C. T. Wilson, On the leakage of electricity through dust-free air, Proc. camb. phil. soc, vol.11, p.32, 1900.

E. Rutherford and H. L. Cooke, A penetrating radiation from the earth's surface, Physical Review, vol.16, p.183, 1903.

T. Wulf, Uber die in der Atmosphare vorhandene Strahlung von hoher Durchdringungsfahigkeit, Physikalische Zeitschrift, vol.10, pp.152-157, 1909.

V. F. Hess, Uber Beobachtungen der durchdringenden Strahlung bei sieben Freiballonfahrten, Z. Phys, vol.13, p.1084, 1912.

W. Kolhörster, Messungen der durchdringenden Strahlung im Freiballon in grosseren Hohen, Physikalische Zeitschrift, vol.14, pp.1153-1156, 1913.

W. Kolhörster, Messungen der durchdringenden Strahlungen bis in Hohen von 9300 m, Verh. Dtsch. Phys. Ges, vol.16, pp.719-721, 1914.

R. A. Millikan and G. H. Cameron, High frequency rays of cosmic origin III. Measurements in snow-fed lakes at high altitudes, Physical Review, vol.28, p.851, 1926.

C. D. Anderson, The positive electron, Physical Review, vol.43, p.491, 1933.

S. H. Neddermeyer and C. D. Anderson, Cosmic-ray particles of intermediate mass, Physical Review, vol.54, p.88, 1938.

G. Rochester and C. C. Butler, Evidence for the existence of new unstable elementary particles, Nature, vol.160, p.855, 1947.

D. Perkins, Nuclear disintegration by meson capture, Nature, vol.159, pp.126-127, 1947.

H. Yukawa, On the interaction of elementary particles. I, vol.17, pp.48-57, 1935.

H. Yukawa and S. Sakata, On the Theory of the Beta-Disintegration and the Allied Phenomenon, Proceedings of the Physico, vol.17, pp.467-479, 1935.

H. Yukawa and S. Sakata, On the theory of internal pair production, vol.17, pp.397-407, 1935.

R. Armenteros, K. Barker, C. Butler, and A. Cachon, CXIII. The properties of neutral V-particles, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol.42, pp.1113-1135, 1951.

R. Armenteros, K. Barker, C. Butler, A. Cachon, and A. Chapman, Decay of V-particles, Nature, vol.167, pp.501-503, 1951.

H. Geiger and W. Müller, Elektronenzahlrohr zur messung schwachster aktivitaten, Naturwissenschaften, vol.16, pp.617-618, 1928.

W. Bothe and W. Kolhörster, Das wesen der höhenstrahlung, Zeitschrift für Physik A Hadrons and Nuclei, vol.56, pp.751-777, 1929.
DOI : 10.1007/bf01340137

P. Auger, P. Ehrenfest, R. Maze, J. Daudin, and R. A. Fréon, Extensive cosmic-ray showers, Reviews of Modern Physics, vol.11, p.288, 1939.

J. Linsley, Evidence for a primary cosmic-ray particle with energy 10 20 eV, Physical Review Letters, vol.10, p.146, 1963.
DOI : 10.1103/physrevlett.10.146

P. Roll and D. T. Wilkinson, Cosmic background radiation at 3.2 cm-support for cosmic black-body radiation, Physical Review Letters, vol.16, p.405, 1966.

K. Greisen, End to the cosmic-ray spectrum?, Physical Review Letters, vol.16, p.748, 1966.
DOI : 10.1103/physrevlett.16.748

G. T. Zatsepin and V. A. Kuzmin, Upper limit of the spectrum of cosmic rays, JETP lett, vol.4, pp.114-116, 1966.

D. Bird, S. Corbato, H. Dai, B. Dawson, J. Elbert et al.,

S. Kieda and . Ko, Evidence for correlated changes in the spectrum and composition of cosmic rays at extremely high energies, Physical Review Letters, vol.71, p.3401, 1993.

N. Hayashida, K. Honda, M. Honda, S. Imaizumi, N. Inoue et al., Observation of a very energetic cosmic ray well beyond the predicted 2.7 k cutoff in the primary energy spectrum, Physical Review Letters, vol.73, p.3491, 1994.

S. Yoshida, N. Hayashida, K. Honda, M. Honda, S. Imaizumi et al., The cosmic ray energy spectrum above 3 × 10 18 eV measured by the Akeno Giant Air Shower Array, Astroparticle Physics, vol.3, pp.105-123, 1995.

H. R. Collaboration, R. Abbasi, T. Abu-zayyad, M. Allen, J. Amman et al., First observation of the Greisen-ZatsepinKuzmin suppression, Physical Review Letters, vol.100, p.101101, 2008.

A. Collaboration, The Pierre Auger observatory project: an overview, International cosmic ray conference, vol.5, p.205, 1997.

A. Collaboration, The Pierre Auger Observatory design report, 1997.

. , Observation of the suppression of the flux of cosmic rays above 4×10 19 eV, Physical Review Letters, vol.101, p.61101, 2008.

A. A. Pacini, Cosmic rays: bringing messages from the sky to the Earth's surface, Revista Brasileira de Ensino de Fisica, p.39, 2017.

M. Unger and . Pierre, Highlights from the Pierre Auger Observatory, International cosmic ray conference, vol.3, 2017.
URL : https://hal.archives-ouvertes.fr/in2p3-00923571

P. K. Grieder, Cosmic rays at Earth, 2001.

K. Greisen, Cosmic ray showers, Annual Review of Nuclear Science, vol.10, pp.63-108, 1960.

W. Heitler, The quantum theory of radiation, 1954.

J. Matthews, A heitler model of extensive air showers, Astroparticle Physics, vol.22, pp.387-397, 2005.

K. Kamata and J. Nishimura, The lateral and the angular structure functions of electron showers, Progress of Theoretical Physics Supplement, vol.6, pp.93-155, 1958.

K. Greisen, The extensive air showers, Progress in Cosmic Ray Physics, vol.3, 1956.

G. Moliere, Theorie der streuung schneller geladener teilchen ii mehrfach-und vielfachstreuung, Zeitschrift für Naturforschung A, vol.3, pp.78-97, 1948.

G. Moliere, Theory of scattering of fast charged particles. 3: multiple scattering of tracks and the influence of statistical coupling(multiple scattering of tracks and statistical coupling influence, using chords and angle between neighboring tangents), Z. Naturforsch, vol.10, pp.177-211, 1955.

A. Hillas, The sensitivity of cerenkov radiation pulses to the longitudinal development of cosmic-ray showers, Journal of Physics G: Nuclear Physics, vol.8, p.1475, 1982.

J. Patterson and A. Hillas, The relation of the lateral distribution of cerenkov light from cosmic-ray showers to the distance of maximum development, Journal of Physics G: Nuclear Physics, vol.9, p.1433, 1983.

T. K. Gaisser and A. M. Hillas, Reliability of the method of constant intensity cuts for reconstructing the average development of vertical showers, International cosmic ray conference, vol.8, pp.353-357, 1977.

J. Linsley, Structure of large air showers at depth 834 g/sq cm. iii-applications, International cosmic ray conference, vol.12, pp.89-96, 1977.

J. Linsley and A. Watson, Validity of scaling to 10 20 ev and high-energy cosmic-ray composition, Physical Review Letters, vol.46, p.459, 1981.

T. Gaisser, P. Freier, and C. Waddington, Correlation between meson production and nuclear fragmentation in collisions between nuclei, International cosmic ray conference, vol.6, p.251, 1979.

J. V. Jelley, Cerenkov radiation and its applications, British Journal of Applied Physics, vol.6, p.227, 1955.

Y. Chen, Simulations and electronics development for the LHAASO experiment, vol.11, 2015.
URL : https://hal.archives-ouvertes.fr/tel-01189800

G. Inman, Characteristics of fluorescent lamps, Red, vol.3, p.3, 1939.

P. Sokolsky, Introduction to ultrahigh energy cosmic ray physics, Frontiers in Physics, vol.76, p.76, 1989.

B. Keilhauer, M. Bohacova, M. Fraga, J. Matthews, N. Sakaki et al., Nitrogen fluorescence in air for observing extensive air showers, Epj web of conferences, vol.53, p.1010, 2013.

F. G. Schröder, Radio detection of cosmic-ray air showers and high-energy neutrinos, Progress in Particle and Nuclear Physics, vol.93, pp.1-68, 2017.

F. Kahn and I. Lerche, Radiation from cosmic ray air showers, Proceedings of the royal society of london a: mathematical, physical and engineering sciences, vol.289, pp.206-213, 1966.

F. Schröder, D. Besson, N. Budnev, O. Gress, A. Haungs et al., Tunka-Rex: A radio antenna array for the Tunka experiment, Aip conference proceedings, vol.1535, pp.111-115, 2013.

A. A. Abdo, M. Ackermann, M. Ajello, W. Atwood, M. Axelsson et al., Measurement of the cosmic ray e + + e ? spectrum from 20 GeV to 1 TeV with the Fermi Large Area Telescope, vol.102, p.181101, 2009.
URL : https://hal.archives-ouvertes.fr/in2p3-00392444

O. Adriani, G. Barbarino, G. Bazilevskaya, R. Bellotti, M. Boezio et al., PAMELA measurements of cosmic-ray proton and helium spectra, 2011.
DOI : 10.1126/science.1199172

URL : https://art.torvergata.it/bitstream/2108/55474/2/science.1199172.full.pdf

R. Battiston, The antimatter spectrometer (AMS-02): A particle physics detector in space, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.588, pp.227-234, 2008.

E. Atkin, V. Bulatov, V. Dorokhov, S. Filippov, N. Gorbunov et al., The NUCLEON experiment. Results of the first year of data acquisition, Astroparticle Physics, vol.90, pp.69-74, 2017.

S. Torii, The CALorimetric Electron Telescope (CALET): High-Energy Astroparticle Physics Observatory on the International Space Station, 2015.

C. Jin, Dark matter particle explorer: the first chinese cosmic ray and hard ?-ray detector in space, Chinese Journal of Space Science, vol.34, pp.550-557, 2014.

S. Ostapchenko, Monte Carlo treatment of hadronic interactions in enhanced Pomeron scheme: QGSJET-II model, Physical Review D, vol.83, p.14018, 2011.

E. Ahn, R. Engel, T. K. Gaisser, P. Lipari, and T. Stanev, Cosmic ray interaction event generator SIBYLL 2.1, Physical Review D, vol.80, p.94003, 2009.

K. Werner, F. Liu, and T. Pierog, Parton ladder splitting and the rapidity dependence of transverse momentum spectra in deuteron-gold collisions at the BNL Relativistic Heavy Ion Collider, Physical Review C, vol.74, p.44902, 2006.

K. A. Olive and P. D. Group, Review of particle physics, Chinese physics C, vol.38, p.90001, 2014.
URL : https://hal.archives-ouvertes.fr/in2p3-00309035

, Measuring cosmic-ray and gamma-ray air showers

M. Aglietta, B. Alessandro, P. Antonioli, F. Arneodo, L. Bergamasco et al., The cosmic ray primary composition in the "knee" region through the EAS electromagnetic and muon measurements at EAS-TOP, Astroparticle physics, vol.21, pp.583-596, 2004.

T. Antoni, W. Apel, F. Badea, K. Bekk, A. Bercuci et al., Nuclear Instruments and Methods in Physics Research Section A: accelerators, spectrometers, detectors and associated equipment, vol.513, pp.490-510, 2003.

.. W. Apel, J. Arteaga, A. Badea, K. Bekk, M. Bertaina et al., Nuclear Instruments and Methods in Physics Research Section A: accelerators, spectrometers, detectors and associated equipment 620, pp.202-216, 2010.

. , The Pierre Auger Cosmic Ray Observatory, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.798, pp.172-213, 2015.

R. Baltrusaitis, R. Cady, G. Cassiday, R. Cooperv, J. Elbert et al., The Utah Fly's eye detector, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.240, pp.410-428, 1985.
DOI : 10.1016/0168-9002(85)90658-8

J. Abraham, P. Abreu, M. Aglietta, C. Aguirre, E. Ahn et al., The fluorescence detector of the Pierre Auger Observatory, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.620, pp.227-251, 2010.
URL : https://hal.archives-ouvertes.fr/in2p3-00409928

H. Tokuno, Y. Tameda, M. Takeda, K. Kadota, D. Ikeda et al., New air fluorescence detectors employed in the Telescope Array experiment, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.676, pp.54-65, 2012.

V. Prosin, S. Berezhnev, N. Budnev, A. Chiavassa, O. Chvalaev et al., Tunka-133: results of 3 year operation, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.756, pp.94-101, 2014.

M. Cassidy, L. Fortson, J. Fowler, R. Ong, C. Jui et al., Casa-blanca: a large non-imaging cherenkov detector at casa-mia, 1997.

. , The Pierre Auger project design report, p.21, 1996.

. , Measurement of the depth of maximum of extensive air showers above 10 18 eV, Physical Review Letters, vol.104, p.91101, 2010.

. , Interpretation of the depths of maximum of extensive air showers measured by the Pierre Auger Observatory, 2013.

. , Muons in air showers at the Pierre Auger Observatory: Measurement of atmospheric production depth, Physical Review D, vol.90, p.12012, 2014.

A. Aab, P. Abreu, M. Aglietta, I. Samarai, I. Albuquerque et al.,

J. Castillo, G. Alvarez-muñiz, and . Anastasi, Combined fit of spectrum and composition data as measured by the Pierre Auger Observatory, Journal of Cosmology and Astroparticle Physics, vol.2017, p.38, 2017.
URL : https://hal.archives-ouvertes.fr/in2p3-01451205

. , Evidence for a mixed mass composition at the 'ankle' in the cosmic-ray spectrum, Physics Letters B, vol.762, pp.288-295, 2016.

. , Measurement of the cosmic ray spectrum above 4 × 10 18 eV using inclined events detected with the Pierre Auger Observatory, 2015.

C. Bonifazi, The angular resolution of the Pierre Auger Observatory, Nuclear Physics B-Proceedings Supplements, vol.190, pp.20-25, 2009.
URL : https://hal.archives-ouvertes.fr/in2p3-00355101

. , Correlation of the highest-energy cosmic rays with nearby extragalactic objects, Science, vol.318, pp.938-943, 2007.

J. Abraham, P. Abreu, M. Aglietta, C. Aguirre, D. Allard et al., Correlation of the highest-energy cosmic rays with the positions of nearby active galactic nuclei, Astroparticle Physics, vol.29, pp.188-204, 2008.
URL : https://hal.archives-ouvertes.fr/in2p3-00199474

A. Aab, P. Abreu, M. Aglietta, I. A. Samarai, I. Albuquerque et al., Multi-resolution anisotropy studies of ultrahigh-energy cosmic rays detected at the Pierre Auger Observatory, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01555103

A. Aab, P. Abreu, M. Aglietta, M. Ahlers, E. Ahn et al., A search for point sources of EeV photons, The Astrophysical Journal, vol.789, p.160, 2014.
URL : https://hal.archives-ouvertes.fr/in2p3-01006574

M. Settimo, Search for ultra-High Energy Photons with the Pierre Auger Observatory, Proc. Science Photon, p.62, 2013.

. , A targeted search for point sources of EeV photons with the Pierre Auger Observatory, The Astrophysical Journal Letters, vol.837, p.25, 2017.

. , A search for point sources of EeV photons, Astrophysical Journal, vol.789, issue.2, pp.160-161, 2014.

P. Abreu, M. Aglietta, M. Ahlers, E. Ahn, I. F. Albuquerque et al., Search for point-like sources of ultra-high energy neutrinos at the Pierre Auger Observatory and improved limit on the diffuse flux of tau neutrinos, The Astrophysical Journal Letters, vol.755, p.4, 2012.
URL : https://hal.archives-ouvertes.fr/in2p3-00720606

P. Abreu, M. Aglietta, M. Ahlers, E. Ahn, I. Albuquerque et al., Ultrahigh energy neutrinos at the Pierre Auger Observatory, Advances in High Energy Physics, vol.2013, 2013.
URL : https://hal.archives-ouvertes.fr/in2p3-00810479

. , Ultrahigh-energy neutrino follow-up of gravitational wave events GW150914 and GW151226 with the Pierre Auger Observatory, Physical Review D, vol.94, p.122007, 2016.

. , A search for point sources of EeV neutrons, The Astrophysical Journal, vol.760, p.148, 2012.

. , A targeted search for point sources of EeV neutrons, The Astrophysical Journal Letters, vol.789, p.34, 2014.

. , Measurement of the proton-air cross section at ? s= 57

, TeV with the Pierre Auger Observatory, Physical review letters, vol.109, p.62002, 2012.

T. Csörg?, G. Antchev, P. Aspell, I. Atanassov, V. Avati et al., Elastic Scattering and Total Cross-Section in p+ p reactions as Measured by the LHC Experiment TOTEM at ? s = 7 TeV, Progress of Theoretical Physics Supplement, vol.193, pp.180-183, 2012.

T. Gaisser, Viewpoint: Cosmic-Ray Showers Reveal Muon Mystery, Physics, vol.9, p.125, 2016.

P. Facal-san and . Luis, Measurement of the UHECR spectrum above 10 19 eV at the Pierre Auger Observatory using showers with zenith angles greater than 60 ?, International cosmic ray conference, vol.4, pp.339-342, 2008.

E. I. Du-pont-de-nemours and . Co,

I. Allekotte, A. Barbosa, P. Bauleo, C. Bonifazi, B. Civit et al., The surface detector system of the Pierre Auger Observatory, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.586, pp.409-420, 2008.

J. Abraham, P. Abreu, M. Aglietta, E. Ahn, D. Allard et al., Trigger and aperture of the surface detector array of the Pierre Auger Observatory, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.613, pp.29-39, 2010.
URL : https://hal.archives-ouvertes.fr/in2p3-00432889

C. Meurer and N. Scharf, HEAT-a low energy enhancement of the Pierre Auger Observatory, 2011.

P. Photonis and . Tube,

M. J. Tueros, Estimate of the non-calorimetric energy of showers observed with the fluorescence and surface detectors of the Pierre Auger Observatory, Proceedings of the 33rd int. cosmic ray conf, 2013.

D. Newton, J. Knapp, and A. Watson, The optimum distance at which to determine the size of a giant air shower, Astroparticle Physics, vol.26, pp.414-419, 2007.

J. Hersil, I. Escobar, D. Scott, G. Clark, and S. Olbert, Observations of extensive air showers near the maximum of their longitudinal development, Physical Review Letters, vol.6, p.22, 1961.

A. Schulz, The measurement of the energy spectrum of cosmic rays above 3×10 17 eV with the Pierre Auger Observatory, Proceedings of the 33rd ICRC, 2013.

V. Verzi, The energy scale of the Pierre Auger Observatory, Proceedings of the 33rd ICRC, 2013.
URL : https://hal.archives-ouvertes.fr/in2p3-00647283

R. Pesce, Energy calibration of data recorded with the surface detectors of the Pierre Auger Observatory: an update, Proc. 32nd ICRC, 2011.

V. Berezinsky, A. Gazizov, and S. Grigorieva, On astrophysical solution to ultrahigh energy cosmic rays, Physical Review D, vol.74, p.43005, 2006.

V. S. Berezinsky, S. Grigorieva, and B. Hnatyk, Extragalactic UHE proton spectrum and prediction for iron-nuclei flux at 10 8-10 9 GeV, Astroparticle Physics, vol.21, pp.617-625, 2004.

T. Wibig and A. W. Wolfendale, At what particle energy do extragalactic cosmic rays start to predominate?, Journal of Physics G: Nuclear and Particle Physics, vol.31, p.255, 2005.

A. Hillas, Can diffusive shock acceleration in supernova remnants account for high-energy galactic cosmic rays?, Journal of Physics G: Nuclear and Particle Physics, vol.31, p.95, 2005.

D. Allard, E. Parizot, A. Olinto, E. Khan, and S. Goriely, UHE nuclei propagation and the interpretation of the ankle in the cosmic-ray spectrum, Astronomy & Astrophysics, vol.443, pp.29-32, 2005.
URL : https://hal.archives-ouvertes.fr/in2p3-00024694

D. Allard, Extragalactic propagation of ultrahigh energy cosmic-rays, Astroparticle Physics, vol.39, pp.33-43, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00688550

T. K. Gaisser, T. Stanev, and S. Tilav, Cosmic ray energy spectrum from measurements of air showers, Frontiers of Physics, vol.8, pp.748-758, 2013.
DOI : 10.1007/s11467-013-0319-7

K. Fang, K. Kotera, and A. V. Olinto, Ultrahigh energy cosmic ray nuclei from extragalactic pulsars and the effect of their Galactic counterparts, Journal of Cosmology and Astroparticle Physics, p.10, 2013.

V. Aranda, Depth of maximum of air-shower profiles at the Pierre Auger Observatory. II. Composition implications, Physical Review D, vol.90, pp.122006-122007, 2014.

. , The Pierre Auger Observatory Upgrade-Preliminary Design Report, p.201, 2016.

P. Lipari, Concepts of "age" and "universality" in cosmic ray showers, Physical Review D, vol.79, p.63001, 2009.
DOI : 10.1103/physrevd.79.063001

URL : http://arxiv.org/pdf/0809.0190

S. Lafebre, R. Engel, H. Falcke, J. Hörandel, T. Huege et al., Universality of electron-positron distributions in extensive air showers, Astroparticle Physics, vol.31, pp.243-254, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00621295

A. Hillas, Angular and energy distributions of charged particles in electron-photon cascades in air, Journal of Physics G: Nuclear Physics, vol.8, p.1461, 1982.

M. Giller, A. Kacperczyk, J. Malinowski, W. Tkaczyk, and G. Wieczorek, Similarity of extensive air showers with respect to the shower age, Journal of Physics G: Nuclear and Particle Physics, vol.31, p.947, 2005.

F. Nerling, J. Blümer, R. Engel, and M. Risse, Universality of electron distributions in high-energy air showers-Description of Cherenkov light production, Astroparticle Physics, vol.24, pp.421-437, 2006.

F. Schmidt, M. Ave, L. Cazon, and A. Chou, A model-independent method of determining energy scale and muon number in cosmic ray surface detectors, Astroparticle Physics, vol.29, pp.355-365, 2008.

D. Maurel, M. Roth, and J. Gonzalez, Universality of the time structure of ground particle distributions and its application to the reconstruction of extensive air showers, International cosmic ray conference, pp.1-4, 2013.

R. Engel, D. Heck, and T. Pierog, Extensive air showers and hadronic interactions at high energy, vol.61, pp.467-489, 2011.

R. Smida and . For-the-pierre, Scintillator detectors of AugerPrime, International cosmic ray conference, vol.3, 2017.

, New electronics for the surface detectors of the Pierre Auger Observatory, 2017.

A. Etchegoyen and P. A. Collaboration, Amiga, auger muons and infill for the ground array, 2007.

B. Daniel and P. A. Collaboration, The AMIGA enhancement of the Pierre Auger Observatory, Journal of physics: conference series, vol.632, p.12088, 2015.

M. Platino, M. Hampel, A. Almela, A. Krieger, D. Gorbena et al., AMIGA at the Auger Observatory: the scintillator module testing system, Journal of Instrumentation, vol.6, p.6006, 2011.

A. Aab, P. Abreu, M. Aglietta, E. Ahn, I. Samarai et al.,

A. Allison, J. A. Almela, and . Castillo, Muon counting using silicon photomultipliers in the AMIGA detector of the Pierre Auger observatory, Journal of Instrumentation, vol.12, p.3002, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01554896

O. Wainberg, A. Almela, M. Platino, F. Sanchez, F. Suarez et al., Digital electronics for the Pierre Auger Observatory AMIGA muon counters, Journal of Instrumentation, vol.9, p.4003, 2014.

A. Pla-dalmau, A. D. Bross, V. V. Rykalin, and B. M. Wood, Extruded plastic scintillator for MINERvA, IEEE Nucl. Sci. Symp. Conf. Rec, vol.3, pp.1298-1300, 2005.

. Kuraray, Wavelength Shifting Fibers

. Hamamatsu, Photomultiplier tube

, A (CAEN), High/Low Voltage Power Supply systems and Front-End/Data Acquisition modules

I. E. High-voltage, . Integrated, . Supplies, and . Photomuliplier-tubes,

I. Gps,

A. Quaranta, S. Carturan, T. Marchi, M. Buffa, M. Degerlier et al., Doped polysiloxane scintillators for thermal neutrons detection, Journal of Non-Crystalline Solids, vol.357, pp.1921-1925, 2011.

V. Senchyshyn, B. Grynyov, S. Melnychuk, V. Lagutin, M. Dracos et al., Influence of polystyrene scintillator strip methods of production on their main characteristics, Radiation Measurements, vol.42, pp.911-914, 2007.
URL : https://hal.archives-ouvertes.fr/in2p3-00183265

M. Bowen, S. Majewski, D. Pettey, J. Walker, R. Wojcik et al., A new radiation-hard plastic scintillator, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.276, pp.391-393, 1989.

. Saint-gobain and . Crystals, Wavelength Shifting Fibers

A. Pla-dalmau, A. D. Bross, and V. V. Rykalin, Extruding plastic scintillator at Fermilab, Nuclear science symposium conference record, vol.1, pp.102-104, 2003.
DOI : 10.1109/nssmic.2003.1352007

URL : https://digital.library.unt.edu/ark:/67531/metadc740507/m2/1/high_res_d/816719.pdf

A. Pla-dalmau, A. D. Bross, and K. L. Mellott, Low-cost extruded plastic scintillator, Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip, vol.466, pp.482-491, 2001.
DOI : 10.1016/s0168-9002(01)00177-2

G. and P. Scintillator,

J. Zhao, J. Liu, X. Sheng, H. He, Y. Guo et al., Design and performances of electromagnetic particle detector for LHAASO-KM2A, Chinese Phys. C, vol.38, p.36002, 2014.

D. Corning and . Couplant,

R. Bluesil and . Silicone,

M. Janecek, Reflectivity spectra for commonly used reflectors, IEEE Transactions on Nuclear Science, vol.59, pp.490-497, 2012.

M. Crow, J. Hodges, and R. Cooper, Shifting scintillator prototype large pixel wavelengthshifting fiber detector for the POWGEN3 powder diffractometer, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.529, pp.287-292, 2004.

B. Loehr, S. Weissenrieder, F. Barreiro, and E. Ros, An electromagnetic calorimeter with wavelength shifting fiber readout, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.254, pp.26-34, 1987.

K. Daumiller, R. Engel, and H. Kern, Scintillator Surface Detectors of the Engineering Array:Production and Validation, 2016.

X. Bertou, P. Allison, C. Bonifazi, P. Bauleo, C. Grunfeld et al., Calibration of the surface array of the Pierre Auger Observatory, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.568, pp.839-846, 2006.
URL : https://hal.archives-ouvertes.fr/in2p3-00115164

D. Schmidt and . Pierre, AugerPrime implementation in the Offline simulation and reconstruction framework, International cosmic ray conference, vol.3, 2017.

A. Castellina and . For-the-pierre, The dynamic range of the AugerPrime Surface Detector: technical solution and physics reach, International cosmic ray conference, vol.3, 2017.

G. Cataldi, M. R. Coluccia1, D. Martello1, and R. Smida, SSD Engineering Array performance, 2017.

R. Sato, Long Term Performance of the Surface Detectors of the Pierre Auger Observatory, 32th international cosmic ray conference beijing, vol.3, p.204, 2011.

I. Antcheva, M. Ballintijn, B. Bellenot, M. Biskup, R. Brun et al., ROOT-A C++ framework for petabyte data storage, statistical analysis and visualization, Computer Physics Communications, vol.182, pp.1384-1385, 2011.

M. Morhá?, J. Kliman, and V. Matou?ek, Background elimination methods for multidimensional coincidence ?-ray spectra, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.401, pp.113-132, 1997.

C. Ryan, E. Clayton, W. Griffin, S. Sie, and D. Cousens, SNIP, a statistics-sensitive background treatment for the quantitative analysis of PIXE spectra in geoscience applications, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol.34, pp.396-402, 1988.

P. Bauleo, A. Castellina, A. Chou, J. Harton, R. Knapik et al., The accuracy of signal measurement with the water Cherenkov detectors of the

P. Observatory, Nuclear Instruments and Methods in Physics Research A, vol.578, pp.180-184, 2007.

. , The cosmic-ray experiment KASCADE, Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip, vol.513, pp.490-510, 2003.

J. Hinton and W. Hofmann, Teraelectronvolt astronomy, Annual Review of Astronomy and Astrophysics, vol.47, pp.523-565, 2009.
DOI : 10.1146/annurev-astro-082708-101816

URL : http://arxiv.org/pdf/1006.5210.pdf

J. Holder, TeV gamma-ray astronomy: A summary, Astroparticle Physics, vol.39, pp.61-75, 2012.
DOI : 10.1016/j.astropartphys.2012.02.014

URL : http://arxiv.org/pdf/1204.1267.pdf

S. Wakely and D. Horan, Online catalog for TeV astronomy, 2014.

Z. Cao, Status of LHAASO updates from ARGO-YBJ, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.742, pp.95-98, 2014.

M. Zha, Status of the large high altitude air shower observatory project, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.692, pp.77-82, 2012.

M. Actis, G. Agnetta, F. Aharonian, A. Akhperjanian, J. Aleksi? et al.,

F. Allekotte, L. Antico, and . Antonelli, Design concepts for the Cherenkov Telescope Array CTA: an advanced facility for ground-based high-energy gamma-ray astronomy, Experimental Astronomy, vol.32, pp.193-316, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00656159

G. D. Sciascio and L. Collaboration, The LHAASO experiment: from Gamma-Ray Astronomy to Cosmic Rays, Nuclear and Particle Physics Proceedings, vol.279, pp.166-173, 2016.

L. Q. Yin, Accurate Measurement of the Cosmic Ray Proton Spectrum from 100TeV to 10PeV with LHAASO, International cosmic ray conference, vol.3, 2017.

Y. Liu, Z. Cao, S. Chen, Y. Chen, S. Cui et al., Expectation on Observation of Supernova Remnants with the LHAASO Project, The Astrophysical Journal, vol.826, p.63, 2016.

X. Li, C. Liu, X. Ding, W. Du, H. Wu et al., Simulation of the dynamic range extension system for the LHAASO-WCDA experiment, 2017.

H. Lv, H. He, X. Sheng, and J. Liu, Timing calibration of the lhaaso-km2a electromagnetic particle detectors, 2017.

J. Liu, X. Sheng, and H. He, Performances of the LHAASO-KM2A engineering array, Proceedings of the 32nd internationl cosmic ray conference, 2011.

L. Jia, S. Xiang-dong, and H. Hui-hai, Performances and long-term stability of the LHAASO-KM2A prototype array, Chinese physics C, vol.38, p.26001, 2014.

G. Xiao, X. Zuo, X. Li, and S. Feng, Design and performance of prototype muon detector of LHAASO-KM2A, Proceedings of the 33rd international cosmic ray conference, 2013.

, Status of water cherenkov detector array of lhaaso project, 2017.

H. Li, Z. Yao, C. Yu, M. Chen, H. Wu et al.,

W. Liu and . Liao, A method to monitor and measure the water transparency in LHAASO-WCDA using cosmic muon signals, Chinese physics C, vol.41, p.26002, 2017.

Z. Yao, M. Zha, Z. Cao, and H. He, LHAASO Simulation: Performance of the Water Cherenkov Detector Array

M. Chen, Z. Yao, B. Gao, B. Zhou, H. Wu et al., R&D of LHAASO-WCDA, Proc. of the 32nd ICRC, 2011.

Q. An, Y. Bai, X. Bi, Z. Cao, Z. Cao et al., Performance of a prototype water Cherenkov detector for LHAASO project, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.644, pp.11-17, 2011.

Q. An, Y. Bai, X. Bi, Z. Cao, J. Chang et al., The performance of a prototype array of water Cherenkov detectors for the LHAASO project, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.724, pp.12-19, 2013.

H. Li, Z. Yao, M. Chen, C. Yu, M. Zha et al., Study on single-channel signals of water Cherenkov detector array for the LHAASO project, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.854, pp.107-112, 2017.

S. Zhang, Studying Cosmic Ray Energy Spectrum above 10TeV using WFCA Prototype, IHEP, 2010.

B. Bartoli, P. Bernardini, X. Bi, Z. Cao, S. Catalanotti et al., Knee of the cosmic hydrogen and helium spectrum below 1 PeV measured by ARGO-YBJ and a Cherenkov telescope of LHAASO, Physical Review D, vol.92, p.92005, 2015.

M. Giller, G. Wieczorek, A. Kacperczyk, H. Stojek, and W. Tkaczyk, Energy spectra of electrons in the extensive air showers of ultra-high energy, Journal of Physics G: Nuclear and Particle Physics, vol.30, p.97, 2004.

T. Weekes, Book Review: Very high energy gamma-ray astronomy/Institute of Physics, The Observatory, vol.123, p.382, 2003.

H. Cabot, C. Meynadier, D. Sobczy?ska, B. Szabelska, J. Szabelski et al., Measurable difference in Cherenkov light between gamma and hadron induced EAS, Astroparticle Physics, vol.9, pp.269-276, 1998.

T. Ergin, The energy spectrum of very high energy gamma rays from the Crab Nebula as measured by the HESS array, 2006.

F. Arqueros and T. H. Collaboration, Energy spectrum and chemical composition of cosmic rays between 0.3 and 10 PeV determined from the Cherenkov-light and charged-particle distributions in air showers, 1999.

J. Fowler, L. Fortson, C. Jui, D. Kieda, R. Ong et al., A measurement of the cosmic ray spectrum and composition at the knee, Astroparticle Physics, vol.15, pp.49-64, 2001.

O. Gress, T. Gress, E. Korosteleva, L. Kuzmichev, B. Lubsandorzhiev et al., The study of primary cosmic rays energy spectrum and mass composition in the energy range 0.5-50 PeV with TUNKA EAS Cherenkov array, Nuclear Physics B-Proceedings Supplements, vol.75, pp.299-301, 1999.

D. Chernov, E. Korosteleva, L. Kuzmichev, V. Prosin, I. Yashin et al., Primary energy spectrum and mass composition determined with the Tunka EAS Cherenkov array, International Journal of Modern Physics A, vol.20, pp.6799-6801, 2005.

C. W. Akerlof, M. Cawley, D. Fegan, A. Hillas, R. Lamb et al., Granite, a new very high energy gamma-ray telescope, Nuclear Physics B-Proceedings Supplements, vol.14, pp.237-243, 1990.
DOI : 10.1016/0920-5632(90)90427-v

URL : https://deepblue.lib.umich.edu/bitstream/2027.42/28708/1/0000528.pdf

F. Aharonian, G. Heinzelmann, and H. Collaboration, The HEGRA experiment status and recent results, Nuclear Physics B-Proceedings Supplements, vol.60, pp.193-198, 1998.

F. Aharonian, A. Akhperjanian, A. Bazer-bachi, M. Beilicke, W. Benbow et al., The HESS survey of the inner galaxy in very high energy gamma rays, The Astrophysical Journal, vol.636, p.777, 2006.
URL : https://hal.archives-ouvertes.fr/in2p3-00025463

R. Enomoto, S. Hara, A. Asahara, G. Bicknell, P. G. Edwards et al., Design study of CANGAROO-III, stereoscopic imaging atmospheric Cherenkov telescopes for sub-TeV ?-ray detection, Astroparticle Physics, vol.16, pp.235-244, 2002.

N. Park, Performance of the VERITAS experiment, 2015.

J. Albert, E. Aliu, H. Anderhub, P. Antoranz, A. Armada et al., Observation of gamma rays from the galactic center with the MAGIC telescope, The Astrophysical Journal Letters, vol.638, p.101, 2006.

M. Doro and C. Consortium, CTA-a project for a new generation of Cherenkov telescopes, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.630, pp.285-290, 2011.

A. M. Hillas, Cerenkov light images of EAS produced by primary gamma, International cosmic ray conference, vol.3, 1985.

D. Heck, G. Schatz, J. Knapp, T. Thouw, and J. Capdevielle, CORSIKA: A Monte Carlo code to simulate extensive air showers, tech. rep, 1998.

S. W. Cui, Simulation on gamma-ray astronomy research with LHAASO-KM2A, Astropart. Phys, vol.54, pp.86-92, 2014.

S. S. Zhang, Properties and performance of two wide field of view Cherenkov/fluorescence telescope array prototypes, Nucl. Instrum. Meth. A, vol.629, pp.57-65, 2011.

J. G. Gonzalez, Measuring the muon content of air showers with IceTop, Epj web of conferences, vol.99, p.6002, 2015.

A. Hoecker, P. Speckmayer, J. Stelzer, J. Therhaag, E. Von-toerne et al., TMVA-Toolkit for multivariate data analysis, 2007.

J. R. Hoerandel, On the knee in the energy spectrum of cosmic rays, Astroparticle Physics, vol.19, pp.193-220, 2003.

, Results on light yield of plastic scintillator samples (* casted plastic scintillator, p.50

. , A comparison between experimental and estimated signal ratios at PMT by different scintillator/WLS-fiber configurations

. , Signal in each channel of the UUB

. , Medium Size Telescope (MST) and Large Size Telescope (LST) in CTA [203] and of WFCTA telescope in LHAASO, Small Size Telescope (SST)

. , 1(b) shows the cosmic-ray spectrum in the energy range of E>10 17 eV measured by the Pierre Auger observatory. This figure is taken from ref, vol.2

]. .. , Comparison of relative abundances between Galactic (closed dots) and Solar System (open dots) cosmic rays, p.10

. , The development of an air shower induced by a high-energy proton. It is composed of hadronic, electromagnetic and muon cascades

. .. , The emission of the atmospheric Cherenkov light [48], p.15

. , The detection of air fluorescence light

, Main mechanisms of radio emission in the shower development, p.17

. , EAS experiments [65]

, The layout of the Pierre Auger Observatory. This figure is taken from ref, vol.69, p.24

, The detection of a hybrid event from a cosmic-ray shower in the Pierre Auger Observatory. The SD array on the ground (white dots) and four FD sites detect the EAS in lateral and longitudinal direction, respectively. The red line shows the shower axis. This figure is taken from ref

. , A water-Cherenkov detector in the field, the main components are shown. This figure is taken from ref

, Schematic view of a fluorescence telescope, vol.71, p.28

, Sensitivity of ground-based experiments for gamma-ray astronomy, LHAASO has a high sensitivity in the energy range of 1 to 100 TeV [171, p.89

, 2(a) shows the preview of the LHAASO site, 6.2(b) shows the preview of the detectors. The layout of detector arrays is displayed in 6.2(c), vol.6

. , An ED is composed of 4 scintillator units run along with WLS fibers in its grooves

. .. , The KM2A muon detector is filled with 44 tons of ultra-pure water and covered by a 2.5 m-thick layer of overburden soil to shield the low-energy electromagnetic components of air showers [178], p.93

, The WCDA consists of 3 water ponds and is filled with totally 350000 tons of filtered clean water. Each detector unit is a 5 × 5 m 2 cell, p.94

W. .. The, , p.96

. , The simulation results of Cherenkov rings of the shower initiated by a ?-ray of 300 GeV (left) and by a proton of 1 TeV (right), respectively. The picture is taken from ref

. , The layout of the 25 mirrors in WFCTA telescope. Picture offered by the LHAASO-WFCTA team in IHEP

. , NewTel" code in ASCII format

. .. , 105 7.5 A typical PMT signal of the Cherenkov light and the corresponding signal shaped by a 2-order low-pass filter, Signal processing for single p.e. in the time window

. .. , Predefined patterns for trigger of Cherenkov events, p.107

, Left: log 10 SI Z E as a function of R p (the distance from the telescope to the shower axis) for showers with various primary energies from 100 TeV to

. Pev and . Right, Correlation between log 10 E and log 10 SI Z E for R p value from 60 to 70 m

. , 10 Left: The distribution of ?E/E for all triggered events. Right: Energy resolution over the energy range from 100 TeV to 10 PeV, Correlation of the energy-related term in Equation 7.5 and the primary energy of a shower event, p.111

, Hybrid detection of the EAS at the LHAASO Observatory, p.112

. , Left: 2-D distribution of S WCDA from each detector cell in the number of photoelectrons