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Introduction

The best material model of a cat is another, or preferably the same, cat.

Arturo Rosenblueth & Norbert Wiener, Philosophy of Science, 1945 ii iii

The retina transforms the visual information entering the eye into spike trains sent to the brain. It is the only visual input to the brain, so all visual information used by the brain is necessarily represented in the responses of the ganglion cells, the retina's output neurons. But how this information is represented is still a matter of active research.

The classical representation of retinal responses is simple: independent neurons encode stimuli linearly, using filters with excitatory center and inhibitory surround. However, experimental results over the last 50 years have revealed a far more complex picture. Ganglion cells are now believed to form around 20 different cell types, each encoding a different feature of the visual input. These stimulus representations can be highly nonlinear, and we still lack a simple characterization for many of them. These representations are not stable in time, but adapt to stimulus statistics over different time scales. A lot of information represented by ganglion cells in a population is redundant, but part of it is also synergistic, and cannot be accessed from single cell responses. Therefore the neural code is a population code, and the sensitivity of retinal responses can only be estimated from population responses. Finally, neural responses are noisy: even repetitions of a same stimulus trigger seemingly different responses. This noise is correlated both in time and across neurons, and its structure and influence on the precision of stimulus encoding is still debated. All these characteristics make the retinal code hard to understand, and its sensitivity hard to estimate.

A variety of models have been proposed to capture the correlations between neural responses. These models have different degrees of complexity. More complex models, with more parameters, tend to give more precise descriptions of responses, at the cost of computationally harder learning techniques. The Ising model for example, which captures interactions between all pairs of neurons, is notoriously hard to infer for populations larger than a few tens of neurons. Such a model is therefore not directly applicable to recordings nowadays allowed by electrode arrays of over 4000 electrodes. In contrast, here I present two models of response correlations, a coarse model and a precise one, which are fast and easy to learn, even for large populations.

Multiple models have also been proposed to account for the dependence of responses on visual stimuli. But the diversity of responses, within a population of retinal neurons and across species, has limited the success of such models to specific cell types or stimuli. Instead of directly trying to predict responses to stimuli, my objective here is slightly different. I aim at estimating the sensitivity of a population of neurons to visual stimuli, while making as little assumptions as possible.

The methods presented here are not limited to the retina, and can be applied to any population of sensory neurons in general. However, the retina is a neural system of particular interest for many reasons.

First the retina is convenient to study experimentally. Its flat structure allows to simultaneously record large populations of neurons, composed of almost all cells coding for a portion of the visual space. There is also no feedback from the brain, so neural populations in the retina are only influenced by stimuli and internal dynamics.

Second, several pathologies of the retina can lead to blindness. Solutions to restore vision at the level of the retina are thus dramatically needed, such as "artificial" retinas mimicking retinal processing. In order to develop these solutions, it is of utter importance to understand how retinal neurons represent and transmit information to the brain.

This thesis is organized as follows:

Part I I begin with a short introduction to the morphology of the retina, a thin neural network with a precise organization packing multiple cell types. I then show that complex functions can arise from this complex network.

Part II

I review multiple models of correlations in populations of neurons. I focus on models that can be applied to experimental recordings of neural populations.

Part III

I study correlations between single cells and global population activity, and propose simple models for these correlations. These models reveal surprising correlations between single cells and population activity.

Part IV

I present a new method to study the sensitivity of nonlinear neural populations. This method uses closed-loop experiments, and models of population responses to small stimulus perturbations.

Part V

I use restricted Boltzmann machines to model correlations within a population of neurons. I then derive neural metrics from restricted Boltzmann machines, and show that they discriminate responses better than any classical metric from the literature.

Part VI

I discuss the models of population activity and the framework for neural response discrimination presented here. I -Sophisticated structure, complex functions: the retina I.1 Anatomy of the retina

I.1.1 Introduction

The retina is a part of the central nervous system in the back of the eye (Fig. I.1). After the light enters the eye, it is projected by the lens on the retina. The goal of the latter is to detect the light, process the visual information, and send it to the brain through the optic nerve. As such, any visual information accessible to the brain is necessarily sent by the retina.

The anatomy of the retina was first studied as early as 1893 by Santiágo Ramón y Cajal (Ramón y Cajal, 1893). Since then, much progress has been done at describing this complex network of over 60 neuron types. The retina has been a popular system in neuroscience. It is a remarkably small population of neurons encoding all visual information used for behavior [START_REF] Meister | The Neural Code of the Retina[END_REF]. Its relatively simple organization (compared to the cortex), with almost no feedback from the brain, makes it a convenient system to understand the link between structure and function. Its flat form allows recordings with multielectrode arrays. Its layered organization makes it simple to target specific cell types for intracellular recordings (although bipolar cells are hard to access, see [START_REF] Ichinose | Roles of on cone bipolar cell subtypes in temporal coding in the mouse retina[END_REF]). Its transparency is convenient for two-photon microscopy and stimulation [START_REF] Wässle | Parallel processing in the mammalian retina[END_REF]. But how the retina processes visual information, and the underlying neural mechanisms, is still a matter of active investigation.

Many elements and connections in the retina have been shown to be precisely optimized for vision. The retina must respond accurately to very different luminosities, with a range of intensities spanning more than 9 orders of magnitude [START_REF] Rushton | The ferrier lecture, 1962: visual adaptation[END_REF]. To achieve such feat, the retina indeed needs multiple finely tuned parts and mechanisms. A simple example of this fine-tuning is the over-representation of OFF over ON cells, a bias reflecting the statistics of changes in luminosity in natural movies [START_REF] Ratliff | Retina is structured to process an excess of darkness in natural scenes[END_REF][START_REF] Masland | The Neuronal Organization of the Retina[END_REF].

Here we focus on the vertebrate retina, but much work has also be done on other animals, such as the fly. Furthermore, while we try to describe a common anatomy for all vertebrates, a myriad of variations exists across species. 

I.1.2 A layered network

The retina is a 200 µm thick piece of tissue, with a precise layered organization: 3 cellular layers and 2 synaptic layers. In the first layer, the light is detected by photoreceptors. They send their output to bipolar cells in the second layer, which in turn send it to ganglion cells in the third layer (Fig. I.3). Finally, the axons of the ganglion cells form a bundle, the optic nerve, through which they send their output to the brain. Across all the retina, different features of visual stimuli (colors, luminosity, edges,...) are processed by parallel pathways, which is sometimes termed "parallel processing" [START_REF] Wässle | Parallel processing in the mammalian retina[END_REF]. This layered organization is somewhat counterintuitive, as photoreceptors are in the outermost layer compared to the center of the eye, and ganglion cells are in the innermost one. So photoreceptors only detect the light after it has passed through all the retina. Furthermore, ganglion cell axons have to cross the retina in order to reach the optic nerve. This crossing happens at the same place for all axons, which forms a blind spot.

There is almost no feedback from the brain onto the retina. This facilitates the study of neural responses, as retinal cells are not affected by complex feedback from higher level areas. An exception is the centrifugal visual system, whose organization differs broadly across species, and whose purpose is not yet clear [START_REF] Repérant | The centrifugal visual system of vertebrates: A comparative analysis of its functional anatomical organization[END_REF]. It only involves a small number of cells for vertebrates, with about 10 000 cells in the chicken, and 10 or fewer cells in man.

Before presenting their different types, it is interesting to note that retinal neurons are significantly smaller than neurons in the brain. Retinal ganglion cells are typically a hundred time smaller, in terms of soma-dendritic volume, than hippocampal pyramidal cells. While small neurons are difficult to access for intracellular recording, they are nowadays convenient for connectomics, as large populations can be studied even in small volumes [START_REF] Masland | The Neuronal Organization of the Retina[END_REF]. 

I.1.3 Photoreceptors

Photoreceptors are light-sensitive neurons in the outermost layer of the retina. They are composed of rods and cones, with typically about 20 times more rods than cones in mammalians [START_REF] Masland | The Neuronal Organization of the Retina[END_REF]. Although they are much more numerous, rods are believed to have appeared latter in the evolution of the retina [START_REF] Masland | The Neuronal Organization of the Retina[END_REF]. As a result, only three cell types are devoted to the rod pathway: the rod bipolar cell, an amacrine cell gating the activity of the rod bipolar cell, and the AII amacrine cell, which sends signal from rod to cone bipolar cells [START_REF] Strettoi | Cone bipolar cells as interneurons in the rod, pathway of the rabbit retina[END_REF].

There are about 90 million rods in the human retina. Rods are sensitive to dimmer lights than cones, and are thus more involved for scotopic vision, and tend to be slower than cones. Cones, about 4.5 million in the human retina, are more involved in photopic vision. They are sensitive to colors, and each cone contains an opsin which determines the ones to which the cell responds. In the majority of mammals, there are two different opsins, although human has 3.

Both rods and cones hyperpolarize when light is detected, and the responses of different photoreceptors of the same type are relatively homogeneous [START_REF] Yang | Response sensitivity and voltage gain of the rod-and conebipolar cell synapses in dark-adapted tiger salamander retina[END_REF]. Rods and cones connect to their neighbors with gap junctions, which averages noise out [START_REF] Wässle | Parallel processing in the mammalian retina[END_REF]. 

I.1.4 Horizontal cells

Horizontal cells provide inhibitory feedback to the output of photoreceptors. In mammals, they are of two types: axon-bearing or axon-less. They form moderately wide dendrites, connected together with gap junctions. This allows them to integrate the light intensity over a portion of the visual space larger than their dendritic fields, and then provide inhibitory feedback proportional to this intensity. This form of gain control keeps photoreceptor responses within a sustainable range. It is also a first mechanism of surround suppression, enhancing responses to edges and reducing responses to areas of uniform brightness [START_REF] Masland | The Neuronal Organization of the Retina[END_REF].

I.1.5 Bipolar cells

The signal from photoreceptors is send to bipolar cells, with each bipolar cell connecting to all cones in its neighborhood. There is one bipolar cell type dedicated to rods, and about 11 types for cones. These types differ in molecular signaling, in morphology, and in the sublayer of the inner plexiform layer in which their axons stratify and connect. Bipolar cell types also differ in their function, with ON-sustained, ON-transient, OFF-sustained and OFF-transient cells, a bipolar cell specific to blue rods and complex mixtures not yet understood. Bipolar cells stratify in at least 10 specific sublayers of the inner plexiform layer [START_REF] Roska | Vertical interactions across ten parallel, stacked representations in the mammalian retina[END_REF], where they connect to specific amacrine and ganglion cell types. ON cells stratify in the inner half of the inner plexiform layer, and OFF cells in the outer half. Cells with transient responses stratify in the middle of the inner plexiform layers, whereas cells with sustained responses stratify in the inner and outer sublayers. Bipolar cells usually have graded responses, although some bipolar cells in the squirrel and fish respond with a mix of graded signal and spikes [START_REF] Baden | Spikes in retinal bipolar cells phase-lock to visual stimuli with millisecond precision[END_REF] 

I.1.6 Amacrine cells

Amacrine cells are hard to characterize as they are quite different from the rest of known neurons, with complex morphology and complex connections. They can be divided in up to 50 morphological types [START_REF] Macneil | Extreme diversity among amacrine cells: implications for function[END_REF]. They usually have no axon, although some have multiple ones. Most amacrine cells have graded responses, but some can emit spikes. Their soma is located in the inner part of the inner nucleus layer, but displaced amacrine cells have it in the ganglion cell layer. Amacrine cells are mostly inhibitory, but some like starburst or vGluT3-expressing amacrine cells can make both inhibitory and excitatory chemical synapses [START_REF] Lee | An unconventional glutamatergic circuit in the retina formed by vglut3 amacrine cells[END_REF], while AII amacrine cells can form gap junctions. Unlike bipolar and ganglion cells, amacrine cell dendrites do not all stratify in precisely defined sublayers of the inner plexiform layer, and some cells even connect to all layers.

The role of amacrine cells is complex as they receive input from bipolar cells and other amacrine cells, and they provide feedback to bipolar cells and connect to ganglion cells. Furthermore, subunits of a same cell can have different functions, and be almost uncoupled electrically [START_REF] Masland | The Neuronal Organization of the Retina[END_REF]. This is the case of starburst amacrine cells, which can be divided in sectors sensitive to motions in different directions. These cells are believed to be responsible for the direction selectivity of some ganglion cells. Thus although much of their function is still not well understood, the role of amacrine cells is crucial.

I.1.7 Ganglion cells

Ganglion cell dendrites stratify in precise (an sometimes multiple) sublayers of the inner plexiform layer, where they receive input from bipolar and amacrine cells. Each type of ganglion cell connects to specific types of bipolar and amacrine cells. All ganglion cells emit spikes, and it has been shown that even a few photons detected by photoreceptors are enough to trigger spikes in ganglion cells [START_REF] Barlow | Responses to single quanta of light in retinal ganglion cells of the cat[END_REF]. Their axons form the optic nerve, which connects to the brain. So ganglion cells are really the output cells of the retina, with no feedback to the retina.

There are only about one million ganglion cells in the human retina, with considerably more variations across individuals compared to photoreceptors [START_REF] Watson | A formula for human retinal ganglion cell receptive field density as a function of visual field location[END_REF]. There are thus about a hundred times less ganglion cells than photoreceptors. This is a first sign that ganglion cells have a highly processed representation of visual information.

The exact classification of ganglion cells is still debated. It seems that there are at least 30 different functional types, coherent with morphological, molecular and genetic typing [START_REF] Baden | The functional diversity of retinal ganglion cells in the mouse[END_REF][START_REF] Sanes | The Types of Retinal Ganglion Cells: Current Status and Implications for Neuronal Classification[END_REF]. There is a very large diversity of functions across ganglion cells, with about half types with functions still not well understood [START_REF] Masland | The Neuronal Organization of the Retina[END_REF]. In the rabbit retina, functions are as diverse as: ON-sustained, OFF-sustained, ON-transient, OFF-transient, ON-OFF-transient (responding to both ON and OFF), blue-ON, blue-OFF, uniformity detectors (responding when receptive fields have uniform intensity), local edge detectors (the most numerous ones in mouse and rabbit), ON direction selective, ON-OFF direction selective, large field cells (sensitive to motion in subfields of their receptive fields) and intrinsically photosensitive cells with little adaption to light intensity [START_REF] Masland | The Neuronal Organization of the Retina[END_REF]. There is thus a large diversity of ganglion cell types, but they are not equally represented: midget ganglion cells account for up to 80% ganglion cells in the macaque retina [START_REF] Wässle | Parallel processing in the mammalian retina[END_REF].

A reason why ganglion cell functions can be hard to characterize is that they can have context-dependent functions. Object motion sensitive cells for example respond when the motion in their receptive field is different from motion in the background. This is due to inhibition from wide field amacrine cells responding to global motion [START_REF] Masland | The Neuronal Organization of the Retina[END_REF]. Similar mechanisms explain the global inhibition of all ganglion cells triggered by saccades.

An important feature can be used to check if a classification is correct: cells from a same type tile the visual space. For most ganglion cell types, their dendritic fields cover uniformly the retina, with almost no overlap. Thus each point in the visual space is processed by at least one cell of each type. In sharp contrast, the proximity of cells from different types seems almost random. This shows that there are indeed cell types, and not just a continuum. Even when most types are not well understood, typing can still be useful for genetic targeting, inter species comparison, and reproducibility of results across studies [START_REF] Masland | The Neuronal Organization of the Retina[END_REF].

Different ganglion cell types also project to different areas of the brain, and Martersteck et al. (2017) found up to 50 retinorecipient regions in the mouse brain. The main relay to primary cortex is the lateral geniculate nucleus in the thalamus. Ganglion cells, especially direction sensitive and intrinsically photosensitive ones, also connect to regions of the superior colliculus, pretectum and hypothalamus involved in pupillary light reflex, optokinetic reflex, and modulation of the circadian rhythm. Finally, connections have also been found to the amygdala and the pallidum [START_REF] Martersteck | Diverse Central Projection Patterns of Retinal Ganglion Cells[END_REF].

I.1.8 Area centralis

The retina is not homogeneous: the center has a higher resolution then the rest of the retina. This area is called area centralis, or fovea when it is particularly discriminable from the periphery, as for simian primates [START_REF] Rapaport | The area centralis of the retina in the cat and other mammals: focal point for function and development of the visual system[END_REF]. The density of cells is higher in this region, with a decrease in dendritic field size. The area centralis is thinner than the periphery. As a consequence, the soma of corresponding retinal ganglion cells are displaced around the area centralis. When a fovea is present, it is only composed of cones, with relatively few blue cones. It is thus more accurate than the periphery during photopic vision, and less in scotopic vision. These properties make the area centralis quite different from the periphery, so experiments usually specify which one they target.

I.2 Stimulus encoding by retinal ganglion cells

Since first recordings of retinal ganglion cells by [START_REF] Kuffler | Discharge patterns and functional organization of mammalian retina[END_REF] and [START_REF] Barlow | Summation and inhibition in the frog's retina[END_REF], many works have tried to understand how ganglion cells represent visual information. We begin with the presentation of the model which can be found in most neuroscience textbooks. This model is simple, and can easily be fit to experimental data. But as we will see next, this simple model cannot account for a diversity of ganglion cells behaviors and functions. [START_REF] Rodieck | Quantitative analysis of cat retinal ganglion cell response to visual stimuli[END_REF] proposed to model ganglion cell responses as a spatiotemporal integration of the stimulus. If we call I(x, t) the stimulus light intensity at position x and time t, and F the cell spatiotemporal filter, the firing rate at time t is modeled as:

I.2.1 Textbook model

λ(t) = λ 0 + F (x, τ ) I(x, t -τ ) dx dt (I.1)
where λ 0 is the firing rate in the absence of input. Negative values of the firing are truncated to zeros [START_REF] Meister | The Neural Code of the Retina[END_REF]. Interestingly, if this rectification is replaced by a more general nonlinearity, we obtain the classical Linear Nonlinear model. This model could be completed to account for responses to stimuli of different wavelengths, but this was not needed by [START_REF] Rodieck | Quantitative analysis of cat retinal ganglion cell response to visual stimuli[END_REF], as he only used black and white bars.

In order for make this model simple to learn, space-time separability is often assumed: kernel F can be decomposed in a temporal kernel A(t) and a spatial kernel B(x), F (x, t) = A(t)B(x). [START_REF] Rodieck | Response of cat retinal ganglion cells to moving visual patterns[END_REF] chose a spatial kernel reflecting surround inhibition, a difference of Gaussians: B(x) = b c e -x 2 /r 2 c -b s e -x 2 /r 2 s (I.2) with b c and b s the center and surround amplitudes, and r c , r s their radii [START_REF] Meister | The Neural Code of the Retina[END_REF]. The temporal filter was chosen to reflect both the initial increase in firing rate, followed by a decrease. [START_REF] Rodieck | Response of cat retinal ganglion cells to moving visual patterns[END_REF] showed that this model could predict some characteristics of cat ganglion cells responses to moving bars. This model is often cited because it partially accounts for one of ganglion cells most widespread characteristics: suppressive surround. This is known to enhance edges, which are more important ethologically than image parts with homogeneous luminosity. Indeed such suppressive surround filtering is widely used in computer vision, in wavelet transform or in the first layers of artificial neural networks (where it appears spontaneously during training).

But such edge enhancing computations are already implemented in horseshoe crab photoreceptors (Gollisch and Meister, 2010). So why would the retina need a complex network of over 60 cell types for such simple computations? Furthermore, this linear model cannot account for important computations performed by ganglion cells such as direction selectivity, which has been known since over 50 years (Barlow and Levick, 1965). Next, we show that encoding of visual stimuli by ganglion cells is complex in many aspects.

I.2.2 Complex computations

Many features of retinal ganglion cells hinder simple descriptions of their responses. Here we focus on four of them: nonlinearity, adaptation, precise spike timing and population dependencies. These features are common to most sensory neurons, but here we restrict ourselves to retinal ganglion cells. It is also important to remember that although the structure of retinas are similar across vertebrates, ganglion cells can have quite different responses. In the salamander, responses tend to be sharp, with long periods of silence and precisely locked to stimulus [START_REF] Meister | The Neural Code of the Retina[END_REF], which seem to be less so in mammalians.

a) Non-linearity

When ganglion cells are only sensitive to a single dimension of the stimulus, their responses to this dimension is usually nonlinear. Interestingly, Pitkow and Meister (2012) showed that the decorrelation of responses in the macaque retina was more due to the nonlinearity than to the center-surround structure of their receptive field. But ganglion cells can also respond to multiple stimulus dimensions, with nonlinear dependencies on each of these dimensions. Using spike triggered covariance analysis [START_REF] Schwartz | Characterizing neural gain control using spike-triggered covariance[END_REF]), Fairhall et al. (2006) showed that salamander ganglion cells could be sensitive to at least 6 dimensions of the stimulus. McIntosh et al. (2016) also showed that in order to model salamander ganglion cells with convolutional neural networks, as many as three layers were needed, thus multiple ganglion cells can only be modeled by highly nonlinear models.

Multiple ganglion cell functions require nonlinear responses. Some cells are sensitive to motion in a given direction, in any part of their receptive fields (Barlow and Levick, 1965). Other cells are sensitive to texture motion. These so-called Y cells encode precisely the velocity over large regions of visual space, independently of the direction, even if the average illumination stays constant (Gollisch and Meister, 2010). Other cells respond to approaching objects, characterized by expanding image patches [START_REF] Münch | Approach sensitivity in the retina processed by a multifunctional neural circuit[END_REF].

Ganglion cells can also be modulated by stimuli far from their receptive fields. Barlow and Levick (1965) showed that in the rabbit, direction selective ganglion cells could respond to movement far from their receptive field. Similarly, Passaglia et al. (2001,2009) showed that some cat ganglion cells were modulated by gratings outside their receptive fields and surrounds, with high spatial frequencies and low temporal frequencies lowering responses. [START_REF] Deny | Multiplexed computations in retinal ganglion cells of a single type[END_REF] also reported that rat ganglion cells could respond to the remote movement of a bar. Contextual modulation can be even more complex. Object motion selective cells for example are sensitive to a difference in motion between receptive field and surround [START_REF] Lettvin | What the frog's eye tells the frog's brain[END_REF]. This type of differential motion processing is crucial to discriminate moving object from global motion caused by eye movements.

Another form of contextual modulation occurs during saccades, which cause a global inhibition of ganglion cells [START_REF] Roska | Rapid global shifts in natural scenes block spiking in specific ganglion cell types[END_REF]. This fast inhibition, which can prevent or delay spikes, avoids the spurious large responses that such large changes in the stimulus would cause. "Circuit switching" can also occur, with ganglion cells temporarily changing function. For example, Geffen et al. (2007) reported that some OFF cells can become ON during the 100 ms following a saccade.

All these processes cannot be described with linear models. But multiple models have been proposed to account for these behaviors, often in the form of cascade models with nonlinear subunits (Gollisch and Meister, 2010).

b) Adaptation

Ganglion cell responses adapt to different stimuli statistics. Adaptation is convenient for neural systems, as it allows them to encode stimuli with a large range of responses. Adaptation can make the neural code somehow ambiguous, as responses can have different meanings in different contexts. It is also a challenge for neuroscientists, as neural responses depend on stimuli over a long time scale.

Notoriously, ganglion cell responses adapt to mean luminosity. This does not mean that responses are invariant to intensity on the long term. Because scotopic vision uses mostly rods and photopic vision also involves cones, ganglion cells have different spectral sensitivity in dim and bright luminosity [START_REF] Guenther | The spectral sensitivity of dark-and light-adapted cat retinal ganglion cells[END_REF]. The suppressive surround seems to be lost in dim light [START_REF] Barlow | Change of organization in the receptive fields of the cat's retina during dark adaptation[END_REF], a phenomenon which depends abruptly on the mean intensity [START_REF] Farrow | Ambient illumination toggles a neuronal circuit switch in the retina and visual perception at cone threshold[END_REF]. Tikidji-Hamburyan et al. (2014) showed that at some but not all luminosities, some OFF cells could even have ON responses (and vice versa). Ganglion cells gain and temporal integration, along with receptive fields size, also seem to depend on the mean luminosity [START_REF] Meister | The Neural Code of the Retina[END_REF].

Ganglion cells also adapt to contrast, as shown by Smirnakis et al. (1997) in salamander and rabbit retinas. This adaptation occurs across multiple time scales. In the case of an increase in contrast, the sensitivity of cells drops during multiple seconds, but response kinetics only go up during the first 100 ms (Gollisch and Meister, 2010). Surprisingly, [START_REF] Kastner | Coordinated dynamic encoding in the retina using opposing forms of plasticity[END_REF] also identified cells with sensitizing behavior in the salamander, mouse and rabbit. Whereas cells brought from high to low contrast environments usually get shunt during multiple seconds, sensitizing cells responded rapidly just after the transition, followed by a progressive decrease in sensitivity.

Finally, ganglion cells can adapt to spatiotemporal statistics of the stimulus, which is sometimes termed pattern adaptation [START_REF] Smirnakis | Adaptation of retinal processing to image contrast and spatial scale[END_REF]. For example, Hosoya et al. (2005) used spatiotemporally correlated stimuli, and showed that the sensitivity to presented stimuli decreased over a couple of second, both in salamander and rabbit.

c) Precise spike timing

A major difficulty for understanding the neural code is that we still don't know precisely which response features carry information. The linear nonlinear model makes the implicit assumption that information is encoded in the firing rates. When animals are presented with a single presentation of a stimulus, they would then need to estimate the underlying firing rate from a single spike train. It has been suggested that instead of averaging the responses of one neuron over multiple repetitions, as neuroscientists often do, neural systems could average the responses of multiple neurons during a single trial. But in the retina, the dendritic fields of neurons of a same ganglion cell type tend to have no overlap. So neurons encoding any point in the visual space have different functions. Thus averaging across multiple neurons, with different functions or encoding different positions, is likely to degrade information.

The precise spike times also seem to be important for stimulus encoding, which cannot be represented by the linear nonlinear model. In the rabbit and salamander retina, Berry II et al. (1997) reported spikes with timing jitters as low as 1 ms, while the spike count had high variability. Frechette et al. (2005) showed that for a population of about 100 neurons in the macaque retina, the temporal structure of spike trains represented speed more accurately than time-varying firing rates. Segev et al. (2007) showed that in the archer retina, the time to first spike after a saccade carried as much information as the number of spikes, in a shorter duration. Similarly, in the salamander, [START_REF] Gollisch | Rapid neural coding in the retina with relative spike latencies[END_REF] showed that spike relative latencies (i.e. spike time differences between neurons) were more informative than spike counts, faster, and independent of intensity. Remarkably, some cells responded in bursts with a number of spikes almost independent of flashed gratings orientations, but with precise stimulus-dependent timing. [START_REF] Gollisch | Rapid neural coding in the retina with relative spike latencies[END_REF] suggested that this precision was partially due to ON cells being faster than OFF cells. [START_REF] Gütig | Computing complex visual features with retinal spike times[END_REF] also showed, using a decoder based on the tempotron [START_REF] Gütig | The tempotron: a neuron that learns spike timing-based decisions[END_REF], that spike times in the salamander retina were more informative than spike count for a discrimination task.

Portelli et al. (2016) found that in large populations of about 700 mouse ganglion cells, the rank of first spikes carried more information than absolute latency in mouse. Interestingly, they reported that no cells exhibited clear latency tuning. But unlike salamander, ganglion cells in mouse do not have sharp bursts separated by well defined silences. Instead, they usually have an ongoing noisy activity hindering a clear definition of "first spikes". This does not necessarily mean that precise spike timing is not relevant, but rather that new methods to read spike times might be needed.

d) Population dependencies

As we have seen, the precise timing of spikes can carry significant information about the stimulus. But spike timings cannot represent the stimulus freely, they are constrained by internal and network dynamics. Ganglion cells for example have a refractory period of about 1-2 ms, which limits the delay between two spikes. Neurons also tend to respond in groups with synchronous activity, even in darkness [START_REF] Brivanlou | Mechanisms of Concerted Firing among Retinal Ganglion Cells[END_REF][START_REF] Schnitzer | Multineuronal firing patterns in the signal from eye to brain[END_REF].

Importantly, population responses are noisy, and repetitions of a same stimulus trigger different responses. Multiple models have been proposed to describe noise and correlations in neural populations (see next chapter for a review). But there is still much debate on whether correlated noise benefits or harms encoding (see [START_REF] Shamir | Emerging principles of population coding: in search for the neural code[END_REF] for a review). Obviously noise can harm encoding, as multiple responses can correspond to a single stimulus, and multiple stimuli can be encoded by a single response. But Zylberberg et al. (2016) and Franke et al. (2016) showed that for mouse and rabbit ON-OFF direction selective ganglion cells, where noise is indeed correlated across neurons, these correlations could improve stimulus encoding. The stimulus-dependent nature of noise was critical for encoding improvement. This improvement was not limited to small populations, but increased with population size. Finally, response correlations are not only important for how information is represented. They are also important for signal propagation in neural networks [START_REF] Reyes | Synchrony-dependent propagation of firing rate in iteratively constructed networks in vitro[END_REF].

The information sent by ganglion cells is also hard to analyze because it is partially synergistic: some information cannot be recovered by looking at single cells. The proportion of redundant and synergistic information is still debated. Warland et al. (1997) found that ganglion cells in the retina stimulated with a spatially uniform stimulus was largely redundant. This could be due to the simplistic nature of the stimulus, but Puchalla et al. (2005) also found significant redundancy for both artificial and natural stimuli. Redundancy does not necessarily harm encoding: for systems with high noise, it can be convenient for multiple neurons to encode similar stimulus features [START_REF] Barlow | Redundancy reduction revisited[END_REF][START_REF] Kastner | Critical and maximally informative encoding between neural populations in the retina[END_REF]. Schneidman et al. (2011) also found that overall, neural responses seem to be redundant. But he proposed a way to decompose the information conveyed by each response pattern, and found synergy in patterns with only one neuron spiking and other neurons being silent. This result was consistent in both guinea pig and salamander, for artificial and natural movies. Thus although the neural code seems redundant overall, synergistic behaviors might be observed during specific events of neural responses.

Conclusion

We have seen that the retina is a relatively small neural network, involving over 60 cell types with precise connections. The output of this complex network, retinal ganglion cells, implement multiple highly nonlinear representations of the stimulus. But the function of many ganglion cell types is still unknown, and some some information is only represented at the population level. New experiments, along with new models of neural populations, will be needed to understand what the eye tells the brain [START_REF] Lettvin | What the frog's eye tells the frog's brain[END_REF].

II -Correlations in neural systems: models of population activity Introduction

One of the main goals of neuroscience is to understand neural mechanisms underlying animal behavior. Most studies in the past century have studied how single neurons represent information and perform computations. Then, over the last two decades, technological progress has allowed scientists to record populations of neurons, nowadays at the scale of complete organisms [START_REF] Ahrens | Whole-brain functional imaging at cellular resolution using light-sheet microscopy[END_REF][START_REF] Prevedel | Simultaneous whole-animal 3D imaging of neuronal activity using light-field microscopy[END_REF][START_REF] Wolf | Whole-brain functional imaging with two-photon light-sheet microscopy[END_REF][START_REF] Dupre | Non-overlapping neural networks in hydra vulgaris[END_REF]. Such recordings have revealed a complex picture, where neural networks cannot be understood from their components alone. Anatomically, neurons form highly distributed networks. Cortical pyramidal neurons for example can connect to and receive input from up to thousands of neurons [START_REF] Shepherd | The Synaptic Organization of the Brain[END_REF]). This connectivity results in complex dynamics, where neuron assemblies tend to respond synchronously. Even in the absence of sensory input, spontaneous activity can take the form of large synchronous oscillations. Information is now thought to be represented not just by the firing rate of specific cells, but by attractors of neural response trajectories [START_REF] Hopfield | Neural networks and physical systems with emergent collective computational abilities[END_REF], or even by trajectories themselves [START_REF] Mazor | Transient dynamics versus fixed points in odor representations by locust antennal lobe projection neurons[END_REF]. Thus although neural populations are largely redundant [START_REF] Warland | Decoding visual information from a population of retinal ganglion cells[END_REF][START_REF] Puchalla | Redundancy in the population code of the retina[END_REF], some information is synergistic, and cannot be recovered by recording single cells (Schneidman et al., 2011;Franke et al., 2016;Zylberberg et al., 2016).

Whereas isolated neurons are reliable components [START_REF] Mainen | Reliability of spike timing in neocortical neurons[END_REF][START_REF] Nowak | Influence of low and high frequency inputs on spike timing in visual cortical neurons[END_REF], neural network have intrinsic variability [START_REF] Stringer | Inhibitory control of correlated intrinsic variability in cortical networks[END_REF]. Part of this variability might result from noise building up along successive computations [START_REF] Faisal | Noise in the nervous system[END_REF]. Variability might also be due to internal network dynamics and top down modulation (Arieli et al., 1996;[START_REF] Van Vreeswijk | Chaos in neuronal networks with balanced excitatory and inhibitory activity[END_REF][START_REF] Vogels | Neural Network Dynamics[END_REF][START_REF] Nienborg | Decision-related activity in sensory neurons: correlations among neurons and with behavior[END_REF]. This correlated variability might be more than just noise. Correlated fluctuations of a neuron's input, even independent of the stimulus, can increase the reliability of its response to weak stimuli [START_REF] Shu | Barrages of synaptic activity control the gain and sensitivity of cortical neurons[END_REF], an effect called stochastic resonance [START_REF] Longtin | Time-interval sequences in bistable systems and the noise-induced transmission of information by sensory neurons[END_REF]. Correlation between excitatory and inhibitory inputs can also balance neural activity and increase temporal precision [START_REF] Wehr | Balanced inhibition underlies tuning and sharpens spike timing in auditory cortex[END_REF][START_REF] Baudot | Animation of natural scene by virtual eye-movements evokes high precision and low noise in V1 neurons[END_REF]. Correlated activity also facilitates signal transmission across neural networks, even for uncorrelated stimuli [START_REF] Reyes | Synchrony-dependent propagation of firing rate in iteratively constructed networks in vitro[END_REF]. Furthermore, some works have shown that stimulus-dependent noise correlations could improve the precision of stimulus encoding (Franke et al., 2016;Zylberberg et al., 2016). Thus, in order to understand how neurons encode and process information, it 13 is important to characterize their correlated activity.

Here, we review multiple techniques that have been proposed to model correlations in responses from populations of neurons. We focus on models for spike trains rather than on firing rates, as multiple works have shown that spike patterns are more informative [START_REF] Wehr | Odour encoding by temporal sequences of firing in oscillating neural assemblies[END_REF]Berry II et al., 1997;[START_REF] Reich | Response variability and timing precision of neuronal spike trains in vivo[END_REF][START_REF] Reinagel | Temporal coding of visual information in the thalamus[END_REF][START_REF] Panzeri | The Role of Spike Timing in the Coding of Stimulus Location in Rat Somatosensory Cortex[END_REF][START_REF] Nemenman | Neural coding of natural stimuli: Information at sub-millisecond resolution[END_REF][START_REF] Kayser | Spike-Phase Coding Boosts and Stabilizes Information Carried by Spatial and Temporal Spike Patterns[END_REF][START_REF] Baudot | Animation of natural scene by virtual eye-movements evokes high precision and low noise in V1 neurons[END_REF]. Spike trains are also a more faithful description of neurons activity, as organisms sense and act in single trials. Spike train models have been used to study multiple features of the neural code in multiple circuits, such as noise correlations in the auditory cortex [START_REF] Lyamzin | Nonlinear Transfer of Signal and Noise Correlations in Cortical Networks[END_REF], neural dynamics in primary motor, parietal and ventral premotor cortices [START_REF] Truccolo | Collective dynamics in human and monkey sensorimotor cortex: predicting single neuron spikes[END_REF], error-correcting stimulus encoding and interactions between neurons in the retina (Schwartz et al., 2012;Schneidman et al., 2006;Ganmor et al., 2011b) and in the primary visual cortex [START_REF] Ohiorhenuan | Sparse coding and high-order correlations in fine-scale cortical networks[END_REF],.

We focus primarily on models that can be applied to neural recordings. If a model is too simple, it might not capture some structure in data. But if it is too complex, it will be hard to infer and require much experimental data. In the models we present, neural responses are influenced by three sources: the spiking history of the recorded population, the stimulus and latent variables, representing unobserved sources such as neighboring neurons not recorded. The model chosen for a study depends on the pursued goal. If one wants to decode some stimulus, the model should take this stimulus into account. The model also depends on the recorded area: strong modulations by internal dynamics, modeled for example by dynamical latent variables, might be more adapted to higher level areas such as the prefrontal cortex than to lower level ones such as the cochlea.

Here we review models describing correlations in a population of N neurons. In order to have a unified framework for all models presented here, we represent spike trains as binned responses. The time is divided in bins of equal length, and the response of neuron i in time bin t is represented by the variable σ it . Depending on the model, this variable can either be binary (1 if there is at least one spike, 0 otherwise) or an integer (corresponding to the number of spikes). We refer to the former representation as binary responses, and to the later as spike count responses. The population responses in time bin t is then represented by a vector of dimension N , σ t , where the bold font is used for vectors and matrices.

Depending on the goal of the study and on the neural population under consideration, the size of time bins can be very different, typically from 1 ms (Pillow et al., 2008;[START_REF] Truccolo | Collective dynamics in human and monkey sensorimotor cortex: predicting single neuron spikes[END_REF] to longer than a second (Franke et al., 2016). Some of these models, such as the generalized linear model, can also be expressed in continuous time. In order to keep this review reasonably short, this framework will not be addressed here.

II.1 Instantaneous correlations

Neurons in a population a correlated both in time and across neurons. We begin be presenting models of neural responses in single time bins. Only considering single time bins make models simpler to learn and to interpret. They can be useful for example to get an idea of which neurons interact together [START_REF] Shlens | The Structure of Large-Scale Synchronized Firing in Primate Retina[END_REF]Cocco et al., 2009;[START_REF] Stevenson | Bayesian inference of functional connectivity and network structure from spikes[END_REF].

The number of possible responses grows exponentially with the population size. Even for populations of a few tens of neurons, the distribution of responses is thus impossible to probe experimentally. Multiple models have been proposed, with different degrees of precision. We start with coarse models, with low numbers of parameters, and progressively increase their complexity. Unless explicitly mentioned, all models of instantaneous correlations are models of binary responses.

II.1.1 Stimulus-independent models

Stimulus-independent models represent the correlated activity of a neural population with no information about the stimulus. This does not mean that correlations between neurons are not due to stimulus, but only that the stimulus is not taken into account in the model. This can be convenient, for example if no model is available to relate neural responses to stimuli, or if not enough experimental data is available to learn such a model.

a) Coarse models

Before presenting specific models, we begin by presenting the framework of Maximum Entropy (ME) models. Multiple models presented here are derived from this framework. ME models are a powerful tool to model distributions from which only limited samples can be observed (Jaynes, 1957b). Here, we use the ME principle to model the distribution of neural responses P (σ). The core idea of ME is to search for the most random distribution that reproduces some chosen descriptive statistics (i.e. these statistics have the same value in the model and in data). One first chooses some observables of interest, O n (σ), and computes their empirical mean:

O n (σ) emp = 1 T T 1 O n (σ t ) (II.1)
where T is the number of samples. For example, the mean of O n (σ) = σ i is the mean response of neuron i. Then one searches for the most random model, i.e. the one that has maximum entropy, S(P ) =σ P (σ) log P (σ), amongst all models that reproduce these statistics.

The motivation behind this is that it is better to make as little assumptions as possible than to make assumptions that might turn out wrong. Indeed, it can be shown that the ME model minimizes the worst-case cost of estimation errors, as measured by the log-loss [START_REF] Grünwald | Game theory, maximum entropy, minimum discrepancy and robust Bayesian decision theory[END_REF]. Consistently, Ferrari et al. (2017) presented a way to sample multiple models reproducing a given set of statistics (pairwise correlations) of neural populations in the salamander retina. They found that the higher the model entropy, the less likely the model was to outperform the ME model at estimating the response distribution, as measured by the Kullback Leibler divergence. This effect grew with population size, and for population of 8 cells, almost no model outperformed the ME model.

In general, the ME model has the following form:

P (σ) = 1 Z exp n θ n O n (σ) (II.2)
where θ n are Lagrange multipliers. Z is a normalization constant called partition function, which can be hard to infer, but is only needed for specific applications. For conciseness, in the following we note:

P (σ) ∝ exp n θ n O n (σ) (II.3)
ME models are usually learned by maximizing the likelihood of observed data, which is a convex problem. By choosing different observables and comparing the corresponding ME model to empirical responses, one can quantify interactions at different orders [START_REF] Bohte | The Effects of Pair-wise and Higher-order Correlations on the Firing Rate of a Postsynaptic Neuron[END_REF]Schneidman et al., 2003), and estimate the mutual information between stimulus and responses (Schneidman et al., 2003;[START_REF] Montemurro | Tight Data-Robust Bounds to Mutual Information Combining Shuffling and Model Selection Techniques[END_REF].

Importantly, although ME model have a common form (eq. II.2), they can be very different in practice, depending on the constrained observables. As we will see, some models are trivial to learn exactly from data, while other require advanced computations to approximate them.

One of the most simple descriptions of the population activity is the number of spiking neurons: K = i σ i . In the literature, K is sometimes termed population rate, although it is more of a population count. [START_REF] Tkačik | The simplest maximum entropy model for collective behavior in a neural network[END_REF] proposed to model the distribution of responses with the maximum entropy model reproducing the distribution of the spike count, P (K). This model has form:

P (σ) ∝ exp g(K) (II.4)
where the function g is learned from data. This model is very easy to learn, even for large populations, using only the histogram of the population count. Interestingly, it is equivalent to the homogeneous neural pool model [START_REF] Amari | Synchronous Firing and Higher-Order Interactions in Neuron Pool[END_REF], where neurons are all considered identical. Indeed, it can be shown that it is the only model reproducing the spike count while being invariant to permutations of neurons.

Montani et al. (2009) used this model to study higher order correlations (i.e. correlations involving more than two neurons) in somatosensory cortex. He showed that interactions between pairs and triplets of cells were sufficient to account for the distribution of the population count K in a population of 24 cells. But it is unclear how this model could also account for the fine structure of correlations between neurons, as it assumes that all neurons are equivalent.

Another simplifying assumption is that neurons are independent. It can be shown that the model of independent neurons is the ME model reproducing only the firing rate of each cell, σ i :

P (σ) ∝ exp i h i σ i (II.5)
where the coefficients h i control the probability of neurons to spike. These coefficients are sometimes called fields, by analogy with magnetic fields in physics. This model is very convenient to learn, to generate data or to compute responses likelihood. On the other hand, it is quite limited, as it cannot account for any correlation. This model is often considered as a default model, setting the baseline for the comparison of other models [START_REF] Macke | Empirical models of spiking in neural populations[END_REF]Köster et al., 2014).

b) Models of pairwise correlations

Coarse models are simple, but they can provide only a limited description of responses. A finer description of the structure of responses is the correlation between pairs of neurons.

Multiple attempts have tried to present models reproducing these pairwise correlations.

The maximum entropy model reproducing the firing rates of all cells, σ i , and the correlation between all pairs of neuron σ i σ j has been used extensively to study correlations in the retina or in multiple areas of the brain (Schneidman et al., 2006;[START_REF] Tang | A Maximum Entropy Model Applied to Spatial and Temporal Correlations from Cortical Networks In Vitro[END_REF]Köster et al., 2014). This model is often called the Ising model and is equivalent to a Boltzmann machine where all units are visible [START_REF] Hinton | Boltzmann machines: Constraint satisfaction networks that learn[END_REF]. It has form:

P (σ) ∝ exp   i h i σ i + j =i J ij σ i σ j   (II.6) = exp hσ + σ J σ (II.7)
where eq. II.7 is written in matrix form. h is a line vector of field coefficients, and J is a symmetric matrix of interaction weights. One can notice that the Ising model is very similar to the Hopfield model [START_REF] Hopfield | Neural networks and physical systems with emergent collective computational abilities[END_REF], a classical model for memory storage.

Noticeably, the performance of the Ising model at representing the distribution of responses is little affected by a large pruning of weak edges (Ganmor et al., 2011b), i.e. by setting weak edges to 0, or by only allowing interactions between neighboring cells [START_REF] Shlens | The Structure of Multi-Neuron Firing Patterns in Primate Retina[END_REF][START_REF] Shlens | The Structure of Large-Scale Synchronized Firing in Primate Retina[END_REF]. It has been shown that the Ising model is less accurate when responses have strong correlations, e.g. for neighboring cortical cells [START_REF] Ohiorhenuan | Sparse coding and high-order correlations in fine-scale cortical networks[END_REF] or at small time scales where refractory periods have strong influence on neuron's dynamics [START_REF] Bohte | The Effects of Pair-wise and Higher-order Correlations on the Firing Rate of a Postsynaptic Neuron[END_REF].

The Ising model is a powerful theoretical concept, and it can reproduce any pairwise correlations exactly, but it is notoriously hard to infer for populations larger than a few tens of neurons, even with advanced computational techniques (Cocco et al., 2009;[START_REF] Ferrari | Learning maximum entropy models from finite-size data sets: A fast data-driven algorithm allows sampling from the posterior distribution[END_REF]. Generating data with this model is also computationally demanding, as it requires complex techniques such as Monte Carlo methods. However, computing responses likelihood is easy, up to the normalization constant. This normalization constant is hard to estimate, but it is not always needed, for example if one only wants to compare the likelihood of different responses.

A more convenient alternative for modeling correlations is the cascaded logistic model. This model is not equivalent to the Ising model but it is close in some cases with sparse connectivity [START_REF] Park | Universal models for binary spike patterns using centered Dirichlet processes[END_REF]. This model is build by conditioning neurons on previous ones with logistic models:

P (σ) = P (σ 1 ) i>1 P (σ i |σ 1 ...σ i-1 ) (II.8) with P (σ i = 1|σ 1 ...σ i-1 ) = f   h i + j<i w ij σ j   (II.9)
where f (x) = 1/(1+e -x ) is the logistic function. The interaction weights w ij are learned from data. This model is sensitive to the order of neurons, but algorithms have been developed

to find orders that make this model close to the Ising model [START_REF] Park | Universal models for binary spike patterns using centered Dirichlet processes[END_REF]. Although inferring this model is easier than the Ising model, it is still not trivial. Unlike the Ising model, it cannot reproduce all correlations exactly, and it is not convenient to compute responses likelihood. However, the cascaded logistic model is very convenient to generate data.

Other methods have been proposed to generate responses with fixed pairwise correlations. Both models we present here are common input models, where responses are influenced by a latent input process. Although these models are not guaranteed to exist for any given covariance matrix, such methods are relatively simple theoretically and convenient to generate data.

A first method is the spike train mixture. Multiple similar techniques have been proposed, which have latter been unified and generalized by [START_REF] Brette | Generation of Correlated Spike Trains[END_REF]. The mixture method was initially introduced for spike trains without response binning. For the sake of coherence, here we present it in the context of binned (non necessarily binary) spike count responses.

One starts by generating M latent Poisson processes, called spike train sources, with rates ν 1 , ..., ν M . Then, each spike of source j is inserted in the response of neuron i with probability w ij . The response of neuron i is then a Poisson process with rate:

λ i = j w ij ν j (II.10)
and with correlation between neurons i = i :

σ i σ i = j w ij w i j ν j (II.11)
Brette ( 2009) presented methods to find appropriate rates ν 1 , ..., ν M and mixing matrix w given target firing rates and covariances. Unfortunately, such a solution does not always exist for all target correlations. This model cannot produce negative correlations for example. Furthermore, this model is not equivalent to the maximum entropy (Ising) model as it introduces additional higher order correlations. Multiple solutions can exist, and they can have different higher order correlations.

The dichotomized Gaussian model [START_REF] Amari | Synchronous Firing and Higher-Order Interactions in Neuron Pool[END_REF] is another popular common input model for pairwise correlations, which seems more convenient to use in practice. Neurons are influenced by a Gaussian latent variable z ∼ N (µ, C) of dimension N . Neuron i has a binary response: it spikes if z i is positive, else it is silent. A more general model has also been proposed allowing for non-binary spike counts with arbitrary distributions [START_REF] Macke | Generating spike trains with specified correlation coefficients[END_REF]. [START_REF] Macke | Generating spike trains with specified correlation coefficients[END_REF] presented efficient ways to infer parameters µ and C, although such a solution does not always exist, for example in some cases with strongly negative correlations.

Like the spike train mixture model, this model also has higher order correlations. It is thus in general different from the Ising model, although the importance of this difference is still debated. Macke et al. (2009) showed that for many parameters, the entropy of the dichotomized Gaussian model is close to the entropy of the maximum entropy model, compared to the spike train mixture model. But Yu et al. (2011) found that when modeling negative deflations in local field potential (LFP) in the macaque premotor cortex, the dichotomized Gaussian and Ising models made different predictions for response statistics, and the former made predictions closer to data than the latter.

Recently, Lyamzin et al. (2015) studied the dependence between stimulus variance and noise correlation in responses. They found that responses noise correlations increased with stimulus variance, both in vitro in mice and in vivo in gerbil auditory cortex. They showed that the dichotomized Gaussian model can account simply for this behavior.

Noticeably, although the four aforementioned models for pairwise correlations all try to model pairwise correlations, with about the same number of parameters, they have very different computational costs for learning. Interestingly, it is the most random model that has the parameters the hardest to learn. Overall, it seems that for theoretical analysis where pairwise correlations must be reproduced exactly, with the guarantee that no higher-order correlations are present, the Ising model should be preferred. On the other hand, if one simply needs to generate responses with a model able to reproduce correlations in most cases, the dichotomized model should be preferred.

c) Models of population coupling

It was recently observed that for large populations of over 100 neurons in the salamander retina, the Ising model fails to account for high order interactions between neurons (Ganmor et al., 2011a;Tkačik et al., 2014). For example, it fails to estimate the distribution of the population count, over-estimating by more than an order of magnitude the probability of high values of the population count K. Multiple works have attempted to correct this bias. An example is the semiparametric energy-based probabilistic model, a generalization of the Ising model (eq. II.7) where the exponential is replaced by a strictly increasing function f , not necessarily exponential. Importantly, f is learned from data, jointly with fields h and couplings J (Humplik and Tkačik, 2016). The probability of responses is:

P (σ) ∝ f hσ + σ J σ .
(II.12)

A non-exponential f can be useful to correct the errors of the Ising model, for example by decreasing the probability of rare events such as high population counts. Such a correction can be applied to any maximum entropy model, and is not specific to the Ising model (Tkačik et al., 2014). Humplik and Tkačik (2016) showed that the semiparametric model indeed described salamander retinal ganglion cell responses better than the Ising model, as measured by data likelihood. But it must be noted that if f is not exponential, this model is no more guaranteed to reproduce the neurons firing rates and pairwise correlations. Thus this correction comes at the cost of departing from the core definition of the Ising model.

A more direct way to correct the Ising model, such that it predicts well the population count distribution, is to add this constraint to the model definition. The so-called Kpairwise model is the maximum entropy model reproducing the firing rates and pairwise correlations along with the distribution of the population count P (K) (Tkačik et al., 2014):

P (σ) ∝ exp hσ + σ J σ + g(K) (II.13)
where the function g is learned jointly with h and J from data. This model is somehow a combination of the homogeneous pool and Ising models. In the salamander retina, Tkačik et al. (2014) showed that reproducing the population count indeed improved the Ising model, e.g. by making better predictions for triplet correlation. However, using the same data as Tkačik et al. (2014), Humplik and Tkačik (2016) showed that the semiparametric model outperformed the K-pairwise model at describing responses, as measured by data likelihood. Furthermore, this difference seemed to increase with the population size. This was achieved even though the semi-parametric model nonlinearity (f in eq. II.12), was parametrized with a low number of parameters. So it seems that the semiparametric model provides a more efficient representation of responses, while the K -pairwise model is easier to interpret it terms of statistics reproduced. On the contrary, the function g(K) has N + 1 parameters, one for each value of the population count. However, such results are not guaranteed to hold in cortical networks, where correlations are stronger. Some previous work suggested that neurons were more sensitive to the global population activity than to precise interactions between pairs of neurons (Okun et al., 2015). So instead of constraining correlations between pairs of neurons on one side and population activity on the other, some models couple directly each neuron to the population activity. The population coupling model is a maximum entropy model reproducing the joint probability between each neuron i and the population count, P (σ i , K) (Gardella et al., 2016). This model was also proposed elsewhere, in a slightly different form, where it was termed population tracking model [START_REF] O'donnell | The population tracking model: A simple, scalable statistical model for neural population data[END_REF]. This model takes the form:

P (σ) ∝ exp h K σ (II.14)
where the field vector h K depends on the value of the population count K. So the population activity influences the activity of each cell. Conveniently, unlike the Ising model where predictions are obtained through complex computations, this model is tractable: predictions can be obtained using only analytic computations. It can thus be learned and used to make predictions or compute likelihoods much faster than the Ising model. A simpler model, only reproducing the distribution of the population count and its coupling with each neuron, Kσ i , has also been proposed (Gardella et al., 2016). Interestingly, for a population of 160 neurons in the salamander retina this simpler model predicted pairwise correlations almost as accurately as the complete coupling model, with 50 times less parameters.

Such models can be used to measure how much the population activity shapes the precise structure of pairwise correlations. Surprisingly, Gardella et al. (2016) found the population activity to have similar influence on the precise structure of responses in the retina than what was previously reported in V1 (Okun et al., 2015), where cortical feedback loops are believed to play an important role. Furthermore, the population coupling model could only predict about half of the precise structure of pairwise correlations in the salamander retina (Gardella et al., 2016), which seems similar to results in mouse V1 (Okun et al., 2015). Interactions with the global activity drastically simplify the structure and inference of population models, but they provide only a coarse description of responses.

Population coupling models cannot account for the precise structure of population models, so other works have tried to refine them with precise interactions between neurons.

Noticeably, interactions between some neurons are only weak. Distant neurons for example have little interaction [START_REF] Shlens | The Structure of Multi-Neuron Firing Patterns in Primate Retina[END_REF]. So a compromise was investigated, by modeling the precise structure of interacting neurons with pairwise interactions, and weak interactions with coarse descriptions of the activity.

In the hierarchical model [START_REF] Santos | Hierarchical Interaction Structure of Neural Activities in Cortical Slice Cultures[END_REF], neurons are separated into Q pools I 1 , ..., I Q . Pools are formed such that neurons in each pool are as homogeneous as possible, such that the probability of responses in a pool q is well characterized by only the number of neurons spiking, K q = i∈Iq σ i . Then, interactions between pools only depend on the population counts K 1 , ..., K Q :

P (σ) = Q(K 1 , ..., K Q ) I P (σ I |K I ) (II.15)
where σ I is the sub-vector of neurons in pool I. Within each pool I, the distribution of responses P (σ I ) is described by an Ising model, and the dependence between clusters, Q, is a model of interactions between population counts. Santos et al. (2010) found that for cortical cultures, the peaks of local field potentials (LFP) activity were indeed better described by the hierarchical model than the Ising model. Such hierarchical models could also prove useful to model the interactions between neurons from multiple areas.

d) Higher-order correlations

Higher-order correlations in neural populations can be hard to model, yet they can have a strong influence on the structure of responses, e.g. for neighboring cortical cells [START_REF] Ohiorhenuan | Sparse coding and high-order correlations in fine-scale cortical networks[END_REF]. The models presented so far have relatively simple interactions, either pairwise interactions, or interactions pooling large numbers of neuron together, regardless of their identity. A reason behind this is the limit in experimental data, which in turn limits the number of parameters. And as we will see now, modeling higher order correlations can require large numbers of parameters.

Martignon et al. (1995) proposed to measure interactions between neurons by writing models in the following form:

P (σ) ∝ exp i θ i σ i + i 1 i 2 θ i 1 i 2 σ i 1 σ i 2 + ... + θ 1...N σ 1 ...σ N (II.16)
This form, called full log-linear model or θ-coordinates system, is general: any distribution can be written in this form. Consistent with ME models (eq. II.2), Martignon et al. (1995) measured the interaction of order m between neurons i 1 , ..., i m by the coefficient θ i 1 ...im , with a value 0 corresponding to no interaction. Indeed, this coefficient quantifies the interaction between neurons that cannot be explained by lower order interactions only: an ME model only reproducing correlations up to a given order would have no coefficients above this order (Schneidman et al., 2003). For example, the Ising model only reproduces pairwise correlations, so it has no coefficient of order higher than 2. Writing a model in this form can be convenient to estimate interactions between small groups of neurons Yu et al. (2011).

The situation is more complex for large populations. As the θ-form is just a re-writing of response distributions, it has the same number of degrees of freedom, 2 N -1, and it is often impossible to estimate the coefficients empirically. Models have thus been proposed to lower the number of interactions to estimate. A first idea could be to make coefficients θ i 1 ...im only depend on the number of neurons, m, but not on their identity. This model would be invariant to permutations of neurons, and it actually corresponds to the homogeneous pool model previously presented.

Another recent proposal does not assume any type of homogeneity. Instead, Ganmor et al. (2011a) tried to use as few coefficients as possible, without a priori assuming the order of non-zero coefficients. In the reliable interaction model, all coefficients are set to 0, except the coefficients necessary to fit the probability of most frequent responses (i.e. occurring at least n RI times in recordings). The coefficients are then determined by a system of equations. For example, noting 0 the state with no spiking neuron, the log probability that only neuron i spikes is θ i + log P (0), the log probability that only neurons i and j spike is

θ i + θ j + θ ij + log P (0), etc.
This model is convenient because it makes no a priori assumption about the maximum order of interactions. It also doesn't require to learn all low order interactions, but only the ones involved in most frequent responses. Indeed, for a population of approximately 100 neurons in the salamander retina, Ganmor et al. (2011a) showed that this model is a more accurate description of frequent responses then the Ising model, with 10 times less parameters.

This model has several drawbacks. First, the number of interactions involved in the n RI most frequent responses is likely to grow exponentially with the population size, which would limit the number of responses used for learning.

Furthermore, the coefficients not involved in frequent responses are assumed to be 0, but this is not constrained by data. This might drastically over-estimate the probability of un-observed responses, if strongly negative coefficients are needed to give little probability to such responses. Furthermore, this model is not constrained to be normalized, as this constraint involves an exponential number of terms. Thus, this model might only be accurate for responses that are frequent in data, and it cannot be used to estimate data likelihood properly nor to generate data.

We have seen that it is hard to model explicitly general higher-order correlations between neurons. An alternative way to model complex interactions between neurons is to introduce interactions with latent (i.e. not observed) variables. Such latent variables are called hidden units when they are discrete. Latent variables can account for correlations of different orders, due to different sources, such as stimulus or common input cells, but do not necessarily correspond to an existing entity. As we will see, latent variable can drastically simplify models.

The restricted Boltzmann machine (RBM) is a simple model of binary neurons interacting with binary hidden units [START_REF] Smolensky | Parallel distributed processing: Explorations in the microstructure of cognition[END_REF]. Neurons have pairwise interactions with hidden units. While the Ising model is also a Boltzmann machine, this model is said to be restricted, as not all pairwise interactions are allowed: there is no direct interaction between two neurons or between two hidden units. The joint probability between neurons and hidden units is thus:

P (σ, z) ∝ exp (aσ + bz + z wσ) (II.17)
where z is the column vector of binary hidden units of size M , the number of hidden units.

Fields a and b are line vectors controlling the firing rate of neurons and hidden units, and w is a matrix of interaction weights of size M × N . a, b and w are learned from data by likelihood maximization, which can be done relatively easily using algorithms such as contrastive divergence [START_REF] Hinton | Training products of experts by minimizing contrastive divergence[END_REF] or persistent contrastive divergence [START_REF] Tieleman | Training Restricted Boltzmann Machines using Approximations to the Likelihood Gradient[END_REF].

The probability of responses is obtained by marginalizing over latent variables, which can be computed analytically, up to a normalization constant [START_REF] Fischer | An Introduction to Restricted Boltzmann Machines[END_REF].

The number of hidden units is left to choice, and can be larger that the number of neurons. A compromise must usually be made: the more hidden units, the more complex distributions can be represented, the more data is needed for inference. Importantly, any binary distribution can be approximated with arbitrary precision by an RBM, as measured by the Kullback-Leibler divergence [START_REF] Le Roux | Representational Power of Restricted Boltzmann Machines and Deep Belief Networks[END_REF]. Thus the RBM is an illustration that arbitrary complex correlations between neurons can be described by simple interactions with latent variables. But a very large number of hidden units (and thus parameters) might be required to achieve arbitrary precision, so the RBM is not guaranteed to be an accurate model for experimental recordings limited in time. Furthermore, while models with latent variables can capture complex correlations between neurons, they do not allow to quantify and analyze interactions between neurons, as the θ-form did (eq. II.16).

The restricted nature of the RBM is convenient for computations: given a state of latent variables, neurons are independent, and conversely. This make the RBM very convenient to learn and to generate data. Furthermore, the RBM has been shown to be a more accurate model than the Ising model for responses in the cat visual cortex (Köster et al., 2014). Humplik and Tkačik (2016) also found that in the salamander retina, the RBM gave a better description of responses compared to the K -pairwise and semi-parametric energybased models, in terms of response likelihood. This difference also seemed to significantly increase with the population size.

It thus seems that the RBM is a very promising model, able to outperform most models mentioned above. Paradoxically, its main drawback lies in its simplicity. As its parameters are able to reproduce any distribution, they can be hard to interpret. It would be interesting to see if RBMs perform as well at modeling cortical responses in large populations of behaving animals.

The RBM can be further completed by also allowing interactions between neurons, as in the Ising model. This model, proposed by Köster et al. (2014), is called the semi-restricted Boltzmann machine. For populations of cat primary visual cortex with up to 36 cells, Köster et al. (2014) found little difference between the RBM and the semi-RBM. Thus the RBM seems not only to be a better model of neural responses than the Ising model, it also seems that the RBM is as efficient as the Ising model at capturing pairwise correlations. As the size of the population considered is rather limited, it would be interesting to test if such results also hold for larger populations.

II.1.2 Models of stimulus-driven populations

A significant part of correlations between sensory neurons can be due to the stimulus. Thus, explicitly adding the influence of the stimulus on neural responses should further improve the description of responses. Furthermore, taking into account neural correlations can significantly improve the description of responses to stimuli, and thus improve decoding precision (Schwartz et al., 2012).

Importantly, the framework presented here can describe both correlations with a stimulus or with behaviors [START_REF] Lawhern | Population decoding of motor cortical activity using a generalized linear model with hidden states[END_REF]. Behaviors can correlate both with motor neurons controlling them, but are also known to modulate sensory neurons [START_REF] Nienborg | Decision-related activity in sensory neurons: correlations among neurons and with behavior[END_REF]. In general, the models presented here correlate neural responses to some external variable s, without assuming any causality. Thus, although we refer to s as the stimulus for simplicity, it can also be understood as behaviors in general, such as arm movements, influenced by or with influence on the neural population.

An extensive part of the neuroscience literature has focused on modeling the influence of a stimulus s on responses, P (σ|s). A complete review of such models is beyond the scope of this review. Here, we focus on models of response where correlations cannot be explained by the stimulus alone.

a) Complex noise models

A simple approach is to model the probability of responses to each stimulus s, P (σ|s), using any model previously described. This method can model complex noise correlations between neurons. If the set of stimuli is discrete, than the amount of parameters to estimate would grow linearly with the number of stimuli. In order to limit the amount of parameters to estimate, one can impose constraints on the parameters, e.g. that some parameters are constant across stimuli.

A common example is the stimulus-dependent Ising model, where each distribution P (σ|s) is modeled by an Ising model (eq. II.7). [START_REF] Schaub | The Ising decoder: reading out the activity of large neural ensembles[END_REF] applied this model to a population of orientation selective neurons, and showed how decoding could be achieved in this framework, using simulations. But this direct approach used 10000 responses per stimulus, which is challenging experimentally.

A possible approximation proposed by da Silveira and Berry (2014) is to separate neurons in two pools, and constrain that for each stimulus, fields h i and J ij only depend on which pool each neuron belongs to. Indeed, this drastically reduces the number of parameters, but it is unclear how accurate this model is at describing biological responses.

Another possible approximation is to consider that in eq. II.7 fields h depend on the stimulus, but not couplings J . A challenge is then to model how fields h depend on stimulus s. [START_REF] Granot-Atedgi | Stimulus-dependent Maximum Entropy Models of Neural Population Codes[END_REF] modeled it with a Linear Nonlinear model:

h i (s) = f i (k i * s) (II.18)
where k i is a linear filter and f i is a nonlinearity. This was made possible by the simplicity of the stimulus and neurons used: retinal ganglion cells stimulated by a uniform time-varying light intensity. But often, there is no simple model to predict how neurons respond to a stimulus, e.g. natural movies (Gollisch and Meister, 2010;McIntosh et al., 2016).

A helpful trick is to use time-dependent models instead of stimulus-dependent ones [START_REF] Tkačik | Optimal population coding by noisy spiking neurons[END_REF][START_REF] Granot-Atedgi | Stimulus-dependent Maximum Entropy Models of Neural Population Codes[END_REF]Köster et al., 2014;Ganmor et al., 2015). One records multiple responses to repetitions of a stimulus, and computes the mean response for each time bin, also called PSTH. Then one studies the ME model that reproduces this mean response for each time bin, and correlations between neurons:

P (σ|t) ∝ exp (h t σ + σ Jσ) (II.19)
where fields h t are different for each time bin, and are learned from data along with J . This is convenient, as it allows to study interactions between neurons for any stimulus, even if no model is available to predict responses to stimuli in general. Of course, such a model is limited as it requires stimulus repetitions and it cannot make predictions for responses to new stimuli. Nevertheless, a convenient strategy to generalize this model is to first learn timedependent fields h t , and then search for a model of the stimulus h(s) able to approximate h t . This avoids optimizing J and h(s) at the same time, which is often computationally challenging.

Köster et al. (2014) also proposed to add stimulus dependence to both restricted and semi-restricted Boltzmann machines. In order to keep the number of stimulus-dependent parameters low, they considered a model where neuron fields depend on the stimulus, but couplings with hidden units and hidden unit fields do not (a, w and b in eq. II.17, respectively). Again, a time-dependent model can be used instead of a stimulus-dependent one if stimulus repetitions are available (Köster et al., 2014).

b) Joint stimulus-response ME model

Another approach to capture the dependence between neurons and stimulus is to model the joint probability of stimuli s and responses σ with an ME model. Gerwinn et al. (2009) for example proposed the joint pairwise maximum entropy model, an ME model with pairwise interactions between a continuous stimulus s and binary responses σ. Similarly to the Ising and RBM models, this model has form:

P (s, σ) ∝ exp(h 1 σ + σ J 1 σ + h 2 s + s J 2 s + s J 3 σ) (II.20)
where vectors h 1 and h 2 control the mean of σ and s, and matrices J 1 , J 2 and J 3 control the correlation between them. They are all learned jointly from data. Conditioned by a response, the stimulus has a Gaussian distribution, and conditioned by a stimulus, responses have an Ising model distribution. But once marginalized over responses, the stimulus distribution is only a mixture of Gaussian, and not Gaussian in general. This might be problematic, for example if the stimulus used in an experiment was explicitly chosen Gaussian. A solution to this problem is the partially dichotomized Gaussian model [START_REF] Cox | Likelihood Factorizations for Mixed Discrete and Continuous Variables[END_REF][START_REF] Gerwinn | A joint maximum-entropy model for binary neural population patterns and continuous signals[END_REF], which is a mix between the dichotomized Gaussian model and the joint pairwise ME model. A latent variable z is considered, such that the joint distribution between the stimulus s and the latent variable z is Gaussian. Then, neuron i spikes if latent variable z i is positive. Conveniently, the distribution of stimuli marginalized over responses is also Gaussian.

These models have properties covenient for analysis. For example one can easily compute the spike-triggered average for each neuron or group of neuron. However, it is hard to interpret directly the parameters of these models.

c) Models of correlated noise

We have presented models of stimulus-dependent neural populations where the noise could be relatively complex. But it has been suggested that the noise in some populations might have a simple form, typically a global modulation of firing rates [START_REF] Schölvinck | Cortical state determines global variability and correlations in visual cortex[END_REF]. Some models have been proposed for this kind of simple noise. They are easier to use than previous models, as they tend to have simple structures.

While in stimulus-independent models, latent variables can partially account for correlations due to the stimulus, here they mostly account for the variability of neural recordings across stimulus repetitions. In the following models, neurons' firing rates are influenced by stimulus s through a deterministic sensory drive, noted φ(s), typically characterized by neurons' tuning curves, or mean response to a stimulus. Given a firing rate, neuron responses are noisy, as typically captured by a Bernoulli or Poisson process. Here we assume that the firing rate λ is also a stochastic process, correlated across neurons. Such models are called doubly stochastic Poisson, or Cox processes.

Arieli et al. (1996) suggested that the activity of cortical sensory neurons could be described by summing a stimulus drive to the spontaneous activity. Schölvinck et al. (2015) showed that the variability of cat V1 neurons was mostly shared. Furthermore, an additive shared variability could partially account for the dependence of pairwise correlations on neural states. A simple model to capture this shared variability is the rectified Gaussian model [START_REF] Bányai | Response statistics dissect the contributions of different sources of variability to population activity in V1[END_REF], derived from Carandini (2004)). The correlation between neurons is represented by a latent variable z of dimension N , independent of the stimulus. The firing rate of neuron i is:

λ i = f (φ i (s) + z i ) (II.21)
where the rate function f is a rectifying function

f (x) = k [x -V 0 ] β + .
The latent variable z is a centered Gaussian variable with covariance learned from data. Importantly, z is independent from the stimulus. But as the rate function f is non-linear, the amplitude of the noise does depend on the stimulus. Bányai et al. (2016) applied this model to population of neurons in macaque V1, and found that it could indeed account for a part of responses' variability.

Previous work showed that the shared variability is not limited to additive interactions, but also takes the form of common multiplicative changes [START_REF] Ecker | State dependence of noise correlations in macaque primary visual cortex[END_REF], possibly in the form of transient 50-100 ms packets of spiking activity [START_REF] Luczak | Gating of sensory input by spontaneous cortical activity[END_REF]. Lin et al. (2015) thus proposed the affine population modulation model, where the firing rates are correlated both in gain and in offset:

λ i = z (1) i φ i (s) + z (2) i (II.22)
where z (1) and z (2) are latent variables with correlations across neurons. z (1) has mean 1, whereas z (2) has mean 0. In the extreme case where z (1) is always 1 the noise is purely additive, whereas if z (2) is always 0 the noise is purely multiplicative. If z (1) is always 1 and z (2) always 0, there is no shared variability. Lin et al. (2015) found that in cat V1, both additive and multiplicative common noise where involved, with relative importance varying in time.

Franke et al. (2016) considered a similar, although slightly more complex model for correlations between cells:

λ i = z (1) i × f i z (2) i φ(s) + z (3) i .
(II.23) z (1) , z (2) and z (3) are latent variables independent of the stimulus, un-correlated between each other, modeling correlations between neurons. The output gain noise z (1) has mean 1, the input gain noise z (2) has mean 1, and the input additive noise z (3) has mean 0. As for the rectified Gaussian model, when f i is nonlinear the amplitude of the noise due to z (2) and z (3) depends on the stimulus, which is not the case for z (1) . Interestingly, Franke et al. (2016) showed that for direction selective cells in the rabbit retina, the stimulus-dependent noise captured by z (2) was beneficial to stimulus encoding.

Latent variables can be used to account for two different sources of variability. The first one, which we note z, is the variability across the population likely to occur in real life conditions, due to neural network dynamics, such that repetitions of a stimulus evoke different responses even if repetitions are close in time. The other source of variability, noted ζ, represents fluctuations in activity on the time scale of experiments (e.g. fluctuations in neurons firing rate), which are likely due to experimental conditions. Thus z and ζ are two latent variables accounting for variability, but z represents variability intrinsic to the system, whereas ζ is only used to separate system behavior from experimental artifacts. Often, there is no clear distinction between z and ζ, although ζ is constrained to have slow variations. In some models z and ζ are summed to represent variability on short and long time scales respectively [START_REF] Park | Unlocking neural population nonstationarities using hierarchical dynamics models[END_REF], as could be done in the three models we have just presented.

The modulated Poisson model is an example where the firing rate is modulated by the latent variable ζ [START_REF] Rabinowitz | A model of sensory neural responses in the presence of unknown modulatory inputs[END_REF]:

λ i = ζ i × φ i (s) (II.24)
It can be seen that this model is equivalent to the one proposed above (eq. II.23), where z (2) is always 1 and z (3) is always 0. The main difference is that ζ t is constrained to be slowly varying in time, in order to represent only long term fluctuations on cell states. In practice, this is enforced by setting log ζ t to be Gaussian with strong temporal correlations. Rabinowitz et al. (2015) applied this model to single cells, and showed that it allows to infer the influence of the stimulus on responses with higher precision, e.g. by recovering similar temporal kernels in epochs with different neural states.

II.2 Temporal correlations

We have described multiple models for responses of N neurons in a single time bin. But neural populations also have strong temporal correlations, so multiple models have been proposed to describe responses spanning multiple time bins.

II.2.1 Stimulus-independent models a) Generalization of previous models

A simple way to generalize models for single time bins to responses spanning B time bins is to consider that each neuron in each time bin as a different neuron. We obtain a population of N B neurons, to which we can apply any model for responses in a single time bin. This process is sometimes called time spatialization [START_REF] Buonomano | State-dependent computations: spatiotemporal processing in cortical networks[END_REF]. Multiple examples can be found, such as the spatio-temporal Ising model [START_REF] Marre | Prediction of spatiotemporal patterns of neural activity from pairwise correlations[END_REF]Ganmor et al., 2011a;Köster et al., 2014), the spatio-temporal reliable interaction model (Ganmor et al., 2011a) or the spatio-temporal restricted Boltzmann machine and semi-restricted Boltzmann machine (Köster et al., 2014). Such models have drawbacks: for example, a neuron can have different firing rates in different time bins, which is not desirable for stationary distributions (i.e. distributions that are invariant to time translation). So time spatialization is convenient as it does not require any adaptation of previously mentioned models and learning algorithms, but they can fail to account for some constraints of stationary distributions.

Other models for spatio-temporal interactions are specifically designed for stationary distributions. In particular, Vasquez et al. (2012) presented the general form of ME models with temporal interactions for stationary distributions, and Nasser et al. (2013) presented Monte Carlo methods to infer them. Vasquez et al. (2012) showed that for pairs of neurons in the salamander retina, an ME model with interactions up to 30 ms accounted well for response correlations at up to 120 ms.

A simple example describes population dynamics through the dynamics of the population count, K. Mora et al. (2015) proposed a ME model reproducing the distribution and dynamics of the population count over a given range, P (K t , K t+τ ) for τ = 1, .., τ max . This model has form:

P (σ) ∝ exp t h(K t ) + τmax τ =1 J τ (K t , K t+τ ) (II.25)
where the function h controls the distribution of the population count, and the function J τ controls its temporal correlation at a delay τ . Functions h and J are learned jointly from data. The sum over time in the exponential ensures that this distribution is invariant to time translations, and is a general feature of ME models for stationary distributions. Noticeably, constraining ME models to account for temporal stationarity reduces the number of parameters to learn, compared to time spatialization. For example, in eq. II.25, all time bins share the same field h. Mora et al. (2015) found that for a population of 185 neurons in the rat retina, a memory of only τ max = 4 time bins of size 10 ms described well the dynamics of the population count, and in particular the durations and sizes of avalanches.

One possible simplification for this model is to consider the spike count as a continuous variable, and constrain only its mean and covariance. The corresponding ME model is then Gaussian in the spike count K, which is equivalent to K t being a Gaussian autoregressive process with memory τ max [START_REF] Mora | Dynamical criticality in the collective activity of a population of retinal neurons[END_REF]. This simplification makes the model very easy to learn, but results in a poor description of the spike count distribution.

Restricted Boltzmann machines can also be adapted to stationary distributions. The temporal restricted Boltzmann machine (Gardella et al., 2017), is a model with hidden units in each time bin, witch can interact with neurons in different time bins. It is a convolutional RBM, so interactions between neurons and hidden units only depend on the delay between them, not on their absolute time. Importantly, once the model parameters are learned, they can be used to model responses of any time length. Gardella et al. (2017) found that this model was an accurate description of temporal correlations for a population of neurons in the rat retina. Furthermore, they showed that much information about the stimulus could be easily read out from the activity of hidden units.

Finally, it can be noted that both common-input models previously presented can also be adapted to model stationary distributions. [START_REF] Brette | Generation of Correlated Spike Trains[END_REF] presented spike train mixture methods to generate responses with fixed autocorrelations and cross-correlations between neurons, even in the case of non-binned spike trains. The dichotomized Gaussian model can also be simply generalized to account for temporal correlations [START_REF] Macke | Generating spike trains with specified correlation coefficients[END_REF] 

b) Latent dynamics

In the temporal restricted Boltzmann machine, temporal correlations arise from interactions between neurons and hidden units at different times, but there is no direct interaction between neurons or between hidden units at different time. Multiple models use a different approach, where neurons at each time only depend on the current value of latent variables. Temporal correlations between neurons arise from temporal correlations in the dynamics of latent variables.

Such models are usually not easy to learn, although multiple expectation-maximization techniques have been proposed for this purpose [START_REF] Dempster | Maximum likelihood from incomplete data via the em algorithm[END_REF][START_REF] Yu | Gaussian-Process Factor Analysis for Low-Dimensional Single-Trial Analysis of Neural Population Activity[END_REF]. One usually uses this kind of model to extract low dimensional dynamics underlying neural responses, sometimes called neural trajectories [START_REF] Gao | Linear dynamical neural population models through nonlinear embeddings[END_REF]. These trajectories can be convenient both for visualizing data, and for decoding decoding responses Yu et al. (2009). They can also be used for example to decode movements from neural populations in motor areas Yu et al. (2009); Gao et al. (2016). As these models try to identify the latent dynamics underlying noisy responses, they are closely related to dimensionality reduction in neural responses (see [START_REF] Cunningham | Dimensionality reduction for large-scale neural recordings[END_REF] for a review).

Much like the restricted Boltzmann machine, latent variables should be viewed as a convenient abstract tool rather than an underlying biological process. Latent variables can either be continuous, typically with autoregressive Gaussian dynamics, or categorical, typically with Markov chain dynamics.

In the linear dynamical system, the dynamics of the latent variable z (a vector) follows an autoregressive Gaussian process with memory 1:

z t = Az t-1 + t (II.26)
where A is the dynamics matrix and is the innovation noise, typically Gaussian. The neural trajectory influences the firing rate of neuron i through a rate function f i :

λ it = f i (z t ) (II.27)
and responses are produced by a Bernoulli, Poisson or generalized count process. The dimensionality of the latent space is left to choice, and represents a trade-off between model accuracy and data required for learning. Gao et al. (2016) proposed a simple exponential nonlinearity f i :

λ it = exp (µ i + C i z t ) (II.28)
where C i is a projection vector and µ i is a constant influencing the neuron's firing rate. Both f and C i are learned from data. More complex rate functions f can be used for more accurate models. In the linear dynamical system with nonlinear observation, f i is adapted to each neuron and can be highly nonlinear. In Gao et al. (2016), this is achieved by learning each f i with a feed-forward neural network model. Gao et al. (2016) shows that the resulting model is able to give a precise description of response dynamics in macaque V1. Furthermore, they are able to precisely correlate macaque hand-reaching directions to neural trajectories from motor cortex. Yu et al. ( 2009) used a similar model. They used the same firing rate vector λ t driven by a latent variable (eq. II.28), but also allowed for interactions between neural responses in the same time bin. The vector of square rooted spike counts √ σ t has mean λ t , and also has Gaussian correlations:

√ σ t ∼ N (λ t , R) (II.29)
where the noise correlation matrix R is learned from data. Yu et al. (2009) used this model to identify neural trajectories in macaque primary and premotor cortices during motion planning.

Unlike the latent dynamical system, hidden Markov models use latent variables with discrete states, sometimes termed modes. The stochastic dynamics of the latent variable z is typically characterized by a Markov Chain, where the transition matrix is learned from data. The number of states can be high: for a population of 150 cells from a salamander retina, Prentice et al. (2016) reported that the model performance at describing data improved for up to 70 modes.

For each latent state z, responses are distributed according to an emission distribution P (σ|z). Because one such distribution must be learned for each mode, the size of empirical data usually forbids emission distributions with many parameters. Prentice et al. (2016) for example model emission distributions with independent neurons (with mode-dependent firing rates), or with Chow-Liu trees. A Chow-Liu tree is a simplification of the cascaded logistic model (eq. II.9), where the response of neuron i only depends on maximum one previous neuron j < i. As the order of neuron indices is important for this model, it could be different for each latent mode. A Chow-Liu tree can only produce weak correlations for large populations of neurons, but it has a low number of parameters compared to the Ising and cascaded logistic models.

Prentice et al. (2016) found that for their recordings, the correlations added by the Chow-Liu tree structure resulted in improved predictions or correlations between pairs and tripled of neurons, compared to the model of mode-conditioned independent cells. Furthermore, they found that the hidden Markov model resulted in a better description of responses than reliable interaction and K-pairwise models, as measured by the likelihood.

However, it is unclear how models with descrete hidden states could generalize to larger populations, as all neurons from the population share the same latent mode. For example, such models could need a large number of latent modes in order to model weakly coupled sub-populations.

II.2.2 Stimulus-dependent models a) Transition models

Neural networks are influenced by both stimulus and internal dynamics. We have presented models that account for each effect separately, we now present models where neurons are in-fluenced by both. The models presented here take the form of transition probabilities, which describe the response probability in a single time bin, given the population spiking history in previous time bins and the stimulus. So neurons are often assumed to be independent given this history, and we can then model each neuron independently. We refer to such models as transition models, the two most popular one being the generalized linear model and the leaky integrate and fire neuron model.

All models presented here share a common structure: some forces drive a current I entering the cell, and this current induces spikes. The input current is described by a linear sum of input forces. Then a mechanism describes how this current induces spikes. Models presented here should be considered as abstract descriptions of correlations between inputs and output (spikes), rather than an actual causal model describing biological mechanisms driving neural responses. We first start by describing how the input current is influenced by the stimulus and the past activity of the population. Then we will present the different spike generation processes.

All the correlations captured by the transition models boil down to the forces driving the input current I. Here we describe the most common form, where the input current of neuron i in time bin t is only influenced by the stimulus and by the population activity in previous time bins σ t-τ for τ > 0 [START_REF] Pillow | Prediction and decoding of retinal ganglion cell responses with a probabilistic spiking model[END_REF](Pillow et al., , 2008)). The contributions to the input current from the stimulus, φ(s), and from the spiking history I pop sum linearly:

I it = φ i (s t ) + I pop,it (II.30)
The influence of neuron j on neuron i is usually modeled as a convolution of its spiking history with a filter L ij of finite length τ max . Here we note the convolution of response (σ jt ) t with a filter (L τ ) τ as:

(L * σ j ) t = τmax-1 τ =0 L τ σ j(t-τ ) (II.31)
The contributions of all neurons to the input current sum linearly:

I pop,it = j (L ij * σ j ) t-1 (II.32)
The filters L ij can capture excitatory as well as inhibitory input. If the time bin is short enough, the filter L ii can also be used to model the influence of the refractory period on the spiking activity.

The stimulus input is also learned from data. Usually, it is a linear filtering of the stimulus:

φ i (s t ) = (k i * s) t ,
where k i is a filter (Pillow et al., 2008). Quadratic functions of the stimulus have also shown to model accurately cat V1 cells (Park et al., 2013a). This filtering is often spatiotemporal, and depends on the recent stimulus history.

The generalized linear model (GLM) is one of the most popular causal models, and is similar to the Linear Nonlinear Poisson model of neural response to stimuli [START_REF] Simoncelli | Characterization of neural responses with stochastic stimuli[END_REF]. In the GLM, the response of the cell is a stochastic process with a firing rate λ i . This rate only depends on the current value of the input current I:

λ it = f i (I it ) (II.33)
where f i is the rate function. Typically, the rate function is an exponential, as it drastically simplifies computations:

f i (I) = exp (µ i + I) (II.34)
where µ i is a parameter controlling the firing rate in the absence of input. The rate function can also be a sigmoid, to account for saturation, or a function with a sub-exponential growth to avoid unrealistically high firing rates.

Responses σ it are then generated by a stochastic noise process with mean λ it . Usually, this process is Bernoulli (for binary responses) or Poisson (when multiple spikes can occur in the same time bin). A general count process can also be used to obtain lower or higher variability compared to the Poisson process [START_REF] Gao | High-dimensional neural spike train analysis with generalized count linear dynamical systems[END_REF].

Note that the firing rate at time t depends on filtered population responses at time t -1. Thus, contrary to previous models with interactions between neurons in a same time bin, here there is no interaction between neurons in the same time bin. As a consequence, a GLM is simpler to learn than an Ising model, as it can be learned for each neuron independently.

The GLM is usually learned by maximizing the likelihood of observed responses. If the rate function f i is log concave, this problem is convex. Noticeably, for small time bins where the firing rate is low, learning a GLM with a Bernoulli or Poisson process is equivalent [START_REF] Truccolo | A Point Process Framework for Relating Neural Spiking Activity to Spiking History, Neural Ensemble, and Extrinsic Covariate Effects[END_REF]. Multiple priors can be added to the problem in order to constrain interactions to be sparse or filters to be smooth [START_REF] Stevenson | Bayesian inference of functional connectivity and network structure from spikes[END_REF]. Using such priors, Stevenson et al. (2009) showed that groups of neurons in macaque primary motor and premotor cortices has similar inputs and influences on other neurons, which they interpreted as functional assemblies.

Again, it is possible to infer a time-dependent model instead of a stimulus-dependent model when a model to map stimulus to responses is not known, by replacing φ i (s t ) by a more general φ it learned from data [START_REF] Roudi | Mean field theory for nonequilibrium network reconstruction[END_REF], where the model is called kinetic Ising with time dependent fields). Finally, Cui et al. (2016) showed that the GLM can be further improved by adding an input corresponding to a filter applied to the LFP. This is of particular interest, as Kayser et al. (2009) showed that taking the LFP phase into account drastically improved decoding from spike patterns.

GLMs can make precise predictions for responses in a single time bin, given the population response in previous time bins. This performance has been shown in multiple neural systems, such as macaque and human primary motor cortex [START_REF] Truccolo | A Point Process Framework for Relating Neural Spiking Activity to Spiking History, Neural Ensemble, and Extrinsic Covariate Effects[END_REF], macaque retina (Pillow et al., 2008) and macaque middle temporal area [START_REF] Cui | Inferring Cortical Variability from Local Field Potentials[END_REF].

Importantly, although GLMs can predict single time bins, in general they cannot be used for generating data, as they have proven to be unstable [START_REF] Gerhard | On the stability and dynamics of stochastic spiking neuron models: Nonlinear Hawkes process and point process GLMs[END_REF][START_REF] Hocker | Multistep inference for generalized linear spiking models curbs runaway excitation[END_REF]. If one generates synthetic data, by sampling each time bin using synthetic data in previous time bins, neural trajectories usually converge to fixed points with unrealistically high firing rates. Gerhard et al. (2017) proposed tools to analyze the stability of GLMs, along with inference methods to constrain GLMs to be stable. [START_REF] Hocker | Multistep inference for generalized linear spiking models curbs runaway excitation[END_REF] showed that stability could also be achieved by maximizing the likelihood of not only single time bins given their past, but also multiple time bins following them.

Often during experiments, recorded neurons are only a minority amongst a larger interacting population. If the overall population can be well described by a generalized linear model, then the observed population should be modeled as a GLM interacting with a latent population, also described by a GLM. Indeed, [START_REF] Pillow | Neural characterization in partially observed populations of spiking neurons[END_REF] presented methods to infer such GLM in the simple case of a single recorded neuron interacting with a single latent neuron. Using simulations, they showed that taking into account the latent neuron indeed improved model predictions.

The leaky integrate and fire model is very similar to the GLM [START_REF] Bohte | The Effects of Pair-wise and Higher-order Correlations on the Firing Rate of a Postsynaptic Neuron[END_REF], as it has the same input current I (eq. II.30). The difference lies in the spike generation process, which is closer to biological mechanisms. The input current drives fluctuations in the membrane potential V i , and a spike is emitted when the membrane potential reaches a threshold V th . Formally, the model is:

V it = (1 -γ)V i(t-1) + I it + it (II.35)
where γ is an inverse time constant, fixing how fast the membrane potential goes back to 0 in the absence of input. is a random fluctuation, called noise innovation, usually Gaussian. Cocco et al. (2009) proposed efficient techniques to learn this model by likelihood maximization. Using a simple parametrization with filters only differing by their amplitudes, L ijτ = w ij L τ , they found that coefficients w ij correlated strongly with coupling coefficients learned by an Ising model. This model is also very similar to the tempotron [START_REF] Gütig | The tempotron: a neuron that learns spike timing-based decisions[END_REF], where this model is trained to discriminate different correlations in input spike trains.

If V it reaches a threshold V th , then V i(t+1) is set to 0.
Bányai et al. (2016) found that for cells in macaque V1, the leaky integrate and fire model was a more accurate description of neural temporal correlations than the GLM. Multiple variations of the spiking process have been proposed [START_REF] Teeter | Generalized Leaky Integrate-And-Fire Models Classify Multiple Neuron Types[END_REF], with different degrees of similitude to biological processes, although more detailed models tend to be harder to learn. In the end, the GLM is more often encountered in the literature than the leaky integrate and fire model. Although GLMs offer a coarser description of responses, and predict poorly some response statistics such as interspike intervals [START_REF] Hocker | Multistep inference for generalized linear spiking models curbs runaway excitation[END_REF], they are easier to learn.

b) Transition models with latent dynamics

The transition models presented above can account for some correlations between recorded neurons. Often, recorded neurons are part of a larger population, especially in the cortex. In this larger population, neural dynamics can have important effects. The effect of such dynamics has thus been included in multiple transition models, in the form of dynamical latent variables. In practice, these models correspond to GLM rather than leaky integrate and fire neurons, as they are more simple to learn. This kind of model is sometimes called generalized linear model augmented with a state-space model [START_REF] Vidne | Modeling the impact of common noise inputs on the network activity of retinal ganglion cells[END_REF]. They have proven very successful at decoding and predicting correlations between neurons in the retina [START_REF] Vidne | Modeling the impact of common noise inputs on the network activity of retinal ganglion cells[END_REF] in V1 [START_REF] Archer | Low-dimensional models of neural population activity in sensory cortical circuits[END_REF] or in motor cortex [START_REF] Lawhern | Population decoding of motor cortical activity using a generalized linear model with hidden states[END_REF][START_REF] Macke | Empirical models of spiking in neural populations[END_REF].

There are multiple ways to account for latent dynamics in the GLM input current (eq. II.30). A simple way is to take a latent variable z following a Gaussian autoregressive process (eq. II.26), and add the influence of the latent variable to the input current I [START_REF] Kulkarni | Common-input models for multiple neural spiketrain data[END_REF][START_REF] Lawhern | Population decoding of motor cortical activity using a generalized linear model with hidden states[END_REF].

I it = φ i (s t ) + I pop,it + C i z t (II.36)
where C i is a projection vector, measuring how the latent variable influences neuron i. This model is thus a combination of the GLM (eq. II.30) with a linear dynamical system (eq. II.28). This kind of models are not easy to infer, but algorithms using expectation-maximization techniques have been proposed [START_REF] Dempster | Maximum likelihood from incomplete data via the em algorithm[END_REF][START_REF] Kulkarni | Common-input models for multiple neural spiketrain data[END_REF].

If the neural population is large, or if neurons are from different cortical areas, it can be interesting to take a latent space with a high dimension. But large latent spaces make the inference hard. To simplify the inference of latent dynamics, Vidne et al. (2012) constrained the latent dynamics to be composed of multiple independent dynamics of lower dimensions. In practice, this can be achieved by separating latent dimensions in batches, and constraining the transition coefficient A nm (eq. II.26) to be 0 if dimensions n and m are not in the same batch. Vidne et al. (2012) showed that for a population of 250 parasol cells in the macaque retina, the latent variable was more important than the population spiking history current I pop to reproduce neural correlations.

The stimulus is likely to influence also the dynamics of neighboring neurons not observed. So in other models, the stimulus also influences the latent variable dynamics:

z t = Az t-1 + ϕ(s t ) + t (II.37)
Here ϕ is a function of the stimulus, with same dimensionality as the latent variable. For simplicity, the function ϕ is often chosen linear [START_REF] Archer | Low-dimensional models of neural population activity in sensory cortical circuits[END_REF][START_REF] Park | Unlocking neural population nonstationarities using hierarchical dynamics models[END_REF], although more complex functions have been proposed, such as quadratic and quadratic with multiplicative interactions functions [START_REF] Archer | Low-dimensional models of neural population activity in sensory cortical circuits[END_REF]. Again, in the absence of a known model to relate stimuli to responses, a time-dependent variable ϕ t can be used instead of a stimulus-dependent one [START_REF] Macke | Empirical models of spiking in neural populations[END_REF]. The input current takes the above-mentioned form (eq. II.36), where the direct stimulus input φ can be included [START_REF] Macke | Empirical models of spiking in neural populations[END_REF], or dropped [START_REF] Archer | Low-dimensional models of neural population activity in sensory cortical circuits[END_REF][START_REF] Park | Unlocking neural population nonstationarities using hierarchical dynamics models[END_REF]. Models without direct stimulus input are convenient as they allow to have less receptive fields then neurons [START_REF] Archer | Low-dimensional models of neural population activity in sensory cortical circuits[END_REF], which is not allowed if the stimulus input is kept. This might be convenient for large populations, as it can significantly decrease the number of parameters to learn. Furthermore such a feature might be relevant for large populations of neurons in the cortex, which share input from fewer neurons from lower areas such as the retina or the cochlea. The population can then be considered as a "computational unit" [START_REF] Archer | Low-dimensional models of neural population activity in sensory cortical circuits[END_REF]. Finally, as previously described for the modulated Poisson model, it can be convenient to account for slow varying fluctuations that might be specific to experiments, using a latent variable ζ constrained to have slow variations. This can be achieved by replacing z t by z t + ζ t in eq. II.36, while preserving the same dynamics for z [START_REF] Park | Unlocking neural population nonstationarities using hierarchical dynamics models[END_REF]. Archer et al. (2014) showed that adding these slow variations indeed improved the description of responses in macaque V1 recordings.

Conclusion and future directions

Over the last two decades, a variety of models for population responses has been proposed. Models can have very different forms, depending on analysis goals and experimental data available. They can help us characterize multiple features of the neural code, e.g. quantify the diversity of responses, separate influence of stimulus from internal or top down dynamics, or estimate the robustness of stimulus encoding to response noise. Population models can provide an accurate description of the state of neural population, even for single trials where single neurons might seem unreliable. We have presented multiple population models, but we this list is not exhaustive, and combinations of the aforementioned models are possible.

The size of recorded populations increases at an unprecedented pace, and the neural system of some simple organisms can now be recorded entirely (see Prevedel et al. (2014) for C. elegans, or Dupre and Yuste (2017) for the cnidarian Hydra vulgaris). Enhanced inference techniques will be required in order to allow learning with populations of thousands of neurons. Future models will also have to adapt to future experimental constraints: the duration of recordings is not guaranteed to grow with the size of recorded populations. On the other hand, long recordings are not guaranteed to keep track of all neurons during the whole recording duration. Future models will need to account for neurons that are only observable in some parts of experiments.

Models of neural dynamics will also need to adapt to adapt to larger populations. In the GLM for example, the number of couplings grows as the square of the population size, which will be hard to infer for large populations. Fortunately, multiple works have suggested that the neural activity lies in a low dimensional manifold, and many dimensionality reduction techniques have been proposed to identify low-dimensional representations (see [START_REF] Cunningham | Dimensionality reduction for large-scale neural recordings[END_REF] for a review). Currently, GLMs model use complex dynamics for visible neurons, while other models use simple dynamics to describe latent variables of low dimensionality. Future works will need to model the dynamics of low-dimensional representations of observed neural responses. Such models of neural dynamics will also need to be translated into accurate models of spike trains. The framework a latent dynamical systems could be useful for this goal, using low-dimensional representations of the population activity instead of latent variables.

Furthermore, most neural models presented here are applied to populations of neurons in a single area, for animals stimulated by a single stimulus. Future models will also have to account for the diversity of stimuli or even of neural states. It is still challenging for a model to account for both awake animals and slow-wave sleep, as neurons behave in seemingly very different regimes. Future model with need to account for interactions within each area along with interactions between multiple areas. Models such as the hierarchical model [START_REF] Santos | Hierarchical Interaction Structure of Neural Activities in Cortical Slice Cultures[END_REF], with different types of interactions at different spatial scales, offer promising techniques. Another potential solution could be to develop models including both lower level recording techniques, such as electrode arrays and optical imaging, with higher level ones, such as EEG and fMRI.

III -A tractable method for describing complex couplings between neurons and population rate

We have seen that retinal ganglion cells encode visual information at the population level: some information is synergistic, and neural responses are correlated. We have also seen that multiple models have been proposed for correlated neural responses. These models have different forms: some have detailed interactions between each pair of cells, while others pool their activity regardless of neurons' identity. The form of interactions that one uses to model experimental data depends on the amount of data available. But interactions might also depend on the system under consideration.

In the cortex, it has been suggested that neurons are mainly influenced by the global activity of neighboring neurons. Okun et al. (2015) presented shuffling methods to estimate such influences in populations of mouse V1 and macaque V4 neurons. But shuffling methods have mutliple drawbacks: they can require complex computational techniques, and it is hard to guarantee they do not also preserve spurious correlations. Finally, they do not provide explicit models of the distribution of responses.

Here, we propose an alternative method based on maximum entropy models. These models are fast to infer, guaranteed to have no spurious correlations, and give explicit response probabilities. We applied these models to recordings of salamander ganglion cells and analyse the importance of population couplings in the retina.

This article was previously published as: Gardella, C., Marre, O. † , and Mora, T. † (2016). A tractable method for describing complex couplings between neurons and population rate. eNeuro, 3(August), 1-13.

Abstract

Neurons within a population are strongly correlated, but how to simply capture these correlations is still a matter of debate. Recent studies have shown that the activity of each cell is influenced by the population rate, defined as the summed activity of all neurons in the population. However, an explicit, tractable model for these interactions is still lacking. Here we build a probabilistic model of population activity that reproduces the firing rate of each cell, the distribution of the population rate, and the linear coupling between them.

This model is tractable, meaning that its parameters can be learned in a few seconds on a standard computer even for large population recordings.

We inferred our model for a population of 160 neurons in the salamander retina. In this population, single-cell firing rates depended in unexpected ways on the population rate. In particular, some cells had a preferred population rate at which they were most likely to fire. These complex dependencies could not be explained by a linear coupling between the cell and the population rate. We designed a more general, still tractable model that could fully account for these non-linear dependencies. We thus provide a simple and computationally tractable way to learn models that reproduce the dependence of each neuron on the population rate.

Significance statement

The description of the correlated activity of large populations of neurons is essential to understand how the brain performs computations and encodes sensory information. These correlations can manifest themselves in the coupling of single cells to the total firing rate of the surrounding population, as was recently demonstrated in the visual cortex, but how to build this dependence into an explicit model of the population activity is an open question.

Here we introduce a general and tractable model based on the principle of maximum entropy to describe this population coupling. By applying our approach to multi-electrode recordings of retinal ganglion cells, we find complex forms of coupling, with the unexpected tuning of many neurons to a preferred population rate.

III.1 Introduction

An important feature of neural population codes is the correlated firing of neurons. Manifestations of collective activity are observed in the correlated firing of individual pairs of neurons (Arnett, 1978), and through the coupling of single neurons to the activity in its surrounding population (Arieli et al., 1996;Tsodyks et al., 1999). These correlations, whether they are evoked by common inputs or result from interactions between neurons, imply that the neural code must be studied through the collective patterns of activity rather than by individual neuron.

As the number of possible firing patterns in a population grows exponentially with its size, they cannot be sampled exhaustively for large populations. Several modeling approaches have been suggested to describe the collective activity patterns of neural population (Martignon et al., 1995;Schneidman et al., 2003Schneidman et al., , 2006;;Pillow et al., 2008;Cocco et al., 2009;Tkačik et al., 2014). In these approaches, a small number of statistics (e.g. mean firing rate, pairwise correlations) is measured to constrain the parameters of the model. Models are then evaluated on their ability to predict statistics of the population activity that were not fitted to the data. These models are computationally hard to infer, and one must usually have recourse to approximate methods to fit them.

Recently, Okun et al. (2015) investigated how the activity of the whole population influenced the behavior of single neurons in the primary visual cortex of awake mice and monkeys. In particular, they studied the role of the correlation between neurons and the summed activity of the population, called the population rate. To assess whether these couplings between neurons and population activity were sufficient to describe the correlative structure of the code, synthetic spike trains preserving these couplings were generated and compared to data. However, the numerical method used to generate synthetic spike trains is computationally heavy, and is unable to predict the probability of particular patterns of spikes, as most of them are unlikely to ever occur.

Here we introduce a new method, based on the principle of maximum entropy, to exactly account for the coupling between individual neurons and the population rate. This model is tractable, meaning that predictions for the statistics of the activity can be derived analytically. The gradient and Hessian of the model's likelihood can thus also be computed efficiently, allowing for fast inference using Newton's method. Compared to previous methods (Okun et al., 2015), our method can fit hours of large-scale recordings of large populations in a few seconds on a standard laptop computer. We tested it on recordings of the salamander retina (160 neurons). We uncovered new ways for individual neurons to be coupled to the population, where a single neuron is tuned to a particular value of the population rate, rather than being monotonically coupled to the population.

III.2 Materials and Methods

III.2.1 Recordings from retinal ganglion cells

We analyzed previously published ex vivo recordings from retinal ganglion cells of the tiger salamander (Ambystoma tigrinum) (Tkačik et al., 2014). In brief, animals were euthanized according to institutional animal care standards. The retina was extracted from the animal, maintained in an oxygenated Ringer solution, and recorded on the ganglion cell side with a 252 electrode array. Spike sorting was done with a custom software [START_REF] Marre | Mapping a complete neural population in the retina[END_REF], and N = 160 neurons were selected for the stability of their spike waveforms and firing rates, and the lack of refractory period violation.

III.2.2 Maximum entropy models

We are interested in modeling the probability distribution of population responses in the retina. The responses are first binned into 20-ms time intervals. The response of neuron i in a given interval is represented by a binary variable σ i , which takes value 1 if the neuron spikes in this interval, and 0 if it is silent. The population response in this interval is represented by the vector σ = (σ 1 , . . . , σ N ) of all neuron responses (Figure VI.2A). We define the population rate K as the number of neurons spiking in the interval: K(σ) = N i=1 σ i . We build three models for the probability of responses, P (σ). These models reproduce some chosen statistics, meaning that these statistics have same value in the model and in empirical data. The first model reproduces the firing rate of each neuron and the distribution of the population rate. The second model also reproduces the correlation between each neuron and the population rate. The third model reproduces the whole joint probability of single neurons with the population rate. It is a hierarchy of models, because the statistics of each model are also captured by the next one.

Minimal model.

We build a first model that reproduces the firing rate of each neuron, P (σ i = 1) = σ i , and the distribution of the population rate, P (K). We also want the model to have no additional constraints, and thus be as random as possible. In statistical physics and information theory, the randomness of a distribution P is measured by its entropy S(P ):

S(P ) = - σ P (σ) ln P (σ), (III.1)
where the sum runs over all possible states. The maximum entropy model is the distribution that maximizes this entropy while reproducing the constrained statistics. Using the technique of Lagrange multipliers (see Mathematical derivations), one shows that the model must take the form:

P (σ) = 1 Z exp N i=1 (α i + β K(σ) ) σ i , (III.2)
where the parameters α i , i = 1, . . . , N and β K , K = 0, . . . , N must be fitted so that the distribution of Eq. III.2 matches the statistics σ i and P (K) of the data. Z is a normalization factor. Note that β K(σ) depends on the state σ through K(σ). We refer to this distribution as the minimal model, as no explicit dependence between the activity of individual neurons and the population rate is constrained.

Linear-coupling model. The second model reproduces σ i and P (K) as before, as well as the linear correlation K • σ i between each neuron response σ i and the population rate K, for i = 1, . . . , N . It takes the form (see Mathematical derivations):

P (σ) = 1 Z exp N i=1 (α i + β K(σ) + γ i K) σ i . (III.3)
Analogously to the minimal model, the parameters α i , β K and γ i are inferred so that the model agrees with the mean statistics σ i , P (K) and K • σ i of the data. Importantly, despite their common notation, the values of the fitted parameters α i and β K are different from the ones fitted in the minimal model (see Mathematical derivations).

Complete coupling model.

The third model reproduces the joint probability distributions of the response of each neuron and the population rate, P (σ i , K). It takes the form (see Mathematical derivations):

P (σ) = 1 Z exp N i=1 h iK(σ) σ i . (III.4)
The parameters (h iK ) i=1,...,N ;K=0,...,N are inferred so that the model agrees with the data on P (σ i , K) for each (i, K) pair. Note that h iK(σ) depends on the state σ. We refer to this model as the complete coupling model since it reproduces exactly the joint probability between each neuron and the population rate.

III.2.3 Model solution

The minimal and linear-coupling models can be written in the same form as the complete coupling model (Eq. III.4), but with constraints on the form of h iK . In the minimal model, the matrix h iK is constrained to have the form α i + β K . In the linear-coupling model, it is constrained to have the form

α i + β K + γ i K.
In the complete coupling model, the matrix h iK has no imposed structure, and all its elements must be learned from the data. Since all the considered models can be viewed as sub-cases of the complete coupling model (Eq. III.4), we only describe the mathematical solution to this general case. First we describe how to solve the direct problem, i.e. how to compute statistics of interest, such as P (σ i , K), from the parameters h iK . In the next section, we explain how to solve the inverse problem -the reverse task of inferring the model parameters from the statistics -which relies on the solution to the direct problem.

A model is considered tractable if there exists an analytical expression for the normalization factor,

Z = σ exp N i=1 h iK(σ) σ i , (III.5)
allowing for its rapid computation, e.g. in polynomial time in N . All statistics of the model, such as P (σ i , K) or covariances σ i σ j -σ i σ j between pairs of neurons, can then be calculated efficiently through derivatives of Z (see Mathematical derivations). In general maximum entropy models are not tractable, because sums of the kind in Eq. III.5 involve a sum over an exponential number of terms (2 N ). Fortunately, in our case, the technique of probability-generating functions provides an expression for Z which is amenable to fast computation using polynomial algebra (see Mathematical derivations):

Z = N K=0 Coeff N i=1 (1 + Xe h iK(σ) ), X K , (III.6)
where Coeff[Q, X n ] denotes the coefficient of polynomial Q of order X n .

III.2.4 Model inference

We now describe how to fit the models to experimental data. The inference of the model parameters is equivalent to a problem of likelihood maximization [START_REF] Ackley | Connectionist models and their implications: Readings from cognitive science[END_REF]. The model reproduces the empirical statistics exactly when the parameters maximize the likelihood of experimental data measured by the model, L = n α=1 P (σ (α) ), where (σ (1) , . . . , σ (n) ) are the n activity patterns recorded in the experiment, assumed to be independently drawn.

In practice, we maximized the normalized log-likelihood L = (1/n) log L instead of L, which is equivalent theoretically but more convenient for computation. We used Newton's method to perform the maximization. This method requires to compute the first and second derivatives of the normalized log-likelihood. These derivatives can be expressed as functions of mean statistics of the model and can be calculated using the solution to the direct problem sketched in the previous section, and detailed in the Mathematical derivations. Because the model is tractable, these mean statistics can be computed quickly and the model can be inferred rapidly.

For the minimal model, the optimization was performed over the parameters (α i ) i=1,...,N and (β K ) K=0,...,N . For the linear-coupling model, the optimization was done over these two sets of parameters, as well as (γ i ) i=1,...,N . For the complete coupling model, the optimization was performed over all elements of the matrix (h iK ) i=1,...,N ;K=0,...,N . We stopped the algorithm when the fitting error was smaller than 10 -6 (see Mathematical derivations).

III.2.5 Regularization

Prior to learning the model, we regularized the empirical population rate distribution P (K) and conditional firing rates P (σ i |K) to mitigate the effects of low-sampling noise. This regularization allowed us to remove zeros from the mean statistics, avoiding issues with the fitting procedure. We performed this regularization using pseudocounts (see Mathematical derivations).

III.2.6 Tuning curves in the population rate

We define the tuning curve of neuron i in the population rate as the conditional probability of neuron i to spike given the summed activity of all neurons but i, K \i = j =i σ j . It is equal to:

P (σ i =1|K \i ) = P (σ i =1, K \i ) P (σ i =0, K \i ) + P (σ i =1, K \i ) (III.7)
where we can use

P (σ i =1, K \i ) = P (σ i =1, K=K \i +1) and P (σ i =0, K \i ) = P (σ i =1, K=K \i ).
Each of these quantities can be computed using the solution to the direct problem (see Mathematical derivations).

We then tested for each neuron if its tuning curve had significant local maxima. We first identified the set of K \i for which P (σ i = 1|K \i ) was significantly larger than points below and above K \i . To assess significance, we measured the standard deviation of the difference across 100 training sets consisting in random halves of the dataset. The difference was said to be significant when it was 5 standard deviations above 0.

For the cells for which the presence of a maximum was determined, we then evaluated the location of the maximum, K * \i , by taking the median of the maxima determined for each training set. We inferred the presence and position of minima in a similar way.

To estimate the quality of the model prediction for the tuning curve, we quantified how the model differed from the data. We trained the model on 100 random training sets and computed D KL (test model), the difference between P (σ i , K) in the testing data and predicted by the model, measured by the Kullback Leibler (KL) divergence. The KL divergence between two distributions P and Q of a random variable x is:

D KL (P Q) = x P (x)log[P (x)/Q(x)].
We regularized P (σ i , K) in the testing set before computing the KL divergence. To measure sampling noise we computed the difference between the testing and the training sets, D KL (test train), where P (σ i , K) was regularized in both sets. The normalized KL divergence, z, is defined as the difference between D KL (test model) and D KL (test train), divided by the standard deviation:

z = mean (D KL (test model) -D KL (test train)) std (D KL (test model) -D KL (test train)) . (III.8)
In other words, it measures by how many standard deviations the data differs from the model.

III.2.7 Quality of the model

Pairwise correlations. In order to measure the quality of the predictions of correlations between pairs of neurons σ i and σ j , we used cross-validation. We randomly divided the dataset into 100 training and testing sets half the size of data, and learned the model on the training sets. The correlations of each testing set, c test, ij were then predicted with the model c model, ij . The quality of the model prediction was measured by a goodness-of-fit index quantifying the amount of correlations predicted by the model. We define it as:

C = i<j c 2 test,ij -i<j (c test,ij -c model, ij ) 2 i<j c 2 test,ij -i<j (c test,ij -c train,ij ) 2 , (III.9)
where c train, ij is the correlation in the corresponding training set. The numerator of Eq. (III.9) is the part of the correlations in the testing set that is predicted by the model, and the lower one is a normalization correcting for sampling noise. We have C = 1 when the model perfectly accounts for the correlations of the training set. When the model completely ignores correlations, as in a model of independent neurons, c ij = 0, then C = 0.

Likelihood. Using the models learned on the same 100 training sets, we computed the likelihood of responses in the testing sets for the minimal, linear-coupling and complete coupling models. In this paper the log-likelihood is expressed in bits, using binary logarithms. We then computed the improvement in mean log-likelihood compared to the minimal model, for complete versus linear models as the ratio log P complete (σ)-log P minimal (σ) σ / log P linear (σ)log P minimal (σ) σ test , where • test is the mean over training sets and • σ is the mean over responses in each testing set.

Multi-information.

The multi-information [START_REF] Cover | Elements of Information Theory[END_REF]Schneidman et al., 2003) quantifies the amount of correlative structure captured by a model. It is defined as the difference between the entropy of a model of independent neurons reproducing firing rates, and empirical data: I = S indep -S data . Here S data =σ P data (σ) log P data (σ) is the entropy of the spike patterns measured by their frequencies P data (σ) in the data, and S indep is the entropy if all neurons were independent.

The entropy of a maximum entropy model is by construction higher than that of the real data, S model > S data , because the model has maximum entropy given the statistics it reproduces. Its entropy is also smaller than S indep provided that constraints include the spike rates, because the model has more structure, reproduces more statistics, than if neurons were independent, Thus the fraction of correlations that is accounted by the maximum entropy model, 0 < I model /I < 1, where I model = S indep -S model , can be viewed as a measure of how well the model captures the correlative structure of responses. The true multi-information I can only be calculated for small groups of neurons (N ≤ 20), because P data requires to evaluate 2 N pattern frequencies, which is prohibitive for large networks.

III.3 Results

III.3.1 Tractable maximum entropy model for coupling neuron firing to population activity

The principle of maximum entropy (Jaynes, 1957a,b) provides a powerful tool to explicitly construct probability distributions that reproduce key statistics of the data, but are otherwise as random as possible. We introduce a novel family of maximum entropy models of spike patterns that preserve the firing rate of each neuron, the distribution of the population rate, and the correlation between each neuron and the population rate, with no additional assumptions (Figure VI.2A). Under these constraints, the maximum entropy distribution over spike patterns in a fixed 20-ms time window is given by (see Materials and Methods):

P (σ 1 , . . . , σ N ) = 1 Z exp N i=1 (α i + β K + γ i K) σ i (III.10)
where σ i equals 1 when neuron i spikes within the time window, and 0 otherwise, K = i σ i is the population rate, and Z is a normalization constant. The parameters (α i ) i=1,...,N , (γ i ) i=1,...,N and (β K ) K=0,...,N must be fitted to empirical data. We refer to this model as the linear-coupling model, because of the linear term γ i Kσ i in the exponential. Unlike maximum entropy models in general, this model is tractable, meaning that its prediction for the statistics of spike patterns has an analytical expression that can be computed efficiently using polynomial algebra. This allows us to infer the model parameters rapidly for large populations on a standard computer, using Newton's method (see Materials and Methods). We learned this model in the case of a population of N = 160 salamander retinal ganglion cells, stimulated by a natural movie. It took our algorithm 14 seconds to fit the 3N -2 model parameters (see Mathematical derivations) so that the maximum discrepancy between the model and the data was smaller than 10 -6 (Figure VI.2 B-D).

The linear-coupling model provides a rigorous mathematical formulation to the hypotheses underlying the modeling approach of Okun et al. (2015) applied to cortical populations. In that work, synthetic spike trains were generated by shuffling spikes from the original data so as to match the three constraints listed above on the single-neuron spike rates, the distribution of population rates, and their linear correlation. Shuffling data, i.e. increasing randomness and hence entropy, while constraining mean statistics, has previously been shown to be equivalent to the principle of maximum entropy in the context of pairwise correlations [START_REF] Bialek | Rediscovering the power of pairwise interactions[END_REF]. Our formulation provides a fast way to learn the model and to make predictions from it, as we shall see below. In addition, it allows us to calculate the probability of individual spike patterns, Eq. III.10, which a generative procedure such as the one in Okun et al. (2015) cannot.

III.3.2 Tuning curves of single neurons to the population activity

We wondered whether the linear-coupling model could explain how the response of single neurons depended on the population rate. We examined the firing probability of neuron i as a function of the summed activity of the other neurons K \i = j =i σ j , denoted by P (σ i = 1|K \i ). This quantity can be viewed as the tuning curve of neuron i in response to the rest of the population. It can be calculated analytically from the parameters of the The linear-coupling model predicts a variety of tuning curves (in red), from sub-linear to super-linear. Although its prediction was qualitatively close to the empirical value for some cells (Figure VI.3A), the model generally did not account well for the coupling between σ i and K \i . A majority of cells (85 out of 160) displayed a local maximum in their empirical tuning curves, at some prefered value K * \i of the population activity to which the neuron is tuned. The model did not predict the existence of this maximum in 47 out of these 85 cells (Figure VI.3C). Even when it did, the location of the maximum, K * \i , was poorly predicted, as can be seen by the distribution of the difference between model and data (Figure VI.3E). In six cases, the tuning curve had two local maxima, while the model only predicted one. Another 27 cells had a minimum in their empirical tuning curve, which was never reproduced by the model (Figure VI.3D). Interestingly, no cells were tuned to fire when the rest of the population is silent; even cells whose spiking activity was anti-correlated to the rest of the population had a non-zero preferred population rate, K * \i > 0. The model performance can be quantified by computing the Kullback Leibler (KL) divergence between data and model for the joint probability P (σ i , K) of the neuron and population activity (Figure VI.3F). The KL divergence is a measure of the dissimilarity between two distributions P and Q [START_REF] Cover | Elements of Information Theory[END_REF], which quantifies the amount of information that is lost if we use Q to approximate P . We calculated a normalized KL divergence (see Materials and Methods) measuring by how many standard deviations the KL divergence between linear-coupling model and data deviated from what would be expected from sampling noise (Figure VI.3F). A majority of cells (143 out of 160) deviated by more than 2 standard deviations, meaning that their tuning curve was not well accounted for by the linear-coupling model. This observation is consistent with the model's failure to account for the qualitative properties of their tuning curves.
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Taken together, these results indicate that the full dependence between single cells and the population rate cannot be explained by their linear correlation only.

III.3.3 A refined maximum entropy model

To overcome the limitations of the linear-coupling model, and to fully account for the variety of tuning curves found in data, we built a maximum entropy model constrained to match all joint probabilities of the population rate with each single neuron response, P (σ i , K). This model takes the form (see Materials and Methods):

P (σ 1 , . . . , σ N ) = 1 Z exp N i=1 h iK σ i , (III.11)
where the parameters h iK for i = 1, . . . , N and K = 0, . . . , N are fitted to empirical data, and Z is a normalization constant. Note that the linear-coupling model can be viewed as a particular case of this model, with parameters h iK constrained to take the form

h iK = α i + β K +γ i K.
By construction, this model exactly reproduces the tuning curves of Figs. VI.3A-D.

Although this model has many more parameters than the simpler linear-coupling model, it is still tractable, and we could infer its N (N -1) + 1 parameters (see Mathematical derivations) in 7 seconds for the whole population of 160 neurons. Hereafter, we refer to this model as the complete coupling model. 
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III.3.4 Pairwise correlations

The models introduced thus far are only constrained to reproduce the firing rate of each neuron, the distribution of population rates, and the coupling of each neuron with the population rate. We asked whether these simple models could account for correlations between individual pairs of cells, which were not fitted to the data. The correlation between two neurons, σ i σ j -σ i σ j , can be calculated analytically from the model parameters (see Materials and Methods) and directly compared to the data (Figure III.3A and B).

In order to understand the importance of the population rate coupling for the prediction of pairwise correlations, we built a null model only constrained by the firing rates of each neuron and the distribution of the population rate. This simpler maximum entropy model reads:

P (σ 1 , . . . , σ N ) = 1 Z exp N i=1 (α i + β K ) σ i . (III.12)
We call it the minimal model. Interactions between neurons only derive from the fluctuations of the population activity, rather than from an explicit coupling. This model has 2N -1 parameters (see Mathematical derivations), which are inferred using the same techniques as before.

To quantify the performance of the different models, we calculated a goodness-of-fit index ranging from 0 when the correlations were not predicted at all to 1 when they were predicted perfectly (Materials and Methods). This index was 0.380 ± 0.001 for the minimal model, 0.526 ± 0.002 for the linear-coupling model, and 0.544 ± 0.002 for the complete coupling model. Thus, a substantial amount of pairwise correlations could be explained from the coupling of neurons to the population. By this measure, the complete model performed slightly (but significantly) better than the linear-coupling model.

Figure III.3C shows the distribution of the pairwise correlations in the data and as predicted by the three models. The minimal model fails to reproduce the long tail of large correlations, and predicts no negative correlations, while 28% of empirical correlations are negative. By contrast, the linear and complete coupling models predict 7.6% and 7.7% of negative interactions respectively, and a longer tail of large correlation coefficients. Thus the coupling to the population rate is important to reproduce both large correlations and the strong asymetry of the distribution. 

III.3.5 Prediction of probabilities of spike patterns

We quantified the capacity of models to describe population responses by computing the probability of responses predicted by each model. The mean log-likelihood of responses was -33.10 ± 0.06 bits for the minimal model, -30.12 ± 0.06 bits for the linear-coupling model and -29.49 ± 0.06 bits for the complete coupling model. The improvement in mean log-likelihood compared to the minimal model was 51.3 ± 0.5 % higher for the complete coupling model than for the linear-coupling model, meaning that nonlinear couplings to the population are important to model the probability of responses. The multi-information I [START_REF] Cover | Elements of Information Theory[END_REF] quantifies, in bits, the amount of correlations in the response, whether they are pairwise or of higher order (see Materials and Methods). To assess the performance of the models in capturing the collective behavior of the networks, we calculated the ratio of the multi-information explained by the model to that estimated directly from the data, I model /I data . This ratio gives a measure of how well the probability of particular spike patterns are predicted by the model: it is 1 when the model is a perfect description of the data, and 0 when the model assumes independent neurons with no correlation between them. Because it requires to estimate the probability of all possible spike patterns of the populations, the multi-information can only be calculated for small populations of at most 20 cells.

With this measure, the linear coupling model could account for 65% of the multiinformation for groups of 10 neurons, and 53% for groups of 20 neurons. The complete model slightly improved these ratios to 68% and 56%, respectively (see Table III.1). Thus, more than half of the correlative structure in the spike patterns could be explained by the coupling to the population rate alone.

III.4 Discussion

In this work we have introduced a general computational model for coupling individual neurons to the population rate. This model formalizes and simplifies the generative procedure proposed by Okun et al. (2015) to study population coupling, and overcomes its computational difficulties. In addition, it allows for non-linear coupling to the population rate.

We have used our model to investigate population coupling in large recordings of N = 160 retinal ganglion cells. We found that most cells had a non-linear coupling to the population rate. In particular, a large fraction of cells were tuned to a preferred value of the population rate. Even more strikingly, a few cells had a least preferred population rate, i.e. they were more likely to spike at lower or higher populations rates. We found no cell that was maximally active when all other neurons were silent, even among cells that were anti-correlated with the population rate. These results emphasize the need for the non-linear coupling afforded by our model , as they uncover new dependencies that do not fit within the proposed division between soloists and choristers (Okun et al., 2015), such as the tuning to a specific population rate. It would be interesting to test if these non-linear couplings can also be found at the cortical level.

Overall, our model reaches a similar predictive performance than what was found in the cortex. The coupling to the population rate accounted for more than half of correlations between pairs of neurons. In Okun et al. (2015), a custom measure of the fraction of explained pairwise correlations (different from the one used in the present work) gave 0.34. Applying the same measure to our case yields a similar value, 0.33. However, this similarity in performance can be due to different underlying mechanisms. In the retina, most correlations are due to common input from previous layers [START_REF] Trong | Origin of correlated activity between parasol retinal ganglion cells[END_REF], while ganglion cells do not make synaptic connections to each other. In contrast, at the cortical level, a larger part of the variability in the activity should be due to internal dynamics generated by recurrent connections [START_REF] Van Vreeswijk | Chaos in neuronal networks with balanced excitatory and inhibitory activity[END_REF]Arieli et al., 1996;Tsodyks et al., 1999). It would be interesting to test our model on cortical data to see if these differences result in different types of non-linear population coupling.

Our maximum entropy model of population coupling is complementary to maximum entropy models reproducing correlations between all pairs of neurons. Pairwise models have been shown to accurately describe the collective activity of retinal ganglion cells (Schneidman et al., 2006;[START_REF] Shlens | The Structure of Multi-Neuron Firing Patterns in Primate Retina[END_REF][START_REF] Shlens | The Structure of Large-Scale Synchronized Firing in Primate Retina[END_REF]Ganmor et al., 2011b;Tkačik et al., 2014), and in cortical networks in vitro [START_REF] Tang | A Maximum Entropy Model Applied to Spatial and Temporal Correlations from Cortical Networks In Vitro[END_REF] and in vivo [START_REF] Yu | A small world of neuronal synchrony[END_REF], but they are not tractable, requiring to sum over 2 N all possible spiking states in order to implement Boltzmann-machine learning [START_REF] Ackley | Connectionist models and their implications: Readings from cognitive science[END_REF]. Alternative methods based on mean-field approximations (Cocco et al., 2009;[START_REF] Cocco | Adaptive cluster expansion for inferring Boltzmann machines with noisy data[END_REF] or Monte-Carlo simulations [START_REF] Broderick | Faster solutions of the inverse pairwise Ising problem[END_REF] have been proposed. However, Monte-Carlo methods require hours of computations, although recent efforts have tried to lower these computation times for moderately large populations [START_REF] Ferrari | Approximated Newton Algorithm for the Ising Model Inference Speeds Up Convergence, Performs Optimally and Avoids Over-fitting[END_REF].

By contrast, the models of population couplings introduced here are much easier to solve. They are tractable, so their predictions can be computed analytically in time N 3 , and their parameters can be inferred in a few seconds on a personal computer from large-scale, hourlong recordings of spike trains for a population of N = 160 neurons. These models can then be used to generate synthetic spike trains, to calculate analytically response statistics such as pairwise correlations, or to estimate the probability of particular spike trains. Compared to the shuffling method described in Okun et al. (2015), which is equivalent to the linearcoupling model, our method is simpler and computationally less intensive.

The procedure is general and can be applied to any multi-neuron recording of individual spikes. The speed of model inference could prove an important advantage when studying very large populations, which can now reach a thousand cells [START_REF] Schwarz | Chronic, wireless recordings of large-scale brain activity in freely moving rhesus monkeys[END_REF]. In the case of the linear-coupling model, the number of parameters is also smaller, scaling with the population size N rather than N 2 for pairwise correlations model.

Note that the population coupling models introduced here belong to a different class than pairwise models. Each class captures features of neural responses that the other cannot: models of population coupling should be sufficient for studying the global properties of collective activity, while pairwise models are still needed to account for the detailed structure of the response statistics. Pairwise models have been reported to capture 90% of the correlations as measured by the multi-information for populations of size N = 10 (Schneidman et al., 2006), while our model captures at most 70% (Table I). Yet pairwise models can also miss important aspects of the collective activity such as the probability of large population rates (Tkačik et al., 2014), which is captured by our population model.

Both classes of models consider same-time spike patterns, with no regard for the dynamics of spike trains and their temporal correlations. Generalizations of pairwise maximum entropy models to temporal statistics are even harder to solve computationally [START_REF] Vasquez | Gibbs distribution analysis of temporal correlations structure in retina ganglion cells[END_REF][START_REF] Nasser | Spatio-temporal spike train analysis for large scale networks using the maximum entropy principle and Monte Carlo method[END_REF]. By contrast, our models of population coupling are fully compatible with any model describing the dynamics of the population rate such as Mora et al. (2015).

III.5 Mathematical derivations

III.5.1 Derivation of the model form

Maximum entropy models.

A maximum entropy model is defined by a distribution that maximizes its entropy,

S(P ) = - σ P (σ) logP (σ), (III.13)
while reproducing a set of chosen statistics. In the case where these statistics are the means of some observables O 1 (σ), . . . , O M (σ), the form of the model is given by:

P (σ) = 1 Z exp M a=1 µ a O a (σ) , (III.14)
where Z is a normalization factor. Eq. III.14 is obtained by maximizing the entropy while constraining the chosen statistics using the method of Lagrange multipliers. The Lagrange multipliers µ a are model parameters that must be adjusted so that the mean observables predicted by the model, O a µ agree with those of the data,

O a data = (1/n) n α=1 O(σ (α)
), where (σ (1) , . . . , σ (n) ) are the n activity patterns recorded in the experiment. This fitting procedure is equivalent to maximizing the likelihood of the data under the model, L = n α=1 P (σ (α) ), assuming that the patterns are independently drawn. The likelihood maximization problem is convex and the distribution P (σ) maximizing the likelihood is always unique. However, if the constrained observables are linearly related, the optimal set of µ a is not unique (even though the resulting distribution is), and must be set by chosing a convention.

Minimal model.

In the minimal model, the statistics we constrain are P (σ i = 1) for each neuron i, and P (K = k) for each k = 0, ..., N . They correspond to the means of the following observables:

P (σ i = 1) = σ i ,
(III.15)

P (K = k) = δ K,k , (III.16)
where δ x,y is Kronecker's delta, equal to 1 if x = y , and 0 otherwise. Note that while in the main text we use K both as a short-hand for i σ i and its realization as a random variable, here we distinguish the two by using K and k, respectively. Applying Eq. III.14 to this choice of observables (σ i , δ K,k ) yields:

P (σ) = 1 Z exp N k=0 ν k δ K,k + N i=1 α i σ i (III.17) = 1 Z exp ν K + N i=1 α i σ i , (III.18)
where each ν k is associated with the contraint on δ K,k and each α i with the constraint on σ i . In the second line we have used the fact that in the first sum, the only term which is non-zero is the one for which k = K.

For convenience, we rescale the parameters ν K , which will give a common form to our three models. We first set ν 0 = 0, which is possible because the model is invariant when adding a constant to all ν k (this only changes the normalization factor Z). We then intoduce the rescaled parameters β K , defined as β 0 = 0 and β K = ν K /K for K > 0. We have ν K = Kβ K = i σ i β K , so that the model takes the form :

P (σ) = 1 Z exp N i=1 (α i + β K ) σ i . (III.19)
This model has 2N -1 parameters: there are N coefficients (α i ) N i=1 and N + 1 coefficients (β k ) N k=0 , but β 0 is not used, and the model is invariant under a change in parameters

α i = α i + c, β k = β k -c, for any number c.
Linear-coupling model. The linear-coupling model reproduces P (σ i ) and P (K), and also the linear correlation between the neuron response σ i and the population rate K, σ i K . The three sets of constrained observables are thus (σ i ) i=1,...,N , (δ K,k ) k=0,...,N , and (σ i K) i=1,...,N . With this choice of observables Eq. III.14 reads:

P (σ) = 1 Z exp N k=0 ν k δ K,k + N i=1 α i σ i + N i=1 γ i Kσ i (III.20) = 1 Z exp ν K + N i=1 (α i + γ i K) σ i , (III.21)
where, in addition to the α i and ν k parameters, each γ i is associated with the constraint on σ i K . Note that in general the inferred parameters α i and ν k will be different from the ones inferred in the minimal model. This is due to the fact that the set of observables σ i , δ K,k and σ i K are not independent. Therefore the parameters γ i cannot be learned independently from α i and ν k .

As for the minimal model, we rescale the parameters ν K with β 0 = 0 and β K = ν K /K for K > 0:

P (σ) = 1 Z exp N i=1 (α i + β K + γ i K) σ i . (III.22)
This model has 3N -2 parameters: there are 2N coefficients (α i ) N i=1 and (γ i ) N i=1 and N + 1 coefficients (β k ) N k=0 , but β 0 is not used, and the model is invariant under a changes in parameters

α i = α i + c, β k = β k -c + dK, γ i = γ i -d for any numbers c and d.

Complete coupling model.

The third maximum entropy model reproduces the joint probability distributions between the response of each neuron and the population rate, P (σ i , K). The problem reduces to matching P (σ i = 1, K) for all i = 1, . . . , N and K = 0, . . . , N , since P (σ i = 0, K) can be determined through:

P (σ i = 0, K) = P (K) -P (σ i = 1, K), (III.23)
where the distribution P (K) is set by:

N i=1 P (σ i = 1, K) = KP (K) (III.24)
This holds true because K is the number of neurons spiking so:

N i=1 P (σ i = 1|K) = N i=1 σ i |K = N i=1 σ i |K = K (III.25)
where we can then mutliply both sides by P (K). Here . |K stands for the mean conditioned by K. Therefore, we impose that the model only reproduces the statistics P (σ i = 1, K), which are the means of the observables σ i δ K,k . Using Eq. III.14 with this set of observables yields:

P (σ) = 1 Z exp N i=1 N k=0 h ik σ i δ K,k (III.26) = 1 Z exp N i=1 h iK σ i , (III.27)
where each h ik is associated with the constraint on σ i δ K,k . This model has N (N -1)+1 parameters: there are N (N + 1) coefficients (h iK ) N,N i=1,K=0 , but the N coefficients (h i0 ) N i=1 are not used, and only the sum i h iN of the N coefficients (h iN ) N i=1 is used, when all neurons spike simultaneously.

III.5.2 Regularization

We regularized the empirical population rate distribution P (K) and conditional firing rates P (σ i |K) using pseudocounts. If we denote by n = 2.8 10 5 the total number of responses σ recorded during the experiment and by n K the number of responses with K spikes in the population, the distribution of population rates K was computed as:

P (K) = n K + λP indep (K) n + λ , (III.28)
where P indep (K) is the distribution of K in a model of independent neurons reproducing the empirical firing rates σ i . Similarly, if we denote by n iK the number of responses in which neuron i spiked and in which the population rate was K, the conditional firing rates were estimated as:

P (σ i = 1|K) = n iK + λP indep (σ i = 1|K) n K + λ , (III.29)
where again P indep (σ i = 1|K) is the estimate of the conditional firing rate according to the independent model. The terms scaling as λ play the role of pseudocounts. These pseudocounts are not taken to be uniform, but rather follow the prediction of a model of independent neurons. We used λ = 1 so that the total weight of pseudocounts is equivalent to a single observed pattern.

III.5.3 Calculating statistics from the model

We start by providing an analytical expression for the normalization factor, defined as:

Z = σ exp N i=1 h iK σ i . (III.30)
All useful statistics predicted by the model can be derived from the expression of Z, as we shall see below. To calculate Z, we decompose it as a sum over groups of patterns with the same population activity K: Z = N k=0 Z k with:

Z k = σ K=k exp N i=1 h iK σ i (III.31) = i 1 <...<i k exp k b=1 h i b ,k (III.32) We introduce the polynomial Q(X) = N i=1 (1 + e h ik X). Expanding Q, we can calculate its coefficient of order X k , denoted by Coeff[Q, X k ].
This coefficient is the sum of all the terms having exactly k factors e h ik :

Coeff[Q, X k ] = i 1 <...<i k k b=1 exp (h i b k ) (III.33) = i 1 <...<i k exp k b=1 h i b k (III.34) = Z k (III.35)
It is obtained by recursively computing the coefficients of n i=1 (1 + e h ik X) of order up to X k , for n = 1 to N , using the relation:

Coeff[(1 + bX)F, X l ] = Coeff[F, X l ] + b Coeff[F, X l-1 ],
(III.36)

for any number b, polynomial F and order X l . Z k can thus be computed in time linear in kN , and Z = k Z k can be computed rapidly.

Many statistics of the model can then be calculated by deriving Z. For example, the mean observables according to the model in Eq. III.14 are given by:

O a µ = ∂ log Z ∂µ a (III.37)
This formula gives the following expression for the joint distribution of σ i and K:

P (σ i = 1, K) = ∂ log Z ∂h iK (III.38) = 1 Z Coeff   Xe h iK j =i (1 + Xe h j,K ), X K   . (III.39)
Similarly, pairwise correlations are computed using the formula:

σ i σ j = 1 Z K Coeff   X 2 e h iK +h jK l =i,j (1 + Xe h lK ), X K   .
(III.40)

III.5.4 Model inference

To learn the model parameters from the data, we maximized the normalized log-likelihood L = (1/n) log L using Newton's method. The update equation for the parameter values in Newton's method read:

µ (t+1) = µ (t) -a H -1 • ∇L, (III.41)
where a is an adjustable step size taken typically between 0.1 and 1. µ (t) = (µ

(t)
a ) a=1,...,M is the vector of the parameters at iteration t; ∇L and H are the gradient and Hessian of L with respect to the parameters µ a . In the general context of maximum entropy models (Eq. III.14), one can show that the gradient and Hessian read:

(∇L) a = ∂L ∂µ a = O a data -O a µ (III.42) = O a data - ∂ log Z ∂µ a (III.43) H ab = ∂ 2 L ∂µ a ∂µ b = O a µ O b µ -O a O b µ (III.44) = - ∂ 2 log Z ∂µ a ∂µ b . (III.45)
where we used Eq. III.37 for Eq. III.43 and a similar formula for Eq. III.45. Both quantities can readily be computed as derivatives of the normalization factor Z.

For time efficiency, we only updated the Hessian every 100 iterations of the algorithm. We stopped the algorithm when the fitting error reached 10 -6 . The fitting error was defined as the maximum error on P (K) and P (σ i ) for the minimal model, on P (K), P (σ i ) and Kσ i for the linear-coupling model, and on P (K) and P (σ i |K) for the complete coupling model.

The code for the models inference is available at http://github.com/ChrisGll/MaxEnt_ Model_Population_Coupling

IV -Closed-loop Estimation of Retinal Network Sensitivity by Local

Empirical Linearization
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We have seen that even in the retina, populations of neurons exhibit correlations at multiple orders. Different characterizations have been proposed, like coupling to the global population activity, but their ability to describe responses is still debated. Furthermore, the influence of visual signals on ganglion cells' activity is also debated, and can be highly nonlinear.

Characterizing directly how ganglion cell responses depend on stimuli in general is still an open challenge, although it has received much attention. Our objective here is slightly different, and hopefully experimentally more feasible: we aim at measuring the sensitivity of population responses to perturbations of a visual stimulus. In particular, we try to find the smallest region in the visual space, such that responses are still discriminable. This is achieved by closed-loop experiments, where perturbations at each step are adapted to recorded responses. We then try to characterize the sensitivity of neural responses locally, in this small region of the visual space, with as little assumptions as possible on the form of neural responses.

In such a small region of visual space, we expect that responses probability will be linear in the stimulus. If this linearity assumption holds, the sensitivity of the neural population can be simply characterized. Such an local empirical linearization is thus a convenient way to bypass neural responses nonlinearity and correlations. This article is in revision at eNeuro. It was last posted online as: Ferrari, U. * , Gardella, C. * , Marre, O. † , and Mora, T. † (2016). Closed-loop estimation of retinal network sensitivity reveals signature of efficient coding. arXiv preprint arXiv:1612.07712. * , † : these authors contributed equally.

Abstract

Understanding how sensory systems process information depends crucially on identifying which features of the stimulus drive the response of sensory neurons, and which ones leave their response invariant. This task is made difficult by the many non-linearities that shape sensory processing. Here we present a novel perturbative approach to understand information processing by sensory neurons, where we linearize their collective response locally in stimulus space. We added small perturbations to reference stimuli and tested if they triggered visible changes in the responses, adapting their amplitude according to the previous responses with closed-loop experiments. We developed a local linear model that accurately predicts the sensitivity of the neural responses to these perturbations. Applying this approach to the rat retina, we estimated the optimal performance of a neural decoder and showed that the nonlinear sensitivity of the retina is consistent with an efficient encoding of stimulus information. Our approach can be used to characterize experimentally the sensitivity of neural systems to external stimuli, quantify experimentally the capacity of neural networks to encode sensory information, and relate their activity to behaviour.

Significant Statement

Understanding how sensory systems process information is an open challenge mostly because these systems have many unknown nonlinearities. A general approach to studying nonlinear systems is to expand their response perturbatively. Here we apply such a method experimentally to understand how the retina processes visual stimuli. Starting from a reference stimulus, we tested whether small perturbations to that reference (chosen iteratively using closed-loop experiments) triggered visible changes in the retinal responses. We then inferred a local linear model to predict the sensitivity of the retina to these perturbations, and showed that this sensitivity supported an efficient encoding of the stimulus. Our approach is general and could be used in many sensory systems to characterize and understand their sensitivity to stimuli.

IV.1 Introduction

An important issue in neuroscience is to understand how sensory systems use their neural resources to represent information. To understand the sensory processing performed by a given brain area, we need to determine which features of the sensory input are coded in the activity of these sensory neurons, and which features are discarded. If a sensory area extracts a given feature from the sensory scene, any change along that dimension will trigger a noticeable change in the activity of the sensory system. Conversely, if the information about a given feature is discarded by this area, the activity of the area should be left invariant by a change of along that feature dimension. To understand which information is extracted by a sensory network, we must determine which changes in the stimulus evoke a significant change in the neural response, and which ones leave the response invariant. Characterizing the sensitivity of a sensory network to different changes in the stimulus is a crucial step towards understanding sensory processing (Benichoux et al., 2017).

This task is made difficult by the fact that sensory structures process stimuli is a highly non-linear fashion. At the cortical level, many studies have shown that the response of sensory neurons is shaped by multiple non-linearities (Carandini et al., 2005;Machens et al., 2004). Models based on the linear receptive field are not able to predict the responses of neurons to complex, natural scenes. This is even true in the retina. While spatially uniform or coarse grained stimuli produce responses that can be predicted by quasi-linear models (Berry and Meister, 1998;Keat et al., 2001;Pillow et al., 2008), stimuli closer to natural scenes (Heitman et al., 2016) or with rich temporal dynamics (Berry et al., 1999;Ölveczky et al., 2003) are complex, as they trigger non-linear responses in the retinal output. These unknown non-linearities challenge our ability to model stimulus processing and limit our understanding of how neural networks process information.

Here we present a novel approach to measure experimentally the sensitivity of a nonlinear network. Because any non-linear function can be linearized around a given point, we hypothesized that, even in a sensory network with non-linear responses, one can still define experimentally a local linear model that can well predict the network response to small perturbations around a given reference stimulus. This local model should only be valid around the reference stimulus, but it is sufficient to predict if small perturbations can be discriminated based on the network response.

This local model allows us to estimate the sensitivity of the recorded network to changes around one stimulus. This local measure characterizes the ability of the network to code different dimensions of the stimulus space, circumventing the impractical task of building a complete accurate nonlinear model of the stimulus-response relationship.

We applied this strategy to the retina. We recorded the activity of a large population of retinal ganglion cells stimulated by a randomly moving bar. We characterized the sensitivity of the retinal population to small stimulus changes, by testing perturbations around a reference stimulus. Because the stimulus space is of high dimension, we designed closed-loop experiments to probe efficiently a perturbation space with many different shapes and amplitudes. This allowed us to build a complete model of the population response in that region of the stimulus space, and to precisely quantify the sensitivity of the neural representation.

We then used this experimental estimation of the network sensitivity to tackle two longstanding issues in sensory neuroscience. First, when trying to decode neural activity to predict the stimulus presented, it is always difficult to know if the decoder is optimal or if it misses some of the available information. We show that our estimation of the network sensitivity gives an upper bound of the decoder performance that should be reachable by an optimal decoder. Second, the efficient coding hypothesis (Attneave, 1954;Barlow, 1961) postulates that neural encoding of stimuli has adapted to represent natural occurring sensory scenes optimally in the presence of limited resources. Testing this hypothesis for sensory structures that perform non-linear computations on high dimensional stimuli is still an open challenge. Here we found that the network sensitivity with respect to stimulus perturbations exhibits a peak as a function of the temporal frequency of the perturbation, in agreement with prediction from efficient coding theory. Our method paves the way towards testing efficient coding theory in non-linear networks.

IV.2 Materials and Methods

Extracellular recording. Experiments were performed on the adult Long Evans rat of either sex, in accordance with institutional animal care standards. The retina was extracted from the euthanized animal and maintained in an oxygenated Ames' medium (Sigma-Aldrich). The retina was recorded extracellularly on the ganglion cell side with an array of 252 electrodes spaced by 60 µm (Multichannel Systems), as previously described [START_REF] Marre | Mapping a complete neural population in the retina[END_REF]. Single cells were isolated offline using SpyKING CIRCUS a custom spike sorting algorithm [START_REF] Yger | Fast and accurate spike sorting in vitro and in vivo for up to thousands of electrodes[END_REF]. We then selected 60 cells that were well separated (no violations of refractory period, i.e. no spikes separated by less than 2 ms), had enough spikes (firing rate larger than 0.5 Hz), had a stable firing rate during the whole experiment, and responded consistently to repetitions of a reference stimulus (see later).

Stimulus. The stimulus was a movie of a white bar on a dark background projected at a refresh rate of 50 Hz with a digital micromirror device. The bar had intensity 7.6 10 11 photons.cm -2 .s -1 , and 115 µm width. The bar was horizontal and moved vertically. The bar trajectory consisted in 17034 snippets of 0.9 s consisting in 2 reference trajectories repeated 391 times each, perturbations of these reference trajectories and 6431 random trajectories. Continuity between snippets was ensured by constraining all snippets to start and end in the middle of the screen with velocity 0. Random trajectories followed the statistics of an overdamped stochastic oscillator [START_REF] Marre | High Accuracy Decoding of Dynamical Motion from a Large Retinal Population[END_REF]. We used a Metropolis-Hastings algorithm to generate random trajectories satisfying the boundary conditions. The two reference trajectories were drawn from that ensemble.

Perturbations. Stimulus perturbations were small changes in the middle portion of the reference trajectory, between 280 and 600 ms. A perturbation is denoted by its discretized time series with time step δt = 20 ms, S = (S 1 , . . . , S L ), with L = 16, over the 320 ms of the perturbation. Perturbations can be decomposed as S = A × P , where

A 2 = (1/L) L t=1 S 2 t
is the amplitude, and P = S/A the shape. Perturbations shapes were chosen to have zero value and zero derivative at their boundaries. They are represented in Fig. 1.

Closed-loop experiments. We aimed to characterize the population discrimination capacity of small perturbations to the reference stimulus. For each perturbation shape (Fig. 1), we searched for the smallest amplitude that will still evoke a detectable change in the retinal response. To do this automatically on the many tested perturbation shapes, we implemented closed-loop experiments (Fig. 3A). At each iteration the retina was stimulated with a perturbed stimulus and the population response was recorded and used to select the next stimulation in real time.

Online spike detection.

During the experiment we detected spikes in real time on each electrode independently. Each electrode signal was high-pass filtered using a Butterworth filter with a 200 Hz frequency cutoff. A spike was detected if the electrode potential U was lower than a threshold of 5 times the median absolute deviation of the voltage [START_REF] Yger | Fast and accurate spike sorting in vitro and in vivo for up to thousands of electrodes[END_REF]. 

f k (t) = cos(2πkt/T ), g k (t) = (1/k) sin(2πkt/T ),
with T the duration of the perturbation and t = 0 the beginning of the perturbation. The first perturbations j = 1...7 were S j = f j -1. For j = 8, . . . , 10 they were the opposite of the three first ones: S j = -S j-7 . For j = 11, 12 we used S j = g j-10+1 -g 1 . Perturbations 13 and 14 were random combinations of perturbations 1, 2, 3, 11 and 12, constrained to be orthogonal. Perturbations 15 and 16 were random combinations of f j for j ∈ [1, 8] and g k for k ∈ [1, 7], allowing higher frequencies than perturbation directions 13 and 14. Perturbation direction 15 and 16 were also constrained to be orthogonal. The largest amplitude for each perturbation we presented was 115 µm. An exception was made for perturbations 15 and 16 applied to the second reference trajectory, as for this amplitude they had a discrimination probability below 70%. They were thus increased by a factor 1.5. The largest amplitude for each perturbation was repeated at least 93 times, with the exception of perturbation 15 (32 times) and 16 (40 times) on the second reference trajectory.

Online adaptation of perturbation amplitude.

To identify the range of perturbations that were neither too easy nor too hard to discriminate, we adapted perturbation amplitudes so that the linear discrimination probability (see below) converged to target value D * = 85% For each shape, perturbation amplitudes were adapted using the Accelerated Stochastic Approximation [START_REF] Kesten | Accelerated Stochastic Approximation[END_REF]. If an amplitude A n triggered a response with discrimination probability D n , then at the next step the perturbation was presented at amplitude A n+1 with

log A n+1 = log A n - C r n + 1 (D n -D * ), (IV.1)
where C = 0.74 is a scaling coefficient that controls the size of steps, and r n is the number of reversal steps in the experiment, i.e. the number of times when a discrimination D n larger than D * was followed by D n+1 smaller than D * , and vice versa. In order to explore the responses to different ranges of amplitudes even in the case where the algorithm converged too fast, we also presented amplitudes regularly spaced on a log-scale. We presented the largest amplitude A max (value in caption of Fig. 1), and scaled it down by multiples of 1.4, A max /1.4 k with k = 1, . . . , 7.

Online and offline linear discrimination. We applied linear discrimination theory to estimate if perturbed and reference stimuli can be discriminated from the population response they trigger. We applied it twice: online, on the electrode signals to adapt the perturbation amplitude, and offline, on the sorted spikes to estimate the response discrimination capacity.

The response R over time of either the N = 256 electrodes, or the N = 60 cells, was binarized into B time bins of size δ = 20 ms: R ib = 1 if cell i spiked at least once during the bth time bin, and 0 otherwise. R is thus a vector of size N × B, labeled by a joint index ib. The response is considered from the start of the perturbation until 280 ms afters its end, so that B = 30.

In order to apply linear discrimination on R S , the response to the perturbation S, we record multiple responses R ref to the reference, and multiple responses R Smax to a large perturbation S max , with the same stimulus shape as S but at the maximum amplitude that was played during the course of the experiment (typically 110 µm, see caption Fig. 1). Our goal is to estimate how close R S is to the 'typical' R ref compared to the 'typical' R Smax . To this aim, we compute the mean response to the reference and to the large perturbation, R ref and R Smax , and use their difference as a linear classifier. Specifically we project R S onto the difference between these two mean responses. For a generic response R (either R ref , R S or R Smax ), the projection x (respectively, x ref , x S or x Smax ) reads:

x = u T • R (IV.2)
where x is a scalar and u = R Smax -R ref is the linear discrimination axis. The computation of x is a projection in our joint index notation, but it can be decomposed in a summation over cells i of a time integral of the response along consecutive time-bins b: x = i b u ib R ib .

On average, we expect x ref < x S < x Smax . To quantify the discrimination capacity, we compute the probability that x S > x ref , following classical approach for linear classifiers.

To avoid overfitting, when projecting a response to the reference trajectory, R ref , onto ( R Smax -R ref ), we first re-compute R ref by leaving out the response of interest. If we did not do this, the discriminability of responses would be over-estimated.

In Mathematical Derivations we discuss the case of a system with response changes that are linear in the perturbation, or equivalently when the perturbation is small enough so that a linear first order approximation is valid.

Offline discrimination and sensitivity. To measure the discrimination probability as a function of the perturbation amplitude, we consider the difference of the projections, ∆x = x S -x ref . The response to the stimulation R S is noisy, making ∆x the sum of many random variables (corresponding to each neuron and time bin combinations), and we can apply the central limit theorem to approximate its distribution as Gaussian, for a given perturbation at a given amplitude. For small perturbations, the mean of ∆x grows linearly with the perturbation amplitude A, µ = α × A, and its variance 2σ 2 = Var(x S ) + Var(x ref ) is independent of A. Then the probability of discrimination is given by the error function:

D = P (x ref < x S ) = 1 2 1 + erf(d /2) (IV.3)
where d = µ/σ = c × A is the standard sensitivity index [START_REF] Macmillan | Detection Theory: A User's Guide[END_REF], and c = α/σ is defined as the sensitivity coefficient, which depends on the perturbation shape P . This coefficient determines the amplitude A = c -1 at which discrimination probability is equal to (1/2)[1 + erf(1/2)] = 76%.

Optimal sensitivity and Fisher information. We then aimed to find the discrimination probability for any perturbation. Given the distributions of responses to the reference stimulus, P (R|ref), and to a perturbation, P (R|S), optimal discrimination can be achieved by studying the sign of the log-ratio L = ln[P (R|S)/P (R|ref)]. Let us call L ref the value of L upon presentation of the reference stimulus, and L S its value upon presentation of S. The probability of successful discrimination is the probability that L S > L ref .

Using the central limit theorem we assume again that L S and L ref are Gaussian. We can calculate their mean and variance at small S:

µ L = L S -L ref = S T • I • S and 2σ 2 L = Var(L S ) + Var(L ref ) = 2S T • I • S,
where

I tt = - R P (R|ref) ∂ 2 log P (R|S) ∂S t ∂S t S=0 (IV.4)
is the Fisher information matrix calculated at the reference stimulus. The discrimination probability is:

D = P (L S > L ref ) = (1/2)[1 + erf(d /2)], with d = µ L σ L = √ S T • I • S. (IV.5)
This result proves Eq. IV.13.

Local model. Estimating the Fisher Information

Matrix requires building a model that can predict how the retina responds to small perturbations of the reference stimulus. We used the data from these closed loop experiments for this purpose. The model, schematized in Fig. 4A, assumes that a linear correction can account for the response change driven by small perturbations. We introduce the local model as a linear expansion of the logarithm of response distribution as a function of both stimulus and response:

log

P (R|S) = log P (R|ref) + ib,t R ib F ib,t S t + const = log P (R|ref) + R T • F • S + const. (IV.6)
The matrix F contains the linear filters with which the change in the response is calculated from the linear projection of the past stimulus. Note that the summation over ib can be easily rewritten as a time convolution between filter and stimulus, summed over cells. For ease of notation, hereafter we use matrix multiplications rather than explicit sums over ib and t.

The distribution of responses to the reference trajectory is assumed to be conditionally independent:

log

P (R|ref) = ib log P (R ib |ref). (IV.7)
Since the variables R ib are binary, their mean values R ib upon presentation of the reference completely specify P (R ib |ref): R ib = P (R ib = 1|ref). They are directly evaluated from the responses to repetitions of the reference stimulus, with a small pseudo-count to avoid zero values.

Evaluating the Fisher information matrix, Eq. (IV.4), within the local model, Eq. IV.6, gives:

I = F T • C R • F (IV.8)
where C R is the covariance matrix of R, which within the model is diagonal because of the assumption of conditional independence.

Inference of the local model. To infer the filters F ib,t , we only include perturbations that are small enough to remain within the linear approximation. We first separated the dataset into a training (285 × 16 perturbations) and testing (20 × 16 perturbations) sets.

We then defined, for each perturbation shape, a maximum perturbation amplitude above which the linear approximation was no longer considered valid. We selected this threshold by optimizing the model's ability to predict the changes in firing rates in the testing set.

Model learning was performed for each cell independently by maximum likelihood with an L 2 smoothness regularization on the shape of the filters, using a pseudo-Newton algorithm.

The amplitude threshold obtained from the optimization varied widely across perturbation shapes. The number of perturbations for each shape used in the inference ranged from 20 (7% of the total) to 260 (91% of the total). Overall only 32% of the perturbations were kept (as we excluded repetitions of perturbations with largest amplitude used for calibration).

Overfitting was limited: when tested on perturbations of similar amplitudes, the prediction performance on the testing set was never lower than 15% of the performance on the training set.

Linear decoder. We built a linear decoder of the bar trajectory from the population response. The model takes as input the population response R to the trajectory S(t) and provides a prediction Ŝ(t) of the bar position in time:

Ŝ(t) = i,τ K i,τ R i,t-τ + C (IV.9)
where C is a constant and the filters K have a time integration windows of 15 × 20 ms = 300 ms, as in the local model. We infered the linear decoder filters by minimizing the mean square error [START_REF] Warland | Decoding visual information from a population of retinal ganglion cells[END_REF], t [S(t) -Ŝ(t)] 2 , in the reconstruction of 4000 random trajectories governed by the dynamics of an overdamped oscillator with noise (see above). The linear decoder has no information about the local structure of the experiment, nor about the reference stimulation and its perturbations. Tested on a sequence of ∼ 400 repetitions of one of the two reference trajectories, where the first 300 ms of each have been cut out, we obtain a correlation coefficient of 0.87 between the stimulus and its reconstruction.

Local model Bayesian decoder. In order to construct a decoder based on the local model, we use Bayes' rule to infer the presented stimulus given the response: P (S|R) = P (R|S)P (S) P (R) (IV.10)

where P (R|S) is given by the local model (Eq. IV.6), P (S) is the prior distribution over the stimulus, and P (R) is a normalization factor that does not depend on the stimulus. P (S) is taken to be the distribution of trajectories from an overdamped stochastic oscillator with the same parameters as in the experiment. The stimulus is inferred by maximizing the posterior P (S|R) numerically, using a pseudo-Newton iterative algorithm.

Local signal to noise ratio in decoding.

To quantify local decoder performance as a function of the stimulus frequency, we estimated the local signal-to-noise ratio of the decoding signal, SNR(S), which is a function of the reference stimulus. Here we cannot compute SNR as a ratio between total signal power and noise power, because this would require to integrate over the entire stimulus space, while our approach only provides a model around the neighborhood of the reference stimulus.

In order to obtain a meaningful comparison with the linear decoder, we expand the local decoder at first order in the stimulus perturbation and compute the SNR of this 'linearized' decoder. For any decoder and for stimuli nearby a reference stimulation, the inferred value of the stimulus Ŝ can be written as:

Ŝ = T • S + b + , (IV.11)
where T is a transfer matrix which differs from the identity matrix when decoding is imperfect, b is a systematic bias, is a Gaussian noise of covariance C . We inferred the values of b and C from the ∼ 400 reconstructions of the reference stimulation using either of the two decoders, and the values of T from the reconstructions of the perturbed trajectories. The inference is done by an iterative algorithm similar to that used for the inference of the filters F of the local model. The signal-to-noise ratio (SNR) in decoding the perturbation S is then defined as:

SNR(S) = ( Ŝ -b) T • C -1 • ( Ŝ -b) = S T • T T • C -1 • T • S.
(IV.12) where here . . . means average with respect to the noise . In Fig. 5C, to compute SNR(S) for a frequency ν, we use Eq. IV.12 with S t = A exp(2πiνtδt), where A is the amplitude of the perturbation shown in Fig. 5A. 

IV.3 Results

Measuring sensitivity using closed-loop experiments. We recorded from a population of 60 ganglion cells in the rat retina using a 252-electrode array while presenting a randomly moving bar (see Fig. 2A and Materials and Methods). Tracking the position of moving objects is major task that the visual system needs to solve. The performance in this task is constrained by the ability to discriminate different trajectories from the retinal activity. Our aim was to measure how this recorded retinal population responded to different small perturbations around a pre-defined stimulus. We measured the response to many repetitions of a short (0.9 s) reference stimulus, as well as many small perturbations around it. The reference stimulus was the random trajectory of a white bar on a dark background undergoing Brownian motion with a restoring force (see data not shown). Perturbations were small changes affecting that reference trajectory in its middle portion, between 280 and 600 ms. The population response was defined as sequences of spikes and silences in 20 ms time bins for each neuron, independently of the number of spikes (Materials and Methods).

To assess the sensitivity of the retinal network, we asked how well different perturbations could be discriminated from the reference stimulus based on the population response. We expect the ability to discriminate perturbations to depend on two factors. First, the direction of the perturbation in the stimulus space, called perturbation shape. If we change the reference stimulus by moving along a dimension that is not taken into account by the recorded neurons, we should not see any change in the response. Conversely, if we choose to change the stimulus along a dimension that neurons "care about," we should quickly see a change in the response. The second factor is the amplitude of the perturbation: responses to small perturbations should be hardly distinguishable, while large perturbations should elicit easily detectable changes, as can be seen in Fig. 2B. To assess the sensitivity to perturbations of the reference stimulus we need to explore many possible directions that these perturbations can take, and for each direction, we need to find a range of amplitudes that is as small as possible but will still evoke a detectable change in the retinal response. In other words, we need to find the range of amplitudes for which discrimination is hard but not impossible. This requires looking for the adequate range of perturbation amplitudes "online," during the time course of the experiment.

In order to automatically adapt the amplitude of perturbations to the sensitivity of responses for each of the 16 perturbation shapes and for each reference stimulus, we implemented closed-loop experiments (Fig. 3A). At each step, the retina was stimulated with a perturbed stimulus and the population response was recorded. Spikes were detected in real time for each electrode independently by threshold crossing (see data not shown). This coarse characterization of the response is no substitute for spike sorting, but it is fast enough to be implemented in real time between two stimulus presentations, and sufficient to detect changes in the response. This method was used to adaptively select the range of perturbations in real time during the experiment, and to do it for each direction of the stimulus space independently. Proper spike sorting was performed after the experiment using the procedure described in Marre et al. (2012); Yger et al. (2016) and used for all subsequent analyses.

To test whether a perturbation was detectable from the retinal response, we considered the population response, summarized by a binary vector containing the spiking status of each recorded neuron in each time bin, and projected it onto an axis to obtain a single scalar number. The projection axis was chosen to be the difference between the mean response to a large-amplitude perturbation and the mean response to the reference (Fig. 3B). On average, the projected response to a perturbation is larger than the projected response to the reference. However, this may not hold for individual responses, which are noisy and broadly distributed around their mean (see Fig. 3B, right, for example distributions). We define the discrimination probability as the probability that the projected response to the perturbation is in fact larger than to the reference. Its value is 100% if the responses to the reference and perturbation are perfectly separable, and 50% if their distributions are identical, in which case the classifier does no better than chance. This discrimination probability is equal to the 'area under the curve of the receiver-operating characteristics,' which is widely used for measuring the performance of binary discrimination tasks.

During our closed-loop experiment, our purpose was to find the perturbation amplitude with a discrimination probability of 85%. To this end we computed the discrimination probability online as described above, and then chose the next perturbation amplitude to be displayed using the 'accelerated stochastic approximation' method [START_REF] Kesten | Accelerated Stochastic Approximation[END_REF][START_REF] Faes | Small-sample characterization of stochastic approximation staircases in forcedchoice adaptive threshold estimation[END_REF]: when discrimination was above 85%, the amplitude was decreased, otherwise, it was increased (see data not shown).

Fig. 3C shows the discrimination probability as a function of the perturbation amplitude for an example perturbation shape. Discrimination grows linearly with small perturbations, and then saturates to 100% for large ones. This behavior is well approximated by an error function (gray line) parametrized by a single coefficient, which we call sensitivity coefficient and denote by c. This coefficient measures how fast the discrimination probability increases with perturbation amplitude: the higher the sensitivity coefficient, the easier it is to discriminate responses to small perturbations. It can be interpreted as the inverse of the amplitude at which discrimination reaches 76%, and is related to the classical sensitivity index d (Macmillan and Creelman, 2004), through d = c × A, where A denotes the perturbation amplitude A. Experimental setup: we stimulated a rat retina with a moving bar. Retinal ganglion cell (RGC) population responses were recorded extracellularly with a multi-electrode array. Electrode signals were high-pass filtered and spikes were detected by threshold crossing. We computed the discrimination probability of the population response, and adapted the amplitude of the next perturbation. B. Left: the neural responses of 60 sorted RGCs are projected along the axis going through the mean response to reference stimulus and the mean response to a large perturbation. Small dots are individual responses, large dots are means. Middle: mean and standard deviation (in grey) of response projections for different amplitudes of an example perturbation shape. Right: distributions of the projected responses to the reference (blue), and to small (purple) and large (red) perturbations. Discrimination is high when the distribution of the perturbation is well separated from the distribution of the reference. C. Discrimination probability as a function of amplitude A. The discrimination increases as an error function, (1/2)[1 + erf(d /2)], with d = c × A (grey line: fit). Ticks on the x axis show the amplitudes that have been tested during the closed-loop experiment.

(see data not shown).

All 16 different perturbation shapes were displayed, corresponding to 16 different directions in the stimulus space, and the optimal amplitude was searched for each of them independently. We found a mean sensitivity coefficient of c = 0.0516 µm -1 . However, there were large differences across the different perturbation shapes, with a minimum of c = 0.028 µm -1 and a maximum of c = 0.065 µm -1 .

Sensitivity and Fisher information. So far our results have allowed us to estimate the sensitivity of the retina in specific directions of the perturbation space. Can we generalize from these measurements and predict the sensitivity in any direction? The stimulus is the trajectory of a bar and is high dimensional. Generalizing the result of [START_REF] Seung | Simple models for reading neuronal population codes[END_REF] to arbitrary dimension and under the assumptions of the central limit theorem, we show that the sensitivity can be expressed in matrix form as (see data not shown):

d = √ S T • I • S, (IV.13)
where I is the Fisher information matrix, of the same dimension as the stimulus, and S the perturbation represented as a column vector. Thus, the Fisher information is sufficient to predict the code's sensitivity to any perturbation. Despite the generality of Eq. IV.13, it should be noted that estimating the Fisher information matrix for a highly dimensional stimulus ensemble requires a model of the population response. As already discussed in the introduction, the non-linearities of the retinal code make the construction of a generic model of responses to arbitrary stimuli a very arduous task, and is still an open problem. However, the Fisher information matrix need only be evaluated locally, around the response to the reference stimulus, and to do so building a local response model is sufficient.

Local model for predicting sensitivity.

We introduce a local model to describe the stochastic population response to small perturbations of the reference stimulus. This model will then be used to estimate the Fisher information matrix, and from it the retina's sensitivity to any perturbation, using Eq. IV.13.

The model, schematized in Fig. 4A, assumes that perturbations are small enough that the response can be linearized around the reference stimulus. First, the response to the reference is described by conditionally independent neurons firing with time-dependent rates estimated from the peristimulus time histograms (PSTH). Second, the response to perturbations is modeled as follows: for each neuron and for each 20 ms time bin of the considered response, we use a linear projection of the perturbation trajectory onto a temporal filter to modify the spike rates relative to the reference. These temporal filters were inferred from the responses to all the presented perturbations, varying both in shape and amplitude (but small enough to remain within the linear approximation). Details of the model and its inference are given in Materials and Methods.

We checked the validity of the local model by testing its ability to predict the PSTH of cells in response to perturbations (Fig. 4B). To assess model performance, we computed the difference of PSTH between perturbation and reference, and compared it to the model prediction. Fig. 4D shows the correlation coefficient of this PSTH difference between model and data, averaged over all recorded cells for one perturbation shape. To obtain an upper The data PSTH were calculated by grouping perturbations of the same shape and of increasing amplitudes by groups of 20, and computing the mean firing rate at each time over the 20 perturbations of each group. The model PSTH was calculated by mimicking the same procedure. To control for noise from limited sampling, the same performance was calculated from synthetic data of the same size, where the model is known to be exact (black).

bound on the attainable performance given the limited amount of data, we computed the same quantity for responses generated by the model (black line). Model performance saturates that bound for amplitudes up to 60 µm, indicating that the local model can accurately predict the statistics of responses to perturbations within that range. For larger amplitudes, the linear approximation breaks down, and the local model fails to accurately predict the response. This failure for large amplitudes is expected if the retinal population responds non-linearly to the stimulus. We observed the same behavior for all the perturbation shapes that we tested. We have therefore obtained a local model that can predict the response to small enough perturbations in many directions.

To further validate the local model, we combine it with Eq. IV.13 to predict the sensitivity c of the network to various perturbations of the bar trajectory, as measured directly by linear discrimination (Fig. 3). The Fisher matrix takes a simple form in the local model:

I = F •C R •F T ,
where F is the matrix containing the model's temporal filters (stacked as row vectors), and C R is the covariance matrix of the entire response to the reference stimulus across neurons and time. We can then use the Fisher matrix to predict the sensitivity coefficient using Eq. IV.13, and compare it to the same sensitivity coefficient previously estimated using linear discrimination. Fig. 5A shows that these two quantity are strongly correlated (Pearson correlation: 0.82, p = 10 -8 ), although the Fisher prediction is always larger. This difference could be due to two reasons: limited sampling of the responses, or non optimality of the projection axis used for linear discrimination. To evaluate the effect of finite sampling, we repeated the analysis on a synthetic dataset generated using the local model, with the same stimulation protocol as in the actual experiment. The difference in the synthetic data (Fig. 5B) and experiment (Fig. 5A) were consistent, suggesting that finite sampling is indeed the main source of discrepancy. We confirmed this result by checking that using the optimal discrimination axis (see Mathematical Derivations) did not improve performance (data not shown).

Summarizing, our estimation of the local model and of the Fisher information matrix can predict the sensitivity of the retinal response to perturbations in many directions of the stimulus space. We now use this estimation of the sensitivity of the retinal response to tackle two important issues in neural coding: the performance of linear decoding, and efficient information transmission. Linear decoding is not optimal. When trying to decode the position of random bar trajectories over time using the retinal activity, we found that a linear decoder (Materials and Methods) could reach a satisfying performance, confirming previous results [START_REF] Warland | Decoding visual information from a population of retinal ganglion cells[END_REF]Marre et al., 2015a). Several works have shown that it was challenging to outperform linear decoding on this task in the retina [START_REF] Warland | Decoding visual information from a population of retinal ganglion cells[END_REF]Marre et al., 2015a). From this result we can wonder if the linear decoder is optimal, i.e. makes use of all the information present in the retinal activity, or if this decoder is sub-optimal and could be outperformed by a non-linear decoder. To answer this question, we need to determine an upper bound on the decoding performance reachable by any decoding method. For an encoding model, the lack of reliability of the response sets an upper bound on the encoding model performance, but finding a similar upper bound for decoding is an open challenge. Here we show that our local model can define such an upper bound.

The local model is an encoding model: it predicts the probability of responses given an stimulus. Yet it can be used to create a 'Bayesian decoder' using Bayesian inversion (see A. Responses to a perturbation of the reference stimulus (reference in blue, perturbation in red) are decoded using the local model (green) or a linear decoder (orange). For each decoder, the area shows one standard deviation from the mean. B. Decoding error as a function of amplitude, for an example perturbation shape. C. Signal-to-noise ratio for perturbations with different frequencies. The performance of both decoders decreases for high frequency stimuli.

data not shown): given a response, what is the most likely stimulus that generated this response under the model? Since the local model predicts the retinal response accurately, doing Bayesian inversion of this model should be the best decoding strategy, meaning that other decoders should perform equally or worse. When decoding the bar trajectory, we found that the Bayesian decoder was more precise than the linear decoder, as measured by the variance of the reconstructed stimulus (Fig. 6A). The Bayesian decoder had a smaller error than the linear decoder when decoding perturbations of small amplitudes (Fig. 6B). For larger amplitudes, where the local model is expected to break down, the performance of the Bayesian decoder decreased.

To quantify decoding performance as a function of the stimulus temporal frequency, we estimated the signal-to-noise ratio (SNR) of the decoding signal for small perturbations of various frequencies (see data not shown). The Bayesian decoder had a much higher SNR than the linear decoder at all frequencies (Fig. 6C), even if both did fairly poorly at high frequencies. This shows that, despite its good performance, linear decoding misses some information about the stimulus present in the retinal activity. This results suggests that inverting the local model sets a gold standard for decoding, and can be used to test if other decoders miss significant part of the information present in the neural activity. It also confirms that the local model is an accurate description of the retinal response to small enough perturbations around the reference stimulus.

Signature of efficient coding in the sensitivity. The structure of the Fisher information matrix shows that the retinal population is more sensitive to some directions of the stimulus space than others. Are these differences in the sensitivity optimal for efficient information transmission? Fig. 7A represents the power spectrum of the bar motion, which is maximum at low frequencies, and quickly decays at large frequencies. In many theories of efficient coding, sensitivity is expected to follow an inverse relationship with the stimulus power [START_REF] Brunel | Mutual information, Fisher information, and population coding[END_REF][START_REF] Wei | Mutual Information, Fisher Information, and Efficient Coding[END_REF]. We used our measure of the Fisher matrix to estimate the retinal sensitivity power as the sensitivity coefficient c to oscillatory perturbations as a function of temporal frequency (Material and Methods). We found that, contrary to the classical prediction, the sensitivity is bell shaped, with a peak in frequency around 4Hz (Fig. 7C).

To interpret this peak in sensitivity, we studied a minimal theory of retinal function, similar to [START_REF] Van Hateren | A theory of maximizing sensory information[END_REF], to test how maximizing information transmission would reflect on the sensitivity of the retinal response. In this theory, the stimulus is first passed through a low-pass filter, then corrupted by an input white noise. This first stage describes filtering due to the photoreceptors [START_REF] Ruderman | Seeing beyond the Nyquist limit[END_REF]. The photoreceptor output is then transformed by a transfer function and corrupted by a second external white noise, which mimics the subsequent stages of retinal processing leading to ganglion cell activity. Here the output is reduced to a single continuous signal (Fig. 7B, see Mathematical Derivations details). Note that this theory is linear: we are not describing the response of the retina to any stimulus, which would be highly non-linear, but rather its linearized response to perturbations around a given stimulus, as in our experimental approach. To apply the efficient coding hypothesis, we assumed that the photoreceptor filter is fixed, and we maximized the transmitted information, measured by Shannon's mutual information, over the transfer function, see Mathematical Derivations, Eq. (IV.17). We constrained the variance of the output to be constant, corresponding to a metabolic constraint on the firing rate of ganglion cells. In this simple and classical setting, this optimal transfer function, and the corresponding sensitivity, can be calculated analytically. Although the power spectrum of the stimulus and photoreceptor output are monotonically decreasing, and the noise spectrum is flat, we found that the optimal sensitivity of the theory is bell shaped (Fig. 7E), in agreement with our experimental findings (Fig. 7C). Note that in our reasoning, we assume that the network optimizes information transmission for the stimulus statistics. However, it is possible that the retinal network optimizes information transmission of natural stimuli. We also tested our model with natural temporal statistics (power spectrum ∼ 1/ν 2 as a function of frequency ν, [START_REF] Dong | Statistics of natural time-varying images[END_REF]) and found the same results (data not shown).

One can intuitively understand our result that a bell-shaped sensitivity is desirable from a coding perspective. On one hand, in the small frequency regime, sensitivity is small to balance out and to share of information across frequencies. This result is classic: when the input noise is negligible, the best coding strategy for maximizing information is to whiten the input signal to obtain a flat output spectrum, which is obtained by having the squared sensitivity be inversely proportional to the stimulus power. On the other hand, at high frequencies, the input noise is too high for the stimulus to be recovered. Allocating sensitivity and output power to those frequencies is therefore a waste of resources, as it is devoted to amplifying noise, and sensitivity should remain low to maximize information. A peak of sensitivity is thus found between the high SNR region, where stimulus dominates noise and whitening is the best strategy, and the low SNR region, where information is lost into the noise and coding resources should be scarce. A result of this optimization is that the information transferred should monotonically decrease with frequency, just as the input power spectrum does (Fig. 7F). We tested if this prediction was verified in the data. We estimated similarly the information rate against frequency in our data, and found that it was also decreasing monotonically (Fig. 7D). The retinal response has therefore organized its sensitivity across frequencies in a manner that is consistent with an optimization of information transmission across the retinal network.

IV.4 Discussion

We have developed an approach to characterize experimentally the sensitivity of a sensory network to changes in the stimulus. Our general purpose was to determine which dimensions of the stimulus space most affect the response of a population of neurons, and which ones leave it invariant-a key issue to characterize the selectivity of a neural network to sensory stimuli. We developed a local model to predict how recorded neurons responded to perturbations around a defined stimulus. With this local model we could estimate the sensitivity of the recorded network to changes of the stimulus along several dimensions. We then used this estimation of network sensitivity to show that it can help define an upper bound on the performance of decoders of neural activity. We also showed that the estimated sensitivity was in agreement with the prediction from efficient coding theory.

Our approach can be used to test how optimal different decoding methods are. In our case, we found that linear decoding, despite its very good performance, was far from the performance of the Bayesian inversion of our local model, and therefore far from optimal. This result implies that there should exist non-linear decoding methods that outperform linear decoding [START_REF] Botella-Soler | Nonlinear decoding of a complex movie from the mammalian retina[END_REF]. Testing the optimality of the decoding method is crucial for brain machine interfaces [START_REF] Gilja | A high-performance neural prosthesis enabled by control algorithm design[END_REF]: in this case an optimal decoder is necessary to avoid missing a significant amount of information. Building our local model is a good strategy for benchmarking different decoding methods.

In the retina, efficient coding theory had led to key predictions about the shape of the receptive fields, explaining their spatial extent [START_REF] Atick | Could information theory provide an ecological theory of sensory processing?[END_REF][START_REF] Borghuis | Design of a neuronal array[END_REF], or the details of the overlap between cells of the same type [START_REF] Doi | Efficient coding of spatial information in the primate retina[END_REF][START_REF] Karklin | Efficient coding of natural images with a population of noisy Linear-Nonlinear neurons[END_REF][START_REF] Liu | Predictable irregularities in retinal receptive fields[END_REF]. However, when stimulated with complex stimuli like a fine-grained image, or irregular temporal dynamics, the retina exhibits a non-linear behaviour (Gollisch and Meister, 2010). For this reason, up to now, there was no prediction of the efficient theory for these complex stimuli. Our approach circumvents this barrier, and shows that the sensitivity of the retinal response is compatible with efficient coding. Future works could use a similar approach with more complex perturbations added on top of natural scenes to characterize the sensitivity to natural stimuli.

More generally, different versions of the efficient coding theory have been proposed to explain the organization of several areas of the visual system [START_REF] Bialek | Efficient representation as a design principle for neural coding and computation[END_REF][START_REF] Dan | Efficient coding of natural scenes in the lateral geniculate nucleus: experimental test of a computational theory[END_REF][START_REF] Bell | The 'independent components' of natural scenes are edge filters[END_REF][START_REF] Olshausen | Emergence of simple-cell receptive field properties by learning a sparse code for natural images[END_REF][START_REF] Karklin | Efficient coding of natural images with a population of noisy Linear-Nonlinear neurons[END_REF] and elsewhere [START_REF] Smith | Efficient auditory coding[END_REF][START_REF] Machens | Representation of acoustic communication signals by insect auditory receptor neurons[END_REF][START_REF] Chechik | Reduction of Information Redundancy in the Ascending Auditory Pathway[END_REF][START_REF] Kostal | Efficient olfactory coding in the pheromone receptor neuron of a moth[END_REF]. Estimating Fisher information using a local model could be used in other sensory structures to test the validity of these hypotheses.

Finally, the estimation of the sensitivity along several dimensions of the stimulus perturbations allows us to define which changes of the stimulus evoke the strongest change in the sensory network, and which ones should not make a big difference. Similar measures could in principle be performed at the perceptual level, where some pairs of stimuli are perceptually indistinguishable, while others are well discriminated. Comparing the sensitivity of a sensory network to the sensitivity measured at the perceptual level could be a promising way to relate neural activity and perception.

IV.5 Mathematical derivations

IV.5.1 Fisher and linear discrimination.

There exists a mathematical relation between the Fisher information of Eq. IV.8 and linear discrimination. The linear discrimination task described earlier can be generalized by projecting the response difference, R S -R ref , along an arbitrary direction u:

∆x = x S -x ref = u T • (R S -R ref ). (IV.14)
∆x is again assumed to be Gaussian by virtue of the central limit theorem. We further assume that perturbations S are small, so that R S -R ref ≈ (∂ R S /∂S) • S, and that C R does not depend on S. Calculating the mean and variance of ∆x under these assumption gives an explicit expression of d in Eq. IV.3:

d = u T • ∂ R S ∂S • S u T • C R • u . (IV.15)
Maximizing this expression of d over the direction of projection (IV.16) where

u yields u = const × C -1 R • (∂ R S /∂S) • S and d = S T • I L • S,
I L = (∂ R S /∂S) T • C -1 R • (∂ R S /∂S
) is the linear Fisher information [START_REF] Fisher | The Use of Multiple Measurements in Taxonomic Problems[END_REF][START_REF] Beck | Insights from a Simple Expression for Linear Fisher Information in a Recurrently Connected Population of Spiking Neurons[END_REF]. This expression of the sensitivity corresponds to the best possible discrimination based on a linear projection of the response.

Within the local linear model defined above, one has ∂ R S /∂S = F • C R , and

I L = F • C R • F T ,
which is also equal to the true Fisher information (Eq. IV.8): I = I L . Thus, if the local model (Eq. IV.6) is correct, discrimination by linear projection of the response is optimal and saturates the bound given by the Fisher information.

Note that the optimal direction of projection only differs from the direction we used in the experiments, u = R S -R ref , by an equalization factor C -1 R . We have checked that applying that factor only improves discrimination by a few percents (data not shown).

IV.5.2 Frequency dependence of sensitivity and information.

To analyze the behavior in frequency of the sensitivity, we compute the sensitivity index for an oscillating perturbation of unitary amplitude. We apply Eq. IV.13 with Ŝt (ν) ≡ exp(2πiνtδt). In order to estimate the spectrum of the information rate we compute its behavior within the linear theory [START_REF] Van Hateren | A theory of maximizing sensory information[END_REF]:

MI(ν) = 1 2 log 1 + C S (ν)I(ν)/δt 2 (IV.17)
where C S (ν) is the power spectrum of stimulus, and

I(ν) = (δt/L) ŜT (ν) • I • Ŝ(ν).
Note that this decomposition in frequency of the tansmitted information is valid because the system is linear and the stumulus is Gaissian distributed [START_REF] Bernardi | A frequency-resolved mutual information rate and its application to neural systems[END_REF].

IV.5.3 Efficient coding theory.

To build a theory of retinal sensitivity, we follow closely the approach of [START_REF] Van Hateren | A theory of maximizing sensory information[END_REF]. The stimulus is first linearly convolved with a filter f , of power F, then corrupted by an input white noise with uniform power H, then convolved with the linear filter r of the retina network of power G, and finally corrupted again by an external white noise Γ. The output power spectrum O(ν) can be expressed as a function of frequency ν:

O(ν) = (δtL)G(ν)[(δtL)F(ν)C S (ν) + H] + Γ (IV.18)
where C S (ν) is the power spectrum of the input. The information capacity of such a noisy input-output channel is limited by the allowed total output power V = ν O(ν), which can be interpreted as a constraint on the metabolic cost. The efficient coding hypothesis consists in finding the input-output relationship g * , of power G * (ν), that maximizes the information transmission under a constraint on the total power of the output. The optimal Fisher information matrix can be computed in the frequency domain as:

I(ν) = δt 4 L 2 G * (ν)F(ν) Γ + LδtG * (ν)H . (IV.19)
The photoreceptor filter [START_REF] Warland | Decoding visual information from a population of retinal ganglion cells[END_REF] was taken to be exponentially decaying in time, f = τ -1 exp(-t/τ ) (for t ≥ 0), with τ = 100 ms. The curve I(ν) only depends on H, Γ and V through two independent parameters. For the plots in 

V -Accurate discrimination of population responses in the retina using neural metrics learned from activity patterns 81

We have seen that neural responses exhibit complex correlations, both in time and across neurons. We have also seen how to measure the sensitivity of neural responses to small stimulus perturbations, using the Fisher information. This approach requires a model for how responses depend on stimulus perturbations.

We now present another method to estimate the sensitivity of population responses: neural metrics. Metrics measure a dissimilarity between neural responses. By measuring the difference between responses triggered by two stimuli, metrics provide a lower bound on the discrimination power of the neural code, without any assumption on how responses depend on stimuli.

Here we show that restricted Boltzmann machines (RBMs) prove a powerful tool for both modeling correlations and discriminating responses. RBMs are an accurate model of correlations between neurons, and can be generalized to account for temporal correlations. Neural metrics can also be derived from RBMs, and they discriminate small perturbations better than classical metrics This article is in preparation. A short preliminary article was previously presented: 

V.1 Introduction

How to measure the sensitivity of populations of sensory neurons is still a matter of debate. Even in the retina, ganglion cells can respond to complex features of the stimulus, and such features sometimes have not yet been characterized (Gollisch and Meister, 2010). Their responses are highly nonlinear (Barlow and Levick, 1965;Passaglia et al., 2001;Fairhall et al., 2006;Gollisch and Meister, 2010;Pitkow and Meister, 2012;McIntosh et al., 2016), stochastic (Franke et al., 2016;Zylberberg et al., 2016), exhibit complex correlations (Arnett, 1978;Schneidman et al., 2006;Gardella et al., 2016), and have high dimension. Furthermore, population coding is synergistic: some information about the stimulus cannot be recovered by single cells but only by populations of neurons (Schneidman et al., 2011;Andoni and Pollak, 2011). Which response features carry information about the stimulus is still debated, and such features might differ in different brain areas (Victor and Purpura, 1996).

Neural metrics are a powerful tool to estimate the sensitivity of neural populations. A metric is a measure of the dissimilarity between responses. As it measures differences in responses triggered by different stimuli, it provides a lower bound on how well stimuli can be discriminated (Machens et al., 2003;Narayan et al., 2006). Multiple metrics have been proposed, measuring the dissimilarity between responses based on different features such as spike timing (Victor and Purpura, 1996;van Rossum, 2001), interspike intervals (Victor and Purpura, 1996;Quiroga et al., 2002) or precise temporal patterns (Victor and Purpura, 1996;Berry II et al., 1997), for single cells or populations of neurons. By comparing how well different neural metrics discriminate responses from different stimuli, one can study how neurons encode stimuli, e.g. identify features of responses that are informative (Victor and Purpura, 1996), or measure the precision of spike times and reliability of responses [START_REF] Hunter | Une fois qu'une métrique avec une capacité de discrimination élevée est identifiée, elle peut également être utilisée pour interpréter les réponses neuronales, par exemple en décodant différents stimuli[END_REF]. Once a metric with high discrimination capacity is identified, it can then also be used to interpret neural responses, e.g. by decoding different stimuli (Narayan et al., 2006), detecting epilepsy (Quiroga et al., 2002) and measuring the discrepancy between neuron models and experiments (Christen et al., 2006).

In many studies, metrics have been used to measure the sensitivity of single cells (Victor and Purpura, 1996;Machens et al., 2003;Narayan et al., 2006). But this is likely to underestimate the discrimination capacity of populations of neurons. On the other hand, metrics for populations of neurons have been proposed (Houghton and Sen, 2008), but require to set many parameters. How to adapt metrics to neural populations is still an open challenge. Ganmor et al. (2015) proposed a neural metric for population of neurons, learned in a supervised way, such that it preserves distances in the stimulus space. But it requires to learn the distribution of responses to any stimulus, which is not feasible experimentally when the space of stimuli is large.

Here we are interested in deriving a metric directly from the distribution of responses, in an unsupervised way and with no information about the stimulus. Recently Köster et al. (2014) and then Humplik and Tkačik (2016) showed that Restricted Boltzmann Machines (RBMs) could describe the distribution of responses in short time bins better than other classical models. Zanotto et al. (2017) showed that a variant of RBM could convey information about the stimulus, even when learned in an unsupervised way. But this was only made possible by the small number of stimuli, and a method to measure the sensitivity of the neural population was still lacking.

We recorded a population of 60 rat retinal ganglion cells (RGCs) stimulated by a movie of a bar in motion. We used RBMs to learn the distribution of responses in 20 ms time bins. We show that RBMs are capable of reproducing the correlated activity of neurons responding to a randomly moving bar (see also Schwab et al. (2013) for similar results). We also introduce a new model, the Temporal Restricted Boltzmann Machine (TRBM), which, unlike the RBM, can also model the temporal correlations between neurons. We then define new neural metrics based on the latent variables of the RBM and TRBM.

We then compare the discrimination capacity of new metrics with existing ones. Comparison of neural metrics based on simulations of neurons (Houghton and Sen, 2008;Mulansky et al., 2015) or experiments with stimuli that are perfectly discriminable by large populations of neurons (Schwartz et al., 2012) can only give a limited insight on metrics' performances.

Here we present a new approach to compare neural metrics experimentally. We measured the sensitivity of the retinal population to small stimulus changes, by testing perturbations around a reference stimulus, using closed-loop experiments (Ferrari et al., 2016). Perturbation amplitudes were adapted online, so that responses to perturbations could be discriminated from responses to the reference stimulus, but not perfectly, allowing us to compare between metrics. We found that even though RBM and TRBM metrics were not supervised, they can discriminate stimuli based on the neural responses much better than any other classical neural metric. Neural responses to different stimuli can thus be discriminated, even without any explicit information about the stimulus.

V.2 Materials and Methods

V.2.1 Electrophysiology

We analyzed previously published ex vivo recordings of retinal ganglion cells from a male Long Evans rat (Ferrari et al., 2016). In brief, the animal was killed according to institutional animal care standards. The retina was extracted from the animal, maintained in an oxygenated Ringer's solution, and recorded on the ganglion cell side with a 252-electrode array. Spike sorting was performed with custom software [START_REF] Marre | Mapping a complete neural population in the retina[END_REF], and N = 60 neurons were selected for the stability of their spike waveforms and firing rates, the lack of refractory period violation, and the consistency of their responses to repeated stimuli.

V.2.2 Stimulus

The stimulus was a movie of a white bar on a dark background projected at 50 Hz with a digital micromirror device. The bar had intensity 7.6 × 10 11 photons.cm -2 .s -1 , and 115 µm width.

The bar trajectory was composed of two interleaved parts. In the first part, the bar had a random motion (a Brownian motion with a restoring force), lasting 15331 s in total. The second part was composed of 391 repetitions of two trajectories lasting 0.9 s each, which we call reference trajectories. Both parts were generated with the same random motion.

We also presented perturbations of the reference trajectories. Perturbations were small changes affecting each reference trajectory in its middle portion, between 280 and 600 ms. Perturbations varied both in shape and in amplitude: we used 16 different perturbation shapes, each presented at different amplitudes (Fig. V.4B). The amplitude of perturbations was adapted online: large enough so they could be discriminated from reference trajectories, but small enough so they would not be discriminated perfectly with any metric.

Formally, if we denote a perturbation by its discretized time series with time step ∆ t = 20 ms, S = (S 1 , . . . , S 16 ), it can be decomposed as S = A × P , where A 2 = (1/16) 16 k=1 S 2 k is the amplitude, and P = S/A the shape. More details can be found in Ferrari et al. (2016).

For each perturbation, the response was considered from 160 ms after the start of the perturbation until 140 ms after its end, so that responses lasted 300 ms (Fig. V.4C).

V.2.3 Models of response distributions a) Restricted Boltzmann Machine

In order to model interactions between neurons, the response of N neurons was binarized into time bins of size ∆ t = 20 ms: σ i = 1 if neuron i spiked, and 0 otherwise (Fig. VI.4).

We use Restricted Boltzmann Machines (RBM) to model the probability of responses within a single time bin. RBM are statistical models with no direct interactions between the N neurons. Instead, the neurons interact with M binary latent variables, termed hidden units. There is no direct interactions between hidden units either. If we call h j the hidden unit j, the joint probability between neurons and hidden units takes the form P (σ, h) ∝ e -E with:

-E = N i=1 a i σ i + M j=1 b j h j + N,M i,j=1 w ji σ i h j , (V.1)
or in matrix form:

-E = aσ + bh + h wσ , (V.2)
where the bold font stands for vectors and matrices, and h stands for the transpose of h. The hidden variables do not necessarily correspond to existing entities interacting with neurons. Instead, they are abstract variables that are used to capture low and high order correlations between neurons. This model is convenient to simulate because neurons (resp. hidden units) conditioned by hidden units (resp. neurons) are independent. Namely, given a state of hidden units h, neurons are independent and:

P (σ i = 1|h) = f   a i + j w ji h j   (V.3)
where f (x) = 1/(1 + e -x ) is the sigmoid function. The conditional probability of hidden units given the neurons can be computed with a similar formula.

We learned the RBM on 80% of responses to the random trajectories of the bar, with M = 20 hidden units. We inferred the model by maximizing the likelihood using persistent contrastive divergence [START_REF] Tieleman | Training Restricted Boltzmann Machines using Approximations to the Likelihood Gradient[END_REF] with 200 epochs and minibatches of size 10. We used the momentum method [START_REF] Fischer | An Introduction to Restricted Boltzmann Machines[END_REF], which is known to accelerate learning, with a momentum coefficient of 0.9. This method updates parameters in a direction proportional to the sum of the likelihood gradient and the parameter update at the previous step. For regularization, we used a weight decay parameter of 10 -5 [START_REF] Krizhevsky | Imagenet classification with deep convolutional neural networks[END_REF], meaning that the objective function maximized during learning was the sum of the log-likelihood and of the Euclidean norm of coupling parameters w, weighted by a factor 10 -5 . For computation of model statistics, we simulated the model using block Gibbs Sampling [START_REF] Fischer | An Introduction to Restricted Boltzmann Machines[END_REF]. Final model statistics (Fig. VI.6) were computed with simulations with 300 steps on responses spanning 2 × 10 6 time bins.

b) Temporal Restricted Boltzmann Machine

In order to model interactions between neurons across multiple time bins, we use a more complex RBM, allowing connections between neurons and hidden units in different time bins. We call it the Temporal Restricted Boltzmann Machine (TRBM). In order to limit the number of parameters, this model is convolutional [START_REF] Lee | Unsupervised learning of hierarchical representations with convolutional deep belief networks[END_REF], meaning that the interaction between a neuron and a hidden unit does not depend on their absolute time, but only on the delay d between them. We set σ ik the response of neuron i in time bin k. The probability of neurons and hidden units during K time bins takes the form P (σ, h) ∝ e -E , with:

-E = K k=1 i a i σ ik + j b j h jk + ij D-1 d=0 w dji σ ik h j,k+d , (V.4)
where the time span of interactions between hidden and visible units is D. It can be noted that in the case D = 1, the TRBM consists of an independent RBM in each time bin. The TRBM can also be written in matrix form:

-E = K k=1 aσ k + bh k + D-1 d=0 h k+d w d σ k , (V.5)
where w d are matrices of size M × N . The parameters can be learned independently of the length of responses considered, and can be used to model responses of different length. Visible (resp. hidden) units at the time boundaries depend on hidden (resp. visible) units outside boundaries. However, given a finite-sized response we can still compute exactly the probability of some hidden units using:

P (h jk = 1|σ) = sigmoid b j + D-1 d=0 i w dji σ i,k-d (V.6)
which is sufficient for our needs. We learned the TRBM on 80% of responses to random bar trajectories, with M = 10 hidden units and D = 5. We inferred the model using persistent contrastive divergence with 400 epochs, minibatches of 2 responses of length 820 ms (K = 41 bins), momentum coefficient 0.9, and weight decay of 10 -5 .

For computation of model statistics, we simulated the model using block Gibbs sampling. In order to avoid dependence on times out of boundaries, we used cyclic boundary conditions. Final model statistics (Fig. V.3) were computed with simulations with 300 steps on responses spanning 2 × 10 6 time bins.

Noticeably, [START_REF] Sutskever | Learning Multilevel Distributed Representations for High-Dimensional Sequences[END_REF] proposed a slightly different model, latter simplified by Sutskever et al. (2008), which they also called temporal restricted Boltzmann machine. Contrary to the model presented here, their model also allows for neuron-to-neuron and hidden unit-to-hidden unit interactions across different times. Furthermore, the dependence on the past takes has a slightly different form. At each time, the joint probability of neurons and hidden units is an RBM, with field vectors a and b depending on past values of neurons and hidden units. This difference in form has consequences for model computations. For example, it is not possible to compute exactly the probability of hidden states given neural responses (eq. V.6), which is used for learning.

c) Response statistics

We measured how well models of population response could predict multiple statistics that are classically encountered in the literature.

Firing rate, or spiking frequency (Schneidman et al., 2006;[START_REF] Tang | A Maximum Entropy Model Applied to Spatial and Temporal Correlations from Cortical Networks In Vitro[END_REF]. It is equal to σ ik k /∆ t for neuron i, where ∆ t is the length of time bins. Here . k stands for the mean across time bins k.

Pairwise correlation (Schneidman et al., 2006;Tkačik et al., 2014): Pearson correlation between neurons i and i : cov(σ i , σ i )/ var(σ i )var(σ i ), where the covariance is cov(X, Y ) = X, Y -X Y and the variance is var(X) = cov(X, X).

Cross-correlation, the correlation between neuron i and i with a delay d between them, ρ ii d = corr k (σ ik , σ i ,k+d ), , where corr k is the correlation across time bins k.

In order to quantify how well a model predicted cross-correlations, we computed the explained variance of cross-correlations. We first computed the variance of cross-correlations for different time delays d, var i,i (ρ data,ii d ), where var i,i is the variance across all pairs of neurons. ρ data was computed on a testing set not used for training. We then computed the variance explained by the model:

e.v. = var i,i (ρ data,ii d ) -ρ data,ii d -ρ model,ii d 2 ii (V.7)
where ρ model is the cross-correlation predicted by the model. On Fig. VI.6E, we show the fraction of explained variance, equal to the ratio between the explained variance and the variance, for cross-correlations at a single time delay.

On Fig.

V.3F,G, we compute the fraction of explained variance across 8 time bins. Here we grouped all cross-correlations with multiple time delays for computation of the variance and explained variance.

Population count: number of spikes in the population during L time bins. At time k it is L-1 l=0 N i=1 σ i,k+l .

V.2.4 Neural metrics

The response of a population of neurons consists in a series of action potentials, or spike train. We note R = (t in ) in the population response, with t in the time of the n th spike from neuron i. Neural metrics are functions that associate a non negative value to each pair of responses R (1) and R (2) (exponents with parenthesis are indices). As such, they are a measure of the dissimilarity between responses. In the following we present multiple neural metrics that can be found in the literature, and then introduce new metrics based on the RBM and TRBM. When a metric from the literature was only defined for single neurons, we adapt it to a population by summing the metric for each neuron.

The first three metrics are functional metrics [START_REF] Paiva | Inner Products for Representation and Learning in the Spike Train Domain[END_REF]: responses are first mapped into time dependent vectors, and the metric is defined in this functional space. The following metrics are defined directly on spike trains.

a) van Rossum metric

The van Rossum metric is a kernel-based metric. To map a response R to a time dependent vector v, each neuron's spike train is convolved with a kernel H: v i (t) = n H(t -t in ). We then take the Euclidean distance between convolved spike trains.

d van Rossum (R (1) , R (2) ) 2 = i |v (1) i (t) -v (2) i (t)| 2 dt (V.8)
Classically H is a decaying exponential: 2001) with c a time constant. We optimized c to maximize mean response discriminability across all responses to perturbations (data not shown, time constants for all metrics were optimized in the same way), and found c = 630 ms here. This constant might seem large compared to time constants of metrics presented below, but they are actually not directly comparable, as they are not on the same scale. This is due to the asymmetry of H: the van Rossum metric still takes spike times into account in the limit of c infinitely large. Indeed, for large c, v(t) is proportional to the number of spikes that happened before t. On the opposite, the metrics presented below which depend on a time constant only compare the total number of spike for each neuron when their time constant is large, with no information about their timing. A Gaussian kernel is sometimes also considered: H(t) = e -t 2 /2c 2 (Houghton and Victor, 2011). Even after optimizing the time scale, it always discriminated less well than the exponential kernel. It is therefore not shown here.

H(t) = e -t/c if t ≥ 0, 0 otherwise (van Rossum,

b) Angular metric

The angular metric uses the same vector mapping as the van Rossum metric, but measures the angle between corresponding vectors [START_REF] Schreiber | A new correlation-based measure of spike timing reliability[END_REF]:

d angular (R (1) , R (2) ) 2 = i arccos v (1) i , v (2) i |v (1) i | 2 |v (2) i | 2 (V.9)
where ., . and |.| 2 are the scalar product and Euclidean norm respectively:

x, y = x(t) y(t) dt, |x| 2 2 = x, x .
In order to account for responses with no spike, we add an offset α to convolved spike trains: v i (t) = n H(t -t in ) + α. We used a Gaussian kernel, optimized α and the time constant c (data not shown) and found α = 10 -5 (for kernel with integral norm 1 s) and c = 80 ms.

c) Inter-Spike Interval metric

The Inter-Spike Interval (ISI) metric measures the dissimilarity between responses inter-spike interval profiles ν [START_REF] Kreuz | Measuring spike train synchrony[END_REF]Mulansky et al., 2015). For each neuron i and time t, we define ν i (t) = t i,n+1 -t in , where t in (resp. t i,n+1 ) is the first spike before (resp. after) t for neuron i. The ISI metric is then:

d ISI (R (1) , R (2) ) = i |ν (1) i (t) -ν (2) i (t)| max ν (1) i (t), ν (2) i (t) dt (V.10)
We used an edge-correction in order to estimate ν before the first spike and after the last (Mulansky et al., 2015). The ISI metric has no parameter.

d) Victor-Purpura metric

The Victor-Purpura metric (Victor and Purpura, 1996) is an edit-length metric: the distance between two spike trains is the minimal cost necessary to transform a spike train into the other. Deleting or adding a spike costs +1, whereas moving a spike by ∆t has a linear cost q∆t. We optimized q to maximize mean response discriminability (data not shown) and found q = 13 s -1 .

e) Nearest-Neighbor metric

The Nearest-Neighbor metric measures the similarity in spike times [START_REF] Hunter | Une fois qu'une métrique avec une capacité de discrimination élevée est identifiée, elle peut également être utilisée pour interpréter les réponses neuronales, par exemple en décodant différents stimuli[END_REF]. Given two population responses R (1) = (t

(1) in ) in and R (2) = (t (2)
in ) in , we compute the distance between them by computing, for each spike n from neuron i, the time difference with the nearest spike in the other response: ∆

(1)

in = min n |t (1) in -t (2)
in |, and symmetrically for ∆ (2) . The distance between the two population responses is then:

d NN (R (1) , R (2) ) = i 2 -exp(- ∆ (1) in c ) n -exp(- ∆ (2) in c ) n (V.11)
where . n is the mean across spikes. Again, we optimized c (data not shown) and found c = 50 ms.

f) Event and Spike Synchronization metrics

The synchronization metrics are based on an instantaneous coincidence detector F (Quiroga et al., 2002;Mulansky et al., 2015). For each spike of R (1) , F

(1)

in is equal to 1 if there is a coinciding spike in R (2) , and 0 otherwise:

F (1) in = 1 if min n |t (1) in -t (2) in | < τ in 0 else (V.12)
We compute F (2) symmetrically. The synchronization metrics are then:

d Sync (R (1) , R (2) ) = i (1 -F in n ) (V.13)
where the average is across all spikes in F (1) and F (2) . For the Event synchronization metric, the time scale is fixed: τ in = c. We optimized c (data not shown) and found c = 50 ms.

For the Spike Synchronization metric, the time scale is automatically adapted to the local firing rate of the responses, so it has no parameter. For a spike t

(1) in with closest spike in the other response t

(2) in , we take:

τ in = 1 2 min(t (1) 
i,n+1 -t

(1) in , t

(1)

in -t (1) i,n-1 , (V.14) t (2) i,n +1 -t (2) in , t (2) in -t (2) i,n -1 ) (V.15) g) SPIKE metric
The SPIKE metric is based on the SPIKE dissimilarity profile S(t), measuring differences in timing of spike events [START_REF] Kreuz | Time-resolved and time-scale adaptive measures of spike train synchrony[END_REF][START_REF] Kreuz | Monitoring spike train synchrony[END_REF]Mulansky et al., 2015). For neuron i and time t between spike times (t

i,n+1 ) in response R (1) , we set ζ

(1) i a weighted average between times to closest spikes in the other response, ∆

in and ∆

(1)

i,n+1 , defined in the Nearest-Neighbor metric:

ζ (1) i (t) = t (1) i,n+1 -t ∆ (1) in + t -t (1) in ∆ (1) i,n+1 t (1) i,n+1 -t (1) in (V.16)
We call ζ (2) the corresponding average for response R (2) . S is then a weighted sum between ζ (1) and ζ (2) :

S i = ζ (1) i ν (2) i + ζ (2) i ν (1) i 1 2 (ν (1) i + ν (2) i ) 2 (V.17)
with ν the previously defined inter-spike interval profile. The SPIKE metric is:

d SPIKE (R 1 , R 2 ) = i S i (t) dt (V.18)
The SPIKE metric has no parameter.

h) RBM metric

We first define metrics for responses in a single time bin, and then generalize to longer responses. We designed RBM metrics, such that the distance between binned responses σ (1) and σ (2) depends on the difference between the probabilities of hidden units conditioned by neural responses, P (h|σ (1) ) and P (h|σ (2) ).

There are multiple ways to compute a difference between distributions, such as the Kullback-Leibler divergence, but we aim at finding a metric that is convenient for computation. We notice that hidden units are binary and independent when conditioned by a neural response, so P (h|σ (u) ) for u = 1, 2 is fully characterized by its mean h|σ (u) . Therefore we chose to measure the difference between the probabilities P (h|σ (u) ) as a difference between mean hidden states: ∆h = h|σ (1) -h|σ (2) .

The difference between those vectors was measured in two different ways, an Euclidean and a semantic metric. The Euclidean metric for the RBM is

d Euclidean RBM (σ (1) , σ (2) ) = || ∆h || 2 . (V.19)
For the semantic RBM metric, we consider that two states of hidden units are similar if they trigger similar neural responses. We first define a metric between states of hidden units (termed hidden states) that takes this consideration into account, and then apply it to measure the difference between mean states. Given two hidden states h (1) and h (2) , we want to measure the difference between the probability of neural responses they trigger, P (σ|h (1) ) and P (σ|h (2) ). It can be shown from eq. (V.2) that if the difference between h (1) wσ and h (2) wσ is always constant for all values of σ, then P (σ|h (1) ) and P (σ|h (2) ) are equal. Thus if h (1) -h (2) wσ has only small fluctuations when σ is generated by the RBM model, then h (1) and h (2) have a similar influence on neural responses. They can have very different probabilities to happen, but when they do they co-occur with similar neural responses. We thus chose the distance between h (1) and h (2) as var σ (h (1) -h (2) ) wσ , where var σ is the variance across neural responses predicted by the model. If this value is 0, than P (σ|h (1) ) and P (σ|h (2) ) are the same. The semantic RBM metric between 2 responses is then:

d semantic RBM (σ (1) , σ (2) ) 2 = var σ [ ∆h wσ ] (V.20) = ∆h wCw ∆h (V.21)
where C is the covariance matrix of neural responses predicted by the model. As we show on Fig. V.6, the semantic metric is better at discriminating responses than the Euclidean one, as it is less affected by the redundancy between the parameters of the RBM. In this article we always take the semantic metric by default, unless explicitly stated.

Finally, the RBM metric between responses lasting multiple time bins is:

d RBM (R (1) , R (2) ) 2 = k d RBM (σ (1) k , σ (2) k ) 2 . (V.22) i) TRBM metric
The RBM is a special case of the TRBM where neurons are only connected to hidden units in the same time bin. We thus define TRBM metrics so that they are consistent with the RBM metrics. We define the vector ∆h = h|σ (1) -h|σ (2) , with indices (j, k) over hidden units j and time bins k. The TRBM metrics are then:

d Euclidean TRBM (R (1) , R (2) ) 2 = k ||∆h k || 2 2 . (V.23) d semantic TRBM (R (1) , R (2) ) 2 = var σ k D-1 d=0 ∆h k+d w d σ k . (V.24)
The later can also be written in matrix form:

d(σ (1) , σ (2) ) = k,l ∆h k W l ∆h k-l (V.25)
with

W l = D-1 d,d =0 w d C d-d -l w d (V.26)
where C d is the cross-covariance between neural responses with delay d.

In the special case of a TRBM with null interaction between different time bins, TRBM and RBM metrics are equivalent.

j) Continuous TRBM metric

In order to define a metric based on the TRBM that does not require to binarize responses, we introduce a continuous time approximations of the semantic TRBM metric.

∆h is the difference between h|σ (1) and h|σ (2) , and eq. (V.25) measures a norm of this difference. In order to express the TRBM-based metric in a form that is convenient for expression in continuous time, we approximate this difference using a linear expansion of the sigmoid function in eq. (V.6):

∆h k ≈ = 1 4 D-1 d=0 w d ∆σ k-d (V.27)
where ∆σ = σ (1) -σ (2) . The semantic TRBM metric becomes:

d(σ (1) , σ (2) ) = k,l ∆σ k V l ∆σ k-l (V.28)
where

V l = d,d Z d C d -d-l Z d (V.29)
and

Z d = d w d w d+d (V.30)
We dropped the 1/4 factor in ∆h, as multiplying a metric by a constant has no effect on its discriminating properties. This can be approximated in continuous time by the Euclidean metric corresponding to the following scalar product [START_REF] Paiva | Inner Products for Representation and Learning in the Spike Train Domain[END_REF][START_REF] Naud | Improved Similarity Measures for Small Sets of Spike Trains[END_REF]:

R (1) , R (2) = i,i ,n,n Ṽi,i (t (1) in -t (2) i n ) (V.31)
where Ṽ is a continuous time approximation for V : Ṽ (l∆ t ) = V l for any integer l. We used a piecewise linear interpolation for remaining times. The metric is then:

d cont TRBM (R (1) , R (2) ) 2 = R (1) , R (1) + R (2) , R (2) -2 R (1) , R (2) (V.32)
We can show that the van Rossum metric is also a Euclidean metric corresponding to the inner product with the following kernel:

Ṽi,i (τ ) = H(t)H(t -τ )dt if i = i 0 else (V.33)
This also holds true for a generalized version of the van Rossum metric allowing coupling between different neurons (Houghton and Sen, 2008).

V.2.5 Linear discriminability

The linear discriminability is a measure independent of any metric. We projected responses on a single direction. For a given perturbation S, we projected responses on the direction in which responses changed the most for the corresponding perturbation shape. Namely, we measured binned responses σ ref to multiple repetitions of the reference stimulus, and responses σ Smax to multiple repetitions of the largest amplitude of the same perturbation shape (typically 110 µm). We computed the mean response to the reference, σ ref , and to the largest amplitude perturbation, σ Smax , and projected all responses onto their difference: we denote

x ref = ( σ Smax -σ ref )
• σ ref the projection of a response to the reference, and x S = ( σ Smax -σ ref )

• σ S the projection of a response to S (when projecting, we recalculated the mean responses by excluding the response to project, to avoid over-fitting).

The linear discriminability of σ S is defined as the probability that

x ref < x S .
Note that although this definition of discriminability is convenient because it doesn't make any assumption about a metric, it is supervised as it requires us to know the mean response to a perturbation. Conversely, discriminability based on metrics can be computed for a single response to a perturbation.

During the experiment, to identify the range of perturbations that were neither too easy nor too hard to discriminate, we adapted perturbation amplitudes online using the Accelerated Stochastic Approximation algorithm [START_REF] Kesten | Accelerated Stochastic Approximation[END_REF] so that the linear discriminability converged to target value 85%.

In order to compare metrics, we formed 3 groups of responses based on their linear discriminability: low (lower than 0.95), medium (higher of equal to 0.95 and lower than 1) and high (1).

V.3 Results

We analyzed previously published ex vivo recordings from rat retinal ganglion cells (Ferrari et al., 2016). A population of 60 cells was stimulated with a bar in motion and recorded with a multielectrode array (Fig. VI.4). In order to model response correlations in time and between neurons, we represented responses in a format that is convenient for computation: we binarized responses in 20 ms time bins (Fig. VI.4).
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1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 Population response: spikes Binary response Time Figure V.1 -Experimental setup.
A rat retina is stimulated with a moving bar. Retinal ganglion cells (in green) are recorded with a multielectrode array. In order to model response correlations, spike trains are binarized in 20 ms time bins.

V.3.1 Model of population correlation

We modeled correlations between neurons using Restricted Boltzmann Machines (RBMs). RBMs are models describing the probability distribution of responses in single time bins. Their are models with no direct interaction between neurons, and their correlations are explained by interactions with some hidden units (Fig. VI.6A). The hidden units are random binary variables that are not observed experimentally. Hidden units can be thought of as non-visible neurons, although they do not necessarily correspond to existing entities. When they take value 1, they induce changes in excitability in sub-populations of cells, which creates cell assemblies that are correlated or anti-correlated. They can reflect multiple causes of correlations, such as common input from neighboring cells or common responses to stimulus. The number of hidden units can be varied: the more hidden units, the more complex structures can be reproduced by the model, and the more parameters have to be estimated.

We learned an RBM with 20 hidden units to model the responses of a population of 60 cells responding to a random moving bar. The model was inferred on a training set (80 % of responses). We compared the model predictions to a testing set (20% remaining responses), for multiple response statistics often encountered in the literature. The RBM reproduced well the firing rate, i.e. the frequency at which neurons spike (Fig. VI.6B). It also accounted precisely for correlations between pairs of neurons (Fig. VI.6D). Finally, we tested higher order correlations, such as the distribution of the total number of spikes in the population during a 20 ms time window, called population count (Materials and Methods). As a control, we computed the distribution of the population count predicted by a model of independent neurons with same firing rates. The independent model under-estimated the probability of events with few or many spikes by an order of magnitude (Fig. VI.6C). Conversely, we found that the RBM gave a precise description of this distribution. In conclusion, RBMs can capture well the distribution of neural population responses in a single time bin.

In order to evaluate the importance of the number of hidden units, we inferred multiple RBM models with 1 up to 40 hidden units. We computed the fraction of pairwise correlations explained by each model, in the training and testing sets (Fig. VI.6E, Materials and Methods). The higher the number of hidden units, the better the RBM could predict correlations between neurons. This increase plateaued for high numbers of hidden units. There was no increase in the difference between the training and testing sets for high numbers of hidden units, indicating no over-fitting of the models. Thus the performance of the RBM does not depend on the precise number of hidden units, provided that there are enough of them. In the following, we consider an RBM with 20 hidden units, unless mentioned explicitly.

V.3.2 Extension to temporal correlations

The RBM model is efficient at modeling neural responses within 20 ms time bins, but correlations between neurons usually span larger time scales. To show this, we compared the distribution of the population count (i.e. the number of spikes in the population) in a 100 ms time window in the testing set, for a model of independent neurons and time bins and if we model each time bin independently with an RBM (Fig. V.3C). Although the RBM performed better than the independent model, the RBM still underestimated the probability of large numbers of spikes by an order of magnitude. It is clear that although the RBM can model correlations between neurons on short time scales, it fails to predict correlations over larger scales.

We therefore introduce a new model, the Temporal Restricted Boltzmann Machine. It is similar to the RBM model, but it allows for interactions between neurons and hidden units across different time bins (Fig. V.3A, Materials and Methods). This model is phenomeonological: it provides a statistical description of the temporal correlations between neurons, without assuming any king of causality. As there are many more interactions to infer than for the RBM, we reduced the number of parameters by making the model invariant to time translations: connections between a neuron and a hidden unit only depend on the delay between them and not on the absolute time. As a consequence, the probability of a response stays constant if it is shifted in time. Here, we used a TRBM with 10 hidden units per time bin and with connections between neurons and hidden units across 5 consecutive time bins (100 ms).

We inferred the TRBM on the same training set as the RBM, and compared its predictions for multiple statistics to the testing set. Like the RBM, the TRBM could predict well neurons' firing rates (Fig. V.3B) and the correlation between pairs of neurons in the same time bin (Fig. V.3D). But unlike the RBM, the TRBM could also predict temporal correlations. In particular it reproduced accurately the distribution of the population count in a 100 ms time window (Fig. V.3C). We also tested if the TRBM could predict the cross-correlation between neurons, i.e. the pairwise correlation with a delay between neurons. For each delay, we computed the variance in cross-correlation (i.e. the amount of correlations) and the variance explained by the TRBM model (Materials and Methods). Even though direct connections between neurons and hidden units were limited to 80 ms, the TRBM explained a substantial amount of correlations even for large time delays, up to 150 ms (Fig.

V.3E).

In order to investigate the importance of the number of hidden units, we inferred multiple models with 1 to 20 hidden units, with a fixed maximum connection delay of 80 ms. We measured the fraction of cross-correlation variance explained by the models (Fig. V.3F, Materials and Methods). This fraction measures how well the models can explain temporal There is no direct interactions between neurons (filled dots). Instead, neurons interact with hidden units (circles). B, Single cell firing rate. Each dot represents the spiking frequency of a neuron, in a testing set not used for learning, or predicted by the RBM. C, Population rate. Distribution of the number of spikes in the population during a time bin, in a testing set, predicted by a model of independent neurons or predicted by the RBM. Shaded area shows standard error. D, Pairwise correlations. Each dot represents the Pearson correlation for a pair of neurons, in a testing set or predicted by the RBM. E, Model performance, i.e. fraction of the variance of correlations explained by RBM models, with different number of hidden units, in the training and testing sets. The small difference between training and testing sets suggests that there is no over-fitting. correlations between neurons. As for the RBM, we found that increasing the number of hidden units improved the prediction of correlations by the model. This performance plateaued for high number of hidden units, but did not show over-fitting. In the following, we consider a TRBM with 10 hidden units, unless mentioned explicitly.

We also varied the maximum connection delay between neurons and hidden units from 20 ms to 120 ms. The accuracy of correlation prediction increased with the maximum time delay and then plateaued (Fig. V.3G). Increasing the maximum time delay beyond 60 ms did not improve much predictions for temporal correlations. This is consistent with the fact that the TRBM can account for correlations beyond the maximum connection delay between neurons and hidden units (Fig. V.3E) Allowing interactions on longer time delays thus does not improve model performance. In summary, the TRBM is not sensitive to specific numbers of hidden units or maximum connection delays, provided they are large enough.

The TRBM model is thus an accurate model of temporal correlations within the neural population.

V.3.3 Empirical comparison of metric sensitivity

We investigated if the hidden units of the RBM and TRBM models could discriminate responses to different stimuli. For this purpose, we first show how to measure the discriminability of neural responses using a neural metric framework. Then we introduce a method to compare empirically the discrimination capacity of different metrics. Finally, we compare the discrimination capacity of metrics based on neural responses to metrics based on hidden units.

A neural metric is a function which measures how similar or dissimilar two responses are. A metric is said to have a high discrimination capacity if responses to different stimuli are far apart, while responses to the same stimulus are close together.

In order to quantify the discrimination capacity of neural metrics, we recorded multiple responses to a reference stimulus. Then we recorded responses to a perturbation of this stimulus, e.g. a slightly different stimulus. Here, the reference stimulus was a given bar trajectory, and the perturbation was a small change in this trajectory (Fig. V.4B). We defined the discriminability of a response R pert to the perturbation as the probability for a response R ref to the reference to be closer to another response to the reference, R ref , than to R pert . The discriminability quantifies how much the response to the perturbation differs from responses to the reference stimulus, as measured by a given metric. We defined the discriminability of a perturbation as the mean discriminability of its responses. If a perturbation is perfectly discriminable, it has discriminability 1. Conversely, a perturbations too small to be discriminated has discriminability 0.5 (chance).

In order to measure a difference in the discrimination capacity of two metrics, we needed perturbations that are not perfectly discriminated by both metrics, but could be discriminated by at least one of them. In order to be small but not too small, perturbations needed to be adapted to the recorded neural population. We adapted perturbations online, and searched for the smallest perturbations that were still discriminable. We performed closedloop experiments where at each step the discriminability of a perturbations was analyzed in order to generate the perturbation at the next step ( 

V.3.4 Discrimination from response structure

We designed a new metric derived from the RBM, termed RBM metric (Materials and Methods). This metric measures the difference between neural responses by the difference between the distribution of responses they trigger in the hidden units of the RBM (called hidden states).

We measured the discriminability of a perturbation at different amplitudes, with the RBM metric (Fig. VI.7A,Materials and Methods). Larger perturbations correspond to larger differences to the reference stimulus. As expected, the discriminability increased with the perturbation amplitude. Small perturbations were hardly discriminable from the reference stimulus (discriminability close to 0.5), whereas large perturbations were almost perfectly discriminable (discriminability close to 1). As a consequence, the RBM metric allows to discriminate between this perturbation and the reference stimulus, and hidden states are informative about the stimulus.

For comparison, we computed the discriminability of the same perturbation for the Victor-Purpura metric (Materials and Methods). This metric is one of the first proposed neural metrics (Victor and Purpura, 1996), and has often been used in the literature to estimate the sensitivity of neural systems [START_REF] Aronov | Neural coding of spatial phase in v1 of the macaque monkey[END_REF][START_REF] Chase | Spike-Timing Codes Enhance the Representation of Multiple Simultaneous Sound-Localization Cues in the Inferior Colliculus[END_REF][START_REF] Lorenzo | Quality Time: Representation of a Multidimensional Sensory Domain through Temporal Coding[END_REF]. This metric depends on a parameter which sets the time scale for spike trains. We first optimized this parameter to maximize the mean discriminability of all recorded responses for this metric. Even after the Victor-Purpura metric was optimized, it still discriminated perturbations less than the RBM metric, whose parameters were not optimized, for all perturbation amplitudes.

In order to see if this effect was also true for other stimuli, we compared the discrimination capacity of RBM and Victor-Purpura metrics for 2 different reference stimuli and 16 perturbation shapes for each. For each reference stimulus and perturbation shape, we separated responses in batches of low, medium and high discriminability (Materials and Methods). This partition of responses was based on a linear discrimination task, independently of any metric (Materials and Methods).

We computed the mean discriminability of each response batch, for the RBM and the Victor-Purpura metrics (Fig. VI.7B). Responses in the low discriminability batches had low discriminability for both metrics. But a large majority of response batches with medium or high discriminability had larger discriminability for the RBM metric. For batches of high discriminability, the discriminability was larger by 0.111±0.003 (mean ± ste) for the RBM compared to the Victor-Purpura metric. Thus the RBM metric had a larger discrimination capacity than the Victor Purpura, even though the Victor Purpura metric was optimized. On the contrary, the RBM was learned in an unsupervised way on responses to random bar trajectories, with not information about the stimulus.

We have seen that it is possible to discriminate responses based on responses correlations, captured by the RBM. But the RBM only captures correlations between neurons on a short time scale, i.e. in the same 20 ms time bin. Neurons also exhibit correlations on longer time scales, and they can be captured by the TRBM. We thus tested if this temporal structure could be used to discriminate responses even better.

We generalized the RBM metric to take into account the temporal structure of the TRBM. We computed the mean discriminability of response batches previously defined for the TRBM metric, and compared it to the RBM metric (Fig. VI.7C). Most response batches with medium or high discriminability had larger discriminability for the TRBM than the RBM metric. The mean discriminability was larger by 0.151±0.005 (resp. 0.167±0.003) for groups of medium (resp. high) discriminability, for the TRBM versus RBM metric. Thus the temporal structure of the TRBM allowed it to capture more information about the stimulus than the RBM. Note that the TRBM was also learned in an unsupervised way on responses to random bar trajectories.

We then compared the RBM and TRBM metrics to other neural metrics classically encountered in the literature: van Rossum, angular, inter-spike interval (ISI), nearest neighbor, event synchronization, spike synchronization and SPIKE metrics (Materials and Methods). We also tested the Hamming metric, which is the Euclidean distance applied to binarized responses. Metrics which depended on a parameter were optimized to maximize the mean discriminability over all responses to perturbations. As a consequence, the discriminability reported here is at its maximum achievable for each metric. For each metric, we computed the mean discriminability of each discriminability batch (low, medium or high) across all reference stimuli and perturbation shapes (Fig. VI.7CDE,Materials and Methods). For the batch of responses with low linear discriminability, responses had low mean discriminability for all metrics (always lower than 0.53, where chance level is 0.5). Only five metrics had discriminability significantly higher than chance level (p < 0.05 for unpaired t-test, Fig. VI.7C): the RBM, spike synchronization, SPIKE, Angular and TRBM metrics. The TRBM metric discriminated responses the best, and was significantly better than the SPIKE metric, i.e. the second best performing metric (t(2712) = 2.47,p = 0.014, paired t-test).

For the medium and high discriminability batches, all metrics had mean discriminability significantly larger than 0.5 with p < 0.001 (at least as significant as t(2176) = 12.9, p = 1.10 -36 , unpaired t-test), except for the Hamming metric for the medium discriminability group, where p = 0.0025. The RBM and TRBM metrics significantly outperformed all other metrics (at least as significant as t(2176) = 13.3, p = 4.10 -39 , paired t-test). In the medium discriminability group, the mean discriminability was 63% higher than chance level for the RBM metric (resp. 144% for the TRBM metric) than for the ISI metric, the most discriminating metric from the literature.

In summary, although RBM an TRBM metrics were not supervised and other metrics were optimized when possible, they had a higher discrimination capacity than any metric from the literature.

V.3.5 Alternative measures of hidden states

The RBM metric measures the distance between responses based on the difference between the distribution of hidden states that they trigger. There are multiple ways of measuring a difference between distributions. Here we explain in more detail how the RBM metric is defined, and then investigate the influence of changes to this definition.

We remark that the states of hidden units, once conditioned by a neural response, are independent and binary (Materials and Methods). So the distribution of hidden states triggered by a neural response is fully characterized by its mean. We thus decided to define the RBM distance between two neural responses as the difference between the mean hidden states triggered by each response. But there are multiple ways of defining distances between vectors. So far, the difference between mean states of hidden units was measured in a way considering that different states of hidden units should be close if they trigger similar responses. We refer to this as the semantic RBM metric. We also considered a simpler metric where the difference between mean states of hidden units is simply their Euclidean distance. We refer to this as the Euclidean RBM metric.

To assess potential discrepancies between definitions, we computed the mean discriminability across all responses to perturbations, for the Euclidean and semantic RBM metrics, for RBMs with 1 up to 40 hidden units (Fig. V.6A). As the number of hidden units increased, this discriminability of the Euclidean RBM metric increased, reached a maximum and then decreased. Three different reasons could lead to lower response discriminability for higher number of hidden units. Either the correlations learned by the RBM were overfitted. Or learned correlations did not depend on the stimulus, but we have seen that this is not likely (Fig. VI.6E) Or there was redundancy between model parameters, which was not taken into account by the Euclidean metric.

For comparison, the mean response discriminability for the semantic RBM metric increased with the number of hidden units, and then plateaued. Thus the drop in discriminability was specific to the Euclidean, but not semantic, RBM metric. It seems that when the correlations induced by a high number of hidden units become redundant, the Euclidean metric is not adapted to discriminate different responses. Furthermore, the discrimination was higher for the semantic than the Euclidean metric, and it was less sensitive to changes in the number of hidden units. This highlights the importance of using the semantic RBM metric, and motivates why we use it by default.

We conducted the same analysis for the TRBM. We computed the mean discriminability of responses for the TRBM metric with 1 to 20 hidden units, with a fixed maximum connection delay of 80 ms (Fig. V.6B). Again, increasing the number of hidden units also led to a drop in discriminability for high numbers of hidden units for the Euclidean, but not semantic, TRBM metric. The discrimination was also higher for the semantic than the Euclidean metric, and it was less sensitive to the number of hidden units. In summary, it is also important for the TRBM to use the semantic metric. A, Mean discriminability of responses to perturbations, measured by the RBM metric for different numbers of hidden units. The discriminability increases with the number of hidden units, reaches a maximum and decays. It is not true if the difference between responses is measured by the semantic rather than Euclidean RBM metric. (Materials and Methods). B, Same as A, for a TRBM with maximum delay of 80 ms between neurons and hidden units.

V.3.6 Influence of response binning

The TRBM metric discriminates responses better than classical metrics, but it requires binning neural responses in time. This process would be hard to implement biologically, so we checked that it is not critical. We first repeated all procedures for RBM and TRBM with time bins of size 5, 10 and 40 ms, and obtained consistent results (data not shown).

We also designed a new metric on neural responses which does not require binning responses, the continuous TRBM metric (Materials and Methods), which is an approximation of the semantic TRBM metric. This metric has no additional parameter, so it was still learned in an unsupervised way. Furthermore it has a simple form as it is an Euclidean metric, corresponding to an inner product previously described in the literature [START_REF] Paiva | Inner Products for Representation and Learning in the Spike Train Domain[END_REF][START_REF] Naud | Improved Similarity Measures for Small Sets of Spike Trains[END_REF]. This metric allows for coupling between neurons at multiple delays, without any assumption on the shape of these interactions.

As for other metrics, we computed the mean discriminability of responses with low, medium or high discriminability (Fig. VI.7D,E,F). The discriminability for the TRBM and continuous TRBM metrics were comparable, although on average the TRBM discriminated better than the continous TRBM for responses with medium and high discriminability. This is expected, as the continuous TRBM metric is only an approximation of the TRBM metric. Furthermore, apart from the TRBM metric, the continuous TRBM metric discriminated better than any other metric. Thus the binning process is not critical for the discrimination of responses with high accuracy.

V.4 Discussion

V.4.1 Summary of the work

We studied a population of rat retinal ganglion cells responding to a bar in motion (Fig. VI.4). We modeled the correlations in population responses using a Restricted Boltzmann Machine (RBM), and a new model also taking into account correlations in time, the Temporal Restricted Boltzmann Machine (TRBM). We showed that both the RBM and TRBM are accurate descriptors of neural correlations (Fig. VI.6,V.3). We presented new neural metrics, i.e. a measure of response similarity, derived from the RBM and TRBM. We presented a new method to compare empirically how well metrics can discriminate responses to different stimuli (Fig. V.4). We showed that the RBM and TRBM metrics had a higher discrimination capacity compared to other distances encountered in the literature (Fig. VI.7). Importantly, the RBM and TRBM were learned with no information about the stimulus, on responses to random bar trajectories. The difference between responses triggered by different stimuli were deduced only from the structure of response correlations. This effect was not sensitive to precise features of the RBM and TRBM, such as number of hidden units (Fig. V.6) and response binning.

V.4.2 Comparison with literature

Organisms with nervous systems must make sense of stimuli with access limited to the structure of responses from up-stream neurons. How to retrieve information about the stimulus from the structure of responses is still an open challenge, which has already been addressed previously.

Multiple works have studied the structure of retinal responses with the Ising model (Schneidman et al., 2006;[START_REF] Shlens | The Structure of Multi-Neuron Firing Patterns in Primate Retina[END_REF][START_REF] Tang | A Maximum Entropy Model Applied to Spatial and Temporal Correlations from Cortical Networks In Vitro[END_REF]. It is the most random model reproducing correlations between all pairs of neurons. This model has been shown to make accurate predictions of response probabilities (Schneidman et al., 2006;[START_REF] Tang | A Maximum Entropy Model Applied to Spatial and Temporal Correlations from Cortical Networks In Vitro[END_REF], although its ability to reproduce strong or high order correlations has been challenged [START_REF] Bohte | The Effects of Pair-wise and Higher-order Correlations on the Firing Rate of a Postsynaptic Neuron[END_REF][START_REF] Ohiorhenuan | Sparse coding and high-order correlations in fine-scale cortical networks[END_REF]Tkačik et al., 2014;Köster et al., 2014). The Ising model can also be adapted to account for temporal correlations (Ganmor et al., 2011a), but it has also been shown to fail to reproduce some high order correlations (Ganmor et al., 2011b;Köster et al., 2014). On the contrary, the TRBM model can give a precise description of temporal correlations in the retina (Fig. V.3). Furthermore, unlike the TRBM, the Ising model cannot account for stationary distributions specifically. Finally, the RBM and TRBM are relatively easy to learn, while the Ising model is notoriously hard to infer for populations larger than a few tens of neurons (Cocco et al., 2009).

Although the Ising model can be used to describe the distribution of neural responses, it is unclear how to retrieve information about the stimulus from this model. Previous works have suggested that responses around a local maximum of the probability density would encode similar stimuli, which would provide error-correcting properties to the neural code (Schneidman et al., 2006). However, in practice it is very hard to retrieve information from such local maxima. First, there seem to be very few local maxima [START_REF] Tkačik | Ising models for networks of real neurons[END_REF](Tkačik et al., , 2014)). Second, associating responses to their corresponding local maxima is not natural for binary responses, and needs arbitrary choices [START_REF] Tkačik | Ising models for networks of real neurons[END_REF]. Third, the presence of such local maxima seems mostly due to the repeated nature of stimuli used [START_REF] Loback | Noise-robust modes of the retinal population code geometrically correspond with "ridges[END_REF].

On the contrary, the structure of responses modeled by the RBM and TRBM is explained by couplings to latent variables. These latent variables offer a convenient representation of responses, requiring no arbitrary choice. Furthermore, there are a very large number of hidden states (exponential in the number of hidden units), and they are not biased by stimulus repetitions, as RBM and TRBM are learned on non-repeated stimuli.

Prentice et al. ( 2016) used a similar model, the hidden Markov Model (HMM), to describe retinal responses. In the HMM, the probability of responses is influenced by a latent variable. This latent variable is discrete, with a Markov chain dynamics, i.e. a dynamics with short memory. As for the RBM and TRBM, the state of the latent variable can be used as a representation of neural responses. This model seemed to provide an accurate description of neural responses. Prentice et al. (2016) also showed that more than half of the fluctuations of the latent variable was informative about the stimulus. But it was recently suggested that such a model was also largely biased by the repeated nature of stimuli used [START_REF] Loback | Noise-robust modes of the retinal population code geometrically correspond with "ridges[END_REF]. Furthermore, it is not clear if this model, which uses a finite number of states, is able to describe the exponential number of responses of larger populations. On the contrary, the RBM and TRBM have a number of states that grows exponentially with the number of hidden units, so they should be better suited to describe the activity of large populations.

Continuous latent variables have also been proposed to account for neural correlations in cortical networks. In the linear dynamical system for example, responses are influenced by a continuous latent variable of low dimension. This latent variable has simple dynamics, modeled by an autoregressive process. This model has been shown to reproduce accurately populations responses in macaque primary visual and motor cortices Gao et al. (2016). In the motor cortex, hidden variables have also been shown to correlate with hand trajectories.

It could be interesting to investigate such models in the retina. However, complex computational techniques are needed to infer them, while the RBM and TRBM are relatively simple to learn.

V.4.3 Importance for biological systems

Here we have shown that a high amount of information about the stimulus can indeed be recovered by considering the structure of responses. Moreover, more information is extracted when the temporal structure of responses is considered, instead of considering different times independently. Thus, one can get more information from a response at a given time by also considering the response past. This consideration could be important for understanding evidence accumulations (Gold andShadlen, 2000, 2001), where information about a stimulus is obtained by summing evidences over time. If the stimulus encoding is efficient, our findings predict that the mapping of responses to evidence should depend on the response history.

Neural metrics are not implemented directly by neural systems. Indeed, neural systems never need to compare two responses that would occur simultaneously. Instead, neural metrics can provide hints at how to read the neural code, e.g. by measuring its temporal precision (Victor and Purpura, 1996). Here, RBM metrics give us an insight on how a downstream population could discriminate responses to different stimuli. The difference between responses is measured by the difference in activity of hidden units. Hidden units could be implemented by a population of downstream neurons, with a simple response function: a weighted sum followed by a nonlinearity (eq. V.6). This is reminiscent of a neuron summing responses from upstream cells, weighted by synapses' strengths. Nakano et al. (2015) have recently given insights on how networks of spiking neurons could learn the synaptic weights to approximate Restricted Boltzmann Machines. Finally, the TRBM metric requires to compare the responses of hidden units at different times. This kind of simultaneous representation of neural input at different delays is already known to be implemented by neurons, e.g. in the medial superior olive, where the interaural time difference is used for sound source localization [START_REF] Jeffress | A place theory of sound localization[END_REF]. Thus the RBM model provides insights on biologically possible representations of the stimulus, which would be able to discriminate stimuli with high accuracy, without need for any supervised training.

V.4.4 Discrimination from structure

The metrics introduced here have many parameters (3000 for the TRBM used for Fig. V.3,VI.7) as they allows for interactions between all pairs of neurons, possibly at different times. Surprisingly, they can still be learned from experimental data. This due to the un-supervised nature of the learning procedure: we do not teach the RBM any relation between stimulus and responses. A lot of data would be required to learn this relation between responses and stimulus, both of high dimension. Similarly, we would need a lot of data to train a metric to discriminate responses to different stimuli. Instead, we only train the RBM and TRBM to reproduce the structure of responses, which can be done with a reasonable amount of data. Their is no guarantee that training the model to learn the structure of responses would make its hidden units sensitive to the stimulus. However,we show that here, hidden units are indeed informative about the stimulus. This is consistent with results from machine learning with artificial neural networks. If one wants to train a model to classify stimuli, but only few labeled examples are available, it is hard to train networks if they have many parameters. In this case, one can use pretraining [START_REF] Hinton | A fast learning algorithm for deep belief nets[END_REF]: the network is first trained to learn only the structure of stimuli (corresponding to the structure of responses in our case), using un-labeled data (which is usually easier to find than labeled data). Pre-training, before training models with labeled data, has been shown to improve models performance. This is also consistent with the more general finding that in the case of limited data, classifiers perform better if they also learn the probability of inputs [START_REF] Ng | On discriminative vs. generative classifiers: A comparison of logistic regression and naive bayes[END_REF][START_REF] Bruna | Invariant scattering convolution networks[END_REF].

Because the TRBM metric allows for finely tuned interactions between neurons and time delays, it significantly outperforms existing neural metrics at discriminating stimuli. Generalizations of some metrics allowing for couplings between neurons have been proposed (see e.g. Houghton and Sen (2008) for the van Rossum metric) but to our knowledge no method has yet been proposed to learn such metric.

Previous results obtained using single cell metrics should then be interpreted with caution. Machens et al. (2003) for example used the van Rossum metric to estimate the temporal precision of the neural code. But a better discrimination of stimuli might be achieved at different time scales when also considering neural correlations. Although estimations of the discriminability can only be under-estimated, the optimal metric parameters could in principle be very different.

It would be interesting to test our conclusions with different stimuli and neural systems. Indeed, natural movies and higher level neural systems are known to exhibit strong correlations. It is possible that deep Boltzmann machines, a generalization of RBMs with multiple hidden layers which can reproduce more complex structures [START_REF] Salakhutdinov | Deep Boltzmann Machines[END_REF], could achieve higher discrimination power than RBMs. Here, we focused on a simple model to demonstrate the feasibility of such a method.

V.4.5 Inner product on spike train

Finally, the TRBM metric could be approximated by a metric on spike trains in continuous time, which is associated to an inner product. We have also shown that this metric has a high discrimination capacity (Fig. VI.7). Again, such an inner product has many parameters, and training it directly to discriminate responses to different stimuli would require a lot of data. It is convenient, although surprising, that such an inner product can be learned only from the structure of responses. Inner products for spike trains [START_REF] Paiva | Inner Products for Representation and Learning in the Spike Train Domain[END_REF] are important, because they allow us to use a large number of analysis techniques directly on spike trains, such as Principal Components Analysis and Fisher discriminant [START_REF] Schrauwen | Linking non-binned spike train kernels to several existing spike train metrics[END_REF]. Such techniques have already been used to study how neurons represent information [START_REF] Nagel | Mechanisms Underlying Population Response Dynamics in Inhibitory Interneurons of the Drosophila Antennal Lobe[END_REF], but using the Euclidean inner product. It is likely that performing the same analysis with inner products that are adapted to neural responses will give more accurate results. For example, performing PCA with an inner product with high discrimination power can identify dimensions of responses which are most informative about the stimulus, instead of the ones which merely have the largest fluctuations. Finally, the inner product proposed here does not require binning responses, which is likely to loose information [START_REF] Park | An efficient algorithm for continuous time cross correlogram of spike trains[END_REF].

VI.1 Population correlations

We have presented two different models of population activity. The population coupling model (Part III) is a coarse model of the population activity. This model is tractable, so it can be inferred rapidly. On the other hand, restricted Boltzmann machines (Part V) have a simple form which can model correlations between neurons at multiple orders. Even though RBMs are easy to learn in comparison to the Ising model, they still require advanced learning techniques such as contrastive divergence [START_REF] Hinton | Training products of experts by minimizing contrastive divergence[END_REF].

The population coupling model is similar to the shuffling procedure initially proposed by Okun et al. (2015). But shuffling methods have mutliple drawbacks. They can require complex computations (Okun et al., 2015) and it is hard to show that they only preserve chosen correlations, even in the limit of infinite shuffling (although see [START_REF] Bialek | Rediscovering the power of pairwise interactions[END_REF] for such results in a specific case). Shuffling procedures also do not provide explicit response probabilities, forbidding to compute the likelihood of responses, decode stimuli with Bayesian methods or estimate the entropy of responses. In contrast, the population models presented here are fast to learn and provide explicit probabilities guaranteed against spurious correlations. They can also be adapted to account for arbitrary complex interactions between single cells and global activity. In summary, although they are more complex theoretically, maximum entropy models offer multiple advantages over shuffling methods, especially when they are easy to learn.

The population coupling model is also equivalent to the population tracking model [START_REF] O'donnell | The population tracking model: A simple, scalable statistical model for neural population data[END_REF]. But this latter is hard to learn, as it involves a normalization constant only estimated using complex computations. The population coupling model presented here is easy to learn, and does not require any user-specific fine tuning of the inference algorithm. It could therefore be used to reliably compare the influence of the population rate across neural systems in experiments from different laboratories.

Okun et al. (2015) analyzed couplings between single cells and population activity in mouse V1, and found that cells could have very different couplings to the population, from "chorister" cells spiking synchronously with the population, to "soloist" ones, spiking independently of the global activity. They found a continuum of correlations to the global activity, and not clearly defined classes. In the salamander retina, we also did not find a clear distinction between "chorister" and "soloist" cells. We also found that simply looking at the correlation to the population was a limited characterization of neurons' behavior. Indeed, neurons had complex tuning curves in the global activity, which could not be accounted for by a simple correlation coefficient. Surprisingly, taking these complex couplings into account instead of correlations led to only a small improvement in the description of responses, as measured by pairwise correlation predictions (Fig. III.3), multi-information (table III.1 and data likelihood.

This lack of improvement could have multiple explanations. The covariance between each cell and the population might be complex enough to capture the structure of neural responses in the retina. It could also be that couplings to the population can only explain part of this structure, and that the precise nature of these interactions only has a small effect.

In order to understand better the performance of these models, we compared them to the Ising model. We measured the mutual information for each model, which quantifies the amount of correlations at any order explained by each model. On figure VI.1 we plot the multi-information for subpopulations of different sizes, for the Ising model and for the three population coupling models proposed in Part III. On a log scale, the difference in multi-informations between models seems to remain almost constant over the range from N =10 to N =120 neurons. This means that population coupling models carry an almost constant fraction of the multi-information carried by the pairwise model. We found that the complete coupling model could capture about half of the multi-information carried by the pairwise model.

Pairwise models are better at capturing the fine correlative structure of population responses. But learning these pairwise models for large populations requires hours of computation using complex techniques from physics, while our population models can be computed within seconds. In order to compute the multi-information, one needs to compute the entropy of responses predicted by the model, which requires to compute the model normalization constant. In the case of pairwise models, this can only be done using advanced computational tricks (Tkačik et al., 2014), but those are computationally extremely heavy, requiring to define a spurious temperature and running Monte Carlo algorithms for a whole range of temperatures. So population models can give a coarse description of large populations while pairwise models are precise models for small populations.

For large populations, the mutual information of the complete coupling model seems closer to the minimal model than to the Ising model, and this behavior seems to increase with population size. This observation confirms that population coupling models only give a coarse description of neural responses. On the other hand, the difference between the linear-coupling and complete coupling models seems to increase with population size. So, while for small populations the exact form of the population coupling has little influence on the quality of the model, for larger populations this form might be important.

In order to improve the description of responses while preserving the simplicity of population couplings, such models could be generalized in multiple ways. For example, population coupling models could be generalized to account for the temporal correlations of the population rate. As for correlations in single time bins, multiple models with diverse complexities could capture temporal correlations. A simple model could capture only the dynamics of the population rate and couplings between cells and population rate in the same time bin. This model would easily be obtained by multiplying a model for the dynamics of the population rate P (K t , K t+1 , ...) [START_REF] Mora | Dynamical criticality in the collective activity of a population of retinal neurons[END_REF] by P (σ t |K t ), P (σ t+1 |K t+1 ), etc, which are reproduced by the complete model for single time bins. A complete temporal model could account for the joint probability between each neuron and the population rate, across multiple delays. Many models of intermediate complexity could also be proposed. However, aside from the simple model suggested here, such models are unlikely to be tractable, and might be hard to learn.

The population coupling model could also be adapted to larger populations of neurons. This model is fast to learn for large populations. However, as experimental techniques will allow to record larger and larger populations, models will also be needed to account for more heterogeneous populations. This is especially true for recordings from multiple brain areas or from complete nervous systems. For such heterogeneous populations, it is unlikely that the spike count across all neurons will suffice to explain the activity of each cell. Indeed, it is likely that single cells are more correlated to some subpopulations than to the nervous system as a whole. The population rate, which sums responses across all neurons in a population, might therefore give a more precise description of neurons' responses if it is computed on subpopulations instead of on the complete nervous system. It is also possible that some cells will have very different couplings to population rate computed on subpopulations, compared to the whole population. In the salamander retina for example, if one considers the subpopulation of cells anti-correlated to the population rate of the whole population, and learns a population coupling model on this subpopulation, all cells now become strongly correlated to the population rate (data not shown). In conclusion, coupling cells to the population rate of subpopulations offers promising refinements of the models presented here.

Recently, using electrode recordings from human temporal cortex, Nghiem (2017) found similar results showing that separating neurons in subpopulations could enhance models. She found that the complete coupling model made better predictions for the subpopulation of excitatory neurons than for the entire population. This also held true for inhibitory neurons. Remarkably, the complete coupling model seemed to be an accurate model of pairwise correlations between inhibitory neurons. She then proposed a two-population coupling model, i.e. a maximum entropy model reproducing the joint distributions between each cell and each sub-population spike count. This led to a large improvement in the prediction of pairwise correlations between excitatory and inhibitory neurons. This kind of subpopulation models is a promising generalization of the simple models presented here. It is also noticeable that population coupling models give a better description of responses during slow wave sleep than wakefulness. While it seems intuitively reasonable that population couplings have stronger influence during large waves of activity, it reminds us that different models might be appropriate for different neural states.

Unlike population coupling models, restricted Boltzmann machines (RBMs) can be expected to also account for interactions in large heterogeneous populations of neurons. We have seen that RBMs can learn any distribution of binary variables with arbitrary precision [START_REF] Le Roux | Representational Power of Restricted Boltzmann Machines and Deep Belief Networks[END_REF], and that they can be adapted to account for temporal correlations as well. The modular nature of RBMs make them adapted to large heterogeneous populations, with little interaction between subpopulations or with dependencies decaying with spatial distance. Hidden units can create interactions within any chosen subpopulation. This is achieved by having no interactions with neurons outside of the subpopulation. In the extreme case of independent subpopulations for example, hidden units can be attributed to specific subpopulations, with no interactions between neurons and hidden units of different subpopulations. In the case where neurons only interact with their neighbors (e.g. cells physically close or with overlapping receptive fields), hidden units can be set to only connect to local groups of cells.

The ability to model couplings between neighboring cells, with no direct interactions between distant cells, is not specific to the RBM. For pairwise interactions model too, it has been observed that the Ising model was little affected by only preserving interactions between neighboring cells [START_REF] Shlens | The Structure of Multi-Neuron Firing Patterns in Primate Retina[END_REF]. This kind of property is actually general to Markov random fields [START_REF] Kindermann | Markov random fields and their applications[END_REF] with only local interactions. Markov random fields are models which include different interactions between cells or subgroups of cells. Formally, if we write ψ m (σ) an interaction between different cells, then the model has form:

P (σ) ∝ exp m ψ m (σ) . (VI.1)
The Ising model for example is an example of a Markov random field with only pairwise interactions, or terms involving only single cells to control their firing rates (respectively J ij σ i σ j and h i σ i in eq. II.7). The restricted Boltzmann machine is also an Ising model, where some neurons are not visible and correspond to hidden units. Such a Markov random field can be made local by only considering interactions ψ m across local subpopulations of neurons. In the case of the Ising model, this corresponds to only having interactions between nearby cells. In the case of RBMs, this corresponds to each hidden unit only interacting with a subpopulation of nearby cells, of with interactions across a limited time range. In Part V for example, we did not restrict interactions to local subpopulations, but in the temporal RBM, we limited the time range of interactions between neurons and hidden units. Such local Markov random field models, which have a maximum entropy formulation, could also be used to generalize population coupling models to larger populations. For example, instead of interactions between each neuron and the complete population rate, one could consider interactions between each neuron and the spike count of only its neighboring neurons.

In order to account for larger or more correlated populations, restricted Boltzmann machines could be generalized using deep Boltzmann machines, which can be seen as a gener-alization of the RBM with multiple hidden layers [START_REF] Salakhutdinov | Deep Boltzmann Machines[END_REF]. As for the RBM, the bottom layer corresponds to recorded neurons, whereas other layers are hidden units. There is no interaction between units or neurons in the same layer. Units in intermediate layers only connect to units in layers above and below. The restricted Boltzmann machine corresponds to the simple case with only two layers. Methods have been proposed to infer the parameters of these deep Boltzmann machines from data [START_REF] Salakhutdinov | Deep Boltzmann Machines[END_REF]. We have mentioned that RBMs can already approximate any binary distribution with arbitrary precision, but this might require a prohibitive number of hidden units and parameters. Deep Boltzmann machines can sometimes achieve the same precision with many less parameters to learn. It would be interesting to investigate if additional hidden layers would improve the description of neural responses, especially for large or strongly correlated populations as found in cortex.

The capacity of RBMs to reproduce complex correlations comes at a cost: interpretability. Maximum entropy models for example have simple interpretation: they are the models constrained to reproduce some observables while maximizing entropy. In contrast, for RBMs, the objective function (the likelihood) is hard to interpret. The parameters of some maximum entropy models can also be used to estimate interactions of different orders between neurons (see d)). For restricted Boltzmann machines, the role of hidden units and their coupling coefficients are hard to interpret, especially since the number of hidden units is a free parameter, only limited by the amount of data available. This is expected to be even worse for deep Boltzmann machines, as the interpretability of model parameters is a current challenge in the larger domain of deep learning [START_REF] Bruna | Invariant scattering convolution networks[END_REF].

Maybe one of the advantages of restricted Boltzmann machines is that they do not make any assumption about the order of correlations between neurons. Many works have studied whether neural correlations could be described by interactions of limited orders, typically of order 2 (Schneidman et al., 2006;[START_REF] Shlens | The Structure of Multi-Neuron Firing Patterns in Primate Retina[END_REF]. On the contrary, hidden units can learn to interact with the entire population or with only small subpopulations. The flexibility of the RBM is especially valuable since there is still no clear reason why neurons would only have low order correlations. First, the correlations between neurons can have many causes, like network dynamics and stimulus correlations. Neural correlations, and even neural noise correlations, are known to depend on the stimulus (Franke et al., 2016;Zylberberg et al., 2016), so neurons might have correlations at different orders depending on the stimulus. Furthermore, even if retinal responses had only second-order interactions, it has been shown that the output of non-linearities can have high order correlations even if their input only have second order correlations [START_REF] Amari | Synchronous Firing and Higher-Order Interactions in Neuron Pool[END_REF]. Neural systems are sometimes described as layered networks corresponding to cascade models with successive nonlinearities. Such systems are thus unlikely to preserve only second order correlations beyond the first layer. Therefore, even if it can be shown that retinal neurons have only pairwise interactions for some stimuli (Schneidman et al., 2006;[START_REF] Shlens | The Structure of Multi-Neuron Firing Patterns in Primate Retina[END_REF], this result is unlikely to hold for cortical populations, as confirmed by experimental results [START_REF] Ohiorhenuan | Sparse coding and high-order correlations in fine-scale cortical networks[END_REF]. This does not mean that higher order correlations are necessarily important for interpreting the neural code, but that they might arise naturally from successive nonlinear computations. Furthermore, it is likely that part of high order correlations found in cortex correspond to the kind of correlations arising from nonlinearities present at the single cell level, such as rectifying nonlinearities. This would explain why the dichotomized Gaussian model seems to describe cortical responses better than the Ising model [START_REF] Yu | Higher-Order Interactions Characterized in Cortical Activity[END_REF].

VI.2 Discrimination

Defining the sensitivity of neural responses is challenging: we aim at measuring a difference in responses triggered by a difference in stimuli. But how to measure a difference between responses is not clear, and is linked to the choice of neural metric. Intuitively, one would want to measure the difference in responses such that it correlates with differences in stimuli: responses are different if they encode different stimuli. But how to measure a difference between stimuli is also not clear. Intuitively, one would want to measure a difference in stimuli such that it correlates with differences in responses: stimuli are different if they trigger different responses (Tkačik et al., 2013a). As a consequence, the problem of defining the sensitivity is ill-defined and circular, due to two reasons: we do not know exactly what stimulus features are encoded by ganglion cells, and what response features carry information. Furthermore, ganglion cells can encode nonlinear stimulus features, and some information might be lost.

An idea to bypass this ambiguity was proposed by (Tkačik et al., 2013a). They defined the difference between stimuli s and s as the difference between the distributions of responses they triggered, as measured by the Kullback-Leibler divergence:

D(s, s ) = D KL P (σ|s) P (σ|s ) (VI.2)
But this approach has limitations. First, it needs to estimate the probability of responses to any stimulus, which might be experimentally challenging for complex stimuli. This approach also makes an important implicit assumption about the topology of responses. More specifically, the KL divergence somehow assumes that any difference in responses is equivalent. This is reflected by the fact that the divergence between two deterministic distributions, i.e. distributions with probability 1 for a single response each, does not depend on these two deterministic responses. For example, the deterministic distribution with no neuron spiking is as far to the deterministic distribution of only neuron i spiking, as to the deterministic distribution with all neurons spiking. For biological networks, on the contrary, it is unlikely for the silence to be as similar to a response with one spike as to the response with all neurons spiking. We might be tempted to think that in a large population, a difference in spike from one or two neurons might be less important than a difference from many neurons. However, the Kullback Leibler measures all differences in responses in the same way. In summary, this method makes important implicit assumptions on how it measures differences in responses.

Here we used a perturbative approach, which unlike the method just mentioned, does not require to learn the distribution of responses to stimuli in general. We compare multiple responses to a reference stimulus to responses to a perturbation of this stimulus. We then investigate the part of responses which depends on the stimulus perturbation. For the local model, we assume that the dependence on the stimulus is linear in the trajectory of the bar. Even though responses might be nonlinear in the stimulus, for perturbations small enough they are expected to be locally linear in any reasonable parametrization of the stimulus. In such a linear domain, it is then easy to correlate responses to stimuli. For neural metrics, we only try to find metrics such that perturbation responses are far from reference responses, relative to the distance between reference responses. We do so for all perturbations, without wondering a priori if perturbation responses are actually discriminable from reference responses. Therefore, in both approach we do not need any predefined metric in the stimulus space, nor a global model of the stimulus-response relationship.

More information could be used from our experimental setup in order to design neural metrics with high discrimination power. When we search for metrics which can discriminate responses to perturbations, we do not take into account that the distance between responses should correlate with the distance between stimuli (e.g. the perturbation amplitude). Taking this information into account could be valuable to design neural metrics that discriminate responses accurately. Noticeably, this information could be used even without defining any metric in the space of stimuli. In order to achieve this, we can use the fact that multiple perturbations have different amplitudes but same shapes. So for a given perturbation shape, perturbations with larger amplitude should trigger responses further from reference responses, at least in the range of small perturbations. So without assuming how the difference between responses, as measured by a given metric, should depend on the difference in stimuli, we can assume that their order should correlate. This difference could be measured by any rank correlation coefficient.

We have presented two different methods to estimate the sensitivity of neural responses: the Fisher information and neural metrics. These two methods differ in many aspects, and offer complementary but different characterizations of the sensitivity. The Fisher information provides a precise measure of the changes in responses induced by changes in stimuli. The Fisher information gives an upper bound on how well responses to a stimulus can be discriminated from responses to small perturbations of this stimulus. Therefore, the Fisher informs us about which stimulus features are encoded or not, and which changes in response encode changes in stimuli. This characterization is very precise, but only local.

By contrast, neural metrics are not restricted to small perturbations. They can quantify the differences in responses triggered by very different stimuli. In a way, the task tackled by neural metrics is common to the brain, which has to make sense of responses from upstream neurons, and infer differences in stimuli from differences in responses. However, neural metrics might be sub-optimal at discriminating responses, for example if they are not sensitive to some response features that carry information about the stimulus. In order to check if a metric is optimal, its discrimination power could be compared to the upper bound provided by the Fisher information.

It should be noted that this comparison is limited, as neural metrics and Fisher information do not measure response discriminability in the same way. The Fisher information is supervised: it measures the discriminability of responses to a perturbation, using information about this stimulus. Formally, it measures the discriminability of responses once they are projected on a single dimension. This dimension depends on the stimulus, furthermore on an optimal way (see IV.2). So the Fisher information knows what kind of response differences to expect for a given perturbation. In contrast, neural metrics have no information about the stimulus: they measure the difference between responses in the same way for all perturbations. It is likely that different stimulus perturbations will not trigger the same kind of differences in responses. Therefore, the discrimination with neural metrics is likely to be suboptimal compared to the Fisher information.

Experimental requirements are also different. In order to estimate the Fisher information, one needs multiple responses in a local region of the stimulus space, and needs to infer a model of responses to stimuli in this region. Measuring the discriminability with neural metrics does not require many responses in the same region of the stimulus space. Instead, many response triplets (two responses to the same reference perturbation, and one response to a perturbation) all over the stimulus space could be used. Furthermore, neural metrics do not require any model.

The work presented in this thesis could have multiple applications, for example to visual neural prostheses, which aim at restoring vision through electrical stimulations of sensory neurons (see [START_REF] Lorach | Neural stimulation for visual rehabilitation: advances and challenges[END_REF] for a review). The Fisher information and neural metrics could provide a tool to compare the sensitivity of biological and artificially stimulated retinal networks. Models of population activity, such as population coupling models and RBMs, could also help artificial stimulations to reproduce correlations that are observed in biological responses. Indeed, reproducing such correlations could be important for neural responses to be reliably detected and precisely processed by downstream neurons [START_REF] Longtin | Time-interval sequences in bistable systems and the noise-induced transmission of information by sensory neurons[END_REF][START_REF] Reyes | Synchrony-dependent propagation of firing rate in iteratively constructed networks in vitro[END_REF][START_REF] Shu | Barrages of synaptic activity control the gain and sensitivity of cortical neurons[END_REF][START_REF] Wehr | Balanced inhibition underlies tuning and sharpens spike timing in auditory cortex[END_REF][START_REF] Baudot | Animation of natural scene by virtual eye-movements evokes high precision and low noise in V1 neurons[END_REF].

In order to carry information about the stimulus, neural responses stimulated by a prosthesis also have to depend on the stimulus. How to generate responses that depend on the stimulus, along with noise correlations similar to experimental observations is still an open challenge. As sensory prostheses must process visual information very rapidly, algorithms are needed to generate such responses fast. The stimulus-dependent restricted Boltzmann machines, a variant of the RBM where neurons are influenced by the stimulus (see a), Köster et al. (2014)), could be used to reproduce both the dependence on stimulus and noise correlations between neurons. The persistent contrastive divergence algorithm [START_REF] Tieleman | Training Restricted Boltzmann Machines using Approximations to the Likelihood Gradient[END_REF] might provide a convenient inspiration for fast generation of responses, in a way similar to Gibbs sampling.

The persistent contrastive divergence is an algorithm for learning RBMs. At each parameter update, one needs to sample responses from the RBM. In order to avoid performing a long series of Gibbs sampling steps, one starts from the responses generated for previous parameters, and only performs a single Gibbs sampling step. The motivation behind this is that if parameters are updated slowly, simulated responses should keep track of the distribution of the corresponding RBM. Similar algorithms could be applied to simulate responses of stimulus-dependent RBMs. The parameter updates would here correspond to changes in parameters induced by the stimulus. This would require sampling rates high enough for the stimulus-dependent parameters to evolve smoothly across time bins, but would allow generating responses online from stimulus-dependent RBMs. In summary, stimulus-dependent RBMs could provide convenient methods for rapidly generating correlated stimulus-dependent responses.

If the techniques presented here are to be applied to neural prostheses, in the retina or in the brain, future work will need to explore how well they generalize to more complex stimuli or neural systems.

Köster et al. (2014) have already shown that the RBM was an accurate description of responses in microcolumns of anesthetized cat V1 stimulated by natural movies. It would be interesting to investigate if this result also holds for larger populations in behaving animals. Furthermore, it is still unclear if RBM-based neural metrics will also be able to discriminate precisely neural responses as in the retina. This is not guaranteed, as noise correlations are believed to be stronger in cortical networks, due to feedback loops. It is possible that RBM-based metrics will need further improvements in order to account for strong noise correlations. It is also possible that deep Boltzmann machines, instead of RBMs, could provide more accurate neural metrics, both in the retina and in cortical populations.

The sensitivity study performed here could also be adapted to natural movies, at the cost of a significantly higher complexity. The main difficulty lies in the adaptation of the retina to stimulus statistics. So if perturbations used do not lie in the space of natural movies, the retina might adapt to these perturbations. If this is the case, the results would be specific to responses to a given kind of perturbations, and not to natural movies. For example in the case of the bar, we took care of selecting perturbations with the same statistics than the rest of the bar trajectory. We could then measure the sensitivity of neurons to the movement of the bar in general, and not just this kind of perturbations in particular.

However, natural movies have a complex distribution with strong high order correlations which are still hard to model [START_REF] Hyvärinen | Natural image statistics: a probabilistic approach to early computational vision[END_REF]. So making perturbations of natural movies, while staying in the space of natural movies, is challenging. Making perturbations such that one can control their amplitude continuously is even more challenging. Recent work on variational autoencoders might provide a solution to this problem (see [START_REF] Doersch | Tutorial on variational autoencoders[END_REF] for a nice tutorial). Variational autoencoders aim at finding a simple description of complex distributions. In order to achieve this, they represent the space of random variables (natural movies here) with latent variables, such that latent variables have a simple distribution. Variational autoencoders are composed of two nonlinearities, the encoder F and the decoder G. These functions are chosen such that if X is a natural movie, then F(X) is the latent variable associated to X and G(F(X)) is an approximation of the movie X. Furthermore, the encoder is chosen such that if X has the distribution of natural movies, the latent variable F(X) has a Gaussian distribution, with user-defined dimensionality. The goal of variational autoencoders is to disentangle the distribution of natural movies, and to find independent low-dimensional features. Perturbations in the latent space F(X) + ∆ can be associated to perturbations G(F(X) + ∆) in the space of natural movies. So variational autoencoders could provide a way to perform appropriate perturbations of natural movies, and could allow to estimate the sensitivity of neural responses to such stimuli.

Conclusion

We have presented two different methods to model the activity of neural populations. The population coupling model is a coarse model easy to learn, while the restricted Boltzmann machine is a precise model which can also account for temporal correlations. We have presented two different methods to measure the sensitivity of sensory neurons. The Fisher information quantifies precisely the sensitivity in a small portion of the stimulus space. Neural metrics can characterize response features important for discriminating stimuli. In the retina, restricted Boltzmann machines can be used to derive neural metrics with high discrimination power, only from the structure of neural responses. These results could be of great help to design algorithms for neural prostheses and understand how sensory neurons encode information, especially if we can generalize the measure of their sensitivity to more natural stimuli.

Sujet : Structure et sensibilité des réponses de populations de neurones dans la rétine

Résumé : Les cellules ganglionnaires transfèrent l'information visuelle de l'oeil au cerveau, sous une forme encore débattue. Leurs réponses aux stimuli visuels sont non-linéaires, corrélées entre neurones, et une partie de l'information est présente au niveau de la population seulement. J'étudie d'abord la structure des réponses de population. Les cellules du cortex sont influencées par l'activité globale des neurones avoisinants, mais ces interactions manquaient encore de modèle. Je décris un modèle de population qui reproduit le couplage entre neurones et activité globale. Je montre que les neurones de la rétine de salamandre dépendent de l'activité globale de manière surprenante. Je décris ensuite une méthode pour caractériser la sensibilité de populations de neurones de la rétine de rat à des perturbations d'un stimulus. J'utilise des expériences en boucle fermée pour explorer sélectivement l'espace des perturbations autour d'un stimulus donné. Je montre que les réponses à de petites perturbations peuvent être décrites par une linéarisation de leur probabilité. Leur sensibilité présente des signes de codage efficace. Enfin, je montre comment estimer la sensibilité des réponses d'une population de neurones à partir de leur structure. Je montre que les machines de Boltzmann restreintes (RBMs) sont des modèles précis des corrélations neurales. Pour mesurer le pouvoir de discrimination des neurones, je cherche une métrique neurale telle que les réponses à des stimuli différents soient éloignées, et celles à un même stimulus soient proches. Je montre que les RBMs fournissent des métriques qui surpassent les métriques classiques pour discriminer de petites perturbations du stimulus. Abstract: Ganglion cells form the output of the retina: they transfer visual information from the eye to the brain. How they represent information is still debated. Their responses to visual stimuli are highly nonlinear, exhibit strong correlations between neurons, and some information is only present at the population level. I first study the structure of population responses. Recent studies have shown that cortical cells are influenced by the summed activity of neighboring neurons. However, a model for these interactions was still lacking. I describe a model of population activity that reproduces the coupling between each cell and the population activity. Neurons in the salamander retina are found to depend in unexpected ways on the population activity. I then describe a method to characterize the sensitivity of rat retinal neurons to perturbations of a stimulus. Closed-loop experiments are used to explore selectively the space of perturbations around a given stimulus. I show that responses to small perturbations can be described by a local linearization of their probability, and that their sensitivity exhibits signatures of efficient coding. Finally, I show how the sensitivity of neural populations can be estimated from response structure. I show that Restricted Boltzmann Machines (RBMs) are accurate models of neural correlations. To measure the discrimination power of neural populations, I search for a neural metric such that responses to different stimuli are far apart and responses to the same stimulus La rétine transforme l'information visuelle entrant dans l'oeil en séries de potentiels d'action envoyées au cerveau. C'est la seule entrée visuelle du cerveau, de sorte que toute information visuelle utilisée par le cerveau est nécessairement représentée par les réponses des cellules ganglionnaires, les neurones de sortie de la rétine. Mais la façon dont cette information est représentée est encore un sujet de recherche active.

Résumé en Français

La représentation classique des réponses de la rétine est simple: des neurones indépendants encodent les stimuli linéairement, en utilisant des filtres dont le centre est excitateur et la périphérie inhibitrice.

Cependant, les résultats expérimentaux au cours des 50 dernières années ont révélé une image bien plus complexe. On pense maintenant que les cellules ganglionnaires forment environ 20 différents types de cellules, chacun encodant une caractéristique différente de l'information visuelle. Ces représentations du stimulus peuvent être fortement non linéaires, et nous manquons encore d'une caractérisation simple pour beaucoup d'entre elles. Ces représentations ne sont pas stables dans le temps, mais s'adaptent aux statistiques des stimuli visuels sur différentes échelles de temps. Une grande partie de l'information représentée par les cellules ganglionnaires d'une même population est redondante, mais une partie est également synergique et n'est pas accessible à partir des réponses de cellules seules. Par conséquent, le code neuronal est un code de population et la sensibilité des réponses de la rétine ne peut être estimée qu'en considérant les réponses au niveau de la population. Enfin, les réponses neuronales sont bruitées: même les répétitions d'un même stimulus déclenchent des réponses apparemment différentes. Ce bruit est corrélé à la fois dans le temps et entre les neurones, et sa structure et son influence sur la précision du codage du stimulus sont encore débattues. Toutes ces caractéristiques rendent le code de la rétine difficile à comprendre et sa sensibilité difficile à estimer.

De multiple modèles ont été proposés pour capturer les corrélations entre les réponses neuronales. Ces modèles ont différent degrés de complexité. Les modèles plus complexes, avec plus de paramètres, ont tendance à donner des descriptions plus précises des réponses, au prix d'un apprentissage plus difficile. Le modèle d'Ising, par exemple, qui capture les interactions entre toutes les paires de neurones, est notoirement difficile à inférer pour des populations de plus de quelques dizaines de neurones. Un tel modèle n'est donc pas directement applicable aux enregistrements actuellement permis par des tableaux d'électrodes de plus de 4000 électrodes. Ici, je présente deux modèles de réponses corrélées, un modèle simple et un précis, qui sont rapides et faciles à apprendre, même pour de grandes populations.

Une méthode simple pour décrire les interactions complexes entre les neurones et l'activitié globale de leur population

Résumé

Les neurones d'un même population sont fortement corrélés, mais comment décrire simplement ces corrélations est une question encore ouverte. Des études récentes ont montré que l'activité de chaque cellule est influencée par l'activité globale de la population, définie comme la somme de l'activité de tous les neurones de la population. Cependant, il n'existait pas encore de modèle explicite pour décrire ces corrélations. Nous construisons ici un modèle probabiliste d'activité de populations de neurones qui reproduit le taux de décharge de chaque cellule, la répartition de l'activité globale de la population et le couplage linéaire entre eux.

Ce modèle est exactement résoluble, ce qui signifie que ses paramètres peuvent être appris en quelques secondes sur un ordinateur personnel, même pour les enregistrements de grandes populations.

Nous apprenons notre modèle pour une population de 160 neurones de rétine de salamandre. Dans cette population, les taux de décharge des neurones dépendaient de façon surprenante de l'activité globale. En particulier, certaines cellules avaient une valeur préférée de l'activité globale auquel elles étaient le plus susceptibles de répondre. Ces dépendances complexes ne peuvent pas être expliquées par un couplage linéaire entre les réponses des cellules et l'activité globale. Nous avons conçu un modèle plus général, toujours exactement résoluble, qui est capable de capturer parfaitement ces dépendances non linéaires. Nous fournissons donc un moyen simple et calculatoirement efficace pour apprendre des modèles qui reproduisent la dépendance de chaque neurone en l'activité globale. Récemment, Okun et al. (2015) ont étudié comment l'activité globale de la population influence le comportement de neurones individuels dans le cortex visuel primaire de souris et de singes éveillés. En particulier, ils ont étudié le rôle de la corrélation entre les neurones et l'activité globale de la population, appelée activité globale. Pour évaluer si ces couplages entre les neurones et l'activité globale étaient suffisants pour décrire la structure des corrélations des réponses, ils ont généré des trains de potentiels d'actions synthétiques préservant ces couplages, et les ont comparés aux données. Cependant, la méthode numérique utilisée pour générer ces trains de potentiels d'actions synthétiques demandent des calculs longs et difficiles, et est incapable de prédire la probabilité de trains de potentiels d'actions, car la plupart d'entre eux sont peu susceptibles de se produire.
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Nous présentons ici une nouvelle méthode, basée sur le principe de maximum d'entropie, pour modéliser exactement le couplage entre les neurones individuels et l'activité globale de la population.

Ce modèle est exactement résoluble, ce qui signifie que les prédictions pour les statistiques des réponses peuvent être calculées analytiquement. Le gradient et la Hessienne de la probabilité du modèle peuvent également être calculés efficacement, ce qui permet une inférence rapide grâce à la méthode de Newton. Par rapport aux méthodes précédentes (Okun et al., 2015), notre méthode peut modéliser des heures d'enregistrements de grandes populations en quelques secondes sur un ordinateur portable standard. Nous l'avons testé sur des enregistrements de la rétine de salamandre (160 neurones). Nous avons découvert de nouvelles façons pour les neurones individuels d'être couplés à la population, où un neurone répond le plus à une valeur particulière de l'activité globale, plutôt que d'y être couplé de manière monotone. Chaque sous-figure correspond à une cellule représentative différente. E, Histogramme de la différence entre la valeur de l'activité globale préférée -à laquelle le neurone répond le plus -observée dans les données, K * data et prédite par le modèle de couplage linéaire , K * modèle . Nous représentons 38 cellules ayant au moins un maximum local dans le modèle linéaire et dans les données. Lorsque la courbe de réponse en fonction de l'activité globale a 2 maxima locaux, le plus proche de la prédiction du modèle est choisi. F, Histogramme de la divergence de Kullback-Leibler normalisée, entre les distributions jointes observées P (σ i , K) et sa prédiction par le modèle de couplage linéaire. Les flèches indiquent la valeur pour les quatre exemples de cellules A-D. La ligne verticale montre une divergence normalisée de 2, ce qui signifie que les cellules à droite dévient du modèle de couplage linéaire de plus de 2 écarts types.

Estimation en boucle fermée de la sensibilité de populations de neurones de la rétine par linéarisation empirique locale Résumé La compréhension de la façon dont les systèmes sensoriels traitent l'information dépend de manière cruciale de l'identification des caractéristiques du stimulus qui stimulent la réponse des neurones sensoriels et de ceux qui laissent leur réponse invariante. Cette tâche est rendue difficile par les nombreuses non-linéarités qui façonnent le traitement sensoriel. Nous présentons ici une nouvelle approche perturbative pour comprendre le traitement de l'information par les neurones sensoriels, où nous linéarisons localement leur réponse collective dans l'espace de stimulation. Nous avons ajouté de petites perturbations aux stimuli de référence et avons testé si elles déclenchaient des changements visibles dans les réponses, en adaptant leur amplitude selon les réponses précédentes avec des expériences en boucle fermée. Nous avons développé un modèle linéaire local qui prédit précisément la sensibilité des réponses neuronales à ces perturbations. En appliquant cette approche à la rétine du rat, nous avons estimé la performance optimale d'un décodeur neuronal et avons montré que la sensibilité non linéaire de la rétine est compatible avec un codage efficace des informations de stimulation. Notre approche peut être utilisée pour caractériser expérimentalement la sensibilité des systèmes neuronaux aux stimuli externes, quantifier expérimentalement la capacité des réseaux neuronaux à coder l'information sensorielle et relier leur activité au comportement.

Présentation

Un problème important en neuroscience est de comprendre comment les systèmes sensoriels utilisent leurs ressources neuronales pour représenter l'information. Pour comprendre le traitement sensoriel effectué par une zone cérébrale donnée, nous devons déterminer quelles caractéristiques de l'entrée sensorielle sont codées dans l'activité de ces neurones sensoriels et quelles caractéristiques sont éliminées. Si une zone sensorielle extrait une caractéristique donnée de la scène sensorielle, toute modification de cette dimension entraînera une modification notable de l'activité du système sensoriel. À l'inverse, si l'information sur une caractéristique donnée est rejetée par cette zone, l'activité de la zone doit être laissée invariante en modifiant la dimension de cette caractéristique. Pour comprendre quelles informations sont extraites par un réseau sensoriel, nous devons déterminer quels changements dans le stimulus évoquent un changement significatif dans la réponse neurale et ceux qui quittent l'invariant de la réponse. La caractérisation de la sensibilité d'un réseau sensoriel à différents changements dans le stimulus est une étape cruciale vers la compréhension du traitement sensoriel (Benichoux et al., 2017).

Cette tâche est rendue difficile par le fait que les structures sensorielles traitent les stimuli de manière hautement non linéaire. Au niveau cortical, de nombreuses études ont montré que la réponse des neurones sensoriels est façonnée par de multiples non-linéarités (Carandini et al., 2005;Machens et al., 2004). Les modèles basés sur le champ réceptif linéaire ne sont pas capables de prédire les réponses des neurones à des scènes complexes et naturelles. Cela est même vrai dans la rétine. Alors que les stimuli spatialement uniformes ou grossiers produisent des réponses qui peuvent être prédites par des modèles quasi linéaires (Berry and Meister, 1998;Keat et al., 2001;Pillow et al., 2008), les stimuli proches des scènes naturelles (Heitman et al., 2016) ou avec une riche dynamique temporelle (Berry et al., 1999;Ölveczky et al., 2003) sont complexes, car ils déclenchent des réponses non linéaires à la sortie de la rétine. Ces non-linéarités inconnues restreignent notre capacité à modéliser le traitement des stimulus et limitent notre compréhension de la façon dont les réseaux neuronaux traitent l'information.

Nous présentons ici une nouvelle approche pour mesurer expérimentalement la sensibilité d'un réseau non linéaire. Étant donné que toute fonction non linéaire peut être linéarisée autour d'un point donné, nous avons émis l'hypothèse que, même dans un réseau sensoriel avec des réponses non linéaires, on peut encore définir expérimentalement un modèle linéaire local qui peut prédire la réponse du réseau à de petites perturbations autour d'un stimulus de référence donné. Ce modèle local ne devrait être valable que dans le cas du stimulus de référence, mais il est suffisant pour prédire si les petites perturbations peuvent être discriminées en fonction de la réponse de la population de neurones.

Ce modèle local nous permet d'estimer la sensibilité des neurones enregistré aux changements autour d'un stimulus. Cette mesure locale caractérise la capacité du réseau à encoder différentes dimensions de l'espace de stimulation, contournant la tâche peu pratique de construire un modèle non linéaire précis de la relation stimulus-réponse.

Nous avons appliqué cette stratégie à la rétine. Nous avons enregistré l'activité d'une grande population de cellules ganglionnaires rétiniennes stimulées par une barre aléatoire. Nous avons caractérisé la sensibilité de la population de la rétine à de petits changements de stimulus, en testant les perturbations autour d'un stimulus de référence. Parce que l'espace de stimulation est de haute dimension, nous avons conçu des expériences en boucle fermée pour sonder efficacement un espace de perturbation avec de nombreuses formes et amplitudes différentes. Cela nous a permis de construire un modèle complet de la réponse de la population dans cette région de l'espace de stimulation et de quantifier précisément la sensibilité de la représentation neurale.

Nous avons ensuite utilisé cette estimation expérimentale de la sensibilité du réseau pour aborder deux problèmes classiques des neurosciences sensorielles. Tout d'abord, en essayant de décoder l'activité neurale pour prédire le stimulus présenté, il est toujours difficile de savoir si le décodeur est optimal ou s'il manque certaines informations disponibles. Nous montrons que notre estimation de la sensibilité du réseau donne une limite supérieure de la performance du décodeur qui doit être atteinte par un décodeur optimal. Deuxièmement, l'hypothèse de codage efficace (Attneave, 1954;Barlow, 1961) postule que l'encodage neuronal des stimuli s'adapte pour représenter de manière optimale les scènes sensorielles naturelles en présence de ressources limitées. Le test de cette hypothèse pour les structures sensorielles qui effectuent des calculs non linéaires sur des stimuli de dimension élevée est encore un défi ouvert. Ici, nous avons constaté que la sensibilité du réseau aux perturbations du stimulus présente un pic en fonction de la fréquence temporelle de la perturbation, en accord avec la prédiction de la théorie du codage efficace. Notre méthode ouvre la voie à un test de la théorie du codage efficace dans des populations de neurones non linéaires. Configuration expérimentale: nous avons stimulé une retina de rat avec une barre mobile. Les réponses de la population de cellules ganglionnaires rétiniennes (RGC) ont été enregistrées de manière extracellulaire avec un réseau multi-électrodes. Les signaux d'électrode ont été filtrés par passe-haut et des pointes ont été détectées par passage de seuil. Nous avons calculé la probabilité de discrimination de la réponse de la population et adapté l'amplitude de la prochaine perturbation. B. À gauche: les réponses neuronales de 60 RGC classés sont projetées le long de l'axe passant par la réponse moyenne au stimulus de référence et la réponse moyenne à une grande perturbation. Les petits points sont des réponses individuelles, les gros points sont des moyens. Moyen: moyen et écart type (en gris) des projections de réponse pour différentes amplitudes d'une forme de perturbation d'exemple. À droite: répartition des réponses projetées à la référence (bleu), et aux petites perturbations (violet) et grande (rouge). La discrimination est élevée lorsque la distribution de la perturbation est bien séparée de la distribution de la référence. C. Probabilité de discrimination en fonction de l'amplitude A. La discrimination augmente en tant que fonction d'erreur, (1/2)[1 + erf(d /2)], avec d = c × A (ligne grise: ajustement). Les tiques sur l'axe x montrent les amplitudes qui ont été testées lors de l'expérience en boucle fermée. 
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Figure VI.6 -Le modèle de machine Boltzmann restreinte (RBM) prédit précisément les statistiques de réponse dans des fenêtres temporelles de 20 ms. A, RBM. Le RBM modélise la probabilité de réponses dans des fenêtres temporelles uniques. Il n'y a pas d'interactions directes entre les neurones (points remplis). Au lieu de cela, les neurones interagissent avec des unités cachées (cercles). B, taux de réponse des cellules. Chaque point représente la fréquence de réponse d'un neurone, dans un ensemble de réponses non utilisé pour l'apprentissage, ou prédit par le RBM. C, taux de décharge de la population. Distribution du nombre de potentiels d'actions dans la population au cours d'une fenêtre temporelle de 20 ms, calculée empiriquement, ou prédite par un modèle de neurones indépendants ou prédite par le RBM. La zone ombrée montre l'erreur standard. D, corrélations entre paires de neurones. Chaque point représente la corrélation de Pearson pour une paire de neurones, calculée empiriquement ou prédit par le RBM. E, Performance du modèle: fraction de la variance des corrélations expliquées par les modèles RBM, avec un nombre différent d'unités cachées, dans les ensembles de réponses utilisés pour l'apprentissage ou le test. La différence stable entre les deux ensembles suggère qu'il n'y a pas d'ajustement excessif. 

Conclusion

Nous avons présenté deux méthodes différentes pour modéliser l'activité des populations neuronales. Le modèle de couplage à la population est un modèle simple facile à apprendre, tandis que la machine Boltzmann restreinte est un modèle précis qui peut également expliquer les corrélations temporelles. Nous avons présenté deux méthodes différentes pour mesurer la sensibilité des neurones sensoriels. L'information de Fisher quantifie précisément la sensibilité dans une petite partie de l'espace de stimulation. Les mesures neurales peuvent caractériser les caractéristiques de réponse importantes pour discriminer les stimuli. Dans la rétine, les machines de Boltzmann restreintes peuvent être utilisées pour dériver des métriques neurales avec un pouvoir de discrimination élevé, uniquement à partir de la structure des réponses neuronales. Ces résultats pourraient être d'une grande aide pour concevoir des algorithmes pour les prothèses neurales et comprendre comment les neurones sensoriels encodent l'information, surtout si nous pouvons généraliser la mesure de leur sensibilité à des stimuli plus naturels.
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  Figure I.1 -Anatomy of the human eye. The retina covers the whole back of the eye. source:[START_REF] Blausen | Medical gallery of Blausen Medical 2014[END_REF] 

  Figure I.2 -Layered organization of the retina. Left: vertical section of the mouse retina. OS/IS: outer (green) and inner (dark) segments of photoreceptors, ONL: outer nuclear layer (blue), OPL: outer plexiform layer, INL: inner nuclear layer (bipolar cells in green, amacrine cells in pink), IPL: inner plexiform layer, GCL: ganglion cell layer (ganglion cells in red), NFL: optic nerve fibre layer (dark). Right: schema of the neural organization. 1: rods, 2: cones, 3: horizontal cells, 5: bipolar cells, 6: ganglion cells. Sources: Left: courtesy of Didier Hodzic. Right:[START_REF] Wässle | Parallel processing in the mammalian retina[END_REF] 
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 3 Figure I.3 -Simplified schema of the connectivity in the retina. P: photoreceptor, H: horizontal cell, B: bipolar cell, A: amacrine cell, G: ganglion cell. Chemical synapses are represented by circles (filled: excitatory, open: inhibitory) and gap junctions by resistor symbols. source:Gollisch and Meister (2010) 
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  Figure III.1 -A maximum entropy model for population coupling. A, Spikes trains are recorded with a multieletrode array and binned in 20ms time windows. We study the dependence between each neuron's binned response, σ i , and the population rate K, defined as the summed activity of all neurons. B-D, The linear-coupling model fits three observables with high accuracy: the population rate distribution (B), the cells firing rates (C), and population couplings (D). For each observable the model fit is plotted against empirical values.

  Figure III.2 -Tuning curves of single neurons as a function of the population rate. A-D, Spiking probability of neuron i conditioned on the summed activity of all other neurons, P (σ i = 1|K \i ), as observed in the data (black curves, standard error shaded in grey), and predicted by linear-coupling model (red curves). Each subfigure corresponds to a different representative cell. E, Histogram of the difference between the preferred population rate -at which the tuning curve is maximal -observed in the data, K * data , and predicted by the linear-coupling model, K * model . Data are shown for the 38 cells that had at least one local maximum both in the linear model and in the data. When the empirical tuning curve had 2 local maxima, the closest one to the model prediction was chosen. F, Histogram of the normalized Kullback-Leibler divergence between the observed joint distributions P (σ i , K) and its prediction by linear-coupling model. The arrows indicate the value for the four example cells A-D. The vertical line shows a normalized divergence of 2, meaning that cells sitting on its right deviate from the linear-coupling model by more than 2 standard deviations.

  Figure III.3 -Maximum entropy models of population coupling partly account for pairwise correlations. A-B,The observed correlation coefficient between all pairs of neurons is compared to its prediction according to the linear (A) and complete (B) coupling models. C, Distribution of pairwise correlation coefficients, as observed in the data and predicted by minimal, linear and complete coupling models.
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  Figure IV.1 -Perturbations shapes. We used the same 16 perturbation shapes for the 2 reference stimuli. The first 12 perturbation shapes were combinations of simple two Fourier components, and the last 4 ones were random combinations of them: f k (t) = cos(2πkt/T ), g k (t) = (1/k) sin(2πkt/T ), with T the duration of the perturbation and t = 0 the beginning of the perturbation. The first perturbations j = 1...7 were S j = f j -1. For j = 8, . . . , 10 they were the opposite of the three first ones: S j = -S j-7 . For j = 11, 12 we used S j = g j-10+1 -g 1 . Perturbations 13 and 14 were random combinations of perturbations 1, 2, 3, 11 and 12, constrained to be orthogonal. Perturbations 15 and 16 were random combinations of f j for j ∈ [1, 8] and g k for k ∈ [1, 7], allowing higher frequencies than perturbation directions 13 and 14. Perturbation direction 15 and 16 were also constrained to be orthogonal. The largest amplitude for each perturbation we presented was 115 µm. An exception was made for perturbations 15 and 16 applied to the second reference trajectory, as for this amplitude they had a discrimination probability below 70%. They were thus increased by a factor 1.5. The largest amplitude for each perturbation was repeated at least 93 times, with the exception of perturbation 15 (32 times) and 16 (40 times) on the second reference trajectory.
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 2 Figure IV.2 -Sensitivity of a neural population to visual stimuli. A.: the retina is stimulated with repetitions of a reference stimulus (here the trajectory of a bar, in blue), and with perturbations of this reference stimulus of different shapes and amplitudes. Purple and red trajectories are perturbations with the same shape, of small and large amplitude. B.: mean response of three example cells to the reference stimulus (left column and light blue in middle and right columns) and to perturbations of small and large amplitudes (middle and right columns).

Figure

  Figure IV.3 -Closed-loop experiments to probe the range of stimulus sensitivity.A. Experimental setup: we stimulated a rat retina with a moving bar. Retinal ganglion cell (RGC) population responses were recorded extracellularly with a multi-electrode array. Electrode signals were high-pass filtered and spikes were detected by threshold crossing. We computed the discrimination probability of the population response, and adapted the amplitude of the next perturbation. B. Left: the neural responses of 60 sorted RGCs are projected along the axis going through the mean response to reference stimulus and the mean response to a large perturbation. Small dots are individual responses, large dots are means. Middle: mean and standard deviation (in grey) of response projections for different amplitudes of an example perturbation shape. Right: distributions of the projected responses to the reference (blue), and to small (purple) and large (red) perturbations. Discrimination is high when the distribution of the perturbation is well separated from the distribution of the reference. C. Discrimination probability as a function of amplitude A. The discrimination increases as an error function, (1/2)[1 + erf(d /2)], with d = c × A (grey line: fit). Ticks on the x axis show the amplitudes that have been tested during the closed-loop experiment.

Figure IV. 4 -

 4 Figure IV.4 -Local model for responses to perturbations. A. The firing rates in response to a perturbation of a reference stimulus are modulated by filters applied to the perturbation. There is a different filter for each cell and each time bin. Because the model is conditionally independent across neurons we show the schema for one example neuron only. B. Raster plot of the responses of an example cell to the reference (blue) and perturbed (red) stimuli for several repetitions. C. Peristimulus time histogram (PSTH) of the same cell in response to the same reference (blue) and perturbation (red). Prediction of the local model for the perturbation is shown in green. D. Performance of the local model at predicting the change in PSTH induced by a perturbation, as measured by Pearson's correlation coefficient between data and model, averaged over cells(green). The data PSTH were calculated by grouping perturbations of the same shape and of increasing amplitudes by groups of 20, and computing the mean firing rate at each time over the 20 perturbations of each group. The model PSTH was calculated by mimicking the same procedure. To control for noise from limited sampling, the same performance was calculated from synthetic data of the same size, where the model is known to be exact (black).
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  Figure IV.5 -The Fisher information predicts the experimentally measured sensitivity. A. Sensitivity coefficients c for the two reference stimuli and 16 perturbation shapes, measured empirically and predicted by the Fisher information (Eq. IV.13 and the local model. The purple point corresponds to the perturbation shown in Fig. 2. Dashed line stands for best linear fit. B. Same as B, but for responses simulated with the local model, with the same amount of data as in experiments. The discriminability of perturbations was measured in the same way than for recorded responses. Dots and error bars stand for mean and std over 10 simulations. Dashed line stands for identity.

  Photoreceptor

  Fig. IV.7 we chose: H = 3.38 µm 2 s, Γ = 0.02 spikes 2 s and V = 307 spikes 2 s, δt = 20 ms, and L = 2, 500. In Fig. IV.7D, we plot the sensitivity to oscillating perturbation with fixed frequency ν, which results in I(ν)L/δt. In Fig. IV.7E we plot the spectral density of the transferred information
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  Figure V.2 -The Restricted Boltzmann Machine (RBM) model predicts accurately response statistics within single 20 ms time bins. A, RBM model. The RBM models the probability of responses in single time bins.There is no direct interactions between neurons (filled dots). Instead, neurons interact with hidden units (circles). B, Single cell firing rate. Each dot represents the spiking frequency of a neuron, in a testing set not used for learning, or predicted by the RBM. C, Population rate. Distribution of the number of spikes in the population during a time bin, in a testing set, predicted by a model of independent neurons or predicted by the RBM. Shaded area shows standard error. D, Pairwise correlations. Each dot represents the Pearson correlation for a pair of neurons, in a testing set or predicted by the RBM. E, Model performance, i.e. fraction of the variance of correlations explained by RBM models, with different number of hidden units, in the training and testing sets. The small difference between training and testing sets suggests that there is no over-fitting.

  Figure V.3 -The Temporal Restricted Boltzmann Machine (TRBM) model predicts well response statistics within multiple time bins. A, Temporal RBM model. The structure is similar to the RBM, but neurons and hidden units are connected across multiple time bins. The interaction between neurons and hidden units only depends on the delay between them: example interactions with same colors are equal. For simplicity, the model represented here only has interactions for delay 0 and 1 time bins. In general there can be interactions with larger time delays. B, Single cell firing rate. Same as Fig. VI.6B but for TRBM model. C, Population rate. Distribution of the number of spikes in the population during a 100 ms time window (5 consecutive time bins), in a testing set, predicted by a model of independent time bins and independent neurons, a model with independent RBMs in each time bin or a TRBM. Shaded area shows standard error. D, Pairwise correlation. Same as Fig. VI.6D but for TRBM model. E, Cross-correlation. Black line show the variance in cross-correlations between neurons with different time delays. Red and green lines show variance explained by RBM and TRBM respectively. Shaded area shows standard error. F, Model performance, i.e. fraction of the variance of cross-correlations between neurons with delays up to 140 ms explained by TRBM models, with different number of hidden units, in the training and the testing sets. G, Same as F, but varying the maximum connection delay between hidden and visible units.
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  Figure V.5 -RBM and TRBM metrics outperform classical metrics at discriminating responses. A, Mean discriminability of responses to different amplitudes of an example perturbation shape, for the optimized Victor Purpura metric or the RBM metric. Error bars: standard error. B, Each point represents the mean discriminability for responses with low, medium or high linear discriminability (Materials and Methods), for one reference trajectory and one perturbation shape, for the Victor Purpura or RBM metric. error bar: standard error. C, Same as B, but for RBM and TRBM metrics. D, Mean discriminability of responses with low discriminability, across all reference stimuli and perturbation shapes. Error bars: standard errors. Stars on top of bars show significant difference in mean discriminability (paired t-test, *,**,***: p value lower than 0.05, 0.01 and 0.001). Stars next to metric names indicate mean discriminability significantly larger than 0.5 (p <0.001,unpaired t-test). E,F, Same as D, for responses with medium and high discriminability. All distance had discriminability significantly larger than 0.5 (see Results).

  Figure V.6 -RBM and TRBM performances are not affected by large numbers of parameters.A, Mean discriminability of responses to perturbations, measured by the RBM metric for different numbers of hidden units. The discriminability increases with the number of hidden units, reaches a maximum and decays. It is not true if the difference between responses is measured by the semantic rather than Euclidean RBM metric. (Materials and Methods). B, Same as A, for a TRBM with maximum delay of 80 ms between neurons and hidden units.
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 1 Figure VI.1 -Mutual information for populations of different sizes N , computed for the Ising model and for the three population coupling models from Part III. The mutual information was computed for 30 random subpopulations, both for the Ising model and population coupling models. Error bars are standard deviations over different populations and reflect fluctuations between populations, not estimation error. Dotted line is the best quadratic fit between log N and log I.
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 3 Figure VI.3 -Taux de décharge de neurones individuels en fonction de l'activité globale A-D, Probabilité que le neurone i réponde, conditionné à l'activité additionnée de tous les autres neurones, P (σ i = 1|K \i ), telle qu'observée dans les données (courbes noires, erreur standard en gris) et prédite par un modèle de couplage linéaire (courbes rouges). Chaque sous-figure correspond à une cellule représentative différente. E, Histogramme de la différence entre la valeur de l'activité globale préférée -à laquelle le neurone répond le plus -observée dans les données, K * data et prédite par le modèle de couplage linéaire , K * modèle . Nous représentons 38 cellules ayant au moins un maximum local dans le modèle linéaire et dans les données. Lorsque la courbe de réponse en fonction de l'activité globale a 2 maxima locaux, le plus proche de la prédiction du modèle est choisi. F, Histogramme de la divergence de Kullback-Leibler normalisée, entre les distributions jointes observées P (σ i , K) et sa prédiction par le modèle de couplage linéaire. Les flèches indiquent la valeur pour les quatre exemples de cellules A-D. La ligne verticale montre une divergence normalisée de 2, ce qui signifie que les cellules à droite dévient du modèle de couplage linéaire de plus de 2 écarts types.

  Figure VI.4 -Expériences en boucle fermée pour sondes la gamme de sensibilité au stimulus. A. Configuration expérimentale: nous avons stimulé une retina de rat avec une barre mobile. Les réponses de la population de cellules ganglionnaires rétiniennes (RGC) ont été enregistrées de manière extracellulaire avec un réseau multi-électrodes. Les signaux d'électrode ont été filtrés par passe-haut et des pointes ont été détectées par passage de seuil. Nous avons calculé la probabilité de discrimination de la réponse de la population et adapté l'amplitude de la prochaine perturbation. B. À gauche: les réponses neuronales de 60 RGC classés sont projetées le long de l'axe passant par la réponse moyenne au stimulus de référence et la réponse moyenne à une grande perturbation. Les petits points sont des réponses individuelles, les gros points sont des moyens. Moyen: moyen et écart type (en gris) des projections de réponse pour différentes amplitudes d'une forme de perturbation d'exemple. À droite: répartition des réponses projetées à la référence (bleu), et aux petites perturbations (violet) et grande (rouge). La discrimination est élevée lorsque la distribution de la perturbation est bien séparée de la distribution de la référence. C. Probabilité de discrimination en fonction de l'amplitude A. La discrimination augmente en tant que fonction d'erreur, (1/2)[1 + erf(d /2)], avec d = c × A (ligne grise: ajustement). Les tiques sur l'axe x montrent les amplitudes qui ont été testées lors de l'expérience en boucle fermée.

Figure VI. 5 -

 5 Figure VI.5 -Modèle local pour les réponses aux perturbations. A. La probabilité des réponses à une perturbation correspond à la probabilité des réponse à un stimulus de référence, modulée par des filtres appliqués à la perturbation. Ce filtre est différent pour chaque cellule et chaque pas de temps. Étant donné que les neurones sont indépendant conditionnellement au stimulus, nous montrons le schéma pour un seul exemple de neurone. B. Réponses d'une cellule exemple aux stimuli de référence (bleu) et perturbé (rouge) pour plusieurs répétitions. C. Réponse moyenne de la même cellule au stimulus de référence (bleu) et à la perturbation (rouge). La prédiction du modèle local pour la perturbation est indiquée en vert. D. Performance du modèle local pour prédire la variation de PSTH induite par une perturbation, mesurée par la corrélation de Pearson entre données et modèle, moyennée sur les cellules (vert). Les réponses moyennes ont été calculées en regroupant des perturbations de même forme et d'amplitudes croissantes par groupes de 20 réponses. Pour contrôler le bruit provenant d'échantillons limités, la même performance a été calculée à partir de données synthétiques de même taille, où le modèle est connu pour être exact (noir).
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  Figure VI.7 -Les métriques RBM et TRBM surpassent les métriques classiques pour discriminer les réponses. A, Discrimination moyenne des réponses à différentes amplitudes d'une forme de perturbation, pour la mesure optimisée de Victor Purpura ou la métrique RBM. Barres d'erreur: erreur standard. B, Chaque point représente la discrimination moyenne pour les réponses avec une discriminabilité linéaire faible, moyenne ou élevée, pour une trajectoire de référence et une forme de perturbation, pour la mesure Victor Purpura ou RBM. Barre d'erreur: erreur standard. C, Identique à B, mais pour les métriques RBM et TRBM. D, Discrimination moyenne des réponses avec une faible discriminabilité, à travers tous les stimuli de référence et les formes de perturbation. Barres d'erreur: erreurs standard.Les étoiles au-dessus des barres montrent une différence significative dans la discrimination moyenne (test t, *, **, ***: p valeur inférieure à 0,05, 0,01 et 0,001). Les étoiles à côté des noms de métriques indiquent une discrimination significative significativement supérieure à 0,5 (p < 0.001, test t non apparié). E, F, Identique à D, pour les réponses avec une discrimination moyenne et élevée. Toute métrique a une discrimination significativement supérieure à 0,5.

Introduction The best material model of a cat is another, or preferably the same, cat.

  

	Arturo Rosenblueth & Norbert Wiener,
	Philosophy of Science, 1945
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VI -Discussion

Présentation

Une caractéristique importante des codes de la population est la synchronie des réponses des différents neurones. Cette ativité collective se manifeste notoirement dans les réponses corrélées de paires de neurones (Arnett, 1978), et par la dépendance de neurones individuels en l'activité de la population environnante (Arieli et al., 1996; Tsodyks et al., 1999). Ces corrélations, qu'elles soient évoquées par des stimuli communs ou qu'elles résultent d'interactions entre les neurones, impliquent que le code neuronal doit être étudié au niveau de l'activité collective plutôt q'au niveau de neurones individuels.

Étant donné que le nombre de réponses possibles d'une population augmente de façon exponentielle avec sa taille, ces réponses ne peuvent pas être échantillonnés de manière exhaustive pour de grandes populations. Plusieurs approches de modélisation ont été suggérées pour décrire les modèles d'activité collective de populations de neurones (Martignon et al., 1995; Schneidman et al., 2003 Schneidman et al., , 2006;; Pillow et al., 2008; Cocco et al., 2009; Tkačik et al., 2014). Dans ces approches, un petit nombre de statistiques (le taux de décharge de neurones par exemple, ou les corrélations entre paires de neurones) sont mesurées pour contraindre les paramètres des modèles. Les modèles sont ensuite évalués sur leur capacité à prédire des statistiques de l'activité de population qui n'ont pas été apprises. Ces modèles sont souvent difficiles à apprendre, et il faut habituellement recourir à des méthodes approximatives pour les inférer.

Présentation

La mesure de la sensibilité des populations de neurones sensoriels est encore une question débatue. Même dans la rétine, les cellules ganglionnaires peuvent répondre à des caractéristiques complexes du stimulus, et de telles caractéristiques ne sont pas toujours caractérisées (Gollisch and Meister, 2010). Leurs réponses sont hautement non linéaires (Barlow and Levick, 1965; Passaglia et al., 2001; Fairhall et al., 2006; Gollisch and Meister, 2010; Pitkow and Meister, 2012; McIntosh et al., 2016), stochastiques (Franke et al., 2016; Zylberberg et al., 2016), présentent des corrélations complexes (Arnett, 1978; Schneidman et al., 2006; Gardella et al., 2016) et ont grande dimensionalité. En outre, le codage de la population est synergique: un part de l'informations sur le stimulus ne peut pas être récupérée par des cellules uniques, mais seulement par des populations de neurones (Schneidman et al., 2011; Andoni and Pollak, 2011).

Les métriques neurales sont un outil puissant pour estimer la sensibilité de populations neuronales. Une métrique est une mesure de la dissemblance entre les réponses. Comme elles mesurent les différences dans les réponses provoquée par différents stimuli, elle fournissent une limite inférieure sur la précision avec laquelle les stimuli peuvent être discriminés (Machens et al., 2003; Narayan et al., 2006). De multiple mesures ont été proposées, mesurant la dissemblance entre les réponses en fonction de différentes caractéristiques telles que les temps des potentiels d'actions (Victor and Purpura, 1996; van Rossum, 2001), les intervalles les séparant (Victor and Purpura, 1996; Quiroga et al., 2002) ou des motifs temporels précis (Victor and Purpura, 1996; Berry II et al., 1997), pour des cellules seules ou des populations de neurones. En comparant la précision avec laquelle les différentes métriques neurales discriminent les réponses à différent stimuli, on peut étudier comment les neurones encodent les stimuli, par exemple en identifiant les caractéristiques des réponses qui sont informatives (Victor and Purpura, 1996), ou en mesurant la précision des temps de réponse et leur fiabil-

Abstract

How to discriminate visual stimuli based on the activity they evoke in sensory neurons is still an open challenge. To measure the discrimination power of a population of neurons, we search for a neural metric that preserves distances in stimulus space, so that responses to different stimuli are far apart and responses to the same stimulus are close. Here, we report that Restricted Boltzmann Machines (RBMs) provide such a distance-preserving neural metric. We first show that RBMs can accurately describe correlations in a populations of neurons in the rat retina. We then show that a new model, the temporal restricted Boltzmann machine can also accurately account for temporal correlations in the population. Finally, we show that even though RBMs and temporal RBMs are learned in a unsupervised way, with no information about the stimulus, neural metrics derived from them can discriminate stimuli with higher resolution than classical metrics.

Plusieurs modèles ont également été proposés pour décrire comment les réponses dépendent des stimuli visuels. Mais la diversité des réponses, au sein d'une population de neurones de la rétine et entre les espèces animales, a limité le succès de ces modèles à des types cellulaires ou à des stimuli spécifiques. Au lieu d'essayer directement de prédire les réponses aux stimuli, mon objectif ici est légèrement différent. Je vise à estimer la sensibilité d'une population de neurones à des stimuli visuels, tout en faisant aussi peu d'hypothèses que possible.

Les méthodes présentées ici ne se limitent pas à la rétine et peuvent être appliquées à toute population de neurones sensoriels en général. Cependant, la rétine est un système nerveux d'intéret particulier pour de nombreuses raisons:

Tout d'abord, la rétine est relativement simple à étudier expérimentalement. Sa structure plate permet d'enregistrer simultanément de grandes populations de neurones, composées de presque toutes les cellules codant pour une partie de l'espace visuel. Il n'y a pas non plus de rétroaction du cerveau, les populations neurales de la rétine ne sont donc influencées que par leurs dynamiques internes et par les stimuli.

Deuxièmement, plusieurs pathologies de la rétine peuvent conduire à la cécité. Des solutions pour rétablir la vision au niveau de la rétine sont donc d'un intérêt majeur, telles que des "rétines artificielles" imitant le traitement de la rétine. Afin de développer ces solutions, il est important de comprendre comment les neurones rétiniens représentent et transmettent l'information au cerveau.

Cette thèse est organisée comme suit:

Part I

Je commence par une courte introduction à la morphologie de la rétine, un fin réseau de neurones avec une organisation précise incluant de nombreux types cellulaires. Je montre que des fonctions complexes peuvent résulter de ce réseau complexe.

Part II

J'examine plusieurs modèles de corrélations dans les populations de neurones. Je me concentre sur les modèles qui peuvent être appliqués aux enregistrements expérimentaux de populations de neurones.

Part III

J'étudie les corrélations entre les cellules individuelles et l'activité globale de la population, et propose des modèles simples pour ces corrélations. Ces modèles révèlent des corrélations surprenantes entre les cellules et l'activité globale de la population.

Part IV

Je présente une nouvelle méthode pour étudier la sensibilité des populations de neurones non linéaires. Cette méthode utilise des expériences en boucle fermée et des modèles de réponses de la population à de petites perturbations du stimulus.

Part V

J'utilise des machines de Boltzmann restreintes pour modéliser les corrélations au sein d'une population de neurones. Je dérive ensuite des métriques neuronales à partir des machines de Boltzmann restreintes et montre qu'elles discriminent mieux les réponses que n'importe quelle métrique classique de la littérature.

Part VI

Je discute des modèles de populations de neurones et de la méthodologie pour estimer leurs pouvoirs de discrimination. ...