the principal geodesics at once by parameterizing a geodesic surface as a con-
vex combination of optimal velocity fields and relaxing the orthogonality constraint between
principal geodesics. Both algorithms are a variant of the proximal Forward-Backward algo-
rithm. They converge to a stationary point of the objective function, as shown by recent
results in non-convex optimization based on proximal methods [ABS13, OCBP14|. Our
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second contribution is a numerical comparison of log-PCA in P»(f2), as done in [BGKL17]
(for d = 1) or [WSB™13|, with our approach which solves the exact Wasserstein GPCA
problem. Finally, we discuss extensions to the case of probability measures supported on
the d-dimensional Euclidean space, providing detailed calculations in the two-dimensional
case, and perform computation of GPCA on a two-dimensional example, comparing results
with the ones obtained with the log-PCA approach.

In all our experiments, data are normalized in order to have a suitable representation
as probability measures. We believe this preprocessing does not affect any useful properties
of the histogram datasets considered in the present article, in the same way as centering or
whitening are often used as a preprocessing step in many data-analysis tasks. Yet, if the
total mass of a given histogram matters for some application, we could consider the use of
unbalanced optimal transport [CPSV18b, LMS18, CPSV18a] which provides a distance
between unnormalized measures. This generalization is out of the scope of this work and
may be an interesting line of research in the future.

In Section IV.2, we provide some background on GPCA in the Wasserstein space Pa(£2),
borrowing material from previous work in [BGKL17]. Section IV.3 describes log-PCA in
P2(£2), and some of its limitations are discussed. Section IV.4 contains the main results
of our work, namely two algorithms for computing GPCA. In Section V.5, we provide
a comparison between GPCA and log-PCA using statistical analysis of real datasets of
histograms. In the last Section IV.6 we discuss extensions of our algorithms to the case
d > 1, and perform GPCA computation on a two-dimensional example, comparing again
results with the log-PCA approach. Some perspectives on this work are also given. Finally,
various details on the implementation of the algorithms are deferred to technical Appendices.

IV.2. Background on Geodesic PCA in the Wasserstein space

IV.2.1. The pseudo Riemannian structure of the Wasserstein space

In what follows, 41, denotes a reference measure in P$¢(2), whose choice will be discussed
later on. The space P2(2) has a formal Riemannian structure described, for example,
in [AGS04]. The tangent space at ju, is defined as the Hilbert space L2 () of real-valued,
pr-square-integrable functions on €2, equipped with the inner product (-,-),, defined by
(U, 0), = Jou(x)v(z)dp, (), u,v € L, (Q), and associated norm | - ||,,,. We define the
exponential and the logarithmic maps at u,, as follows.

DEFINITION IV.1. Let id : @ — Q be the identity mapping. The exponential exp,, —:
L2 (Q) = P2(2) and logarithmic log,, : P2(Q) — L2 () maps are defined respectively as

exp, (v) = (id +v)#pu, and log, (v)=F, oF, —id (Iv.1)

Contrary to the setting of Riemannian manifolds, the “exponential map” exp,, defined
above is not a local homeomorphism from a neighborhood of the origin in the “tangent space”
L7 (Q) to the space P2(Q), see e.g. [AGS04]. Nevertheless, it is shown in [BGKL17] that
exp,, is an isometry when restricted to the following specific set of functions

Vi, () == logur(Pg(Q)) = {logur(u) v e 772(9)} - LZT(Q), (IV.2)
and that the following results hold (see [BGKL17]).

PROPOSITION IV.2. The subspace V,, () satisfies the following properties :

(P1) the exponential map exp,, restricted to V), () is an isometric homeomorphism, with
inverse log, . We have hence Wa(v,n) = ||log, (v)—log, (n)l|lL2 (a)-

W
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(P2) the set V,, (Q) :=log,(P2()) is closed and convex in 12 ().
(P3) the space V,,, (Q) is the set of functions v € L2 (Q) such that T :=id + v is pu,-almost
everywhere non decreasing and that T'(x) € Q, for x € Q.

Moreover, it follows, from [BGKL17], that geodesics in P2(2) are exactly the image
under exp,, = of straight lines in V), (€2). This property is stated in the following lemma.

LEMMA IV.3. Let v : [0,1] — P2(2) be a curve and let vy := log, (7(0)), v1 :=
log,, (v(1)). Then v = (7t)ielo,1) s @ geodesic if and only if v = exp, ((1—t)vo +tv1), for
all t € ]0,1].

IV.2.2. GPCA for probability measures

Let vq,...,v, be a set of probability measures in P$¢(Q). Assuming that each v; is
absolutely continuous simplifies the following presentation, and it is in line with the purpose
of statistical analysis of histograms. We define now the notion of (empirical) GPCA of this
set of probability measures by following the approach in [BGKL17]|. The first step is to
choose the reference measure p,. The natural choice is then the Wasserstein barycenter
ur = v of the v;’s, defined in (A.11), which represents an average location in the data
around which can be computed the principal sources of geodesic variability. Note that it
immediately follows from results in [AC11] that & € P§°(Q2), and that its cdf satisfies

.
Fy =~ Z F,. (IV.3)
=1
To introduce the notion of a principal geodesic subspace of the measures v1, ..., v,, we need

to introduce further notation and definitions. Let G be a subset of P2(£2). The distance
between p € P2(Q2) and the set G is Wa(v, G) = infacg Wa(v, A), and the average distance
between the data and G is taken as

Dw (G) := Zn: Wi (v, G). (IV.4)

S|

DEFINITION IV.4. Let K be some positive integer. A subset G C Pa(Q) is said to be a
geodesic set of dimension dim(G) = K if logm_(G) 18 a convex set such that the dimension
of the smallest affine subspace of ]Lir (Q) containing log,, (G) is of dimension K.

The notion of principal geodesic subspace (PGS) with respect to the reference measure
W = U can now be presented below.

DEFINITION IV.5. Let CL(W) be the metric space of nonempty, closed subsets of P2(2),
endowed with the Hausdorff distance, and

CGo.x(W)={G e CL(W) | v €Gq, G is a geodesic set and dim(G) < K}, K > 1.

A principal geodesic subspace (PGS) of v = (v1,...,v,) of dimension K with respect to v
18 a set

1 n
Gk € argmin Dy (G)= argmin — ZWQQ(V,-,G). (IV.5)
GeCGp, k(W) GEeCGp k(W) T

When K =1, searching for the first PGS of v simply amounts to search for a geodesic
curve v that is a solution of the following optimization problem:

1 n
3 .= arg min { Z W3 (vi,) | 7 is a geodesic in Py(Q) passing through p, = v. }
n

v i=1
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We remark that this definition of (1) as the first principal geodesic curve of variation in
P2(€2) is consistent with the usual concept of PCA in a Hilbert space in which geodesic are
straight lines.

For a given dimension k, the GPCA problem consists in finding a nonempty closed
geodesic subset of dimension k£ which contains the reference measure p,. and minimizes Eq.
(IV.4). We describe in the next section how we can parameterize such sets G.

IV.2.3. Geodesic PCA parameterization

GPCA can be formulated as an optimization problem in the Hilbert space L2(f2). To
this end, let us define the functions w; = log,(v;) for 1 < i < n that corresponds to
the data mapped in the tangent space. It can be easily checked that this set of functions is
centered in the sense that % Z?zl w; = 0. Note that, in a one-dimensional setting, computing
w; (mapping of the data to the tangent space) is straightforward since the optimal maps
T; = F, o Fy between the data and their Fréchet mean are available in a simple and closed
form.

For U = {uy,...,ux} a collection of K > 1 functions belonging to IL2(2), we denote
by Sp(U) the subspace spanned by wy,...,ux. Defining I, v as the projection of v €
L2(9) onto Sp(i), and Hspennv, @)v as the projection of v onto the closed convex set

Sp(U) N V5(92), then we have

PROPOSITION IV.6. Let w; = log,(v;) for 1 < i < n, and U* = {uj,...,u;} be a
minimizer of
1 n
-~ 3 lws = Hspennve @ will2, (IvV.6)
i=1
over orthonormal sets U = {u1,...,ux} of functions in L2(Q) of dimension K (namely

such that (u;,u;)p =0 if j # j" and ||uj|lz = 1). If we let
Gy~ = expy (Sp(U*) N V5()),

then Gy is a principal geodesic subset (PGS) of dimension k of the measures v1,...,
Un, meaning that Gy~ belongs to the set of minimizers of the optimization problem (IV.5).

PROOF. For v € L2(Q) and a subset C' € L2(2), we define d(v,C) = infec ||v — ul|5.
Remark that ), w; = 0. Hence by Proposition 3.3 in [BGKL17|, if /* minimizes

1 & . 1 &
- > d2(wi, SpUT) N V() = - D lwi = Mg ynve @willz,
=1 i=1

then Sp(U*)NV; () € arg min 2 37 | d2(w;, C), where C is taken over all nonempty, closed,
c

convex set of V() such that dim(C) < K and 0 € C. By Proposition 4.3 in [BGKL17],
and since log;(7) = 0, we can conclude that G* is a geodesic subset of dimension K which
minimizes (IV.4). O

Thanks to Proposition IV.6, it follows that GPCA in P5(2) corresponds to a mapping
of the data into the Hilbert space IL2(Q2) which is followed by a PCA in L2(f2) that is
constrained to lie in the convex and closed subset V;(€2). This has to be interpreted as a
geodesicity constraint coming from the definition of a PGS in P2 (£2). Because this geodesicity
constraint is nontrivial to implement, recent works about geodesic PCA in P(Q2) relied on a
heuristic projection on the set of optimal maps [SC15], or relaxed the geodesicity constraint
by solving a linearized PGA [WSB*13, BGKL17|. We describe the latter approach in the
following section.
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1V.3. The log-PCA approach

For data in a Riemannian manifold, we recall that log-PCA consists in solving a lin-
earized version of the PGA problem by mapping the whole data set to the tangent space at
the Fréchet mean through the logarithmic map [FLPJ04]. This approach is computation-
ally attractive since it boils down to computing a standard PCA. [WSB™13] used this idea
to define a linearized PGA in the Wasserstein space Wo(R?), by defining the logarithmic
map of a probability measure as the barycentric projection of an optimal transport plan with
respect to a template measure. This approach has the two drawbacks (1) and (2) of log-PCA
mentioned in the introduction. A third limitation inherent to the Wasserstein space is that
when this template probability measure is discrete, the logarithmic map cannot be defined
straightforwardly as there is no guarantee about the existence of an optimal map solution of
the optimal transport problem. This is why the authors of [WSB*13] had to compute the
barycentric projection of each optimal transport plan, which is obtained by simply averaging
the locations of the split mass defined by this plan. This averaging process is however lossy
as distinct probability measures can have the same barycentric projection.

We consider as usual a subset 2 C R. In this setting, P2(2) is a flat space as shown by
the isometry property (P1) of Proposition IV.2. Moreover, if the Wasserstein barycenter &
is assumed to be absolutely continuous, then Definition I'V.1 shows that the logarithmic map
at v is well defined everywhere. Under such an assumption, log-PCA in P3(Q) corresponds
to the following steps:

(1) compute the log-maps (see Definition IV.1) w; =log, (v;),i=1,...,n,

(2) perform the PCA of the projected data wy, - -+ ,w,, in the Hilbert space IL2(€2) to obtain
K orthogonal directions iy, . .., ux in L2(£) of principal variations,

(3) recover a principal subspace of variation in Py (£2) with the exponential map exp,, (Sp(/))
of the principal eigenspace Sp(2/) in L2(€2) spanned by @1, ..., k.

For specific datasets, log-PCA in P2(2) may be equivalent to GPCA, in the sense that
the set exp,, (Sp(U) N V() is a principal geodesic subset of dimension K of the measures
Vi,...,Vn, as defined by (IV.5). Informally, this case corresponds to the setting where the
data are sufficiently concentrated around their Wasserstein barycenter & (we refer to Remark
3.5 in [BGKL17]| for further details). However, carrying out a PCA in the tangent space
of W3(R) at v is a relaxation of the convex-constrained GPCA problem (IV.6), where the
elements of the sought principal subspace do not need to be in V3. Indeed, standard PCA

in the Hilbert space L2 () amounts to finding U = {i,, ..., ix } minimizing,
1 n
E Z ”wl - HSp(Z/{)wi||1277 ) (IV7)
i=1
over orthonormal sets U = {uy,...,ux} of functions in L2(Q). It is worth noting that the

three steps of log-PCA in P(Q2) are simple to implement and fast to compute, but that
performing log-PCA or GPCA (IV.6) in P5(f2) are not necessarily equivalent.

Log-PCA is generally used for two main purposes. The first one is to obtain a low dimen-
sional representation of each data measure v; = exp; (w;) through the coefficients (w;, @ ) 12 .
From this low dimensional representation, the measure v; € P2(2) can be approximated
through the exponential mapping exp;, (Igps)wi). The second one is to visualize each mode
of variation in the dataset, by considering the evolution of the curve ¢ — expg (tiy,) for each
U € Z;{

However, relaxing the convex-constrained GPCA problem (IV.6) when using log-PCA
results in several issues. Indeed, as shown in the following paragraphs, not taking into
account this geodesicity constraint makes difficult the computation and interpretation of
exp, (Sp(U)) as a principal subspace of variation, which may limit its use for data analysis.
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Numerical implementation of pushforward operators. A first downside to the
log-PCA approach is the difficulty of the numerical implementation of the pushforward
operator in the exponential map exp;(v) = (id + v)#v when the mapping id + v is not
a strictly increasing function for a given vector v € Sp(Z:{). This can be shown with the
following proposition, which provides a formula for computing the density of a pushforward
operator.

PROPOSITION IV.7. (Density of the pushforward) Let u € Po(R) be an absolutely con-
tinuous measure with density p (that is possibly supported on an interval @ C R). Let
T : R — R be a differentiable function such that |T"(x)| > 0 for almost every x € R, and
define v = TH#u. Then, v admits a density g given by,

gly) = Z u'?,((g;)), yeR. (IV.8)
z€T~1(y)

When T is injective, this simplifies to,

_ (T (y)
(y) = (T ()] (Iv.9)

PROOF. Under the assumptions made on 7', the coarea formula (which is a more general
form of Fubini’s theorem, see e.g. [KP 08| Corollary 5.2.6 or [EG15] Section 3.4.3) states
that, for any measurable function i : R — R, one has

/]R h(@)| T (2)|dz — /R S h@)dy. (IV.10)

z€T~1(y)
Let B a Borel set and choose h(x) = %1']‘—1(3)7 x. Hence, using (IV.10), one obtains that

_ p(z) eV —
/Tl(B)p(x)dx_/R 2 ()] 7 (2 )y /B 2

zeT—1(y) z€T~1(y)

p(x)
7" ()]

The definition of the pushforward v(B) = u(T~1(B)) then completes the proof. O

The numerical computation of formula (IV.8) or (IV.9) is not straightforward. When T'
is not injective, computation of the formula (IV.8) must be done carefully by partitioning
the domain of T in sets on which T is injective. Such a partitioning depends on the method

of interpolation for estimating a continuous density p from a finite set of its values on a grid
p(z)

Y T (z
the density of v = T#u may exhibit large peaks, see Fliglirél 1V.2 for an illustrative example.

Pushforward of the barycenter outside the support Q. A second downside of
log-PCA in P5(Q) is that the range of the mapping T; = id + Iy, ¢pwi may be larger
than the interval 2. This implies that the density of the pushforward of the Wasserstein
barycenter v by this mapping, namely expD(HSp(mwi), may have a support which is not
included in Q. This issue may be critical when trying to estimate the measure v; = expg (w;)
by its projected measure expD(HSp(d)wi). For example, in a dataset of histograms with bins
necessarily containing only nonnegative reals, a projected distribution with positive mass on
negative reals would be hard to interpret.

A higher Wasserstein reconstruction error. Finally, relaxing the geodesicity con-
straint (IV.6) may actually increase the Wasserstein reconstruction error with respect to the
Wasserstein distance. To state this issue more clearly, we define the reconstruction error of
log-PCA as

of reals. More importantly, when 7”(x) is very small may become very irregular and

oL
rU) = n Z W22 (VianpD(HSp(g)wi))~ (IV.11)
i=1
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F1aure IV.2. (Left) Distribution of the total precipitation (mm) collected
in a year in 1 < ¢ < 5 stations among 60 in China - Source : Climate
Data Bases of the People’s Republic of China 1841-1988 downloaded from
http://cdiac.ornl.gov/ndps/tr055.html. The black curve is the density of
the Wasserstein barycenter of the 60 stations. (Middle) Mapping T; =
id + Hgp(q,)w; obtained from the projections of these 5 distributions onto
the second eigenvector s given by log-PCA of the whole dataset. (Right)
Pushforward exp;, (Ilgp(a,)wi) = Ti#v of the Wasserstein barycenter v for
each 1 <4 < 5. As the derivative T} take very small values, the densities
of the pushforward barycenter T;#v for 1 < i < 5 exhibit large peaks
(between 0.4 and 0.9) whose amplitude is beyond the largest values in the
original data set (between 0.08 and 0.12).

and the reconstruction error of GPCA as

n
rU*) == W3 (v, expy (Mspae v ()wi)) - (Iv.12)
=1

where U* is a minimizer of (IV.6). Note that in (IV.11), the projected measures expy (Ilg, 7y wi)
might have a support that lie outside Q. Hence, the Wasserstein distance W5 in (IV.11)
has to be understood for measures supported on R (with the obvious extension to zero of v;
outside ).

The Wasserstein reconstruction error #(1/) of log-PCA is the sum of the Wasserstein
distances of each data point v; to a point on the surface exp, (Sp(&/)) which is given by the
decomposition of w; on the orthonormal basis . However, by Proposition IV.2, the isometry
property (P1) only holds between P3(R) and the convex subset Vi C L2(R). Therefore,
we may not have W (Vi,expf, (Hsp(d)‘*’i)) = |lw; — Hsp(d)wi”ff as Hsp(d)wi is a function
belonging to L2 (R) which may not necessarily be in V. In this case, the minimal Wasserstein
distance between v; and the surface exp; (Sp(U/*)) is not equal to ||w; —IIgps)wil|z, and this

leads to situations where 7#(U) > r(U*) as illustrated in Figure IV.3.
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FiGURE IV.3. Comparison of the Wasserstein reconstruction error between
GPCA and log-PCA on the synthetic dataset displayed in Figure IV.1 for
the first component, with an illustration of the role of the parameter ty in
(IV.14).

IV.4. Two algorithmic approaches for GPCA in P,(Q2), for Q C R

In this section, we introduce two algorithms which solve some of the issues of log-
PCA that have been raised in Section IV.3. First, the output of the proposed algorithms
guarantees that the computation of mappings to pushforward the Wassertein barycenter to
approximate elements in the data set are strictly increasing (that is they are optimal). As a
consequence, the resulting pushforward density behaves numerically much better. Secondly,
the geodesic curve or surface are constrained to lie in P(Q2), implying that the projections
of the data are distributions whose supports do not lie outside €.

IV.4.1. Iterative geodesic approach

In this section, we propose an algorithm to solve a variant of the convex-constrained
GPCA problem (IV.6). Rather than looking for a geodesic subset of a given dimension
which fits well the data, we find iteratively orthogonal principal geodesics (i.e. geodesic set
of dimension one). Assuming that that we already know a subset U*~1 C L2(Q) containing
k — 1 orthogonal principal directions {ul}fz_ll (with U° = ), our goal is to find a new
direction u, € LZ(Q2) of principal variation by solving the optimization problem:

n
u;, € arg min 1 > lwi = Mgy @will2, (IV.13)
vlyk—1 M1 i1

where the infimum above is taken over all v € L2 (£2) belonging to the orthogonal of /% 1.
This iterative process is not equivalent to the GPCA problem (IV.6), with the exception
of the first principal geodesic (k = 1). Nevertheless, it computes principal subsets U* of
dimension k such that the projections of the data onto every direction of principal variation
lie in the convex set V.

The following proposition is the key result to derive an algorithm to solve (IV.13) on
real data.

PROPOSITION IV.8. Introducing the characteristic function of the convex set Vi (Q) as:

[0 ifveVy()
Xv, () (V) = { +o00  otherwise
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the optimization problem (IV.13) is equivalent to
up =arg min  min _H(¢o,v), (IV.14)
vluk—1 to€[—1;1]

where
n

1 .
H(to,v) = w2, i llws = (to +t:)vl|2 + xv, ) (to — 1D)v) + Xy, () (fo + 1)v). (IV.15)
i=1'"t
PrOOF. We first observe that Ilgp)nv, @wi = Biu, with f; € R and Biu € V().
Hence, for uy, solution of (IV.13), we have:
1< TR~ 5
n Z [|w; — HSp(uk)ﬂVp(Q)wi”D n Z lwi = Biug -
i=1 i=1

such that 8; € R and Biu, € Vp(Q2) for all i € {1,...,n}. We take M € argmax;;<,, 5

and m € arg min ;. Without loss of generality, we can assume that 5p; > 0 and S, < 0.
1<i<n

We then define v = (By — B )y, /2 and to = (Bar + Bm)/(Bym — Bm), that checks [to] < 1.
Hence, for all i = 1,...,n, there exists t; € [—1;1] such that: Byu, = (to +t;)v € V. In
particular, one has tp; = 1 and ¢, = —1, which means that (to +1)v € V5(Q). Reciprocally,
(to £ 1)v € V() ensures us by convexity of V5(Q) that for all ¢; € [—1;1], (to + t;)v €
Vo (Q). O

Proposition V.8 may be interpreted as follows. For a given to € [—1;1], let v € L ¢*~1
satisfying (to — 1)v € Vi and (to + 1)v € V. Then, if one defines the curve

gt(to,v) = (id + (to + t)v)#w for t € [-1;1], (IV.16)

it follows, from Lemma IV.3, that (g:(to,v))ie[—1;1] is a geodesic since it can be written
as gt(to,v) = expg((1 — w)wo + vwy),u € [0,1] with wy = (tg — v, wy = (to + 1)v,
u = (t+1)/2, and with wy and w; belonging to V3 for |tg| < 1. From the isometry property
(P1) in Proposition IV.2, one has

min |lw; — (to +t)v[|2 = min W2(vy, gr, (v)), (IvV.17)

ti€[—1;1] ti€[—151]

and thus the objective function H(tg,v) in (IV.14) is equal to the sum of the squared
Wasserstein distances between the data set and the geodesic curve (g¢(to,v))ee[—1;1]-

The choice of the parameter ¢ty corresponds to the location of the mid-point of the
geodesic g+(to,v), and it plays a crucial role. Indeed, the minimization of H(tg,v) over
to € [-1;1] in (IV.14) cannot be avoided to obtain an optimal Wasserstein reconstruction
error. This is illustrated by the Figure IV.3, where the Wasserstein reconstruction error
7(U) of log-PCA (see equation (IV.11)) is compared with the ones of GPCA, for different
to, obtained for £k =1 as

to € [1;1] — H(to,uy)
with ul® = arg min H(t,v). This shows that GPCA can lead to a better low dimensional

v
data representation than log-PCA in term of Wasserstein residual errors.
IV.4.2. Geodesic surface approach

Once a family of vectors (vy,- - ,v) has been found through the minimization of prob-
lem (IV.13), one can recover a geodesic subset of dimension k by considering all convex
combinations of the vectors ((t§ + 1)v1, (t§ — vy, -, (t& + Vv, (t5 — 1)vg). However, this
subset may not be a solution of (IV.6) since we have no guarantee that a data point v; is
actually close to this geodesic subset. This discussion suggests that we may consider solv-
ing the GPCA problem (IV.6) over geodesic set parameterized as in Proposition IV.13. In
order to find principal geodesic subsets which are close to the data set, we consider a family
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VE = (vy,--+ ,vg) of linearly independant vectors and t& = (t},--- ,t&) € [-1,1]¥ such
that (t5 — Dvy, (¢85 + Doy, -+, (15 — Dk, (¢ + 1)vk are all in V3. Convex combinations
of the latter family provide a parameterization of a geodesic set of dimension K by taking
the exponential map exp;, of
K
Vo(VE t5) = {Z( TR+ 1)+ ap (th — 1), aF € A} (IV.18)
k=1
where A is a simplex constraint: a® € A < a;, a, > 0and Zszl(aﬁ +a, ) < 1. We hence
substitute the general sets Sp(U4) N V5 (2) in the definition of the GPCA problem (IV.6) to
obtain,

(ug, g )—aﬁrﬁngzwz— v aywillZs
K
Sargmin Wi Z tpin i ;m;(té +1) + ag (th — 1D)uxl2
(IV.19)
K n
+ Z XVy (Q + 1)vk) + Xvi ) (8§ — 1)vk)) + ZXA(@i)
k=1 i=

IV.4.3. Discretization and Optimization

In this section we follow the framework of the iterative geodesic algorithm. We provide
additional details when the optimization procedure of the geodesic surface approach differs
from the iterative one.

IV.4.3.1. Discrete optimization problem

Let Q = [a;b] be a compact interval, and consider its discretization over N points
a=x1<x2<--<zn=bAj=xj41—2;,j=1,...,N —1. Werecall that the functions
w; = log, (v;) for 1 < i < n are elements of L2(Q2) which correspond to the mapping of
the data to the tangent space at the Wasserstein barycenter v. In what follows, for each
1 < i < n, the discretization of the function w; over the grid reads w; = (w] )évzl € RV,
We also recall that x 4(w) is the characteristic function of a given set A, namely x 4(u) =0
if u € A and +o0o otherwise. Finally, the space RN is understood to be endowed with
the following inner product and norm (u,v)y; = Zjvzl F(xj)ujv; and ||[v||2 = (v,v) for
u,v € RN, where f denotes the density of the measure . Let us now suppose that we have
already computed k — 1 orthogonal (in the sense (u,v); = 0) vectors u;,---u,_; in RY
which stand for the discretization of orthonormal functions w1, ..., u,_1 in LZ() over the
gI‘ld (x])] 1

Discretizing problem (IV.14) for a fixed ty €] — 1;1[, our goal is to find a new direction
u, € R¥ of principal variations by solving the followmg problem over all v = {v] V| ERN:

1
w, € argmin =3 ( min | [[wi — (& +mv:f;> T s )+ xu (o — V) 4 xur(fo + 1)v),
vERN ’I’Lz 1 tie[—1;1

IV.20)
where S = {v € R¥s.t. (v,u)p = 0,1l =1---k — 1} is a convex set that deals W<1th the

orthogonality constraint v | &/*~! and V corresponds to the discretization of the constraints
contained in V(). From Proposition IV.2 (P3), we have that Vv € V5(Q), T :=id + v is
non decreasing and T'(x) € 2 for all € Q. Hence the discrete convex set V is defined as

V={veRVst zj1+vj1>2;+v;,j=1---N—1and z; +vj € [a;b], j=1---N}
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and can be rewritten as the intersection of two convex sets dealing with each constraint
separately.

ProrosITION IV.9. One has
xv ((to — 1)v) + xv ((to + 1)v) = xp(v) + xg(KV),

where the conver sets D and E respectively deal with the domain constraints x;+ (to+1)v; €
[a;b] and z; + (to — L)v; € [a;b], d.e.:

D={veR"N st m; <v; <M}, (IV.21)
with m; = max (‘Z‘)—f{, lzo__m{) and M; = min ((ZO__I{, i;j{) , and the non decreasing con-
straint of id + (to £ 1)v:

E={zecRVst. —1/(to+1) <z <1/(1—ty)}. (IV.22)

with the differential operator K : RN — RN computing the discrete derivative of v € R™ as
_ ] i — )/ (@i — ) f1<j <N

(Kv),; = { 0 ifi= N (IV.23)

Having D and E both depending on ty is not an issue since problem (IV.20) is solved
for fixed tg.
Introducing t = {¢;}_; € R™, problem (IV.20) can be reformulated as:

veRN teR”

min min J(v,t) == Y [lw; — (to + )V +xs(V) + xp(v) + X5 (KV) + xpp (b).
=1

G(v,t)
F(v,t)

(IV.24)
where B is the L ball of R™ with radius 1 dealing with the constraint ¢; € [—1;1]. Notice
that F' is differentiable but non-convex in (v,t) and G is non-smooth and convex.

Geodesic surface approach. For fixed (t},...,t&) € RX and o = {a],a; } K |,
the discretized version of (IV.19) is then

min min  F'(v,t) + G'(v,t), (IV.25)

where F'(v,t) = >0 | [|w; — Zszl(a;;(tlg + 1) + a;, (th — 1))vi||% is still non-convex and
differentiable, G'(v,t) = Zle (xg(Evi) + xp, (Vi) + >y X 4(a)? is convex and non
smooth, A is the simplex of R?X and Dy, is defined as in (IV.21), depending on t5. We recall
that the orthogonality between vectors vy is not taken into account in the geodesic surface
approach.

IV.4.3.2. Optimization through the Forward-Backward Algorithm

Following [ABS13], in order to compute a critical point of problem (IV.24), one can
consider the Forward-Backward algorithm (see also [OCBP14]| for an acceleration using
inertial terms). Denoting as X = (v,t) € RV*" taking 7 > 0 and X(© € RN*" it reads:

XD = Prox,o(X® — rVF(X®)), (IV.26)

where Prox,q(X) = arg min =X — X|]? +G(X) with the Euclidean norm ||-||. In order to
X

guarantee the convergence of this algorithm, the gradient of F' has to be Lipschitz continuous
with parameter M > 0 and the time step should be taken as 7 < 1/M. The details of
computation of VF' and Prox,¢ for the two algorithms are given in Appendix IV.7.
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IV.5. Statistical comparison between log-PCA and GPCA on
synthetic and real data

IV.5.1. Synthetic example - Iterative versus geodesic surface approaches

First, for the synthetic example displayed in Figure IV.1, we compare the two algo-
rithms (iterative and geodesic surface approaches) described in Section IV.4. The results
are reported in Figure V.4 by comparing the projection of the data onto the first and sec-
ond geodesics computed with each approach. We also display the projection of the data
onto the two-dimensional surface generated by each method. It should be recalled that the
principal surface for the iterative geodesic algorithm is not necessarily a geodesic surface but
each gy (tf, uk)ie(—1,1) defined by (IV.16) for k = 1,2 is a geodesic curve for U = {uy,uz}.
For data generated from a location-scale family of Gaussian distributions, it appears that
each algorithm provides a satisfactory reconstruction of the data set. The main divergence
concerns the first and second principal geodesic. Indeed enforcing the orthogonality between
components in the iterative approach enables to clearly separate the modes of variation in
location and scaling, whereas searching directly a geodesic surface in the second algorithm
implies a mixing of these two types of variation.

Note that the barycenter of Gaussian distributions A/ (m;, 0?) can be shown to be Gauss-
ian with mean > m; and variance (3 0;)2.

First PG Second PG Principal Surface Data set
06 0.06 0. T

0.03

0.02

Iterative Geodesic Algorithm
o
o

Geodesic surface algorithm

\ \.\
0 100

0

FIGURE IV.4. Synthetic example - Data sampled from a location-scale fam-
ily of Gaussian distributions. The first row is the GPCA of the data set
obtained with the iterative geodesic approach. The second row is the GPCA
through the geodesic surface approach. The black curve is the density of
the Wasserstein barycenter. Colors encode the progression of the pdf of
principal geodesic components in Py (£2).
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IV.5.2. Population pyramids

As a first real example, we consider a real dataset whose elements are histograms rep-
resenting the population pyramids of n = 217 countries for the year 2000 (this dataset is
produced by the International Programs Center, US Census Bureau (IPC, 2000), available
at https://www.census.gov/programs-surveys/international-programs.html). Each
histogram in the database represents the relative frequency by age, of people living in a
given country. Each bin in a histogram is an interval of one year, and the last interval
corresponds to people older than 85 years. The histograms are normalized so that their
area is equal to one, and thus they represent a set of pdf. In Figure IV.5, we display the
population pyramids of 4 countries, and the whole dataset. Along the interval Q = [0, 84],
the variability in this dataset can be considered as being small.

Data set

50
Bulgaria

0.0a

0.03

0.02

0.01

o

50
Chile

0.0a

0.03

0.02

F1cure IV.5. Population pyramids. A subset of population pyramids for
4 countries (left) for the year 2000, and the whole dataset of n = 217
population pyramids (right) displayed as pdf over the interval [0, 84].

For K = 2, log-PCA and the iterative GPCA algorithm lead to the same principal
orthogonal directions in L2 (f2), namely that %; = u} and iy = u} where (1, iz) mini-
mizes (IV.7) and (u},u3) are minimizers of (IV.14). In this case, all projections of data
w; = log;(v;) for i = 1,...,n onto Sp({uy,as}) lie in V5 (), which means that log-PCA
and the iterative geodesic algorithm lead exactly the same principal geodesics. Therefore,
population pyramids is an example of data that are sufficiently concentrated around their
Wasserstein barycenter so that log-PCA and GPCA are equivalent approaches (see Remark
3.5 in [BGKL17]| for further details). Hence, we only display in Figure IV.6 the results of
the iterative and geodesic surface algorithms.

In the iterative case, the projection onto the first geodesic exhibits the difference be-
tween less developed countries (where the population is mostly young) and more developed
countries (with an older population structure). The second geodesic captures more subtle
divergences concentrated on the middle age population. It can be observed that the geo-
desic surface algorithm gives different results since the orthogonality constraint on the two
principal geodesics is not required. In particular, the principal surface mainly exhibit differ-
ences between countries with a young population with countries having an older population
structure, but the difference between its first and second principal geodesic is less contrasted.

IV.5.3. Children’s first name at birth

In a second example, we consider a dataset of histograms which represent, for a list of
n = 1060 first names, the distribution of children born with that name per year in France
between years 1900 and 2013. In Figure IV.7, we display the histograms of four different
names, as well as the whole dataset. Along the interval @ = [1900,2013], the variability in
this dataset is much larger than the one observed for population pyramids. This dataset has
been provided by the INSEE (French Institute of Statistics and Economic Studies).
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F1GURE IV.6. Population pyramids. The first row is the GPCA of the
data set obtained with the iterative geodesic approach. The second row is
the GPCA through the geodesic surface approach. The first (resp. second)
column is the projection of the data into the first (resp. second) principal
direction. The black curve is the density of the Wasserstein barycenter.
Colors encode the progression of the pdf of principal geodesic components
in PQ(Q)
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Figure IV.7. Children’s first name at birth. An subet of 4 histograms
representing the distribution of children born with that name per year in
France, and the whole dataset of n = 1060 histograms (right), displayed as
pdf over the interval [1900, 2013]

This is an example of real data where log-PCA and GPCA are not equivalent procedures
for K = 2 principal components. We recall that log-PCA leads to the computation of
principal orthogonal directions 1, @iz in L2 (£2) minimizing (IV.7). First observe that in the
left column of Figure IV.8, for some data w; = log, (1), the mappings T; = id + Hsp(ra, pwi
are decreasing, and their range is larger than the interval  (that is, for some z € 2, one
has that T;(z) ¢ Q). Hence, such T} are not optimal mappings. Therefore, the condition
g, ywi € Va(Q) for all 1 < i < n (with U = {d1,1z}) is not satisfied, implying that
log-PCA does not lead to a solution of GPCA thanks to Proposition 3.5 in [BGKL17].

Hence, for log-PCA, the corresponding histograms displayed in the right column of
Figure IV.8 are such that Ig,a,pywi ¢ Vu(Q2). This implies that the densities of the
projected measures expy, (Ilgp(a,)wi) have a support outside @ = [1900,2013]. Hence, the
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FIGURE IV.8. Children’s first name at birth with support = [1900, 2013].
(Left) The dashed red curves represent the mapping T, =id + Msp(a, ywi
where w; = log, (), and @ is the first principal direction in L2 () obtained
via log-PCA. The blue curves are the mapping 7; = id +IIgp({ys})wi, where
u} is the first principal direction in L2 (Q) obtained via the iterative algo-
rithm. (Right) The histogram stands for the pdf of measures v; that have a
large Wasserstein distance with respect to the barycenter v. The red curves
are the pdf of the projection exp (Ilgp(q,)w;) with log-PCA, while the blue
curves are the pdf of the projection exp, (Igp(urywi) with GPCA.

estimation of the measure v; = expg(w;) by its projection onto the first mode of variation
obtained with log-PCA is not satisfactory.

In Figure IV.8, we also display the results given by the iterative geodesic algorithm,
leading to orthogonal directions uj,u3 in L2(£2) that are minimizers of (IV.14). Contrary
to the results obtained with log-PCA, one observes in Figure V.8 that all the mapping T; =
id + Ilgp({urpwi are non-decreasing, and such that T;(z) € (2 for all z € Q. Nevertheless, by
enforcing these two conditions, one has that a good estimation of the measure v; = exp (w;)
by its projection expD(Hsp(uf)wi) is made difficult as most of the mass of v; is located
at either the right or left side of the interval ) which is not the case for its projection.
The histograms displayed in the right column of Figure IV.8 correspond to the elements in
the dataset that have a large Wasserstein distance with respect to the barycenter ©. This
explains why it is difficult to have good projected measures with GPCA. For elements in the
dataset that are closest to ¥, the projected measures expy, (Isp(a,)wi) and expy (Hgp(xywi)
are much closer to v; and for such elements, log-PCA and the iterative geodesic algorithm
lead to similar results in terms of data projection.

To better estimate the extremal data in Figure V.8, a solution is to increase the support
of the data to the interval Qg = [1850,2050], and to perform log-PCA and GPCA in the
Wasserstein space W5(€o). The results are reported in Figure IV.9. In that case, it can
be observed that both algorithms lead to similar results, and that a better projection is
obtained for the extremal data. Notice that with this extended support, all the mappings
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IV.6. Extensions beyond d > 1 and some perspectives

T, =id + sy (fa,})wi obtained with log-PCA are optimal in the sense that they are non-
decreasing with a range inside €.

Finally, we display in Figure IV.10 and Figure IV.11 the results of the iterative and
geodesic surface algorithms with either Q = [1900,2013] or with data supported on the
extended support 5 = [1850,2050]. The projection of the data onto the first principal
geodesic suggests that the distribution of a name is deeply dependent on the part of the
century. The second geodesic expresses a popular trend through a spike effect. In Figure
IV.10, the artefacts in the principal surface that are obtained with the iterative algorithm
at the end of the century, correspond to the fact that the projection of the data w; onto the
surface spanned by the first two components is not ensured to belong to the set V5 (Q).

.
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F1Ggure 1V.9. Children’s first name at birth with extended support Qy =
[1850,2050]. (Left) The dashed red curves represent the mapping T; =
id + Mgp(a, pywi where w; = log; (1), and @, is the first principal direc-
tion in L2(Q) obtained via log-PCA. The blue curves are the mapping
T; = id + Ilgp({us pwi, where uj is the first principal direction in L2(Q)
obtained via the iterative algorithm. (Right) The histogram stands for
the pdf of measures v; that have a large Wasserstein distance with re-
spect to the barycenter v. The red curves are the pdf of the projection
expy (Igp(a,)wi) with log-PCA, while the blue curves are the pdf of the
projection expy, (Ilgp(uryw;) with GPCA.

IV.6. Extensions beyond d > 1 and some perspectives

We now briefly show that our iterative algorithm for finding principal geodesics can be
adapted to the general case d > 1. This requires to take into account two differences with
the one-dimensional case. First, the definition of the space V), (€2) in IV.1 relies on the
explicit close-form solution (IV.1) of the optimal transport problem which is specific to the
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Figure IV.10. Children’s first name at birth with support Q =
[1900,2013]. The first row is the GPCA of the data set obtained with
the iterative geodesic approach. The second row is the GPCA through the
geodesic surface approach. The first (resp. second) column is the projection
of the data into the first (resp. second) principal direction. The black curve
is the density of the Wasserstein barycenter. Colors encode the progression
of the pdf of principal geodesic components in Py ().
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F1GUre IV.11. Children’s first name at birth with extended support Qg =
[1850,2050]. The first row is the GPCA of the data set obtained with
the iterative geodesic approach. The second row is the GPCA through the
geodesic surface approach. The first (resp. second) column is the projection
of the data into the first (resp. second) principal direction. The black curve
is the density of the Wasserstein barycenter. Colors encode the progression
of the pdf of principal geodesic components in Pa(£2).
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IV.6. Extensions beyond d > 1 and some perspectives

one-dimensional case. We must hence provide a more general definition of V,, (£2). Second,
the isometry property (P1) does not hold for d > 1, so that Wasserstein distances cannot be
replaced by the L2 norm between log-maps as in (IV.17) and must be explicitly computed
and differentiated.

Definition of V, (Q2) in the general case. In the one dimensional case, V), (Q2) is
characterized in Proposition IV.2 (P3) as the set of functions v € L2 (€2) such that T := id+v
is p-almost everywhere non decreasing. A important result by Brenier [Bre91] is that, in
any dimension, if u, does not give mass to small sets, there exists an optimal mapping
T e Lir (©) between pu, and any probability measure v, and T is equal to the gradient of a
convex function u, i.e. T'= Vu. Therefore we define the set V,, (£2) as the set of functions
UNS Lir () such that id + v = Vu for an arbitrary convex function w.

In order to deal with the latter constraint, we note it implies that div(v) > —1. Indeed,
assuming that id + v = Vu, then u being a convex potential involves div(Vu) > 0 which is
equivalent to div(id +v) = div(v) +1 > 0. We therefore choose to substitute this constraint
by the constraint div(v) > —1.

General objective function. Without the isometry property (P1), the objective
function H (to, v) in (IV.15) must be written with the explicit Wasserstein distance Wa,

H(to,v) Zt g[llfll . W3 Vi, g1, (t0,0)) + Xv,, (0 (fo = 1)) + Xy, (o ((to + D), (IV.27)
where g;(to,v) = (id + (to + t)v)#v for ¢ € [—1;1] as defined in (IV.16). Optimizing over
both the functions v € (R)" and the projection times t, the discretized objective function
to minimize is,

J(v,t) W3 (v;, gu, (to, v K . (t). (IV.28
Inin min (v,t) z; 3 (Vis 9t (to, v)) + x5 (v) + Xg(KV) + xp(Vv) + Xpr(t) . ( )

G(v,t)
F(v,t)

where K is a discretized divergence operator, and F = {z € RV ﬁ <z < ﬁ},
D ={v : id+ (to £ 1)v € Q} deals with the domain constraint and S deals with the
orthogonality constraint w.r.t. to the preceding principal components. As for the one-
dimensional case, we minimize J through the Forward-Backward algorithms detailed in the
appendix 1V.7.2.

Extension to higher dimensions is straightforward. However, considering that we have
to discretize the support of the Wasserstein mean v, the approach becomes intractable for
d>3.

IV.6.1. Application to grayscale images

We consider the MNIST dataset [LeC98] which contains grayscale images of handwrit-
ten digits. All the images have identical size 28 x 28 pixels. Each grayscale image, once
normalized so that the sum of pixel grayscale values sum to one, can be interpreted as
a discrete probability measure, which is supported on the 2D grid of size 28 x 28. The
ground metric for the Wasserstein distance is then the 2D squared Euclidean distance be-
tween the locations of the pixels of the two-dimensional grid. We compute the first principal
components on 1000 images of each digit. Wasserstein barycenters, which are required as
input to our algorithm, are approximated efficiently through iterative Bregman projections
as proposed in [BCC'15]. We use the network simplex algorithm” to compute Wasserstein
distances.

Figure 1V.12 displays the results obtained with our proposed forward-backward algo-
rithm (with ¢ set to 0 for simplicity), and the ones given by Log-PCA as described in section

2http://liris.cnrs.fr/”nbonneel/FastTransport/

114 Elsa Cazelles


http://liris.cnrs.fr/~nbonneel/FastTransport/

CHAPTER 1V. Principal component analysis in the Wasserstein space

IV.3. These two figures are obtained by sampling the first principal components. We then
use kernel smoothing to display the discrete probability measures back to the original grid
and present the resulting grayscale image with an appropriate colormap.

o
o
o
o
o
N
o
o
o
o
o
o
o
o
N
N
S

~]
o Nevo]< [w]w]~|

N
N

SN S]R]N]

1l
22
3/3
4.4
5|8
6

77
88
allalqlellelglglz]7]

GPCA log-PCA

SNNRNNNENDY
9

LR e]]£]w][m]—]

D)@ ] £]w]m]—]

ﬂ!@@E@HE
£

RISIENCYEN NS
0[N [on][ ] [t/

NGREME
wdcactow
sNeacwn
NNNENEMN
@ oloE wm—
SNSRI

SmNeaswp
S mNea s wL~0

AILINTENCIRNCILTANISY

MR INTENCYANCYRYANINY

S0 g £lvP
S0 dewn £ wr-0
N

=l
o
n
"y

FiGURE IV.12. First principal geodesics for 1000 images of each digit from
the MNIST dataset, computed through the proposed Forward-Backward
algorithm (left) and log-PCA (right).

Visually, both the Log-PCA and GPCA approaches capture well the main source of
variability of each set of grayscale images. We observe variations in the slant of the hand-
written digits for all digits, the most obvious case being digit '1’. As a principal component
is parameterized by a whole velocity field on the support of the Wasserstein mean of the
data, single principal components can capture more interesting patterns, such as changes
in the shape of the ’0’ or the presence or absence of the lower loop of the ’2’. From purely
visual inspection, it is difficult to tell which approach, Log-PCA or GPCA, provides a “bet-
ter” principal component. For this purpose we compute the reconstruction error of each
digit. This reconstruction error is computed in the same way for both Log-PCA and GPCA
principal components: We sample the principal components at many times ¢ and find for
each image in a given dataset, the time at which the geodesic is the closest to the image sam-
ple. This provides an approximation of min,e[_1;1 W2(v;,g¢(v)) for each imagei =1,...,n,
where (g¢):e[—1,1) is the principal component. For the Log-PCA principal component, we
take ¢ = (id + ¢t1.25\v)#v, where X is the eigenvalue corresponding to the first principal
component. The 1.25 factor is useful to consider a principal curve which goes through the
whole range of the dataset. For the GPCA principal geodesic, we have g; = (id + tv)#v.
The reconstruction errors are shown in Table 1. We see that, for each digit, we obtain a
better, i.e. smaller, reconstruction error when using the proposed forward-backward algo-
rithm. This result is not surprising, since the reconstruction error is explicitly minimized
through the Forward-Backward algorithm. As previously mentioned, Log-PCA rather com-
putes linearized Wasserstein distances. In one-dimension, the isometry property (P1) states
that these quantities are equal. In dimension two or larger, that property does not hold.

IV.6.2. Discussion

The proposed forward-backward algorithm minimizes the same objective function as
defined in [SC15]. The first difference with the algorithm provided [SC15] is that we take
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MNIST digit | Log-PCA RE (-10°) | GPCA RE (-10°)
0 2.0355 1.9414
1 3.1426 1.0289
2 3.4221 3.3575
3 2.6528 2.5869
4 2.8792 2.8204
5 2.9391 2.9076
6 2.1311 1.9864
7 4.7471 2.8205
8 2.0741 2.0222
9 1.9303 1.8728

TABLE 1. Reconstruction Errors (RE) computed on 1000 sample images of
each digit of the MNIST dataset. (center) Reconstruction error w.r.t. the
first principal component computed with the Log-PCA algorithm. (right)
Reconstruction error w.r.t. the first principal geodesic computed with the
proposed Forward-Backward algorithm.

gradient steps with respect to both v and t, while the latter first attempts to find the opti-
mal ¢ (by sampling the geodesics at many time t), before taking a gradient step of v. Our
approach reduces the cost of computing a gradient step by one order of magnitude. Sec-
ondly, [SC15] relied on barycentric projections of optimal plans to preserve the geodesicity
of the principal curves in between gradient steps. That heuristic does not guarantee a de-
crease in the objective after a gradient step. Moreover, the method in [SC15] considered
two velocity fields vy, ve rather than a single v since the optimality of both v and —v could
not be preserved through the barycentric projection.

IV.7. Algorithms

IV.7.1. Dimension d =1

We here detail the application of Algorithm (IV.26) to the iterative GPCA procedure
that consists in solving the problem (IV.24):

veRN teR™

min min J(v,t) := Y [[w; — (to + t:)V[2 + xs(V) + xp(v) + Xp(KV) + Xy (t) -
=1

G(v,t)
F(v,t)

IV.7.1.1. Lipschitz constant of VF

Let us now look at the Lipschitz constant of VF(v,t) on the restricted acceptable set
D x B}. We first denote as H the hessian matrix (of size (N + n) x (N + n)) of the C?
function F(X). We know that if the spectral radius of H is bounded by a scalar value M,
ie. p(H) < M, then VF is a Lipschitz continuous function with constant M. Hence, we
look at the eigenvalues of the Hessian matrix of F' = ", Zjvzl Fo(x)(w! — (to + ti)v;)?
that is

PFE L, *F & o *F ;
Tﬁ_;2vjf"(xj)’ 6v§_i:12(t0+ti) Fo(z)), m—ﬁn(%)(?(toﬂi)%—%)
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and 6?5/ = aziﬁj/ =0, for all 7 # i’ or j # j'. Being {,uk}Zi{V the eigenvalues of H, we

have p(H) = maxy, |pg| < maxy > [Hi|. We denote as foo = max; | £ (z;)| and likewise
Weo = max;; [w]|. Since |to| < 1, #7 < 1, Vt € Bf and v} < o® = (b—a)?, Vv € D, by
defining v = 2(1 + |tg|)a + weo, We thus have

p(H) < 2fs max {na® + Ny, ny + N(1 + [to])*} := M. (IV.29)
IV.7.1.2. Computing Prox.q

In order to implement the algorithm (I'V.26), we finally need to compute the proximity
operator of G defined as:

(v*,t*) = Prox,¢(v,t)

1 -
= arg min o (|[v = ¥[* + It = 81I°) + xs(v) + xp (V) + x5 (EV) + x5; (£)-

v7

This problem can be solved independently on v and t. For t, it can be done pointwise as
tr = arg min 5 ||¢; — £]|* + XBl( i) = Proj_y, 1]( ). Unfortunately, there is no closed form

expresmon of the proximity operator for the component v. It requires to solve the following
intern optimization problem at each extern iteration (¢) of the algorithm (IV.26):
1 -
V' = arg min o—[|v = ¥|* + xs(v) + xp(v) + x5 (KV), (IV.30)
v
where, to avoid confusions, we denote by v the variable that is optimized within the intern
optimization problem (IV.30).

REMARK IV.10. The Lipschitz constant of VF(v,t) in (IV.29) relies independently on
v and |to|, thus we can choose the optimal gradient descent step T for v* and t*.

Primal-Dual reformulation. Using duality (through Fenchel transform), one has:

1
mﬁr}foV—VH + xs(V) + xp(v) + xp(KV)

1
= min max —||v — V|2 + x5(V) + xp(V) + (Kv,2) — x(z), (IV.31)
~ VERN zeRN 2
where z = {z;}}*, € RY is a dual variable and xj, = sup,(v,z) — xp(v) is the convex
conjugate of xp that reads:

. —z;/(1+1ty) ifz; <O,
e ={ T e sh

Hence, one can use the Primal-Dual algorithm proposed in [CP16a] to solve the problem
(IV.31). For two parameters o,0 > 0 such that ||K||> < (3 — 1) and given v%,v%,2° € RV,
the algorithm is:

z(mth) = Proxg (2™ + o Kv(m)
VI = Proxy ) (v — (K2 1 Ly — %) (1v.32)
gm+l)  _ oy(m+l) _ (m)

where K* is defined as (Kv,z) = (v, K*z). Using the operator K defined in (IV.23), we
thus have:

—21/Aq ifj=1
(K*Z)j = ijl/Ajfl — Z]/A] if1< J <N. (IV33)
ZN_1/AN_1 lf_]:N
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where A; = z;41 — ;. We have that ||[K|]? = p(K*K), the largest eigenvalue of K*K.
With the discrete operators (IV.23) and (IV.33), p(K*K) can be bounded by

6 = 2max(1/A2 +1/A%,). (IV.34)
One can therefore for instance take o = + and 6 = 7/(1 4 07).
Proximity operators in (IV.32). The proximity operator of xp + xs is obtained as:

k— 1 >

2 ) , (IV.35)

(Proxo(yp+x4)(¥))j = (Projpns(v)); = Projp, . (
=1

since projecting onto D N S is equivalent to first project onto the orthogonal of Sp(U/*~1)
and then onto D. One can finally show that the proximity operator of x} can be computed
pointwise as:
Zj*O'/(].fto) iij>(T/(].7t0)
(PrOXoxE (Z))j = Zj + O'/(]. + t()) if z; < —O’/(l + t()) (IVSG)
0 otherwise.

IV.7.1.3. Algorithms for GPCA

Gathering all the previous elements, we can finally find a critical point of the non-
convex problem (IV.24) using the Forward-Backward (FB) framework (IV.26), as detailed
in Algorithm 1.

Algorithm 1 Resolution with FB of problem (IV.24): miny ¢ F'(v,t) + G(v,t)

Require: w; € RN fori=1---n,uy, -u,_,,to €] - L1, a=(b—-a)>0,7>0,0>0
(defined in (IV.34)) and M > 0 (defined in (IV.29)).
Set (v(® t®) e D x B
Set 7 <1/M,oc=1/6 and 0 =7/(1+ I7).
%Extern loop:
while [[v(©) — v(=D||/||v=D|| > 5 do
% FB on t with t‘+1) = Prox G(t(é — TVF(V @, £®)):
HOHD = Proji_yy (6@ -7 XL )((to+t ©)0;0 — w]))
% Gradient descent on v with v = V(Z - TVF(V @), £®).
05 =0 — 7 (25) i, (to + 1) ((to +4;(9) Ua(é) - )
%Intern loop for v+ = Prox,q(v):
Set 20 e B, v0 =3, v(0 =%
while ||v(™) — v(m=D||/||[v(m=D|| > 5 do
2" = Proxgy: (2™ + o Kv(™) (using (IV.36))
vim+l) — ProXo(xp4x4) (vim) — g(K*z(m+D) 4 L(v(m) — 3)) (using (IV.35))
GOmt1) gy (mt1) _ y(m)
m:=m-++1

end while
v+ — (m)

{:=0+1
end while
return u, = v

Geodesic surface approach. In order to solve the problem (IV.25), we follow the
same steps as in the section IV.7.1.1-IV.7.1.2. First we obtain the Lipchitz constant of the
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function F by the same computations performed for the iterative algorithm. Then, since
the constraints’ problem in G’ are separable, we can compute each component vy and each
ozii independently. The only difference with the iterative algorithm concerns the proximal
operator of the function y 4, which is the projection into the simplex of R2X,

IV.7.2. Dimension d = 2

We now show how to generalize the algorithm to the two-dimensional case.

Gradients of F. We write X = (x1,---,zy) € (R?)V the discretized support of 7,
Zy = (x1 4 (to + t)v1, -+ ,xn + (to + t)vn) the support g¢(to,v), the geodesic sampled at
time ¢. Let P* be an optimal transport plan between v and g;(tg, v). The function F(v,t) is
differentiable almost everywhere. Gradients can be computed in the same fashion as [SC15|
to obtain,

VvF‘ =2 Z(tO + tl)<ZtL - XP*leag(l/fn))a vtLF = 2<Zt1dlag(]:n>7 V> - 2<P*7 VTX >7
i=1
(IV.37)
Proximal operator of G. The only difference between the one-dimensional case and
the two-dimensional case considered here concerns the projection step of v,

1 -
V' =arg min —[|v =" + xs(v) + xp(v) + X5 (KV). (IV.38)
v
Primal-Dual reformulation. As for the on-dimensional case, one has,

1
v — K
mﬂ@r}v 7_HV V2 +xs(V) + xp (V) + xg(KV)

1
= min max 5[]V = 92+ xs(v) + xp(v) + (Kv,7) — x5 (a), (1V.39)
VERN zeRN 2

where z = {z;}}7, € R" is a dual variable and x}, = sup,(v,2z) — xp(v) is the convex
conjugate of x . This can be solve with the same iterative steps as described in IV.7.1.2,

zmth) = Proxg (z(m)JraKv(m))
VD Proxyy ) (VM) — 6K 4 Ly - 9)) (1V.40)
D) oylmbl) . im)

Here the definition of the divergence operator K and the transpose of the divergence operator
K* are specific to the dimension. For d = 2, with a regular grid discretizing Q in M x N
points, we take

+
KT72=-Vz=— BJF ]
with
. o a(i+1,5) —aig) ifi<M
0,21, 7) = { 0 otherwise,
oo [l 1) —alig) ifi<N
0ya(i5) = { 0 otherwise
so that
Ku:K[um} =0, u; + 0, uy,
uy
with
u(i,j)—u(i—1,5) ifl<i<M
Oy u(i,j) = u(i,j) ifi=1
—u(i—1,5) ifi=M
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To ensure convergence of [V.40, one can take 1/0.(1/0 —1/7) = ||K||>. See |[CP16a,LP15]
for more details. Since we have ||K||?> = 8, the parameters can be taken as o = 1/4 and
0=r1/(1+27).
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CONCLUSION AND PERSPECTIVES

Using optimal transport, the aim of this thesis is to provide new tools to deal with
statistical problems involving multivariate probability distributions. As we also consider
implementation issues and practical problems, this thesis is at the boundary of theory,
applied mathematics and computer sciences.

Chapter I. We strongly believe that the results on the variance of the penalized barycen-
ters in Section 1.1 could be improve, by relaxing the hypothesis on both the penalty function
E, and the compact convex set Q C R%. This would need a finer theory than the objects used
from the empirical process theory. Another interesting work would be to include regularity
into the empirical barycenter, depending on the regularity of the measures vy, ..., v,.

As seen in Chapter 11, the entropy regularized Wasserstein barycenters f‘fL,p in Section
1.2, behaves like a density estimator with a bandwidth parameter €. In particular, Figure
B.9, page 28 suggests that depending on the regularization parameter ¢, the number of
modes of the barycenter varies. Therefore, a thorough study of this estimator and its modes
could be very interesting.

Chapter II. We become aware of an another method for the choice of the regularization
parameter, using the recent paper of Spokoiny and Willrich [SW15], which is based on
bootstrap techniques. We would like to apply this principle to the regularized barycenters.

Chapter ITI. We intend to further investigate the benefits of the use of Sinkhorn diver-
gences to propose novel testing procedure to compare multivariate distributions for real data
analysis. A first perspective is to apply the methodology developed in Chapter III to more
than two samples using the notion of entropy regularized Wasserstein barycenters for the
analysis of variance of multiple and multivariate random measures (MANOVA). However, as
pointed out in [CP16b], a critical issue in this setting will be the choice of the regularization
parameter ¢, as it has a large influence on the shape of the estimated Wasserstein barycenter.
Our simulations in Section I11.5, page 86 show that using a smoothed Wasserstein barycen-
ter as a reference measure may lead to different results than using an Euclidean barycenter
when testing the hypothesis of equal distributions. We thus plan to study the behavior of
the central limit theorem when the regularization parameter € tends to zero, expecting that
we could recover the results from [SM 16| that stand for un-regularized transport.

Another issue is that, for one or two samples testing, the use of entropy regularized
transport leads to a biased statistics in the sense that its expectation W3 _(a, b) is not equal
to zero under the hypothesis that a = b. A possible alternative to avoid this issue would be
to use the so-called notion of Sinkhorn loss defined as

WQQ,E(G’7 b) = 2W22,a(a7 b) - W22,e(a'7 CL) - W22,5(b7 b)7

that has been recently introduced in [GP C17], and which satisfies the property that V_VQQ’E (a,b) =
0 when a = b. An interesting extension of the results in this Chapter would thus be to develop
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test statistics based on the Sinkhorn loss for the comparison of multivariate distributions.
We believe this can be done using similar tools.

Chapter IV. When considering probability measures over high-dimensional space (d >
3), our GPCA algorithm becomes intractable since we need to discretize the support of
the Wasserstein mean of the data with a regular grid, whereas it is still possible to apply
the method of [SC15], since an arbitrary support for the Wasserstein mean is used. A
remaining challenge for computing principal geodesics in the Wasserstein space is then to
propose an algorithm for GPCA which is still tractable in higher dimensions while not relying
on barycentric projections of optimal transport plans as in [SC15].

Some others ideas for the future. Optimal transport is still a growing field today
and we deeply think that important and new results can be employed. Indeed, recent results
as in [FHNT 18] propose new ideas to compute efficiently the optimal transport between
measures, allowing in particular statistical data analysis for high-dimensional data. Also, the
work of [BPC16,SHB " 18b]| on dictionary learning and regression study, could be extended
to define new regression models in the Wasserstein space, allowing to explore measures
outside the convex set defined by the dataset. Finally, in the recent paper [RBVFT18|,
the authors relate to Wasserstein barycenters for Bayesian learning approaches. Therefore
new contributions could arise from the relation between the well known Bayesian statistic
and the newest entropy regularized optimal transport.
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(GLOSSARY

1y

I e ey

Ly(R?),p € [1, 00)

Ly (u),p € [1,00)

o
i,
Qn
P

Vector of RV with all entries equal to one

Sobolev norm of order k associated to the L2(R¢) space
Usual Euclidean norm in R?

Absolutely continuous with respect to Lebesgue measure
Expectation of a random variable X

Negative entropy of a matrix U € RNV p(U) =
- Zi,j Uij log Uij
Independant and absolutely continuous

Represent the law of a random variable

Space of functions f : R? — R such that |f|? is Lebesgue
integrable, and such that all functions that are equal dz-almost
everywhere are identified

Space of functions f : R — R such that |f|P is u-integrable,
and such that all functions that are equal p-almost everywhere
are identified

Penalized population Wasserstein barycenter, Definition 1.13
Penalized empirical Wasserstein barycenter, Definition 1.13
Finite space Qx = {z1,...,2x} € OV

Probability measure

Probability density function

Set of product measures on supp(p) X supp(v) with respective
marginals pu and v

Set of Borel probability measures on (R, B(R9)) supported on
R?, admitting a moment of order p (see Introduction )

Set of measures in P,(R?) that are absolutely with respect to
Lebesgue measure on R? (see Introduction )

Entropy regularized population Wasserstein barycenter (or
Sinkhorn population barycenter), Definition 1.21
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T Entropy regularized empirical Wasserstein barycenter (or
Sinkhorn empirical barycenter), Definition 1.21

N Simplex ¥y = {r € RY such that Zfil r; =1}

pys Bounded simplex ¥4, = {r € Sy : mini<o<n 70 > p}

supp(p) Support of the measure p

U(a,b) Set of transport matrices with marginals ¢ € Yy and b € Xy,
U(a,b) ={T e RY*N |T1ly = a,TT1y = b}

V., () Closed and convex set of functions V,, () := log, (P2(2)) C

]Lir(Q), for a reference probability measure p,., Definition V.2
W,,p € [1,00)  p-Wasserstein distance, Definition A.1

Wpe,p € [1,00) Entropy regularized Wasserstein distance (or Sinkhorn diver-
gence), Definition A.3
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