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Introduction

In theory, this kind of manuscript is expected to give a smart and unified synthesis between
all our past research works. So, I have to found a logical link between :

• the regulariy index of a probability measure ;

• the estimation of level sets ;

• the warped estimation of the regression function ;

• a clustering problem over the multivariate circle ;

• the construction of multivariate prediciton region using a mixed linear model ;

• the definition and the control of some sparse procedures on functional data ;

• and other more applicative works in metabolomics or on pollutants.

Some boxes are easy to build (clustering problems here, non-parametric estimation there)
but, at the end, I still have three different chapters with very few statistical links. In fact,
there is obviously a link but it is very different. This link is my way to produce research :
never alone. My different works always start by a discussion with another human being in
front of a glass of water (or anything but coffee). It is first a human choice. So, here I want to
deeply thank all my co-workers and to recall that this manuscript would not exist without them.

This manuscript presents in a (tentative) synthetic fashion my scientific production develo-
ped during and after my PhD thesis, defended in March 2010 at the University Montpellier II.
This dissertation is organized around three distinct but complementary themes :

• nonparametric estimation ;

• clustering ;

• statistical learning for functional data.

Note that the two lasts could be regrouped on a ”Biostatistics” part as main of these works are
inspired by an application in biology or medicine but I decided to keep three less general parts.

Some ongoing works or leads for future research are mentioned throughout the manuscript
in each section or subsection of the different chapters. Nevertheless, to clarify and highlight
which of them I’m going to invest in the short and medium term, each chapter is concluded
with a research perspective section. In a sake of compactness all the different proofs, most
of the simulations and some mathematical details are omitted. They could be found in the
corresponding references.

In Chapter 1, my contributions to nonparametric statistics are synthetized. In this field of
statistics, one of the main challenge is to define new estimators without much assumptions
or restrictions. It was my starting point in the world of research, during my PhD under the
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supervision of Alain Berlinet at the University of Montpellier. The main objective of my PhD
was to extend some old convergence results using weaker assumptions, mainly the notion of
the regularity index [RS09, RS17, RS18, RS19, RS22]. During my studies at Montpellier, I met
Thomas Laloë (now Assistant Professor at Nice). During his PhD he worked on non-parametric
problems, focusing on the estimation of level sets. During my postdoctoral years we started
working together on this very wide subject. Our first work was the estimation of the level sets
of the regression function [RS14]. Then we were interested in the estimation of the level sets
of the distribution function. After discussions with Elena Di Bernardino (Assistant Professor
at CNAM) we made a link between this problem and the risk theory, with an application to
an hydrological issue [RS11]. This work raised an issue about estimators without compacity
assumptions on their support. During a conference, a talk by Gaëlle Chagny (CNRS researcher
at Rouen) caught our attention as she used warped estimator to address this issue for other
cases. So, we adapt her estimator to our specific problem of regression function estimation
[RS21].

Chapter 2 is dedicated to my publications in the field of clustering. In fact, my first research
problem was a clustering one, during my Master internship under the supervision of Christophe
Abraham (Professor at SupAgro Montpellier) and Nicolas Molinari (Professor at the University
of Montpellier). The problem was to cluster non-ordered circular multivariate data obtained
from radiotherapy x-beams bouquets. During my postdoctoral years, we reworked on this
problem and made a first publication using a frequentist approach [RS16] and, nowadays, a
second one using a Bayesian approach [RS02] has been accepted. During his PhD, Thomas
Laloë defined a L1-based clustering algorithm. Nevertheless, the computation of this algorithm
was intractable. To overcome this problem, we define a parameter-free clustering method based
on his algorithm [RS15]. During my master internship I met Virginie Rossard who was also in
master internship and then was recruited as an assistant engineer at the LBE INRA unit at
Narbonne. During my postdoctoral years I visited the LBE unit and we started talking about a
project they have with Eric Latrille on the clustering of micropollutants. That’s how I started
to work with them on this project, that leads us to one publication to explain the dedicated
clustering approach [RS13] and three about applications of this approach on micropollutants
[RS04, RS08, RS10] in collaboration with Laure Mamy and Pierre Benoit (INRA Versailles).

We could see here an important shift in my research interests : starting from very theoretical
works during my PhD (without any datasets or potential applications) and continuing mainly
with statistical problems driven by applications (radiotherapy, clustering of pollutants) or, at
least, applicable to some datasets (hydrological one for example). I think that it is, for me, the
most interesting part in statistical research : starting from an applicative problem and then
defining and studying an ad hoc statistical procedure addressing this problem. That is why I
was very enthusiastic when I was recruited as a permanent researcher at the INRA Toulouse,
in a unit with a lot of biologists. Since my recruitment and thanks to this very stimulating
workplace, I am involved in very interesting projects that mixed problems in an application
domain and statistics. In this spirit, the area of the omics (more precisely metabolomics) or
the precision livestock farming are very promising : as they are based on new technologies in
constant evolution they constantly raised new problems in their data analysis, mainly in the
field of functional data analysis. Indeed, longitudinal follow-up, metabolomic spectrum or daily
measurements can be viewed as functional data. These different questions are at the thematic
center of my different INRA unities (Toxalim until 2018 then InTheRes) and are mentioned
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on Chapter 3. On these problems, I mainly collaborate with Didier Concordet (Professor at
Toulouse Vet School (ENVT)). The first question we addressed was the building of multivariate
individual prediction regions for functional data based on a mixed effect model. This question
is of high interest in the actual field of individualized medicine for humans or animals [RS12]
and mixed effect models are also widely used in our unit to build pharmacokinetic models
[RS06]. The question of variable selection/multiple testing is also of major interest in this
field. It was the main subject of the PhD of Patrick Tardivel (now holding a postdoctoral
position at the University of Wroclaw) that I supervised with Didier Concordet. The dedicated
statistical procedure [RS20] was driven by an application for the idenfication and quantification
of metabolites in metabolomics [RS05, RS07] and leaded us to a theoretical problem about the
L0-norm minimization [RS03]. Another variable selection problem for functional data was also
studied with Nathalie Villa-Vialaneix and Victor Picheny (researchers at the MIAT INRA unit
at Toulouse). The problem was to select interesting (but no predefined) intervals on functional
data to predict a variable of interest and was driven by an application in smart farming (i.e.
predict the yield of a field given the temperature, the rainfall ...)[RS01].

Nowadays, all my research projects shared a common methodology. First, I investigate the
applied question by trying to fully understand the nature and the type of data. Second, I
translate this problem in statistical terms trying to be as close as posible to the initial applied
problem. Then, I develop and study a statistical procedure to address this statistical problem.
Finally, I test my statistical approach on the applied question trying to analyze which part of
the problem are solved and which are not. That is why I mainly define myself as a biostatistician
now and that is how I enjoy research.
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Chapitre 1

Contributions to non-parametric
estimation

1.1 Introduction

As briefly explained in the general introduction, Section 1.2 of this chapter is devoted to
results obtained during my PhD (or just after) on the regularity index [RS09, RS17, RS18,
RS19, RS22]. This notion of regularity index, which is weaker than the notion of continuity,
help us to extend some well-known convergence results. For example, we provide a necessary
and sufficient condition for having a limit distribution for the nearest neighbor density estimate.
The results of the Section 1.3 are related to the estimation of level sets. A kernel estimator of
the level sets of the regression function is first defined and studied [RS14]. This estimator is
simpler and has weaker assumption than the existing one. Then, we studied the level sets of
the distribution function with the additional problem of the non-compacity of these level sets.
An associated multivariate risk measure is also studied on these level sets [RS11]. Section 1.4
is devoted to the estimation of the regression function without any compacity assumption on
the support. To achieve this goal, we defined and studied a warped estimator [RS21].

1.2 Regularity index

1.2.1 General framework

The problem of estimating the probability density from a sample (Xi)1≤i≤n has received
considerable attention in the literature : Many methods have been developed such as histo-
grams [Ioannidis, 2003], kernel estimators [Nadaraya, 1964, Watson, 1964], statistically equi-
valent blocks [Gessaman, 1970], the Barron estimator [Barron, 1988] ... For reviews on this
subject we refer the interested reader to Silverman [1986], Scott [1992], Hastie et al. [2009].
My PhD work finds its motivations on the study of estimation problems, when usual regularity
assumptions are not verified. Indeed, a lot of convergence results are based on some continuity
assumptions that could not be checked in practice and that could be weakened. In this purpose,
I studied the regularity index of a probability measure applied to some nonparametric estima-
tion problem where it could be useful.

Let µ be a probability distribution and λ be the Lebesgure measure on Rd equipped with
the Euclidean norm ||.||. We denote by B(x, δ) the open ball with center at x and radius δ. To
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evaluate the local behaviour of µ(B(x, δ)) in relation to λ(B(x, δ)) one can consider the ratio
of these two quantities. If, for fixed x, the following limit

f(x) = lim
δ→0

µ(B(x, δ))
λ(B(x, δ)) (1.1)

exists and is finite, then x is called a Lebesgue point of the measure µ [Rudin, 1987, Dudley,
1989]. If µ is absolutely continuous with respect to λ, we can select a specific density f that
checks (1.1) where this limit exists. In Berlinet and Levallois [2000], examples where the density
has a bad local behaviour at Lebesgue points are examined. To evaluate rates of convergence
or investigate asymptotic normality of estimators, not only the convergence of the ratio of ball
measures is required but also information on its higher order behaviour. In this context, Berlinet
and Levallois [2000] define a ρ-regularity point of the measure µ as any Lebesgue point x of µ
satisfying ∣∣∣∣∣µ(B(x, δ))

λ(B(x, δ)) − f(x)
∣∣∣∣∣ ≤ ρ(δ), (1.2)

where ρ is a measurable fonction such that limδ↓0 ρ(δ) = 0. To specify an exact rate of conver-
gence of the ratio of ball measures, Beirlant et al. [2008] assumed that a more precise relation
than (1.2) holds at the Lebesgue point x ; namely

µ(B(x, δ))
λ(B(x, δ)) = f(x) + Cxδ

αx + o(δαx) when δ ↓ 0, (1.3)

where Cx is a non-zero constant and αx is a positive real number called regularity index.
These constants are unique (provided they exist). The index αx controls the degree of smooth-
ness of the symmetric derivative of µ with respect to λ. The larger the value of αx , the smoother
the derivative of µ is at the point x (see examples in Berlinet and Levallois [2000]). Note that
(1.3) is clearly equivalent to the small ball probability expansion :

P (||X − x|| ≤ δ) = Vdδ
d(f(x) + Cxδ

αx + o(δαx)),

where X has density f and Vd = πd/2/Γ(1 + d/2) denotes the volume of the unit ball in Rd. In
other words, the second-order term in the expansion of the small ball probability of radius δ at
x is equal, up to a multiplicative constant, to δd+αx .

Nevertheless, the definition (1.3) suffers some flaws. First, some measures with ρ-regularity
have no regularity index αx, for example if in (1.3) we replace δαx by log(δ). Second, many
density estimates require a development for a ratio of set measures which are not centered
around the estimation point x and which are not balls. The definition of the regularity index
is useless in these cases. These flaws represent a major restriction in practice, since we can not
obtain similar results for an estimate such as the histogram, even for measures that could have
a regularity index αx. To circumvent these problems, we propose the following definition. Given
x ∈ R we set Ix the set of all the intervals which contain x and we define Ex by

Ex =
{
r > 0 such that ∃C > 0, ∃λ0 > 0, such that ∀I ∈ Ix

verifying λ(I) < λ0 we have

∣∣∣∣∣µ(I)
λ(I) − f(x)

∣∣∣∣∣ ≤ Cλ(I)r
}
.

If there exists a real rx such that
rx = supEx, (1.4)

8



rx is the r-regularity index of the measure µ at x. If supEx = +∞, we set rx = +∞.
With this definition, the r-regularity can be viewed as an intermediate stage between the

ρ-regularity and the regularity index : it gives us a bound for the rate of convergence of the
measures. Furthermore, the r-regularity does not involve a ball centered on x and, consequently,
can be used with a larger class of density estimates. Note that, as for the regularity index, the
larger the value of rx, the more regular the derivative of µ with respect to λ.

1.2.2 Limit distribution for density estimators

Here, we shall consider the well-known nearest-neighbour estimator fkn [Loftsgaarden and
Quesenberry, 1965] defined by

fkn(x) = kn
nλ(Bkn(x))

,

where Bkn(x) is the smallest closed ball with center x containing at least kn sample point.
The estimate fkn(x) is the ratio of the frequency of sample points falling into B̄kn to the
Lebesgue measure of B̄kn . The integer kn plays the role of a smoothing parameter : When it
is chosen too large, the data are oversmoothed ; they are undersmoothed in the opposite case.
The choice of kn is by consequence critical. Different papers [Loftsgaarden and Quesenberry,
1965, Moore and Yackel, 1977, Mack, 1980, van Es, 1992] states consistency results for fkn
based on a global convergence hypotheses for kn (i.e. the same on the whole definition domain)
and the hypothesis of a continuous density function. Then, Berlinet and Levallois [2000] states
the asymptotic normality of fkn in cases where the density has a bad local behaviour using
definition (1.2). We take advantage of the definition of the regularity index to extend this result
and to obtain the following theorem.

Theorem 1.2.1 Suppose that x is a Lebesgue point where (1.3) is satisfied with f(x) > 0.
Then, under the conditions limn→∞ kn =∞ and limn→∞ kn/n = 0, as n tends to infinity,

Tn(x) =
√
kn
fkn(x)− f(x)

f(x)

converges in distribution if and only if the sequence(
k1+1/2αx
n

n

)

has a finite limit κ. When the last condition is satisfied, the asymptotic law of Tn(x) is

N

Cxκαx
2αx

(
1

f(x)

)αx+1

, 1
 .

This result provides a necessary and sufficient condition for having a limit distribution and
explicitly gives this distribution when it does exist. As expected, what is important is the local
behaviour of the associated measure, more precisely, the rate at which the derivative of the
underlying measure is approximated by ratios of ball measures and its estimation by the regu-
larity index. This rate as a strong impact on the choice of the number of neighbors kn. Thus,
this choice has to be made locally with great care and, whenever the set of data is large en-
ough, a preliminary estimation of αx (as developed in the next section) is strongly recommended.
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As already explained in Subsection 1.2.1 , the definition of the regularity index has some
flaws and could not be used for density estimators such has histograms. The histograms are
nevertheless probably the oldest and simplest method to estimate an unknown density. The
simplest histogram methods partition the space into congruent intervals or cubes whose size
and position depends on the number of available data points, but not on the data itself [Ioan-
nidis, 2003].

A histogram fh consists of a partition of the space R of Borel-measurable subsets of R,
referred to as cells. We consider here partitions with the same size hn such that

Bnq = [(q − 1)hn, qhn[, q ∈ Z

with the property that (i) ∪q∈ZBnq = R and (ii) Bnq ∩Bnq′ = ∅ if q 6= q′. Using these notations,
the histogram estimate is

fh(x) = νnq
nhn

with x ∈ Bnq and νnq the number of Xi in the Bnq cell. By consequence, the function fh is
constant in a cell. So, to obtain the consistency of fh towards f , the cells need to become
smaller and smaller with n. Asymptotic results have been derived under conditions on the
sequence (hn)1≤i≤n with a continuity assumption on the density to estimate [Stadtmüller, 1983,
Devroye and Györfi, 1985, Bosq and Lecoutre, 1987]. In Theorem 1.2.2 below we state the
asymptotic normality of the histogram estimate of the density function, removing this continuity
assumption by using the r-regularity index defined in (1.4).

Theorem 1.2.2 Suppose that x is a Lebesgue point in R where (1.4) is satisfied with f(x) > 0.
Then the condition

lim
n→∞

nh2r+1
n = 0 (1.5)

for some r ∈]0; rx[ implies that

Hn(x) =
√
nhn

fh(x)− f(x)√
f(x)

converges in distribution towards a centered gaussian distribution with unit variance.

A major point is that we obtain the asymptotic normality of the histogram without a
continuity assumption on the density function f at the point of estimation x. Nevertheless, this
result provides a necessary condition for having a limit distribution, but not a sufficient one.
This comes from the fact that, unlike the regularity index, the r-regularity does not provide us
with an exact rate, but only an upper bound of the rate. This definition could be used with
other density estimates but, to my knowledge, no other asymptotic results has been stated
using it.

1.2.3 Estimation of the regularity index

A nice estimation of the regularity index is needed to check the previous conditions of
Theorem 1.2.1. The only estimate available was the one of Beirlant et al. [2008] based on kn
nearest neighbor density estimate. They define their estimate ᾱn,x, whatever τ > 1, as

ᾱn,x = d

log τ log
fbτ2knc(x)− fbτknc(x)
fbτknc(x)− fbknc(x) ,
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if [fbτ2knc(x) − fbτknc(x)]/[fbτknc(x) − fbknc(x)] > 0 and ᾱn,x = 0 otherwise, with b.c the floor
function. This estimate is proven to be consistent in probability and its asymptotic normality
is exhibited. Their result are stated under the assumption of absolute continuity of the measure
µ with respect to the Lebesgue measure. Inspired by this previous estimate, we defined a new
estimate for the regularity index based on an empirical one. The empirical measure µn associated
with X1, . . . , Xn is defined by

µn(A) = 1
n

n∑
i=1

1(Xi∈A), A ⊆ Rd

where

1(Xi∈A) =
{

1 if Xi ∈ A
0 otherwise,

and the associated empirical estimator of

ϕn,δ = µn(B(x, δ))
λ(B(x, δ)) .

This estimate is very simple as it does not need the calibration of any parameter. Using this
estimate, we define, whatever τ > 1,

α̂n,x = 1
ln τ ln ϕn,τ2δn(x)− ϕn,τδn(x)

ϕn,τδn(x)− ϕn,δn(x)
and state the following results.

Theorem 1.2.3 Suppose that x ∈ Rd is a Lebesgue point of µ with regularity index αx.

• Then, under the conditions

lim
n→∞

δn = 0 and lim
n→∞

nδd+2αx
n = +∞

the empirical estimator α̂n,x converges to αx in probability.

• Then, under the conditions

lim
n→∞

δn = 0 and lim
n→∞

nδ2(d+αx)
n

log n =∞

the empirical estimator α̂n,x converges to αx almost surely.

Note that these results does not need the absolute continuity of the measure µ with respect
to the Lebesgue measure. Simulations show the good performances of this estimate and it needs
for large datasets. Note that using the known estimates of the regularity index, a bound could
be trivially obtained for the r-regularity index.

According to the specific expression of α̂n,x, one can guess that a convergent estimate of
the distribution function can lead us to a new convergent estimate of the regularity index,
under appropriate conditions. By consequence, a large bibliography on the estimator of the
distribution function was made, with for example, the spline estimate [Berlinet, 1981, Restle,
2001], the support vector machines [Mohamed and Farag, 2004, Mohamed et al., 2004], the
level-crossing [Huang and Brill, 2004], the iterated function systems [Iacus and La Torre, 2005]
... Nevertheless, to my knowledge, the two presented estimators of the regularity index are
still the only ones that have been studied in details. In a future work, comparing the different
estimators obtained using the review would be of interest.
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1.3 Estimation of level sets

The estimation of level sets of an interest function has been widely studied in the literature.
In particular, for the estimation of density level sets, one can cite for example the work of
Polonik [1995], Tsybakov [1997], Cuevas and Fraiman [1997], Báıllo [2003], Biau et al. [2007],
Cadre [2006], Rigollet and Vert [2009] . . . This large number of works on this subject is moti-
vated by the high number of possible applications. Estimating these level sets can be useful in
mode estimation [Polonik, 1995], or in clustering [Biau et al., 2007] to estimater the number of
clusters for example.

The same applications are possible with the regression function. Moreover, it is for instance
possible to use an estimator of the level sets of the regression function to determine the path
of water flow from a digital representation of an area. In the same vein, in medical imaging, a
lot of applications exist. For example, people want to estimate the areas where some function
of the image exceeds a fixed threshold. For instance, the severity of the cancer is characterized
by a variable Y which directly impacts the choice of standard or aggressive chemotherapy. For
osteosarcoma [Man et al., 2005], Y is the percent necrosis in the tumor after a first round of
treatment. If Y > 0.9 (this threshold has been fixed by experts and is now the convention), the
aggressive chemotherapy will be chosen. The problem is that Y is measured using an invasive
biopsy. If we can collect from the patient a feature vector X (which acquisition is easier), such
as gene expression levels or a magnetic resonance image, knowledge of the regression level sets
would allow the choice of an efficient treatment planning without a biopsy.

1.3.1 Level sets of the regression function

We first consider the problem of estimating the level sets of a regression function. More
precisely, we consider a random pair (X, Y ) taking values in Rd × J , where J ⊂ R is supposed
to be bounded. The goal of our work was then to build a simple estimator of the level sets of
the regression function r of Y on X, defined for all x ∈ Rd by

r(x) = E [Y |X = x].

For t > 0, a level set for r is defined by

Lr(t) = {x ∈ Rd : r(x) > t}.

Assume that we have an independent and identically distributed sample (i.i.d.)
((X1, Y1), . . . , (Xn, Yn)) with the same distribution as (X, Y ). We then consider a plug-in esti-
mator of Lr(t). More precisely, we use a consistent estimator r̂n of r, in order to estimate Lr(t)
by

Lr̂n(t) = {x ∈ Rd : r̂n(x) > t}.

Despite the many potential applications, the estimation of the level sets of the regression
function has not been widely studied. Müller and Sawitzki [1991] mentioned it briefly in his
survey. Nowak and Willett [2007] obtained minimax rates (for different smoothness classes)
for estimators based on recursive dyadic partitions. Scott and Davenport [2007] use a cost
sensitive approach and a different measure of risk. Cavalier [1997], Polonik and Wang [2005]
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used estimators based on the maximization of the excess mass which was introduced by Hartigan
[1987]. Cavalier demonstrated asymptotic minimax rate of convergence for piecewise polynomial
estimators using smoothness assumptions on the boundary of the level sets. We used a different
approach and construct a plug-in estimator using the kernel estimator of the regression. The
main advantage of our estimator is the simplicity of his calculation, inherited from the plug-in
approach. Moreover, our estimator does not require strong assumptions on the shape of level
sets. All our consistency results are in the sense of the volume (in the Lebesgue measure sense)
of the symmetrical difference, defined by

λ (Lr̂n(t)∆Lr(t)) = λ
[
(Lr̂n(t) ∩ LCr (t)) ∪ (LCr̂n(t) ∩ Lr(t))

]
where λ stands for the Lebesgue measure on Rd and ∆ for the symmetrical difference.

Our goal is to establish some consistency results under reasonable assumptions on r and r̂n.
Using a kernel estimator for r, we get a rate of convergence equivalent to the one obtained for
the density function [Cadre, 2006].

Construction of the estimator

As announced, we use a plug-in approach. That is, given an estimator rn of r we estimate
{x ∈ Λ : r(x) > t} by {x ∈ Λ : rn(x) > t}. To estimate r, we choose to consider a kernel
estimator.

Assume that we can write

r(x) = ϕ(x)
f(x) ,

where f is the density function of X, and ϕ is defined by ϕ(x) = r(x)f(x).

Let K be a kernel on Rd, that is a probability density on Rd. We denote h = hn and

Kh(x) = K(x/h). From an i.i.d. sample
(

(X1, Y1), . . . , (Xn, Yn)
)

, we define, for all x ∈ Rd,

ϕn(x) = 1
nhd

n∑
i=1

YiKh(x−Xi) and fn(x) = 1
nhd

n∑
i=1

Kh(x−Xi).

For all x ∈ Rd, the kernel estimator of r is then defined by

rn(x) =
{

ϕn(x)/fn(x) if fn(x) 6= 0
0 otherwise.

The properties of this estimator are already well studied in the literature [Gasser and Mül-
ler, 1984, Bosq and Lecoutre, 1987].

Under the assumption

A0 There exists t− < t such that Lr(t−) is compact. Besides, λ({r = t}) = 0 (where λ stands
for the Lebesgue measure),

a first consistency result can be obtained.
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Proposition 1.1 Under Assumption A0, if K is bounded, integrable, with compact support
and Lipschitz, and if h→ 0 and nhd/ log n→∞, then

Eλ
(
Lr̂n(t)∆Lr(t)

)
→
n→∞

0.

Note that the last part of assumption A0 means that the regression function can not have
a null derivative at the estimated level set.

Rate of convergence

From now on, Θ ⊂ (0, supRd r) is an open interval. Let us introduce the following assump-
tions :

A1 The functions r and f are twice continuously differentiable, and, ∀t ∈ Θ ,∃0 < t− < t :
inf
L(t−)

f > 0 ;

A2 For all t ∈ Θ,

inf
r−1({t})

‖Or‖ > 0,

where, Oψ(x) stands for the gradient at x ∈ Rd of the differentiable function ψ : Rd → R.

The assumptions A1 on the regularity are inherited from the classical assumptions in kernel
estimation [Bosq and Lecoutre, 1987]. Note that stronger assumptions on the regularity of r
and f will not improve the obtained rate of consistency. Moreover, let us mention that under
Assumptions A1 and A2, we have (Proposition A.2 in Cadre [2006])

∀t ∈ Θ : λ(r−1[t− ε, t+ ε])→ 0 as ε→ 0.

We are now in a position to establish a rate of convergence for Eλ(Lr̂n(t)∆Lr(t)).

Theorem 1.3.1 Under Assumptions A0 − A2 and some assumptions on K, if
nhd/(log n)→∞ and nhd+4 log n→ 0, then for almost all t ∈ Θ

E λ(Lr̂n(t)∆Lr(t)) = O(1/
√
nhd).

Remarks :

• Roughly speaking, the assumptions about the bandwidth impose to take h between ( logn
n

) 1
d

and (n log n)
−1
d+4 . Moreover, if we take h = O((n log n)

−1
d+4 ), we get

√
nhd = O

(
n1/3

(log n)1/6

)
with d = 2,

that is a rate of the same order as Cadre [2006] in the density case.
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• A remaining and crucial problem is the research of an optimal bandwidth h for our esti-
mator. Indeed, if they are already results in the literature about an optimal bandwidth
for the estimation of r, this bandwidth is not necessarily optimal for estimating Lr(t).
A data-driven adaptive procedure using a Goldenshluger-Lepski approach [Goldenshluger
and Lepski, 2011] (such as in Subsection 1.4) would be of great interest. However, in a
fist time, we used a cross-validation procedure to choose the bandwidth in the simulations.

According to the symmetrical difference, the estimator of Cavalier [1997] is proven to be
optimal. Nevertheless, this estimator has some major drawbacks : it is always star-shaped and
it is rather difficult (and more often impossible) to calculate without any a priori knowledge
on the dataset.

Note that Mason and Polonik [2009] obtained the asymptotic normality of plug-in level set
estimates in the density case, it would be interesting to see if we could extend their result to
this regression framework. Another interesting future work will be to replace the level t by
an estimated level tn and to study how the convergence rate is affected by this new plug-in
estimate.

1.3.2 Level sets of the multivariate cumulative distribution function

All previous works on the consistency of the level sets are based on a compactness as-
sumption. But, in the case of the cumulative distribution function, this assumption seems no
more reasonable and we have to deal with this non-compact setting. Considering a consistent
estimator Fn of the distribution function F , we propose a plug-in approach to estimate

LF (t) = {x ∈ Rd
+ : F (x) ≥ t},

by

LFn(t) = {x ∈ Rd
+ : Fn(x) ≥ t}

for t ∈ (0, 1). As remarked above, to deal with this non-compact setting, we define, given T > 0,

LF (t)T = {x ∈ [0, T ]d : F (x) ≥ t}, LFn(t)T = {x ∈ [0, T ]d : Fn(x) ≥ t}.

Using these notations, we establish our consistency result with a convergence rate. The
following theorem can be interpreted as a generalization of the results of Cuevas et al. [2006]
in the case of non-compact level sets.

Theorem 1.3.2 Let t ∈ (0, 1). Let F ∈ F be a twice differentiable distribution function on Rd∗
+

satisfying some further regularity conditions on its gradient vector and its Hessian matrix. As-
sume that for each n, Fn is measurable. Assume that there exists a positive increasing sequence

(wn)n∈N∗ such that wn ‖F − Fn‖∞
P→

n→∞
0. Then, it holds that

pn λ(LF (t)Tn ,LFn(t)Tn) P→
n→∞

0,

where the convergence rate pn depends on wn, Tn and d.
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This theorem provides a convergence rate, which obviously suffers from the well-known curse
of dimensionality and is closely related to the choice of the truncation sequence Tn. The review
of the estimators of the distribution function already made for the first section of this chapter
could then provide a wide range of estimators of these level sets. Obviously, a better result
would have been

un λ(LF (t),LFn(t)Tn) P→
n→∞

0,

but it is not possible to derive such results without strong assumptions on the tail behaviour of
F . As we were focused on obtaining results without this kind of assumption, it has been kept
for future work.

1.3.3 Estimation procedures for multivariate risk measures

In the last decade, much research has been devoted to the construction of risk measures
that account both for marginal effects and dependence between risks and many extensions to
multidimensional settings have been suggested [Jouini et al., 2004, Embrechts and Puccetti,
2006, Nappo and Spizzichino, 2009, Ekeland et al., 2009]. Traditionally, risk measures were
thought of as mappings from a set of real-valued random variables to the real numbers. However,
it is often insufficient to consider a single real measure to quantify risks, especially when the
risk-problem is affected by other external risk factors. Note that the evaluation of an individual
risk may strongly be affected by the degree of dependence amongst all risks. Modeling the
dependency structure of multivariate data is helpful to obtain meaningful and accurate inference
and prediction results in risk analysis.

An important univariate risk measure, based on the quantile notion, is the Conditional-Tail-
Expectation (CTE) defined by

CTEt(X) = E[X |X > QX(t) ], for t ∈ (0, 1).

This definition has recently been adapted to the multivariate case by Di Bernardino et al.
[2013] and Cousin and Di Bernardino [2013]. It is constructed as the conditional expectation
of a multivariate random vector given that the latter is located in the c-upper level set of the
associated multivariate distribution function. In this sense this measure is essentially based on
a “multivariate distributional approach”. More precisely they define, for i = 1, . . . , d and for
t ∈ (0, 1),

CTEi
t(X) = E[Xi |X ∈ LF (t) ], (1.6)

where X = (X1, . . . , Xd) is a non-negative multivariate risk portfolio with distribution function
F . In particular, Cousin and Di Bernardino [2013] proved that properties of the multivariate
Conditional-Tail-Expectation in (1.6) turn to be consistent with existing properties on univa-
riate risk measures (positive homogeneity, translation invariance, increasing in risk-level t, . . . ).
We try to go further to study the behavior of a covariate Y on the level sets of a d-dimensional
vector of risk-factors X. More precisely, adapting the multivariate risk measure in (1.6), we deal
with the multivariate Covariate-Conditional-Tail-Expectation (CCTE) defined by

Definition 1 Consider a random vector X with distribution function F and a random va-
riable Y . For t ∈ (0, 1), we define the theoretical multivariate t-Covariate-Conditional-Tail-
Expectation as

CCTEt(X, Y ) = E [Y |X ∈ LF (t)] ,
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and its associated truncated estimate as

ĈCTE
Tn

t,n(X, Y ) = En
[
Y |X ∈ LFn(t)Tn

]
,

where En denotes the empirical version of the expected value.

Using these definitions, one can show the following result.

Theorem 1.3.3 Let t ∈ (0, 1). Let F ∈ F be a twice differentiable distribution function on
Rd∗

+ satisfying some further regularity conditions on its gradient vector and its Hessian matrix
with an associated density f such that ||f ||1+ε,λ <∞ with ε > 0. Assume that for each n, Fn is
measurable. Let (vn)n∈N∗ and (Tn)n∈N∗ positive increasing sequences such that vn

∫
[0,Tn]d |F (x)−

Fn(x)|pλ(dx) P→ 0, for some 1 ≤ p <∞. It holds that

βn

∣∣∣∣ĈCTE
Tn

t,n(X, Y )− CCTETn
t (X, Y )

∣∣∣∣ P−−−→
n→∞

0,

where the convergence rate βn depends on vn, Tn, d and on conditions for f .

Using this result, a tractable convergence rate in the case of the empirical distribution func-
tion Fn can be easily derived. This result is then applied to an engineering problem in the design
of a sea defence [Hawkes et al., 2002]. The regression function r(x) := E[Y |X = x] represents
the relationship between the sea conditions X (i.e. significant wave height, still water level and
the wave period) and the overtopping Y at a given time. We analyzed a dataset recorded on
the Dutch coast during storm events [Draisma et al., 2004, Tau and Dam, 2011] and studied
the mean overtopping discharge conditionnally to the sea variable conditions.

This application, as well as the theoretical results, highlights the importance of the para-
meter Tn (which helped solving the problem of the non-compactness of the level sets) as well
as the curse of dimensionality. An interesting future work could be a deep investigation about
these points, with a focus on the optimal choice for this parameter. Furthermore, the proposed
methods are based on an i.i.d. samples framework. We remark that in real applications such as
seasonal pattern in the temperature and water level rise series, data can have different types of
serial correlations like nonlinear or non-stationary correlations [Fan and Yao, 2003].

1.4 Adaptive warped kernel estimation for multivariate

regression

We have seen that a commonly shared assumption for regression analysis is that the support
of X is a compact subset of Rd [Györfi et al., 2002, Guyader and Hengartner, 2013, Furer and
Kohler, 2015]. To weaken this assumption, we could proceed as in the previous subsection or
use the results of Kohler et al. [2009] that assume some smoothness properties on the regression
function. In another hand,“warped”estimators have been developed [Yang, 1981, Kerkyacharian
and Picard, 2004] and require very few assumptions on the support of X. If we assume, in a sake
of clarity, that d = 1, the warped method is based on the introduction of the auxiliary function
g = r ◦ F−1

X , where FX : x ∈ R 7→ P(X ≤ x) is the c.d.f. of the design X. First, an estimator ĝ
is proposed for g, and then, the regression r is estimated using ĝ ◦ F̂ , where F̂ is the empirical
c.d.f. of X. This strategy has already been applied in the regression setting using projection
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methods [Kerkyacharian and Picard, 2004, Pham Ngoc, 2009, Chagny, 2013] but also for other
estimation problems (conditional density estimation, hazard rate estimation based on randomly
right-censored data and c.d.f. estimation from current-status data, see e.g. Chesneau and Willer
2015, Chagny 2015). If the warping device permits to weaken the assumptions on the design
support, the warped estimates also depend on a unique bandwidth, for d = 1, whereas the ratio
form of the well-known Nadaraya-Watson kernel estimate, is defined by

r̂NW (x) =
∑n
i=1 YiKh(x−Xi)∑n
i=1Kh(x−Xi)

, (1.7)

where h = t(h1, . . . , hd) is the bandwidth of the kernel K, Kh(x) =
K1,h1(x1)K2,h2(x2) . . . Kd,hd(xd), with Kl,hl(x) = Kl(x/hl)/hl for hl > 0, and Kl : R → R such
that

∫
RKl(x)dx = 1, l = 1, . . . , d.

So, this requires the selection of two smoothing parameters (one for the numerator, one for
the denominator). In return, the c.d.f. FX of X has to be estimated, but this can simply be done
using its empirical counterpart. This does not deteriorate the optimal convergence rate, since
this estimate converges at a parametric rate. A data-driven selection of the unique bandwidth
involved in the resulting warped kernel estimator, in the spirit of Goldenshluger and Lepski
[2011] leads to non-asymptotic risk bounds when d = 1 [Chagny, 2015]. To our knowledge,
this adaptive estimation has never been carried out for a ratio regression estimator, the only
reference on this subject is Ngoc Bien [2014] who assumes that the design X has a known
uniform distribution.

Multivariate warping strategy

If d = 1, the warping device is based on the transformation FX(Xi) of the data Xi,
i = 1, . . . , n. For d > 1, a natural extension is to use Fl(Xl,i), for l = 1, . . . , d and i =
1, . . . , n, where Fl is the marginal c.d.f. of Xl. Let us introduce F̃X : x = (xl)l=1,...,d ∈ Rd 7→
(F1(x1), . . . , Fd(xd)). Assume that F̃−1

X : u ∈ [0, 1]d 7→ (F−1
1 (u1), . . . , F−1

d (ud)) exists, and let

g = r ◦ F̃−1
X ,

in such a way that r = g◦F̃X. If we consider that the marginal variables Xl of X are independent,
the estimator of Yang [1981] can immediately be adapted to the multivariate setting. We set

u 7→ 1
n

n∑
i=1

YiKh(u− F̃X(Xi)) (1.8)

to estimate g, and it remains to compound by the empirical counterpart of F̃X to estimate r.
However, a dependence between the coordinates Xl,i of Xi generally appears. The usual model
for this dependence using a copula C and the c.d.f FX of X can be written

FX(x) = C(F1(x1), . . . , Fd(xd)) = C(F̃X(x)). (1.9)

Denoting the copula density by c, we have

c(u) = ∂dC

∂u1 . . . ∂ud
(u), u ∈ [0; 1]d,

and the density fX of X can be expressed as
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fX(x) = c(F̃X(x))
d∏
l=1

fl(xl), x = (xl)l=1,...,d ∈ Rd,

where (fl)l=1,...,d are the marginal densities of X = (X1, . . . , Xd). It can then be proved that the
previous estimator given by (1.8) estimates cg and not g. As a consequence, we propose to set,
as an estimator for g,

ĝh(u) = 1
nĉ(u)

n∑
i=1

YiKh(u− ̂̃
FX(Xi)), u ∈ [0, 1]d,

where ĉ is an estimator of the copula density. We denote by
̂̃
FX : Rd → [0; 1]d the empirical

multivariate marginal c.d.f. :

̂̃
FX = ( ̂̃FX,1, . . . ,

̂̃
FX,d),

̂̃
FX,l(xl) = 1

n

n∑
i=1

1Xl,i≤xl , xl ∈ R, l ∈ {1, . . . , d}, (1.10)

and finally set

r̂h(x) = ĝh ◦
̂̃
FX(x) = 1

nĉ( ̂̃FX(x))

n∑
i=1

YiKh( ̂̃FX(x)− ̂̃
FX(Xi)) (1.11)

to rebuild our target function r from the data. In the sequel, we denote by ‖·‖ the (unweighted)
L2-norm on L2(Rd) and, more generally, by ‖ · ‖Lp(Θ) the classical Lp-norm on a set Θ.

For the sake of clarity, we first consider the regression estimation problem with a known
design distribution. In a first time, the copula density c and the marginal c.d.f. F̃X are conse-
quently considered to be known. We first proved a first classical convergence result for r̂h(β) that
could achieved the usual convergence rate in multivariate nonparametric estimation provided
that its bandwidth is carefully chosen. But the challenge of adaptive estimation is to propose a
data-driven choice for the bandwidth that leads to an estimator with the same optimal conver-
gence rate. So, using a Goldenshluger-Lepki approach, we then proved an oracle-type inequality
that leads us to the following result.

Let Hn ⊂ (R∗+)d be a finite bandwidth collection such that

∃α0 > 0, κ1 > 0,
∑

h∈Hn

1
h1 · · ·hd

≤ κ1n
α0

and ∀κ1 > 0,∃C0 > 0,
∑

h∈Hn
exp

(
− κ1

h1 · · ·hd

)
≤ C0.

For example, Hn = {k−1
1 · · · k−1

d , kl ∈ {1, . . . , bn1/rc}, l = 1, . . . , d} satisfies them with α0 =
2d/r and let h̃ ∈ Hn.

Corollary 1.4.1 Under some technical assumptions we have

E[‖r̂h̃ − r‖
2
fX

] = O
(
n
− 2β̄

2β̄+d

)
,

where β̄ is the harmonic mean of β1, . . . , βd : dβ̄−1 = β−1
1 + · · ·+ β−1

d .

19



Here the smoothness index β is not required : our estimator automatically adapts to unk-
nown smoothness of the function cg and performs as the best estimator of the collection
(r̂h)h∈Hn .

Technical assumptions are not reminded here in a sake of simplicity. Nevertheless, these
assumptions are very common to derive such estimators [Autin et al., 2010, Comte and Lacour,
2013, Chagny, 2015] and additional assumptions on the copula are verified for copula such as
the Frank one.

As explained previously, the estimator defined by (1.11) involves an estimator ĉ of the co-
pula density c that was assumed to be known in the previous result. So, the question is now
of copula density estimation. To be consistent with the previous kernel regression estimator al-
ready chosen, we propose to use the kernel estimator defined by Fermanian [2005]. Consider b =
t(b1, . . . , bd) ∈ (R∗+)d a multivariate bandwidth, a kernelWb(u) = W1,b1(u1)W2,b2(u2) . . .Wd,bd(ud),
with Wl,bl(u) = Wl(u/bl)/bl for bl > 0, and Wl : R→ R such that

∫ 1
0 Wl(u)du = 1, l ∈ {1, . . . , d}.

Let us introduce

ĉb(u) = 1
n

n∑
i=1

Wb(u− ̂̃
FX(Xi)), u ∈ [0, 1]. (1.12)

Using this definition and similar calculations than previously, we proved the same kind of
oracle-type inequality with a data-driven bandwidth that could, under some technical condi-
tions, automatically achieves the minimax optimal convergence rate.

Now we are in position to consider the general case of unknown copula density c to estimate
the regression function r. The idea is to plug the kernel estimator ĉb (defined by (1.12)) of c.
We first consider the simpler case of fixed bandwidth, both for the regression and the copula
estimators. Let us plug in r̂h the estimate ĉb : for any b,h > 0,

r̂h,b(x) = 1
nĉb(F̃X(x))

n∑
i=1

YiKh(F̃X(x)− F̃X(Xi))1ĉb(F̃X(x))≥mc/2, x ∈ A. (1.13)

This means that r̂h,b(x) = ((c× ĝh)/ĉb) ◦ F̃X(x)1
ĉb(F̃X(x))≥mc/2. We obtain the following upper-

bound for our ratio estimator.

Proposition 1.2 Under the same assumptions that Corollary 1.4.1, we have

E[‖r̂h,b − r‖2
fX

] ≤ 4Mc

m2
c

{ 2McE[‖r̂h − r‖2
fX

]

+(2‖g‖2
L∞(F̃X(A)) + ‖g‖2

L2(F̃X(A)))E
[
‖ĉb − c‖2

L2([0,1]d)

]}
.

This risk has the order of magnitude of the worst risk between the risk of r̂h and ĉb which is
not surprising, and we cannot expect to obtain a sharper bound for the plug-in estimator. We
thus have to add smoothness assumptions both on the regression function and on the copula
density to derive the convergence rate of the plug-in estimator.

The final step of this work would have logically been the proposition of a data-driven selec-
tion method for the bandwidth of the regression estimator computed with an adaptive copula
estimate. This reflexion is under way and would probably implies a penalization due to the
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plug-in, but is not straightforward at all.

And, as explained at the beginning of this section, this final warped estimator of the regres-
sion function could also be used to compute the CCTE in a non-compact setting.

1.5 Ongoing projects and prospects

Some prospects on each subject have been proposed in the dedicated sections or subsections.
But, unfortunately, each days has only twenty-four hours and I will not be able to follow any
of these ideas despite their interest. Here, I’m going to develop one of them, that is ongoing
on the master internship of Hai Dang Dau (Polytechnic School) under the co-supervision of
Thomas Laloë. As briefly mentioned in Subsection 1.3.1, this first result is just a step towards
the asymptotic normality of the level sets of the regression function. Then, we hope to obtain
a result that states that, under suitable (but the weakest possible) regularity assumptions, we
have that

κnλ
(
Lr̂n(t)∆Lr(t)

)
→Z,

where Z denotes a centered normal random variable with a standard deviation σZ , where κn
depends on n, hn and d and σZ is expressed using known quantities (the dimension, the regu-
larity of the regression function or of the kernel ...). Based on Mason and Polonik [2009], who
obtained this result for the special case of density functions, we pave the way to prove such
results. To achieve this final goal, we first need to obtain, as Cadre [2006] for the density case,
an exact limit for our convergence result stated previously in Proposition 1.1. It will also be
interesting to study if this kind of asymptotic result could be extended to plug-in estimators of
general level-sets (density, regression, distribution function of Subsection 1.3.2 ...) in the spirit
of the approach of Cuevas et al. [2006].
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Chapitre 2

Clustering of complex datasets

2.1 Introduction

Clustering consists in partitioning a data set into subsets (or clusters), so that the data
in each subset share some common trait. Proximity is determined according to some distance
measure. For a thorough introduction to the subject, we refer to Kaufman and Rousseeuw
[1990], Xu and Wunsch [2005]. The origin of clustering goes back to decades, when some bio-
logists and sociologists began to search for automatics methods to build different groups with
their data. Today, clustering is used in many fields. For example, in medical imaging, it can be
used to differentiate between types of tissue and blood in a three dimensional image. Market
researchers use it to partition the general population of consumers into market segments and to
better understand the relationships between different groups of consumers/potential customers.
There are also many different applications in artificial intelligence, sociology, medical research,
or political sciences.

In this chapter we present our contributions in this field. In Section 2.2, we define a new
parameter-free clustering algorithm called X-Alter [RS15], based on the convergent Alter algo-
rithm Laloë [2010]. In Section 2.3, we study a clustering problem for multivariate non-ordered
circular data based on real data that came from radiotherapy. We provide two different solutions
to this problem : one based on an appropriated distance on the circle combined with a simulated
annealing algorithm [RS16] and the other one using a Bayesian strategy [RS02]. Section 2.4 is
devoted to the definition of a clustering algorithm on micropollutants, called TyPol, that has
been implemented [RS13] and then used in several biological publications [RS04, RS08, RS10].

2.2 Robust parameter-free clustering algorithm

The K-means clustering is the most popular clustering method [Hartigan and Wong, 1979,
MacQueen, 1967]. Its attractiveness lies in its symplicity and its fast execution. It has however
two main drawbacks. On the one hand, the number of clusters K has to be supplied by the
user. Thus, different ways to determine K have been studied in the litterature [Li et al., 2008,
Pham et al., 2005]. On the other hand, the algorithm strongly depends on the initialisation
and can easily converges to a local minimum. Pelleg and Moore [2000] offer a solution for the
first problem with a building-block algorithm called X-means which quickly estimates K. After
each run of 2-means, local decisions are done whether subsets of the current centroid should be
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splitted or not. The splitting decision is done by computing the Bayesian Information Criterion
(BIC) [Schwarz, 1978]. In a different approach, Laloë [2010] proposes a consistent algorithm,
called Alter, which also needs the specification of K.

The purpose of our work was to combine the X-means and the Alter algorithm in order to
overcome the drawbacks of both algorithms. The complexity of the Alter algorithm decreases
and an automatic selection of the number of clusters simultaneously performed. Moreover, the
convergence properties of the Alter algorithm will overcome the local optimality problem of the
X-means algorithm, inherited from the K-means one.

2.2.1 The Alter algorithm

Let us detail the Alter algorithm Laloë [2010]. The method is based on quantization, a com-
monly used technique in signal compression [Graf and Luschgy, 2000, Linder, 2002]. Consider
(H, ‖.‖) a normed space. We let X be a H-valued random variable with distribution µ. Given
a set C of points in Hk, any Borel function q : H → C is called a quantizer. The set C is
called a codebook, and the error made by replacing X by q(X) is measured by the associated
distortion. From Laloë [2010] we know that we can consider only nearest neighbor quantizers.
Thus, a quantizer can be defined by its codebook only and the aim is to minimize the distortion
among all possible nearest neighbor quantizers.

However, in practice, the distribution µ of the observations is unknown, and we only have
at hand n independent observations X1, . . . , Xn with the same distribution than X. The goal
is then to minimize the empirical distortion :

1
n

n∑
i=1

d(Xi, q(Xi)).

The chosen distortion was the L1-based distortion to obtain more robust estimators (see
Kemperman [1987] for a discussion on this fact). Then, clustering is done by regrouping the
observations that have the same image by q. More precisely, we define a cluster C by C =
{Xi : q(Xi) = x̂C}, x̂C being the representant of cluster C. Theoretical results of consistency
and rate of convergence have been proved in Laloë [2010]. In particular, it is stated that the
rate of convergence is closely related to the metric entropy. However, the minimization of the
empirical distortion is not possible in practice and an alternative has been proposed with the
Alter algorithm. The idea is to select an optimal codebook among the data set. More precisely
the outline of the algoritm is :

1. List all possible codebooks , i.e., all possible K-tuples of data ;

2. Compute the empirical distortion associated to the first codebook. Each observation Xi

is associated with its closed center ;

3. For each successive codebook, compute the associated empirical distortion. Each time a
codebook has an associated empirical distortion smaller than the previous smallest one,
store the codebook ;

4. Return the codebook that has the smallest distortion.

Again, theoretical results of consistency and rate of convergence have been proved for the Alter
algorithm. In particular it is stated that the convergence rate is of the same order than the
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theoretical method described above. Moreover, this algorithm does not depend on initial condi-
tions (unlike the K-means algorithm) and it converges to the optimal distortion. Unfortunately
its complexity is O(nK+1) and it is impossible to use it for high values of n or K.

2.2.2 The X-Means algorithm

In a different approach, Pelleg and Moore [2000] define the X-means algorithm which is
adapted fromK-means one. It goes into action after each run ofK-means, making local decisions
about which subset of the current centers should split themselves in order to better fit the data.
The splitting decision is done by computing the BIC criterion. This new approach proposes an
efficient solution to one major drawbacks of K-means : the search of the number of clusters K.
Moreover, X-means has a low computational cost. But results suffer from the non-convergence
property of the K-means algorithm. The outline of this algorithm is :

1. Perform 2-means. This gives us clustering C ;

2. Evaluate the relevance of the classification C with a BIC Criterion ;

3. Iterate step one and two in each cell of C. Keep going until there is no more relevant
discrimination.

2.2.3 The X-Alter Algorithm

Following the idea of X-means, a recursive use of Alter with K = 2 can simultaneously allow
us to combine both advantages of these two methods : estimation of K/low computational cost
for X-means and convergence/parameter-free character for Alter. Using this idea, we define
a new clustering algorithm called X-Alter. Obviously, the convergence properties of Alter are
valid on each iteration separetely but we can not know if the whole X-Alter is convergent. We
also add an aggregation step at the end of our algorithm to prevent the creation of too many
clusters. Note that no parameter is needed by the algorithm. Though, the user can specify
a range in which the true K reasonably lies if he wishes to (this is [2,+∞[ if one had no
information).

More precisely, the outline of the algorithm is the following :

1. Perform Alter with K = 2. This gives us clustering C ;

2. Evaluate the relevance of the classification C (Subfigure (a) of Figure 2.2.3) with a BIC
Criterion ;

3. Iterate step one and two in each cell of C ((Subfigure (b) of Figure 2.2.3)). Keep going
until there is no more relevant discrimination (Subfigure (c) of Figure 2.2.3) ;

4. Final step of aggregation : aggregation can be considered if BIC(K = 1) > BIC(K = 2).
The aggregations are successively made according to the decreasing values of BIC(K =
1)−BIC(K = 2) (Subfigure (d) of Figure 2.2.3).

The algorithm starts by performing Alter with K = 2 centers. At this point, a model
selection criterion (BIC) is performed on all the data set. Using this criterion, we check the
suitability of the discrimination by comparing BIC(K = 1) and BIC(K = 2). In another way,
the criterion tests if the model with the two clusters is better than the one with only one. If
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the answer is yes, the iterative procedure occurs in the two subsets.

The structure improvement operation begins by splitting each cluster into two subsets. The
procedure is local on that the children are fighting each other for the points in the parent’s re-
gion, no others. When the discrimination is not validated by BIC criterion, the algorithm ends
in this region. Up to there, the only difference with X-means is that we use Alter instead of
2-means because the consistent property of Alter must improve results. Finally, when all regions
are asleep and no more clusters are needed, the aggregative step starts to prevent the creation
of too many clusters or the presence of splitted clusters (as in Figure 2.2.3). The complexity
of this algorithm in the worst case scenario (that is when it creates n clusters with one data
set) is O(n4), which is less than the inital Alter algorithm. However, the computational cost is
still higher than for X-means. For several thousand points, this complexity is not an important
practical concern. But, if the database exceeds several tens of thousand points, it could still be
too high.

This empirical algorithm was first tested on different simulated datasets that assessed its
robustness compared to classimal k-means. Then, we used it on the well-known wine or iris
datasets from UCI Machine Learning Repository [Frank and Asuncion, 2010]. More precisely,
we compare the methods on the Iris data set. Pelleg and Moore show that X-means performs
better and faster than repeateadly using accelerated K-means for different values of K. So, we
compare our X-Alter algorithm to X-means and to X-means with the aggregation step, called
X-means-R. We have 150 instances and 4 variables of 3 classes of 50 instances each, where each
class refers to a type of iris plant. One class is linearly separable from the other two ; the latter
are not linearly separable from each other which makes it more difficult to classify. The results
are gathered in Table 2.1.

Table 2.1 – Results for Iris data set.
Algorithm Number of clusters A.R.I. Dunn
X-means 13.7 (var=6.2) 0.46 (var=0.07) 0.0405 (var=6.10−5)
X-means-R 8 (var=1.56) 0.57 (var=0.03) 0.0398 (var=0)

3-means - 0.46 (var=0.0036) 0.04 (var=0)
X-Alter 6 1 0.402

It appears that our method do not find the real number of clusters but gets closer to it than
others. Furthermore the high value of the Adjusted Rand Index [Hubert and Arabie, 1985]
(A.R.I.) informs us that the great majority of iris plant are well-classified, the 3 additional
clusters are in fact very small and do not affect the A.R.I and the global quality of the obtained
clustering. In Dy and Brodley [2004], the estimation of the number of clusters is slighty better
but, as discussed above, the quality of our clustering seems (as we don’t use the same criterions)
to be better. Moreover, we observe the interest of the aggregation step in X-means-R and it
seems to appear that the spherical gaussian assumption required for the BIC is acceptable and
that X-Alter can be tested with every complex data set.

Nevertheless, this X-Alter method was shown to be computationally expensive. A way to
overcome this problem could be the adaptation of the Alter-Fast algorithm [Laloë, 2010] instead
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Figure 2.1 – (a) First iteration of X-Alter. The discrimination in 2 clusters (Step 1) is validated
by BIC criterion (Step 2). In each cluster, observations are represented by a different symbol.
(b) Second iteration of X-Alter : the sub-classification is done in the two relevant clusters (Step
1). Sub-classifications are validated by BIC (Step 2) so we obtain four clusters. (c) No relevant
sub-classification in the left cluster according to BIC. In the three other clusters, we obtain the
same rejection of sub-classification (Step 3). (d) Final discrimination. The two middle clusters
have been aggregated in Step 4.
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of Alter. It runs several times Alter in several randomly chosen partitions of the dataset resul-
ting in a gain of time but in a lost of efficiency. Another approach could be the use of recent fast
procedures to perform a greedy search such as the mixed integer programming [Bourguignon
et al., 2016, Liu et al., 2017].

2.3 Clustering for multivariate non-ordered circular data

2.3.1 Motivation

Circular and directional data arise in a number of different fields such as oceanography (wave
direction), meteorology (wind direction), biology (animal movement direction). The present
works are motivated by circular data in medicine. Nowadays, intensity-modulated radiation
therapy (IMRT) has demonstrated its effectiveness for cancer treatment. The latest genera-
tion of radiotherapy machines projects multiple rays. Multiplying beams allows to concentrate
radiation on the tumor while avoiding the massive irradiation of healthy areas. However, the
selection of the incident angles of the treatment beams may be a crucial component of IMRT
planning. Due to variations in tumor locations, size and patient anatomy, repositioning for the
multiple beams takes long time and is based on the planner’s experience to find an optimal set
of beams. So, establishing a small set of standardized beam bouquets for planning could be of
valuable help. The set of beam bouquets could be determined by learning the beam configu-
ration features from previous IMRT datasets. The multiple beams are fixed on a circle in the
transverse plane around the patient. Consequently, an observation is composed of the k beams
of a patient, that is k circular measurements. A real data set from post-operative treatment of
liver cancer at the Institute of Sainte Catherine in Avignon, France, is represented in Figure
2.2.

One actual observation consists of a (non-ordered) set of k angles rather than of a vector
(ordered) of length k but to cope with the technical difficulty of dealing with sets, it is convenient
to store the angles of each patient in a vector in increasing order (or in any other given order).
Of course, the derived vectors may be very different even for similar sets of angles. This is
easily seen by considering a simple case of two patients with angles {1◦, 60◦, 100◦, 150◦, 180◦}
and {60◦, 100◦, 150◦, 180◦, 359◦} : the two patients should share the same cluster as the sets of
angles are very similar (modulo 360) although the derived vectors are very different and, if any
classical clustering method was applied, are not likely to share the same cluster.

Several algorithms have been developed to make an exhaustive search and determine the best
beams compositions [Wang et al., 2004, Liu et al., 2006, Lee et al., 2006, Lei and Li, 2009] which
are different for each patient. But the pratical implementation of these methods is hindered by
the excessive computing time associated with the calculation. There is no other tools to assist
the selection of beam orientations other than the therapist’s experience and intuition whereas it
could be very helpful [Pugachev et al., 2001] and accelerate previous algorithms. For example,
these algorithms could be sped up by using appropriate initial presets.

Circular data have first been studied using classical non-Bayesian approaches. Three main
models for circular data can be found in the litterature : the von-Mises distributions, the wrap-
ped distributions and the projected normal distributions. The von-Mises distributions, first
introduced by Von Mises [1918] and extended by Singh et al. [2002] and Mardia et al. [2008],
are the natural analogues of the normal distribution on the sphere. The wrapped distributions
[Mardia and Jupp, 2009] are based on a simple fact that a probability distribution on a circle
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Figure 2.2 – Real data set of 14 patients with k = 5 angles. A point on the circle represents
the location of a treatment beam.

can be obtained by wrapping a probability distribution defined on the real line. Projected nor-
mal distributions are obtained by projecting multivariate normal random variables radially onto
the sphere [Presnell et al., 1998]. These latter distributions allow for asymmetric and possible
bimodal models. We refer the reader to Mardia and Jupp [2009] for a complete review on pro-
bability distributions of circular data.

Even if our problem has similarities with some previously treated, the specificity of our data
requires a specific method. Data are defined by the ballistic of the five angles {xi1, xi2, xi3, xi4, xi5}.
To define sets of recurrent angles used by radiotherapy technicians, and so predefine settings, we
used an unsupervised clustering method to obtain patient groups with homogeneous ballistics.
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2.3.2 Clustering based on simulated annealing

To achieve this goal, we must consider two problems : the importance of the modulo 2π in
the distance between two points on the circle and the permutations between two subsets, which
is a novel feature, and is detailed below.

Data can be viewed as subset of k = 5 points on the circle. Note it can be easily extended to a
different number of beams k. First, we define a distance δ between two points on the circle as
follows :

δ(a, b) = min
m∈Z
|a− b+m2π| for all a, b ∈ R

where a and b denote the angle in radians with respect to an arbitrary origin. Note that δ
can be viewed as a L1-distance on the circle. Also note that the fact that points are angles is
immaterial in the rest of this study and only affects metric δ. So, the following method could
be used for any configurations of points lying in any space that has a distance defined between
points.
Then, we define a distance between two subsets of five points on the circle. The chosen distance
has to test all the permutations between the two subsets. For example, the distance between
x1 = {x11, x12, x13, x14, x15} and x2 = {x12, x13, x14, x15, x11} must be zero. Taking into account
these specificities, we propose the following function between two items x1 and x2 :

d(x1, x2) = inf
σ∈F

5∑
l=1

δ
(
x1σ(l), x2l

)
,

where F is the set of permutations. The function d is shown to be a distance. This definition
allows us to test all permutations between two angle sets and retain that which corresponds to
the smallest distance.

If x1, x2, . . . , xn denote the n observations to be classified in J clusters, the problem consists
in determining the set of cluster centers Ω = {c1, c2, . . . , cJ} which minimizes the distortion D
defined by :

D(Ω) =
n∑
i=1

min
c∈Ω

d(xi, c).

If we set
Cj = {xi : d (xi, cj) = min

c∈Ω
d (xi, c)},

note that

D(Ω) =
J∑
j=1

∑
xi∈Cj

d (xi, cj)

and that C1, . . . , CJ define a partitition of {x1, x2, . . . , xn}. However, there is no explicit solution
for optimizing this criterion, again because the distances involved are non-Euclidean. The k-
medoids clustering methods, like PAM [Kaufman and Rousseeuw, 1990] or CLARANS [Ng and
Han, 1994], can solve this problem using the most central data of the cluster as centroids. But,
because our real data set is small, we fear that few of the observations will be next to their
centroids. This can produce bad clustering. For these reasons, and also because these methods
only identify local optima, we chose not to used k-medoids clustering methods. Instead we use
a simulated annealing type algorithm described below, which can find a better approximation
of the cluster centers. So, given the chosen distance and its characteristics mentioned above,
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we use, with a fixed number of clusters J , a clustering algorithm based on simulated annealing
[Bartoli and Del Moral, 2001]. The ν − 1th iteration of the algorithm ends giving us a set of J
centers Ωa. We describe below the νth iteration :

1. All data are assigned to their nearest center according to distance d. This provides us
with a distortion Da

ν defined by

Da
ν(Ωa) =

n∑
i=1

min
c∈Ωa

d(xi, c).

2. A cluster j with center cj = {cj1, cj2, cj3, cj4, cj5} is randomly chosen according to a
discrete Uniform distribution. Then, a new center c′j is proposed for this cluster, with
coordinates c′js ∼ Nw(cjs, σ2

a) for 1 ≤ s ≤ 5.

3. The new distortion

Db
ν(Ωb) =

n∑
i=1

min
c∈Ωb

d(xi, c)

is computed with Ωb = {c1, . . . , cj−1, c
′
j, cj+1, . . . , cJ}.

(a) The new center is accepted with probability 1 ∧ exp
(
−(Db

ν −Da
ν)/(tν))

)
, where tν

is the so-called temperature, and we return to step 1.

(b) If rejected, we return to step 2 and another center is taken.

The distribution Nw(cjs, σ2
a) is the wrapped normal distribution on the circle [Mardia and

Jupp, 2009]. It is obtained by wrapping a common normal distribution N (cjs, σ2
a) onto the

circle. Its probability density function is

f(x; cjs, σ2
a) = 1√

2πσa

∞∑
l=−∞

exp
{
−(x− cjs + 2lπ)2

2σ2
a

}
.

This distibution is unimodal and symmetric about its mode cjs.
The set of centers {c1, . . . , cJ} which provides the lowest distortion D over all the chain is
retained. This algorithm requires that the user sets in advance the number of clusters J , the
shape of the temperature tν and the variance of normal distributions σ2

a.
We provide a study of the convergence of the algorithm from a theoretical point of view. Let
K be the transition kernel associated with the described algorithm. And let us define oscK(D)
as follows

osc
K

(D) = sup{|D(x)−D(y)|, x ∈ E, y ∈ suppK(x, .)}

where suppK(x, .) denotes the support of K(x, .). We state the following Proposition 2.1.

Proposition 2.1 Taking tν = C0
log(ν+e) with C0 > J oscK(D), then, for all ε > 0, Pr(xν ∈

Dε)→ 1 as ν →∞ where

Dε = {x ∈ E,D(x) ≤ essinf
λ

(D) + ε} and essinf
λ

(D) = sup{a ≥ 0, λ(a ≤ D) = 1}.

The choice of C0 is a known problem for the convergence of the algorithm. If C0 is chosen too
large, the algorithm will take a long time to converge because the denominator is log(ν + e).
On the other hand, if C0 is chosen too small, the algorithm converges too quickly and does not
sufficiently explore the space of possible values to find the optimal clustering. In our problem, it
is clear that we have oscK(D) ≤ 5nπ, which leads us to the sufficient condition C0 > 25nπ. This
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is a rather crude bound, but we cannot obtain a better one without making strong assumptions
about the data distribution. In order to reasonably estimate C0, we run a chain of ν0 sets of
centers Ω and we calculate the variation of the distortion D at each iteration which leads to
the following estimate of oscK(D) :

ôscK(D) = sup
1≤h≤ν0

|D(Ωh)−D(Ωh+1)|

where Ωh+1 ∼ K(Ωh, .). This enables us to estimate C0.
Note that in our algorithm only one randomly chosen center is updated. This provides us
with an acceptable trade-off between exploration and convergence. Other strategies could be
considered like updating all the centers at each iteration. In any case, the variance σ2

a of the
proposal distribution must be carefully chosen in order to balance between exploration and
convergence.

The performances of our clustering procedure were assessed on simulated datasets. Then, it
was applied to our real dataset. The number of clusters was chosen according to BIC criterion.
Running our algorithm with J = 2 we find the following two groups : one containing data
1,2,6,9 and 12, the second containing data 3,4,5,7,8,10,11,13 and 14. These results are relatively
independent of the input parameters, such as initial centers or variance of wrapped normal
distributions σa. We obtained two presets corresponding to the centers of these two groups :

c1 = {π/4, π/2, π, 1.81π, 1.99π} and c2 = {π/4, 0.51π, 3/4π, π, 1.88π}.

We remark that the two centers have three common angles : π/4, π/2 and π and one slightly
different from 1.85π. The principal difference resides in only one angle whose presets are π/4 or
0. Thus, using these preset positions should be fairly easy for praticians, with four fixed values
and two choices for the last one. They should only have to make a few minor adjustments
around these presets to correctly position beams. Each new patient should be affected to the
first cluster with a probability 5/14 and to the second with a probability 9/14. In the first tests,
the practitioners will realize quickly a possible wrong assignment of a patient and have just a
few quick changes to be done to correct this.

2.3.3 Bayesian clustering

As already mentioned, this first approach have some drawbacks. First, the number of clusters
has to be supplied by the user. An additional procedure of model selection (AIC, BIC, RIC,
silhouette index, ...) can be used to select the number of clusters but an appropriate methodology
that automatically finds this number would be very useful. Second, the final result is only one
unique clustering whereas there are probably other clusterings that could be acceptable. A final
result with all possible clusterings and a probability of appearance for each could be of great
help for the practitioner. These problems can naturally be solved with a Bayesian clustering
method based on Dirichlet Process as it does not require a preselected number of clusters and
provides different clusterings (possibly with different numbers of clusters) with their posterior
probabilities. Also note that the Bayesian framework is well adapted to our application as
the sample size is low and can be compensated to some extent by prior information. To our
knowledge, such a clustering Bayesian model has never been applied for multivariate circular
data in the literature. So, we study a Bayesian clustering extension of this problem.

Bayesian litterature on circular data is more recent. Von Mises distributions are used in
the univariate case in Damien and Walker [1999] and are applied to a change-point problem
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in SenGupta and Laha [2008]. Wrapped distributions appear in Ravidran and Ghosh [2011],
with a data augmentation algorithm to overcome some computational difficulties, and in Jona-
Lasinio et al. [2012], to handle structured dependences between spatial measurements. Nuñez-
Antonio and Gutiérrez-Peña [2005], Wang and Gelfand [2013] adapted the projected normal
distributions in a Bayesian framework. A more sophisticated model was considered in Wang
and Gelfand [2014] to capture structured spatial dependence for modeling directional data at
different spatial locations. This model was then upgraded to capture joint structured spatial
and temporal dependence [Wang et al., 2015].

Note that, for all the models cited above, each observation is simply a point on a circle or
on a sphere while in our case, a single observation is made up of k (k ≥ 2 and k = 5 in our
dataset) non-ordered points on the circle. For this reason these models cannot straightforwardly
be adapted to our dataset.

A simple way of generating distributions on the p-dimensional unit sphere Sp is to radially
project probability distributions originally defined on the p-dimensional space Rp [Presnell
et al., 1998]. Let x be a random p-dimensional vector, then x/||x|| is a random point on Sp. If
x has a p-variate Normal distribution Np(µ,Σ) then x/||x|| is said to have a projected normal
distribution, denoted by PNp(µ,Σ). The literature has been first confined to the special case
where p = 2 and Σ = I [Presnell et al., 1998, Nuñez-Antonio and Gutiérrez-Peña, 2005, Nuñez-
Antonio et al., 2011]. Then, Wang and Gelfand [2013] studied the projected normal family with
a general covariance matrix Σ and refer to this richer class PNp(µ,Σ) as the general projected
normal distribution. This general version allows asymmetry and bimodality [see Figure 2. in
Wang and Gelfand, 2014]. The general projected normal distribution is not identifiable because
x/||x|| is invariant to scale transformation. To overcome this problem, Wang and Gelfand [2013]
fixed some variance parameters in Σ to provide identifiability.

In a first step of simplification, we assume that the ith of the n observations is given by a
vector of k angles θi = (θi1, . . . , θik)′ ∈ [0, 2π[k instead of a non-ordered set {θi1, . . . , θik}. Using
a projected normal distribution, we denote by xi = (xi1, . . . , xik)′ ∈ (R2)k a random vector with
distribution N2k(µi, I2k) where θij is defined as the radial projection of xij on the unit circle of
R2. In other words, we have xij = (xij1, xij2)′ = (rij cos θij, rij sin θij)′ for all i ∈ {1, . . . , n} and
all j ∈ {1, . . . , k} where rij denotes the Euclidean norm of xij. Note that θi is observed while
ri = (ri1, . . . , rik)′ is not and is treated as an unknown parameter. We denote by PN2k(µi, I2k)
the joint distribution of (θi, ri). Clustering analysis will be based on a Dirichlet process mixture
(DPM) model described as follows :

θi, ri|µ ∼ PN2k(µi, I2k)
µi|P ∼ P
P ∼ DP (n0P0),

(2.1)

where µ = (µ1, . . . , µn) and where DP (n0P0) denotes the Dirichlet process (DP) introduced
by Ferguson [1973] with center P0 = N2k(0,Σ0) and precision parameter n0. The clustering
properties of the DP are well known and date back to Blackwell and MacQueen [1973]. It is
shown that the parameter µ = (µ1, . . . , µn) follows the Pólya urn scheme :

µ1 ∼ P0
µi+1|µ1, . . . , µi ∼ 1

n0+i
∑i
j=1 δµi + n0

n0+iP0, for i ≥ 2. (2.2)

with δµi indicating the point measure on µi. So, µi+1 may be equal to one of the previous µi’s
or may be drawn from P0. This results in a positive probability of sharing the parameter value
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with previous observations ; hence the clusters. In the sequel, we will denote by Pólya(n0P0)
the distribution of µ given by (2.2). Although the DPM is very popular for Bayesian clustering,
other model-based cluster methods exist. For a review of these methods, we refer the reader to
Quintana [2006], Lau and Green [2007], Fritsch and Ickstadt [2009] and references therein. Note
that the DPM model does not require choosing the number of clusters. On the other hand, it
is well known that the number of clusters can be controlled by n0. Learning about n0 from the
data may be addressed by assuming a Gamma prior distribution n0 ∼ G(an0 , bn0) [Escobar and
West, 1995].

Now recall that the actual ith observation consists of a (non ordered) set of the form
{θi1, . . . , θik} rather than of a vector (ordered) θi = (θi1, . . . , θik)′. The impact of this sim-
plification is quite easy to understand. Using model (2.1), two observations i1 and i2 with the
same angles but in different orders would have a very low posterior probability of sharing the
same cluster, that is µi1 = µi2. We treat the observations as vectors for convenience but we have
to introduce a permutation parameter τi to compensate this simplification. More precisely, for
all µi = (µ′i1, . . . , µ′ik)′ and all permutation τi of {1, . . . , k}, we set µτii = (µ′iτi(1), . . . , µ

′
iτi(k))′ ;

µτii can be viewed as a random permutation of the coordinates of µi. Therefore, the clustering
model becomes :

θi, ri|µ, τ ∼ PN2k(µτii , I2k)
µi|P ∼ P
P ∼ DP (n0P0),

(2.3)

where τ = (τ1, . . . , τn) and µ = (µ1, . . . , µn). The permutations τi are assumed to be a priori
independent with a uniform distribution UP on the set P of permutations of {1, . . . , k}. The
posterior probability that two observations i1 and i2 with the same angles but in different orders
would share the same cluster is increased with model (2.3) as there exist some values of τi1 and
τi2 such that µτi1i1 = µτi2i2 .

Prior information It is natural to assume that the k angles θi1, . . . , θik are a priori roughly
equally spaced on the unit circle. This prior information can be incorporated into the covariance
matrix Σ0 of P0 as follows. From (2.3), it is well known that the marginal distribution of µi
is P0 = N2k(0,Σ0). Denote by R the 2 × 2-matrix of the rotation in R2 with angle 2π/k and
center 0. Set µi1 ∼ N2(0, ρI2) where ρ is a positive number and µij|µi,j−1 ∼ N2(Rµi,j−1, I2) for
j ∈ {2, . . . , k}. Then, roughly, µi1, . . . , µik are approximately equally spaced on the circle with
center 0 and radius

√
ρ. Note that the variance parameter ρ has an important impact on the

prior : a large value of ρ enables to generate µi1, . . . , µik approximately situated on a circle with
a large radius. For such a large radius, the angles θij of the projections on the unit circle have
small variances. Hence, ρ can also be viewed as a precision parameter for θi. We have shown
that the derived matrix Σ0, also denoted by Σ0(ρ) in the sequel to highlight the dependence on
ρ, can be expressed as a closed-form expression as well as the inverse Σ−1

0 and the determinant
|Σ0|. Inference on ρ can then be performed using an inverse gamma prior ρ ∼ IG(aρ, bρ) for
which the full posterior conditional distribution will be calculated in the following section.

Finally, the complete Bayesian model can be expressed as follows :

θi, ri|µ, τ ∼ PN2k(µτii , I2k)
µ|n0, ρ ∼ Pólya(n0P0(ρ))

τi ∼ UP
ρ ∼ IG(aρ, bρ)
n0 ∼ G(an0 , bn0).

(2.4)
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where P0(ρ) = N2k(0,Σ0(ρ)). By convention, it is assumed that the random variables at a stage
of the hierarchy are independent.

Inference

We set θ = (θ1, . . . , θn), r = (r1, . . . , rn), µ = (µ1, . . . , µn), τ = (τ1, . . . , τn) and ξ =
(r, µ, τ, ρ, n0). Thus, the parameter is ξ and the observation is θ. We sample from the posterior
distribution of ξ with a Metropolis-Hastings-Within-Gibbs algorithm. In what follows, p stands
for a generic notation for a density distribution.

Simulations of µ We can restrict our attention to model (2.3) instead of the full model (2.4)
for the simulations of µ as every component of ξ except µ remains fixed. An alternative para-
meter setting of µ, θ and ρ will prove useful. Denote x = (x1, . . . , xn) where xi = (x′i1, . . . , x′ik)′.
Firstly, note that the full conditional distribution of µ reduces to the conditional distribution
of µ given (x, n0, ρ, τ) as there is a natural bijection between xij and (θij, rij). Secondly, if we
denote by N2k(xi;µi, I2k) the value of the density of N2k(µi, I2k) at xi, it is easy to check that :

N2k(xi;µτii , I2k) = N2k(x
τ−1
i
i ;µi, I2k). (2.5)

Consequently, if we set yi = x
τ−1
i
i , sampling from the posterior distribution of µ in the DPM

model (2.3) reduces to sampling from the posterior distribution of µ in the following conjugate
DPM model :

yi|µ ∼ N2k(µi, I2k)
µi|P ∼ P
P ∼ DP (n0P0).

(2.6)

There are several samplers for conjugate DPM models ; for a review, we refer the reader to
Griffin and Holmes [2010]. Following the notations of Dahl [2003], we use a parameter setting
of µ in terms of :

• a set partition η = {S1, . . . , Sq} for {1, . . . , n} where each Sj represents a cluster, i.e.,
µi = µj if there exists j1 ∈ {1, . . . , q} such that i, j ∈ Sj1 and µi 6= µj if there exist
j1, i1 ∈ {1, . . . , q}, i1 6= j1 such that i ∈ Si1 , j ∈ Sj1 ,

• a vector φ = (φ1, . . . , φq) composed of the distinct values of µ, i.e., φj = µi for all i ∈ Sj.
Then, the conjugate DPM model (2.6) may be expressed as :

yi|η, φ ∼ N2k(
∑q
j=1 φj1{i∈Sj}, I2k)

φj|η ∼ P0
η ∼ p(η) ∝ ∏q

i=1 n0Γ(|Sj|),
(2.7)

where |Sj| is the cardinal of Sj, 1A is the indicator function for the event A, Γ denotes the
gamma function and p stands for the generic notation for any density. We can integrate over the
cluster location parameter φ analytically in (2.7) as P0 is conjugate to the normal distribution
of yi given η and φ. Then, we run the SAMS sampler of Dahl [2003] for simulating η. Once
a simulation of η is obtained, it is easy to simulate the cluster location parameter φ from its
full conditional which reduces to sample independently each φj from a N2k(Σj

∑
i∈Sj yi/|Sj|,Σj)

distribution with Σ−1
j = |Sj|−1I2k + Σ−1

0 (ρ). As recommended, we combine three runs of the
Metropolis-Hastings update of the SAMS sampler with a full scan of Gibbs sampling for µ
[MacEachern, 1994].
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Simulations of r We show that the rij are independent given (θ, τ, µ, ρ, n0) with density :

p(rij|θ, τ, µ, ρ, n0) ∝ rije
− 1

2(rij−u′ijµiτi(j))
2

, (2.8)

with u′ij = (cos θij, sin θij). If we denote by N+
1 (m, v) the univariate normal distribution trunca-

ted to [0,∞), we remark that (2.8) is close to the value of the density of N+
1 (u′ijµiτi(j), 1) at rij.

It is then natural to simulate from (2.8) by a Metropolis-Hastings step with a N+
1 (u′ijµiτi(j), 1)

as the proposal distribution. Clearly, the probability of acceptance reduces to the ratio
min{rnewij /roldij , 1} where roldij and rnewij are, respectively, the current and the proposed values
of rij in the algorithm.

Simulations of τ As the prior distribution of τ is uniform, we have :

p(τ |θ, r, µ, ρ, n0) ∝
n∏
i=1
N2k(xi;µτii , I2k).

Thus, given (θ, r, µ, ρ, n0), the τi are independent with density (with respect to the counting
measure on the set T of permutations of {1, . . . , k}) :

p(τi|x, µ) = N2k(xi;µτii , I2k)∑
t∈T N2k(xi;µti, I2k)

. (2.9)

Simulations of ρ From (2.4), it is clear that the full conditional distribution of ρ reduces
to the conditional distribution of ρ given µ. Then, using the parametrization of µ in terms of
(η, φ), (2.7), and a few calculations, we show that the full conditional of ρ is

IG

(
aρ + q, bρ + 1

2

q∑
i=1

φ′i1φi1

)
. (2.10)

Simulations of n0 Using the arguments of Escobar and West [1995], under the G(an0 , bn0)
prior, n0 is updated at each Gibbs iteration by sampling first an additional variable ζ from a
Beta distribution and then a new value of n0 from a mixture of Gamma distributions as follows :

ζ|n0 ∼ B (n0 + 1, n)
n0|ζ, q ∼ πnG(an0 + q, bn0 − log ζ) + (1− πn)G(an0 + q − 1, bn0 − log ζ), (2.11)

with weights πn defined by πn/(1− πn) = (an0 + q − 1)/[n(bn0 − log ζ)].

Theoretical study of the symmetrized model

To investigate the impact of the symmetrization induced by the variables τi, we consider a
simple model of the following form :

xi|η, φ ∼ N2k(
∑q
j=1 φj1{i∈Sj}, I2k)

φj|η ∼ P0
η ∼ G

(I)
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and its symmetrized version :

xi|η, φ ∼ N2k(
∑q
j=1 φ

τi
j 1{i∈Sj}, I2k)

φj|η ∼ P0
η ∼ G
τi ∼ UP ,

(II)

where φτij = (φ′jτi(1), . . . , φ
′
jτi(k))′ is obtained by random permutation of the coordinates of φj =

(φ′j1, . . . , φ′jk)′ ∈ (R2)k. In both models, P0 = N2k(0,Σ0) and G is any distribution of the
partition η = {S1, . . . , Sq} of {1, . . . , n}. Such distributions include the distribution derived from
the Dirichlet process given by (2.7). Model (II) can be viewed as a simplified and reparametrized
version of (2.4). Now consider an idealized sample x1, . . . , xn for which every observation xi is
simply a random permutation of one unique observation x0 = (x′01, . . . , x

′
0k)′ ∈ (R2)k ; in other

words, for every i, there exists a permutation αi such that xi = (x′0αi(1), . . . , x
′
0αi(k))′. As the

coordinates xij of all the xi are the same but in a different order, it is expected that all the
observations are put together in one unique cluster. The aim of this section is to study whether
model (II) is more appropriate than model (I) for this purpose.

Let p0 and pI(x|η) denote respectively the density of P0 and the conditional density of
x = (x1, . . . , xn) given η for model (I). We have :

pI(x|η) =
∫ q∏

j=1

∏
i∈Sj
N2k(xi;φj, I2k)p0(φj)dφj =

q∏
j=1

m(xSj),

where xSj = (xi, i ∈ Sj) and

m(xSj) =
∫ ∏

i∈Sj
N2k(xi;φj, I2k)p0(φj)dφj.

Denote by pII(x|η) the conditional density of x given η for model (II). By (2.5) and noting that
{τ−1
i , τi ∈ P} = P , we have :

pII(x|η) = 1
(k!)n

∑
τ

q∏
j=1

m(xτSj),

where the sum above is taken for all the values of τ = (τ1, . . . , τn) in Pn, xτSj = (xτii , i ∈ Sj) and
xτii = (x′iτi(1), . . . , x

′
iτi(k))′. Therefore, models (I) and (II) reduce to

x|η ∼ ∏q
j=1m(xSj)

η ∼ G,
(I’)

and
x|η ∼ 1

(k!)n
∑
τ

∏q
j=1m(xτSj).

η ∼ G.
(II’)

For all partition η = {S1, . . . , Sq} and all observation x, we set

f(x, η) = 1
(k!)n

∑
τ∈Pn

exp 1
2

q∑
j=1

‖∑
i∈Sj

xτii ‖2
Sj
− ‖

∑
i∈Sj

xi‖2
Sj

 (2.12)

where ΣS =
(
Σ−1

0 + |S|I2k
)−1

for all subset S ⊂ {1, . . . , n} and ‖t‖2
S = t′ΣSt for all t ∈ (R2)k.
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Proposition 2.2 a) For all partition η = {S1, . . . , Sq} and all observation x = (x1, . . . , xn),
we have :

pII(x|η)
pI(x|η) = f(x, η).

b) For all distribution G, there exists a positive number BG such that :

pII(η|x)
pI(η|x) = BG f(x, η),

for all partition η and all observation x.

c) For all distribution G, all partition η and all observation x, we have :

pII(η|x)
pI(η|x) ≥ f(x, η) 1

maxη f(x, η)

where the maximum is taken over all partitions of {1, . . . , n}.

From a) of Proposition 2.2, we see that f(x, η) is the likelihood ratio of models (II’) and
(I’). From b), we know that the posterior odds ratio is large when f(x, η) is large. It would be
of interest to know whether this ratio is greater than one. Unfortunately, this is not an easy
task except for a few particular cases given below. Indeed, although the factor BG is actually
known (see the proof of Proposition 2.2 for more details), it is rather intractable. From c), we
deduce that the posterior odds is actually greater or equal to one at least for the partition ηx
that maximizes f(x, η). This partition does exist for any observation x and is independent of
G. In other words, for any x, there exists a partition ηx such that pII(ηx|x) ≥ pI(ηx|x) for all
prior G.

Consider the partition η̄ with a single cluster : q = 1 and S1 = {1, . . . , n}. From (2.12),
the posterior odds ratio when η = η̄ is likely to be large when

∑n
i=1 xi ≈ 0 and small when

all the xi ≈ x0 for all i ∈ {1, . . . , n}. Assume from now that
∑n
i=1 xi = 0 and that Σ0 = I2k.

Remenber that Σ0 models the prior information about the mutual positions of the angles on
the circle. Therefore Σ0 = I2k can be viewed as a non informative prior. In this case, ‖t‖2

Sj
=

(1 + |Sj|)−1t′t = (1 + |Sj|)−1‖t‖ for all t ∈ (R2)k and we have :

f(x, η̄) = 1
(k!)n

∑
τ∈Pn

exp 1
2(n+ 1)

(
‖

n∑
i=1

xτii ‖2
)
. (2.13)

Example 1 below provides a typical sample x = (x1, . . . , xn) for which the posterior probabilty
of a unique cluster is greater with model (II) than with model (I) independently of the prior
distribution G.

Example 1 Assume n = k and that x1 = (x′11, . . . , x
′
1k)′ ∈ (R2)k is made up of k consecutive

points on the unit circle separated from an angle of 2π/k, x2 is obtained by a rotation with
angle 2π/k of each point of x1 and so on. Therefore, we have

∑n
i=1 xi = 0. Our conjecture is

that maxη f(x, η) = f(x, η̄) for all integer k which implies, from c) of Proposition 2.2, that the
probability of a unique cluster is greater for model (II) than for model (I) for any distribution G.
For n = k = 2 the conjecture reduces to f(x, η) ≤ f(x, η̄) for a single partition η = {{x1}, {x2}}.
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As ‖xi‖Sj = ‖xτii ‖Sj for all i and τi, it is easily seen from (2.12) that f(x, η) = 1. On the other
hand, as ‖x1‖2 = k and x1 = −x2, we see from (2.13) that

f(x, η̄) = 1
4

(
2 exp 1

6‖x1 + x2‖2 + 2 exp 1
6‖2x1‖2

)
= 1

2

(
1 + 2 exp 4

3

)
,

hence the proof of the conjecture for n = k = 2. We also proved the conjecture for n = k = 3
with a rather large amount of calculations (not given here) to take into account all the partitions
η and all the permutation τ = (τ1, τ2, τ3). We are not in a position to provide general proof of
the conjecture for n = k ≥ 4.

Real dataset results

Some simulations enhanced the performances of the whole clustering methodology and its
robustness to hyperparameter values. Then it was applied to the post-operative treatment of
liver cancer at the Institute of Sainte Catherine in Avignon, France (see Figure 2.2). Its results
are compared to our previous method in which the number of clusters was preselected to q = 2.
We used non informative priors and investigated the MCMC convergence with the clustering
entropy −∑q

i=1
|Si|
n

log
(
|Si|
n

)
.

The majority clustering (mode of the posterior distribution of the clusterings) is the same
that is been obtained previously with the simulated annealing with a posterior probability equal
to 30.5%. This result was awaited and is coherent with the choice of 2 clusters in the previous
method. But the real gain from our Bayesian approach is to look beyond this majority cluste-
ring. Here there are 3 more clusterings that are significant and that could give some information
on this real dataset. The second majority clustering is nearly the same as the previous one : the
clusters are the same but data 6 is alone in a third cluster. Indeed, this data is very atypical
because it is the only one that contains an angle near 1.69π. The posterior probability for this
clustering is 14.9%. The third majority clustering gives nearly the same information with a pos-
terior probability of 13.5%. There are two clusters : one with data 6 and a second with all the
others. Finally, another clustering with a posterior probability of 12.0% is made up of only one
cluster. Even with other choices for the hyperparameters an0 and bn0 , the posterior probability
of this clustering remains high. It highlights the fact that all the data share some common traits
and the main difference in the two clusters of the majority clustering only concerns one angle.
It can be noted that a credible region with a posterior probability of 71% is composed of the
4 previous clusterings. As explained with the previous approach, using these preset positions
should be fairly easy for praticians, with four fixed values and only two choices for the last one.
Furthermore, the results suggest another preset position that should be added and tested if the
two previous one do not fit : the beam angles of data 6.

Note that between our two publications on this subject, Yuan et al. [2015] generalized the
first approach using k-medoids to cluster beam configuration features with different numbers
of beams. The efficiency of this approach was tested using an appropriate clinical trial and
they stated that the dosimetric quality of the plans using the standardized beam bouquets
have comparable quality to that of usual clinical plans. These standardized beam configuration
bouquets will by consequence help improve plan efficiency and facilitate automated planning.
They also recorded a US Patent [Wu et al., 2015] that cites our first work [RS16]. Very recently,
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they also improved this approach by considering noncoplanar beams [Yuan et al., 2018]. However
some improvements could be considered, such as, incorporating covariates (shape or size of the
tumor, stage of the cancer, sex, age, ...) to preselect the beam positions and/or refine the prior
probabilities of assignment in each cluster.

2.4 Clustering of micropollutants

2.4.1 Methodology

I was also involved in an applied project called TyPol whose goal was to cluster micropollu-
tants. This project was based on the fact that new legislations such as the REACH (Registration,
Evaluation, Authorization and restriction of CHemicals) improved the needed information on
chemical substances [Muir and Howard, 2006]. Consequently, a high number of different in
silico approaches have been developed to estimate the behavior of organic compounds in the
environment such as QSAR [Eriksson et al., 2002, Pavan et al., 2008] or other numerical mo-
dels [Jarvis and Larsbo, 2012]. Therefore, approaches able to classify compounds according to
their environmental behavior or eco/toxicological effects will help both regulators and scien-
tists facing the problem of the constant increase in the diversity and in the number of the
chemical substances which will be concerned by environmental risk assessment. The objective
of this work was thus to develop a new simple approach, TyPol (Typology of Pollutants), to
classify organic compounds and their degradation products according to both their behavior in
the environment and their structural molecular properties. TyPol is based on a large database
containing environmental endpoints (i.e. environmental parameters such as sorption coefficient,
degradation half-life or bioconcentration factor), and structural molecular descriptors (number
of atoms in the molecule, molecular surface, dipole moment, energy of orbitals, etc.). The calcu-
lation of molecular descriptors is based on in silico approach, and the environmental parameters
are extracted from available databases and from literature.

The problematic of TyPol is that it considers two sets of variables (molecular descriptors
and environmental parameters), which are different by nature. Partial least squares regression
(PLS) [Wold, 1996, Boulesteix and Strimmer, 2007] can be used to find the fundamental relation
between two sets of variables using a latent variable approach to model the covariance structures
in these two spaces. To be more specific, the general underlying model of multivariate PLS is

X = TPT + E

Y = UQT + F

where X is an n×m matrix of predictors (here the molecular descriptors), Y is an n×p matrix
of responses (here the environmental parameters) ; T and U are n× l matrices that are, respec-
tively, projections of X and Y ; P and Q are, respectively, m× l and p× l orthogonal loading
matrices ; and matrices E and F are the error terms, assumed to be independent and identi-
cally distributed random normal variables. The decompositions of X and Y are made so as to
maximise the covariance between T and U . PLS model tries to find the multidimensional direc-
tions in the observable variables (i.e. molecular descriptors) space that explain the maximum
multidimensional variance direction in the predicted variable (i.e. environmental parameters)
space. So PLS, as the most-known PCA, constructs uncorrelated variables which summarizes
the information, but PLS takes into account the information of both observable and predictive
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variables. After the PLS analysis, a hierarchical clustering algorithm [Ward, 1963] is performed
on the new constructed variables to cluster the organic compounds. The robustness of this
procedure was assessed using the A.R.I. as described in Section 2.2. This clustering procedure
is connected to a database containing now more than three hundred molecules. The whole
procedure is implemented in a RStudio version and is available online on a dedicated server
after an identification. Nevertheless, this application has several drawbacks for the user which
mainly concern the difficulties to exchange the results or the configuration tested with another
user. Thus, an upgrade of the code and a migration to a more adapted Galaxy platform is now
studied through a master internship. Different versions of penalized PLS [Kraemer et al., 2008,
Mehmood et al., 2012] are also about to be tested to bring sparsity and ease the interpretation
of the results.

2.4.2 Applications

TyPol was widely used since its birth. First, it was used in combination with mass spec-
trometry to identify and categorize tebucanozole products in soil. TyPol was used to group
the detected transformation products according to common molecular descriptors and to in-
directly elucidate their environmental properties by analogy to known pesticide compounds
having similar molecular descriptors. Our approach was then evaluated via the identification of
the tranformation products of the triazole fungicide tebuconazole occurring in a field dissipation
study. Overall, 22 empirical and 12 yet unknown transformation products were detected and
categorized into three groups with defined environmental properties.

Second, TyPol was applied to chlordecone and its transformation products. Starting from
the list of putative chlordecone transformation products and considering available data on
degradation routes of other organochlorine compounds, we used TyPol to explore the potential
environmental behaviour of putative chlordecone transformation products from the knowledge
on their molecular descriptors. Our findings suggest that some transformation products of
chlordecone (namely mono and di-hydrochlordecone), often found in contaminated soils, may
have similar environmental behaviour in terms of persistence.

Then, TyPol was extended to the ecotoxicological effects of pesticides on non-target orga-
nisms, based on data analysis from available literature and databases. It revealed that relevant
ecotoxicological endpoints for terrestrial organisms (e.g., soil microorganisms, invertebrates)
that support a range of ecosystemic services are lacking compared to aquatic organisms. Conse-
quently, seven parameters were included for acute and chronic ecotoxicological effects for ter-
restrial and three aquatic organisms. With this new configuration, we used TyPol to classify
50 pesticides into different clusters that gather molecules with similar environmental behaviors
and ecotoxicological effects. The classification results evidenced relationships between molecular
descriptors, environmental parameters, and the added ecotoxicological endpoints.

2.5 Ongoing projects and prospects

As explained in each subsection, different leads exist to improve the dedicated approaches.
For the TyPol algorithm, the migration to a new version of the code and to a Galaxy platform
is also made to delete the need of a statistician in the exportation and the first interpretation
of the results. On a more theoretical framework, it would be of interest to have a radiotherapy
dataset with interesting covariables (and eventually noncoplanar beam angles) and to see how
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to integrate this prior information in the defined clustering model and how it can affect it.
Nevertheless, to be clear, such a study is not planned for now.
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Chapitre 3

Statistical learning for functional data

3.1 Introduction

At my arrival at the INRA, I did not know anything about metabolomics or precision li-
vestock farming. I had no idea that I will be involved in statistical modeling problems caming
from these applications. Indeed, practical problems that came from these applications often
need the careful building of an ad hoc statistical procedure that raises very interesting statis-
tical issues. The building of new technologies to obtain data (omics data, functional follow-up
data ...) leads to numerous questions for the statistician and the data really feeds the statistician.

In this permanent concern of studying statistical problems raised by a direct application, an
expanding domain is the personalized (or precision) medicine (human or veterinary). My first
work within my new appointment consisted in the study of medical follow-up data : several va-
riables are measured in a longitudinal way in a subject (animal or human) and the question is to
build a region of prediction allowing to detect a health modification (disease, doping....)[RS12].
This modeling, based on a mixed effect model, also allowed me to familiarize with these models
that are the cultural environment of my current team [RS06]. This work can also be put in the
more general context of the personalized medicine/precision livestock farming, where the joint
and simultaneous analysis of several sensor measures is derived to allow an early and individual
detection of some pathologies. A major part of my research perspectives takes place in this
framework.

The use of sensors is also generalizing in farming. This allows a more personalized manage-
ment of each field and a less dependence on the climatic hazards due to a better knowledge of
the crop needs. To answer this kind of questions it is important to be able to select, in multi-
variate temporal data, ranges of time with regard to a specific factor of interest (for example
the yield of a field). Following this idea, we define a new method of variables selection, based
on Sliced Inverse Regression (SIR) combined with a sparse criterion. Furthermore, this method
integrates a data-driven algorithm that automatically defines the relevant intervals in a functio-
nal framework [RS01, RS23]. Another variable selection problem is at the center of the PhD of
Patrick Tardivel : in metabolomics, a complex mixture spectrum is composed of the weighted
sum of the spectra of all the metabolites that are therein. The difficulty is, from the complex
mixture spectrum and a database of all the metabolite spectra, to reconstruct the complex
mixture composition. During this PhD, we developed and studied a new dedicated multiple
testing procedure based on the thresholded maximum likelihood [RS20] and its practical use on
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metabolomics data [RS05, RS07, RS24]. This PhD also led us to a more theoretical article on
how to minimize the L0 norm in high dimension, that is a common issue to perform variable
selection [RS03].

3.2 Individual Prediction Regions for multivariate lon-

gitudinal data

3.2.1 Background and motivations

Individualized or preventive medecine are expanding domains [Hanczar and Bar-Hen, 2016,
Pritchard et al., 2017, Ginsburg and Phillips, 2018] that could be achieved using a longitudinal
individual follow-up of biological variables. It consists of monitoring the markers of important
functions for the early detection of slowly progressive diseases with a subclinical phase. For
example, the prostate specific antigen (PSA) is used to detect prostate cancer in men. The
same kind of follow-up is systematically done with teenagers using their weight and height to
detect the beginning of obesity. In sport, like cycling or athletics, anti-doping control authorities
try to generalize the use of a biological passport which consists of a longitudinal follow-up of
some endogenous substances of interest in order to detect abnormal variations in an individual
[Sottas et al., 2007, Zorzoli and Rossi, 2010].

A standard method of doing these follow-ups is to use the so-called reference intervals
[CLSI, 2008]. These intervals contain a fixed percentage (usually 95%) of measurements that
can be observed in healthy individuals. However, this method suffers from several flaws. First,
it does not use individual information i.e. a healthy individual can have extreme values, outside
the reference interval, while for some other individuals values inside the reference interval are
pathologic. Second, these intervals are built in an univariate framework (i.e. variable by variable)
without taking into account the possible correlations between them. Finally, it does not account
for their evolution over time within a given individual.

The individual reference intervals (or prediction intervals) mitigate this flaw by allowing
the construction of a reference individual based on the observed values in a healthy individual
and taking into account some covariables (such as sex, age). The literature on this subject
is plentiful and the usual methodology is to use linear/nonlinear mixed effects models [Ver-
beke and Molenberghs, 2000, Davidian and Giltinan, 1995]. In these models the observations
are usually assumed to be independent conditional to the individual specific parameters (com-
pound symmetry assumption). To our knowledge, the development of reliable methods to detect
abnormal variations of longitudinal variables has remained limited. Sottas et al. [2007] propo-
sed a Bayesian approach to combine population-derived limits and individual-based thresholds.
Nevertheless, this method is built in an univariate framework whereas a follow-up is usually
performed on several markers. Intuition suggests that building regions using simultaneous in-
formation on correlated variables could help to better detect abnormal values. More recently,
Wang and Fan [2010] proposed a method to build prediction regions. They used a p order au-
toregressive process to model the autocorrelation of a variable with time while the correlations
between different variables is assumed to be fixed over time.
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3.2.2 The model

We propose to build an individual prediction region from previous observations of these
variables carried out in the same individual and model parameter estimates. The observations
obtained in an individual are assumed to be correlated over time. The correlation between a
variable X1 at time t1 and a variable X2 at time t2 is not assumed to be equal to the correlation
between X1 at time t2 and X2 at time t1. This leads to highly structured autocorrelations that
cannot be directly estimated by conventional methods (the NLMIXED procedure in SAS or the
R package nlme). Therefore, we also proposed a specific estimation method (not detailed here).

Let us denote Xi = [Xi1 : · · · : Xir] the measurements performed in the ith individual of a
sample of size N . The vector Xij contains the ni observations carried out over time for the jth

variable. More precisely, Xijk is the value observed for the ith individual for the jth variable at
time tik. Without loss of generality, we can assume that ti1 ≤ ti2 ≤ . . . ≤ tini . Note that all the
variables are supposed to be measured at the same time for an individual, but time measures
may differ from one individual to another. We assume that, up to a monotonic transformation

Xi = Biβ + TiΦi + ζi (3.1)

where Bi and Ti are known full-rank covariate matrices of dimensions ni × p and ni × q res-
pectively, β = [β1 : · · · : βr] is a p × r matrix of parameters used to describe the population
mean, Φi = [Φi1 : · · · : Φir] and ζi = [ζi1 : · · · : ζir] are respectively q × r and ni × r matrices
of unobserved Gaussian random effects. The variance of the components of the random matrix
ζi is assumed to be highly structured :

cov (ζijk, ζij′k′) = Σjj′ρ
tik−tik′
jj′ if k > k′ and cov (ζijk, ζij′k′) = Σjj′ρ

tik′−tik
j′j if k < k′

where ρjj′ ∈ [0, 1] and Σjj′ = αjj′σjσj′ . The numbers αjj = 1,∀j ∈ {1, . . . , r}, αjk = αkj ∈
[−1, 1]∀j 6= k ∈ {1, . . . , r} and ρjk ∈ [0, 1]∀j, k ∈ {1, . . . , r}, σj represents the standard
deviation of the jth variable at each measurement time. The correlation between ζijk and ζij′k′

is assumed to be ρ
tik−tik′
jj′ for k > k′ and ρ

tik′−tik
j′j for k < k′. This means that we do not assume

that the correlation between the jth variable in ζi measured at time k and the j′th variable in ζi
measured at time k′ is the same as the correlation between the jth variable in ζi measured at time
k′ and the j′th variable in ζi measured at time k. The major difference with the paper of Wang
and Fan [2010] is that they assume that the observation times tik are equally spaced integer
numbers, and that for all j and j′, cov (ζijk, ζij′k′) = Σjj′ρ|t−t′| where ρ|t−t′| is the correlation of
an auto-regressive process of order p.

The matrix of the covariance of the ζi is a variance/covariance matrix because it is a
symmetric and positive-definite matrix as the Kronecker and Shur products of two positives
matrices [Bhatia, 2009]. If this model writing is easy to understand, its multidimensional nature
does not facilitate the estimation of parameters and the distribution definition of Φi and ζi.
Thus, we rewrite this model in a vectorial framework to facilitate further estimations. Let us
define ψi = vec(Φi) the vector obtained by stacking the columns of Φi columnwise. We assume
that ψi ∼

iid
N(0,Ω). The variance matrix Ω = [ωjm]jm is block-partitioned with q × q variance

matrices ωjm = cov(Φij,Φim).
Similarly, the within subject error ζi can be stored columnwise into a vector εi =

vec(ζi) ∼ N(0,Λi(ρ,Σ)). The matrix Λi(ρ,Σ) can be written as D−1
i R−1

i D−1
i where D−1

i =
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diag(σ1, . . . , σ1, σ2, . . . , σ2, σr, . . . , σr) with each σj repeated ni times. Thus, it is assumed to be
constant over time. The matrix R−1

i (ρ) is block-partitioned with ni × ni matrices ωijk with

ωijk(ρ) = (corr (ζijl, ζikf ))l,f∈{1,...,ni} = αjkρ
|tif−til|
jk

and αjj = 1. The matrix ωijk(ρ) contains the correlation between the jth and kth variable at
the different sampling times.

The εi’s are assumed mutually independent and independent of the ψi’s. Let us define
Yi = vec(Xi), Ai = 1r ⊗Bi and Zi = 1r ⊗Ti. Using these notations, the model (3.1) can be
re-written as

Yi = Aiθ + Ziψi + εi (3.2)

where θ = vec(β). This model may appear to be a standard linear mixed effect model whose
parameter ξ = (θ,Ω,Σ,ρ) ∈ Ξ can be easily estimated using standard statistical software.
However, the covariance matrices of this model are highly structured and their estimation
needs careful development.

Assume that nw observations of the r variables are available at times (t1, . . . , tnw) in a new
individual. Let us denote U ∈ Rr×1 the future values that will be observed at time tu > tnw for
the r variables in this new individual. We assume that

(W′U′)′ = Aθ + Zψ + ε

where Z = (Z′w Z′u)
′, A = (A′w A′u)

′ are known matrices and ε = (ε′w ε′u)
′. The random matrix

(W′U′)′ is assumed to be independent of the Yi’s. We are looking for a region Rα
ξ (W) so that

P
(
U ∈ Rα

ξ (W)
∣∣∣W)

= 1− α.
To build such a region, we need two things : a random sample of individuals (Yi)i∈{1,...,N} that
enables the population parameters ξ to be estimated and some observations performed in the
individual of interest W. We proceed in three steps : first, we build a region Rα

ξ (W) by as-

suming that ξ is known, secondly, we plug-in the estimate ξ̂ of ξ obtained using the sample
(Yi)i∈{1,...,N} into Rα

ξ (W) to get Rα

ξ̂
(W). Of course, because the estimate ξ̂ is a random va-

riable, this plug-in estimator does not guarantee a coverage of 1− α.

We also define an ad hoc procedure to estimate the different parameters. It is based on the
EM algorithm [Dempster et al., 1977] and on a good choice of starting values to speed the
convergence of the algorithm. Finally, the computer time needed for parameter estimation is
less than one second using an ordinary laptop.

Building prediction regions

Remind that we assume that observations W for the r variables are available in a new
individual. We are going to build a prediction region for the next observation U for this new
individual. From the model defined in (3.2), we have

U = Auθ +Zuψu + εu. (3.3)

We assume here that all the model parameters are known. We denote

E = vec(εw, εu) ∼ N

(
0;
(

Λw(ρ,Σ) Mwu(ρ,Σ)′
Mwu(ρ,Σ) Λu(ρ,Σ)

))
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where Λw(ρ,Σ) and Λu(ρ,Σ) are defined in the first section and Mwu(ρ,Σ) is a r × (rnw)
matrix with

Mwu(ρ,Σ) = cov (εw; εu) =


cov

(
ε1
u; ε1

k=1,...,nw

)
. . . cov

(
ε1
u; εrk=1,...,nw

)
... . . .

...

cov
(
εru; ε1

k=1,...,nw

)
. . . cov

(
εru; εrk=1,...,nw

)


where εiu is the ith term of εu and εjk=1,...,nw is a nw dimensional vector for variable j and
individual W and

cov
(
εiu; ε

j
k=1,...,nw

)
=
(
Σijρ

|tu−t1|
ij , . . . ,Σijρ

|tu−tnw |
ij

)
.

Using these notations and Schur lemma, we obtain the following proposition.

Proposition 3.1 Let α be any real number in [0; 1] and χ2
r,1−α be the 1 − α quantile of a

chi-square distribution with r degrees of freedom. Let us consider the vector m(ξ,W ) and the
matrix V (ξ) defined by

m(ξ,W ) = Auθ + (ZuΩZ ′w +Mwu(ρ,Σ)) (ZwΩZ ′w + Λw(ρ,Σ))−1 (W −Awθ) ,
V (ξ) = (ZuΩZ ′u + Λu(ρ,Σ))

− (ZuΩZ ′w +Mwu(ρ,Σ)) (ZwΩZ ′w + Λw(ρ,Σ))−1 (ZuΩZ ′w +Mwu(ρ,Σ))′ .

A (1− α) prediction region of U , conditionally to W , is the set

S =
{
u ∈ Rr; ‖V (ξ)−1/2 (u−m(ξ,W )) ‖2 ≤ χ2

r,1−α

}
(3.4)

where V (ξ)−1/2 is the inverse of the Cholesky transformation of V (ξ).

When r > 1, the prediction region forU is thus an ellipsoid centered onm(ξ,W ). This ellip-

soid degenerates to the interval
[
m(ξ,W )− τ(1−α/2)

√
V (ξ);m(ξ,W ) + τ(1−α/2)

√
V (ξ)

]
, where

τ(1−α/2) is the (1 − α/2) quantile of the standard gaussian distribution, when one wants to
predict the next value U of a single variable (i.e. r = 1).
In this case, if ρ = 0 and assuming that there is no covariable, the jth observation in the ith

individual writes
Xij = Yij = θ + ψi + εij

with ψi ∼ N (0, ω2) and εij ∼ N (0, σ2) . Using Schur complement, the 100(1− α)% prediction
interval for the future value when k − 1 observations are already available in an individual has
the following expression :[

θ

1 + γ2(k − 1) + γ2(k − 1)
1 + γ2(k − 1)W k−1 − τ(1−α/2)

√√√√ 1 + γ2k

1 + γ2(k − 1)σ
2, (3.5)

θ

1 + γ2(k − 1) + γ2(k − 1)
1 + γ2(k − 1)W k−1 + τ(1−α/2)

√√√√ 1 + γ2k

1 + γ2(k − 1)σ
2

 ,
where γ = ω/σ and W k−1 is the average of the k − 1 available observations. Note that γ mea-
sures the benefit of the individualization compared to the usual reference interval built with
a single value per individual [CLSI, 2008]. When γ is high, the prediction interval is close to[
W ± τ(1−α/2)σ

]
and the individualization is beneficial.
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Plug-in corrections

These regions are then built assuming that the model parameters are known while estimates
are used to compute it. While this plug-in method is easy to use, its very nature does not
guarantee an exact coverage rate for the prediction region because it does not account for the
imprecision of the parameter estimates. This can be a real problem when the sample size is
small [Barndorff-Nielsen and Cox, 1996]. Therefore, special attention has to be paid to this
problem to control the real coverage rate of the built prediction region. By consequence, we
proposed three different corrections of the asymptotic confidence region that were compared on
the real dataset. These corrections aim at correcting the plug-in estimation of the prediction
region. The first two come from Beran [1990], Hall et al. [1999], Ueki and Fueda [2007], Fonseca
et al. [2012], and can be read as delta-methods. The third method is an application of a simple
parametric bootstrap method. These corrections are then compared on the real data set. It
can be noted that the third correction gives the narrower prediction region which was expected
because it does not assume any a priori distribution. Its only approximation is to substitute the
real distribution by its bootstrap counterpart. As expected it achieves a coverage probability
very close to the targeted one.

3.2.3 Real dataset application

The data come from a prospective study aimed at evaluating variations over time of several
biochemical variables in healthy cats. This study was carried in the clinics of the Veterinary
College, which usually received sick animals or healthy animals for sterilization (obviously only
once). This is the reason why only N = 20 healthy cats could have been included in this study.
The main variables for renal follow-up are the urea X1, the creatinine X2 and the protein
X3 which are plotted in Figure 3.1 for the 20 healthy cats. There is no reason to think that
these variables are not stable over time in healthy cats [Reynolds et al., 2010, Lefebvre, 2011].
Univariate analyses were performed and the effect of time was found not significant. Every cat
but three were measured five times : 0, 3, 6, 12 and 24 months after inclusion. The remaining
three were sampled only for the first four times. Note that the entire study is performed on the
log transformation of the variables as usual.

So, according to previous results, we propose the following model

X i = Biβ + T iΦi + ζi (3.6)

where X i is a ni×3 matrix with ni the number of observation for the ith cat (4 or 5), Bi and T i

are vectors of length ni such that Bi = T i = (1, . . . , 1), β = (β1, β2, β3) and φi = (φi1, φi2, φi3)
and ζi is a ni × 3 matrix. Here we have ni = 4 or 5, r = 3, p = 1, q = 1 and N = 20.
As we have no available covariable (age, sex), the matrix Bi does not incorporate any infor-
mation but this kind of information can easily be inserted in our model as in Sottas et al. [2007].

In this example, the estimation of the parameters provide a correlation between two suc-
cessive measurements carried out in the same individual is rather low for practical use with
t′ − t > 1 month. More surprisingly, it appears that no variable is an earlier marker than the
others to detect kidney insufficiency. In other words, there is no major correlation between two
different variables at two different times. This result could not be anticipated. With this result,
the benefit of the individualization can be roughly measured by the ratio γ = ω/σ (see (3.5))
which is equal to 1.8, 2.0 and 1.7 for urea, creatinine and protein respectively. As these ratios
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Figure 3.1 – The three variables of interest are plotted for the whole dataset and the new cat
in bold. The usual reference intervals (in dotted-dashed lines) are wider than the individual
ones (in dashed lines).

are greater than one, one can expect the individualized region (3.4) to be narrower than the
population counterpart.

Now, there is a new cat for which we possess four measurements (at 0, 3, 6 and 12 months)
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for each variable. Using the proposed method, we can build an individual reference region (an
ellipsoid) for future values for these variables. If its future measures lie outside this region, this
cat has a low probability of being healthy. The results on this new cat are plotted in Figure
3.1. Because clinicians are not accustomed to matrix calculus, it is not easy to check whether
or not a new point on the given cat belongs to its prediction region. This is the reason why we
proposed to represent the projection of the ellipsoid for each variable. This gives an interval of
prediction for each variable and each future time of measurement. Note that these intervals are
presented to give a graphical representation. As they were obtained by projection they do not
guarantee the right coverage contrarily to the ellipsoids defined by Proposition 4.1. So, they
can not be used separately to diagnose a cat as the three variables are strongly related. As soon
as a value of a variable is outside the prediction region, the cat can be considered as probably
not healthy.

We can remark that our prediction intervals are very different and narrower than the so-
called ”reference intervals” and therefore lead to different clinical decisions. As an example, a
log(Creatinine) of 5.15 at fifteen months would be detected as suspicious for the new cat using
the standard reference intervals while the individualization does not trigger such a false alarm.
On the other hand, a log(Urea) value of 1.8 would be detected as abnormal by our method but
not by the usual reference intervals. The reduction of width for the prediction region decreases
the probability for each individual of being detected as a false-negative. Despite the considerable
difference between the χ2 threshold and our estimate, the corresponding prediction regions are
very close. In this case, this can be explained by a small variance in a future value conditional
on the observations. This cannot easily be anticipated by a simple glance on the parameter
estimations because this conditional variance depends on a complicated function of all the
variance parameters (see Proposition 3.1).

3.2.4 Discussion

The main novelty of our approach lies in its individualization and multidimensionality. In-
deed, every individual gets its own prediction region which takes into account the possible
correlations between all the variables at all the different times. These advantages enable us to
build narrower prediction regions than the usual ”reference intervals”method. Using our metho-
dology, clinicians will be alerted with more precision to a potential unhealthy animal or person.
Nevertheless, our model is based on two assumptions which can be false. First, the Gaussian
one. An alternative could be the use of a nonparametric framework but it would need more
individuals and, by consequence, it can not be applied to our practical problem. This assump-
tion is also a classical one at least up to a Box-Cox transformation [CLSI, 2008]. Second, an
assumption was also made on the exponential decrease of the correlation over time that can
appear restrictive. To the best of our knowledge, this kind of problem has already been modeled
by an AR(p)-process [Wang and Fan, 2010] : an assumption difficult to check. In this respect,
the model we propose can be seen in continuous time as a first order approximation of such
chains.

As mentioned, this method could be of great interest to detect doping. Indeed, the World
Anti-Doping Agency biological passport is a follow-up of professional athletes on different he-
matological or urine markers. By consequence, our multivariate longitudinal approach could
produce narrower prediction regions and help in the detection of doping compared to the cur-
rent methodology, based on Sottas et al. [2007]. So, we contacted P.-E. Sottas (responsible
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of the World Anti-Doping Agency biological passport) but he did not want to test our new
multivariate approach despite its obvious interest. Note that a very recent paper from Saulière
et al. [2018] address the same issue that our work. It is based on maxima of Z-scores and does
not rely on the use of an extra population to calibrate some model parameters. Nevertheless,
its multivariate extension is based on an independent assumption between variables and, by
consequence, does not take into account the possible correlation between variables overtime.
It would be interesting to study the building of a new procedure based on both advantages
of the two methods and to compare the two different approaches on their database composed
of the follow-up of elite soccer players. In a more general way, a lot of problems are raised
by applications in sports. Beyond the already mentioned doping issue, one can cite among a
large literature the study of the potential number of winners of a tournament using a Bradley-
Terry model [Chetrite et al., 2017], the use of spatial statistics to characterize defensive skills
in basketball [Franks et al., 2015] or more applied works such as the study of the collective
effectiveness in the XV de France [Bar-Hen, 2017] or the risk study of common illnesses for elite
swimmers [Hellard et al., 2015] ... Nevertheless, a lot of sport data analyses remain qualitative
and, with the development of new technologies and the growth of financial interests in sport,
a lot of new data are now measured (such as optical player tracking systems) without any
dedicated statistical analysis method. So, this domain seems very promising and attractive and
also leads to the very recent creation of the French Sport Statistics Group in the SFdS.

3.2.5 Mixed effect model for pharmacokinetics

Mixed effects model are also widely used by pharmacologists in my unit, and I was involved
in a projet to predict the internal exposure to bisphenol A of the human fetus during late
pregnancy. Different dose levels are tested on an ovine feto-maternal animal model (on mother
and/or fetus) and a longitudinal follow-up of the concentrations of bisphenol A is then carried
out on the different compartments. A compartmental human model is then derived based on
a non-linear mixed effect model on the ovine dataset and a reparametrization using human
pharmacokinetic parameters. The predicted concentrations result in a fetal exposure to BPA
during late pregnancy.

3.3 Intervals selection for functional data

3.3.1 Motivation

A challenging agronomic problem is the inference of interpretable climate-yield rela-
tionships on complex crop models. Process-based crop model are developed to simulate
the annual grain yield Y (in tons per hectare) of sunflower cultivars, as a function of
X = {time, environment (soil and climate), management practice and genetic diversity} [Ca-
sadebaig et al., 2011]. This model requires functional inputs in the form of climatic series.
These series consist of daily measures of five variables over a year : minimal temperature,
maximal temperature, global incident radiation, precipitations and evapotranspiration. Due to
the complexity of plant-climate interactions and the strongly irregular nature of climatic data,
understanding the relation between yield and climate is a particularly challenging task.

In this practical situations, the relevant information may not correspond to isolated evalua-
tion points of X neither to some of the components of its expansion on a functional basis, but
to its value on some continuous intervals, X([ta, tb]). In that case, variable selection amounts
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to identify those intervals. As advocated by James et al. [2009], a desirable feature of variable
selection provided by such an approach is to enhance the interpretability of the relation bet-
ween X and Y . Indeed, it reduces the definition domain of the predictors to a few influential
intervals, or it focuses on some particular aspects of the curves in order to obtain expected
values for Y . Tackling this issue can be seen as selecting groups of contiguous variables (i.e.,
intervals) instead of selecting isolated variables. Fraiman et al. [2016], in the linear setting, and
Fauvel et al. [2015], Ferraty and Hall [2015], in a nonparametric framework, propose several
alternatives to do so. However, no specific contiguity constraint is put on groups of variables.

To solve this problem, we focus here on the functional regression problem, in which a real
random variable Y is predicted from a functional predictor X(t) that takes values in a functional
space (e.g., L2([0, 1]), the space of squared integrable functions over [0, 1]), based on a set of
observed pairs (X, Y ), (xi, yi)i=1,...,n. The main challenge with functional regression lies in its
high dimension : the underlying dimension of a functional space is infinite, and even if the
digitized version of the curves is considered, the number of evaluation points is typically much
larger than the number of observations. A number of classical approaches have been extended to
this framework, including linear models [Cardot et al., 1999] or kernel-based methods [Ferraty
and Vieu, 2006]. These extensions rely on some kind of dimension reduction by representing the
functional predictors on a functional basis, either predefined (splines, wavelets...) or data-driven
(using PCA for instance). It is also possible to tailor the basis to the regression problem : this
is the idea of the Sliced Inverse Regression [SIR, Li, 1991], which has been extended to the
functional framework in Ferré and Villa [2006].

Recently, an increasing number of works have focused on variable selection in this functional
regression framework, in particular in the linear setting. The problem is to select parts of the
definition domain of X that are relevant to predict Y . Considering digitized versions of the
functional predictor X, approaches based on Lasso have been proposed to select a few isolated
points of X [Ferraty et al., 2010, Aneiros and Vieu, 2014, Kneip et al., 2016]. Alternatively, other
authors proposed to perform variable selection on predefined functional bases. For instance,
Matsui and Konishi [2011] used L1 regularization on Gaussian basis functions and Chen et al.
[2015] on wavelets.

In the present work, we propose a semi-parametric model that selects intervals in the de-
finition domain of X with an automatic approach. The method is based on SIR, even though
it could easily be extended to linear regression. Our choice for SIR is motivated by the fact
that the method is based on a semi-parametric model that is more flexible than linear models.
However, at the same time, since it is based on a prior linear dimension reduction, it can be
conveniently penalized by L1-type penalty to select groups of variables corresponding to inter-
vals in the definition domain of the functional predictors. Our second contribution is a fast and
automatic procedure based on the full regularization path of the Lasso for building intervals in
the definition domain of the predictors without using any prior knowledge.

3.3.2 Sparse Sliced Inverse Regression (SIR)

SIR

In this subsection, we review the standard SIR for multivariate data and its extensions to
the high-dimensional setting. Here, (X, Y ) denotes a random pair of variables such that X takes
values in Rp and Y is real. We assume given n i.i.d. realizations of (X, Y ), (xi, yi)i=1,...,n.

When p is large, classical modeling approaches suffer from the well-known curse of dimen-
sionality. A standard way to overcome this issue is to rely on dimension reduction techniques.
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This kind of approaches is based on the assumption that there exists an Effective Dimension
Reduction (EDR) space SY |X which is the smallest subspace such that the projection of X on
SY |X retains all the information on Y contained in the predictor X. More precisely, SY |X is
assumed of the form Span{a1, . . . , ad}, with d� p, such that

Y = F (a>1 X, . . . , a>d X, ε), (3.7)

in which F : Rp+1 → R is an unknown function and ε is an error term independent of X. To
estimate this subspace, SIR is one of the most classical approaches when p < n : under an
appropriate and general enough condition, Li [1991] shows that a1, . . . , ad can be estimated as
the first d Σ-orthonormal eigenvectors of the generalized eigenvalue problem : Γa = λΣa, in
which Σ is the covariance matrix of X and Γ is the covariance matrix of E(X|Y ).

In practice, Σ is replaced by the empirical covariance, Σ̂ = 1
n

∑n
i=1

(
xi −X

) (
xi −X

)>
, and

Γ is estimated by “slicing” the observations (yi)i as follows. The range of Y is partitioned into H
consecutive and non-overlapping slices, denoted hereafter S1, . . . , SH . An estimate of E(X|Y )
is thus simply obtained by

(
X1, . . . , XH

)
in which Xh is the average of the observations xi

such that yi is in Sh and Xh is associated with the empirical frequency ph = nh
n

with nh the

number of observations in Sh. Γ̂ is thus defined as
∑H
h=1 phXhX

>
h .

However, as detailed in Dauxois et al. [2001], Li and Yin [2008], in a high dimensional or
functional setting , Σ̂ is singular and the SIR problem is thus ill-posed. Solutions to overcome
this difficulty include variable selection [Coudret et al., 2014], ridge regularization or sparsity
constraints. Indeed, in the high-dimensional setting,if we denote A ∈ Rp×d the matrix in which
the searched vectors aj are the columns and C = (C1, ..., CH), with Ch ∈ RD (for h = 1, . . . , H).

Bernard-Michel et al. [2008] shows that the regularization of Σ̂ leads to an optimization problem
dependint on A and C and that minimizing this optimization problem is also equivalent to

finding the first d eigenvectors of
(
Σ̂ + µ2Ip

)−1
Γ̂.

Sparse SIR

Sparse estimates of aj usually increase the interpretability of the model (here, of the EDR
space) by focusing on the most important predictors only. To the best of our knowledge, only
two alternatives have been introduced to use such methods.

Li and Yin [2008] derive a sparse ridge estimator from Cook [2004], Ni et al. [2005]. Given
(Â, Ĉ), solution of the ridge SIR, a shrinkage index vector α = (α1, . . . , αp)> ∈ Rp is obtained
by minimizing a least square error with L1 penalty :

Es,1(α) =
H∑
h=1

p̂h
∥∥∥(Xh −X

)
− Σ̂Diag(α)ÂĈh

∥∥∥2

Ip
+ µ1‖α‖L1 , (3.8)

for a given µ1 ∈ R+∗ where ‖α‖L1 = ∑p
i=1 |αp|. Once the coefficients α have been estimated,

the EDR space is the space spanned by the columns of Diag(α̂)Â, where α̂ is the solution of
the minimization of Es,1(α).

An alternative is described in Li and Nachtsheim [2008] using the correlation formulation of
the SIR [Chen and Li, 1998]. After the standard SIR estimates â1, . . . , âd have been computed,
they solve d independent minimization problems with sparsity constraints introduced as an L1
penalty : ∀ j = 1, . . . , d,

Es,2(asj) =
n∑
i=1

[
Pâj(X|yi)− (asj)>xi

]2
+ µ1,j‖asj‖L1 , (3.9)
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in which Pâj(X|yi) = Ê(X|Y = yi)>âj, with Ê(X|Y = yi) = Xh for h such that yi ∈ Sh
in the case of a sliced estimate of Ê(X|Y ). Note that both proposals have problems in the
high-dimensional setting :

• In their proposal, Li and Yin [2008] avoid the issue of the singularity of Σ̂ by working
in the original scale of the predictors for both the ridge and the sparse approach (hence
the use of the ‖.‖Ip-norm in Equation (3.8) instead of the standard ‖.‖Σ̂−1-norm where

∀u ∈ Rp, ‖u‖2
Σ̂−1 = u>Σ̂−1u). For the ridge problem, this choice has been proved to

produce a degenerate problem [Bernard-Michel et al., 2008].

• Li and Nachtsheim [2008] base their sparse version of the SIR on the standard estimates
of the SIR problem that cannot be computed in the high-dimensional setting.

Moreover, the other differences between these two approaches can be summarized in two
points :

• using the approach of Li and Yin [2008] based on shrinkage coefficients, the index αp
where αp > 0 are the same on all the d dimensions of the EDR. This makes sense because
the vectors aj themselves are not relevant : only the space spanned by them is and so
there is no interest to select different variables j for the d estimated directions. Moreover,
this allows to formulate the optimization in a single problem. However, this problem relies
on a least square minimization with dependent variables in a high dimensional space Rp ;

• on the contrary, the approach of Li and Nachtsheim [2008] relies on a least square problem
based on projections and is thus obtained from d independent optimization problems. The
dimension of the dependent variable is reduced but the different vectors which span the
EDR space are estimated independently and not simultaneously.

In our proposal, we combine both advantages of these 2 methods using a single optimization
problem based on the correlation formulation of SIR. In this problem, the dimension of the
dependent variable is reduced (d instead of p) when compared to the approach of Li and Yin
[2008] and it is thus computationally more efficient. Identical sparsity constraints are imposed
on all d dimensions using a shrinkage approach, but instead of selecting the nonzero variables
independently, we adapt the sparsity constraint to the functional setting to avoid selecting
isolated measurement points.

Sparse and Interpretable SIR (SISIR)

A functional regression framework is now assumed. X is thus a functional random variable,
taking value in a (infinite dimensional) Hilbert space. (xi, yi)i=1,...,n are n i.i.d. realizations of
(X, Y ). However, xi are not perfectly known but observed on a given (deterministic) grid τ =
{t1, . . . , tp}. We denote by xi = (xi(tj))j=1,...,p ∈ Rp the i-th observation, by xj = (xi(tj))i=1,...,n
the observations at tj and by X the n × p matrix (x1, . . . ,xn)>. Unless said otherwise, the
notations are derived from the ones introduced in the multidimensional setting (Section 3.3.2)
by using the xi as realizations of X.

Contrary to most methods in functional data analysis, we do not assume smoothess on X
or on the EDR space. We take advantage of the functional aspects of the data in a different
way, using the natural ordering of the definition domain of X to impose sparsity on the EDR
space. To do so, we assume that this definition domain is partitioned into D contiguous and
non-overlapping intervals, τ1, . . . , τD. In the present section, these intervals are supposed to be
given a priori and we will describe later a fully automated procedure to obtain them from the
data.
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First, using the formulation of Bernard-Michel et al. [2008] we solve the ridge step and
obtain Â and Ĉ.

3.3.3 Interval-sparse estimation

Once Â and Ĉ have been computed, the estimated projections of (Ê(X|Y = yi))i=1,...,n onto

the EDR space are obtained by : PÂ(Ê(X|Y = yi)) = (Xh − X)>Â, for h such that yi ∈ Sh.
This p dimensional vector will be denoted by (P1

i , . . . ,P
p
i )>. In addition, we will also denote by

Pj (for j = 1, . . . , d), Pj = (Pj1 , . . . ,Pjn)> ∈ Rn.
D shrinkage coefficients, α = (α1, . . . , αD) ∈ RD, one for each interval (τk)k=1,...,D, are finally

estimated. This leads to solve the following Lasso problem

arg min
α∈RD

‖P−∆(XÂ)α‖2 + µ1‖α‖L1 (3.10)

with P =


P1

...
Pd

, a vector of size dn and ∆(XÂ) =


X∆(â1)

...
X∆(âp)

, a (dn) × D-matrix with

∆(âj) the (p×D)-matrix such that ∆lk(âj), is the l-th entry of âj, âjl, if tl ∈ τk and 0 otherwise.
α̂ are used to define the âsj of the vectors spanning the EDR space by :

∀ l = 1, . . . , p, âsjl = α̂k âjl for k such that tl ∈ τk.

Once the sparse vectors (âsj)j=1,...,d have been obtained, an Hilbert-Schmidt orthonormali-

zation approach is used to make them Σ̂-orthonormal.
Of note, as a single shrinkage coefficient is defined for all (âjl)tl∈τk , the method is close

to group-Lasso [Simon et al., 2013], in the sense that, for a given k ∈ {1, . . . , D}, estimated
(âsjl)j=1,...,d, tl∈τk are either all zero or either all different from zero. However, the approach
differs from group-Lasso because group-sparsity is not controlled by the L2-norm of the group
but by a single shrinkage coefficient associated to that group : the final optimization problem
of Equation (3.10) is thus written as a standard Lasso problem (on α) with only D coefficients
to estimate instead of p for a group-Lasso problem.

An iterative procedure to select the intervals

The previous subsection described our proposal to detect the subset of relevant intervals
among a fixed, predefined set of intervals of the definition domain of the predictor, (τk)k=1,...,D.
However, choosing a priori a proper set of intervals is a challenging task without expert know-
ledge, and a poor choice (too small, too large, or shifted intervals) may largely hinder inter-
pretability. In the present section, we propose an iterative method to automatically design the
intervals, without making any a priori choice.

In a closely related framework, Fruth et al. [2015] tackle the problem of designing intervals by
combining sensitivity indices, linear regression models and a method called sequential bifurcation
[Bettonvil, 1995] which allows them to sequentially split in two the most promising intervals
(starting from a unique interval covering the entire domain of X). Here, we propose the inverse
approach : we start with small intervals and merge them sequentially. Our approach is based on
the previosu standard sparse SIR and iteratively performs the most relevant merges in a flexible
way (contrary to a splitting approach, we do not need to arbitrary set the splitting positions).

63



The intervals (τk)k=1,...,D are first initialized to a very fine grid, taking for instance τk = {tk}
for all k = 1, . . . , p (hence, at the beginning of the procedure, D = p). The sparse step defined
previously is then performed with the a priori intervals (τk)k=1,...,D : the set of solutions of
Equation (3.10), for varying values of the regularization parameter µ1, is obtained using a
regularization path approach[Friedman et al., 2010]. Three elements are derived from the path
results :

• (α̂∗k)k=1,...,D are the solutions of the sparse problem for the value µ∗1 of µ1 that minimizes
the GCV error ;

• (α̂+
k )k=1,...,D and (α̂−k )k=1,...,D are the first solutions, among the path of solutions, such

that at most (resp. at least) a proportion P of the coefficients are non zero coefficients
(resp. are zero coefficients), for a given small chosen P (0.05 for instance).

Then, the following sets are defined : D1 = {k : α̂−k 6= 0} (called “strong non zeros”) and
D2 = {k : α̂+

k = 0} (called “strong zeros”). This step is illustrated in Figure 3.2. Intervals are

Figure 3.2 – Example of regularization path with D = 20 : (α̂k)k=1,...,D are plotted according
to different values of the tuning parameter µ1. The vertical dotted line represents the optimal
value µ∗1 that provides the solutions (α̂∗k)k=1,...,D of the sparse problem. (α̂k)k∈D1 and (α̂k)k∈D2

are respectively represented in bold and in pointed lines for P = 0.1.

merged using the following rules :

• “neighbor rule” : consecutive intervals of the same set are merged (τk and τk+1 are merged
if both k and k + 1 belong to D1 or if they both belong to D2) (see a) and b) in Figure
3.3) ;

• “squeeze rule” : τk, τk+1 and τk+2 are merged if both k and k + 2 belong to D1 while
k + 1 /∈ D2 (or if both k and k + 2 belong to D2 while k + 1 /∈ D1) and lk + lk+2 > lk+1
with lk = max τk −min τk (see c) and d) in Figure 3.3).

If the current value of P does not yield any fusion between intervals, P is updated by
P ← 2P . The procedure is iterated until all the original intervals have been merged.
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Figure 3.3 – Illustration of the merge procedure for the intervals.

The result of the method is a collection of models (α̂∗k)k=1,...,D, starting with p intervals and
finishing with one. The final selected model is the one that minimizes the CV error. In practice,
this often results in a very small number of contiguous intervals which are of the same type
(zero or non zero) and are easily interpretable.

Let us remark that the intervals (τk)k=1,...,D are not used in the ridge step, which can thus
be performed once, independently of the interval search. The whole procedure is summarized
in Algorithm 1.

Algorithm 1 Overview of the complete procedure
1: Ridge estimation
2: Obtain Â and Ĉ, ridge estimates of the SIR.
3: Sparse estimation
4: Initialize the intervals (τk)k=1,...,D to τk = {tk}
5: repeat
6: Estimate and store (α̂∗k)k=1,...,D the solutions of the sparse problem that minimizes the

GCV error
7: Estimate (α̂+

k )k=1,...,D and (α̂−k )k=1,...,D such that at most (resp. at least) a proportion P
of the coefficients are non zero coefficients (resp. are zero coefficients), for a given chosen P

8: Update the intervals (τk)k=1,...,D according to the “neighbor” and the “squeeze” rules
9: until τ1 6= [t1, tp]
10: Output : A collection of models (α̂∗k)k=1,...,D
11: Select the model (α̂∗k)∗k=1,...,D∗ that minimizes the CV error
12: Active intervals (for interpretation) are consecutive τk with non zero coefficients α̂∗k

The method requires to tune four parameters : the number of slices H, the dimension of the
EDR space p, the penalization parameter of the ridge regression µ2 and of the one of the sparse
procedure µ1. Two of these parameters, H and µ1, are chosen in a standard way [Li, 1991] for
further details). This section presents a method to jointly choose µ2 and d, for which no solution
has been proposed that is suited to our high-dimensional framework. Two issues are raised to
tune these two parameters : i) they depend from each other and ii) the existing methods to
tune them are only valid in a low-dimensional setting (p < n). We propose an iterative method
inspired from existing approaches [Ferré, 1998, Bernard-Michel et al., 2008, Liquet and Saracco,
2012] only valid for the low dimension framework and combine them to find an optimal joint
choice for µ2 and d.
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3.3.4 Experiments and discussion

We evaluate different aspects of the methods on simulated and real datasets. Our procedure
shows good performances on simulated datasets and was then tested on the complex crop model.
Note that all experiments have been performed using the R package SISIR. Datasets and R
scripts are provided at https://github.com/tuxette/appliSISIR. So, finally, we applied our
strategy to the challenging agronomic problem, the inference of interpretable climate-yield
relationships on complex crop models.

We consider a process-based crop model called SUNFLO, which was developed to simulate
the annual grain yield (in tons per hectare) of sunflower cultivars, as a function of time, en-
vironment (soil and climate), management practice and genetic diversity [Casadebaig et al.,
2011]. SUNFLO requires functional inputs in the form of climatic series. These series consist of
daily measures of five variables over a year : minimal temperature, maximal temperature, global
incident radiation, precipitations and evapotranspiration. Globally, the SUNFLO crop model
has about 50 equations and 64 parameters (43 plant-related traits and 21 environment-related).
The dataset used in the experiment consisted of 111 yield values computed using SUNFLO for
different climatic series (recorded between 1975 and 2012 at five French locations). We focused
solely on evapotranspiration as a functional predictor because it is essentially a combination
of the other four variables [Allen et al., 1998]. The cultural year (i.e., the period on which
the simulation is performed) is from weeks 16 to 41 (April to October). We voluntarily kept
unnecessary data (11 weeks before simulation and 8 weeks after) for testing purpose (because
these periods are known to be irrelevant for the prediction). The resulting curves contained 309
measurement points. Ten series of this dataset are shown in Figure 3.4, with colors correspon-
ding to the yield that we intend to explain : no clear relationship can be identified between the
the value of the curves at any measurement point and the yield value.

Figure 3.4 – Ten series of evaportranspiration daily recordings. The color level indicates the
corresponding yield and the dashed lines bound the actual simulation definition domain.

We followed the approach described previously to design the relevant intervals and Figure 3.5
shows the selected intervals obtained after running our algorithm, as well as the points selected
using a standard sparse approach. The standard sparse SIR (top of the figure) captures well
the simulation interval (with only two points selected outside of it), but fails to identify the
important periods within it. In contrast, SISIR (bottom) focuses on the second half of the
simulation interval, and in particular its third quarter. This matches well expert knowledge,
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that reports little influence of the climate conditions at early stage of the plant growth and
almost none once the grains are ripe [Casadebaig et al., 2011].

Figure 3.5 – Sunflo. Top : standard sparse SIR (blue). Bottom : SISIR (pink). The colored areas
depict the active intervals. The dashed lines bound the actual simulation definition domain.

Discussion

Perspective of developments would extend the approach to multiple functional predictors,
allowing to design common or separated interval selections for the different predictors. The final
choice of the best model using a simple CV criterion could also be improved : we own a large
collection of model and we only choose one without taking any information from the other ones.
A model-averaging procedure could extract the informations included in all models and, maybe,
produce a more appropriated selection of relevant intervals. Some technical modifications could
also be tested such as the SIR-QZ [Coudret et al., 2014](instead of the ridge penalty) or the
variable importance adapted to SIR [Jlassi and Saracco, 2017] (to perform variale selection
instead of the LASSO step).

Other approaches could also be developed to achieve intervals selection. For example, we
could adapt a clustering procedure on constrained variables [Wagstaff et al., 2001] : for each
(t, t′), compute ctt′ = Cor(Xt, Xt′) that leads to the matrix C = (ctt′)t,t′ that could be used
as an input for a clustering procedure on constrained variables [Dehman et al., 2015]. This
procedure provides a dendrogram of consecutive groupings of variables and each segmentation
of this dendrogram leads to intervals of variables.

3.4 Multiple testing to perform variable selection

Using Lasso-type estimate is a first solution to perform variable selection : as it provides
sparse estimate, the active set (i.e the set of variables with non-null coefficients) are the selected
ones. But it is obviously not the only way to perform variable selection. Multiple testing is an
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equivalent way to select some variables. Indeed, testing if each variable coefficients is equal to
zero allows to perform a selection on all the variables. In this section we want to construct a
multiple testing procedure (in order to control the FWER that is the probability to give at least
one false positive) based on a Lasso type estimator. This problem is driven by an application in
metabolomics that could be linked to previous section because it could also be seen as intervals
(i.e. metabolites pure spectrum) selection in a ”functional” framework (as there is a natural
order on the predictor range). But, here, these pure spectra (that are stored in the design
matrix X) are already known and can overlap.

3.4.1 Motivations

Metabolomics is the science concerned with the detection of metabolites (small molecules)
in biological mixtures (e.g. blood and urine). The most common technique for performing
such characterization is proton nuclear magnetic resonance (NMR). Each metabolite generates
a characteristic resonance signature in the NMR spectra with an intensity proportional to
its concentration in the mixture. The number of peaks generated by a metabolite and their
locations and ratio of heights are reproducible and uniquely determined : each metabolite has
its own signature in the spectra. Each signature spectrum of each metabolite can be stored
in a library that could contain hundreds of spectra. One of the major challenges in NMR
analysis of metabolic profiles remains to be automatic metabolite assignment from spectra.
To identify metabolites, experts use spectra of pure metabolites and manually compare these
spectra to the spectrum of the biological mixture under analysis. Such a method is time-
consuming and requires domain-specific knowledge. Furthermore, complex biological mixtures
can contain hundreds or thousands of metabolites, which can result in highly overlapping peaks.

Recently, automatic methods have been proposed (see Subsection 3.4.5 for details). Never-
theless, most are time-consuming and thus cannot be applied to a large library of metabolites,
and/or their statistical properties are not proven. Thus, establishment of a gold-standard me-
thodology with proven statistical properties for identification of metabolites would be very
helpful for the metabolomic community as highlighted by Considine et al. [2018].

Because the number of tests is not too much large (one can expect to analysed a mixture
with about 200 metabolites), because NMR experts want to recover all metabolites present in
the mixture but, did not want to observe a false discovery, we have developed an ad hoc multiple
testing procedure to identify and quantify metabolites in 1D 1H NMR spectrum.

3.4.2 Statistical background

Let us consider the linear Gaussian model

Y = Xβ∗ + ε, (3.11)

where X = (X1| . . . |Xp) is a n × p design matrix of rank p, ε is a centered Gaussian vector
with an invertible variance matrix Γ, and β∗ is an unknown parameter. We want to estimate
the so-called active set A = {i ∈ [[1, p]] | β∗i 6= 0} of relevant variables. A natural way to recover
A is to test the hypotheses Hi : β∗i = 0, with 1 ≤ i ≤ p. Several type I errors can be controlled
in such multiple hypotheses tests. As the metabolomic experts did not want to observe a false
discovery, we focus on the Familywise Error Rate (FWER) defined as the probability to reject
wrongly at least one hypothesis Hi.
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Figure 3.6 – Example of mixture spectra. For example, there are overlaps between the peaks
of metabolites 5. and 6. and between the peaks of metabolites 25. and 26.

The lasso estimator [Tibshirani, 1996], defined by

β̂(λ) = argmin
β∈Rp

{1
2 ‖Y −Xβ‖

2 + λ‖β‖1

}
(3.12)

has been designed for the high-dimensional setting (i.e. n < p that is not our framework). In
this case, the lasso is an alternative to the ordinary least squares estimator which is not defined.
Some components of β̂(λ) are exactly null, thus a very simple way to test the hypothesis Hi is

to reject it when β̂i 6= 0. This is probably the reason why the lasso has been widely studied both
in the high-dimensional and in the small-dimensional setting (i.e. n ≥ p and rank(X) = p).

Meinshausen and Bühlmann [2006], Zhao and Yu [2006], Zou [2006] showed that the ir-

representable condition is an almost necessary and sufficient condition for A(β̂(λ)) := {i ∈
[[1, p]] | β̂i(λ) 6= 0} to be a consistent estimator of A when n tends to +∞ and p is fixed (up
to a λ correctly chosen). This result could be used when n is very large, thus consistency is
not an high-dimensional property. Geometrically, the irrepresentable condition means that each
variable Xi with i /∈ A is almost orthogonal to the subspace Vect{Xi, i ∈ A}.

Recent multiple testing procedures such as the SLOPE [Bogdan et al., 2015, Su and Candes,
2016], the knockoffs [Barber and Candes, 2015, Janson and Su, 2016] or the procedure derived
from the covariance test [Lockhart et al., 2014, G’Sell et al., 2015] use a lasso-type estimator.
These procedures are not restricted to the high-dimensional setting when p > n, they are also
used when the design matrix X has a rank p. In particular, G’Sell et al. [2015] and Bogdan et al.
[2015] studied the case in which X is orthogonal and the knockoffs procedure is only devoted
to the case in which rank(X) is p. In this setting, lasso-type multiple testing procedures are
alternative procedures to classical multiple testing procedures based on the maximum likelihood
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estimator [Dunn, 1961, Holm, 1979, Romano and Wolf, 2005].
Because lasso-type procedures have been developed recently, one could expect them to be

more powerful than classical and older ones. Since our aim is to provide a powerful multiple
testing procedure that controls the FWER, we first naively developed a lasso-type procedure.
Because the irrepresentable condition means that the design is almost orthogonal and because
the lasso has an explicit expression in the orthogonal case, we orthogonalize the design X
before using the lasso. So, we prove that, up to a transformation U∗ which orthogonalizes the
design matrix X and that minimizes the volume of the multidimensional acceptance region, the
lasso-type estimator β̂U

∗
has the following expression

∀i ∈ [[1, p]], β̂U∗i (λ) = sign(β̂mle
i )

(
|β̂mle
i | − λ/δ∗i

)
+
,where β̂mle := (XTΓ−1X)−1XTΓ−1Y.

(3.13)
This expression delivers a simple message, when X is of rank p and when one wants to maximise
the “power”, the obtained lasso estimator is just the soft thresholded maximum likelihood
estimator. This is not so surprising because the maximum likelihood estimator is efficient but
it shows that choosing the lasso to optimise the power was definitely a naive idea. Because
rejecting Hi : βi = 0 when β̂U

∗
i (λ) 6= 0 is equivalent to reject Hi when |β̂mle

i | > λ/δ∗i , a lasso-
type estimator is useless. The construction of this “lasso-type” procedure allowed us to discover
a new multiple testing procedure procedure which is only based on the maximum likelihood
estimator. General testing procedures (see the book of Lehmann and Romano [2005]) reject Hi

as soon as |β̂mle
i |/se(β̂mle

i ) > µ, where se(β̂mle
i ) is the standard error of β̂mle

i . One should notice
that in these decisions rules, the critical value µ is the same for all i.

In contrast, the value δ∗ in (3.13) giving a multidimensional acceptance region with a mini-
mal volume leads to decision rules where µ varies with the tested hypothesis Hi.

3.4.3 Theoretical results

Orthogonal-columns case

By convenience, we write that the X matrix has orthogonal columns when XTX is diagonal.
An orthogonal matrix is thus an orthogonal columns matrix but with XTX = Idp. When the
design matrix X of the Gaussian linear model (3.11) has orthogonal columns, the lasso estimator
has a closed form. This closed form allows to choose the tuning parameter in order to control
the FWER at a given level. As an example, when X is orthogonal, the lasso estimator has the
following expression [Tibshirani, 1996, Hastie et al., 2009, Bühlmann and van de Geer, 2011]

β̂i(λ) = sign(β̂ols
i )

(
|β̂ols
i | − λ

)
+

where β̂ols is the ordinary least squares estimator of β∗. Let Zols denotes a centered Gaussian
vector with the same covariance matrix as β̂ols, the tuning parameter giving a FWER at level α
is the 1−α quantile of max{|Zols

1 |, . . . , |Zols
p |}. When X has orthogonal columns, the Proposition

3.2 provides a closed form for the lasso estimator and an explicit tuning parameter λ0 to control
the FWER.

Proposition 3.2 Let X be a n× p matrix such that XTX = diag(d1, . . . , dp) then

∀i ∈ [[1, p]], β̂i(λ) = sign(β̂ols
i )

(
|β̂ols
i | − λ/di

)
+
.
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Let Zols := (Zols
1 , . . . , Zols

p ) be a random variable distributed according to a

N
(
0, (XTX)−1XTΓX(XTX)−1

)
distribution. Let α ∈ (0, 1), if λ0 is the 1 − α quantile of

maxi∈[[1,p]]{di × |Zols
i |} then,

P(∀i /∈ A, β̂i(λ0) = 0) ≥ 1− α. (3.14)

When the covariance matrix Γ is given a priori, the distribution of Zols is known and λ0 can be
obtained by simple numerical simulations. In the next section we study the more general case
where X has no longer orthogonal columns.

General case : when the lasso vanishes

Now we assume that the design matrix X is a matrix of rank p. Let us consider the set
G of applications that orthogonalise X. In other terms, if U ∈ G, the matrix (UX)TUX is
diagonal. For example the matrix U := (XTX)−1XT is a transformation of G. Without any
other assumption on X, the lasso estimator has no closed form. Consequently, it becomes
challenging to choose a tuning parameter λ0 to control the FWER. To overcome this problem,
we propose to apply a linear transformation U ∈ G to each member of the model (3.11). This
leads to the new linear Gaussian model

Ỹ = X̃β∗ + ε̃ with Ỹ = UY, X̃ = UX and ε̃ = Uε. (3.15)

Because X̃ has orthogonal columns, it is possible to use the previous Proposition 3.2. For
all λ ≥ 0, the lasso estimator of β∗ is

β̂U(λ) =
(

sign(β̂ols
i (U))

(
|β̂ols
i (U)| − λ/di(U)

)
+

)
1≤i≤p

.

The tuning parameter λU0 giving a FWER α is the 1−α quantile of maxi∈[[1,p]]{di(U)×|Zols
i (U)|}.

In the previous expression, β̂ols(U), Zols(U) and (di(U))1≤i≤p are respectively the ordinary least
squares estimator of (3.15), a centered Gaussian vector with the same covariance matrix as

β̂ols(U) and the diagonal coefficients of X̃T X̃.

Since the hypothesis β∗i = 0 is rejected as soon as β̂Ui (λU0 ) 6= 0 in other terms when

|β̂ols
i (U)| ≥ λU0 /di(U), one proposes to look for a linear transformation U such that the thre-

sholds λU0 /d1(U), . . . , λU0 /dp(U) are as small as possible. Such a choice should increase the
“power” of our test procedure : the smaller are the thresholds, the higher is the number of
non-null detected components. As a p-uplet can be minimized in several ways, we propose to

choose U ∈ G so that the function φ(U) = ∏p
i=1

λU0
di(U) is minimal. Intuitively, this choice can be

understood by noticing that under the assumption that when β∗ = 0,

1− α = P
(
β̂ols(U) ∈

[
− λU0
d1(U) ,

λU0
d1(U)

]
× · · · ×

[
− λU0
dp(U) ,

λU0
dp(U)

])
.

The minimization of φ thus leads to minimize the volume of the multidimensional acceptance

region
[
− λU0
d1(U) ,

λU0
d1(U)

]
×· · ·×

[
− λU0
dp(U) ,

λU0
dp(U)

]
among those that have a level 1−α. The following

theorem shows that it is possible to pick a transformation U∗ for which simultaneously φ is
minimal and the lasso is a soft thresholded maximum likelihood estimator.
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Theorem 3.1 There exists a linear transformation U∗ ∈ G, such that

∀U ∈ G, φ(U∗) ≤ φ(U).

Furthermore, for the optimal transformation U∗ the lasso estimator has the following expression

∃δ∗ ∈ (0,+∞)p such that ∀i ∈ [[1, p]], β̂U∗i (λ) = sign(β̂mle
i )

(
|β̂mle
i | − λ/δ∗i

)
+
,

where β̂mle is the maximum likelihood estimator of the model (3.11).

Recovering the maximum likelihood estimator via the orthogonalisation U∗ is satisfying because
the maximum likelihood estimator is efficient. That is why this estimator is usually used for
classical multiple testing procedures such as Bonferroni, Holm,.... Rejecting the null hypothesis
Hi : β∗i = 0 as soon as β̂U

∗
i (λ) 6= 0 is equivalent to reject Hi when |β̂mle

i | ≥ λ/δ∗i thus lasso-type
estimator is useless here. Consequently, to manage this new procedure, it is finally not useful
to construct the transformation U∗ !

In general, the optimal parameter δ∗ of the theorem 3.1 is not collinear to
1/se(β̂mle

1 ), . . . , 1/se(β̂mle
p ). Consequently the random variables δ∗1β̂

mle
1 , . . . , δ∗pβ̂

mle
p have different

variances. This remark is the main difference with the classical procedures for which statistical
tests β̂mle

1 /se(β̂mle
1 ), . . . , β̂mle

p /se(β̂mle
p ) are re-scaled to have unit variance. To provide a mutiple

testing procedure which reject Hi : β∗i = 0 as soon as |β̂mle
i | ≥ λ/δ∗i the parameter λ have to be

chosen as the 1− α quantile of max{δ∗1|Zmle
1 |, . . . , δ∗p|Zmle

p |}. From now on, we denote λ0(δ) the
1−α quantile of max{δ1|Zmle

1 |, . . . , δp|Zmle
p |} where δ = (δ1, . . . , δp) ∈ (0,+∞)p. To manage the

previous multiple testing procedure based on the maximum likelihood estimator, the keystone
is now to compute the optimal parameter δ∗.

A new procedure based on the old maximum likelihood estimator

Theorem 3.1 does not explain how to get such an optimal parameter δ∗. We did not ma-
nage to obtain a closed form of it. However some simple remarks could help its numerical
computation.

First, because whatever t > 0 the thresholds λ0(tδ∗)/tδ∗1, . . . , λ0(tδ∗)/tδ∗p are equal to
λ0(δ∗)/δ∗1, . . . , λ0(δ∗)/δ∗p, one only needs to determine an optimal value δ∗ for which ‖δ∗‖∞ = 1.
Second, this problem can be translated more simply as follows. Let us set b1 = λ0(δ)/δ1, . . . , bp =
λ0(δ)/δp (resp. b∗1 = λ0(δ)/δ∗1, . . . , bp = λ0(δ)/δ∗p) and consider the acceptance region B =
[−b1, b1]× . . .× [−bp, bp] (resp. B∗ = [−b∗1, b∗1]× · · · × [−b∗p, b∗p]). Let Σ be the covariance matrix
of the maximum likelihood estimator and let Zmle be distributed according to N (0Rp ,Σ). The
rectangular parallelepiped B∗ has the smallest volume among rectangular parallelepiped B
such that P

(
Zmle ∈ B

)
= 1−α. This is a constraint optimization problem whose solutions are

stationary points of the Lagrangian. The condition given in the following proposition should
hold for B∗.

Proposition 3.3 Let b∗ =
(
b∗1, . . . , b

∗
p

)
be a solution of the following optimisation problem

min
p∏
i=1

bi subject to P
(
|Zmle

1 | ≤ b1, . . . , |Zmle
p | ≤ bp

)
= 1− α. (3.16)
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Let T b
∗

denotes the truncated Gaussian vector on B∗ having the following density

fT b∗ (u) = 1
(1− α)

√
(2π)p det(Σ)

exp(−uΣ−1u)1u∈B∗du

then all the diagonal coefficients of Σ−1var(T b∗) should be equal.

Notice that if the variance matrix of T b
∗

(here denoted by var(T b∗)) was equal to Σ, all the
diagonal coefficients of Σ−1Var(T b∗) would be equal, indicating that b∗ is a solution of (3.16).
Because the diagonal terms of var(T b∗) are always smaller than the diagonal terms of Σ, var(T b∗)
cannot be equal to Σ. However, the condition given by Proposition 3.3 can be intuitively inter-
preted. The optimal (with respect to the volume) rectangular parallelepiped should be such that
the covariance of the truncated Gaussian variable Zmle restrained to [−b∗1, b∗1]× · · ·× [−b∗p, b∗p] is
as close as possible to the non constraint covariance of the random variable Zmle. If we exclude
some simple case (independent, equicorrelated and block diagonal equicorrelated), the optimal
B∗ cannot be explicitly calculated but one can assume that, up to a dilatation of the obtained
b∗ by the diagonal coefficients of Σ, the diagonal coefficients of Σ are equal to 1. Indeed, one

can check that (b∗1/
√

Σ1,1, . . . , b
∗
p/
√

Σp,p) is the solution of the following problem

min
p∏
i=1

bi subject to P

 |Zmle
1 |√
Σ1,1

≤ b1, . . . ,
|Zmle

p |√
Σp,p

≤ bp

 = 1− α.

To summarize, the setting up of our multiple testing procedure is detailed hereafter :

1. One computes the covariance matrix of the maximum likelihood estimator of the model
(3.11), namely Σ := (XTΓX)−1 ;

2. The parameter δ∗ ∈ (0,+∞)p is obtain by solving the problem (3.16). This optimal
parameter must satisfies the relation Σ−1var(T b∗) given in the proposition 3.3 ;

3. One compute λ0(δ∗) which is the 1− α quantile of the random variable
{δ∗1|Zmle

1 |, . . . , δ∗p|Zmle
p |}. The quantile λ0(δ∗) is computed numerically using a large number

of realizations of Zmle distributed according to N (0,Σ) ;

4. The multiple testing procedure rejects the null hypothesis Hi : β∗i = 0 when |β̂mle
i | >

λ0(δ∗)/δ∗i . This procedure controls the FWER at a level 1− α.

As expected, numerical experiments show that the gain of volume for the acceptance region
provides a gain in power and that our approach shows better performances than the thresholded
Lasso estimate of Lounici [2008] or the knockoff procedures [Janson and Su, 2016].

3.4.4 Discussion

As already mentioned, the keystone of this procedure is to compute the optimal parameter
δ∗. However, this computation could be improved. In a future work, we aim to develop a fast and
accurate numerical scheme for the computation of δ∗. It is also a challenging issue to provide
a useful multiple testing when p is very large. Finally, a stepdown multiple testing procedure
based on our procedure could increase the power.

3.4.5 Application in metabolomics : detection of metabolites

As already mentioned, this ad hoc procedure has been built to a practical purpose : the
identification and quantification of metabolites in NMR spectrum.
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Modelling

This method was called ASICS for Automatical Statistical Identification in Complex Spec-
tra. A spectrum can be represented as a function over the range I of chemical shifts. All the
spectra were normalized so that their area under the curve over I is 1. To model the spectrum
of the complex mixture g, possible slight variations of chemical shifts with the experimental
conditions have to be taken into account. The warping function φ : I → I allows to model the
variation of chemical shift, where φ is an increasing function and I is an interval of the che-
mical shifts associated to a spectrum. If f denotes the spectrum of a metabolite of the library,
foφ models the warped spectrum of the same metabolite observed in a different experimental
condition. The spectrum of a complex mixture g can be written as a combination of the warped
spectra of the metabolites belonging to the library where p is the number of metabolites of the
library, αi is a non-negative number depending on the proportion of the ith metabolite in the
complex mixture and on its number of hydrogen atoms, fi is the spectrum of the ith metabolite
of the library and φi represents the corresponding warping function. Although the experimental
conditions of the complex mixture spectrum g are controlled, they are slightly different from
those used to generate the spectra of the library. Finally, the term ε is a random error term. The
structure of the noise ε is very important in the identification and quantification of metabolites
in the mixture. Several observations of a spectrum obtained from the same metabolite allowed
modeling the noise as

ε =

√√√√ p∑
i=1

αifioφiε1 + ε2

where ε1 and ε2 are standard independent white noises with known standard deviations σ1
and σ2. This equation models the signal taking into account both an additive noise ε2 and a
multiplicative one ε1. The multiplicative noise is proportional to the intensity of the signal.
The additive noise is the same whatever the signal and is always present even when the signal
is equal to zero. These two noise parameters influence differently the performances of our me-
thod. The additive noise has a strong impact on the identification of the metabolites whereas
the multiplicative one has a major impact on their quantification. It is very difficult to be more
quantitative on the standard deviation of the additive noise on the detection performances be-
cause it depends strongly on some experimental conditions (operator, pH, equipment, baseline
quality correction ...). The multiplicative noise is commonly used in quantification methods.
Usually values between 0.1 and 0.2 (which is quite common in metrology) are considered as
acceptable to quantify. An estimation was carried out from our duplicated experiments and led
to a value of 0.17.

The first step of the method is to identify the metabolites of the library that cannot be-
long to the complex spectra. The chemical shift between two spectra of the same metabolites
obviously depends on the experimental conditions (pH ...). For a given metabolite, we assume
that the maximum variation of the chemical shift is smaller than an upper bound M , which
was fixed at 0.02 ppm. It is assumed that a metabolite belonging to a complex mixture must
display its related signals in the complex spectra. Thus, a metabolite cannot belong to the
complex mixture if at least one peak of its spectrum does not appear in the complex spectra.
Consequently, a metabolite displaying a peak at a chemical shift d cannot belong to a complex
spectrum which does not present any peak in the interval [d−M,d+M ]. ASICS quickly detects
these metabolites and reduces the number of metabolites of the library that need to be taken
into account in the identification and quantification steps.
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The ith metabolite is considered as identified in the complex mixture when its coefficient αi
is greater than zero. Using our estimation method defined in the previous subsections, we own a
sparse estimate whose some components are exactly zero, leading to simple identification in our
complex mixture. However, the warping functions φ1, ...φp need to be known to obtain a sparse
estimator of α1, ...αp. To solve this problem, ASICS proceeds in two stages. During the first
stage, the warping functions are successively estimated using non sparse estimates of (α1, ...αp).
At the beginning of the kth step of this first stage, the estimates of the first k − 1 warping
functions φ

(1)
1 , . . . , φ

(k−1)
k−1 and nonsparse estimates α

(k−1)
1 , . . . , α(k−1)

p of α1, . . . , αp are known.

The superscript in φ
(i)
i and α

(k−1)
i i indicates the step at which the estimate was obtained. The

kth warping function is estimated by solving the following optimization problem

arg minφk,αk

∣∣∣∣∣∣g − αkfkoφk −
k−1∑
i=1

α
(k−1)
i fioφ

(i)
i −

p∑
i=k+1

α
(k−1)
i fi

∣∣∣∣∣∣
2

.

The warping function φk is estimated so that the maximum variation of the chemical shift is
smaller than M . This estimate is then used to update the non-sparse estimates of α1, . . . , αp as
shown hereafter

(
α

(k)
1 , . . . , α(k)

p

)
= arg minα1,...,αp

∣∣∣∣∣∣g −
k∑
i=1

αifioφ
(i)
i −

p∑
i=k+1

α
(k−1)
i fi

∣∣∣∣∣∣
2

.

Figure 3.7 provides an illustration of this warping strategy.

Figure 3.7 – On the left on solid line, the main peak of the creatinine in the spectrum of
synthetic urine. In dotted line, the same peak observed on the spectrum of the creatinine before
the warping stage. On the right on dotted line, the main peak of the creatine spectrum observed
after the warping stage.

Note that, using this warping strategy, ASICS is able to take into account a chemical shift
variation that is not only a unique translation on the whole spectrum. Local translations, dila-
tions or tightenings would also been adjusted. However, this procedure is not able to create a
new peak or to delete an existing one.
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These estimations of the warping functions are then used at the second stage to derive
sparse estimates of (α1, . . . , αp) using the methodology of previous subsections where

∑
i αifi

is replaced by its estimation g in the covariance matrix of the residuals (for more details see
Tardivel [2017] page 57).

Thresholded estimators inherited from Lasso ones are known to be biased [Hastie et al.,
2009]. For this reason the final quantification of metabolites is performed with a least squares
method limited to the metabolites identified (i.e. with estimated proportions greater than zero)
at the previous step.

Results

The performances of ASICS were first assessed on duck plasma, where a validated enzy-
matic method was also available to quantify some metabolites. It shows good correlation that
validates the order of magnitude of the quantification carried out using ASICS.

Then, ASICS was compared to other current methods available for the analysis of complex
mixtures NMR spectra. Metabohunter [Tulpan et al., 2011] computes a score for each metabolite
individually. This score gives the probability of presence of each metabolite in the mixture and
is related to the number of signals found in the mixture spectrum for a given metabolite. This
simple method is very quick but does not provide quantification. BATMAN [Astle et al., 2012,
Hao et al., 2012, 2014] is based on a Bayesian model selection and combines the representation
of peaks by Lorentzian curves with a MCMC algorithm. The estimation of proportions of each
metabolite using this method provides good results. However, it is time-consuming and requires
a careful description of each peak of a metabolite. This step can be very tedious especially with
metabolites displaying a large number of peaks. To date, BAYESIL features [Ravanbakhsh
et al., 2015] seem to outperform BATMAN ones. BAYESIL handles spectral matching as an
inference problem within a probabilistic graphical model that rapidly approximates the most
likely metabolic profile. Actually, the most used tool appears to be the Chenomx software
[Weljie et al., 2006]. Computations performed by this software are rather fast but it is known
to yield many false positive metabolites. Finally, it is a commercial tool that could be quite
expensive. The comparisons were carried out using two different biofluids : synthetic urine
containing salts with a known concentration of metabolites and a biological human plasma
sample (NIST SRM1950 plasma) that is a reference plasma sample already annotated by NMR
experts [Simón-Manso et al., 2013]. The results of the different methods on the synthetic urine
are gathered in Table 3.1.

Table 3.1 – Comparison of the five methods on the synthetic urine
True False False True Accuracy Compounds Computing

positive positive negative negative (%) in library time
ASICS 17 10 4 145 92 176 <3mns
Metabohunter 4 51 17 795 92 867 <1mn
Batman 21 125 0 1 18 147 74 hours
Bayesil 12 17 7 53 73 89 ∼ 10mns
Chenomx 15 48 6 269 54 338 <3mns

ASICS was able to identify 17 metabolites out of the 21 actually present, with only 10 false
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detections, thus giving an accuracy of 92%. MetaboHunter analysis led to the same accuracy
but with very different results : a very poor detection of true positive but a very high exclusion
of true negative related to its very large library. BATMAN identified nearly all the metabolites
in the mixture as already described in Ravanbakhsh et al. [2015] but yielded a very high number
of false positives. Bayesil and Chenomx tools share a good accuracy but also a high number of
false positives. In terms of computational time, ASICS lasts four times less than Bayesil for a
twice as large library. Spectral processing with BATMAN was very long whereas Chenomx and
MetaboHunter were the quickest. The same king of results were obtained for the quantification
and ASICS showed the best order of magnitude.

As the composition of the NIST plasma is still an open question, it cannot be used to assess
the superiority of any method. Nevertheless, all the main compounds identified by the experts
were also identified by ASICS whereas it is not the case for the other methods. In addition
to the 21 compounds already known, ASICS allowed identifying L-serine and GPC that were
further confirmed by the NMR experts using other analyses.

Note that the ASICS procedure is now implemented in a Bioconductor R package that
also provides different statistical tools for the analysis of NMR spectra (more details in the
final section of this chapter) and is also avaible on Galaxy on the Workflow4Metabolomics
infrastructure.

3.5 Sparse issues in high-dimension

The previous section brought a lot of question for us on the Lasso (i.e a L1-penalty). As
explained, we try to develop a Lasso-type estimate with special properties (powerful and with
FWER control) but, when we optimize it, it leads us to a simple thresholded maximum likeli-
hood estimate. In fact, Lasso is nowadays widely used to provide sparse estimates. But, when
a sparse estimate is desirable that is the L0-norm of the solutions that is the real objective.
Obviously, minimizing this norm is still an open issue in high dimensions and some other tools
(such as the Lasso) have to be used. But does it converge to the optimal L0 norm solution ?
Under which assumptions ? Is it possible to define a more general surrogate function to achieve
this objective ? That was the starting point of the following section.

3.5.1 Background and motivation

We consider a vector y ∈ Rn and a family of vectors D = {d1, . . . , dp} spanning Rn. An
ε−approximation of y in D is a vector x = (x1, . . . , xp) such that ‖y− (x1d1 + · · ·+xpdp)‖2 ≤ ε.
The aim of this article is to find at least one of the sparsest ε−approximations of y when p > n.
These sparsest ε−approximations are defined as the solutions of

Sε0 := argmin‖x‖0 subject to ‖y −Dx‖2 ≤ ε (Pε0)

where ‖x‖0 := Card{i ∈ [[1, p]] | xi 6= 0} = ∑p
i=1 1xi 6=0 is the l0 ”norm” of x and D := (d1| . . . |dp)

is the n× p matrix whose columns are the vectors (dj)1≤j≤p.
A first simplified problem is to look for the sparsest representations of y in D corresponding

to the solutions of P0
0 namely

S0 := argmin‖x‖0 subject to Dx = y. (P0)
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Many applications concerning tomography [Burger et al., 2016, Liu and Gao, 2016, Prieto and
Dorn, 2016] or radar [Baraniuk and Steeghs, 2007, Herman and Strohmer, 2009] are related to
the resolution of the problems P0 and Pε0. Because n < p, recovering x from D and y is an
ill posed problem. However, when x has a sparse representation in a known basis {b1, . . . , bp}
of Rp, it is possible to recover x by determining its components θ = (θ1, . . . , θp) in this basis.
These components are obtained by looking for the sparsest representation of y = DBθ, with
B the matrix (b1| . . . |bp). When y is corrupted by a noise, a way to recover x is to compute
the sparsest ε−approximation of y in DB where the number ε is calibrated with respect to the
noise magnitude [Ender, 2010].

A simple way to solve P0 is to compute x̃ = D̃−1y for all n× n invertible submatrices D̃ of
D and to select the x̃ with the lowest l0 ”norm”. The number of such n × n submatrices of D
is
(
p
n

)
. When p� n this number is huge rending the previous approach intractable.

So, other approaches such as the basis pursuit problem, denoted P1, have been proposed
[Gribonval and Nielsen, 2003, Donoho et al., 2006]. Under some conditions, given hereafter, the
problem

argmin‖x‖1 subject to Dx = y (P1)

has a unique solution that is also a solution of P0. The standard approach to know if a solution
of P1 is also a solution of P0 is to compute s the l0 “norm” of a solution of P1 and to check
whether or not one of these conditions holds for s. When the solution of P1 does not meet any
of these conditions, we do not know if it belongs to S0.

The null space property [Donoho and Elad, 2003] is probably the most known condition.
However, as pointed out by Tillmann and Pfetsch [2014], this condition is uncheckable. Another
condition is the restricted isometry property detailed in Candes [2008], Cai and Zhang [2013].
However, this condition is not easy to use because the computation of the restricted isometry
constant is intractable [Tillmann and Pfetsch, 2014]. On the contrary, the mutual coherence
condition [Donoho and Elad, 2003, Gribonval and Nielsen, 2003] is easily checkable. Unfortu-
nately, none of these three conditions (null space property, restricted isometry property and
mutual coherence) hold for the basis pursuit solution as soon as its l0 ”norm” is greater or equal
to (n + 1)/2. In this case, the solutions of P1 does not give any information on those of P0.
Moreover, even if the l0 ”norm” of the sparsest representation is strictly smaller than (n+ 1)/2,
the numerical comparisons of Candes et al. [2008] illustrate that the solution of the basis pursuit
may not be a solution of P0.

An intuitive alternative approach consists in the approximation of the l0 ”norm” in P0 by
a surrogate function with nice properties. As an example, the function

∑p
i=1 ln(1 + |xi|/δ) has

been studied as an approximation of the l0 ”norm” [Candes et al., 2008, Lobo et al., 2007],
leading to the following problem

argmin
∑

16i6p
ln(1 + |xi|/δ) subject to Dx = y. (3.17)

With some well chosen δ, simulations show that this heuristic approach gives better results than
the basis pursuit. However, nothing guarantees that the solutions of (3.17) are also solutions
of P0 and the choice of δ plays a major role on the performances of the method. A similar
surrogate approach is given in Foucart and Lai [2009], Lai [2010], Sun [2012] in which the l0

“norm” is approximated by a lα “norm”. Numerical experiments show that these performances
are very close to the ones of Candes et al. [2008].

When ε > 0, the problem Pε0 is even more complicated and still intractable. Similarly to the
basis pursuit problem P1, one can substitute in Pε0 the l0 ”norm” by a l1 norm. This leads to
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the following problem

argmin‖x‖1 subject to ‖y −Dx‖2
2 6 ε. (Pε1)

This problem Pε1 can be rewritten as a lasso problem [Tibshirani, 1996] :

argmin‖y −Dx‖2 + λ‖x‖1. (P(λ))

Actually, there exists a (not explicit) bijection between λ et ε guaranteeing that both problems
have the same solution [Bertsekas, 1999].

To our knowledge, there is no theoretical result insuring that x(λ), the unique solution of
P(λ), is an element of Sε0. Instead, there exists a lot of conditions that state the convergence of
x(λ) to a solution x∗ ∈ S0 when λ converges to 0. Among these conditions (for an exhaustive
list, see Bühlmann and van de Geer [2011]), the two most known are probably the irrepresen-
table condition [Meinshausen and Bühlmann, 2006, Zou, 2006] and the compatibility condition
[Van de Geer, 2008]. In practice all these conditions are not easily checkable. Furthermore, when
these conditions do not hold the solution obtained with the basis pursuit or with the lasso can
be very far from the set Sε0 we wish to recover.

The aim of this work is to propose a new tractable problem which allows to catch one of
the sparsest representations (element of S0) or one of the sparsest ε−approximations (element
of Sε0).

3.5.2 Theoretical results

Sparsest representations

The substitution in P0 of the l0 ”norm” by a lα ”norm” with α < 1 gives the following
problem Pα which also has sparse solutions

Sα := argmin‖x‖α subject to Dx = y, (Pα)

where ‖x‖α = (∑p
i=1 |xi|α)1/α is the lα ”norm” of the vector x. The problem Pα is better than

the basis pursuit to recover a solution of P0. Indeed, when the problem P1 provides a solution
of P0, the problem Pα still provides a solution of P0 [Gribonval and Nielsen, 2007]. The study
of this problem has been the subject of an abundant literature, see for example Gribonval and
Nielsen [2007], Lai [2010], Sun [2012], Zhang et al. [2015]. The problem Pα provides a sparsest
representation as soon as the null space property condition or the restricted isometry property
hold. But, as for the basis pursuit, these conditions are uncheckable.

We can generalize the problem Pα by substituting the function |xi|α by a function fα(|xi|).
This modification leads to minimize an expression of the form

∑p
i=1 fα(|xi|). Intuitively, by

comparing
∑p
i=1 fα(|xi|) with the lα ”norm”, one sees that the function

∑p
i=1 fα(|xi|) should

simply converge to ‖.‖0 and should have level sets that look like spheres for the lα ”norm”. So,
we focus on the following problem

Sfα := argmin
∑

16i6p
fα(|xi|) subject to y = Dx. (Pfα)

Without any condition, we prove that the solutions of Pfα are also solutions of P0 as soon as α
is small enough.
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Theorem 3.2 Let fα be a function defined on R+ strictly increasing and strictly concave such
that

∀x ∈ R+, lim
α→0

fα(x) = 1x 6=0.

Then, there exists α0 > 0 such that for all α ∈ (0, α0), Sfα ⊂ S0.

The α0 threshold depends on D and y and its value is quite hard to infer except in few cases.
For example, a lower bound of α0 is given in Sun [2012]. This minoration requires assumptions
on the restricted isometry constant and on the sparsity of S0. Let us notice that Theorem 3.2 is
obtained without assuming anything about the restricted isometry constant or about the spar-
sity of the sparsest representation. Nevertheless, since the Pfα allows to capture a part of S0 for
all α < α0, one can choose a priori a very small α so that we can expect it is less than α0. A
study of the problem Pfα where the functions fα have different properties that those given in the
theorem 3.2 is given in Woodworth and Chartrand [2016]. The authors proved that the problem
Pfα catches an element of S0 under the conditions that the l0 ”norm” of the sparsest represen-
tation is smaller than n/2 and that the matrix D satisfies the unique representation property.
Nevertheless, Theorem 3.2 does not hold once Rn is substituted by an infinite dimensional space.

Because the numerical resolution of the problem Pfα requires some regularity, we restrict
ourselves to functions fα which are differentiable on (0,+∞). Numerically, we solve the problem
Pfα using a MM method [Hunter and Lange, 2004]. This method iteratively alternates two steps.
First a function that majorizes the function

∑
16i6p fα(|xi|) is defined. Then this majorazing

function is minimized.
So, we define a sequence (x(k))k∈N by ”linearising” the function

∑
16i6p fα(|xi|) at the point

x(k) ∈ Rp. This ”linearisation” (we use quotation because this function is not affine) gives the

function x ∈ Rp 7→ ∑
1≤i≤p fα(|x(k)

i |) + f ′α(|x(k)
i |)(|xi| − |x

(k)
i |). Because f is concave on R+, we

have
∀x ∈ Rp,

∑
16i6p

fα(|xi|) ≤
∑

1≤i≤p
fα(|x(k)

i |) + f ′α(|x(k)
i |)(|xi| − |x

(k)
i |).

Then, this majorizing function is minimized with respect to x leading to x(k+1). More precisely,
we choose x(0) ∈ Rp and we set x(k+1) as the solution of the following weighted basis pursuit
problem

x(k+1) := argmin
∑

1≤i≤p
fα(|x(k)

i |) + f ′α(|x(k)
i |)(|xi| − |x

(k)
i |) subject to Dx = y,

= argmin
p∑
i=1

f ′α(|x(k)
i |)|xi| subject to Dx = y.

If at iteration k, there are several minimizers, it suffices to choose among them, one minimizer
for which the family (di)i∈supp(x(k)) is linearly independent. We have shown that such a minimizer

always exists. The first iteration of the previous MM method gives a vector x(1) solution of the
weighted basis pursuit problem. This vector has a large number of null components. When f is
right differentiable at 0, as for small α the quantity f ′α(0) is very large (because limα→0 f

′
α(0) =

+∞), the null components of x(1) will be strongly weighted implying that the algorithm will
get stuck at this point. To avoid this problem, we propose to iteratively solve the following
approximate problem that gives less weight on null components

x(k+1) := argmin
∑

16i6p
f ′α(|x(k)

i |+ ∆)|xi| subject to Dx = y. (3.18)
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We have shown that this sequence is stationnary and we obtain the following theorem that
states that the limit of this sequence is a local minimum of the problem P0.

Theorem 3.3 Let (x(k))k∈N be the sequence defined in (3.18) and l its limit then, there exists
a radius r > 0 such that ∀x ∈ B∞(l, r) with Dx = y and x 6= l, we have ‖x‖0 > ‖l‖0.

Obviously, this local convergence can be seen as disappointed. This is the price to pay to
have a procedure without assuming any of the previously cited assumptions. Nevertheless, we
could see in the following subsections that a nice choice for the starting point x(0) seems to
drive the sequence onto the global minimum.

Sparsest ε−approximations

Similarly to the resolution of P0, to solve the intractable problem Pε0, one substitutes the
constraint Dx = y that appears in the problem Pfα by the constraint ‖y − Dx‖2

2 ≤ ε. This
modification leads to consider

Sεfα := argmin
∑

16i6p
fα(|xi|) subject to ‖y −Dx‖2 ≤ ε. (Pεfα)

The following theorem 3.4 shows that, when α is small enough, the set Sεfα is arbitrary close
to the set Sε0 of solutions of Pε0. For this theorem, we introduce the η−magnification of the set
Sε0. It is defined as the open set Gη := ⋃

x∈Sε0 B(x, η), where B(x, η) is an l2 open ball of radius
η > 0 centered in x.

Theorem 3.4 Let (fα)α>0 be a family of strictly increasing, strictly concave and continuous
functions defined on R+ such that

0 < α ≤ α′ ⇒ fα ≥ fα′ and ∀x ∈ R+ lim
α→0

fα(x) = 1x 6=0.

Then, for all η > 0, there exists α0 > 0 such that the following inclusion holds

∀α ≤ α0, S
ε
fα ⊂ Gη.

Such families of functions may appear difficult to build, but this is not the case. As an
example, the assumptions of Theorem 3.4 hold for the families of functions fα : x ∈ R+ 7→
x/(α + x) and fα : x ∈ R+ 7→ arctan(x/α).

To solve numerically the problem Pεfα , one uses the same MM method as previously leading

to the iterative sequence given hereafter. Let x(0) ∈ Rp and define the sequence (x(k))k∈N as
follows

x(k+1) := argmin
∑

16i6p
f ′α(|x(k)

i |+ ∆)|xi| subject to ‖y −Dx‖2 ≤ ε. (3.19)

We have shown, that, whatever ∆, when x(0) is well chosen, one can expect that for k large
enough, x(k) is arbitrary close to the set Sεfα .
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3.5.3 Numerical experiments

Choice of the initial point

Whereas by taking x(0) = xbp the performances of the modified MM method to solve P0 are
better than the performances of the basis pursuit, xbp is not the better initial point. Because
the MM algorithm converges to a local minimum of P0, the choice of its initial point is critical.
Candes et al. [2008] took the solution of problem P1 as the initial point for the iterative sequence
(3.18). Another way to choose this initial point is based on the following two remarks.

1. Intuitively, the largest components of x̃ are more easily recovered than the smallest one.

2. When A is a known set that owns the largest components of x̃, the expression
∑
i/∈A |x̃i|

becomes small. As a consequence, substituting in P1 the function
∑p
i=1 |xi| by

∑
i/∈A |x̃i|

should provide a solution closer to x̃ than xbp. So, to insure the uniqueness of the solution,
instead of

∑
i/∈A |xi| we could minimize the expression ω

∑
i∈A |xi|+

∑
i/∈A |xi|, with ω very

small. This leads to the problem

argminω
∑
i∈A
|xi|+

∑
i/∈A
|xi| subject to Dx = y. (PA)

provides a closer solution of x̃ than the problem P1.

Using these remarks, we could build a simple procedure to provide an initial point x(0).
The input of this procedure is xbp. Ideally, when A1 ⊂ A2 ⊂ · · · ⊂ supp(x̃), the solutions
xinit,(1), xinit,(2) . . . of the problems PA1 ,PA2 , . . . should be increasingly close to x̃. When at the
jth iteration Card(supp(xinit,(j)) \ Aj) = 0, it is not possible to find an element ij to construct
the set Aj+1 and the algorithm stops. As already mentioned, the sparsest representation of y
in D has a l0 ”norm” smaller than n. Consequently, the previous inclusion can not hold after
the nth iteration. So we stop the algorithm no later than the nth iteration.

Comparisons

Currently, the basis pursuit P1 and the reweighted l1 minimization [Candes et al., 2008]
are the reference methods to recover a solution of P0. So, we compare our method with both
the basis pursuit and the reweighted l1 minimization. For this numerical study, we use the
same simulation framework as Candes et al. [2008]. The family D = {d1, . . . , dp} owns p = 256
vectors of Rn with n = 100. Whatever i ∈ [[1, 256]], the vector di is random vector di := Xi/‖Xi‖
with Xi i.i.d N (0, Id100). Consequently, the vectors d1, . . . , dp are independent and uniformly
distributed on the Rn sphere. The vector y ∈ R100 that appears in the constraint y = Dx is such
that y = Dx̃. For a given s ∈ [[1, n− 1]], we choose x̃ as a random vector constructed as follows.
Let Z1, . . . , Zs be i.i.d random variables N (0, 1) distributed, we set ∀i /∈ [[1, s]], x̃i = 0 and
∀i ∈ [[1, s]], x̃i := Z(i), where Z(1), . . . , Z(s) are ordered variables such that |Z(1)| ≥ · · · ≥ |Z(s)|.
Because, by construction, almost surely the unique representation property holds for D (i.e.
with a probability 1, spark(D) = n + 1), when s < (n + 1)/2 x̃ is almost surely the unique
sparsest representation of y in D [Woodworth and Chartrand, 2016]. When s ∈ [[(n+1)/2, n−1]],
one can show that x̃ is still the unique sparsest representation of y in D. The proposed MM
method aims to find the sparsest representation of y in D which correspond to x̃.

In this section, we propose to slightly modify as follows the MM method given in (3.18).

Let a := argmin
∑

16i6p
f ′α(|x(k)

i |+∆)|xi| subject to Dx = y and set

x(k+1) = a if ‖a‖0 ≤ ‖x(k)‖0

x(k+1) = x(k) otherwise
.

(3.20)
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The general position condition holds almost surely for D. This condition insure the uniqueness
of the weighted basis pursuit solution [Rosset et al., 2004] thus at the iteration k the solution
x(k) is unique. The computation of the sequence (x(k))k≥0 has been performed with the R
package lpSolve. As for the sequence given in (3.18), when k is large enough, the sequence
(3.20) is stationary onto a point l. As defined in (3.20) the sequence (‖xk‖0)k∈N is decreasing,
consequently, ‖l‖0 ≤ ‖x(0)‖0. In particular when the initial point is the solution of P1, denoted
hereafter xbp, the modified MM method allows to catch a representation l better than xbp in
the sense that ‖l‖0 ≤ ‖xbp‖0.

The simulations were performed for each s ∈ {24, 26, . . . , 72} using 500 random vectors x̃
such that supp(x̃) = [[1, s]], and 500 families D = {d1, . . . , d256}. These random vectors were
ordered so that |x̃1| ≥ · · · ≥ |x̃s|. For each family and each x̃, we compute the basis pursuit
solution (xbp) of P1, the reweighted l1 minimization solution and the solution given by our
method as defined by (3.20). The reweighted l1 solution is the limit of the sequence (xl1,(k))k∈N
defined by xl1,(0) = xbp and

xl1,(k+1) := argmin
p∑
i=1

1
|xl1,(k)
i |+ δ

|xi| subject to Dx = y, with y = Dx̃.

As in Candes et al. [2008] we set δ = 0.1. The number of iterations was set to k0 = 8 for both
the reweighted l1 minimization method and our method. We choose fα(x) = xα with α = 0.01
and the initial point of (3.20) was computed using the algorithm described previously.

The figure 3.8 shows the performances of the basis pursuit, the reweighted l1 minimization
and our method.
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Figure 3.8 – The performances of the three competing methods are represented by the pro-
portions of realisations of the events xbp = x̃, xl1,(8) = x̃ and x(8) = x̃ as a function of the
number of non null components of x̃ denoted s. One notices that the graph of the reweighted
l1 minimization method is almost the same as those given in Candes et al. [2008].

Numerical experiments given in the figure 3.8 show that when ‖x̃‖0 ≤ 22, x̃ is always recove-
red by all these three methods. No method recovered x̃ when ‖x̃‖0 ≥ 68. When 22 ≤ ‖x̃‖0 ≤ 68,
the proportion of times for which our method recovers x̃ is greater than the proportion given
by the two other methods. These numerical experiments illustrate that the performances of our
method are better than those of the basis pursuit and the reweighted l1 minimization.
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3.5.4 Discussion

In this study, the vector y is not corrupted by any noise. When y is a random vector,
Meinshausen [2015] provides an estimation of the representation of its expectation which has
the smallest l1 norm. In a future work, this work could be extended to estimate the sparsest
representation (i.e. the smallest l0 norm) of the expectation of y.

3.6 Ongoing projects and prospects

As already explained, this section represents the major part of my research activities right
now. So, the two projects I’m going to present in the following subsections will take my major
research time in a near future. Their extensions (mainly for the second one, briefly mentioned
in the corresponding subsection) will also be the keystone for me for middle and long-term
research perspectives.

3.6.1 Statistical methods for RMN spectra analysis

A wide part of the statistical research community is focusing on problems concerning trans-
criptomics or genomics data. Nevertheless, in metabolomics, some important (and very interes-
ting) statistical problems still remain (for example Blaise et al. [2016] recently developed a first
method to objectify the estimation of the statistical power and the sample size for metabolo-
mics study). Considine et al. [2018] also highlighted the lack of a standard procedure to analyse
metabolomics data that could hamper the basic understanding of the results or the reuses of
protocols or datasets.

This project is the natural extension of the metabolomics project developped in Section 3.4.
Indeed, in this section we define a procedure to identify and quantify metabolites in 1D 1H
NMR spectrum. In fact, rending this identification tractable a priori would lead to a major
modification in the whole process of spectrum analysis. Indeed, it would make metabolomics
asserting a general approach to test a priori formulated hypotheses on the basis of exhaustive
metabolome characterization rather than an exploratory tool dealing with unknown metabolic
features. To be more precise : usually each generated spectrum is first divided into intervals
called buckets [Alves et al., 2009]. Then, the areas under the curve are computed for each
bucket. These steps are repeated for each spectrum and multiple comparisons provide a list
of buckets that are significantly different between the studied groups. Finally, NMR experts
identify the metabolites involved in the significant buckets. By this approach, the identification
of metabolites is restricted to significant ones. Another way to proceed would be to identify and
quantify all the metabolites in each spectrum and to perform statistical analyses on these data.
Due to numerous problems (peak overlapping, warping spectrum ...), these automatic identi-
fication was not possible. Using the identification procedure defined in Section 3.4 it is now
possible. So, using this procedure, we start to develop a new R package ASICS (now available
at Bioconductor) that combines all the steps of the analysis of 1D 1H NMR spectra (library
of spectra management, preprocessing, identification, quantification, post-quantification statis-
tical analyses). This will allow the understanding of the steps employed during an analysis
and/or the reuse of the protocol by an interested researcher. All the package functionalities are
summarized in Figure 3.9.
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Figure 3.9 – Complete workflow of analysis for a 1D 1H NMR spectrum in the ASICS package

Nevertheless, problems still remain and some will be addressed during the future PhD of
Gaëlle Lefort. Some of these problems are directly linked to the metabolomics application such
as the improvement of the warping step or some parameter choices on the preprocessing steps
but some others are statistical research problems. First, as explained in Subsection 3.4.5, our
quantification of the metabolites is a two step procedure (first selection then quantification)
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and the statistical properties of the final quantification estimations are not well established.
Studying these estimations using post selection inference theory [Berk et al., 2013] would be
of great interest, especially if we can control the FWER with a dedicated approach [Blanchard
et al., 2017]. Second, incorportating a priori biological information on the model would also
help to adress the identifiability issue for example using a Bayesian approach [Grollemund et al.,
2018] or a constrained regression problem [Hofner et al., 2016]. All the developed methodologies
will be applied to datasets to explain early death in piglets. I can also bet that, studying one
of these problem would lead to another one, such as Section 3.5 was derived from Section 3.4
previously.

3.6.2 Statistical methods for precision livestock farming

I’m now part of a new unit called InTheRes (for ”Innovations thérapeutiques et résistances”).
One of the main goal of this unit is to propose new breeding management tools to decrease the
amount of antibiotics used. This would be part of the precision livestock farming (PLF) frame-
work and could be seen as a (maybe far) extension of Section 3.2. Indeed, the modernisation
of food production systems is characterized by the development of PLF. PLF systems aim to
offer a real-time monitoring and managing system for the farmer, providing a real-time war-
ning of a problem so that immediate action can be taken [Berckmans, 2014, Ellies-Oury et al.,
2016]. This requires real-time algorithms that are able to detect or predict problems while the
rearing process in ongoing. The basic methods used in PLF involve continuously measuring res-
ponses directly produced by the animal. These real-time responses, known as bio-signals, can be
temperature measurement, GPS position, accelerometer data, real-time image analysis, sound
analysis, or water/food consumption activity. In this spirit, we built a project called PigletDe-
tect with the French pork institute IFIP (that could perform tests and produce datasets on
the breeding of piglets) and the manufacturer ASSERVA that produces the connected-feeding
system. This project is based on the fact that the individual behaviours of pigs are linked to
their health status. So, analysis of individual drinking behaviour could allow these problems
to be detected upon occurrence of a pathology and even before the first symptoms are visible
by an operator [Madsen et al., 2005] and an early individual detection of the disease would
decrease the amount of antibiotics used. Using HF RFID technology, we are now in position
to continuously monitor the weights, the food and the water consumption at the individual
level in pigs. In the project, we associate this real-time measurements (that could be viewed as
functional data) with a clinical evaluation of the health status. Then, by mathematical model-
ling of the individual time-series produced during the project, we aim at identifying early the
individuals or set of individuals becoming diseased, and thus allowing the farmer/veterinary to
choose rationally a therapeutic strategy.
Nevertheless, it brings some modelling difficulties. We have to derive the health status from
each individual signals. This implies to model how this hidden state (the health status) changes
with time and switches between the reference curve of a healthy animal to the reference curve
of a diseased one. In the spirit of Aparna et al. [2014], Bartolucci and Farcomeni [2015], hidden
Markov processes should be a good simplified modelling to start by but need to be adapted
to our problems to provide a dedicated procedure. At the end, this approach should produce
alarms for all diseased animals. As for all detection system, false alarms and undetected di-
seased animals will occur. To be implemented in a breed, these two errors of detection should
be minimized. Finally, we anticipate that the breed management has a strong impact on the
shape of the reference curves for both healthy and diseased animals. The breed management
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should then have an impact on the performances of the detection system that will be built from
experiments coming from the IFIP station. This is the reason why, a statistical learning method
will be proposed. This learning method will learn with time how to minimize these two errors
of detection for the specific conditions of the breed. More practically, the learning method will
adjust in real-time the parameters values of the detection system to the breed management.
On this ongoing project, Malika Chassan, a post-doctorate student, is now working on these
questions.

With the development of precision livestock farming, this kind of projects will take the major
part of my future research work. The species could obviously be different (cattle, broilers, lamb
...) as well as the recorded real-time measurement (GPS tracking, video ...) leading to other
kind of interesting statistical problems.
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