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Titre Inégalités d'Arakelov et familles semistables de courbes uniformisées
par la boule

Résumé L'objet principal de cette thèse est de démontrer une inégalité
d'Arakelov qui consiste à borner le degré d'un sous-faisceau inversible de
l'image directe d'un faisceau relatif pluricanonique d'une famille semi-stable de
courbes. Un problème naturel qui apparaît est la caractérisation des familles
pour lesquelles sont satisfaites le cas d'égalité dans l'inégalité d'Arakelov, i.e. le
cas d'égalité d'Arakelov. Peu d'exemples de telles familles sont connus. Dans
cette thèse nous en proposons plusieurs en prouvant que le faisceau relatif bi-
canonique d'une famille semi-stable de courbes uniformisée par la boule unité
et dont toutes les �bres singulières sont totalement géodésiques contient un
sous-faisceau inversible qui satisfait l'égalité d'Arakelov.

Title Arakelov inequalities and semistable families of curves uniformized by
the unit ball

Abstract The main object of study in this thesis is an Arakelov inequal-
ity which bounds the degree of an invertible subsheaf of the direct image of
the pluricanonical relative sheaf of a semistable family of curves. A natural
problem that arises is the characterization of those families for which the equal-
ity is satis�ed in that Arakelov inequality, i.e. the case of Arakelov equality.
Few examples of such families are known. In this thesis we provide some ex-
amples by proving that the direct image of the bicanonical relative sheaf of
a semistable family of curves uniformized by the unit ball, all whose singu-
lar �bers are totally geodesic, contains an invertible subsheaf which satis�es
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Introduction

Un bref aperçu historique
Arakelov a montré dans son papier [1] qu'il n'y a, à isomorphisme près,

qu'un nombre �ni de familles f : X → Y de courbes algébriques de genre �xé
plus grand que 1 au-dessus d'une courbe projective lisse Y de lieu singulier
S, qui est un ensemble �ni de points sur la courbe de base Y. La preuve du
théorème d'Arakelov consiste en deux parties.

Dans un premier temps il a montré que l'ensemble des familles lisses

{f : W → Y \S}

et l'ensemble des sections

{s : Y \S → W |f ◦ s = idY \S}

des familles f sont en nombre �ni.
Dans un second temps, il a prouvé la rigidité, c'est-à-dire qu'il a montré

que pour une famille donnée f : W → Y \S et une section s : Y \S → W , il
n'est pas possible de déformer f ou s.

Un problème similaire a été traité par Faltings dans [25] pour des familles de
variétés abéliennes polarisées pour lesquelles il a prouvé que la �nitude est sat-
isfaite en général mais que la rigidité est satisfaite si tous les endormorphismes
du système local des premiers groupes de comologie de �bres proviennent des
endomorphismes des variétés abéliennes.

Ses résultats consistent à montrer que le degré de l'image directe du faisceau
canonique relatif d'une famille est borné. Ainsi l'inégalité d'Arakelov initiale
peut être formulée comme suit :

Soit f : X → Y une famille semistable de courbes de �bre générique de
genre g, dont le lieu singulier est S, alors on obtient:

deg f∗ωX/Y ≤
g

2
deg Ω1

Y (logS). (1)

Tan a montré dans son papier [71] que l'inégalité précédente est stricte pour
les familles de courbes de �bres de genre supérieur à 1. Une des principales
conséquences de ce résultat est la réponse à la question de Szpiro posée dans
[70]:
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Soit f : X → P1 une famille semi-stable de courbes de genre g, qui n'est pas
isotriviale. Quel est le nombre minimal de �bres singulières de cette famille?
Ce problème a été traité pour la première fois par Beauville dans [5], où il a
prouvé le théorème suivant:

Théorème A Soit f : X → P1 une famille semi-stable de courbes de genre
g ≥ 1, qui n'est pas isotroviale. Alors cette famille f possède au moins 4 �bres
singulières.

Après avoir donné plusieurs exemples de �brations elliptiques avec 4 �bres
singulières dans [6], ainsi que plusieurs exemples de familles dont les �bres ont
un genre supérieur à 1, Beauville a stipulé la conjecture suivante:

Conjecture de Beauville Soit f : X → P1 une famille semi-stable de
courbes de genre g > 1, qui n'est pas isotroviale. Alors cette famille possède
au moins 5 �bres singulières.

En combinant les résultats de Beauville et le fait que l'inégalité d'Arakelov
est stricte pour g > 1, Tan a pu démontrer cette conjecture.

Une approche plus générale des inégalités d'Arakelov a été reprise par Pe-
ters, Jost et Zuo. En e�et, ils ont considéré une variation réelle polarisée de
structures de Hodge de poids k sur une courbe lisse Y \S où S est un ensemble
�ni de points sur une courbe projective lisse Y . Il est connu qu'un système
de �brés de Hodge E =

⊕
p+q=k E

p,q d'application Θp,q : Ep,q → Ep+1,q−1 ⊗
Ω1
Y \S peut être associé à cette variation, dont l'extension E =

⊕
p+q=k E

p,q

d'application Θ
p,q

: E
p,q → E

p−1,q+1 ⊗ Ω1
Y (logS) sur Y est quasi-canonique

si les monodromies du système local de la variation sont quasi-unipotentes.
Elle est canonique si les monodromies sont unipotentes. Dans [58] et [39], les
auteurs ont donné des inégalités qui bornent le degré du plus haut �bré Ēk,0

de l'extension quasi-canonique (ou canonique) du système de �brés de Hodge.
On peut immédiatement voir que pour la variation géométrique associée à

la famille semi-stable f : X → Y de courbes de genre g, lisse au-dessus Y \S,
on obtient l'extension canonique E = f∗ωX/Y ⊕ R1f∗OX du système de �bré
de Hodge associée à la variation géométrique, d'application Θ : f∗ωX/Y →
R1f∗OX ⊗ Ω1

Y (logS) et ainsi

deg f∗ωX/Y ≤
g − h1,0

0

2
deg Ω1

Y (logS). (2)

Cela vient du fait que h1,0 = rank f∗ωX/Y = g.. En comparant les inégalités
(1) et (2), il apparaît que l'inégalité (2) est plus forte que l'inégalité d'Arakelov
initiale. Le cas intéressant à considérer est celui où l'inégalité précédente de-
vient une égalité. En particulier, c'est la cas quand l'application Θ̄ est un
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Introduction

isomorphisme. Ainsi, par le résultat de Tan, ceci est seulement possible pour
les familles de courbes de genre 1.

Une autre classe d'inégalité d'Arakelov fabriquée par Viehweg et Zuo est
celle qui donne des bornes sur le degré des faisceaux relatifs pluricanonique de
familles semi-stables de variétés lisses au-dessus d'une courbe projective lisse.
En e�et, ils ont obtenu des inégalités sur le degré de f∗ωνX/Y , où ν est un entier
positif et f : X → Y est une famille semi-stable de n-variétés lisses au-dessus
d'une courbe projective lisse Y de lieu singuliere un ensemble �ni S sur Y .
Leur principal résultat, qui peut être trouvé dans [55], est le suivant:

deg f∗ω
ν
X/Y

rank f∗ωνX/Y
≤ nν

2
deg Ω1

Y (logS). (3)

Ce résultat est la conséquence d'une autre inégalité d'Arakelov qui borne
le degré d'un sous-faisceau inversible de f∗ωνX/Y .. Pour n'importe quel sous-
faisceau inversible H de f∗ωνX/Y ., Viehweg et Zuo ont démontré dans [55] que

degH ≤ nν

2
deg Ω1

Y (logS). (4)

Le principal objet de cette thèse concerne cette dernière inégalité. Si on sup-
pose que f : X → Y est une famille semi-stable de courbes et que le cas
d'égalité dans (4) est véri�ée, alors pour ν = 1, en utilisant un résultat de
Möller de [52], on obtient que Y \S est une courbe de Teichmüller. Une ques-
tion naturelle est la caractérisation des familles de courbes pour lesquelles
l'égalité dans (4) est véri�ée quand ν ≥ 2.

Organisation de la thèse

Cette thèse est divisée en quatre chapitres. Les deux premiers chapitres
sont de nature introductive, contenant des résultats connus et leurs preuves
légèrement modi�ées. Le troisième chapitre apporte un nouveau point de vue
sur la preuve de l'inégalité (4) et quelques remarques pour le cas d'égalité
dans (4). Le dernier chapitre contient de nouveaux résultats en proposant des
exemples de familles pour lesquelles l'égalité dans (4) est véri�ée.

Le premier chapitre présente les dé�nitions de base et des résultas sur les
revêtements cycliques de n-variétés, les formes di�érentielles logarithmiques et
la cohomologie des revêtements cycliques, donnés par Hélène Esnault et Eckart
Viehweg dans [20]. Certains résultats sont expliqués dans leur forme initiale
et d'autres sont prouvés à nouveaux et adaptés au reste de la thèse.

Dans le second chapitre, nous rappelons les dé�nitions et les constructions
des �brés de Higgs et des �brés logarithmiques de Higgs associés aux variations
de structures de Hodge sur des courbes compactes et non-compactes, ainsi
que plusieurs résultats de Deligne et Simpson. Dans la dernière section de

Arakelov inequalities and semistable families of curves
uniformized by the unit ball
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ce chapitre, nous donnons un aperçu des résultats de base sur les espaces de
Teichmüller et les courbes de Teichmüller, et nous développons un résultat
sur la connexion entre les variations polarisées de rang 2 et de poids 1 et les
courbes de Teichmüller.

Le troisième chapitre est le plus important d'un point de vue technique.
Nous y expliquons la preuve de Viehweg et Zuo sur l'inégalité d'Arakelov (4).
Leur résultat fondamental est appliqué pour une famille semi-stable de n-
variétés, en revanche dans cette thèse nous modi�ons et procurons tous les
détails de preuve pour des familles de courbes semi-stable. Dans la dernière
section de ce chapitre, nous discutons du cas d'égalité dans (4), que l'on appelle
le cas maximal. Nous esperions prouver que même dans le cas ν ≥ 2, Y \S
est une courbe de Teichmüller. Malheureusement, nous n'avons pas réussi à le
véri�er et nous pouvons seulement donner quelques informations partielles sur
cette famille.

Le dernier chapitre de la thèse contient de nouveaux résultats. Notam-
ment, des exemples naturelles de familles semi-stables de courbes dont l'image
directe du faisceau relatif pluricanonique contient un sous-faisceau inversible
réalisant l'égalité dans (4) ne sont pas connues, mis à part les cas évidents qui
sont construits en partant d'une situation où ν = 1. Il se trouve que pour une
famille de courbes uniformisées par la boule, il existe un sous-faisceau inversible
naturel de l'image directe du faisceau relatif bicanonique construit à partir de
la seconde forme fondamentale de la famille. Nous expliquons ce concept en
utilisant le résultat de Mok de [53] concernant les secondes formes projectives
fondamentales et les feuilletages tautologiques de la projectivisation du �bré
tangent de l'espace des formes hyperboliques complexes, qui sont les quotients
de la n-boule unité complexe Bn par des sous-groupes discrets, co-compacts et
sans torsion de PU(n, 1).

Théorème B Soit f : X = B2/Γ→ Y une famille semi-stable de courbes, où
Γ est un sous-groupe discret, co-compact et sans torsion de PU(2, 1), telle que la
famille est lisse au-dessus de Y \S avec toutes ses �bres singulières totalement
géodésiques, et le genre de Y est supérieur à 1. Alors, il existe un sous-faisceau
inversible de l'image directe du faisceau relatif bicanonique f∗ω

⊗2
X/Y qui satisfait

l'égalité d'Arakelov (4).

Guidés par cette idée et en utilisant les résultats de Livné dans [49], nous
donnons plusieurs exemples de familles semi-stables de courbes uniformisées
par la 2-boule complexe au-dessus des courbes modulaires de niveaux N ∈
{7, 8, 9, 12}. Nous démontrons que toutes les �bres singulières dans ces familles
sont totalement géodésiques, et nous prouvons ensuite que ce sont des exemples
de familles dont la courbe de base privée du lieu singulier de la famille est une
courbe de Teichmüller. Cependant, il est intéressant de remarquer que ces
exemples pour lesquels l'image directe du faisceau relatif bicanonique contient
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Introduction

un sous-faisceau maximal sont aussi construits à partir de cas maximaux pour
ν = 1.

Une question qui se pose toujours est de savoir si n'importe quelle famille
décrite dans le Théorème B fournit un exemple de courbe de Teichmüller.

A short historical overview

Arakelov showed in his paper [1] that there are only �nitely many families
f : X → Y of algebraic curves up to isomorphism of �xed genus bigger than 1
over a projective smooth curve Y with �xed discriminant locus S, which is a
�nite set of points on the base curve. The proof of Arakelov's theorem consists
in two parts:

In the �rst part he showed the boundedness, i.e. he showed that the set of
all smooth families

{f : W → Y \S}
and the set of all sections

{s : Y \S → W |f ◦ s = idY \S}

of families f, consist in a �nite number of families.
In the second part, he proved the rigidity, where he showed that if one has

a given family f : W → Y \S and a section s : Y \S → W, then it is not
possible to deform f or s.

A similar problem was treated by Faltings in [25] for families of polarized
abelian varieties, where he proved that the boundedness holds in general, but
the rigidity holds if all endomorphisms of the local system of the �rst coho-
mology groups of �bers come from endomorphisms of the abelian varieties.

These results treat the boundedness of the degree of the direct image of
the relative canonical sheaf of a family. So, the original Arakelov inequality
can be formulated as:

Given a semistable family of curves f : X → Y whose generic �ber has
genus g, with discriminant set S, one has:

deg f∗ωX/Y ≤
g

2
deg Ω1

Y (logS). (5)

Tan proved in his paper [71] that the previous inequality is strict for the
families of curves whose �bers have genus bigger or equal to 2. One of the
main consequences of this result was the answer to Szpiro's question in [70]:

Let f : X → P1 be a semistable family of curves of genus g, which is not
isotrivial. What is the minimal number of singular �bers of the family? This
problem was �rstly treated by Beauville in [5], where he proved the theorem:

Theorem 0.1. Let f : X → P1 be a semistable family of curves of genus
g ≥ 1, which is not isotrivial. Then, the family has at least 4 singular �bers.

Arakelov inequalities and semistable families of curves
uniformized by the unit ball
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After he gave several examples of elliptic �brations with 4 singular �bers
in [6] and several examples of families whose �bers have genus bigger than 1
and the discriminant locus of these families has cardinality bigger than 4 he
stated the conjecture:

Conjecture 0.2. (Beauville's conjecture) Let f : X → P1 be a semistable
family of curves of genus g > 1 which is not isotrivial. Then, the family has
at least 5 singular �bers.

Combining Beauville's results and the fact the Arakelov inequality is strict
for g > 1, Tan proved the conjecture.

A more general approach to the class of Arakelov inequalities was taken
by Peters, Jost and Zuo. In fact, they considered a real polarized variation of
Hodge structures of weight k on a smooth curve Y \S where S is a �nite set of
points on a smooth projective curve Y. It is well known that one has a system
of Hodge bundles E =

⊕
p+q=k E

p,q with maps Θp,q : Ep,q → Ep+1,q−1 ⊗ Ω1
Y \S

associated to this variation, whose extension E =
⊕

p+q=k E
p,q

with maps

Θ
p,q

: E
p,q → E

p−1,q+1 ⊗ Ω1
Y (logS) to Y is quasi-canonical if monodromies

of the local system of the variation are quasi-unipotent and it is canonical if
the monodromies are unipotent. In [58] and [39] they gave inequalities which
bound the degree of the top bundle E

k,0
of the quasi-canonical (canonical)

extension of the system of Hodge bundles:
One can see immediately that for the geometric variation associated to a

semistable family f : X → Y of curves of genus g, smooth over Y \S one
gets the canonical extension E = f∗ωX/Y ⊕ R1f∗OX of the system of Hodge
bundles associated to the geometric variation, with the map Θ : f∗ωX/Y →
R1f∗OX ⊗ Ω1

Y (logS) and therefore:

deg f∗ωX/Y ≤
g − h1,0

0

2
deg Ω1

Y (logS). (6)

It holds since h1,0 = rank f∗ωX/Y = g. Comparing the inequality (6) with the
inequality (5), one gets that the inequality (6) is stronger than the original
Arakelov inequality. The interesting case to be considered is the one when the
previous inequality becomes an equality. And that is the case when the map
Θ is an isomorphism. Therefore, by Tan's results that is only possible for the
families of curves of genus equal to 1.

Another class of Arakelov inequalities made by Viehweg and Zuo is the
one which gives bounds on the degree of pluricanonical relative sheaves of
semistable families of manifolds over a projective smooth curve. In fact, they
produced inequalities about the degree of f∗ωνX/Y , where ν is a positive integer
and f : X → Y is a semistable family of n-manifolds over a smooth projective

6



Introduction

curve Y and with discriminant locus a �nite set S on Y. The main result, that
can be found in [55], is the following:

deg f∗ω
ν
X/Y

rank f∗ωνX/Y
≤ nν

2
deg Ω1

Y (logS). (7)

This result is the consequence of one other Arakelov inequality which
bounds the degree of an invertible subsheaf of f∗ωνX/Y . For any invertible sub-
sheaf H of f∗ωνX/Y , Viehweg and Zuo proved in [55] that:

degH ≤ nν

2
deg Ω1

Y (logS). (8)

The main object of the study in this thesis is the last inequality. If one
supposes that f : X → Y is a semistable family of curves and that equality
holds in (8), then for ν = 1 by using a result by Möller from [52], one gets that
Y \S is a Teichmüller curve. A natural problem that arises is the characteri-
zation of the families of curves for which the equality in (8) holds when ν ≥ 2.

Organization of the thesis

This thesis is divided in four chapters. The �rst two chapters are of an
introductory nature, containing some well known results with slightly modi�ed
proofs. The third chapter brings some new point of view on the proof of the
inequality (8) and some remarks for the case of equality in (8). The last
chapter contains original results, providing some examples of families where
the equality in (8) is obtained.

The �rst chapter contains some basic de�nitions and results about cyclic
coverings on n-manifolds, logarithmic di�erential forms and cohomology of
cyclic cyclic coverings, as given by Hélène Esnault and Eckart Viehweg in [20].
Some results are explained in their original form and others are reproved and
adapted to the rest of the thesis.

In the second chapter we recall the de�nitions and constructions of Higgs
bundles and logarithmic Higgs bundles associated to variations of Hodge struc-
tures on compact and non-compact curves, and several important results of
Deligne and Simpson. In the last section of this chapter, we give a short review
of basic facts about the Teichmüller space and Teichmüller curves, and we ex-
plain one result of Möller about the connection between polarized variations
of rank 2 and weight 1 with Teichmüller curves.

The third chapter is the most important chapter in the technical sense.
There we explain the proof by Viehweg and Zuo of the Arakelov inequality
(8). Their original result is done for a semistable family of n-manifolds, but in
this thesis we modify and �ll in all details of the proof for families of semistable
curves. In the last section of that chapter, we discuss the case of equality in

Arakelov inequalities and semistable families of curves
uniformized by the unit ball
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(8), which is called the maximal case. Our expectations was to prove that even
when ν ≥ 2, Y \S is a Teichmüller curve. Unfortunately, we were not able to
prove that and we can only give some partial information on the family.

The last chapter of the thesis contains original results. It seems that exam-
ples of semistable families of curves whose direct image of the pluricanonical
relative sheaf contains an invertible subsheaf realizing the equality in (8) are
not known, except in the obvious cases which are constructed starting from
a situation with ν = 1. It happens that for a family of curves uniformized
by the ball, there exists a natural invertible subsheaf of the direct image of
the bicanonical relative sheaf constructed from the second fundamental form
of the family. We explain this fact using Mok's result from [53] about second
projective fundamental forms and tautological foliations of the projectivization
of the tangent bundle of complex hyperbolic space forms, which are quotients
of the unit complex n-ball Bn by discrete, co-compact, torsion free subgroups
of PU(n, 1).

Theorem 0.3. Let f : X = B2/Γ → Y be a semistable family of curves,
where Γ is a discrete, co-compact, torsion free subgroup of PU(2, 1), the family
is smooth over Y \S with all singular �bers totally geodesic and the genus of Y
is bigger than 1. Then, there exists an invertible subsheaf of the direct image
of the bicanonical relative sheaf f∗ω

⊗2
X/Y which satis�es the Arakelov equality

(8).

After that, guided by this idea and using the results of Livné from [49], we
provide several examples of semistable families of curves uniformized by the
complex 2-ball over modular curves of level N ∈ {7, 8, 9, 12}. We prove that
all singular �bers in these families are totally geodesic, and then we prove that
these are examples of families whose curve of the base without the discriminant
locus of the family is a Teichmüller curve. However, notice that these examples
where the direct image of the relative bicanonical sheaf contains a maximal
subsheaf are again constructed from maximal cases for ν = 1.

A question that still remains to be answered is whether any family as in
Theorem 0.3 provides an example of Teichmüller curve.
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Chapter 1

Cyclic coverings

1.1 Constructions of cyclic coverings

In this section we describe the construction of cyclic coverings over manifolds.
We will explain the algebraic construction and relate it to the geometric point
of view. This construction relies on Exercise 5.17 from [32] �II. In the �rst
part of the section we will recall some de�nitions and certain categorical equiv-
alences. In the second part we will recall basic properties of cyclic coverings.
The construction and the results are taken from [20] �3.

De�nition 1.1. Let (X,OX) be a ringed space. A sheaf of OX-modules, or
simply an OX-module, is a sheaf F of abelian groups on X, such that for each
open set U ⊆ X, the group F(U) is anOX(U)-module, and for each inclusion of
open sets V ⊆ U, the restriction homomorphism F(U)→ F(V ) is compatible
with the module structure via the ring homomorphism OX(U)→ OX(V ). Any
direct sum or direct product of OX-modules is an OX-module. An OX-module
F is free if it is isomorphic to a direct sum of copies of OX .

A sheaf of OX-algebras is a sheaf A of abelian groups on X such that
for each open set U ⊆ X, the group A(U) is an OX(U)-algebra and for each
inclusion of open sets V ⊆ U, the restriction homomorphism A(U)→ A(V ) is
a morphism of rings, and for r ∈ OX(U) and m ∈ A(U) we have (r ·m)|V =
r|V ·m|V .

De�nition 1.2. Let R be a commutative ring and M be an R-module. Let
T n(M) be the tensor product M ⊗ M ⊗ ... ⊗ M of M with itself n times,
for n ≥ 1. For n = 0 we put T 0 = R. Then T (M) =

⊕
n≥0 T

n(M) is an
R−algebra, that we call the tensor algebra of M.

De�nition 1.3. Let (X,OX) be a ringed space and let F be an OX-module.
The tensor algebra of F is de�ned by taking the sheaf associated to the
presheaf, which to each open set U assigns the tensor algebra of F(U) as
an OX(U)-module. The results are graded OX-algebras, their components in
each degree are OX-modules.

9



1.1. Constructions of cyclic coverings

Let us now recall the de�nitions of �nite type, resp. quasicoherent, resp.
�nitely presented and coherent OX-modules on a ringed space (X,OX).

Let F be an OX-module, let U be an open set of X and s ∈ F(U) a section,
then there is the unique map associated to s de�ned as:

OU → F|U , f → f · s. (1.1)

A sheaf of OX-modules F is of �nite type if for every point x ∈ X there
exists an open neighborhood x ∈ U ⊂ X such that F|U is generated by �nitely
many sections. It is quasicoherent if for every point x ∈ X there exists an
open neighborhood x ∈ U ⊂ X such that F|U is isomorphic to the cokernel of
a map: ⊕

j∈J

OU →
⊕
i∈I

OU .

In other words, there is an open covering on X by sets U such that F|U can
be presented as: ⊕

j∈J

OU →
⊕
i∈I

OU → F|U → 0.

If moreover the sets I and J are �nite then F|U is �nitely presented. It is
a coherent sheaf if it is of �nite type and for every open set U and every
�nite collection of sections si ∈ F(U), i = 1, ..., n the kernel of the associated
map induced by (1.1)

⊕
i=1,...nOU → F|U is of �nite type. A coherent sheaf

is �nitely presented and in particular it is quasicoherent. Also, if X is a
Noetherian scheme then the following are equivalent:

◦ F is a coherent OX-module;

◦ F is a quasicoherent OX-module of �nite type;

◦ F is a �nitely presented OX-module.

Remark 1.4. Let us recall that an OX-module F on a ringed space (X,OX)
is invertible if for every x ∈ X there is a neighborhood U of x such that F|U
is isomorphic to OU as an OU -module. An invertible OX-module on (X,OX)
is quasicoherent.

De�nition 1.5. Let (X,OX) be a ringed space and F be an OX-algebra. It is
of �nite type, resp. quasicoherent, �nitely presented or coherent if it has these
properties as a sheaf of OX-modules.

Theorem 1.1. ([32],p.128) Let A be a quasicoherent OX-algebra on a scheme
X. Then there is a unique scheme W and a unique morphism τ : W → X
such that for every open a�ne U ⊆ X, τ−1(U) = Spec(A(U)) and for every
inclusion V ↪→ U of open a�nes in X, the morphism τ−1(V ) ↪→ τ−1(U)
corresponds to the restriction homomorphism A(U) → A(V ). We denote the
scheme W as SpecX(A).

10



1. Cyclic coverings

Since we will work in the category of projective complex manifolds, we
should recall that this category is equivalent to the category of regular projec-
tive reduced schemes over C. This is a consequence of Chow's theorem. Chow's
theorem states that a closed submanifold of projective space is closed in the
Zariski topology and it de�nes canonically a regular projective reduced scheme
over C. On the other side Serre's GAGA theorem provides the equivalence of
categories of algebraic coherent sheaves on X, when X is a regular projective
reduced scheme over C, with the category of coherent analytic sheaves on X,
when X is seen as a projective complex manifold. We should also add the fact
that projective schemes over C are Noetherian.

This enables us to apply Theorem 1.1 in the setting of projective complex
manifolds.

Let X be a projective complex manifold and let D =
k∑
j=1

αjDj be an ef-

fective divisor on X. Let ν be a positive integer and L be an invertible sheaf
such that:

Lν ' OX(D).

Once and for all let us �x such an isomorphism. Let s ∈ H0(X,Lν) be a
section whose zero divisor is D. The dual of

s : OX → Lν ,

i.e.
s∨ : L−ν → OX

de�nes an OX-algebra:

A′ =
ν−1⊕
i=0

L−i,

where the multiplication in A′ is de�ned by

L−i × L−j → L−i−j,

composed with s : L−i−j → L−i−j+ν in case i+ j ≥ ν.

De�nition 1.6. Let E be a Q-divisor, then the divisor [E] denotes the divisor
whose multiplicities of components are the integral parts of the multiplicities
of the components of the divisor E.

Now, let us de�ne for any non-negative integer i,

L(−i) := L−i ⊗OX
([

iD

ν

])
and

A :=
ν−1⊕
i=0

L(−i).

Arakelov inequalities and semistable families of curves
uniformized by the unit ball
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1.1. Constructions of cyclic coverings

Remark 1.7. For i > ν, one should note that:

L(−i) = L−i ⊗OX
([

iD

ν

])
= L−i ⊗OX

([
(i− ν + ν)D

ν

])
= L−i ⊗OX(D)⊗OX

([
(i− ν)D

ν

])
= L−i+ν ⊗OX

([
(i− ν)D

ν

])
= L(−i+ν).

We should note that for two positive integers i, j one has:[
iD

ν

]
+

[
jD

ν

]
≤
[

(i+ j)D

ν

]
. (1.2)

This enables to de�ne the multiplication in A by:

L(−i)×L(−j) → L−i−j⊗OX
([

iD

ν

]
+

[
jD

ν

])
→ L−i−j⊗OX

([
(i+ j)D

ν

])
= L(−i−j).

By Remark 1.7 for i + j > ν one has L(−i−j) = L(−i−j+ν). Therefore, A is
an OX-algebra. We have the inclusion L−i ↪→ L(−i), which gives a morphism
of OX-modules:

A′ ↪→ A, (1.3)

and one checks immediately that it is also a morphism of OX-algebras.
The OX-algebra A′ is a �nite sum of invertible sheaves so it is coherent, or

�nitely presented and hence in particular it is a quasicoherent OX-algebra.

De�nition 1.8. A rami�ed covering τ : Z → X over a complex manifold X is
called a cyclic covering of degree ν if the group Aut(Z/X) of automorphisms of
Z preserving �bers over X is cyclic of order ν (then it follows that Aut(Z/X)
acts transitively on �bers Zx := τ−1(x), x ∈ X).

There is a cyclic group G = 〈σ〉 ∼= Z/ν of order ν which acts on the OX-
algebra A′, via the multiplication by ζ i of the elements of the component L−i,
where ζ is a �xed primitive ν-th root of unity and i ∈ {0, 1, ..., ν−1}. Then, the
cyclic group G = 〈σ〉 acts transitively on �bers of the map f : W ′ → X, where
W ′ = SpecX(A′). Hence, W ′ is a cyclic covering of X of degree ν. Since every
automorphism of a variety extends to an automorphism of the normalization
of a variety, the cyclic group G acts on the normalization W of W ′. This leads
to the following de�nition:

De�nition 1.9. Let π : W → X be the �nite morphism obtained by normal-
izing f : W ′ → X. The variety W is called the cyclic covering of degree ν
obtained by taking the ν-th root out of D.
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1. Cyclic coverings

Since W is a cyclic covering of degree ν, the cyclic group G = 〈σ〉 acts on
π∗OW , decomposing it as a direct sum of spaces of eigenvectors corresponding
to eigenvalues ζ i,We give here the theorem which describes this decomposition
and which was shown by Hélène Esnault in [19].

Theorem 1.2. ([20] �3) In the previous notations, one has the decomposition:

π∗OW =
ν−1⊕
i=0

L(−i),

in eigenspaces for the action by the cyclic group G.

Proof. Let X0 ⊂ X be an open subset such that

codimX(X\X0) ≥ 2.

LetW0 = π−1(X0) be the normalization ofW ′
0 = SpecX0

(A′|X0). Let i and i′ be
the induced inclusions, as it is shown in the diagram below. As W is normal
we have

i
′

∗OW0 = OW .

W0 W

X0 X

ππ0

i′

i

The diagram commutes and we have :

i∗π0∗OW0 = π∗i
′
∗OW0 = π∗OW . (1.4)

Since A =
⊕ν−1

i=0 L(−i), it is locally free and

i∗A|X0 = A. (1.5)

Moreover, let us suppose that U ⊂ X0 is an a�ne set. By abusing the notation
we denote W0 = π−1(U) and W ′

0 = Spec(A′|U(U)). The equations (1.4) and
(1.5) are clearly satis�ed on U. Let A′ = H0(U,A′) and let A = H0(U,A).
We will suppose that X0 is such that for all a�ne open subsets U ⊂ X0 one
has that A is the normalization of A′. (We will prove later that such one X0

exists.) Then Spec A is the normalization of Spec A′. In other words, Spec A
is isomorphic to W0. One gets:

π0∗OW0 = A|U .

By (1.4) and (1.5) we have: π∗OW =
⊕ν−1

i=0 L(−i).

Arakelov inequalities and semistable families of curves
uniformized by the unit ball
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1.1. Constructions of cyclic coverings

We are going to show now that we can take X0 = X\Sing(D) in the
previous proof. Let U be an open a�ne subset of X0 = X\Sing(D) and set
A = H0(U,A), A′ = H0(U,A′). We have to prove that A is the normalization
of A′. Let U = Spec B, where B = H0(U,OU) and moreover we can and do
suppose that on U the divisor D consists of one component D = α1D1. Let us
�x an isomorphism Li ∼= OU , for each i = 0, ..., ν − 1. Let f1 ∈ B be a local
equation of the component D1. Then, for some invertible function u ∈ B∗ the
section s ∈ H0(U,Lν) ∼= B which de�nes the cyclic covering is identi�ed with
ufα1

1 .
Since Li ∼= OU , the space of sections H0(U,A′) is the B-algebra:

A′ = H0(U,A′) =
ν−1⊕
i=0

H0(U,L−i) ∼=
ν−1⊕
i=0

Bti ∼= B[t]/(tν − ufα1
1 ).

Note that u = tνf−α1
1 . Also, we have the B-algebra:

A = H0(U,A) =
ν−1⊕
i=0

Btif
−[

iα1
ν

]

1 ,

where tif
−[

iα1
ν

]

1 is a generator of the space of sections of L(−i). The multiplica-
tion of sections in A is realized via:

tif
−[

iα1
ν

]

1 · tjf−[
jα1
ν

]

1 = ti+jf
−[

iα1
ν

]−[
iα1
ν

]

1

= f
−[

iα1
ν

]−[
iα1
ν

]+[
(i+j)α1

ν
]

1 ti+jf
−[

(i+j)α1
ν

]

1

= bijt
i+jf

−[
(i+j)α1

ν
]

1 ,

(1.6)

where bij = f
−[

iα1
ν

]−[
iα1
ν

]+[
(i+j)α1

ν
]

1 , for i, j ∈ {0, 1, ..., ν−1}. One has to note that
(1.2) yields bij ∈ B. In the case when i+ j ≥ ν, one has:

tif
−[

iα1
ν

]

1 · tjf−[
jα1
ν

]

1 = bijut
i+j−νf

−[
(i+j−ν)α1

ν
]

1 . (1.7)

It is obvious that the morphism (1.3) induces an inclusion:

A′ ↪→ A. (1.8)

Let gcd(ν, α1) = e, µ =
ν

e
and α =

α1

e
. We assume that U is chosen small

enough such that there exists u0 ∈ B∗ with ue0 = u, then one has:

tν − ufα1
1 =

e−1∏
j=0

(tµ − u0ξ
jfα1 ), (1.9)

where ξ is a primitive e-th root of unity.
Now when we have set up this framework, let us give the proof that A is

the normalization of A′.
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1. Cyclic coverings

Claim 1.3. The normalization of A′ is isomorphic to:

A′
nor
∼=

e−1∏
j=0

(A′j)nor,

where (A′j)nor
∼=
⊕µ−1

i=0 Bt
if
−[ iα

µ
]

1 and on (A′j)nor one has tµf−α1 = u0ξ
j.

Proof. By the Chinese remainder theorem and (1.9) one has:

A′ = B[t]/(tν − ufα1
1 ) ∼=

e−1∏
j=0

B[t]/(tµ − u0ξ
jfα1 ).

We de�ne:
A′j := B[t]/(tµ − u0ξ

jfα1 ).

One should note that on A′j one has:

tµf−α1 = u0ξ
j ∈ B∗. (1.10)

From the geometric point of view, the previous decomposition of A′ implies
that Spec A′ has e irreducible components given by the equations:

tµ − u0ξ
jfα1 = 0,

for j ∈ {0, ..., e− 1}.
Now, let us �x j ∈ {0, ..., e− 1} and consider one of the components of A′ :

A′j = B[t]/(tµ − wfα1 ) ∼=
µ−1⊕
i=0

Bti,

where
w = u0ξ

j.

Since µ and α are co-prime we can �nd positive integers i0 and j0 such that:

j0α− µi0 = 1.

One should note:(
tj0

f i01

)µ
=

(
tµ

fα1

)j0
f1 = wj0f1,

(
tj0

f i01

)α
= wi0t,

since w =
tµ

fα1
.

Let us de�ne the morphism φ : B[t]→ B[v] by

φ(t) =
vα

wi0
.

Arakelov inequalities and semistable families of curves
uniformized by the unit ball
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1.1. Constructions of cyclic coverings

Since

φ(tµ − wfα1 ) =
vαµ − wi0µ+1fα1

wi0µ
=
vαµ − wj0αfα1

wi0µ
,

the image of the ideal generated by tµ−wfα1 by the map φ belongs to the ideal
generated by vµ − wj0f1, and one has an induced morphism:

B[t]/(tµ − wfα1 )→ B[v]/(vµ − wj0f1).

We de�ne:
(A′j)nor := B[v]/(vµ − wj0f1),

and let us prove that it is normal. We have the map

f : Spec (B[t]/(tµ − wfα1 ))→ U,

see De�nition 1.9, and the map

g : Spec
(
B[v]/(vµ − wj0f1)

)
→ Spec (B[t]/(tµ − wfα1 )) ,

which is induced by φ : B[t] → B[v]. For x ∈ U we choose f2, ..., fn such
that wj0f1, f2, ..., fn is a local parameter system at x. Then, v, f2, ..., fn is a
local parameter system at (f ◦ g)−1(x). Therefore, Spec (B[v]/(vµ − wj0f1)) is
smooth and so it is normal. In other words, (A′j)nor is normal.

Let k ∈ {0, 1, ..., µ− 1} and let kα = µak + rk be the Euclidean division of
kα by µ, then:

ak =

[
kα

µ

]
.

One should note that:

tk =

(
vα

wi0

)k
=
vµak+rk

wi0k
=
fak1 wakj0vrk

wi0k
= wakj0−i0kfak1 vrk ,

tkf−ak1 = λrkv
rk , λrk ∈ B∗.

Now we remark that when k describes the set {0, 1, ..., µ− 1} then rk de-
scribes the same set. Indeed, let us reduce the equation kα = µak + rk modulo
µ. One gets kα ≡ rk (mod µ). Since, j0α − µi0 = 1 one has that α modulo µ
is a unit, so the set of values of rk is {0, 1, ..., µ− 1} .

Since both k and rk describe the set {0, 1, ..., µ− 1} , we get:

(A′j)nor = B[v]/(vµ − wj0f1) =

µ−1⊕
i=0

Bvi =

µ−1⊕
i=0

Bλiv
i =

µ−1⊕
i=0

Btif
−[ iα

µ
]

1 ,

and on (A′j)nor one has
tµf−α1 = u0ξ

j ∈ B∗. (1.11)
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1. Cyclic coverings

Now, we want to prove that (A′j)nor is the normalization of A′j. In other
words, we will show that (A′j)nor is the integral closure of A′j in the �eld of
fractions Frac(A′j).

Since A′j ∼=
⊕µ−1

i=0 Bt
i and (A′j)nor

∼=
⊕µ−1

i=0 Bt
if
−[ iα

µ
]

1 one has the inclusion:

A′j ↪→ (A′j)nor.

So,
Frac(A′j) ⊆ Frac((A′j)nor).

On the other hand, since f1 ∈ B one has:

(A′j)nor ⊆ Frac(A′j)

and
Frac((A′j)nor) ⊆ Frac(A′j).

Hence,
Frac(A′j) ∼= Frac((A′j)nor).

Since (A′j)nor is normal, it is integrally closed in Frac(A′j). We denote by
A′j the integral closure of A′j in Frac(A′j). The inclusion A

′
j ↪→ (A′j)nor implies

that:
A′j ⊆ (A′j)nor in Frac(A′j).

Now, we will show that (A′j)nor is integral over A
′
j. We have to show that

all generators of (A′j)nor =
⊕µ−1

i=0 Bt
if
−[ iα

µ
]

1 are roots of monic polynomials with
coe�cients in A′j. Let us �x i ∈ {0, 1, ..., µ− 1} and set:

xi = tif
−[ iα

µ
]

1 .

Let us note that:

xµi = (tif
−[ iα

µ
]

1 )µ = (tµf−α1 )if
−µ[ iα

µ
]+iα

1 ,

and bµ = f
−µ[ iα

µ
]+iα

1 ∈ B.
Now, let pi(x) = xµ−bµ(tµf−α1 )i. One has that bµ(tµf−α1 )i = bµ(u0ξ

j)i ∈ B,
hence pi(x) is a polynomial with coe�cients in A′j. It is obvious that xi is a
root of the polynomial pi(x). Hence, (A′j)nor is integral over A

′
j. In other words,

(A′j)nor is in the integral closure of A′j in Frac(A′j). Hence, (A′j)nor ⊆ A′j and

(A′j)nor = A′j.

Therefore, (A′j)nor is the normalization of A′j. Finally,

A′nor =
e−1∏
j=0

(A′j)nor =
e−1∏
j=0

B[v]/(vµ − uj00 ξj0jf1) ∼=
e−1∏
j=0

µ−1⊕
i=0

Btif
−[ iα

µ
]

1 .

Arakelov inequalities and semistable families of curves
uniformized by the unit ball
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1.1. Constructions of cyclic coverings

Claim 1.4. In the previous notations, A ∼= A′nor.

Proof. We have:

A =
ν−1⊕
i=0

Btif
−[

iα1
ν

]

1 (1.12)

and

A′nor =
e−1∏
j=0

(A′j)nor
∼=

e−1∏
j=0

µ−1⊕
i=0

Btif
−[ iα

µ
]

1 .

Let us de�ne a map ϕ : A→ A′nor by:

ϕ

(
tif
−[

iα1
ν

]

1

)
=
(
uk0t

pf
−[ pα

µ
]

1 , uk0ξ
ktpf

−[ pα
µ

]

1 , uk0ξ
2ktpf

−[ pα
µ

]

1 ..., uk0ξ
(e−1)ktpf

−[ pα
µ

]

1

)
,

where the right hand side is an e-tuple and i = kµ+p is the Euclidean division
of i by µ. Then, k ∈ {0, ..., e− 1} and p ∈ {0, 1, ..., µ− 1}.

Let us check that ϕ is a well de�ned morphism of algebras, i.e. that for all
i, j ∈ {0, ..., ν − 1} one has:

ϕ

(
tif
−[

iα1
ν

]

1 · tjf−[
jα1
ν

]

1

)
= ϕ

(
tif
−[

iα1
ν

]

1

)
· ϕ
(
tjf
−[

jα1
ν

]

1

)
. (1.13)

Let us �x notations which will be used in the rest of the proof. Let i = kµ+p
and j = lµ+ q be the Euclidean divisions of i and j by µ. We will distinguish
two cases. The �rst one for i+ j < ν and the second for i+ j ≥ ν.

1. Let us suppose that i+j < ν and i+j = mµ+r is the Euclidean division
of i+ j by µ. Then by (1.6) one gets:

ϕ

(
tif
−[

iα1
ν

]

1 · tjf−[
jα1
ν

]

1

)
= ϕ

(
bijt

i+jf
−[

(i+j)α1
ν

]

1

)
=
(
biju

m
0 t

rf
−[ rα

µ
]

1 , ..., biju
m
0 ξ

m(e−1)trf
−[ rα

µ
]

1

)
.

(a) Let us suppose that p + q < µ, then one gets that k + l = m and
p+ q = r. Hence,

ϕ

(
tif
−[

iα1
ν

]

1

)
· ϕ
(
tjf
−[

jα1
ν

]

1

)
=
(
uk0t

pf
−[ pα

µ
]

1 , ..., uk0ξ
k(e−1)tpf

−[ pα
µ

]

1

)
·
(
ul0t

qf
−[ qα

µ
]

1 , ..., ul0ξ
l(e−1)tqf

−[ qα
µ

]

1

)
=
(
um0 t

rf
−[ pα

µ
]−[ qα

µ
]

1 , ..., um0 ξ
m(e−1)trf

−[ pα
µ

]−[ qα
µ

]

1

)
.

From the equation (1.6) one gets:

f
−[

(kµ+p)α
µ

]−[
(lm+q)α

µ
]

1 = bijf
−[

(mµ+r)α
µ

]

1

18



1. Cyclic coverings

which yields:

f
−[ pα

µ
]−[ qα

µ
]

1 = bijf
−[ rα

µ
]

1 .

So, we get that the equality (1.13) holds in this case.

(b) Now, if p + q ≥ µ then one has p + q = µ + r1 where r1 < µ and
i + j = (k + l + 1)µ + r1, which implies that k + l + 1 = m and
r1 = r. Then one has:

ϕ

(
tif
−[

iα1
ν

]

1

)
· ϕ
(
tjf
−[

jα1
ν

]

1

)
=
(
uk0t

pf
−[ pα

µ
]

1 , ..., uk0ξ
k(e−1)tpf

−[ pα
µ

]

1

)
·
(
ul0t

qf
−[ qα

µ
]

1 , ..., ul0ξ
l(e−1)tqf

−[ qα
µ

]

1

)
=
(
um−1

0 trtµf
−[ pα

µ
]−[ qα

µ
]

1 , ..., um−1
0 ξ(m−1)(e−1)trtµf

−[ pα
µ

]−[ qα
µ

]

1

)
.

The equation (1.6) implies that:

f
−[ pα

µ
]−[ qα

µ
]

1 = bijf
−α
1 f

−[ rα
µ

]

1 .

Now, using the fact that on (A′s)nor for s ∈ {0, ..., e− 1} one has

tµf−α1 = u0ξ
s,

we get:

ϕ

(
tif
−[

iα1
ν

]

1

)
· ϕ
(
tjf
−[

jα1
ν

]

1

)
=
(
um−1

0 trtµf
−[ pα

µ
]−[ qα

µ
]

1 , ..., um−1
0 ξ(m−1)(e−1)trtµf

−[ pα
µ

]−[ qα
µ

]

1

)
=
(
um−1

0 trtµbijf
−α
1 f

−[ rα
µ

]

1 , ..., um−1
0 ξ(m−1)(e−1)trtµbijf

−α
1 f

−[ rα
µ

]

1

)
=
(
biju

m
0 t

rf
−[ rα

µ
]

1 , ..., biju
m
0 ξ

m(e−1)trf
−[ rα

µ
]

1

)
.

2. Let us now suppose that i+j ≥ ν. Let i+j−ν = cµ+d be the Euclidean
divisions of i + j − ν by µ. We have i + j = (c + e)µ + d. By (1.7 ) and
(1.11) one has:

ϕ

(
tif
−[

iα1
ν

]

1 · tjf−[
jα1
ν

]

1

)
= ϕ

(
bijut

i+j−νf
−[

(i+j−ν)α1
ν

]

1

)
= ϕ

(
bijut

cµ+df
−[

(cµ+d)α
µ

]

1

)
=

(
bijuu

c
0t
df
−[ dα

µ
]

1 , ..., bijuu
c
0ξ
c(e−1)tdf

−[ dα
µ

]

1

)
We will again distinguish two cases:

Arakelov inequalities and semistable families of curves
uniformized by the unit ball
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1.1. Constructions of cyclic coverings

(a) The �rst case is the one where p + q < µ. Then from i + j =
(k + l)µ + p + q one gets k + l = c + e and d = p + q. Also, using
(1.7) one gets:

f
−[ pα

µ
]−[ qα

µ
]

1 = bijf
−[ dα

µ
]

1 .

Therefore,

ϕ

(
tif
−[

iα1
ν

]

1

)
· ϕ
(
tjf
−[

jα1
ν

]

1

)
=
(
uk0t

pf
−[ pα

µ
]

1 , ..., uk0ξ
k(e−1)tpf

−[ pα
µ

]

1

)
·
(
ul0t

qf
−[ qα

µ
]

1 , ..., ul0ξ
l(e−1)tqf

−[ qα
µ

]

1

)
=
(
uc+e0 tdf

−[ pα
µ

]−[ qα
µ

]

1 , ..., uc+e0 ξ(c+e)(e−1)tdf
−[ pα

µ
]−[ qα

µ
]

1

)
=

(
bijuu

c
0t
df
−[ dα

µ
]

1 , ..., bijuu
c
0ξ
c(e−1)tdf

−[ dα
µ

]

1

)
where the last equality holds since ue0 = u and ξe = 1.

(b) For p + q ≥ µ we take p + q = µ + r1, where r1 < µ, and we get
i+ j = (k+ l+ 1)µ+ r1. Hence, c+ e = k+ l+ 1 and d = r1. Using
(1.7) one has:

f
−[ pα

µ
]−[ qα

µ
]

1 = bijf
−α
1 f

−[ dα
µ

]

1 .

Repeating the same arguments as before one gets that the equality
(1.13) holds.

Therefore, the map ϕ is a well de�ned morphism of B-algebras between A
and A′nor. Let us show that ϕ is a surjective morphism. In order to do that
we will show that for every element which generates the B-algebra A′nor, i.e.(

0, ..., tjf
−[ jα

µ
]

1 , ..., 0

)
j ∈ {0, 1, ..., µ−1}, there are elements ai ∈ B such that:

ϕ

(
ν−1∑
i=0

ait
if
−[

iα1
ν

]

1

)
=

(
0, ..., tjf

−[ jα
µ

]

1 , ..., 0

)
, (1.14)

where the vector on the right-hand side has non-zero coordinate only on d-th
place, where d ∈ {0, ..., e− 1}. We suppose that d and j are �xed. One should
note that for i ∈ {0, 1, ..., ν − 1}:

ϕ

(∑
ait

if
−[

iα1
ν

]

1

)
=

(∑
aiu

si
0 t

jif
−[

jiα

µ
]

1 ,
∑

aiu
si
0 ξ

sitjif
−[

jiα

µ
]

1 , ...,
∑

aiu
si
0 ξ

(e−1)sitjif
−[

jiα

µ
]

1

)
,

(1.15)
where i = siµ+ ji is the Euclidean division of i by µ. Comparing this equality
to the equality (1.14) one gets µ di�erent systems of equations:
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1. Cyclic coverings

◦ for k 6= j and k ∈ {0, 1, ..., µ− 1} we have systems:

M t(ak, aµ+k, ..., a(e−1)µ+k) = (0, ..., 0, ...0); (1.16)

◦ otherwise, we have the system:

M t(aj, aµ+j, ..., a(e−1)µ+j) = (0, ..., 1, ...0), (1.17)

where the right side vector has the only non-zero coordinate on d-th
place.

The matrix M is:

1 u0 u2
0 . . . ue−1

0

1 u0ξ u2
0ξ

2 . . . ue−1
0 ξe−1

...
...

...
...

1 u0ξ
d u2

0ξ
2d . . . ue−1

0 ξ(e−1)d

...
...

...
...

1 u0ξ
e−1 u2

0ξ
2(e−1) . . . ue−1

0 ξ(e−1)(e−1)


.

and

det M = u
e(e−1)

2
0

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 . . . 1
1 ξ ξ2 . . . ξe−1

...
...

...
1 ξd ξ2d) . . . ξ(e−1)d

...
...

...
1 ξe−1 ξ2(e−1) . . . ξ(e−1)(e−1)

∣∣∣∣∣∣∣∣∣∣∣∣∣
= u

e(e−1)
2

0

∏
0≤k<l≤e−1

(ξl − ξk),

where the last equality is the computation of the Vandermonde determinant.
Obviously, det M is invertible, therefore the system (1.17) has a unique solu-
tion. Hence, the morphism ϕ is surjective. Repeating the same arguments one
can prove that Ker ϕ = {0}. Therefore, the morphism ϕ is an isomorphism
between the �nitely generated B-algebras A and A′nor.

The last step that needs to be proved is that the decomposition (1.12) is
the decomposition of π∗OW (U) into isotypical components for the action by
the cyclic automorphism group G = 〈σ〉 of W.

Let (x1, x2, ..., xn) be a local system of coordinates on U. Let U be small
enough, then π−1(U) ∼= U ×G. Then the action of G on π−1(U) is given by:

σ.(x1, x2, ..., xn, g) = (x1, x2, ..., xn, σg),

where g ∈ G. Therefore, the action of G on OW (π−1(U)) is given by:

σ.f =
ν−1∑
i=0

bi(ζt)
if
−[

iα1
ν

]

1 ,

Arakelov inequalities and semistable families of curves
uniformized by the unit ball
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1.1. Constructions of cyclic coverings

for a holomorphic function f =
∑ν−1

i=0 bit
if
−[

iα1
ν

]

1 ∈ OW (π−1(U)). The eigenval-
ues of this action are {1, ζ, ζ2, ..., ζν−1} and an easy calculation shows that the

space of eigenvectors for the eigenvalue ζj is generated by the vector tjf
−[

jα1
ν

]

1 ,
i.e. L(−j) are the isotypical components for the action by the cyclic automor-
phism group G.

Remark 1.10. Since A is the normalization of A′, one gets that SpecXA is
the normalization of W ′ = SpecXA′. Then by De�nition 1.9 one gets that W
is isomorphic to SpecXA.

Lemma 1.5. In the previous notations, let Γ =
∑

αi
ν
6∈ZDi. The divisor Γ is

the support of the branch locus of the cyclic covering W .

Proof. We recall that D =
k∑
j=1

αjDj. Let D̃ = D − νD̂, where D̂ =
∑
αj≥ν

Dj.

Let L′ = L(−D̂), then we have:

L′ν = Lν(−νD̂) = OX(D)⊗OX(−νD̂) = OX(D̃).

Also, we have:

L′(−i) := (L′)−i ⊗OX

([
iD̃

ν

])
= L−i ⊗OX(iD̂)⊗OX

([
iD − iνD̂

ν

])

= L−i ⊗OX(−iD̂ ⊗ iD̂)⊗OX
([

iD

ν

])
= L−i ⊗OX

([
iD

ν

])
= L(−i).

Then, W ∼= SpecX
⊕ν−1

i=0 L(−i) ∼= SpecX
⊕ν−1

i=0 L
′(−i). We can repeat this pro-

cess until we get an e�ective divisor D̃ whose coe�cients are less than ν.

The divisor D̃ is a divisor whose support is Γ, since D̃ =
m∑
j=1

βjDj, where

0 < βj ≤ ν − 1 are the remainders of the Euclidean division of αj by ν and
m ≤ k, up to reordering the Dj. So, the branch locus is contained in the
support of the divisor Γ.

We should prove now that the cyclic covering W is rami�ed over every
component of D̃. Locally, on some small open set U ⊂ X\Sing(D̃) we can
suppose that D̃ contains just one component βjDj, j ∈ {1, ...,m}. Let fj be a
local equation of Dj. We suppose that gcd(ν, βj) = ej. We set µj =

ν

ej
. Then,

as we saw in the course of the proof of Claim 1.3, after normalization, the
cyclic covering will locally be:

Spec

(
ej−1∏
k=0

B[v]/(vµj − wkfj)

)
,
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1. Cyclic coverings

where wk ∈ B∗. Hence, it is obvious that the cyclic covering will not be étale
over Dj, for j ∈ {1, ...,m}. Therefore, the cyclic covering is rami�ed over all
the components of D̃ and Γ is the support of the branch locus of the cyclic
covering.

Remark 1.11. In the previous notation, the cyclic covering is not rami�ed if
all the coe�cients αj are divisible by ν.

Proposition 1.6. The cyclic covering π : W → X is étale over X−Γ and W
is non-singular over X − Sing(Γ).

Proof. This is a direct consequence of Claim 1.3.

De�nition 1.12. Let X be a complex manifold of dimension n. A reduced
divisor D =

∑
iDi on X is a normal crossings divisor if each component Di is

smooth and D is de�ned in a neighborhood of any point by an equation of the
type:

z1z2...zk = 0, k ≤ n,

where z1, z2, ..., zn is a local coordinate system on X. A non-reduced divisor
D =

∑
i αiDi, αi 6= 0 on X is a normal crossings divisor if Dred :=

∑
iDi is a

normal crossings divisor.

Remark 1.13. In the literature, the de�nition given above sometimes corre-
sponds to the de�nition of a simple normal crossing divisor.

Remark 1.14. In the notations of Claim 1.3, let us assume thatD (the branch
divisor of the cyclic covering) is a smooth divisor on the open set U and let
D′ be a divisor on U such that D + D′ is a normal crossing divisor. Then,
following the proof of Claim 1.3 one gets that π∗(D+D′) is a normal crossing
divisor on π∗(U).

Now, we note that when the branch divisor of a cyclic covering is a normal
crossing divisor then the singularities on the cyclic covering are not too �bad�,
namely they are rational singularities.

De�nition 1.15. ([76] Lemma 1) A variety W has rational singularities if the
minimal (or any) desingularization µ : W̃ → W satis�es µ∗OW̃ = OW .

Lemma 1.7. ([76] Lemma 2) Let X be a projective complex manifold. Let
π : W → X be a �nite morphism, where W is a normal complex projective
variety. Let us suppose that the branch locus of the map π : W → X is a
normal crossing divisor, then W has only rational singularities.

Arakelov inequalities and semistable families of curves
uniformized by the unit ball
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1.2. Logarithmic di�erential forms

Remark 1.16. We can construct cyclic coverings of complex manifolds in a
more geometric way. This construction can be done as follows:
Let X be a connected complex manifold, ν ≥ 1 a �xed integer and D an
e�ective divisor on X. Let L be a line bundle on X such that Lν ' OX(D)
and s ∈ Γ(X,OX(D)) a section such that div(s) = D. If D = 0, then s is a
constant function.

Let L be the total space of the line bundle L and p : L→ X be the bundle
projection. Then, for some point l ∈ L we have p(l) = x ∈ X and the �ber of
the pull-back line bundle p∗L at the point l is (p∗L)l = Lx. This implies that
(l, l) ∈ (p∗L)l. Then, the tautological section t of the bundle p∗L is de�ned as
t(l) = (l, l). The zero divisor of the section p∗s−tν de�nes an analytic subspace
W of L, whose normalization is the degree-ν cyclic covering of X de�ned by
the section s.

1.2 Logarithmic di�erential forms

In this section we will de�ne several objects which will form the basis of techni-
cal tools used in the chapters that come. We will de�ne the sheaf of logarithmic
di�erential forms on a manifold, then families of varieties over a curve and at
the end the sheaf of relative logarithmic forms of a family of varieties.

De�nition 1.17. ([14],p.72) Let X be a complex manifold of dimension n and

D =
k∑
j=1

αjDj be a normal crossing divisor on X. Let X0 = X\Supp(D) and

let j : X0 → X be the inclusion of X0 into X. For U an open subset of X, we
de�ne :

Γ(U,Ωp
X(logDred)) = {α ∈ j∗Ωp

X0
|α and dα have simple poles along D}.

The sheaf Ωp
X(logDred) is the sheaf of p-di�erential forms with logarithmic

poles along the divisorD. For simplicity we write Ωp
X(logD) instead of Ωp

X(logDred).

Properties:
1. Ωp

X(logD) = ∧pΩ1
X(logD);

2. Ωp
X(logD) is a locally free sheaf:

For x ∈ X, such that x ∈ Dj for j = 1, 2, ..., r and x /∈ Dj for j = r + 1, ..., k,
let z1, ...zn be local parameters at x such that Dj is de�ned as zj = 0 for
j = 1, 2, ..., r.
Let:

δj =


dzj
zj
, j = 1, ..., r;

dzj, j = r + 1, ..., n.
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1. Cyclic coverings

Then, the sheaf Ωp
X(logD) has a free system of generators {δI ,#I = p} given

as:

δI = δj1 ∧ ... ∧ δjp ,

for I = {j1, ...jp} ⊂ {1, 2, ..., n} with j1 < ... < jp.

3. Ωn
X(logD) = ωX ⊗OX(D), where ωX is the canonical sheaf of X :

Locally, let D =
∑r

j=1 Dj for 1 ≤ r ≤ n and in local coordinates we can sup-
pose that Dj = {zj = 0}. Then, as we explained before the sheaf Ωp

X(logD)
of p-di�erential forms with logarithmic poles along D is locally generated by
wedges of p elements in

dz1

z1

,
dz2

z2

, ...,
dzr
zr
, dzr+1, ..., dzn.

In particular Ωn
X(logD) will be generated by

dz1

z1

∧ dz2

z2

∧ ... ∧ dzr
zr
∧ dzr+1... ∧ dzn =

1

z1...zr
dz1 ∧ ... ∧ dzr ∧ ... ∧ dzn.

Since, locally dz1∧ ...∧dzk∧ ...∧dzn generates ωX and 1
z1...zr

generates OX(D),
the equality holds.

Lemma 1.8. Let Y be a smooth projective curve and let ϕ : Y ′ → Y be a
smooth rami�ed covering of degree ν. Let S be the set of branch points on Y,
possibly empty, i.e. ϕ may be an étale covering.

1. If T ⊃ S is a �nite set of points on Y containing S, then we have:

Ω1
Y ′(logϕ∗T ) = ϕ∗Ω1

Y (log T );

2. If T ⊂ S, then:

ϕ∗Ω1
Y (log T ) ⊂ Ω1

Y ′(logϕ∗T ).

Arakelov inequalities and semistable families of curves
uniformized by the unit ball
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1.2. Logarithmic di�erential forms

Proof. 1. By the Hurwitz formula we have:

Ω1
Y ′(logϕ∗T ) = Ω1

Y ′ ⊗OY ′((ϕ∗T )red)

= ϕ∗Ω1
Y ⊗OY ′

 ∑
ϕ(p′)∈S

(ep′ − 1)p′

⊗OY ′ ((ϕ∗T )red)

= ϕ∗Ω1
Y ⊗OY ′

 ∑
ϕ(p′)∈S

ep′p
′

⊗OY ′
 ∑
ϕ(p′)∈T\S

p′


= ϕ∗Ω1

Y ⊗ ϕ∗OY (S)⊗OY ′

 ∑
ϕ(p′)∈T\S

p′


= ϕ∗Ω1

Y (logS)⊗ ϕ∗
OY

 ∑
p∈T\S

p


= ϕ∗Ω1

Y (log T ),

where ep′ are rami�cation indices at the points of Y ′ which lie over S.
The rami�cation indices at the points of Y ′ which lie over T\S are equal
to 1 which implies the last equalities.

2. In the same fashion as above, we get:

Ω1
Y ′(logϕ∗T ) = ϕ∗Ω1

Y ⊗OY ′

 ∑
ϕ(p′)∈T

ep′p
′

⊗OY ′
 ∑
ϕ(p′)∈S\T

(ep′ − 1)p′


= ϕ∗Ω1

Y (log T )⊗OY ′

 ∑
ϕ(p′)∈S\T

(ep′ − 1)p′

 .

De�nition 1.18. Let X be a manifold of dimension n + 1 and Y a smooth
curve. Let f : X → Y be a proper surjective map whose �bers Xy =
f−1(y), y ∈ Y, are connected n-varieties, then the map f is called a family
of n-varieties. The curve Y is called the base of the family f : X → Y . If X
and Y are both projective, then f : X → Y is called a projective family of
n-varieties.

De�nition 1.19. If for some x ∈ Xy, y ∈ Y the map dfx fails to be surjective
then the �ber Xy is called a singular �ber of the family f : X → Y. Otherwise
Xy is a smooth �ber. If all �bers in the family are smooth then we say that the
family f : X → Y is smooth, or it is a family of manifolds. The set of all points
y ∈ Y such that the �ber Xy is a singular �ber, is called the discriminant locus
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1. Cyclic coverings

of the family f : X → Y. The components of a divisor D on X, whose support
lies in �bers of the family, are called the vertical components of the divisor D.
Those components of D which map onto the basis are called the horizontal
components of D.

We have to underline the fact that a big part of the theory stated here
works also in the case when the base of the family has a bigger dimension than
1. Here and through the rest of the thesis, we stick to the case when the base
of a family is a curve.

De�nition 1.20. Associated with a smooth family f : X → Y, the sheaf of
relative di�erential forms on X, denoted Ω1

X/Y is de�ned by the exact sequence:

0→ f ∗Ω1
Y → Ω1

X → Ω1
X/Y → 0.

The sheaf of p-relative di�erential forms is de�ned as:

Ωp
X/Y := ∧pΩ1

X/Y .

De�nition 1.21. Di�erentiating along the �bers gives a di�erential d : Ωp
X/Y →

Ωp+1
X/Y and the complex (Ω•X/Y , d) is called the relative de Rham complex. The

relative canonical bundle of the smooth family f : X → Y is de�ned as:

ωX/Y := ωX ⊗ f ∗ω−1
Y ,

where ωX and ωY are the canonical sheaves of X and Y.

Now we give a more algebraic point of view on the sheaf of relative p-
di�erential forms. The main reference for this part is a paper of Katz [40] �1.3
and �4.1.3 from [82].

Let 0→ G → H → F → 0 be an exact sequence of locally free sheaves on
a complex manifold X. Let

∧•H and
∧•H[−m] be the exterior algebras of

a locally free sheaf H, where the second exterior algebra is −m places shifted
with respect to the �rst.

The Koszul �ltration of
∧•H is de�ned as:

Fm

•∧
H = Im

(
m∧
G ⊗

•∧
H[−m]→

•∧
H

)
,

where in the p-th level one has:

Fm

p∧
H =

m∧
G ∧

p−m∧
H.

The graded elements of the �ltration are de�ned:

Grm(
•∧
H) = Fm/Fm+1(

•∧
H) =

m∧
G ⊗

•∧
F [−m],

Arakelov inequalities and semistable families of curves
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1.2. Logarithmic di�erential forms

and in the p-th level one has:

Grm(

p∧
H) = Fm/Fm+1(

p∧
H) =

m∧
G ⊗

p−m∧
F .

We have the following exact sequence associated to this �ltration:

0→ Gr1 → F 0/F 2 → Gr0 → 0,

or

0→ G ⊗
•∧
F [−1]→ F 0/F 2(

•∧
H)→

•∧
F → 0. (1.18)

Then in p-th level of the exact sequence (1.18) we get:

0→ G ⊗ ∧p−1F → (F 0/F 2)p → ∧pF → 0. (1.19)

Let f : X → Y be a smooth family of varieties (equivalently, a family of
manifolds) over a curve Y. Let us apply the above formalism to the exact
sequence:

0→ f ∗Ω1
Y → Ω1

X → Ω1
X/Y → 0.

The sequence (1.18) is now:

0→ f ∗Ω1
Y ⊗

•∧
Ω1
X/Y [−1]→ F 0/F 2(Ω•X)→

•∧
Ω1
X/Y → 0. (1.20)

One can easily see that (F 0/F 2)p = Ωp
X/(∧2f ∗Ω1

Y ⊗Ωp−2
X/Y ). Since Y is a curve,

one gets (F 0/F 2)p = Ωp
X and �nally we get the exact sequence:

0→ f ∗Ω1
Y ⊗ Ωp−1

X/Y → Ωp
X → Ωp

X/Y → 0. (1.21)

Remark 1.22. From now on, we will use the sequence (1.21) in order to de�ne
the sheaf Ωp

X/Y .

Let us consider the exact sequence:

0→ f ∗Ω1
Y ⊗ Ωn

X/Y → Ωn+1
X → Ωn+1

X/Y → 0.

Using the fact that the relative dimension of the family is n one gets:

Ωn+1
X/Y = 0.

Therefore,
Ωn
X/Y = ωX ⊗ f ∗ω−1

Y = ωX/Y .

The sheaf of relative di�erential forms can be de�ned also for non-smooth
families. Let f : X → Y be a family of n-varieties with discriminant locus a
�nite set S ⊂ Y and we will suppose that ∆ = (f ∗S)red is a normal crossing
divisor. We de�ne the sheaf of relative logarithmic 1-forms of the family f :
X → Y by the sequence:

0→ f ∗Ω1
Y (logS)→ Ω1

X(log ∆)→ Ω1
X/Y (log ∆)→ 0. (1.22)
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1. Cyclic coverings

De�nition 1.23. Let f : X → Y be a family of n-varieties over a curve Y
with discriminant locus S. We assume that ∆ = (f ∗S)red is a normal crossing
divisor. For p ≤ n, the sheaf Ωp

X/Y (log ∆) of relative logarithmic p-di�erential
forms of the family is de�ned as

Ωp
X/Y (log ∆) := ∧pΩ1

X/Y (log ∆).

The relative canonical bundle of the family is de�ned as:

ωX/Y := ωX ⊗ f ∗ω−1
Y ,

where ωX and ωY are the canonical sheaves of X and Y.

As before, we apply the Koszul �ltration to the sequence (1.22) and to the
complex

∧•Ω1
X(log ∆), hence we get the exact sequence:

0→ Ωp−1
X/Y (log ∆)⊗ f ∗Ω1

Y (logS)→ Ωp
X(log ∆)→ Ωp

X/Y (log ∆)→ 0. (1.23)

Remark 1.24. From now on, we will use the exact sequence (1.23) in order
to de�ne the sheaf Ωp

X/Y (log ∆).

Let us de�ne semistable families of varieties and give some basic properties
of sheaves of relative logarithmic forms of a semistable family. Some other
important properties about semistable families will be discussed in Section
3.1.

De�nition 1.25. A projective family of varieties f : X → Y over a curve Y is
a semistable family if all �bers are reduced and singular �bers of the family are
normal crossing divisors. In the case when dim X = 2, i.e. when f : X → Y is
a semistable family of curves, one requires the additional condition that there
is no (−1)-curves in the singular �bers.

Lemma 1.9. Let f : X → Y be a semistable family of n-varieties over a curve
with discriminant locus S ⊂ Y. Let ∆ = f−1S. One has:

Ωn
X/Y (log ∆) = ωX/Y .

Proof. We have to note that for p = n + 1, since the relative dimension of
the family is n, then Ωn+1

X/Y (log ∆) = 0 and we get from the previous exact
sequence:

Ωn+1
X (log ∆) ' Ωn

X/Y (log ∆)⊗ f ∗Ω1
Y (logS),

Ωn
X/Y (log ∆) = Ωn+1

X (log ∆)⊗ f ∗Ω1
Y (logS)−1.

By property 3) from the beginning of the section, one has:

Ωn+1
X (log ∆) = ωX ⊗OX(∆),

Ω1
Y (logS) = ωY ⊗OY (S),

and we get: Ωn
X/Y (log ∆) = ωX ⊗ f ∗ω−1

Y ⊗OX(∆)⊗OX(−∆) = ωX/Y .

Arakelov inequalities and semistable families of curves
uniformized by the unit ball
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1.2. Logarithmic di�erential forms

Remark 1.26. It is important to note that for a divisor T ⊂ Y which contains
the discriminant locus S of the semistable family f : X → Y we can also de�ne
the sheaf Ωp

X/Y (log ∆′), where ∆′ = f ∗T, by the sequence:

0→ Ωp−1
X/Y (log ∆′)⊗ f ∗Ω1

Y (log T )→ Ωp
X(log ∆′)→ Ωp

X/Y (log ∆′)→ 0.

Then arguing as above, we get: Ωn
X/Y (log ∆′) = ωX/Y .

De�nition 1.27. Let f : X → Y be a map between two topological spaces.
We de�ne the k-th derived functor from the category of sheaves on X to the
category of sheaves on Y to be the functor:

Rkf∗ : Sh(X)→ Sh(Y )

F 7→ Rkf∗F ,

where Rkf∗F is the sheaf associated to the presheaf

U → Hk(f−1(U),F|f−1(U)).

The following theorems are Lemma 1.2, Lemma 1.3 from [21] and Lemma
3.21 from [20]. They describe the direct images of sheaves of logarithmic
di�erential forms on �nite coverings.

Theorem 1.10. Let X be a complex projective manifold and π : W1 → X
be a �nite covering such that W1 is normal, D a divisor on X with normal
crossings which contains the branch divisor of the covering, µ : W → W1 a
desingularization map, τ : W → X the corresponding composition map and
assume that ∆ = τ ∗D is a normal crossing divisor. Then :

1. τ∗Ω
p
W (log ∆) = Ωp

X(logD)⊗ τ∗OW ;
2. Rqτ∗Ω

p
W (log ∆) = 0, Rqµ∗Ω

p
W (log ∆) = 0, Rqτ∗(OW ) = 0, for q > 0.

Theorem 1.11. (Hurwitz's general formula) Let X be a complex projective
manifold and π : W1 → X be a �nite covering, D the branch divisor of the
covering with normal crossings on X, µ : W → W1 a desingularization map,
τ : W → X the corresponding composition map and assume that ∆ = τ ∗D is
a normal crossing divisor. Then, one has an inclusion:

τ ∗Ωp
X(logD) ⊂ Ωp

W (log ∆),

which is an isomorphism over the open set U of W, where the map τ : W → X
is �nite.

30



1. Cyclic coverings

1.3 Cohomology of cyclic coverings

Let f : X → Y be a semistable family of n-folds over a curve Y. We will
suppose that the map f : X → Y is smooth over Y \S, where S is a �nite set
of points on Y .

Let M be an invertible sheaf on X, let ν ≥ 2 be a positive integer and

let D =
k∑
j=1

αjDj be a normal crossing divisor such that Mν ∼= OX(D). Let

π : W1 → X be the ν-cyclic covering over X obtained by taking the ν-th root
out of D. In particular, W1 is normal. Let µ : W → W1 be a desingularization
of the cyclic covering. We consider the induced maps τ = π ◦ µ and h = f ◦ τ .
Let T be the reduced divisor on Y, whose support is the union of S and
f(π(Sing(W1))). Let ∆ = f ∗T and let as before Γ be the reduced divisor

whose support consists of all components of D =
k∑
j=1

αjDj, whose coe�cients

are not divisible by ν.We recall that the divisor Γ is the support of the branch
locus of the cyclic covering W1, due to Lemma 1.5. We will assume that ∆ + Γ
is a normal crossing divisor, that ∆ and Γ have no common components and
that the desingularization µ is chosen such that τ ∗(∆+Γ) is a normal crossing
divisor.

Lemma 1.12. In the set up from the beginning of the section, the cyclic cov-
ering W1 has only rational singularities and µ∗OW = OW1 .

Proof. This is a consequence of the fact that the branch divisor D of the cyclic
covering W1 is a normal crossing divisor, therefore by the Lemma 1.7 one has
that W1 has only rational singularities and µ∗OW = OW1 .

Theorem 1.13. In the set up from the beginning of the section, we have:

τ∗Ω
p
W (log τ ∗(∆ + Γ)) =

ν−1⊕
i=0

Ωp
X(log(∆ + Γ))⊗M(−i),

Rqτ∗(Ω
p
W (log τ ∗(∆ + Γ))) = 0

for all p ≥ 0 and q > 0. Also, we have that: Rqµ∗OW = 0 for any q > 0.

Proof. The divisor τ ∗(∆+Γ) has normal crossings and onW1 we have at worst
rational singularities. By Lemma 1.12 we have: µ∗OW = OW1 . By Theorem
1.2 one has π∗OW1 =

⊕ν−1
i=0 M(−i). Hence,

τ∗OW = π∗µ∗OW = π∗OW1 =
ν−1⊕
i=0

M(−i),

and the theorem follows from Theorem 1.10.

Arakelov inequalities and semistable families of curves
uniformized by the unit ball
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In this part we will prove several lemmas about the cohomology of cyclic
coverings constructed over a semistable family. These lemmas are the relative-
case analogues of Lemma 3.16 d) and Lemma 3.22 in [20]. A sketch of the
proof in the relative case is given in the paper [78] Lemma 6.2. Using those
indications we prove these results in details.

Let us de�ne the sheaf Ωp
W/Y (log τ ∗(∆ + Γ)), by induction on p :

0→ Ωp−1
W/Y (log τ ∗(∆ + Γ))⊗ h∗Ω1

Y (log T )→ Ωp
W (log τ ∗(∆ + Γ))

→ Ωp
W/Y (log τ ∗(∆ + Γ))→ 0.

(1.24)

Lemma 1.14. In the previous notation, we have:

Rqτ∗(Ω
p
W/Y (log τ ∗(∆ + Γ))) = 0 for all p ≥ 0 and q > 0.

Proof. By Theorem 1.10 we have

Rqτ∗(Ω
p
W (log τ ∗(∆ + Γ))) = 0, for all p ≥ 0 and q > 0.

We will proceed by induction on the degree p of forms to prove the analogous
formula for the relative case.

For p = 0, we have:

Rqτ∗(Ω
p
W/Y (log τ ∗(∆ + Γ))) = Rqτ∗(OW ) = 0,∀q > 0,

by Theorem 1.10.
Now let us �x p 6= 0. The induction hypothesis will be that for all q > 0

Rqτ∗(Ω
p−1
W/Y (log τ ∗(∆ + Γ))) = 0.

The long exact sequence associated to the sequence (1.24) obtained by taking
τ∗ and the projection formula yield:

0 = Rqτ∗(Ω
p
W (log τ ∗(∆ + Γ)))→ Rqτ∗(Ω

p
W/Y (log τ ∗(∆ + Γ)))→

Rq+1τ∗

(
Ωp−1
W/Y (log τ ∗(∆ + Γ))⊗ h∗Ω1

Y (log T )
)

and

Rq+1τ∗

(
Ωp−1
W/Y (log τ ∗(∆ + Γ))⊗ h∗Ω1

Y (log T )
)

= Rq+1τ∗(Ω
p−1
W/Y (log τ ∗(∆ + Γ)))⊗ f ∗Ω1

Y (log T )

= 0.

Hence,
Rqτ∗(Ω

p
W/Y (log τ ∗(∆ + Γ))) = 0.
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Lemma 1.15. In the previous notation we have the decomposition:

τ∗Ω
p
W/Y (log τ ∗(∆ + Γ)) =

ν−1⊕
i=0

Ωp
X/Y (log(∆ + Γ))⊗M(−i) for all p ≥ 0.

Proof. By Theorem 1.13, we have:

τ∗Ω
p
W (log τ ∗(∆ + Γ)) =

ν−1⊕
i=0

Ωp
X(log(∆ + Γ))⊗M(−i).

The proof will be done by induction on the degree of the sheaf of relative
di�erential forms.

In the case when p = 0, we have:

τ∗OW = (π ◦ µ)∗OW = π∗(µ∗OW ).

On W1 we have at worst rational singularities, hence:

µ∗OW = OW1

and

τ∗OW = π∗OW1 =
ν−1⊕
i=0

M(−i).

Now, let us �x p 6= 0. The induction hypothesis will be:

τ∗Ω
p−1
W/Y (log τ ∗(∆ + Γ)) = Ωp−1

X/Y (log(∆ + Γ))⊗
ν−1⊕
i=0

M(−i).

The long exact sequence associated to the sequence (1.24) obtained by taking
τ∗ is:

0→τ∗(Ωp−1
W/Y (log τ ∗(∆ + Γ)⊗ h∗Ω1

Y (log T ))→ τ∗Ω
p
W (log τ ∗(∆ + Γ))

→ τ∗Ω
p
W/Y (log τ ∗(∆ + Γ))→ R1τ∗(Ω

p−1
W/Y (log τ ∗(∆ + Γ)))⊗ f ∗Ω1

Y (log T )→ ...

By Lemma 1.14 one has:

R1τ∗(Ω
p−1
W/Y (log τ ∗(∆ + Γ))) = 0.

This produces the short exact sequence:

0→ τ∗(Ω
p−1
W/Y (log τ ∗(∆ + Γ))⊗ f ∗Ω1

Y (log T )→ τ∗Ω
p
W (log τ ∗(∆ + Γ))

→ τ∗Ω
p
W/Y (log τ ∗(∆ + Γ))→ 0.

Arakelov inequalities and semistable families of curves
uniformized by the unit ball
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Using the induction hypothesis, for p− 1, we get:

0→

(
Ωp−1
X/Y (log(∆ + Γ))⊗

ν−1⊕
i=0

M(−i)

)
⊗ f ∗Ω1

Y (log T )→ Ωp
X(log(∆ + Γ))⊗

ν−1⊕
i=0

M(−i)

→ τ∗Ω
p
W/Y (log τ ∗(∆ + Γ))→ 0.

Therefore,

τ∗Ω
p
W/Y (log τ ∗(∆ + Γ)) =

Ωp
X(log(∆ + Γ)⊗

⊕ν−1
i=0 M(−i)

Ωp−1
X/Y (log(∆ + Γ))⊗ f ∗Ω1

Y (log T )⊗
⊕ν−1

i=0 M(−i)

= Ωp
X/Y (log(∆ + Γ))⊗

ν−1⊕
i=0

M(−i)

where the last equality comes from the de�nition of Ωp
X/Y (log(∆ + Γ)).

Lemma 1.16. In the previous notation, we have the decomposition:

τ∗Ω
p
W/Y (log τ ∗(∆)) = Ωp

X/Y (log ∆)⊕
ν−1⊕
i=1

Ωp
X/Y (log(∆ + Γi))⊗M(−i),

where Γi =
∑
αji

ν
/∈Z

Dj.

Proof. By the previous lemma, we have:

τ∗Ω
p
W/Y (log τ ∗(∆ + Γ)) =

ν−1⊕
i=0

Ωp
X/Y (log(∆ + Γ))⊗M(−i),

where Γ = Γ1 =
∑
αj
ν
/∈Z
Dj is the support of the branch locus of the cyclic

covering. Note that Γi ⊆ Γ for all i.
We will argue locally, outside of the singularities of D. Hence, we can

assume that on some small open set U ⊂ X\SingD, the divisor D = α1D1

where f1 = 0 is a local equation of D1.
Let li = φ · mi be a section of the sheaf Ωp

X/Y (log(∆ + Γ)) ⊗M(−i) such
that:

φ ∈ H0(U,Ωp
X/Y (log(∆ + Γ))),

and
mi ∈ H0(U,M(−i))

are local frames of M(−i) on U. In the course of the proof of Theorem 1.2
we saw that the space of sections of

⊕ν−1
i=0 M(−i) over U is isomorphic to the
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B-algebra
⊕ν−1

i=0 Bt
if
−[

iα1
ν

]

1 , where B = H0(U,OU) and tν −ufα1
1 = 0 is a local

equation of the cyclic covering with u ∈ B∗. Then, we can take

mi = tif
−[

iα1
ν

]

1 .

One has:
mν
i = uif

iα1−ν[
iα1
ν

]

1 .

We consider two cases:

1. For i such that ν - iα1, we have Γi = D1, so:

iα1 − ν[
iα1

ν
] 6= 0,mν

i |D = uif
iα1−ν[

iα1
ν

]

1 |D = 0,

since f1|D = 0. This implies mν
i |Γi = 0 and then mi|Γi = 0. So, li = φmi

has no poles over Γi since they will cancel with zeros of mi on Γi.

2. For every i such that ν | iα1, we have mν
i = ui, so mi is an invertible

function. In order that li has no pole along Γi, φ has to belong to
Ωp
X/Y (log(∆)).

Since, τ∗Ω
p
W/Y (log τ ∗(∆)) ⊂ τ∗Ω

p
W/Y (log τ ∗(∆ + Γ)) is the direct image of

the sheaf of forms without poles over τ ∗(Γ), then from the previous analysis
of the sheaf

ν−1⊕
i=0

Ωp
X/Y (log(∆ + Γ))⊗M(−i),

we conclude that forms which have no poles on Γ are those which lie in

Ωp
X/Y (log ∆)⊕

ν−1⊕
i=1

Ωp
X/Y (log(∆ + Γi))⊗M(−i).

Arakelov inequalities and semistable families of curves
uniformized by the unit ball
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Chapter 2

Local systems, variations of Hodge

structures and Higgs bundles

In this chapter we will give a general picture of the equivalence between local
systems, complex variations of Hodge structures and Higgs bundles on a Kähler
manifold. We will not explain in details proofs of the results, but rather explain
the connection between these notions which will be one of the basic tools used
in the next chapters. The main part of the theory stated here can be found in
[3], [10], [14], [67] and [81]. In the last section of this chapter we recall some
basic facts about Teichmüller space and Teichmüller curves. The aim of this
section will be to give the proof of one theorem of Möller which states that
if the Higgs �eld of a subvariation of the geometric variation of a semistable
family of curves is an isomorphism then the base curve is a Teichmüller curve
in the moduli space of curves of genus g, where g is the genus of a smooth �ber
of the family.

2.1 Hodge structures

Smooth projective varieties are Kähler since the Fubini-Study metric on pro-
jective space is Kähler and then the pull-back of a Kähler metric to a closed
complex projective submanifold is Kähler too. If a manifold is embedded in
projective space by means of the sections of a very ample line bundle L, then
its Kähler class associated to the pullback of the Fubini-Study metric is the
�rst Chern class c1(L) or the cycle class of hyperplane sections. It is impor-
tant to note that not all Kähler manifolds are projective, for example their
Kähler class is not an integral class in general. However, the existence of a
Kähler metric has a lot of consequences for the cohomology of a complex man-
ifold. We will recall here some important results for Kähler manifolds. Let us
�rst recall the de�nition of Hodge structures, since these structures lie on the
cohomologies of the Kähler manifolds.
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De�nition 2.1. (Hodge structures [81]) An integral Hodge structure of weight
k is given by a free abelian group VZ of �nite type, together with a decompo-
sition:

VC = VZ ⊗ C =
⊕
p+q=k

V p,q,

where V p,q are C-vector spaces, satisfying V p,q = V q,p. Given such a decompo-
sition, we de�ne the associated Hodge �ltration F •VC by

F pVC =
⊕
r≥p

V r,k−r.

It is a decreasing �ltration on VC which satis�es

F pVC ⊕ F q+1VC = VC.

The Hodge �ltration determines the Hodge decomposition by

V p,q = F pVC ∩ F qVC, p+ q = k.

Moreover, if there is a non-degenerate bilinear form Q on VC which is
symmetric for k even and alternating otherwise and which is integral on VZ,
i.e. Q : VZ × VZ → Z and which satis�es Hodge-Riemann conditions:

1. F pVC is Q-orthogonal to F q+1VC;
2. Q(

√
−1

p−q
v, v) > 0 for any nonzero vector v ∈ F pVC ∩ F qVC, p+ q = k;

then the bilinear form Q is called a polarization of the Hodge structure. Let
us sum this up by the next de�nition:

De�nition 2.2. ([81],�7.7) An integral polarized Hodge structure of weight
k is given by a Hodge structure (VZ, F

pVC) of weight k, together with a non-
degenerate bilinear form Q on VZ, which is symmetric if k is even, alternating
otherwise and satis�es Hodge-Riemann bilinear relations.

The well known examples are the Hodge structures on cohomology groups
of Kähler manifolds. Let us recall the theorem:

Theorem 2.1. (Hodge decomposition [81]) Suppose that X is a compact Kähler
manifold of dimension n. Then C∗ acts naturally on the cohomology of X, so
that

Hk(X,C) =
⊕
p+q=k

Hp,q,

for any positive integer k ≤ n, where the action of z ∈ C∗ on Hp,q is given by
multiplication by z−pz−q. Moreover, one has: Hp,q = Hq,p. There is a natural
identi�cation:

Hp,q = Hq(X,Ωp
X).

Arakelov inequalities and semistable families of curves
uniformized by the unit ball
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If we de�ne the decreasing �ltration:

F pHn(X,C) =
⊕
r≥p

Hr,n−r,

then we have :
Hp,q = F pHn(X,C) ∩ F qHn(X,C).

Let X be a Kähler manifold of dimension n with Kähler form ω. The
exterior product with ω de�nes an operator

L : Ak(X)→ Ak+2(X)

called the Lefschetz operator, where Ak(X) is the space of k-di�erential forms
on X. The cup product with the class [ω] de�nes the operator

L : Hk(X,R)→ Hk+2(X,R),

on the de Rham cohomology groups. Then, we have the operator

Ln−k : Hk(X,R)→ H2n−k(X,R).

This operator gives an intersection form on Hk(X,R), for k ≤ n de�ned as :

Q(α, β) = 〈Ln−kα, β〉 =

∫
X

ωn−k ∧ α ∧ β,

where α and β are representative forms of cohomology classes [α], [β] from
Hk(X,R) and 〈., .〉 stands for the pairing Hk(X,R)⊗H2n−k(X,R)→ R. For k
oddQ is alternating, otherwise it is symmetric. We have the induced Hermitian
form on Hk(X,C) de�ned as H(α, β) = ikQ(α, β). It satis�es relations:
R1) The Hodge decomposition is orthogonal for H;

R2) ip−q−k(−1)
k(k−1)

2 H(α, α) > 0 for a non-zero form α of type (p, q) from
Hk(X)prim = KerLn−k+1.

If [ω] is an integral class, X is a projective variety, and then Q takes integral
values on integral classes.

If we restrict the Hermitian form H on Hk(X)prim, then the relations R1
and R2 are called the Hodge-Riemann bilinear relations.

2.2 Local systems and complex variations of Hodge

structures

In this section we will de�ne local systems, then we will explain the relation
between local systems on a manifold and �nite dimensional representations of
the fundamental group of that manifold. Also, we will explain the equivalence
between local systems and bundles with a �at connection. At the end we will
de�ne variations of Hodge structures. For the �rst part the reference is the
book [69] �2.5 and the rest can be found in [3].
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De�nition 2.3. Let Y be a locally connected topological space. The constant
sheaf on Y with stalk F, is the sheaf whose space of sections over any open
connected subset U ⊂ X is isomorphic to F.

De�nition 2.4. A sheaf F on a locally connected topological space Y is a
locally constant sheaf if for every point x ∈ X there is a neighborhood U of x
such that the restriction of F to U is isomorphic to a constant sheaf.

De�nition 2.5. Let Y be a topological space. A space over Y is a topological
space X together with a continuous map p : X → Y. We say that X is a
cover of Y if for each point y of Y there is an open neighborhood U of y for
which p−1(U) decomposes as a disjoint union of open sets Vi of X such that
the restriction of p to each Vi induces a homeomorphism of Vi with U. The
cover p : X → Y is trivial if p : X → Y is isomorphic as a space over Y to
p1 : Y × I → Y, where p1 is the �rst projection and I is a discrete topological
space.

Now, let us explain the relation between covers and locally constant sheaves.
Let Y be a topological locally connected space. Let p : X → Y be a space over
Y. Let U ⊂ Y be an open set. We de�ne a section of p over U as a continuous
map s : U → X such that p ◦ s = idU .

Also, we can de�ne the presheaf FX on Y by setting FX(U) to be the set
of sections of p over U. By Proposition 2.5.8 from [69], the presheaf FX is a
sheaf. Moreover, if p is a cover map then FX is locally constant, if p is a
trivial cover then FX is a constant sheaf. The rule (X → Y ) 7→ FX de�nes an
equivalence between the category of covers on Y and the category of locally
constant sheaves on Y except the constant sheaf that to every open set of Y
associates the empty set.

The functor in the reverse direction is F → YF , where YF is the disjoint
union of stalks Fy, y ∈ Y, called the étale space of the sheaf F . Recall that the
stalk Fy is the disjoint union of the sets F(U) over all open neighborhoods U
of y, modulo the equivalence relation: s ∈ F(U) and t ∈ F(V ) are equivalent
if there exists an open neighborhood W ⊆ U ∩ V of y with s|W = t|W . The
map pF : YF → Y is induced by constant maps Fy → {y}.

Then, for a locally constant sheaf F and y ∈ Y there is an open connected
set U (Y is a locally connected space) such that F|U is isomorphic to the
constant sheaf de�ned by some set F, with discrete topology. Then we have
Fy = F for all y ∈ U, so we get p−1

F (U) = U × F, i.e. YF is a cover.
Let us recall the de�nition of the inverse image of a sheaf. Let f : X → Y

be a continuous map between topological spaces. Let F be a sheaf on Y. Let
YF be the étale space of the sheaf F with the projection map π : YF → Y. We
have the �ber product:

Z = YF ×Y X = {(v, x) ∈ YF ×X|π(v) = f(x)} ,

Arakelov inequalities and semistable families of curves
uniformized by the unit ball

39



2.2. Local systems and complex variations of Hodge structures

with the topology induced by the product topology on YF×X, and the induced
map p : Z → X, which is a local homeomorphism. The sheaf corresponding to
the space Z → X over X is de�ned by the rule (Z → X) 7→ FZ (see above).
Finally, the inverse image of the sheaf F is de�ned as:

f−1F := FZ .

Lemma 2.2. Let f : X → Y be a continuous map between locally connected
topological spaces. If F is a locally constant sheaf on Y then f−1F is a locally
constant sheaf on X.

Proof. Let x ∈ X, we want to prove that there is a neighborhood U of x such
that (f−1F)|U is a constant sheaf.

For f(x) ∈ Y there is a neighborhood Vf(x) such that F|Vf(x)
is a constant

sheaf de�ned by some set F. By the equivalence between the category of covers
of some locally connected topological space and the category of locally constant
sheaves on that space, trivial covers correspond to constant sheaves. Hence,
the constant sheaf F|Vf(x)

corresponds to the trivial cover Vf(x) × F → Vf(x).

The pullback of F|Vf(x)
to X corresponds to the trivial cover f−1(Vf(x))×F →

f−1(Vf(x)). Hence, f−1F|f−1(Vf(x)) is a constant sheaf, i.e. f−1F is a locally
constant sheaf.

De�nition 2.6. A complex local system on a topological space Y is a locally
constant sheaf of �nite dimensional complex vector spaces. If Y is connected
all stalks must have the same dimension which is called the dimension of the
local system.

Lemma 2.3. A local system F on the interval [0, 1] is constant.

Proof. Since [0, 1] is simply connected, it has only trivial covers. Imposing on
C the discrete topology, one gets that F is a constant sheaf by the previous
equivalence.

Proposition 2.4. There is an equivalence between the category of �nite di-
mensional complex representations of the fundamental group of a connected
manifold X and the category of complex local systems on X.

Proof. Let us suppose that F is a local system on a connected manifold X
with stalks Cn. Let γ be a path on X such that γ : [0, 1] → X, γ(0) = x0

and γ(1) = x1. The pull-back γ−1F will be a locally constant sheaf too. On
the other hand a locally constant sheaf on [0, 1] is actually constant, by the
previous lemma. So, �bers at points 0 and 1 are identi�ed. This yields a
C-vector space isomorphism:

φγ : Fx0 → Fx1 ,
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which depends only on the homotopy class of the path γ. Taking closed loops
based at x0, we get a map ρ : π1(X, x0) → GL(Fx0) ∼= GL(C, n). This is
a group homomorphism and it de�nes a representation of the fundamental
group of X to the space GL(Fx0).

Conversely, let us suppose that ρ : π1(X, x0)→ GL(C, n) is a �nite dimen-
sional representation of the fundamental group and u : X̃ → X the universal
covering map. We can de�ne a vector bundle V → X such that V = X̃×Cn/ ∼
where the equivalence relation is given by the group action of π1(X, x0) on
X̃ × Cn de�ned as:

γ(x̃, z) = (γ(x̃), ρ(γ−1)z).

Now, let U ⊂ X be an open set on X such that u−1(U) is a disjoint union
of open sets Wj ⊂ X̃, and such that Wj is homeomorphic to U for all j. Let
uj = u|Wj

, then for any z ∈ Cn and any choice of j we have a local section:

s(x) = (u−1
j (x), z), x ∈ U.

The section s is a constant local section of the bundle V. We denote by F the
sheaf of constant local sections of V. Clearly, F is a locally constant sheaf, i.e.
a local system.

Let us now investigate another categorical equivalence, the equivalence be-
tween the category of complex local systems and holomorphic bundles with a
�at connection, on a connected complex manifold X.

De�nition 2.7. A holomorphic connection on a holomorphic vector bundle
F on a complex manifold X is a C-linear operator

∇ : F → F ⊗ Ω1
X ,

such that
∇(fs) = df ⊗ s+ f∇s,

for all holomorphic local functions f and for all local sections s of F . The
holomorphic connection ∇ induces maps:

∇ : F ⊗ Ωp
X → F ⊗ Ωp+1

X , for all p ,

de�ned as ∇(s⊗α) = ∇s∧α+ s⊗ dα, where α is a local holomorphic p-form
on Y. Then, the curvature of the connection ∇ is de�ned as the OX-linear
operator:

R = ∇ ◦∇ : F → F ⊗ Ω2
X , R ∈ Ω2

X(EndF).

We say that a connection is �at or integrable if R = 0.

Remark 2.8. If a connection on a bundle F is �at then for the corresponding
locally free sheaf F we have a complex :

0→ F → F ⊗ Ω1
X → F ⊗ Ω2

X → ...,

with chain map ∇.

Arakelov inequalities and semistable families of curves
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Now, let us suppose that F is a vector bundle with a �at connection ∇.
By [23] Proposition 1.14, we have an open covering of X by small open sets
U such that the space of solutions for the di�erential equation ∇s = 0 over U
has dimension equal to the rank of F . Then, the existence of a local solution
for the linear di�erential equation ∇s = 0 implies that the sheaf L de�ned as
L = Ker(∇) is a locally constant subsheaf of F and F = L⊗OX .We say that
F is the �at bundle associated to the local system L.

On the another hand, if we have a local system L on X, then it can be
associated with a locally free sheaf F de�ned as F = L⊗OX , with a �at con-
nection ∇ = 1⊗ d. Since we have an equivalence between locally free sheaves
and vector bundles, we get an equivalence of categories between �at bundles
and locally constant sheaves of C-vector spaces.

De�nition 2.9. A complex variation of Hodge structures on a complex man-
ifold X consists of:

1. A locally constant sheaf of C-vector spaces E on X.
2. A bundle E = E ⊗ OX . This bundle has a decomposition by smooth

subbundles E =
⊕

p+q=k E
p,q.

3. A �nite �ltration {F p} on the vector bundle E = E⊗OX =
⊕

p+q=k E
p,q

by holomorphic vector bundles F pE =
⊕

r≥pE
r,s.

4. A connection, ∇ : E → E ⊗ Ω1
X which satis�es Gri�ths's transversality

property, i.e. ∇(F pE) ⊆ (F p−1E) ⊗ Ω1
X , and such that the bundle E is

�at with respect to this connection. It is also required that the bundles
F q :=

⊕
s≥q E

r,s carry an anti-holomorphic structure on which ∇ acts
by sending F q to F q−1 ⊗ Ω1

X .
We will use Ec = {E, E, F •,∇} to denote a complex variation of Hodge struc-
tures.

We say that a complex variation of Hodge structures Ec = {E, E, F •,∇}
is polarized if there is a locally constant sheaf of free Z-modules of �nite rank
EZ such that E = EZ⊗C and a locally constant non-degenerate bilinear form:

Q : EZ ⊗ EZ → Z

such that for any y ∈ Y the inducedQy is a polarization on the Hodge structure
Ey.

Proposition 1.13 from [14] gives a nice property of the local systems which
underlie polarized variations of Hodge structures. This is the modi�ed Deligne's
semi-simplicity theorem:

Theorem 2.5. A local system V, underlying a polarized variation of Hodge
structures, decomposes uniquely as:

V =
r⊕
i=1

(Vi ⊗Wi),
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2. Local systems, variations of Hodge structures and Higgs bundles

where the Vi are pairwise non-isomorphic irreducible C-local systems and the
Wi are non-zero C-vector spaces.

Moreover, the Vi and the Wi carry polarized variations of Hodge structures,
whose tensor product and sum give back the Hodge structure on V. The Hodge
structure on the Vi (and Wi) is unique up to a shift of the bigrading.

Given a polarized complex variation of Hodge structures:

Ec = {EZ,E, E, F •,∇, Q}

of weight k one can induce a Hermitian metric on the vector bundle E. That
metric is induced by the polarizationQ of the Hodge structures and it is de�ned
as:

〈u, v〉H = Q(Cyu, v) u, v ∈ Ey

where H stands for the metric and the operator Cy is the Weil operator de�ned
as

Cy(u) = ip−qu, for u ∈ F p(Ey) ∩ F q(Ey), p+ q = k.

De�nition 2.10. The metric H is called the Hodge metric on the vector
bundle E.

De�nition 2.11. A family f : X → Y is called a family of compact Kähler
varieties if all �bers are compact Kähler.

Now, let us construct the local system which is naturally associated to a
smooth family of compact Kähler n-varieties f : X → Y. It is obvious that
�bers of the family are compact Kähler n-varieties. Since all �bers Xy =
f−1(y), y ∈ Y are smooth, they are di�eomorphic and so the cohomology
groups Hk(Xy,C) of �bers Xy, y ∈ Y are isomorphic.

De�nition 2.12. The sheaf CX is the constant sheaf on X with stalk C.

Let U ⊂ Y be a connected open set. Applying the k-th derived functor of
f∗ to the constant sheaf CX on X we get Rkf∗CX to be the shea��cation of:

U → Hk(f−1(U),CX |f−1(U)).

The fact that Rkf∗CX is a local system on Y is just a consequence of the fact
that for y ∈ Y there is a contractible neigbourhood U such that:

Hk(f−1(U),C) ∼= Hk(U ×Xy,C) ∼= Hk(Xy,C).

So we get that Rkf∗CX restricted to U is isomorphic to the constant sheaf
with stalk Hk(Xy,C).

Arakelov inequalities and semistable families of curves
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2.2. Local systems and complex variations of Hodge structures

Following the equivalence between local systems and �at bundles, the cor-
responding holomorphic bundle with a �at connection corresponding to the
local system Rkf∗CX is the bundle:

E = Rkf∗CX ⊗OY .

One should note that on �bers, by [81] p.230, 250, we have:

Ey = (Rkf∗CX⊗OY )y ∼= Hk(Xy,C)⊗(OY,y/My) ∼= Hk(Xy,C)⊗C = Hk(Xy,C),

whereMy is the ideal of OY,y of the holomorphic functions vanishing at y.
The corresponding �at connection ∇E is de�ned to be the unique holomor-

phic connection with local �at sections the local sections of Rkf∗CX :

∇E(s) = 0 if and only if s ∈ Rkf∗CX .

De�nition 2.13. The connection ∇E is called the Gauss-Manin connection
of the bundle E = Rkf∗CX ⊗OY , of the family f : X → Y.

Let us recall Proposition 2.28 from [14]. This proposition will be the start-
ing point in the construction of a classical example of a complex variation of
Hodge structures which arises from a smooth family of varieties over a curve.

Lemma 2.6. ([14] I Proposition 2.28) Let f : X → Y be a smooth family.
Let V be a complex local system on X and k a positive integer. Then, we have
the isomorphism:

Rkf∗V ⊗OY ∼= Rkf∗(Ω
•
X/Y (V )),

where Ω•X/Y (V ) = Ω•X/Y ⊗C V and Rkf∗(Ω
•
X/Y (V )) is the hypercohomology of

the complex Ω•X/Y (V ).

Proof. From the relative holomorphic Poincaré lemma, the complex Ω•X/Y is a
resolution of the sheaf f−1OY . So tensorising both sides of the resolution:

f−1OY ↪→ Ω•X/Y

with V over C and looking for cohomology of the sheaf f−1OY ⊗ V we get:

Rkf∗(f
−1OY ⊗ V ) = Rkf∗(Ω

•
X/Y (V )).

The result follows by the projection formula.

The conditions of the previous lemma are satis�ed for the family f : X → Y
and the local system CX , so we get:

E = Rkf∗CX ⊗OY ∼= Rkf∗(Ω
•
X/Y ). (2.1)

The right hand side is the relative de Rham cohomology.
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2. Local systems, variations of Hodge structures and Higgs bundles

The Hodge naive �ltration F •nv on Ω•X/Y is de�ned such that F p
nv(Ω

•
X/Y ) is

the complex which has the same term in degree i ≥ p as the complex Ω•X/Y
and it has zeros as terms in degree less than p. We will use the notation:

Ω•≥pX/Y := F p
nv(Ω

•
X/Y ).

The spectral sequence associated to this �ltration and to the functor f∗ is the
Hodge to de Rham spectral sequence, so we have :

Ep,q
1 = Rqf∗Ω

p
X/Y ⇒ Rkf∗(Ω

•
X/Y ), p+ q = k. (2.2)

Theorem 2.7. ( [16] Theorem 5.5 ) Let f : X → Y be a smooth family of
compact Kähler n-varieties and let p and q be two positive integers such that
p+ q ≤ n. Then, one has:

1. The sheaves Rqf∗Ω
p
X/Y are locally free of �nite rank compatible with base

change.
2. The spectral sequence (2.2) degenerates at E1.
3. At every point of Y, the sheaves Rqf∗Ω

p
X/Y and Rpf∗Ω

q
X/Y are of the same

rank.

Let us de�ne a �ltration F • on Rkf∗(Ω
•
X/Y ) by:

F p(Rkf∗(Ω
•
X/Y )) = Im

(
Rkf∗(Ω

•≥p
X/Y )→ Rkf∗(Ω

•
X/Y )

)
.

In particular, the degeneration of the spectral sequence (2.2) implies that (see
[24] p.15):

F pRkf∗(Ω
•
X/Y ) ∼= Rkf∗(Ω

•≥p
X/Y ). (2.3)

Therefore, we get a decreasing �ltration F • on the �at bundleE = Rkf∗(Ω
•
X/Y ),

induced by the naive Hodge �ltration. One has that on �bers Ey = Hk(Xy,C)
the �ltration F • coincides with the Hodge �ltration. Obviously by (2.3) one
has:

F pHk(Xy,C) =
⊕
s≥p

Hs,k−s(Xy). (2.4)

Let us give one other description, the algebraic description, of the Gauss-Manin
connection on the bundle E = Rkf∗(Ω

•
X/Y ). In order to do this, we will again

use the Koszul �ltration (see Section 1.2 ) on the complex
∧•Ω1

X/Y = Ω•X/Y
and the exact sequence:

0→ f ∗Ω1
Y → Ω1

X → Ω1
X/Y → 0.

We get the exact sequence of complexes:

0→ f ∗Ω1
Y ⊗ Ω•X/Y [−1]→ F 0/F 2 → Ω•X/Y → 0. (2.5)

Arakelov inequalities and semistable families of curves
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The long exact sequence associated to the sequence (2.5) obtained by taking
f∗ has the boundary map:

δ : Rkf∗(Ω
•
X/Y )→ Rk+1f∗(f

∗Ω1
Y ⊗ Ω•X/Y [−1]),

or by the projection formula

δ : Rkf∗(Ω
•
X/Y )→ Rkf∗(Ω

•
X/Y )⊗ Ω1

Y .

Theorem 2.8. ([3]�2.C ) The boundary map δ coincides with the Gauss-
Manin connection ∇E on the de Rham cohomology bundle E = Rkf∗(Ω

•
X/Y ).

Let us show that the Gauss-Manin connection satis�es the transversality
property. The i-th level of the Hodge �ltration on the exact sequence (2.5)
induces the exact sequence:

0→ f ∗Ω1
Y ⊗ Ω•≥iX/Y [−1]→ (F 0/F 2)≥i → Ω•≥iX/Y → 0. (2.6)

and also one has:

∇E : Rkf∗(Ω
•≥i
X/Y )→ Rk+1f∗(Ω

•≥i
X/Y [−1]⊗ f ∗Ω1

Y ) ∼= Rkf∗(Ω
•≥i
X/Y )⊗ Ω1

Y .

Hence, we get the commutative diagram:

Rkf∗(Ω
•
X/Y ) Rkf∗(Ω

•
X/Y [−1])⊗ Ω1

Y

Rkf∗(Ω
•≥i
X/Y ) Rkf∗(Ω

•≥i
X/Y [−1])⊗ Ω1

Y

∇E

∇E

The vertical maps in the diagram have for images F i(E) and F i−1(E)⊗Ω1
Y ,

due to (2.3). Hence, one gets that:

∇E(F i(E)) ⊆ F i−1(E)⊗ Ω1
Y ,

i.e. ∇E satis�es the Gri�ths's transversality property. As a �at connection
∇E has the decomposition ∇1,0

E + ∇0,1
E where ∇0,1

E de�nes the holomorphic
structure on the bundle E. The fact that ∇E satis�es the Gri�ths's transver-
sality property implies that F pRkf∗(Ω

•
X/Y ) are holomorphic vector subbundles

of E = Rkf∗(Ω
•
X/Y ) (see [30] p.233 ), or in other words they are preserved by

∇0,1
E .
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One has:

Ep,q
∞ := Grp(E) =

F p(E)

F p+1(E)
, p+ q = k.

The degeneration of the spectral sequence (2.2) at E1 implies that:

E1 = E∞, (2.7)

and we get:
Grp(E) = Rqf∗Ω

p
X/Y , p+ q = k. (2.8)

The Hodge bundles of the family f : X → Y are de�ned as:

Hp,q := Grp(E) = Rqf∗Ω
p
X/Y , p+ q = k.

These bundles are holomorphic vector bundles.
Since the �ltration F • coincides on �bers with the Hodge �ltration and

Ey = Hk(Xy,C) (see (2.4)), one gets:

(Hp,q)y =
F p(Ey)

F p+1(Ey)
=

⊕
r≥pH

r,k−r(Xy)⊕
r≥p+1 H

r,k−r(Xy)
= Hp,q(Xy) = Hq(Xy,Ω

p
Xy

).

In general there is no holomorphic isomorphism between E and
⊕

p+q=kHp,q,
but there is a C∞-isomorphism between these bundles. Obviously, this isomor-
phism induces the Hodge decomposition on �bers.

Bringing together all these data, we get a complex variation of Hodge
structures of weight k associated to a smooth family of Kähler varieties f :
X → Y, usually called a geometric variation. Moreover, if we suppose that
f : X → Y is a projective family then we get a polarized complex variation of
Hodge structures.

De�nition 2.14. Let f : X → Y be a smooth family of Kähler n-varieties.
The associated geometric variation of Hodge structures of weight k ≤ n on the
curve Y, consists of:

1. The local system Rkf∗CX ;
2. The vector bundle E = Rkf∗CX ⊗OY . This bundle has a decomposition

by Hodge bundles Hp,q, i.e. one has C∞-isomorphism between E and⊕
p+q=kHp,q.

3. A decreasing holomorphic �ltration F • on E by holomorphic subbun-
dles F pE =

⊕
r≥pHr,s. On the �bers Xy of the family, we have Ey =

Hk(Xy,C) and F •Ey is the Hodge �ltration on Hk(Xy,C). One has
F p ∩ F q+1 = 0, p+ q = k;

4. An integrable connection, the Gauss-Manin connection∇E : E → E⊗Ω1
Y

which satis�es Gri�ths's transversality property:

∇E(F pE) ⊆ (F p−1E)⊗ Ω1
Y .

One has ∇E(s) = 0, for all sections of Rkf∗CX .

Arakelov inequalities and semistable families of curves
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5. Moreover, if we suppose that X is projective then the Chern class of
the hyperplane bundle restricted to Xy induces integral classes [ωy] ∈
H1,1(Xy) ∩ H2(Xy,Z) which polarize the �bers Xy. They �t together
giving a section ω of R2f∗C over Y which induces a bilinear form Q
satisfying Hodge-Riemann bilinear relations on the primitive parts of
cohomology groups (see Section 2.1).

2.3 Higgs bundles

In this section we will study Higgs bundles on compact Kähler manifolds and
explain their relation with �at bundles. The main part in this section is based
on Simpson's paper [68] �Higgs bundles and local systems�.

De�nition 2.15. Let X be a Kähler manifold. A Higgs bundle on X is a
pair consisting of a holomorphic bundle H on X and a holomorphic bundle
morphism Θ : H → H⊗Ω1

X , called the Higgs �eld, which satis�es the condition
of integrability Θ ∧Θ = 0.

A Higgs bundle H can be seen as a C∞-bundle with some operator ∂̄ + Θ
where ∂̄ de�nes a holomorphic structure on H by sending the sections of H
to (0, 1)-forms with coe�cients in H and Θ is the Higgs �eld. Using this
interpretation of Higgs bundles we will see how by assuming the existence of
a harmonic metric on a �at bundle we produce a Higgs bundle.

Let X be a Kähler manifold. Let (H, D) be a smooth vector bundle on X
with a �at connection D, i.e. (D)2 = 0. Let K be a Hermitian metric on the
bundle H. We have the decomposition of the connection

D = D1,0 +D0,1,

into operators of type (1, 0) and (0, 1). Let δ′ and δ′′ be the unique operators
of type (1, 0) and (0, 1), such that connections δ′+D1,0 and D0,1 + δ′′ preserve
the metric K, i.e. for all sections s, t we have:

(D0,1s, t)K + (s, δ′t)K = D0,1(s, t)K ,

(δ′′s, t)K + (s,D1,0t)K = D1,0(s, t)K .

Let ∂ =
D1,0 + δ′

2
, ∂̄ =

D0,1 + δ′′

2
, Θ =

D1,0 − δ′

2
and Θ̄ =

D0,1 − δ′′

2
.

Let D0,1
K = ∂̄ + Θ. The operator D0,1

K satis�es Leibniz rule, i.e.:

D0,1
K (fs) = ∂̄(f)⊗ s+ fD0,1

K (s),

hence it is a connection. Now, in order to obtain a Higgs bundle we want to
impose certain conditions which make the operator integrable, i.e. (D0,1

K )2 = 0.
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Let D1,0
K = ∂ + Θ̄, then D = D1,0

K +D0,1
K . Also, let

Dc
K = D0,1

K −D
1,0
K = δ′′ − δ′,

we get:

D0,1
K =

D +Dc
K

2
.

We denote GK = (D0,1
K )2 =

D2 +DDc
K +Dc

KD +Dc
K

2

4
. Using D2 = 0, we

get:
(D1,0)2 = 0, (D0,1)2 = 0, D1,0D0,1 +D0,1D1,0 = 0,

and so
(δ′)2 = (δ′′)2 = δ′δ′′ + δ′′δ′ = 0,

hence,
(Dc

K)2 = 0.

In the end we get:

GK =
DDc

K +Dc
KD

4
.

From now on we suppose that X is a compact Kähler manifold.

De�nition 2.16. The metric K is harmonic if ΛGK = 0, where

Λ : Ap,q(X)→ Ap−1,q−1(X)

is the adjoint operator to the operator

L : Ap,q(X)→ Ap+1,q+1(X)

de�ned as L(η) = η ∧ ω, where ω is the Kähler form on X.

If we impose the condition that K is a harmonic metric then GK = 0, by
[68] p.16. Then for K a harmonic metric, we get D0,1

K integrable:

(D0,1
K )2 = 0.

Hence,
∂̄2 = 0, ∂̄Θ = 0, Θ ∧Θ = 0, (2.9)

or equivalently H has a holomorphic structure (by Newlander-Nirenberg the-
orem), then Θ is holomorphic and Θ satis�es the condition of integrability.
Hence, a harmonic metric K on H gives rise to a Higgs bundle (H,Θ), whose
holomorphic structure is de�ned by the operator ∂̄.

Conversely, let (H,Θ, ∂̄) be a Higgs bundle with a metric K. Since H is holo-
morphic then ∂̄ is the operator which sends the holomorphic forms to zero

Arakelov inequalities and semistable families of curves
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forms. Let D′ = ∂ + Θ̄ and let D′′ = ∂̄ + Θ, where ∂ is the unique operator
such that ∂ + ∂̄ preserves the metric K and Θ̄ is de�ned by:

(Θ(s), t)K = (s, Θ̄(t))K .

Then, D = D′ + D′′ = ∂ + ∂̄ + Θ + Θ̄ is a connection on H. If K is chosen
such that D2 = 0, then the Higgs bundle (H,Θ, ∂̄) gives rise to a �at bundle.
By [68] one has D2 = 0 if K is a harmonic metric. One of the main results in
Simpson's paper [67] �1 is that:

These constructions are inverse: if (H, D) is a �at bundle and K is a har-
monic metric, then the same metric K is a harmonic metric for the resulting
Higgs bundle; and the �at connection induced by this metric on the Higgs bun-
dle is equal to the original. Similarly, if (H,Θ) is a Higgs bundle and K is
a harmonic metric, then the same metric is a harmonic metric on the �at
bundle, and the resulting Higgs structure is the same as before.

One can de�ne the degree of a bundle H on a compact Kähler manifold X
of dimension n, with Kähler form ω, as:

degH = c1(H) · [ω]n−1.

The fact that on a Higgs bundle (H,Θ) there exists a harmonic metric K
implies that H has vanishing �rst and second Chern classes, by [66] p.16. In
other words, the degree of the bundle H is zero. However, that is not the only
consequence of K being harmonic. In order to see it, let us �rst de�ne the
semistability of a Higgs bundle:

De�nition 2.17. A Higgs bundle (H,Θ) on a compact Kähler manifold X
with Higgs �eld

Θ : H → H⊗ Ω1
X ,

is said to be semistable if for any subbundle F of H such that Θ(F) ⊆ F⊗Ω1
Y ,

we have
µ(F) =

degF
rank F

≤ degH
rank H

= µ(H).

If the inequality is strict for every proper subbundle F then H is called a stable
Higgs bundle. The ratio µ(F) is called the slope of the subbundle F . We say
that (H,Θ) is a polystable Higgs bundle if it is a direct sum of stable Higgs
subbundles of the same slope.

Now, we will give Simpson's theorem which relates the polystability to the
existence of harmonic metrics.

Theorem 2.9. ([68] p.19) A Higgs bundle (H,Θ) has a harmonic metric if
and only if it is polystable and:

c1(H) · [ω]n−1 = 0,

50



2. Local systems, variations of Hodge structures and Higgs bundles

c2(H) · [ω]n−2 = 0.

Remark 2.18. As a consequence, one can note that there is a natural equiva-
lence between �at bundles with harmonic metric and polystable Higgs bundles
of degree 0.

De�nition 2.19. We say that g : (H,ΘH)→ (F ,ΘF) is a morphism of Higgs
bundles on X if the following diagram commutes:

H H⊗ Ω1
X

F F ⊗ Ω1
X

g ⊗ idg

ΘH

ΘF

2.3.1 Examples of Higgs bundles

After having described the equivalence between �at bundles and local systems,
we explain now the relation between local systems and Higgs bundles. In
general it is impossible to describe the Higgs bundle (H,Θ) explicitly in terms
of the corresponding local system. However, it is more concrete in the case
when a local system corresponds to a polarized complex variation of Hodge
structures.

Recall that a polarized complex variation of Hodge structures on a complex
manifold Y is a set of data Ec = {E, E, F •E,∇, Q}, where E is a local sys-
tem of rank k, E the corresponding �at bundle which has C∞-decomposition⊕

p+q=k E
p,q, F • a �nite decreasing �ltration on E by holomorphic subbundles

F pE =
⊕

s≥pE
s,k−s, ∇ a �at connection and Q a polarization. Let us de�ne

the bundle H as:
H =

⊕
p+q=k

Hp,q,

where
Hp,q = Grp(E) = F p(E)/F p+1(E).

Note that the bundles E and H are isomorphic as C∞-bundles which enables
one to consider ∇ as a connection on H.

The polarization form Q of Ec induces a Hodge metric H on E in the sense
of De�nition 2.10. The vector bundles H and {Hp,q}p+q=k are endowed with
Hermitian metrics induced by H, which are called the Hodge metrics. Hence,
one can consider the second fundamental forms (see Section 4.1 for the de�ni-
tion) of the subbundles Hp,q with respect to the Hodge metric. Let us denote
the second fundamental form of Hp,q by Θp,q. The Gri�ths's transversality
property implies that

Θp,q : Hp,q → Hp−1,q+1 ⊗ Ω1
Y .
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The sum of the operators Θp,q gives a C∞-linear operator:

Θ : H → H⊗ Ω1
Y .

The Gri�ths's transversality property induces the decomposition:

∇ = Θ +∇H + Θ̄,

where ∇H is a connection on H and Θ̄ is H-conjugate to Θ. By Theorem
13.1.5 from [10] ∇H is the Chern connection of the metric H on H, i.e. the
unique connection of the metric H whose (0, 1)-part is the operator ∂. Hence,
∇H = ∂ + ∂̄.

The equation ∇2 = 0 implies that the operator ∂̄ induces a holomorphic
structure on H such that each Hp,q is a holomorphic subbundle of H and
Θ is a holomorphic morphism which satis�es the integrability condition, i.e.
Θ∧Θ = 0. Indeed, Θ is the Higgs �eld of the Higgs bundle H. The Gri�ths's
transversality property can be now described as:

∇ = ∂+∂̄+Θ+Θ̄ : Hp,q → (Hp,q⊗Ω1
Y )⊕(Hp,q⊗Ω1

Y )⊕(Hp−1,q+1⊗Ω1
Y )⊕(Hp+1,q−1⊗Ω1

Y ).
(2.10)

Then, the Higgs �eld Θ can be seen as a part of Gr(∇) or as a direct sum of
OY -linear morphisms:

Θp,q : Hp,q → Hp−1,q+1 ⊗ Ω1
Y ,

induced by the connection ∇.
Let us give the de�nition of a harmonic metric on a Higgs bundle over a

manifold which is not necessary a Kähler manifold.

De�nition 2.20. ( [10] �13.1.) A Hermitian metric k on a Higgs bundle (H,Θ)
is called harmonic if its Chern connection Dk combines with Θ and Θ to give
a �at connection Θ +Dk + Θ.

This de�nition of harmonic metric k has the same implication as the de�-
nition of harmonic metric seen in the previous section, i.e. it requires (implies)
the integrability of Θ + Dk + Θ. As we saw above, the Hodge metric H on
the Higgs bundle H associated to a polarized complex variation is harmonic.
Moreover, if we suppose that Y is a Kähler manifold then the Higgs bundle H
is polystable of degree zero.

Let us give the example of a Higgs bundle arising from the geometric vari-
ation of Hodge structures which comes with a smooth family f : X → Y of
projective n-varieties over a curve. Let k ≤ n be a positive integer, then the
associated geometric variation of Hodge structures of weight k (see Section
2.2) to the family consists of:
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2. Local systems, variations of Hodge structures and Higgs bundles

◦ the local system Rkf∗CX ;

◦ the bundle E = Rkf∗CX ⊗OY ∼= Rkf∗(Ω
•
X/Y );

◦ the �at connection ∇E;

◦ the holomorphic �ltration F • induced by the Hodge naive �ltration on the
complex Ω•X/Y ;

◦ the natural polarization Q on �bers of E.

As above, the Higgs bundle associated to this polarized complex variation
of Hodge structures is de�ned as:

H =
⊕
p+q=k

Hp,q,

where by Section 2.2

Hp,q := F p(E)/F p+1(E) ∼= Rqf∗Ω
p
X/Y .

By Theorem 2.8, the Gauss-Manin connection

∇E : Rkf∗(Ω
•
X/Y )→ Rkf∗(Ω

•
X/Y )⊗ Ω1

Y

is the edge morphism of the long exact sequence obtained by taking f∗ of the
sequence:

0→ f ∗Ω1
Y ⊗ Ω•X/Y [−1]→ F 0/F 2 → Ω•X/Y → 0. (2.11)

On the p-th level of the exact sequence (2.11) we get the exact sequence:

0→ f ∗Ω1
Y ⊗ Ωp−1

X/Y → Ωp
X → Ωp

X/Y → 0. (2.12)

The edge morphisms of the long exact sequence associated to (2.12) obtained
by taking f∗ are:

Θp,q : Rqf∗Ω
p
X/Y → Rq+1f∗(Ω

p−1
X/Y ⊗ f

∗Ω1
Y ) = Rq+1f∗(Ω

p−1
X/Y )⊗ Ω1

Y , p+ q = k.

These edge morphisms are induced by the Gauss-Manin connection ∇E on
the graded parts of the bundle Rkf∗(Ω

•
X/Y ). Hence, as we saw in the previous

example of Higgs bundle arising from a polarized complex variation of Hodge
structures (see 2.10), the sum of Θp,q's gives the Higgs �eld of the Higgs bundle
H. Finally, we get the couple:(

H =
⊕
p+q=k

Rqf∗Ω
p
X/Y ,Θ =

∑
p+q=k

Θp,q

)
,

the Higgs bundle and its Higgs �eld associated to the family f : X → Y.

Arakelov inequalities and semistable families of curves
uniformized by the unit ball

53



2.3. Higgs bundles

2.3.2 Logarithmic Higgs bundles. The Deligne exten-
sion.

In the previous section we de�ned the Higgs bundles which arise from a po-
larized complex variation on a compact manifold and especially on curves and
Higgs bundles associated to smooth families of manifolds. The following step
will be to consider Higgs bundles on punctured curves and Higgs bundles which
are associated to families with singular �bers. These types of Higgs bundles
are called logarithmic Higgs bundles since their Higgs �elds are singular with
at most logarithmic poles at the punctures.

From now on we suppose that the set of punctures S is a �nite set of points
on a compact smooth curve Y.

De�nition 2.21. A logarithmic Higgs bundle (H,Θ) on a compact smooth
curve Y with respect to S is a locally free sheaf H on Y, with a Higgs �eld,
that is an OY -linear morphism:

Θ : H → H⊗ Ω1
Y (logS),

i.e. with at most logarithmic poles at points of the set S.

As we saw in the smooth case, starting with a complex variation of Hodge
structures one can construct a Higgs bundle. In the logarithmic framework the
construction remains pretty much the same as in the smooth case. But some
general properties of these Higgs bundles will depend on the behavior of the
monodromy operators around the punctures.

Let V be a a local system on the curve Y \S. The monodromy operators
around points of S are de�ned as:

Ts = ρ([α]), s ∈ S

where
ρ : π1(Y \S, y0)→ GL(Vy0), y0 ∈ Y \S

is the corresponding representation and [α] ∈ π1(Y \S, y0) is a class of loops
around a point s ∈ S.

De�nition 2.22. We say that the monodromy around a point s ∈ S is quasi-
unipotent if (T l−I)p = 0 for some positive integers l, p where I is the identity.
If (T − I)m = 0, for some positive integer m, then the monodromy around s is
said to be unipotent.

Now, let us give the description of the Higgs bundle which arises from a
complex variation of Hodge structures on a punctured curve Y :

Let Vc = {V, V, F •(V ),∇} be a complex variation of Hodge structures of
weight k on Y \S with unipotent monodromies around points of S. The �at
bundle V is de�ned as V = V ⊗ OY \S. Let us state the Deligne's extension
theorem:
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Theorem 2.10. ([14] II Proposition 5.2) In the unipotent case, the �at bun-
dle V = V ⊗ OY \S can be uniquely extended to a bundle E on Y such that
the Gauss-Manin connection ∇ has at most logarithmic poles over S. The
extension E is called the canonical Deligne extension.

The extension of the Gauss-Manin connection ∇ which has at most log-
arithmic singularities over points of S is denoted by ∇E. The �ltration F
extends to a holomorphic �ltration FE on E. This gives rise to a logarithmic
Higgs bundle H de�ned by:

H =
⊕
p+q=k

Hp,q (2.13)

where
Hp,q = F p

E(E)/F p+1
E (E),

and with Higgs �eld
Θ : H → H⊗ Ω1

Y (logS),

a sum of OY -linear morphisms:

Θp,q : Hp,q → Hp−1,q+1 ⊗ Ω1
Y (logS)

induced by the extension ∇E of the Gauss-Manin connection.
Besides the fact that the extension of a �at bundle corresponding to some

local system on a punctured curve, with unipotent monodromies around punc-
tures, is canonical, there is also one other advantage to work in the unipotent
case. In fact, in the unipotent case the degree of the corresponding Higgs
bundle is zero. We next de�ne the polystability of logarithmic Higgs bundles,
�ltered Higgs bundles and at the end we will state Simpson's correspondence
theorem between polystable local systems of degree 0 and polystable Higgs
bundles of degree 0. The de�nition of polystability for the logarithmic Higgs
bundles is analogous to the de�nition of the polystability in the smooth case.

De�nition 2.23. A logarithmic Higgs bundle (H,Θ) on a smooth compact
curve Y with Higgs �eld

Θ : H → H⊗ Ω1
Y (logS),

is said to be semistable if for any subbundle F of H such that Θ(F) ⊆ F ⊗
Ω1
Y (logS), we have

µ(F) =
degF
rank F

≤ degH
rank H

= µ(H).

When the inequality is strict for any proper subbundle F of H, then the
Higgs bundle H is said to be stable. The ratio µ(F) is called the slope of the
subbundle F . We say (H,Θ) is a polystable logarithmic Higgs bundle if it is a
direct sum of stable Higgs subbundles of the same slope.
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De�nition 2.24. ([66] p.717) Let Y be a smooth compact curve and let S be
a �nite set of points on Y. Let E be an algebraic vector bundle on Y \S and
let Eα,s be a collection of extensions across the punctures s ∈ S such that the
extensions form a decreasing left continuous �ltration, i.e.

Eα,s ⊂ Eβ,s for α ≥ β,

Eα−ε,s = Eα,s for small ε > 0

and if z is a local coordinate vanishing at order one at s, then Eα+1,s = zEα,s.
The �ltration is described by the α such that 0 ≤ α < 1. The �ber Es is a
vector space together with a �ltration Eα,s. Then (E , Eα,s)s∈S is called a �ltered
vector bundle denoted as Ef . The degree of Ef is de�ned by:

deg Ef = deg E +
∑
s∈S

∑
0≤α<1

αdim(Grα(Es)).

De�nition 2.25. ([66] p.717) Let Y be a smooth compact curve and let S be a
�nite set of points on Y.A regular �ltered Higgs bundleHf = ((H,Θ), (Hα,s)s∈S)
consists of:

◦ a logarithmic Higgs bundle (H,Θ) on Y ;

◦ a �ltered vector bundle (H,Hα,s)s∈S;

such that the condition of regularity is satis�ed:

Θ : Hα,s → Hα,s ⊗ Ω1
Y (log s).

The degree of Hf is de�ned as the degree of the �ltered vector bundle
(H, (Hα,s)s∈S).

Remark 2.26. In the case when the only jump is at α = 0 at a point s ∈ S
the �ltration of Hs is said to be trivial. If for every s ∈ S the �ltrations of Hs

are trivial then degHf = degH.

Let us consider a local system V on a punctured curve Y \S. We want to
de�ne the stalks of V at points of punctures. This de�nition is taken from [67]
p. 718 . Let s ∈ S be a puncture, we �x a ray rs emanating from the point s.
Now, we can consider the stalk of V over rs. We de�ne the stalk of V at the
point s as the stalk of V over rs. If rs is extended to a path back to some base
point y ∈ Y \S, then Vs is identi�ed with Vy.

De�nition 2.27. A �ltered local system V on the punctured curve Y \S, is
a local system V together with decreasing �ltrations Vβ,s of the stalks Vs,
indexed by real numbers β. The degree of a �ltered local system is de�ned to
be

deg(V) =
∑
s

∑
β

βdim(Grβ(Vs)).
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Remark 2.28. When the only jump at a point s ∈ S is at β = 0, the �ltration
of Vs is said to be trivial.

Let us state the theorem of Simpson about the correspondence between
�ltered local systems of degree 0 and �ltered regular Higgs bundles of degree
0, which can be found in [67] �6:

Theorem 2.11. (Simpson's correspondence theorem) There exists a natural
equivalence between the category of direct sums of stable �ltered regular Higgs
bundles of degree zero, and of direct sums of stable �ltered local systems of
degree zero.

Let us restrict the attention to the case of local systems which come from
complex variations of Hodge structures on a punctured curve Y \S. We will
prove later that these local systems have trivial �ltrations of the stalks at
points s ∈ S and hence degree 0. By the previous theorem, the corresponding
�ltered regular Higgs bundles have degree 0. One could ask the question how
we construct the corresponding �ltered regular Higgs bundles to local systems
underlying complex variations. As it is indicated in [67] p.721, this problem
was �rst solved by Gri�ths and Schmid, who de�ned the corresponding �ltered
regular Higgs bundle Hf in the following way:

◦ (H,Θ) is the Higgs bundle de�ned by (2.13);

◦ the extensions (Hα,s) are compatible with the Hodge decomposition.

Their contributions to this topic were the proofs of the existence of the ex-
tensions and that Θ satis�es the condition of regularity. The polystability of
the �ltered regular Higgs bundle Hf is just a consequence of the fact that it
corresponds to a complex variation of Hodge structures, see [66] �8.

Lemma 2.12. Let Vc = {V, V, F •(V ),∇} be a complex variation of Hodge
structures of weight k on a smooth punctured curve Y \S. Then:

1. The local system V has trivial �ltration and degV = 0.
2. If the monodromies around points of S are unipotent, the logarithmic

Higgs bundle (H,Θ) corresponding to Vc is polystable of degree zero with
trivial �ltrations at points of S.

3. If the degree of the logarithmic Higgs bundle (H,Θ) corresponding to Vc
is zero, then the monodromies around points of S of the local system V
are unipotent.

Proof. Let Hf = ((H,Θ), (Hα,s)) be the �ltered regular Higgs bundle corre-
sponding to Vc. In order to prove this lemma we will use the table given in
[67] �5, which gives numerical relations between eigenvalues of monodromies of
a local system of a complex variation, eigenvalues of the corresponding Higgs
�eld and jumps of �ltrations on the corresponding �ltered regular Higgs bundle
and �ltered local system.
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1. Since Θ =
∑

p+q=k Θp,q, where Θp,q : Hp,q → Hp−1,q+1 ⊗ ωY (S), one gets
that the OY -linear operator Θ : H → H⊗ ωY (S) is nilpotent. Following
the notations from the table we have

b+ ci = 0,

i.e. the jumps of the �ltration on Vs are at β = −2b = 0, for all s ∈ S.
Hence, degV = 0, see De�nition 2.27. Moreover, by Simpson's corre-
spondence one gets degHf = 0.

2. The eigenvalues of monodromies around points of S of the local systemV
are e−2παi+4πc. Assuming that monodromies are unipotent, one has

−2παi+ 4πc = 0,

i.e. the jumps α of the �ltered regular Higgs bundle Hf are zero at every
s ∈ S and by Remark 2.28 one has: degHf = degH = 0. Hence, the
Higgs bundle H is polystable of degree 0.

3. Using the previous notations, we have to prove that α and c are zero.
From point 1) one gets that c = 0. Since degV = 0, the corresponding
�ltered Higgs bundle has degree zero, i.e. degHf = 0. The fact that
degH = 0 implies that all α's around points of S are zero, see De�nition
2.24. Hence, monodromies around points of S of the local system V are
unipotent.

Natural examples of logarithmic Higgs bundles are the ones associated to
geometric variations of projective families of varieties over a curve with singular
�bers.

So, let g : W → Z be a projective family of n-varieties over a curve Z, with
discriminant locus a �nite set P . We will suppose that the divisor ∆ = g∗(P )
is a normal crossing divisor. The monodromy operators are

T = ρ([α]),

where
ρ : π1(Z\P, z0)→ GL(Hn(Wz0 ,C)), z0 ∈ Z\P,

is the corresponding representation for the local system Rng∗CW\∆ and [α] is
the class of a loop around a point p ∈ P.

The monodromy theorem due to Alan Landman, states that the mon-
odromy operators of families with singular �bers are at least quasiunipotent:

Theorem 2.13. (Monodromy theorem, [47]) Let f : W → Z be a projective
family, smooth over U = Z\P, for P a �nite set. Let k be an integer, then the
local system Rkg∗CW\g−1P has quasi unipotent monodromies.
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Hence, the monodromies around the points of P of the family g : W → Z
are at least quasiunipotent. It is possible, after taking some smooth �nite
covering φ : Y → Z rami�ed over P, to get a family f : X → Y with unipotent
monodromies around points S = φ∗P, where X is a desingularization of the
normalization of the �ber product W ×Z Y. The divisor ∆ = f ∗(S) is a normal
crossing divisor. This is possible due to the semistable reduction theorem,
which will be one of the topics in the following chapter, see Section 3.1. It is
important to underline the fact that semistability of a family implies unipotent
monodromies around the points of the discriminant locus of the family, see
Theorem 3.8.

Now, let us describe the Higgs bundle associated to the above constructed
projective family f : X → Y, which has unipotent monodromies around the
points of S. The construction of the Higgs bundle for the case of smooth
families, which is done by using the relative complex Ω•X/Y , can be repeated
here but this time using the complex Ω•X/Y (log ∆). Almost all results that we
state here are taken from the paper of N. Katz, [40] �1.

The Deligne extension of the �at bundle Rnf∗CX\∆ ⊗ OY \S is canonical,
since the monodromies around points of S are unipotent. This extension is
isomorphic to the bundle E = Rnf∗Ω

•
X/Y (log ∆). The Gauss-Manin connection

∇ on the bundle Rnf∗CX\∆⊗OY \S has at most logarithmic poles along ∆, i.e.
it extends to a morphism:

∇E : E → E ⊗ Ω1
X(log ∆), (2.14)

which satis�es the Leibniz's rule. The �ltration de�ned at (2.3) extends to a
�ltration F •E on E = Rnf∗Ω

•
X/Y (log ∆) and one has:

Grp(E) = F p
E(E)/F p+1

E (E) ∼= Rqf∗Ω
p
X/Y (log ∆). (2.15)

The connection ∇E satis�es the Gri�ths's transversality property with respect
to the �ltration F •E.

Hence, the logarithmic Higgs bundle associated to the local systemRnf∗CX\∆
is de�ned by:

H =
⊕
p+q=n

Rqf∗Ω
p
X/Y (log ∆),

with Higgs �eld Θ : H → H⊗Ω1
Y (logS), induced by ∇E, and as we saw before

(in the smooth case) it corresponds to the sum of edge morphisms

Θp,q : Rqf∗Ω
p
X/Y (log ∆)→ Rq+1f∗(Ω

p−1
X/Y (log ∆))⊗ Ω1

Y (logS), p+ q = n,

(2.16)
of the long exact sequences obtained by taking f∗ of the exact sequences

0→ Ωp−1
X/Y (log ∆)⊗ f ∗Ω1

Y (logS)→ Ωp
X(log ∆)→ Ωp

X/Y (log ∆)→ 0.
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Lemma 2.14. In the previous notations, the Higgs bundle H has degree 0 and
it is polystable.

Proof. The monodromies around the points of S are unipotent, hence this
result is a consequence of Lemma 2.12.

2.4 The Kodaira-Spencer map

We introduce now the Kodaira-Spencer map, which measures how a �ber in
a family deforms in a small neighbourhood. The most important goal of this
section is to show that this map induces the Higgs �eld of the Higgs bundle as-
sociated to a family. Here, we will explain the geometric Kodaira-Spencer map,
but also we will de�ne the algebraic prototype of this map. The theoretical
background for this part is provided by [3] and [42].

Let f : X → Y be a family of Kähler varieties over a curve Y , with
discriminant locus S with unipotent monodromies. We assume ∆ = f ∗(S) to
be a normal crossings divisor. Recall that we have the exact sequence (see
Section 1.2):

0→ f ∗Ω1
Y (logS)→ Ω1

X(log ∆)→ Ω1
X/Y (log ∆)→ 0. (2.17)

The extension of f ∗Ω1
Y (logS) by the sheaf Ω1

X/Y (log ∆) is given by a class

c ∈ Ext1
(
Ω1
X/Y (log ∆), f ∗Ω1

Y (logS)
)
.

By some basic properties of the functor Ext, we have:

Ext1(Ω1
X/Y (log ∆), f ∗Ω1

Y (logS)) = H1
(
X,HomOX (Ω1

X/Y (log ∆), f ∗Ω1
Y (logS)

)
= H1

(
X,TX/Y (− log ∆)⊗ f ∗Ω1

Y (logS)
)
,

where TX/Y (− log ∆) is the dual bundle to the bundle Ω1
X/Y (log ∆). Using the

canonical morphism :

α : H1
(
X,TX/Y (− log ∆)⊗ f ∗Ω1

Y (logS)
)
→ R1f∗

(
TX/Y (− log ∆)⊗ f ∗Ω1

Y (logS)
)
,

or

α : H1
(
X,TX/Y (− log ∆)⊗ f ∗Ω1

Y (logS)
)
→ Ω1

Y (logS)⊗R1f∗
(
TX/Y (− log ∆)

)
,

we get :

α(c) = ρ ∈ HomOY
(
(Ω1

Y (logS))−1, R1f∗(TX/Y (− log ∆))
)
,

or
α(c) = ρ ∈ HomOY

(
OX , R1f∗(TX/Y (− log ∆))⊗ Ω1

Y (logS)
)
.
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2. Local systems, variations of Hodge structures and Higgs bundles

De�nition 2.29. The image of c by the canonical map α:

ρ : TY (− logS)→ R1f∗
(
TX/Y (− log ∆)

)
,

is called the Kodaira-Spencer morphism of the family f : X → Y.
The �ber map ρy : TY,y → H1(Xy, TXy) is the Kodaira-Spencer map at y ∈
Y \S.

Remark 2.30. Note that the Kodaira-Spencer map can be seen as an element
of

H0
(
Y,ΩY (logS)⊗R1f∗(TX/Y (− log ∆))

)
.

Let us recall some algebraic results from [42] �1 which we need in order to
explicitly de�ne the relation between the Kodaira-Spencer map of the family
f : X → Y and the Higgs �eld of the corresponding Higgs bundle associated
to the geometric variation of the family f : X → Y.

Let f : X → Y be a map between smooth complex varieties. Let H and F
be locally free sheaves on X and let G be a locally free sheaf on Y, such that
we have a short exact sequence:

0→ f ∗G → H → F → 0.

Let c ∈ Ext1(F , f ∗G) be the corresponding extension class. Then, we have the
canonical morphism:

α : Ext1(F , f ∗G) = H1(X,Hom(F , f ∗G))→ R1f∗(Hom(F , f ∗G)) = G⊗R1f∗(F∨).

The object α(c) ∈ Hom(OY ,G⊗R1f∗(F∨)) is called the algebraic prototype of
the Kodaira-Spencer map of the previous exact sequence. The Koszul �ltration
induced by the previous exact sequence yields the exact sequences :

0→ f ∗G ⊗ ∧p−1F → (F 0/F 2)p → ∧pF → 0.

Moreover by Theorem 1.4.21 from [42], the edge morphism of the long exact
sequence obtained by taking f∗, in degree q ≥ 0:

δp,q : Rqf∗(∧pF)→ Rq+1f∗(f
∗G ⊗ ∧p−1F)

can be seen as the cup product with α(c), i.e. it can be factorised by the
sequence of maps:

δp,q : Rqf∗(∧pF) ∼= OY ⊗Rqf∗(∧pF)→ G ⊗R1f∗(F∨)⊗Rqf∗(∧pF)

→ Rq+1f∗(f
∗G ⊗ ∧p−1F),

where the �rst map is the map α(c)⊗id and the second map is the cup product
morphism provided by the canonical morphism:

G → f∗(f
∗)G = R0f∗(f

∗)G.
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2.5. Period domains and period maps

As we saw in the previous section, the Higgs �eld of the Higgs bundle
associated to a geometric variation of Hodge structures of weight k of a family
of n-varieties is a sum of edge morphisms:

Θp,q : Rqf∗Ω
p
X/Y (log ∆)→ Rq+1f∗(Ω

p−1
X/Y (log ∆))⊗ Ω1

Y (logS), p+ q = k

of the long exact sequence obtained by taking f∗ of the exact sequence:

0→ f ∗Ω1
Y (logS)⊗ Ωp−1

X/Y (log ∆)→ Ωp
X(log ∆)→ Ωp

X/Y (log ∆)→ 0.

Hence, by the previous algebraic facts, one has that the (p, q)-part of the
Higgs �eld Θ, i.e. the morphism Θp,q, can be seen as the cup product with the
Kodaira-Spencer map of the family f : X → Y.

2.5 Period domains and period maps

In this section we will explain some basic facts about period domains, i.e. the
domains which parametrize Hodge �ltrations with �xed Hodge numbers on a
given complex vector space. Later, we will introduce the period map of a given
complex variation of Hodge structures.

Let VZ be a free abelian group of �nite rank and let V = VZ ⊗ C be a
complex vector space of dimension n. Let {hi,j}i+j=k be a family of positive
integers, where k is a �xed number, such that:∑

i+j=k

hi,j = n and hi,j = hj,i.

Let Q be a hermitian form on V, skew for k odd or symmetric for k even,
integral and non-degenerate on VZ. Now, we de�ne the numbers:

fp =
∑

i≥p,i+j=k

hi,j.

We want to describe the space which parametrizes the set of all �ltrations
F • such that dim F p = fp and F p is Q-orthogonal to F q+1, where p + q =
k. Moreover, we ask the same questions with the additional condition, that
Q(
√
−1

p−q
ξ, ξ) > 0 for any nonzero vector ξ ∈ F p(V )∩F q(V ), i.e. the billinear

form Q satis�es both Hodge-Riemann relations.
Recalling the de�nition of polarized Hodge structures, the second question

can be reformulated as: what is the space which parametrizes the polarized
Hodge structures of weight k of the triple (VZ, V,Q) with �xed Hodge numbers
{hi,j}i+j=k?

The answer to the �rst question is a �ag manifold of type:

(fk, fk−1, ..., f [ k+1
2

]).

62



2. Local systems, variations of Hodge structures and Higgs bundles

This is a submanifold of the manifold
∏

pGr(f
p, V ), where Gr(m,V ) denotes

the Grassmannnian of subspaces of dimension m of V. We denote this �ag
manifold by Ď.

Let us answer to the second question with Proposition 4.3.3 from [10]:

Proposition 2.15. The period domain D classifying the Hodge �ltrations F •

of �xed dimension fp = dim F p =
∑

i≥p,i+j=k h
i,j with �xed Hodge numbers

hi,j, satisfying both Hodge-Riemann relations is a domain of Ď and it is a
homogeneous manifold.

A classical example of a period domain is the period domain of the weight-
one variations of Hodge structures on a complex vector space of dimension 2g.
In this case the period domain D can be realized as the Siegel's upper half
space, i.e.

Hg = {A ∈ GL(g,C)|A = At, ImA > 0}.
Let {V, V, F •,∇, Q} be a polarized complex variation of Hodge structures

of weight k on a smooth curve Y. We are wondering whether this complex
variation of Hodge structures gives rise to a natural map φ : Y → D, where D
is the period domain for weight k Hodge structures. As V is a local system, it
is not necessarily a constant sheaf and we do not have immediately a map φ :
Y → D. But, let us argue locally and suppose that U is a small neighborhood
of y0 ∈ Y such that the local system V restricted on U is a constant sheaf.

We trivialize the bundle V = V ⊗ OY on U by means of �at sections. In
other words we can �nd a local frame of �at sections {σi} such that {σi(y0)}
is a basis of Vy0 =

⊕
p+q=k Vp,q

y0
and {σi(y0)}fp+1<i≤fp is a basis of Vp,q

y0
. Hence,

we get a basis for F p(Vy0) which is {σi(y0)}i≤fp . This yields a map:

φ : U → D,

de�ned as
φ(y) = (F k(Vy), ..., F

[ k+1
2

](Vy)).

In order to have this map globally de�ned, let us take the universal covering
Ỹ → Y of the curve Y. The pullback of {V, V, F •,∇, Q} to Ỹ is a polarized
complex variation of Hodge structures. The pullback of the local system V
to Ỹ is a constant sheaf Ṽ, since Ỹ is simply connected. Now, we choose the
trivialization of V on Ỹ by �at sections as above and then the induced �ltration
F̃ • on Ỹ yields a morphism:

φ̃ : Ỹ → D.

Let ρ be the monodromy representation of the local system V :

ρ : π1(Y, y0)→ Aut(Vy0).

Let Γ = ρ(π1(Y, y0)) be the monodromy group of the local system V. Since
the complex variation is polarized, the monodromy group is discrete (see [10]
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2.6. Connection with Teichmüller curves

p.156). The map φ̃ is equivariant with respect to the π1(Y, y0)-action on Ỹ
and the Γ-action on D. By this we mean:

φ̃(γ · ỹ) = ρ(γ)φ̃(ỹ),

for γ ∈ π1(Y, y0) and ỹ ∈ Ỹ . We de�ne the period map of a polarized complex
variation of Hodge structures {V, V, F •,∇}, to be the induced map:

φ : Y → D/Γ.

This map is locally liftable, in the sense that for every y ∈ Y the map φ
restricted to some small open set U around y is seen as the restriction to a
small open of the map φ̃ : Ỹ → D followed by the quotient map D → D/Γ.

Let us consider now a family f : X → Y of projective n-varieties over
a curve Y. Then the period map of the corresponding geometric variation of
Hodge structures of weight k of the family is holomorphic. This is a well known
theorem of Gri�ths, see [81] Theorem 10.21. The monodromy group Γ of the
local system Rkf∗CX is discrete and it acts properly discontinuously on D,
hence the quotient D/Γ is a Hausdor� space.

The derivative of this period map at some point y0 ∈ Y is de�ned as
the sum of linear morphisms which are the cup products with the Kodaira-
Spencer class of this family at the point y0. In fact by Lemma 5.3.3 from [10],
the derivative of the period map at point y0 ∈ Y will be identi�ed with the
sum of (p, q)-parts:

(Θp,q)y0(v) : Hq(Xy0 ,Ω
p
Xy0

)→ Hq+1(Xy0 ,Ω
p−1
Xy0

), v ∈ TY,y0

induced by the Higgs �eld Θ =
∑

p+q=k Θp,q of the Higgs bundle which arises
from the geometric variation of Hodge structures of the family.

2.6 Connection with Teichmüller curves

In this section we will explain the connection between complex variations of
Hodge structures of weight 1 and rank 2, and Teichmüller curves, which are
geodesics in the moduli space of curves for a metric on that space induced by
the Teichmüller metric on the Teichmüller space. We will �nish this section
by giving the proof of Möller's Theorem 5.3 from [52].

2.6.1 Teichmüller space

Before we give the proof of the main theorem which describes this relation,
let us recall some well known facts about Teichmüller space. We will give a
short review of a construction of this space and then we will de�ne Teichmüller
curves. The constructions explained here are from [7] and [36].
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2. Local systems, variations of Hodge structures and Higgs bundles

By the uniformization theorem, every compact Riemann surface of genus
g ≥ 2 can be represented as a quotient of the upper half planeH by a group Γ ⊂
PSL2(R), which is the representation of the fundamental group of the surface
in PSL2(R). Let us �x a compact Riemann surface X with fundamental group
π1(X) and genus g. The fundamental groups of compact Riemann surfaces of
genus g are isomorphic to a group G with 2g generators {αi, βi}i=1,...,g which
satisfy the condition:

Πg
i=1αiβiα

−1
i β−1

i = id,

where id is the identity element of the group. Let us �x an isomorphism
π1(X) ∼= G. Such an isomorphism is called a marking .

A representation of G to PSL2(R) means �nding 2g elements {Ai, Bi}i=1,...,g

from PSL2(R) (or real matrices, up to the sign ) which satisfy the condition:

Πg
i=1AiBiA

−1
i B−1

i = Id,

where Id is the identity element of the group PSL2(R). We consider now the
set of all representations ρ : G→ PSL2(R),

R = {2g-tuples of matrices from PSL2(R) : (Ai, Bi)i=1,...,g|Πg
i=1AiBiA

−1
i B−1

i = Id}.

The asked condition for these matrices gives algebraic equations for entries
of these matrices which determine the space of all representations of G to
PSL2(R).

From now on in this section, we suppose that X is a �xed Riemann surface
of genus g ≥ 2 and π1(X) ∼= G is a �xed marking.

De�nition 2.31. A subgroup Γ ⊂ PSL2(R) which acts on H in such a way
that the quotient H/Γ is a Riemann surface is called a Fuchsian group.

De�nition 2.32. The subset of all Fuchsian representations ρ of the group
G, such that H/ρ(G) is a compact Riemann surface, in the set R modulo the
action of PSL2(R), which simultaneously conjugates all 2g matrices, is called
the Teichmüller space of curves of genus g, or shorter, the Teichmüller space
of genus g. We denote it as Tg.

The Teichmüller space Tg has a natural topology induced by the matrix
topology of the group PSL2(R). Moreover, it has the structure of a complex
manifold (see �6.1 [36]) and as such, it is biholomorphic to a bounded simply
connected domain in C3g−3, see Theorem 6.6 from [36].

Now, we will introduce another de�nition of the Teichmüller space of curves
of genus g. In order to do that we give a de�nition of quasiconformal maps.

De�nition 2.33. A map f : D → D′, where D and D′ are two domains in C
is said to be quasiconformal if it is an orientation preserving di�eomorphism
and it satis�es:

Kf = supz∈D
1 + |µf |
1− |µf |

<∞,

Arakelov inequalities and semistable families of curves
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2.6. Connection with Teichmüller curves

where µf =
∂f(z)
∂z

∂f(z)
∂z

is called the Beltrami coe�cient of map f and Kf is called

the maximal dilatation of f. We say that f is a Kf -quasiconformal mapping.

Now, let us consider pairs (S, f) where:

◦ S is a closed Riemann surface of genus g;

◦ f is a quasiconformal map between the �xed surface X (from the beginning)
and S.

We have the following de�nition:

De�nition 2.34. We say that two pairs (S1, f1) and (S2, f2) are equivalent if
f2 ◦ f−1

1 is homotopic to a conformal map of S1 to S2. Let denote by s = [S, f ]
the equivalence class of (S, f). The set of all such equivalence classes is called
the Teichmüller space of the surface X, denoted by Tg(X) and (X, idX) is
called the base point of Tg(X).

The topology on the set Tg(X) is de�ned by the Teichmüller distance. Let
us give the de�nition of Teichmüller distance:

Let s1 = [S1, f1] and s2 = [S2, f2] be two points in Tg(X). We de�ne:

Qf1,f2 =
{
f : S1 → S2 | f is a quasiconformal map homotopic to f2 ◦ f−1

1

}
.

Then, one has:

De�nition 2.35. ([36] �5.1.3) For two points s1, s2 ∈ Tg(X) the Teichmüller
distance is de�ned as:

dT (s1, s2) = inff∈Qf1,f2 logKf ,

where Kf is the maximal dilatation of f .

It is important to note that the Teichmüller space Tg(X) of the surface X
with the Teichmüller distance is a complete space, by Theorem 5.4 [36]. Tg(X)
does not depend on the chosen base point X and is identi�ed with Tg, the
Teichmüller space of curves of genus g, see Proposition 5.4 and Remark 3 from
[36] �5. From now on we consider that Tg is endowed with the Teichmüller
distance dT .

De�nition 2.36. The moduli spaceMg of curves of genus g is de�ned to be
the set of all biholomorphic equivalence classes [S] of closed Riemann surfaces
S of genus g.

It turns out thatMg is naturally an algebraic singular variety (when g ≥ 4
the singular points are classes [S] where S is a compact Riemann surface such
that the group of automorphisms of that surface is not trivial, i.e. Aut(S) 6=
{Id}, see [50]).
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2. Local systems, variations of Hodge structures and Higgs bundles

De�nition 2.37. The mapping class group MCGg of genus g (or the Teich-
müller modular group) is the group of all orientation-preserving di�eomor-
phisms of the surface X modulo the group of those di�eomorphisms which are
homotopic to the identity map on that surface.

The group MCGg acts properly discontinuously on Tg as a discrete subgroup
of the group of biholomorphic automorphisms of Tg, see Theorem 6.18 from
[36]. The quotient Tg/MCGg is identi�ed with Mg. In this way Mg inherits
the complex structure from Tg, but as an orbifold.

Theorem 2.16. (6.19 [36]) The moduli space Mg, of curves of genus g ≥ 2,
has a structure of normal complex analytic space of dimension 3g − 3.

The Teichmüller distance on Tg is invariant under the action of the mapping
class group MCGg and it induces a metric on the moduli space of curves of
genus g.

De�nition 2.38. The complex geodesics for the Teichmüller distance are
called Teichmüller disks. A complex submanifold of Teichmüller space is called
totally geodesic if it contains a Teichmüller disk trough any of its two points.
A complex subvariety of the moduli space of curves of genus g is called totally
geodesic if the components of its preimage in the Teichmüller space are totally
geodesic.

In quite a few cases Teichmüller disks descend to algebraically de�ned
curves inMg, which are called Teichmüller curves.

De�nition 2.39. A Teichmüller curve C →Mg is an algebraic curve in the
moduli space of curves which is a complex geodesic with respect to the metric
which is induced by the Teichmüller metric onMg.

As we already said the Teichmüller space is a complex space, therefore
besides Teichmüller distance which we de�ned above, there is one other natural
metric on that space. That is the Kobayashi metric, which is induced by the
Poincaré metric on the upper half plane. Let us de�ne this metric:

De�nition 2.40. ([36] �6.4) Let d be the Poincaré metric on the upper half
plane H. Let W be a complex manifold and let x, y ∈ W be two points. We
de�ne:

d1
K(x, y) = inf

ψ
d(a, b),

where the in�mum is taken over all points a, b ∈ H such that there exists a
holomorphic mapping ψ : H → W with ψ(a) = x, ψ(b) = y. For any positive
integer n, we put:

dnK(x, y) = inf
n∑
i=1

d1
K(ai−1, ai),

Arakelov inequalities and semistable families of curves
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where the in�mum is taken over all points a0, ..., an ∈ W with a0 = x and
an = y. For all positive integers n, we have:

dn+1
K (x, y) ≤ dnK(x, y), x, y ∈ W.

The Kobayashi metric is de�ned as:

dK(x, y) = lim
n→∞

dnK(x, y).

A theorem of Royden [61] states that the Kobayashi metric and the Teich-
müller distance coincide on Teichmüller space, see Theorem 6.21 in [36].

2.6.2 �Good� metrics

Let us explain the notion of �good� metrics, due to Mumford. Following Pe-
ters's paper [57], we will use these metrics in order to compute the degree
of (p, q)-parts of a Higgs bundle which corresponds to a complex variation of
weight p+q = k, on a punctured projective smooth curve. We will explain what
is a good metric on a line bundle on a punctured projective smooth curve and
several results which follow from imposing this metric. After, we will see that
a Hodge metric induced by the polarization of a complex variation of Hodge
structures induces a good metric on (p, q)-parts of the corresponding Higgs
bundle, which provides us a method to compute the degree of (p, q)-parts.

De�nition 2.41. ([57] �3) Let Y be a smooth projective curve and let S a
�nite set of points on Y. We set U = Y \S. Let L be a holomorphic line bundle
on Y.We denote by LU := L|U , the restriction of L on U. A hermitian metric h
on the line bundle LU is said to be �good� at point s ∈ S if for some coordinate
neighborhood (∆, t) centered at s and for all generating holomorphic sections
σ ∈ H0(∆,L) the following bounds are valid:

C1

(
log(

1

|t|
)

)−β
≤ h (σ(t), σ(t)) ≤ C2

(
log(

1

|t|
)

)β
,

∣∣∣∣∂ log h(σ(t), σ(t))

∂t

∣∣∣∣ ≤ C3|t|−1

(
log

1

|t|

)−1

,

and ∣∣∣∣∂2 log h(σ(t), σ(t))

∂t∂t

∣∣∣∣ ≤ C4|t|−2

(
log

1

|t|

)−2

,

for C1, C2, C3, C4 positive constants and β a non negative integer.

In the case when the metric h is good at all points s ∈ S, one has the
canonical extension L of LU to Y determined by the metric. Let us explain
this. If we have a holomorphic line bundle L on Y and its restriction LU has

68
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a good hermitian metric near the punctures s ∈ S then L is not an arbitrary
extension of LU to Y, it is a canonical extension determined by the �rst growth
condition from the de�nition. It is due to the fact that the extension L of LU
to Y is de�ned by:

H0(∆,L) =

{
σ ∈ H0(∆ ∩ U,LU)|h (σ(t), σ(t)) ≤ C(log(

1

|t|
))β
}
,

where C > 0 and β depends on s.
In the case of good metric the second condition from the de�nition, as it

is indicated in [57] �3, implies that the Chern form
1

2iπ
∂∂ log h is integrable ,

while the third condition implies that the degree of L is:

degL =
1

2iπ

∫
U

∂∂ log h+
∑
s∈S

αs

=
i

2π

∫
U

Θh +
∑
s∈S

αs,

where Θh is the curvature form of h and αs's are residues of the metric h at
s ∈ S. The residues for the "good" metric h are de�ned as:

αs = lim
ε→0

1

2iπ

∫
|t|=ε

∂ log hε(σ(t), (t)),

where hε is a smoothening of h, which coincides with h on the annulus:

2

3
ε < |t| < 4

3
ε.

Moreover, if we recall the de�nition of a �ltered vector bundle, one can see that
these residues correspond to the jumps of the �ltration on the vector bundle
in the punctures.

Now, we suppose that {H, HU , F
•, Q} is a polarized complex variation of

Hodge structures of weight k on a punctured projective smooth curve U =
Y \S, with unipotent monodromies. Let:

HU =
⊕
p+q=k

Hp,q
U ,

be the corresponding Higgs bundle. The polarization Q induces the Hodge
metric h on HU and the induced metrics on Hp,q

U denoted by hp,q. Let:

H =
⊕
p+q=k

Hp,q,
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be the logarithmic Higgs bundle associated to the canonical extension H of
HU . By Proposition 2.2.1 from [57] the Hodge metrics h and hp,q are good
metrics at all points s ∈ S. So, we get:

deg(det Hp,q) =
i

2π

∫
U

trace(Θhp,q) +
∑
s∈S

αs.

Moreover, in the case of unipotent monodromies all αs's are zero and:

deg(det Hp,q) =
i

2π

∫
U

trace(Θhp,q).

2.6.3 Complex variations of weight 1 and rank 2

Let us give a few more details about complex variations of Hodge structures of
weight 1 and rank 2, in order to describe their strong relation with Teichmüller
curves.

Let Lc = {LU , LU ,∇, Q} be a polarized complex variation of Hodge struc-
tures of weight 1 and rank 2 on a curve U = Y \S, where Y is a smooth
projective curve and S is a �nite set of points on Y. We will assume the mon-
odromies around points of S to be unipotent. Moreover, we will assume that
χ(U) < 0. Then, the universal covering of U is the upper half plane:

Ũ = H.

Since the rank of Lc is 2, by section 2.5 the period domain for this variation
is the upper half plane H. The lifting of the period map is:

φ : Ũ → H.

Since the variation is polarized, there is an integral locally free sheaf LZ such
that LU = LZ ⊗Z C and the polarization Q takes integral values on LZ.

Let ρ : π1(U, ∗)→ SL2(C) be the representation of the local system LU . Let
Γ = Im(ρ) be the monodromy group of the representation ρ. It is well known,
see [10] p.156, that the monodromy group of a polarized complex variation of
Hodge structures is discrete. Hence, we have Γ ⊂ SL2(Z) ⊂ SL2(R) and

ρ : π1(U, ∗)→ SL2(R).

The lifting of the period map φ is equivariant with respect to the π1(U, ∗)-
action on Ũ and the Γ-action on H. The group Γ can be also considered as a
lattice in PSL2(R).

De�nition 2.42. In the previous notations, the representation ρ is called a
uniformization representation if one has a biholomorphism:

U ∼= H/Γ.
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Let E = H × C2 be the trivial bundle on H. Then, one has the exact
sequence of bundles on H :

0→ S → E → Q → 0,

where the subbundle S of H × C2 is the tautological bundle of P1
C, restricted

to H. This holds since H can be seen as a domain of P1
C. The bundle Q is the

quotient bundle. There is a natural isomorphism, see [81] �10,

TH = Hom(S,Q) ∼= S−1 ⊗Q, (2.18)

where TH is the tangent bundle of H.
Let H be the Hodge metric on E = H×C2 which is provided by the bilinear

form Q in the sense of De�nition 2.10 and which is SL2(R)-invariant. Then
we get the induced Hermitian metrics on the subbundle S and the quotient
bundle Q. We denote the corresponding curvatures as ΘS and ΘQ. By (2.18)
the Hodge metric H induces a SL2(R)-invariant metric on the holomorphic
tangent bundle TH. This metric is a Kähler metric and it coincides with the
Poincaré metric on H, up to a constant, by Theorem 1.4 from [83]. We denote
the associated Kähler form by ωT and for the corresponding curvature ΘT we
have:

ΘT = −ΘS + ΘQ.

For ωT suitably normalized, the corresponding curvature ΘT , by �13.3 [10],
satis�es:

−iΘT = − Gaussian curvature · ωT .
The Gaussian curvature of the upper half plane with Poincaré metric is equal
to −1, therefore:

ωT = −iΘT . (2.19)

The pullback of the sequence 0→ S → E → Q → 0 to U is the sequence:

0→ φ∗S → φ∗E → φ∗Q → 0,

and these pullbacks are well de�ned on U since the map φ is equivariant with
respect to the π1(U, ∗)-action on Ũ . One has:

det φ∗E = det φ∗S ⊗ det φ∗Q.

Then using that φ∗S and φ∗Q are line bundles, and φ∗E is a �at bundle we
get:

φ∗ΘS = −φ∗ΘQ.
Let us denote φ∗ΘS = Θ. The metric form ωT is SL2(R)-invariant, and its
pullback φ∗ωT to Ũ descends to U. Moreover, by (2.19) it satis�es:

φ∗ωT = −iφ∗ΘT = −iφ∗(−ΘS + ΘQ) = 2iΘ. (2.20)
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The �at bundle φ∗E on U is the same as the �at bundle LU = LU ⊗ OU .
Moreover, for the corresponding Higgs bundle on U by [81] �10 (p.250) we
have F 1(LU) = φ∗S and

L1,0
U = Gr1(LU) = F 1(LU)/F 2(LU) = φ∗S,

since F 2(LU) = 0, and

L0,1
U = Gr0(LU) = F 0(LU)/F 1(LU) = φ∗Q,

since F 0(LU) = LU = φ∗E .
Now, since the monodromies around points of S are unipotent one has the

canonical Deligne extension of the �at bundle LU to a �at bundle on Y, whose
corresponding logarithmic Higgs bundle on Y is L = L1,0 ⊕ L0,1, with Higgs
�eld ΘL : L1,0 → L0,1⊗ωY (S). As we saw before, the induced Hodge metric on
L1,0
U = φ∗S by the pullback of the Hodge metric H, is a "good" metric, which

implies that the �rst Chern form is integrable. Then the degree of the Higgs
term L1,0 is:

degL1,0 =
i

2π

∫
U

Θ +
∑
s∈S

αs,

where αs's are residues of the induced Hermitian metric on L1,0 at points of
the set of punctures S. The unipotent monodromies imply αs = 0, s ∈ S and
one has:

degL1,0 =
i

2π

∫
U

Θ. (2.21)

Let us recall the de�nition of Toledo invariant of the representation ρ. The
map φ is a holomorphic map and hence it is a harmonic map, see [73] �4 Propo-
sition 3.14. The monodromies around punctures are unipotent, which implies
that the map φ is tame and hence it is of �nite energy, see [45] Proposition 4.5.
One can �nd the expression for the Toledo invariant in Proposition 4.6 from
[45], but in the complex dimension 1 it coincides with the invariant de�ned in
[72] and it is:

τ(ρ) =

∫
U

φ∗ωT . (2.22)

Lemma 2.17. In the previous notations, we have:

τ(ρ) = 4π degL1,0.

Proof. This is a direct consequence of equations (2.20), (2.21) and the de�ni-
tion of the Toledo invariant.

Let us recall Theorem 4.3 from [45], the result of Koziarz and Maubon about
the Toledo invariant and uniformization representations of the fundamental
group of a punctured complex curve.
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Theorem 2.18. Let Y be a complex compact smooth curve of genus g and let
S be the set of punctures on Y. Assume that χ(Y \S) = 2− 2g −#S < 0. Let
U = Y \S and let ρ : π(U, ∗)→ PSL2(R) be a homomorphism. Then, one has:

τ(ρ) = −2πχ(Y \S)

if and only if ρ is a uniformization representation.

We end this part with Proposition 1.2 from [80] about the relation between
the degree of the (1,0)-term of a Higgs bundle and its Higgs �eld being an
isomorphism:

Lemma 2.19. Let L be a rank 2 polystable local system of degree zero on
U = Y \S, where S is a �nite set of points on the smooth projective curve
Y such that χ(Y \S) < 0. Let (L = L1,0 ⊕ L0,1,Θ) be the logarithmic Higgs
bundle corresponding to L. Assume that Θ|L0,1 = 0 and Θ1,0 = Θ|L1,0 : L1,0 →
L0,1 ⊗ ωY (S). If

2 deg(L1,0) = deg(ωY (S))

then Θ1,0 is an isomorphism.

Proof. The degree of the logarithmic Higgs bundle L of rank two is zero and
L is polystable. Since degL1,0 > 0, one gets that L1,0 is not Θ-invariant and
Θ1,0 6= 0. Moreover, degL0,1 = − degL1,0 < 0. This implies that L1,0 and L0,1

are of rank 1. Moreover, since Θ1,0 6= 0 one gets that Θ1,0 is injective as a
morphism of sheaves.

Since Θ1,0(L1,0) ⊆ L0,1 ⊗ ωY (S), we get the Higgs subsheaf:

L′ = (L1,0 ⊕Θ1,0(L1,0)⊗ (ωY (S))−1,Θ1,0)

of the Higgs bundle L. One has:

degL′ = degL1,0 + deg Θ1,0(L1,0)− deg(ωY (S)) = 0,

since Θ1,0(L1,0) ∼= L1,0. Since the Higgs bundle L is polystable of degree 0, L′ is
a direct factor of L. This is only possible when Θ1,0(L1,0)⊗ (ωY (S))−1 = L0,1,
which implies Θ1,0 an isomorphism.

Now, we will state and prove Lemma 2.1 from [80]. Note that the proof
is slightly di�erent from the one given by Viehweg and Zuo. Here, we are
combining the previous few results in order to prove that if the Higgs �eld of a
complex variation of weight 1 rank 2 is an isomorphism, then the corresponding
representation is uniformization.

Lemma 2.20. Let Lc = {L, L,∇, Q} be a polarized complex variation of Hodge
structures of weight 1, rank 2, with a nontrivial Higgs �eld on a smooth punc-
tured curve U = Y \S. Let ρ : π1(U, ∗) → PSL2(R) be the corresponding
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representation and let Γ denote the image of ρ. Assume that the local mon-
odromies around the points s ∈ S are unipotent. The corresponding Higgs �eld
of Lc is an isomorphism if and only if:

Y \S ' H/Γ.

Proof. Using that Lc is a complex variation of Hodge structure of weight one,
we have the associated logarithmic Higgs bundle L = L1,0 ⊕ L0,1 on Y with
non-trivial Higgs �eld:

Θ : L1,0 → L0,1 ⊗ ωY (S).

Since the monodromies around points of S are unipotent, the Higgs bundle
L is polystable of degree 0. As Θ|L0,1 = 0, the subbundle L0,1 is Θ-invariant.
As L is polystable of degree 0, we get degL0,1 ≤ 0. So, if degL0,1 = 0 then
degL1,0 = 0. Polystability of L implies that L1,0 and L0,1 are stable Higgs
bundles of degree 0 with trivial Higgs �elds, in other words Θ is trivial. But,
this is not the case here and degL0,1 < 0. Hence, one gets:

degL1,0 > 0.

Let us suppose that Θ is an isomorphism:

Θ : L1,0 ⊗ (L0,1)−1 ∼= ωY (S),

then the positivity of the degree of the left side implies:

deg(ωY (S)) = 2g − 2 + #S > 0,

so we get
χ(Y \S) < 0.

By the uniformization theorem, the universal covering of U = Y \S is the upper
half plane, i.e.

Ũ = H.

Let φ : Ũ → H be a lifting of the period map. This map is equivariant with
respect to the π1(U, ∗)-action on Ũ and the Γ-action on H. And we have the
diagram :

Ũ H

U H/Γ

φ
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Then using the formula τ(ρ) = 4π degL1,0 we get:

τ(ρ) = 2π(2g − 2 + #S).

By Theorem 2.18, one has:
U ∼= H/Γ,

and the map φ is an isomorphism.
Since the map φ is holomorphic, then by Claim 4.11 from [45] the map φ

is an isometry for the Poincaré metric.
In the other direction, we suppose that U ∼= H/Γ, then Theorem 2.18

implies:
τ(ρ) = 2π(2g − 2 + #S),

and hence,

degL1,0 =
1

2
(2g − 2 + #S).

The result follows by Lemma 2.19.

Remark 2.43. As a consequence of the previous lemma, when the Higgs �eld
of a complex variation, of weight 1 and rank 2, is an isomorphism, then the
corresponding representation is a uniformization and it is equivalent to the
fact that the period map is a holomorphic isometry for the Poincaré metric on
H.

The last auxiliary lemma in this section will be one that explains the rela-
tion between holomorphic isometries and Teichmüller discs, i.e. a geodesic in
the Teichmüller space for the Kobayashi metric. It can be found in the paper
[22] as Corollary 1.

Lemma 2.21. (�7, [22]) Let d be the Poincaré metric on the upper half plane
and let dK be the Kobayashi metric on the Teichmüller space Tg of genus g ≥ 2.
Let i : H→ Tg be a holomorphic map. If one has that:

dK(i(z1), i(z2)) = d(z1, z2)

for any two di�erent points z1, z2 ∈ H, the image of H by i in Tg is a Teich-
müller disc.

Let us �nish this section by giving the proof of Theorem 5.3 from [52]. This
theorem explains the nature of families of curves, of genus at least 2, whose
geometric variation has a subvariation with maximal Higgs �eld. In fact, it
states that the base curve of the family is a Teichmüller curve in the moduli
space of curves of genus equal to the genus of smooth �bers of that family.
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Theorem 2.22. Let f : X → Y be a semistable family of curves of genus g ≥ 2
over a smooth projective curve, smooth over U = Y \S, where S is a �nite set
of points on Y, and let V = f−1(U). Suppose that R1f∗CV contains a sub-
variation of Hodge structures L of rank 2 whose Higgs �eld is an isomorphism.
Then U is a Teichmüller curve.

Proof. The family f : X → Y is semistable, which implies that R1f∗CV has
unipotent monodromies around the discriminant locus S, and hence the sub-
variation L has unipotent monodromies around points of S (see Theorem 3.8).
The Higgs �eld of the logarithmic Higgs bundle L = L1,0⊕L0,1 corresponding
to L is an isomorphism

ΘL : L1,0 ∼= L0,1 ⊗ ωY (S),

therefore by Lemma 2.20 the universal covering of U is the upper-half plane,
i.e. Ũ = H, and moreover

U ∼= H/Γ,

where Γ is the image of the fundamental group π1(U, ∗) by the corresponding
representation ρ of the local system L. So, the representation ρ is Fuchsian.
In particular, this means that the local system L is irreducible (see [52] p.11).
Also, ΘL being an isomorphism implies that the period map of L is an isomor-
phism, by Remark 2.43.

By Deligne's semi-simplicity theorem or by the modi�ed version for complex
variations of Hodge structures, Theorem 2.5, we have a decomposition of the
local system R1f∗CV given as:

R1f∗CV =
⊕
i

(Li ⊗Wi),

where Li are pairwise non-isomorphic irreducible C−local systems and Wi are
non-zero C−vector spaces. So, since L is an irreducible sub-local system of
R1f∗CV we can suppose that in the previous decomposition L1 = L.

Let m : U → Mg be the moduli map, i.e. the map which sends a point
y ∈ U to the point inMg corresponding to the �ber f−1(y). Let m̃ : H → Tg
be a lift of this map. This map is well de�ned by a choice of Teichmüller
marking on some smooth �ber. Hence, we have the diagram:

Ũ Tg

U Mg

m̃

m
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One has dim(R1f∗CV )y = dimH1(Xy,C) = 2g, then by Section 2.5 the
lifting of the period map for the geometric variation of the family f : X → Y
is:

ϕ : Ũ → Hg.

We have supposed that L = L1 which is a direct irreducible factor of the
decomposition of the local system R1f∗CV . This is possible by choosing a
suitable symplectic base of �bers of R1f∗CV such that the �rst pair in that
base spans �bers of L1 = L. We de�ne a map:

p11 : Hg → H,

which is just the projection of the matrix in Hg on its (1,1)-entry, which cor-
responds to the local system L in the period domain for R1f∗CV .

The map ϕ can be factorized as ϕ = j ◦ m̃, where j : Tg → Hg is a lift of
the Jacobian map, i.e. the map which associates to the curve its Jacobian (the
period map). Moreover, it means that the map φ, the period map of L, can
be factorized as on the diagram:

Tg Hg

Ũ H

p11m̃

j

φ

So we have: φ = p11 ◦ j ◦ m̃. We will prove that m̃ is an isometry for the
Kobayashi metric dK . By the de�nition of the Kobayashi metric, it is plain
that for x, y ∈ U one has:

d(x, y) ≥ dK(m̃(x), m̃(y)),

where d is the Poincaré metric on the upper half plane.
Since φ is an isometry, we get: d(x, y) = d(φ(x), φ(y)). The map j is

distance decreasing, by Corollary 13.4.3 from [10]. The projection p11 does not
increase the metric. So, one has:

d(x, y) = d(φ(x), φ(y)) = d(p11 ◦ j ◦ m̃(x), p11 ◦ j ◦ m̃(y)) ≤ dK(m̃(x), m̃(y)).

Hence, d(x, y) = dK(m̃(x), m̃(y)), and so m̃ is an isometry for the Kobayashi
metric. Since m̃ is a holomorphic isometry for the Kobayashi metric, the image
of U inMg is an algebraic curve whose lift in Tg is a Teichmüller disc, hence
the result follows by Lemma 2.21.
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Chapter 3

A theorem of Viehweg and Zuo

In this chapter, we will prove in detail Proposition 2.1 from [55], an Arakelov
inequality for rank 1 subsheaves of the direct image of the relative pluricanon-
ical sheaf of a semistable family of n-folds over a curve. We will focus on the
case of semistable families of curves. Later, we discuss the case of equality in
the Arakelov inequality, namely the maximal case.

3.1 Semistable families of curves

Let us recall the de�nitions of semistable curve, semistable map, weak semistable
family and semistable family of curves and state the theorem of semistable re-
duction, which are important for the construction carried out in the proof of
the theorem of Viehweg and Zuo. Recall that the notions of a family and a
projective family are de�ned in Section 1.2.

De�nition 3.1. Let C be a complex curve. We say that a point c ∈ C is a
nodal singularity of C if :

ÔC,c ∼= C[[x, y]]/(xy),

where ÔC,c is the completion of the local ring OC,c.

De�nition 3.2. A semistable curve is a projective curve which is connected,
reduced, has only nodal singularities and such that all irreducible components
isomorphic to P1 meet the other components in at least two points.

De�nition 3.3. A morphism f : X → Y between a projective surface X
which is not necessarily smooth and a smooth projective curve Y is called a
semistable map if it is a proper, surjective morphism such that all �bers are
semistable curves. The variety X is said to be semistable over Y.

De�nition 3.4. Let Y be a smooth projective curve and let X be a normal
projective surface. A morphism f : X → Y is called a weakly semistable family
if it is a proper, surjective morphism such that all �bers are semistable curves.
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De�nition 3.5. A weakly semistable family f : X → Y is called a semistable
family if X is a smooth surface.

Remark 3.6. Note that the previous de�nition is equivalent to the following:
A projective family of curves f : X → Y over a curve Y is a semistable family
of curves if all �bers are reduced, the singular �bers of the family are normal
crossing divisors and they do not contain (−1)-curves. Let us explain the last
condition:

Let C =
∑k

j=1Cj be a singular reduced �ber such that the component
Ci ∼= P1, for i �xed, and we suppose that Ci meet the other components at
least at two points, i.e.

∑k
j=1,j 6=iCi ·Cj ≥ 2. One Zariski's lemma (see �III 8.2

[8]) implies that Ci · C = 0, and one gets:

C2
i +

k∑
j=1,j 6=i

Ci · Cj = 0,

and hence
C2
i 6= −1.

Therefore, Ci is not a (−1)-curve.

De�nition 3.7. Let R be a commutative Noetherian local ring. The ring R
is Cohen-Macaulay if its depth is equal to the Krull dimension of R. A variety
X is called Cohen-Macaulay if its local rings OX,x at every point x ∈ X are
Cohen-Macaulay. Moreover, X is called Gorenstein if it is Cohen-Macaulay
and ωX is an invertible sheaf. A morphism f : X → Y is called Cohen-
Macaulay, resp. Gorenstein, if f is �at and all the �bers are Cohen-Macaulay,
resp. Gorenstein.

De�nition 3.8. ([74] p.14) A normal variety X has rational singularities if
it is Cohen-Macaulay and the minimal (or any) desingularization δ : Z → X
satis�es δ∗ωZ = ωX . If X is a surface then rational singularities on X are called
rational double points.

Remark 3.9. The name rational double points or simple surface singularities,
comes from the fact that these singularities are the singularities of double
coverings of a smooth surface rami�ed over a curve having A-D-E singularities
(see �III.7 [8].) By Theorem 7.1 from �III.7 [8], the rational double points on
normal surface are resolved by A-D-E curves, which are the exceptional curves
whose all irreducible components are (−2)-curves and which can be seen as
chains of P1's .

Now, we will state several results which can be found in [60], but essentially
these are the results of Mumford and Deligne.
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Theorem 3.1. (Theorem 2.2.1) Let Y be a smooth projective connected curve.
Assume that X is a projective surface and f : X → Y is a surjective, proper
morphism. There exists a minimal smooth surface X ′ birationally equivalent
to X together with a �at proper morphism f ′ : X ′ → Y with the same generic
�ber as f and whose �bers are normal crossing divisors on X ′.

Theorem 3.2. (Theorem 3.2.1) Let Y be a smooth projective connected curve.
Assume that X is a minimal, smooth projective surface and f : X → Y is a
surjective, proper morphism whose �bers are normal crossing divisors on X.
Then there exists a covering Y ′ → Y with Y ′ a smooth connected curve such
that the normalization of the base change surface X ′ = X ×Y Y ′ is semistable
over Y ′.

Theorem 3.3. (Theorem 3.1.1) Let Y be a smooth projective connected curve.
Let f : X → Y be a weakly semistable family. Then singularities of X can
only occur at points where a �ber of f is singular. All singularities of X are
rational double points. The minimal desingularization δ : Z → X of a singular
point x ∈ X replaces x by a chain of P1's, in particular the composition of f
with δ is a semistable family.

Let us put together these results in the following theorem which is known
as the semistable reduction theorem, proved by Mumford in [43]. The theorem
implies that if we start with any proper surjective map f : X → Y, where Y is
a smooth connected curve and X is a variety, there exists a semistable family
after taking a base change and performing a desingularization. The similar
result proved by de Jong in [38], when the relative dimension of the family
is one, i.e. dimX − dimY = 1, provides as a �nal result a family of nodal
curves, in particular both the source and the base are smooth. Unfortunately,
as it is shown in [2], such a strong result is false in the case when dimY > 1
and dimX − dimY > 1, and the best expected result that one could have
after taking well chosen base change are weakly semistable families, but in
that higher dimensional case they are de�ned in another way, which we will
not discuss here.

Here, we give the formulation of the semistable reduction theorem from [43]
and then a sketch of the proof which we found in [13], but which is obviously
implied by the previous several theorems due to Mumford.

Theorem 3.4. (The semistable reduction theorem [43], p.53) Let f : X → Y
be a proper surjective map of a projective surface X onto a smooth projective
connected curve Y, let S be a set of points on Y such that the restriction
f : X\f−1(S)→ Y \S is a smooth map. There exist:

1. a �nite base change ϕ : Y ′ → Y, with Y ′ smooth, connected totally rami-
�ed over S;

2. a proper birational morphism Z → X×Y Y ′, where Z is smooth and such
that the induced morphism g : Z → Y ′ is a semistable family.
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Proof. We can blow up X at some points of f ∗(S) obtaining a new family
f̃ : X̃ → Y, where f̃ ∗(S) is a normal crossing divisor, although it may not be
reduced (see Theorem 3.1).

Let l be the lcm of all multiplicities of the components of f̃ ∗(S). We make
a base change of degree l, i.e. ϕ : Y ′ → Y, totally rami�ed over S. Let X ′ be
the normalization of the �ber product X̃ ×Y Y ′. Then the composition of the
normalization map and the second projection gives a map f ′ : X ′ → Y ′ which
is a weakly semistable family (see Theorem 3.2).

Then, the singularities on X ′ are rational double points and the minimal
resolution of singularities Z → X ′ introduces a chain of P1

C's which preserves
the normal crossings and reducedness (see Theorem 3.3). Therefore, the in-
duced map Z → Y ′ is a semistable family.

In order to better understand the properties of weakly semistable families
and semistable families let us de�ne mild morphisms. These are the morphisms
which preserves their properties under a surjective base change. The main
references for this part are �2 [78] and �2 [79] .

De�nition 3.10. (�2 [78]) A morphism f : X → Y between projective vari-
eties is called mild if:

1. f is �at, Gorenstein with reduced �bers;
2. Y is smooth and X is normal with at most rational singularities;
3. given a dominant morphism Y ′ → Y where Y ′ has at most rational

Gorenstein singularities, X ×Y Y ′ is normal with at most rational singu-
larities.

Lemma 3.5. (�2 [78]) Let f : X → Y be a mild morphism. If Y ′ → Y is a
surjective morphism between projective manifolds, then pr2 : X ×Y Y ′ → Y ′

is a mild morphism. In particular, X ×Y Y ′ is normal with at most rational
singularities.

Now, we will state one result of Abramovich and Karu from �6 [2] which
explains why we introduced the notion of mild morphism.

Proposition 3.6. (p.18, [2]) Let f : X → Y be a weakly semistable family,
then f is a mild morphism.

If one considers families f : X → Y, where dimY > 1 and dimX−dimY >
1 whose �bers are reduced normal crossing divisors on X, after a base change
all good properties of these families are not preserved and usually the best
that one could expect are mild morphisms, �2 see [79] . Fortunately, in the
cases when dimY = 1, a surjective base change Y ′ → Y, with Y ′ a smooth
curve, of a semistable family of curves will produce a weakly semistable family
of curves, and after a desingularization one gets again a semistable family. The
next theorem gathers several results of Viehweg and Zuo about the behavior
of semistable families of curves after a smooth surjective base change.
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Theorem 3.7. Let f : X → Y be a semistable family of curves smooth over
U = Y \S, where S is a �nite set on the curve Y. Let ϕ : Y ′ → Y be a �nite
surjective map, where Y ′ is a smooth curve, then:

1. X ′ = X ×Y Y ′ is normal with at most rational double points.
2. The induced map f ′ : X ′ → Y ′ is a weakly semistable family.
3. Let δ : Z → X ′ be a minimal desingularization, then g = f ′ ◦ δ : Z → Y ′

is a semistable family and g∗ω
ν
Z/Y ′
∼= f ′∗ω

ν
X′/Y ′ , for all integers ν ≥ 1.

Proof. 1. This is a direct consequence of the fact that f is a mild morphism.
2. It is clear that the properness and the �atness of the map f are preserved

under a base change. Also, the �bers of the map f ′ are semistable curves.
By 1. one has that X ′ is normal, hence by De�nition 3.4 the map f ′ :
X ′ → Y ′ is a weak semistable family.

3. The �rst part of the claim is due to Theorem 3.3. The second part of the
claim is a consequence of the fact that f ′ is a weakly semistable family,
hence a mild morphism and that δ is a birational map, therefore the
result follows by Corollary 2.4 vii) from �2 [78].

De�nition 3.11. The family g : Z → Y ′ from the previous theorem is called
the induced semistable family by the covering map ϕ : Y ′ → Y.

Remark 3.12. Weak semistable maps are Gorenstein, since they are mild
morphisms. In the notations of the previous theorem, one has the base change
property:

ϕ′∗ωX/Y = ωX′/Y ′ ,

where ϕ′ : X ′ → X is the �rst projection. This is a consequence of Theorem
3.6.1 from [12].

Let us �nish this section by a theorem of Alan Landman which can be
found in [47]. This theorem holds for semistable families of n-manifolds, but
here we give the version for a family of curves:

Theorem 3.8. ([47]) Let f : X → Y be a semistable family of curves over a
curve Y, with discriminant locus a �nite set S. The monodromy operators of
the local system R1f∗CX\f−1S are unipotent.

3.2 An Arakelov inequality

Beauville showed in his paper [5] that each semistable family of curves over
the projective line f : X → P1

C contains at least 4 singular �bers and he
conjectured that if the genus p of the generic �ber is at least 2 the family
must have at least 5 singular �bers. Later, Tan proved in [71] that for any
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semistable family of curves f : X → Y over a curve with �bers of genus p ≥ 2
one has the inequality:

deg f∗ωX/Y <
p

2
deg(Ω1

Y (logS)),

where S is the discriminant locus of the family. Combining this result with
the result of Beauville he proved the conjecture. Here, we will explain some
related numerical results about semistable families of curves over a curve, due
to Viehweg and Zuo. The central part will be to prove an Arakelov inequality
which bounds the degree of some invertible subsheaf H of the pushforward
of the pluricanonical relative sheaf f∗ωνX/Y of a semistable family of curves
f : X → Y over a curve Y . This is the inequality:

degH ≤ ν

2
deg(Ω1

Y (logS)),

where ν ≥ 1 is a positive integer and S is the discriminant locus of the family.
We will call this inequality an Arakelov inequality.
The name is inspired by the paper of Arakelov [1] which treats similar prob-
lems. Peters, in his paper [58], named the class of similar inequalities Arakelov-
type inequalities.

Remark 3.13. Let Y be a smooth curve and S an e�ective divisor on Y.
Recall that whenever we write Ω1

Y (logS) we mean Ω1
Y (logSred), the sheaf of

logarithmic di�erential forms with poles at most on Sred.

Lemma 3.9. Let f : X → Y be a semistable family of curves over a curve
Y with discriminant locus a �nite set S. Let ν ≥ 1 and let H be an invertible
subsheaf of f∗ω

ν
X/Y . There exists a �nite cover ϕ : Y ′ → Y, such that:

1. the degree of ϕ∗H is a multiple of ν;
2. let g : Z → Y ′ be the induced semistable family by the covering map ϕ,

then ϕ∗H is an invertible subsheaf of g∗ω
ν
Z/Y ′ ;

3. if ϕ∗H satis�es the Arakelov inequality, the same holds for H.

Proof. If Y 6= P1 then we can �nd an invertible non-trivial sheaf F on Y,
exactly of order ν in Pic(Y ), i.e. Fν = OY and Fk 6= OY for 0 < k < ν.
Using the covering trick from [8] �1.17 we can construct an unrami�ed cyclic
connected covering ϕ : Y ′ → Y of degree ν.

Otherwise, if Y = P1, consider the covering ϕ : P1 → P1 of degree ν given
as z → zν . The rami�cation points are 0 and∞, both with multiplicity ν. The
group of automorphisms of P1 acts transitively even on triples of points, so we
can suppose that points 0,∞ are in the set S.

So in both cases, put S ′ = ϕ−1S, and by Lemma 1.8 we have:

deg(Ω1
Y ′(logS ′)) = ν deg Ω1

Y (logS).

Arakelov inequalities and semistable families of curves
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Since H is invertible and ϕ is a covering of compact Riemann surfaces, we
have:

deg(ϕ∗H) = degϕ degH = ν degH.

Z X ′ = Y ′ ×Y X X

Y ′Y ′ Y

g

=

f

δ

f ′

ϕ′

ϕ

Let X ′ = X ×Y Y ′. We take a minimal desingularization δ : Z → X ′, and
we get a semistable family g : Z → Y ′ smooth over Y ′\ϕ−1S. By Theorem 3.7
we have:

g∗ω
ν
Z/Y ′ = f ′∗ω

ν
X′/Y ′ .

On the other hand, Y is a smooth curve and ϕ is surjective, so ϕ is a �at
morphism, then by Proposition 9.3. from �III [32], Remark 3.12 and Theorem
3.7 we get:

ϕ∗H ⊆ ϕ∗f∗ω
ν
X/Y = f ′∗ϕ

′∗ωνX/Y = f ′∗(ϕ
′∗ωX/Y )ν = f ′∗ω

ν
X′/Y ′ = g∗ω

ν
Z/Y ′ .

We suppose that the Arakelov inequality holds for ϕ∗H. Then by Lemma
1.8 one gets:

ν degH = degϕ∗H ≤ ν

2
deg(Ω1

Y ′(logS ′)) =
ν

2
ν deg(Ω1

Y (logS)),

and hence,

degH ≤ ν

2
deg(Ω1

Y (logS)).

The theorem of Viehweg and Zuo states that the Arakelov inequality always
holds. Before we state and prove that theorem, let us give the version for a
more simple case, the case of a subsheaf of the direct image of the relative
canonical sheaf. That is Lemma 0.6 from [55].

Theorem 3.10. Let f : X → Y be a semistable family of curves over a curve
Y, smooth over U = Y \S. Let L be an invertible subsheaf of f∗ωX/Y . Then:

degL ≤ 1

2
deg(Ω1

Y (logS)).
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Proof. Let D = f ∗S. As we explained in section 2.3.2, the Higgs bundle which
comes with the family f : X → Y, corresponding to the local system R1f∗CX\D
is:

E = E1,0 ⊕ E0,1 = f∗Ω
1
X/Y (logD)⊕R1f∗OX ,

with Higgs �eld: Θ : E1,0 → E0,1 ⊗ ωY (S). Since the family f : X → Y is
semistable, by Lemma 1.9, we have Ω1

X/Y (logD) = ωX/Y . Let us consider the
subsheaf L = L1,0 ⊕ L0,1 ⊂ E generated by L, i.e.

L1,0 = L,

L0,1 = Θ(L1,0)⊗ (ωY (S))−1.

By Remark 2.14 the Higgs bundle E is polystable of degree 0, therefore degL ≤
0. On the other hand, since L is an invertible sheaf, we have two possible cases:

1. If Θ(L1,0) = 0, then L0,1 = 0 and we have:

degL = degL ≤ 0 ≤ 1

2
deg(Ω1

Y (logS)).

Note that in the case when Y ∼= P1 one has #S ≥ 4, due to [5].

2. Otherwise, Θ(L1,0) ∼= L1,0, then:

0 ≥ degL = degL1,0 + degL0,1 = 2 degL − deg(Ω1
Y (logS)),

and
degL ≤ 1

2
deg(Ω1

Y (logS)).

The proof of the previous theorem is pretty much simpli�ed due to the fact
that the sheaf L ⊆ f∗ωX/Y is a subsheaf of the (1, 0)-part of the Higgs bundle
associated to the family f : X → Y. For ν ≥ 2 and an invertible subsheaf
H ⊆ f∗ω

ν
X/Y the proof that the Arakelov inequality holds is more di�cult.

The proof requires the application of the semistable reduction theorem and
the construction of a cyclic covering of degree ν over X, in order that the sheaf
H be a subsheaf of the (1, 0)-part of some polystable Higgs bundle of degree
0. The following theorem is the version for the case of families of curves of
Proposition 2.1 from [55] and here we �ll in all details of the proof given by
Viehweg and Zuo.

Theorem 3.11. (Viehweg-Zuo theorem, [55] �2.1) Let f : X → Y be a
semistable family of curves over a curve Y and smooth over U = Y \S. Let
ν ≥ 1 and let H be an invertible subsheaf of f∗ω

ν
X/Y . Then:

degH ≤ ν

2
deg(Ω1

Y (logS)).

Arakelov inequalities and semistable families of curves
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Proof. After passing to a suitable cover of Y we can suppose by Lemma 3.9
that degH = νρ, where ρ is a positive integer. We will now show that we can
even suppose H ∼= Cν for a suitable line bundle C.

Let P be a divisor on Y of degree ρ, then:

deg(H⊗OY (−νP )) = νρ− νρ = 0.

Then H⊗OY (−νP ) is an element in Pic0(Y ).
The Jacobian Pic0(Y ) is a divisible group, hence there is an element N in

this group such that:
N ν ∼= H−1 ⊗OY (νP ).

We have
H ∼= Cν ,

where
C = N−1 ⊗OY (P ).

We are going to construct a cyclic covering of X in order that C belongs
to the (1,0)-part of a polystable Higgs bundle of degree 0, i.e. a Higgs bundle
associated to a geometric variation of Hodge structures with unipotent mon-
odromies.
The inclusion

H ↪→ f∗ω
ν
X/Y ,

tensorised by H−1 = C−ν yields an inclusion

OY ↪→ f∗ω
ν
X/Y ⊗ C−ν

and hence
f ∗(OY ) = OX ↪→ f ∗f∗ω

ν
X/Y ⊗ f ∗C−ν .

Using the canonical morphism f ∗f∗ω
ν
X/Y → ωνX/Y , we have an injective mor-

phism:
OX → ωνX/Y ⊗ f ∗C−ν = Lν ,

where L = ωX/Y ⊗ f ∗C−1.
So a non-zero constant function from OX induces a non-zero section of Lν .
Hence, there exists a non-zero global section σ̂ of Lν , whose zero-divisor will
be denoted by D̂ and we �x an isomorphism:

OX(D̂) ∼= Lν .

The section σ̂ ∈ H0(X,Lν) de�nes a cyclic covering X̂ of X, i.e. we get a
cyclic covering map π̂ : X̂ → X, see Section 1.1. Let Ŵ → X̂ be a minimal
resolution of singularities of X̂ and let τ̂ : Ŵ → X be the composition of the
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3. A theorem of Viehweg and Zuo

desingularization map and the cyclic covering map. In the end, let ĥ = f ◦ τ̂ :
Ŵ → Y. On the other side, we have

L = ωX/Y ⊗ f ∗C−1

f∗f
∗C = f∗(ωX/Y ⊗ L−1)

and then by the projection formula we get:

C ⊗ f∗OX = f∗(ωX/Y ⊗ L−1)

C = f∗(ωX/Y ⊗ L−1),

where we use that f∗OX = OY . This holds since f is proper and it has con-
nected �bers.

Note that the map ĥ : Ŵ → Y is smooth over Y \Ŝ, where Ŝ is a divisor
on Y whose support is the union of the points of the set S and f(π̂(Sing(X̂))),
points of Y which are images of singularities of the cyclic covering X̂ by the
map X̂ → Y. These singularities lie over the set Sing(D̂) by Proposition 1.12.

If D̂+f−1Ŝ was a normal crossing divisor then, by Lemma 1.16, ωX/Y ⊗L−1

would be a direct factor of τ̂∗Ω1
Ŵ/Y

(log ĥ−1(Ŝ)), and hence we would have:

C = f∗(ωX/Y ⊗ L−1) ⊆ f∗τ̂∗Ω
1
Ŵ/Y

(log ĥ−1(Ŝ)) = ĥ∗Ω
1
Ŵ/Y

(log ĥ−1(Ŝ)),

which is the (1,0)-term of the Higgs bundle associated to the map ĥ : Ŵ → Y,
smooth over Y \Ŝ.

The problem is that in general, the divisor D̂ + f−1Ŝ is not a normal
crossing divisor, which is one of the conditions to apply Lemma 1.16. Also
in order to follow the proof of the previous theorem we need that the Higgs
bundle associated to the map ĥ : Ŵ → Y has degree 0. Since we could have
non-reduced �bers after the desingularisation of the cyclic covering Ŵ → X̂,
the monodromies around points of Ŝ could be non-unipotent. By Theorem
2.13 the monodromies around the discriminant locus Ŝ of the map ĥ : Ŵ → Y
are quasi-unipotent. But by Lemma 2.14, the quasi-unipotent monodromies
are not enough to conclude that the corresponding Higgs bundle is polystable
of degree 0.

To get rid of these problems, we will take a rami�ed cover Y ′ of Y, and we
will construct a family h : W → Y ′ which will have the required properties,
i.e. the pullback of D̂+ f−1Ŝ will be a normal crossings divisor and the Higgs
bundle associated to the map h : W → Y ′ will be polystable of degree 0.

Moreover, we will prove that the pullback of C on Y ′ is an invertible sub-
sheaf of the (1,0)-part of the Higgs bundle corresponding to the geometric
variation of the map h : W → Y ′.

Let us explain the next diagram, which will be the �rst step in the con-
struction:

Arakelov inequalities and semistable families of curves
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Z1

Y1 Y1

X1 = X ×Y Y1

Ŵ ×Y Y1 ŴW1

X

Y

∆ = f−1(S) ∆̂ = f−1(Ŝ)

S ⊂ Ŝ

f

=
ϕ1

δ1

ĥp

τ̂

h1

1. The monodromies around points s ∈ Ŝ of the map ĥ : Ŵ → Y are
quasiunipotent. The Semistable Reduction Theorem provides a covering ϕ1 :
Y1 → Y rami�ed above points of Ŝ such that the normalization of Ŵ ×Y Y1 is
weakly semistable over Y1.

Moreover, if W1 is a minimal desingularization of the normalization of
Ŵ ×Y Y1, then the induced map h1 : W1 → Y1 is a semistable family and
monodromies around points of ϕ−1

1 Ŝ are unipotent. Note that by Theorem
3.7 the �ber product X1 = X ×Y Y1 is weakly semistable over Y1. Singular
points on X1 = X ×Y Y1 lie on �bers over the points of ϕ−1

1 S. Since the map
f : X → Y is semistable, by Theorem 3.7 these points are at most rational
double points. Let δ1 : Z1 → X1 be a minimal desingularization of X1. The
map Z1 → Y1 is semistable.

Let p : X1 → X be the �rst projection, then the map δ1 : Z1 → X1 is an
isomorphism outside of the divisor p∗∆, where ∆ = f−1(S). This holds since
we did the desingularization at some points of p∗∆.

Z

Y ′ Y ′ Y1 Y1 Y1 Y

Z2 ×Y1 Y
′

Z2 Z1 X1 = X ×Y Y1 X

f

ϕ1

p

==ϕ2=

g
δ1δ2

2. Let us explain the construction of the diagram above:
a) Let ∆̂ = f−1Ŝ. This divisor is a normal crossings divisor, since f is a
semistable family. We recall that this divisor contains Sing(D̂), since over
Sing(D̂) on the cyclic covering Ŵ lie singularities. We note that D̂ could be a
non normal crossing divisor since we don't have a control over the section σ̂,
whose zero divisor is the divisor D̂. We divide Sing(D̂) in two groups:

◦ normal crossings of components of D̂;

◦ the other points.
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3. A theorem of Viehweg and Zuo

The divisor D̂ + ∆̂ could be a non normal crossing divisor and the points of
Sing(D̂ + ∆̂) are divided in two groups:

◦ normal crossings of D̂ + ∆̂;
◦ the other points, which will be referred to in the rest of the proof as
�problematic points�.

The problematic points of the divisor ∆̂ + D̂ are:

◦ the points of Sing(D̂) which are not normal crossings of components of D̂.
Above these points lie singularities on the cyclic covering, which implies
that these points lie in the �bers ∆̂ = f−1Ŝ;

◦ points of intersections of components of D̂ and ∆̂ which are not normal
crossings.

Hence, these points lie also in ∆̂ = f−1Ŝ. A good example which describes
these points is the one where 2 di�erent components of the divisor D̂ and a
�ber over a point of S intersect at one point.
So, we get that all problematic points of the divisor ∆̂ + D̂ lie in ∆̂.

b) The divisor δ∗1p
∗(∆̂ + D̂) could be a non normal crossing divisor. By the

previous observation the problematic points of the divisor δ∗1p
∗(∆̂ + D̂) lie at

δ∗1p
∗(∆̂). More precisely, they lie in �bers over ϕ−1

1 Ŝ.

Now, the goal is to get rid of these problematic points. In order to do that,
we apply an embedded resolution at problematic points of δ∗1p

∗(∆̂ + D̂) on Z1,
i.e. we carry out a chain of birational maps which provides that the exceptional
locus has normal crossings. Hence, we get a composition of birational maps
Z2 → Z1, such that the pullback of the divisor ∆̂ + D̂ on Z2 has normal
crossings.

Note that Z2 and Z1 are isomorphic outside of the divisor δ∗1p
∗(∆̂), i.e.

outside of the �bers over ϕ−1
1 Ŝ. Obviously, the pullback of D̂ to Z2 is a normal

crossings divisor with normal crossings lying in �bers over points of ϕ−1
1 Ŝ.

Here, we have to underline that �bers over ϕ−1
1 Ŝ\ϕ−1

1 S on Z2, which are
total transforms of �bers over ϕ−1

1 Ŝ\ϕ−1
1 S on Z1 after the embedded resolu-

tion δ2 : Z2 → Z1, contain some exceptional divisors as their components.
These exceptional divisors are also components of the divisor δ∗2δ

∗
1p
∗(D̂) and

let us denote the sum of these exceptional divisors as EZ2 . Hence, the divisor
δ∗2δ
∗
1p
∗(D̂) has vertical components, at least over ϕ−1

1 Ŝ\ϕ−1
1 S.

c) The family Z2 → Y1 could be a non-semistable family and the multiple
�bers lie over some points in ϕ−1

1 Ŝ. But again, using the Semistable Reduction
Theorem, we take a covering ϕ2 : Y ′ → Y1 rami�ed above all points of ϕ−1

1 Ŝ
and of degree equal to the lcm of all possible multiplicities in all bad �bers.
Then a minimal desingularization Z of the normalization of Z2×Y1Y

′ produces
a semistable family over Y ′, i.e. the induced map g : Z → Y ′ is semistable.

Arakelov inequalities and semistable families of curves
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Moreover, the map g : Z → Y ′ is smooth over Y ′\ϕ−1(Ŝ), where

ϕ = ϕ1 ◦ ϕ2 : Y ′ → Y

is the composed covering map. Let us explain this:

◦ The singularities on X1 are on �bers over ϕ−1
1 (S), then after the desingu-

larization δ1 : Z1 → X1 the family Z1 → Y1 has again discriminant locus
ϕ−1

1 (S).

◦ The sequence of birational maps Z2 → Z1 will increase the discriminant
locus of the family Z2 → Y1 by transforming the smooth �bers over
ϕ−1

1 Ŝ\ϕ−1
1 S in the family Z1 → Y1 into ones with normal crossings, since

they get the exceptional divisors as their components after the embedded
resolution. These exceptional divisors have normal crossings with the
proper transforms of the �bers over ϕ−1

1 Ŝ\ϕ−1
1 S in the family Z2 → Y1.

Hence, the set ϕ−1Ŝ is the discriminant locus of the family Z2 → Y ′.

◦ The set ϕ−1Ŝ is also the discriminant locus for the map Z2 ×Y1 Y
′ →

Y ′, and at the same time it contains singularities of Z2 ×Y1 Y
′. These

singularities are rational double points, they are resolved by chains of P1.
The desingularization Z → Z2 ×Y1 Y

′ does not add new singular �bers
in the family g : Z → Y ′.

Remark 3.14. Note that at the end of 2b) we proved that the divisor
δ∗2δ
∗
1p
∗(D̂) has vertical components, at least over ϕ−1

1 Ŝ\ϕ−1
1 S, whose sum

is denoted by EZ2 . Also, the pullback of the divisor D̂ to Z2 ×Y1 Y
′, has

vertical components, whose sum is the pullback of the divisor EZ2 to
Z2 ×Y1 Y

′. The pullback of the divisor EZ2 to Z2 ×Y1 Y
′ has nodes as

singularities and at these nodes can occur the singularities of Z2 ×Y1 Y
′,

which are rational double points. After the desingularization Z → Z2×Y1

Y ′, the pullback of the divisor D̂ to Z contains as vertical components
the sum of the pullback of the divisor EZ2 to Z and the chains of P1's.
These vertical components lie at least over the points of ϕ−1Ŝ\ϕ−1(S).

d) Note that the pullback of ∆̂ + D̂ on Z is a normal crossings divisor and
that normal crossings of the pullback of the divisor D̂ on Z lie in the �bers
over ϕ−1Ŝ. Also, we have:

◦ Z is isomorphic to Z2 ×Y1 Y
′ outside the pull-back of ∆̂;

◦ Z2 and Z1 are isomorphic outside the pull-back of ∆̂;

◦ Z1 and X1 are isomorphic outside the pull-back of ∆, hence also outside
the pull-back of ∆̂;

◦ Note that we get a morphism δ : Z → X ×Y Y ′ from the composition
of morphisms Z → Z2 ×Y1 Y

′ → (X ×Y Y1) ×Y1 Y
′
. This map is an

isomorphism outside the pullback of ∆̂ to Z. i.e. outside of the �bers
over ϕ−1Ŝ.
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Also, we have the maps:

◦ ϕ′ : X ′ → X, a �nite map with rami�cation divisor ∆̂;

◦ f ′ : X ′ → Y ′, the second projection map;
◦ ϕ : Y ′ → Y, a totally rami�ed covering with branch locus Ŝ.

Let us construct the diagram:

W

Z

Y ′ Y ′ Y ′

X ′ = X ×Y Y
′

Ŵ ×Y Y
′

ŴW ′

X

Y

∆′ = g∗T

T = ϕ−1Ŝ

f

τ

g

= =
ϕ

δ

h ĥ
ϕ′

f ′

h′

3. By construction at point 1 the map h1 : W1 → Y1 is semistable, so taking
the bigger covering ϕ : Y ′ → Y1 → Y we preserve the semistability of the map
h′ : W ′ → Y ′, where W ′ is a minimal desingularization of the normalization of
Ŵ ×Y Y ′. So, the map h′ has unipotent monodromies around ϕ−1Ŝ.

In order to simplify notations let:

T = ϕ−1Ŝ and ∆′ = δ∗ϕ
′∗∆̂.

In other words, we have:
∆′ = g∗T.

Let
D = div(σ

′
) = δ∗ϕ

′∗(D̂)

be the zero divisor of the section

σ
′
:= δ∗ϕ

′∗(σ̂).

This is a global section of the sheaf

M := δ∗ϕ
′∗L,

and we have
Mν ∼= OZ(D).

So, we can construct the ν-cyclic covering π : W2 → Z obtained by taking a
ν-th root out of D. Since D is a normal crossing divisor, singularities on W2

are rational double points and they lie over normal crossings of the divisor D,

Arakelov inequalities and semistable families of curves
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see Lemma 1.6 and Lemma 1.7. These singularities are resolved by chains of
P1's and the resolution is minimal. Let us denote this desingularization by
µ : W → W2. Since the normal crossings of D lie in ∆′ = δ∗ϕ

′∗∆̂, the images
of these normal crossings by the map g : Z → Y ′ on Y ′ are in the set T. Hence,
the singularities of the cyclic covering lie over T.

We denote by τ = π ◦ µ : W → Z the map which is the composition of the
desingularization and the cyclic covering map. Hence, we get an induced map
h = g ◦ τ : W → Y

′
. By construction, the map h is smooth over Y ′\T. This

holds since the support of the divisor T is the union of the set of images on Y ′

of singularities of the cyclic covering by the map g and the discriminant locus
of the map g : Z → Y ′.

We end this part by showing that the map h : W → Y
′
has unipotent

monodromies around T . In order to study monodromies of h, we study mon-
odromies of h′. We will see that W and W ′ are isomorphic away from �bers
over T. This will be su�cient because the loops along which we calculate
monodromies are in the complement of pullbacks of T on W and W ′. Since
h′ : W ′ → Y ′ has unipotent monodromies around T, we get the same for mon-
odromies of the map h : W → Y ′ around T. Let us prove that W and W ′ are
isomorphic outside the �bers over T.

The surface W is a desingularization of the normalization of Z in the func-
tion �eld of Ŵ ×Y Y

′
, i.e. W is a desingularization of the normalization of

Z ×X′ (Ŵ ×Y Y
′
). By point 2. of the construction, Z and X ′ are isomorphic

outside the divisor ∆′ = g∗T = δ∗ϕ
′∗∆̂, so we get thatW is a desingularization

of the normalization of (Ŵ ×Y Y
′
) outside the �bers over T. Recall that W ′ is

a desingularization of the normalization of (Ŵ ×Y Y
′
). In the end, we have an

isomorphism of W and W ′ outside the �bers over T.
We summarize what we have seen so far in the following claim:

Claim 3.12. In the previous notations, the map g : Z → Y ′ is smooth over
Y ′\T and the map h : W → Y ′ is smooth over Y ′\T. The covering map
ϕ : Y ′ → Y is rami�ed over the points of the set Ŝ. The local monodromies
of the local system R1h∗CW\h−1(T ) are unipotent. The divisor (∆′ +D)red is a
normal crossings divisor. The divisor D contains vertical components at least
over T\ϕ−1S.

Proof. Indeed, since the smooth varieties W and W ′ are isomorphic outside
of divisors which are the pull-backs of the divisor T by maps h and h′, and
since local monodromies of the local system R1h′∗CW ′\h′−1(T ) are unipotent by
construction, the local monodromies of the local system R1h∗CW\h−1(T ) are
unipotent as well. Also, the pullback of the divisor ∆̂ + D̂ on Z is the divisor
∆′ + D, hence it has normal crossings by construction. The rest follows by
points 2b), 2c) and Remark 3.14 from the construction.

We divide the remainder of the proof of the theorem in several steps. In the
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�rst few parts we will give some technical details which are mostly consequences
of the previous construction. Then, we will show that the invertible sheaf ϕ∗C
can be seen as the (1,0)-part of a polystable Higgs bundle of degree 0, which
will be enough to show the inequality.

(A) Since f : X → Y is semistable, by Theorem 3.7, De�nition 3.8 and the
projection formula, we have:

δ∗(ωZ/X′) = δ∗(ωZ ⊗ δ∗ω−1
X′ ) = OX′ .

We have f
′
∗(OX′) = OY ′ . This holds since f ′ is proper and it has con-

nected �bers. These facts and Remark 3.12 yield:

g∗(ωZ/Y ′ ⊗ δ∗ϕ
′∗ω−1

X/Y ) = g∗(ωZ ⊗ g∗ω−1
Y ′ ⊗ δ

∗ω−1
X′/Y ′)

= g∗(ωZ ⊗ g∗ω−1
Y ′ ⊗ δ

∗(ω−1
X′ ⊗ f

′∗ωY ′))

= g∗(ωZ ⊗ g∗ω−1
Y ′ ⊗ δ

∗ω−1
X′ ⊗ g

∗ωY ′)

= g∗(ωZ/X′) = f
′

∗δ∗(ωZ/X′) = f
′

∗(OX′) = OY ′ .

(B) Let us recall that S ⊂ Ŝ, ∆ = f−1S, ∆̂ = f−1Ŝ, T = ϕ−1(Ŝ), and ∆′ =
g−1T. Note that the map ϕ

′
: X ′ → X is a �nite map with rami�cation

divisor ∆̂, the map δ is a desingularization and by Theorem 1.11 we have:

δ∗ϕ
′∗
(

Ω1
X(log ∆̂)

)
⊂ Ω1

Z (log ∆′) . (3.1)

Since ϕ : Y ′ → Y is rami�ed over Ŝ then by Lemma 1.8 we have:

δ∗ϕ
′∗f ∗Ω1

Y (log Ŝ) = g∗ϕ∗Ω1
Y (log Ŝ) = g∗Ω1

Y ′(log T ). (3.2)

Therefore, for the quotients we get:

δ∗ϕ
′∗Ω1

X/Y (log ∆̂) ⊂ Ω1
Z/Y ′ (log ∆′) . (3.3)

The map f : X → Y is smooth over Y \S, then by Remark 1.26 we have:

ωX/Y = Ω1
X/Y (log ∆) = Ω1

X/Y (log ∆̂),

which implies:

δ∗ϕ
′∗(Ω1

X/Y (log ∆)) ⊂ Ω1
Z/Y ′ (log ∆′) . (3.4)

(C) Tensorising with ω−1
X/Y the sequence :

0→ f ∗Ω1
Y (logS)→ Ω1

X(log ∆)→ Ω1
X/Y (log ∆)→ 0,

one gets the long exact sequence obtained by taking f∗ with the edge
morphism

Θ : OY → R1f∗(ω
−1
X/Y )⊗ ωY (S).

This map Θ is injective or zero. Therefore, when it is not zero we have
an inclusion of sheaves (ωY (S))−1 ⊂ R1f∗(ω

−1
X/Y ).
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(D) Now let us come back to the map h : W → Y ′ and the Higgs bundle
associated to this family. The main technical tool in this part will be
Lemma 1.16 from Section 1.3. It holds by Claim 3.12 that the family
h : W → Y ′ satis�es all the conditions described at the beginning of
Section 1.3 which are needed in order to apply Lemma 1.16. By this we
mean:

◦ the family g : Z → Y ′ is semistable;
◦ ∆′ +D is a normal crossings divisor;
◦ one has that π∗((∆′+D)\Sing(D)) is a normal crossing divisor, see
Remark 1.14. Since µ : W → W2 is the minimal desingularization
which resolves the rational double points on the cyclic covering one
gets that µ∗(π∗((∆′+D)\Sing(D)))+µ∗(π−1(Sing(D))) is a normal
crossing divisor, see Remark 3.9. Therefore, τ ∗(∆′+D) is a normal
crossing divisor.

As we already saw, by 2(b), the divisor D may have vertical components.
Let us write D = Dver +Dhor, where Dver is the sum of vertical compo-
nents and Dhor is the sum of horizontal components, see De�nition 1.19.
The support of the divisor Dver is in the support of the divisor ∆′. Let
Γ′ be the reduced divisor whose support is the union of the components
of Dhor whose multiplicities are not divisible by ν. Then by Lemma 1.5
the divisor Γ′ + ∆′ contains the branch locus of the cyclic covering. We
will use the notations:

◦ Dhor =
∑
αjDj;

◦ Γ′i =
∑
αji

ν
/∈Z

Dj, where the support of Dj is in the support of Dhor;

◦ M(−i) =M−i ⊗OZ
([

iD

ν

])
.

Since local monodromies around points of T of the local systemR1h∗CW\h−1(T )

on Y ′ are unipotent, by Lemma 2.14 one obtains a polystable Higgs bun-
dle of degree 0 :

⊕
p+q=1

Rqh∗Ω
p
W/Y ′(log τ ∗∆′).
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By Lemma 1.16, one has the decomposition:⊕
p+q=1

Rqh∗Ω
p
W/Y ′(log τ ∗∆′)

=
⊕
p+q=1

Rqg∗

(
τ∗Ω

p
W/Y ′(log τ ∗∆′)

)
=
⊕
p+q=1

Rqg∗

(
Ωp
Z/Y ′(log ∆′)⊕

ν−1⊕
i=1

Ωp
Z/Y ′(log(∆′ + Γ′i))⊗M(−i)

)

=
⊕
p+q=1

Rqg∗(Ω
p
Z/Y ′(log ∆′))⊕

ν−1⊕
i=1

⊕
p+q=1

Rqg∗

(
Ωp
Z/Y ′(log(∆′ + Γ′i))⊗M(−i)

)
.

(3.5)
Let us consider the case i = 1. Then we have Γ′1 = Γ′. In that case on Y ′

we get the Higgs bundle

G = (G1,0 ⊕G0,1,ΘG),

de�ned as:
G1,0 = g∗(Ω

1
Z/Y ′(log(∆′ + Γ′))⊗M(−1)),

G0,1 = R1g∗(M(−1)).

The Higgs �eld ΘG : G1,0 → G0,1 ⊗ Ω1
Y ′(log T ) is induced by the edge

morphism of the long exact sequence obtained by taking g∗ of the se-
quence:

0→ g∗Ω1
Y ′(log T )→ Ω1

Z(log(∆′ + Γ′))→ Ω1
Z/Y ′(log(∆′ + Γ′))→ 0

tensorised withM(−1), i.e. of the sequence:

0→ g∗Ω1
Y ′(log T )⊗M(−1) → Ω1

Z(log(∆′ + Γ′))⊗M(−1)

→ Ω1
Z/Y ′(log(∆′ + Γ′))⊗M(−1) → 0.

(3.6)

Let us prove that G is polystable and of degree zero:
In the book [59] �2, it can be found that the Z/ν-action on W2 gives the
decomposition:

π∗CW2\π−1(∆′) = τ∗CW\τ−1(∆′) =
ν−1⊕
j=0

Vj,

where the Vj are rank 1 local systems on Z\g−1(T ) given by eigenspaces of
the Z/ν-action. Let W = R1h∗CW\τ−1(∆′), then we have a decomposition
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of W induced by this action on W2 :

W = R1h∗CW\τ−1(∆′) = R1g∗
(
τ∗CW\τ−1(∆′)

)
= R1g∗(

ν−1⊕
j=0

Vj) =
ν−1⊕
j=0

R1g∗Vj =
ν−1⊕
j=0

Wj

So the Z/ν-action induces a decomposition of W in a direct sum of
subvariations of Hodge structures on Y ′\T with unipotent monodromies
around points of T. The Higgs bundle G corresponds to one of them. By
Theorem 2.11 we get that the Higgs bundle G is polystable of degree 0.

(E) Recall the exact sequence:

0→ f ∗Ω1
Y (logS)→ Ω1

X (log ∆)→ Ω1
X/Y (log ∆)→ 0,

whose pullback by the map ϕ′◦δ on Z tensorised withM−1 = δ∗ϕ
′∗
(
ω−1
X/Y ⊗ f ∗C

)
gives the sequence:

0→ δ∗ϕ
′∗(f ∗ωY (S)⊗ ω−1

X/Y ⊗ f
∗C)→ δ∗ϕ

′∗(Ω1
X(log ∆)⊗ ω−1

X/Y ⊗ f
∗C)

→ δ∗ϕ
′∗(f ∗C)→ 0.

(3.7)
The holds since ωX/Y = Ω1

X/Y (log ∆). The long exact sequence associated
to exact sequence (3.7) obtained by taking g∗ induces the Higgs bundle
J on Y ′ de�ned as:

J1,0 = g∗

(
δ∗ϕ

′∗(f ∗(C))
)

= ϕ∗(C),

J0,1 = R1g∗

(
δ∗ϕ

′∗(ω−1
X/Y ⊗ f

∗(C))
)

= R1g∗

(
δ∗ϕ

′∗(ω−1
X/Y )

)
⊗ ϕ∗(C)

= ϕ∗R1f∗(ω
−1
X/Y )⊗ ϕ∗(C).

The last equality holds by Proposition 9.3 Chapter III from [32]. The
Higgs �eld is induced by the edge morphism of the long exact sequence:

ΘJ : J1,0 → J0,1 ⊗ ϕ∗(ωY (S)) ⊂ J0,1 ⊗ ωY ′(ϕ∗S).

(F) In this point we will prove that there is a morphism between Higgs bun-
dles J and G. By (3.1), (3.2), (3.4) the sequence:

0→ δ∗ϕ
′∗(f ∗Ω1

Y (logS))→ δ∗ϕ
′∗(Ω1

X (log ∆))→ δ∗ϕ
′∗(Ω1

X/Y (log ∆))→ 0

is a subsequence of

0→ g∗Ω1
Y ′(log T )→ Ω1

Z(log ∆′)→ Ω1
Z/Y ′(log ∆′)→ 0 (3.8)
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and so a subsequence of

0→ g∗Ω1
Y ′(log T )→ Ω1

Z(log(∆′ + Γ′))→ Ω1
Z/Y ′(log(∆′ + Γ′))→ 0.

This holds since

Ω1
Z(log(∆′ + Γ′)) ⊃ Ω1

Z(log ∆′),

and so
Ω1
Z/Y ′(log(∆′ + Γ′)) ⊃ Ω1

Z/Y ′(log ∆′).

This yields the commutative diagram:

δ∗ϕ
′∗(f ∗Ω1

Y (logS)) δ∗ϕ
′∗(Ω1

X (log ∆)) δ∗ϕ
′∗(Ω1

X/Y (log ∆)) 0

g∗Ω1
Y ′(log T ) Ω1

Z(log(∆′ + Γ′)) Ω1
Z/Y ′(log(∆′ + Γ′)) 0

∩ ∩∩

The vertical maps in the diagram are inclusion maps. We construct a
new commutative diagram by tensorising the �rst sequence with

M−1 = δ∗ϕ
′∗
(
ω−1
X/Y ⊗ f

∗C
)
,

and the second with

M(−1) = δ∗ϕ
′∗
(
ω−1
X/Y ⊗ f

∗C
)
⊗OZ

([
D

ν

])
.

The rows in that new diagram are the sequences (3.7) and (3.6). The ver-
tical maps will still be inclusion maps sinceM−1 ⊂M(−1).Moreover, the
long exact sequences obtained by taking g∗ of rows of that diagram give
the new commutative �long� diagram. The squares of the long diagram
are commutative. The third square in that diagram is:

J1,0 J0,1 ⊗ ϕ∗(ωY (S))

G1,0 G0,1 ⊗ ωY ′(T )

ε0,1 ⊗ iε1,0

ΘJ

ΘG

Arakelov inequalities and semistable families of curves
uniformized by the unit ball

97



3.2. An Arakelov inequality

This holds by construction of the Higgs bundles G and J done in points
(D) and (E). Since ΘJ : J1,0 → J0,1 ⊗ ϕ∗(ωY (S)) ⊂ J0,1 ⊗ ωY ′(ϕ∗S) (see
Lemma 1.8) we get the following commutative diagram:

J1,0 J0,1 ⊗ ωY ′(ϕ∗S)

G1,0 G0,1 ⊗ ωY ′(T )

ε0,1 ⊗ iε1,0

ΘJ

ΘG

The commutativity of this diagram implies the existence of a morphism
between the Higgs bundles ε : J → G, see De�nition 2.19. Note that i is
an inclusion map.

(G) We prove that the Higgs subbundle A of J generated by the sheaf ϕ∗C
is a Higgs subbundle of the polystable Higgs bundle G of degree 0. By
de�nition,

A1,0 = ϕ∗C = J1,0,

and
A0,1 = Im(ΘJ |A1,0)⊗ (ϕ∗(ωY (S)))−1 ⊂ J0,1

Since A1,0 is a line bundle, ΘJ is injective or the zero map on sheaves.
So we will distinguish two cases:

(G1) In the case when ΘJ is not the zero map on A1,0 we have:

A0,1 = ϕ∗C ⊗ (ϕ∗(ωY (S)))−1 ⊂ J0,1.

The Higgs �eld of the Higgs bundle A is given as:

ΘA : A1,0 ∼= A0,1 ⊗ ϕ∗(ωY (S)) ⊂ A0,1 ⊗ ωY ′(ϕ∗S).

On the other hand, using the projection formula and point A), we
have :

G1,0 = g∗
(
Ω1
Z/Y ′(log(∆′ + Γ′))⊗M(−1)

)
⊃ g∗

(
Ω1
Z/Y ′(log ∆′)⊗M−1

)
= g∗(ωZ/Y ′ ⊗M−1)

= g∗

(
ωZ/Y ′ ⊗ δ∗ϕ

′∗ω−1
X/Y ⊗ δ

∗ϕ
′∗f ∗(C)

)
= g∗

(
ωZ/Y ′ ⊗ δ∗ϕ

′∗ω−1
X/Y

)
⊗ ϕ∗(C)

= OY ′ ⊗ ϕ∗(C)
= ϕ∗(C).
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Hence, A1,0 is a subbundle of G1,0. Also, we have an inclusion map
A0,1 ↪→ J0,1 and a morphism ε0,1 : J0,1 → G0,1, whose composition
gives a map A0,1 → G0,1. We have the commutative diagram:

J1,0 = A1,0 A0,1 ⊗ ϕ∗(ωY (S)) J0,1 ⊗ ϕ∗(ωY (S))

G1,0 G0,1 ⊗ ωY ′(T )

ε0,1 ⊗ i

ΘA

ε1,0

ΘJ

ΘG

Also, we note :

ΘA : A1,0 ∼= A0,1 ⊗ ϕ∗(ωY (S)) ⊂ A0,1 ⊗ ωY ′(ϕ∗S) ⊂ A0,1 ⊗ ωY ′(T ).

Therefore, the Higgs bundle A is a Higgs subbundle of G.Moreover,
its Higgs �eld has no poles over T\ϕ−1(S).
In the end, from degϕ∗(C) = 1

ν
degϕ∗H we get:

degA = degA1,0 + degA0,1 = degϕ∗(C) + degϕ∗(C ⊗ ωY (S)−1)

= degϕ∗(C) + degϕ∗(C)− degϕ∗(ωY (S))

=
2

ν
degϕ∗H− degϕ∗(ωY (S))

= degϕ

(
2

ν
degH− deg(ωY (S)

)
.

The Higgs bundle G is polystable of degree zero, hence Higgs sub-
bundles of G must have degree less than or equal to 0. Thus, for
the Higgs subbundle A of G we get degA ≤ 0. Therefore,

2

ν
degH− deg(ωY (S)) ≤ 0,

degH ≤ ν

2
deg(ωY (S)).

(G2) In the case when ΘJ is the zero map on A1,0, by the construction
of the Higgs subbundle A one has A0,1 = 0 and A = A1,0 is a Higgs
subbundle of G. Since G is polystable of degree 0 we have

degA = degA1,0 = degϕ∗C ≤ 0.
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Therefore,
degH ≤ 0,

and thus again degH ≤ ν
2

deg(ωY (S)).

Remark 3.15. The Kodaira-Spencer map of the family f : X → Y is

ΘKS : OY → R1f∗(ω
−1
X/Y )⊗ ωY (S),

hence
ΘKS : (ωY (S))−1 → R1f∗(ω

−1
X/Y ),

this map is injective or zero on sheaves, so if it is injective we have:

(ωY (S))−1 ⊂ R1f∗(ω
−1
X/Y ).

Now, tensorising with ω−1
X/Y ⊗ f ∗C the sequence:

0→ f ∗Ω1
Y (logS)→ Ω1

X(log ∆)→ Ω1
X/Y (log ∆)→ 0,

and taking the long exact sequence, we get the edge morphism

Θ0 : C → C ⊗R1f∗(ω
−1
X/Y )⊗ ωY (S).

This edge morphism is obtained as the tensor product with the Kodaira-
Spencer map, i.e.

Θ0 : C = C ⊗ OY C ⊗R1f∗(ω
−1
X/Y )⊗ ωY (S).

idC ⊗ΘKS

Therefore, the map Θ0 is:
Θ0 = idC ⊗ΘKS

and we have the Higgs bundle H0 on Y de�ned by:

H1,0
0 = C,

H0,1
0 = C ⊗ ωY (S)−1,

with Higgs �eld
Θ0 : H1,0

0 → H0,1
0 ⊗ ωY (S).

We note that the Higgs subbundle A of G constructed in the previous proof
at point (G) is the pullback of the Higgs bundle H0 by the map ϕ, with Higgs
�eld the pullback of the map Θ0 by the map ϕ. Hence, the pullback of the
Kodaira-Spencer map of the family f : X → Y can be seen as a part of the
Higgs �eld ΘG of the Higgs bundle G associated to the geometric subvariation
of Hodge structures of the family h : W → Y ′.
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3.3 The maximal case

In this section we will investigate the case when the Arakelov bound is reached.
This is what we call the maximal case.

Let f : X → Y be a semi-stable family of curves with discriminant locus S.
We assume that χ(Y \S) < 0. Let ν ≥ 1 be an integer and H be an invertible
subsheaf of f∗ωνX/Y which satis�es the Arakelov equality:

degH =
ν

2
deg(ωY (S)). (3.9)

Lemma 3.13. In the previous notations, if ν = 1 then Y \S is a Teichmüller
curve for the family f : X → Y.

Proof. Let ∆ = f−1S. Since the family f : X → Y is semistable, one has
ωX/Y = Ω1

X/Y (log ∆). We denote by F the polystable Higgs bundle of degree
0 induced by the geometric variation of the semistable family f : X → Y,

F = F 1,0 ⊕ F 0,1 = f∗ωX/Y ⊕R1f∗OX ,

with Higgs �eld :
Θ : F 1,0 → F 0,1 ⊗ ωY (S).

Let H0 be the Higgs subbundle of F generated by H, i.e.

H1,0
0 = H ⊂ F 1,0,

H0,1
0 = Θ(H)⊗ (ωY (S))−1 ⊂ F 0,1.

Since H is an invertible sheaf, Θ restricted to H is injective or the zero map.
It is not the zero map since H0 is a Higgs subbundle of the polystable Higgs
bundle F of degree 0, hence it has the degree less or equal to 0. The map Θ
is an injective map and

H0,1
0
∼= H⊗ (ωY (S))−1.

The Higgs �eld of H0 is
Θ0 = Θ|H.

The equality (3.9) implies:

degH0 = degH + deg(H⊗ (ωY (S))−1) = 2 degH− deg(ωY (S)) = 0.

Therefore, H0 is a direct factor of the polystable Higgs bundle F. In fact, we
have a decomposition:

F = H0 ⊕N,
where N is a Higgs bundle of degree 0. This is equivalent to a decomposition
of the local system

R1f∗CX\f−1S = H0 ⊕ N,

Arakelov inequalities and semistable families of curves
uniformized by the unit ball

101



3.3. The maximal case

by Simpson's correspondence theorem, where H0 is a local system which corre-
sponds to H0 and N corresponds to N. Then the Higgs bundle H0 corresponds
to a subvariation of the geometric variation R1f∗CX\∆.Moreover, the fact that

degH1,0
0 =

1

2
deg(ωY (S)),

implies that the Higgs �eld Θ0 is an isomorphism by Theorem 2.19. We get that
H0 corresponds to a subvariation of R1f∗CX\∆ with Higgs �eld an isomorphism,
hence Y \S is a Teichmüller curve for the family f : X → Y by Theorem 2.22.

Now, we will investigate the maximal case when ν ≥ 2. As we have already
seen in the proof of Theorem 3.11, up to Lemma 3.9, we can suppose that:

H = Cν ,

where C is a line bundle on Y. In general, there is no reason why C ⊆ f∗ωX/Y ,
so we will repeat the construction from the proof of Theorem 3.11.

W

Z

Y ′ Y ′ Y ′

X ′ = X ×Y Y
′

Ŵ ×Y Y
′

ŴW ′

X

Y

∆′ = g∗T

T = ϕ−1Ŝ

f

τ

g

= =
ϕ

δ

h ĥ
ϕ′

f ′

h′

Let us recall a few details about this construction. We have Ŵ the desin-
gularization of the cyclic covering on X obtained by Lν = OX(D̂), where
L = ωX/Y ⊗C−1. The pullback of L to Z gives rise to a cyclic covering de�ned
byMν = OZ(D), whereM = δ∗ϕ∗′(L), and we denote by W the desingular-
ization of that covering. The induced map h : W → Y ′ is smooth over Y ′\T,
where T = ϕ−1(Ŝ) = ϕ−1S ∪ Σ, and Σ is a set of points on Y ′ which are
images of the singularities of the cyclic covering on Y ′ by the corresponding
map. By Claim 3.12 the monodromies around the points of T of the map h
are unipotent. This implies the existence of a canonical extension, namely the
Deligne extension, of the �at bundle OY ′\T ⊗ R1h∗CW\h−1(T ), which gives rise
to a polystable Higgs bundle of degree 0:

EW =
⊕
p+q=1

Rqh∗Ω
p
W/Y ′(log h−1(T )).
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Following 3.5 from the part (D) of the proof of Theorem 3.11, we have the
decomposition of the Higgs bundle EW into a direct sum of polystable Higgs
bundles of degree 0, induced by the Z/ν-action on the cyclic covering:

EW =
ν−1⊕
i=0

Gi,

EW = EZ ⊕G⊕
ν−1⊕
i=2

Gi, (3.10)

where G0 = EZ is the Higgs bundle associated to the semistable family g :
Z → Y ′ which is smooth over Y ′\T and G1 = G is the Higgs bundle whose
description is also given in the point (D).
Let us recall that the Higgs bundle A, which is a Higgs subbundle of G, is
de�ned by:

A1,0 = ϕ∗C,

A0,1 = ϕ∗C ⊗ (ϕ∗(ωY (S)))−1,

with the Higgs �eld:

ΘA : A1,0 ∼= A0,1 ⊗ ϕ∗ωY (S) ⊂ A0,1 ⊗ ωY ′(ϕ−1S) ⊂ A0,1 ⊗ ωY ′(T ).

Since Y ′ is rami�ed over Ŝ which contains S, the inclusion in the middle holds
by Lemma 1.8.

Fact 3.14. In the maximal case, the Higgs bundle A corresponds to a complex
polarized variation of weight 1 and rank 2 on Y ′\ϕ−1S .

Proof. In the maximal case (3.9), we get that:

deg C =
1

2
deg(ωY (S)).

Therefore,

degA = degA1,0 + degA0,1 = degϕ · (2 deg C − deg(ωY (S))) = 0.

Since the degree of A is equal to 0, the polystability of the Higgs bundle G
yields a decomposition:

G = A⊕K,

where K is a polystable Higgs bundle of degree 0. We note that the com-
plex variation which corresponds to G has the trivial �ltration since the mon-
odromies are unipotent, see Lemma 2.12, hence G has the trivial �ltration
and so A has the trivial �ltration. So, the Higgs bundle A is associated to a
subvariation A, of weight 1 and rank 2, of the geometric variation of the family
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h : W → Y ′, by Simpson's correspondence theorem. The complex subvariation
A of the variation EW on Y ′\T has Higgs �eld:

ΘA : A1,0 ∼= A0,1 ⊗ ϕ∗(ωY (S)) ⊂ A0,1 ⊗ ωY ′(ϕ−1S) ⊂ A0,1 ⊗ ωY ′(T )

which has no poles over T\ϕ−1S. So, the complex variation A is a complex
variation on Y ′\ϕ−1S. Moreover, it is a polarized subvariation. The polar-
ization comes from the standard polarization of the geometric variation EW
on Y ′\T. Since A is a local system on Y ′\ϕ−1S with unipotent monodromies
around ϕ−1S, this polarization can be extended to Y ′\ϕ−1S.

Remark 3.16. We note that in general ΘA is not an isomorphism above the
points of the set ϕ−1(S), i.e.

ΘA : A1,0 ∼= A0,1 ⊗ ϕ∗ωY (S) ⊂ A0,1 ⊗ ωY ′(ϕ−1(S)).

As we have seen, the last inclusion holds by Lemma 1.8 and it is strict in
general, i.e. when Ŝ 6= S. However, note that in the situation when Σ ⊂ ϕ∗S
(see above the de�nition of Σ), or equivalently when Ŝ = S, then T = ϕ∗S,
hence Y ′\ϕ∗S is a Teichmüller curve for the family h : W → Y ′. This holds
since the subvariation corresponding to the Higgs bundle A has a Higgs �eld
which is an isomorphism, hence the result follows by Theorem 2.22. The case
when Σ is the empty set occurs when the divisor D is a smooth divisor. In the
following chapter we will give some examples which describe this situation.

Remark 3.17. By (3.10) and Simpson's correspondence theorem, the local
system EW on Y ′\T underlying the geometric variation of the family h : W →
Y ′ has the decomposition:

EW = R1h∗CW\h−1(T ) = EZ ⊕ A⊕K⊕
ν−1⊕
i=2

Gi, (3.11)

where the local system A corresponds to A, then K corresponds to K and EZ
is the local system which corresponds to the geometric variation of the family
g : Z → Y.

Let us suppose that g′ is the genus of a smooth �ber of the map h : W → Y ′.
Then as we saw in the course of the proof of Theorem 2.22, the period map
φA of the subvariation A can be factorized as:

Ỹ ′\T Tg′ Hg′ H

φA
p

φEW
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where the composition of the �rst two maps is the period map φEW for the
geometric variation EW of the family h : W → Y ′ and the last map p is the
projection to the part which corresponds to the complex subvariation A. The
derivative of the period map φA can be identi�ed with the Higgs �eld ΘA.

Fact 3.15. In the maximal case, the pullback of the Kodaira-Spencer map ΘKS

of the family f : X → Y can be seen as a direct factor of the Higgs �eld of the
Higgs bundle EW associated to the family h : W → Y ′.

Proof. As we explained in Remark 3.15

ΘA = idϕ∗C ⊗ ϕ∗ΘKS,

where ΘKS is the Kodaira Spencer map of the family f : X → Y. The decom-
positions:

G = A⊕K

and

EW = EZ ⊕G⊕
ν−1⊕
i=2

Gi,

imply that the Higgs �eld ΘA is a direct factor of the Higgs �eld ΘG which is
a direct factor of the Higgs �eld of the Higgs bundle associated to the family
h : W → Y ′ and so we get that the pullback of the Kodaira-Spencer map ΘKS

is a direct factor of the Higgs �eld of the Higgs bundle EW associated to the
family h : W → Y ′.

Fact 3.16. In the maximal case one has:

Y \S ∼= H/Γ0,

where Γ0 is the monodromy group of the polarized complex variation H0 on
Y \S, where A = ϕ∗H0.

Proof. As we explained in Remark 3.15, the Higgs bundle A is the pullback of
the Higgs bundle (H0,Θ0) on Y \S with Higgs �eld

Θ0|H1,0
0

: H1,0
0
∼= H0,1

0 ⊗ ωY (S),

an isomorphism. We recall that Θ0(H0,1) = 0. In the maximal case one gets:

degH0 = 0. (3.12)

As the Higgs bundle A corresponds to the complex polarized variation
A, A is the pullback by the �nite map ϕ of the variation H0 on Y \S, which
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corresponds to the Higgs bundleH0. Hence, the complex variation H0 naturally
inherits a polarization from the geometric variation A.

One should note that (3.12) and point 3) of Lemma 2.12 imply that the
monodromies around points of S of H0 are unipotent.

Then, bringing all these information together one gets that H0 is a polar-
ized complex variation of weight 1, rank 2 with corresponding Higgs �eld an
isomorphism, and with unipotent monodromies around the points of S. By
Theorem 2.20 one gets:

Y \S ∼= H/Γ0,

where Γ0 is the monodromy group of the corresponding representation of H0.
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Chapter 4

Examples of Arakelov equality for

semistable families of curves

uniformized by the unit ball

4.1 Second fundamental form

Let X be a complex manifold and let E be a complex vector bundle on X with
a Hermitian metric. We recall that k-valued forms with values in E on X are
sections of the bundle

Ak(E) =
k∧
T ∗C,X ⊗ E,

where T ∗C,X = T ∗X ⊗ C is the complexi�ed cotangent bundle.
Using the decomposition T ∗C,X = T ∗X

1,0 ⊕ T ∗X0,1, where T ∗X
1,0 is isomorphic

to the holomorphic cotangent bundle of X, we get the decomposition

A1(E) = A1,0(E)⊕A0,1(E).

Hence, we can decompose any connection ∇ : A0(E) → A1(E) on E in two
components:

∇1,0 : A0(E)→ A1,0(E) and ∇0,1 : A0(E)→ A0,1(E)

such that ∇ = ∇1,0 ⊕∇0,1.

Proposition 4.1. ([35],p.177) Let E be a holomorphic vector bundle with a
Hermitian metric on a complex manifold X. Then there is a unique connection
∇ such that ∇0,1 = ∂E. This connection is called the Chern connection on E.

Now, we suppose that we have a short exact sequence of holomorphic vector
bundles on a complex manifold X :

0→ E1 → E → E2 → 0.
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In general, such a sequence does not split holomorphically. However, the se-
quence of underlying smooth complex bundles always splits. Indeed, let h
be a Hermitian metric on the holomorphic vector bundle E. Then, E2 is C∞-
isomorphic to the orthogonal complement of E1 with respect to the Hermitian
metric h, hence one has a C∞-splitting:

E = E1 ⊕ E2.

Let ∇ be the Chern connection of the metric h on E, i.e. the connection
such that ∇0,1 = ∂E. On subbundles E1 and E2 one has the induced connec-
tions ∇1 and ∇2 de�ned by:

∇i(s) := pi(∇(s)),

where:

◦ s is any section of Ei, and hence of E;

◦ pi is the projection E1 ⊕ E2 → Ei;

for i ∈ {1, 2}.
The connection ∇1 on E1 satis�es ∇0,1

1 = ∂E1 , since E1 is a holomorphic
subbundle of E. We have the commutative diagram:

A0(E1) A1(E)

A1(E1)

∇|A0(E1)

pr
∇1

Now, we de�ne the operator:

β = ∇|A0(E1) −∇1 : A0(E1)→ A1(E2).

De�nition 4.1. The operator β is called the second fundamental form of the
subbundle E1 ⊂ E. It is of type (1, 0) and linear over C∞ functions, i.e.

β ∈ A1,0(Hom(E1, E2)).

By Theorem 14.3 from [17] the connection matrix of ∇ is

∇ =

(
∇1 −β∗
β ∇2

)
,

where β∗ ∈ A0,1(Hom(E2, E1)) is the adjoint of β and ∂β∗ = 0. Hence β∗

de�nes a class
[β∗] ∈ H1(X,Hom(E2, E1)).
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Proposition 4.2. ([17],Theorem 14.9) The correspondence E → [β∗] induces
a bijection from the set of isomorphism classes of extensions of E1 by E2 onto
the cohomology group H1(X,Hom(E2, E1)). In particular [β∗] vanishes if and
only if the exact sequence 0→ E1 → E → E2 → 0 splits holomorphically.

De�nition 4.2. If i : X0 → X is an immersion of a complex manifold X0

into a complex manifold X with a Hermitian metric, then we say that X0 is
totally geodesic if the second fundamental form βX0 of the tangent bundle TX0

vanishes identically on X0.

If X0 is a complex submanifold of a compact complex manifold X with a
Hermitian metric, then the de�nition of the normal bundle NX0 is given by
the exact sequence:

0→ TX0 → TX|X0 → NX0 → 0.

The second fundamental form of the tangent bundle TX0 ⊂ TX|X0 will be
βX0 ∈ A1,0(X0,Hom(TX0 , NX0)).

By Proposition 4.2 we get that for a totally geodesic submanifold X0, the
previous exact sequence splits holomorphically, hence we have a holomorphic
isomorphism:

TX |X0 ' TX0 ⊕NX0 .

4.2 Second projective fundamental form

In this section we will give a short review of Mok's paper [53] and it can be
considered as the technical background for what follows. Here, we will explain
notions such as holomorphic projective connection, second projective funda-
mental form and tautological foliation on a projectivized tangent bundle. We
will see how on a space endowed with a holomorphic projective connection we
obtain the projective second fundamental form, using a holomorphic foliation
on the projectivized tangent bundle.

De�nition 4.3. ([53] �2.1) Let X be a n-dimensional complex manifold for
n > 1. A holomorphic projective connection Π on X consists of:

◦ an open covering {Uα}, with holomorphic coordinates {zα1 , ..., zαn};
◦ holomorphic functions (αΦk

ij)1≤i,j,k≤n on Uα, symmetric in i, j satisfying
the trace condition

∑
k
αΦk

ik = 0 for all i and satisfying on Uαβ = Uα∩Uβ
the transformation rule:

βΦl
pq =

∑
i,j,k

αΦk
ij

∂zαi

∂zβp

∂zαj

∂zβq

∂zαl
∂zβk

+ S(fαβ),

where S(fαβ) stands for the Schwarzian derivative of the holomorphic
transformation given by the change of variables zα = fαβz

β.
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De�nition 4.4. ([53] �2.2) Let (αΓ
k

ij) be Riemann-Christo�el symbols of any
smooth connection on a complex manifold X. Let Π be a projective connection
on X de�ned as above. We can de�ne a torsion free smooth connection ∇
associated to Π, to be the connection with Riemann-Christo�el symbols:

αΓkij =α Φk
ij +

1

n+ 1

∑
l

δki
αΓ

l

lj +
1

n+ 1

∑
l

δkj
αΓ

l

il.

De�nition 4.5. ([53] �2.2) Any two smooth connections ∇ and ∇′ on a com-
plex manifold X are projectively equivalent if there exists a smooth (1, 0)-form
ω such that:

∇uv −∇′uv = ω(u)v + ω(v)u,

for any smooth (1, 0)-vector �elds u and v on an open set of X.

We assume now that a complex manifold X has a projective connection Π.
Let ∇ and ∇′ be two smooth torsion-free connections associated to the projec-
tive connection on the complex manifold X. Then, ∇ and ∇′ are projectively
equivalent. Moreover, for any submanifold X0 of X the second fundamental
forms of the tangent bundle of X0, associated to ∇ and ∇′ are the same. As it
can be found in [53], the second fundamental form with respect to a torsion-free
smooth connection ∇ associated to the projective connection Π is independent
of the choice of the background connection (αΓ

k

ij) and it is holomorphic.

Remark 4.6. When we refer to the second fundamental form of a submanifold
X0 ⊂ X we mean the second fundamental form of the holomorphic tangent
bundle TX0 ⊂ TX|X0 .

De�nition 4.7. The second fundamental form βΠ of any submanifoldX0 ⊂ X,
with respect to a torsion-free smooth connection ∇ associated to a projective
connection Π on X is called the projective second fundamental form of X0

with respect to Π.

Now, it is plain to see that classes of the complex geodesics submanifolds of
X, with respect to smooth torsion-free connections associated to the projective
connection Π on the complex manifold X, will be the same.

De�nition 4.8. The tautological lifting Ĉ of some smooth holomorphic curve
C ⊂ X is de�ned by lifting every point x ∈ C to the projectivization of the
tangent line [TxC] in PTX,x.

Here we will not give the de�nition of holomorphic foliation but we refer
to [26] for details.

De�nition 4.9. A holomorphic foliation of the projectivization of the tangent
bundle whose leaves are tautological liftings of holomorphic curves is called a
tautological foliation.
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De�nition 4.10. Complex geodesics on a complex manifold are totally geodesic
submanifolds of dimension 1.

Let X be a complex manifold equipped with a tautological foliation F
of the projectivized holomorphic tangent bundle PTX . Let π : PTX → X
be the canonical projection. By de�nition, the leaves of this foliation are 1-
dimensional. Now, let x ∈ X and let α ∈ TxX. We use the notation T[α]F =
F[α]. Obviously, dπ(F[α]) = Cα.

The existence of holomorphic projective connections on a complex manifold
X is equivalent to the existence of holomorphic foliations on the projectivized
holomorphic tangent bundle, by tautological liftings of complex geodesics on
X. This relation is described by Proposition 1 from [53]. Here, we will not
give the proof of this fact, but we will explain one of its consequences, which
is the most important part of this section, the construction of the projective
second fundamental form of a submanifold of a complex manifold X, where
X is endowed with a tautological foliation, or equivalently with a projective
holomorphic connection. This construction can be found in [53] �2.3:

Let X0 be a complex submanifold of X and let N be the normal bundle of
X0. Let x0 ∈ X0 and let α ∈ TX0,x0 be a non-zero tangent vector. Let C be a
local holomorphic curve on X passing through x0 and such that TC,x0 = Cα,
and such that its tautological lifting Ĉ is a local leaf of the tautological foliation
F . Let D be a holomorphic curve on X0 passing through x0 and such that
TD,x0 = Cα. We denote the tautological lifting of D to PTX as D̂. It is clear
that [α] ∈ Ĉ ∩ D̂.

Let π : PTX → X be the canonical projection, then we choose the unique
vector

η ∈ T[α](Ĉ) ⊂ T[α]PTX,x0 ,

such that
dπ(η) = α,

and the unique vector

ξ ∈ T[α](D̂) ⊂ T[α]PTX,x0 ,

such that
dπ(ξ) = α.

Hence, we get dπ(ξ − η) = 0, i.e.

ξ − η ∈ Ker dπ[α].

Let Tπ = Ker dπ be the relative tangent bundle of the map π : PTX → X, see
[35] p.95. We de�ne the previous assignment of the vector α to the vector ξ−η
as the map A : TX0,x → Tπ,[α], which assigns a vector v ∈ TX0,x to the vector

Arakelov inequalities and semistable families of curves
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rv ∈ Tπ,[v] in the same way as α is assigned to ξ − η. Note that A(α) = ξ − η
is independent of the choice of D. Now, we construct the diagram:

TPTX PTX TX

X

π∗TX

π
dπ

dπ

We have the exact sequence :

0→ Tπ → TPTX → π∗TX → 0.

On the other side, using the Euler sequence ([35], p.95) we have :

0→ L→ π∗TX → Tπ ⊗ L→ 0,

where L is the relative tautological bundle on PTX̃ . The previous exact se-
quence yields the isomorphism :

φ : Tπ ⊗ L ' (π∗TX/L).

One should note that:
(π∗TX)[α]

∼= TX,x0 ,

and
L[α]
∼= TD,x0 ⊆ TX0,x0 .

Hence, we have the canonical projection:

ρ : (π∗TX/L)[α] → (TX/TX0)x0
∼= (π∗N)[α].

Now, we can de�ne

B := ρ(φ(A⊗ idL[α]
)) : L[α] ⊗ L[α] → (π∗N)[α],

such that:

B(α⊗ α) = ρ
(
φ
(
A⊗ idL[α]

(α⊗ α)
))

= ρ (φ ((ξ − η)⊗ α)) .
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As we mentioned above A(α) is independent of choice of D, hence B(α ⊗
α) is also independent of the choice of D. Moreover, one can see by local
considerations that B(α ⊗ α) varies holomorphically with α. Hence, one gets
an induced holomorphic section

σ̃ ∈ H0(PTX0 , L
−2 ⊗ π∗N),

which is de�ned on �bers by B, and also one has the corresponding section

σ ∈ H0(X0, S
2T ∗X0

⊗N).

According to [53] �2.3, this section agrees with the projective second funda-
mental form of X0 in X with respect to the given holomorphic projective
connection on X.

4.3 The complex unit ball

In this section we will de�ne the complex hyperbolic n-space and the complex
unit n-ball. We will show that these two Kähler varieties can be identi�ed and
then we will give a short review of their basic properties. Then, we will de�ne
the tautological foliation on the projectivization of the tangent bundle of the
complex unit n-ball. We will end this part by recalling Mok's result which
states that the second fundamental form of a submanifold of the quotient of
the complex unit n-ball by some discrete subgroup of PU(n, 1), with respect
to the Bergman metric, coincides with the projective second fundamental form
induced by the tautological foliation.

De�nition 4.11. Let Cn,1 = (Cn+1, h) be (n+ 1)-dimensional complex space
Cn+1 with Hermitian form h of signature (n, 1), i.e.

h(z, w) = z0w0 + z1w1 + ...+ zn−1wn−1 − znwn.

We say that a vector z ∈ Cn,1 is negative if h(z, z) < 0.

De�nition 4.12. ([27]�3.1) The complex hyperbolic space is the subset of Pn
consisting of negative lines of Cn,1. It is naturally biholomorphic to the complex
unit n-ball Bn :

Bn = {z ∈ Cn| 〈z, z〉 < 1},
where 〈., .〉 is the standard Hermitian product on Cn.

De�nition 4.13. The special unitary group SU(n, 1) is the subgroup of the
group SL(n+ 1,C) of matrices which preserve the Hermitan form h, i.e.

SU(n, 1) = {A ∈ SL(n+ 1,C)|h(Az,Az) = h(z, z)}.

The projectivization of SU(n, 1) in PGL(n+ 1,C) is the group PU(n, 1).

Arakelov inequalities and semistable families of curves
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We should note that PU(n, 1) is the group of biholomorphisms of Bn.More-
over, the group PU(n, 1) acts transitively on Bn, see Lemma 3.1.3 from [27], in
other words for any [z], [w] ∈ Bn there is an element A ∈ PU(n, 1), such that
A[z] = [w].

From now on we will consider that the complex unit ball (or the complex
hyperbolic space) is endowed with the Bergman metric, sometimes called the
Poincaré metric, whose sectional holomorphic curvature is constant.

Now, let us give the theorem which explains how we get the totally geodesic
submanifolds in Bn, which will help us to de�ne the tautological foliation on
PTBn .

Theorem 4.3. ([27], �3.1.10) Let F ⊂ Pn be a complex m-dimensional pro-
jective subspace which intersects Bn. Then, F ∩ Bn is a totally geodesic holo-
morphic submanifold with respect to the Bergman metric, biholomorphically
isometric to Bm.

Hence, by the previous theorem, the complex geodesics on Bn are obtained
as intersections of Bn with projective lines. On the other side, projective lines
are complex geodesics in Pn, with respect to the Fubini-Study metric. We
recall that given a point in Bn and a complex tangent line at this point, there
is a unique complex geodesic trough that point tangent to the complex tangent
line. Now we will de�ne the tautological foliation of the tangent bundles of
the projective space Pn and Bn.

De�nition 4.14. ([53]�2.3) The tautological foliation on the projectivization
of the tangent bundle of the projective space Pn is de�ned by the tautological
lifting of projective lines. The tautological foliation on the projectivization of
the tangent bundle of Bn is de�ned by tautological liftings of restrictions of
projective lines to the complex hyperbolic space Bn.

De�nition 4.15. A complex hyperbolic space form of dimension n is a quo-
tient of the complex hyperbolic n-space Bn by some torsion-free discrete sub-
group Γ of the group of holomorphic automorphisms PU(n, 1). These quotients
are also called ball quotients.

The group PGL(C, n+1) is the group of automorphisms of Pn and then the
tautological foliation on PTPn is invariant under the action of this group. One
has to note that the tautological foliation on PTBn descends also to the tauto-
logical foliation on the projectivization of the tangent bundle of any complex
hyperbolic space form. This holds since PU(n, 1), the group of holomorphic au-
tomorphisms of Bn, is a subgroup of the projective linear group PGL(C, n+1).

De�nition 4.16. The holomorphic projective connection which corresponds
to the tautological foliation on PTBn , or to the tautological foliation on the pro-
jectivization of the tangent bundle of a complex hyperbolic space form is called
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the canonical holomorphic projective connection. The projective second fun-
damental form of any holomorphic immersion, with respect to this connection
is called the canonical projective second fundamental form.

Also, let us note that a complex hyperbolic space form is endowed with the
Bergman metric, since the Bergman metric is PU(n, 1)-invariant, see Chapter
4 Proposition 2 in [54] .

Let us �nish this section by giving Lemma 1 and Lemma 2 from [53],
which describe the second fundamental form of holomorphic immersions into
a complex hyperbolic space form, with respect to the Bergman metric.

Lemma 4.4. Let (X, g) be a complex hyperbolic space form endowed with the
Bergman metric. The smooth connection of the Bergman metric g is associated
to the canonical holomorphic projective connection on X. Let i : X0 → X
be a holomorphic immersion, and denote by β the (1, 0)-part of the second
fundamental form of X0, with respect to the Bergman metric g. Then β is
holomorphic. Moreover, the second fundamental form on X0 with respect to
the Bergman metric g agrees with the canonical projective second fundamental
form of X0 in X.

4.4 Arakelov inequality and quotients of the com-

plex 2-ball

In this section we will show that the direct image of the pluricanonical relative
sheaf of a semistable family of curves, uniformized by the complex unit 2-ball,
over a curve, contains an invertible subsheaf which satis�es the maximal case
in Arakelov inequality, under the assumption that all singular �bers of the
family are totally geodesic.

Throughout this section we will suppose that f : X → Y is a projective
family of curves such that:

◦ the genus of Y is at least 2;
◦ the family is smooth over U = Y \S, where S is a �nite set of points on
Y ;

◦ X ' B2/Γ is a quotient of the complex 2-ball by a torsion-free discrete
cocompact subgroup Γ of PU(2, 1), i.e. X is a two dimensional complex
hyperbolic space form.

We will denote by g : B2 → D, where D ∼= H, a lift of the map f at the level
of the universal cover. For a local system of coordinates z = (x, y) on B2 we

will use the notations: gx =
∂g

∂x
, gy =

∂g

∂y
.

Let i : C → X be a smooth �ber of the family:

C = f−1(y), y ∈ U = Y \S.

Arakelov inequalities and semistable families of curves
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The second fundamental form of the �ber C with respect to the Bergman
metric on X is:

βC ∈ A1,0(C,Hom(TC , NC)).

Since i : C ↪→ X is a holomorphic embedding, by Lemma 4.4 βC is holomorphic
and one gets:

βC ∈ Γ(C, ω⊗2
C ⊗NC).

Moreover, by Lemma 4.4 the second fundamental form βC coincides with the
canonical projective second fundamental form of C in X, induced by the tau-
tological foliation on the projectivization of the tangent space of B2.

Lemma 4.5. For the canonical projective second fundamental form of C in
X, one has: βC ∈ Γ(C, ω⊗2

C ).

Proof. This is the consequence of the fact that the normal bundle of a smooth
�ber in any family is trivial. Let us explain this. We have C = f−1(y), y ∈ U.
Then,

(f ∗TY )|C = C × (TY )y

is a trivial bundle. On the other hand, for every x ∈ C the map dfx : (TX|C)x →
(f ∗TY )x is a surjective map, since f is surjective and C is smooth. The kernel
of that map is (TC)x and

(f ∗TY )x ∼= (TX|C)x/(TC)x.

Using the fact that
NC ' TX|C/TC ,

we have NC ' (f ∗TY )|C , hence NC is trivial. Finally, we get that for a smooth
�ber C from the family, the second fundamental form βC ∈ Γ(C, ω⊗2

C ).

The second fundamental form βC gives rise to a holomorphic section since
f is holomorphic:

β ∈ H0(X\Sing(f), ω⊗2
X/Y ⊗ f

∗TY ).

Since the set of singular points on �bers of the family has dimension 0, by
Hartogs theorem β can be extended to a section:

β ∈ H0(X,ω⊗2
X/Y ⊗ f

∗TY ). (4.1)

De�nition 4.17. The section β ∈ H0(X,ω⊗2
X/Y ⊗ f ∗TY ) is called the second

fundamental form of the family f : X → Y. Those �bers along which β vanishes
are totally geodesic �bers.
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De�nition 4.18. Let D be a possibly singular curve in B2. The curve D is
said to be totally geodesic in B2 if its irreducible components are smooth and
totally geodesic in B2. Let τ : B2 → X be the universal covering map. Let Xs

be a singular �ber in the family f : X → Y. The �ber Xs is totally geodesic in
X if τ−1(Xs) is totally geodesic in B2.

The following lemma states that totally geodesic �bers in the family can
only be singular �bers. The main technical tool for this lemma will be �1 from
[53].

Lemma 4.6. Totally geodesic �bers in the family f : X = B2/Γ→ Y can't be
smooth �bers.

Proof. According to Hirzebruch's proportionality theorem the Chern numbers
of X = B2/Γ are proportional with strictly positive proportionality factor to
the Chern numbers of P2, since P2 is the compact dual of B2. The proportion-
ality factor is equal to the volume of X. The �rst Chern class of P2 is:

[c1(P2)] = 3[ξ],

where [ξ] ∈ H2(P2,Z) is the Poincaré dual to the hyperplane divisor in P2.
On the other side, we have c1(X) = −3ξ′, where ξ′ is the normalized metric

form of the Bergman metric on X, with constant negative sectional curvature
−2. By [9] �1, for any submanifold C on X, we have :

c1(C) = −(2η + σ),

where σ = tr (iβ ∧ β∗) is a (1, 1)-real form which vanishes if C is totally
geodesic and η is the restriction of ξ′ to C, i.e. η = ξ′|C . Let C be a totally
geodesic �ber of the family f : X → Y. Then, we have:

c1(C) = −2η.

Moreover, if we suppose that C is a smooth �ber, then by the adjunction
formula one has:

ωC = (ωX ⊗OC(C))|C = ωX |C ,

since the normal bundle of the �ber NC = OC(C) is trivial. This yields that:

c1(ωC) = c1(ωX |C),

then for the dual bundles, the tangent bundles we get

c1(C) = c1(X)|C ,

and
−2η = −3η.

Hence, η = 0. This is not possible since η is the pullback of the Kähler form on
X of constant negative sectional curvature. Therefore, the assumption that C
is a smooth �ber is false. So, totally geodesic �bers in the family, if any, can
only be singular �bers.
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Before we give the most important results of this section, let us recall
several well known details about line bundles on the projective line:

◦ We recall the de�nition of the tautological bundle on P1. It is de�ned as:

L = {([z], ξ) ∈ P1 × C2|ξ ∈ C · z} ∼= O(−1),

with �bers
L[z] = C · z, z 6= 0.

The transition functions of this line bundle are:

l01(z) =
z0

z1

and l10(z) =
z1

z0

.

◦ The dual bundle of O(−1) is denoted as O(1) with transition functions:

t101(z) =
z1

z0

and t110(z) =
z0

z1

which are obtained as dual (transposed) maps of the transition functions
of the line bundle O(−1). It is well known, that all line bundles on P1

are isomorphic to O(−m) = O(−1)⊗m or to O(m) = O(1)⊗m, for m a
non-negative integer, with transition functions equal to the m-th power
of the transition functions of O(−1) or O(1).

◦ An easy calculation shows that the transition functions of the tangent
bundle on P1 are:

t01(z) = −
(
z1

z0

)2

and t10(z) = −
(
z0

z1

)2

.

It is well known that two holomorphic vector bundles of rank r over
some complex manifold are isomorphic if and only if there exists an open
covering {Uα} on that manifold relative to which their cocycles {gαβ}
and {g′αβ} given by transition functions are equivalent, in the sense that
there exist holomorphic maps:

λα : Uα → GL(r,C)

such that
g′αβ = λαgαβλ

−1
β , in Uα ∩ Uβ.

If we de�ne the maps, λ0 : U0 → C as λ0(z) = 1 and λ1 : U1 → C as
λ1(z) = −1, then the transition functions of the tangent bundle of P1

become:

t01(z) =

(
z1

z0

)2

and t10(z) =

(
z0

z1

)2

, in U0 ∩ U1,

therefore the tangent bundle of P1 is isomorphic to the line bundle O(2).
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Lemma 4.7. One has an isomorphism:

TP1 ⊗ L '
(
P1 × C2

)
/L,

where TP1 is the tangent bundle and L is the tautological bundle of P1.

Proof. Let {z0, z1} be a system of local coordinates on C2, then on P1 we
choose the standard open covering by sets:

U0 = {[z] = [z0 : z1]|z0 6= 0} and

U1 = {[z] = [z0 : z1]|z1 6= 0}.

Let ui =
zj
zi
, i 6= j be the local coordinate on Ui and let us give the trivialisation

maps for the bundles TP1 ⊗ L and (P1 × C2) /L. We suppose that

[z] = [z0 : z1] ∈ Ui,

then we have :

(TP1 ⊗ L)[z] = C{ ∂
∂ui
⊗ z}

and the trivialisation map is given by

∂

∂ui
⊗ z 7→ zi.

For the vector bundle (P1 × C2) /L we have:((
P1 × C2

)
/L
)

[z]
' C2/C · z,

then:

◦ if [z] ∈ U0, representatives of the vectors from ((P1 × C2)/L)[z] are of the

form
(

0
µ

)
and the trivialisation map is:

(
0
µ

)
7→ µ;

◦ if [z] ∈ U1, representatives of the vectors from ((P1 × C2) /L)[z] are of the

form
(
ν
0

)
and the trivialisation map is:

(
ν
0

)
7→ ν.
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Let φ : TP1 ⊗ L→ (P1 × C2)/L be the map de�ned by:

φ|U0

(
∂

∂u0

⊗ z
)

=

(
0
z0

)
, [z] ∈ U0;

φ|U1

(
∂

∂u1

⊗ z

)
=

(
z1

0

)
, [z] ∈ U1.

We will show that the map φ is well de�ned. Let us suppose that [z] ∈
U0 ∩ U1, then a tangent vector r =

∂

∂u0

at the point [z] can be seen as:

r = −
(
z0

z1

)2
∂

∂u1

,

using the transition maps of the tangent bundle TP1 , de�ned as above.
Then, for [z] ∈ U0 ∩ U1 one has:

v0 = φ|U0(r ⊗ z) =

(
0
z0

)
;

v1 = φ|U1 (r ⊗ z) = φ|U1

(
−
(
z0

z1

)2
∂

∂u1

⊗ z

)
=

−(z0

z1

)2

z1

0

 =

−z2
0

z1

0

 .

Let us show that the vectors v0 and v1 are equal in the �ber ((P1 × C2)/L)[z] .
By the following computation:

v1 =

−z2
0

z1

0

 =

(
0
z0

)
− z0

z1

(
z0

z1

)
,

we get that vectors v0 and v1 are equal in the quotient space ((P1 × C2)/L)[z] .
This implies that the map φ is well de�ned. Besides that, it is an injective and
surjective map, so we have an explicitly described isomorphism between the
bundles TP1 ⊗ L and (P1 × C2)/L.

In section 4.2, following the result of Mok we explained that it is possible to
de�ne the second fundamental form of a holomorphic immersion intoX = B2/Γ
only using the tautological foliation of PTX , without any references to the a�ne
connection. Here, following that idea which was presented at the end of section
4.2, we will explicitly describe the second fundamental form of the projective
family

f : X = B2/Γ→ Y,

at the level of the universal cover B2.
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Lemma 4.8. Let g : B2 → D be a lift of the map f : X = B2/Γ → Y at the
level of the universal covering. The second fundamental form of �bers of the
family g : B2 → D can be identi�ed with the function:

F (z) = g2
y(z)gxx(z)− 2gx(z)gy(z)gxy(z) + g2

x(z)gyy(z),

in the system of coordinates z = (x, y) on B2.
More precisely, let β̃ ∈ H0(B2, ω⊗2

B2/D ⊗ g∗TD) be the second fundamental

form of the family g : B2 → D. In the trivilization of the relative tangent
bundle TB2/D given by

z 7→ s(z) =

(
gy(z)
−gx(z)

)
the function F is de�ned by

F (z) = β̃z

((
gy(z)
−gx(z)

)
⊗
(
gy(z)
−gx(z)

))
∈ (g∗TD)z

∼= C.

Proof. (A) The tangent bundle of B2 is trivial, i.e. TB2 = B2 × C2. The
projectivization of the tangent bundle is PTB2 = B2 × P1. The map
π : PTB2 → B2 is the canonical projection. Let Tπ = Ker dπ. It is
plain to see that: Tπ ∼= TP1 .

Let D = g−1(c), c ∈ D. Let z0 = (x0, y0) ∈ D be a smooth point in the
�ber D. We suppose that for the points z around z0, i.e. for z ∈ Dz0 =
B(z0, ε) ∩D for ε small enough, one has gy(z) 6= 0. Then, a trivilization
of TDz0 is given by the section:

z 7→ s(z) =

(
gy(z)
−gx(z)

)
.

The implicit function theorem provides a holomorphic parametrization
of the curve D near the �xed point z0, given by:

λ 7→ (x(λ), y(λ)) , where g (x(λ), y(λ)) = c,

and such that x(0) = x0, y(0) = y0, ẋ(0) = gy(z0) and ẏ(0) = −gx(z0).

P1 Ĉ

D̂

[w]

w

C

D

PTX̃

X̃
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The tautological lifting of Dz0 to the space PTB2 is de�ned by the lifting
of a point z ∈ Dz0 to the point [s(z)] ∈ PTB2,z

∼= P1. More precisely, the
tautological lifting of Dz0 is de�ned as the curve:

D̂z0 = {(z, [s(z)]), z ∈ Dz0} ⊂ Dz0 × P1 ⊂ PTB2 ,

i.e. D̂z0 as the graph of the function:

z ∈ Dz0 7→ [s(z)] = [gy(z) : −gx(z)] ,

and since we supposed that gy(z) 6= 0 then

z ∈ Dz0 7→ [s(z)] =

[
1 : −gx(z)

gy(z)

]
∈ U0,

where {U0, U1} is the standard open covering on P1. So, we get the local
description of the curve D̂z0 by the parametrization:

λ 7→
(
x(λ), y(λ), [1 : −gx (x(λ), y(λ))

gy (x(λ), y(λ))
]

)
,

or to simplify notation, the parametrization of D̂z0 is given as:

λ 7→
(
x(λ), y(λ),−gx (x(λ), y(λ))

gy (x(λ), y(λ))

)
.

(B) Let w = s(z0) =

(
gy(z0)
−gx(z0)

)
be a tangent vector of Dz0 at the point z0.

Let C be a geodesic on B2 intersecting Dz0 at the point z0, such that
w is a common tangent vector for both curves. Being a geodesic on the
ball, C is a line in the direction of the vector w. We have the following
parametrization for C :

λ 7→ (λgy(z0),−λgx(z0)) .

The tautological lifting Ĉ of the curve C is a leaf of tautological foliation
on PTB2 and it intersects D̂z0 at the point [w].We can describe the curve
Ĉ by the parametrization:

λ 7→
(
λgy(z0),−λgx(z0),

[
1 : −gx(z0)

gy(z0)

])
,

or

λ 7→
(
λgy(z0),−λgx(z0),−gx(z0)

gy(z0)

)
.
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Using the parametrization introduced above, a tangent vector of D̂z0 at
the point [w] ∈ PTB2,z is

ξ =

(
ẋ(λ), ẏ(λ),

∂

∂λ

(
−gx(x(λ), y(λ))

gy(x(λ), y(λ))

))
|λ=0

∈ T[w](D̂z0) ⊆ T[w]PTB2 .

Using that:

◦ ẋ(0) = gy(z0), ẏ(0) = −gx(z0),

◦ ∂

∂λ
(gx(x(λ), y(λ))) = gxxẋ+ gxyẏ,

◦ ∂

∂λ
(gy(x(λ), y(λ))) = gyyẏ + gxyẋ,

we get:

∂

∂λ

(
−gx(x(λ), y(λ))

gy(x(λ), y(λ))
)

)
|λ=0 =

(
−(gxxẋ+ gxyẏ)gy − gx(gxyẋ+ gyyẏ)

g2
y

)
|λ=0

= −gxx(z0) + 2
gx(z0)

gy(z0)
gxy(z0)−

(
gx(z0)

gy(z0)

)2

gyy(z0),

and hence

ξ =

(
gy(z0),−gx(z0),−gxx(z0) + 2

gx(z0)

gy(z0)
gxy(z0)−

(
gx(z0)

gy(z0)

)2

gyy(z0)

)
,

whilst a tangent vector of Ĉ at the point [w] is

η = (gy(z0),−gx(z0), 0) ∈ T[w](Ĉ) ⊆ T[w]PTB2 .

We get the vector :

η − ξ =

(
0, 0, gxx(z0)− 2

gx(z0)

gy(z0)
gxy(z0) +

(
gx(z0)

gy(z0)

)2

gyy(z0)

)
.

Therefore, we get dπ(η − ξ) = 0, i.e.

η − ξ ∈ Tπ,[w].

As we explained in the end of Section 4.2, in order to de�ne the the second
fundamental form of Dz0 which is a submanifold of dimension 1 on the
complex unit 2-ball, which is equipped with the projective connection,
we have to assign to the vector w, the unique vector, rw = A(w) from
the kernel of the map π. Summarising what we have seen so far we get:

rw = η − ξ.
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As η − ξ ∈ Tπ,[w] and [w] =

[
1 : −gx(0)

gy(0)

]
∈ U0, then in the local coordi-

nates on P(TB2,z0) ∼= P1 we can see the vector η − ξ as the vector:

rw =

(
gxx(z0)− 2

gx(z0)

gy(z0)
gxy(z0) +

(
gx(z0)

gy(z0)

)2

gyy(z0)

)
∂

∂u0

,

where ui =
vj
vi
, i 6= j, is a local coordinate on the standard open set Ui of

P(TB2,z0) and {v0, v1} are local coordinates on TB2,z0 .

(C) Let us make a short review of what we saw in the end of Section 4.2
but here applied to the case of the complex unit 2-ball. Following the
notations from Section 4.2 we have the map:

A : TDz0 → Tπ,[v],

or using the isomorphism TDz0 ,z
∼= L[v] we have the map

A : L[v] → Tπ,[v],

A(v) = rv,

where TDz0 ,z = Cv, at a point z ∈ Dz0 . This map gives rise to the map
σ̃[v] which will induce the second fundamental form of Dz0 :

σ̃[v] : L[v] ⊗ L[v] → Tπ [v] ⊗ L[v] → (π∗TB2/L)[v],

which is de�ned as:
σ̃[v] = φ(A⊗ idL[v]

).

In the case of the complex unit 2-ball, using the isomorphism φ con-
structed in Lemma 4.7, σ̃ will be de�ned as:

σ̃[v](v, v) = φ(A⊗ idL(v, v)) = φ(rv ⊗ v),

σ̃[v](v, v) =


(

0
v0α

)
, if [v] ∈ U0 and rv = α ∂

∂u0
;(

v1β
0

)
, if [v] ∈ U1 and rv = β ∂

∂u1
.

The morphism σ̃[v] gives rise to the holomorphic section:

σ̃ ∈ H0(PTDz0 , L
−2 ⊗ π∗TB2/L).

Note that the isomorphism L[v]
∼= TDz0 ,z implies:

π∗TB2/L ∼= π∗NDz0 .

124



4. Examples of Arakelov equality for semistable families of curves

uniformized by the unit ball

Hence,
σ̃ ∈ H0(PTDz0 , L

−2 ⊗ π∗NDz0
).

At the end we will apply the isomorphism dg : NDz0,z
∼= TD,g(z) ∼= C, given

by the linear operator dg(z)

(
λ
γ

)
= (gx, gy)(z)

(
λ
γ

)
= gx(z)λ+gy(z)γ and

we get the holomorphic section:

σ ∈ H0(Dz0 , T
−2
Dz0
⊗ g∗TD)

which is the second fundamental form of Dz0. This section on �bers is
given by:

σz = dg(z)(σ̃[v]) : TDz0,z ⊗ TDz0,z → C,

such that:

σz(v, v) =

{
v0αgy(z) if [v] ∈ U0 and rv = α ∂

∂u0
;

v1βgx(z) if [v] ∈ U1 and rv = β ∂
∂u1
.

Now, applying what we have seen so far, to the vector w at point z0 on
Dz0, with

rw =

(
gxx(z0)− 2

gx(z0)

gy(z0)
gxy(z0) +

(
gx(z0)

gy(z0)

)2

gyy(z0)

)
∂

∂u0

,

we get:

σz0(w,w) = gy(z0)

(
gxx(z0)− 2

gx(z0)

gy(z0)
gxy(z0) +

(
gx(z0)

gy(z0)

)2

gyy(z0)

)
gy(z0)

= g2
y(z0)gxx(z0)− 2gx(z0)gy(z0)gxy(z0) + g2

x(z0)gyy(z0),

which is the expression for the second fundamental form of Dz0 in the
local trivilization, i.e. σz = β̃z. Since the last expression is symmetric in
gx and gy, the condition gy(z) 6= 0 did not play any role.

Moreover, the last expression is well de�ned at every point of the �ber
D, therefore the extension of the second fundamental form of the �ber
D can be identi�ed with the function

F : B2 → C,

where

F (z) = g2
y(z)gxx(z)− 2gx(z)gy(z)gxy(z) + g2

x(z)gyy(z).
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Lemma 4.9. In the previous notations, let the family f : X → Y be a
semistable family of curves, then the function F : B2 → C vanishes at or-
der exactly one on the totally geodesic �bers, if any, in the family g : B2 → D.

Proof. The family f : X → Y is a semistable family of curves, hence the
singular �bers of the family g : B2 → D are reduced normal crossing divisors.

By the previous lemma, the second fundamental form of a �ber at a point
z in the family g : B2 → D is:

F (z) = g2
y(z)gxx(z)− 2gx(z)gy(z)gxy(z) + g2

x(z)gyy(z).

Note that the map F is well de�ned everywhere on B2, including singular
points of the family Sing(g). Let D be a singular and totally geodesic �ber in
the family g : B2 → D. Since PU(2, 1) acts transitively on B2, we can suppose,
after some change of coordinates on the ball, that:

◦ D = g−1(0);

◦ (0, 0) ∈ D and it is a singular point for the map g.

Since any singular point of the �ber D is a normal crossing of two branches
and D is a geodesic on the ball, we can suppose that the branches of D which
intersect at the point (0, 0) are the branches {y = 0} and {x − cy = 0}, c ∈
C. Recall that the second fundamental form is invariant under the action of
PU(2, 1).

One has g(cy, y) = 0 and g(x, 0) = 0. Since D is totally geodesic, on the
branch {y = 0} we have:

F (x, 0) = 0.

We write the function g as:

g(x, y) =
∑
i,j

aijx
iyj,

where aij are Taylor's coe�cients in the neighborhood of the point (0, 0). The
equation g(x, 0) = 0 gives:

ak0 = 0, for all k.

The fact that (0, 0) is a singular point yields:

a01 = 0.

On the other side, for the function g in the neighborhood of the point (0, 0)
one has:

g(x, y) = ay(x− cy) +
∑
i+j≥3

ai,jx
iyj,

with a 6= 0 since D is nodal at (0, 0).
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So, we get:

a11 =
∂2g

∂x∂y
(0, 0) = a 6= 0. (4.2)

We have:

F (x, y) = (
∑
j≥1

jaijx
iyj−1)2(

∑
i≥2

i(i− 1)aijx
i−2yj)

− 2(
∑
i≥1

iaijx
i−1yj)(

∑
j≥1

jaijx
iyj−1)(

∑
j≥1

ijaijx
i−1yj−1)

+ (
∑
i≥1

iaijx
i−1yj)2(

∑
j≥2

j(j − 1)aijx
iyj−2) =

∑
k,m

bkmx
kym.

Since F (x, 0) = 0, we have:
bk0 = 0.

Also, using that ak0 = 0 for k ≥ 0, an easy calculation gives:

bk1 =
∑

m+n+p=k

(p+2)(p+1)am1an1ap+2,1−2
∑

m+n+p=k

(m+1)(p+1)am+1,1an1ap+1,1.

We suppose that the function F (x, y) vanishes at order bigger than 1 along
the singular totally geodesic �ber D. In the neighborhood of the point (0, 0)
the �ber D is given as the intersection of branches y = 0 and x−cy = 0, hence
our assumption implies that

F (x, y) = y2H(x, y),

for some analytic function H(x, y). This implies that all

bk1 = 0.

In particular, from b11 = 0 using that a01 = 0, we get:

a11 = 0.

Therefore, we have a contradiction with (4.2) and our assumption that F (x, y)
vanishes at order bigger than 1 along a singular geodesic �ber is false, hence
the second fundamental form on totally geodesic �bers vanishes of order 1.

We should underline the fact that the second fundamental form induced
by the canonical projective connection on the ball B2 is invariant under the
action of the group PU(2, 1) ⊂ PGL(3), as we explained in Section 4.3. Hence,
it descends to the ball quotient X = B2/Γ. Moreover, by Lemma 4.9 on the
geodesic �bers of the semistable family f : X → Y, the second fundamental
form will vanish at order exactely 1.
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Theorem 4.10. If all singular �bers in the family f : X → Y are totally
geodesic, then there is an invertible subsheaf of f∗ω

⊗2
X/Y which satis�es the max-

imal case in the Arakelov inequality.

Proof. The second fundamental form β ∈ H0(X,ω⊗2
X/Y ⊗f ∗TY ), of the �bration

f : X → Y induces a section:

βY ∈ H0(Y, f∗ω
⊗2
X/Y ⊗ TY ).

By Lemma 4.6 , β can vanish only on singular �bers, i.e. �bers over the set S.
This yields that βY can vanish only at points of the set S.
The section βY ∈ H0(Y, f∗ω

⊗2
X/Y ⊗ TY ) provides an invertible subsheaf

F ⊂ f∗ω
⊗2
X/Y ⊗ TY ,

and one has:
degF =

∑
multiplicities of zeros of βY .

By Lemma 4.9, β vanishes at order 1 along the totally geodesic �bers, so the
multiplicities of zeros of the section βY will be 1. Hence, we get:

degF = #Zeros(βY ) ≤ #S.

If we suppose that all singular �bers are totally geodesics then βY vanishes at
every point of S and:

degF = #S.

Then, the invertible subsheaf H = F ⊗ ωY ⊆ f∗ω
⊗2
X/Y , satis�es

degH = degF + degωY = degωY (S).

The invertible subsheaf H ⊆ f∗ω
⊗2
X/Y reaches the bound in the Arakelov in-

equality.

The semistable families of curves f : X → Y, where X is a quotient of
the complex 2-ball by a torsion-free discrete cocompact subgroup of PU(2, 1),
all whose singular �bers are totally geodesic are examples of families whose
bicanonical relative sheaf f∗ω⊗2

X/Y contains an invertible subsheaf which satis�es
the maximal case in the Arakelov inequality.

4.5 Example

In this section we will give examples of semistable families whose geometric
variation contains a subvariation whose Higgs �eld is an isomorphism. In other
words, by Theorem 2.22, the base curves in these families are Teichmüller
curves. These examples are families g : WΓ(N) → YΓ(N), where the map g is
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the composition of a ν-cyclic covering over the elliptic modular surfaceXΓ(N) of
level N and the elliptic �bration f : XΓ(N) → YΓ(N), where YΓ(N) is a modular
curve attached to the principal congruence subgroup of level N, for N ≥ 3.
The degree ν of the cyclic covering WΓ(N) will depend on N.

Moreover, Livné shows in his thesis [48] that for ν = N
N−6

, i.e. for N ∈
{7, 8, 9, 12}, the surfaces WΓ(N) are of general type with c2

1 = 3c2. By Yau's
result, these surfaces are uniformized by the complex unit 2-ball.

In the previous section we proved that in the case when all singular �bers of
a family, uniformized by the complex unit 2-ball, are totally geodesic there is
an invertible subsheaf of the direct image of the relative bicanonical sheaf of the
family which satis�es the maximal case in the Arakelov inequality. Here, we
prove that the pluricanonical relative sheaf of the families g : WΓ(N) → YΓ(N)

contains an invertible subsheaf which satis�es the maximal case in the Arakelov
inequality. Later, we will prove that in the case when N ∈ {7, 8, 9, 12} the
singular �bers are totally geodesic, as expected.

4.5.1 Preliminaries

Let Γ be a torsion free subgroup of �nite index of the group SL2(Z). The group
Γ acts discretely on H. The quotient H/Γ is a non-compact Riemann surface.
Adding a �nite number of cusps to H/Γ we get a compact Riemann surface
YΓ, called the modular curve attached to Γ.

De�nition 4.19. ([64] �1.4 or [65] �4) A point y ∈ YΓ is called a cusp of width
b if one of its representing points z ∈ Q∪ {∞} has the stabilizer generated by

an element which is conjugate in SL2(Z) to either
(

1 b
0 1

)
or
(
−1 b
0 −1

)
, for

b > 0 . Respectively, y is called a cusp of the �rst or of the second kind.
We say that a point y ∈ YΓ is an elliptic point if y is not a cusp and its

representing point z ∈ H has the stabilizer Γz in Γ, generated by an element

of order 3, which is conjugate in SL2(Z) to either
(
−1 −1
1 0

)
or
(

0 1
−1 −1

)
.

We will use the notations:

◦ µ is the index of the projectivization of Γ in PSL(2,Z);
◦ t1 is the number of cusps of the �rst kind in YΓ;
◦ t2 is the number of cusps of the second kind in YΓ;
◦ t′ = t1 + t2 is the number of cusps in YΓ;
◦ s is the number of elliptic points in YΓ;
◦ t = t′ + s.

Lemma 4.11. (�4[65]) The genus g of YΓ satis�es:

2g − 2 + t′ +
2

3
s =

1

6
µ.
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De�nition 4.20. Let f : X → Y be a projective family of curves, smooth over
U = Y \S. The surface X is called an elliptic �bration or an elliptic surface if:

1. all smooth �bers f−1(y), y ∈ U are elliptic curves, and singular �bers
contain no (−1)-curves;

2. there exists a holomorphic map ϕ0 : Y → X such that f ◦ ϕ0 = idY ,
called a zero section of f.

Following Chapter 12 from [44] and Chapter 2 from [65], we give several
facts about elliptic �brations over a modular curve.

(A1) The quotient of H× C by automorphisms of the form:

(τ, z)→ (γ(τ),
z +mτ + n

cτ + d
),

where γ =

(
a b
c d

)
∈ Γ, (m,n) ∈ Z2, de�nes a surface equipped with a

morphism to the modular curve YΓ. The �ber over the image in YΓ of
a general point τ ∈ H is the elliptic curve corresponding to the lattice
Z⊕ Zτ. The surface obtained in this way can be extended to an elliptic
surface XΓ over the modular curve YΓ. In this �bration singular �bers lie
over cusps and elliptic points of the modular curve YΓ. The surface XΓ

is called the elliptic modular surface attached to the group Γ.

(A2) Let us denote by ϕΓ : YΓ → XΓ a section of the elliptic modular �bration
f : XΓ → YΓ. By Theorem 6.8 from [62] one has:

ωXΓ
= f ∗(ωYΓ

⊗ L−1), (4.3)

for some line bundle L such that degL−1 = χ(OXΓ
). Moreover, one gets

that KXΓ
is a vertical divisor, i.e. it is linearly equivalent to a smooth

�ber of the family and one has:

KXΓ
≈ (2g − 2 + χ(OXΓ

))C,

where C is a smooth �ber. Hence, one gets:

KXΓ
·KXΓ

= 0,

or
c2

1(XΓ) = 0.

On the other side, the Noether formula:

12χ(OXΓ
) = c2

1(XΓ) + c2(XΓ)

yields
12(1− q + pg) = 12 degL−1 = c2(XΓ) = χ(XΓ), (4.4)
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where q is the irregularity of XΓ and pg is geometric genus of XΓ.

Using Lemma VI.4 from [4] which describes the Euler characteristic of a
�bration of a surface one gets:

χ(XΓ) = χ(YΓ)χ(C) +
∑
t∈T

(χ(XΓ,t)− χ(C)),

where C is a smooth �ber in the family, the set T is the discriminant
locus of the family and XΓ,t is the singular �ber corresponding to the
point t ∈ T. The Euler characteristic of an elliptic curve vanishes and
one gets:

c2(XΓ) =
∑
t∈T

χ(XΓ,t). (4.5)

By Theorem 12.2 from [44] and Proposition 4.2 from [65] we get:

c2(XΓ) =
∑
t∈T

χ(XΓ,t) = µ+ 6t2 + 8s. (4.6)

Therefore, the Euler caracteristic of the modular elliptic surface XΓ is
positive and by (4.4) one gets that χ(OXΓ

) is positive. In particular, the
degree of the line bundle L−1 is positive, hence it is an ample divisor on
YΓ.

One should note that:

pg = h0(X,ωXΓ
) = h0(X, f ∗(ωYΓ

⊗ L−1)) = h0(Y, ωYΓ
⊗ L−1).

Using the Rieman-Roch formula, the Serre duality and the fact that
h0(Y,L) = 0 (since L−1 is ample on Y ) one gets:

h0(Y, ωYΓ
⊗ L−1) = deg(ωYΓ

⊗ L−1)− g + 1, (4.7)

i.e.
pg = deg(ωYΓ

⊗ L−1)− g + 1 = g − 1− degL, (4.8)

where g is the genus of YΓ.

By (4.4) and (4.8) we get:

q = pg + 1− c2(XΓ)

12
= g − 1− degL+ 1 + degL = g.

Hence, the irregularity of the elliptic modular surface is equal to the
genus of the modular curve YΓ.
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(A3) By Lemma (4.11) one has:

µ = 12g − 12 + 6t1 + 6t2 + 4s.

As we saw before by (4.6) one has:

c2(XΓ) = 12 degL−1 = µ+ 6t2 + 8s,

hence
degL−1 = g − 1 +

1

2
t1 + t2 + s.

Then by (4.8) we get:

pg = 2g − 2 +
1

2
t1 + t2 + s. (4.9)

De�nition 4.21. The principal congruence subgroup of SL2(Z) of level N is
de�ned to be:

Γ(N) =

{
γ =

(
a b
c d

)
∈ SL2(Z)|a, d ≡ 1(modN); b, c ≡ 0(modN)

}
.

The curve YΓ(N) is called the modular curve of level N. The elliptic modular
surface XΓ(N) attached to the group Γ(N) is called the elliptic modular surface
of level N.

From now on, we will suppose that N ≥ 3. Following results from [37] and
the previous results about elliptic modular surfaces, we will list here several
properties of the family f : XΓ(N) → YΓ(N).

(B1) The group Γ(N) is torsion free, so s(N) = 0.

(B2) All cusps are of the �rst kind, hence t2(N) = 0 and t(N) = t1(N). The
set of cusps will be denoted by T. This set is the discriminant locus of
the family f : XΓ(N) → YΓ(N).

(B3) t(N) = µ(N)
N
, where µ(N) =

1

2
N3
∏

p|N(1 − 1

p2
), where the product is

taken over prime numbers p;

(B4) From point (A3), the genus of the curve YΓ(N) is given by:

g(N) = 1 +
(N − 6)µ(N)

12N
.

It is equal to the irregularity q(N) (see (A2)). The geometric genus of
the surface XΓ(N) is given by:

pg(N) =
N − 3

6N
µ(N).
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(B5) The elliptic modular surfaceXΓ(N) of levelN hasN2 disjoint sections over
the base curve YΓ(N). These sections will be denoted by Di and the sum
of these sections is D =

∑N2

i=1Di. For N ≥ 4, the divisor D =
∑N2

i=1Di

is divisible in Pic(XΓ(N)) by N if N is odd or by
N

2
otherwise.

(B6) From point (A2), the canonical bundle of XΓ(N) is given as

ωXΓ(N)
= f ∗(ωYΓ(N)

⊗ L−1),

where L is a line bundle on YΓ(N) such that

degL−1 = pg(N)− q(N) + 1 =
µ(N)

12
.

(B7) Non-singular �bers of the family f : XΓ(N) → YΓ(N) are non-singular
elliptic curves. The divisor D intersects a smooth �ber in N2 points.
Singular �bers of the family are above the cusps of YΓ(N). A singular
�ber F of the family is of the form F =

∑N−1
i=0 Fi, where Fi are non-

singular rational curves with F 2
i = −2. A curve Fi intersects transversely

curves Fi−1 and Fi+1. Hence, singularities of the divisor F are nodes. The
N−cycle of these curves is such that every Fi intersects the divisor D in
N points, i.e. every curve Fi intersects exactly N sections. The points
of intersections of divisors F and D are not the nodes of divisor F. It
is obvious that the family f : XΓ(N) → YΓ(N) is semistable. Then by
Lemma 1.9 one gets:

ωXΓ(N)/YΓ(N)
= Ω1

XΓ(N)/YΓ(N)
(log f ∗(T )).

4.5.2 The construction

We will suppose that N ≥ 4. Let ν ≥ 2 be an integer such that ν divides N

if N is odd or ν divides
N

2
if N is even. Hence, by (B5), there exists a line

bundleM in Pic(XΓ(N)) such that:

OXΓ(N)
(D) =Mν .

Now, we can construct a cyclic coveringWΓ(N) over XΓ(N) of degree ν, rami�ed
along the divisor D. Since all components of D are disjoint, D is a smooth
divisor. Therefore, the cyclic covering τ : WΓ(N) → YΓ(N) rami�ed along D
is smooth, see Lemma 1.6. The induced family g = f ◦ τ : WΓ(N) → YΓ(N),
has singular �bers over the set of cusps T of the curve YΓ(N), which is also
the discriminant locus for the family f : XΓ(N) → YΓ(N). There is no �bers
of the family f : XΓ(N) → YΓ(N) in the branched locus D of the covering, so
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all �bers of the family g : WΓ(N) → YΓ(N) are reduced, on the other side the
branch divisor D does not contain singular points (nodes) of singular �bers
of the family f : XΓ(N) → YΓ(N) (see (B7)), hence τ ∗(D) + g∗(T ) is a normal
crossing divisor, see Remark 1.14. We have that all �bers of g : WΓ(N) →
YΓ(N) are reduced, singular �bers are normal crossing divisors and they do not
contain exceptional curves of �rst kind, hence the family g : WΓ(N) → YΓ(N) is
semistable.

The semistability of the family g : WΓ(N) → YΓ(N) and Lemma 1.9 yield
that:

ωWΓ(N)/YΓ(N)
= Ω1

WΓ(N)/YΓ(N)
(log(g∗(T ))).

By Lemma 1.16 one has:

τ∗ωWΓ(N)/YΓ(N)
= ωXΓ(N)/YΓ(N)

⊕
ν−1⊕
i=1

Ω1
XΓ(N)/YΓ(N)

(log(f−1(T ) + Γi))⊗M(−i),

where Γi is the sum of components of D whose multiplicities multiplied by i
are not divisible by ν. Then it is plain to see that Γi = D, for all i = 1, ..., ν−1,
since D is a reduced divisor. We get: ωXΓ(N)/YΓ(N)

⊂ τ∗ωWΓ(N)/YΓ(N)
, or

f∗ωXΓ(N)/YΓ(N)
⊂ g∗ωWΓ(N)/YΓ(N)

. (4.10)

Lemma 4.12. The sheaf f∗ωXΓ(N)/YΓ(N)
is an invertible sheaf and for any pos-

itive integer n the sheaf

H = (f∗ωXΓ(N)/YΓ(N)
)⊗n

is a subsheaf of g∗ω
⊗n
WΓ(N)/YΓ(N)

and satis�es the maximal case in the Arakelov

inequality for the semistable family g : WΓ(N) → YΓ(N), i.e.

degH =
n

2
degωYΓ(N)

(T ).

Proof. As f : XΓ(N) → YΓ(N) is an elliptic �bration, the canonical bundle of
a generic �ber C is trivial, i.e. ωC = OC which yields h0(C, ωC) = 1 . This
means that the rank of the sheaf f∗ωXΓ(N)/YΓ(N)

is 1, so it is an invertible sheaf.
Also, by (B6) one has:

deg f∗ωXΓ(N)/YΓ(N)
= deg f∗(ωXΓ(N)

⊗ f ∗ω−1
YΓ(N)

) = deg(f∗ωXΓ(N)
⊗ ω−1

YΓ(N)
)

= deg(ωYΓ(N)
⊗ L−1 ⊗ ω−1

YΓ(N)
) = degL−1 =

µ(N)

12
.

On the other hand, one has:

degωYΓ(N)
(T ) = 2g(N)− 2 + t =

µ(N)

6
.
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By (4.10) we have:

H = (f∗ωXΓ(N)/YΓ(N)
)⊗n ⊂ (g∗ωWΓ(N)/YΓ(N)

)⊗n ⊆ g∗ω
⊗n
WΓ(N)/YΓ(N)

and

degH = nf∗ωXΓ(N)/YΓ(N)
=
nµ(N)

12
=
n

2
degωYΓ(N)

(T ).

So, for the semistable family g : WΓ(N) → YΓ(N), with discriminant locus
the set of cusps T, the invertible sheaf H = (f∗ωXΓ(N)/YΓ(N)

)⊗n ⊂ g∗ω
⊗n
WΓ(N)/YΓ(N)

satis�es the case of the equality in the Arakelov inequality.

Proposition 4.13. For the family g : WΓ(N) → YΓ(N), the curve YΓ(N)\T is a
Teichmüller curve.

Proof. This is a consequence of Lemma 3.13 for n = 1.

Livné showed in his thesis [48] �1.6 that the surfaces WΓ(N) with ν = N
N−6

,
i.e. N = 7, 8, 9, 12, satisfy c2

1 = 3c2. Due to well known Yau's result [84], the
surfaces with c2

1 = 3c2 are quotients of the complex unit 2-ball by a discrete,
co-compact, torsion-free subgroup of PU(2, 1).

In order to prove that all singular �bers in the semistable families:

g : WΓ(N) → YΓ(N) for N ∈ {7, 8, 9, 12},

are totally geodesic let us state and prove one auxiliary lemma which gives an
approach for detecting the totally geodesic curves on a smooth complex 2-ball
quotient.

Lemma 4.14. Suppose D is a reduced (not necessarily irreducible) curve on a
smooth complex two-ball quotient X self-intersecting only at k distinct points
with simple multiplicities given by (b1, ..., bk) and let us denote by Di (i =
1, 2..., n) its irreducible components, D̂i their normalization. Let α : D̂ =
∪iD̂i → D be the normalization of D. Then D is totally geodesic if and only if

KX ·D = 3
n∑
i=1

(g(D̂i)− 1).

Proof. The direction when D is totally geodesic is Lemma 6 in [11]. Here, we
will prove the other direction. We suppose that:

KX ·D = 3
n∑
i=1

(g(D̂i)− 1).

Note that we also have:

KX ·D =

∫
D

c1(KX) =

∫
D̂

α∗c1(KX) =

∫
D̂

c1(α∗KX),
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and

3
n∑
i=1

(g(D̂i)− 1) =
3

2

n∑
i=1

degKD̂i
=

3

2

n∑
i=1

∫
D̂i

c1(KD̂i
).

This yields: ∫
D̂

c1(α∗KX) =
3

2

∫
D̂

c1(KD̂). (4.11)

By [9] �1 or Lemma 4.6 we have:

c1(α∗KX) = 3α∗ξ,

c1(KD̂) = 2α∗ξ + α∗σ,

where ξ is the Kähler form of the metric on X and σ is (1,1)-form, non negative
de�nite at every point of D. It is explained in �1 of [9] that if σ vanishes iden-
tically on D, then the second fundamental form vanishes on D, or equivalently
D is totally geodesic. Using that σ is non-negative and equality 4.11, one gets:∫

D̂

3α
∗
ξ =

3

2

∫
D̂

(2α∗ξ + α∗σ),

hence α∗σ = 0 on D̂. As a consequence one has that the irreducible components
of D are totally geodesic curves.

Lemma 4.15. In the notations from the beginning of the section, for ν = N
N−6

,
the singular �bers in the family

g : WΓ(N) → YΓ(N)

are totally geodesic.

Proof. The singular �bers of the �bration g : WΓ(N) → YΓ(N) are the �bers
over cusps of YΓ(N) and they are ν−cyclic coverings of singular �bers of the
family f : XΓ(N) → YΓ(N). Recalll that the map τ : WΓ(N) → XΓ(N) is the
ν-cyclic covering rami�ed along the divisor D =

∑N2

i=1Di.
For a singular �ber of the family f : XΓ(N) → YΓ(N), one has:

F =
N−1∑
i=0

Fi,

where Fi ∼= P1
C. Then τ ∗(F ) = C =

∑N−1
i=0 Ci, where the Ci's are ν−cyclic

coverings of Fi ∼= P1. The cyclic coverings Ci's of P1 are rami�ed over N points
of Fi, which are not nodes of F. This holds by (B7). Hence, by the Riemann-
Hurwitz formula one gets:

degKCi = ν degKP1
C

+N(ν − 1) = −2ν +N(ν − 1),
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and

g(Ci) =
(ν − 1)(N − 2)

2
.

In Livné's thesis �1.5 we can �nd that the canonical divisor of the surface
WΓ(N) is given by:

KWΓ(N)
= (ν − 1)

N2∑
i=1

D̃i +
N − 4

4N
µ(N)Φ̃,

where Φ̃ = τ ∗(Φ), for Φ a smooth �ber in the family f : XΓ(N) → YΓ(N) and
D̃i = τ ∗Di.

Using the fact that �bers in a family do not intersect, we have F · Φ = 0,
then τ ∗F · τ ∗Φ = 0, i.e.

C · Φ̃ = 0.

Again by (B7) and the fact that Ci is rami�ed at N points one gets

Ci ·
N2∑
j=1

D̃j = N.

Bringing together all these facts we have:

KWΓ(N)
· Ci =

(
(ν − 1)

N2∑
i=1

D̃i +
N − 4

4N
µ(N)Φ̃

)
· Ci = (ν − 1)N,

and

3
N∑
i=1

(g(Ci)− 1) = 3N
Nν − 2ν −N

2
.

Now, for ν = N
N−6

we get:

KWΓ(N)
· C = N(KWΓ(N)

· Ci) = 6
N2

N − 6
,

and

3
N∑
i=1

(g(Ci)− 1) = 6
N2

N − 6
,

which yields that C is totally geodesic by the previous lemma.

The elliptic modular surface XΓ(12) has 144 sections which form the divi-
sor D. This divisor is divisible in the group Pic(XΓ(12)) by 6. Hence, we can
construct the cyclic covering WΓ(12) over XΓ(12) rami�ed over the divisor D of
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degree ν =
12

12− 6
= 2. Therefore, WΓ(12) is a quotient of a complex 2-ball by

a torsion free cocompact discrete subgroup of PU(2, 1). All singular �bers of
the family g : WΓ(12) → YΓ(12), i.e. the �bers over the set of cusps T of YΓ(12)

are totally geodesic. Let us calculate the genus of smooth �bers Wy(N) in the
family. By Hurwitz-Riemann one gets:

g(Wy(N)) =
144 + 2

2
= 73,

since the divisor D intersect a smooth �ber of the family f : XΓ(12) → YΓ(12)

(an elliptic curve) in N2 = 144 points. The invertible sheaf f∗ωXΓ(12)/YΓ(12)
is

a subsheaf of g∗ωWΓ(12)/YΓ(12)
and it satis�es the maximal case in the Arakelov

inequality. The curve YΓ(12)\T is a Teichmüller curve inM73, the moduli space
of curves of genus 73, for the family g : WΓ(12) → YΓ(12).

In the case when N ∈ {7, 8, 9} we get ν ∈ {7, 4, 3}. The invertible sheaves
which satisfy the maximal case in the Arakelov inequalities are f∗ωXΓ(7)/YΓ(7)

,
f∗ωXΓ(8)/YΓ(8)

and f∗ωXΓ(9)/YΓ(9)
. The curves YΓ(7)\T, YΓ(8)\T and YΓ(9)\T are

Teichmüller curves inM148,M97 andM82, for the families g : WΓ(7) → YΓ(7),
g : WΓ(8) → YΓ(8) and g : WΓ(9) → YΓ(9), respectively.
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Samenvatting

Dit proefschrift is onderverdeeld in vier hoofdstukken. De eerste twee hoofd-
stukken zijn van een inleidende aard, met een aantal bekende resultaten met
licht aangepaste bewijzen. Het derde hoofdstuk biedt een nieuw gezichtspunt
op het bewijs van ongelijkheid (8) uit de Inleiding en maakt een aantal op-
merkingen over het geval van gelijkheid in (8). Het laatste hoofdstuk bevat
originele resultaten, en geeft een aantal voorbeelden van families waarin geli-
jkheid in (8) wordt behaald.

Het eerste hoofdstuk behandelt elementaire de�nities en resultaten aan-
gaande cyclische overdekkingen van n-di�erentieerbare variëteiten, logaritmis-
che di�erentiaalvormen, en de cohomologie van cyclische overdekkingen. Hier-
bij volgen we het boek [20] van Hélène Esnault en Eckart Viehweg op de voet.
Sommige resultaten worden in hun oorspronkelijke vorm besproken, andere
worden opnieuw bewezen en aangepast aan de context van dit proefschrift.

In het tweede hoofdstuk brengen we de de�nities en constructies in herin-
nering van Higgs-bundels en logaritmische Higgs-bundels afkomend van vari-
aties van Hodge-structuren op compacte en niet-compacte krommen, alsmede
een aantal belangrijke resultaten van Deligne en Simpson. In de laatste sectie
van dit hoofdstuk geven we een kort résumé van elementaire feiten aangaande
de Teichmüller-ruimte en Teichmüller-krommen. Ook bespreken we een resul-
taat van Möller over de samenhang tussen gepolariseerde variaties van rang 2
en gewicht 1, en Teichmüller-krommen.

Het derde hoofdstuk is het belangrijkste hoofdstuk, in de technische zin.
Hier bespreken we het bewijs dat Viehweg en Zuo hebben gegeven van de
Arakelov-ongelijkheid (8). Hun oorspronkelijke resultaat geldt voor semista-
biele families van n-variëteiten, maar in dit proefschrift passen we het bewijs
aan, en vullen we alle details in, voor het geval van families van semistabiele
krommen. In de laatste sectie van dit hoofdstuk bespreken we het geval dat
gelijkheid optreedt in (8). We noemen dit het �maximale geval�. We had-
den aanvankelijk gehoopt dat we zouden kunnen bewijzen dat voor ν ≥ 2 de
kromme Y \ S een Teichmüller-kromme is. Helaas hebben we dit niet kunnen
bewijzen, en kunnen we slechts gedeeltelijke informatie leveren over dergelijke
families.

Het laatste hoofdstuk van dit proefschrift bevat originele resultaten. Het
lijkt erop dat voorbeelden van semistabiele families van krommen waarvoor het
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directe beeld van de relatieve plurikanonieke schoof een inverteerbare schoof
bevat waarvoor gelijkheid in (8) optreedt, niet breed bekend zijn, behalve in de
voor de hand liggende gevallen die kunnen worden geconstrueerd voor ν = 1.

Het blijkt dat voor zekere families van krommen die door de complexe een-
heidsbal worden geüniformiseerd, er een natuurlijke inverteerbare deelschoof
bestaat van het directe beeld van de relatieve bikanonieke schoof. Deze deelschoof
kan worden geconstrueerd met behulp van de tweede fundamentaalvorm van
de familie. We geven een beschrijving van deze deelschoof met behulp van
Mok's resultaat over projectieve tweede fundamentaalvormen en tautologische
foliaties op de projectivizering van de raakbundel van vormen van de complex
hyperbolische ruimte. Dit zijn quotiënten van de complexe n-eenheidsbal Bn
langs een discrete, co-compacte, torsievrije ondergroep van PU(n, 1).

Stelling Zij f : X = B2/Γ→ Y een semistabiele familie van krommen, waar-
bij Γ een discrete, co-compacte, torsievrije ondergroep van PU(2, 1) is. We
nemen aan dat de familie glad is over Y \ S, dat alle singuliere vezels totaal
geodetisch zijn en dat het geslacht van Y groter is dan 1. Dan bestaat er een in-
verteerbare deelschoof van het directe beeld van de relatieve bikanonieke schoof
f∗ω

⊗2
X/Y waarvoor de Arakelov-gelijkheid geldt in (8).

Naar aanleiding van dit resultaat en de resultaten van Livné uit [49] pre-
senteren we een aantal voorbeelden van semistabiele families van krommen
geüniformiseerd door de complexe 2-bal over modulaire krommen van niveau
N ∈ {7, 8, 9, 12}. We bewijzen dat alle singuliere vezels in deze families totaal
geodetisch zijn. Daarna bewijzen we dat dit voorbeelden zijn van families waar-
van de basiskromme, zonder de discriminantlocus, een Teichmüllerkromme is.
We merken echter op dat deze voorbeelden van families waarvoor het di-
recte beeld van de relatieve bikanonieke schoof een maximale inverteerbare
deelschoof bevat opnieuw afkomen van maximale gevallen waarbij ν = 1.

Een vraag die nog beantwoord moet worden is of elke familie zoals in boven-
staande Stelling een voorbeeld geeft van een Teichmüller-kromme.
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