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SUMMARY 

Many of the vital services of everyday life depend on highly complex and interconnected engineering 

systems; these systems consist of large number of interconnected sensors, actuators and system 

components. The study of interconnected systems plays a significant role in the study of reliability 

theory of dynamic systems, as it allows one to investigate the properties of an interconnected system by 

analyzing its less complicated subcomponents. Fault diagnosis is crucial in achieving safe and reliable 

operations of interconnected control systems. In all situations, the global system and/or each subsystem 

can be analyzed at different levels in investigating the reliability of the overall system; where different 

levels mean from system level down to the subcomponent level. In some cases, it is important to 

determine the abnormal information of the internal variables of local subsystem, in order to isolate the 

causes that contribute to the anomalous operation of the overall process. For example, if a certain fault 

appears in an actuator, the origin of that malfunction can have different causes: zero deviation, leakage, 

clogging etc. These origins can be represented as root cause of an actuator fault.  

This thesis concerns with the challenges of applying system inverse theory and model based FDD 

techniques to handle the joint problem of fault diagnosis & root cause analysis (FD & RCA) locally 

and performance monitoring globally. By considering actuator as individual dynamic subsystem 

connected with process dynamic subsystem in cascade, we propose an interconnected nonlinear system 

structure. We then investigate the problem of left invertibility, fault observability and fault 

diagnosability of the interconnected system, forming a novel model based multilevel FD & RCA 

algorithm. This diagnostic algorithm enables individual component to monitor internal dynamics 

locally to improve plant efficiency and diagnose potential fault resources to locate malfunction when 

operation performance of global system degrades. Hence, a means of a combination of local 

intelligence with a more advanced diagnostic capability (combining fault monitoring and diagnosis at 

both local and global levels) to perform FDD functions on different levels of the plant is provided. As a 

result, improved fault localization and better predictive maintenance aids can be expected. The new 

system structure, together with the fault diagnosis algorithm, is the first to emphasize the importance of 

fault RCA of field devices, as well as the influences of local internal dynamics on the global dynamics. 

The developed model based multi-level FD & RCA algorithm is then a first effort to combine the 

strength of the system level model based fault diagnosis with the component level model based fault 

diagnosis.  

The contributions of this thesis include the following:  

Firstly, we propose a left invertible interconnected nonlinear system structure which guarantees that 

fault occurred in field device subsystem will affect the measured output of the global system uniquely 

and distinguishably. A necessary and sufficient condition is developed to ensure invertibility of the 

interconnected system which requires invertibility of individual subsystems. 
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Second, a two level interconnected observer is developed which consists of two state estimators, aims 

at providing accurately estimates of states of each subsystem, as well as the unknown interconnection. 

In addition, it will also provide initial condition for the input reconstructor and local fault filter once 

FD & RCA procedure is triggered by any fault. Two underlying issues are worth to be highlighted: for 

one hand, the measurement used in the estimator of the former subsystem is assumed not accessible; 

the solution is to replace it by the estimate provided by the estimator of the latter subsystem. In fact, 

this unknown output is the unknown interconnection of the interconnected system, and also the input of 

the latter subsystem. For the other, in the latter subsystem, the unknown interconnection is treated as an 

additional state, forming a new extended subsystem; and expression of the new state is obtained by 

computing derivatives of output equation of the previous subsystem. 

Moreover, by combining the left inversion and sliding mode observer, we propose a kind of algebraic 

unknown input estimation method by which successive output derivatives are avoided. We employ a 

second order sliding mode observer to estimate the time derivatives of the output, thus avoiding the 

potential serious errors arise by the derivatives computation. The estimation is then used to substitute 

the derivatives of outputs in the differential algebraic polynomial obtained via system inversion.   

In addition, a novel FD & RCA scheme is investigated where a local fault filter is designed for the 

actuator subsystem, thus achieving root cause analysis of the detected actuator fault. Each local fault 

filter consists of two modules: a fault detection and isolation module is developed to identify an 

occurrence of any fault variable in the actuator subsystem; and banks of fault isolation estimators are 

employed to determine the particular faulty variables that have occurred in the subsystem. An input 

reconstructor is used to determine the unknown interconnection of the interconnected system or 

determine the output of the actuator subsystem. The fault detectability, isolability and distinguishability 

are rigorously investigated; characterizing the class of faults in each subsystem that are detectable and 

isolable by the proposed method. 

Finally, the effectiveness of the above FD & RCA schemes is illustrated by using simulations of the 

nonlinear model of an intensified Hex reactor system. Different fault scenarios are considered to verify 

the diagnosis performances, and the satisfactory performances of the proposed method are validated by 

the good simulation results.  

Key Words: invertibility; interconnected system; fault distinguishability; interconnected observer; 

root cause analysis; input reconstruction; local fault filter; distributed FDD algorithm; unknown 

interconnection; local internal dynamic; subcomponent; field device. 
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RESUME 

Beaucoup de services vitaux de la vie quotidienne dépendent de systèmes d'ingénierie 

hautement complexes et interconnectés; Ces systèmes sont constitués d'un grand nombre de 

capteurs interconnectés, d'actionneurs et de composants du système. L'étude des systèmes 

interconnectés joue un rôle important dans l'étude de la fiabilité des systèmes dynamiques; car 

elle permet d'étudier les propriétés d'un système interconnecté en analysant ses 

sous-composants moins complexes. Le diagnostic des pannes est essentiel pour assurer des 

opérations sûres et fiables des systèmes de contrôle interconnectés. Dans toutes les situations, 

le système global et / ou chaque sous-système peuvent être analysés à différents niveaux pour 

déterminer la fiabilité du système global. Dans certains cas, il est important de déterminer les 

informations anormales des variables internes du sous-système local, car ce sont les causes 

qui contribuent au fonctionnement anormal du processus global. 

Cette thèse porte sur les défis de l'application de la théorie inverse du système et des 

techniques FDD basées sur des modèles pour traiter le problème articulaire du diagnostic des 

fautes et de l'analyse des causes racines (FD et RCA). Nous étudions ensuite le problème de 

l'inversibilité de la gauche, de l'observabilité et de la diagnosticabilité des fauts du système 

interconnecté, formant un algorithme FD et RCA multi-niveaux basé sur un modèle. Ce 

système de diagnostic permet aux composants individuels de surveiller la dynamique interne 

localement afin d'améliorer l'efficacité du système et de diagnostiquer des ressources de 

fautes potentielles pour localiser un dysfonctionnement lorsque les performances du système 

global se dégradent. Par conséquent, un moyen d'une combinaison d'intelligence locale avec 

une capacité de diagnostic plus avancée pour effectuer des fonctions FDD à différents 

niveaux du système est fourni. En conséquence, on peut s'attendre à une amélioration de la 

localisation des fauts et à de meilleurs moyens de maintenance prédictive. La nouvelle 

structure du système, ainsi que l'algorithme de diagnostic des fautes, met l'accent sur 

l'importance de la RCA de défaut des dispositifs de terrain, ainsi que sur l'influence de la 

dynamique interne locale sur la dynamique globale. 

Les contributions de cette thèse sont les suivantes: 

Tout d'abord, nous proposons une structure de système non linéaire interconnecté inversible 

qui garantit le fauts dans le sous-système de périphérique de terrain affecte la sortie mesurée 

du système global de manière unique et distincte. Une condition nécessaire et suffisante est 

développée pour assurer l'inversibilité du système interconnecté qui nécessite l'inversibilité de 

sous-systèmes individuels.  

Deuxièmement, un observateur interconnecté à deux niveaux est développé; Il se compose de 

deux estimateurs d'état, vise à fournir des estimations précises des états de chaque 

sous-système, ainsi que l'interconnexion inconnue. En outre, il fournira également une 
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condition initiale pour le reconstructeur de données et le filtre de fauts local une fois que la 

procédure FD et RCA est déclenchée par tout fauts. D'une part, la mesure utilisée dans 

l'estimateur de l'ancien sous-système est supposée non accessible; La solution est de la 

remplacer par l'estimation fournie par l'estimateur de ce dernier sous-système. En fait, cette 

sortie inconnue est l'interconnexion inconnue du système interconnecté, ainsi que l'entrée de 

ce dernier sous-système. Pour l'autre, dans ce dernier sous-système, l'interconnexion inconnue 

est traitée comme un état supplémentaire, formant un nouveau sous-système étendu; Et 

l'expression du nouvel état est obtenue en calculant les dérivées de l'équation de sortie du 

sous-système précédent. 

De plus, en combinant l'inverseur gauche et l'observateur en mode coulissant, nous proposons 

une sorte de méthode d'estimation d'entrée algébrique inconnue par laquelle des dérivés de 

sortie successifs sont évités. Nous employons un observateur en mode coulissant de deuxième 

ordre pour estimer les dérivées temporelles de la sortie, évitant ainsi les erreurs sérieuses 

éventuelles résultant du calcul des dérivées. L'estimation est ensuite utilisée pour substituer 

les dérivées des sorties au polynôme algébrique différentiel obtenu par inversion du système. 

En outre, un nouveau système FD & RCA est étudié; filtre de fauts local est conçu pour le 

sous-système de l'actionneur, ce qui permet d'obtenir une analyse de la cause racine du fauts 

détecté de l'actionneur. Chaque filtre de fauts local se compose de deux modules: un module 

de détection et d'isolation de fauts est développé pour identifier une occurrence de toute 

variable de fauts dans le sous-système de l'actionneur. Un reconstructeur d'entrée est utilisé 

pour déterminer l'interconnexion inconnue du système interconnecté ou déterminer la sortie 

du sous-système de l'actionneur. La détection , l'isolabilité et la distinction des fauts sont 

rigoureusement étudiées; Caractérisant la classe de fauts dans chaque sous-système qui sont 

détectables et isolables par la méthode proposée. 

Enfin, l'efficacité des schémas FD et RCA ci-dessus est illustrée en utilisant la simulation sur 

le système de réacteur Hex intensifié. Différents scénarios de fauts sont considérés pour 

vérifier les performances du diagnostic et les performances satisfaisantes de la méthode 

proposée sont validées par les bons résultats de simulation. 

Mots clés: invertibilité; système interconnecté; faut de distinction; observateur interconnecté; analyse 

de la cause originelle; reconstruction des intrants; filtre de défaut local; algorithme distribué FDD; 

interconnexion inconnue; dynamique interne locale; sous-composant; appareil de terrain. 
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CHAPTER 1 INTRODUCTION 

Fault detection and diagnosis (FDD) is a key enabling technique for increasing safety and 

reliability of control systems. On the basis of an analysis of advantages and disadvantages of existing 

methods, this chapter gives a brief description of the motivations and objectives of this study. 

Additionally, the contribution and challenges of the thesis are also presented. Finally, this chapter 

outlines the structure of the thesis and the relations between the subsequent chapters. 

1.1 Background and Significance   

With the fast developments of modern technologies, resulting in ever increasingly interconnection of 

modern control system, thus a modern system often consists of large number of sensors, actuators and 

system components which are interconnected. As a consequence，the complexity of the system keeps 

increasing. The complexity and technological advances mean that these units are increasingly 

integrated, intelligent and complex. Each unit may consist of more than one component connected in 

any configuration; therefore each unit itself is a dynamic system and exhibits complicated dynamics of 

system. For example, a valve actuator is an assembly of positioner, pneumatic servo-motor and control 

valve, as given in [1] and mathematical models presented in, for example [2][3], have shown that 

control valve can be seen as a nonlinear dynamic system. Therefore modern control system can be 

viewed as composed of dynamic subsystems connected in series. In all situations, the global plant 

and/or each subsystem can be analyzed at different levels down to the component level in estimating 

the reliability of the whole plant. A typical control system, for example, has at least three cascade 

subsystems: sensor, process and actuator subsystems. The three parts must function properly so that the 

whole system can operate properly. 

As a result of the increasingly complexities, the probability of occurrence of faults is also increased. 

The fault may occur at any level of the system, as shown Fig.1.1. Actuators are driven by the input 

signals u(t) while observation signals y(t) are provided by the array of sensors. The different faults 

normally are classified by the location (where a fault acts in the system). According to this 

classification, the fault can be recognized as i) Actuator faults, ii) Sensor faults and iii) Component 

faults. In a real industrial system, the faults may be related to, for example, pressure drop out in 

hydraulic components, short circuiting or overheating of electrical components, breakage in bearings 

due to mechanical stresses, leakages in pipes, sticking of valves, cracks in tanks, drifting of sensors etc. 

Faults at any level may cause a malfunction of the installation; resulting in a serious impact in 

equipment, such as production quality, safety, economy, levels of contamination, in the worst of cases a 

fault may even cause sever accidents.  
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Fig. 1.1 Fault types and effects in system 

For one hand, faults connected to manufacturing often decrease the efficiency of the process and lead 

to a considerable reduction of production and quality of the product. In this context, we can cite some 

examples: for instance, the estimated cost of one stop production of a specific flotation process in 

Sweden is 30,000 euros / hour as shown in [4]. For another example in [5], it is claimed that the U.S. 

petrochemical industry suffers from 20 billion dollar losses annually due to poor abnormal situation 

management. One more lesson is the sensors drift of feed water flow in steam generator which can 

result in reactor power output reduction by as much as 3% in the U.S. [6]. What’s more, it reported in 

[7] that because of fouling, the decline of steam generator thermal efficiency may cause a lower electric 

output per unit reactor thermal power. While according to [8], about 42% of the potential waste in 

annual energy consumption is estimated due to leaks of compressed air in a pneumatic system, leaks 

can degrade machine performance since actuators produce less force, run slower and are less 

responsive. For the other, some consequences of a fault can be extremely serious in terms of human 

mortality and environmental impact, especially for safety critical systems such as aircrafts, nuclear 

reactors etc. Faults may lead to catastrophic incidents. For this point, a lesson is from the well-known 

TMI-II accident in 1979, it has been proved that this accident was initiated by the valve position failure 

of feed water pump of the main reactor [9]. Another related incident is an explosion happened in a huge 

nuclear power plant in the town of Chernobyl in 1986. The main cause for this tragedy was the faulty 

outdated technology and the lack of a fault handling mechanism [10]. What’s more, a stuck open relief 

valve created a loss of coolant scenario in the Three Mile Island accident, which was a major reason for 

the disastrous outcome [11]. Single engine fighter is another example of this point, there are reports 

related to the aircraft area where a fault in an engine can cause the aircraft to crash, which will have 

catastrophic consequences for the pilot [12]. For example The American Airline DC10 crashed at 

Chigao-O’Hare International Airport, the pilot had the indication of fault only 15 seconds prior to the 

accident [13].  

Consequently, the demand for safety, reliability, higher performance and cost efficiency are of major 

importance in the design of a control system, for economic, sociologic and human reasons. To meet 

these specific characteristics, condition maintenance as part of predictive maintenance is one of the 

tools used to increase productivity and reliability in industrial process. It can be utilized to detect and 

identify different type of faults and the root causes occurring at any level of the system so that to 
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guarantee the stability and performance of the system. In particular, this is true for the modern systems 

consisting of a number of small parts (dynamic units) which interact to aggregate individual dynamics 

into collective behavior. Eventually, the diagnostic tool is expected to offer a mean of increasing 

productivity by identifying potential component or system wide faults. This ranges from the most 

common issues of operational safety such as condition monitoring, fault detection and isolation, fault 

diagnosis, fault management and fault tolerance to some more general questions of the operation such 

as the effect of human factor. Among them, timely detection and diagnosis of faults can avoid, or at 

least, minimize the severity of economic losses and fatalities by reconfiguration of controllers or safely 

switching off the process for maintenance. This is done by minimizing unscheduled shutdowns and loss 

of product quality.  

Advanced FDD can help accurate monitoring of process variables and interpreting their behaviors. 

Therefore the main benefits of FDD are more stable production, improved product quality, the 

reduction of operation costs, as well as more efficient and appropriate maintenance. In order to 

welcome the challenges arising from deregulation, the plant economic parameters are monitored on 

line and optimized with the constraints that the related safety regulations are rigorously satisfied. Since 

the functional status of sensors, actuators, and process devices are monitored on line, this makes it 

possible to support real time operation and perform maintenance tasks only when it is necessary. 

Therefore, significant reduction in plant downtime, considerable maintenance cost savings, and 

reduction in maintenance errors can be expected. FDD can also provide crucial information for taking 

corrective actions to adjust the process operation to the fault effects utilizing fault tolerant control or 

maintenance. For instance, Detroit Edison Company developed a valve monitoring system for the 

power plant. It is estimated that this system could reduce annual maintenance costs approximately 15% 

to 20% [14]. Moreover, the diagnostic information can be further utilized to make predictions on the 

future operation of the process and/or to take corrective actions in terms of predictive maintenance or 

fault tolerant control [15].  

Besides, by developing a FDD system, sever abnormal situations caused by faults can be discovered 

earlier, which provides a possibility to tackle their effects more effectively, thus preventing the system 

from getting into undesirable state which may lead to catastrophe. If a fault can be detected and 

rectified at its incipient stage before abrupt failures occur, the possibility of some accidents can actually 

be eliminated. Surprisingly, it has been reported that, these above mentioned incidents could have been 

avoided if there was a suitable fault monitoring and tolerant system. For example, TMI-II accident in 

1979 could have been avoided by employing performance monitoring system for the devices, i.e. valve 

monitoring and diagnosing system [9].  

As evidenced by the above technical requirements, process performance monitoring and fault diagnosis 

plays a central role in modern control system design. The development of FDD is receiving more and 

more attentions both in academia and industry. Considerable research efforts have been and still are 

being made to develop FDD methods that can readily be applied to complex real life systems.  
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1.2 Motivation of the Thesis 

1.2.1 Status of Current Main Methodologies  

Following the occurrence of a number of technical disasters and industrial catastrophes, the demands 

on FDD algorithms have increased over the years, dealing with different applications ranging from 

aeronautic, navigation to civil applications that associated with huge programs, like nuclear power 

plants, chemical and petrochemical processes. 

The last few decades have witnessed significant improvements in fault detection and diagnosis (FDD) 

techniques. Many advanced FDD methods are presented in the literature for linear or nonlinear process 

systems subject to fault. Considering the overall dynamical system as illustrated in Fig.1.1, 

malfunctions may occur either in the actuator and sensor dynamics, as well as in the components of the 

system. In order to welcome the challenges arising from complexity of dynamics in the overall system, 

as well as in individual component, based on their mathematical representation, faults appear in any 

part of the system can be analyzed at different levels. Typical usages of different categories of FDD 

methods are illustrated in Fig. 1.2. One main approach is system level based diagnosis approach, that 

aims at detecting and identifying fault existence and location from the view point of global system. 

Another common kind of methodologies focus on the field device level, that aims at analyzing internal 

dynamics of a specific component.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.2 Typical usages of different categories of FDD methods 

1-) System level-based diagnosis 

Current monitoring systems are typically centralized monitoring systems where intelligence is at the 

system level of the process plant, rather than at the field device level. In these methods, dynamics of 

filed devices (i.e. actuator) is ignored, instead, they are treated as a component which is viewed as 

constants in the input or output coefficient matrix (function) of the process system model. The 
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malfunctions can be treated separately and they enter the process model as actuator or sensor where 

faults are considered as changes of the input or output coefficient matrix elements; And an actuator and 

(or) a sensor fault is normally considered as additive effects whilst the component fault shows up 

through structural and (or) parameter variations of the system, i.e. as multiplicative or parameter 

varying effects. This assumption is not very restrictive, as various type of faults, such as parameter 

changes or sensor failures, can be converted into additive type of faults (with some non-negligible 

implications), therefore internal dynamics of the field device may be lost. As a result, the overall 

system cannot be precisely described by a centralized mathematical model due to incomplete 

identification of the field device and some unknown disturbances or control signals. Moreover, model 

aggregation or simplification which is deliberately designed to make the system manageable may also 

lead to uncertainties. A main reason leading to this is due to a consequence of complexity of the 

modern units. Mathematical models of their dynamics may be hard to define precisely and hence 

modelling uncertainty is a significant challenge if model based methods of control or estimation are to 

be used. If considered dynamics of the entire component in a single system model may increase the 

order of the system. The dimension (dynamical order) of the system can be very large; in this case, 

there may be a large number of states and inputs that need to be handled for a modern control system.  

Many different approaches to system level model based fault detection and diagnosis have been 

introduced. Works in [16][17][18] reviewed process fault detection and diagnosis based on the 

principle of analytical redundancy. A key approach is based on residuals generation. In [19], a 

nonlinear FDI filter is designed to solve a fundamental problem of residual generation using a 

geometric approach. The objective of the filter design is to build a dynamic system for the generation 

of residuals that are affected by a particular fault and not affected by disturbances and the rest of faults. 

The problem of component fault isolation is also studied by exploiting the system structure to generate 

dedicated residuals (see, e.g. [20][21][22]). In this approach, each residual, defined as the discrepancy 

between state measurements and their expected trajectories, is uniquely sensitive to one fault. Thus, a 

fault is isolated when the corresponding residual breaches its threshold. In addition, adaptive estimation 

techniques are used to explicitly account for unstructured modeling uncertainties for a class of 

Lipschitz nonlinear systems (see, e.g. [23][24][25]). In these results, residuals, defined as output 

estimation errors, and time varying thresholds are generated using a bank of estimators, and a fault is 

isolated when the corresponding residuals breach their thresholds. Another approach different to 

residual generation is fault estimation or fault reconstruction which can determine the size, location and 

dynamics behavior of the fault. The relevant literature on this topic has its roots in system inversion 

theory developed for either input observers (left inversion) or preview control (right inversion) like in 

[26][27][28]. There are several methods typically used for fault reconstruction: sliding mode observers 

[29][30][26], unknown input observers [31][32][33], input reconstruction [34][35][36]. For instance, a 

sliding mode observer is designed to reconstruct or estimate faults by decoupling the input in [37]. 

Reference [38] develops a high gain observer with multiple sliding modes for simultaneous state and 
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fault estimations for MIMO nonlinear systems. The novelty lies on the observer design that employs 

the combination of high gain and sliding mode observers. 

As result of incomplete identification of internal variables of the components, the application of system 

level based FDD methodologies are mainly limited to the existence and isolation of a fault from the 

view point of global level, while root causes of this fault cannot be obtained. For example, reference 

[39] has shown that decrease of output temperature may be due to decrease of fluid flowrate, and the 

causes of this decrease of fluid flowrate may be caused by valve clogging, stop of utility fluid pump or 

leakage. Nevertheless, with respect to the above mentioned system level based FDD methodologies, 

fault symptoms can be detected and isolated without having the capability to pinpoint the real root 

cause of the fault. However, root causes of a fault in a component can cause significant process 

disturbances and influence the quality of the final product. For one hand, in each component system 

there can be fault types specific for that system, therefore it is not capable of analyzing all the faults at 

the process level. This is due to the consequence of increased complexity, resulting in an ever 

increasing complexity of actuators and sensors, potentially a significant number of variables can be 

involved with nonlinear interrelationships. The connectivity of a continuous process means 

disturbances that are often propagated which make it impossible to supervise them without extending 

into another technical system. A fault or disturbance in a field device may occur and manifests as a 

deviation in measurements of the overall system, typically in flow, pressure, level or temperature. 

Therefore a system level based approach to fault detection and diagnosis is seldom sufficient for the 

investigation of a modern process due to the complexity and diversity of features, such as process 

dynamics, non-linearity, in different parts of the process. However, recognizing root cause of a fault 

correctly is essential in order to be able to allocate resources effectively to repair the problem and 

perform maintenance actions of a component, an abnormal deviation of an internal variable inside the 

field device may not be observable until some internal variable saturates and field device performance 

is affected. After field device performance is affected by the internal faults, these faults can then be 

detected through process variables. But the detection may happen too late to keep process performance 

at an optimal level and to have time to prepare repair work. The above two weaknesses may be the key 

reasons result in that the research on FDD methods has been very active already for several decades, 

but still the literature on applications in process industry is in the minority. 

2-) Component level-based diagnosis 

Field devices are fundamental components in the process industry and they are the most common final 

control elements in the control loop. For example, there can be thousands of manually operated valves 

and control valves in a process plant. Many important process variables, such as forces, flows and 

pressures, are controlled through the field devices. Therefore faults of the field devices can cause 

significant disturbances to the global process and influence the quality of the final product; in addition, 

the field devices have considerable potential to support predictive maintenance. Hence, the 

determination of internal malfunctions of the subcomponents of modern control system, especially 
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those small and incipient faults before they become seriously has an important influence on safety and 

productivity. The monitoring of the development of theses incipient faults is therefore an issue not only 

for predicting maintenance schedules but also monitoring the performance of the overall process.  

For the purpose of better understanding potential relationship from cause to effect of a subcomponent 

fault, component level diagnosis can be a solution whereby capability of locating subcomponent faults 

for root cause analysis is available. In order to achieve this purpose, components of the modern control 

system have to possess FDD capabilities. Each process plant is then decomposed into individual 

equipment component subsystems for fault analysis purposes; this allows precise analysis of fault from 

causes to effects. That is to further divide the control system into certain subsystems with required 

structure and robustness analysis at hierarchical and/or local levels. In each subsystem, there can be 

fault types specific for that subsystem; in this case, analysis of root cause of a component fault is 

achieved. There are already efforts that have been made to locate subcomponent faults for root cause 

analysis. The development of FDD for field devices can be recognized from publications, normally 

categorized as intelligent self-validation approaches and FDD dependent methods.  

Intelligent self-validation approaches make use of I&C (Instrumentation and Control) technologies, 

called intelligent devices [49], or smart sensing [41]. It is an instrument that is designed to compensate 

for its own undesirable inherent characteristics to correct from fault conditions. They are normally 

FDD method independent. The initiative problem for this research is concerned with developing 

self-validating reconfigurable control systems. Manufacturers of intelligent devices have the best 

knowledge about these devices and they know the problems the devices can meet during operation. 

Therefore it is reasonable for device manufacturers to implement fault detecting and diagnosis features 

in intelligent devices, as opposed to the traditional system level-based condition monitoring systems. A 

clear byproduct of this may be an enhancement to the development of intelligent actuation system, e.g. 

smart positioner in self-validating actuator. Furthermore, digital sensors can be programmed to perform 

self-diagnostics. Ideally, intelligent autonomous devices can be part of a centralized condition 

monitoring system and can identify locally all the factors or the problems limiting the efficiency of the 

local process. While existing intelligent instrument is restricted to self-diagnosis from a low level, they 

lack capability of supervising performance of the overall plant.  

The most active research area in component diagnostics are FDD involved methods. Just like system 

level scheme, the FDD methods of component level can be categorized into two basic types based on 

the information they utilize: signal based methods and model based methods. Signal processing is a 

promising approach for FDD in component. The signal based methods consider input and output of the 

device measurement signals and their key characteristics. For example, reference [42] propose an 

algorithm to detect valve stiction for diagnosis oscillation of control valve by signal processing. 

Wavelet analysis is a major aspect of signal processing method for fault detection. As in [43], it 

developed automatic feature extraction of waveform signals for process diagnostic performance 

improvement. And in [44], wavelet transform is applied to detect abrupt changes in the vibration 
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signals obtained from operating bearings being monitored. More applications of signal processing 

techniques in FDD can be found in various publications in the literatures therein. Whereas the model 

based methods use first-principle models or system identification techniques to diagnose fault resource. 

They rely mainly on system identification procedures to estimate related parameters. The difference 

between the methods is in the identification algorithm and the structure of the model. Therefore it is 

important to generate a proper model of components since the methods are developed based on 

fundamental understanding of physics. The interest in the modeling of a filed component, like 

pneumatic servo, control valve, i.e. came to the attention of researchers as a crucial concern like in [45], 

where a set of nonlinear differential equations representing the system dynamics based on physics are 

derived. For example in [46], derivations of similar nonlinear models have been presented in many 

recent publications, in which a detailed mathematical model of dual action pneumatic actuators 

controlled with proportional spool valves and two nonlinear force controllers based on the sliding mode 

control theory were developed. Besides modelling, there are also a series of notable researches that 

have been performed for FDD of component, i.e. pneumatic actuator. For instance, reference [2] 

develops an interval observers based passive fault detection method and apply it to a control valve in 

the DAMADICS benchmark problem. Authors in [47] introduce a state space sliding-stem control 

valve model in order to utilize an advanced nonlinear model predictive control strategy to compensate 

for the effects of friction. Other nonlinear modeling approaches involves using neural networks or 

fuzzy logic, such as in [48][49]. For example, in [49], the Adaptive Neuro-Fuzzy Inference System 

(ANFIS) model is used to detect and diagnose the occurrence of various faults in pneumatic valve used 

in the cooler water spray system. And work [63] introduces the application of neural networks for the 

identification and fault diagnosis of process valves and actuators. 

A major difficulty of component level based diagnosis methodology is the lack of dynamics 

information of the global system. It is because the component level diagnosis method focuses only on 

managing the subsystems that only use the local information, i.e. states and outputs of this subsystem. 

However, none of these subsystems knows the system completely. For example, as shown in [9], a fault 

in a sensor subsystem may propagate their effects to the regulated variables and subsequently disturb 

other process variables through feedback control loops. The deleterious consequence of such 

disturbances is that the related actuators and plant equipment would not be able to operate at the 

designed optimal conditions and their expected lifetime may be shortened. Therefore a more effective 

way is to diagnose local faults online during the operation of the device, utilizing information of both 

local and global system, i.e. states of this subsystem while outputs of the overall process. Another 

challenge when researching FDD methods locally is getting data from the subsystem being observed to 

develop and validate these methods. For example, direct access to actuators is often not possible or 

difficult via physical measurements due to distances or rough environment. For each component 

subsystem, its corresponding local FDD system is designed by utilizing local measurements, thus 

sensors have to be installed to all the primary variables of the field devices to make faults of these field 

devices observable. From the view point of academic value, this is not a big problem while from the 
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view point of the engineering value, it is rather complicated. Installing additional sensors into the field 

devices leads to very complicated and expensive systems where deep expertise concerning the 

operation of the device is required from monitoring system designers. Moreover, even if the output of 

the field device (e.g. actuator) is available for measurement, considering the noisy output of the sensor 

of the field device, the numerical differentiation would be too noisy. The noisy control input made from 

these signals, not only could damage the field device, but also would make less accuracy in tracking 

and then instability in the control scheme. As a result, false alarms are easily generated and maintaining 

such a system requires a lot of resources. Furthermore, some parameters are not available for directly 

measurement, for instance, as a common actuating signal, concentration in chemical process cannot be 

measured through physical sensors. 

1.2.2 Challenges and Trends in FDD 

Incorporating safety issues into the design process is a rather contradictory problem, however, selling 

safety is not an easy problem in modern economy where the actors of the economy are mostly 

interested in maximizing their profits. In order to push decision makers of the economy towards the 

acceptance of safety regulations, and to encourage a volunteer approach to the consideration of those 

problems, it is necessary to develop techniques and application methodologies which produce safe and 

secure systems at affordable prices, and in parallel, to develop analysis and evaluation tools in order to 

quantify, prove and certify the above mentioned systems performances, that is to say, to increase the 

confidence measures of the application of the new safe intensive technologies. 

Although many different fault diagnosis methods have been developed from various industries, neither 

the aforementioned system level based nor component level based fault detection and diagnosis 

methods are however sufficient alone to achieve effective diagnosis to handle all the requirements for 

an engineering problem since all methods have their characteristic strengths and weaknesses. 

Eventually, a diagnostic tool is expected by which a means of increasing productivity by identifying 

potential component as well as system-wide faults is provided. The only pragmatic solution is to have a 

thorough investigation of the weaknesses of individual methods and build an application dependent 

method to fully utilize their strengths. 

1-) Lack capability of root cause analysis of a detected fault by system level based methodology 

Because of the lack of information of internal dynamics of local component, current system level based 

advanced FDD methods can detect some symptoms of the component without having the capability to 

pinpoint the real root cause of the fault or localize the problem for repairing work. For example, 

stiction is said to be a common root cause of flow control loop oscillation in [8], while to the diagnosis 

of flowrate oscillation in process plants, almost all the approaches that have been made are from the 

point of view of plant level, not from field devices. This means that only process variables are used for 

diagnosis and methods are carried out on the system level, thus flowrate oscillation can be detected but 

the root cause, stiction, cannot be identified. 
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2-) Delay of detection by system level based methodology 

An abnormal deviation of an internal variable inside the field device may not be observable until some 

internal variable saturates and field device performance is affected. After field device performance is 

affected by the internal faults, these faults can then be detected through process variables. But then the 

detection happens too late to keep process performance at an optimal level and to have time to prepare 

repair work. 

3-) Lack capability of monitoring the overall system by component level based methodology 

At the moment, more detailed field devices performance analysis can be done by using local 

measurement. This may not be an effective method for analysis, because the connectivity of a 

continuous process means that local disturbances often propagated plant wide. A more effective method 

is to perform the diagnosis locally during the operation of the device with information on the process 

globally.  

4-) Challenges of availability of local measurement by component level based methodology 

There have been significant research activities in the development of new methodologies for 

component FDD. They are typically based on supervision of the available local measured variables. In 

order to obtain these measurements, special sensors have to be installed. However, the problem of 

availability of these sensors installation has received less attention, especially from the view point of 

safe and secure measures at affordable prices. Moreover, direct accesses to a field device, i.e. actuator, 

is sometimes not permitted due to reasons like distance. Even if the output of a field device is available 

for measurement, considering the noisy output of the sensor of the field device, the numerical 

differentiation would be too noisy. The noisy control input made from these signals, not only could 

damage the field device, but also would make less accuracy in tracking and then instability in the 

control scheme. 

In summary, there is a need for a FDD algorithm which is carried out advanced FDD methods capable 

of root cause diagnosis at local component level as well as system supervision at global plant level. In 

the literature review such a method that fulfilled the requirements was not found and therefore it was 

necessary to develop a new method. 

1.3 Objectives of the Thesis  

Motivated by the above considerations, this thesis is concerned with the challenges of applying system 

inversion and model based FDD techniques theory to handle the joint problem of fault diagnosis locally 

and performance monitoring globally. Since early detection of component malfunctions plays a 

fundamental role in advanced corporate management and in predictive maintenance planning, the 

major objective of the thesis is to detect incipient/abrupt faults resources of the components operation 

by diagnosing the failed component subsystem locally, thus in an attempt to prevent the development 

of possibly global malfunctions of the system liable to cause performance degradation or even 
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destruction. However, as mentioned above, both system level diagnosis and component level diagnosis 

have the weaknesses and strengths. As a consequence of these difficulties, the analysis and synthesis 

tasks cannot be solved efficiently in a single step diagnosis by “conventional” methods. As a solution, 

we try to develop a hybrid approach that combines different methods, thus, the weaknesses of 

individual methods can be compensated and more accurate diagnosis results obtained. For that, it is 

then to decompose the overall system into several subsystems and develop the FDD algorithm from the 

view point of both local and global system, the algorithm of design is illustrated in Fig. 1.3. 

 

 

 

 

 

Fig 1.3 System decomposition and interconnections 

As shown in Fig. 1.3, this thesis addresses fault diagnosis from a lower level with component 

subsystem of the plant (i.e. actuator) and deal generally with global system supervision to meet the 

growing need. The role of the developed performance monitoring and fault diagnosis system is to 

utilize the measured data to enhance the economics and safety of the interconnected dynamic system. 

The information that can be obtained from the developed system will include only the performance of 

critical parameter, such as temperature of continuous chemical reactor, and manipulated variables of 

the component such as the input of the reactor main control valve. The attempt is to explain how the 

behavior of overall output can be interpreted to identify subcomponent faults in component subsystem, 

so as to carry out advanced FDD algorithm for recognizing root causes of detected faults. In this way 

the faults can be detected through detecting changes in the operation points of the internal variables of 

subcomponent that was observed by analyzing the behavior of the internal variables. Ideally, this local 

intelligent FDD system can be part of the top level based monitoring system and can identify locally all 

the factors or the problems limiting the efficiency of the local process.  

The advantages of using multilevel based diagnosis can be found from either economy or reliability 

standpoints. On one hand, this system will enable individual component to monitoring internal 

dynamics locally to improve plant efficiency and diagnose potential fault resources to locate 

malfunction when operation performance of global system degrades or have measurement faults. This 

reduces the complexity of the centralized or distributed monitoring system because the dimensionality 

problem, the number of sensors, wires, and diagnosis loops connected to the monitoring system is 

reduced. Since when the system is too large to be dealt with by centralized control, it is 

computationally efficient to use only local information, i.e. local states or outputs, to make the control 

decision. On the other hand, the obtained information is assumed to be only global output, this can be 

more realistic and technical availability because field devices are normally remote from the control 

room and additional sensors may cause reliability and economical problem. Except for a few, most 

researchers in fault diagnosis are paying more attention to the academic value than the engineering 
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value, therefore this consideration bridges the gap between the theoretical research on computational 

intelligence and the engineering design in performance monitoring and fault diagnosis. 

In order to achieve the objectives, there are several tasks that the new nonlinear FDD schemes need to 

study. The first intention is to develop a reasonable system structure for the FDD algorithm, by which 

local faults can be distinguished globally. The second intention is to establish a complete observer 

based FDD framework for local nonlinear subsystems. In the following, the concrete objectives are 

presented. 

1.3.1 Form an Invertible Interconnected System Structure  

As mentioned above, a modern control system can be analyzed at different levels down to the 

component level in estimating the reliability of the whole plant. Therefore the first consideration is to 

answer the question of how to decompose the given control problem into manageable sub-problems, 

thus forming a dynamic system structure. Due to the extremely important status and increasing 

complex dynamics of actuator, in this thesis, we mainly focus on internal dynamics supervision of 

actuator. Therefore we develop an interconnected dynamic system by considering that actuator is 

viewed as subsystem connected with the process subsystem in series. And through the overall system, 

the only available measurement is the output of the terminal process subsystem. We then consider the 

problem that arises when the output from the low level nonlinear subsystem is not available directly, 

but instead available via a second nonlinear subsystem. That is, the output from the low level nonlinear 

subsystem acts as the input to a high level subsystem, from which output measurement is in turn 

available. This situation results in a cascade interconnection that is illustrated in Fig. 1.4.  

As shown in Fig.1.4, an interconnected system ∑ is considered which consists of two subsystems: 

actuator ∑a and process ∑p subsystems. The vector u represents the input vector of the actuators 

subsystem, which is also the input of the series system, v is the fault vector related to parameter 

variations of actuator subcomponent or external disturbances, ua is the actuators output vector, also 

the input of process subsystem and y is the output vector of the process subsystem, also the output of 

the overall series system. The basic idea is to identify the fault v at local level, while monitoring 

dynamics of the overall plant at global level.    

  

 

 

                      Fig. 1.4 An interconnected system structure 
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process system. With respect to this consideration, if v is viewed as unknown input in the system, this 

can be seen as problem of input observability. And input or fault observability is equivalent to left 

invertibility of the system. In [60], input can be uniquely recovered from output and the initial state if 

dynamical system is left invertible.  

We then consider a left invertible interconnected nonlinear system structure by which actuator is 

viewed as subsystem connected with the process subsystem in cascade manner, thus identifying 

component faults with advanced FDD algorithm in the subsystem. The left invertibility of the 

interconnected system is required for ensuring faults occurring in actuator subsystem can be 

distinguished globally. In this case, the performance of the overall interconnected system and fault 

occurrence are recognized by a system level based diagnosis algorithm while several independent local 

diagnosis subsystems are responsible for potential fault candidates of internal component. These two 

algorithms together perform the monitoring and diagnosis function of the overall interconnected system. 

The interconnected system is described by the following modelling statements. 

1-) Process subsystem modelling 

Model based FDD makes use of mathematical model for the purpose of system supervision. The goal 

within these methods is to generate symptoms that react only to faults in the system being monitored. 

These symptoms can be based, for example, on the difference between the model outputs and 

corresponding measured sensor signals from the system being monitored. However, a perfect complete 

mathematical model of a physical system is not available. Hence, one of the major concerns in the 

designing failure detection systems is detection performance, i.e., the ability to detect and identify 

faults promptly with minimal delays and false alarmed even in the presence of uncertainty. It is 

practically impossible to detect the failures with unlimited sensitivity. Obviously, finding a tradeoff 

between the sensitivity and disturbances attenuation of the methods is an important design issue.  

Assuming the MIMO process subsystem is on input affine nonlinear system which is a common 

considerations involving system inverse, and is described by (1.1): 

∑p : {
ẋ = f(x) +∑gi(x)ua

m

i=1

y = h(x, ua)                 

                                                                    (1.1) 

where the state of the process subsystem vector x ∈ Μ, an n-dimensional real connected smooth 

manifold, e.g. ℜn. f, gi are smooth vector field on Μ, ua ∈ ℜ
m is the input of process subsystem, 

which is also the output of the actuator and which we assume to be inaccessible and want to estimate 

on the basis of measures that taken on the evolution of the system, y ∈ ℜp is overall system output. If 

initial conditions are specified, the relevant equation x(t0) = x0 is added to the system. 

2-) Component subsystem modelling 

The main objective of component modelling is to provide a detailed mathematical model for a filed 

device, i.e. electro-pneumatic actuator, which accurately represents the behavior of a real component, 
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including the inherent nonlinear characteristics and can be simplified in terms of computability, to be 

suitable for diagnostic purposes. Although compared with the number of publications on modelling of a 

process plant, the number of publications that include modelling aspects of field devices is much lower, 

it has been possible to analytically model dynamics of many kinds of actuator, such as control valve 

modelling in [52], serve motor in [53]. Their nonlinearities have been identified and estimated through 

selected parameters. The models that were derived have been verified with measurements and the 

modeling error is found to be acceptable for the fault simulations. Typical types of faults candidates 

have been simulated and the impacts on the internal variables of performance analyzed. 

Normally, an actuator subsystem can be described by (1.2): 

∑a : {
ẋa = fa(xa, u, θfa)
ua = ha(xa, u, θfs)

                                                                         (1.2) 

where xa ∈ ℛ
n is the state, u ∈  ℛl  is the input, ua ∈ R

m is the output of the actuator subsystem, 

which is also the input of the process subsystem, θfa ∈ ℛ
q represents the actual subsystem parameters 

(i.e., when no faults are present in the system), θfa = θfa0 where θfa0 is the nominal parameter 

vector (understanding "fault" as an unpermitted parameter deviation in the system), θfs ∈ ℛ
q , 

represents the parameters in the output equation (if a sensor fault occurs θfs ≠ θfs0 , where 

θfs0 represent the nominal parameters in the output equation). 

Thus an interconnected system ∑ is then constructed by these two subsystems ∑a  and ∑p 

subsystems whereby the input is vector of u while output vector is y. 

Assumption 1.1: The input vector of both subsystem ua and u are locally essentially bounded 

function:  ua(. ) ∈ [t,∞) →  ℜ
m, u(. ) ∈ [t,∞) →  ℜl, if two inputs differ on a set of measure zero, i.e. 

almost everywhere (a.e), then they are considered to be equal.      

If fault v is as integration of either parameters fault θfa, θfs or other disturbance signals, a fault mode 

of (1.2) is then obtained:  

∑a: = {
ẋ̂a = f(xa, u) + ∑ gai(xa, u)vi

m
i

ua = ha(xa, u) + ∑ lai(xa, u)vi
m
i

                                                  (1.3)    

Where g, l are analytic functions of the system subject to multiple, possible simultaneously faults. The 

v(t) is the fault signal (v1, … , vm) whose element vi: [0, +∞) → ℛ are arbitrary functions of time.  

Remark 1.1: the fault ∑ gai(xa, u)vi
m
i  represents the parameters fault in θfa or external disturbance 

while ∑ lai(xa, u)vi 
m
i  represents the parameters faults in θfs or external disturbance. Effect of faults 

on outputs is independent. 

And the detectability of one fault in nonlinear system (1.3) can be defined as: 

Definition 1.1: the fault vi, i = 1, … ,m, is said to be non-detectable if for vi ≠ 0 the relation 

ua(xa0, xa, u, 0) = ua(xa0, xa, u, 0, … , vi, … , 0) 
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is satisfied; if not, the fault vi is detectable. 

Definition 1.2: the fault vi, i = 1, … ,m,  is said to be detectable and has independent effect on the 

system output y if the series system is invertible. 

1.3.2 Performance Monitoring of the Interconnected System 

A main task of the proposed strategy is to solve the problem of performances supervision of the 

interconnected system through available measurements. Performance supervision includes accurately 

estimate online the states vector of both subsystems. The problem of state observation is then addressed 

for invertible interconnected nonlinear systems that are modeled by two nonlinear interconnected series 

association. It is computationally efficient to use only local information, i.e. local inputs and outputs, to 

design a local observer for each subsystem independently and check the stability of the overall system. 

In this case, the observer can estimate the states precisely without any other uncertainties. However, the 

major difficulty is that the state observation can only rely on the output of the global system, i.e. the 

process at the terminal boundary. In particular, the connection point between the subsystems is not 

accessible to measurements. Instead, it acts as an input to the process subsystem from which physical 

measurement is in turn available. This is because the connection is the output of the actuator subsystem 

where the measurement is assumed not available. In this case, indirect measurements have to be used to 

infer the interconnection status using an estimation procedure from the available measurements.  

The difficulty of states reconstruction for the interconnected system is then obvious since it can be seen 

that the unavoidable inaccurate estimation of interconnection may prevent the estimation error of the 

overall observer from reaching zero value. In order to achieve the robust estimation goals, as well as 

overcome the difficulties, we develop an interconnected observer design methodology for the resulting 

interconnected system, based on estimating the unavailable interconnection together with the states of 

both subsystems. The observer structure of the system is illustrated in Figure 1.5 with two 

interconnected estimators.  

 

 

 

 

 

 

 

 

 

 

 

Fig 1.5 observer structure for interconnected system 

The main idea of the interconnected observer design is as follows: in the first aspect, the unknown 

information of the interconnection is extended as new states of the process subsystem whose 

expression can be achieved by computing derivatives output expression of actuator subsystem, forming 
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a new process subsystem. For the states estimation of each subsystem of the interconnected system, it 

is proposed the use of the global observer using the state estimation of the other subsystem, and we 

insure the asymptotic stability of the overall estimator which is formed by the gathering of all the 

observers. 

1.3.3 Multi-level Fault Diagnosis and Root Cause Analysis  

Another major objective of the thesis focuses on the problem of model based fault detection and 

diagnosis (FDD) and root cause analysis (RCA) for a multivariable interconnected dynamic system. In 

the proposed multilevel based FDD architecture, a FDD component is designed for each subsystem of 

the interconnected system. For each subsystem, the performance may be affected by parameter 

variations, external disturbances, interconnection from other subsystems, and modelling uncertainty 

arising from structure uncertainty. The FDD is designed to overcome the problems associated with 

modeling errors that has to be robust, i.e., is able to distinguish between model uncertainties and failure 

modes and separate the effects of unmolded dynamics or uncertain knowledge of the system parameters, 

thus avoiding excessive false alarms or missed detections. 

Therefore, in this method the faults involved are parameter variations and external disturbances which 

can be detected through detecting changes in the operation points of the internal variables that are 

observed by analyzing the behavior of the internal variables. Its corresponding local FDD component is 

designed by utilizing local measurements and estimation information from neighboring components 

subsystems that are directly interconnected to the particular subsystem under consideration. A novel 

fault detection and isolation scheme is then developed and some of its properties, such as the fault 

detectability and isolability conditions are rigorously investigated.  

a-) Observer design for inverse system 

In the first place, the input reconstruction method based on the dynamic inverse system may cause the 

reconstruction to be unavailable due to the initial state disturbance, drift and other factors. In order to 

eliminate these unfavorable factors, the input estimation value provided by the interconnected system, 

together with the dynamic inverse system, can be used to construct an observer for the inverse system. 

As shown in Fig. 1.6, the input of the observer is the measurement y, its estimated output is the ũ̅a, the 

reference output is ûa made by the previous interconnected observer. If convergence is expected then, 

there should be ũ̅a = ûa = ua. While if there is fault detected, the RCA filters are triggered, where 

output used by the filter is obtained by system inversion based input reconstruction. This input 

reconstruction value is available now since disturbance, drift have already eliminated during observer 

operation. 
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Fig 1.6 observer for inverse system of process subsystem 

b-) RCA filter design 

The attempt is to explain how the behavior of overall output can be interpreted to identify 

subcomponent faults in actuator subsystem, so as to carry out advanced FDD algorithm for recognizing 

root causes analysis of faults. As shown in Fig.1.7, the overall objective is to identify the occurrence of 

the fault  vi in (1.3) independently from each other whilst monitoring the overall plant at both local 

and global level, as required for reliable operation of complex and high interconnected process system.  

Fault  vi refers to the parameter variations which are related with special physical meaning, e.g. 

vi represents fault caused by leakage or valve clogging of an actuator. To realize these causes of an 

actuator fault is defined as root cause analysis (RCA) in this work. We assume to feed the FDD strategy 

with input u and output  ua of actuator subsystem at local level, so as to achieve root cause analysis. 

However, online diagnosis of actuator component is often achieved by a remote supervisory diagnostic 

system, therefore, to a large extent, it is impractical to measure ua in realistic industrial condition, so ua 

is supposed to be inaccessible in this work. Besides, in order to monitor the plant at a global level, 

information of global level should be included when FDD function is performed at local subsystem. It 

became apparent that the FDD algorithm design of an interconnected system with multilevel based 

consideration requires that the interconnection be treated as special signals. If  ua can be estimated 

from the global level measurement y uniquely, then the above two problems can be solved. In that way, 

the residual generator of advanced FDD strategy performs some kind of validation of the nominal 

relationships of the system, using the actual input u, and output u a reconstructed from measured 

output y. Hence, a means of monitoring and diagnosis of the overall plant at both local and global level 

is provided, which results in improved fault localization and provides better predictive maintenance 

aids. 
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                  Fig.1.7 FDD algorithm for component FDD and RCA 

As mentioned above, invertibility of the interconnected system can be a solution for guaranteeing that 

the information of actuators subsystem has distinguishable effects on system output. Moreover, an 

essential requirement of the combination of individual actuator with an advanced diagnostic capability 

to perform FDD functions is the availability and reliability of the output of the actuator subsystem ua, 

which is also the input of the process system. This problem is considered as input reconstruction 

problem, which can also be viewed as problem of system inversion, as shown in Fig.1.7.  

In summary, if the overall cascade system is invertible, fault vector v has distinguishable effect on 

system output vector y. While if process subsystem is invertible, ua can be uniquely reconstructed by 

output vector y, in that case, reconstructed u a and fault vector v also has one to one relationship. Then, 

one can utilize advanced FDD strategy in actuator subsystem while use the output vector y of the 

interconnected system to identify v, thus achieving FDD at local level while monitoring the whole 

system at global level. Above all, the key problem is to provide condition for guaranteeing invertibility 

of the overall cascade system and individual subsystems. 

1.4 Contributions and Challenges of the Thesis 

We propose a left invertible interconnected nonlinear system structure with a dynamic inversion based 

input estimation laws, forming a novel model based multilevel based FDD algorithm. This algorithm 

provides a systematic solution to performance monitoring and fault diagnosis for nonlinear dynamic 

system. The new system structure, together with the fault diagnosis algorithm design, is the first to 

emphasize the importance of root cause analysis of field devices fault, as well as the influences of local 

internal dynamic on the global dynamics. The developed multi-level model based fault diagnosis 

algorithm is then a first effort to combine the strength of the system level and the component level 

model based fault diagnosis. With the achievements of the above mentioned objectives, faults will be 

detected more quickly and fault location will be more precise, while there will be less number of false 

alarms. The primary advantages of the proposed FDD algorithm over the traditional methodology 

include improved control performance, low cost, reduced computation at resource requirements, 

reduced wiring requirements, simple installation and maintenance, and system agility. 
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The following original contributions are made in this thesis: 

1-) Create the invertible interconnected nonlinear system structure 

We propose a left invertible interconnected nonlinear system structure which guarantees that faults 

occurred in field devices subsystem will affect the measured output of the global system uniquely and 

distinguishably.  

2-) Provide the condition of invertibility of the overall interconnected dynamic system 

We prove that the left invertibility of individual subsystem is the necessary and sufficient condition 

which ensures invertibility of the interconnected system. 

3-) Output estimation for unmeasured field devices 

Output of the field device is supposed inaccessible, it is realistic due to remote distance or physical 

availability considerations. By viewing this problem as unknown input of process subsystem, then a 

kind of unknown input reconstruction method which employs the combination of system inversion and 

sliding mode observer is proposed.  

4-) Observer design for performance monitoring of the overall interconnected system  

We develop an observer design methodology for the proposed interconnected nonlinear system. This 

observer is capable of estimating the states of each subsystem, thus components subsystem and the 

overall systems can be monitored and diagnosed under desired parameters which can reduce service 

costs, improve the effectiveness of maintenance support teams, and preventive maintenance programs.  

5-) FDD algorithm for root cause analysis of a component fault  

A major contribution is to utilize the global output to identify root cause of a subcomponent fault 

locally. That is to identify root cause of the detected faults on individual component system using 

information of the entire plant during operation. This identification problem can not only take place 

before problems become too serious so that to prevent major repairs and production breakdowns, but 

also take place online considering influence of the process, so as to monitor performance of the plant. 

1.5 Thesis Outlines  

This thesis is divided into nine chapters. The first three chapters serve as introductory material. The rest 

of the chapters summarize the contribution and research results of this study. The first chapter describes 

motivations, objectives and contribution of the thesis.  

Chapter 2 gives an overview of fault detection and diagnosis (FDD) and presents some existing 

methods for FDD in nonlinear systems. It begins with the definitions of basic concepts such as faults, 

failures, fault detection etc. A classification of FDD techniques, with a brief discussion on each 

approach, is also presented in this chapter. An appropriate attention is paid to observer based methods, 

their robustness and sensitivity issues are elaborated. The chapter also presents FDD methods for 
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nonlinear systems, most commonly used observers for FDD in nonlinear systems are described in a bit 

details. State of the art methods for FDD in interconnected nonlinear systems are also presented. 

Chapter 3 provides a general background to system inversion of linear and nonlinear model, and 

special attention is given to the non-minimum phase system. It contains some important concepts and 

definitions of left invertibility and the formal problem statement. The main results on methods of 

computing system inversion are presented.  In addition, we review some existing research works 

focusing on the application of system inversion, including the arears of parameter identification, fault 

diagnosis and input reconstruction, etc. 

Chapter 4 develops a left invertible interconnected nonlinear system structure. It first defines inversion 

of interconnected nonlinear system and form the problem statement of invertibility of the 

interconnected system. A necessary and sufficient condition is given which requires the invertibility of 

individual subsystems. After that we develop a complete procedure for checking invertibility of the 

given system. A simple example is provided to illustrate the proposed methods and to show its 

effectiveness.  

Chapter 5 studies observers design procedure for estimating states of the proposed systems structure. 

The problem of state observation is addressed for interconnected nonlinear systems that are modeled by 

two subsystems connected in a cascade manner. The aim is to accurately estimate online the state 

vector of two subsystems. The major challenge is that the state observation must only rely on the global 

system output, because the connection point between the subsystems is not accessible to measurements. 

The observation problem is dealt with by designing an interconnected observer which is a combination 

of individual state estimators. Sufficient conditions are formally established that ensure the observer 

exponential convergence. In addition, the developed interconnected observer will provide initial 

condition for the input reconstructor and local fault filter once FD & RCA procedure is triggered by 

any fault 

Chapter 6 introduces input reconstruction as a process where the inputs to a system are estimated using 

the measured system output. We consider three methods for achieving input reconstruction despite the 

presence of non-minimum phase zeros. One way to achieve this goal is to invert the system model and 

cascade delays to guarantee that the inverse is proper. The standing issue in input reconstruction lies in 

the inversion of non-minimum phase systems, since the inverse model is unstable. The second one is to 

reconstruct the input using differential algebra techniques. The last one is based on a high gain second 

order sliding mode observer which is considered to exactly estimate the derivatives of the output 

vectors in a finite time. Then, by using the estimates of output derivatives, a kind of algebraic input 

reconstruction method is proposed. 

Chapter 7 presents a multi-level based FDD&RCA method for a class of interconnected nonlinear 

systems, in which faults caused by sensors, actuators and process are taken into account in the unified 

framework. Sensor measurements, together with estimation by extended high gain observers are 
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processed; aim at identifying sensor faults and providing adequate estimation to substitute faulty 

measurements. Then reliable measurements are fed to several banks of interval filters to generate 

several banks of residuals for each subsystem in the interconnected system, each bank of residuals is 

sensitive to a particular process parameter variables. By evaluating these residuals, root cause analysis 

of a detected fault is achieved. A novel FDD scheme is then devised, and the fault detectability and 

isolability conditions are rigorously investigated, characterizing the class of faults in each subsystem 

that are detectable and isolable by the proposed FDD&RCA method. 

Chapter 8 gives the application of the multi-level based FDD&RCA method developed in Chapter 7 to 

the intensified HEX/Reactor system. The intensified HEX/Reactor system has high nonlinearities and 

is, therefore, proper used as a benchmark to test nonlinear control and FDD algorithms. After 

describing the intensified HEX/Reactor system, a fault detection filter is used to generate residual 

signal. Then several banks of interval parameter filters are designed and threshold is computed to give 

RCA of the detected actuator faults. The simulation results are presented which show that all the faults 

including sensor faults, actuator faults and component faults are successfully diagnosed and fault 

causes are identified correctly. Both abrupt and incipient fault situations are presented.  

Chapter 9 summarizes and concludes the overall work described by the thesis and makes suggestions 

and recommendations as to how the research can be further developed in the future. 
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CHAPTER 2 MODEL BASED FAULT DETECTION AND DIAGNOSIS 

TECHNIQUES 

In this Chapter, a critical review is performed on the technical elements of fault detection and diagnosis 

(FDD) techniques with a special attention to model based FDD. First, fundamental terminologies, such 

as fault, failure, fault detection, and fault isolation are introduced. Then different types of faults and 

their effects on the performance of processes are explained. A widely accepted classification of FDD 

techniques is presented with a particular focus on the state of the art of quantitative model based FDD 

techniques. Most commonly used evaluation functions and threshold selection approaches are 

described. Subsequently, a review of the historical development of the observer based FDD technique 

is introduced in detail, the major issues and tools in its framework and roughly highlights the topics are 

addressed in this chapter. Finally, popular FDD methodologies for interconnected nonlinear system are 

reviewed. 

2.1 Basic Concepts 

The importance of fault detection and diagnosis (FDD) has been realized since the invention of 

machines. In the beginning, the condition of systems is determined by using human senses such as 

vision, hearing and smell, however, these senses are not enough to notice all changes in more complex 

systems. Therefore, devices to measure quantities, sensors, were developed, aim at saving extra 

resource and achieving more precise and quick detection of faults or some parts or location that may 

not be accessible to, or dangerous for human beings. When measurements become available, the next 

problem is, how to use the information provided by the sensors, to determine if a system is working 

well or not. Therefore advanced methods of supervision are developed and widely used for fault 

detection and diagnosis. To achieve this purpose, it is important to establish what events can be 

classified as a fault. 

Definition of a fault given by [54] is widely accepted. A fault is defined as an unpermitted deviation of 

at least one characteristic property or parameter of a system from the acceptable/usual/standard 

behavior. It is the result of a defect in a component or subsystem which leads to degrade the 

functionality and performance of the system. A permanent fault may lead to a failure and terminate the 

ability of a subsystem or the whole system to perform its required function. From the view point of 

mathematical model, faults can be modeled as external inputs and/or parameter deviations which 

change the system characteristics. Similarly, uncertainties and disturbances can also be mathematically 

modeled as parameter deviation and/or external input as faults. In addition, disturbances and 

uncertainties have effects on the process similar to that of faults. However, unlike faults, disturbances 

are unavoidable and are present even during the normal operation of the process, so they should be 

taken into account in the control system design. Faults, by contrast, are considered as more severe 

changes by which the affects cannot be overcome by the design of the controller of the system. 
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Therefore it is necessary to detect the faults which may change the control system from the normal 

operation to a faulty mode. 

In the following section, basic definitions of fault detection and isolation (FDD), such as faults, 

uncertainties, disturbances, and the descriptions of fault detection, fault isolation and fault 

analysis/identification and some existing methods for FDD in nonlinear systems are presented in detail. 

2.1.1 Definitions of the Terminology 

The terminology used in this thesis is more closely related to that proposed by [54]. The following list 

clarifies some expressions utilized in this work. 

1-) Type of faults 

A fault in a system is an external input that causes a deviation from the normal behavior of the system. 

Faults can be categorized from different aspects. Based on the physical location of their occurrence in 

the system, faults can generally be categorized into three types: component fault, actuator fault, and 

sensor fault. With respect to the way faults are modelled, faults can be categorized based on the way 

they are added to the system as additive and multiplicative faults, and based on the time behavior of 

faults, they can be classified as abrupt or incipient faults. Each of these faults and their effects are 

briefly described below. 

A) Definition based on location of occurrence 

(1)  Component fault  

These are the faults which appear in the components of the process and are categorized as process 

faults. Process fault alters the physical parameters of the process which, in turn, leads to changes of the 

normal system dynamics, e.g. leakage and loads. All faults that cannot be categorized as sensor or 

actuator faults are considered as component faults. They can be modeled as additive component faults 

or multiplicative component faults. An additive component fault causes changes in the system outputs 

independent of known inputs, unknown input signals are well described as additive faults. A 

multiplicative component fault is expressed as changes in process parameters. For example, in a 

continuous heat exchanger system, fouling may result in a component fault.  

The common reasons for these faults are often due to structural damages, usually wear and tear, aging 

of components etc. Some examples of component faults are leakages in tanks, breakages or cracks in 

gearbox system, change in friction due to lubricant deterioration etc. Component faults may result in 

instability of the process. Therefore, it is extremely important to detect these faults. 

(2) Actuator fault 

Actuators are the components that are among the most critical and vital parts of the modern control 

system which are required to transform control signals into proper actuation signals, such as torques 

and forces, to drive the system. An actuator fault represents the discrepancy between the input 
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command of an actuator and its actual output. That means the final control element that gets activated, 

due to a malfunction and can drive the whole system into a state of fault. For instance, in an aircraft 

control system, control surface damage can be considered as an actuator fault. Actuators faults behave 

as partial or total (complete) loss of control action. An example of a completely lost actuator is a “stuck” 

actuator that produces no (controllable) actuation regardless of the input applied to it. Total actuator 

fault can occur, for instance, as a result of a breakage, cut or burned wiring, shortcuts, or the presence 

of outer body in the actuator. Partially failed actuator produces only a part of the normal (i.e. under 

nominal operating conditions) actuation. It can result from, e.g. hydraulic or pneumatic leakage, 

increased resistance or fall in the supply voltage. A fault in an actuator may result in higher energy 

consumption to total loss of control [7], and therefore a special attention is paid on the determination of 

this kind of fault. Examples of actuator faults include stuck-up of control valves, faults in pumps, 

motors etc. The actuator faults can be classified into four types [7], as shown in Fig. 2.1, namely: (a) 

lock-in-place, (b) hard-over failure, (c) float, and (d) loss-of-effectiveness. These faults may be 

formally represented as follows: 

 

Fig. 2.1 Common types of actuator faults: 

 (a) lock-in-place, (b) hard-over failure, (c) float, and (d) loss-of-effectiveness 

(3)  Sensor fault  

A sensor fault represents the deviation between the measured and the actual value of a plant’s output 

variable. Sensor faults can also be subdivided into partial and total. Total sensor faults produce 

information that is not related to the value of the measured physical parameter due to broken wires, lost 

contact with the surface, etc. Partial sensor faults produce reading that is related to the measured signal 

in such a way that useful information could still be retrieved. This can, for instance, be a gain reduction 

so that a scaled version of the signal is measured, a biased measurement resulting in a (usually constant) 

offset in the reading, or increased noise. These are faults occurring in measuring devices and are often 

best described as additive faults, e.g. bias. There are however situations where a multiplicative 

description is better, e.g. sticking or complete failure. Typical examples of sensor faults are listed in [7], 

as shown in Fig.2.2: (a) bias; (b) drift; (c) performance degradation (or loss of accuracy); (d) sensor 

freezing and (e) calibration error. Actuator faults and sensor faults are commonly modeled as additive 

faults in the system. 
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Fig. 2.2 Common types of sensor faults: 

(a) bias; (b) drift; (c) performance degradation (or loss of accuracy); (d) sensor freezing; (e) calibration 

B) Definition based on behavior of fault  

In [55], faults can be distinguished by shape (systematic or random) according to the extension of the 

fault (local or global) or by their behavior over time. Moreover, according to the time profiles of faults, 

they can be classified as abrupt, incipient or intermittent fault, as shown in Fig. 2.3, where the notation 

tf is the time of fault occurrence: 

(a) Abrupt fault: An abrupt fault is a nearly instantaneous occurring fault, i.e., step-like change. Abrupt 

faults have more severe affects and may result in damage of equipment. However, fortunately abrupt 

faults are easier to detect. 

f(t − tf) = {
δ  t ≥ tf
0  t < tf

 

(b) Incipient faults: An incipient fault is slowly developing; the magnitude of an incipient fault 

develops over a period of time. They are often modelled as a drift or time varying change in the 

parameters of a system. Incipient faults result in degradation of equipment. Their slowly changing 

behavior makes it difficult to detect. 

f(t − tf) = {
δ(1 − e−αt)    t ≥ tf
0                        t < tf

 

(c) Intermittent fault: In a system, the symptoms of an intermittent fault only show up at some time 

intervals or operating conditions, not all the time. 

 

 

Fig. 2.3 Types of fault based on behavior 

2-) Functions 
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The FDD procedure monitors the system and generates information about the abnormal behavior of its 

components, thus achieving the purpose of detecting faults and determining their location and 

significance. In general, the FDD procedure consists of three main steps namely fault detection, fault 

isolation and fault identification. 

(1) Fault Detection 

Fault detection is the process of determination of the occurrence and the time of the occurrence in a 

system. Fault detection consists of designing a residual generator that produces a residual signal 

enabling one to make a binary decision as to whether a fault occurred or not. 

(2) Fault Isolation 

The function of fault isolation is to exactly locate the reason and/or the origin of fault. The step of fault 

isolation ensures that we are able to retrieve some information about the fault such as fault type and/or 

location,  

(3) Fault Identification 

Fault identification aims at finding the magnitude and approximate time behavior of the fault.  

(4) Fault Diagnosis 

Fault diagnosis consists of determination of the kind, size, location, and the time of the occurrence of a 

fault. It includes fault detection and identification. 

(5) Monitoring 

Monitoring is a continuous online task of determining the conditions of a physical system, by recording 

information, recognizing and indicating anomalies of the system behavior. 

3-) Models 

(1) Quantitative model. 

Quantitative model uses static and dynamic relations among systems variables and parameters in order 

to describe a system’s behavior in quantitative mathematical terms. 

(2) Qualitative model.  

Qualitative model uses static and dynamic relations among systems variables and parameters in order 

to describe a system’s behavior in qualitative terms such as causalities or if-then rules. 

(3) Diagnostic model.  

Diagnostic model describes a set of static or dynamic relations which link specific input variables - the 

symptoms - to specific output variables - the faults. 

4-) Properties  

Two important attributes that a fault detection and diagnosis (FDD) algorithm needs to possess are: few 
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missed detections and low false alarm rate. Next, we introduce some important properties for 

evaluating the performance of fault diagnosis schemes, including robustness, fault detectability and 

isolability.  

(1) Robustness is the ability of the scheme to operate in the presence of noise, disturbance, and 

modeling errors, with few false alarms. 

(2) Detectability and isolability are characterized by the class of faults which can be successfully 

detected and isolated. A successful fault diagnosis scheme should be able to detect and isolate faults of 

reasonably small sizes. 

2.1.2 Classification of Fault Detection and Diagnosis Techniques 

The idea of FDD is based on the fact that, though detection of change does not necessarily correspond 

to a failure, the faulty operation of the system is always preceded by certain changes in the dynamics. 

The fault detection and diagnosis implies the continuous monitoring of the whole process, including the 

sensors, actuators and control equipments. The simplest fault detection and diagnosis method is to 

monitor the magnitude and the trend of individual signals. If the magnitude exceeds the design limit or 

the trend deviates the expected behavior, a fault is then detected. Although this scheme is simple, it can 

be applied to simple processes with the aid of experienced operators for fault isolation.  

The development of FDD theory and method has already been active since the early 1970’s. As a result, 

a number of detection and diagnosis methods have been developed. Several authors have reviewed and 

classified these methods: early reviews of FDD methods have been published for example by [56][57] 

and more recently FDD methods have been comprehensively surveyed and classified by [16][17][18]. 

In the sequel, a rough classification of these techniques is presented as either data-driven or 

model-based. 

1-) Hardware redundancy based FDD 

One traditional method of FDD, mainly instrumental fault diagnosis (IFD) one, is hardware redundancy. 

The essential idea of this methodology can be realized by reconstruction of the process components 

using more than two components such as sensors, actuators, controllers, and computers to perform the 

same function. The fault detection is achieved by comparing the deviation between the actual process 

output and the output of redundant process component. If one component does not perform its function 

as designed, then a voting logic and a switching mechanism can be carried out to detect, identify, and 

isolate the malfunctioned component, as shown in Fig.2.4: 
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Fig. 2.4 Schematic description of the hardware redundancy scheme 

Generally speaking, duplicating the actuators in the system in order to achieve increased fault tolerance 

is often not an option due to cost and sizes reasons. While because of the smaller sizes, sensors can be 

duplicated in the system to increase the fault tolerance. For instance, by using three sensors to measure 

the same variable one may consider it reliable enough to compare the readings from the sensors to 

detect faults in (one and only one) of them. The so-called “majority voting” method can then be used to 

pinpoint the faulty sensor. In [18], a section about voting techniques can be found along with several 

references. This approach usually implies significant increase in the related costs. Hardware 

redundancy is widely used in safety critical systems such as nuclear power plants and aircrafts. Some 

publications about hardware redundancy were presented in the second half of the 60s and the first half 

of the 70s. For example, aerospace task, flight control systems, etc. [4].  

The main advantages of hardware redundancy is high reliability and direct fault isolation. However, in 

many situations, the application of hardware redundancy may not be possible or desirable, since the 

major problem of the hardware redundancy is in terms of volume, weight, the extra equipment, 

maintenance cost in addition to the extra space. In other situations, such as with actuators, direct access 

to certain variables is often not possible via physical measurements. Moreover, equal sensors installed 

at the same time have a tendency to become faulty almost simultaneously, since they have similar 

useful length of life. Thus its application is restricted to a number of key components which have a 

very high safety requirement. For example, in the aircraft industry, using hardware redundancy is a 

proven concept to diagnose sensor faults. Vital sensors are tripled or even quadrupled and faults in 

these sensors are diagnosed by using voting schemes.  

2-) Analytical redundancy based FDD 

Another kind of system redundancy is called analytical redundancy which is to reconstruct the process 

behavior accomplished by the functional relationships governed by physical laws in a process system 

[59]. In the context of analytical redundancy, the information about the fault is to compare the 

measured values with their estimates delivered by redundant relationships. The difference between the 

measured process variables and their estimates is called residual, which can be used as a fault signature 

for FDD. We generally define the redundant relationships as model. Therefore analytical redundancy 

based fault diagnosis is also called model based fault diagnosis methodology, which is defined as a 

systematic approach to generate residual quantities and analyze the residual properties such that the 

potential faults can be detected, identified and isolated. Based on what form of model is used for 
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achieving the purpose of residual generation, model based fault diagnosis scheme can further be 

divided into two categories. The mode can be quantitative model, an analytical model represented by 

set of differential equations, or it can be qualitative model, a knowledge-based model represented by, 

for example, neural networks, digraphs, experts systems, fuzzy rules etc. 

 

 

 

 

 

 

 

Fig. 2.5 Schematic description of the analytical redundancy scheme 

The quantitative model based approaches utilize the deepest knowledge of the process, and therefore, 

are the most capable approaches for fault diagnosis given that the mathematical model of the process is 

available. Several early survey articles have been presented over the years on fault diagnosis utilizing a 

quantitative process model, e.g. [54] [60] [61]. Recent surveys can be found in [16][53]. Some books 

on the subject are e.g. [59] [55] Another possibility next to the quantitative model based methodologies 

referred to knowledge based fault diagnosis algorithms. Knowledge based model approaches do not 

need full analytical modeling, therefore, are more suitable in information-poor systems or in situations 

where the mathematical model of the process is difficult to obtain or is too complex [7]. This is the case, 

for example, in chemical processes which are difficult to model analytically. The main advantage of 

these methods is that they do not require a precise analytical model. A comprehensive study of these 

methods can be found in survey papers [17] [60] and recent books [62]. The main restriction of the 

so-called knowledge based FDD method is that they are depending on knowledge acquisition from the 

system in form of training data sets [60]. In practice these sets are difficult to obtain due to the fact that 

they must provide data from the system while the considered faults occur. Indeed, in a real running 

system it is hardly possible to convince the owner of a plant to simulate all possible faults. When 

knowledge based systems can be trained sufficiently they can be utilized to estimate measurements 

based on the available signal information, hence, provide redundancy.  

A novel advantage of analytical redundancy based fault diagnosis is that no additional hardware is 

needed for fault detection and isolation since the intuitive idea is to replace the hardware redundancy 

by a process model which is used to cross check process variables. These algorithms can be 

implemented on some digital computer and hence avoided the disadvantages related to the hardware 

redundancy based fault detection techniques. Besides the analytical model based approaches are 

usually faster, as well as on-line implementation is easier, hence they are more suitable for processes 

with fast dynamics. Moreover since the redundancy provided by functional relationships has the same 

reliability as a processing computer, the reliability of analytical redundancy is much higher than 

traditional hardware redundancy. Another advantage is that it is applicable to IFD (instrument fault 
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diagnosis) as well as to AFP (actuator fault diagnosis) and to CFD (component diagnosis), while 

hardware redundancy is mainly applicable to IFD. Furthermore, the most significant contribution of 

analytical redundancy to fault diagnosis, which many researchers do not stress, is that the generated 

fault signatures are fully decoupled from the operation conditions if the developed functional 

relationships can cover entire operation regime. Given strengthens, the field of model based FDD is 

well-studied. 

3-) Signal processing based FDD 

The essential idea of this approach is to get the information of the faults by collecting some properties 

of the measured signals [63]. Assuming that certain process signals carry information about the faults 

of interest in forms of symptoms, fault diagnosis can be achieved by suitable processing these signals, 

the symptoms can be such as the magnitudes of the time function, trend checking from the derivative, 

mean (arithmetic or quadratic) and variance, statistical moments of the amplitude distribution or 

envelope, spectral power densities of the frequency domain function, correlation coefficients, 

frequency spectral lines etc. 

There are various approaches of signal processing. Several early survey articles have been presented in 

[57] [64] and book like [63]. Limit checking of absolute value of the measurements and limit checking 

of derivative (trend) of the measurements are the two most simple and widely used approaches in 

signal processing based schemes. Application of signal based methodologies can be found in various 

industry, such as mechanical machine. However, the drawback is that fault can only be detected when it 

grows enough to cross the limits. Moreover, signal processing based fault diagnosis approaches are 

only used for processes working in the steady state or with slow dynamics, not suitable for dynamic 

systems with transient behavior [8]. 

 

 

 

 

 

 

 

Fig. 2.6 Schematic description of the signal processing based scheme 

4-) Comparison between different methods 

In summary, signal processing based methods can be the option and useful when the mathematical 

model of a linear or nonlinear system is not available. It is because all signal processing based methods 

need data from both healthy and faulty operating conditions of the system under consideration. 

Therefore, it is difficult to design a generic signal processing based fault diagnosis method applicable 

to a wide range of systems. Moreover, collecting measurements in faulty conditions can be very costly 

and in some cases even impossible. By contrast, model based methods minimize the need for a priori 
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data and can perform online, but they require accurate mathematical model of the system. In fact, this 

is the fundamental difference between model based fault diagnosis and signal based fault diagnosis 

such as spectral analysis and pattern recognition. For signal based fault diagnosis, fault signatures need 

to be extracted from representative fault data, which are difficult to obtain in most situations. Whatever, 

among fault detection schemes, model based FDD techniques make use of the best knowledge of the 

monitored process for the purpose of system supervision. Therefore, model based FDD schemes are 

said to be the most capable approaches due to the advantages of low cost, fast detection, ability to deal 

with fast dynamical systems, when a process model is available and the requirement of FDD 

performance is relatively high. Nevertheless, the two abovementioned classes of fault diagnosis have 

become closer, as researchers have recently been tried to combine both methods, in order to eliminate 

the disadvantages of each method and construct more reliable and functional fault diagnosis schemes 

For instance data, if available, can be utilized to tune the system model and also to determine robust 

fault detection thresholds. In both cases, fault diagnosis is done whereas prognosis is still in its infancy.  

2.2 Quantitative Model-Based Fault Detection and Diagnosis Techniques 

Most methods are covered by the term quantitative model based fault detection and diagnosis and there 

exists a wide variety of approaches, e.g. the observer-based approach [65][66], the parity space 

approach [67][68], and the parameter estimation approach [69][70]. A detailed description of the term 

model based FDD is given in [71]. Several survey articles have been presented over the years on fault 

diagnosis using a quantitative process model, e.g. [54] [57][16]. Some books on the subject are also 

available [55][63][59]. Additionally models can be grouped as linear or nonlinear based on their 

capability to deal with a mathematical relationship between physical quantities, depending on the 

problem at hand the most suitable models are chosen. The field of model based FDD for linear systems 

is well-studied, key references can be found in [61]. For nonlinear systems there also exist several 

model based FDD methods [31][23]. Especially the observer based approach has gained a lot of 

interest recently.  

2.2.1 Introduction of Quantitative Model-based FDD Scheme  

Quantitative model based FDD can be defined as the detection, isolation and characterization of faults 

in component of a system by comparing the available system measurements with estimates of these 

measurements using the mathematical model. The reflected inconsistencies between nominal and faulty 

system operation is called residual, and fault detection and diagnosis can be achieved by inspecting the 

residual. When an exact process model is available, the residual is only due to noise and disturbances. 

So the residual magnitude is zero or close to zero in the fault free case and become non zero as a result 

of a fault in the process. The procedure of creating the residual signal is called residual generation, 

while the procedure of checking the residual is called residual evaluation. Therefore model based FDD 

are composed of two parts: residual generation and residual evaluation. Fig2.7 illustrates the schematic 

of model based FDD. 
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Fig. 2.7 Schematic description of the model based scheme 

The residual generation step contains an estimator which uses a quantitative process model and derives 

an estimate of the process output. The purpose is to generate a fault indicating signal (residual) which is 

capable of reflecting the possible fault information of the analyzed system. The residual generation is 

therefore a procedure for extracting fault symptoms from the system, with the fault represented by the 

residual signal, thus the residual signal should ideally carry only the fault information. To guarantee 

reliable FDD, the loss of fault information in residual generation should be as small as possible. 

However, since modelling error and unknown disturbances are inevitable for technical process, the 

generated residual signal is usually non-zero even in the fault-free case. So a post processing of the 

residuals which extracts the information about the fault of interests from the residual signals is needed, 

which is called residual evaluation. The residuals are examined for the likelihood of fault. The residual 

evaluation step examines the residual signal or a function of it with a threshold for the likelihood of 

fault. The residual evaluation module has to detect, using adequate tests, when a given residual is 

indeed distinguishably different from zero. Residual generation and residual evaluation builds the core 

of the model based fault detection and diagnosis technique.  

2.2.2 System and Fault Model for FDD  

In order to simulate the behavior of the process components and control devices, an important issue is 

to build up a mathematical model of the system. While for the purpose of diagnosis of sensor, actuator, 

and process faults, the fault effects on the physical system should be explicitly represented by 

appropriate fault models. This explicit proper mathematical representation of fault effects, so that it can 

facilitate fault diagnosis such that the generated residuals will behave as designed.  

Most of the real systems are nonlinear in nature, the process dynamics of a nonlinear system can be 

given by: 

{
ẋ(t) = f(x(t), u(t), θ(t), ω(t))

y(t) = h(x(t), u(t), )                  
                        (2.1) 

where x(t) ∈ ℛn is the state, u(t) ∈ ℛm is the input, y(t) ∈ ℛp is the output of the system, θ(t) ∈ ℛl 

represents the system parameters (i.e., when no faults are present in the system, θ(t) = θ0 ), where 

θ0 is the nominal parameter vector (understanding "fault" as an unpermitted parameter deviation in the 
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system), and ω(t) represents modelling mismatches (if the model of the system is perfectly known, 

ω(t) = 0). 

If the sensor dynamic is ignored, let  y′(t) ∈ ℛp be the actual sensor outputs and  y0(t) ∈ ℛ
p be the 

expected one (fault free), then the fault model for sensor faults can be generally described as follows: 

y′(t) = (I − Γ(t))y0(t) + υ                            (2.2) 

where Γ(t) = diag (α1(t),  α2(t) , … , αp(t)), (I − Γ(t))y0(t) represents the effect of multiplicative 

sensor faults, and υ = diag(υ1, υ2, … ,  υp) corresponds to the effect of an additive sensor fault as 

constant offset, the ith sensor is faulty if αi(t) ≠ 1 or υj ≠ 0. 

Case 1. Γ(t) = 0, υ ≠ 0 , bias fault;  

Case 2. Γ(t) = I, υ ≠ 0, freezing; 

Case 3. Γ(t) ≠ 0, υ = 0 , lost of accuracy; 

Case 4. Γ(t) = I, υ = 0, calibration; 

Case 5. Γ(t) = 0, υ = 0 drift. 

If the actuator dynamics is ignored, let   u′(t) ∈ ℛm  be the actual output of the actuators and 

u0(t) ∈ ℛ
m be the expected one (fault free), then the fault model for an actuator can be generally 

described as follows: 

u′(t) = Ω(t)u0(t) + ε                                (2.3) 

Ω(t) = diag(μ1(t),  μ2(t) , … , μm(t)), Ω(t)u0(t) represents the effect of a multiplicative actuator 

fault, and ε = diag(ε1, ε2, … ,  εm) corresponds to the effect of an additive actuator fault as constant 

offset, the ith actuator is faulty if μi(t) ≠ 1 or εj ≠ 0. 

Case 1. Ω(t) = I, ε ≠ 0 , actuator bias fault;  

Case 2.Ω(t) = 0, ε ≠ 0, actuator blocked; 

Case 3. Ω(t) ≠ I, ε = 0 , actuator lost of effectiveness; 

Case 4. Ω(t) = 0, ε = 0, float. 

Obviously, the actual mapping between the actuator input u0(t) and the actuator output u′(t) can be 

easily represented by changing (2.3) accordingly. Once the actual process inputs and outputs u′(t) and 

y(t) (usually not available for u′(t)) are measured by the input and output sensors, the general model 

FDD theory can be treated as an observation problem of the knowledge only of the measured 

sequences u′(t) and y(t) [69]. 

If a process fault results in a change in the system parameters, the model for the fault is given by: 

θ′ = θ0 + fθ                                       (2.4) 
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Where θ′(t) ∈ ℛl is the actual parameter vector, and in a fault-free system, its nominal parameter 

vector is regarded as θ0(t) ∈ ℛ
l. While a system with fault is called post-fault system, a parameter 

vector difference fθ denotes a fault. 

2.2.3 Residual Generation Method  

Residual generator transforms the fault symptoms from measurement space to a lower dimensional 

feature space, it plays an important role in model based fault diagnosis techniques. In order to generate 

residuals with the desired properties for FDD, various residual generation techniques have been 

developed in the last several decades. Although these techniques are related to each other and become 

equivalent in certain cases, they do have very different characteristics in terms of complexity, flexibility, 

and applicability. The most representative used analytical model based approaches for residual 

generation include the observer based approach, the parity equations approach and the parameter 

estimation approach.   

1-) Observer based residual generation 

Observers are computational algorithms designed to estimate unmeasured state variables due to the 

lack of appropriate estimating devices or to replace high priced sensors in a plant. The main idea of 

observer based residual generation is achieved by comparing measurements from process with their 

estimates generated through observers [63]. The weighted estimation error is then used as residuals for 

the purpose of FDD [71], the residual is normally zero, and becomes non zero as a result of fault, 

disturbance, noise or model uncertainties. Therefore the generated residual signal should be insensitive 

to noise, disturbance and model uncertainties, but sensitive to faults, so that a fault can be detected 

when the residual signal is not zero or close to zero. This can be done by using further available 

knowledge about the system or by using robust fault detection techniques. While for the purpose of 

isolating and identifying faults, these methods usually use a bank of state estimators where each one is 

sensitive to a fault or a set of faults and insensitive to other faults. 

In the past few decades, the problems of nonlinear system observability and observer design have 

received considerable interests for systems that can be described by ordinaries differential equations 

(ODEs). There are possibly three reasons for this particular attention to observer based methods. The 

first one is due to associated advantages of observer based approaches, e.g., quick detection, requiring 

no excitation signal, possibility of on-line implementation etc. Secondly, other model based approaches 

which include parity space approach and parameter identification approach are, under certain 

conditions or assumptions, a specific form of the observer based approaches. Thirdly, control engineers 

are more familiar with the concepts of observer design. There are various approaches for designing 

observers. Details are described in section 2.3. 

2-) Parity equations based residual generation 

The parity equation based method is one of the earliest approaches used for residual generation in 

technical systems. The main idea is to check the consistency of the parity equations of the system by 
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using the measurement; while the parity equations are derived from the system model or transformed 

version of the state space model. That means the mathematical model of the process is rearranged to 

obtain the parity equations which are algebraic equations that indicate an explicit relation between 

input and output time-sequence data vector. These parity relations can in principle be either based on 

direct redundancy or on temporal redundancy. Direct redundancy exploits relationships among 

instantaneous outputs of sensors and temporal redundancy exploits relationships among the histories of 

sensor outputs and actuator inputs [72]. Contributions of parity relation based FDD for nonlinear 

systems can be found in [73][72][31]. In [74], it is presented a parity space approach based on the 

inverse model of input output nonlinear systems. In [73], the parity space approach for linear systems is 

generalized to nonlinear systems described by TS fuzzy models. The parity space approach to fault 

diagnosis can significantly extend its application when temporal redundancy is utilized [73]. 

There is a close relationship between parity space approach and observer based approach. As shown in 

[59], parity space approach leads to certain types of observer structures and is therefore structurally 

equivalent to the observer based approach, even though the design procedures are different. Parity 

relations are therefore a special form of observers, called the dead-beat observers (i.e. observers having 

all the poles at origin). Compared to observer based approaches, parity space approaches are more 

sensitive to measurement and require the model to be known accurately, and therefore are especially 

suitable for additive faults. 

3-) Parameter estimation based residual generation 

As the name suggests, the essential of the parameter estimation based residual generation method is a 

procedure of on-line parameter identification. It is assumed that faults in systems are often reflected by 

variation of physical parameters such as length, mass, damping, stiffness and capacities, etc. 

Parameters are estimated on-line repeatedly using the input and the output of the system. Then the 

estimated parameters can be used to compare with the parameters of the reference model obtained in 

fault free condition. If the estimated parameter values deviate from their nominal values, then decisions 

about occurrence of faults are made. There are several parameter estimation techniques including least 

squares (LS), recursive least squares (RLS), extended least squares (ELS), etc. Literature [69] has 

shown how parameter estimation methods can be used for detecting process faults in continuous time 

systems and more FDD approaches based on parameter estimation can be found in [70] while 

applications to engineering industries can be found in [47] [63] .  

An advantage of parameter estimation approach is that with only one input and one output signal, 

several parameters can be estimated which give a detailed picture on internal process quantities [15]. 

Another advantage of the method is that it yields the size of the deviations of process parameters which 

is very useful for fault analysis [11]. Moreover, parameter estimation based approaches need only the 

structure of the process, the requirements are less strict since the parameters to be estimated do not 

have to be known exactly. However, sufficient input excitation is required to achieve good estimation 

performance which may not be always available. 
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Parameter identification approaches have many similarities to observer based approaches. Compared to 

observer based and parity relation based methods, parameter estimation methods are more flexible in 

how faults can affect the system. Therefore, parameter estimation methods are more suitable for 

multiplicative faults detection, especially for multiplicative component fault detection, although it can 

also detect sensor and actuator faults.   

2.2.4 Residual Evaluation Method  

After residual generation, the second step in model based fault detection and diagnosis scheme is 

residual evaluation. Residual evaluation is a decision making stage which performs appropriate 

statistical testing on the generated residuals to make a decision on fault diagnosis, the proper scheme 

for residual checking play a significant role in the satisfactory performance of FDD scheme. 

In ideal situations where existence of no disturbances or their effects on the residual signal is 

completely eliminated, no modeling uncertainties and the initial conditions of the observer are the same 

as that of the process, the residual signal will be zero. In that case, any deviation of residual from zero 

will indicate the presence of faults. However, these ideal situations are never attained and there are 

always modelling errors, initial conditions of the observer may be different from that of the process. 

These reasons cause the residual signal to deviate from zero even in the absence of faults. It may block 

the determination of occurrence for the likelihood of faults and a decision rule is then required to 

determine if any faults have occurred. The purpose of residual evaluation is the decision rule to decide 

the occurrence of faults even in the presence of disturbances and uncertainties. The evaluation of the 

residue should answer the following questions: 1. is there a fault? 2. if so, what fault is present? 

Based on the type of system under consideration, the evaluation schemes can be roughly divided into 

statistical based methods and norm based methods. For stochastic systems, the statistical properties like 

mean, variance, likelihood ratio (LR), generalized likelihood ratio (GLR) are used for the evaluation of 

residuals [4]. For deterministic systems, the norm based residual evaluation is preferred, where 

different kinds of norm like L2, peak and also Root Mean Square value (RMS) are used. Besides 

requiring less on-line computation, norm based schemes also allow a systematic way for threshold 

computation. 

2.3 Observer Based Fault Detection and Diagnosis Approach  

2.3.1 A Brief Description of the Observers 

Among all the FDD approaches, observer based methods are the most popular methods to be 

researched and applied [37]. Observers are mathematical frameworks used as powerful tools to 

estimate unmeasured states variables from a minimum set of measurements in dynamic linear and 

nonlinear systems. A fundamental characteristic of any observer is that it does not need to be initialized 

with the actual initial conditions of the state variables to study the dynamics of the system [7]. 

Furthermore, two statements are desirable for any observer design: 1-) If the observer is provided with 

the actual initial condition and if the measurement noise is negligible, then the estimation of the state 

can be considered exact and the estimated state becomes the true state (i.e., the estimation error is zero 
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all the time); 2-) If the observer is provided with an initial condition different from the real, then the 

estimated state converges eventually to the true state (i.e., the estimation error converges towards zero 

in a finite time). 

It should be noted that there is a difference between observers used for the purposes of control and for 

the purpose of FDD. The observers designed for control are state observers, i.e., they estimate states 

which are not measured. In contrary, the observers designed for FDD are output observer, i.e., these 

observers generate estimation of the measured states. Generally, the existence conditions for diagnostic 

observers are much more relaxed than that for a state observer. Full state observers like fault detection 

filter are also widely used for residual generation, the extra design freedom is used to achieve fault 

isolation, unknown input decoupling etc. A special form is the fault detection filter, which generates 

estimation of all the states, irrespective of whether they are measured or not. In this case, these can be 

used both for control and FDD purpose. 

Considerable attention has been paid in the literature to the construction of observers for nonlinear 

systems. Some survey articles in the area are e.g. [66]. Considerable researches on fault detection and 

diagnosis using observer based theory have been carried out recently including, e.g. the high-gain 

observer [75], sliding-mode observers [76] Luenberger-like observers [77], adaptive observer [78], 

unknown input observer [79]. For example, in [80], a high-gain observer for uniformly observable 

systems is derived and sliding mode observers are presented in [26]. While [81] presents a nonlinear 

adaptive estimator for fault detection. The application of observers in industry could be widely found 

like, in chemical industry, water treatment, aircraft, nuclear plant, wind tube engine etc. A survey of 

some observer design techniques for nonlinear systems is presented in the following.  

2.3.2 Different Observer Design Methods for Nonlinear System  

In order to achieve an optimal residual generation, considerable efforts have been devoted to develop 

observer based residual generator which fulfill the following two requirements: (1) robust to model 

uncertainties, disturbance and sensor noises; (2) sensitive to faults.   

1-) Nonlinear identity observer  

This approach to fault diagnosis was first proposed by Henry and Frank [66], the use of this approach 

for the detection and isolation of component faults,see also [82] . A more general class of faults in [66].   

The starting point is the nonlinear model (2.1) and the following observer structure. 

 ẋ̂(t) = f(x̂(t), u(t), θ0(t), 0) + K(x̂, u)(y(t) − ŷ(t))                  (2.5) 

                            ŷ(t) = h(x̂(t), u(t))            

                            r(t) =  y(t) − ŷ(t) 

where r(t) represents residual, the design of the observer is under the assumption that there is no faults 

and no modeling uncertainties are present. 
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Defining the estimation error e(t) = x(t) − x̂(t), the error dynamics can be written as: 

              ė(t) = F(x̂(t), u(t), θ0(t), 0)e(t) − K(x̂(t), u(t))H(x̂(t), u(t), θ0(t), 0)e(t)  (2.6) 

                  r(t) =  H(x̂(t), u(t))e(t)  

where  F(x̂(t), u(t), θ0(t),0) = ∂f(x(t), u(t), θ0(t), 0) ∂x⁄ (t), 

H(x̂(t), u(t), θ0(t),0) = ∂h(x̂(t), u(t)) ∂x(t)⁄ .  

The gain matrix K(x̂(t), u(t)) can be developed in such a way that the error dynamics e(t) = 0 is 

asymptotically stable. In some situations, for example in Lipschitz nonlinear systems, a constant matrix 

will guarantee the stability [83]. For instance, when  h(x(t), u(t)) = Cx(t) , then the matrix 

K(x̂(t), u(t)) takes the form 

K(x̂(t), u(t)) = P−1F̂(x̂(t), u(t))CTQ 

where the symmetric positive definite matrix P = PT > 0 should be assigned such that: 

                            KTP(∂f(x(t), u(t), θ0(t), 0) ∂x(t)⁄ )K|x̂=x < 0 

where K is the highest rank right orthogonal matrix to C and 

F̂(x̂, u) = diag {
1

2
∑|ψij +ψji|

n

j=1

} i = 1,… , n 

whereψij is the ijth element of the matrix P(∂f(x(t), u(t)) ∂x(t)⁄ )|
x̂=x

 and Q is a matrix satisfying 

CTQC − I ≥ 0. 

2-) Extended Luenberger observer 

Luenberger observer is one of the basic state estimator for linear system and is used for fault detection 

in linear systems. For nonlinear systems, one can linearize the nonlinear model at an operating point 

and then apply the Luenberger observer. A similar approach for state estimation and its application to 

fault detection has been proposed in [84]. However, if the operating region is too wide, the linearized 

model will deviate largely from the nonlinear model, particularly, if the system is operating away from 

the linearizing point. Therefore, over the years, research in the design of observers has encounter 

challenges due to the requirements of high accuracy and good prediction performances [85]. Many 

observers today are simply modifications and extended versions of the classical Luenberger observer. 

The idea of the extended Luenberger observer is to linearize the model around current estimate of 

states x̂(t), instead of a fix point (e.g. x = 0), and then apply the Luenberger observer. This type of 

observer is suitable for less complex linear systems with relatively simpler computational methods. 

While because of the requirements of repetitive calculation of observer gain (which means more on line 

computations) and the linearization errors, the extended Luenberger observer is rarely used in practice. 

Consider, for example, the nonlinear system as: 
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ẋ(t) = f(x(t), u(t)),    x(0) = x0                                                       (2.7) 

                             y(t) = h(x(t), u(t)) 

where x ∈ ℛn denotes the vector of state variables, u = [u1, … , um] ∈ ℛ
m  denotes the vector of 

constrained input variables, y ∈ [y1, … . , yp]
T ∈ ℛp denotes the vector of output variables. f(x) ∈ ℛn 

is a nonlinear vector function, f(x) and h(x) are assumed to be sufficiently smooth on their domains 

of definition. 

Then an extended Luenberger observer is 

ẋ̂(t) = f(x̂(t), u(t)) + K(x̂(t), u(t)) (y(t) − h(x̂(t), u(t))),    x̂(0) = x̂0              (2.8) 

               ŷ(t) = h(x̂(t), u(t))            

Where K(x̂, u) is the observer gain which is computed at each time instant in such a way that the 

eigenvalues of ((∂f(x, u) ∂x⁄ ) − K(x̂, u)(∂h(x, u) ∂x⁄ )) are stable. The detailed study can be found in 

[86].  

3-) Nonlinear unknown input observer (NUIO) 

The origins of NUIOs can be traced back to the early 1970s, it is one of the most common approaches 

of robust observers which can tolerate a degree of model uncertainty and hence increase the reliability 

of fault diagnosis. The main idea of NUIOs is to decouple the residual signal from the unknown 

disturbances, it was introduced by the pioneering work [82]. Considerable contribution has been made 

in the observer design and improvement like in [87] Besides, a large amount of knowledge by using 

these techniques for model based fault diagnosis has been accumulated through the literature, such as 

[79].  

Let us consider a nonlinear system can be decoupled as the following structure: 

ẋ(t) = Ax(t) + B(y(t), u(t)) + Ed(t) + K(x(t), u(t))f(t)                            (2.9) 

                    y(t) = Cx(t) + Ks(x(t), u(t))fs(t)         

where x(t) ∈ ℛn, u(t) ∈ ℛm, y(t) ∈ ℛp, d(t) ∈ ℛq denote respectively the state, the input, the output 

and the unknown input vectors, f(t)  represents the component or the actuator faults and fs(t) 

represents the sensor faults.  

Then the observer is given by: 

ẋ̂(t) = Fx̂(t) + J(y(t), u(t)) + Gy(t)                                                    (2.10) 

                           r(t) = L1x̂(t) + L2y(t) 
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For the observer to be decoupled from the unknown inputs d(t)and sensitive to fault vector f(t), 

following conditions on observer matrixes are required [82]: 

                        TA − FT = GC,     where F is stable 

                      J(y(t), u(t)) = TB(y(t), u(t)) 

                        L1T + L2C = 0, TE = 0 

                     k {TK (x, u)}  =  rank {K(x, u)} 

                      rank ([
G
L2
]) = rank (Ks(x(t), u(t))  

Provided the above requirements are satisfied, the estimation can be defined as  e ≜ Tx − x̂, the 

dynamics of the residual obey the following equations:     

    ė(t) = Fe(t) − GK(x(t), u(t))f(t) + TKs(x(t), u(t))fs(t)              (2.11) 

                   r(t) = L1e(t) + L2Ks(x(t), u(t))fs(t)                                         

The class of NUIO focuses only on disturbances or fault detection related variables during the 

estimation process. They are mostly suitable for estimating disturbances and faults, which provide early 

warning to operators prior to causing disruption to the process units. The drawback of this approach is 

the hard existing conditions and the poor fault detectability. Moreover, the class of systems covered by 

this technique is very limited. There are some methods which can transform other nonlinear model to 

the form suitable for unknown input observer design approach; however, the existence conditions for 

such transformations are very restrictive. Even if the existence conditions are satisfied, finding the 

transformations involves the solution of higher order partial differential equations [8]. A direct 

extension of the UIO results in linear systems to the nonlinear case was considered in [66]. The 

approach takes advantage of the structure of the system model, which is assumed to be in observable 

canonical form. In this case, a constant state transformation could be used (as in the linear case), and a 

complete design procedure can be achieved. 

4-) The disturbance decoupling nonlinear observer (DDNO) 

The disturbance decoupling nonlinear observer (DDNO) proposed in [88] can be considered as an 

alternative to the NUIO approach, considering a more general class of systems. The basic idea was the 

same as for the NUIO, but a nonlinear state transformation based technique instead of a linear one is 

used. Apart from a relatively large class of systems for which they can be applied, even if the nonlinear 

transformation is possible it leads to another nonlinear system and hence the observer design problem 

remains open. 

The class of systems that can be treated with this approach is described by: 

ẋ(t) = A(x(t), u(t)) + E(x(t), u(t))ω(t) + K(x, u)f(t)             (2.12) 
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                     y(t) = C(x(t), u(t))    

where ω(t) represents modelling mismatches due to uncertain model parameters (if the model of the 

system is perfectly known, ω(t) = 0), f(t) represents the component or the actuator faults.  

To decouple the states from disturbances, a nonlinear state transformation z(t) = T(x(t)) is used and 

the transformed system becomes: 

Ṫ(x(t)) =
∂T(x(t))

∂x(t)
(A(x(t), u(t)) + E(x(t), u(t))ω(t) + K(x (t), u(t))f(t))        (2.13) 

The transformation should be such that the transformed system becomes unaffected by disturbances but 

still reflects the effect of faults. The desired transformation can be selected as: 

∂T(x(t))

∂x(t)
 E(x(t)) = 0                                                                    (2.14) 

If such a transformation exists, the transformed system can be described by: 

ż(t) =
∂T(x(t))

∂x(t)
(A(x(t), u(t)) + K(x(t), u(t))f(t))                                (2.15)  

                       y∗(t) = C∗(z(t), u(t), y(t))                                 

where the output has been transformed into a new form which has no longer the effect of disturbances, 

instead the new output depends only on the state z, the input u and the original output y. Authors in [88] 

have also discussed a special case when the disturbance distribution matrix is also dependent on u. In 

that case the required transformation will also depend on u.  

After the transformation is achieved, the next step is to design an observer for the reduced system (2.15) 

using any observer design method, e.g., it can use nonlinear identity observer approach. 

5-) High gain observer  

High gain observer approach is developed for the input affine nonlinear systems based on a nonlinear 

transformation described in [83]. See also [89] for more advanced developments. Based on the 

transformed system model, a nonlinear observer can be designed where observer gain is obtained by 

solving a linear algebraic equation. This class of observer is designed for process systems whose 

dynamics are described by ordinary differential equations (ODEs) and are quite straight forward to 

implement. It can be applied to a large class of nonlinear systems and the observer design is carried out 

in a systematic way. However, a drawback of high gain observer is the high sensitivity of the nonlinear 

transformation to model uncertainties. Further, another drawback is the peaking phenomenon due to the 

very high observer gain, because the high-gain observer is based on the idea of selecting a sufficiently 

large gain in such a way as to dominate the nonlinear contribution to the dynamics of the estimation 

error. However, such a large gain may cause destabilization in the loop when the high gain observer is 

used in cascade with a feedback regulator.  
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Such an observer is a dynamic system with a copy of the original dynamics and a correction term based 

on the output error, i.e., the difference between the current output and the output ‘‘predicted’’ by the 

observer itself. 

The class of nonlinear systems covered by the approach is represented by:                                   

ẋ(t) = A(x(t)) + g(x(t)) +∑uiψi(x)

m

i=1

                                               (2.16) 

                         y(t) = Cx(t) 

Where A=[
0   1 ⋯ 0
⋮ ⋱ ⋮

0    0 ⋯ 0
],  g(x) = (

0
. .

gn(x)
),  C = [1,0, … . ,0], ψi(x) = [ψ1(x), … . , ψn(x)] 

With the assumption that g(x) and ψi are globally Lipschitz, an observer is of the form: 

ẋ̂(t) = A(x̂(t)) + g(x̂(t)) +∑uiψi(x̂(t)) − Sθ
−1CT(Cx̂(t) − y(t))

m

i=1

                 (2.17) 

where Sθ is the unique solution of the Lyapunov algebraic equation: 

θSθ  + A
TSθ  + Sθ A − C

TC = 0                                                  (2.18) 

The high gain observer design approach was extended to a more general class of nonlinear systems in 

[95]. The class of systems is: 

ẋ(t) = A(t)x(t) + ψ(t, u, x)                                                          (2.19) 

                              y(t) = Cx(t)        

Where A=[
0   a1(t) ⋯ 0
⋮ ⋱ ⋮

0      0     ⋯ 0
], c = [1,0, … . ,0] and the ith component ψi(t, u, x) is such that: 

 
ψ
i
(t, u, x) = ψi(t, u, x1, … , xi) 

Furthermore, the following two assumptions are satisfied: ψ is globally Lipschitz with respect to x 

and t, locally with respect to u; ai,i = 1, … , n − 1 are known differentiable functions with unknown 

derivatives, and there exist ϵ > 0,Μ′ > 0  such that, for every t ≥ 0, ϵ ≤ |ai(t)| ≤ Μ  and 

|
d

dt
ai(t)| ≤ Μ

′,for i = 1, … , n − 1. 

Then an observer for (2.19) is of the form: 

  ẋ̂ = A(t)x̂ + ψ(t, u, x̂) − Λ−1Sθ
−1CT(Cx̂ − y)                                           (2.20) 
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where Sθ is the unique solution of (2.18) and Λ is then an n × n matrix: 

 Λ−1 = diag {1, a1(t), a1(t)a2(t), … , a1(t) … an−1(t) } 

6-) Adaptive nonlinear observer (ANO)  

One problem of the observer based methods for fault diagnosis is their weakness in detecting slowly 

developing faults, especially when model uncertainties are present [82][90]. To overcome this difficulty, 

an adaptive observer proposed in [90] could be a solution. Adaptive observers are based on online 

adaption for joint estimation of state and some parameters (or for state estimation only, despite the 

presence of some unknown parameters) [19][25]. Early works on adaptive observers for linear systems 

have been developed in the 70s. The design for nonlinear case is from the early 90s. Nonlinear adaptive 

observer can be achieved for the nonlinear systems whose dynamics can be linearized by coordinate 

change and output injection [91], or it can also be accomplished by some Lyapunov functions 

satisfying particular conditions instead of linearization [92]. Adaptive observers provide direct and 

indirect methods for fault diagnosis if the estimated parameters are related to faults. They have been 

utilized for fault diagnosis by different authors, such as [22][20]. For example in [20], a nonlinear 

observer is used in order to detect sensor and actuator additive fault in a waste water treat process, and 

the observer's performance is improved with online adaptation. While in [19], an observer is proposed 

which allows not only detect and isolate additive fault ,but also non-additive faults, each observer is 

designed to estimate one parameter in addition to the states.   

Considering a nonlinear system described in [92] by: 

{
ẋ(t) = f(x(t), u(t)) + g(x(t), u(t))θ(t)

y(t) = h(x)                                                 
                                                      (2.21) 

where x(t)ϵℛn denotes the states, y(t)ϵℛp is the output vector of the system is, u(t)ϵℛm is the 

measurable bounded input vector and θ(t)ϵℛl is a vector of unknown parameters. 

The adaptive observer is in two steps, the first one is to transform the system in nonlinear adaptive 

observer form: 

{
ẏ(t) = α(y(t), z(t), u(t)) + β(y(t), z(t), u(t))θ(t)

ż(t) = γ(y(t), z(t), u(t))                                              
                                              (2.22) 

where y(t)ϵℛp is the output vector of the system which is also the measurable states, z(t)ϵℛr is the 

vector of the unmeasurable states. β(y(t), z(t), u(t))  is globally bounded. 

α(y(t), z(t), u(t)) and β(y(t), z(t), u(t)) are globally Lipschitz functions with respect to z(t), and 

uniformly with respect to (y(t), u(t), t). 

The second step is the observer design: 
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{

ẏ̂(t) = α(y(t), ẑ(t), u(t), t) + β(y(t), ẑ(t), u(t))θ̂(t) − κy(ŷ(t) − y(t))

ż̂(t) = γ(y(t), ẑ(t), u(t))                                                                                     

θ̇̂(t) = −κθβ
T(y(t), ẑ(t), u(t))(ŷ(t) − y(t))                                                

                    (2.23) 

where constants κy > 0  and κθ > 0 are the gains of the observer. Generally, these observer gains are 

positive and they can have different values. However, it is recommended to take κy < κθ. Such that for 

any ŷ(0), ẑ(0), any y(0), z(0) and any measurable bounded u(t), the estimation errors ‖ŷ(t) −

y(t)‖ and ‖ẑ(t) − z(t)‖ asymptotically go to zero when t tends to infinity, while ‖θ̂(t) − θ(t)‖ 

remains bounded. Moreover, if βT(y(t), ẑ(t), u(t)) is persistently exciting, and its time derivative is 

bounded, then ‖θ̂(t) − θ(t)‖
t→∞
→  0.  

If there are no unmeasurable states, a reduced order asymptotic state observer is obtained by: 

{
ẏ̂(t) = α(y(t), u(t), t) + β(y(t), u(t))θ̂(t) − κy(ŷ(t) − y(t))

θ̇̂(t) = −κθβ
T(y(t), u(t))(ŷ(t) − y(t))                                      

                               (2.24) 

7-) Sliding mode observer  

The sliding mode observers (SMO) are vastly applied to fault diagnosis in both linear and nonlinear 

systems with uncertainties, such as linear system in [37], as well as in nonlinear systems in [26]. The 

inherent property of sliding mode observer (SMO) is that it is normally insensitive to any uncertainty 

or external disturbance signals which are implicit in the input channels that are bounded by a known 

Lipschitz nonlinear function. Subsequently, this characteristic makes it suitable for state estimation and 

fault detection for nonlinear systems whose dynamics include a linear part and a nonlinear part which 

is Lipschitz with respect to system states. Designing a sliding mode observer consists in two steps: (1) 

the design of a sliding surface such that the system possesses the desired performance when it is 

restricted to the surface; (2) the design of a variable structure control law which drives the system 

trajectories to the sliding surface in finite time and maintains a sliding motion on it thereafter. As the 

trajectories reach the sliding surface, the estimations become insensitive to the external disturbances. 

Therefore the sliding mode observer can force the output estimation error to converge to zero in finite 

time, while the observer states converge asymptotically to the system states. The applications of SMO 

are concerned with the use of sliding mode ideas for fault diagnosis, reconstruction and how this 

information may be used in a simple way to provide a fault tolerant control scheme[30]. The limitation 

of this approach is its requirement of sufficient measurements and the chattering phenomenon caused 

by the nonlinear feedback in the observer. In below, we describe the major steps involved in the design 

of sliding mode observer. The discussion is based on the results from [93]. 

Consider the class of nonlinear systems can be transformed into triangular input form: 
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{
 
 

 
 
ẋ1 = x2 + g1(x1, u)                                                       

ẋ2 = x3 + g2(x1, x2, u)                                                
⋯ = ⋯                                                                            
ẋn−1 = xn + gn−1(x1, x2, … , xn−1, u)                        

ẋn = fn(x1, x2, ⋯ , xn) + gn(x1, x2, … , xn, u)       
y = x1                                                                        

                                      (2.25) 

where x(t), u(t) and y(t) are bounded sate vector in finite time, bounded input vector and the output 

vector respectively. gi(. ,0) = 0, for i = 1,… , n. 

A sliding mode observer can be generated as: 

{
 
 

 
 

ẋ̂1 = x̂2 + g1(x1, u) + λ1sign (x1 − x̂1) 

ẋ̂2 = x̂3 + g2(x1, x 2, u) + λ2sign (x 2 − x̂2)
⋯ = ⋯

ẋ̂n−1 = x̂n + gn−1(x1, x 2, … , x n−1, u) + λn−1sign (x n−1 − x̂n−1)

ẋ̂n = fn(x1, x 2,⋯ , x n) + gn(x1, x 2, … , x n, u) + λnsign (x n − x̂n)

                  (2.26) 

Where  

x i = x̂i + λi−1sign (x i−1 − x̂i−1), i = 2, … , n − 1                                                   (2.27) 

The manifolds are effectively a sequential consideration of a series of first-order dynamics, it is easily 

seen by forming the error dynamics for e = x − x̂i: 

{
 
 

 
 

ė1 = e2 − λ1sign (x1 − x̂1)                                                        

ė2 = e3 + g2(x1, x2, u) − g2(x1, x 2, u) − λ2sign (x 2 − x̂2)
⋯ = ⋯

ėn−1 = x̂n − gn−1(x1, x 2, … , x n−1, u) − λn−1sign (x n−1 − x̂n−1)

ėn = fn(x1, x2, ⋯ , xn) − fn(x1, x 2, ⋯ , x n) + gn(x1, x2, … , xn, u) − gn(x1, x 2, … , x n, u) − λnsign (x n − x̂n)

 (2.27) 

It can be verified that for sufficiently large λ1, a sliding mode is attained on e1 = 0 in a finite time 

and it follows that  e2 = λ1sign (x1 − x̂1), which with (2.27) yields x 2 = x2.  

Then the observation error dynamics become: 

{
 
 

 
 

ė1 = 0                                                        

ė2 = e3 − λ2sign (x 2 − x̂2)                                                                                    
⋯ = ⋯

ėn−1 = x̂n − gn−1(x1, x 2, … , x n−1, u) − λn−1sign (x n−1 − x̂n−1)

ėn = fn(x1, x2, ⋯ , xn) − fn(x1, x 2, ⋯ , x n) + gn(x1, x2, … , xn, u) − gn(x1, x 2, … , x n, u) − λnsign (x n − x̂n)

 

The manifolds are reached sequentially and x i − x̂i converges to zero if the x j − x̂j with j < i have 

already converged to zero. 

2.3.2 Observer Schemes  

Using a single observer is not sufficient for fault isolation. For this purpose several observer schemes 

can be used [94] to detect and isolate faults in dynamic processes. The most popular two are the 

Dedicated Observer Scheme (DOS) and the Generalized Observer Scheme (GOS). 

1-) Dedicated Observer Scheme 
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A well-known scheme is the dedicated observer scheme [59]. The basic idea of the dedicated observer 

scheme is to have a bank of observers where each observer only depends on one fault and is 

approximately decoupled from all of the other faults and from all disturbances [4]. It was first 

introduced by [95] for IFD (instrument fault diagnosis). For IFD, it consists of a set of observers each 

of which is driven by a different single sensor output. Each of these observers then estimates the full 

output vector, or if this is not possible, part of the output vector. The number of observers equals the 

number of outputs (sensors). For AFD, each observer uses one input and all the outputs. In this case, 

multiple residual generators are designed with each observer excited by a single input. Therefore, each 

residual generator is sensitive to only one actuator fault. It should be mentioned that the dedicated 

observer scheme allows detecting and isolating multiple faults by analysis of the residuals. As shown in 

Fig. 2.8. 

 

 

 

 

 

 

 

 

 

 

 

 

                    Fig. 2.8 Schematic of Dedicated Observer Scheme 

2-) Generalized Observer Scheme  

Another well-known scheme is the generalized observer scheme [59]. The main idea of the generalized 

observer scheme is to design the observer which is sensitive to all fault candidates but the one the 

observer involved. In the schemes, the FDD architectures consist of a reduced bank of N observers, 

where N is the number of fault candidates. Then ith residual is designed be sensitive to all faults but 

the ith one. For IFD, the ith observer uses all the inputs and M outputs but the ith one. While for 

AFD the ith observer is connected to all inputs except the ith. The decision function is as follows: if 

the ith residual is zero (or below a certain threshold) and all the remaining residuals are nonzero (or 

above their corresponding thresholds), then a decision on the occurrence of the ith fault is made.. The 

generalized observer scheme can be used for localization of single faults. As compared to dedicated 

observer scheme, in this design scheme, each observer is excited by all the system outputs but one. 

Because of its structure, the generalized observer scheme is less sensitive to modeling errors and 

disturbances than the dedicated observer scheme. As shown in Fig. 2.9. 
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                     Fig. 2.9 Schematic of Generalized Observer Scheme 

2.4 Fault Detection and Diagnosis Approach of Interconnected System 

2.4.1 Introduction 

Another important problem in the area of automatic control is related to the interconnected systems. 

The notion of interconnected systems is introduced to describe complex systems consisting of 

subsystems interacting on each other. A complex system can be defined as a system composed of a 

number of interconnected dynamic units whose interaction enforces the collective behavior of a system. 

Several practical systems, e.g. power generation and distribution systems, telecommunication networks, 

traffic networks, exhibit complex and spatially distributed dynamics and are referred to as large scale 

interconnected systems [96]. The study of interconnected systems plays a significant role in the 

development of stability theory of dynamic systems, as it allows investigating the stability property of a 

complex system by analyzing its less complicated components. 

Recently, significant research works have been done in the area of interconnected systems. Most of the 

results focus on the control problem [97]. There have been many applications of a centralized scheme 

of interconnected systems control in different areas of the engineering field. Examples of such systems 

including multi-machine power system, robots, chemical process control systems etc. Due to the 

extensive efforts that are required in transmitting the entire system measurements for a centralized 

scheme which are not suitable for distributed systems, decentralized control of distributed systems by 

using local subsystem states is introduced. Many researchers in the field of large scale interconnected 

systems are devoted to decentralized robust control strategies, the advantages of using decentralized 

control can be found from either economy or reliability standpoints. When the system is too large to be 

dealt with by centralized control, it is computationally efficient to use only local information, i.e. local 

states or outputs, to make the control decision. Involved techniques are such as observer based control 

schemes [98], stepping based control algorithm [99], sliding mode control algorithm [100], unbiased 

observers based [101], adaptive control [102], decentralized adaptive output-feedback [103], 

decentralized observer based [104], reduced-order control [105]. Like in [100], a decentralized output 

feedback control strategy based on sliding mode techniques is proposed for a class of nonlinear large 
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scale interconnected systems with matched and mismatched uncertainties. The primary advantages of 

distributed over the traditional centralized control strategies include improved control performance, 

low cost, reduced computation resource requirements, reduced wiring or communication bandwidth 

requirements, simple installation and maintenance, and system agility. 

In order to achieve reliable and safe operations of interconnected systems, the design of FDD and 

accommodation schemes is also a crucial step. Suitable FDD schemes are capable of ensuring that a 

fault at any given location can be detected at an incipient stage in order to prevent catastrophic failure 

of the overall system. There have been significant research activities in the development of new 

methodologies of FDD in interconnected systems. Until recently, centralized fault diagnosis approaches 

were the main topic of investigation and a variety of FDD methods have been developed. These FDD 

schemes need to own the capability to access to all the measurements available and the objective is to 

detect and isolate faults occurring in any part of the system. To guarantee this access availability, each 

subsystem requires transmitting information about actuators and sensors to a centralized FDD station 

that detects and isolates faults over the network. Many centralized fault accommodation schemes have 

been introduced in the above section. However, in practice, due to the constraints on computational 

capabilities, wiring, and/or communication bandwidth, it is very difficult to address the problem of 

diagnosing faults in interconnected distributed systems using a centralized architecture. In centralized 

FDD approaches, intelligence of monitored systems is at the top level of the process plant. When this 

centralized schematic is used, sensors have to be installed to all the primary variables of the field 

devices to make fault candidates observable. While installing additional sensors into the field devices 

leads to very complicated and expensive systems where deep expertise concerning the operation of the 

device is also required from monitoring system designers. Increasing complexity of these systems have 

also leaded to faulty alarms and maintaining such a system requires a lot of resources. 

In recent years though, advances in sensing and communications, as well as to overcome these 

limitations, has motivated the investigation of FDD in interconnected system not that only focus on 

centralized fault diagnosis approaches, but also the focus of the research activities is directed mostly 

towards the development of hierarchical [106], decentralized [107], distributed [108] FDD schemes. 

The term distributed describes a FDD scheme whose structure is analyzed as being constituted by 

multiple subsystems that interact with neighboring subsystems. This is in contrast with the term 

decentralized FDD scheme, whose structure is considered as made of multiple subsystems that do not 

interact with each other, and of course with the term centralized, where a subdivision in distinct 

subsystems is not possible, as every part of the system interacts with every other one [109]. The 

difference between the concepts of centralized, decentralized and distributed systems can be easily 

understood by looking at Fig. 2.10, where a pictorial representation is given. 
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Fig. 2.10 Schematic of different structures: physical interconnection between subsystems is represented 

by black arrows, communication and measuring channels are represented by white arrows 

Issues such as economic cost and reliability of communication links can be considered, thus providing 

impetus to develop and use a more advanced scheme. Traditional FDD schemes may not be applied to 

interconnected systems, since not all measurements are available in every node. In [110], the diagnosis 

problem is formulated and both a centralized and decentralized architectures are developed and 

compared. Obviously, distributed control and monitoring is more suitable than centralized for 

large-scale interconnected dynamical systems, such as power networks and multi-agent systems, due to 

the lower complexity and less use of network resources. Many factors contribute to this formulation 

such as the large scale nature of the system to be monitored, its spatial distribution, and the 

unavailability to access to certain parts of the system from a remote monitoring component and 

therefore local diagnosis should be performed. In fact, in many cases, the architecture of the underlying 

subsystems that are inherently decentralized and distributed makes the development of a distributed/ 

decentralized FDD framework a necessity. 

2.4.2 Distributed and Decentralized Fault Detection and Isolation 

As previously mentioned, large scale interconnected systems require distributed or decentralized 

schemes, which motivated researchers to work on distributed approaches for fault diagnosis. In recent 

years, the problem of distributed or decentralized FDD for interconnected nonlinear system has 

attracted significantly increasing attention. In this case, the system is no longer diagnosed by a single 

monitor but several independent local monitors which together perform the FDD function of the overall 

system. Distributed/decentralized monitoring and control offers many advantages over centralized 

control, such as enhanced reliability, flexibility and efficiency. 

In the literature of fault diagnosis of interconnected nonlinear systems, by assuming that the 

interconnection functions are known and the entire system states or entire estimated states are available 

at all subsystems, distributed/decentralized fault diagnosis schemes have been proposed, like in [153]. 

By using overlapping decomposition [111], a large scale system is decomposed into a set of subsystems 

which are interconnected by unknown nonlinear functions and distributed fault diagnosis scheme is 

introduced by assuming the entire state vector is available. Bank of adaptive observers, using only 

measurements and information from neighboring subsystems are used to detect and isolate faults in 

interconnected subsystems in [154]. In [108], a distributed fault detection scheme for process and 

sensor faults are developed by investigating the propagation of the fault effects to neighboring 

subsystems. In [97], a distributed sensor fault detection scheme is proposed for a class of 

centralized decentralized distributed 
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interconnected input output nonlinear systems where only the measurable part of state variables are 

directly affected by the interconnections between subsystems, but the estimator design is conducted 

under some potentially restrictive conditions and deals only with the fault detectability issue. 

Application of distributed FDD, e.g. power networks which is with inherent decentralized nature, can 

be found. In [112], it addresses the problem of distributed unknown input observers based FDD for a 

network of nodes with double integrator dynamics, whose interactions are described by a distributed 

control law. On the other hand, decentralized fault diagnosis schemes in [7] are introduced for 

interconnected systems by assuming the same conditions in distributed method are satisfied. In [113], a 

robust decentralized actuator fault detection and estimation scheme is proposed for a class of nonlinear 

interconnected systems using sliding mode observer. While in [59] a bank of decentralized observers is 

built where each observer contains the model of the entire system and receives both measurements 

from the local subsystem and information transmitted from other observers. Literature [114] presents a 

decentralized fault detection filter using game theory for a special large scale system where the 

interconnection terms are functions of the system outputs only. 

Similar to current distributed/decentralized control approaches, these FDD methods are not completely 

distributed or decentralized since they still require the interconnection functions to be known and the 

entire state vector to be available at all subsystems. However, although availability of all the state 

information at each subsystem can help in an accurate diagnosis, the entire system state are typically 

not always fully available for practical systems. Some state variables may be difficult or costly to 

measure and sometimes have no physical meaning and thus cannot be measured at all [100]. Moreover, 

it is very expensive and time consuming to gather and process all the measured system states from a 

distributed large scale system at one place, even if this is possible, the information will be delayed and 

outdated. In practice, only a part of the states are available. 

Motivated by the aforementioned observations, the need for a pure decentralized FD scheme which 

only uses local measurements with partial state measurement at each subsystem is expected. The 

objective is to design and analyze a distributed FDD approach, where a local fault detection agent is 

associated with each subsystem and receives local measurements and partial information from 

neighboring fault detection agents [108]. More specifically, the FDD scheme is designed in such a way 

that a process fault occurring in a subsystem can only be detected by its corresponding detection agent, 

whereas a sensor fault occurring in a subsystem may also be detected by the detection agents of the 

neighboring subsystems it affects. Decentralized diagnosis of interconnected systems by using only 

local subsystem states has been introduced recently [162]. For example, in [115], the authors propose a 

decentralized fault diagnosis and fault accommodation scheme by using only the local states at each 

local fault detector. Work [96] designs a decentralized fault diagnosis scheme for interconnected 

nonlinear systems by using local fault detectors (LFD) which consists of a nonlinear observer with an 

incorporated online approximator (IOA). The IOA is used to estimate the unknown part of the 

subsystem dynamics, i.e. interconnection term and possible fault function, so that each LFD monitors a 
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single subsystem by making use of the local information or states alone. A number of new 

developments in the design of pure distributed FDD for interconnected system can be found in the 

literature. For instance, in [116], the distributed fault detection scheme is based on local fault filtering 

schemes with each one assigned to monitor one subsystem and provide a decision regarding its health. 

A nonlinear observer-based approach is developed in [117] for distributed fault detection of a class of 

interconnected input-output nonlinear systems by relaxing the assumption of the availability of all the 

state measurements. In [118], authors present a distributed fault detection and isolation (FDI) strategy 

for a team of networked robots that builds on a distributed controller-observer schema. By means of a 

local observer, each robot can estimate the overall state of the team and it can use such an estimate to 

compute its local control input to achieve global tasks. 

2.5 Summary 

This chapter introduces the fundamental concepts in FDD with focus on nonlinear systems. Definitions 

of elementary nomenclature such as fault, failure, fault detection, fault identification and fault isolation 

are provided. A classification of FDD schemes is presented elaborating the main features of each 

approach. A particular attention is paid to observer-based fault detection schemes, their robustness 

properties are discussed and several approaches developed over the past for robust residual generation 

are introduced. At the end, some state of the art fault detection techniques for interconnected nonlinear 

systems are presented. 
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CHAPTER 3 INTRODUCTION TO SYSTEM INVERSION 

This chapter gives a background to system inversion of linear and nonlinear systems with a particular 

focus on nonlinear system. First, we will review the related definitions and notations such as zero 

dynamics, Lie bracket, right and left invertibility, etc. Then the representation and inversion of linear 

system will be considered. Stability of the inversion and its connection to minimum and non-minimum 

phase systems will also be reviewed. Nonlinear systems will be considered in a similar manner and 

difficulties with stable inversion will be highlighted. This chapter ends with a short summary on related 

works with system inversion including system control, parameter identification, unknown input 

reconstruction and fault detection and diagnosis (FDD) problems.  

3.1 Introduction 

System inversion is one of the fundamental issues from a theoretical and practical viewpoint and has 

been extensively studied for over fifty years. The first systematic result relevant to the inverse systems 

was pioneered by Brockett and Mesarovic (1965). After that, the inversion problems were widely 

studied, in particular to characterize certain structural properties of systems. See for instance, in the 

classic linear systems theory, the works of [119][120]; for nonlinear systems [121][122]; for infinite 

dimensional systems [123], and for descriptor systems [124]. System inversion is a general concept in 

systems theory where left and right system inversions are two different aspects that appear in the 

literature, see e.g.[125]. From the system dynamics point of view, left inversion is mainly related to the 

system zeros, and a minimal left inversion gives a structure of the zero-dynamics of a system. 

Right-inversion relates to the input output decoupling problem and is sometimes referred to as the 

decoupling controller problem in control theory. Left and right invertibilities, as well as inversion 

procedures and algorithms, have been widely studied in the literatures. A good compendium of left and 

right invertibility of both linear and nonlinear systems can be found in [120].  

For left invertibility, the problem has been a long studied problem in the systems literature. Many 

works on invertibility of linear dynamical system [120][126]. Necessary and sufficient conditions were 

obtained in [120] for the existence of a linear time invariant dynamical system that, when cascaded 

with the original system, produces as its output the input to the original system. With respect to 

nonlinear dynamic systems, in [127] invertibility of nonlinear continuous time systems，in [125] the 

notion of differential algebraic invertibility, and in [121] a geometric invertibility are discussed. For 

certain classes of nonlinear state space systems，one can find algorithms (and also sufficient or 

necessary conditions) of invertibility, see e.g. [128]. In [126] the left invertibility problem for switched 

linear systems is discussed, followed that nonlinear system is investigated in [36]. These conditions are 

given in terms of a rank condition on matrices made up of either the system matrices or the system 

Markov parameters. Although the existence conditions and properties of system inversion have been 

intensively studied, determining the inverse of a nonlinear model is not always a trivial thing even if it 

exists. With respect to the above mentioned researches, there are only few of them that supplies 
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computational algorithms of inverse dynamic. To achieve this purpose, the work [129] gives an 

algorithm to calculate the inverse and the zero dynamics. Another solution proposed for such problem, 

is to determine the class of nonlinear dynamical systems which are input output linearizable. Necessary 

and sufficient geometrical conditions have been stated [15][16]. Moreover, the paper [130] supplies a 

new algorithm to compute the dynamic inversion for an affine MIMO nonlinear control systems with 

regular characteristic matrix as well as singular matrix. While in [131], the left inverse system with 

minimal order and its algorithms of discrete time nonlinear systems are studied in a linear algebraic 

framework. 

In recent years, dynamic inversion methods can be found in many interesting applications, such as 

aerospace and aviation, feedforward control, fault detection, system identification, signal processing 

problems, cryptography, electrical networks etc. Generally speaking, left inverse systems are typically 

used to observe internal variables and to reconstruct unknown exogenous signals directly acting on the 

system [120]. Right inverse systems are typically used for reference tracking and disturbance rejection. 

As far as systems input output decoupling is concerned, a controller insuring input output decoupling 

can be based on a right inverse of the controlled system. From a technological point of view, an 

important domain of application of left invertibility is the one corresponding to model based failure 

detection and isolation. Indeed, when failures are modeled as unknown exogenous signals, the failures 

detector is essentially a left inverse of the monitored system. The applicability of system inversion to 

fault detection in linear time invariant systems was first demonstrated in [132]. Followed in [133], it is 

shown how fault detection of both linear and nonlinear systems can be viewed as an input 

reconstruction process. Reference [120] developed failures detection schemes which overpass the 

limitations characterizing classical observer based failures detection methodologies.  

Before stating the inverse dynamic of the systems, let us start with a review of some background from 

differential geometry and differential algebra needed to understand within the rest of this chapter. 

3.2 Some Definitions and Notations 

1-) Left and Right Inverse  

Left and right inverse are two different concepts that appear in the system inversion literature. Loosely 

speaking, a left inverse for the original system would be a dynamic system which, driven by the 

process output (and its derivatives), reconstructs the applied input. A right inverse would then be a 

dynamic system which, driven by a desired output trajectory, produces the input necessary to obtain 

this trajectory. 

In this respect, one can distinguish between the two notions of inverse systems as follows: 

Left inverse: The left inverse reconstructs the input from the output of the plant, its derivatives, and the 

state variables of the inverse. Given a left invertible system, Σ : U → Y, a left inverse ΣL
−1: Y → U, is 

a system satisfying  ΣL
−1( Σ (u(·)))  =  u(·), as shown in Fig. 3.1. 
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Right inverse: The right inverse produces the input history that is required to obtain a particular output 

(i.e. an ideal feedforward controller) using the plant output and the state variables of the inverse. Given 

a right invertible system, Σ: U → Y, a right inverse, ΣR
−1 : Y → U, is a system satisfying  Σ (ΣR

−1 

(y̅(·)))  =  y̅(·), as shown in Fig. 3.2. 

 

 

Fig. 3.1 Left inverse                        Fig. 3.2 Right inverse 

2-) Left and Right Invertibility 

Left invertbility is about uniquely finding the input, given the output and right invertibility is about 

finding one input sequence (not necessarily unique) such that the output is equal to a desired reference 

signal. Roughly speaking, the definition of left invertibility requires that any difference in the input 

must result in a difference in the following output symbols, at most in a time equal to the invertibility 

time. The system right invertibility (or functional controllability) denotes its property of reproducing at 

the output any arbitrary function, starting from the zero state and after some delay, provided that a 

suitable control input is applied.  

For linear systems these two concepts can easily be explained in terms of the transfer matrix G(s) of 

the system. One says that the (p,m) -matrix  G(s) is left-invertible if there exists a rational 

(m, p) -matrix L(s)  such that L(s)G(s) = Im,  whereas G(s)  is right-invertible if there is a 

rational (m, p)-matrix R(s) such that G(s)R(s) = Ip.  

Left and right invertibility of a linear system is often treated in a state space formulation among others. 

Let us for completeness also consider an LTI system described by a state space formulation: 

{
x(t) = Ax(t) + Bu(t)         x(0) = x0
y(t) = Cx(t) + Du(t)                            

                                                     (3.1) 

where x ∈ ℜn, u ∈ ℜm, y ∈ ℜp denote respectively the state, the input and the output of the system. 

The matrixes A, B, C, D are with appropriate dimensions. 

The transfer function is given by: 

G(s) = C(sI − A)−1B 

For nonlinear systems there are various attempts to analyze invertibility, see e.g. [121] where 

differential geometric methods are used, and [134] where noncommutative generating power series are 

the basic tools.  

To give a formal definition, we consider a continuous time state space model: 

{
ẋ(t) = f(x(t)) + g(x(t))u(t)

y(t) = h(x(t))                          
                                                                (3.2) 

𝛴 𝛴 𝛴 Σ𝐿 
−1 

u y u 𝛴 Σ𝑅
−1 𝛴 𝛴 

y u y 
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where x ∈ X ⊂ ℜn, u ∈ U ⊂ ℜm, y ∈ Y ⊂ ℜp denote respectively the state, the input and the output of 

the system. The mappings f, g1, . . . , gm which characterize the dynamics of the system are ℜn-valued 

mappings defined on the open set X, i.e., f(x), g1(x), . . . , gm(x) correspond to the values at a specific 

point x ∈ X in the state space. The functions h1, . . . , hp are real valued functions defined on X, and 

h1(x), . . . , hp(x) correspond to the values taken at a specific point x which characterize the output of 

the system. These mappings may be represented in the form of n −dimensional vectors of real-valued 

functions of the real variables x1, . . . , xn, as: 

f(x) = [

f1(x1, . . . , xn)
f2(x1, . . . , xn)

⋮
fn(x1, . . . , xn)

] , gi(x) = [

g1i(x1, . . . , xn)
g2i(x1, . . . , xn)

⋮
gni(x1, . . . , xn)

] , hi(x) = hi(x1, . . . , xn) 

In the following, ℛ+ denotes the set of non-negative integers, a reference function r(. ) is used to 

represent the desired output. Following is the definition for both left and right invertibility, as defined 

in [135]. 

Definition 3.1: A system is said to be left invertible at time k, if, for every l ∈ ℛ+, there exists an 

integer σ ∈ ℛ+, such that the input can be uniquely determined over the interval [k − l, k] by the 

knowelge of the initial state x(k − l) and of the output y over the interval [k − l, k + σ]. 

Definition 3.2: A system is said to be right invertible at time k, if, for every l ∈ ℛ+, x(t0) ∈ X, and the 

reference function r(. ) ∈ Y is defined over the interval [k, k + l + 1], there exists an integer σ ∈

ℛ+ and an input u defined over the interval [k − σ, k + l] such that for the initial state x(k − σ) =

x0, the output y(j) = r(j), for all j ∈ [k, k + l + 1]. 

As will be clear in the following chapters, we have to consider cases where we can uniquely find the 

input given the output when the inversion is used for input distinguishable problems. Left inverse and 

left invertibility is therefore important in our considerations. However, it can be noted, in the case of a 

square system with an equal number of inputs and outputs, the notions of right and left inverse become 

identical. A realization of the inverse operator can then be interpreted as a right or a left inverse, 

depending on the context.  

3-) Manifolds 

A manifolds is a topological space, usually denoted Μ, which has special properties that are useful for 

the results that follow. Most notably, a manifold is locally Euclidean. Consider the mapping of a point 

x in some neighborhood U of Μ to a point ϕ(x) in some open subset of ℜ𝑛, the mapping ϕ and its 

inverse (ϕ−1) are assumed to be C∞ functions. We can define a coordinate chart as the pair (U, ϕ), 

it is often useful to represent ϕ  as a set (ϕ1, … , ϕn) , where ϕi: U → ℜ  is called the ith 

coordinate function. The set real number (ϕ1(p), … , ϕn(p)) is called the set of local coordinates 

of x in the coordinate chart (U, ϕ). 

4-) Vector Fields  
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A vector map associates a point x = (x1, … , xn) on an open subset of ℜ𝑛 with the vector in ℜ𝑚: 

f(x1, … , xn) = [

f1(x1, … , xn)

f2(x1, … , xn)
⋮

fm(x1, … , xn)

] 

A scalar map or function merely maps some open subset of ℜn to ℜ. A vector fields, f(x), on ℜn  is 

the mapping which assigns to every point x ∈ Μ a tangent vector f(x) in the tangent space to Μ. 

The mappings f(x), g1(x), . . . , gm(x)  of the system models (3.2) are smooth mappings in their 

arguments assigning to each point x ∈ X a vector of ℜn , i.e., f(x), g1(x), . . . , gm(x), h1(x), . . . , hp(x) 

according to (3.2). Therefore they are referred to smooth vector fields defined on X. 

5-) Lie Derivative  

A co-vector field that will be used more frequently in the following parts of this work is the so called 

differential of the real-valued function λ. This co-vector field, denoted dλ is defined as the 1 × n row 

vector whose i − th element is the partial derivative of  λ with respect to xi. Its value at a point x is 

therefore: 

dλ(x) = [
∂λ

∂x1

∂λ

∂x2
…

∂λ

∂xn
] 

or simply dλ(x) = ∂λ ∂x⁄ .  

Consider the real-valued function λ and a vector field f both defined on X. The derivative of λ along 

smooth filed f is defined to be Lie Derivative. The notion we use is Lfλ(x).   

The Lie Derivative is equal to the value of the tangent vector f(x) at point x. In local coordinates, it is in 

fact, the inner product, written as: 

Lfλ(x) = 〈dλ(x), f(x)〉 =
∂λ

∂x
fi(x) = [

∂λ

∂x1
…

∂λ

∂xn
] [
f1(x1, … , xn)

⋮
fn(x1, … , xn)

] = ∑
∂λ

∂xi
fi(x)

n

i=1

 

The following notation is used for repeat Lie Derivatives: 

Lf(Lfλ(x)) = Lf
2λ(x). 

Continuing a recursion by differentiating λ k −times along f satisfies: 

Lf
kλ(x) =

∂(Lf
k−1λ(x))

∂x
f(x), with Lf

0λ(x) = λ(x) 

Repeated use of this operation by extending the scope of the operation, the derivative of λ first along 

the vector field f and then along a vector field g is defined as: 

LgLfλ(x) =
∂(Lfλ(x))

∂x
g(x) 
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6-) Lie algebra 

A vector space V over R of all smooth vector fields on a manifold X is a Lie algebra, if in addition to 

its vector space structure, it is possible to define a binary operator on V: [V, V] ≡ V ×  V →  V, called a 

product and written [・,・], which has the following properties: 

the operator is skew commutative: [v, ω] = −[v, ω] 

the operator is bilinear over 

[α1v1 + α2v2, ω] = α1[v1, ω] + α2[v2, ω] 

the operator satisfies the Jacobi identity: 

[v, [ω, z]] + [ω, [z, v]] + [z, [v, ω]] = 0 

where α1, α2 are real numbers and v, ω, z are real vector fields.  

7-) Lie Bracket 

The binary operator [・,・] on V(X) satisfying the above properties is defined as the Lie bracket. With 

the motivation of the use of Lie theory, a second type of operation on co-vector fields that is important 

to introduce here involves two vector fields f and g, both defined on X. From these a new vector field 

can be constructed, noted [f, g] and defined as: 

[f, g](x) =
∂g

∂x
f(x) −

∂f

∂x
g(x)                                                              (3.3) 

at each x of X, in local coordinates, where the expressions: 

∂g

∂x
=

[
 
 
 
 
∂g1
∂x1

⋯
∂g1
∂xn

⋮ ⋱ ⋮
∂gn
∂x1

⋯
∂gn
∂xn]
 
 
 
 

,
∂f

∂x
=

[
 
 
 
 
∂f1
∂x1

⋯
∂f1
∂xn

⋮ ⋱ ⋮
∂fn
∂x1

⋯
∂fn
∂xn]
 
 
 
 

 

are the Jacobian matrices of the mappings g and f, respectively. The vector field defined in (3.3) is 

called the Lie product (or Lie bracket) of g and f. It is a fundamental property of Lie brackets that 

although they appear to be second order differential operators they are in fact first order because of the 

cancellation of the second order partial derivatives. To be more specific, the Lie bracket of two vector 

fields is always a vector field. 

The notation that is typically employed for the operator is as follows:  

adf
0g(x)  ≡  g(x)                                        

adf
1g(x)  ≡  [f, g](x)                                 

adf
2g(x)  ≡ [f, [f, g]](x) = [f, adf

1g](x) 
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The importance of the notion of Lie bracket of vector fields and Lie algebras is very much related to 

their applications in the study of nonlinear systems of type (3.1). It is interesting to note the 

interpretation of the Lie derivative and Lie Bracket for a linear dynamical system is very much related 

to the study of nonlinear system. 

In this case, considering (3.1) and (3.2), assume that:  

f(x) = Ax, g(x) = Bx,   h(x) = Cx 

 the repeat Lie derivative of the output function h(x) along the f(x) vector is given by:  

Lf
kh(x) = CAkx 

Thus, one obtains the rows of the observability matrix of the linear system. 

Apply the Lie derivative to the output function h(x) along g(x), proceeded by repeat derivatives along 

f(x), one then obtain the Markov parameters for the linear system: 

LgLf
kh(x) = CAk−1Bx 

Finally, consider the Lie Bracket of f(x) and g(x) vector fields: 

adf
1g(x) =  [f, g](x) = [BA − AB]x 

adf
kg(x) = [f, adf

kg](x) = (−1)kAkB 

In this case, we obtain the columns of the controllability matrix of the linear system multiplied by 

(−1)k. 

Application of the theory of Lie groups, Lie algebras and their representations is a rapidly growing 

field of modern mathematics which occurs in the solution of problems in many fields of applied 

mathematics and physics. Recent approaches of applied Lie theory are motivated basically by control 

theory. During the period from the early 60’s to the late 70’s, for example, several research papers 

appeared that made use of Lie algebraic techniques to study controllability of nonlinear differential 

equations. These early results paved the way to a systematic use of these techniques in other system 

theoretic studies. There is another perhaps more important motivation behind the application of Lie 

theory to nonlinear problems. By embedding the original nonlinear problem in the framework of matrix 

Lie groups and associated Lie algebra, it is possible to reduce some system theoretic questions to 

problems which can be solved by using standard tools of linear algebra. Abstractly, a Lie algebra L 

represents a new kind of vector space to the problems which is equipped with a product [x, y], which is 

called Lie product or Lie bracket in the sequel, satisfying certain axioms. 

8-) Zero and Zero Dynamics   

Zeros and zero dynamics of dynamical systems are of fundamental important notions in the analysis 

and inverse representation of the systems [136]. The concept of zero dynamics of a nonlinear system 
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was introduced about thirty years ago by Isidori, then in a series of papers, see e.g. [137]. As it will be 

found, the name zero dynamics is due to its relation to output zeroing and its relation to transmission 

zeros. Zero dynamics describes the internal behavior of a dynamical system where initial conditions 

and inputs are chosen in such a way to force the output to be identically zero, as introduced in [137]. 

As illustrated in [130], broadly speaking, the inverse dynamic of an input output dynamical system 

involves its decomposition into an external part, that enables an explicit relationship between inputs 

and outputs, and an internal part that is governed by its dynamics without input. This last dynamics 

provides naturally the so-called zero dynamics when the external variables are maintained at zero. 

From an analysis point of view, internal stability is a key issue for the practical application of the 

inverse system. For the single input single output (SISO) linear dynamical system the inverse dynamic 

has been completely characterized by its transfer function. It was also solved within the SISO nonlinear 

case by a full order realization. However, it is not an easy task when you dealing with a MIMO 

nonlinear dynamical system. Several researches have dealt with this problem, for example, the concept 

of zero dynamics was connected to the inverse dynamic, and in addition, it is settled by input output 

linearization via a feedback thus removing the dynamics of zero. From the system dynamics point of 

view, left inversion is mainly related to the system zeros, and a minimal left inversion gives a structure 

of the zero dynamics of a system [137]. It is now understood that a meaningful characterization of 

zeros in a MIMO setting goes beyond the zeros of the individual transfer functions between the inputs 

and outputs; it involves the concept of transmission zeros, which can be defined as the poles of the 

inverse system.  

For the brief characterization of this principle consider the following problem and the corresponding 

definition, as describe in [137], consider a state space system of the form: 

{
ẋ = f(x, u)

y = h(x)   
                                                                                           (3.4) 

It is assumed that the origin x = 0, u = 0 is an equilibrium point for this system ( ẋ = 0) and 

that  h(0) = 0 . Let, furthermore, the point x0 in the state space of (3.3) such that  f(x0, 0) = 0 

and h(x0) = 0. Thus, if the initial state of (3.4) at time t = 0 is equal to x0, moreover, the input u(t) 

is zero for all t ≥ 0, then also the output y(t) is zero for all t ≥ 0. 

Definition 3.3: The system dynamics described by (3.4) restricted to the set of initial conditions 

described above is called the zero output constrained dynamics or shortly, the zero dynamics. To be 

more specific, the zero dynamics identifies the set of all pairs consisting of an initial state x0 and an 

output function h(x) which produce an identically zero output.  

3.3 Left Inversion of Linear system 

Studying inversion of linear systems servers as a good introduction to inversion of nonlinear systems. 

In the following part, it will be shown how linear and nonlinear system inversion can be interpreted in a 

familiar manner. The problem of calculating a realization of the inverse has a straightforward solution 
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in the case of linear systems. A linear model can be described by a transfer function, a state space 

realization or an impulse response. There are, therefore, potentially many different notions of inversion 

that can be used in developing techniques for inverting systems, e.g., [135][120].  

These are mainly two powerful tools studied from the two principal frameworks of the linear systems 

theory, namely: the Transfer Function Matrix (TFM) approach, in which the argument of the considered 

signals is “s”, and the Time Domain (TD) approach, in which the argument of the considered signals is 

“t”, as shown in [120].   

Let us note that a system is causal if, for every choice of t0, the output sequence value at t = t0 

depends only on the input sequence values for t ≤ t0. 

3.3.1 Input Output Description of Linear System 

Given a transfer function description of a linear system, one can easily calculate a realization for the 

inverse of its transfer function (SISO case) or transfer matrix (MIMO case). 

Consider the LTI system Σ given in (3.1), the input output representation of Σ can be given in the form 

of: 

G(s) = C(sI − A)−1B 

y(s) = G(s)u(s)       

Here G(s) is refereed to as the transfer function. The zeros of the transfer function are given as the 

roots of: 

C(sI − A)−1B = 0 

and the poles are given by: 

det(sI − A) = 0 

The input and output behavior of an LTI system can be completely defined by its transfer function 

together with its region of convergence (ROC). ROC is in fact a ring centered at the origin and it will 

be bounded by some of the poles. If the system is stable then the ROC is includes the unit circle. Also, 

if the system is causal, the ROC must be outside the poles with the largest magnitude. Hence, for a 

system to be both stable and causal all the poles need to be inside the unit circle. We say that the system 

with casual zeros is with minimum phase. We will only consider stable minimum phase linear system, 

meaning that the ROC includes the unit circle. 

In this case, the transfer function has a corresponding inverse system denoted G−1(s).  The (left) 

inverse G−1(s) satisfies the identity: 

G−1(s)y(s) = G−1(s)G(s)u(s) 
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with G−1(s)G(s) = I. It means that the input u(t) can be uniquely identified by the output function 

y(t) and the left inverse G−1(s). 

Remarks: Not all systems have inverses. For example, an ideal low pass filter does not have an inverse 

since there is no way to recover the frequency components above the cutoff frequency that are set to 

zero by the ideal low pass filter. Thus, a condition for a system to be invertible is that there is one to 

one correspondence between the input and the output. 

3.3.2 State Space Description of Linear System 

Left and right invertibility of a linear system is often treated in a state space formulation among others 

[138]. The left inversion of continuous time linear system on state space dorm is of the topic of 

[119][127]. There are two major approaches to the problem: one is the algebraic approach where 

conditions are obtained in terms of matrix rank equalities [126]; the other is the geometric approach 

that is based on the invariant properties of subspaces [120]. 

An algebraic approach relies on the observation that differentiating output function y reveals extra 

information about input function u. Let us also consider an LTI system described by a state space 

formulation in (3.1), denote by ci the rows of the matrix C. The derivatives of the measurement vector 

y can be written as:  

y(1)    =    Cẋ = CAx + CBu                                                 

y(2)     =    CA2x + CABu + CBu̇                                         

⋮ 

y(k) = CAkx + CAk−1Bu + ⋯+ CBuk−1,    for k ≥ 0 

If there exits a relative degree ri which is exactly the number of times the output function y(t) is to be 

differentiated in order to have the value u(t) of the input explicitly appearing in the equations, such that: 

ciA
kB = 0, and       ciA

ri−1B ≠ 0, for all  k < ri − 1 

and  

rank [
ciA

ri−1

⋮
ciA

ri−1
] = m 

Then one can construct the equations: 

[

y1
(r1)

⋮

yp
(rp)
] = [

c1A
r1−1

⋮
cpA

rp−1
] x + [

c1A
r1−1B
⋮

cpA
rp−1

] u                                                           (3.5) 
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Obviously, from the representation (3.5) the input variable u can be obtained by inversion. The 

inverse system of (3.1) can be represented in the possible non-minimal state space form, for more 

details in [139]: 

{
η̇ = Ainvη + Binvυinv
u = Cinvη + Dinvυinv

                                                                          (3.6) 

where (3.6) describes the inverse dynamics and the vector υinv contains the measurements and its 

derivatives in the respective orders as: 

υinv = [y1 … y1
(r1) … yp … yp

(rp)] 

If the realization of the inverse system is minimal, then Ainv gives the so-called zero dynamics of (A, 

B, C). Throughout this paper it will be assumed that the zero dynamics of the system is asymptotically 

stable, that is the considered system is minimum phase. If this condition does not hold, the system 

inversion based method presented here does not give a feasible solution to the problem. 

3.4 Inversion of Nonlinear System 

Linear models cannot always describe physical phenomena. Nonlinear models, on the other hand, offer 

a wide range of models. In a nonlinear setting however, there is no explicit input output representation 

of a system (only in the sense of an abstract operator) [137]. Consequently, the calculation of a 

realization of the inverse becomes a highly nontrivial problem, which necessarily has to be addressed 

in a state space framework. The contributions to stable inversion of non-minimum phase nonlinear 

systems can be found in [127][51][137]. There are also two major approaches to the problem: one is the 

algebraic approach where conditions are obtained in terms of matrix rank equalities [125]; the other is 

the geometric approach that is based on the invariant properties of subspaces [121]. For multiple-input 

multiple-output (MIMO) nonlinear systems, the problem of left inversion is revisited and explicit 

formulas are derived for the full-order and the reduced inverse system. The reduced left inverse 

naturally leads to an explicit calculation of the unforced zero dynamics of the system and the definition 

of a concept of forced zero dynamics. These concepts generalize the notion of transmission zeros for 

MIMO linear systems in a nonlinear setting. 

Similar to linear case, let us give the definition of relative degree and the concept of minimum phase 

first, since these concepts are related to the stability of the inverse. The concepts of minimum, 

non-minimum and also maximum are related to zero dynamics. According to [140], a continuous 

system is denoted minimum phase if the zero dynamics is asymptotically stable. And a system with 

unstable zero dynamics is, thus, not minimum phase and therefore denoted non-minimum phase. A 

similar definition can be found in [135], a system is considered to be non-minimum phase if there 

exists a stable feedback that can hold the system output identically zero, while the zero dynamics 

become unstable.  
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In this work we are concerned with the continuous time deterministic nonlinear systems described in 

(3.2) by ordinary differential equations in which the control appears affine. 

Given a nonlinear dynamic system described in (3.2), the relative degree ri is an integer which satisfies: 

LgjLf
khi(x) = 0, for j = 1, … ,m; i = 1,… , p; and k < ri − 1 

LgjLf
ri−1hi(x) = 0                                                                                    

assuming that the matrix: 

A(x): = [

Lg1Lf
r1−1h1(x) … LgmLf

r1−1h1(x)

⋮ ⋱ ⋮

Lg1Lf
rp−1hp(x) … LgmLf

rp−1hp(x)

]                                      (3.7) 

is nonsingular at x =  x0 or, equivalently: 

rank A(x0) = m 

In the case of a general MIMO system described by (3.2), the issue of left invertibility is extremely 

involved by work [127] where it suggested an algorithm for the construction of a left inverse by 

recursively differentiating the output map. Given the outputs yi for the system described by (3.2), and 

calculating expressions for their derivatives until the control vector appears explicitly, we get: 

y1
(r1)  =  Lf

r1h1(x)  +∑LgiLf
r1−1h1(x)u

m

i=1

     ⋮

ym
(rm) = Lf

rmhm(x) +∑LgiLf
rm−1hm(x)u

m

i=1

 

the above set of equations can be solved for the input vector u to obtain subject to the dynamics: 

{
 
 
 
 

 
 
 
 

ẋ = f(x) + g(x)A(x)−1

(

 
 

[
 
 
 
 
dr1y1
dtr1
⋮

drmym
dtrm ]

 
 
 
 

− [
Lf
r1h1(x)

⋮
Lf
rmhm(x)

]

)

 
 

u = A(x)−1

(

 
 

[
 
 
 
 
dr1y1
dtr1
⋮

drmym
dtrm ]

 
 
 
 

− [

Lf
r1h1(x)

⋮
Lf
rmhm(x)

]

)

 
 
                     

                        (3.8) 

The equation (3.8) can be referred to as a 1-step algorithm to obtain an inverse. Noted that some 

models are extremely hard to invert, e.g., when there are more inputs than outputs. 

3.5 Some Related Work 

Inversion of linear and nonlinear systems is successfully applied to many interesting areas, such as 

unknown input reconstruction, fault diagnosis, system identification and pre-forward system control. 

Here we will give a brief introduction on some of the works presented in these areas. 
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3.5.1 Inversion for Unknown Input Reconstruction 

Systems with unknown inputs, mainly in connection with the increasing demand for sophisticated, 

enhanced reliability control systems in safety critical fields like aerospace, underwater robotics, power 

plants and chemical or petrochemical plants, have received considerable attention, see e.g. [141][142] 

[35]. The unknown inputs may represent unknown external drivers, input uncertainty, or instrument 

faults. In most cases, it is either too expensive or perhaps not possible to measure these unknown inputs; 

for instance, the cutting force is often unavailable in machine tool applications. The problem of 

estimating unknown inputs is therefore motivated in part by such situations and has been the object of a 

fair amount of research efforts in the last decades.  

Input reconstruction is the process of using the output of a system to estimate its input. The issue of 

simultaneously observing states and inputs has been investigated, see e.g.[143][144]. However, when 

addressed the problem without observing the whole state, the input reconstruction problem has a clear 

physical meaning. This is because it is rarely the case that an estimation of the whole state is required 

in practical applications, e.g. controller design as well as for the synthesis of fault diagnosis schemes. 

Left invertibility is important for recovering unknown inputs where the close relation of input 

reconstruction with the inverse problem was recognized by many authors earlier, see, e.g., [124]. The 

reconstruction of unknown inputs under the assumption that the initial state of the system is either 

known or zero is addressed by left inversion, a long studied problem in the systems literature [145] 

[146]. Inverse systems entail a number of problems. Any non-minimum phase zeros of the original 

system will become unstable poles of the inverse system. However, the issue of internal stability of the 

resulting cascade system was subsequently addressed in [14], which considers both left inversion and 

the dual problem of right inversion. From then on, the issue of internal stability and the effect of 

non-minimum-phase zeros on input reconstruction were addressed within the context of right inversion 

along with the related notions of non-causal inversion, preview, pre-action, and steering along zeros 

[123]. 

The input reconstruction problem corresponds to formulation of a re-constructor whose inputs are the 

measurements of the original system and whose outputs converge to the inputs of the original system. 

This approach is an application of dynamic inversion to filtering which is dual to the concept of 

dynamic inversion for control. The analysis of the interaction between input and state, on the one hand, 

and between state and output, on the other hand, is of a fundamental importance in solving the input 

reconstruction problem. Key tools for the analysis of such interactions are the notions of input 

reconstructability, left invertibility, the relative degree and zero dynamics of the representation of a 

dynamical system. In the problem of input reconstruction, the first task consists of an evaluation of 

observability of inputs, thus distinguishing whether the changes of the input of a dynamic system are 

reflected as changes at the output [147]. Roughly, input observability means that the change of inputs 

in a dynamic system can reflect itself in the change of measurements. If a system is input observable, 

the input reconstruction problem consists in the synthesis of a device or a mechanism which has as 
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input the measured outputs, and it should take place as output a signal that should converge to the 

observable input.  

By using an algebraic state space approach, the elaboration of an inversion algorithm for LTI systems 

(3.2) that can be used for detector design represented as minimum order stable linear dynamic systems. 

As shown in [124], the input reconstruction problem is in fact to find an estimator in the form: 

{

ż(t) = F1z(t) + F2y(t)              

û(t) = G1z(t) +∑G2,i

P

i=0

y(i)(t)
                                                               (3.9) 

where û → u for arbitrary y and x0 of the system (3.2). y(i) denotes the ith derivative of y. The 

number p is known as the index of the estimator. So, the existence of the derivatives of y up to order 

p is assumed. The convergence speed of û → u is required to be arbitrarily assignable. Nevertheless, 

a remark on the case that the convergence speed cannot arbitrarily be assigned will be given at a 

suitable point. The design of the estimator consists of finding all coefficient matrices in equations (3.9) 

and determining the lowest index p. 

The linear structure allows the results to be carried forward in a simpler form and easier computational 

procedure to be developed for the derivation of the inverse system. In fact, while in the nonlinear case 

it will be necessary to use structural properties of the system such as relative degree and zero dynamics, 

for linear time invariant systems it is possible to relate the inverse to some structure independent 

problems such as the purely algebraic approach presented in this chapter. The notion of relative degree 

and zero dynamics has been introduced above. 

Consider a MIMO nonlinear system of the form of (3.2), with finite relative orders ri, i = 1, … ,m, and 

nonsingular characteristic matrix A(x) as (3.7). Then, the dynamic system is a realization of the inverse 

of the original system. Define the following change of the coordinates:  

ξi = [ξi
1, ξi

2, … , ξi
ri] = [ϕi

1(x), ϕi
2(x), … , ϕi

ri(x)] 

       = [hi(x), Lfhi(x), … , Lf
ri−1hi(x) ]  i = 1, … ,m 

ξ = [ξ1, ξ2, … , ξm] = [ϕ1(x), ϕ2(x), … , ϕm(x) ] 

η = [ϕr+1(x), ϕr+2(x), … , ϕn(x) ] 

y = [ξ1
1, ξ2

1 , … , ξm
1 ] 

By application new local coordinates transformation proposed in [122], it is always possible to find the 

function ϕr+1(x), ϕr+2(x), … , ϕn(x), thus   

Φ(x) = [ϕ1(x), ϕ2(x), … , ϕm(x), ϕr+1(x), … , ϕn(x)] 

x = Φ−1(ξ, η) 
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Then input vector u can be obtained by means of the output vector y and its derivatives. The inversion 

based algebraic polynomial (3.8), however, requires the computation of successive derivatives of 

outputs, which might be unrealistic in practical applications where measurements suffer noise and 

disturbances. Estimations techniques are then employed to tackle this problem, approaches include 

sliding mode observer, reduced-order observers geometric techniques, and differential algebra 

techniques. 

û = A (Φ−1(ξ̂, η̂))
−1

([
ξ̂1
(r1)

⋮

ξ̂m
(rm)

] − [
Lf
r1h1(Φ

−1(ξ̂, η̂)

⋮
Lf
rmhm(Φ

−1(ξ̂, η̂)

])                                   (3.10) 

Input reconstruction is an ill posed problem so that any reconstruction algorithm must introduce a 

penalization parameter α > 0 and reconstruct a candidate approximant υα of the input u. The point 

is to prove that, under suitable assumptions, υα converges to u for α → 0+.  

3.5.2 Inversion for FDI Purpose 

Another interesting area is inversion based FDI. Although the solution of various types of inverse 

problems became particularly important in control and system theory in the classical age of control 

sciences, the feasibility of the idea for solving various detection problems was first appeared in the 

work [132]. Additional issues of inverse computation for the FDI problem can be found, e.g., in [148] 

[35], as well as in [149][133]. The main idea is to use input observers to reconstruct inputs to the 

system based on a dynamic model and measurements. The estimated inputs are then compared to the 

commanded inputs to assess the health of sensors and actuators, as shown in [133][147]. This approach 

is based on system inversion techniques developed for either input observers (left inversion) or preview 

control (right inversion). Furthermore, this approach will make not only the detection and isolation but 

also the estimation of the fault signals possible. On-line dynamic inversion based FDI methods were 

successfully applied to many interesting problems, such as in aerospace and aviation, real power 

converter , switching electrical networks, chemical reactors, aircraft longitudinal dynamics, etc.  

With respect to the FDI problem via system inversion, the basic concepts and the existence of FDI 

filters are closely related to system invertibility, which is the backbone of this approach [147]. As a 

starting point, the basic concepts as the detectability of one fault, fault separability, the detectability of 

each faults, and simultaneous separability, can be expressed in term of system invertibility. Very briefly, 

in inversion based detection filter design the goal is to find the left inverse of the fault-to-output 

residual transfer function such that the fault estimation error transfer function is diagonal. This 

approach is based on the existence of the left inverse and arrives at detector architectures whose 

outputs are the fault signals while the inputs are the measured system inputs and outputs and possibly 

their time derivatives. 

In order to introduce this idea, consider the following disturbance free linear control system subject to 

faults given instates space form as:  
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{
ẋ(t) = Ax + Bu + Lv
 y(t) = Cx + Du + Mv

                                                                   (3.11) 

where x ∈  ℛn , is the state vector, u ∈  ℜr, y ∈  ℜp  are the inputs and the measured outputs, 

respectively. It is noted again that the fault signal ν ∈ ℜq can represent both actuator and sensor 

failures, in general, as reflected in the structure of the matrices L,M. The goal is to detect the presence 

of the components of the fault signal independently from each other. 

The residual generation problem is viewed as an inverse problem and is aimed at being solved by 

dynamic system inversion   which we expect to have in the general form, as shown in [132]: 

{
ẋ̅(t) = A̅x̅ + Buξu + Byξy

v(t) = C̅x̅ + Duξu + Dyξy
                                                              (3.12) 

where the elements of the vectors ξu, ξy consist of the input and output signals and also their time 

derivatives of the appropriate order as: 

ξy = [y ÿ … y⃛]T, 

 ξu = [u ü … u⃛]T 

One of the advantages of the inversion approach discussed in this chapter is that the extension of the 

idea to some classes of nonlinear systems (bilinear and input affine) is possible. It will be shown that, 

by using this concept, linear and nonlinear problems can be treated in the same theoretical framework 

and the methodology presented can be easily generalized to nonlinear systems. As soon as the results 

for linear systems were obtained, the corresponding results for nonlinear systems can be regarded as 

natural generalizations of the linear case. 

System representation (3.2) can be extended with additional inputs which may represent faults and 

other unknown external excitations. One possible form of this extension can be written in the form 

{
 
 

 
 ẋ(t) = f(x, u) +∑gi(x, u)vi

m

i=1

                                    

yj(t) = hj(x, u) + ∑lij(x, u)vij

m

i=1

, 1 ≤  j ≤ p 

                                (3.13) 

Where x ∈  ℛn, u ∈  ℜr, y ∈  ℜp are the states, the inputs and the measured outputs, respectively. 

f, g, h, l are functions smooth in their arguments, li are real valued functions defined on X and v(t) is 

the fault signal (v1, . . . , vm)
T whose elements vi: [0, +∞)  → ℝ are arbitrary bounded functions of 

time. The fault signals  vi can represent both actuator and sensor failures, in general. The goal is to 

detect the occurrence of the components vi of the fault signal independently of each other and identify 

which fault component specifically occurred. 

In this kind of approach, a detector, i.e., another dynamic system is constructed with outputs ν and with 

inputs u, y and possibly their time derivatives which, in the most general form, can be thought of: 
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{
ζ̇(t) = φ(ζ, y, ẏ, … , u, u̇, … )

v(t) = ω(ζ, y, ẏ, … , u, u̇, … )
                                                                        (3.14) 

with the state variable ζ(t) assuming φ, ω are arbitrary analytic time functions. The filter reproduces the 

fault signal at its output that is zero in normal system operation, while it differs from zero if a particular 

fault occurs. The detector should satisfy a number of requirements. It should distinguish among 

different failure modes vi, e.g., between two independent faults in two particular actuators. Moreover, it 

is aimed to completely decouple the faults from the effect of disturbances and also from the input 

signals. Note that for LTI systems the filter (3.12), accomplishing these requirements, traditionally 

serves as a robust residual generator which assign the fault effects and the disturbances into disjoint 

subspaces in the detector output space. 

Along with the discussion of this chapter, linear and nonlinear problems will be treated in parallel to 

each other. Results for linear time invariant (LTI) systems will always be viewed as special cases of the 

results obtained for the nonlinear problems specified by the general system model (3.2). 

The relationship of nonlinear system models (3.2) to linear systems (3.1) can be established provided 

that f(x), gi(x), hj(x), li(x)  are linear functions of  x , i.e., f(x)  =  Ax , gi(x) = bi , hj(x)  =  cjx,

li(x)  =  di for some  n × n matrix A  and bi ∈  R
n × 1, cj ∈  R

1 × n, di ∈ Rp × 1,  i =  1, . . . , n, j =

 1, . . . , p. The system representation (3.1) characterized above can be written in the form 

{
x(t) = A0x(t) +∑αi(t)Aix(t)

k

i=1

+∑ui(t)Bix(t)

m

i=1

, x(0) = x0 ∈ ℛ
n

y(t) = Cx(t)                                                                                                       

                   (3.15) 

assuming A0,  Ai  ∈  ℛ
n×n are linearly independent constant real matrices. We assume f: ℛn → ℛn,

g: ℛn → ℛm×n, h: ℛn → ℛp  (and also αi(t)) to be smooth (analytic) mappings. Note that the output 

y(t) of the systems (3.2) and (3.13) which is affine in the inputs depends only on the state x(t). The 

systems written either in the form of (3.2) and (3.13) describe a large number of physical systems of 

interest in many engineering applications, including fault detection and isolation.  

3.5.3 Inversion for System Identification 

Problems of reconstructing unknown characteristics of dynamical systems through measurements of a 

part of the phase coordinates are embedded into the theory of inverse problems of dynamics. Systems 

identification has attracted significant interests and still an active area, see e.g. [135]. Representation of 

system models can be achieved in many ways; it is common categorized into Black box, grey box and 

white box. When considering system identification, we will focus on the case where the model 

structure is given, e.g. based on a prior physical knowledge of the system. The purpose of identification 

is to use the knowledge of the model to predict future outputs or to design a controller that, applied to 

the system, stabilize or improves the performance of a system [135]. The identification process, 

represented in Fig.3.3, considers the input output time histories from real or simulated data and by 

means of an algorithm, linear or nonlinear model can be obtained. In system identification, the goal is 
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to achieve as good a model as possible to explain the behavior of y by a prediction or simulation ŷ(t|θ), 

which depends on estimated model parameters and the input u. This is done using measured data, 

usually input data, u(t), and output data y(t). Commonly used identification methods for linear models 

are, e.g., prediction error methods, maximum likelihood and spectral based methods. 

 

Fig.3.3 identification process 

To simplify the discussion, we will start by looking at LTI dynamical systems. The model estimation is 

done in open loop and under the assumption that the output was created according to: 

y(t) = G0(q)u(t) + H0(q)e0(t)                                                              (3.16) 

where G0 is the true system, H0 is the true noise dynamics and e0 is a white noise sequence. In 

system identification, the goal is often to find the minimizing argument of a function of the prediction 

error ε(t, θ) 

θ̂ = arg min
θ

1

N
∑ε(t, θ)2
N

t=1

            

   = arg min
θ

1

N
∑[y(t) − ŷ(t|θ)]2
N

t=1

 

where y(t) is the measured output and ŷ(t|θ) is the predicted output, given the model parameters θ. 

Here, we use a fixed noise model H∗≡1 such that the prediction is described by ŷ(t|θ) = G(q, θ). 

3.5.4 Inversion for Control Purpose 

Control of a system can be described as determining the input such that the outputs follows as closely 

as possible a desired reference signal, despite disturbance or errors in the model. Dynamic inversion is 

one of the most popular methods for controlling minimum phase nonlinear systems [122]. It is well 

known that right inversion is strictly connected to perfect tracking [123]. The difference between these 

inversion approaches is that control uses a right inverse whereas estimation uses a left inverse of the 

system.  

In the context of the control of nonlinear systems, the problem of inversion arises when one wishes to 

control the output of a control system to track a desired trajectory. One must then “invert” the control 

system in order to obtain a state trajectory and control which will produce the desired output. 

Inversion-based feedforward controllers (e.g., [129][123]) have been used for output tracking in a 

variety of applications, for example, in aircraft and aerospace systems, and flexible structures. Recent 

successes in using non-causal inverses for systems with non-minimum phase dynamics have further 

renewed the interest in inversion-based feedforward controllers.  

u(t) y(t) 
G (.)= ? 
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CHAPTER 4 INVERTIBILITY OF INTERCONNECTED SYSTEM 

In this chapter, we address the invertibility problem of interconnected system, which is the problem of 

recovering the input of local subsystem uniquely given an output of the global system and initial states. 

The interconnected system involves two cascade nonlinear systems. In solving the invertibility problem, 

we give a necessary and sufficient condition for an interconnected system to be invertible, which says 

that the individual subsystems should be invertible. When the individual subsystems are invertible, we 

present an algorithm for finding inputs of local subsystems that generates the given global output in a 

finite interval. Numerical examples are included to confirm the proposed algorithm. 

4.1 Introduction of Interconnected System 

Interconnections are very common in control systems. In many applications, input output systems are 

interconnected to form more complex systems. The system or process that is to be controlled, 

commonly referred to as the plant, may itself be the result of interconnecting various sorts of 

subsystems in series, in parallel, and in feedback. For example, many practical control applications 

often include electrical power systems, nuclear reactors, chemical process control systems, 

transportation systems, computer communication, economic systems and so on. In addition, the plant is 

interfaced with sensors, actuators and the control system.  

Classical system theory introduces inputs, outputs, and signal-flow graphs. Inputs serve to capture the 

influence of the environment on the system; outputs serve to capture the influence of the system on the 

environment, while output-to-input assignments, such as series and feedback connection, serve to 

capture interconnections. A system is thus viewed as transmitting and transforming signals from the 

input channel to the output channel, and interconnections are viewed as pathways through which 

outputs of one system are imposed as inputs to another system. Interconnected system poses 

challenging problems both in modeling and computation. The development of the nonlinear dynamic 

process model either requires large amounts of identification data or deep physical insight for rigorous 

modeling. Laws that govern physical phenomena, however, merely impose relations on the system 

variables, while interconnection means that variables are shared among subsystems. For example, the 

gas law states how the variables of interest temperature, volume, and mass are related. This law does 

not, however, state that some of the variables generate the others. The interconnection of two physical 

devices means that certain variables associated with the first device are set equal to certain variables 

associated with the second device. Connecting two pipes of two hydraulic systems means that the 

pressure and flow in the first pipe at the interconnection point are set equal to the pressure and flow in 

the second pipe at the interconnection point. After interconnection, the two hydraulic systems share the 

pressure and flow variables. Describing the nature of the composite system and providing some explicit 

description of it are generally nontrivial problems especially when the subsystems are nonlinear.  

The study of interconnected systems plays a significant role in the development of stability theory of 

dynamic systems, as it allows one to investigate the properties of a complex system by analyzing its 
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less complicated components. By an interconnected system, we mean a system that consists of 

interacting subsystems either due to physical phenomena or due to analytic purpose. The motivation for 

this assumption is two fold. On one hand, physical plants are made up of parts, which can be identified 

as different subsystems, and this structural feature can facilitate the control design. On the other hand, 

even if the system does not present these physical boundaries, it might be useful to decompose it into 

mathematical subsystems which have no obvious physical identity. The notion “interconnected system” 

is concerned more with interactions. In this case, if there are interconnections between subsystems, the 

overall system can be referred to as an “interconnected system”. Several practical systems such as 

power generation and distribution systems, telecommunication networks, traffic networks, etc., exhibit 

complex and spatially distributed dynamics and are referred to as large scale interconnected systems 

[97]. Moreover, each subsystem can also be viewed as composed of dynamic subsystems connected in 

series since each component itself is a dynamic system. For example, a typical system has at least three 

cascade subsystems: sensor, process and actuator subsystems. The three parts function properly for the 

whole system to operate properly. In all situations, the global plant and/or each subsystem can be 

analyzed at different levels down to the component level in estimating the reliability of the whole plant.  

Interconnected systems have been a focus of ongoing research and results related to stability, 

controllability, observability, and invertibility of such systems have been published, see e.g. [122] 

[101][150]. As illustrated in [150], several dynamics subsystems can be distinguished and delays 

generally arise in the processing of information transmission. This can cause instability and oscillation 

in these systems. Therefore many studies have been devoted to the analysis of stability of theses 

systems, e.g. in [122], it has proved that an interconnected system is input to state stable if both 

subsystems are input to state stable. In addition to the problem of stability, the area of controllability of 

an interconnected system is also attracting more and more attention, and there have been many 

applications of networked control system in different areas of the engineering field. Examples of such 

systems including automotive control systems, cooperative control of unmanned vehicles, power 

generation and distribution systems, etc. Composition products arise in many forms when systems are 

interconnected to produce new systems. Certain elements of this problem are well understood by other 

means. For example, the composition of analytic functions is introduced in most texts addressing 

power series [151]; Cascade interconnections between a nonlinear system and a linear time-invariant 

dynamical system are analyzed in [152], and between an PDE and ODE can be found in [153]; The 

composition of two Fliess operators was considered in [154]; Bilinear system interconnections in [155]. 

One way to study the properties of interconnected systems is to consider that the plant is composed of 

subsystems connected in cascade manners. Generally speaking, in practice, it is very difficult to 

address the problem of analyzing cascade interconnected systems using a centralized architecture 

because of the constraints on computational capabilities and communication bandwidth. Consequently, 

in recent years, the area of distributed or decentralized methods has attracted increasing attention. 

However, because of the interactions among subsystems and the limitation of information that is 
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available for each subsystem, the problem of distributed analyzing is much more challenging. 

Therefore it is interesting to concern the problem that whether we can prove that under some condition, 

the effect in lower subsystems can be distinguished in higher subsystems thus avoiding full 

measurements of local subsystem. This consideration can be viewed as invertibility problem since an 

important aspect of the motivation of invertibility is to prove the distinguishability of the input or 

unknown input. While the property of distinguishability of two variables refers to their capacity to 

generate identifiable output signals for a given system. Several notions of distinguishability or 

invertibility may be encountered in the literature, see e.g. [120][125][51]. For example, Vu and 

Liberzon introduced the problem of invertibility of switched linear systems in [126]. They characterize 

the ability to determine the active mode of the system from the input and output data. The idea was 

further extended to nonlinear system in [51] and applied to fault diagnosis in [156]. 

Specifically, this chapter is concerned with the construction of the necessary and (or) sufficient 

condition so that given initial states, the control inputs are capable of generating distinguishable outputs 

of an interconnected system with two subsystems. The problem statement is analogous to the classical 

invertibility problem for non-interconnected systems. The problem is that whether we can prove that 

under some conditions, the inputs in lower subsystem have distinguishable impacts on higher 

subsystem.  

The chapter is organized as follows: The required notations and some background on the invertibility 

of nonlinear system are given in Section 4.2. Section 4.4 is devoted to definition for invertibility of an 

interconnected dynamic systems followed by the formal problem statement of invertibility of 

non-interconnected dynamic systems in section 4.3. After that, we give conditions to validate involved 

definitions in Section 4.5. This characterization is used in Section 4.6 to establish simple dynamic 

inverse computation procedure for the interconnected system and numerical examples are implemented 

to confirm the effectiveness in section 4.7. Finally, some remarks and conclusions are highlighted in 

Section 4.8. 

4.2 Basic Notion of Mappings and Differential Algebra 

In fact, for every control system, we have an input output map, and the left invertibility of the 

dynamical system basically refers to the injective and surjective of this map. Moreover, differential 

algebra is often related with computation algorithm of dynamic inverse. Therefore we first recall some 

basic notions about composition mapping, invertible mapping and differential algebra. Whenever 

possible, the same notation will be used for any given composition product, and the specific definition 

will be evident from the context. Further details can be found in [137][139] and references therein. 

1-) Composition of Mappings 

For any set V, U, Y, let mapping α: V → U  and mapping β:U → Y  be two given mappings. 

Composition is the combination of two or more mappings to form a single new mapping. 

Definition 4.1: For any set V, U, Y, let mapping α: V → U and mapping  β: U → Y, the composition of 
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mapping  α followed by 𝛽  is the mapping 𝛽 ∘ α: 𝑉 → 𝑌, denoted by 𝛽 ∘ α(x) = 𝛽(α(x)), for all 

x ∈ α. 

As shown in Fig. 4.1: 

 

 

 

 

Fig. 4.1 Composition of mappings 

In the following two statements, we discuss the question of either composing two onto mappings or 

two one-to-one mappings. 

Theorem 4.1: For any set V, U, Y, and any mappings α: 𝑉 → 𝑈 and 𝛽: 𝑈 → 𝑌.  

1-) If both α and 𝛽 are injective, then composition mapping 𝛽 ∘ α is also injective. 

2-) If both α and 𝛽 are surjective, then composition mapping 𝛽 ∘ α is also surjective. 

Proposition 4.1: Let f: U ⊂ ℜ𝑛 → ℜ𝑚 , U open be differentiable at x0  and g:ℜ𝑚 → ℜ𝑘  be 

differentiable at y0 = f(x0). Then the composition mapping F(x) = g ∘ f(x) = g(f(x)), F: ℜn → ℜk is 

differentiable at x0 and  

F′(x0) = g
′(f(x0))f

′(x0) 

2-) Invertible Mappings 

In this section we consider special kind of mappings which have the property that for each output value 

we can work out way backwards to find the unique input that produced it. 

Definition 4.2: For set U, Y, a mapping β: Y → U is the inverse of a mapping α: U → Y, if and only if 

the composition mapping  β ∘ α = iU and α ∘ β = iY . The mapping α is said to be invertible if it has 

an inverse.  

Theorem 4.2: For set U, Y, if a mapping α: U → Y is invertible, then its inverse is unique, denoted by 

α−1. 

The following theorem characterizes those mappings that are invertible. 

Definition 4.3: For set U, Y, a mapping α: U → Y is one to one (injective) if ∀ x, y ∈ A, α(x) =

α(y) → x = y; and it is onto (surjective) if  ∀ y ∈ B, ∃ x ∈ A, α(x) = y 

Definition 4.4: a mapping α is called bijective if it is both injective and surjective. 

Theorem 4.3: For set U, Y, a mapping α: U → Y is invertible if and only if it is bijective. 

Theorem 4.4: For set U, Y, if a mapping α: U → Y is invertible, then its inverse α−1 is also invertible 

with (α−1)−1 = α. 

Theorem 4.5: For set V, U, Y , let two mappings α: V → U  and  β: U → Y , if  α  and β  are both 

x α(x) 𝛽(α(x)) 

  

𝑉 U Y 
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invertible, then the composition mapping β ∘ α is invertible with inverse (β ∘ α)−1 = α−1 ∘ β−1. 

Proof: supposed that both  α and β are invertible, then α−1 ∘ α = iU ,  β−1 ∘ β = α ∘ α−1 = iU and 

β ∘ β−1= iY . 

Thus, for any y ∈ Y, we have: 

[(β ∘ α) ∘ (α−1 ∘ β−1)](y) = [β ∘ (α ∘ α−1) ∘ β−1](y) 

                                     =    β ∘ (iU(β
−1(y)) 

                              =     𝛽 ∘ β−1(𝑦) 

                              =     iY (𝑦) = 𝑦 

It follows that (β ∘ α) ∘ (α−1 ∘ β−1) =  iY. Similarly, one can show that (α−1 ∘ β−1) ∘ (β ∘ α) =  iV. 

Therefore, according to Definition 4.2, β ∘ α is invertible with inverse α−1 ∘ β−1. 

Definition 4.5: A function f ∶ ℜn → ℜm  is said to be one-to-one (or injective) if f(x)  ≠ f(x ) 

whenever  x ≠ x ; it is said to be onto (or surjective) if, for every y ∈ ℜ𝑚, there exists an x ∈ ℜ𝑛such 

that f(x)  =  y. If f is both one-to-one and onto, then it is called a one-to-one correspondence (or 

bijection). Bijections are invertible functions; that is, if f is bijective, then there exists a unique f−1 

such that f−1(f(x))  =  x for all x ∈ ℜn and such that f(f−1(y))  =  y for all y ∈ ℜm. 

3-) Differential Algebra Notions 

Some definitions of differential algebra are given. Further details can be found in [122][157] and 

references therein. 

Let ℒ and 𝒦 be differential fields. A differential field extension ℒ/𝒦 is given by ℒ and 𝒦, such 

that: (1) 𝒦 is a subfield of ℒ and (2) the deviation of 𝒦 is the restriction to 𝒦 of the deviation of ℒ.  

Definition 4.6: An element is said to be differentially algebraic with respect to the field k if it satisfies 

a differential algebraic equation with coefficients over k: 

Example Let  ℜ〈eat〉/ℜ a differential field extension, where ℜ ⊂ ℜ〈eat〉, x = eat is a solution of 

P(x) = ẋ − ax = 0 (a is a constant). 

Definition 4.7: An element is said to be differentially transcendental over k, if and only if, it is not 

differentially algebraic over k. 

Definition 4.8: let a set of element of ℒ as ξ = (ξ1, … , ξn), if there exists an algebraic differential 

polynomial P(ξ, ξ̇, ξ̈, … ) = 0 with coefficients in 𝒦, then ξ is called differentially 𝒦-algebraically 

dependent, otherwise ξ is defined as 𝒦-algebraically independent. 

Definition 4.9: Any set of elements of ℒ which is differentially 𝒦 − algebraically independent and 

maximal with respect to inclusion forms is a differential transcendence basis of ℒ/𝒦. Two such bases 

have the same cardinality. This is called the differential transcendence degree of ℒ/𝒦 and denoted 

by difftrd°(L/k). 
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Definition 4.10: Let 𝒢,𝒦(u) be differential fields. A nominal dynamic consists of a finitely generated 

differential algebraic extension𝒢,/𝒦(u), (𝒢 =  𝒦(u, ξ), ξ ∈ 𝒢) . Any element of 𝒢  satisfies an 

algebraic differential equation with coefficients over 𝒦  in the components of u and their time 

derivatives. 

Definition 4.11: Any unknown variable x in a dynamic is said to be algebraically observable with 

respect to 𝒦(u, y) if x satisfies a differential algebraic equation with coefficients over 𝒦 in the 

components of u, y and a finite number of their derivatives. Any dynamic with output y is said to be 

algebraically observable if, and only if, any state variable has this property. 

4.3 Inversion of Nonlinear Interconnected System 

4.3.1 Interconnected System Modelling 

Composition products arise in many forms when systems are interconnected to produce new systems. 

Their particular form depends on the nature of the systems involved. In solving the modelling problems, 

we need to take into consideration the following questions: 

Do we, system theorists, get the physics right?  

Do our basic model structures adequately translate physical reality?  

Does the way in which we view interconnections respect the physics? 

In this work, cascade connections involving two classes of analytic nonlinear input output subsystems 

are considered. As shown in Fig.4.2, an interconnected system ∑ is considered which consists of two 

subsystems: actuator ∑a and process ∑p subsystems.  

 

 

 

Fig. 4.2 Interconnected system structure 

Assuming that the MIMO process subsystem is an input affine nonlinear system, and is described by 

(4.1): 

∑p  {
ẋ = f(x) + g(x)ua,   x(t0) = x0
y = h(x, ua)                                 

                                                              (4.1) 

where x ∈ 𝒳 ⊆ ℜn is the state of the process subsystem, y ∈ 𝒴 ⊆ ℜp is the output of the global 

system, which is also the output of the process subsystem. ua ∈ 𝒰a ⊆ ℜ
m is the input of the process 

subsystem, which is also the output of the actuator subsystem. ua is inaccessible and is to reconstruct 

by measurements of  y. f and g are smooth vector fields on ℜn and h is smooth vector field on ℜp. 

f, g, h are algebraic functions respectively. 

An input affine structure is also assumed for the actuator subsystem by (4.2):  

u u𝒂 ∑𝑝 

Process 

 

∑𝑎 

Actuator 

 

𝑦 

∑ 
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∑a: {
ẋa = fa(xa) + ga(xa)u, xa(t0) = xa0
ua = ha(xa)                                                   

                                            (4.2) 

where  xa ∈ 𝒳a ⊆ ℜ
n  is the state, u ∈ 𝒰 ⊆  ℜl  is the input, ua ∈ Ua ⊆ R

m  is the output of the 

actuator subsystem, which is also the input of the process subsystem.  faand ga are smooth vector 

fields on ℜn and h is smooth vector field on ℜm. fa, ga, ha are algebraic functions respectively. 

Thus an interconnected cascade system ∑ is then constructed by these two subsystems ∑a and ∑p 

whereby the input is vector u while output vector is y.  

Theorem 4.6: as demonstrated in [122] , consider the cascade interconnected system ∑  composed of 

the two subsystems ∑a and ∑p, if both subsystems are input to state stable, then the composite 

system ∑ :  

Σ: u → [
x
xa
]: 

is input to state stable. 

System (4.1) and (4.2) describe causal input output systems, we assume that the maps: 

Hp: ℜ
n × ℜm → ℜn and  h: ℜn × ℜm → ℜp, Ha: ℜ

n × ℜl → ℜn and  ha: ℜ
n × ℜl → ℜm 

are analytic over an open subset of ℜn+mand ℜn+l. To avoid singularities, we have the following 

assumption on system (4.1) and (4.2). 

Assumption 4.1: the maps Hp, h define submersion, i.e. 

rank
∂H𝑝

∂(x, u𝑎)
= n, rank

∂H𝑝

∂u𝑎
= m, rank

∂h

∂x
= p 

rank
∂Ha

∂(xa, u)
= n, rank

∂Ha
∂u

= l, rank
∂h

∂xa
= m 

over an open subset of ℜn+mand ℜn+l. 

Considering interconnected system depicted by (4.1) and (4.2), the basic idea in this work is to prove 

invertibility of this interconnected system. The invertibility characterizes in this context the ability to 

identify the input u of the local subsystem from output data of the global system y. Thus, the 

motivation of invertibility here is in fact to study the distinguishability of the input at local level 

through their impacts on final product at the global level. The property of distinguishability of two 

inputs refers to their capacity to generate different output signals, and studies of distinguishability deals 

with the determination of necessary and (or) sufficient conditions that allow to test whether or not two 

different inputs are distinguishable.  

4.3.2 Inversion of Interconnected System 

In this section, we develop the required notations and provide some background on the invertibility of 

nonlinear system. Based on that, we develop the definition for invertibility of an interconnected 
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dynamic systems followed by the formal problem statement. After that, we give conditions to validate 

involved definitions. Finally, inverse computation procedure is discussed. 

1-) Nonlinear inverse system 

The primary objectives of invertibility are input identifiability, and several notions have been discussed 

in the literature. For example, for the purpose of FDI problem, the fault signal can be considered as 

unknown input, the motivation of invertibility is in fact input detectability and isolability that is to 

recognize the possible location and determination of the faults present in a system and the time of their 

occurrences. The tasks of fault detection and isolation are to be accomplished by reconstructing the 

unknown input through the output variables.  

This section takes care to recall system inverse of dynamic systems. Let us start off by reviewing 

classical definitions of invertibility for non-interconnected systems. For simplicity, both subsystems are 

considered with the form as (4.1). For that, consider the input output map of process subsystem 

Hp: 𝒰𝑎  → 𝒴 for input function space 𝒰𝑎 and the corresponding output function space generated 

by 𝒴. Hp maps an input ua(. ) to the output y(. ) generated by the system driven by ua(. ) with an 

initial condition x0. Let us now proceed to the formal definition of invertibility for a nonlinear 

dynamical system as given in [122]. 

Definition 4.12: Fix an output set 𝒴 and consider an arbitrary interval [t0, T), the system (4.1) is 

invertible at a point x0 ∶=  x(t0) ∈ 𝒳 over 𝒴, if for every y[t0,T) ∈ 𝒴, the equality Hp(x0)(ua1[t0,T)) =

Hp(x0)(ua2[t0,T)) = y implies that ∃ε > 0, such that ua1[t0,t0+ε) = ua2[t0,t0+ε). The system is strongly 

invertible at a point x0 if it is invertible for each x ∈ 𝒩(x0), where 𝒩 is some open neighborhood 

of x0. The system is strongly invertible if there exists an open and dense sub-manifold ℳ (called 

inverse sub-manifold) such that ∀x0 ∈ 𝒳, the system is strongly invertible at x0. 

In fact, by definition 4.12, invertibility at x0 is equivalent to saying that ua1[t0,t0+ε) ≠ ua2[t0,t0+ε) for 

all ε ∈ (0, T −  t0) implies that Hp(x0)(ua1[t0,T)) = Hp(x0)(ua2[t0,T)).  

This notion was captured by Hirschorn in [127]. We will now generalize this notion of invertiblity to 

the interconnected systems. 

2-) Nonlinear inverse interconnected system  

As shown in Fig.4.3, we concern with the following question: what is the condition on the subsystems 

of an interconnected system so that, given an initial states and the corresponding output y generated 

with some input u, we can recover the input u uniquely? The problem statement is analogous to the 

classical invertibility problem for non-interconnected nonlinear systems. The inversion of an 

interconnected system can be thought of doing the composition invertible mapping and individual input 

recovery.  
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Fig. 4.3 inversion of interconnected system 

Considering the input output map of process subsystem Hp: 𝒰𝑎 → 𝒴 for input function space 𝒰𝑎 and 

the corresponding output function space generated by 𝒴. Hp maps an input ua(. ) to the output y(. ) 

generated by the system driven by ua(. ) with an initial condition x0. In addition, the input output 

map of actuator subsystem is Ha: 𝒰 → 𝒰𝑎 for some input function space 𝒰 and the corresponding 

output 𝒰𝑎. Ha maps an input u(. ) to the output ua(. ) generated by the system driven by u(. ) with 

an initial condition xa0.  

Define composition maps Ha ∘ Hp: 𝒰 → 𝒴 as input output map of the interconnected system, which 

maps an input u(. )  to the output y(. )  generated by the system driven by u(. )  with initial 

conditions (xa0, x0). We say that an interconnected system is invertible if unknown input u(t) can be 

recovered from the knowledge of the output y(. ), part of the state and the initial state (xa0, x0). We now 

first extend the definition of invertibility to an interconnected system. 

Definition 4.13: Fix an output set  𝒴 and consider an arbitrary interval [t0, T), the interconnected 

system described by (4.1) and (4.2) is invertible at a point (xa0, x0) ∶=  x(t0) ∈ 𝒳 over 𝒴, xa(t0) ∈

𝒳a(t0) over 𝒰a, if for every y[t0,T) ∈ 𝒴, the equality: 

   (Ha ∘ Hp)(xa0, x0)(u1[t0,T)) = (Ha ∘ Hp)(xa0, x0)(u2[t0,T)) = y[t0,T) 

implies that ∃ε > 0, such that u1[t0,t0+ε) = u2[t0,t0+ε). The system is strongly invertible at a point 

(xa0, x0)  if it is invertible for each xa ∈ 𝒩a(xa0 ), x ∈ 𝒩(x0),  where  (𝒩a,𝒩 ) is some open 

neighborhood of  (xa0, x0). The system is strongly invertible if there exists an open and dense 

sub-manifold ℳaof 𝒳a,ℳof 𝒳, such that ∀(xa0 , x0) ∈ (ℳa,ℳ), the system is strongly invertible 

at (xa0, x0). 

The invertibility formulated in Definition 4.13 may fail to hold in two ways:  

(a) either because there exits two different inputs u1, u2 that yield the same ua1 = ua2;  

(b) or even if two different inputs u1, u2 produce two different ua1, ua2, but they may yield the same 

output y.  

The former one refers to be non-invertibility of actuator subsystem while the latter possibility is due to 

non-invertibility of process subsystem. 

u 𝑦 

𝑦 

u𝒂 
∑𝑎(u, xa) 

   Actuator 

∑𝑝(u𝒂, x) 

Process 

∑  Physical system  

∑−1 system inverse  u 
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4.4 On the Condition of Invertibility of Interconnected System 

As the systems under consideration are interconnected systems, classical inversion techniques can no 

longer be sufficient and hence we need to develop new tools for guaranteeing invertibility of 

interconnected dynamic systems in this chapter. As mentioned above, the inversion of an 

interconnected system can be thought of doing the composition invertible mapping and individual input 

recovery. Consequently, the basic idea for solving the invertibility problem is first to do the 

composition mapping by utilizing the relationship among the outputs and the states of the subsystems, 

and then use the nonlinear structure algorithm for the corresponding subsystem to recover the input. 

From Definition 4.13, non-invertibility of either subsystems results in non-invertibility of the 

interconnected system. We now give a sufficient and necessary condition on the subsystem dynamics 

so that the interconnected system is invertible for set 𝒰, 𝒰a and 𝒴.  

Theorem 4.7: Consider the interconnected system ∑which consists of two subsystems: actuator ∑a 

and process ∑p subsystems depicted by (4.1) and (4.2), and an output set 𝒴. The interconnected 

system is invertible at (x0, xa0) over  𝒴, if and only if each subsystem actuator ∑a and process ∑p is 

invertible at xa0 over 𝒰a, and x0 over 𝒴 respectively. 

Proof: Considered Ha as the input output mapping of actuator ∑asubsystem, while Hp is the input 

output mapping of process ∑p subsystem. Then the input output mapping of the interconnected system 

is the composition Ha ∘ Hp.  

a-) (Sufficiency): invertibility of a dynamic system refers to bijective of the input output mapping. 

Since both subsystems are invertible, the corresponding mapping Ha and mapping Hp are bijective 

mapping. Moreover, composition of two bijective mappings is a bijective mapping, so input output 

mapping Ha ∘ Hpof the cascade system is bijective. Thus, the cascade interconnected system is 

invertible.  

b-) (Necessity): We now show that if any of the subsystems is not invertible at (x0, xa0), then the 

interconnected system ∑ is not invertible. 

For one hand, supposed that the process subsystem  ∑p is not invertible, while the actuator subsystem 

 ∑a is invertible. Then for the actuator subsystem (4.2), fix an output set 𝒰𝑎 and consider an arbitrary 

interval [t0, T),  there exists two distinct inputs for ∃ ε > 0 u1 ≠ u2 on [t0, t0 + ε),  that may yield 

two distinct outputs Ha(xa0)  (u1[t0,T)) = ua1[t0,T), Ha(xa0 )(u2[t0,T)) = ua2[t0,T),  ua1[t0,T) ≠ ua2[t0,T) . 

However, for the process subsystem (4.1), fix an output set 𝒴, these two distinct inputs ua1 ≠ ua2 

on [t0, t0 + ε) may produce two equal output Hp(x0)(ua1[t0,T)) = Hp(x0)(ua2[t0,T)) = y[t0,T). Therefore, 

for the series system, these two distinct inputs u1 ≠ u2 on [t0, t0 + ε) may result in two equal outputs:  

 (Ha ∘ Hp)(xa0, x0)(u1[t0,T))  =  (Ha ∘ Hp)(xa0, x0)(u2[t0,T))  =  y[t0,T) 

Thus, it implies that the interconnected system ∑  is not invertible at (x0, xa0) over (𝒰a, 𝒴). 
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For the other, supposed that the process subsystem  ∑p is invertible, while the actuator subsystem 

 ∑a is not invertible. Then for the actuator subsystem  ∑a in (4.2), fix an output set 𝒰𝑎 and consider 

an arbitrary interval [t0, T),  there exists two distinct inputs for ∃ ε > 0 u1 ≠ u2 on [t0, t0 + ε), that 

may yield two equal outputs Ha(xa0)  (u1[t0,T)) = ua1[t0,T), Ha(xa0 )(u2[t0,T)) = ua2[t0,T),  ua1[t0,T) =

ua2[t0,T). Even if, the process subsystem  ∑a in (4.1) is invertible, these two distinct inputs ua1 = ua2 

on [t0, t0 + ε) can only precede one output Hp(x0)(ua1[t0,T)) = Hp(x0)(ua2[t0,T)) = y[t0,T). However, 

for the series interconnected system, these two distinct inputs u1 ≠ u2 on [t0, t0 + ε) result in 

two equal outputs: 

 (Ha ∘ Hp)(xa0, x0)(u1[t0,T))  =  (Ha ∘ Hp)(xa0, x0)(u2[t0,T))  =  y[t0,T) 

Thus, it implies that the interconnected system ∑  is not invertible at (x0, xa0) over (𝒰a, 𝒴).∎ 

Theorem 4.8: Consider the interconnected system ∑ which consists of two subsystems: actuator ∑a 

and process ∑p subsystems depicted by (4.1) and (4.2), and an output set 𝒴. The interconnected 

system is strong invertible at (x0, xa0) over 𝒴, if and only if each subsystem actuator ∑a  and 

process ∑p is strong invertible at xa0 over 𝒰a, and x0 over 𝒴 respectively. 

Remark 4.1: For the interconnected system, if all the subsystems are globally invertible, then it is 

possible to recover the inputs uniquely over the time interval [t0, T). Also, note that T may be 

arbitrarily large if the state trajectories do not exhibit finite escape time. 

After verifying the invertibility of individual subsystems, we will be able to construct an interconnected 

inverse system that can recover the original input uniquely from the global measurement, by which 

implies that each original input affect the global output distinguishably. In fact, if a system is invertible, 

the structure algorithm allows us to express the input as a function of the output, its derivatives and 

possibly some states, see, e.g. in [122]. 

4.5 Invertibility Checking 

In this section, we address the computational aspect of the concepts introduced in previous sections and 

develop algebraic criteria for checking the invertibility of interconnected systems. As illustrated in 

Theorem 4.7, the first condition asks for invertibility of individual subsystems, and it will be verified 

by the output differential rank. To put everything into perspective, we provide appropriate background 

related to the invertibility of nonlinear systems and use it to develop the concept of functional 

reproducibility. 

System invertibility problems are of great importance from theoretical and practical viewpoint and 

have been studied extensively for fifty years. The systematic study of invertibility for nonlinear 

systems began with the work [127] where Silverman’s structure algorithm to multiple input 

multiple-output (MIMO) nonlinear systems was generalized. Then reference [158] modified the 

algorithm to cover a larger class of systems. Literatures related with extension of this algorithm can be 

found in [137][121][125]. As mentioned above, there are potentially many different notions of 



81 
 

inversion that can be used in developing techniques for inverting systems. Let us begin this section 

recalling the following basic concepts related with left invertibility: 

1-)Input output mapping 

The left invertibility is the problem of injective and bijective of the input output map, e.g. invertibility 

of the dynamical system (4.1) basically refers to the injective of the input output map Hp. Roughly 

speaking, the definition of left invertibility requires that any difference in the input must result in a 

difference in the following output symbols, at most in a time equal to the invertibility time. A control 

system is invertible when the corresponding input output map is injective. Thus given an output 

function one can, in theory, recover the control which was applied.  

As a first approach, an input output system ∑ from inputs 𝒰 into outputs 𝒴 is left invertible if there 

exists an input output system ∑−1  from inputs 𝒴 into outputs 𝒰, such that the cascade system 

 ∑ ∑−1: 𝒰 → 𝒴 → 𝒰 is the identity. In our mainly algebraic setting, it is supposed that 𝒰, 𝒴 are good 

class of functions equipped with an algebraic structure, for example, those are differential vector space. 

Definition 4.14: A system ∑ from inputs 𝒰 into outputs 𝒴 is left invertible if there exists an input 

output system ∑−1  from inputs 𝒴  into outputs 𝒰 , and a differential polynomial 

P(u, u̇, . . . , y, ẏ, . . . ),such that if y = ∑(u), then  ∑−1(y)  =  u, for all pairs (u, y) ∈ 𝒰 × 𝒴, if: 

                    P(u, u̇, . . . , y, ẏ, . . . ) ≠ 0                               

2-) Differential output rank 

In differential algebraic setting, left invertibility (as our case) can be expressed in terms of the 

differential output rank of the system, see [159][3][147]. We have some definitions concerning the 

differential output rank of a system as the following statements. 

Definition 4.15: The differential output rank ρ of a system is equal to the differential transcendence 

degree of the differential extension k〈y〉 over the differential field k, i.e.: ρ = difftrd°k〈y〉 /k 

Property 4.1: The differential output rank ρ of a system is smaller or equal to min(m, p) 

ρ = diff tr d°k〈y〉 /k ≤ min(m, p) 

where m, p are the total number of inputs and outputs respectively. 

The differential output rank ρ is also the maximum number of outputs that are related by a differential 

polynomial equation with coefficients over 𝒦 (independent of x and u). 

A practical way, for certain simple cases, to determine the differential output rank is by taking into 

account all possible differential polynomials of the form  

Pr(y1, y2, . . , ym, ẏ1,ẏ2,… , ẏm,ÿ1, ÿ2… ÿm…) = 0                                        (4.3) 
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and if it is possible to find r independent relations of the form, then the differential output rank is given 

by ρ = p − r, that is to say, there exist only p−r independent outputs. 

Theorem 4.9: A system is left-invertible if, and only if the differential output rank ρ is equal to the 

total number of inputs, e.g. ρ = m in (4.1).  

That is, if the differential output rank is equal to the number of the inputs, the system is invertible. This 

implies that the number of outputs must be greater, or equal to the number of inputs. 

Remark 4.2: If a subsystem has more inputs than outputs, then it cannot be (left) invertible. On the 

other hand, if it has more outputs than inputs, then some outputs are redundant (as far as the task of 

recovering the input is concerned), therefore the case of input and output dimensions being equal 

perhaps, is the most interesting case. 

Remark 4.3: For the interconnected system, the case of input and output dimensions being equal in 

each subsystem, as well as the overall system, perhaps, is the most interesting case. 

4.6 Computing the Inverse Dynamics  

4.6.1 Inverse of Interconnected Nonlinear System 

We now have a toolset to check the invertibility conditions given in Theorem 4.7. If these conditions 

are satisfied and the interconnected system is strongly invertible, an interconnected inverse system can 

be constructed to recover the input from given output and initial state.  

Considering the interconnected input output system ∑ with two subsystems ∑a and  ∑p from inputs 

𝒰 into outputs 𝒴, its composition input output map is Ha ∘ Hp. If the interconnected system is left 

invertible,  there exists an input output system  ∑−1  from inputs 𝒴  into outputs  𝒰 , the inverse 

composition map is defined as (Ha ∘ Hp)
−1, such that the cascade system  ∑ ∑−1: 𝒰 → 𝒴 → 𝒰 is the 

identity. In our mainly algebraic setting, it is supposed that 𝒰, 𝒴 are good class of functions equipped 

with an algebraic structure, for example, those are differential vector space. Then the inverse of the 

interconnected system defined as in Theorem 4.10. 

Theorem 4.10: Consider the interconnected system ∑ which consists of two subsystems: actuator ∑a 

and process ∑p subsytems, and an input-output set(𝒰,𝒴). If the interconnected system is strong 

invertible at (x0, xa0)  over  ( 𝒰a, 𝒴) , then the inverse interconnected system can also be an 

interconnected system with input output  set (𝒴,𝒰), as follows: 

(Ha ∘ Hp)
−1 = Hp

−1 ∘ Ha
−1 
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Fig. 4.4 interconnected inverse system scheme 

As shown in Fig.4.4, the inverse of an interconnected system can also be considered as an 

interconnected system which consists of inverse of individual subsystem connected in series. The 

output of the inverse interconnected system is the original input of the interconnected system, by 

which implies that each original input affect the global output distinguishably. 

4.6.2 Structure Algorithm 

The main purpose of this section is to present a procedure to compute inverse dynamics of input 

affine interconnected nonlinear system. In fact, if a system is invertible, the structure algorithm 

allows us to express the input as a function of the output, its derivatives and possibly some states. 

More details are given in [122]. Invertibility of the control systems, affine in the input can be 

solved by algorithms within the framework of output differentiating and elementary linear algebra. 

The algorithms in [122] will be reconsidered and structured in order to obtain more systems which 

are invertible and to point out the real nature of the invertibility conditions. The main 

computational tool for studying the problem is in an algebraic. 

If a system is differentially left invertible, the input can be recovered from the output by means of 

a finite number of ordinary differential equations. As the dynamical subsystem (4.1), the 

realization of its inverse dynamic can be expressed as the following form (4.4): 

Hp
−1: {

η̇ = φ(η, y, ẏ, … )
ua = ω(η, y, ẏ, … )

                                                                                         (4.4) 

where η is a function of sub-state of the state x to be determined. It represents also the internal state 

that does not have a relationship with inputs. It determination is a crucial issue on the inverse dynamic.  

As the dynamical subsystem (4.2), the realization of its inverse dynamic which is also the inverse of the 

interconnected system can be expressed as the following form (4.5): 

Ha
−1: {

η̇𝑎 = φ𝑎(η𝑎 , ua, u̇a, … )

u = ω𝑎(η𝑎, ua, u̇ȧ, … )
                                                                                (4.5) 

where ηa is a function of sub-state of the state xa to be determined, ua is the output of inverse 

process subsystem.  

u 𝑦 

𝑦 

u𝒂 ∑𝑎(u, xa,V) 

   Actuator 

∑𝑝(u𝒂, x) 

Process 

∑  Physical system  

∑𝑝
−1 (𝑦,  �̇�, �̈�,…) 

Process inverse 

∑
𝑎 
−1(ua, u̇𝒂, �̈�𝒂…) 

   Actuator inverse 

∑−1 system inverse  

u𝒂 u 
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Since (4.4) and (4.5) may have the same structure, we only consider compute (4.4) for demonstration. 

This approach is based on the existence of the left inverse system whose outputs are the unknown input 

while the inputs are the measured system outputs and possibly their time derivatives. The existence of 

the left inverse determines the feasibility of the inversion based approach to the input reconstructor 

design. Therefore, we will study a series of problems concerned with the analysis of the properties of 

invertibility of dynamical systems. It will be seen that the point of departure of the invertibility analysis 

is the notion of relative degree of dynamical systems. The theory is developed for linear time invariant 

and nonlinear systems having vector relative degree.  For more details, one can turn to [122]. 

Definition 4.16 (Relative degree of nonlinear systems): For invertible dynamic system described by 

(4.1), the relative degree ri of the output yi with respect to the input vector ua is the smallest integer 

which is defined by:    

(a)  LgjLf
ri−1hi(x) ≠ 0; 1 ≤ j ≤ m 

       (b)  LgjLf
khi(x) = 0;   0 ≤ k < ri − 1, 1 ≤ j ≤ m 

where Lf(. )and  Lg(. )  represent the Lie derivatives of a real function h(x)  along the vector 

field f(x) and g(x).  

Lf
0hi(x) = hi(x) , Lf

khi(x) =
∂(Lf

k−1hi(x))

∂x
f(x) and LgjLf

khi(x) =
∂(Lf

khi(x))

∂x
gj(x). 

Definition 4.17 (vector relative degree of nonlinear system):  Based on the individual 

components ri, the vector relative degree r of a multivariable linear system is defined as:  

r = [r1 ⋯ rp] 

the multivariable nonlinear system (6.1) is said to have a vector relative degree r at a point x0 if:  

 LgjLf
khi(x) = 0;   0 ≤ k < ri − 1, 1 ≤ j ≤ m                                             (4.6) 

In this case, the matrix: 

A(x) = [
Lg1Lf

r1−1h1(x) … LgmLf
r1−1h1(x)

… … …

Lg1Lf
rm−1hm(x) … LgmLf

rm−1hm(x)
]                                           (4.7) 

is nonsingular or equivalently it has full rank:  

rank A(x) = m                                                                                                   

Definition 4.18 (total relative degree of nonlinear system): Based on the individual components ri 

and vector relative degree, the total relative degree is defined as:  
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r = ∑ri

m

i=1

                                                                                       (4.8) 

For certain classes of nonlinear state space systems one can find computation algorithms and also 

sufficient or necessary conditions of system inversion, in order to obtain a differential algebraic 

polynomial of the input vector  ua by means of the output vector y through system inverse, see 

e.g.,[122][137].  

Indeed, to derive an expression for ua(t) as a function of states and output in (4.1), following the 

inversion algorithm given by [122], we first need to compute the derivatives of  yi, i = 1, … ,m. We 

have:  

If ri = 1, then: 

yi
(1) =

∂hi(x)

∂x
ẋ(t)                       

=
∂hi(x)

∂x
(f(x) + g(x) ua) 

= Lf
1hi(x) +∑Lgj

1 Lf
0hi(x)

m

j=1

uaj          

If  ri ≠ 1, then Lgj
1 Lf

0hi(x) = 0;  1 ≤ j ≤ m 

then we get:  

yi
(1) = Lf

1hi(x) 

We should go on this differentia procedure, in general, for k < ri , we have:  

yi
(j)
= Lf

j
hi(x)                                                                                                                       

= ∂x(Lf
j−1
hi(x)f(x)) +∑∂

ua
(j)(Lf

j−1
hi(x))ua

(s)
          j = 0, . . , k, k < ri 

j−2

s=0

 

Until when we reach the relative degree ri , we then obtain::  

yi
(ri) = Lf

rihi(x) +∑Lgj(

m

j=1

Lf
ri−1hi(x)) uaj       i = 1, … ,m 

Given finite relative order r1, … , rm for (6.1) with respect to the output y, and if the total relative 

degree satisfied as:   
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r = ∑ri

m

i=1

= n 

then calculating expressions for their derivatives, it can be referred to as a 1-step algorithm to obtain an 

inverse,  we get: 

[
y1
(r1)

⋮

ym
(rm)

] = [
Lf
r1h1(x)

⋮
Lf
rmhm(x)

] + [
Lg1Lf

r1−1h1(x) … LgmLf
r1−1h1(x)

… … …

Lg1Lf
rm−1hm(x) … LgmLf

rm−1hm(x)
]  ua                            (4.9) 

the equation (6.8) can be solved for ua to obtain: 

 ua = [
Lg1Lf

r1−1h1(x) … LgmLf
r1−1h1(x)

… … …

Lg1Lf
rm−1hm(x) … LgmLf

rm−1hm(x)
]

−1

. ([
y1
(r1)

⋮

ym
(rm)

] − [
Lf
r1h1(x)

⋮
Lf
rmhm(x)

])                        (4.10) 

In this situation, there will be no internal dynamics and all the results will be finite time in nature.  

However, normally, the total relative degree is assumed: 

r = ∑ri

m

i=1

< n 

In this case, the system given by (6.1) can be presented in a new basis that is introduced as follows.  

Define the following change of the coordinates:  

ξi = [ξi
1, ξi

2, … , ξi
ri]
T
                      

= [ϕi
1(x), ϕi

2(x), … , ϕi
ri(x)]

T
 

       = [hi(x), Lfhi(x), … , Lf
ri−1hi(x) ]

T 
  i = 1, … ,m 

ξ = [ξ1, ξ2, … , ξm]                           

= [ϕ1(x), ϕ2(x), … , ϕm(x) ] 

η = [ϕr+1(x), ϕr+2(x), … ,ϕn(x) ]
T 

y = [ξ1
1, ξ2

1 , … , ξm
1 ] 

By application new local coordinates transformation proposed in [122], if the system hold the 

assumption of relative degree, it is always possible to find the function ϕr+1(x), ϕr+2(x), … , ϕn(x), 

thus :  

Φ(x) = [ϕ1(x), ϕ2(x), … , ϕm(x), ϕr+1(x), … , ϕn(x)]                                           (4.11) 
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The mapping Φ(x) is a local diffeomorphism which means:  

x = Φ−1(ξ, η)                                                                              (4.12) 

Furthermore, according to [122], if the assumption is satisfied: 

Assumption 4.4: the distribution is Γ = span {g1 g2 ⋯ gm}  involutive, then, it is always 

possible to identify the function ϕr+1(x), ϕr+2(x), … , ϕn(x) in such a way that:  

Lgjϕi(x) = 0, i = r + 1,… . , n, j = 1, … ,m 

η̇ = q(ξ, η) 

Then input vector  ua can be obtained by means of the output vector y and its derivatives. 

 ua = A(Φ
−1(ξ, η))

−1
([
ξ1
(r1)

⋮

ξm
(rm)

] − [
Lf
r1h1(Φ

−1(ξ, η)

⋮
Lf
rmhm(Φ

−1(ξ, η)
])                      (4.13) 

4.7 Numerical Simulations 

In this section, we present the results of a numerical simulation analysis performed to validate the 

effectiveness of the inverse interconnected system concepts presented in the previous sections. The 

main objective is to confirm by means of numerical simulations that the input of an invertible 

interconnected system can be recovered uniquely from measured output.  

A case study is developed on an intensified HEX reactor. The pilot consists of three process plates 

sandwiched between five utility plates, two pneumatic control valves are used to control utility and 

process fluid. More relative information could be found in [160]. During the course of the simulation 

work, the aim is to prove that the pneumatic pressure of the actuators can be recovered by the measured 

outlet temperatures of the HEX reactor.   

4.7.1 System Modelling 

a-) Actuator Subsystem modelling  

Pneumatic control valve is employed to act as actuator in this system. The main function of this 

pneumatic valve is to regulate the flow rate in a pipe line. By application of Bernoulli’s continuous 

flow law of incompressible fluids, we have: 

F = Cvf(X)√
∆P

sg
 

where F is flow rate (m3s−1), ∆P is the fluid pressure drop across the valve (Pa), sg is specific 

gravity of fluid and equals 1 for pure water, X is the valve opening or valve "lift" (X=1 for max flow), 

Cv is valve coefficient (given by manufacturer), f(X) is flow characteristic which is defined as the 

relationship between valve capacity and fluid travel through the valve. There are three flow 
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characteristics to choose from: linear valve control; quick opening valve control; equal percentage 

valve control. For linear valve, f(X) = X, the valve opening is related to stem displacement. In [1],[3], a 

pneumatic control valve has a dynamic model of the type: 

pcAa = m
d2X

dt
+ μ

dX

dt
+ kX       

where Aa is the diaphragm area on which the pneumatic pressure acts, pc is the pneumatic pressure, 

m is the mass of the control valve stem, μ is the friction of the valve stem, k is the spring compliance, 

and X is the stem displacement or percentage opening of the valve. 

 xa
T = [xa1 xa2 xa3 xa4] = [X1

dX1

dt
X2

dX2

dt
] , uT = [u1 u2] = [pc1 pc2] , ua

T =

[F1 F2] = [Cv√
∆P1

sg
X1  Cv√

∆P2

sg
X2] , C = [c1 c2 c3 c4] = [Cv√

∆P1

sg
0  Cv√

∆P2

sg
0].                                 

 the actuator subsystem is then described by four states, two inputs and two outputs, as: 

{
 
 
 
 

 
 
 
 

ẋa =

[
 
 
 
 
 
0 1 0 0

−
k1
m

−
μ1
m

0 0

0 0 0 1

0 0 −
k2
m

−
μ2
m]
 
 
 
 
 

xa +

[
 
 
 
 
 
Aa
m

0

0 0

0
Aa
m

0 0 ]
 
 
 
 
 

u

ua= [Cv√
∆P1
sg

0  Cv√
∆P2
sg

0] xa                        

                           (4.14) 

b-) Process subsystem modelling 

The heat exchanger reactor can be modeled as N ideally mixed interconnected tanks, the modelling of a 

given cell k is based on the mass and energy balances which describe the evolution of the characteristic 

values: temperature, mass, composition, pressure, etc. Consider the heat exchanger reactor system 

taken from [16], the dynamic equation governing the heat balance of the process fluid and the utility 

fluid are given by： 

Ṫp
k =

UA

ρpcppVp
(Tu
k − Tp

k) +
1

Vp
(Tp
k−1 − Tp

k)Fp 

Ṫu
k =

UA

ρucpuVu
(Tp
k − Tu

k) +
1

Vu
(Tu
k+1 − Tu

k)Fu 

where ρp, ρu are density of the process fluid and utility fluid (in kg.m−3), Vp, Vu are volume of the 

process fluid and utility fluid (in m3), cpp, cpu are specific heat of the process fluid and utility fluid (in 

J. kg−1. K−1) , U  is the overall heat transfer coefficient (in J. m−2. K−1. s−1). A is the reaction area (in 

m2 ). Fp, Fu are mass flowrate of process fluid and utility fluid (in kg. s−1 ). Tp
k−1 is the process fluid 

temperature of previous cell, for the cell 1, it is the inlet temperature of process fluid Tp
in. Tu

k+1 is the 

utility fluid temperature of previous cell, for the cell N, it is the inlet temperature of utility fluid Tu
in. 
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For simplicity, we consider one cell model. Define the state vector as xT = [x1, x2]
T = [Tp, Tu]

T, the 

control input ua
T = [ua1, ua2]

T = [Fp, Fu]
T, the output vector of measurable variables yT = [y1, y2]

T =

[Tp, Tu]
T
, then above two the equations can be rewritten in the following state-space form: 

{
ẋ = f(x) +∑gi(x)ua

2

i=1

y = h(x, ua)                  

                                                                              (4.15) 

where  f(x) = (
f1(x)
f2(x)

) = (

hpA

ρpCpp
Vp
(Tp − Tu)

huA

ρuCpu
Vu
(Tu − Tp)

) , and g(x) = (g1, g2) = (

(Tpi−Tp)

Vp
0

0
(Tui−Tu)

Vu

) , 

y1 = x1, y2 = x2，Tpi , Tui are the outputs of the previous cell, for the first cell, they are the inlet 

temperature of process fluid and utility fluid，besides, they are measured and are constant. It is worth 

noting that the exclusive consideration of such measurements is the usual case in an industrial 

environment. 

Thus, an interconnected system is constituted by (4.14) and (4.15). 

4.7.2 Checking Invertibility   

As mentioned above, a key point to compute dynamic inverse via system inversion lies on the 

invertibility of the system, we address the computational aspect of the concepts by algebraic criteria 

introduced above.  After that, by using eq. (4.13), we can represent the input of the system as a 

function of the output and its derivatives.  

To check if the interconnected system, modelled by (4.14) and (4.15) is invertible, we have to check 

whether the output differential rank of each subsystem is equal to the number of the inputs.  

1-) For process subsystem invertibility checking  

There are two inputs in this work: flowrate of process fluid Fp and flowrate of utility fluid Fu which 

are denoted by ua1, ua2 in (4.15) respectively. To compute the output differential rank, we first need to 

derive an explicit expression for the input in terms of the output y by computing the derivatives of y. 

When it comes to (4.15), two outputs are temperature of process fluid Tpand utility fluid Tu, which are 

denoted by y1, y2 in (4.15) respectively. As mentioned above, there are two inputs in this work, if the 

computed output differential rank is equal to the total number of inputs, then it refers that the process 

subsystem is invertible. 

Step 1: Invertibility checking: 

     a-) differential all two outputs: 
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{

ẏ1 = a(y2 − y1) +
ua1
Vp
(Tpi − y1)

ẏ2 = b(y1 − y2) +
ua2
Vu
(Tui − y2)

                                             (4.16) 

     b-) find all possible relations as the form given in (4.3). 

 There exists no any differential equation that output is independent of x and ua, therefore, both 

outputs are differential dependent, r=0 

c-) there are 2 outputs, therefore: 

ρ = p − r = 2 

Output differential rank is equal to the total number of inputs, and then the system is invertible. 

2-) For the actuator subsystem invertibility checking 

There are two inputs in actuator subsystem: the pneumatic pressures pc1,  pc2 which are denoted by 

u1 u2 in (4.14) respectively. By computing the derivatives of output vector ua1, ua2, invertibility of 

the actuator subsystem can be easily obtained. 

4.7.3 Inverse System Representation 

Step 1: Represents the inverse of the process subsystem as a function of the output and its derivatives: 

Thanks to the invertibility of the system, we can compute the inverse of process subsystem (4.1) as a 

function of measured the output and its derivatives. According to (4.13), an expression for the two 

inputs can be derived as ũa = [u a1 u a2]: 

                    {
u a1 =

Vp

Tpi−y1
(ẏ1 − ay2 + ay1)

u a2 =
Vu

Tui−y2
(ẏ2 − by1 + by2)

                                                                     (4.17) 

Step 2: Represents the inverse of the actuator subsystem as a function of the output and its derivatives: 

According to Theorem 4.10, the inverse of an interconnected system is also an interconnected system. 

That is to say the input of the inverse actuator subsystem is in fact the output of the inverse process 

subsystem, then by computing successive derivatives of  ũa, an expression for the two inputs can be 

derived as u = [u1 u2]: 

{
u1 = α. β1[u ̈a1 + γ11u ̇a1 + γ12u a1]

u2 = α. β2[u ̈a2 + γ21u ̇a2 + γ22u a2]
                                                              (4.18) 

Where α =
m

Aa
, βi = 1 Cv√

∆Pi

sg
⁄ , i = 1, 2, γ11 = −

k1

m
, γ12 = −

μ1

m
, γ21 = −

k2

m
, γ22 = −

μ2

m
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4.7.4 Numerical Simulation 

The proposed invertibility algorithm was simulated with respect to actuator and process subsystems 

using the values given in Table 1. These constants, corresponding to a HEX exchanger reactor system 

having fast dynamics, were taken from [16]. The inlet temperatures Tpi and Tui were 76℃ and 

15.6 ℃ respectively, the computed inlet flow rate of the utility fluid Fu is  4.22e−5m3s−1, and inlet 

flow rate of the process fluid Fp is constant 4.17e−6m3s−1, the computed value means the expected 

true values of the actuators. Parameters in actuator subsystem are: m=2kg, Aa =0.029m2, 

μ =1500Ns/m and k=6089 Ns/m, pressure drop ∆P in utility fluid is 0.6MPa and 60KPa in process 

fluid. 

TABLE І  PHYSICAL DATA USED IN THE PILOT 

Constant description Value units 

hA overall heat transfer coefficient*reaction area 214.8 W.K−1 

A Reaction area 4e−6 m3 

Vp process fluid volume 2.685e−5 m3 

Vu utility fluid volume  1.141e−4 m3 

ρp, ρu fluid density   1000 kg.m−3 

cpp
, cpu

 
specific heat of the fluid 4180 J. kg−1. k−1 

Tui utility fluid input  15.6 ℃ 

Tpi process fluid input  76 ℃ 

The pneumatic pressures  pc1,  pc2 are considered as the two inputs of the actuator subsystem, the 

values are 1MPa, 1.2Mpa for utility and process fluid respectively. The aim here is to check whether 

the recovered values of pneumatic pressures via the inverse interconnected system are consistent with 

the original values. To achieve this aim, two simulations are implemented. In case one, constant value 

is simulated, while in case 2, we considered there is an abrupt change in pneumatic pressure of utility 

fluid  pc2, simulation results are reported in Figs. 4.5-4.8 

Case 1: constant pneumatic pressure 𝐩𝐜𝟏,  𝐩𝐜𝟐 

In this case, we consider both pneumatic pressures pc1,  pc2 remain constant. The aim is to check 

whether inverse interconnected system can recover the original inputs (pneumatic pressure pc1,  pc2) of 

the interconnected system correctly. Fig.4.5 demonstrates the reconstrucbility of the inverse process 

subsystem using measured outlet temperature and Fig.4.6 corresponds to output of the inverse 

interconnected system using results of inverse process subsystem. Fig.4.5 together with Fig.4.6 confirms 

the reconstrucbility of the interconnected system. As shown in Fig. 4.5, the black solid lines are the real 

values of both fluid flow rates while red dash lines represent the outputs of the inverse process system. It 

is illustrated in Fig. 4.5 that, after a short transient period, the values of red dash lines track the black 

solid lines correctly. Therefore the inverse process subsystem could recover its input with acceptable 
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accuracy. After then, the resulted outputs of the inverse process subsystem are fed to the actuator inverse 

subsystem to check the tracking capacities. 

 

Fig.4.5a computed and reconstructed process fluid flow rate in case 1, black solid is the computed 

value while red dash curve is recovered by inverse system 

 

Fig.4.5b computed and reconstructed utility fluid flow rate in case 1, black solid is the computed value 

while red dash curve is recovered by inverse system 

 

Fig.4.6a measured and recovered pneumatic pressured of process fluid flow rate in case 1, black solid 

line is the measured value while red dash line is recovered by inverse interconnected system 
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Fig.4.6b measured and recovered pneumatic pressured of utility fluid flow rate in case 1, black solid 

line is the measured value while red dash line is recovered by inverse interconnected system 

As we can see from Fig.4.6, the recovered pneumatic pressure (red dash line), which are also the 

outputs of the inverse interconnected system, converge to the measured pneumatic pressure (black solid 

curve) after short transient time. Thus we can conclude that the input of an interconnected system can 

be recovered by the inverse system correctly if both subsystems are invertible. It implies that the 

interconnected system is invertible since the input can be recovered by the output correctly. 

Case 2: constant pneumatic pressure 𝐩𝐜𝟏, and varied pneumatic pressure  𝐩𝐜𝟐 

In this simulation, we intend to confirm that the inverse computation procedure is effective even the 

input is time varying. For that, we consider that the pneumatic pressure pc1 of process fluid remain 

constant also, however, the value of pneumatic pressure  pc2 varies from 1Mpa to 1.05Mpa at time 

80s. The simulation results are illustrated in Fig. 4.7 and Fig. 4.8. 

It can be seen from Fig. 4.7 that both reconstructed fluid flow rates in red dash curves track the 

computed values after a short time. Due to change of pneumatic pressure  pc2  at 80s, both 

reconstructed values fluctuated. Then reconstructed process fluid flow rate Fp converges back to its 

computed value again after several seconds. For the utility fluid flow rate Fu, we can see that the 

reconstructed value stables at a new level after transient. Since the reconstructed value is obtained by 

the inverse process subsystem via global measured temperature, it is obvious that changes of variables at 

local actuator subsystem have distinguishable impacts on global measured outputs which are in 

accordance with the assumption. The next task is to feed the inverse actuator subsystem with outputs of 

inverse process subsystem to identify the reconstrucbility of the inverse interconnected system. The 

simulation results are shown in Fig. 4.8. 
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Fig.4.7a computed and reconstructed process fluid flow rate in case 2, black solid is the computed 

value while red dash curve is recovered by inverse system 

 

Fig.4.7b computed and reconstructed utility fluid flow rate in case 2, black solid is the computed value 

while red dash curve is recovered by inverse system 

As we can see from Fig. 4.8, both reconstructed pneumatic pressure  pc1,  pc2 in red dash lines follow 

up the measured values in black solid lines after short transient response. At time 80s, recovered 

pneumatic pressured  pc1 of process fluid flow rate in Fig.4.8a varies at 80s due to the variation 

parameter pneumatic pressure pc2, after then the curve tracks back its measured value in black solid 

line. The result is plotted in Fig. 4.8b for recovered pneumatic pressured  pc2 of utility fluid flow rate. 

The recovered value in red dash line tracks the measured value, then at 80s, both measured and 

recovered values changes, and after short transient response time, they are overlapped again. It implies 

that the inputs of the interconnected system can be uniquely recovered by the inverse interconnected 

system, in other words, the inputs at local level have distinguishable influences at higher level if the 

interconnected system is invertible. However, it is also obviously that the computation bias is relatively 

important, it may even larger if measurement noise exists. 
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Fig. 4.8a measured and recovered pneumatic pressured of process fluid flow rate in case 2, black solid 

line is the measured value while red dash line is recovered by inverse interconnected system 

 

Fig. 4.8b measured and recovered pneumatic pressured of utility fluid flow rate in case 2, black solid 

line is the measured value while red dash line is recovered by inverse interconnected system 

4.8 Summary  

This chapter addresses the invertibility problem of interconnected nonlinear systems involving two 

nonlinear subsystems that affine in controls. The studied interconnected system can be formulated to 

describe as a composition map of two cascade connections. The problem is concerned with the ability 

to reconstruct the input at local level uniquely from given output and initial state. A necessary and 

sufficient condition for the invertibility of the interconnected nonlinear systems is given, which 

requires the invertibility of individual subsystems. When all the subsystems are invertible, we present 

an algorithm for finding inputs at local subsystem that generate a given output at global system. 

Detailed examples are included to illustrate these developed concepts. 

Although large bias involves and large computation errors may appear especially when outputs are 

corrupted with noise, the particular aim is to confirm that the inputs at local level have distinguishable 

impacts at global level in case the interconnected system is invertible. In that case, it allows monitoring 

and analyzing the overall system at local subcomponent but using global information. For example, if 

we view failures at local component as unknown input, we can recognize different faults through their 

distinguishable impacts on global outputs, thus a combination of local intelligence with a more 

advanced diagnostic capability (combining fault monitoring and diagnosis at both local and global 

levels) to perform FDD functions is achieved. 
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CHAPTER 5 OBSERVER DESIGN FOR INVERTIBLE INTERCONNECTED 

SYSTEM 

This chapter investigates the possibility to decompose a control system into an interconnection of 

actuator and process subsystems, and studies observers for such interconnected nonlinear system. This 

allows monitoring the properties of the interconnected system globally and locally. Specially, the 

interconnection between the two subsystems, which is the output of the actuator and also the input of 

the process, is assumed to be inaccessible. It is due to that, for the actuator, it can be uneconomic or 

unrealistic to measure its output. The practical meaning is as the following: for one hand, the 

measurement equipment or the running costs for this measurement may be very expensive; for the 

other, the measured value could be unreliable due to its rough operation environment. 

5.1 Introduction 

In practice, interconnected dynamical systems appear in many control applications whether naturally or 

intentionally due to control design. An interconnected system consists of a series of interconnected 

dynamical units, and therefore exhibits very complicate dynamics has received increasing treats in 

various fields of the real world, such as biology, sociology, World Wide Web, electrical power grids, 

and so on [161].  

Over the past years, the interconnected complex system has received increasing attention. A large 

number of publications are focused on the problem of stabilization and control problems with 

satisfactory results. The literature concerning the complex dynamic networks which consist of a large 

number of interconnected units are relatively important, different kinds of methodologies are developed, 

like in[162][106]. For example in [163], an observer based controller scheme is designed to robustly 

drive a sensor-less Induction Motor (IM) even for the case of low frequencies with unknown load 

torque. And in [101], a functional observer based controller is derived to estimate directly a stabilizing 

control for a wide class of large scale systems, constituted by subsystems with interconnection terms 

between each other.  

Compare to the literature concerning the purpose of synchronization, the purpose of better 

understanding the dynamics of each subsystem, as well as making use of this information for 

maintenances, the topic of states estimation and reconstruction of unknown input through available 

measurements has also received extensively attention in the literature，see e.g. in [152][27]. Note that a 

centralized observer may not be practical for the complex interconnected systems due to the 

complexity of implementation, and the state or parts of the state cannot be measured due to 

uneconomic measurement costs or physical circumstances like high temperatures, where no 

measurement equipment is available, for example. 

A solution to overcome this difficultyty is to decompose the complex systems into an interconnection 

of several subsystems so that the observers can be designed in a decentralized manner. A typical 
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approach of state estimation is to design observers for each subsystem individually and the overall 

estimator is formed by gathering all the observers. It is because, normally, nonlinear interconnected 

systems such as complex biological processes and power networks operate using local state 

information. This is due to the fact that global network states are generally unavailable, arrive with time 

delays, or require expensive infrastructure. Coupled with nonlinear interconnections, state disturbances, 

and sensor noise/attacks, the distributed state estimation problem is a challenging one. Therefore, 

distributed states observers are proposed for estimating the internal states of the nonlinear subsystems 

using measurement of inputs and outputs for each subsystem in many cases. For instance in [164], an 

observer is designed for the whole system from the separate synthesis of observers for each subsystem, 

assuming that for each of these separate designs, the states from the other subsystem are available. In 

[165], for each subsystem of the interconnected system, it is proposed the observer using the state 

estimation of the previous subsystem. In addition, a quasi-ISS/ISDS reduced-order observer for the 

whole system is designed considering interconnections quasi-ISS/ISDS reduced-order observers for 

each subsystem are derived in [166]. Existing observers for single nonlinear systems are normally 

employed for individual local systems in these approaches. In fact, in the last decades, the problem of 

state observation for single nonlinear system have intensively been investigated, resulting in various 

types of observers like high gain observer in [89][83], sliding mode observer in [167] , adaptive 

observer in [168],etc.  

Notice that in most practical situations, the complete state measurements are not available for each 

subsystem, as explained in [150]. But with respect to the previous mentioned results, the availability of 

the states (or a functional of the states) of each subsystem is required. This problem is normally tackled 

by transforming unavailable information as unknown inputs (UI) through system augmentation in the 

literature. The problem of designing an observer for a multi-variable dynamic system partially driven 

by unknown inputs has been widely studied, as in [169]. Such observers can be of important use for 

systems subject to disturbances or with inaccessible inputs, or when dealing with the problem of fault 

diagnosis. Results are also available for interconnected systems subject to unknown inputs. Like in 

[161], the problems of both state estimation and unknown input reconstruction for uncertain complex 

networks are simultaneously discussed. What’s more, in [170], distributed unknown input observers are 

proposed for estimating the internal states of the nonlinear subsystems using local measurement outputs. 

For each subsystem, the network configuration is exploited to formulate sufficient conditions for the 

estimation of the unknown input to arbitrary accuracy. 

With respect to the above mentioned state observation problems, contributions dealing with the sate 

observation problem for interconnected system subjected to unknown interconnections have received 

less extensively treats in the literature. Moreover, the proposed methodologies are often developed for a 

particular kind of interconnected system. A promising approach was reported in [153] where the 

problem of state observation is addressed for nonlinear systems modeled by an ODE–PDE series 

association. The aim is to accurately estimate online the state vector of the ODE subsystem and the 
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distributed state of the PDE element. This problem has also been studied for interconnected system 

formed by a nonlinear system followed by a linear system, like in [152]. Authors developed an 

observer design methodology for the resulting cascade nonlinear and linear interconnection, based on 

estimating the unavailable output together with the states of the linear system. The paper [150] 

proposes a functional observer for each subsystem of two interconnected system. The proposed 

observers are free of interconnection terms and the observation error is unbiased. 

This chapter considers the issues of both state and unknown interconnection estimation for the 

interconnected system represented by two nonlinear associations connected in series. The aim is to 

accurately estimate online the states vector of each subsystem, as well as the unknown interconnection. 

One major difficulty is that the state observation must only rely on the output of the global system at 

the terminal subsystem making useless existing observers developed for separately nonlinear system. It 

is because the connection point between the subsystems is assumed not to be accessible to 

measurements. To cope with this difficulty, estimation via observer theory is employed. We extend the 

use of some classical observers to the interconnected dynamic system. For each subsystem of the 

interconnected system, it is proposed the use of the global observer using the state estimation of the 

other subsystem, and we insure the asymptotic stability of the overall estimator which is formed by the 

gathering of all the observers and estimators. Two underlying issues are worth to be highlighted to 

better understand the nature of the considered estimation problem. Firstly, the measurement output used 

in the observer of former subsystem is assumed not accessible; the solution is to replace it by an 

estimate via observer of latter subsystem. In fact, this unknown output is the unknown interconnection 

which is also the input of the latter subsystem. Secondly, in the latter subsystem, the estimated 

interconnection that provided for the previous subsystem is treated as an additional state, forming a 

new extended subsystem; and expression for the new state is obtained by computing derivatives of 

output equation of the previous subsystem, resulting in a function of input. 

This chapter is organized as follows: the problem formulation is introduced in Section 5.2, where the 

type of dynamic units of the interconnected system is performed. The main objective is introduced. 

Section 5.3 contains all the results for the observer design with respect to interconnected systems. 

Some numerical simulation examples are given to illustrate the effectiveness of the proposed methods 

in section 5.4. Finally, conclusion is made in section 5.5. 

5.2 Motivation and Problem Formulation 

The problem of states observation is addressed for nonlinear systems that can be modeled by a 

nonlinear interconnected series association. The studied interconnected system consists of two 

interconnected nonlinear dynamical units, the actuator and the process subsystems, as shown in Fig.5.1. 

The partitioning of the overall system into two subsystems may stem from inherent physical divisions 

in a particular application, or it may be a convenient way to represent a system for design purposes. 

Both subsystems are considered as input affine type. The aim is to accurately monitor the states vector 

of both subsystems, as well as the interconnection. The idea is then to design an observer for the overall 
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system from the separate synthesis of observers for each subsystem, assuming that the states from the 

other subsystem are available. 

 

 

 

Fig 5.1 interconnected system structure 

We consider a dynamical process subsystem as the form: 

∑p : {
ẋ = f(x) + g(x)ua,   x(t0) = x0
y = h(x, ua)                                   

                                                   (5.1) 

where x ∈ ℜn is the state of the process subsystem, y ∈ ℜp is the output of the global system, which 

is also the output of the process subsystem. ua ∈ ℜ
m is the input of process subsystem, which is also 

the output of the actuator subsystem. ua is inaccessible and is reconstructed from measurements of  y.  

f and g are smooth vector field on ℜn and h is smooth vector field on ℜp. 

An input affine structure is also assumed for the actuator subsystem:  

∑a: {
ẋa = fa(xa) + ga(xa)u, xa(t0) = xa0
ua = ha(xa, u)                                                   

                                            (5.2) 

where xa ∈ ℜ
n is the state, u ∈  ℜl is the input, ua ∈ R

m is the output of the actuator subsystem, 

which is also the input of the process subsystem. faand ga are smooth vector field on ℜn and h is 

smooth vector field on ℜm. 

As introduced in [164], by considering models of physical process, we assume that inputs are bounded 

borelian functions and belong to some set 𝒰,𝒰a, that u ⊂ 𝒰, and ua ⊂ 𝒰a, the space of all bounded 

boralian function taking their values in 𝒰,𝒰a.  

Considering interconnected system depicted by (5.1) and (5.2), it is desirable to monitor the 

performance of the interconnected system with aspect to individual subsystems and the overall system. 

One way to achieve this purpose is to have observers for each of the subsystems and the whole network. 

However, the major difficulty for employing the existing methods is to satisfy the assumption that 

inputs and outputs of each subsystem are available, since the connection point between the two blocks 

is not accessible to measurements. This is because the connection is the output of the actuator 

subsystem where measurements are either difficult to obtain due to physical reasons or the 

measurement is uneconomical since actuators are often far from the controller. Therefore the state 

observation in this work can only rely on the global system output i.e. the process state at the terminal 

boundary. As shown in Fig. 5.1, the particular aim in our design is to accurately estimate online the 

state vector x and xa of each subsystem, as well as the unmeasured interconnection vector ua using 

measurements of input u and output y. 

u u𝒂 
∑𝑎 

   Actuator 

y 
∑𝑝 

Process 

∑ 
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Existing observers in the literature are not available for the purpose. To cope with this difficulty, we 

assume that design of the observer can be divided into one part to estimate the unknown 

interconnection, which is the input of the latter subsystem and output of the former subsystem, and a 

second part to estimate the state of the two subsystems. To achieve this purpose, we extend the use of 

some classical observers to the interconnected dynamic system. For each subsystem of the 

interconnected system, it is proposed the use of the global observer using the state estimation of the 

other subsystem, and we insure the asymptotic stability of the overall estimator which is formed by the 

gathering of all the observers.  

5.3 Observer Design 

The structure of the proposed observer is depicted in Fig. 5.2. It is a two level interconnected observer 

system which consists of two state estimators, the actuator and the process state estimators. The 

actuator state estimator deals with estimating the states in actuator subsystem. First, we assume that an 

observer with a corresponding quadratic-type Lyapunov function has already been designed for the 

actuator subsystem. We then consider the problem that arises when the output from the actuator 

subsystem is not available directly, but instead available via the second subsystem, the process 

subsystem. That is, the output from the actuator subsystem acts as the input to the process subsystem, 

from which measurement of the final product is in turn available. To get a solution for the unknown 

output of the actuator subsystem, the process state estimator is a coordinator dealing with 

interconnections by extending the interconnection as an additional state of the process subsystem. This 

process state estimator generates an input sequence which is applied to the actuator subsystem as 

estimation of its output. Then the overall observer estimates the states and interconnection of the 

interconnected system by using the estimates of the two estimators.  

 

 

 

 

 

 

 

 

 

 

Fig. 5.2 structure of the proposed interconnected observer 

u u𝒂 
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As shown in Fig. 5.2, the main idea of the proposed interconnected observer design is as follows. First, 

an existing observer is supposed to be already available for the nonlinear subsystem ∑𝑎 with measured 

measured output u𝑎, then we implement that observer using an estimate of u𝑎, denoted by  u a. In 

order to produce such an estimate, we extend the state space of the process subsystem ∑p to include 

u𝑎 as an additional state. By computing derivatives of u𝑎 in actuator subsystem, we can obtain an 

expression corresponding to time derivatives of the output u𝑎  which is a function 

of u, derivatives of u and x𝑎. Then an observer is constructed for this extended process subsystem. State 

estimator of actuator subsystem, together with state estimator of process subsystem, a kind of 

interconnected observer designed method is then proposed for the studied interconnected nonlinear 

system. It must be pointed out that this work is significantly inspired by the works proposed in [152] 

and [171]. In [152], an observer for the nonlinear and linear system is investigated in which 

invertibility of the nonlinear system is not required and observer design is not utilized for fault 

detection purpose. The novelty of the presented approach in this work stems from that it deals with a 

nonlinear interconnected system which consists of two nonlinear subsystems connected in cascade 

manners; this is quite different from the one in [152]. In this work, we maintain the assumption of 

stabilities interconnections expression by computing derivatives of output in the previous subsystem as 

proposed in [152]. While for the part of extending unknown input as an extra state, the estimator is of 

the same structure form proposed in [171], but the time derivatives expression of unknown input differs. 

In [171], the unmeasured part is a known function with respect to states, inputs and noise, etc. 

5.3.1 Observer Design for the Interconnected System 

1-）Interconnected System Extension 

Consider system depicted by（5.1）and（5.2）,let: 

xu ≜ ua  

ẋu = u̇a  

ẋu =
∂ha
∂u
(u, xa)u̇ +

∂ha
∂xa

(u, xa)fa(u, xa) 

= ε(u, u̇, xa) 

A new interconnected system can be expressed by：Σ = ∑p + ∑a + xu 

{
 
 

 
 
ẋ = f(x) + g(x)xu                                                    

ẋu = ε(u, u̇, xa)                                                            

ẋa = fa(xa) + ga(xa)u                                               

y = h(x)                                                                    

x(t0) = x0;  xa(t0) = xa0; xu = ha(xa)  

                                 

Where input of the system is u, and output is y, ua is an unmeasured state. 

Then new actuator and new process subsystem can be expressed as:  

Σ𝑝: {
ẋ = f(x) + g(x)xu
ẋu = ε(u, u̇, xa)

                                                              (5.3)  

Σ𝑎: ẋa = fa(xa) + ga(xa)u                                                         (5.4) 

2-) an observer for new actuator subsystem 
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First, consider a converging observer for actuator subsystem (5.3) as the following form is admitted:                                                     

                               {
ẋ̂a = fa(x̂a) + ga(x̂a)u + ka(ℊa, x̂a)(ha(x̂a) − ua)

ℊ̇a = Ga(x̂a, u, ℊa)                                                            
                                                     (5.5) 

Where  ka, Ga are smooth gain functions with respect to their arguments and yet to be defined.  Ga 

is a subset of  ℜn. To this end, introduce the state estimation error as:  

ea: = xa − x̂a 

Then subtracting corresponding equation of (5.3) and (5.5), we get the following error dynamics as: 

                                      {
            ea: = xa − x̂a                                                                                  

ėa(t, ea) = fa(xa) + ga(xa)u − fa(x̂a) − ga(x̂a)u − Κ(u, x̂a, ua)
                       

Where Κ(u, x̂a, ua) = ka(ℊa, x̂a)(ha(x̂a) − ua). 

In order to formulate a solution to the convergence of the observer, we need the following assumption 

5.1 with respect to error Lyapunov function introduced in [164]. This error Lyapunov function shows 

the equivalence of the existence of an error Lyapunov function and the existence of a converging 

observer. 

Assumption 5.1: for any  u ∈ 𝒰, (t, ea) ∈ 𝒜. 𝒞(ℛ
+, ℛ) , there exists a continuously differentiable 

function Va and positive constants α, β, γ1, γ2, satisfies: 

{
 
 

 
 
(a) γ1‖ea‖

2 ≤ Va(t, ea) ≤ γ2‖ea‖
2         

(b)
∂Va
∂t
(t, ea) +

∂Va
∂ea

(t, ea)ėa ≤ α‖ea‖
2

(c) ‖
∂Va
∂ea

(t, ea)‖ ≤ β‖ea‖                         

                                                        

The observer defined by (5.5) is an exponential observer if Assumption 5.1 is satisfied, such that: 

lim
t→∞

ea(t) = 0 

∫ ea(t) < ∞
∞

0

 

The observer in (5.5) could be implemented on condition that ua is accessible, but it is not the fact in 

the case. Since ua in our design represents the output of the actuator subsystem which is assumed 

unmeasured, therefore we have to replace ua with an estimated u a by the available measurements. 

Suppose that estimation of  u a is available, by substituting ua as  u a, we can now implement observer 

(5.5) for actuator subsystem as the following form: 

{
ẋ̂a = fa(x̂a) + ga(x̂a)u + ka(ℊa, x̂a)(ha(x̂a) − u a)

ℊ̇a = Ga(x̂a, u, ℊa)                                                          
                                           (5.6) 

Denote Κ(u, x̂a, u a) = ka(ℊa, x̂a)(ha(x̂a) − u a).  
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We seek again estimation error by subtracting corresponding equation in (5.3) and (5.6), thus yielding 

the new error dynamics as follows: 

e ̇a(t, e a) = fa(xa) + ga(xa)u − fa(x̂a) − ga(x̂a)u − Κ(u, x̂a, u a)       

 = fa(xa) + ga(xa)u − fa(x̂a) − ga(x̂a)u − Κ(u, x̂a, ua) + Κ(u, x̂a, ua) − Κ(u, x̂a, u a) 

= ėa(t, ea) + Κ(u, x̂a, ua) − Κ(u, x̂a, u a)                                                                                     (5.7) 

In order to ensure exponential stability of the error dynamics (5.7), we need an assumption regarding 

the sensitivity of Κ(u, x̂a, ua) with respect to changes in ua. In particularly, since output of actuator 

subsystem u a used in observer (5.6) is in fact a virtual measurement which is estimated by output of 

the process subsystem, thus estimation error becomes unavoidable. This estimation error can be viewed 

as bounded disturbance to the real output of the actuator subsystem ua. Therefore the basic problem 

addressed in this work is the design of nonlinear observer that possesses robustness to the disturbance 

affecting the real output. The following Assumption 5.2 provides a sufficient condition for achieving 

this purpose. This subject of following statement is inspired by [8] and proven in Appendix 5.1. 

Assumption 5.2: for any u ∈ 𝒰, (t, x̂a, ûa) ∈ 𝒜. 𝒞(ℛ
+, ℛ), there exists a real constant γ3 satisfies:  

‖Κ(u, x̂a, ua) − Κ(u, x̂a, ûa)‖ ≤ γ3‖ua − ûa‖                                                  (5.8) 

In addition to asking that the state estimation error ea converges to 0 in the absence of disturbances, we 

want it to still converge to 0 if a disturbance is present but converge to 0, and to remain bounded if the 

disturbance is bounded. Therefore Assumption 5.2 implies that the definition of e ̇a(t, e a) in (5.7) is 

not affected.  

Theorem 5.1: if Assumption 5.1 and Assumption 5.2 are satisfied, then the observer described in (5.6) 

is an exponential observer for the actuator subsystem described in (5.2). 

The proof is given in Appendix 5.2. 

Let us discuss this property with high gain observer as an example to confirm Theorem 5.1. Relative 

proof is placed in Appendix 5.3 and Appendix 5.4. 

Assume without any loss of generality, the studied invertible system (5.3) can be transformed into the 

following form: 

{
χ1̇ = A1χ1 + Θ1(χ1, u)
ua = C1χ1                        

                                                                                  (5.9 ) 

with  χ1
T = (χ11 ⋯ χ1n)T , A1 = [

0 1 ⋯ 0
⋮ ⋱ ⋱ ⋮
0 … 0 1
0 … 0 0

] , Θ1(χ1, u) = [
Θ1(χ11, u)

⋮
Θn(χ11, … , χ1n, u)

],  C1 =

[1 0 … 0],  
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this transformation with the structure ensures the existence of a high gain observer for system (5.2 ) of 

the following structure, as shown in [89]: 

{
χ̇̂1 = A1χ̂1 + Θ1(χ̂1, u) − Sθ1

−1C1
T(C1χ̂1 − ua)

0 = θ1Sθ1  + A1
TSθ1  + Sθ1A1 − C1

TC1         
                                        (5.10 ) 

Where define Δθ1 = [

1 0 ⋯ 0
0 θ1

−1 ⋱ 0
⋮ ⋱ ⋱ 0

0 … 0 θ1
−(n−1)

], then Sθ1 =
1

θ1
Δθ1S11Δθ1and S11 = Sθ1|θ=1 . 

By defining estimation error  e1: = χ̂1 − χ1, we then obtain the error dynamics from (5.7) as: 

ė1(t, e1) = (A1 − Sθ1
−1C1

TC1)e1 + Θ1(χ̂1, u) − Θ1(χ1, u)                                   (5.11) 

By defining V1(e1) =
1

θ1
e1
TSθ1e1, the following convergence of the error dynamics is obtained and the 

proof of which is given in Appendix 5.3. That:  

V̇1(e1) ≤ −θ1V1 + 2nϱ
λmax(S11)

λmin(S11)
V1                                                           (5.12) 

Set θ1
∗ = 2nϱ

λmax(S11)

λmin(S11)
, then by taking θ1 > θ1

∗ , it results that Assumption 5.1 holds. The following 

lemma analyzes the conditions for the boundedness of estimation error dynamics of the subsystem. 

Lemma 5.1: Assume that the subsystem (5.9) satisfies Assumptions 5.1. Then there exists θ1
∗ >

0, such that ∀θ1 > θ1
∗ , the error dynamics (5.11) will remain bounded. 

Now, let consider that ua in (5.10) is inaccessible and is replaced by its estimates u a, then the observer 

for system (5.2) is expressed in terms of variables u a and χ ̂1, u. Thus the observer (5.10) becomes the 

following structure:   

{
χ ̇̂1 = A1χ ̂1 + Θ1(χ ̂1, u) − Sθ1

−1C1
T(C1χ ̂1 − u a)

0 = θ1Sθ1  + A1
TSθ1  + Sθ1A1 − C1

TC1         
                                      (5.13 ) 

By defining estimation error as  e 1 ≔ χ ̂1 − χ1 and subtracting corresponding equation in (5.9) and 

(5.13), one can obtain the error dynamics equation which is the same as the structure proposed in (5.7) 

and (5.11): 

e ̇1(t, e 1) = A1χ ̂1 + Θ1(χ ̂1, u) − Sθ1
−1C1

T(C1χ ̂1 − u a) − (A1χ1 + Θ1(χ1, u))                  

= ė1 + Sθ1
−1C1

T(ua − u a)                                                                                                        (5.14) 

Our purpose is to prove the convergence of the observer (5.13) where output ua is substituted by its 

estimate u a. We have to confirm that if estimation u 𝑎 satisfied Assumption 5.2, then convergence of 

(5.14) is guaranteed. To achieve this purpose, define the positive Lyapunouv function Ṽ1(e 1) as: 
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Ṽ1(e 1) =
1

θ1
e 11
TSθ1e 11                                                                       (5.15) 

Now the convergence of observer (5.13) is obtained by calculating time-derivation of (5.15). Specific 

related proven procedure is given in Appendix 5.4. The final result is as follows: 

V̇̃1(e 1) ≤ −θ1V1 + 2nϱ
λmax(S11)

λmin(S11)
V1 +

1

λmin(S11)
√V1‖ua − ûa‖                       (5.16) 

Therefore by choosing θ1
∗ = (2nϱ

λmax(S11)

λmin(S11)
+

1

λmin(S11)
), the right side of the above inequality is 

negative. It implies that Theorem 5.1 holds. 

2-) an observer for new process subsystem 

In order to produce an observer for the process subsystem which is with unknown inputs, we haved 

solve this problem by extending this unknown input as an additional state, and propose an observer for 

the extended system. 

According to [152], we define a function ε(u, u̇, xa) with respect to the time derivative of the output ua 

in (5.4 ). 

ε(u, u̇, xa) =
∂ha
∂u
(u, xa)u̇ +

∂ha
∂xa

(u, xa)fa(u, xa)                                          (5.17) 

Assumption 5.3: For any u ∈ 𝒰, (t, x̂a) ∈ 𝒜. 𝒞(ℛ
+, ℛ), there exists a real constant γ4 satisfies that:  

‖ε(u, u̇, x̂a) − ε(u, u̇, xa)‖ ≤ γ4‖xa − x̂a‖ 

Similar to Assumption 5.2, Assumption 5.3 implies global Lipchitz-type condition on function ε, and it 

can also be replaced by local smoothness condition since  u, u̇, xa are bounded in physical problem. 

Consider system (5.3), define z = [z1 z2] = [x xu] , then system (5.3) can be extended as:  

{

ż1 = f1(z1, u) + g1(z1, u)z2
ż2 = ε(u, u̇, xa)                      
y = z1                                    

                               (5.18) 

Where f1(z1) = f(x, u), g1(z1, u) = g(x, u), we can organize an observer for system (5.18) as follows:  

{

ż̂1 = f1(ẑ1, u) + g1(ẑ1, u)ẑ2 − Hz1(ŷ − y)

ż̂2 = ε(u, u̇, x̂a) − Hz2(ŷ − y)                       

ŷ = ẑ1                                                                

                                         (5.19) 

System (5.18) can be expressed as in a condensed form: 

{
ż = l(z1)G(z1)z + F(z1) + ε̅(u, u̇, xa)

y = Cx                                                        
                                             (5.20) 
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Where:   G(z1) = (
0 g1(z1)

0 0
) , F(x1) = (

f1(z1)
0
) , C = (In 0), ε̅(u, u̇, xa) = [0 ε(u, u̇, xa)]

T ,  In 

is n × n identity matrix, l(z1) is a scalar real function with respect to their arguments and αl ≤

|l(z1)| ≤ βl. 

Supposed the assumptions defined in [171] related boundedness of the states, signals, functions etc. are 

satisfied, an extended high gain observer for the system (5.20) can be given in the following way: 

{
ż̂ = l(ẑ1)G(ẑ1)ẑ + F(ẑ1) + ε̅(u, u̇, x̂a) + H(ẑ1)(ŷ − y)   
ŷ = Cẑ                                                                                         

                            (5.21 ) 

 Where:H = [Hz1 Hz2]
T = Λ−1(ẑ1)Sθ

−1CT,   Λ(ẑ1) = [
I 0
0 G1(ẑ1)

]  , Sθ is the unique symmetric 

positive definite matrix satisfying the following algebraic Lyapunov equation: 

θSθ  + A
TSθ  + Sθ A − C

TC = 0                                                   (5.22) 

Where A = [
0 I
0 0

] , θ > 0 is a parameter defined by (5.22) and the solution of (5.22) is: 

Sθ = [

1

θ
I −

1

θ2
I

−
1

θ2
I

2

θ3
I

] 

Then, the gain of estimator can be given by: 

H = Λ−1(ẑ1)Sθ
−1CT =  Λ(ẑ1) [

2θI
θ2G1

−1(x̂1)
]                                          (5.23) 

Theorem 5.2: If Assumption 5.3 is satisfied, by proper choosing a relatively high gain tuner θ, the 

system (5.21) becomes a converging observer for the system described in (5.20) which is a transformed 

form of the process subsystem described in (5.1).  

The proof is given in Appendix 5.5. The proof goes along the lines of the proof of Theorem 1 in [171] 

with corresponding changes according to definition of expression for unknown input in (5.17) and 

properties defined in Assumption 5.3. 

3-) Synthesis Observers 

System (5.6), together with (5.21), constitutes the observer for the studied interconnected system 

depicted by (5.4) and (5.20), as follows: 

{
ẋ̂a = fa(x̂a, u) + ga(x̂a)u + ka(ga, x̂a)(ha(x̂a) − ẑ2)                    

ż̂ = l(ẑ1)G(ẑ1)ẑ + F(ẑ1) + ε̅(u, u̇, x̂a) + H(ẑ1)(ŷ − y)                
                        (5.24) 

Where virtual measurement u a in (5.6) is replaced by its estimation ẑ2.The observer estimation errors 

satisfy the following equation: 
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e a = x̂a − xa, e(t) = ẑ(t) − z(t)                                                   (5.25) 

5.3.2 Observer Analysis 

The observer (5.24) has been designed so that the dynamics of the corresponding error system (5.25) 

are governed as:  

{
e ̇a(t, e a) = ėa(t, ea) + Κ(u, x̂a, ua) − Κ(u, x̂a, ûa)                                                                                            

ė(t, e) = (l(ẑ1)G(ẑ1) + H(ẑ1)C)e + ( l(ẑ1)G(ẑ1) − l(z1)G(z1))z(t) + F(ẑ1, u) − F(z1, u) − eε̅(t, e a)
  (5.26) 

To analyze the system (5.26), our purpose is to study the stability of the error dynamics.   

Proposition 5.1: If the Assumptions 5.1-5.3 are satisfied, then a relatively high values of θ can be 

chosen that the error dynamics governed in (5.26) is exponentially stable. 

Proof: The objective is to analysis the stability of the error dynamics, to achieve this purpose, by using 

Va and Vz defined Theorem 5.1 and Theorem 5.2, the following Lyapunov function candidate is 

constructed: 

V(t, e a, e) = Va(t, e a) + Vz(t, e)                                                                      (5.27) 

Then time derivation of V(t, �̃�𝑎, 𝑒) yields: 

     V̇(t, e a, e)

=
∂Va
∂t
(t, e a) +

∂Va
∂ea

(t, ea)ėa(t, ea) +
∂Va
∂ea

(t, ea)(Κ(u, x̂a, ua) − Κ(u, x̂a, ûa))
⏟                                              

term 1

+
∂Vz
∂t
(t, e) +

∂Vz
∂ez

(t, e)ė(t, e)
⏟                

term 2

                                                                                                (5.28) 

Let us analyze the different terms on the right side of (5.28), starting with term 1and using results in 

Theorem 5.1:  

∂Va
∂t
(t, e a) +

∂Va
∂ea

(t, ea)ėa(t, ea) +
∂Va
∂ea

(t, ea)(Κ(u, x̂a, ua) − Κ(u, x̂a, u a)) 

≤ −αVa + γ2γ3√Va‖ua − u a‖ 

     ≤ −αVa + γ2γ3√Va‖ẑ(t) − z(t)‖ 

≤ −αVa + γ2γ3√Vz√Va             

In turn, the term 2 on the right side of (5.28) develops as follows: 

∂Vz
∂t
(t, e) +

∂Vz
∂ez

(t, e)ėa(t, e) ≤ (− θαl + η1)Vz +
η2
θ
√Vz√Va 

Then, the overall inequality yields: 

V̇(t, e , ea) ≤ −αVa + γ2γ3√Vz√Va + (− θαl + η1)Vz +
η2
θ
√Vz√Va +

η2
θ
√Vz√Va            (5.29) 

Now, set Va
∗ =  αVa, Vz

∗ = ( θαl − η1)Vz and V∗ = Va
∗ + Vz

∗. 
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Please note that:  

V∗ ≥ ( θαl − η1)Vz, 

Va
∗ + Vz

∗ ≥ 2√Va
∗√Vz

∗ 

= 2√α( θαl − η1)√Vz√Va 

Thus: 

√Vz√Va ≤
1

2√α( θαl − η1)
V∗ 

It is easy to get that inequality (5.29) yields to: 

V̇(t, e , ea) ≤ −V
∗ +

1

2√α( θαl − η1)
(γ2γ3 +

η2
θ
) V∗                                    

≤ −( θαl − η1)(1 −
1

2√α( θαl − η1)
(γ2γ3 +

η2
θ
))V                                                

Now, it suffices to choose θ such that (1 −
1

2√α( θαl−η1)
(γ2γ3 +

η2

θ
)) ≥ 0. 

This ends the proof ∎. 

Theorem 5.1: Letting the gain of the observer be selected as in Proposition 5.1, there exists a scalar θ∗, 

such that for all  θ ≥ θ∗, then the interconnected observer depicted by (5.25) denotes an observer for 

interconnected system depicted by (5.3) and (5.4) with an exponential error convergence. 

5.3.3 Particular example: two high gain observers interconnected  

In this section, the above interconnected observer design method is confirmed by choosing two high 

gain observers for actuator and process subsystems as an example.  

Following the system (5.13) and (5.21), the observer for interconnected system depicted in (5.9) and 

(5.20) is then developed as follows:  

{
χ ̇̂1 = A1χ ̂1 + Θ1(χ ̂1, u) − Sθ1

−1C1
T(C1χ ̂1 − ẑ2)                     

ż̂ = l(ẑ1)G(ẑ1)ẑ + F(ẑ1) + ε̅(u, u̇, x̂a) + H(ẑ1)(cẑ1 − y) 
 

The observer estimation errors satisfy the following equation: 

e 1 = χ ̂1 − χ1, e(t) = ẑ(t) − z(t) 

To analysis the stability of the error dynamics, by using Va and Vz defined as: 

V1(e 1) =
1

θ1
e 11
TSθ1e 11 and Vz(t, e) = e 

TS1e  

The following Lyapunov function candidate is constructed: 

V(t, e 1, e) = V1(t, e 1) + Vz(t, e) 
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Then time derivation of V(t, e 1, e) is calculated as follows, the detailed calculation is placed in 

Appendix 5.6: 

V̇(t, e 1, e) ≤ −(1 −
1

2√(θ0 − κ)(θ0αl − η1)
(ϱ +

η2
θ0
))V∗                             (5.30) 

Where  θ0 = max{θ1, θ}, κ = 2nϱ
λmax(S11)

λmin(S11)
, ϱ =

1

λmin(S11)
, then it follows that : 

Thus by appropriately choosing such that  (1 −
1

2√(θ0−κ)(θ0αl−η1)
(ϱ +

η2

θ0
) ≥ 0 is guaranteed, the 

convergence of the observer is obtained. 

5.4 Numerical Simulation 

In this section, we present the results of a numerical simulation analysis performed to validate the 

effectiveness of the interconnected observer presented in the previous sections. The main objective is to 

confirm by means of numerical simulations that the interconnected observer given by (5.24) can be 

designed as software sensors for monitoring the performance of heat exchangers reactor system. 

Furthermore, the results obtained through the implementation of the observers can be analyzed in order 

to conclude existence of actuator fault and to provide initial value for FD (fault diagnosis) and RCA 

(root cause analysis) observer in faulty situation. 

A case study is developed on an intensified HEX reactor. The pilot consists of three process plates 

sandwiched between five utility plates, two pneumatic control valves are used to control utility and 

process fluid. More relative information could be found in [160]. Moreover, the outlet fluid flow rates 

of the control valves are assumed unmeasured according to realistic. Therefore during the course of the 

simulation work, the proposed observers are designed for estimating unmeasured inlet flows ua and 

monitoring performance in the Hex reactor from available measurements. The measurements involve 

the inlet outlet temperatures of the Hex reactor and the pneumatic pressure of the actuators. It 

essentially aims at estimating unmeasured inlet flows ua whose variation may relate to decrease of 

overall heat transfer coefficient.  And overall heat transfer coefficient analysis conveys a full 

description of heat transfer rate evolution. Thus, any reduction observed in heat transfer rates may be 

directly related to heating performance degradation. Accordingly, the information obtained from the 

monitoring of ua can readily provide a strong support base to determine when a preventive or a 

corrective maintenance is necessary for preserving or restoring the heat transfer rates in processes.  

5.4.1 System Modelling 

1-) Actuator subsystem modelling  

As introduced in Chapter 4, the actuator system model can be described as : 

 xa
T = [xa1 xa2 xa3 xa4] = [X1

dX1

dt
X2

dX2

dt
] , uT = [u1 u2] = [pc1 pc2] , 

ua
T = [F1 F2] = [Cv√

∆P1

sg
X1  Cv√

∆P2

sg
X2] , 𝐶 = [𝑐1 𝑐2 𝑐3 𝑐4] = [Cv√

∆P1

sg
0  Cv√

∆P2

sg
0].                                 
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 the actuator subsystem is then described by four states, two inputs and two outputs, as: 

{
 
 
 
 

 
 
 
 

ẋa =

[
 
 
 
 
 
0 1 0 0

−
k1
m

−
μ1
m

0 0

0 0 0 1

0 0 −
k2
m

−
μ2
m]
 
 
 
 
 

xa +

[
 
 
 
 
 
Aa
m

0

0 0

0
Aa
m

0 0 ]
 
 
 
 
 

u

ua= [Cv√
∆P1
sg

0  Cv√
∆P2
sg

0] xa                        

                                   (5.31) 

2-) Process subsystem modelling 

As in chapter 4, define the state vector as xT = [x1, x2]
T = [Tp, Tu]

T , the control input  ua
T =

[ua1, ua2]
T = [Fp, Fu]

T , the output vector of measurable variables  yT = [y1, y2]
T = [Tp, Tu]

T
, then 

above two the equations can be rewritten in the following state-space form: 

{
ẋ = f(x) +∑gi(x)ua

2

i=1

y = h(x, ua)                  

                                                                              (5.32) 

where  f(x) = (
f1(x)
f2(x)

) = (

hpA

ρpCpp
Vp
(Tp − Tu)

huA

ρuCpu
Vu
(Tu − Tp)

) , and g(x) = (g1, g2) = (

(Tpi−Tp)

Vp
0

0
(Tui−Tu)

Vu

) , 

y1 = x1, y2 = x2，Tpi, Tui are the outputs of the previous cell, for the first cell, they are the inlet 

temperature of process fluid and utility fluid, besides, they are measured and are constant. It is worth 

noting that the exclusive consideration of such measurements is the usual case in an industrial 

environment. 

By using (5.17), we can obtain a function for the derivatives for ua : 

u̇a = ε(u, u̇, xa) =
∂ha
∂u
(u, xa)u̇ +

∂ha
∂xa

(u, xa)fa(u, xa)                                                               (5.33) 

= (Cv√
∆P1
sg

0  Cv√
∆P2
sg

0) xa + (
Aa
m
Cv√

∆P1
sg

Aa
m
 Cv√

∆P2
sg
) u 

Define the state vector as  x1
T = [x11, x12]

T = [Tp, Tu]
T , unmeasured state x2

T = [x21, x22]
T =

[ua1, ua2]
T = [Fp,  Fu]

T, the output vector of measurable variables yT = [y1, y2]
T = [Tp, Tu]

T
, then the 

equation (5.32) and (5.33) can be rewritten in the following state-space form: 

                   {

ẋ1 = G1(x1)x2 + g1(x1, u)

ẋ2 = ε(u, u̇, xa)                    
y = x1                                                  

                                                                  (5.34) 
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Where, G1(x1) = (

(Tpi−x11)

Vp
0

0
(Tui−x12)

Vu

),  and f1(x) = (

hpA

ρpCpp
Vp
(x11 − x12)

huA

ρuCpu
Vu
(x12 − x11)

) . 

In this case, the full state of the studied system is given as: 

{
ẋ = G(x1)x + F(x1, u) + ε̅(t)
y = Cx                                          

                                                            (5.35)       

Where x = [
x1
x2
] , G(x1) = (

0 G1(x1)
0 0

) , F(x1, u) = (
f1(x, u)
0

) , C = (I 0), ε̅(t) = (
0
ε(t)

) 

5.4.2 Observer Design 

1-) observer 1 for actuator subsystem 

In this model, outputs are considered as unmeasured and are substituted by its estimation proposed in 

observers 2,  then, an extended high gain observer of the form (5.6 ) for system (5.31 ) is given by: 

{
 
 
 
 

 
 
 
 

ẋ̂a =

[
 
 
 
 
 
0 1 0 0

−
k1
m

−
μ1
m

0 0

0 0 0 1

0 0 −
k2
m

−
μ2
m]
 
 
 
 
 

x̂a +

[
 
 
 
 
 
Aa
m

0

0 0

0
Aa
m

0 0 ]
 
 
 
 
 

u − [

k1
k2
k3
k4

] [Cx̂a − x̂2]

ûa = [Cv√
∆P1
sg

0  Cv√
∆P2
sg

0] x̂a                                                          

            (5.36) 

2-) observer 2 for process subsystem 

It should be noted that the original system (5.32) has been augmented with the differential 

equation u̇a = ε(u, u̇, xa), that is to say the unknown inputs are treated like an unmeasured state. Then, 

it is possible to design an observer of the form (5.21) for the system by (5.35) as follows: 

{
 
 
 
 
 

 
 
 
 
 

ẋ̂1 =

(

 
 

(Tpi − x̂11)

Vp
0

0
(Tui − x̂12)

Vu )

 
 
x̂2 +

(

 
 

hpA

ρpCpp
Vp
(x̂11 − x̂12)

huA

ρuCpu
Vu
(x̂12 − x̂11)

)

 
 
− (
2θ
2θ
) (ŷ − y)                                                           

ẋ̂2 = (Cv√
∆P1
sg

0  Cv√
∆P2
sg

0) x̂a + (
Aa
m
Cv√

∆P1
sg

Aa
m
 Cv√

∆P2
sg
) u −

(

 
 
θ2

hpA

ρpCpp
Vp
(x̂11 − x̂12)

θ2
huA

ρuCpu
Vu
(x̂12 − x̂11)

)

 
 
(ŷ − y) 

ŷ = x̂1                                                                                                                                   

(5.37) 

It should be remarked that although Fp,  Fu undergo different initial trajectories in each observer; they 

will converge to their “true values” as time t tends to infinity. 

5.4.3 Numerical Simulations Results 

In order to test the performance of the proposed observers, two numerical simulations were carried out. 

Considering the actuator and process model given by (5.31) and (5.35), observers 1 (5.36) and observer 

2 (5.37) were designed for estimating unmeasured inlet flows Fp,  Fu, and monitoring performance final 
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product Tp, Tu  in the Hex reactor from available measurements. These measurements involve the 

inlet outlet temperatures of the hex reactor and the pneumatic pressure pc1, pc2 of the actuators.  

Two cases were considered. In Case 1, constant inlet flows Fp,  Fu are considered in both utility and 

process fluid actuators. By contrast, in Case 2, Fp,  Fu are considered as time-varying individually and 

simultaneously respectively. Observers 1 and 2 were simulated with respect to actuator and process 

subsystems using the values given in chapter 4. These constants, corresponding to a HEX exchanger 

reactor system having fast dynamics, were taken from [16]. The inlet temperatures Tpi and Tui were 

76℃  and 15.6 ℃  respectively. Parameters in actuator subsystem are: m=2kg, Aa  =0.029m2, 

μ =1500Ns/m and k=6089 Ns/m, Pc for utility fluid is 1MPa, 1.2Mpa for process fluid, pressure drop 

∆P in utility fluid is 0.6MPa and 60KPa in process fluid. 

Case 1: Both inlet fluid flow rates Fp,  Fu are constant 

The objective of this series of simulations is to prove the convergence of the observers in the common 

situation in which both fluid flow rates remain constant over a long time. The computed inlet flow rate 

of the utility fluid Fu  is  4.22e−5m3s−1 , and inlet flow rate of the process fluid Fp  is 

constant 4.17e−6m3s−1, the computed value means the expected true values of the actuators. The 

initial conditions of the process model were: Tp
0 = 80℃ and Tu

0 = 20℃ respectively, while those of 

the observers were: T̂p
0 = T̂u

0 = 30. The discrepancies between the initial conditions of the process and 

that of the observers are reasonable and realistic considering that temperature is a process variable that 

can be easily measured. In order to evaluate the observer performance against uncertainties on the 

knowledge of fluid flow rate, the initial value of the estimates were F̂p
0 = F̂u

0 = 0 in both observers. 

This assumption represents a relatively rough situation in practical engineering world, however, 

simulation results show an encouraging results. The tuning parameters were k1 = k3 = 100, k2 =

k4 = 0.15 (for Observer 1) respectively, and θ = 80 (for Observer 2).  

The results of the estimation of outlet temperature Tp and Tu are reported in Fig. 5.3 and Fig. 5.4 

respectively. The dash curve corresponds to the estimates obtained using Observer 1, and solid line is 

the measured temperature. It can be seen that the convergence of the estimated T̂p and T̂u proves to be 

fast (in several seconds). This fact is not surprising because, actually Tp and Tu are the measured 

outputs of the overall system. 

 

Fig. 5.3 output of process fluid temperature, solid line is the measured value Tp, while dash line is the 

estimated value T̂p by observer 1 
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Fig. 5.4 output of utility fluid temperature , solid line is the measured value Tu, while dash line is the 

estimated value T̂u using observer 1 

The main contribution of the proposed method is the capacity that it can estimate the unknown 

connection of an interconnected system by the final measured outputs, where the unknown connection 

represents the inlet fluid flow rate Fp,  Fu in the Hex reactor system. Fig.5.5 and Fig 5.6 give the 

encouraged results. Fig. 5.5 shows the computation Fpand estimation of process fluid flow rate T̂u 

using Observer 2. Fig. 5.6 shows the computation Fu and estimation F̂uof utility fluid flow rate using 

Observer 2 respectively. As expected, F̂p and F̂u follow different trajectories before they converge 

towards the “true value” (computed value) in a relatively short transient period. For process fluid, after 

less than 5s, the two curves overlapped, and it takes about 1s for the utility fluid. In both fluids, these 

differences are caused by their varied initial values. However, it is proved that if adequate values of the 

tuning parameters k and θ are selected, no matter the degree of deviation of the initial value of 

F̂p
0 and F̂u

0 from the simulated value in the system model, convergences are guaranteed. Larger values 

of these tuning parameters ensure a smaller convergence time while smaller values have the opposite 

effect. However, large tuning values should be avoided since the observer may become too sensitive to 

measurement noise in real-time applications. According to the above analysis, we can readily conclude 

that the proposed interconnected observer works effectively on the designed purposes with proper 

tuning parameters. 

  

Fig. 5.5 the computation and estimation of process fluid flow rate. Solid line is the computed value Fp; 

dash line is the estimated one F̂p by Observer 2. 
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Fig. 5.6 the computation and estimation of utility fluid flow rate. Solid line is the computed value Fu; 

dash line is the estimated one F̂u by Observer 2. 

Case 2: single and/or simultaneous variation of the fluid flow rates parameters changes  

The present computations are executed to get an accurate screening of the variation of the observer 

estimate, by corroborating if it is in agreement with the simulated fluid flow rates, which undergo either 

an abrupt change (prompted in essence by an unexpected parameter fault) or a gradual variation 

(essentially due to a degradation problem). The degradation can be attributed to, for example, aging or 

erosion which is modeled and recognized as parameter changes in the actuator subsystem. Two 

situations were considered in this case, single fluid variation is expected firstly and simultaneous 

changes follow after.  

In the first situation, the parameters effects were taken into account in the following way. An initial 

value of  Fu = 4.22e
−5m3s−1 , and Fp =  4.17e

−6m3s−1  were considered, followed by an abrupt 

change at  Fu. The reason caused this change is due to variation of parameter ∆P with the value from 

0.6 MPa to 0.4Mpa at time t = 60s. Several factors can be attributed to this kind of variation, for 

instance, valve clogging or unexpected pressure drop across the control valves. This simulation was 

carried out using the same constants used in the previous simulation (Table 1) and the same values of 

Tpi and Tui, as well as Tp
0 and Tu

0  respectively. The initial conditions of both observers, as well as the 

observer parameters (k1, k2,  k3,  k4 and θ) were the same as the previous ones. No error was assumed 

in measuring Tp and Tu.  

The simulation results are illustrated in Fig. 5.7- Fig.5.10. Fig 5.7 and Fig. 5.8 verify the tracking 

capacities of observer 1 on the outlet temperature. The dash line denotes the estimated fluid 

temperature through observer 1 while solid line represents the measured values. As shown in Fig 5.7 

and Fig. 5.8, it demonstrates that after short transient response, both estimated values 

T̂p and T̂u converge to the measurement  Tp and Tu with readily accuracy. The measured value in the 

two curves drop about 0.2 ℃ and 0.15 ℃ on process and utility fluid respectively at 60s, these 

variations are influenced by variation of actuator parameter ∆P1 which is in accordance with the 

assumption. In addition, we can see from the Figs. 5.7 and 5.8 that the estimated outputs in dash line 

follow up the measured solid after a short convergence time at t=60s.  
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Fig. 5.7 outlet temperature of process fluid, solid line is the measurement Tp while dash line is 

estimated one T̂p by observer 1 

 

Fig. 5.8 outlet temperature of utility fluid, solid line is the measurement  Tu while dash line is 

estimated value T̂u by observer 1 

Fig. 5.9 shows the simulated and estimated result of process fluid flow rate. The dashed curve 

corresponds to F̂p generated by Observer 2, while the solid curve corresponds to simulated value Fp. 

It can be seen that once the observer converges, F̂p in dash line tracks well Fp in solid line and both 

curves remain constant after transient time. The similar result is plotted in Fig. 5.10 for utility fluid 

flow rate Fu,  it illustrates that the estimated F̂u tracks its simulated value Fu after a relatively short 

transient period in spite of the time-varying nature of the actuator parameter ∆P1. Due to the variation 

parameter ∆P1 at t=60s, both curves in Fig.10 jump and the estimated dash line tracks the simulated 

solid line again after about 1.5s. Moreover, we can see from the solid line that the impact of the 

variation of parameter ∆P1 is to cause the outlet flow rate of utility fluid jumps from 4.22e−5m3s−1 

to 4.4e−5m3s−1, that is the utility fluid flow rate increases 0.18 e−5m3s−1 because of drops of 

parameter ∆P1.  

 

Fig. 5.9 the computation and estimation of process fluid flow rate；solid line is the computed value Fp, 

dash line is the estimated one F̂p by Observer 2. 
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Fig. 5.10 the computation and estimation of utility fluid flow rate；solid line is the computed value Fu, 

dash line is the estimated one F̂u by Observer 2. 

For the second situation, we consider that both fluid flow rates change simultaneously. In the first place, 

just as the previous case, an initial value of Fu = 4.22e
−5m3s−1, and Fp =  4.17e

−6m3s−1 were 

considered, then followed by an abrupt change of Fu caused by ∆P1 from 0.6 MPa to 0.4Mpa at t = 60 

s. After that, at t = 100 s, Fp begins to deteriorate due to an increase of the parameter of the spring 

compliance k2 in process fluid actuator.  A main reason contributes to this change is due to erosion, 

and because of erosion, the gland packing of the valve may be loosen which leads to stem vibration. In 

the simulation, a value of 1,000 nm−1 is added to the spring compliance k2. These variations are 

illustrated in Fig. 5.11-Fig. 5.14. 

 

Fig. 5.11 outlet temperature of process fluid, solid line denotes measured value  Tp while dash line is 

the estimated one T̂p by observer 1. 

 

Fig. 5.12 outlet temperature of utility fluid, solid line denotes measured value  Tu while dash line is the 

estimated one T̂u by observer 1. 

From Fig. 5.11 and Fig. 5.12, after a short transient time, the estimated outlet fluid temperature 

T̂p and T̂u  in dash line give an accurate estimation value to the measurement Tp and Tu in solid line . 

At 60s, the estimated T̂p unexpectedly decrease, and finally it stabilizes at a new level, a drop of 0.2 

℃ is occurred, then another drops happens at t=100s before it reaches the new stable level with 

another 0.9 ℃ reduction. These decreases imply the influences of parameter changes in fluid actuators 

and no further variations illustrate no additional changes occurs. The similar result is obtained in the 
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estimated T̂u of utility fluid in Fig. 5.12. It is shown that, due to changes of ∆P1 and k2, the measured 

Tu drops 0.2 ℃ and 0.5 ℃ at 60s, 100s respectively. The estimated T̂u in dash line tracks Tu after 

observer converges. The simulation curve indicates that the observer proposed is proper for tracking 

system performances. 

 

Fig. 5.13 the computation and estimation of process fluid flow rate；solid line is the computed value Fp, 

dash line is the estimated one F̂p via Observer 2. 

 

Fig. 5.14 the computation and estimation of utility fluid flow rate；solid line is the computed value Fu, 

dash line is the estimated one F̂u via Observer 2. 

As shown in Fig.5.13, in the first place, the estimated process fluid flow rate F̂p in dash line 

converges to the simulated value Fp in solid line after transient response. After that, at 100s, the 

simulated Fp in solid line decrease unexpectedly, fortunately, the estimated value in dash curve gives a 

quick response to the variation, and it takes 1.5s to track Fp again. The decrease implies parameter 

changes in process fluid actuator which satisfied the assumption that k2 changes at t=100s.   Fig.5.14 

demonstrates the results for utility fluid flow rate. At time 60s, as expected, the simulated utility fluid 

flow rate in solid line jumps due to the change of  ∆P1 . It also proves in Fig. 5.14 that the estimated 

utility fluid flow rate  F̂p  in dash line tracks well  Fp in solid line. Now, it is clear that the proposed 

interconnected observer is effective even the unknown connection is time-varying either individually or 

simultaneously. Therefore the proposed observer proves the capacity of performance monitoring, as 

well as estimation of unknown connection of an interconnected system.  

The performance evaluation of the proposed observers integrates system performances monitoring 

with unknown interconnection estimation for a pilot Hex reactor. At the first stage, the numerical 

simulations confirmed the convergence of the observers. Indeed, the results prove that the estimated 

values of  T̂p (Figs. 3, 7, 11), T̂u (Figs. 4, 8, 12) and F̂p,  F̂u (Figs. 5-6, 9-10) compare quite well 

with the measured and expected variables  Tp,   Tu, Fp  and  Fu , though neither  Fp or  Fu can be 
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measured. It is worth to note that even if  Fp or  Fu cannot be measured directly, the estimation of 

theses parameters in terms of experimental temperatures exhibit a consistent and characteristic 

behavior in several respects, as already noted in Fig. 9-10: (a) As expected, at short times, the  

estimated fluid flow rates remain the same for a set of operation conditions. In practice, we expect both 

fluid flow rates are constant in order to obtain better final product. Any variation of this parameter due 

to aging or erosion can take some weeks or several months to appear. (b) Then, flow perturbations were 

programmed to study the sensibility of  Fp or  Fu to the parameters changes in the actuator subsystem. 

Each time, the corresponding response of  Fp or  Fu and the corresponding steady state values were 

observed. A further point to be discussed as a potential advantage is the fact that minimal information is 

demanded for achieving the observer computations. Summarizing, only limited knowledge on the 

system behavior is needed, no assumptions are necessary to initialize the estimation of  Fp or  Fu and 

no assumptions regarding the system dynamics are required. The encouraging results are obtained 

through the robustness performance of the proposed scheme. All the simulated situations have been 

correctly satisfied, leading to a desired performances monitoring and parameter estimation method. 

5.5 Conclusion 

This chapter considers the issues of both state estimation and unmeasured interconnection estimation 

for a class of invertible interconnected dynamic system. The aim is to design an interconnected 

observer that provides accurately estimates of states of each subsystem, as well as the interconnection. 

In particularly, the interconnection signal is not supposed to be accessible to measurement.  The 

unmeasured interconnection is the input of the process system, which is also the output of the actuator 

subsystem. To achieve the estimation purpose, firstly, an existing converging observer is extended to 

estimate the states of the actuator subsystem, in particular, the information of outputs of actuator 

system are replaced by their estimation through the observer proposed in process subsystem. Second, 

an extended high gain observer is considered to exactly estimate the states of the process subsystem 

subject to unknown inputs which is also the outputs of the actuator subsystem. The unknown inputs are 

treated as new states of the process subsystem. While through computing the derivatives of the output 

vectors in actuator subsystem, the unknown input can be expressed as a function of the inputs, 

derivatives of the inputs and the states of the actuator subsystem. Third, by using the estimates of the 

states and unmeasured interconnection, a kind of observer designed method is proposed for the studied 

invertible interconnected dynamic system, and convergence of the observer is studied. Finally, some 

numerical simulation examples are given to illustrate the effectiveness of the proposed methods. 

A. Appendix 5.1: Proof of Assumption 5.2 

Assumption 2 implies global Lipchitz-type condition on function K, although this condition seems 

restrictive, it becomes far less since u and u𝑎 are bounded which is usually the case in physical 

situation. Moreover, this boundedness can be found by introducing saturation on the argument of g. 

According to [80], if u and u𝑎 belong to compact set U, U𝑎, then the global Lipchitz-type condition 

on function K can be replaced by local smoothness for by using saturations.  
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Suppose that  Κ(u, x̂a, ua) is locally Lipchitz continues on ua, uniformly in (u, x̂a) on U × ℝ ×

ℝ .and suppose sat(ua) = ua  for ua ∈ Ua, where sat(ua) is a component wise saturation with 

limits. We then replaced Κ(u, x̂a, ua) with Κ(u, x̂a, sat(ua)), locally Lipchitz condition means that: 

‖Κ(u, x̂a, sat(ua)) − Κ(u, x̂a, sat(ûa))‖ ≤ γ3‖ua − sat(ûa)‖ ≤ γ3‖ua − u a‖                    

Since the saturation is inactive on Ua, the definition of e ̇a(t, e a) is not affected. 

B. Appendix 5.2: Proof of Theorem 5.1 

In order to show that the system described in (5.6) represents an exponential converging observer for 

(5.2), we need to make its corresponding error dynamics (5.7) coincide with Assumption 5.2 which has 

been proven to be an exponential condition for the existence of an observer.   

Therefore by computing time derivation of  Va with respect to the trajectory e a in (5.7), using (5.5), 

(5.7) and (5.8), it follows that: 

V̇a(t, e a) =
∂Va
∂t
(t, e a) +

∂Va
∂ea

(t, ea)ėa(t, ea) +
∂Va
∂ea

(t, ea)(Κ(u, x̂a, ua) − Κ(u, x̂a, u 𝑎)) 

≤ −α‖ea‖
2 + γ2γ3‖ea‖‖ua − u 𝑎‖                                                       

where the right side of this inequality is negative if 

i-)  α ≥ γ2γ3 and ‖ua − u a‖ is bounded, it results: V̇a(t, e a) ≤ −(α − γ2γ3)‖ea‖
2 

ii-)‖ua − u a‖ converges to 0, it results: V̇a(t, e a) ≤ −α‖ea‖
2 

This ends the proof. 

C. Appendix 5.3: Proof of (5.12) 

Let Δ𝜃1 = [

1 0 ⋯ 0
0 𝜃1

−1 ⋱ 0
⋮ ⋱ ⋱ 0

0 … 0 𝜃1
−(𝑛−1)

], and S11 = Sθ1|θ=1 ,  

then we can obtain the following equalities: 

Sθ1 =
1

θ1
Δ𝜃1S11Δ𝜃1 , 

 Δ𝜃1A1Δ𝜃1
−1 = 𝜃1A1,  

C1Δ𝜃1 = C1Δ𝜃1
−1 = C1 

By defining error  e1: = �̂�1 − 𝜒1, we can obtain the error dynamics from (5.7) as: 

ė1(𝑡, 𝑒1) = (A1 − 𝑆𝜃1
−1𝐶1

𝑇C1)𝑒1 + Θ1(�̂�1, 𝑢) − Θ1(𝜒1, 𝑢)                       

We set �̅�1 = Δ𝜃1𝑒1, then: 

�̅�1̇ = Δ𝜃1 ((A1 − 𝑆𝜃1
−1𝐶1

𝑇C1)𝑒1 + Θ1(�̂�1, 𝑢) − Θ1(𝜒1, 𝑢))      
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= 𝜃1(A1 − 𝑆11
−1𝐶1

𝑇C1)�̅�1 + Δ𝜃1(Θ1(�̂�1, 𝑢) − Θ1(𝜒1, 𝑢)) 

according to [80], define the positive Lyapunouv function V1(𝑒1) as : 

V1(𝑒1) =
1

𝜃1
𝑒1
𝑇Sθ1𝑒1 = 𝑒1

𝑇Δ𝜃1S11Δ𝜃1𝑒1 = �̅�1
𝑇S11 �̅�1 

V̇1(𝑒1) = 2�̅�1
𝑇S11Δ𝜃1(A1 − 𝑆𝜃1

−1𝐶1
𝑇C1)𝑒1 + 2�̅�1

𝑇S11Δ𝜃1(Θ1(�̂�1, 𝑢) − Θ1(𝜒1, 𝑢)) 

A simple calculation gives: 

Δ𝜃1(A1 − 𝑆𝜃1
−1𝐶1

𝑇C1)Δ𝜃1
−1 = 𝜃1(A1 − 𝑆11

−1𝐶1
𝑇C1) 

Thus we obtain: 

V̇1(e1) = 2e̅1
TS11θ1(A1 − S11

−1C1
TC1)e̅1 + 2e̅1

TS11Δθ1(Θ1(χ̂1, u) − Θ1(χ1, u)) 

Since 2e̅1
TS11A1e̅1 = e̅1

T(S11A1 + A1
TS11)e̅1 = e̅1

T(−S11 + C1
TC1)e̅1 

Then  

V̇1(𝑒1) = −𝜃1�̅�1
𝑇S11 �̅�1 − 𝜃1‖C1�̅�1‖

2 + 2�̅�1
𝑇S11Δ𝜃1(Θ1(�̂�1, 𝑢) − Θ1(𝜒1, 𝑢)) 

On one hand, we have:  

‖Δθ1(Θ1(χ̂1, u) − Θ1(χ1, u))‖ ≤ nϱ‖e̅1‖ 

with 𝜚 is the Lipschitz constant with respect to  Θ1(χ1, u). 

On the other hand: 

‖�̅�1‖
2 ≤ 1 𝜆𝑚𝑖𝑛(S11)⁄ V1 

Then we obtain: 

V̇1(𝑒1) ≤ −𝜃1V1 − 𝜃1‖C1�̅�1‖
2 + 2𝑛𝜚𝜆𝑚𝑎𝑥(S11)‖�̅�1‖

2 

≤ −𝜃1V1 + 2𝑛𝜚
𝜆𝑚𝑎𝑥(S11)

𝜆𝑚𝑖𝑛(S11)
V1 

Set θ1
∗ = 2𝑛𝜚

𝜆𝑚𝑎𝑥(S11)

𝜆𝑚𝑖𝑛(S11)
, then by taking 𝜃1 > θ1

∗ , it results that Assumption 2 holds. 

D. Appendix 5.4: Proof of (5.16) 

By defining error  e 1 ≔ 𝜒 ̂1 − 𝜒 1,  

we can obtain the error dynamics from Eqs. (5.7) and (5.11 ) as: 

e ̇1(𝑡, �̃�1) = A1𝜒 ̂1 + Θ1(𝜒 ̂1, 𝑢) − 𝑆𝜃1
−1𝐶1

𝑇(C1𝜒 ̂1 − û𝑎) − (A1𝜒1 + Θ1(𝜒1, 𝑢))                  

 = A1𝜒 ̂1 + Θ1(𝜒 ̂1, 𝑢) − 𝑆𝜃1
−1𝐶1

𝑇(C1𝜒 ̂1 − u𝑎) − (A1𝜒1 + Θ1(𝜒1, 𝑢)) + 𝑆𝜃1
−1𝐶1

𝑇(C1𝜒 ̂1 − u𝑎)

− 𝑆𝜃1
−1𝐶1

𝑇(C1𝜒 ̂1 − u 𝑎) 

     = (A1 − 𝑆𝜃1
−1𝐶1

𝑇C1)�̃�1 + Θ1(𝜒 ̂1, 𝑢) − Θ1(𝜒1, 𝑢) + 𝑆𝜃1
−1𝐶1

𝑇(u𝑎 − u 𝑎) 

= �̇�1 + 𝑆𝜃1
−1𝐶1

𝑇(u𝑎 − u 𝑎)                                                                       
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Define the positive Lyapunouv function Ṽ1(�̃�1) as : 

Ṽ1(�̃�1) =
1

𝜃1
�̃�11
𝑇Sθ1�̃�11 = �̃�11

𝑇Δ𝜃1S11Δ𝜃1 �̃�11 

Then:  

V̇̃1(�̃�1) =
𝜕 Ṽ1(�̃�1)

𝜕�̃�1
�̇�1 +

𝜕 Ṽ1(�̃�1)

𝜕�̃�1
(𝑆𝜃1
−1𝐶1

𝑇(u𝑎 − u 𝑎)) 

= 2�̃�11
𝑇Δ𝜃1S11Δ𝜃1 (�̇�1 + 𝑆𝜃1

−1𝐶1
𝑇(u𝑎 − u 𝑎)) 

= V̇1(𝑒1) +
𝜕 Ṽ1(�̃�1)

𝜕�̃�1
(𝑆𝜃1
−1𝐶1

𝑇(u𝑎 − u 𝑎)) 

A simple calculation  gives: 

       ‖
𝜕 Ṽ1(�̃�1)

𝜕�̃�1
(𝑆𝜃1
−1𝐶1

𝑇(u𝑎 − u 𝑎))‖ 

≤ ‖
𝜕 Ṽ1(�̃�1)

𝜕�̃�1
‖‖(𝑆𝜃1

−1𝐶1
𝑇(u𝑎 − u 𝑎))‖ 

= ‖2�̃�11
𝑇Δ𝜃1S11Δ𝜃1‖‖𝑆𝜃1

−1𝐶1
𝑇‖‖u𝑎 − u 𝑎‖ 

  = ‖2Δ𝜃1S11Δ𝜃1‖‖�̃�1‖‖𝑆𝜃1
−1𝐶1

𝑇‖‖u𝑎 − u 𝑎‖ 

= ‖2�̃�11
𝑇Δ𝜃1S11Δ𝜃1𝑆𝜃1

−1𝐶1
𝑇(u𝑎 − u 𝑎)‖       

= ‖2Δ𝜃1S11Δ𝜃1𝑆𝜃1
−1𝐶1

𝑇‖‖𝑒1‖‖u𝑎 − û𝑎‖    

 = ‖2Δ𝜃1S11𝜃1𝑆11
−1𝐶1

𝑇Δ𝜃1‖‖𝑒1‖‖u𝑎 − u 𝑎‖ 

=
2

𝜃1
𝑛−1

‖𝑒1‖‖u𝑎 − u 𝑎‖                              

≤
1

𝜆𝑚𝑖𝑛(S11)
√V1‖u𝑎 − u 𝑎‖                       

Hence,  

V̇̃1(e 1) ≤ −θ1V1 + 2nϱ
λmax(S11)

λmin(S11)
V1 +

1

λmin(S11)
√V1‖ua − u 𝑎‖ 

Thus:  

i-) if ‖ua − u 𝑎‖converges to 0, let  θ1
∗ = 2nϱ

λmax(S11)

λmin(S11)
, then by taking 𝜃1 >  θ1

∗ , it results that 

Assumption 2 holds which means convergence of the observer (5.13) holds.   

ii-) if ‖ua − u 𝑎‖ is bounded, let θ1
∗ = (2nϱ

λmax(S11)

λmin(S11)
+

1

λmin(S11)
), then by taking 𝜃1 > θ1

∗ , it results 

that Assumption 2 holds which means convergence of the observer (5.13) holds.  

That ends the proof. 

E. Appendix 5.5: Proof of Theorem 5.2 

Before preceding the convergence proof of the observer, one introduces the following notations:  
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Sθ =
1

θ
∆θS1∆θ 

Where: 

 S1 = Sθ|θ=1 and  ∆θ= [
In 0

0
1

θ
In
] 

Now, followed by assumption defined in  [22], Λ−1(ẑ1) is invertible, and thus yields the following 

equalities 

G(ẑ1) = Λ
−1(ẑ1)𝐴Λ(ẑ1) 

CΛ(ẑ1) = 𝐶 

Let    S̅𝜃(ẑ1) = Λ
T(ẑ1)S𝜃Λ(ẑ1) 

We then get:  

θl(ẑ1)S̅θ(ẑ1) + l(ẑ1)G
T(ẑ1)S̅θ(ẑ1) + l(ẑ1)S̅θ(ẑ1)G(ẑ1) − l(ẑ1)C

TC = 0 

To proof the Theorem 5.2, the estimation error is introduced as: e(t) = ẑ(t) − z(t). 

Then subtracting corresponding equation in (5.21) and (5.20), one gets the following error dynamics:  

                ė(t) = l(ẑ1)G(ẑ1)ẑ + F(ẑ1) + ε̅(u, u̇, x̂a) + H(ẑ1)(Cẑ − y) − l(z1)G(z1)z − F(z1)

− ε̅(u, u̇, xa) 

                          = l(ẑ1)G(ẑ1)(e(t) − z(t)) + H(ẑ1)C(e(t) − z(t)) − H(ẑ1)Cz(t) − l(z1)G(z1)z(t)

+ F(ẑ1, u) − F(z1) + ε̅(u, u̇, x̂a) − ε̅(u, u̇, xa) 

                          = (l(ẑ1)G(ẑ1) + H(ẑ1)C)e + ( l(ẑ1)G(ẑ1) − l(z1)G(z1))z(t) + F(ẑ1) − F(z1)

+ eε̅(t, e a) 

Where eε̅(t, e a) = ε̅(u, u̇, x̂a) − ε̅(u, u̇, xa). 

Set e = ∆𝜃Λ(ẑ1)𝑒, one can  then gets: 

e ̇(t) = θl(ẑ1)(𝐴 − S1
−1CT𝐶)e + Λ̇(ẑ1)Λ

−1(ẑ1)e + ∆𝜃Λ(ẑ1)(F(ẑ1) − F(z1))

+ ∆𝜃Λ(ẑ1)( l(ẑ1)G(ẑ1) − l(z1)G(z1))z(t) − ∆𝜃Λ(ẑ1)eε̅(𝑡, �̃�𝑎) 

To analyze the dynamics of the error system, the following positive Lyapunov function candidate is 

considered: 

Vz(t, e ) = e 
TS1e  

Convergence of the observer is described by the time-derivation of  Vz(t, e), then we obtain: 

V�̇�(t, 𝑒, )

= 2�̃�𝑇𝑆1 �̇̅�                                                                                                                                                                        
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 = θl(ẑ1)(2�̃�
𝑇S1𝐴e − 2�̃�

𝑇CT𝐶e ) + 2�̃�𝑇𝑆1Λ̇(ẑ1)Λ
−1(ẑ1)e 2�̃�

𝑇𝑆1∆𝜃Λ(ẑ1)(F(ẑ1) − F(z1))

+ 2�̃�𝑇𝑆1∆𝜃Λ(ẑ1) (( l(ẑ1)G(ẑ1) − l(z1)G(z1))z(t)) − 2�̃�
𝑇𝑆1∆𝜃eε̅(𝑡, �̃�𝑎) 

= − θl(ẑ1)V𝑧 − θ‖𝐶e ‖
2 + 2�̃�𝑇𝑆1Λ̇(ẑ1)Λ

−1(ẑ1)e + 2�̃�
𝑇𝑆1∆𝜃Λ(ẑ1)(F(ẑ1) − F(z1))

+ 2�̃�𝑇𝑆1∆𝜃Λ(ẑ1) (( l(ẑ1)G(ẑ1) − l(z1)G(z1))z(t)) − 2�̃�
𝑇𝑆1∆𝜃eε̅(𝑡, �̃�𝑎)         

          ≤ − θαlV𝑧 + 2‖𝑆1e ‖‖Λ̇(ẑ1)Λ
−1(ẑ1)‖‖e ‖ + 2‖𝑆1e ‖‖Λ(ẑ1)‖‖∆𝜃(F(ẑ1) − F(z1))‖

+ 2‖𝑆1e ‖ ‖∆𝜃Λ(ẑ1) (( l(ẑ1)G(ẑ1) − l(z1)G(z1))z(t))‖

+
2

𝜃
‖𝑆1e ‖‖G(ẑ1)‖‖eε̅(𝑡, �̃�𝑎)‖ 

      ≤ − θαlV𝑧 + 2𝜇‖𝑆1e ‖‖e ‖ + 2𝜌‖𝑆1e ‖‖∆𝜃(F(ẑ1) − F(z1))‖

+ 2‖𝑆1e ‖ ‖∆𝜃Λ(ẑ1) (( l(ẑ1)G(ẑ1) − l(z1)G(z1))z(t))‖ +
2𝜏𝛾4
𝜃
‖𝑆1e ‖‖‖x𝑎 − x̂𝑎‖‖ 

Where  𝜇 = 𝑠𝑢𝑝𝑡≥0‖Λ̇(ẑ1)Λ
−1(ẑ1)‖, 𝜌 is the up bounder of ‖Λ(ẑ1)‖, 𝜏 is given in assumptions in 

[171], ‖eε̅(𝑡, �̃�𝑎)‖ ≤ 𝛾4‖x𝑎 − x̂𝑎‖ as proposed in Assumption 5.3. 

On one hand, we assume: 

‖∆𝜃(F(ẑ1) − F(z1))‖ ≤ ‖f1(ẑ1) − f1(z1)‖ ≤ 𝜎‖e ‖ 

Where 𝜎 denotes the lipschitz constant of f1(z1). 

Similarly,  

‖∆𝜃Λ(ẑ1) (( l(ẑ1)G(ẑ1) − l(z1)G(z1))z(t))‖ = ‖l(ẑ1)G(ẑ1)z2 − l(z1)G(z1)z2‖ ≤ 𝜖‖e ‖ 

𝜖 is positice constant depending on the upper bound of z2, thus, 

V�̇�(t, e ) ≤ − θαlV𝑧 + 𝜂1V𝑧 +
𝜂2
𝜃
√V𝑧‖x𝑎 − x̂𝑎‖ 

≤ (− θαl + 𝜂1)V𝑧 +
𝜂2
𝜃
√V𝑧‖x𝑎 − x̂𝑎‖ 

Where η1 = (2μ + 2ρ + 2ϵ)ξ(S1) with ξ(S1) = √λmax(S1) λmin(S1)⁄ ，η2 = 2τγ4λmax(S1). 

Thus:  

i-) if ‖x𝑎 − x̂𝑎‖converges to 0, it results in V𝑧̇ (t, e ) ≤ (− θαl + 𝜂1)V𝑧, then by taking θ > θ∗ =
η1

αl
, 

negative of the right side of the above inequality is obtained.   

ii-) if ‖x𝑎 − x̂𝑎‖ is bounded, it results in Vż (t, e ) ≤ (− θαl + η1 +
η2

θ
))Vz, then by choosing  θ >

𝜃∗such that (θ∗αl − η1 −
η2

θ∗
) ≥ 0,  negative of the right side of the above inequality is obtained. 

 That ends the proof. 
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F. Appendix 5.6: Proof of (5.30) 

The observer estimation errors satisfy the following equation: 

�̃�1 = 𝜒 ̂1 − 𝜒1, e(t) = ẑ(t) − z(t) 

to analysis the stability of the error dynamics, to achieve this purpose, by using V𝑎 and V𝑧 defined as,  

V1(�̃�1) =
1

𝜃1
�̃�11
𝑇Sθ1�̃�11 and V𝑧(t, 𝑒) = �̃�

𝑇𝑆1�̃� 

the following Lyapunov function candidate is constructed: 

V(t, �̃�1, 𝑒) = V1(𝑡, �̃�1) + V𝑧(t, e) 

Then time derivation of V(t, �̃�1, 𝑒) yields: 

V̇(t, �̃�1, 𝑒) ≤ −θ1V1 + 2nϱ
λmax(S11)

λmin(S11)
V1 +

1

λmin(S11)
√V1√V𝑧 + (− θαl + 𝜂1)V𝑧 +

𝜂2
𝜃
√V𝑧√V1 

Let 𝜃0 = 𝑚𝑎𝑥{θ1, θ}, 𝜅 = 2nϱ
λmax(S11)

λmin(S11)
, 𝜚 =

1

λmin(S11)
, then it follows that : 

V̇(t, �̃�1, 𝑒) ≤ −𝜃0V1 + 𝜅V1 + 𝜚√V1√V𝑧 + (− 𝜃0αl + 𝜂1)V𝑧 +
𝜂2
𝜃0
√V𝑧√V1 

≤ −(𝜃0 − 𝜅)V1 + (𝜚 +
𝜂2
𝜃0
)√V𝑧√V1 − V𝑧 

Now 𝑉1
∗ = (𝜃0 − 𝜅)V1, 𝑉𝑧

∗ = (𝜃0αl − 𝜂1)V𝑧 and 𝑉∗ = 𝑉1
∗ + 𝑉𝑧

∗, such that  

V̇(t, �̃�1, 𝑒) ≤ −𝑉
∗ +

1

2√(𝜃0 − 𝜅)(𝜃0αl − 𝜂1)
(𝜚 +

𝜂2
𝜃0
)𝑉∗ 

V̇(t, �̃�1, 𝑒) ≤ −(𝜃0αl − 𝜂1)(1 −
1

2√(𝜃0 − 𝜅)(𝜃0αl − 𝜂1)
(𝜚 +

𝜂2
𝜃0
)V 

Thus by appropriately choosing such that  (1 −
1

2√(𝜃0−𝜅)(𝜃0αl−𝜂1)
(𝜚 +

𝜂2

𝜃0
)) ≥ 0 is guaranteed, the 

convergence of the observer is obtained. 
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CHAPTER 6 INPUT RECONSTRUCTIONS BY MEANS OF SYSTEM INVERSION 

AND SLIDING MODE OBSERVER 

This chapter studies input reconstruction for nonlinear dynamic system. Firstly, input reconstruction 

technique through direct system inversion is reviewed. Some challenges on application of system 

inversion based input reconstruction such as reliable computations of the successive outputs derivatives 

are addressed. A high gain sliding mode observer is proposed to exactly estimate and substitute these 

derivatives of outputs in the differential algebraic polynomial obtained via system inversion. Numerical 

simulations are presented to make a comparison of both procedures. Results show that the system 

inversion based method is proper in ideal situation if successive computations of derivatives are 

available, while sliding mode observer based method is more applicable in the presence of 

measurement noise. 

6.1 Introduction  

In traditional applications of identification, estimation and control, the input is generally assumed to be 

known, therefore input estimation or reconstruction is not required. But what happens when the input is 

unknown. Such a problem arises in systems subject to disturbances or with inaccessible inputs, since 

inputs in these systems are either too expensive or perhaps not accessible to direct measurement. 

Unknown inputs may represent unknown external drivers, input uncertainty, or instrument faults, such 

as the seismic excitations, the ambient wind loads, the moving traffic loads and the cutting force etc. In 

this case, traditional system identification techniques fail. Therefore the unknown input reconstruction 

or estimation is required in order to help us make better measures for realizing synchronization, 

stabilization control and fault tolerant. More specifically, when unknown inputs represent disturbances 

or the effects of system uncertainties, reconstruction or estimation can be used to improve the control 

system performance. Additionally, when unknown inputs represent the effect of actuator failures or 

plant components, reconstruction or estimation can be used for the purpose of FDI and FTC, and 

thereby enhance system reliability.  

Systems with unknown inputs have received considerable attention in the literature. An active research 

area is a state reconstruction with known model equations and unknown inputs. The key point of this 

problem is to design an observer for a system partially driven by unknown inputs. The methods in the 

literature can be classified into two forms: either estimating of the partially unknown inputs or 

decoupling of the unknown inputs. For the former one, the idea is to augment the system to a new set 

of coordinates that include the unknown input vector as an additional component of the state, so that 

estimation techniques can be applied to the augmented system. This leads to various fundamental 

contributions with successful experimental evaluations on the observability and observer design 

including full-order observers [172], reduced-order observers [105], geometric techniques [133], 

adaptive observers [27], sliding mode observer [173]. Another technique for state estimation in the 

presence of unknown inputs rely on the decoupling of the unknown inputs through nonlinear 
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transformations and relative degree, see [174]. The problem amounts to design a filter of which the 

output is exactly decoupled from the control and disturbance inputs and it is known in the literature as 

the fundamental problem of residual generation. This disturbance decoupling approach has been 

considered in the case of nonlinear systems, like in [88]. A necessary condition has been given in the 

work [175]. The approach is made in differential geometric terms and it is shown that a solution to the 

problem of unknown input reconstruction can be characterized in terms of un-observability 

distributions. It is worth pointing out that the primary objective of this technique focus on reconstruct 

only the state variables [59]. 

In the above mentioned works, only the state estimation is conducted, leaving the unknown input 

estimation un-tackled. However, the unknown inputs impact numerous applications, ranging from 

machine tool control to cryptography, filtering, and coding. Therefore, it is of great importance to 

reconstruct the unknown input. The input reconstruction problem is distinct from, but closely related to, 

the problem of state observation subject to unknown inputs. In both problems, the inputs are unknown. 

However, unlike state observation problem, the problem of input reconstruction is a process where the 

inputs to a system are estimated using the measured system output, and possibly some modeling 

information from the system model. Although not as well known as the state estimation problem, input 

reconstruction has been studied for several decades, and interest continues up to the present time.  

One approach to estimating unknown inputs is to use input observers to reconstruct inputs to the 

system based on a dynamic model and measurements. The relevant literature on this topic has its roots 

in system inversion theory developed as in [122]. The idea basically relies on the concept studied for 

example by [147] for LTI systems and considered by [119][136] for nonlinear systems. Basic issues 

concerning re-constructability of unknown input relates to the input observability that has been 

discussed earlier for linear systems such as e.g. in [124]. In the framework of nonlinear systems, the 

problem of input reconstruction using classical invertibility techniques has been studied before in [133]. 

In this work, the authors consider faults as additive unknown inputs to the system, and recover them as 

outputs of another dynamic system—the inverse system. Moreover, the problem of left invertibility of 

switched systems, recently introduced in [126], concerns with the recovery of switching signal and 

input using the knowledge of the output and the initial state. And the work was extended to nonlinear 

system by authors in [51]. In [176], it derives a re-constructor for l-step-delay input and initial-state 

reconstruction, where the delay l accounts for the relative degree of the left invertible system.  The 

condition of invertibility in these literatures is given in terms of a rank condition on matrices made up 

of either the system matrices or the system Markov parameters.  

In these inversion based methods mentioned above, inversion, however, requires an exact and fully 

known analytical model, since the initial values of the state variables are assumed to be unknown. One 

difficulty that arises in system inversion is the presence of zeros. If the system has no zeros, then input 

reconstruction is possible even if the initial state is unknown and nonzero. However, if the system has 

zeros, then there exists an initial state such that, for some nonzero input, the output is identically zero, 
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as shown in [177]. Therefore the classical invertibility based method is limited by instabilities arising 

from non-minimum phase zeros. Beyond the problem associated with non-minimum-phase zeros, most 

input reconstruction techniques require an exact analytical model of the system, however many 

interesting input reconstruction problems do not have analytical representations. Another difficulty that 

arises in system inversion techniques is that many methods require the successive computation of time 

derivatives of the inputs and outputs of nonlinear systems from the computed control inputs and the 

noisy and disturbed output measurements [178]. However, numerical differentiation of these quantities 

may lead to serious computational errors. This problem is indeed known to be ill-posed that small 

perturbations of the signal may lead to large errors in the computed derivatives. Besides, these 

approaches require model transformations that lack generality.  

A solution to overcome the limitations of system inversion lies on observer design where the literature 

is extensive, e.g. [34][27][38]. Many challenging observation problems have been investigated to this 

end thanks to high gain, sliding mode, back-stepping and adaptive control principles. For example, the 

paper [179] studies the problem of simultaneous input and state estimation for nonlinear dynamical 

systems with and without direct input output feedthrough using the classical Gauss–Newton method. 

Based on linear minimum-variance unbiased estimation, a five-step recursive filter with global 

optimality is proposed to estimate both the unknown input and the state in [180]. In [181], a novel 

Extended Kalman filter approach referred to as the General Extended Kalman filter with unknown 

inputs (GEKF-UI) is proposed to estimate the structural parameters and the unknown excitations 

(inputs) simultaneously.  

In this chapter, the combination of both system inversion and sliding observer based input 

reconstruction for invertible nonlinear system is considered. We first state the objective of the chapter 

and introduce notation in section 6.2. We then provide a detailed illustration for input reconstruction 

procedure via dynamic inverse computation in section 6.3. While in order to avoid using any 

information of the derivatives of the output, a high gain second order sliding mode observer is 

considered to exactly estimate the derivatives of the output. A kind of algebraic unknown input 

estimation method is presented by combining both techniques in Section 6.4. We then demonstrate the 

effectiveness of the proposed methods by comparing these two methods using numerical simulation in 

section 6.5. 

6.2 Problem Formulation 

In the context of this work, it is assumed that, without loss of generality, the dynamic behavior of 

MIMO dynamical systems can be described by an input affine nonlinear state space model of the form 

(6.1): 

∑p  {
ẋ = f(x) + g(x)u,   x(t0) = x0
y = h(x, ua)                                 

                                                                           (6.1) 
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where x ∈ ℜn is the state of the system, y ∈ ℜp is the output of the system. u ∈ ℜm is the input of 

system, which is inaccessible and is reconstructed by measures of  y. f and g are smooth vector field 

on ℜn and h is smooth vector field on ℜp. 

The main objective addressed in this chapter is the design and analysis of an input re-constructor for 

the classes of nonlinear input affine systems described in the general form of (6.1). That is to 

reconstruct u from measure  y, and the initial condition x0. One can easily notice that the input 

reconstruction problem is closely linked to the problem of system inversion. Since the problem of input 

reconstruction can be viewed as problem of input observability while input observability is equivalent 

with left invertibility of system. As shown in reference [137], the input can be uniquely recovered from 

output and the initial state if dynamical system is left invertible. Therefore, in the problem of input 

reconstruction, the first task consists in evaluating the input observability, distinguishing whether the 

changes of the input of a dynamic system are reflected as changes at the output. If a system is input 

observable, the input reconstruction problem consists in the synthesis of a device or a mechanism 

which has as input the measured outputs, and it should take place as output a signal that should 

converge to the observable input.  

First, let us start with a definition of the so-called observability and invertibility of a dynamic system, 

more detailed can be found in [124][137]. 

Definition 6.1: Consider he dynamical system in (6.1), the input u(t) is said observable if that input 

can be distinguished from zero by the output y(t), i.e., if y(t) = 0 for t >  0, implies u(t) = 0 for 

t > 0. 

Remark 6.1: For any known initial condition  x(t0) = x0 = ξ with ξ ∈ Rn,  input observability 

implies left invertibility of (6.1). 

Since the ideal solvability of this problem is equivalent to the left invertibility of system (6.1), therefore 

the key step is to ensure the invertibility of the system. In particular, the left invertibility condition 

requires the local injective of the input output map. If and only if the left invertibility condition is 

satisfied, it makes sense to proceed and to try to reconstruct the input function u(t) from noisy 

measurements of y(t). Thus, the first issue is to check whether the system of equations (6.1) defines a 

left invertible map. This task can be treated in both the differential algebraic and differential geometric 

framework in the literature, see as in [139].  

We approach here the computational aspect of the concepts by algebraic criteria introduced in Chapter 

4. The system under consideration is interconnected system, classical inversion techniques can no 

longer be used and hence we use newly developed tools of invertibility for interconnected dynamic 

systems in chapter 4. Also, by using information provided by the observer for interconnected system 

introduced in chapter 5, we obtain the initial conditions from the observer and hence do not require 

stability of the inverse system. In chapter 4, we employ the differential output rank to check system 

invertibility. Differential output rank is defined as the maximum number of outputs that are related by a 
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differential polynomial equation which is independent of x and u (state and input respectively). 

Details of differential output rank definitions can be, for example, found in [159]. A simple way to 

compute differential output rank of system (6.1) is defined by corollary 6.1. 

Corollary 6.1: Supposed there are p outputs, and if there exists r possible differential polynomial 

equations of the form (6.2):  

Pr(y1, y2, . . , yp, ẏ1,ẏ2,… , ẏp,y1̈, ÿ2… ÿp,…) = 0                                                              (6.2) 

then the differential output rank ρ is defined as ρ = p − r, which implies (p − r) independent 

outputs. 

Theorem 6.1: A system is left-invertible if, and only if the differential output rank ρ is equal to the 

total number of inputs, e.g. ρ = m in (6.1). 

By verifying invertibility of the studied system, to solve the input reconstruction problem in the ideal 

situation, we obtain: (1) y is known at any time t, together with its derivatives; (2) y belongs to the 

image space of the input output map of the dynamical system (6.1). However, the technique may works 

well in ideal situations, but generally turns out difficult to implement in real engineering situation. This 

is because, in reality, the measured output may be affected either by disturbances or by measurement 

errors which may lead to serious computation errors in the computing derivatives. In fact, they may be 

subject to local minima and are often time consuming e.g. when each evaluation of the objective 

function needs the integration of complex nonlinear differential equations. Therefore, this is another 

consideration that is worth to be taken into account which is the reliability and availability of the 

successive computation of time derivatives of the output y.  

To avoid numerical differentiation, in this work, following an inversion based strategy, we propose an 

estimation procedure for nonlinear input affine systems exploiting estimated successive output 

derivatives. We employ a second order sliding mode observer to estimate the time derivatives of the 

output y, thus avoiding the potential serious errors arise by the computation. The procedure takes 

advantage of the fact that sliding mode observation strategies possess attractive features such as 

robustness. By combining the left inversion and sliding mode observer, we propose a kind of algebraic 

unknown input estimation method. Detailed illustration of this procedure is presented in 6.4. 

6.3 Input Reconstruction by System Inversion 

This approach is an application of dynamic inversion to filtering which is dual to the concept of 

dynamic inversion for control. The difference between these inversion approaches is that control uses a 

right inverse whereas estimation uses a left inverse of the system. Broadly speaking, the inverse 

dynamic of an input output dynamical system involves its decomposition into an external part, that 

enables an explicit relationship between inputs and outputs, and an internal part that is governed by its 

dynamics without input.  
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6.3.1 Fundamentals  

Key tools for the analysis are the notions of re-constructability, invertibility, the relative degree and 

zero dynamics of the representation of a dynamical system. In finding the left inverse of a nonlinear 

system, the idea is always to solve first the output zeroing problem, i.e., to find initial conditions and 

inputs consistent with the constraint that the output function y(t) is identically zero for all times in a 

neighborhood, and to analyze the corresponding internal dynamics. This will provide an appropriate 

extension of the notion of zero dynamics to a system having relative degree. The analysis can be made 

either in algebraic or geometric way. For certain classes of nonlinear state space systems one can find 

algorithms (and also sufficient or necessary conditions) of invertibility, see e.g.in [122].  

We review in this chapter some relevant aspects of this from view point of algebraic theory. In 

differential algebraic setting, left invertibility (as our case) can be expressed in terms of the differential 

output rank of the system, see in [32]. If a system is differentially left invertible, the input can be 

recovered from the output by means of a finite number of ordinary differential equations. As the 

dynamical system (6.1), the realization of its inverse dynamic can be expressed as the following  form 

(6.3): 

{
η̇ = φ(η, y, ẏ, … )
u = ω(η, y, ẏ, … )

                                                                                           (6.3) 

where η is a function of sub-state of the state x to be determined. It represents also the internal state 

that does not have a relationship with inputs. It determination is a crucial issue on the inverse dynamic.  

This approach is based on the existence of the left inverse system whose outputs are the unknown input 

while the inputs are the measured system outputs and possibly their time derivatives. The existence of 

the left inverse determines the feasibility of the inversion based approach to the input re-constructor 

design. Therefore, we will study a series of problems concerned with the analysis of the properties of 

invertibility of dynamical systems. It will be seen that the point of departure of the invertibility analysis 

is the notion of relative degree of dynamical systems. The theory is developed for linear time invariant 

and nonlinear systems having vector relative degree.  For more details, one can turn to [122]. 

Definition 6.2 (Relative degree of nonlinear systems): For invertible dynamic system described by 

(6.1), the relative degree ri of the output yi with respect to the input vector u is the smallest integer 

which is defined by:    

(a)  LgjLf
ri−1hi(x) ≠ 0; 1 ≤ j ≤ m 

    (b)  LgjLf
khi(x) = 0;   0 ≤ k < ri − 1, 1 ≤ j ≤ m 

where Lf(. )and  Lg(. )  represent the Lie derivatives of a real function h(x)  along the vector 

field f(x) and g(x).  
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Lf
0hi(x) = hi(x) , Lf

khi(x) =
∂(Lf

k−1hi(x))

∂x
f(x) and LgjLf

khi(x) =
∂(Lf

khi(x))

∂x
gj(x). 

Definition 6.3 (vector relative degree of nonlinear system):  Based on the individual components ri, 

the vector relative degree r of a multivariable linear system is defined as:  

 r = [r1 ⋯ rp]                                                                                                 (6.4) 

the multivariable nonlinear system (6.1) is said to have a vector relative degree r at a point x0 if:  

 LgjLf
khi(x) = 0;   0 ≤ k < ri − 1, 1 ≤ j ≤ m                                             (6.5) 

In this case, the matrix: 

A(x) = [
Lg1Lf

r1−1h1(x) … LgmLf
r1−1h1(x)

… … …

Lg1Lf
rm−1hm(x) … LgmLf

rm−1hm(x)
]                                           (6.6) 

is nonsingular or equivalently it has full rank:  

rank A(x) = m                                                                                                   

Definition 6.4 (total relative degree of nonlinear system): Based on the individual components ri 

and vector relative degree, the total relative degree is defined as:  

r = ∑ri

m

i=1

                                                                                       (6.7) 

6.3.2 The procedure of System Inverse Computation 

For certain classes of nonlinear state space systems one can find computation algorithms and also 

sufficient or necessary conditions of system inversion, in order to obtain a differential algebraic 

polynomial of the input vector u by means of the output vector y through system inverse, see 

e.g.,[122][137].  

Indeed, to derive an expression for u(t) as a function of states and output in (6.1), following the 

inversion algorithm given by [122], we first need to compute the derivatives of  yi, i = 1, … ,m. We 

have:  

If ri = 1, then: 

yi
(1) =

∂hi(x)

∂x
ẋ(t)                       

=
∂hi(x)

∂x
(f(x) + g(x)u) 

= Lf
1hi(x) +∑Lgj

1 Lf
0hi(x)

m

j=1

uj          

If  ri ≠ 1, then Lgj
1 Lf

0hi(x) = 0;  1 ≤ j ≤ m 
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then we get:  

yi
(1) = Lf

1hi(x) 

We should go on this differentia procedure, in general, for k < ri , we have:  

yi
(j)
= Lf

j
hi(x)                                                                                                                       

= ∂x(Lf
j−1
hi(x)f(x)) +∑∂

ua
(j)(Lf

j−1
hi(x))u

(s)
          j = 0, . . , k, k < ri 

j−2

s=0

 

Until when we reach the relative degree ri , we then obtain:  

yi
(ri) = Lf

rihi(x) +∑Lgj(

m

j=1

Lf
ri−1hi(x)) uj       i = 1, … ,m 

Given finite relative order r1, … , rm for (6.1) with respect to the output y, and if the total relative 

degree satisfied as:   

r = ∑ri

m

i=1

= n 

then calculating expressions for their derivatives, it can be referred to as a 1-step algorithm to obtain an 

inverse,  we get: 

[
y1
(r1)

⋮

ym
(rm)

] = [
Lf
r1h1(x)

⋮
Lf
rmhm(x)

] + [
Lg1Lf

r1−1h1(x) … LgmLf
r1−1h1(x)

… … …

Lg1Lf
rm−1hm(x) … LgmLf

rm−1hm(x)
] u                  (6.8) 

the equation (6.8) can be solved for u to obtain: 

u = [
Lg1Lf

r1−1h1(x) … LgmLf
r1−1h1(x)

… … …

Lg1Lf
rm−1hm(x) … LgmLf

rm−1hm(x)
]

−1

. ([
y1
(r1)

⋮

ym
(rm)

] − [
Lf
r1h1(x)

⋮
Lf
rmhm(x)

])                        (6.9)   

In this situation, there will be no internal dynamics and all the results will be finite time in nature, see 

in [182].  

However, normally, the total relative degree is assumed: 

r = ∑ri

m

i=1

< n 

In this case, the system given by (6.1) can be presented in a new basis that is introduced as follows.  

Define the following change of the coordinates:  

ξi = [ξi
1, ξi

2, … , ξi
ri]
T
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= [ϕi
1(x), ϕi

2(x), … , ϕi
ri(x)]

T
 

       = [hi(x), Lfhi(x), … , Lf
ri−1hi(x) ]

T 
  i = 1, … ,m 

ξ = [ξ1, ξ2, … , ξm]                           

= [ϕ1(x), ϕ2(x), … , ϕm(x) ] 

η = [ϕr+1(x), ϕr+2(x), … ,ϕn(x) ]
T 

y = [ξ1
1, ξ2

1 , … , ξm
1 ] 

By application new local coordinates transformation proposed in [122], if the system hold the 

assumption of relative degree, it is always possible to find the function ϕr+1(x), ϕr+2(x), … , ϕn(x), 

thus :  

Φ(x) = [ϕ1(x), ϕ2(x), … , ϕm(x), ϕr+1(x), … , ϕn(x)]                                           (6.10) 

The mapping Φ(x) is a local diffeomorphism which means:  

x = Φ−1(ξ, η)                                                                              (6.11) 

Furthermore, according to [122], if the assumption is satisfied: 

Assumption 6.1: the distribution is Γ = span {g1 g2 ⋯ gm} involutive,  

then, it is always possible to identify the function ϕr+1(x),ϕr+2(x),… , ϕn(x) in such a way that :  

Lgjϕi(x) = 0, i = r + 1,… . , n, j = 1, … ,m 

η̇ = q(ξ, η) 

Then input vector u can be obtained by means of the output vector y and its derivatives: 

u = A(Φ−1(ξ, η))
−1
([
ξ1
(r1)

⋮

ξm
(rm)

] − [
Lf
r1h1(Φ

−1(ξ, η)

⋮
Lf
rmhm(Φ

−1(ξ, η)
])                           (6.12) 

6.4 Observer Based Input Estimation 

The inversion based algebraic polynomial (6.12), however, requires the computation of successive 

derivatives of outputs, which might be unrealistic in practical applications where measurements suffer 

noise and disturbances. In most engineering problems, finding the derivative of a signal is normally 

avoided especially in the presence of noise. As highlighted in [183], in most cases, the problem of 

estimating the derivative of a signal is posed as an observer problem. Thus in order to avoid using any 

information of the derivatives of the output, a high gain second-order sliding mode observer is 

considered to exactly estimate the derivatives of the output. The main idea is as follows. First, a 
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high-gain second-order sliding mode observer is considered to exactly estimate the derivatives of the 

output vectors in a finite time. Then, by substituting output derivatives in (6.12), a kind of algebraic 

unknown input reconstruction method is proposed. 

To avoid using any derivative information ξi
j(t), 1 ≤  i ≤ m, 1 ≤ j ≤ ri of measurement output 

directly yi = hi(x), a high gain second-order sliding mode observer is considered to exactly estimate 

them in a finite time.  

By construction: 

yi = ξi
1 

ξ̇i
j
=ξi
j+1

;1 ≤ j ≤ ri − 1 

ξ̇i
ri = Lf

rihi(Φ
−1(ξ, η) + ∑ LgiLf

ri−1hi(Φ
−1(ξ, η)) uaj

m
j=1 ; j = ri 

Following is structure of the observer: 

ŷi = ξ̂i
1 

ξ̇̂i
j
=ξ̂i
j+1
+ λi

j|ŷi − yi|
1/2sgn(ŷi − yi); 1 ≤ j ≤ ri − 1                     (6.13) 

ξ̇̂i
ri=λi

ri|ŷi − yi|
1/2sgn(ŷi − yi); j=ri 

Therefore, the following exact estimates are available in finite time: 

ξ̂i = [ξ̂i
1, ξ̂i

2, … , ξ̂i
ri]
T
                      

= [ϕ̂i
1(x), ϕ̂i

2(x), … , ϕ̂i
ri(x)]

T
         i = 1, … ,m 

ξ̂ = [ξ̂1, ξ̂2, … , ξ̂m]                           

= [ϕ̂1(x), ϕ̂2(x), … , ϕ̂m(x) ] 

According to [182], with some initial condition from the stability of the internal dynamics, a solution of 

η̂ is obtained. And this solution converges asymptotically to an unknown solution that passes through a 

known ignition condition. That is to say, the asymptotic estimate η̂ of η can be obtained locally: 

η̇̂ = q(ξ̂, η̂) 

η̂ = [ϕ̂r+1(x), ϕ̂r+2(x), … , ϕ̂n(x) ]
T

 

By application new local coordinates transformation proposed in [122], if the system hold the 

assumption of relative degree, it is always possible to find the function ϕr+1(x), ϕr+2(x), … , ϕn(x), 

thus :  
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Φ̂(x) = [ϕ̂1(x), ϕ̂2(x), … , ϕ̂m(x), ϕ̂r+1(x), … , ϕ̂n(x)]                                              (6.14) 

The mapping Φ(x) is a local diffeomorphism which means:  

x = Φ−1(ξ, η)                                                                                          (6.15) 

By using the estimates of output derivatives, a kind of algebraic unknown input reconstruction method 

is proposed. 

û = A(Φ−1(ξ̂, η̂))
−1
([
ξ̂1
(r1)

⋮

ξ̂m
(rm)

] − [
Lf
r1h1(Φ

−1(ξ̂, η̂)

⋮
Lf
rmhm(Φ

−1(ξ̂, η̂)

])                             (6.16) 

Based on the developments in this section, the following theorem is hold. 

Theorem 6.2: Suppose that system (6.1) is locally detectable and the measured outputs are corrupted 

with noise which is a Lebesgue-measurable function of time with maximal magnitude ε: Then the 

higher-order sliding-mode observer ensures observation error accuracy of the order of ε
2
r̅+1⁄ , r̅ =

max(ri), i = 1, … ,m.  

6.5 Numerical Simulations 

The main objective is to confirm the effectiveness of the input reconstruction techniques given in (6.12) 

and (6.16) by means of numerical simulations. Further, the results obtained through the implementation 

of both techniques are compared in order to conclude which is the one that best fits for applications 

involving heat exchanger reactor. A case study is developed to test the effectiveness of the proposed 

scheme on a pilot intensified HEX reactor. The pilot is made of three process plates sandwiched 

between five utility plates. More relative information could find in [160]. 

6.5.1 System Modelling and Input re-constructor Design 

1-) HEX reactor system model 

As in chapter 4,The constants and physical data used in the pilot are given.  The model is as follows:  

define the state vector as xT = [x1, x2]
T = [Tp, Tu]

T, the control input uT = [ua1, ua2]
T = [Fp, Fu]

T, 

the output vector of measurable variables yT = [y1, y2]
T = [Tp, Tu]

T
, then the above two equations can 

be rewritten in the following state-space form: 

{

x1̇ =
ua1
Vp
(Tpi − x1) + a(x2 − x1)

x2̇ =
ua2
Vu
(Tci − x2) + b(x1 − x2)

          (6.17) 

where a =
hpA

ρpCpp
Vp
, b =

huA

ρuCpu
Vu

, y1 = x1, y2 = x2 
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The above model is just for one cell which may lead to moderate differences for the dynamic behavior 

of the realistic reactor. However, this will not affect the application and demonstration of the proposed 

algorithm on the reactor, encouraging results are got. 

2-) System inversion based input reconstruction 

As mentioned above, a key point to compute input via system inversion lies on the invertibility of the 

system, we address the computational aspect of the concepts by algebraic criteria introduced in Chapter 

4. After that, by using eq. (6.12), we can represent the input of the system as a function of the output 

and its derivatives. 

To check if the system, modelled by (6.17), is invertible, we have to check whether the output 

differential rank is equal to the number of the inputs. There are two inputs in this work: flowrate of 

process fluid Fp and flowrate of utility fluid Fu which are denoted by ua1, ua2 in (6.17) respectively. 

To compute the output differential rank, we first need to derive an explicit expression for the input in 

terms of the output y by computing the derivatives of y. When it comes to (6.17), two outputs are 

temperature of process fluid Tpand utility fluid Tu, which are denoted by y1, y2 in (6.17) respectively. 

As above mentioned, there are two inputs in this work, if the computed output differential rank is equal 

to the total number of inputs, then it refers that the process subsystem is invertible. 

Step 1: Invertibility Checking: 

     From chapter 4, the system is invertible. 

Step 2: Represents the input of the process subsystem as a function of the output and its derivatives: 

Thanks to the invertibility of the system, we can reconstruct the inputs as a function of the output and 

its derivatives. From the above equation, an expression for the two inputs can be derived as  ũa =

[u a1 u a2]: 

                    {
u a1 =

Vp

Tpi−y1
(ẏ1 − ay2 + ay1)

u a2 =
Vu

Tui−y2
(ẏ2 − by1 + by2)

                                                          (6.19) 

3-) Observer based input reconstruction 

In order to avoid compute the derivatives, a high-gain second-order sliding mode observer is 

considered to exactly estimate them in a finite time.  

By construction: 

y1 = Tp = ξ1
1  

 y2 = Tu = ξ2
1   

ξ̇i
j
=ξi
j+1

;1 ≤ j ≤ ri − 1 
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ξ̇i
ri = Lf

rihi(Φ
−1(ξ, η) + ∑ LgiLf

ri−1hi(Φ
−1(ξ, η)) uaj

m
j=1 ; j = ri 

Following is structure of the observer: 

ŷi = ξ̂i
1 

ξ̇̂i
j
=ξ̂i
j+1
+ λi

j|ŷi − yi|
1/2sgn(ŷi − yi); 1 ≤ j ≤ ri − 1 

ξ̇̂i
ri=λi

ri|ŷi − yi|
1/2sgn(ŷi − yi); j=ri 

Step 3: by using the estimates of output derivatives, a kind of algebraic unknown input reconstruction 

method is proposed. 

{
ûa1 =

Vp

Tpi−y1
(ξ̂1
j+1
− ay2 + ay1)

ûa2 =
Vu

Tui−y2
(ξ̂2
j+1
− by1 + by2)

                                                    (6.20)  

6.5.2 Simulation Results and Discussion 

In order to test the performance of the proposed input reconstruction procedures, two numerical 

simulations were carried out. They consist in estimating the fluid flow rate from measurements of the 

inlet–outlet temperatures of the studied heat exchanger reactor. The input of the inlet flow rate of the 

utility fluid Fu  is 4.22e−5m3s−1 , and inlet flow rate of the process fluid Fp  is constant 

4.17e−6m3s−1. Both flow rate are assumed unmeasured. In Case 1, an ideal situation is considered 

which means the measured outputs are not corrupted by noise. In Case 2, the inlet outlet temperatures 

are considered being measured in the presence of disturbances.  

Case 1 measurements not corrupted by noise 

The objective of this series of simulations is to prove the convergence of the two input re-constructors 

given by (6.19) and (6.20) in the ideal situation in which measured temperature is not corrupted by 

noise. Considering the process model given by (6.17), input re-constructors designed by (6.19) and 

(6.20) were simulated using the values given in Table 1. These constants, corresponding to a heat 

exchanger reactor having fast dynamics, were taken from [20]. A value of UA = 214.8 W.K−1 was 

considered. The inlet temperatures Tui  and Tpi  were 15 ℃ and 76℃  respectively. The initial 

conditions of the process model were Tp
0 = 80℃ and  Tu

0 = 20℃ respectively. The results of the 

estimation of fluid flow rate Fp and Fu are reported in Fig. 6.1a and Fig.6.2b respectively. 
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Fig 6.1a reconstructed process fluid flow rate in case 1, solid line is the referenced real value, the dash 

line is the reconstructed value through system inversion based method, and the dash dot line is the one 

reconstructed by sliding mode observer based method. 

 

Fig. 6.1b reconstructed utility fluid flow rate in case 1, solid line is the referenced real value, the dash 

line is the reconstructed value through system inversion based method, and the dash dot line is the one 

reconstructed by sliding mode observer based method. 

Fig. 6.1a and Fig.6.1b confirm the effectiveness of the proposed input estimators. The curves in solid 

line represent the real value of both fluid flow rate Fp and Fu, denoted as ua1 and ua2. Then, we 

confirm the effectiveness of system inversion based input reconstruction method in dash line, while the 

curves in dash dot line are the estimations with the help of sliding mode observers. It can be seen from 

Fig. 6.1a and Fig.6.1b that the reconstructed inputs (both fluid flow rate ũa1, u a2) by system inversion 

in dash line can track the simulation values ua1 and ua2 in solid line correctly after a short transient 

period. The similar encouraging results are obtained when the case is carried out to test the 

effectiveness of the proposed by sliding mode observer aided input reconstruction scheme. From Fig. 

6.1a and Fig. 6.1b,  ũa1, ûa1 and  ũa2 , ûa2 follow different trajectories before they converge towards 

the “real value” ua1 and ua2. In both cases, convergence is guaranteed, and it is clear that convergence 

rate of system inversion based input reconstruction method is faster than that is in the sliding mode 

observer based method. Therefore, under ideal situation, on condition that the successive derivatives 

are available, direct computation of system inversion may be a better choice in reconstructing the 

unknown input of a dynamic system. 

Case 2 measurements are corrupted by noise 

The present computations are executed to get an accurate screening of the variation of the reconstructed 

values, by corroborating if it is in accordance with the simulated noise. To compare the robustness of 

the proposed schemes, different measurement noises power are considered in Case 2. Suppose that all 
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parameters and initial conditions are the same as Case 1, however, the output measurement y is 

corrupted by a colored noise. The colored noise is generated with a second order AR filter excited by a 

Gaussian white noise with zero mean and unitary variance. The standard deviation of the colored noise 

is differed as 0.01, 0.028and 0.1respectively. The purpose is to conclude which technique is more 

applicable in the present of noise. Simulation results are shown in the following Figs.6.2-6.4. 

 

Fig. 6.2a reconstructed process fluid flow rate in case 2 where measurement noise power is 0.01. solid 

line is the referenced real value, the dash line is the reconstructed value through system inversion based 

method, and the dash dot line is the one reconstructed by sliding mode observer based method. 

 

Fig 6.2b reconstructed utility fluid flow rate in case 2 where measurement noise power is 0.01. Solid 

line is the referenced real value, the dash line is the reconstructed value through system inversion based 

method, and the dash dot line is the one reconstructed by sliding mode observer based method. 

Fig.6.2a and Fig. 6.2b show the simulation results of the reconstructed fluid flow rate when the 

measured temperatures are corrupted by a colored noise with noise power 0.01. The dashed curves 

corresponds to fluid flow rate ũa1, u a2 generated by system inversion based method, while the curves of 

dash dot line correspond to fluid flow rate ûa1, ûa2 generated by sliding mode observe based method, it 

is worth noting that all the curves converge to the real value of the both fluid flow rate Fp and Fu, 

denoted as ua1 and ua2. It can be seen from the Figs.6.3a and 6.3b that once the convergences are 

obtained, the reconstructed values track well real value in spite of the noise. In addition, no big 

difference is observed with respect to the two techniques. 
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Fig. 6.3a a reconstructed process fluid flow rate in case 2 where measurement noise power is 0.028. 

Solid line is the referenced real value, the dash line is the reconstructed value through system inversion 

based method, and the dash dot line is the one reconstructed by sliding mode observer based method. 

 

Fig. 6.3b a reconstructed utility fluid flow rate in case 2 where measurement noise power is 0.028. 

Solid line is the referenced real value, the dash line is the reconstructed value through system inversion 

based method, and the dash dot line is the one reconstructed by sliding mode observer based method. 

Fig.6.3a and Fig. 6.3b show that the two unknown input reconstructed methods estimate the same value 

as the previous simulation. In this case, it is assumed the measured output is corrupted by noise with 

power 0.028 which is larger than the previous one, see Fig.6.2a and Fig.6.2b. Figs. 6.3a and 6.3b show 

the real fluid flow rate Fp and Fu in solid line and their estimates  ũa1, u a2 in dash line and ûa1, ûa2 in 

dash dot line respectively. They correspond to the results obtained using reconstructed method (6.19) 

and (6.20) respectively.  It can be seen that the estimates converge well towards the simulated real 

values. Figs. 6.3a and 6.4b demonstrate that the two methods reconstruct the same value. As expected, 

the variations of  u a1, u a2 in dash line and ûa1, ûa2 in dash dot line reflect the measurement noise on 

the operating conditions. While different from the previous simulation in Figs 3a and 3b where the 

noise power is 0.01, with the increase of measurement noise power (with noise power 0.028), the 

estimation error produced by system inversion based method is obviously lager than that is produced 

by sliding mode observer based method.  
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Fig. 6.4a a reconstructed process fluid flow rate in case 2 where measurement noise power is 0.1. Solid 

line is the referenced real value, and the dash dot line is the one reconstructed by sliding mode observer 

based method. 

 

Fig. 6.4b a reconstructed utility fluid flow rate in case 2 where measurement noise power is 0.1. Solid 

line is the referenced real value, and the dash dot line is the one reconstructed by sliding mode observer 

based method. 

In Fig.6.4a and Fig.6.4b, this study is similar with the previous simulations, see Figs. 6.2-6.3, but a more 

sever situation (with measurement noise power 0.1) is considered in implementation in order to test the 

robustness of the proposed methods. Two unknown input re-constructors are designed based on (6.19) 

and (6.20). Then, they were used to monitor the value of fluid flow rate Fp and Fu on a one-cell heat 

exchanger reactor modelled by (6.17). Unfortunately, the re-constructor designed by system inversion 

cannot be plotted since sever computation error occurs. Therefore, as shown in Figs.6.4 and 6.4b, only 

the sliding mode observer based method still works well. Moreover, it can be seen that the estimated 

values ûa1, ûa2 in dash dot curves could still coincide with the simulated value of Fp and Fu. This is an 

expected outcome with respect to the proposed methods. From this, we conclude that sliding mode 

observer based input reconstruction procedure is more suitable for estimating the unknown input of a 

dynamic system in the presence of noise. 

6.6 Summary 

In this paper, two unknown input reconstruction techniques for an invertible nonlinear system are 

presented, one based on direct system inversion computation, and the other is based on sliding mode 

observer. The main contribution of this chapter is the combination of system inversion capability with 

sliding mode observer advantages. A high gain sliding mode observer is proposed for the purpose 

exactly estimate derivatives of outputs which is used to substitute the successive outputs derivatives in 
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the differential algebraic polynomial obtained via system inverse. Numerical simulations are presented 

to make a comparison of both procedures. Results show that the approach achieves satisfactory 

performances in terms of unknown input reconstruction capabilities. Conclusion are made that system 

inversion based method is proper in ideal situation if successive computation of derivatives are available, 

while sliding mode observer based method is more applicable in the presence of measurement noise. 
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CHAPTER 7 FAULT DIAGNOSIS AND ROOT CAUSE ANALYSIS FOR 

INTERCONNECTED SYSTEM 

This chapter develops a two level fault diagnosis (FD) and root cause analysis (RCA) scheme for a class 

of interconnected invertible dynamic systems. By considering actuator as individual dynamic subsystem 

connected with process dynamic subsystem in cascade, an interconnected system is then constituted. 

Invertibility of the interconnected system in faulty model is studied. An interconnected observer 

introduced in chapter 5 is employed, aimed at monitoring performance of the interconnected system and 

providing information of actuator fault occurrence. A local fault filter algorithm is then trigged to 

identify the root causes of the detected actuator faults. According to real plant, outputs of the actuator 

subsystem are assumed inaccessible and are reconstructed by measurements of the global system, thus 

providing a means of monitoring and diagnosis of the plant at both local and global level.  

7.1 Introduction 

Many of the vital services of everyday life depend on highly complex and interconnected engineering 

systems which consist of large number of interconnected sensors, actuators and system components. 

From the system’s perspective, the continuously increasing complexity contributes to the difficulties in 

monitoring complex processes in the modern industries. Thus, modern engineering systems comprise 

distributed control with highly connected control elements at local system levels and at higher levels. 

The safe and reliable operation of such systems through the early detection of an incipient fault before it 

becomes a serious failure is a crucial component of the overall system performance and sustainability. A 

fault can be considered as process degradation or degradation of the equipment performance caused by 

the change in the physical characteristic of the process, the input process or the external conditions, for 

example, bearings may jam, valves may leak or sensors may provide wrong readings. Advanced fault 

detection and diagnosis (FDD) can help accurate monitoring of process variables and interpreting their 

behaviors, thus providing better predictive maintenance aids. While the supervision, monitoring and 

diagnosis of these systems increase in complexity as the diagnosis of system operation and malfunction 

must be carried out at all process levels.  

Actuators are fundamental components in the process industry and they are the most common final 

control elements in the control loop. For example, there can be thousands of manually operated valves 

and control valves in a process plant. Many important process variables, such as forces, flows and 

pressures, are controlled through actuators. In some cases, a fault that occurs in actuator may cause 

significant disturbances on the quality of the final product. In the last decades, there have been 

significant research activities in the design and analysis of fault diagnosis and accommodation schemes 

for systems that subject to actuator fault. One main category is system level based diagnosis approach 

where internal dynamics of actuator is ignored, aims at detecting and identifying actuator fault existence 

and location from the view point of global system. Fault symptoms can be detected without having the 

capability to pinpoint the root causes of the detected faults. Another common kind focuses on the field 
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component level which aims at analyzing internal dynamics of a specific actuator while dynamics of 

global system is neglected. 

The most nature approach for diagnosing actuator fault that has appeared in the literature typically focus 

on system level where the major objective relates to performance supervision of the final product. In 

these methods, dynamics of actuator is normally ignored; instead, the control input is assumed to enter 

the system dynamics linearly, although this often does not hold in practice. A key approach is based on 

residual generation. Another approach different to residual generation is fault estimation or fault 

reconstruction which can determine the size, location and dynamics behavior of the fault. The relevant 

literature on this topic has its roots on system inversion theory.  

With respect to the above mentioned approaches, researches efforts are mostly devoted in developing a 

comprehensive fault diagnosis methodology while the problem of root cause analysis (RCA) for the 

detected fault receive less attention. It is because theses methods assume the control input to enter the 

system dynamics linearly, while varying failure signatures are denoted by the changes of elements of the 

input matrix/function. This assumption makes the results generally applicable in traditional systems, 

while increasing technological advancements have made actuators becoming increasingly integrated and 

complex. Each actuator may consist of more than one component connected in any configuration, 

therefore actuator itself is a dynamic system and exhibits complicate system dynamics. In some cases, it 

is important to determine the information provided by the failure actuator, in order to isolate the root 

causes that give origin to the anomalous operation of the process. For example, if a certain fault appears 

in an actuator, the root cause of that malfunction can have different causes: zero deviation, error of the 

range of measurement, deviations of the dead area, problems of linearity and hysteresis, etc. Each of 

these problems can be represented by root cause of the fault. Application of the above mentioned failure 

detection and identification (FDI) algorithms have essentially been limited to identification of a global 

fault in the system, and no further attempts have been made to locate subcomponent faults for root cause 

analysis. For instance, reference [184] shows that decrease of measured temperature in HEX reactor may 

be due to decrease of fluid flowrate, this implies an actuator fault. With the help of above FDD 

algorithms, we can detect and isolate the actuator fault, but fail to realize the root cause of the fault in 

that particular actuator. The involving candidate root causes of this fault could be valve clogging, stop of 

utility fluid pump or leakage. 

In order to examine potential relationship from causes to effects of an actuator fault, efforts have been 

made to locate subcomponent faults for RCA from the view point of component level. The independent 

component analysis can be achieved either via a remote supervisory diagnostic system or autonomously 

using local intelligence, for instance employing intelligent self validation methods. Model based FDD 

approaches are proposed like in [3]. For example, reference [2] develops an interval observer based 

passive fault detection method for control valve. In [3], it presents a Kalman filter-based FDI method for 

identifying subcomponent faults in power regulating systems of nuclear reactors..  
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However, neither intelligent actuator nor component level FDI method could provide a means of 

monitoring and diagnosing of the overall plant at both local and global levels, as required for reliable 

operation of complex and highly interconnected process systems. A major difficulty to achieve this 

purpose via component level based diagnosis methodology is due to lack of dynamics information at 

global system. Moreover, another challenge when researching FDD methods locally is getting data from 

the subsystem being observed to develop and validate these methods. It is because direct access to 

actuators is often not possible or difficult via physical measurements due to distances or rough 

environment. Moreover, even if the output of the actuator is available for measurement, considering the 

noisy output of the actuator sensor, the numerical differentiation would be too noisy. The noisy control 

input made from these signals, not only could damage the actuator, but also would make less accuracy in 

tracking and then instability in the control scheme. A framework that utilizes information from both 

local and high level to diagnose different faults and identify their root causes has not yet been proposed 

in the literature, and is still open and challenging in the field of FDD. Therefore, there is the need to 

understand better the fault propagation, fault causes issues involved and the behavior of the system. 

What is in fact required is a combination of local intelligence with an advanced diagnostic capability to 

perform FDD functions on both plant process and individual subcomponents. That is to combine fault 

monitoring and diagnosis at both local and global levels. This requires the use of advanced diagnosis 

methods in which it is no longer sufficient to rely on the monitoring and diagnosis of individual system 

components (i.e. actuators or sensors) but rather on the combined monitoring of groups or sets of 

components (including process elements themselves). 

Motivated by the above considerations, this chapter contributes towards these directions by proposing a 

fault diagnosis approach which is capable of addressing root cause analysis and fault propagation 

problems among interconnected subsystems. Specifically, the purpose is to investigate the problem of 

fault diagnosis (FD) and root cause analysis (RCA) in a class of interconnected invertible dynamic 

systems. The attempt is to explain how the behavior of global output can be interpreted to identify root 

cause of detected faults in actuator subsystem. We propose a left invertible interconnected nonlinear 

system structure with input reconstruction laws which is based on dynamic inversion, forming a new 

model based actuator FDD and RCA algorithm. Actuator is viewed as subsystem connected with the 

process subsystem in cascade manner, thus identifying reasons of actuator faults with advancing FDD 

algorithm in actuator subsystem. Outputs of the actuator subsystem are assumed unmeasured and 

reconstructed by measured global outputs. The left invertibility of individual subsystem is required for 

ensuring that faults occurring in actuator subsystem can be transmitted to the process subsystem 

uniquely, and for reconstructing inputs of process subsystem, also outputs of actuator subsystem, from 

measured global outputs. The developed fault diagnosis algorithm is an effort to combine the strength of 

system level and the component level model based fault diagnosis. Moreover, the fault detectability 

conditions are rigorously investigated, characterizing the class of detectable process faults in each 

subsystem. 



146 
 

This chapter is organized as follows. Section 7.2 describes the proposed strategy and formulates the 

problem. The main idea of the FD&RCA architecture is presented in section 7.3. In section 7.4, 

conditions regarding the implementation of the proposed approach are analyzed, involving fault 

diagnosibility, invertibility of fault model for both subsystems and the interconnected system. An 

interconnected fault detection observer, together with local fault filters are then designed for system 

performance supervision and actuator fault RCA in section 7.5 and 7.6 respectively. Finally, conclusion 

is made in section 7.6. 

7.2 Problem Formulation 

Modern control system can be viewed as composed of dynamic subsystems connected in series and 

therefore it can be analyzed in a decentralized manner. In all situations, the global plant and/or each 

subsystem can be analyzed at different levels down to the component level in estimating the reliability of 

the whole plant. A typical control system, for example, has at least three cascade subsystems: sensor, 

process and actuator subsystems. The three parts function properly for the whole system to operate 

properly where the fault may occur in any level of the system. In this chapter, we focus on the internal 

dynamics of actuator and fault propagation among the interconnected system. Therefore, we assume the 

interconnected system consist of two dynamic nonlinear subsystems: the actuator and the process 

subsystems.  

As shown in Fig.7.1, an interconnected system ∑ is considered which consists of two subsystems: 

actuator ∑a and process ∑p. The basic idea is to identify the fault V at local level, while monitoring 

the whole plant at global level. The fault vector V indicates candidates of root causes of actuator faults.    

 

 

 

Fig. 7.1 Interconnected system structure 

Assuming that the MIMO process subsystem is an input affine nonlinear system, and is described by 

(7.1): 

∑p  {
ẋ = f(x) + g(x)ua,   x(t0) = x0
y = h(x, ua)                                     

                                                                           (7.1) 

where x ∈ ℜn is the state of the process subsystem, y ∈ ℜp is the output of the global system, which 

is also the output of the process subsystem. ua ∈ ℜ
m is the input of process subsystem, which is also the 

output of the actuator subsystem. ua is inaccessible and need to be reconstructed by measures of  y.  

f and g are smooth vector field on ℜn and h is smooth vector field on ℜp. 

Assuming that the actuator subsystem is a nonlinear system described by (7.2): 

∑a {
ẋa = fa(xa, u, θa)
ua = ha(xa, u, θs)

                           (7.2) 
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where xa ∈ ℜ
n is the state, u ∈  ℜl is the input, ua ∈ R

m is the output of the actuator subsystem, 

which is also the input of the process subsystem, θa ∈ ℜ
k represents the parameters of the actuator 

subsystem, when no faults are present θa = θa0  (θa0  is the nominal parameter vector). θs ∈ ℜ
k 

represents the parameters in the output equation (if a sensor fault occurs θs ≠ θs0, where θs0 represent 

the nominal parameters in the output equation). 

Thus an interconnected cascade system ∑ is then constructed by these two subsystems ∑a and ∑p 

depicted by (7.1) and (7.2) where the input is vector u ∈  ℜl while output vector is y ∈ ℜp. 

Considering fault vector V= (v1, … , vk)  as integration of either parameters faults in θa, θs or 

other disturbance signals, in general. Then a fault model of the actuator subsystem becomes:  

∑a {
ẋa = fa(xa, u) + ga(xa, u)V

ua = ha(xa, u) + la(xa, u)V
                                                                                   (7.3) 

Where g, l are analytic functions of the system subject to multiple, possible simultaneously faults. The 

goal is to detect the occurrence of the components vi of the fault signal independently of each other and 

identify which fault component specifically occurred. The detectability of one fault in nonlinear system 

(7.3) is defined as: 

Definition 7.1: the fault vi( i = 1,… , k) is said to be non-detectable if for vi ≠ 0 the relation 

y(x0, x; xa0, xa; u;  0) = y(x0, x; xa0, xa;  u;  0, … , vi, … , 0) 

is satisfied; if not, the fault vi is detectable. 

The initial motivation for this work came from the need to describe the cause and effect relationships 

between subsystem variables vi and global system output  y , thus providing advanced predictive 

maintenance techniques in an operating plant. The primary objective is to monitor system performance, 

as well as provide an early warning to the human operator regarding the failing health of control 

equipment, thereby avoiding major breakdown with its associated large plant downtime. Further, the 

attempt is also to identify faulty parameters in actuator subsystem, so as to carry out fault event 

sequencing and root cause analysis. A further step to this would be to develop RCA methods for 

identifying subcomponent faults in control equipment, resulting in improved fault localization and 

providing better predictive maintenance aids. That is to discover the locations and causes of the faulty 

actuator, and to identify the corresponding faulty parameters.  

Considering interconnected systems depicted by Fig.7.1, firstly, it is desirable to monitor the 

performance of the interconnected system with respect to individual subsystems and the overall system. 

While the main objective is to identify the occurrence of the fault vi in (7.3) independently from each 

other as required for reliable operation of complex and high interconnected process system. The property 

of distinguishability of two inputs or faults refers to their capacity to generate different output signals for 

a given input signal. Distinguishability is relatively important when studying the observability of 

interconnected systems. It characterizes in this context the ability to determine the root cause of an 

actuator fault from measured global output data. However, to the best of our knowledge, there is 
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currently no research on the determination of the class of fault parameter at local subsystem that 

generate given global output signals for dynamical interconnected systems, a problem we will attack 

here. 

7.3 Fault Diagnosis and Root Cause Analysis Architecture 

7.3.1 Performance Supervision and Fault Detection 

In order to deal with the performance supervision task, as well as fault detection, one way to achieve this 

purpose is to have observers for each of the subsystems and the overall plant. However, the major 

difficulty lies on inaccessibility of the connection which is the output of the actuator subsystem, also the 

input of the process subsystem. It is because on-line measurements are either difficult to obtain due to 

physical reasons, or the measurement is uneconomical and unreliable. The reasons lie on that actuators 

are often far from the controller and their operation environment are often rough. Therefore the state 

observation in this work can only rely on the global system output, i.e. the process state at the terminal 

boundary.  

Considering interconnected systems depicted by Fig.7.1, the particular aim in our design is to accurately 

estimate online the state vector x and xaof each subsystem, as well as the unmeasured interconnection 

vector ua. To achieve this purpose, as shown in Fig.7.2, a nominal interconnected nonlinear observer is 

designed to monitor performances of the overall system, as well as each subsystem, and guarantee that 

the state estimation error, for the nominal nonlinear system, converges to zero. While once there are 

faults occurred, the state estimation error will be no longer stay at zero which implies existence of the 

faults. 

 

 

 

 

 

 

 

 

 

Fig. 7.2 Interconnected observer for performance supervision 

As shown in Fig. 7.2, the main idea behind our design is as follows: suppose an nominal observer is 

already available for the nonlinear actuator subsystem Σa with output ua, in which no fault is assumed, 

we implement that observer using an estimate of ua, denoted by  ûa. In order to produce such an 

estimate, we extend the state space of the process subsystem Σp to include ua as an additional state. By 

computing derivatives of ua in actuator subsystem, we then obtain an expression for ua which is a 
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function of u, derivatives of u and xa . Then an observer is constructed for this extended process 

subsystem. State estimator of actuator subsystem, together with state estimator of process subsystem, a 

kind of nominal observer designed method is then proposed for the studied nominal interconnected 

nonlinear system.  

7.3.2 Fault Detection  

The above-mentioned nominal observer is designed to assume that there is no fault, so once the observer 

converges, the ûa estimate is reliable, so that the estimate can be used as true signal ua for the input 

reconstruction of the process subsystem to achieve the fault detection. For this purpose, an inverse 

system observer is constructed first. An important task of the observer is to eliminate the effects of initial 

conditions, drift and other factors, and to ensure the validity of the root cause analysis. As shown in 

Figure 7.3, the input of the observer of the inverse system is y, the observer estimates the output as ũ̅a, 

where the reference output is ûa. When the observer convergence, it satisfies ũ̅a = ûa = ua,  and the 

estimated error should be below the threshold; and it means that the failure of the generation the error is 

break the threshold. When the detection of a sudden failure occurs, the local filters are triggered to 

achieve root cause analysis.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.7.3 fault detection observer 

7.3.3 Root Cause Analysis 

After a fault is detected, next task is to identify the root cause of the fault. A RCA (root cause analysis) 

scheme is then proposed based on local fault filtering schemes with each one assigned to monitor one 

subsystem and provide a decision regarding its health. This procedure is denoted as root cause analysis 

(RCA). As shown in Fig.7.4, the main objective is to identify the occurrence of the fault vi in (7.3) 

independently from each other whilst monitoring the whole plant at both local and global level, as 

required for reliable operation of complex and high interconnected process system. Fault  vi refers to 

fault resources of an actuator fault which is related with special physical meaning, e.g. vi represents 

fault caused by leakage or valve clogging of an actuator. We propose a local filter based FDD strategy at 

local level of actuator subsystem, thus realizing these resources (vi, i = 1, … , k) of actuator fault.  
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(ûa,  x̂, �̂�𝑎) 

u 

𝑉 

(η̂,  �̃̅�𝑎) 

u a 



150 
 

 

 

 

 

 

 

 

 

Fig.7.4 Main idea of the proposed RCA algorithm 

Since advanced FDD strategy is performed in actuator subsystem, observers are then fed with input u 

and output  ua in actuator subsystem as shown in Fig.7.3. However, one major difficulty is that the only 

available measurements rely on the global system output y. That is because online diagnosis of actuator 

component is often achieved by a remote supervisory diagnostic system, therefore, it is impractical to 

measure  ua in realistic industrial condition. For that,  ua  is supposed to be not accessible to 

measurements in this work. Besides, in order to monitor the plant at global level, information of global 

output should be included when FDD function is performed at local subsystem. As shown in Fig.7.3, 

if ua can be reconstructed from the global measurement y uniquely, then the above two problems are 

solved. In that way, advanced FDD strategy performs validation of the nominal relationships of the 

system, using the input u, and the output u a which is reconstructed from measured output y. Hence, a 

means of monitoring and diagnosis of the whole plant at both local and global level is provided, by 

which result in improved fault localization and provide better predictive maintenance aids. 

In summary, to accomplish the aims, the key problem is to provide condition for validating cause and 

effect relationships between fault vector V and output vector Y. Besides, it is also critical for ensuring 

that reconstructed u a and fault vector V has one to one relationship. In that case, advanced FDD 

strategy can be carried out in actuator subsystem to identify each component vi, thus achieving root 

cause analysis (RCA) of the detected actuator fault. There are therefore mainly four tasks to follow: 

1-) provide condition for guaranteeing that effects of the faults V = ( vi, … ) occurred in actuator 

subsystems are distinguishable by the global output y uniquely; 

2-) reconstruct the unknown outputs ua of actuator subsystem through measured outputs y of process 

subsystem, denoted by u a;  

3-) provide condition for ensuring that reconstructed u a and fault vector V has one to one relationship; 

4-) propose a RCA algorithm for identifying fault V( vi, … ) locally. 

The rest of this chapter is to deal with these tasks. 
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7.4 On Condition of Fault Distinguishability Locally and Globally 

7.4.1 Fault analysis and Faulty model  

The important aspect of this approach is the development of individual subsystem models and fault 

model that describe the cause and effect relationships between the actuator subsystem internal variables 

and process subsystem outputs which is applicable of using state estimation or parameter estimation 

techniques. Different types of fault cause changes in either mode structure or model parameters or in 

the forcing functions of the differential equations constituting the nominal mode. These cause 

variations in the residues, state estimates, and covariance when a filter based algorithm is used for 

FD&RCA. That leads to an operation point shift for all the internal variables before the fault in the 

chain of the internal variables in the system. When these operation point changes are being detected, 

the faults can be detected and diagnosed. All nonlinearities of the system could be identified and 

estimated through selected parameters.  

Fault analysis aims at obtaining the malfunction and behavioral knowledge about the actuator internal 

variables and the process. Specifically, its objective is to identify the sources of production losses and 

the most significant faults that are causing the losses in a process. These faults are then studied in 

accordance with the process decomposition to analyze their locations and effect on the process. 

Consequently, the development of fault detection methods is focused appropriately by concentrating on 

the key areas, i.e. the faults and subsystems, which have the most significant impact on plant 

performance. To this end, the faults shall be categorized into basic fault types and causes. Lastly, each 

fault is associated with the specific devices and components based on the maintenance data or root 

cause analysis. 

An actuator is a kind of motor that controls or moves mechanisms or systems. It takes hydraulic fluid, 

electric current or other sources of power and converts the energy to facilitate the motion. Actuators are 

extremely useful devices and have a diverse range of uses in fields such as engineering, electronic 

engineering and can be found in many kinds of machinery such as printers, cars or disk drives. Most 

actuators produce either linear (straight line), rotary (circular) or oscillatory motion. There are four 

main types of actuators: Hydraulic, Pneumatic, Electric and Mechanical. 

The modeling of an actuator and possible faults is based on understanding the physical process. Up to 

now, modelling of actuators has benefited to researches in automation, as shown in 

[42][185][186][187]. Reference [3] studies various model and fault mode encompasses actuators of 

control valve, pump and positioner in a reactor power regulating system. Paper [188] attempts to model 

system relate the dynamics of the control valve unit to the mechanics of the PAM actuator based on 

experiment al identification from data of real physical behaviors. A sliding stem control valve model is 

presented by the work in [1]. There the same kind of fault simulator concept is used for fault detection 

and diagnosis research as in the study [45]. 

From the interesting references, despite different actuators and various considerations, the proposed 

dynamic models benefit from a parameter-affine characteristic described in (7.2) and (7.3). If viewed 

http://www.thegreenbook.com/printers.htm
http://www.thegreenbook.com/cars.htm
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unexpected variations in parameters as unknown inputs and denoted by vector 𝑉 = (v1,v2, … , vk), then 

we get an input-affine dynamic faulty model as (7.4) form as: 

∑a {
ẋ̂a = f(xa, u) + ∑ gai(xa, u)vi

k
i

ua = ha(xa, u)                              
                                  (7.4) 

7.4.2 On Condition of Fault Distinguishability 

Fault distinguishability refers to the capacity of faults to generate different output signals for a given 

system. Two fault signals are strictly distinguishable if for any initial state vectors and control inputs of 

the systems (not both zero), their corresponding outputs are different. Studies of distinguishability deal 

with the determination of necessary and (or) sufficient conditions that allow to test whether or not two 

different faults are strictly distinguishable.  

As mentioned above, a key feature, opportunity and technical challenge of the scheme is to obtain the 

condition by which the fault information V = (v1,v2, … , vk) in (7.4) provided by actuator subsystem 

has distinguishable effects on system output y in (7.1). If we view the overall interconnected system as 

a black box, this can be seen as problem of input observability where V is considered as the unknown 

input of the overall system and Y is the output. While input or fault observability are equivalent with 

left invertibility of system, as shown in reference [137], the input can be uniquely recovered from 

output and the initial state if dynamical system is left invertible. Also according to results that given in 

[148][159][139],  if a fault affine dynamic system is left invertible, then the fault vector can be 

obtained by means of the output vector. Therefore, we can conclude that if the overall interconnected 

system is invertible, the fault vector V can be reconstructed from the system input u, system output y 

and possible their derivatives, as shown in Fig.7.4.  

 

 

 

 

 

 

Fig. 7.5 detector for fault reconstruction  

Fig.7.5 describes a detector capable of fault reconstruction. If we want to reconstruct the unmeasured 

fault signal at the output of the detector, the property of input observability is an important quality of 

the system which is equivalent to system invertibility. Therefore, input reconstruction addresses the 

problem of designing a filter or detector which, on the basis of the input and output measurements, 

returns the unknown input of the original system by utilizing its inverse representation. The detector in 

fact, is another dynamic system which is constructed with outputs vi(i = 1,… , k) and with inputs u, y 

and possibly their time derivatives or integrals which, in the most general form, can be thought of as: 

{
ξ̇(t) = φ(ξ, y, ẏ, … , u, u̇, … )

v(t) = ϖ(ξ, y, ẏ, … , u, u̇, … )
                                                                        (7.5) 
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with the state variable  ξ(t)assuming φ  , ϖ   are arbitrary analytic time functions. The filter 

reproduces the fault signal at its output that is zero in the normal system operation, while it differs from 

zero if a particular fault occurs. That is to say the fault is distinguishable at the final boundary. 

Definition 7.2: (Algebraic observability condition). The fault vi( i = 1,… , k)   is said to be 

diagnosable if it is algebraically observable depicted by (7.1) and (7.4). 

Proposition 7.1: The fault vi(i = 1,… , k) is said to be diagnosable if it is possible to estimate the 

fault from the available measurements of the interconnected system depicted by (7.1) and (7.4). 

Property 7.1: The fault vi(i = 1,… , k)  can be obtained by the system output y if the interconnected 

system depicted by (7.1) and (7.4) is invertible. 

Theorem 7.1: The fault vi(i = 1,… , k)  is said to have distinguishable effects on the system output y 

if the interconnected system depicted by (7.1) and (7.4) is invertible. 

7.4.3 On Condition of One to One Relationship between Estimated �̃�𝒂 and Fault Vector V  

Moreover, an essential requirement of the combination of individual actuator with an advanced 

diagnostic capability is the availability and reliability of the output ua of the actuator subsystem, which 

is also the input of the process system. This problem is considered as problem of input reconstruction, 

which is viewed as problem of system inversion. Some issues of inversion concepts for input 

reconstruction were discussed, e.g. [17,31]. In a sum, if the process subsystem is invertible, the input 

 ua can be recovered from the output y by means of a finite number of ordinary differential equations. 

With the kind of algebraic unknown input estimation method presented in chapter 5, we can obtain 

estimated u a from output y. 

Definition 7.3: If process subsystem (7.1) is left invertible, then the input vector ua can be obtained 

by means of the output vector y, denoted by u a. 

Definition 7.4: If actuator subsystem in failure mode as in (7.4) is left invertible, then the fault vector 

V (vi, i = 1, … , k) can be obtained by means of the output vector ua. 

Theorem 7.2: If convergences of reconstructed u a is guaranteed, then by substituting ua as  u a, the 

fault vector V (vi, i = 1, … , k) can be obtained by means of the output vector ũa. 

Proposition 7.2: If convergences of reconstructed u a is guaranteed, then the fault vector V (vi, i =

1, … , k) has one to one relationship with the reconstructed output vector ũa. 

As above mentioned, based on the condition that both interconnected system and individual subsystems 

are invertible, reconstructed u a and fault vector V has one to one relationship. In that case, advanced 

FDD strategy can be carried out in actuator subsystem to identify each component vi, thus achieving 

root cause analysis (RCA) of the actuator fault. 
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7.4.4 On Condition of Invertibility of Nonlinear Interconnected System in Faulty Model 

With respect to the above analysis, the foundation of the proposed scheme is based on invertibility of 

the system. Therefore the key point is to provide condition for validating invertibility of the 

interconnected system and individual subsystems. 

From chapter 4, non-invertiblity of each subsystem results in non-invertibility of the interconnected 

system. Consider the interconnected system ∑ which consists of the actuator ∑a and process ∑p 

subsytems, and an output set( Ua, Y), as depicted by (7.1) and (7.2). The interconnected system is 

invertible at (x0, xa0) over ( Ua, Y), if and only if each subsystem actuator ∑a and process ∑p is 

invertible at xa0 over Ua, and x0 over Y respectively. Moreover, it gives a sufficient and necessary 

condition on the subsystem dynamics which is based on differential output rank so that the 

interconnected system is invertible for set U, Ua and Y. After verifying the invertibility of individual 

subsystems, it is capable of constructing an interconnected invertible system that can recover the 

original input uniquely from the global measurement, by which implies that each original input affect 

the global output distinguishably.  

The objective of this chapter is give the inversion algorithm for the diagnostic fault model with respect 

to the inputs V (vi, i = 1, … , k), and output Y depicted in (7.1) and (7.4). Therefore the inveribility of 

the interconnected system in failure mode should be refined in the following way. 

Definition 7.5: Consider the interconnected diagnostic system ∑ in failure mode which consists of two 

subsystems: actuator ∑a  subsystem in failure mode and process  ∑p  subsytem, and an output 

set(Ua, Y), as depicted by (7.1) and (7.4). The interconnected diagnostic system is invertible at 

(x0, xa0) over ( Ua, Y), if and only if each subsystem actuator ∑a in failure mode and process ∑p is 

invertible at xa0 over Ua, and x0 over Y respectively.  

With respect to the results that haven been obtained, we only need to check the invertibility of the 

diagnostic actuator subsystem in failure mode. This diagnostic system is considered affine in a 

sub-family of the failures which are considered as unknown inputs, and therefore the inversion can be 

achieved to this sub-family. In this article, the diagnosis problem is tackled as a left invertibility 

problem throughout the concept of differential output rank as introduced in chapter 4. 

Definition 7.6: Faults are defined as transcendent elements over 𝒦〈u〉, therefore, a system with the 

presence of faults is a differential transcendental extension, denoted as 𝒦〈u, f, y〉 /𝒦〈u〉, where f is a 

vector that includes the faults and their time derivatives. 

Definition 7.7: Let 𝒢,𝒦〈u〉 be differential fields. A fault dynamic consists of a finitely generated 

differential algebraic extension 𝒢/𝒦〈u〉 , ℊ = 𝒦〈u, f, ξ〉, ξ ∈ 𝒢 . Any element of 𝒢  satisfies an 

algebraic differential equation with coefficients over  𝒦 in the components of u, f and their time 

derivatives.  
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Definition 7.8 (Algebraic observability condition): A fault f ∈ 𝒢 is said to be diagnosable if it is 

algebraically observable over 𝒦〈u, y〉. i.e. if it is possible to estimate the fault from the available 

measurements of the system. 

It is also defined differential output rank as the maximum number of outputs that are related by a 

differential polynomial equation with coefficients over 𝒦 (independent of x and v). A simple way to 

compute differential output rank of system (7.4) is, therefore, defined by corollary 7.4. 

Corollary 7.1: if there exists r possible differential polynomial equation of the form 

        Pr(ua1, ua2, . . , uam, u̇a1,u̇a2,… , u̇am,üa1, üa2… üam…) = 0                                          

then the differential output rank ρ is defined as ρ = p − r, which implies p − r independent outputs. 

Here, we view fault candidates as unknown input of local actuator system. That is, if the differential 

output rank is equal to the number of possible failures, the system is invertible. This implies that the 

number of outputs must be greater, or equal to the number of failures. In this communication, the 

outputs are mainly signals obtained from the sensors. Therefore their number is important to know 

whether a system is diagnosable or not. 

Theorem 7.3: the actuator ∑a  subsystem in failure mode is left invertible if, and only if the 

differential output rank ρ is equal to the total number of faults, e.g. ρ = v in (7.4).  

Remark 7.1: If the actuator ∑a subsystem in failure mode has more faults than outputs, it cannot be 

left invertible.  

Proposition 7.2: From remark 7.1, the number of faults V (vi, i = 1, … , k) that can be identified 

simultaneously is determined by the number of available outputs y. 

7.5 Observer Design for Invertible Interconnected system 

After checking invertibility of the interconnected diagnostic system, as well as individual subsystem, 

advanced FDD strategy can be proposed in order to monitor the performance of the interconnected 

system at both local level and global level. In addition, local filter is required to identify each 

component vi in (7.4) in actuator subsystem once fault occurs, thus achieving root cause analysis 

(RCA) of the detected actuator fault. 

7.5.1 Observer Design for Performance Supervision  

As introduced in chapter 5, in order to estimate the state of the actuator subsystem, without any loss of 

generality, the nominal actuator subsystem in (7.2) can be transformed into the following form: 

{
χ1̇ = A1χ1 + Θ1(χ1, u)
ua = C1χ1                       

                                                                                  (7.6 ) 

with  χ1
T = (χ11 ⋯ χ1n)T , A1 = [

0 1 ⋯ 0
⋮ ⋱ ⋱ ⋮
0 … 0 1
0 … 0 0

] , Θ(χ1, u) = [
Θ1(χ11, u)

⋮
Θn(χ11, … , χ1n, u)

],  C1 =
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[1 0 … 0],  

this transformation with the structure ensures the existence of a high gain observer for system (7.4 ) 

introduced by [89],  the observer is extended  to the following form where output ua is supposed to 

be inaccessible and replaced by its estimates ûa:  

{
χ ̇̂1 = A1χ ̂1 + Θ(χ ̂1, u) − Sθ1

−1C1
T(C1χ ̂1 − ûa)

0 = θ1Sθ1  + A1
TSθ1  + Sθ1A1 − C1

TC1         
                                             (7.7 ) 

Then to give an estimate for ua, as well as monitor state of the process subsystem (7.1), we need to 

propose an observer, define z = [z1 z2] = [x ua] , then system (7.1) can be extended as:  

{

ż1 = f1(z1, u) + g1(z1, u)z2
ż2 = ε(u, u̇, xa)                      
y = z1                                    

                              (7.8) 

System (7.8)  can be expressed as in a condensed form: 

{
ż = l(z1)G(z1)z + F(z1, u) + ε̅(u, u̇, xa)

y = Cx                                                            
                                            (7.9) 

Where:   

 G(z1) = (
0 g1(z1)

0 0
) , F(x1) = (

f1(z1)
0
), C(In 0), ε̅(u, u̇, xa) = [0 ε(u, u̇, xa)]

T 

, In is n × n identity matrix, l(z1) is a scalar real function with respect to their arguments and αl ≤

|l(z1)| ≤ βl. 

Supposed the assumptions related boundedness of the states, signals, functions defined in  [171] are 

satisfied, then an extended high gain observer for the system (7.9) can be given in the following way: 

{
ż̂ = l(ẑ1)G(ẑ1)ẑ + F(ẑ1) + ε̅(u, u̇, x̂a) + H(ẑ1)(ŷ − y)   
ŷ = Cẑ                                                                                         

                            (7.10 ) 

  Where:H = [Hz1 Hz2]
T = Λ−1(ẑ1)Sθ

−1CT,   Λ(ẑ1) = [
I 0
0 G1(ẑ1)

]  , Sθ is the unique symmetric 

positive definite matrix satisfying the following algebraic Lyapunov equation: 

θSθ  + A
TSθ  + Sθ A − C

TC = 0                                                             (7.11)  

Where A = [
0 I
0 0

] , θ > 0 is a parameter defined by（7.11） and the solution of eq.  (7.11 ) is: 

Sθ = [

1

θ
I −

1

θ2
I

−
1

θ2
I

2

θ3
I

] 

Then, the gain of estimator can be given by: 
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H = Λ−1(ẑ1)Sθ
−1CT =  Λ(ẑ1) [

2θI
θ2G1

−1(x̂1)
]   

System (7.7 ), together with (7.10), constitutes the observer for the studied interconnected system, as 

follows: 

{
χ ̇̂1 = A1χ ̂1 + Θ(χ ̂1, u) − Sθ1

−1C1
T(C1χ ̂1 − ûa)                           

ż̂ = l(ẑ1)G(ẑ1)ẑ + F(ẑ1) + ε̅(u, u̇, x̂a) + H(ẑ1)(ŷ − y)        
           (7.12) 

7.5.2 Observer Design for Inverse System and Fault Detection 

(1) Inverse system modelling 

According to previous chapters related with system inversion and input reconstruction, 

consider the invertible system (7.1), we could develop an dynamic inverse system as the following 

form:  

{
 
 

 
 η̇ = f(̅ξ, η)                                                                                                                                       

 ua = A(Φ
−1(ξ, η))

−1
([
ξ1
(r1)

⋮

ξm
(rm)

] − [
Lf
r1h1(Φ

−1(ξ, η)

⋮
Lf
rmhm(Φ

−1(ξ, η)
])                                     (7.13)

 

（b）Observer design for the inverse system 

The input of the observer is the measurement y，and output is the estimated  ũ̅a，the reference 

output is  ûa provided by the previous interconnected observer，estimation of the observer is defined 

as e0(t) =  ûa −  ũ̅a，once the observer converges, there have ũ̅a =  ûa =  ua. 

{
 
 

 
 η̇ = f(̅ξ, η) − kob( ûa −  ũ̅a)

 ũ̅a = A(Φ
−1(ξ, η))

−1
([
ξ1
(r1)

⋮

ξm
(rm)
] − [

Lf
r1h1(Φ

−1(ξ, η)

⋮
Lf
rmhm(Φ

−1(ξ, η)
])
                                (7.14) 

kob is the gain of the observer. 

(c) Residual generation 

The observer (7.14) error satisfies the equation: 

{
e a = x̂a − xa   

e(t) = ẑ(t) − z(t) 
 

Define:                           

e0(t) = ŷ − y = Ce(t)                                                               (7.15) 

Let r0(t) as residual for fault detection as: 

                    r0(t) = d‖ŷ − y‖ dt⁄ = d‖e0(t)‖ dt⁄                                                                (7.16)                               

Then, we get : 

                     γ0 = {
‖e0(t)‖ < ε;    fault  free

‖e0(tf)‖ ≥ ε; exist fault 
                                                            (7.17)  
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where ε is a prespecified threshold. 

7.6 Local Fault Filter for Root Cause Analysis 

After a fault is detected, next task is to identify the causes of the fault. That is in fact to recognize the 

existence of the fault candidate vi in (7.4) independently from each other. This task is assumed to be 

achieved at local level in actuator subsystem where measurement of the output is not permitted. 

Therefore the first issue is to reconstruct output of actuator system from output of the interconnected 

system y.  

7.6.1 Input Estimation 

According to the input estimation procedure introduced in chapter 6, if the process system (7.1) is 

differentially left invertible, the input can be recovered from the output by means of a finite number of 

ordinary differential equations. We need to follow the following steps:  

Step 1:  Obtain a differential algebraic polynomial of the input vector  ua by means of the output 

vector y through system inverse. 

For invertible nonlinear system described by (7.1), the relative order ri of the output yi, is the 

smallest integer for which: 

LgLf
ri−1hi(x) = [Lg1Lf

ri−1hi(x)Lg2Lf
ri−1hi(x) … LgmLf

ri−1hi(x)] 

≠ [0, 0, … ,0]                                          

Given finite relative order r1, … , rm for (7.1) with respect to the output y, calculating expressions for 

their derivatives, we get: 

[
y1
(r1)

⋮

ym
(rm)

] = [
Lf
r1h1(x)

⋮
Lf
rmhm(x)

] + [
Lg1Lf

r1−1h1(x) … LgmLf
r1−1h1(x)

… … …

Lg1Lf
rm−1hm(x) … LgmLf

rm−1hm(x)
]  ua                (7.18) 

Let the matrix: 

A(x) = [
Lg1Lf

r1−1h1(x) … LgmLf
r1−1h1(x)

… … …

Lg1Lf
rm−1hm(x) … LgmLf

rm−1hm(x)
] 

Define the following change of the coordinates:  

ξi = [ξi
1, ξi

2, … , ξi
ri] = [ϕi

1(x), ϕi
2(x), … , ϕi

ri(x)] 

       = [hi(x), Lfhi(x), … , Lf
ri−1hi(x) ]  i = 1, … ,m 

ξ = [ξ1, ξ2, … , ξm] = [ϕ1(x), ϕ2(x), … , ϕm(x) ] 

η = [ϕr+1(x), ϕr+2(x), … , ϕn(x) ] 

y = [ξ1
1, ξ2

1 , … , ξm
1 ] 
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By application new local coordinates transformation proposed in [122], it is always possible to find the 

function ϕr+1(x), ϕr+2(x), … , ϕn(x), thus   

Φ(x) = [ϕ1(x), ϕ2(x), … , ϕm(x), ϕr+1(x), … , ϕn(x)] 

x = Φ−1(ξ, η) 

Then input vector  ua can be obtained by means of the output vector y and its derivatives. 

 ua = A(Φ
−1(ξ, η))

−1
([
ξ1
(r1)

⋮

ξm
(rm)

] − [
Lf
r1h1(Φ

−1(ξ, η)

⋮
Lf
rmhm(Φ

−1(ξ, η)
])                                     (7.19) 

The inversion based algebraic polynomial (7.19), however, requires the computation of successive 

derivatives of outputs, which might be unrealistic in practical applications where measurements suffer 

noise and disturbances.  

Step 2: estimate the derivatives of the output vectors 

To avoid use any derivative information ξi
j
, 1 ≤  i ≤ m, 1 ≤ j ≤ ri of measurement output directly, a 

high-gain second-order sliding mode observer is considered to exactly estimate them in a finite time.  

By construction: 

yi = ξi
1 

ξ̇i
j
=ξi
j+1

;1 ≤ j ≤ ri − 1 

ξ̇i
ri = Lf

rihi(Φ
−1(ξ, η) + ∑ LgiLf

ri−1hi(Φ
−1(ξ, η)) uaj

m
j=1 ; j = ri 

Following is structure of the observer: 

ŷi = ξ̂i
1 

ξ̇̂i
j
=ξ̂i
j+1
+ λi

j|ŷi − yi|
1/2sgn(ŷi − yi); 1 ≤ j ≤ ri − 1 

ξ̇̂i
ri=λi

ri|ŷi − yi|
1/2sgn(ŷi − yi); j=ri 

Step 3: by using the estimates of output derivatives, a kind of algebraic unknown input reconstruction 

method is proposed. 

 u a = A(Φ
−1(ξ̂, η̂))

−1
([
ξ̂1
(r1)

⋮

ξ̂m
(rm)

] − [
Lf
r1h1(Φ

−1(ξ̂, η̂)

⋮
Lf
rmhm(Φ

−1(ξ̂, η̂)

])                                    (7.20)  

7.6.2 Local Fault Filter Design for RCA 

Considering the actuator subsystem model (7.2) and fault model (7.4), by utilizing the reconstructed u a, 

as well as analyzing the fault resources vi, i = 1, . . , k, we can recognize the root cause of the detected 
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fault. To achieve this purpose, through adaptive diagnostic techniques proposed in[20], m banks of k 

observers corresponding for all possible faulty models are constructed and extended as below: 

1 ≤ j ≤ m, 1 ≤ i ≤ k, t ≥ tf  

{
 
 

 
 ẋ̂a

ij
= fa

j
(x̂a
ij
, uj) +∑gal

j
(x̂a
ij
, uj)

l≠i

θl
j
+ gai

j
(x̂a
ij
, uj) v̂i

j
+ Hij (u a

j
− ûa

ij
)

       

v̂i
j
= 2γij (u a

j
− ûa

ij
)
T

Pijgai
j
                                                

 ûa
ij
= ha

j
(x̂a
ij
, uj)                                                                   

                  (7.21) 

Where j denotes jth actuator, i is ith observer corresponding to the ith fault resource candidate vi. 

x̂a
ij
∈ ℛn is the estimated state vector of ith observer for jth actuator, v̂i

j
 is the fault estimation of vi 

of jth actuator, and ûa
ij
 is the estimated output vector of the ith observer for jth actuator. u a

j
 is 

reconstructed output of jth actuator from y, uj is the input of jth actuator. θl
j
 is the nominal value of 

parameters in jth actuator, subscript l ≠ i. fa
j
, ha
j
, ga
j
 are analytic functions of jth actuator. Hij  is a 

Hurwitz matrix that can be chosen freely with a goal to increase as much as possible the dynamic of the 

observer, γij is a design constant and Pij is a positive definite matrix.  

We can calculate the matrix Pijwith the help of (7.22); where Qij is a positive definite matrix that can 

be chosen freely. 

                                                     Hij
TPij + PijHij = −Qij                                                                                   (7.22)                                                                

Denote ey
ij(t) as the tracking error of the ith observer for jth actuator as:   

ey
ij(t) = u a

j
− ûa

ij
 

We define the RCA residual as: 

          sij(t) = ‖ey
ij(t)‖ , 1 ≤ i ≤ k, 1 ≤ j ≤ m                                            (7.23) 

These residuals are designed to be ‘‘less” sensitive to a particular fault cause that comes from a specific 

actuator and sensitive to all the others actuator fault causes. For the jth actuator, if a fault is caused by 

the ith fault cause, then the ith  RCA residual will leave its threshold and never comes back to zero 

again, but the other (k − 1) residuals will stay below their thresholds. So every RCA filter is designed 

in such a way to identify a possible fault cause in a specific actuator.  

The root cause analysis of detected faults is then achieved. The classes of faults considered are 

nonlinear process faults which directly affect the dynamics of actuator subsystem and include both 

abrupt and incipient faults. The method that is introduced is based on the observation that the internal 
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variable closest to the fault and reacts first to the final product when fault is occurred. That leads to an 

operation point shift for all the internal variables before the fault in the chain of the internal variables in 

the system. When these operation point changes are being detected, the faults can be detected and 

diagnosed. Along this article, we make the reasonable assumption that the number faults do not occur 

simultaneously more than the number of available measurement. 

7.7 Summary           

In this chapter, we investigate the problem of a fault diagnosis and root cause analysis scheme for a 

class of interconnected dynamic systems. The main contribution is the combination of local fault 

filtering capability with global system monitoring capability. It is accomplished by that output of the 

local subsystem that is used in root cause diagnoser is estimated by the output of global outputs and its 

derivatives. Also, the fault distinguishablity and diagnosability conditions are rigorously investigated. 
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CHAPTER 8 APPLICATION OF FD AND RCA SCHEME TO HEX/REACTOR 

SYSTEM 

This chapter confirms techniques proposed in Chapter 7 to the nonlinear model of the intensified Hex 

reactor system. It implements the optimal performances monitoring on internal dynamics of each 

components of the intensified Hex reactor system. And fault diagnosis (FD) and root cause analysis 

(RCA) of actuator are triggered once fault occur.   

8.1 System Description  

8.1.1 Introduction of Multifunctional Heat-Exchanger Reactor 

Miniaturization of process equipment is one of the future development trends for chemical process and 

energy industry, since it significantly enhances transfer phenomenon, as shown in [189]. Process 

intensification is loosely described as a strategy that aims to achieve dramatic reductions in plant 

volume whilst maintaining production objectives in [190]. The intensified technologies offer new 

prospects for the development of hazardous chemical syntheses in safer conditions; the idea is to 

reduce the reaction volume by increasing the thermal performances and preferring the continuous mode 

to the batch one.  

Advances in process engineering have led to numerous new findings and technologies that concentrate 

on minimizing the sizes of unit operations as well as improving the overall speed of production whilst 

maintaining the throughput of the processes. One of the routes to reach objectives of both process 

intensification and multifunctional devices is the use of mini multifunctional equipment. A compact 

device that combines reaction and heat transfer into a single equipment, i.e. using for instance a heat 

exchanger as a chemical reactor, the so-called multifunctional heat-exchanger/reactor, could be an 

appropriate example. In fact, a path way to realize process intensification is to develop multifunctional 

apparatuses where more than one unit operations are performed in a unique equipment. While 

multifunctional equipments are particularly interesting for various processes with the aim of process 

intensification. The multifunctional heat-exchanger/reactor design is particularly attractive for use 

process intensification applications as it is derived from existing well-known and proven compact heat 

exchanger technology and therefore presents less of a technological risk. This multifunctional system, 

an integration of heat exchanger with several system components, is not intended merely to heat 

exchange but involve other processes and functions. Thus, it may be interesting in that energy 

consumption might be reduced and the system performance may be raised, and reaction quality is 

another aspect that may benefit from integrated design.  

Many benefits are expected by using the multifunctional heat-exchanger/reactor such as waste 

reduction, energy and raw materials savings, yield and selectivity increase, and cost reduction. For one 

side, unlike compact reactors, multifunctional heat-exchanger/reactor is above all heat exchangers in 

which reactions are carried out. It is a special heat exchanger that exchanges heat with the reactor hull. 
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This component can only be cooled by heat vents/exchangers that interact with adjacent heat 

cooling/exchanging components. As a consequence, their design is largely based on compact heat 

exchangers geometries. Compact heat exchangers and enhancement technologies allow reducing the 

heat exchanger volume, to increase its effectiveness and to reduce capital and operating costs. On the 

other side, unlike heat exchange processes, the implementation of chemical syntheses requires to 

control the residence time to complete the chemistry.  

8.1.2 Characterization of Pilot HEX/reactor 

The prototype of heat-exchanger/reactor discussed in this work is the open plate reactor. The open plate 

reactor, designed by Alfa Laval, is based on the concept of the plate heat exchanger. It is made of 

reaction plates, inside which reactants mix and reactions occur, and cooling plates which are inserted 

between the reaction plates. The general state-of–the-art has been studied by several prototypes in 

previous publications, such as in [193]. The main ideas are as follows: Firstly, each section is made up 

of a reaction plate where the reaction mixture flows, surrounded by two cooling plates containing the 

utility fluid. Besides, it is particularly well suited for process intensification, as it allows at the same 

time an increase of reactant concentration and a reduction of solvent consumption. The reduction in 

size also leads to increased safety with smaller amounts of hazardous chemicals being in use at each 

time which force the reactants to flowing changing directions. These inserts were specially designed to 

enhance heat transfer and micro-mixing.  

A laboratory intensified heat-exchanger process is studied in this work. As illustrated in [160], the pilot 

is made of three process plates sandwiched between five utility plates, as shown in Fig. 8.1, which was 

designed and built for operation in LGC, Toulouse. The pilot has been manufactured in accordance 

with the results of the geometry optimization. The reactive plates as well as the utility plates have been 

engraved by laser machining to obtain 2 mm square cross-section channels. Both reactive and utility 

channels designs are presented in Fig. 1(a) and (b), after assembly the reactor has a 32 cm height, a 14 

cm width, a 3.26 cm thickness, and a mass of 10.84 kg, which makes it a very compact HEX reactor, as 

shown in Fig.1(c). Its behavior can be assimilated to a counter-flow heat exchanger. 

 

Fig. 8.1 (a) Reactive channel design; (b) utility channel design; (c) the heat exchanger/reactor after 

assembly. 

The simulations and experiments carried out in this work are based on the size and properties of this 

prototype unit, however, all methods developed are generic for a reactor of any size. 

8.1.3 Instrumentation Requirements 

The HEX/Reactor system is a typical chemical process which consists of connected components and 

pipes through which utility streams and chemical reactants flow, together with controllers and 
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monitoring instruments. As a result that new concepts of reactor designed in compact multifunctional 

devices being less familiar than traditional ones, research work is necessary not only to assess their 

feasibility and potentialities but also to evaluate their efficiency and intrinsic characteristics. 

Minimizing the physical sizes of process units whilst maintaining the same throughput inevitably 

means that these units will have shorter residence times than conventional sized units. In fact, adopting 

the process intensification design philosophy could lead to an order of magnitude change in equipment 

capacity, and would probably bring the response times of intensified systems down to milliseconds 

rather than the more usual tens of minutes encountered in conventional units. It implies that the 

dynamics of the systems will be much faster than those encountered in conventional scale units. 

Under such circumstances, traditional instrumentation may be too slow for intensified processes to be 

controlled by conventional strategies. Firstly, measurement delays that may be tolerable in 

conventional units may be too large and unacceptable for intensified systems, making the control 

problem more difficult. Hence, fast responding process sensors are needed in order to achieve 

automatic control purpose. Secondly, as the philosophy of process intensification is to reduce 

equipment sizes without compromising on throughputs, actuators of the same size as those employed in 

conventional units will continue to be utilized. As a result, actuator dynamics could present problems, 

as they could be orders of magnitude slower than those of the manufacturing unit. Furthermore, 

interactions between process states and process units are also aspects that could lead to further 

difficulties.  

There are therefore many factors that are needed to be considered in realizing automatic supervision 

and control of intensified systems. For instance, components that make up the control loop must be 

dynamically compatible with the controlled process for acceptable performance. This issue has been 

largely neglected when designing controllers for conventional process systems, since the time constants 

of such processes are significantly larger than those of associated actuators and instrumentation. 

Therefore, to realize the perceived benefits of process intensification technology, it is essential that 

intensified units are coupled with process monitoring and control systems that can cope with the very 

fast response times so that regulation of environmental variables, product quality, and operational 

safety can be ensured. Nonetheless, given a particular strategy, a deep appreciation of the influences of 

each component of an intensified system control loop is crucial so that desirable performances can be 

assured. Such an issue is particularly relevant as we are interested in this work. 

8.2 Problem Formulation 

8.2.1 Preliminary 

As mentioned above, given the extremely complex dynamics and the increasing safety demands 

imposed to the operation requirements of current intensified industrial processes, they are still the 

subject of many studies. Specifically, the challenges in commercializing Hex reactors may be classified 

as those pertaining to material science, reaction kinetics, control and operation. A widespread 

implementation can be limited mainly due to intrinsic difficulties in achieving an efficient operation, 
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such as: (1) highly nonlinear dynamical behavior; (2) very complicated kinetics; (3) uncertain load 

disturbances due to fluctuations in the feeding composition; and (4) the lack of reliable estimations 

from on line measurements of the key process variables for monitoring and controlling. We are 

interested in the last consideration. 

Even if the materials and kinetics related issues (1)-(3) are sorted out, there are several technological 

challenges relating to control and supervision that must be addressed before successful 

commercialization. One of the important issues in Hex reactors is the non-uniform spatial temperature 

distribution in the cell, which places serious limitations on its performance. The non uniformity of the 

temperature in the cell will lead to hot spots and thermal stresses that in turn increases the probability 

of failure and degradation of the cell. These issues are especially predominant during the transient 

operation of the Hex reactors. The thermal gradients are especially high in the case of Hex reactors 

with internal reforming. Thermal gradients would also be significant in Hex reactors systems intended 

for load following and frequent on/off applications. This thermal management problem has an 

important bearing on the efficiency, life and reliability of the cell. Therefore, thermal management is 

essential not only to prevent the damage to the cell and thereby maximize the cell life, but also to 

improve its efficiency and performance.  

For effective thermal management, information about the temperature distributions inside the cell is 

required. Since this is generally not measurable, dynamic estimation is one option for obtaining this 

information. However, current works related to advancing process intensification technologies seem to 

focus mainly on proving the feasibility of concepts and ideas, as well as attempting to establish key 

design parameters of various process units. In[184] in the parallel to the development of the OPR, a 

specific computer simulation program has been written. In this program, a complex dynamic model, 

integrating modelling of hydrodynamic, thermal and reaction aspects, allows one to reproduce and 

predict the reactor behavior during normal operation. Also, work [193] has been carried out to perfect a 

process control system. In [195], a dynamic model of a three-phase catalytic slurry intensified 

continuous reactor is proposed.  

For the purpose of preventing thermal run away required by safety operation, there are the limited 

amounts of research in the open literature related to performance monitoring and control design in 

chemical process. They are mainly divided into model-based [3][4] and data-based approaches [5] 

[198]. Model-based method uses deviations between the measured value and the reference value as an 

indicator to alarm faults and take action on timely fault diagnosis and correction. The process under 

consideration in this work has already been studied and modelled several times by the scientific 

communities. Most studies mainly focus on detailed mathematical models of the physics, aim at 

developing reliable and accurate models to predict both the thermal performance and conversion of the 

process, like nonlinear models derived in [191]. Other studies contribute from perspective of 

engineering control. In [193], a control system is developed and an extended Kalman filter is designed 

to estimate the unmeasured parameters. An optimization and control approach is presented in [201].  
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To authors’ knowledge, few theoretical frameworks can be found in regards to reliable schemes for 

advising Hex/reactor diagnostic modelling problem. Existing results do not offer a suitable dynamic 

model of the typical faults which can be encountered and concerned with the application of FDD for 

HEX/Reactor. Moreover, little investigations have been carried out to study the supervision and control 

of individual process units. With the help of FD&RCA strategies proposed in Chapter 7, these two 

problems can be properly settled.  

8.2.2 Main Contribution  

In this work, the intensified heat-exchanger/reactor is introduced from a perspective of monitoring and 

supervising. The HEX/Reactor system can be modelled and diagnosed at several different levels of 

complexities, depending on the intended application of the model. For example, from the view point of 

concentration or fouling detector, it is often modelled from a system level; while from the view point of 

sensor or actuator supervision, the dynamics of control loop elements such as valves and measurement 

devices may no longer be negligible, then it should be modelled as a cascade system.  

A deep consideration of the influences of composed components of the intensified Hex/reactor system 

is expected in this work. We mainly focus on the dynamics of actuator valves since it is significantly 

responsible for not only the process performances, but also the safety operation. Actuator faults are 

very common in intensified industrial systems, a faulty actuator may cause process performance 

degradation (e.g. lower product quality) or even fatal accidents (e.g. temperature run-away). Potential 

hazards of runaway scenarios are studied in work [189]. Three of them are highlighted as the most 

dangerous: no utility flow, no reactant flows, both stop at the same time. Clearly, all of the three cases 

are related with malfunction of fluid actuator. If not properly handled, they can lead to consequences 

ranging from failures to meet product quality specifications to plant shut downs, incurring substantial 

economic losses, safety hazards to facilities and personnel, and damages to the environment.  

This chapter presents the results of an investigation into how the dynamics of control valves influence 

the performances of intensified Hex/reactor [190]. We consider therefore the intensified HEX/reactor 

system consists of two subsystems: control valve and Hex/reactor subsystems. As shown in Fig.8.2. 

 

 

 

Fig. 8.2 cascade Hex reactor system structure  

The work reported here investigates the effects of internal dynamics of control valve on final Hex 

reactor performances. One of the objectives is to monitor the performance of the hex reactor and 

provide estimation of the temperature distributions inside the hex reactor. Another attempt is to 

reconstruct utility and process fluid flow rates of both control valves from final measured temperature 

of utility and process fluid. If this can be achieved, then guidelines for the recognition of cause and 
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effect relationship between unexpected temperature behavior and faulty control valves could be 

extracted. Knowledge of internal faulty variables of faulty control valves can also be determined with 

the help of fault diagnosis and root cause analysis strategy developed in chapter 7.  

The paper is structured as follows. First, suitable diagnostic modelling of both subsystems is presented 

in section 8.3 and 8.4. Then, detailed procedures for fault diagnosis and root cause analysis strategy are 

listed in section 8.5. Next in section 8.6, numerical simulations are considered to confirm the 

effectiveness of the proposed strategy. Finally, a conclusion is made in section 8.7. 

8.3 Process Subsystem Modelling 

8.3.1 Background 

Model based diagnosis methods would be more efficiently and relatively applied, if a dynamic model 

of the system is available to evaluate the consequences of deviations and the efficiency of the proposed 

safety barriers. If no reactions take place, from the view point of heat exchange, HEX/Reactors can be 

seen as heat exchangers, so a dynamic model can be derived from first principles, with equations for 

heat transfer, mass, and energy balances. Development of dynamic models for HEX and continuous 

reactor has received considerable attention. They are two general approaches: lumped model and 

distributed model. The former one, also called cell-based model in the literature, is very often used, by 

which each cell is modelled by means of the energy and mass balances. This cell-based procedure has 

been used by different authors, such as [203][204][205].  

Among these models, a series of assumptions have been considered to describe the heat transfer 

phenomena. Under normal operations the heat transfer coefficient will either be constant or slowly 

decreasing. Many authors working in the field of process control and controllability prefer the constant 

parameter because of the computational simplicity, and a simplified dynamic model containing only 

one cell is often the case on application of fault detection and isolation. Like sensor and/or actuator 

fault detection and isolation methods proposed in [208][209]. It is widely accepted that fouling 

influence the dynamics of overall heat transfer coefficient, thus constant value leads to some mismatch 

between the model and physical process, and this mismatch is usually handled as unstructured model 

uncertainties. Adaptive estimation techniques are used to explicitly account for this modeling 

uncertainty. In order to better minimize the mismatch, fouling influence was developed by considering 

heat transfer coefficient is slowly decreasing. To compute fouling, online updating rules based on 

observers are widely investigated, like extended Kalman filter (EKF) in [212], adaptive-high gain 

observer in [213] and recursive least-squares method in [17]. Another popular method is to calculate 

the parameter offline, as proposed in [208]. Several fault diagnosis (FD) approaches have been 

proposed with parameter regularly updated, to this purpose, H∞ approach in [214], adaptive observer 

in [215], polynomial fuzzy observer in [217], EKF in [218] are mostly used. 

These assumptions work well during normal conditions. However, effect of decreasing in overall heat 

transfer coefficient should be limited into a normal range with respect to specific engineering process. 

If the system difference greatly exceeds this normal range, a fault is considered. For instance, on 
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occasion that valve clogging causes sudden stop of mass flow rate or higher fouling results in 

insulating the heat transfer surface due to big pieces of settled material, both situations will cause 

damage and are considered as most dangerous situation in [189]. When these happen, positive jumps 

will emerge in the heat transfer coefficient whose effect may definitely exceed the normal rang. Few 

works formulate a model capable of identifying these two faults simultaneously.  

8.3.2 Cell-based Intensified HEX/Reactor model 

The primary objective of this work is to propose a dynamic model suitable for diagnostic requirements 

on the studied HEX/Reactor, and this model is capable of guaranteeing the model validity by 

accounting the influence of the mass flow rate and fouling on overall heat transfer coefficient. One of 

the key issues in modelling for fault detection and isolation is how to accommodate the level of detail 

of the model description to suit the diagnostic requirements. From view point of heat exchange 

performance, behavior of intensified HEX/reactor can be assimilated to a compact heat exchanger to 

derive a dynamic model. We follow the work of [204] to derive the cell-based dynamic model. The heat 

exchanger is modeled as N ideally mixed interconnected tanks in cell-based models, as shown in Fig. 

8.3.  

 

 

 

Fig.8.3 N cell models 

8.3.3 Mathematical model  

The modelling of a cell is based on the mass and energy balances which describe the evolution of the 

characteristic values: temperature, mass, composition, etc. Several assumptions should be fulfilled, 

more details are given in [32]. It is assumed that the liquid volume in each tank is constant. Each cell is 

perfectly homogenous, and that no back mixing occurred. Both fluids are liquid with constant densities, 

heat transfer to the surrounding is negligible, and there is no energy accumulation in the wall.  

A cell based parameter model depicted in (8.1) is used to capture the thermal distribution in the cell. 

More detail about the modelling problem and determination of the number of cell are illustrated in 

Appendix 8.1 A. The model is capable of accurately describing the dynamics of the heat exchanger for 

a wide range of working conditions. 
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1 < 𝑘 < 3

{
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                                                       (8.1c) 

The cell model is constructed using 3 lumps for which the mass and the thermal balances are written. 

Increasing the number of cells may result in more accurate prediction of the temperature distribution, 

but more cells enhance computation burden also. Meanwhile, simulation results show that the 

dynamics do not differ much from 3 cells. An improvement in the model used in this work is that the 

overall heat transfer coefficient is considered as a function of both fluid flow rates and fouling. This 

makes the observer design more complicated but will improve the accuracy of the model.  

8.3.3 Cell based diagnostic dynamic model 

Define state vector as x = [x1, x2, x3, x4, x5, x6]
T = [Tp

1, Tu
1 , Tp

2, Tu
2, Tp

3, Tu
3]T,  the input vector is 

u = [u1, u2]
T = [Fp, Fu]

T, related parameters  θ = [α, β], and finally y = [y1, y2]
T = [Tp

3, Tu
1]T is the 

vector of the outlet temperature. Using these notations, the model can be rewritten in a space-state 

representations. 

{
ẋ = f(x, θ) + g(x)u
y = Cx                       

                                                                                      (8.2) 

Where f(x, θ) = (

f1(x, θ)

f2(x, θ)
⋮

f6(x, θ)

) =

(
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, g(x) = (g1(x), g2x)) =

(
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 ,  

and the output matrix C is given by C = [0,1,0,0,1,0] 

8.4 Actuator Subsystem Modelling 

8.4.1 Background 

Many of today's nonlinear control methods assume the control input to enter the system dynamics 

linearly, this does not hold in intensified processes, since the composed units may have response times 

orders of magnitude faster than conventional units. Thus, the dynamics of control valves may no longer 

be negligible and a suitable diagnostic model is expected.  
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The modeling of an actuator and possible faults is based on understanding the physical process. The 

actuator encompasses pneumatic valve in this work. The important aspect of these approaches is the 

development of a model that describes the cause and effect relationships between the system variables 

using state estimation or parameter estimation techniques. Up to now, modelling of pneumatic actuators 

has benefited to researches in automation, like in [1]. Reference [3] provides an overview of various 

models of the fault mode of control valve. In [220], it introduced the first pneumatic actuator and the 

spool valve model as part of a complete pneumatic servo system model. The models that were derived 

have been verified with measurements and the modelling error is found to be acceptable for the fault 

simulations. Some typical control valve faults have been simulated and impacts on the internal 

variables of the flow control loop and control performance analyzed in [48]. The fault simulator 

presented in [45] can be used for fault detection and diagnosis, as well as robust control research. 

8.4.2 Mathematical Model 

In this work, we need actuators to control flowrate of both process fluid and utility fluid. Pneumatic 

control valve is employed to act as actuator in this system. The main function of this pneumatic valve is 

to regulate the flow rate in a pipe line. 

By application of Bernoulli’s continuous flow law of incompressible fluids, we have: 

F = Cvf(X)√
∆P

sg
 

where F is flow rate (m3s−1), ∆P is the fluid pressure drop across the valve (Pa), sg is specific 

gravity of fluid and equals 1 for pure water, X is the valve opening or valve "lift" (X=1 for max flow), 

Cv is valve coefficient (given by manufacturer), f(X) is flow characteristic which is defined as the 

relationship between valve capacity and fluid travel through the valve. There are three flow 

characteristics to choose from: linear valve control; quick opening valve control; equal percentage 

valve control. For linear valve, f(X) = X, the valve opening is related to stem displacement. In [1],[3], a 

pneumatic control valve has a dynamic model of the type: 

pcAa = m
d2X

dt
+ μ

dX

dt
+ kX       

where Aa is the diaphragm area on which the pneumatic pressure acts, pc is the pneumatic pressure, m 

is the mass of the control valve stem, μ is the friction of the valve stem, k is the spring compliance, 

and X is the stem displacement or percentage opening of the valve. 

In order to evaluate the proposed strategy, the dynamic model should have the affine form. Define 

subscript 1 to denote the actuator of process fluid, then parameters X1, pc1, ∆P1, k1, μ1, F1 represent the 

opening percentage of the valve, the pneumatic pressure, and the fluid pressure drop across the valve, 

the spring compliance process fluid, the friction of the valve stem and flowrate of the process fluid. And 

denote subscript 2 for the utility fluid, then one gets parameters X2, pc2, ∆P2, k2, μ2, F2 which represent 
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the same physical meaning for actuator of utility fluid. Since the control valves utilized in this work are 

linear, so f(X1) = X1, f(X2) = X2. So the vector state xa, input u, and output ua are defined as: 

 xa
T = [xa1 xa2 xa3 xa4] = [X1

dX1

dt
X2

dX2

dt
] , uT = [u1 u2] = [pc1 pc2] , ua

T =

[F1 F2] = [Cv√
∆P1

sg
X1  Cv√

∆P2

sg
X2] , C = [c1 c2 c3 c4] = [Cv√

∆P1

sg
0  Cv√

∆P2

sg
0].                                 

 the actuator subsystem is then described by four states, two inputs and two outputs, as: 

{
  
 

  
 

ẋa =

[
 
 
 
 
0 1 0 0

−
k1

m
−
μ1

m
0 0

0 0 0 1

0 0 −
k2

m
−
μ2

m]
 
 
 
 

xa +

[
 
 
 
 
Aa

m
0

0 0

0
Aa

m

0 0 ]
 
 
 
 

u

ua= [Cv√
∆P1

sg
0  Cv√

∆P2

sg
0] xa                        

                                                     (8.3)    

8.4.3 Fault Analysis and Modelling 

Fault analysis aims at identifying the sources of abnormal behavioral of fluid flow rates and the most 

significant malfunction of the internal variables that are causing the unexpected change in the control 

valve. This chapter provides an overview of various fault models in actuators of the studied system. 

The modeling of these faults is based on the understanding of the physical process. Totally, there are 19 

kinds of faults that may occur as shown in [1], the causes of each fault are given in [45]. 

Four kinds of fault influencing dynamics of the valve are considered in this work:         

1-) fault f1: valve clogging, occurs when the servomotor stem is blocked by an external event of a 

mechanical  nature. It results in limitation of the piston movement in both direction, and therefore the 

flow cannot drop below a certain value.  

2-) fault f2: change of pressure drop across valve, results in ∆P + ∆P′.  

3-) fault f3: bellow-seal leakage due to leak, resulting in pcAa + P changed; Valve internal leakage is 

a common malfunction with industrial control valves. The causes of such leakage are numerous, 

including damaged plug or seat, insufficient seat load or reduced spring rate. 

4-) fault f4: control valve diaphragm perforation due to pinhole cracks in the periphery, resulting in k 

changed.  

As above description shown, actuator fault may be caused by parameters μ, k , u, ∆p, then there are 

eight related parameters in two actuators: [k1 μ1 k2 μ2 pc1 pc2  ∆P1 ∆P2]. The process of 

RCA is to identify abnormal variations of these eight parameters.   

For the sake of RCA purpose, we should rewrite the above dynamic model into fault model as in failure 

affine format. Therefore, we extend the state, input and output vector as follows:  
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 xa
T = [xa1 xa2 xa3 xa4 xa5 xa6] = [X1

dX1

dt
X2

dX2

dt
Cv√

∆P1

sg
X1  Cv√

∆P2

sg
X2]  

V = [v1 v2 v3 v4 v5 v6   v7 v8]T = [k1 μ1 k2 μ2 pc1 pc2  ∆P1 ∆P2]T   

ua
T = [ua1 ua2] = [F1 F2] = [xa5 xa6] = [Cv√

∆P1

sg
X1  Cv√

∆P2

sg
X2]     

C̃ = [0 0 0 0 1 1]    

Then, the actuator subsystem is with six states, eight unknown inputs and two outputs. These two 

outputs are unmeasured which need to be constructed by the global measured outputs. The augmented 

actuator subsystem is:  

{
ẋa = fa(xa) +∑gai(xa)vi 

8

i

                                                         

ua=C̃xa                                                                                             

                      (8.4) 

Where fa(xa) =

[
 
 
 
 
 
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0]

 
 
 
 
 

 , 

ga(xa) =

[
 
 
 
 
 
 
 
0 0 0 0 0 0 0 0

−
xa1

m
−
xa2

m
0 0

Aa

m
0 0 0

0 0 0 0 0 0 0 0

0 0 −
xa3

m
−
xa4

m
0

Aa

m
0 0

0 0 0 0 0 0 Cv
1

sg
xa1 0

0 0 0 0 0 0 0 Cv
1

sg
xa2]
 
 
 
 
 
 
 

 

From (8.4), there are two outputs. According to invertibility condition developed in chapter 7, in order 

to guarantee invertibility of (8.4), there should be two inputs maximum. However, more than two 

parameters are in (8.4), therefore, we can only recognize two possible parameters faults simultaneously. 

According to [1], for most parts, single actuator faults are observed in industrial practice whilst 

multiple faults rarely occur. This characteristic is suited to the situation considered by the scheme 

proposed in this paper. 

8.5 Fault Diagnosis & Root Cause Analysis Architecture  

8.5.1 Structure of the FD&RCA Method 

This work deals with the problem of FD&RCA for a Hex reactor systems. A major contribution is the 

development of a framework in which faulty variables affecting actuators can be recognized from the 

influenced final temperature. As shown in Fig. 8.4, the objective of this work is to identify V once fault 

occurs.  
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Fig. 8.4 architecture of the proposed FD&RCA approaches 

As shown in Fig.8.4, the primary objective of this work is to propose an interconnected observer for 

performance monitoring requirements on the studied HEX/Reactor with two aims. The first one is to 

act as a software sensor to provide an adequate estimation of temperature distribution in the Hex 

reactor, as well as the unmeasured fluid flow rates of the control valves. Besides, the second purpose is 

to generate robust residuals for recognizing faulty control valves when faults occur by accounting the 

influence of the mass flow rates on temperature of both fluids.  

Moreover, a major contribution of this work lies on that we propose an integrated RCA approach that 

aims at detecting, isolating and identifying internal faulty variables of the control valves that affected 

the fluid flow rates of both control valves. Once a fault occurs, it is detected immediately and then the 

RCA procedure is triggered. We first reconstruct the unmeasured fluid flow rates, and this 

reconstruction strategy is based on both system inversion and sliding mode observer. In order to 

achieve RCA of actuator faults, reconstructed fluid flow rates are tackled with several banks of local 

filters to generate several banks of residuals, each bank of residuals aim at identifying fault in one 

particular internal variables of control valve via adaptive updating rules. Physical meanings related to 

these variables are leakage, stiction, unexpected pressure drop, etc.  
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8.5.2 Observer Design for Performance Supervision 

This section addresses the problem of accurately estimating the temperature distribution of the Hex 

reactor cell, as well as the fluid flow rates using only the outlet temperature measurements. A bank of 

residuals is generated, aims at identifying existences of control valve faults. 

1-) System augmentation 

For simplicity, we consider one cell model. Define the state vector as xT = [x1, x2]
T = [Tp, Tu]

T, the 

control input ua
T = [ua1, ua2]

T = [Fp, Fu]
T, the output vector of measurable variables yT = [y1, y2]

T =

[Tp, Tu]
T
, then above two the equations can be rewritten in the following state-space form: 

{
ẋ = f(x) +∑gi(x)ua

2

i=1

y = h(x, ua)                  

                                                                              (8.5) 

where  f(x) = (
f1(x)
f2(x)

) = (

hpA

ρpCpp
Vp
(Tp − Tu)

huA

ρuCpu
Vu
(Tu − Tp)

) , and g(x) = (g1, g2) = (

(Tpi−Tp)

Vp
0

0
(Tui−Tu)

Vu

) , 

y1 = x1, y2 = x2，Tpi , Tui are the outputs of the previous cell, for the first cell, they are the inlet 

temperature of process fluid and utility fluid，besides, they are measured and are constant. It is worth 

noting that the exclusive consideration of such measurements is the usual case in an industrial 

environment. 

By using techniques introduced in chapter 5, we can obtain a function for the derivatives for ua : 

u̇a = ε(u, u̇, xa) =
∂ha
∂u
(u, xa)u̇ +

∂ha
∂xa

(u, xa)fa(u, xa)                                                               (8.6) 

= (Cv√
∆P1
sg

0  Cv√
∆P2
sg

0) xa + (
Aa
m
Cv√

∆P1
sg

Aa
m
 Cv√

∆P2
sg
) u 

Define the state vector as  x1
T = [x11, x12]

T = [Tp, Tu]
T , unmeasured state x2

T = [x21, x22]
T =

[ua1, ua2]
T = [Fp,  Fu]

T, the output vector of measurable variables yT = [y1, y2]
T = [Tp, Tu]

T
, then the 

equation (8.5) and (8.6) can be rewritten in the following state-space form: 

                   {

ẋ1 = G1(x1)x2 + g1(x1, u)

ẋ2 = ε(u, u̇, xa)                    
y = x1                                                  

                                                                  (8.7) 

Where, G1(x1) = (

(Tpi−x11)

Vp
0

0
(Tui−x12)

Vu

),  and f1(x) = (

hpA

ρpCpp
Vp
(x11 − x12)

huA

ρuCpu
Vu
(x12 − x11)

) . 

In this case, the full state of the studied system is given as: 
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{
ẋ = G(x1)x + F(x1, u) + ε̅(t)
y = Cx                                          

                                                            (8.8)       

Where x = [
x1
x2
] , G(x1) = (

0 G1(x1)
0 0

) , F(x1, u) = (
f1(x, u)
0

) , C = (I 0), ε̅(t) = (
0
ε(t)

) 

2-) Observer 1 designed for actuator subsystem 

With the help of the method proposed in chapter 5, we first design an observer for the control valve 

subsystem. Outputs of the fluid flow rates are considered as unmeasured, and are substituted by the 

estimations proposed in observer 2. Then, an extended high gain observer for system (8.4 ) is given by: 

{
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ûa = C̃x̂a                                                                

   (8.9) 

Where ki(,i=1,…,8) are the gain of the observer. 

3-) Observer 2 for process subsystem 

We now consider an observer for the Hex reactor subsystem. The original system (8.7) has been 

augmented with the differential equation u̇a = ε(u, u̇, xa), that is to say the unknown inputs are treated 

like an unmeasured state. Then, it is possible to design a high gain observer for the system by (8.7) as 

follows: 

{
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Cv√
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ρpCpp
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(ŷ − y) 

ŷ = x̂1                                                                                                                                       

(8.10) 

It should be remarked that although Fp,  Fu undergo different initial trajectories in each observer; they 

will converge to their “true values” as time tends to infinity. 

4-) Fault detection residual generation 

Define:                           

ei(t) = ŷi − yi                                                                                                     
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Let ri(t) as residual for fault detection as: 

                    ri(t) =
d‖ŷi − yi‖

dt
⁄ =

d‖ei(t)‖
dt
⁄                                                                (8.11)                               

Then, we get : 

                     γi: {
< ε;    fault  free
≥ ε; exist fault 

                                                            (8.12)  

where ε is a prespecified threshold. 

Therefore (8.9), together with (8.10), constitutes the interconnected observer that could monitor the 

performance of the hex reactor system, as well as provide faulty information by (8.11) and (8.12) once 

fault occurs. 

8.5 Local Filter Design for Root Cause Analysis of Control Valve Fault 

8.5.1 Input Estimator 

In order to achieve adequate and robust input reconstruction, according to the procedure proposed in 

chapter 6, there are four steps to follow. 

 Step 1: Invertibility Checking: 

1-) differential all two outputs: 

{

ẏ1 = a(y2 − y1) +
ua1
Vp
(Tpi − y1)

ẏ2 = b(y1 − y2) +
ua2
Vu
(Tui − y2)

         

2-)  find all independent possible relations between outputs and inputs, states and possibly their 

derivatives 

 There exists no any differential equation that output is independent of x and ua, therefore, both 

outputs are differential dependent, r=0 

3-) there are 2 outputs, therefore: 

ρ = p − r = 2 

Output differential rank is equal to the total number of inputs, then the system is invertible. 

Step 2: Represents the input of the process subsystem as a function of the output and its derivatives: 

Thanks to the invertibility of the system, we can reconstruct the inputs as a function of the output and 

its derivatives. From the above equation, an expression for the two inputs can be derived as ũa =

[u a1 u a2]: 
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                    {
u a1 =

Vp

Tpi−y1
(ẏ1 − ay2 + ay1)

u a2 =
Vu

Tui−y2
(ẏ2 − by1 + by2)

                                                          (8.13) 

Step 3: estimating of output derivatives by sliding mode observer  

 In order to avoid compute the derivatives, a high-gain second-order sliding mode observer is 

considered to exactly estimate them in a finite time.  

By construction: 

y1 = Tp = ξ1
1  

 y2 = Tu = ξ2
1    

ξ̇i
j
=ξi
j+1

;1 ≤ j ≤ ri − 1 

ξ̇i
ri = Lf

rihi(Φ
−1(ξ, η) + ∑ LgiLf

ri−1hi(Φ
−1(ξ, η)) uaj

m
j=1 ; j = ri 

Following is structure of the observer: 

ŷi = ξ̂i
1 

ξ̇̂i
j
=ξ̂i
j+1
+ λi

j|ŷi − yi|
1/2sgn(ŷi − yi); 1 ≤ j ≤ ri − 1 

ξ̇̂i
ri=λi

ri|ŷi − yi|
1/2sgn(ŷi − yi); j=ri 

Step 4: by substituting successive derivatives in (8.13) with their estimation made by the above sliding 

observer, a kind of algebraic unknown input reconstruction method is proposed. 

{
ûa1 =

Vp

Tpi−y1
(ξ̂1
j+1
− ay2 + ay1)

ûa2 =
Vu

Tui−y2
(ξ̂2
j+1
− by1 + by2)

                                                    (8.14)  

8.5.2 RCA filter design 

As mentioned before, faults influence μ, k , ∆P, Pc related to four possible faults resources f1, f2, f3, 

and f4. Now, let us construct two banks of four observers for recognizing those four possible faults in 

each control valve.   

1 ≤ j ≤ 2, 1 ≤ i ≤ 4 

{
 
 

 
 ẋ̂ai

j
= fa(x̂a) +∑gal(x̂a)θl

i

l≠i

+ gai(x̂a)v̂i
j
+ Hi(u a

j
− ûai

j)                                   

v̂i
j
= 2γ(u a

j
− ûai

j)
T
Pigai(x̂a)                                                                          (8.15)

ûai
j = C̃x̂ai

j                                                                                                                      
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where ẋ̂ai
j
is the estimated state vector, v̂i

j
 is the estimation of root causes and  ûai

j
 is the estimated 

output.  

Denote ey
ij(t) as the tracking error of the ith filter for jth actuator that:   

ey
ij(t) = u a

j
− ûa

ij
 

We define the root cause analysis (RCA) residuals as: 

    sij(t) = ‖ey
ij(t)‖ , 1 ≤ j ≤ 2, 1 ≤ i ≤ 4                                 (8.16) 

The above RCA observers aim at generating two banks of four residuals for those above mentioned 

fault causes. One bank of residuals are s11 ,s12 , s13 , s14 , aimed at  identifying fault causes f1, f2, f3, 

and f4 in actuator of process fluid, the other bank are s21 ,s22 ,s23 , s24 , aimed at identifying fault causes 

f1, f2, f3, and f4 in actuator of utility fluid respectively. These residuals are constructed under rules 

(8.16), if any of these residuals exceeds its threshold, the fault is caused by the corresponding fault 

causes. 

8.6 Numerical Simulation Results 

The simulation results validate the proposed strategy. We first give the operating conditions of the 

simulation. The input of the inlet flow rate of the utility fluid Fu is 4.22e−5m3s−1, and inlet flow rate 

of the process fluid Fp is 4.17e−6m3s−1. Initial condition for observers supposed to be 0. Parameters 

in actuator subsystem are: m = 2kg, Aa  = 0.029m
2, μ = 1500Nsm−1 and k = 6089 Nm−1, Pc for 

utility fluid is 1MPa, 1.2Mpa for process fluid, pressure drop ∆P in utility fluid is 0.6MPa and 

60KPa in process fluid. 

As above mentioned, for most part in practical situation, single fault is observed while multiple faults 

rarely occur on each actuator. So we consider each actuator is subject to only one fault, then two faults 

may occur simultaneously in the actuator subsystem. Two cases are considered to illustrate: noise free 

and noise corrupted. 

1-) Noise free case, fault f3 exists in actuator of process fluid and fault f4 exists in actuator of utility 

fluid 

In this part, two faults are considered. For actuator of process fluid, fault f3 is supposed to occur at 80s 

due to unexpected pressure drop across the valve, and for actuator of utility fluid, fault f4 is supposed 

to occur at 60s. We supposed that an expected 50KPa pressure drop adds to the nominal pressure drop 

across the valve at time 80s. While because of erosion, the gland packing of the valve may loosen, 

which leads to stem vibration, a failure value of 1000 Nm−1 is added to the spring compliance k. 

Simulation results are listed in Fig.8.5-Fig.8.8.  
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Fig.8.5 Reconstructed input F̃u, F̃p from output Tp, Tu in CASE (a) 

From Fig.8.5, after a short transient time, reconstructed inputs u a1 = F̃p, u a2 = F̃u give an accurate 

estimation value to the real inputs ua1 = Fp, ua2 = Fu . At 80s, the reconstructed F̃p unexpectedly 

increases, and finally it stabilizes at a new level. This increase implies fault occurs and no further 

variations illustrate no additional fault occurs. The similar result is obtained in the reconstructed F̃u of 

utility fluid. The simulation curve indicates that the input reconstruction proposed in this paper is 

proper for recovering unknown inputs. 

As shown in Fig.8.6, at 80s and 60s, the detection residuals (r1, r2) break through their thresholds 

respectively. It implies that at time 80s, a fault occurs at actuator of process fluid, it takes 0.1s to detect 

the fault. While for actuator of utility fluid, at time 60s, the detection residual r2 no longer remains 

zero which indicates a fault occurs, fault detection time is 0.2s. 

 

Fig.8.6 Detection residual in case (a) 

Then, we recognize that, for each actuator, one fault exists. The main contribution of this paper is that 

we can not only detect and locate the fault, but also can analyze its root cause. Next, we focus on 

identifying the causes of these two faults. 
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Fig 8.7 Residuals for identifying fault cause in process fluid in case (a) 

Fig.8.7 aims at recognizing root cause of the fault at actuator of process fluid. RCA residuals 

 s11, s12 , s13 , s14  are designed to recognize four possible candidates: f1, f2, f3, and f4. Detection 

residual r1 has already implied fault occurred at 80s. It is obvious in Fig.8.7 that, only s13 breaks 

through and remains above the threshold, which means that fault in actuator of process fluid is caused 

by fault f3. Isolation time is 0.5s which is ideally.  

 

 

Fig.8.8 Residuals for identifying fault cause in utility fluid in case (a) 

In Fig.8.8, RCA residuals s21 , s22, s23, s24 are designed to recognize fault f1, f2, f3, and f4 in actuator 

of utility fluid. Detection residual r2 in Fig.8.6 has already implied fault occurred at 60s. It is obviously 

in Fig.8.8 that only s24 breaks the threshold and never comes back, which means that fault in actuator 

of utility fluid is caused by fault f4. In this case, isolation time is about 0.2s. The differences in 

isolation time are due to magnitude of fault and the effect it has impacted the system. 

2-) Noise corrupted case, fault f2 exists in actuator of process fluid and fault f3 exists in actuator of 

utility fluid 

To illustrate the robustness of the proposed scheme, external disturbance or measurement noise are 

considered in this case. Suppose the output measurement y is corrupted by a colored noise. The colored 

noise is generated with a second order AR filter excited by a Gaussian white noise with zero mean and 

unitary variance. The standard deviation of the colored noise is about 3.5. 
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The same situation as case (a), one fault is considered on each actuator separately. For actuator of 

process fluid, fault f2 is supposed to be leakage, and reasons that can lead to the leakage are: valve 

tightness, leaky bushing, and terminals. Fault f3 is supposed in actuator of utility fluid, fault f3 is 

caused by valve clogging, and it is a commonly encountered fault.  If not properly repaired, this kind 

of fault may cause severe impacts on system performance. Simulation results are demonstrated in 

Fig.8.9-Fig.10. 

 

Fig. 8.9 Reconstructed input F̃u, F̃p from output Tp,Tu in CASE (b) 

     It can be seen from Fig.8.9 that although noise exists, the developed input reconstruction 

techniques can provide reconstructed inputs with a good accuracy. At actuator of process fluid, sudden 

decrease occurs at 60s which indicates occurrence of a fault, and it takes 4s to steady at new value. For 

actuator of utility fluid, the reconstructed value increases from 40s, and is stable after about 3s. A fault 

is detected due to the unexpected increase. 

 

Fig.8.10 Detection residual in case (b) 

As illustrated in Fig.8.10, detection residual r1  indicates a fault in actuator of process fluid at 60s, it 

takes 1.2s to determine the occurrence of the fault. Detection residual r2  refers to a fault in actuator of 

utility fluid at time 40s, and it takes 1.5s to detect it. We can shorten the detection time and detect 

smaller fault by employing larger gain for the detection observers or adopt a smaller threshold. 

However, larger gain or larger threshold may fail to detect the fault correctly, since observer with larger 

gain is too sensitive to noise and smaller threshold may lead to be undistinguished from noise. 

Therefore a trade between detectability and sensitivity should be made in order to detect the fault 

correctly. In summary, a small magnitude fault may not be detected within the existence of the noise. 

Again, after detection of the faults, we have to identify their root causes. 
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Fig. 8.11 Residuals for identifying fault cause in process fluid in case (b) 

 

 

Fig. 8.12 Residuals for identifying fault cause in utility fluid in case (b) 

 We can see from Fig.8.11 that only RCA residual s12  breaks through its threshold and remains 

beyond it, the rest three RCA residuals are below their thresholds, then the fault resource f2 of actuator 

of process fluid is identified. When come to RCA residuals for actuator of utility fluid in Fig.8.12, only 

s23  is beyond its threshold which verifies the occurrence of fault cause f3. 

From the above simulation results, we can see that the proposed strategy is available to detect and 

locate a fault correctly, and root cause analysis for each detected fault is achieved with a good accuracy. 

Encouraging simulation results are obtained thanks to the robustness performance of the proposed 

scheme.  

8.5 Summary 

The main contribution of this chapter lies on the integration of both system level and component level 

based FDI approaches to facilitate FD and RCA of subcomponents actuators. The studied intensified 

Hex reactor system exhibits extremely complex dynamics because the small volumes and large 
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throughputs of such systems lead inescapably to smaller residence times. In some cases, their response 

times are of the same order of magnitude as those of actuators and measurement transmitters, perhaps 

even faster. Therefore deep considerations of individual constituted units are expected. The results 

presented provide further insights into how the internal dynamics of control valve influence overall 

performance, with particular reference to intensified Hex reactor systems. Simulated results are 

included to demonstrate the applicability and robustness of the proposed method and encouraging 

results are obtained. 

Appendix 8.1A 

1-) system modelling 

The application of the energy balance rule considering a single cell per fluid (covering the whole length) 

to a counter flow HEX/Reactor gives rise to the following dynamical models, each cell consists of two 

perfect stirred tanks with inflows and outflows, as shown in Fig.8.2: 
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where ρp, ρu are density of the process fluid and utility fluid (in kg.m−3), Vp, Vu are volume of the 

process fluid and utility fluid (in m3), cpp, cpu are specific heat of the process fluid and utility fluid (in 

J. kg−1. K−1) , U  is the overall heat transfer coefficient (in J. m−2. K−1. s−1). A is the heat transfer area 

(in m2  ). Fp, Fu are mass flowrates of process fluid and utility fluid (in kg. s−1 ).  Tp
k−1 is the 

process fluid temperature of previous cell. For the cell 1, it is the inlet temperature of process fluid Tp
in. 

Tu
k+1 is the utility fluid temperature of previous cell. For the cell N, it is the inlet temperature of utility 

fluid Tu
in. 

In order to suit the diagnostic requirements better, there are two problems which need to be taken into 

consideration. The first one is with respect to the dynamics of the heat transfer coefficient. Another 

problem is the determination of the cell number N. It is accepted that large number of cell could keep 

dynamics better, but may lead to high computational loads.  

2-) Parameterization of overall heat transfer coefficient  

A drawback of the studied technologies is that the apparatus cannot open for cleaning and therefore 

fouling, which can cause gradual decline in the performance of HEX/Reactors, will limit its application 
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[221]. Therefore it is necessary to monitor dynamics of fouling and alarm a fault caused by higher 

fouling on timely. This is solved by expanding overall heat transfer coefficient U to introduce the 

fouling parameter in this work. Moreover, U is also mass flow and temperature dependent. However, 

the fluid characteristics have been considered constant, so this temperature dependency of U will not be 

taken into account here. In summary, we consider the influence of both mass flowrate and fouling 

dynamics on the heat transfer coefficient as in work [22].  

The heat transfer coefficient (U) is calculated by the convective heat transfer coefficient of the process 

fluid side and utility fluid side, and is generally defined by:  
1

U
=

1

hp
+

1

hu
+ Rf . Where hp, hu denote 

the convection heat transfer coefficients for the process and utility fluid, and Rf denotes the thermal 

resistance or fouling parameter. For both sides of the heat exchanger used here, assuming that the heat 

transfer coefficient is a function of mass flow, the convection coefficient are: hp(t) = KpFp
y
 , hu(t) =

KuFu
y
 , Where Kp, Kuare constants. Neglecting the thermal resistance (e.g. for a clean exchanger), this 

leads to: 

U(t) =
hp(t)hu(t)

hp(t)+hu(t)
=
KpKu(Fp(t)Fu(t))

y

(KpFp
y
(t)+KuFu

y
(t))
= KU

(FpFu)
y

(Fp)
y+e(Fu)

y                  (2) 

Where e and y are constants. As the overall heat transfer coefficient decrease with fouling, we can 

assume that fouling can be characterized by the parameter KU. Then the overall heat transfer coefficient 

at the reference mass flowrate Fp
∗ , Fu

∗  can be expressed as: U∗(t) = KU
(FP
∗ Fu
∗ )y

(FP
∗ )y+e(Fu

∗ )y
 . 

To account for variations in the mass flowrate, define α, β as fouling parameters, and  γ as a function 

of mass flow rates, then we get: 

  α =
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Vp
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Vu
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=

1
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βγ 

Thus, by letting the overall heat transfer coefficient be functions of mass flow and fouling, a process 

model is then obtained which is capable of accurately describing the dynamics of the heat exchanger 

for a wide range of working conditions. 
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 Ṫp

k =
1

ρpcpp
αγ(Tu

k − Tp
k) +

1

Vp
(Tp
k−1 − Tp

k)Fp

Ṫu
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To summarize, detection of fouling will be linked to variations of parameters α, β  in real time. Whilst, 

determination of jumps in flow rate is associated with γ. 

3-) Determination of cells number N 

As mentioned above, in this paper, we mainly focus on the heat exchange performance. A trade-off 

between accuracy and computation load is necessary to determine the minimum number of cells. For 

HEXs with counter flow geometry, experiments performed at Chalmers, see [222], have shown that 

perfect mixing conditions are achieved already after a few cells. Authors in [207] validated that models 

with three sections are sufficient for the majority of industrial heat exchanger. In [212],[217] it was 

shown two sections were enough to accurately estimate fouling with the counter flow type. It was also 

shown in [206] that the simulation results show that the model behaves like a real system just 

considering a limited number of cells. Moreover, analytical proofs are developed by works [205],[204] , 

the thermodynamically possible minimum number of modelling cells are given conceptually by 

number of heat transfer units.  

The FDD procedure requires the process to operate in steady state, several simulations are made to 

determine the minimal number of cells in steady state by considering the hex/reactor divided into a 

variable number of cells; in particular, the results refer to different cells:1, 3, 5, 10 and 20 cells 

respectively. The test conditions are: Tpi = 76℃, Tui = 15.6 ℃, Fu = 152kg/h, Fp = 15kg/h. More 

detailed information can be found in [29]. 

 

Fig. A.1 Temperature variation for the HEXs/reactor divided into different cells 

As shown in Fig. A.1, the temperature of process fluid varies obviously between 1 cell  case and multi 

cells case. While there seem no big differences among multi cells, simulation results seem to be quite 

insensitive to the increase of the number of cells.  It derives that the dynamics do not differ much from 

3 cells, the temperature varies less and less with the increase in the number of cells. Comparison 

between simulation results and experimental data corroborated the validity of the developed model. It 

is shown experimentally that decomposition into three cells is sufficient. 
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CHAPTER 9 SUMMARY, CONCLUSION AND SUGGESTION OR FUTURE 

WORK 

This chapter summarizes the results obtained in this thesis, and presents the concluding remarks. Some 

directions for further developments of the proposed approaches are also suggested. 

9.1 Conclusions 

In this thesis, the problem of system supervision, as well as fault diagnosis & root cause analysis (FD 

& RCA) of interconnected nonlinear system, is investigated. The interconnected nonlinear system is 

considered as composed of two nonlinear subsystems connected in cascade manners: the actuator and 

the process subsystems. The reason for the decomposition of this system structure is due to the 

increasing complexity and technological advances of subcomponents which result in the fact that their 

internal dynamics cannot be ignored as assumed by system level based FDD approaches. Fortunately, 

this decomposition allows to performance monitoring and diagnosing of internal variables of individual 

subcomponents, as well as the performance supervising of the global system simultaneously.  

While as is well known, it is very difficult to address the problem of analyzing cascade interconnected 

system using a centralized architecture, thus in this work, an interconnected observer is developed for 

monitoring performance of sub-states in individual subsystems, and a distributed fault diagnosis 

architecture is triggered in the presence of fault. In addition, in the presented monitoring and FDD 

architecture, output of the final subsystem is assumed to be the only available measurement. The output 

of the actuator subsystem, which is the interconnection between the two subsystems and also the input 

of the process subsystem, is assumed to be inaccessible. It is due to that, according to real engineering 

situation, for the actuator, it can be uneconomic or unrealistic to measure its output. We then consider 

the problem that arises when the output from the actuator subsystem is not available directly, but 

instead available via the second subsystem, the process subsystem. That is, the output from the actuator 

subsystem acts as the input to the process subsystem, from which measurement of the final product is 

in turn available.  

In solving the problem of system supervision and diagnosis of interconnected system, one should 

consider the problem of the input and (or) fault effect propagation which means the input and (or) fault 

effect in lower subsystems can be distinguished in higher subsystems. It refers to the capacity of two 

different variables at local level to generate identifiable output signals at global level for a given 

interconnected system. This consideration can be viewed as invertibility problem of the interconnected 

system since a motivation of invertibility is to prove the distinguishability of the input and (or) 

unknown input. In solving the problem of the invertibility problem, we give a necessary and sufficient 

condition for an interconnected system to be invertible which says that the individual subsystems 

should be invertible.  
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After solving problem of the input and (or) fault distinguishability, the next task focuses on 

interconnected observer design for achieving system supervision. The aim is to design an 

interconnected observer that provides accurately estimates of states of each subsystem, as well as the 

interconnection. It is a two level interconnected observer system which consists of two state estimators: 

the actuator and the process state estimators. Firstly, an existing converging observer is extended to 

estimate the states of the actuator subsystem, in particular, the information of outputs of actuator 

system are replaced by their estimation through the observer proposed in process subsystem. Second, 

an extended high gain observer is considered to exactly estimate the states of the process subsystem 

subject to unknown inputs which is also the outputs of the actuator subsystem. The unknown inputs are 

treated as new states of the process subsystem. While through computing the derivatives of the output 

vectors in actuator subsystem, the unknown input can be expressed as a function of the inputs, 

derivatives of the inputs and the states of the actuator subsystem. Then, by using the estimates 

information of two estimators, a kind of interconnected observer designed method is proposed for the 

studied invertible interconnected dynamic system. 

The purpose of root cause analysis (RCA) is achieved by a distributed FDD architecture. Any 

unexpected variations of the variables of the component subsystem denote root cause of a detected fault. 

In the presented distributed FDD architecture, a local fault filter is designed for the actuator subsystem 

by utilizing local measurements and estimated information of output from neighboring interconnected 

process subsystem, thus achieving root cause analysis of detected actuator fault. Each local fault filter 

consists of two modules: a fault detection and isolation module is used to identify an occurrence of any 

fault variable in the actuator subsystem where banks of fault isolation estimators are employed to 

determine the particular faulty variables that have occurred in the subsystem; an input estimation 

module is used to determine the unknown interconnection of the interconnected system or determine 

the output of the actuator subsystem by global measurements. In addition, the important properties of 

robustness and fault sensitivity (fault detectability, isolability and distinguishability) of the local 

adaptive fault isolation estimators designed for each subsystem are also established. 

The major contribution of the thesis lies on that it provides a means of monitoring and diagnosing of 

the interconnected plant at both local and global level which result in improved fault localization and 

provide better predictive maintenance aids. The presented FD&RCA algorithm is in fact a combination 

of local intelligence with a more advanced diagnostic capability (combining fault monitoring and 

diagnosis at both local and global levels) to perform FDD functions on different levels of the plant.  

9.2 Future Work 

The preceding section summarized the results obtained in this thesis. The proposed techniques and their 

application to improve the performance of FD&RCA system of nonlinear interconnected processes 

were briefly described. Besides the admired features of the proposed methods, there is a room for 

further improvements. In the following, some possible research directions for further extension of the 

proposed FD&RCA schemes are outlined. 
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For future work, one interesting problem is to develop loosing conditions for checking invertibility of 

the interconnected system which are more constructive as the purpose of invertibility in this work is to 

verify input (or fault) distinguishability; it is in general not needed to compute the inverse of the 

interconnected system. The analysis of systems having more inputs than outputs, of systems in which 

normal forms cannot be defined, and of systems in which the zero dynamics are unstable could be the  

substantially unexplored and open area of research. Moreover, in this work, modelling uncertainties, as 

well as measurement noise is difficult to avoid due to the complexity of the integrated modern sensors, 

as well as the overall systems. Thus, the case of invertibility of an interconnected model with modeling 

uncertainties and measurement noise could be another interesting research direction in order to extend 

the applicability of the method proposed. From the stability analysis we have to justify scaling the 

required modeling information without destabilizing the input reconstruction algorithm. 

For the problem of fault diagnosis discussed in this thesis, the application of interconnected system 

presented involves only actuator and process subsystems. With the help of the presented supervision 

scheme, internal dynamics of actuator could be monitored and diagnosed. However, sensor equipment 

diagnostics is also very important in the fault diagnosis system to improve the operational safety and 

economics of modern engineering systems. We do not provide motivation for whether the developed 

technique can be successfully extended to a more general interconnected nonlinear system, by which 

internal dynamics of actuator, process and sensor are considered in an integrated interconnected 

system. 

Moreover, the issue of multi fault isolability condition where fault may exit in any subsystems still 

needs further investigation. The fault isolability condition is a critical property in characterizing the 

class of faults that are isolable by the proposed FD&RCA method. Therefore an integrated FDD 

scheme is a further requirement for recognizing the faulty subsystem. Additionally, after a faulty 

subsystem is successfully isolated by using the proposed FDD scheme, we can extend the presented 

FD&RCA method to construct a hierarchical method which allows the isolation of the faulty subsystem 

and the particular faulty causes as well. 

Finally, although the proof-of-principle was demonstrated for the developed algorithms using the 

Hex/reactor system, these algorithms was only implemented on a laboratory system and tested using 

laboratory data, focusing on control valve actuator only. It is sometimes impracticable to attempt 

performance assessments in realistic industrial conditions as the process safety and economy cannot 

easily be compromised by such tests. Therefore the proposed approach still needs to be tested by real 

plant data with more kinds of actuators before they can be integrated into a realistic process 

engineering problem. 
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