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SUMMARY

Many of the vital services of everyday life depend on highly complex and interconnected engineering
systems; these systems consist of large number of interconnected sensors, actuators and system
components. The study of interconnected systems plays a significant role in the study of reliability
theory of dynamic systems, as it allows one to investigate the properties of an interconnected system by
analyzing its less complicated subcomponents. Fault diagnosis is crucial in achieving safe and reliable
operations of interconnected control systems. In all situations, the global system and/or each subsystem
can be analyzed at different levels in investigating the reliability of the overall system; where different
levels mean from system level down to the subcomponent level. In some cases, it is important to
determine the abnormal information of the internal variables of local subsystem, in order to isolate the
causes that contribute to the anomalous operation of the overall process. For example, if a certain fault
appears in an actuator, the origin of that malfunction can have different causes: zero deviation, leakage,

clogging etc. These origins can be represented as root cause of an actuator fault.

This thesis concerns with the challenges of applying system inverse theory and model based FDD
techniques to handle the joint problem of fault diagnosis & root cause analysis (FD & RCA) locally
and performance monitoring globally. By considering actuator as individual dynamic subsystem
connected with process dynamic subsystem in cascade, we propose an interconnected nonlinear system
structure. We then investigate the problem of left invertibility, fault observability and fault
diagnosability of the interconnected system, forming a novel model based multilevel FD & RCA
algorithm. This diagnostic algorithm enables individual component to monitor internal dynamics
locally to improve plant efficiency and diagnose potential fault resources to locate malfunction when
operation performance of global system degrades. Hence, a means of a combination of local
intelligence with a more advanced diagnostic capability (combining fault monitoring and diagnosis at
both local and global levels) to perform FDD functions on different levels of the plant is provided. As a
result, improved fault localization and better predictive maintenance aids can be expected. The new
system structure, together with the fault diagnosis algorithm, is the first to emphasize the importance of
fault RCA of field devices, as well as the influences of local internal dynamics on the global dynamics.
The developed model based multi-level FD & RCA algorithm is then a first effort to combine the
strength of the system level model based fault diagnosis with the component level model based fault

diagnosis.
The contributions of this thesis include the following:

Firstly, we propose a left invertible interconnected nonlinear system structure which guarantees that
fault occurred in field device subsystem will affect the measured output of the global system uniquely
and distinguishably. A necessary and sufficient condition is developed to ensure invertibility of the

interconnected system which requires invertibility of individual subsystems.



Second, a two level interconnected observer is developed which consists of two state estimators, aims
at providing accurately estimates of states of each subsystem, as well as the unknown interconnection.
In addition, it will also provide initial condition for the input reconstructor and local fault filter once
FD & RCA procedure is triggered by any fault. Two underlying issues are worth to be highlighted: for
one hand, the measurement used in the estimator of the former subsystem is assumed not accessible;
the solution is to replace it by the estimate provided by the estimator of the latter subsystem. In fact,
this unknown output is the unknown interconnection of the interconnected system, and also the input of
the latter subsystem. For the other, in the latter subsystem, the unknown interconnection is treated as an
additional state, forming a new extended subsystem; and expression of the new state is obtained by

computing derivatives of output equation of the previous subsystem.

Moreover, by combining the left inversion and sliding mode observer, we propose a kind of algebraic
unknown input estimation method by which successive output derivatives are avoided. We employ a
second order sliding mode observer to estimate the time derivatives of the output, thus avoiding the
potential serious errors arise by the derivatives computation. The estimation is then used to substitute

the derivatives of outputs in the differential algebraic polynomial obtained via system inversion.

In addition, a novel FD & RCA scheme is investigated where a local fault filter is designed for the
actuator subsystem, thus achieving root cause analysis of the detected actuator fault. Each local fault
filter consists of two modules: a fault detection and isolation module is developed to identify an
occurrence of any fault variable in the actuator subsystem; and banks of fault isolation estimators are
employed to determine the particular faulty variables that have occurred in the subsystem. An input
reconstructor is used to determine the unknown interconnection of the interconnected system or
determine the output of the actuator subsystem. The fault detectability, isolability and distinguishability
are rigorously investigated; characterizing the class of faults in each subsystem that are detectable and

isolable by the proposed method.

Finally, the effectiveness of the above FD & RCA schemes is illustrated by using simulations of the
nonlinear model of an intensified Hex reactor system. Different fault scenarios are considered to verify
the diagnosis performances, and the satisfactory performances of the proposed method are validated by

the good simulation results.

Key Words: invertibility; interconnected system; fault distinguishability; interconnected observer;
root cause analysis; input reconstruction; local fault filter; distributed FDD algorithm; unknown

interconnection; local internal dynamic; subcomponent; field device.



RESUME

Beaucoup de services vitaux de la vie quotidienne dépendent de syst@mes d'ingéierie
hautement complexes et interconnectés; Ces syst@mes sont constitués d'un grand nombre de
capteurs interconnectés, d'actionneurs et de composants du systéme. L'é&ude des systames
interconnecté&s joue un rde important dans I'éude de la fiabilitédes systénes dynamiques; car
elle permet d'@udier les propriéé d'un syst@me interconnecté& en analysant ses
sous-composants moins complexes. Le diagnostic des pannes est essentiel pour assurer des
opé&ations sires et fiables des systénes de contrde interconnectés. Dans toutes les situations,
le systame global et / ou chaque sous-systéme peuvent &re analysé adifféents niveaux pour
déerminer la fiabilitédu systéme global. Dans certains cas, il est important de déerminer les
informations anormales des variables internes du sous-systéme local, car ce sont les causes
qui contribuent au fonctionnement anormal du processus global.

Cette thése porte sur les défis de l'application de la théorie inverse du systéme et des
techniques FDD basés sur des modées pour traiter le probléne articulaire du diagnostic des
fautes et de l'analyse des causes racines (FD et RCA). Nous éudions ensuite le probléne de
I'inversibilitéde la gauche, de l'observabilitéet de la diagnosticabilitédes fauts du systéme
interconnecté formant un algorithme FD et RCA multi-niveaux basésur un modéde. Ce
systéme de diagnostic permet aux composants individuels de surveiller la dynamique interne
localement afin d'am@iorer I'efficacité du systéme et de diagnostiquer des ressources de
fautes potentielles pour localiser un dysfonctionnement lorsque les performances du systéme
global se dé&yradent. Par consé&juent, un moyen d'une combinaison d'intelligence locale avec
une capacité de diagnostic plus avancé pour effectuer des fonctions FDD a diffé&ents
niveaux du systéme est fourni. En conséjuence, on peut s'attendre aune am@ioration de la
localisation des fauts et &ade meilleurs moyens de maintenance prélictive. La nouvelle
structure du systéme, ainsi que l'algorithme de diagnostic des fautes, met l'accent sur
I'importance de la RCA de défaut des dispositifs de terrain, ainsi que sur l'influence de la
dynamique interne locale sur la dynamique globale.

Les contributions de cette thése sont les suivantes:

Tout d'abord, nous proposons une structure de systéme non lin&ire interconnectéinversible
qui garantit le fauts dans le sous-systéme de p&iphé&ique de terrain affecte la sortie mesuré&
du systéme global de maniée unique et distincte. Une condition néessaire et suffisante est
développé pour assurer l'inversibilitédu systéme interconnectéqui neeessite l'inversibilitéde
sous-systémes individuels.

Deuxié@nement, un observateur interconnectéadeux niveaux est déseloppé Il se compose de
deux estimateurs d'éat, vise & fournir des estimations preeises des éats de chaque

sous-systéme, ainsi que l'interconnexion inconnue. En outre, il fournira également une
v



condition initiale pour le reconstructeur de données et le filtre de fauts local une fois que la
procé&lure FD et RCA est délenchée par tout fauts. D'une part, la mesure utilisé dans
I'estimateur de l'ancien sous-systéme est suppos€e non accessible; La solution est de la
remplacer par I'estimation fournie par I'estimateur de ce dernier sous-systéme. En fait, cette
sortie inconnue est l'interconnexion inconnue du systéme interconnect€ ainsi que l'entrée de
ce dernier sous-systéme. Pour l'autre, dans ce dernier sous-systa@me, I'interconnexion inconnue
est traitée comme un é&at supplémentaire, formant un nouveau sous-systéme éendu; Et
I'expression du nouvel &at est obtenue en calculant les dé&ivées de I'éuation de sortie du
sous-systéme preésélent.

De plus, en combinant l'inverseur gauche et I'observateur en mode coulissant, nous proposons
une sorte de méhode d'estimation d'entrée algébrique inconnue par laquelle des d&ivé de
sortie successifs sont &ité. Nous employons un observateur en mode coulissant de deuxiéne
ordre pour estimer les dé&ivées temporelles de la sortie, €vitant ainsi les erreurs sé&ieuses
&entuelles réultant du calcul des dé&ivérs. L'estimation est ensuite utilisée pour substituer
les dé&ivées des sorties au polynéme algéorique diffé&entiel obtenu par inversion du systéme.

En outre, un nouveau systame FD & RCA est &udié& filtre de fauts local est conqi pour le
sous-systéme de l'actionneur, ce qui permet d'obtenir une analyse de la cause racine du fauts
déectéde l'actionneur. Chaque filtre de fauts local se compose de deux modules: un module
de déection et d'isolation de fauts est déseloppé pour identifier une occurrence de toute
variable de fauts dans le sous-systéme de l'actionneur. Un reconstructeur d'entré est utilisé
pour déerminer l'interconnexion inconnue du systéme interconnectéou déerminer la sortie
du sous-systéme de l'actionneur. La déection , l'isolabilitéet la distinction des fauts sont
rigoureusement éudiées; Caracté&isant la classe de fauts dans chaque sous-systéme qui sont
déectables et isolables par la mé&hode proposée.

Enfin, I'efficacitédes sché@nas FD et RCA ci-dessus est illustré en utilisant la simulation sur
le syst@ne de réacteur Hex intensifié Diffé&ents scénarios de fauts sont considé&é pour
vé&ifier les performances du diagnostic et les performances satisfaisantes de la méhode
proposée sont validés par les bons réultats de simulation.

Mots clés: invertibilité systéme interconnecté faut de distinction; observateur interconnecté analyse
de la cause originelle; reconstruction des intrants; filtre de défaut local; algorithme distribuéFDD;

interconnexion inconnue; dynamique interne locale; sous-composant; appareil de terrain.
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CHAPTER 1 INTRODUCTION

Fault detection and diagnosis (FDD) is a key enabling technique for increasing safety and
reliability of control systems. On the basis of an analysis of advantages and disadvantages of existing
methods, this chapter gives a brief description of the motivations and objectives of this study.
Additionally, the contribution and challenges of the thesis are also presented. Finally, this chapter

outlines the structure of the thesis and the relations between the subsequent chapters.

1.1 Background and Significance

With the fast developments of modern technologies, resulting in ever increasingly interconnection of
modern control system, thus a modern system often consists of large number of sensors, actuators and
system components which are interconnected. As a consequence, the complexity of the system keeps
increasing. The complexity and technological advances mean that these units are increasingly
integrated, intelligent and complex. Each unit may consist of more than one component connected in
any configuration; therefore each unit itself is a dynamic system and exhibits complicated dynamics of
system. For example, a valve actuator is an assembly of positioner, pneumatic servo-motor and control
valve, as given in [1] and mathematical models presented in, for example [2][3], have shown that
control valve can be seen as a nonlinear dynamic system. Therefore modern control system can be
viewed as composed of dynamic subsystems connected in series. In all situations, the global plant
and/or each subsystem can be analyzed at different levels down to the component level in estimating
the reliability of the whole plant. A typical control system, for example, has at least three cascade
subsystems: sensor, process and actuator subsystems. The three parts must function properly so that the

whole system can operate properly.

As a result of the increasingly complexities, the probability of occurrence of faults is also increased.
The fault may occur at any level of the system, as shown Fig.1.1. Actuators are driven by the input
signals u(t) while observation signals y(t) are provided by the array of sensors. The different faults
normally are classified by the location (where a fault acts in the system). According to this
classification, the fault can be recognized as i) Actuator faults, ii) Sensor faults and iii) Component
faults. In a real industrial system, the faults may be related to, for example, pressure drop out in
hydraulic components, short circuiting or overheating of electrical components, breakage in bearings
due to mechanical stresses, leakages in pipes, sticking of valves, cracks in tanks, drifting of sensors etc.
Faults at any level may cause a malfunction of the installation; resulting in a serious impact in
equipment, such as production quality, safety, economy, levels of contamination, in the worst of cases a

fault may even cause sever accidents.
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Fig. 1.1 Fault types and effects in system
For one hand, faults connected to manufacturing often decrease the efficiency of the process and lead
to a considerable reduction of production and quality of the product. In this context, we can cite some
examples: for instance, the estimated cost of one stop production of a specific flotation process in
Sweden is 30,000 euros / hour as shown in [4]. For another example in [5], it is claimed that the U.S.
petrochemical industry suffers from 20 billion dollar losses annually due to poor abnormal situation
management. One more lesson is the sensors drift of feed water flow in steam generator which can
result in reactor power output reduction by as much as 3%-in the U.S. [6]. What’s more, it reported in
[7] that because of fouling, the decline of steam generator thermal efficiency may cause a lower electric
output per unit reactor thermal power. While according to [8], about 42% of the potential waste in
annual energy consumption is estimated due to leaks of compressed air in a pneumatic system, leaks
can degrade machine performance since actuators produce less force, run slower and are less
responsive. For the other, some consequences of a fault can be extremely serious in terms of human
mortality and environmental impact, especially for safety critical systems such as aircrafts, nuclear
reactors etc. Faults may lead to catastrophic incidents. For this point, a lesson is from the well-known
TMI-I1 accident in 1979, it has been proved that this accident was initiated by the valve position failure
of feed water pump of the main reactor [9]. Another related incident is an explosion happened in a huge
nuclear power plant in the town of Chernobyl in 1986. The main cause for this tragedy was the faulty
outdated technology and the lack of a fault handling mechanism [10]. What’s more, a stuck open relief
valve created a loss of coolant scenario in the Three Mile Island accident, which was a major reason for
the disastrous outcome [11]. Single engine fighter is another example of this point, there are reports
related to the aircraft area where a fault in an engine can cause the aircraft to crash, which will have
catastrophic consequences for the pilot [12]. For example The American Airline DC10 crashed at
Chigao-O’Hare International Airport, the pilot had the indication of fault only 15 seconds prior to the

accident [13].

Consequently, the demand for safety, reliability, higher performance and cost efficiency are of major
importance in the design of a control system, for economic, sociologic and human reasons. To meet
these specific characteristics, condition maintenance as part of predictive maintenance is one of the
tools used to increase productivity and reliability in industrial process. It can be utilized to detect and

identify different type of faults and the root causes occurring at any level of the system so that to
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guarantee the stability and performance of the system. In particular, this is true for the modern systems
consisting of a number of small parts (dynamic units) which interact to aggregate individual dynamics
into collective behavior. Eventually, the diagnostic tool is expected to offer a mean of increasing
productivity by identifying potential component or system wide faults. This ranges from the most
common issues of operational safety such as condition monitoring, fault detection and isolation, fault
diagnosis, fault management and fault tolerance to some more general questions of the operation such
as the effect of human factor. Among them, timely detection and diagnosis of faults can avoid, or at
least, minimize the severity of economic losses and fatalities by reconfiguration of controllers or safely
switching off the process for maintenance. This is done by minimizing unscheduled shutdowns and loss

of product quality.

Advanced FDD can help accurate monitoring of process variables and interpreting their behaviors.
Therefore the main benefits of FDD are more stable production, improved product quality, the
reduction of operation costs, as well as more efficient and appropriate maintenance. In order to
welcome the challenges arising from deregulation, the plant economic parameters are monitored on
line and optimized with the constraints that the related safety regulations are rigorously satisfied. Since
the functional status of sensors, actuators, and process devices are monitored on line, this makes it
possible to support real time operation and perform maintenance tasks only when it is necessary.
Therefore, significant reduction in plant downtime, considerable maintenance cost savings, and
reduction in maintenance errors can be expected. FDD can also provide crucial information for taking
corrective actions to adjust the process operation to the fault effects utilizing fault tolerant control or
maintenance. For instance, Detroit Edison Company developed a valve monitoring system for the
power plant. It is estimated that this system could reduce annual maintenance costs approximately 15%
to 20% [14]. Moreover, the diagnostic information can be further utilized to make predictions on the
future operation of the process and/or to take corrective actions in terms of predictive maintenance or

fault tolerant control [15].

Besides, by developing a FDD system, sever abnormal situations caused by faults can be discovered
earlier, which provides a possibility to tackle their effects more effectively, thus preventing the system
from getting into undesirable state which may lead to catastrophe. If a fault can be detected and
rectified at its incipient stage before abrupt failures occur, the possibility of some accidents can actually
be eliminated. Surprisingly, it has been reported that, these above mentioned incidents could have been
avoided if there was a suitable fault monitoring and tolerant system. For example, TMI-II accident in
1979 could have been avoided by employing performance monitoring system for the devices, i.e. valve

monitoring and diagnosing system [9].

As evidenced by the above technical requirements, process performance monitoring and fault diagnosis
plays a central role in modern control system design. The development of FDD is receiving more and
more attentions both in academia and industry. Considerable research efforts have been and still are

being made to develop FDD methods that can readily be applied to complex real life systems.
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1.2 Motivation of the Thesis

1.2.1 Status of Current Main Methodologies

Following the occurrence of a number of technical disasters and industrial catastrophes, the demands
on FDD algorithms have increased over the years, dealing with different applications ranging from
aeronautic, navigation to civil applications that associated with huge programs, like nuclear power

plants, chemical and petrochemical processes.

The last few decades have witnessed significant improvements in fault detection and diagnosis (FDD)
techniques. Many advanced FDD methods are presented in the literature for linear or nonlinear process
systems subject to fault. Considering the overall dynamical system as illustrated in Fig.1.1,
malfunctions may occur either in the actuator and sensor dynamics, as well as in the components of the
system. In order to welcome the challenges arising from complexity of dynamics in the overall system,
as well as in individual component, based on their mathematical representation, faults appear in any
part of the system can be analyzed at different levels. Typical usages of different categories of FDD
methods are illustrated in Fig. 1.2. One main approach is system level based diagnosis approach, that
aims at detecting and identifying fault existence and location from the view point of global system.
Another common kind of methodologies focus on the field device level, that aims at analyzing internal

dynamics of a specific component.
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Fig. 1.2 Typical usages of different categories of FDD methods

1-) System level-based diagnosis

Current monitoring systems are typically centralized monitoring systems where intelligence is at the
system level of the process plant, rather than at the field device level. In these methods, dynamics of
filed devices (i.e. actuator) is ignored, instead, they are treated as a component which is viewed as

constants in the input or output coefficient matrix (function) of the process system model. The



malfunctions can be treated separately and they enter the process model as actuator or sensor where
faults are considered as changes of the input or output coefficient matrix elements; And an actuator and
(or) a sensor fault is normally considered as additive effects whilst the component fault shows up
through structural and (or) parameter variations of the system, i.e. as multiplicative or parameter
varying effects. This assumption is not very restrictive, as various type of faults, such as parameter
changes or sensor failures, can be converted into additive type of faults (with some non-negligible
implications), therefore internal dynamics of the field device may be lost. As a result, the overall
system cannot be precisely described by a centralized mathematical model due to incomplete
identification of the field device and some unknown disturbances or control signals. Moreover, model
aggregation or simplification which is deliberately designed to make the system manageable may also
lead to uncertainties. A main reason leading to this is due to a consequence of complexity of the
modern units. Mathematical models of their dynamics may be hard to define precisely and hence
modelling uncertainty is a significant challenge if model based methods of control or estimation are to
be used. If considered dynamics of the entire component in a single system model may increase the
order of the system. The dimension (dynamical order) of the system can be very large; in this case,

there may be a large number of states and inputs that need to be handled for a modern control system.

Many different approaches to system level model based fault detection and diagnosis have been
introduced. Works in [16][17][18] reviewed process fault detection and diagnosis based on the
principle of analytical redundancy. A key approach is based on residuals generation. In [19], a
nonlinear FDI filter is designed to solve a fundamental problem of residual generation using a
geometric approach. The objective of the filter design is to build a dynamic system for the generation
of residuals that are affected by a particular fault and not affected by disturbances and the rest of faults.
The problem of component fault isolation is also studied by exploiting the system structure to generate
dedicated residuals (see, e.g. [20][21][22]). In this approach, each residual, defined as the discrepancy
between state measurements and their expected trajectories, is uniquely sensitive to one fault. Thus, a
fault is isolated when the corresponding residual breaches its threshold. In addition, adaptive estimation
techniques are used to explicitly account for unstructured modeling uncertainties for a class of
Lipschitz nonlinear systems (see, e.g. [23][24][25]). In these results, residuals, defined as output
estimation errors, and time varying thresholds are generated using a bank of estimators, and a fault is
isolated when the corresponding residuals breach their thresholds. Another approach different to
residual generation is fault estimation or fault reconstruction which can determine the size, location and
dynamics behavior of the fault. The relevant literature on this topic has its roots in system inversion
theory developed for either input observers (left inversion) or preview control (right inversion) like in
[26][27][28]. There are several methods typically used for fault reconstruction: sliding mode observers
[29][30][26], unknown input observers [31][32][33], input reconstruction [34][35][36]. For instance, a
sliding mode observer is designed to reconstruct or estimate faults by decoupling the input in [37].

Reference [38] develops a high gain observer with multiple sliding modes for simultaneous state and



fault estimations for MIMO nonlinear systems. The novelty lies on the observer design that employs

the combination of high gain and sliding mode observers.

As result of incomplete identification of internal variables of the components, the application of system
level based FDD methodologies are mainly limited to the existence and isolation of a fault from the
view point of global level, while root causes of this fault cannot be obtained. For example, reference
[39] has shown that decrease of output temperature may be due to decrease of fluid flowrate, and the
causes of this decrease of fluid flowrate may be caused by valve clogging, stop of utility fluid pump or
leakage. Nevertheless, with respect to the above mentioned system level based FDD methodologies,
fault symptoms can be detected and isolated without having the capability to pinpoint the real root
cause of the fault. However, root causes of a fault in a component can cause significant process
disturbances and influence the quality of the final product. For one hand, in each component system
there can be fault types specific for that system, therefore it is not capable of analyzing all the faults at
the process level. This is due to the consequence of increased complexity, resulting in an ever
increasing complexity of actuators and sensors, potentially a significant number of variables can be
involved with nonlinear interrelationships. The connectivity of a continuous process means
disturbances that are often propagated which make it impossible to supervise them without extending
into another technical system. A fault or disturbance in a field device may occur and manifests as a
deviation in measurements of the overall system, typically in flow, pressure, level or temperature.
Therefore a system level based approach to fault detection and diagnosis is seldom sufficient for the
investigation of a modern process due to the complexity and diversity of features, such as process
dynamics, non-linearity, in different parts of the process. However, recognizing root cause of a fault
correctly is essential in order to be able to allocate resources effectively to repair the problem and
perform maintenance actions of a component, an abnormal deviation of an internal variable inside the
field device may not be observable until some internal variable saturates and field device performance
is affected. After field device performance is affected by the internal faults, these faults can then be
detected through process variables. But the detection may happen too late to keep process performance
at an optimal level and to have time to prepare repair work. The above two weaknesses may be the key
reasons result in that the research on FDD methods has been very active already for several decades,

but still the literature on applications in process industry is in the minority.
2-) Component level-based diagnosis

Field devices are fundamental components in the process industry and they are the most common final
control elements in the control loop. For example, there can be thousands of manually operated valves
and control valves in a process plant. Many important process variables, such as forces, flows and
pressures, are controlled through the field devices. Therefore faults of the field devices can cause
significant disturbances to the global process and influence the quality of the final product; in addition,
the field devices have considerable potential to support predictive maintenance. Hence, the

determination of internal malfunctions of the subcomponents of modern control system, especially
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those small and incipient faults before they become seriously has an important influence on safety and
productivity. The monitoring of the development of theses incipient faults is therefore an issue not only

for predicting maintenance schedules but also monitoring the performance of the overall process.

For the purpose of better understanding potential relationship from cause to effect of a subcomponent
fault, component level diagnosis can be a solution whereby capability of locating subcomponent faults
for root cause analysis is available. In order to achieve this purpose, components of the modern control
system have to possess FDD capabilities. Each process plant is then decomposed into individual
equipment component subsystems for fault analysis purposes; this allows precise analysis of fault from
causes to effects. That is to further divide the control system into certain subsystems with required
structure and robustness analysis at hierarchical and/or local levels. In each subsystem, there can be
fault types specific for that subsystem; in this case, analysis of root cause of a component fault is
achieved. There are already efforts that have been made to locate subcomponent faults for root cause
analysis. The development of FDD for field devices can be recognized from publications, normally

categorized as intelligent self-validation approaches and FDD dependent methods.

Intelligent self-validation approaches make use of 1&C (Instrumentation and Control) technologies,
called intelligent devices [49], or smart sensing [41]. It is an instrument that is designed to compensate
for its own undesirable inherent characteristics to correct from fault conditions. They are normally
FDD method independent. The initiative problem for this research is concerned with developing
self-validating reconfigurable control systems. Manufacturers of intelligent devices have the best
knowledge about these devices and they know the problems the devices can meet during operation.
Therefore it is reasonable for device manufacturers to implement fault detecting and diagnosis features
in intelligent devices, as opposed to the traditional system level-based condition monitoring systems. A
clear byproduct of this may be an enhancement to the development of intelligent actuation system, e.g.
smart positioner in self-validating actuator. Furthermore, digital sensors can be programmed to perform
self-diagnostics. ldeally, intelligent autonomous devices can be part of a centralized condition
monitoring system and can identify locally all the factors or the problems limiting the efficiency of the
local process. While existing intelligent instrument is restricted to self-diagnosis from a low level, they

lack capability of supervising performance of the overall plant.

The most active research area in component diagnostics are FDD involved methods. Just like system
level scheme, the FDD methods of component level can be categorized into two basic types based on
the information they utilize: signal based methods and model based methods. Signal processing is a
promising approach for FDD in component. The signal based methods consider input and output of the
device measurement signals and their key characteristics. For example, reference [42] propose an
algorithm to detect valve stiction for diagnosis oscillation of control valve by signal processing.
Wavelet analysis is a major aspect of signal processing method for fault detection. As in [43], it
developed automatic feature extraction of waveform signals for process diagnostic performance

improvement. And in [44], wavelet transform is applied to detect abrupt changes in the vibration
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signals obtained from operating bearings being monitored. More applications of signal processing
techniques in FDD can be found in various publications in the literatures therein. Whereas the model
based methods use first-principle models or system identification techniques to diagnose fault resource.
They rely mainly on system identification procedures to estimate related parameters. The difference
between the methods is in the identification algorithm and the structure of the model. Therefore it is
important to generate a proper model of components since the methods are developed based on
fundamental understanding of physics. The interest in the modeling of a filed component, like
pneumatic servo, control valve, i.e. came to the attention of researchers as a crucial concern like in [45],
where a set of nonlinear differential equations representing the system dynamics based on physics are
derived. For example in [46], derivations of similar nonlinear models have been presented in many
recent publications, in which a detailed mathematical model of dual action pneumatic actuators
controlled with proportional spool valves and two nonlinear force controllers based on the sliding mode
control theory were developed. Besides modelling, there are also a series of notable researches that
have been performed for FDD of component, i.e. pneumatic actuator. For instance, reference [2]
develops an interval observers based passive fault detection method and apply it to a control valve in
the DAMADICS benchmark problem. Authors in [47] introduce a state space sliding-stem control
valve model in order to utilize an advanced nonlinear model predictive control strategy to compensate
for the effects of friction. Other nonlinear modeling approaches involves using neural networks or
fuzzy logic, such as in [48][49]. For example, in [49], the Adaptive Neuro-Fuzzy Inference System
(ANFIS) model is used to detect and diagnose the occurrence of various faults in pneumatic valve used
in the cooler water spray system. And work [63] introduces the application of neural networks for the

identification and fault diagnosis of process valves and actuators.

A major difficulty of component level based diagnosis methodology is the lack of dynamics
information of the global system. It is because the component level diagnosis method focuses only on
managing the subsystems that only use the local information, i.e. states and outputs of this subsystem.
However, none of these subsystems knows the system completely. For example, as shown in [9], a fault
in a sensor subsystem may propagate their effects to the regulated variables and subsequently disturb
other process variables through feedback control loops. The deleterious consequence of such
disturbances is that the related actuators and plant equipment would not be able to operate at the
designed optimal conditions and their expected lifetime may be shortened. Therefore a more effective
way is to diagnose local faults online during the operation of the device, utilizing information of both
local and global system, i.e. states of this subsystem while outputs of the overall process. Another
challenge when researching FDD methods locally is getting data from the subsystem being observed to
develop and validate these methods. For example, direct access to actuators is often not possible or
difficult via physical measurements due to distances or rough environment. For each component
subsystem, its corresponding local FDD system is designed by utilizing local measurements, thus
sensors have to be installed to all the primary variables of the field devices to make faults of these field

devices observable. From the view point of academic value, this is not a big problem while from the
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view point of the engineering value, it is rather complicated. Installing additional sensors into the field
devices leads to very complicated and expensive systems where deep expertise concerning the
operation of the device is required from monitoring system designers. Moreover, even if the output of
the field device (e.g. actuator) is available for measurement, considering the noisy output of the sensor
of the field device, the numerical differentiation would be too noisy. The noisy control input made from
these signals, not only could damage the field device, but also would make less accuracy in tracking
and then instability in the control scheme. As a result, false alarms are easily generated and maintaining
such a system requires a lot of resources. Furthermore, some parameters are not available for directly
measurement, for instance, as a common actuating signal, concentration in chemical process cannot be

measured through physical sensors.

1.2.2 Challenges and Trends in FDD

Incorporating safety issues into the design process is a rather contradictory problem, however, selling
safety is not an easy problem in modern economy where the actors of the economy are mostly
interested in maximizing their profits. In order to push decision makers of the economy towards the
acceptance of safety regulations, and to encourage a volunteer approach to the consideration of those
problems, it is necessary to develop techniques and application methodologies which produce safe and
secure systems at affordable prices, and in parallel, to develop analysis and evaluation tools in order to
quantify, prove and certify the above mentioned systems performances, that is to say, to increase the

confidence measures of the application of the new safe intensive technologies.

Although many different fault diagnosis methods have been developed from various industries, neither
the aforementioned system level based nor component level based fault detection and diagnosis
methods are however sufficient alone to achieve effective diagnosis to handle all the requirements for
an engineering problem since all methods have their characteristic strengths and weaknesses.
Eventually, a diagnostic tool is expected by which a means of increasing productivity by identifying
potential component as well as system-wide faults is provided. The only pragmatic solution is to have a
thorough investigation of the weaknesses of individual methods and build an application dependent

method to fully utilize their strengths.
1-) Lack capability of root cause analysis of a detected fault by system level based methodology

Because of the lack of information of internal dynamics of local component, current system level based
advanced FDD methods can detect some symptoms of the component without having the capability to
pinpoint the real root cause of the fault or localize the problem for repairing work. For example,
stiction is said to be a common root cause of flow control loop oscillation in [8], while to the diagnosis
of flowrate oscillation in process plants, almost all the approaches that have been made are from the
point of view of plant level, not from field devices. This means that only process variables are used for
diagnosis and methods are carried out on the system level, thus flowrate oscillation can be detected but

the root cause, stiction, cannot be identified.



2-) Delay of detection by system level based methodology

An abnormal deviation of an internal variable inside the field device may not be observable until some
internal variable saturates and field device performance is affected. After field device performance is
affected by the internal faults, these faults can then be detected through process variables. But then the
detection happens too late to keep process performance at an optimal level and to have time to prepare

repair work.
3-) Lack capability of monitoring the overall system by component level based methodology

At the moment, more detailed field devices performance analysis can be done by using local
measurement. This may not be an effective method for analysis, because the connectivity of a
continuous process means that local disturbances often propagated plant wide. A more effective method
is to perform the diagnosis locally during the operation of the device with information on the process

globally.
4-) Challenges of availability of local measurement by component level based methodology

There have been significant research activities in the development of new methodologies for
component FDD. They are typically based on supervision of the available local measured variables. In
order to obtain these measurements, special sensors have to be installed. However, the problem of
availability of these sensors installation has received less attention, especially from the view point of
safe and secure measures at affordable prices. Moreover, direct accesses to a field device, i.e. actuator,
is sometimes not permitted due to reasons like distance. Even if the output of a field device is available
for measurement, considering the noisy output of the sensor of the field device, the numerical
differentiation would be too noisy. The noisy control input made from these signals, not only could
damage the field device, but also would make less accuracy in tracking and then instability in the

control scheme.

In summary, there is a need for a FDD algorithm which is carried out advanced FDD methods capable
of root cause diagnosis at local component level as well as system supervision at global plant level. In
the literature review such a method that fulfilled the requirements was not found and therefore it was

necessary to develop a new method.

1.3 Obijectives of the Thesis

Motivated by the above considerations, this thesis is concerned with the challenges of applying system
inversion and model based FDD techniques theory to handle the joint problem of fault diagnosis locally
and performance monitoring globally. Since early detection of component malfunctions plays a
fundamental role in advanced corporate management and in predictive maintenance planning, the
major objective of the thesis is to detect incipient/abrupt faults resources of the components operation
by diagnosing the failed component subsystem locally, thus in an attempt to prevent the development

of possibly global malfunctions of the system liable to cause performance degradation or even
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destruction. However, as mentioned above, both system level diagnosis and component level diagnosis
have the weaknesses and strengths. As a consequence of these difficulties, the analysis and synthesis
tasks cannot be solved efficiently in a single step diagnosis by “conventional” methods. As a solution,
we try to develop a hybrid approach that combines different methods, thus, the weaknesses of
individual methods can be compensated and more accurate diagnosis results obtained. For that, it is
then to decompose the overall system into several subsystems and develop the FDD algorithm from the

view point of both local and global system, the algorithm of design is illustrated in Fig. 1.3.
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Fig 1.3 System decomposition and interconnections

As shown in Fig. 1.3, this thesis addresses fault diagnosis from a lower level with component
subsystem of the plant (i.e. actuator) and deal generally with global system supervision to meet the
growing need. The role of the developed performance monitoring and fault diagnosis system is to
utilize the measured data to enhance the economics and safety of the interconnected dynamic system.
The information that can be obtained from the developed system will include only the performance of
critical parameter, such as temperature of continuous chemical reactor, and manipulated variables of
the component such as the input of the reactor main control valve. The attempt is to explain how the
behavior of overall output can be interpreted to identify subcomponent faults in component subsystem,
S0 as to carry out advanced FDD algorithm for recognizing root causes of detected faults. In this way
the faults can be detected through detecting changes in the operation points of the internal variables of
subcomponent that was observed by analyzing the behavior of the internal variables. Ideally, this local
intelligent FDD system can be part of the top level based monitoring system and can identify locally all

the factors or the problems limiting the efficiency of the local process.

The advantages of using multilevel based diagnosis can be found from either economy or reliability
standpoints. On one hand, this system will enable individual component to monitoring internal
dynamics locally to improve plant efficiency and diagnose potential fault resources to locate
malfunction when operation performance of global system degrades or have measurement faults. This
reduces the complexity of the centralized or distributed monitoring system because the dimensionality
problem, the number of sensors, wires, and diagnosis loops connected to the monitoring system is
reduced. Since when the system is too large to be dealt with by centralized control, it is
computationally efficient to use only local information, i.e. local states or outputs, to make the control
decision. On the other hand, the obtained information is assumed to be only global output, this can be
more realistic and technical availability because field devices are normally remote from the control
room and additional sensors may cause reliability and economical problem. Except for a few, most

researchers in fault diagnosis are paying more attention to the academic value than the engineering
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value, therefore this consideration bridges the gap between the theoretical research on computational

intelligence and the engineering design in performance monitoring and fault diagnosis.

In order to achieve the objectives, there are several tasks that the new nonlinear FDD schemes need to
study. The first intention is to develop a reasonable system structure for the FDD algorithm, by which
local faults can be distinguished globally. The second intention is to establish a complete observer
based FDD framework for local nonlinear subsystems. In the following, the concrete objectives are

presented.

1.3.1 Form an Invertible Interconnected System Structure
As mentioned above, a modern control system can be analyzed at different levels down to the

component level in estimating the reliability of the whole plant. Therefore the first consideration is to
answer the question of how to decompose the given control problem into manageable sub-problems,
thus forming a dynamic system structure. Due to the extremely important status and increasing
complex dynamics of actuator, in this thesis, we mainly focus on internal dynamics supervision of
actuator. Therefore we develop an interconnected dynamic system by considering that actuator is
viewed as subsystem connected with the process subsystem in series. And through the overall system,
the only available measurement is the output of the terminal process subsystem. We then consider the
problem that arises when the output from the low level nonlinear subsystem is not available directly,
but instead available via a second nonlinear subsystem. That is, the output from the low level nonlinear
subsystem acts as the input to a high level subsystem, from which output measurement is in turn

available. This situation results in a cascade interconnection that is illustrated in Fig. 1.4.

As shown in Fig.1.4, an interconnected system Y is considered which consists of two subsystems:
actuator Y, and process ), subsystems. The vector u represents the input vector of the actuators
subsystem, which is also the input of the series system, v is the fault vector related to parameter
variations of actuator subcomponent or external disturbances, u, is the actuators output vector, also
the input of process subsystem and y is the output vector of the process subsystem, also the output of
the overall series system. The basic idea is to identify the fault v at local level, while monitoring

dynamics of the overall plant at gIoTI level.
v

u Actuator Uy Process

subsystem

subsystem

Fig. 1.4 An interconnected system structure

A key feature, opportunity and technical challenge of the scheme is to obtain the conditions by which
the information (useful input u or faults v) issued by actuator subsystem can completely be transmitted
to the final terminal, and have distinguishable effects on the output of the process system y. In this way;,

we can recognize actuator faults in local subcomponent while utilizing the measurable output y of the
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process system. With respect to this consideration, if v is viewed as unknown input in the system, this
can be seen as problem of input observability. And input or fault observability is equivalent to left
invertibility of the system. In [60], input can be uniquely recovered from output and the initial state if

dynamical system is left invertible.

We then consider a left invertible interconnected nonlinear system structure by which actuator is
viewed as subsystem connected with the process subsystem in cascade manner, thus identifying
component faults with advanced FDD algorithm in the subsystem. The left invertibility of the
interconnected system is required for ensuring faults occurring in actuator subsystem can be
distinguished globally. In this case, the performance of the overall interconnected system and fault
occurrence are recognized by a system level based diagnosis algorithm while several independent local
diagnosis subsystems are responsible for potential fault candidates of internal component. These two
algorithms together perform the monitoring and diagnosis function of the overall interconnected system.

The interconnected system is described by the following modelling statements.
1-) Process subsystem modelling

Model based FDD makes use of mathematical model for the purpose of system supervision. The goal
within these methods is to generate symptoms that react only to faults in the system being monitored.
These symptoms can be based, for example, on the difference between the model outputs and
corresponding measured sensor signals from the system being monitored. However, a perfect complete
mathematical model of a physical system is not available. Hence, one of the major concerns in the
designing failure detection systems is detection performance, i.e., the ability to detect and identify
faults promptly with minimal delays and false alarmed even in the presence of uncertainty. It is
practically impossible to detect the failures with unlimited sensitivity. Obviously, finding a tradeoff

between the sensitivity and disturbances attenuation of the methods is an important design issue.

Assuming the MIMO process subsystem is on input affine nonlinear system which is a common

considerations involving system inverse, and is described by (1.1):

k=09 + ) giGu,

y = h(x,u,)

Yt (1.1
where the state of the process subsystem vector x € M, an n-dimensional real connected smooth
manifold, e.g. R™. f,g; are smooth vector field on M, u, € R™ is the input of process subsystem,
which is also the output of the actuator and which we assume to be inaccessible and want to estimate
on the basis of measures that taken on the evolution of the system, y € RP is overall system output. If

initial conditions are specified, the relevant equation x(t,) = x, is added to the system.
2-) Component subsystem modelling

The main objective of component modelling is to provide a detailed mathematical model for a filed

device, i.e. electro-pneumatic actuator, which accurately represents the behavior of a real component,
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including the inherent nonlinear characteristics and can be simplified in terms of computability, to be
suitable for diagnostic purposes. Although compared with the number of publications on modelling of a
process plant, the number of publications that include modelling aspects of field devices is much lower,
it has been possible to analytically model dynamics of many kinds of actuator, such as control valve
modelling in [52], serve motor in [53]. Their nonlinearities have been identified and estimated through
selected parameters. The models that were derived have been verified with measurements and the
modeling error is found to be acceptable for the fault simulations. Typical types of faults candidates

have been simulated and the impacts on the internal variables of performance analyzed.

Normally, an actuator subsystem can be described by (1.2):

Xy = fa(Xa, 4, 6,)
Uy = ha (Xa: u, efs)

Yt { (1.2)

where x, € R™ is the state, u € R' is the input, u, € R™is the output of the actuator subsystem,
which is also the input of the process subsystem, 8¢, € R9 represents the actual subsystem parameters
(i.e., when no faults are present in the system), 6r, = 0¢,, Where 8¢, is the nominal parameter
vector (understanding "fault” as an unpermitted parameter deviation in the system), 6y, € R9,
represents the parameters in the output equation (if a sensor fault occurs O # B¢, Where

Bro represent the nominal parameters in the output equation).

Thus an interconnected system 3 is then constructed by these two subsystems Y, and Y,

subsystems whereby the input is vector of u while output vector is y.

Assumption 1.1: The input vector of both subsystem u, and u are locally essentially bounded
function: u,(.) € [t,0) > R™, u(.) € [t,0) » R, if two inputs differ on a set of measure zero, i.e.

almost everywhere (a.e), then they are considered to be equal.

If fault v is as integration of either parameters fault B¢, 8¢ or other disturbance signals, a fault mode
of (1.2) is then obtained:

ia = f(xaw) + Z{n 8ai (X, WV;
= 1.3
Za {ua =h,(x,w) + Z{n Loi (Xa, Wv; (13)

Where g, | are analytic functions of the system subject to multiple, possible simultaneously faults. The

v(t) is the fault signal (V1i, > Vm) whose element v;: [0, +00) — R are arbitrary functions of time.

Remark 1.1: the fault " g,;(Xa, u)v; represents the parameters fault in 0, or external disturbance
while Y™ 1,;(x,, u)v; represents the parameters faults in 6¢ or external disturbance. Effect of faults

on outputs is independent.
And the detectability of one fault in nonlinear system (1.3) can be defined as:

Definition 1.1: the fault v;,i = 1, ..., m, is said to be non-detectable if for v; # 0 the relation

Ua(Xa0, X W, 0) = Uy(Xa0, X2 0, 0, ..., Vi, ..., 0)
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is satisfied; if not, the fault v; is detectable.

Definition 1.2: the fault v;,i =1, ...,m, is said to be detectable and has independent effect on the

system output y if the series system is invertible.

1.3.2 Performance Monitoring of the Interconnected System
A main task of the proposed strategy is to solve the problem of performances supervision of the

interconnected system through available measurements. Performance supervision includes accurately
estimate online the states vector of both subsystems. The problem of state observation is then addressed
for invertible interconnected nonlinear systems that are modeled by two nonlinear interconnected series
association. It is computationally efficient to use only local information, i.e. local inputs and outputs, to
design a local observer for each subsystem independently and check the stability of the overall system.
In this case, the observer can estimate the states precisely without any other uncertainties. However, the
major difficulty is that the state observation can only rely on the output of the global system, i.e. the
process at the terminal boundary. In particular, the connection point between the subsystems is not
accessible to measurements. Instead, it acts as an input to the process subsystem from which physical
measurement is in turn available. This is because the connection is the output of the actuator subsystem
where the measurement is assumed not available. In this case, indirect measurements have to be used to

infer the interconnection status using an estimation procedure from the available measurements.

The difficulty of states reconstruction for the interconnected system is then obvious since it can be seen
that the unavoidable inaccurate estimation of interconnection may prevent the estimation error of the
overall observer from reaching zero value. In order to achieve the robust estimation goals, as well as
overcome the difficulties, we develop an interconnected observer design methodology for the resulting
interconnected system, based on estimating the unavailable interconnection together with the states of
both subsystems. The observer structure of the system is illustrated in Figure 1.5 with two

interconnected estimators.

u Actuator Ug Process
—>

subsystem

subsystem

observer

process state
estimator

actuator state
] —»  estimator

Fig 1.5 observer structure for interconnected system
The main idea of the interconnected observer design is as follows: in the first aspect, the unknown
information of the interconnection is extended as new states of the process subsystem whose

expression can be achieved by computing derivatives output expression of actuator subsystem, forming
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a new process subsystem. For the states estimation of each subsystem of the interconnected system, it
is proposed the use of the global observer using the state estimation of the other subsystem, and we
insure the asymptotic stability of the overall estimator which is formed by the gathering of all the

observers.

1.3.3 Multi-level Fault Diagnosis and Root Cause Analysis

Another major objective of the thesis focuses on the problem of model based fault detection and
diagnosis (FDD) and root cause analysis (RCA) for a multivariable interconnected dynamic system. In
the proposed multilevel based FDD architecture, a FDD component is designed for each subsystem of
the interconnected system. For each subsystem, the performance may be affected by parameter
variations, external disturbances, interconnection from other subsystems, and modelling uncertainty
arising from structure uncertainty. The FDD is designed to overcome the problems associated with
modeling errors that has to be robust, i.e., is able to distinguish between model uncertainties and failure
modes and separate the effects of unmolded dynamics or uncertain knowledge of the system parameters,

thus avoiding excessive false alarms or missed detections.

Therefore, in this method the faults involved are parameter variations and external disturbances which
can be detected through detecting changes in the operation points of the internal variables that are
observed by analyzing the behavior of the internal variables. Its corresponding local FDD component is
designed by utilizing local measurements and estimation information from neighboring components
subsystems that are directly interconnected to the particular subsystem under consideration. A novel
fault detection and isolation scheme is then developed and some of its properties, such as the fault

detectability and isolability conditions are rigorously investigated.
a-) Observer design for inverse system

In the first place, the input reconstruction method based on the dynamic inverse system may cause the
reconstruction to be unavailable due to the initial state disturbance, drift and other factors. In order to
eliminate these unfavorable factors, the input estimation value provided by the interconnected system,
together with the dynamic inverse system, can be used to construct an observer for the inverse system.
As shown in Fig. 1.6, the input of the observer is the measurement y, its estimated output is the U, the
reference output is i, made by the previous interconnected observer. If convergence is expected then,
there should beT, = 0i, = u,. While if there is fault detected, the RCA filters are triggered, where
output used by the filter is obtained by system inversion based input reconstruction. This input
reconstruction value is available now since disturbance, drift have already eliminated during observer

operation.
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Fig 1.6 observer for inverse system of process subsystem
b-) RCA filter design

The attempt is to explain how the behavior of overall output can be interpreted to identify
subcomponent faults in actuator subsystem, so as to carry out advanced FDD algorithm for recognizing
root causes analysis of faults. As shown in Fig.1.7, the overall objective is to identify the occurrence of
the fault v; in (1.3) independently from each other whilst monitoring the overall plant at both local
and global level, as required for reliable operation of complex and high interconnected process system.
Fault v; refers to the parameter variations which are related with special physical meaning, e.g.
v; represents fault caused by leakage or valve clogging of an actuator. To realize these causes of an
actuator fault is defined as root cause analysis (RCA) in this work. We assume to feed the FDD strategy
with input u and output u, of actuator subsystem at local level, so as to achieve root cause analysis.
However, online diagnosis of actuator component is often achieved by a remote supervisory diagnostic
system, therefore, to a large extent, it is impractical to measure u, in realistic industrial condition, so u,
is supposed to be inaccessible in this work. Besides, in order to monitor the plant at a global level,
information of global level should be included when FDD function is performed at local subsystem. It
became apparent that the FDD algorithm design of an interconnected system with multilevel based
consideration requires that the interconnection be treated as special signals. If u, can be estimated
from the global level measurement y uniquely, then the above two problems can be solved. In that way,
the residual generator of advanced FDD strategy performs some kind of validation of the nominal
relationships of the system, using the actual input u, and output @i, reconstructed from measured
output y. Hence, a means of monitoring and diagnosis of the overall plant at both local and global level
is provided, which results in improved fault localization and provides better predictive maintenance

aids.
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Fig.1.7 FDD algorithm for component FDD and RCA

As mentioned above, invertibility of the interconnected system can be a solution for guaranteeing that
the information of actuators subsystem has distinguishable effects on system output. Moreover, an
essential requirement of the combination of individual actuator with an advanced diagnostic capability
to perform FDD functions is the availability and reliability of the output of the actuator subsystem u,,
which is also the input of the process system. This problem is considered as input reconstruction

problem, which can also be viewed as problem of system inversion, as shown in Fig.1.7.

In summary, if the overall cascade system is invertible, fault vector v has distinguishable effect on
system output vector y. While if process subsystem is invertible, u, can be uniquely reconstructed by
output vector y, in that case, reconstructed i, and fault vector v also has one to one relationship. Then,
one can utilize advanced FDD strategy in actuator subsystem while use the output vector y of the
interconnected system to identify v, thus achieving FDD at local level while monitoring the whole
system at global level. Above all, the key problem is to provide condition for guaranteeing invertibility

of the overall cascade system and individual subsystems.

1.4 Contributions and Challenges of the Thesis

We propose a left invertible interconnected nonlinear system structure with a dynamic inversion based
input estimation laws, forming a novel model based multilevel based FDD algorithm. This algorithm
provides a systematic solution to performance monitoring and fault diagnosis for nonlinear dynamic
system. The new system structure, together with the fault diagnosis algorithm design, is the first to
emphasize the importance of root cause analysis of field devices fault, as well as the influences of local
internal dynamic on the global dynamics. The developed multi-level model based fault diagnosis
algorithm is then a first effort to combine the strength of the system level and the component level
model based fault diagnosis. With the achievements of the above mentioned objectives, faults will be
detected more quickly and fault location will be more precise, while there will be less number of false
alarms. The primary advantages of the proposed FDD algorithm over the traditional methodology
include improved control performance, low cost, reduced computation at resource requirements,

reduced wiring requirements, simple installation and maintenance, and system agility.
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The following original contributions are made in this thesis:
1-) Create the invertible interconnected nonlinear system structure

We propose a left invertible interconnected nonlinear system structure which guarantees that faults
occurred in field devices subsystem will affect the measured output of the global system uniquely and

distinguishably.
2-) Provide the condition of invertibility of the overall interconnected dynamic system

We prove that the left invertibility of individual subsystem is the necessary and sufficient condition

which ensures invertibility of the interconnected system.
3-) Output estimation for unmeasured field devices

Output of the field device is supposed inaccessible, it is realistic due to remote distance or physical
availability considerations. By viewing this problem as unknown input of process subsystem, then a
kind of unknown input reconstruction method which employs the combination of system inversion and

sliding mode observer is proposed.
4-) Observer design for performance monitoring of the overall interconnected system

We develop an observer design methodology for the proposed interconnected nonlinear system. This
observer is capable of estimating the states of each subsystem, thus components subsystem and the
overall systems can be monitored and diagnosed under desired parameters which can reduce service

costs, improve the effectiveness of maintenance support teams, and preventive maintenance programs.
5-) FDD algorithm for root cause analysis of a component fault

A major contribution is to utilize the global output to identify root cause of a subcomponent fault
locally. That is to identify root cause of the detected faults on individual component system using
information of the entire plant during operation. This identification problem can not only take place
before problems become too serious so that to prevent major repairs and production breakdowns, but

also take place online considering influence of the process, so as to monitor performance of the plant.

1.5 Thesis Outlines
This thesis is divided into nine chapters. The first three chapters serve as introductory material. The rest
of the chapters summarize the contribution and research results of this study. The first chapter describes

motivations, objectives and contribution of the thesis.

Chapter 2 gives an overview of fault detection and diagnosis (FDD) and presents some existing
methods for FDD in nonlinear systems. It begins with the definitions of basic concepts such as faults,
failures, fault detection etc. A classification of FDD techniques, with a brief discussion on each
approach, is also presented in this chapter. An appropriate attention is paid to observer based methods,

their robustness and sensitivity issues are elaborated. The chapter also presents FDD methods for
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nonlinear systems, most commonly used observers for FDD in nonlinear systems are described in a bit

details. State of the art methods for FDD in interconnected nonlinear systems are also presented.

Chapter 3 provides a general background to system inversion of linear and nonlinear model, and
special attention is given to the non-minimum phase system. It contains some important concepts and
definitions of left invertibility and the formal problem statement. The main results on methods of
computing system inversion are presented. In addition, we review some existing research works
focusing on the application of system inversion, including the arears of parameter identification, fault

diagnosis and input reconstruction, etc.

Chapter 4 develops a left invertible interconnected nonlinear system structure. It first defines inversion
of interconnected nonlinear system and form the problem statement of invertibility of the
interconnected system. A necessary and sufficient condition is given which requires the invertibility of
individual subsystems. After that we develop a complete procedure for checking invertibility of the
given system. A simple example is provided to illustrate the proposed methods and to show its

effectiveness.

Chapter 5 studies observers design procedure for estimating states of the proposed systems structure.
The problem of state observation is addressed for interconnected nonlinear systems that are modeled by
two subsystems connected in a cascade manner. The aim is to accurately estimate online the state
vector of two subsystems. The major challenge is that the state observation must only rely on the global
system output, because the connection point between the subsystems is not accessible to measurements.
The observation problem is dealt with by designing an interconnected observer which is a combination
of individual state estimators. Sufficient conditions are formally established that ensure the observer
exponential convergence. In addition, the developed interconnected observer will provide initial
condition for the input reconstructor and local fault filter once FD & RCA procedure is triggered by

any fault

Chapter 6 introduces input reconstruction as a process where the inputs to a system are estimated using
the measured system output. We consider three methods for achieving input reconstruction despite the
presence of non-minimum phase zeros. One way to achieve this goal is to invert the system model and
cascade delays to guarantee that the inverse is proper. The standing issue in input reconstruction lies in
the inversion of non-minimum phase systems, since the inverse model is unstable. The second one is to
reconstruct the input using differential algebra techniques. The last one is based on a high gain second
order sliding mode observer which is considered to exactly estimate the derivatives of the output
vectors in a finite time. Then, by using the estimates of output derivatives, a kind of algebraic input

reconstruction method is proposed.

Chapter 7 presents a multi-level based FDD&RCA method for a class of interconnected nonlinear
systems, in which faults caused by sensors, actuators and process are taken into account in the unified

framework. Sensor measurements, together with estimation by extended high gain observers are
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processed; aim at identifying sensor faults and providing adequate estimation to substitute faulty
measurements. Then reliable measurements are fed to several banks of interval filters to generate
several banks of residuals for each subsystem in the interconnected system, each bank of residuals is
sensitive to a particular process parameter variables. By evaluating these residuals, root cause analysis
of a detected fault is achieved. A novel FDD scheme is then devised, and the fault detectability and
isolability conditions are rigorously investigated, characterizing the class of faults in each subsystem

that are detectable and isolable by the proposed FDD&RCA method.

Chapter 8 gives the application of the multi-level based FDD&RCA method developed in Chapter 7 to
the intensified HEX/Reactor system. The intensified HEX/Reactor system has high nonlinearities and
is, therefore, proper used as a benchmark to test nonlinear control and FDD algorithms. After
describing the intensified HEX/Reactor system, a fault detection filter is used to generate residual
signal. Then several banks of interval parameter filters are designed and threshold is computed to give
RCA of the detected actuator faults. The simulation results are presented which show that all the faults
including sensor faults, actuator faults and component faults are successfully diagnosed and fault

causes are identified correctly. Both abrupt and incipient fault situations are presented.

Chapter 9 summarizes and concludes the overall work described by the thesis and makes suggestions

and recommendations as to how the research can be further developed in the future.
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CHAPTER 2 MODEL BASED FAULT DETECTION AND DIAGNOSIS

TECHNIQUES

In this Chapter, a critical review is performed on the technical elements of fault detection and diagnosis
(FDD) techniques with a special attention to model based FDD. First, fundamental terminologies, such
as fault, failure, fault detection, and fault isolation are introduced. Then different types of faults and
their effects on the performance of processes are explained. A widely accepted classification of FDD
techniques is presented with a particular focus on the state of the art of quantitative model based FDD
techniques. Most commonly used evaluation functions and threshold selection approaches are
described. Subsequently, a review of the historical development of the observer based FDD technique
is introduced in detail, the major issues and tools in its framework and roughly highlights the topics are
addressed in this chapter. Finally, popular FDD methodologies for interconnected nonlinear system are

reviewed.

2.1 Basic Concepts

The importance of fault detection and diagnosis (FDD) has been realized since the invention of
machines. In the beginning, the condition of systems is determined by using human senses such as
vision, hearing and smell, however, these senses are not enough to notice all changes in more complex
systems. Therefore, devices to measure quantities, sensors, were developed, aim at saving extra
resource and achieving more precise and quick detection of faults or some parts or location that may
not be accessible to, or dangerous for human beings. When measurements become available, the next
problem is, how to use the information provided by the sensors, to determine if a system is working
well or not. Therefore advanced methods of supervision are developed and widely used for fault
detection and diagnosis. To achieve this purpose, it is important to establish what events can be

classified as a fault.

Definition of a fault given by [54] is widely accepted. A fault is defined as an unpermitted deviation of
at least one characteristic property or parameter of a system from the acceptable/usual/standard
behavior. It is the result of a defect in a component or subsystem which leads to degrade the
functionality and performance of the system. A permanent fault may lead to a failure and terminate the
ability of a subsystem or the whole system to perform its required function. From the view point of
mathematical model, faults can be modeled as external inputs and/or parameter deviations which
change the system characteristics. Similarly, uncertainties and disturbances can also be mathematically
modeled as parameter deviation and/or external input as faults. In addition, disturbances and
uncertainties have effects on the process similar to that of faults. However, unlike faults, disturbances
are unavoidable and are present even during the normal operation of the process, so they should be
taken into account in the control system design. Faults, by contrast, are considered as more severe

changes by which the affects cannot be overcome by the design of the controller of the system.
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Therefore it is necessary to detect the faults which may change the control system from the normal

operation to a faulty mode.

In the following section, basic definitions of fault detection and isolation (FDD), such as faults,
uncertainties, disturbances, and the descriptions of fault detection, fault isolation and fault

analysis/identification and some existing methods for FDD in nonlinear systems are presented in detail.

2.1.1 Definitions of the Terminology
The terminology used in this thesis is more closely related to that proposed by [54]. The following list

clarifies some expressions utilized in this work.
1-) Type of faults

A fault in a system is an external input that causes a deviation from the normal behavior of the system.
Faults can be categorized from different aspects. Based on the physical location of their occurrence in
the system, faults can generally be categorized into three types: component fault, actuator fault, and
sensor fault. With respect to the way faults are modelled, faults can be categorized based on the way
they are added to the system as additive and multiplicative faults, and based on the time behavior of
faults, they can be classified as abrupt or incipient faults. Each of these faults and their effects are

briefly described below.
A) Definition based on location of occurrence
(1) Component fault

These are the faults which appear in the components of the process and are categorized as process
faults. Process fault alters the physical parameters of the process which, in turn, leads to changes of the
normal system dynamics, e.g. leakage and loads. All faults that cannot be categorized as sensor or
actuator faults are considered as component faults. They can be modeled as additive component faults
or multiplicative component faults. An additive component fault causes changes in the system outputs
independent of known inputs, unknown input signals are well described as additive faults. A
multiplicative component fault is expressed as changes in process parameters. For example, in a

continuous heat exchanger system, fouling may result in a component fault.

The common reasons for these faults are often due to structural damages, usually wear and tear, aging
of components etc. Some examples of component faults are leakages in tanks, breakages or cracks in
gearbox system, change in friction due to lubricant deterioration etc. Component faults may result in

instability of the process. Therefore, it is extremely important to detect these faults.
(2) Actuator fault

Actuators are the components that are among the most critical and vital parts of the modern control
system which are required to transform control signals into proper actuation signals, such as torques

and forces, to drive the system. An actuator fault represents the discrepancy between the input
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command of an actuator and its actual output. That means the final control element that gets activated,
due to a malfunction and can drive the whole system into a state of fault. For instance, in an aircraft
control system, control surface damage can be considered as an actuator fault. Actuators faults behave
as partial or total (complete) loss of control action. An example of a completely lost actuator is a “stuck”
actuator that produces no (controllable) actuation regardless of the input applied to it. Total actuator
fault can occur, for instance, as a result of a breakage, cut or burned wiring, shortcuts, or the presence
of outer body in the actuator. Partially failed actuator produces only a part of the normal (i.e. under
nominal operating conditions) actuation. It can result from, e.g. hydraulic or pneumatic leakage,
increased resistance or fall in the supply voltage. A fault in an actuator may result in higher energy
consumption to total loss of control [7], and therefore a special attention is paid on the determination of
this kind of fault. Examples of actuator faults include stuck-up of control valves, faults in pumps,
motors etc. The actuator faults can be classified into four types [7], as shown in Fig. 2.1, namely: (a)
lock-in-place, (b) hard-over failure, (c) float, and (d) loss-of-effectiveness. These faults may be

formally represented as follows:

Fig. 2.1 Common types of actuator faults:

(@) lock-in-place, (b) hard-over failure, (c) float, and (d) loss-of-effectiveness

(3) Sensor fault

A sensor fault represents the deviation between the measured and the actual value of a plant’s output
variable. Sensor faults can also be subdivided into partial and total. Total sensor faults produce
information that is not related to the value of the measured physical parameter due to broken wires, lost
contact with the surface, etc. Partial sensor faults produce reading that is related to the measured signal
in such a way that useful information could still be retrieved. This can, for instance, be a gain reduction
so that a scaled version of the signal is measured, a biased measurement resulting in a (usually constant)
offset in the reading, or increased noise. These are faults occurring in measuring devices and are often
best described as additive faults, e.g. bias. There are however situations where a multiplicative
description is better, e.g. sticking or complete failure. Typical examples of sensor faults are listed in [7],
as shown in Fig.2.2: (a) bias; (b) drift; (c) performance degradation (or loss of accuracy); (d) sensor
freezing and (e) calibration error. Actuator faults and sensor faults are commonly modeled as additive

faults in the system.
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Fig. 2.2 Common types of sensor faults:

(a) bias; (b) drift; (c) performance degradation (or loss of accuracy); (d) sensor freezing; (e) calibration
B) Definition based on behavior of fault

In [55], faults can be distinguished by shape (systematic or random) according to the extension of the
fault (local or global) or by their behavior over time. Moreover, according to the time profiles of faults,
they can be classified as abrupt, incipient or intermittent fault, as shown in Fig. 2.3, where the notation

tg is the time of fault occurrence:

(a) Abrupt fault: An abrupt fault is a nearly instantaneous occurring fault, i.e., step-like change. Abrupt
faults have more severe affects and may result in damage of equipment. However, fortunately abrupt
faults are easier to detect.

St>t
f(t_tf):{o t<tfs

(b) Incipient faults: An incipient fault is slowly developing; the magnitude of an incipient fault
develops over a period of time. They are often modelled as a drift or time varying change in the
parameters of a system. Incipient faults result in degradation of equipment. Their slowly changing
behavior makes it difficult to detect.

S(1—e™) t>t
f(t_tf)z{o( ) t<t§

(c) Intermittent fault: In a system, the symptoms of an intermittent fault only show up at some time

intervals or operating conditions, not all the time.
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(a) Abrupt fault (b) Incipient fault (c) Intermittent fault

Fig. 2.3 Types of fault based on behavior

2-) Functions
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The FDD procedure monitors the system and generates information about the abnormal behavior of its
components, thus achieving the purpose of detecting faults and determining their location and
significance. In general, the FDD procedure consists of three main steps namely fault detection, fault

isolation and fault identification.
(1) Fault Detection

Fault detection is the process of determination of the occurrence and the time of the occurrence in a
system. Fault detection consists of designing a residual generator that produces a residual signal

enabling one to make a binary decision as to whether a fault occurred or not.
(2) Fault Isolation

The function of fault isolation is to exactly locate the reason and/or the origin of fault. The step of fault
isolation ensures that we are able to retrieve some information about the fault such as fault type and/or

location,

(3) Fault Identification

Fault identification aims at finding the magnitude and approximate time behavior of the fault.
(4) Fault Diagnosis

Fault diagnosis consists of determination of the kind, size, location, and the time of the occurrence of a

fault. It includes fault detection and identification.
(5) Monitoring

Monitoring is a continuous online task of determining the conditions of a physical system, by recording

information, recognizing and indicating anomalies of the system behavior.
3-) Models
(1) Quantitative model.

Quantitative model uses static and dynamic relations among systems variables and parameters in order

to describe a system’s behavior in quantitative mathematical terms.

(2) Qualitative model.

Qualitative model uses static and dynamic relations among systems variables and parameters in order
to describe a system’s behavior in qualitative terms such as causalities or if-then rules.

(3) Diagnostic model.

Diagnostic model describes a set of static or dynamic relations which link specific input variables - the
symptoms - to specific output variables - the faults.

4-) Properties

Two important attributes that a fault detection and diagnosis (FDD) algorithm needs to possess are: few
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missed detections and low false alarm rate. Next, we introduce some important properties for
evaluating the performance of fault diagnosis schemes, including robustness, fault detectability and
isolability.

(1) Robustness is the ability of the scheme to operate in the presence of noise, disturbance, and
modeling errors, with few false alarms.

(2) Detectability and isolability are characterized by the class of faults which can be successfully
detected and isolated. A successful fault diagnosis scheme should be able to detect and isolate faults of

reasonably small sizes.

2.1.2 Classification of Fault Detection and Diagnosis Techniques
The idea of FDD is based on the fact that, though detection of change does not necessarily correspond

to a failure, the faulty operation of the system is always preceded by certain changes in the dynamics.
The fault detection and diagnosis implies the continuous monitoring of the whole process, including the
sensors, actuators and control equipments. The simplest fault detection and diagnosis method is to
monitor the magnitude and the trend of individual signals. If the magnitude exceeds the design limit or
the trend deviates the expected behavior, a fault is then detected. Although this scheme is simple, it can

be applied to simple processes with the aid of experienced operators for fault isolation.

The development of FDD theory and method has already been active since the early 1970’s. As a result,
a number of detection and diagnosis methods have been developed. Several authors have reviewed and
classified these methods: early reviews of FDD methods have been published for example by [56][57]
and more recently FDD methods have been comprehensively surveyed and classified by [16][17][18].
In the sequel, a rough classification of these techniques is presented as either data-driven or

model-based.
1-) Hardware redundancy based FDD

One traditional method of FDD, mainly instrumental fault diagnosis (IFD) one, is hardware redundancy.
The essential idea of this methodology can be realized by reconstruction of the process components
using more than two components such as sensors, actuators, controllers, and computers to perform the
same function. The fault detection is achieved by comparing the deviation between the actual process
output and the output of redundant process component. If one component does not perform its function
as designed, then a voting logic and a switching mechanism can be carried out to detect, identify, and

isolate the malfunctioned component, as shown in Fig.2.4:
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Fig. 2.4 Schematic description of the hardware redundancy scheme

Generally speaking, duplicating the actuators in the system in order to achieve increased fault tolerance
is often not an option due to cost and sizes reasons. While because of the smaller sizes, sensors can be
duplicated in the system to increase the fault tolerance. For instance, by using three sensors to measure
the same variable one may consider it reliable enough to compare the readings from the sensors to
detect faults in (one and only one) of them. The so-called “majority voting” method can then be used to
pinpoint the faulty sensor. In [18], a section about voting techniques can be found along with several
references. This approach usually implies significant increase in the related costs. Hardware
redundancy is widely used in safety critical systems such as nuclear power plants and aircrafts. Some
publications about hardware redundancy were presented in the second half of the 60s and the first half

of the 70s. For example, aerospace task, flight control systems, etc. [4].

The main advantages of hardware redundancy is high reliability and direct fault isolation. However, in
many situations, the application of hardware redundancy may not be possible or desirable, since the
major problem of the hardware redundancy is in terms of volume, weight, the extra equipment,
maintenance cost in addition to the extra space. In other situations, such as with actuators, direct access
to certain variables is often not possible via physical measurements. Moreover, equal sensors installed
at the same time have a tendency to become faulty almost simultaneously, since they have similar
useful length of life. Thus its application is restricted to a number of key components which have a
very high safety requirement. For example, in the aircraft industry, using hardware redundancy is a
proven concept to diagnose sensor faults. Vital sensors are tripled or even quadrupled and faults in

these sensors are diagnosed by using voting schemes.
2-) Analytical redundancy based FDD

Another kind of system redundancy is called analytical redundancy which is to reconstruct the process
behavior accomplished by the functional relationships governed by physical laws in a process system
[59]. In the context of analytical redundancy, the information about the fault is to compare the
measured values with their estimates delivered by redundant relationships. The difference between the
measured process variables and their estimates is called residual, which can be used as a fault signature
for FDD. We generally define the redundant relationships as model. Therefore analytical redundancy
based fault diagnosis is also called model based fault diagnosis methodology, which is defined as a
systematic approach to generate residual quantities and analyze the residual properties such that the
potential faults can be detected, identified and isolated. Based on what form of model is used for
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achieving the purpose of residual generation, model based fault diagnosis scheme can further be
divided into two categories. The mode can be quantitative model, an analytical model represented by
set of differential equations, or it can be qualitative model, a knowledge-based model represented by,

for example, neural networks, digraphs, experts systems, fuzzy rules etc.
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Fig. 2.5 Schematic description of the analytical redundancy scheme

The quantitative model based approaches utilize the deepest knowledge of the process, and therefore,
are the most capable approaches for fault diagnosis given that the mathematical model of the process is
available. Several early survey articles have been presented over the years on fault diagnosis utilizing a
quantitative process model, e.g. [54] [60] [61]. Recent surveys can be found in [16][53]. Some books
on the subject are e.g. [59] [55] Another possibility next to the quantitative model based methodologies
referred to knowledge based fault diagnosis algorithms. Knowledge based model approaches do not
need full analytical modeling, therefore, are more suitable in information-poor systems or in situations
where the mathematical model of the process is difficult to obtain or is too complex [7]. This is the case,
for example, in chemical processes which are difficult to model analytically. The main advantage of
these methods is that they do not require a precise analytical model. A comprehensive study of these
methods can be found in survey papers [17] [60] and recent books [62]. The main restriction of the
so-called knowledge based FDD method is that they are depending on knowledge acquisition from the
system in form of training data sets [60]. In practice these sets are difficult to obtain due to the fact that
they must provide data from the system while the considered faults occur. Indeed, in a real running
system it is hardly possible to convince the owner of a plant to simulate all possible faults. When
knowledge based systems can be trained sufficiently they can be utilized to estimate measurements

based on the available signal information, hence, provide redundancy.

A novel advantage of analytical redundancy based fault diagnosis is that no additional hardware is
needed for fault detection and isolation since the intuitive idea is to replace the hardware redundancy
by a process model which is used to cross check process variables. These algorithms can be
implemented on some digital computer and hence avoided the disadvantages related to the hardware
redundancy based fault detection techniques. Besides the analytical model based approaches are
usually faster, as well as on-line implementation is easier, hence they are more suitable for processes
with fast dynamics. Moreover since the redundancy provided by functional relationships has the same
reliability as a processing computer, the reliability of analytical redundancy is much higher than

traditional hardware redundancy. Another advantage is that it is applicable to IFD (instrument fault
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diagnosis) as well as to AFP (actuator fault diagnosis) and to CFD (component diagnosis), while
hardware redundancy is mainly applicable to IFD. Furthermore, the most significant contribution of
analytical redundancy to fault diagnosis, which many researchers do not stress, is that the generated
fault signatures are fully decoupled from the operation conditions if the developed functional
relationships can cover entire operation regime. Given strengthens, the field of model based FDD is

well-studied.
3-) Signal processing based FDD

The essential idea of this approach is to get the information of the faults by collecting some properties
of the measured signals [63]. Assuming that certain process signals carry information about the faults
of interest in forms of symptoms, fault diagnosis can be achieved by suitable processing these signals,
the symptoms can be such as the magnitudes of the time function, trend checking from the derivative,
mean (arithmetic or quadratic) and variance, statistical moments of the amplitude distribution or
envelope, spectral power densities of the frequency domain function, correlation coefficients,

frequency spectral lines etc.

There are various approaches of signal processing. Several early survey articles have been presented in
[57] [64] and book like [63]. Limit checking of absolute value of the measurements and limit checking
of derivative (trend) of the measurements are the two most simple and widely used approaches in
signal processing based schemes. Application of signal based methodologies can be found in various
industry, such as mechanical machine. However, the drawback is that fault can only be detected when it
grows enough to cross the limits. Moreover, signal processing based fault diagnosis approaches are
only used for processes working in the steady state or with slow dynamics, not suitable for dynamic

systems with transient behavior [8].
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Fig. 2.6 Schematic description of the signal processing based scheme
4-) Comparison between different methods

In summary, signal processing based methods can be the option and useful when the mathematical
model of a linear or nonlinear system is not available. It is because all signal processing based methods
need data from both healthy and faulty operating conditions of the system under consideration.
Therefore, it is difficult to design a generic signal processing based fault diagnosis method applicable
to a wide range of systems. Moreover, collecting measurements in faulty conditions can be very costly

and in some cases even impossible. By contrast, model based methods minimize the need for a priori
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data and can perform online, but they require accurate mathematical model of the system. In fact, this
is the fundamental difference between model based fault diagnosis and signal based fault diagnosis
such as spectral analysis and pattern recognition. For signal based fault diagnosis, fault signatures need
to be extracted from representative fault data, which are difficult to obtain in most situations. Whatever,
among fault detection schemes, model based FDD techniques make use of the best knowledge of the
monitored process for the purpose of system supervision. Therefore, model based FDD schemes are
said to be the most capable approaches due to the advantages of low cost, fast detection, ability to deal
with fast dynamical systems, when a process model is available and the requirement of FDD
performance is relatively high. Nevertheless, the two abovementioned classes of fault diagnosis have
become closer, as researchers have recently been tried to combine both methods, in order to eliminate
the disadvantages of each method and construct more reliable and functional fault diagnosis schemes
For instance data, if available, can be utilized to tune the system model and also to determine robust

fault detection thresholds. In both cases, fault diagnosis is done whereas prognosis is still in its infancy.

2.2 Quantitative Model-Based Fault Detection and Diagnosis Techniques

Most methods are covered by the term gquantitative model based fault detection and diagnosis and there
exists a wide variety of approaches, e.g. the observer-based approach [65][66], the parity space
approach [67][68], and the parameter estimation approach [69][70]. A detailed description of the term
model based FDD is given in [71]. Several survey articles have been presented over the years on fault
diagnosis using a quantitative process model, e.g. [54] [57][16]. Some books on the subject are also
available [55][63][59]. Additionally models can be grouped as linear or nonlinear based on their
capability to deal with a mathematical relationship between physical quantities, depending on the
problem at hand the most suitable models are chosen. The field of model based FDD for linear systems
is well-studied, key references can be found in [61]. For nonlinear systems there also exist several
model based FDD methods [31][23]. Especially the observer based approach has gained a lot of

interest recently.

2.2.1 Introduction of Quantitative Model-based FDD Scheme
Quantitative model based FDD can be defined as the detection, isolation and characterization of faults

in component of a system by comparing the available system measurements with estimates of these
measurements using the mathematical model. The reflected inconsistencies between nominal and faulty
system operation is called residual, and fault detection and diagnosis can be achieved by inspecting the
residual. When an exact process model is available, the residual is only due to noise and disturbances.
So the residual magnitude is zero or close to zero in the fault free case and become non zero as a result
of a fault in the process. The procedure of creating the residual signal is called residual generation,
while the procedure of checking the residual is called residual evaluation. Therefore model based FDD
are composed of two parts: residual generation and residual evaluation. Fig2.7 illustrates the schematic
of model based FDD.
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Fig. 2.7 Schematic description of the model based scheme
The residual generation step contains an estimator which uses a quantitative process model and derives
an estimate of the process output. The purpose is to generate a fault indicating signal (residual) which is
capable of reflecting the possible fault information of the analyzed system. The residual generation is
therefore a procedure for extracting fault symptoms from the system, with the fault represented by the
residual signal, thus the residual signal should ideally carry only the fault information. To guarantee
reliable FDD, the loss of fault information in residual generation should be as small as possible.
However, since modelling error and unknown disturbances are inevitable for technical process, the
generated residual signal is usually non-zero even in the fault-free case. So a post processing of the
residuals which extracts the information about the fault of interests from the residual signals is needed,
which is called residual evaluation. The residuals are examined for the likelihood of fault. The residual
evaluation step examines the residual signal or a function of it with a threshold for the likelihood of
fault. The residual evaluation module has to detect, using adequate tests, when a given residual is
indeed distinguishably different from zero. Residual generation and residual evaluation builds the core

of the model based fault detection and diagnosis technique.

2.2.2 System and Fault Model for FDD

In order to simulate the behavior of the process components and control devices, an important issue is
to build up a mathematical model of the system. While for the purpose of diagnosis of sensor, actuator,
and process faults, the fault effects on the physical system should be explicitly represented by
appropriate fault models. This explicit proper mathematical representation of fault effects, so that it can

facilitate fault diagnosis such that the generated residuals will behave as designed.

Most of the real systems are nonlinear in nature, the process dynamics of a nonlinear system can be

given by:

{X(t) = f(x (1), u(t), 6(1), w(1)

y(t) = hx(),u(t),) (2.1)

where x(t) € R™ is the state, u(t) € R™ is the input, y(t) € RP is the output of the system, 8(t) € R!
represents the system parameters (i.e., when no faults are present in the system, 6(t) =6, ), where

8, is the nominal parameter vector (understanding "fault” as an unpermitted parameter deviation in the
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system), and w(t) represents modelling mismatches (if the model of the system is perfectly known,

w(t) =0).

If the sensor dynamic is ignored, let y'(t) € RP be the actual sensor outputs and y,(t) € RP be the

expected one (fault free), then the fault model for sensor faults can be generally described as follows:

y'(® =A-T®)y,(®) +v (22)

where T'(t) = diag (al(t), a, (), ..., ocp(t)), (I =T()y,(t) represents the effect of multiplicative

sensor faults, and v = diag(vy, v, ..., vp) corresponds to the effect of an additive sensor fault as

constant offset, the ith sensor is faulty if o;(t) # 1 or v; # 0.

Case 1. I'(t) = 0,v # 0, bias fault;

Case 2. T'(t) =1, v # 0, freezing;

Case 3.T'(t) # 0,v = 0, lost of accuracy;
Case 4. I'(t) =1, v =0, calibration;
Case 5. I'(t) = 0, v =0 drift.

If the actuator dynamics is ignored, let u'(t) € R™ be the actual output of the actuators and
uy(t) € R™ be the expected one (fault free), then the fault model for an actuator can be generally

described as follows:
u'(t) = Q)u(t) + ¢ (2.3)

Q) = diag(py (1), o (®) o, Bm(D), Q(O)u,(t) represents the effect of a multiplicative actuator
fault, and & = diag(e,, €,, ..., €m) corresponds to the effect of an additive actuator fault as constant

offset, the ith actuator is faulty if p;(t) # 1 or g # 0.
Case 1. Q(t) =1, &+ 0, actuator bias fault;

Case 2.Q(t) = 0, £ # 0, actuator blocked;

Case 3. Q(t) # I, £ = 0, actuator lost of effectiveness;
Case 4. Q(t) =0, £ =0, float.

Obviously, the actual mapping between the actuator input uy(t) and the actuator output u’(t) can be
easily represented by changing (2.3) accordingly. Once the actual process inputs and outputs u’(t) and
y(t) (usually not available for u’(t)) are measured by the input and output sensors, the general model
FDD theory can be treated as an observation problem of the knowledge only of the measured

sequences u’(t) and y(t) [69].
If a process fault results in a change in the system parameters, the model for the fault is given by:
0 =0, +f, (2.4)
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Where 0'(t) € R' is the actual parameter vector, and in a fault-free system, its nominal parameter
vector is regarded as 8,(t) € R!. While a system with fault is called post-fault system, a parameter

vector difference fy denotes a fault.

2.2.3 Residual Generation Method

Residual generator transforms the fault symptoms from measurement space to a lower dimensional
feature space, it plays an important role in model based fault diagnosis techniques. In order to generate
residuals with the desired properties for FDD, various residual generation techniques have been
developed in the last several decades. Although these techniques are related to each other and become
equivalent in certain cases, they do have very different characteristics in terms of complexity, flexibility,
and applicability. The most representative used analytical model based approaches for residual
generation include the observer based approach, the parity equations approach and the parameter

estimation approach.
1-) Observer based residual generation

Observers are computational algorithms designed to estimate unmeasured state variables due to the
lack of appropriate estimating devices or to replace high priced sensors in a plant. The main idea of
observer based residual generation is achieved by comparing measurements from process with their
estimates generated through observers [63]. The weighted estimation error is then used as residuals for
the purpose of FDD [71], the residual is normally zero, and becomes non zero as a result of fault,
disturbance, noise or model uncertainties. Therefore the generated residual signal should be insensitive
to noise, disturbance and model uncertainties, but sensitive to faults, so that a fault can be detected
when the residual signal is not zero or close to zero. This can be done by using further available
knowledge about the system or by using robust fault detection techniques. While for the purpose of
isolating and identifying faults, these methods usually use a bank of state estimators where each one is

sensitive to a fault or a set of faults and insensitive to other faults.

In the past few decades, the problems of nonlinear system observability and observer design have
received considerable interests for systems that can be described by ordinaries differential equations
(ODEs). There are possibly three reasons for this particular attention to observer based methods. The
first one is due to associated advantages of observer based approaches, e.g., quick detection, requiring
no excitation signal, possibility of on-line implementation etc. Secondly, other model based approaches
which include parity space approach and parameter identification approach are, under certain
conditions or assumptions, a specific form of the observer based approaches. Thirdly, control engineers
are more familiar with the concepts of observer design. There are various approaches for designing

observers. Details are described in section 2.3.
2-) Parity equations based residual generation

The parity equation based method is one of the earliest approaches used for residual generation in
technical systems. The main idea is to check the consistency of the parity equations of the system by
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using the measurement; while the parity equations are derived from the system model or transformed
version of the state space model. That means the mathematical model of the process is rearranged to
obtain the parity equations which are algebraic equations that indicate an explicit relation between
input and output time-sequence data vector. These parity relations can in principle be either based on
direct redundancy or on temporal redundancy. Direct redundancy exploits relationships among
instantaneous outputs of sensors and temporal redundancy exploits relationships among the histories of
sensor outputs and actuator inputs [72]. Contributions of parity relation based FDD for nonlinear
systems can be found in [73][72][31]. In [74], it is presented a parity space approach based on the
inverse model of input output nonlinear systems. In [73], the parity space approach for linear systems is
generalized to nonlinear systems described by TS fuzzy models. The parity space approach to fault

diagnosis can significantly extend its application when temporal redundancy is utilized [73].

There is a close relationship between parity space approach and observer based approach. As shown in
[59], parity space approach leads to certain types of observer structures and is therefore structurally
equivalent to the observer based approach, even though the design procedures are different. Parity
relations are therefore a special form of observers, called the dead-beat observers (i.e. observers having
all the poles at origin). Compared to observer based approaches, parity space approaches are more
sensitive to measurement and require the model to be known accurately, and therefore are especially

suitable for additive faults.
3-) Parameter estimation based residual generation

As the name suggests, the essential of the parameter estimation based residual generation method is a
procedure of on-line parameter identification. It is assumed that faults in systems are often reflected by
variation of physical parameters such as length, mass, damping, stiffness and capacities, etc.
Parameters are estimated on-line repeatedly using the input and the output of the system. Then the
estimated parameters can be used to compare with the parameters of the reference model obtained in
fault free condition. If the estimated parameter values deviate from their nominal values, then decisions
about occurrence of faults are made. There are several parameter estimation techniques including least
squares (LS), recursive least squares (RLS), extended least squares (ELS), etc. Literature [69] has
shown how parameter estimation methods can be used for detecting process faults in continuous time
systems and more FDD approaches based on parameter estimation can be found in [70] while

applications to engineering industries can be found in [47] [63] .

An advantage of parameter estimation approach is that with only one input and one output signal,
several parameters can be estimated which give a detailed picture on internal process quantities [15].
Another advantage of the method is that it yields the size of the deviations of process parameters which
is very useful for fault analysis [11]. Moreover, parameter estimation based approaches need only the
structure of the process, the requirements are less strict since the parameters to be estimated do not
have to be known exactly. However, sufficient input excitation is required to achieve good estimation

performance which may not be always available.
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Parameter identification approaches have many similarities to observer based approaches. Compared to
observer based and parity relation based methods, parameter estimation methods are more flexible in
how faults can affect the system. Therefore, parameter estimation methods are more suitable for
multiplicative faults detection, especially for multiplicative component fault detection, although it can

also detect sensor and actuator faults.

2.2.4 Residual Evaluation Method

After residual generation, the second step in model based fault detection and diagnosis scheme is
residual evaluation. Residual evaluation is a decision making stage which performs appropriate
statistical testing on the generated residuals to make a decision on fault diagnosis, the proper scheme

for residual checking play a significant role in the satisfactory performance of FDD scheme.

In ideal situations where existence of no disturbances or their effects on the residual signal is
completely eliminated, no modeling uncertainties and the initial conditions of the observer are the same
as that of the process, the residual signal will be zero. In that case, any deviation of residual from zero
will indicate the presence of faults. However, these ideal situations are never attained and there are
always modelling errors, initial conditions of the observer may be different from that of the process.
These reasons cause the residual signal to deviate from zero even in the absence of faults. It may block
the determination of occurrence for the likelihood of faults and a decision rule is then required to
determine if any faults have occurred. The purpose of residual evaluation is the decision rule to decide
the occurrence of faults even in the presence of disturbances and uncertainties. The evaluation of the

residue should answer the following questions: 1. is there a fault? 2. if so, what fault is present?

Based on the type of system under consideration, the evaluation schemes can be roughly divided into
statistical based methods and norm based methods. For stochastic systems, the statistical properties like
mean, variance, likelihood ratio (LR), generalized likelihood ratio (GLR) are used for the evaluation of
residuals [4]. For deterministic systems, the norm based residual evaluation is preferred, where
different kinds of norm like L2, peak and also Root Mean Square value (RMS) are used. Besides
requiring less on-line computation, norm based schemes also allow a systematic way for threshold

computation.

2.3 Observer Based Fault Detection and Diagnosis Approach

2.3.1 A Brief Description of the Observers

Among all the FDD approaches, observer based methods are the most popular methods to be
researched and applied [37]. Observers are mathematical frameworks used as powerful tools to
estimate unmeasured states variables from a minimum set of measurements in dynamic linear and
nonlinear systems. A fundamental characteristic of any observer is that it does not need to be initialized
with the actual initial conditions of the state variables to study the dynamics of the system [7].
Furthermore, two statements are desirable for any observer design: 1-) If the observer is provided with
the actual initial condition and if the measurement noise is negligible, then the estimation of the state
can be considered exact and the estimated state becomes the true state (i.e., the estimation error is zero
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all the time); 2-) If the observer is provided with an initial condition different from the real, then the
estimated state converges eventually to the true state (i.e., the estimation error converges towards zero

in a finite time).

It should be noted that there is a difference between observers used for the purposes of control and for
the purpose of FDD. The observers designed for control are state observers, i.e., they estimate states
which are not measured. In contrary, the observers designed for FDD are output observer, i.e., these
observers generate estimation of the measured states. Generally, the existence conditions for diagnostic
observers are much more relaxed than that for a state observer. Full state observers like fault detection
filter are also widely used for residual generation, the extra design freedom is used to achieve fault
isolation, unknown input decoupling etc. A special form is the fault detection filter, which generates
estimation of all the states, irrespective of whether they are measured or not. In this case, these can be

used both for control and FDD purpose.

Considerable attention has been paid in the literature to the construction of observers for nonlinear
systems. Some survey articles in the area are e.g. [66]. Considerable researches on fault detection and
diagnosis using observer based theory have been carried out recently including, e.g. the high-gain
observer [75], sliding-mode observers [76] Luenberger-like observers [77], adaptive observer [78],
unknown input observer [79]. For example, in [80], a high-gain observer for uniformly observable
systems is derived and sliding mode observers are presented in [26]. While [81] presents a nonlinear
adaptive estimator for fault detection. The application of observers in industry could be widely found
like, in chemical industry, water treatment, aircraft, nuclear plant, wind tube engine etc. A survey of

some observer design techniques for nonlinear systems is presented in the following.

2.3.2 Different Observer Design Methods for Nonlinear System
In order to achieve an optimal residual generation, considerable efforts have been devoted to develop
observer based residual generator which fulfill the following two requirements: (1) robust to model

uncertainties, disturbance and sensor noises; (2) sensitive to faults.
1-) Nonlinear identity observer

This approach to fault diagnosis was first proposed by Henry and Frank [66], the use of this approach

for the detection and isolation of component faults,see also [82] . A more general class of faults in [66].
The starting point is the nonlinear model (2.1) and the following observer structure.
R(1) = fR(V), u(1), Bo(1), 0) + KR w)(y(t) — (V) (2.5)
§(® = h((®,u®)
r(®) = y(®) -y

where r(t) represents residual, the design of the observer is under the assumption that there is no faults

and no modeling uncertainties are present.
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Defining the estimation error e(t) = x(t) — X(t), the error dynamics can be written as:
&(t) = FR(), u(®), 8, (1), 0)e(t) — K(R(), u() ) HER(®), u(t), 6,(t), 0)e(t) (2.6)
r(t) = H(&(®), u(®))e(t)

where F(X(t), u(t), 0,(t),0) = af(x(t), u(t), 8, (t), 0)/9x (t),
H(R(t), u(t), 6, (t),0) = dh(R(t), u(t))/ox(b).

The gain matrix K(f((t),u(t)) can be developed in such a way that the error dynamics e(t) =0 is
asymptotically stable. In some situations, for example in Lipschitz nonlinear systems, a constant matrix
will guarantee the stability [83]. For instance, when h(x(t),u(t)) = Cx(t), then the matrix
K(&(t),u(t)) takes the form

K(&(D,u(®)) = P'FR(®),u()C’Q
where the symmetric positive definite matrix P = PT > 0 should be assigned such that:
KTP(0f(x(1), u(t), 85 (t), 0)/9x(t))Klg—x < 0

where K is the highest rank right orthogonal matrix to C and

n
- 1
F(& u) = diag EZM;U +yi|ti=1,..,n
=1
wherey;; is the ij™™ element of the matrix P(af(x(t),u(t))/ax(t))|f(=X and Q is a matrix satisfying
cTQC—1> 0.

2-) Extended Luenberger observer

Luenberger observer is one of the basic state estimator for linear system and is used for fault detection
in linear systems. For nonlinear systems, one can linearize the nonlinear model at an operating point
and then apply the Luenberger observer. A similar approach for state estimation and its application to
fault detection has been proposed in [84]. However, if the operating region is too wide, the linearized
model will deviate largely from the nonlinear model, particularly, if the system is operating away from
the linearizing point. Therefore, over the years, research in the design of observers has encounter
challenges due to the requirements of high accuracy and good prediction performances [85]. Many
observers today are simply modifications and extended versions of the classical Luenberger observer.
The idea of the extended Luenberger observer is to linearize the model around current estimate of
states %(t), instead of a fix point (e.g. x = 0), and then apply the Luenberger observer. This type of
observer is suitable for less complex linear systems with relatively simpler computational methods.
While because of the requirements of repetitive calculation of observer gain (which means more on line

computations) and the linearization errors, the extended Luenberger observer is rarely used in practice.

Consider, for example, the nonlinear system as:

38



x(t) = f(x(t),u(t)), x(0) = x, (2.7
y(® = hx(1),u(®)

where x € R" denotes the vector of state variables, u = [uy, ...,u,] € R™ denotes the vector of
constrained input variables, y € [y;, ....,yp]T € RP denotes the vector of output variables. f(x) € R
is a nonlinear vector function, f(x) and h(x) are assumed to be sufficiently smooth on their domains

of definition.

Then an extended Luenberger observer is
&(0) = f((®), u®) + KE®,u®) (y® - h(2(©,u®)), £(0) =%, (2.8)

9(0) = h(x(), u(®)

Where K(%,u) is the observer gain which is computed at each time instant in such a way that the
eigenvalues of ((9f(x,u)/dx) — K(%,u)(0h(x,u)/dx)) are stable. The detailed study can be found in
[86].

3-) Nonlinear unknown input observer (NUIO)

The origins of NUIOs can be traced back to the early 1970s, it is one of the most common approaches
of robust observers which can tolerate a degree of model uncertainty and hence increase the reliability
of fault diagnosis. The main idea of NUIOs is to decouple the residual signal from the unknown
disturbances, it was introduced by the pioneering work [82]. Considerable contribution has been made
in the observer design and improvement like in [87] Besides, a large amount of knowledge by using
these techniques for model based fault diagnosis has been accumulated through the literature, such as
[79].

Let us consider a nonlinear system can be decoupled as the following structure:
x(6) = Ax(t) + B(y(©), u(t)) + Ed(t) + K(x(©), u(v))f(t) (2.9)
y(® = Cx(®) + K, (x(0), u(®) ) ()

where x(t) € R™, u(t) € R™,y(t) € RP,d(t) € R% denote respectively the state, the input, the output
and the unknown input vectors, f(t) represents the component or the actuator faults and f,(t)

represents the sensor faults.
Then the observer is given by:
(0 = F(® +](y(®,u®) + Gy(®) (2.10)

r(t) = LiX(t) + Loy (1)
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For the observer to be decoupled from the unknown inputs d(t)and sensitive to fault vector f(t),

following conditions on observer matrixes are required [82]:

TA — FT = GC, where F is stable

Jy(®,u(®) = TBy(H), u(®)
L,T+L,C=0, TE=0

k {TK (x,u)} = rank {K(x,u)}

rank ([1(‘32]) = rank (K (x(t), u(t))

Provided the above requirements are satisfied, the estimation can be defined as e £ Tx — X, the

dynamics of the residual obey the following equations:
é(t) = Fe(t) — GK(x(t), u(t))f(t) + TK (x(t), u(t))fs(t) (2.11)
r(t) = Lie(t) + LK (x(1), u(®)fs ()

The class of NUIO focuses only on disturbances or fault detection related variables during the
estimation process. They are mostly suitable for estimating disturbances and faults, which provide early
warning to operators prior to causing disruption to the process units. The drawback of this approach is
the hard existing conditions and the poor fault detectability. Moreover, the class of systems covered by
this technique is very limited. There are some methods which can transform other nonlinear model to
the form suitable for unknown input observer design approach; however, the existence conditions for
such transformations are very restrictive. Even if the existence conditions are satisfied, finding the
transformations involves the solution of higher order partial differential equations [8]. A direct
extension of the UIO results in linear systems to the nonlinear case was considered in [66]. The
approach takes advantage of the structure of the system model, which is assumed to be in observable
canonical form. In this case, a constant state transformation could be used (as in the linear case), and a

complete design procedure can be achieved.
4-) The disturbance decoupling nonlinear observer (DDNO)

The disturbance decoupling nonlinear observer (DDNO) proposed in [88] can be considered as an
alternative to the NUIO approach, considering a more general class of systems. The basic idea was the
same as for the NUIO, but a nonlinear state transformation based technique instead of a linear one is
used. Apart from a relatively large class of systems for which they can be applied, even if the nonlinear
transformation is possible it leads to another nonlinear system and hence the observer design problem

remains open.
The class of systems that can be treated with this approach is described by:

x(t) = A1), u(t)) + E(x(t), u(t))w(t) + K(x, u)f(t) (2.12)
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y(® = Cx®),u®)

where w(t) represents modelling mismatches due to uncertain model parameters (if the model of the

system is perfectly known, w(t) = 0), f(t) represents the component or the actuator faults.

To decouple the states from disturbances, a nonlinear state transformation z(t) = T(x(t)) is used and

the transformed system becomes:

Tx(®) = 28D (A(x(t), u(®)) + E(x(®), u(®))o(®) + K(x (0, u®)f®)  (2.13)

ax(t)

The transformation should be such that the transformed system becomes unaffected by disturbances but

still reflects the effect of faults. The desired transformation can be selected as:

OT(x() _

If such a transformation exists, the transformed system can be described by:

2(t) = 20O (A(x(), u(®) + K(x(), u®)f(®)) (2.15)

ax(t)

y'(© = C"(z(®,u(®),y(v)

where the output has been transformed into a new form which has no longer the effect of disturbances,
instead the new output depends only on the state z, the input u and the original output y. Authors in [88]
have also discussed a special case when the disturbance distribution matrix is also dependent on u. In

that case the required transformation will also depend on u.

After the transformation is achieved, the next step is to design an observer for the reduced system (2.15)

using any observer design method, e.g., it can use nonlinear identity observer approach.
5-) High gain observer

High gain observer approach is developed for the input affine nonlinear systems based on a nonlinear
transformation described in [83]. See also [89] for more advanced developments. Based on the
transformed system model, a nonlinear observer can be designed where observer gain is obtained by
solving a linear algebraic equation. This class of observer is designed for process systems whose
dynamics are described by ordinary differential equations (ODES) and are quite straight forward to
implement. It can be applied to a large class of nonlinear systems and the observer design is carried out
in a systematic way. However, a drawback of high gain observer is the high sensitivity of the nonlinear
transformation to model uncertainties. Further, another drawback is the peaking phenomenon due to the
very high observer gain, because the high-gain observer is based on the idea of selecting a sufficiently
large gain in such a way as to dominate the nonlinear contribution to the dynamics of the estimation
error. However, such a large gain may cause destabilization in the loop when the high gain observer is
used in cascade with a feedback regulator.
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Such an observer is a dynamic system with a copy of the original dynamics and a correction term based
on the output error, i.e., the difference between the current output and the output “predicted” by the

observer itself.

The class of nonlinear systems covered by the approach is represented by:

£(© = A(x®) + g((0) + ) uth () (2.16)
y(t) = Cx(t)
o1 - 0 0
WhereA:[ S ] g(x)=< . > C=1[10,....0], ¥;(x) = [y (%), eoor, Y (X)]
00 - 0 gn(X)

With the assumption that g(x) and ; are globally Lipschitz, an observer is of the form:
m
(0 = AR®) +g(RD) + Z u s (R() — SeECT(CRM) — y(®) 2.17)
i=1

where Sg is the unique solution of the Lyapunov algebraic equation:
8Sg +ATSy +Sg A—CTC =0 (2.18)

The high gain observer design approach was extended to a more general class of nonlinear systems in

[95]. The class of systems is:

x(t) = A(x(t) + P(t, u,x) (2.19)
y(® = Cx(t)
0 a;(t) - 0
WhereA:[ : ] c=[1,0,....,0] and the ith component y;(t,u,x) is such that:
0 0 - 0

q;i(t, u,x) = it u, Xq, .., Xj)

Furthermore, the following two assumptions are satisfied: {r is globally Lipschitz with respect to x
and t, locally with respect to u; a;,i =1,..,n—1 are known differentiable functions with unknown

derivatives, and there exist € >0,M' >0 such that, for every t>0,e <]a;(t)] <M and

|ditai(t)| <M'fori=1,..,n—1

Then an observer for (2.19) is of the form:
£ =AMK+ Pt u,R) — A71S5CT(CR — y) (2.20)
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where Sg is the unique solution of (2.18) and A isthenan n X n matrix:

A~ = diag {1,a;(1),a;(Day(b), ...,a; () ...ap_1 (D }
6-) Adaptive nonlinear observer (ANO)

One problem of the observer based methods for fault diagnosis is their weakness in detecting slowly
developing faults, especially when model uncertainties are present [82][90]. To overcome this difficulty,
an adaptive observer proposed in [90] could be a solution. Adaptive observers are based on online
adaption for joint estimation of state and some parameters (or for state estimation only, despite the
presence of some unknown parameters) [19][25]. Early works on adaptive observers for linear systems
have been developed in the 70s. The design for nonlinear case is from the early 90s. Nonlinear adaptive
observer can be achieved for the nonlinear systems whose dynamics can be linearized by coordinate
change and output injection [91], or it can also be accomplished by some Lyapunov functions
satisfying particular conditions instead of linearization [92]. Adaptive observers provide direct and
indirect methods for fault diagnosis if the estimated parameters are related to faults. They have been
utilized for fault diagnosis by different authors, such as [22][20]. For example in [20], a nonlinear
observer is used in order to detect sensor and actuator additive fault in a waste water treat process, and
the observer's performance is improved with online adaptation. While in [19], an observer is proposed
which allows not only detect and isolate additive fault ,but also non-additive faults, each observer is

designed to estimate one parameter in addition to the states.

Considering a nonlinear system described in [92] by:

{X(t) = f(x(1), u(®) + gx (), u(®)v(t) (2.21)

y(® =hX)
where x(t)eR™ denotes the states, y(t)eRP is the output vector of the system is, u(t)eR™ is the

measurable bounded input vector and 8(t)eR! is a vector of unknown parameters.

The adaptive observer is in two steps, the first one is to transform the system in nonlinear adaptive

observer form:

(100 = €0 O.50,0) + 0,40, u D)0 (2.2

z(H) = y(y (0, z(H), u(®)

where y(t)eRP is the output vector of the system which is also the measurable states, z(t)eR" is the
vector of the  unmeasurable  states. B(y (1), z(t), u(t)) is  globally  bounded.
a(y(t),z(t), u(t)) and B(y(t), z(t),u(t)) are globally Lipschitz functions with respect to z(t), and
uniformly with respect to (y(t), u(t), t).

The second step is the observer design:
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§(®) = a(®),2(1), u®),t) + By 1), 2(), u®)B®) — K, F® — y(©)

z2(®) = yy(®,2(0), u®) (2.23)

8(H) = —¥eBT(y(©), 2(), u®) (F(®) — y(©)
where constants k, > 0 and kg > 0 are the gains of the observer. Generally, these observer gains are
positive and they can have different values. However, it is recommended to take k, < g. Such that for
any 9(0), 2(0), any y(0),z(0) and any measurable bounded u(t), the estimation errors ||§(t) —
y(®ll and [|2(t) — z(t)|| asymptotically go to zero when t tends to infinity, while ||8(t) — 6(v)||

remains bounded. Moreover, if BT(y(t),i(t),u(t)) is persistently exciting, and its time derivative is

bounded, then [[8(t) — 8(t)[| — 0.
If there are no unmeasurable states, a reduced order asymptotic state observer is obtained by:

§(0) = aly(®,u(®, D + Bly(®), u(®)d(D) — k,(F©) — y(1)

A 2.24
B(t) = —keB (y(0), u®)(F(®) — y(®) (224

7-) Sliding mode observer

The sliding mode observers (SMO) are vastly applied to fault diagnosis in both linear and nonlinear
systems with uncertainties, such as linear system in [37], as well as in nonlinear systems in [26]. The
inherent property of sliding mode observer (SMO) is that it is normally insensitive to any uncertainty
or external disturbance signals which are implicit in the input channels that are bounded by a known
Lipschitz nonlinear function. Subsequently, this characteristic makes it suitable for state estimation and
fault detection for nonlinear systems whose dynamics include a linear part and a nonlinear part which
is Lipschitz with respect to system states. Designing a sliding mode observer consists in two steps: (1)
the design of a sliding surface such that the system possesses the desired performance when it is
restricted to the surface; (2) the design of a variable structure control law which drives the system
trajectories to the sliding surface in finite time and maintains a sliding motion on it thereafter. As the
trajectories reach the sliding surface, the estimations become insensitive to the external disturbances.
Therefore the sliding mode observer can force the output estimation error to converge to zero in finite
time, while the observer states converge asymptotically to the system states. The applications of SMO
are concerned with the use of sliding mode ideas for fault diagnosis, reconstruction and how this
information may be used in a simple way to provide a fault tolerant control scheme[30]. The limitation
of this approach is its requirement of sufficient measurements and the chattering phenomenon caused
by the nonlinear feedback in the observer. In below, we describe the major steps involved in the design

of sliding mode observer. The discussion is based on the results from [93].

Consider the class of nonlinear systems can be transformed into triangular input form:
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[X1 =X, + g1 (x4, 1)
X; = X3+ g2(Xq,Xp, 1)

. 2.25
Xp_1 = Xp + 8n-1(X1, Xz, ) Xp_g, W) ( )

Xp = fn(xl:xz: +,Xp) + gn(XLXZ' ces Xp, W)
y=x%1

where x(t),u(t) and y(t) are bounded sate vector in finite time, bounded input vector and the output

vector respectively. g;(.,0) = 0,fori=1,..,n

A sliding mode observer can be generated as:

[ R1 = R, + 81 (Xq,0) + Agsign (x, — R;)
X, = X3 + g2 (x4, %5, 1) + Apsign (X, — Ry)
1 o (2.26)
Rn_1 = Ry + 8n-1(X1, Xz, o, Xn_g, W) + Ay_ysign (Xn_g — Xp_q)

t)? =f,(Xq, %y, -+, %) + 8n (X1, Xy, o, X, w) + Agsign (X, — Xy)
Where
)’Zi = )’Ei + }\i_lsign (ii—l - f(i—l)'i = 2, W, 1 — 1 (227)

The manifolds are effectively a sequential consideration of a series of first-order dynamics, it is easily
seen by forming the error dynamics for e = x — X;:
( & = e, — Assign (x; — %)
I €, = e3 + g,(Xq, X, u) — 82(Xq, %, u) — Apsign (X, — Ry)
= e (2.27)
én_1 = ﬁn - gn—l(xl:ib v Xno1, u) - An—lsign ()N(n—l - )’Zn—l)
kén = fn(XDXZ' :Xn) - fn(Xli)?ZJ :in) + gn(XDXZ: w Xny u) - gn(xliib ---'in: u) - )\nSign (Xn - ),Zn)
It can be verified that for sufficiently large A,, a sliding mode is attained on e; = 0 in a finite time

and it follows that e, = A;sign (x; — X;), which with (2.27) yields X, = x,.
Then the observation error dynamics become:

( él =0
! éz =€3 — }\zsign ()’22 - ﬁz)

L én1 = Xy — 8n1(X1, X, o, Kyog, W) — Ap_gsign (Rp_q — Rp_y)
e, = (X, Xz, -+, Xp) — fa (X0, Xg, -, &) + 80 (X1, X2, v, Xy W) — 81 (X4, Xy, o, X, W) — A sign (X, — Rp)
The manifolds are reached sequentially and X; — &; converges to zero if the X; — % with j <ihave

already converged to zero.

2.3.2 Observer Schemes
Using a single observer is not sufficient for fault isolation. For this purpose several observer schemes
can be used [94] to detect and isolate faults in dynamic processes. The most popular two are the

Dedicated Observer Scheme (DOS) and the Generalized Observer Scheme (GOS).

1-) Dedicated Observer Scheme
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A well-known scheme is the dedicated observer scheme [59]. The basic idea of the dedicated observer
scheme is to have a bank of observers where each observer only depends on one fault and is
approximately decoupled from all of the other faults and from all disturbances [4]. It was first
introduced by [95] for IFD (instrument fault diagnosis). For IFD, it consists of a set of observers each
of which is driven by a different single sensor output. Each of these observers then estimates the full
output vector, or if this is not possible, part of the output vector. The number of observers equals the
number of outputs (sensors). For AFD, each observer uses one input and all the outputs. In this case,
multiple residual generators are designed with each observer excited by a single input. Therefore, each
residual generator is sensitive to only one actuator fault. It should be mentioned that the dedicated
observer scheme allows detecting and isolating multiple faults by analysis of the residuals. As shown in
Fig. 2.8.

}

Sensor 1 »1 residual 1
actuators » plant —»| Sensor 2 » residual 2
Sensor m =1 residual m

Fault detection and isolation |« residual evaluation

Fig. 2.8 Schematic of Dedicated Observer Scheme
2-) Generalized Observer Scheme

Another well-known scheme is the generalized observer scheme [59]. The main idea of the generalized
observer scheme is to design the observer which is sensitive to all fault candidates but the one the
observer involved. In the schemes, the FDD architectures consist of a reduced bank of N observers,
where N is the number of fault candidates. Then ith residual is designed be sensitive to all faults but
the ith one. For IFD, the ith observer uses all the inputs and M outputs but the ith one. While for
AFD the ith observer is connected to all inputs except the ith. The decision function is as follows: if
the ith residual is zero (or below a certain threshold) and all the remaining residuals are nonzero (or
above their corresponding thresholds), then a decision on the occurrence of the ith fault is made.. The
generalized observer scheme can be used for localization of single faults. As compared to dedicated
observer scheme, in this design scheme, each observer is excited by all the system outputs but one.
Because of its structure, the generalized observer scheme is less sensitive to modeling errors and

disturbances than the dedicated observer scheme. As shown in Fig. 2.9.
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actuators »1 plant *| Sensor residual 2
residual n
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Fault detection and isolation | residual evaluation

Fig. 2.9 Schematic of Generalized Observer Scheme

2.4 Fault Detection and Diagnosis Approach of Interconnected System

2.4.1 Introduction

Another important problem in the area of automatic control is related to the interconnected systems.
The notion of interconnected systems is introduced to describe complex systems consisting of
subsystems interacting on each other. A complex system can be defined as a system composed of a
number of interconnected dynamic units whose interaction enforces the collective behavior of a system.
Several practical systems, e.g. power generation and distribution systems, telecommunication networks,
traffic networks, exhibit complex and spatially distributed dynamics and are referred to as large scale
interconnected systems [96]. The study of interconnected systems plays a significant role in the
development of stability theory of dynamic systems, as it allows investigating the stability property of a

complex system by analyzing its less complicated components.

Recently, significant research works have been done in the area of interconnected systems. Most of the
results focus on the control problem [97]. There have been many applications of a centralized scheme
of interconnected systems control in different areas of the engineering field. Examples of such systems
including multi-machine power system, robots, chemical process control systems etc. Due to the
extensive efforts that are required in transmitting the entire system measurements for a centralized
scheme which are not suitable for distributed systems, decentralized control of distributed systems by
using local subsystem states is introduced. Many researchers in the field of large scale interconnected
systems are devoted to decentralized robust control strategies, the advantages of using decentralized
control can be found from either economy or reliability standpoints. When the system is too large to be
dealt with by centralized control, it is computationally efficient to use only local information, i.e. local
states or outputs, to make the control decision. Involved techniques are such as observer based control
schemes [98], stepping based control algorithm [99], sliding mode control algorithm [100], unbiased
observers based [101], adaptive control [102], decentralized adaptive output-feedback [103],
decentralized observer based [104], reduced-order control [105]. Like in [100], a decentralized output

feedback control strategy based on sliding mode techniques is proposed for a class of nonlinear large
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scale interconnected systems with matched and mismatched uncertainties. The primary advantages of
distributed over the traditional centralized control strategies include improved control performance,
low cost, reduced computation resource requirements, reduced wiring or communication bandwidth

requirements, simple installation and maintenance, and system agility.

In order to achieve reliable and safe operations of interconnected systems, the design of FDD and
accommodation schemes is also a crucial step. Suitable FDD schemes are capable of ensuring that a
fault at any given location can be detected at an incipient stage in order to prevent catastrophic failure
of the overall system. There have been significant research activities in the development of new
methodologies of FDD in interconnected systems. Until recently, centralized fault diagnosis approaches
were the main topic of investigation and a variety of FDD methods have been developed. These FDD
schemes need to own the capability to access to all the measurements available and the objective is to
detect and isolate faults occurring in any part of the system. To guarantee this access availability, each
subsystem requires transmitting information about actuators and sensors to a centralized FDD station
that detects and isolates faults over the network. Many centralized fault accommodation schemes have
been introduced in the above section. However, in practice, due to the constraints on computational
capabilities, wiring, and/or communication bandwidth, it is very difficult to address the problem of
diagnosing faults in interconnected distributed systems using a centralized architecture. In centralized
FDD approaches, intelligence of monitored systems is at the top level of the process plant. When this
centralized schematic is used, sensors have to be installed to all the primary variables of the field
devices to make fault candidates observable. While installing additional sensors into the field devices
leads to very complicated and expensive systems where deep expertise concerning the operation of the
device is also required from monitoring system designers. Increasing complexity of these systems have

also leaded to faulty alarms and maintaining such a system requires a lot of resources.

In recent years though, advances in sensing and communications, as well as to overcome these
limitations, has motivated the investigation of FDD in interconnected system not that only focus on
centralized fault diagnosis approaches, but also the focus of the research activities is directed mostly
towards the development of hierarchical [106], decentralized [107], distributed [108] FDD schemes.
The term distributed describes a FDD scheme whose structure is analyzed as being constituted by
multiple subsystems that interact with neighboring subsystems. This is in contrast with the term
decentralized FDD scheme, whose structure is considered as made of multiple subsystems that do not
interact with each other, and of course with the term centralized, where a subdivision in distinct
subsystems is not possible, as every part of the system interacts with every other one [109]. The
difference between the concepts of centralized, decentralized and distributed systems can be easily

understood by looking at Fig. 2.10, where a pictorial representation is given.
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I 1 1

centralized decentralized distributed
Fig. 2.10 Schematic of different structures: physical interconnection between subsystems is represented

by black arrows, communication and measuring channels are represented by white arrows

Issues such as economic cost and reliability of communication links can be considered, thus providing
impetus to develop and use a more advanced scheme. Traditional FDD schemes may not be applied to
interconnected systems, since not all measurements are available in every node. In [110], the diagnosis
problem is formulated and both a centralized and decentralized architectures are developed and
compared. Obviously, distributed control and monitoring is more suitable than centralized for
large-scale interconnected dynamical systems, such as power networks and multi-agent systems, due to
the lower complexity and less use of network resources. Many factors contribute to this formulation
such as the large scale nature of the system to be monitored, its spatial distribution, and the
unavailability to access to certain parts of the system from a remote monitoring component and
therefore local diagnosis should be performed. In fact, in many cases, the architecture of the underlying
subsystems that are inherently decentralized and distributed makes the development of a distributed/

decentralized FDD framework a necessity.

2.4.2 Distributed and Decentralized Fault Detection and Isolation

As previously mentioned, large scale interconnected systems require distributed or decentralized
schemes, which motivated researchers to work on distributed approaches for fault diagnosis. In recent
years, the problem of distributed or decentralized FDD for interconnected nonlinear system has
attracted significantly increasing attention. In this case, the system is no longer diagnosed by a single
monitor but several independent local monitors which together perform the FDD function of the overall
system. Distributed/decentralized monitoring and control offers many advantages over centralized

control, such as enhanced reliability, flexibility and efficiency.

In the literature of fault diagnosis of interconnected nonlinear systems, by assuming that the
interconnection functions are known and the entire system states or entire estimated states are available
at all subsystems, distributed/decentralized fault diagnosis schemes have been proposed, like in [153].
By using overlapping decomposition [111], a large scale system is decomposed into a set of subsystems
which are interconnected by unknown nonlinear functions and distributed fault diagnosis scheme is
introduced by assuming the entire state vector is available. Bank of adaptive observers, using only
measurements and information from neighboring subsystems are used to detect and isolate faults in
interconnected subsystems in [154]. In [108], a distributed fault detection scheme for process and
sensor faults are developed by investigating the propagation of the fault effects to neighboring

subsystems. In [97], a distributed sensor fault detection scheme is proposed for a class of
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interconnected input output nonlinear systems where only the measurable part of state variables are
directly affected by the interconnections between subsystems, but the estimator design is conducted
under some potentially restrictive conditions and deals only with the fault detectability issue.
Application of distributed FDD, e.g. power networks which is with inherent decentralized nature, can
be found. In [112], it addresses the problem of distributed unknown input observers based FDD for a
network of nodes with double integrator dynamics, whose interactions are described by a distributed
control law. On the other hand, decentralized fault diagnosis schemes in [7] are introduced for
interconnected systems by assuming the same conditions in distributed method are satisfied. In [113], a
robust decentralized actuator fault detection and estimation scheme is proposed for a class of nonlinear
interconnected systems using sliding mode observer. While in [59] a bank of decentralized observers is
built where each observer contains the model of the entire system and receives both measurements
from the local subsystem and information transmitted from other observers. Literature [114] presents a
decentralized fault detection filter using game theory for a special large scale system where the

interconnection terms are functions of the system outputs only.

Similar to current distributed/decentralized control approaches, these FDD methods are not completely
distributed or decentralized since they still require the interconnection functions to be known and the
entire state vector to be available at all subsystems. However, although availability of all the state
information at each subsystem can help in an accurate diagnosis, the entire system state are typically
not always fully available for practical systems. Some state variables may be difficult or costly to
measure and sometimes have no physical meaning and thus cannot be measured at all [100]. Moreover,
it is very expensive and time consuming to gather and process all the measured system states from a
distributed large scale system at one place, even if this is possible, the information will be delayed and

outdated. In practice, only a part of the states are available.

Motivated by the aforementioned observations, the need for a pure decentralized FD scheme which
only uses local measurements with partial state measurement at each subsystem is expected. The
objective is to design and analyze a distributed FDD approach, where a local fault detection agent is
associated with each subsystem and receives local measurements and partial information from
neighboring fault detection agents [108]. More specifically, the FDD scheme is designed in such a way
that a process fault occurring in a subsystem can only be detected by its corresponding detection agent,
whereas a sensor fault occurring in a subsystem may also be detected by the detection agents of the
neighboring subsystems it affects. Decentralized diagnosis of interconnected systems by using only
local subsystem states has been introduced recently [162]. For example, in [115], the authors propose a
decentralized fault diagnosis and fault accommodation scheme by using only the local states at each
local fault detector. Work [96] designs a decentralized fault diagnosis scheme for interconnected
nonlinear systems by using local fault detectors (LFD) which consists of a nonlinear observer with an
incorporated online approximator (IOA). The IOA is used to estimate the unknown part of the

subsystem dynamics, i.e. interconnection term and possible fault function, so that each LFD monitors a
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single subsystem by making use of the local information or states alone. A number of new
developments in the design of pure distributed FDD for interconnected system can be found in the
literature. For instance, in [116], the distributed fault detection scheme is based on local fault filtering
schemes with each one assigned to monitor one subsystem and provide a decision regarding its health.
A nonlinear observer-based approach is developed in [117] for distributed fault detection of a class of
interconnected input-output nonlinear systems by relaxing the assumption of the availability of all the
state measurements. In [118], authors present a distributed fault detection and isolation (FDI) strategy
for a team of networked robots that builds on a distributed controller-observer schema. By means of a
local observer, each robot can estimate the overall state of the team and it can use such an estimate to

compute its local control input to achieve global tasks.

2.5 Summary

This chapter introduces the fundamental concepts in FDD with focus on nonlinear systems. Definitions
of elementary nomenclature such as fault, failure, fault detection, fault identification and fault isolation
are provided. A classification of FDD schemes is presented elaborating the main features of each
approach. A particular attention is paid to observer-based fault detection schemes, their robustness
properties are discussed and several approaches developed over the past for robust residual generation
are introduced. At the end, some state of the art fault detection techniques for interconnected nonlinear

systems are presented.
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CHAPTER 3 INTRODUCTION TO SYSTEM INVERSION

This chapter gives a background to system inversion of linear and nonlinear systems with a particular
focus on nonlinear system. First, we will review the related definitions and notations such as zero
dynamics, Lie bracket, right and left invertibility, etc. Then the representation and inversion of linear
system will be considered. Stability of the inversion and its connection to minimum and non-minimum
phase systems will also be reviewed. Nonlinear systems will be considered in a similar manner and
difficulties with stable inversion will be highlighted. This chapter ends with a short summary on related
works with system inversion including system control, parameter identification, unknown input

reconstruction and fault detection and diagnosis (FDD) problems.

3.1 Introduction

System inversion is one of the fundamental issues from a theoretical and practical viewpoint and has
been extensively studied for over fifty years. The first systematic result relevant to the inverse systems
was pioneered by Brockett and Mesarovic (1965). After that, the inversion problems were widely
studied, in particular to characterize certain structural properties of systems. See for instance, in the
classic linear systems theory, the works of [119][120]; for nonlinear systems [121][122]; for infinite
dimensional systems [123], and for descriptor systems [124]. System inversion is a general concept in
systems theory where left and right system inversions are two different aspects that appear in the
literature, see e.g.[125]. From the system dynamics point of view, left inversion is mainly related to the
system zeros, and a minimal left inversion gives a structure of the zero-dynamics of a system.
Right-inversion relates to the input output decoupling problem and is sometimes referred to as the
decoupling controller problem in control theory. Left and right invertibilities, as well as inversion
procedures and algorithms, have been widely studied in the literatures. A good compendium of left and

right invertibility of both linear and nonlinear systems can be found in [120].

For left invertibility, the problem has been a long studied problem in the systems literature. Many
works on invertibility of linear dynamical system [120][126]. Necessary and sufficient conditions were
obtained in [120] for the existence of a linear time invariant dynamical system that, when cascaded
with the original system, produces as its output the input to the original system. With respect to
nonlinear dynamic systems, in [127] invertibility of nonlinear continuous time systems, in [125] the
notion of differential algebraic invertibility, and in [121] a geometric invertibility are discussed. For
certain classes of nonlinear state space systems, one can find algorithms (and also sufficient or
necessary conditions) of invertibility, see e.g. [128]. In [126] the left invertibility problem for switched
linear systems is discussed, followed that nonlinear system is investigated in [36]. These conditions are
given in terms of a rank condition on matrices made up of either the system matrices or the system
Markov parameters. Although the existence conditions and properties of system inversion have been
intensively studied, determining the inverse of a nonlinear model is not always a trivial thing even if it

exists. With respect to the above mentioned researches, there are only few of them that supplies
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computational algorithms of inverse dynamic. To achieve this purpose, the work [129] gives an
algorithm to calculate the inverse and the zero dynamics. Another solution proposed for such problem,
is to determine the class of nonlinear dynamical systems which are input output linearizable. Necessary
and sufficient geometrical conditions have been stated [15][16]. Moreover, the paper [130] supplies a
new algorithm to compute the dynamic inversion for an affine MIMO nonlinear control systems with
regular characteristic matrix as well as singular matrix. While in [131], the left inverse system with
minimal order and its algorithms of discrete time nonlinear systems are studied in a linear algebraic

framework.

In recent years, dynamic inversion methods can be found in many interesting applications, such as
aerospace and aviation, feedforward control, fault detection, system identification, signal processing
problems, cryptography, electrical networks etc. Generally speaking, left inverse systems are typically
used to observe internal variables and to reconstruct unknown exogenous signals directly acting on the
system [120]. Right inverse systems are typically used for reference tracking and disturbance rejection.
As far as systems input output decoupling is concerned, a controller insuring input output decoupling
can be based on a right inverse of the controlled system. From a technological point of view, an
important domain of application of left invertibility is the one corresponding to model based failure
detection and isolation. Indeed, when failures are modeled as unknown exogenous signals, the failures
detector is essentially a left inverse of the monitored system. The applicability of system inversion to
fault detection in linear time invariant systems was first demonstrated in [132]. Followed in [133], it is
shown how fault detection of both linear and nonlinear systems can be viewed as an input
reconstruction process. Reference [120] developed failures detection schemes which overpass the

limitations characterizing classical observer based failures detection methodologies.

Before stating the inverse dynamic of the systems, let us start with a review of some background from

differential geometry and differential algebra needed to understand within the rest of this chapter.

3.2 Some Definitions and Notations

1-) Left and Right Inverse

Left and right inverse are two different concepts that appear in the system inversion literature. Loosely
speaking, a left inverse for the original system would be a dynamic system which, driven by the
process output (and its derivatives), reconstructs the applied input. A right inverse would then be a
dynamic system which, driven by a desired output trajectory, produces the input necessary to obtain

this trajectory.
In this respect, one can distinguish between the two notions of inverse systems as follows:

Left inverse: The left inverse reconstructs the input from the output of the plant, its derivatives, and the
state variables of the inverse. Given a left invertible system, £ : U - Y, a left inverse =% Y > U, is

a system satisfying Z71(Z (u(+))) = u(-), as shown in Fig. 3.1.
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Right inverse: The right inverse produces the input history that is required to obtain a particular output
(i.e. an ideal feedforward controller) using the plant output and the state variables of the inverse. Given
a right invertible system, Z: U - Y, a right inverse, 2z :Y - U, is a system satisfying X (Zx*
F())) = y(), as shown in Fig. 3.2.

Fig. 3.1 Left inverse Fig. 3.2 Right inverse

2-) Left and Right Invertibility

Left invertbility is about uniquely finding the input, given the output and right invertibility is about
finding one input sequence (not necessarily unique) such that the output is equal to a desired reference
signal. Roughly speaking, the definition of left invertibility requires that any difference in the input
must result in a difference in the following output symbols, at most in a time equal to the invertibility
time. The system right invertibility (or functional controllability) denotes its property of reproducing at
the output any arbitrary function, starting from the zero state and after some delay, provided that a

suitable control input is applied.

For linear systems these two concepts can easily be explained in terms of the transfer matrix G(s) of
the system. One says that the (p,m)-matrix G(s) is left-invertible if there exists a rational
(m, p) -matrix L(s) such that L(s)G(s) =1, Wwhereas G(s) is right-invertible if there is a
rational (m, p)-matrix R(s) such that G(s)R(s) = .

Left and right invertibility of a linear system is often treated in a state space formulation among others.

Let us for completeness also consider an LTI system described by a state space formulation:

{x(t) = Ax(t) + Bu(t) x(0) = x, (3.1)

y(t) = Cx(t) + Du(t)
where x € R™,u € R™,y € RP denote respectively the state, the input and the output of the system.

The matrixes A, B, C, D are with appropriate dimensions.

The transfer function is given by:

G(s) =C(sI—A)B
For nonlinear systems there are various attempts to analyze invertibility, see e.g. [121] where
differential geometric methods are used, and [134] where noncommutative generating power series are

the basic tools.

To give a formal definition, we consider a continuous time state space model:

{)’((t) = f(x(t)) + g(x(®))u(®) 3.2)

y(t) = h(x(D)
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where x e Xc R*",ue Uc R™,y e Y c RP denote respectively the state, the input and the output of
the system. The mappings f,g4,...,8n Which characterize the dynamics of the system are R™-valued
mappings defined on the open set X, i.e., f(x),g;(x),...,gm(x) correspond to the values at a specific
point x € Xin the state space. The functions hy,...,h, are real valued functions defined on X, and
h;(x),...,hp(x) correspond to the values taken at a specific point x which characterize the output of
the system. These mappings may be represented in the form of n —dimensional vectors of real-valued

functions of the real variables x4, ..., x,, as:

f1 (X1, .+, Xp) 81i(X1, -+, Xp)
f(x) = fZ(Xl"S"'X“) ,8i(x) = gZi(Xl’S""X“) Jhi (%) = hi(xy,..., Xp)
fn(xli-'-'xn) gni(xl"-'!xn)

In the following, R* denotes the set of non-negative integers, a reference function r(.) is used to
represent the desired output. Following is the definition for both left and right invertibility, as defined
in [135].

Definition 3.1: A system is said to be left invertible at time k, if, for everyl € R*, there exists an
integer o € R*, such that the input can be uniquely determined over the interval [k —1, k] by the

knowelge of the initial state x(k —1) and of the output y over the interval [k —1, k+ o].

Definition 3.2: A system is said to be right invertible at time k, if, for every 1 € R*,x(t,) € X, and the
reference function r(.) € Y is defined over the interval [k, k+ 1+ 1], there exists an integer o €
R*and an input u defined over the interval [k — o,k + 1] such that for the initial state x(k — o) =

Xq, the output y(j) = r(j), forallj € [k, k +1+ 1].

As will be clear in the following chapters, we have to consider cases where we can uniquely find the
input given the output when the inversion is used for input distinguishable problems. Left inverse and
left invertibility is therefore important in our considerations. However, it can be noted, in the case of a
square system with an equal humber of inputs and outputs, the notions of right and left inverse become
identical. A realization of the inverse operator can then be interpreted as a right or a left inverse,

depending on the context.
3-) Manifolds

A manifolds is a topological space, usually denoted M, which has special properties that are useful for
the results that follow. Most notably, a manifold is locally Euclidean. Consider the mapping of a point
x in some neighborhood U of M to a point ¢(x) in some open subset of K™, the mapping ¢ and its
inverse (¢p~1) are assumed to be C* functions. We can define a coordinate chart as the pair (U, ¢),
it is often useful to represent ¢ as a set (¢1, ... ,by), where ¢;: U —> R is called the ith
coordinate function. The set real number (d1(p), ... ,P,(p)) is called the set of local coordinates

of x inthe coordinate chart (U, ).

4-) Vector Fields
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A vector map associates a point x = (X1, .- ,Xp) onan open subset of R™ with the vector in R™:

fl(Xp 'Xn)
f(X1, - ,Xn) = fz(Xl, ,Xn)
fm(Xll ,Xn)

A scalar map or function merely maps some open subset of R"to R. A vector fields, f(x), on R™ is

the mapping which assigns to every point x € M a tangent vector f(x) in the tangent space to M.

The mappings f(x),g;(x),...,gm(x) of the system models (3.2) are smooth mappings in their
arguments assigning to each point x € X a vector of R", i.e., f(x), g;(%),...,gm(X), hi(%),...,h;(®)

according to (3.2). Therefore they are referred to smooth vector fields defined on X.
5-) Lie Derivative

A co-vector field that will be used more frequently in the following parts of this work is the so called
differential of the real-valued function A. This co-vector field, denoted dA is defined asthe 1 X n row
vector whose i — th element is the partial derivative of A with respect to x;. Its value at a point x is

therefore:

o = [P 2 o
X= ox, 0x, 0%,

or simply dA(x) = dA/0x.

Consider the real-valued function A and a vector field f both defined on X. The derivative of A along

smooth filed f is defined to be Lie Derivative. The notion we use is LeA(x).

The Lie Derivative is equal to the value of the tangent vector f(x) at point x. In local coordinates, it is in

fact, the inner product, written as:

£ (X4, s Xp)
LAG) = (dA), F) = f(x) OX[ ;

fo(Xq, ) Xp)

l ig_i\ifi(x)

The following notation is used for repeat Lie Derivatives:

Le(LAA(x)) = LEA(X).
Continuing a recursion by differentiating A k —times along f satisfies:

(LX)

LIAG) = ——

f(x), with LIA(x) = A(x)

Repeated use of this operation by extending the scope of the operation, the derivative of A first along

the vector field f and then along a vector field g is defined as:

d(LeA(x))

LgLf}\(X) = %

g(x)
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6-) Lie algebra

A vector space V over R of all smooth vector fields on a manifold X is a Lie algebra, if in addition to
its vector space structure, it is possible to define a binary operator on V: [V,V] =V x V — V, called a

product and written [ +, ], which has the following properties:
the operator is skew commutative: [v, w] = —[v, w]
the operator is bilinear ov