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Introduction

1 Résumé de la thèse

Le travail de cette thèse a été dans un premier temps motivé par la résolution du prob-
lème de Peller concernant la formule de trace de Koplienko-Neidhardt. Celui-ci est
en lien avec les perturbations du second ordre pour le calcul fonctionnel. En effet, le
problème était de déterminer, pour une fonction f ∈ C2(R) dont la dérivée seconde est
bornée, et pour deux opérateurs autoadjointsA etK sur un espace de Hilbert séparable
H tels que K ∈ S2(H) est un opérateur de Hilbert-Schmidt, si l’opérateur

f(A+K)− f(A)− d

dt

(
f(A+ tK)

)∣∣∣
t=0

(1)

appartient à l’espace S1(H) des opérateurs à trace.
Cette question a été soulevée par V. Peller dans [Pel05], où il a également conjecturé
que la réponse à cette question était négative.
Pour résoudre ce problème, il est important de comprendre tout d’abord dans quels
cas l’opérateur (1) est bien défini. Lorsque A est borné ou quand f a une dérivée
bornée, l’opérateur est bien défini et appartient à S2(H). Sinon, le sens de (1) n’est pas
clair, mis à part dans certains cas particuliers. Peller a par exemple défini dans [Pel05]
l’opérateur (1) par approximation lorsque f appartient à la classe de Besov B2

∞1(R) et
a alors montré que la question précédente était positive pour de telles fonctions. Deux-
ièmement, il est commode d’exprimer différemment (1). Il s’avère que ceci peut être
fait au moyen des ’Opérateurs intégraux triple’. La théorie des opérateurs intégraux
multiple a été initiée par Birman et Solomyak, dans une série de trois articles (voir
[BS66; BS67; BS73]). Dans les 20 dernières années, de nombreux développements ont
été obtenus par V. Peller, F. Sukochev, et leurs co-auteurs. Ces objets jouent un rôle ma-
jeur dans la théorie de la perturbation. Un opérateur intégral double est un opérateur
de la forme

ΓA,B(φ) : S2(H)→ S2(H)

associé à deux opérateurs normaux A et B surH et à une fonction borélienne φ bornée
sur le produit des spectres de A et B. Un des premiers résultats majeurs est la formule

f(A+K)− f(A) =
[
ΓA+K,A(f [1])

]
(K) (2)

où K ∈ S2(H), f est une fonction Lipschitzienne et f [1] est la différence divisée d’ordre
1 de f . Parmi les applications importantes de cette formule, nous pouvons citer l’étude
des ’fonctions Lipschitz-opérateurs’, c’est-à-dire l’espace des fonctions lipschitziennes
sur R qui ont une propriété de Lipschitz pour le calcul fonctionnel des opérateurs au-
toadjoints. L’un des résultats importants de ce sujet a été obtenu par D. Potapov et F.
Sukochev qui ont établi que toute fonction Lipschitzienne était opérateur-Lipschitz sur
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les classes de Schatten réflexives Sp, 1 < p < ∞ (voir [PS11]), où l’utilisation de (2) a
été fondamentale. Ce résultat est faux dans le p = 1 et p = ∞ et un contre-exemple a
été construit e.g. dans [Far72].
Les opérateurs intégraux triple sont des applications bilinéaires définies sur S2(H) ×
S2(H) et à valeurs dans S2(H). Avec le même type de formule, l’opérateur (1) peut être
obtenu comme un certain opérateur intégral triple. Il s’avère que les opérateurs inté-
graux double et triple peuvent être vus comme des multiplicateurs de Schur linéaires
et bilinéaires continus. En effet, lorsque l’espace de Hilbert H est de dimension finie,
l’action des opérateurs intégraux double et triple est identique à celle des multiplica-
teurs de Schur classiques, qui ont été intensément étudiés.
D’après la discussion qui précède, une idée pour résoudre le problème de Peller est de
comprendre dans quels cas un opérateur intégral triple est à valeurs dans S1(H). La
première étape est de comprendre ce phénomène dans le cas discret, c’est-à-dire dans
quels cas un multiplicateur de Schur bilinéaire est à valeurs dans S1. Il se trouve que la
norme S1 de telles applications peut être calculée à l’aide de normes de multiplicateurs
de Schur linéaires sur B(Cn). Ces objets sont bien connus et il existe une description
des multiplicateurs de Schur linéaires sur B(`2) (voir par exemple [Pis96, Théorème
5.1]). Ce lien inattendu entre le problème de Peller et les multiplicateurs de Schur a
été le point de départ pour la résolution du problème, et plus précisément, pour la
construction d’un contre-exemple.

Cette thèse s’organise de la façon suivante.
Dans le Chapitre 1, nous définissons différentes notions qui joueront un rôle im-

portant dans cette thèse, même si beaucoup d’entre elles n’apparaissent pas explicite-
ment dans l’énoncé des résultats principaux. Nous utiliserons souvent les produits
tensoriels comme des outils pour les démonstrations, et en particulier, l’identification
du dual de certains produits tensoriels de deux espaces de Banach est en général la clé
pour d’importants résultats. Comme nous l’avons déjà mentionné dans la première
partie de l’introduction, de nombreuses questions de cette thèse seront formulées avec
des classes de Schatten. Nous rappellerons leur définition et quelques propriétés de
ces espaces importants. Les deux dernières sections concerneront les espaces Lpσ qui
apparaissent comme les espaces duaux des espaces de Bochner. En particulier, la sec-
tion 1.4 concerne d’importants résultats de factorisation pour les espaces L∞σ à valeurs
dans l’espace des opérateurs factorisables par un espace de Hilbert. Ces résultats ont
été obtenus en collaboration avec C. Le Merdy et F. Sukochev et apparaissent dans
l’article [CMS17].

Dans le Chapitre 2, nous nous intéresserons aux multiplicateurs de Schur linéaires.
Le résultat principal les concernant est une caractérisation des multiplicateurs de Schur
sur B(`2) par Grothendieck. Notre but a été de généraliser ce résultat et de caractériser
les multiplicateurs de Schur sur B(`p, `q). Nous avons pu le faire dans le q ≤ p et
avons obtenu un résultat similaire à celui de Grothendieck. Comme nous l’avons ex-
pliqué précédemment, les objets apparaissant dans cette thèse sont des multiplicateurs
de Schur continus. Ainsi, nous définirons plus généralement les multiplicateurs de
Schur continus sur B(Lp, Lq). Nous verrons que pour les comprendre, il suffit de com-
prendre les multiplicateurs de Schur classiques. Nous terminerons ce chapitre avec de
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nouveaux résultats concernant les relations d’inclusion entre les espaces de multipli-
cateurs de Schur. Les résultats de cette section apparaissent dans l’article [Coi17].

Nous étudierons dans le Chapitre 3 les multiplicateurs de Schur bilinéaires, dans le
cas classique ainsi que dans le cas continu. Après avoir rappelé leur définition, notre
but sera d’étudier la bornitude dans S1 de tels opérateurs. Les résultats principaux de
cette partie sont des caractérisations des multiplicateurs de Schur bilinéaires à valeurs
dans S1 à l’aide de multiplicateurs de Schur linéaires. Ces résultats seront la première
mais également l’une des principales étapes pour comprendre et résoudre le problème
de Peller.

Le Chapitre 4 est dédié à divers résultats sur les opérateurs intégraux multiple.
Nous donnerons tout d’abord une définition de ces opérateurs par dualité, ce qui
permettra d’obtenir une définition plus générale que celles introduites auparavant.
Comme nous l’avons déjà dit, ces objets peuvent être vus comme des multiplicateurs
de Schur multilinéaires continus. Ainsi, en utilisant les résultats obtenus dans les
chapitres précédents, nous serons en mesure de caractériser les opérateurs intégraux
triple à valeurs dans l’espace des opérateurs à trace. Enfin, dans une dernière section,
nous donnerons une condition nécessaire et suffisante pour qu’un opérateur intégral
triple définisse une application complètement bornée de S∞(H) ⊗ S∞(H) muni du
produit de Haagerup à valeurs dans S∞(H). Ceci généralise au cas des opérateurs
intégraux un résultat obtenu dans [KJT09] dans le cadre des multiplicateurs de Schur
multilinéaires continus. Les résultats des sections 4.1 et 4.3 ont été obtenus en collabo-
ration avec C. Le Merdy et F. Sukochev et l’article [CMS17] a été écrit à ce sujet.

Enfin, nous résoudrons dans le Chapitre 5 le problème de Peller. Nous avons men-
tionné le cas autoadjoint mais un problème similaire peut être formulé dans le cas
unitaire. Ces deux problèmes seront résolus en utilisant les mêmes idées. Le premier
outil sera la connexion entre les problèmes de Peller et les opérateurs intégraux triple.
Pour ce faire, nous étudierons le lien entre opérateurs intégraux multiple et théorie de
la perturbation pour les opérateurs autoadjoints. En particulier, nous donnerons une
formule pour la dérivée n−ième des applications de la forme

t ∈ R 7→ f(A+ tK)− f(A)

où A et K sont des opérateurs autoadjoints avec K un opérateur de Hilbert-Schmidt.
Ce résultat est une généralisation de la formule (2) et nous obtiendrons alors une for-
mule de Taylor à l’ordre n pour les opérateurs autoadjoints. En particulier, l’opérateur
(1) apparaîtra comme un certain opérateur intégral triple. Le second outil sera le cal-
cul de la norme S1 pour un multiplicateur de Schur bilinéaire à l’aide de multiplica-
teurs de Schur linéaires ce qui nous permettra d’exploiter un contre-exemple dû à E.
B. Davies concernant le comportement de l’application valeur absolue sur les espaces
S1(Cn), n ∈ N. En utilisant des estimations de normes dans le cas fini dimension-
nel, nous construirons deux opérateurs A et K comme sommes directes d’opérateurs
de rang fini tels que l’opérateur (1) n’appartient pas à S1, où f sera une fonction bien
choisie. Les résultats de la section 5.2 ont été obtenus en collaboration avec C. Le Merdy
et A. Skripka. Les résultats des sections 5.3 et 5.4 ainsi que ceux de la sous-section 3.3.2
ont quant à eux été obtenus en collaboration avec C. Le Merdy, F. Sukochev, D. Potapov
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et A. Tomskova et les deux articles [CMPST16a; CMPST16b] ont été publiés les concer-
nant.

2 Summary of the thesis

The work in this thesis was first motivated by the resolution of Peller’s problem con-
cerning Koplienko-Neidhardt trace formulae. It is related to perturbations of second
order for functional calculus. Indeed, the problem was to determine, for a function
f ∈ C2(R) with bounded second derivative, and for two selfadjoint operators A,K act-
ing on a separable Hilbert spaceH such that K ∈ S2(H) is a Hilbert-Schmidt operator,
whether the operator

f(A+K)− f(A)− d

dt

(
f(A+ tK)

)∣∣∣
t=0

(3)

is in the space S1(H) of trace class operators.
This question was stated by V. Peller in [Pel05], where he also suggested that this ques-
tion should have a negative answer.
To solve this problem, it is first important to understand in which cases the operator in
(3) is well-defined. When A is a bounded operator or when f has a bounded deriva-
tive, the operator is well-defined and is an element of S2(H). Otherwise, the meaning
of (3) is not clear, except in certain particular cases. For instance, Peller proved in
[Pel05] that when f belongs to the Besov class B2

∞1 the operator (3) can be defined by
approximation and that in this case, the question stated above holds true. Secondly, it
is convenient to express (3) differently. It turns out that this can be done by means of
the so-called triple operator integrals. The theory of multiple operator integrals started
with Birman and Solomyak, in a series of three papers (see [BS66; BS67; BS73]). In the
last 20 years, outstanding developments have been made by V. Peller, F. Sukochev, and
their co-authors. They play a major role in perturbation theory. A double operator
integral is an operator of the form

ΓA,B(φ) : S2(H)→ S2(H)

associated to normal operators A,B onH and a Borel function φ bounded on the prod-
uct of the two spectra σ(A)× σ(B) of A and B. One of the early results is the formula

f(A+K)− f(A) =
[
ΓA+K,A(f [1])

]
(K) (4)

where K ∈ S2(H), f is a Lipschitz function and f [1] is the divided difference of first or-
der of f . Among the important applications of such formula, we can mention the study
of ’Operator-Lipschitz function’, that is, the space of Lipschitz functions on R which
have a Lipschitz property for functional calculus of selfadjoint operators. One the very
important results in this direction was obtained by D. Potapov and F. Sukochev who
established that any Lipschitz function is Lipschitz operator on the reflexive Schatten
classes Sp, 1 < p < ∞ (see [PS11]), and where the use of (4) was fundamental. This
result does not hold true in the case p = 1 and p = ∞ and a counterexample was built
in [Far72].
Triple operator integrals are bilinear mappings defined on S2(H) × S2(H) and valued
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in S2(H). With the same kind of formula, the operator (3) can be obtained as a certain
triple operator integral. It turns out that double and triple operator integrals can be
understood as continuous linear and bilinear Schur multipliers, respectively. Indeed,
for a finite dimensional Hilbert spaceH, double and triple operator integrals are noth-
ing but the classical linear and bilinear Schur multipliers which have been intensively
studied.
According to the discussion above, an idea to solve Peller’s problem is to determine
in which case a triple operator integral is actually valued in S1(H). The first step is to
understand that in the finite dimensional case, that is, in which case a bilinear Schur
multiplier is valued in S1. It turns out that the S1-norm of such mappings can be com-
puted thanks the the norms of a family of linear Schur multipliers on B(Cn). These
objects are well-known and there is description of linear Schur multipliers on B(`2)
(see e.g. [Pis96, Theorem 5.1]). This unexpected connection between Peller’s problem
and linear Schur multiplier was the starting point for the resolution of the problem,
and more precisely, for the construction of a counter-example.

This thesis is organized as follow.
In Chapter 1, we define several notions that will play an important role in this the-

sis, even if many of them do not appear explicitly in the statements of the main results.
We will often use tensor products as a tool, and in particular, the identification of the
dual of certain tensor products of two Banach spaces is usually the key for many im-
portant results. As we already mentionned them in the first part of this introduction,
many questions in this thesis will be stated with Schatten classes. We will recall their
definition and several properties of those important spaces. The last two sections will
deal with the Lpσ-spaces which appear as the dual of Bochner spaces. In particular,
we prove in Section 1.4 important factorization properties for L∞σ -spaces valued in the
space of operators that can be factorized by a Hilbert space. Those results have been
obtained in collaboration with C. Le Merdy and F. Sukochev and appear in [CMS17].

In Chapter 2, we will be interested in linear Schur multipliers. The main result con-
cerning them is a characterization of Schur multipliers on B(`2) by Grothendieck. Our
aim was to generalize this result in order to obtain a characterization of Schur multipli-
ers on B(`p, `q). It turns out that we could manage the case q ≤ p and obtain a statement
similar to the one of Grothendieck. As we explained before, the objects appearing in
this thesis are continuous Schur multipliers. Therefore, we will define more generally
continuous Schur multipliers on B(Lp, Lq). We will see that to understand them, it
is enough to understand classical Schur multipliers. We will finish this chapter with
several new results about the inclusions between the spaces of Schur multipliers. The
article [Coi17] has been written concerning the results of this chapter.

In Chapter 3, we study bilinear Schur multipliers, in the classical and in the con-
tinuous case. After recalling their definitions, our concern will be the S1-boundedness
of such operators. The main results are characterizations of bilinear Schur multipliers
valued in S1 by the use of linear Schur multipliers. Those results will be the first and
the key step to understand and solve Peller’s problem.
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Chapter 4 is dedicated to various results about multilinear operator integrals. We
first give a definition of those operators by duality, which allows us to have a more
general definition than the ones introduced before. As we already said, those objects
can be understood as a kind of continuous multilinear Schur multipliers. Thus, us-
ing our preceding results, we will be able to characterize triple operator integrals that
are valued in the trace class operators. In a last section we will give a necessary and
sufficient condition for a triple operator integral to define a completely bounded map
from S∞(H) ⊗ S∞(H) equipped with the Haagerup tensor product into S∞(H). This
generalizes a result obtained in [KJT09] in the setting of continuous multilinear Schur
multipliers. The results of Sections 4.1 and 4.3 have been obtained in collaboration with
C. Le Merdy and F. Sukochev and the paper [CMS17] has been written about them.

Finally, Chapter 5 is the resolution of Peller’s problem. We mentionned the selfad-
joint case but a similar problem can be stated in the unitary case. We will solve both
problems using the same ideas. The first tool will be the connection between Peller’s
problems and triple operator integrals. To do so, we will study the connection between
multilinear operator integrals and perturbation theory. In particular, we give a formula
for the n− th derivative of a map of the form

t ∈ R 7→ f(A+ tK)− f(A)

whereA andK are selfadjoint operators withK a Hilbert-Schmidt operator. This result
will generalize Formula (4) and we will obtain a Taylor formula at the order n for self-
adjoint operators. In particular, the operator (3) will appear as a certain triple operator
integral. The second tool will be the computation of the S1-norm of a bilinear Schur
multiplier by means of linear Schur multipliers which will allow us to use a counter-
example of E. B. Davies concerning the behavior of the absolute value mapping on the
spaces S1(Cn), n ∈ N. By using norm estimates in the finite-dimensional case, we will
construct two operators A and K as a direct sum of finite rank operators such that the
operator (3) does not belong to S1, where f is a well chosen function. The results of
Section 5.2 have been obtained in collaboration with C. Le Merdy A. Skripka. The re-
sults of Sections 5.3 and 5.4 as well as those of Subsection 3.3.2 have been obtained in
collaboration with C. Le Merdy, D. Potapov, F. Sukochev and A. Tomskova and two
papers [CMPST16a; CMPST16b] have been published concerning them.

3 Notations

We give here a few notations that will be used throughout this thesis. The notations
that are used later but not mentioned here are either standard or they will be given
when needed.

• T = {z ∈ C : |z| = 1}will denote the unit circle of the complex plane.

• Let 1 ≤ p < +∞. We define

`p =

{
x = (xn)+∞

n=1 :
∞∑
n=1

|xn|p <∞

}
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equipped with the norm ‖x‖p = (
∑∞

n=1 |xn|p)
1/p

.

• If p = +∞, let

`∞ =

{
x = (xn)+∞

n=1 : sup
n
|xn| <∞

}
equipped with the norm ‖x‖∞ = supn |xn|.

• If n ∈ N, we denote by `np the n−dimensional versions of the spaces introduced
before.

• For a Hilbert spaceH, letH denote its conjugate space.

• The Hilbertian direct sum of any sequence (Hn)n≥1 of Hilbert space will be de-
noted by

H =
∞⊕
n=1

Hn.

In this case, if for all n ≥ 1,An is a bounded operator acting onHn, we will denote
by A =

⊕∞
n=1 An the operator defined on the domain

D(A) =
{
{hn}∞n=1 ∈ H :

∞∑
n=1

‖An(hn)‖2 <∞
}
,

by setting A(h) = {An(hn)}∞n=1 for any h = {hn}∞n=1 in D(A).

For two Hilbert spacesH and K, we will denote byH
2
⊕K their Hilbertian direct

sum.

• Whenever Σ is a set and V ⊂ Σ is a subset we let χV : Σ → {0, 1} denote the
characteristic function of V .

Let X and Y be two Banach spaces.

• For 1 ≤ p ≤ ∞ and a measure space (Ω, µ) we denote by Lp(Ω;X) the Bochner
space of p− integrable (classes) of functions f : Ω→ X .
When X = C, we simply write Lp(Ω).

• B(X, Y ) is the Banach space of bounded linear operators T : X → Y equipped
with the operator norm ‖.‖ defined by

‖T‖ = sup
x∈X,‖x‖≤1

‖Tx‖.

When Y = C, we write X∗ for the dual space of X .

• Let Z be a third Banach space. We let B2(X × Y, Z) be the Banach space of all
bounded bilinear operators T : X × Y → Z, equipped with

‖T‖ = sup
{
‖T (x, y)‖ : x ∈ X, y ∈ Y, ‖x‖ ≤ 1, ‖y‖ ≤ 1

}
.
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• We write X1 ⊗ · · · ⊗Xn for the tensor product of n Banach spaces X1, . . . , Xn.
When Xi ⊂ L∞(Ωi) for some measure spaces (Ωi, µi), we will often identify an
element f = f1 ⊗ · · · ⊗ fn ∈ X1 ⊗ · · · ⊗Xn with an element of L∞(Ω1 × . . .× Ωn)
as follows:

∀t = (t1, . . . , tn) ∈ Ω1 × . . .× Ωn, f(t) = f1(t1) . . . fn(tn).

Let E ⊂ B(H) and F ⊂ B(K) be two operator spaces.

• For n,m ∈ N∗, let Mn,m(E) be the space of n ×m-matrices with entries in E. For
r ∈ N∗, denote by `r2(H) the space

⊕r
k=1H. We have an identification

Mn,m(B(H)) ' B(`m2 (H), `n2 (H)).

Hence, we may equip Mn,m(E) with the norm induced by the inclusion

Mn,m(E) ⊂Mn,m(B(H)).

• Let u : E → F be a linear map. For n ∈ N∗, write Mn,n(E) := Mn(E). We consider
the mapping un : Mn(E)→Mn(F ) defined, for x = [eij]1≤i,j≤n ∈Mn(E) by

un(x) = [u(eij)]1≤i,j≤n.

We say that u is completely bounded if

‖u‖cb := sup
n
‖un‖ <∞,

and we denote by CB(E,F ) the Banach space of completely bounded maps from
E into F equipped with the c.b. norm.
If for any n, un is contractive (respectively positive, resp. an isometry), we say
that u is completely contractive (resp. completely positive, resp. a complete isom-
etry).

• If H is a Hilbert space, we denote by Hc = B(C,H) its column structure and by
Hr = B(H,C) its row structure. We refer e.g. to [ER00, Section 3.4] for further
informations.

• In Chapter 4, the L1−spaces will be equipped with their maximal operator space
structure (Max) for which we refer to [Pis03, Chapter 3].
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Chapter 1

Preliminaries

——————————————————————–

In this first chapter, we give some preliminary results that we will use all along the
thesis. First, we will give some background on the norms of tensor products. We will
define several tensor norms and identify, for two Banach spaces X and Y , the dual of
X ⊗ Y equipped with those norms. Then, we will give a few properties of Schatten
classes. In particular, the spaces of Hilbert-Schmidt operators and trace class opera-
tors will play fundamental roles, as they appear in many important definitions and
results presented here. In a third section, we will define the Lpσ-spaces, which are a
dual version of Bochner spaces. Finally, the last section of this chapter is of indepen-
dent interest: it describes the elements of Lpσ-spaces valued in certain tensor products.
This section will be fundamental to give a precise and concrete meaning for important
results in Chapters 3 and 4.

1.1 Tensor products

We give a brief summary of tensor product formulas to be used in the sequel.

1.1.1 Projective and injective tensor product

Let E and F be Banach spaces.

• The projective norm:

If z ∈ E ⊗ F , the projective tensor norm of z is defined by

‖z‖∧ := inf
{∑

‖xi‖‖yi‖
}
,

where the infimum runs over all finite families (xi)i in E and (yi)i in F such that

z =
∑
i

xi ⊗ yi.

The completion E
∧
⊗ F of (E ⊗ F, ‖ ‖∧) is called the projective tensor product of E and

F .
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Let G be a Banach space. To any T ∈ B2(E × F,G), one can associate a linear map
T̃ : E ⊗ F → G by the formula

T̃ (x⊗ y) = T (x, y), x ∈ E, y ∈ F.

Then T̃ is bounded on (E ⊗ F, ‖ ‖∧), with ‖T̃‖ = ‖T‖, and hence the mapping T 7→ T̃
gives rise to an isometric identification

B2(E × F,G) = B(E
∧
⊗ F,G). (1.1)

In the caseG = C, this implies that the mapping taking any functional ω : E⊗F → C
to the operator u : E → F ∗ defined by 〈u(x), y〉 = ω(x⊗y) for any x ∈ E, y ∈ F , induces
an isometric identification

(E
∧
⊗ F )∗ = B(E,F ∗). (1.2)

We refer to [DU79, Chapter 8, Theorem 1 and Corollary 2] for these classical facts.
Let (Ω, µ) be a σ-finite measure space and let L1(Ω;F ) denote the Bochner space

of integrable functions from Ω into F . By [DU79, Chapter 8, Example 10], the natural
embedding L1(Ω)⊗ F ⊂ L1(Ω;F ) extends to an isometric isomorphism

L1(Ω;F ) = L1(Ω)
∧
⊗ F. (1.3)

By (1.2), this implies
L1(Ω;F )∗ = B(L1(Ω), F ∗). (1.4)

Assume now that Y = L1(Ω′) where (Ω′, µ′) is a σ-finite measure space. Then, an
application of Fubini’s theorem gives

L1(Ω, L1(Ω′)) = L1(Ω× Ω′).

Using equality (1.4), we obtain an isometric w∗-homeomorphic identification

B(L1(Ω), L∞(Ω′)) = L∞(Ω× Ω′), (1.5)

and the correspondance is given by

L∞(Ω× Ω′) −→ B(L1(Ω), L∞(Ω′)).

ψ 7−→
[
f ∈ L1(Ω) 7→

∫
Ω

f(t)ψ(t, ·)dµ(t)

]
For ψ ∈ L∞(Ω× Ω′), denote by uψ the corresponding element of B(L1(Ω), L∞(Ω′)).

• The injective norm:

If z =
∑

i xi ⊗ yi ∈ X ⊗ Y , x∗ ∈ X∗ and y∗ ∈ Y ∗, we write

〈z, x∗ ⊗ y∗〉 =
∑
i

x∗(xi)y
∗(yi).
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Then, the injective tensor norm of z ∈ X ⊗ Y is given by

‖z‖∨ = sup
‖x∗‖≤1,‖y∗‖≤1

| 〈z, x∗ ⊗ y∗〉 |.

The completionX
∨
⊗Y of (X⊗Y, ‖.‖∨) is called the injective tensor product ofX and Y .

In this thesis, we will often identify X∗ ⊗ Y with the finite rank operators from X
into Y as follow. If u =

∑
i x
∗
i ⊗ yi ∈ X∗ ⊗ Y , we define ũ : X → Y by

ũ(x) =
∑
i

x∗i (x)yi,∀x ∈ X. (1.6)

Then, it is easy to check that ‖u‖∨ = ‖ũ‖B(X,Y ).
Moreover, if Y has the approximation property (see e.g. [DFS08] for the definition),

[DFS08, Theorem 1.4.21] gives the isometric identification

X∗
∨
⊗ Y = K(X, Y )

where K(X, Y ) denotes the space of compact operators from X into Y .
Let (Ω1,F1, µ1) and (Ω2,F2, µ2) be two σ-finite measure spaces. Let 1 ≤ p < ∞ and

1 ≤ q ≤ ∞. Then Lq(Ω2) has the approximation property so that we have

Lp
′
(Ω1)

∨
⊗ Lq(Ω2) = K(Lp(Ω1), Lq(Ω2)). (1.7)

Finally, if we assume that 1 < p, q < +∞, then by [DFS03, Theorem 2.5] and (1.2),

(Lp
′
(Ω1)

∨
⊗ Lq(Ω2))∗∗ = (Lp(Ω1)

∧
⊗ Lq′(Ω2))∗ = B(Lp(Ω1), Lq(Ω2)). (1.8)

1.1.2 Lapresté norms

Let s ∈ [1,∞]. If x1, x2, . . . , xn ∈ X , we define

ws(xi, X) := sup
x∗∈X∗,‖x∗‖≤1

(
n∑
i=1

| 〈x∗, xi〉 |s
)1/s

.

Let p, q ∈ [1,∞] with
1

p
+

1

q
≥ 1 and take r ∈ [1,∞] such that

1

r
=

1

p
+

1

q
− 1.

Denote by p′ and q′ the conjugate of p and q. For z ∈ X ⊗ Y , we define

αp,q(z) = inf

{
‖(λi)i‖rwq′(xi, X)wp′(yi, Y ) | z =

n∑
i=1

λixi ⊗ yi

}
.



12 Chapter 1. Preliminaries

Then αp,q is a norm onX⊗Y and we denote byX⊗αp,q Y its completion (see e.g. [DF93,
Proposition 12.5]).

1.1.3 Haagerup tensor product

Let E ⊂ B(H) and F ⊂ B(K) be two operators spaces. Let n ∈ N∗. For r ∈ N∗ we define
the matrix inner product e � f ∈ Mn(E ⊗ F ) of two elements e = [eij] ∈ Mn,r(E) and
f = [fij] ∈Mr,n(F ) by

e� f =

[∑
k

eik ⊗ fkj

]
1≤i,j≤n

.

We define, for u ∈Mn(E ⊗ F ),

‖u‖h = inf {‖e‖‖f‖}

where the infimum runs over all r ∈ N∗, e = [eij] ∈ Mn,r(E), f = [fij] ∈ Mr,n(F ) such
that u = e� f . By [ER00, Lemma 9.1.1], such factorization of u exists.

Note that for x ∈ E ⊗ F we have

‖x‖h = inf


∥∥∥∥∥∑

i

aia
∗
i

∥∥∥∥∥
1/2 ∥∥∥∥∥∑

i

b∗i bi

∥∥∥∥∥
1/2

, x =
∑
i

ai ⊗ bi

 .

Then ‖.‖h satisfies the axioms of Ruan’s theorem (see e.g. [Pis03, Section 2.2]),

hence, after completion, we obtain an operator space denoted by E
h
⊗ F .

A first property of the Haagerup tensor product is its associativity. Indeed, if G is
another operator space, we have, by [ER00, Proposition 9.2.7], a complete isometry

(E
h
⊗ F )

h
⊗G = E

h
⊗ (F

h
⊗G).

See also [Pis03, Chapter 5] for a definition of E1

h
⊗ · · ·

h
⊗ EN for N operator spaces

E1, . . . , EN .

We give now a few properties of the Haagerup tensor product that we will use in
Chapter 4.

Theorem 1.1. [ER00, Theorem 9.4.3] Let E1 and E2 be operator spaces and let H0 and H2 be
Hilbert spaces. A linear mapping

u : E1

h
⊗ E2 → B(H2, H0)

is completely bounded if and only if there exist a Hilbert space H1 and completely bounded
mappings φi : Ei → B(Hi, Hi−1) (i = 1, 2) such that

u(x1 ⊗ x2) = φ1(x1)φ2(x2).
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In this case we can choose φi such that

‖u‖cb = ‖φ1‖cb‖φ2‖cb.

Remark 1.2. When H0 = H2 = C we can reformulate as follows: a linear functional u :

E1

h
⊗E2 → C is bounded (and therefore completely bounded) if and only if there exist a Hilbert

space H , α : E1 → (Hc)
∗ linear and β : E2 → Hc antilinear, α and β completely bounded such

that
u(x1, x2) = 〈α(x1), β(x2)〉 .

Recall the definition of a quotient map.

Definition 1.3. Let X and Y be Banach spaces. A map s : X → Y is a quotient map if s
is surjective and for all y ∈ Y with ‖y‖ < 1, there exists x ∈ X such that ‖x‖ < 1 and
s(x) = y. This is equivalent to the fact that the injective map ŝ : X/ ker(s)→ Y induced by s
is a surjective isometry.

If E1 ⊂ E2 are operator spaces, we equip E2/E1 with the quotient operator space
structure (see e.g. [Pis03, Section 2.4]). When E and F are operator spaces, a quotient
map u : E → F is said to be a complete metric surjection if the associated mapping
û : E/ ker(u)→ F is a completely isometric isomorphism.

Proposition 1.4. Let E1, E2, F1, F2 be operator spaces.

(i) If qi : Ei → Fi is completely bounded, then

q1 ⊗ q2 : E1 ⊗ E2 → F1

h
⊗ F2

defined by (q1 ⊗ q2)(e1 ⊗ e2) = q1(e1)⊗ q2(e2) extends to a completely bounded map

q1 ⊗ q2 : E1

h
⊗ E2 → F1

h
⊗ F2.

(ii) If Ei ⊂ Fi completely isometrically, then E1

h
⊗ E2 ⊂ F1

h
⊗ F2 completely isometrically.

(iii) If qi : Ei → Fi is a complete metric surjection, then q1 ⊗ q2 : E1

h
⊗E2 → F1

h
⊗ F2 is also

one.

The second property is called the injectivity and the third one the projectivity of the Haagerup
tensor product.

Corollary 1.5. Let X and Y be operator spaces and let E ⊂ X,F ⊂ Y be subspaces. Let
p : X → X/E and q : Y → Y/F be the canonical mappings. They induce a mapping

p⊗ q : X
h
⊗ Y → X/E

h
⊗ Y/F.

Then
ker(p⊗ q) = E ⊗ Y +X ⊗ F .
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Proof. Write N = E ⊗ Y +X ⊗ F . First note that we easily obtain the first inclusion

N ⊂ ker(p⊗ q).

Therefore, to show the result, it is enough to show that

N⊥ ⊂ ker(p⊗ q)⊥.

Let σ : X
h
⊗ Y → C be such that σ|N = 0. By Remark (1.2), there exist a Hilbert space

H , α : X → (Hc)
∗ linear and β : Y → Hc antilinear, α and β completely bounded such

that
σ(x, y) = 〈α(x), β(y)〉 , x ∈ X, y ∈ Y.

Let K = α(X) and denote by PK the orthogonal projection onto K. Then we have, for
any x and y,

σ(x, y) = 〈PKα(x), β(y)〉 = 〈PKα(x), PKβ(y)〉 .

Thus, by changing α into PKα and β into PKβ, we can assume that α has a dense
range. Similarly, setting L = β(Y ) and considering PL, we may assume that β has a
dense range.

By assumption, for any f ∈ F and any x ∈ X , we have

0 = σ(x, f) = 〈α(x), β(f)〉 .

This implies that β|F = 0. Similarly, we show that α|E = 0. Thus, we can consider

α̂ : X/E → (Hc)
∗ and β̂ : Y/F → Hc

such that α = α̂ ◦ p and β = β̂ ◦ q and where X/E and Y/F are equipped with their

quotient structure. This allows to define σ̂ : X/E
h
⊗ Y/F → C by

σ̂(s, t) =
〈
α̂(s), β̂(t)

〉
.

Then σ = σ̂ ◦ (p⊗ q), so that σ ∈ ker(p⊗ q)⊥.

Proposition 1.6. [ER00, Theorem 9.3.3] LetE be an operator space and letH andK be Hilbert
spaces. For any T ∈ CB(E,B(H,K)) we define a mapping

σT : K∗ ⊗ E ⊗H → C

by setting
σT (k∗ ⊗ e⊗ h) = 〈T (e)h, k〉 .

Then, the mapping T 7→ σT induces a complete isometry

CB(E,B(H,K)) =

(
(Kc)∗

h
⊗ E

h
⊗Hc

)∗
.
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1.1.4 Dual norm

LetM ⊂ X andN ⊂ Y be finite dimensional subspaces (in short, f.d.s). If u =
∑n

i=1 xi⊗
yi ∈M ⊗N and v =

∑m
j=1 x

∗
j ⊗ y∗j ∈M∗ ⊗N∗ we set

〈v, u〉 =
∑
i,j

〈
x∗j , xi

〉 〈
y∗j , yi

〉
.

Let α be a tensor norm on tensor products of finite dimensional spaces. We define, for
z ∈M ⊗N ,

α′(z,M,N) = sup {| 〈v, u〉 | | v ∈M∗ ⊗N∗, α(v) ≤ 1} .

Now, for z ∈ X ⊗ Y , we set

α′(z,X, Y ) = inf {α′(z,M,N) |M ⊂ X,N ⊂ Y f.d.s., z ∈M ⊗N} .

α′ defines a tensor norm on X ⊗ Y , called the dual norm of α.
In the sequel, we will write α′(z) instead of α′(z,X, Y ) for the norm of an element

z ∈ X ⊗ Y when there is no possible confusion.

1.1.5 (p, q)−Factorable operators.

If T ∈ B(X, Y ∗) and ξ =
∑

i xi ⊗ yi ∈ X ⊗ Y , then in accordance with (1.2) we set

〈T, ξ〉 =
∑
i

〈T (xi), yi〉 .

Definition 1.7. Let 1 ≤ p, q ≤ ∞ such that
1

p
+

1

q
≥ 1. Let T ∈ B(X, Y ∗). We say that

T ∈ Lp,q(X, Y ∗) if there exists a constant C ≥ 0 such that

∀ξ ∈ X ⊗ Y, | 〈T, ξ〉 | ≤ Cα′p,q(ξ). (1.9)

In this case, we write Lp,q(T ) = inf {C | C satisfying (1.9)} .
Then (Lp,q(X, Y ∗), Lp,q) is a Banach space, called the space of (p, q)−Factorable operators.

For a general definition of the spaces Lp,q(X, Y ) (including the case when the range is
not a dual space), see [DF93, Chapter 17].

Since Y ∗ is 1-complemented in its bidual, [DF93, Theorem 18.11] gives the following
result.

Theorem 1.8. Let 1 ≤ p, q ≤ ∞ such that
1

p
+

1

q
≥ 1. Let T ∈ B(X, Y ∗). The following two

statements are equivalent :

(i) T ∈ Lp,q(X, Y ∗).

(ii) There are a measure space (Ω, µ) (a probability space when
1

p
+

1

q
> 1) and operators

R ∈ B(X,Lq
′
(µ)) and S ∈ B(Lp(µ), Y ∗) such that T = S ◦ I ◦R
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X
T //

R
��

Y ∗OO

S

Lq
′
(µ) �
�

I
// Lp(µ)

where I : Lq
′
(µ)→ Lp(µ) is the inclusion mapping (well defined because q′ ≥ p).

In this case, Lp,q(T ) = inf ‖S‖‖R‖ over all such factorizations.

Remark 1.9. Here we consider the case when
1

p
+

1

q
= 1. Denote by p′ the conjugate exponent

of p. We have T ∈ Lp,p′(X, Y ∗) if and only if there are a measure space (Ω, µ), operators
R ∈ B(X,Lp(µ)) and S ∈ B(Lp(µ), Y ∗) such that T = SR

X T //

R
��

Y ∗

Lp(µ)

S

CC

We usually write Γp(X, Y
∗) instead of Lp,p′(X, Y ∗) and the norm of an element T ∈ Γp(X, Y

∗)
is denoted by γp(T ). Such operators are called p−factorable. It follows from the very definition
of (p, q)−Factorable operators that Γp(X, Y

∗) is a dual space whose predual is X ⊗αp,p′ Y .

If X and Y are finite dimensional, it follows from the very definition of the dual
norm that

X ⊗α′p,q Y = (X∗ ⊗αp,q Y ∗)∗.

The next theorem describes, for any Banach spaces E and F , the elements of the space
(E ⊗αp,q F )∗.

Theorem 1.10. [DF93, Theorem 19.2] Let E and F be Banach spaces. Let p, q ∈ [1,∞] with
1

p
+

1

q
≥ 1 andK ⊂ BE∗ and L ⊂ BF ∗ weak−∗-compact norming sets for E and F, respectively.

For φ : E ⊗ F → C the following two statements are equivalent:

(i) φ ∈ (E ⊗αp,q F )∗.

(ii) There are a constant A ≥ 0 and probability measures µ on K and ν on L such that for all
x ∈ E and y ∈ F ,

| 〈φ, x⊗ y〉 | ≤ A

(∫
K

| 〈x∗, x〉 |q′dµ(x∗)

)1/q′ (∫
L

| 〈y∗, y〉 |p′dµ(y∗)

)1/p′

(1.10)

(if the exponent is∞, we replace the integral by the norm).

In this case, ‖φ‖(E⊗αp,qF )∗ = inf {A | A as in (ii)} .

This theorem will allow us to describe the predual of Lp,q(`n1 , `m∞), n,m ∈ N. Let us
apply the previous theorem with E = `n∞ and F = `m∞. Take T ∈ `n1 ⊗α′p,q `m1 = (`n∞ ⊗αp,q
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`m∞)∗ and let

T =
n∑
i=1

m∑
j=1

T (i, j)ei ⊗ ej

be a representation of T . In the previous theorem, we can take K = {1, 2, . . . , n} and
L = {1, 2, . . . ,m}. In this case, a probability measure µ on K is nothing but a sequence
µ = (µ1, . . . , µn) where, for all i, µi := µ({i}) ≥ 0 and

∑
i µi = 1. Similarly, ν =

(ν1, . . . , νm) where, for all i, νi ≥ 0 and
∑

i νi = 1. In this case, the inequality (1.10)
means that for all sequences of complex numbers x = (xi)

n
i=1, y = (yj)

m
i=j ,∣∣∣∣∣

n∑
i=1

m∑
j=1

T (i, j)xiyj

∣∣∣∣∣ ≤ A

(
n∑
k=1

|xk|q
′
µk

)1/q′ ( m∑
k=1

|yk|p
′
νk

)1/p′

.

Set αk = xkµ
1/q′

k , βk = ykν
1/p′

k and define, for 1 ≤ i ≤ n, 1 ≤ j ≤ m, c(i, j) such
that T (i, j) = c(i, j)µ

1/q′

i ν
1/p′

j (we can assume µi > 0 and νj > 0). Then, the previous
inequality becomes ∣∣∣∣∣

n∑
i=1

m∑
j=1

c(i, j)βjαi

∣∣∣∣∣ ≤ A‖α‖`n
q′
‖β‖`m

p′
.

This means that the operator c : `nq′ → `mp whose matrix is [c(i, j)]1≤j≤m,1≤i≤n has a
norm smaller than A. Moreover, if we see T as a mapping from `n∞ into `m1 the relation
between T and c means that T admits the following factorization

`n∞
T //

dµ

��

`m1OO
dν

`nq′ c
// `mp

where dµ and dν are the operators of multiplication by µ = (µ
1/q′

1 , . . . , µ
1/q′
n ) and ν =

(ν
1/p′

1 , . . . , ν
1/p′
m ). Those operators have norm 1.

Therefore, it is easy to check that

‖T‖(`n∞⊗αp,q `m∞)∗ = inf {‖c‖ | T = dν ◦ c ◦ dµ} . (1.11)

The elements of (`n∞ ⊗αp,q `m∞)∗ are called (q′, p′)−dominated operators. For more infor-
mations about this space in the infinite dimensional case (it is the predual of Lp,q), see
for instance [DF93, Chapter 19].

By (1.11) and the fact that Lp,q(`n1 , `n∞) = (`n1 ⊗α′p,q `m1 )∗, we get the following result.

Proposition 1.11. Let v = [vij] : `n1 → `m∞. Then

Lp,q(v) = sup |Tr(vu)|
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where the supremum runs over all u : `m∞ → `n1 admitting the factorization

`m∞
u //

dµ

��

`n1OO
dν

`mp′ c
// `nq

with ‖dµ‖ ≤ 1, ‖dν‖ ≤ 1 and ‖c‖ ≤ 1.
Equivalently,

Lp,q(v) = sup

{∣∣∣∣∣
m∑
i=1

n∑
j=1

vijcjiµiνj

∣∣∣∣∣ | ‖c : `mp′ → `nq ‖ ≤ 1, ‖µ‖`m
p′
≤ 1, ‖ν‖`n

q′
≤ 1

}
.

1.2 Schatten classes

1.2.1 Definition and duality

Let H,K be Hilbert spaces and let tr be the trace on B(K). We let, for 1 ≤ p <
+∞,Sp(K,H) denote the Schatten classes class of order p equipped with the norm ‖.‖p
defined for an operator T : K → H by

‖T‖p = tr(|T |p)1/p,

where |T | = (T ∗T )
1
2 . We will also denote by S∞(K,H) the space of compact operators

from K intoH.
We recall the duality theorem for Schatten classes.

Theorem 1.12. Let 1 < p < +∞ and let q to be the conjugate exponent of p. Then

Sq(H,K) −→ Sp(K,H)∗

T 7−→ tr(T.)
and B(H,K) −→ S1(K,H)∗

T 7−→ tr(T.)

are isometric isomorphisms.

For a proof of this theorem and several properties of Schatten classes, see for in-
stance [Zhu90].

We will mainly work with S1(K,H), S2(K,H) and S∞(K,H). Note that S1(K,H),
the trace class operators, is the smallest space among all Schatten classes. This comes
from the fact that, for all 1 ≤ p1 ≤ p2 < +∞,

‖.‖p2 ≤ ‖.‖p1 .

For any h1, h2 in H, we may identify h1 ⊗ h2 with the operator h 7→ 〈h, h1〉h2 from H
intoH. This yields an identification ofH⊗Hwith the space of finite rank operators on
H, and this identification extends to an isometric isomorphism

H⊗̂H = S1(H), (1.12)
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see e.g. [Pal01, p. 837].

Using operator space theory and the Haagerup tensor product introduced in Sub-
section 1.1.3, we have, by [ER00, Proposition 9.3.4], a complete isometry

(Kc)∗
h
⊗Hc = S1(K,H). (1.13)

Similarly, we have a complete isometry

Hc

h
⊗ (Kc)∗ = S∞(K,H). (1.14)

Note that S2(K,H) is a Hilbert space, for the inner product

〈S, T 〉 := tr(ST ∗),

and elements of S2(K,H) are called Hilbert-Schmidt operators.

Remark 1.13. Let (Ω1, µ1) and (Ω2, µ2) be two σ-finite measure spaces. If J ∈ L2(Ω1 × Ω2),
the operator

XJ : L2(Ω1) −→ L2(Ω2)

r 7−→
∫

Ω1

J(t, .)r(t) dµ1(t)

(1.15)

is a Hilbert-Schmidt operator and ‖XJ‖2 = ‖J‖2. Moreover, any element of S2(L2(Ω1), L2(Ω2))
has this form (see e.g. [Woj91]). We summarize these facts by writing an isometric identifica-
tion

L2(Ω1 × Ω2) = S2(L2(Ω1), L2(Ω2)). (1.16)

In this thesis, we will often work with the finite dimensional versions of the Hilbert-
Schmidt and the trace class operators. For n ≥ 2, denote by S1

n the space of n × n
matrices equipped with the trace norm and by S2

n the space of n×n matrices equipped
with the Hilbert-Schmidt norm.

1.2.2 Tensor products of Hilbert space operators and trace duality

LetH,K be Hilbert spaces.
We may consider

B(H,K) ⊂ B(H
2
⊕K) (1.17)

by identifying any S ∈ B(H,K) with the matrix
(

0 0
S 0

)
. This is an isometric inclusion.

Then for any von Neumann algebraM, we let

M⊗B(H,K) (1.18)

be the w∗-closure ofM⊗B(H,K) in the von Neumann algebraM⊗B(H
2
⊕K). Likewise

for any two other Hilbert spaces H′ and K′ we let B(H′,K′)⊗B(H,K) denote the w∗-

closure of B(H′,K′)⊗ B(H,K) in the von Neumann algebra B(H′
2
⊕K′)⊗B(H

2
⊕K).
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LetH′
2
⊗H denote the Hilbertian tensor product ofH′ andH. As is well-known, the

natural embedding B(H′,K′) ⊗ B(H,K) ⊂ B(H′
2
⊗ H,K′

2
⊗ K) extends to an isometric

identification
B(H′,K′)⊗B(H,K) = B(H′

2
⊗H,K′

2
⊗K). (1.19)

For any T ∈ S1(K,H) and T ′ ∈ S1(K′,H′), the operator T ′ ⊗ T belongs to the

space S1(K′
2
⊗K,H′

2
⊗H). This yields an embedding of the tensor product S1(K′,H′)⊗

S1(K,H) into S1(K′
2
⊗ K,H′

2
⊗ H). Let γ denote the norm on S1(K′,H′) ⊗ S1(K,H)

induced by this embedding. Namely for any finite families (Tj)j in S1(K,H) and (T ′j)j

in S1(K′,H′), γ
(∑

j T
′
j ⊗ Tj

)
is the trace norm of the operator K′

2
⊗ K → H′

2
⊗H taking∑

i x
′
i ⊗ xi to the sum

∑
i,j T

′
j(x
′
i)⊗ Tj(xi) for all finite families (xi)i in K and (x′i)i in K′.

Next we let S1(K′,H′)
γ
⊗S1(K,H) denote the completion of the resulting normed space(

S1(K′,H′)⊗S1(K,H), γ
)
. Since finite rank operators are dense in trace class operators,

the algebraic tensor product S1(K′,H′)⊗S1(K,H) is dense in S1(K′
2
⊗K,H′

2
⊗H). Hence

we actually have an isometric identification

S1(K′,H′)
γ
⊗ S1(K,H) = S1(K′

2
⊗K,H′

2
⊗H).

Then trace duality given in Theorem 1.12 yields an identification
(
S1(K′,H′)

γ
⊗S1(K,H)

)∗
=

B(H′
2
⊗H,K′

2
⊗K) and hence, by (1.19), we have(

S1(K′,H′)
γ
⊗ S1(K,H)

)∗
= B(H′,K′)⊗B(H,K). (1.20)

For any η ∈ K and ξ ∈ H, we let η⊗ξ : K → H denote the operator taking any z ∈ K
to 〈z, η〉ξ. Then K ⊗H identifies with the space of finite rank operators from K intoH.

We let Φ: S2(H′,H)⊗S2(K,K′)→ S1(K′,H′)
γ
⊗S1(K,H) be the unique linear mapping

satisfying

Φ
(
(ξ′ ⊗ ξ)⊗ (η ⊗ η′)

)
= η′ ⊗ ξ′ ⊗ η ⊗ ξ, ξ ∈ H, ξ′ ∈ H′, η ∈ K, η′ ∈ K′.

Lemma 1.14. The mapping Φ extends to an isometry (still denoted by)

Φ: S2(H′,H)
∧
⊗ S2(K,K′) −→ S1(K′,H′)

γ
⊗ S1(K,H).

We will prove this proposition by approximation. We first need the finite dimen-
sional version of this result.

We let Eij denote the standard matrix units on Mn for 1 ≤ i, j ≤ n. We regard
Mn2 as the space of matrices with columns and rows indexed by {1, . . . , n}2. Thus
we write E(i,k),(j,l) for its standard matrix units. Then we let Mn ⊗min Mn denote the
minimal tensor product of two copies of Mn. According to the definition of ⊗min (see
e.g. [Tak79, p. IV.4.8]), the isomorphism J0 : Mn ⊗min Mn →Mn2 given by

J0(Eij ⊗ Ekl) = E(i,k),(j,l), 1 ≤ i, j, k, l ≤ n, (1.21)
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is an isometry.
Note that S1

n
∗ is isometrically isomorphic to Mn through the duality pairing

S1
n ×Mn → C, (A,B) 7→ Tr

(
tAB

)
. (1.22)

With this convention (note the use of the transpose), the dual basis of (Eij)1≤i,j≤n is
(Eij)1≤i,j≤n itself. We have (

S1
n ⊗γ S1

n

)∗
= Mn ⊗min Mn, (1.23)

through the duality pairing (1.22) applied twice.

Lemma 1.15. The isomorphism J : S2
n⊗̂S2

n → S1
n ⊗γ S1

n given by

J(Eik ⊗ Ejl) = Eij ⊗ Ekl, 1 ≤ i, j, k, l ≤ n,

is an isometry.

Proof. According to the equality∥∥∥∑
i,k

cikEik

∥∥∥
2

=
(∑
i,k

|cik|2
) 1

2
, cik ∈ C,

we can naturally identify S2
n with either `2

n2 or its conjugate space. Then applying the
identity (1.12) withH = `2

n2 , we obtain that the mapping J1 : S2
n⊗̂S2

n → S1
n2 given by

J1(Eik ⊗ Ejl) = E(i,k),(j,l), 1 ≤ i, j, k, l ≤ n,

is an isometry.
Now let J2 : S1

n ⊗γ S1
n → S1

n2 be the isomorphism given by

J2(Eij ⊗ Ekl) = E(i,k),(j,l), 1 ≤ i, j, k, l ≤ n.

Taking into account the identity (1.23), we see that J−1
2 is the adjoint of J0. Conse-

quently, J−1
2 is an isometry. Since J = J−1

2 J1, we deduce that J is an isometry as
well.

Proof of Proposition 1.14. By approximation, we can assume that the four Hilbert spaces
H,H′,K,K’ are finite dimensional, say of dimension n ≥ 1. In this case, S2(H′,H)
and S2(K,K′) identify with S2

n, the space of n× n matrices equipped with the Hilbert-
Schmidt norm. Likewise S1(K,H) and S1(K′,H′) identify with S1

n, the space of n × n
matrices equipped with the trace norm. Then under these identifications, Φ: S2

n⊗S2
n →

S1
n ⊗ S1

n is given by

Φ(Eki ⊗ Ejl) = Eij ⊗ Ekl, 1 ≤ i, j, k, l ≤ n.

Thefore, since the transposition is an isometry of S2
n, the result follows from Lemma

1.15.
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1.3 Lpσ-spaces and duality

Let (Ω, µ) be a σ-finite measure space and letE be a Banach space. For any 1 ≤ p ≤ +∞,
we let Lp(Ω;E) denote the classical Bochner space of measurable functions ϕ : Ω → E
(defined up to almost everywhere zero functions) such that the norm function ‖ϕ(· )‖
belongs to Lp(Ω) (see e.g. [DU79, Chapter II]).

We will consider a dual version. Assume that E is separable. A function φ : Ω→ E∗

is said to bew∗-measurable if for all x ∈ E, the function t ∈ Ω 7→ 〈φ(t), x〉 is measurable.
In this case, the function t ∈ Ω 7→ ‖φ(t)‖ is measurable. Indeed, if (xn)n is a dense
sequence in the unit sphere of E, then ‖φ(.)‖ = supn |〈φ(.), xn〉| is the supremum of a
sequence of measurable functions, hence is measurable.

Let 1 ≤ q ≤ +∞. By definition, Lqσ(Ω;E∗) is the space of all w∗-measurable φ : Ω →
E∗ such that ‖φ(.)‖ ∈ Lq(Ω), after taking quotient by the functions which are equal to 0
almost everywhere. We equip this space with

‖φ‖q = ‖‖φ(.)‖‖Lq(Ω).

Then (Lqσ(Ω;E∗), ‖.‖q) is a Banach space and by construction, Lq(Ω;E∗) ⊂ Lqσ(Ω;E∗)
isometrically.

Suppose that 1 ≤ p < +∞ and let 1 < q ≤ +∞ be the conjugate exponent of p. For
any φ ∈ Lqσ(Ω;E∗) and any ϕ ∈ Lp(Ω;E), the function t 7→ 〈φ(t), ϕ(t)〉 is integrable,
which yields a duality pairing

〈φ, ϕ〉 :=

∫
Ω

〈φ(t), ϕ(t)〉dµ(t) . (1.24)

Moreover by Hölder’s inequality, we have

|〈φ, ϕ〉| ≤ ‖φ‖q‖ϕ‖p. (1.25)

Theorem 1.16. The duality pairing (1.24) induces an isometric isomorphism

Lp(Ω;E)∗ = Lqσ(Ω;E∗). (1.26)

The above theorem is well-known and has extensions to the non separable case.
However we havent found a satisfactory reference for this simple (=separable) case
and provide a proof below for the sake of completeness. See [DU79, Chapter IV] and
the references therein for more information.

Recall that we have L1(Ω;E)∗ = B(L1(Ω), E∗) by (1.4). Hence in the case p = 1, the
above theorem yields an isometric identification

L∞σ (Ω;F ∗) = B(L1(Ω), F ∗), (1.27)

a classical result going back to [DP40, Theorem 2.1.6].

Proof of Theorem 1.16. The inequality (1.25) yields a contractive map κ : Lqσ(Ω;E∗) →
Lp(Ω;E)∗. Our aim is to show that κ is an isometric isomorphism.

According to the separability assumption there exists a nondecreasing sequence
(En)n≥1 of finite dimensional subspaces of E such that ∪nEn is dense in E. Since En is
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finite dimensional, Lqσ(Ω, E∗n) = Lq(Ω, E∗n) and En satisfies the conclusion of the theo-
rem to be proved, that is,

Lp(Ω;En)∗ = Lq(Ω;E∗n) (1.28)

isometrically (see [DU79, Chapter IV]). In the sequel we regard Lp(Ω;En) as a subspace
of Lp(Ω;E) in a natural way.

We first note that κ is 1-1. Indeed if φ ∈ Lqσ(Ω;E∗) is such that κ(φ) = 0, then for any
n ≥ 1, φ(t)|En = 0 a.-e. by (1.28). Hence φ(t)|∪nEn = 0 a.-e., which implies that φ(t) = 0
a.-e..

Now let δ ∈ Lp(Ω;E)∗, with ‖δ‖ ≤ 1. Applying (1.28) to the restriction of δ to
Lp(Ω;En) we obtain, for any n ≥ 1, a measurable function φn : Ω → E∗n such that
‖φn‖q ≤ 1 and

∀ϕ ∈ Lp(Ω)⊗ En, δ(ϕ) =

∫
Ω

〈φn(t), ϕ(t)〉dµ(t) .

We may assume that for any n ≥ 1, we have

∀ t ∈ Ω, φn+1(t)|En = φn(t). (1.29)

Indeed by construction, φn+1|En = φn a.-e. and the family (φn)n≥1 is countable so we
can modify all the functions φn on a common negligible set to get (1.29).

It follows that for any t ∈ Ω, (‖φn(t)‖)n≥1 is a nondecreasing sequence, so we can
define a measurable ν : Ω→ [0,∞] by

ν(t) = lim
n
‖φn(t)‖, t ∈ Ω.

If q <∞we may write∫
Ω

ν(t)q dµ(t) = lim
n

∫
Ω

‖φn(t)‖q dµ(t) ≤ 1,

by the monotone convergence Theorem. This implies that ν is a.-e. finite. If q =∞, the
fact that ‖φn‖∞ ≤ 1 for any n ≥ 1 implies that ν(t) ≤ 1 for a.-e. t ∈ Ω. Thus in any case,
there exists a negligible subset Ω0 ⊂ Ω such that ν(t) <∞ for any t ∈ Ω \ Ω0.

If t ∈ Ω \ Ω0, then by (1.29) and the density of ∪nEn, there exists a unique element
of E∗, that we call φ(t), such that

∀n ≥ 1, ∀x ∈ En, 〈φ(t), x〉 = 〈φn(t), x〉.

Next we set φ(t) = 0 for any t ∈ Ω0. We thus have a function φ : Ω→ E∗.
Let x ∈ E and let (xj)j be a sequence of ∪nEn converging to x. Then 〈φ(· ), xj〉 →

〈φ(· ), x〉 pointwise. Moreover for any j, the function 〈φ(· ), xj〉 is measurable by con-
struction, hence 〈φ(· ), x〉 is measurable. Thus φ is w∗-measurable.

Now from the definition of φ, we see that δ and κ(φ) coincide on Lp(Ω)⊗En for any
n ≥ 1. Consequently, δ = κ(φ). Moreover ‖φ‖q = limn ‖φn‖q ≤ 1.

This proves that κ is a metric surjection, and hence an isometric isomorphism.

Let E and F be two separable Banach spaces. Then their projective tensor product

E
∧
⊗ F is separable. Recall that its dual space is equal to B(E,F ∗). Whenever φ : Ω →
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B(E,F ∗) is a w∗-measurable function, then for any x ∈ E, the function Tφ(x) : Ω → F ∗

defined by [
Tφ(x)

]
(t) =

[
φ(t)

]
(x), t ∈ Ω, (1.30)

is w∗-measurable.

Corollary 1.17. The mapping φ 7→ Tφ given by (1.30) induces an isometric isomorphism

B(E,L∞σ (Ω, F ∗)) = L∞σ (Ω;B(E,F ∗)).

Proof. By Theorem 1.16 for p = 1, and by (1.2) and (1.3), we have isometric isomor-
phisms

B(E,L∞σ (Ω;F ∗)) =
(
E
∧
⊗ L1(Ω;F )

)∗
=
(
E
∧
⊗ L1(Ω)

∧
⊗ F

)∗
= L1(Ω;E

∧
⊗ F )∗

= L∞σ (Ω;B(E,F ∗)).

It is easy to check that the correspondence is given by (1.30).

Remark 1.18. We already noticed that Lqσ(Ω;E∗) = Lq(Ω;E∗) when E is finite dimensional.
It turns out that for a general Banach space E, the equality Lqσ(Ω;E∗) = Lq(Ω;E∗) is equiv-
alent to E∗ having the Radon-Nikodym property, see e.g. [DU79, Chapter IV]. All Hilbert
spaces (more generally all reflexive Banach spaces) have the Radon-Nikodym property. Later on
we will use this property that for any separable Hilbert space H and any 1 ≤ q ≤ ∞, we have

Lqσ(Ω;H) = Lq(Ω;H).

Let E be a Banach space with the Radon-Nikodym property. In this case, Remark
1.18 ensures that

L1(Ω, E)∗ = L∞(Ω, E∗).

Then equality (1.4) implies that

L∞(Ω, E∗) = B(L1(Ω), E∗), (1.31)

and the isometric isomorphism is given by

L∞(Ω, E∗) −→ B(L1(Ω), E∗).

g 7−→
[
f ∈ L1(Ω) 7→

∫
Ω

f(t)g(t)dµ(t)

]
Let H be a separable Hilbert space. It is well-known that the natural embedding of

L∞(Ω)⊗B(H) into L∞σ (Ω;B(H)) extends to an isometric and w∗-homeomorphic identi-
fication L∞(Ω)⊗B(H)) = L∞σ (Ω;B(H)) (see [Sak98, Theorem 1.22.13]). Using definition
(1.18), we show that this remains true if B(H) is replaced by B(H,K).

Lemma 1.19. LetH,K be any two separable Hilbert spaces. Then the embedding of L∞(Ω)⊗
B(H,K) into L∞σ (Ω;B(H,K)) extends to an isometric and w∗-homeomorphic identification

L∞(Ω)⊗B(H,K) = L∞σ (Ω;B(H,K)).
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Proof. Let H = H
2
⊕K. We regard L∞(Ω)⊗B(H,K) and L∞σ (Ω;B(H,K)) as subspaces of

L∞(Ω)⊗B(H) andL∞σ (Ω;B(H)), respectively. Further we use the identityL∞(Ω)⊗B(H) =
L∞σ (Ω;B(H)) mentioned above. The space L∞σ (Ω;B(H,K)) is a w∗-closed subspace of
the dual space L∞σ (Ω;B(H)) hence we have L∞(Ω)⊗B(H,K) ⊂ L∞σ (Ω;B(H,K)).

Conversely, let φ ∈ L∞σ (Ω;B(H,K)). Let T : L1(Ω) → B(H,K) be associated to φ
by the identification (1.27). Consider a net (Pι)ι ⊂ B(L1(Ω)) of finite rank contrac-
tive projections, converging strongly to the identity map. Write Tι = TPι and let
φι ∈ L∞σ (Ω;B(H,K)) be associated to Tι for any ι. Since Tι is finite rank, φι belongs
to L∞(Ω) ⊗ B(H,K). Hence to show that φ ∈ L∞(Ω)⊗B(H,K), it suffices to check that
φι → φ in the w∗-topology of L∞σ (Ω;B(H,K)). Recall that the latter space is the dual

space of L1(Ω)
∧
⊗S1(K,H). For any ϕ in the algebraic tensor product L1(Ω)⊗S1(K,H),

we have
〈φι, ϕ〉 −→

ι→∞
〈φ, ϕ〉

by the definition of φι. Since ‖Pι‖ ≤ 1, we have ‖φι‖∞ ≤ ‖φ‖∞ for any ι, hence the

above convergence result holds true as well for any ϕ ∈ L1(Ω)
∧
⊗ S1(K,H).

Remark 1.20. Let E1, E2 be two Banach spaces and let U : E∗1 → E∗2 be a w∗-continuous map.
For any φ ∈ L∞σ (Ω;E∗1), the composition map U ◦ φ : Ω → E∗2 belongs to L∞σ (Ω;E∗2) and the
mapping φ 7→ U ◦ φ is a bounded operator from L∞σ (Ω;E∗1) into L∞σ (Ω;E∗2), whose norm is
equal ‖U‖. It is easy to check that this mapping is w∗-continuous. If further U is an isometry,
then φ 7→ U ◦ φ is an isometry as well.

1.4 Measurable factorization in L∞σ (Ω; Γ2(E,F ∗))

1.4.1 The main result

The main purpose of this section is to prove Theorem 1.21 below. This result will be
applied in Subsection 1.4.2 (and in Subsection 3.3.2) to the study of continuous Schur
multipliers (see Chapter 2 for the definition).

We will say that a measure space (Ω, µ) is separable when L2(Ω, µ) is separable. This
implies that (Ω, µ) is σ-finite and moreover, Lp(Ω, µ) is separable for any 1 ≤ p <∞.

It follows from Remark 1.9 that for any separable Banach spaces E,F , the space
Γ2(E,F ∗) is a dual space with a separable predual. If H is a separable Hilbert space,
then B(E,H) and B(F,H) are also dual spaces with separable predual.

Theorem 1.21. Let (Ω, µ) be a separable measure space and let E,F be two separable Banach
spaces. Let φ ∈ L∞σ

(
Ω; Γ2(E,F ∗)

)
. Then there exist a separable Hilbert space H and two

functions
α ∈ L∞σ

(
Ω;B(E,H)

)
and β ∈ L∞σ

(
Ω;B(F,H)

)
such that ‖α‖∞‖β‖∞ ≤ ‖φ‖∞ and for any (x, y) ∈ E × F ,〈

[φ(t)](x), y
〉

=
〈
[α(t)](x), [β(t)](y)

〉
, for a.-e. t ∈ Ω. (1.32)

We will need two lemmas, in which (Ω, µ) denotes an arbitrary σ-finite measure
space.
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The first one is a variant of the classical classification of abelian von Neumann al-
gebras. For any θ ∈ L∞(Ω), and any Hilbert space H , we let Mθ : L2(Ω;H)→ L2(Ω;H)
denote the multiplication operator taking any ϕ ∈ L2(Ω;H) to θϕ.

Lemma 1.22. Let H be a separable Hilbert space and let π : L∞(Ω) → B(H) be a w∗-
continuous ∗-representation. There exist a separable Hilbert space H and an isometric em-
bedding ρ : H ↪→ L2(Ω;H) such that for any θ ∈ L∞(Ω),

ρπ(θ) = Mθρ.

Proof. Since π is w∗-continuous, there exists a measurable subset Ω′ ⊂ Ω such that the
range of π is isomorphic to L∞(Ω′) in the von Neumann algebra sense and π coincides
with the restriction map. It therefore follows from [Dav96, Theorem II.3.5] that there
exist a measurable partition {Ωn : 1 ≤ n ≤ ∞} of Ω′ and a unitary operator

ρ1 : H −→ ⊕2
1≤n≤∞L

2(Ωn; `2
n)

such that for any θ ∈ L∞(Ω), ρ1π(θ)ρ∗1 coincides with the multiplication by θ. (Note
that in the above decomposition, the index n may be finite or infinite and the notation
`2
∞ stands for `2.) Let

H =
2
⊕1≤n≤∞`

2
n

and consider the canonical embedding

ρ2 : ⊕2
1≤n≤∞ L

2(Ωn; `2
n) −→ L2(Ω;H).

Then ρ = ρ2ρ1 satisfies the lemma.

It is well-known that for any Hilbert space H , the commutant of

L∞(Ω) ' L∞(Ω)⊗ IH ⊂ B(L2(Ω);H)

coincides with L∞(Ω)⊗B(H). The next statement is a generalization of this result to
the case when H is replaced by Banach spaces.

We consider two separable Banach spaces W1,W2. Note that B(W1,W
∗
2 ) is a dual

space with separable predual. We say that a linear map

T : L2(Ω;W1) −→ L2
σ(Ω;W ∗

2 )

is a module map provided that

∀ϕ ∈ L2(Ω;W1), ∀ θ ∈ L∞(Ω), T (θϕ) = θT (ϕ).

Next we generalize the notion of multiplication by an L∞-function as follows. For any
∆ ∈ L∞σ

(
Ω;B(W1,W

∗
2 )
)
, we define a multiplication operator

M∆ : L2(Ω;W1) −→ L2
σ(Ω;W ∗

2 ) (1.33)

by setting [
M∆(ϕ)

]
(t) = [∆(t)](ϕ(t)), t ∈ Ω,
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for any ϕ ∈ L2(Ω;W1). Indeed it is easy to check that the function in the right-hand
side of the above equality belongs to L2

σ(Ω;W ∗
2 ). Moreover

‖M∆‖ = ‖∆‖∞.

Each multiplication operator M∆ is a module map, as we have

M∆(θϕ) = M∆θ(ϕ) = θM∆(ϕ)

for any θ ∈ L∞(Ω). The following lemma is a converse.

Lemma 1.23. Let T : L2(Ω;W1)→ L2
σ(Ω;W ∗

2 ) be a module map. Then there exists a function
∆ ∈ L∞σ

(
Ω;B(W1,W

∗
2 )
)

such that T = M∆.

Proof. In the scalar case (W1 = W2 = C) this is an elementary result; the proof consists
in reducing to this scalar case.

We define a bilinear map T̂ : W1 ×W2 → B(L2(Ω)) by the following formula. For
any w1 ∈ W1, w2 ∈ W2 and x ∈ L2(Ω), we set[

T̂ (w1, w2)
]
(x) =

{
t 7→

〈[
T (x⊗ w1)

]
(t), w2

〉}
.

Recall the identification L2
σ(Ω;W ∗

2 ) = L2(Ω;W2)∗ from Theorem 1.16. If we consider T
as a map from L2(Ω;W1) into L2(Ω;W2)∗, then we have

〈
T (x⊗ w1), y ⊗ w2

〉
=

∫
Ω

([
T̂ (w1, w2)

]
(x)
)

(t) y(t) dµ(t) (1.34)

for any w1 ∈ W1, w2 ∈ W2, x ∈ L2(Ω) and y ∈ L2(Ω).
Further for any θ ∈ L∞(Ω) and x ∈ L2(Ω), we have[

T̂ (w1, w2)
]
(θx) =

〈[
T (θ(x⊗ w1))

]
(· ), w2

〉
=
〈
θ(· )

[
T (x⊗ w1)

]
(· ), w2

〉
= θ
[
T̂ (w1, w2)

]
(x),

because T is a module map. Hence T̂ (w1, w2) is a module map.
Let us identify L∞(Ω) with the von Neumann subalgebra of B(L2(Ω)) consisting of

multiplication operators. The above property shows that T̂ (w1, w2) is such a multipli-
cation operator for any w1 ∈ Z1 and w2 ∈ Z2. Hence we may actually regard T̂ as a
bilinear map

T̂ : W1 ×W2 −→ L∞(Ω).

Now observe that applying (1.1), (1.2) and (1.27), we have isometric identifications

B2(W1 ×W2, L
∞(Ω)) = B(W1

∧
⊗W2, L

∞(Ω))

= B(L1(Ω), (W1

∧
⊗W2)∗)

= B(L1(Ω),B(W1,W
∗
2 ))

= L∞σ
(
Ω;B(W1,W

∗
2 )
)
.
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Let ∆ ∈ L∞σ
(
Ω;B(W1,W

∗
2 )
)

be corresponding to T̂ in this identification. Then we have〈
[∆(t)](w1), w2

〉
=
(
T̂ (w1, w2)

)
(t), w1 ∈ W1, w2 ∈ W2, t ∈ Ω.

Thus applying (3.1) we obtain that

〈
T (x⊗ w1), y ⊗ w2

〉
=

∫
Ω

〈
[∆(t)](w1), w2

〉
x(t)y(t) dµ(t)

=
〈
M∆(x⊗ w1), y ⊗ w2

〉
for any w1 ∈ W1, w2 ∈ W2, x ∈ L2(Ω) and y ∈ L2(Ω). By the density of L2(Ω)⊗W1 and
L2(Ω)⊗W2 in L2(Ω;W1) and L2(Ω;W2), respectively, this implies that T = M∆.

Proof of Theorem 1.21. This proof should be regarded as a ‘module version’ of the proof
of [Pis96, Theorem 3.4]. As in this book we adopt the following notation. For any finite
families (yj)j and (xi)i in E, we write

(yj)j < (xi)i

provided that
∀ η ∈ E∗,

∑
j

|η(yj)|2 ≤
∑
i

|η(xi)|2.

In the sequel we simply write L2 (resp. L∞) instead of L2(Ω) (resp. L∞(Ω)) as there
is no risk of confusion. Then we set

V = L2 ⊗ E ⊂ L2(Ω;E).

We fix some φ ∈ L∞σ
(
Ω; Γ2(E,F ∗)

)
and we let C = ‖φ‖∞. Then φ is an element

of L∞σ
(
Ω;B(E,F ∗)

)
. Hence according to (1.33) we may consider the multiplication

operator
T = Mφ : L2(Ω;E) −→ L2

σ(Ω;F ∗).

We let I = L∞ × E∗. A generic element of I will be denoted by ζ = (θ, η), with
θ ∈ L∞ and η ∈ E∗.

For any v =
∑

s xs ⊗ es ∈ V (finite sum) and ζ = (θ, η) ∈ I , we set

ζ· v =
∑
s

η(es)θxs ∈ L2.

Lemma 1.24. Let (wj)j and (vi)i be finite families in V such that

∀ ζ ∈ I,
∑
j

‖ζ·wj‖2
2 ≤

∑
i

‖ζ· vi‖2
2. (1.35)

Then ∑
j

‖T (wj)‖2
2 ≤ C2

∑
i

‖vi‖2
2. (1.36)
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Proof. Let (wj)j and (vi)i be finite families in V and assume (1.35). Consider ei,s, fj,s in
E, xi,s, yj,s in L2 such that

vi =
∑
s

xi,s ⊗ ei,s and wj =
∑
s

yj,s ⊗ fj,s.

Let ζ = (θ, η) ∈ I . For any j,

‖ζ·wj‖2
2 =

∫
Ω

∣∣∣∑
s

η(fj,s)θ(t)yj,s(t)
∣∣∣2 dµ(t) .

Hence ∑
j

‖ζ·wj‖2
2 =

∫
Ω

|θ(t)|2
(∑

j

∣∣∣∑
s

η(fj,s)yj,s(t)
∣∣∣2)dµ(t) .

Likewise, ∑
i

‖ζ· vi‖2
2 =

∫
Ω

|θ(t)|2
(∑

i

∣∣∣∑
s

η(xi,s)ei,s(t)
∣∣∣2)dµ(t) .

Thus by (1.35), we have∫
Ω

|θ(t)|2
(∑

j

∣∣η(wj(t))∣∣2)dµ(t) ≤
∫

Ω

|θ(t)|2
(∑

i

∣∣η(vi(t))∣∣2)dµ(t) . (1.37)

Let E1 ⊂ E be the subspace spanned by the ei,s and fj,s. Since it is finite dimen-
sional, its dual space is obviously separable. Let (ηn)n≥1 be a dense sequence of E∗1 and
for any n ≥ 1, extend ηn to an element of E∗ (still denoted by ηn). Then for any finite
families (fj)j and (ei)i in E1, we have

(yj)j < (xi)i ⇐⇒ ∀n ≥ 1,
∑
j

|ηn(fj)|2 ≤
∑
i

|ηn(ei)|2.

It follows from (1.37) that for almost every t ∈ Ω, we have∑
j

|ηn
(
wj(t)

)
|2 ≤

∑
i

|ηn
(
vi(t)

)
|2

for every n ≥ 1. Since the functions vi, wj are valued in E1, this implies that

(wj(t))j < (vi(t))i for a.e. t ∈ Ω.

By the implication ‘(i)⇒ (iii)’ of [Pis96, Theorem 3.4], this property implies that for a.e.
t ∈ Ω, ∑

j

∥∥[φ(t)]
(
wj(t)

)∥∥2

F ∗
≤ C2

∑
i

∥∥vi(t)∥∥2

E
.

Integrating this inequality on Ω yields (1.36).
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We let Λ be the set of all functions g : I → R for which there exists a finite family
(vi)i in V such that

∀ ζ ∈ I, |g(ζ)| ≤
∑
i

‖ζ· vi‖2
2. (1.38)

This is a real vector space. We let Λ+ denote its positive part, i.e. the set of all functions
I → R+ belonging to Λ. This is a convex cone. For any g ∈ Λ we set

p(g) = C2 inf
{∑

i

‖vi‖2
2

}
,

where the infimum runs over all finite families (vi)i in V satisfying (1.38). Next for any
g ∈ Λ+, we set

q(g) = sup
{∑

j

‖T (wj)‖2
2

}
,

where the supremum runs over all finite families (wj)j in V satisfying

∀ζ ∈ I, g(ζ) ≥
∑
j

‖ζ·wj‖2
2. (1.39)

It is easy to check that p is sublinear on Λ and that q is superlinear on Λ+. Further
by Lemma 1.24, q ≤ p on Λ+. Hence by the Hahn-Banach Theorem given in [Pis96,
Corollary 3.2], there exists a positive linear functional ` : Λ→ R such that

∀ g ∈ Λ, `(g) ≤ p(g) (1.40)

and
∀ g ∈ Λ+, q(g) ≤ `(g). (1.41)

Following [Pis96, Chapter 8], we introduce a Hilbert space

Λ2(I, `;L2)

defined as follows. First we let L(I, `;L2) be the set of all functionsG : I → L2 such that
the R-valued function ζ 7→ ‖G(ζ)‖2

2 belongs to Λ and we setN(G) =
(
`(ζ 7→ ‖G(ζ)‖2

2)
) 1

2

for any such function. Then L(I, `;L2) is a complex vector space and N is a Hilbertian
seminorm on L(I, `;L2). Hence the quotient of L(I, `;L2) by the kernel of N is a pre-
Hilbert space. By definition, Λ2(I, `;L2) is the completion of this quotient space.

For any v ∈ V , the function ζ 7→ ζ· v belongs to L(I, `;L2). Then we define a linear
map

T1 : V −→ Λ2(I, `;L2)

as follows: for any v ∈ V , T1(v) is the class of ζ 7→ ζ· v modulo the kernel of N . Then
we have

‖T1(v)‖2
L = `

(
ζ 7→ ‖ζ· v‖2

)
≤ p
(
ζ 7→ ‖ζ· v‖2

2

)
≤ C2‖v‖2

2
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by (1.40) and the definition of p. Hence T1 uniquely extends to a bounded operator

T1 : L2(Ω;E) −→ Λ2(I, `;L2), with ‖T1‖ ≤ C.

For any v ∈ V , we have

‖T (v)‖2
2 ≤ q

(
ζ 7→ ‖ζ· v‖2

)
≤ `
(
ζ 7→ ‖ζ· v‖2

)
= ‖T1(v)‖2.

The resulting inequality ‖T (v)‖2 ≤ ‖T1(v)‖ implies the existence of a (necessarily unique)
bounded linear operator

T2 : T1(V ) −→ L2
σ(Ω;F ∗), with ‖T2‖ ≤ 1,

such that
∀ v ∈ V, T (v) = T2

(
T1(v)

)
. (1.42)

For any v ∈ V and any θ ∈ L∞, we have

‖T1(θv)‖ ≤ ‖θ‖∞‖T1(v)‖. (1.43)

Indeed write v =
∑

s xs ⊗ es , with es ∈ E and xs ∈ L2. For any γ ∈ L∞ and η ∈ E∗, we
have ∥∥∥∑

s

η(es)γθxs

∥∥∥
2
≤ ‖θ‖∞

∥∥∥∑
s

η(es)γxs

∥∥∥
2
.

Hence ‖ζ· (θv)‖ ≤ ‖θ‖∞‖ζ· v‖ for any ζ = (γ, η) ∈ I . Since the functional ` is positive
on Λ, this implies that `

(
ζ 7→ ‖ζ· (θv)‖2

)
≤ ‖θ‖2

∞`
(
ζ 7→ ‖ζ· v‖2

)
, which yields (1.43).

This inequality implies the existence of a (necessarily unique) linear contraction

π : L∞ −→ B
(
T1(V )

)
,

such that
T1(θv) = π(θ)T1(v), v ∈ L2(Ω;E), θ ∈ L∞. (1.44)

It is clear that π is a homomorphism, hence a ∗-representation.
Let θ ∈ L∞ and assume that (θι)ι is a bounded net of L∞ converging to θ in the

w∗-topology. For any x ∈ L2, θιx→ θx in L2 (this uses the boundedness of the net). By
the continuity of T1 this implies that for any e ∈ E, T1(θιx ⊗ e) → T1(θx ⊗ e) in T1(V ).
By linearity, this implies that for any v ∈ V , T1(θιv)→ T1(θv) in T1(V ). In other words,
π(θι)(h) → π(θ)(h) for any h ∈ T1(V ). Since the net (π(θι))ι is bounded, this implies
that π(θι)→ π(θ) strongly. Hence π is a w∗-continuous ∗-representation.

Recall that E and L2 are assumed separable, hence the Hilbert space T1(V ) is sep-
arable. By Lemma 1.22, there exists a separable Hilbert space H and an isometric em-
bedding ρ : T1(V ) ↪→ L2(Ω;H) such that ρπ(θ) = Mθρ for any θ ∈ L∞. Then for any
such θ and any v ∈ L2(Ω;E), we have

ρT1(θv) =
[
ρπ(θ)T1

]
(v) = θρ(T1(v)),

by (1.44). This shows that the composed map

S1 = ρT1 : L2(Ω;E) −→ L2(Ω;H) is a module map.
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Define
S2 = T2ρ

∗ : L2(Ω;H) −→ L2
σ(Ω;F ∗).

Let θ ∈ L∞(Ω). For any v ∈ V , we have[
T2π(θ)

]
(T1(v)) = T2T1(θv) = T (θv) = θT (v) = θT2(T1(v))

by (1.44), (1.42) and the fact that T is a module map. This shows that

T2π(θ) = MθT2.

Further we have ρ∗Mθ =
(
Mθρ

)∗
=
(
ρπ(θ)

)∗
= π(θ)ρ∗. Hence MθS2 = S2Mθ, that is,

S2 is a module map.

Since ρ∗ρ is equal to the identity of T1(V ), it follows from (1.42) that

T = S2S1.

Thus we have constructed a ‘module Hilbert space factorization’ of T , and this is the
main point.

To conclude, let S2∗ : L
2(Ω;F ) → L2(Ω;H∗) be the restriction of the adjoint of S2 to

L2(Ω;F ). Then S2∗ is a module map. Now apply Lemma 1.23 to S1 and S2∗. Let α ∈
L∞σ (Ω;B(E,H)) and β ∈ L∞σ (Ω;B(F,H∗)) such that S1 is equal to the multiplication by
α and S2∗ is equal to the multiplication by β. Given any e ∈ E and f ∈ F , we have∫

Ω

〈[
φ(t)](e), f

〉
x(t)y(t) dµ(t) =

〈
T (x⊗ e), y ⊗ f

〉
= 〈S1(x⊗ e), S2∗(y ⊗ f)

〉
=

∫
Ω

〈
[α(t)](e)x(t), [β(t)](f) y(t)

〉
dµ(t)

=

∫
Ω

〈
[α(t)](e), [β(t)](f)

〉
x(t)y(t) dµ(t)

for any x, y ∈ L2. Applying identification between H∗ and H , this proves (1.32). By
construction, ‖α‖∞ ≤ C and ‖β‖∞ ≤ 1.

1.4.2 A special case

Let (Ω1, µ1),(Ω2, µ2) and (Ω3, µ3) be three separable measure spaces. We are going to
apply Theorem 1.21 with (Ω, µ) = (Ω2, µ2), E = L1(Ω1) and F = L1(Ω3).

To any φ ∈ L∞(Ω1)×Ω2 ×Ω3), one may associate φ̃ ∈ L∞σ
(
Ω2;B(L1(Ω1, L

∞(Ω3))
)

as
follows. For any r ∈ L1(Ω1),

[
φ̃(t2)

]
(r) =

∫
Ω1

φ(t1, t2, · ) r(t1) dµ1(t1), t2 ∈ Ω2. (1.45)
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According to the obvious identification

L∞(Ω1 × Ω2 × Ω3) = L∞σ
(
Ω2;L∞(Ω1 × Ω3)

)
and (1.5), the mapping φ 7→ φ̃ induces a w∗-homeomorphic isometric identification

L∞(Ω1 × Ω2 × Ω3) = L∞σ
(
Ω2;B(L1(Ω1), L∞(Ω3))

)
,

By Remark 1.20, the w∗-continuous contractive embedding of Γ2(L1(Ω1), L∞(Ω3)) into
the space B(L1(Ω1), L∞(Ω3)) induces a w∗-continuous contractive embedding

L∞σ
(
Ω2; Γ2(L1(Ω1), L∞(Ω3))

)
⊂ L∞σ

(
Ω2;B(L1(Ω1), L∞(Ω3))

)
.

Combining with the preceding identification we obtain a further w∗-continuous con-
tractive embedding

L∞σ
(
Ω2; Γ2(L1(Ω1), L∞(Ω3))

)
⊂ L∞(Ω1 × Ω2 × Ω3). (1.46)

According to this, we will write φ ∈ L∞σ
(
Ω2; Γ2(L1(Ω1), L∞(Ω3))

)
when φ̃ actually be-

longs to that space. In this case, for the sake of clarity, we let ‖φ‖∞,Γ2 denote its norm
as an element of the latter space. It is greater than or equal to its norm as an element of
L∞(Ω1 × Ω2 × Ω3).

Theorem 1.25. Let φ ∈ L∞(Ω1 × Ω2 × Ω3) and C ≥ 0.
Then φ ∈ L∞σ

(
Ω2; Γ2(L1(Ω1), L∞(Ω3))

)
and ‖φ‖∞,Γ2 ≤ C if and only if there exist a Hilbert

space H and two functions

a ∈ L∞
(
Ω1 × Ω2;H

)
and b ∈ L∞

(
Ω2 × Ω3;H

)
such that ‖a‖∞‖b‖∞ ≤ C and

φ(t1, t2, t3) =
〈
a(t1, t2), b(t2, t3)

〉
for a.-e. (t1, t2, t3) ∈ Ω1 × Ω2 × Ω3. (1.47)

Proof. Assume that φ belongs to L∞σ
(
Ω2; Γ2(L1(Ω1), L∞(Ω3))

)
, with ‖φ‖∞,Γ2 ≤ C. Ac-

cording to Theorem 1.21, there exist a Hilbert space H and two functions

α ∈ L∞σ
(
Ω2;B(L1(Ω1), H)

)
and β ∈ L∞σ

(
Ω2;B(L1(Ω3), H)

)
such that for any r1 ∈ L1(Ω1) and r3 ∈ L1(Ω3),〈

[φ̃(t2)](r1), r3

〉
=
〈
[α(t2)](r1), [β(t2)](r3)

〉
for a.-e. t2 ∈ Ω2. (1.48)

By (1.3), (1.4) and (1.27) we have isometric identifications

L∞σ
(
Ω2;B(L1(Ω1), H)

)
= L∞σ

(
Ω2; (L1(Ω1)

∧
⊗H∗)∗

)
=
(
L1(Ω2)

∧
⊗ L1(Ω1)

∧
⊗H∗

)∗
= L1(Ω1 × Ω2;H∗)∗

= L∞σ (Ω1 × Ω2;H).
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Morover L∞σ (Ω1 × Ω2;H) = L∞(Ω1 × Ω2;H), see Remark 1.18. Hence we finally have
an isometric identification

L∞σ
(
Ω2;B(L1(Ω1), H)

)
= L∞(Ω1 × Ω2;H).

Likewise we have an isometric identification

L∞σ
(
Ω2;B(L1(Ω3), H)

)
= L∞(Ω2 × Ω3;H).

Let a ∈ L∞(Ω1 × Ω2;H) and b ∈ L∞(Ω2 × Ω3;H) be corresponding to α and β
respectively in the above identifications. Then for any r1 ∈ L1(Ω1),

[α(t2)](r1) =

∫
Ω1

a(t1, t2) r1(t1) dµ1(t1) for a.-e. t2 ∈ Ω2.

Likewise, for any r3 ∈ L1(Ω3),

[β(t2)](r3) =

∫
Ω3

b(t2, t3) r3(t3) dµ3(t3) for a.-e. t2 ∈ Ω2.

Combining (1.48) and (1.45) we deduce that for any r1 ∈ L1(Ω1) and r3 ∈ L1(Ω3), we
have ∫

Ω1×Ω3

〈a(t1, t2), b(t2, t3)〉 r1(t1) r3(t3) dµ1(t1)dµ3(t3)

=
〈[
φ̃(t2)

]
(r1), r3

〉
=

∫
Ω1×Ω3

φ(t1, t2, t3)r1(t1) r3(t3) dµ1(t1)dµ3(t3)

for a.-e. t2 ∈ Ω2. This implies (1.47) and shows the ‘only if’ part.

Assume conversely that (1.47) holds true for some a in L∞(Ω1×Ω2;H) and some b in
L∞(Ω1×Ω2;H). Using the above identifications, we consider α ∈ L∞σ

(
Ω2;B(L1(Ω1), H)

)
and β ∈ L∞σ

(
Ω2;B(L1(Ω3), H)

)
be corresponding to a and b, respectively. Then the

above computations lead to (1.48). This identity means that for a.-e. t2 ∈ Ω2, we
have a Hilbert space factorisation φ̃(t2) = β(t2)∗α(t2). This shows that φ belongs to
L∞σ
(
Ω2; Γ2(L1(Ω1), L∞(Ω3))

)
, with ‖φ‖∞,Γ2 ≤ ‖a‖∞‖b‖∞.
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Chapter 2

Linear Schur multipliers

——————————————————————–

In this chapter, we are interested in generalizations of well-known results about
Schur multipliers. Namely, we extend the definition of classical Schur multipliers
on B(`p, `q) and define the continuous Schur multipliers on B(Lp, Lq). In the case
p = q = 2, there is a famous characterization of Schur multipliers on B(`2). A simi-
lar characterization also holds in the case B(`p) (see e.g. [Pis96, Chapter 5]) and in the
case of continuous Schur multipliers on B(L2) (see e.g. [Spr04]). We recall these facts
in the first two sections of this chapter. In the third section, we define Schur multipliers
on B(Lp, Lq) and generalize the characterization of Schur multipliers to this continuous
case, using the theory of (p, q)−factorable operators introduced in Chapter 1. Note that
those results are new, even in the setting of classical Schur multipliers on B(`p, `q). In
a fourth section, we will apply the results of Section 2.3 to obtain new inclusion rela-
tionships between the spaces of Schur multipliers, extending the work of Bennett in
[Ben77].

2.1 Classical Schur multipliers

In this section, we regard elements of B(`p, `q) as infinite matrices in the usual way.

Let m = (mij)i,j≥1 be a bounded family of complex numbers and let 1 ≤ p, q ≤ +∞.
We say that m is a Schur multiplier on B(`p, `q) if for any matrix [aij]i,j≥1 in B(`p, `q), the
matrix [mijaij]i,j≥1 defines an element of B(`p, `q). An application of the Closed Graph
theorem shows that m is a Schur multiplier if and only if the mapping

Tm : B(`p, `q) −→ B(`p, `q)
[aij]i,j≥1 7−→ [mijaij]i,j≥1

(2.1)

is bounded. By definition, the norm of the Schur multiplier m is the norm of the map-
ping Tm.

Similary, if 1 ≤ p ≤ +∞, we say that m is a Schur multiplier on Sp if for any matrix
[aij]i,j≥1 in Sp, the matrix [mijaij]i,j≥1 defines an element of Sp.

A simple duality argument shows that if 1 ≤ p, p′ ≤ ∞ are conjugate numbers, then
m is a linear Schur multiplier on Sp if and only if it is a linear Schur multiplier on Sp′ .
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Moreover the resulting operators Tm have the same norm, that is,

‖Tm : Sp → Sp‖ = ‖Tm : Sp′ → Sp′‖.

When p = 2, any bounded family m = {mij}i,j≥1 is a linear Schur multiplier on S2.
Moreover

‖M : S2 → S2‖ = sup
i,j≥1
|mij|

in this case (see e.g. [Ara82, Proposition 2.1]).
Note that for 1 < p 6= 2 < +∞, there is no description of Schur multipliers on Sp.

There is a well-known characterization of bounded Schur multipliers on B(`2). This
result was stated by Pisier in [Pis96, Theorem 5.1] who refers himself to some earlier
work of Grothendieck. This theorem can be extended to the case B(`p) as follows.

Theorem 2.1. [Pis96, Theorem 5.10] Let φ = (cij)i,j∈N ⊂ C, C ≥ 0 be a constant and let
1 ≤ p <∞. The following are equivalent :

(i) φ is a Schur multiplier on B(`p, `p) with norm ≤ C.

(ii) There is a measure space (Ω, µ) and elements (xj)j∈N in Lp(µ) and (yi)i∈N in Lp′(µ) such
that

∀i, j ∈ N, cij = 〈xj, yi〉 and sup
i
‖yi‖p′ sup

j
‖xj‖p ≤ C.

(iii) The operator uφ : `1 → `∞ which admits [cij] as its matrix belongs to Γp(`1, `∞) and
γp(uφ) ≤ C (see Remark 1.9 for the notations).

As a consequence of the results established in Subsection 2.3.2, we will characterize
more generally Schur multipliers on B(`p, `q) in the case q ≤ p in Corollary 2.9 which
includes Theorem 2.1. In [Ben77], Bennett gives a necessary and sufficient condition
for a family m to be a Schur multiplier on B(`p, `q), for all values of p and q, using the
theory of absolutely summing operators. Theorem 2.1 above and Corollary 2.9 provide
a different type of characterization, which is more explicit and useful.

2.2 Continuous Schur multipliers on B(L2)

Let (Ω1, µ1) and (Ω2, µ2) be two σ-finite measure spaces. By the equality (1.16), we have
an isometric identification L2(Ω1 × Ω2) = S2(L2(Ω1), L2(Ω2)) given by

J ∈ L2(Ω1 × Ω2) 7→ XJ ∈ S2(L2(Ω1), L2(Ω2)).

Let ψ ∈ L∞(Ω1 × Ω2). Thanks to the above identity, we may associate the operator

Rψ : S2(L2(Ω1), L2(Ω2)) −→ S2(L2(Ω1), L2(Ω2))
XJ 7−→ XψJ

whose norm is equal to ‖ψ‖∞. We say that ψ is a continuous Schur multiplier if Rψ

extends to a bounded operator (still denoted by)

Rψ : K(L2(Ω1), L2(Ω2)) −→ B(L2(Ω1), L2(Ω2)),
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whereK(L2(Ω1), L2(Ω2)) denotes the space of compact operators fromL2(Ω1) intoL2(Ω2).
The density of Hilbert-Schmidt operators in compact operators ensures that this exten-
sion is necessarily unique.

The first part of Theorem 2.2 below is a remarkable characterization of continuous
Schur multipliers for which we refer e.g. to Spronk [Spr04, Section 3.2]. Peller’s charac-
terization of double operator integral mappings which restrict to a bounded operator
S1(H)→ S1(H) is closely related to this factorization result (see Chapter 4 for a defini-
tion of double operator integrals). Indeed, Theorem 2.2(i) below is implicit in [Pel85].
It is also contained in Theorem 2.7 proved in the next section.

For the second part of the next result, recall that by Remark 1.9 and (1.2),

Γ2(L1(Ω1), L∞(Ω2)) and B
(
K(L2(Ω1), L2(Ω2)),B(L2(Ω1), L2(Ω2))

)
are both dual spaces.

We recall that according to the equality (1.5), any element of B(L1(Ω1), L∞(Ω2)) is
an operator uψ for some (unique) ψ ∈ L∞(Ω1 ⊗ Ω2).

Theorem 2.2.

(i) [Pel85; Pis96; Spr04] A function ψ ∈ L∞(Ω1 × Ω2) is a continuous Schur multiplier if
and only if the operator uψ belongs to Γ2(L1(Ω1), L∞(Ω2)), and we have

γ2(uψ) = ‖Rψ‖

in this case.

(ii) Moreover the isometric embedding

Γ2(L1(Ω1), L∞(Ω2)) ↪→ B
(
K(L2(Ω1), L2(Ω2)),B(L2(Ω1), L2(Ω2))

)
taking any uψ ∈ Γ2(L1(Ω1), L∞(Ω2)) to Rψ is w∗-continuous.

Proof. Let us prove (2). Let ψ ∈ L∞(Ω1 ×Ω2) and let (ψι)ι be a net of L∞(Ω1 ×Ω2) such
that uψ and the operators uψι belong to Γ2(L1(Ω1), L∞(Ω2)) for any ι, (uψι)ι is a bounded
net in the latter space, and uψι → uψ in the w∗-topology of Γ2(L1(Ω1), L∞(Ω2)). This
implies that uψι → uψ in the w∗-topology of B(L1(Ω1), L∞(Ω2)). According to (1.5), this
means that ψι → ψ in the w∗-topology of L∞(Ω1 × Ω2).

Let ξ, ξ′ ∈ L2(Ω1) and η, η′ ∈ L2(Ω2). For any ι, Rψι(ξ ⊗ η) is the Hilbert-Schmidt
operator associated to the L2-function ψι(ξ ⊗ η), hence

〈[
Rψι(ξ ⊗ η)

]
(ξ′), η′

〉
=

∫
Ω1×Ω2

ψι(t1, t2)ξ(t1)ξ′(t1)η(t2)η′(t2) dµ1(t1)dµ2(t2) .

The right-hand side of this equality is the action of ψι ∈ L∞(Ω1×Ω2) on the L1-function

(t1, t2) 7→ ξ(t1)ξ′(t1)η(t2)η′(t2).

Since ψ = w∗-limι ψι, this implies that〈[
Rψι(ξ ⊗ η)

]
(ξ′), η′

〉
−→

〈[
Rψ(ξ ⊗ η)

]
(ξ′), η′

〉
.
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By linearity, this implies that for any finite rank operator σ : L2(Ω1)→ L2(Ω2),Rψι(σ)→
Rψ(σ) is the weak operator topology of B(L2(Ω1), L2(Ω2)). Since (uψι)ι is a bounded net,
(Rψι)ι is bounded as well. By the density of finite rank operators in K(L2(Ω1), L2(Ω2)),
we deduce that for any σ in the latter space, Rψι(σ) → Rψ(σ) is the weak operator
topology of B(L2(Ω1), L2(Ω2)). Using again the boundedness of (Rψι)ι, we deduce that
Rψι(σ)→ Rψ(σ) in the w∗-topology of B(L2(Ω1), L2(Ω2)

)
for any σ ∈ K(L2(Ω1), L2(Ω2))

and finally thatRψι → Rψ in thew∗-topology ofB
(
K(L2(Ω1), L2(Ω2)),B(L2(Ω1), L2(Ω2)

)
.

By Remark 1.20, the embedding of Γ2(L1(Ω1), L∞(Ω2)) into the space

B
(
K(L2(Ω1), L2(Ω2)),B(L2(Ω1), L2(Ω2))

)
,

provided by Theorem 2.2, we obtain a w∗-continuous isometric inclusion

L∞σ
(
Ω; Γ2(L1(Ω1), L∞(Ω2))

)
⊂ L∞σ

(
Ω;B(K(L2(Ω1), L2(Ω2)),B(L2(Ω1), L2(Ω2)))

)
. (2.2)

2.3 Schur multipliers on B(Lp, Lq)

2.3.1 Definition and connection with the classical Schur multipliers

Let (Ω1,F1, µ1) and (Ω2,F2, µ2) be two σ-finite measure spaces and let φ ∈ L∞(Ω1×Ω2).
Let 1 ≤ p, q ≤ ∞ and denote by p′ and q′ their conjugate exponents.
Let

Tφ : Lp
′
(Ω1)⊗ Lq(Ω2)→ B(Lp(Ω1), Lq(Ω2))

be defined for any elementary tensor f ⊗ g ∈ Lp′(Ω1)⊗ Lq(Ω2) by

[Tφ(f ⊗ g)](h) =

(∫
Ω1

φ(s, ·)f(s)h(s)dµ1(s)

)
g(·) ∈ Lq(Ω2),

for all h ∈ Lp(Ω1).

We have an inclusion
Lp
′
(Ω1)⊗ Lq(Ω2) ⊂ Lp

′
(Ω1, L

q(Ω2))

given by f⊗g 7→ [s ∈ Ω1 7→ f(s)g]. Under this identification, Tφ is the multiplication by
φ. Note that Lp′(Ω1, L

q(Ω2)) is invariant by multiplication by an element of L∞(Ω1×Ω2)
and that we have a contractive inclusion

Lp
′
(Ω1, L

q(Ω2)) ⊂ Lp
′
(Ω1)

∨
⊗ Lq(Ω2).

Therefore, Tφ is valued is in Lp′(Ω1)
∨
⊗ Lq(Ω2). Using the identification

Lp
′
(Ω1)

∨
⊗ Lq(Ω2) ⊂ B(Lp(Ω1), Lq(Ω2))

given by (1.6), we deduce that the elements of Lp′(Ω1)
∨
⊗ Lq(Ω2) are compact operators

as limits of finite rank operators for the operator norm.
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Definition 2.3. We say that φ is a Schur multiplier on B(Lp(Ω1), Lq(Ω2)) if there exists a
constant C ≥ 0 such that for all u ∈ Lp′(Ω1)⊗ Lq(Ω2),

‖Tφ(u)‖B(Lp(Ω1),Lq(Ω2)) ≤ ‖u‖∨,

that is, if Tφ extends to a bounded operator

Tφ : Lp
′
(Ω1)

∨
⊗ Lq(Ω2)→ Lp

′
(Ω1)

∨
⊗ Lq(Ω2).

In this case, the norm of φ is by definition the norm of Tφ.

Remark 2.4. By E1 (resp. E2) we denote the space of simple functions on Ω1 (resp. Ω2). By

density of E1⊗E2 in Lp′(Ω1)
∨
⊗Lq(Ω2), Tφ extends to a bounded operator from Lp

′
(Ω1)

∨
⊗Lq(Ω2)

into itself if and only if it is bounded on E1 ⊗ E2 equipped with the injective tensor norm.

Assume that 1 < p, q < +∞. By (1.7) we have

Lp
′
(Ω1)

∨
⊗ Lq(Ω2) = K(Lp(Ω1), Lq(Ω2)),

so that φ is a Schur multiplier on B(Lp(Ω1), Lq(Ω2)) if and only if Tφ extends to a
bounded operator

Tφ : K(Lp(Ω1), Lq(Ω2))→ K(Lp(Ω1), Lq(Ω2)).

In this case, considering the bi-adjoint of Tφ, we obtain by (1.8) a w∗−continuous map-
ping

T̃φ : B(Lp(Ω1), Lq(Ω2))→ B(Lp(Ω1), Lq(Ω2))

which extends Tφ. This explains the terminology ’φ is a Schur multiplier onB(Lp(Ω1), Lq(Ω2))’.

Classical Schur multipliers : Assume that Ω1 = Ω2 = N and that µ1 and µ2 are the
counting measures. An element φ ∈ L∞(N2) is given by a family c = (cij)i,j∈N of
complex numbers, where cij = φ(j, i). In this situation, the mapping Tφ is nothing but
the classical Schur multiplier

A = [aij]i,j≥1 ∈ B(`p, `q) 7−→ [cijaij]i,j≥1.

When this mapping is bounded from B(`p, `q) into itself, we will denote it by Tc.

Notations : If (Ω,F , µ) is a measure space and n ∈ N∗, we denote byAn,Ω the collection
of n−tuples (A1, . . . , An) of pairwise disjoint elements of F such that

for all 1 ≤ i ≤ n, 0 < µ(Ai) < +∞.

If A = (A1, . . . , An) ∈ An,Ω and 1 ≤ p ≤ +∞, denote by SA,p the subspace of Lp(Ω)
generated by χA1 , . . . , χAn . Then SA,p is 1−complemented in Lp(Ω), and a norm one
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projection from Lp(Ω) into SA,p is given by the conditional expectation

PA,p : Lp(Ω) −→ Lp(Ω).

f 7−→
n∑
i=1

1

µ(Ai)

(∫
Ai

f

)
χAi

(2.3)

Note that the mapping

ϕA,p : SA,p −→ `np .
f =

∑
i aiχAi 7−→ (ai(µ1(Ai))

1/p)ni=1

(2.4)

is an isometric isomorphism between SA,p and `np .

Proposition 2.5. Let (Ω1,F1, µ1) and (Ω2,F2, µ2) be two measure spaces and let φ ∈ L∞(Ω1×
Ω2). The following are equivalent :

(i) φ is a Schur multiplier on B(Lp(Ω1), Lq(Ω2)).

(ii) For all n,m ∈ N∗, for all A = (A1, . . . , An) ∈ An,Ω1 , B = (B1, . . . , Bm) ∈ Am,Ω2 , write

φij =
1

µ1(Aj)µ2(Bi)

∫
Aj×Bi

φ dµ1dµ2.

Then the Schur multipliers on B(`np , `
m
q ) associated with the families φA,B = (φij) are

uniformly bounded with respect to n,m,A and B.

In this case, ‖Tφ‖ = supn,m,A,B‖TφA,B‖ < +∞.

Proof. (i) ⇒ (ii). Assume first that φ is a Schur multiplier on B(Lp(Ω1), Lq(Ω2)) with
‖Tφ‖ ≤ 1. Let n,m ∈ N∗, A = (A1, . . . , An) ∈ An,Ω1 and B = (B1, . . . , Bm) ∈ Am,Ω2 . Let
c =

∑
i,j c(i, j)ej ⊗ ei ∈ `np′ ⊗ `mq ' B(`np , `

m
q ).

Let ϕA,p : SA,p → `np and ψB,q : SB,q → `mq be the isometries defined in (2.4). Then
c̃ := ψ−1

B,q ◦ c ◦ ϕA,p : SA,p → SB,q satisfies ‖c̃‖ = ‖c‖ and we have

c̃ =
∑
i,j

c(i, j)

µ1(Aj)1/p′µ2(Bi)1/q
χAj ⊗ χBi

:=
∑
i,j

c̃(i, j)χAj ⊗ χBi .

where c̃(i, j) =
c(i, j)

µ1(Aj)1/p′µ2(Bi)1/q
.

The operator u := ψB,q ◦ PB,q ◦ Tφ(c̃)|SA,p ◦ ϕ−1
A,p : `np → `mq satisfies

‖u‖ ≤ ‖Tφ(c̃)‖

and by assumption
‖Tφ(c̃)‖ ≤ ‖c̃‖

so that
‖u‖ ≤ ‖c̃‖ = ‖c‖. (2.5)
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Let us prove that u = TφA,B(c) where TφA,B is the Schur multiplier associated with the
family (φij).
Write u(i, j) := ψB,q ◦ PB,q ◦ Tφ(χAj ⊗ χBi)|SA,p ◦ ϕ−1

A,p. We have

u =
∑
i,j

c̃(i, j)u(i, j).

Let 1 ≤ k ≤ n.

[u(i, j)](ek) = [ψB,q ◦ PB,q ◦ Tφ(χAj ⊗ χBi)|SA,p ]
(

1

µ1(Ak)1/p
χAk

)
=

1

µ1(Ak)1/p
[ψB,q ◦ PB,q]

(
χBi(·)

∫
Ω1

φ(s, ·)χAj(s)χAk(s)dµ1(s)

)
so that [u(i, j)](ek) = 0 if k 6= j and if k = j then

[u(i, j)](ek) =
1

µ1(Ak)1/p
[ψB,q ◦ PB,q]

(
χBi(·)

∫
Aj

φ(s, ·)dµ1(s)

)

=
1

µ1(Ak)1/pµ2(Bi)

(∫
Aj×Bi

φ

)
ψq(χBi)

=
1

µ1(Ak)1/pµ2(Bi)1/q′

(∫
Aj×Bi

φ

)
ei.

It follows that

u =
∑
i,j

c(i, j)

µ1(Aj)1/p′µ2(Bi)1/q

1

µ1(Aj)1/pµ2(Bi)1/q′

(∫
Aj×Bi

φ

)
ej ⊗ ei

=
∑
i,j

c(i, j)

µ1(Aj)µ2(Bi)

(∫
Aj×Bi

φ

)
ej ⊗ ei

=
∑
i,j

φijc(i, j)ej ⊗ ei

that is, u = TφA,B(c). We conclude thanks to the inequality (2.5).

(ii)⇒ (i). Assume now that the assertion (ii) is satisfied and show that φ is a Schur
multiplier. By Remark 2.4, we just need to show that Tφ is bounded on E1 ⊗ E2. Let
v ∈ E1 ⊗ E2 and write α = supn,m,A,B‖Tc‖. We will show that ‖Tφ(v)‖ ≤ α‖v‖. By
density, it is enough to prove that for any h1 ∈ E1, h2 ∈ E2,

| 〈[Tφ(v)](h1), h2〉Lq ,Lq′ | ≤ α‖v‖B(Lp(Ω1),Lq(Ω2))‖h1‖Lp(Ω1)‖h2‖Lq′ (Ω2). (2.6)
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By assumption, there exist n,m ∈ N∗, A = (A1, . . . , An) ∈ An,Ω1 , B = (B1, . . . , Bm) ∈
Am,Ω2 and complex numbers v(i, j), ai, bj such that

v =
∑
i,j

v(i, j)χAj ⊗ χBi , h1 =
∑
j

ajχAj and h2 =
∑
i

biχBi .

Equation (2.6) can be rewritten as∣∣∣∣∣∑
i,j

v(i, j)ajbi

(∫
Aj×Bi

φ

)∣∣∣∣∣ ≤ α‖v‖‖h1‖Lp(Ω1)‖h2‖Lq′ (Ω2). (2.7)

Consider ṽ := ψB,q ◦ v ◦ ϕ−1
A,p : `np → `mq and z := ψB,q ◦ PB,q ◦ Tφ(v)|SA,p ◦ φ−1

A,p : `np → `mq .
The computations made in the first part of the proof show that z = Tm(ṽ) where m is
the family (φij).
Now, let x := ϕA,p(h1) and y := ψB,q′(h2). Since Tm is bounded with norm smaller than
α we have

| 〈[Tm(c̃)](x), y〉`mq ,`mq′ | ≤ α‖c̃‖B(`np ,`
m
q )‖x‖`np‖y‖`mq′ . (2.8)

An easy computation shows that the left-hand side on this equality is nothing but the
left-hand side of the inequality (2.7). Finally, the right-hand side of the inequalities
(2.7) and (2.8) are equal, which concludes the proof.

2.3.2 Schur multipliers and factorization

Let p, q be two positive numbers such that 1 ≤ q ≤ p ≤ ∞. This condition is equivalent

to p, q ∈ [1,∞] with
1

q
+

1

p′
≥ 1, so that we can consider the space Lq,p′ .

The following results will allow us to give a description of the functions φ which
are Schur multipliers.

Lemma 2.6. LetX , Y be Banach spaces and letE ⊂ X,F ⊂ Y be 1−complemented subspaces
of X and Y . For any v ∈ E ⊗ F , denote by α̃′q,p′(v) the α′q,p′-norm of v as an element of E ⊗ F
and by α′q,p′(v) the α′q,p′-norm of v as an element of X ⊗ Y . Then

α̃′q,p′(v) = α′q,p′(v).

Proof. The inequality α̃′q,p′(v) ≥ α′q,p′(v) is easy to prove. For the converse inequality,
take v =

∑
k ek ⊗ fk ∈ E ⊗ F such that α′q,p′(v) < 1 and show that α̃′q,p′(v) < 1. By

assumption, there exists M ⊂ X and N ⊂ Y finite dimensional subspaces such that
v ∈M ⊗N and

α′(v,M,N) < 1.

By assumption, there exist two norm one projections P andQ respectively fromX onto
E and from Y onto F . Set M1 = P (M) ⊂ E and N1 = Q(N) ⊂ F . M1 and N1 are finite
dimensional. Moreover, since v ∈ E⊗F , it is easy to check that (P ⊗Q)(v) = v, where,
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for all c =
∑

l al ⊗ bl ∈ X ⊗ Y ,

(P ⊗Q)(c) =
∑
l

P (al)⊗Q(bl).

Thus, v ∈M1 ⊗N1. We will show that α′q,p′(v,M1, N1) < 1.
Let z =

∑m
j=1 x

∗
j ⊗ y∗j ∈ M∗

1 ⊗ N∗1 be such that αq,p′(z) < 1 and show that | 〈v, z〉 | ≤
α′q,p′(v), so that α′q,p′(v,M1, N1) ≤ 1.
Let 1 ≤ r ≤ ∞ such that

1

r
=

1

q
+

1

p′
− 1.

The condition αq,p′(z) < 1 in M∗
1 ⊗ N∗1 implies that z admits a representation z =∑m

j=1 λjm
∗
j ⊗ n∗j where m∗j ∈M∗

1 , n
∗
j ∈ N∗1 and

‖(λj)j‖`rwp(m∗j ,M∗
1 )wq′(n

∗
j , N

∗
1 ) < 1.

Set z̃ :=
∑m

j=1 λjP
∗(m∗j)⊗Q∗(n∗j) in M∗ ⊗N∗. It is easy to check that

wp(P
∗(m∗j),M

∗) ≤ wp(m
∗
j ,M

∗
1 ) and wq′(Q

∗(n∗j), N
∗) ≤ wq′(n

∗
j , N

∗
1 ).

Therefore, αq,p′(z̃,M∗, N∗) < 1. Then, the condition α′q,p′(v,M,N) < 1 implies that

| 〈v, z̃〉 | ≤ α′q,p′(v).

Finally, we have

〈v, z̃〉 =
∑
j,k

λj
〈
P ∗(m∗j), ek

〉 〈
Q∗(n∗j), fk

〉
=
∑
j,k

λj
〈
m∗j , P (ek)

〉 〈
n∗j , Q(fk)

〉
=
∑
j,k

λj
〈
m∗j , ek

〉 〈
n∗j , fk

〉
= 〈v, z〉 ,

and therefore
| 〈v, z〉 | ≤ α′q,p′(v).

This proves that α̃′q,p′(v) < 1.

We recall that if φ ∈ L∞(Ω1 × Ω2), we denote by uφ the mapping

uφ : L1(Ω1) −→ L∞(Ω2).

f 7−→
∫

Ω1

φ(s, ·)f(s) dµ1(s)

Theorem 2.7. Let (Ω1, µ1) and (Ω2, µ2) be two σ-finite measure spaces and let φ ∈ L∞(Ω1 ×
Ω2). Let 1 ≤ q ≤ p ≤ ∞. Then φ is a Schur multiplier on B(Lp(Ω1), Lq(Ω2)) if and only if the
operator uφ belongs to Lq,p′(L1(Ω1), L∞(Ω2)). Moreover,

‖Tφ‖ = Lq,p′(uφ).
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Proof. Assume first that Tφ extends to a bounded operator

Tφ : Lp
′
(Ω1)

∨
⊗ Lq(Ω2)→ Lp

′
(Ω1)

∨
⊗ Lq(Ω2)

with norm ≤ 1. To prove that uφ ∈ Lq,p′(L1(Ω1), L∞(Ω2)) with Lq,p′(uφ) ≤ 1, we have to
show that for any v =

∑
k fk ⊗ gk ∈ L1(Ω1)⊗ L1(Ω2) with α′q,p′(v) < 1 we have

|uφ(v)| = |
∑
k

〈uφ(fk), gk〉 | ≤ 1.

By density, we can assume that fk, gk are simple functions. Hence, with the nota-
tions introduced in Section 2.3.1 there exist n,m ∈ N∗, A = (A1, . . . , An) ∈ An,Ω1 and
B = (B1, . . . , Bm) ∈ Am,Ω2 such that, for all k, fk ∈ SA,1 and gk ∈ SB,1.
By Lemma 2.6, the α′q,p′-norm of v as an element of SA,1 ⊗ SB,1 is less than 1.

Let ϕA,1 : SA,1 → `n1 and ψB,1 : SB,1 → `m1 the isomorphisms defined in (2.4).
Set v′ =

∑
k ϕA,1(fk) ⊗ ψB,1(gk) ∈ `n1 ⊗ `m1 . Since ϕA,1 and ψB,1 are isometries, we

have α′q,p′(v
′) < 1. Using the identification (1.6), we obtain by (1.11) that v′ admits a

factorization

`n∞
v′ //

dδ
��

`m1OO
dγ

`np c
// `mq

where δ = (δ1, . . . , δn), γ = (γ1, . . . , γm), dδ and dγ are the operators of multiplication
and

‖dδ‖ = ‖δ‖`p = 1, ‖dγ‖ = ‖γ‖`q′ = 1 and‖c‖ < 1.

This factorization means that

v′ =
m∑
i=1

n∑
j=1

γic(i, j)δjej ⊗ ei.

Therefore, we have

v =
m∑
i=1

n∑
j=1

γic(i, j)δj ϕ
−1
A,1(ej)⊗ ψ−1

B,1(ei)

=
m∑
i=1

n∑
j=1

γi
c(i, j)

µ1(Aj)µ2(Bi)
δj χAj ⊗ χBi .

We compute

uφ(v) =
m∑
i=1

n∑
j=1

γi
c(i, j)

µ1(Aj)µ2(Bi)
δj
〈
uφ(χAj), χBi

〉
=

m∑
i=1

n∑
j=1

γi
c(i, j)

µ1(Aj)µ2(Bi)
δj
〈
Tφ(χAj ⊗ χBi)(χAj), χBi

〉
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Define

c̃ =
m∑
i=1

n∑
j=1

c̃(i, j)χAj ⊗ χBi ∈ Lp
′
(Ω1)⊗ Lq(Ω2),

where c̃(i, j) = ci,jµ1(Aj)
−1/p′µ2(Bi)

−1/q.
Using the identification (1.6), it is easy to check that we have

c̃ = ψ−1
B,q ◦ c ◦ ϕA,p : SA,p 7→ Lq(Ω2).

Therefore,
‖c̃‖∨ = ‖c‖.

We have

uφ(v) =
m∑
i=1

n∑
j=1

γi
c̃(i, j)µ1(Aj)

1/p′µ2(Bi)
1/q

µ1(Aj)µ2(Bi)
δj
〈
Tφ(χAj ⊗ χBi)(χAj), χBi

〉
=

m∑
i=1

n∑
j=1

γic̃(i, j)µ1(Ai)
−j1/pµ2(Bi)

−1/q′δj
〈
Tφ(χAj ⊗ χBi)(χAj), χBi

〉
=

m∑
i=1

n∑
j=1

〈
Tφ(c̃(i, j)χAj ⊗ χBi)

(
δj

µ1(Aj)1/p
χAj

)
,

γi
µ2(Bi)1/q′

χBi

〉
= 〈Tφ(c̃)(f), g〉Lq(Ω2),Lq′ (Ω2) ,

where
f =

∑
j

δj
µ1(Aj)1/p

χAj and g =
∑
i

γi
µ2(Bi)1/q′

χBi .

Since ‖Tφ‖ ≤ 1, we deduce that

|uφ(v)| ≤ ‖Tφ(c̃)‖‖f‖p‖g‖q′ ≤ ‖c̃‖‖δ‖`p‖γ‖`q′ = ‖c‖ ≤ 1.

Conversely, assume that uφ ∈ Lq,p′(L1(Ω1), L∞(Ω2)) withLq,p′(uφ) ≤ 1. To prove that
φ is a Schur multiplier, we will use Proposition 2.5. Let n,m ∈ N∗, A = (A1, . . . , An) ∈
An,Ω1 and B = (B1, . . . , Bm) ∈ Am,Ω2 . Set

φij =
1

µ1(Aj)µ2(Bi)

∫
Aj×Bi

φ dµ1dµ2.

We want to show that the Schur multiplier on B(`np , `
m
q ) associated to the family m =

(φij)i,j has a norm less than 1. To prove that, let c =
∑

i,j c(i, j)ej ⊗ ei ∈ B(`np , `
m
q ), x =

(xj)
n
j=1, y = (yi)

m
i=1 in C be such that ‖c‖ ≤ 1, ‖x‖`np = 1, ‖y‖`q′ = 1. We have to show

that
| 〈[Tm(c)](x), y〉`mq ,`mq′ | ≤ 1.

This inequality can be rewritten as∣∣∣∣∣∑
i,j

c(i, j)
xjyi

µ1(Aj)µ2(Bi)

(∫
Aj×Bi

φ

)∣∣∣∣∣ ≤ 1. (2.9)
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Let v =
∑

i,j xjc(i, j)yiej⊗ei. According to (1.11), α′q,p′(v) ≤ 1. Now, let ṽ =
∑

i,j xjc(i, j)yiϕ
−1
A,1(ej)⊗

ψ−1
B,1(ei). We have

α′q,p′(ṽ) = α′q,p′(v) ≤ 1

and
ṽ =

∑
i,j

xjc(i, j)yi
µ1(Aj)µ2(Bi)

χAj ⊗ χBi .

By assumption, Lq,p′(uφ) ≤ 1, which implies that

| 〈uφ, ṽ〉 | =

∣∣∣∣∣∑
i,j

c(i, j)
xjyi

µ1(Aj)µ2(Bi)

(∫
Aj×Bi

φ

)∣∣∣∣∣
≤ α′q,p′(ṽ)

≤ 1,

and this is precisely the inequality (2.9).

Theorem 1.8 and Remark 2.8 allow us to reformulate the previous theorem. The fol-
lowing two corollaries are generalizations of Theorem 2.1. For the first one, we first
need the following remark.

Remark 2.8. Let X = L1(λ) and Y = L1(ν) for some σ-finite measure spaces (Ω1, λ) and
(Ω2, ν). Consider T ∈ B(L1(λ), L∞(ν)). By (1.5), there exists ψ ∈ L∞(λ× ν) such that

T = uψ.

(See (1.5) for the notation.)

(i) If 1 < q < +∞, Lq′(µ) has RNP so by (1.31),

B(L1(λ), Lq
′
(µ)) = L∞(λ, Lq

′
(µ)).

It means that if R ∈ B(X,Lq
′
(µ)), there exists a ∈ L∞(λ, Lq

′
(µ)) such that

∀f ∈ L1(λ), R(f) =

∫
Ω1

f(s)a(s)dλ(s).

(ii) If 1 < p < +∞, then using (1.2), (1.3) and (1.4) we obtain

B(Lp(µ), L∞(ν)) = (Lp(µ)
∧
⊗ L1(ν))∗ = L∞(ν, Lp

′
(µ)).

Thus, if S ∈ B(Lp(µ), L∞(ν)), there exists b ∈ L∞(ν, Lp
′
(µ)) such that

∀g ∈ Lp(λ), S(g)(·) = 〈g, b(·)〉 .

We deduce that if 1 < p, q < +∞, there exist a ∈ L∞(λ, Lq
′
(µ)) and b ∈ L∞(ν, Lp

′
(µ)) such

that for almost every (s, t) ∈ Ω1 × Ω2,

ψ(s, t) = 〈a(s), b(t)〉 .
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If T satisfies Theorem 1.8, the latter implies that for all f ∈ L1(λ),

T (f) =

∫
Ω1

〈a(s), b(·)〉 f(s) ds.

Using the same identifications we have for the following cases :

1. If q = 1 and 1 < p < +∞, then there exist a ∈ L∞(λ× µ) and b ∈ L∞(ν, Lp
′
(µ)) such

that for almost every (s, t) ∈ Ω1 × Ω2,

ψ(s, t) = 〈a(s, ·), b(t)〉 .

2. If 1 < q < +∞ and p = +∞, then there exist a ∈ L∞(λ, Lq
′
(µ)) and b ∈ L∞(ν × µ)

such that for almost every (s, t) ∈ Ω1 × Ω2,

ψ(s, t) = 〈a(s), b(t, ·)〉 .

3. If q = 1 and p = +∞, then there exist a ∈ L∞(λ× µ) and b ∈ L∞(ν × µ) such that for
almost every (s, t) ∈ Ω1 × Ω2,

ψ(s, t) = 〈a(s, ·), b(t, ·)〉 .

Corollary 2.9. Let (Ω1, µ1) and (Ω2, µ2) be two σ-finite measure spaces and let φ ∈ L∞(Ω1 ×
Ω2). Let 1 ≤ q ≤ p ≤ ∞. The following statements are equivalent :

(i) φ is a Schur multiplier on B(Lp(Ω1), Lq(Ω2)).

(ii) There are a measure space (a probability space when p 6= q) (Ω, µ), operators R ∈
B(L1(Ω1), Lp(µ)) and S ∈ B(Lq(µ), L∞(Ω2))) such that uφ = S ◦ I ◦R

L1(Ω1)
uφ //

R
��

L∞(Ω2)
OO

S

Lp(µ) �
�

I
// Lq(µ)

where I is the inclusion mapping.

In the following cases, (i) and (ii) are equivalent to :
If 1 < q ≤ p < +∞ :

(iii) There are a measure space (a probability space when p 6= q) (Ω, µ), a ∈ L∞(µ1, L
p(µ))

and b ∈ L∞(µ2, L
q′(µ)) such that, for almost every (s, t) ∈ Ω1 × Ω2,

φ(s, t) = 〈a(s), b(t)〉 .

If 1 = q < p < +∞ :

(iii) There are a probability space (Ω, µ), a ∈ L∞(µ1 × µ) and b ∈ L∞(µ2, L
q′(µ)) such that

for almost every (s, t) ∈ Ω1 × Ω2,

φ(s, t) = 〈a(s, ·), b(t)〉 .
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If 1 < q < +∞ and p = +∞ :

(iii) There are a probability space (Ω, µ), a ∈ L∞(µ1, L
p(µ)) and b ∈ L∞(µ2 × µ) such that

for almost every (s, t) ∈ Ω1 × Ω2,

φ(s, t) = 〈a(s), b(t, ·)〉 .

If q = 1 and p = +∞ :

(iii) There are a probability space (Ω, µ), a ∈ L∞(µ1 × µ) and b ∈ L∞(µ2 × µ) such that for
almost every (s, t) ∈ Ω1 × Ω2,

φ(s, t) = 〈a(s, ·), b(t, ·)〉 .

In this case, ‖Tφ‖ = inf ‖R‖‖I‖‖S‖ = inf ‖a‖‖b‖.

Remark 2.10. In the previous corollary, the condition (ii) implies that every φ ∈ L∞(Ω1×Ω2)
is a Schur multiplier on B(L1(Ω1), L1(Ω2)) and on B(L∞(Ω1), L∞(Ω2)).

In the discrete case, the previous corollary can be reformulated as follow.

Corollary 2.11. Let φ = (cij)i,j∈N ⊂ C, C ≥ 0 be a constant and let 1 ≤ q ≤ p ≤ +∞. The
following are equivalent :

(i) φ is a Schur multiplier on B(`p, `q) with norm < C.

(ii) There exist a measure space (a probability space when p 6= q) (Ω, µ) and two bounded
sequences (xj)j in Lp(µ) and (yi)i in Lq′(µ) such that

∀i, j ∈ N, cij = 〈xj, yi〉 and sup
i
‖yi‖q′ sup

j
‖xj‖p < C.

2.3.3 An application : the main triangle projection

Let mij = 1 if i ≤ j and mij = 0 otherwise. Let Tm be the Schur multiplier associated
with the family m = (mij). For any infinite matrix A = [aij], Tm(A) is the matrix
[bij] with bij = aij if i ≤ j and bij = 0 otherwise. For that reason, Tm is called the
main triangle projection. Similary, we define the n-th main triangle projection as the
Schur multiplier onMn(C) associated with the family mn = (mn

ij)1≤i,j≤n where mn
ij = 1

if i ≤ j and mn
ij = 0 otherwise. In [KP70], Kwapień and Pelczyński proved that if

1 ≤ q ≤ p ≤ +∞, p 6= 1, q 6= +∞, there exists a constant K > 0 such that for all n,

‖Tmn : B(`np , `
n
q )→ B(`np , `

n
q )‖ ≥ K ln(n),

and this order of growth is obtained for the Hilbert matrices. Those estimates imply
that Tm is not bounded on B(`p, `q). Bennett proved in [Ben76] that when 1 < p < q <
∞, Tm is bounded from B(`p, `q) into itself.

The results obtained in subsection 4.10 allow us to give a very short proof of the
unbounded case.
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Proposition 2.12. Let 1 ≤ q ≤ p ≤ +∞, p 6= 1, q 6= +∞. Then Tm is not bounded on
B(`p, `q).

Proof. Assume that Tm is bounded on B(`p, `q). By Corollary 2.9, there exist a measure
space (Ω, µ), (an)n ∈ Lp(µ) and (bn)n ∈ Lq

′
(µ) two bounded sequences such that, for all

i, j ∈ N,
mij = 〈aj, bi〉 . (2.10)

By boundedness, (an)n and (bn)n admit an accumluation point a ∈ Lp(µ) and b ∈ Lq′(µ)
respectively for the weak-* topology. Fix i ∈ N. For all j ≥ i, we have

〈ai, bj〉 = 1

so that we get
〈ai, b〉 = 1.

This equality holds for any i hence

〈a, b〉 = 1.

Now fix j ∈ N. For all i > j we have

〈ai, bj〉 = 0.

From this, we deduce as above that

〈a, b〉 = 0.

We obtained a contradiction so Tm cannot be bounded.

As a consequence, we have, by Proposition 2.5 :

Corollary 2.13. Let 1 ≤ q ≤ p ≤ +∞, p 6= 1, q 6= +∞. Let Ω1 = Ω2 = R with the Lebesgue
measure. Then φ ∈ L∞(R2) defined by

φ(s, t) :=

{
1, if s+ t ≥ 0

0 if s+ t < 0
, s, t ∈ R

is not a Schur multiplier on B(Lp(R), Lq(R)).

Remark 2.14. One could wonder whether the results of subsection 4.10 can be extended to the
case 1 ≤ p < q ≤ +∞, that is, if the boundedness of Tφ on B(Lp, Lq) implies that uφ has a
certain factorization. The fact that if p < q the main triangle projection is bounded tells us that
m is a Schur multiplier on B(`p, `q). Nevertheless, the argument used in the previous proof
shows that m cannot have a factorization like in (2.10). Therefore, the case p < q is more tricky.
For the discrete case, one can find in [Ben77, Theorem 4.3] a necessary and sufficient condition
for a family (mi,j) ⊂ C to be a Schur multiplier, for all values of p and q, using the theory of
q−absolutely summing operators.
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2.4 Inclusion theorems

In this section, we denote byM(p, q) the space of Schur multipliers on B(`p, `q).

First, we recall the inclusions relationships between the spacesM(p, q). Then we will
establish new results as applications of those obtained in Section 4.10.

Theorem 2.15. [Ben77, Theorem 6.1] Let p1 ≥ p2 and q1 ≤ q2 be given. ThenM(p1, q1) ⊂
M(p2, q2) with equality in the following cases:

(i) p1 = p2 = 1,

(ii) q1 = q2 =∞,

(iii) q2 ≤ 2 ≤ p2,

(iv) q2 < p1 = p2 < 2,

(v) 2 < q1 = q2 < p2.

Let (Ω1, µ1) and (Ω2, µ2) be two measure spaces. If M(p1, q1) ⊂ M(p2, q2), then
using Proposition 2.5 we have that any Schur multiplier on B(Lp1(Ω1), Lq1(Ω2)) is a
Schur multiplier on B(Lp2(Ω1), Lq2(Ω2)). Hence, the results in the previous theorem
hold true for all the Schur multipliers on B(Lp, Lq).

In the sequel, we will need the notion of type for a Banach space X , for which we
refer e.g. to [AK06]. Let (Ei)i∈N be a sequence of independent Rademacher random
variables. We have the following definition.

Definition 2.16. A Banach space X is said to have Rademacher type p (in short, type p) for
some 1 ≤ p ≤ 2 if there is a constant C such that for every finite set of vectors (xi)

n
i=n in X ,(

E

∥∥∥∥∥
n∑
i=1

Eixi

∥∥∥∥∥
p)1/p

≤ C

(
n∑
i=1

‖xi‖p
)1/p

. (2.11)

The smallest constant C for which (2.11) holds is called the type-p constant of X .

We will use the fact that for 1 ≤ p ≤ 2, Lp-spaces have type p and if 2 < p < +∞,
Lp-spaces have type 2 and that those are the best types for infinite dimensional Lp-
spaces (see for instance [AK06, Theorem 6.2.14]). We will also use the fact that the
type is stable by passing to quotients. Namely, if X has type p and E ⊂ X is a closed
subspace, then X/E has type p.

Proposition 2.17. (i) If 1 ≤ q < p ≤ 2, then

M(q, 1) *M(p, p).

Consequently, for any 1 ≤ r ≤ q,

M(q, r) *M(p, p).

(ii) If 2 ≤ p < q ≤ r, then
M(r, q) *M(p, p).
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(iii) If 1 < q < 2 < p < +∞ or 1 < p < 2 < q < +∞, then

M(q, q) *M(p, p).

To prove this proposition, we will need the following definiton and lemma.

Definition 2.18. Let X and Y be Banach spaces, u ∈ B(X, Y ) and 1 ≤ p ≤ ∞. We say that
u ∈ SQp(X, Y ) if there exists a closed subspace Z of a quotient of a Lp-space and two operators
A ∈ B(X,Z) and B ∈ B(Z, Y ) such that u = BA.
Then ‖u‖SQp = inf ‖A‖‖B‖ defines a norm on SQp(X, Y ) and (SQp(X, Y ), ‖.‖SQp) is a Ba-
nach space.

Lemma 2.19. Let W,X, Y, Z be Banach spaces and let u ∈ B(X, Y ), s ∈ B(W,X), v ∈
B(Y, Z) such that s is a quotient map, v is a linear isometry and vus ∈ Γp(W,Z). Then
u ∈ SQp(X, Y ).

Proof. By assumption, there exist a Lp-space U and two operators a ∈ B(W,U) and
b ∈ B(U,Z) such that the following diagram commutes

W
s // //

a

$$

X
u // Y �

� v // Z

U

b

::

Since v is an isometry, V := v(Y ) ⊂ Z is isometrically isomorphic to Y . Let ψ : Y → V
be the isometric isomorphism induced by v.
SetF := {x ∈ U such that b(x) ∈ V } . Since vus = ba, we have, for allw ∈ W, v(us(w)) =
b(a(w)), so that a(w) ∈ F . This implies that a(W ) ⊂ F . We still denote by a the
mapping a : W → F and by b the restriction of b to F . Denote by b̂ the mapping
b̂ = ψ−1 ◦ b : F → Y . Then we have the following commutative diagram

W
s // //

a
  

X
u // Y

F
b̂

>>

Now, set E := a(ker(s)) and let Q : F → F/E be the canonical mapping. Clearly,
Q ◦ a : W → F/E vanishes on ker(s), so that we have a mapping

Q̂ ◦ a : W/ ker(s)→ F/E

induced by Q ◦ a.
Since s is a quotient map, we denote by ŝ the isometric isomorphism

ŝ : W/ ker(s)→ X.

Define
A = Q̂ ◦ a ◦ ŝ−1 : X → F/E.

b̂ vanishes on E so that we have a mapping

B : F/E → Y.
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Finally, it is easy to check that u = BA, that is, we have the following commutative
diagram

X u //

A
��

Y

F/E

B

CC

which concludes the proof.

Remark 2.20. To prove Lemma 2.19, one can use a result of Kwapień characterizing elements
of SQp, as follows : a Banach space X is isomorphic to an SQq-space if and only if there exists
a constant K ≥ 1 such that for any n ≥ 1, for any n× n matrix [aij] and for any x1, . . . , xn in
X , (∑

i

∥∥∥∥∥∑
j

aijxj

∥∥∥∥∥
q)1/q

≤ K‖[aij] : `nq → `nq ‖

(∑
j

‖xj‖q
)1/q

.

However, the proof presented in here also works if we replace in the statement of the lemma
Γp (respectively SQp) by the space of operators that can be factorized by some Banach space L
(respectively by a subspace of a quotient of L).

Proof of Proposition 2.17. (i). Let Ω := [0, 1] and λ be the Lebesgue measure on Ω. Let
Iq : Lq(λ)→ L1(λ) be the inclusion mapping. By the classical Banach space theory (see
[AK06, Theorem 2.3.1] and [AK06, Theorem 2.5.7]) there exist a quotient map σ : `1 �
Lq(λ) and an isometry J : L1(λ) ↪→ `∞. Let φ ∈ `∞(N2) be such that

uφ = JIqσ

(by (1.5) any continuous linear map `1 → `∞ is a certain uφ for φ ∈ L∞(N × N)). We
have the following factorization

`1

uφ //

σ
��

`∞OO

J

Lq(λ) �
�

Iq
// L1(λ)

According to Theorem 2.9, φ ∈M(q, 1).

Assume that φ ∈ M(p, p). Then, again by Theorem 2.9, we have uφ ∈ Γp(`1, `∞)
and therefore, by Lemma 2.19, there exist an SQp-space X and two operators α ∈
B(Lq(λ), X) and β ∈ B(X,L1(λ)) such that Iq = βα.
Let (Ei)i∈N be a sequence of independant Rademacher random variables. Let n ∈ N∗
and f1, . . . , fn ∈ Lq(λ).

E

∥∥∥∥∥
n∑
j=1

Ejfj

∥∥∥∥∥
L1(λ)

= E

∥∥∥∥∥
n∑
j=1

Ejβα(fj)

∥∥∥∥∥
L1(λ)

≤ ‖β‖E

∥∥∥∥∥
n∑
j=1

Ejα(fj)

∥∥∥∥∥
X

.
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But X has type p so there exists a constant C1 > 0 such that

E

∥∥∥∥∥
n∑
j=1

Ejfj

∥∥∥∥∥
L1(λ)

≤ C1‖β‖

(
n∑
j=1

‖α(fj)‖pX

)1/p

≤ C1‖β‖‖α‖

(
n∑
j=1

‖fj‖pLq(λ)

)1/p

.

By Khintchine inequality, there exists C2 > 0 such that∥∥∥∥∥∥
(∑
j=1

|fj|2
)1/2

∥∥∥∥∥∥
L1(λ)

≤ C2E

∥∥∥∥∥
n∑
j=1

Ejfj

∥∥∥∥∥
L1(λ)

.

Thus, setting K := C1C2‖α‖‖β‖, we obtained the inequality∥∥∥∥∥∥
(∑
j=1

|fj|2
)1/2

∥∥∥∥∥∥
L1(λ)

≤ K

(
n∑
j=1

‖fj‖pLq(λ)

)1/p

.

LetE1, . . . , En be disjoint measurable subsets of [0, 1] such that for all 1 ≤ j ≤ n, λ(Ej) =
1

n
. Set fj := χEj . Then

∑
j

|fj|2 = 1 and ‖f‖Lq(λ) = n−1/q.

Hence, applying the previous inequality to the fj’s, we obtain

1 ≤ Kn1/p−1/q.

Since q < p, this inequality can’t hold for all n, so we obtained a contradiction.

Finally, notice that if 1 ≤ r ≤ q, then by Theorem 2.15, M(q, 1) ⊂ M(q, r). Thus,
M(q, r) *M(p, p).

(ii). By Proposition 2.5 and using duality, it is easy to prove that for all s, t ∈ [1,∞], φ

is a Schur multiplier on B(`s, `t) if and only if φ̃ is a Schur multiplier on B(`t′ , `s′), where
φ̃ is defined for all i, j ∈ N by φ̃(i, j) = φ(j, i).
Let 2 ≤ p < q ≤ r. Then 1 ≤ r′ ≤ q′ < p′ ≤ 2. If we assume thatM(r, q) ⊂M(p, p) then
the latter implies M(q′, r′) ⊂ M(p′, p′), which is, by (i), a contradiction. This proves
(ii).

(iii). By duality, it is enough to consider the case 1 < q < 2 < p < +∞. Assume that
M(q, q) ⊂M(p, p). Using the notations introduced in the proof of (i), let σ : `1 → `q be
a quotient map and J : `q → `∞ be an isometry. Let φ ∈ L∞(N× N) be such that

uφ = JI`qσ,

where I`q : `q → `q is the identity map. Then φ ∈ M(q, q). By assumption, φ ∈
M(p, p). By Lemma 2.19, this implies that I`q ∈ SQp(`q, `q). Clearly, this implies that
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`q is isomorphic to an SQp-space. But `q does not have type 2 and any SQp has type 2.
This is a contradiction, soM(q, q) *M(p, p).

Theorem 2.21. We haveM(q, q) ⊂ M(p, p) if and only if 1 ≤ p ≤ q ≤ 2 or 2 ≤ q ≤ p ≤
+∞.

Proof. By Proposition 2.17 and duality, we only have to show that when 1 ≤ p ≤ q ≤ 2,
M(q, q) ⊂M(p, p).
We saw in the proof Proposition of 2.17 (iii) that ifM(q, q) ⊂M(p, p) then `q is isomor-
phic to an SQp-space. The converse holds true. Indeed, assume that `q is isomorphic
to an SQp-space. Then by approximation, any Lq-space is isomorphic to an SQp-space.
Hence any element of Γq(`1, `∞) factors through an SQp-space. By the lifting property
of `1 and the extension property of `∞, this implies that any element of Γq(`1, `∞) fac-
tors through an Lp-space, that is Γq(`1, `∞) ⊂ Γp(`1, `∞). By Corollary 2.11, this implies
thatM(q, q) ⊂M(p, p).

Assume that 1 ≤ p ≤ q ≤ 2. By [AK06, Theorem 6.4.19], there exists an isometry
from `q into an Lp-space, obtained by using q−stable processes. Hence, `q is an SQp-
space. This concludes the proof.

2.5 Perspectives

In Section 2.1, we saw that any bounded family (mij)i,j∈N of complex numbers is a
Schur multiplier on S2(`2). Moreover, Theorem 2.1 together with a dual argument give
a characterization of Schur multipliers on S1(`2) and B(`2). However, there is no de-
scription of Schur multipliers on Sp(`2) when 1 < p 6= 2 < ∞. An interesting and
difficult problem would be to find an explicit characterization of such multipliers.

The main result of this chapter is a characterization of Schur multiplier on B(`p, `q)
in the case when q ≤ p. As said in Remark 2.14, such characterization cannot hold
when p < q, because in this case the main triangular projection is bounded on B(`p, `q).
In [Ben77], a necessary and sufficient condition is given for all values of p and q, but it
does not allow us to give a handy condition. It is a challenge to find a characterization
in the case p < q which is similar to the one given in the case q ≤ p, that is, a character-
ization that would imply that the elements of the family (mij) have a certain form.

Finally, we proved in Section 2.4 some inclusion relationships between the spaces
M(p, q) of Schur multipliers on B(`p, `q). The previous results of inclusions were ob-
tained by Bennett, where he used, as said above, a characterization of Schur multipliers
on B(`p, `q) (see [Ben77, Theorem 6.1]). This characterization uses the theory of abso-
lutely summing operators (see the definition e.g. in [Ben77]). The study of such oper-
ators reveals that in some particular cases, the space of absolutely summing operators
are nothing but the space of bounded operators (see [Ben77, Proposition 5.1]). This is
how Bennett could prove his results concerning the inclusions. However, when the
two spaces are different, it becomes more complicated to compare the spacesM(p, q),
even in the case q ≤ p with the new characterization given in Subsection 2.3.2. There-
fore, an open problem is to finish the classification of such spaces. For example, if
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1 < p ≤ 2, do we have
M(p, 1) =M(p, p)?
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Chapter 3

Bilinear Schur multipliers

——————————————————————–

In this chapter, we first define bilinear Schur multipliers as bilinear mappings de-
fined on the product of two copies of S2(`2). When such mappings are valued in Sr(`2),
we call them bilinear Schur multipliers into Sr. Like in the linear case, any bounded
family M = {mikj}i,k,j≥1 defines a bilinear Schur multiplier into S2. Similarly, we de-
fine continuous bilinear multipliers. In this case, the operators are defined on a product
of S2(L2(Ω))-spaces.

The main question of this chapter is to characterize bilinear Schur multipliers into
S1. Theorem 3.4 gives a formula for the norm of those operators in the finite dimen-
sional case. As a consequence, we obtain a characterization of bilinear Schur mulipli-
ers into S1(`2) in terms of uniform boundedness of a family of linear Schur multipliers.
Following the same ideas, we obtain the main result of this chapter, Theorem 3.8, which
describes continuous bilinear Schur multipliers into S1. A use of Theorem 1.25 allows
us to give an explicit characterization of such operators.

3.1 Definition and notations

In this first section, we define bilinear Schur multipliers in the classical case, that is, as
mappings defined on S2(`2)× S2(`2). The terminology below is adopted from [ER90],
where multilinear Schur products are defined and studied in the context of completely
bounded maps. Recall that (Eij)i,j∈N denotes the unit matrices of B(`2).

Definition 3.1. Let 1 ≤ r ≤ ∞. A three-dimensional matrix M = {mikj}i,k,j≥1 with entries
in C is said to be a bilinear Schur multiplier into Sr if the following action

M(A,B) :=
∑
i,j,k≥1

mikjaikbkjEij, A = {aij}i,j≥1, B = {bij}i,j≥1 ∈ S2,

defines a bounded bilinear operator from S2 × S2 into Sr.

Of course we can define as well a notion of bilinear Schur multiplier from Sp × Sq
into Sr, whenever 1 ≤ p, q, r ≤ ∞. The case when p = q = r = ∞ was initiated in
[ER90] and we will study this case in Chapter 4 in the case of complete boundedness.
Let us mention another (easier) case which will be used in Chapter 5.
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Lemma 3.2. A matrix M = {mikj}i,k,j≥1 is a bilinear Schur multiplier into S2 if and only if
supi,j,k≥1 |mikj| <∞. Moreover,

‖M : S2 × S2 → S2‖ = sup
i,j,k≥1

|mikj|.

Proof. The inequality ‖M : S2×S2 → S2‖ ≤ supi,j,k≥1 |mikj| is achieved by the following
computation. Consider A = {aik}i,k≥1 and B = {bkj}k,j≥1 in S2. Then applying the
Cauchy-Schwarz inequality, we have

‖M(A,B)‖2
2 =

∥∥∥ ∑
i,j,k≥1

mikjaikbkjEij

∥∥∥2

2
=
∑
i,j≥1

∣∣∣∑
k≥1

mikjaikbkj

∣∣∣2
≤ sup

i,j,k≥1
|mikj|2

∑
i,j≥1

(∑
k≥1

|aikbkj|
)2

≤ sup
i,j,k≥1

|mikj|2
∑
i,j≥1

∑
k≥1

|aik|2
∑
k≥1

|bkj|2

≤ sup
i,j,k≥1

|mikj|2‖A‖2
2‖B‖2

2.

The converse inequality is obtained from

‖M : S2 × S2 → S2‖ ≥ ‖M(Eik, Ekj)‖2 = |mikj|,

taking the supremum over all i, j, k ≥ 1.

3.2 Bilinear Schur multipliers valued in S1

The aim of this section is to give a criteria when a matrix M is a bilinear Schur multi-
plier from S2 × S2 into S1. The main result is Theorem 3.4 which gives, for n ∈ N, a
formula for the norm of a bilinear Schur multipliers from S2

n × S2
n into S1

n in terms of
norms of Schur multipliers from Mn into Mn.

We will work with the subspace of Mn ⊗min Mn spanned by the Erk ⊗ Eks, for 1 ≤
r, k, s ≤ n. The next lemma provides a description of this subspace. We let (e1, . . . , en)
denote the standard basis of `∞n .

Lemma 3.3. The linear mapping θ : `∞n (Mn)→Mn ⊗min Mn such that

θ(ek ⊗ Ers) = Erk ⊗ Eks, 1 ≤ k, r, s ≤ n,

is an isometry.

Proof. Take y =
∑n

k=1 ek ⊗ yk ∈ `∞n (Mn), where yk =
∑n

r,s=1 yk(r, s)Ers. From the defini-
tion of θ we have

θ(y) =
n∑

r,s,k=1

yk(r, s)Erk ⊗ Eks.
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Recall the isometric isomorphism J0 given by (1.21). Then

J0θ(y) =
n∑

r,s,k=1

yk(r, s)E(r,k),(k,s).

Let a = {ark}nr,k=1, b = {bls}nl,s=1 ∈ `2
n2 . Then we have

〈
J0θ(y)b, a

〉
=

n∑
r,s,k=1

yk(r, s)
〈
E(r,k),(k,s)(b), a

〉
=

n∑
r,s,k=1

yk(r, s)arkbks.

Therefore, using the Cauchy-Schwarz inequality, we obtain

∣∣〈J0θ(y)b, a
〉∣∣ ≤ n∑

k=1

∣∣∣ n∑
r,s=1

yk(r, s)arkbks

∣∣∣
≤

n∑
k=1

‖yk‖
( n∑
r=1

|ark|2
) 1

2
( n∑
s=1

|bks|2
) 1

2

≤ max
1≤k≤n

‖yk‖
n∑
k=1

( n∑
r=1

|ark|2
) 1

2
( n∑
s=1

|bks|2
) 1

2

≤ max
1≤k≤n

‖yk‖
( n∑
k,r=1

|ark|2
) 1

2
( n∑
k,s=1

|bks|2
) 1

2

≤ max
1≤k≤n

‖yk‖‖a‖2‖b‖2.

It follows that ‖θ(y)‖ ≤ max1≤k≤n ‖yk‖.
Now fix 1 ≤ k0 ≤ n. Take arbitrary α = {αr}nr=1 and β = {βs}ns=1 in `2

n. Then define

ark :=

{
αr, if k = k0

0 otherwise , bls :=

{
βs, if l = k0

0 otherwise .

Then 〈
J0θ(y)b, a

〉
= 〈yk0(β), α〉

and moreover, ‖a‖2 = ‖α‖2, ‖b‖2 = ‖β‖2. Therefore, we have ‖yk0‖ ≤ ‖θ(y)‖. Hence,
‖θ(y)‖ ≥ max1≤k≤n ‖yk‖.

The following theorem is the main result of this section.

Theorem 3.4. Let n ∈ N. Let M = {mikj}ni,k,j=1 be a three-dimensional matrix. For any
1 ≤ k ≤ n, let M(k) be the (classical) matrix given by M(k) = {mikj}ni,j=1. We also denote by
M(k) : Mn →Mn the Schur multiplier associated to the family M(k). Then∥∥M : S2

n × S2
n → S1

n

∥∥ = sup
1≤k≤n

∥∥M(k) : Mn →Mn

∥∥.
Proof. According to the isometric identity (1.1), the bilinear map M : S2

n × S2
n → S1

n

induces a linear map M̃ : S2
n⊗̂S2

n → S1
n with ‖M‖ = ‖M̃‖. Consider

TM = (M̃J−1)∗ : Mn →Mn ⊗min Mn,
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where J is given by Lemma 1.15 and where we apply (1.23). This lemma implies that

‖TM‖ =
∥∥M : S2

n × S2
n → S1

n

∥∥. (3.1)

For any 1 ≤ r, s ≤ n, we have〈
TM(Ers), Eij ⊗ Ekl

〉
=
〈
Ers, M̃J−1(Eij ⊗ Ekl)

〉
=
〈
Ers, M̃(Eik ⊗ Ejl)

〉
=

{
mikl〈Ers, Eil〉, if k = j

0 otherwise

=

{
mikl, if k = j, r = i, s = l

0 otherwise ,

for all 1 ≤ i, j, k, l ≤ n. Hence

TM(Ers) =
n∑
k=1

mrksErk ⊗ Eks.

This shows that TM maps into the range of the operator θ introduced in Lemma 3.3 and
that

TM(Ers) =
n∑
k=1

mrks θ(ek ⊗ Ers).

By linearity this implies that for any C ∈Mn,

TM(C) = θ

( n∑
k=1

ek ⊗ [M(k)](C)

)
.

Appyling Lemma 3.3, we deduce that

‖TM(C)‖ = max
k

∥∥[M(k)](C)
∥∥, C ∈Mn.

From this identity we obtain that ‖TM‖ = maxk ‖M(k)‖. Combining with (3.1) we
obtain the desired identity ‖M‖ = maxk ‖M(k)‖.

For the sake of completeness we give an infinite dimensional version of the previ-
ous theorem.

Theorem 3.5. A three-dimensional matrix M = {mikj}i,k,j≥1 is a bilinear Schur multiplier
into S1 if and only if the matrix M(k) = {mikj}i,j≥1 is a linear Schur multiplier on S∞ for
every k ≥ 1 and supk≥1 ‖M(k) : S∞ → S∞‖ <∞. Moreover,∥∥M : S2 × S2 → S1

∥∥ = sup
k≥1

∥∥M(k) : S∞ → S∞
∥∥

in this case.
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Proof. Consider a three-dimensional matrixM = {mikj}i,k,j≥1 and setM(k) = {mikj}i,j≥1.
For any n ≥ 1, let

M(n) = {mikj}1≤i,j≤n and M(n)(k) = {mikj}1≤i,k,j≤n

be the standard truncations of these matrices.
We may identify S2

n (respectively S∞n ) with the subspace of S2 (respectively S∞)
spanned by {Eij : 1 ≤ i, j ≤ n}. Then the union ∪n≥1S2

n is dense in S2. Hence by
a standard density argument, M is a bilinear Schur multiplier into S1 if and only if
supn≥1 ‖M(n) : S2

n × S2
n → S1

n

∥∥ <∞, and in this case∥∥M : S2 × S2 → S1
∥∥ = sup

n≥1

∥∥M(n) : S2
n × S2

n → S1
n

∥∥.
Likewise ∪n≥1S∞n is dense in the space S∞ of all compact operators, for any k ≥ 1M(k)
is a linear Schur multiplier on S∞ if and only if supn≥1 ‖M(n)(k) : S∞n → S∞n

∥∥ <∞, and∥∥M(k) : S∞ → S∞
∥∥ = sup

n≥1

∥∥M(n)(k) : S∞n → S∞n
∥∥.

in this case.
Combining the above two approximation results with Theorem 3.4, we obtain the

result.

Theorem 3.5 together with Theorem 2.1 yield the following result.

Corollary 3.6. A three-dimensional matrix M = {mikj}i,k,j≥1 is a bilinear Schur multiplier
into S1 if and only if there exist a Hilbert space E and two bounded families (ξik)i,k≥1 and
(ηjk)j,k≥1 in E such that

mikj = 〈ξik, ηjk〉, i, k, j ≥ 1.

Moreover ∥∥M : S2 × S2 → S1
∥∥ = inf

{
sup
i,k
‖ξik‖ sup

j,k
‖ηjk‖

}
,

where the infimum runs over all possible such factorizations.

3.3 Continuous bilinear Schur multipliers

In this section, we first define and give few properties of continuous bilinear Schur
multipliers. Those mappings are defined on a product of S2(L2(Ω))−spaces. When
Ω = N with the counting measure, the definition is nothing but the one given in Section
3.1. The main result is Theorem 3.8 which gives a necessary and sufficient condition for
a continuous bilinear Schur multiplier to be valued in S1. This result is the continuous
analogue of Theorem 3.5 and it will play an important role in Chapter 4.
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3.3.1 Definition

Let (Ω1, µ1), (Ω2, µ2) and (Ω3, µ3) be three σ-finite measure spaces, and let φ ∈ L∞(Ω1 ×
Ω2 × Ω3). For any J ∈ L2(Ω1 × Ω2) and K ∈ L2(Ω2 × Ω3), the function

Λ(φ)(J,K) : (t1, t3) 7→
∫

Ω2

φ(t1, t2, t3)J(t1, t2)K(t2, t3) dµ2(t2)

is a well-defined element ofL2(Ω1×Ω3) withL2-norm less than ‖φ‖∞‖J‖2‖K‖2. Indeed,
by the Cauchy-Schwarz inequality we have∫

Ω1×Ω3

(∫
Ω2

|φ(t1, t2, t3)J(t1, t2)K(t2, t3)|dµ2(t2)

)2

dµ1(t1)dµ3(t3)

≤ ‖φ‖2
∞

∫
Ω1×Ω3

(∫
Ω2

|J(t1, t2)K(t2, t3)|dµ2(t2)

)2

dµ1(t1)dµ3(t3)

≤ ‖φ‖2
∞

∫
Ω1×Ω3

(∫
Ω2

|J(t1, t2)|2dµ2(t2)

)(∫
Ω2

|K(t2, t3)|2dµ2(t2)

)
dµ1(t1)dµ3(t3)

≤ ‖φ‖2
∞

(∫
Ω1×Ω2

|J(t1, t2)|2dµ1(t1)dµ2(t2)

)(∫
Ω2×Ω3

|K(t2, t3)|2dµ2(t2)dµ3(t3)

)
.

Thus Λ(φ) is a bounded bilinear map from L2(Ω1×Ω2)×L2(Ω2×Ω3) into L2(Ω1×Ω3).
By the isometric identification between L2(Ω1 × Ω2) and S2(L2(Ω1), L2(Ω2)) given by
(1.16), and their analogues for (Ω2,Ω3) and (Ω1,Ω3), we may consider that we actually
have a bounded bilinear map

Λ(φ) : S2(L2(Ω1), L2(Ω2))× S2(L2(Ω2), L2(Ω3)) −→ S2(L2(Ω1), L2(Ω3)).

We call Λ(φ) a continuous bilinear Schur multiplier.

Let E(Ω1,Ω2,Ω3) = S2(L2(Ω1), L2(Ω2))
∧
⊗ S2(L2(Ω2), L2(Ω3))

∧
⊗ S2(L2(Ω3), L2(Ω1)).

By (1.1), (1.2) and (1.12), we have isometric identifications,

E(Ω1,Ω2,Ω3)∗ = B2(S2(L2(Ω1), L2(Ω2))× S2(L2(Ω2), L2(Ω3)),S2(L2(Ω1), L2(Ω3)))

for the duality pairing given by〈
T,X ⊗ Y ⊗ Z

〉
= tr

(
T (X, Y )Z

)
for any bounded bilinear T : S2(L2(Ω1), L2(Ω2))×S2(L2(Ω2), L2(Ω3))→ S2(L2(Ω1), L2(Ω3))
and for anyX ∈ S2(L2(Ω1), L2(Ω2)), Y ∈ S2(L2(Ω2), L2(Ω3)) andZ ∈ S2(L2(Ω3), L2(Ω1)).

Proposition 3.7. The mapping

Λ: L∞(Ω1 × Ω2 × Ω3) −→ E(Ω1,Ω2,Ω3)∗

defined above is a w∗-continuous isometry.
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Proof. WriteE = E(Ω1,Ω2,Ω3) for simplicity. Consider three functions J ∈ L2(Ω1×Ω2),
K ∈ L2(Ω2 × Ω3) and L ∈ L2(Ω3 × Ω1). It is easy to check that the function

ϕ : (t1, t2, t3) 7→ J(t1, t2)K(t2, t3)L(t3, t1)

belongs toL1(Ω1×Ω2×Ω3). Further ifXJ ∈ S2(L2(Ω1), L2(Ω2)), YK ∈ S2(L2(Ω2), L2(Ω3))
and ZL ∈ S2(L2(Ω3), L2(Ω1)) denote the Hilbert-Schmidt operators associated with J ,
K and L, respectively, then it follows from above that

〈
Λ(φ), XJ ⊗ YK ⊗ ZL

〉
E∗,E

=

∫
Ω1×Ω2×Ω3

φϕ = 〈φ, ϕ〉L∞,L1

for any φ ∈ L∞(Ω1 × Ω2 × Ω3). This readily implies that Λ is w∗-continuous.
We already showed that Λ is a contraction, let us now prove that it is an isometry.

Let φ ∈ L∞(Ω1×Ω2×Ω3), with ‖φ‖∞ > 1. We aim at showing that ‖Λ(φ)‖E∗ > 1. There
exist a function ϕ ∈ L1(Ω1 × Ω2 × Ω3) such that ‖ϕ‖1 = 1 and 〈φ, ϕ〉L∞,L1 > 1. By the
density of simple functions in L1, we may assume that

ϕ =
∑
i,j,k

mijk χF 1
i
⊗ χF 2

j
⊗ χF 3

k
,

where (F 1
i )i (respectively (F 2

j )j and (F 3
k )k) is a finite family of pairwise disjoint mea-

surable subsets of Ω1 (respectively of Ω2 and Ω3) and mijk ∈ C for any i, j, k. Let ψ ∈ E
be defined by

ψ =
∑
i,j,k

mijk

(
χF 1

i
⊗ χF 2

j

)
⊗
(
χF 2

j
⊗ χF 3

k

)
⊗
(
χF 3

k
⊗ χF 1

i

)
.

For any i, j, k, we have〈
Λ(φ),

(
χF 1

i
⊗ χF 2

j

)
⊗
(
χF 2

j
⊗ χF 3

k

)
⊗
(
χF 3

k
⊗ χF 1

i

)〉
E∗,E

=

∫
Ω1×Ω2×Ω3

φ(t1, t2, t3)χF 1
i
(t1)χF 2

j
(t2)χF 3

k
(t3) dµ1(t1)dµ2(t2)dµ3(t3) .

This implies that
〈Λ(φ), ψ〉E∗,E = 〈φ, ϕ〉L∞,L1 ,

and hence that 〈Λ(φ), ψ〉E∗,E > 1. Now observe that by the definition of the projective
tensor product we have

‖ψ‖E ≤
∑
i,j,k

|mijk|‖χF 1
i
⊗ χF 2

j
‖2‖χF 2

j
⊗ χF 3

k
‖2‖χF 3

k
⊗ χF 2

j
‖2.

Moreover,
‖χF 1

i
⊗ χF 2

j
‖2 = ‖χF 1

i
‖2‖χF 2

j
‖2 = λ1(F 1

i )
1
2λ2(F 2

j )
1
2 .

Likewise, ‖χF 2
j
⊗ χF 3

k
‖2 = λ2(F 2

j )
1
2λ3(F 3

k )
1
2 and ‖χF 3

k
⊗ χF 2

j
‖2 = λ3(F 3

k )
1
2λ1(F 1

i )
1
2 . We

deduce that
‖ψ‖E ≤

∑
i,j,k

|mijk|λ1(F 2
j )λ2(F 2

j )λ3(F 3
k ).
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The right-hand side of this inequality is nothing but the L1-norm of ϕ. Thus we have
proved that ‖ψ‖E ≤ ‖ϕ‖1 = 1. This implies that ‖Λ(φ)‖E∗ > 1 as expected.

3.3.2 S1-boundedness

In this section, we will determine which functions φ ∈ L∞(Ω1 × Ω2 × Ω3) are such that
Λ(φ) maps S2(L2(Ω1), L2(Ω2))× S2(L2(Ω2), L2(Ω3)) into S1(L2(Ω1), L2(Ω3)).

Theorem 3.8. Let (Ω1, µ1), (Ω2, µ2) and (Ω3, µ3) be measure spaces and let Hi = L2(Ωi), i =
1, 2, 3. Let φ ∈ L∞(Ω1 × Ω2 × Ω3). The following are equivalent:

(i) Λ(φ) ∈ B2(S2(H1, H2)× S2(H2, H3),S1(H1, H3)).

(ii) There exist a Hilbert space H and two functions

a ∈ L∞(Ω1 × Ω2;H) and b ∈ L∞(Ω2 × Ω3;H)

such that
φ(t1, t2, t3) = 〈a(t1, t2), b(t2, t3)〉

for a.-e. (t1, t2, t3) ∈ Ω1 × Ω2 × Ω3.

In this case
‖Λ(φ) : S2 × S2 → S1‖ = inf ‖a‖∞‖b‖∞.

Proof. Proof of (i)⇒ (ii)
Assume that Λ(φ) ∈ B2(S2(H1, H2)× S2(H2, H3),S1(H1, H3)).
By the equalities S2(H1, H2) = S2(H2, H1) and S2(H2, H3) = S2(H3, H2) which are

consequences of (1.16), we may asssume that Λ(φ) is a bounded bilinear mapping from
S2(H2, H1)× S2(H3, H2) into S1(H3, H1).

According to the identification

B2(S2 × S2,S2) = B(S2
∧
⊗ S2,S2)

provided by (1.1), we may regard Λ(φ) as a bounded linear operator

Λ(φ) : S2(H2, H1)
∧
⊗ S2(H3, H2) −→ S1(H3, H1).

Let
Φ: S2(H2, H1)

∧
⊗ S2(H3, H2) −→ S1(H2)

γ
⊗ S1(H3, H1)

be the isomorphism given by Lemma 1.14 (where we naturally identify H2 with its
conjugate space H2). Let w = Λ(φ) ◦ Φ−1 be the composition map. By the identifica-
tions (1.12) and (1.20) given by trace duality, its adjoint map w∗ from S1(H3, H1)∗ into(
S1(H2)

γ
⊗ S1(H3, H1)

)∗ can be regarded as a map

v : B(H1, H3) −→ B(H2)⊗B(H1, H3).

We consider the inclusion
L∞(µ2) ⊂ B(H2)
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obtained by identifying any element of L∞(µ2) with its associated multiplication oper-
ator L2(µ2)→ L2(µ2). We shall now analyse v to get to property (3.2) below.

Take any c, ξ ∈ H1, c′, d′ ∈ H2 and d, η ∈ H3. Regard (d′ ⊗ c′)⊗ (d⊗ c) as an element
of S1(H2)⊗ S1(H3, H1). Then

Φ−1
(
(d′ ⊗ c′)⊗ (d⊗ c)

)
= (c′ ⊗ c)⊗ (d⊗ d′),

regarded as an element of S2(H2, H1) ⊗ S2(H3, H2). Consider ξ ⊗ η as an element of
B(H1, H3). Then〈

v(ξ ⊗ η), (d′ ⊗ c′)⊗ (d⊗ c)
〉

=
〈
ξ ⊗ η, w

(
(d′ ⊗ c′)⊗ (d⊗ c)

)〉
=
〈
ξ ⊗ η,Λ(φ)

(
(c′ ⊗ c)⊗ (d⊗ d′)

)〉
B(H1,H3),S1(H3,H1)

=

∫
Ω1×Ω2×Ω3

φ(t1, t2, t3)ξ(t1)η(t3)c′(t2)d′(t2)c(t1)d(t3) dµ1(t1)dµ2(t2)dµ3(t3) .

For ξ, η, c, d as above, consider

S =
〈
v(ξ ⊗ η), • ⊗ (d⊗ c)

〉
∈ B(H2).

Then the above calculation shows that S : L2(µ2)→ L2(µ2) is the multiplication opera-
tor associated to the function

t2 7→
∫

Ω1×Ω3

φ(t1, t2, t3)ξ(t1)η(t3)c(t1)d(t3) dµ1(t1)dµ3(t3) .

Thus S belongs to L∞(µ2).
This implies that for any (ξ, η) ∈ H1×H3, v(ξ⊗η) belongs to the spaceL∞(µ2)⊗B(H1, H3).

Since v is w∗-continuous and H1 ⊗H3 is w∗-dense in B(H1, H3), this implies that

v
(
B(H1, H3)

)
⊂ L∞(µ2)⊗B(H1, H3). (3.2)

Consider now the restriction v0 = v|K(H1,H3) of v to the subspace K(H1, H3) of com-
pact operators from H1 into H3. By Lemma 1.19 and (3.2), we may write

v0 : K(H1, H3) −→ L∞σ (µ2;B(H1, H3)).

Corollary 1.17 provides an identification

B
(
K(H1, H3), L∞σ (µ2;B(H1, H3))

)
= L∞σ

(
µ2;B(K(H1, H3),B(H1, H3))

)
.

Let φ̃ ∈ L∞σ
(
µ2;B(K(H1, H3),B(H1, H3))

)
be corresponding to v0 in this identification.

Then by the preceding computation we have that for any c, ξ ∈ H1 and d, η ∈ H3,

〈[
φ̃(t2)

]
(ξ ⊗ η), d⊗ c

〉
=

∫
Ω1×Ω3

φ(t1, t2, t3)ξ(t1)η(t3)c(t1)d(t3) dµ1(t1)dµ3(t3)

for a.e. t2 in Ω2.
Following Subsection 2.2, for any J ∈ L2(Ω1 × Ω3), we let XJ ∈ S2(H1, H3) be
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the Hilbert-Schmidt operator with kernel J . Then the above formula shows that for
J = ξ ⊗ η, we have [

φ̃(t2)
]
(XJ) = Xφ(·,t2,·)J for a.e. t2. (3.3)

By density of H1 ⊗ H3 in L2(Ω1 × Ω3), we deduce that (3.3) holds true for any J ∈
L2(Ω1×Ω3). This means that for a.e. t2, φ(· , t2, · ), regarded as an element ofL∞(Ω1×Ω3),
is a continuous Schur multiplier, whose corresponding operator is

φ̃(t2) = Rφ(·,t2,·) : K(L2(Ω1), L2(Ω3)) −→ B(L2(Ω1), L2(Ω3)).

This shows two things. First, φ̃ belongs to L∞σ
(
µ2; Γ2(L1(Ω1), L∞(Ω3))

)
regarded as a

subspace of L∞σ
(
µ2;B(K(H1, H3),B(H1, H3))

)
by (2.2). Second, the element of L∞(Ω1 ×

Ω2 × Ω3) corresponding to φ̃ through the inclusion (1.46) is the function φ itself. Thus
we have proved that φ ∈ L∞σ

(
µ2; Γ2(L1(Ω1), L∞(Ω3))

)
. Hence, applying Theorem 1.25,

we obtain the factorization given in (ii). Moreover, by the same theorem

‖φ‖∞,Γ2 = inf ‖a‖∞‖b‖∞.

Hence, by the above reasoning, we obtain

inf ‖a‖∞‖b‖∞ = ‖φ‖∞,Γ2 ≤
∥∥Λ(φ) : S2 × S2 → S1

∥∥.
Proof of (ii)⇒ (i)

Assume that φ has the factorization given in (ii). Let J ∈ S2(H1, H2) and K ∈
S2(H2, H3) identified with elements of L2(Ω1 × Ω2) and L2(Ω2 × Ω3) (see (1.16)). We
have, for almost every (t1, t3) ∈ Ω1 × Ω3,

Λ(φ)(J,K)(t1, t3) =

∫
Ω2

〈a(t1, t2), b(t2, t3)〉 J(t1, t2)K(t2, t3)dµ2(t2)

=

∫
Ω2

〈
J̃(t1, t2), K̃(t2, t3)

〉
dµ2(t2)

where J̃(t1, t2) = J(t1, t2)a(t1, t2) and K̃(t2, t3) = K(t2, t3)b(t2, t3). Then J̃ ∈ L2(Ω1 ×
Ω2, H) and K̃ ∈ L2(Ω2 × Ω3, H) and we have the estimates

‖J̃‖2 ≤ ‖a‖∞‖J‖2 and ‖K̃‖2 ≤ ‖b‖∞‖K‖2.

Let T : L2(Ω1 × Ω2, H)× L2(Ω2 × Ω3, H)→ S2(H1, H3) be the bilinear map defined for
all F ∈ L2(Ω1 × Ω2, H) and G ∈ L2(Ω2 × Ω3, H) and for almost every (t1, t3) by

[T (F,G)](t1, t3) =

∫
Ω2

〈F (t1, t2), G(t2, t3)〉dµ2(t2).

We will show that T is actually valued in S1(H1, H3) and that for all F and G as above
we have

‖T (F,G)‖1 ≤ ‖F‖2‖G‖2.
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By density, it is enough to prove this inequality when F and G have the form

F =
n∑
i=1

hiχAi×Bi and G =
n∑
j=1

kjχBj×Cj

where for all i, j, hi, kj ∈ H and A1, . . . , An (respectively B1, . . . , Bn and C1, . . . , Cn) are
pairwise disjoint measurable subsets of Ω1 (respectively Ω2 and Ω3) with finite measure.
For such F and G we have

‖F‖2 =

(
n∑
i=1

‖hi‖2µ1(Ai)µ2(Bi)

)1/2

and‖G‖2 =

(
n∑
j=1

‖kj‖2µ2(Bj)µ3(Cj)

)1/2

.

We have, for almost every (t1, t3),

T (F,G)(t1, t3) =
n∑

i,j=1

〈hi, kj〉
∫

Ω2

χAi(t1)χBi(t2)χBj(t2)χCj(t3)dµ2(t2)

=
n∑
i=1

〈hi, ki〉
∫

Ω2

χAi(t1)χBi(t2)χBi(t2)χCi(t3)dµ2(t2).

Therefore, for all h ∈ L2(Ω1),

[T (F,G)](h) =
n∑
i=1

〈hi, ki〉
∫

Ω2

(∫
Ω1

χAi(t1)χBi(t2)h(t1)dµ1(t1)

)
χBi(t2)χCi(·)dµ2(t2)

=
n∑
i=1

〈hi, ki〉 (XχAi×Bi
◦XχBi×Ci

)(h)

where for all i, XχAi×Bi
∈ S2(H1, H2) and XχBi×Ci

∈ S2(H2, H3) are defined in (1.15).
Thus, by Cauchy-Schwarz inequality and the isometry (1.16),

‖T (F,G)‖1 ≤
n∑
i=1

| 〈hi, ki〉 |‖XχAi×Bi
‖2‖XχBi×Ci

‖2

≤
n∑
i=1

‖hi‖‖ki‖‖χAi×Bi‖2‖χBi×Ci‖2

≤

(
n∑
i=1

‖hi‖2µ1(Ai)µ2(Bi)

)1/2( n∑
j=1

‖kj‖2µ2(Bj)µ3(Cj)

)1/2

= ‖F‖2‖G‖2.

We deduce that for all F ∈ L2(Ω1 × Ω2, H) and G ∈ L2(Ω2 × Ω3, H),

‖T (F,G)‖1 ≤ ‖F‖2‖G‖2.
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Finally, for all J ∈ S2(H1, H2) and K ∈ S2(H2, H3) we have

‖Λ(φ)(J,K)‖1 = ‖F (J̃ , K̃‖1

≤ ‖J̃‖2‖K̃‖2

≤ ‖a‖∞‖b‖∞‖J‖2‖K‖2

This proves (ii)⇒ (i) with the estimate

‖Λ(φ) : S2 × S2 → S1‖ ≤ ‖a‖∞‖b‖∞.

3.4 Perspectives

In Section 3.1, we defined bilinear Schur multipliers as mappings defined on S2×S2. As
mentioned, we can also define bilinear Schur multiplier from Sp×Sq into Sr, whenever
1 ≤ p, q, r ≤ ∞. In this setting, it would be interesting to find a formula for the norm
of a bilinear Schur multiplier from Sp×Sq into Sr, similar to the one given in Theorem

3.4. Note that it is possible to see that when
1

p
+

1

q
=

1

r
, a description of bilinear Schur

multipliers would imply a description of linear Schur multipliers on Sq. As said in
Chapter 2, the only cases for which we have such description are q = 1, q = 2 and
q = ∞. However, it is probably possible to find sufficient conditions for a bilinear
Schur multiplier defined on Sp × Sq to be valued in S1, when p and q are conjugate
exponents.

Of course, all the questions we can state concerning bilinear Schur multipliers can
be stated as well in the continuous setting. We saw in Section 3.3 that the passage
from the classical to the continuous case is not straightforward and required some ad-
ditional studies such as the measurable factorization in L∞σ (Ω; Γ2(L1, L∞)) (see Section
1.4). However, one can try to prove that a result in the classical (or finite-dimensional)
case implies, by approximation, a similar result in the continuous case.
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Chapter 4

Multiple Operator Integrals

——————————————————————–

Let H be a separable Hilbert space and let A,B be two normal operators on H.
Any bounded Borel function φ on σ(A)× σ(B) gives rise to a double operator integral
mapping ΓA,B(φ) : S2(H)→ S2(H) formally defined as

ΓA,B(φ)(X) =

∫
σ(A)×σ(B)

φ(s, t) dEA(s)X dEB(t), X ∈ S2(H),

where EA and EB denote the spectral measures of A and B, respectively. The theory of
double operator integrals was settled and developed in a series of papers of Birman-
Solomiak [BS66; BS67; BS73] and plays a major role in various aspects of operator
theory, especially in the perturbation theory. We refer the reader to the survey papers
[BS03; Pel16] for a comprehensive presentation of this topic and its applications. See
also Chapter 5 for some results about perturbation theory for selfadjoint and unitary
operators.

In this chapter, we first define more generally multiple operator integrals as mul-
tilinear mappings defined on a product of copies of S2(H) and valued in S2(H). We
will see in Section 4.2 that in the finite dimensional case, double and triple operator
integrals behave like linear and bilinear Schur multipliers.

In [Pel85], V.V. Peller gave a characterization of double operator integral mappings
which restrict to a bounded operator on S1(H). He showed that ΓA,B(φ) is a bounded
operator from S1(H) into itself if and only there exist a Hilbert space H and two func-
tions a ∈ L∞(EA;H) and b ∈ L∞(EB;H) such that

φ(s, t) = 〈a(s), b(t)〉 a.e.-(s, t).

This property means that the operatorL1(EA)→ L∞(EB) with kernel φ factors through
a Hilbert space. We refer to [Pel85] and [HK03] for other equivalent formulations. In
Section 4.3, we study an analogue of Peller’s Theorem for triple operator integrals (see
Theorem 4.10). This result is an operator version of Theorem 3.8. We will actually ap-
ply this result to prove Theorem 4.10. In order to do this we will show in Subsection
4.1.3 a connection between continuous bilinear Schur multipliers and triple operator
integrals.



70 Chapter 4. Multiple Operator Integrals

Finally, in Section 4.4, we will prove a characterization, similar to the one in [KJT09],

concerning the complete boundedness of triple operator integrals from S∞(H)
h
⊗S∞(H)

into S∞(H). This section will use all the results that we recalled in Subsection 1.1.3 con-
cerning the Haagerup tensor product.

4.1 Definition

Multiple operator integrals appeared in many recent papers with various definitions,
see in particular [ANP15; ANP16; AP17; NAS09; Pel06; DPS13]. In this section we pro-
vide a definition of triple operator integrals associated to a triple (A,B,C) of normal
operators on H, based on the construction of a natural w∗-continuous mapping from
L∞(λA × λB × λC) into B2(S2(H) × S2(H),S2(H)), see Theorem 4.3. This mapping is
actually an isometry. Further the construction extends to multiple operator integrals,
see Proposition 4.4. It turns out that this construction is equivalent to an old definition
of multiple operator integrals due to Pavlov [Pav69], this will be explained in Remark
4.5.

4.1.1 Normal operators and scalar-valued spectral measures

We assume that the reader is familiar with the general spectral theory of normal op-
erators on Hilbert space, for which we refer e.g. to [Rud73, Chapters 12 and 13] and
[Con00, Sections 14 and 15]. LetH be a separable Hilbert space and let A be a (possibly
unbounded) normal operator on H. We let σ(A) denote the spectrum of A and we let
EA denote the spectral measure of A, defined on the Borel subsets of σ(A).

By definition a scalar-valued spectral measure for A is a positive finite measure λA
on the Borel subsets of σ(A), such that λA and EA have the same sets of measure zero.
Such measures exist, thanks to the separability assumption onH. Indeed let

W ∗(A) ⊂ B(H)

be the von Neumann algebra generated by the range of EA, then W ∗(A) has a separat-
ing vector e and

λA := ‖EA(.)e‖2 (4.1)

is a scalar-valued spectral measure for A. See [Con00, Sections 14 and 15] for details
; the argument there is given for a bounded A but readily extends to the unbounded
case.

The Borel functional calculus for A takes any bounded Borel function f : σ(A)→ C
to the bounded operator

f(A) :=

∫
σ(A)

f(t) dEA(t) .

According to [Con00, Theorem 15.10], it induces a w∗-continuous ∗-representation

πA : L∞(λA) −→ B(H). (4.2)
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As a matter of fact, the spaceL∞(λA) does not depend on the choice of the scalar-valued
spectral measure λA.

4.1.2 Multiple operator integrals associated with operators

Let H be a separable Hilbert space and let A,B,C be (possibly unbounded) normal
operators on H. Denote by EA, EB and EC their spectral measures and let λA, λB and
λC be scalar-valued spectral measures for A, B and C (see Subsection 4.1.1).

Let E1 ⊂ L∞(λA), E2 ⊂ L∞(λB) and E3 ⊂ L∞(λC) be the spaces of simple functions
on (σ(A), λA), (σ(B), λB) and (σ(C), λC), respectively. We let

Γ: E1 ⊗ E2 ⊗ E3 −→ B2(S2(H)× S2(H),S2(H))

be the unique linear map such that

Γ(f1 ⊗ f2 ⊗ f3)(X, Y ) = f1(A)Xf2(B)Y f3(C) (4.3)

for any f1 ∈ E1, f2 ∈ E2 and f3 ∈ E3, and for any X, Y ∈ S2(H).

Lemma 4.1. For all φ ∈ E1 ⊗ E2 ⊗ E3, and for all X, Y ∈ S2(H), we have

‖Γ(φ)(X, Y )‖2 ≤ ‖φ‖∞‖X‖2‖Y ‖2.

Proof. Let φ ∈ E1 ⊗ E2 ⊗ E3. There exists a finite family (F 1
i )i (respectively (F 2

j )j and
(F 3

k )k) of pairwise disjoint measurable subsets of σ(A) (respectively of σ(B) and σ(C))
of positive measures, as well as a family (mijk)i,j,k of complex numbers such that

φ =
∑
i,j,k

mijk χF 1
i
⊗ χF 2

j
⊗ χF 3

k
. (4.4)

Then we have
‖φ‖∞ = sup

i,j,k
|mijk|. (4.5)

Let X, Y ∈ S2(H). According to the definition of Γ, we have

Γ(φ)(X, Y ) =
∑
i,j,k

mijkE
A(F 1

i )XEB(F 2
j )Y EC(F 3

k ).

By the pairwise disjointnesses of (F 1
i )i and (F 3

k )k, the elements(∑
j

mijkE
A(F 1

i )XEB(F 2
j )Y EC(F 3

k )
)
i,k

are pairwise orthogonal in S2(H). Hence

‖Γ(φ)(X, Y )‖2
2 =

∑
i,k

∥∥∥∑
j

mijkE
A(F 1

i )XEB(F 2
j )Y EC(F 3

k )
∥∥∥2

2
.
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Applying the Cauchy-Schwarz inequality and (4.5), we deduce that

‖Γ(φ)(X, Y )‖2
2 ≤ ‖φ‖2

∞

∑
i,k

(∑
j

∥∥EA(F 1
i )XEB(F 2

j )
∥∥

2

∥∥EB(F 2
j )Y EC(F 3

k )
∥∥

2

)2

≤ ‖φ‖2
∞

∑
i,k

(∑
j

∥∥EA(F 1
i )XEB(F 2

j )
∥∥2

2

)(∑
j

∥∥EB(F 2
j )Y EC(F 3

k )
∥∥2

2

)
≤ ‖φ‖2

∞

(∑
i,j

∥∥EA(F 1
i )XEB(F 2

j )
∥∥2

2

)(∑
j,k

∥∥EB(F 2
j )Y EC(F 3

k )
∥∥2

2

)
.

Since the elements EA(F 1
i )XEB(F 2

j ) are pairwise orthogonal in S2(H) we have∑
i,j

∥∥EA(F 1
i )XEB(F 2

j )
∥∥2

2
=
∥∥∥∑
i,j

EA(F 1
i )XEB(F 2

j )
∥∥∥2

2

=
∥∥EA

(
∪iF 1

i

)
XEB

(
∪jF 2

j

)∥∥2

2

≤ ‖X‖2
2.

Similarly, ∑
j,k

∥∥EB(F 2
j )Y EC(F 3

k )
∥∥2

2
≤ ‖Y ‖2

2.

This yields the result.

We let
G := E1 ⊗ E2 ⊗ E3

‖.‖∞ ⊂ L∞(λA × λB × λC)

and we let τ : L1(λA × λB × λC)→ G∗ be the canonical map defined by

〈
τ(ϕ), φ

〉
=

∫
σ(A)×σ(B)×σ(C)

ϕφ d(λA × λB × λC) , ϕ ∈ L1, φ ∈ G.

This is obviously a contraction.
We claim that τ is actually an isometry. To check this fact, consider ϕ ∈ E1⊗E2⊗E3,

that we write as a finite sum

ϕ =
∑
i,j,k

cijk χF 1
i
⊗ χF 2

j
⊗ χF 3

k
,

with cijk ∈ C∗ and (F 1
i )i (respectively (F 2

j )j and (F 3
k )k) being pairwise disjoint measur-

able subsets of σ(A) (respectively of σ(B) and σ(C)), with positive measures. Then

‖ϕ‖1 =
∑
i,j,k

|cijk|λA(F 1
i )λB(F 2

j )λC(F 3
k ).

Let φ be defined by (4.4), with mijk = |cijk|c−1
ijk. Then ‖φ‖∞ = 1 by (4.5) and〈

τ(ϕ), φ
〉

=
∑
i,j,k

mijkcijkλA(F 1
i )λB(F 2

j )λC(F 3
k ) = ‖ϕ‖1.
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Hence we have ‖τ(ϕ)‖ = ‖ϕ‖1 as expected. Since E1⊗E2⊗E3 is dense inL1(λA×λB×λC),
this implies that τ is an isometry. Thus we now consider L1(λA×λB×λC) as a subspace
of G∗.

Arguing as in Subsection 3.3.1, we have isometric identifications

B2(S2(H)× S2(H),S2(H)) = B(S2(H)
∧
⊗ S2(H),S2(H))

=
(
S2(H)

∧
⊗ S2(H)

∧
⊗ S2(H)

)∗
,

and it is easy to check that the duality pairing providing this identification reads〈
T,X ⊗ Y ⊗ Z

〉
= tr

(
T (X, Y )Z

)
for any T ∈ B2(S2(H)× S2(H),S2(H)) and any X, Y, Z ∈ S2(H).

We set
E := S2(H)

∧
⊗ S2(H)

∧
⊗ S2(H).

According to Lemma 4.1, Γ uniquely extends to a contraction

Γ̃ : G −→ B2(S2(H)× S2(H),S2(H)) = E∗.

We can therefore consider S = Γ̃∗|E : E → G∗, the restriction of Γ̃∗ to E ⊂ E∗∗.

Lemma 4.2. The operator S takes its values in the subspace L1(λA × λB × λC) of G∗.

Proof. Let P = H⊗H⊗H⊗H⊗H⊗H. Recall that we identifyH⊗H with the space
of finite rank operators onH. ThenH⊗H is a dense subspace of S2(H). Consequently
P is a dense subspace of E. Since S is continuous, it therefore suffices to show that
S(P) ⊂ L1(λA×λB×λC). Consider η1, η2, η3, ξ1, ξ2, ξ3 inH and ω = ξ1⊗η1⊗ξ2⊗η2⊗ξ3⊗η3.
Such elements span P hence it suffices to check that S(ω) belongs to L1(λA× λB × λC).
Let f1 ∈ E1, f2 ∈ E2 and f3 ∈ E3. We have

〈S(ω), f1 ⊗ f2 ⊗ f3〉 = 〈ω,Γ(f1 ⊗ f2 ⊗ f3)〉

= tr
([

Γ(f1 ⊗ f2 ⊗ f3)(ξ1 ⊗ η1, ξ2 ⊗ η2)
]
(ξ3 ⊗ η3)

)
= tr

(
f1(A)(ξ1 ⊗ η1)f2(B)(ξ2 ⊗ η2)f3(C)(ξ3 ⊗ η3)

)
= tr

(
(ξ1 ⊗ f1(A)η1)(ξ2 ⊗ f2(B)η2)(ξ3 ⊗ f3(C)η3)

)
= tr

(
(ξ3 ⊗ f1(A)η1) 〈f3(C)η3, ξ2〉 〈f2(B)η2, ξ1〉

)
= 〈f3(C)η3, ξ2〉 〈f2(B)η2, ξ1〉 〈f1(A)η1, ξ3〉 .

The w∗-continuity of the functional calculus ∗-representation πA : L∞(λA) → B(H) to
which we refer in (4.2) tells us that

〈f1(A)η1, ξ3〉 =

∫
σ(A)

f1h1 dλA

for some h1 ∈ L1(λA) not depending on f1. A thorough look at the construction of πA
shows that h1 is actually the Radon-Nikodym derivative of the measure dEA

η1,ξ3
with

respect to λA.
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Similarly, there exist h2 ∈ L1(λB) and h3 ∈ L1(λC) not depending on f2 and f3 such
that 〈f2(B)η2, ξ1〉 =

∫
σ(B)

f2h2 dλB and 〈f3(C)η3, ξ2〉 =
∫
σ(C)

f3h3 dλC . Consequently,

〈S(ω), f1 ⊗ f2 ⊗ f3〉 =

∫
σ(A)×σ(B)×σ(C)

(f1 ⊗ f2 ⊗ f3)(h1 ⊗ h2 ⊗ h3) d(λA × λB × λC).

Since E1 ⊗ E2 ⊗ E3 is dense in G, this implies that

S(ω) = h1 ⊗ h2 ⊗ h3 ∈ L1(λA × λB × λC).

Theorem 4.3. There exists a unique w∗-continuous isometry

ΓA,B,C : L∞(λA × λB × λC) −→ B2(S2(H)× S2(H),S2(H)),

such that for any f1 ∈ E1, f2 ∈ E2 and f3 ∈ E3, and for any X, Y ∈ S2(H), we have

ΓA,B,C(f1 ⊗ f2 ⊗ f3)(X, Y ) = f1(A)Xf2(B)Y f3(C).

Proof. The uniqueness follows from the w∗-density of E1⊗E2⊗E3 in L∞(λA×λB×λC).
Lemma 4.2 yields S : E → L1(λA × λB × λC). Then its adjoint S∗ is a w∗-continuous

contraction from L∞(λA × λB × λC) into E∗ = B2(S2(H)× S2(H),S2(H)). We set

ΓA,B,C = S∗.

By construction, ΓA,B,C is w∗-continuous and extends the map Γ defined by (4.3). The
fact that ΓA,B,C is an isometry will be proved later on in Corollary 4.8.

Bilinear maps of the form ΓA,B,C(φ) will be called triple operator integral mappings in
this thesis. Operators of the form ΓA,B,C(φ)(X, Y ) : H → H are called triple operator
integrals.

By similar computations (left to the reader), the above construction can be extended
to (n− 1)-tuple operator integrals, for any n ≥ 2. One obtains the following statement,
in which Bn−1(S2(H)×S2(H)× · · · × S2(H),S2(H)) denotes the space of (n− 1)-linear
bounded maps from the product of (n− 1) copies of S2(H) taking values in S2(H).

Proposition 4.4. Let n ≥ 2 and let A1, A2, . . . , An be normal operators on H. For any i =
1, . . . , n, let λAi be a scalar-valued spectral measure for Ai and let Ei ⊂ L∞(λAi) be the space
of simple functions on (σ(Ai), λAi). There exists a unique w∗-continuous linear isometry

ΓA1,A2,...,An : L∞

(
n∏
i=1

λAi

)
−→ Bn−1(S2(H)× S2(H)× · · · × S2(H)→ S2(H)),

such that for any fi ∈ Ei and for any X1, . . . , Xn−1 ∈ S2(H), we have

ΓA1,A2,...,An(f1 ⊗ · · · ⊗ fn)(X1, . . . , Xn−1) =

f1(A1)X1f2(A2) · · · fn−1(An−1)Xn−1fn(An).
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Remark 4.5. As indicated in the introduction of this section, the above construction turns
out to be equivalent to Pavlov’s definition of multiple operator integrals given in [Pav69]. Let
us briefly review Pavlov’s construction from [Pav69], and explain this ‘equivalence’. In this
remark, we use terminology and references from [DU79, Chapter 1].

Let n ≥ 2 and consider normal operatorsA1, A2, . . . , An as in Proposition 4.4. FixX1, . . . , Xn−1

in S2(H). Let Ω := σ(A) × σ(A2) × · · · × σ(An) and consider the set F consisting of finite
unions of subsets of Ω of the form

∆ = F1 × F2 × · · · × Fn,

where, for any 1 ≤ i ≤ n, Fi is a Borel subset of σ(Ai).
There exists a (necessarily unique) finitely additive vector measure m : F → S2(H) such

that
m(∆) = EA1(F1)X1E

A2(F2) · · ·EAn−1(Fn−1)Xn−1E
An(Fn) (4.6)

for any ∆ as above.
Pavlov first shows that m is a measure of bounded semivariation and then proves that m

is actually countably additive (see [Pav69, Theorem 1]). Let T be the σ-field generated by F .
Since S2(H) is reflexive, it follows from [DU79, Chapter 1, Section 5, Theorem 2] that m has a
(necessarily unique) countably additive extension m̃ : T → S2(H). Moreover m̃ is a measure
of bounded semivariation. Then using the fact that for all i, λAi is a scalar-valued spectral
measure for Ai, one can show that

m̃� λA1 × λA2 × · · · × λAn

on F . This implies that L∞(λA1 × λA2 × · · · × λAn) ⊂ L∞(m̃) and hence, for any φ ∈
L∞(λA1 × λA2 × · · · × λAn), one may define an integral∫

Ω

φ(t) dm̃(t) ∈ S2(H).

See [DU79, Chapter 1, Section 1, Theorem 13] for details. This element is defined in [Pav69]
as the multiple operator integral associated to φ and (X1, . . . , Xn−1).

We claim that this construction is equivalent to the one given in the present thesis, namely∫
Ω

φ(t) dm̃(t) = ΓA1,A2,...,An(φ)(X1, . . . , Xn−1).

To check this identity, let w1, w2 : L∞(λA1 ×λA2 ×· · ·×λAn)→ S2(H) be defined by w1(φ) =∫
Ω
φ(t) dm̃(t) andw2(φ) = ΓA1,A2,...,An(φ)(X1, . . . , Xn−1). For any Z ∈ S2(H), the functional

of L∞(λA1 × λA2 × · · · × λAn) taking φ to
〈∫

Ω
φ(t) dm̃(t) , Z

〉
induces a countably additive

measure on T , which is absolutely continuous with respect to λA1 × λA2 × · · · × λAn . By the
Radon-Nikodym Theorem, this functional is therefore w∗-continuous. This implies that w1 is
w∗-continuous. We know that w2 is w∗-continuous as well, by Proposition 4.4. Further it is
easy to derive from (4.6) that w1 and w2 coincide on E1 ⊗ · · · ⊗ En. These properties imply the
equality w1 = w2 as claimed.

Remark 4.6. We keep the notations from Proposition 4.4 and explain the connection of this
result with Peller’s construction from [Pel06]. In the latter paper, the author defines multiple
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operator integrals associated to functions belonging to the so-called integral projective tensor
product of the spaces L∞(λAi). We will check that this definition is consistent with ours.

Let (Σ, dµ) be a σ-finite measure space and, for any i = 1, . . . , n, let ai : Σ× σ(Ai)→ C be
a measurable function such that ai(t, · ) ∈ L∞(λAi) for a.-e. t ∈ Σ. Assume that∫

Σ

‖a1(t, · )‖L∞(λA1
)‖a2(t, · )‖L∞(λA2

) · · · ‖an(t, · )‖L∞(λAn ) dµ(t) <∞. (4.7)

Then one may define φ ∈ L∞(λA1 × · · · × λAn) by setting

φ(t1, t2, . . . , tn) =

∫
Σ

a1(t, t1)a2(t, t2) · · · an(t, tn) dµ(t) (4.8)

for a.-e. (t1, . . . , tn) in σ(A1)× · · · × σ(An). We claim that for any X1, . . . , Xn−1 ∈ S2(H),

ΓA1,...,An(X1, . . . , Xn−1) =

∫
Σ

a1(t, A1)X1a2(t, A2)X2 · · ·Xn−1an(t, An) dµ(t) , (4.9)

where ai(t, Ai) ∈ B(H) is obtained by applying the Borel functional calculus of Ai to ai(t, · ),
for any i = 1, . . . , n. The right-hand side of (4.9) is Peller’s definition of the multiple operator
integral associated with φ and (X1, . . . , Xn−1). Hence the equality (4.9) shows that Peller’s
definition is a special case of Proposition 4.4. The reason why [Pel06] focuses on functions φ as
above is that the right-hand side of (4.9) converges in B(H) whenever X1, . . . , Xn−1 ∈ B(H).
Consequently, ΓA1,...,An(φ) extends to a bounded n−1-linear mapB(H)×· · ·×B(H)→ B(H)
under the assumptions (4.7) and (4.8).

To prove (4.9), we introduce ãi : Σ → L∞(λAi) by writing ãi(t) = ai(t, · ), for any i =

1, . . . , n. Then the function φ̃ : Σ→ L∞(λA1 × · · · × λAn) defined by

φ̃(t) = ã1(t)⊗ ã2(t)⊗ · · · ⊗ ãn(t), t ∈ Σ,

is w∗-measurable and the associated norm function ‖φ̃(· )‖∞ is integrable, by the assumption
(4.7). We can therefore consider its integral

∫
Σ
φ̃(t) dµ(t) as an element of L∞(λA1×· · ·×λAn),

defined in the w∗-sense. Using Fubini’s Theorem, one obtains that

φ =

∫
Σ

φ̃(t) dµ(t) ,

where the function φ is defined by (4.8). Since ΓA1,...,An is w∗-continuous, we derive that

ΓA1,...,An(φ) =

∫
Σ

ΓA1,...,An
(
ã1(t)⊗ ã2(t)⊗ · · · ⊗ ãn(t)

)
dµ(t).

Let X1, . . . , Xn−1 ∈ S2(H). We deduce that

ΓA1,...,An(φ)(X1, . . . , Xn−1) =

∫
Σ

ΓA1,...,An
(
ã1(t)⊗ ã2(t)⊗ · · · ⊗ ãn(t)

)
(X1, . . . , Xn−1) dµ(t)

as a Bochner integral in S2(H). The equality (4.9) now follows from the definition of ΓA1,...,An

on elementary tensor products.
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4.1.3 Passing from operators to functions

Let H be a separable Hilbert space and let A,B and C be normal operators on H. We
keep the notations from Subsection 4.1.2. We associate the three measure spaces

(Ω1, µ1) = (σ(C), λC), (Ω2, µ2) = (σ(B), λB) and (Ω3, µ3) = (σ(A), λA)

and consider the mapping Λ defined in Subsection 3.3.1 for these three measure spaces.
It mapsL∞(λA×λB×λC) intoB2(S2(L2(λC), L2(λB))×S2(L2(λB), L2(λA)),S2(L2(λC), L2(λA))).
The main purpose of this subsection is to establish a precise connection between this
mapping Λ and the triple operator integral mapping ΓA,B,C from Theorem 4.3.

We may suppose that

λA(.) = ‖EA(.)e1‖2, λB(.) = ‖EB(.)e2‖2 and λC(.) = ‖EC(.)e3‖2

for some vectors e1, e2, e3 ∈ H (see Subsection 4.1.1).
There exists a (necessarily unique) linear map ρA : E1 −→ H satisfying

ρA(χF ) = EA(F )e1

for any Borel set F ⊂ σ(A). For any finite family (Fi)i of pairwise disjoint measurable
subsets of σ(A) and for any family (αi)i of complex numbers, we have∥∥∥ρA(∑

i

αiχFi
)∥∥∥2

=
∥∥∥∑

i

αiE
A(Fi)e1

∥∥∥2

=
∑
i

|αi|2‖EA(Fi)e1‖2

=
∑
i

|αi|2λA(Fi)

=
∥∥∥∑

i

αiχFi

∥∥∥2

2
.

Hence ρA extends to an isometry (still denoted by)

ρA : L2(λA) −→ H.

Denote byHA the range of ρA. We obtain

L2(λA)
ρA≡ HA.

Similarly, we define ρB, ρC andHB,HC ⊂ H such that

L2(λB)
ρB≡ HB and L2(λC)

ρC≡ HC.

We may regard S2(HB,HA), S2(HC ,HB) and S2(HC ,HA) as subspaces of S2(H) in
a natural way, see (1.17). The next statement means that for any φ ∈ L∞(λA×λB×λC),
ΓA,B,C(φ) maps S2(HB,HA)×S2(HC ,HB) into S2(HC ,HA) and that under the previous
identifications, this restriction ’coincides’ with Λ(φ).
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Proposition 4.7. Let X ∈ S2(L2(λB), L2(λA)) and Y ∈ S2(L2(λC), L2(λB)), and set

X̃ = ρA ◦X ◦ ρ−1
B ∈ S

2(HB,HA) and Ỹ = ρB ◦ Y ◦ ρ−1
C ∈ S

2(HC ,HB).

For any φ ∈ L∞(λA × λB × λC), ΓA,B,C(φ)(X̃, Ỹ ) belongs to S2(HC ,HA) and

Λ(φ)(Y,X) = ρ−1
A ◦ ΓA,B,C(φ)(X̃, Ỹ ) ◦ ρC . (4.10)

Proof. We first consider the special case when φ = χF1⊗χF2⊗χF3 for some measurable
subsets F1 ⊂ σ(A), F2 ⊂ σ(B) and F3 ⊂ σ(C).

Let U ⊂ σ(A), V, V ′ ⊂ σ(B) and W ⊂ σ(C) and consider the elementary tensors

X = χV ⊗ χU ∈ S2(L2(λB), L2(λA)) and Y = χW ⊗ χV ′ ∈ S2(L2(λC), L2(λB)).

We associate X̃ and Ỹ as in the statement. Since ρB : L2(λB)→ HB is unitary, we have
ρ−1
B = ρ∗B hence

X̃ = ρB(χV )⊗ ρA(χU) = EB(V )e2 ⊗ EA(U)e1.

Likewise,
Ỹ = EC(W )e3 ⊗ EB(V ′)e2.

We have

Λ(φ)(Y,X) =

∫
σ(B)

φ(., t2, .)X(t2, .)Y (., t2) dλB(t2)

=

∫
σ(B)

χF2(t2)χV (t2)χV ′(t2) χF3χW ⊗ χF1χU dλB(t2)

=

(∫
F2∩V ∩V ′

dλB(t2)

)
χF3∩W ⊗ χF1∩U

= λB(F2 ∩ V ∩ V ′)χF3∩W ⊗ χF1∩U .

Further using the above expressions of X̃ and Ỹ , we have

ΓA,B,C(φ)(X̃, Ỹ ) = EA(F1)X̃EB(F2)Ỹ EC(F3)

=
(
EB(V )e2 ⊗ EA(F1 ∩ U)e1

)(
EC(F3 ∩W )e3 ⊗ EB(F2 ∩ V ′)e2

)
=
〈
EB(F2 ∩ V ′)e2, E

B(V )e2

〉
EC(F3 ∩W )e3 ⊗ EA(F1 ∩ U)e1

=
〈
EB(F2 ∩ V ′ ∩ V )e2, e2

〉
EC(F3 ∩W )e3 ⊗ EA(F1 ∩ U)e1

= λB(F2 ∩ V ∩ V ′)EC(F3 ∩W )e3 ⊗ EA(F1 ∩ U)e1.

This shows that ΓA,B,C(φ)(X̃, Ỹ ) belongs to S2(HC ,HA) and that (4.10) holds true.
By linearity and continuity, this result holds as well for all X ∈ S2(L2(λB), L2(λA))

and all Y ∈ S2(L2(λC), L2(λB)).
Finally since Λ and ΓA,B,C are w∗-continuous, we deduce from the above special

case that the result actually holds true for all φ ∈ L∞(λA × λB × λC).

Corollary 4.8. The mapping ΓA,B,C from Theorem 4.3 is an isometry.
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Proof. Consider φ ∈ L∞(λA × λB × λC). For any X in S2(L2(λB), L2(λA)) and any Y in
S2(L2(λC), L2(λB)), we have

‖Λ(φ)(Y,X)‖2 = ‖ρ−1
A ◦ ΓA,B,C(φ)(X̃, Ỹ ) ◦ ρC‖2

≤ ‖ΓA,B,C(φ)(X̃, Ỹ )‖2

≤
∥∥ΓA,B,C(φ)

∥∥‖X̃‖2‖X̃‖2

by Proposition 4.7. Since ‖X̃‖2 = ‖X‖2 and ‖Ỹ ‖2 = ‖Y ‖2, this implies that∥∥Λ(φ)
∥∥ ≤ ∥∥ΓA,B,C(φ)

∥∥. (4.11)

By Proposition 3.7, the left-hand side of this inequality is equal to ‖φ‖∞. Further ΓA,B,C

is a contraction. Hence we obtain that ‖ΓA,B,C(φ)‖ = ‖φ‖∞.

4.2 Finite dimensional case

In the previous section, we defined multiple operator integrals and we saw that we
have a simple expression in the case when φ is in the tensor product of L∞-spaces. Ex-
cept for this case, we cannot give such a simple formula for any element ofL∞(

∏n
i=1 λAi).

However, when the Hilbert space H is finite dimensional, it is possible to give a sat-
isfying expression of multiple operator integrals : this is due to the fact that in this
situation, we have a formula for functional calulus for selfadjoint operators, involving
the eigenvalues and projections onto the eigenspaces. As a consequence, we will see
that double and triple operator integrals behave like linear and bilinear Schur multi-
pliers. It is straightforward to extend the formula we obtain here for multiple operator
integrals. We use the results of this section in Chapter 5 to obtain norm estimates for
multiple operator integrals in the finite dimensional case.

Throughout this section we work with finite-dimensional operators. We fix an in-
teger n ≥ 1 and regard Cn as equipped with its standard Hermitian structure.

Consider two orthonormal bases e = {ej}nj=1 and e′ = {e′i}ni=1 in Cn. Then every
linear operator A ∈ B(Cn) is associated with a matrix A = {aij}ni,j=1, where aij =

〈A(ej), e
′
i〉. Sometimes we use the notation ae

′,e
ij instead of aij to emphasize correspond-

ing bases.
For any unit vector x ∈ Cn we let Px denote the projection on the linear span of x,

that is, Px(y) = 〈y, x〉x for any y ∈ Cn.

4.2.1 Double operator integrals

Let A,B ∈ B(Cn) be normal operators. Let ξ1 = {ξ(1)
i }ni=1 and ξ2 = {ξ(2)

i }ni=1 be or-
thonormal bases of eigenvectors for A and B respectively, and let {λ(j)

i }ni=1, j = 1, 2 be
the associated n-tuples of eigenvalues, that is, A(ξ

(1)
i ) = λ

(1)
i ξ

(1)
i and B(ξ

(2)
i ) = λ

(2)
i ξ

(2)
i .

Without loss of generality, we assume that {λ(j)
i }

nj
i=1, j = 1, 2, are the sets of pairwise
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distinct eigenvalues of A and B, where nj ∈ N, nj ≤ n. Denote

E
(1)
i =

n∑
k=1

λ
(1)
k =λ

(1)
i

P
ξ
(1)
k
, 1 ≤ i ≤ n1, (4.12)

that is, E(1)
i is a spectral projection of the operator A associated with the eigenvalue

λ
(1)
i . Similary, we denote by E(2)

i a spectral projection of the operator B associated with
the eigenvalue λ(2)

i .
With those notations, we have

A =

n1∑
i=1

λ
(1)
i E

(1)
i and B =

n2∑
k=1

λ
(2)
k E

(2)
k . (4.13)

Let φ : C2 → C be a function. Then, the double operator integral ΓA,B(φ) : B(Cn)→
B(Cn) associated with φ, A and B defined in Proposition 4.4 is given by

[
ΓA,B(φ)

]
(X) =

n∑
i,k=1

φ(λ
(1)
i , λ

(2)
k )P

ξ
(1)
i
XP

ξ
(2)
k
, X ∈ B(Cn). (4.14)

Alternatively, and it is sometimes more convenient, we can use the representation
of
[
ΓA,B(φ)

]
(X) in the form

[
ΓA,B(φ)

]
(X) =

n1∑
i=1

n2∑
k=1

φ(λ
(1)
i , λ

(2)
k )E

(1)
i XE

(2)
k , X ∈ B(Cn). (4.15)

Let us prove Formula (4.15). Note that according to Proposition 4.4, we only need
to know φ on σ(A)× σ(B). Let F = φ|σ(A)×σ(B). Then

F =

n1∑
i=1

n2∑
j=1

φ(λ
(1)
i , λ

(2)
k )χ{

λ
(1)
i

} ⊗ χ{
λ
(2)
k

}.

According to (4.13) we have, for 1 ≤ i ≤ n1,

χ{
λ
(1)
i

}(A) =

n1∑
j=1

χ{
λ
(1)
i

}(λ
(1)
j )E

(1)
j = E

(1)
i .

Similarly, for any 1 ≤ k ≤ n2,
χ{

λ
(2)
k

}(B) = E
(2)
k .

Thus, for any X ∈ B(Cn),

[
ΓA,B(φ)

]
(X) =

n1∑
i=1

n2∑
j=1

φ(λ
(1)
i , λ

(2)
k )

[
ΓA,B

(
χ{

λ
(1)
i

} ⊗ χ{
λ
(2)
k

})] (X)



4.2. Finite dimensional case 81

=

n1∑
i=1

n2∑
j=1

φ(λ
(1)
i , λ

(2)
k )χ{

λ
(1)
i

}(A)Xχ{
λ
(2)
k

}(B)

=

n1∑
i=1

n2∑
j=1

φ(λ
(1)
i , λ

(2)
k )E

(1)
i XE

(2)
k .

It is not difficult to see that if we identify B(Cn) with Mn by associating X with the
matrix {xξ1,ξ2ik }ni,k=1, then the operator ΓA,B(φ) acts as a linear Schur multiplier associ-
ated with

{
φ(λ

(1)
i , λ

(2)
k )
}n
i,k=1

. Indeed,

〈
(P

ξ
(1)
i
XP

ξ
(2)
k

)(ξ(2)
s ), ξ(1)

r

〉
=

{
〈X(ξ

(2)
s ), ξ

(1)
r 〉 = xξ1,ξ2rs , if s = k, r = i,
0 otherwise.

Therefore, 〈[
ΓA,B(φ)

]
(X)(ξ

(2)
k ), ξ

(1)
i

〉
= φ(λ

(1)
i , λ

(2)
k )xξ1,ξ2ik ,

which implies that ΓA,B(φ) ∼
{
φ(λ

(1)
i , λ

(2)
k )
}n
i,k=1

: Mn →Mn. Since these identifications
are isometric ones, we deduce that∥∥ΓA,B(φ) : S∞n → S∞n

∥∥ =
∥∥{φ(λ

(1)
i , λ

(2)
k )}ni,k=1 : S∞n → S∞n

∥∥. (4.16)

4.2.2 Triple operator integrals

We now give the formula for triple operator integrals in the finite dimensional case.

Let A,B,C ∈ B(Cn) be normal operators. We keep the same notations for the
spectral decompositions of A and B introduced in the previous subsection. Let ξ3 =

{ξ(3)
i }ni=1 be an orthornomal basis of eigenvectors of C and let {λ(3)

i }ni=1 be the corre-
sponding n-tuple of eigenvalues.

Let ψ : C3 → C be a function. Then, the triple operator integral ΓA,B,C(ψ) : B(Cn)×
B(Cn)→ B(Cn) associated with ψ, A, B and C defined in Theorem 4.3 is given by

[
ΓA,B,C(ψ)

]
(X, Y ) =

n∑
i,j,k=1

ψ(λ
(1)
i , λ

(2)
k , λ

(3)
j )P

ξ
(1)
i
XP

ξ
(2)
k
Y P

ξ
(3)
j

(4.17)

for any X, Y ∈ B(Cn).

Assume that {λ(3)
i }

n3
i=1 is the set of pairwise distinct eigenvalues of the operator C.

Then alternatively, using the spectral projections (4.12), we can write

[
ΓA,B,C(ψ)

]
=

n1∑
i=1

n2∑
k=1

n3∑
j=1

ψ(λ
(1)
i , λ

(2)
k , λ

(3)
j )E

(1)
i XE

(2)
k Y E

(3)
j (4.18)

for any X, Y ∈ B(Cn). The proof of this formula is similar to the one of Formula (4.15).

Let us consider two different identifications of B(Cn) with Mn. On one hand, we
identify X with the matrix {xξ1,ξ2ik }ni,k=1, where xξ1,ξ2ik = 〈X(ξ

(2)
k ), ξ

(1)
i 〉. On the other hand
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we identify Y with {yξ2,ξ3kj }nk,j=1, where yξ2,ξ3kj = 〈Y (ξ
(3)
j ), ξ

(2)
k 〉. Under these identifica-

tions, the operator ΓA,B,C(ψ) acts as a bilinear Schur multiplier associated with the
matrix M =

{
ψ(λ

(1)
i , λ

(2)
k , λ

(3)
j )
}n
i,j,k=1

. Indeed,〈
(P

ξ
(1)
i
XP

ξ
(2)
k
Y P

ξ
(3)
j

)(ξ
(3)
S ), ξ(1)

r

〉
=
〈
Y (ξ(3)

s ), ξ
(2)
k

〉〈
X(ξ

(2)
k ), ξ(1)

r

〉
= yξ2,ξ3ks xξ1,ξ2rk

if s = j, r = i, and 〈
(P

ξ
(1)
i
XP

ξ
(2)
k
Y P

ξ
(3)
j

)(ξ(3)
s ), ξ(1)

r

〉
= 0

otherwise.
Therefore,

〈[
ΓA,B,C(ψ)

]
(X, Y )(ξ(3)

s ), ξ(1)
r

〉
=

n∑
k=1

ψ(λ(1)
r , λ

(2)
k , λ(3)

s )yξ2,ξ3ks xξ1,ξ2rk ,

which implies

[
ΓA,B,C(ψ)

]
(X, Y ) =

n∑
i,j,k=1

ψ(λ
(1)
i , λ

(2)
k , λ

(3)
j )xξ1,ξ2ik yξ2,ξ3kj Eξ1,ξ3

ij .

Since these identifications are isometric ones with respect to all Schatten norms, we
deduce the formula∥∥ΓA,B,C(ψ) : S2

n × S2
n → S1

n

∥∥ =
∥∥{ψ(λ

(1)
i , λ

(2)
k , λ

(3)
j )}ni,j,k=1 : S2

n × S2
n → S1

n

∥∥. (4.19)

4.3 Characterization of S2 × S2 → S1 boundedness

Let H be a separable Hilbert space and let A,B and C be normal operators on H. Let
λA, λB and λC be scalar-valued spectral measures associated with A, B and C. Recall
the definition of the triple operator mapping ΓA,B,C from Theorem 4.3. The purpose of
this section is to characterize the functions φ ∈ L∞(λA × λB × λC) such that ΓA,B,C(φ)
maps S2(H)× S2(H) into S1(H).

We shall start with a factorization formula of independent interest. Let ΓA,B and
ΓB,C be the double operator integral mappings associated respectively with (A,B)
and with (B,C), see Proposition 4.4. It is important to note that ΓA,B and ΓB,C are
∗-representations. Recall that they are w∗-continuous.

Lemma 4.9. Let u ∈ L∞(λA × λB) and v ∈ L∞(λB × λC). Then, for all X, Y ∈ S2(H), we
have

ΓA,B,C(uv)(X, Y ) = ΓA,B(u)(X)ΓB,C(v)(Y ).

Proof. Fix X, Y ∈ S2(H). Let u1 ∈ L∞(λA), u2, v1 ∈ L∞(λB) and v2 ∈ L∞(λC). Consider
u = u1 ⊗ u2 ∈ L∞(λA) ⊗ L∞(λB) and v = v1 ⊗ v2 ∈ L∞(λB) ⊗ L∞(λC). Then we have



4.3. Characterization of S2 × S2 → S1 boundedness 83

uv = u1 ⊗ u2v1 ⊗ v2 ∈ L∞(λA)⊗ L∞(λB)⊗ L∞(λC). Therefore

ΓA,B,C(uv)(X, Y ) = u1(A)X(u2v1)(B)Y v2(C)

= u1(A)Xu2(B)v1(B)Y v2(C)

= ΓA,B(u)(X)ΓB,C(v)(Y ).

Now, take u ∈ L∞(λA × λB) and v ∈ L∞(λB × λC). Let (ui)i and (vj)j be two nets
in L∞(λA) ⊗ L∞(λB) and L∞(λB) ⊗ L∞(λC) respectively, converging to u and v in the
w∗-topology. By linearity, the previous calculation implies that for all i, j,

ΓA,B,C(uivj)(X, Y ) = ΓA,B(ui)(X)ΓB,C(vj)(Y ).

Take Z ∈ S2(H) and fix j. Since ΓB,C(vj)(Y )Z belongs to S2(H) we have

lim
i

tr(ΓA,B(ui)(X)ΓB,C(vj)(Y )Z) = tr(ΓA,B(u)(X)ΓB,C(vj)(Y )Z)

= tr(ΓB,C(vj)(Y )ZΓA,B(u)(X))

by the w∗-continuity of ΓA,B. Similarly, since ZΓA,B(u)(X) ∈ S2(H), the w∗-continuity
of ΓB,C implies that

lim
j

tr(ΓB,C(vj)(Y )ZΓA,B(u)(X)) = tr(ΓB,C(v)(Y )ZΓA,B(u)(X))

= tr(ΓA,B(u)(X)ΓB,C(v)(Y )Z).

On the other hand, (uivj)i w
∗-converges to uvj for any fixed j and (uvj)j w

∗-converges
to uv in L∞(λA × λB × λC). Hence the w∗-continuity of ΓA,B,C implies that

lim
j

lim
i

tr(ΓA,B,C(uivj)(X, Y )Z) = lim
j

tr(ΓA,B,C(uvj)(X, Y )Z)

= tr(ΓA,B,C(uv)(X, Y )Z).

Thus, for all Z ∈ S2(H),

tr(ΓA,B(u)(X)ΓB,C(v)(Y )Z) = tr(ΓA,B,C(uv)(X, Y )Z),

which implies that ΓA,B,C(uv) = ΓA,B(u)(X)ΓB,C(v)(Y ).

Our main result is the following theorem. In this statement, as in Subsection 4.1.3,
we consider the continuous bilinear Schur multipliers Λ(φ) in the case when (Ω1, µ1) =
(σ(C), λC), (Ω2, µ2) = (σ(B), λB) and (Ω3, µ3) = (σ(A), λA). Note that these measurable
spaces are separable.

Theorem 4.10. Let H be a separable Hilbert space, let A,B and C be normal operators on H
and let φ ∈ L∞(λA × λB × λC). The following are equivalent :

(i) ΓA,B,C(φ) ∈ B2(S2(H)× S2(H),S1(H)).

(ii) Λ(φ) ∈ B2(S2(L2(λC), L2(λB))× S2(L2(λB), L2(λA)),S1(L2(λC), L2(λA))).



84 Chapter 4. Multiple Operator Integrals

(iii) There exist a Hilbert space H and two functions

a ∈ L∞(λA × λB;H) and b ∈ L∞(λB × λC ;H)

such that ‖a‖∞‖b‖∞ ≤ ‖φ‖∞,Γ2 and

φ(t1, t2, t3) = 〈a(t1, t2), b(t2, t3)〉

for a.-e. (t1, t2, t3) ∈ σ(A)× σ(B)× σ(C).

In this case,∥∥ΓA,B,C(φ) : S2 × S2 → S1
∥∥ =

∥∥Λ(φ) : S2 × S2 → S1
∥∥ = inf ‖a‖∞‖b‖∞. (4.20)

Proof. The equivalence (ii)⇔ (iii) follows from Theorem 3.8.
Proof of (iii)⇒ (i)

Assume (iii) and let (εk)k∈N be a Hilbertian basis of H . For any k ∈ N, define

ak = 〈a, εk〉 ∈ L∞(λA × λB) and bk = 〈b, εk〉 ∈ L∞(λB × λC).

We set

|a| =
(∑

n

|ak|2
) 1

2
;

this function belongs to L∞(λA × λB) and we have ‖a‖∞ = ‖|a|‖∞.
Let X ∈ S2(H). Since ΓA,B is a w∗-continuous ∗-representation, we have∑

k

‖ΓA,B(ak)(X)‖2
2 =

∑
k

〈
ΓA,B(ak)(X),ΓA,B(ak)(X)

〉
=
∑
n

〈
ΓA,B(ak)Γ

A,B(ak)(X), X
〉

=
〈
ΓA,B(|a|2)(X), X

〉
≤ ‖|a|2‖∞‖X‖2

2 = ‖a‖2
∞‖X‖2

2.

We prove similarly that if Y ∈ S2(H), then∑
n

‖ΓB,C(bk)(Y )‖2
2 ≤ ‖b‖2

∞‖Y ‖2
2.

Consequently, for all X, Y ∈ S2(H), we have the inequalities∑
k

‖ΓA,B(ak)(X)ΓB,C(bk)(Y )‖1 ≤
∑
k

‖ΓA,B(ak)(X)‖2‖ΓB,C(bk)(Y )‖2

≤
(∑

k

‖ΓA,B(ak)(X)‖2
2

)1/2(∑
k

‖ΓB,C(bk)(Y )‖2
2

)1/2

≤ ‖a‖∞‖b‖∞‖X‖2‖Y ‖2.

Therefore, we can define a bounded bilinear map

Θ: S2(H)× S2(H) −→ S1(H)
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by

Θ(X, Y ) =
∞∑
k=1

ΓA,B(ak)(X)ΓB,C(bk)(Y ), X, Y ∈ S2(H),

and we have
‖Θ‖ ≤ ‖a‖∞‖b‖∞. (4.21)

We claim that
ΓA,B,C(φ) = Θ.

To check this, consider

ãn =
n∑
k=0

ak ⊗ εk and b̃n =
n∑
k=0

bk ⊗ εk

for any n ∈ N. Then we set

φn(t1, t2, t3) =
〈
ãn(t1, t2), b̃n(t2, t3)

〉
=

n∑
k=0

ak(t1, t2)bk(t2, t3).

Fix X, Y ∈ S2(H). We have ΓA,B,C(φn) =
∑n

k=0 ΓA,B,C(akbk) hence by Lemma 4.9,

ΓA,B,C(φn)(X, Y ) =
n∑
k=0

ΓA,B(ak)(X)ΓB,C(bk)(Y ).

Consequently,
ΓA,B,C(φn)(X, Y ) −→

n→+∞
Θ(X, Y ) in S1(H).

Moreover φn → φ a.-e. and (φn)n is bounded in L∞(λA × λB × λC). Indeed,

∣∣φn(t1, t2, t3)
∣∣ ≤ ( n∑

k=0

|ak(t1, t2)|2
) 1

2
( n∑
k=0

|bk(t2, t3)|2
) 1

2 ≤ ‖a‖∞‖b‖∞.

Hence by Lebesgue’s dominated convergence Theorem, w∗- lim
n→+∞

φn = φ. The w∗-

continuity of ΓA,B,C implies that

ΓA,B,C(φn)(X, Y ) −→
n→+∞

ΓA,B,C(φ)(X, Y ) weakly in S2(H).

We conclude that ΓA,B,C(φ)(X, Y ) = Θ(X, Y ).
This shows (i). Furthermore (4.21) yields∥∥ΓA,B,C(φ) : S2 × S2 → S1

∥∥ ≤ ‖a‖∞‖b‖∞ (4.22)

Proof of (i)⇒ (ii)

Assume (i) and apply Proposition 4.7, which connects ΓA,B,C(φ) to Λ(φ). Let X ∈
S2(L2(λB), L2(λA)) and Y ∈ S2(L2(λC), L2(λB)). By (4.10), we have

‖Λ(φ)(Y,X)‖1 = ‖ρ−1
A ◦ ΓA,B,C(φ)(X̃, Ỹ ) ◦ ρC‖1
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≤ ‖ΓA,B,C(φ)(X̃, Ỹ )‖1

≤
∥∥ΓA,B,C(φ) : S2 × S2 → S1

∥∥‖X‖2‖Y ‖2,

since ‖X̃‖2 = ‖X‖2 and ‖Ỹ ‖2 = ‖Y ‖2. This shows (ii), with∥∥Λ(φ) : S2 × S2 → S1
∥∥ ≤ ∥∥ΓA,B,C(φ) : S2 × S2 → S1

∥∥. (4.23)

Remark 4.11. With the terminology adopted here, Peller’s Theorem from [Pel85] states as
follows.

Let A,B be normal operators on a separable Hilbert space H and let λA and λB be scalar-
valued spectral measures for A and B. Let ψ ∈ L∞(λA × λB) and let uψ : L1(λA)→ L∞(λB)
be the bounded map associated to ψ (see (1.5)). The following are equivalent.

(i) The double operator integral mapping ΓA,B(ψ) extends to a bounded map from S1(H)
into itself.

(ii) There exist a Hilbert space H and two functions a ∈ L∞(λA;H) and b ∈ L∞(λB;H)
such that

ϕ(s, t) = 〈a(s), b(t)〉 a.e.-(s, t). (4.24)

In this case, ∥∥ΓA,B(ϕ) : S1(H) −→ S1(H)
∥∥ = inf

{
‖a‖∞‖b‖∞

}
,

where the infimum runs over all pairs (a, b) of functions such that (4.24) holds true.
Let us show that this result directly follows from Theorem 4.10. ConsiderA,B as above and

take an auxiliary normal operator C on H (this may be the identity map), with a scalar-valued
spectral measure λC . For any ψ ∈ L∞(λA × λB), set

ψ̃ = ψ ⊗ 1 ∈ L∞(λA × λB)⊗ L∞(λC) ⊂ L∞(λA × λC × λB).

We claim that for any X, Y ∈ S2(H),

ΓA,C,B(ψ̃)(X, Y ) = ΓA,B(ψ)(XY ). (4.25)

Indeed for any f1 ∈ L∞(λA) and f2 ∈ L∞(λB), and for any X, Y ∈ S2(H), we have

ΓA,C,B(f1 ⊗ 1⊗ f2)(X, Y ) = f1(A)XY f2(B).

Hence by linearity, (4.25) holds true for any ψ ∈ L∞(λA)⊗ L∞(λB). By the w∗-continuity of
ΓA,C,B and of ΓA,B, this identity holds as well for any ψ ∈ L∞(λA × λB).

We have ‖XY ‖1 ≤ ‖X‖2‖Y ‖2 for any X, Y ∈ S2(H) and conversely, for any Z ∈ S1(H),
there exist X, Y in S2(H) such that XY = Z and ‖X‖2‖Y ‖2 = ‖Z‖1. Thus given any
ψ ∈ L∞(λA × λB), it follows from (4.25) that ΓA,C,B(ψ̃) maps S2(H) × S2(H) into S1(H) if
and only if ΓA,B(ψ) maps S1(H) into S1(H) and moreover,∥∥ΓA,C,B(ψ̃) : S2(H)× S2(H) −→ S1(H)

∥∥ =
∥∥ΓA,B(ψ) : S1(H) −→ S1(H)

∥∥.
The result therefore follows from Theorem 4.10 and the equality (4.20).
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4.4 Complete boundedness of triple operator integrals

Let A,B,C be normal operators on a separable Hilbert space H. Let λA, λB and λC
be scalar-valued spectral measures associated with A,B and C. The purpose of this
section is to characterize the functions φ ∈ L∞(λA×λB×λC) such that ΓA,B,C(φ) extends

to a completely bounded map from S∞(H)
h
⊗ S∞(H) into S∞(H).

We will also consider the continuous bilinear Schur multipliers Λ(φ). Note that by
the obvious equalities

S2(L2(λB), L2(λC)) = S2(L2(λC), L2(λB))

and
S2(L2(λA), L2(λB)) = S2(L2(λB), L2(λA)),

we can see Λ(φ) as a mapping

Λ(φ) : S2(L2(λB), L2(λC))× S2(L2(λA), L2(λB))→ S2(L2(λA), L2(λC)).

In [KJT09], the authors studied and characterized the boundedness of continuous bi-
linear Schur multipliers

S∞(L2(λB), L2(λC))
h
⊗ S∞(L2(λA), L2(λB))→ S∞(L2(λA), L2(λC)).

They proved that we have such extension if and only if φ has a certain factorization that
will be given in the theorem of this section. They also proved that the boundedness for
the Haagerup norm in this setting implies the complete boundedness.

The proof of Theorem 4.12 below includes another proof of [KJT09, Theorem 3.4]
and we show that the same characterization holds for triple operator integrals. Note
that the result presented here can be easily extended to the case of multilinear operator
integrals.

Theorem 4.12. Let H be a separable Hilbert space, A,B,C be normal operators on H and let
φ ∈ L∞(λA × λB × λC). The following are equivalent:

(i) ΓA,B,C(φ) extends to a completely bounded mapping

ΓA,B,C(φ) : S∞(H)
h
⊗ S∞(H)→ S∞(H).

(ii) Λ(φ) extends to a completely bounded mapping

Λ(φ) : S∞(L2(λB), L2(λC))
h
⊗ S∞(L2(λA), L2(λB))→ S∞(L2(λA), L2(λC)).

(iii) There exist a separable Hilbert space H , a ∈ L∞(λA;H), b ∈ L∞σ (λB;B(H)) and c ∈
L∞(λC ;H) such that

φ(t1, t2, t3) = 〈[b(t2)](a(t1)), c(t3)〉

for a.-e. (t1, t2, t3) ∈ σ(A)× σ(B)× σ(C).

In this case, ∥∥ΓA,B,C(φ)
∥∥ = ‖Λ(φ)‖ = inf ‖a‖∞‖b‖∞‖c‖∞. (4.26)
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Proof. In this proof we will identify, for ψ ∈ L∞(λA×λB×λC), the element ΓA,B,C(ψ) ∈
B2(S2(H)× S2(H),S2(H)) with the element still denoted by

ΓA,B,C(ψ) : S2(H)
∧
⊗ S2(H)→ S2(H).

(See the isometry given by (1.1).)

Proof of (i)⇒ (ii)
We use the same notations as in Subsection 4.1.3 where we introduced the sub-

spaces HA,HB and HC of H. S∞(HB,HC) and S∞(HA,HB) are closed subspaces of
S∞(H) and by injectivity of the Haagerup tensor product (see Proposition 1.4), we
have a closed subspace

S∞(HB,HC)
h
⊗ S∞(HA,HB) ⊂ S∞(H)

h
⊗ S∞(H).

By Proposition 4.7, the restriction of ΓA,B,C(φ) to S∞(HB,HC)
h
⊗ S∞(HA,HB) is valued

in S∞(HA,HC). Moreover, this restriction is completely bounded and by the same
proposition, we obtain the inequality

‖Λ(φ)‖cb ≤
∥∥ΓA,B,C(φ)

∥∥
cb .

Proof of (ii)⇒ (iii)
If (Ω, µ) is a measure space, the mapping

(f, g) ∈ L2(Ω)2 7→ fg ∈ L1(Ω)

induces a quotient map

f ⊗ g ∈ L2(Ω)
∧
⊗ L2(Ω) 7→ fg ∈ L1(Ω).

We can identify L2(Ω) with its conjugate space so that by (1.12) we get a quotient map

q : S1(L2(Ω))→ L1(Ω)

which turns out to be a complete metric surjection (here, the L1-spaces are equipped
with their Max structure).

Let qi : S1(L2(Ωi))→ L1(Ωi), i = 1, 2, 3 be defined as above. For convenience, write
Hi = L2(Ωi). Using Proposition 1.4 together with the associativity of the Haagerup
tensor product, we get a complete metric surjection

Q = q3 ⊗ q2 ⊗ q1 : S1(H3)
h
⊗ S1(H2)

h
⊗ S1(H1)→ L1(Ω3)

h
⊗ L1(Ω2)

h
⊗ L1(Ω1).

Let N = kerQ and let, for i = 1, 2, 3, Ni = ker qi. Using Corollary 1.5 twice, we obtain
that

N = N3 ⊗ S1(H2)⊗ S1(H1) + S1(H3)⊗N2 ⊗ S1(H1) + S1(H3)⊗ S1(H2)⊗N1.
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Assume that Λ(φ) extends to a completely bounded mapping

Λ(φ) : S∞(H2, H3)
h
⊗ S∞(H1, H2)→ S∞(H1, H3) ⊂ B(H1, H3).

Let E = S∞(H2, H3)
h
⊗ S∞(H1, H2). By Proposition 1.6, we have a complete isometry

CB(E,B(H1, H3)) =

(
((H3)c)

∗ h
⊗ E

h
⊗ (H1)c

)∗
.

By (1.14) we have

E = (H3)c
h
⊗ ((H2)c)

∗ h
⊗ (H2)c

h
⊗ ((H1)c)

∗.

Thus, using (1.13) and the associativity of the Haagerup tensor product, we get that

CB(E,B(H1, H3)) =

(
S1(H3)

h
⊗ S1(H2)

h
⊗ S1(H1)

)∗
.

Let u : S1(H3)
h
⊗S1(H2)

h
⊗S1(H1)→ C induced by Λ(φ). For any x ∈ S1(H1), y ∈ S1(H2)

and z ∈ S1(H3), we have

u(z ⊗ y ⊗ x) =

∫
Ω1×Ω2×Ω3

φ(t1, t2, t3)[q1(x)](t1)[q2(y)](t2)[q3(z)](t3) dµ1(t1)dµ2(t2)dµ3(t3).

To see this, it is enough to check it when x, y and z are rank one operators and in
that case, one can use the identifications above. In particular, the latter implies that u
vanishes on N = kerQ. Since Q is a complete metric surjection, we get a mapping

v : L1(Ω3)
h
⊗ L1(Ω2)

h
⊗ L1(Ω1)→ C

such that u = v ◦Q. An application of Theorem 1.1 with suitable restrictions using the
separability of the spaces L1(Ωi) gives the existence of a separable Hilbert space H and
completely bounded maps

α : L1(Ω1)→ Hc, β : L1(Ω2)→ B(H) and γ : L1(Ω3)→ Hr

such that for any f ∈ L1(Ω1), g ∈ L1(Ω2), h ∈ L1(Ω3),

v(h⊗ g ⊗ f) = 〈[β(g)](α(f)), γ(h)〉 .

Since L1(Ω2) is equipped with the Max operator space structure, we have

CB(L1(Ω2),B(H)) = B(L1(Ω2),B(H)).

Moreover, by (1.4) and (1.16), we have

B(L1(Ω2),B(H)) = L∞σ (Ω2;B(H)).
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Thus, we associate to β an element b ∈ L∞σ (Ω2;B(H)). Similarly, we associate to α an
element a ∈ L∞(Ω1;H) and to γ an element c ∈ L∞(Ω3;H). We obtain that

φ(t1, t2, t3) = 〈[b(t2)](a(t1)), c(t3)〉

for a.-e. (t1, t2, t3) ∈ σ(A) × σ(B) × σ(C), and one can choose a, b and c such that we
have the equality

‖Λ(φ)‖ = ‖a‖∞‖b‖∞‖c‖∞.

Proof of (iii)⇒ (i)
Assume that there exist a separable Hilbert spaceH , a ∈ L∞(λA;H), b ∈ L∞σ (λB;B(H))

and c ∈ L∞(λC ;H) such that

φ(t1, t2, t3) = 〈[b(t2)](a(t1)), c(t3)〉

for a.-e. (t1, t2, t3) ∈ σ(A)× σ(B)× σ(C). Let (εn)n≥1 be a Hilbertian basis of H . Define,
for i, j ≥ 1,

ai = 〈a, εi〉 , bij = 〈bεj, εi〉 and cj = 〈εj, c〉 .

Then a ∈ L∞(Ω1), c ∈ L∞(Ω3) and b ∈ L∞(Ω2). To see this last point, simply note that

bij = tr(b(.) ◦ (εi ⊗ εj)).

For N ≥ 1, let PN be the orthogonal projection onto Span(ε1, . . . , εN). Then, define

φN(t1, t2, t3) = 〈[b(t2)](PN(a(t1))), PN(c(t3))〉 .

It is clear that (φN)N≥1 is bounded in L∞(λ1 × λB × λC) and that φN → φ pointwise
when N → ∞. Therefore, by Dominated convergence theorem, we have that φN → φ
for the w∗−topology. This implies, by w∗− continuity of ΓA,B,C , that for any X and Y
in S2(H), [

ΓA,B,C(φN)
]

(X ⊗ Y )→
[
ΓA,B,C(φ)

]
(X ⊗ Y )

weakly in S2(H).

Assume that (ΓA,B,C(φN))N is uniformly bounded in CB(S∞(H)
h
⊗ S∞(H),S∞(H)).

Then, the above approximation property together with the density of S2 into S∞ im-
ply that ΓA,B,C(φ) is completely bounded as well.

We will show now that for any N ≥ 1, ΓA,B,C(φN) ∈ CB(S∞(H)
h
⊗ S∞(H),S∞(H))

with a cb-norm less than ‖a‖∞‖b‖∞‖c‖∞.
For any N ≥ 1 and a.-e. (t1, t2, t3) ∈ σ(A)× σ(B)× σ(C), we have

φN(t1, t2, t3) =
∑

1≤n≤N

( ∑
1≤m≤N

am(t1)bnm(t2)

)
cn(t3),

so that for any X, Y ∈ S2(H),

[
ΓA,B,C(φN)

]
(X ⊗ Y ) =

∑
1≤n≤N

( ∑
1≤m≤N

am(A)Xbnm(B)

)
Y cn(C).
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Note that the latter can be written as[
ΓA,B,C(φN)

]
(X ⊗ Y ) = AN(X ⊗ IN)BN(Y ⊗ IN)CN ,

where
AN = (a1(A) a2(A) . . . aN(A)) : `N2 (H)→ H,

BN = (bji(B))1≤i≤N
1≤j≤N

: `N2 (H)→ `N2 (H)

and
CN = (c1(C) c2(C) . . . cN(C))t : H → `N2 (H).

The notation X ⊗ IN stands for the element of B(`N2 (H)) whose matrix is the N × N
diagonal matrix diag(X, . . . , X). Similarly for Y ⊗ IN .

Define, for N ≥ 1,
πN : B(H) −→ B(`N2 (H)).

X 7−→ X ⊗ IN
Then πN is a ∗−representation.

Let
πB : L∞(λB) −→ B(H)

f 7−→ f(B)

be the ∗-representation introduced in Subsection 4.1.1. By [Pis03, Proposition 1.5], πB
is completely bounded and ‖πB‖cb ≤ 1. Note that the element

(bji)1≤i≤N
1≤j≤N

∈MN(L∞(λB))

has a norm less than ‖b‖∞. Thus, the latter implies that

BN = (πB(bji))1≤i≤N
1≤j≤N

has an operator norm less than ‖b‖∞. Similarly (using column and row matrices), we
show thatAN and CN have a norm less than ‖a‖∞ and ‖c‖∞, respectively. Finally, write[

ΓA,B,C(φN)
]

(X ⊗ Y ) = σN1 (X)σN2 (Y )

where σN1 (X) = ANπ(X)BN and σN2 (Y ) = π(Y )CN . By the easy part of Wittstock theo-
rem (see e.g. [Pis03, Theorem 1.6]), σN1 and σN2 are completely bounded with cb-norm
less than ‖a‖∞‖b‖∞ and ‖c‖∞, respectively. By Theorem 1.1, we obtain that ΓA,B,C(φN)

belongs to CB(S∞(H)
h
⊗ S∞(H),S∞(H)) with cb-norm less than inf ‖a‖∞‖b‖∞‖c‖∞.

This completes the proof of the theorem.

Remark 4.13. In the theorem above, note that the implication (i) ⇒ (ii) holds true when
we replace ’complete boundedness’ by ’boundedness’. In [KJT09], it is proved that when Λ(φ)
extends to a bounded mapping

Λ(φ) : S∞(L2(λB), L2(λC))
h
⊗ S∞(L2(λA), L2(λB))→ S∞(L2(λA), L2(λC)),
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then the factorization in (iii) holds true. As we saw, this factorization implies the complete

boundedness of ΓA,B,C . Hence, the boundedness of triple operator integrals on S∞(H)
h
⊗S∞(H)

implies its complete boundedness.

4.5 Perspectives

Similarly to Section 3.4, one can state several questions concerning multiple operator
integrals by changing the spaces S2 or S1 by other Schatten classes. First, it would be
interesting to have a general definition of multiple operator integrals from Sp1 × . . .×
Spn into Sr where

1

p1

+ . . .+
1

pn
= 1− 1

r
. Peller gave such definition when the element

φ ∈ L∞ belongs to the integral projective tensor product of L∞−spaces (see [Pel06]
or [Pel16]). Then, one can try to obtain necessary or sufficient conditions on φ for an
element ΓA,B,C(φ) to map for instance Sp × Sq into S1 (where p and q are conjugate
exponents), or for an element ΓA1,A2,...,An(φ) to map S2 × . . .× S2 into S1.
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Chapter 5

Resolution of Peller’s problems

——————————————————————–

5.1 Statement of the problems

Let H be a separable complex Hilbert space. In 1953, M. G. Krein [Kre53b] showed
that for a self-adjoint (not necessarily bounded) operator A and a self-adjoint operator
K ∈ S1(H) there exists a unique function ξ ∈ L1(R) such that

Tr(f(A+K)− f(A)) =

∫
R
f ′(t)ξ(t)dt, (5.1)

whenever f is from the Wiener class W1, that is f is a function on R with Fourier
transform of f ′ in L1(R).

The function ξ above is called Lifshits-Krein spectral shift function and was firstly
introduced in a special case by I. M. Lifshits [Lif52]. It plays an important role in
Mathematical Physics and in Scattering Theory, where it appears in the formula of
the determinant of a scattering matrix (for detailed discussion we refer to [BY92] and
references therein).

Observe that the right-hand side of (5.1) makes sense for every Lipschitz function
f . In 1964, M. G. Krein conjectured that the left-hand side of (5.1) also makes sense for
every Lipschitz function f . More precisely, Krein’s conjecture was the following.

Krein’s Conjecture. For any self-adjoint (not necessarily bounded) operator A, for any self-
adjoint operator K ∈ S1(H) and for any Lipschitz function f ,

f(A+K)− f(A) ∈ S1. (5.2)

The best result concerning the description of the class of functions for which (5.2)
holds is due to V. Peller in [Pel85], who established that (5.2) holds for f belonging to
the Besov class B1

∞1 (for a definition of this class, see [Pel85] and references therein).
However (5.2) does not hold even for the absolute value function, which is obviously
the simplest example of a Lipschitz function (see e.g. [Dav88], [DDPS97]). Moreover,
there is an example of a continuously differentiable Lipschitz function f and (bounded)
self-adjoint operators A,K with K ∈ S1 such that (5.2) does not hold. The first such
example is due to Yu. B. Farforovskaya [Far72].
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Assume now that K is a self-adjoint operator from the Hilbert-Schmidt class S2. In
1984, L. S. Koplienko, [Kop84], considered the operator

f(A+K)− f(A)− d

dt

(
f(A+ tK)

)∣∣∣
t=0
, (5.3)

where by d
dt

(
f(A+ tK)

)∣∣∣
t=0

we denote the derivative of the map t 7→ f(A+ tK)−f(A)

in the Hilbert-Schmidt norm. He proved that for every fixed self-adjoint operator A
there exists a unique function η ∈ L1(R) such that

Tr
(
f(A+K)− f(A)− d

dt

(
f(A+ tK)

)∣∣∣
t=0

)
=

∫
R
f ′′(t)η(t)dt, (5.4)

if f is an arbitrary rational function, with poles off R and f|R bounded.
The function η is called Koplienko’s spectral shift function (for more information

about Koplienko’s spectral shift function we refer to [GPS08] and references therein).
It is clear that the right-hand side of (5.4) makes sense when f is a twice differ-

entiable function with a bounded second derivative. The natural question is then to
describe the class of all these functions f such that the left-hand side of (5.4) is well-
defined. Namely, for which function f does the operator (5.3) belong to S1? The best
result to date is again due to V. Peller [Pel05], who established an affirmative answer
under the assumption that f belongs to the Besov class B2

∞1. In the same paper [Pel05],
V. Peller stated the following problem.

Peller’s problem. [Pel05, Problem 2] Suppose that f is a twice continuously differentiable
function with a bounded second derivative. Let A be a self-adjoint (possibly unbounded) oper-
ator and let K be a self-adjoint operator from S2. Is it true that

f(A+K)− f(A)− d

dt

(
f(A+ tK)

)∣∣∣
t=0
∈ S1? (5.5)

Now let f be a function on T, admitting a decomposition f(z) =
∑∞

n=−∞ cnz
n, z ∈ T

with
∑∞

n=−∞ |ncn| < ∞. Let U ∈ B(H) be a unitary operator and let Z ∈ S1(H) be
a self-adjoint operator. Like in the selfadjoint case, M. G. Krein proved a result (see
[Kre53a, Theorem 2]) implying that there exists a Lifshits-Krein spectral shift function
η ∈ L1(T) (not depending on f ) such that

Tr
(
f(eiZU)− f(U)

)
=

∫
T
f ′(z)η(z)dz. (5.6)

Observe that the right-hand side of (5.6) makes sense for every Lipschitz function
f . Like in the selfadjoint case, the left-hand side do not always make sense (see [Pel85]
or [Far72]), but it does when f ∈ B1

∞1 (see [Pel85]).
Let f ∈ C2(T), let U ∈ B(H) be a unitary operator and let Z ∈ S2(H) be a self-

adjoint operator. Then the difference operator f(eiZU) − f(U) belongs to S2(H) and
the function t 7→ f(eitZU) − f(U) from R into S2(H) is differentiable, see e.g. [Pel05,
(2.7)]. Let d

dt

(
f(eitZU)

)
|t=0

denote its derivative at t = 0. In [Pel05, Problem 1], in
connection with the validity of the so-called Koplienko-Neidhardt trace formula, V. V.
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Peller asked whether the operator

f(eiZU)− f(U)− d

dt

(
f(eitZU)

)
|t=0

(5.7)

necessarily belongs to S1(H) under these assumptions. He proved that this holds true
whenever f belongs to the Besov class B2

∞1 and derived a Koplienko-Neidhardt trace
formula in this case.

The aim of this chapter is to give a counterexample for both questions (5.5) and
(5.7).

Note that in (5.7), the preceding discussion implies that f(eiZU)−f(U)− d
dt

(
f(eitZU)

)
|t=0

is a well-defined element of S2(H). In [Pel05, Theorem 4.6], the author defined the op-
erator in (5.3) for all f ∈ B2

∞1 via an approximation process. The precise meaning of
(5.3) in the case of an arbitrary self-adjoint operator A and an arbitrary twice contin-
uously differentiable function f is not clear. To give a precise statement to Peller’s
problem in that case, we first need to study the differentiability of mappings of the
form

ϕ : t ∈ R 7→ f(A+ tK)− f(A) ∈ S2(H)

where A and K are selfadjoint, K ∈ S2(H) and f is a n-times differentiable function on
R. We will see in Theorem 5.1 that under suitable assumptions onA or f , the mapϕwill
be differentiable and the operator (5.3) will appear as a Taylor formula of second order
for φ using triple operator integrals. In this case, the operator will be a well-defined
element of S2(H). In our construction of a counterexample for Peller’s problem in the
selfadjoint case, the operator A that we obtained is not bounded and the function f
does not have a bounded derivative, so that we cannot apply directly Theorem 5.1.
However, we will construct A as a direct sum of bounded operators and in that case,
the meaning of (5.3) will be unambiguous. We explain this fact in Subsection 5.2.3.

Section 5.2 is dedicated to the connection between perturbation theory for selfad-
joint operators and multiple operator integrals and Sections 5.3 and 5.4 concern the
construction of counterexamples for Peller’s problems in the selfadjoint and the uni-
tary case, respectively.

5.2 Perturbation theory for selfadjoint operators

We recall the definitions of divided differences. For any integer m ≥ 1, we let C(Rm)
be the vector space of all continuous functions from Rm into C, we let Cb(Rm) be the
subspace of all bounded continuous functions, and we letC0(Rm) be the subspace of all
continuous functions vanishing at infinity. Further for any integer p ≥ 1 we let Cp(Rm)
be the space of all p-times differentiable functions from Rm into C. Let f ∈ C1(R). The
divided difference of the first order f [1] : R2 → C is defined by

f [1](x0, x1) :=

{
f(x0)−f(x1)

x0−x1 , if x0 6= x1

f ′(x0) if x0 = x1

, x0, x1 ∈ R.
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The function f [1] belongs to C(R2) and if f ′ is bounded, then f [1] ∈ Cb(R2).
Let n ≥ 2 and f ∈ Cn(R). The divided difference of n-th order f [n] : Rn+1 → C is

defined recursively by

f [n](x0, x1, . . . , xn) :=

{
f [n−1](x0,x2,...,xn)−f [n−1](x1,x2...,xn)

x0−x1 , if x0 6= x1

∂1f
[n−1](x1, x2, . . . , xn) if x0 = x1

,

for all x0, . . . , xn ∈ R.
Here ∂1 stands for the partial derivation with respect to the first variable. It is well-

known that f [n] is symmetric. Therefore, for all 1 ≤ i ≤ n and for all x0, . . . , xn ∈ R,

f [n](x0, x1, . . . , xn) =

{
f [n−1](x0,...,xi−1,xi+1,...,xn)−f [n−1](x0,...,xi−2,xi,xi+1,...,xn)

xi−1−xi , if xi−1 6= xi

∂if
[n−1](x1, . . . , xn) if xi−1 = xi

,

where ∂i stands for the partial derivation with respect to the i-th variable.
Note for further use that for all 1 ≤ i ≤ n and for all (x0, . . . , xn) ∈ Rn+1,

f [n](x0, . . . , xn) =

∫ 1

0

∂if
[n−1](x0, . . . , xi−2, txi−1 + (1− t)xi, xi+1, . . . , xn) dt . (5.8)

The function f [n] belongs to C(Rn+1) and if f (n) is bounded, then f [n] ∈ Cb(Rn+1).

Let A,K be selfadjoint operators on a separable Hilbert space H, and assume that
K ∈ S2(H). Let f ∈ C1(R). If either f ′ is bounded or A is bounded, then the restriction
of f [1] to σ(A + K) × σ(A) is bounded, and hence it makes sense to define the double
operator integral mapping ΓA+K,A(f [1]) : S2(H)→ S2(H). One of the early results from
double operator integrals theory is that in this case,

f(A+K)− f(A) =
[
ΓA+K,A(f [1])

]
(K). (5.9)

See e.g. [PSW02, Theorem 7.4] for a proof of this result. Moreover t−1
(
f(A+tK)−f(A)

)
admits a limit in S2(H) when t→ 0 and denoting this limit by d

dt
f(A+ tK)|t=0, we have

d

dt
f(A+ tK)|t=0 =

[
ΓA,A(f [1])

]
(K). (5.10)

A proof of that result will be given in Theorem 5.1.

The main result of this section is the existence of higher order derivatives in the
S2-norm and an analog of (5.9) for the higher order perturbation operator

f(A+K)− f(A)−
n−1∑
k=1

1

k!

dk

dtk
f(A+ tK)|t=0.

For any integer p ≥ 1, we denote by Dp(R) the space of p-times differentiable functions

φ : R→ S2(H)
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and we denote by φ(p) : R→ S2(H) the p−th derivative of φ.

We have the following result:

Theorem 5.1. Let A and K be selfadjoint operators on a separable Hilbert space H with K ∈
S2(H). Let n ≥ 1 and f ∈ Cn(R). Assume either that A is bounded or that for all 1 ≤ i ≤ n,
f (i) is bounded. Then, one may define

ϕ : t ∈ R 7→ f(A+ tK)− f(A) ∈ S2(H).

(i) The function ϕ belongs to Dn(R) and for any integer 1 ≤ k ≤ n and any t ∈ R,

1

k!
ϕ(k)(t) =

[
ΓA+tK,A+tK,...,A+tK(f [k])

]
(K, . . . ,K). (5.11)

(ii) We have

f(A+K)− f(A)−
n−1∑
k=1

1

k!
ϕ(k)(0) =

[
ΓA+K,A,...,A(f [n])

]
(K, . . . ,K). (5.12)

This theorem will be proved in Subsection 5.2.2.

5.2.1 Approximation in multiple operator integrals

In this section, we will extend to the setting of multiple operator integrals a result of
[PS04] concerning an approximation property for double operator integrals. Following
the latter reference we will use resolvent strong convergence. Let A be a selfadjoint op-
erator onH. We say that a sequence (Aj)j of selfadjoint operators is resolvent strongly
convergent to A if for any z ∈ C \ R, (z − Aj)

−1 → (z − A)−1 in the strong operator
topology (SOT). According to [RS80, Theorem 8.20], this is equivalent to

∀ f ∈ Cb(R), f(Aj)
SOT−→ f(A) when j →∞. (5.13)

The following lemma states that any selfadjoint operator is the limit (in the above
sense) of bounded selfadjoint operators.

Lemma 5.2. Let A be a self-adjoint operator in a separable Hilbert space H. Let E be the
spectral measure of A and define An := E((−n, n))A for every n ∈ N. Then, the sequence of
bounded self-adjoint operators {An}∞n=1 converges to A in the strong resolvent sense.

Proof. Since E((−n, n)) converges to I in the strong operator topology,

lim
n→∞

Ang = Ag (5.14)

for every g ∈ D, where D is the domain of A. Let z ∈ C \ R and f ∈ H. The mapping
A − z : D → H is a bijection so that (A − z)−1f ∈ D. By standard properties of the
resolvent,

(An − z)−1f − (A− z)−1f = (An − z)−1(A− An)(A− z)−1f. (5.15)
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The result follows from combining (5.14) and (5.15) and applying uniform bounded-
ness of (An − z)−1.

If Aj → A and Bj → B resolvent strongly, then [PS04, Prop. 3.2] shows that for any
ψ ∈ Cb(R2),

ΓAj ,Bj(ψ)
SOT−→ ΓA,B(ψ) when j →∞.

The following is a multiple operator integral version of this result.

Proposition 5.3. Let A1, . . . , An be selfadjoint operators on a separable Hilbert space H and
let, for all 1 ≤ i ≤ n, (Aji )j∈N be a sequence of selfadjoint operators on H resolvent strongly
convergent to Ai. Then for any φ ∈ Cb(Rn) and for any K1, . . . , Kn−1 ∈ S2(H),

lim
j→+∞

∥∥∥ΓA
j
1,...,A

j
n(φ)(K1, . . . , Kn−1)− ΓA1,...,An(φ)(K1, . . . , Kn−1)

∥∥∥
2

= 0. (5.16)

Proof. For simplicity we write Γ = ΓA1,...,An and Γj = ΓA
j
1,...,A

j
n along this proof. Since

H ⊗ H is dense in S2(H) and ‖Γj‖ = 1 for any j ≥ 1, it suffices to prove (5.16) in the
case when K1, . . . , Kn−1 are elementary tensors. Thus from now on we assume that for
all 1 ≤ i ≤ n− 1,

Ki = hi ⊗ h′i
with hi, h′i ∈ H.

Assume first that φ = u1 ⊗ · · · ⊗ un, with ui ∈ Cb(R) for all i. In this case,

Γj(φ)(K1, . . . , Kn−1) = u1(Aj1)(h1 ⊗ h′1) . . . (hn−1 ⊗ h′n−1)un(Ajn)

=

(
n−1∏
k=2

〈
uk(A

j
k)h
′
k, hk−1

〉)
un(Ajn)(hn−1)⊗ u1(Aj1)(h′1).

By the assumption and (5.13), this converges to(
n−1∏
k=2

〈uk(Ak)h′k, hk−1〉

)
un(An)(hn−1)⊗ u1(A1)(h′1),

which in turn is equal to Γ(φ)(K1, . . . , Kn−1). This shows (5.16) in this special case. By
linearity and standard approximation, this implies that (5.16) holds true whenever φ
belongs to the uniform closure of Cb(R) ⊗ · · · ⊗ Cb(R). In particular, (5.16) holds true
when φ ∈ C0(Rn).

The rest of the proof consists in reducing to this case by a more subtle (i.e. non uni-
form) approximation process. Let (gk)k≥1 be a sequence of functions inC0(R) satisfying
the following two properties:

∀ k ≥ 1, 0 ≤ gk ≤ 1, and ∀ r ∈ R, gk(r)
k→∞−→ 1.

These properties imply that for all 1 ≤ i ≤ n, gk(Ai) → IH strongly. Indeed let h ∈ H,
then by the Spectral theorem,

‖gk(Ai)h− h‖2 =

∫
σ(Ai)

(
1− gk(r)

)2 dEAi
h,h(r).
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Then by Lebesgue’s dominated convergence theorem, ‖gk(Ai)h−h‖2 → 0 when k →∞.
We consider an arbitrary φ ∈ Cb(Rn) and set

φk = (gk ⊗ g2
k ⊗ · · · ⊗ g2

k ⊗ gk)φ, k ≥ 1.

Clearly each φk belongs to C0(Rn), hence satisfies (5.16). A crucial observation is that
for all j, k ≥ 1,

Γj(φk)(K1, . . . , Kn−1) = Γj(φ)
(
gk(A

j
1)K1gk(A

j
2), . . . , gk(A

j
n−1)Kn−1gk(A

j
n)
)
. (5.17)

The argument for this identity is essentially the same as the one for the proof of 4.9.
One first checks the validity of (5.17) in the case when φ belongs to Cb(R)⊗· · ·⊗Cb(R),
then one uses the w∗-continuity of Γj to obtain the general case. Details are left to the
reader. Likewise we have, for all k ≥ 1,

Γ(φk)(K1, . . . , Kn−1) = Γ(φ) (gk(A1)K1gk(A2), . . . , gk(An−1)Kn−1gk(An)) . (5.18)

For any k ≥ 1 and any 1 ≤ i ≤ n− 1,

gk(Ai)Kigk(Ai+1) = gk(Ai)(hi ⊗ h′i)gk(Ai+1) = gk(Ai+1)(hi)⊗ gk(Ai)(h′i),

hence gk(Ai)Kigk(Ai+1)→ Ki in S2(H) when k →∞.
Let ε > 0. According to the above observation, we fix k0 ≥ 1 such that for any

1 ≤ i ≤ n− 1,
‖gk0(Ai)Kigk0(Ai+1)−Ki‖2 ≤ ε.

Hence, there exists a constant α > 0 such that

‖Γ(φk0)(K1, . . . , Kn−1)− Γ(φ)(K1, . . . , Kn−1)‖2 ≤ αε.

Now, using that for any 1 ≤ i ≤ n − 1, gk0(A
j
i )Kigk0(A

j
i+1) = gk0(A

j
i+1)(hi) ⊗

gk0(A
j
i )(h

′
i) and the fact that gk0(A

j
i )→ gk0(Ai) and gk0(A

j
i+1)→ gk0(Ai+1) strongly when

j → ∞, we see that gk0(A
j
i )Kigk0(A

j
i+1) → gk0(Ai)Kigk0(Ai+1) in S2(H) when j → ∞.

Hence, for a large enough j0 ≥ 1, we have, for any 1 ≤ i ≤ n− 1,

‖gk0(A
j
i )Kigk0(A

j
i+1)−Ki‖2 ≤ 2ε

for any j ≥ j0. We deduce that there exists a constant β > 0 such that

∀ j ≥ j0, ‖Γj(φk0)(K1, . . . , Kn−1)− Γj(φ)(K1, . . . , Kn−1)‖2 ≤ βε.

Now recall that φk satisfies (5.16). Hence changing j0 into a bigger integer if necessary
we also have

∀ j ≥ j0, ‖Γj(φk0)(K1, . . . , Kn−1)− Γ(φk0)(K1, . . . , Kn−1)‖2 ≤ ε.

We deduce from the above three estimates that

∀ j ≥ j0, ‖Γj(φ)(K1, . . . , Kn−1)− Γ(φ)(K1, . . . , Kn−1)‖2 ≤ (α + β + 1)ε.

This shows that φ satisfies (5.16).
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We finish this section with a lemma that will be used in Section 5.2.2.

Lemma 5.4. Let {An}∞n=1 be a sequence of self-adjoint operators converging to a self-adjoint
operator A in the strong resolvent sense. Let K be a bounded self-adjoint operator. Then,
{An +K}∞n=1 converges in the strong resolvent sense to A+K.

Proof. Let z ∈ C be such that Im (z) 6= 0. Note that

(A− z)(A+K − z)−1 = I −K(A+K − z)−1 (5.19)

and, on the domain of An,

(An +K − z)−1(An − z) = I − (An +K − z)−1K. (5.20)

These operators are bounded in the operator norm by 1 + ||K||/|Im (z)|. By simple
algebraic manipulations,

(An +K − z)−1 − (A+K − z)−1

= (An +K − z)−1
(
I −K(A+K − z)−1

)
−
(
I − (An +K − z)−1K

)
(A+K − z)−1.

Combining the latter with (5.19) and (5.20) gives

(An +K − z)−1 − (A+K − z)−1 (5.21)
= (An +K − z)−1(A− z)(A+K − z)−1 − (An +K − z)−1(An − z)(A+K − z)−1

= (An +K − z)−1(An − z)
(
(An − z)−1 − (A− z)−1

)
(A− z)(A+K − z)−1.

Let f ∈ H. It follows from (5.21) that∥∥((An +K − z)−1 − (A+K − z)−1
)
f
∥∥

≤
(
1 + ||K||/|Im (z)|

) ∥∥((An − z)−1 − (A− z)−1
)(

(A− z)(A+K − z)−1f
)∥∥ ,

completing the proof of the lemma.

5.2.2 Proof of the main result

In this section, we will prove Theorem 5.1. First, we will need the following lemmas
and corollary.

Lemma 5.5. Let n ≥ 3 and 1 ≤ k ≤ n− 2. Let u ∈ Cb(Rk+1) and v ∈ Cb(Rn−k). We set, for
any (t1, . . . , tn) ∈ Rn,

(uv)(t1, . . . , tn) = u(t1, . . . , tk+1)v(tk+1, . . . , tn).

Then, uv ∈ Cb(Rn).
LetA1, . . . , An be selfadjoint operators on a separable Hilbert spaceH. Then, for anyK1, . . . , Kn−1 ∈
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S2(H),

ΓA1,...,An(uv)(K1, . . . , Kn−1)

= ΓA1,...,Ak+1(u)(K1, . . . , Kk)Γ
Ak+1,...,An(v)(Kk+1, . . . , Kn−1).

Proof. We first prove the formula when u and v are elementary tensors of elements of
Cb(R). Then, one uses the w∗-continuity of multiple operator integrals like in Lemma
4.9 to obtain the general case.

Lemma 5.6. Let n ≥ 2 be an integer. Let A1, . . . , An−1, A,B be bounded selfadjoint operators
on a separable Hilbert spaceH and assume that B −A ∈ S2(H). Let f ∈ Cn(R). Then, for all
K1, . . . , Kn−1 ∈ S2(H) and for any 1 ≤ i ≤ n we have[

ΓA1,...Ai−1,B,Ai,...,An−1(f [n−1])
]

(K1, . . . , Kn−1)

−
[
ΓA1,...Ai−1,A,Ai,...,An−1(f [n−1])

]
(K1, . . . , Kn−1)

=
[
ΓA1,...,Ai−1,B,A,Ai,...,An−1(f [n])

]
(K1, . . . , Ki−1, B − A,Ki, . . . Kn−1).

Proof. It will be convenient to extend the definition of the divided difference as follows.
Let m ∈ N∗ and 1 ≤ i ≤ m. For any φ ∈ C1(Rm), we define a function φ[1]

i : Rm+1 → C
by

φ
[1]
i (x0, . . . , xm) =

∫ 1

0

∂iφ(x0, . . . , xi−2, txi−1 + (1− t)xi, xi+1, . . . , xm) dt

for all (x0, . . . , xm) ∈ Rm+1. The index i in the notation φ
[1]
i refers to the i-th variable

derivation ∂i. It follows from (5.8) that for any f ∈ Cn(R),

(f [n−1])
[1]
i = f [n]. (5.22)

For φ ∈ C(Rn), write

ΓA(φ) =
[
ΓA1,...Ai−1,A,Ai,...,An−1(φ)

]
(K1, . . . , Kn−1)

and
ΓB(φ) =

[
ΓA1,...Ai−1,B,Ai,...,An−1(φ)

]
(K1, . . . , Kn−1).

For ψ ∈ C(Rn+1), write

ΓB,A(ψ) =
[
ΓA1,...,Ai−1,B,A,Ai,...,An−1(ψ)

]
(K1, . . . , Ki−1, B − A,Ki, . . . , Kn−1).

We will show that for any φ ∈ C1(Rn),

ΓB(φ)− ΓA(φ) = ΓB,A

(
φ

[1]
i

)
. (5.23)

Then the result follows by applying this formula to φ = f [n−1], together with (5.22).
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Assume first that φ = u1 ⊗ · · · ⊗ un for functions uj ∈ C1(R), i.e φ(t1, . . . , tn) =
u1(t1) . . . un(tn) for any (t1, . . . , tn) ∈ Rn. Then

∂iφ = u1 ⊗ · · · ⊗ ui−1 ⊗ u′i ⊗ ui+1 ⊗ · · · ⊗ un.

Hence,
φ

[1]
i = u1 ⊗ · · · ⊗ ui−1 ⊗ u[1]

i ⊗ ui+1 ⊗ · · · ⊗ un.

By Lemma 5.5 we have

ΓB,A(φ
[1]
i )

=
[
ΓA1,...,Ai−1,B(u1 ⊗ · · · ⊗ ui−1 ⊗ 1)

]
(K1, . . . , Ki−1)

[
ΓB,A,Ai(u

[1]
i ⊗ 1)

]
(B − A,Ki)[

ΓAi,...,An−1(ui+1 ⊗ · · · ⊗ un)
]

(Ki+1, . . . , Kn−1).

We have, by (5.9),[
ΓB,A,Ai(u

[1]
i ⊗ 1)

]
(B − A,Ki) =

[
ΓB,A(u

[1]
i )
]

(B − A)Ki

= (ui(B)− ui(A))Ki.

Hence,

ΓB,A(φ
[1]
i )

= u1(A1)K1 . . . ui−1(Ai−1)Ki−1(ui(B)− ui(A))Kiui+1(Ai)Ki+1 . . . un(An−1)

= u1(A1)K1 . . . ui−1(Ai−1)Ki−1ui(B)Kiui+1(Ai)Ki+1 . . . un(An−1)

− u1(A1)K1 . . . ui−1(Ai−1)Ki−1ui(A)Kiui+1(Ai)Ki+1 . . . un(An−1)

= ΓB(φ)− ΓA(φ).

This shows (5.23) in the case when φ = u1 ⊗ · · · ⊗ un. By linearity this immediately
implies that (5.23) holds true whenever φ ∈ C1(R) ⊗ · · · ⊗ C1(R). Note that this space
contains the n−variable polynomial functions.

Now consider an arbitrary φ ∈ C1(Rn). Let M > 0 be a constant such that the
spectra of A1, . . . , An−1, A and B are included in [−M,M ]. By continuity of ∂iφ there
exists a sequence (Qm)m≥1 of n−variable polynomial functions such that Qm → ∂iφ
uniformly on [−M,M ]n. For any m ≥ 1, we set

Pm(t1, . . . , tn) =

∫ ti

0

Qm(t1, . . . , ti−1, θ, ti+1, . . . , tn) dθ

for all (t1, . . . , tn) ∈ Rn. This is also an n-variable polynomial function. Next we in-
troduce w(t1, . . . , ti−1, ti+1, . . . , tn) = φ(t1, . . . , ti−1, 0, ti+1, . . . , tn). w belongs to C1(Rn−1)
and for any real numbers t1, . . . , tn, we have

φ(t1, . . . , tn) = w(t1, . . . , ti−1, ti+1, . . . , tn) +

∫ ti

0

∂iφ(t1, . . . , ti−1, θ, ti+1, . . . , tn) dθ.
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Hence,

|φ(t1, . . . , tn)− w(t1, . . . , ti−1, ti+1, . . . , tn)− Pn(t1, . . . , tn)|

≤
∫ ti

0

|∂iφ(t1, . . . , ti−1, θ, ti+1, . . . , tn)−Qm(t1, . . . , ti−1, θ, ti+1, . . . , tn)|dθ.

Consequently, Pm + w → φ uniformly on [−M,M ]n. Let (wm)m∈N be a sequence of
(n− 1)−variable polynomial functions converging uniformly to w on [−M,M ]n−1. The
latter implies that Pm + wm → φ uniformly on [−M,M ]n. By construction, ∂iPm = Qm

and ∂iwm = 0 hence we also obtain that (Pm + wm)
[1]
i → φ

[1]
i uniformly on [−M,M ]n+1.

Since Pm +wm belongs to C1(R)⊗· · ·⊗C1(R), it satisfies (5.23). The above approxima-
tion property implies that φ satisfies (5.23) as well.

Corollary 5.7. Let n ≥ 2 be an integer. Let A1, . . . , An−1, A,K be selfadjoint operators on a
separable Hilbert space H and assume that K ∈ S2(H). Let f ∈ Cn(R) be such that f (n−1)

and f (n) are bounded. Then, for all K1, . . . , Kn−1 ∈ S2(H) and for any 1 ≤ i ≤ n we have[
ΓA1,...Ai−1,A+K,Ai,...,An−1(f [n−1])

]
(K1, . . . , Kn−1)

−
[
ΓA1,...Ai−1,A,Ai,...,An−1(f [n−1])

]
(K1, . . . , Kn−1)

=
[
ΓA1,...,Ai−1,A+K,A,Ai,...,An−1(f [n])

]
(K1, . . . , Ki−1, K,Ki, . . . Kn−1).

Proof. For all 1 ≤ k ≤ n− 1, let (Ajk)j∈N be a sequence of bounded selfadjoint operators
on H converging resolvent strongly to Ak. Such sequence exists by Lemma 5.2. Simi-
larly, let (Aj)j∈N be a sequence of bounded selfadjoint operators converging resolvent
strongly to A. According to Lemma 5.6, we have, for all j,[

ΓA
j
1,...A

j
i−1,A

j+K,Aji ,...,A
j
n−1(f [n−1])

]
(K1, . . . , Kn−1)

−
[
ΓA

j
1,...A

j
i−1,A

j ,Aji ,...,A
j
n−1(f [n−1])

]
(K1, . . . , Kn−1)

=
[
ΓA

j
1,...,A

j
i−1,A

j+K,Aj ,Aji ,...,A
j
n−1(f [n])

]
(K1, . . . , Ki−1, K,Ki, . . . Kn−1).

By Lemma 5.4, Aj + K → A + K resolvent strongly when j → ∞. Moreover, the
boundedness of f (n−1) and f (n) imply that of f [n−1] and f [n]. Hence, we obtain the
desired equality by passing to the limit in the above equality thanks to Proposition
5.3.

Proof of Theorem 5.1. 1. Assume first that A is bounded.
(i) We prove the first point by induction on k, 1 ≤ k ≤ n. Let k = 1 and t ∈ R. We want
to show that the limit

lim
s→0

ϕ(t+ s)− ϕ(t)

s

exists in S2(H) and is equal to
[
ΓA+tK,A+tK(f [1])

]
(K).
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By (5.9) we have

ϕ(t+ s)− ϕ(t)

s
=
f(A+ (t+ s)K)− f(A+ tK)

s
=
[
ΓA+(t+s)K,A+tK(f [1])

]
(K).

By Lemma 5.4, we get that A + (t + s)K → A + tK resolvent strongly as s → 0. By
assumption A and K are bounded so there exists a bounded interval I ⊂ R such that
for s small enough, σ(A + (t + s)K) ⊂ I . Since f ∈ C1(R), f [1] is continuous hence
bounded on I × I . Let F ∈ Cb(R2) be such that F|I×I = f [1]. By Proposition 5.3 applied
to F we get

lim
s→0

[
ΓA+(t+s)K,A+tK(f [1])

]
(K) =

[
ΓA+tK,A+tK(f [1])

]
(K) in S2(H),

which concludes the proof when k = 1.

Now let 1 ≤ k ≤ n− 1 and assume that ϕ ∈ Dk(R) and for all 1 ≤ j ≤ k and t ∈ R,

ϕ(j)(t) = j!
[
ΓA+tK,A+tK,...,A+tK(f [j])

]
(K, . . . ,K). (5.24)

We want to prove that ϕ ∈ Dk+1(R) with a derivative of (k+1)-th order given by (5.11).
Let s, t ∈ R. We have

ϕ(k)(t+ s)− ϕ(k)(t)

s

=
k!

s

[
ΓA+(t+s)K,...,A+(t+s)K(f [k])− ΓA+tK,...,A+tK(f [k])

]
(K, . . . ,K)

=
k!

s

k+1∑
i=1

[
Γ(A+tK)i−1,(A+(t+s)K)k−i+2

(f [k])− Γ(A+tK)i,(A+(t+s)K)k−i+1

(f [k])
]

(K, . . . ,K)

where for instance (A + tK)i = A + tK, . . . , A + tK (i terms). By Lemma 5.6, we have
for all 1 ≤ i ≤ k + 1,

1

s

[
Γ(A+tK)i−1,(A+(t+s)K)k−i+2

(f [k])− Γ(A+tK)i,(A+(t+s)K)k−i+1

(f [k])
]

(K, . . . ,K)

=
1

s

[
Γ(A+tK)i−1,A+(t+s)K,A+tK,(A+(t+s)K)k−i+1

(f [k+1])
]

(K, . . . ,K, sK,K, . . . ,K)

=
[
Γ(A+tK)i−1,A+(t+s)K,A+tK,(A+(t+s)K)k−i+1

(f [k+1])
]

(K, . . . ,K).

Moreover, using resolvent convergence like in the first part of the proof, we can see
that this term converges in S2(H), as s goes to 0, to[

ΓA+tK,...,A+tK(f [k+1])
]

(K, . . . ,K).

Hence,

lim
s→0

ϕ(k)(t+ s)− ϕ(k)(t)

s
= k!

k+1∑
i=1

[
ΓA+tK,...,A+tK(f [k+1])

]
(K, . . . ,K)
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= (k + 1)!
[
ΓA+tK,...,A+tK(f [k+1])

]
(K, . . . ,K)

which concludes the proof of (i).

(ii). We will prove the second point by induction on n. The case n = 1 follows from
(5.9). Now let n ∈ N and f ∈ Cn+1(R). Assume that we have

f(A+K)− f(A)−
n−1∑
k=1

1

k!
ϕ(k)(0) =

[
ΓA+K,A,...,A(f [n])

]
(K, . . . ,K).

We have

f(A+K)− f(A)−
n∑
k=1

1

k!
ϕ(k)(0) = f(A+K)− f(A)−

n−1∑
k=1

1

k!
ϕ(k)(0)− 1

n!
ϕ(n)(0)

=
[
ΓA+K,A,...,A(f [n])

]
(K, . . . ,K)− 1

n!
ϕ(n)(0).

By the first point of the theorem, we have

1

n!
ϕ(n)(0) =

[
ΓA,A,...,A(f [n])

]
(K, . . . ,K).

Using Lemma 5.6, we obtain

f(A+K)− f(A)−
n∑
k=1

1

k!
ϕ(k)(0) =

[
ΓA+K,A,...,A(f [n+1])

]
(K, . . . ,K)

which is the desired equality.

2. Assume now that A is unbounded and that for all 1 ≤ i ≤ n, f (i) is bounded.
Then, for all 1 ≤ i ≤ n, f [i] is bounded. Hence, applying Corollary 5.7 instead of
Lemma 5.6 and following the same lines as in the proof of the bounded case, we obtain
the unbounded case.

Theorem 5.1, Proposition 5.3 and Lemma 5.4 have the following consequence.

Corollary 5.8. Let A be a selfadjoint operator on a separable Hilbert space H and let (Aj)j∈N
be a sequence of bounded selfadjoint operators on H converging resolvent strongly to A. Let
n ≥ 1 be an integer and let f ∈ Cn(R) be such that f (n) is bounded. Let K = K∗ ∈ S2(H)
and define, for any j ≥ 1,

ϕj : t ∈ R 7→ f(Aj + tK)− f(Aj) ∈ S2(H).

Then, for any t ∈ R,

lim
j→∞

ϕ
(n)
j (t)

n!
=
[
ΓA+tK,...,A+tK(f [n])

]
(K, . . . ,K)
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and

lim
j→∞

(
f(Aj +K)− f(Aj)−

n−1∑
k=1

1

k!
ϕ

(k)
j (0)

)
=
[
ΓA+K,A,...,A(f [n])

]
(K, . . . ,K),

where the limits are in S2(H).

5.2.3 Connection with Peller’s problem

The results obtained in this section will allow us to give a meaning and a concrete
approximation process for the operator

f(A+K)− f(A)− d

dt

(
f(A+ tK)

)∣∣∣
t=0

when A and K are selfadjoint operators on a separable Hilbert space H, K ∈ S2(H)
and f ∈ C2(R) with a bounded second derivative, in the case when H is a direct sum

and A and K are a direct sum of operators. Thus, we will assume that H =
2⊕
i∈NHi is

the direct sum of finite dimensional Hilbert spacesHi and that A andK are of the form

A =
+∞⊕
i=1

Ãi and K =
+∞⊕
i=1

K̃i

where for all i ∈ N, Ai and Ki are bounded selfadjoint operators acting onHi such that

‖K‖2
2 =

∞∑
i=1

‖K̃i‖2
2 <∞. (5.25)

Set, for n ≥ 1,

An =

(
n⊕
i=1

Ãi

)
⊕

(
+∞⊕
i=n+1

0Hi

)
and Kn =

(
n⊕
i=1

K̃i

)
⊕

(
+∞⊕
i=n+1

0Hi

)
.

If h ∈ Cb(R) then

h(A) =
+∞⊕
i=1

h(Ãi)

and for any n ≥ 1,

h(An) =

(
n⊕
i=1

h(Ãi)

)
⊕

(
+∞⊕
i=n+1

h(0)IHi

)
.

Therefore, it is easy to see that An → A resolvent strongly as n → +∞. Similarly,
Kn → K in S2(H) and An +Kn → A+K resolvent strongly.
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Assume that f ∈ C2(R) and that f ′′ is bounded. Then, Theorem 5.1 gives a meaning

to f(A+K)−f(A)− d

dt

(
f(A+ tK)

)∣∣∣
t=0

as
[
ΓA+K,A,A(f [2])

]
(K,K). Moreover, the latter

implies, by Corollary 5.8, that

f(An +Kn)− f(An)− d

dt

(
f(An + tKn)

)∣∣∣
t=0
−→
n→+∞

[
ΓA+K,A,A(f [2])

]
(K,K)

in S2(H). By the same corollary, we also know that this limit does not depend on the
approximation of A by bounded operators (An)n.
Moreover, we have

f(An +Kn)− f(An)− d

dt

(
f(An + tKn)

)∣∣∣
t=0

=

(
n⊕
i=1

f(Ãi + K̃i)− f(Ãi)−
d

dt

(
f(Ãi + tK̃i)

)∣∣∣
t=0

)
⊕

(
+∞⊕
i=n+1

0Hi

)

and this sequence converges in S2(H) to

+∞⊕
i=1

(
f(Ãi + K̃i)− f(Ãi)−

d

dt

(
f(Ãi + tK̃i)

)∣∣∣
t=0

)
. (5.26)

For both counterexamples to Peller’s problems, the operators A and K will have
this form. Note that according to (5.26), we have∥∥∥∥f(A+K)− f(A)− d

dt

(
f(A+ tK)

)∣∣∣
t=0

∥∥∥∥
1

(5.27)

=
+∞∑
i=1

∥∥∥∥(f(Ãi + K̃i)− f(Ãi)−
d

dt

(
f(Ãi + tK̃i)

)∣∣∣
t=0

)∥∥∥∥
1

. (5.28)

Therefore, the construction of a counterexample reduces to the construction of selfad-
joint operators Ãi and K̃i acting on a finite dimensional Hilbert space such that∥∥∥∥(f(Ãi + K̃i)− f(Ãi)−

d

dt

(
f(Ãi + tK̃i)

)∣∣∣
t=0

)∥∥∥∥
1

can be estimated from below in order to have a divergent series. To do so, we will
use the connection between those operators and triple operator integrals (see Theorem
5.1). Using together (4.19) and Theorem 3.4, we can see that we have to estimate from
below the S1-norm of Schur multipliers, for which some results (counterexamples) are
known.

5.3 The self-adjoint case

5.3.1 A few properties of triple operator integrals

In this subsection, φ : R2 → C and ψ : R3 → C denote arbitrary functions, and n ∈ N
is a fixed integer. The following lemmas give some nice properties of triple operator
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integrals that we will use for our construction of a counter-example to Peller’s problem.

Lemma 5.9. Let A ∈ B(Cn) be a self-adjoint operator and X, Y ∈ B(Cn). Let

Ã =

(
A 0
0 A

)
and X̃ =

(
0 X
Y 0

)
.

Then
ΓÃ,Ã,Ã(ψ)(X̃, X̃) =

(
ΓA,A,A(ψ)(X, Y ) 0

0 ΓA,A,A(ψ)(Y,X)

)
.

Proof. Let {λi}mi=1 be the set of distinct eigenvalues of the operatorA, m ≤ n, and let EA
i

be the spectral projection ofA associated with λi, 1 ≤ i ≤ m.Clearly, the operator Ã has
the same set {λi}mi=1 of distinct eigenvalues and the spectral projection of the operator
Ã associated with λi is given by

EÃ
i =

(
EA
i 0

0 EA
i

)
, 1 ≤ i ≤ m.

Therefore, we have

ΓÃ,Ã,Ã(ψ)(X̃, X̃) =
m∑

i,k,j=1

ψ(λi, λk, λj)

(
EA
i 0

0 EA
i

)(
0 X
Y 0

)
×(

EA
k 0

0 EA
k

)(
0 X
Y 0

)(
EA
j 0

0 EA
j

)
=

m∑
i,k,j=1

ψ(λi, λk, λj)

(
EA
i XE

A
k Y E

A
j 0

0 EA
i Y E

A
k XE

A
j

)
=

(
ΓA,A,A(ψ)(X, Y ) 0

0 ΓA,A,A(ψ)(Y,X)

)
.

Lemma 5.10. Let A,B ∈ B(Cn) be self-adjoint operators with the same set of eigenvalues and
X, Y ∈ B(Cn). Let

Ã =

(
A 0
0 B

)
, X̃ =

(
0 X
0 0

)
and Ỹ =

(
0 0
0 Y

)
.

Then
ΓÃ,Ã,Ã(ψ)(X̃, Ỹ ) =

(
0 ΓA,B,B(ψ)(X, Y )
0 0

)
.

Proof. Let {λi}mi=1 be the set of distinct eigenvalues of the operatorA, m ≤ n, and let EA
i

(resp. EB
i ) be the spectral projection of A (resp. B) associated with λi, 1 ≤ i ≤ m. Since

A and B have the same set of eigenvalues, the operator Ã has the same set {λi}mi=1 of
distinct eigenvalues and the spectral projection of the operator Ã associated with λi is
given by

EÃ
i =

(
EA
i 0

0 EB
i

)
, 1 ≤ i ≤ m.
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Therefore, we have

ΓÃ,Ã,Ã(ψ)(X̃, Ỹ ) =
m∑

i,k,j=1

ψ(λi, λk, λj)

(
EA
i 0

0 EB
i

)(
0 X
0 0

)
×(

EA
k 0

0 EB
k

)(
0 0
0 Y

)(
EA
j 0

0 EB
j

)
=

m∑
i,k,j=1

ψ(λi, λk, λj)

(
0 EA

i XE
B
k Y E

B
j

0 0

)
=

(
0 ΓA,B,B(ψ)(X, Y )
0 0

)
.

Lemma 5.11. Let A0, A1, A2 ∈ B(Cn) be self-adjoint operators. For any a 6= 0 ∈ R we have
that

ΓaA0,aA1,aA2(ψ) = ΓA0,A1,A2(ψa),

where
ψa(x0, x1, x2) = ψ(ax0, ax1, ax2), x0, x1, x2 ∈ R.

Proof. Let {λ(j)
i }

nj
i=1 be the set of distinct eigenvalues of Aj , j = 0, 1, 2. Fix a 6= 0 in R.

It is clear that for any j, {aλ(j)
i }

nj
i=1 is the set of distinct eigenvalues of aAj , and that the

corresponding spectral projections coincide, that is, EaAj
i = E

Aj
i for any i = 1, . . . , nj .

Therefore, for X, Y ∈ B(Cn), we have

ΓaA0,aA1,aA2(ψ)(X, Y ) =

n0∑
i=1

n1∑
k=1

n2∑
j=1

ψ
(
aλ

(0)
i , aλ

(1)
k , aλ

(2)
j

)
EA0
i XEA1

k Y EA2
j

= ΓA0,A1,A2(ψa)(X, Y ).

Lemma 5.12. Let A,B ∈ B(Cn) be self-adjoint operators and let {Um}m≥1 be a sequence of
unitary operators from B(Cn) such that Um → In as m → ∞. Let also X, Y ∈ B(Cn) and
sequences {Xm}m≥1 and {Ym}m≥1 in B(Cn) such that Xm → X and Ym → Y as m → ∞.
Let ψ, ψm : R3 → C be functions such that ψm → ψ pointwise as m→∞. Then

ΓUmAU
∗
m,B,B(ψm)(Xm, Ym) −→ ΓA,B,B(ψ)(X, Y ), m→∞. (5.29)

Proof. Let {λi}m0
i=1 and {µk}m1

k=1 be the set of distinct eigenvalues of the operators A and
B, respectively, m0,m1 ≤ n, and let EA

i (resp. EB
k ) be the spectral projection of A (resp.

B) associated with λi (resp. µk), 1 ≤ i ≤ m0 (resp. 1 ≤ k ≤ m1). It is clear that
the sequence {λi}m0

i=1 is the sequence of eigenvalues of UmAU∗m and that the spectral
projection of UmAU∗m associated with λi is given by

E
UmAU∗m
i = UmE

A
i U
∗
m, 1 ≤ i ≤ m0.
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Observe that

ΓUmAU
∗
m,B,B(ψm)(Xm, Ym) =

m0∑
i=1

m1∑
j,k=1

ψm(λi, µk, µj)E
UmAU∗m
i XEB

k Y E
B
j

= Um

( m0∑
i=1

m1∑
j,k=1

ψm(λi, µk, µj)E
A
i (U∗mX)EB

k Y E
B
j

)
= UmΓA,B,B(ψm)(U∗mX, Y ).

We claim that ΓA,B,B(ψm)(U∗mX, Y )→ ΓA,B,B(ψ)(X, Y ). Indeed, we have

‖ΓA,B,B(ψm)(U∗mX, Y )− ΓA,B,B(ψ)(X, Y )‖∞
≤ ‖ΓA,B,B(ψm)(U∗mX, Y )− ΓA,B,B(ψm)(X, Y )‖∞

+ ‖ΓA,B,B(ψm)(X, Y )− ΓA,B,B(ψ)(X, Y )‖∞
≤ ‖ΓA,B,B(ψm)(U∗mX −X, Y )‖∞ + ‖ΓA,B,B(ψm − ψ)(X, Y )‖∞

≤
m0∑
i=1

m1∑
j,k=1

|ψm(λi, µk, µj)|‖UmX −X‖∞‖Y ‖∞+

m0∑
i=1

m1∑
j,k=1

|ψm − ψ|(λi, µk, µj)‖X‖∞‖Y ‖∞.

This upper bound tends to 0 as m→∞, which proves the claim.
Now since Um → In, we have

UmΓA,B,B(ψm)(U∗mX, Y )− ΓA,B,B(ψm)(U∗mX, Y ) −→ 0

as m→∞. The result follows at once.

Lemma 5.13. Let A ∈ B(Cn) be a self-adjoint operator and let X ∈ B(Cn) commute with A.

(i) We have
ΓA,A,A(ψ)(X,X) = ψ̂(A)×X2, X ∈ B(Cn),

where ψ̂ : R→ R is defined by

ψ̂(x) = ψ(x, x, x), x ∈ R.

(ii) We have
ΓA,A,A(ψ)(Y,X) = ΓA,A(φ1)(Y )×X, Y ∈ B(Cn),

where
φ1(x0, x1) = ψ(x0, x1, x1), x0, x1 ∈ R.

(iii) We have
ΓA,A,A(ψ(X, Y )) = X × ΓA,A(φ2)(Y ), Y ∈ B(Cn),

where
φ2(x0, x1) = ψ(x0, x0, x1), x0, x1 ∈ R.
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Proof. Let {ξi}ni=1 be an orthonormal basis of eigenvectors of A and let {λi}ni=1 be the
associated n-tuple of eigenvalues. Since A commutes with X , it follows that the pro-
jection Pξi commutes with X for all 1 ≤ i ≤ n. Thus, we have that

ΓA,A,A(ψ)(X,X) =
n∑

i,j,k=1

ψ(λi, λk, λj)PξiXPξkXPξj

=
n∑
i=1

ψ(λi, λi, λi)Pξi ×X2

=
n∑
i=1

ψ̂(λi)Pξi ×X2 = ψ̂(A)×X2,

which proves (i).
Similarly, for (ii), we have

ΓA,A,A(ψ)(Y,X) =
n∑

i,j,k=1

ψ(λi, λk, λj)PξiY PξkXPξj

=
n∑

i,k=1

ψ(λi, λk, λk)PξiY Pξk ×X

=
n∑

i,k=1

φ1(λi, λk)PξiY Pξk ×X = ΓA,A(φ1)(Y )×X.

The proof of (iii) repeats that of (ii).

5.3.2 Finite-dimensional constructions

In this section we establish various estimates concerning finite dimensional operators.
The symbol const will stand for uniform positive constants, not depending on the di-
mension.

It will be convenient to extend the definition of the divided difference of first order
as follow: let f : R → R be a continuous function and assume that f admits right and
left derivatives f ′r(x) and f ′l (x) at each x ∈ R. Assume further that f ′r, f ′l are bounded.
The divided difference of the first order is defined by

f [1] (x0, x1) :=

{
f(x0)−f(x1)

x0−x1 , if x0 6= x1
f ′r(x0)+f ′l (x0)

2
if x0 = x1

, x0, x1 ∈ R.

Then f [1] is a bounded Borel function.

If f is C2-function, the definition of the second divided difference f [2] is given in
Section 5.2. f [2] is a bounded continuous function, with∥∥f [2]

∥∥ =
1

2
‖f ′′‖∞. (5.30)
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Consider the function f0 : R→ R defined by

f0(x) = |x|, x ∈ R.

The definition of f [1]
0 given above applies to this function.

The following result is proved in [Dav88, Theorem 13].

Theorem 5.14. For all n ∈ N there exist self-adjoint operators An, Bn ∈ B(C2n+1) such that
the spectra of An +Bn and An coincide, 0 is an eigenvalue of An, and

‖f0(An +Bn)− f0(An)‖1 ≥ const log n‖Bn‖1. (5.31)

Remark 5.15. The operator An constructed in [Dav88] is a diagonal operator defined on C2n

and 0 is not an eigenvalue of An. By changing the dimension from 2n to 2n + 1 and adding a
zero on the diagonal, one obtains the operator An in Theorem 5.14, with 0 in the spectrum.

Corollary 5.16. For all n ≥ 1, there exist self-adjoint operators An, Bn ∈ B(C2n+1) such that
the spectra of An +Bn and An coincide, and∥∥ΓAn+Bn,An(f

[1]
0 ) : S∞2n+1 → S∞2n+1

∥∥ ≥ const log n.

Proof. Take An, Bn ∈ B(C2n+1) as in Theorem 5.14. By (5.9), we have that

ΓAn+Bn,An(f
[1]
0 )(Bn) = f0(An +Bn)− f0(An).

By Theorem 5.14, we have that

‖ΓAn+Bn,An(f
[1]
0 )(Bn)‖1 = ‖f0(An +Bn)− f0(An)‖1 ≥ const log n‖Bn‖1.

Therefore, ∥∥ΓAn+Bn,An(f
[1]
0 ) : S1

2n+1 → S1
2n+1

∥∥ ≥ const log n.

Since the operator ΓAn+Bn,An(f
[1]
0 ) is a Schur multiplier, we obtain that∥∥ΓAn+Bn,An(f

[1]
0 ) : S∞2n+1 → S∞2n+1

∥∥ ≥ const log n.

Consider the function g0 : R→ R given by

g0(x) = x|x| = xf0(x), x ∈ R.

This is a C1-function. Hence although g0 is not a C2-function, one may define
g

[2]
0 (x0, x1, x2) by the formula given in (5.2) and in the beginning of this subsection

whenever x0, x1, x2 are not equal. Let us define

ψ0(x0, x1, x2) :=


g

[2]
0 (x0, x1, x2), if x0 6= x1 or x1 6= x2

1, if x0 = x1 = x2 > 0
−1, if x0 = x1 = x2 < 0
0, if x0 = x1 = x2 = 0

.
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The following lemma relates the linear Schur multiplier for f [1]
0 and the bilinear

Schur multiplier for ψ0.

Lemma 5.17. For self-adjoint operators An, Bn ∈ B(Cn) such that 0 belongs to the spectrum
of An, the inequality∥∥ΓAn+Bn,An,An(ψ0) : S2

n × S2
n → S1

n

∥∥ ≥ ∥∥ΓAn+Bn,An(f
[1]
0 ) : S∞n → S∞n

∥∥ (5.32)

holds.

Proof. Let {µk}nk=1 be the sequence of eigenvalues of the operatorAn. For simplicity, we
assume that µ1 = 0.

By formulas (4.16) and (4.19) and by Theorem 3.4, we have that∥∥ΓAn+Bn,An,An(ψ0) : S2
n × S2

n → S1
n

∥∥ = max
1≤k≤n

‖ΓAn+Bn,An(ϕk) : S∞n → S∞n ‖,

where
ϕk(x0, x1) := ψ0(x0, µk, x1), x0, x1 ∈ R, 1 ≤ k ≤ n.

This implies∥∥ΓAn+Bn,An,An(ψ0) : S2
n × S2

n → S1
n

∥∥ ≥ ‖ΓAn+Bn,An(ϕ1) : S∞n → S∞n ‖.

It therefore suffices to check that
ϕ1 = f

[1]
0 . (5.33)

By definition, ϕ1 = ψ0(· , 0, · ). In particular,

ϕ1(0, 0) = ψ0(0, 0, 0) = 0 = f
[1]
0 (0, 0).

Consider now (x0, x1) ∈ R2 such that x0 6= 0 or x1 6= 0. In that case, we have

ϕ1(x0, x1) = g
[2]
0 (x0, 0, x1).

If x0, x1, 0 are mutually distinct, then

g
[2]
0 (x0, 0, x1) =

g
[1]
0 (x0, 0)− g[1]

0 (0, x1)

x0 − x1

=

x0f0(x0)−0
x0−0

− 0−x1f0(x1)
0−x1

x0 − x1

=
f0(x0)− f0(x1)

x0 − x1

= f
[1]
0 (x0, x1).

If x0 = 0 and x1 6= 0, then

g
[2]
0 (0, 0, x1) =

g
[1]
0 (0, 0)− g[1]

0 (0, x1)

x0 − x1

=
g′0(0)− 0−x1f0(x1)

0−x1
0− x1

=
f0(x1)

x1

= f
[1]
0 (0, x1).

The argument is similar, when x0 6= 0 and x1 = 0.
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Assume now that x0 = x1 6= 0. Then we have

g
[2]
0 (x0, 0, x0) =

d

dx
g

[1]
0 (x, 0)

∣∣∣
x=x0

=
d

dx

(xf0(x)− 0

x− 0

)∣∣∣
x=x0

= f ′0(x0) = f
[1]
0 (x0, x0).

This completes the proof of (5.33) and we obtain (5.32).

The following is a straightforward consequence of Corollary 5.16 and Lemma 5.17.

Corollary 5.18. For every n ≥ 1 there exist self-adjoint operators An, Bn ∈ B(C2n+1) such
that the spectra of An +Bn and An coincide, and∥∥ΓAn+Bn,An,An(ψ0) : S2

2n+1 × S2
2n+1 → S1

2n+1

∥∥ ≥ const log n.

We assume below that n ≥ 1 is fixed and that An, Bn are given by Corollary 5.18.
The purpose of the series of Lemmas 5.19-5.24 below is to prove Lemma 5.25, which
is the final step in the finite-dimensional resolution of Peller’s problem. The following
result follows immediately from Corollary 5.18.

Lemma 5.19. There are operators Xn, Yn ∈ B(C2n+1) with ‖Xn‖2 = ‖Yn‖2 = 1, such that∥∥ΓAn+Bn,An,An(ψ0)(Xn, Yn)
∥∥

1
≥ const log n.

Let us denote

Hn :=

(
An +Bn 0

0 An

)
(5.34)

and consider the operator

T1 := ΓHn,Hn,Hn(ψ0) : S2
4n+2 × S2

4n+2 → S1
4n+2.

Lemma 5.20. There are operators X̃n, Ỹn ∈ B(C4n+2) with ‖X̃n‖2 = ‖Ỹn‖2 = 1, such that∥∥T1(X̃n, Ỹn)
∥∥

1
≥ const log n.

Proof. Take

X̃n :=

(
0 Xn

02n+1 0

)
, Ỹn :=

(
02n+1 0

0 Yn

)
,

where Xn, Yn are operators from Lemma 5.19 and 02n+1 is the null element of B(C2n+1).
Clearly, ‖X̃n‖2 = ‖Xn‖2 = 1 and ‖Ỹn‖2 = ‖Yn‖2 = 1. It follows from Lemma 5.10 and
the fact that An +Bn and An have the same spectra that

T1(X̃n, Ỹn) =

(
0 ΓAn+Bn,An,An(ψ0)(Xn, Yn)

02n+1 0

)
.

Therefore, by Lemma 5.19,∥∥T1(X̃n, Ỹn)
∥∥

1
=
∥∥ΓAn+Bn,An,An(ψ0)(Xn, Yn)

∥∥
1
≥ const log n.



5.3. The self-adjoint case 115

Lemma 5.21. There is an operator Sn ∈ B(C4n+2) with ‖Sn‖2 ≤ 1 such that∥∥T1(Sn, S
∗
n)
∥∥

1
≥ const log n.

Proof. Take the operators X̃n, Ỹn ∈ B(C4n+2) as in Lemma 5.20. By the polarization
identity

T1(X̃n, Ỹn) =
1

4

3∑
k=0

ikT1((X̃n + ikỸ ∗n ), (X̃n + ikỸ ∗n )∗),

we have that

‖T1(X̃n, Ỹn)‖1 ≤ max
0≤k≤3

‖T1((X̃n + ikỸ ∗n ), (X̃n + ikỸ ∗n )∗)‖1.

Taking k0 such that

‖T1((X̃n + ik0Ỹ ∗n ), (X̃n + ik0Ỹ ∗n )∗)‖1 = max
0≤k≤3

‖T1((X̃n + ikỸ ∗n ), (X̃n + ikỸ ∗n )∗)‖1,

we set
Sn :=

1

2
(X̃n + ik0Ỹ ∗n ).

Thus, by Lemma 5.20, we have∥∥T1(Sn, S
∗
n)
∥∥

1
≥ 1

4
‖T1(X̃n, Ỹn)‖1 ≥ const log n

and
‖Sn‖2 ≤

1

2
(‖X̃n‖2 + ‖Ỹn‖2) = 1.

Let us denote

H̃n :=

(
Hn 0
0 Hn

)
=


An +Bn 0 0 0

0 An 0 0
0 0 An +Bn 0
0 0 0 An

 , n ≥ 1, (5.35)

and consider the operator

T2 := ΓH̃n,H̃n,H̃n(ψ0) : S2
8n+4 × S2

8n+4 → S1
8n+4.

Lemma 5.22. There is a self-adjoint operator Zn ∈ B(C8n+4) with ‖Zn‖2 ≤ 1 such that∥∥T2(Zn, Zn)
∥∥

1
≥ const log n.

Proof. Consider the operator Sn from Lemma 5.21. Setting

Zn :=
1

2

(
0 Sn
S∗n 0

)
,
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we have ‖Zn‖2 = 1
2
(‖Sn‖2 + ‖S∗n‖2) ≤ 1 and by Lemma 5.9,

T2(Zn, Zn) =
1

4

(
T1(Sn, S

∗
n) 0

0 T1(S∗n, Sn)

)
.

Therefore, by Lemma 5.21, we arrive at∥∥T2(Zn, Zn)
∥∥

1
=

1

4

(∥∥T1(Sn, S
∗
n)
∥∥

1
+
∥∥T1(S∗n, Sn)

∥∥
1

)
≥ 1

4

∥∥T1(Sn, S
∗
n)
∥∥

1
≥ const log n.

The following decomposition principle is of independent interest. In this statement
we use the notation [H,F ] = HF − FH for the commutator of H and F .

Lemma 5.23. For any self-adjoint operators Z,H ∈ B(Cn), there are self-adjoint operators
F,G ∈ B(Cn) such that

Z = G+ i[H,F ],

the matrix G commutes with H , and we have

‖[H,F ]‖2 ≤ 2 ‖Z‖2 and ‖G‖2 ≤ ‖Z‖2 .

Proof. Let
h1, h2, . . . , hm

be the pairwise distinct eigenvalues of the operator H and let

E1, E2, . . . , Em

be the associated spectral projections, so that

H =
m∑
j=1

hjEj.

We set

G =
m∑
j=1

EjZEj and F = i
m∑
j=1
j 6=k

(hk − hj)−1EjZEk.

Since
HEj = hjEj,

we have

[H,EjZEk] = H × EjZEk − EjZEk ×H = (hj − hk)× EjZEk.

Consequently,

i[H,F ] =
m∑
j=1
j 6=k

EjZEk
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and hence
G+ i[H,F ] = Z.

Further F,G are self-adjoint and it is clear that [G,H] = 0. Hence the first two claims
of the lemma are proved.

Now take

Ut =
m∑
j=1

eijtEj, t ∈ [−π, π].

Then ∫ π

−π
UtZU

∗
t

dt

2π
=

m∑
j,k=1

EjZEk

∫ π

−π
ei(j−k) t dt

2π
=

m∑
j=1

EjZEj = G.

Since Ut is unitary, we deduce that

‖G‖2 ≤
∫ π

−π
‖UtZU∗t ‖2

dt

2π
≤ ‖Z‖2 .

Moreover writing
i[H,F ] = Z −G

we deduce that
‖[H,F ]‖2 ≤ 2 ‖Z‖2 .

Lemma 5.24. There is a self-adjoint operator Fn ∈ B(C8n+4) such that ‖[H̃n, Fn]‖2 ≤ 2 and∥∥T2

(
i[H̃n, Fn], i[H̃n, Fn]

)∥∥
1
≥ const log n− 5.

Proof. Take the operator Zn in B(C8n+4) given by Lemma 5.22. By Lemma 5.23, we may
choose self-adjoint operators Fn and Gn from B(C8n+4) such that

Zn = Gn + i[H̃n, Fn], [Gn, H̃n] = 0,

and
‖[H̃n, Fn]‖2 ≤ 2 ‖Zn‖2 , ‖Gn‖2 ≤ ‖Zn‖2 . (5.36)

We compute

T2(Zn, Zn) = T2

(
Gn + i[H̃n, Fn], Gn + i[H̃n, Fn]

)
= T2

(
Gn, Gn

)
+ T2

(
Gn, i[H̃n, Fn]

)
+ T2

(
i[H̃n, Fn], Gn

)
+ T2

(
i[H̃n, Fn], i[H̃n, Fn]

)
. (5.37)

We shall estimate the first three summands above. We apply Lemma 5.13 to the
function ψ0 and use the notation from the latter statement. The operator Gn commutes
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with H̃n hence by the first part of Lemma 5.13,

T2(Gn, Gn) = ψ̂0(H̃n)×G2
n.

Furthermore ψ̂0(x) = 1 if x > 0, ψ̂0(x) = −1 if x < 0 and ψ̂0(0) = 0. Hence

‖ψ̂0(H̃n)‖∞ ≤ 1.

This implies that ∥∥T2(Gn, Gn)
∥∥

1
≤ ‖ψ̂0(H̃n)‖∞‖Gn‖2

2 ≤ ‖Zn‖2
2 ≤ 1.

Next applying the second and third part of Lemma 5.13, we obtain

T2

(
i[H̃n, Fn], Gn

)
= iΓH̃n,H̃n(φ1)

(
[H̃n, Fn]

)
×Gn

and
T2

(
Gn, i[H̃n, Fn]

)
= i Gn × ΓH̃n,H̃n(φ2)

(
[H̃n, Fn]

)
,

where

φ1(x0, x1) = ψ0(x0, x1, x1) and φ2(x0, x1) = ψ0(x0, x0, x1), x0, x1 ∈ R.

We have g′0 = 2| · | hence if x0 6= x1, we have

(x0 − x1)φ1(x0, x1) =
g0(x0)− g0(x1)

x0 − x1

− g′0(x1)

= 2
(∫ 1

0

∣∣tx0 + (1− t)x1

∣∣ dt − |x1|
)
.

Using the elementary inequality
∣∣|z| − |z′|∣∣ ≤ |z − z′|, we deduce that |φ1(x0, x1)| ≤ 1.

This implies that ‖φ1‖∞ ≤ 1. Consequently

∥∥∥ΓH̃n,H̃n(φ1)
(

[H̃n, Fn]
)
×Gn

∥∥∥
1
≤
∥∥∥ΓH̃n,H̃n(φ1)

(
[H̃n, Fn]

)∥∥∥
2
‖Gn‖2

≤ ‖φ1‖∞‖[H̃n, Fn]‖2‖Gn‖2

≤ 2‖φ1‖∞‖Zn‖2
2 ≤ 2

by (5.36) and Lemma 5.22. Similarly, ‖φ2‖∞ ≤ 1 and∥∥∥Gn × ΓH̃n,H̃n(φ2)
(

[H̃n, Fn]
)∥∥∥

1
≤ 2.

Combining the preceding estimates with (5.37), we arrive at

‖T2(Zn, Zn)‖1 ≤ 5 +
∥∥∥T2

(
i[H̃n, Fn], i[H̃n, Fn]

)∥∥∥
1
.

Applying Lemma 5.22, we deduce the result.
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Lemma 5.25. There exists a C2-function g with a bounded second derivative and there exists
N ∈ N such that for any sequence {αn}n≥N of positive real numbers there is a sequence of
operators B̃n ∈ B(C8n+4) such that ‖B̃n‖2 ≤ 4αn, for all n ≥ N, and

‖ΓÃn+B̃n,Ãn,Ãn(g[2])(B̃n, B̃n)‖1 ≥ constα2
n log n, n ≥ N.

Proof. Changing the constant ‘const’ in Lemma 5.24 by half of its value, we can change
the estimate from that statement into∥∥T2

(
i[H̃n, Fn], i[H̃n, Fn]

)∥∥
1
≥ const log n, n ≥ N, (5.38)

for sufficiently large N ∈ N.
Take an arbitrary sequence {αn}n≥N of positive real numbers, take the operator Fn

from Lemma 5.24 and denote
F̃n := αnFn.

For any t > 0, consider

γt(H̃n) = eitF̃nH̃ne
−itF̃n , and Vn,t :=

γt(H̃n)− H̃n

t
.

On one hand, it follows from the identity d
dt

(
eitF̃n

)
|t=0 = iF̃n that

Vn,t −→ i[F̃n, H̃n], t→ +0.

It therefore follows from Lemma 5.24 that there is t1 > 0 such that

‖Vn,t‖2 ≤ 2‖[F̃n, H̃n]‖2 = 2αn‖[Fn, H̃n]‖2 ≤ 4αn (5.39)

for all t ≤ t1. On the other hand,

H̃n + t Vn,t = γt(H̃n) −→ H̃n, t→ +0. (5.40)

Take a C2-function g such that g(x) = g0(x) = x|x| for |x| > 1 and g(j)(0) = 0,
j = 0, 1, 2. Denote

gt(x0, x1, x2) := g[2]
(x0

t
,
x1

t
,
x2

t

)
, t > 0, x0, x1, x2 ∈ R.

We claim that
lim
t→+0

gt(x0, x1, x2) = ψ0(x0, x1, x2), x0, x1, x2 ∈ R. (5.41)

To prove this claim, we first observe, using the definition of g0, that

ψ0

(x0

t
,
x1

t
,
x2

t

)
= ψ0(x0, x1, x2), x0, x1, x2 ∈ R, t > 0. (5.42)

Next we note that for any x ∈ R,

g
(x
t

)
= g0

(x
t

)
and g′

(x
t

)
= g′0

(x
t

)
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for t > 0 small enough. For x = 0, this follows from the fact that by assumption,
g(0) = g′(0) = 0. From these properties, we deduce that for any x0, x1 ∈ R,

g[1]
(x0

t
,
x1

t

)
= g

[1]
0

(x0

t
,
x1

t

)
for t > 0 small enough.

In turn, this implies that if x0 6= x1 or x1 6= x2, then

g[2]
(x0

t
,
x1

t
,
x2

t

)
= g

[2]
0

(x0

t
,
x1

t
,
x2

t

)
for t > 0 small enough. According to (5.42), this implies that

g[2]
(x0

t
,
x1

t
,
x2

t

)
= ψ0(x0, x1, x2)

for t > 0 small enough.
Consider now the case when x0 = x1 = x2. For any t > 0, we have

g[2]
(x0

t
,
x0

t
,
x0

t

)
=

1

2
g′′
(x0

t

)
.

If x0 > 0, then g′′
(
x0
t

)
= 2 for t > 0 small enough, and if x0 < 0, then g′′

(
x0
t

)
= −2 for

t > 0 small enough. Furthermore, g′′(0) = 0 by assumption. Hence

g[2]
(x0

t
,
x0

t
,
x0

t

)
= ψ0(x0, x0, x0)

for t > 0 small enough. This completes the proof of (5.41).

Applying subsequently Lemma 5.11 with a = 1
t
, property (5.40) and Lemma 5.12,

we obtain that

Γ
1
t
H̃n+Vn,t,

1
t
H̃n,

1
t
H̃n(g[2])(Vn,t, Vn,t) = ΓH̃n+tVn,t,H̃n,H̃n(gt)(Vn,t, Vn,t)

−→ T2

(
i[F̃n, H̃n], i[F̃n, H̃n]

)
when t→ +0. Furthermore,

T2

(
i[F̃n, H̃n], i[F̃n, H̃n]

)
= α2

nT2

(
i[Fn, H̃n], i[Fn, H̃n]

)
.

By (5.38), there is t2 > 0 such that∥∥Γ
1
t
H̃n+Vn,t,

1
t
H̃n,

1
t
H̃n(g[2])(Vn,t, Vn,t)

∥∥
1
≥ const α2

n log n

for all t ≤ t2. Taking tn = min{t1, t2}, and setting

Ãn :=
1

tn
H̃n, B̃n := Vn,tn ,
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we obtain that ‖B̃n‖2 ≤ 4αn (see (5.39)) and

‖ΓÃn+B̃n,Ãn,Ãn(g[2])(B̃n, B̃n)‖1 ≥ constα2
n log n,

for all n ≥ N .

5.3.3 A solution to Peller’s problem for selfadjoint operators

The following theorem answers Peller’s problem (5.5) in negative.

Theorem 5.26. There exists a function f ∈ C2(R) with a bounded second derivative, a self-
adjoint operator A onH and a self-adjoint B ∈ S2(H) as above such that

f(A+B)− f(A)− d

dt

(
f(A+ tB)

)∣∣∣
t=0

/∈ S1(H).

Proof. Take the integer N ∈ N, the operators Ãn, B̃n and the function g from Lemma
5.25, applied with the sequence {αn}n≥N defined by

αn =
1√

n log3/2 n
.

Let Hn = `2
8n+4 and let H =

2
⊕n≥NHn. Then let A = ⊕∞n=NAn and B = ⊕∞n=NBn be the

corresponding direct sums. Then the self-adjoint operator B belongs to S2(H). Indeed,
it follows from (5.25) and Lemma 5.25 that

‖B‖2
2 =

∞∑
n=N

‖B̃n‖2
2 ≤ 16

∞∑
n=N

α2
n =

∞∑
n=N

16

n log3/2 n
<∞.

On the other hand, by (5.27) and Lemma 5.25, we have

∥∥∥g(A+B)−g(A)− d

dt

(
g(A+ tB)

)∣∣∣
t=0

∥∥∥
1

=
∞∑
n=N

∥∥∥g(Ãn + B̃n)− g(Ãn)− d

dt

(
g(Ã+ tB̃n)

)∣∣∣
t=0

∥∥∥
1

=
∞∑
n=N

∥∥∥ΓÃn+B̃n,Ãn,Ãn(g[2])
(
B̃n, B̃n

)∥∥∥
1

≥ const
∞∑
n=N

α2
n log n

= const
∞∑
n=N

1

n log1/2 n
=∞.

Note that this theorem has been generalized in [DPT16]. The authors proved that
for any n ∈ N, there exist a function fn ∈ Cn(R), a separable Hilbert space H and
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selfadjoint operators A ∈ B(H) and B ∈ Sn(H) such that

fn(A+B)−
n−1∑
k=0

1

k!

dk

dtk

(
f(A+ tB)

)∣∣∣
t=0

/∈ S1(H).

In this result, the operator A is bounded. For the case n = 2, the function f2 is different
from the one considered in this section. Their starting point was a C1-function with
a bad behavior on B(`2). Therefore, they did not have to deal with the difficulty of
the non-differentiability of the absolute value in 0. This is how they could obtain a
bounded operator A.

5.4 The unitary case

5.4.1 Preliminary results

In this subsection we will consider, for a fixed integer n, U1, U2, U3 ∈ B(`n2 ) unitary
operators with the following spectral decompositions

Ui =
n∑
k=1

λ
(i)
k Pξ(i)k

, i = 1, 2, 3.

(See Section 4.2.)

We start with the following approximation lemma.

Lemma 5.27. Let U0, U1, U2 ∈ B(`n2 ) be unitary operators and let (Fm)m be a sequence of
unitaries such that Fm → U0 in the uniform operator topology as m → ∞. Let ψ ∈ C(T3).
Then

ΓFm,U1,U2(ψ) −→ ΓU0,U1,U2(ψ) as m→∞.
Proof. Let F ∈ B(`n2 ) be any unitary operator. Consider a spectral decomposition F =∑n

i=1 ξiPξi . Let X, Y ∈ B(`n2 ). According to (4.17), we have

ΓF,U1,U2(ψ)(X, Y ) =
n∑

i,j,k=1

ψ(ξi, ξ
(1)
k , ξ

(2)
j )PξiXPξ(1)k

Y P
ξ
(2)
j

=
n∑

j,k=1

( n∑
i=1

ψ(ξi, ξ
(1)
k , ξ

(2)
j )Pξi

)
XP

ξ
(1)
k
Y P

ξ
(2)
j

=
n∑

j,k=1

ψ(F, ξ
(1)
k , ξ

(2)
j )XP

ξ
(1)
k
Y P

ξ
(2)
j
,

where ψ(F, ξ
(1)
k , ξ

(2)
j ) is the operator obtained by applying the continuous functional

calculus of F to ψ(· , ξ(1)
k , ξ

(2)
j ).

For any ϕ ∈ C(T), the mapping F 7→ ϕ(F ) is continuous from the set of unitaries of
B(`n2 ) into B(`n2 ). Hence for any j, k = 1, . . . , n,

ψ(Fm, ξ
(1)
k , ξ

(2)
j ) −→ ψ(U0, ξ

(1)
k , ξ

(2)
j ) as m→∞.
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From the above computation we deduce that for any X, Y ∈ B(`n2 ),

ΓFm,U1,U2(ψ)(X, Y ) −→ ΓU0,U1,U2(ψ)(X, Y ) as m→∞.

Since ΓFm,U1,U2(ψ) and ΓU0,U1,U2(ψ) act on a finite dimensional space, this proves the
result.

Remark 5.28. Similarly for any unitary operators U0, U1 ∈ B(`n2 ), for any sequence (Fm)m of
unitaries on `n2 such that Fm → U0 as m→∞, and for any φ ∈ C(T2), we have

ΓFm,U1(φ) −→ ΓU0,U1(φ) as m→∞.

We now turn to perturbation theory. In Section 5.2 we defined the divided dif-
ferences for functions defined on R. A similar definition can be given for complex
function defined on a T as follow. Let f ∈ C1(T). The divided difference of first order
is the function f [1] : T2 → C defined by

f [1] (z0, z1) :=

{
f(z0)−f(z1)

z0−z1 , if z0 6= z1

d
dz
f(z)|z=z0 if z0 = z1

, z0, z1 ∈ T.

This is a continuous function, symmetric in the two variables (z0, z1).
Assume further that f ∈ C2(T). Then the divided difference of the second order is

the function f [2] : T3 → C defined by

f [2] (z0, z1, z2) :=

{
f [1](z0,z1)−f [1](z1,z2)

z0−z2 , if z0 6= z2,
d
dz
f [1](z, z1)|z=z0 , if z0 = z2

, z0, z1, z2 ∈ T.

Note that f [2] is a continuous function, which is symmetric in the three variables (z0, z1, z2).

Let U0, U1 ∈ B(`n2 ) be unitary operators and f ∈ C1(T). Then

f(U0)− f(U1) = ΓU0,U1(f [1])(U0 − U1). (5.43)

See [Pel05] and the references therein for a proof of this result. See also [CMPST16a,
Subsection 3.4] for an elementary argument.

Let Z ∈ B(`n2 ) be a self-adjoint operator and let U ∈ B(`n2 ) be a unitary operator.
Then the function t 7→ f(eitZU) is differentiable and

d

dt

(
f(eitZU)

)
|t=0

= TU,U
f [1]

(iZU). (5.44)

Indeed by (5.43), we have

f(eitZU)− f(U)

t
= T e

itZU,U

f [1]

(eitZU − U
t

)
for any t 6= 0. Since d

dt

(
eitZ
)
|t=0

= iZ, the result follows from Remark 5.28.
The following proposition is the unitary version of Corollary 5.6. In the finite di-

mensional case, we can give an elementary proof.
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Proposition 5.29. Let f ∈ C2(T) and let U0, U1, U2 ∈ B(`n2 ) be unitary operators. Then for
all X ∈ B(`n2 ) we have

ΓU0,U2(f [1])(X)− ΓU1,U2(f [1])(X) = ΓU0,U1,U2(f [2])(U0 − U1, X).

We first prove the following lemma.

Lemma 5.30. Let U0, U1, U2 ∈ B(Cn) be unitary operators. Let In be the identity operator in
B(Cn). Then for j = 0, 1 we have

(i)
ΓU0,U1,U2(ψ)(Uj, X) = ΓU0,U1,U2(ψj)(In, X), X ∈ B(Cn),

where
ψj(x0, x1, x2) = xjψ(x0, x1, x2), x0, x1, x2 ∈ R.

(ii)
ΓUj ,U2(φ)(X) = ΓU0,U1,U2(ψ̃j)(In, X), X ∈ B(Cn),

where
ψ̃j(x0, x1, x2) = φ(xj, x2), x0, x1, x2 ∈ R.

Proof. Let us prove the assertion for j = 0 only. The proof for j = 1 is similar.
(i). For X ∈ B(Cn) we have

ΓU0,U1,U2(ψ)(U0, X) =
n∑

i,j,k=1

ψ(λ
(0)
i , λ

(1)
k , λ

(2)
j )P

ξ
(0)
i
U0Pξ(1)k

XP
ξ
(2)
j

=
n∑

i,j,k=1

ψ(λ
(0)
i , λ

(1)
k , λ

(2)
j )P

ξ
(0)
i

( n∑
r=1

λ(0)
r P

ξ
(0)
r

)
P
ξ
(1)
k
XP

ξ
(2)
j

=
n∑

i,j,k=1

λ
(0)
i ψ(λ

(0)
i , λ

(1)
k , λ

(2)
j )P

ξ
(0)
i
InPξ(1)k

XP
ξ
(2)
j

= ΓU0,U1,U2(ψ0)(In, X).

(ii). For X ∈ B(Cn) we have

ΓU0,U1,U2(ψ̃0)(In, X) =
n∑

i,j,k=1

ψ̃0(λ
(0)
i , λ

(1)
k , λ

(2)
j )P

ξ
(0)
i
InPξ(1)k

XP
ξ
(2)
j

=
n∑

i,j=1

φ(λ
(0)
i , λ

(2)
j )P

ξ
(0)
i

( n∑
k=1

P
ξ
(1)
k

)
XP

ξ
(2)
j

=
n∑

i,j=1

φ(λ
(0)
i , λ

(2)
j )P

ξ
(0)
i
XP

ξ
(2)
j

= ΓU0,U2(φ)(X).
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Proof of Proposition 5.29. LetX ∈ B(Cn) and letψ = f [2] and φ = f [1]. Settingψ0, ψ1, ψ̃0, ψ̃1

as in Lemma 5.30 (i), (ii), we have

(ψ0 − ψ1)(x0, x1, x2) = x0f
[2](x0, x1, x2)− x1f

[2](x0, x1, x2)

= f [1](x0, x2)− f [1](x1, x2) (5.45)

= (ψ̃0 − ψ̃1)(x0, x1, x2).

Therefore, by Lemma 5.30, we obtain

ΓU0,U1,U2(f [2])(U0 − U1, X) = ΓU0,U1,U2(f [2])(U0, X)− ΓU0,U1,U2(f [2])(U1, X)

Lem5.30(i)
= ΓU0,U1,U2(ψ0)(In, X)− ΓU0,U1,U2(ψ1)(In, X)

= ΓU0,U1,U2(ψ0 − ψ1)(In, X)

(5.45)
= ΓU0,U1,U2(ψ̃0 − ψ̃1)(In, X)

= ΓU0,U1,U2(ψ̃0)(In, X)− ΓU0,U1,U2(ψ̃1)(In, X)

Lem5.30(ii)
= ΓU0,U2(f [1])(X)− ΓU1,U2(f [1])(X).

We conclude this section with a formula relating the second order perturbation
operator (5.7) with a combination of operator integrals.

Theorem 5.31. For any self-adjoint operator Z ∈ B(`n2 ), for any unitary operator U ∈ B(`n2 )
and for any f ∈ C2(T), we have

f(eiZU)− f(U)− d

dt

(
f(eitZU)

)
|t=0

= Γe
iZU,U,U(f [2])(eiZU − U, iZU) + Γe

iZU,U(f [1])(eiZU − U − iZU). (5.46)

Proof. By (5.43) we have

f(eiZU)− f(U) = Γe
iZU,U(f [1])(eiZU − U).

Combining with (5.44), we obtain

f(eiZU)− f(U)− d

dt

(
f(eitZU)

)
|t=0

= Γe
iZU,U(f [1])(eiZU − U) − ΓU,U(f [1])(iZU).

By linearity, the right-hand side can be written as

Γe
iZU,U(f [1])(eiZU − U − iZU) +

(
Γe

iZU,U(f [1])(iZU)− ΓU,U(f [1])(iZU)
)
.

Applying Proposition 5.29, we obtain that

Γe
iZU,U(f [1])(iZU)− ΓU,U(f [1])(iZU) = Γe

iZU,U,U(f [2])(eiZU − U, iZU),

and this yields the desired identity (5.46).
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5.4.2 Finite-dimensional constructions

In this section we establish various estimates concerning finite dimensional operators.
The symbol ‘const’ will stand for uniform positive constants, not depending on the
dimension.

The estimates we are going to establish in this section start from a result going back
to [AS05]. Let h : [−e−1, e−1]→ R be the function defined by

h(x) :=

 |x|
(

log
∣∣∣ log |x|

e

∣∣∣)− 1
2
, x 6= 0

0, x = 0
.

Then h is a C1-function. We may extend it to a 2π-periodic C1-function, that we still
denote by h for convenience.

According to [AS05, Section 3], there exist a constant c > 0 and, for any n ≥ 3,
self-adjoint operators Rn, Dn ∈ B(`2

2n) such that

‖RnDn −DnRn‖∞ ≤ π (5.47)

and ∥∥Rnh(Dn)− h(Dn)Rn

∥∥
∞ ≥ c log(n)

1
2 . (5.48)

By changing the dimension from 2n to 2n + 1 and adding a zero on the diagonal, one
may obtain the above results for some self-adjoint operators Rn, Dn ∈ B(`2

2n+1) satisfy-
ing the additional property

0 ∈ σ(Dn). (5.49)

We shall derive the following result.

Theorem 5.32. For any n ≥ 3, there exist self-adjoint operators An, Bn ∈ B(`2
2n+1) such that

Bn 6= 0, 0 ∈ σ(An), ∥∥h(An +Bn)− h(An)
∥∥
∞ ≥ const log(n)

1
2‖Bn‖∞,

and the operators An and An + Bn are conjugate. That is, there exists a unitary operator
Sn ∈ B(`2

2n+1) such that An +Bn = S−1
n AnSn.

Proof. Let us first observe that for any N ≥ 1 and any operators X, Y ∈ B(`2
N),

eitXY − Y eitX

t
−→ i(XY − Y X) as t→ 0. (5.50)

Indeed, this follows from the fact that d
dt

(eitX)|t=0 = iX .
Consider Dn and Rn satisfying (5.47), (5.48) and (5.49). For any t > 0, define

Bn,t := eitRnDne
−itRn −Dn.

On the one hand, applying (5.50) with X = Rn and Y = Dn, we obtain that

1

t
‖Bn,t‖∞ =

1

t

∥∥eitRnDne
−itRn −Dn

∥∥
∞

=
1

t

∥∥eitRnDn −Dne
itRn
∥∥
∞
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−→ ‖RnDn −DnRn‖∞

as t→ 0.
On the other hand, using the identity

h(eitRnDne
−itRn) = eitRnh(Dn)e−itRn

and applying (5.50) with X = Rn and Y = h(Dn), we have

1

t

∥∥h(Dn +Bn,t)− h(Dn)
∥∥
∞ =

1

t

∥∥eitRnh(Dn)e−itRn − h(Dn)
∥∥
∞

=
1

t

∥∥eitRnh(Dn)− h(Dn)eitRn
∥∥
∞

−→ ‖Rnh(Dn)− h(Dn)Rn‖∞

as t→ 0.
Therefore, there exists t > 0 such that

t

2
‖RnDn −DnRn‖∞ ≤ ‖Bn,t‖∞ ≤ 2πt (5.51)

and ∥∥h(Dn +Bn,t)− h(Dn)
∥∥
∞ ≥ c

log(n)
1
2

2
t.

The above two estimates lead to∥∥h(Dn +Bn,t)− h(Dn)
∥∥
∞ ≥

c

4π
log(n)

1
2 ‖Bn,t‖∞.

Furthermore property (5.48) implies that Dn and Rn do not commute. Hence the first
inequality in (5.51) ensures that Bn,t 6= 0.

To get the result, we set An = Dn and Bn = Bn,t. According to the definition of Bn,t,
the operators An and An + Bn are conjugate. All other properties of the statement of
the theorem follow from the above estimates and (5.49).

Let g ∈ C1(T) be the unique function satisfying

g(eiθ) = h(θ), θ ∈ R. (5.52)

The following theorem translates the preceding result into the setting of unitary oper-
ators.

Theorem 5.33. For any n ≥ 3, there exist unitary operators Hn, Kn ∈ B(`2
2n+1) such that

Hn 6= Kn, σ(Hn) = σ(Kn), 1 ∈ σ(Hn),

and
‖g(Kn)− g(Hn)‖∞ ≥ const log(n)

1
2‖Kn −Hn‖∞. (5.53)

Proof. Given any n ≥ 3, let An, Bn be the operators from Theorem 5.32, and set

Hn = eiAn and Kn = ei(An+Bn).
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These are unitary operators. Since An and An + Bn are conjugate, they have the same
spectrum hence in turn, σ(Hn) = σ(Kn). Moreover 1 ∈ σ(Hn) since 0 ∈ σ(An). Since An
and An + Bn are conjugate but different, their sets of spectral projections are different.
This implies that Hn 6= Kn.

By construction we have

g(Hn) = h(An) and g(Kn) = h(An +Bn).

Therefore, by Theorem 5.32, we have

‖g(Kn)− g(Hn)‖∞ ≥ const log(n)
1
2‖Bn‖∞.

Moreover
‖Kn −Hn‖∞ =

∥∥ei(An+Bn) − eiAn
∥∥
∞ ≤ ‖Bn‖∞

by [PS11, Lemma 8]. This yields the result.

Let f : T→ C be defined by

f(z) = (z − 1)g(z), z ∈ T. (5.54)

It turns out that f ∈ C2(T). This follows from the definition of h, which is C2 on
(−e−1, e−1) \ {0}, and the fact that limx→0 xh

′′(x) = 0. Details are left to the reader.
We also define an auxiliary function ς : T3 → C given by

ς(z0, z1, z2) = z1f
[2](z0, z1, z2). (5.55)

Lemma 5.34. For any z0, z2 ∈ T, we have

ς(z0, 1, z2) = g[1](z0, z2).

Proof. By the definition of ς, and since z1 = 1, it is enough to prove that

f [2](z0, 1, z2) = g[1](z0, z2), z0, z2 ∈ T.

We have to consider several different cases. Let us first assume that z0 6= z2. If z0 6= 1
and z2 6= 1, then we have

f [2](z0, 1, z2) =
f [1](z0, 1)− f [1](1, z2)

z0 − z2

=

f(z0)−f(1)
z0−1

− f(1)−f(z2)
1−z2

z0 − z2

=
g(z0)− g(z2)

z0 − z2

= g[1](z0, z2).

If z0 = 1 and z2 6= 1, then using d
dz
f(z)|z=1 = g(1) = h(0) = 0, we have

f [2](1, 1, z2) =
f [1](1, 1)− f [1](1, z2)

1− z2

=
d
dz
f(z)|z=1 − f(1)−f(z2)

1−z2
1− z2

=
−g(z2)

1− z2

= g[1](1, z2).
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The argument is similar, when z0 6= 1 and z2 = 1.
Assume now that z0 = z2. Using the fact that f [1](z, 1) = g(z) for any z, we obtain

in this case that

f [2](z0, 1, z0) =
d

dz
f [1](z, 1)|z=z0 =

d

dz
g(z)|z=z0 = g[1](z0, z0).

Corollary 5.35. For any n ≥ 3, there exist unitary operators Hn, Kn ∈ B(`2
2n+1) such that

σ(Hn) = σ(Kn),

and ∥∥ΓKn,Hn,Hn(ς) : S2
2n+1 × S2

2n+1 → S1
2n+1

∥∥ ≥ const log(n)
1
2 . (5.56)

Proof. Take Hn, Kn as in Theorem 5.33; these unitary operators have the same spec-
trum. Let {µk}2n+1

k=1 be the sequence of eigenvalues of the operator Hn, counted with
multiplicity. Since 1 ∈ σ(Hn), we may assume that µ1 = 1. According to (4.19) and
Theorem 3.4, we have∥∥ΓKn,Hn,Hn(ς) : S2

2n+1 × S2
2n+1 → S1

2n+1

∥∥ = max
1≤k≤2n+1

∥∥ΓKn,Hn(ςk) : S∞2n+1 → S∞2n+1

∥∥,
where, for any k = 1, . . . , 2n+ 1, we set

ςk(z0, z1) := ς(z0, µk, z1), z0, z1 ∈ T.

In particular, the inequality∥∥ΓKn,Hn,Hn(ς) : S2
2n+1 × S2

2n+1 → S1
2n+1

∥∥ ≥ ∥∥ΓKn,Hn(ς1) : S∞2n+1 → S∞2n+1

∥∥
holds. From Lemma 5.34, we have that

ς1(z0, z1) = ς(z0, 1, z1) = g[1](z0, z1).

Therefore, we obtain∥∥ΓKn,Hn,Hn(ς) : S2
2n+1 × S2

2n+1 → S1
2n+1

∥∥ ≥ ∥∥ΓKn,Hn(g[1]) : S∞2n+1 → S∞2n+1

∥∥. (5.57)

Since Hn 6= Kn, we derive

∥∥ΓKn,Hn,Hn(ς) : S2
2n+1 × S2

2n+1 → S1
2n+1

∥∥ ≥ ∥∥ΓKn,Hn(g[1])(Kn −Hn)
∥∥
∞

‖Kn −Hn‖∞
.

From the identity (5.43), we have ΓKn,Hn(g[1])(Kn − Hn) = g(Kn) − g(Hn). Hence the
above inequality means that

∥∥ΓKn,Hn,Hn(ς) : S2
2n+1 × S2

2n+1 → S1
2n+1

∥∥ ≥ ‖g(Kn)− g(Hn)‖∞
‖Kn −Hn‖∞

.

Applying (5.53) we obtain the desired estimate.
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We are now ready to prove the final estimate of this section.

Corollary 5.36. For any n ≥ 3, there exist a self-adjoint operator Wn ∈ B(`2
8n+4) with

‖Wn‖2 ≤ 1 and a unitary operator Un ∈ B(`2
8n+4) such that∥∥∥ΓUn,Un,Un(f [2])(WnUn,WnUn)

∥∥∥
1
≥ const log(n)

1
2 . (5.58)

Proof. We take Hn and Kn given by Corollary 5.35. Then we consider

Vn :=

(
Kn 0
0 Hn

)
and then Un :=

(
Vn 0
0 Vn

)
. (5.59)

Then Vn is a unitary operator acting on `2
4n+2 and Un is a unitary operator acting on

`2
8n+4.

We claim that there exists a self-adjoint operatorWn ∈ B(`2
8n+4) such that ‖Wn‖2 ≤ 1

and ∥∥ΓUn,Un,Un(ς)(Wn,Wn)
∥∥

1
≥ const log(n)

1
2 .

Indeed, using (5.56) and the fact that Hn and Kn have the same sprectrum, this follows
from the proofs of [CMPST16a, Lemmas 22-25]. Indeed the arguments there can be
used word for word in the present case. It therefore suffices to show∥∥ΓUn,Un,Un(ς)(Wn,Wn)

∥∥
1

=
∥∥ΓUn,Un,Un(f [2])(WnUn,WnUn)

∥∥
1
. (5.60)

For that purpose we set N = 8n + 4 and consider a spectral decomposition Un =∑N
i=1 ziPi of Un. Then by (4.17) we have

ΓUn,Un,Un(f [2])(WnUn,WnUn) =
N∑

i,j,k=1

f [2](zi, zk, zj)Pi(WnUn)Pk(WnUn)Pj

=
N∑

i,j,k=1

f [2](zi, zk, zj)PiWn

( N∑
l=1

zlPl

)
PkWnPjUn

=
N∑

i,j,k=1

zkf
[2](zi, zk, zj)PiWnPkWnPjUn

(5.55)
=

N∑
i,j,k=1

ς(zi, zk, zj)PiWnPkWnPjUn

= ΓUn,Un,Un(ς)(Wn,Wn)Un.

Since Un is a unitary, this equality implies (5.60), which completes the proof.

5.4.3 A solution to Peller’s problem for unitary operators

In this section, we answer Peller’s question raised in [Pel05, Problem 1] in the negative.
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Theorem 5.37. There exist a function f ∈ C2(T), a separable Hilbert space H, a unitary
operator U ∈ B(H) and a self-adjoint operator Z ∈ S2(H) such that

f
(
eiZU

)
− f(U)− d

dt

(
f(eitZU)

)
|t=0

/∈ S1(H). (5.61)

In the above statement, d
dt

(
f(eitZU)

)
|t=0

denotes the derivative of this function at
t = 0. We refer to [Pel05, (2.7)] and the references therein for the facts that for any
f ∈ C1(T), for any unitary operator U ∈ B(H) and any self-adjoint operator Z ∈ S2(H),
the difference operator f

(
eiZU

)
− f(U) belongs to S2(H) and the function t 7→ f(eitZU)

is differentiable from R into S2(H). Therefore, the operator in (5.61) belongs to S2(H).
Theorem 5.37 will be proved with the function f given by (5.54). We will combine

a direct sum argument and the following lemma, whose proof relies on Corollary 5.36.

Lemma 5.38. For any n ≥ 1, there exist a non zero self-adjoint operator Zn ∈ B(`2
8n+4) and a

unitary operator Un ∈ B(`2
8n+4), such that

∞∑
n=1

‖Zn‖2
2 <∞, (5.62)

and

lim
n→∞

∥∥∥f(eiZnUn)− f(Un)− d
dt

(
f(eitZnUn)

)
|t=0

∥∥∥
1

‖Zn‖2
2

= ∞. (5.63)

Proof. We fix n ≥ 3 and we take Wn and Un given by Corollary 5.36. Note that chang-
ing Wn into ‖Wn‖−1

2 Wn, we may (and do) assume that ‖Wn‖2 = 1. We consider the
sequence

Wm,n =
1

m
Wn, m ≥ 1,

and we set
Rm,n := f(eiWm,nUn)− f(Un)− d

dt

(
f(eitWm,nUn)

)
|t=0

.

By Theorem 5.31 we have

m2Rm,n = Γe
iWm,nUn,Un,Un(f [2])

(
m(eiWm,nUn − Un), iWnUn

)
+ Γe

iWm,nUn,Un(f [1])
(
m2(eiWm,nUn − Un − iWm,nUn)

)
. (5.64)

Note that
m
(
eiWm,n − In

)
−→ iWn as m→∞.

Hence by Lemma 5.27, we have

Γe
iWm,nUn,Un,Un(f [2])

(
m(eiWm,nUn − Un), iWnUn

)
−→ ΓUn,Un,Un(f [2])(iWnUn, iWnUn)

as m→∞. This result and Corollary 5.36 imply that for m large enough, we have∥∥∥Γe
iWm,nUn,Un,Un(f [2])

(
m(eiWm,nUn − Un), iWnUn

)∥∥∥
1
≥ const log(n)

1
2 . (5.65)
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We now turn to the analysis of the second term in the right hand side of (5.64). Since
f ∈ C2(T), there exists a constant K > 0 (only depending on f and not on either n or
the operators Un and Wm,n) such that∥∥Γe

iWm,nUn,Un(f [1]) : S1
8n+4 → S1

8n+4

∥∥ ≤ K.

This follows from [BS73] (see also [Pel85]).
Now observe that

m2
(
eiWm,n − In − iWm,n

)
−→ W 2

n

2
as m→∞.

Hence we have∥∥∥Γe
iWm,nUn,Un(f [1])

(
m2(eiWm,nUn − Un − iWm,nUn)

)∥∥∥
1
≤ K‖W 2

n‖1 = K‖Wn‖2
2 (5.66)

for m large enough.
Combining (5.65) and (5.66), we deduce from the identity (5.64) the existence of an

integer m ≥ 1 for which we have an estimate

m2‖Rm,n‖1 ≥ const log(n)
1
2 . (5.67)

We may assume that m ≥ n, which ensures that

‖Wm,n‖2 ≤
1

n
.

Then we set Zn = Wm,n. The preceding inequality implies that
∑

n ‖Zn‖2
2 < ∞. Since

‖Wn‖2 = 1, we have ‖Zn‖2 = 1
m

hence the estimate (5.67) yields (5.63).

Proof of Theorem 5.37. We apply Lemma 5.38 above. We set

βn :=
∥∥f(eiZnUn)− f(Un)− d

dt

(
f(eitZnUn)

)
|t=0

∥∥
1

for any n ≥ 1. Since
{
βn‖Zn‖−2

2

}∞
n=1

is an unbounded sequence, by (5.63), there exists a
positive sequence (αn)n≥1 such that

∞∑
n=1

αn <∞ and
∞∑
n=1

αnβn‖Zn‖−2
2 =∞. (5.68)

Set
Nn =

[
αn‖Zn‖−2

2

]
+ 1,

where [ · ] denotes the integer part of a real number. We have both

Nn‖Zn‖2
2 ≤ αn + ‖Zn‖2

2 and Nn ≥ αn‖Zn‖−2
2 .
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Hence it follows from (5.68), (5.62) and (5.63) that

∞∑
n=1

Nn‖Zn‖2
2 <∞ and

∞∑
n=1

Nnβn =∞.

We let Hn = `2
Nn

(`2
8n+4) and we let Z̃n (resp. Ũn) be the element of B(Hn) obtained

as the direct sum of Nn copies of Zn (resp. Un). Then Z̃n is a self-adjoint operator and
‖Z̃n‖2

2 = Nn‖Zn‖2
2. Consequently,

∞∑
n=1

‖Z̃n‖2
2 <∞ . (5.69)

Likewise Ũn is a unitary operator and we have

∥∥f(eiZ̃nŨn)− f(Ũn)− d

dt

(
f(eitZ̃nŨn)

)
|t=0

∥∥
1

= Nn

∥∥f(eiZnUn)− f(Un)− d

dt

(
f(eitZnUn)

)
|t=0

∥∥
1

= Nnβn.

Hence
∞∑
n=1

∥∥f(eiZ̃nŨn)− f(Ũn)− d

dt

(
f(eitZ̃nŨn)

)
|t=0

∥∥
1

=∞.

We finally consider the direct sum

H =
2
⊕n≥1Hn.

We let Z be the direct sum of the Z̃n, defined by Z(ξ) = {Z̃n(ξn)}∞n=1 for any ξ = {ξn}∞n=1

inH. Property (5.69) ensures that Z is well-defined and belongs to S2(H), with ‖Z‖2
2 =∑∞

n=1 ‖Z̃n‖2
2. Likewise we let U be the direct sum of the Ũn. This is a unitary operator

and d
dt

(
f(eitZU)

)
|t=0

is the direct sum of the d
dt

(
f(eitZ̃nŨn)

)
|t=0

. Therefore

∥∥f(eiZU)− f(U)− d

dt

(
f(eitZU)

)
|t=0

∥∥
1

=
∞∑
n=1

∥∥f(eiZ̃nŨn)− f(Ũn)− d

dt

(
f(eitZ̃nŨn)

)
|t=0

∥∥
1
.

Since this sum is infinite, we obtain the assertion (5.61).

Just like for the selfadjoint case, the theorem above has been generalized in [DPT16]
where the authors consructed a counterexample for a n−th order version of Peller’s
problem.
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5.5 Perspectives

in Section 5.2, we studied the differentiability in S2(H). Taking into account the dis-
cussion in Section 4.5, it is interesting to study the Sp−differentiability of the mapping

t ∈ R 7→ f(A+ tB)− f(A)

when A and B are selfadjoint operators with B ∈ Sp and f ∈ Cn(R) with possibly fur-
ther assumptions such as the boundedness of its derivatives. If the results are positive,
one can hope to obtain a formula for the Taylor remainder like in Theorem 5.1. We
refer to [EKS12] for some existing results about the Sp−differentiability.

In Section 5.4 we gave some formulas for the differentiability in the case of unitary
operators in the finite-dimensional case. The results obtained in Section 5.2 for selfad-
joint operators can be also studied in the case of unitary operators. Namely, if U is a
unitary operator on some Hilbert spaceH and if Z ∈ S2(H) is selfadjoint, then one can
study the differentiability of

t ∈ R 7→ f(eitZU)− f(U) ∈ S2(H)

for f ∈ Cn(T). We refer e.g. to [DPT16] for some results in this direction.
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