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1. Introduction

Introduction1

1. DATABASES ON THE WEB

Much of today’s data is accessible on the Web or in the cloud. This includes
personal data (photos, music, films), social network data (friends and per-
sonal data), commercial data (selling offers, product presentations), medical
data (on illnesses and medications), cultural data (museum expositions, cin-
ema programs or music concerts), and common knowledge as in Wikipedia
and so on. The sheer amount of data available is tremendous and in a
permanent evolution.

The development of the Web comes alongside with a revolution of data
management systems for collecting, storing and accessing all kinds of data.
Some important changes can be highlighted:

� The frontier between data producers and data consumers is
completely blurred, as everybody can contribute in many different
ways: by adding articles on Wikipedia, by posting on a forum, by blog-
ging or by participating in crowd sourcing for instance. This means
that data comes in many ways and from a wide diversity of actors,
ranging from average users to database experts.

� As data comes from many sources, it also comes in many for-
mats from highly structured to unstructured ones (plain text), with
many possibilities in-between of partially structured data. Databases
thus have to represent and analyse data of heterogeneous nature.

� This heterogeneity makes data difficult to access. To deal with
this, keyword search has offered an alternative to database queries.
Thereby anybody can access the tremendous amount of data on the
web in a convenient manner, or provide his own data so that it can be
found by others.

� The creation of data and its access has become highly dy-
namic. While early web pages were static and produced entirely at
creation time, modern web sites are typically built dynamically, often
providing a convenient access to a database. A web shop for instance
builds dynamically a web page on demand when a user wants infor-
mation on a product. This dynamicity is also present on the web page
itself through various Javascript code. This allows the web page to
directly query - and possibly update - an underlying database.

� The pure size of accessible data today has grown way be-
yond what could be stored in a single relational database.
Indeed, some systems have to store data on billions of individuals.
Therefore, the distributed storage of data has become essential. In
some situations, this size makes traditional relational database tech-
niques unsuitable as they simply can not efficiently answer queries on
databases of this volume.
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1. Introduction

The revolution of data management is still in progress, leading to new
business models such as web stores like Amazon, new interaction models
such as social networks, or new data collection models (Wikipedia for in-
stance). However, database queries remain at the heart of most services
offered on the Web. Queries are sometimes directly visible in form-based
services that allow for instance to find a travel ticket, or to find a product
in an e-commerce website. Most often however, they are hidden in various
other Web services.

� Most modern websites are built using a Content Management Sys-
tem (CMS). They are systems that build webpages dynamically from
contents stored in a relational database. The navigation in such a
website generates a sequence of queries whose results allow to build
webpages.

� Keyword search engines, like Google, search for the most probable
answers using statistical methods and also database queries in order
to access a semantic to that concept [GMM03]. For instance, when
searching for Mozart with Google, a database query is then used to
access information about his symphonies and his birth date.

� Social networks are implemented on top of distributed databases
of the NoSQL family. These databases represent friendship relations
but also all other kinds of personal information in a highly distributed
manner. Those data are then queried to produce recommendations to
users of the social network, for instance when a user searches for the
friends of friends [Bar03, Jac08]

� Crowdsourcing systems such as Wikipedia/DBpedia [LIJ�15] fill up
databases with all kinds of knowledge which, beside texts or pictures,
contain linked data in RDF format. This data can then be queried by
keyword search engines or other Web services [ADK�15, PPP�12].

� Web information extraction techniques allow to gather data from
Web pages in order to offer new services based on data they harvest
[Bae03, BHM04]. This requires to query Web pages written in HTML
based on XML queries.

Database formats and query languages are evolving in parallel with the
revolution of data management on the Web to allow to store and manage
the new kind of data involved. When in the past, data tended to be con-
sidered either structured (as in a relational database) or unstructured (like
plain text), it is now acknowledged that a whole spectrum of structuration
levels exist. This diversity in structuration of data is usually designated by
the term semi-structured data, a terminology introduced by Abiteboul
[Abi97, ABS00]. This new paradigm revolves around generic relational data
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1. Introduction

structures such as trees or graphs. Those formats may allow a complete lib-
erty in what kind of data they can store or how it is organised. In parallel,
new adapted query languages have evolved.

Several data formats have emerged to follow this trend, the most popular
ones being certainly the following.

� XML [MPSM�04] has became the de-facto standard for exchange of
data on the Web, in particular for Web services and Web document
publication. It allows to use a generic tree structure to store data.
This genericity allowed a whole family of tools to exist, from schema
languages such as DTD [MPSM�04], XML schema [xml] or Relax
NG [rel], query languages (XPath 1.0 [CD99], XPath 2.0 [xpaa] and
XPath 3.0 [xpab] most notably), or transformation languages (XSLT
[Cla99] or XQuery [RSC�10] for instance).

� The greatest success of XML is certainly HTML, the language of
Web pages. In its present version HTML 5.0 [Hic12] and associated
with CSS stylesheet [css], it allows to define the most elaborated pre-
sentations of web pages on web browsers. As it is based on XML, it
inherits from the whole set of tools that XML provides. In particular,
data extraction can be done via XPath for instance.

� The JSON format [Cro14] is initially a storage format for Javascript
data. It has therefore been designed to store and exchange data of web
scripts in a convenient manner. Through the AJAX (Asynchronous
Javascript and XML [Mah06]) architecture, it has now become an
important element of dynamic web pages. It has also become one of
the main standart of the NoSQL paradigm [Cro09, SF13], used in
particular in many distributed databases. Its tree structure makes it
perfectly adapted for distributed usages, as well as allowing very fast
accesses and treatments, such as map-reduce techniques.

� The semantic web project aims to represent a maximum of data
using knowledge graphs, based on the RDF format [rdf]. This format
describes edges of a graph using triples of the form subject - predicate -
object. It can be stored and/or exchanged via an XML description, but
other serialisation formats also exist (Turtle, N3, ...). RDF databases
are usually paired with an ontology that allows to infer new relations
from existing one, much in a deductive way. It also allows to specify
the semantics of data, with the possibility to share concepts among
different databases. Queries are typically made using the SPARQL
language [spa].

Alongside those different formats, there is also a large variety of struc-
turation levels. Indeed, in the semi-structured data paradigm, one can find
data with a high level of structuration where every piece of data is clearly
semantically identified within a schema. However, it may happen that this
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1. Introduction

schema is underspecified, or that its structuration level does not cover every
content (some data is left unstructured). Sometimes data is structured, but
its structure does not carry semantic values. For instance in a Web page,
HTML tags carry mostly syntactic information. It may also happen that
the schema is completely unknown, is only implicit, or even that it evolves
over time.

This diversity of data formats and query languages as well as the poten-
tial underspecification of schemas make the task of query design more com-
plex than for relational databases where the SQL format dominates and
where databases always have a clear schema. To circumvent these prob-
lems, machine learning can provide solutions. It provides tools that
allow to automatically design queries by studying data and by using simple
interactions with an end-user. The typical way to do this is by using meth-
ods of statistical machine learning. This has allowed to obtain nice results,
with the advantage of having a great robustness with respect to noisy data
for instance. However, statistical machine learning allows to obtain only
approximations of the query wanted by the user. Our proposition in this
field is to use symbolic machine learning instead. Under some well-designed
scenarios that we study, this allows to obtain exact learning of queries.

2. QUERIES, TRANSFORMATIONS AND LEARNING

Semi-structured data is usually organised in relational structures over a
finite alphabet, but with data values (strings, numbers...) from an infinite
set. Which kind of relational structures are considered depends on the data
format that is chosen, and on possible restrictions that are imposed from
the schema.

As in classical relational databases, the management of semi-structured
data is usually based on logical queries on the relational structure. A log-
ical query is a function that maps relational structures to relations. Those
relations can then possibly be transformed into a data tree or a data graph.
As an example, an XPath query, as specified by the W3C standart [CD99],
maps data trees in the XML data model to sets of nodes of the tree. XPath
queries are also at the core of the XSLT [Cla99] or XQuery [RSC�10] for-
malisms, which allow to transform XML data trees into arbitrary relational
structures, possibly in other XML data trees.

Logic is the most natural approach to define query languages for rela-
tional structures [AHV95]. Most typically, one considers queries defined in
first-order logic (FO) or fragments thereof such as conjunctive queries.
Trakhtenbrot’s theorem [Tra50] however establishes the undecidability of
first-order logic on finite models. And even for conjunctive queries, the
problem of (Boolean) query answering is NP complete [CM77], since gen-
eralising on satisfiabilty problems. Therefore, various restrictions of con-
junctive queries were studied, for which (Boolean) query answering is in
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1. Introduction

P-time [Yan81]. In other cases where recursion is needed, even FO-queries
are not enough, so that richer logics with fixed points are to be consid-
ered, most typically Datalog [GK04] or monadic second-order (MSO) logic
[Cou09, EC12, Bag06]. This happens for instance when interested in acces-
sibility queries in graphs.

First-order logic exploits data values by adding equality relations either
between elements (like joins), or with a set of constants (like finding all
elements with a specific value). However, this poses a real problem for
static analysis’ purposes, as satisfiability of first-order logic with a predicate
for data value equality is undecidable, even on strings [BMS�06].

The situation becomes easier for purely navigational queries, that ig-
nore the data values of the relational structures. For instance, the XPath
query formalism exists in three main versions: XPath 1.0, XPath 2.0 and
XPath 3.0. If we restrict these to navigational aspects, we obtain nice
fragments, called core XPath 1.0 (or navigational XPath) [Md05, BL05,
Lib06, BK08], and core XPath 2.0 (or conditional XPath) [Mar05, tCM07,
tCFL10], whose behaviours are now well understood. In particular, query
answering algorithms for Core XPath 1.0 can be defined by compiling navi-
gational queries into monadic Datalog [GKP05], which, in the case of trees,
has the same expressiveness as MSO or tree automata.

Finite state machines such as tree automata have many nice properties
that are highly relevant to symbolic machine learning based on methods from
grammatical inference [GO93]. The two most important properties are that
tree automata can always be determinised, and that minimal deterministic
automata are unique (up to state renaming). This provides for any regu-
lar tree language a unique normal form, as described by the Myhill-Nerode
Theorem [Myh57, Ner58]. Such unique normal forms are essential for iden-
tifying regular languages from positive and negative examples [GO93]. How
this can be exploited for the learning of navigational database queries in
trees and graphs is one of the two main topics of this thesis.

The other main aspect of this thesis concerns the inference of tree trans-
formations. Again, first-order logic proves to be a nice tool to understand
those processes, as interesting fragments of XQuery have proved to be
equivalent to first-order definable transformations [BK09]. First order fails
however to capture recursions in a proper way. This can be done by adding
ad-hoc predicates that capture the closure of other relations, such as ’de-
scendant’ for the closure of the child relation [Pot94]. This remains however
very limited.

Monadic Second Order logic - or MSO - becomes then a natural
candidate as it can express monadic recursion. MSO also allows to ob-
tain a nice formalisation of a large class of graph transformations [EC12].
MSO can in general express formulae for which even evaluation becomes
PSPACE-complete. However, in some restricted situations this problem be-
comes tractable - for instance it becomes linear time for graphs of bounded

7



1. Introduction

tree-width [Cou09]. This condition is respected in particular for data organ-
ised as trees.

On the side of finite state machines, tree transducers constitutes a fam-
ily of formalisms that can perform tree transformations efficiently. This
wide family includes deterministic top-down tree transducers[TW68,
Eng75, CDG�02], which constitute maybe the most classical and standard
class. It is worth noting that some results of tree automata translate to
this class, notably the existence of a normal form [EMS09]. The work we
present here starts with these results and uses them to adapt existing learn-
ing algorithms for word transducers [OGV93] to obtain learnability results
for deterministic top-down tree transducers.

Our next goal is then to extend this result to obtain learnability re-
sults for larger classes of transformations. In particular the class of Macro
Tree Transducers with look-ahead [EV85, Eng77] constitutes a target of
choice, as it captures the class of MSO definable transformations [EM05]. To
obtain a learning algorithm for this class, we first need to study learnability
of both macro tree transducers, and of tree transducers with look-ahead.
This is what constitutes the approach we develop here.

3. RELATED WORK: MACHINE LEARNING FOR DATABASES

Machine learning provides a wide array of techniques that can be used to
analyse and exploit data in databases. The techniques we develop are part
of this family, with a novel approach. We present a quick tour of tools that
machine learning can offer to database management, and explain how our
techniques are integrated in this field.

Two main scenarios of learning are usually considered in the field of
machine learning: unsupervised and supervised learning. First, in unsu-
pervised learning, the inference system has access to the whole set of
available data with no further directions on how to exploit them. The typ-
ical goal is to cluster the data into intelligible pieces, or to infer implicit
rules on how the data is organised, such as finding patterns or statistical
dependencies between several attributes. In the database world, this task is
usually called data mining.

Data mining consists in performing an analysis of data that usually in-
cludes several steps, such as data management, preprocessing, data visual-
isation, .... But the core step is to identify patterns, regularities or, more
generally, knowledge from data, and this is mainly based on machine learn-
ing techniques. For this, many possible learning techniques can be used,
typically based on statistical approaches: bayesian networks [BG07], k-
nearest neighbours, maximum entropy models [Bor99], cluster anal-
ysis [ELL09], ... Data mining can be seen as some kind of query inference,
where nearly nothing is known on the query, except the data on which it
operates on.
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1. Introduction

Statistical analysis can also benefit from extra information. In this situ-
ation, called supervised learning, the user has a better knowledge of the
query he wants, and the inference process is enriched either by information
on the queries (such as a sample of desired results) or by interaction with
the user to define the query. The process can also sometimes analyse the
whole database and associate both supervised and non-supervised learning,
in what is usually called semi-supervised learning [CSZ10].

In supervised learning, many statistical techniques can be seen as gener-
alisations of the classical linear regression algorithm. The general idea is to
project the data into a space where the query is seen as a function that can
be extrapolated, using techniques such as neural networks [Bis95], con-
ditional random fields [LMP01], Decision Trees [Qui87], Maximum
Entropy, Hidden Markov Models (or HMMs) or Support Vector Ma-
chines (or SVMs [SS01]). In SVM for instance, the different attributes of
the data are combined together into a space with basically as many dimen-
sions as possible such that data become separable by a hyperplane. The
inference of this hyperplane is made possible in practice by the fact that
a technique - called the kernel trick - avoids to actually compute the data
projection.

In information extractions, all those approaches have been tested with
some success on the problem of query inference, in particular decision trees
[Mar07], hidden markov models [FM99], Maximum entropy [CN02] or Sup-
port Vector Machines [IK02, MMP03].

However, all those approaches typically have difficulties to operate using
structured or semi-structured data, and to infer concepts as complex as
regular queries as the search space is too vast. Some techniques attempt
to tackle the problem directly and extend techniques, such as SVMStruct
[THJA04, JFY09], but still face important complexity issues which render
the problem intractable on real datasets. Another approach is to reduce the
input document to a finite (but possibly big) set of features, as in [FK00a,
GMTT06]. This approach allows to encode a wide variety of information
about the data, however, it does not allow to capture classes of concepts as
complex as those captured by finite state machines.

On the other hand, symbolic machine learning techniques aim to
infer directly complex classes of concepts, such as one represented by gram-
mars, complex logic formulae, or finite state machines. They suffer some
drawbacks with respect to statistical approaches, such as being less robust
to noisy data, which make them harder to use in many practical cases. How-
ever, we will see that the framework we use to infer queries will avoid some
of those difficulties, and hence, make this family of techniques particularly
attractive to query inference.

In information extraction, first attempts of establishing symbolic ma-
chine learning algorithms ignored the tree structure and considered the doc-
ument as a simple text, defining the query - called a wrapper - essentially as
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1. Introduction

a regular expression, or a set of regular expressions, that define the part
of the text to extract. See for instance [Kus97, MMK99, Sod99a, CRdR00]
Those techniques basically extend methods used for information extraction
from text. The fact that they ignore the arborescent structures however
greatly weakens them, and modern approaches use more heavily the tree
structure of the documents.

Inductive Logic programming (or ILP) techniques have also been
tested on information extraction with systems such as SRV [Fre00], Rapier
[Cal98] or WHISK [Sod99b] which directly infer a system of logical rules
that mix a textual analysis and a local view of the data structure. Those
systems are also sometimes used as an assistance to statistical approaches,
as in [RJBS08] or in BWI [FK00b]. Although these techniques have the
advantage to exploit the textual content of the document, they fail to capture
the class of queries we aim for as they have in fact a very limited use of the
document structure.

Some work then began to exploit more fully the tree structure by defining
queries using tree patterns, or extensions of these - such as k-testable
languages which are more general tree languages defined as a succession
of patterns [KVBB02, KBBdB06, RBVdB08]. Those have proved to obtain
better results than the simpler tree patterns approach, but still capture only
a subset of the regular tree languages.

The techniques I present in the following of this document will go one
step further, as I will present methods that infer queries represented by tree
automata, and hence capture a much richer class of queries than previous
works presented above.

4. CONTRIBUTION: LEARNING QUERIES AND TRANSFORMATIONS

The design of a query is a task that requires expertise. To be able to create
a query, one must understand the data’s structure and the query language.
We already argued that it is harder for the user to understand precisely the
data’s structure in the field of semi-structured data than for other data mod-
els in particular because schemas are not always clearly defined. Query lan-
guage are also a difficulty as many formalisms exist for various applications,
and their expressiveness is typically greater than in relational databases for
instance.

For those reasons, our contribution essentially aims at helping the user by
replacing the task of query conception in a formal language with some simple
interactions with a machine learning process that creates the query itself.
As those interactions provide clean data (we assume the user does not make
mistakes), this permits to use symbolic machine learning techniques that we
develop and that allows the exact learning of the target query (as opposed
to approximate learning which is more the norm in statistical learning).
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This interactive setting is close to the learning setting defined by An-
gluin in [Ang87a, Ang88], a context in which concepts such as regular word
languages has been proved learnable using some simple interactions with an
end-user - or more generally to an oracle which can be of any nature. We
essentially extend this approach to capture classes of queries. We first define
algorithms that infer queries, and then extend it to the case of query-based
transformations. We first focus on tree structured data, but we also propose
directions to deal with graph structured data.

LEARNING QUERIES

As tree automata can represent any MSO formula on tree structured data,
they can in particular be used to operate any MSO-definable query on trees.
This is done by first representing the query as a tree language that contains
trees annotated with the query answer. This allows to define MSO queries
as regular languages. For this purpose, we use [CNT04a] Node Selecting
Tree Transducers (nstt), which are top-down tree automata that recognise
tree languages of queries and which operate on a Currification of unranked
trees. nstt can also be used to annotate an input tree with respect to the
query, which allows to obtain the answer of the query.

nstt inherits the properties of tree automata. This includes a Myhill-
Nerode construction that allows a minimal normal form [Myh57, Ner58].
This is the basis for learning algorithms such as RPNI [OG92, OG93] or
L� [Ang87a]. RPNI allows for the inference of a regular language of words
[OG93] or of trees [OG93] from examples and counter-examples, while L�

infers a regular language of words from interaction with a user.

To infer queries, we needed to extend those results to queries represented
by nstt. A first theoretical result on the inference of monadic queries in
a non interactive setting (inference from a sample) has been first presented
in [CLN04]. This work has then been extended to an interactive setting
(inference by interaction) in [CGLN07] where the user gives only partial an-
notation. For instance, if one wants to define a query that extracts product
names on an e-commerce web page, the user starts by selecting only a few
of them, interacts with a machine learning algorithm that defines a query
which is then tested again on the document. The answer of the inferred
query may then be corrected by the user (that provides a few more annota-
tion for instance), and the process can be iterated until the inferred query
is considered correct.

Those works have been then extended in [CGLN08b] where we improved
our approach. In particular, in some situations a schema is available, typ-
ically a DTD. We investigated how this knowledge can help the learning.
This uses an efficient algorithm for inclusion test between languages defined
by tree automata we defined in [CGLN09]. Second, we defined formally
how the learning algorithm can prune input trees to focus on parts for the
queries, and how this affect the class of queries that is inferred in [CGLN10].
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LEARNING TRANSFORMATIONS

As transformations are based on formalisms close to node selection queries,
the same kinds of difficulties arise. In particular, direct induction of logic
formulae remains a difficulty. Using finite state machines seems a more
promising lead, and that is the way we engage. In particular, we can rely
on techniques that proved deterministic word transducers to be learnable
[Cho03, OGV93].

In the large family of tree transducers, we focus our study on top-down
tree transducers, which seems to be the corner stone for further work. In
particular, macro tree transducers (MTT) are tree transducers that are
extended with a mechanism of memory that can store partial outputs. As
argued before, MTT, when added with regular look-ahead (a tree automaton
makes a first run on the trees to annotate them) is proved in [EM03] to
be more expressive than MSO definable transformations. In fact, the two
classes are equivalent when MTT with regular look-ahead is restricted in
the way they use copies in the output. This makes macro tree transducers
a valuable target for our study.

Our first important result, presented in [LMN10a] is the elaboration of
an efficient learning algorithm for deterministic top-down tree transducers,
a result based on a Myhill-Nerode theorem that we also defined. Extensions
from this class to richer classes, in particular macro tree transducers with
regular look-ahead, is a future work but two important intermediary results
will be presented. First, the use of look-ahead in inference is investigated
in [BLN12], in which we present an efficient learning algorithm for word
rational functions, represented by word transducers with a regular look-
ahead. Second, we investigate in [LLN�14] the inference of sequential tree-
to-word transducers, which are transducers able to deal with concatenation
in the output, a mechanism which is central for MTT.

LEARNING FOR GRAPH STRUCTURES

After trees, graphs constitute the formal framework for several semi-structured
database formats. In particular, the RDF format is certainly the most iconic
graph format, used primarily in a semantic web context. The main query-
ing language for RDF is SPARQL, a language that allows not only basic
Boolean operations, but also recursions.

After query inference on tree structures, our next goal is to extend our
work on to query inference on graph structures. One of the most basic
case is to use Regular Path Query (RPQ) to define monadic queries
[CMW87b, CGLV02]. These are regular languages of words that select nodes
of the graph from which one can draw a path that describes a word of the
language.
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1. Introduction

We already approached the problem of RPQ learning in [BCL15a, BCL15b],
in which we studied both a static and an interactive setting. This allows to
obtain first results, but also highlighted some difficulties intrinsic to graphs.
In particular, when a node is given as an example of the query, it is not
trivial to know which one of its outgoing paths is responsible for its selec-
tion. To solve this issue, we had to either apply restrictions to the class of
RPQ (by limiting lengths of paths for instance), or use more informative
interactions with the user than the one we developed for tree queries.

Our results on RPQ are based on monadic queries, but they can be easily
extended to binary queries as well. The extension from the monadic case to
the n-ary case is also possible as they can be considered as combinations of
binary queries.

RPQ constitutes a first step for graph query inference. More complex
cases would be to use regular languages of trees to define queries, or poten-
tially even more complex structures, that we also want to investigate in the
future. For instance, we believe that an MSO query that selects a node in
the graph can be expressed as some kind of regular tree language that would
select a node if its - potentially infinite - unfolding tree is in the language. If
this is correct, and providing we manage to also operate on a finite portion
of this unfolding - we think that this could allow to adapt our technique for
query inference on tree structures.

Another limitation is the fact that we do not exploit data values of the
structure. This limitation already occurs in the tree case, and is certainly
an important one as data values are usually an important element used
in queries. However, in a node, it is usually not the data in itself that is
important, but the relation it has with other nodes, or with a value present in
the query. In essence, this is similar than dealing with equivalence relations,
although it sometimes corresponds to other comparison relations.

We see two ways of dealing with this. The first one is simply to consider
this relation as a new edge on the graph. This allows to exploit previous
results with no changes. This technique can of course only be used for
graphs and not directly for structures such as trees. Another solution is
given by [KF94a] with register automata - also called data automata. In
the case of words, these automata read sequences of values from an infinite
set (sequences of integers for instance). The automaton is then able to
store some values, and later compare it with another value. For example, it
can verify that a sequence starts and ends with the same value. This class
has many good properties, such as a normal form, a Myhill-Nerode theorem
[MMP13], and even some learnability results [BHLM13, DHLT14]. We plain
to extend those results to transductions and to tree structures in order to
have learnability results for classes of tree or graph queries that can exploit
data values.

Finally, we want to aim at graph transformations. This problem,
which is central in data-exchange [DHI12] for instance, consists in adapting
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data present in a graph to use them within another structure. In data
exchange, edges of the new structures are defined by logical formulae on the
input structures. Much in this spirit, we want to define edges on the new
structures as binary queries on the input query. In this sense, this can be
considered as a direct adaptation of our work on tuple queries. However, the
learning context is different, and a new learning scenario has to be invented.

5. RESEARCH ORGANISATION

Works presented here have been initiated within the Grappa Team, a re-
search team of the LIFL (Laboratoire d’Informatique Fondamentale de Lille,
now CRIStAL) and of the University of Lille 3 (now part of University of
Lille) focused on Machine Learning. From 2004 to 2012, it has been part
of the Mostrare team-project of INRIA and LIFL, whose main topic is
machine learning in structured documents (mainly tree structures). From
2013, I integrated into the Links Team project of INRIA and CRIStAL,
which is focused on studying linked data.

These works have been developed partially through several PhD thesis
that I co-supervised. It has also been part of projects of the Agence Nationale
pour la Recherche (ANR). We make a quick resume of both here.

PHD THESIS

Works presented here have been developed during six PhD theses, that we
present in a few words.

Julien Carme [Car05], defended in (2005). During this thesis, we first
investigated inference of monadic queries represented by tree automata from
completely annotated documents in [CLN04]. A first definition of queries
as regular tree languages has been proposed, based on Node Selecting Tree
transducers (NSTTs), a transducer formalism that can either be seen as
deterministic tree automaton that recognises the tree language of the query,
or as a querying mechanism that extracts nodes of a tree according to the
query. Also, queries represented by NSTT have been proved to be learnable
from complete annotation, i.e. when the learning algorithm operates from
a sample of trees for which all answers of the target queries are known.

This work has then been extended to an interactive setting in [CGLN05],
where the query is inferred from simple interaction with a user: the user pro-
vide some annotation from a document. This approach has been validated
by a prototype and experimentation that indicates that inference of queries
can be done in an efficient way, and with very few interactions.
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Jérôme Champavère [Cha10], defended in 2010. Work of this thesis
essentially extends in the same line, focusing mainly on the usage of schema
in inference. This is investigated notably in [CGLN08b], which indicate that
using this information greatly helps learning. This is particularly relevant
when one wants to infer queries for XML, where the schema is usually known
as a DTD (as opposed for instance in inference of HTML queries).

This has been made possible thanks to a new algorithm to check the in-
clusion of tree automata published in [CGLN08a] that allows to test whether
a language represented by a tree automaton A (not necessarily deterministic)
is contained into a language represented by a deterministic tree automaton
(bottom-up or top-down) can be done in Op|A|� |B|q, previous result being
in Op|A| � |B| � |Σn|q (Σ being the alphabet, and n the maximum arity).
This result is extended to inclusion for unranked tree languages and inclusion
within an XML DTD, which is a corner-stone in our learning algorithm.

Grégoire Laurence [Lau14], defended in 2014. This work investigates
learning of sequential tree-to-word transducers, a natural model of trans-
ducers that inputs trees from a regular tree language and outputs words
from a context free grammar. As trees can be serialised, this model is more
general than tree to tree transducers. Also, it implements concatenation in
the output, which makes it an interesting object of study.

The first result of this PhD Thesis is to study the equivalence problem
for this class in [SLLN09]. It has first been done by establishing that equiv-
alence of deterministic tree-to-word transducers, deterministic nested-word
to word transducers (also called visibly push-down transducers [RS08]), and
morphism on Context Free Grammars are all polynomially reducible prob-
lems. Note that the latter problem has been proved to be polynomial in
[KP94].

This study has been pursued in [LLN�14], where we defined an efficient
learning algorithm for this class: the algorithm takes pairs of input tree /
output words and aims to output a deterministic tree-to-word transducer in
a normal form.

Radu Ciucianu [Ciu15], defended in 2015. This work studies interactive
learning of queries for databases, with two important aspects: learning SQL
queries, and learning queries for graphs (mainly RDF). My participation
is on the second point, where we study learning scenarios for the class of
Regular Path Queries (RPQs), which are queries where a node is selected if
there is exists a path that starts from it which is part of a specific regular
expression. This serves as a basis for more complex queries in RDF. Both a
static and an interactive setting have been developed in [BCL15b, BCL15a],
where a query can be inferred either from a set of nodes of the query or by
asking the user to correct the answers of an interred query.
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Antoine Mbaye Ndione [Ndi15], defended in 2015. This work involves
property testing in semi-structured testing. The main results allowed to
define the first efficient algorithm to estimate with good confidence if a
(possibly very big) XML document satisfies a DTD in sub-linear time, i.e.,
in a time that only depends on the depth of the tree and is polynomial
in the size of the DTD [NLN13]. It is based on a mechanism of random
sampling of the tree that builds an approximate representation of it on
which membership can be tested.

While different of other works presented here in the sense that it has no
direct link with learning or queries, this work allows to give some insight on
learning tree languages, and in particular tree queries, in a more statistical
approach.

Adrien Boiret [Boi16], defended in 2016. In this thesis, several topics
related to tree transducers are explored. In particular, we investigated the
inference of look-ahead mechanism. This allowed to obtain learnability re-
sults in the word case for rational functions in [BLN12].

Works of Adrien Boiret also allowed to have a better understanding
on equivalence and learning of Deterministic Top-Down Transducers, and
studied in particular the role of the domain in those mechanisms. They also
made significant improvements in normal forms and learning of tree-to-word
transducers.

ANR PROJECTS

These works are also integrated into several ANR projects, that we quickly
detail here, as well as highlighting some activities in them directly in link
with works presented here.

First, the Marmota project (2006-2008) dealt with stochastic tree mod-
els and transformations. It was a collaboration between LIP6 (P. Gallinari),
LIF (F. Denis) and the university of St Etienne (M. Sebban). The project
aimed to study problems raised by XML data manipulation with three main
domains: formal tree languages, machine learning and probabilistic models.
Works inside the Marmota project included learning of queries with schemas
and n-ary queries.

The Codex Project (2009-2011) aimed at studying Efficiency, Dynam-
icity and Composition for XML Models, Algorithms and Systems. It was
a collaboration with team GEMO (INRIA Saclay), team WAM (INRIA
Grenoble), LRI (University of Orsay), PPS (university of Paris 7) and uni-
versity of Blois.

The Lampada project (2010-2013) aimed at studying machine learning
on structured data. It focused on high dimension learning problem, large
sets of data, and dynamicity of data. It was a collaboration between team
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Mostrare and Sequel of INRIA Lille, LIF of Marseille, Hubert Curien Lab
of Saint Etienne, and LIP 6 of Paris.

The Colis Project (2015-2019) aims at applying techniques from logic
and tree transducers to analyse shell scripts, and in particular installation
script of UNIX systems. It is a partnership between INRIA Lille (Links
team), INRIA Saclay (Toccata team) and university Paris Diderot (IRIF lab-
oratory). Works in this project include defining models of tree transducers
that can represent classical operators on file systems (copy, move, rename,
...) and for which statical analysis can be done efficiently (in particular
composition of transformation, equivalence, emptiness). Typical problems
include building a tree transducer that represents a whole script (built by
composing transducers that encode elementary operations), or for instance,
compose an install script with an uninstall script and check whether the
result is truly equivalent to identity.
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Tree Queries2

The first aspect of our project starts with two observations. First, regular
queries can be represented by tree automata, and second, grammatical in-
ference techniques offer a nice framework for tree automata inference. We
combine both points to define an algorithm for query induction.

The starting point of our approach is to represent queries by tree au-
tomata. This first originates from [NPTT05] which provides a representa-
tion of queries as tree languages. From this, we defined the model of Node
Selecting Tree Transducers (or nstt) in [CGLN07], a formalism that
can be seen either as a tree transducer that performs the query or as a
tree automaton that recognises the representation of the query as a tree
language. We present this model in the first section of this chapter.

Particularly interesting for this work, this initial approach allowed to
define first instances of learning algorithms for tree queries. However, first
attempts to use those algorithms on real data proved to be somehow disap-
pointing. The reason turned out to be that nstt are automata that encode
whole input trees, including parts irrelevant to the query. This makes their
learning harder than necessary. To avoid this problem, we developed prun-
ing techniques that remove unnecessary parts of input trees, and allowed
a practical use of our techniques. The resulting formalism, pruning nstt,
are presented in Section 2.

In the third section of this chapter, we present the learning algorithms
that we defined. We based our approach around the RPNI-Lang Algorithm
[Lan92, OG92], a learning algorithm initially used to infer regular languages
of words, but that have been extended to infer regular languages of trees
in [OG93, BH99]. We start by presenting how the RPNI -Lang algorithm
could also be adapted to infer nstt from documents completely annotated
by the user. As a second step, we indicate how pruning techniques can be
integrated in the learning process. This allows to perform the inference from
documents which are only partially annotated, which considerably reduce
the amount of data needed from the user.

The last step of our approach consists in integrating our learning algo-
rithm in a convincing scenario. In the last section of this chapter, we de-
scribe a process that uses simple interactions with the end-user to build
the sample needed by the learning algorithm.

1. REGULAR TREE QUERIES

This work starts with the observation that tree queries can be represented
by tree languages. This allows to use tree automata to represent queries. We
will call regular queries the class of queries that can be defined this way, and
we will see that this class corresponds to the class of tree queries definable
by MSO formula.
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2. Tree Queries

After specifying the tree model that we need, we indicate how to rep-
resent tree queries by tree languages. The tree languages will be composed
by trees annotated to indicate which nodes are selected by the query. For
monadic queries, one can simply label every node by a Boolean that indi-
cates whether the node is selected or not. For an n-ary query, every tuple
answered by the query is encoded by a specific tree.

We detail here those two encodings, and present here tree automata that
can recognise those encodings, and hence, represent queries. Note that those
elements, crucial for the following, have been presented first in [CNT04b]
and are not part of our contributions.

OUR TREE MODEL

Trees are essentially directed graphs with a specific structure: they have
a root, and every node but the root has exactly one parent. They are
particularly adapted for storing documents, and they also allow for faster
access than general graphs. These are two of the main reasons why they are
at the core of several semi-structured formats, such as XML or JSON.

There are several possible models for trees. We choose to use one that
is adapted to finite state machines, as that will be our favoured tool. As a
consequence, we make the following choices:

� First, each tree is considered ordered - children of a node follow a
specific order. In semi-structured data, this is usually not a restriction
as there is often a natural ’document’-order, even though this order is
not always meaningful.

� We use a finite alphabet. For semi-structured data, this is not the
case in general: leaves contain unrestricted data, and even internal
symbols are in the most general case not limited to a finite alphabet.
However, in many practical situations, the number of possible internal
symbol is indeed restricted to a given alphabet - typically defined in
a schema. For leaves, as argued before, queries do not usually deal
with the data themselves but rather with the relations they have to
each other (such as joins) or with external constants (like looking for
a specific value given by the query). As a first step however, we ignore
this aspect and simply use a generic symbol for leaves. This turns
out to be sufficient in many applications, but we will see in the end
chapter suggestions on how to avoid this restriction.

� we use ranked trees, this means that each symbol used to label a
node always has a fixed number of children. In fact, we even mainly
use binary trees. As it is well known, this is usually not a restriction,
as trees that do not follow this rule (as typical XML or JSON trees)
can be encoded into binary trees. The most typical way to do this is
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to use the ’first-child / next-sibling’ encoding. However, this encoding
is not adapted for our purpose as a bottom-up reading of such an
encoded tree does not correspond to the natural processing of a tree
in our applications. We use instead the Curryfied encoding, that
sees a tree as a recursive function call, and transforms each symbol as
its binary Curryfication, using a special ’Curry’ operator well known in
functional programming, and that we denote @. For instance, fpa, b, cq
becomes f@a@b@c, or, if viewed as a binary tree, @p@p@pf, aq, bq, cq.
This encoding is more adapted to bottom-up operations as a bottom-
up traversal of such an encoded tree allows to see all internal labels as
leaves.

QUERIES AS TREE LANGUAGES

Based on our notion of trees, we define n-ary tree queries first as functions
that take as an input a tree and output a set of n-tuples of its nodes. One of
the first ideas that we use, and that originates in [NPTT05], is tuple queries
can also be defined as tree languages.

First, for monadic queries, one simple thing can be done. As a monadic
query is a function that takes as an input a tree and outputs a set of its
nodes, one can without loss of generality consider the query as a function
from an input tree to another tree with the same set of nodes but decorated
by Booleans that contain either T or F depending whether the node belongs
or not to the answer of the query.

This way to present monadic queries allows us to easily transform the
query into a tree language: it will contain input trees that have for each node
an additional Boolean annotation indicating whether the node is selected or
not. We call this representation the Boolean representation of the query.

Consider the query that selects all the leaves of a tree. In the tree
fpa, gpb, cqq, only nodes labelled a, b and c will be annotated positively,
which would give the following tree. Note that in this representation, any
unannotated input tree has actually exactly one corresponding annotated
representative in the query language, the one whose annotations correspond
to the answer of the query.

xf,Fy

xa, Ty xg,Fy

xb, Ty xc, Ty

Example 1.
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This technique can not be applied in general for n-ary queries for n larger
than 1, but we can adapt it. Indeed, n-ary queries in general associate a
set of node tuples to each tree. Each of this tuple can be translated into
an annotated tree that encodes it. Those annotated trees are obtained by
taking an input tree, and adding to each node a vector of n Booleans as an
additional annotation. This vector of Boolean indicates for each node if it
is selected in the output tuple, and if so, in which position - for instance,
a node annotated by the vector   F,T ¡ is actually the second node of
the output tuple. That means of course that there are no two nodes that
have the same position of their Boolean vector annotated by T - but note
that a node can be selected in several positions of the tuple. We call this
representation the canonical representation of the query.

Consider for instance the query that outputs pairs of nodes which are in
relation parent - children. On the input tree, the pair consisting of the g
node and the b node would be one of the four output tuples. The canonical
representation of this tuple will be the following tree:

xf,F,Fy

xa, F, Fy xg,T,Fy

xb, F, Ty xc, F, Fy

Note that the tree language that represents the query contains actually four
trees corresponding to the input tree fpa, gpb, cqq, one for each output tuple.

Example 2.

As a consequence, the canonical representation of a query will contain,
for each input tree, exactly as many annotated canonical trees as there are
answers of the query for this tree.

Note that monadic queries naturally accept both Boolean and canonical
representation. Usually, Boolean representation will be preferred as func-
tionality of the query will be easier to check (for each input tree, there is at
most one output annotated tree).

.
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NODE SELECTING TREE TRANSDUCERS

This section presents Node Selecting Tree Transducer, our model for
representing tuple tree queries, which we introduced first in [CLN04] for the
monadic case and in [LNG06] for the n-ary case.

Contribution

As queries can now be represented as tree languages, it is natural to call
regular a query whose tree language (Boolean or canonical) is regular, i.e.
recognisable by a bottom-up tree automata. Note that for monadic queries,
Boolean and canonical representations both lead to the same class of regular
queries [NPTT05].

Regular queries correspond to query languages definable in Monadic Sec-
ond Order Logic [TW68], a class whose expressiveness seems adequate for
practical queries, as argued in our introduction. They also inherit many
good properties from tree automata. First, they have a canonical represen-
tation, which is the minimal bottom-up tree automata that recognises them.
As such, equivalence can be checked efficiently for instance. Also, given a
tuple of nodes, it can be checked in linear time whether it is part of the
query answer or not (just check if the corresponding Boolean or canonical
tree is in the language).

Ultimately, we want to use trees that comes from XML or JSON doc-
uments for instance, which are unranked. So, our tree automata need to
deal with trees that are in fact encodings of unranked tree. As our approach
will be bottom-up (because the notion of determinism is better in term of
expressiveness than top-down approaches), we focus on Currified encoding.
Tree automata that operate on Currified encoding of unranked trees are
introduced in [CNT04a] where they are called stepwise tree automata.

Deterministic Stepwise tree automata have several nice properties. In
particular, they have a unique minimal canonical form, as deterministic
bottom-up tree automata. Note that this is not the case for all finite state
machine formalisms that deal with unranked trees, such as hedge automata
for instance [Mur00, BKMW01].

We call the resulting model, i.e. deterministic bottom-up tree automata
that recognizes Currified encoded unranked tree languages representing queries
(canonical or Boolean), Node Selecting Tree Transducers - or nstts.
The reason behind this name is that they accept two dual representations.
Indeed, they can be used as a tree automaton that recognises the tree lan-
guage of the query. But they can also be used as tree transducers that
computes outputs of the query, i.e. that selects nodes. They take a tree
as an input and outputs annotated trees corresponding to the answer of
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the query. To obtain this, one can simply consider the nstt that ignores
the annotations, using a simple projection. This - now non-deterministic -
tree automaton recognises unannotated trees, and it has the property that
each of its runs corresponds to a tree annotated by the query. Enumerating
runs of this automaton on an input tree therefore provides all the output
tuples of the query. The run of a non-deterministic tree automaton being
still polynomial, nstts turn out to be an efficient representation for regular
tree queries.

QUERIES AS PRUNED TREE LANGUAGES

Pruning techniques presented here have been first published in [CGLN07].
These techniques were then improved in [CGLN08b] and in [NCGL13], in
particular with the use of the schema in pruning.

Contribution

Describing a query by a tree language as described above has the draw-
back that the language describes whole trees, even if large parts of those
trees are irrelevant for the query. This makes the automaton that repre-
sents the tree languages potentially much bigger than necessary. This is
a problem for machine learning as a bigger target automaton is harder to
infer. To avoid this problem, we remove irrelevant parts of the trees using
an operation called pruning.

Pruning a tree consists in removing whole subtrees of it and replacing
them by a symbol. In the simplest case, the symbol is a generic special leaf
symbol (we use K). Otherwise, one can use a symbol from a finite set that
somehow represents or carries some information about the removed subtree.
One solution for this is to use a deterministic bottom-up automaton D: a
removed subtree is then replaced by the unique state that results from its
evaluation by D. We will talk of D-pruning. The simple case (one generic
pruning symbol) is then of course a special case where D is the universal
automaton with a unique state K.
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Consider a tree automaton D which checks the parity of the height of a
subtree - which is the length of its greatest path to the root. A subtree of
even height -such as fpa, bq - would be put in state qe while a subtree of odd
height odd - such as fpa, gpb, cqq - would be put in state qo. For the input
tree fpa, gpb, cqq, the three following trees are all valid D-prunings.

f

qo g

qo qo

f

a qe

qo

Example 3.

In general, any kind of deterministic bottom-up tree automaton (or
DBUTA) D could be used for pruning, and there are certainly analogies
between this pruning mechanism and what we will see later on with look-
ahead of transducers. One convenient solution is to use an automaton that
describes the domain of the query. This has the advantage that this domain
automaton is usually known - or can be obtained from inference - and it
naturally provides a classification of subtrees that proves to be useful in
practice.

A tree can accept many different D-prunings, as the pruning automaton
is simply there to indicate what to put instead of a pruned subtree, but
does not indicate which subtrees to prune. Also note that pruning can be
performed on trees even if they are annotated, in which case, the annotation
is simply ignored by the pruning process. In particular, the automaton D
operates on the unannotated projection of the tree.

A language L of annotated D-pruned trees can encode a query in the
following way. For an input tree t, every D-pruning t1 of t that matches
an annotated D-pruned tree t2 of L provides, either an output tuple if L is
canonically annotated, or a set of nodes if L uses a Boolean annotation.

25



2. Tree Queries

Consider the trivial pruning that replaces a subtree by the symbol K. The
query that selects all pairs of nodes which are the first and second child
of an f -labelled node can be represented by a language of D-pruned trees
containing for instance:

xf,F,Fy

xa, T, Fy xa, F, Ty

xf,F,Fy

xf,F,Fy

xa, T, Fy xa, F, Ty

K

xf,F,Fy

xa, T, Fy xf,F,Ty

K K

For an input tree, say t � fpfpa, aq, aq, knowing the pruned tree repre-
sentation of the query is sufficient to answer it. For instance, the tree t
matches with the upper-right tree presented here (i.e., its projection on the
input alphabet is a valid pruning of t), which allows to know that the tuple
consisting of the first two ’a’ of t is an answer of the query.

Example 4.

nstts can be extended to recognise annotated D-pruned trees in a rather
direct way: we consider nstt that directly operate on D-pruned trees, i.e.
that recognise tree languages on TΣpDq�Bn either canonical or Boolean. We
call those nstts D-pruning nstts.

Using D-pruning nstt to answer queries for a tree t P TΣ can be done
in a way similar to nstt. A first run is done by the automaton D that
associates the pruning symbols (i.e., states of D) to every nodes of t. Then,
a run of the D-pruning nstt can be done in a non-deterministic way, reading
either symbols of the tree or corresponding states of D. The complexity of
the process is similar to a run of an nstt, i.e., polynomial within the size
of the input tree.

The class of queries defined by D-pruning nstt in general is still the
class of regular queries defined as before: pruning does not increase the
expressiveness of the class. However, some queries can be represented in a
more compact way with D-pruning nstts, as they do not need to encode
the whole domain. Consider for instance the query that just selects the root
node of every tree, it can be done with a very simple D-pruned nstt that
just prunes everything but the root, while a ’classical’ nstt would need to
encode the whole domain of the query.
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2. LEARNING QUERIES

We presented in previous sections nstts and pruning nstts which will be
the target representation we use for query inference. We now present here
query inference algorithms based on these representations. Our final goal is
to define an algorithm that will infer a query from a few simple interactions
with an end user. Essentially, we will ask the user either to give some
annotations on a document, to correct some annotations provided by the
learning algorithm, or to indicate that a document is correctly annotated.

The first step consists in inferring the query from examples of com-
pletely annotated trees, i.e. from a set of input trees for which we have
the whole set of answers given by the target query. Inspired by the RPNI
algorithm of [OG92, OG93], we first developed an algorithm for this setting
in [CLN04] for the monadic case. This algorithm has then been extended to
the n-ary case in [LNG06]. We start by a presentation of those results.

As we do not really want the user to provide complete annotations of the
input trees, our second setting consists in inferring the query from exam-
ples that has been only partially annotated. For this, we have developed
learning algorithms that make heavy usage of pruning techniques presented
before. We introduced a first algorithm in [CGLN07], that has been ex-
tended in [CGLN08b] and [NCGL13].

Finally, we finish this section by a presentation of our interactive set-
ting that we introduced in [CGLN05]. We will see that through some basic
interactions, we can obtain the partially annotated examples we require. As
we assume that interacting with an end-user allows to provide only correct
annotations, this allows to operate in a framework that is suitable for our
learning method while still being convenient to use.

LEARNING FROM COMPLETE ANNOTATIONS

The learning algorithms presented here have been first published in [CLN04]
for the monadic case and in [LNG06] for the n-ary case.

Contribution

The first setting we investigate is the inference of queries from com-
pletely annotated examples. Our approach is based on a generalisation
of the RPNI algorithm, a learning algorithm for regular word languages
discovered simultaneously by Oncina and Garcia in [OG92] and by Lang in
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[Lan92]. This algorithm has then been extended to infer regular tree lan-
guages in [OG93] in the following sense. It takes as an input a sample of ex-
amples of a target regular tree language as well as a set of counter-examples
of it and always provides a deterministic tree automaton (bottom-up) at
least consistent with it. It has the property that, when the sample is large
and representative enough, its output is guaranteed to be the minimal de-
terministic tree automaton that recognises the target language. RPNI is
also an efficient algorithm in the sense close to the model of learning with
polynomial time and data [Gol78, dlH97]: first it operates in polynomial
time, and second, for any regular tree language, there exists a characteristic
sample - i.e. representative enough for the algorithm to succeed - whose
cardinality is polynomial in the size of any deterministic tree automaton
that encodes it.

As queries can be represented by regular tree languages, and nstt are
essentially deterministic bottom-up tree automata, RPNI can be used to
infer nstt. This is exactly what we do. However, one major difference
arises in the way we deal with counter-examples. In this first approach,
we consider that for an input tree, all annotations are obtained, i.e., we
know all the tuples provided by the target query on this tree. In this case,
all other tuples can be considered as implicit counter-examples. In RPNI ,
the algorithm tests at each step whether the current hypothesis is not in
contradiction with a set of counter-examples, which would be in our case
badly annotated trees. This means that the current hypothesis should not
recognise one of the counter-examples. In our case, this means instead that
the current hypothesis should not provide on one of the input trees an output
tuple which has not been given explicitly as an example.

The learning algorithm also requires the domain of the query - given
as a tree automaton. This is usually given - in form of a DTD for XML
documents for instance - otherwise it can also be inferred by the RPNI
algorithm for instance.

The resulting algorithm, called RPNI nstt and described in detail in
[CLN04], has therefore the following key points:

� It takes as an input a domainD, and a set of completely annotated
trees, i.e. pairs of a tree and a set of tuples of its nodes. From this, it
first encodes them into binary trees (using Curryfied encoding), and
builds a set of annotated trees, either canonical or Boolean.

� It is then based on the same basic mechanism as RPNI : it first builds
an initial tree automaton that recognises exactly the set of anno-
tated trees given in that input.

� As RPNI , it enumerates pairs of states of the tree automaton and tries
to merge them. The merge is accepted only if the resulting automaton
does not conflict with the input sample. In our algorithm, and unlike
RPNI , this is the case if the tree automaton provides a new tuple for
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an input tree, or if the tree automaton recognises a tree outside of the
domain of the query.

� The algorithm ends when all pairs of states have been considered.
In the end, we obtain an nstt that corresponds to a query which is
- at least - always consistent with its input. The algorithm runs in
polynomial time.

We implemented and tested this algorithm in [CLN04] for the monadic
case and in [LNG06] for the n-ary case. It also allowed us to obtain the
following theorem:

The class of regular tree queries represented by nstts is identifiable in poly-
nomial time and data by the algorithm RPNI nstt , which means:

� The RPNI nstt algorithm takes as an input a sample of an annotated
tree language and a tree automaton D and outputs an nstt consistent
with its input in polynomial time.

� For each regular tree query Q represented by an nstt A, there exists
a sample SQ of cardinality polynomial in the size of A such that, from
any finite sample S with SQ � S consistent with Q, RPNI treepS,Dq
provides a tree automaton that encodes Q.

Theorem 1.

The setting described in the theorem is close to the classical setting of
Gold learning within polynomial time and data [Gol78, dlH97]. There is
one difference: in the classical setting, the size of the characteristic sample
(here SQ) is required to be polynomial. Here, we only require its cardinality
to be polynomial. This is not something specific to our setting and already
occurs for RPNI . This is due to the nature of trees: small tree automata
can encode large trees. For instance, consider a tree language consisting of
only one balanced binary tree of height n such as fpfpa, aq, fpa, aqq: this is
recognised by a simple tree automaton of n states, but has a size of 2n and
learning this language would require at least this tree to be present in the
sample.

LEARNING FROM PARTIAL ANNOTATIONS

Works presented here have been first introduced in [CGLN05] and have been
further improved in [CGLN08b, NCGL12, NCGL13].

Contribution
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Although it has allowed us to obtain a first theoretical result, there are
two reasons why we want to avoid the above scenario. First, it requires a
complete annotation of the documents, a task that could be time consuming
for the user. Second, the target of the learning pruning is an nstt that
describes complete documents, whereas large parts of those documents are
irrelevant with respect to the queries and whose learning may spoil the whole
learning process.

For those reasons, we prefer to infer queries from partially annotated
trees, where the user provides only a subset of the answers of the target
query, and prunes the rest of the document. Beside the obvious advantage
that it reduces the amount of annotations the user has to provide on a
document, this also reduces the size of the target nstt, as it does not need to
represent pruned elements of documents. And as the target of the inference
is smaller, we will need fewer documents to infer it.

The input of our learning algorithm will now be partially annotated
trees, with means that we now have pairs consisting of a tree and a set of
tuples which are some of the possible answers of the target query on it. We
start by encoding input trees into binary encoded trees, transforming them
into annotated trees (canonical or Boolean), and then pruning them. This
last step needs however to be specified. Indeed, we presented previously
what a pruned tree is, but we have not indicated yet how to prune a tree.

There are indeed many possible ways to prune an annotated tree, that we
call pruning strategies. These are formalised as functions that determine
which environment of a node is relevant for the query. Technically, they are
functions that take as an input a tree and a node, and provide a D-pruned
tree that contains at least the node with its label, but all nodes which are
assumed to be relevant for the target query. In experiments, we considered
for instance the function path-onlyD (or simply path-only for a trivial
D) which removes every node which is not on the path from the root to an
annotated note, and the function path-extD which keeps also nodes which
are direct siblings of a node kept by path-onlyD.

Consider the tree t � fpgpa, bq, hpc, dqq with only the a-labelled node anno-
tated T. The pruning of t by path-only gives:

xf,Fy

xh,Fy

xa, Ty K

K

Example 5.
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The pruning strategy defines an environment around the annotated nodes,
and aims at removing everything which is not relevant for the query. In fact,
what this means depends of the query, and each pruning strategy actually
corresponds to a class of queries. For instance, a query that would select
every ’b’ labelled node which is sibling of an ’a’ labelled node can not be
represented by a language of trees pruned according to path�only, as a cru-
cial information would be erased. For a pruning strategy p, we call a query
p-stable if it can be represented by a language of trees pruned according to
p.

Pruning strategies define environments but can not be applied on anno-
tated trees, as they can have several nodes positively annotated. For this,
we need another notion that we call a pruning function. This is a func-
tion that takes as an input an annotated tree and prunes it. A pruning
function is based on a pruning strategy in the sense that it should keep all
nodes annotated by a T and their environment, as defined by the pruning
strategy. The pruning function is typically defined as the union of all the
node preserved by the pruning strategy, when applied on all T annotated
nodes.

The learning algorithm itself - called RPNI pruned- is an adaptation of the
algorithm described in the unpruned case. It has three differences compared
to it.

� First, as stated before, the sample it takes is only partially anno-
tated: it contains pairs of a tree t and a set of tuples of its nodes
containing only some of the answers of the target query on it.

� Second, it is parameterised by a pruning function p. The first step
of the algorithm actually consists in applying this pruning function to
its input. The algorithm will also test that the inferred language is
indeed consistent with the pruning function, in the sense that all trees
of the inferred language should indeed be trees that could be obtained
by it. Note that we indicate in [NCGL13] that this test can be done in
polynomial time, as it is essentially an inclusion test. Also, we focus
on regular pruning functions, which can be seen as a special case of
regular monadic queries.

� The third point is that, when using pruning functions, we do need
counter- examples. These are pairs consisting of a tree t and tuples
of its nodes which are not part of the answer of the target query.
While on complete annotation, those counter-examples were deduced
from the other annotations using the principle of functionality, this
doesn’t work anymore for partial annotations. The learning algorithm
will therefore take as an additional input a sample S� of counter-
examples. The algorithm will have to test at each step that the target
query answers in a manner consistent with the counter examples, i.e.,
that the inferred query does not output one of the counter-examples.
This test is also polynomial.
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This allows us to obtain the following result:

[CGLN05] For a deterministic tree automaton D and a regular pruning
function p defined on D, the class of p-stable regular tree queries represented
by pruned nstts is identifiable in polynomial time and data by the algorithm
RPNI pruned in the following sense:

� The RPNI pruned algorithm outputs in polynomial time a pruned nstt
which is consistent with its input.

� For each p-stable regular tree query Q represented by a pruned nstt
A, there exists a sample SQ of cardinality polynomial in the size of A
such that, from any finite sample S with SQ � S � LQ, RPNI prunedpSq
provides a pruned nstt that recognises L.

Theorem 2.

INTERACTIVE LEARNING

The interactive framework presented here have been published first in
[CGLN05].

Contribution

The scenario above explain how the learning process can operate from
sets of partially annotated trees but do not describe how those trees are
obtained. We use for that an interactive setting. Remember the basic idea
of our approach: we want to help an end-user to define queries by replacing
complex program writing with few simples interactions.

The most classical framework for interactive learning is the Angluin
learning model [Ang87a]. In this setting, two kinds of interactions are
used: Membership Interactions and Equivalence Interactions1. They
were initially defined mainly in the context of language learning, such as reg-
ular word language. In this context, a Membership Interaction presents
a word to the user and asks him whether or not the word is part of the target
language. Equivalence Interactions present a representation of a whole
language (in the form of an automaton typically) and ask the user if this
corresponds to the target. The user then answers YES if it is or provides a

1Angluin uses the word query rather than interaction, we will avoid this terminology
here as it has a different meaning for us.
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counter-example (a word in the target language which is not in the inferred
language for instance). In [Ang87a], it is stated for instance that regular
languages are polynomially learnable in this setting, which means that an
algorithm can infer the minimal automaton of a target regular language
while using an amount of interactions which is a polynomial in the size of
the target automaton, and with a polynomial time computation time.

Inspired by this model, we defined in [CGLN05] an interactive setting
based on the following scenario: the user selects a document and annotates
parts of it - he gives a few answers of the target query for this document.
From this, the learning algorithm guesses a query and annotates the whole
tree with it. The user may then correct some badly annotated positions if he
is not happy with the answer, and iterates the process. This is done until the
algorithm has inferred a query that behaves correctly on the tree, at which
point the user may then test the query on the other tree - and eventually
reiterate the process if the query behaves badly, or stop and accept the
query.

Formally, this setting requires two kinds of interactions: Correction
Interactions, and Equivalence Interactions.

The Correction Interaction is the main interaction: we present to
the user an annotated document. The user then essentially answer YES if
the annotation is correct with respect to the target query, if not, the user
provides a set of tuples for which the annotation of the inferred query is not
correct. One is sufficient, but we allow the user to provide several tuples
during the same interaction.

The Equivalence Interaction is used to stop the learning process: we
present a query to the user, and he answers YES if the query is correct, or
he provides a document for which the query does not behave correctly. In
practice, this query will be not be used directly, as we do not really want to
present an nstt to the end-user, as that would go against our policy of not
requiring strong expertise (in particular not the ability to decipher a tree
automaton). This is approximated by the fact that the user, after testing
the inferred query on several documents and observed its good behavior,
decides to stop the inference and keep the inferred query as it is.

The learning process goes as follows. It takes as a parameter a domain
automaton D and a pruning strategy p. It starts with an empty hypothesis
query Q0 and a first tree (typically, a web page or an XML document). The
user first provides some annotation on this tree - which can be considered
as a first correction. This first annotated tree is given to the algorithm
RPNI pruned , which outputs a query Q1. This query becomes the new current
hypothesis. The tree is then annotated by Q1, and the result is presented to
the user for correction. Either this is not correct, and the user provides some
missing tuples or indicates that some tuples are wrongly annotated (which
gives new counter-examples), and the process is iterated. If the annotation
is correct, we perform an equivalence test, which consists in fact in either
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stopping the process (if the user is happy with the current query), or by
presenting a new document, annotating it with Q1 and iterating the process.

This algorithm, called SQUIRREL, allows to obtain the following result:

[CGLN05] For a pruning strategy p, the class of p-stable regular queries is
identifiable by SQUIRREL in polynomial time and by using a polynomial
amount of Correction and Equivalence interactions.

Theorem 3.

Note that we also conducted in [CGLN05] several experiments that con-
firm the practical validity of our approach. We tested in particular the
inference of classical queries on various websites, and have been able to infer
them with only a few interactions (typically less than 10).

3. CONCLUSION

Works presented in this chapter have been the object of several publications
that we summarise here. Most of them have already been mentioned above.

In [CLN04], we first established initial learning results for the class of
monadic nstt represented queries using completely annotated examples. A
first implementation has been made, with a Mozilla plugin that allowed us
to test the approach.

In [CGLN05, CGLN07], we introduced the notion of pruning nstt, es-
tablished learning results for this class, and specified the interactive learning
setting based on correction and equivalence queries. Again, an implementa-
tion has been done, with subsequent experiments.

In [LNG06], we extended our approach defined initially for monadic
queries to the n-ary case. In particular, this led to the definition of nstt
for n-ary queries, in particular with pruning. It also allowed us to define a
learning algorithm for this class. An implementation and experiments have
also been performed to validate the practical use of the approach.

In [CGLN08a], we defined an algorithm that tests the inclusion of a tree
language over an alphabet Σ defined by a bottom-up tree automaton A into
a language defined by a bottom-up deterministic tree automaton B. This
algorithm allows us to obtain the expected complexity of Op|A|�|B|q, where
previous classical algorithm had a complexity of Op|A|�|Σ|�|B|nq, n being
the maximal arity of symbols in Σ. This result has also been extended to test
inclusion of unranked tree language defined by a stepwise tree automaton A
into the language defined by a DTD D with a complexity of Op|A| � |Σ| �
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|D|q. This result is the key to obtain the proper complexity in our learning
algorithms.

In [CGLN08b], an extension of our pruning techniques have been elabo-
rated to make use of the schema, a point that proved to improve efficiency
of our learning algorithm, in particular in the case of XML documents with
DTD. This approach have been improved in [NCGL13] with a better for-
malisation that includes the introduction of the notions of pruning strategies
and pruning functions.

This work on query inference is the basic element on which following
works are based. In next sections, we will see first how this contribution on
tuple queries can be extended to infer transformations. We also started to
extend works from tree queries to queries that operate on graph. Another
point is that the most important limitation of what we presented here is
probably that data values are not taken into account. We will also present
works that intend to tackle this problem in later chapters.
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Tree Transformations3

In our introduction, we divided manipulations on tree-structured documents
into two classes: queries and transformations. We present here how we
extended results on query inference presented in the previous chapter to
tree transformations, i.e. to functions that transforms an input tree into
another tree.

We first present the class of transformations definable by MSO formula,
which is the class that we ultimately want to infer. We then present our
general methodology, and present learning algorithms for three classes of
tree transformations. We finish by indicating how those three results all
constitute one step towards the inference of MSO definable transformations.

1. MSO DEFINABLE TREE TRANSFORMATIONS

Tree transformations are a classical problem of computer science. For in-
stance, the compilation of a program is essentially a tree transformation
process. In databases, this problem also appears when data is exchanged
between several systems that uses different formats (different schemas). In
the XML world, this is usually done with the XSLT or the XQuery lan-
guage for example.

On the logic side, Courcelle gave in [Cou94] a characterisation of graph
transformations based on Monadic Second-Order (MSO) logic. In this,
MSO formula allow to define the edges of a new graph defined on a bounded
amount of copies of the input graph (both nodes and edges). MSO Tree
transformations are simply a restriction of this when both input and output
are of tree forms.

MSO transformations have nice properties such as closure under compo-
sition, or preservation of context-free graph grammars. They also have good
expressiveness as they capture whole FO but can also captures properties
such as recursions that can not be achieved with FO formulae. As argued in
the introduction, they offer an interesting formalisation of queries on semi-
structured data and provide theoretical grounds for tree transformations.

On the operational side, finite state machines offer a variety of tools to
perform tree transformations that complements logic. In this paradigm, a
transducer is a machine that can essentially transform a structure into
another. This originates from Mealy Machine [Mea55] or Moore machine
[Moo56]. Essentially, these are automata that can produce a structure when
reading the input, as it was defined in [TW68, Rou70]. Word transducers for
instance are essentially word automata that associate an output subword to
every transition, and sometimes also on final states: when the word trans-
ducer reads a word, it produces at the same time the sequence of all subwords
produced by each transition, followed by the possible subword produced by
the final state. Word transducers allow to define a class of transformations
that is called regular transductions.
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Tree transducers are essentially a generalisation of word transducers.
The most classical models, Top-down Transducers and Bottom-up Trans-
ducers, are tree automata whose rules produce subtrees while reading each
symbol of an input tree. In the non-deterministic case, these two formalisms
are in fact similar, but things change when considering determinism. The
classes of deterministic top-down transducers and deterministic bottom-up
transducers both have interesting properties, such as a normal form (see
[EMS09] for top-down and [FSM10] for bottom-up). However, the two
classes of transformations that they define are unrelated.

Non-deterministic tree transducers (top-down or bottom-up) define an
even larger class which can also be expressed by deterministic tree trans-
ducers with look-ahead: these are top-down tree transducers that are
coupled with a deterministic bottom-up automaton - the look-ahead. The
look-ahead makes a first pass on the input tree, annotating each node by
one of its states. The top-down transducer then operates normally, using as
an input for each node both its label and its associated look-ahead state. As
both components of the transducer are deterministic, performing the trans-
formation is an efficient process. However, unlike the word case, it is not
known now whether this class has a normal form.

To further increase expressiveness, a possible solution is to add memory
to states. A macro tree transducer (MTT) is a top-down tree transducer
such that states are allowed to store output trees into some memory called
parameters or macro which are also able to contain trees that are the result
of the transformation of possibly another part of the input tree.

An important result, that comes from [EMS09], is that deterministic
MTT with a regular look-ahead are strictly more powerful than MSO
transformations. In fact, the two classes are equivalent when MTT are
only allowed to perform a bounded amount of copies of the input.

MSO transformations seem to be an interesting target for our inference
procedures, as they correspond to transformation classes of practical use
and seem adapted to our learning techniques. Therefore, our long-term goal
is to define normalisation and learning procedures for single use restricted
MTT with regular look-ahead. That is the direction of the work we present
here. It is worth noting that, up to our knowledge, no other work attempts to
tackle the inference of this class with strong learnability results as presented
here.

2. A METHODOLOGY FOR LEARNING TRANSFORMATIONS

In the next sections, I will present several learning results for different classes
of transformations. While they all present their own specificities, they also
share some similarities which allow to use a somehow common methodology
to obtain our learning results. We start by indicating our main guidelines.
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The learning method used here is inspired by classical grammatical infer-
ence learning algorithms such as RPNI [OG92]. As we already saw, RPNI
is an algorithm that infers regular languages represented by deterministic
finite automata, and which is based on the Myhill-Nerode construction. It is
in particular the algorithm that served as a basis for our inference algorithms
of query languages presented in the previous chapter.

This approach has been extended to the case of word transducers with
the OSTIA algorithm [OGV93]. This algorithm infers deterministic word
transducers, also called sequential word transducers in [Sch77, Cho03],
which are essentially deterministic word automata for which each transition
is coupled with an output word. Each final state is also associated to an
output subword. To obtain the image of an input word, one concatenates all
the output subwords encountered during the run, stopping with the subword
associated to the final state.

To obtain a learning result for this class, several steps have been neces-
sary. We present them quickly as, even though this is not part of our work,
all of the results we present in this chapter will be essentially generalisations
of this. This will allow to present the methodology we follow, as well as
presenting some notions we use.

First, [Cho79] established a normal form, called onward or earliest,
which is based on the idea that the transducer should produce its output as
soon as possible. The idea to obtain it consists therefore mainly to pull all
productions as much as possible. The earliest normal form can then be min-
imised by merging equivalent states to obtain a minimal normal form, that
we call the canonical earliest transducer, which is unique for each trans-
formation definable by a deterministic word transducer. This is illustrated
in Example 6

Second, a notion of residual transformation has been defined. Con-
sider a word u.v and a transformation τ . the image of u.v by τ (τpu.vq) can
be decomposed in two parts: the partial image of u and the partial image of
v. The residual transformation of τ by u, denoted u�1τ , is the function that
transforms the word v into the partial image of v in the τpu.vq. Technically,
it outputs the image of u.v by τ and removes from it the largest common
prefix of all images of words prefixed by u, which is assumed to be the par-
tial image of u itself. This semantic definition of the residual transforma-
tion allows to define a Myhill-Nerode like theorem. This has two main
impacts. First, for any transformation that can be performed by a deter-
ministic transducer, the equivalence relation of the residual transformation
has finite index (and vice-versa), which gives, as in the Myhill-Nerode the-
orem, a characterisation for this class of transducers. And second, one can
build the canonical earliest transducer of the transformation from this
finite set of residual transformations, associating one state to each distinct
residual transformation. In this sense, residual transformations (or simply
residuals) are semantic components of the transformation from which the
transducer can be built.
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q1 q2

a{a
b{ε

a{c

b{ε

A word transducer that takes as an input a string over ta, bu with an even
number of 1a1 (the state q1 is final with no production), outputs the string
without the 1b1 but replaces every second 1a1 by a 1c1 - transforming 1ababb1

into 1ac1 for instance. Transitions are labeled with an input letter and an
output string - possibly empty, as denoted by ε.
This transducer is deterministic as its projection on the input alphabet is a
deterministic automaton. It is however not earliest as the c could already be
produced when reading the first a, as illustrated by this second deterministic
transducer, which is in earliest normal form.

q1 q2

a{ac
b{ε

a{ε

b{ε

Example 6.

Finally, the learning algorithm OSTIA [OGV93, OV96] is defined
from this Myhill-Nerode construction, simulating it from a finite sample. In
particular, it associates to each transition the largest common prefix of all
output words. The OSTIA algorithm allows to obtain learnability results,
stating that the class of rational transductions is learnable when represented
by earliest deterministic transducers in polynomial time and data. Formally,
this means two things. First, OSTIA is an efficient algorithm, in the sense
that it is a polynomial time algorithm: from any sample S, it outputs a
deterministic earliest word transducer consistent with its input in Op|S|3q.
Second, it requires a reasonable amount of examples to infer, meaning
formally that for each word transformation that can be represented by an
earliest word transducer A, there exists sample SA of size polynomial in the
size of A - called characteristic sample for A - such that from any sample
S of the transformation that contains SA, OSTIApSq produces A - or a
smaller transducer equivalent to A.

In order to reproduce similar results for other classes of transformations
(with other classes of transducers), we follow essentially the same steps.
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1. First, we need to define a normal form for the class of transducers.
We will always base it around the idea of being earliest, although we
will see that it can have different meanings depending of the class of
transducers.

2. Second, we need to define a notion of residual transformation that
allows to define a Myhill-Nerode theorem, in the sense that the
distinct residual transformations should allow to obtain a constructive
algorithm to obtain the normal forms. In our settings, those classes
of equivalent residual transformations will correspond to states of the
normal transducer. That also means that there should be finitely
many distinct residual transformations, or at least, that a finite subset
of those can be used in the construction of the normal form.

3. Finally, we want a learning algorithm that essentially tries to mimic
the Myhill-Nerode construction, but using only a finite sample as an
input. That also means that we have to define characteristic samples,
i.e., samples that contain every information such that the learning
algorithm is able to build the minimal normal form. Ideally, we also
want characteristic samples to have a size polynomial in the size of the
target transducer.

Beside this, we also need to take care of the domain of the transforma-
tion. Dealing with non total transformations has an impact on almost all
levels, starting with the normal form. In particular, two residual transfor-
mations will be considered equivalent only if they are defined on the same
domain. Typically, taking into account the domain causes difficulties which
are essentially technical and that we will tend to ignore in this presentation
for sake of clarity. However, we will detail this question when it appears
that it has a significant impact on our formalisms.

We will apply this general methodology to infer three classes of trans-
ductions, that are all steps in the further goal of inference of MSO transfor-
mations. We will start with deterministic top-down tree transducers,
then transducers with look-ahead and finally tree-to-string trans-
ducers later on. Although we will follow the above mentioned steps, we
will see that each of those formalisms presents specificities that imply to
alter our approach.

3. CONTRIBUTION : LEARNING TOP-DOWN TREE TRANSDUCERS

Results presented here have been first presented in [LMN10b]. These results
have then been extended, in particular with respect to domain issues, which
have been partially published in [BLN16] (learning within a regular domain).
Other elements are under submission.

Contribution
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Our first goal is to establish learning results for the class of transfor-
mations that can be described by deterministic top-down tree transducers.
This class of transducers, called here top-down transductions, will serve
as a base case for our general approach.

Tree transducers, and in particular top-down tree transducers, constitute
a long studied formal model - see for instance [CDG�02] for a more complete
presentation - but it is [EMS09] that really serves as a starting point for this
study. In this article, a normal form is presented and it is proved that it
allows an efficient equivalence procedure. This normal form is based on
the notion of earliest production, which is essentially a generalisation of the
normal form for deterministic word transducers [Cho79].

Starting from there, we defined a notion of residual transformation that
fits this normal form, and which is based on the notion of canonical origin,
which is the topmost node that is responsible for the production of an output
node. This notion allows us to define a Myhill-Nerode like theorem, with
its associated construction. This construction allowed us in turn to define a
learning algorithm.

Finally, in the case of top-down, the domain plays an important role as
the transducer can ignore subtrees of its input. To verify that those subtrees
fit a specific domain, the solution proposed in [EMS09] is to associate a tree
automaton - called an inspection automaton - to the transducer to check
the validity of input trees. This has serious consequences, first studied in
[EMS09], but that we further explored in [BLN16].

PRESENTATION OF DTOPs

Tree transducers are essentially generalisations of tree automata that pro-
duce a tree at the same time as they run through it. As such, several good
properties of word automata are carried over. Among all the formalisms on
tree transducers, we focus on deterministic top-down tree transducers,
or DTOPs.

Top-down tree transducers are essentially top-down tree automata with
an output. They have as usualy a finite set of states, and their rules are of
the following form:

qpfpx1, x2qq Ñ C

Here, q is a state, xi are variables, f a binary symbol of the input tree,
and C is an output tree that has some leaves labeled by some q1pxiq which
indicate how to continue the transformation, and on which subtree. The
transducer also has an axiom which is also such an output tree with some
leaves labeled q1px0q, and which is output at the beginning of the transfor-
mation. Instead of giving a formal definition, we illustrate their behavior in
the following example.
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Consider the transducer defined the following way:

Axiom : F pqpx0q, qpx0qq
Rules :
qpfpx1, x2qq Ñ F pqpx1q, qpx1qq qpaq Ñ A

This transducer takes as an input trees built with only f and a symbols.
It outputs a balanced tree built with F and A of height equal the leftmost
branch of the input tree plus one.

Consider for instance the input tree fpa, fpa, aqq. Using the axiom, the
transducer first outputs an F that has as children two transformations of the
tree with the state q. The state q then checks the first f , outputs a new sym-
bol F with two transformations of a (the left child of the tree) by the state q.
Finally, it transforms a into A, and outputs the tree F pF pA,Aq, F pA,Aqq.

Example 7.

EARLIEST NORMAL FORM

Although not part of our works, we start with a quick presentation of results
of [EMS09] that allow to define the normal form that we will need.

A DTOP is earliest if it produces as much as possible of its output as
soon as possible. This corresponds to a syntactic property: for each state,
the common context of each of its possible output is empty (otherwise, it
could have been produced earlier).
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Consider the following transducer :
Axiom : qpx0q
Rules :
qpfpx1, x2qq Ñ gpfpqpx1q, qpx2qqq qpaq Ñ gpaq

This transducer adds an additional g symbol upon every input symbol. This
transducer is not earliest, as a g symbol is always output at the top of the
output tree. Hence, it could already be produced in the axiom. This would
also shift the production for the other g symbols. This results in the following
earliest DTOP:

Axiom : gpqpx0qq
Rules :
qpfpx1, x2qq Ñ fpgpqpx1qq, gpqpx2qqq qpaq Ñ a

Note that, in the first transducer, the output of the state q always starts
with a g, while in the second transducer, there is no output common to
every output of the state q. This is a property that all states of earliest
transducers possess.

Example 8.

One good thing with the notion of earliest DTOP is that every DTOP
can be transformed into an earliest one, hence we do not lose expressive-
ness. The obtained earliest transducer has the same number of states. Note
however that the size of rules can be exponentially bigger.

Every earliest transducer can be made minimal with a polynomial time
procedure by simply merging states that perform the same transformation,
and there is a unique minimal earliest transducer for every transformation
that can be described by a DTOP.

This has many consequences. First, this allows for an efficient equiv-
alence procedure for earliest DTOPs. Second, that means that there is a
canonical way to associate each output node to an input node: the one re-
sponsible for its production in any earliest DTOP. This last point will be
of particular interest in our study, and will allow to define a Myhill-Nerode
theorem.

A MYHILL-NERODE THEOREM

Above results have served as a basis for a Myhill-Nerode theorem we pre-
sented in [LMN10b]. To obtain this, we first need to define a proper notion
of residual transformations. This will be defined on pair of paths.

First, for a path u and a tree t that contains u, we can define u�1t as
the subtree of t that is under the path u. From this notion, a pair of input
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/ output paths pu; vq can define the residual of a tree transformation τ ,
denoted pu; vq�1τ . For a tree t, it transforms any subtree that appears in a
tree t under the path u into the subtree that appears under the path v in
τptq. In other words, it transforms u�1t into v�1τptq. This is illustrated by
the following example.

Consider the transformation τ that takes a tree composed of binary symbols
f and g with a leaves, and transforms it into a tree composed of monadic
symbols F and G with A leaves. It copies the left branch of the input tree,
replaces symbols with their upper case corresponding and doubles every
symbol. For instance, it transforms fpgpa, aq, aq into F pF pGpGpAqqqq.

f

g

a a

a

F

F

G

G

A

τ

pf.1, F.1q�1τ

The transformation pf.1, F.1q�1τ is the function that transforms any subtree
that appears under the path pf.1q of a tree t (such as gpa, aq that appears
in fpgpa, aq, aq) into the subtree that appears under F.1 in the image of t.
For example, gpa, aq is transformed into F pGpGpAqqq by pf.1, F.1q�1τ .
Note that not every pair of paths defines a residual transformation. For
instance, the following residual transformations are not properly defined:

� pf.1, G.1q�1τ is empty as G is never in the output of an input tree
starting with an f ,

� pf.2, F.1q�1τ is not functional, as what appears in the output under
F.1 does not depend on what is below f.2 in the input.

Example 9.

In fact, there is potentially an infinite number of distinct residual trans-
formations for a transformation. However, only a finite subset of residual
transformations is relevant for the Myhill-Nerode construction.
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First, we naturally restrict ourselves to residual transformation pu; vq�1τ
that are non-empty. This means in fact that the path v should actually
be part of the output of trees that contain u. In above example, the pair
ppf.1q; pG.1qq is not valid as G is never produced by the transformation of a
tree that has an f at its root.

Second, there are some badly matched pairs pu; vq that can be recognised
by the fact that pu; vq�1τ is not functional. In our example, ppf.2q; pF.1qq�1τ
is a non functional transformation, as what is under pF.1q in the output does
not actually depend of what is below pf.2q in the input. This means that
pf.2;F.1q�1τ is not properly defined.

Third, those two restrictions still define a potentially infinite number of
residual transformations. In fact, they correspond to every possible transfor-
mations defined by states of a transducer representing τ . We can restrict to
only the transformation that correspond to states of an earliest transducer
by considering only residuals pu; vq�1τ for which v is maximal, i.e., such
that there are no other residual transformations of the form pu; v � v1q with
a non-trivial v1.

In our example, the transformation pf.1, F.1q�1τ is perfectly defined,
but it is not maximal as it always output trees that starts with an F . The
corresponding maximal residual transformation pf.1, F.1.F.1q�1τ

From this, a pair of paths pu; vq defines what we call a proper residual
of a transformation τ if it has those three properties, i.e. if it is non-
empty, functional and maximal. We have two important properties:
first, a transformation that can be represented by a DTOP has a finite set
of distinct proper residuals, and second, one can build a transducer we call
MINpτq from this set. The construction of MINpτq is defined such that
there is a one-to-one correspondence between states of MINpτq and the set
of distinct proper residuals of τ , and the rules are defined using the earliest
property. It turns out that this DTOP is the minimal earliest DTOP for τ .
This allows us to obtain the following Myhill-Nerode-like theorem:

For a tree transformation τ , the following are equivalent:

� τ is definable by a DTOP.

� τ has a final amount of distinct proper residual transformations.

� MINpτq is the minimal earliest transducer that describes τ .

Theorem 4 ([LMN10b]).
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LEARNING ALGORITHM FOR DTOPS

The Myhill-Nerode construction can serve as a basis for a learning algorithm,
that we first defined in [LMN10b] and that takes aspects of both RPNI for
trees [OG93] and OSTIA for word transducers [OGV93], along with its own
specificities. The idea is essentially to build iteratively all states and all
rules of the minimal earliest DTOP, using a finite sample of pairs of input
/ output trees to estimate the operations needed in the construction. Like
our other learnability results, this guarantees to converge toward a minimal
earliest transducer if the sample has good properties, and we proved that
such samples of reasonable size exist.

We illustrate this by an example. Consider the transformation τ that
takes some binary trees and outputs their mirror, replacing each symbol by
its upper case. We can infer it from the sample containing the following pairs
of trees fpa, aq{F pA,Aq, fpa, bq{F pB,Aq, fpb, aq{F pA,Bq, and fpfpa, bq, aq{
F pA,F pB,Aqq, as well as examples of trees with just one leaf, i.e., a{A and
b{B.

Axiom Building First, as there is no common output for output trees,
we start with an axiom containing only the state associated to pε; εq that
we denote rε, εs. So the axiom is rε, εspx0q.

Rule Building We then build rules for the state rε, εs. For constant sym-
bols a and b, we simply encode the identity function, for instance rε, εspaq Ñ
A, as we observed the pair a{A in the sample. For the binary symbol
f , we observe that the output of every tree of the form fpt1, t2q always
starts with an F . This allows to build a rule of the form rε, εspfpx1, x2qq Ñ
F pqpxiq, q

1px1iqq. The remaining question is how to define states q and q1,
and what are the values of i and i1.

To mimic the Myhill-Nerode construction, states q and q1 should both
correspond to a pair of output / input paths. The output paths are respec-
tively pF, 1q and pF, 2q, which are the paths that reach the position of the
corresponding states in the right hand side. The input path should be of
the form pf.jq and pf.j1q. And there is only one possible value for j and for
j1 which is given to us by the functionality. For instance, pf.1;F.1q�1τ is
not functional, and this is observed by the output of fpa, aq and fpa, bq. So
we have to consider only the possibility of j � 2 and j1 � 1. In the end, we
build the rule

rε, εspfpx1, x2qq Ñ F prf.2;F.1spx2q, rf.1;F.2spx1qq

New States We considered two new pairs of paths pf.1;F.2q and pf.2;F.1q,
which could potentially correspond to new states. There is however the pos-
sibility that those two new pairs correspond to already existing states. This

47



3. Tree Transformations

is obviously what happens here, and that is confirmed by the fact that, if
we conjecture ppf.1q; pF.2qq�1τ based on the sample, we obtain a{A, b{B
and fpa, bq{F pB,Aq, which does not contradict our estimation of pε; εq�1τ
(which is simply the whole sample). If we had only one pair that would con-
tradict, we would have known that this pair corresponds to a new residual
transformation (meaning we need to build a new state). Here, we simply
replace the state rpf.1q; pF.2qs by rε, εs. In the end, we obtain the rule
rε, εspfpx1, x2qq Ñ fprε, εspx2q, rε, εspx1qq

In order to make this algorithm infer the correct transducer, the sample
needs to contain pairs of trees that allow all the hypothesis that we made to
be correct. For this, we need an amount of pairs of trees which is quadratic
in the number of states of the minimal earliest transducer. This gives us the
following theorem:

The class of transformation represented by DTOP are learnable from poly-
nomial time and data in the following sense:

� there exists a learning algorithm learnerDTOP such that from any
sample S, learnerDTOPpSq provides in polynomial time a DTOP A
consistent with S

� for any DTOP A describing a transformation τ , there exists samples
SA of cardinality polynomial in the size of A such that, for any sample
S consistent with τ that contains SA, learnerDTOPpSq is a represen-
tation of τ

Theorem 5 (Learnability of DTOP [LMN10b]).

DOMAIN ISSUES

In the case of DTOPs, taking into account the domain causes several prob-
lems. The first problem is that, unlike other formalisms of transducers, such
as word transducers, DTOPs present the particularity that they ignore parts
of the input tree which are not transformed. As a consequence, they may
not always check their own domain by themselves.

Imagine for example a transformation that would keep only the left
branch of any tree, but operates only on trees whose right branch is of
even height. A DTOP would simply erase all branches except the first one,
and has no therefore no way to verify the height of the right branch.

A first solution has been proposed in [EMS09]. It consists in coupling
the transducer with a tree automaton called an inspection that simply
checks whether the input tree is in the domain or not.
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The second problem is that, as DTOP can perform copies, there may
be several states that transform the same subtree, potentially with different
domains. Consider for instance the following example:

The following transducer uses two states q1 and q2 that both perform identity
on string-like trees with monadic symbols f , g and h, with a leaves. The
state q1 accepts f and g symbols while the state q2 accepts f and h symbols.
The axiom actually uses both states on the same input tree, which make the
whole transduction defined only for monadic trees built with the f symbol.

Axiom: fpq1px0q, q2px0qq
Rules:
q1pfpx1qq Ñ fpq1px1qq q1pgpx1qq Ñ gpq1px1qq q1paq Ñ a
q2pfpx1qq Ñ fpq2px1qq q2phpx1qq Ñ hpq2px1qq q2paq Ñ a

Example 10.

Note that allowing this kind of behavior can sometimes reduce the size
of the transducer. Imagine for instance a transducer that would perform
two copies of its input tree (under a dummy root), the first copy could
recognise only trees of even height while the second copy recognise trees of
height which is a multiple of 3. Another equivalent transducer that would
recognise trees of height which is a multiple of 6 on both its branches would
be bigger, as it would require 6 states instead of the p2� 3 �q5 states of the
first transducer.

However, allowing this kind of trick to reduce the size of the transducer
also prevents to define a minimal earliest normal form as before. The so-
lution is to forbid this kind of behavior. For DTOP with inspection, that
corresponds to forbid to have states that can provide an output which is not
defined in their domain (as obtained from the inspection).

[EMS09] presented this solution for domains defined by top-down au-
tomata. This works quite naturally as the inspection is itself top-down, and
hence, the domain of states can be easily defined that way by associating
each state of the transducer to a unique state of the inspection.

In [BLN16], we extend this solution for the case of regular domains, i.e.
domain defined by tree automata which are not necessarily top-down. The
main problem that is caused is that there are now several input nodes that
could be the origin of an output node. Consider the following example.
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Consider the following simple transformation, consisting only of those two
pairs of trees built with the binary symbol � and two leaf symbols 0 and 1.
Note that the domain of this transformation is not regular.

� p0, 0q Ñ 0 � p1, 1q Ñ 1

Both following transducers are valid for this transduction:

Axiom: qpx0q
Rules:
qp� px1, x2qq Ñ q1px1q q1p0q Ñ 0 q1p1q Ñ 1

And:

Axiom: qpx0q
Rules:
qp� px1, x2qq Ñ q1px2q q1p0q Ñ 0 q1p1q Ñ 1

The first transducer simply copies the first symbol, while the second trans-
ducer copies the second symbol. In both cases, those input symbols can
be considered as a valid origin for the output symbol, as both symbols are
equal as specified by the domain.

Example 11.

Essentially, the solution proposed in [BLN16] consists in picking the left-
most choice (for instance). In this case, that would mean considering the
first transducer as the canonical one. In the above example, this is trivial,
but note that this is not always the case, as illustrated by the following
example.

Consider the same transformation as in the previous example, except that
the left branch of the � is the tree representation of a simple logical Boolean
formula whose evaluation is in the right branch. This transformation con-
tains for instance:

� p^p0, 0q, 0q Ñ 0 � p_p0, 1q, 0q Ñ 0
� p_p^p0, 1q, 1q, 1q Ñ 1

As the transformation that evaluates such a logical formula can not be per-
formed by a DTOP, the only valid DTOP that performs this transformation
is the one that considers only the right branch:

Axiom: qpx0q
Rules:
qp� px1, x2qq Ñ q1px2q q1p0q Ñ 0 q1p1q Ñ 1

Example 12.
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Intuitively, to obtain a normal form, we chose to consider, at each level,
the left-most possibility that can be performed by a DTOP. Exact details
can be found in [BLN16].

4. CONTRIBUTION: TREE TO STRING TRANSDUCERS

Results presented here are part of the PhD thesis of Gregoire Laurence
[Lau14] and have been published in [SLLN09, LLN�11, LLN�14].

Contribution

Our second contribution in the domain of transducer learning concerns
the class of tree to string transducers. This class naturally corresponds to
some applications, such as XML to LaTeX conversion for instance, but note
it is also in general more expressive than tree to tree transductions as the
output can be the serialisation of a tree. They also serve as an interesting
baseline for the study of more complex class of transducers such as Macro
Tree Transducers, as they share some common mechanisms. In particular
Macro Tree Transducers can encode tree to string transducers.

PRESENTATION

Our first contribution is the definition of this class. Even though it is a
rather natural class, we are not aware of other similar works. The class that
can be considered as the closest is maybe the class of visibly pushdown
transducers - or VPT [FRR�10] - which read serialisation of trees (as a
visibly push-down automata [AM09]) to produce a string. However, the
purpose is different - VPT focus more on a streaming reading of the tree -
and the reading order of the input is different, as VPT operates in a depth-
first search.

We introduced the model of Tree-to-string transducers in [SLLN09].
It mixes a top-down tree automaton for the input with a context-free gram-
mar for the output. Rules are of the following form:

qpfpx1, . . . , xnqq Ñ w1 � q1px1q � w2 � q2px2q � w3

where q are states, xi are variables, and wi are substring of the output al-
phabet. The global output is composed of strings ui concatenated together.
In the above example rule, the input is checked in the natural order, and
every input subtree is checked once, but we can also imagine tree-to-string
transducers which can perform copies, or which change the order of the out-
put. We call a tree-to-string transducer linear if it has no copy (every xi

51



3. Tree Transformations

appears at most once in the right hand side of a rule), and sequential if
it is linear and if the order is preserved (the variables xi on the right hand
side are always ordered from x1 to xn).

We illustrate this on the following example.

Axiom: START � qpx0q � END
Rules:
qpfpx1, x2qq Ñ <f> � qpx1q � qpx2q � </f> qpaq Ñ <a/>

This tree-to-string transducer performs an XML-like serialisation of a tree,
and encompasses it between a START symbol and an END symbol. For ex-
ample, the tree fpfpa, aq, aq is transformed into START <f> <f> <a/> <a/>
</f> <a/> </f> END
This transducer is sequential, as every input symbol is checked only once,
and the order is preserved.

Example 13.

Tree-to-string transducers are suited to deal with transformations such
as XML to LaTeX or other textual formats, but they can actually capture a
subclass of tree transformations, as the output string can be the serialisation
of a tree.

They can also be seen as a specific case of Macro Tree Transducers as a
tree-to-string transformation can be encoded into a tree to tree transforma-
tion where the output tree is monadic (i.e. a tree composed only of monadic
or constant symbols). This means that they are a good study case before
dealing with macro tree transducers.

EARLIEST NORMAL FORM

After defining the class, we applied our methodology on this class in order
to find a normal form, a Myhill-Nerode-like theorem, and a learning
algorithm.

The normal form is based - again - on the idea of producing as soon as
possible. This takes however an unusual aspect on this class. The earliest
normal form is indeed based on two notions. First, the output string needs
to be output as up as possible in the transducer. This notion of earliest is
very similar to the one we described for DTOPs, however, this is not enough
to define a normal form. Observe this on the following example:
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Axiom: qpx0q
Rules:
qpfpx1, x2qq Ñ qpx1q � qpx2q � # qpaq Ñ #

This transducer takes as an input a tree build with f and a symbols, and
outputs a string of # symbols whose length is equal to the number of symbols
in the input tree.

Example 14.

This transducer is not earliest in any sense. For instance, whenever a
binary symbol is read, at least two # are always produced by the transforma-
tion. However, the transducer only produce one of the symbol (the second
is producer later). An earlier transducer would be the following one:

Axiom: qpx0q � #
Rules:
qpfpx1, x2qq Ñ qpx1q � qpx2q � ## qpaq Ñ ε

An earlier transducer that performs the same transformation. The produc-
tion of # has been shifted up. For instance, the axiom already produces one
# symbol now.

Example 15.

This transducer is upmost earliest in the sense that the production of #
symbols is done by a rule as soon as possible. However, the rule itself is not
earliest as the # can be produced sooner (or more on the left) in the rule,
as can be seen by this last transducer :

Axiom: # � qpx0q
Rules:
qpfpx1, x2qq Ñ ## � qpx1q � qpx2q qpaq Ñ ε

The production of this transducer has been shifted as left as possible in
every rules. The # symbols are now produced at the beginning.

Example 16.
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A transducer like this - that produces its output as left as possible in the
rule - is called leftmost earliest. And we define a tree-to-string transducer
as earliest if it is both upmost and leftmost earliest. The notion of earliest
leads to a normal form: we state in [LLN�11] that every sequential tree-
to-word transducer has a unique minimal earliest equivalent tree-to-string
transducer. We call this transducer the canonical tree-to-string transducer.

A MYHILL-NERODE THEOREM

From this normal form, we aim to define a Myhill-Nerode theorem, and
in particular a direct construction of this normal form. As for our other
formalisms, this starts with a definition of residual transformations. The
definition we use is a residual transformation relative to a path p for a
transformation τ that we denote p�1τ . We use a recursive definition for
the canonical transducer, that we define conjointly toa Myhill-Nerode
construction.

The first step consists in building the axiom and the residual ε�1τ .
This is done by first computing the largest common prefix u and the largest
common suffix v of all the output of τ . The axiom is then u �qεpx0q �v, where
qε is a state that will define the residual ε�1τ . This is defined by striping u
and v out of the output of τ . Note that this mean that in general ε�1τ is
different from τ .

For the transformation defined in previous examples, every output string
starts with an # and ends with an #. As it can actually be the same #, it is
not counted twice and we use the axiom # � qε. For the same reason, ε�1τ is
defined by taking τ and removing one # symbol from the output.

Example 17.

Rules and the other residual transformations are then defined recursively
alongside with rules of the transducer. So, if a path p is associated to a state
qp and a residual p�1τ , we create rules of the form:

qppfpx1, x2qq Ñ u0 � qp�pf.1qpx1q � u1 � qp�pf.2qpx2q � u2

where for instance the state qp�pf.1q is associated to the newly defined
residual pp�pf, 1qq�1τ . All elements of rules are created by another recursion.
First, u0 is the largest common prefix of every output string of p�1τptq for
trees t starting with an f . Next, ppp�pf.1qq�1τqptq is obtained by considering
all trees of the form t1 � fpt, t2q and their corresponding output string
p�1τpt1q, by removing u0 on the left, and removing on the right all the
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strings that do not change when t is replaced by another subtree. The exact
procedure is detailed in [LLN�11], and leads to the recursive definition of
all p�1τ , and of the canonical transducer of τ , if one also merges equivalent
states.

We illustrate this on the following example.

Following the previous example, from qε, we can build the following rules.
First the rule qεpaq Ñ ε comes from the fact that ε�1τpaq � ε.
The rule qεpfpx1, x2qq Ñ u0 �qpf,1qpx1q �u1 �qpf,2qpx2q �u2 is then created. The
string u0 is instantiated by ## as the output by ε�1τ of every tree whose
root is an f contains at least two # symbols.
We then define pf, 1q�1τptq for each possible t. For instance, pf, 1q�1τpaq is
obtained by considering the largest common prefix of ε�1τpfpa, t1q for every
possible tree t1. This is ##, from which we remove u0, to get ε. Actually,
we can realise that pf, 1q�1τ � ε�1τ and we can use qε instead of qpf,1q.
Similarly, we can compute u1 � u2 � ε, and pf, 2q�1τ � ε�1τ .
Ultimately, this results in the creation of the rule qεpfpx1, x2qq Ñ ## �qεpx1q�
qεpx2q.

Example 18.

LEARNING ALGORITHM

As our methodology suggests, the learning algorithm, described in [LLN�14],
is obtained by mimicking the above construction on a finite sample. In order
to make correct assumptions on residual transformations, it needs a sam-
ple that contains every example tree that allows the perfect computation of
p�1τ , for all p that are the smallest representative of their equivalence class
(i.e. for which there is no smaller p1 with an equivalent residual transforma-
tion).

As a difference with the other learnable classes of transductions presented
here, a difficulty arises with tree-to-string transducers. Typically, we require
a certain robustness of the learning algorithm in the sense that, even with
an imperfect sample, we are still capable of providing a transducer that is
at least consistent with the sample. This is not possible in general here as
there is no consistency algorithm for the class of tree-to-string transducers:
the simple problem to provide a tree-to-string transducer compatible with
a set of pairs of input trees / output trees is NP-complete [LLN�14].

As a consequence, we can not guarantee that our polynomial time learn-
ing algorithm always provides a tree-to-string transducer which is consistent
with the set of pairs of input tree / output string it receives as an input.
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This situation can however be detected easily, and interpreted as a failure
case of the algorithm, which simply requires more example.

Note that all above results has been done on sequential tree-to-string
transducers. It has been extended since then by Boiret and Palenta in
[BP16] to the linear case.

5. CONTRIBUTION: TRANSDUCERS WITH LOOK-AHEAD

Results presented here have been published in [BLN12] (word case only)

Contribution

For a transducer, a look-ahead is a companion deterministic automa-
ton that performs a first run on the input, reading the input in a direction
different from the one used by the transducer, and annotates positions of
the input with its states. In the tree case, it can be for instance a de-
terministic bottom-up tree automaton that helps a top-down deterministic
tree transducer [Eng76]. We call DTOPR the class of DTOP with regular
look-ahead. This allows to increase the expressiveness of the class while not
changing much of the computational cost of performing the transformation.
In fact, it allows to obtain the same expressiveness as non-deterministic func-
tional top-down tree automata, while keeping a polynomial time algorithm
for computing the output of an input tree.

In the string case, a deterministic word transducer with regular look-
ahead is a deterministic transducer (also called a sequential transducer)
coupled with a deterministic automaton that performs a first pass on the
input string right-to-left. This formalism allows to capture the whole class
of word rational functions, i.e. the class of functions that can be expressed
by non-deterministic word transducers[EM65] or by monadic second order
logic on words [Cou94].

However, the look-ahead adds some difficulties. The main one is that it
becomes harder to define a proper normal form, and therefore, to establish
learning results. We attempt to lift those difficulties, first on the word case.
Note that the new difficulty comes only on how to define a normal form
for the look-ahead itself. This is because, once this is obtained, it becomes
simple to use results on transducers without look-ahead by just decorating
input trees with states of the look-ahead, and consider them as the input of
the transducer.
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NORMAL FORM

The seminal work of [RS91] provides a construction that gives a normal form
for the class of rational functions, which corresponds to the class of trans-
formation performed by functional words transducers (not necessarily deter-
ministic). This normal form however is defined for the class of bimachines,
an alternative representation for word rational functions, but bimachines
can be transformed easily into word transducers with look-ahead.

A bimachine [Eil74] is a combination of two deterministic word au-
tomata : one that reads an input word left-to-right and another that operates
right-to-left, and a function that, given a pair of states of each automaton
and an input symbol, provides an output subword. Each position of the in-
put word is associated to two states, one that corresponds to the reading of
its prefix by the first automaton, and one for its suffix, and the function gives
the corresponding output of the letter found at the current position. The
transformation operated by a bimachine on the whole word is obtained by
concatenating the sequence of each of those partial transformations operated
at each position of the input word.

The result of [RS91] consists in first establishing a normal form for the
right-to-left automaton, and then, use this automaton to obtain the left-to-
right automaton and the rest of the bimachine.

We studied this model in [BLN12] and adapted those results to for-
malisms relevant for our approach. Our first result consisted in pointing
out that there is a strong link between bimachines and deterministic
word transducers with look-ahead. In fact, the right-to-left automaton
can be easily converted into a look-ahead, while the rest of the machine
allows to obtain a deterministic transducer. The main consequence for us is
that the normal form for bimachines allows us to define a normal form for
deterministic transducers with look-ahead.

MYHILL-NERODE THEOREM

The result of [RS91] allowed us to adapt the normalisation result for bima-
chine in order to obtain a normal form for the look-ahead of a trans-
ducer with look-ahead. This is based on the idea that two possible suffixes
of a word are equivalent (and hence correspond to the same state of the
look-ahead) if adding them to the end of a word does not alter the output
much. Alter much essentially means here that the possible set of alterations
is finite, but this is best understood on an example.

Consider for instance a transformation τ that copies the last letter of
a word over the alphabet Σ � ta, bu to the first position, transforming for
instance abbab into babbab. This can not be performed by a deterministic
word transducer, but can be done easily by a deterministic word transducer
with a look-ahead. Consider the suffix ’ab’ and the suffix ’bb’, we define

57



3. Tree Transformations

τab as the operation that transforms a word u into τpu.abq and τbb defined
similarly. Both essentially add a b symbol at the beginning of the word and
ab or bb at the end. The difference in term of suffix between τabpuq and
τbbpuq is always ab and bb, i.e. a finite set.

Consider now τabpuq and τbapuq, the difference between both words is
composed of all possible pairs of b.u.ab and a.u.ba, i.e. an infinite set. This
allows us to say that ab is equivalent to bb (and should correspond to the
same look-ahead state), while ab and ba are not.

From the equivalence relation based on this idea, one could define prop-
erly a normal form for the look-ahead, much as one would define the mini-
mal normal deterministic automaton: two equivalent suffixes go in the same
state of the look-ahead. In other words, the states of the look-ahead each
correspond to an equivalence class of the transduction. From this, one
could define the corresponding (classical) deterministic word transducer as
in [Cho79].

Two important points are to be noted here. First, the transducer
is dependant on the choice of the look-ahead. In particular, our
definition allows us to define a minimal look-ahead, but that does not mean
that the transducer is minimal: it is minimal with respect to this particular
look-ahead, but it is possible that a bigger - and more informative - look-
ahead allows to define a smaller transducer. This also means that the overall
size of the transducer with look-ahead (adding size of both elements) has
no reason to be minimal in this construction, and can even be sometimes
exponentially bigger than some other equivalent transducer.

Second, the construction that allows to define the minimal look-ahead
is based on checking whether a particular set is finite or not. This
is a problem for the machine learning point of view, as when we have as an
input only a finite sample of the whole transformation, this can obviously
not be observed directly.

LEARNING ALGORITHM

The final result we obtained in [BLN12] was to establish a polynomial time
learning algorithm for the class of deterministic transducers with regular
look-ahead that is based on the above two points. The algorithms has three
main components.

The first component infers a look-ahead. It has two integer parameters
m and l. Remember that building the look-ahead corresponds to building
an equivalence relation between suffixes, and two suffixes are equivalent if
a particular set built on them is finite. The integer m sets the limit size
from which the arity of this set is considered infinite, and thus establishes
that that two suffixes are not equivalent. If m is too small, the equivalence
relations get a too big index, which results in a look-ahead which is bigger
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than the minimal one. This is not a problem in principle, but if we can
expect the input sample to be characteristic for the minimal look-ahead (in
the sense that it contains all examples that allows a proper estimation of its
equivalence relation), we can not expect it to be characteristic for arbitrarily
big look-ahead. The integer l sets the maximum size of the look-ahead. If the
built look-ahead has more than l states, the look-ahead is simply rejected,
and we have a case of failure.

The second component iterates on all the pairs pm, lq in a somehow
diagonal way : p1, 1q, p2, 1q, p2, 2q, p3, 1q, ... For each pair pm, lq, it calls the
first component with these parameters. The procedure stops for the first
value pm, lq which does not fail, i.e., for which we obtain a look-ahead of l
states. Our result is that, for a sample characteristic for the minimal look-
ahead, the algorithms indeed stop for a certain pair pm, lq and provides a
look-ahead for the target transformation. This look-ahead is not necessarily
the minimum one, but the diagonal traversal ensures that its size is not more
than twice the size of the minimal one.

The third step consists in using the classical learning automaton for
deterministic word transducer OSTIA [OGV93] on words decorated with
states of the inferred look-ahead. In the end, the learning algorithm ensures
a polynomial learning of rational functions, with the particularity that it
does not necessarily provide the canonical transducer.

EXTENSION TO THE TREE CASE

The extension of above results to the tree case of this approach is still an
open problem. The relation of equivalence used to define the look-ahead
can be translated to the tree case, but it is not enough to define a tree look-
ahead. In fact, one can see that for any DTOPR, the equivalence relation
induced by the look-ahead (two trees are equivalent if they correspond to
the same look-ahead state) is necessarily a refinement of the tree extension
of the Reutenauer-Schützenberger relation. However, the reverse is not true.

The natural extension of the results above to the tree case leads us to
consider deterministic top-down tree transducers that uses a deterministic
bottom-up automaton as look-ahead [Eng76]. This class, called top-down
tree transducers with regular look-ahead, or TDLA, has the same expres-
siveness as non-deterministic top-down tree transducers. The extension of
results for the word case is however still a work in progress and presents
some unexpected difficulties that we quickly highlight here.

First, the equivalence relation of Reutenauer-Schützenberger can be ex-
tended without much difficulties to the tree case. However, this new equiv-
alence relation does not directly gives us a look-ahead. It remains that this
equivalence relation is important. In fact, if we consider any TDLA that
represents a transformation τ , two subtrees that evaluate to the same state
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of the look-ahead are necessarily equivalent with respect to this equivalence
relation.

However, this is not sufficient to define a proper look-ahead. One reason
for this is that, due to the nature of trees, there are subtrees which gen-
erate only a finite difference in the production, but can not be considered
equivalent for the look-ahead.

Consider for instance the simple transduction that evaluates Boolean
expressions (for instance ^p_p1, 0q, 1q is transformed into 1). As the output
space of this function is finite, any subtree would be considered equivalent.
If we follow strictly the same approach as for the word case, this would result
to define a trivial ’one-state’ look-ahead. However, this transformation can
not be done by a DTOP without look-ahead.

Another difficulty comes from the fact that, unlike the word case, there
is no unique minimal look-ahead for a transformation. Consider now the
transformation that transforms fpa,Aq and fpb, Bq into 0 and fpa,Bq and
fpb, Aq into 1. There are two minimal look-aheads for this transformation.
The first one verifies the label of the left leaf, and does not care about the
right leaf - A and B are sent to the same state. The top-down transducer
then explores only the right leaf and can decide the output thanks to the
information from the look-ahead. The other look-ahead does the same, but
with the right leaf.

This means we will need to refine our definition of equivalence relation
that would allows to define a look-ahead, with a need to take into account
both those problems. This is still a work in progress.

6. TOWARD LEARNING MSO TRANSFORMATIONS

We presented here three examples of classes of transformations for which we
defined a learning algorithm, following our methodology. As we mentioned
earlier, they all converge toward the inference of macro tree transducers
with regular look-ahead, a class stronger than MSO definable transforma-
tion, but equivalent when one adds the restriction of being essentially copy
bounded (technically, this corresponds to the single-used restriction defined
in [EMS09]).

The inference of DTOPs offers a base case, as they are strictly more re-
strictive than MTT. Note however that we do not need to add the restriction
of bounded copy to achieve learnability results for DTOPs.

Macro tree transducers are a complex model capable of many subtle
operations. However, it is essentially a generalisation of tree to string trans-
ducers, as one can see the produced string as a simple tree, replacing string
concatenation by vertical addition of subtrees. It seems therefore plausible
to extend those results to MTT, although it is still an open question.
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Probably, some restrictions will apply however. For instance, limitations
that we had on tree-to-string transducers apply to MTT. This means that
it will probably be hard to obtain learnability results with unbounded copy,
at least on the vertical direction, as lifting this restriction would mean that
it would be possible to have an inference algorithm for unrestricted tree-to-
string transducers, which we think is unlikely.

Finally, we proposed learnability results for word transducers with look-
ahead. It is still an open question whether those results can be ported in
the tree case. Moreover, it is not clear how to combine all the mentioned
above results to define learning algorithm for classes of transducers that
have aspects of macro tree transducers and regular look-ahead.

To sum it up, results we presented each give one part of the solution. It
is however doubtful that a normal form for the whole class of MSO definable
transformations can be found. On the other hand, even with DTOPs, we
capture transformations with unrestricted copies which are not MSO defin-
able. We believe MTT with regular look-ahead is still a target of interest,
giving a clear direction to our research. Most probably however, the best
we can achieve is to obtain learnability for some subclass yet to be defined.

7. CONCLUSION

Works presented in this chapter have been the object of several publications.
They all have already mentionned, but we sum it up here.

In [LMN10b], we introduced a Myhill-Nerode theorem for the class of
top-down tree transducers, as well as an inference algorithm. We also pro-
posed suggestions to use this approach in XML applications, with for in-
stance, an ad-hoc encoding of XML trees.

Those results has been extended in [BLN16] to deal with domain issues.
In particular, solutions to deal with regular domains, and not only top-down
domains, have been studied.

We started the study of tree-to-string transducers with [SLLN09], where
we studied the equivalence problem. In particular, we presented a polyno-
mial reduction between the equivalence problem of this class and the equiv-
alence problem of other classes, such as nested-word to word transducers.

The study of tree-to-string transducers has been pursued in [LLN�11],
where we established a normal form and an inference algorithm for the class
of sequential tree-to-string transducers.

Finally, inference of rational functions, i.e., functional transformations
performed by word tranducers, has been presented in [BLN12].
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Graph Queries4

While many semi-structured data formats can be formalised by trees, in
many cases, the structure can be more complex, and graphs becomes the
favoured formalisation. This is of course the case for data which are stored
explicitly as graphs, such as RDF in semantic web. But this is also the
case for data stored as trees, such as XML or JSON, but which contains
references between elements, using a foreign key mechanism. For instance,
in an XML document, the property ’author’ of a book may contain only
the identifier of an author, leaving all other data about him in another part
of the document. This corresponds to an implicit link between different
elements of the document.

Queries over tree data structures also commonly use this feature, either
to link together several elements of the structure (’give me sets of books with
the same author’), or to query the structure for a specific data value (’give
me all books of author x’). The equality relation between the name of author
in the query and in the data structure can also be seen as an implicit link.
This means that the query actually uses graph features on the input tree.

The predominant query language for RDF graphs is SPARQL, a lan-
guage inspired by SQL. However, since its version 1.1, SPARQL allows
to use conjunction of regular path queries (CRPQs). A regular path query
(RPQ) [CMW87a, CGLV02] is defined by a regular expression built on pred-
icate labels. This includes in particular recursions, and one can ask for (x
isFriendOf� John) to obtain everybody linked by a friendship chain with
John. An RPQ links therefore two elements of the graph. CRPQ are natu-
rally conjunctions of such links, and allows to obtain more complex patterns.

The problematics we described in previous chapters for tree queries also
apply to graph queries. In particular, they can be hard to write manually.
This is particularly true as it is hard for a human to have a global com-
prehension of the structure of RDF graphs, as they tend to be quite big
and complex in practice. Machine learning could also help to address this
problem. To achieve this result, I propose to extend the inference methods
developed for tree queries to the graph case.

In order to do this, we first observe that graph queries can be seen as a
direct generalisation of tree queries. Consider for instance monadic graph
queries, i.e. queries which select nodes in a graph. From a specific node, one
can observe the tree unfolding of a graph. In the same way as a tree query
can be defined by a tree language, a monadic graph query can be defined by
a language of rooted graph, or by the language of its tree unfolding.

Some difficulties appear immediately with this approach. First, although
they have in this case a finite representation, unfolding trees are infinite
in general. This is not necessarily a major difficulty, as there exists finite
state machines that deal with infinite objects. Büchi automata operate on
infinite words (see for instance [Tho90]) and Rabin automata on infinite
trees [Rab69]. In the word case, it is interesting to note that there exists
learnability results for Büchi automata [dlHJ04].
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However, for the same reason we needed a pruning operation for the
inference of tree queries, a similar technique has to be developed for the
graph case. This would solve several problems. Indeed, the main difficulty
is probably that graph databases tend to have an important size, while the
part relevant for the selection of a particular node is much smaller. This
was already one major reason why we needed pruning in tree documents,
but it is even more true in this case. This would allows us to come back to
finite structures.

The second difficulty, probably harder to lift, is that unfolding a graph
removes the information on its cycles. This information could however be
preserved by adding an identifier to each node of the graph - as a data
value - and using the same identifier for copies in the unfolding of the same
node. For this specific problem, we propose to adapt techniques used to deal
with data values for word automata, and that we detail a bit later.

Even using these different techniques, there are several important ques-
tions that remain. The most important one is certainly to establish what
precise class of queries we can express with finite state machines such as the
ones we describe (i.e. tree automata somehow enhanced with mechanisms
we suggest) and which would be learnable. A nice goal is certainly to reach
for MSO queries on graphs.

Note that all of this is essentially work in progress. In the following, we
discuss a bit more precisely two aspects of this. First, we discuss techniques
to find parts of the graph relevant to the query (the equivalent of pruning
for trees). We start with a first restriction that deals with path queries,
an already interesting subclass of queries which is used in practice. This has
already led to some published content, that we quickly present.

We then present ideas on how to extend these works to the more general
case of graph queries defined by tree languages.

After that, we discuss aboutf the problem of data values. Following
works of Puppis [BLP10] on word automata, we present how we aim at
extend this to the case of tree queries, a first step before reaching for the
more general case of graph queries.

Finally, we conclude with some thoughts on how to extend this work
on graph queries to the even more general case of graph transformations,
as well as indicating how the elaboration of inference techniques for graph
transformations can have an impact on the usage of databases.

1. REGULAR PATH QUERIES

We start to study the problem of inference of graph queries by studying
the inference of Regular Path Queries, or RPQs. In [BCL15b], we proposed
preliminary works for this that we present here.

64



4. Graph Queries

First, note that classical RPQs select pairs of nodes. An RPQ is defined
by a regular expression, and a pair of nodes is selected by the RPQ if there
exists a path between those nodes labelled by a word that fits the regular
expression. We focused however on monadic queries, as this case is in fact
harder to deal in machine learning. Here, a node is selected by a query if
there exists a second node and a path between them labelled by a word that
fits the regular expression.

For instance, consider the simple expression isFriendOf+. The binary
query it defines selects pairs of nodes linked by a sequence of isFriendOf
labels. The monadic query selects nodes which are first components of such
pairs.

We studied two frameworks for the inference of monadic RPQs: a static
one and an interactive one. First, the static framework consist in learning
the RPQ from sets of nodes which correspond to the output of the target
query, and similarly a set of counter-examples.

The inference is two-fold. First, for each example, we need to identify
the path responsible of its selection. This is done using counter-examples.
Indeed, each counter-example node describes a language of counter-example
paths, in the sense that none of the paths that can be derived from a counter-
example node can be in the target language. By contrast, each example node
also defines a language of possible paths, for which at least one intersects
with the target query. In fact, for each (positive) example, our algorithm
picks the smallest path that it defines which is not part of a language defined
by a counter-example.

With this approach, we obtain for each example node one path which is
supposed to be responsible for its selection. Those paths, and the languages
defined by counter-example, are used by a regular word language algorithm
such as RPNI , only slightly altered. This allows us to have a learning
algorithm able to infer RPQs.

Another important problem of this approach is that, to find paths for the
examples, we basically need to compute an intersection of regular language
represented by non-deterministic automata, a PSPACE-problem in general.
To avoid this problem, we proposed several ideas. First, we can limit the
length of paths. This of course cuts the complexity, and fits our preliminary
experiments where typical paths are small, but is somehow unsatisfying as
it also reduces the expressiveness of our algorithm.

The second solution comes with the interactive framework we want
to use. In this setting, inspired by our interactive learning framework for
tree queries [CGLN07] and by the Angluin learning model [Ang87b], an
end-user may provide example nodes, or correct example nodes proposed
by the learning algorithm. This can be achieved by plugging our static
algorithm into this framework : the static learner infers hypothesis queries
from examples or counter-examples obtained through interactions with the
end-user.
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This setting is certainly more realistic than the static setting, and seems
to correspond more to what a real-life application would be. However, this
causes new problems. In particular, the visualisations problems are less triv-
ial than in the tree case: how can the user observe the graph, how to present
examples to him... On the other hand, it also allows to imagine new ways to
interact with the user. The objective being to find interaction which are still
simple, but which are more informative than just corrections. In [BCL15a],
we investigate for instance the use of interactions where we present directly
for each example the path that the algorithm thinks is responsible for its se-
lection, allowing the user to correct it. This allows to remove the restriction
of bounding length of paths.

2. REGULAR TREE QUERIES

Another direction is also to extend to richer classes. Going from RPQ to
conjunctions of RPQ requires to work on richer pattern than just paths.
The more immediate extension is to use trees. This inner algorithm for the
inference of regular tree languages can therefore be an algorithm such as
RPNI for trees [GO93], instead of the word version.

The difficulty, however, remains in finding the tree pattern responsible
for the selection of each example node. This problem, linked to the pruning
problem in the tree case, can be rephrased the following way. Each example
node is selected because there is a specific conjunction of paths that starts
from it. The idea is to find the smallest conjunction of paths that would
not allow the selection of a counter-example. Exactly how this can be done
efficiently is still open to debate.

One solution we foresee for instance is to have an initial procedure that
considers each example node, and that enumerates its paths, building a set
of paths by adding each path one by one until the obtained pattern does not
allow to select a counter-example. The resulting pattern would still contain
too many paths, but another cleaning procedure can try to remove them
one by one, as long as the remaining patterns does not allow the selection
of a counter-example.

Consider for instance the query defined by the expression isFriendOf�.
An example node would contain many other outgoing edges, such isChildOf
for instance. The first procedure enumerates all those edges until it captures
isFriendOf. The reason would be that the expression isChildOf can also
select some possible counter-example, while isChildOf ^ isFriendOf does
not (but is still too restrictive). The cleaning procedure can remove the edge
isChildOf from the pattern safely, this makes the query more general but
without capturing any counter-examples.

This procedure would still have some problems. First, it ignores the
fact that we have actually unordered trees. Second, it is probably not very
efficient as it the search space seems important. It is still an open problem
whether those problems can be overcome, and how.
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3. USING DATA VALUES

One of the major restrictions of our current approach on tree queries is
the fact that the queries we infer are not able to exploit the data values
presented in semi-structured data, focussing only on structural elements.
Even if this covers a fair amount of queries, including some that a user
would more naturally write using data values, it is nevertheless true that
many real-world queries are using tests on data values.

Relations between data values also enrich structures as one of their most
classical use is to establish implicit links between objects, by the use of
foreign keys, and as argued before, this is probably one of the keys to define
expressive queries on graphs.

Dealing with data values, and hence exploiting an infinite alphabet, in fi-
nite state models has been long studied. However, most fundamental results
of finite state automata do not carry over to models using infinite alphabets.
For instance, equivalence problem are undecidable for register automata and
pebble automata [NSV04].

However, results of [BLP10] bring new hope to those problems. Deter-
ministic Finite-Memory automata [KF94b] are essentially automata with
registers that reads words with data values (each position of the word is
associated with an element of an infinite alphabet). The automaton can, at
any point, store a value in one of its register, or test the value of the current
position with one of its registers. In [BLP10], some natural restrictions are
added, such as the fact that two registers can not contain the same value.
This allows to define a normal form, which in turn allow efficient equivalence
tests. Those results can also serve as a base for machine learning algorithms,
as indicated by [DHLT14].

We believe those results can be carried over even further to be integrated
in our query inference approach. We foresee several possible extensions.
First, we need to extend those results to trees. One way to do that is to
extend bottom-up tree automata such that states hold registers. At each
rule, the tree automata could compare the values of the current node, as well
as values carried by each of its children. We believe this extension natural
enough so that the result of word finite-memory machine can be carried to
this model.

The expressiveness of the resulting class is not yet clear. However, if one
consider data tree queries that can be derived from this object - using
canonical encoding similar to the one we described in the section on queries
- we can define queries that select pairs of nodes with the same values for
instance. This allows to exploit implicit links defined by foreign keys, at
least up to some points.

Finally, those techniques could also be applied to tree unfoldings of graph
structures. In this case, the identifier of nodes can be stored as a data value,
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and the equality relation between those identifiers can be used to express
cyclic queries.

We think the study of this family of formal objects offer a viable corner-
stone for the inference of tuple queries with data values. In particular the
link between this model and MSO graph queries is certainly an important
aspect to study.
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Conclusion5

In this document, I made a succinct presentation of more than fifteen years
of research that mainly focused around the idea of adapting grammatical
inference techniques to the problem of query and transformation infer-
ence over structured data. Our contributions in this field indeed allowed
to obtain strong learnability results for interesting classes of queries on trees
as well as classes of transformations.

Starting from existing grammatical inference algorithms such as OS-
TIA for word transducers [OGV93] or RPNI for word and tree automata
[GO93], we designed learning algorithms for richer classes such as regular
tree queries [CLN04, CGLN05, CGLN07, LNG06, CGLN08b], word rational
functions [BLN12], regular tree-to-string transductions [LLN�11], top-down
tree transductions [LMN10b, BLN16]. These algorithms haven’t only im-
proved learnability results, they also provided methods that can efficiently
be used in practical scenarios of query and transformation inference.

This also allowed us to find results that also had impact to the larger
field of formal language, and finite state machines. For instance, we man-
aged to define normal forms and Myhill-Nerode theorems for several classes
of transformations. This proved to be useful for equivalence checking for
instance, or other static analysis problems.

For instance, one of our current fields of research, which is part of the
ANR Project ”Colis”, consists in finding formalisms that can express a large
family of Linux install scripts, and for which efficient procedures exist to
perform analysis. This includes for instance verifying that the execution of
an install script followed by the execution of its uninstall script let the global
filesystem unchanged, or that two install scripts are dependant or not. This
problem is not directly related to machine learning issues, but some similar
techniques can be used to study this problem.

We can also cite works that we did during the thesis of A. Ndione [Ndi15,
NLN13] on property testing for XML. This allowed us to design efficient
tests if a large XML document has a good probability to comply a DTD
schema or not with an amount of tests which does not depend directly on
the size of the document.

This also allows to offer a real alternative to existing techniques which
are mostly based on statistical approaches. Our approach is able to infer
richer classes of queries and transformations in realistic scenarios. The usual
limitation of the symbolic approaches - essentially a weakness toward noisy
data - is non existent in our approach where our data are obtained with few
- clean - interactions with an end-user.

Nevertheless, some questions remain open. For tree query inference,
the main problem is that our technique does not yet make usage of data
values. While in practice this limitation seems to be less dramatic than
expected, it still remains an important limitation. However, as we argued

69



5. Conclusion

in a previous chapter, techniques based on data automata give some hope
in this direction.

In the domain of tree transformations, the big question that remains
is the question of learnability of MSO transformations. The class of
Macro Tree Transducers with regular look-ahead provides a nice formalism,
but there is no Myhill-Nerode theorem yet for this class which could serve as
a basis for a learning algorithm. Both the question of inferring a transducer
with a look-ahead, and to infer an MTTare still open. Furthermore, the
difficulties encountered to capture the whole class of tree-to-string transduc-
ers - which can be seen as a subclass of MTT- let us think that it may be
possible to capture only a subclass of MSO transformations, which is yet to
be defined.

For graph query inference, results presented here are still part of pre-
liminary works. The whole question of defining a class of queries expressive
and learnable remains open, our ultimate goal being a class equivalent to
MSO definable queries on graphs. On a more practical side, a learning
plausible scenario of interaction with an end-user is also to define, with,
among other problems, the question of visualisation of the graph database.

The inference of tree transformations and graph queries also opens the
door to the inference of graph transformations. As graphs are one of the
most general representation for data, in fact graph transformations cover a
wide range of computer processing operations. In database however, this
covers a more specific kind of applications.

For instance, the data exchange paradigm [FKMP05] aims at trans-
forming data organised in a source schema to fit a target schema, which
allows to import data from one database to another. In data integration
[HAMA16], the data is not transformed directly, but a unified view over
different sources is provided to the user. He can then define queries over
the unified view, which are transformed to be expressed directly on any of
the source formats. This allows to keep separated databases, with different
schemas, but with strong implicit transformation links between them. Typ-
ically, this is done using schema mapping techniques. In this framework,
the link between the source and the target schema is defined by a set of
logical formulae.

Formally, this can be related to the graph transformation model of Cour-
celle [Cou97], in which a graph transformation is defined as a set of logical
expressions. The nodes of the output graph are copies of the node of the
input graph (possibly a bounded amount of copies), and each edge label
corresponds to a predicate between those nodes, whose logical value (and
hence the presence or not of the edge) is defined as a logical formula on the
input graph. Technically, this simply means that graph transformations can
be expressed as a set of graph queries.

The conception of graph transformations are even more complex for the
user however than graph queries, as the whole output graph has to be de-
fined. This makes inference techniques even more relevant. That is why we

70



5. Conclusion

propose to extend inference techniques for graph queries on graph transfor-
mations.

Nevertheless, the inference of graph transformations presents some in-
herent difficulties, both in a static and an interactive learning framework.
Mostly the exact learning scenario has yet to be defined.

In a static framework, the learning algorithm would probably take as an
input a graph (or a part of a graph) in the source schema and its corre-
sponding counterpart in the target schema. This means however that a first
process needs to align both graphs, using some kind of entity alignment.
This problem is already studied, as in [BWCB11, NB12], but needs to be in-
terfaced correctly with the learning algorithm. In particular, it is necessary
for each edge of the output graph to define which part of the input graph is
responsible for its creation, which includes possibly a whole subgraph. This
problem, related to the problem of pruning trees or graphs, seems to be even
more crucial in the problem of graph transformations as the different edges
of the target graph have to be linked together.

The interactive framework may possibly allow to circumvent some of
those difficulties by adding new interactions (that are yet to be defined), but
it also presents again the problem of data visualisation. This problem
is even harder than for graph queries as a whole output graph has to be
presented to the end-user, and there is no apparent solution to do this in a
nice intuitive way.

Graph transformations could also be applied on a single database, as it
can also help to infer new data from the database itself. This means for
instance that our approach could potentially have applications for instance
in ontology inference, or knowledge discovery, through the inference
of new concepts from the data. This could open the gate to new forms of
database management tools, where the database can auto-evolve by adding
new facts, that are induced from existing data, and from an analysis of the
database.
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Joachim Niehren. Efficient inclusion checking for determin-
istic tree automata and XML schemas. Information and
Computation, 207(11):1181–1208, 2009.
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[LNG06] Aurélien Lemay, Joachim Niehren, and Rémi Gilleron. Learn-
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