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Introduction

The discovery that the long-term motion of the solar system is chaotic [47] has also shown
the possibility of exceptional structural changes in the system composed of the four terrestrial
planets Mercury, Venus, the Earth and Mars. The orbital dynamics of the lightest planet,
Mercury, is also the most chaotic one. It can be destabilized in few hundred million years,
leading to the ejection of Mercury out of the solar system, or to a collision with Venus or the
Earth [58]1. Chaotic motion does not only affect planetary orbits, but also their spin axis.
Without the stabilizing effect of the Moon, the Earth spin axis orientation could experience
very large changes between 0˚and 90˚with dramatical consequences on the Earth climate [78].
The asteroid belt between Mars and Jupiter is strongly chaotic, and is one limitation for long-
term predictions of planetary orbits over few million years. Rare events in the solar system can
be also found in the chaotic evolution of the atmosphere of giant gaseous planets, especially
Jupiter’s atmosphere. The flow in Jupiter’s atmosphere has the interesting property to organize
in strong eastward and westward parallel currents called zonal jets. Although they are very
stable, turbulent fluctuations of those jets may lead to the creation or disappearance of a new
jet [105].

Jupiter’s atmosphere, chaotic motion of Mercury, spin axis dynamics of the Earth without
the Moon, chaotic dynamics of asteroids, all these physical systems share one common point:
they fall in the vast framework of slow-fast dynamical systems. Moreover, rare events, that
is, events occurring with very low probability and causing qualitatively important changes in
the system, can be observed for three of them. A generic dynamical system involves a large
number of coupled physical phenomena, each of them at their own time and space scale. The
interesting property of the four systems considered in this thesis is the existence for each of them
of a variable (or a field in case of Jupiter’s atmosphere) called the slow variable, the dynamics
of which evolves on a timescale that is much larger than the other degrees of freedom. The
slow variable has the property to control the system’s long-term evolution and the possible rare
events of its dynamics. The slow variable can have a simple physical interpretation, but this is
not always the case. For Jupiter’s atmosphere for example, the slow variable is simply the wind
velocity averaged over longitude. A lot of work has been required before the beginning of this
thesis to identify the small parameter that ensures the timescale separation between variables
[12]. For Mercury’s dynamics on the contrary, the construction of a good slow variable itself has
been a difficult task [7].

In the present manuscript, I explain how the stochastic description of the slow variables allows
to predict the system long-term evolution and the probability of rare events. The prediction of
rare event probabilities in a complex dynamical system is very difficult. Using direct numerical
simulations, the numerical cost of such predictions is prohibitive for systems with a large number
of degrees of freedom, such as the ones presented in this thesis. Rare event description has
stimulated the development of new theoretical tools on slow fast systems, and a complete class of

1This discovery has been brought to a larger audience, see [60].
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algorithms especially devoted to rare event computations [77, 82, 85]. Even if they considerably
increase the efficiency of numerical computations, rare event algorithms only work if we have
a very good physical comprehension of the dynamics [66]. For each new physical system, a
refined theoretical work is required to identify precisely the physical mechanism leading to the
rare event, give the relevant parameters, and find orders of magnitudes. Such a theoretical work
is done in the present thesis, for complex dynamics in the solar system. For zonal jets and
Mercury’s dynamics, I will even show that the complexity of the system can be reduced and
that a close equation can be found to describe the long-term dynamics of the slow variable.

My work does not present any new mathematical result about slow-fast dynamical systems.
To my knowledge, the originality of the work resides in the fact that it creates a bridge between
quite abstract mathematical theorems and concrete real physical systems. I show in particular
that the abstract mathematical results about stochastic averaging and large deviation theory
(both theory are precisely described in my thesis) give reasonably precise predictions for the
systems described above. For the chaotic systems considered in the present manuscript (geo-
physical flows, chaotic Hamiltonian dynamics), theoretical predictions have been, and still are
extremely difficult. Therefore, the results of the present work do not reach the same level of
precision as direct numerical simulations. The values of probability distributions obtained with
stochastic averaging can be seen as orders of magnitude rather than exact values. For each
physical system, I have particularly taken care of emphasizing the physical mechanisms in the
problems, which, I think, has as much importance as giving numerical predictions. My work
should be understood as a complementary approach to numerical simulations, both of them
being necessary to do relevant predictions of rare events. I therefore hope that the results in
hydrodynamics and in celestial mechanics obtained in this thesis will be used as a guideline for
scientists who would like to conduct more extensive work about these problems.

Let me give now some precisions about the physical phenomena I am interested in.

Numerical integration of the secular equations of motion for the full solar system have shown
that the four smallest planets Mercury, Venus, the Earth and Mars have a chaotic dynamics
on a timescale of ten million years [47, 48, 93, 51]. This means that chaotic motion increases
exponentially any difference in planetary initial conditions and leads to a complete indetermi-
nation of planetary positions on a timescale of ten million years. The main consequence of this
result is that the solar system’s long-term evolution becomes unpredictable after few million
years. Major changes in the structure of the inner solar system -the system composed of the
four terrestrial planets- can occur on a timescale comparable to the age of the solar system [58].
With the current planetary orbital conditions, the effect of chaos is restricted to slow random
evolution of planetary orbital parameters. But it has even been shown that chaotic evolution can
drive in very few cases the inner solar system in a regime of large-scale chaos in which collisions
between planets are possible [58]. The probability of such a rare event has been estimated about
1% in 5 billion years [58]. The lightest planet Mercury is also the most chaotic one and its dy-
namics is the key to understand the disintegration of the inner solar system. Fig.(0.0.1) displays
the evolution of Mercury’s eccentricity for many trajectories with different initial conditions.
Abrupt jumps in Mercury’s eccentricity can be seen clearly in the figure when the eccentricity
crosses a critical value. It has been observed that this event is related to a regime of large-scale
chaos in the inner solar system. After many refined studies of Mercury’s dynamics [71, 15, 7],
we still only have a partial understanding of the destabilization mechanism. It has now been
clearly shown that destabilization is related to a resonance between Jupiter’s and Mercury’s
perihelia [15]. Through this resonance, Jupiter can transfer to Mercury the large amount of an-
gular momentum necessary for a large increase in eccentricity. But the mechanism to enter into
resonance is less sure. The slow intermediate evolution in Mercury’s orbital parameters between
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Figure 0.0.1: Mercury’s eccentricity time evolution for different trajectories with close initial
conditions. The vertical axis represents the eccentricity value. The simulation shows abrupt
jumps in Mercury’s eccentricity for trajectories that cross a threshold value close to 0.6. (Taken
from [58])

the current orbital state and the resonant state looks like a random process, the characteristics
of which are still debated [7].

The description of rare events in planetary dynamics opens the question of the sources of
chaoticity in the solar system. We have just seen that one source of chaoticity is the planetary
mutual interactions, and is thus intrinsic to the dynamical system composed of the eight planets.
But planetary dynamics is also influenced by external phenomena that act as external sources
of chaoticity for the eight planets system. One major source of chaoticity is the asteroid belt
between Mars and Jupiter. The asteroid belt contains planetesimals, the mass of which is non-
negligible for planetary dynamics (the largest asteroid Ceres has about 1

300 Mercury’s mass).
Because of asteroid’s mutual interaction, the dynamics of asteroids is much more chaotic than
planetary dynamics, and even the trajectories of the largest ones become unpredictable after a
few tens thousand years [61]. It can thus be naturally expected that asteroid-planet interactions
act as a noise on planetary dynamics and partly contribute to the random evolution of planetary
orbital parameters. It has already been observed in numerical simulations of the full solar system
including asteroids that they do not affect significantly the long-term intrinsic chaotic evolution
[25, 61], but a systematic investigation of their influence has not been done yet. In particular,
it was not known whether asteroid’s noisy dynamics could trigger Mercury’s destabilization.

Chaotic motion does not only affect planetary orbits, but also their spin axis [51]. For
example, the motion of the Earth spin axis, can be accurately described by a precessional
periodic motion of about 26000 years, but the periodic description becomes inadequate for
long-term evolution in billions of years. The spin axes of terrestrial planets have chaotic long-
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term evolution that can create large variations in their obliquities (the obliquity is the angle
between the equatorial plane and the orbital plane) [63]. Therefore none of the current planetary
obliquities can be considered as primordial. On the contrary, the initial obliquities values right
after solar system’s formation could have been very different from now, and driven in their
current state by chaotic dynamics and dissipative effects [63, 21]. The amplitude of chaotic
evolution is conditioned by the existence of many spin-orbit resonances, that is, resonances
between their precession frequency and the characteristic frequencies of their orbital motion.
The Earth enjoys exceptional dynamical conditions because the presence of the Moon increases
the effective value of its precession frequency compared to a fictitious Earth without Moon
[63, 78]. The current Earth thus feels no major spin-orbit resonance and, would the Moon
remain with the Earth forever, its spin axis dynamics would be only very weakly chaotic. But
due to dissipative tidal effects, the Moon slowly goes away from the Earth and its influence on
Earth tides will become negligible in about 4 billion years! During this slow process the Earth
precession frequency decreases and will reach spin-orbit resonant conditions [78]. Fig.(0.0.2)
displays one possible trajectory of the Earth spin axis in a numerical simulation of 5 billion years.
The picture shows that, once the Earth has reached the red chaotic region, its obliquity can
suffer very large variations, up to 90˚. For example, at the end of the simulation of Fig.(0.0.2),
the Earth obliquity is trapped in a chaotic state with its obliquity constantly varying between
50˚ and 80˚. The value of the Earth obliquity determines the mean surface insolation and is
thus one of the main factors that influences its climate. Understanding the chaotic variations
of planetary obliquities is essential to predict their environmental surface conditions far in the
future and in the past.

The recent pictures of Jupiter’s atmosphere taken by Juno probe give again an example how
beautiful large-scale structures can emerge from the turbulent dynamics of geophysical flows.
Two of those pictures are displayed in Fig.(0.0.3). At the top of Jupiter’s atmosphere, obser-
vations show alternatively red and grey bands which are the signature of strong alternatively
eastward and westward parallel currents called zonal jets. The flow can also organize in giant
cyclones and anti-cyclones like the famous Great Red Spot. Such large-scale atmospheric struc-
tures also exist on other giant gaseous planets like Saturn or Uranus [37, 31, 30], although they
can been much clearly seen in Jupiter atmosphere. For this reason, Jupiter has become one of
the best available experimental setup for physicists studying geophysical turbulent flows [98],
and a goal of many space craft missions. The velocity profile of Jupiter jets has been measured
many times in 1979 by Voyager 2 and in 2000 by Cassini showing very few changes [81, 87].
The largest scales of the flow are very stable in time and only evolve on a timescale of tens
of years. Yet, it is known from experimental and numerical works that the flow can sustain
different stable states characterized by a different number of zonal jets [4, 20]. There are strong
reasons to believe that Jupiter may have lost one of its jets during the 40’s [84, 105], which
indicates that transitions between different stable states are possible for Jupiter’s atmosphere.
The slow evolution of zonal jets is thus crucial to understand Jupiter abrupt climate changes.
Also on the Earth, the circumpolar current called the jet stream is an example of a zonal flow.
The fluctuating dynamics of this jet, and zonal atmospheric currents at mid-latitudes have a
major impact on climate [101], and the transitions between different blocked states is important
to understand climate variations [45]

For slow-fast dynamical systems, the theory of averaging, stochastic averaging, as well as
the more recent large deviation theory, present rigorous theorems that enable to eliminate the
fast variables from the dynamics. The procedure, called adiabatic elimination of fast variables,
shows that the long-term evolution of the slow variable can be described by an effective dynamics
for the slow variable alone [26, 44, 33]. The adiabatic elimination of fast variables drastically
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Figure 0.0.2: A possible realization of the Earth spin axis evolution in 5 billion years. The
vertical axis represents the Earth precession constant, that conditions its precession frequency.
The horizontal axis represents the Earth obliquity (spin axis orientation). The red part of the
picture displays the chaotic regions created by the major spin-orbit resonances. When the Moon
goes away from the Earth, the value of the precession constant is progressively reduced and the
Earth reaches the conditions for large-scale chaotic motion. In the chaotic region, the Earth
obliquity can suffer very large variations up to 90˚. (Taken from [78])

Figure 0.0.3: Two pictures of Jupiter atmosphere taken by Juno probe. The picture on the left
shows three beautiful giant vortices. The picture on the right is a zoom on the mid-latitude
zonal jets. More pictures can be found on the Nasa website [1].
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reduces the number of degrees of freedom. The price to be payed for such a simplification is
to switch from deterministic equations to stochastic processes. Under some conditions about
the fast dynamics that will be described below, there exists a stochastic process that gives a
description of the long-term asymptotic dynamics of the slow variable fully equivalent to the
initial deterministic set of equations.

The type of equations that can be obtained for the slow variable depends on the properties
of the fast dynamics -the dynamics obtained with fixed values for the slow variables. The
exact hypothesis required for stochastic averaging and large deviations are very subtle and are
one of the topic of ergodic theory [43, 44], but they can roughly by summarized in two main
hypotheses. First, the dynamics should be ergodic, which means that the system’s trajectory
visits all accessible regions of phase space in finite time [100, 79]. In that case, the long-
term effective dynamics of the slow variable is given by the equations of motion averaged over
the fast dynamics. The averaging procedure is a very intuitive and very old idea in physics.
A famous result in celestial mechanics obtained with the averaging principle is the secular
Laplace–Lagrange equations that describe accurately the slow deformations of planetary orbits
through mutual gravitational interactions, for times smaller than one million years [75]. Second,
the dynamics should be mixing. It is difficult to formulate a precise definition of the mixing
hypothesis, but the general idea is that a mixing system rapidly “forgets” the memory of its
initial condition [8, 100]. The mixing hypothesis allows to go beyond simple averaging. In the
limit of large timescale separation between the slow and fast dynamics, stochastic averaging
leads to a stochastic process that describes the slow variable’s deviations from the averaged
dynamics. Two cases should be distinguished.

If the slow variables’s dynamics averages to zero, stochastic averaging shows that the slow
variable’s evolution is given to next order by a stochastic differential equation with a white
noise term [33]. The white noise limit is exact for large timescale separation. The stochastic
differential equation describes both the law of small and large fluctuations of the slow variable.
The model for Mercury’s long-term dynamics presented in section 5 is an example for which
stochastic averaging gives exactly the limit process for the slow variable.

If the averaged dynamics does not vanishes, no stochastic equation can describe exactly the
long-term evolution of the slow variable. Large deviation theory shows that the slow variable’s
dynamics is given by a stochastic process, and gives an exponential equivalent for its proba-
bility distributions [26]. Large deviation theory is currently the most powerful available tool
to solve complex out-of-equilibrium problems for which the old statistical theory of equilibrium
systems fails [100, 95]. If the averaged dynamics has many stable states, large deviation theory
is the suitable tool to compute the probability of random transitions between the different stable
states. The slow dynamics of zonal jets in geophysical flows falls in this framework. Large devi-
ation theory could in principle tackle the problem of rare events in the system, that is, predict
both the probability of rare transitions between stable states with a different number of jets,
and predict the transition path leading from one stable state to the other.

The manuscript begins in section 1 with a theoretical part about slow-fast chaotic dynamical
systems. The introduction 1.1 of the theoretical section 1 presents the physical motivations to
use stochastic methods for complex physical systems. The introduction 1.1 has been especially
written for physicists who are not specialists of statistical physics or stochastic methods. The
following of section 1 is more technical. I give a rigorous formulation of the ergodic and mixing
hypotheses and the main theorems and proofs of averaging and stochastic averaging for slow-
fast dynamical systems. I also briefly describe the part of large deviation theory that deals with
instanton dynamics.

The following parts of the manuscript present the results obtained for the four physical
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systems I have sketched at the beginning of the introduction. In all systems, averaging, stochastic
averaging and large deviation theory can be applied to predict the long-term dynamics using a
stochastic description of the slow variables.

In section 2, I study the slow dynamics of zonal jets in geostrophic turbulent flows, coupled
with the fast dynamics of turbulent eddies. Although they have been studied for a long time in
all theoretical, experimental and numerical aspects, the dynamics of zonal jets remain far from
being completely understood. In this work, I use a barotropic model of geostrophic flows within
the quasilinear approximation to predict theoretically the zonal structure of the average flow. In
the asymptotic limit where the rate of energy injection is small and energy is injected at small
scale, I show that the averaged dynamics of the zonal velocity profile U is given explicitly by
the closed equation (2.4.2)

∂tU −
ǫU”

U ′2 = −rU,

where ǫ is the rate of energy injection in m2.s−3 and r is the dissipation coefficient in s−1.
In hydrodynamics, it is in general not possible to close exactly the hierarchy for the velocity
moments. The above equation is thus one of the very few examples for which the exact closure
is possible. The work of part 2 has been published in [103].

The three other sections present the applications in celestial mechanics. The work on Mer-
cury’s secular dynamics of chapter 5 has been done in collaboration with the group of Jacques
Laskar at the IMCCE who already obtained an estimation of the probability distributions of the
planetary orbital parameters over 5 billion years. Those predictions are the result of long-term
numerical integrations of the full secular dynamics of the solar system [53]. My approach is
more theoretical. I use stochastic averaging and large deviation theory to recover some of the
numerical results about the state of the solar system on a timescale of many billion years.

In section 3, I answer the question whether the chaotic dynamics of the asteroid belt has
a long-term influence on planetary dynamics. From a completely theoretical approach using
stochastic averaging, I find that the asteroids are responsible for a superdiffusion -that is, a
diffusion scaling as t3/2 instead of

√
t for standard diffusion- of the planetary longitudes on

a typical timescale of few million years. A theoretical expression for the typical timescale of
longitudes superdiffusion is (3.4.4)

τdiff ≈
((

MS

ma

)2 a3pτϕ

GMS

)1/3

,

where ma is the asteroid’s mass, MS is the mass of the Sun, G is Newton’s gravitational constant,
ap is the planet’s semi-major axis, and τϕ is the Lyapunov time of the asteroid (about 10000
years). The superdiffusion process on planetary longitudes thus confirms from a pure theoretical
approach that no ephemerides can be done for times larger than 10 million years. This work
has also been published in [102].

Section 4 deals with the chaotic obliquity of a Moonless Earth. I show that the phase space
of the spin axis dynamics has three distinct strongly chaotic regions. The spin axis can do rare
transitions between these regions, and I give a numerical estimation of the rate of the transition
rate between the chaotic regions. This gives access to the probability that the obliquity of the
Moonless Earth may have a very large variation from 0˚ up to 55˚. I show that slow chaotic
variations of the solar system’s fundamental frequencies considerably increases the transition
rate. Beyond the particular problem of the spin axis dynamics, this work proposes a new
transport mechanism in chaotic symplectic maps depending on slow stochastic parameters, and
gives some theoretical results about transport rates.
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Last, section 5 studies Mercury’s chaotic long-term (secular) dynamics. Using the simple
model proposed in [7], I use stochastic averaging to compute theoretically the probability distri-
bution of Mercury’s first destabilization time. I show that Mercury’s long-term chaotic dynamics
can be modeled by a Brownian trajectory in a bounded domain. I could obtain a theoretical
order of magnitude for the diffusion coefficient that is in accordance with numerical results.
In particular, the theoretical expression for the diffusion coefficient shows that the system is
very sensitive to Mercury’s initial conditions. Mercury’s orbital destabilization could not hap-
pen in a few billion years if Mercury’s current eccentricity would be reduced only by 20% .
One interesting consequence of the stochastic model is the existence of an instanton mechanism
for short-term destabilizations of Mercury’s orbit. This shows that large deviation theory can
predict the probability of an early disintegration of the inner solar system through planetary
collisions before its predicted disappearance when the Sun will become a red giant.



Chapter 1

Averaging, stochastic averaging and

large deviations

1.1 Physical motivations

1.1.1 Describe the long-term evolution of a system

A simple observation that surely every physicist has done in his life is that phenomena occurring
in nature are very complex. They involve a large number of degrees of freedom, in general in a
nonlinear chaotic dynamics that cannot be solved analytically. Only in laboratories do physicists
design artificially simple experimental setups to isolate one particular phenomenon, that can be
explained with reasonably simple models. It is very rare that a simple model could grasp the
whole diversity inherent to a natural system. For example, the room of 45 m3 in which I am
working contains approximately 2.5∗1025 molecules of gas evolving with a Hamiltonian dynamics
and interacting through elastic collisions. Solving the complete dynamics of the particles is
completely out of range of our present computers, and will surely remain out of range in the
future.

Have a look at the very challenging problem of predicting climate evolution on our planet.
Climate scientists have built very complex computer programs to study the long-term evolution
of the Earth’s climate. Some climate models account as many as possible of the different
phenomena involved in the problem, such as the dynamics of the Earth fluid envelops oceans
and atmosphere, the presence of clouds, the insolation, coupling with vegetation, etc... To
model oceans and atmosphere dynamics, climate model solve the Navier–Stokes equations in
the regime of high Reynolds number. This task is however out of range of current computers
and a simplified version of the Navier–Stokes equations is effectively implemented. Even with
this simplification, the best simulations actually reach a Reynolds number about 105 [104, 39]
whereas the Reynolds number of the atmosphere is many orders of magnitude larger, about
109. The largest experimental setup of fluid dynamics in laboratories hardly reaches a Reynolds
number of 106 [97, 106]. As a matter of fact, it would cost more energy for computers to solve
the Navier-Stokes equations for the oceans dynamics with the real Reynolds number than the
complete energy dissipated by the ocean dynamics itself!

Computational limitations can also arise for dynamical systems with much less degrees of
freedom than hydrodynamics. This is the case of celestial mechanics for example. Celestial
mechanics has long been the most famous area of physics for the precision of its theoretical
predictions. A lot of work has been devoted in the past trying to predict the exact position
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of celestial objects (planets, comets, asteroids), far in the future or in the past. The best
ephemerides we are currently able to do range up to a few million years [56], a timescale that,
however impressive it looks, remains much lower than the age of the solar system itself. Long-
term exact predictions of the structure of the solar system fail because of the chaotic nature of
the dynamics of planets [47, 48, 93]. A statistical prediction of the orbital elements of planets
over 5 billion years has been done [53, 58] at the price of six months of numerical computations
on the powerful computers JADE at CINES. This illustrates the fact that, even for real systems
with a moderate number of degrees of freedom, long-term predictions can become a formidable
task.

The evolution of a very large system is often dominated by a few global variables that
characterize the system at the macroscopic level. Earth’s climatic conditions for example, can be
described by some global informations such as the averaged temperature, the main atmospheric
and oceanic currents (golf stream, Kuroshio, jet stream, latitudinal position of Hadley cells...),
seasonal variations. Knowing all those global variables, one can say to have a reasonably good
description of climate on the Earth. In such a complex system, not all degrees of freedom
have the same importance: large scale structures are more important than small scales, long
term variations are more important than rapid oscillations. To know the Earth’s mean surface
insolation for example, astronomers only need the value of the slowly varying orbital elements
eccentricity e and inclination i of the Earth and can forget the exact longitude of the planet on
its orbit.

It is thus very interesting for long-term predictions of a complex physical system to try
to describe only the dynamics of some global variables with a slow evolution, without solving
the dynamics of a large number of fast evolving variables. This can be achieved using the
averaging procedure. The general idea of the averaging technique consists in averaging the
influence of the fast variables in the dynamics of the slow variables. The procedure leads to
a set of closed equations that describes the dynamics of the slow variables alone, and can be
solved independently of the dynamics of the fast variables. For physical systems with a very
large number of degrees of freedom, averaging leads to a drastic reduction of the number of
degrees of freedom. The final set of equations is suitable for an analytic treatment, or if it is too
complex, for a numerical resolution. The set of equations obtained through averaging describes
the averaged behavior of the system. In celestial mechanics for example, the secular equations
describing the long-term evolution of the planets are obtained by averaging the planetary mutual
interactions over the Keplerian dynamics [75].

However, the averaging procedure gives a set of deterministic equations, that does not take
into account possible random fluctuations of the system’s dynamics. In physical systems where
fluctuations play a major role, we have to go beyond such a simple averaged description. The
next two sections will show the importance of random fluctuations of a system and the impact
of dynamical large deviations away from the averaged behavior.

1.1.2 Necessity of a probabilistic approach

As we have seen in the previous section, the long term evolution of a system can be partly
predicted by averaging the dynamics of fast degrees of freedom and keeping only the averaged
motion of slow degrees of freedom. Reducing the description of a dynamics to its average may
sometimes lead to excellent predictions (as for the secular equations for the solar system) but
much more often this description is a too rough approximation. The average description does
not take into account the intrinsic randomness of a physical system. A real system has always
fluctuations away from its averaged dynamics, and in some systems, those fluctuations cannot
be neglected. We have to take them into account by a stochastic description of the dynamics.
The fluctuating dynamics of a large particle in a bath of smaller particles, called Brownian
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Figure 1.1.1: The reader should not be mistaken: this is not the map of Europe! This is the
trajectory of a 2µm particle in a bath. The erratic motion of the particle is an example of
Brownian motion.

motion, is an excellent example of a system in which random fluctuations cannot be neglected.
The large particle feels the collisions with other particles of the bath, and each collision creates
a small displacement of the large particle. Those displacements are extremely small compared
to the particle size, and because no direction is preferred during the collisions, they average
to zero. The averaged displacement of the particle is zero, and however, the accumulation in
time of a large number of small random displacements create a large displacement away from
the averaged position. A real trajectory of a Brownian particle of size 2µm observed on the
microscope is displayed in Fig.(1.1.1).

Describing the dynamics of such a motion has been a very difficult task in the past, both for
the physical comprehension of such an erratic motion, and for the mathematical formulation of
the equations of motion. The first stochastic differential equation dates back to Louis Bachelier
in the context of mathematical models of financial markets [3]. At that time, the formulation
of a stochastic equation could be considered as a conceptual breakthrough. The work of Louis
Bachelier was totally ignored, although it contains the first theory of Brownian motion that has
been independently formulated few years later by Paul Langevin. At the end of the XIXth

century, the theory of Markov processes did not enjoy its current popularity, and physicists
were rather used to describe all natural phenomena by deterministic equations. And indeed, it
is really not obvious to understand how a system that obeys to deterministic equations of motion
at the microscopic level can become a stochastic system at the macroscopic level. In order to
understand this transition, one has to understand the properties of a chaotic system. The
stochastic description of the dynamical system at large scale comes from the chaotic properties
of the dynamics at small scale.

The fundamental property of chaotic systems is that two trajectories with arbitrarily small
difference in their initial conditions separate exponentially fast with time. Two trajectories
with very close initial conditions do not remain close forever, but the distance between them
instead becomes comparable to the size of the system after a characteristic time τL called the
Lyapunov time of the system. In real dynamical systems, the initial position is known with
some uncertainty. Moreover, the system can feel the influence of some external phenomena that
create a small deviation of the system from its predicted trajectory. For timescales that are
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much larger than the Lyapunov time, the trajectory can be considered as a random path. The
path probability distribution reflects the uncertainty in the initial position, and the uncertainty
about “hidden degrees of freedom” that may also influence the motion. In Brownian motion for
example, the Lyapunov time of the bath is much smaller than the typical observation time of the
large particle, that’s why the large particle’s motion can be described by a stochastic trajectory.
Even if the stochastic differential equations have been used for a long time by physicist in an
intuitive manner, the mathematical framework and the rigorous connection between stochastic
equations and chaotic dynamical motion was very difficult to build and came only very recently.

Which physical information do we get by predicting probability distributions for a system?
There are two answers to this question.

For some systems, the probability distribution is directly related to a physical state. Let
us take an example to illustrate this point. If one tosses independently N coins, where N is
a large number, (this was the experiment done by Bernoulli who laid the fundamental laws
of probability theory), the ratio n

N between the number n of coins falling onto heads and the
total number of coins can be approximated by the probability of heads. This result is called
the law of large numbers. It means that probability theory is able to predict the statistics of
a large number of repeated independent experiments. Although probability theory has been
first designed to maximize the gain in games of chance, it turns out that it can be applied to
physical systems as well. Some real phenomena in nature do correspond to a large number
of independent realizations of an experiment. In Fig.(1.1.2), we display the dispersion of the
ash cloud after an eruption of the Chaitén volcano in Chile. Predicting the dispersion of dusts
and gas is of great importance as it directly impacts environmental conditions and human life
in the neighborhood. Polluting particles in a turbulent flow can be considered to have no
interactions, and their trajectories are thus independent. The trajectory of each particle is a
random trajectory independent from the other. The trajectories of polluting particles are similar
to the coins falling onto head or tail in the sense that they represent independent realizations
of an experiment. One could in principle predict the concentration of pollutants in the flow
by computing the trajectories probability distribution (this is, however, a very difficult task
because one has to solve the advection-diffusion equation in a turbulent flow).

For some other physical systems, the probability distribution gives informations about the
system’s history. For systems in which we only have one single realization of the dynamics, and
none other, the probability distribution does not represent a physical state. This is the case
for planetary dynamics for example. We only have one Earth, and there will never be different
independent realizations of its trajectory. The probability distribution gives informations about
the apparition frequency of a physical state. Over a time T of observation, the probability
distribution gives an estimation of the time TA0

over which a physical quantity A has taken
the value A0. When the observation time becomes very long, the ratio TA0

T converges to the
probability of A0. In the context of planetary dynamics, the probability distributions predict
statistics of planetary orbital states in the solar system, since its formation. Fig.(1.1.3) displays
the chaotic evolution of the planetary eccentricities over 25 billion years. The computation of
probability distributions of planetary orbits gives access to the time statistics of their eccentric-
ities. The planetary eccentricity is directly related to the mean surface insolation and thus to
the living conditions on its surface. The time statistics of the Earth’s eccentricity bring a crucial
information for understanding the environmental conditions and the development of life on our
planet since its formation.
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Figure 1.1.2: Ash cloud from the 2008 eruption of Chaitén volcano, Chile, stretching across
Patagonia from the Pacific to the Atlantic Ocean. (Wikipedia.org)

Figure 1.1.3: Chaotic evolution of the eccentricities of the planets in the Solar system over 25
billion years. The simulation shows that the chaos is much more important for the small planets
in the inner solar system, in particular for Mercury. (taken from [50])
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Figure 1.1.4: The temperature anomaly averaged over June, July and August (JJA) and aver-
aged over Europe. The anomaly is defined with respect to the average temperature over the
1961-1990 period. (taken from [32])

1.1.3 The problem of rare events with a large impact: large deviation

theory

We have seen in sections 1.1.1 and 1.1.2 that the time evolution of slow variables in a complex
physical system can be represented by an averaged dynamics, and random fluctuations around
the average. The averaged trajectory does not necessarily corresponds to a trajectory observed
in the real system: the real trajectories differ from the averaged trajectory because of random
dynamical fluctuations. In some physical systems, the averaged dynamics has an attractor. An
attractor is a trajectory with the particular property that the system will come back close to this
trajectory after any small fluctuation. In physical systems with attractors, the real trajectories
remain close to the averaged trajectory with very high probability. Any fluctuation of the system
far away from its averaged behavior is possible but very unlikely. A very large fluctuation of a
physical system, much larger than the typical fluctuations observed around the average, is what
we call a rare event.

Even if very large fluctuations of a physical system are very rare, it would be a mistake to
believe that we can in general neglect them. The rare events are also the ones that have the
most physical impact on the system, that’s why it is worth studying them. In 2003, a heat
wave in western Europe led to the death toll of more than 70 000 [83]. Fig.(1.1.4) shows the
temperature anomaly over Europe averaged over the three months of Summer June, July and
August. The temperature has typical variations around the averaged temperature. For Europe,
the standard deviation of the June-July-August temperature is about 1˚. An exceptional event
happened in summer 2003 since the averaged temperature anomaly exceeded 1.9˚ in Europe,
which is about two times greater than the standard deviation. In Switzerland where the heat
wave had its maximal amplitude, the temperature anomaly even reached 5.5˚[32].

A heat wave like the one occurring in 2003 is a very rare event, and yet, its probability is
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high enough for it to be observed at human-life timescale. This means that similar heat waves
may happen again in some years. They are random events, and cannot be foreseen far in the
future, but we can have an idea of the typical time we have to wait before observing a new heat
wave of the same magnitude. The waiting time between two consecutive heat waves is called the
return time. A major result of the theory of rare events -also called large deviation theory- is to
be able to compute efficiently the probability distribution of this return time. There are many
technical questions to be solved before we are able to predict the return time probability of heat
waves and other extreme climatic phenomena with major impact on human’s life. The aim of
large deviation theory applied to natural systems is to give precisely the return time probability
of extreme event, and being better prepared to face them.

After a very large fluctuation, the system does not always come back to its initial stable state.
There are examples of natural systems in which many stable states are possible. In that case, a
rare event may even lead to the complete destabilization of the system and the reorganization
in a new stable state. Let us give a few examples.

In the present thesis, we will be concerned with the possible increase in the eccentricity of
Mercury to very high values (e > 0.7). This event is a rare event with major impact over the
structure of our inner solar system. When the eccentricity of Mercury is too high, its orbit can
cross the orbit of Venus and the Earth and the planet may then be completely ejected from the
solar system, or collide with Venus or the Earth [54, 58]. After such an event, the structure of the
inner solar system would be completely changed to a new state, with a possibly fewer number
of planets. This example shows how a rare event leads the system to evolve in an irreversible
way and change completely its structure.

In economy, the dynamics of stock prices is often represented by a stochastic process with
jumps. A financial crisis sometimes occur, because of a very large and unexpected breakdown
of the prices on the financial markets. Such a crisis happened for example in 2008 with a major
impact over the economies of all countries in the world. This crisis could be managed thanks to
the intervention of the states and the financial markets can be said to have returned in a stable
state with small fluctuations. The financial crisis of 1929 is an example in close history where
a financial crisis could not be rapidly tackled, especially in Germany, and led to a complete
geopolitical reorganization in Europe. One can also think of population dynamics, in which
ecological bursts or extinction of species can be observed.

Financial crises, biological crises can be extremely harmful for human societies and for the
living conditions of all species on our planet. The aim of large deviation theory does not reduce
to predict the extreme events probabilities. As we will explain in section 1.4, a rare event
occurs randomly, but once it occurs, it is predictable. We cannot predict with the theory when
a rare event will occur, but we can predict how it will occur. This gives us an extraordinary
advantage: if we compare the situation to that of a general that has to face a powerful attack,
we are in the situation where the general does not know when he will be attacked, but he knows
which path and which weapons the enemy will use to attack his army. In war, this advantage is
often sufficient to win the battle, even with very inferior military strengths. The study of rare
events thus opens the possibility to intervene to avoid or to stop efficiently disastrous physical
phenomena, or if they cannot be avoided, to protect human life from them.

In the very classical problem of a Brownian particle in a potential well, the path chosen
by the particle to escape is predicted by large deviation theory. Assume now that a stochastic
model similar to that of Brownian motion could be efficiently applied to financial markets, we
could in principle extend large deviation theory to predict the path leading to financial crises.
This knowledge would greatly help the states to stabilize their financial markets and avoid
catastrophic crises. For climate phenomena or population dynamics, it is hopeless to think that
we will be able to avoid catastrophic events in the near future. Would large deviation theory be
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able to predict the statistics of extreme climate phenomena, and predict their climatic conditions,
it would also be helpful to protect ourselves from their consequences. Those last sentences sound
like speculations rather than precise statements given the current state-of-the-art in rare event
predictions, but it gives an idea about how promising and useful could be future research in
large deviation theory.

1.1.4 About the conventions used in the present manuscript

All stochastic differential equations are written with the Itô convention, except explicit mention
of the contrary. As this work is intended for an audience beyond the field of statistical physics,
I have chosen to write the stochastic differential equations using the Gaussian white noise term
ξ(t) instead of the increment dW of the Wiener process. That is, the stochastic differential
equation

Ẋ = a (X) + σ(X)ξ(t),

is equivalent to
dX = a (X) dt+ σ(X)dW.

Throughout the text, the notation “f := ” means that the right-hand side of the equality is the
definition of f . The notation “f ≡ ” means that f is identically equal to the right-hand side of
the equality. In chapter 1, ǫ always represents a small nondimensional parameter. ǫ should not
be confused with ε. The notation ε is used in chapter 2 for the energy injection rate in the flow
(expressed in m2s−3), and in chapter 4 to refer to the Earth obliquity.

1.2 Slow-fast dynamical systems

1.2.1 Theoretical framework

In the present work, we will be dealing with a slow-fast dynamical system of the form [26, 43,
44, 79]

Ẋǫ = b(Xǫ, y) (1.2.1)

ẏ =
1

ǫ
f(Xǫ, y) (1.2.2)

In the dynamical system (1.2.1-1.2.2), the variables {Xǫ, y} refer to the solution of the differential
equation for a given value of ǫ. In the following, we will be interested in the convergence of the
solution Xǫ for ǫ → 0. We should have also written yǫ for the fast variable, but we choose to
omit the subscript ǫ. The variables {Xǫ, y} can be finite or infinite dimensional. ǫ is a small
non-dimensional parameter. We call Xǫ the slow variable of the dynamical system, whereas
y is called the fast variable. The fundamental assumption about the dynamical system (1.2.1-
1.2.2) is the existence of a timescale separation between the slow and the fast variables in the
limit ǫ→ 0. For infinite dimensional systems, the timescale separation hypothesis is not always
satisfied, even in the small ǫ limit. For some complex systems for example, there can be a
continuous range of timescales in the dynamics such that even the definition of a “slow variable”
is impossible (as in three-dimensional turbulent flows for example). If the timescale separation
between the variables Xǫ and y exists, then the typical time for y variations vanishes when
ǫ→ 0.

The aim of the following sections 1.3 and 1.4 is to derive an effective dynamics for the slow
variable in the asymptotic limit ǫ→ 0.
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Dynamical systems of the form (1.2.1-1.2.2) have been thoroughly studied both by physicists
and mathematicians because of their theoretical importance and the wide range of applications
to concrete physical systems. In their most general form (1.2.1-1.2.2), where the slow and the
fast variables are fully coupled, theorems on the dynamics of the slow variable in the asymptotic
limit ǫ→ 0 are extremely hard to obtain. A lot of work has been done in [26, 42] in the simpler
case where the dynamics (1.2.2) does not depend on Xǫ and is a Markov process satisfying a
stochastic differential equation. Those results were then generalized by [44] for fully coupled
slow-fast dynamics. Those recent results were obtained for systems where the fast process is
a chaotic dynamics satisfying some hypothesis (hyperbolic chaotic systems), and do no longer
require that the fast dynamics is stochastic. This can be considered has a major theoretical
advance for applications to real physical systems because in nature, the fundamental equations
of motion for classical (not quantum!) systems are the deterministic Newton’s equations. Many
authors have shown that there is no fundamental difference between a complex chaotic dynamics
and a stochastic dynamics. This idea heuristically explains why the asymptotic dynamics of
the slow variable is exactly the same both when the fast variable is described by a stochastic
dynamics and by a deterministic chaotic dynamics.

The works on slow-fast dynamical systems [26, 43, 44, 79] give different levels of description
for the slow dynamics, depending on the properties of the fast dynamics. We can distinguish
two cases for the fast dynamics:

1. The dynamics of the fast variable is only ergodic. To say it shortly, this means that
the trajectory y(t) visits all accessible regions of phase space. Under this hypothesis, the
dynamics of Xǫ converges as ǫ → 0 to an averaged dynamics, but does not behave like a
stochastic variable. The averaging theorem will be explained in section 1.3.1.

2. The dynamics of the fast variable is ergodic and mixing. The mixing property means
that on a timescale that we call τm, the system looses the memory of its initial condition.
A mixing system is necessarily ergodic. However, the mixing time τm does not always
corresponds to the typical time in which the system visits the entire phase space. The
system can be ergodic on a much smaller timescale than τm. Section 3 gives a concrete
example of a dynamical system where the timescales for ergodicity and mixing are different.
It often happens that the mixing time τm is of the order of the Lyapunov time τL in
chaotic dynamical systems, and that both times can be assimilated. If the dynamics
(1.2.2) is mixing, the stochastic averaging theorems given in sections 1.3.2-1.3.3 state that
the solution Xǫ follows a stochastic differential equation in the small ǫ limit. The case of
a mixing fast dynamics will be very interesting for physical applications, because it allows
to go beyond the simple averaged description of the slow variable.

Before we turn to the exact formulation of averaging and stochastic averaging, we will explain
more precisely in the next section the meaning of ergodic and mixing. My aim is to give an
intuitive comprehension rather than a complete mathematical definition of those two properties.
For a more complete discussion, we refer the reader to [86, 28, 22].

1.2.2 Ergodicity and mixing

We consider in the present section the dynamics of the fast variable alone on the timescale ǫ

ẏ = f(X, y). (1.2.3)

In equation (1.2.3), the slow variable X is fixed at a given value. We assume that the dynamical
system (1.2.3) is ergodic and mixing. The ergodicity or mixing properties can be quite eas-
ily proven for Markov chains. For chaotic dynamical systems however, those properties are so
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difficult to prove that it has only been done for very simple dynamics (hard disks in two di-
mensions for example [91]). For most chaotic dynamical systems, ergodicity and mixing remain
assumptions that are well satisfied for practical purposes.

Let us give an intuitive picture of the mixing property. For mixing dynamics, the different
parts of the trajectory y(t) can be considered as uncorrelated. Otherwise stated, there exists a
timescale τm for which two different states y(t1) and y(t2) with |t1 − t2| > τm can be considered
as independant and identically distributed. random variables. Have a look at Fig.(1.2.1). We
divide the trajectory in pieces [ti, ti+1] of length τm. The variables {y(t1), y(t2), ...} behave as
independent random variables with identical distribution ρs(X, y), where ρS is the unique invari-
ant measure of the dynamics (1.2.3). We recall here that an invariant measure of a dynamical
system, or a stochastic process, is equivalently called a stationary distribution: it is a proba-
bility distribution that does not evolve in time with the considered dynamics. A mathematical
definition will be given in (1.2.10).

From the property, we can derive the asymptotic law of any integral of the form
∫ T

0

b(X, y(t))dt, (1.2.4)

where the function b is continuous. The ergodic property states that the time average of
b (X, y(t)) is identical to its average in probability. This means that for any initial condition
y(0)

1

T

∫ T

0

b(X, y(t))dt −→
T→+∞

∫
b(X, y)ρs(X, y)dy. (1.2.5)

The convergence in (1.2.5) can be seen as a property similar to the law of large numbers in prob-
ability theory. Please note that the convergence (1.2.5) does not require the mixing hypothesis,
this is a consequence of ergodicity alone. Thus, property (1.2.5) still holds if the system is
ergodic but not mixing.

The mixing property gives further information about the convergence of the time integral
(1.2.4). The integral in (1.2.4) can be seen as a sum of i.i.d random variables. A gener-
alization of the central limit theorem to continuous set of random variables states that the
integral (1.2.4) converges in law as T → ∞ to a Gaussian distribution. Let us define b̄ (X) :=∫
b(X, y)ρs(X, y)dy as the average of b, and subtract b from its average b̃ (X) := b(X, y)− b̄ (X).

As a consequence of the mixing hypothesis, probability distribution of the variable

1√
T

∫ T

0

b̃(X, y(t))dt (1.2.6)

converges as T → +∞ to a Gaussian distribution independently from the initial condition y(0)
(see e.g. [33] chapter 8). The convergence of probability distributions is called the convergence in
law. The Gaussian asymptotic distribution of (1.2.6) is entirely characterized by its correlation
matrix

A(X) := lim
T→∞

1

T

∫ T

0

∫ T

0

b̃(X, y(t))b̃T (X, y(t′))dtdt′

= lim
T→∞

1

T

∫ +∞

−∞
ds

∫ T

0

dt b̃(X, y(t))b̃T (X, y(t+ s))1 [−s < t < T − s] .

Thanks to the ergodic hypothesis, the first integral over t converges as T →∞ to

1

T

∫ T

0

dt b̃(X, y(t))b̃T (X, y(t+ s))1 [−s < t < T − s] −→
T→+∞

E

[
b̃(X, y(0))b̃T (X, y(s))

]
.



1.2. SLOW-FAST DYNAMICAL SYSTEMS 27

y(t
1
) y(t

2
)

y(t
3
)

y(t
M
)

t
i+1
-t
i
=τ

m

Figure 1.2.1: Decomposition of the trajectory y(t) in independent random variables.

And thus the correlation matrix writes

A(X) =

∫ +∞

−∞
E

[
b̃(X, y(0))b̃T (X, y(s))

]
ds,

= 2

∫ +∞

0

E

[
b̃(X, y(0))b̃T (X, y(s))

]
ds, (1.2.7)

where the last equality is obtained by symmetry with respect to time reversal of the correlation

function E

[
b̃(X, y(0))b̃T (X, y(s))

]
.

The equivalence (1.2.5) between time and probability average, and the convergence of the
time integral (1.2.6) to a Gaussian distribution are the two fundamental properties of mixing
systems that we will use in section 1.3 to derive averaging and stochastic averaging theorems.
In the remaining part of this section, we discuss more precisely the concepts of ergodicity and
mixing. In particular, we explain more precisely the intuitive picture of Fig.(1.2.1) and we
explain in which sense a mixing dynamics can be considered as a Markov chain. The two
following paragraphs are not necessary for the comprehension of the manuscript. The reader
can skip them and read directly section 1.2.3.

Fokker-Planck equation and invariant measure. For simplicity, we only explain the
concept of the invariant measure in the framework of Markov chains, and we use the Fokker-
Planck equation. The whole discussion can be extended to dynamical systems of type (1.2.3)
using the mathematical framework of distributions and weak convergence.

Let ρ(X, y, t) be the probability to find the dynamical system in state y at time t, for a
given value X of the slow variable. The Fokker-Planck equation corresponds to the continuity
equation for the probability distribution ρ [33]

∂tρ+∇y (j [ρ]) = 0, (1.2.8)

where j [ρ] is the probability flux, that can be expressed from the dynamics (1.2.3) as a linear
operator over ρ. We also introduce the Fokker-Planck linear operator LX [ρ] := −∇y (j [ρ]).
The Fokker-Planck equation (1.2.8) then writes

∂tρ = LX [ρ] . (1.2.9)
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As the dynamics (1.2.3) depends on X, the linear Fokker-Planck operator LX also depends on
X. An invariant measure y → ρs(X, y) of the dynamical system (1.2.3) is a stationary solution
of equation (1.2.9), that is

LX [ρs] = 0. (1.2.10)

In particular, if the initial distribution of the Markov process is chosen to be the invariant
measure, the system has no time evolution, it is trapped in a stationary state.

The ergodic hypothesis. There are many equivalent definitions of ergodicity for a deter-
ministic dynamical system or a stochastic process. We propose in the following two equivalent
definitions and show the physical implications of ergodicity (see e.g. [100], chapter 2).

Let A be a region in phase space. Considering a time interval [0, T ], we call TA the time
spent by the system y(t) in region A. TA can thus be defined by

TA :=

∫ T

0

1 [y(t) ∈ A] dt.

The function 1 [y(t) ∈ A] takes the value 1 if y(t) is in A, zero otherwise. A dynamical system
will be defined as ergodic if, for very large times, the fraction of time spent by the system in A
corresponds to the probability of the system to be in A in stationary state. This property writes

lim
T→+∞

TA
T

=

∫

A

ρs(X, y)dy. (1.2.11)

Property (1.2.11) has to be true for almost any initial condition y0 of the fast dynamics. The
property (1.2.11) of ergodic systems means that the statistics over time are given equivalently
by the stationary probability distribution. Intuitively, we can say that the ergodic hypothesis
will be satisfied if the system can explore fast enough the entire accessible phase space whatever
the initial condition. In the context of slow-fast dynamical system, fast enough means that the
exploration of phase space has to occur before any significant variation of the variable X. If this
is not the case, the system cannot be considered as ergodic on the timescale of the slow variable
and the averaging over the fast variable y will only occur over a fraction of phase space, not the
entire phase space.

A dynamical system is for example not ergodic when the phase space is partitioned into two
or more distinct regions C1, C2... that are not connected by the dynamics (1.2.3). The system
may then be ergodic in C1, and in C2 separately, but not on C1 ∪ C2, because there is no
possible transition from C1 to C2. The situation is illustrated in Fig.(1.2.2). The system has
many different invariant measures ρ1s, ρ

2
s... associated with the different regions. ρis is nonzero

in region Ci and zero everywhere else.
Hence, an equivalent definition of ergodicity may be written:

The dynamics has one single non-trivial invariant measure.

If the phase space is connected, but the typical time for transitions between different regions
Ci is longer or of the same order as the time of a significant variation of X, the fast system is
not ergodic at the scale of the slow variable (even if it is ergodic from a strict mathematical
point of view). This shows that for real physical slow-fast system, one has to be very careful
that averaging might not be possible because the fast system is trapped for a long time in some
subregion of phase space.
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Figure 1.2.2: Schematic representation of a non ergodic process. The phase space has two
disconnected regions and the dynamics can hardly escape from one region to the other.

The mixing hypothesis. A dynamical system is called mixing by analogy with the behavior
of a mixture in a pot when someone turns a spoon inside. Consider for example a drop of red
paint in a pot of white paint. After many turnover of the spoon, the red paint is stretched in
thinner and thinner filaments (see Fig.1.2.3) until both color are eventually mixed, when the
human eye cannot differentiate them. The same happens for a mixing chaotic dynamics.

To compare the picture (1.2.3) of mixing occurring in a real natural flow with the mixing
occurring in chaotic dynamical system, we display some images of the phase space [0, 2π]× [0, 1]
of the dynamical system defined by the Hamiltonian [51]

HE =
α

2
p2 +

√
(1− p2)

13∑

k=1

αk sin(νkt+ q + ϕk) (1.2.12)

The Hamiltonian (1.2.12) will be used in chapter 4 to study the long term variations of the
Earth obliquity. (p, q) is the set of canonical variables, t is the time and all other coefficients are
external parameters. The Hamiltonian (1.2.12) has one degree of freedom and depends explicitly
on time, it thus defines a chaotic dynamics for the variables (p, q). To show how mixing occurs
in the system, we perform a direct numerical integration of Hamilton’s equations. We start
from a uniform distribution over the line displayed in the left panel of Fig.(1.2.4), and let the
system evolve according to Hamilton’s equations. Using a try and error algorithm [90], we are
able to track the folding of the line for a long time, and resolve the thin filaments and lobes that
are created by the mixing of the distribution. The evolution of the line distribution function is
displayed in the left panel of Fig.(1.2.4). One clearly sees that the initially localized distribution
spreads on the (p, q) plane because of the thin structures that are created at small scales.
For ergodic Hamiltonian dynamics, the invariant measure is the uniform measure because the
Hamiltonian flow conserves the areas (the Hamiltonian flow is called symplectic). In Fig.(1.2.4),
the distribution becomes more and more uniform. The initial distribution converges to the
uniform distribution in a weak sense: the distribution can be considered as uniform when the
separation between the filaments happens at a scale that is smaller than the smallest physical
scale we are able to observe.

To formulate more clearly the mixing hypothesis, consider an initial probability distribution
ρ0(y) almost entirely concentrated around an initial state y0. Take for example a step function
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Figure 1.2.3: Picture of red paint in white paint after partial mixing.
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Figure 1.2.4: Simulation of the Hamiltonian dynamics (1.2.12). The left panel represents the
initial distribution of trajectories. The right panel displays the distribution of trajectories after
many turnover times of the dynamics. One can clearly see that the initial line is distorted and
creates thin filaments and lobes.
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Figure 1.2.5: The left picture shows the probability distribution evolution in an ergodic system
without mixing. The right picture shows the same evolution in an ergodic and mixing system.

of infinitesimal extension δ > 0,

ρ0(y) :=
1

δN
1 [‖y − y0‖ < δ] , (1.2.13)

whereN is the dimension of space, and ‖y‖ is the Euclidean norm of a vector. Then, let the initial
distribution (1.2.13) evolve with the probability flow according to the Fokker–Planck equation
(1.2.9) (or according to Liouville’s equation for a dynamical system). When the system satisfies
the mixing hypothesis, the initial distribution (1.2.13) converges in a large time compared to
the mixing time τm to the invariant measure of the system

ρ(X, y, t) ≈
t≫τm

ρs(X, y). (1.2.14)

In particular, the convergence in (1.2.14) does not depend on the initial distribution ρ0. A
mixing dynamical system is necessarily ergodic, not the reverse. As a consequence, it has a
well defined unique invariant measure ρs. In Fig.(1.2.5), we show qualitatively the difference
between an ergodic but non-mixing system, and a mixing system. Starting from a very localized
distribution (1.2.13) in an ergodic system, the distribution is carried throughout phase space,
but does not spread. After a very large time, the distribution can be found around some value
y1 6= y0 but it remains localized around y1. The system is reversible, and keeps the memory of
its initial condition: knowing the value y1 at time t, we can come back to the initial value y0.

The situation is very different in a mixing system. A mixing system is irreversible: starting
from a very localized distribution, the distribution spreads allover phase space and converges to
the invariant measure. This corresponds to the right picture of Fig.(1.2.5). One can see that
after some time t ∼ τm, it is impossible to know what was the initial condition. The system
could have started from every point in phase space because every initial distribution relaxes to
the invariant measure.

The mixing dynamical system has thus the qualitative properties of a discrete Markov chain.
Suppose that the system is located in a state y with some uncertainty δy. After a long time t
compared to τm, the system can be found in any state y(t) with probability ρS . The trajectory
can thus be decomposed in a number of independent variables as shown in Fig.(1.2.1).

1.2.3 Stochastic dynamics of the slow variable: three levels of descrip-

tion

We now summarize the main theorems we will give about the slow-fast dynamical system (1.2.1-
1.2.2). Fig.(1.2.6) displays a typical example of the slow variable trajectory in a slow-fast system.
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Figure 1.2.6: The picture is an illustration of the asymptotic dynamics of a slow variable in
a slow-fast system. For a very large timescale separation, the slow process converges to its
average with Gaussian fluctuations of order

√
ǫ around the average. The picture also displays

an example of a very large fluctuation, which is very rare in the limit ǫ→ 0. The probability of
large fluctuations are predicted by the large deviation theory.
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The trajectory Xǫ(t) in Fig.(1.2.6) has zero time average. When ǫ goes to zero, the fluctua-
tions of Xǫ(t) become smaller and smaller around the average. This result is a consequence of
the averaging principle (see section 1.3.1)

Xǫ −→
ǫ→0

X, (1.2.15)

where X(t) is the trajectory of the slow variable averaged over the dynamics of the fast variable.
The averaging principle (1.2.15) gives a rather crude approximation of the real trajectory,

even in the limit ǫ→ 0. As can be seen in Fig.(1.2.6), the dynamics of the slow variable fluctuates
around the average trajectory. The stochastic averaging theorem gives a precise estimation of
the fluctuations of Xǫ −X. The stochastic averaging theorem states that uǫ := Xǫ−X√

ǫ
follows

asymptotically a stochastic differential equation where the noise is a Gaussian white noise process

u̇ = a(X)u+ σ(X)ξ(t). (1.2.16)

For the precise expression of the coefficients a and σ, the reader is referred to section 1.3.2.
The stochastic averaging theorem shows that typical fluctuations of the slow variable around its
average are Gaussian, and are of order

√
ǫ. This result also gives the rate of convergence in the

averaging principle (1.2.15). The simulation in Fig.(1.2.6) was done with ǫ = 0.01, and thus the
typical fluctuations observed are of order of 0.1.

Last, Fig.(1.2.6) shows a very large fluctuation away from zero, much larger than
√
ǫ. Such

a fluctuation is very rare because the system displayed in Fig.(1.2.6) has the property that
the dynamics always tends to bring back the system to its equilibrium position X = 0. Large
deviation theory is able to give an estimation of the probability of such rare events. Large
deviation theory predicts that such large fluctuations are exponentially few probable as ǫ→ 0,
that’s why they are much less observed than the typical fluctuations of order

√
ǫ. For this

process, the stationary probability Pǫ(X) to observe the system in state X is asymptotically

Pǫ(X) ≍
ǫ→0

e−
X2

2ǫ . (1.2.17)

The asymptotic relation (1.2.17) is not exactly an asymptotic equivalence. The precise meaning
of the relation ≍ will be given in section 1.4. The large deviation principle is the most powerful
tool we currently have to describe the stochastic dynamics of a slow variable. In fact, we will
also explain in section 1.4 that large deviation theory does not only predict the probability
of large fluctuations, but also the path -called instanton- chosen by the system to realize a
large fluctuation. The instanton theory, which is a consequence of large deviation theory, is of
paramount importance for physical systems in general, and for the applications presented in
this thesis, and will thus be described in section 1.4.

1.3 Averaging and stochastic averaging

In the following sections 1.3.1,1.3.2 and 1.3.3, we give the theorems of averaging and stochastic
averaging for slow-fast systems of type (1.2.1-1.2.2). For each theorem, we give two different
proofs, one based on asymptotic analysis of stochastic integrals, and one based on an asymptotic
expansion of the Fokker-Planck equation. The first proof uses analysis methods (as in [26]), and
the second one algebraic methods (as in [79]). Both methods are complementary to each other,
and give completely equivalent results. The reader might prefer one or the other depending on
its own mathematical affinities.
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1.3.1 The averaging principle

Consider the slow-fast dynamical system (1.2.1-1.2.2). Assume that for each X ∈ R
N , the fast

dynamics (1.2.2) is ergodic, and let ρs(X, y) be its invariant measure. We define the new vector
field b̄ by the relation

b̄(X) :=

∫
b(X, y)ρs(X, y)dy. (1.3.1)

Then for all T > 0 the solution Xǫ(t) of the slow-fast system converges in law to the trajectory
of the average dynamics on the time interval [0, T ]:

Xǫ −→
ǫ→0

X, (1.3.2)

with
Ẋ = b(X). (1.3.3)

To say it in a more rigorous way, the convergence in law of Xǫ to X means that for all δ > 0 we
have

P

{
sup
t≤T

∣∣Xǫ(t)−X(t)
∣∣ > δ

}
−→
ǫ→0

0. (1.3.4)

Some additional hypothesis on the regularity of b are required to derive the result (1.3.4),
we refer the reader to the chapter 2 of [26].

Formal proof using the integral increment To prove the result (1.3.2), we rewrite the
slow fast system (1.2.1-1.2.2) in a slightly different but equivalent form

Ẋ = b

(
X, y

(
t

ǫ

))
, (1.3.5)

ẏ = f (X, y) . (1.3.6)

We omit in the proof the subscript ǫ for clarity. Equation (1.3.5) for the evolution of the slow
variable also writes in its integral form

X(T ) = X0 +

∫ T

0

b

(
X(t), y

(
t

ǫ

))
dt.

We chose an increment of time such that the slow variable does not change significantly during
the time ∆T . We define the integral increment of X by

∆X :=

∫ ∆T

0

b

(
X(t), y

(
t

ǫ

))
dt. (1.3.7)

The main idea of the proof consists in studying the asymptotic behavior of the integral increment
(1.3.7) when ǫ goes to zero. The trajectory X(t) over [0, T ] is composed by the sum of a large
number of integral increments, that’s why the asymptotic trajectory ofX on a finite time interval
can be derived from the asymptotic behavior of its integral increments.

With the change of variable t← t
ǫ in the integral (1.3.7) we get

∆X := ∆T
ǫ

∆T

∫ ∆T
ǫ

0

b (X(ǫt), y (t)) dt. (1.3.8)
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Because the slow variable X has no significant changes during the time ∆T , we can approximate
the function X(ǫt) in (1.3.8) by its initial valueX(0). Then, for any fixed value X(0), the ergodic
hypothesis implies the convergence (1.2.5) of the time average of b, which gives

ǫ

∆T

∫ ∆T
ǫ

0

b (X(0), y (t)) dt −→
ǫ→0

b̄(X(0)),

where the field b̄ is given by (1.3.1). This means that

∆X −→
ǫ→0

b̄(X(0))∆T.

The convergence is valid for any increment ∆X of the trajectory with starting point X(t). This
shows that the asymptotic trajectory of X follows the equation

∆X(t) = b̄(X(t))∆t,

and this gives the result (1.3.3).

Formal proof using asymptotic expansion of the Fokker-Planck equation The prob-
ability distribution ρ(X, y, t) of the dynamical system (1.2.1-1.2.2) satisfies the Fokker-Planck
equation

∂tρ = L1(ρ) +
1

ǫ
L2(ρ),

where L1,L2 are the Fokker-Planck operators associated to the dynamics ofX and y respectively.
The explicit expression of both operators can depend on X and y. To find the asymptotic
behavior of the distribution ρ, we formally expand ρ in power of ǫ

ρ(X, y, t) := ρ0(X, y, t) + ǫρ1(X, y, t) + ...

To leading order in ǫ we obtain the equation for ρ0

L2(ρ0) = 0. (1.3.9)

This relation implies that ρ0 is a stationary solution of the Fokker-Planck equation for the fast
variable. Because of the ergodicity hypothesis, equation (1.3.9) has a unique solution which is
the invariant measure ρs(X, y). We thus define a new distribution ρ̃0 by

ρ0(X, y, t) := ρ̃0(X, t)ρs(X, y). (1.3.10)

Please note that ρ̃0 is the marginal distribution over X at order 0, ρ̃0 :=
∫
ρ0(X, y, t)dy. The

fact that the joint probability distribution can be written to leading order in the form (1.3.10)
has a clear physical interpretation: the fast variable has time to reach a quasi-static equilibrium
with the slow variable.

At next order in ǫ, we obtain

∂tρ0 = L1(ρ0) + L2(ρ1). (1.3.11)

Because the Fokker-Planck operator is the divergence of the probability current j[ρ], we have
L2(ρ1) = ∇yj[ρ1], and thus

∫
L2(ρ1)dy = 0. The integration of equation (1.3.11) over y, with

the relation
∫
ρs(X, y)dy = 1, gives

∂tρ̃0 =

∫
L1(ρ0)dy. (1.3.12)
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With the explicit expression L1(ρ0) = −∇X (b(X, y)ρ̃0(X, t)ρs(X, y)) the right-hand side of
(1.3.12) becomes

∫
L1(ρ0)dy = −∇X

(
ρ̃0(X, t)

∫
b(X, y)ρs(X, y)dy

)
,

= −∇X

(
ρ̃0(X, t)b̄(X)

)
.

The equation for the marginal distribution ρ̃0 thus writes

∂tρ̃0(X, t) = −∇X

(
b̄(X)ρ̃0(X, t)

)
. (1.3.13)

Equation (1.3.13) is the Fokker–Planck equation for the average dynamics (1.3.3). We have thus
“formally” proven that X −→

ǫ→0
X in law.

1.3.2 Stochastic averaging in finite time

The aim of stochastic averaging theorems is to describe the fluctuations of Xǫ around the
averaged trajectory X. The fundamental assumption of those theorems is the mixing hypothesis
for the fast dynamics. We will prove in the following that the slow variable has small fluctuations
of typical size

√
ǫ around X.

We define a new variable

uǫ :=
Xǫ −X√

ǫ
.

We assume that for any X ∈ R
N the dynamics of the fast variable

ẏ = f(X, y)

is mixing. In particular all correlation functions of the fast variable y decrease fast enough with
time (the meaning of “fast enough” can be precisely defined, see [26])

E
[
b(X, y(t))bT (X, y(0))

]
− E [b(X, y(t))]E

[
bT (X, y(0))

]
−→

t→+∞
0.

For all practical purposes, stochastic averaging for the slow variable will be valid over times
t≫ τm. For chaotic systems where the mixing time is of the same order as the Lyapunov time
τL, stochastic averaging can be applied for timescales t≫ τL.

We can now formulate the first theorem of stochastic averaging. For all finite T > 0 the
fluctuations uǫ(t) of the slow variable converge in law over the time interval [0, T ] to the function
u0(t) that satisfies the stochastic differential equation

u̇0 = a(X)u0 + σ(X)ξ(t). (1.3.14)

The stochastic product has to be understood with the Itô convention. The matrix coefficients
a(X) and σ(X) in equation (1.3.14) are given by the Green–Kubo formulae

σ(X)σT (X) = 2

∫ +∞
E

[
b̃(X, y(t))b̃T (X, y(0))

]
dt, (1.3.15)

aij(X) =
∂

∂Xj

∫
bi(X, y)ρs(X, y)dy =

∂b̄

∂Xj
(X). (1.3.16)

In expression (1.3.15), T stands for the transposition operator of a matrix or a vector, and the
new field b̃ is the dynamical field b with subtraction of its average b̃(X, y) := b(X, y)− b̄(X).
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The asymptotic limit (1.3.14) is valid for finite times. In particular, the convergence of uǫ
implies that the variable Xǫ remains close to X in finite time. However, the theorem of this
section does not provides any result about the variations of Xǫ for large times. The variations of
Xǫ for finite time has typical amplitude

√
ǫT . This means that the variations can become very

large for T ∝ 1
ǫ . The example of Brownian motion in Fig.(1.1.1) shows that the variations of

the slow variable can deviate far away from its averaged position. With no attractor, the limit
(1.3.14) does not provide enough informations about the possible large fluctuations of X(t) for
times of order 1

ǫ . In the particular case b̄ = 0, it is possible to derive a stochastic differential
equation for the slow variable, valid for timescales of order 1

ǫ . This case is of major interest for
this thesis and will be treated in section (1.3.3).

Formal proof using the integral increment The proof of the asymptotic equation (1.3.14)
for u0 follows the same method as the proof of the averaging theorem of section 1.3.1. We omit
the subscript ǫ for clarity. We have to derive, as ǫ goes to zero, the limit of the integral increment
of u

∆u =
1√
ǫ

∫ ∆T

0

b

(
X(t), yX

(
t

ǫ

))
dt− 1√

ǫ

∫ ∆T

0

b̄
(
X(t)

)
dt. (1.3.17)

The notation yX (t) is used to remember that the fast process depends explicitly on X.
We then introduce in (1.3.17) the average of b

(
X(t), yX

(
t
ǫ

))
, and we decompose the incre-

ment ∆u as

∆u =
1√
ǫ

∫ ∆T

0

{
b

(
X(t), yX

(
t

ǫ

))
−
∫
b (X(t), y) ρs(X(t), y)dy

}
dt (1.3.18)

+
1√
ǫ

∫ ∆T

0

{∫
b (X(t), y) ρs(X(t), y)dy −

∫
b
(
X(t), y

)
ρs(X(t), y)dy

}
dt.

The increment ∆u is composed of two terms. The first one is

∆u1 :=
1√
ǫ

∫ ∆T

0

{
b

(
X(t), yX

(
t

ǫ

))
−
∫
b (X(t), y) ρs(X(t), y)dy

}
dt.

With the change of variable t← t
ǫ and the approximation that X(ǫt) ≈ X(0) we get

∆u1 :=
√
ǫ

∫ ∆T
ǫ

0

b̃ (X(0), yX (t)) dt. (1.3.19)

The integrand b̃ (X(0), yX (t)) in (1.3.19) is a function of yX(t), with zero mean. Thanks to
the hypothesis that the dynamics of y is mixing, the integral in (1.3.19) can be considered as
a sum of independant and identically distributed random variables with zero mean. In the
present context we can apply the central limit theorem to the continuous distribution of the

random variables
{
b̃ (X(0), yX (t))

}
t∈[0,∆T/ǫ]

. The result is that the continuous sum of random

variables √
ǫ

∆T

∫ ∆T
ǫ

0

b̃ (X(0), yX (t)) dt

converges as ǫ→ 0 to a Gaussian distribution with zero mean and variance

∆u21 = 2

∫ +∞

0

E

[
b̃(X(0), y(t))b̃T (X(0), y(0))

]
dt.
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Therefore, on the timescale of the slow variable, the increment ∆u1 is completely equivalent in
law to

∆u1
in law−→
ǫ→0

σ(X(0))∆W,

where σ is given by 1.3.15 and ∆W is a Gaussian random variable with zero mean and variance
∆T .

We now turn to the second part of the integral increment in (1.3.18)

∆u2 :=
1√
ǫ

∫ ∆T

0

{∫
b (X(t), y) ρs(X(t), y)dy −

∫
b
(
X(t), y

)
ρs(X(t), y)dy

}
dt.

As the difference betweenX andX is of the order
√
ǫ, we can expand the integral

∫
b (X(t), y) ρs(X(t), y)dy

around X, this gives

∆u2 =
1√
ǫ

∫ ∆T

0

∂

∂Xi

{∫
b
(
X(t), y

)
ρs(X(t), y)dy

}(
Xi(t)−Xi(t)

)
dt+ o

(
X −X

)
,

=

∫ ∆T

0

∂b̄

∂Xi

(
X(t)

)
ui(t)dt+ o

(√
ǫ
)
.

with implicit summation over the index i. To order ∆T , we get

∆u2 ≈ a
(
X(0)

)
u(0)∆T,

with the matrix a given by (1.3.16). Finally, neglecting all terms of higher orders in ǫ and ∆T ,
we obtain the following asymptotic expansion for the increment

∆u −→
ǫ→0

a
(
X(0)

)
u(0)∆T + σ (X(0))∆W. (1.3.20)

The last step is to notice that X(0) = X(0) +
√
ǫu(0), such that we can replace σ (X(0)) by

σ
(
X(0)

)
in the limit (1.3.20). We finally obtain

∆u −→
ǫ→0

a
(
X(0)

)
u(0)∆T + σ (X(0))∆W.

which is valid for every value X(0). This proves that the function u(t) satisfies the stochastic
differential equation (1.3.14) in the limit of vanishing ǫ.

Formal proof using the asymptotic expansion of the Fokker-Planck equation The
proof using the Fokker–Planck equation is quite long and can be found in [33, 10]. We give below
the sketch of the calculations to be done. in the following, we use the convention of implicit
summation over multiple indices.

The first step of the proof consists in expanding the slow-fast dynamical system around X(t)
to obtain a system of equations for the dynamics of (u, y). With straightforward computations,
we get

u̇ =
1√
ǫ
b̃
(
X, y

)
+

∂b

∂Xj

(
X, y

)
uj +O(

√
ǫ),

ẏ =
1

ǫ
f
(
X, y

)
+

1√
ǫ

∂f

∂Xj

(
X, y

)
uj +O(1),
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with implicit summation over the index j. The Fokker–Planck operators L1,L2 associated with
the dynamics of u and y respectively, can also be expanded in powers of ǫ as

{
L1 = 1√

ǫ
Lα
1 + Lβ

1 +
√
ǫLγ

1 + ...

L2 = 1
ǫLα

2 + 1√
ǫ
Lβ
2 + Lγ

2 + ...
(1.3.21)

and the probability distribution ρ as

ρ(u, y, t) := ρ0(u, y, t) +
√
ǫρ1(u, y, t) + ǫρ2(u, y, t) + ...

The reader has to take care of the fact that all explicit expressions of the Fokker–Planck operators
in (1.3.21) involve the variables u, y and t because of the function X(t) which is an input in the
system. The procedure now consists in collecting the equations at successive orders of ǫ.

The equation to leading order shows that the distribution ρ0 writes

ρ0(u, y, t) = ρ̃0(u, t)ρs(X(t), y), (1.3.22)

where ρs(X, y) is as before the invariant measure of the fast process for a given value X. The
decomposition of ρ0 in (1.3.22) means that the fast variable has time to reach the quasi-static
equilibrium with the slow process.

To next order we get
Lα
2 (ρ1) = −Lα

1 (ρ0)− Lβ
2 (ρ0). (1.3.23)

To solve the latter equation and express the distribution ρ1 as a function of ρ0, we have to check
that the solvability condition is satisfied

∫
Lα
1 (ρ0)dy = 0. (1.3.24)

The explicit expression
∫
Lα
1 (ρ0)dy = − ∂

∂u

{
ρ̃0(u, t)

∫
b̃
(
X, y

)
ρs(X, y)dy

}
shows that the solv-

ability condition (1.3.24) is satisfied because b̃ has zero mean. We may then invert the operator
Lα
2 in relation (1.3.23). The explicit expression for ρ1 is thus

ρ1 =

∫ +∞

0

esL
α
2 (Lα

1 (ρ0)) ds+

∫ +∞

0

esL
α
2

(
Lβ
2 (ρ0)

)
ds.

Finally, the equation at next order gives us the dynamics of ρ̃0

∂tρ̃0 =

∫
Lα
1 (ρ1)dy +

∫
Lβ
1 (ρ0)dy. (1.3.25)

The second term of (1.3.25) is the simplest one, it gives the following drift term in the equation
for X ∫

Lβ
1 (ρ0)dy = − ∂

∂ui

{
uj ρ̃0(u, t)

∫
∂bi

∂Xj

(
X, y

)
ρs
(
X, y

)
dy

}
(1.3.26)

The second term is a bit more subtle. It is composed of the two different contributions
∫
Lα
1 (ρ1)dy =

∫ +∞

0

ds

{∫
Lα
1 e

sLα
2 (Lα

1 (ρ0)) dy

}
+

∫ +∞

0

ds

{∫
Lα
1 e

sLα
2

(
Lβ
2 (ρ0)

)
dy

}
.

To compute the term
∫
Lα
1 e

sLα
2 (Lα

1 (ρ0)) dy =
∂

∂ui

∂

∂uj

{
ρ̃0(u, t)

{∫
b̃i
(
X, y

)
esL

α
2 b̃j
(
X, y

)
ρs
(
X, y

)}}
, (1.3.27)
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we use the adjoint of the Fokker–Planck operator (Lα
2 )

† in the integral over y. We then use the
nontrivial property that

es(L
α
2 )†
[
b̃i
(
X, y

)]
= Ey

[
b̃i
(
X, y(s)

)]
,

where y(s) is the value of the flow at time s with initial condition y(0) = y. This shows that
∫
b̃i
(
X, y

)
esL

α
2 b̃j
(
X, y

)
ρs
(
X, y

)
= E

[
b̃(X, y(s))b̃T (X, y(0))

]
. (1.3.28)

Equations (1.3.27),(1.3.28) give the result

−
∫ +∞

0

ds

{∫
Lα
1 e

sLα
2 (Lα

1 (ρ0)) dy

}
=

∂

∂ui

∂

∂uj

{
ρ̃0(u, t)

{∫ +∞

0

E

[
b̃(X, y(s))b̃T (X, y(0))

]
ds

}}
.

This term corresponds to the white noise σ(X)ξ(t) in equation (1.3.14).
The most difficult term is

∫ +∞

0

ds

{∫
Lα
1 e

sLα
2

(
Lβ
2 (ρ0)

)
dy

}
=

∂

∂ui

{
ρ̃0(u, t)

{∫ +∞

0

ds

∫
b̃i
(
X, y

)
esL

α
2
∂

∂yj

{
uk

∂f j

∂Xk

(
X, y

)
ρs
(
X, y

)}
dy

}}
.

Using again the property

es(L
α
2 )†
[
b̃i
(
X, y

)]
= Ey

[
b̃i
(
X, y(s)

)]
,

we can write
∫ +∞

0

ds

{∫
Lα
1 e

sLα
2

(
Lβ
2 (ρ0)

)
dy

}
=

∂

∂ui

{
ρ̃0(u, t)uk

{∫ +∞

0

ds

∫
Ey

[
b̃i
(
X, y(s)

)] ∂

∂yj

{
∂f j

∂Xk

(
X, y

)
ρs
(
X, y

)}
dy

}}

(1.3.29)

= − ∂

∂ui

{
ρ̃0(u, t)uk

{∫ +∞

0

ds

∫
∂

∂yj
Ey

[
b̃i
(
X, y(s)

)] ∂f j
∂Xk

(
X, y

)
ρs
(
X, y

)
dy

}}
.

This identity shows that the term
∫ +∞
0

ds
{∫
Lα
1 e

sLα
2

(
Lβ
2 (ρ0)

)
dy
}

adds a drift term to the

stochastic equation (1.3.14) which explicit expression is

∫ +∞

0

ds

∫
∂

∂yj
Ey

[
b̃i
(
X, y(s)

)] ∂f j
∂Xk

(
X, y

)
ρs
(
X, y

)
dy.

Such an expression can be found for example in [10]. Some additional work is needed to show
that the last expression, together with (1.3.26), simplifies to give the coefficient a.

Let us come back to (1.3.29) and use the relation

∂

∂yj

{
∂f j

∂Xk

(
X, y

)
ρs
(
X, y

)}
=

∂

∂Xk

∂

∂yj

{
f j
(
X, y

)
ρs
(
X, y

)}
− ∂

∂yj

{
f j
(
X, y

) ∂ρs
∂Xk

(
X, y

)}
,

= − ∂

∂yj

{
f j
(
X, y

) ∂ρs
∂Xk

(
X, y

)}
, (1.3.30)

where the last equality is obtained because the invariant measure satisfies

∂

∂yj

{
f j
(
X, y

)
ρs
(
X, y

)}
= 0.
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An integration by part in (1.3.29) using (1.3.30) gives
∫ +∞

0

ds

{∫
Lα
1 e

sLα
2

(
Lβ
2 (ρ0)

)
dy

}
=

∂

∂ui

{
ρ̃0(u, t)uk

{∫ +∞

0

ds

∫
f j
(
X, y

) ∂

∂yj
Ey

[
b̃i
(
X, y(s)

)] ∂ρs
∂Xk

(
X, y

)
dy

}}
.

(1.3.31)
The Feynman-Kac formula also implies that

f j
(
X, y

) ∂

∂yj
Ey

[
b̃i
(
X, y(s)

)]
=

∂

∂s
Ey

[
b̃i
(
X, y(s)

)]
,

ans thus
∫ +∞

0

f j
(
X, y

) ∂

∂yj
Ey

[
b̃i
(
X, y(s)

)]
ds =

∫
b̃i
(
X, y′

)
ρs
(
X, y′

)
dy′ − b̃i

(
X, y

)
.

using the last equality in (1.3.31), we finally get
∫ +∞

0

ds

{∫
Lα
1 e

sLα
2

(
Lβ
2 (ρ0)

)
dy

}
= − ∂

∂ui

{
ρ̃0(u, t)uk

{∫
b̃i
(
X, y

) ∂ρs
∂Xk

(
X, y

)
dy

}}
.

(1.3.32)
One can then check that both terms (1.3.26) and (1.3.32) combine to give the total drift a(X)
in (1.3.16).

1.3.3 Stochastic averaging, case b ≡ 0

In section 1.3.2, we have seen that the real trajectory Xǫ(t) can deviate from the averaged
trajectory X(t) with Gaussian fluctuations of the order

√
ǫ. This result is valid for any finite

time T . Long-term predictions for the dynamics are much more difficult, and the long-term
behavior partly depends on the structure of the averaged field b̄. We show in this section that a
stochastic equation for Xǫ can be derived in the particular case b ≡ 0. Consider equation (1.3.14)
for the fluctuations with X = 0 and a ≡ 0. The variableXǫ(t) satisfies the free diffusion equation

Ẋǫ(t) ∼
ǫ→0

√
ǫσ (0) ξ(t). (1.3.33)

In equation (1.3.33), the dynamics of Xǫ is a free diffusion process, and can thus reach very
high values on a timescale of order 1

ǫ . Over the timescale 1
ǫ , the fluctuations of Xǫ cannot be

described by a power expansion of b and equation (1.3.14) breaks down.
The aim of the present section is thus to derive a new stochastic averaging theorem in the case

b̄ ≡ 0 ([79], chapter 11). The theorem of this section will be particularly useful for applications
in celestial mechanics (see sections 3 and 5). In celestial mechanics, the time evolution of action
variables is a periodic function of the canonical angles that averages to zero over the fast motion.

We assume now that the dynamical field b averages to zero over the fast variable

b̄ :=

∫
b(X, y)ρs(X, y)dy ≡ 0.

The new timescale of evolution for X will be of order 1
ǫ . We thus write the system (1.2.1-1.2.2)

on the new timescale as

Ẋǫ =
1

ǫ
b(Xǫ, y), (1.3.34)

ẏ =
1

ǫ2
f(Xǫ, y). (1.3.35)
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We assume that for each fixed value of X, the fast process defined by the equation

ẏ = f(X, y)

is mixing, and we call τm its mixing time. The stochastic description of the slow variable is only
valid for timescales much larger than τm.

Then for all T > 0, the slow process Xǫ(t) converges in law over the time interval [0, T ] to
the process X0(t) that satisfies the stochastic differential equation

Ẋ0 = γ(X0) + σ(X0)ξ(t). (1.3.36)

If the fast process is symmetric w.r.t. time reversal, the matrix coefficient σ in (1.3.36) is given
by the Green–Kubo formula

σ(X)σT (X) = 2

∫ +∞

0

E
[
b(X, y(t))bT (X, y(0))

]
dt. (1.3.37)

In the fast process is not time reversal symmetric, σσT is given by the symmetric part of the
matrix (1.3.37). Contrary to the first stochastic averaging theorem (1.3.14), the vector coefficient
γ does not have any simple expression. The coefficient γ creates a drift term in the equation
for X0. Physically, it is important to understand that the drift term comes from correlations
between the fast and the slow variables. In equation (1.3.14), the correlations between X and y
could be neglected because they would only create a correction of order ǫ to the dynamical field
b̄. When b̄ is zero, the correction of order ǫ is important over times of order 1

ǫ .
Only in the simple case of one dimensional fast process that does not depend on X, we do

recover an explicit expression for the drift (see [33], chapter 8)

γ(X) =

∫ +∞

0

E [∂Xb(X, y(t))b(X, y(0))] dt. (1.3.38)

For a fully coupled dynamics as (1.3.34-1.3.35), the computation of the coefficient γ should be
done in each particular case using one of the two techniques of algebra or analysis described
below in the proof.

Equation (1.3.36) is an exact limit in law. It describes completely the long-term distribution
of Xǫ, and there is no need to resort to large deviation theory.

Proof using the Fokker-Planck equation Contrary to what was done in section (1.3.2),
we only give here the proof using asymptotic expansion of the Fokker–Planck equation. This
method is the only one I know that leads to explicit although quite abstract expressions for the
coefficient γ in (1.3.36).

We use the results (1.3.10-1.3.11-1.3.12) obtained in the proof for the averaging principle.
Because of the assumption that b̄ ≡ 0, the term in the right-hand side of (1.3.12) vanishes. We
get the equation

∂tρ̃0 = 0.

The expansion of the distribution in powers of ǫ does not provide any information about the
time evolution of ρ. To be consistent, we have to use a multiscale expansion instead. We assume
that ρ now depends on all timescales ǫt, ǫ2t, ..., that is

ρ(X, y, t) = ρ̃0(X, ǫt, ǫ
2t...)ρs(X, y) + ǫρ1(X, y, ǫt, ǫ

2t...) +O(ǫ2).

The distribution ρ1 satisfies the equation

L2(ρ1) = −L1(ρ0),
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which gives after inverting the Fokker–Planck operator

ρ1 =

∫ +∞

0

et
′L2L1(ρ0)dt

′. (1.3.39)

The next order in ǫ gives the time evolution of ρ0 on the timescale 1
ǫ . The equation is

∂t1ρ0 = L1(ρ1) + L2(ρ2),

where t1 is the time variable ǫt. After integration over y, this equation becomes

∂t1 ρ̃0 =

∫
L1(ρ1)dy. (1.3.40)

We have to evaluate the right-hand side of (1.3.40) using (1.3.39). The expression writes explic-
itly

∫
L1(ρ1)dy =

∫ +∞

0

dt′∇X

{∫
dy b(X, y)et

′L2∇X {b(X, y)ρs(X, y)ρ̃0}
}
. (1.3.41)

We then use the adjoint L†
2 of the Fokker–Planck operator and the relation

etL
†
2b(X, y) = Ey [b(X, y(t))] .

The value y(t) in the average should be understood as the trajectory of the fast process at time
t starting from y(0) = y. The reader has to take care that the fast process depends also on X!
Finally, we can write equation (1.3.40) as

∂t1 ρ̃0 =−∇X

{{∫ +∞

0

dt′
∫

dy (∇XEy [b(X, y(t
′))]) b(X, y)ρs(X, y)

}
ρ̃0

}

+∇X∇X

{{∫ +∞

0

dt′
∫

dyEy [b(X, y(t
′))] bT (X, y)ρs(X, y)

}
ρ̃0

}
.

The second term gives the diffusion coefficient (1.3.37). The first term gives an abstract expres-
sion for the drift

γ(X) =

∫ +∞

0

dt′
∫

dy (∇XEy [b(X, y(t
′))]) b(X, y)ρs(X, y). (1.3.42)

When the fast process does not depend on X, in one dimension, we get the much simpler
expression

γ(X) =

∫ +∞

0

dsE [∂Xb(X, y(s))b(X, y(0))] .

The explicit expressions for the drift and the diffusion coefficient involve correlations functions of
the fast process. The mixing hypothesis is crucial to ensure the convergence of the time integrals
in (1.3.42). For mixing chaotic dynamics, correlations functions usually decay exponentially fast

as e−
t

τL where τL is the Lyapunov time of the fast process. The decay of all correlation functions
is one of the necessary hypotheses of stochastic averaging, which is satisfied in practice by mixing
chaotic systems.

When the fast process does not depend on X, and in the one dimensional case, the process
1.3.36 can be written as

Ẋ0 = σ(X0) ◦ ξ(t),
where the stochastic product has to be understood with the Stratanovitch convention. In the
multidimensional case, there are some corrections to the Stratanovitch product [41].
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1.4 Large deviations and instantons

It has been shown in in section 1.3.3 that the long-term evolution of the slow process Xǫ can
be described by a stochastic differential equation when the averaged dynamics vanishes. The
fact that the long-term dynamics of Xǫ is given by a such simple mathematical object as a close
stochastic differential equation is exceptional. No equivalent simple result exists when b̄ is non
zero. The slow trajectory remains most of the time close to the averaged trajectory X(t), and its
fluctuations around X(t) are typically Gaussian fluctuations of typical amplitude

√
ǫ. This kind

of fluctuations are described by equation (1.3.14). Yet, the long-term dynamical behavior does
not reduce to the small Gaussian fluctuations around the averaged trajectory. Fluctuations of
order one can carry Xǫ far away from X. Such a large fluctuation is displayed in Fig.(1.2.6). A
large fluctuation is always a rare event in the system because Xǫ has to overcome the repelling
force of the averaged dynamics through an exceptional fluctuation. The rare events have to be
taken into account in the dynamical description of Xǫ, in the infinite time limit. There is in gen-
eral no complete expression for the probability distribution of the small and large fluctuations
of Xǫ. As will be shown in this section, large deviation theory gives an exponential equivalent
for the probability distribution of any path Xǫ(t).

Consider again the slow–fast process (1.2.1-1.2.2). The joint process (Xǫ(t), y(t)) can be a
dynamical system, or any other kind of Markov process. The variable Xǫ(t) is not a Markov
process because it keeps memory of its trajectory through coupling with the variable y. The
averaging theorems presented in section 1.3 show that in the limit of very large timescale sepa-
ration between the two processes and with the hypothesis of ergodicity of the fast process, the
slow process Xǫ(t) can be described alone by a Markov process. This means that for any t′ > t,
the conditional probability Pǫ(X(t′)|X(t), y(t)) does no longer depend on y(t)

Pǫ(X(t′)|X(t), y(t)) −→
ǫ→0

P0(X(t′)|X(t)). (1.4.1)

The convergence (1.4.1) is satisfied even if the fast process is ergodic but not mixing.
To describe the time evolution of the process Xǫ(t) in the small ǫ limit , we introduce

Pǫ

(
∆X
∆T |X

)
, the conditional probability to observe a increment ∆X during a time ∆T starting

from X. In the limit ǫ→ 0, property (1.4.1) states that this probability does not depend on y.
The averaging principle (1.3.2) and the stochastic averaging theorems of sections 1.3.2 and

1.3.3 can be seen as asymptotic expansions of the probability Pǫ

(
∆X
∆T |X

)
. The averaging theorem

states that

Pǫ

(
∆X

∆T
|X
)
−→
ǫ→0

δ

(
∆X

∆T
− b̄(X)

)
.

Thus, the averaging theorem gives the limit in law of the probability Pǫ

(
∆X
∆T |X

)
. Stochastic

averaging gives an equivalent of Pǫ

(
∆X
∆T |X

)
when ǫ goes to zero. The averaging theorem (1.3.14)

states that if X is close to X and ∆X is close to zero, then the equivalent in (1.4.1) is Gaussian
and

Pǫ

(
∆X

∆T
|X
)
∼

ǫ→0

1√
2πǫσ2(X)∆T

e
− (∆X−〈∆X〉)2

2ǫσ2(X)∆T . (1.4.2)

In the present section, we will show that we can give the exponential equivalent of Pǫ

(
∆X
∆T |X

)

for every value of X, using large deviation theory. We will see that the distribution Pǫ

(
∆X
∆T |X

)

has the asymptotic general form

Pǫ

(
∆X

∆T
|X
)
∼

ǫ→0
Cǫ(X)e−

1
ǫL(∆X

∆T ,X)∆T ,
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where Cǫ(X) is the normalization constant. The equivalent (1.4.2) corresponds to a quadratic
approximation of the function L close to X. In general, L is not a quadratic function and only
the exact expression of L gives the correct asymptotic expression for Pǫ.

1.4.1 Large deviation principle for a probability distribution

In this section, we give the precise definition of the large deviation principle.
A probability distribution Pǫ(z) with z ∈ R

N , depending on a small parameter ǫ, satisfies a
large deviation principle when there exists a function I(z) such that

−ǫ lnPǫ(z) −→
ǫ→0

I(z). (1.4.3)

The function I is called the large deviation rate function. The notation

Pǫ(z) ≍
ǫ→0

e−
1
ǫ I(z)

equivalently means that Pǫ satisfies the large deviation principle (1.4.3). The consequence of
the large deviation principle is that there exists a function Cǫ(z) such that Pǫ(z) = Cǫ(z)e

− 1
ǫ I(z)

where the function Cǫ(z) has subexponential growth with ǫ. Cǫ(z) will be called the prefactor
of the large deviation principle (1.4.3).

We now assume that Cǫ is continuous and that the rate function I is twice differentiable
and has one single maximum at z∗. Pǫ(z) is a probability distribution and thus satisfies the
normalization condition

∫
Pǫ(z)dz = 1. When ǫ goes to zero, the Laplace principle gives the

following asymptotic equivalent for
∫
Pǫ(z)dz

∫
Pǫ(z)dz ∼

ǫ→0
Cǫ(z

∗)
(2πǫ)N/2

√
| det I ′′(z∗)|

e−
1
ǫ I(z

∗), (1.4.4)

where z∗ is the maximum of the rate function I, and I ′′(z∗) is the Hessian matrix of I at z∗.
The normalization condition for Pǫ with the asymptotic equivalent (1.4.4) shows that

1. I(z∗) = 0 and I ≥ 0,

2. Cǫ(z
∗) ∼

ǫ→0

√
| det I′′(z∗)|
(2πǫ)N/2 .

The first property is generic of every rate function I. The second property gives the expression
of the prefactor to leading order in ǫ when I is twice differentiable.

1.4.2 Large deviations for sample paths

The aim of large deviation theory is to predict the probability distribution Pǫ(X, t) of the slow
variable Xǫ(t) at any time t. We will see in the present section that large deviation theory gives
much more information than the distribution Pǫ(X, t). Large deviation theory does not only
predict the probability distribution, but it also predict the probability of any path [X(t)]t∈[0,T ].
In the following, Pǫ(X, t) will denote the probability of a single state X, whereas Pǫ [X(t)] will
denote the probability of a path.

For a fixed value of X, consider the increment of the slow variable during a small interval of
time ∆T

∆X :=

∫ ∆T

0

b

(
X, y

(
t

ǫ

))
dt. (1.4.5)
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Figure 1.4.1: Decomposition of the path X(t) into a discrete Markov chain.

In the definition (1.4.5), the fast process y(t) follows the differential equation

ẏ(t) = f(X, y(t))

with the same fixed value X of the slow variable. (1.4.5) can be equivalently written

∆X

∆T
:=

ǫ

∆T

∫ ∆T/ǫ

0

b (X, y (t)) dt.

This shows that the asymptotic probability of ∆X
∆T when ǫ → 0 is given by the asymptotic

behavior for large times of the time average

1

T

∫ T

0

b (X, y (t)) dt.

Because of the ergodic hypothesis, the above integral does not depend on y(0) for large values
of T . We now do the stronger assumption that this integral satisfies a large deviation principle
as T → ∞. Equivalently, we assume that for every value of X, the increment (1.4.5) satisfies
the large deviation principle

Pǫ

(
∆X

∆T
|X
)
≍

ǫ→0
e−

1
ǫL(∆X

∆T ,X)∆T . (1.4.6)

Consider now a full path [X(t)]t∈[0,T ]. The path can be divided a large number M of small
intervals ∆Ti := [Ti, Ti+1]. For each of those intervals, we note Xi the value of X at time Ti
and ∆Xi the increment between Tiand Ti+1. The decomposition of the path is illustrated on
Fig.(1.4.1).

From the Markov chain rule, we can write the probability of the path as

Pǫ [X(t)] =

M∏

i=1

Pǫ

(
∆Xi

∆Ti
|Xi

)
. (1.4.7)

In the limit ǫ→ 0, the large deviation property (1.4.6) implies that the whole path probability
satisfies the large deviation principle

Pǫ [X(t)] ≍
ǫ→0

e
− 1

ǫ

M∑
i=1

L
(

∆Xi
∆Ti

,Xi

)
∆Ti

. (1.4.8)

In the limit of vanishing ∆Ti, the sum
M∑
i=1

L
(

∆Xi

∆Ti
, Xi

)
∆Ti becomes an integral over time, and

the large deviation principle (1.4.8) becomes

Pǫ [X(t)] ≍
ǫ→0

e−
1
ǫ

∫ T
0

L(Ẋ(t),X(t))dt. (1.4.9)
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The large deviation rate function for a path is thus a functional of the path that we call action
by analogy with the classical action of analytical mechanics. Using this analogy, L is called the
Lagrangian. The action is defined as

A [X(t)] :=

∫ T

0

L
(
Ẋ(t), X(t)

)
dt. (1.4.10)

The large deviation principle for paths relies on the property that the limit ǫ → 0 and
∆T → 0 in the Markov chain rule (1.4.7) do commute, at least at the exponential level. In the
case of fully coupled slow-fast dynamical systems, the proof of a large deviation principle has
only been recently proven in [44, 99].

The Lagrangian L is a large deviation rate function, and thus it has to satisfy the generic
properties of those functions. This means that L ≥ 0 and that the minimum of L over Ẋ is
zero. The averaging principle of section 1.3.1 shows that

L
(
Ẋ(t), X(t)

)
= 0⇐⇒ Ẋ(t) = b̄(X(t)). (1.4.11)

The action (1.4.10) is a positive functional that only vanishes over the trajectories of the averaged
dynamics.

1.4.3 Instantons for large deviations from the averaged dynamics

In this section, we will explain the origin of the large deviations from the averaged dynamics that
we already observed in section 1.2.3. The large deviation principle for sample paths obtained in
(1.4.9) has many important consequences for the phenomenology of the slow variable’s stochastic
trajectories.

Consider fixed initial and final values Xs, Xf and the ensemble of all paths [X(t)] starting
at X(0) = Xs and ending at X(T ) = Xf . The large deviation principle (1.4.9) shows that the
probability distribution of the paths Pǫ [X(t)] is maximal on the particular path X̃(t) where the
action is maximal. In the limit ǫ → 0, the probability distribution Pǫ [X(t)] has a very small
extension around the path X̃(t). Qualitatively, all the paths joining Xs and Xf observed in the
system are very close to the path X̃(t). The typical deviations from X̃(t) are only of order

√
ǫ.

The situation is illustrated in Fig.(1.4.2). The most probable path X̃(t) joining Xs and Xf is
called an instanton.

Suppose now that you want to compute the transition probability Pǫ (Xf , T |Xs, 0) to reach
Xf at time T starting from Xs. The transition probability is the sum of the probabilities of all
possible paths, and can thus be expressed as the path integral

Pǫ (Xf , T |Xs, 0) =

∫
D [X(t)]Pǫ [X(t)] , (1.4.12)

where D [X(t)] is the measure over the space of absolutely continuous paths from Xs to Xf . The
large deviation principle (1.4.9) shows that the probability of transition (1.4.12) also satisfies a
large deviation principle

Pǫ (Xf , T |Xs, 0) ≍
ǫ→0

∫
D [X(t)] e−

1
ǫA[X(t)]. (1.4.13)

Using the Laplace principle in the path integral (1.4.13), we finally give the large deviation
principle for the transition probability in its most useful form

Pǫ (Xf , T |Xs, 0) ≍
ǫ→0

e−
1
ǫS(Xf ,T ), (1.4.14)
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Figure 1.4.2: The instanton path X̃ together with typical paths joining Xs to Xf . The yellow
trajectory deviates much from the instanton and has thus a such small probability that it will
never be observed (on the picture, the dynamics has been biased to obtain the yellow trajectory).

with the function S given by

S (Xf , T ) := A
[
X̃(t)

]
. (1.4.15)

The function S is thus the minimum of the action functional, and the minimum is reached on
the instanton path.

In the following paragraph, we briefly describe the case where the averaged dynamical field
b̄ is nonzero. To keep the discussion as simple as possible, we assume that the dynamics has one
single stable critical point X0. In the following, X0 will be called the attractor of the system.

When the system has reached a statistically stationary state, it spends most of the time
around the attractor X0 with small fluctuations of order

√
ǫ around X0. However, the example

of section 1.2.3 has shown the possibility to have fluctuations of order one away from the attractor
X0, with very small probability. We now explain that both the probability of those events, and
the path chosen by the dynamical system to realize them, can be predicted with large deviation
theory.

The stationary probability (or invariant measure) to find the system in the state Xf can be
seen as the limit of infinite time of the transition probability Pǫ (Xf , T |X0, 0). We call P∞

ǫ (Xf )
the stationary measure. It can be expected in the present context in which the dynamics b̄ has
a single attractor, that the limits T → ∞ and ǫ → 0 commute at the level of large deviations.
This property is no longer true for dynamics with many attractors [17]. We thus consider the
path integral (1.4.13), where the integration is done over paths starting at X0 at T → −∞ and
ending at Xf at T = 0. The large deviation principle for the invariant measure writes

P
∞
ǫ (Xf ) ≍

ǫ→0
e−

1
ǫV (Xf ),

where V is called the quasipotential of the sytem

V (Xf ) := A
[
X̃(t)

]
,
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where the instanton path X̃(t) now satisfies X̃(0) = Xf and X̃(t) −→
t→−∞

X0. The instanton

starting at the attractor is called a fluctuation path.
The fluctuation path is defined as the path of minimal action, in the limit where the tran-

sition occurs for an infinite time. However, we have seen in section 1.2.3 that the transition
effectively happens in short time, that is, in a typical time of same order as the typical time of
the average dynamics b̄. To do a large fluctuation, the system has to move for a long distance
oppositely to the dynamics b̄. It is thus much more advantageous from the point of view of
probabilities, to do this fluctuation quite fast, to minimize the time spent far away from the
attractor. A typical fluctuation path reaching Xf at t = 0, performs most of its displacement
in a small interval of time of order one, and generically relaxes exponentially to X0 when t goes
to −∞.

We have seen in the present section that the phenomenology of large fluctuations of the
slow variable can be explained by a large deviation principle for the probability distribution
of the paths X(t). The transition probability P (Xf , T |Xs, 0) and the most probable path of
the system can be determined by minimizing an action functional (1.4.10). The problem thus
reduces to the computation of the Lagrangian of the action, and then minimize the action to find
the instanton. It is beyond the scope of this thesis to describe all the techniques and theorems
used to compute the action. The complete theory of large deviations for slow-fast dynamical
systems can be found for example in [26].

1.4.4 Instantons for diffusive processes

This section is devoted to large deviations in the case b̄ = 0. We already explained in section
1.3.3 that the case b̄ = 0 is very different from the case b 6= 0, because we have to consider
the slow variable on the timescale 1

ǫ as described by the system of equations (1.3.34-1.3.35).
With b̄ = 0, we have seen that the slow process follows a stochastic differential equation (1.3.36)
in the limit ǫ → 0. Equation (1.3.36) is an exact asymptotic equivalent of the slow process
on a timescale of order 1

ǫ , not an approximation. Because the drift term is of same order as
the stochastic term, the system is not confined in the vicinity of the attractors. Therefore,
each state can be visited by the slow variable with a probability of order one. The probability
Pǫ (Xf , T |Xs, 0) to observe a transition from Xs to Xf has thus no reason to be small. We show
in this section that the phenomenology of instantons can be recovered for fast transitions from
Xs to Xf .

For simplicity, we consider the case where the diffusion coefficient σ in equation (1.3.36) does
not depend on X. The argument we give below can be generalized to space dependent diffusion
coefficients with the Hamiltonian formalism that we do not describe in this thesis.

From equation (1.3.36), the probability of any path X(t) joining Xs to Xf , in the limit
ǫ→ 0, is given by

P0 [X(t)] ∝ e− 1
2σ2

∫ T
0 ‖Ẋ−γ(X)‖2dt. (1.4.16)

Let L be the distance between Xs and Xf . With the change of variable t = Ts and X(t) :=
LX ′(s) in the time integral (1.4.16), we get

P0 [X(t)] ∝ e− L2

2σ2T

∫ 1
0 ‖Ẋ′−T

L γ(X′)‖2ds. (1.4.17)

Two different time scales appear in the integral (1.4.17). The drift term γ(X ′) is homogeneous
to a velocity, and gives thus a important contribution over a typical time L

|γ| , where |γ| is a

typical value for γ(X ′). The noise gives a contribution over the typical diffusion time L2

σ2 . We
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consider the probability to do a transition from Xs to Xf in a time small compared to both
the diffusion time L2

σ2 and the drift time L
|γ| . The drift term T

Lγ(X
′) can thus be neglected in

(1.4.17) and the nondimensional parameter L2

σ2T appearing in front of the integral is small. The
expression of the transition probability (1.4.17) in the limit T → 0 satisfies the large deviation
principle

P0 [X(t)] ≍
T→0

e−
L2

2σ2T

∫ 1
0 ‖Ẋ′‖2ds. (1.4.18)

The instanton can be defined as the path with minimal value of the action
∫ 1

0

∥∥∥Ẋ ′
∥∥∥
2

ds, which

is simply the straight trajectory

X̃(t) =

(
1− t

T

)
Xs +

t

T
Xf . (1.4.19)

The large deviation principle (1.4.18) should be considered cautiously. The white noise limit
for the slow process (1.3.36) is only valid for 1

ǫ ≫ 1. We have explained that the white noise
limit is a consequence of the central limit theorem for continuous set of variables. The implicit
assumption of this result is that T ≫ τm, where τm is the mixing time (or Lyapunov time for
chaotic processes) of the fast dynamics ẏ = f(X, y). The large deviation principle (1.4.18) is thus
valid in the limit of small times provided the considered timescale still satisfies L2

σ2 ≫ T ≫ τm.
For times of same order as τm, we expect the large deviation principle (1.4.18) to be valid with
a modified expression of the action. In particular, instantons are not necessarily straight lines
when T

τm
is of order one.

1.5 Example: the overdamped Langevin equation

The Langevin equation is a very classical model describing the random dynamics of a large
particle in a bath of smaller particles. The bath at temperature T exerts a random force on the
large particle. Because of the timescale separation between the dynamics of the large particle
and the dynamics of the bath particles, the random force can be represented with an excellent
approximation by a Gaussian white noise. The Langevin equation writes

ẋ = v

mv̇ = −∇V (x)−mγv +
√
2mγkBTξ(t) (1.5.1)

where v is the velocity of the particle, V (x) is an external potential, kB is the Boltzmann
constant and γ is the friction coefficient. The noise amplitude is related to the friction coefficient
through Einstein’s fluctuation-dissipation relation. When the external force −∇V (x) is zero,
the Langevin equation is one of the very few examples of stochastic differential equations that
can be solved explicitly.

For most practical cases, the inertia of the particle can be neglected because the particle’s
velocity evolves on a time τv := 1

γ much smaller than the typical time of diffusion over a distance

L, τL :=
√

mL2

kBT . The limit 1
γ ≪

√
mL2

kBT is called the overdamped limit, and corresponds to the
situation where the velocity relaxes very fast compared to the time of diffusion in space. In
this limit, x is a slow variable in the problem, and its dynamics can be described by a closed
stochastic differential equation

ẋ = − 1

mγ
∇V (x) +

√
2Dξ(t) (1.5.2)
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Equation (1.5.2) is the overdamped Langevin equation. It can be obtained simply by neglecting
the inertial term in the equation (1.5.1) for the velocity. D := kBT

mγ is the diffusion coefficient.
The overdamped Langevin equation is now used in many areas of physics, not only to describe

classical Brownian motion, but also more complex systems in bacteria motility or polymer
dynamics. For some of these systems, the diffusion coefficient in (1.5.2) depends on space. In
that case, the friction γ depends also on space because of fluctuation-dissipation relations. For
space dependent diffusion coefficients, the noise term

√
2D(x)ξ(t) is not well defined, because

the stochastic product can be interpreted with different conventions.
This problem has been already solved quite long ago using the techniques of adiabatic elim-

inations of fast variables [88]. To obtain the overdamped Langevin equation with a space-
dependent friction coefficient, one has to start from the Langevin equation (1.5.1) in which the
noise can be understood without ambiguity, and take properly the limit 1

γ(x) → 0. Using Itô
convention for stochastic equations, we get

ẋ = − 1

mγ(x)
∇V (x) +∇D(x) +

√
2D(x)ξ(t) (1.5.3)

The fact that the diffusion coefficient depends on space adds a drift term ∇D(x) in the equation.
Physically, this term can be interpreted as an entropic force that pushes the particle in regions of
high diffusion coefficient. The particle goes in regions where it can move faster. In the following,
we will explicitly derive equation (1.5.3) using the techniques of stochastic averaging presented
in section 1.3.

Explicit derivation of the overdamped limit of the Langevin equation We start from
the Langevin equation (1.5.1) with a space dependent friction γ(x) and we consider the limit
of fast relaxation of the velocity 1

γ(x) → 0. The small parameter in the problem is the ratio
between the slow time scale τx and the fast time scale τv. The equation for the fast process can
be written as

v̇ = − 1

m
∇V (x)− γ(x)v +

√
2γ(x)

kBT

m
ξ(t) (1.5.4)

The averaging principle presented in section 1.3.1 states that the slow process x(t) converges to
the process x̄(t) satisfying the equation

˙̄x(t) = 〈v〉x̄ (t),

where 〈v〉x̄ is the average of the velocity for a fixed value of the position x = x̄ . Taking the
stochastic average of equation (1.5.4) we get

〈v̇〉 = − 1

mγ(x)
∇V (x)− 〈v〉 ,

because the noise ξ(t) averages to zero. This shows that the stationary mean velocity is

〈v〉 = 1

mγ(x)
∇V (x),

and thus 〈v〉 −→
γ(x)→+∞

0.

The averaging principle states that the diffusion process x(t) is constant on the time scale

τL :=
√

mL2

kBT . The average of the velocity comes to order 1
γ in the equation for the slow variable.

This means that the contribution of the stochastic terms comes to the same order as the average
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〈v〉 in the equation for x . To find the limit of the slow process x(t), we thus have to go beyond
the averaging principle and perform a stochastic averaging of the fast process. The Langevin
equation falls in the framework of slow-fast dynamical systems with b̄ ≡ 0 described in section
1.3.3. The theorem states that the slow process x(t) converges in law to a stochastic process
given by the Itô stochastic differential equation

ẋ = a(x) +
√
2D(x)ξ(t),

where a(x) is the drift, and the diffusion coefficient D(x) is given by the Green-Kubo formula
(1.3.37)

D(x) =

∫ +∞

0

〈v(t)v(0)〉x dt. (1.5.5)

Let Cx(t) := 〈v(t)v(0)〉x be the correlation function of the fast process with fixed value of x.
Multiplying equation (1.5.4) by v(0) and taking the stochastic average, we find that C satisfies
the equation

Ċx(t) = −γ(x)Cx(t).

And thus

Cx(t) =
〈
v2
〉
e−γ(x)t,

=
kBT

m
e−γ(x)t.

The expression of the diffusion coefficient (1.5.5) is

D(x) =
kBT

mγ(x)
.

The explicit expression for the drift a can be computed using equation (1.3.42) with b(x, v) :=

v, ρs(v) =
√

m
2πkBT e

1
2

mv2

kBT , and equation (1.5.4). This computation requires some work but

presents no major difficulty.
However, we want to emphasize that the drift term∇D in the overdamped Langevin equation

comes from the correlation between the fast and the slow process. This can be seen from equation
(1.5.4). The average of equation (1.5.4) gives

〈v̇(t)〉 = − 1

m
〈∇V (x(t))〉 − 〈γ(x(t))v(t)〉 . (1.5.6)

Using the previous equation, we can expand x(t) around its average as x(t) = 〈x(t)〉+
∫ t

0
ṽ(s)ds,

where ṽ(s) := v(s)− 〈v〉. To leading order in x− 〈x〉, equation (1.5.6) writes

〈v̇(t)〉 = − 1

m
∇V (〈x〉)− γ(〈x〉) 〈v〉 (t)− γ′(〈x〉)

∫ t

0

〈ṽ(s)ṽ(t)〉 ds.

Finally, with the approximation
∫ 0

−∞ 〈ṽ(s)ṽ(0)〉 ds =
kBT

mγ(〈x〉) , we find that the stationary average
of the velocity writes

〈v〉 = − 1

mγ(〈x〉)∇V (〈x〉)− kBT

m

γ′(〈x〉)
γ2(〈x〉) .

The argument above has no pretension to be rigorous. We give it to show how the correlations
between the slow and the fast variable give a contribution to the drift in the stochastic equation
for the slow variable. We believe this physical interpretation is not obvious from the multiscale
expansion in the Fokker–Planck equation.

In slow-fast processes where b̄ 6= 0, the correction to the drift coming from correlations is
negligible because the correction comes at order ǫ whereas the fluctuations Xǫ −X around the
average trajectory are of order

√
ǫ.



Chapter 2

Stationary state of barotropic zonal

jets in the inertial limit

2.1 Introduction

An interesting property of two dimensional turbulent flows is their inverse energy cascade from
small scales to large scales. This inverse energy cascade is responsible for the self organization of
the flow into large scale coherent structures that evolve much slower than the small scale velocity
fluctuations called “eddies”. Among those structures, giant vortices and zonal jets have raised
strong interest in the scientific community. Both structures are observed in the atmosphere of
gaseous planets [37, 31, 30], and in particular on Jupiter (see Fig.(2.1.1)). The atmosphere of
Jupiter is a three-dimensional flow, it can be thus surprising to invoke the properties of two-
dimensional turbulence to explain the large scale structures of the flow. The probe Juno that
has been orbiting around Jupiter since 2016 gives us a large amount of data to understand
the interior structure of Jupiter. In particular, precise measurements of the gravitational field
indicates that the zonal jets observed at the surface of Jupiter extend deep inside the planet,
up to thousands of kilometers [40]. The fact that the winds at Jupiter’s surface can be well
understood within the the framework of two-dimensional geostrophic turbulence is then not due
to the confinement of winds in a thin layer at the top of the atmosphere (as was first proposed
by [35]). It woulds rather be explained by the very fast rotation of the planet that creates a
Coriolis force depending on the latitude. This effect - called the β effect - led the physicist
Friedrich Busse to introduce in 1976 a deep layer model for the atmosphere of Jupiter, but leads
qualitatively to the same conclusions as the thin layer model, because the β effect forces the
flow to be mainly barotropic (without vertical component). As the ratio between vertical and
horizontal velocities is very small for the top atmosphere of Jupiter, the atmosphere dynamics is
qualitatively well understood within the framework of two-dimensional geostrophic turbulence
in a β plane that we use in the present work [80]. More refined models are however needed if
one wants to understand the quantitative features of Jupiter’s zonal jets [68, 89].

Before the Juno probe, the data collected by the probes Gallileo and Cassini during their close
encounter with Jupiter allow us to have a high resolution of the dynamics of the upper layers of
Jupiter’s atmosphere, and measure the magnitude of zonal jets velocity. The observations from
Voyager and Cassini are displayed in Fig.(2.1.1). Not only do we have access to the velocity of
zonal winds that form the large red and grey bands at the surface, but we also have a lot of
images of the smaller vortices imbedded in the flow. Those vortices are related with vertical
motion in the atmosphere. The wind fluctuations are continuously injecting energy in the zonal
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Figure 2.1.1: Left: A picture of Jupiter showing the zonal winds and the great red spot. Right:
Measurements of the zonal velocity component (jets) at the surface of Jupiter by the probes
Voyager 2 (1979) and Cassini (2000). The measurements show that zonal jets are very stable
structures that evolve on a much longer timescale than the small-scale eddies at the surface.

component [38, 87], and equilibrate the dissipation mechanisms. Thanks to the astronomical
observations, we can estimate the magnitude of the parameters used in nonequilibrium models.
It comes out that, provided we use the model of barotropic flow in a β plane for Jupiter, the
relevant regime should be a limit of small scale forcing and weak energy injection.

In the limit where energy is injected at small scale, with weak energy injection and dissipation
rate (inertial and small scale forcing limit), we will see in section 2.2.2 that there is a timescale
separation between the dynamics of the zonal component of the velocity, the jets, and the
dynamics of eddies. The two-dimensional geostrophic flow in a β plane has the structure of a
slow-fast dynamical system, where the zonal velocity component U plays the role of the slow
variable, and the eddies play the role of fast variables. The aim of the present work is to apply
the averaging principle to obtain a close equation for the dynamics of zonal jets. The main result
shows that explicit analytical expressions can be found for the velocity profile U in the inertial
and small scale forcing limit. Our result predicts the existence of jets as stable attractors for
the averaged dynamics of U .
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2.2 The quasilinear barotropic model in the beta plane

2.2.1 Equations of the model

We start from the equations for a barotropic flow on a periodic beta plane with stochastic forces

∂tV + V.∇V = −rV − 1

ρ
∇P + βy

(
Vy
−Vx

)
+
√
2εf (2.2.1)

∇V = 0

where V :=

(
Vx
Vy

)
is the two dimensional velocity field. In real geophysical flows, energy is

injected at small scale by multiple and complex phenomena among which are the baroclinic and
convective instabilities. In the model (2.2.1), the small scale energy injection is created by the
stochastic term

√
2εf . f is a stochastic force, that we assume white in time, i.e E [f(r, t)f(r, t′)] =

δ(t − t′)Cf (r, r
′) . We choose a normalization for the force correlation function Cf , such that

ε is the rate of energy injection in the flow per unit of mass: ε has dimensions m2s−3. In the
following, we will always assume that there is no direct energy injection in the zonal velocity
profile, i.e that 1

Lx

∫
dxf(r, t) = 0. We call Lf the typical scale at which energy is injected. We

thus implicitly assume that the Fourier spectrum of Cf is mainly concentrated at the wavevector
2π
Lf

. Energy is dissipated at large scale by the linear friction −rV that models the Eckman drag
[9]. We recall here that β is the derivative of the Coriolis parameter which comes from the fact
that the Coriolis force projected on a plane tangent to the sphere depends on the north-south
coordinate y.

The main idea is then to separate the flow V in two parts, V (r, t) = U(y, t)ex+

(
u(r, t)
v(r, t)

)
.

The mean velocity Uex = 〈V 〉 is defined as the zonal average of the velocity field. More precisely,
we assume that the mean flow is parallel and we take U(y)ex = 1

Lx

∫
dxV (x, y) . The bracket

〈〉 refers to the zonal average.
In this paper, we will refer to U indifferently as the mean flow or zonal flow. The fluctuating

part (u, v) of the velocity field is often called the “eddies”. Let us emphasize here that our
aim is not to determine how the mean velocity profile becomes a parallel shear flow, but we
assume that the mean flow has this shape and we want then to study the dynamics of the zonal
component. It is an empirical evidence that this is indeed the case for many regimes of the
barotropic flow equation, especially when β is strong enough. Those regimes are of interest for
geophysical applications as illustrated by Jupiter or Saturn [13]. We note also that the mean
flow is not always zonal, especially for small or vanishing values of β [14].

Using this decomposition and the continuity equation, the equation for the mean velocity U
becomes

∂tU + ∂y 〈uv〉 = −rU. (2.2.2)

Equation (2.2.2) shows that the mean flow is forced by the divergence of the Reynolds stress
∂y 〈uv〉. The Reynolds stress is defined as the zonal average of the product of the velocity
components u and v. As will be shown below, the dynamics of u, v are described by stochastic
differential equations, and evolve on a much smaller timescale than the timescale of evolution
of U . Equation (2.2.2) is that of a slow variable coupled to a set of fast variables and falls thus
perfectly in the framework of fully coupled slow-fast dynamical systems described in section
1.2.1. The aim of the present work reduces to describing the averaged dynamics of zonal jets,
not the fluctuations nor the large deviations from the average. For that purpose, we only need
to apply the averaging principle on the slow dynamics of U . We will study the dynamics of the
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stochastic average of the zonal flow U := E [U ], defined by the equation

∂tU + ∂yE [〈uv〉] = −rU. (2.2.3)

The averaged dynamics of zonal flows is thus completely determined by the zonal and stochastic
average of the Reynolds stress E [〈uv〉]. In general, it is not possible to obtain explicit expressions
for the Reynolds stress without strong approximations, except in very particular configurations
[92]. The aim of the present work is to compute explicitly the average of the Reynolds stress in
some asymptotic limits of the parameters. In the following of this chapter, we will abusively use
the bracket 〈〉 for both the zonal and stochastic average, and U will refer to the averaged zonal
flow U . In section 2.5, we will come back to equation (2.2.2) and show, as a perspective of the
work, how it is possible to go beyond the averaging principle and describe the fluctuations of
the zonal flow U .

2.2.2 Nondimensional equations

The first step to do mathematical treatment of equations (2.2.1) is to chose length and time
scales to write nondimensional equations . There is no classical way of rescaling in the literature.
We chose here to set temporal and spatial units such that the mean kinetic energy ε

r = 1, and
β = 1 (please see [12] for more details, or [13] page 2-3 for comparison with other common
nondimensionalization of the equations) . Of course, the length L of the domain could have
been used as the reference length scale. In that case, β gives approximately the number of jets
in the domain. For giant gaseous planets as Jupiter for example, the number of jets can be
quite large, and then, with L = 1, β is a large parameter in the problem. The use of β as a
reference of units is equivalent to chose the width of a single jet as the reference of lengths.
To say it heuristically, we consider the flow “at the scale of a jet”. The choice to set the mean
kinetic energy to 1 implies that the mean square of the zonal velocity, defined by the relation
1
2U

2
rms :=

1
2

〈
U2
〉
, satisfies 1

2U
2
rms ≡ ε

r ≡ 1.
Finally, we eliminate the pressure term by taking the rotational of the first equation of

(2.2.1). The nondimensional equations are

∂tΩ+ V.∇Ω = −αΩ− Vy +
√
2αη (2.2.4)

∇V = 0,

where η = ∇∧f . There are now two nondimensional parameters in the problem. α := r
√ √

2
Urmsβ

is a nondimensional parameter although we will often refer to it as the “friction”. The second

nondimensional parameter is the typical wavevector K := 2π
Lf

√ √
2β

Urms
of the stochastic forcing.

It defines the ratio between the scale at which energy is injected and the scale of the jets. A
third nondimensional parameter that does not appear explicitly is the reduced length L

√
Urms√

2β

of the domain. This last parameter will play no role in our computations because it only sets
the boundary conditions of the problem. In particular, it controls the number of jets in the
domain. We assume in the present work that the domain is much larger than the width of a jet
such that the boundary conditions play a minor role.

The Gaussian stochastic term η is defined through its correlation function 〈η(r, t)η(r′, t′)〉 =
C(r − r′)δ(t − t′). We assume that C is statistically homogeneous such that is depends only
on the difference r − r′. As a correlation function, C is a definite positive function and has to
satisfy the following properties: let us call Ĉk,l the Fourier coefficients of C

C(x, y) :=
∑

k,l

Ĉk,le
ikx+ily (2.2.5)
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and k
2 := k2 + l2, then the function Ĉk,l is real and positive. All along this chapter, k will

be the x component of the wavevector and l will be its y component. Moreover, if we assume
the symmetry x → −x and y → −y, the function Ĉk,l is symmetric wrt k → −k and l → −l.
The constrain that the mean kinetic energy is one writes 1

2

∫∫
dkdl

Ĉk,l

K2 = 1. From now on, the
computations will be done with nondimensional quantities. If we want to write a result in its
dimensional formulation, we will reintroduce the dimensions of

[
ε
r

]
= m2.s−2 and [β] = m−1s−1.

In the following we are precisely interested in the small α regime. In the asymptotic limit
α→ 0, the nonlinear terms in the equation for the velocity fluctuations can be neglected. This
approximation is called the quasilinear approximation. We will not develop the full justification
of the quasilinear approximation here, the interested reader is referred to [12]. Let us simply
recall the steps leading to the equations with quasilinear approximation. First, we notice that
the strength of the noise in equation (2.2.4) is of order

√
α. As fluctuations are sheared and

transferred to the largest scales on a timescale of order one, this is a natural hypothesis to expect
fluctuations (u, v) to be of the same order of magnitude. This was proven to be self-consistent in
[12]. We do the substitution (u, v)→

√
2α(u, v) in equation (2.2.4). The eddy-eddy interaction

terms (that is, the nonlinear terms in u, v) are of order α
3
2 , and can then be neglected. We are

left with the set of equations
∂tU = −α [∂y 〈uv〉+ U ] (2.2.6)

∂tω + U∂xω + (β − U”)v = −αω + η (2.2.7)

where we have introduced ω = ∂xv − ∂yu = △ψ, the vorticity of the fluctuations.
Equation (2.2.6) shows that the typical timescale for the the mean flow evolution is 1

α . In
the limit α→ 0, we thus have a clear timescale separation between the dynamics of the velocity
fluctuations (also called the dynamics of eddies), and the dynamics of the zonal flow. Using the
timescale separation, we consider that U is a constant field in the second equation (2.2.7), and
we solve ω(t) for a given velocity profile U . The equation for eddies dynamics becomes linear
because U is considered as a given field. Such a timescale separation is observed for example on
Jupiter where the typical time of eddies evolution ranges from few days to few weeks whereas
significant changes in the mean flow are only detected over decades. (see e.g [81]).

2.3 Reynolds stress from the pseudo-momentum balance

2.3.1 The pseudo-momentum balance

The quasilinear equations conserve energy and enstrophy as the full Navier-Stokes equations
do. One of the key relation we will use in this paper comes from the enstrophy balance for the
eddies,

1

2
∂t
〈
ω2
〉
+ (U”− β) 〈vω〉 = −α

〈
ω2
〉
+

1

2
C(0).

We recall that the bracket 〈〉 refers both to the zonal and stochastic average. As we assume a
timescale separation between the zonal flow and fluctuation dynamics, we are interested in the
long-term behavior of the latter equation. When the vorticity fluctuations ω reach its stationary
distribution, we have the equality

〈vω〉 = 1

U”− β

[
α
〈
ω2
〉
− 1

2
C(0)

]
. (2.3.1)

Equation (2.3.1) will be a key formula for our work. Indeed, using the incompressibility
condition, we have the equality 〈vω〉 = −∂y 〈uv〉. One can notice looking at (2.3.1) that in the
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absence of dissipation and forcing, we have 〈vω〉 = 0. In steady state without dissipation and
forcing, waves have no effects on the mean flow. This result is classically known in the literature
as the non acceleration theorem (see [34] p 537 or [2] for a more complete description). It is
then natural to expect that any forcing on the mean flow should come from the nonconservative
processes which are here only a linear friction and an enstrophy injection at small scales (we
could have added in the equations a viscous term that would have given an additional term in
the enstrophy balance). Whitout the nonconservative processes, the left-hand side of equation

(2.2.7) conserves the pseudomomentum
∫ 〈ω2〉

U”−β . If U” − β has constant sign in the flow, the
conservation of the pseudomomentum does not allow any instability to occur and the flow is
stable. This is called the Rayleigh-Kuo criterion for shear flows stability. If U”− β somewhere
vanishes in the flow, an instability may or may not exist. The fact that U” − β vanishes is a
necessary condition for instability, not a sufficient one. In equation (2.3.1), the right-hand side
is not defined where U” = β. The denominator is zero but the numerator also vanishes. Indeed,
for U” = β, equation (2.2.7) reduces to free transport of the fluctuations and can be solved
directly giving the relation α

〈
ω2
〉
− 1

2C(0) = 0. In general, the Reynolds stress divergence
remains finite except perhaps at some particular places in the flow. This will be discussed in
section 2.5.

Equation (2.3.1) gives us a way to compute the Reynolds stress that forces the mean flow:

• We solve the linear equation (2.2.7) and compute the average
〈
ω2
〉

as a function of U .

• Then we can use this expression to close the first equation (2.2.6), and discuss possible
stationary profile U .

Of course things will not be that easy because the dynamics of ω is given by a partial differential
equation, and there are no reasons why we could find any simple expression of

〈
ω2
〉

in general.
First we can take advantage of the invariance along the x direction by taking the Fourier trans-
form of (2.2.7) in x. The Fourier transform in y does not provide an obvious simplification
because the profile U depends on y. However, we can use the linearity of equation (2.2.7) to
express the solution as the sum of particular solutions for independent stochastic forcing fields
ηl(y, t). Each of these fields has a correlation function cl(y) = eily, this means that their cor-
relation function is E [ηl(y, t)ηl(y

′, t)] = eil(y−y′)δ(t − t′). We take the Fourier transform in x
defined by ωk(y) :=

1
Lx

∫
dxω(x, y)e−ikx with k taking the values 2π

Lx
n, n is an integer. ωk,l(y, t)

is then defined as the function ωk(y, t) that is solution of (2.2.7) with a stochastic forcing field
with only one Fourier component (k, l). We then obtain

〈vω〉 = 1

U”− β
∑

k,l

Ĉk,l

2

[
2α
〈
|ωk,l|2

〉
− 1
]
, (2.3.2)

where the positive constants Ĉk,l are defined by (2.2.5). Be careful that the bracket
〈
|ωk,l|2

〉
in

formula (2.3.2) denotes a stochastic averaging, because the zonal average is already taken into
account by the sum over all vectors k. The vorticity ωk,l(y, t) is the solution of the stochastic
partial differential equation

∂tωk,l + ikUωk,l + ik(β − U”)ψk,l = −αωk,l + ηl. (2.3.3)

As the reader would have notice, we try to reduce the problem by expressing the solution
as the sum of particular problem that we hope to be much simpler. Now we have to find an
expression for ωk,l instead of the full solution ω. We will go one step further and show that the
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stochastic problem described by the two equations (2.3.2-2.3.3) reduces in fact to a deterministic
one, following [12]. Equation (2.3.3) can be formally written as

∂tωk,l + Lk[ωk,l] = −αωk,l + ηl,

where
Lk[ωk,l] = ikUωk,l + ik(β − U”)ψk,l (2.3.4)

is a linear operator for a given mean velocity field U . Then we use the fact that the noise ηk,l
is white in time and has an exponential correlation function cl(y) = eily to express the quantity〈
|ωk,l|2

〉
as

〈
|ωk,l|2

〉
=

∫ 0

−∞
dt e2αt

∣∣etLk [cl]
∣∣2 . (2.3.5)

This formula should be understood as follows: etLk [cl] is the solution at time t of the determin-
istic equation ∂tωd+Lk[ωd] = 0 with initial condition cl := y → eily. The subscript d will mean
that we are dealing with the solution of a deterministic equation. The exponential eαt ensures
the convergence of this integral. The great advantage to have reduced the stochastic problem
to a deterministic one is that we now have to solve an hydrodynamic problem, the propagation
of a vorticity fluctuation in a shear flow, a problem for which much has already been done in
the literature.

2.3.2 Simplification in the inertial limit

Expression (2.3.5) is still complicated because it requires to know the behavior of the solution
etLk [cl] up to times of order 1

α . Two parameters can be used to further simplify the problem, the
vector k = (k, l) and the damping α. In the present work, we are considering the asymptotic
limit α → 0 that ensures a timescale separation between the zonal flow dynamics , and the
eddies dynamics. The limit α → 0 is called the inertial limit because the fluctuating field is
free to evolve without damping. It corresponds to fully turbulent regimes. A rough estimation
the parameters α on Jupiter (assuming of course that our model could be valid to describe the
behavior of Jupiter’s jets) shows that α ≈ 10−3 and corresponds thus to the limit α→ 0 .

We have to compute (2.3.2-2.3.5)

2α
〈
|ωk,l|2

〉
= 2α

∫ 0

−∞
dt e2αt

∣∣etLk [cl]
∣∣2 , (2.3.6)

where etLk [cl] := ωd is the solution of the deterministic equation

∂tωd + ikUωd + ik(β − U”)ψd = 0 (2.3.7)(
∂2y − k2

)
ψd = ωd

with initial condition cl(y) = eily. We will first assume there are no neutral nor unstable modes
solutions of (2.3.7). First, we do the change of time scale αt → t in the integral of (2.3.6). It
gives us

2α
〈
|ω|2

〉
= 2

∫ 0

−∞
dt e2t

∣∣∣e t
αLk [cl]

∣∣∣
2

. (2.3.8)

When α goes to zero, the term e
t
αLk [cl] is the long time limit of the solution of (2.3.7). We use the

nontrivial result of [11] that there exists a function ω∞
d (y) such that ωd(y, t) ∼

t→∞
ω∞
d (y)e−ikUt

when there are no neutral nor unstable modes. Hence
∣∣∣e t

αLk [cl]
∣∣∣→ |ω∞

d (y)| , and the presence
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of the exponential e2t in the integral of (2.3.8) ensures the convergence of the whole integrand.
This proves that without neutral modes

2α
〈
|ω|2

〉
−→
α→0
|ω∞

d |2.

Let us add again the subscripts k, l for ω∞
k,l to recall that the asymptotic vorticity function

depends on the Fourier mode. The correlation 〈vω〉 writes in the limit α→ 0

〈vω〉 = 1

U”− β
∑

k,l

Ĉk,l

2

[
|ω∞

k,l|2 − 1
]
. (2.3.9)

An interesting remark can be made from the above computations: when α becomes small, the
enstrophy term

〈
ω2
〉

diverges as 1
α , but as the Reynolds stress divergence expression (2.3.2)

involves α
〈
ω2
〉
, it converges. Such a compensation can be seen as necessary in order to fulfill

the pseudomomentum balance.
In this subsection, we will summarize the main result obtained by Bouchet and Morita [11]

that allows us to compute the function ω∞
k,l involved in the Reynolds stress divergence (2.3.9).

ω∞
k,l gives then an easy access to the small α limit.

We start from equation (2.3.7) that describe the linear evolution of a perturbation ω(y, t)eikx

of meridional wave number k, and streamfunction ψ(y, t)eikx. The idea is to transform equation
(2.3.7) into an inhomogeneous Rayleigh equation, as classically done, and then to study its
asymptotics solutions close to the real axis, which is the limit ǫ→ 0, with the notations below.
We introduce the function ϕǫ(y, c) which is the Laplace transform of the stream function ψ(y, t)
i.e ϕǫ(c) :=

∫∞
0

dtψ(y, t)e−ik(c+iǫ)t . To avoid any confusion, we stress that ǫ will always denote
in this section a small parameter and not the energy injection rate. Using the same notations
as in [11] , the equation for ϕǫ is

(
d2

dy2
− k2

)
ϕǫ(y, c) +

β − U”(y)

U(y)− c− iǫϕǫ(y, c) =
ω(y, 0)

ik(U(y)− c− iǫ) , (2.3.10)

with the boundary conditions that ϕǫ vanishes at infinity. We do not have an infinite flow in
the y direction, but as already stated, we consider the properties of the flow at the scale of one
jet, and assume that there is a large number of jets in the domain. The choice to take vanishing
boundary conditions at infinity is done for convenience and it is expected that this particular
choice does not modify the physical behavior of the perturbation.

For all ǫ > 0 the function ϕǫ is well defined. The inhomogeneous Rayleigh equation (2.3.10)
is singular for ǫ = 0 at any critical point (or critical layer) yc such that the zonal flow velocity
is equal to the phase speed: U(yc) = c. One can show that ϕǫ has a limit denoted ϕ+ when ǫ
goes to zero. The function ω∞ is then given by

ω∞(y) = ik(U”(y)− β)ϕ+(y, U(y)) + ω(y, 0), (2.3.11)

see [11]. The function ω∞ depends on the Laplace transform of the stream function but for a
phase velocity c equal to the zonal velocity at latitude y. From a mathematical point of view,
it corresponds to the value of ϕ+ exactly at its singularity. The singularity in equation (2.3.10)
is of degree one (proportional to 1

y ) except at the extrema yc of the jets where U ′(yc) = 0 and
where the singularity is of degree two. A singularity of order two would create a divergence
for the solution, but it happens that the numerator in (2.3.10) vanishes at such points and the
solution is still defined at the extrema of a jet. A nontrivial consequence of that is

ω∞(yc) = 0
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Figure 2.3.1: Fourier spectrum of the stochastic forcing field.

at all critical latitudes yc where U ′ = 0. This result, called depletion of vorticity fluctuations at
the jet critical points in [11], has important physical consequences that influence the dynamics
of a jet.

As described in [11], using formula (2.3.10) and (2.3.11), one can numerically compute the
function ω∞ : we first have to solve a set of boundary value problems for ordinary differential
equations parameterized by c and ǫ to obtain a family of solutions ϕǫ(c). Then we evaluate,
for small enough ǫ each solution ϕǫ(c) at the value yc satisfying U(yc) = c. This method is
much faster and has less numerical cost than computing the long time evolution of the partial
differential equation (2.3.7).

Expressions (2.3.9) and (2.3.11) give the theoretical expression of the Reynolds stress diver-
gence 〈vω〉 in the inertial limit. However, the result still depends on the function ϕ+ defined
in (2.3.11), for which we do not have any explicit expression. So far, we did not study the
influence of the second nondimensional parameter in the problem, the wavevector K, that gives
the characteristic scale at which energy is injected in the flow. In the present work, we will
assume a spectrum in the form of an annulus of radius K. Fig.(2.3.1) displays the spectrum of
the stochastic forcing field in Fourier space. Note that the value k = 0 is excluded because we
assume that no energy is directly injected in the zonal flow U .

An order of magnitude of the nondimensional wavevector K is given by the ratio between the
width of a jet and the scale at which energy is injected in the barotropic flow. In the atmosphere
of Jupiter, the scale of energy injection is approximately given by the size of the storms at the
surface. Fig.(2.3.2) displays a picture of such a storm together with a picture of the equatorial
jet of Jupiter. The storms have a typical spatial extension of 1000 Km, whereas the width of the
main jets is about 20000 Km. The nondimensional parameter K is thus larger than 10. This is
the motivation to consider the asymptotic regime K ≫ 1 called the small scale forcing regime.
We show in the next section that an explicit expression can be found for the Reynolds stress
divergence in the limit K → +∞, and we give a close equation satisfied by the mean flow U .
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about

1000km

about
40000km
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Figure 2.3.2: Pictures of a typical storm at the surface of Jupiter (left), and of the equatorial
zonal jet of Jupiter (right). The storms have a spatial extension much smaller than the width
of jets.

2.3.3 Close equation for the mean flow in the small scale forcing limit

We now consider the limit of small scale forcing K →∞ . The calculations are rather technical
and can be skipped in the first lecture.

We start from equation (2.3.10) that describes the inertial behavior of a deterministic evo-
lution of a perturbation ω(y, 0) when ǫ vanishes. Using the Green function Hk(y) of (∂2y − k2)
we write

ϕǫ(y, c) = (U”(y)− β)
∫

dy′Hk(y
′)

ϕǫ(y − y′, c)
U(y − y′)− c− iǫ +

∫
dy′Hk(y

′)
ω(y − y′, 0)

ik(U(y − y′)− c− iǫ) .

Now we make the change of variable Y = ky′ . The Green function has the scaling Hk(y
′) :=

− 1
2kH0(Y ). Recalling that ϕ+(y, c) = limǫ↓0 ϕǫ(y, c), it follows

ϕ+(y, c) = −
(U”(y)− β)

2k2
lim
ǫ→0

∫
dY H0(Y )

ϕǫ(y − Y
k , c)

U(y − Y
k )− c− iǫ

− 1

2ik3
lim
ǫ→0

∫
dY H0(Y )

ω(y − Y
k , 0)

U(y − Y
k )− c− iǫ

.

(2.3.12)
We are implicitly making the assumption that l

k := tan θ is finite and thus K → ∞ implies
k →∞. Let us recall here that it is crucial to take the limit ǫ→ 0 first before K →∞ because
ǫ plays exactly the role of the linear friction α. As we are in the inertial regime, we have to take
a vanishing friction first. In [11], it is shown that the function ϕǫ has a finite limit ϕ+.

Consider now the magnitude of both terms in the right-hand side of (2.3.12). The first term
depends on ϕ+ and the other depends on the initial condition ω(y, 0). The initial condition is
of order 1, and the second term will thus be of order 1

k3 . As a consequence, the first term in the
asymptotic expansion of ϕ+ will be of order 1

k3 . The first term in the right-hand side of (2.3.12)
gives the order 1

k5 of the asymptotic expansion and is thus negligible. We write

ϕ+(y, c) ∼
K→∞

− 1

2ik3
lim
ǫ→0

∫
dY H0(Y )

ω(y − Y
k , 0)

U(y − Y
k )− c− iǫ

. (2.3.13)

Combining equations (2.3.11) and (2.3.13) we find that

|ω∞(y)|2 ∼
K→∞

|ω(y, 0)|2 − U”− β
k2

Re
{
lim
ǫ→0

∫
dY H0(Y )

ω ∗ (y, 0)ω(y − Y
k , 0)

U(y − Y
k )− U(y)− iǫ

}
.
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The final step is to replace ω(y, 0) = eily, andH0(Y ) = e−|Y |. We use also the Sokhotski–Plemelj
formula: lim

ǫ→0

1
x−iǫ = iπδ(x) + P

(
1
x

)
, to obtain

|ω∞(y)|2 ∼
K→∞

|ω(y, 0)|2 − U”− β
k2

Re
{
lim
ǫ→0

∫
dY e−|Y | e−iY tan θ

U(y − Y
k )− U(y)− iǫ

}

∼
K→∞

|ω(y, 0)|2 − U”− β
k2

Re
{
iπ

∫
dY e−|Y |e−iY tan θδ

(
U

(
y − Y

k

)
− U(y)

)}

−U”− β
k2

Re
{
P
{∫

dY e−|Y | e−iY tan θ

U(y − Y
k )− U(y)

}}

∼
K→∞

|ω(y, 0)|2 − U”− β
k2

P
{∫

dY e−|Y | cos(Y tan θ)

U(y − Y
k )− U(y)

}
,

where we have used that the term iπ
∫
dY e−|Y |e−iY tan θδ

(
U
(
y − Y

k

)
− U(y)

)
is purely imagi-

nary. Injecting this result in (2.3.9) gives the contribution of one Fourier mode k, l with k
l = tan θ

to the Reynolds stress divergence

Re 〈v∗θωθ〉 ∼
K→∞

− Ĉk,l

2k2
P
{∫

dY e−|Y | cos(Y tan θ)

U(y − Y
k )− U(y)

}
. (2.3.14)

We then use the limit k → +∞ to expand the mean flow U(y− Y
k ) in the vicinity of y. This

gives

P
{∫

dY e−|Y | cos(Y tan θ)

U(y−Y
k )−U(y)

}

= lim
η→0

∫ −η

−∞
dY e−|Y | cos(Y tan θ)

U
(
y − Y

k

)
− U(y)

+

∫ +∞

η

dY e−|Y | cos(Y tan θ)

U
(
y − Y

k

)
− U(y)

=

∫ +∞

0

dY e−|Y | cos(Y tan θ)

{
1

U
(
y − Y

k

)
− U(y)

+
1

U
(
y + Y

k

)
− U(y)

}

=

∫ +∞

0

dY e−|Y | cos(Y tan θ)

{
U
(
y − Y

k

)
+ U

(
y + Y

k

)
− 2U(y)(

U
(
y − Y

k

)
− U(y)

) (
U
(
y + Y

k

)
− U(y)

)
}

→
k→∞

U”

U ′2

∫ +∞

0

dY e−|Y | cos(Y tan θ) =
U”

U ′2
1

1 + tan2 θ
.

We have used that U
(
y − Y

k

)
+U

(
y + Y

k

)
−2U(y) ∼ U”Y 2

k2 and
(
U
(
y − Y

k

)
− U(y)

) (
U
(
y + Y

k

)
− U(y)

)
∼

−U ′2 Y 2

k2 . We get with (2.3.14)

Re 〈v∗θωθ〉 ∼
K→∞

Ĉk,l

2k2
U”

U ′2
1

1 + tan2 θ
=
Ĉk,l

2K2

U”

U ′2 . (2.3.15)

The choice to set the mean kinetic energy to 1 implies 1
2

∫∫
dk′dl′

Ĉk′,l′

K′2 = 1. The integration of
(2.3.15) over the whole spectrum gives the result

〈vω〉 −→
α→0,K→+∞

U”

U ′2 . (2.3.16)
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Figure 2.3.3: The 23˚ N zonal jet of Jupiter.

The computation of the asymptotic expansion of 〈vω〉 in the limit K → +∞ shows that the
result (2.3.16) can be only valid if kU ′

U” →∞. As U ′ vanishes at the extremum of the jet, there
should exist a small region of size 1

K in the vicinity of the extremum where this calculation
breaks down. The formula can only be valid for strictly monotonic profiles or for the monotonic
part between two extrema of a jet. Jets have nonmonotonic velocity profiles U . We display in
Fig.(2.3.3) one of the jets of Jupiter at 23˚of latitude. Fig.(2.3.3) shows the existence of a cusp
at the extremum of the jet. The extremum is a place where the velocity profile has a structure
at scale 1

K . At the extremum, the asymptotic value of the Reynolds stress is no longer valid,
and a refined calculation is required to find the structure of the mean flow at its extremum.

In the inertial limit, and with small scale forcing, we have shown that the Reynolds stress
does not depend on the Fourier spectrum of the stochastic forcing field, provided it injects energy
at small scale. It is worth to emphasize that our results are asymptotic results. The behavior
may be really different for finite friction and finite K. The work done in [92] shows that the
shape of the stochastic forcing matters in the general case.

2.4 Prediction of the stationary velocity profile

2.4.1 Close equation for the mean velocity profile

With the asymptotic result (2.3.16), we are now able to derive a close equation for the mean
velocity profile U . Relation (2.3.16) together with 〈vω〉 = − ∂

∂y 〈uv〉 gives an explicit expression
for the Reynolds stress divergence in the inertial small scale forcing limit

∂

∂y
〈uv〉 = − U”

U ′2 ,
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where U ′ and U ′′ respectively are the first and second partial derivatives of U w.r.t. the spatial
coordinate y.Writing the previous relation with dimensional variables gives

∂

∂y
〈uv〉 = −εU”

U ′2 . (2.4.1)

Relation (2.4.1) is the main result of this chapter. It shows that it is possible to give
an explicit expression of the Reynolds stress in the considered asymptotic limit. As already
mentioned in the introduction 2.1, it is very rare to be able to close exactly the equation for
the mean flow U , except in very particular configurations. Using the explicit expression for the
Reynolds stress divergence in equation (2.2.2) we obtain the following close equation for U

∂tU −
εU”

U ′2 = −rU. (2.4.2)

From the latter result, we deduce that the stationary velocity profile U0 satisfies the equation

εU0”

U ′2
0

= rU0. (2.4.3)

Equation (2.4.3) surprisingly has a Newtonian structure: multiplying both sides by U ′
0 and

integrating over y, we find explicitly

1

2
U2
0 −

ε

r
ln (|U ′

0|) = C, (2.4.4)

where C is a constant of integration.
In equation (2.4.4), the functionx → − ε

r ln (x) plays the role of a potential. The dynamics
defined by (2.4.4) is completely similar to a particle moving in a potential with equation

1

2
ẋ2 + V (x) = C,

with the potential V (x) := − ε
r ln (|x|). The only difference is that the roles of U and U ′ are

exchanged compared to the role of x and ẋ for a particle in a potential. The situation is
represented in Fig.(2.4.1).

Whatever the value of the constant C, the velocity profile U always diverges. The derivative
U ′
0 cannot change sign. There are two classes of solutions: solutions with U ′

0 > 0 and solutions
with U ′

0 < 0. The two classes of solutions correspond to the two sides of a jet. The solution of
equation (2.4.4) is represented in Fig.(2.4.2). Equation (2.4.4) predicts that zonal jets are com-
posed by a succession of diverging velocity profiles, with successively increasing and decreasing
values of the velocity. The side with increasing velocity of a jet is totally independent of the
side with decreasing velocity. The velocity profiles of westward and eastward jets are symmetric,
with in both cases a diverging value of the velocity at the extremum. Such a velocity profile of
course is not realistic because the velocity of zonal winds have finite values.

The fact that equation (2.4.4) predicts divergent velocity profiles means that some of our
hypotheses are broken at the extrema of zonal jets, and that an other mechanism of regularization
takes place. In section 2.4.3, we explain which physical mechanisms prevent the divergence of
the velocity. By taking those physical mechanisms into account, it is possible to get realistic jets
that correspond to the observations at the surface of Jupiter. In the following, of the present
section, we discuss the meaning of the result (2.4.1) in term of the energy balance.

After integration over y, equation (2.4.1) can be written as

U ′ 〈uv〉 = ε. (2.4.5)
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Figure 2.4.1: The stationary zonal flow satisfies a Newtonian equation similarly to a particle in
a potential. Whatever the value of the integration constant C, two classes of solutions exist:
one profile has an increasing velocity, the other one has a decreasing velocity.

Figure 2.4.2: The stationary velocity profile of the zonal flow predicted by equation (2.4.4), in
the inertial small scale forcing limit. Equation (2.4.4) predicts symmetric eastward and westward
jets, with diverging values of the velocity at the extrema.
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The constant of integration has no physical meaning, and can be set to zero. We now discuss
equation (2.4.5): ε is the rate of energy injection in the flow. From the energy balance, the
term U ′ 〈uv〉 can be interpreted as the rate of energy transferred from the small-scale eddies to
the mean flow. Relation (2.4.5) thus means that all energy injected at small scale is transferred
locally to the largest scale of the flow. This can be explained by the limits α→ 0 and K → +∞.
The inertial limit α→ 0 corresponds to a vanishing value of the friction coefficient r.In the limit
of vanishing friction, the system has no time to dissipate energy at small scale. All energy is
transferred to the largest scale before being dissipated. The small scale forcing limit K → +∞
prevents energy transfers between the different parts of the flow. The velocity fluctuations at
latitude y only interact with the flow in a small region of size of order 1

K around. Thus, spatial
energy transfer is impossible and energy has to be transferred to the mean flow at the same
latitude y. For the velocity fluctuations, the mean flow at scale 1

K looks like a parabolic profile
with derivative U ′(y) and second derivative U ′′(y), that’s why the asymptotic development of
the Reynolds stress divergence is expressed in terms of U ′ and U ′′.

To sum up this idea, we can say that the energy transfer is local in physical space, but
nonlocal in Fourier space. Energy is transferred directly from the scale 1

K to the mean flow
through direct interaction between the mean flow and the eddies, and not through an inverse
energy cascade in Fourier space. Energy transfer is possible only if U ′ 6= 0. At the extrema of
the jets, expression (2.4.5) breaks because direct energy transfer from small scale to the mean
flow is impossible.

2.4.2 Linear stability of the velocity profile

We now turn to the question whether the stationary velocity profile U0 predicted by (2.4.4) is an
attractor for the average dynamics (2.4.2). We thus study the stability of the profile displayed in
Fig.(2.4.2). We will try to give a qualitative argument to explain why the profile of Fig.(2.4.2)
is stable for the dynamics (2.4.2). Let U0(y) be the stationary velocity profile predicted by
equation (2.4.4). We study the linearized dynamics of (2.4.4) around U0. Injecting U0 + δU in
equation (2.4.2) and keeping only the linear terms in δU gives

˙δU =
ε

U ′2
0

δU” +
2εU0”

U ′3
0

δU ′ − rδU. (2.4.6)

Equation (2.4.6) has the general form

˙δU = εa2(y)δU” + εa1(y)δU
′ − rδU, (2.4.7)

where a1(y) := 1
U ′2

0
, a2(y) :=

2U ′′
0

U ′3
0

are some functions depending on the stationary solution

U0(y). The growth of the perturbation δU is the result of the effect of three terms: the term
in δU” is a diffusive term, the term in δU ′ makes the solution propagate on the y-axis, and the
last term is a linear damping. For the question of stability, the sign of the diffusion coefficient
a2 in front of δU” is crucial. From the expression a1(y) := 1

U ′2
0

, we deduce that the diffusion

coefficient in equation (2.4.7) is always strictly positive, which means that the perturbation δU
is always damped, whatever the wavevector of the perturbation.

Let us summarize what we found in this section. We studied the limit α → 0 and K → ∞
for the dynamics of the velocity fluctuations. We found that the Reynolds stress divergence can
be expressed in terms of the zonal flow U and its derivatives, which allows to write a closed PDE
for the dynamics of U . We solved the stationary equation for U and found that two solutions
can exist. One solution has an increasing velocity U0, the other one has decreasing U0. Both
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solutions diverge in a finite length. Jets are given by the juxtaposition of divergent profiles.
(see Fig.(2.4.2)). With a qualitative argument, we explained why the stationary profile U0 is
linearly stable. For real flows, such divergences cannot occur. When K is finite, there should
be a regularizing mechanism at scale 1

K that stops the growth of the mean velocity profile and
regularizes the solution U0 at scale 1

K . “Cusps” of typical size 1
K should be created at places

where the solution U0 is diverging, as shown on the 23˚ eastward jet of Jupiter in Fig.(2.3.3).
However, this is only one part of the mechanism. On Jupiter as well as in numerical simulations,
cusps can be observed only for the eastward part of the flow. For the westward part, the flow
is more parabolic with a curvature close to β. In section 2.4.3, we will explain why a cusp
cannot occur for westward jets. Let us now precise that a cusp for a westward jet violates the
Rayleigh-Kuo criterion for stability whereas a cusp on eastward jets does not. The mechanism
for the formation of a parabolic profile is the hydrodynamic instability.

2.4.3 Regularization at the extrema of the jets

We have seen in section 2.4.1 that the formula (2.3.16) 〈vω〉 = − U”
U ′2 gives a divergent mean

velocity profile and we discussed that this formula can only be valid in the limit kU ′

U” →∞. It is
thus natural to think that the asymptotic convergence (2.3.16) for the divergence of the Reynolds
stress is valid between the extrema of the jet, but not around the extrema. In a region of size
1
K around the extremum, another mechanism should take place to stop the growth of the jet.
On Jupiter, the data collected by Gallileo and Cassini probes shown in Fig.(2.1.1), indicate that
the eastward jets have “cusps”, while westward jets seem smoother. We first discuss eastward
jet cusps.

Looking more precisely at the cusp in Fig.(2.3.3), we see that its size is approximately 1
degree i.e a scale of ∼ 1000 km. The cusp has thus approximately the size 1

K . The observation
is consistent with the intuitive idea that the cusp should be regularized at a scale of order
1/K. the question is then: can we have a cusp, i.e a zonal structure at scale 1

K , solution of the
stationary equation

〈vω〉 (U0) = rU0,

in the limit K →∞ ?
The idea is to take equation (2.3.10) and study the asymptotic behavior of the solution after

changing the scale y ← Ky. We do not detail the calculations. it can be shown that the rescaled
zonal velocity profile Ũ(y) = U

(
y
K

)
has a finite limit when K goes to infinity. We were not

able to compute analytically the asymptotic profile Ũ . However, the phenomenon of depletion
of vorticity at the stationary stream lines discovered in [11] gives a very simple expression for
the Reynolds stress divergence just at the critical latitude yc where U ′(yc) = 0. We get

〈vω〉 (yc) = −
εK2

Ũ0”(yc)
. (2.4.8)

From equation (2.4.8), we find that the cusp should satisfy the relation (still with dimensional
variables)

U0(yc) = −
εK2

rU0”(yc)
. (2.4.9)

The relation is a general property of a stationary jet profile. It relates the strength of a jet to its
curvature, and the physical parameters ε, r and K. It does not depends on the detailed shape
of the spectrum of the stochastic forcing.
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At a formal level, nothing in the equations considered so far seems to make any difference
between the eastward part of a jet and its westward component. The parameter β is the only
term in the set of equations (2.2.6-2.2.7) that breaks the eastward-westward symmetry, but it
disappears from the asymptotic expression (2.3.16) when K → +∞. However, if we look at the
jets observed on Jupiter displayed in Fig.(2.1.1), we see a clear asymmetry between eastward
and westward jets, especially at high latitudes. Numerical simulations of the barotropic model
also shows the eastward-westward asymmetry. Of course, numerical simulations always include
a small scale dissipation (usually an hyperviscosity), but as this viscosity is small, we expect the
results to be close to those of our model. In [19] for example, the curvature at the eastward jet
is almost exactly β and seems to be trapped at this value whatever large the coefficients K and
1
α are.

Observations show that zonal jets seem to satisfy the Rayleigh-Kuo criterion of hydrodynamic
stability. The Rayleigh-Kuo criterion states that if the inequality β − U” > 0 is satisfied
everywhere in the flow, the flow cannot have an hydrodynamic instability (see e.g [80]). The
Rayleigh-Kuo criterion gives a sufficient condition for the mean flow U to be stable, but it is not
a necessary condition. There are examples of stable flows violating the Rayleigh-Kuo criterion.
For what concerns zonal jets, we have seen numerically that a very localized hydrodynamic
instability grows at the extremum of the westward jet as soon as the curvature of the extremum
is larger than β. The unstable mode of the hydrodynamic instability stops the growth of the
jet and keeps the curvature U ′′ to a value very close to β. This shows that westward jets are
marginally stable in the sense that the curvature of the westward extremum equilibrates to a
value close to β at which the damping effect of the hydrodynamic instability is balanced by the
force of the Reynolds stress divergence.

2.5 Perspectives

The barotropic equations in a β plane (2.2.1) can lead to formation and equilibration of zonal jets.
Those jets are in an out-of-equilibrium steady state that results in a balance between energy
injection at small scale and linear friction that dissipates energy at the largest scale. After
rescaling the equations, two nondimensional parameters remain, α and K, where α gives the
magnitude of energy injection and dissipation and 1

K gives the scale of the stochastic forcing. The
velocity profile of zonal jets U(y) obeys equation (2.2.2). This equation shows that the dynamics
of zonal jets is governed by the Reynolds stress divergence ∂y 〈uv〉, that can be computed from
the equation for the velocity fluctuations. In the inertial limit α→ 0, there is a clear timescale
separation between the dynamics of the jets and the dynamics of the velocity fluctuations. The
dynamics of zonal jets falls thus in the framework of slow-fast dynamical systems described in
chapter 1.

The aim of the present work was to apply the averaging principle to the dynamics of zonal
jets, to find a close equation for the averaged zonal velocity profile U(y) (see equation (2.2.3)).
We have shown that an analytical expression, as a function of U , can be found for the Reynolds
stress divergence in the small scale forcing limit K → +∞. The result is a close equation
that predicts the existence of jets, and shows that jets are attractors of the averaged dynamics.
From astronomical observations on Jupiter, we believe that both limits α→ 0 and K →∞ are
relevant to describe planetary flows and that the present work should find applications for the
atmosphere of giant gaseous planets.

The present work was thought to be the first step toward a general comprehension of the
statistical properties of zonal jets. What we have done here is to compute the averaged Reynolds
stress E [〈uv〉] w.r.t the realizations of the stochastic force, to show that zonal jets are stable
attractors of the averaged dynamics of jets. However, it is known from numerical simulations
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Figure 2.5.1: Direct numerical simulation of the stochastic quasigeostrophic barotropic equa-
tions. (Eric Simonnet) Top panel: spatio-temporal diagram of the zonally averaged vorticity.
Bottom pannel: time series of the vorticity Fourier components. When the flow is in the two-jets
configuration, the Fourier mode q2 dominates, and when the flow has three jets, the mode q3
dominates. Rare transitions between the three and two jets configurations can been clearly seen.

that the mean flow U can have many stationary state with different numbers of jets [20, 24].
With stochastic forcing, transitions between the different attractors can be observed in the flow.
The transitions are very rare in the sense that they happen on a timescale much longer than
the typical timescale of evolution of zonal jets. Fig.(2.5.1) shows the result of a direct numerical
simulation of the stochastic quasigeostrophic barotropic equations by Eric Simonnet. The top
panel is a spatio-temporal diagram of the zonally averaged vorticity and the bottom panel is a
time series of the vorticity Fourier components. When the flow is in the two-jets configuration,
the Fourier mode q2 dominates, and when the flow has three jets, the mode q3 dominates. Rare
transitions between the three and two jets configurations can been clearly seen.

To understand the rare transitions between states with a different number of jets, one would
have to go beyond the averaging procedure and study also the fluctuations and large deviations
of the Reynolds stress. Large deviation theory is in principle able to predict the probability
of rare transitions between many-jets states [94], and predict the instanton path chosen by the
flow to realize the fast and abrupt transitions (displayed in Fig.(2.5.1)). Private discussions
with Eric Simonnet and Freddy Bouchet led us to believe that the creation of a new jet begins
with a nucleus of inverse curvature at the extremum of the westward jet. On the contrary, the
disappearance of a jet happens on a different path, with a fusion of two neighboring eastward
jets and annihilation of the westward jet between them. The fact that analytical expressions
can be found for the Reynolds stress in the small scale forcing limit is an encouraging result,
and prompt us to look also for analytical results for the transitions between many-jets states.
Rare events such as the creation or annihilation of a jet happen in real physical systems, not
only in numerical simulations. On Jupiter, there are some clues that one jet has been lost in
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the past, which indicates that transitions similar to those observed in our numerical simulations
could really happen. Numerical work is in progress to study the appearance or disappearance
of a jet using special algorithms designed for the computation of rare events. In this domain,
the numerical simulations have a head start on theoretical works, and much remains to be done
to fully understand the stochastic dynamics of large scales in a 2D turbulent flow.
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Chapter 3

Long-term influence of the asteroids

on the dynamics of Mars

3.1 Introduction and motivations

The numerical integration of the secular and full equations of motion for the eight planets of
the solar system including the moon [47, 93] has shown that the solar system is chaotic and its
Lyapunov time τi has been estimated around 10 Myr. The chaos is significant enough such that
a single integration of the equations of motion is not at all representative of the state of the solar
system after a few 10 Myr. One property of chaotic motion is that it increases exponentially
any difference in the initial positions of the planets. Therefore, an error of few meters in the
initial positions of the planets leads on tens of Myr time scale to a complete indetermination on
the actual position of the planets.

The eight planets of the solar system represent a dynamical system in the form

dx

dt
= f0(x) + ηf1(x). (3.1.1)

In equation (3.1.1), x is a vector of 2× 3× 8 dimensions gathering all action-angle variables of
the planets. The zeroth order dynamics defined by

dx

dt
= f0(x) (3.1.2)

is the Keplerian dynamics. To zeroth order in the masses of the planets, the resolution of
equation (3.1.2) shows that the trajectories of planets are ellipses where the position of the Sun
is one of the focus of the ellipses. (3.1.2) is an integrable Hamiltonian dynamics. In the full
dynamics (3.1.1), η is a small parameter and ηf1(x) is the perturbative function coming from
the gravitational interactions between the planets. Because of the perturbative function ηf1(x),
the dynamical system (3.1.1) is no longer integrable, it is chaotic. Numerical simulations of
the full equations of motion for the solar system without averaging were done by [93, 65] to
built precise ephemeris for the Earth. They show that the Lyapunov time of the complete
dynamics (3.1.1) has a Lyapunov time of same order as τi ≈ 10 Myr computed with the secular
equations. Chaotic motion is intrinsic to the dynamics of the planets, because of their mutual
interactions. In particular, the dynamics is chaotic even without taking into account the external
perturbations to the system, among which are the asteroids, the comets, the tidal effects, the
radiative pressure of the Sun, etc...

73
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Figure 3.1.1: Evolution of the Earths eccentricity uncertainty δe(t) without asteroids mutual
interaction (dotted line), and with asteroids mutual interaction (solid line). The straight line
represents the secular chaotic behavior with Lyapunov time of 10 Myr (taken from [61]).

Among all possible external perturbations to the dynamics (3.1.1), rough orders of magnitude
suggest that the asteroids should be the main one. Taking the external influence of asteroids on
the dynamics of planets, the sytem (3.1.1) is modified in

dx

dt
= f0(x) + ηf1(x) + ǫg(x, t), (3.1.3)

where ǫ ≪ 1 is a small parameter related to the mass of the asteroids, and the term ǫg(x, t)
represent the gravitational interaction between planets and asteroids. Numerical simulations of
the dynamics of the solar system including the asteroids, compared to others without asteroids
[61], show that asteroids can indeed change the secular behavior of planetary orbits, however it
has been observed that simulations with asteroids do not affect significantly the Lyapunov time
of the solar system. Fig.(3.1.1) shows the increasing difference in eccentricity δe(t) between two
trajectories of the Earth with close initial conditions [61]. The difference increases exponentially
with time, which is characteristic of chaotic systems. One numerical integration (dotted line) is
done without asteroids mutual interactions, and the other one (solid line) with asteroids mutual
interactions. Without mutual interactions, , asteroids are about ten times less chaotic than with
mutual interactions. In both cases, one can see on Fig.(3.1.1) that the influence of asteroids
do not affect the Lyapunov time of 10 Myr computed without asteroids. This means that the
Lyapunov time of the full system (3.1.3) with external perturbation from the asteroids has the
same Lyapunov time τi as the intrinsic dynamics (3.1.1).

The same numerical integrations in [61] have shown that the dynamics of asteroids is chaotic
with a Lyapunov time τϕ ≃ 104 yr, thus much smaller than the Lyapunov time of 10 Myr of the
planets. The dynamics of asteroids is mixing, with a mixing time τϕ much smaller than τi. The
stochastic averaging theorems of section 1.3 state that the asteroids should act as a white noise
on the dynamics of planets, on the Myr timescale. The aim of the present work is thus to study
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the external perturbation of asteroids on the planetary dynamics, using the tools of stochastic
averaging. More precisely, we look at the dynamical system

dx

dt
= f0(x) + ǫg(x, t). (3.1.4)

The dynamics (3.1.4) where we have suppressed planetary mutual interactions, allows us to
study the asteroids as an external source of chaos for the planets. In equation (3.1.4), chaotic
motion is only due to the influence of asteroids. Let us call τe ( e for external ) its Lyapunov
time. We show that the chaotic dynamical system (3.1.4) is equivalent on the Myr timescale to
the stochastic dynamics

dx

dt
= f0(x) + ξ(x, t), (3.1.5)

where ξ(x, t) is a white noise, which amplitude can be expressed with the properties of g(x, t)
with a Green-Kubo formula. Once the system (3.1.4) has been written as a stochastic process
(3.1.5), it is quite easy to give the order of magnitude of τe. Equations (3.1.1-3.1.4) define two
different regimes depending on the Lyapunov times τi and τe :

1. The regime τi ≪ τe defines a regime of intrinsic chaos. On a time of order of the internal
Lyapunov time τi, the effect of the external perturbation ǫg is small. Thus, the probability
distributions of the variable x are essentially the same, to leading order in ǫ, for the full
system (3.1.3) and for the intrinsic dynamics (3.1.1).

2. If on the contrary τe ≪ τi, then the external perturbation creates chaos in the integrable
system, in the sense that the system looses the memory of its initial condition before
the intrinsic chaos can develop. For intermediate times between τe and τi, the complete
dynamics (3.1.3) can thus be described by a stochastic process, and the probability distri-
butions may be strongly influenced by the external perturbation.

Using the present framework, our question formulates in a very simple way. Let the complete
set of equations (3.1.3) be the equations for planetary motion of the solar system perturbed
by the asteroid belt. Are we in the regime of dominant intrinsic chaos with τi ≪ τe or in the
regime of external source of chaos with τe ≪ τi? What is then the order of magnitude of τe
describing the interactions between asteroids and planets?

As we have suppressed planetary mutual interactions in equation (3.1.4), we can consider
the influence of asteroids on each planet independently. In the present work, we have applied
stochastic averaging on the dynamics of Mars, which is the closest planet to the asteroid belt
and mostly feels the influence of asteroids. The method can be applied straightforwardly to
other planets, using the correct orbital elements.

3.2 Dynamics of Mars perturbed by a chaotic asteroid

3.2.1 Simplified Hamiltonian model

For times smaller than the Lyapunov time of the solar system, the secular motion of planetary
orbits is very accurately described by the periodic solution of the Laplace–Lagrange equations.
Except for the smallest planet Mercury, the planetary orbital elements eccentricities and incli-
nations remain very small (less than 0.15 for the eccentricity, and less than 10 degrees for the
inclination) in the Myr time scale [53]. The computations to be performed in the following
could be done without fundamental difficulties for elliptic and inclined trajectories. However
solving the equations for the elliptic motion is technically much more tedious than for restricted
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Asteroid non-dimensional mass semi-major axis eccentricity inclination Lyapunov time τϕ
ǫ = m

MS
(u.a) (yr)

Ceres 4.7 ∗ 10−10 2.8 0.076 11˚ 28900
Vesta 1.35 ∗ 10−10 2.4 0.09 7˚ 14282
Pallas 1.05 ∗ 10−10 2.7 0.23 35˚ 6283

Table 3.1: Physical properties of the main asteroids of the belt, Ceres, Vesta and Pallas. MS is
the mass of the sun. The Lyapunov times are taken from [61]

planar and circular motions, and it would not change the orders of magnitude to leading order
in eccentricities and inclinations. To study the order of magnitude of the perturbation induced
by the asteroids on the planets, we introduce a simplified model where the orbits of celestial
bodies are circular and coplanar. To describe the motion of the planet Mars, we thus keep
only the two orbital elements mean longitude λ and semi-major axis a. Most of the mass of
the asteroids only comes from the contribution of the largest ones Ceres, Vesta and Pallas (the
three largest asteroids represent about 58 % of the total mass of all asteroids). The physical
properties of those three asteroids is summarized in table 3.1. In our simplified model, we
thus only retain the planet Mars and one asteroid. Asteroids have chaotic motions because of
gravitational perturbation by the planets, but also because of interactions between each other
(in particular close encounters) as shown by [61]. They are thus not independent. Yet, their
motions are decorrelated after the Lyapunov time τϕ, that’s why, on the Myr timescale, we do
the hypothesis that the perturbation of asteroids are independent. We thus add the individual
contributions of each asteroid in the final result to obtain the right order of magnitude. The
simplified model of the planet Mars perturbed by one asteroid is described by the Hamiltonian

H = −GMSmp

2ap
− GMSm

2a
− Gmmp

|apeiλ − aeiϕ|
,

where MS ,mp,m stand for the masses of the Sun, Mars, and the asteroid respectively, λ, ϕ
are the mean longitudes of Mars and the asteroid, and ap and a their respective semi-major
axis. The Sun is considered as fixed. This means that we only retain the direct term of the
perturbative function and we take the real mass m instead of the reduced mass 1

β = 1
m + 1

MS
.

3.2.2 Slow-fast dynamics of the orbital elements

In physical units, it is difficult to see whether there is a small parameter in the problem. The
stochastic averaging techniques require to clearly identify a timescale separation between a slow
and a fast variable. Therefore, we rescale all physical variables. The mass of the sun is taken as
the unit mass, MS = 1, and the reduced mass ǫ := m

MS
of the asteroid is thus very small (table

3.1). Then we change the units for time and length, the astronomic unit (1 UA) is the new
length scale, and we choose the new unit of time such that GMs = 1. Finally, let Λ := ǫp

√
ap

be the canonical momentum associated to λ (we call ǫp :=
mp

MS
the reduced mass of Mars), we

do the canonical change of variables H ← H
ǫp
,Λ← Λ

ǫp
.

In the work of [61], the orbits of asteroids have been shown to be chaotic and the Lyapunov
time τϕ has been computed numerically. The Lyapunov time τϕ corresponds to exponential
separation for the longitudes ϕ(t) of asteroids. The Lyapunov times for the three main asteroids
are given in table 3.1. In the present model of planet Mars perturbed by one asteroid, it is
the chaos of the asteroid’s motion that breaks the periodic Keplerian regular motion of Mars.
Of course the chaotic motion of the asteroid does not come from the influence of Mars alone,



3.2. DYNAMICS OF MARS PERTURBED BY A CHAOTIC ASTEROID 77

but rather from interaction and close encounters with other asteroids and on the influence
of the giant planets. The retroactive influence of Mars on the asteroid can be considered as
negligible compared to the influence of Jupiter or Saturn, and the interaction with Mars cannot
substantially change the characteristics of the orbit of the asteroid, in particular its Lyapunov
time. That’s why we do not solve the equations of motion for the asteroid. To capture the
physical phenomena coming from the gravitational interaction between Mars and the asteroid,
the trajectory of the asteroid has to be considered as an input function in the model which
physical properties are given by more precise numerical studies. We thus take the semi-major
axis a as a constant and the longitude of the asteroid ϕ(t) as a function of time with correlation
time of the order of the Lyapunov time τϕ. The trajectory of Mars in our model is a functional
of the trajectory ϕ(t) of the asteroid. The reader should always bear in mind that those strong
hypothesis are done to the aim of giving orders of magnitude and not precise quantitative results.

The Hamiltonian of the simplified model we study writes in nondimensional variables

H(Λ, λ, t) := − 1

2Λ2
− ǫ∣∣Λ2eiλ − aeiϕ(t)

∣∣ . (3.2.1)

The Hamiltonian (3.2.1) does not conserve the total energy and angular momentum of the
asteroid and Mars. But to first order in ǫ, energy and angular momentum are the ones given
by the Keplerian orbit and depend thus only on the canonical momentum Λ. Our model is
consistent if the change in energy and angular momentum occurs on a time scale much larger
than the time we are considering for the perturbation of Mars. This point will be checked a
posteriori in section 3.4.3 when we will obtain the time τdiff over which the perturbation of
Mars becomes large.

From the Hamiltonian (3.2.1), we get the set of Hamilton equations for λ,Λ as

dλ

dt
= np(Λ) + ǫ

∂G

∂Λ
(Λ, λ− ϕ(t)) (3.2.2)

dΛ

dt
= −ǫ∂G

∂λ
(Λ, λ− ϕ(t)),

where we have introduced the Keplerian pulsation np(Λ) := 1
Λ3 and the gravitational interaction

G(Λ, λ−ϕ) := −1

|Λ2ei(λ−ϕ)−a| . The set of equations (3.2.2) is a perfect slow-fast dynamical system,

where the longitudes λ, ϕ of Mars and the asteroid respectively are the fast variables, and the
semi-major axis of Mars is the slow variable. From equations (3.2.2), we know that the semi-
major axis of Mars evolves on a timescale larger than 1

ǫ , which corresponds to about one billion
year. The mixing time of the dynamics of the asteroid is of order of 10 000 yr, which is thus
much smaller than the time of evolution of a. The timescale separation between the mixing time
and the time of evolution of a satisfies the hypotheses required to do stochastic averaging on
the semi-major axis, which is the aim of the next section 3.3.

In the final paragraph of this section, we discuss more precisely in which sense the position
of Mars should be considered as a stochastic variable associated to a probability distribution.
What is usually done in numerical simulations of chaotic planetary motion is to choose a large
number of initial conditions differing only by a small shift in the initial position. Because of
chaos, the different trajectories do not stay close together but separate exponentially fast on
a timescale given by the Lyapunov exponent. After sufficiently long time compared to the
Lyapunov time, the positions of all trajectories give a distribution. This distribution is an
estimation of all possible positions that could be reached from a uniform distribution on a very
small set of initial conditions. In this sense, it is a probability distribution. In the simplified
model (3.2.1), we do not fix the initial position of the asteroid. We study the motion of Mars for



78 CHAPTER 3. LONG-TERM INFLUENCE OF THE ASTEROIDS

different possible realizations of the function ϕ(t) and we take for ϕ(0) a uniform distribution
over the range [0, 2π]. This choice is done because the incertitude on the longitude of the asteroid
becomes total after a time large enough compared to the Lyapunov time τϕ. The position of
Mars has a probability distribution because it is conditioned by the realizations of the stochastic
function ϕ(t). We really emphasize that the trajectories of Mars will not separate exponentially
with time, as would have been the case if we had just consider a set of very close initial conditions
for the position of Mars and one single function ϕ(t). In our model, ϕ(t) is a random function
with a probability distribution P[ϕ]. Given this probability distribution, we want to obtain the
probability distribution of the canonical variables Λ, λ. Instead of an exponential separation,
we will get a diffusive behavior as will be shown in the next section.

3.3 Stochastic averaging of the dynamics of the semi-major

axis

3.3.1 Dynamics with rescaled variables

For technical reasons, it is convenient to consider the variable p := np(Λ) instead of Λ and write
the Hamilton equations (3.2.2) as

λ̇ = p+ ǫ
∂G

∂Λ
(Λ, λ− ϕ(t)) (3.3.1)

ṗ = −ǫ∂np
∂Λ

(Λ)
∂G

∂λ
(Λ, λ− ϕ(t)).

It is physically clear that to zeroth order in ǫ, the motion of (p, λ) is simply a linear flow, with
p = p(0) and λ(t) = λ(0) + p(0)t. Equations are then invariant with the change of variables
p← p− p(0), λ← λ− p(0)t, provided the function ϕ(t) is also changed as ϕ(t)← ϕ(t)− p(0)t.
This change of variables means that we integrate out the Keplerian motion of Mars and the
new function ϕ(t) represents the difference between the mean longitude of the asteroid and the
Keplerian mean longitude of Mars.

Now comes a subtle point: the aim of our calculations is to give an order of magnitude of the
influence of the asteroid on the dynamics of Mars. We will not apply brute stochastic averaging
as described in section 1.3.3, because averaging on the longitude of Mars would completely hide
the stochastic effect of the asteroid on the longitude of Mars. It is not obvious on which timescale
the motion of the longitude of Mars will be perturbed. It should scale with ǫ but we still do not
know the precise scaling at this step of the calculation. Following the method proposed in [46],
we thus introduce a priori an exponent α > 0 and rescale the time according to t′ = ǫαt. The
case α = 1 corresponds to the timescale of the slow variable. With α < 1, we will find the right
timescale at which the longitude of Mars feels the stochastic effect of the asteroid. The variables
λ and p are also rescaled according to λ′(t) = λ

(
t
ǫα

)
and p′(t) = 1

ǫα p
(

t
ǫa

)
and Λ′(t) = Λ

(
t
ǫα

)
.

The equations for the rescaled variables are

λ̇′ = p′ + ǫ1−α ∂G

∂Λ

(
Λ′, λ′ − ϕ

(
t

ǫα

))
(3.3.2)

ṗ′ = −ǫ1−2α ∂np
∂Λ

(Λ′)
∂G

∂λ

(
Λ′, λ′ − ϕ

(
t

ǫα

))
.

In the next section, we show how the stochastic averaging theorem of section 1.3.3 can give
stochastic equations equivalent to (3.3.2). From the stochastic set of equation, we can choose
the value of the exponent α to find the relevant timescale on which diffusion occurs.
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3.3.2 Stochastic differential equation for the orbital elements

To go one step further, we have to find the asymptotic behavior of the two functions ∂G
∂λ

(
Λ′, λ′ − ϕ

(
t
ǫα

))

and ∂G
∂Λ

(
Λ′, λ′ − ϕ

(
t
ǫα

))
in the limit ǫ→ 0. The limit is not at all trivial. The averaging principle

states that the oscillating function ∂G
∂λ

(
Λ′, λ′ − ϕ

(
t
ǫα

))
should be averaged over the distribution

of the fast angle ϕ. However, it happens that the function ∂G
∂λ is periodic in ϕ, and its average

over a uniform distribution of ϕ is zero. The averaging principle only tells us that the semi-major
axis is invariant to main order in ǫ.

The semi-major axis is called an adiabatic invariant, it means that it is a conserved quantity
of the averaged dynamics. It is known since a long time in celestial mechanics that the semi-
major axis is conserved by the secular equations to first order (and even to second order) in the
planetary masses. The result is known in celestial mechanics as the Laplace theorem (and the
Poisson theorem for the second order in the masses). To obtain a non trivial variation of the
semi-major axis, we have to go to next order, beyond the averaging principle, and do stochastic
averaging.

The average of the dynamics over the fast angle vanishes ∂G
∂λ = 0. This corresponds to the

case of stochastic averaging with b̄ = 0 described in section 1.3.3. The stochastic averaging the-
orem requires the fast dynamics to be mixing. This hypothesis is satisfied because the dynamics
of the asteroid is chaotic with the Lyapunov time τϕ. Stochastic averaging can be applied pro-
vided the considered timescale is much longer than the mixing time τϕ. In dimensional variables,
this condition would write τϕ

Tp
≪ 1

ǫα , with Tp the Keplerian period of Mars. The condition has
to be checked a posteriori with the value of the exponent α.

The theory of stochastic averaging in the case b̄ = 0 shows that the function ∂G
∂λ

(
Λ′, λ′ − ϕ

(
t
ǫα

))

is equivalent (it is said to be equivalent in law) to the stochastic process (see expression 1.3.36)

∂G

∂λ

(
Λ′, λ′ − ϕ

(
t

ǫα

))
∼

ǫ→0
ǫα/2

[
A(Λ′) +

√
σ²(Λ′)ξ(t)

]
, (3.3.3)

where ξ(t) is the normal Gaussian white noise, 〈ξ(t)ξ(t′)〉 = δ(t − t′). As we said in section
1.3.3, there is in general no simple expression for the drift A (we call the drift A to avoid any
confusion with the semi-major axis) for a fully coupled slow-fast system. In the present work, we
neglect the retroaction of Mars on the asteroid. This assumption means that the fast dynamics
is decorrelated from the slow process, and equation (1.3.38) gives then an explicit expression for
the drift. The coefficients a and σ are given in terms of the correlation function of ∂G

∂λ by

A(Λ′) =

∫ +∞

0

dt

〈
∂2G

∂Λ∂λ
(Λ′, λ′ − ϕ (t))

∂G

∂λ
(Λ′, λ′ − ϕ (0))

〉
, (3.3.4)

σ²(Λ′) = 2

∫ +∞

0

dt

〈
∂G

∂λ
(Λ′, λ′ − ϕ (t))

∂G

∂λ
(Λ′, λ′ − ϕ (0))

〉
.

It should be noticed that the function G depends on the variable λ − ϕ, and as a result, the
coefficients expressed in (3.3.4) do not depend on λ′ . On the contrary, the function ∂G

∂Λ in the
dynamics of λ′ in equation (3.3.2) is not periodic in ϕ and a simple averaging principle is enough
to give the equivalent

∂G

∂Λ

(
Λ′, λ′ − ϕ

(
t

ǫα

))
∼

ǫ→0

〈
∂G

∂Λ

〉
(Λ),

where the average 〈〉 is done over ϕ.
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Altogether, we can give a stochastic equivalent of the system of equations (3.3.2)

λ̇′ = p′ + ǫ1−α

〈
∂G

∂Λ

〉
(Λ′) (3.3.5)

ṗ′ = −ǫ1− 3
2α
∂np
∂Λ

(Λ′)
[
A(Λ′) +

√
σ²(Λ′).ξ(t)

]
.

In the first equation of (3.3.5), the perturbation appears at order ǫ1−α, whereas in the second
equation it is ǫ1−

3
2α. As α > 0, the term in the equation for p′ is dominant. We choose the

value α = 2
3 , because it is the only choice of α that gives a non trivial finite limit to the set of

equations (3.3.5) when ǫ → 0. We can then drop the term ǫ1−α
〈
∂G
∂Λ

〉
(Λ) in the first equation.

Forgetting the primes for the variables λ′ and p′ we finally write the stochastic equations for
the dynamics of Mars perturbed by an asteroid

λ̇ = p (3.3.6)

ṗ = −∂np
∂Λ

(Λ)A(Λ) +
∂np
∂Λ

(Λ)
√
σ²(Λ)ξ(t).

The last set of equations describes to main order the diffusion of the canonical variables λ and
Λ over a timescale 1

ǫ2/3
.

3.3.3 Diffusion process for the semi-major axis

The aim of the present section is to give the consequences of equations (3.3.6) on the semi-major
axis of Mars. In particular, we evaluate the order of magnitude of the diffusion coefficient and
we give the timescale for diffusion in physical units.

The difficult task is the computation of the diffusion coefficient σ² in (3.3.4), because it
involves the correlation function of the derivative of G. The full computation is reported in
appendix A. The computation depends only on an averaging over the phase of the asteroid. As
the motion of the asteroid is a chaotic function for which we do not have an analytic expression,
we have to do an hypothesis on how the phase ϕ of the asteroid differs from a simple Keplerian
motion. We have to take into account that the Lyapunov time of the phase is given by τϕ. To
perform the computation, we assume that the perturbation of the phase of the asteroid is similar

to a Brownian motion W
(

t
τϕ

)
. However we strongly emphasize that this particular ansatz for

the perturbation of the asteroid is chosen to perform analytic calculations, but while the exact
result will depend on the particular expression of ϕ, the order of magnitude of the result will
not. Our result will thus give the correct order of magnitude of the diffusion coefficient as a
function of the correlation time τϕ of ϕ.

The important result of the calculation of appendix A is to show how the diffusion coefficient
σ²(Λ) scales with τϕ. We have explained in the theoretical discussion about mixing systems in
section 1.2.2 that diffusion only occurs if the motion of the asteroid decorrelates fast enough.
It is therefore natural to expect that the diffusion coefficient is larger when τϕ is smaller. On
the contrary, if the motion of the asteroid is regular, there is no diffusion at all, the diffusion
coefficient should be zero for infinite τϕ. A rough order of magnitude for the diffusion coefficient
σ²(Λ) from the formula (A.0.2) of appendix A writes in non dimensional variables

σ²(Λ) ∝ |G|2
(np − ν)2τϕ

, (3.3.7)

where |G| is the typical order of magnitude of the function G, np is the Keplerian pulsation of
Mars, ν is the Keplerian pulsation of the asteroid, and τϕ is the Lyapunov time of the asteroid,
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all expressed in unit of time period of Mars. If we restrict ourselves to times that are short, or
of the order of the diffusion timescale, there is no need to evaluate the drift A(Λ). The diffusion
process has typical growth ∝

√
t compared to the growth ∝ t for the drift, and the drift does

not influence diffusion for short times t.
We summarize the results by saying that the effect of the chaotic asteroid on the planet Mars

is similar to a white noise process acting on the semi-major axis ap of Mars. The equation for
ap can be deduced from equation (3.3.6) and the relation

ṗ =
∂np
∂Λ

Λ̇,

=
∂np
∂Λ

ȧp
2
√
ap
. (3.3.8)

The stochastic equation for the semi-major axis ap writes

dap
dt

=
√
Dξ(t), (3.3.9)

where the order of magnitude of D can be written in nondimensional units using equations
(3.3.6),(3.3.7),(3.3.8) and |G| ≈ ǫ

|ap−a|

D ∝ ǫ2 4ap
|ap − a|2(np − ν)2τϕ

. (3.3.10)

Then, we come back to dimensional variables. The length scale is the astronomical unit, we call
it L. The unit of time is given by L3/2

√
GMs

, and we have ǫ := m
Ms

. The dimension of D is [L]2[T ]−1.
The dimensional form of D is then simply obtained by multiplying the nondimensional result
(3.3.10) by L3 × GMs

L3 , which gives

D ∝ 4

(
m

MS

)2 GMSap
|ap − a|2(np − ν)2τϕ

. (3.3.11)

Equations (3.3.9) and (3.3.11) are the first important physical result of this chapter. They give
the quantitative stochastic effect of the asteroid belt on the semimajor axis of Mars, with the
influence of the relevant parameters. Equation (3.3.9) can be considered as a deviation from the
theorem of Poisson that states that the semi-major axis is constant for the averaged equations
up to second order in the masses. Equation (3.3.11) gives the main physical parameters that
influence the diffusion time. The diffusion coefficient is very small because it is proportional to
the square of the small parameter m

MS
< 10−9. The Lyapunov time of the asteroid appears at

the denominator of the expression of D, which confirms the fact that the noise created by the
asteroid is larger when the asteroid is more chaotic. One last important remark is the presence
of the difference np−ν between the Keplerian pulsations of Mars and the asteroid. The result is
valid because there is no resonance of first order between Mars and the asteroid. The presence
of resonances in the fast dynamics of a slow-fast system can completely change the expression
of the diffusion coefficient, and require a special care. An example of resonances in the fast
dynamics will be encountered in the secular dynamics of Mercury studied in chapter 5.

From the diffusion coefficient (3.3.11) we can build a typical time of diffusion of the semi-
major axis

τap
∝
a2p
D
≈ 1022yr (3.3.12)

The time τap
is much larger than the age of the solar system. The semi-major axis of Mars can

thus be considered as constant on the Gyr timescale. However, the result does not mean that
asteroids have no significant effect on the dynamics of planets. Section 3.4 will show that the
main stochastic effect of asteroids is on the longitude of Mars, not its semi-major axis.
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Figure 3.4.1: Dispersion of particles in a channel. The flow is indicated with arrows.

3.4 Superdiffusion of the mean longitude of Mars

3.4.1 Heuristic picture of the mechanism: dispersion is enhanced by

the Keplerian flow

Although the results of the last section could seem very technical at first sight, the underlying
physical mechanism is very simple. Let us give a simple picture to understand the result (3.3.6).
We represent the Keplerian dynamics of Mars in Fig.(3.4.1) by a parallel flow in a channel.
The velocity of the flow is given by the Keplerian pulsation np(Λ), and depends explicitly
on the coordinate Λ. We represent in Fig.(3.4.1) the difference in velocity np(Λ) − np(Λ0) ≈
∂np(Λ0)

∂Λ (Λ− Λ0) as a linear velocity profile in the channel.
At t = 0, particles are released in the middle of the channel at Λ = Λ0. The particles

represent the different trajectories of Mars with close initial conditions. Particles diffuse along
the λ-direction and the Λ-direction. Along the Λ-direction, we have a simple diffusion according
to equation (3.3.6) and ∆Λ(t) ∝

√
t. Along the λ-direction, the flow amplifies the diffusion:

particles going up at Λ feel a velocity ∂np(Λ0)
∂Λ (Λ−Λ0) and are carried forward in the λ-direction,

whereas those going done at −Λ feel the velocity −∂np(Λ0)
∂Λ (Λ − Λ0) and are carried backward

in theλ-direction.
Altogether, if at time t particles have diffused over a range ∆Λ, the dispersion along λ scales

like ∆λ =
∂np(Λ0)

∂Λ ∆Λt, and since ∆Λ ∝
√
t we find that ∆λ ∝ ∂np(Λ0)

∂Λ t
3
2 . A diffusion scaling

with t
3
2 is an example of what we call a “superdiffusion”, it is illustrated on Fig. (3.4.1).

Because of the superdiffusion mechanism, the dispersion of trajectories of Mars occur much
faster for the longitude than for the semi-major axis. The diffusion time we found in (3.3.12)
is much too large to be relevant over the Gyr timescale, but we show in the following that
the superdiffusion time of the mean longitude is small enough to have an impact on physical
observations.

Let us conclude this section by a remark. The superdiffusion mechanism, that is, diffusion
scaling with t3/2 has been known for long in hydrodynamics with the name Taylor-Aris disper-
sion. In chaotic Hamiltonian systems, its importance has already been recently noticed by [46].
some physicists in celestial mechanics had also noticed the phenomenon with the propagation
of numerical errors in simulations [16]: the error grows much faster for the angle than for the
action variable.
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3.4.2 Variance of the mean longitude

We have noticed in section 3.3.3 that the diffusion time of the semi-major axis is much larger
than the age of the solar system. Over the Gyr timescale, the action variable Λ can be considered
constant in equation (3.3.6). The system has an exact solution. From the integration of (3.3.6),
we deduce that the probability distribution of λ is a Gaussian law. We can now compute its
variance w.r.t the realizations of the noise ξ. The term −∂np

∂Λ (Λ)A(Λ) will give a deterministic
contribution on λ scaling like t2. The interesting part comes from the white noise, because
it makes the probability distribution of λ spread over time. From integration of the second
equation of (3.3.6) we get

p(t) = −∂np
∂Λ

(Λ)A(Λ)t+
∂np
∂Λ

(Λ)
√
σ²(Λ)W (t),

where W is the standard Brownian motion (also called the Wiener process). The mean longitude
can be expressed as the integral of p

λ(t) = λ(0)− ∂np
∂Λ

(Λ)A(Λ)t2 +
∂np
∂Λ

(Λ)
√
σ²(Λ)

∫ t

0

W (s)ds. (3.4.1)

From the last expression, we get the variance of the probability distribution of λ

Vλ(t) := E[λ2(t)]−E[λ(t)]2

=

(
∂np
∂Λ

(Λ)

)2

σ²(Λ)
∫ ∫

dsds′E[W (s)W (s′)]

=

(
∂np
∂Λ

(Λ)

)2

σ²(Λ)
∫ ∫

dsds′ inf(s, s′)

=
1

3

(
∂np
∂Λ

(Λ)

)2

σ²(Λ)t3.

This proves that λ is “superdiffusive”, because the variance grows like t3 instead of t for standard
Brownian motion. We can define the timescale of superdiffusion τdiff through the relation

∆λ(t) =

(
t

τdiff

) 3
2

, (3.4.2)

with the explicit expression of τdiff given by

τdiff =

(
1

3
ǫ2
(
∂np
∂Λ

)2

σ²(Λ)

)−1/3

. (3.4.3)

Equation (3.4.2) is the mathematical justification of the superdiffusion process described in sec-
tion 3.4.1. But we even obtain a more precise result than the simple scaling of ∆λ: equation
(3.4.1) shows that the mean longitude is the integral of a Brownian motion. From this re-
sult, we can obtain all statistics about the stochastic process λ(t), including its full probability
distribution. In dimensional variables, the expression 3.4.3 of the superdiffusion time becomes

τdiff ∝
((

ma

MS

)2 GMS

a3pτϕ

)−1/3

. (3.4.4)
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Asteroid nondimensional mass Lyapunov time (yr) τϕ τdiff (Myr) extrinsic Lyapunov
ǫ×1010 time τe (Myr)

Ceres 4.7 28900 22 25
Vesta 1.3 14282 24 23
Pallas 1.05 6283 33 36

total 3 asteroids 7.05 - 17 18

Table 3.2: Effect of the three largest asteroids on the mean longitude of Mars

A final remark will conclude this subsection: the asymptotic result (3.3.3) shows that the
interaction with chaotic asteroids is equivalent to a white noise force acting on the planet, on a
time scale much larger than the Lyapunov time τϕ of the asteroid. (3.3.4) give the properties
of the noise, and is the starting point to study the order of magnitude of the noise amplitude,
which is done in the next section. Our computation thus gives a theoretical ground to the model
studied in [46] of an integrable dynamics perturbed by a white noise, and the correct order of
magnitude for the diffusion coefficient σ2 in Eq. (3.3.4) .

3.4.3 Orders of magnitude for the superdiffusion time

With the results of appendix A, we are able to give the order of magnitude for the diffusion
time of the mean longitude of Mars. On timescales longer that their respective Lyapunov time,
the motion of the asteroids can be considered as statistically independent. The perturbations
of the asteroids on Mars can thus be considered separately. This allows to give an estimation of
the total perturbation.

Table (3.2) is the second important quantitative result of this work. It gives an estimation
of the time we have to wait before seeing a noticeable influence of the three largest asteroids
on the mean longitude of Mars. The diffusion time τdiff depends strongly both on the mass
of the asteroid and on the Lyapunov time τϕ of the asteroid. In particular we see that Ceres
and Vesta seem to have similar effects on Mars because Ceres is much larger, but is also much
less chaotic than Vesta. We also report in the last column of table (3.2) the extrinsic Lyapunov
time τe of planets perturbed by the asteroid belt. It is defined as the inverse of the largest
Lyapunov exponent of the dynamical system (3.2.2). Physically, it corresponds to the typical
time of exponential separation of two close initial conditions in (3.2.2) for the mean longitude of
Mars. We do not report details about the computation of τe because the method is very similar
to the computation of τdiff and is already explained in the work of [46]. The result is

τe =

(
1

3
ǫ2
(
∂np
∂Λ

)2

2

∫ +∞

0

dt

〈
∂2G

∂λ2
(Λ, λ(t)− ϕ (t))

∂2G

∂λ2
(Λ, λ(0)− ϕ (0))

〉)−1/3

. (3.4.5)

The expression of τe is very similar to that of τdiff , but it involves the correlation function of the
second derivatives of G instead of the first derivatives for τdiff . This explains why the orders
of magnitude for τe and τdiff in table 3.2 are roughly the same.

3.4.4 Conclusion: impact on chaotic motion of the solar system

The present wok has shown that the main stochastic effect of asteroids on planetary motion
occurs on the time evolution of the mean longitudes. We have shown that the variance of the
mean longitude of Mars grows like t3/2 because of the superdiffusion mechanism. The superdif-
fusion mechanism is an additional mechanism to the usual exponential separation of trajectories
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observed in chaotic systems. We believe this mechanism could be observed in numerical simu-
lations.

Consider a number of numerical simulations of the dynamics of Mars and the asteroid belt.
If one takes different but very close initial conditions for the planet Mars and exactly the same
initial conditions for the asteroids, the trajectories of Mars separate exponentially fast with
Lyapunov time τe. This means that for times smaller than τe we have

∆λ(t) ≃ ∆λ0 exp

(
t

τe

)
, (3.4.6)

where ∆λ is the difference in mean longitude between two trajectories of Mars. On the contrary,
if one simulates the system with different initial conditions for the asteroids, but the same initial
condition for the planet Mars, the trajectories of Mars in the different simulations separate as

∆λ(t) ≃
(

t

τdiff

)3/2

. (3.4.7)

because of the superdiffusion mechanism. Now, the simulation can start with both different
initial conditions for Mars and the asteroids. Table (3.2) shows that τe and τdiff are of the
same order of magnitude. Then the trajectories of Mars will also separate following the power
law

∆λ(t) ≃ ∆λ0 +

(
t

τdiff

)3/2

, (3.4.8)

because the superdiffusion mechanism overcomes the exponential divergence for small times
t < τe. This is illustrated on Fig.(3.4.2). This explains why the superdiffusion mechanism is
more relevant than exponential separation for the computation of the probability distribution
of planetary mean longitudes. The mechanism that causes superdiffusion of longitudes is the
perturbation by the asteroids of the planetary semi-major axis, which is an adiabatic invariant
of the secular equations of the solar system. Even if the simplified model considered in this work
does not take into account secular evolution of the orbital elements eccentricities and inclination,
the superdiffusion of the longitudes should not be broken by the secular motion of orbits, and
the orders of magnitude of table (3.2) should be the relevant ones.

The superdiffusion timescale for the planetary longitudes, of order of 10 Myr, is of the same
order of magnitude as the Lyapunov time τi of planetary secular motion in the inner solar system,
as given by [47]. The superdiffusion of longitudes does not affect the secular chaos in the solar
system, because the secular equations do not involve the planetary longitudes. As a natural
extension of our work, we have shown that asteroids create another superdiffusion mechanism
at the level of the secular equations, which affects the time evolution of planetary eccentricities
and inclinations. With a very similar procedure as the one used in this chapter, the “secular”
timescale for superdiffusion can be computed theoretically (see [102]). The result shows that
the secular timescale for superdiffusion is much larger than the age of the solar system, and
that the superdiffusion mechanism is thus negligible compared to the exponential separation of
trajectories due to secular chaos. We thus conclude that the long-term probability distributions
of planetary orbital parameters should be the same with, and without taking the asteroids into
account.
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Figure 3.4.2: Separation between the trajectories of Mars with close initial conditions. The
superdiffusion mechanism represented by the blue curve gives a separation scaling as a power-law(

t
τdiff

)3/2
. The chaos in the system separates two trajectories exponentially fast as displayed

by the red curve. Here we have chosen an initial separation ∆λ0 ≈ 0.01.



Chapter 4

Large variations of the obliquity of

a Moonless Earth

4.1 Introduction: chaotic variations of planetary obliquities

The Earth spin axis is currently tilted of 23°. The angle between the spin axis and a vertical
axis (w.r.t. the orbital plane) is called the obliquity, and noted ε. The tilt is responsible for
the existence of seasons on our planet, and the value of the obliquity is directly related (with
geometrical effects) to the duration of the day, seasons, and mean surface insolation. The spin
axis does not always keep the same orientation in space. It has a precessional motion called
precession of the equinoxes, similar to the one observed for a top. The precession is due to the
torque exerted by the Moon and the Sun because of the non-spherical shape of the Earth. The
precession of the Earth is illustrated on figure 4.1.1.

Neglegting all other influences, the spin axis dynamics is described by the Hamiltonian

HE = α
p2

2

where α is the precession constant, p := cos ε is the action variable, and q is the conjugated
precession angle. The explicit expression for the precession constant α involves the coefficients
of the Earth matrix of inertia, such that the precession constant would be zero for a perfectly
spherical Earth. To zeroth order, the spin axis dynamics is intregrable, and its motion is simply
given by

q̇ = αp.

With the current value of the precession constant α = 55′′/yr and ε = 23°, the precession period
is 2π

α cos ε ≈ 25900 years.
But coupling between the spin axis dynamics and the slow variations of the Earth orbital

plane creates resonances in the dynamics. The real spin axis dynamics is chaotic and its long
term evolution is not given by the simple precessional motion at fixed obliquity value.The chaotic
variations of the Earth spin axis is the topic of the present section.

4.1.1 Motivations

A recent work by [63] investigated how long term perturbations by other planets could affect the
obliquities and precession rates of all planets in the inner solar system. Combining an analysis

87
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Figure 4.1.1: Illustration of the precession motion of the Earth spin axis. The precession is
similar to the one observed for a spinning-top. Its period is about 25900 years.

of the fundamental frequencies of the planetary orbital plane motion (frequency map analysis)
with numerical integration of the equations of motion, [63] was able to predict the location
of strongly chaotic regions for some values of the precession constant α of the planets. The
main conclusion of this work is that the current planetary obliquities in the solar system are
the result of long-term chaotic variations. The current obliquities of terrestrial planets cannot
be considered as primordial. This explains the apparently puzzling value of the obliquities of
some planets like Venus. Venus is the only planet that has a retrograde rotation, that is, the
value of its obliquity is close to 180°. Different mechanisms, including the dissipative effects
due to the very dense atmosphere of the planet, have been necessary to drive the planet from
its primordial rotation state to the current one. However, the precise work by [21] has shown
that chaotic evolution allows Venus spin axis to flip for a large set of initial conditions. Chaotic
evolution is thus a fundamental mechanism to understand the rotational states of planets a long
time after the formation of the solar system.

The case of the Earth is of particular interest, because it is the only planet that has a
satellite with such a large mass ratio. The tides exerted by the Moon on the Earth are of similar
order of magnitude as the ones exerted by the Sun. The presence of the Moon increases the
effective value of the precession constant compared to a Moonless Earth (α = 54.93 arcsec/yr
for the Earth with the Moon, less than 20 arcsec/yr without the Moon). The consequence is
that the present obliquity of the Earth is trapped in a very stable region of phase space, and its
obliquity is very well approximated by a periodic function of time composed of the precession of
the equinoxes and a nutation of about 2.6°. On the contrary, the phase space of the Moonless
Earth is divided into strongly chaotic regions created by resonance overlap, separated by regular
regions. In a subsequent work, [78] also investigated the future of the Earth taking into account
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the progressive separation from the Moon. It was shown with a set of 500 numerical simulations
over 5 Gyr, that the Earth could reach an obliquity close to 90˚ after sufficient increase in the
Earth-Moon distance. However, [70] conducted three simulations for the dynamics of the spin
axis of the Earth with initial conditions without the Moon, and with initial obliquities located
in the three strongly chaotic regions of phase space. Transport is very fast whithin those three
strongly chaotic regions, but much slower in other regions of phase space. Over the age of the
solar system, none of the three Moonless Earth leaves the strongly chaotic region in which it had
started. Many astrophysicists now believe that large variations of a moonless Earth are possible,
but occur in a typical time of many Gyr, and are thus difficult to observe with direct numerical
simulations [67]. The aim of the present work is to confirm the existence of trajectories of the
moonless Earth with large variations of its obliquity and give the order of magnitude of the
transition rate of the obliquity from 0°to 90°.

4.1.2 Chaotic Hamiltonian dynamics

A simplified but realistic model for the dynamics of the spin axis of the Earth is given by the
Hamiltonian [63]

HE =
α

2
p2 + 2

√
(1− p2)

13∑

k=1

αkνk sin(νkt+ q + ϕk). (4.1.1)

With the current value α = 54.93′′yr−1, the Earth lies in a very stable region of phase space and
large variations of its obliquity are impossible. But without the Moon, the precession constant
α of the Earth would be roughly reduced to 20′′yr−1. Because of dissipative tidal effects, the
Moon goes away from the Earth, and the value of the effective precession constant of the Earth-
Moon system is continuously reduced and will eventually reach the asymptotic value of 20′′yr−1

when the Moon will be far enough from the vicinity of the Earth. The thirteen parameters
{αk, νk, ϕk} come from the quasiperiodic representation of the time evolution of the inclination
of the Earth. In particular, some of the frequencies νk are part of the fundamental frequencies
of the Laplace–Lagrange secular system. The αk are nondimensional parameters that quantify
the extension of chaotic regions. The parameters can be considered as fixed on a timescale
of few Myr. These parameters are of small amplitude (see table (4.1)), which means that the
Hamiltonian (4.1.1) is a weakly chaotic system.

The simple Hamiltonian (4.1.1) has one degree of freedom, and depends on time through
a set of thirteen frequencies, which create resonances and chaotic motion in some regions of
phase space. The amplitude of chaotic motion depends on whether the system lies in a region
of resonance overlap, or, to say it equivalently, if its precession frequency α is close to the values
of the frequencies νk. It has first be shown empirically by Chirikov that strong chaotic motion
takes place if the fundamental frequency of the system is simultaneously close to at least two
resonant frequencies. The criterion is very efficient to detect a priori the presence of chaotic
regions and is now widely used with the name of criterion of resonance overlap.

Using the empirical Chirikov criterion of resonance overlap, we can to draw a representation
of chaotic regions in the plane of parameters (ε, α). We do not give here the technical details of
the computations of the localization of the chaotic regions. The result is displayed in Fig.(4.1.2).
The figure only displays the chaotic regions coming from resonances of first and second order,
because the amplitude of higher order resonances is much smaller. Fig.(4.1.2) looks very similar
to the precise map of chaotic regions obtained by frequency analysis by [63, 78]. This confirms
that the criterion of resonance overlap can be used to predict qualitatively the presence or the
absence of strongly chaotic regions in phase space.

From Fig.(4.1.2) we are able to predict the qualitative features of the dynamics of the obliq-
uity of the Earth without the Moon, that is, for a value of the precession constant α ≈ 20′′/yr.
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Figure 4.1.2: Representation of the chaotic regions in the plane (ε, α). The regions in blue
correspond to first order resonances, the regions in red to second order resonances. Higher
order resonances are not represented. The regions remaining in white are far away from the
main resonances and are thus more regular. We obtained the figure from pure theoretical
considerations and found that it is in agreement with the one obtained in [63] through frequency
map analysis.
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In Fig.(4.1.2), the green line of constant parameter α = 20′′/yr intersects three strongly chaotic
regions: one between 0˚ and 40˚, one around 50˚, and one beyond 65˚. Those three regions
are separated by two more regular regions. We can then predict the following qualitative behav-
ior: the Earth without the Moon can display very large variations of its obliquity up to about
40˚, but has to cross two regular regions to reach a value close to 80˚. We have confirmed
this qualitative picture by a direct numerical simulation of the Hamiltonian dynamics (4.1.1).
We integrated 86000 trajectories with initial conditions around ε = 10˚, using a Runge-Kutta
algorithm of order 4. We found that transitions across the regular regions are possible but very
rare, because we observed only around ten transitions between ε = 10˚ and ε = 50˚ within
300 Myr. This is an indication that, although very weakly chaotic, the two regions around 45˚
and 60˚ can be crossed, which means that no close periodic trajectories (KAM tori) subsist in
those two regions.

The previous discussion aimed at showing that the question of the large variations of the
spin of the Earth without the Moon is a classical problem of chaotic transport in a dynamical
system, and is related to the existence or the breaking of KAM tori [69]. To reach a high value
of its obliquity, the system has to jump from the first chaotic region ε ≤ 40˚ to the second
region ε ≈ 50˚, and then from the second to the third ε ≥ 65˚. Between each of these regions,
it has to cross a weakly chaotic region. Would KAM tori subsist in those regular regions (which
is not the case here), the transitions would be impossible. If the KAM tori are just broken (this
is what is called in the literature a “cantori”), transitions are possible but extremely rare, that’s
why the question to know if the Earth without the Moon can reach a high value of its obliquity
has been for some time not obvious [70, 67].

The transitions between the three different chaotic regions can be considered as rare events
for the system. The next section shows how the problem of large variations of the Moonless
Earth is related to the theory of slow-fast dynamical systems.

4.1.3 Slow variations of the frequencies

Since the discovery that the solar system is chaotic [48, 47] with a Lyapunov time of about 10
Myr, it is known that the periodic solution of Laplace–Lagrange cannot represent accurately the
secular variations of planetary orbits on the Myr timescale. The method of frequency analysis
with the NAFF algorithm [57, 49] gives the instantaneous values of the fundamental frequencies
of secular motion. The fundamental frequencies evolve in the Myr time scale, that is, on a
time much larger than the typical period of secular motion. The chaotic secular motion of the
planets can be represented by the periodic solution of Laplace–Lagrange with slow variations of
the secular frequencies.

As an example, Fig.(4.1.3) shows the time variations of the secular frequencies {si}i=1..4 in
a numerical simulation of the secular dynamics of the solar system over 500 Myr [65]. It can
be clearly seen that the variations of the secular frequencies in the Gyr time-scale cannot be
neglected. Although the relative variations of s3 and s2 are quite weak, of the order of 1%,
those of s1and s4 are much more important and are close to 10% for s1. The secular frequencies
variations have an important impact on the dynamics of the spin axis of the Earth. As explained
in section 4.1.2, the amplitude of the chaotic regions depends on resonance overlap and thus
on the values of the frequencies {νi}. When those frequencies slowly vary with time, chaotic
regions created by resonance overlap may be created, or disappear. The presence of KAM tori
in phase space is also very sensitive to the exact value of the resonant frequencies. Any realistic
model for the long-term variations of the obliquity of the Earth has to take into account the
slow variations of the fundamental frequencies of the solar system.

Considering this new aspect of the dynamics, we propose to consider that the thirteen fre-
quencies appearing in the Hamiltonian (4.1.1) depend slowly on time, that is, we write the
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Figure 4.1.3: Time variations of the secular frequencies s1, s2, s3 and s4 recorded in a numerical
simulation of the full solar system’s dynamics over 500 Myr. The time interval on the horizontal
axis is 50 Myr. The frequencies are given in arcsec/yr. Taken from [65]
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Hamiltonian as

H(p, q, t) = α
p2

2
+
√
1− p2

13∑

k=1

αkνk(ηt) sin

(
q −

∫ t

0

νk(ǫs)ds+ ϕk

)
. (4.1.2)

In the new Hamiltonian (4.1.2), the functions νk(t) are stochastic functions that model the
chaotic variations of the secular frequencies. Let us emphasize this point: the functions νk(t) are
not deterministic functions of time. A polynomial representation of the time variations of the
frequencies of the solar system has been proposed by [27] to construct planetary ephemerides. It
is only valid over 40 Myr because it represents the deterministic variations of the frequencies, and
those variations cannot be predicted much longer than the Lyapunov time of the solar system.
We need a representation of the frequencies variations that is valid over the Gyr timescale. On
such a timescale, much longer than the Lyapunov time of the chaotic dynamics of the solar
system, the chaotic variations of the fundamental frequencies are hardly distinguishable from
stochastic variations. The validity of a stochastic representation has to be understood in a
statistical sense: we are looking for a stochastic representation of the frequencies that has the
same stationary probability distribution, correlation time, and statistics of increments. We will
explain in Section (4.2) how the numerical data obtained in [65] can be used to construct a
stochastic model of the frequency variations.

The small parameter η quantifies the timescale separation between the precession motion
of the Earth spin axis and the variations of the secular frequencies. A value of the precession
constant α = 20 arcsec/yr corresponds to a period Tα = 60000 yr. On the other hand, the
typical timescale of variation of the secular frequencies is 10 Myr. The small parameter ǫ can
then be estimated around

ǫ ≈ 6.104

107
≈ 6.10−3.

The aim is to use the Hamiltonian with stochastic frequencies (4.1.2) to make a probabilistic
description of the long-term variations of the obliquity of the Earth without the Moon. More
precisely, we want to compute the probability distribution function (PDF) of the time τ required
to reach for the first time an obliquity of 80˚ starting from an obliquity at its actual value 23˚.
We focus on two questions: can the transition happen within a time shorter than the life time of
the solar system? What is the “path” followed by the system in phase space to do this transition?
What is the influence of the variations of the fundamental frequencies νk in the probability of
transition?

As a matter of fact, we could not solve completely the problem for the obliquity of the Earth
with the Hamiltonian model (4.1.2). The main reason is that we could not give a satisfactory
stochastic representation of the frequencies νk(t) because of a lack of empirical data. We can
not state that the model presented in the present work gives the precise numerical values for the
probability distributions of the spin axis of the Earth, and for the probabilities of large variations
of the obliquity. The scope of the present work rather consists in showing a new mechanism
of transport in Hamiltonian systems. In this section, we study the particular example of the
spin axis of the Earth to find the generic properties of transport in phase space for a chaotic
Hamiltonian dynamics of 1.5 degrees of freedom depending on slow stochastic parameters. The
Hamiltonian (4.1.2) has the general form

H (p, q, t, ν(ǫt)) , (4.1.3)

where ǫ≪ 1 is a small parameter, and ν(t) is a p−dimensional stochastic parameter. We show
how averaging can be applied to systems of type (4.1.3) to compute the long-term diffusion in
phase space.
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4.2 Stochastic dynamics for the long-term evolution of the

secular frequencies

In this section, we will try to build a realistic stochastic model for the long-term variations of
the frequencies νk(t) in the Hamiltonian (4.1.2). The model we propose is fully empirical, and
is based on the numerical data obtained by the team of Jacques Laskar at the IMCCE (see
Fig.(4.1.3)). The stochastic model can then be used as an input in the Hamiltonian dynamics
of the spin axis of the Earth.

4.2.1 Auto regressive model

The fundamental assumption of our model is that the variations of the secular frequencies of the
solar system can be described by an auto-regressive signal perturbed by a white noise. Let yn
be a discrete signal, for example an evaluation at discrete times of one of the frequencies s1−6.
We assumed that there exist an integer M and some real parameters {b, a1...aM} such that the
signal yn follows the auto-regressive relation

yn+1 = b+

M∑

k=1

akyn+1−k + ξn. (4.2.1)

In Equation (4.2.1), the term ξn is a random variable with some probability distribution w(ξ).
All variables ξn have the same distribution w(ξ), and are uncorrelated, 〈ξnξn′〉 = 0 for n 6= n′.

Let us discuss the meaning of Equation (4.2.1). The number of coefficients M determines
the length over which the signal is correlated. If M = 1 for example, it means that the signal
is a Markov process where the next step is only determined by the present state. For a more
general signal, we assume that the signal has finite correlations of length M . The noise random
variables ξn model the chaos in the system. In signal processing, one usually wants to recover
a ground signal perturbed by noise coming from the environment. In our case, the noise is
created by the chaos inside the system, therefore we don’t want to get rid of the noise, but on
the contrary extract the random variables ξn and find their probability distribution w(ξ).

We do not give a fundamental justification why the signal of the secular frequencies could
be described by an Equation like (4.2.1). The auto-regressive model (4.2.1) is purely empirical,
and we want to evaluate empirically the coefficients {b, a1..aM} and the probability distribution
w(ξ) from the signal itself. It may seem quite disturbing to assume the relation (4.2.1) for the
frequencies of the solar system, because the signal of the frequencies might not be stationary,
the coefficients {b, a1...aM} might depend on the signal yn through a nonlinear relation, ..etc.
However, an empirical auto-regressive model like (4.2.1) is already used in different fields of
physics and can give very realistic predictions. In the following, we describe the method we
used to build the model (4.2.1) for the secular frequencies of the solar system.

4.2.2 Algorithm

The curves of the secular frequencies g1−8 and s1−8 are given in [65] over 500 Myr. Only the
frequencies s1−4 are interesting for the spin axis dynamics. As a first step, we have discretized
the signals keeping only a value each 5 Myr. The Lyapunov time of the solar system is of the
order of 10 Myr [47], and thus random changes in the secular frequencies should occur over
the same timescale. To discretize the signal of the frequencies, we have chosen a time step
comparable to the Lyapunov time of the solar system to be consistent with Equation (4.2.1)
where the noise terms ξn at each time step are uncorrelated. The result is a discrete sequence
yn of length 100, giving the variations of the frequencies over 500 Myr.
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The next step is to evaluate the parameters {b, a1, ..., aM} from the signal. This is a well
known problem in signal processing, and it can be solved using the Levinson--Dublin algorithm
[36]. The Levinson--Dublin algorithm, gives the best possible value of M and an estimation of
{b, a1, ..., aM}, assuming that the signal to analyze is of the form (4.2.1). The algorithm extracts
from the signal yn the “deterministic part” ỹn, which is the value that would take yn without

noise ỹn+1 = b+
M∑
k=1

akyn+1−k, and the difference between the deterministic part and the real

signal ξn := yn+1 − ỹn+1. The difference ξn is interpreted as the “noise” in the signal.
Once we have extracted the noise signal ξn, we want to find a stochastic model for the

noise, and thus find out which can be its probability distribution w(ξ). This is the difficult
point, because the signal has only 100 values, and is too small to give a precise estimation of
the distribution function w(ξ). An example of the empirical distribution of the noise for the
frequency s3 is represented by the histogram h(ξ) of Fig.(4.2.1). Although it is not possible
to fit consistently the histogram of Fig.(4.2.1), it is possible to exclude possible shapes of the
probability distribution w(ξ). The distribution of the noise w(ξ) cannot follow a power law as
w(ξ) ∝ 1

|ξ|α for some real exponent α > 1, because we do not observe in the histogram h(ξ)

the “fat tails ” characteristics of power law distributions. To confirm this point, we simulate a
distribution of 100 random variables following a power law 1

|ξ|α , for different values of α. None of
the power law distribution could be compared to the histogram h(ξ) . Another possibility could

be to fit the histogram h(ξ) with a Gaussian law w(ξ) ∝ e−
ξ2

2l2 . However, the best Gaussian
fit of h(ξ) do not reproduce the tails of the empirical distribution. We have concluded that a
possible distribution for w(ξ) could be a exponential law of parameter λ, that is

w(ξ) =
1

2λ
e−

|ξ|
λ . (4.2.2)

The conclusion is that the variations of the frequencies s1−4(t) of the solar system can be
modeled by an auto-regressive process (4.2.1) with exponential noise distribution (4.2.2). All
parameters of the model, M , {b, a1...aM}, and λ are given for each secular frequency in Table
(4.1). We emphasize once more that the model (4.2.1) should not be taken as rigorous in the
sense that it has no precise theoretical justification derived from Hamilton’s equations. It is
purely empirical, and it has to be compared to the numerical results obtained with complete
simulations of the dynamics of the Solar system.

4.2.3 Results

With the stochastic model (4.2.1) and the parameters of Table (4.1), it is possible to give different
realizations of the frequencies s1−4(t), considered as stochastic functions of time. For example,
let us consider a new realization s̃1(t) of s1(t). From Table (4.1), we have M = 1. We take the
same initial value s̃1(−250) and s1(−250) at -250 Myr, and then we generate the sequence of s̃1
with the auto-regressive model, having one value each 5 Myr. The result is a discrete sequence
s̃1 of length 100. According to the work of [27], the variations of the secular frequencies can be
very accurately represented over 40 Myr by a polynomial approximation using the Chebychev
polynomials. This means in particular that the secular frequencies can be represented by regular
functions on the Myr timescale. To generate a consistent continuous realization s̃1(t), we thus
interpolate the 100-values sequence obtained with the auto-regressive model using the “spline”
function of Matlab, which is a local cubic polynomial interpolation.

We generated with the same method different realizations of s2, s3, s4. On Fig.(4.2.2), we
display the frequency curves s1−4 obtained by [65] in blue, together with a realization of our
stochastic autoregressive model in red. The stochastic auto-regressive model generates consistent
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Figure 4.2.1: Probability distribution of noise in the secular frequency s3. The noise term creates
a variation of the secular frequency of few hundredths of arcsec/yr each 5 Myr.

realizations s̃1−4(t) of the secular frequencies s1−4(t) in the sense that the stochastic realization
looks very similar to the real frequency curves obtained by numerical simulations. It is sometimes
not easy to distinguish at the first look the real frequency curve from its stochastic realization.
The stochastic realization s̃i(t) of a frequency curve si(t) has variations of the same order of
magnitude occurring over the same timescale.

However, the stochastic auto-regressive model (4.2.1) has some limitations and cannot re-
produce all characteristics of the true signal. In particular, it is not able to reproduce very
abrupt variations of the frequencies. There are some sharp peaks in the frequency curves, es-
pecially in s1 and s2, that will never appear in the stochastic realization, because the timescale
for variation of the frequency in the auto-regressive model is 5 Myr. Another feature to dis-
tinguish the stochastic realizations s̃i=1..4(t) from the curves si=1..4(t) obtained by numerical
simulations is that the step size of 5 Myr is clearly visible in the stochastic realizations, whereas
in the numerical curves, there are sometimes larger intervals without any significant frequency
variations.

One should thus not expect the stochastic auto-regressive model (4.2.1) to give real real-
izations of the secular frequency variations in the solar system, that is, realizations one would
obtain in a direct numerical simulations of the full solar system with some initial conditions
of the planets. The red curves on Fig.(4.2.2) should be thought of as an imitation of the real
chaotic dynamics of the solar system. The great interest of the stochastic auto-regressive model
is that, once it is calibrated with the good choice of parameters, it can give very fast a large
number of realizations of the secular frequency curves, without the need to resort to heavy nu-
merical simulations of the solar system. I will now use the imitations of the secular frequency
curves given by equation (4.2.1) as an input in the stochastic Hamiltonian model (4.1.2) for the
spin of the Earth.

In the present section, I have built a stochastic model for the long-term variations of the
frequencies s1−4(t), which are four of the thirteen frequencies νk(t) of the Hamiltonian (4.1.2).
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frequency M (ai)i=1..M b (arcsec/yr) λ (arcsec/yr)

s1 1 0.7653 −1.3156 0.02
s2 1 0.8105 −1.3324 0.03
s3 4 0.9410| − 0.3202|0.3604| − 0.1596 −3.3634 0.01
s4 2 1.0521| − 0.3253 −4.8563 0.01

Table 4.1: Parameters of the stochastic autoregressive model (4.2.1).

I could not apply the same model to the nine remaining frequencies, because there is at the
time being no recording of the time evolution of those frequencies on the Gyr timescale. I have
therefore chosen to keep constant the nine frequencies for which I do not have a stochastic model.
I therefore cannot state that the numerical simulations performed with the model (4.1.2) are
realistic. Yet, I believe that the model (4.1.2) with stochastic representation of the frequencies
s1−4(t) gives the right orders of magnitude for the probability distribution functions of the
spin of the Earth because the spin axis dynamics in mainly sensitive to the variations of the
frequencies s3 and s4, and much less to the other frequencies.

4.3 Qualitative picture of the transport mechanism in phase

space

Before turning to direct numerical simulations, we explain in this section the transport mech-
anism in phase space (p, q). We show in particular that the large variations of the obliquity of
the Earth is related to slow distortions of the chaotic structure of the phase space, due to the
slow chaotic frequency variations.

4.3.1 Chaotic regions are created by resonance overlap

Table (4.2) gives the numerical values of the parameters {αk, νk, ϕk} of the Hamiltonian (4.1.2).
The parameters νk of table (4.2) are the values of the frequencies at t = 0. The parameters are
computed using the results obtained in [51] with frequency map analysis, although more precise
values could be found in [65]. The fundamental frequency of the unperturbed dynamics is αp.
Therefore, the ratio νk

α gives the localization of the resonances in p-space. Table (4.2) shows
that the thirteen frequencies are divided in two clusters: one cluster of 6 frequencies is located
in the region p > 0.96 (or equivalently ǫ < 14˚), and the other one is composed of 6 frequencies
located in the region p < 0.40 (or equivalently ε > 67˚). The two clusters of frequencies create
two separated regions of large scale chaos in phase space. They are called in the following “region
1” and “region 2” respectively, and are the two main chaotic regions created by the overlap of
resonances of first order. They correspond to the blue regions in Fig.(4.1.2). Another chaotic
region is located around p = 0.5 (or equivalently ε = 60˚) and is created by the overlap of
the resonances of second order. The resonances of second order are given by the average of all

couples of resonances of first order
{

νi+νj

2

}
i,j=1..13

. This chaotic region is called “region 3” in

the following.
In Fig.(4.3.1), we have represented two pictures to help the reader understand the chaotic

structure of phase space. On the left, we have represented the eyes of the four main resonances
in red. The resonances are located at the values pk = − νk

α , with α = 55/3 ”/yr. All the regions
of phase space covered by the eyes are strongly chaotic. Additionally to the two main chaotic
regions, the resonances of second order create a chaotic band of large extension in the middle
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Figure 4.2.2: Variations of the secular frequencies s1−4 over 500 Myr (blue curves). On each
graph, we plotted one realization of the stochastic auto-regressive model (4.2.1) for the consid-
ered secular frequency (red curves).

k νk (arcsec/yr) αk × 103 φk (˚)

1 s3 −18.8504 8.841679 151.724
2 s4 −17.7544 4.017321 199.002
3 −18.3016 2.698497 176.641
4 s6 −26.3302 1.334632 37.294
5 s1 −5.6128 5.040585 270.479
6 −19.3997 1.525373 305.514
7 s2 −7.0772 3.454670 9.899
8 −19.1251 0.894284 46.398
9 −6.9564 1.971634 199.316
10 −7.2037 1.604732 176.470
11 −6.8283 1.637102 233.037
12 −5.4892 1.506215 289.422
13 s6 − g6 + g5 −50.3021 0.002138 120.161

Table 4.2: Numerical values used for the parameters in the Hamiltonian (4.1.2). The values are
taken from [51]. The reader should be careful that the definition of the parameters αk in the
present table is different from the ones given in [51]. The parameters are ordered with decreasing
values of the product αkνk such that the frequencies at the top of the table contribute more to
chaotic motion than those at the bottom.
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of phase space. The three chaotic regions are separated by two regular bands, in which the
transport is only possible through the weak chaos created by higher order resonances, of much
smaller amplitudes. On the right of Fig.(4.3.1), we have represented the bands associated to
the chaotic regions 1,2 and 3. The regions of weak chaos, which we call the “regular” regions,
are labelled as regions 4 and 5. Within the bands 1,2 and 3, chaos is strongly developed, and
the system is thus rapidly carried throughout the band. The bands are separated by regions 4
and 5 of much weaker chaos: the system can hardly cross those regular regions, and therefore
the migration between one band to the other is very slow.

4.3.2 Transitions between chaotic regions

The important point to emphasize is that Fig.(4.3.1) is not static: the frequencies νk are slowly
varying around their mean values ν∗k , with stochastic variations defined by an auto-regressive
model of the form (4.2.1). These slow variations of the frequencies imply that the transport in
phase space does not only happen through the well known “chaotic diffusion” observed in chaotic
maps (e.g the standard map, see [69] chapter 5). It also comes from two other mechanisms that
we now describe qualitatively:

1. The chaotic regions themselves are moving in phase space. The displacement is illustrated
by the vertical arrows in Fig.(4.3.1). If the system is in one of those chaotic regions, it
is carried together with the region upwards or downwards. At any time, it can leave the
region and enter in the regular part of phase space. But depending on when the system
leaves the region, it can be carried up or down far away from its initial position. This
kind of transport is referred to as “transport of the first type”, it is specific to chaotic
Hamiltonians.

2. Chaotic diffusion in the regions of weak chaos is enhanced by the slow stochastic variations
of the fundamental frequencies. As a result, no KAM tori can subsist in the regular regions
4 and 5 of Fig.(4.3.1). Even if it is away from the resonances, the system will diffuse through
phase space because of the slow stochastic deformation of the orbits of the regular regions.
This type of transport can be found for both integrable and chaotic Hamiltonian dynamics
and is referred to as “transport of the second type”.

Depending on the parameters of the map, one of the two mechanisms described above overcomes
the other and is the main mechanism responsible for the transport through phase space. The
dominant mechanism of transport depends on the typical amplitude of the variations of νk(t).
For large variations of νk, transport of the first type is dominant (the precise the meaning of
“large” will become clear in sections 4.4 and 4.5). For the dynamics of the Earth spin axis, section
4.4 will show that we are in the regime for which both transport mechanisms approximately
contribute at equal rate. Therefore, we were not able to do theoretical predictions of transport
rates for the Earth spin axis. We introduce in section 4.5 a simpler Hamiltonian model for which
transport of the first type is dominant and transport rates can be recovered from averaging
techniques.

Let us focus for the moment on the Moonless Earth. The system starts at p = 0.92 (ε = 23°)
in region 1. It can reach a value close to p = 0 through successive jumps from one region to the
other, until it eventually reaches the chaotic region 2. To illustrate the transport mechanism,
we have represented in Fig.(4.3.2) the different steps of the transport. We have labelled the
chaotic and regular regions the same way as in Fig.(4.3.1). First, one fluctuation downwards of
the frequencies of the first cluster brings the chaotic region 1 and the system together around
p = 0.7. Then, region 1 moves upward again, but the system leaves the chaotic region and is
thus trapped in region 4. A simultaneous displacement upwards of the frequencies brings the
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Figure 4.3.1: Schematic representation of the chaotic structure of the phase space for the Hamil-
tonian (4.1.2).

region 3 of second order resonances upwards, and it captures the system. The system has thus
passed from region 1 to region 3 thanks to the fluctuations of the frequencies. It then passes
from region 3 to region 2 by a similar trajectory of the frequencies: it is transported downward
and dropped in region 5 and an eventual displacement upward of region 2 captures it and brings
it to p = 0.

The mechanism of transport we just described, composed of successive jumps between regions
of different types, is typical to go from p close to 1 to p close to zero, in the regime where chaotic
diffusion in the regular regions is negligible. As the reader would have surely noticed, it does
not really matter where the system is exactly located when it is inside a chaotic region of type
1,2 or 3. The mixing in those strongly chaotic regions is so fast compared to the timescale for
frequencies variations, that the system has time to explore the whole region before any significant
displacement of the region. To say it another way, the underlying Hamiltonian dynamics is not
important to determine the characteristics of transports. In fact, only two properties of the
dynamics matter. The first one is the conservation of area which is characteristic of Hamiltonian
dynamics (it is sometimes said that the Hamiltonian flow is a symplectic transformation). The
conservation of area implies that the stationary measure is uniform for ergodic Hamiltonian
flows. The second one is that the phase space is partitioned into several strongly mixing regions
(where chaos is strongly developed), separated by regular regions. The two properties are
generic of Hamiltonian systems of 1.5 degrees of freedom, that’s why the mechanism of transport
described here for the obliquity of the Earth could be found in any symplectic maps with slowly
varying parameters. Those two properties prompted us to perform a kind of “averaging” of the
Hamiltonian dynamics and build an even simpler, fully stochastic model, that we call the local
diffusive model.

4.3.3 Averaging of the dynamics: the local diffusive model

The local diffusive model is a purely stochastic model built from the Hamiltonian model (4.1.2)
with slow chaotic frequencies. The idea is to average the dynamics over an intermediate time
which is much longer than the timescale of the Hamiltonian dynamics, but smaller than the
timescale for chaotic variations of the frequencies. As the timescale of the Hamiltonian dynamics
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Figure 4.3.2: Example of a trajectory in the Hamiltonian stochastic model (4.1.2). The system,
represented by the red triangle, has a transition from region 1 to region 2 through successive
jumps between the chaotic regions. See explanations on page 99.

Figure 4.3.3: Schematic representation of the local diffusive model. The regions 1,2 and 3 with
infinite diffusion coefficients are displayed by the red rectangles.

is typically of order 1
α , the averaging procedure is done over a time τav satisfying

1

α
≪ τav ≪

1

ǫα
. (4.3.1)

On the timescale τav, the Hamiltonian dynamics is mixing in the chaotic regions. The strong
chaos separates the neighboring trajectories exponentially fast. The Lyapunov time of region
1 has been estimated in [67] to 1 Myr. On a timescale τav larger than 1 Myr, the system has
thus completely “forgotten” its initial condition. This means that if the system has an initial
condition inside the chaotic region 1 of Fig.(4.3.2) (for example), it can be anywhere inside the
region 1 after a time τav. On the other hand, we assume that the chaos is weak enough in the
regular regions 4 and 5 of Fig.(4.3.2) such that the system does not diffuse in phase space within
the time τav.

The local diffusive model of second order is represented in Fig.(4.3.3). It consists of three
patches of infinite diffusion coefficient D in p-space. Two of them have an extension δ1, and
correspond on Fig.(4.3.1) to the chaotic regions 1 and 2 of main resonances. The third one has
a smaller extension δ2 and corresponds to region 3 of second order resonances in Fig.(4.3.1). We
assume that chaotic transport is negligible away from the resonances of first and second orders,
that’s why we set the diffusion coefficient to zero out of the diffusive patches. The infinite
diffusive patches are then moved according to the frequency dynamics.

The solution cannot be represented any more by a trajectory, but only through the proba-
bility distribution ρν(p, t) to find the system at impulsion p at time t, given a realization of the
stochastic process ν(t). Let δi be the extension of the i-th diffusive region that we call Ri. The
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diffusive region Ri then covers the interval [νi − δi/2, νi + δi/2]. If the impulsion p is out of all
diffusive regions, the function ρν(p, t) remains the same at step t+dt. If p is inside the diffusive
region Ri, the probability distribution at step t+dt is the average of the probability distribution
over the whole region. The dynamics of the distribution ρν(p, t) can be implemented following
the equations

ρν(p, t+ dt) =

{
1
δi

∫ νi(t)+δi/2

νi(t)−δi/2
ρν(p

′, s)dp′ if p is in region Ri

ρν(p, t) otherwise
(4.3.2)

The consequence of Equation (4.3.2) is that at each step, the probability distribution is constant
over each region Di. But as the reader can see on Equation (4.3.2), the region Di is moving
because of the variations of the frequencies {νi}i=1..13. Therefore, at the next step, the average
is performed over a region which has slightly moved during the time step dt.

In this section, we have set up the mathematical framework we work on. We have two
models at hand: the first model is a Hamiltonian model (4.1.2) depending on time and on
slowly varying frequencies. The second model is completely stochastic, and can be thought of as
the “averaging” of the first model. It is called the local diffusive model, and defined by equation
(4.3.2). The great interest of the local diffusive model is that it is completely stochastic, and
thus much simpler to study than the first model, which still keeps the complexity inherent to a
chaotic dynamics.

We still did not explain under which conditions the local diffusive model gives relevant
predictions for Hamiltonian dynamics. Section 4.5 shows that the local diffusive model (4.3.2)
is valid when transport is completely dominated by the mechanism of slow displacement of the
chaotic regions, what we have called “transport of the first type”. Transport of the first type is
dominant when the amplitude of frequency variations is of same order as the gap between two
neighboring chaotic regions. This will also be illustrated in section 4.5.

4.3.4 Numerical characterizations of the chaotic regions

To put on a rigorous basis the ideas of sections (4.3.1-4.3.2), we first have to define properly the
“regions” of phase space. What are exactly the frontiers of the “chaotic regions”? The difficult
point is that the frontiers of chaotic regions in this problem are not given by an equation
p = constant. The frontiers can be seen as curves in phase space, whose shape depends also on
time.

Consider again the Hamiltonian (4.1.1), in which the parameters are constant. There exists
a canonical transformation (p, q)→ (P,Q) such that the Hamiltonian (4.1.1) becomes

H(P,Q) = α
P 2

2
+H

(2)
pert(P,Q, t), (4.3.3)

whereH(2)
pert(P,Q, t) is the part of the Hamiltonian that contains resonances of second order. The

canonical change of variable can be achieved using the classical technique of Lie transforms close
to the identity. In particular, H(2)

pert is of much smaller amplitude than the part H(1)
pert(p, q, t) :=

√
(1− p2)

13∑
k=1

αkνk sin(νkt + q + ϕk) in the initial Hamiltonian (4.1.1) because it is composed

of a sum of terms of amplitudes {αiαj}i,j=1..13 and higher order terms of smaller amplitudes. If

we neglect the part H(2)
pert in (4.3.3), it turns out that the quantity αP 2

2 is conserved, and thus P
is conserved. The canonical variable P can be considered as an integral of motion to first order
in the parameters αk. It is the best integral of motion we can build when the system is away
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from the first order resonances. P is thus an excellent candidate to define the frontiers of the
chaotic regions 1 and 2. The explicit expression of P to first order in αk is

P (p, q, t) := p+
√
1− p2

∑ αkνk
αp+ νk

sin(q + νkt+ φk) +O(‖αk‖2). (4.3.4)

We define the frontiers of a chaotic region by the equation

P (p, q, t) = P .

P is a constant that has to be computed for each chaotic region 1,2 and 3. In the present work,
we only study the transitions from region 1 to region 3. To find the values of P that correspond
to the upper frontier of region 3, we perform two numerical simulations. We integrate 1848
trajectories with close initial conditions inside the region 1, and the same for region 3. Because
of the mixing properties of the chaotic dynamics (4.1.1), the distribution of trajectories spreads
in few turnover times all over the respective regions. After a time T := 7000 × 1

α , we plot the
distribution of trajectories with respect to the variable P . The result is displayed in Fig.(4.3.4).
There is some arbitrariness in the choice of the values of P to define the chaotic regions. The
upper frontier of the chaotic region is defined as the value P such that 80% of the trajectories
starting in region 3 satisfy the relation P < P . On the contrary, the lower frontier of a chaotic
region is defined as the value P such that 80% of the trajectories starting in region 1 satisfy the
relation P > P . In section 4.4, we will look for transitions of the system from region 1 to region
3. With the criterion defined above, we find the value P = 0.7110 for the upper frontier of
region 3. The frontiers of chaotic regions are displayed in Fig.(4.3.4). The criterion of entrance
into region 3 is thus

P (p, q, t) < 0.7110. (4.3.5)

In the simulations of the dynamics (4.1.2), the frequencies depend on time, and thus the value
P of entrance into region 3 also changes. Yet, the amplitudes of frequency variations are quite
small compared to the size of chaotic regions. (4.3.5) still holds and will be used in section 4.4.

4.3.5 The problem of first entrance times

In section 4.4, we will perform a set of numerical simulations of the dynamics of the spin axis
of the Moonless Earth. The aim is to compute the probability of transitions between the three
main chaotic regions 1,2 and 3 in phase space. Those transitions are very rare, and the numerical
cost of the simulations is quite high because we have to integrate a lot of trajectories to obtain
a good statistics for the transitions. I have thus chosen to focus only on the transitions from
region 1 to region 3. We choose a time interval ∆T . For N ≫ 1 trajectories, the flux J(t) can
be estimated as the ratio n(t)

N , where n(t) is the number of trajectories that enter in region 3
between t and t+∆T . We will compute in section 4.4 three quantities of interest.

1. The flux Jfix(t) entering into region 3 for fixed values of the frequencies νk(t).

2. The flux Jref (t) entering into region 3 for a given realization of the time-dependent fre-
quencies νk(t). For this simulation, we will use the functions s1−4(t) obtained in [56] with
a complete simulation of the dynamics of the Solar system for 500 Myr. In particular, we
will compare the average value of the fluxes 〈Jref 〉 and 〈Jfix〉 to see the influence of the
variations of the frequencies.

3. The probability flux 〈Jchaos〉 entering into region 3 averaged over a large number of real-
izations of the time-dependent frequencies νk(t). The realizations of the frequencies are
computed with the auto-regressive model (4.2.1).
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Figure 4.3.4: The left picture represents the trajectory distribution after a time T := 7000× 1
α .

The trajectories starting in region 1 have spread but are still localized in region 1. 80% of them
are above the frontier defined by the first red curve. The same happened in region 3, and 80%
of the trajectories starting in region 3 are still localized under the second red curve. The right
picture represents the trajectory distribution of the left picture according to the integral of first
order P . The trajectories are localized in region 1 or 3 according to their value of P .
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The aim of the numerical simulations is to emphasize the role of frequency chaotic variations in
transport of the Earth obliquity.

All numerical simulations of part 4.4 are done with a Runge-Kutta 4 algorithm. The stochas-
tic frequencies are simulated with the algorithm described in section 4.2.

4.4 Numerical integrations of the stochastic Hamiltonian

dynamics

4.4.1 Integration with fixed values of the frequencies

In the first simulation, we have integrated 86688 trajectories with initial conditions inside the
range 0.75 < p < 1.0. The time step of integration is about 206 yr. The total time of integration
is T = 247 Myr. We record the value of Jfix(t) at each step of ∆T = 8.241 Myr such that the
total integration time is 30 steps. The number of trajectories was not sufficient to get the precise
value of Jfix(t). The probability flux is close to zero for t < 164 Myr because the system has not
reached yet a quasistationary state. In the present problem, the quasistationary state is defined
as the state when the distribution of trajectories is almost uniform over the whole region 1.
The quasistationary state can be clearly seen in the simulation when the flux Jfix(t) fluctuates
around its time averaged value. The quasistationary state seems to be reached for t ≥ 206 Myr,
with between 1 and 8 trajectories entering into region 3 at each step. We therefore average
the flux Jfix(t) over the period 206 ≤ t ≤ 247 Myr to get a reliable order of magnitude of the
averaged probability flux entering into region 3 in quasistationary state. We find

〈Jfix〉 ≈ 4.51× 10−6 Myr−1 ± 25%. (4.4.1)

4.4.2 Integration with the reference simulation of the frequencies

In the second simulation, we have integrated 10000 trajectories with uniform initial distribution
on the line p = 0.84 (ǫ ≈ 33˚). The integration time step is about 129 yr. The integration
ranges from t = −240 to t = 239 Myr, such that the total time of integration is about T = 479
Myr. We record the value of Jref (t) at each step ∆T = 5.1529 Myr. Four of the thirteen
frequencies depend on time. The frequencies s1−4 (that correspond to the frequencies ν1, ν2, ν5
and ν7 in table (4.2)) depend on time following the numerical simulations of [65]. All other
frequencies were kept constant.

Again, the number of trajectories was not sufficient to get a precise estimation for Jref (t).
To be consistent with the first simulation, we only consider the interval where the system
has reached a quasistationary state. We average the probability flux Jref (t) over the period
−34 < t < 239 Myr. We find

〈Jfref 〉 ≈ 7.9× 10−6 Myr−1 ± 20%. (4.4.2)

The order of magnitude of the probability flux entering into region 3 with time dependent
frequencies is about two times larger than the averaged flux (4.4.1) obtained with fixed values
of the frequencies. The probability flux displays a significant increase at the end of the time
interval. For 170 < t < 239 Myr, the averaged value of the flux is

〈Jref 〉 ≈ 18.0× 10−6 Myr−1.

A glance at Fig.(4.1.3) shows that the frequencies s3 and s4 have exceptionally large variations
in the same time interval. On the contrary, the variations of s1 and s2 do not seem to have
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a significant impact on the probability flux. The simulation leads to the heuristic idea that
the probability of transition from region 1 to 3 is dominated by exceptional variations of the
frequencies s3 and s4.

4.4.3 Integration with a large number of realizations of the frequencies

fluctuations

The aim of the last simulation is to compute probability flux entering into region 3 averaged
over the frequencies variations. To this aim, we first generate 111 random realizations of the
frequencies s1−4(t) with the algorithm of section 4.2. For each realization of the secular frequen-
cies s1−4, we integrate 500 trajectories with uniform initial distribution over the line p = 0.84
(ε ≈ 33˚). The integration time step is about 129 yr, and the integration ranges from t = −240
to t = 224 Myr. For each frequency realization n, we get the probability flux Jn

chaos(t), with
n = 1..111. We record the values Jn

chaos(t) at each step ∆T = 51.529 Myr. We then average
the flux over the 5 last steps, that is, over the time interval −34 < t < 224 Myr and we average
over n. We get

〈Jchaos〉 ≈ 42.9× 10−6 Myr−1 ± 10%. (4.4.3)

The averaged probability flux (4.4.3) entering into region 3 computed with a large number
of realizations of the time dependent frequencies s1−4(t) is almost ten times larger than the
flux (4.4.1) obtained with fixed frequencies. It is also much larger than the flux value (4.4.2)
obtained with the reference simulations of the frequencies s1−4(t). The value (4.4.3) should thus
be considered with caution: It can be that we have overestimated the random term amplitude
in the stochastic algorithm of section 4.2, and this could explain the discrepancy between the
values (4.4.3) and (4.4.2).

4.4.4 Discussion

The numerical results of section 4.4 confirm that the transition between region 1 and region
3, which corresponds to an obliquity variation from 30° to 55° of the Moonless Earth, is a
very rare event. Each of the simulations of section 4.4 has required a few days on a standard
computer. The very low value of probability transition in 250 Myr explains the very poor
precision of the numerical values (4.4.1-4.4.2-4.4.3). Even with their imprecision, the results
show that the chaotic variations of the secular frequencies s1−4 have a significant effect on the
transition probability. The averaged value of the flux (4.4.3) obtained with many realizations of
the functions s1−4(t) is almost ten times larger than the simulation with fixed frequencies. The
typical transition time from region 1 to region 3 can be estimated as

Tchaos :=
1

〈Jchaos〉
≈ 20Gyr (±10%),

which is much larger than the lifetime of the solar system. For the fictive Moonless Earth we
consider in our model, the transition from 30° to 55° is so rare that there is no chance to observe
this event for a single trajectory over 5 Gyr.

From a theoretical point of view, let us consider the transport mechanism from region 1 to
region 3. The interval ∆P of the gap between the two chaotic regions is of the order of ∆P ≈ 0.3
(see Fig.(4.3.4)). As explained in section 4.3.1, the locations of chaotic regions depend on the
frequency values. A variation of the frequencies could close the gap between regions 1 and 3
and allow for rapid transitions. Knowing the size of the gap in P -space, we can deduce the
amplitude of frequency variations necessary to close it. Only a frequency variation of the order
of α∆P ≈ 6′′/yr could close the gap and allow rapid transitions from region 1 to region 3.
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Fig.(4.1.3) shows that the chaotic fluctuations of the secular frequencies are of the order of
∆ν ≈ 0.1 − 0.2′′/yr. We conclude that the transport mechanism of the first type, that is,
transport by slow displacement of the chaotic regions, does not explain alone the transition
between chaotic region, and that the transport mechanism of the second type (transport inside
the regular region) plays a major role.

The only way to observe a transition between chaotic regions in less than 5 Gyr would be a
fluctuation of exceptional amplitude of a few arcsec/yr for one of the frequencies s1−4, to close
the gap between chaotic region. Such a fluctuation might be possible because of chaotic motion
of the solar system, but is expected to be extremely rare. In fact, we could not observe such
a large fluctuation in the 111 random simulations of the frequencies s1−4 performed in (4.4.3).
Much more work would thus be required to compute precisely the probability of a rare transition
from 23° to 80° in less than 5 Gyr for our fictive Moonless Earth. Given the very low probability
of such an event, the analysis would require a special algorithm designed for the computation of
rare event (see e.g. [82] in references therein). It should be emphasized that those conclusions
do not hold when considering a more precise model of the Moonless Earth obliquity. Using the
model of [78], it can be shown that transitions from 23° to 80° in less than 5 Gyr are much more
frequent.1 With a realistic model, one could expect to recover the rare event phenomenology
when looking for transitions whithin a time much shorter than 5 Gyr.

In the last section 4.5, we study a Hamiltonian dynamics very similar to (4.1.2) but in a
parameter regime for which transport of the first type is dominant. We will show how the local
diffusive model of section 4.3.3 can be used to predict the transition probability between chaotic
regions of phase space.

4.5 Numerical simulations

We propose to study a Hamiltonian with only four frequencies given by

H(p, q, t, ν) =
p2

2
+

4∑

k=1

cos

(
q −

∫ t

0

νk(ǫs)ds− ϕk

)
. (4.5.1)

The Hamiltonian (4.5.1) is designed to have the same qualitative properties as the Hamiltonian
(4.1.2). The frequencies are divided in two groups of two frequencies which create resonance
overlap, and create two main mixing regions around p = 0 and p = 10. The parameters
{ϕk}k=1..4 are some initial phases, and ǫ is a small parameter to model the timescale separation
between the Hamiltonian dynamics and the stochastic dynamics of the frequencies. To complete
our Hamiltonian model (4.5.1), we need to specify the stochastic process for the set of frequencies
ν. We choose for the variations of ν an Ornstein-Uhlenbeck process defined as

ν̇ = −(ν − ν∗) +
√
2σ2ξ(t). (4.5.2)

In Equation (4.5.2), ξ(t) is a 4-dimensional Gaussian white noise. For simplicity, in order to
keep the size of the stochastic regions constant, we choose to prescribe the same noise for two
frequencies of the same set, that is, ξ1 ≡ ξ2 and ξ3 ≡ ξ4. The parameter σ quantifies the
amplitude of the noise, it is the same for all frequencies. In the following, we perform numerical
simulations for different values of σ to change the amplitude of the frequency variations. The
term −(ν − ν∗) keeps the frequencies close to their averaged values defined by the set ν∗.

The Hamiltonian (4.5.1) together with the stochastic equation (4.5.2) completely defines our
model. In the simulations we have performed, the parameters ϕk, the timescale separation η

1J.Laskar, private discussion.
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frequencies ν∗k (s−1) initial angles ϕk timescale separation ǫ

10.0 0.0
9.9 π 10−2

0.1 π
0.0 0.0

Table 4.3: Invariant parameters of the model (4.5.1-4.5.2)

and the mean frequencies ν∗k were fixed to the values given in Table (4.3), whereas the amplitude
σ is a control parameter that we changed in the different simulations.

4.5.1 Simulations of the stochastic Hamiltonian model

We now present the numerical results obtained with the stochastic Hamiltonian model defined
by Equations (4.5.1-4.5.2). The Hamiltonian (4.5.1) has the form A(p) +B(q, t) with

A(p) :=
p2

2
,

B(q, t) :=
4∑

k=1

cos

(
q −

∫ t

0

νk(ǫs)ds− ϕk

)
.

We have thus used the symplectic integrator of order 4 SBAB3. At each time step of integration,
we integrate the frequencies from Equation (4.5.2) with a stochastic Euler algorithm. The
parameter η, the mean frequencies ν∗k and the initial phases ϕk were fixed to their nominal
values given in Table (4.3).

We are mainly interested in the first exit time τ defined as the first time to leave the region
p > 0 starting from p = 10. We wanted to compute numerically its probability distribution
function ρ(τ), and determine how it depends on the noise amplitude σ in Equation (4.5.2). To
achieve this aim, we have performed a set of five numerical simulations using the values of σ
given in Table 4.4. For each simulation, we ran 5000 trajectories all starting at the same point
(p, q) = (10, 0). Each trajectory is run with a different realization of the noise ξ(t). When
the system has a strictly negative momentum, p < 0, we stop the integration and we record
the time at which this event has happened. We fixed a limited time for the simulation Tmax

because some trajectories take a time much too long to reach p = 0. The values of Tmax for
each simulation are given in Table 4.4. Let N = 5000 be the total number of trajectories,
and n be the number of trajectories that effectively reach p = 0 within the time Tmax. The
software Matlab can then build a normalized histogram h(τ) with the values of the first hitting
times given by the simulation. The probability distribution ρ(τ) can then be estimated with the
relation ρ(τ) = n

N h(τ) for τ < Tmax. The results of the simulations are the different histograms
displayed in Fig.(4.5.1). The histograms represent the distributions ρ(τ) for each simulation.

4.5.2 Simulations of the local diffusive model

The local diffusive model is given by equations (4.3.2-4.5.2). We have to prescribe the values of
the parameters δ1, δ2 corresponding to the extensions of the diffusive patches R1,R2,R3. δ1 and
δ2 should correspond to the effective extension of the strongly chaotic regions of the stochastic
Hamiltonian model. The parameters δ1 and δ2 could be estimated from the Chirikov criterion of
resonance overlap. However, the direct numerical simulations show that the size of the chaotic
regions is smaller than the theoretical predictions of the Chirikov criterion. To obtain a better
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agreement with the simulations, we prescribed the size of the diffusive patches with the following
method.

To estimate the size of the chaotic region 1 (see Fig. 4.3.1), we ran a numerical simulation
of Hamilton’s equations with the Hamiltonian (4.5.1), except that we kept the frequencies fixed
to their reference values ν∗i . We simulated 2000 trajectories with initial conditions p = ν∗1 and
q equally distributed over the range [0, 2π], over a time T = 300 ∗ 2π

ν∗
1
. The final coordinates

are then distributed over the chaotic region 1, and only very few of them are gone out of the
region 1. We show as an illustration the typical histogram of final momenta we obtain in Fig.
(4.5.2). We then define the boundaries of the chaotic region as the interval [p1, p2] in which
90% of the probability distribution is concentrated, and satisfying p1+p2

2 =
ν∗
1+ν∗

2

2 . Then, the
empirical estimate of δ1 is δ1 ≈ p2 − p1.

Using the same method, we have estimated the extension δ2 of the chaotic region 2 corre-
sponding to the resonances of second order. Then we have also estimated the extensions δ3, δ4
of the chaotic regions around the resonances of third and fourth order. They are located around
the values p = 3.3, p = 6.6 for the resonances of third order, and p = 2.5 and p = 7.5 for the
resonances of fourth order. The values of the parameters {δi}i=1..4 are gathered in Table (4.5).

We ran M = 1000 simulations using for each simulation distinct realization of the stochastic
process ν(t) given by (4.5.2). For each of the realization ν(t), we could compute with (4.3.2)
the probability density ρν(p, t) to find the system in p at time t. At the beginning, the system
is in p = ν∗1 , which corresponds to the initial condition ρν(p, 0) = δ(p − ν∗1 ). We want to
compute the probability of first hitting time at p = 0. This means that we have to prescribe
the boundary condition ρν(p < 0, t) = 0. In practice, this condition amounts to set ρν(p, t) = 0
for p ∈ [ν4(t) − δ1/2, ν4(t) + δ1/2] because if the system enters in the diffusive patch R2, it is
immediately transported across the patch and reaches p = 0.

The complete probability distribution ρ(p, t) is simply the average of ρν(p, t) over the re-
alizations of the stochastic process ν(t). Let

{
νk(t)

}
k=1..M

be the M realizations of ν(t), we
have

ρ(p, t) =
1

M

M∑

k=1

ρνk(p, t).

And the probability of first hitting times ρ(τ) is given by

ρ(τ) = − d

dτ

∫ +∞

0

ρ(p, τ)dp.

The simulations are performed with the set of parameters given in Table (4.4). The results
are displayed on the different graphs of Fig.(4.5.1) together with the histograms obtained by the
direct Hamiltonian simulations. The curves show the results of ρ(τ) obtained with the simula-
tions of the local diffusive model, whereas the histograms show the results for ρ(τ) obtained with
the simulations of the stochastic Hamiltonian model. On the simulations 1, 2 and 3, we only
used the local diffusive model including the resonances up to order two. But on the simulations
4 and 5, there are two curves ρ(τ): the lower one is the distribution ρ(τ) computed with the
local diffusive model with resonances up to order two, but on simulation 4, we included the
resonances up to order three in the local diffusive model, and in the simulation 5 the resonances
up to order four. The results are displayed by the highest curves in simulations 4 and 5.

4.5.3 Discussion of the results

The different simulations in Fig.(4.5.1) aim to show which phenomenon governs the transport in
phase space in the stochastic Hamiltonian model (4.5.1-4.5.2), and how the transport depends
on the parameters of the model.
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Simulation σ (s−3/2) Tmax ( 2πν1
.104s)

1 3.0 1.0
2 2.2 2.0
3 1.84 3.0
4 1.1 10.0
5 0.7 50.0

Table 4.4: Noise amplitudes and integration times of the five simulations in Fig.(4.5.1)

Figure 4.5.1: First exit time distributions for five simulations with different values of the noise
amplitude. The histograms display the results of the simulations with the stochastic Hamiltonian
model (4.5.1). The red curves display the results of the local diffusive model including second
order resonances, the purpule curves display the local diffusive model including third and fourth
order resonances.
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Figure 4.5.2: Representation of the chaotic region 1. The two red lines at p1 and p2 show the
boundaries of the region. The region is centered at the value p =

ν∗
1+ν∗

2

2 . Its extension is given
by δ1 = p2 − p1.

resonances extension of the chaotic region numerical estimation of p2 − p1
first order δ1 2.25

second order δ2 0.50
third order δ3 0.28
fourth order δ4 0.09

Table 4.5: Sizes of the diffusive patches of the local diffusive model.
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One trivial but important conclusion of our numerical study is that the transport in a stochas-
tic Hamiltonian model is very different from the transport with the same Hamiltonian (4.5.1)
without stochastic variations of the frequencies. If the frequencies are fixed, the trajectories
starting at p = ν∗1 are just spread across the first chaotic region, and none of them reaches the
value p = 0 within the time Tmax of our simulations. Transport with stochastic frequencies
is thus a new mechanism that completely overcomes chaotic diffusion in deterministic chaotic
Hamiltonian maps.

The qualitative shape of the distributions of first hitting times ρ(τ) displayed in Fig.(4.5.1) is
typical of a distribution of first exit times from a domain in a stochastic system. The probability
distribution has a maximum ρ∗ reached at τ∗, that can be considered as the typical time for the
exit event to occur. For times smaller than τ∗, the probability distribution goes rapidly to zero.
It is thus very rare for the system to reach p = 0 in a time much smaller than the typical time
τ∗, because it corresponds to exceptionally large and fast random fluctuations of the stochastic
frequencies νi. For times larger than the typical time τ∗, the probability distribution also goes
to zero because it is also a rare event, called “persistence”, that the system does not leave the
domain p > 0 in a large time.

The order of magnitude of τ∗ depends on the amplitude of the noise σ acting on the fre-
quencies. For σ = 3.0, it is of the order of 103 ∗ 2π

ν1∗
, whereas for σ = 0.7, it is two orders of

magnitude larger, of the order of 105 ∗ 2π
ν∗
1
. The typical exit time τ∗ scales proportionally to the

inverse of the time scale separation η of the frequencies variations. If 1
ǫ is one order of magnitude

larger, τ∗ also grows by one order of magnitude. This scaling has been confirmed by additional
numerical simulations that we did not display.

The local diffusive model presented in Section 4.3.3 can be seen as the averaging dynamics of
the stochastic Hamiltonian model, for which transport outside of the principal resonant regions
has been neglected. This is reflected in the local diffusive model by the fact that the diffusion
coefficient is zero outside the diffusive patches Ri. Therefore, the local diffusive model only
takes into account transport of the first type occurring with the displacement of the mixing
regions of resonance overlap. If the transport of this type is dominant, it is natural to expect
that the local diffusive model reproduces well the results of the stochastic Hamiltonian model.
If, on contrary, transport is mainly of the second type -due to stochastic diffusion in the regular
regions of phase space-, then the exit rate at p = 0 predicted by the local diffusive model is
much slower than the real transport in the stochastic Hamiltonian model.

On Fig.(4.5.1), it can be seen that the local diffusive model is able to capture quite well the
probability distribution of first exit times ρ(τ). For the three simulations with σ = 3.0/2.2/1.84,
the local diffusive model with resonant regions up to second order gives excellent results. It
reproduce qualitatively and quantitatively the histogram of ρ(τ), with the same location τ∗

of the maximal value, and reproduces the decrease of the distribution ρ(τ) for long times.
For the two simulations with σ = 1.1/0.7 the local diffusive model of second order predicts a
transport rate which is much smaller than the real transport. In particular for σ = 0.7, even the
qualitative shape of ρ(τ) for the Hamiltonian model is not reproduced, the typical time τ∗ is far
overestimated. This means that for σ values below 1.84, transport through resonances of order
higher than two can no longer be neglected. The local diffusive model with resonant regions up
to order four is able to reproduce qualitatively the distribution of exit times ρ(τ), and gives also
a good order of magnitude of the value of ρ(τ). This is illustrated by the two highest curves for
the simulations 4 and 5 on Fig.(4.5.1). For values of σ below 0.7, the local diffusive model is no
longer able to reproduce transport in phase space, even with resonant regions up to order four.

The relevance of the local diffusive model to predict transport depends on the balance be-
tween the amplitude σ of frequencies fluctuations and the distance to cross between two mixing
regions. For example, in the local diffusive model of order two, the initial distance between two
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neighboring diffusive patches is

DistR1→R3
:=

(
ν∗1 + ν∗2

2
− δ1

2

)
−
(
ν∗1 + ν∗4

2
+
δ2
2

)
≈ 3.575.

The sum of the variances of the fluctuations of the diffusive patches R1 and R3 gives the typical
amplitude of the fluctuations of the mixing regions

√
VR1

+ VR3
=

(
1 +

1√
2

)
σ

Therefore, the efficiency of the transport of the first type depends whether the parameter

∆ :=
DistR1→R3√
VR1 + VR3

≃ 2.1

σ

is large or small compared to one.
This means that for the three simulations with σ = 3.0/2.2/1.84, the initial distance to cross

between two diffusive patches is larger or of same order as the amplitude of the frequencies
fluctuations. The jump between one diffusive patch to another is thus possible with “typical”
fluctuations of the frequencies. Transport does not require an exceptionally large fluctuation.
But this is no longer the case for σ = 1.1/0.7. Frequencies fluctuations are two small to pass
directly from the first order resonant region to the second order resonant region (or equivalently,
from R1 to R3), and transport is due to higher order resonances. For example, in the local
diffusive model of fourth order, the initial distance to cross to jump from the diffusive patch R1

to the next patch R. is DistR1→R.

(
ν∗
1+ν∗

2

2 − δ1
2

)
−
(

3ν∗
1+ν∗

4

2 + δ4
2

)
≈ 1.28. On the other hand,

the combined fluctuations of the two patches have a variance of
√
VR1 + VR.

(
1 +

√
10
4

)
σ. Thus

the parameter ∆ is of the order of ∆ ≃ 1.28
1+

√
10/4

1
σ ≃ 0.71

σ . This argument explains why the local
diffusive model up to order four is able to predict the transport for values of σ of the order of
0.7, but fails for lower values of σ.

In the present section, we have shown how a system satisfying a Hamiltonian dynamics with
stochastic frequencies can be transported slowly through phase space by the slow displacement of
chaotic regions. We have shown that this kind of transport can be reproduced qualitatively and
quantitatively by a completely stochastic Markovian model, the local diffusive model. The local
diffusive model gives a representation of the strongly chaotic regions created by resonance overlap
in the Hamiltonian by diffusive patches with infinite diffusion coefficient. The relevance of the
Markovian model to predict transport rates in the stochastic Hamiltonian model mainly depends
on the amplitude of the frequency stochastic variations. We have shown that for decreasing
amplitudes of the variations, the local diffusive model should take into account resonances of
higher and higher orders. In this Section, we presented a model including resonances up to order
four. But one cannot expect the local diffusive model to be valid for all range of the amplitude
fluctuations σ, even if we include resonances up to higher orders. The reason for that is that
transport is also due to a stochastic diffusion in the regular regions, away from the resonances.
If the amplitude of the fluctuations is too small, then transport is mainly due to diffusion in the
regular regions, what we have called “transport of the second type”. We have shown that the
transport is mainly of the first type in the stochastic Hamiltonian system if the typical frequency
fluctuations are similar to the distance in phase space between two neighboring resonant regions.
We have performed an other numerical simulation where the stochastic process for the variations
of ν is a jump process with exponential distribution of the jumps, and we found that the results
are in accordance to the general picture we give in this section. This suggests that the transport
mechanism is robust to other types of stochastic processes for the frequency evolution.
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4.6 Conclusion

The secular dynamics of the Earth spin axis can be approximately modeled by a Hamiltonian
that depends on time and on a set of slow chaotic frequencies. We have therefore studied the
simple model of [51] for the Earth obliquity to reproduce qualitatively the main dynamical
features observed in more realistic models [78]. For the obliquity of our fictive Moonless Earth,
transitions from 23°to 80° are possible but extremely rare. We estimate the typical transition
time to 20 Gyr in the present model. Given the simplicity of the present model, this time should
not be considered as the realistic one for the Moonless Earth: simulations with the model of
[78] show that transitions from 23°to 80° happen in fact in a shorter timescale. The important
point is that our work reveals the significant effect of frequency fluctuations, a phenomenon
that had been neglected in previous theoretical studies [67]. Without chaos in the solar system,
the secular frequencies s1−4 would be constant and the transition time would be one order of
magnitude larger.

Beside the particular problem of the dynamics of a Moonless Earth, our work has led to
the discovery of a new transport mechanism in chaotic Hamiltonian systems depending on
slow external frequencies. Even in the mathematical community, this kind of problem seems
to have been neglected. We have shown that transport is created by the slow distortion of
the phase space structure, and we have characterized the transport properties depending on
the parameter regime. The timescale separation between the Hamiltonian dynamics and the
frequency evolution allows us to perform a kind of averaging over the chaotic regions of phase
space. The result of the procedure is a diffusive model that gives relevant predictions of transport
rates in a regime where transport through displacement of the chaotic regions is dominant. This
regime corresponds to large frequency fluctuations.

The dynamics of the Moonless Earth does not fall in this particular parameter regime,
and the diffusive model cannot be used to predict large obliquity variations. However, large
obliquity variations on a timescale smaller than one Gyr are only possible if an exceptionally
large variations of one of the frequencies s1−4 closes the gap between the different chaotic regions.
This kind of event is captured by the diffusive model. that’s why we expect that the diffusive
model would be relevant to describe rare events in the system.



Chapter 5

Instantons for Mercury’s dynamics

5.1 Introduction: large variations of Mercury’s eccentricity

The discovery that our solar system is chaotic with a Lyapunov time of about 10 Myr [47, 48]
has again brought up the very old question of our solar system’s long term stability. This
question has been settled more recently by the team of Jacques Laskar at the IMCCE. Thanks
to an extended numerical integration of 2500 trajectories of the solar system with close initial
conditions, they have been able to show that about 1% of the trajectories led to collisions between
planets, or between planets and the Sun within 5 Gyr [58]. This shows that our solar system
is marginally stable, which means that it can be considered as stable for a time comparable to
its age. For the vast majority of collisional trajectories, the collision happens between Mercury
and Venus, or Mercury and the Sun, and leads thus to the disappearance of Mercury alone.
But more rarely, the orbit of Mars can also be strongly perturbed and destabilize the four inner
planets Mercury, Venus, the Earth and Mars [60].

In the question of the solar system’s stability, there is a great difference between the inner
solar system composed of the four small telluric planets Mercury, Venus, the Earth and Mars,
and the external solar system composed of the four giant gaseous planets Jupiter, Saturn, Uranus
and Neptune. It has been shown that the external solar system is in the so called Nekhoroshev
regime [76, 73], and is thus stable for a time much larger than the age of the solar system. This is
reflected by the fact that the giant planets’ trajectories is very well predicted on the Gyr timescale
by the Laplace–Lagrange secular equations. On the contrary, the Laplace–Lagrange equations
fail to predict the small planets orbital elements after few tens of Myr. Among the small planets,
the lightest one, Mercury, is also the most unstable one. It has been shown in the numerical
simulations [58] that the chaotic disintegration of the inner solar system always happens through
a very rapid and large increase in Mercury’s eccentricity. In particular destabilization of other
planets cannot be observed before Mercury’s destabilization. This shows that Mercury’s chaotic
dynamics is the key element to understand any large structural changes in our solar system.

The fact that Mercury’s eccentricity can reach very high values e > 0.7 is related to a possible
resonance between the precession frequency g1 of Mercury’s perihelion and the frequency g5 of
Jupiter. This resonance has been early noticed to be the main destabilizing factor of Mercury’s
orbit [6, 53, 58]. A simplified model for Mercury’s secular dynamics perturbed by the g5 secular
frequency also shows that the particular resonance g1 − g5 is enough to reproduce the increase
in Mercury’s eccentricity beyond 0.7 as observed in the simulations [15]. The right panel of
Fig.5.1.1 displays the time evolution of Mercury’ eccentricity once the orbital conditions for
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Figure 5.1.1: Right: the planet Jupiter compared to Mercury. Left: rapid increase in Mercury’s
eccentricity because of a resonance with Jupiter. The time unit on the abscissa is 1 Myr. [15]

resonance with Jupiter have been reached. The picture shows that the eccentricity increase
occurs within only a few million year, which is very fast compared to the 10 Myr Lyapunov time
of the solar system. The physical interpretation of this event is that the resonance allows the
transfer of a large amount of angular momentum from Jupiter to Mercury [52]. As Jupiter’s mass
is about 5750 times larger than that of Mercury (see Fig.5.1.1), Jupiter’s orbit has absolutely
negligible changes due to interaction with Mercury. This is of course not the case for the small
planet Mercury which trajectory becomes more and more elliptic when angular momentum is
transferred. Once Mercury’s orbit has become very elliptic, close encounters or collisions are
allowed with Venus. The inner solar system enters in a regime of large scale chaos for which
predictions become extremely hard.

Now that the destabilization mechanism of the inner solar system through the secular reso-
nance g1−g5 between Mercury and Jupiter has been widely acknowledged, important questions
remain: how do the system reach the orbital condition for this resonance? How much time
would be necessary to reach the resonance? Is it possible to predict the probability distribution
of the first time this resonance occurs? All these questions will be the central subject of the
present chapter.

A lot of work has already been devoted to characterize the mechanism by which Mercury’s
orbital parameters slowly evolve until they reach the conditions for resonance. The long term
evolution of Mercury’s orbit is conditioned by the resonances of its secular motion with the
characteristic frequencies of the solar system. In addition to the secular frequency g5, it has been
shown that the second mode (mainly associated to the presence of Venus), characterized by the
frequencies g2 and s2 in the Laplace–Lagrange system, plays a crucial role [71]. All the previous
observations have led the authors Konstantin Batygin, Alessandro Morbidelli and Matthew
Holman to introduce a simplified model for Mercury’s secular dynamics that should contain
all necessary ingredients to drive Mercury into the g1 − g5 resonance [7]. The model, that we
will call from now for convenience the BMH model, predicts Mercury’s destabilization through
the stochastic dynamics of a non-trivial adiabatic invariant. With the stochastic dynamics,
the authors have been able to predict the average lifetime of Mercury before it enters into
the g1 − g5 resonance. The BMH model is the starting point of the present work. After a
general presentation of the model in section 5.2, we show in section 5.3 how stochastic averaging
gives precisely the stochastic equation followed by the adiabatic invariant. In particular, we
are able to predict theoretically the right order of magnitude for the diffusion coefficient of
the stochastic process. The model thus gives access not only to the average, but to the full
probability distribution of the first time of Mercury’s destabilization. Finally, we show in section
5.4 that the instanton theory presented in section 1.4 can be applied to Mercury’s secular
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dynamics to predict its destabilization in a time smaller than the age of the solar system.

5.2 Simplified model for a Massless planet

In the present section, we present the simplified BMH model for Mercury’s secular dynamics [7].
In particular, we remind which approximations are used to derive it and what are its limitations.

We recall in Fig.(5.2.1) the elliptical coordinates (a, e, i, λ,̟,Ω) that are used to describe
planetary orbital position.

• a : semi-major axis.

• e : eccentricity. If e = 0, the ellipse is a circle. If e = 1, the ellipse is flat.

• i : inclination of the ellipse w.r.t a reference plane.

• λ : mean longitude = Ω+ ω +M .

• ̟ : longitude of the perihelion = Ω+ ω.

• Ω : longitude of the ascending node.

M is called the mean anomaly. It is defined as the ratio between the shaded area covered by the
trajectory in Fig.(5.2.1) and the total area of the ellipse, with a factor 2π. Kepler’s second law
states that the mean anomaly is then proportional to the time. If the planet is at time t = 0 at
the perihelion, then Kepler’s second law gives

M(t) = 2π
t

T
,

where T is the Keplerian orbital period.
The elliptical coordinates (a, e, i, λ,̟,Ω) are very convenient to characterize planetary tra-

jectories, but are not canonical action-angle variables. The sets of canonical variables usually
used in celestial mechanics are Delaunay variables, or Poincaré variables. They will be defined
in section 5.2.1.

5.2.1 Secular Hamiltonian for Mercury including the three major res-

onances

Let H be the Hamiltonian of the eight planets of the solar system. In heliocentric coordinates,
H can be written as the sum of three terms [75, 72]

H = H0 + T1 + U1. (5.2.1)

In formula (5.2.1), H0 is the Hamiltonian of Kepler for the eight planets

H0 =

8∑

p=1

r̃2p
2βp
− Gβpµp

|rp|
, (5.2.2)

where rp is the position vector of planet p in heliocentric coordinates, r̃p is the canonical variable
conjugated to rp, G is the gravitational constant, 1

βp
:= 1

MS
+ 1

mp
is the reduced mass of planet

p and µp :=MS +mp. The Hamiltonian (5.2.2) is the Hamiltonian of eight independent Kepler
problems of a planet of mass mp in interaction with the Sun of mass MS . It is known since
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Figure 5.2.1: Elliptical coordinates: definition of a, e, i, ω,Ω and M .

Newton that this problem is equivalent to a body of mass βp orbiting around the fixed center
of mass of the planet and the Sun.

A lot of work has been devoted in the XIXth century to find good action-angle variables
to integrate the Kepler problem. We use in the present work the canonical Poincaré variables
defined by

Λ := β
√
µa λ :=M + ω +Ω (5.2.3)

I := Λ
(
1−

√
1− e2

)
−̟ := −ω − Ω

J := Λ
√

1− e2 (1− cos(i)) −Ω

In the present work, we have done a canonical change of variable in the secular Hamiltonian
(5.2.8) to eliminate the Λ variable. In the following, the canonical variables I and J are dimen-
sionless, and we have the relations I := 1 −

√
1− e2 and J :=

√
1− e2 (1− cos(i)). The great

advantage of the Poincaré variables compared to Delaunay ones is that for small eccentricity
and inclination we have I ≈ e2

2 and J ≈ i2

2 . This means that I and J are small when e and i are
small. In terms of Poincaré variables, the Kepler Hamiltonian can be written for each planet p
as

Hp
0 :=

r̃2p
2βp
− Gβpµp

|rp|
= −
Gβ3

pµ
2
p

2Λ2
p

.

Would the planetary mutual interactions be neglected, the Hamiltonian (5.2.1) would be reduced
to the Hamiltonian H0, that only depends on the action variable Λ. The perturbative function
composed of the terms T1 and U1 gives a small deviation from the Keplerian orbits because
planetary masses are much lower than the mass of the Sun. To leading order in planetary
masses , the canonical equations of motion are simply for each planet

λ̇p = n (Λp) , (5.2.4)
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with the Keplerian beating frequency n (Λp) =
Gβ3µ2

Λ3
p

. All other variables are Keplerian constants
of motion. When the perturbative function is added, the variables are no longer constant, but
evolve slowly compared to the fast Keplerian motion. Their dynamics is accurately described
by the secular equations, which we now describe.

The terms T1 and U1 in expression (5.2.1) represent the perturbative function, i.e the term
coming from planetary mutual gravitational interaction. T1 is called the indirect part of the
Hamiltonian, and comes from the fact that the origin of coordinates is not the center of mass
of the system. The expression of T1 is

T1 =
∑

p′<p

r̃p′ .r̃p
MS

. (5.2.5)

U1 is called the direct part of the perturbative function. Its explicit expression is

U1 = −G
∑

p′<p

mpmp′

|rp′ − rp|
. (5.2.6)

Because of the timescale separation between the mean longitudes’ dynamics (5.2.4), and that
of the other variables Λ, I, J,̟ and Ω , the dynamics of the slow variables is very accurately
described by the planetary Hamiltonian (5.2.1) averaged over the mean longitudes. The Kepler
Hamiltonian H0 does not depend on the mean longitudes. The aim is thus to obtain the
expression of the perturbative function 〈T1〉+ 〈U1〉 averaged over the fast angles λp. T1 and U1

are both periodic functions of the angles Ω, ̟, λ. They can thus be expressed as Fourier series
of the canonical angles. In fact, it can be shown that T1 only contains periodic terms in λ and
thus

〈T1〉 = 0.

The indirect part of the Hamiltonian gives no secular contribution. The secular Hamiltonian
thus reduces to 〈U1〉.

It is not the aim of my work to describe precisely how to do the Fourier expansion for the
disturbing function. The method can be found in all good textbooks of celestial mechanics,
including [75, 72]. We will just just give in the following the minimum of practical indications
to manipulate the expansion of the perturbative function.

It is important to bear in mind that there are different methods to expand the perturbative
function. The oldest one, that is also mostly used, is described in the book by Murray and
Dermott [75]. It takes advantage of the fact that the planetary eccentricities and inclinations are
very small, to classify the Fourier coefficients depending on their order in e and i. In particular,
this kind of expansion breaks down if some of the planetary eccentricities or inclinations become
large. Another way to perform the expansion has been proposed more recently by Jacques
Laskar and Philippe Robutel in [64] leading to the same results, but with compact and explicit
expressions for the coefficients. In particular, an explicit expansion of the secular Hamiltonian
up to degree 4 in planetary eccentricities and inclinations can be found in [64]. Then, Jacques
Laskar and Gwenaël Boué at IMCCE proposed a new method to expand explicitly the disturbing
function to any order in eccentricity and inclination [55]. The expansion is done in series of the
ratio of the semi-major axes and remains thus valid even for large values of e and i. Such
an expansion is important for long-term predictions of planetary orbits as the eccentricity of
Mercury can come close to e = 1. In the following paragraph, we describe briefly how the BMH
model can be obtained using the perturbative function expansion presented in [75].

The BMH model The appendix B of the book by Murray and Dermott [75] presents the
explicit expansion of the three-body disturbing function with all Fourier terms up to order 4 in
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eccentricity and inclination. The two bodies position is described by their elliptical elements.
The expansion uses the variable s := sin

(
i
2

)
instead of i. The two bodies have semi-major

axes respectively a and a′ with a < a′. The Laplace coefficients are functions of α := a
a′ . The

appendix gives the Fourier expansion of the function

R :=
a′

|r − r′| .

To get the average of R over λ and λ′-called the secular part-, one has to take the zeroth-order
arguments of table B.1 with j = 0. The functions fi are given in table B.3. (See also the explicit
expansion of the secular part of the disturbing function in [64]).

The BMH model in [7] considers a massless planet Mercury in the gravitational field of the
other planets. The secular motion of all other planets is given by the Laplace–Lagrange periodic
solution. The only degrees of freedom in the model are thus Mercury’s ones, with an additional
time dependence in the Hamiltonian. The Hamiltonian to be computed for Mercury is thus

H :=

8∑

p=2

−Gm1mp

ap
Rsec (e1, s1, ̟1,Ω1, ep(t), sp(t), ̟p(t),Ωp(t)) , (5.2.7)

where Rsec is the perturbative function R averaged over λ.
Then, the BMH model is built on the assumption that only the secular modes g5, g2, s2

have a significant impact on Mercury’s dynamics. This assumption is not equivalent to saying
that only Jupiter and Venus influence the dynamics, because all planetary trajectories have a
component on the modes g5, g2, s2. The aim is thus to replace all time dependent terms with
(ep(t), sp(t), ̟p(t),Ωp(t)) in (5.2.7) by their quasiperiodic decomposition on the modes g5, g2, s2.
This can be achieved with the formulae

ep cos (̟) ≈ ep5 cos (g5t+ β5) + ep2 cos (g2t+ β2) ,

ep sin (̟) ≈ ep5 sin (g5t+ β5) + ep2 sin (g2t+ β2) ,

and

ip cos (Ω) ≈ ip2 cos (s2t+ γ2) ,

ip sin (Ω) ≈ ip2 sin (s2t+ γ2) ,

where the coefficients epp′ and ipp′ and the phases βp and γp are given by the secular theory of
Brouwer and Van Woerkom’s in tables 7.1 and 7.2.

Finally, we must replace all elliptical coordinates e1, s1, ̟1,Ω1 by the Poincaré canonical
variables (5.2.3). The corrections due to general relativity has important stabilizing effects on
Mercury [53] and must be added to the Hamiltonian (5.2.7) (see [96, 15, 7])

HGR = −3(GMS)
2
m1

a21c
2

1√
1− e2

.

The result is the Hamiltonian of the BMH model (see [7] formula (41))

H =
(
FGR + F (1)

e

)
I + F (3)

e I2 + F
(1)
i J + F

(3)
i J2 + FeiIJ

+ F
(2)
e5

√
I cos (ϕ+ g5t+ β5)

+ F
(2)
e2

√
I cos (ϕ+ g2t+ β2)

+ F
(2)
i2

√
J cos (ψ + s2t+ γ2) . (5.2.8)
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In the Hamiltonian (5.2.8), we have dropped the subscripts 1 because its expression contains
only Mercury’s canonical variables. ϕ := −̟ and ψ := −Ω are the canonical angles conjugated
resp. to I := 1 −

√
1− e2 and J :=

√
1− e2 (1− cos i). The coefficients are homogeneous to a

frequency, and the Hamiltonian has thus the dimension of a frequency (arcsec/yr). In the present
work, we have applied a canonical transformation t← gt and H ← H

g such that the frequencies
are directly expressed in arcsec/yr. The reader should thus be careful that the numerical values
for the coefficients of H are not the same as in [7]. The numerical values for the coefficients of
H are given in appendix C.

5.2.2 Resonance map in action space

The Hamiltonian of the BMH model (5.2.8) has one part that only depends on the actions

Haction :=
(
FGR + F (1)

e

)
I + F (3)

e I2 + F
(1)
i J + F

(3)
i J2 + FeiIJ. (5.2.9)

Would the total Hamiltonian be reduced to the part (5.2.9), Mercury’s dynamics would be
integrable. The actions would be constant and the canonical angles would simply grow linearly
with time according to the Hamilton equations

ϕ̇(t) = −g1(I, J), (5.2.10)

ψ̇(t) = −s1(I, J).

The frequencies g1 (I, J) := −∂Haction

∂I , and s1 (I, J) = −∂Haction

∂J are called the fundamental
frequencies of the system (strictly speaking, they are not frequencies but beating frequencies).
Note that the frequencies g1 and s1 are defined to correspond to the beating frequencies of
̟ and Ω, hence the strange minus sign in (5.2.10). Equations (5.2.10) means that Mercury’s
elliptical orbit is not fixed: Mercury’s perihelion precesses at frequency g1, and Mercury’s orbital
plane oscillates at frequency s1 w.r.t the invariant reference plane. Equations (5.2.10) describe
the secular variations of Mercury’s orbit, that is, its orbital variations on a timescale of about
100000 yr. For example, the current value of g1is about 5.46′′/yr, which corresponds to a period
of about 237000 yr.

However, Hamiltonian (5.2.8) is not integrable because one part depends on the angles

Hres = F
(2)
e5

√
I cos (ϕ+ g5t+ β5) + F

(2)
e2

√
I cos (ϕ+ g2t+ β2) + F

(2)
i2

√
J cos (ψ + s2t+ γ2) .

(5.2.11)
The frequencies g5, s2, g2 are the three main resonances (or resonances of first order) in the
system. Mercury reaches a resonance when the action values are such that the fundamental
frequencies correspond to one of the resonances, that is when g1 ≈ g5, g1 ≈ g2 or s1 ≈ s2. In
that case, one of the angular terms in Hres (5.2.11) has a beating frequency close to zero, and
the integrable dynamics is completely perturbed.

The dynamics defined by the Hamiltonian (5.2.8) is nonlinear. The nonlinearities can excite
all Fourier harmonics which are linear combinations of the first order resonances (g5, g2, s2).
The harmonics can have a major influence on the dynamics, because Mercury’s fundamental
frequencies g1 and s1 can be resonant with some of the harmonics, even if they are not resonant
to first order with (g5, g2, s2). For example, the second order resonances are g5± g2, g5± s2 and
g2 ± s2. More generally, the system has reached a resonance if an equality of the form

n1(g1 − g5) + n2(g1 − g2) + n3(s1 − s2) = 0 (5.2.12)

is satisfied, for integer values of the coefficients n1, n2, n3. The sum |n1| + |n2| + |n3| is called
the order of the resonance. The larger the order of the resonance, the smaller its impact on the
dynamics.
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Figure 5.2.2: The resonance map in action space. The blue lines represent the first order
resonances, the red lines to the second order resonances, and the green lines to third order.
Mercury’s current position is close to an intersection of many third order resonances.

Since the work of Chirikov [18], it is known empirically that chaotic motion arises because
of overlap of resonant regions. Heuristically, this means that the dynamics is chaotic if at least
two relations of the form of (5.2.12) are almost satisfied. On the contrary, a term depending
on the canonical angles with a beating frequency far away from any resonance only creates a
quasi-periodic perturbation on the dynamics, and does not break integrability. Those ideas can
be formulated more rigorously with Lie transforms methods of the Hamiltonian, the interested
reader is referred for example to [72]. Lie transforms methods are quite subtle, and yet the basic
idea is very simple:

A resonance of highest order creates a smaller perturbation in the dynamics.

To understand which of the resonances (5.2.12) create chaotic motion in Mercury’s dynamics,
we have plotted in Fig.(5.2.2) the resonance network in action space (I, J) up to third order
(for convenience, the actions have been divided by Λ). The resonance lines are defined by all
equations (5.2.12) for all triplets of integers (n1, n2, n3) with |n1| + |n2| + |n3| < 3. For our
purpose, it can be considered that resonances of order higher than 3 can be neglected. The
lines are drawn in action space close to the current position of Mercury. The resonance lines
are straight lines because we stopped the expansion of the Hamiltonian to quadratic terms in
I, J which corresponds to the fourth order in eccentricity and inclination In Fig.(5.2.2), the blue
lines correspond to the first order resonances, the red lines to the second order resonances, and
the green lines to third order ones.

Fig.(5.2.2) is very important in the present context. It gives the qualitative structure of the
dynamical system before doing any numerical integration of the equations of motion. Let us
comment more precisely on Fig.(5.2.2). The blue line corresponding to the resonance g1 − g5
defines the border of the interesting part of the domain in action space. Once Mercury reaches
this line, resonance with Jupiter occurs and Mercury enters in a regime of large-scale chaos,
as explained in section 5.1. We thus restrict the study to the domain below the line g1 − g5.
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The first order resonance s1 − s2 crosses the action domain, not so far from Mercury’s current
position. The term cos (ψ + s2t+ γ2) in Hres (5.2.11) is close to resonance and can thus not be
integrated out. The resonance line g1 − g2 does not appear on Fig.(5.2.2) because it crosses the
action space for negative values of J . The resonance g1 − g2 can never be reached by Mercury
(this is a consequence of the simplicity of the present model, as the resonance g1 − g2 can
actually be reached with the complete solar system’s dynamics). The second order resonance
2g1−g5−g2 has also a negligible influence because it lies at the border of the accessible domain.
The frequency g2 is only resonant to third order.

This last point has an important consequence: even if the coefficients F (2)
e5 , F

(2)
e2 , F

(2)
i2 in

(5.2.11) are of same order of magnitude, the three angular terms do not have an equivalent
impact on Mercury’s dynamics. The term F

(2)
e2

√
I cos (ϕ+ g2t+ β2) creates a large amplitude

perturbation on the dynamics, but this perturbation is mostly quasiperiodic. Its contribution
to chaotic motion only comes from the third order resonances 2g1 − g5 − g2 + s1 − s2 / g1 −
g2 +2s1− 2s2 and 3g1− 2g5− g2 that cross the domain close to Mercury’s position. Hence, the
frequency g2 represents a small perturbation for Mercury’s long-term motion. More precisely,

there exists a canonical change of variables (I, J, ϕ, ψ)→
(
Ĩ , J̃ , ϕ̃, ψ̃

)
such that the perturbation

F
(2)
e2

√
I cos (ϕ+ g2t+ β2) can be reduced to a term of much smaller amplitude. We do not give

further details on this technique, because it will be precisely developped in section 5.3.1 to do
stochastic averaging.

5.2.3 The truncated Hamiltonian as a slow variable

The remarkable intuition of BMH is to consider the resonance g2 − g5 as a small perturbation
for Mercury. Using this idea, they were able to find out a non trivial slow variable for the
Hamiltonian dynamics (5.2.8). We now report the steps leading to the definition of the slow
variable.

First, we integrate the time dependance g5t + β5 and s2t + γ2 in Hres with the canonical
change of variable

ϕ← ϕ+ g5t+ β5,

ψ ← ψ + s2t+ γ2,

H ← H + g5I + s2J.

In the new canonical variables, the Hamiltonian (5.2.8) of the BMH model becomes

H =
(
FGR + F (1)

e + g5

)
I + F (3)

e I2 +
(
F

(1)
i + s2

)
J + F

(3)
i J2 + FeiIJ

+ F
(2)
e5

√
I cos (ϕ) + F

(2)
i2

√
J cos (ψ)

+ F
(2)
e2

√
I cos (ϕ+ (g2 − g5) t+ β2 − β5) . (5.2.13)

The Hamiltonian part that only depends on the actions is

Haction :=
(
FGR + F (1)

e + g5

)
I + F (3)

e I2 +
(
F

(1)
i + s2

)
J + F

(3)
i J2 + FeiIJ. (5.2.14)

We call H̃ the first part of the Hamiltonian, excluding the resonance g2

H̃ =
(
FGR + F (1)

e + g5

)
I+F (3)

e I2+
(
F

(1)
i + s2

)
J+F

(3)
i J2+FeiIJ+F

(2)
e5

√
I cos (ϕ)+F

(2)
i2

√
J cos (ψ) ,

(5.2.15)
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and Hpert the term with the g2 − g5 frequency

Hpert = F
(2)
e2

√
I cos (ϕ+ (g2 − g5) t+ β2 − β5) . (5.2.16)

The term Hpert represents a small perturbation. Without this term, the truncated Hamiltonian
H̃ is conserved. The dynamics defined by H̃ alone conserves the value of H̃ because it is an
autonomous Hamiltonian. The dynamics contains all resonances obtained with the combination
of g5 and s2. A look at Fig.(5.2.2) shows that 3 resonances give a contribution to chaotic
motion: the second order resonance g1 − g5 − (s1 − s2) and the two third order resonances
2(g1 − g5)− (s1 − s2) and g1 − g5 − 2(s1 − s2). The dynamics defined by H̃ is thus chaotic and
we assume it is ergodic on the levels of constant H̃ values.

With the perturbation (5.2.16), the truncated Hamiltonian H̃ is no longer conserved, but
evolves through the equation

dH̃

dt
=
{
H, H̃

}
,

=
{
Hpert, H̃

}
, (5.2.17)

where {F,G} represent the canonical Poisson brackets. The time evolution equation (5.2.17)
shows that the truncated Hamiltonian H̃ has a time evolution with a typical amplitude given
by Hpert. The variations of H̃ are thus not small. However, most of those variations are
quasiperiodic and give no long-term deviation. Only the third order resonant terms hidden in the

Poisson bracket
{
Hpert, H̃

}
give a non-integrable variation of H̃. Averaging H̃ variations over a

frame of length about ten times the period of the large oscillations 1
g1−g2

kills the quasiperiodic

variations and leaves only the non-integrable component of the time evolution of H̃. We thus
introduce a variable defined by

h :=
〈
H̃
〉
θ
, (5.2.18)

where the average 〈〉θ is a local time average over a frame of length θ. The variable h defined
by (5.2.18) is a slow variable for the BMH dynamics. Fig.(5.2.3) shows a numerical integration
of the equation (5.2.17) together with the trajectory of the slow variable h. The time variations
of H̃ are reduced by more than a factor ten with local time averaging.

5.2.4 Condition for Mercury’s destabilization

We are now looking for the conditions for Mercury’s destabilization. We have just shown in
section 5.2.3 that the truncated Hamiltonian H̃ defined in (5.2.15) (more precisely, its local
time average h), is a slow variable. Because of the presence of the second and third order
resonances in the domain, the Hamiltonian dynamics defined by H̃ is chaotic. We observed in
the simulation that chaos has enough amplitude to carry the system all over accessible phase
space in a few Myr. As we will see in the following, the slow variable h evolves over a typical
timescale of 1 Gyr. At the slow variable’s time scale, the dynamics defined by H̃ satisfies the
ergodic hypothesis.

Let us consider for the moment that H̃(I, J, ϕ, ψ) is constant. This amounts to neglecting
the term Hpert coming from the g2 frequency in the BMH Hamiltonian. Fig.(5.2.4) displays
the level curves of equation Haction (I, J) = Cte in action space, with Haction given by (5.2.14).
Haction is the part of H̃ that depends only on action variables. The function Haction (I, J)
has the global structure of a saddle in the three dimensional space (I, J,Haction). The picture
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Figure 5.2.3: A trajectory H̃(t) (cyan) compared to the slow variable h(t) (blue). The local time
averaging of H̃(t) suppresses the fast oscillations that do not correspond to long-term variations.

shows the existence of a critical value Hcr such that the curve of equation Haction (I, J) = Hcr

separates four disjoint domains in phase space. Two of the domains are defined by the inequality
Haction < Hcr. One of these two domains is confined to low values I and J , and another one is
unbounded and extends to values for I and J close to 1.

Mercury is currently in the bounded part of phase space, with value Haction < Hcr. As long
as the value of Haction remains lower than Hcr, the trajectory is confined in the bounded domain
of phase space, with low eccentricity and inclination values. Of course, Haction is not conserved
by the dynamics, and the system is thus not confined to a single level curve of Haction. For a
given value of H̃, Haction satisfies the inequalities

H̃ −
∣∣∣F (2)

e5

∣∣∣
√
I −

∣∣∣F (2)
i2

∣∣∣
√
J < Haction < H̃ +

∣∣∣F (2)
e5

∣∣∣
√
I +

∣∣∣F (2)
i2

∣∣∣
√
J. (5.2.19)

In the stable domain of phase space, I < 0.05 and J < 0.04. As a result Haction is bounded
from below by the inequality

H̃ −
√
0.05

∣∣∣F (2)
e5

∣∣∣−
√
0.04

∣∣∣F (2)
i2

∣∣∣ < Haction. (5.2.20)

We call Hlow := H̃ −
√
0.05

∣∣∣F (2)
e5

∣∣∣−
√
0.04

∣∣∣F (2)
i2

∣∣∣ the lower bound of Haction. If the lower bound

in (5.2.20) is larger than Hcr, Mercury’s orbit is stable because it is confined in the bounded
domain of phase space defined by the inequality Haction > Hcr.

Destabilization occurs when the value of H̃ decreases such that the lower bound Hlow :=

H̃ −
√
0.05

∣∣∣F (2)
e5

∣∣∣ −
√
0.04

∣∣∣F (2)
i2

∣∣∣ reaches the critical value Hcr. Then the system can cross the

level curve Haction = Hcr exactly at the saddle point and enter the unbounded region of phase
space. Because of ergodicity, Mercury is brought very fast at high I and J values (and thus at
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Figure 5.2.4: Level curves of Haction(I, J) in action space. The 3D surface of Haction has the
structure of a saddle. The saddle is located exactly at the intersection of the two first order
resonances g1 − g5 and s1 − s2. To enter the unbounded domain of phase space, the system has
to cross the saddle.

high eccentricity and inclination values) once it has crossed the saddle. The saddle point is the
point where the gradient of Haction vanishes, which correspond to the equations

∂Haction

∂I
(I, J) = 0, (5.2.21)

∂Haction

∂J
(I, J) = 0.

Equations (5.2.21) are exactly equivalent to the conditions for the resonances g1−g5 and s1−s2
intersection. This is an interesting point: Fig.(5.2.4) shows that the condition Haction = Hcr

for destabilization corresponds almost exactly to the resonance g1 − g5. It is reflected in the
fact that the red line defined by Haction = Hcr is almost identical to the resonance line g1 − g5,
and confirms that destabilization of Mercury’s orbit occurs through a secular resonance with
Jupiter. But destabilization also occurs when the system is in resonance with the s2 mode,
because destabilization happens when the system crosses the saddle.

We have found a very simple and intuitive mechanism for the destabilization of Mercury’s
orbit. Mercury’s dynamics is governed by a slow variable H̃ obtained as the truncation of the
secular Hamiltonian. The timescale for the variations of H̃ is much larger than the typical
period of secular motion. Fig.(5.2.5) illustrates the destabilization mechanism. The phase space
of the system can be seen as two reservoirs of Haction, connected by a saddle. The variations
of H̃(t) can be seen as the water level in the first reservoir that increases or decreases following
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the variations of H̃(t). If the water level increases (for example, when snow is melting...) and
reaches the level of the saddle, water overflows and begins to fill the second reservoir.

A last point should be emphasized. The criterion Haction = Hcr for destabilization is not
exact. Destabilization does not exactly occurs at the first time the equality Haction = Hcr is
satisfied. Destabilization may occur a bit before or after the slow variable reaches the value Hcr

because the dynamics takes some time to travel over the available phase space at constant value
H̃. Also, destabilization depends somehow on the values of the angles ϕ and ψ. Let us define a
critical time tcr by the first time at which the equation

h(tcr) = hcr

is satisfied. The value hcr is roughly related to Hcr by the relation hcr −
√
0.05

∣∣∣F (2)
e5

∣∣∣ −
√
0.04

∣∣∣F (2)
i2

∣∣∣ = Hcr. For many independent realizations of the BMH dynamics, some trajec-

tories may be destabilized a bit before the critical time tcr, and some other a bit after tcr. As we
will see in section 5.3.4, the approximation that consists in identifying the first destabilization
time on the one hand, and the first time tcr the slow process h reaches the value hcr on the
other hand, leads to excellent results.

5.3 Diffusion process for the slow variable

The present section is much more technical than the previous ones. We put on a more formal
basis the ideas presented in section 5.2.4 using Lie transforms of the Hamiltonian. The compu-
tation have been done with the software TRIP developed at the IMCCE by Jacques Laskar and
Mickael Gastineau (https://www.imcce.fr/trip/), which is precisely devoted to the computation
of series in celestial mechanics. In this section, we apply stochastic averaging to the dynamics of
the slow variable h defined in (5.2.18), and we obtain a theoretical expression for the diffusion
coefficient of the stochastic process.

5.3.1 Third order resonances amplitudes

The Hamiltonian of the BMH model can be written as

H = H̃ (I, J, ϕ, ψ) + ǫHpert (I, J, ϕ, ψ, gt) , (5.3.1)

where g := g2 − g5, with H̃ given by (5.2.15) and Hpert given by (5.2.16). Table (C.1) gives

the values to compute the order of magnitude of ǫ. We find
∣∣∣H̃
∣∣∣ ≈ 3 × 10−2 arcsec/yr, and

ǫ |Hpert| ≈ 9 × 10−3 arcsec/yr. ǫ is a formal parameter that quantifies the ratio between the
perturbative part and the principal part of the Hamiltonian. We give the value ǫ = 9.10−3

3.10−2 = 0.3.
The parameter ǫ is used below to set the hierarchy of Lie transforms. The first part H̃ contains
the terms depending only on the action variables and the terms coming from the two frequencies
g5 and s2. Hpert contains the term coming from the frequency g2. We have explained in section
5.2.3 that the resonance g1−g2 does not occur in the accessible domain of phase space. The term
Hpert is nonresonant to first order in ǫ. We can thus perform a canonical change of variables
{I, J, ϕ, ψ} → {I ′, J ′, ϕ′, ψ′} with Lie transforms methods to average the term Hpert and all
nonresonant harmonics. To perform the Lie transforms, we use as a kernel the part Haction

(given by (5.2.14)) of the Hamiltonian, that does not depend on the angles. The procedure
is described with all details in many references [74, 72]. The procedure leads to the so-called
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unbounded domain

critical level Hcr
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Figure 5.2.5: Lac du Crozet in the mountain of Belledonne (Grenoble). The lake with the
mountain represent the dynamical structure of phase space for the BMH model. The water
level represents the lower bound value Hlow, and indirectly the value of H̃. When the value
H̃(t) is above a critical level, the system travels in the accessible part of phase space (the lake),
but remains in the bounded domain. If on the contrary the value H̃(t) reaches the critical level,
the system can enter the unbounded domain. This is analogous to water overflowing the saddle.
(picture from altituderando.com)
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resonance angle

second order 2g1 − g5 − g2 2ϕ+ gt
3g1 − 2g5 − g2 3ϕ+ gt

third 2g1 − g5 − g2 + s1 − s2 2ϕ+ ψ + gt
order g1 − g2 + 2s1 − 2s2 ϕ+ 2ψ + gt

2g1 − g5 − g2 − (s1 − s2) 2ϕ− ψ + gt

Table 5.1: Table of the perturbing resonances in the BMH model up to order 3.

resonant normal form. The Hamiltonian in resonant normal form only contains terms that can
not be integrated out because they are resonant in the accessible domain.

For the BMH model, the resonances are displayed on the resonance map in Fig.(5.2.2). The
map shows that there are 5 resonances in the domain that involve the g2 frequency. They are
gathered in table (5.1). Each of these resonances is associated to a term depending on the angles
in the Hamiltonian. The resonant angles are also gathered in table (5.1).

The computations of the Lie transforms up to order 3 in ǫ are very tough. They can be done
with a special algorithm designed by Jacques Laskar on the software TRIP. At each order in ǫ
in the Lie transforms, we keep all terms that involve at least one of the resonant angles listed
in table (5.1). The algorithm gives the Hamiltonian of the BMH model written in terms of the
new canonical variables. The new Hamiltonian can be put in the form

H (I ′, J ′, ϕ′, ψ′, t) := H̃(3) (I ′, J ′, ϕ′, ψ′) + ǫ3H(3)
res (I

′, J ′, ϕ′, ψ′, gt) +O(ǫ4), (5.3.2)

where H̃(3) is the autonomous part of the Hamiltonian that gathers all terms that do not depend
on the time angle gt, and H(3)

res is the part of the Hamiltonian with all resonant angles of second
and third order given in table (5.1). The part H(3)

res has the form

ǫ3H(3)
res (I

′, J ′, ϕ′, ψ′, gt) := F1 (I
′, J ′) cos (2ϕ′ + gt)

+ F2 (I
′, J ′) cos (3ϕ′ + gt)

+ F3 (I
′, J ′) cos (2ϕ′ + ψ′ + gt)

+ F4 (I
′, J ′) cos (ϕ′ + 2ψ′ + gt)

+ F5 (I
′, J ′) cos (2ϕ′ − ψ′ + gt) . (5.3.3)

We have explicitly computed the coefficients F1, F2, F3, F4, F5 with TRIP. The expressions of
those coefficients are given in appendix C. The order of magnitude of ǫ3H(3)

res is much lower than
the order of magnitude of ǫHpert because of the increased order in ǫ. ǫ3H(3)

res is a small pertur-
bation in the dynamics defined by the Hamiltonian (5.3.2). This means that the autonomous
part H̃(3) of the Hamiltonian is a slow variable for the dynamics. The time evolution of H̃(3) is
given by

˙̃
H

(3)

=
{
H, H̃(3)

}

= ǫ3
{
H(3)

res, H̃
(3)
}
. (5.3.4)

Equation (5.3.4) is equivalent to equation (5.2.17). The difference is that equation (5.2.17)
describing the time evolution of H̃ still contains periodic terms that give no long-term variations
of H̃. In equation (5.3.4), we have integrated out all periodic contributions, such that the time
evolution of H̃(3) is slow, and only contains nonintegrable terms. H̃(3) is somehow the best slow
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variable we can built for the dynamics, because it has irreducible long term variations due to
the presence of resonances in the system.

The Hamiltonian (5.3.2) defines a slow-fast dynamical system. The fast dynamics is given
by Hamilton’s equations of motion defined by the Hamiltonian H̃(3). The slow dynamics is
given by the time evolution of H̃(3) in equation (5.3.4). The dynamics has thus the form of a
fully coupled slow-fast system, because the fast variables {I ′, J ′, ϕ′, ψ′} are coupled to the slow
variable H̃(3). The dynamics defined by the Hamiltonian H̃(3) is similar to that of H̃, because
H̃ and H̃(3) only differ by terms of order larger than ǫ from each other. In particular, the H̃(3)

is chaotic, with a Lyapunov time of the order of 10 Myr and we thus assume that it satisfies the
mixing hypothesis. In the next section, we apply stochastic averaging to the dynamics (5.3.4)
to find theoretically the order of magnitude for the long-term diffusion of H̃(3).

5.3.2 Stochastic averaging and order of magnitude for the diffusion

coefficient

In the present section, we apply stochastic averaging to the dynamics (5.3.4) to find an order of
magnitude for the diffusion of the slow variable H̃(3). To simplify the computations and to get
an explicit expression for the diffusion coefficient, we have chosen to do rough but reasonable
assumptions.

We first notice that the terms of largest amplitude in H̃(3) are the terms that depend only
on the action variables. To leading order, the expression of H̃(3) reduces to

H̃(3)(I ′, J ′, ϕ′, ψ′) ≈ Haction (I
′, J ′, ϕ′, ψ′) ,

with the expression of Haction given by (5.2.9). Using the above approximation in the right-hand
side of (5.3.4), the dynamics of H̃(3) reduces to

˙̃
H

(3)

= −ǫ3 ∂Haction

∂I ′
∂H

(3)
res

∂ϕ′ − ǫ
3 ∂Haction

∂J ′
∂H

(3)
res

∂ψ′ . (5.3.5)

With the expression (5.3.3), equation (5.3.5) can be rewritten as

˙̃
H

(3)

(I ′, J ′, ϕ′, ψ′, gt) = F 1 (I
′, J ′) sin (2ϕ′ + gt)

+ F 2 (I
′, J ′) sin (3ϕ′ + gt)

+ F 3 (I
′, J ′) sin (2ϕ′ + ψ′ + gt)

+ F 4 (I
′, J ′) sin (ϕ′ + 2ψ′ + gt)

+ F 5 (I
′, J ′) sin (2ϕ′ − ψ′ + gt) . (5.3.6)

where
{
F 1, F 2, F 3, F 4, F 5

}
are new coefficients obtained from the expression of {F1, F2, F3, F4, F5}.

They are given in section C. Stochastic averaging for the dynamics (5.3.6) states that the long-
term evolution of H̃(3) should be equivalent in law to a stochastic differential equation

˙̃
H

(3)

= a

(
˙̃
H

(3)
)
+D

(
˙̃
H

(3)
)
ξ(t). (5.3.7)

The drift term a

(
˙̃
H

(3)
)

comes from averaging (5.3.6) over the fast motion, and from the

correlations between fast and slow motion as explained in section 1.3.3. There is no hope to find
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any explicit expression for this term. Quite surprisingly, preliminary simulations done with the
dynamics (5.3.6) seem to show that the drift is very small compared to the diffusion, and can

be neglected. In the following, we focus on the diffusion coefficient D
(

˙̃
H

(3)
)

.

The diffusion coefficient can be expressed with a Green-Kubo formula involving the correla-
tion function of the driving term in (5.3.6) (see section 1.3.3). The complete expression is quite
long. In this section, in order to get orders of magnitude, we assume that the cross correlations
between different resonant angles give no appreciable contributions. For example, we neglect
the correlation C12 :=

〈
F 1 (I

′(t), J ′(t)) sin (3ϕ′(t) + gt)F 2 (I
′(0), J ′(0)) sin (2ϕ′(0) + ψ′(0))

〉
.

In the type of chaotic Hamiltonian systems we are studying, decorrelation is much faster
on the angles than on action variables. This can be explained qualitatively by the fact that
separation of action trajectories is enhanced on angle trajectories because of the Hamiltonian
flow. In general, if decorrelation of action variables occurs over a timescale τaction, the angle vari-
ables decorrelate over a timescale of the order of (τaction)

1/3. This phenomenon has already been
noticed by many authors, including [46, 102]. We thus do not longer take into acount the depen-
dance on action variables in (5.3.6) and we systematically replace the functions F i (I

′(t), J ′(t))
(for i = 1..4) by a constant corresponding to their order of magnitude. Fig.(5.3.2) shows that
the accessible domain is centered around I ≈ J ≈ 0.02. We define an order of magnitude for F i

by
∣∣F i

∣∣ := F i (0.02, 0.02). Among the five terms appearing in equation (5.3.6), two of them are

equal to zero. The order of magnitude for the diffusion coefficient D
(
H̃(3)

)
finally writes

D
(
H̃(3)

)
≈ 2

∣∣F 1

∣∣2
∫ +∞

0

dt 〈sin(2ϕ(t) + gt) sin(2ϕ(0))〉H̃(3)

+ 2
∣∣F 3

∣∣2
∫ +∞

0

dt 〈sin(2ϕ(t) + ψ(t) + gt) sin(2ϕ(0) + ψ(0))〉H̃(3) (5.3.8)

+ 2
∣∣F 4

∣∣2
∫ +∞

0

dt 〈sin(ϕ(t) + 2ψ(t) + gt) sin(ϕ(0) + 2ψ(0))〉H̃(3) . (5.3.9)

In formula (5.3.9), the notation 〈.〉H̃(3) means that the average should be done with a fixed value
for H̃(3).

A last approximation is done to compute the correlation functions of the sinus terms inside
the integrals. The two angles 2ϕ+ψ+ gt and ϕ+2ψ+ gt are resonant right at the center of the
accessible domain. Their average beating frequency is close to zero. On the contrary, the angle
2ϕ + gt is only resonant at the domain boundaries. We choose to keep only the contribution
from the resonant angles 3 and 4 of table (5.1). The two angles are chaotic functions, with a
Lyapunov time τL. We thus choose to do the approximation

2ϕ(t) + ψ(t) + gt ≈ ϕ(t) + 2ψ(t) + gt ≈ θ + ωt+W

(
t

τL

)
,

where W (t) is the standard Brownian motion (also called the Wiener process), θ is a random
variable with uniform probability distribution over [0, 2π], and ω is a typical beating frequency of
the resonant angle. The resonant angle’s frequency is not zero. It changes chaotically between
positive and negative values, depending on the exact location in the domain. The relation
between the Lyapunov exponent of a chaotic Hamiltonian dynamics with one degree of freedom
and two resonances has been precisely studied by [67]. In the present case however, we do not
know any simple relation between the resonant frequencies and the Lyapunov exponent. We
have assumed without any further justification that we are in the regime where τL ≈ 2π

ω . The
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expression (5.3.9) for the diffusion coefficient becomes

D
(
H̃(3)

)
≈ 2

(∣∣F 3

∣∣2 +
∣∣F 4

∣∣2
)∫ +∞

0

E

[
sin

(
θ + ωt+W

(
t

τL

))
sin(θ)

]
dt. (5.3.10)

The computation of the integral in (5.3.10) is straightforward. The final result is

D
(
H̃(3)

)
≈ 1

2

(∣∣F 3

∣∣2 +
∣∣F 4

∣∣2
) τL
1 + (2π)2

. (5.3.11)

The diffusion coefficient D does not depend on H̃(3). Such an expression can thus not be valid
everywhere in phase space. In fact, expression (5.3.11) has been obtained with the implicit
assumption that the two third order angles 2ϕ + ψ + gt and ϕ + 2ψ + gt are resonant and
cannot be integrated. Expression (5.3.11) is valid if the dynamics crosses the resonant lines
2g1 − g5 − g2 + s1 − s2 and g1 − g2 + 2s1 − 2s2, which corresponds only to a fraction of the
accessible domain. The domain of validity of expression (5.3.11) is discussed precisely in the
section 5.3.4 where we define the diffusive model.

Finally, we have used the numerical value of the Lyapunov time τL ≈ 10 Myr obtained with
numerical simulations, and we have evaluated numerically the explicit expressions of F 2 and F 3

given in appendix C. The units are chosen such that the dimension of H̃(3) is the arcsec/yr.
We get the order of magnitude

Dth ≈ 2.3 ∗ 10−14 (arcsec)2/yr3 (5.3.12)

Although the order of magnitude (5.3.4) has been obtained with very strong and questionable
assumptions, the numerical value is in very good agreement with the one obtained in (5.3.23)
with direct fitting of the numerical simulations results. This result confirms that the long-
term diffusion of the slow variable h defined in (5.2.18) is due to the third order resonances, in
particular the resonances 2g1−g5−g2+s1−s2 and g1−g2+2 (s1 − s2). Even if the coefficients
of the stochastic differential equation for the slow variable cannot be computed analytically,
Lie transforms method is a good way to define properly the slow and fast variables. For the
BMH Hamiltonian, the complete Lie transforms up to third order are much too complex to be
done with a usual software like mathematica or Maple, and the software TRIP is necessary to
perform them. The theoretical order of magnitude (5.3.11) for D involves the complex functions
F 3(I

′, J ′) and F 4(I
′, J ′) that can be expressed as rational fractions in I ′, J ′. We have done

the explicit computation of those functions in order to properly justify the order of magnitude
(5.3.12). But the order of magnitude (5.3.12) can be obtained in a much more heuristic manner.
We have proven that diffusion of the slow variable H̃(3) is due to third order secular resonances,
that come to order ǫ3 in the Hamiltonian (5.3.2). The order of magnitude for F 3(I

′, J ′) and

F 4(I
′, J ′) roughly corresponds to ǫ3

∣∣∣H̃
∣∣∣
2

. Using the definition of ǫ given in (5.3.1), expression

(5.3.11) can be written

D
(
H̃(3)

)
≈ 1

2
ǫ6
∣∣∣H̃
∣∣∣
4 τL
1 + (2π)2

, (5.3.13)

where
∣∣∣H̃
∣∣∣ is the order of magnitude of the averaged BMH Hamiltonian. Evaluating expression

(5.3.13) with ǫ = 0.3,
∣∣∣H̃
∣∣∣ = 3.10−2 and τL = 10× π

180∗3600 gives D ≈ 3.5×10−10 in renormalized

time units and D ≈ 1.7× 10−15 (arcsec)2/yr3, which is also in good qualitative agreement with
(5.3.23).
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5.3.3 Numerical evaluation of the probability distribution of Mer-

cury’s first destabilization time

We have done a numerical simulation to study the probability distribution of Mercury’s first
destabilization time, and compared the result with the theoretical predictions obtained with
stochastic averaging. We have integrated numerically the Hamiltonian dynamics (5.2.13) for
127282 trajectories with close initial conditions. The current value of Mercury’s orbital param-
eters are

e0 ≈ 0.205632, i0 ≈ 6.34046°, ϕ0 ≈ −46.8061°, ψ0 ≈ 237.27°. (5.3.14)

The initial values of e and i were unchanged, but the phases were chosen with uniform probability
distribution in the ranges [ϕ0, ϕ0 + 0.573°] and [ψ0, ψ0 + 0.573°]. We had to choose a condition
to check if Mercury’s orbit was still stable, or if it had been destabilized. A look at Fig.(5.2.4)
shows that the trajectory cannot have action values larger than 0.05 as long as it remains in the
bounded domain. We thus chose arbitrarily the criterion max(I, J) > 0.06 to say that Mercury’s
orbit had been destabilized. The exact action value to set the destabilization criterion has no
significant impact on the result because the trajectory fast reaches very high I and J values as
soon as it has crossed the saddle.

We have integrated the trajectories and recorded for each trajectory the first time τ at which
the destabilization criterion was satisfied. We set a maximal integration time such that more
than 50% of the trajectories had escaped. The reason why we did not choose a longer integration
time is that we are mostly interested by destabilizations occurring for times short compared to
the age of the solar system. The numerical integrations were done with a symplectic algorithm
SBAB2 (it is not completely trivial to see why the Hamiltonian (5.2.13) can be integrated with
a symplectic algorithm, but it can be!).

The red curve in Fig.(5.3.1) displays the numerical computation of the probability distribu-
tion ρexp(τ). The distribution has the general shape of a probability distribution of first exit
times from a bounded domain for a stochastic process. The probability distribution ρexp de-
creases very fast to zero when τ → 0. This can be interpreted by the fact that the process needs
some time to reach domain boundaries. To reach the boundary in short times, the process has
to perform large jumps very fast, and this happens with very low probability. Mercury’s fast
destabilizations will be studied in more details in section 5.4. The present simulation has not
enough trajectories to get a reliable estimation of ρth for short times, that’s why the numerical
curve in Fig.(5.3.1) begins at t ≈ 200.

The probability has a maximum at the value τ∗. It can be considered as the typical time for
Mercury’s destabilization. Most of the trajectories exit the domain within a time of the order
of τ∗. In the BMH model, the typical time for Mercury’s destabilization is

τ∗ ≈ 1.32× 109yr. (5.3.15)

The long time tail of the distribution, that is not represented in Fig.(5.3.1), corresponds to
trajectories that remain stable for very long times in spite of chaotic motion. This kind of event
also happens with small probability. For a stochastic process (for example a diffusion process),
the long time tails of first exit times probability distribution has an exponential decay. We also
expect in the present case exponential decay for τ > τ∗.

5.3.4 Theoretical predictions for the first destabilization time proba-

bility distribution

Section 5.3.1 has shown how to apply rigorously stochastic averaging to the Hamiltonian dy-
namics of the BMH model. Stochastic averaging shows that the truncated Hamiltonian H̃(3)
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Figure 5.3.1: Probability distribution of Mercury’s first destabilization time computed with a
direct numerical simulation (blue curve) and with the theoretical prediction of the diffusive
model (5.3.22) (red curve).

defined in (5.3.2) is a well-defined slow variable for the system, and follows a diffusion equation
(5.3.7). The explicit expression for H̃(3) is much too complex to be easily tractable in numerical
simulations. We thus assume that the slow variable h defined in (5.2.18) is a good approximation
of H̃(3) and we identify the equations for H̃(3) and for h. The stochastic differential equation
for h thus writes

ḣ = D(h)ξ(t). (5.3.16)

We have tried to compute theoretically the diffusion coefficient value D(h) in (5.3.11). However,
the theoretical expression can only give an order of magnitude, not the precise value for D(h).
It is also very difficult to know how precisely the diffusion coefficient D(h) depends on h. In the
following, we try to do reasonable assumptions to obtain a simpler stochastic equation for h.

In Fig.(5.3.2), we have plotted together the level curves of Haction and the two third order
resonances 2g1−g5−g2+s1−s2 and g1−g2+2s1−2s2 that are responsible for the slow diffusion
of H̃. For small values of the action variables, Fig.(5.3.2) displays a small region defined by the
inequality Haction > Hsup where the system does no longer cross the resonance lines. Fig.(5.3.2)
shows that Hsup is defined by Hsup = Haction(0.0187, 0). The inequality Haction > Hsup can be
related to an inequality over H̃ through relation (5.2.19). Let hsup be the upper bound for H̃,
then the value of hsup roughly satisfies

Hsup = hsup +
√
0.0187

∣∣∣F (2)
e5

∣∣∣

As the resonances are responsible for the diffusion of H̃ (or equivalently, for the diffusion
of h), diffusion is much slower in this region because it is created by resonances of order larger
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Figure 5.3.2: Left: Level curves of Haction(I, J), together with the two third order resonances
that are responsible for its long-term diffusion. The figure displays the existence of a small
domain for Haction > Hsup of weak chaos amplitude. The upper bound for Haction is related
to an upper bound hsup for the diffusion process. The value hsup is modeled by a reflecting
boundary for the diffusion process. Right: Properties of the diffusion model for the slow variable.
The problem is reduced to the computation of first exit time from the bounded domain [hcr, hsup].

than three (the resonances of order larger than three are not represented in Fig.(5.3.2)). We
therefore do the rough assumption

D(h) = 0 for h > hsup. (5.3.17)

For hcr < h < hsup, the numerical simulations show that the system is always in contact with
the two resonances 2g1 − g5 − g2 + s1 − s2 and g1 − g2 + 2s1 − 2s2 displayed in Fig.(5.3.2). We
therefore do the second assumption that the diffusion coefficient is constant in the second region

D(h) ≡ D for hcr < h < hsup. (5.3.18)

Inequalities (5.3.17) and (5.3.18) define a diffusive model for the slow variable h. The prob-
ability distribution P (h, t) follows the one dimensional diffusion equation

∂P

∂t
= D

∂2P

∂h2
for hcr < h < hsup, (5.3.19)

with the boundary conditions of zero probability flux at h = hsup and absorbing boundary
conditions at h = hcr {

P (h, t) = 0 when h = hcr,
∂P
∂h (h, t) = 0 when h = hsup.

(5.3.20)

The initial condition is chosen to be the value of H̃ computed with Mercury’s current orbital
parameters defined by (5.3.14). Let h0 be the initial value of H̃, the initial condition for the
diffusion equation (5.3.19) writes P (h, 0) = δ (h− h0).

The diffusion equation (5.3.19) can be solved explicitly using Fourier transforms. The reso-
lution of equation (5.3.19) is detailed in appendix B. The solution can be expressed as a Fourier
series depending on the parameters hcr, hsup, h0 and D. Among those parameters, the only one
that cannot be precisely evaluated theoretically is the diffusion coefficient. We thus keep the
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diffusion coefficient as the only fitting parameter in the model. The values of hcr, hsup, h0 are
given by

hcr = −0.048 , hsup = −0.028 , h0 = −0.032.
We are mainly interested in the probability distribution ρth(τ) of the first exit times from the
domain [hsup, hcr]. The distribution ρth(τ) is related to the probability distribution P (h, t) by
the relation

ρth(τ) = −
d

dt

∫ hsup

hcr

P (h, t) dh. (5.3.21)

With relation (5.3.21), the explicit expression of ρth(τ) is

ρth(τ) =
2πD

(hsup − hcr)2
+∞∑

n=0

(−1)n
(
n+

1

2

)
cos

(
π

(
n+

1

2

)
h0 − hcr
hsup − hcr

)
exp

(
−π2

(
n+

1

2

)2
Dτ

(hsup − hcr)2

)
.

(5.3.22)
The distribution ρth(τ) can be compared to the probability distribution ρexp(τ) of Mercury’s

first destabilization time that has been computed numerically in section 5.3.3 Fig.(5.3.1). The
diffusion coefficient D is the only fitting parameter in the model. In order to have a better agree-
ment with numerical results, we have chosen to translate the theoretical distribution from two
times the Lyapunov time (this corresponds empirically to the time after which the trajectories
have been uniformly distributed in the domain of constant H̃ ), that is ρth(τ)← ρth(τ − 2τL).
We thus choose the value of D that gives the best fit of the probability distribution ρexp(τ).
The value of D is then estimated as

D ≈ 4.1 ∗ 10−14 (arcsec)2/yr3. (5.3.23)

Using the numerical value given by (5.3.23), the first exit times theoretical distribution ρth(τ)
given by the diffusive model gives a excellent qualitative agreement with the distribution ρexp(τ)
obtained with direct numerical simulations. The distribution ρth(τ) is displayed in Fig.(5.3.1).
We have two strong indications that Mercury’s long-term dynamics can be accurately described
by a diffusive model for the slow variable h: first, we have got a relatively good agreement be-
tween the distributions ρth and ρexp. Second, the order of magnitude for the diffusion coefficient
D obtained in (5.3.23) corresponds to the value of D obtained in (5.3.12) with Lie transforms
method and stochastic averaging. The aim of the next section (5.4) is to derive some interest-
ing consequences of the diffusive model. In particular, we study in the next section Mercury’s
short-term destabilizations, with τ ≪ τ∗, and we show that Mercury’s dynamics follows the
instanton theory.

As a conclusion of the present section, we discuss the limitations of the diffusive model
(5.3.19). The first limitation concerns the boundary conditions (5.3.20) of the model. We have
considered the value hsup as a close boundary for the dynamics. This assumption is obviously
not perfectly satisfied. Some trajectories can cross with small probability the value hsup and are
then trapped in very weakly chaotic region of phase space. Those trajectories remain thus in
the domain h > hcr for a longer time than predicted by the diffusive model (5.3.19). We expect
the numerical distribution ρexp(τ) to have longer tails than the distribution ρth(τ) because the
trajectories that are trapped in the regular region of phase space can still be destabilized, but
on a much larger timescale than τ∗.

The second limitation concerns the times τ of same order as the Lyapunov time τL of the
chaotic dynamics. In the diffusive model, trajectories can exit the domain even within times
τ < τL. This is obviously not true for the chaotic dynamics, because Mercury’s trajectories are
completely predictable for times smaller than the Lyapunov time. This means that the real first
destabilization times probability distribution ρ(τ) is zero for τ < τL, whereas ρth(τ) > 0 for all
times.
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τ (Myr) Pth(τ) (%)

500 1.3
200 7.9 ∗ 10−3

100 2.4 ∗ 10−6

Table 5.2: Theoretical value of the probability that Mercury’s destabilization occurs within a
time shorter than τ .

5.4 Instantons for Mercury

5.4.1 Short term destabilization probability

We now focus on the probability that Mercury’s orbit is destabilized for short times τL ≪ τ ≪
τ∗. The expression (5.3.22) for the probability distribution ρth(τ) shows that the fast decrease
at short times in the distribution is dominated by the exponential term

ρth(τ) ≍
τ→0

e−
τ̄
τ , (5.4.1)

where τ̄ = (h0−hcr)
2

D ≈ 1.56 ∗ 109 yr is of same order of magnitude as τ∗. The asymptotic
behavior (5.4.1) means that the distribution ρth(τ) follows a large deviation principle (defined
in section 1.4) when τ → 0. The large deviation principle (5.4.1) has interesting physical
consequences. It shows that the probability of Mercury’s short-term destabilizations is very
small. Consider instead of ρth(τ) the probability Pth(τ) :=

∫ τ

0
ρth(τ

′)dτ ′ that the destabilization
of Mercury’s orbit occurs in the interval [0, τ ]. The large deviation principle (5.4.1) shows that
Pth(τ/k) ≈ (Pth(τ))

k for k > 0. This is a particular property of exponential decay. For example,
the probability of destabilization in less than 500 Myr is about 1% in the present model, it is
of the order of 10−2% in 200 Myr and 10−6% in 100 Myr. The table (5.2) gives some orders of
magnitude for the probability distribution Pth(τ) for some values of τ .

The large deviation principle (5.4.1) obtained in the small time limit is an indication that
Mercury’s short -term destabilizations should follow a instanton phenomenology. As was ex-
plained in section 1.4.3, a rare event occurrence is not predictable but if it happens, the path
chosen by the system to realize the rare event may be predictable. In the present case, the large
deviation principle (5.4.1) shows that the short-term destabilization of Mercury’s orbit is a very
rare event. The aim of the next two sections is to find an instanton phenomenology both for the
diffusive model of section 5.3.4 and for the chaotic Hamiltonian dynamics of the BMH model.

5.4.2 Explicit formulae obtained with the diffusive model

The aim of this section is to find the explicit expression for instanton trajectories in the diffusive
model (5.3.19-5.3.20). For the diffusive model (5.3.19-5.3.20), an instanton corresponds to a
trajectory that reaches the absorbing boundary at h = hcr in short time τ ≪ τ∗. In general, an
instanton trajectory can be computed by minimizing the large deviation action functional. The
problem of a diffusion equation in a one dimensional domain is simple enough to be completely
solved with explicit expressions if we neglect the reflecting boundary at h = hsup. In particular
we do not only obtain an equation for instanton trajectories and the exponential equivalent of the
trajectories distribution, but we obtain explicitly the full distribution. The approximation that
consists in neglecting the reflecting boundary does not affect the instanton equations because
instanton trajectories go as fast as possible to the exit boundary h = hcr. Trajectories that exit
the domain in short after a reflexion at the boundary hsup are very unlikely and their probability
of occurrence can be neglected.



138 CHAPTER 5. INSTANTONS FOR MERCURY’S DYNAMICS

The aim is to compute the probability

ρτex(h, t) := P (h, t| {h0, 0} ∩ {τ = τex}) (5.4.2)

to have a trajectory at location h at time t with the constrains that the trajectory starts at H0

and exits the domain at time τex. The inequality 0 < t < τex should be satisfied. Using Bayes
theorem and Markov property, the probability distribution (5.4.2) can be written as

ρτex(h, t) =
P (τ = τex|h, t)P (h, t|h0, 0)

P (τ = τex|h0, 0)
. (5.4.3)

All probability distributions in the right-hand side of (5.4.3) have explicit expressions. The
probability P (τ = τex|h, t) to exit the domain starting at a given position can be obtained from
equation (5.3.22) in the limit hsup → +∞. We have thus

P (τ = τex|h, t) =
1

τex − t
h− hcr√

4πD (τex − t)
e−

(h−hcr)2

4D(τex−t) ,

P (τ = τex|h0, 0) =
1

τex

h0 − hcr√
4πDτex

e−
(h0−hcr)2

4Dτex .

The last term P (h, t|h0, 0) is simply the solution of the free diffusion equation in an infinite
domain, which is the classical result

P (h, t|h0, 0) =
1√
4πDt

e−
(h−h0)2

4Dt .

After some algebra, we obtain the following explicit expression for ρτex(h, t) (valid for h > hcr
and 0 < t < τex)

ρτex(h, t) =
h− hcr
h0 − hcr

(
τex

τex − t

)3/2
1√
4πDt

{
e−

1
4Dτexs(1−s)

(h−hcr−(1−s)(h0−hcr))
2

− e−
1

4Dτexs(1−s)
(h−hcr+(1−s)(h0−hcr))

2
}
,

(5.4.4)
where we have introduced the ratio s := t

τex
. It can be quite easily checked that

∫ +∞
hcr

ρτex(h, t)dh =

1, because ρτex(h, t) is a probability density.
The instanton trajectory, and the variance of the distribution around the instanton can be

obtained with the first and the second moments of the distribution (5.4.4). We define the average
trajectory

{
h̄(t)

}
0<t<τex

as

h̄(t) =

∫ +∞

hcr

hρτex(h, t)dh. (5.4.5)

There is a small difference between the average trajectory defined by (5.4.5) and the instan-
ton trajectory h̃(t) which is the trajectory of highest probability. The trajectory of highest
probability is the straight trajectory of equation

h̃(t) =
t

τex
hcr +

(
τex − t
τex

)
h0.

The distribution of trajectories that exit the domain for short times is more and more concen-
trated around the trajectory of highest probability when τex goes to zero. To first approximation,
h̃ ≈ h̄ when τex is small compared to τ∗. However, the average trajectory is a bit curved when t
gets closer to τex because of the influence of the absorbing boundary condition. We represent in
Fig.(5.4.1) the averaged trajectory instead of the instanton trajectory because it can more easily
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be compared to numerical results. To study the trajectories dispertion around the instanton,
we can also compute the standard deviation

δh̄(t) :=

[∫ +∞

hcr

(
h− h̄(t)

)2
ρτex(h, t)dh

]1/2
. (5.4.6)

Expressions (5.4.5) and (5.4.6) can be evaluated numerically. The result is displayed in
Fig.(5.4.1) for τex = 443 Myr. In order to compared the theoretical results (5.4.5-5.4.6) to
numerical simulations of the BMH dynamics, we have chosen to adjust the value h(τL) with the
numerical results. τL is the Lyapunov time of the BMH chaotic dynamics. We have done this
correction to take into account that trajectories in the BMH dynamics are deterministic until
the time τL and can therefore not fit the Brownian trajectories. The next section presents the
numerical results of a direct numerical simulation of the BMH dynamics, that we compare to
the theoretical results at the level of instanton trajectories.

5.4.3 Comparison with the slow variable trajectories

We now want to find the instanton trajectories for the chaotic Hamiltonian dynamics of the BMH
model (5.2.8). The aim is to compare the numerical simulations with the theoretical predictions
of the diffusive model given by (5.4.5-5.4.6). We have therefore integrated 300000 trajectories of
the BMH dynamics using the same symplectic algorithm SBAB2 as in section 5.3.3. The initial
action values are the same for all trajectories, but the phases have been randomly chosen in an
interval of 0.01 radian. We record the value of the slow variable h during the trajectory, and
we define Mercury’s “destabilization” with the criterion h < hcr to be consistent with section
5.3.3. Mercury’s typical destabilization time τ∗ has been evaluated to 1.32 Gyr in (5.3.15) We
have looked at instanton trajectories for three different exit times τ = 241 Myr, τ = 443 Myr
and τ = 691 Myr. For each given value of τ , we record the trajectories that exit the domain
[hcr,+∞] in the time interval [τ − δτ, τ + δτ ]. The interval length 2δτ is chosen to obtain a
sample containing at least 100 trajectories. In the present case, δτ = 2 Myr.

For each sample i = 1, 2, 3, we record the ni trajectories of the slow variable h(t), and we

compute the average trajectory h̄(i)(t) := 1
ni

ni∑
k=1

hk(t), and the standard deviation δh̄(i)(t) :=

[
1
ni

ni∑
k=1

(
hk(t)− h̄(i)(t)

)2
]1/2

. Fig.(5.4.1) displays the numerical results obtained with the sec-

ond sample with τ = 443 Myr , together with the theoretical predictions of the diffusive model.
Fig (5.4.1) displays three curves. The intermediate curve is the average trajectory h̄(2)(t). The
two other curves are defined by h̄(2)(t) + δh̄(2)(t) and h̄(2)(t) − δh̄(2)(t) respectively. The theo-
retical curves have been obtained with equations (5.4.5) and (5.4.6), with the same value of D
that has been obtained in (5.3.23) with direct fitting of the first destabilization time probability
distribution.

Two differences between the numerical results and the theoretical predictions can be observed
at the two trajectory extremities. For 0 < t < τL, the trajectories separate exponentially fast,
but are still clustered together on the same deterministic path. Only for times larger than τL
can the trajectories be considered as independent realizations, and their distribution can be
predicted by the diffusion equation. Second, the variance of the trajectories distribution do
not follow the theoretical predictions for times close to τ . The reason is that the local time
average (5.2.18) does not suppress all fast oscillations of the chaotic dynamics. The consequence
is that the numerical trajectory h(t) is defined with some uncertainty corresponding to the fast
oscillations amplitude. The criterion h < hcr cannot be considered as a rigorous criterion for
such oscillating trajectories.



140 CHAPTER 5. INSTANTONS FOR MERCURY’S DYNAMICS

Time (nondimensional units)
0 500 1000 1500 2000 2500

H

-0.05

-0.048

-0.046

-0.044

-0.042

-0.04

-0.038

-0.036

-0.034

-0.032

-0.03

Hcr

=

instanton Mercure

instanton Brownien

Figure 5.4.1: Numerical (blue curves) and theoretical (red curves) predictions of the instanton
trajectories for the BMH model. The intermediate curves are the average trajectories. The two
extremal curves define the variance of the trajectories distribution around the average.

Modulo the corrections due to the chaotic aspect of the BMH dynamics, the agreement
between the diffusive model and the BMH model, at the level of instanton predictions, can be
considered as excellent. This result is a second confirmation of the validity of the predictions
obtained with stochastic averaging. It can thus be said that the diffusive model for the slow
variable is consistent both for the prediction of Mercury’s first destabilization time probability
distribution, and for the prediction of instantons.

5.5 Conclusion and perspectives

The BMH model is a very attractive model because it reduces the very difficult question of
desintegration of the inner solar system to the very simple problem of first exit times from a
bounded domain for a Brownian trajectory. Within the framework of the BMH model, stochastic
averaging allows to justify that a well-chosen slow variable follows a diffusion equation. It
should be however kept in mind that the diffusion equation is only justified for the simple BMH
dynamics.

For the full solar system’s dynamics, numerical simulations by [59] have shown that the
probability of Mercury’s destabilization is about 1% in 5 Gyr. For the time being, this value
is the only one to which the results presented in this work can be compared. Let us assume
that the mechanism that triggers Mercury’s destabilization is the same for the full solar system’s
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dynamics and for the BMH model. More precisely, let us assume that there exists a slow diffusive
variable with a threshold and that Mercury’s destabilization is simultaneous to the first crossing
time of the threshold. We expect the probability distribution of Mercury’s destabilization time
to scale as

ρ(τ) ≈
τ→0

1

τ

√
τ̄

πτ
e−

τ̄
τ . (5.5.1)

The value of τ̄ in the last expression is unknown. Assuming expression 5.5.1 is valid for the full
solar system’s dynamics, we deduce that a probability of 1% in 5 Gyr corresponds to a value of

τ̄ ≈ 16.6Gyr. (5.5.2)

In the BMH model , the typical destabilization time τ̄ is of the order of one Gyr (see section
5.3.3), whereas the simulations of [59] suggest a typical time τ̄ of the order of 10 Gyr. This may
be related to the fact that the critical eccentricity at which destabilization occurs is too small
in the BMH model. The critical threshold hcr = −0.048 for destabilization corresponds to the
value I ≈ 0.05 (see Fig.(5.2.4)) and consequently to e ≈ 0.3. Simulations of [59] suggest that
the destabilization threshold rather corresponds to e ≈ 0.6 (see Fig.(0.0.1)). The discrepancy
between the values (5.5.2) and (5.3.15) could be attributed to an underestimated threshold value
for instability.

The fact that the BMH model does not conserve the total angular momentum deficit (AMD)
might be the reason of the discrepancy observed between the BMH model and the complete
secular dynamics. Indeed, it has been shown that AMD is a key quantity to control the destabi-
lization of planetary orbits (see [62]). The AMD conservation is expected to slow the diffusion
process for the slow variable and a more realistic order of magnitude for τ∗ could certainly be
obtained.

The question whether the destabilization of the inner solar system is controlled by the first
exit time from a domain of some well-chosen slow variable, remains open. However, the instanton
phenomenology described in section 5.4 should be observed in the full solar system’s dynamics,
because the instanton phenomenology is generic of rare events and can be observed in very
different types of stochastic or deterministic dynamical systems. We are currently involved in a
research project with the IMCCE to try to observe the instanton phenomenology with a more
complete model for the solar system’s secular dynamics.
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Conclusion

At the beginning of my PHD thesis, I was concerned with the distinction between a deterministic
and a stochastic dynamics. I came out of my studies with the impression that some phenomena
in nature can be described by deterministic sets of equations, while some others, because of
their complexity, could only be tackled with statistical physics and with stochastic differential
equations. The domain of deterministic phenomena and the one of stochastic phenomena ap-
peared to me as two separated boxes with no possible connections between them. This issue has
been an implicit concern in the last three years. I believe the work I have done shows, for some
restricted classes of physical systems, how deterministic and stochastic descriptions are related
to each other. I have learned how the concepts of ergodicity and mixing give a firm theoretical
basis to the intuitive idea that a complex deterministic dynamics has no fundamental difference
from a stochastic dynamics [29, 86, 23]. The choice to model a physical system with either
deterministic or stochastic equations is related to the considered time or space scale [5]. In the
present work, I have shown for some chaotic deterministic systems how the large scale evolution
can be modeled by stochastic equations, with the benefit of a drastic reduction of the system’s
complexity. Although the fascinating ergodic theory is not the primary topic of this thesis, my
work can be seen as a concrete illustration of the transition from deterministic equations to
stochastic differential equations.

Chapter 1 gives the main theorems in averaging and stochastic averaging, with intuitive
proofs of the results. The proofs are not presented in the manuscript just for sake of mathe-
matical rigor. They use a mathematical formalism that is of real practical interest for physical
problems. A mathematical theory can not be applied to concrete physical systems without a
intuitive and flexible formalism that keeps the exactitude of results all along the calculations.
For example, we own to Leibniz the remarkable formalism for differential calculus that is now
widely used in the physicists community. The stochastic method that consists in studying the
asymptotic distribution of the slow increment ∆X is not the method found in classical textbooks
on multiscale systems [33, 79], but it is very intuitive. This method has been on the ground
of physical applications found in chapters 3,4 and 5, and I believe I could not have derived all
results presented in my thesis without it. The method of the increment ∆X is also at the core of
formal derivations of large deviation theorems, and surely will gain popularity among physicists
in the near future.

The main goal of this thesis has been the description of rare events for some complex physical
systems. Building on the work of [94], my aim was to describe the rare transitions in zonal jets
dynamics. As explained in chapter 1, the dynamics of rare events first depends on the structure
of the averaged dynamics, and the existence of attractors for the averaged dynamics. I have
discovered that the averaged dynamics of zonal jets could partly be computed analytically in
the limit of small scale and weak energy injection (inertial and small scale forcing limit). A
numerical work by Eric Simonnet (private communication) has shown that rare transitions in
the flow begin with the nucleation of a new jet at the extremum of one of the westward jets.
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I have also studied the particular dynamics of westward jets and found that those jets are in
a marginally stable state: it means that equilibration of the jet occurs through a competition
between the averaged dynamics that forces the jet to grow, and an hydrodynamic instability
that stops its growth. This could be an indication why nucleation of jets preferentially occurs
at the westward extremum. A possible perspective of this work could be to look for analytical
results about instanton dynamics in the inertial and small scale forcing limit.

Large deviation theory can be seen as a very large framework to predict rare events in
complex systems independently of the underlying dynamics. A large part of the theory deals with
dynamical systems perturbed by a small random term [26]. Because of a timescale separation
between the asteroid’s chaos and planetary chaos, the gravitational influence of asteroids on
planetary dynamics can be seen as a small random perturbation for the system composed of the
eight planets. Using stochastic averaging, the work of chapter 3 gives the physical properties
of this noise. I have shown that the noise created by the asteroids is irrelevant to compute the
probability of rare events in the solar system, because it is felt on a timescale on which chaos
in planetary motion is already the dominant source of randomness. Therefore, the solar system
should not be considered as an integrable dynamical system perturbed by a small random noise,
but as a fully chaotic system in which chaos develops over many different timescales. Such a
situation is much less understood than the simpler framework of dynamical systems with small
random perturbations. The solar system is thus an example of a very complex slow-fast chaotic
system.

Large deviation theory is a suitable tool to describe rare events in slow-fast dynamical sys-
tems. In celestial mechanics, large deviation theory may thus be applied to the secular evolution
of the solar system, but it first requires the identification of a timescale separation in the dy-
namics, and a good slow variable. This task is a difficult part of the work toward the description
of rare events, and can only been done with much experience in celestial mechanics. The work
I have done in chapters 4 and 5 would not have been possible without all previous works of
[53, 65, 15, 7] who showed the existence of rare events in the solar system, and identified the
relevant slow variables for those events.

Building on these works, I have described rare and large variations of the obliquity of a Moon-
less Earth. I have discovered a new transport mechanism for chaotic Hamiltonians depending
on slow external frequencies. In the regime of large variations of the frequencies, transport is
mainly due to the displacement of chaotic mixing regions, and can be characterized by a diffusive
model of transport. This transport mechanism is generic and can be found in other Hamilto-
nian dynamics depending on slow external parameters. I have also shown that the transport
mechanism is fully equivalent to a simple diffusive model with space-dependent diffusion coef-
ficient. The theoretical computation of rare event probabilities can be done for the diffusive
model (this computation is not presented in the manuscript). Unfortunately, I have found that
the Earth is not in a parameter regime in which the diffusive model gives fully relevant results.
The numerical prediction of rare events probability for the real dynamics of a Moonless Earth
thus remains a difficult challenge.

I believe the most important achievement of my thesis is the work of part 5 about Mercury.
The puzzling secular dynamics of Mercury seems to perfectly correspond to the framework of
large deviations in slow-fast dynamical systems. I have worked in chapter 5 on a simplified model
of Mercury’s secular dynamics for which the slow variable had already been identified by [7]. For
this simplified dynamics, I have found that the fast destabilizations of Mercury’s orbit follow an
instanton phenomenology. The large deviation approach predicts the probability distribution of
Mercury’s short-term destabilizations, at least for the simplified dynamics. However, instanton
phenomenology is robust to a change in the fast dynamics. I expect the instanton phenomenol-
ogy to be valid even if the slow variable does not follow a diffusion equation, but follows instead
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a more complex Markov process with a continuous increment distribution. A promising collab-
oration with the IMCCE is going on to look for the instanton phenomenology in a more realistic
model of Mercury’s dynamics that includes all planetary mutual interactions in the inner solar
system. The BMH model predicts that Mercury’s orbit becomes unstable when the slow variable
crosses a threshold value that can be computed in terms of the current planetary orbital param-
eters. This mechanism opens wide perspectives: would the above criterion be valid for the real
secular dynamics of the solar system, this would be a major step toward the understanding of
the long-term solar system stability, and more generally toward the understanding of long-term
stability of planetary systems. It would be very interesting to relate the criterion of the slow
variable threshold with the criterion of AMD stability [62]. The criterion of the slow variable
threshold could also be used to constrain the architecture of extra-solar systems.
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Appendix A

Computation of the diffusion

coefficient

We want to give an order of magnitude of the diffusion coefficient (3.3.4) for the semi-major
axis of Mars feeling the perturbation of a large asteroid of the asteroid belt. The perturbative
function writes

G(Λ, λ− ϕ) = −1∣∣Λ2ei(λ−ϕ) − a
∣∣

where Λ is the conjugated momentum of the mean longitude λ. In the following, we will always
assume that Λ2 < a. The Fourier expansion of G has been given in the general case by [55], and
writes in our simplified model

Ĝ(k) =
1

Λ2
0

N∑

q=k

(
ΛM

Λ0

)4q−2k

f2q−k,q (A.0.1)

fn,q =
(2q)!(2n− 2q)!

22n(q!)2[(n− q)!]2

where N is a cut off to stop the Fourier expansion. In our calculations, we took N = 20.
We have the Fourier decomposition of G in the form G =

∑
k

Ĝ(k)eik(λ−ϕ). Our aim is

to evaluate the quantity E
[
∂G
∂λ (t)

∂G
∂λ (0)

]
where for simplicity we use the shortcoming G(t) =

G(Λ, λ(t)−ϕ(t)). The reader should bear in mind that λ(t) is given by the unperturbed dynamics,
because to compute the fast motions we have to “freeze” the slow variables. If we freeze Λ in
the dynamics of λ, we simply get the Keplerian motion. Therefore λ(t) = λ0 + nt. The chaotic
dynamics of the asteroid is modeled by ϕ(t) = ϕ0+ νat+ δϕ(t) where δϕ should account for the
chaotic diffusion on a time scale τϕ. We will give its expression later on. We thus have

E

[
∂G

∂λ
(t)

∂G

∂λ
(0)

]
=

∑

k,k′

kk
′

Ĝ(k)Ĝ(k′)∗E
[
e
i(kλ(t)−k′λ(0))

e
−i(kϕ(t)−k′ϕ(0))

]

=
∑

k,k′

kk
′

Ĝ(k)Ĝ(k′)∗eikt(n−νa)
...

...E

[
e
i(λ0−ϕ0)(k−k′)

]
E

[
e
−ikδϕ(t)

]
.

We have two averages to perform. The invariant measure for the initial conditions λ0 and ϕ0

is the uniform measure over the range [0, 2π]. Thus the term E

[
ei(λ0−ϕ0)(k−k′)

]
= δk−k′ . What
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is then the Esperance of e−ikδϕ ? For a general chaotic trajectory, it should be a complicated

function, decreasing with the time scale τϕ. We chose for δϕ the Brownian motion W
(

t
τϕ

)

which has a Gaussian statistics. It comes

E

[
e−ikδϕ(t)

]
=

1√
2πt/τϕ

∫
dxe−ikxe

− x2

2t/τϕ

= e
− t

2τϕ
k2

.

Finally, the expression of our correlation function is

E

[
∂G

∂λ
(t)
∂G

∂λ
(0)

]
=
∑

k

k2
∣∣∣Ĝ(k)

∣∣∣
2

e
− t

2τϕ
k2

eik(n−νa)t.

It remains to integrate this expression over time according to (3.3.4), and we obtain

D(Λ) =
∑

k

k2
∣∣∣Ĝ(k)

∣∣∣
2 1

(νa − n)2τϕ
1

(
k

2(νa−n)τϕ

)2
+ 1

. (A.0.2)

Expressions (A.0.1) and (A.0.2) allow to compute the magnitude of the diffusion coefficient and
then to estimate the diffusion time scale of the mean longitude of Mars.



Appendix B

Resolution of the diffusion equation

It has been shown in section 5.3.4 that the long-term secular dynamics of Mercury’s orbit can be
reduced to the stochastic dynamics of a Brownian particle in a bounded domain. The situation
is displayed in the right panel of Fig.(5.3.2). Within the framework of this diffusive model, the
orbital destabilization occurs when the particle exits the domain. In the present section, we
show how to derive the probability distribution function (5.3.19) of the first exit time from the
domain.

Let G (h, t) :=
∫ hsup

hcr
P (h′, t|h, 0) dh′ be the probability that the Brownian particle starting

at h is still in the domain [hcr, hsup] at time t. It can be shown that the distribution G(h, t)
satisfies the same diffusion equation as P (h′, t|h, 0) (see [33])

∂G

∂t
= D

∂2G

∂h2
. (B.0.1)

At time t = 0, the particle is inside the domain, which means that G(h, 0) = 1 for all h ∈
[hcr, hsup]. The boundary conditions (5.3.20) can be equivalently expressed with the distribution
G as

for all t > 0,

{
G(hcr, t) = 0
∂G
∂h (hsup, t) = 0

. (B.0.2)

We solve the problem (B.0.1-B.0.2) by decomposing the solution into proper modes. Let us
introduce the standard scalar product

〈f, g〉 := 2

hsup − hcr

∫ hsup

hcr

f(h)g(h)dx.

It can be checked that the family of functions

en(h) := cos

(
π

(
n+

1

2

)
h− hsup
hcr − hsup

)
with n ∈ N

form an orthonormal basis of all functions G(x, t) satisfying the boundary conditions (B.0.2).
The solution of (B.0.1-B.0.2) can thus be expressed as the Fourier series

G(h, t) =
+∞∑

n=0

gn(t)en(h), (B.0.3)
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where the coefficients gn(t) are defined as the projection of G on the orthonormal basis, that is
gn(t) := 〈G(h, t)en(h)〉. Using the Fourier decomposition (B.0.3), we find that G is solution of
(B.0.1) if and only if

gn(t) = gn(0)e
−π2(n+ 1

2 )
2 D

(hsup−hcr)2
t
.

The value gn(0) can be found with the initial condition G(h, 0) = 1. We get

gn(0) = 〈G(h, 0)en(h)〉 =
1

n+ 1
2

.

Finally, the solution G(h, t) can be expressed explicitly as

G(h, t) =

+∞∑

n=0

1

n+ 1
2

cos

(
π

(
n+

1

2

)
h− hsup
hcr − hsup

)
e
−π2(n+ 1

2 )
2 D

(hsup−hcr)2
t
.

The time derivative of the above formula gives the expression (5.3.22) for the probability distri-
bution of first exit times.



Appendix C

Explicit expression of the resonant

part H
(3)
res of the BMH Hamiltonian

FGR + F
(1)
e + g5 −1.68964

F
(3)
e −0.905766

F
(1)
i + s2 −1.54396
F

(3)
i −8.55372
Fei 45.2859

F
(2)
e5 0.0730504

F
(2)
i2 0.0421457

F
(2)
e2 0.0643625
g2 7.4559
g5 4.2575

Table C.1: Numerical value (in arcsec/yr) of the coefficients of the BMH Hamiltonian (5.2.13).
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Figure C.0.1: Explicit expressions of the coefficients F1, F2, F3, F4 and F5 in (5.3.3), given in a
fortran file.
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Figure C.0.2: Explicit expressions of the driving term ˙̃
H

(3)

res in (5.3.6), given in a fortran file.


