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THÈSE EN COTUTELLE

présentée par

Roberto GUALDI

pour obtenir le grade de

DOCTEUR

DE L’UNIVERSITÉ DE BORDEAUX
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Spécialité Mathématiques Pures

HEIGHT OF CYCLES
IN TORIC VARIETIES

dirigée par Alain YGER et Mart́ın SOMBRA

soutenue le 20 septembre 2018

devant le jury composé par :
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Universitat de Barcelona

Gran Via de les Corts Catalanes, 585 – 08 007 Barcelona

Financée par le Ministère del’Enseignement supérieur, de la Recherche et de l’Innovation.



Alla bellezza, all’amore
e alle sue messaggere

presso di me.





Height of cycles
in toric varieties

Abstract. — We investigate in this work the relation between suitable
Arakelov heights of a cycle in a toric variety and the arithmetic features of
its defining Laurent polynomials. To this purpose, we associate to a Laurent
polynomial certain concave functions which we call Ronkin functions and up-
per functions. We give upper bounds for the height of a complete intersection
in terms of the associated upper functions. For a hypersurfaces, we prove
a formula relating its height to the Ronkin function of the associated Lau-
rent polynomial. We conjecture an analogous equality for a suitable average
height in higher codimensions and indicate a strategy for the proof of a partic-
ular case. In all the treatment, we deal with convex geometrical objects such
as polytopes, real Monge-Ampère measures and Legendre-Fenchel duality of
concave functions. We suggest an algebraic framework for such a study and
deepen the understanding of mixed integrals.

Key words: heights, toric varieties, Arakelov geometry, Ronkin functions,
mixed integral.



Hauteur de cycles
de variétés toriques

Résumé. — Nous étudions dans cette thèse la relation entre certaines hau-
teurs d’Arakelov de cycles de variétés toriques et les caractéristiques arithméti-
ques des polynômes de Laurent qui les définissent. Pour cela, nous associons à
un polynôme de Laurent des fonctions concaves que nous appelons fonctions de
Ronkin et fonctions supérieures. Nous donnons des bornes supérieures pour la
hauteur d’une intersection complète faisant intervenir les fonctions supérieures
associées. Dans le cas d’une hypersurface, nous montrons une formule liant sa
hauteur à la fonction de Ronkin de son polynôme de Laurent. Nous proposons
une égalité analogue pour des hauteurs moyennes appropriées en codimension
supérieure et nous indiquons une stratégie pour la preuve d’un cas particulier.
Dans ces travaux, nous utilisons des notions de géométrie convexe telles que
les polytopes, les mesures de Monge-Ampère réelles et la dualité de Legendre-
Fenchel de fonctions concaves. Nous les présentons dans un cadre algébrique
adapté et nous développons l’étude des intégrales mixtes.

Mots-clés: hauteurs, variétés toriques, géométrie d’Arakelov, fonctions de
Ronkin, intégrale mixte.



Altura de ciclos
de variedades tóricas

Resumen. — Estudiamos en esta tesis la relación entre algunas alturas de
Arakelov de ciclos de variedades tóricas y las propiedades aritméticas de los
polinomios de Laurent que los definen. Más precisamente, asociamos a un
polinomio de Laurent ciertas funciones cóncavas que llamamos funciones de
Ronkin y funciones superiores. Demostramos una cota superior de la altura
de una intersección completa en términos de las funciones superiores asoci-
adas. Para una hipersuperficie, damos una fórmula exacta que relaciona su
altura a la función de Ronkin de su polinomio de Laurent. Sugerimos una
igualdad análoga para apropiadas alturas esperadas en codimensión superior
y indicamos una estrategia para la demostración de un caso particular. En
todo este trabajo, utilizamos nociones de geometŕıa convexa como politopos,
medidas de Monge-Ampère reales y la dualidad de Legendre-Fenchel de fun-
ciones cóncavas. Presentamos estas herramientas en un cuadro algebraico
oportuno y profundizamos en el estudio de la las integrales mixtas.

Palabras clave: alturas, variedades tóricas, geometŕıa de Arakelov, funciones
de Ronkin, integral mixta.





Acknowledgements

I could experiment directly how making a thesis inside a cotutelle program
doubles the administrative papers and efforts; luckily, it comes with the side
effect of doubling the opportunities of meeting worthy people. To thank them
all for their different support or influence in this four-years long adventure of
mine, I need to take twice the number of pages of a regular case; I apologize
for this and, in advance, for the three forgotten names.

First of all, I have had the pleasure of sharing my daily mathematical thoughts,
efforts, failures and joys with Alain and Mart́ın, who have guided me, with
different styles, through the rollercoaster of the thesis.
I am indebted to Alain for welcoming me warmly in his office during the
master I spent in Bordeaux, proposing me a toric subject for my mémoire
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soutien, de discussions de Maths, de débats sur tous les aspects de la vie, une
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di ancor più numerosi euri di felicità. Y también gracias a Maria, por no ser
tan celosa, por recibirme en casa y aconsejarme en la elección de las cápsulas
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Introduction

Finding the common solutions of a system of polynomial equations in sev-
eral variables is a fundamental problem in mathematics. A beautiful result
by Bernstein and Kouchnirenko, see [Ber75] and [Kou76], also known as the
BKK theorem because of the contributions successively made by Khovanskii,
allows to predict the number of solutions of such a system in terms of the
combinatorial features of the involved polynomials. More precisely, let K be
an algebraically closed field and f1, . . . , fn a n-tuple of n Laurent polyno-
mials in n variables with coefficients in K. The BKK theorem asserts that
the numbers of isolated solutions (counted with multiplicities) of the system
f1 = · · · = fn = 0 in (K×)n is upper bounded by the mixed volume of the
Newton polytopes of the polynomials. Moreover, such an exstimate is exact
for a generic choice of polynomials f1, . . . , fn with fixed Newton polytopes.
Though useful for the numerical solution of systems of polynomial equations,
see [Stu02], [AG90] or [Li97], when K = Q the BKK theorem does not reveal
anything about the arithmetic size of the isolated common zeros of the con-
sidered polynomials. Inspired by the analogy with the notion of degree, we
make in this thesis some advances towards the understanding of the relation
between the height, that is the arithmetical complexity, of the solutions of a
system of polynomial equations and the arithmetic features of the involved
polynomials.
The easiest example is the one of an irreducible polynomial f over Q in one
variable. In such a case and with respect to the canonical height, the relation
between f and the complexity of any of its zeros α is expressed by the classical
equality1

m(f) = deg(f) · hWeil(α), (1)

where m(f) denotes the logarithmic Mahler measure of f . A fertile point of
view consists in considering the height as a function defined on the set of Q-
points of an algebraic variety. With this geometric approach, an irreducible

1See for instance [BG06, Proposition 1.6.6].
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polynomial f over Q defines a 0-cycle Z(f) on P1 by considering the set of its
zeros. Defining the height of a 0-cycle linearly in its irreducible components,
one can hence rephrase (1) as

m(f) = hWeil(Z(f)). (2)

A first result we obtain in this text is a wide generalization of the relation (2).
More precisely, given a proper toric variety XΣ over an adelic field K and an
adelic semipositive toric metrized divisor D on it, Arakelov geometry allows
to define a height function hD on the set of cycles of XΣ. Building on the
recent results of [BPS14], we are able to express the height of the vanishing
cycle of a Laurent polynomial f in XΣ in terms of convex geometrical objects
associated to D and to f . To do this, we define a family of concave functions,
the v-adic Ronkin functions of f , which can be viewed as the arithmetical
analogue of the Newton polytope of f and contains enough arithmetical in-
formation to compute the height of its vanishing cycle. The formula we prove
generalizes the well-known case of the canonical height, see [DP99] or [Mai00],
and adapts to other relevant situations in arithmetic geometry, such as the
one of the Fubini-Study height in projective spaces. Though not effective, it
can be used to deduce lower and upper bounds for the height of toric hyper-
surfaces involving the arithmetics of D and the Mahler measure of the defining
polynomial of the hypersurface.
We then start exploring the case of higher codimensional cycles in a toric vari-
ety XΣ. In particular, we focus on the computation of the height of the cycle
defined by the common vanishing of a family of Laurent polynomials f1, . . . , fk
over K. Such a situation reveals to be wilder than the 1-codimensional case and
we show that an analogous deterministic formula as the one for hypersurfaces
can not be hoped. After giving a slight improvement of [MS16] concerning the
upper bounds of the height of such an intersection, we adopt a probabilistic
point of view and define a certain “expected value” for the height of the cycle
defined by f1, . . . , fk. This approach reveals to be more promising than the
deterministic one: we give a combinatorial equality for the degree of such a
cycle and, inspired by a probabilistic reformulation of this geometrical result,
we propose a formula for its expected height involving the Ronkin functions
of f1, . . . , fk. In particular, the conjectured statement gives a guess for the
height of the isolated solutions of the system f1 = · · · = fk = 0, representing
an arithmetic version of the BKK theorem. We present ideas for the proof of
the conjecture in a class of examples with k = 2.
We finally hope that our results could motivate a program relating the family
of Ronkin functions of a cycle in a toric variety to its arithmetic properties;
it would be interesting, for example, to know whether the essential minimum



xvii

or the distribution of small points on a hypersurface could be understood via
the language developed here, in the philosophy of [BPS15] and [BPRS15].

We describe in the rest of the introduction the context and the main results
of our study, leaving the precise definitions and statements to the body of the
text.

Heights are a powerful tool in arithmetic geometry having played a promi-
nent role in spectacular results during the twentieth century, such as the proof
of Mordell conjecture by Faltings in [Fal83]. They now appear in many leading
conjectures in number theory, such as the abc conjecture, Vojta’s conjecture
and the Birch and Swinnerton-Dyer conjecture. Their systematic use was
initiated by Northcott and Weil in [Nor50] and [Wei51] as a way to mea-
sure the “arithmetic complexity” of rational points on an algebraic variety
defined over a number field. Subsequent works by Arakelov [Ara74], Gillet
and Soulé [GS90] and Faltings [Fal91] established an arithmetic intersection
theory where the height of an arbitrary dimensional cycle in an arithmetic
variety can be defined as an arithmetic intersection number, in analogy with
its degree. Independently, an equivalent definition of the height of a projective
variety in terms of its Chow form was given by Nesterenko in [Nes77] [Nes84]
and Philippon in [Phi91]; the comparison between the two approaches was
made in [Sou91] and [Phi91].
The point of view we adopt in this thesis has a more analytic flavour and
flourished in the second half of the nineties as a realization of the following
aspiration of Soulé, see [Sou92, §1.5]:

A more dynamic approach would be an adelic variant of Arakelov geome-

try. The main object of study in this theory would be a smooth variety V

over Q, and vector bundles on V equipped with metrics at archimedean

places, and p-adic analogs of these at finite places.

The foundations of such an adelic Arakelov geometry was laid by Zhang in
[Zha95b] and successively developed by the works of Gubler [Gub98] and
Chambert-Loir [Cha06]. Even if still incompatible with the existing definition
of an arithmetic Chow ring, their constructions are enough to define heights,
for which they moreover allow a greater flexibility than the original theory.
Another advantage of the adelic approach is the similar treatment reserved
to archimedean and non-archimedean places, especially thanks to the recent
progress in the theory of forms and currents over Berkovich analytic spaces
inaugurated by [CD12] and [GK17].



xviii INTRODUCTION

We review the outline of adelic Arakelov theory in Chapter 2, starting from
basic notions on places over a field to fix the notations. The first ingredient
one needs to consider is an adelic field, that is a field coming with a collection
of inequivalent absolute values; arithmetically rich fields include, but are not
restricted to, number fields and function fields of smooth projective curves.
The constructions we present are philosophically the same unregardingly of
the chosen base adelic field, accordingly to the intuition first due to Weil
[Wei39] about the striking analogies between this kind of fields. To keep the
notation and the exposition simpler in this introduction, we restrict to the
case of the adelic field Q and its set of places M, consisting of p-adic places
an the unique archimedean one. The geometric input in the theory is given
by the choice of a proper variety X over Q and a divisor D on X. The field Q
coming with many different absolute values, that are distinct ways of measur-
ing sizes, it is necessary to consider all of them “simultaneously” to compute
the complexity of a Q-point of X. To do it one has to consider a suitable
v-adic analytification of X for each place v of Q. The use of Berkovich ge-
ometry, as introduced in [Ber90], has two main advantages. The first is that
the the topological space underlying the Berkovich analytification of a variety
is more concrete than, for instance, the Grothendieck topology one needs to
consider for Tate’s rigid analytic spaces. Secondly, Berkovich’s construction
also applies for archimedean places, in which case it yields the usual com-
plexification of a variety over SpecC; this allows to push the formal analogy
between archimedean and non-archimedean places of Q even further. For ev-
ery v ∈M, consider hence the analytic space Xan

v and the analytic line bundle
O(D)an

v . There is a notion of v-adic semipositive metric one can put on such
a line bundle and, for every d-dimensional algebraic cycle Z on X, of a mea-
sure c1(D)∧d ∧ δZan

v
. Such a measure, which is the protagonist of the elegant

results on the equidistribution of Galois orbits of points of small height proved
in [SUZ97] [Bil97] [Yua08] [Aut06], appears in an arithmetical Bézout formula
over Xan

v , allowing to define the v-adic local height of Z recursively on the
dimension of the cycle. By combing the local information coming from each
place and under some integrability hypotheses on the choice of the collection
of the v-adic metrics, this gives a notion of global height hD(Z) of the cycle Z
with respect to the choice of the semipositively metrized divisor D.

The height of a variety contains deep information about its arithmetic
properties. Together with its degree, for instance, it can be used to give lower
and upper bounds for the essential minimum of the variety, controlling the
density of its algebraic points of small height, see [Zha95a].

Because of the tremendous freedom in the modern definition of heights,
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the known values of such quantities are very few compared to the extent of the
possibilities. The seek for examples, as often in algebraic geometry, has led
researchers to the realm of toric varieties, whose combinatorial interpretation
has proved to be a “remarkably fertile testing ground for general theories”.
The dawn of toric geometry can be tracked in the seventies, with the works of
Demazure [Dem70], Kempf, Knudsen, Mumford and Saint-Donat [KKMS73]
and Miyake and Oda [OM75]. It was anyway during the nineties, with the
expository texts by Fulton [Ful93] and Oda [Oda88] that toric geometry knew
an explosion. These two books, together with the recent and almost omni-
comprensive [CLS11] are nowadays the standard references for the subject.

A toric variety over a field K is a normal algebraic variety equipped with
the action of a multiplicative split torus T = Gn

m,K acting with an open dense
orbit on it. It is customary to denote by M the character lattice of T and
by N its dual; they induce real vector spaces MR and NR respectively by
tensoring with R. The main interests in studying toric varieties is that their
algebro-geometric properties can be read in terms of combinatorial objects
defined on MR or NR, providing the subject with an authentic toric dictionary.
For example, there exists a 1-1 correspondance between proper toric varieties
with torus T and complete fans in NR. Because of this, a toric variety will be
denoted by XΣ to stress it is associated to the fan Σ. Toric Cartier divisors
on XΣ are encoded by certain piecewise affine functions on NR, which allows
to associate to them a convex polytope in MR. The polytope ∆D defined by
a toric Cartier divisor D carries a lot of information about it. For instance, it
describes the space of global sections of O(D) and is enough to compute the
degree of XΣ with respect to D, namely by the equality

degD(XΣ) = n! volM (∆D), (3)

where volM is a suitably normalized Haar measure on MR.

It is natural to ask whether similar combinatorial formulas could hold for
heights. The first arithmetical studies on toric varieties are due to Maillot,
who described in [Mai00] the arithmetic intersection theory of Gillet and Soulé
on a toric variety with line bundles equipped with their canonical metric. The
systematic extension of the toric dictionary to adelic Arakelov theory, however,
was inaugurated by Burgos Gil, Philippon and Sombra in the foundational
work [BPS14], which we resume, together with some geometrical tools in toric
geometry, in chapter 3. It turns out from their study that, for a toric divisor D
and for any place v ∈M, toric semipositive metrics on O(D)an

v are in bijection
with continuous concave functions on the polytope ∆D. Encoding the datum
of the semipositively toric metrized divisor D in terms of the collection of its
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v-adic roof functions ϑv (and under some global finiteness conditions), the
global height of the cycle XΣ can be expressed combinatorially as

hD(XΣ) = (n+ 1)!
∑
v∈M

∫
∆D

ϑv d volM , (4)

which is the arithmetic analogue of (3). The language developed in [BPS14]
was exploited by the same authors in [BPS15] to compute the essential min-
imum of toric heights, with Moriwaki in [BMPS16] to study the positivity
properties of toric metrized divisors and, together with Rivera-Letelier in
[BPRS15], to explore more general versions of the equidistribution of small
points in toric varieties. These works are contributing to the understanding of
adelic Arakelov geometry by the comprehension of illustrative and computable
examples where the studied phenomena can be visualized in terms of convex
geometry. Once again, toric geometry has proven to be an oil lamp in the vast
darkness of general theories.

A remarkable feature of the theory developped in [BPS14] is that it allows
to treat a large spectrum of height functions on a toric variety, including the
canonical heights studied by Maillot and the Fubini-Study height in projective
space. On the other hand, their techniques rely strongly on the toric structure;
as such, they only apply to the computation of the height of subvarieties which
are themselves toric.

In the canonical case, a relation between the height of a general hyper-
surface, that is not necessarily toric, in a smooth projective toric variety and
the Mahler measure of the corresponding polynomial is well-known, see for
instance [Mai00]. Other computations have been performed by Cassaigne and
Maillot in [CM00] for the Fubini-Study height of projective hypersurfaces. We
here give a combinatorial formula for the height of Weil divisors in a toric vari-
ety holding for a much more general choice of metrics and using the dictionary
of [BPS14].

Keeping the notation from toric geometry presented above, let Z be a
Weil divisor on a toric variety XΣ over Q. To compute its height, and because
of the results in [BPS14] for toric divisors, we can restrict to the case of
Z being an irreducible hypersurface in XΣ intersecting its dense open orbit.
Under this assumption, Z is described by an irreducible Laurent polynomial
f =

∑
m cmχ

m with rational coefficients. Its Newton polytope

NP(f) = conv{m ∈M : cm 6= 0}

is a closed polytope in MR capturing enough information for the intersection
theoretical properties of Z. For instance, its degree with respect to a toric



xxi

divisor D on XΣ is given by

degD(Z) = MVM (∆D, . . . ,∆D,NP(f)), (5)

where MVM denotes the mixed volume of convex bodies in MR with respect to
a suitably normalized Haar measure (refer to Proposition 4.2.1). The equality
(5) is the 1-codimensional analogue of (3) and serves as an inspiration to the
extension of (4) to irreducible hypersurfaces in XΣ.

The first ingredient we need to do this is a correspondant of the mixed
volume for concave functions. As suggested by looking at (4), a good can-
didate for this role is the notion of mixed integral : introduced by Philippon
and Sombra in [PS08a], it is a polarized version of the integration of a con-
cave function on a convex body. The mixed integral is only one of the many
tools from convex geometry that we will need in this thesis; for this reason,
we consacrate Chapter 1 to their presentation, mainly referring to the sources
[Roc70] and [BPS14]. In doing this, we suggest an abstract algebraic approach
for the constructions we present and treat convex geometry as “the study of
semimodules over the semiring R≥0”. We deepen the study of mixed integrals,
clarifying their relation with mixed Monge-Ampère measures and tropical ge-
ometry (in particular tropical intersection theory), proving equalities for some
particular cases and giving upper and lower bounds.

The second needed ingredient for a formula for the height of an irreducible
hypersurface in a toric variety is an arithmetic analogue of the Newton poly-
tope of f . For any place v ∈ M, there exists a certain tropicalization map
tropv from the v-adic analytic torus Tan

v to the real vector space NR, whose
fiber over any u ∈ NR has a distinguished subset Bv(u), namely its Shilov
boundary, homeomorphic to a compact group. We define the v-adic Ronkin
function of a Laurent polynomial f to be

ρf,v : NR → R, u 7→
∫

trop−1
v (u)

− log |f(x)| dHaarBv(u), (6)

where HaarBv(u) is the Haar measure on Bv(u) normalized to have total mass 1.
When v is archimedean, such a function is related to the one studied by Passare
and Rullg̊ard in [PR04]. For non-archimedean places v ∈M, the v-adic Ronkin
function coincides instead with v-adic tropicalization of the polynomial f , see
for instance [MS15]. In both cases ρf,v is a concave function on NR and
its Legendre-Fenchel dual ρ∨f,v is a concave function on the Newton polytope
of f . It turns out that the family of v-adic Ronkin functions of f contains
enough arithmetical information to compute the height of the corresponding
hypersurface, and in fact we can prove the following theorem.
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Theorem 1. The height of Z with respect to an adelic semipositive toric
metrized divisor D is given by

hD(Z) =
∑
v∈M

MIM
(
ϑv, . . . , ϑv, ρ

∨
f,v

)
,

with ϑv being the v-adic roof function of D.

Such a formula is compatible with the one deduced from [BPS14] for the
case of hypersurfaces in XΣ which are themselves toric and restricts to the
classical relation for canonical heights. In particular, when XΣ is the projec-
tive line and D is the canonically metrized universal bundle, one recovers, as
promised, the relation (2).
It seems arduous to use Theorem 1 to compute numerically the height of
hypersurfaces, since the proved formula involves difficult-to-evaluate entities
such as Ronkin functions and mixed integrals. For instance, it follows from
(6) that the values of the archimedean Ronkin function are Mahler measure of
perturbations of the Laurent polynomial f . Despite this, the stated equality
extends the bridge between the arithmetic and the convex lands to non-toric
cycles in XΣ and clarifies the relation between the defining polynomial of an
irreducible hypersurface and its height with respect to an adelic semipositive
toric metrized line bundle. Importantly, this also shows that the collection
of the v-adic Ronkin functions associated to a hypersurface contains enough
arithmetical information about it; we may wonder whether other arithmetical
properties of Z might be read in terms of such functions.

The construction of v-adic Ronkin functions and the proof of Theorem 1
are presented in chapter 4, in which we make efforts to treat the archimedean
and non-archimedean case homogeneously, in the spirit of adelic Arakelov
geometry. The exposition follows the one of [Gua17], where the results were
first presented, but enriches it with the notion of v-adic Mahler measure and
with some estimations.

A natural question concerns the extension of Theorem 1 to higher codimen-
sions. We start exploring this direction in chapter 5, where we first remark
that an analogous equality as the one for hypersurfaces can not be hoped.
More precisely, we show that there exist polynomials f, g, g′ sharing the same
Ronkin functions for every place v ∈ M but for which the isolated solutions
of f = g = 0 and of f = g′ = 0 have different canonical height; as a result, the
height of a complete intersection can not only depend on the Ronkin functions
of the defining polynomials. The task of computing the height of the intersec-
tion of two polynomials by taking into account the way in which they interact
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seems for the moment out of reach. A more down to earth problem consists
in giving upper bounds for the height of the intersection cycle of a family of
Laurent polynomials, as in [Som05], [Mai00] and [MS16]. We refine here the
argument of [MS16] by defining for a Laurent polynomial f the v-adic upper
function

µf,v : NR → R, u 7→ − max
x∈Bv(u)

log |f(x)|, (7)

where we keep the same notation as the one used to define the v-adic Ronkin
functions of f in (6). These functions play an important role in giving upper
bounds of complete intersections in arbitrary codimension. More precisely, let
k ∈ {0, . . . , n} and consider the family of Laurent polynomials f1, . . . , fk with
coefficients in Q. Each of them defines, by Zariski closure of its zero set in
the torus, a 1-codimensional cycle in a toric variety XΣ. Assuming that their
intersection Z(f1, . . . , fk) in XΣ has pure codimension k, we can prove the
following.

Theorem 2. For an adelic semipositive toric metrized divisor D on XΣ,

hD(Z(f1, . . . , fk)) ≤
∑
v∈M

MIM
(
ϑv, . . . , ϑv, µ

∨
f1,v, . . . , µ

∨
fk,v

)
,

with ϑv being the v-adic roof function of D.

Since the authors of [MS16] were interested in a bound for the common
solutions of a system of polynomial equations inside the torus, their result
requires D to be arithmetically nef; in our study of cycles in XΣ, which can
have components outside the dense open orbit, we can drop this assumption.
Moreover, the functions we use give a slightly better upper bound than the
one obtained by [MS16].

In chapter 6 we change point of view and propose to study a suitable
expected value of the height of the complete intersection cycle Z(f1, . . . , fk).
To do this, we consider the family of cycles

Z(ζ∗1f1, . . . , ζ
∗
kfk)

obtained intersecting suitable twisting of the original polynomials by tor-
sion points ζ1, . . . , ζk of the algebraic torus of dimension n. We then de-
fine the sup-expected height of the intersection of the Laurent polynomials
f1, . . . , fk with respect to a metrized divisor D as a convenient average of
hD(Z(ζ∗1f1, . . . , ζ

∗
kfk) over the set of k-tuples of torsion points and denote it

by
E[hD(f1, . . . , fk)].
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As in the case of the toric variety and of its Weil divisors, the geometric
situation serves as a guide. The degree with respect to a toric divisor D of
the cycle Z(f1, . . . , fk) is seen to be given by the combinatorial expression

degD(Z(f1, . . . , fk)) = MVM (∆D, . . . ,∆D,NP(f1), . . . ,NP(fk)),

which is the higher codimensional analogue of (3) and (5). Inspired by such
an equality we formulate the following guess.

Conjecture 1. Let D be an adelic semipositive toric metrized divisor on XΣ.
Then, the sup-expected height of the intersection of the family f1, . . . , fk with
respect to D is given by

E[hD(f1, . . . , fk)] =
∑
v∈M

MIM
(
ϑv, . . . , ϑv, ρ

∨
f1,v, . . . , ρ

∨
fk,v

)
, (8)

with ϑv being the v-adic roof function of D.

We finally show that Conjecture 1 is reasonable by giving a possible strat-
egy for its proof in the case of two Laurent polynomials satisfying additional
hypotheses.



Résumé détaillé

La résolution d’un système d’équations polynomiales en plusieurs variables
est un problème fondamental et transversal en Mathématiques. Un admirable
résultat dû à Bernstein [Ber75] et Kouchnirenko [Kou76], connu comme le
théorème BKK en raison des importantes contributions de Khovanskii, per-
met de prédire le nombre de solutions d’un tel système à partir de la combi-
natoire des polynômes qui y apparaissent. Plus précisement, soit K un corps
algébriquement clos et f1, . . . , fn un n-uplet de polynômes de Laurent à n
variables et à coefficients dans K. Le théorème BKK affirme que le nombre de
solutions (isolées et comptées avec multiplicité) du système f1 = · · · = fn = 0
dans le tore (K×)n est borné supérieurement par le volume mixte des poly-
topes de Newton des polynômes. En outre, cette estimation est exacte pour
une choix générique des polynômes f1, . . . , fn avec polytopes de Newton fixés.
Bien qu’utile pour la résolution numérique des systèmes polynomiaux, voir
par exemple [Stu02], [AG90] et [Li97], dans le cas K = Q le théorème BKK ne
dévoile aucune information précise sur la taille arithmétique des zéros com-
muns des polynômes. Inspirés par l’analogie avec la notion de degré, nous
obtenons dans cette thèse des résultats liant la hauteur, c’est à dire la com-
plexité arithmétique, des solutions d’un système d’équations polynomiales et
les caractéristiques arithmétiques des polynômes.
Dans l’exemple le plus simple d’un polynôme irréductible f à une seule vari-
able et à coefficients rationnels, la relation entre f et la complexité (canonique)
de n’importe lequel de ses zéros α est donnée par

m(f) = deg(f) · hWeil(α), (9)

où m(f) désigne la mesure de Mahler logarithmique de f . Avec un point de
vue plus géométrique, consistant à considérer la hauteur comme une fonction
définie sur l’ensemble des Q-points d’une variété algébrique, linéairement en
ses composantes irréductibles, le polynôme f définit le 0-cycle Z(f) de ses
zéros sur P1 et la relation (9) peut se réécrire comme

m(f) = hWeil(Z(f)). (10)

xxv
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Un premier résultat que nous prouvons dans ce texte est une vaste généralisa-
tion de l’égalité (10). Plus précisément, pour une variété torique propre XΣ

définie sur un corps adélique K et pour un diviseur torique équipé d’une
métrique adélique, torique et semipositive D, la géométrie d’Arakelov per-
met de définir une fonction hauteur hD sur l’ensemble des cycles de XΣ. En
utilisant les résultats récents de [BPS14], nous pouvons ici exprimer la hau-
teur du cycle donné par l’annulation d’un polynôme de Laurent f en XΣ au
moyen de certains objects de nature convexe associés à D et à f . Pour cela,
nous définissons une famille de fonctions concaves, les fonctions de Ronkin
v-adiques de f , qui peuvent s’interpréter comme des analogues arithmétiques
du polytope de Newton de f et qui contiennent suffisament d’information
arithmétique pour calculer la hauteur du cycle défini par f . La formule que
nous montrons généralise le cas de la hauteur canonique qui apparâıt dans
[DP99] et [Mai00], et s’adapte aussi à d’autres situation remarquables en
géométrie arithmétique comme le cas de la hauteur de Fubini-Study dans les
espaces projectifs. Bien que non effective, cette égalité peut être utilisée pour
produire des bornes inférieures et supérieures pour la hauteur d’une hyper-
surface d’une variété torique mettant en jeu certaines fonctions concaves as-
sociées à D ainsi que la mesure de Mahler du polynôme de Laurent définissant
l’hypersurface.
Nous explorons en suite le cas des cycles de plus haute codimension dans la
variété torique XΣ. En particulier, nous nous focalisons sur le calcul de la
hauteur d’un cycle défini par l’annulation d’une famille de polynômes de Lau-
rent f1, . . . , fk à coefficients dans K. Cette situation se révèle plus délicate
que le cas de codimension 1 et nous prouvons que l’on ne peut pas s’attendre
à une formule déterministe analogue à celle démontrée pour une hypersur-
face. Nous améliorons légèrement un résultat de [MS16] et nous l’adaptons
à notre situation pour donner des bornes supérieures pour la hauteur d’une
telle intersection. Ensuite, nous prenons un point de vue probabiliste et nous
définissons une certaine “valeur attendue” pour la hauteur du cycle défini
par f1, . . . , fk. Cette approche parâıt plus encourageant : nous fournissons
une égalité combinatoire pour le degré d’un tel cycle et, inspirés par une
reformulation probabiliste de ce résultat géométrique, nous proposons une
formule pour son hauteur attendue mettant en jeu les fonctions de Ronkin
de f1, . . . , fk. En particulier, l’égalité conjecturée donne un candidat pour la
hauteur des solutions isolées du système f1 = · · · = fk = 0 et représent une
versione arithmétique du théorème BKK. Nous présentons enfin des idées pour
la preuve de la conjecture pour une classe d’exemples avec k = 2.
Nous espèrons que nos résultats puissent motiver une étude plus profonde de
la relation entre la famille de fonctions de Ronkin d’un cycle d’une variété
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torique et ses propriétés arithmétiques. Il serait par exemple intéressant de
savoir si le minimum essentiel ou la distribution des orbites de Galois des
points de petite hauteur sur une hypersurface peuvent être compris via le
langage développé ici, dans la philosophie de [BPS15] et [BPRS15].

Nous décrivons maintenant plus en détails les résultats de notre étude,
faisant référence au contenu des chapitres pour des définitions et énoncés
précis. De plus, nous nous limitons dans ce résumé au cas des variétés définies
sur le corps de base Q, laissant la situation d’un corps adélique général sat-
isfaisant la formule du produit au corps du texte. Nous désignons par M
l’ensemble des places de Q, constitué des places p-adiques et de l’unique place
archimédienne.

La notion de hauteur, qui a joué et joue encore un rôle fondamental en
géométrie arithmétique, a été introduite par Northcott et Weil dans [Nor50]
et [Wei51] comme une mesure de la “complexité arithmétique” des points
rationnels sur une variété algébrique définie sur un corps de nombres. Les
travaux successifs d’Arakelov [Ara74], Gillet et Soulé [GS90] et Faltings [Fal91]
ont édifié une théorie d’intersection arithmétique où la hauteur d’un cycle
de codimension arbitraire dans une variété arithmétique peut se définir en
analogie avec son degré. Une définition équivalente de hauteur d’une variété
projective a été donnée par Nesterenko [Nes77] [Nes84] et Philippon [Phi91].

L’approche que nous suivons dans cette thèse est appelée géométrie d’Ara-
kelov adélique et a été développée entre autres par Zhang [Zha95b] Gubler
[Gub98] et Chambert-Loir [Cha06]. Nous rappelons les constructions de base
de cette théorie dans le chapitre 2. Pour résumer brièvement, fixons une
variété propre X sur Q et un diviseur de Cartier D sur X; pour tout v ∈M
on peut considérer l’analytification v-adique de X et du fibré O(D), au sens
de Berkovich. Une notion adéquate de métrique v-adique semipositive sur
l’analytifié de O(D) permet de définir la hauteur locale v-adique d’un cycle
algébrique Z de X, au moyen d’une formule récursive de type Bézout. En
combinant les informations locales obtenues aux différentes places de Q, et
sous certaines hypothèses d’integrabilité, il est possible de définir la hauteur
globale hD(Z) du cycle Z relative au choix D du diviseur D et de la collection
des métriques v-adiques semipositives sur les analytifiés de O(D).
Un des avantages de cette approche est le traitement similaire réservé aux cas
archimédiens et non-archimédiens, grâce aussi aux développements récents de
la théorie des formes différentielles et des courants sur les espaces de Berkovich,
voir [CD12] et [GK17].

Du fait de la grande flexibilité de cette définition par rapport au con-
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texte classique, rares sont les valeurs de hauteurs connues dans le cadre de la
géométrie d’Arakelov. Comme souvent en géométrie algébrique, la recherche
d’exemples conduit au domaine des variétés toriques, pour lesquelles les pro-
priétés algébro-géométriques peuvent s’interpréter en termes des notions de
géométrie convexe (voir les références classiques [Ful93], [Oda88] et [CLS11]).

L’extension du dictionnaire torique au cadre de la théorie d’Arakelov adéli-
que a été inaugurée par l’œvre fondamentale de Burgos Gil, Philippon et
Sombra [BPS14], que nous décrivons brièvement, avec quelques résultats de
géométrie torique, dans le chapitre 3. Soit XΣ une variété torique propre sur
Q; notons par M le réseau des caractères de son tore et par N le dual de M .
La variété torique est associée à un éventail complet Σ dans l’espace vectoriel
NR = N ⊗Z R. À un diviseur D sur XΣ, invariant sous l’action du tore,
on peut associer un polytope convexe ∆D dans MR = M ⊗Z R. Pour tout
v ∈M, les métriques v-adiques toriques semipositives sur l’analytifié v-adique
de O(D) sont en bijection avec les fonctions continues et concaves sur ∆D, de
telle sorte qu’un diviseur torique équipé d’une métrique adélique torique et
semipositive est décrit par la collection de ses fonctions toiture v-adiques ϑv,
avec ϑv ≡ 0 pour presque tous v ∈ M. La hauteur globale de XΣ relative à
un tel choix D peut alors s’écrire de façon combinatoire comme

hD(XΣ) = (n+ 1)!
∑
v∈M

∫
∆D

ϑv d volM , (11)

qui est l’analogue arithmétique de la relation

degD(XΣ) = n! volM (∆D) (12)

donnant le degré de XΣ. Dans les égalités précédentes, volM est la mesure de
Haar sur MR normalisée pour que le volume d’un domaine fondamental de M
soit 1. Le langage introduit dans [BPS14] a été employé successivement dans
les articles [BPS15], [BMPS16] et [BPRS15] afin d’élargir la compréhension
de la géométrie d’Arakelov adélique via l’étude d’exemples concrets, et plus
précisément de différents aspects arithmétiques des variétés toriques.

La théorie développée par Burgos Gil, Philippon et Sombra s’applique à
un grand nombre de fonctions hauteur sur une variété torique, y compris la
hauteur canonique étudiée par exemple dans [DP99] et [Mai00] et la hauteur
de Fubini-Study dans les espaces projectifs. Cependant, elle dépend fortement
de la structure torique de la variété et elle ne fournit une formule que pour
la hauteur des cycles qui sont eux-mêmes toriques. Nous nous intéressons
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premièrement dans ce texte au calcul de la hauteur des hypersurfaces quel-
conques d’une variété torique. Le cas de la hauteur canonique, dans lequel
la hauteur d’une hypersurface est liée à la mesure de Mahler du polynôme
de Laurent qui la définit, est bien connu, voir par exemple [Mai00]. Des cal-
culs ont été effectués par Cassaigne et Maillot dans [CM00] pour la hauteur
de Fubini-Study d’hypersurfaces projectives. Nous prouvons ici une formule
pour un choix plus général des métriques, en utilisant le dictionnaire établi en
[BPS14].

Soit donc XΣ une variété torique de dimension n fixée pour le reste de ce
résumé et Z un cycle de XΣ de codimension 1; on peut supposer que Z est
irréductible et que son point générique appartient à l’orbite torique ouverte
de XΣ. Dans une telle situation, Z est décrit par un polynôme de Laurent
f =

∑
m cmχ

m à coefficients dans Q. Son polytope de Newton

NP(f) = conv{m ∈M : cm 6= 0}

permet de donner une expression combinatoire du degré de Z relatif à un
diviseur torique D de XΣ, notamment

degD(Z) = MVM (∆D, . . . ,∆D,NP(f)), (13)

où MVM est l’opérateur volume mixte des corps convexes dans MR. Cette
égalité est l’analogue de (12) et constitue la source d’inspiration pour l’exten-
sion de (4) aux hypersurfaces irréductibles de XΣ.
Le premier ingrédient dont nous avons besoin pour cette extension est celui
d’intégrale mixte: introduit par Philippon et Sombra dans [PS08a], il représente
la version polarisée de l’intégrale d’une fonction concave sur un corps con-
vexe. L’intégrale mixte est seulement un des outils de la géométrie convexe
que nous utilisons dans ce texte. Nous dédions donc le chapitre 1 à leur étude,
en suivant en partie les sources [Roc70] et [BPS14]. Ce faisant, nous pro-
posons une approche plus abstraite de la géométrie convexe, consistant à la
considérer comme “l’étude des semi-modules sur le semi-anneau R≥0”. Nous
nous focalisons sur la notion d’intégrale mixte, en clarifiant ses relations avec
la mesure de Monge-Ampère mixte et la géométrie tropicale (en particulier la
théorie d’intersection tropicale), en prouvant des formules pour des situations
spécifiques et en donnant des bornes supérieures et inférieures.
Le deuxième ingrédient est un analogue arithmétique du polytope de Newton
de f . Pour chaque v ∈ M, il existe une application de tropicalisation tropv
définie sur le tore analytique v-adique à valeurs dans NR; la fibre sur u ∈ NR
de cette application contient un sous-ensemble distingué Bv(u), sa frontière
de Shilov, qui est homéomorphe à un groupe compact. La fonction de Ronkin
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v-adique du polynôme de Laurent f est alors définie comme

ρf,v : NR → R, u 7→
∫

trop−1
v (u)

− log |f(x)| dHaarBv(u), (14)

où HaarBv(u) est la mesure de Haar sur Bv(u) normalisée pour que sa masse
totale soit 1. Quand v est archimédien, cette fonction est liée à celle étudiée
par Passare et Rullg̊ard dans [PR04], tandis que la fonction de Ronkin de f
à une place non-archimédienne cöıncide avec la tropicalisation du polynôme
au sens de [MS15]. Dans les deux cas, ρf,v est une fonction concave sur NR
et son dual de Legendre-Fenchel ρ∨f,v est une fonction concave définie sur le
polytope de Newton de f . La famille des fonctions de Ronkin v-adiques de
f contient assez d’informations pour le calcul de la hauteur de l’hypersurface
correspondante.

Théorème 1. Soit f le polynôme de Laurent définissant le cycle Z et D un
diviseur torique équipé d’une métrique adélique, torique et semipositive sur
XΣ. La hauteur de Z relative à D est donnée par

hD(Z) =
∑
v∈M

MIM
(
ϑv, . . . , ϑv, ρ

∨
f,v

)
,

où ϑv est la fonction toiture v-adique de D.

Quand XΣ est la droite projective et D le diviseur à l’infini muni de sa
métrique canonique, l’énoncé précédent permet de retrouver la relation (10).
Bien que difficile à appliquer numériquement, l’égalité du Théorème 1 étend le
pont entre les domaines de la géométrie torique arithmétique et de la géométrie
convexe à des cycles de XΣ qui ne sont pas nécessairement toriques et clarifie
la relation entre le polynôme de Laurent définissant une hypersurface et sa
hauteur.
La définition des fonction de Ronkin v-adiques et la preuve du Théorème 1
(ainsi que celles de résultats similaires) sont présentées dans le chapitre 4,
où les cas archimédiens et non-archimédien sont traités de manière analogue.
L’exposition suit celle de [Gua17], en l’enrichissant de la notion de mesures de
Mahler v-adiques et de quelques estimations.

Nous commençons à explorer le cas de codimension supérieure dans le
chapitre 5, où nous remarquons d’abord qu’un énoncé analogue à celui du
Théorème 1 ne peut pas être espéré. En effet, nous montrons avec un ex-
emple en codimension 2 que la hauteur d’une intersection complète ne peut
pas dépendre que des fonctions de Ronkin des polynômes de Laurent qui la
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définissent. Nous nous concentrons alors sur la détermination d’une borne
supérieure pour la hauteur d’un cycle obtenu comme zéros communs d’une
famille de polynômes de Laurent, comme dans [Som05], [Mai00] et [MS16].
En pratique, nous raffinons l’argument de [MS16] en définissant, pour un
polynôme de Laurent f à coefficients dans Q, sa fonction supérieure v-adique

µf,v : NR → R, u 7→ − max
x∈Bv(u)

log |f(x)|, (15)

où nous gardons les mêmes notations utilisées dans (14). Soit maintenant
k ∈ {0, . . . , n} et considérons une famille f1, . . . , fk de polynômes de Laurent à
coefficients rationnels. Supposons que les adhérences dans XΣ de leurs ensem-
bles de zéros s’intersectent proprement dans XΣ et notons par Z(f1, . . . , fk)
le cycle d’intersection de codimension k ainsi obtenu.

Théorème 2. Soit D un diviseur torique équipé d’une métrique adélique,
torique et semipositive sur XΣ. Alors,

hD(Z(f1, . . . , fk)) ≤
∑
v∈M

MIM
(
ϑv, . . . , ϑv, µ

∨
f1,v, . . . , µ

∨
fk,v

)
,

où ϑv est la fonction toiture v-adique de D.

La borne supérieure donnée par le Théorème 2 est légèrement plus fine de
celle prouvée par [MS16], mais surtout est adaptée à l’étude des cycles de XΣ.

Dans le chapitre 6, nous prenons un point de vue plus probabiliste et nous
nous proposons d’étudier une valeur attendue appropriée pour la hauteur du
cycle Z(f1, . . . , fk). Pour ce faire, nous considérons la famille des cycles

Z(ζ∗1f1, . . . , ζ
∗
kfk)

obtenus comme intersections de certains twisting des polynômes originaux par
des points de torsion ζ1, . . . , ζk du tore algébrique de dimension n. La hauteur
sup-esperée du cycle défini par les polynômes de Laurent f1, . . . , fk relative
au diviseur metrisé D est une moyenne convenable de hD(Z(ζ∗1f1, . . . , ζ

∗
kfk))

sur l’ensemble des k-uplets de points de torsion mentionnés et nous la notons
par

E[hD(f1, . . . , fk)].

Le degré de Z(f1, . . . , fk) relatif à un diviseur torique D sur XΣ est donné par
l’expression combinatoire

degD(Z(f1, . . . , fk)) = MVM (∆D, . . . ,∆D,NP(f1), . . . ,NP(fk)),
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qui est la généralisation de (12) et de (13). Inspirés par cette situation
géométrique, nous proposons la conjecture suivante.

Conjecture 1. Soit D un diviseur torique équipé d’une métrique adélique,
torique et semipositive sur XΣ. Alors,

E[hD(f1, . . . , fk)] =
∑
v∈M

MIM
(
ϑv, . . . , ϑv, ρ

∨
f1,v, . . . , ρ

∨
fk,v

)
, (16)

où ϑv est la fonction toiture v-adique de D.

Nous concluons le chapitre en donnant quelques intuitions de la Conjec-
ture 1 et notamment une stratégie possible pour la preuve du cas de deux
polynômes de Laurent satisfaisants certaines hypothèses supplémentaires.



Terminology and notations

A variety X is assumed to be a reduced and irreducible separated scheme of
finite type over a field K. By an irreducible hypersurface in it we mean a
closed integral subscheme of codimension 1 in X. For a field F , X(F ) stands
for the set of F -points of X, that is the set of morphism SpecF → X in the
category of K-schemes. For every x ∈ X, κ(x) denotes the residue field of X
at x. A divisor on X is a Cartier divisor, unless otherwise stated.
The term measure on a topological space stands for a signed Borel measure on
it; in particular, measures admit a well-defined push-forward via continuous
mappings. A measure only taking non-negative real values on Borel subsets
is called a positive measure.
The power set of a set E is the collection of all its subsets and is denoted by
P(E). Finally, for any finite set E, #E denotes its cardinality.



CHAPTER 1
Convex geometry

We interpret here convex geometry as the study of semimodules of the semir-
ing of nonnegative real numbers with the usual addition and multiplication.
Using this algebraic point of view, we present convex bodies, concave functions
and the related notion of Legendre-Fenchel duality. Moreover, the develop-
ment of a general approach to polarization and mixed maps allows us to give
a uniform study of mixed volumes, mixed real Monge-Ampère measures and
mixed integrals. We especially focus on this last notion, proving several equal-
ities and special cases and giving lower and upper bounds for them in terms
of extremal values of the involved functions.

1.1
The formalism of mixed maps

Mixed maps play a fundamental role in convex geometry, as we shall see later.
In the next chapters we will frequently use the notions of mixed volumes, mixed
Monge-Ampère measure and mixed integral. In this section we present a more
algebraic and unified approach to their construction, based on semirings and
semimodules.

Semirings and semimodules. The definition of a commutative monoid is
the same as the one of an abelian group, except that one does not require the
existence of inverses.

1
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Definition 1.1.1. A (commutative) monoid is a couple (M,+) of a nonempty
set M and a binary operation + on M , which is assumed to be commutative,
associative and admitting a neutral element 0M .

As for groups, the algebraic structure of monoids can be enriched by the
definition of an additional binary operation.

Definition 1.1.2. A (commutative) semiring is a triple (S,+, ·) of a nonempty
set S and two binary operation + and · on S, called the addition and the mul-
tiplication, which are assumed to be commutative, associative and admitting
neutral elements 0S and 1S respectively, with the multiplication distributing
over the addition and the equality 0S · s = 0S holding for every s ∈ S.

Example 1.1.3. For any set E, its power set P(E) has two semiring struc-
tures with addition and multiplication given by union and intersection, or
conversely. Also, the set of positive integer numbers N with the usual opera-
tion of addition and multiplication is a semiring. A relevant semiring in real
convex geometry is the tropical semifield (R ∪ {+∞},min,+).

A map ϕ : S → T between two semirings (S,+, ·) and (T,+, ·) is called a
semiring homomorphism if for every s1, s2 ∈ S, ϕ(s1 + s2) = ϕ(s1) + ϕ(s2),
ϕ(s1 · s2) = ϕ(s1) · ϕ(s2), ϕ(0S) = 0T and ϕ(1S) = 1T .

Example 1.1.4. For any set E, the map sending each subset of E to its
complement in E realizes an isomorphism of semirings between (P(E),∪,∩)
and (P(E),∩,∪).

As in classical commutative algebra, it is relevant to study the action of a
semiring on an algebraic structure.

Definition 1.1.5. Let (S,+, ·) be a commutative semiring. A S-semimodule
is a nonempty set M endowed with a binary operation + and a scalar multi-
plication . : S×M →M , satisfying the following axioms for every s, s1, s2 ∈ S
and m,m1,m2 ∈M :

(i) + is commutative, associative and admits a neutral element 0M

(ii) s.(m1 +m2) = s.m1 + s.m2

(iii) (s1 + s2).m = s1.m+ s2.m

(iv) (s1 · s2).m = s1.(s2.m)

(v) s.0M = 0M
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(vi) 0S .m = 0M

(vii) 1S .m = m.

In other words, a S-semimodule is a commutative monoid (M,+) together
with a morphism of semirings

S → Hom(M,M),

where Hom(M,M) is the noncommutative semiring of monoid endomorphisms
on M with multiplication given by composition.

Example 1.1.6. Every commutative monoid (M,+) can be seen as a N-
semimodule with action given by

n.m := m+ · · ·+m︸ ︷︷ ︸
n times

for every n ∈ N and m ∈M .

Example 1.1.7. For every semiring S, the trivial S-semimodule is the monoid
(S,+) with action given by the multiplication in S.

A map ϕ : M → N between two S-semimodules M and N is said to be
a morphism of S-semimodues if it is a morphism of monoids respecting the
action of S, that is ϕ(m1 + m2) = ϕ(m1) + ϕ(m2) for all m1,m2 ∈ M and
ϕ(s.m) = s.ϕ(m) for all s ∈ S and m ∈ M . Notice in particular that if
ϕ : M → N is a morphism of S-semimodules, then ϕ(0M ) = 0N .

Grothendieck completion. By forgetting the existence of additive in-
verses, any commutative ring has a semiring structure and, for a ring R, any
R-module can be seen as a semimodule over the semiring associated to R.
Conversely, the Grothendieck completion allows to construct rings and mod-
ules from semirings and semimodules, as follows.

Definition 1.1.8. The Grothendieck group of an abelian monoid (M,+) is
the quotient G (M) of the set M ×M by the equivalence relation ∼ defined as

(a, b) ∼ (c, d) ⇐⇒ ∃m ∈M such that a+ d+m = b+ c+m.

It is given a binary operation by componentwise addition.
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It is easy to show that the Grothendieck group of (M,+) is a well-defined
abelian group, the neutral element being the class of (0M , 0M ) and the inverse
of [(a, b)] being [(b, a)]. It can be seen as the group of formal differences
between elements of M and it comes with the morphism of monoids

M → G (M)

m 7→ [(m, 0M )].
(1.1)

Let now (S,+, ·) be a semiring. The Grothendieck group of the abelian monoid
(S,+) can be given a multiplication by defining

(a, b) · (c, d) := (ac+ bd, ad+ bc)

on representants. Such operation turns out to be well-defined on G (S) and
endows it with the structure of a commutative ring with unity [(1S , 0S)].
Similarly, if S is a commutative semiring and M is a S-semimodule, the action
of G (S) on G (M) induced by

(r, s).(m,n) := (r.m+ s.n, r.n+ s.m)

for every [(r, s)] ∈ G (S) and [(m,n)] ∈ G (M) gives G (M) the structure of a
G (S)-module.
With the obvious transformation on morphisms, the Grothendieck completion
defines a functor from the category of abelian monoids to the category of
abelian groups, from the category of commutative semirings to the category
of commutative rings with unity and from the category of S-semimodules to
the category of G (S)-modules.

Example 1.1.9. The Grothendieck completion of the semiring N is Z, while
the one of the tropical semifield is {0}. For any semiring S, the Grothendieck
completion of the trivial S-semimodule is the trivial G (S)-module.

As emerges from the previous example, the semiring structure on N is
friendlier than the one on the tropical semifield. This difference is related to
an algebraic property of the subjacent monoids.

Definition 1.1.10. An abelian monoid M is said to satisfy the cancellation
law if for every m1,m2 ∈ M the equality m1 + n = m2 + n for some n ∈ M
implies m1 = m2. A commutative semiring or a semimodule is said to satisfy
the cancellation law if the subjacent additive monoid does.

A monoid satisfying the cancellation law is “not very far from being an
abelian group”, in the sense of the following lemma.
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Lemma 1.1.11. The morphism of monoids M → G (M) in (1.1) is injective
if and only if M satisfies the cancellation law.

Proof. Suppose first the morphism is injective. Then, for every m1,m2 ∈ M
satisfying m1 + n = m2 + n for some n ∈ M , one can consider the image of
the two sides of the equality in G (M); the group structure on G (M) and the
injectivity of the map imply that m1 = m2.
Conversely, if two elements m1 and m2 of M have the same image in G (M),
they must satisfy (m1, 0M ) ∼ (m2, 0M ). The cancellation law on M implies
that m1 = m2.

Mixed maps. The semiring N being an initial object in the category of com-
mutative semirings, every natural number can be unambiguously thought as
an element of a commutative semiring (S,+, ·). With abuse of notation, for
every k ∈ N and m in a S-semimodule M , one will hence write k.m to denote
the action of the image of k in S on m; by definition, this is nothing else than
the sum of k copies of m in M .

Definition 1.1.12. Let S be a semiring, ϕ : M → N a map between two S-
semimodules and k a positive integer. A k-mixed map for ϕ is an application
F : Mk → N being symmetric, multilinear with respect to the S-semimodule
structure on M and N and satisfying F (m, . . . ,m) = k!.ϕ(m) for each m ∈M .

The following easy property of mixed maps follows directly from the defi-
nition and will be useful later on.

Proposition 1.1.13. Let S be a semiring, ϕ : M → N a map between two
S-semimodules and k a positive integer. Assume also that N satisfies the
cancellation law. If F is a k-mixed map for ϕ, then

F (m1, . . . ,mk−1, 0M ) = 0N

for all m1, . . . ,mk−1 ∈M .

Proof. By multilinearity and by the equality 0M + 0M = 0M one has

F (m1, . . . ,mk−1, 0M ) = F (m1, . . . ,mk−1, 0M ) + F (m1, . . . ,mk−1, 0M ).

The claim follows then from the cancellation law in N .

Under some hypotheses on the target semimodule one can show that a
mixed map, if it exists, is unique.
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Proposition 1.1.14. In the same hypotheses of Definition 1.1.12, assume
moreover that N is a group without nontrivial elements of k! torsion. Then
there exists at most one k-mixed map Mϕ for ϕ and in such a case it is of
the form

Mϕ(m1, . . . ,mk) =

k∑
j=1

(−1)k−j .
∑

1≤i1<···<ij≤k
ϕ(mi1 + · · ·+mij ), (1.2)

where for each n ∈ N , −1.n is the additive inverse of n.

Proof. Let F be a mixed map for ϕ. For every positive integer r it must satisfy
by definition

k!.ϕ(m1 + · · ·+mr) = F (m1 + · · ·+mr, . . . ,m1 + · · ·+mr)

for any choice of m1, . . . ,mr ∈M . The multilinearity of F yields

k!.ϕ(m1 + · · ·+mr) =
r∑

i1=1

· · ·
r∑

ik=1

F (mi1 , . . . ,mik).

For every `1, . . . , `r ∈ {0, . . . , k} with `1+· · ·+`r = k, the number of summands
for which each mj appears exactly `j times in the list mi1 , . . . ,mik equals

Nk
`1,...,`r :=

(
k

`1

)
·
(
k − `1
`2

)
. . .

(
k − `1 − · · · − `r−2

`r−1

)
.

The symmetry of F implies hence that

k!.ϕ(m1 + · · ·+mr) =
∑

`1,...,`r∈{0,...,k}
`1+···+`r=k

Nk
`1,...,`r .F`1,...,`r(m1, . . . ,mr), (1.3)

where
F`1,...,`r(m1, . . . ,mr) := F (m1, . . . ,m1︸ ︷︷ ︸

`1

, . . . ,mr, . . . ,mr︸ ︷︷ ︸
`r

).

The statement follows from the claim that the alternated sum

k!.
k∑
j=1

(−1)k−j .
∑

1≤i1<···<ij≤k
ϕ(mi1 + · · ·+mij ) (1.4)

coincides with k!.F (m1, . . . ,mk). Indeed, the k! multiples of two elements in
the group N are the same if and only if their difference in N is of k! torsion.
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By hypotheses on N , they must coincide.
To prove the claimed equality, the expression in (1.4) can be rewritten as

k∑
j=1

(−1)k−j .
∑

1≤i1<···<ij≤k
k!.ϕ(mi1 + · · ·+mij ).

Developing each term of the sum as in (1.3), for any choice of `1, . . . , `k ∈
{0, . . . , k} with `1+· · ·+`k = k, the term F`1,...,`k(m1, . . . ,mk) appears in (1.4)
with coefficient equal to (−1)k−jNk

`1,...,`k
for each set I of indices {i1, . . . , ij}

containing the set L = {i : `i 6= 0}. Hence, its coefficient in (1.4) is given by

∑
I⊇L

(−1)k−|I |Nk
`1,...,`k

= Nk
`1,...,`k

k∑
i=|L |

(−1)k−i
(
k − |L |
i− |L |

)
.

If |L | 6= k, the Newton development of the binomial proves that this coefficient
equals

Nk
`1,...,`k

k−|L |∑
i=0

(−1)k−|L |−i
(
k − |L |

i

)
= 0,

while for |L | = k one must have `1 = · · · = `k = 1 and hence the coefficient
equals Nk

1,...,1 = k!.

The uniqueness statement can be generalized to the case of target monoids
satisfying the cancellation property. Recall that for a S-semimodule M an
element s ∈ S is said to act injectively on M if for every m1,m2 ∈ M with
m1 6= m2 one has s.m1 6= s.m2. Clearly, an element which is multiplicatively
invertible in S acts injectively on any S-semimodule.

Corollary 1.1.15. Let S be a semiring, ϕ : M → N a map between two S-
semimodules and k a positive integer. Assume moreover that N satisfies the
cancellation law and that k! acts injectively on N . Then there exists at most
one k-mixed map for ϕ.

Proof. The Grothendieck completion G (N) of N has no nontrivial elements
of k! torsion. Indeed, [(a, b)] is such if and only if, because of the cancellation
law, k!.a = k!.b. By hypothesis this implies a = b and so the class of (a, b) is
the neutral element of G (N).
Let ε : N → G (N) denote the monoid morphism defined in (1.1). It follows
from the definition that for a k-mixed map F for ϕ, the composition ε ◦ F is
a k-mixed map for ε ◦ ϕ. Hence, if F1 and F2 are two k-mixed maps for ϕ,
Proposition 1.1.14 implies that ε ◦ F1 = ε ◦ F2. The equality F1 = F2 follows
from the injectivity of ε proved in Lemma 1.1.11.
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One can give a necessary condition for a map of semimodules to admit a
mixed counterpart. To state it, one needs the following definition.

Definition 1.1.16. Let S be a semiring, M and N two S-semimodules and
k a positive integer. A map ϕ : M → N is called a k-homogeneous map of
S-semimodules if it satisfies

ϕ(s.m) = sk.ϕ(m)

for each s ∈ S and m ∈M .
A map ϕ : M → N is said to be a homogeneous map of S-semimodules if it is
k-homogeneous for some positive integer k.

It follows directly from the definition that if ϕ : M → N is a homogeneous
map of S-semimodules then ϕ(0M ) = 0N .

Proposition 1.1.17. Let S be a semiring, ϕ : M → N a map between two
S-semimodules and k a positive integer with k! acting injectively on N . If a
k-mixed map for ϕ exists, then ϕ is k-homogeneous.

Proof. Suppose that a k-mixed map F for ϕ exists. The S-multilinearity of
F implies that

k!.ϕ(s.m) = F (s.m, . . . , s.m) = sk.F (m, . . . ,m) = k!.
(
sk.ϕ(m)

)
for each s ∈ S and m ∈ M . The fact that k! acts injectively on N implies
then that ϕ(s.m) = sk.ϕ(m), as desired.

The typical situation one will deal with is the one of S containing a copy
of the positive rational numbers. In such a case, a k-homogeneous map ϕ
of S-semimodules with target monoid satisfying the cancellation law admits
no `-mixed map if ` 6= k and at most one k-mixed map. Then, without
ambiguity, one will simply speak about the mixed map of a homogeneous map
ϕ of S-semimodules, without specifying its degree, and denote it by Mϕ.

Remark 1.1.18. A necessary and sufficient condition for a map ϕ of S-
semimodules to admit a k-mixed map could be obtained using the notion of
combinatorial degree, see [War79, Definition 2.7], which is the minimal positive
integer d (if it exists) for which the equality∑

1≤i1<···<i`≤d+1
`∈{1,...,d+1}, ` even

ϕ(mi1 + · · ·+mi`) =
∑

1≤i1<···<i`≤d+1
`∈{1,...,d+1}, ` odd

ϕ(mi1 + · · ·+mi`)

holds for any choice of m1, . . . ,md+1 ∈M . More information about this notion
can be found in [DV09].
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1.2
Convex bodies

In this section we present a first example of semimodule over the semiring of
nonnegative real numbers, that is the one of convex bodies in a real vector
space. Moreover, mixed volumes are introduced using the language developed
in the previous section.
We fix throughout all the section a pair of reciprocally dual lattices N and M
of rank n and we denote by NR := N ⊗ZR and MR := M ⊗ZR the associated
n-dimensional real vector spaces. The duality between NR and MR is denoted
by 〈·, ·〉. Finally, if not otherwise stated, R≥0 will stand for the semiring of
nonnegative real numbers endowed with the usual addition and multiplication.

Definitions. Recall that a nonempty subset C of MR is said to be convex if
it is closed under convex combinations, that is for every x, y ∈ C and γ ∈ [0, 1],
the point γx+ (1− γ)y still belongs to C. For a convex subset C of MR, the
dimension of C is the dimension of the minimal affine space containing it.
The interior of C in this affine subspace is called the relative interior of C.

Example 1.2.1. For a collection of finitely many points x1, . . . , xr ∈MR, the
convex hull of x1, . . . , xr, that is

conv(x1, . . . , xr) :=

{
r∑
i=1

λixi : λi ≥ 0,

r∑
i=1

λi = 1

}

and the cone spanned by x1, . . . , xr, that is

cone(x1, . . . , xr) :=

{
r∑
i=1

λixi : λi ≥ 0

}

are convex subsets of MR.

The following notion reveals to be crucial when dealing with convex sets.

Definition 1.2.2. Let C be a closed convex subset of MR. The support
function of C is the function ΨC : NR → R ∪ {−∞} defined as

ΨC(u) := inf
x∈C
〈x, u〉

for every u ∈ NR.
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For a closed convex subset C of MR and for u ∈ NR, one can consider the
set

Cu := {x ∈ C : 〈x, u〉 = ΨC(u)}.

It is a closed convex subset of C, possibly empty. Clearly, C0 = C while, for
u 6= 0 and ΨC(u) ∈ R, Cu is contained in an affine hyperplane of MR parallel
to u⊥ := {x ∈MR : 〈x, u〉 = 0}.

Definition 1.2.3. Let C be a closed convex subset of MR. An exposed face
of C is a nonempty subset of C coinciding with Cu for some u ∈ NR.

For any closed convex set C, C = C0 is an exposed face of itself. Any
exposed face of lower dimension can be written as the intersection of C with
an affine hyperplane leaving C in one halfspace.
The Minkowski sum of two subsets A and B of MR is the set

A+B := {a+ b : a ∈ A, b ∈ B} ⊆MR.

It follows immediately from the definition that the Minkowski sum is com-
mutative, associative and admits {0} as neutral element. The sum of two
bounded sets is bounded and the sum of two convex subsets of MR is still
convex. For every u ∈ NR and closed convex subsets C1, C2 of MR, moreover,
it is immediate to show that (C1 + C2)u = Cu1 + Cu2 .
Also, for every subset A of MR and nonnegative real number λ, the scaling of
A by λ is the set λA := {λa : a ∈ A}. As for the sum, the scaling preserves
boundedness and convexity of sets. For every u ∈ NR, closed convex subset C
of MR and λ ∈ R≥0, one has (λC)u = λCu.

Definition 1.2.4. A convex body in MR is a nonempty compact convex sub-
set of MR. The set of convex bodies in MR is a R≥0-semimodule with the
Minkowski sum and the scaling defined above. It is called the semimodule of
convex bodies and denoted by B(MR).

The semimodule B(MR) satisfies the cancellation law, see for instance
[Sch14, Remark 1.7.6]; a different proof will be given in Corollary 1.3.15.
The properties of the Minkowski sum and of the scaling imply that for every
u ∈ NR the map Q 7→ Qu for every Q ∈ B(MR) is a morphism of R≥0-
semimodules from B(MR) to itself.

Remark 1.2.5. For every u ∈ NR, the linear function 〈·, u〉 on MR is contin-
uous with respect to the euclidean topology on MR and then has a minimum
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over any compact set. It follows that if Q is a convex body in MR the support
function of Q only takes finite values on NR and

ΨQ(u) = min
x∈Q
〈x, u〉

for every u ∈ NR. Moreover, for every u ∈ NR and Q ∈ B(MR), Qu is
nonempty.

Polytopes. By a polyhedron in MR one means a nonempty subset of MR ob-
tained as the intersection of finitely many closed halfspaces; it is in particular
closed and convex. By definition, a polyhedron P can be written as

P =
r⋂
j=1

{x ∈MR : 〈aj , x〉+ αj ≥ 0}, (1.5)

with a1, . . . , ar ∈ NR and α1, . . . , αr ∈ R. By [Roc70, Theorem 19.1], any
polyhedron P also has a representation in terms of vertices and directions,
that is, in the notation of Example 1.2.1,

P = conv(b1, . . . , bs) + cone(bs+1, . . . , bt), (1.6)

with b1, . . . , bt ∈ MR. The two previous equalities are respectively called the
H-representation and the V-representation of the polytope P because of its
expression in terms of hyperplanes or vertices.

Definition 1.2.6. A polytope in MR is a bounded polyhedron. A polytope is
said to be rational if the slopes a1, . . . , ar in (1.5) can be chosen in N , to be
lattice if the vertices b1, . . . , bt in (1.6) can be chosen in M .

An exposed face of a polytope will simply be called a face; this is coherent
with the current terminology in convex geometry because of [Sch14, Corollary
2.4.2]. For a polytope of dimension d in MR, its 0-dimensional faces are
called its vertices, its 1-dimensional faces are called its edges and its (d− 1)-
dimensional faces are called its facets.

Remark 1.2.7. By the boundedness condition, the V-representation of P can
be reduced to P = conv(b1, . . . , bs) for some b1, . . . , bs ∈MR. In fact, a subset
of MR is a polytope according to Definition 1.2.6 if and only if it is the convex
hull of finitely many points, see [Sch14, Theorem 2.4.3 and Theorem 2.4.6].
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Denoting by P(MR) and Pr(MR) respectively the sets of polytopes and
rational polytopes in MR, one has that

Pr(MR) ⊆P(MR) ⊆ B(MR).

Since {0} is a rational polytope and P(MR) and Pr(MR) are closed under
Minkowski sum and scaling they inherit from B(MR) the structure of R≥0-
semimodules.

Remark 1.2.8. Any lattice polytope is rational. Anyway, the set of lattice
polytopes is not closed under arbitrary scaling and hence fails to be a sub
R≥0-semimodule of Pr(MR).

Let P be a rational polytope of full dimension n in MR and F a facet
of P . By definition, F is contained in a unique minimal affine subspace of
MR of dimension n − 1, whose linear part has a one dimensional orthogonal
subspace in NR. The rationality of P implies that this line in NR contain
a rank one sublattice of N . The unique vector vF ∈ N of minimal length
satisfying P vF = F is called the minimal inner integral vector of F .

Mixed volumes. Let R denote the R≥0-semimodule of real numbers with the
obvious action given by multiplication. For any Haar measure µ on MR, any
convex set is µ-measurable, see for example [Lan86], and has finite measure if
it is bounded. The application

volµ : B(MR)→ R (1.7)

associating to each convex body in MR its µ-volume is hence a well-defined
n-homogeneous map of R≥0-semimodules.

Theorem 1.2.9. There exists a unique mixed map

MVµ : B(MR)n → R

for the map volµ in (1.7).

Proof. The existence is proved for instance in [Ewa96, Chapter IV.3], up to a
multiplicative constant. The uniqueness is a consequence of Theorem 1.1.14
since R is a group and n! is invertible in R≥0.

As a consequence of the general theory developed in section 1.1, one has
an explicit form of such a mixed map.
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Definition 1.2.10. The mixed volume with respect to µ of the convex bodies
Q1, . . . , Qn in MR is

MVµ(Q1, . . . , Qn) =

n∑
k=1

(−1)n−k
∑

1≤i1<···<ik≤n
volµ(Qi1 + · · ·+Qik).

By definition, the mixed volume operator is symmetric and multilinear
with respect to Minkowski sum and scaling and it satisfies

MVµ(Q, . . . , Q) = n! volµ(Q)

for every Q ∈ B(MR).

Notation 1.2.11. The unique Haar measure on MR for which the volume
of any fundamental domain of M is 1 is denoted by µM and also called the
normalized Haar measure onMR. In this case, the volume map in (1.7) and the
mixed volume in Definition 1.2.10 are denoted by volM and MVM respectively.

The mixed volume turns out to be monotone with respect to inclusion of
convex bodies.

Proposition 1.2.12. For i = 1, . . . , n, let Qi and Ri be convex bodies in MR
with Ri ⊆ Qi. Then,

MVµ(R1, . . . , Rn) ≤ MVµ(Q1, . . . , Qn).

Proof. See [Sch14, formula (5.25)].

For a subset A of MR and a vector x ∈ MR, the translation of A by x
is defined as A + x := {a + x : a ∈ A} and can be seen as the Minkowski
sum between A and the set {x}. With this terminology, the mixed volume is
invariant under translation of its entries.

Proposition 1.2.13. For every family of convex bodies Q1, . . . , Qn in MR
and of vectors x1, . . . , xn ∈MR,

MVµ(Q1 + x1, . . . , Qn + xn) = MVµ(Q1, . . . , Qn).

Proof. For {i1, . . . , ik} ⊆ {1, . . . , n}, one has that

(Qi1 + xi1) + · · ·+ (Qik + xik) = Qi1 + · · ·+Qik + (xi1 + · · ·+ xik).

Since the volume with respect to a Haar measure µ is invariant under transla-
tion in MR, the sums appearing in Definition 1.2.10 for MVµ(Q1+x1, . . . , Qn+
xn) and MVµ(Q1, . . . , Qn) coincide term by term, implying the claim.
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Corollary 1.2.14. Let Q2, . . . , Qn be convex bodies in MR and x ∈ MR.
Then,

MVµ({x}, Q2, . . . , Qn) = 0.

Proof. By writing {x} = {0} + x, the claim follows from Proposition 1.2.13
and Proposition 1.1.13, the convex body {0} being the neutral element for the
Minkowski sum in B(MR).

1.3
Concave functions

After introducing concave functions on real vector spaces, we review in this
section the notion of Legendre-Fenchel duality. A more detailed and complete
treatment of the subject can be found in [Roc70] or in [BPS14, Chapter 2]; as
in the second reference, we will deal with concave functions instead of convex
ones, even if the two cases lead to analogous results. Finally, we endow the
set of concave functions with two different R≥0-semimodule structures, which
turns out to be isomorphic via Legendre-Fenchel duality.
As in the previous section, let N and M be a pair of reciprocally dual lattices
of rank n and NR and MR the associated real vector spaces.

Definitions. The hypograph of a function f : NR → R∪{−∞} is defined as
the subset

Γ(f) := {(u, t) ∈ NR × R : u ∈ NR, t ≤ f(u)}

of NR×R. Denoting by π : NR×R→ NR the projection onto the first factor,
it follows that π(Γ(f)) is the subset of NR on which f takes finite values. In
particular, it is nonempty if and only if f is not identically −∞.

Definition 1.3.1. A function f : NR → R ∪ {−∞} is said to be concave if
its hypograph is a nonempty convex subset of NR × R. If moreover Γ(f) is
closed, f is called a closed concave function.

Equivalently, f : NR → R ∪ {−∞} is concave if and only if it is non
identically −∞ and for every u1, u2 ∈ NR and γ ∈ [0, 1] the inequality

γf(u1) + (1− γ)f(u2) ≤ f(γu1 + (1− γ)u2) (1.8)

holds. A twice continuously differentiable function on an open set is concave
if and only if its Hessian matrix is negative semi-definite at each point of
the open set, see for example [Roc70, Theorem 4.5]. The effective domain of
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a concave function f is the set dom(f) on which the function takes values
different from −∞; as remarked above, it coincides with the projection to NR
of the hypograph of f . Since the image of a convex set under a linear map
is convex, it is a nonempty convex subset of NR. Any concave function is
continuous in the relative interior of its domain by [Roc70, Theorem 10.1].
A concave function is closed if and only if it is upper semicontinuous. In
particular, any continuous concave function whose effective domain is a closed
convex set is closed.

Example 1.3.2. It is anyway not true in general that the effective domain of a
closed concave function is closed. For instance, the function f : R→ R∪{−∞}
defined as

f : u 7→

{
log(u) if u > 0

−∞ otherwise

is closed concave, but its effective domain is not closed.

Concave functions whose hypographs are simple convex subsets of NR×R
are particularly easy to deal with and deserve a name.

Definition 1.3.3. A concave function is said to be piecewise affine if its
hypograph is a polyhedron.

A function f : NR → R ∪ {−∞} is piecewise affine if and only if its
effective domain is a polyhedron in NR and there exist a1, . . . , ar ∈ MR and
α1, . . . , αr ∈ R such that

f(u) = min
i=1,...,r

(〈ai, u〉+ αi) (1.9)

for every u ∈ dom(f), see [Roc70, page 172]. By the definition of a polyhedron,
any piecewise affine concave function is closed.
Finally, the following notion will play a role in subsequent chapters. Even
if a more general definition can be given for arbitrary concave functions, one
restricts here to the case of closed concave functions, which is the one that will
be relevant later on. A function f satisfying f(λu) = λf(u) for every λ ≥ 0
and u ∈ NR is called conical.

Definition 1.3.4. Let f : NR → R ∪ {−∞} be a closed concave function
and v0 ∈ dom(f). The recession function of f is the function rec(f) : NR →
R ∪ {−∞} defined as

rec(f)(u) := lim
λ→∞

f(v0 + λu)

λ

for every u ∈ NR.
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The function rec(f) does not depend of the choice of v0 ∈ dom(f) and is
a closed conical concave function, see [Roc70, Theorem 8.5].

Legendre-Fenchel duality. The Legendre-Fenchel dual of a concave func-
tion can be interpreted as a generalization of the notion of the support function
of a closed convex subset introduced in Definition 1.2.2.

Definition 1.3.5. Let f : NR → R ∪ {−∞} be a concave function. The
Legendre-Fenchel dual of f is the function f∨ : MR → R ∪ {−∞} defined as

f∨(x) := inf
u∈NR

(〈x, u〉 − f(u))

for every x ∈MR.

The Legendre-Fenchel dual of f is a closed concave function on MR satis-
fying, if f is closed, the equality (f∨)∨ = f , see [Roc70, Theorem 12.2]. The
effective domain of f∨ is hence a convex subset of MR, which one calls the
stability set of f and denotes by stab(f). Such a set can be interpreted as a
control of the limit behaviour of f , in the sense of the following proposition.

Proposition 1.3.6. Let f : NR → R ∪ {−∞} be a closed concave function.
Then, the recession function rec(f) is the support function of stab(f).

Proof. This is [Roc70, Theorem 13.3].

In particular, the stability set of a concave function with domain the whole
NR does not need to be bounded: for instance, the stability set of − exp : R→
R is the unbounded interval (−∞, 0].
The following statement about a special value of the Legendre-Fenchel dual
follows immediately from its definition.

Proposition 1.3.7. For every concave function f : NR → R ∪ {−∞},

f∨(0) = − sup
u∈NR

f(x).

The next example is fundamental when dealing with Legendre-Fenchel
duality.

Example 1.3.8. For a closed convex subset C of MR, let ιC be the indicator
function of C, that is the function on MR defined as

ιC(x) :=

{
0 if x ∈ C
−∞ otherwise

.
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It follows immediately from the definition that ι∨C = ΨC , see Definition 1.2.2.
Conversely, the fact that C is closed implies that ιC is a closed concave function
and the duality then yields Ψ∨C = ιC . The indicator function and the support
function of C are hence reciprocally dual concave functions.

The Legendre-Fenchel dual of a concave function is typically not as simple
as in the previous example. One disposes of explicit expressions for it only in
some remarkable cases: for instance, for smooth functions of Legendre type
one can refer to [Roc70, chapter 26], while the proof of [Roc70, Theorem
19.2] provides the description of the Legendre-Fenchel dual of piecewise affine
concave functions. Here is a particular case.

Proposition 1.3.9. Let f be a piecewise affine concave function with dom(f) =
NR, having a representation as in (1.9). Then, stab(f) = conv(a1, . . . , ar) and

f∨(x) = sup

{
r∑
i=1

−λiαi : x =

r∑
i=1

λiai, λi ∈ [0, 1],

r∑
i=1

λi = 1

}

for every x ∈ stab(f).

Proof. This follows immediately from [BPS14, Proposition 2.5.5].

In other words, for a concave function f as in the statement of Proposition
1.3.9, the Legendre-Fenchel dual f∨ is the function parametrizing the “roof”
of the closed convex set

conv((a1,−α1), . . . , (ar,−αr))

in MR × R. In particular, it is again a piecewise affine concave function.
Finally, one can generalize the notion of exposed face of a closed convex subset
using the Legendre-Fenchel duality. Indeed, for a closed concave function
f : NR → R ∪ {−∞}, define a pairing Pf : MR ×NR → R ∪ {−∞} by setting

Pf (x, u) := f∨(x) + f(u)− 〈x, u〉.

It follows from the definition that Pf (x, u) ≤ 0 for every x ∈MR and u ∈ NR.
Moreover, the concavity of f assures that

Pf
(
x, γu1 + (1− γ)u2

)
≥ γPf (x, u1) + (1− γ)Pf (x, u2) (1.10)

for each x ∈ MR, u1, u2 ∈ NR and γ ∈ [0, 1]. One can associate to every
x ∈MR a subset of NR by defining

x∗ := {u ∈ NR : Pf (x, u) = 0}. (1.11)



18 CHAPTER 1. CONVEX GEOMETRY

Such a set is clearly included in dom(f). Since it is the preimage of the closed
set [0,+∞) under an upper semicontinuous function, it is closed. Moreover,
it is a convex set because of (1.10). Analogously, for every u ∈ NR one can
consider the closed convex subset u∗ of stab(f).

Remark 1.3.10. Following [BPS14, pages 47-48], the collections of sets x∗

and u∗ induce dual convex decompositions of certain subsets of NR and MR
which almost coincide with dom(f) and stab(f), see the cited reference for
more details.

The set u∗ is a generalization of the notion of the exposed face of a closed
convex set relative to u, as the following example shows.

Example 1.3.11. Let C be a nonempty closed convex subset of MR and ΨC

its support function. It follows from Example 1.3.8 that in this case

u∗ = {x ∈MR : ιC(x) + ΨC(u) = 〈x, u〉} = Cu

for any u ∈ NR.

The closed convex set u∗ can be interpreted as the projection of certain
exposed faces of the hypograph of f . To state this relation precisely, consider
the lattice N ⊕ Z and its dual lattice M ⊕ Z, with associated vector spaces
NR×R and MR×R, respectively. The duality between these two vector spaces
is given by

〈(x, t), (u, s)〉 = 〈x, u〉+ ts

for every (u, s) ∈ NR×R and (x, t) ∈MR×R. Finally, denote by π : NR×R→
NR the projection onto the first factor.

Proposition 1.3.12. Let f : NR → R ∪ {−∞} be a closed concave function.
Then, for every x ∈MR,

x∗ = π
(

Γ(f)(x,−1)
)
.

Proof. For every u ∈ NR, (u, t) ∈ Γ(f) if and only if t ≤ f(u), because of
the definition of the hypograph of f ; hence 〈x, u〉 − t ≥ 〈x, u〉 − f(u) for all
(u, t) ∈ Γ(f). It follows then from the definition of the support function of a
closed convex subset that

ΨΓ(f)(x,−1) = inf
(u,t)∈Γ(f)

(〈x, u〉 − t) = inf
u∈dom(f)

(〈x, u〉 − f(u)).
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The fact that 〈x, u〉 − f(u) is +∞ if u /∈ dom(f) implies that ΨΓ(f)(x,−1) =
f∨(x). This yields

x∗ =
{
u ∈ NR : 〈x, u〉 − f(u) = ΨΓ(f)(x,−1)

}
=
{
u ∈ NR : (u, f(u)) ∈ Γ(f)(x,−1)

}
= π

(
Γ(f)(x,−1)

)
,

concluding the proof.

Operations on concave functions. With the usual algebraic conven-
tions on −∞ (in particular 0·−∞ := −∞), the pointwise sum of two functions
f, g on NR is the function

f + g : NR → R ∪ {−∞}, u 7→ f(u) + g(u)

and the scalar multiplication of f by a nonnegative real number λ is the
function

λf : NR → R ∪ {−∞}, u 7→ λf(u).

Definition 1.3.13. Let C be a nonempty closed convex subset of NR. The set
Cdom(C) of closed concave functions on NR with effective domain coinciding
with C is a R≥0-semimodule with the operation of pointwise sum and scalar
multiplication. It is called the semimodule of closed concave functions with
effective domain C.

The claim in the previous definition is evident from (1.8) and the fact that
the pointwise sum of two functions f and g takes finite values only when f and
g simultaneously do. The semimodule Cdom(C) is easily seen to satisfy the
cancellation law and to have the indicator function of C as neutral element;
moreover, its only invertible elements are constant functions on C.
The properties of Cdom(C) allow to infer less evident features of the semimod-
ule of convex bodies, as follows.

Proposition 1.3.14. The map Ψ : B(MR) → Cdom(NR), associating to
each convex body Q its support function ΨQ is an injective morphism of R≥0-
semimodules.

Proof. The support function of a convex body in MR is seen to be concave
from (1.8). As proven in Remark 1.2.5, it has effective domain the whole NR
and in particular it is closed. It is also immediately verified from the definition
that Ψ is a morphism of R≥0-semimodules.
For what concerns injectivity, let Q1 and Q2 be convex bodies in MR with
ΨQ1 = ΨQ2 . Then, the Legendre-Fenchel dual of these functions must coin-
cide, that is, by Example 1.3.8, ιQ1 = ιQ2 ; in particular, Q1 = Q2.
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Corollary 1.3.15. The semimodule B(MR) satisfies the cancellation law.

Proof. Let Q1, Q2, P ∈ B(MR), with Q1 + P = Q2 + P . Applying the map
Ψ of the statement of Proposition 1.3.14 to both sides of the equality gives
ΨQ1 + ΨP = ΨQ2 + ΨP . The cancellation property of Cdom(NR) and the
injectivity of Ψ conclude the proof.

One can consider other operations on concave functions; as they will ap-
pear in the following only for functions defined on MR, we prefer to give their
definitions in this dual setting. The sup-convolution of two concave functions
f, g on MR whose stability sets are not disjoint is the function

f � g : MR → R ∪ {−∞}, x 7→ sup
y1+y2=x

(f(y1) + g(y2))

and the right scalar multiplication of f by a positive real number λ is the
function

fλ : MR → R ∪ {−∞}, x 7→ λf(x/λ).

By convention, one sets f0 := Ψstab(f) for every concave function f on MR.
In this occasion, the properties of convex subsets allow to state nontrivial
features of such operations, thanks to the following remark on hypographs.

Proposition 1.3.16. For every closed concave functions f, g on MR whose
stability sets are not disjoint and for every positive real number λ one has that

Γ(f � g) = Γ(f) + Γ(g)

and

Γ(fλ) = λΓ(f).

Proof. The first equality follows from [AW89, equality (2.3)] and the fact that
the sum of the hypographs of two closed concave function is closed. The
second one is [AW89, equality (2.5)].

It follows from the previous proposition that, whenever defined, the sup-
convolution of two closed concave functions is a closed concave function and
that its effective domain is the Minkowski sum of the effective domains of
the summands. Similarly, the right scalar multiplication of a closed concave
function by a positive real number is closed and concave with effective domain
the scaling of the effective domain of the function by the same real number.
Finally, [Roc70, Theorem 16.4] implies that stab(f � g) = stab(f) ∩ stab(g)
and stab(fλ) = stab(f) for every concave functions f, g on MR and λ ∈ R≥0.
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Definition 1.3.17. Let C be a nonempty closed convex subset of NR. The
set Cstab(C) of closed concave functions on MR with stability set coinciding
with C is a R≥0-semimodule with the operation of sup-convolution and right
scalar multiplication. It is called the semimodule of closed concave functions
with stability set C.

The claim in the previous definition is a consequence of the properties cited
above, of [AW89, Theorem 2.2] and of the fact that for every closed concave
function f on MR with stability set C and λ ∈ R≥0 one has

f � ΨC = f and ΨCλ = ΨC ,

because of [Roc70, Theorem 16.4] and the definition of the support function.
The two R≥0-semimodules defined above fullfill the following relation.

Proposition 1.3.18. Let C be a nonempty closed convex subset of NR. Then,
the map

Cdom(C)→ Cstab(C), f 7→ f∨

is an isomorphism of R≥0-semimodules.

Proof. The Legendre-Fenchel dual of a closed concave function on NR with
effective domain C is a closed concave function on MR with stability set C,
by definition. The fact that (f∨)∨ = f for every closed function f implies
that the map in the statement has an inverse given again by Legendre-Fenchel
duality. Finally, these two maps are morphisms of R≥0-semimodules because
of [Roc70, Theorem 16.1] and [Roc70, Theorem 16.4].

A particular case of sup-convolution is given by the translate of a closed
concave function f on MR by a point x0 ∈MR, which is defined to be τx0f :=
f � ι{x0}; more explicitely, it is the function

τx0f : MR → R ∪ {−∞}, x 7→ f(x− x0).

It follows from Proposition 1.3.16 that Γ(τx0f) = Γ(f) + (x0, 0) and from the
general results about sup-convolution that τx0f is a closed concave function
satisfying

(τx0f)∨ = f∨ + x0. (1.12)

Remark 1.3.19. The theory presented above could be developed for con-
vex functions instead of concave, with analogous results. Indeed, the map
sending any concave function f to its opposite −f realizes an isomorphism
between the R≥0-semimodules of concave and convex functions endowed with
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pointwise sum and scalar multiplication. The same map induces an isomor-
phism between the R≥0-semimodule of concave functions endowed with sup-
convolution and right scalar multiplication and the R≥0-semimodule of convex
functions endowed with inf-convolution (see [Roc70, page 34]) and right scalar
multiplication.

1.4
Monge-Ampère measures

Any concave function defined on a real vector space induces a positive measure
on it by considering its supdifferential. We present here the definition of such
a measure, called the real Monge-Ampère measure associated to the concave
function, and of its mixed counterpart. We then focus on two peculiar cases,
namely the piecewise affine and the smooth one.
As above, let N and M be reciprocally dual lattices of rank n and NR and
MR the associated real vector spaces.

Measures. By a measure on a topological space X one means a signed
Borel measure, that is a σ-additive function from the Borel subsets of X to
R∪{−∞,+∞}, valued zero on the empty set. A measure taking nonnegative
real values on any Borel subset of X is called a positive measure. The support
of a measure µ on X is the inclusion minimal closed subset supp(µ) of X for
which the map µ is zero on each Borel subset of X disjoint from supp(µ).

Example 1.4.1. For every topological space X, the function mapping each
Borel subset of X to 0 is a measure on X, called the zero measure on X. Its
support is the empty set.

For all measures µ, µ1, µ2 on X and nonnegative real number λ, consider
the measures µ1 + µ2 and λµ on X defined as

(µ1 + µ2)(E) := µ1(E) + µ2(E)

and
(λµ)(E) := λµ(E)

for any Borel subset E ofX. It follows easily from the definition that supp(µ1+
µ2) ⊆ supp(µ1) ∪ supp(µ2) and, if λ 6= 0, supp(λµ) = supp(µ).

Definition 1.4.2. Let C be a Borel subset of X. The set M (C) of measures
on X with support contained in C is a R≥0-semimodule with the operations
introduced above. It is called the semimodule of measures supported on C.
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The claim in the previous definition is easily verified; the semimodule
M (C) has the zero measure as neutral element and it satisfies the cancellation
law as any of its element admits an inverse.

Real Monge-Amp�ere measures. For a closed concave function f on NR,
the supdifferential of f is a multivalued function from NR to MR defined as

∂f : NR → P(MR), u 7→ u∗,

with u∗ being the dual of u with respect to f as in (1.11); see [Roc70, The-
orem 23.5] for equivalent formulations of such a notion. It is clear that the
supdifferential is empty valued outside the effective domain of f . By [Roc70,
Theorem 23.4], it is nonempty valued in the relative interior of dom(f), but
it can happen that ∂f(u) = ∅ even if u ∈ dom(f), as the following example
shows.

Example 1.4.3. Consider the closed concave function f : R≥0 → R given by
f(u) := −u log u + u, with f(0) = 0. Its Legendre-Fenchel dual is given by
x 7→ − exp(−x) because of [Roc70, Theorem 26.5]. One has

0∗ = π
(

Γ
(
f∨
)(0,−1)

)
= ∅

because of Proposition 1.3.12.

For any subset E of NR, one denotes

∂f(E) :=
⋃
u∈E

∂f(u).

Let also µ be a fixed Haar measure on MR.

Definition 1.4.4. Let f be a closed concave function on NR. The real Monge-
Ampère measure of f with respect to µ is the measure Mµ(f) on NR defined
as

Mµ(f)(E) := µ(∂f(E))

for each Borel subset E of NR.

Since µ is a positive measure, the real Monge-Ampère measure of any
closed concave function f is also so. Moreover, because of the properties of
the supdifferential stated above, the support ofMµ(f) is contained in dom(f).
Let C be a nonempty closed convex subset of NR containing an affine line. For
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all strictly positive real number λ and closed concave function f with effective
domain C one has that

Mµ(λf)(E) = µ(∂(λf)(E)) = µ(λ∂f(E)) = λnMµ(f)(E)

for each Borel subset E of NR, see [Roc70, end of page 222]. Using the fact
that ∂ιC(u) ⊆ stab(ιC) = dom(ΨC) for every u ∈ NR, one verifies that the set
∂ιC(NR) lies in the linear subspace of MR orthogonal to the line contained in
C; in particular it is of dimension strictly smaller than n and thenMµ(ιC) is
the zero measure on NR.
It follows that, with the notation introduced in Definition 1.4.2, the application

Mµ : Cdom(C)→M (C) (1.13)

associating to each closed concave function with effective domain C its real
Monge-Ampère measure is a n-homogeneous map of R≥0-semimodules.

Theorem 1.4.5. Let C be a nonempty closed convex subset of NR containing
an affine line. There exists a unique mixed map

MMµ : Cdom(C)n →M (C)

for the map in (1.13).

Proof. The existence is proved in [PR04, §5], up to a multiplicative constant.
The uniqueness is a consequence of Theorem 1.1.14 since M (C) is a group
and n! is invertible in R≥0.

As a consequence of the general theory developed in section 1.1, one has
an explicit form for such a mixed map.

Definition 1.4.6. The mixed real Monge-Ampère measure with respect to µ
of the closed concave functions f1, . . . , fn on NR is

MMµ(f1, . . . , fn) =
n∑
k=1

(−1)n−k
∑

1≤i1<···<ik≤n
Mµ(fi1 + · · ·+ fik).

By definition, the mixed real Monge-Ampère operator is symmetric and
multilinear with respect to pointwise sum and scalar multiplication and sat-
isfies

MMµ(f, . . . , f) = n!Mµ(f)
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for every f ∈ Cdom(C). It is in fact a positive measure, as shown in [PR04,
§5], with total volume

MMµ(f1, . . . , fn)(NR) = MVµ(stab(f1), . . . , stab(fn)),

see [BPS14, Proposition 2.7.15]. In particular, it is a finite measure if the
functions f1, . . . , fn have bounded stability sets.

Notation 1.4.7. As in section 1.2, when µ is the normalized Haar measure
on MR the mixed real Monge-Ampère operator in Definition 1.4.6 is denoted
by MMM .

The piecewise affine case. When the involved concave functions are
piecewise affine, the real Monge-Ampère operator admits a more explicit form,
as follows. Denote by π : MR × R → MR the projection onto the first factor
and by δv the Dirac delta at v, that is the measure on NR defined as

δv(E) :=

{
1 if v ∈ E
0 otherwise

for every Borel subset E of NR. Finally, let µ be a Haar measure on MR.

Proposition 1.4.8. For i = 1, . . . , n, let fi be a piecewise affine concave
function with effective domain NR and Legendre-Fenchel dual f∨i . Then,

MMµ(f1, . . . , fn) =
∑
v∈NR

MVµ

(
π
(

Γ
(
f∨1
)(v,−1)

)
, . . . , π

(
Γ
(
f∨n
)(v,−1)

))
δv,

and the sum is finite.

Proof. For a piecewise affine concave function f , [BPS14, Proposition 2.7.4]
and Proposition 1.3.12 yield

Mµ(f) =
∑
v∈NR

µ(v∗)δv =
∑
v∈NR

µ
(
π
(

Γ
(
f∨
)(v,−1)

))
δv.

The sum is moreover supported on finitely many v ∈ NR, corresponding to
the directions of the finitely many exposed faces of Γ

(
f∨
)

of dimension n.
As a consequence of Proposition 1.3.16, Proposition 1.3.18 and the linearity
of π, for every subset {i1, . . . , ik} ⊆ {1, . . . , n} one has

Mµ(fi1 + · · ·+ fik) =
∑
v∈NR

µ
(
π
(

Γ
(
f∨i1 � · · ·� f∨ik

)(v,−1)
))
δv

=
∑
v∈NR

µ
(
π
(

Γ
(
f∨i1
)(v,−1)

)
+ · · ·+ π

(
Γ
(
f∨ik
)(v,−1)

))
δv,
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and the sum is finite. The statement follows then from the definition of the
mixed real Monge-Ampère measure and of the mixed volume, rearranging the
terms.

Example 1.4.9. Let P1, . . . , Pn be polytopes in MR. As a consequence of
Proposition 1.4.8 one has

MMµ(ΨP1 , . . . ,ΨPn) = MVµ(P1, . . . , Pn)δ0,

where ΨPi is the support function of Pi for every i = 1, . . . , n.

The real Monge-Ampère measure of piecewise affine concave functions is
strictly related to tropical intersection theory, as introduced in [Mik06, §4] or,
equivalently because of [Kat12, §5], in [AR10]. We recall here briefly the main
ingredients needed to state such a relation, referring to [MS15] for a more
exhaustive introduction to the realm of tropical geometry.
For every k ∈ {0, . . . , n}, a tropical k-cycle in NR is a rational polyhedral
complex in NR of pure dimension k, endowed with integer weights on top di-
mensional cells satisfying a certain balancing condition at (k− 1)-dimensional
faces, see [Kat12, Definition 5.1]. In particular, to each piecewise affine con-
cave function f with effective domain NR and rational slopes one can associate
a tropical (n−1)-cycle on NR whose underlying polyhedral complex is the cor-
ner set of f , that is the set of points where the minimum in (1.9) is attained
at least twice. It is balanced when equipped with weights defined locally as
the (opposite of the) weights in [AR10, Definition 3.4], see [AR10, Proposition
3.7 (a)]. Such a tropical cycle is called the tropical Weil divisor associated to
the function f .
For i = 1, . . . , n let fi be a piecewise affine concave functions with rational
slopes and dom(fi) = NR. Following [Mik06, §4] and [AR10] one can construct
a tropical 0-cycle f1 · · · · · fn · NR as the tropical intersection product of the
tropical Weil divisors associated to f1, . . . , fn. It is a collection of finitely many
points v1, . . . , vr ∈ NR with weights ω1, . . . , ωr ∈ Z respectively, to which one
can associate the discrete measure

δf1·····fn·NR :=

r∑
j=1

ωjδvj

on NR.

Proposition 1.4.10. For i = 1, . . . , n, let fi be a piecewise affine concave
function with effective domain NR and rational slopes. Then,

MMM (f1, . . . , fn) = δf1·····fn·NR .
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Proof. Let f be a piecewise affine concave function with effective domain NR
and rational slopes. It is well-known to tropical geometers, see for instance
[BB13, first bullet of Example 5.6], that the weight of a vertex v in the top
tropical self intersection product of f ·NR coincides with the normalized volume
of the cell corresponding to v in the dual convex decomposition of the stability
set of f . This can also verified directly using [AR10, Definition 3.4] recursively.
Then,

δf ·····f ·NR =MM (f)

because of [BPS14, Proposition 2.7.4]. Moreover, the map associating to a n-
tuple (f1, . . . , fn) of piecewise affine concave function with effective domain NR
and rational slopes the discrete measure δf1·····fn·NR is symmetric and multilin-
ear with respect to pointwise sum because of the corresponding properties of
the tropical intersection product, see [AR10, Remark 3.6 and Theorem 9.10].
The claim follows then from Theorem 1.1.14 since M (NR) is a group and n!
is invertible in R≥0.

The smooth case. We suppose fixed, throughout the whole subsection,
the choice of a basis of M and of its dual basis of N , which determines an
isomorphism NR ' Rn. When f is a smooth concave function on Rn, its
real Monge-Ampère measure can be expressed in terms of its Hessian matrix,
which measures how concave the function is in the neighbourhood of a point.

Proposition 1.4.11. Let f be a smooth concave function with effective do-
main Rn. Then,

MM (f) = (−1)n det(Hess(f))λ,

where λ denotes the ordinary Lebesgue measure on Rn.

Proof. See [RT77, Proposition 3.4].

The Hessian matrix of a smooth concave function on Rn is semi-negative
definite at each point of the domain by [Roc70, Theorem 4.5]. It follows that
(−1)n det(Hess(f)) is nonnegative at each point, hence its product with the
Lebesgue measure is a positive measure on Rn.

Remark 1.4.12. The previous proposition still holds when f is a twice con-
tinuously differentiable function on a convex open subset of Rn.

The mixed real Monge-Ampère measure of a n-tuple of smooth concave
functions with effective domain Rn can be constructed as a shadow of its
complex counterpart as explained in [Ras01] and [PR04, §5], see [Yge15, §2]
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for an expository treatment. To do this, consider the complex torus (C∗)n
and the continuous application

− Log : (C∗)n → Rn, (z1, . . . , zn) 7→ (− log |z1|, . . . ,− log |zn|). (1.14)

For every i = 1, . . . , n, if fi is a smooth concave function with effective domain
Rn the function Fi := −fi ◦ (−Log) is a plurisubharmonic function on (C∗)n.
Then, denoting

ddc :=
i

π
∂∂,

ddcFi is a closed positive current of bidegree (1, 1) on the complex torus. Using
the technique developed by Bedford and Taylor in [BT76] and [BT82], one can
define the wedge product

MAC(F1, . . . , Fn) := (ddcF1) ∧ · · · ∧ (ddcFn),

which is called the complex mixed Monge-Ampère measure of F1, . . . , Fn. It
is a closed and positive current of bidegree (n, n), hence defining a positive
measure on (C∗)n. It follows from [PR04, equality (15) at page 498] that

(−Log)∗MAC(F1, . . . , Fn) = MMM (f1, . . . , fn),

expressing the mixed real Monge-Ampère measure as the push-forward of a
complex current.

1.5
Mixed integrals

The mixed integral of a family of concave functions defined on compact do-
mains was introduced by Philippon and Sombra in [PS08a] and further studied
by the same authors in [PS08b]. We review here this notion and collect some
properties which will be useful in the following. In particular, we interpret the
recursive formula in [PS08b, §8] in terms of Monge-Ampère measures, study
the special case of mixed integrals involving the indicator function of a line
segment and give lower and upper bounds for such objects.
As usual, we fix a pair of reciprocally dual lattices N and M , of rank n and
we denote by NR and MR the associated n-dimensional real vector spaces.

Definition. The set Cc(MR) of closed concave functions on MR with com-
pact effective domain can be given the structure of an R≥0-semimodule with
sup-convolution and right multiplication. Indeed, it is easily verified that any
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closed concave function with compact effective domain has stability set the
whole NR, which assures that the sup-convolution is well-defined in Cc(MR).
Unless otherwise stated, Cc(MR) will always be endowed with such a R≥0-
semimodule structure.
For any Haar measure µ on MR, consider the application

Iµ : Cc(MR)→ R

g 7→
∫

dom(g)
g dµ,

(1.15)

which takes finite values since the domain of g is compact. One observes
that Iµ is homogeneous of degree (n + 1). Indeed, for all g ∈ Cc(MR) with
dim dom(g) = n and λ ∈ R>0,

Iµ(λ.g) =

∫
dom(gλ)

(gλ) dµ =

∫
λdom(g)

λg(u/λ) dµ(u) = λn+1Iµ(g)

by a change of variables. When λ = 0 or the dimension of dom g is not
maximal, the same equality is obvious from the definition.

Theorem 1.5.1. There exists a unique mixed map

MIµ : Cc(MR)n+1 → R

for the map Iµ in (1.15).

Proof. Existence is proved in [PS08a, Proposition IV.5 (a) and (b)]. Unique-
ness is a consequence of Theorem 1.1.14 since R is a group without nontrivial
elements of n! torsion.

As a consequence of the general theory developed in section 1.1, one can
give the explicit form of MIµ: for g0, . . . , gn ∈ Cc(MR),

MIµ(g0, . . . , gn) =
n∑
k=0

(−1)n−k
∑

0≤i0<···<ik≤n
Iµ(gi0 � · · ·� gik).

The remark that the effective domain of the sup-convolution of two concave
functions is the Minkowski sum of their effective domains allows to recover
the equality of [PS08a, Définition IV.4].

Definition 1.5.2. Let g0, . . . , gn be closed concave functions on MR with ef-
fective domains the convex bodies Q0, . . . , Qn respectively. The mixed integral
of g0, . . . , gn with respect to µ is

MIµ(g0, . . . , gn) :=

n∑
k=0

(−1)n−k
∑

0≤i0<···<ik≤n

∫
Qi0+···+Qik

(gi0 � · · ·� gik) dµ.
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By definition, the mixed integral operator is symmetric and multilinear
with respect to sup-convolution and it satisfies

MIµ(g, . . . , g) = (n+ 1)!

∫
Q
g dµ

for every closed concave function g on MR with compact support Q. As for
the mixed volume and the mixed Monge-Ampère operator, when µ is the
normalized Haar measure volM on MR one will simply write MIM .

Relations with mixed volumes. The notion of mixed integral is closely
related to the one of mixed volume, from which it inherits many of its proper-
ties. Generally speaking, the mixed integral of concave functions over MR can
be written in terms of the mixed volume in MR × R of their hypographs. To
state the precise relation, one needs to introduce some notation. For a closed
concave function g with effective domain a convex body Q and a real number
γ ≤ minQ g, set

Γγ(g) :=
{

(x, t) : x ∈ Q, t ∈ [γ, g(x)]
}
⊂MR × R.

It is a convex body contained in the hypograph of g. Also, for a collection of
n+ 1 convex bodies Q0, . . . , Qn in MR and for every i ∈ {0, . . . , n}, let

MVM (Q̂i) := MVM (Q0, . . . , Qi−1, Qi+1, . . . , Qn)

denote the mixed volume of all the bodies of the family except Qi. Finally, for
a Haar measure µ on MR, denote by µ̃ the Haar measure on MR×R obtained
as the product of µ with the Lebesgue measure on R.

Proposition 1.5.3. For i = 0, . . . , n, let gi be a closed concave function
defined on a convex body Qi and γi a real number, with γi ≤ min

(
minQi gi, 0

)
.

Then

MIµ(g0, . . . , gn) = MVµ̃

(
Γγ0(g0), . . . ,Γγn(gn)

)
+

n∑
i=0

γi MVµ(Q̂i).

Proof. This is [PS08a, Proposition IV.5 (d)].

A useful consequence of the equality in the previous statement is the mono-
tonicity of the mixed integral operator.

Proposition 1.5.4. For i = 0, . . . , n, let gi and hi be closed concave functions
defined on the same convex body Qi, with hi ≤ gi. Then,

MIµ(h0, . . . , hn) ≤ MIµ(g0, . . . , gn).
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Proof. This is [PS08b, Proposition 8.1] and it follows immediately from Propo-
sition 1.5.3 and the monotonicity of mixed volumes.

Conversely, one can recover the mixed volume of the domains of a family
of n concave functions via mixed integrals. Recall that δ0 denotes the function
which is valued 1 on {0}, −∞ otherwise.

Proposition 1.5.5. For i = 1, . . . , n, let gi be a closed concave function
defined on a convex body Qi in MR. Then

MIµ(δ0, g1 . . . , gn) = MVµ(Q1, . . . , Qn).

Proof. For any i = 1, . . . , n choose γi ≤ min
(

minQi gi, 0
)

and let γ0 := −1.
With the notation Q0 = {0}, Proposition 1.5.3 implies that

MIµ(−δ0, g1, . . . , gn) = MVµ̃

(
Q0 × {−1},Γγ1(g1), . . . ,Γγn(gn)

)
+

n∑
i=0

γi MVµ(Q̂i).

Applying Corollary 1.2.14 one obtains

MIµ(−δ0, g1, . . . , gn) = −MVµ(Q1, . . . , Qn). (1.16)

Since δ0 � (−δ0) = ι0, which is the neutral element for the sup-convolution,
multilinearity and Proposition 1.1.13 yield

MIµ(δ0, g1, . . . , gn) + MIµ(−δ0, g1, . . . , gn) = 0,

hence, together with (1.16), the claim.

Corollary 1.5.6. For i = 0, . . . , n, let gi be a closed concave function defined
on a convex body Qi in MR. Then, for every c ∈ R,

MIM (g0, . . . , gn−1, gn + c) = MIM (g0, . . . , gn) + c ·MVM (Q0, . . . , Qn−1).

Proof. By writing gn + c = gn � (c · δ0) one has that

MIM (g0, . . . , gn−1, gn + c) = MIM (g0, . . . , gn−1, gn)

+ c ·MIM (g0, . . . , gn−1, δ0)

because of the multilinearity of the mixed integral and the fact that c·δ0 = δ0·c.
The claim follows then by symmetry from Proposition 1.5.5.
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Finally, analogously to Proposition 1.2.13, the mixed integral is invariant
with respect to translation of the entries.

Proposition 1.5.7. For i = 0, . . . , n, consider xi ∈ MR and gi a closed
concave function defined on a convex body Qi. Then,

MIµ(τx0g0, . . . , τxngn) = MIµ(g0, . . . , gn).

Proof. For every i = 0, . . . , n, choose γi ∈ R with γi ≤ min
(

minQi gi, 0
)
.

The definition of the translate yields that τxigi is defined on Qi + xi and that
Γγi(τxigi) = Γγi(gi) + (xi, 0). The claim then follows from Proposition 1.5.3
and Proposition 1.2.13.

A recursive formula. Mixed integrals satisfy a useful recursive relation,
which was proved in [PS08b, Proposition 8.5]. When the effective domains of
the involved functions are rational polytopes, one can interpret such a formula
in terms of mixed Monge-Ampère measures via Legendre-Fenchel duality.
Recall first that if u ∈ NQ \ {0}, the intersection M(u) := M ∩ u⊥ is a lattice
of rank n− 1 spanning the linear space u⊥ and hence it induces a normalized
Haar measure volM(u) on u⊥. Moreover, for every convex body Q in MR the
subset Qu is contained in an affine subspace of MR of codimension 1 and
parallel to u⊥. Then, if gi is a concave function defined on a convex body Qi
in MR for each i = 0, . . . , n, Proposition 1.5.7 allows to consider the mixed
integral with respect to volM(u) of g0|Qu0 , . . . , gn|Qun , as functions defined on

convex subsets of u⊥.
Finally, a vector u ∈ N is said to be primitive if it is nonzero and there is no
other element u′ ∈ N such that ku′ = u for some positive integer k.

Theorem 1.5.8. For i = 0, . . . , n, let gi be a continuous concave function on
a rational polytope Qi in MR. Then

MIM (g0, . . . , gn) = −
∑
u∈N

primitive

ΨQ0(u) MIM(u)

(
g1|Qu1 , . . . , gn|Qun

)
−
∫
NR

g∨0 dMMM

(
g∨1 , . . . , g

∨
n

)
,

the first sum being finite.
In particular, if gi is a piecewise affine concave function on Qi with hypograph
Γi for any i = 0, . . . , n, denoting by π : MR×R→MR the projection onto the



1.5. MIXED INTEGRALS 33

first factor, one has

MIM (g0, . . . , gn) = −
∑
u∈N

primitive

ΨQ0(u) MIM(u)

(
g1|Qu1 , . . . , gn|Qun

)

−
∑
v∈NR

g∨0 (v) MVM

(
π
(

Γ
(v,−1)
1

)
, . . . , π

(
Γ(v,−1)
n

))
.

Proof. By [BPS14, Proposition 2.5.23 (1)], any continuous concave function
on a polytope can be approximated, with respect to uniform convergence, by
a sequence of piecewise affine concave functions on the polytope itself. On
the other hand, the Legendre-Fenchel duality and the real Monge-Ampère
operator are continuous with respect to uniform limits of concave functions,
see [BPS14, Proposition 2.2.3] and [RT77, §3], respectively. It is not difficult
to show that the same holds for mixed integrals. Thanks to Proposition 1.4.8,
it is hence enough to prove the formula in the particular case of g0, . . . , gn
being piecewise affine concave functions.
Let hence gi be a concave piecewise affine function on the rational polytope
Qi in MR, Γi its hypograph, for i = 0, . . . , n. The choice of a basis of N
(and of the dual basis of M) endows NR and MR with an euclidean structure,
allowing to consider the sets

Sn−1 := {w ∈ NR : ‖w‖ = 1} ⊆ NR

and
Sn− := {(v, t) ∈ NR × R : ‖(v, t)‖ = 1, t < 0} ⊆ NR × R.

After a change of sign due to the use of a different notation, [PS08b, Propo-
sition 8.5] affirms that

MIM (g0, . . . , gn) = −
∑

w∈Sn−1

ΨQ0(w) MIn−1

(
g1|Qw1 , . . . , gn|Qwn

)
−
∑
r∈Sn−

ΨΓ0(r) MVn(Γr1, . . . ,Γ
r
n), (1.17)

where, on the right hand side, one refers to the mixed integral with respect to
the measure obtained restricting volM to w⊥ and to the mixed volume with
respect to the restriction of volM⊕Z to r⊥.
Concerning the first sum on the right hand side of (1.17), if a term in the sum
is different from zero, then there exists a subset I ⊂ {1, . . . , n} such that the
Minkowski sum of Qwi , with i ∈ I, is of dimension n−1; in particular, denoting
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Q := Q1 + · · ·+Qn, Qw = Qw1 + · · ·+Qwn needs to be of dimension n−1. As a
consequence, one can restrict the sum to the set of vectors w ∈ Sn−1 for which
Qw is a (n−1)-dimensional face of Q. This set is included in the set of vectors
of unitary length which are perpendicular to a (n− 1)-dimensional face of Q,
hence it is finite since Q is a polytope. Moreover, since Q is rational, the ray
spanned by such a vector w contains a unique primitive vector u ∈ N . The
linearity of ΨQ0 yields hence the equality∑

w∈Sn−1

ΨQ0(w) MIn−1

(
g1|Qw1 , . . . , gn|Qwn

)
=

∑
u∈N

primitive

ΨQ0(u)

‖u‖
MIn−1

(
g1|Qu1 , . . . , gn|Qun

)
.

The fact that the restriction of volM to u⊥ is equal to the measure volM(u)

multiplied by ‖u‖, see [BPS14, proof of Corollary 2.7.10], allows to conclude
that the first sum in (1.17) coincides with the desired one.
Regarding the second sum in (1.17), there exists an obvious bijection between
Sn− and NR given by associating to each r ∈ Sn− the only vector v ∈ NR such
that (v,−1) lies on the line spanned by r. Hence,∑
r∈Sn−

ΨΓ0(r) MVn(Γr1, . . . ,Γ
r
n) =

∑
v∈NR

ΨΓ0(v,−1)

‖(v,−1)‖
MVn

(
Γ

(v,−1)
1 , . . . ,Γ(v,−1)

n

)
.

Directly by the definition of the Legendre-Fenchel duality, one has the equality
ΨΓ0(v,−1) = g∨0 (v). The statement follows then from the fact that for every
Borel set E in (v,−1)⊥, the measure of E with respect to the restriction of
volM⊕Z to (v,−1)⊥ equals ‖(v,−1)‖ · volM (π(E)), again by [BPS14, proof of
Corollary 2.7.10].

Remark 1.5.9. For a rational polytope P of full dimension n in MR, every
facet F of P , that is a face of dimension n− 1, admits a distinguished orthog-
onal vector: it is the unique primitive vector vF ∈ N which satisfies P vF = F .
Under the additional assumption that the Minkowski sum Q := Q1 + · · ·+Qn
is of dimension n in MR, the formula in Theorem 1.5.8 can be written as

MIM (g0, . . . , gn) = −
∑
F

ΨQ0(vF ) MIM(vF )

(
g1|QvF1 , . . . , gn|QvFn

)
−
∫
NR

g∨0 dMMM

(
g∨1 , . . . , g

∨
n

)
,
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the first sum being over the finite set of facets of the polytope Q. Indeed,
in such a situation the application F 7→ vF realizes a bijection between the
set of facets of Q and the set of primitive vectors u ∈ N for which Qu is a
(n− 1)-dimensional face of Q, which are the only vectors for which the term
of the sum in the statement of the theorem does not vanish.

Remark 1.5.10. The statement of Theorem 1.5.8 can be reformulated in
terms of Legendre-Fenchel duality. For i = 0, . . . , n, let fi be a concave func-
tion on NR with stability set a rational polytope Qi in MR. Under the as-
sumption that Q1 + · · ·+Qn is of dimension n in MR, Remark 1.5.9 yields

MIM (f∨0 , . . . , f
∨
n ) = −

∑
F

ΨQ0(vF ) MIM(vF )

(
f∨1 |QvF1 , . . . , f∨n |QvFn

)
−
∫
NR

f0 dMMM

(
f1, . . . , fn

)
. (1.18)

Indeed, it is sufficient to readily apply the previous theorem to the functions
f∨0 , . . . , f

∨
n , which are continuous on their domain and satisfy the equality

(f∨i )∨ = fi for each i = 0, . . . , n by concavity and closedness. It is easy to
verify that the choice f0 = · · · = fn = f in (1.18) yields the formula in [BPS14,
Corollary 2.7.10].

An application of the recursive formula proved above is the computation
of the mixed integral when all except one entry are indicator functions in the
sense of Example 1.3.8.

Corollary 1.5.11. Let Q1, . . . , Qn be rational polytopes in MR and f a con-
cave function on NR with stability set a rational polytope. Then

MIM
(
ιQ1 , . . . , ιQn , f

∨) = −MVM (Q1, . . . , Qn) · f(0).

Proof. By symmetry, one can develop the recursive formula in Remark 1.5.10
with respect to f∨ to obtain

MIM
(
ιQ1 , . . . , ιQn , f

∨) = −
∫
NR

f dMMM

(
ι∨Q1

, . . . , ι∨Qn

)
,

the indicator functions ιQ1 , . . . , ιQn being zero where defined. The duality in
Example 1.3.8 and the fact that

MMM

(
ΨQ1 , . . . ,ΨQn

)
= MVM (Q1, . . . , Qn)δ0

because of Example 1.4.9 conclude the proof.
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A special case. It is interesting to give a formula expressing the mixed
integral of a (n + 1)-tuple of concave functions on MR where one of them is
the indicator function of a line segment.
Let m be a primitive vector of M and consider the quotient P := M/Zm.
Since m is primitive, P is a lattice of rank n − 1. By abuse of notation, let
π denote both the projection from M to P and the induced linear map from
MR to PR. For each closed concave function g defined on a compact subset B
of MR, let

π∗g : π(B)→ R, x 7→ max
y∈π−1(x)

g(y) (1.19)

be the direct image of g by π. It is a well defined closed concave function with
domain a bounded subset of PR, see [Roc70, Theorem 5.7 and Theorem 9.2].
Finally, for x1, x2 ∈MR, denote by x1x2 the line segment in MR with extremal
points x1 and x2. The following lemma is a generalization of [Ewa96, exercise
3 at page 128].

Lemma 1.5.12. In the above hypotheses and notations and for n ≥ 2, let
Q1, . . . , Qn−1 be polytopes in MR. Then,

MVM

(
0m,Q1, . . . , Qn−1

)
= MVP

(
π(Q1), . . . , π(Qn−1)

)
.

Proof. The vector m being primitive, it can be extended to a basis of the
lattice M , see for instance [Lek69, Theorem 5 at page 21]. We suppose fixed
throughout the proof such a basis (m1, . . . ,mn−1,m) of M and the induced
isomorphism MR ' Rn; under this identification, the normalized volume volM
corresponds to the Lebesgue measure voln on Rn. Since (π(m1), . . . , π(mn−1))
is a basis of P , such a lattice is isomorphic to the span of m1, . . . ,mn−1 in M
and hence it is identified with the linear subspace Rn−1 × {0} of Rn. More-
over, volP corresponds to the (n − 1)-dimensional Lebesgue measure voln−1

on Rn−1 × {0} and the map π to the vertical projection.
The claim reduces then to the particular case of a family of polytopes Q1, . . . ,
Qn−1 in Rn, m = (0, . . . , 0, 1) and π the vertical projection. Denoting by S the
vertical segment of unitary length and rearranging the terms in the definition
of mixed volume one obtains

MVn(S,Q1, . . . , Qn−1) =

n−1∑
k=1

(−1)n−1−k
∑

1≤i1<···<ik≤n−1

(
voln(S+Qi1+· · ·+Qik

)
−voln(Qi1+· · ·+Qik)

)
since the n-dimensional volume of a line segment vanishes for n ≥ 2. To
prove the claim it is hence enough to show that for each polytope Q in Rn the
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equality

voln(S +Q)− voln(Q) = voln−1(π(Q))

holds. But Q ⊂ S +Q and the difference of their volumes coincides with the
integral over π(Q) = π(S+Q) of the difference between the concave functions
parametrizing the roof of the polytope S + Q and Q respectively. Such a
difference being constantly equal to 1 on π(Q), the claim follows from the
definition of the Lebesgue integral, concluding the proof.

Proposition 1.5.13. In the above hypotheses and notations, let gi be a con-
tinuous concave function defined on a polytope Qi in MR, for i = 1, . . . , n.
Then,

MIM
(
ι0m, g1, . . . , gn

)
= MIP (π∗g1, . . . , π∗gn).

Proof. For n = 1, the claim follows from Corollary 1.5.11. Assume hence
n ≥ 2. Choosing γ0 = 0 and for each i = 1, . . . , n a nonpositive real number
γi such that γi ≤ minx∈Qi gi(x), Proposition 1.5.3 implies that

MIM
(
ι0m, g1, . . . , gn

)
= MVM⊕Z

(
(0, 0)(m, 0),Γγ1(g1), . . . ,Γγn(gn)

)
+

n∑
i=1

γi MVM

(
0m,Q1, . . . , Qi−1, Qi+1, . . . , Qn

)
.

By the hypotheses on m, (m, 0) is a nonzero primitive vector of the lattice
M ⊕ Z. The map π′ := π × idZ : M ⊕ Z → P ⊕ Z is a surjective group
homomorphism, giving (M ⊕ Z)/Z(m, 0) ' P ⊕ Z. Then, by Lemma 1.5.12,

MIM
(
ι0m, g1, . . . , gn

)
= MVP⊕Z

(
π′(Γγ1(g1)), . . . , π′(Γγn(gn))

)
+

n∑
i=1

γi MVP

(
π(Q1), . . . , π(Qi−1), π(Qi+1), . . . , π(Qn)

)
.

The statement follows hence from Proposition 1.5.3 applied to the concave
functions π∗g1, . . . , π∗gn, the direct image of gi by π being a concave function
defined on π(Qi) and satisfying

π′(Γγi(gi)) = {(π(y), t) ∈ π(Qi)× R : γi ≤ t ≤ gi(y)}
=
{

(x, t) ∈ π(Qi)× R : γi ≤ t ≤ (π∗gi)(x)
}

= Γγi(π∗gi)

for every i = 1, . . . , n.



38 CHAPTER 1. CONVEX GEOMETRY

Inequalities for mixed integrals. Mixed integrals are typically difficult
to compute. It is therefore useful to dispose of computable lower and upper
bounds for these quantities.

Theorem 1.5.14. For i = 0, . . . , n, let gi be a continuous concave function
on a rational polytope Qi in MR. Then,

MIM (g0, . . . , gn) ≥ max
i

(
− g∨i (0) ·MVM (Q̂i) +

∑
j 6=i

min
Qj

(gj) ·MVM (Q̂j)

)
and

MIM (g0, . . . , gn) ≤ −
n∑
i=0

g∨i (0) ·MVM (Q̂i).

Proof. For the first inequality, consider for each j = 0, . . . , n the constant
function fj on Qj with value minQj (gj), that is

fj = ιQj + min
Qj

(gj).

It is obvious from the definition that fj ≤ gj for each j = 0, . . . , n. Hence,
using Proposition 1.5.4 and repeatedly applying Lemma 1.5.6, one has, for
each i = 0, . . . , n,

MIM (g0, . . . , gn) ≥ MIM (f0, . . . , fi−1, gi, fi+1, . . . , fn)

= MIM (ιQ0 , . . . , ιQi−1 , gi, ιQi+1 , . . . , ιQn)

+
∑
j 6=i

min
Qj

(gj) ·MVM (Q̂j).

Corollary 1.5.11 and the arbitrairety of i ∈ {0, . . . , n} hence imply the first
inequality.
Similarly, for the second one, consider for each i = 0, . . . , n the constant
function hi on Qi with value maxQi(gi), that is

hi = ιQi + max
Qi

(gi) = ιQi − g∨i (0)

because of Proposition 1.3.7. The relation hi ≥ gi for each i = 0, . . . , n,
Proposition 1.5.4 and Lemma 1.5.6 give

MIM (g0, . . . , gn) ≤ MIM (h0, . . . , hn)

= MIM (ιQ0 , . . . , ιQn)−
n∑
i=0

g∨i (0) ·MVM (Q̂i).

The obvious remark that the first summand of the last term is zero concludes
the proof.



CHAPTER 2
Adelic Arakelov theory

In this chapter we picture the general framework in which we will be set in
the following. Before giving the definition of height and state some of its
properties, we briefly recall facts about adelic fields, giving all the results
that will be needed in the subsequent chapters. Then, we move to a succint
description of the basic constructions in Berkovich theory, which is the key
to do analysis on algebraic varieties; we insist on the common viewpoint and
language that can be adopted in the archimedean and non-archimedean case.

2.1
Absolute values

The arithmetic features of a field can be thought as the understanding of
the absolute values over it, that is of the ways of measuring the size of its
elements. We review here classical notions related to absolute values, fixing
the notations and terminology for the subsequent sections.

Definition and first examples. Recall that R≥0 denotes the set of non-
negative real numbers.

Definition 2.1.1. An absolute value on a field K is a map

| · | : K → R≥0

satisfying the following axioms for all x, y ∈ K:

39
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(i) |x| = 0 if and only if x = 0K

(ii) (multiplicativity) |x · y| = |x| · |y|

(iii) (triangle inequality) |x+ y| ≤ |x|+ |y|.

Remark 2.1.2. Axioms (i) and (ii) immediately imply that |1K | = 1 and that
|−1K | = 1. As a consequence,

∣∣x−1
∣∣ = |x|−1 for every x ∈ K∗ and |−x| = |x|

for every x ∈ K.

Example 2.1.3. For any field K, the function | · |tr defined as

|x|tr :=

{
0 if x = 0K

1 otherwise

is an absolute value, which is called the trivial absolute value over K.

Example 2.1.4. Over the field Q of rational numbers, the usual (euclidean)
absolute value is an absolute value, which will be denoted by | · |∞. Also, for
every prime number p, the function | · |p defined by

|x|p := p−`,

where x = p` · ab with a and b both coprime with p and ` ∈ Z, is an absolute
value over Q, called the p-adic absolute value.

The nature of an absolute value over a field is strongly determined by its
behaviour with respect to the sum and more precisely by meeting or not the
archimedean property.

Definition 2.1.5. If an absolute value over K satisfies, instead of axiom (iii)
in Definition 2.1.1, the stronger inequality

|x+ y| ≤ max{|x|, |y|} (2.1)

for all x, y ∈ K, then it is called a non-archimedean absolute value. Otherwise,
it is called an archimedean absolute value.

The inequality (2.1) appearing in the previous definition is often referred
to as the ultrametric inequality.
One can characterize non-archimedean absolute values in terms of the values
they take on a distinguished subring of K.
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Proposition 2.1.6. Let K be a field and, with abuse of notation, denote by
Z the image of the ring Z in K. For an absolute value | · | on K, the following
statements are equivalent:

1. | · | is non-archimedean

2. |m| ≤ 1 for every m ∈ Z

3. | · | is bounded on Z.

Proof. The implications (1) ⇒ (2) and (2) ⇒ (3) are obvious, since |1K | =
| − 1K | = 1. To prove (3)⇒ (1), suppose B ≥ 1 is an upper bound for | · | on
Z. For any x ∈ K with |x| ≥ 1 and for any positive integer n, the binomial
theorem and the definition of absolute value imply that

|x+ 1|n =
∣∣(x+ 1)n

∣∣ =

∣∣∣∣∣
n∑
k=0

(
n

k

)
xk

∣∣∣∣∣ ≤
n∑
k=0

∣∣∣∣∣
(
n

k

)∣∣∣∣∣|x|k ≤ (n+ 1)B|x|n,

hence
|x+ 1| ≤ n

√
(n+ 1)B · |x|.

Since the previous inequality must be satisfied for arbitrarily big n, one must
have that if |x| ≥ 1, then |x+ 1| ≤ |x|.
Choose now x, y ∈ K. Whenever one of the two elements is 0K , the ultrametric
inequality is trivially satisfied. Assume then that x, y ∈ K× and, without loss
of generality, that |x| = max{|x|, |y|}. Then, applying the previous inequality
to x/y ∈ K, which has absolute value greater than 1, one can deduce that

|x+ y| = |y|

∣∣∣∣∣xy + 1

∣∣∣∣∣ ≤ |y| |x||y| = |x| = max{|x|, |y|}.

The absolute value | · | is then non-archimedean.

Corollary 2.1.7. A field of positive characteristic only admits non-archimede-
an absolute values.

Proof. This follows from the previous proposition and the fact that the image
of Z in a field of positive characteristic is finite.

Example 2.1.8. Over any field K, the trivial absolute value | · |tr is a non-
archimedean absolute value. As a direct application of Proposition 2.1.6, the
p-adic absolute values over Q are non-archimedean, while the usual absolute
value is archimedean.
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Absolute values from geometry. Algebraic geometry provides a wide
source of examples for non-archimedean absolute values, via the following
construction. Let S be an integral noetherian normal separated scheme and let
K := K(S) be its function field. For any prime divisor T of S, which is a closed
integral subscheme of S of codimension 1, the local ring OT,S at the generic
point of T is an integrally closed noetherian local ring of Krull dimension 1,
hence a discrete valuation ring. Denote by ordT the associated valuation on
OT,S , which extends to a valuation on its fraction field, coinciding with K. For
any c > 1, the map c− ordT (·) is easily seen to be a non-archimedean absolute
value on K. Here are two particular cases, together with a convenient choice
of the constant c.

Example 2.1.9. Suppose that the scheme S is of dimension 1. Then, for
every f ∈ K, set

|f |T := c
− ordT (f)
T

with

cT =

{
e if κ(T ) is infinite

#κ(T ) otherwise
,

where κ(T ) denotes the residue field of S at T .
As a particular case, let K be a number field and denote by OK its ring of
integers. The affine scheme S = SpecOK is an integral noetherian normal
separated scheme with function field K. A prime divisor of S is a closed
point of S and it is then given by a maximal ideal p of OK with residue field
κ(p) ' OK/p, so that cp = #κ(p) = N(p), the absolute norm of p. For every
f ∈ K one has then that

|f |p = N(p)− ordp(f),

where ordp(f) coincides with the exponent of the ideal p in the factorization of
the principal fractional ideal (f). The absolute value | · |p is called the p-adic
absolute value on K, compatibly with the fact that when K = Q the function
| · |(p) coincides with the p-adic absolute value introduced in Example 2.1.4.

Example 2.1.10. Suppose that S is a normal projective variety of dimension
n over a field k and let E be an ample divisor over X. Then, for each f ∈ K
let

|f |T := c
− degE(T ) ordT (f)
k

with

ck =

{
e if k is infinite

#k otherwise
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and degE(T ) denoting the degree of T with respect to E as in [Ful98], see also

the beginning of section 2.4. In particular, the fact that c
degE(T )
k > 1 follows

from the Nakai-Moishezon criterion, see [Laz04, Theorem 1.2.23].

The definitions of the two previous examples agree in the case of a regular
projective curve S over a field k. In such a case, a prime divisor T is a
closed point of S, hence its residue field is a finite extension of k, see [Gro60,
I, ch.1, Proposition 6.4.2]. Hence, one has that cT = e if k is infinite, while
cT = #k[κ(T ):k] = #kdeg(T ) if k is finite. Notice that this choice of the constant
differs from the one made in [BPS14, Example 1.5.4].

Places. Every absolute value | · | over a field K induces a distance by setting
d(x, y) := |x− y| for every x, y ∈ K, and hence a topology on K.

Definition 2.1.11. Two absolute values on a field K are called equivalent if
they induce the same topology on K. A class of equivalent absolute values is
called a place of K.

For a place v over a field, we will often denote by | · |v an absolute value
in the class v. It is possible to characterize equivalent absolute values over a
field.

Proposition 2.1.12. Two absolute values | · |1 and | · |2 on a field K are
equivalent if and only if there exists λ ∈ R>0 such that

|x|1 = |x|λ2

for every x ∈ K. In particular, if | · |1 and | · |2 are equivalent absolute values
on K and x ∈ K, |x|1 = 1 if and only if |x|2 = 1.

Proof. This is [Lan02, Proposition XII.1.1].

Remark 2.1.13. Any positive power of a non-archimedean absolute value
is again an absolute value. This is not the case for an archimedean absolute
value | · |. In fact, | · |λ is an absolute value for any λ ∈ (0, 1], but the triangular
inequality can fail for λ > 1 (for instance, the function | · |2∞ on Q is not an
absolute value).

It follows immediately from Proposition 2.1.12 that the trivial absolute
value is only equivalent to itself. Another consequence of the proposition is
given in the following remark.
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Remark 2.1.14. In the setting of the previous subsection, suppose moreover
that S is a finite affine scheme, meaning that any finite subset of S is contained
in an affine open subset of S; this is true for instance if S is a quasi-projective
scheme over an affine scheme, see [Liu02, Proposition 3.3.36]. In such a case, if
T1 and T2 are two distinct prime divisors of S, the associated absolute values
| · |T1 and | · |T2 are nontrivial and inequivalent. Indeed, let SpecA be an affine
open subscheme of S containing the generic points of T1 and T2, corresponding
to two different prime ideals p1 and p2 of A of height 1. Since p1 6= p2 there
exists an element f ∈ p1 \ p2. Then, ordT1(f) ≥ 1, while ordT2(f) = 0, hence
the inequivalence of | · |T1 and | · |T2 follows from Proposition 2.1.12.

As an easy consequence of Proposition 2.1.12 and Proposition 2.1.6, the
property of being an archimedean or a non-archimedean absolute value is
stable under equivalence of absolute values and it is then meaningful to speak
about archimedean places and non-archimedean places over a field. The study
of the set of places over a field plays a central role in adelic Arakelov geometry.
As a basic example, the places over Q have been exhaustively described by
Ostrowski.

Theorem 2.1.15 (Ostrowski). Every non-trivial absolute value over Q is
equivalent either to a p-adic absolute value or to the usual absolute value.

Proof. This was proved in [Ost16], see also [Kob84, Theorem I.2.1].

Remark 2.1.16. The equivalent statement of Theorem 2.1.15 for a number
field K asserts that any non-trivial absolute value on K is equivalent either
to a p-adic absolute value for a maximal ideal p in OK as in Example 2.1.9 or
to the absolute value

| · |σ := |σ(·)|∞
with σ : K ↪→ C an embedding and | · |∞ the euclidean absolute value on C,
see [BS66, Theorem 1 at page 280] for a proof.

Algebraically closed complete fields. Fields equipped with absolute
values play a central role in the remaining of the chapter and hence deserve a
name.

Definition 2.1.17. A valued field is the datum of a field K together with an
absolute value | · | over it. An isometry between two valued fields (K1, | · |1)
and (K2, | · |2) is an isomorphism of fields ϕ : K1 → K2 such that

|x|1 = |ϕ(x)|2
for every x ∈ K1.
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A valued field (K, | · |) is said to be archimedean or non-archimedean de-
pending on the nature of the absolute value | · |. It is clear from the definition
that if (K1, | · |1) and (K2, | · |2) are isometrical valued fields, then (K1, | · |1)
is archimedean (respectively, non-archimedean) if and only if (K2, | · |2) is so.
In the adelic definition of height one will present later on, one needs to deal
with valued fields with friendly properties.

Definition 2.1.18. An algebraically closed complete field is a valued field
(K, | · |) with K an algebraically closed field which is complete for the topology
induced by | · |.

It is easy to construct an algebraically closed complete field from the datum
of a valued field (F, | · |F ). As a first step, the completion F̂ of F with respect
to the topology given by | · |F is naturally equipped with an absolute value
| · | extending | · |F . From [BG06, Remark 1.2.8], | · | extends uniquely to the
algebraic closure of F̂ . Finally, the completion K of the algebraic closure of
F̂ with respect to the corresponding topology is equipped with the extension
| · |K of the absolute value | · |. It follows for instance from [Bru63, Proposition
5, ch.2] and [BG06, Theorem 1.2.6] that K is algebraically closed, hence the
pair (K, | · |K) is an algebraically closed complete field.
Notice that, if instead of | · | one considers an equivalent absolute value | · |λ on
F , with λ ∈ R>0, the previous construction gives the same field K (since the
completion operation is purely topological) and the absolute value | · |λK on K.
Otherwise said, any place over F determines an algebraically closed complete
field (K, | · |K) uniquely up to equivalence of the absolute value.

Example 2.1.19. By Ostrowski theorem, the algebraically closed complete
fields that can be obtained from Q via the construction described above are
(Q, | · |tr) from the trivial absolute value, (Cp, | · |p) for each rational prime
number p and (C, | · |∞) from the unique archimedean absolute value.

The following well-known result characterizes algebraically closed complete
archimedean fields.

Theorem 2.1.20. Let (K, |·|) be an algebraically closed complete archimedean
field. Then, there exists an isometry between (K, | · |) and C with a power of
the usual absolute value. Moreover, this isometry is unique up to complex
conjugation.

Proof. Suppose that (K, | · |) is an algebraically closed complete archimedean
field. By Corollary 2.1.7, K has characteristic 0 and then it contains a copy of
Q, which we denote again by Q with abuse of notation. The restriction of | · |
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to Q is archimedean by Proposition 2.1.6 and then it is a power of the usual
absolute value on Q by Ostrowski theorem. Since K is complete with respect
to | · | it must then contain a copy of R. The condition of being algebraically
closed implies that K contains a copy of C. Then, (K, | · |) is a Banach algebra
over C and also a field; Gelfand-Mazur theorem, see [Rud91, Theorem 10.14],
asserts that K must be isomorphic to C. The isomorphism ϕ : C→ K induces
an absolute value |ϕ(·)| on C, which restricts on Q to a real positive power
| · |λ∞ of the usual absolute value. The construction presented before Example
2.1.19 proves that there exists a unique extension of | · |λ∞ from Q to C, that
is the same power of the euclidean absolute value on C. It follows that ϕ is
an isometry between (K, | · |) and (C, | · |λ∞).
Suppose now that ϕ1 and ϕ2 are two such isometries. Then ϕ1 ◦ ϕ−1

2 is an
isometry of (C, | · |λ∞), in particular a continuous automorphism of C. As such,
it fixes Q and, by continuity, also R. The equality C = R + iR and the fact
that i must be mapped to a square root of −1 imply that ϕ1 ◦ ϕ−1

2 is the
identity map or the complex conjugation, proving the last statement.

A consequence of this result is a characterization of the archimedean places
over a field, extending part of the statements of Remark 2.1.16.

Proposition 2.1.21. The archimedean places over a field K are in bijection
with the embeddings of K in C up to complex conjugation.

Proof. Let σ be an embedding of K into C. Then, the map | · |σ : K → R,
x 7→ |σ(x)|∞ is an absolute value over K. Moreover, as it restricts to the
usual euclidean one on the image of Z in K, it is archimedean. We claim that
the function which associates to σ the class of the absolute value | · |σ is a
bijection between the embedding of K in C up to complex conjugation and
the archimedean places of K.
One first shows that the map is injective. Suppose that σ1 and σ2 have the
same image, that is | · |σ1 and | · |σ2 are equivalent absolute values; since
each place of K has a unique representative restricting to the usual euclidean
absolute value on the image of Z in K, one has | · |σ1 = | · |σ2 . Let Kv be
the completion of the algebraic closure of the completion of K with respect
to such an absolute value. For i = 1, 2, there exists an extension σi of σi
to an isomorphism between Kv and C. Moreover, the map | · |σi : Kv → R,
x 7→ |σi(x)|∞ is an absolute value on Kv extending | · |σi ; it follows that σi
is an isometry between Kv and (C, | · |∞). By the uniqueness statement in
Theorem 2.1.20, σ1 and σ2 must coincide up to complex conjugation and the
same holds hence for σ1 and σ2.
For the surjectivity, let v be an archimedean place of K and denote by | · |v
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the representative of v restricting to the usual euclidean absolute value on the
image of Z in K. Denote again by | · |v the extension of the absolute value to
the algebraically closed complete field Kv. Let ι be the embedding of K in
Kv and ϕ the unique isometry between Kv and (C, | · |∞) given by Theorem
2.1.20, up to complex conjugation. The embedding ϕ ◦ ι of K into C is a
preimage of v since |x|ϕ◦ι = |ϕ(ι(x))|∞ = |ι(x)|v = |x|v for every x ∈ K by
definition of isometry.

Remark 2.1.22. The previous proposition immediately implies that there is
no archimedean absolute value on a field of positive characteristic, as already
proved, with a different argument, in Corollary 2.1.7.

2.2
Berkovich analytification

We recall here the basis of Berkovich’s theory, focusing as in [BPS14, §1.2] on
the description of the analytification functor for algebraic varieties; we refer
instead to [Ber90] for an exhaustive treatment of the subject. We underline
how Berkovich’s construction is compatible with the classical complex ana-
lytification and also briefly describe the Galois action on such analytic spaces.
We suppose fixed for this section a valued field (K, | · |), with K complete with
respect to the topology induced by | · |.

Analytification of a variety. For an affine variety X = SpecA over
SpecK, the structure morphism ι : K ↪→ A gives A the structure of a K-
algebra. By a multiplicative seminorm on A one means a map

‖ · ‖ : A→ R≥0

which is multiplicative, non identically zero and satisfying the triangle in-
equality for every pair of elements of A.

Definition 2.2.1. The Berkovich analytification of the affine variety X =
SpecA is the set

Xan := {‖ · ‖x, multiplicative seminorms on A : ‖ι(k)‖x = |k| for all k ∈ K}

endowed with the coarsest topology making the map

|a(·)| : Xan → R, ‖ · ‖x 7→ ‖a‖x (2.2)

continuous for each a ∈ A.
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A point of Xan will be denoted alternatively by x or by ‖ · ‖x. For every
‖ · ‖x ∈ Xan, the set ker ‖ · ‖x := {a ∈ A : ‖a‖x = 0} is a prime ideal in A,
hence one deduces a map

πX : Xan → X

‖ · ‖x 7→ ker ‖ · ‖x.
(2.3)

The map πX is continuous; indeed, for every principal open subset D(a) of X
with a ∈ A, one has

π−1
X (D(a)) = {‖ · ‖x ∈ Xan : ‖a‖ 6= 0},

which is open in Xan because of the continuity of the map (2.2).
In order to define a sheaf on Xan as in [Ber90, Definition 1.5.3], one needs an
analytic analogue of the residue field at a point. To do this, remark that for
x ∈ Xan the field κ(πX(x)) = Frac(A/ ker ‖·‖x) is endowed with a well-defined
norm ‖ · ‖x extending the absolute value on K; the corresponding completion
is denoted by H (x) and is called the complete residue field at x. For any
a ∈ A, denoting by a(x) the image of a in H (x) and by | · | the absolute
value on H (x), the equality |a(x)| = ‖a‖x justifies the notation used in (2.2).
Analytic functions can now be defined as functions to the complete residue
field which are locally approximated by algebraic rational functions.

Definition 2.2.2. An analytic function on an open subset U of Xan is a
function

f : U →
∐
x∈U

H (x)

such that:

1. f(x) ∈H (x) for every x ∈ U

2. for every x ∈ U there exists an open neighbourhood V of x, V ⊆ U ,
such that for every ε > 0 there exist a, b ∈ A with∣∣∣∣f(y)− a(y)

b(y)

∣∣∣∣ < ε

for all y ∈ V (one requires that b /∈ ker ‖ · ‖y for all y ∈ V ).

The set of analytic functions on U is a ring denoted by OXan(U). By
[Ber90, §1.5], OXan is a sheaf of ring turning (Xan,OXan) into a locally ringed
space.
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Remark 2.2.3. It follows from the definition that every regular function on
an algebraic open subset U of X induces by composition an analytic function
on Uan := π−1

X (U). This turns the map πX of (2.3) into a morphism of ringed
spaces.

When the varietyX is not necessarily affine, the analytic space (Xan,OXan)
is obtained by a gluing process, see [Ber90, Remark 3.4.2] for the details. It is
a locally ringed space called the Berkovich analytification of X. Its underlying
topological space enjoys friendly properties, as follows.

Theorem 2.2.4. For every variety X over K, the topological space Xan is
nonempty, locally compact, Hausdorff and arcwise connected.

Proof. See [Ber90, Theorem 1.2.1, Theorem 3.4.8 and Theorem 3.5.3].

Finally, OX -modules on X can be analytified via the classical inverse image
construction described in [Har77, II.5].

Definition 2.2.5. Let F be a sheaf of OX -modules on X. Then, the ana-
lytification of F is the sheaf of OXan-modules defined as F an := π∗XF .

The archimedean case. For an affine scheme X = SpecA over K, a K-
point of X corresponds to a morphism A → K extending the identity on
K. The composition of such a morphism with the absolute value | · | of K is
verified to be a multiplicative seminorm on A extending | · |, hence a point of
the analytic variety Xan. There exists then a map

X(K)→ Xan (2.4)

whose images are called the rigid points of Xan. The map in (2.4) is injective;
indeed, two different K-points of X need to have different images, then the
kernels of the corresponding maps A → K are different, implying that the
kernel of the associated seminorms are different.

Proposition 2.2.6. Let (K, | · |) be an algebraically closed complete archime-
dean field and X a variety over K. Then, the map in (2.4) realizes a bijection
between the set of K-points of X and the Berkovich analytification of X.

Proof. The statement being checked locally, one can assume that X is an
affine variety over SpecK, let X = SpecA.
The injectivity of the map in (2.4) is valid without assumptions on K and has
been proved before the statement of the proposition.
To check the surjectivity, let x ∈ Xan and consider its complete residue field
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H (x). It is a field extension of K, endowed with an absolute value | · |H (x)

satisfying |a(x)|H (x) = ‖a‖x for every a ∈ A, see the discussion of the previous
subsection. In particular, (H (x), | · |H (x)) is an archimedean complete field
extending K, then it embeds isometrically in (K, | · |) because of Theorem
2.1.20. Fix such an isometrical embedding ϕ. The association a 7→ a(x) gives
a morphism A → H (x) and hence composing with ϕ one gets a K-point of
X. This is a preimage of x by (2.4) since

|ϕ(a(x))| = |a(x)|H (x) = ‖a‖x

for all a ∈ A.

Remark 2.2.7. More generally, when (K, | · |) is an algebraically closed
complete archimedean field and X is a variety over K, the analytic space
(Xan,OXan) described in the previous subsection coincides with the usual
complex analytification of X treated in [Ser56], see [Ber90, Example 1.5.4 (i)]
for the case of the affine space.

A GAGA property. The features of the analytic space Xan are strictly
related to the ones of the original algebraic variety X. The following theorem
exhibits an instance of this correspondence that will be used later on.

Theorem 2.2.8. For a variety X over K, X is proper if and only if Xan is
compact.

Proof. When K is non-archimedean this is [Ber90, Theorem 3.4.8 (ii) and
Theorem 3.5.3 (ii)], otherwise this was proved in [Ser56, Proposition 6].

The interplay between the properties of an algebraic variety and the ones of
its analytification can be extended to the sheaf-theoretical level, see [Ser56, §3]
for the archimedean case and [Ber90, §3.4] for the non-archimedean nontrivial
one.

Galois action. For an affine variety X = SpecA over K, Berkovich’s con-
struction gives an analytic space which one here denotes by Xan

K to stress its
dependance from the base field. The completion CK of an algebraic closure of
K is an algebraically closed field coming endowed with the unique extension
of the absolute value of K, which one denotes again by | · | with abuse of
notation. The base change

XCK = Spec(A⊗K CK)
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is hence an affine variety over the algebraically closed complete field CK . In
particular, one can consider the Berkovich analytification of such a variety
and denote it by Xan

CK . The absolute Galois group Gal(K
sep
/K) of K acts

on Xan
CK . Indeed, for an element σ of such a group and a seminorm ‖ · ‖x on

A⊗K CK , let ‖ · ‖σ(x) be the map defined by∥∥∥∥∑
i

ai ⊗ αi
∥∥∥∥
σ(x)

:=

∥∥∥∥∑
i

ai ⊗ σ(αi)

∥∥∥∥
x

for every
∑

i ai ⊗ αi ∈ A ⊗K CK . It is easily checked that the map ‖ · ‖σ(x)

is a multiplicative seminorm on A⊗K CK . Moreover, it extends the absolute
value on K since |σ(·)| is an absolute value on K and then it must coincide
with | · | because of [BG06, Remark 1.2.8]; hence ‖ · ‖σ(x) is a point of Xan

CK .
The previous construction extends to the case of a general, not necessarily
affine, variety over K.

Proposition 2.2.9. For a variety X over K,

Xan
K ' Xan

CK/Gal(K
sep
/K).

Proof. This follows from [Ber90, Corollary 1.3.6].

Remark 2.2.10. Thanks to Proposition 2.2.9, the study of the analytic space
Xan
K can be reduced to the one of Xan

CK . In particular, it will be enough to
deal with varieties defined over algebraically closed complete fields and to
define objects which are compatible with the action of the absolute Galois
group. This agrees with the philosophy adopted in [BPS14, Remark 1.1.5]
when K = R, in which case the absolute Galois group consists of the identity
and of the complex conjugation.

2.3
Adelic fields

An adelic field is the fundamental basis over which one can develop a theory of
heights and can be intended as a field together with a rich arithmetic structure.
We present here the definition and basic examples of adelic fields (including
global fields) and introduce a notion of equivalence of adelic fields.

Definitions and examples. Loosely speaking, an adelic field is a field
enriched with a weighted collection of inequivalent absolute values over it.
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Definition 2.3.1. An adelic field is the datum (K, (| · |v, nv)v∈M) of a field
K, a set of places M over K and a choice, for each v ∈ M, of a real positive
number nv and a representant | · |v of v satisfying:

(i) if | · |v is non-archimedean, log | · |v is a discrete valuation on K up to a
multiplicative constant

(ii) for each x ∈ K∗, the set of v ∈M for which |x|v 6= 1 is finite.

It follows from Proposition 2.1.12 that the two conditions in the previous
definition do not depend on the choice of the representant of the place v.

Notation 2.3.2. To lighten the notation and when there is no ambiguity,
one will simply denote an adelic field by K. One will prefer the bold notation
when dealing with adelic fields, to underline the extra arithmetic structure
they enjoy.

Any valued field (K, | · |) has a trivial adelic structure, assuming that | · |
is associated with a discrete valuation if non-archimedean; it is indeed enough
to consider (K, | · |, 1). In particular, any field can be seen as an adelic field
by equipping it with its trivial absolute value.

Example 2.3.3. The archetypical example of an adelic field is the field Q of
rational numbers, with M the set of all its places as described in Ostrowski
theorem. Unless otherwise stated, Q is assumed to be equipped with the adelic
structure consisting of such a collection of places, representants chosen as in
Example 2.1.4 and weights equal to 1.

Example 2.3.4. Let S be a normal projective variety over a field k and E
an ample divisor over X. Let K = K(S) be the function field of S, M be the
set of prime divisors of S. With the collection of absolute values associated to
prime divisors as in Example 2.1.10 (which are inequivalent because of Remark
2.1.14) and weights equal to 1, one obtains an adelic structure on K.

If (K, (| · |v, nv)v∈M) is an adelic field, one denotes by M∞ the subset of
M consisting of archimedean places. The following property is an easy but
fundamental consequence of the definition.

Proposition 2.3.5. An adelic field K only admits finitely many archimedean
places.

Proof. By Corollary 2.1.7, one can reduce to the case of a field K of character-
istic zero. In such a situation, K contains a copy of Q and any archimedean
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absolute value | · |v on K restricts to an archimedean absolute value on Q. By
Ostrowski theorem, one has hence |2|v > 1. The second axiom in Definition
2.3.1 concludes the proof.

The product formula. For a nonzero element x of an adelic field K, the
defect of x is defined as

def(x) :=
∑
v∈M

nv log |x|v.

Notice that it is a well-defined real number because of the second axiom in
Definition 2.3.1. Moreover, the map def : K∗ → R is a group homomorphism;
its image is hence a subgroup of R denoted by def(K) and called the defect of
K. For instamce, if (K, | · |) is a valued field and | · | = a−ν(·) for some a ∈ R>0

and a discrete valuation ν, the defect of the adelic field (K, | · |, 1) is the value
group of K multiplied by log a.

Definition 2.3.6. An adelic field (K, (| · |v, nv)v∈M) is said to satisfy the
product formula if def(K) = {0}.

The adelic fields introduced above rejoice this fundamental property.

Example 2.3.7. The field Q with the adelic structure introduced in Example
2.3.3 satisfies the product formula because of [BG06, Proposition 1.4.4].

Example 2.3.8. For a normal projective variety S over a field k and an
ample divisor E, the function field K = K(S) with the adelic structure given
in Example 2.3.4 satisfies the product formula. Indeed, for every f ∈ K one
has∑
T∈M

log |f |T = − log(ck)
∑
T∈M

degE(T ) ordT (f) = − log(ck) degE(div(f)) = 0

because the degree of a principal divisor is zero, see also [BG06, Proposition
1.4.7].

Remark 2.3.9. The definition of adelic fields can be generalized to the one
of M -fields, see [Gub97, §2] for a precise treatment of this notion. In such a
setting, the set of places M is considered as a measure space (M, µ) and the
non-archimedean absolute values are not required to be associated to discrete
valuations.
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Equivalence of adelic fields. When K is an adelic field, a different
choice of representant for a certain place v can be compensated by a modifi-
cation on the corresponding weight, without changing the arithmetical nature
of K. One can make this formal thanks to the following.

Definition 2.3.10. Two adelic fields (K1, (|·|v, nv)v∈M1) and (K2, (|·|w, `w)w∈M2)
are said to be equivalent if there exist an isomorphism ϕ : K1 → K2 and a
bijection f : M1 →M2 satisfying

nv log |x|v = `f(v) log |ϕ(x)|f(v)

for all x ∈ K∗1 and v ∈M1.

The fundamental example of equivalent adelic fields is given by “rescaling”:
let (K, (| · |v, nv)v∈M) be an adelic field and choose λv ∈ R>0 for any place
v ∈M, with λv ∈ (0, 1] if v is archimedean. Then (K, (| · |λvv , nv/λv)v∈M) is an
adelic field equivalent to (K, (| · |v, nv)v∈M).

Proposition 2.3.11. If K1 and K2 are two equivalent adelic fields, def(K1) =
def(K2). In particular, K1 satisfies the product formula if and only if K2 does.

Proof. Denote by ϕ the isomorphism between K1 and K2 given by Definition
2.3.10. It follows immediately from the definition that def(x) = def(ϕ(x)) for
every x ∈ K∗1, which implies the claim.

Extensions of adelic fields. Let K be an adelic field and F a finite field
extension of K. For a place v on K with representant | · |v, the algebra F⊗KKv

can be decomposed as a direct sum of finitely many local Artinian Kv-algebras
Ew, one for each extension w of v to F, see [MS16, Lemma 3.4]. Set

nw :=
dimKv(Ew)

[F : K]
nv.

If N denotes the set of places restricting to a place in M and | · |w the unique
absolute value in w ∈ N restricting to the representant of a place in M, F can
be given the structure (F, (| · |w, nw)w∈N).

Proposition 2.3.12. Let K be an adelic field and let F be a finite field exten-
sion of K. With the structure described above, F is an adelic field. Moreover
F satisfies the product formula if K does.
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Proof. Any absolute value on F restricting to a non-archimedean absolute
value on K associated to a discrete valuation is still non-archimedean and
associated to a discrete valuation, see for instance [Lan02, Proposition XII.4.2].
To prove the second property in Definition 2.3.1, one can restrict to the non-
archimedean places in N because of the adelicity of K, Proposition 2.3.5 and
the fact that there are only finitely many places on F restricting to a fixed one
in M. Let hence x ∈ F∗ and denote by f its minimal polynomial over K. For
almost all v ∈M all the coefficients of f have absolute value 1; since there are
finitely many extensions of a fixed place of K to F, for almost all w ∈ N all
the coefficients of f have w-adic absolute value equal to 1. For such a w one
must have |x|w = 1; indeed, if by contradiction |x|w 6= 1 one would have that

0 = |0|w = |f(x)|w = max{|x|dw, 1},

with d = [F : K], which is absurd.
The last statement is [MS16, Proposition 3.7 (2)], see also [Gub97, Remark
2.5] for the case of arbitrary M -fields.

Unless otherwise stated, any finite extension of an adelic field K will be
considered endowed with the adelic structure described above. In particular,
finite extensions of the adelic fields introduced in Example 2.3.3 and Example
2.3.4 are adelic fields satisfying the product formula.

Remark 2.3.13. It was proven in [AW45, Theorem 3] that if an adelic field
K satisfies the product formula and its non-archimedean places have residue
field of finite order, then K must be a number field or a finite extension of
the function field of a regular projective curve. Such fields, which are so
axiomatically characterized, are also known as global fields.

2.4
Degrees, local and global heights

Let (K, (| · |v, nv)v∈M) be an adelic field satisfying the product formula and
consider a fixed normal proper variety X of dimension n over K for the entire
section. Using the recent developments of the notions of differential forms and
currents over Berkovich spaces, we define local heights of cycles on X in an
analogous way at all places. We finally combine local information to introduce
global heights.
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Algebraic cycles. Arakelov geometry allows to define heights as real-
valued functions on the set of subvarieties of X of arbitrary dimension. A
good environment for this purpose is provided by the notion of cycles on X.

Definition 2.4.1. For d ∈ N, a d-cycle on X is a finite formal sum with
integer coefficients of irreducible subvarieties of X of dimension d.

With the obvious sum operation, the set of d-cycles on X is a group and
it is denoted by Zd(X). It is the free abelian group

Zd(X) =
⊕
V

Z · [V ]

generated by the d-dimensional irreducible subvarieties V of X. Whenever
d > n, the group Zd(X) is trivial, Zn(X) ' Z sinceX is the only n-dimensional
irreducible subvariety ofX while the group Zn−1(X) is called the group of Weil
divisors of X. For a cycle Z on X, the topological union of the subvarieties of
X appearing with nonzero coefficients in Z is called the support of Z and is
denoted by |Z|. One says that a cycle Z of X is effective if all the coefficients
of Z are nonnegative; one write in this case Z ≥ 0.
From a nonzero rational function f ∈ K(X)∗ one can define the Weil divisor
[div(f)] of X as in [Har77, Definition at page 131]. This allows to associate
to a Cartier divisor D = {(Uα, fα)}α on X both a Weil divisor [D] and a line
bundle O(D) by setting

O(D)(U) :=
{
f ∈ K(X)∗ : ([div(f)] +D)|U ≥ 0

}
for each open subset U of X. It is the sub OX -module of the constant sheaf
KX of rational functions generated by f−1

α on Uα. The section 1 of KX

produces a distinguished rational section sD of O(D) satisfying div(sD) = D,
where div(s) denotes the Cartier divisor corresponding to the rational section
s. By abuse of notation, the support |D| of a Cartier divisor is meant to be
the support of the associated Weil divisor [D].

Definition 2.4.2. A family of cycles Z1, . . . , Zr on X is said to intersect
properly if for every I ⊆ {1, . . . , r}, each irreducible component of

⋂
i∈I |Zi|

has codimension
∑

i∈I codim(Zi).
Similarly, let Z be a d-dimensional cycle on X and let si be a rational section
of a line bundle Li on X for i = 1, . . . , r. Then s1, . . . , sr are said to meet
Z properly if for every I ⊆ {1, . . . , r}, each irreducible component of |Z| ∩⋂
i∈I |div(si)| has dimension d−#I.
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Let ϕ : Y → X be a proper morphism between two varieties over K; this
is for example the case when ϕ is a closed immersion or when it is a morphism
between two proper varieties. Then, ϕ induces a group homomorphism ϕ∗ :
Zd(Y )→ Zd(X) for each d ∈ N by setting

f∗V :=

{
[K(V ) : K(f(V ))]f(V ) if dim(f(V )) = dim(V ),

0 otherwise

for any irreducible subvariety V of Y of dimension d. For Z ∈ Zd(Y ), the
cycle ϕ∗Z ∈ Zd(X) is called the push-forward of Z via ϕ, see [Ful98, §1.4] for
more details.
The first steps of the intersection theory developed in [Ful98] allow to define
the intersection between a Cartier divisor and a cycle on X, provided they
intersect properly.

Definition 2.4.3. Let V be an irreducible subvariety of X of dimension d,
with ι : V ↪→ X the corresponding closed embedding. Let L be a line bundle
on X and s a rational section of L meeting V properly. The intersection
cycle between s and V is defined as

div(s) · V := ι∗[div(ι∗s)]

where div(ι∗s) denotes the Cartier divisor on V associated to the section ι∗s
of the restricted line bundle ι∗L .
Extending by linearity, one defines the intersection cycle div(s) ·Z between a
d-cycle Z of X and a section s of L meeting Z properly.

It follows from the definition that the intersection cycle div(s)·Z, whenever
defined, is a (d − 1)-dimensional cycle on X. An extension of the notion
presented in the previous definition and the study of its properties can be
found in [Ful98, §2.3].

Remark 2.4.4. One can study the effect of base change on the group of alge-
braic cycles of X. Let V be an irreducible subvariety of X of pure dimension d
and F a finite extension of K. The base change VF of V is a separated scheme
of finite type over F, with a closed embedding in XF; however, it does not
need to be reduced and irreducible. The definition in [Ful98, §1.5] allows to
associated to it a d-cycle [VF] of XF. Extending by linearity, one obtains a
group homomorphism

extF/K : Zd(X)→ Zd(XF). (2.5)
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The set of all the algebraic extensions of K in a fixed algebraic closure K are a
directed set and the groups of d-cycles on XF with the corresponding extension
morphisms form a direct system. Its direct limit is canonically isomorphic to
the group Zd(XK).

Degrees. The notion of height of a cycle in Arakelov geometry arises as an
arithmetic analogue of the one of degree in classical intersection theory. For
this reason, one recalls in this subsection such a geometric construction. One
assumes here that the variety X is smooth and projective.

Definition 2.4.5. Let Z be a d-cycle on X and D1, . . . , Dd a family of Cartier
divisors over X. The degree of Z with respect to D1, . . . , Dd is defined by the
recursive formula

degD1,...,Dd
(Z) := degD1,...,Dd−1

(div(sd) · Z)

for any choice of a rational section sd of O(Dd) meeting Z properly, and by
setting

deg
(∑

p

mpp
)

:=
∑
p

mp[κ(p) : K]

for any 0-cycle
∑

pmpp on X.

The previous definition is well-posed. First, the assumptions on X assure
that there always exists a section sd of O(Dd) meeting Z properly, see [Liu02,
Proposition 9.1.11]. Secondly, the degree of Z with respect to D1, . . . , Dd

does not depend of the choice of the sections si of O(Di) for any i = 1, . . . , d
because of the discussion in [Ful98, §2.5]. One has then a map

degD1,...,Dd
: Zd(X)→ Z

satisfying the following properties.

Theorem 2.4.6. Let X be a smooth and projective variety over K and D1, . . . ,
Dd a family of divisors over X. Then

1. the degree of d-dimensional cycles on X is multilinear and symmetric in
the choice of the divisors and invariant under linear equivalence

2. (Projection formula) if ϕ : Y → X is a dominant morphism between two
smooth and projective varieties over K,

degϕ∗D1,...,ϕ∗Dd(Z) = degD1,...,Dd
(ϕ∗Z)

for any d-cycle Z of Y
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3. if Z ∈ Zd(X) and F is a finite field extension of K,

degD1,...,Dd
(Z) = degD1,F,...,Dd,F(extF/K(Z))

with extF/K as in (2.5) and Di,F standing for the extension of Di to XF
for any i = 1, . . . , d.

Proof. The first property follows from [Ful98, Proposition 2.3 (b) and Theorem
2.4] and directly from the definition. The projection formula is a consequence
of [Ful98, Proposition 2.3 (c)]. The last property is proved in [Ful98, Example
6.2.9].

Remark 2.4.7. For a morphism ϕ : Y → X and a Cartier divisor D on X,
the pull-back of D by ϕ is only defined when the image of ϕ is not contained
in the support of D. In particular, the dominance hypothesis in Theorem
2.4.6 (2) assures that the left hand side term of the equality therein is well-
defined. A more general version of the projection formula is given in [Ful98,
Proposition 2.3 (c)] for arbitrary proper morphsims and pseudo-divisors in the
sense of [Ful98, Definition 2.2.1].

Remark 2.4.8. Since birational morphisms are dominant, the projection for-
mula in Theorem 2.4.6 allows to extend the notion of degree to proper ambient
varieties which only are birational to smooth and projective varieties, without
necessarily being such.

Remark 2.4.9. The notion of degree arises from the deeper definition of an
intersection theory on X and can be introduced in terms of a top intersection
product of the class of a cycle in the Chow ring of X with the Chern class of
a line bunde, see [Ful98] for a detailed treatment or also [Har77, Appendix A]
for a more concise introduction.

Notation 2.4.10. If d ∈ N and D is a Cartier divisor over a proper variety
X which is birational to a smooth and projective variety, it is customary to
denote by degD the application degD,...,D on Zd(X).

Metrized divisors. To define heights in the setting of adelic Arakelov ge-
ometry, one needs to consider an additional datum of analytic nature. For
every v ∈M, denote by Cv the completion of the algebraic closure of the com-
pletion of K with respect to v. It comes equipped with an absolute value that
one denotes again, with abuse of notation, by | · |v. The symbol Xan

v stands
for the Berkovich analytification, as in section 2.2, of the base change of X to
the field Cv. Because of [Gro61, Proposition 5.4.2 (iii)] and Theorem 2.2.8,
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the topological space underlying such an analytic space is compact. Also, a
base change and Definition 2.2.5 allow to consider the v-adic analytification
L an
v of a line bundle L on X; it is an analytic line bundle over Xan

v .

Definition 2.4.11. Let D be a Cartier divisor on X and v a place of K. A
v-adic metric on D is an assignment associating to every open subset U of
Xan
v and analytic local section s ∈ O(D)an

v (U) a continuous function

‖s(·)‖ : U → R≥0 (2.6)

such that

(i) it is compatible with restrictions

(ii) it is invariant under the action of Gal(Kv
sep
/Kv)

(iii) ‖s(p)‖ = 0 if and only if s(p) = 0

(iv) ‖(fs)(p)‖ = |f(p)|v · ‖s(p)‖ for all f ∈ OXan
v

(U) and p ∈ U .

A Cartier divisor together with a v-adic metric is also called a v-adic metrized
divisor and denoted by Dv or also by (D, ‖ · ‖).

To give a definition of height for a large spectrum of metrized divisors, it
is particularly useful to identify a class of relevant choices of metrics. A v-adic
metric on a Cartier divisor D is said to be elementary if

• when v is archimedean, the function ‖s(·)‖ in (2.6) is smooth for every
open U and local section s on U , see also [Cha11, §1.2.1]

• when v is non-archimedean, the function ‖s(·)‖ is induced by an algebraic
model of X and D over C◦v := {α ∈ Cv : |α|v ≤ 1}, see [GK17, §8.12].

Remark 2.4.12. For a non-archimedean place v of K, it is equivalent for a
v-adic metric on D to be induced by an algebraic or by a formal model of D,
see [GK17, §8.8 and Proposition 8.13].

To a Cartier divisor D equipped with an elementary v-adic metric one can
associate a (δ-)form of bidegree (1, 1), called the first Chern form of Dv and
denoted by

c1(Dv),

see [Cha11, §1.2.2] when v is archimedean, [GK17, Definition 9.12 and Re-
mark 9.16] otherwise. Also, an elementary v-adic metric is said to be semi-
positive if c1(D1) is a non-negative form on Xan

v , see [Cha11, §1.2.7] when v
is archimedean, [GK17, Definition 2.6] otherwise for more precise definitions.
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Remark 2.4.13. In the non-archimedean case, an elementary metric is semi-
positive if and only if the associated algebraic model D is vertically nef, see
[GK15, Theorem 6.10 (1) and (4)]. This was indeed the original definition
given by Zhang in [Zha95a, §1.2] and coincides with the one in [BPS14, Defi-
nition 1.3.12].

A v-adic metrized divisor Dv is said to be semipositive if the corresponding
metric can be approximated, in the sense of [BPS14, §1.4], by semipositive
elementary metrics.
Sums and pull-backs of v-adic metrized divisors can be defined as in [Cha11,
§1.2]; in particular, sums and pull-backs of v-adic semipositively metrized
divisor are still semipositively metrized.

Local heights. Fix a place v ∈M. For any d-dimensional subvariety Y of
X and for any d-tuple of v-adic semipositive metrized divisors D0,v, . . . , Dd−1,v

on X, there exists a positive measure

c1(D0,v) ∧ · · · ∧ c1(Dd−1,v) ∧ δY an
v

(2.7)

on Xan
v , which was first introduced in [Cha06, Définition 2.4 and Proposition

2.7 b)] in the non-archimedean setting and extended in [Gub07, §3.8] under
weaker assumptions. The suggestive notation for the measure in (2.7) is com-
patible, in the elementary case, with the wedge product of the first Chern
forms, see [CD12, §6.9] and [GK17, Theorem 10.5] for the non-archimedean
setting. In the general case, it is obtained by a limit argument.

Definition 2.4.14. Let Z be a d-dimensional cycle in X and
(
D0,v, s0

)
, . . . ,(

Dd,v, sd
)

a collection of v-adic semipositive metrized divisors on X with ra-
tional sections of the corresponding line bundles, with s0, . . . , sd meeting Z
properly. The v-adic local height of Z in X with respect to

(
Di,v, si

)
for

i = 0, . . . , d is defined, linearly in its irreducible components, by the recursive
formula

hD0,v ,...,Dd,v
(Z; s0, . . . , sd) := hD0,v ,...,Dd−1,v

(Z · div(sd); s0, . . . , sd−1)

−
∫
Xan
v

log ‖sd‖d,v c1(D0,v) ∧ · · · ∧ c1(Dd−1,v) ∧ δZan
v
,

where ‖ · ‖d,v denotes the metric of Dd,v and one sets the height of the zero
cycle to be zero.
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The integrals appearing in the previous definition are well-defined, as
shown in [CT09, Théorème 4.1] in both the archimedean and non-archimedean
setting, and [GH17, Theorem 1.4.3] for the case of non-archimedean valuations
which are not necessarily discrete. The v-adic local height function is more-
over symmetric and multilinear with respect to sums of metrized divisors with
rational sections of the associated line bundles, see [Gub03, Proposition 3.4
and Remark 9.3].

Global heights. The adelic structure on the field K allows to define a
semipositive metrized divisor D on X by the choice, for every place v ∈ M,
of a continuous semipositive v-adic metric on O(D)an

v . This global definition
induces a notion of a v-adic local height function at each place of K. However,
some care has to be taken when defining global heights as sums of such v-adic
local heights, since they do not need to be well-defined in general.

Definition 2.4.15. A d-dimensional irreducible subvariety Y of X is said
to be integrable with respect to the choice of d + 1 semipositive metrized
divisors D0, . . . , Dd if there exists a birational proper map ϕ : Y ′ → Y , with
Y ′ projective, and sections si of ϕ∗O(Di) for each i = 0, . . . , d, meeting Y ′

properly, such that the v-adic local height

hϕ∗D0,v ,...,ϕ∗Dd,v
(Y ′; s0, . . . , sd)

is zero for all but finitely many places v ∈ M. A d-dimensional cycle is said
to be integrable if each of its irreducible components is. If Y is an integrable
d-dimensional irreducible subvariety, the global height of Y in X with respect
to D0, . . . , Dd is defined as

hD0,...,Dd
(Y ) :=

∑
v∈M

nv hϕ∗D0,v ,...,ϕ∗Dd,v
(Y ′; s0, . . . , sd).

The global height of integrable cycles is defined by linearity.

The previous definition does not depend on the choice of the projective
resolution Y ′ of Y nor of the sections s0, . . . , sd, as a consequence of [Gub03,
Proposition 3.6 and Remark 9.3], [BPS14, Theorem 1.4.17 (3)] and the product
formula on K.
The following statement, which resumes the properties of the global height, is
the analogous of Theorem 2.4.6.

Theorem 2.4.16. Let X be a variety over K and D0, . . . , Dd a family of
semipositive metrized divisors over X. Then
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1. the global height of d-dimensional cycles on X is multilinear and sym-
metric in the choice of the semipositive metrized divisors

2. (Arithmetic projection formula) if ϕ : Y → X is a dominant morphism
between two proper varieties over Ks and Z is a d-cycle in Y , the cycle
ϕ∗Z is integrable with respect to D0, . . . , Dd if and only if Z is integrable
with respect to ϕ∗D0, . . . , ϕ

∗Dd and in this case

hϕ∗D1,...,ϕ∗Dd
(Z) = hD1,...,Dd

(ϕ∗Z)

3. if Z ∈ Zd(X) and F is a finite field extension of K with the adelic
structure described in Proposition 2.3.12,

hD1,...,Dd
(Z) = hD1,F,...,Dd,F

(extF/K(Z))

with extF/K as in (2.5) and Di,F standing for the extension of Di to XF
for any i = 1, . . . , d.

Proof. The first statement is proved in [Gub03, Proposition 3.4 and Remark
9.3]. For (2), the statement about integrability is [BPS14, Proposition 1.5.8
(2)], while the equality of the global heights follows from the same property
on local heights, as proved in [Gub03, Proposition 3.6 and Remark 9.3] in the
more general context of pseudo-divisors. Last, property (3) is proved as in
[BPS14, Proposition 1.5.10].

Remark 2.4.17. It follows from the invariance of the height under extension
of the base field proved in Theorem 2.4.16 (3) that one can speak about the
global height of a cycle Z defined over K. Indeed, it is sufficient to compute
the height of Z in any finite adelic field extension F of K over which Z is
defined.

Notation 2.4.18. When d ∈ N and D is a semipositive metrized divisor on
X, one says that Z ∈ Zd(X) is D-integrable if it is integrable with respect to
D, . . . ,D. Moreover, as in Notation 2.4.10 for the degree, one denotes by hD
the application hD,...,D defined on the set of d-dimensional D-integrable cycles
of X.





CHAPTER 3
Toric varieties

Toric geometry lies in a beautiful crossroad between algebraic geometry and
convex geometry and represents the universe we will be set in for the rest
of the study. After recalling the first definitions and characterizations of
toric varieties and toric divisors, we present some geometrical result as the
combinatorial description of the Weil divisor of a Laurent polynomial and of
its intersection with toric orbits. Then, we move to the arithmetic setting
by resuming the main constructions of [BPS14]. To keep the treatment of
archimedean and non-archimedean places on equal footing, we rephrase their
description of the Chambert-Loir measure of semipositive toric metrized divi-
sors in terms of minimal boundaries of tropical fibers. We finally extend their
integrability result to arbitrary base adelic fields.

3.1
Toric geometry

We recall briefly in this section the basic constructions and results in toric
geometry, including the combinatorial characterization and description of toric
varieties and toric Cartier divisors. We then give a useful result on suitable
toric resolutions.
A field K is fixed for the whole section.

65
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Toric varieties. Recall that by a split torus over K one means a group
scheme over K isomorphic to

Gn
m,K := SpecK[T±1

1 , . . . , T±1
n ]

for some n ∈ N. The lattice of one-parameter subgroups of a split torus T is
the free group of rank n

N := Hom(Gm,T).

Its dual lattice

M := N∨ = Hom(N,Z)

is canonically isomorphic to the lattice Hom(T,Gm) of characters of T. A basis
of the K-algebra K[M ] will be denoted, accordingly to [Ful93, beginning of
§1.3], by (χm)m∈M and the element of K[M ] called Laurent polynomial over
K.

Definition 3.1.1. A toric variety with torus T is a normal variety X over
K equipped with a dense open embedding T ↪→ X and an action of T on X
extending the multiplication of T.

If X is a toric variety with torus T one has hence the following commutative
diagram

T×K X // X

T×K T //

OO

T

OO

of schemes over K.
Toric varieties with torus T admit a nice combinatorial description in terms
of convex geometrical objects in the real vector space NR = N ⊗Z R. By a
strongly convex polyhedral rational cone in NR one here means a convex set of
the form

σ = cone(u1, . . . , ur)

with r ∈ N, u1, . . . , ur ∈ N , notation as in Example 1.2.1 and having {0} as
a face (see other equivalent definitions in [CLS11, Proposition 1.2.12]). The
vector u1, . . . , ur are called the generators of σ.

Notation 3.1.2. From now on, whenever dealing with toric varieties, by a
cone in NR one will always mean a strongly convex polyhedral rational cone.
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A fan in NR is a finite collection of cones in NR such that any face of
σ ∈ Σ is still in Σ and the intersection of two cones in Σ is a face of both.
The collection of cones of dimension k in the fan Σ will be denoted by Σ(k).
The support of a fan Σ in NR is the set-theoretical union of its cones, that is

|Σ| :=
⋃
σ∈Σ

σ.

From any fan Σ in NR one can construct a toric variety XΣ as follows. For
any cone σ in Σ, consider its dual

σ∨ := {x ∈MR : 〈x, u〉 ≥ 0 for all u ∈ σ} ⊆MR.

It is a cone in MR of dimension n, see [CLS11, Proposition1.2.12]. The spec-
trum of the corresponding monoid algebra

Xσ := SpecK[M ∩ σ∨]

is an affine normal variety of dimension n. Gluing such varieties accordingly
to the intersection of the corresponding cones as in [Ful93, §1.4] gives a normal
variety XΣ which is indeed toric.

Example 3.1.3. By definition, a fan Σ always contains the trivial cone {0}.
The affine variety associated to it is

X{0} = SpecK[M ∩ {0}∨] = SpecK[M ]

which is isomorphic to the torus T. Such an open subset of XΣ is called the
dense open orbit of the toric variety XΣ.

One main feature of toric geometry is that any toric variety with torus T
arises from a fan.

Theorem 3.1.4. Let X be a toric variety with torus T. Then, there exists a
fan Σ in NR such that X is isomorphic to XΣ.

Proof. This was proved in [KKMS73, §I.2, Theorem 6 (i)], see also [CLS11,
Corollary 3.1.8].

The geometric properties of the toric variety XΣ can be read on the cor-
responding fan. Here are two examples of this dictionary.

Proposition 3.1.5. Let XΣ be a toric variety over K. Then
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1. XΣ is proper if and only if the fan Σ is complete, that is |Σ| = NR

2. XΣ is smooth if and only if each cone σ ∈ Σ is generated by a part of a
basis of N .

Proof. The first property is [CLS11, Theorem 3.4.6], the second is [CLS11,
Theorem 3.1.19 (a)].

Morphisms between toric varieties preserving the toric structure also admit
an interpretation in terms of convex geometry. Let T1 and T2 be two split
tori over K with lattice of one-parameter subgroups N1 and N2 respectively.
Given two toric varieties X1 and X2 with torus T1 and T2 respectively, a toric
morphism between X1 and X2 is a morphism ϕ : X1 → X2 mapping the
dense open orbit X1,0 ' T1 of X1 into the dense open orbit X2,0 ' T2 of X2

(see Example 3.1.3) and such that the restriction ϕ|X1,0 : X1,0 → X2,0 is a
group scheme homomorphism. Toric morphisms are equivariant in the sense
that they are compatible with the torus action, see [CLS11, page 126]. In the
following statement, one denotes by `R the unique extension of a linear map
` : N1 → N2 to a R-linear map (N1)R → (N2)R.

Theorem 3.1.6. In the above notations, let also Σ1 and Σ2 be the fans of X1

and X2 respectively in (N1)R and (N2)R. There is a bijection between the set
of toric morphisms from X1 to X2 and the set of linear maps ` : N1 → N2 for
which for any cone σ ∈ Σ1 the set `R(σ) is contained in a cone of Σ2.
Moreover, the toric morphism ϕ : X1 → X2 corresponding to ` is proper if
and only if `−1

R (|Σ2|) = |Σ1|.

Proof. The first part of the statement was proved in [Oda88, Theorem 1.13],
the second one is [Oda88, Theorem 1.15].

Toric orbits. For a toric variety X over K with torus T, the torus action
determines a decomposition of X into orbits, see [Ful93, §3.1] for a more
detailed treatment. To define them, consider for any cone τ of dimension k in
Σ the variety

Oτ = SpecK[M ∩ τ⊥], (3.1)

where τ⊥ = {x ∈ MR : 〈x, u〉 = 0 for all u ∈ τ}. This is a split torus of
dimension n− k over K with lattice of one-parameter subgroups

N(τ) := N/(N ∩ τ)
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and it is called the orbit associated to τ . As an example, when τ = {0} one
obtains the dense open orbit of Example 3.1.3. Such an orbit admits a closed
embedding in Xτ defined by the morphism of K-algebras

K[M ∩ τ∨] � K[M ∩ τ⊥], χm 7→

{
χm if m ∈ τ⊥

0 otherwise
. (3.2)

The Zariski closure V (τ) of Oτ in the full toric variety XΣ is called the orbit
closure associated to τ . It is a closed subvariety of XΣ of dimension n − k
which is isomorphic to a toric variety with torus Oτ . Its corresponding fan
is the star of Σ at τ , denoted by Σ(τ), that is the fan in N(τ)R consisting
of the projections σ(τ) of the cones σ in Σ containing τ . The isomorphism
between XΣ(τ) and V (τ) can be visualized explicitly by gluing the morphisms
Xσ(τ) → Xσ defined by

K[M ∩ σ∨] � K[M ∩ σ∨ ∩ τ⊥], χm 7→

{
χm if m ∈ τ⊥

0 otherwise
(3.3)

for every σ ∈ Σ containing τ .

Remark 3.1.7. For every τ ∈ Σ(1), the orbit closure V (τ) is an irreducible
subvariety of XΣ of codimension 1, hence a prime Weil divisor on XΣ not
intersecting the dense open orbit X0.

Divisors on toric varieties. Given a toric variety X over K with torus
T, the Cartier divisors on X admitting a combinatorial description are the
ones behaving well under the torus action.

Definition 3.1.8. A toric Cartier divisor on the toric variety X is a Cartier
divisor D on X satisfying π∗2D = α∗D, with α : T×KX → X the torus action
given by Definition 3.1.1 and π2 : T×KX → X the projection onto the second
factor.

A virtual support function on a fan Σ in NR is a function Ψ : |Σ| → R whose
restriction to any cone of Σ is a linear integral functional; otherwise said, for
every cone σ ∈ Σ there exists a vector mσ ∈M for which Ψ(u) = 〈mσ, u〉 for
every u ∈ σ. If XΣ is the toric variety associated to the fan Σ, any virtual
support function on Σ gives a well-defined toric Cartier divisor by considering

DΨ := {(Xσ, χ
−mσ)}σ∈Σ,

see for instance [Ful93, §3.3]. All toric Cartier divisors arise in this way.
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Theorem 3.1.9. Let XΣ be the toric variety associated to the fan Σ and let D
be a toric Cartier divisor on XΣ. Then, there exists a virtual support function
Ψ on Σ such that D = DΨ.

Proof. This is [KKMS73, §I.2, Theorem 9].

The geometric properties of DΨ corresponds to the ones of the function
Ψ, as follows.

Proposition 3.1.10. The divisor DΨ on the toric variety XΣ is generated by
global sections if and only if Ψ is concave. Moreover, it is ample if and only if
Ψ is strictly concave on Σ, that is the domain of linearity of Ψ coincide with
the cones of Σ.

Proof. This is proved in [Ful93, §3.4].

To a toric Cartier divisor DΨ one can associate a line bundle O(DΨ) and a
distinguished rational section sΨ of O(DΨ), also called the distinguished toric
section, in such a way that div(sΨ) = DΨ. The associated Weil divisor is

[div(sΨ)] = [DΨ] =
∑
τ∈Σ(1)

−Ψ(vτ )V (τ), (3.4)

where vτ denotes the minimal nonzero integral vector of τ for any τ ∈ Σ(1),
see [Ful93, page 66]. In particular, sΨ is regular and nowhere vanishing on
X0. A toric divisor DΨ also determines a polyhedron

∆Ψ := {x ∈MR : 〈x, u〉 ≥ Ψ(u) for all u ∈ |Σ|} (3.5)

in MR, which is bounded whenever XΣ is proper, see [Ful93, Proposition at
page 67]. If DΨ is generated by global sections, ∆Ψ coincides with the stability
set of Ψ and Ψ is the support function of ∆Ψ in the sense of Remark 1.2.5.

Toric resolutions. In the study of the arithmetic of cycles in a toric
variety the following notion will be relevant. Recall that a polytope P in MR
determines a concave function on NR as in Remark 1.2.5.

Definition 3.1.11. A complete fan Σ in NR and a polytope P ⊂MR are said
to be compatible if the support function ΨP is linear on each cone of Σ.

The following useful results shows that, up to a birational transformation,
a toric variety can be always supposed to enjoy friendly properties and have
fan compatible with any finite number of given polytopes.
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Proposition 3.1.12. Let XΣ be a proper toric variety over K and P1, . . . , Pr
a finite family of polytopes in MR. Then, there exist a smooth projective toric
variety XΣ′ with fan Σ′ in NR and a proper toric morphism π : XΣ′ → XΣ

satisfying:

1. π restricts to the identity on the dense open orbit of XΣ′ and XΣ

2. P1, . . . , Pr are compatible with Σ′.

Proof. One can always refine the complete fan Σ to a fan Σ′ in such a way
that ΨP1 , . . . ,ΨPr are linear on each cone of Σ′. After possibly refining again,
one can suppose that Σ′ is the fan of a projective toric variety (because of the
toric Chow lemma, see [CLS11, Theorem 6.1.18]) and that each of its cones is
generated by a part of a basis of N (see [Ful93, §2.6]). The associated toric
variety XΣ′ is smooth, projective and it satisfies (2). Finally, since Σ′ is a
refinement of Σ, the toric morphism π corresponding to the identity on N by
Theorem 3.1.6 is proper and restricts to the identity on the dense open orbit
of XΣ′ .

3.2
Divisors of Laurent polynomials

The present section focuses on the combinatorial description of the Weil divisor
on a toric variety of the rational function coming from a Laurent polynomial.
This result will be used in the proof of the main theorems in the next chapter.
We then also study its intersection with toric orbits.

The setting. Fix for all the section the choice of a fieldK and of a split torus
T of dimension n over K. Let N be its lattice of one-parameter subgroups,
M its dual and NR and MR the associated vector spaces. Choose a smooth
proper toric variety XΣ with torus T. The associated fan is then complete by
Proposition 3.1.5 and all of its cones are generated by part of a basis of N .
The dense open orbit of XΣ described in Example 3.1.3 is isomorphic to T; the
function field of XΣ coincides hence with K(M). In particular, any Laurent
polynomial f =

∑
cmχ

m is a regular function on X0 and corresponds hence to
a rational function on XΣ, which one denotes again, with abuse of notation,
by f . The following notion, which can be introduced in a more general setting,
is playing a role in all the following description.
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Definition 3.2.1. Let R be a ring and f ∈ R[M ] a Laurent polynomial with
coefficients in R, f =

∑
m cmχ

m. The Newton polytope NP(f) of f is the
convex hull in MR of the finite set {m ∈M : cm 6= 0R}.

The Newton polytope of f is a polytope in MR according to Definition
1.2.6 because of Remark 1.2.7.

The divisor. For each cone τ in Σ of dimension 1, denote by vτ its minimal
nonzero integral vector, which generates τ ∩N as a monoid. If σ is a smooth
cone, that is generated by part of a basis of N , of dimension n in NR, the
collection (vτ )τ , with τ ranging in the set of one dimensional faces of σ, is a
basis of N and hence gives a dual basis (v∨τ )τ of the lattice M .

Lemma 3.2.2. Let σ be a strongly convex polyhedral rational cone in NR.
For every face τ of σ of dimension 1, the orbit closure V (τ) in the affine toric
variety Xσ is the subvariety corresponding to the prime ideal

p =
(
χm : m ∈ σ∨ ∩M,m /∈ τ⊥

)
of O(Xσ) = K[M ∩ σ∨]. Moreover, if σ is smooth and of maximal dimension
in NR, p is principal and generated by χv

∨
τ .

Proof. Recall that the orbit closure V (τ) is the toric variety SpecK[M ∩σ∨∩
τ⊥] and can be embedded in Xσ = SpecK[M ∩σ∨] via the surjection in (3.3).
Then V (τ) is seen as the subvariety of Xσ corresponding to the kernel of such
homomorphism, that is

p =
⊕

m∈σ∨∩M
m/∈τ⊥

Kχm =
(
χm : m ∈ σ∨ ∩M,m /∈ τ⊥

)
,

proving the first statement.
Suppose now that σ is a smooth cone of dimension n in NR; denote by
v1, v2, . . . , vn the basis of N given by the minimal integral vectors of the rays
of σ, with the assumption that v1 = vτ . By definition,

σ = R≥0v1 + · · ·+ R≥0vn.

As a result, denoting by (v∨i )i=1,...,n the basis of M dual to (vi)i=1,...,n, one has
that

〈v∨i , u〉 = λi ≥ 0
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for every i ∈ {1, . . . , n} and for every u =
∑

i λivi ∈ σ. In particular, v∨τ ∈ σ∨.
It is easy to check that v∨τ is integrally valued on each element of N and hence
it belongs to M . It follows then from 〈v∨τ , vτ 〉 = 1 that(

χv
∨
τ

)
⊆ p.

For the reverse inclusion, consider m ∈ σ∨ ∩M with m /∈ τ⊥. By assumption,
〈m, vτ 〉 ∈ Z and 〈m, vτ 〉 ≥ 0; moreover, since m /∈ τ⊥, one has 〈m, vτ 〉 ≥ 1.
For each u =

∑
i λivi ∈ σ one has

〈m− v∨τ , u〉 = λ1〈m− v∨τ , vτ 〉+
∑
i≥2

λi〈m, vi〉 ≥ λ1 (〈m, vτ 〉 − 1) ≥ 0.

As a result, m−v∨τ ∈ σ∨∩M and hence χm = χv
∨
τ ·χm−v∨τ ∈

(
χv
∨
τ
)
, completing

the proof.

Remark 3.2.3. The last statement of the previous lemma is not true for a
general strongly convex polyhedral rational cone σ of maximal dimension in
N . For example, if σ has more than n faces of dimension 1, the divisor class
group of Xσ, which is generated by the classes of the orbit closures associated
to the rays, turns out to be nontrivial, as a consequence of [Ful93, Proposition
at page 63].

For a nonzero Laurent polynomial f ∈ K[M ], the subset V (f) of zeros of
f in X0 is a closed subscheme of the dense open orbit. Its closure in XΣ is a
closed subscheme of XΣ, denoted by V (f). Taking into account multiplicities,

one can consider the associated Weil divisor
[
V (f)

]
. It is the zero cycle when

f is a monomial.

Theorem 3.2.4. For a nonzero Laurent polynomial f ,[
div(f)

]
=
[
V (f)

]
+
∑
τ∈Σ(1)

ΨNP(f)(vτ )V (τ),

where ΨNP(f) denotes the support function of the Newton polytope of f . In par-

ticular,
[
V (f)

]
is rationally equivalent to the cycle −

∑
τ∈Σ(1) ΨNP(f)(vτ )V (τ)

on XΣ.

Proof. By [Ful93, formula at page 55], the irreducible components of XΣ \X0

are exactly the orbit closures V (τ), with τ ranging in the set of 1 dimensional
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cones of Σ. Since moreover f is a regular function on X0, it follows from the
classical theory of divisors that[

div(f)
]

=
[
V (f)

]
+
∑
τ

ντ (f)V (τ),

where ντ (f) ∈ Z is the order of vanishing of f along V (τ). The statement of
the theorem then follows from the fact that, for every τ ∈ Σ(1), such an order
equals ΨNP(f)(vτ ).

This claim can be proved locally; fix a ray τ ∈ Σ(1) and let σ be any maximal
dimensional cone of Σ containing τ . The fan being complete and consisting of
smooth cones, such a σ exists and the minimal integral vectors v1, . . . , vn of
its rays are a basis of N . Assume moreover that v1 = vτ and, for simplicity,
denote by R := K[M ∩ σ∨] the ring of regular functions over Xσ. The order
of vanishing of f along V (τ) is computed as the valuation of f determined by
the valuation ring Rp, the localization of R at the prime ideal p corresponding
to the subvariety V (τ) in Xσ. By Lemma 3.2.2, the cone σ being smooth and
maximal dimensional, one has that p =

(
χv
∨
τ
)
. The maximal ideal pRp of Rp

is hence the principal ideal generated by χv
∨
τ .

Suppose first that f =
∑

m cmχ
m lies in R, that is every m appearing in f

belongs to M ∩ σ∨. By definition of the valuation in Rp,

ντ (f) = max
{
l ∈ N : f ∈ (pRp)

l
}

= max
{
l ∈ N : f ∈

(
χlv
∨
τ
)}

= max
{
l ∈ N : χm−lv

∨
τ ∈ Rp for all m with cm 6= 0

}
.

The condition χm−lv
∨
τ ∈ Rp is equivalent to the fact that 〈m, vτ 〉 ≥ l. Indeed,

if the first is true, then

〈m, vτ 〉 − l = 〈m− lv∨τ , vτ 〉 ≥ 0.

Conversely, for each u =
∑

i λivi ∈ σ one has

〈m− lv∨τ , u〉 = λ1(〈m, vτ 〉 − l) +
∑
i≥2

λi〈m, vi〉 ≥ 0,

and so m− lv∨τ ∈ σ∨ ∩M . As a consequence,

ντ (f) = max {l ∈ N : 〈m, vτ 〉 ≥ l for all m with cm 6= 0}
= min {〈m, vτ 〉 : m with cm 6= 0} = ΨNP(f)(vτ ).
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For a general f =
∑

m cmχ
m, the fact that σ∨ has dimension n in MR (σ is

indeed strongly convex) assures that there exists a big enough vector m0 ∈
M ∩ σ∨ for which m+m0 ∈M ∩ σ∨ for each m such that cm 6= 0. Hence

f =

∑
m cmχ

m+m0

χm0
,

with both the numerator and the denominator belonging to R. Applying the
result for such elements one deduces

ντ (f) = ντ

(∑
m

cmχ
m+m0

)
− ντ (χm0) = ΨNP(f)+m0

(vτ )− 〈m0, vτ 〉

= ΨNP(f)(vτ ),

concluding the proof.

Remark 3.2.5. Given a toric Cartier divisor DΨ constructed from a virtual
support function Ψ on NR, it can be deduced from (3.4) and Theorem 3.2.4
that f is a regular global section of O(DΨ) if and only if

ΨNP(f)(vτ ) ≥ Ψ(vτ )

for every τ ∈ Σ(1). Since the rays of Σ span the whole NR, this is equivalent
to the fact that NP(f) ⊆ ∆Ψ, in the notation of (3.5). This result agrees with
[Ful93, Lemma at page 66].

3.3
Outside the dense open torus

Let f be a nonzero Laurent polynomial with coefficients in K with Newton
polytope compatible with a complete fan Σ. The zero set of f in X0 can
be closed to the proper toric variety XΣ. We here study, via initial forms of
polynomials, the intersection of this hypersurface with the toric orbits of XΣ.

Faces associated to cones. For a polytope P and a compatible fan Σ, it
is interesting to associated to each cone of the fan a face of the polytope.

Definition 3.3.1. Let P be a polytope in MR and σ a strongly convex rational
polyhedral cone in NR on which the support function ΨP is linear. The σ-face
of P is the subset

F (σ, P ) := P u

of P , with u ∈ ri(σ).
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The fact that the definition of this set does not depend on the choice of u
and a more explicit description of it are given in the following.

Proposition 3.3.2. In the hypotheses of Definition 3.3.1, the set F (σ, P )
does not depend on the choice of u ∈ ri(σ). Moreover, for any finite family
w1, . . . , wr of generators of σ,

F (σ, P ) = Pw1 ∩ · · · ∩ Pwr .

Proof. The cone σ being strictly convex, one can first assume that the vectors
w1, . . . , wr are the generators of the rays of σ. Hence, any u ∈ ri(σ) can be
written as

u =

r∑
i=1

λiwi,

with λ1, . . . , λr ∈ R>0. For any x ∈ P , moreover, one has that

〈x, u〉 −ΨP (u) =

r∑
i=1

λi
(
〈x,wi〉 −ΨP (wi)

)
since ΨP is linear on σ. By definition of the support function of a polytope,
〈·, v〉−ΨP (v) is nonnegative on P for every v ∈ NR. Hence, the left hand side
of the previous equality is zero if and only if each summand on the right hand
side is, which implies

P u =
r⋂
i=1

{x ∈ P : 〈x,wi〉 −ΨP (wi) = 0} =
r⋂
i=1

Pwi .

In particular, this does not depend on the choice of u ∈ ri(σ). An analogous
argument shows that for every w ∈ σ one has Pw ⊇

⋂r
i=1 P

wi . This inclusion,
together with the fact that any family of generators of σ contains a generator
for each ray, imply the general statement.

Remark 3.3.3. The argument of the proof also shows that for every u ∈ σ
not necessarily in the relative interior of σ one has F (σ, P ) ⊆ P u.

Recall that for a cone σ in NR, its orthogonal is the linear subspace of MR
defined as σ⊥ = {x ∈ MR : 〈x, u〉 = 0 for all u ∈ σ}. Its dimension coincides
with codim(σ), which is the codimension of the minimal linear space of NR
containing σ.
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Remark 3.3.4. An argument analogous to the one of the proof of Proposition
3.3.2 shows that

σ⊥ =
⋂
u∈σ

u⊥ = w⊥1 ∩ · · · ∩ w⊥r

for any finite family w1, . . . , wr of generators of σ.

Corollary 3.3.5. The σ-face of P is a nonempty face of P described as
F (σ, P ) = (a + σ⊥) ∩ P for any a ∈ F (σ, P ). In particular, it has dimen-
sion at most codim(σ).

Proof. The fact that F (σ, P ) is a nonempty face of P is immediate from its
definition. For every u ∈ σ, Remark 3.3.3 implies a ∈ P u, hence the equality
P u = (a + u⊥) ∩ P . The claim F (σ, P ) = (a + σ⊥) ∩ P follows then from
Proposition 3.3.2 and Remark 3.3.4.

However, it can happen that the dimension of F (σ, P ) is strictly smaller
than codim(σ), as the following example shows.

Example 3.3.6. Let ∆ be the unit simplex in R2 and σ the one dimensional
cone in R2 generated by the vector (1, 1). The support function of ∆ is conic,
hence it is linear on σ. By definition,

F (σ,∆) = ∆(1,1) = {(x1, x2) ∈ ∆ : x1 + x2 = 0} = {(0, 0)},

while codim(σ) = 1.

Intersections with toric orbits. Let f ∈ K[M ] be a nonzero Laurent
polynomial with Newton polytope NP(f) ⊂MR,

f =
∑

m∈NP(f)∩M

cmχ
m (3.6)

with cm ∈ K. The following definition will be crucial for the rest of the
subsection.

Definition 3.3.7. For a face F of NP(f), the F -initial form of f is the
polynomial

inF (f) :=
∑

m∈F∩M
cmχ

m.

Example 3.3.8. In particular inNP(f)(f) = f , while if m is a vertex of NP(f),
the initial form in{m}(f) coincides with the monomial of order m of f .
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Fix now the choice of a fan Σ compatible with NP(f) and denote by V (f)
the closure of the zero set of f in the torus to the toric variety XΣ. One is
interested in describing the intersection of V (f) with the toric orbits of XΣ.
Recall that the toric orbits of XΣ correspond to the cones of the fan Σ and that
one denotes by Oσ the orbit associated to the cone σ ∈ Σ; it is of dimension
dim(σ) and can be abstractly described as SpecK[M ∩ σ⊥]. Denote also by
F (σ) the σ-face F (σ,NP(f)) as in Definition 3.3.1. If a ∈ F (σ) ∩M , then
F (σ) ⊂ a+ σ⊥ because of Corollary 3.3.5 and then

inF (σ)(f)

χa
=

∑
m∈F (σ)∩M

cmχ
m−a

is a Laurent polynomial in K[M ∩ σ⊥].

Theorem 3.3.9. In the above hypotheses and notations, for every cone σ of
Σ, the intersection of V (f) with the torus orbit Oσ is the zero set of

inF (σ)(f)

χa

in Oσ, for any choice of a ∈ F (σ) ∩M .

Proof. Consider the affine toric subvariety Xσ = SpecK[M ∩ σ∨] of XΣ. The
toric orbit Oσ is a closed subscheme of Xσ, with immersion described in (3.2).
Let a ∈ F (σ) ∩M . Because of Remark 3.3.3, a ∈ NP(f)u for every u ∈ σ,
hence m− a ∈ σ∨ for all m ∈ NP(f)∩M ; it follows that f ·χ−a ∈ K[σ∨ ∩M ].
From Theorem 3.2.4 and [Ful93, Lemma at page 61],

[div(f · χ−a)]

is the cycle associated to the closure of V (f) to Xσ. Then, the closure of the
zero set of f to Xσ is the closed set in Xσ defined by the ideal of K[M ∩ σ∨]
generated by f · χ−a. Its intersection with the closed subvariety Oσ of Xσ is
then given by the zero set in Oσ of the image of f · χ−a by (3.2). With the
notation of (3.6) and because of Corollary 3.3.5, this coincides with∑

m−a∈σ⊥∩M

cmχ
m−a =

∑
m∈a+(σ⊥∩M)
m∈NP(f)

cmχ
m−a =

∑
m∈F (σ)∩M

cmχ
m−a,

implying the claim.

Remark 3.3.10. When σ = {0}, one has that F (σ) = NP(f) and hence that
inF (σ)(f) = f , as in Example 3.3.8. The claim of Theorem 3.3.9 is obvious in
such a case, Oσ being the dense open orbit of XΣ.
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3.4
Heights of toric varieties

We recall here briefly the main results of [BPS14] concerning the adelic Arakelov
geometry of toric varieties. The choices of a base adelic field K satisfying the
product formula and of a proper toric variety XΣ of dimension n over K are
supposed to be fixed for the whole section.

Tropicalizations. Let T be a split torus of dimension n over K. As before,
denote by N and M the character and cocharacter groups of T and by NR
and MR the associated (reciprocally dual) real vector spaces. For every place
v ∈M, denote by Cv the completion of an algebraic closure of the completion
of K with respect to v. The v-adic analytic torus is then by definition

Tan
v = {‖ · ‖x multiplicative seminorm on Cv[M ] : ‖k‖x = |k|v for all k ∈ Cv},

see section 2.2, and it is equivalently denoted by Tan
v or Tan

Cv to stress the field
of definition.

Remark 3.4.1. Suppose that v is an archimedean place of K. Because of
Proposition 2.2.6 the set Tan

v is in bijection with the set of Cv-points of TCv
by setting, for every Cv-point p,

‖f‖p := |f(p)|v

for all f ∈ Cv[M ]. Proposition 2.1.20 asserts now that there exists, up to
complex conjugation, a unique isometry σ between Cv and C, hence

‖f‖p = |f(p)|v = |σ(f(p))|∞ = |fσ(σ(p))|∞

where fσ =
∑

m σ(cm)χm if f =
∑

m cmχ
m. The remark that the Cv-points of

TCv are in bijection with the C-points of TC since the two fields are isomorphic
implies that the set Tan

v consists of the points ‖ · ‖z with z ∈ TC(C), where

‖f‖z := |fσ(z)|∞

for every f ∈ Cv[M ]. For an archimedean place v of K one will always identify
Tan
v with TC(C) unless otherwise mentioned.

The following map plays a crucial role in all the following treatment.
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Definition 3.4.2. Let v ∈M. The v-adic tropicalization map is the applica-
tion tropv : Tan

v → NR = Hom(M,R) defined by

(tropv(‖ · ‖x)) (m) := − log ‖χm‖x

for every ‖ · ‖x ∈ Tan
v .

Thanks to the formalism of Berkovich construction, such a map turns out
to be a continuous application.

Remark 3.4.3. The v-adic tropicalization map coincides (up to a field exten-
sion) with the valuation map val used by Burgos Gil, Philippon and Sombra,
see [BPS14, (4.1.2) and Remark 4.1.3].

Remark 3.4.4. In the archimedean case, the choice of a basis for M allows
to write the tropicalization map in the more familiar form

trop((z1, . . . , zn)) = (− log |z1|, . . . ,− log |zn|),

which coincides with the one considered in (1.14).

Remark 3.4.5. When v is non-archimedean, one can construct a suitable
section of tropv. Indeed, for each u ∈ NR, one can consider the map associating
to a Laurent polynomial f =

∑
cmχ

m over Cv the real value

‖f‖κv(u) := max
m
|cm|ve−〈m,u〉. (3.7)

It is easy to verify that ‖·‖κv(u) is a multiplicative seminorm on Cv[M ] extend-
ing the absolute value | · |v of Cv; hence it corresponds to a point κv(u) ∈ Tan

v ,
called the Gauss point over u. The application κv : NR → Tan

v defined by

κv : u→ ‖ · ‖κv(u)

is proved to be a continuous section of tropv, see for instance [BPS14, Proposition-
Definition 4.2.12], κv coinciding with θ0 ◦ e in the cited reference.

The v-adic tropicalization map allows to consider the following fundamen-
tal construction. Set

Bv :=

{(
S1
)n

if v is archimedean

{1} otherwise
. (3.8)
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It is a compact group. There exists an embedding ιv : NR×Bv → Tan
v , fitting

in the commutative diagram

NR × Bv Tan
v

NR

ιv

tropv
(3.9)

with the vertical arrow being the projection onto the first factor. In the
archimedean case, it is determined by the choice of a homeomorphism

(
C∗
)n '

NR ×
(
S1
)n

, while in the non-archimedean case it coincides with the map
(u, 1) 7→ κv(u). The image of ιv is homeomorphic to NR × Bv and it is a
deformation retract of the analytic torus, coinciding with it if v is archimedean.

Amoebas. It can be seen that for any closed subvariety Y of T and for every
v ∈ M, there is a natural analytic closed embedding corresponding to an
inclusion of sets Y an

v ⊆ Tan
v , making the following definition meaningful.

Definition 3.4.6. Let f be a non zero Laurent polynomial in K[M ] and V (f)
the associated closed subvariety of T. For v ∈M, the subset

Af,v := tropv (V (f)an
v ) ⊆ NR

is called the v-adic amoeba of f .

The so-defined set has been widely studied in the literature. When v is
archimedean, it coincides (up to a change of sign) with the notion of amoeba
studied by Gelfand, Kapranov and Zelevinsky in [GKZ08] and by Passare and
Rullg̊ard in [PR04].
In the non-archimedean case, the amoeba of a non zero Laurent polynomial
f coincides with the corner locus of the associated tropical polynomial (see
[EKL06, Theorem 2.1.1]), and hence can be weighted to be a balanced poly-
hedral complex of pure dimension n− 1. It exhibits moreover a duality with
the subdivision of the Newton polytope of f coming from the valuation of its
coefficients, as shown in [EKL06, Corollary 2.1.2].

Arakelov toric geometry. Let now consider the proper toric variety XΣ

and let T be its torus, with lattice of one-parameter subgroups N . As usual,
let M be the dual of N and NR and MR the associated real vector spaces. Let
DΨ be the toric divisor on XΣ associated virtual support function Ψ on Σ as in
Theorem 3.1.9. The metrics on O(DΨ) admitting a combinatorial description



82 CHAPTER 3. TORIC VARIETIES

are the ones which are invariant under the action of a certain compact torus,
see [BPS14, §4.2] for more details about this notion. In concrete terms, a
v-adic metric ‖ · ‖v on O(DΨ)an

v is called a v-adic toric metric if the map

(X0)an
v → R, p 7→ ‖sΨ(p)‖v

is constant along the fibers of the v-adic tropicalization map tropv : (X0)an
v →

NR introduced in Definition 3.4.2. A toric divisor D together with a v-adic
toric metric on O(D) is called a v-adic toric metrized divisor. To a v-adic
toric metrized divisor Dv one can associate the real-valued map ψDv on NR
satisfying the equality

ψDv ◦ tropv = log ‖sD‖v (3.10)

on the analytic torus (X0)an
v , sD being the distinguished rational section of

O(D).
The map ψDv , which will be referred to as the metric function of Dv, has been
introduced by Burgos Gil, Philippon and Sombra in their study of Arakelov
geometry of toric varieties to encode many arithmetic properties of Dv, see
[BPS14, Chapter 4]. For instance, it is smooth in the archimedean case if the
metric is smooth, while in the non-archimedean setting it is rational piece-
wise affine if the metric is algebraic, see [BPS14, Theorem 4.5.10 (1)] and
[GH17, Proposition 2.5.5]. Also, the semipositivity of Dv is translated into
the concavity of its corresponding metric function.

Theorem 3.4.7. Let D be the toric divisor associated to the virtual support
function Ψ. The assignment ‖·‖v 7→ ψDv is a bijection between the space of v-
adic semipositive toric metrics on O(D)an

v and the space of concave functions
ψ on NR such that |ψ −Ψ| is bounded.

Proof. This is [BPS14, Theorem 4.8.1 (1)]. The extension to the general non-
archimedean case is [GH17, Theorem 2.5.8].

If Dv is a v-adic semipositive toric metrized divisor, the Legendre-Fenchel
dual of the metric function of Dv is called the roof function of Dv and denoted
by ϑDv : it is a concave function on MR with effective domain the polytope ∆Ψ.
The correspondance between v-adic semipositive toric metrics and concave
functions is moreover well-behave with respect to sums, as follows.

Proposition 3.4.8. Let v ∈ M and D1, D2 two v-adic semipositive toric
metrized divisors, with metric functions ψ1, ψ2 respectively and roof functions
ϑ1, ϑ2 respectively. Then, D1 + D2 is a semipositive toric metrized divisor
with metric function ψ1 + ψ2 and roof function ϑ1 � ϑ2.
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Proof. The first statement is [BPS14, Proposition 4.3.14 (1)]. The second one
follows from it by Proposition 1.3.18.

A toric divisor admits a v-adic semipositive metric if and only if it is
generated by global sections, as proved in [BPS14, Corollary 4.8.5]. For such
divisors, moreover, there exists a distinguished choice of a v-adic semipositive
metric.

Definition 3.4.9. Let D be a toric divisor generated by global sections, Ψ
its associated virtual support function. The v-adic canonical metric on D is
the semipositive toric metric on O(D)an

v corresponding to Ψ in the bijection
of Theorem 3.4.7.

In the non-archimedean case, the canonical metric on D coincides with the
algebraic metric induced by the canonical model of XΣ and D, see [BPS14,
Example 4.5.4].
For semipositive v-adic toric metrized divisors, the measure in (2.7) can be
expressed in terms of the associated metric functions. To do this, recall that
there exists an embedding

ιv : NR × Bv → Xan
0,v

which fits into the commutative diagram (3.9), and denote by HaarBv the Haar
measure on Bv normalized to have total mass 1.

Theorem 3.4.10. For i = 0, . . . , n− 1, let Di,v be a semipositive v-adic toric
metrized divisor on XΣ, Ψi the virtual support function associated to Di and
ψi,v the metric function of Di,v. Then, the positive measure

c1(D0,v) ∧ · · · ∧ c1(Dn−1,v) ∧ δXan
Σ,v

is zero outside Xan
0,v and

c1(D0,v) ∧ · · · ∧ c1(Dn−1,v) ∧ δXan
Σ,v
|Xan

0,v

= (ιv)∗
(

MMM (ψ0,v, . . . , ψn−1,v)×HaarBv
)
.

In particular,

(tropv)∗
(
c1(D0,v) ∧ · · · ∧ c1(Dn−1,v) ∧ δXan

Σ,v
|Xan

0,v

)
= MMM (ψ0,v, . . . , ψn−1,v)

as measures on NR.
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Proof. The first statement follows from [BPS14, Theorem 1.4.10 (1)] and
[GH17, Corollary 1.4.5]. The expression for the measure in the archimedean
and the discrete non-archimedean case is obtained from [BPS14, Theorem
4.8.11] and multilinearity; the general non-archimedean case is deduced from
[GH17, Theorem 2.5.10]. The last assertion is an easy consequence of the
commutativity of the diagram (3.9).

Moving to the global case, a semipositive toric metric on a toric divisorD is
a choice, for each place v ∈M, of a semipositive v-adic toric metric on the line
bundle O(D). The toric divisor D together with a semipositive toric metric
is called a semipositive toric metrized divisor and it is denoted by D. From
the point of view of convex geometry, the semipositive toric metrized divisor
D is completely described by the collection (ψv)v∈M of its metric functions or,
equivalently, by the collection (ϑv)v∈M of its roof functions.
A notion of well-behaving toric metrics was defined in [BPS14, Definition
4.9.1].

Definition 3.4.11. A toric metric (‖ · ‖v)v∈M on a toric divisor is said to be
adelic if for all but finitely many v ∈ M the v-adic toric metric ‖ · ‖v is the
canonical one, in the sense of Definition 3.4.9.

In convex terms, a toric metric on the toric divisor D associated to the
virtual support function Ψ is adelic if and only if the family (ψv)v of its metric
functions satisfies ψv = Ψ for all but finitely many v ∈M.
It follows from [BPS14, Theorem 5.2.4] that any toric subvariety of XΣ is inte-
grable with respect to the choice of adelic semipositive toric metrized divisors.
In particular, one can compute the global height of the n-dimensional cycle
XΣ with respect to such choices.

Theorem 3.4.12. Let D0, . . . , Dn be toric divisors over XΣ, equipped with
adelic semipositive toric metrics. Then

hD0,...,Dn
(XΣ) =

∑
v∈M

nv MIM (ϑ0,v, . . . , ϑn,v),

where ϑi,v is the roof function of Di,v, for every i = 0, . . . , n and v ∈M.

Proof. This is [BPS14, Theorem 5.2.5].

Toric local heights. Recall from Definition 3.4.9 that any toric divisor
generated by global sections admits a distinguished v-adic semipositive toric
metric, the canonical metric. This allows to define a local height with respect
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to toric divisors that is independent of the choice of the sections. Such a notion
was introduced in [BPS14, §5.1] as a key step in the proof of the formula for
the global height of a toric variety.

Definition 3.4.13. For a place v of K, let D0, . . . , Dd be toric divisors on
XΣ, endowed with v-adic semipositive toric metrics. Denote by D

can
0 , . . . , D

can
d

the same divisors equipped with their v-adic canonical metric. Let Y be
an irreducible d-dimensional subvariety of XΣ and ϕ : Y ′ → Y a birational
morphism, with Y ′ projective. The v-adic toric local height of Y with respect
to D0, . . . , Dd is defined as

htor
D0,...,Dd

(Y ) := hϕ∗D0,...,ϕ∗Dd
(Y ′; s0, . . . , sd)− hϕ∗Dcan

0 ,...,ϕ∗D
can
d

(Y ′; s0, . . . , sd),

where si is a rational section of ϕ∗O(Di), for every i = 0, . . . , d and s0, . . . , sd
meet Y ′ properly. The definition extends by linearity to any cycle of dimension
d.

The toric local height of a cycle does neither depend on the choice of the
sections s0, . . . , sd, nor on the birational model Y ′ of Y because of [BPS14,
Theorem 1.4.17 (2) and (3)]. Moreover, the definition is nonempty: Chow’s
lemma provides Y with a projective birational model, while the moving lemma
assures the existence of rational sections meeting Y ′ properly.

3.5
Integrability

Keeping the notations of the previous section, we extend the integrability
statement of toric cycles in a toric variety in [BPS14, Proposition 5.2.4] with
respect to adelic semipositive toric metrized divisor to all cycles in XΣ.

The multiprojective case. The first step of the extension consists in
proving the integrability of cycles in a very particular case. Let d ∈ N and let
n0, . . . , nd ∈ N≥1. Consider the toric variety

P := Pn0
K × · · · × PndK .

For every i = 0, . . . , d denote by Hi
can

the divisor at infinity of PniK endowed
with the canonical metric at each place. It gives, by pulling-back via the
projection πi : P→ PniK , a metrized divisor Gi on P.

Proposition 3.5.1. In the above hypotheses and notations, every d-dimensional
cycle of P is integrable with respect to G0, . . . , Gd.
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Proof. Let Z be a d-dimensional cycle in P. By linearity, we can assume that
Z is a prime cycle, that is an irreducible subvariety. By the moving lemma,
one can choose s0, . . . , sd, sections of G0, . . . , Gd respectively, intersecting Z
properly. The section si can be thought as an hyperplane in Pni ; the corre-
sponding dual point is si := [s0,i : · · · : sni,i].
Because of [Gub97, Example 1.3], for a non-archimedean v ∈ M, the v-adic
local height of Z with can be written as

hG0,v ,...,Gd,v
(Z; s0, . . . , sd) = log |ChZ |v − log |ChZ(s0, . . . , sd)|v

where ChZ is the Chow form associated to the irreducible subvariety Z and
|ChZ |v is the v-adic Gauss norm of the multihomogeneous polynomial ChZ .
The definition of adelic field and Proposition 2.3.5 assures now that for al-
most all v, all coefficients of ChZ and the element ChZ(s0, . . . , sd) have v-adic
absolute value equal to 1 and hence hG0,v ,...,Gd,v

(Z; s0, . . . , sd) = 0.

The toric case. The result of the previous subsection reveals in fact to
be enough to the treat the general toric case. One starts by considering the
situation in which all the divisors are equipped with their canonical metrics
in the sense of Definition 3.4.9.

Proposition 3.5.2. Let XΣ be a proper toric variety over K and let D0, . . . , Dd

be toric divisors on X generated by their global sections. Then, every d-
dimensional cycle in X is integrable with respect to D

can
0 , . . . , D

can
d .

Proof. Since the divisors are toric divisor generated by their global sections,
there exist toric morphisms ϕ0, . . . , ϕd, with ϕi : X → PniK such that O(Di) '
ϕ∗i (O(1)) for each i = 0, . . . , d and certain ni ∈ N. On the product variety

P := Pn0
K × · · · × PndK

consider for each i = 0, . . . , d the line bundle O(ei) := π∗i (O(1)), where πi :
P → PniK is the projection on the i-th factor. The line bundle O(ei) can be
endowed with the pull-back metric of the canonical metric for each i. The
morphism

ϕ := (ϕ0, . . . , ϕd) : X → P

is such that

ϕ∗O(ei) = (πi ◦ ϕ)∗O(1) = ϕ∗iO(1) ' O(Di)
can

since the morphism ϕi is toric and the pull back of the canonical metric is
the canonical metric. Let Z be a cycle of X of dimension d. By [BPS14,
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Proposition 1.5.8 (2)] and Proposition 3.5.1 one has that Z is integrable with
respect to D

can
0 , . . . , D

can
d .

Combined with the following easy lemma, the previous proposition yields
the main result of the section.

Lemma 3.5.3. Let X be a proper variety over K and let D0, . . . , Dd be divisors
on X. For all i = 0, . . . , d let Di = (Di, (‖ · ‖i,v)v∈M) and D

′
i = (Di, (‖ ·

‖′i,v)v∈M) be two semipositive metrized divisors. Assume that for all but finitely
many v ∈M one has ‖ · ‖i,v = ‖ · ‖′i,v for every i = 0, . . . , d. Then, a cycle Z

of dimension d in X is integrable with respect to D0, . . . , Dd if and only if it
is integrable with respect to D

′
0, . . . , D

′
d.

Proof. The statement follows immediately from the definition of integrable
cycle and the fact that the v-adic local heights with respect to D0, . . . , Dd

and to D
′
0, . . . , D

′
coincide for almost every v ∈M by hypothesis.

Theorem 3.5.4. Let XΣ be a proper toric variety over K and let D0, . . . , Dd

be adelic semipositive toric metrized divisors on X. Then, every d-dimensional
cycle in X is integrable with respect to D0, . . . , Dd.

Proof. By the characterization of semipositive toric metrics given in Theorem
3.4.7, the divisors D0, . . . , Dd are generated by their global sections. Moreover,
the adelicity assumption is equivalent to the fact that the local metrics differ
from the canonical ones at finitely many places. The statement follows then
from Lemma 3.5.3 and Proposition 3.5.2.

Remark 3.5.5. Theorem 3.5.4 extends both [BPS14, Proposition 5.2.4] (where
the integrability was proved for toric orbits) and the application of [BPS14,
Proposition 1.5.14] (which only holds for global fields) to the toric case. More-
over, it answers positively [MS16, Question 4.16] in the case of adelic semi-
positive toric metrized divisors on a toric variety.





CHAPTER 4
Heights of hypersurfaces

We prove in this chapter the announced formula for the global height of a cycle
of codimension 1 in a toric varity with respect to a choice of adelic semiposi-
tively metrized toric divisors. To do it, we first define and study local Ronkin
functions associated to a Laurent polynomial. Their value at 0 play the role
of local Mahler measures of the polynomial and appear in the expression of
lower and upper bounds for the height. Finally, we present examples in which
the formula can be applied.
We supposed fixed for the whole chapter an adelic field (K, (| · |v, nv)v∈M) sat-
isfying the product formula and a proper toric variety XΣ over K of dimension
n, with dense open orbit X0. We denote by T the corresponding torus, by M
and N respectively its character and cocharacter lattice and by MR and NR
the associated real vector spaces.

4.1
Ronkin functions

We here associate to any Laurent polynomial in K[M ] and place of K a concave
function, called the Ronkin function of the polynomial, which will be a key
ingredient in the formula for the height of an hypersurface in a toric variety.
We then present a number of its properties and express the maximum and
minimum of its Legendre-Fenchel dual.

Shilov boundaries. To keep the treatment of the archimedean and non-
archimedean settings uniform, the following functional analytic notion results

89
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to be crucial.

Definition 4.1.1. Let K be an algebraically closed complete field as in Def-
inition 2.1.18 and A a K-algebra. For any set S of multiplicative seminorms
on A extending the absolute value of K, a boundary of S is a subset B ⊆ S
such that

max
x∈S
‖a‖x = max

x∈B
‖a‖x

for every a ∈ A.

In other words, any boundary of S contains the whole information about
the maximal values that the seminorms in S can attain. As a trivial example,
S is a boundary of S.

Remark 4.1.2. Differently from the classical notion of boundary of a Banach
algebra, one here allows to define the boundary of an arbitrary subset of the
whole structure space.

For any place v ∈M, one is here especially interested in the boundary of
the fibers of the v-adic tropicalization map

tropv : Tan
v → NR

introduced in Definition 3.4.2. It follows immediately from the definitions that
for every u ∈ NR

trop−1
v (u) =

{
‖ · ‖x ∈ Tan

v : ‖χm‖x = e−〈m,u〉 for all m ∈M
}
.

Remark 4.1.3. If v is an archimedean place of K, it corresponds to an em-
bedding σ : K ↪→ C up to complex conjugation because of Proposition 2.1.21,
then the analytic torus Tan

v can be identified with the C-points of TC as in
Remark 3.4.1. The choice of a basis of M and of the dual basis of N identifies
hence Tan

v with (C∗)n and NR with Rn. Under such identifications, it follows
directly from the definition that

trop−1
v (u) =

{
(z1, . . . , zn) ∈ (C∗)n : |zi|∞ = e−ui for i = 1, . . . , n

}
=
{(
e−u1+iθ1 , . . . , e−un+iθn

)
: θ1, . . . , θn ∈ [0, 2π)

}
for every u = (u1, . . . , un) ∈ Rn.

In the complex case, the existence of a unique minimal boundary for an
algebra of functions on a compact space has been proved by Shilov. The
following result, which equally holds in the non-archimedean case, is well-
known by experts.
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Proposition 4.1.4. For every u ∈ NR, the set trop−1
v (u) has a unique mini-

mal boundary. In the archimedean case, it coincides with the whole fiber, while
in the non-archimedean case it consists of the Gauss point over u, as in (3.7).

Proof. Suppose first that v is an archimedean place of K (corresponding to an
embedding σ of K in C) and fix the choice of a basis of M . One can identify
Tan
v with (C∗)n by considering for every z = (z1, . . . , zn) ∈ (C∗)n the seminorm
‖ · ‖z defined as

‖f‖z = |fσ(z)|∞
for every f ∈ Cv[T1, . . . , Tn], as in Remark 3.4.1. Assuming that the co-
ordinates of u in the basis dual to the chosen one are (u1, . . . , un), a point
z̃ ∈ trop−1

v (u) is of the form

z̃ := (e−u1+iθ1 , . . . , e−un+iθn),

with θi ∈ [0, 2π) for every i = 1, . . . , n, because of Remark 4.1.3. It is easy to
check that such a point is the only one in trop−1

v (u) for which∥∥∥(T1 + σ−1
(
e−u1+iθ1

))
. . .
(
Tn + σ−1

(
e−un+iθn

))∥∥∥
z

is maximal. As a consequence, z̃ must belong to any boundary of trop−1
v (u).

This proves that the only boundary of trop−1
v (u) is the set itself.

Suppose now that v is a non-archimedean place of K. Then, for every ‖ · ‖x ∈
trop−1

v (u) and for every f =
∑
cmχ

m ∈ Cv[M ] one has by the triangular
inequality

‖f‖x ≤ max
m
|cm|v‖χm‖x = max

m
|cm|ve−〈m,u〉.

This trivially implies that the Gauss norm ‖f‖κv(u) = maxm |cm|e−〈m,u〉 is a
boundary for trop−1

v (u).

For u ∈ NR, one will denote the unique minimal boundary of trop−1
v (u)

described in the previous proposition by Bv(u). If not otherwise mentioned,
such a set is considered to be endowed with the topology induced from Tan

v .
Recalling the definition of the compact group Bv in (3.8), the boundary Bv(u)
is hence homeomorphic to Bv for every u ∈ NR. This allows to define the
measure

σu,v := HaarBv(u) (4.1)

on trop−1
v (u), which is the Haar measure on the compact group Bv(u) nor-

malized to have total mass 1; it is a finite measure on trop−1
v (u), supported

on Bv(u) and distributing homogeneously on this set. In the non-archimedean
case it coincides with the Dirac delta at the Gauss point over u.
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Definitions and first properties. The terminology introduced in the
previous subsection allows to give a definition of the v-adic Ronkin function
of a Laurent polynomial independently of the nature of the place v.

Definition 4.1.5. Let f be a nonzero Laurent polynomial over K. For a place
v ∈M, the v-adic Ronkin function of f is the map ρf,v : NR → R defined as

ρf,v(u) :=

∫
trop−1

v (u)
− log ‖f‖x dσu,v(x)

for every u ∈ NR, with σu,v as in (4.1).

The integral in the previous definition is finite. Indeed, logarithmic sin-
gularities are integrable in the archimedean case, and the Gauss norm of a
nonzero Laurent polynomial is positive in the non-archimedean case.
The following two remarks give a more explicit expression for the v-adic
Ronkin function of a Laurent polynomial f =

∑
m cmχ

m ∈ K[M ].

Remark 4.1.6. Assume that v is an archimedean place of K and let σ be
the corresponding embedding of K in C, up to complex conjugation. Fixing
the choice of a basis of M and of the dual basis of N , one identifies Tan

v with
(C∗)n as in Remark 3.4.1. Then, for every u = (u1, . . . , un) ∈ Rn,

ρf,v(u) =

∫
trop−1

v (u)
− log ‖f‖z dσv,u(z)

=

∫
trop−1

v (u)
− log |fσ(z)|∞ dHaartrop−1

v (u)(z)

= − 1

(2π)n

∫
[0,2π]n

log
∣∣∣fσ(e−u1+iθ1 , . . . , e−un+iθn

)∣∣∣
∞
dθ1 . . . dθn,

where fσ =
∑

m σ(cm)χm ∈ C[M ]. In particular, one has that the equality
ρf,v(u) = −Nfσ(−u) for every u ∈ NR, where Nf is the classical Ronkin
function associated to a Laurent polynomial with complex coefficients, see for
instance [PR04, §2].

Remark 4.1.7. If v is a non-archimedean place of K, it is easily checked that

ρf,v(u) = min
m

(〈m,u〉 − log |cm|v)

for every u ∈ NR. Such a function on NR is also known as the v-adic tropical-
ization of f and denoted by f trop,v, see for instance [MS15, equality (2.4.1)].
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The following property of the Ronkin function follows immediately from
its definition.

Proposition 4.1.8. For every nonzero Laurent polynomials f, g ∈ K[M ],
v ∈M and c ∈ K∗, one has ρf ·g,v = ρf,v + ρg,v and ρcf,v = − log |c|v + ρf,v.

Recall that from Definition 3.2.1 one can associate to a Laurent polynomial
f its Newton polytope NP(f). It reveals to be useful to consider the support
function ΨNP(f) of NP(f), as in Remark 1.2.5; it is a concave function on NR,
with domain NR, stability set NP(f) and Legendre-Fenchel dual the indicator
function of NP(f) because of Example 1.3.8.

Proposition 4.1.9. Let f be a nonzero Laurent polynomial over K and v ∈
M. Then:

1. ρf,v is a continuous concave function on NR (in particular it is closed)
and it is affine on each connected component of the complement of the
v-adic amoeba of f (see Definition 3.4.6)

2. |ρf,v −ΨNP(f)| is bounded on NR

3. the stability set of ρf,v coincides with NP(f) and rec(ρf,v) = ΨNP(f).

Proof. Thanks to Remark 4.1.7, the statements in (1) are trivial if v is a
non-archimedean place of K. Otherwise, the concavity of ρf,v and its affinity
outside the v-adic amoeba follow from Remark 4.1.6 and [PR04, Theorem 1].
As a consequence of the concavity, ρf,v is continuous on NR, hence closed.
To prove (2), suppose that f =

∑
m cmχ

m and let

γv(f) :=

{
#{m ∈M : cm 6= 0} if v is archimedean

1 otherwise
.

For any u ∈ NR and x ∈ trop−1
v (u), the inequality

‖f‖x ≤ γv(f) ·max
m

(
|cm|v‖χm‖x

)
implies that

− log ‖f‖x ≥ min
m

(
〈m,u〉 − log |cm|v

)
− log γv(f)

≥ ΨNP(f)(u)−max
m

log |cm|v − log γv(f)

and hence
ρf,v(u) ≥ ΨNP(f)(u)− log

(
γv(f) max

m
|cm|v

)
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for every u ∈ NR. For a reverse inequality, denote by V(f) the set of vertices
of NP(f). Then, for every m ∈ V(f) the Ronkin function of f coincides with
〈m,u〉 − log |cm|v in a nonempty open subset of NR (this follows from [PR04,
Proposition 2] for archimedean places and from [EKL06, Corollary 2.1.2] for
non-archimedean ones). By the concavity of ρf,v, one deduces hence that

ρf,v(u) ≤ ΨNP(f)(u)− log min
m∈V(f)

|cm|v,

for every u ∈ NR, concluding the proof of (2).
The statements in (3) follows directly from (2). Indeed, since

∣∣ρf,v −ΨNP(f)

∣∣
is bounded, stab(ρf,v) = stab

(
ΨNP(f)

)
= NP(f). The last equality follows

then from Proposition 1.3.6.

The calculation of the v-adic Ronkin function of a nonzero Laurent polyno-
mial is typically very difficult. Anyway, an explicit expression for it is available
in the following two simple situations.

Example 4.1.10. It follows from the definition that, for every v ∈ M, the
v-adic Ronkin function of the monomial χm coincides with the linear function
m on NR for every m ∈M .

Example 4.1.11. For any m,m′ ∈ M with m 6= m′ and for every v ∈ M,
the v-adic Ronkin function of the binomial f = χm − χm′ coincides with the
support function of the segment mm′, that is

ρf,v(u) = min(〈m,u〉, 〈m′, u〉)

for every u ∈ NR. To prove this, remark first that one can restrict to the case
of the binomial f = χm−1 with m 6= 0 because of Proposition 4.1.8, Example
4.1.10 and by factoring with a monomial. When v is non-archimedean, the
statement follows immediately from Remark 4.1.7. Otherwise, after the choice
of a basis of M , Remark 4.1.6 allows to write

ρf,v(u) = − 1

(2π)n

∫
[0,2π]n

log
∣∣e−m1u1+im1θ1 · · · · · e−mnun+imnθn −1

∣∣ dθ1 . . . dθn,

with m1, . . . ,mn being the coordinates of m in such a basis, u1, . . . , un the
coordinates of u in the dual one and | · | denoting the euclidean absolute value
on C. Assuming that m1 > 0, which is always possible since m 6= 0, Jensen’s
formula yields, for every θ2, . . . , θn,∫
θ1∈[0,2π]

log
∣∣e−m1u1+im1θ1 · · · · · e−mnun+imnθn − 1

∣∣ dθ1 = −2π

k∑
j=1

log
|αj |

e−m1u1

(4.2)
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with α1, . . . , αk being the zeros of the univariate polynomial(
e−m2u2+im2θ2 · · · · · e−mnun+imnθn

)
T − 1

lying inside the closed disk of radius e−m1u1 , repeated according to multiplicity.
The only complex zero of the above polynomial has modulus em2u2+···+mnun ;
the integral in (4.2) is then zero if m1u1 + · · ·+mnun > 0, otherwise it equals
−2π(m1u1 + · · ·+mnun). It follows that

ρf,v(u) = min(m1u1 + · · ·+mnun, 0),

hence the claim.

Local Mahler measures. For a Laurent polynomial f in n variables and
complex coefficients, one defines its (logarithmic) Mahler measure as

m(f) :=
1

(2π)n

∫
θ1,...,θn∈[0,2π]

log
∣∣∣f(eiθ1 , . . . , eiθn)∣∣∣ dθ1 . . . dθn, (4.3)

with | ·| denoting the usual absolute value on C. Such a quantity is notoriously
difficult to compute and is sometimes related to special values of L-functions,
see [Smy81], [Den97], [Boy98] and [Lal08].

Remark 4.1.12. Let f =
∑

m cmχ
m be a nonzero Laurent polynomial in

K[M ] and v an archimedean place of K, associated to the embedding σ : K ↪→
C. After the choice of a basis of M , Remark 4.1.6 asserts that

ρf,v(u) = −m

(∑
m

σ(cm)e−m1u1−···−mnunTm1
1 · · · · · Tmnn

)

for every u = (u1, . . . , un) ∈ Rn.

The previous remark suggests to introduce the following local correspon-
dant for the Mahler measure of a Laurent polynomial.

Definition 4.1.13. Let f be a nonzero Laurent polynomial in K[M ]. For
every v ∈ M, the real number mv(f) := −ρf,v(0) is called the v-adic Mahler
measure of f .

The name given in Definition 4.1.13 is justified by the following remark.
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Remark 4.1.14. Let f =
∑

m cmχ
m be a nonzero Laurent polynomial in

K[M ]. If v is an archimedean place of K corresponding to the embedding
σ : K ↪→ C, it follows immediately from Remark 4.1.12 that

mv(f) = m(fσ),

where fσ :=
∑

m σ(cm)χm. If instead v is non-archimedean, Remark 4.1.7
yields the equality

mv(f) = log max
m
|cm|v.

In both cases, the v-adic Mahler measure of f introduced in Definition 4.1.13
is the logarithm of the ‘local measure’ Mv(f) of f at v defined in [Phi86, page
19].

Example 4.1.15. Let K = Q and f a nonzero Laurent polynomial in Z[M ]
which is primitive, that is the greatest common divisor of all its coefficients is
1. Then, Remark 4.1.14 implies that m∞(f) = m(f), while mv(f) = 0 for all
non-archimedean places v.

The notion of v-adic Mahler measure allows to express the extrema of the
Legendre-Fenchel dual of the v-adic Ronkin function of f in a compact way.

Proposition 4.1.16. Let f be a nonzero Laurent polynomial with coefficients
in K, f =

∑
m cmχ

m and v ∈M. Then,

max ρ∨f,v = mv(f)

and

min ρ∨f,v = min
m∈V(f)

log |cm|v

where V(f) denotes the set of vertices of the Newton polytope of f .

Proof. The function ρ∨f,v is a closed concave function with effective domain
NP(f) because of Proposition 4.1.9 (3). Since it is closed, it is continuous on
NP(f). It follows hence from Proposition 1.3.7 and Definition 4.1.13 that

max ρ∨f,v = −ρf,v(0) = mv(f).

Concerning the minimum, remark first that this has to be attained at a vertex
of the Newton polytope of f . Indeed, if x ∈ NP(f) it can be written by Remark
1.2.7 as a convex combination x =

∑
m∈V(f) λmm of the vertices of NP(f),
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with λm ∈ [0, 1] for every m ∈ V(f) and
∑

m λm = 1. The concavity of ρ∨f,v
imposes then that

ρ∨f,v(x) ≥
∑

m∈V(f)

λmρ
∨
f,v(m) ≥ min

m∈V(f)
ρ∨f,v(m)

∑
m∈V(f)

λm = min
m∈V(f)

ρ∨f,v(m).

The statement follows then from the fact that the value of the function ρ∨f,v at
a vertex m of the Newton polytope of f coincides with log |cm|v. But, when
v ∈ M is archimedean, this is a consequence of Remark 4.1.6 and [PR04,
Theorem 2], otherwise it follows from Remark 4.1.7 and Proposition 1.3.9.

4.2
Local and global heights of hypersurfaces

We present in this section combinatorial formulas for the degree, the local
and global height of an effective cycle in XΣ of pure codimension 1. When all
the components of the cycle cut the open dense orbit of XΣ, such formulas
are given in terms of the Newton polytope and the Ronkin functions of its
defining polynomial.

The setting. One fixes here the terminology and notation adopted through-
out the whole section. For an effective cyle Z of pure codimension 1 whose
prime components intersect the dense open orbit X0 of XΣ one has

Z =

r∑
i=1

`iYi

for positive integers `1, . . . , `r and prime divisors Y1, . . . , Yr intersecting X0.
For every i = 1, . . . , r, the closed irreducible subvariety of X0 obtained as
the intersection between Yi and X0 is associated to a prime ideal of height
one in K[M ], which is principal since K[M ] is a unique factorization domain;
denote by fi an irreducible Laurent polynomial generating such an ideal. The
Laurent polynomial f = f `11 · · · · · f `rr is called a defining polynomial for the
cycle Z and is uniquely defined up to multiplication by an invertible element
of K[M ], that means by a monomial. Moreover,[

V (f)
]

= Z, (4.4)

that is the cycle associated to the closure of the subscheme V (f) in XΣ agrees
with Z, see [Ful98, §1.5]. Let

Ψf := ΨNP(f)
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be the support function, in the sense of Remark 1.2.5, of the Newton polytope
NP(f) of f ; it is a piecewise linear function with effective domain NR. It is
not necessarily a virtual support function on the fan Σ; when it is, it defines
a toric divisor Df on XΣ by Theorem 3.1.9. Such a divisor Df is generated
by global sections because of Proposition 3.1.10 and it comes with a distin-
guished toric section sf of O(Df ). The Laurent polynomial f can be seen as
a rational function on XΣ, inducing hence a rational section fsf of O(Df ),
whose associated Weil divisor is[

div
(
fsf
)]

= [div(f)] +
[

div(sf )
]

= Z (4.5)

because of Theorem 3.2.4, (3.4) and (4.4).

Degrees. The invariance of the degree under birational transformations al-
lows to prove a combinatorial formula for the degree of the cycle Z in terms
of its defining polynomial f .

Proposition 4.2.1. Let DΨ1 , . . . , DΨn−1 be toric divisors on XΣ generated by
global sections, Z an effective cycle on XΣ of pure codimension 1 and prime
components intersecting X0, with defining polynomial f . Then

degDΨ1
,...,DΨn−1

(Z) = MVM (∆Ψ1 , . . . ,∆Ψn−1 ,NP(f)),

where MVM denotes the mixed volume function associated to the measure volM
(see Notation 1.2.11) and ∆Ψi the polytope associated to the toric divisor DΨi,
for each i = 1, . . . , n− 1.

Proof. Consider the smooth projective toric variety XΣ′ and the proper toric
morphism π : XΣ′ → XΣ given by Lemma 3.1.12. Since the support function
Ψf is a virtual support function on Σ′, one can consider the corresponding
toric divisor Df on XΣ′ and the associated distinguished rational section sf
of O(Df ). The definition of π, together with (4.5), assures that

π∗
(

div
(
fsf
)
·XΣ′

)
= π∗

[
div
(
fsf
)]

= Z.

Definition 2.4.5 and the projection formula in Theorem 2.4.6 yield hence

degDΨ1
,...,DΨn−1

(Z) = degπ∗DΨ1
,...,π∗DΨn−1,Df

(XΣ′).

The function Ψf being concave, Df is generated by global sections. Moreover,
the virtual support functions associated to the toric divisor π∗DΨi on XΣ′

agrees with Ψi, for every i = 1, . . . , n − 1. The combinatorial description in
[Oda88, Proposition 2.10] of the degree of a toric variety with respect to toric
divisor generated by global sections concludes then the proof.
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Remark 4.2.2. By [Ful93, formula at page 55], the irreducible components of
XΣ \X0 are the orbit closures V (τ), with τ ranging in the set of 1 dimensional
cones of Σ. It follows that if Z is a prime divisor of XΣ not intersecting X0,
it coincides with V (τ) for some τ ∈ Σ(1). In such a case, the degree of Z with
respect to a collection DΨ1 , . . . , DΨn−1 of toric divisors on XΣ generated by
global sections is given by

degDΨ1
,...,DΨn−1

(V (τ)) = MVM(vτ )

(
∆vτ

Ψ1
, . . . ,∆vτ

Ψn−1

)
,

where vτ is the minimal nonzero integral vector of τ , see [BPS14, formulæ
(3.4.1) and (3.4.4)].

Remark 4.2.3. The reduction to the case of a smooth projective toric variety
employed in the proof of Proposition 4.2.1 equally works when computing the
local height of the cycle Z with respect to a family of v-adic semipositive toric
metrized divisors D0,v, . . . , Dn−1,v. Indeed, let f be a defining polynomial
for Z, XΣ′ and π as in the statement of Lemma 3.1.12. For every family of
rational sections s0, . . . , sn−1 of O(D0), . . . ,O(Dn−1) respectively for which
the following local heights are well-defined, the local arithmetic projection
formula in [BPS14, Theorem 1.4.17 (2)] asserts that

hD0,v ,...,Dn−1,v
(Z; s0, . . . , sn−1) = hπ∗D0,v ,...,π∗Dn−1,v

(Z ′;π∗s0, . . . , π
∗sn−1),

where Z ′ is the cycle in XΣ′ associated to the subscheme obtained as the
closure of V (f) and has hence f as a defining polynomial. Because of [BPS14,
Proposition 4.3.19], the pull-back of Di,v via π is a v-adic semipositive toric
metrized divisor on XΣ′ whose metric function coincides with the one of Di,v,
for every i = 0, . . . , n − 1 and v ∈ M. It follows that any combinatorial
formula for the local height of Z ′ in XΣ′ with respect to π∗D0,v, . . . , π

∗Dn−1,v

only involving the defining polynomial of Z and the metric functions of the
metrized divisors equally holds for the local height of Z in XΣ with respect to
D0,v, . . . , Dn−1,v. Similarly, the reduction step can be adopted when dealing
with the integrability and the global height of Z, because of Theorem 2.4.16.

Local heights. The relation between the Ronkin function of a Laurent
polynomial and the height of the corresponding toric hypersurface appears
thanks to the following notion.

Definition 4.2.4. Let f be a nonzero Laurent polynomial with coefficients in
K and Df the divisor associated to its Newton polytope. For a place v ∈M,
the v-adic Ronkin metric on Df is the v-adic semipositive toric metric on
O(Df )an

v corresponding to the v-adic Ronkin function ρf,v via Theorem 3.4.7.
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The previous definition makes sense since, for every v ∈ M, the v-adic
Ronkin function of f is concave on NR and has bounded difference from Ψf

because of Proposition 4.1.9. If not otherwise specified, Df,v will denote the
divisor Df equipped with the v-adic Ronkin metric ‖ · ‖f,v defined above. By
definition,

log ‖sf‖f,v = ρf,v ◦ tropv (4.6)

on Xan
0,v. To lighten the notation, we will drop the subscript v whenever the

choice of the place is clear from the context.

Proposition 4.2.5. Let f and g be two nonzero Laurent polynomials and
assume that Ψf and Ψg are virtual support functions on the fan of XΣ. Then,
Df +Dg = Df ·g.

Proof. The equality NP(f · g) = NP(f) + NP(g) implies that Ψf ·g = Ψf + Ψg.
In particular, Ψf ·g is a virtual support function on the fan Σ and then defines
a toric divisor Df ·g on XΣ which satisfies Df ·g = Df +Dg because of [Ful93,
§3.4]. The statement follows now from Proposition 3.4.8 and Proposition
4.1.8.

The key property of the Ronkin metric is given in the following proposition.

Proposition 4.2.6. Let XΣ be a smooth projective toric variety, Z an effec-
tive cycle on XΣ of pure codimension 1 and prime components intersecting
X0. Let f be a defining polynomial for Z and assume that Ψf is a virtual
support function on the fan Σ. For a fixed place v ∈ M, let D0, . . . , Dn−1 be
toric divisors on XΣ, equipped with v-adic semipositive toric metrics. Then

hD0,...,Dn−1
(Z; s0, . . . , sn−1) = hD0,...,Dn−1,Df

(
XΣ; s0, . . . , sn−1, fsf

)
, (4.7)

for every choice of rational sections s0, . . . , sn−1 of O(D0), . . . ,O(Dn−1) re-
spectively with [div(s0)], . . . , [div(sn−1)], Z intersecting properly.

Proof. The product fsf is a rational section of O(Df ) on XΣ with associated
Weil divisor [

div
(
fsf
)]

= [div(f)] +
[

div(sf )
]

= Z

by Theorem 3.2.4, (3.4) and (4.4). Hence, the sections s0, . . . , sn−1, fsf meet
XΣ properly and the right hand side term in (4.7) is well defined.
Definition 2.4.14 stating that

hD0,...,Dn−1
(Z; s0, . . . , sn−1) = hD0,...,Dn−1,Df

(
XΣ; s0, . . . , sn−1, fsf

)
+

∫
Xan

Σ

log ‖fsf‖f,v c1(D0) ∧ · · · ∧ c1(Dn−1),



4.2. LOCAL AND GLOBAL HEIGHTS OF HYPERSURFACES 101

the proposition follows from the vanishing of the integral on the right hand
side. Indeed, thanks to Theorem 3.4.10, such an integral is supported on the
analytification of the dense open orbit of XΣ, where the rational function f is
regular. Together with the definition of the Ronkin metric in (4.6), this yields∫

Xan
Σ

log ‖fsf‖f,v c1(D0) ∧ · · · ∧ c1(Dn−1)

=

∫
Xan

0

log |f |v c1(D0) ∧ · · · ∧ c1(Dn−1)

+

∫
Xan

0

(ρf,v ◦ tropv) c1(D0) ∧ · · · ∧ c1(Dn−1).

For every i = 0, . . . , n − 1, denote by ψi the metric function of Di. The
tropicalization map being continuous, the change of variables formula and
Theorem 3.4.10 imply on the one hand that∫
Xan

0

(ρf,v ◦ tropv) c1(D0) ∧ · · · ∧ c1(Dn−1) =

∫
NR

ρf,v dMMM (ψ0, . . . , ψn−1).

On the other hand, Theorem 3.4.10, together with the change of variables
formula and Fubini’s theorem, gives∫

Xan
0

log |f |v c1(D0) ∧ · · · ∧ c1(Dn−1) =∫
NR

(∫
Bv

(log |f |v ◦ ιv) dHaarBv

)
dMMM (ψ0, . . . , ψn−1).

The definition of the maps ιv and ρf,v assures that the inner integral coincides
with the opposite of the v-adic Ronkin function of f , concluding the proof.

Toric local heights. Recall that for any place v ∈ M, Definition 3.4.13
gives a definition of a local height on a toric variety which is independent of
sections. The following theorem gives a formula for the toric local height of
the cycle Z in terms of its defining polynomial.

Theorem 4.2.7. Let XΣ be a proper toric variety, Z an effective cycle on XΣ

of pure codimension 1 and prime components intersecting X0. For a place v of
K, let D0, . . . , Dn−1 be toric divisors on XΣ, equipped with v-adic semipositive
toric metrics. Then

htor
D0,...,Dn−1

(Z) = MIM
(
ϑ0, . . . , ϑn−1, ρ

∨
f,v

)
− degD0,...,Dn−1

(XΣ) ·mv(f),
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where f is a defining polynomial for Z, mv(f) its v-adic Mahler measure and
ϑi is the roof function of Di, for i = 0, . . . , n− 1.

Proof. Because of Remark 4.2.3, one can assume that XΣ is a smooth projec-
tive toric variety on whose fan Ψf is a virtual support function. Thanks to
the moving lemma, one can choose rational sections s0, . . . , sn−1 of O(D0), . . . ,
O(Dn−1) respectively such that [div(s0)], . . . , [div(sn−1)], Z intersect properly.
Proposition 4.2.6 implies then that

htor
D0,...,Dn−1

(Z) = hD0,...,Dn−1,Df

(
XΣ; s0, . . . , sn−1, fsf

)
− hDcan

0 ,...,D
can
n−1,Df

(
XΣ; s0, . . . , sn−1, fsf

)
.

By adding and subtracting the quantity

hDcan
0 ,...,D

can
n−1,D

can
f

(
XΣ; s0, . . . , sn−1, fsf

)
on the right hand side, one obtains that

htor
D0,...,Dn−1

(Z) = htor
D0,...,Dn−1,Df

(XΣ)− htor
D

can
0 ,...,D

can
n−1,Df

(XΣ).

Denote by Ψi the virtual support function on Σ associated to the toric divisor
Di, for every i = 0, . . . , n−1. Thanks to [BPS14, Corollary 5.1.9], the previous
equality yields

htor
D0,...,Dn−1

(Z) = MIM
(
ϑ0, . . . , ϑn−1, ρ

∨
f,v

)
−MIM

(
Ψ∨0 , . . . ,Ψ

∨
n−1, ρ

∨
f,v

)
.

Since they admit by hypothesis a semipositive toric metric, the toric divisors
D0, . . . , Dn−1 are generated by global sections. For every i = 0, . . . , n− 1, the
function Ψi is hence concave and conic and so it is the support function of
the polytope ∆i := stab(Ψi) ⊆ MR. The statement of the theorem follows
from a combination of Example 1.3.8, Corollary 1.5.11, Definition 4.1.13 and
the combinatorial expression for the degree of a toric variety with respect
to toric divisors generated by their global sections, see for example [Oda88,
Proposition 2.10].

Global heights. The main ingredient in the proof of the result concerning
the global case is the following.

Definition 4.2.8. Let f be a nonzero Laurent polynomial over K and Df the
divisor associated to its Newton polytope. The Ronkin metric on Df is the
choice, for every place v ∈ M, of the v-adic Ronkin metric on Df defined in
Definition 4.2.4.
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Unless otherwise stated, Df will denote the toric divisor Df equipped with
its Ronkin metric. By definition, it is a semipositive toric metrized divisor.

Lemma 4.2.9. The Ronkin metric on Df is adelic.

Proof. For a non-archimedean place v ∈ M, the function ρf,v coincides with
the tropicalization of the Laurent polynomial f , as claimed in Remark 4.1.7.
The fact that f has finitely many nonzero coefficients and the second axiom in
Definition 2.3.1 imply that ρf,v = Ψf for all but finitely many non-archimedean
places. The statement follows then from Lemma 2.3.5.

The definition of such a toric metrized divisor and the study of the local
height of Z in Proposition 4.2.6 allow to give a formula for its global height,
implying Theorem 1 in the introduction.

Theorem 4.2.10. Let Z be an effective cycle on XΣ of pure codimension 1
and prime components intersecting X0. Let D0, . . . , Dn−1 be toric divisors on
XΣ, equipped with adelic semipositive toric metrics. Then,

hD0,...,Dn−1
(Z) =

∑
v∈M

nv MIM
(
ϑ0,v, . . . , ϑn−1,v, ρ

∨
f,v

)
,

where f is a defining polynomial for Z and ϑi,v is the roof function of Di,v,
for every i = 0, . . . , n− 1 and v ∈M.

Proof. Because of Remark 4.2.3, one can assume that XΣ is a smooth projec-
tive toric variety on whose fan Ψf is a virtual support function. Let hence
s0, . . . , sn−1 be rational sections of O(D0), . . . ,O(Dn−1) respectively such that
[div(s0)], . . . , [div(sn−1)], Z intersect properly. Because of Proposition 4.2.6,
the v-adic local height of Z with respect to the above choice of sections is
given by

hD0,v ,...,Dn−1,v
(Z; s0, . . . , sn−1) = hD0,v ,...,Dn−1,v ,Df,v

(
XΣ; s0, . . . , sn−1, fsf

)
.

(4.8)
Summing with the associated local weights over the places of K, the global
height of Z is seen to satisfy

hD0,...,Dn−1
(Z) = hD0,...,Dn−1,Df

(XΣ).

Theorem 3.4.12 concludes hence the proof.

Many comments can be made regarding the result of Theorem 4.2.10 and
its proof.
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Remark 4.2.11. As in Remark 4.2.2, if Z is an irreducible hypersurface on
XΣ not intersecting X0 it coincides with V (τ) for a 1 dimensional cone τ of
the fan Σ. In such a case, Z is integrable with respect to a family of adelic
semipositive toric metrized divisors D0, . . . , Dn−1 on XΣ and its global height
is given by

hD0,...,Dn−1
(V (τ)) =

∑
v∈M

nv MIM(vτ )

(
ϑ0,v|∆vτ

0
, . . . , ϑn−1,v|∆vτ

n−1

)
,

see [BPS14, Proposition 5.1.11 and Proposition 5.2.4]. In the previous formula,
∆i is the polytope associated to the divisor Di and ϑi,v is the roof function
of Di,v for every i = 0, . . . , n− 1 and v ∈M, while vτ is the minimal nonzero
integral vector of τ .

Remark 4.2.12. Theorem 4.2.10 and Remark 4.2.11 allow to give a combi-
natorial formula for the height of any Weil divisor Z in XΣ with respect to a
choice of adelic semipositive toric metrized divisors. It is indeed sufficient to
use the linearity of the height function and to write

Z =
r∑
i=1

`iYi −
s∑

i=r+1

`iYi +
∑
τ∈Σ(1)

`τV (τ)

with Y1, . . . , Ys prime divisors intersecting X0 and `1, . . . , `s positive integers.

Remark 4.2.13. The fact that the hand side of the formula in Theorem
4.2.10 is independent of the choice of the defining polynomial f for Z can
also be checked directly. Indeed, if f ′ is another such polynomial, it must be
f ′ = cχm · f with c ∈ K× and m ∈ M . It follows from Proposition 4.1.8 and
Example 4.1.10 that for every v ∈M one has ρf ′,v = ρf,v +m0− log |c|v. The
definition of the Legendre-Fenchel duality together with (1.12) yields then

ρ∨f ′,v = τm0

(
ρ∨f,v + log |c|v

)
.

Using Proposition 1.5.7 and Corollary 1.5.6,

MIM
(
ϑ0, . . . , ϑn−1, ρ

∨
f ′,v

)
= MIM

(
ϑ0, . . . , ϑn−1, ρ

∨
f,v

)
+ log |c|v ·MVM (∆0, . . . ,∆n−1),

with ∆i being the polytope associated to Di for every i = 0, . . . , n − 1. The
claimed independance is then a consequence of the product formula on K.



4.2. LOCAL AND GLOBAL HEIGHTS OF HYPERSURFACES 105

Remark 4.2.14. Local and global heights of cycles are symmetric and multi-
linear with respect to sums of semipositive metrized divisors, provided that all
terms are defined. The formulas obtained for 1-codimensional cycles in toric
varieties are consistent with these properties, the sum of semipositive toric
metrized divisors corresponding to the sup-convolution of the associated roof
functions, see Proposition 3.4.8.

Remark 4.2.15. The proof of Theorem 4.2.10 also shows directly that the
cycle Z is integrable with respect to D0, . . . , Dn−1. Indeed, because of Lemma
4.2.9, each member of the family D0, . . . , Dn−1, Df is an adelic semipositive
toric metrized divisor onXΣ. As a consequence of the first assertion in [BPS14,
Proposition 5.2.4], XΣ is integrable with respect to such a choice of metrized
divisors and hence [BPS14, Proposition 1.5.8 (1)] allows to conclude that

hD0,v ,...,Dn−1,v ,Df,v

(
XΣ; s0, . . . , sn−1, fsf

)
= 0

for all but finitely many places v ∈ M. Comparing with (4.8), one deduces
the integrability of Z with respect to D0, . . . , Dn−1.

Remark 4.2.16. The results obtained in the section can be easily extended
to the case of adelic DSP toric metrized divisors by using arguments analogous
to the ones of [BPS14, Remark 5.1.10].

Finally, one can combine the formula just proved with the bounds on
mixed integrals studied in Chapter 1 to get a window for the values of the
global height of an effective cycle of codimension 1. For the sake of simplicity,
one only considers here the case in which D0 = · · · = Dn−1.

Proposition 4.2.17. Let Z be an effective cycle on XΣ of pure codimension
1 and prime components intersecting X0, D a toric divisors on XΣ equipped
with adelic semipositive toric metrics. Then,

hD(Z) ≥
∑
v

nv

(
n! volM (∆)mv(f) + nmin

∆
(ϑv) MVM (∆, . . . ,∆,NP(f))

)
and

hD(Z) ≤
∑
v

nv

(
n! volM (∆)mv(f)− nψv(0) MVM (∆, . . . ,∆,NP(f))

)
,

where f is a defining polynomial for Z, ∆ is the polytope associate to D and
ψv and ϑv are respectively the metric and the roof function of Dv, for every
v ∈M.
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Proof. Both the bounds follow from Theorem 1.5.14 and Theorem 4.2.10, to-
gether with Proposition 4.1.16 and the definition of the v-adic Mahler measure
of a Laurent polynomial.

The adelicity of D and the expression for the non-archimedean Mahler
measures of f in Remark 4.1.14 immediately imply that the infinite sums
appearing in Proposition 4.2.17 have in fact finitely many nonzero terms.

4.3
Examples

We apply in this section the formula in Theorem 4.2.10 to four particular
cases. In the first one, we focus on specific hypersurfaces of XΣ, while in the
following three we made relevant choices of the metrized divisors.

Binomial hypersurfaces. For a primitive vector m in M one can consider
the Laurent binomial f = χm−1; it is irreducible in K[M ] as can be verified by
considering its Newton polytope. Hence the closure Z in XΣ of the subvariety
V (f) of the torus SpecK[M ] is an irreducible hypersurface of XΣ with defining
polynomial f .
Let D0, . . . , Dn−1 be toric divisors on XΣ, equipped with adelic semipositive
toric metrics, with ϑi,v the roof function of Di,v, for every i = 0, . . . , n−1 and
v ∈ M. By Example 4.1.11, ρf,v coincides for every v ∈ M with the support
function of the segment 0m in MR. The formula in Theorem 4.2.10 implies
then that

hD0,...,Dn−1
(Z) =

∑
v∈M

nv MIM
(
ϑ0,v, . . . , ϑn−1,v, ι0m

)
,

because of Example 1.3.8. Considering the quotient lattice P := M/Zm and
the associated projection π : M → P , Proposition 1.5.13 allows to deduce

hD0,...,Dn−1
(Z) =

∑
v∈M

nv MIP
(
π∗ϑ0,v, . . . , π∗ϑn−1,v

)
, (4.9)

with π∗ϑi,v denoting the direct image of ϑi,v by π for every i = 0, . . . , n − 1
and v ∈M, see (1.19).

Remark 4.3.1. Let Q be the dual lattice of P = M/Zm. The projection
π : M → P induces an injective dual map Q → N , with image m⊥ ∩N . By
identifying Q with such an image, which is a saturated sublattice of N , one
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can consider the restriction of the fan Σ to QR; its corresponding toric variety
XΣQ is proper and has torus SpecK[P ]. It also comes with a toric morphism
ϕ : XΣQ → XΣ, whose restriction to the dense open orbit coincides with the
closed immersion of split tori SpecK[P ]→ SpecK[M ] given by the surjection
π : M → P , see [BPS14, pages 81-83]. Finally, the push-forward of the cycle
XΣQ by ϕ is the cycle Z associated to the hypersurface defined by χm − 1.
Indeed, the image of ϕ coincides by properness with the closure in XΣ of the
image of SpecK[P ]→ SpecK[M ], which is an irreducible (n− 1)-dimensional
subscheme of SpecK[M ] contained in V (χm − 1) as χπ(m) − 1 = 0.
Hence, equality (4.9) can also be obtained from Theorem 3.4.12, the arithmetic
projection formula stated in Theorem 2.4.16 and the fact that π∗ϑi,v is the
roof function of the pull-back of Di,v via π, for every i = 0, . . . , n − 1 and
v ∈M, because of [BPS14, Proposition 4.3.19 and Proposition 2.3.8 (3)].

The canonical height. A toric divisor D on XΣ generated by global sec-
tions admits by Definition 3.4.9 a distinguished semipositive toric metric at
any place. The metrized divisor obtained by the choice of such a family of
v-adic canonical metrics is denoted by D

can
; it is an adelic semipositive toric

metrized divisor.
For a cycle Z of dimension d in XΣ, the canonical global height of Z with
respect to a family D0, . . . , Dd of toric divisors on XΣ generated by global
sections is defined to be its global height with respect to D

can
0 , . . . , D

can
d and

it is also denoted by hcan
D0,...,Dd

(Z). The machinery developed in the previous
sections allows to express the canonical global height of an effective cycle on
XΣ of pure codimension 1 via convex geometry. Recall that by mv(f) one
means the v-adic Mahler measure of the Laurent polynomial f .

Proposition 4.3.2. Let Z be an effective cycle on XΣ of pure codimension
1 and prime components intersecting X0 and D0, . . . , Dn−1 a family of toric
divisors on XΣ generated by global sections. The canonical global height of Z
with respect to D0, . . . , Dn−1 is given by

hcan
D0,...,Dn−1

(Z) = degD0,...,Dn−1
(XΣ) ·

∑
v∈M

nvmv(f)

for any choice of a defining polynomial f for Z.

Proof. Denoting for any i = 0, . . . , n − 1 by Ψi the function associated to
Di, the property of being globally generated implies that Ψi is the support
function of the lattice polytope ∆i := stab(Ψi) ⊆ MR. The roof function of
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D
can
i,v is hence ι∆i for every i = 0, . . . , n − 1 and for every v ∈ M, because of

Example 1.3.8. It follows then from Theorem 4.2.10 and Corollary 1.5.11 that

hcan
D0,...,Dn−1

(Z) = −MVM (∆0, . . . ,∆n−1) ·
∑
v∈M

nvρf,v(0),

with f any defining polynomial for Z. To conclude, recall that the degree ofXΣ

with respect to D0, . . . , Dn−1 is given by the mixed volume of the associated
polytopes, as proved in [Oda88, Proposition 2.10], and that mv(f) = −ρf,v(0)
by Definition 4.1.13.

The case of the base field Q with the adelic structure described in Example
2.3.3 is particularly interesting for arithmetic purposes. In [Mai00, Proposition
7.2.1], Maillot expressed the canonical height of a hypersurface in a toric
variety over Q in terms of the Mahler measure of the associated section. While
its proof relies on the study of the arithmetic Chow ring of the ambient toric
variety, one here deduces his result from Proposition 4.3.2.

Corollary 4.3.3 (Maillot). In the hypotheses and notations of Proposition
4.3.2, assume moreover that the base adelic field is Q with its usual adelic
structure. Let f be a defining polynomial for Z having as coefficients integer
numbers with greatest common divisor 1. Then,

hcan
D0,...,Dn−1

(Z) = degD0,...,Dn−1
(XΣ) ·m(f).

Proof. The statement follows directly from Proposition 4.3.2 and Example
4.1.15.

The ρ-height. The strategy adopted to prove the formula for the height of
an hypersurface suggests the introduction of a distinguished height function.
Let Z be an effective cycle on XΣ of pure codimension 1 and prime components
intersecting X0 and assume that the support function of the Newton polytope
of a defining polynomial for Z is a virtual support function on the fan Σ. By
Lemma 3.1.12, this is always the case up to a birational toric transformation.
In this setting, the choice of a defining polynomial f for Z determines a toric
divisor Df on XΣ and a distinguished toric metric on it, the Ronkin metric,
as introduced in Definition 4.2.8. The so-obtained metrized divisor, which
is denoted by Df , is an adelic semipositive toric metrized divisor by Lemma
4.2.9.

Definition 4.3.4. In the above hypotheses and notations, the ρ-height of Z,
denoted by hρ(Z), is defined as its global height with respect to Df , . . . , Df ,
for a choice of a defining polynomial f for Z.
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As shown below, the ρ-height of Z is independent of the choice of the
defining polynomial f . Even if it is not clear whether such a height has a
significant geometrical interpretation or arithmetical application, its combi-
natorial expression is simpler than the general case.

Proposition 4.3.5. In the above hypotheses and notations, the ρ-height of Z
is given by

hρ(Z) = (n+ 1)!
∑
v∈M

nv

∫
NP(f)

ρ∨f,v d volM ,

where f is a defining polynomial for Z and NP(f) is its Newton polytope.

Proof. The statement follows trivially from Theorem 4.2.10, Proposition 4.1.9
(3) and the properties of mixed integrals.

Remark 4.3.6. The equality in Proposition 4.3.5 shows that the ρ-height of
Z does not depend on the choice of a defining polynomial for it. Indeed, if
f ′ is another such polynomial, it must satisfy f ′ = cχm · f for some nonzero
monomial cχm ∈ K[M ]. An argument analogous to the one of Remark 4.2.13
proves hence the claimed independence.

It is significant to stress that the formula in Proposition 4.3.5, though
compact, is difficult to evaluate because of the complexity of the archimedean
Ronkin function.

The Fubini-Study height. As a last example, let the ambient toric variety
XΣ be the n-dimensional projective space over K. Denote by D∞ the toric
divisor on PnK whose associated Weil divisor is the hyperplane at infinity; the
corresponding sheaf is the universal line bundle O(1) on PnK. If not otherwise
specified, the notation D∞ will refer to D∞ equipped with the Fubini-Study
metric at archimedean places, see [BPS14, Example 1.1.2], and the canonical
one at non-archimedean places, in the sense of Definition 3.4.9. It turns out
that D∞ is an adelic semipositive toric metrized divisor. For an effective cycle
Z on PnK of pure codimension 1, the global height

hFS(Z) := hD∞,...,D∞(Z)

is called the Fubini-Study height of Z.

Remark 4.3.7. The Fubini-Study height defined here coincides with the one
introduced in [Fal91] and studied in [Phi95]. Examples of the computation of
such height for projective hypersurfaces can be found in [CM00].
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Specializing Theorem 4.2.10, one can write the Fubini-Study height of a
projective hypersurface in terms of convex geometry. To do so, recall that
M∞ denotes the collection of archimedean places of K, which is a finite set
by Lemma 2.3.5. After fixing an isomorphism M ' Zn, consider the standard
simplex

∆n :=
{

(x1, . . . , xn) : x1 + · · ·+ xn ≤ 1, xi ≥ 0 for all i = 1, . . . , n
}

in MR ' Rn and, agreeing that x0 := 1−
∑n

i=1 xi, set the function ϑFS : ∆n →
R to be

ϑFS(x) := −1

2

n∑
i=0

xi log xi,

which is defined on the boundary of ∆n by continuity.

Proposition 4.3.8. Let Z be an effective cycle on PnK of pure codimension 1
and prime components intersecting X0. The Fubini-Study height of Z is given
by

hFS(Z) =
∑
v∈M∞

nv MIM
(
ϑFS, . . . , ϑFS, ρ

∨
f,v

)
+

∑
v∈M\M∞

nvmv(f),

where f is a defining polynomial for Z.

Proof. The roof functions of the metrized divisor D∞ are given by the func-
tion ϑFS at archimedean places, as remarked in [BPS14, Example 2.4.3 and
Example 4.3.9 (2)] and by the indicator function of ∆n at non-archimedean
places, by [BPS14, Example 4.3.9 (1)] and Example 1.3.8. The statement
follows then from Theorem 4.2.10, Corollary 1.5.11 and Definition 4.1.13, to-
gether with the fact that MVM (∆n, . . . ,∆n) = 1 because of the definition of
mixed volume and Notation 1.2.11.

Example 4.1.15 allows to deduce without difficulties the following special
case.

Corollary 4.3.9. Assume the base adelic field to be Q with its usual adelic
structure. The Fubini-Study height of an effective cycle Z on PnQ of pure
codimension 1 and prime components intersecting X0 is given by

hFS(Z) = MIM
(
ϑFS, . . . , ϑFS, ρ

∨
f,∞
)
,

where f is a defining polynomial for Z whose coefficients are integer numbers
with greatest common divisor 1.
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Because of the presence of an archimedean Ronkin function, the formula in
Corollary 4.3.9 appears arduous to evaluate. One can however give estimations
for it in some special situations, as the following.

Example 4.3.10. Consider the zero set of the homogeneous polynomial T0 +
T1 + T2 in P2

Q. Its associated cycle Z has a unique irreducible component,
of multiplicity 1, and with defining polynomial f = 1 + x + y. By taking
advantage of the fact that NP(f) coincides with the standard simplex ∆ in
R2, which is also the polytope associated to D∞ and has normalized volume
1/2, one can use Proposition 4.2.17 to give concise bounds for hFS(Z). For
the upper bound,

hFS(Z) ≤ m(f)− 2ψ∞(0),

where ψ∞ is the metric function associated to the Fubini-Study height. Using
its explicit expression as in [BPS14, Example 2.4.3] one deduces that ψ∞(0) =
−(1/2) log 3. The lower bound is instead, using directly the more precise
Theorem 1.5.14,

hFS(Z) ≥ max
(
m(f) + 2 min

∆
ϑ∞,−ψ∞(0) + min

∆
ϑ∞ + min

∆
ρ∨f,∞

)
.

By the concavity of ϑ∞ and the same argument in the proof of Proposition
4.1.16, such a minimum has to be attained at a vertex of ∆. The symmetry
under the transformations (x1, x2) 7→ (1−x1−x2, x2) and (x1, x2) 7→ (x1, 1−
x1−x2) assures that the value of the function is the same at all the vertices of
∆, then minϑ∞ = ϑ∞(0, 0) = 0. It is instead straightforward from Proposition
4.1.16 that min ρ∨f,∞ = 0. One deduces that

max

(
m(f),

log 3

2

)
≤ hFS(Z) ≤ m(f) + log 3.

Using the fact that

m(1 + x+ y) =
3
√

3

4π
L(χ−3, 2) = L′(χ−3,−1) = 0.3230659 . . .

as proved by Smyth in the appendix of [Boy81], with L(χ−3, s) =
∑∞

n=1(n3 ) 1
ns ,

log 3

2
≤ hFS(Z) ≤ m(f) + log 3,

which gives
0.549306 < hFS(Z) < 1.421679.





CHAPTER 5
Upper bounds of heights

We show in this chapter that the formula for the height of an hypersurface
proven in the previous chapter can not be generalized to higher codimensions.
We then prove combinatorial upper bounds for the global height of a complete
intersection in a toric variety in terms of the defining polynomials, slightly re-
fining an argument by Mart́ınez and Sombra. To do this, we introduce the
notion of upper functions of polynomials using the same language adopted for
the definition of Ronkin functions.
We suppose fixed for the whole chapter an adelic field (K, (nv, | · |v)v∈M) satis-
fying the product formula and a proper toric variety XΣ over K of dimension
n, with dense open orbit X0. As in the previous exposition, we denote by T the
corresponding torus, by M and N respectively its character and cocharacter
lattice and by MR and NR the associated real vector spaces.

5.1
Motivation

We present here a counterexample for the straightforward extension of the
formula for the height of an hypersurface in a toric variety to higher codimen-
sions.

A guess. Recall that for a nonzero Laurent polynomial f with coefficients in
K, with Newton polytope compatible with the fan Σ in the sense of Definition
3.1.11, it is possible to consider its associated toric divisor Df by Theorem
3.1.9; it comes with a distinguished toric section sf . Let k ∈ {0, . . . , n} and

113
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consider f1, . . . , fk a family of nonzero Laurent polynomials with coefficients
in K and Newton polytopes compatible with the fan Σ; this last hypothesis
can always be verified up to a birational transformation because of Proposition
3.1.12. Under the assumption that the sections fisfi meet XΣ properly with
i = 1, . . . , k, denote by

Z(f1, . . . , fk) := div(fksfk) · · · · · div(f1sf1) ·XΣ

the corresponding intersection cycle. To lighten the notation, one will also
denote the family (f1, . . . , fk) by f and its intersection cycle by Z(f). Such a
cycle is, whenever defined, of dimension n− k and its restriction to the dense
open orbit of XΣ is the cycle associated to the closed subscheme of the ideal
(f1, . . . , fk) in K[M ].
Choose n− k + 1 semipositive adelic toric metrized divisors D0, . . . , Dn−k on
XΣ and let ϑi,v be the v-adic roof function of Di for every i = 0, . . . , n−k and
v ∈ M. One is interested in a combinatorial expression, in terms of convex
geometry, of the global height

hD0,...,Dn−k
(Z(f)).

For k = 0, Theorem 3.4.12 asserts that

hD0,...,Dn
(Z(f)) = hD0,...,Dn

(XΣ) =
∑
v∈M

nv MIM (ϑ0,v, . . . , ϑn,v)

while for k = 1, it follows from Theorem 4.2.10 that

hD0,...,Dn−1
(Z(f)) = hD0,...,Dn−1

(
V (f1)

)
=
∑
v∈M

nv MIM (ϑ0,v, . . . , ϑn−1,v, ρ
∨
f1,v).

One can ask whether a similar formula could hold for higher values of k,
namely whether the global height hD0,...,Dn−k

(Z(f1, . . . , fk)) could be given
by ∑

v∈M
nv MIM (ϑ0,v, . . . , ϑn−k,v, ρ

∨
f1,v, . . . , ρ

∨
fk,v

).

A counterexample. The extension of the formula proposed above can not
hold for all k. Indeed, if it did, the height of Z(f1, . . . , fk) would only depend
on the family of Ronkin functions of the involved polynomials, which turns
out to be false even in codimension 2, as the next example shows.

Example 5.1.1. Let ζ3 and ζ4 denote respectively a primitive third and fourth
root of unity and let K be the number field Q(ζ3, ζ4) endowed with the adelic
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structure coming from Q as in Proposition 2.3.12. After having chosen a basis
of the lattice M , consider the polynomials

f = 1 + x+ y, g = 1 + ζ2
3x+ ζ3y, g′ = 1− x+ ζ4y

in K[x±1, y±1]. It is easily verified that for each place v of K, the v-adic Ronkin
functions of f , g and g′ coincide. The canonical height on P2

K with respect
to the Cartier divisor with corresponding Weil divisor the line at infinity is
also called the Weil height on P2

K and denoted by hWeil. It coincides with the
height defined in [BG06, §1.5.1]. There are two possible embeddings of K in C
up to complex conjugation: the first sends ζ3 to e2πi/3 and ζ4 to i, the second
ζ3 to e2πi/3 and ζ4 to −i. Then, using Proposition 2.1.21,

hWeil(Z(f, g)) = hWeil

(
(ζ3 : 1 : −ζ3 − 1)

)
=
∑
v∈MK

nv log+ |ζ3 + 1|v

= 2 · 1

2
log+ |e2πi/3 + 1|∞ = 0

since ζ3 + 1 is an algebraic integer and nv = [C : R]/[K : Q] = 1/2 for every
archimedean place v of K, see [MS16, Example 3.8]. Analogously,

hWeil(Z(f, g′)) = hWeil

(
(ζ4 : 1 : −ζ4 − 1)

)
=
∑
v∈MK

nv log+ |ζ4 + 1|v

=
1

2
log+ |i+ 1|∞ +

1

2
log+ | − i+ 1|∞ =

1

2
log 2.

This shows that, in general, the height of a complete intersection can not only
depend on the Ronkin functions of the defining polynomials.

5.2
Upper functions of polynomials

We introduce here the notions of upper function and gross upper function
associated to a Laurent polynomial in K[M ] for each place of K. We then
study such functions and prove a number of properties they rejoice.

Definitions and examples. Recall that for any place v ∈M, the analytic
torus Tan

v consists, set-theoretically, of the multiplicative seminorms on Cv[M ]
extending | · |v. Moreover, there exists a tropicalization map tropv : Tan

v → NR
as in Definition 3.4.2.
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Definition 5.2.1. Let f be a nonzero Laurent polynomial over K. For a place
v ∈M, the v-adic upper function of f is the map µf,v : NR → R defined as

µf,v(u) := − max
x∈trop−1

v (u)
log ‖f‖x

for every u ∈ NR.

It is clear from Definition 4.1.1 that

µf,v(u) = − max
x∈Bv(u)

log ‖f‖x, (5.1)

where Bv(u) denotes the boundary of the fiber of the tropicalization map over
u as in the discussion after Proposition 4.1.4. The explicit description of such
a boundary proved in the cited proposition allows to give a more explicit
expression for the v-adic upper function and to check that it takes a real value
at each u ∈ NR.

Remark 5.2.2. Assume that v is an archimedean place of K and let σ be
the corresponding embedding of K in C, up to complex conjugation. Fixing
the choice of a basis of M and of the dual basis of N , one identifies Tan

v with
(C∗)n as in Remark 3.4.1. Then, for every u = (u1, . . . , un) ∈ Rn,

µf,v(u) = − max
θ1,...,θn∈[0,2π]

log
∣∣∣fσ(e−u1+iθ1 , . . . , e−un+iθn

)∣∣∣
∞
,

where fσ =
∑

m σ(cm)χm ∈ C[M ].

Remark 5.2.3. If v is a non-archimedean place of K, it follows immediately
from (5.1) and Proposition 4.1.4 that µf,v = f trop,v as in Remark 4.1.7.

A more explicit function associated to a nonzero Laurent polynomial is
given in the following definition, which coincides with [MS16, (1.2)].

Definition 5.2.4. Let f =
∑

m cmχ
m be a nonzero Laurent polynomial over

K. For a place v ∈ M, the gross v-adic upper function of f is the map
µ̃f,v : NR → R defined as

µ̃f,v(u) :=

{
− log

(∑
m |cm|ve−〈m,u〉

)
if v is archimedean

µf,v(u) otherwise
(5.2)

for every u ∈ NR.
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When v is non-archimedean, it follows immediately from Remark 5.2.3 and
Definition 5.2.4 that

µ̃f,v = µf,v = ρf,v. (5.3)

The relation among the Ronkin function, the upper function and the gross
upper function is instead less tame in the archimedean setting, as the next
two examples show.

Example 5.2.5. Let K = Q, M = Z and f = x2 + x + 1. For the unique
archimedean absolute value v of K one has by Remark 5.2.2 that

µf,v(u) = − max
θ∈[0,2π]

log
∣∣f(e−u+iθ

)∣∣ = − log
(
e−2u + e−u + 1

)
= µ̃f,v(u)

for every u ∈ NR.

µf,v = µ̃f,v

ρf,v

Figure 5.1: The case of Example 5.2.5.

Example 5.2.6. Let again K = Q, M = Z and v be the unique archimedean
absolute value of K. For the Laurent polynomial f = x2 + x− 1 one has∣∣f(e−u+iθ

)∣∣2 = e−4u + 3e−2u + 1 + 2e−u(e−2u − 1) cos θ − 4e−2u cos2 θ.

This function is the restriction to the closed interval [−1, 1] of a concave
parabola in cos θ. Its maximum is then

max
θ∈[0,2π]

∣∣f(e−u+iθ
)∣∣2 =


e−4u + 2e−3u − e−2u − 2e−u + 1 if sinh(u) ≤ −2
5
4

(
e−4u + 2e−2u + 1

)
if sinh(u) ∈ [−2, 2]

e−4u − 2e−3u − e−2u + 2e−u + 1 if sinh(u) ≥ −2

,
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implying that

µf,v(u) =


−1

2 log
(
e−4u + 2e−3u − e−2u − 2e−u + 1

)
if u ≤ log(

√
5− 2)

−1
2 log

(
5
4

(
e−4u + 2e−2u + 1

))
otherwise

−1
2 log

(
e−4u − 2e−3u − e−2u + 2e−u + 1

)
if u ≥ log(

√
5 + 2)

.

The gross v-adic upper function of f is instead, as in Example 5.2.5

µ̃f,v(u) = − log(e−2u + e−u + 1).

µf,v
µ̃f,v

ρf,v

Figure 5.2: The case of Example 5.2.6.

Despite their wild behaviour in the archimedean setting, one can give a
sequence of inequalities relating the Ronkin function, the upper function and
the gross upper function of a nonzero Laurent polynomial at any place v.

Proposition 5.2.7. For a nonzero Laurent polynomial f ∈ K[M ] and a place
v ∈M,

µ̃f,v ≤ µf,v ≤ ρf,v.

Proof. The statement is trivial for non-archimedean places because of (5.3).
Assume hence that v is archimedean; for every u ∈ NR, each x ∈ trop−1

v (u) is
an archimedean absolute value over K[M ] satisfying ‖χm‖x = e−〈m,u〉 by the
definition of the map tropv, see Definition 3.4.2. Then, if f =

∑
m cmχ

m, the
triangular inequality yields

‖f‖x ≤
∑
m

|cm|ve−〈m,u〉
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for every x ∈ trop−1
v (u). So, for every u ∈ NR,

µf,v(u) = min
x∈trop−1

v (u)
− log ‖f‖x ≥ − log

(∑
m

|cm|ve−〈m,u〉
)

= µ̃f,v(u),

proving the first inequality. Regarding the second one, Definition 5.2.1 gives

− log ‖f‖x ≥ µf,v(u)

for all x ∈ trop−1
v (u). The monotonicity of the integral on trop−1

v (u) and the
fact that the total mass of the measure in (4.1) is 1, together with the definition
of the Ronkin function in Definition 4.1.5 imply than that ρf,v(u) ≥ µf,v(u)
for all u ∈ NR.

Properties. To study the properties of upper functions and gross upper
functions, one can start by considering their behaviour with respect to prod-
ucts and scalar multiplications, as done in Proposition 4.1.8 for Ronkin func-
tions.

Proposition 5.2.8. For every nonzero Laurent polynomials f, g ∈ K[M ],
v ∈M and c ∈ K∗, one has

1. µf ·g,v ≥ µf,v + µg,v

2. µ̃f ·g,v ≥ µ̃f,v + µ̃g,v

3. µcf,v = − log |c|v + µf,v

4. µ̃cf,v = − log |c|v + µ̃f,v.

Proof. All the claims are obvious in the non-archimedean setting because of
(5.3) and Proposition 4.1.8. Assume then that v is an archimdean place of K
and let f =

∑
m amχ

m and g =
∑

l blχ
l. To prove 2,

µ̃f ·g,v(u) = − log

(∑
k

∣∣∣∣∣ ∑
m+l=k

ambl

∣∣∣∣∣
v

e−〈k,u〉

)

≥ − log

(∑
k

∑
m+l=k

|am|v|bl|ve−〈k,u〉
)

= − log

(∑
m,l

|am|v|bl|ve−〈m,u〉e−〈l,u〉
)

= µ̃f,v + µ̃g,v.

The other claims follow easily from the definitions.
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The following statement is instead the equivalent of Proposition 4.1.9.
Recall that for a nonzero Laurent polynomial f ∈ K[M ], the map ΨNP(f)

denotes the support function of the Newton polytope of f , see Definition 3.2.1
and Remark 1.2.5.

Proposition 5.2.9. Let f be a nonzero Laurent polynomial over K and v ∈
M. Then,

1. µf,v and µ̃f,v are continuous concave functions on NR (in particular they
are closed)

2. |µf,v −ΨNP(f)| and |µ̃f,v −ΨNP(f)| are bounded on NR

3. the stability sets of µf,v and µ̃f,v coincide with NP(f) and rec(µf,v) =
rec(µ̃f,v) = ΨNP(f).

Proof. For a non-archimedean place v of K the three claims follow from (5.3)
and the analogous properties of the Ronkin function proved in Proposition
4.1.9.
Assume hence that v is an archimedean place of K and let f =

∑
m cmχ

m.
As in the proof of Proposition 4.1.9, denote by γ(f) the number of nonzero
coefficients of f . Then, for every u ∈ NR

µ̃f,v(u) = − log
(∑

m

|cm|ve−〈m,u〉
)
≥ − log

(
γ(f) max

m
|cm|v ·max

m
e−〈m,u〉

)
= min

m
〈m,u〉 − log(γ(f) max

m
|cm|v) = ΨNP(f)(u)− log(γ(f) max

m
|cm|v).

For a reverse inequality, Proposition 5.2.7 and Proposition 4.1.9 (2) imply that
there exists a real constant c for which

µ̃f,v(u) ≤ ΨNP(f)(u) + c

for every u ∈ NR. This proves (2) for the function µ̃f,v; the same claim for
µf,v follows hence easily from Proposition 5.2.7 and Proposition 4.1.9 (2).
As a result, one can treat µ̃f,v as the metric function corresponding to a toric
metric on the toric Cartier divisor associated to NP(f) on a certain toric
variety; the concavity of µ̃f,v follows then from the geometric approach of
[MS16, Proposition 6.2] and the characterization of semipositive toric metrics
in Theorem 3.4.7.
To prove (1) for µf,v, fix the choice of a basis of M and of its dual basis
of N and let σ be the embedding of K in C, up to complex conjugation,
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corresponding to the place v. By Remark 5.2.2, the v-adic upper function of
f can then be written as

µf,v(u) = min
θ1,...,θn∈[0,2π]

− log
∣∣∣fσ(e−u1+iθ1 , . . . , e−un+iθn

)∣∣∣
∞
.

Consider for any (θ1, . . . , θn) ∈ [0, 2π]n the function Fθ1,...,θn : NR → R ∪ {∞}
defined by

Fθ1,...,θn : u 7→ − log
∣∣fσ(e−u1+iθ1 , . . . , e−un+iθn

)∣∣
∞.

Setting

fθ1,...,θn =
∑
m

σ(cm)ei(m1θ1+···+mnθn)χm ∈ C[M ],

one sees that the function

Fθ1,...,θn(u) = − log |fθ1,...,θn(e−u1 , . . . , e−un)|∞
is concave because of [Yge15, Proposition 2.4] and the fact that log |fθ1,...,θn |∞
is a plurisubharmonic function on (C∗)n. The pointwise infimum of any fam-
ily of concave functions being again concave because of [Roc70, Theorem 5.5],
one deduces that µf,v is so.
Being concave on NR, µf,v and µ̃f,v are continuous on NR, then closed. Prop-
erty (3) is a direct consequence of (2) as in the proof of Proposition 4.1.9.

5.3
Upper bounds

Using an analogous idea to the one of [MS16], we prove here combinatorial
expressions giving upper bounds for the height of cycles in toric varieties in
terms of the defining polynomials. We first give some general definitions and
properties and then describe the toric case.

Small sections. The existence of a metric on line bundles, which measures
sections, allows to introduce the following fundamental notion, see also [Sou92,
§3.6].

Definition 5.3.1. Let D = (D, (‖ · ‖v)v∈M) be a metrized divisor on a proper
variety X over K. For a place v ∈M, a global section s of O(D) is said to be
Dv-small if

log ‖s(p)‖v ≤ 0

for every point p ∈ Xan
v , p /∈ |div(s)|. A section s of O(D) is said to be

D-small if it is Dv-small for every v ∈M.
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Small sections are particularly useful to give recursive bounds for the height
of algebraic cycles.

Lemma 5.3.2. Let X be a proper variety over K and D0,v, . . . , Dd,v a fam-
ily of v-adic semipositive metrized divisors on X for a place v ∈ M. Let
Z be a d-dimensional effective cycle in X and s0, . . . , sd rational sections of
O(D0), . . .O(Dd) respectively, meeting Z properly. If sd is a Dd,v-small sec-
tion, then

hD0,v ,...,Dd−1,v
(Z · div(sd); s0, . . . , sd−1) ≤ hD0,v ,...,Dd,v

(Z; s0, . . . , sd).

Proof. The cycle Z being effective and the metrized divisors semipositive, the
measure c1(D0,v) ∧ · · · ∧ c1(Dd−1,v) ∧ δZan

v
is a positive measure on Xan

v . The
definition of local height, the monotonocity of the integral and the hypothesis
on sd imply then that the difference between the v-adic local height of Z ·
div(sd) and the height of Z with respect to the chosen sections is∫

Xan
v

log ‖sd‖d,v c1(D0,v) ∧ · · · ∧ c1(Dd−1,v) ∧ δZan
v
≤ 0,

yielding the desired inequality.

Proposition 5.3.3. Let X be a smooth projective variety over K, D0, . . . , Dd

a collection of semipositive metrized divisors on X and Z a d-dimensional
effective cycle on X. If sd is a Dd-small section of O(Dd) meeting Z properly,

hD0,...,Dd−1
(Z · div(s)) ≤ hD0,...,Dd

(Z),

provided both terms are defined.

Proof. The assumptions on X assure the existence of sections s0, . . . , sd−1 such
that s0, . . . , sd−1, s meet Z properly. Whenever both cycles in the claim are
integrable, the statement is immediate from Lemma 5.3.2.

The toric case. Fix now a proper toric variety XΣ of dimension n over
K. For a nonzero Laurent polynomial f in K[M ], whose Newton polytope is
compatible with the fan Σ in the sense of Definition 3.1.11, one can consider
the divisor Df on XΣ associated to the support function ΨNP(f) by Theorem
3.1.9. Thanks to Theorem 3.4.7 and Proposition 5.2.9, the collection of v-adic
upper functions of f define a semipositive toric metric on Df .

Definition 5.3.4. In the notation and hypotheses above, the µ-metric on Df

is the semipositive toric metric on Df corresponding to the family (µf,v)v∈M
via Theorem 3.4.7 .
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One will denote by ‖ ·‖µ,v the v-adic µ-metric of Df and by D
µ
f the divisor

Df endowed with its µ-metric. A first easy property of D
µ
f is given by the

following.

Proposition 5.3.5. The µ-metric on Df is adelic.

Proof. The statement is a direct consequence of Proposition 2.3.5, Lemma
4.2.9 and (5.3).

The main interest of the µ-metric on Df is its relation with small sections
and is stated in the next proposition.

Proposition 5.3.6. The section fsf of O(Df ) is D
µ
f -small in the sense of

Definition 5.3.1

Proof. Let v ∈M. For a point p ∈ Xan
0,v, p /∈ | div(fsf )|, the definition of the

metric and the one of the v-adic upper function of f yield

log ‖(fsf )(p)‖µ,v = log |f(p)|+ µf,v(tropv(p)) ≤ 0.

The continuity of the metric implies that the inequality equally holds, outside
the divisor of fsf , in Xan

Σ,v \Xan
0,v, concluding the proof.

The following statement is the main result of the chapter.

Theorem 5.3.7. Let XΣ be a smooth projective toric variety of dimension n
over K, k ∈ {0, . . . , n} and f1, . . . , fk nonzero Laurent polynomials in K[M ]
with Newton polytopes compatible with the fan Σ. Assume that the sections
f1sf1 , . . . , fksfk of O(Df1), . . . ,O(Dfk) respectively meet XΣ properly and let

Z(f1, . . . , fk) := div(f1sf1) · · · · · div(fksfk) ·XΣ (5.4)

be the corresponding cycle in XΣ, of dimension n − k. Let D0, . . . , Dn−k be
adelic semipositive toric metrized divisors on XΣ. Then

hD0,...,Dn−k
(Z(f1, . . . , fk)) ≤

∑
v∈M

MIM (ϑ0,v, . . . , ϑn−k,v, µ
∨
f1,v, . . . , µ

∨
fk,v

),

where ϑi,v is the v-adic roof function of Di for each i = 1, . . . , n − k and
v ∈M.
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Proof. The proof is done by induction on k. The claim for k = 0 is obvious
from Theorem 3.4.12. Assume hence that the inequality is true for k − 1,
with k ≥ 1. Consider the Laurent polynomials f1, . . . , fk and the adelic semi-
positive toric metrized divisors D0, . . . , Dn−k. Since the family of sections
f1sf1 , . . . , fksfk meets XΣ properly, so does the subfamily f1sf1 , . . . , fk−1sfk−1

and one has by the commutativity of intersection products, see [Ful98, Theo-
rem 2.4],

Z(f1, . . . , fk) = div(fksfk) · Z(f1, . . . , fk−1).

Thanks to Theorem 3.5.4, the hypotheses of the theorem and Proposition
5.3.5, the cycle Z(f1, . . . , fk) is integrable with respect to D0, . . . , Dn−k and
Z(f1, . . . , fk−1) is integrable with respect to D0, . . . , Dn−k, D

µ
fk

. Moreover, the
cycle Z(f1, . . . , fk−1) is effective since it is obtained by intersecting effective
Cartier divisors on XΣ.
Hence, Proposition 5.3.3 and Proposition 5.3.6 imply that

hD0,...,Dn−k
(Z(f1, . . . , fk)) ≤ hD0,...,Dn−k,D

µ
fk

(Z(f1, . . . , fk−1)).

The induction hypothesis and the symmetry of the mixed integral operator,
together with the fact that the v-adic roof function of D

µ
fk

is µ∨f,v because of
Definition 5.3.4, conclude the proof.

The v-adic upper function of a Laurent polynomial being more compli-
cated than the gross v-adic upper function, one can prove the following more
computable, though weaker, upper bound.

Corollary 5.3.8. In the same hypotheses and notation of Theorem 5.3.7,

hD0,...,Dn−k
(Z(f1, . . . , fk)) ≤

∑
v∈M

MIM (ϑ0,v, . . . , ϑn−k,v, µ̃
∨
f1,v, . . . , µ̃

∨
fk,v

).

Proof. The statement immediately follows from the inequality in Theorem
5.3.7, Proposition 5.2.7, [BPS14, Proposition 2.2.2] and Proposition 1.5.4.

Remark 5.3.9. The Legendre-Fenchel dual of the gross v-adic upper function
of a Laurent polynomial has an explicit expression, see for instance [MS16,
Equality (6.7) in Proposition 6.2].

Remark 5.3.10. Under stronger assumptions on the metrized divisorsD0, . . . ,
Dn−k, one might prove upper bounds for the height of the restriction to the
dense open torus of the intersection cycle of k Laurent polynomials. For in-
stance, [MS16, Theorem 1.1] gives a bound for the height of the common
solutions in the torus of a system of n Laurent polynomials with respect to a
nef toric metrized divisor.



CHAPTER 6
Average heights

The computations in Example 5.1.1 show that the height of a complete inter-
section can not only depend on the Ronkin functions of the generating Laurent
polynomials. In this chapter, we conjecture a formula for a certain average
height of the cycle obtained as a complete intersection in a toric variety. We
then focus on the strategy for the proof of a family of cases.
The choice of an adelic field (K, (| · |v, nv)v∈M) is assumed throughout the
whole section. We also fix the choice of an algebraic closure K of K. By abuse
of notation, we will identify the set of closed points of a variety X over K with
the set of its K-points, see [Gro60, I, ch.1, Proposition 6.4.2], and call them
the algebraic points of X.

6.1
Invariant means on groups

The definition of an ‘equidistributed’ average on a group G requires some cau-
tion. Indeed, when the group is compact, there exists a unique invariant prob-
ability measure, namely the normalized Haar measure, on G. A well-known
theorem of Weil, however, affirms that if a Polish topological group admits a
left-invariant σ-additive measure, then it is locally compact, see [Wei40]. This
implies then that not all topological groups have a left-invariant σ-additive
measure, as is the case for discrete countable groups. In these situations,
averages of random variables can not be defined to be expected value with
respect to a measure as in the classical case.
This problem can be overtaken by considering coarser versions of left-invariant

125
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integration on G with finite total mass, in particular weakening the require-
ment of σ-additivity. Recall that a finitely additive probability measure on a
measurable space E is a positive measure µ satisfying µ(E) = 1 and

µ(A1 ∪ · · · ∪Ak) = µ(A1) + · · ·+ µ(Ak)

for every finite collection of pairwise disjoint measurable sets A1, . . . , Ak.

Definition 6.1.1. A discrete group G is amenable if there exists a finitely
additive probability measure µ on G which is left-invariant.

Amenable groups were introduced by von Neumann in [Neu29] to study
obstructions to instances of the Banach-Tarski paradox. Contributions to the
theory have been successively made by Følner, Day and Gromov among others.
References can be found in the monograph [Pat88] or in the more recent and
concise [CC10, chapter 4].

Example 6.1.2. Finite groups are amenable as they admit the normalized
counting measure. Instead, the free group of rank 2 is non-amenable, see for
instance [CC10, Theorem 4.4.7].

Let µ be a finitely additive probability measure on a measurable space
E and denote by `∞(E) the vector space of bounded real-valued functions
on E. One can define the integral with respect to µ of a function in `∞(E)
by approximation via simple functions, as in the classical Lebesgue case, see
[CC10, proof of Theorem 4.1.8] for a detailed construction. The so defined
integral is a linear functional on `∞(E), monotone and continuous with respect
to the sup-norm of bounded functions.

Definition 6.1.3. Let G be an amenable group and µ a left-invariant finitely
additive probability measure on G. The mean of a bounded real-valued func-
tion f over G with respect to µ is

Eµ[f ] :=

∫
G
f dµ.

The mean with respect to µ is a left-invariant linear functional on `∞(G)
which is 1 for the indicator function of G and which takes non-negative values
on non-negative valued functions. Conversely, any linear functional on `∞(G)
satisfying the previous properties induce a left-invariant finitely additive prob-
ability measure on G by evaluating it at indicator functions.
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Remark 6.1.4. It is shown in [CC10, Proposition 4.4.4] that the existence of
a left-invariant finitely additive probability measure on a discrete group G is
equivalent to the existence of a right-invariant one and also to the existence
of an invariant one.

Remark 6.1.5. The name ‘amenable’ given in Definition 6.1.1 refers indeed
to the fact that a meaningful mean can be defined.

Amenability is a property stable under considering subgroups, quotients,
extensions and direct products, see [CC10, section 4.5]. The following result
will also be particularly useful.

Proposition 6.1.6. The direct limit of amenable groups is amenable.

Proof. Let (I,≤) be a directed set and let (Gi, fij) be a directed system of
groups over I and denote by G its direct limit. By hypothesis, for every i ∈ I
there exists a left-invariant finitely additive probability measure µi on Gi; by
pushing forward via the canonical function Gi → G, one can consider µi as a
finitely additive measure probability measure on G. The mean Eµi on G with
respect to µi is a continuous linear functional on (`∞(G), ‖ · ‖∞), hence it is
an element of the Banach space (`∞(G))∗, with dual norm

‖Eµi‖ = sup{|Eµi(f)| : f ∈ `∞(G), ‖f‖∞ ≤ 1} = Eµi(1) = 1

because of the monotonicity of the integral. It follows that the net (Eµi)i∈I
is contained in the unit ball of (`∞(G))∗, which is compact with respect to
the weak-∗ topology because of the Banach-Alaoglu theorem, see for instance
[Rud91, theorem 3.15]. There exists hence a subnet (Eµj )j∈J converging to a
linear functional E on `∞(G). It follows by passage to the limit that E(1) = 1
and that E takes non-negative values on non-negative functions. Moreover, E
is left-invariant on G. Indeed, for every g ∈ G and f ∈ `∞(G),

E(g.f) = limEµj (g.f) = limEµj (f) = E(f),

since there exists j0 ∈ J such that g lies in the canonical image of Gj in G
for every j ≥ j0 and Eµj is Gj-invariant. Then, by setting µ(A) := E(1A) for
every A ⊆ G, one obtains a left-invariant finitely additive probability measure
µ on G.

6.2
The twisted family

We introduce in this section the family of Laurent polynomials over which
the average will be computed. Loosely speaking, it consists of a collection
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of Laurent polynomials over K obtained by twisting the original polynomials
by torsion points in the torus. Their zero sets are then translate of a fixed
hypersurface by torsion points.
Throughout the whole section, let M be a lattice of dimension n and NR the
real vector space associated to its dual lattice N .

Translated subvarieties. Fix for this subsection an arbitrary field K.
Denote by T := SpecK[M ] the n-dimensional torus over K with character
lattice M and by TK its base change to a fixed algebraic closure K of K. Any
m ∈M = Hom(T,Gm) induces hence a morphism

T(K)→ Gm(K) = K∗.

The image of a point x ∈ T(K) by such a morphism is denoted by xm.

Definition 6.2.1. Let f =
∑

m cmχ
m be a Laurent polynomial in K[M ] and

x ∈ T(K). The twisted of f by x is the Laurent polynomial

x∗f =
∑
m

(cmx
m)χm

in K[M ].

Remark 6.2.2. The group scheme multiplication on T induces a multipli-
cation morphism on T(K). In particular, the multiplication by the element
x ∈ T(K) is a group homomorphism on T(K), denoted by multx. On the
other hand, any polynomial f ∈ K[M ] gives a mapping from T(K) to K.
The pull-back of this mapping by multx is the mapping associated with the
polynomial x∗f , which justifies the notation adopted in Definition 6.2.1.

From the definition and the fact that T(K) is an abelian group, one easily
proves that for f ∈ K[M ] and x, y ∈ T(K)

(xy)∗f = x∗(y∗f). (6.1)

Definition 6.2.1 allows to introduce the notion of translated subvarieties in a
torus from an algebraic point of view. For a subvariety V of T, denote by
I(V ) the corresponding ideal in K[M ].

Definition 6.2.3. Let V be a subvariety of T and x ∈ T(K), with inverse
x−1. The translated of V by x is the subvariety xV of T corresponding to the
ideal (

x−1
)∗
I(V ) :=

{(
x−1

)∗
f : f ∈ I(V )

}
(6.2)

in K[M ].
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Remark 6.2.4. Using (6.1), one easily checks that the translation by any
x ∈ T(K) is a bijection on the set of subvarieties of T, with inverse given by
the translation by x−1. The operation in (6.2) preserving the primality of an
ideal, the translation by x sends moreover irreducible subvarieties of T into
irreducible subvarieties of T. In particular, it preserves the dimension.

There exists a more geometric interpretation of the notion of translated
variety. To see it, consider that the group scheme structure on T gives the
homomorphism of abelian groups T(K)× T(K)→ T(K) at the level of alge-
braic points. This allows to consider, for each x ∈ T(K) and A ⊆ T(K), the
set x.A := {xa : a ∈ A} ⊆ T(K).

Proposition 6.2.5. Let V be a subvariety of TK and x ∈ T(K). The set of
closed points of xV coincides with x.V (K).

Proof. Let I(V ) denote the ideal of V in K[M ]. By definition, the set V (K)
consists of the points of T(K) which are zeros of f for every f ∈ I(V ). But a
point y ∈ T(K) is a zero of f if and only if xy is a zero of

(
x−1

)∗
f . The claim

follows then from Definition 6.2.3.

Torsion points. Coming back to the case of an adelic base field K, let
T be the split torus SpecK[M ]. The neutral element of the abelian group
T
(
K
)

of K-points of T is denoted by 1. The following definition introduces a
distinguished subgroup of T

(
K
)
.

Definition 6.2.6. For any d ∈ N, the subgroup of d-torsion points of T
(
K
)

is
the subgroup

τ(d) :=
{
ζ ∈ T

(
K
)

: ζd = 1
}
,

that is the set of points in T
(
K
)

with order dividing d.

The choice of a system of coordinates on M specifies an isomorphism
of T with Gn

m and hence a group isomorphism between T
(
K
)

and the set(
K∗
)n

endowed with componentwise multiplication and neutral element 1 =
(1, . . . , 1).

Proposition 6.2.7. The subgroup τ(d) is finite. More precisely, if d is not
divisible by the characteristic of K, the cardinality of τ(d) equals dn, otherwise
it equals an, with a being the highest factor of d not divisible by char(K).

Proof. After a choice of coordinates on M , an element ζ ∈
(
K∗
)n

is in τ(d) if
and only if its components are d-roots of unity in K. If the characteristic of K
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does not divide d, the algebraically closed field K has exactly d distinct d-roots
of unity; the fact that no root appears with multiplicity two follows from the
fact that the formal derivative of T d−1 is dT d−1, which has no nonzero roots.
Otherwise, assume that p = charK divides d; writing d = pαa with a an
integer coprime with p, one has that α = νp(d) is the p-adic valuation of d. It
follows that a d-root of unity is a zero of the polynomial

T d − 1 = (T a − 1)p
α
,

hence of the polynomial T a − 1. Since p does not divide a, it follows from
the first part of the proof that this polynomial has exactly a = d/pα different
roots in K.

It will be useful to consider the subgroup of torsion points τ of T
(
K
)
, which

is

τ :=
⋃
d∈N

τ(d). (6.3)

It is the subgroup of T
(
K
)

consisting of its elements of finite order. A choice
of coordinates on M yields τ = µn∞, with µ∞ denoting the group of roots of
unity in K. Moreover, as a countable union of finite sets, τ is countable.

Proposition 6.2.8. The group τ is amenable.

Proof. Let (N, |) be the directed set of positive integers endowed with the
divisibility relation. Whenever d1, d2 ∈ N with d1|d2, any d1-torsion point is
also a d2-torsion point, hence there is a trivial injection τ(d1) ↪→ τ(d2). With
these notations,

lim−→
d

τ(d) ' τ.

Since each of the groups τ(d) is amenable because of Proposition 6.2.7 and
Example 6.1.2, the claim follows from Proposition 6.1.6.

Remark 6.2.9. More directly, Proposition 6.2.8 follows from the fact that
every abelian group is amenable, see [CC10, Theorem 4.6.1].

Unfortunately, the proof of Proposition 6.1.6 does not provide an explicit
finitely additive invariant measure on τ . In the setting of Proposition 6.2.8
and denoting by δx the Dirac delta at a point x, it states that there exists a
subnet of (

1

#τ(d)

∑
ζ∈τ(d)

δζ

)
d∈(N,|)

(6.4)
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whose corresponding means converge weakly in (`∞(τ))∗. Anyway, the net
(6.4) itself is in general not convergent (see the example below) and the exis-
tence of a converging subnet, which is not unique, relies on the highly ineffec-
tive Banach-Alaoglu theorem.

Example 6.2.10. Let T denote the one dimensional torus over Q. Then, the
net in (6.4) is not weak-∗ convergent. Indeed, if it was, the net(

1

d

∑
ζ∈τ(d)

f(ζ)

)
d∈(N,|)

(6.5)

would be convergent in R for any bounded function f on τ . Consider the
subset

A := {ζ ∈ τ : ν2(ord(ζ)) is odd}
of τ , where ν2(ord(ζ)) denotes the 2-adic valuation of the order of ζ. Sorting
the elements of A∩ τ(d) by the 2-adic valuation of their orders and using the
properties of the Euler totient function one shows that for every d ∈ N

#(A ∩ τ(d))

d
=


1
3

(
1− 1

2ν2(d)

)
if ν2(d) is even

1
3

(
2− 1

2ν2(d)

)
otherwise

.

Hence, the net (6.5) fails to be convergent for the indicator function of A, as
it has 1/3 and 2/3 as cluster points.

One will give a formal construction of an ad-hoc measure in the particular
case of interest for this chapter, see Remark 6.4.3.

Twisted families. For a torsion point ζ ∈ τ , the residue field of T at ζ is
a finite field extension of K, denoted by K(ζ). Considering ζ as a K-point of
T, any character m ∈M = Hom(T,Gm) induces a morphism

T
(
K
)
→ Gm

(
K
)

= K∗.

Compatibly with the notation in the beginning of the section, the image of
ζ by such morphism is denoted by ζm and it lies in K(ζ). For a Laurent
polynomial f =

∑
m cmχ

m ∈ K[M ], the twist of f by ζ as in Definition 6.2.1
is then the polynomial

ζ∗f =
∑
m

(cmζ
m)χm

in K(ζ)[M ]. In particular, if d ∈ N is such that ζ ∈ τ(d), then ζm is a d-root
of unity in K for any m ∈ M , so ζ∗f ∈ Kd[M ], where Kd is the cyclotomic
field obtained by adding to K all its d-roots of unity.
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Remark 6.2.11. When M is given a fixed system of coordinates, one can
write m = (m1, . . . ,mn) and ζ = (ζ1, . . . , ζn). Then, K(ζ) is the minimal field
extension of K containing ζ1, . . . , ζn and ζm = ζm1

1 · · · · · ζmnn .

One can study the effect of twisting on the combinatorial information
associated to a Laurent polynomial.

Proposition 6.2.12. Let f ∈ K[M ] and ζ ∈ τ . Then, f and ζ∗f share
the same Newton polytope, v-adic Ronkin function, v-adic upper function and
gross v-adic upper function for every place v of K(ζ).

Proof. For any m ∈M , ζm is the image in K∗ of an element of finite order by
a group homomorphism, hence it is a root of unity in K.
Let f =

∑
m cmχ

m. By the above, cmζ
m 6= 0 whenever cm 6= 0, hence

NP(f) = NP(ζ∗f). Also, since a root of unity has absolute value equal to 1
at all places, ∣∣cmζm∣∣v = |cm|v (6.6)

for any place v of K(ζ).
Let v be a non-archimedean place of K(ζ). In this case, the v-adic Ronkin
function, the v-adic upper function and the gross v-adic upper function coin-
cide, see Remark 5.3. Because of (6.6), moreover

ρf,v = min
m

(〈m, ·〉 − log |cm|v) = ρζ∗f,v.

Assume now that v is archimedean: because of Proposition 2.1.21, v corre-
sponds to an embedding σ : K(ζ) → C up to complex conjugation. In the
notation of Remark 4.1.6, for u ∈ NR,

ρζ∗f,v(u) =
1

(2π)n

∫
[0,2π]n

− log
∣∣fσ(σ(ζ1)e−u1+iθ1 , . . . , σ(ζn)e−un+iθn

)∣∣dθ
= ρf,v(u)

by an affine change of variables in the variables θ1, . . . , θn. Similarly, µf,v =
µζ∗f,v. The equality µ̂f,v = µ̂ζ∗f,v follows again from (6.6).

Let f = (f1, . . . , fk) be a k-tuple of Laurent polynomials with coefficients
in K. Operating a componentwise twisting, one gets a family of k-tuples of
Laurent polynomials with coefficients in K.

Definition 6.2.13. Let k ∈ N and f1, . . . , fk ∈ K[M ]. The twisted family of
f = (f1, . . . , fk) is the family

T (f) :=
{

(ζ∗1f1, . . . , ζ
∗
kfk) : ζ1, . . . , ζk ∈ τ

}
.
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Similarly, for any d ∈ N, the d-twisted family of f = (f1, . . . , fk) is the family

Td(f) :=
{

(ζ∗1f1, . . . , ζ
∗
kfk) : ζ1, . . . , ζk ∈ τ(d)

}
.

Remark 6.2.14. By Proposition 6.2.7, Td(f) is a finite set, of cardinality dnk

if d is not divisible by the characteristic of K. Moreover, there exists a finite
field extensions F of K such that each component of each element of the family
Td(f) is a Laurent polynomial with coefficients in F.

The analogous relation on the subgroups, see (6.3), implies that

T (f) =
⋃
d∈N
Td(f).

6.3
The geometry of twisted families

Our first goal is to understand the geometrical properties one can expect “on
average” for the twisted family of f = (f1, . . . , fk), namely the intersection of
the associated sections and the corresponding degree, when well-defined.

The setting. One fixes in this subsection the terminology and objects that
will be used in the following geometric study. First of all, thanks to Proposition
3.1.12, one can choose a smooth projective toric variety XΣ over K whose fan
Σ is compatible with the Newton polytopes NP(f1), . . . ,NP(fk) of f1, . . . , fk
respectively. For every i = 1, . . . , k, let moreover Dfi be the toric Cartier
divisor on XΣ associated to fi as in section 4.2; it is generated by global
sections because of Proposition 3.1.10. Let also sfi be the corresponding
distinguished toric section of O(Dfi). In particular, Proposition 6.2.12 assures
that for any torsion point ζ ∈ τ one can consider the rational section ζ∗fisfi
of O(Dfi). The same proposition, together with Theorem 3.2.4 and Definition
6.2.3, implies that

div(ζ∗fisfi) ·XΣ =
[
V (ζ∗fi)

]
=
[
ζ−1V (fi)

]
. (6.7)

By B(f) one means the set of k-tuple of torsion points ζ = (ζ1, . . . , ζk) ∈ τk
for which the cycles introduced in (6.7) does not intersect properly in XΣ. In
particular, whenever ζ /∈ B(f), one can consider the intersection cycle

Zf (ζ) := div(ζ∗1f1sf1) · · · · · div(ζ∗kfksfk) ·XΣ (6.8)
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in the sense of Definition 2.4.3. If the irreducible components of the support
of such an intersection lie in the dense open torus of XΣ one has

Zf (ζ) =
[
V (ζ∗1f1, . . . , ζ∗kfk)

]
.

Proper intersection. One studies here the cardinality of the set B(f)
when k = 2. To simplify the notations, let f, g be the two fixed nonzero Lau-
rent polynomials with coefficients in K and denote by Df , Dg, sf , sg the cor-
responding toric Carter and distinguished rational sections introduced above.
To study the conditions under which the divisors associated to the twisted
polynomials intersect properly in XΣ, consider, for two subvarieties V and W
of TK, the subset

P(V,W ) :=
{
x ∈ T(K) : xV ⊇W

}
(6.9)

of T(K). Because of the density of the closed points in a variety, see [Gro60,
IV, Troisième partie, Corollaire 10.4.8], one also has

P(V,W ) =
{
x ∈ T(K) : x.V (K) ⊇W (K)

}
. (6.10)

The main interest of such a set is given by the following two properties, which
clarify its relation with proper intersection.

Lemma 6.3.1. Let V and W be two subvarieties of TK, with V an hyper-
surface and W irreducible. For a point x ∈ T(K), one has that xV and W
intersect properly if and only if x /∈ P(V,W ).

Proof. It follows from Remark 6.2.4 that xV is a hypersurface in TK. The
subvarieties xV and W fail to intersect properly if and only if the codimension
of their intersection is strictly smaller than the sum of the codimensions. Since
xV has codimension 1, this happens exactly when the dimension of xV ∩W
equals the dimension of W . Since W is irreducible, this is equivalent to the
condition W ⊆ xV , that is x ∈ P(V,W ) by definition.

Lemma 6.3.2. Let V and W be two subvarieties of TK, with V of positive
codimension and W (K) nonempty. Then P(V,W ) is contained in the set of
K-points of a proper subvariety of TK.

Proof. Let p be a closed point of W , which exists by hypothesis. It follows
from (6.10) that

P(V,W ) ⊆
{
x ∈ T(K) : p ∈ x.V (K)

}
=
{
x ∈ T(K) : x−1p ∈ V (K)

}
=
{
x ∈ T(K) : x−1 ∈ p−1.V (K)

}
=
{
x ∈ T(K) : x−1 ∈ (p−1V )(K)

}
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by Proposition 6.2.5. Since V has positive codimension, the same property
holds for p−1V , so one can choose a nonzero Laurent polynomial g in the ideal
of p−1V , say g =

∑
m cmχ

m. An algebraic point of the torus is a zero of g if
and only if its inverse is a zero of g′ :=

∑
m cmχ

−m, hence

P(V,W ) ⊆
{
x ∈ T(K) : g(x−1) = 0

}
= V (g′)(K),

from which the claim follows.

The last ingredient needed to control the occurrence of “bad” intersections
is the following theorem, which was conjectured by Lang in [Lan83, page 220]
and proved independently in [Lau84, Théorème 2] and [SA94, Proposition 1.6].
By a torsion subvariety of TK one means a translated of an irreducible closed
subtorus of TK by a torsion point in T(K).

Theorem 6.3.3 (Manin-Mumford). Let K be a field of characteristic 0 and
Y an algebraic subvariety of TK. The set of torsion points of TK lying on Y
is a finite union of the sets of torsion points of torsion subvarieties of TK.

The following statement is a consequence of this powerful theorem.

Proposition 6.3.4. Let K be a field of characteristic 0, W an irreducible
hypersurface in TK with W (K) nonempty and f a Laurent polynomial in K[M ]
not being a monomial. Then, there exists an absolute positive constant C such
that for all d ∈ N the number of torsion points ζ ∈ τ(d) such that V (ζ∗f) does
not meet W properly is at most C · dn−1.

Proof. Assume that ζ ∈ τ(d) is such that V (ζ∗f) does not meet W properly.
Lemma 6.3.1 and the equality V (ζ∗f) = ζ−1V (f) given by (6.2.3) imply then
that ζ−1 ∈ P(V (f),W ). Denote by Y the proper algebraic subvariety of TK
containing P(V (f),W ) by Lemma 6.3.2. It follows that ζ−1 is a torsion point
of TK lying on Y . Manin-Mumford theorem assures that

τ ∩ Y (K) =

C⋃
i=1

(τ ∩ Ti(K))

for a fixed natural number C, with T1, . . . , TC being torsion subvarieties of TK.
Since Y is proper, each Ti is of dimension at most n−1, then Ti(K) contains at
most dn−1 d-torsion points for any i = 1, . . . , C, implying the statement.

One can finally show that the set of pairs of torsion points for which the
variety generated by the twisted f and g has uncorrect dimension is “tiny”.
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Theorem 6.3.5. Let K be a field of characteristic 0, f and g two Lau-
rent polynomials in K[M ] which are not monomials. Then, the number of
ζ = (ζ1, ζ2) ∈ τ(d)2 such that the sections ζ∗1fsf and ζ∗2gsg do not meet XΣ

properly is at most C · d2n−1 for a constant C which does not depend on d.

Proof. Recall first that the divisors of ζ∗1fsf and ζ∗2gsg have generic points
inside the dense open orbit X0 of XΣ. Hence, their supports do not contain
any 1-codimensional closed toric orbit, which are the irreducible components
of XΣ\X0. As a consequence, the sections ζ∗1fsf and ζ∗2gsg meet XΣ properly
if and only if each irreducible component of

X0 ∩ | div(ζ∗1fsf )| ∩ | div(ζ∗2gsg)| = V (ζ∗1f) ∩ V (ζ∗2g)

is of codimension 2 in X0, that is if and only if the variety V (ζ∗1f) meet V (ζ∗2g)
properly in the torus.
Secondly, the invariance of proper intersection under translation assures that
the varieties V (ζ∗1f) = ζ−1

1 V (f) and V (ζ∗2g) = ζ−1
2 V (g) meet properly in

the torus if and only if ζ2ζ
−1
1 V (f) and V (g) do. It follows that the number

of pairs ζ = (ζ1, ζ2) ∈ τ(d)2 for which the sections in the statement do not
meet properly is equal to #τ(d) times the number of ζ ∈ τ(d) for which
ζ−1V (f) = V (ζ∗f) and V (g) do not meet properly. One can then reduce the
study to the situation where V (g) is fixed and V (f) is translated by d-torsion
points.
Since g is not a monomial, V (g) is of codimension 1 in X0 and has at least
a K-point. Let W1, . . . ,Wr be the irreducible components of V (g) over K,
with r ∈ N. For each i = 1, . . . , r, Proposition 6.3.4 asserts that there exists
Ci ∈ R>0 independent of d such that the number of torsion points ζ ∈ τ(d)
for which V (ζ∗f) does not meet Wi properly is at most Ci · dn−1. Since
proper intersection is equivalent to the proper intersection of the irreducible
components, one deduces that the number of ζ ∈ τ(d) for which V (ζ∗f) does
not meet V (g) properly is upper bounded by

C1 · dn−1 + · · ·+ Cr · dn−1 = C · dn−1,

with C := C1 + · · ·+ Cr.
Coming back to the general case, the above argument allows to infer that the
number of ζ = (ζ1, ζ2) ∈ τ(d)2 such that the sections ζ∗1fsf and ζ∗2gsg do not
meet properly is at most

#τ(d) · C · dn−1 = C · d2n−1

because of Proposition 6.2.7, concluding the proof.
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It follows that under the hypotheses of the previous theorem, the portion
of pairs (ζ1, ζ2) in τ(d)2 for which the sections ζ∗1fsf and ζ∗2gsg do not meet
XΣ properly is negligible, that is

#
(
B(f, g) ∩ τ(d)2

)
#τ(d)2

→ 0 (6.11)

as d→∞. Otherwise said, the twisted divisors of f and g meet XΣ properly
generically in τ2.

Remark 6.3.6. Using the description of the intersection of V (f) with the
toric orbits of XΣ presented in Theorem 3.3.9, one might show that moreover
the intersection of the varieties V (ζ∗1f) and V (ζ∗2g) has generic points inside
the open dense torus of XΣ for a generic choice of (ζ1, ζ2) in τ2.

The degree. Coming back to the general case of an arbitrary k and in the
notation of the beginning of the section, the next result describes the geometric
degree of the intersection cycle Zf (ζ) defined in (6.8).

Theorem 6.3.7. Let D1, . . . , Dn−k be toric divisors on XΣ generated by global
sections, f = (f1, . . . , fk) a family of Laurent polynomials in K[M ]. For every

ζ ∈ τk \ B(f) one has

degD1,...,Dn−k

(
Zf (ζ)

)
= MVM (∆1, . . . ,∆n−k,NP(f1), . . . ,NP(fk)),

where MVM denotes the mixed volume operator associated to the measure volM
and ∆i the polytope associated to the toric divisor Di for each i = 1, . . . , n−k.

Proof. Applying repeatedly the definition, one obtains

degD1,...,Dn−k

(
Zf (ζ)

)
= degD1,...,Dn−k,Df1 ,...,Dfk

(XΣ).

Since all the divisor D1, . . . , Dn−k, Df1 , . . . , Dfk are generated by global sec-
tions, the claim follows from [Oda88, Proposition 2.10].

One can give a probabilistic consequence of Theorem 6.3.7. For any choice
D1, . . . , Dn−k of toric divisors on XΣ generated by global sections, define the
map

DegD1,...,Dn−k(f) : τk → Z

by setting

DegD1,...,Dn−k(f)(ζ) :=

{
degD1,...,Dn−k

(
Zf (ζ)

)
if ζ /∈ B(f)

0 otherwise
. (6.12)
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Such a map is bounded on τk because of Theorem 6.3.7. It is then mean-
ingful to consider a suitable average of it on τk.

Definition 6.3.8. Let D1, . . . , Dn−k be toric divisors on XΣ generated by
global sections. The sup-expected degree of the the family of Laurent polyno-
mials f with respect to D1, . . . , Dn−k is defined as

E
[

DegD1,...,Dn−k(f)
]

:= lim sup
d→∞

1

#τ(d)k

∑
ζ∈τ(d)k

DegD1,...,Dn−k(f)(ζ).

For k = 2, the following result is an immediate consequence of the combi-
natorial description of the degree of the intersection cycle Zf (ζ) and the fact

that the set B(f) is small in τ2.

Corollary 6.3.9. Let K be a field of characteristic 0, f and g two Laurent
polynomials in K[M ] and D1, . . . , Dn−2 toric divisors on XΣ generated by
global sections. The sup-expected degree of f with respect to D1, . . . , Dn−2 is
in fact a limit and

E
[

DegD1,...,Dn−2
(f)
]

= MVM (∆1, . . . ,∆n−2,NP(f),NP(g)),

where ∆i denotes the polytope associated to the toric divisor Di for every
i = 1, . . . , n− 2.

Proof. The term in the limit of the definition of the sup-expected degree equals

#τ(d)2 −#(B(f, g) ∩ τ(d)2)

τ(d)2
·MVM (∆1, . . . ,∆n−2,NP(f),NP(g))

because of Theorem 6.3.7, which implies the desired statement as d → ∞
thanks to (6.11).

6.4
The arithmetics of twisted families

Inspired by the result in Corollary 6.3.9, we conjecture here an analogous
claim for the average height of a complete intersection in a toric variety. We
then give intuitions for it to hold under additional assumptions.
As in the previous section, let k ∈ {0, . . . , n} and f = (f1, . . . , fk) a fixed
family of k nonzero Laurent polynomials with coefficients in K. Let Σ be a
fan compatible with the Newton polytopes of the Laurent polynomials.



6.4. THE ARITHMETICS OF TWISTED FAMILIES 139

The sup-expected height. Adopting the same notation of the previous
section, when ζ = (ζ1, . . . , ζk) ∈ τk \ B(f) the cycles[

V (ζ∗i fi)
]

= div(ζ∗i fisfi) ·XΣ

for i = 1, . . . , k meet properly in XΣ,K. In such a case, as in (6.8), denote by

Zf (ζ) := div(ζ∗1f1sf1) · · · · · div(ζ∗kfksfk) ·XΣ

the cycle associated to the intersection over K of the corresponding twistings.
If d is such that ζ ∈ τ(d)k, such a cycle is defined over the cyclotomic field
extension Kd of K obtained adding to K all the d-roots of unity.
Let moreover D0, . . . , Dn−k be toric divisors on XΣ, equipped with adelic
semipositive toric metrics and consider the map

HD0,...,Dn−k
(f) : τk → R

defined as

HD0,...,Dn−k
(f) : ζ 7→

{
hD0,...,Dn−k

(
Zf (ζ)

)
if ζ /∈ B(f)

0 otherwise
.

Such a notion is well-defined thanks to Theorem 3.5.4 and the definition of
B(f). In contrast with the geometric degree, which is constant by Theorem
6.3.7 whenever the intersection has the expected dimension, Example 5.1.1
shows that the function HD0,...,Dn−k

(f) may behave wildly, even for k = 2.
The following proposition describes a first property of such a function.

Proposition 6.4.1. The map HD0,...,Dn−k
(f) is upper bounded on τk.

Proof. The claim follows from the definition, from Theorem 5.3.7 and Propo-
sition 6.2.12.

Recalling that τ(d) denotes the subgroup of d-torsion points of T
(
K
)
, one

can consider the net of real numbers(
1

#τ(d)k

∑
ζ∈τ(d)k

HD0,...,Dn−k
(f)(ζ)

)
d∈(N,|)

.

As showed in Example 6.2.10, there is no general argument to infer that such
a net is convergent. Anyway, it is upper bounded because of Proposition 6.4.1,
suggesting to consider its higher accumulation point, which is finite.



140 CHAPTER 6. AVERAGE HEIGHTS

Definition 6.4.2. Let D0, . . . , Dn−k be toric divisors on XΣ, equipped with
adelic semipositive toric metrics. The sup-expected height of the family of
Laurent polynomials f = (f1, . . . , fk) with respect to D0, . . . , Dn−k is defined
as

E
[
HD0,...,Dn−k

(f)
]

:= lim sup
d→∞

1

#τ(d)k

∑
ζ∈τ(d)k

HD0,...,Dn−k
(f)(ζ).

Remark 6.4.3. The group τk is amenable as direct product of amenable
groups, see Proposition 6.2.8 and [CC10, Corollary 4.5.14]. The superior limit
gives a choice of a subnet of real numbers obtained by integrating against
a product of counting measures on τ . By the Banach-Alaoglu theorem, the
subnet of such measures has a subnet which converges to a finitely additive
measure µ on τk. The sup-expected height coincides with the the mean of the
bounded function H with respect to such a measure µ, justifying the notation
E[H].

The analogous claim of the geometric case in Corollary 6.3.9 is given by
the following conjecture.

Conjecture 6.4.4. Let D0, . . . , Dn−k be toric divisors on XΣ, equipped with
adelic semipositive toric metrics. The sup-expected height of the family f with

respect to D0, . . . , Dn−k defined in Definition 6.4.2 is in fact a limit and

E
[
HD0,...,Dn−k

(f)
]

=
∑
v∈M

nv MIM
(
ϑ0,v, . . . , ϑn−k,v, ρ

∨
f1,v, . . . , ρ

∨
fk,v

)
,

where ϑi,v is the roof function of Di,v for every i = 0, . . . , n− k and v ∈M.

Remark 6.4.5. It would be a consequence of the fact that τk ∩ B(f) is tiny,
of Theorem 5.3.7 and of Proposition 6.2.12 that

E
[
HD0,...,Dn−k

(f)
]
≤
∑
v∈M

nv MIM
(
ϑ0,v, . . . , ϑn−k,v, µ

∨
f1,v, . . . , µ

∨
fk,v

)
.

The equality in Conjecture 6.4.4 does not contradict such an upper bound
because of Proposition 5.2.7, [BPS14, Proposition 2.2.2] and the monotonicity
of mixed integrals.

To state a particular case of Conjecture 6.4.4 which seems easier to prove,
one needs the following notion.

Definition 6.4.6. A lattice polytope in MR is said to be irreducible if when-
ever it is the Minkowski sum of two lattice polytopes in MR one of the two
summand consists of a single point.
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Otherwise said, a lattice polytope is irreducible if it can not be written
as the Minkowski sum of two non-invertible elements in the monoid of lattice
polytopes in MR. The main property of irreducible polytopes is that they
gives sufficient conditions for the irreducibility of Laurent polynomials.

Proposition 6.4.7. Let K be a field and f a Laurent polynomial in K[M ]. If
the Newton polytope NP(f) of f is irreducible in MR, then f is an irreducible
Laurent polynomial in K[M ].

Proof. Suppose that f = gh with g, h ∈ K[M ], which implies that NP(f) =
NP(g) + NP(h). The fact that the Newton polytope of f is irreducible implies
that one between NP(g) and NP(h) consists of a point, hence that one between
g and h is a monomial, hence a unit in K[M ].

One can now state a relevant particular case of Conjecture 6.4.4.

Claim 6.4.8. Let K be a number field, f, g two Laurent polynomials in K[M ]
and D0, . . . , Dn−2 semipositively adelic toric metrized divisors on XΣ. Assume
moreover that

1. the Newton polytopes NP(f) and NP(g) are irreducible and distinct

2. the coefficients of f and g lie in the ring of integers OK of K and the
coefficients corresponding to the vertices of their Newton polytopes are
roots of unity in K

3. if v is archimedean, the v-adic metric on Di is smooth for all i =
0, . . . , n− 2

4. if v is non-archimedean, the v-adic metric on Di is the canonical one
for all i = 0, . . . , n− 2.

Then,

lim
d→∞

1

#τ(d)2

∑
ζ∈τ(d)2

HD0,...,Dn−2
(f)(ζ)

=
∑
v∈M

nv MIM
(
ϑ0,v, . . . , ϑn−2,v, ρ

∨
f,v, ρ

∨
g,v

)
. (6.13)

The remaining of the section is consacrated to the indication of a strategy
for the proof of such a statement. It would follow from the verification of Claim
6.4.10 and Claim 6.4.12, which concern the archimedean and non-archimedean
contributions to the average height separately.
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The archimedean part. Throughout the subsection, let | · | stand for the
usual euclidean absolute value on C and denote by

S :=
{
t ∈ (C×)n : |t1| = · · · = |tn| = 1

}
the compact torus in the complex torus (C×)n. For a Laurent polynomial f
with coefficients in C, denote by V (f) its zero set in (C×)n and by t∗f the
twisted of f by t ∈ S as in Definition 6.2.1.

Claim 6.4.9. Let f, g ∈ C[M ] be two Laurent polynomials with irreducible
and distinct Newton polytopes. Let moreover Di be a divisor together with a
smooth metric on the complex analytification of O(Di) for all i = 0, . . . , n−2.
Then, the map S→ R,

t 7→
∫
V (f)

log |t∗g| c1(D0) ∧ · · · ∧ c1(Dn−2)

is continuous.

Idea. First of all remark that the condition on the Newton polytopes of f
and g implies that V (f) ∩ V (t∗g) is of dimension strictly smaller than n − 1
for any t in the n-dimensional complex torus. Indeed, for what concerns
the components outside the dense open orbit X0, the claim is clear from the
definition of the varieties. Otherwise, it follows from the fact that V (f) and
V (t∗g) are irreducible because of Proposition 6.2.12 and Proposition 6.4.7 and
distinct since their Newton polytopes are different, so they can not share any
irreducible component in X0.
A statement such as the one of [Sto67, Theorem 4.9] is required for the proof of
the claim; however, the quoted result can not be applied directly to the present
situation because of some technical difficulties and needs to be refined. �

Given a positive integer d, denote by Kd the cyclotomic field extension
obtained by adding to K all the d-roots of unity of K. With the structure
defined in Proposition 2.3.12, it is an adelic field; write Md for its set of places
and use the notation w|v to mean that w is a place of Kd extending the place
v of K.

Claim 6.4.10. Assume that the hypotheses of Claim 6.4.8 are satisfied. Then,
for every archimedean place v over K

1

#τ(d)

∑
w|v

nw
∑

ζ∈τ(d)

∫
Xan

0,w

log ‖ζ∗g‖g,w c1(D0,w) ∧ · · · ∧ c1(Dn−2,w) ∧ δ
V (f)

an

w

→ 0 (6.14)
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as d→∞, where ‖ · ‖g,w denotes the w-adic Ronkin metric on Dg.

Idea. A place v of K corresponds, because of Proposition 2.1.21, to an em-
bedding σ : K ↪→ C up to complex conjugation. Analogously, a place w of Kd

extending v corresponds to an embedding τw : Kd ↪→ C extending σ, up to
complex conjugation.
By writing

log ‖ζ∗gsg‖g,w = log |ζ∗g|+ ρg,v

and by reducing the double sums (over the complex embedding and over the
d-torsion points) to a single sum performed over the d-torsion points of K one
could obtain (at least for d prime)

1

#τ(d)

∑
ζ∈τ(d)

∫
Xan

0,w

log |ζ∗g|w dµw +

∫
Xan

0,w

ρg,v dµw

with µw := c1(D0,w)∧· · ·∧c1(Dn−2,w)∧δ
V (f)

an

w
for simplicity of the exposition.

The first term in the previous sum is a Riemann sum of the continuous function
in Claim 6.4.9, then it converges for d → ∞ to its integral over S. Fubini’s
theorem and the definition of the Ronkin function would conclude the proof
of the claim. �

The non-archimedean part. Fix in this subsection a torsion point ζ ∈
τ(d) for some d ∈ N and let Kd be the cyclotomic extension of K containing
the d-roots of unity. It is a finite field extension of K and hence it is endowed
with an extended adelic structure, see Proposition 2.3.12. For any place w
of such an adelic field Kd, the notation Dg,w stands for the divisor Dg on
XΣ associated to g equipped with its w-adic Ronkin metric introduced in
Definition 4.2.4.

Lemma 6.4.11. Under the hypotheses of Claim 6.4.8 the w-adic Ronkin met-
ric on Dg is the canonical metric for all non-archimedean places w of Kd.

Proof. Writing g =
∑
cmχ

m and recalling the form of the non-archimedean
Ronkin function given in Remark 4.1.7 one has

ρg,w(u) = min(〈m,u〉 − log |cm|w)

for every u ∈ NR. By Proposition 1.3.9, the Legendre-Fenchel dual of ρg,w
is given by the function parametrizing the roof of the convex envelop of the
points (m, log |cm|w) ∈MR×R with m ranging in the lattice points of NP(g).
The hypotheses on g assure that cm ∈ OK(ζ), hence that log |cm|w ≤ 0 for
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every m ∈ NP(g) and that log |cm|w = 0 when m is a vertex of NP(g). It
follows that ρ∨g,w is the indicator function of NP(g), hence that ρg,w = ΨNP(g)

because of Example 1.3.8.

The key property of the non-archimedean case that will be needed in the
proof of Claim 6.4.8 is the vanishing of a certain integral.

Claim 6.4.12. Assume that the hypotheses of Claim 6.4.8 are satisfied. For
all non-archimedean places w of Kd one has∫

Xan
Σ,w

log ‖ζ∗gsg‖g,w c1(D0,w) ∧ · · · ∧ c1(Dn−2,w) ∧ δ
V (f)

an

w
= 0.

Idea. Let w be a non-archimedean place of Kd that one supposes fixed. To
simplify the notation, the index w will hence be dropped from the absolute
values, uniformizers, analytifications, tropicalizations and Ronkin functions
appearing in the following, whenever the context allows.
Let (Kd)w be the completion of Kd with respect to w and (Kd)

◦
w its valuation

ring. Since Kd is an adelic field by Proposition 2.3.12, w is associated to a dis-
crete valuation, hence the valuation ring is local and its maximal ideal (Kd)

◦◦
w

is principal, generated by a fixed uniformizer $.
Because of Lemma 6.4.11 and of the hypotheses of Claim 6.4.8, all the w-adic
metrics on D0, . . . , Dn−2, Dg are the canonical one. In particular, they all are
algebraic and come from their canonical model described in [BPS14, Defini-
tion 3.6.3], see [BPS14, Example 4.5.4]. Denote hence by XΣ the canonical
model of XΣ over Spec(Kd)

◦
w and by D0, . . . ,Dn−2,Dg the canonical model of

the divisors D0, . . . , Dn−2, Dg respectively. Developing the definition of the
Chambert-Loir measure as in [BPS14, Remark 1.4.14], one has then∫

Xan
Σ,w

log ‖ζ∗gsg‖g,w c1(D0,w) ∧ · · · ∧ c1(Dn−2,w) ∧ δ
V (f)

an

w

= log |$|
∑
V

ordV (ζ∗gsg) degD0,...,Dn−2
(V ),

where ζ∗gsg is considered as a rational section of O(Dg) and the sum on the
right hand side is running over the irreducible components V of the special
fiber of the normalization of the closure of V (f) in XΣ. The hypotheses on the
Laurent polynomials f and g could be used to prove that the section ζ∗gsg
is regular on the model XΣ and that it does not vanish on any irreducible
component of the special fiber of V (f); one could in particular exploit the fact
that the special fibers of f and g are obtained as the zero sets of the reduction
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of f and g modulo $. Since the coefficients corresponding to the vertices
of their Newton polytopes are roots of unity in K, the reductions modulo $
have the same Newton polytope of the original polynomials. The hypotheses
on NP(f) and NP(g) would allow to conclude then that ordV (ζ∗gsg) = 0 for
all V . �

The main strategy. This subsection explains how to deduce a proof of
Claim 6.4.8 from Claim 6.4.10 and Claim 6.4.12. One will need the following
technical lemma. Recall that 1 denotes the neutral element of the group τ ; it
is a d-torsion point of T

(
K
)

for any d ∈ N.

Lemma 6.4.13. Let D0, . . . , Dn−2 be toric divisors on XΣ equipped with
adelic semipositive toric metrics and let f = (f, g) be a pair of Laurent poly-
nomials over K. Then,

1

#τ(d)2

∑
ζ1,ζ2∈τ(d)

HD0,...,Dn−2
(f)(ζ1, ζ2) =

1

#τ(d)

∑
ζ∈τ(d)

HD0,...,Dn−2
(f)(1, ζ)

for every d ∈ N.

Proof. Consider the map φ : τ(d)2 → τ(d)2 defined by (ζ1, ζ2) 7→ (1, ζ−1
1 ζ2).

It is a group homomorphism with Im(φ) = {1} × τ(d) and ker(φ) = {(ζ, ζ) :
ζ ∈ τ(d)}. One shows that

HD0,...,Dn−2
(f) ◦ φ = HD0,...,Dn−2

(f). (6.15)

Indeed, the translated of the varieties V (f) and V (g) by ζ1 and ζ2 intersect
properly if and only their translated by 1 and ζ−1

1 ζ2 do, which proves (6.15)
on B(f). Otherwise, the claim follows from the invariance of the height under
twisting by a torsion point, the metrics on D0, . . . , Dn−2 being toric.
Then∑

ζ1,ζ2∈τ(d)

HD0,...,Dn−2
(f)(ζ1, ζ2) =

∑
ζ1,ζ2∈τ(d)

(
HD0,...,Dn−2

(f) ◦ φ
)
(ζ1, ζ2)

=
∑

ζ∈τ(d)

∑
(ζ1,ζ2)∈φ−1(1,ζ)

HD0,...,Dn−2
(f)(1, ζ)

= #τ(d)
∑

ζ∈τ(d)

HD0,...,Dn−2
(f)(1, ζ),

implying the claim.
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Assume from now on that the hypotheses of Claim 6.4.8 are satisfied. Be-
cause of Theorem 2.4.16 (2) and Proposition 3.1.12, one can moreover assume
that XΣ is a smooth projective toric variety with fan compatible with the
Newton polytopes NP(f) and NP(g).

Step 1. Fix for the moment a positive integer d and a torsion point ζ ∈ τ(d)
for which div(fsf ) and div(ζ∗gsg) intersect properly in XΣ. The sections fsf
and ζ∗gsg are defined over the base change of XΣ to the cyclotomic field Kd

obtained by adding to K all the d-roots of unity of K. Let
(
Kd, (nw, |·|w)w∈Md

)
be the adelic structure on Kd induced by the one of K as in Proposition 2.3.12.
Let also

Z(f,g)(1, ζ) = div(ζ∗gsg) · div(fsf ) ·XΣ

as in (6.8). Using Theorem 3.2.4 and the irreducibility of f given by Propo-
sition 6.4.7 one can write

Z(f,g)(1, ζ) = div(ζ∗gsg) · V (f). (6.16)

Since XΣ is projective and div(fsf ) and div(ζ∗gsg) are assumed to meet prop-
erly in XΣ, the moving lemma assures the existence of sections s0, . . . , sn−2 of
O(D0), . . . ,O(Dn−2) respectively with

div(s0), . . . ,div(sn−2),div(fsf ),div(ζ∗gsg)

intersecting properly. In particular, the sections s0, . . . , sn−2, ζ
∗gsg intersect

V (f) properly. The recursive definition of local heights, together with (6.16),
asserts that for every place w ∈Md

hD0,w,...,Dn−2,w
(Z(f,g)(1, ζ); s0, . . . , sn−2

)
=

hD0,w,...,Dn−2,w,Dg,w

(
V (f); s0, . . . , sn−2, ζ

∗gsg
)

+

∫
Xan

Σ,w

log ‖ζ∗gsg‖g,w c1(D0,w) ∧ · · · ∧ c1(Dn−2,w) ∧ δ
V (f)

an

w
,

with Dg,w = (Dg, ‖ · ‖g,w) denoting the divisor Dg with its w-adic Ronkin
metric, as in Definition 4.2.4.
The integral term on the right hand side is zero for all non-archimedean places,
thanks to Claim 6.4.12. Because of Proposition 2.3.12 and Lemma 2.3.5, such
an integral term is nonzero only for finitely many places w of Kd. Moreover,
the local heights of Z(f,g)(1, ζ) and V (f) are almost all zeros by Theorem 3.5.4
and the fact that the integrability of a cycle does not depend of the choice of
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the sections by [BPS14, Proposition 1.5.8 (1)]. Summing over all the places
w ∈Md one obtains the relation between global heights

hD0,...,Dn−2

(
Z(f,g)(1, ζ)

)
= hD0,...,Dn−2,Dg

(
V (f)

)
+

∑
v∈Md,∞

nw

∫
Xan

Σ,w

log ‖ζ∗gsg‖g,w c1(D0,w) ∧ · · · ∧ c1(Dn−2,w) ∧ δ
V (f)

an

w
.

(6.17)

with Md,∞ denoting the set of archimedean places in Md and Dg the divisor
associated to g equipped with its Ronkin metric, see Definition 4.2.8.

Step 2. Recall that by B(f, g) one means the subset of torsion points for which
the corresponding twisted varieties of f and g do not meet properly. It follows
from the hypotheses of Claim 6.4.8 that (1, ζ) /∈ B(f, g) for any choice of ζ ∈ τ .
Indeed, if this was not the case, the divisors div(fsf ) and div(ζ∗gsg) would not
meet properly in the dense open orbit X0 (since their support do not contain
any closed toric 1-codimensional orbit); then, the Laurent polynomials f and
ζ∗g would have a common irreducible factor in K[M ], which is absurd since
they are irreducible by Proposition 6.4.7 and distinct by Proposition 6.2.12.
Hence, for any d ∈ N, averaging on the subgroup of d-torsion points of T

(
K
)

yields

1

#τ(d)

∑
ζ∈τ(d)

HD0,...,Dn−2
(f)(1, ζ)

=
1

#τ(d)

∑
ζ∈τ(d)

hD0,...,Dn−2,Dg

(
V (f)

)
+

1

#τ(d)

∑
ζ∈τ(d)

∑
w∈Md,∞

nw

∫
Xan

Σ,w

log ‖ζ∗gsg‖g,w dµw (6.18)

where

µw := c1(D0,w) ∧ · · · ∧ c1(Dn−2,w) ∧ δ
V (f)

an

w

for simplicity of notation.
The summands of the first term on the right hand side of (6.18) are constant
in ζ, so such a term coincides with

hD0,...,Dn−2,Dg

(
V (f)

)
=
∑
v∈M

nv MIM (ϑ0,v, . . . , ϑn−2,v, ρ
∨
f,v, ρ

∨
g,v)
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because of Theorem 4.2.10, Theorem 2.4.16 (3) and the symmetry of mixed
integral.
The second term on the right hand side of (6.18) can be rewritten as

1

#τ(d)

∑
w∈Md,∞

nw
∑

ζ∈τ(d)

∫
Xan

Σ,w

log ‖ζ∗gsg‖g,w dµw

=
∑
v∈M∞

1

#τ(d)

∑
w|v

nw
∑

ζ∈τ(p)

∫
Xan

Σ,w

log ‖ζ∗gsg‖g,w dµw

The fact that µw is supported on V (f)
an

w , which has no components outside
Xan

0,w, and that the measure µw does not charge closed subsets allow to restrict
the integrals in the previous sum over Xan

0,w. Each of the finitely many terms
of the sum over v ∈M∞ converges to 0 as d is going to ∞ because of Claim
6.4.10.
Hence, the quantity in (6.18) converges to the limit∑

v∈M
nv MIM (ϑ0,v, . . . , ϑn−2,v, ρ

∨
f,v, ρ

∨
g,v)

as d→∞. Lemma 6.4.13 would then conclude the proof of Claim 6.4.8.
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Funkcional. Anal. i Priložen. 9 (1975), no. 3, 1–4.

[Ber90] V. G. Berkovich, Spectral theory and analytic geometry over
non-Archimedean fields, Mathematical Surveys and Monographs,
vol. 33, American Mathematical Society, Providence, RI, 1990.

149



150 BIBLIOGRAPHY

[BG06] E. Bombieri and W. Gubler, Heights in Diophantine geometry,
New Mathematical Monographs, vol. 4, Cambridge University
Press, Cambridge, 2006.

[Bil97] Y. Bilu, Limit distribution of small points on algebraic tori, Duke
Math. J. 89 (1997), no. 3, 465–476.

[BMPS16] J. I. Burgos Gil, A. Moriwaki, P. Philippon, and M. Sombra, Arith-
metic positivity on toric varieties, J. Algebraic Geom. 25 (2016),
no. 2, 201–272.

[Boy81] D. W. Boyd, Speculations concerning the range of Mahler’s mea-
sure, Canad. Math. Bull. 24 (1981), no. 4, 453–469.

[Boy98] , Mahler’s measure and special values of L-functions, Ex-
periment. Math. 7 (1998), no. 1, 37–82.

[BPRS15] J. I. Burgos Gil, P. Philippon, J. Rivera-Letelier, and M. Sombra,
The distribution of Galois orbits of points of small height in toric
varieties, ArXiv e-prints (2015).

[BPS14] J. I. Burgos Gil, P. Philippon, and M. Sombra, Arithmetic geom-
etry of toric varieties. Metrics, measures and heights, Astérisque
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tions zêta d’Igusa, J. Number Theory 83 (2000), no. 2, 226–255.

[CT09] A. Chambert-Loir and A. Thuillier, Mesures de Mahler et
équidistribution logarithmique, Ann. Inst. Fourier (Grenoble) 59
(2009), no. 3, 977–1014.

[Dem70] M. Demazure, Sous-groupes algébriques de rang maximum du
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des schémas, Inst. Hautes Études Sci. Publ. Math. (1960), no. 4,
228.
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Études Sci. Publ. Math. (1961), no. 8, 222.



BIBLIOGRAPHY 153
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[Kou76] A. G. Kouchnirenko, Polyèdres de Newton et nombres de Milnor,
Invent. Math. 32 (1976), no. 1, 1–31.
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Publications.
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en droites intégrables, Mém. Soc. Math. Fr. (N.S.) (2000), no. 80,
vi+129.

[Mik06] G. Mikhalkin, Tropical geometry and its applications, Interna-
tional Congress of Mathematicians. Vol. II, Eur. Math. Soc.,
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[Ost16] A. Ostrowski, über einige Lösungen der Funktionalgleichung ψ(x)·
ψ(x) = ψ(xy), Acta Math. 41 (1916), no. 1, 271–284.

[Pat88] A. L. T. Paterson, Amenability, Mathematical Surveys and Mono-
graphs, vol. 29, American Mathematical Society, Providence, RI,
1988.

[Phi86] P. Philippon, Critères pour l’indépendance algébrique, Inst. Hautes
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