
HAL Id: tel-01931217
https://theses.hal.science/tel-01931217

Submitted on 22 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Supporting Clone-and-Own in software product line
Eddy Ghabach

To cite this version:
Eddy Ghabach. Supporting Clone-and-Own in software product line. Software Engineering [cs.SE].
COMUE Université Côte d’Azur (2015 - 2019), 2018. English. �NNT : 2018AZUR4056�. �tel-01931217�

https://theses.hal.science/tel-01931217
https://hal.archives-ouvertes.fr

Supporting Clone-and-Own
in Software Product Line

Eddy GHABACH
Laboratoire d’Informatique, Signaux et Systèmes de Sophia Antipolis (i3s)

Presented for the purpose of obtaining a
doctor’s degree in computer science
from Université Côte d’Azur
Supervised by: Mireille Blay-Fornarino
Co-supervised by: Franjieh El Khoury,
Badih Baz
Submitted on: July 11th, 2018

In front of the jury, composed of:
Jury president:
Philippe Lahire, Professor, Université Côte d’Azur
Reporters:
Abdelhak-Djamel Seriai, Maître de conférences,
HDR, Université de Montpellier
Tewfik Ziadi, Maître de conférences, HDR, Campus
Pierre et Marie Curie, Université Sorbonne
Examiner:
Laurence Duchien, Professor, Université de Lille
Supervisor:
Mireille Blay-Fornarino, Professor, Université Côte
d’Azur
Co-supervisor:
Franjieh El Khoury, Associated member, Laboratoire
Eric

DOCTORAL THESIS

Prise en charge du
« copie et appropriation »

dans les lignes de produits logiciels

Eddy GHABACH
Laboratoire d’Informatique, Signaux et Systèmes de Sophia Antipolis (i3s)

Présentée en vue de l’obtention
du grade de docteur en informatique
d’Université Côte d’Azur
Dirigée par : Mireille Blay-Fornarino
Co-encadrée par : Franjieh El Khoury,
Badih Baz
Soutenue le : 11 Juillet 2018

Devant le jury, composé de :
Président du jury :
Philippe Lahire, Professeur, Université Côte d’Azur
Rapporteurs :
Abdelhak-Djamel Seriai, Maître de conférences,
HDR, Université de Montpellier
Tewfik Ziadi, Maître de conférences, HDR, Campus
Pierre et Marie Curie, Université Sorbonne
Examinatrice :
Laurence Duchien, Professeur, Université de Lille
Directrice de thèse :
Mireille Blay-Fornarino, Professeur, Université Côte
d’Azur
Co-encadrante de thèse :
Franjieh El Khoury, Membre associé, Laboratoire
Eric

THÈSE DE DOCTORAT

ABSTRACT
A Software Product Line (SPL) manages commonalities and variability of a related software

products family. This approach is characterized by a systematic reuse that reduces development
cost and time to market and increases software quality. However, building an SPL requires an
initial expensive investment. Therefore, organizations that are not able to deal with such an
up-front investment, tend to develop a family of software products using simple and intuitive
practices. Clone-and-Own (C&O) is an approach adopted widely by software developers to
construct new product variants from existing ones. However, the efficiency of this practice
degrades proportionally to the growth of the family of products in concern, that becomes difficult
to manage. In this dissertation, we propose a hybrid approach that utilizes both SPL and C&O
to develop and evolve a family of software products. An automatic mechanism of identification
of the correspondences between the features of the products and the software artifacts, allows
the migration of the product variants developed in C&O in an SPL. The originality of this
work is then to help the derivation of new products by proposing different scenarios of C&O
operations to be performed to derive a new product from the required features. The developer
can then reduce these possibilities by expressing her preferences (e.g. products, artifacts) and
using the proposed cost estimations on the operations. We realized our approach by developing
SUCCEED, a framework for SUpporting Clone-and-own with Cost-EstimatEd Derivation. We
validate our works on a case study of families of web portals.

Keywords: SUCCEED, Software Product Line Engineering, Software Product Line Evolution,
Software Product Variants, Software Reuse, Software Derivation, Clone-and-Own, Feature
Location, Feature Model, Software Variability.

i

RESUMÉ
Une Ligne de Produits Logiciels (LPL) supporte la gestion d’une famille de logiciels. Cette

approche se caractérise par une réutilisation systématique des artefacts communs qui réduit le
coût et le temps de mise sur le marché et augmente la qualité des logiciels. Cependant, une LPL
exige un investissement initial coûteux. Certaines organisations qui ne peuvent pas faire face à
un tel investissement, utilisent le “Clone-and-own” (C&O) pour construire et faire évoluer des
familles de logiciels. Cependant, l’efficacité de cette pratique se dégrade proportionnellement
à la croissance de la famille de produits, qui devient difficile à maintenir. Dans cette thèse,
nous proposons une approche hybride qui utilise à la fois une LPL et l’approche C&O pour
faire évoluer une famille de produits logiciels. Un mécanisme automatique d’identification des
correspondances entre les “features” caractérisant les produits et les artéfacts logiciels, permet
la migration des variantes de produits développées en C&O dans une LPL. L’originalité de ce
travail est alors d’aider à la dérivation de nouveaux produits en proposant différents scenarii
d’opérations C&O à effectuer pour dériver un nouveau produit à partir des features requis. Le
développeur peut alors réduire ces possibilités en exprimant ses préférences (e.g. produits,
artefacts) et en utilisant les estimations de coûts sur les opérations que nous proposons. Les
nouveaux produits ainsi construits sont alors facilement intégrés dans la LPL. Nous avons
étayé cette thèse en développant le framework SUCCEED (SUpporting Clone-and-own with
Cost-EstimatEd Derivation) et l’avons appliqué à une étude de cas sur des familles de portails
web.

Mots clés: SUCCEED, Ingénierie des Lignes de Produits Logiciels, Evolution des Lignes de
Produits Logiciels, Variantes de Produits Logiciels, Réutilisation de Logiciels, Dérivation de
Logiciels, Clone-and-Own, Identification des Caractéristiques, Diagramme de Caractéristiques,
Variabilité Logicielle.

iii

ACKNOWLEDGEMENTS

Thank you God, you are the main source of my energy and reason of my success.

Thanks to my family, lovely parents and supporting brother, who all missed me during my
journeys in France. For sure, I couldn’t make it without you. Thanks for your endless support.

Thanks for the opportunity that gave me the French state to do my research on its land. I am
grateful to my research laboratory members I3S, and especially to the SPARKS team to which I
belong. A big thank you to Mireille Blay-Fornarino, who supervised my thesis during the past
years. I appreciate so much her patience, especially during the first period, since it was really
difficult to work together remotely. I would like to thank her for her continuous encouragement
and her enthusiasm, while she was supporting me with all required knowledge and time to
progress in my research, essentially during my journeys in France. It was a great honor for me
to work with her, and I was lucky to work with someone who has that much of experience and
knowledge in the research domain I chosen. I also thank my colleagues, Cécile Camilleri who
gave me access to Rockflows framework, Philippe Collet and Sebastien Mosser who provided
me with theirs advises.

Thanks to Université Saint-Esprit de Kaslik (USEK), my university in Lebanon, for facilitat-
ing my research mission and providing me with the necessary academic resources and access to
the digital library during my research period. Thanks to my co-supervisors, Franjieh El Khoury,
who supported me with her guidance and knowledge, reviewed my work, and encouraged
me throughout my research period, and Badih Baz, who supported me and believed in my
capabilities.

Thanks for the National Center for Scientific Research in Lebanon (CNRS-L) and the PHC
Cedre Program doctoral scholarships.

Thanks to the jury members for their precious opinions and for everyone reading this
dissertation.

v

ZA �ÜÏ @ ú

	
¯

�
H. ð

	
Y

��
K i

�

ÊÓ�

��
é
��
J.

�
k 	á

�
º

��
K B

ZAî
�
E.

�
©

�
¢�

��
�

�
I
�

K

�	P

��
é

�
¢

�
®

�	
K AÖ

��	
ß @
�

�
�

�
�.

�	
« ø

X
�
@

Don’t be a grain of salt that dissolves in water,
but a spot of oil that shines brightly

Eddy Ghabach

Ne soyez pas un grain de sel qui se dissout dans l’eau,
mais une tache d’huile qui brille vivement

Eddy Ghabach

TABLE OF CONTENTS

1 Introduction 1
1.1 Context and Motivation . 2
1.2 Running Example . 3
1.3 Challenges . 4
1.4 Contributions . 7
1.5 Organization of the Dissertation . 8

I Background and State of the Art 11

2 Background 13
2.1 Software Reuse . 14
2.2 Clone-and-Own Approach . 16
2.3 Software Product Lines . 17
2.4 Summary and Contribution Decisions . 28

3 Related Work 31
3.1 Software Product Line Adoption . 32
3.2 Product Derivation Support . 41
3.3 Software Product Line Evolution . 45
3.4 Summary and Contribution Choices . 48

II Approach Contributions 51

4 Migration process 55
4.1 Introduction . 56
4.2 Product Line Definition . 58
4.3 Correlations Identification . 63
4.4 Product Line Validation . 68
4.5 Product Line Limitations . 69
4.6 Summary . 71

5 Configuration Process 73
5.1 Introduction . 74
5.2 Configuration . 75
5.3 Configuration Modes . 78
5.4 Configuration Scenarios . 79
5.5 Derivation Operations . 83

vii

5.6 Summary . 87

6 Towards Cost-Estimated Derivation 89
6.1 Introduction . 90
6.2 Cost-Estimation . 90
6.3 Summary . 96

7 Derivation and Evolution Process 97
7.1 Introduction . 98
7.2 Product Derivation . 99
7.3 Product Line Evolution . 102
7.4 Summary . 108

III Implementation and Validation 109

8 SUCCEED Framework 111
8.1 Introduction . 112
8.2 Migration Process . 112
8.3 Configuration Process . 115
8.4 Derivation Process . 117
8.5 Evolution Process . 119
8.6 Summary . 120

9 Approach Validation 121
9.1 Introduction . 122
9.2 Validation . 122
9.3 Limitations . 125
9.4 Threats to Validity . 125
9.5 Summary . 126

IV Conclusion and Perspectives 133

10 Conclusion and Perspectives 135
10.1 Conclusion . 136
10.2 Perspectives . 138

List of Abbreviations 141

List of Figures 143

List of Tables 145

List of Algorithms 147

Table of Objectives 149

Table of Definitions and Properties 151

Table of Examples 153

Table of Listings 155

Bibliography 157

CHAPTER 1

INTRODUCTION

Contents
1.1 Context and Motivation . 2

1.2 Running Example . 3

1.3 Challenges . 4

1.4 Contributions . 7

1.5 Organization of the Dissertation . 8

1

1.1. Context and Motivation Chapter 1. Introduction

1.1 Context and Motivation

In software industry, many are the organizations that develop a family of software products
for a group of customers, that belong to the same market segment. These organizations vary in
size, in terms of staff, intellectual and financial resources, from start-ups and small organizations
to large enterprises [TH03].

In general, large enterprises study and identify their market segment and product portfolio,
as an initial step, before starting the development process [CN01, PBV05]. Similarly to other do-
mains in industry, such as automotive industry, mass customization is adopted by organizations
that focus on developing and maintaining a family of software products instead of developing
many individual products [Kru01, PBV05]. Therefore, they are able to determine the main
features of the family of products to develop, and plan to develop these products in a way
that allows their reuse. Some of these organizations adopt Software Product Line Engineering
(SPLE) approach, which consists on developing artifacts adaptable in several products in a
domain engineering process, before deriving the products in an application engineering process
by exploiting the developed artifacts [WL99, PBV05, DSB05, LSR07, ACR09]. A Software
Product Line (SPL) is a set of software products that belong to the same domain and have some
characteristics in common [CN01]. These characteristics are known as features [BLR+15]. A
Feature Model (FM) is one of the abstract representations of SPL products variability [KCH+90].
A configuration is a selection of features that respects the constraints imposed by the FM and
generally reflects a product of the SPL [BEG+11]. SPLs permit a systematic reuse of software
artifacts, which reduces development cost and increases time to market and software qual-
ity [TH03, PBV05].

Developing the artifacts of an SPL through the domain engineering process, before deriving
new products throught an application engineering phase, is considered as a large and expensive
up-front investment, that several organizations are not able to afford [PBV05]. Therefore, in
practice, most small organizations do not develop an SPL from scratch [AM14], but often, start
with developing a successful product, that grows later on into a family of products [BBS11].
For instance, a start-up or a small organization aiming to develop software products, focuses
on providing high quality and fast delivered products to its very new customers, in order to
position itself on the market and attract more customers. Thus, it concentrates on developing
a single product at a time without planning for future products releases. Short-term thinking
prevents some organizations from initially predicting that they are going to develop a family
of products, and they realize it when customers requirements emerge over time. Consequently,
this prevents organizations from investing enough time and resources to support and manage
reuse during development process [DRB+13]. Such organizations develop software products
by adopting a simple ad-hoc technique such as copy-paste-modify [ZFdSZ12, Mar16], or the
well-known Clone-and-Own (C&O) adopted when developing products through a Version
Control System (VCS). C&O is an approach that consists in cloning an existing Product Variant
(PV) then modifying it to add and/or remove some functionalities in order to obtain a new
PV [ZPXZ12, DRB+13, FLLHE14, LBC16]. Due to simplicity, availability and rapidity that it
provides, this approach is practically adopted by many organizations as “favorable and natural”
solution to develop a family of related software systems [DRB+13]. Although being a time and
cost saving practice, C&O might turn into an expensive and inefficient solution if tracking about
the artifacts existing in several clones is lacked, which produces an incertitude in identifying the
PV(s) to be considered as source for cloning [DRB+13, AM14, LBC16].

2

1.2. Running Example Chapter 1. Introduction

A possible alternative is the migration of the existing PVs into an SPL, in order to man-
age their variability and benefit from a systematic reuse [CN01]. This process is known as
extractive [Kru01] or bottom-up [MZB+15b] adoption, or re-engineering [ZHP+14, AM14,
ALHL+17] of software product lines. As per Ziadi et al., a manual reverse engineering is error-
prone and time-consuming [ZFdSZ12]. Thus, an automated approach is required to integrate
the existing PVs into an SPL.

Evolving a family of software products consists often in deriving new variants by reusing
the existing ones. Despite that SPLs provide systematic reuse, due to variability management,
product derivation is restricted to the product line portfolio. Hence, deriving new products
consists of evolving the SPL at both domain and application engineering levels, a task that is
considered complex due to variability and interdependency between products [BP14].

Several works in literature have proposed extractive SPL adoption frameworks and ap-
proaches to enhance C&O [AmSH+13, RC13a, FLLHE14, MZB+15b]. These frameworks
disparately allow the integration of existing PVs, support their systematic reuse and enhance
C&O with possible derivation – automated or sometimes assisted with hints – and integration of
new PVs. However, these approaches do not provide software engineers with the freedom that
C&O offers them to create new PVs. In C&O, during product derivation, software engineers are
the decision makers. The “own” is gained when software engineers are aware how the product is
constructed, since they decide what and how to clone. The proposed approaches aim to automate
the clone and impose their solution on software engineers, that are not able to recognize from
which PVs the artifacts of the derived PV where cloned. C&O practitioners consider that any
alternative approach, in order to convince them, must offer the advantages provided by C&O
such as availability, simplicity and independence [DRB+13].

1.2 Running Example
We illustrate in the upcoming example, three PVs for managing soccer matches1. The

PVs are web applications implemented using markup (HTML), style sheet (CSS), scripting
(JavaScript), and object-oriented (Java classes and servlets) languages.

Table 1.1: Running example product variants with their corresponding features

Product Feature
ManageMatches AddMatches ModifyMatches DeleteMatches

p1 X X X
p2 X X X X
p3 X X

Table 1.1 shows the business functionalities – a.k.a features – implemented by each variant,
and Table 1.2 shows an excerpt of the files – a.k.a. assets – used by each variant to implement the
features, and their corresponding versions. Product p1 allows to manage, add and modify matches.
Product p2 allows to delete matches in addition. Product p3 allows to manage and add matches
only. For simplicity and to make the example comprehensive, we show in Table 1.2 only an
excerpt of the assets, and we represent the assets by their names and not their relative path within

1The implementation files of the PVs of the running example are available on the following git repository link:
https://github.com/eddyghabachi3s/SoccerManager

3

1.3. Challenges Chapter 1. Introduction

the projects. For instance, DeleteMatch.java refers to src/Match/DeleteMatch.java. Fig-
ure 1.1 shows the main interfaces of the 3 variants. We demonstrate our approach on this running
example throughout the dissertation.

Table 1.2: Running example product variants with an excerpt of their corresponding assets

Product Assetversion

p1

match.jsp1

SaveMatch.java1

style.css1

p2

match.jsp1

SaveMatch.java1

style.css2

DeleteMatch.java1

p3

match.jsp1

SaveMatch.java2

style.css3

1.3 Challenges
In this section, we identify the challenges that might face an organization at development

level when constructing and evolving a family of software products. In our dissertation, we
do not address other aspects such as organizational challenges that were addressed widely by
Bosch [Bos10, BBS11].

Challenge 1: Supporting the derivation of new product variants
How to guide software engineers to derive new product variants?

A family of software products is composed of a set of products that are developed to respond
to the requirements of a group of customers that belong to the same market segment. Thus,
these products share a set of common characteristics, while they differ from each other due to
some variable characteristics that are implemented by some products and not by others, and
product specific characteristics where each is implemented specifically by a single product
of the family [BP14]. Arising customer requirements and technology changes necessitate the
development of new product variants. Hence, the derivation of a new product variant is needed
whenever the family of software products does not offer a variant that implements all and only
the required features. Given the family of products presented in the running example, to deliver
a product that allows to manage, add and delete matches, a new product variant – say p4 – has
to be derived, since none of the existing variants implements all and only the requested features.

Challenge 1.a: Mapping features to assets
How to determine which assets contribute in the implementation of each feature?

When the derivation of a new product variant is needed, reusing the artifacts of existing
variants is advantageous. To do so, first the features implemented by each existing product

4

1.3. Challenges Chapter 1. Introduction

(a) Product p1 main interface

(b) Product p2 main interface

(c) Product p3 main interface

Figure 1.1: Main interfaces of the running example variants

variant have to be identified. For instance, to reuse the feature DeleteMatches to derive p4,
one must know that it is implemented only by product p2. The implementation of a feature is
realized in one or more assets of the products that implement the feature. Therefore, identifying
the assets that contribute in the implementation of a certain feature is necessary for reuse in
order to determine which assets are required for the derivation of the new product.

Challenge 1.b: Identifying the possible scenarios and operations to achieve the deriva-
tion
What are the products or combinations of products that can be a source of reuse to achieve
the derivation, and respectively, what are the operations that must be performed on the cloned
assets to construct the new product?

A feature required for the derivation of a new product can be implemented by several
existing products. Further, the set of the required features can be spread on several products
which necessitate the reuse of assets that belong to different products. Thus, determining the
combinations of products that implement the set of required features for the derivation is a major
task. An existing product might implement some features that are not required for the derivation

5

1.3. Challenges Chapter 1. Introduction

of the new product, and therefore, those features must be identified. For instance, a possible
scenario to derive p4 is to clone p2 and remove from the clone the implementation fragments
corresponding to feature ModifyMatches. Consequently, the assets of those products that
implement the required features might implement also some unrequired features. Hence, for
each required asset that has to be cloned, the operation that must be performed on it has to be
specified. For example, considering that the asset SaveMatch.java of the product p2 is mapped
to the feature ModifyMatches, since the latter is not required, the operation to be performed
on the asset SaveMatch.java is to clone it and remove from it the implementation fragments
corresponding to ModifyMatches.

Challenge 1.c: Facilitating derivation choices
What might be the selection factors and indicators that help software engineers to make the
derivation choices? What is the cost to perform each asset level operation? Respectively, which
scenario provides the least expensive derivation cost?

Several scenarios might be available to achieve the derivation, for instance, based on what a
software engineer can decide to derive p4 either by cloning p2 and removing from the clone the
code fragments related to ModifyMatches, or by cloning p3 and extracting the code fragments
related to DeleteMatches from p2 and integrate it in the clone. One selection factor could be
her preference to work with p2 (that she is more familiar with) or p3 (that is the recent derived
product) . Further, some of the assets corresponding to the products of a possible scenario may
require only to be cloned without being modified since they are mapped only to the required
features. Other assets require to be cloned and modified in order to remove implementation
fragments corresponding to unrequired features. Moreover, several asset level operations might
be identified to construct the asset implementing the required features. For instance, referring to
Table 1.2, there exists 3 versions of style.css, hence, an operation might consist of removing
some features from a version, while another operation might consist of collecting features from
several versions. Since several scenarios (combinations of products) and several asset level
operations can be identified, the selection of the appropriate scenario and operations might
become a difficult task. Therefore, providing valuable indicators to software engineers about the
products of each scenario and the assets of each operation can facilitate their derivation choices,
since they will be able to construct the derivation scenario based on their own preferences.
Moreover, estimating the cost of an asset level operation and respectively the cost of a possible
scenario can facilitate the selection of the operations to perform to achieve the derivation.

Challenge 2: Evolving the family of software products
How to integrate the newly derived variants in the family of software products?

The derivation of new products involves the definition of new features and the construction
of new assets. Integrating the newly derived products into the family of software products
is necessary to allow their reuse in future derivations. Moreover, the artifacts added during
derivation can enhance the derivation of more products.

Challenge 2a: Helping to structure features when adding a new variant
How to update the structure of the features of the family of products to integrate the features
added during the configuration?

6

1.4. Contributions Chapter 1. Introduction

The derivation of new products comes mostly from the need of new features that were not
offered by the existing products. Hence, it is important to allow software engineers to simply
define those features during the configuration of a new variant. Furthermore, once the variant
is integrated into the family of software products, its new features must be integrated as well.
Hence, it is necessary to update the structure of the features of the family of products, and
redefine the constraints that manage their selection.

Challenge 2b: Managing the addition of new products
How to support the integration of the newly derived products by clone-and-own into the family
of products? How to guarantee that the integration of a new product does not prohibit the
derivation of existing ones?

It is important to allow a smooth and incremental integration of the newly derived products
into the family of software products in order to benefit from their systematic reuse in future
derivation and employ their new artifacts to derive new products. Consequently, it is necessary
to determine the impact of this integration on the family of products to guarantee that evolving it
by integrating new products preserves the derivation of the existing ones as well.

1.4 Contributions
In this dissertation, we address the development of a family of software products based on

C&O. We focus on the segment of software engineers that are familiar with C&O and looking
for support during the derivation of PVs. Thus, the main goal of this dissertation is to support
software engineers in deriving new PVs based on C&O. To fulfill this goal, we propose a hybrid
approach that allows on the one hand an automated derivation of existing PVs after migrating
them into an SPL, and on the other hand it supports the derivation of new PVs based on C&O
by providing the possible operations to perform at asset level, in order to derive the desired
product. To facilitate the choice of the operations to perform during product derivation, we
define correlation indicators and functions in order to estimate the cost of an operation. Hence,
software engineers can rely on their own preferences and the proposed cost estimations in order
to achieve the derivation. To enable SPL evolution, our approach permits the integration of the
newly derived products in the established SPL. The contributions of our approach are as follows:

1. The first contribution consists of a novel light mechanism to determine mappings between
features and assets, while migrating the existing PVs into an SPL. We define those
mappings as correlations. Correlations serve in facilitating reuse and maintenance, since
they allow to determine which assets contribute in the implementation of each feature.
Meanwhile, the migration of the existing PVs into an SPL enables also their automated
derivation.

2. In the second contribution, we aim to support software engineers in deriving new PVs
based on C&O. Instead of imposing a single solution, we propose the possible configu-
ration scenarios by means of operations to perform at asset level, in order to derive a
new product variant. A configuration scenario provides a top-down overview, specifying
the combination of products to rely on, and the features to retain or remove from them
in order to construct the desired product. We assign to each configuration scenario, the
operations to perform in order to accomplish the derivation. Operations consist of the

7

1.5. Organization of the Dissertation Chapter 1. Introduction

actions to be made at asset level, such as removing or extracting the implementation frag-
ments corresponding to a certain feature. We auto-generate an FM based on the identified
configuration scenarios and operations. The generated FM can be configured either by
choosing one of the proposed configuration scenarios, or by selecting for each required
asset one of its proposed operations, regardless the configuration scenarios. Moreover, the
generated FM allows a software engineer, whenever possible, to prevent operations that
correspond to a product or a version of an asset that she is not familiar with.

3. The third contribution consists on providing a cost estimation of the operations to perform,
and respectively the proposed configuration scenarios. In order to facilitate the choice of
an operation or a configuration scenario, we define correlation indicators and functions
that allow to estimate the cost of a certain operation. Software engineers can rely on the
estimated cost as a valuable selection parameter while deriving a new product.

4. The fourth contribution consists of providing a reactive SPL evolution by allowing an
incremental integration of the newly derived products in the SPL. This integration coin-
cides with an incremental update of the correlations. The integration of the newly derived
products into the SPL permits their automated derivation as well as the existing ones and
allows the reuse of their artifacts in future derivations.

We realized our approach by developing a framework for SUpporting Clone-and-own with
Cost-EstimatEd Derivation (SUCCEED). SUCCEED provides an incremental integration of
PVs into an SPL and a guided derivation of new PVs based on the approach that we propose in
this dissertation. We evaluated our approach on the incremental derivation of 5 products based
on an initial product line of 3 products.

1.5 Organization of the Dissertation
This dissertation is organized into four parts.

Part I presents the literature review and consists of two chapters:

— In Chapter 2, we present the background in which we demonstrate the two reuse practices
that we rely on to construct our approach which are Clone-and-Own and Software Product
Lines. In this chapter, we point on the necessity of reuse, and we clarify the purpose of the
hybrid approach that we adopt, by taking benefits and avoiding drawbacks of each of the
two presented practices.

— In Chapter 3, we present the related works, and we position our work compared to them.
On this basis, we identify our contributions choices.

Part II presents our approach contributions and it consists of four chapters:

— In Chapter 4, we provide our definition of an SPL and demonstrate the process of
migrating PVs into it. Further, we present the mechanism of identifying correlations.

— In Chapter 5, we present the configuration process, and we demonstrate how we identify
for each configuration its possible configuration scenarios and operations to perform.

— In Chapter 6, we define correlation indicators and functions that we use to estimate the
cost of a certain operation, and respectively the cost of a configuration scenario.

8

1.5. Organization of the Dissertation Chapter 1. Introduction

— In Chapter 7, we present the derivation and evolution process, in which we demonstrate
how we support the derivation with a constraints system allowing software engineers to
select favorable configuration scenario and operations based on their own preferences and
the proposed cost estimation. Furthermore, we demonstrate how a newly derived product
can be integrated in the SPL and how correlations and FMs are updated.

Part III presents the SUCCEED framework and approach validation:

— In Chapter 8, we present SUCCEED, the framework that we developed to implement and
test our approach.

— In Chapter 9, we evaluate our approach on a case study that consists of a product line of
8 product variants.

Part IV concludes the dissertation:

— In Chapter 10, we conclude the dissertation by summarizing its contributions and expos-
ing the perspectives of this work.

9

1.5. Organization of the Dissertation Chapter 1. Introduction

10

Part I

Background and State of the Art

11

CHAPTER 2

BACKGROUND

Contents
2.1 Software Reuse . 14

2.2 Clone-and-Own Approach . 16

2.2.1 Definition . 16

2.2.2 Benefits and Drawbacks . 16

2.3 Software Product Lines . 17

2.3.1 Definition . 17

2.3.2 Software Product Line Engineering 18

2.3.2.1 Domain Engineering 19

2.3.2.2 Application Engineering 21

2.3.3 Benefits and Drawbacks . 21

2.3.4 Variability Management . 23

2.3.5 Feature Model . 24

2.3.6 Product Configuration . 26

2.3.7 Product Derivation . 27

2.4 Summary and Contribution Decisions . 28

13

2.1. Software Reuse Chapter 2. Background

2.1 Software Reuse
In software industry, same as any domain in business industry, supplier interests contradict

with customer interests [TH03]. A supplier aims to deliver a product with the minimum
development effort and the maximum profitability, while a customer aims to receive the product
in a short period of time, providing a set of required functionalities adapted for her needs.
Responding to the intensive market demands, put suppliers in front of challenges that start early
at the analysis and design activities in the software development life cycle and do not end after
delivering the software product. Those challenges are:

— Cost & Effort: develop the software product with the lowest cost and minimum effort.

— Quality: ensure a high software quality in terms of efficiency and effectiveness.

— Delivery: deliver the software product in a short period of time.

— Maintenance: provide a quick and smooth maintenance of the software product when
needed.

In July 2017, similarily to preceding years, the Gartner Group announces that “enterprise
software” spending will have the highest annual growth rate in the IT sector in 2018, with
forecasts of 8.6 percent for 2018 [Gro17]. In fact, this indicator reflects the large amount of
functionalities offered in today’s enterprise software systems, to serve the progressing amount of
customer requirements. Standardized mass products could not satisfy the particular requirements
of all customers. Therefore, mass customisation became a need to respond to the high demand
for individualized products [PBV05].

“ Mass customisation is the large-scale production of goods tailored to
individual customers’ needs.

[DAV87]

Although individualized products differ from each other by providing specific functionalities,
they belong to the same market segment, and therefore, have a large portion of functionalities
in common. The increase of customer requirements raises up several problems, due to the
growth of the software size and respectively the development complexity. These problems can
be identified as follows [TH03]:

— A functionality may behave differently in various products.

— A functionality may be redeveloped in various products.

— A change to a functionality in a certain product may not be propagated to the other
products implementing it.

— A change to a functionality has to be repeatedly done on the products implementing it.

14

2.1. Software Reuse Chapter 2. Background

To cope the challenges and avoid the problems listed above, software developers rely on
software reuse defined by Kang as "the process of implementing new software systems using
existing software information" [KCH+90].

“ Software reuse is the process of creating new software by reusing
pieces of existing software rather than from scratch.

[KRU92]

Code reuse is a practice that software developers rely on to save time and efforts by
reusing predefined methods, ready-made libraries and off-the-shelf software components.
Moreover, reuse can be applied on model components, architecture components, documen-
tation and test cases. In software development, several approaches are adopted to enforce
reuse, such as Model-Driven Engineering [Sch06, AR13], Component-Based Software Develop-
ment [JLL05], Service Oriented Software Engineering [BL07] and Feature Oriented Software
Development [KLD02, KA13, ABKS16]. Moreover, ad-hoc reuse practices, such as copy-
paste-modify and clone-and-own are adopted by several organizations to derive new product
variants [ZPXZ12, DRB+13].

“ The Feature-Oriented Reuse Method concentrates on analyzing and
modeling a product line’s commonalities and differences in terms of features
and uses this analysis to develop architectures and components.

[KLD02]

In this dissertation, we focus on adopting reuse in feature-oriented software development. In
this context, practically software reuse is performed either by applying the clone-and-own
approach as a convenient and quick solution for light development projects [DRB+13,
LBC16] or Software Product Line Engineering as platform-based solution for complex
development projects [CN01, TH03, PBV05].

OBJECTIVE 1:
REUSE IN FEATURE-ORIENTED SOFTWARE DEVELOPMENT

15

2.2. Clone-and-Own Approach Chapter 2. Background

2.2 Clone-and-Own Approach

2.2.1 Definition
Clone-and-own is an approach that consists on cloning an existing product variant, then

modifying it to add and/or remove some functionalities, in order to obtain a new product
variant [ZPXZ12, DRB+13, FLLHE14, LBC16]. Due to the extensive existence of open source
projects and public repositories, clone-and-own became the trending favorite and natural cloning
approach adopted by software developers. Although cloning is done at different software
development stages, it occurs more often at the code level [DRB+13].

“ The Clone-and-Own is a common practice in families of software
products consisting of reusing code from methods in legacy products in new
developments.

[LBC16]

2.2.2 Benefits and Drawbacks
Considering clone-and-own as a software reuse approach is due to the following benefits

that it provides [DRB+13]:

— The availability of the software variants that are generally hosted on public remote or
local sites.

— The simplicity of cloning an existing software variant into a new one ready for modification.

— The rapidity to perform the clone and start the modification process.

— The specified and verified functionality already implemented in the cloned product variant.

— The freedom that the software developer benefits from to make any modification, without
being dependent on the product variant from which the clone was made.

Although being a time and cost saving approach, clone-and-own confronts several draw-
backs [DRB+13]:

— The lack of information about the connection between clones.

— The difficulty in propagating changes made on a product variant to other product variants,
due to the lack of connection information and the inability of automatically determining
the product variants that require the change.

— The repetitive tasks performed on several product variants, for example, in order to
propagate a change, which makes the maintenance process very expensive and complex.

— The incertitude in identifying the product variant(s) to be considered as the source for
cloning.

16

2.3. Software Product Lines Chapter 2. Background

— The lack of reuse tracking about the artifacts existing in several clones. This information
is not consolidated except in the developers mind.

Despite its drawbacks, Dubinsky et al. [DRB+13] showed through a study, conducted on six
software product lines, and realized via code cloning, that C&O is widely adopted by software
developers, who consider it the simplest and natural approach for reuse. They affirm that “it
accelerates development, since they use what they already have; it saves time and, therefore,
it saves money” [DRB+13]. Moreover, in their study about industrial SPLs, Dubinsky et al.
affirm that, any approach that can be considered as an alternative for cloning has to provide the
simplicity and availability provided by cloning.

Since it is a fact that no alternative approach is more efficient than cloning in the early
development stages of a family of software products, and clone-and-own is the predominant
approach adopted by software developers, we focus on adopting clone-and-own as the
starting point in any solution addressing product variants development.

OBJECTIVE 2:
ADOPTING CLONE-AND-OWN AS A STARTING POINT

2.3 Software Product Lines

2.3.1 Definition
Standard software products lack diversification and consequently fail to satisfy customer

needs [PBV05]. Taking into account customer requirements by delivering individualized prod-
ucts requires a large investment from the product developer and increases the development cost.
Software product lines were invented as a solution that combines platform-based development
and mass customization, allowing a reduction of the development cost and a large variety of
products [PBV05].

“ A software product line is a set of software-intensive systems sharing
a common, managed set of features that satisfy the specific needs of a partic-
ular market segment or mission and that are developed from a common set of
core assets in a prescribed way.

[CN01]

Using an SPL approach, a product is not implemented from scratch. Yet, it is integrated in
the SPL by exploiting its variability mechanism, reusing components and adding the missing
ones [TH03].

17

2.3. Software Product Lines Chapter 2. Background

“ Core assets are those reusable artifacts and resources that form the
basis for the software product line. Core assets often include, but are not
limited to, the architecture, reusable software components, domain mod-
els, requirements statements, documentation, specifications, performance
models, schedules, budgets, test plans, test cases, work plans, and process
descriptions.

[NCB+07]

2.3.2 Software Product Line Engineering
Software Product Line Engineering (SPLE) was raised on top of a theory born in 1980s

based on increasing economy of scale by adopting a constructive reuse of software artifacts.

“ Product line engineering is a process that delivers reusable compo-
nents, which can be reused to develop a new application for the domain.

[TH03]

As per Northrop et al. [Nor02, NCB+07], the product line development is composed of
three main activities: (as shown in Figure 2.1)

— Core asset development: the core asset development activity consists on developing the
core assets to be used as ingredients for product derivation. This activity takes as an
input the product constraints including the commonalities and variations, the production
constraints and strategy defining how the product line is going to be built, and the pre-
existing assets. The output of the core asset development activity is the core assets
themselves, in addition to the product line scope and the production plan that defines the
process to be used to derive the products.

— Product development: the product development activity takes as an input the three
outputs of the core asset development activity, in addition to the individual requirements
of the product to be produced. The derivation of a product can affect the output of the core
asset development activity; therefore, this process is iterative. The output of this activity
is the products themselves.

— Management: the core asset development and product development activities must be
accompanied by technical and organizational management. The technical management
activity ensures that the core assets development and the product development activities
follow the process defined for the product line. The organizational management defines
the structure of the company and guarantees that its organizational units are receiving the
required resources to build the product line.

18

2.3. Software Product Lines Chapter 2. Background

“ The product line scope is a description of the products that will
constitute the product line or that the product line is capable of including.

[NCB+07]

Figure 2.1: Software Product Line Activities [Nor02]

Several works in literature [WL99, PBV05, DSB05, LSR07, ACR09] define a SPLE as a
process composed of two sub processes: domain engineering or development for reuse, and
application engineering or development with reuse. The first consists on defining the core
assets while the second exploits the core assets to derive products. Each sub process is divided
into a problem space that represents the features describing the products of the SPL and a
solution space that implements those features using a variability mechanism. Figure 2.2 shows a
framework for SPLE proposed by [PBV05].

2.3.2.1 Domain Engineering

Domain engineering consists on defining the scope of the SPL, the common and variable
functionalities provided by the SPL in a reference architecture, a variability model, the reusable
artefacts, and the products implemented by the SPL. As per Pohl et al. [PBV05], domain
engineering is composed of the following sub-processes:

1. Product management: determine the scope of the SPL and a product roadmap identifying
the common and variable features.

19

2.3. Software Product Lines Chapter 2. Background

2. Domain requirements engineering : collect and document common and variable re-
quirements of the SPL.

3. Domain design: define the architecture of the SPL that provides a high-level structure of
all the products by means of a variability model.

4. Domain realization: design and implement the reusable software components.

5. Domain testing: validate the reusable components and verify the implementation of the
requirements that they are supposed to implement.

Figure 2.2: Software Product Line Engineering Framework [PBV05]

“ Domain engineering is the process of software product line engineer-
ing in which the commonality and the variability of the product line are
defined and realized.

[PBV05]

Arango defines domain engineering as a process composed of three domain activites [Ara89]:

20

2.3. Software Product Lines Chapter 2. Background

1. Domain analysis: identify reusable information to be used to specify and implement the
system.

2. Infrastructure specification: define the infrastructure of the reusable components.

3. Infrastructure implementation: implement the reusable components.

2.3.2.2 Application Engineering

Application engineering consists on exploiting the reusability defined in domain engineering
in terms of common and variable artifacts to derive products from the SPL.

“ Application engineering is the process of software product line en-
gineering in which the applications of the product line are built by reusing
domain artefacts and exploiting the product line variability.

[PBV05]

Pohl et al. [PBV05] map the domain engineering sub-processes into the following applica-
tion engineering sub-processes, used to derive an application from the SPL:

1. Application requirements engineering: identify the requirements specification of a
particular application. A major concern is the identification of particular application
requirements that are not part of the domain requirements. This situation may impact the
SPL by affecting its artifacts to integrate those requirements and their related artifacts at
the SPL domain engineering level.

2. Application design: configure the required parts of the domain architecture in order to
specify the application design.

3. Application realization: create the application by selecting and configuring the reusable
software components provided by the domain realization sub-process at the domain
engineering level.

4. Application testing: validate and verify the derived application against its requirements
specification.

2.3.3 Benefits and Drawbacks
As per Bosch [BBS11], the key of success behind SPLs is reusability. He affirms that “the

key success factor of software product lines is that it addresses business, architecture, process
and organizational aspects of effectively sharing software assets within a portfolio of prod-
ucts” [CBK+13]. Reusing artifacts during SPLE comes up with the following benefits [PBV05]:

— The reduction of development cost since an artifact developed once, can be reused in
several software products. Although an upfront investment is expensive compared to single
system development, an impressive return on investment can be gained after delivering a
certain number of systems, as shown in Figure 2.3.

21

2.3. Software Product Lines Chapter 2. Background

— The improvement of software quality since an artifact used in several products is tested
and its functionalities are verified in different implementations. Moreover, a detected bug
can be corrected and the correction is propagated to the products employing the artifact.
Consequently, a high software quality increases the customer trust.

— The shortening of delivery time by reducing the development cycle, since many existing
artifacts can be reused instead of being developed from scratch. Figure 2.4 shows that
developing common artifacts makes delivery of early developed systems slow, but as long
as the architecture becomes mature, time to market becomes faster.

— A better domain understanding by applying a global analysis of requirements and an
architecture covering the whole domain. This can help the organization to train its
personnel on using the SPL.

Figure 2.3: Costs for developing n kinds of systems as single systems compared to product line
engineering [PBV05]

Despite its long term efficiency, adopting a SPLE approach is a difficult decision to take and
can arise the following drawbacks [TH03]:

— A resistance to change by the organization engineers and personnel since a shift to a new
approach requires mental efforts.

— The missing of a global view of the whole architecture of the product line, while it is
difficult to find an employee who knows the complete application domain.

— An expensive initial investment is required to establish an SPL, since it is specific for
a single domain and requires mentality evolution and a high cost in terms of time and
budget.

— The delayed benefits since an SPL provides a long term return on investment.

22

2.3. Software Product Lines Chapter 2. Background

— A difficulty of adoption of a SPLE approach by small organizations that consider it a risk
to take, especially when having short term deadlines with customers. Therefore, SPLE is
mainly adopted by large organizations that support a large investment.

— A difficulty in evolving the SPL when adopting a classic approach, especially if the
evolution is unplanned, because an evolution is about to affect the SPL structure.

Figure 2.4: Time to market with and without product line engineering [PBV05]

As per Weiss and Lai [WL99], SPLE is an up-front investment that performs well for long
term, due to the systematic reusability that it provides. Therefore, we consider relying on it
as the optimal and sustainable solution when dealing with a large family of products.

OBJECTIVE 3:
RELYING ON SOFTWARE PRODUCT LINE AS A SUSTAINABLE SOLUTION

2.3.4 Variability Management
Parnas addressed variability when he defined program families as "a set of programs is

considered to constitute a family, whenever it is worthwhile to study programs from the set
by first studying the common properties of the set and then determining the special properties
of the individual family members" [Par76]. The “special properties” stand for variability.
Moreover, van Gurp et al. defined variability as "the capability to change and personalize a
system" [vGBS01].

23

2.3. Software Product Lines Chapter 2. Background

“ The variability of a set of software systems or products is the set of
differences, described in a structured way, of some or all of their characteris-
tics.

[AR13]

Voelter and Groher [VG07] identified two kinds of variability: negative and positive.

— Negative variability: unrequired features are deselected from a “maximal” system contain-
ing the required features and some additional ones (see Figure 2.5a).

— Positive variability: features are added to a “minimal” core to construct the desired
configuration (see Figure 2.5b).

(a) Negative variability (b) Positive variability

Figure 2.5: Negative and positive variability [VG07]

It is important to distinguish between variability at the software level and at the product
line level [MP14]. A software variability can be determined by the ability to personalize it or
configure it, while product line variability is essential to capture the variable artifacts including
requirements, architecture, components and tests, in order to allow their reuse. SPLE requires to
define and manage variability during domain engineering, in order to exploit it to derive a variety
of products during application engineering. In SPLE, variability is expressed in variation points
that are subject to support multiple variable objects called variants [PBV05]. Several variability
modeling approaches exist, such as feature models [SHT06], decision models [SRG11] and
orthogonal variability model [PBV05].

2.3.5 Feature Model
As per Kang [KCH+90], a feature is a user-visible aspect or characteristic of the do-

main. In SPLE, features are considered as the prime entities of software reuse [BLR+15],
providing an abstract representation of the commonalities and variabilities between the SPL
products [BSRC10].

“ A feature is a prominent or distinctive user-visible aspect, quality, or
characteristic of a software system or systems.

[HER85]

24

2.3. Software Product Lines Chapter 2. Background

The term Feature Model (FM) was defined in the Feature-Oriented Domain Analysis (FODA)
feasibility study done by Kang et al. in 1990 [KCH+90]. A feature model is an abstract
presentation of all the SPL products in terms of features. It is defined by a feature diagram and a
set of constraints. A feature diagram is an hierarchical tree diagram that shows the features and
the relationships between them. A feature diagram has a root feature. The relationships between
features are defined as parental relationships such as mandatory, optional, or, alternative, and
cross-tree constraints such as requires and excludes. A survey on the different FM semantics is
presented in [SHT06] and [SHTB07].

“ A feature model represents the standard features of a family of systems
in the domain and relationships between them.

[KCH+90]

Figure 2.6a shows a feature model extracted from [BSRC10]. We address this sample mobile
phone FM to present and explain the different components, relationships and constraints that
may occur in a given FM:

— Root feature : the root feature is the feature representing the concept that describes the
model and englobes all its characteristics. The feature Mobile Phone in the given example
englobes the characteristics Calls, GPS and so on.

— Parental relationships :

– Mandatory: a mandatory relationship between a parent feature and a child feature
means that the child feature is present in all products where the parent feature is
present. The given FM example shows that all products — which are mobile phones
— allow Calls functionality and have a Screen.

– Optional: an optional relationship between a parent feature and a child feature
means that the child feature can optionally be present in all products where the
parent feature is present. Some, but not all mobile phones in the given example
support GPS.

– Alternative: an alternative relationship between a group of features and a parent
feature means that only one feature of the group can be selected when the parent
feature is present. A mobile phone can have one and only one screen that can be
either Basic, Colour or High resolution screen.

– Or: an or relationship between a group of features and a parent feature means that
one or more features of the group can be selected when the parent feature is present.
A mobile phone that supports Media can have Camera, MP3 or both.

— Cross-tree constraints:

– Requires: a requires relationship directed from a feature f1 to a feature f2 means
that each product containing f1 must contain f2. A mobile phone that includes a
Camera must have also a High resolution screen.

25

2.3. Software Product Lines Chapter 2. Background

– Excludes: an excludes relationship between two features f1 and f2 means that f1
and f2 cannot be present in a same product. No mobile phone has GPS with a Basic
screen.

(a) Feature model (b) Configuration

Figure 2.6: A sample feature model and a configuration [BSRC10]

In our dissertation, we are interested in constructing a feature model, allowing the configu-
ration of existing products by selecting the required features. Moreover, we are interested
in exploring negative and positive variability in order to enable the construction of new
products.

OBJECTIVE 4:
MODELING VARIABILITY THROUGH A FEATURE MODEL

2.3.6 Product Configuration
A configuration is a selection of a collection of features that respect the constraints imposed

by the FM and generally reflect an SPL product. It is defined by Junker as "the task of composing
a customized system out of generic components" [Jun08].

“ A final fully-specific feature model with no points for further cus-
tomization is called a configuration of the feature model based on the se-
lected features.

[BEG+11]

A configuration process is done during application engineering. As per Faltings et Freuder,
software developers use standardized software components that can be configured into products
to respond to the customer requirements. They consider that a configuration must be correct,
optimal and quickly produced in order to maintain customers [FF98].

26

2.3. Software Product Lines Chapter 2. Background

Li et al. [LYSL07] define the product configuration as a design activity that takes the con-
figuration models and the requirements as an input and outputs a configuration result oriented to
the ultimate product.

According to Botterweck and Pleuss, "a product is defined by a product configuration, which
resolves the variability by selecting from the given variants while considering the defined con-
straints. In the case of a feature model, this is done by selecting or eliminating features" [BP14].

Figure 2.6b shows a configuration of the corresponding FM in Figure 2.6a. Selecting the
feature GPS enforces an automatic deselection — if selected — of the feature Basic and disables
its selection, since an exclude constraint exists between GPS and Basic. Selecting the feature
Camera enforces the selection of the feature High resolution and deselects — if any is selected
— and disables the features Basic and Colour, since a requires constraint exists between Camera
and High resolution. We call this configuration a valid configuration, since it reflects the imple-
mentation of the selected features in one of the SPL products.

As per Czarnecki et al. "a feature model describes the configuration space of a system
family" [CHE04]. A configuration space is defined as the set of all possible configurations from
a FM [Mar16]. Table 2.1 shows the configuration space corresponding to the FM of Figure 2.6.

Table 2.1: A configuration space corresponding to the FM of Figure 2.6

C
on

fig
ur

at
io

n

M
ob

ile
Ph

on
e

C
al

ls

G
PS

Sc
re

en

B
as

ic

C
ol

ou
r

H
ig

h
re

so
lu

tio
n

M
ed

ia

C
am

er
a

M
P3

1 X X X X
2 X X X X X X
3 X X X X
4 X X X X X
5 X X X X X X
6 X X X X X X X
7 X X X X
8 X X X X X
9 X X X X X X

10 X X X X X X X
11 X X X X X X
12 X X X X X X X
13 X X X X X X X
14 X X X X X X X X

2.3.7 Product Derivation
Features are an abstraction of the implementation of reusable assets [CA05]. A product

derivation is based on the product configuration and the feature mappings to the corresponding
assets [BP14].

27

2.4. Summary and Contribution Decisions Chapter 2. Background

“ Product derivation is a key process in application engineering and
addresses the selection and customization of assets from the product line
(utilizing the provided variability) to satisfy customer or market requirements.

[DSB05]

Product derivation can lead to an automated derivation of an existing product, in case
the set of required features correspond to a valid configuration. However, to respond to the
arising customer requirements, negative and positive variability can be used to derive new
products [VG07] (see Figure 2.5). The former is achieved by removing some unrequired
features from a maximal product, that implements the required features and more. While, the
latter is achieved by using a minimal core to add additional features required for the derivation
and not contained in the core [Mar16].

2.4 Summary and Contribution Decisions
In this chapter, we have seen that reuse is the solution to respond to the mass customisation

necessity. Therefore, any contribution is supposed to explore reuse as much as possible to
gain its efficiency. Earlier in this chapter, we presented two approaches for reuse which are
C&O and SPLE, and we highlighted on the benefits and drawbacks of each. Before making our
contribution choices, we compare the presented approaches according to literature, regarding
the development challenges identified at the early beginning of the chapter:

— Cost & Effort: it is most likely to face a high development cost and effort in the early
development phase in both C&O and SPLE, since the artifacts are usually created from
scratch. According to Dubinsky et al., when C&O is adopted, the cost and effort decrease
due to the quick and easy clone process, however, when the number of products becomes
significant, the cost and effort to derive a new PV increase dramatically, since it becomes
very difficult to determine which PV to use as the source of clone [DRB+13]. Moreover,
the required functionalities for the product to derive might be propagated into different
PVs which can make the collection of the required functionalities a tedious task [LBC16].
For SPLE, according to Pohl et al., the development of artifacts in domain engineering
phase makes the cost and effort expensive for the starting phase, however, as long as the
SPL becomes mature, the cost and effort decrease due to reusability [PBV05].

— Quality: in C&O, software quality starts high for early delivered PVs, since clones are
subject to test and corrections. However, the quality starts to decrease when a considerable
number of variants is produced, especially when organizations are committed into short
delivery periods. Further, quality decreases since a correction done on a variant might
not be propagated to other variants, due to the missing traceability of the corrected
functionality in the other variants [FLLHE14]. On the other hand, software quality in
SPLE is considered higher than C&O, since artifacts are subject to test during domain
engineering and later on during application engineering before delivering the product.
This quality keeps increasing as long as the SPL becomes mature since artifacts reused in
several products gain more trust to PVs [PBV05].

28

2.4. Summary and Contribution Decisions Chapter 2. Background

— Delivery: in SPLE the delivery time for the early developed products is considered very
high compared with C&O due to the up-front investment of creating artifacts that can
be reused by several products. The delivery time decreases in C&O due to cloning, then
increases dramatically when identification of the variant to clone becomes ambiguous
and the required functionalities propagated on different variants without being able to
easily identifying those variants. This makes the collection process of those functionality
from the existing variants a very tedious mission that delays considerably the delivery
time [DRB+13]. In SPLE, reusability of artifacts allows to maintain a low delivery
time [TH03].

— Maintenance: the maintenance effort in C&O is proportional to the number of vari-
ants produced. As long as the number of variants increases maintenance becomes dif-
ficult [FLLHE14]. From a side, its difficult to identify the variants to propagate the
maintenance in, and from other side it is expensive to repeat the same maintenance process
on the identified variants that require the modification. For SPLE, it is considered much
less expensive to make a maintenance since architecture of the SPL is well structured and
reusable components are identified [PBV05]. However, it is still challenging to propagate
a maintenance on several products, since a functionality may behave differently in differ-
ent products and therefore the maintenance must be done precisely and supplemented by
testing [BP14].

The comparison between C&O and SPLE shows that C&O performs well in early develop-
ment stages, but turns into an expensive solution when the family of products delivered become
rich. On the other side, SPLs are adopted due to their long term return on investment and they
are considerably expensive in the early development stage.

Since, from a side C&O is the optimal approach for starting the development of a family of
software products, and SPLE is a sustainable solution, an effective contribution must adopt
C&O in early development stages then integrate the family of products into a systematic
SPL when it starts to consolidate its foundation. Nevertheless, C&O remains essential when
unplanned new products have to be derived.

OBJECTIVE 5:
COMBINING CLONE-AND-OWN AND SOFTWARE PRODUCT LINE

Minimizing cost and effort can be achieved by guiding the identification of the possible
sources of clone and the selection of the required assets for derivation. In fact, when identifying
the assets that do not require modification, we save the derivation from lacking into an intensive
cloning process. Relying on the SPL artifacts as source for cloning improves quality and trust
in code, since it corresponds to code tested and subject to reuse. SPLs enable an automated
derivation of existing products ensuring fast delivery. Moreover, employing C&O to derive a
new product from the SPL can shorten the delivery time if the necessary guidance is offered.
Maintenance within an SPL context is favorable since artifacts are used in several products,
hence, integrating the newly derived products in the SPL is a must.

+ In Chapter 4 we demonstrate the migration process of our approach, in which we propose
the migration of PVs into an SPL.

29

2.4. Summary and Contribution Decisions Chapter 2. Background

30

CHAPTER 3

RELATED WORK

Contents
3.1 Software Product Line Adoption . 32

3.1.1 Migration Approach . 32

3.1.2 Migration Steps . 32

3.1.2.1 Identifying Features . 34

3.1.2.2 Mapping Features to Assets 36

3.1.2.3 Constructing a Feature Model 40

3.1.3 Migration Moment . 40

3.2 Product Derivation Support . 41

3.3 Software Product Line Evolution . 45

3.4 Summary and Contribution Choices . 48

31

3.1. Software Product Line Adoption Chapter 3. Related Work

3.1 Software Product Line Adoption
Migrating from the development of single and independent software product variants using

clone-and-own approach, to a structured software product line raises the following questions:

1. What is the approach to adopt for migration?

2. What are the required steps to accomplish the migration?

3. What is the accurate moment to proceed the migration?

3.1.1 Migration Approach
Krueger [Kru01] distinguished three models for adopting software mass customization by

means of a software product line, which are proactive, reactive and extractive.

— Proactive approach: the organization builds a complete SPL that takes into consideration
the current and expected customer requirements that belong to the scope of the SPL. The
common and variable features are identified, their corresponding assets are implemented,
and the possible products are defined. This approach requires the maximum effort from
the organization, because the SPL is fully created before starting the product derivation
process.

— Reactive approach: the organization creates a minimal SPL to start deriving products.
The SPL is incrementally evolved in reaction to the upcoming customer requirements.
The reactive approach imposes less initial effort compared with the proactive approach.

— Extractive approach: the organization uses existing product variants in order to extract
the common and variant artifacts, identify the features and create a corresponding SPL.
This approach allows a quick SPL adoption by the high level of software reuse that it
provides.

In our approach, we are interested in migrating existing PVs developed in C&O into an
SPL. Thus, we care about performing an extractive migration approach.

OBJECTIVE 6:
EXTRACTIVE MIGRATION APPROACH

3.1.2 Migration Steps
Anwikar et al. [ANCM12] define the migration as a process of three phases:

1. Detection phase: extract from source code information about the structure and the various
functionalities implemented.

2. Analysis phase: use the information gathered in detection phase to create new partitions
that identify and separate the features.

32

3.1. Software Product Line Adoption Chapter 3. Related Work

3. Transformation phase: use the knowledge gathered in analysis phase to produce the
SPL by transforming the legacy applications into separated layered modules of source
code to allow artifacts reuse.

Martinez et al. [Mar16] identify the activities required for achieving an extractive SPL
adoption as follows (see Figure 3.1):

1. Feature identification and naming: Martinez considers the identification of the features
implemented in the existing product variants as part of the initial activity. Despite of
being possible that the software developer manually identifies the features by traversing
the artifacts of the product variants, Martinez highlights on the need for a mechanism to
identify those features when dealing with complex products, where functionalities are
provided by different stackholders. A manual identification of the features is supplemented
by a manual naming of the identified features. However, when an identification mechanism
is performed, Martinez et al. offer a word cloud visualization mechanism to help software
developers in naming the identified features.

2. Feature location: if features are manually identified by software developers, feature
location has to be performed. This activity consists on the identification of the assets
associated to each feature.

3. Feature constraints discovery: this activity consists on discovering the constraints
between the identified features, in order to ensure the validity of the configurations of the
FM to be created.

4. Feature model synthesis: after identifying the features and the constraints between them,
a structured FM is created, allowing the automated derivation of existing products and the
ones reflecting valid configurations made on the generated FM.

5. Reusable assets construction: the implementation elements associated to each feature
are used to construct the reusable assets in order to be employed during future derivations.

Figure 3.1: Relevant activities during extractive SPL adoption for leveraging artefact
variants [Mar16]

Al-Msie’Deen et al. [AM14] defined SPL adoption as a process of reverse engineering a
feature model from software variants. Their approach consists of the following steps:

33

3.1. Software Product Line Adoption Chapter 3. Related Work

1. Extracting feature implementations from source code and use-case diagrams of the soft-
ware variants.

2. Documenting the mined feature implementations using use-case diagrams.

3. Constructing the feature model and its constraints from the mined and documented
features.

Based on the related work approaches, we synthesize three main steps to be performed in
order to construct the SPL during the migration process:

1. Identifying features

2. Mapping features to assets

3. Constructing a feature model

In the upcoming subsections, we detail the different techniques adopted in literature to
perform each step, and we identify our contribution choices regarding each step.

3.1.2.1 Identifying Features

Martinez et al. [Mar16] consider that it is very idealistic to assume that the features
implemented by the PVs are identified or can be obtained from domain knowledge prior to
migration. When features are not manually identified, a technique called feature identification
is performed in order to identify the features implemented by the PVs and their corresponding
implementation elements [AG06].

“ Feature identification is defined as the activity of identifying the
source code constructs implementing a given feature.

[AG06]

Martinez et al. developed a framework for extractive SPL adoption called BUT4Reuse
that stands for Bottom-Up Technologies for Reuse [MZB+17, Mar16, MZB+16, MZB+15b,
MZB+15a, MZKLT14, MZM+14]. The framework achieves the process presented in Figure 3.1.
BUT4Reuse performs feature identification if features are not identified prior to migration. The
process analyzes the product variants artifacts and specifies separated blocks that stand for the
identified features. The framework illustrates the common and varying blocks. It constructs
the blocks separately, to be known as reusable assets and allows to associate each of them to
a feature. BUT4Reuse helps domain experts in feature naming task, through the word clouds
visualization functionality that it provides. The content of the identified blocks is analyzed,
and a weight is given to each word corresponding to its occurrence in the block content. As
represented in Figure 3.2, the word having the highest occurrence will be displayed with the
largest font size, and so on.

When feature identification is performed, feature naming is required in order to assign a
name for each identified feature from the analyzed artefacts. While some approaches propose

34

3.1. Software Product Line Adoption Chapter 3. Related Work

automatic feature naming [DDH+13, IRBW16], or help the domain experts in choosing the
corresponding name [Mar16], other approaches [YPZ09, AM14, MAGDC+16] keep feature
naming as a manual task. This task might be expensive, since it requires a lookup on the
artifacts corresponding to each identified feature, in order to designate a meaningful naming
to the features. Kästner et al. [KDO14] developed a tool called variability mining. The goal
behind the tool is to facilitate the adoption of an extractive SPL by helping the developer to
locate, document and extract the implementations of the features in a semi-automatic way. Liu
et al. [LBL06] developed a theory based on feature oriented refactoring, which consists on
decomposing a program into features. The theory identifies the relationship between features and
their implementations. Approaches proposed in [LBL06, KDO14] identify feature information
from a single product in contrary to [Mar16] that concentrate on identifying features from
several product variants.

Figure 3.2: Word clouds visualization functionality for feature naming [Mar16]

Several works in literature that propose to migrate PVs into an SPL [AM14, RC12], or to
support C&O [FLLHE15, RC13a, LBC16], assume that features are determined by domain
experts [FLLHE15] or extracted from requirements documentation [LBC16] or use-case dia-
grams [AM14].

Feature identification techniques rely on implementation artifacts without taking into
account business-level features. Moreover, the proposed feature naming techniques [Mar16,
DDH+13, IRBW16] rely on source code and implementation artifacts to extract or propose
names for the identified features, which might reflect a technical not a business-level
perception of the implemented features. Kang et al. define features as "the attributes of a
system that directly affect end-users" [KCH+90]. In our dissertation, we do not contribute
in or employ feature identification, since we consider that features reflect the user business
requirements, and therefore, they are supposed to be given by domain experts instead of
being identified through automatic feature identification techniques.

OBJECTIVE 7:
BUSINESS-LEVEL FEATURE IDENTIFICATION

35

3.1. Software Product Line Adoption Chapter 3. Related Work

+ In the migration process that we propose in Chapter 4, we assume that features implemented
by each product are known prior to its migration into the SPL.

3.1.2.2 Mapping Features to Assets

Ji et al. affirm that “to effectively evolve and reuse features, their location in software assets
has to be known” [JBAC15]. Hence, when features are identified, the next step is to locate the
implementation of the features in the variant artifacts. In other words, it is about mapping the
identified features to the PVs assets.

Several works in literature proposed to analyze and compare the artifacts of the product
variants to identify their common and variable parts [Mar16, FLLHE14, AmSH+13, RC12].
Thus, determining the coexistence between the features and the identified parts of the prod-
uct variants allows to establish the mapping between them. The identified parts are called
blocks in [ANCM12, Mar16], clusters in [YPZ09], regions or parts in [RC12], modules
in [FLLHE14, MAGDC+16], and atomic blocks or object-oriented building elements sets
in [AM14].

“ A block is a set of implementation elements of the artefact variants
that are relevant for the targeted mining task.

[MAR16]

Feature location is an activity that identifies mappings between features and assets. Dit et al.
define feature location as “the activity of identifying an initial location in the source code that
implements functionality in a software system” [DRGP13].

“ Feature location techniques aim at locating software artifacts that
implement a specific program functionality, a.k.a. a feature.

[RC13B]

Surveys on feature location techniques were conducted by Rubin and Chechik [RC13b],
Dit et al. [DRGP13] and Assunção et al. [AV14] representing and comparing the different
techniques available in the domain.

Rubin and Chechik [RC13b] made an overview of twenty-four feature location techniques
and their underlying technologies such as Formal Context Analysis (FCA) [Bel08] and Latent
Semantic Indexing (LSI) [DDF+90]. They show that all techniques studied and compared in
their survey treat the products as individual independent entities and not as a family of related

36

3.1. Software Product Line Adoption Chapter 3. Related Work

entities. Hence, they affirm that taking into consideration commonalities and variations of the
related products can improve the accuracy of the adopted techniques by initially partitioning
the code into unique part to the product and shared parts. Moreover, they highlight on the need
of an incremental analysis of the traceability between features and asset to save the efforts of
re-analyzing.

The survey made by Assunção et al. [AV14] shows that the research about feature location
techniques is on a continuous growth since 2010. The survey shows that 47% of the related tech-
niques focus on detection phase, 43% on analysis and 10% on transformation. Most techniques
consider source code artifacts as the main input, with some focus on other artifact types such as
design models, requirements and documentation. The output of the proposed techniques can be
divided into commonalities and variability information, feature mapping to elements, feature
models, and source code reorganization.

Based on the conclusion made by Rubin et al. [RC13b] in their survey about feature
location, our approach aims to establish mappings between features and assets, by taking
into consideration the entire product line instead of treating products separately to identify
the mappings.

OBJECTIVE 8:
GLOBAL MAPPING BETWEEN FEATURES AND ASSETS

Beside providing feature identification, Martinez et al. enable in their approach to perform di-
rectly feature location in case features are known [MZKLT14, MZM+14, MZB+15b, MZB+15a,
Mar16, MZB+16, MZB+17]. When performing feature location, their framework BUT4Reuse
works on several artifact type variants such as Java projects, UML, JSON, text files, images
and more. For each artifact type an adapter is required and the framework supports currently
fifteen adapters. It takes as an input the existing product variants and chooses automatically the
appropriate adapter corresponding for the artifact type of the variants.

AL-Msie'Deen et al. [AM14, RSH+13, SHU+13] proposed an approach called REVPLINE
that stands for REengineering Software Product Variants into Software Product LINE. REVPLINE
aims to mine features from object-oriented based product variants. The approach uses Formal
Concept Analysis to identify the common blocks and blocks of variations between the product
variants and relies on Latent Semantic Indexing [DDF+90] to determine the similarity between
the object-oriented building elements. The approach exploits the source code of the mined fea-
tures and use cases in order to provide a name and a description to the feature. This information
is used then to construct the feature model of the SPL.

Fischer et al. [FLLHE14], in the context of their approach to enhance C&O, consider that
features are provided by domain experts with the product variants in which they are implemented.
They define an algorithm to compare the provided PVs and identify their commonalities and
variability. The identified parts called modules are categorized into base modules that refer to
artifacts implementing a feature without any feature interactions, and derivation modules that
refer to artifacts implementing feature interactions. Feature interaction occurs when two or more
features are totally or partially implemented by a common artifact. Similarly to the approach

37

3.1. Software Product Line Adoption Chapter 3. Related Work

proposed by Martinez et al. [Mar16], this approach supports also different artifacts types, and
employs the appropriate adapter corresponding for the artifact type of the variants.

“ A feature interaction is a situation in which two or more features
exhibit unexpected behavior that does not occur when the features are used
in isolation.

[AK09]

A language-independent approach called ExtractorPL is proposed by Ziadi et al. [ZHP+14],
as a reverse engineering approach for creating an SPL from existing software variants. The
approach consists on extracting the features by identifying the variability among the product
variants, regrouping the identified features in a feature model, and mapping the features to their
corresponding source code blocks.

The specific artifact type adapters employed in [MZB+15b] and [FLLHE14] perform well
when the family of products consists of monoglot variants or specific adapters exist for their
corresponding artifacts. In our approach, we give interest as well in polyglot variants such
as web applications, that are written using different languages and consist of artifacts of
different formats, where some may contain blocks of code of different languages. Therefore,
we aim to introduce a language-independent mechanism to establish mappings between
features and assets when polyglot variants are used, without limiting our approach to
the proposed mechanism, especially when monoglot variants are integrated and specific
adapters are pertinent to capture their mappings.

OBJECTIVE 9:
LANGUAGE-INDEPENDENT MAPPINGS IDENTIFICATION

According to Botterweck and Pleuss [BP14], mapping between features and the assets
implementing them is required. This mapping is more complex than a one-to-one relationship,
since a feature is most likely mapped to different assets. Further, the theory proposed in [LBL06]
identifies the relationship between features and their implementations, and proves that a feature
can have different implementations.

38

3.1. Software Product Line Adoption Chapter 3. Related Work

We consider that a feature can be implemented through several assets, while an asset can
contribute in the implementation of several features. Therefore, a many-to-many relation-
ship between features and assets is likely to occur. In our dissertation, we give interest to
deal with similar cases. Moreover, we consider that a feature can have different implemen-
tations, due to the interaction between the feature and the other features implemented in the
corresponding product. The presence of a feature in a product, and its absence in another,
might affect the implementation of other features implemented by the same products due to
features interactions. One of the strength points of the approaches proposed in [MZB+15b]
and [FLLHE14] is that they take into consideration features interactions. Hence, in our
approach, we are interested in capturing features interactions.

OBJECTIVE 10:
CAPTURING FEATURES INTERACTIONS

Rubin et al. proposed a merge-refactoring framework for managing cloned product vari-
ants [RC12, RKBC12, RC13a, RCC13]. They highlighted on the necessity of representing
the implemented functionalities of the product variants as features and they identified a set of
operators to manage and maintain such products either by sharing features between them or by
representing them in an SPL.

Narwane et al. [KNGDNK+16] define an SPL as as triple composed of specifications where
features are represented in a feature model, implementations where assets are represented in
a components model and traceability relationships between features and assets. They define
reasoning operators to identify the state of the SPL and investigate traceability between features
and assets. For instance, an SPL is valid if there exists a specification and an implementation.
In another example, an implementation realizes a specification, if the implementation assets
implement all and only the features of the specification. Moreover, an implementation covers
a specification, if the implementation assets implement all and more than the features of the
specification.

In our approach, we are interested in integrating the functionalities of some operators
from [RC13b] and [KNGDNK+16], in a context that serves the objectives of our contributions.
For instance, operators such as findFD from [RC13b] to find the features implemented by a
variant, realizes and covers from [KNGDNK+16] are necessary to fulfill the objectives of our
approach.

Ji et al. [JBAC15] propose a lightweight code annotation approach. Their approach consists
of embedding annotations about the features directly into the source code of the assets. A study
of their approach on a product line of cloned product variants, shows that the cost of adding
and maintaining annotations is small compared to the actual development cost. Hence, their
approach provides a low-cost feature location through annotations, and reduces maintenance
efforts, since annotations co-evolve with assets.

We recognize that the approach proposed by Ji et al. [JBAC15] is a lightweight and effective
solution that maintains incremental mappings between features and assets. However, we consider
that to gain the effectiveness from their approach, it must be adopted from scratch, from the

39

3.1. Software Product Line Adoption Chapter 3. Related Work

moment where the assets of the first product are developed. However, in our approach, we are
interested in migrating pre-developed product variants into an SPL and thus, annotating source
code of several variants that share features in common can be considered tedious and error-prone.
Otherwise, the proposed annotations approach can give an effective return on investment if done
from scratch.

+ In Chapter 4 we define a language-independent mechanism to identify mappings between
features and assets, and we call them correlations.

3.1.2.3 Constructing a Feature Model

A method to extract a domain feature model from existing product variants is proposed by
Yang et al. [YPZ09]. The method uses data access semantics and Formal Concept Analysis
(FCA) [Wil96, Bel08] to establish the relationship between the features and their implementa-
tions. Yang et al. consider feature naming as a manual task to be done by domain experts by
examining the generated features and evaluate its business meaning.

Martinez et al. [Mar16] proposed an approach for constraints discovery that can be gener-
alized on several artifact types. In their approach, constraints between the identified features
are automatically discovered in order to allow the creation of a feature model that enables
valid configurations. The feature model generated by the proposed framework BUT4Reuse, is
explored using the FeatureIDE tool [TKB+14] in order to configure new products.

Acher et al. [Ach11] designed a set of composition and decomposition operators to manage
multiple FMs. For instance, a merge operation permits to construct a feature model by merging
several ones [ACLF13]. Moreover, they developed a textual language called FAMILIAR with a
tool offering a practical solution to manage FMs.

+ In Chapter 4 we construct the SPL feature model by applying a FAMILIAR merge opera-
tion [ACLF13] on the feature models provided with the migrated PVs. Similarly, as presented
in Chapter 7 after the integration of a newly derived product, this merge operation is used to
merge the product FM with the SPL FM, to keep the latter up-to-date.

3.1.3 Migration Moment

As presented in Chapter 2, the large investment in terms of cost and time for building an SPL
from scratch, made it an undesired option for an initial development approach. Consequently,
an expensive migration to SPL adoption would be undesired too. To determine the accurate
moment to migrate PVs into an SPL, we refer back to Figure 2.3 that compares the development
cost between single systems and system family. Figure 2.3 shows that approximately after the
development of three software systems, the product line engineering approach can provide a
lower cost per system. We refer to this indicator to set the following hypothesis:

40

3.2. Product Derivation Support Chapter 3. Related Work

Migrating PVs into an SPL is preferred to be done once the family of products starts to
consolidate its foundation. We mean by this, when the family of products is composed of
few products, implementing a set of functionalities, where some of them are common and
others are variable. We do not set a specific number of products to determine the accurate
migration moment, but we consider that once the number of products reaches three, it is
recommended to migrate them into an SPL, in order to overtake the challenges confronted
during C&O. A smooth and quick migration process is required, in order not to affect the
productivity of the development unit.

OBJECTIVE 11:
SMOOTH MIGRATION IN THE ACCURATE MOMENT

3.2 Product Derivation Support

BUT4Reuse [MZB+15b, MZB+16], the framework proposed by Martinez et al. generates a
feature model that allows the automated derivation of the product variants migrated into an SPL.
In addition, the generated FM permits an automated derivation of new variants as long as the
set of selected features during the configuration of the FM does not break the FM constraints.
The approach does not guarantee the derivation of a complete product, and does not provide a
support to complete it.

Fischer et al. developed the ECCO approach, which stands for Extraction and Composition
for Clone-and-Own [FLLHE14, FLLHE15, LHLE15, LLHE16]. They give interest to devel-
opers that initially adopt C&O to produce software variants. According to them, management
and maintenance of the software variants soon becomes ineffective [FLLHE14]. Therefore,
they propose ECCO, as an approach that integrates software variants to provide a systematic
reuse and helps software engineers to derive new variants by proposing the necessary hints. The
proposed hints can either inform developers of the existence of surplus artifacts that have to
be removed manually, or the need of reordering some artifacts in case several possible ordered
were detected. The workflow of the ECCO approach is shown in Figure 3.4. First, it takes
as an input the existing product variants, and the features assigned to each variant. Therefore,
feature identification is considered as a manual task and the initial task performed by ECCO
is feature location. This task consists on the extraction of the implementation artifacts called
modules and tracing them to their corresponding features and features interactions. The traced
information is used to identify the relationships between the modules called associations. A
configuration of features leads to the composition which uses the associations to construct a
product. If the constructed product refers to an existing variant, it is automatically generated as
a complete product. Otherwise, it is considered as a composed incomplete product and requires
a manual completion. A product is considered incomplete, either if some features or feature
interactions did not exist earlier in existing variants, or they always appeared together in same
variants, and need to be separated. During this phase, ECCO provides the software engineer
with some guiding hints to finalize the product construction. Such hints can inform the software
engineer for example, that some modules had never appear separately and need to be separated,
or for a set of artifacts multiple ordering options are available. When a new variant is completed,

41

3.2. Product Derivation Support Chapter 3. Related Work

it is integrated in ECCO, where it can be used in future product derivations.

Figure 3.3: The ECCO workflow [FLLHE15]

Linsbauer et al. [LELH16, Lin16] transformed the ECCO approach into a feature-oriented
and distributed version control system (VCS). The main operations provided are commit and
checkout. The commit operation allows to integrate a product variant into the VCS. The product
variant is provided with the features that it implements. The project repository contains the
different artifacts extracted from the product variants. The checkout operation is used to derive
an existing variant and possibly a new variant. A new variant is derived by selecting a set of
features that are not implemented in a single variant. In this case, the VCS provides the software
engineer with some hints to guide him construct the new variant. Moreover, the graphical user
interface of the ECCO VCS supports the derivation of new variants by artifacts selection, and
not only by features selection. This functionality gives the software engineer more possible
configurations. The workflow of the ECCO VCS is shown in Figure 3.4.

Despite the efficiency of the approach proposed by Fischer et al. [FLLHE14] in enhancing
and supporting the derivation of PVs based on C&O, we consider that it limits the freedom that
software engineers are supposed to benefit from when adopting C&O. Their approach seeks to
provide a systematic reuse by automating the derivation of product variants whenever possible.
Although they allow developers to make their decisions when completing an incomplete product
based on the proposed hints, they offer them a single derivation solution which is the constructed
product. In other words, their approach limits developers’ decisions to low level decisions, while
the proposed solution is imposed on them. When the tool proposes an uncomplete product, that
requires a manual completion, the software developer accomplishing this task might find in
hands some proposed assets that she is not familiar with or never worked on. Hence, developers
are not able to recognize how the proposed product was constructed, and to which product
variants the assets collected to construct it belong. In fact, developers lose decision-making
and freedom to build a new unplanned product by themselves, and thus, they lose somehow the
ownership meaning of the derived product.

Lapeña et al. [LBC16, LnFPC16, BLnC16, LnFPC17] consider that C&O consumes high
amounts of time and effort. Therefore, they propose an approach called Computer Assisted Clone
And Own (CACAO) to assist C&O. This approach takes as input the product variants in addition
to their documented natural language requirements. The goal of the approach is to support
software engineers when deriving new product variants. Hence, when a new product has to be
derived, the requested documented requirements are provided. CACAO extracts keywords from
the new requirements and from the existing product variants requirements using POS Tagging
techniques [Hul03]. Next, it detects which existing product variants are closer to the product

42

3.2. Product Derivation Support Chapter 3. Related Work

Figure 3.4: The ECCO version control system workflow [Lin16]

variant to derive, in terms of requirements by employing Coarse Grain Latent Semantic Indexing
(CG-LSI) [DDF+90, LFL98]. Finally, it determines which are the source code methods of the
existing product variants, that are closer to the requested requirements, by employing Fine Grain
Latent Semantic Indexing (FG-LSI). Hence, CACAO provides ranking at two levels, which are
products level and methods level. The product relevancy ranking allows software developers
when deriving a new product, to decide if they rely on the product variants that they are familiar
with, a mixture between known and unknown variants, or non-familiar products having the
highest ranking. The code relevancy ranking provides software engineers with the most relevant
methods for each of the new product requirements.

We express our interest in three main contributions of the approach proposed by Lapeña et
al. The support provided to software developers to help them in choosing the relevant products
and methods to derive a product, by first proposing the different possible solutions, second
keeping the decision-making to software developers without imposing a solution on them, and
third by ranking the products and methods to help them make their decisions. On the other
hand, we consider that their approach misses an additional details level, that can be achieved
by providing the several combinations of products that can lead to the new product to derive,
with the operations to be performed on the identified methods such as removing or extracting
features from them.

43

3.2. Product Derivation Support Chapter 3. Related Work

In our approach, we aim to guide software engineers in deriving new products, by providing
them with the different possible scenarios that they can rely on to derive the new product, and
the different possible operations to perform on their assets such as removing or extracting
features from them.

OBJECTIVE 12:
SUPPORTING DERIVATION WITH THE POSSIBLE SCENARIOS

+ In Chapter 5 we demonstrate how we support the derivation of new product variants by
providing for each configuration its configuration scenarios and operations to perform.

Based on the required features, many might be the scenarios that can be achieved to derive
a new product. In order to tackle complexity and facilitate the choice of software engineers
in selecting the relevant products and operations to perform to derive the desired product,
we aim to define indicators that allow to estimate the cost of the proposed operations, thus,
software engineers can rely on the estimated cost of the operations to choose the appropriate
ones to construct the new product.

OBJECTIVE 13:
COST-ESTIMATED DERIVATION

+ In Chapter 6 we define indicators that allow to estimate the cost of the operations to perform.
We provide cost-estimation to software engineers to facilitate their choice.

We consider that automated derivation can degrade ownership level and trust of developers
in the newly derived products. To maintain the freedom that software developers benefit
from when deriving new products based on clone-and-own, we provide them with the
possible solutions and keep to them the decision-making in choosing the relevant solution.
Since the number of possible solutions might be large, we aim to tackle complexity and
facilitate decisions, by allowing software engineers to select the derivation scenario to
construct a new product based on their own preferences.

OBJECTIVE 14:
SOFTWARE ENGINEERS AS DECISION MAKERS

+ In Chapter 7 we demonstrate how we support software engineers in achieving the derivation
of new product variants based on selection factors which are developer preferences and cost
estimation.

44

3.3. Software Product Line Evolution Chapter 3. Related Work

3.3 Software Product Line Evolution

According to Botterweck and Pleuss [BP14], SPL evolution is complex due to the variability
and the interdependencies between products. A new requirement or change in a requirement
may affect several products. A change affects the whole product family and the related products
and the SPL remains inconsistent until change is propagated. Moreover, a large interdependency
exists between assets. Therefore, SPL evolution must be addressed in a systematic way. An
SPL must evolve to reflect the new and changing requirements. Therefore, the more products it
derives, the more expensive it becomes.

During SPL evolution, different abstraction levels must be taken into consideration [SE08]:
(1) common assets defined at the SPL level, being part of all products, (2) variable assets that
are part of some products and there contribution in a product is based on a variability decision
and (3) product-specific assets that are part of an individual product and are not made for reuse.
During evolution, assets can be added, modified and deleted. Therefore, any change can affect
different products at different abstraction levels. Moreover, some assets may move from an
abstraction level to another, most-likely from common to variable assets. For instance, once a
new product is added and not using a common asset in its implementation, this asset becomes a
variable asset. Furthermore, during their evolution, SPLs can be merged if they become similar
over time [SE08], or an SPL can be splitted when parts of the SPL can evolve in different
directions [SB99].

Botterweck and Pleuss [BP14] summarized SPL and product evolution strategies and situa-
tions presented in [SV02] and [DSB05] as:

— Proactive evolution: the proactive adoption approach, as we presented earlier, consists
on proactively planning and adding requirements to the SPL during domain engineering
activity. Since this approach integrates the current and expected customer requirements
that belong to the scope of the SPL, it is considered as an evolution approach that can deal
with market changes.

— Reactive evolution: reactive evolution is achieved by directly integrating in the SPL the
new requirements that arise during product derivation. This approach is mainly adopted
by model-driven SPLs [CAK+05], in order to avoid product-specific implementations.
This allows a complete derivation of products from the SPL and an immediate reuse of
the newly integrated requirements in future products derivation. However, this approach
requires high efforts to ensure a co-evolution of existing products in parallel with the SPL
evolution.

— Branch-and-unite: the branch-and-unite approach is related to the grow-and-prune
concept [FV03]. It consists on creating a new product branch to deal with product-specific
requirements before reunifying the branch(es) with the SPL after releasing the product.

— Bulk: the bulk situation occurs when a company creates several branches to evolve a
product. This makes the reintegration of those branches in the SPL expensive.

— Maintenance: over time maintenance activities are performed such as bug fixing and
refactoring at both SPL and product levels.

45

3.3. Software Product Line Evolution Chapter 3. Related Work

In Objective 6, we highlighted on the need of an extractive SPL adoption approach when
migrating existing product variants into an SPL. Furthermore, we are interested in a reactive
SPL evolution, to offer an automated integration of the newly derived products in the SPL.

OBJECTIVE 15:
REACTIVE SPL EVOLUTION

As per Mitschke et al. [ME08] traceability facilitates the maintenance and evolution of
SPLs. They focused in their work on the traceability of the evolution of the relationships between
artifacts, associated features and desired products, by assigning versions to each of them. New
versions are created when changing in requirements occur: "changes of the feature model can
directly influence the implementation of features as well as products". Each version of an artifact
is associated with a specific version of a feature and management of features dependencies.
Therefore, traceability is required, to ensure that the SPL remains consistent after changes.

We are interested in providing an incremental knowledge of the mappings between features
and assets all along the evolution of the constructed SPL, in order to ensure on a one side
that existing products are always available and derivable from the SPL and on the other
side, keep mappings between the SPL artifacts up-to-date to support the derivation of new
products with correct indicators.

OBJECTIVE 16:
INCREMENTAL TRACEABILITY BETWEEN FEATURES AND ASSETS

+ We demonstrate the incremental evolution of the correlations in Chapter 7 and we evaluate
it in Chapter 9.

According to Svahnberg and Bosch [SB99], the arising new products to derive may introduce
conflicts with the existing SPL products. Therefore, they suggested a set of guidance in order
to perform a controlled evolution of an SPL. Gomaa and Hussein [GH04] proposed software
reconfiguration patterns to reconfigure the software architecture of an SPL to support a dynamic
SPL evolution. Ajila and Kaba [AK08] suggested some SPL evolution mechanisms that focus
on identifying the change, analyzing its impact, specifying its propagation and validating its
functionality. They examined their mechanisms on three different evolution levels: architecture
level, product line level and product level. Moreover, Hotz et al. [HWK06] proposed the
conIPF methodology, which takes into consideration the occurring requirements during product
configuration on application enginerring level, and allows their integration in the SPL and the
domain engineering level. Similarily, Bayer et al. [BFK+99] presented the PuLSE framework,
that allows not only SPLE, but also customizability of its components and maturity scale for
structured evoluation and maintenance.

46

3.3. Software Product Line Evolution Chapter 3. Related Work

We are interested in allowing a complete reuse of the SPL artifacts in a new product
derivation, by allowing any possible configuration of features to be selected by the software
engineer.

OBJECTIVE 17:
ALLOW A COMPLETE REUSE

+ We define in Chapter 5 a constraint-free FM where all SPL features are optional except root
feature. We call this FM a free FM, and its purpose is to enable complete reuse.

Feature models are considered as the key to manage SPL evolution due the abstraction that
they provide [BP14]. Difference models are required to identify the changes that arise on the
SPL feature model over time. Operators such as add, modify, delete and operators with richer
semantics such as split are required to specify the operation performed on the feature model
during a change. In the context of difference models, Schaefer et al. introduced the Delta-
Oriented Programming (DOP) where they define an SPL as (1) a core module that specifies
a valid product and (2) delta modules that specify changes to be applied to the core module
in order to derive other products [SBB+10]. Moreover, Acher et al. proposed differencing
techniques that exploit syntactic and semantic mechanisms in order to provide differences
between feature models [AHC+12]. On the operators side, Alves et al. introduced feature
model refactoring operations such as replacing a mandatory feature type with an optional, or
converting an or to an alternative [AGM+06]. Such operations permit the evolution of an
SPL, since it improves its configurability. As per Neves et al. SPL evolution might be risky,
since it impacts existing products when introducing new features or improvements [NBA+15].
Therefore, they introduced safe evolution templates after analyzing different evolution scenarios.
These templates can guide developers during the SPL evolution process in order to preserve the
behavior of existing products. EvoPL is an approach that combines both difference models and
change operators by using the abstraction provided by feature models as the main artifact to
manage SPL evolution [BPPK09, BPD+10, PBD+12]. A feature model version is decomposed
into model fragments. A fragment is composed of feature model elements that are added or
removed together during an evolution step. The fragments and operators between their elements
are stored in a specific feature model called EvoFM. A configuration of the EvoFM represents
an evolution step, while the evolution of a FM is a set of configurations of the EvoFM. The
approach proposed by Martinez et al. in [MZB+15b] does not provide an incremental evolution,
since it does not offer an integration process of the newly derived products into the SPL.

In our approach, we are interested in updating the global feature model of the SPL whenever
a new product is integrated in order to maintain systematic reuse.

OBJECTIVE 18:
MANAGING FEATURE MODEL EVOLUTION

+ In Chapter 7 whenever a new product is derived, we employ the FAMILIAR merge opera-
tion [ACLF13] to merge the SPL FM with the newly integrated product FM.

47

3.4. Summary and Contribution Choices Chapter 3. Related Work

3.4 Summary and Contribution Choices
In this chapter, we presented the related works that propose approaches to migrate software

product variants into an SPL, support the derivation of new products and evolve an SPL.

We have shown that an extractive SPL adoption must be performed in order to integrate PVs
developed based on C&O into an SPL. In this context, in order to allow products derivation, it is
important to identify the features implemented in the integrated PVs, map the features to their
corresponding assets and construct the SPL FM. We presented several literature approaches
to identify or locate features in PVs assets. In our dissertation, we consider that features must
reflect the business functionalities of the SPL PVs. Moreover, we decided to focus on the
integration of polyglot systems into an SPL. In this context, we aim to adopt a mechanism that
takes into consideration the entire product line instead of treating products separately to identify
the mappings between features and assets.

We presented several literature works that propose approaches to support the derivation
of new products either in the SPL context or C&O context. Table 3.1 represents a compar-
ison of the key characteristics offered by three of the main related works tools which are
BUT4Reuse [MZB+17], ECCO [FLLHE14] and CACAO [LBC16]. Some approaches limit
the software engineers ownership of PVs, since they automate the derivation, while others
lack some operational level support. In our approach, we give interest in guide software engi-
neers during the derivation process without imposing on them specific solutions. Therefore,
we aim to propose the possible scenarios that they can rely on to derive a product, and keep
decision-making on their behalf. The number of possible solutions might be large. Hence,
to tackle complexity and facilitate decisions, we aim to allow software engineers to select
the derivation scenario to construct a new product, based on their own preferences, i.e. by
selecting the source of clone that is composed of the products that they are most familiar with.
Moreover, we aim to cost-estimate the different proposed operations, so they can rely on it as an
additional argument in their choice of the relevant operations to perform to achieve the derivation.

Finally, we presented different works in literature about the evolution of an SPL. We
highlighted on the importance of adopting a reactive SPL evolution, in order to integrate the
newly derived products in the SPL and benefit from their systematic reuse. Integrating new
products involves new features and assets, hence, mappings between features and assets must be
updated to take into consideration the arising changes. In our approach, we aim to provide an
incremental evolution of the traceability between features and assets. Further, the integration
of new products involves an update of the SPL FM. Moreover, we are interested in enabling a
complete reuse, hence, providing software engineers with the ability to derive a new product
implementing any set of features provided by the SPL. Figure 3.5 illustrates to which challenges
the objectives of our approach are going to respond in the contribution part, which comes next.

48

3.4. Summary and Contribution Choices Chapter 3. Related Work

Table 3.1: A comparison of the key characteristics of the main related work tools

Tool
BUT4Reuse ECCO CACAO

C
ha

ra
ct

er
is

tic
s

Configuration
through a feature
model

Yes, configuration
made through an
SPL generated fea-
ture model

No, configuration
made on the spec-
ification of the re-
quired features

No, configuration
made based on the
specification of new
product requirements

Mapping features
to artifacts

Yes, provides both
feature identifica-
tion and feature
location

Yes, provides fea-
ture location

Yes, detects which
code methods are re-
lated to the new prod-
uct requirements

Derivation of new
products

Yes, automated and
dependent on the
identified blocks of
artifacts

Yes, automated
derivation of new
products with pos-
sibility of adding
new features

Yes, manual deriva-
tion of new products
with possibility of
adding new require-
ments

Support during
derivation

No Yes, provides hints
to complete prod-
uct

Yes, ranks legacy
methods in the close
legacy products
according to the new
product requirements

Reuse of newly
derived products

No, since feature
model not updated
to integrate them

Yes, since new
products are inte-
grated using an in-
cremental mecha-
nism

Yes, since relevancy
check between re-
quirements is done
prior to each deriva-
tion

49

3.4. Summary and Contribution Choices Chapter 3. Related Work

Figure 3.5: Challenges and objectives

50

Part II

Approach Contributions

51

Preamble

In this part, we propose our approach to support Clone-and-Own in a Software Product
Line context and we present its main contributions. Our approach consists first on migrating
existing product variants into an SPL (see Chapter 4). Hence, an automated derivation of those
products can be achieved, whenever a configuration requires a set of features realized by one of
them. Further, new features can be added on top of the derived product. To provide an effective
reuse, we support the derivation of new variants from the existing ones. Therefore, whenever
the required features are subset of an existing one, or spread on several ones, comprising new
features or not, we propose the possible scenarios to achieve the derivation. More precisely,
we identify the products that can be the source for reuse, the required assets that have to be
cloned from those products, and the operations to perform on the cloned assets to construct
the new product (see Chapter 5). Such operations specify i.e. the features to be added on
or removed from the cloned asset. To determine those operations, we rely on the automated
mapping identification between the SPL features and assets, that we perform after the migration
of the PVs (see Chapter 4). We estimate the cost of the possible scenarios and operations to
facilitate the choice between them (see Chapter 6), and we provide a constraints system to
simply allow end users to make their choices based on their own preferences (see Chapter 7).
Hence, in our approach, we provide a complete guidance to end users to perform the derivation,
that might involve different actors, such as product architects at configuration level and software
developers at development level. Thus, product architects can select the appropriate derivation
scenario and software developers can construct the product according to the proposed operations.
Finally, our approach allows the integration of the newly derived products in the SPL to benefit
from their reuse in future derivations, as well as preserving the derivation of existing products
(see Chapter 7). Figure 3.6 shows our approach overview.

Figure 3.6: Approach overview

53

54

CHAPTER 4

MIGRATION PROCESS

Contents
4.1 Introduction . 56

4.2 Product Line Definition . 58

4.2.1 Feature Model Generation . 58

4.2.2 Products and Assets Extraction and Storage 59

4.3 Correlations Identification . 63

4.4 Product Line Validation . 68

4.5 Product Line Limitations . 69

4.6 Summary . 71

55

4.1. Introduction Chapter 4. Migration process

4.1 Introduction

In this chapter, we address Challenge 1.a that we presented in the introduction of this
dissertation. This challenge indicates, when developing a family of software products, the
necessity of mapping the features of PVs to the assets implementing them. We highlighted
in Chapter 3 on the importance of managing variability by identifying and categorizing the
features implemented by the PVs of the family of software products. This step is supposed to
allow for example to determine what are the products that implement a set of required features,
or if there exists a product that implements exactly all and no more than the required features.
Thus, it is a step-forward to allow reuse of existing PVs. Another important issue consists in
establishing mappings between features and assets. When the assets that are used to implement
a certain feature are identified, it becomes possible to allow their reuse when constructing a new
PV. We respond to Challenge 1.a by achieving the following objectives:

In this dissertation, we focus on feature-oriented software development where software reuse
is practically performed using C&O or SPLE (Objective 1).

C&O is a practice adopted by many organizations to develop a family of software products
since it offers rapidity, simplicity and independence [DRB+13]. Despite that C&O is considered
as an efficient reuse practice, it loses its efficiency when the number of managed PVs becomes
enormous, because it lacks a systematic methodology for reuse [FLLHE14].

A successful alternative to C&O is the adoption of an SPL development approach. When
adopting an SPL approach, variability is managed efficiently, since features are categorized
into common and variable features, and dependencies and constraints between them are identi-
fied [PBV05]. Variability is often expressed using a feature model [LKL02]. A configuration
of an FM allows to simply recognize which products implement a set of required features, and
reuse existing products whenever the required features are entirely implemented by one of them.
Moreover, the development architecture adopted in SPLE consists of creating reusable assets in
domain engineering [CN01], which enables reuse not only at product level but also at assets level.

Despite that SPLs allow to manage variability and enable reuse, they are considered as an
expensive up-front investment [PBV05]. In practice, artifacts have to be defined and developed
in domain engineering before being explored in application engineering to derive products.
Many are the organizations that cannot take such an expensive investment in terms of resources
and time at the early beginning of the family of products development, therefore, they tend
instead to adopt simple practices such as C&O.

In this dissertation, we propose a hybrid approach for developing and managing a family of
software products, in which we aim to explore the benefits provided by both C&O and SPLs. We
give our attention to organizations that adopt C&O as their initial development approach. Since
such organizations are used to or convinced in adopting C&O, we give interest on retaining
the fact that PVs are constructed by cloning (Objective 2). On the other hand, since in C&O
variability is not managed and mappings are not established, we give interest in adopting SPL
(Objective 3). Hence, as an initial step in our approach, we consider migrating PVs developed
based on C&O into an SPL in order to manage their variability and facilitate their reuse (Objec-
tive 5). We perform this migration through an extractive approach (Objective 6).

56

4.1. Introduction Chapter 4. Migration process

We are interested in constructing an FM to allow the configuration of products by selecting
the required features (Objective 4). Moreover, features must reflect the business-level func-
tionalities implemented by the SPL products. Thus, in our approach we assume that a feature
model representing the features implemented by each product variant is assigned to it, prior to
its migration into the SPL (Objective 7).

We propose an automated mappings discovery between the features and the assets of the
constructed SPL (Objective 8). Our approach takes into consideration the entire product line
instead of treating products separately to identify the mappings. We call the mappings "corre-
lations" since they define the correlation level between the artifacts of the SPL. Since we are
interested in polyglot systems, the mappings discovery mechanism that we propose is language-
independent (Objective 9). We highlighted earlier on the fact that a feature might have different
implementations due to features interactions. Moreover, a many-to-many relationship between
features and assets is likely to occur. Hence, we take feature interactions into account when
setting up the mappings discovery mechanism (Objective 10).

Finally, we assume that once the family of products starts to have its very few products, it
becomes favorable to migrate them into the SPL (Objective 11). We do not impose this criteria,
however, we consider it as a recommendation. Meanwhile, we guarantee in our approach a
smooth and quick migration process that do not affect the development productivity.

Figure 4.1 summarizes the migration process of our approach. Existing PVs are migrated
into an SPL by means of their provided artifacts and feature models. The SPL feature model is
generated and correlations (mappings) between features and assets are identified. The generated
FM allows the automated derivation of the integrated PVs.

Figure 4.1: Migration process

We define the migration process of our approach as an extractive process that is characterized
by the following activities:

57

4.2. Product Line Definition Chapter 4. Migration process

1. Structuring the SPL

(a) Generating the SPL feature model
(b) Extracting and storing products and assets

2. Identifying the correlations between features and assets

4.2 Product Line Definition
Migrating PVs into an SPL consists in providing the implementation files of the PVs and

specifying the features that they implement. In our approach, we consider that features of a PV
are known prior to migration process. We make this choice since we consider that a feature must
represent a business-level functionality.

As a general definition, we define a Software Product Line SPL as a family of polyglot
software products that share a set of identified features implemented through a set of assets. Our
definition of an SPL fits into the classic SPL definition of Clements and Northrop [CN01]. In
our approach, we aim to manage the set of features shared between the software products, and
identify the assets that implement them.

4.2.1 Feature Model Generation
In order to manage the features of the SPL, and since we aim to deal with business-level

features, we consider that, for each software product, the features that it implements are given. In
addition, prior to the migration of the software products, our approach imposes the representation
of the features implemented by each of them in the form of a feature model. We impose this
requirement, in order to respect the coherence of the overall structure of the features implemented
by the SPL. In this context, an approach proposed by Ziadi et al. [ZFdSZ12, ZHP+14, Mar16]
can be used to automatically identify the migrated products features and generate the SPL FM,
in situations where feature identification is required.

Definition 4.2.1 (Feature) :
We define a feature f , identified by its name, as an abstraction of a business functionality.

Definition 4.2.2 (Feature Model) :
We define a feature model fm as a triple 〈id, {f1, ...fn}, struct〉, where id is the identifier of
the feature model, {f1, ...fn} is the set of features that belong to it, and struct is the structure
of the feature model, representing in a tree structural format the features and the constraints
between them. We note the set of features F (fm) = {f1, ...fn}.

In our approach, the structure of a feature model respects the notations and semantics [Bat05,
BSRC10] of a classic feature model that was first introduced in the FODA method [KCH+90].

Given a product p, its feature model has no variability, since it represents the configuration
of the product which represents simply the features that it implements.

58

4.2. Product Line Definition Chapter 4. Migration process

Example 1: Product variants implementation files and feature models

The running example PVs with an excerpt of their corresponding implementation files and
the FMs representing the features they implement are shown in Table 4.1.

Table 4.1: Running example product variants with their implementation files and feature
models

Product Fileversion Feature Model

p1

match.jsp1

SaveMatch.java1

style.css1

p2

match.jsp1

SaveMatch.java1

style.css2

DeleteMatch.java1

p3

match.jsp1

SaveMatch.java2

style.css3

A global FM represents the collection of features provided by the SPL and the constraints
between them. Indeed, a configuration via this FM allows the derivation of the migrated PVs. In
our approach, we employ the merge operation provided by FAMILIAR language [ACLF13] to
construct the global FM of the SPL. We apply the merge operation on the FMs of the PVs to
obtain the SPL FM.

Definition 4.2.3 (Restrictive FM) :
We call the generated feature model a restrictive FM, since it restricts but also guarantees a valid
configuration and an automated derivation of the exact set of products provided by the SPL.

4.2.2 Products and Assets Extraction and Storage

We define the SPL products by means of the migrated PVs. For each PV an SPL product
is defined. In order to identify the SPL assets, they must be extracted from the implementation
artifacts of the PVs. Since PVs have features in common, they are supposed to have assets in
common too. A feature might be implemented by several assets. In addition, an asset might
share the implementation of several features. Consequently, the presence of a feature in a PV
and its absence in another PV often produces two versions of a same asset in two different PVs.
Thus, for some assets, several versions can be identified in the migrated PVs.

In our approach, we perform language independent feature location, in contrary to most
approaches in literature [AM14, FLLHE14, Mar16], that perform a language-specific feature
location, by employing artifact-type based algorithms to extract assets. In polyglot PVs, files
of different formats exist. In addition, some files might be written using several languages.
For instance, a Java Server Page (JSP) file, such as match.jsp form the running example (see

59

4.2. Product Line Definition Chapter 4. Migration process

Table 1.2), might contain HTML, Java, CSS blocks of code, and others. Thus, employing
language-specific feature location techniques for polyglot PVs might be ineffective and error-
prone.

Example 2: Applying the FAMILIAR merge operation to construct the SPL FM

Below are the FMs of the running example PVs in FAMILIAR language. A FAMILIAR
merge operation generates the SPL FM.

Listing 4.1: Running example PVs FMs in FAMILIAR language
fm_p1 = FM (ManageMatches: AddMatches ModifyMatches;)

fm_p2 = FM (ManageMatches: AddMatches ModifyMatches DeleteMatches;)

fm_p3 = FM (ManageMatches: AddMatches;)

Listing 4.2: FAMILIAR merge operation over PVs FMs
fm_spl = merge sunion fm*

Listing 4.3: SPL FM generated from FAMILIAR merge operation
fm_spl: (FEATURE_MODEL) ManageMatches: AddMatches [ModifyMatches] [DeleteMatches];
(DeleteMatches -> ModifyMatches);

As shown in the figure below, the feature ManageMatches is the root feature. The
feature AddMatches is mandatory, since it is implemented by all PVs, while the fea-
tures ModifyMatches and DeleteMatches are optional since they are implemented in
some but not all PVs. The constraint DeleteMatches⇒ModifyMatches is identified
since each product implementing the feature DeleteMatches implements also the feature
ModifyMatches.

Figure 4.2: Running example SPL global FM

Since we are interested in polyglot PVs, we set the granularity of the assets to be identified
at file level. In other words, each extracted file from a PV corresponds to an asset. Since several
versions of a file might be extracted, several versions of an asset might exist. Therefore, when
extracting the assets, we distinguish different versions, and for each product we identify which
version was used. Thus, we call assets the identified files and asset instances their corresponding
versions. An asset represents an abstraction of one or more files having the same name in one or
more PVs, noted as instance(s) of the asset.

60

4.2. Product Line Definition Chapter 4. Migration process

Definition 4.2.4 (Asset Instance) :
We define an asset instance ai of an asset a as a pair 〈instanceNo, implementation〉, where
instanceNo is the instance number (version) of the asset instance, and implementation is its
corresponding implementation file.

A new asset instance of an asset is identified, when a file existing in another product has the
same name with a different content.

Definition 4.2.5 (Asset) :
We define an asset a as a pair 〈name, {a1, ..., an}〉, where name is the name of an imple-
mentation file and {a1, ..., an} is the set of instances of the asset a, which are the different
implementation versions of the file. We note AI(a) = {a1, ..., an}.

Asset name and file name: We designate by asset name and file name, the relative path of
the file in concern, including its exact name, within the project that it belongs to. However, for
simplicity and to make the examples comprehensive, we represent files and assets throughout the
dissertation by their exact name excluding the path. For example, in our approach match.jsp
refers to WebContent/match/match.jsp.

Definition 4.2.6 (Product) :
We define a product p as a triple 〈name, fm, {aij, ..., anm}〉. A product p is identified by its
name, a feature model fm referencing the features that it implements and a set of asset instances
that it exploits to fulfill its implementation. We note fm(p) = fm to refer to the feature model
of p, and AI(p) = {aij, ..., anm} to refer to the asset instances exploited by p.

The products of the SPL are defined by means of the migrated PVs. We consider products
as the main elements of an SPL, since they embody the features and the assets of the SPL.
Products are founded by their asset instances and their relationship with assets are identified via
their asset instances.

Definition 4.2.7 (Product implements features) :
Given a product p, p implements a set of features noted as F (p) = F (fm(p)).

We can now define formally an SPL as follows:

Definition 4.2.8 (Software Product Line SPL) :
We define a Software Product Line SPL as a set of products {p1, ..., pn}.

— We note the SPL products P (SPL) = {p1, ..., pn}.

— We note the SPL features F (SPL) = ∪pj∈P (SPL)(F (pj)) = {f1, ..., fx}.

— We note the SPL assets A(SPL) = {a | ∀ai ∈ ∪pj∈P (SPL)(AI(pj)), a
i ∈ AI(a)} =

{a1, ..., az}.

61

4.2. Product Line Definition Chapter 4. Migration process

As we work only with one SPL, we denote P (SPL) as P , F (SPL) as F and A(SPL) as A.

Definition 4.2.9 (Artifact) :
An artifact is used in the development of software systems. In our approach we limit its
definition to the following: an artifact is a feature, an asset or an asset instance participating in
the development of SPL.

Definition 4.2.10 (Product employs assets and exploits asset instances) :
Given a product p, p employs a set of assets noted as A(p) and for each asset aj ∈ A(p), p
exploits one of its instances aij ∈ AI(aj) to fulfill the implementation where A(p) = {aj | aj ∈
A,∃aij ∈ AI(p), aij ∈ AI(a)}.

Definition 4.2.11 (Feature implemented by products) :
Given a feature f , the set of products that f is implemented in is noted as P (f) = {p ∈ P , f ∈
F (p)}, where P (f) ⊆ P .

Definition 4.2.12 (Asset employed by products) :
Given an asset a, the set of products that a is employed by is noted as P (a) = {p ∈ P , a ∈ A(p)},
where P (a) ⊆ P .

Definition 4.2.13 (Asset instance exploited by products) :
Given an asset instance ai the set of products that ai is exploited by is noted as P (ai) = {p ∈
P , ai ∈ AI(p)}, where P (ai) ⊆ P .

Property 4.2.1 (SPL facts) :
Given a product p, an asset a and a feature f , we can demonstrate that:

— a ∈ A(p)⇔ p ∈ P (a)

— f ∈ F (p)⇔ p ∈ P (f)

Figure 4.3 shows the SPL model diagram. Algorithm 1 in Chapter 8 explains how the
assets and their instances are extracted from the migrated PVs implementation files, and how
the SPL products are identified.

Property 4.2.2 (Asset instance uniqueness in product) :
Since an asset is identified based on a file path, given a product p ∈ P , for each asset a employed
by p, only one of its instances is exploited by p. A product verifies uniqueness of asset instances
if ∀a ∈ A(p),∃!ai ∈ AI(p), ai ∈ AI(a).

62

4.3. Correlations Identification Chapter 4. Migration process

Example 3: Running example extracted assets and instances

In the running example PVs, the match.jsp asset represents a “Java Server Page” that
displays a match information. The same implementation of the corresponding file is used
in all PVs. Thus, only 1 instance was identified for it. On the other hand, the asset
style.css represents a style sheet file that is employed by several web pages. Therefore,
different implementations of this asset are available. Thus, 3 instances were identified for
it. Table 4.2 shows the assets and corresponding instances, identified in the products of the
SPL.

Table 4.2: Running example relationships between assets, asset instances and product
variants

Asset Instance Product
p1 p2 p3

match.jsp 1 X X X

SaveMatch.java
1 X X
2 X

style.css
1 X
2 X
3 X

DeleteMatch.java 1 X

Figure 4.3: SPL model diagram

4.3 Correlations Identification
In order to identify the mappings among the SPL artifacts, we define "correlations". A

correlation1 indicates the coexistence between a feature and an asset, or between a feature and
an asset instance. An asset is a global abstraction of a partial or a total implementation of one or
more features, since a feature implementation can be spread into several assets, and similarly, an

1Correlation: a mutual relationship or connection between two or more things (Oxford Dictionary)

63

4.3. Correlations Identification Chapter 4. Migration process

asset can include implementation fragments of different features. Therefore, we are interested in
identifying the correlation between a feature and an asset, in order to determine the coexistence
between them in the SPL products. On the other hand, an asset instance realizes one of the
asset implementations in one or more SPL products. Therefore, we are interested in identifying
the correlation between a feature and an asset instance.

In our approach, instead of mapping a feature or set of features (features interaction) to an
implementation block, which can be composed of fragments of several assets, we map each
feature to the set of assets that supposedly contribute in its implementation. We call those
mappings correlations. Hence, a feature might be correlated to several assets, and an asset might
be correlated to several features as well.

Definition 4.3.1 (Correlation) :
We designate the SPL correlations C(SPL) noted as C as the set of correlations that handles
the coexistence between features and assets, and between features and asset instances in the
SPL products. Therefore, we define two subsets of correlations:

1. Feature to Asset correlations, and

2. Feature to Asset Instance correlations.

A correlation between a feature f and an asset a holds if the following constraints are valid:

— For each product pj that implements f , pj employs a (exploits any of its instances)

— There does not exist an asset instance ai exploited by pj and by another product pk that
does not implement f

Definition 4.3.2 (Feature to Asset Correlation) :
A correlation between a feature f and an asset a noted as c(f, a) ∈ C holds, if P (f) ⊂
P (a) ∧ ∀ai ∈ AI(P (f)), ai /∈ AI(P (a) \ P (f))

Definition 4.3.3 (Correlation Type) :
We define two correlation types (CT): {equivalence, implication}, where the type t of a
correlation is noted as t(c(f, a)). A correlation c(f, a) is an equivalence (noted f ⇔ a) if
P (f) = P (a), otherwise it is an implication (noted f ⇒ a).

In Figure 4.4, we demonstrate when a feature to asset correlation is identified. Given a
feature f3 and an asset a3, in the first situation (see Figure 4.4a), there exists an equivalence
correlation f3 ⇔ a3, since p1 and p2 are the only products that implement f3 and employ a3. In
the second situation (see Figure 4.4b), there is only an implication correlation f3 ⇒ a3, since p1
and p2 implement f3 and employ a3, while there exists a product p3 that employs a3 without
implementing f3. In the third situation (see Figure 4.4c), no correlation holds between f3 and
a3, because p3 does not implement f3 and exploits the same instance a13 of a3 exploited by p1
that implements f3.

64

4.3. Correlations Identification Chapter 4. Migration process

(a) Equivalence correlation between f3 and a3

(b) Implication correlation between f3 and a3

(c) No correlation between f3 and a3

Figure 4.4: Examples of feature to asset correlation

65

4.3. Correlations Identification Chapter 4. Migration process

Example 4: Running example feature to asset correlations

Table 4.3 shows the correlations between the features and the assets of the running
example. If we refer to Table 1.1 and Table 1.2, we can see that the three products
implement the feature ManageMatches and employ the asset match.jsp, therefore,
ManageMatches ⇔ match.jsp. On the contrary, for each product implementing the
feature ModifyMatches, which are p1 and p2, the asset SaveMatch.java is employed,
but p3 employs SaveMatch.java and does not implement the feature ModifyMatches.
Therefore, there does not exist an equivalence correlation between ModifyMatches and
SaveMatch.java. However, ModifyMatches ⇒ SaveMatch.java because p3 does
not exploit the same instance of SaveMatch.java exploited by p1 and p2. As a counter
example, there is no implication between ModifyMatches and match.jsp, since p3 that
does not implement ModifyMatches exploits the same instance of match.jsp exploited
by both p1 and p2 that implement ModifyMatches.

Table 4.3: Correlations between features and assets of the running example

Feature CT Asset

ManageMatches ⇔ match.jsp
AddMatches ⇔ match.jsp
ManageMatches ⇔ SaveMatch.java
AddMatches ⇔ SaveMatch.java
ModifyMatches ⇒ SaveMatch.java
ManageMatches ⇔ style.css
AddMatches ⇔ style.css
ModifyMatches ⇒ style.css
DeleteMatches ⇒ style.css
DeleteMatches ⇔ DeleteMatch.java

Figure 4.5 shows the correlations model diagram.

Figure 4.5: Correlations model diagram

Definition 4.3.4 (Feature to Asset Instance Correlation) :
Given an instance ai of an asset a, a correlation between a feature f and ai noted as c(f, ai)
holds if c(f, a) ∧ ∃ p ∈ P (f), ai ∈ AI(p).

66

4.3. Correlations Identification Chapter 4. Migration process

Example 5: Running example feature to asset instance correlations

As shown in Example 4, the correlation c(ModifyMatches, SaveMatch) holds. Con-
sequently, the correlation c(ModifyMatches, SaveMatch1) holds, since SaveMatch1

is exploited by p1 and p2 that implement ModifyMatches. In contrary, the correla-
tion c(ModifyMatches, SaveMatch2) does not hold, since the product p3 exploiting
SaveMatch2 does not implement ModifyMatches. The correlations between the fea-
tures and the asset instances of the running example are shown in Table 4.4.

Table 4.4: Correlations between features and asset instances of the running example

Feature Assetinstance

ManageMatches match.jsp1

AddMatches match.jsp1

ManageMatches SaveMatch.java1

AddMatches SaveMatch.java1

ModifyMatches SaveMatch.java1

ManageMatches SaveMatch.java2

AddMatches SaveMatch.java2

ManageMatches style.css1

AddMatches style.css1

ModifyMatches style.css1

ManageMatches style.css2

AddMatches style.css2

ModifyMatches style.css2

DeleteMatches style.css2

ManageMatches style.css3

AddMatches style.css3

DeleteMatches DeleteMatch.java1

Definition 4.3.5 (Asset correlated features) :
Given an asset a, the set of features that a is in correlation with is noted as F (a) = {f | f ∈
F , c(f, a)}.

Definition 4.3.6 (Asset instance correlated features) :
Given an instance ai of an asset a, the set of features that ai is in correlation with is noted as
F (ai) = {f | f ∈ F , c(f, ai)}.

Definition 4.3.7 (Feature correlated assets) :
Given a feature f , the set of assets that f is in correlation with is noted as A(f) = {a | a ∈
A, c(f, a)}.

Definition 4.3.8 (Feature correlated asset instances) :
Given a feature f and an asset aj , the set of instances of aj that f is in correlation with is noted
as AI(f/aj) = {aij | aij ∈ AI(aj), c(f, a

i
j)}. The set of instances of all assets that f is in

67

4.4. Product Line Validation Chapter 4. Migration process

correlation with is noted as AI(f) = ∪aj∈A(f)(AI(f/aj)).

4.4 Product Line Validation
In this section, we identify some structural requirements that must be satisfied during migra-

tion process in order to create the SPL.

As defined earlier, a product is identified by its name. However, when migrating PVs, a
software engineer might attempt to provide two products having the same name. Thus, this
attempt is considered as an anomaly that must be detected and rejected.

R1: each product in SPL must have a unique name, where ∀pj ∈ P ,@ pk ∈ P | name(pj) =
name(pk).

When a PV is migrated into the SPL, an FM representing the features that it implements is
assigned to it. In our approach, we employ the union merge operation provided by FAMILIAR,
in order to generate the restrictive fm. FAMILIAR imposes that the root features of the input
feature models match as a rule to accomplish the operation [Ach11]. Therefore, the provided
PVs FMs must have a proper structure where all of them have the same root feature.

R2: each product must have a feature model respecting the FODA notations and semantics
and all products have to share at least one common feature which is the root feature of the SPL,
where ∀(pj, pk) ∈ P ,∃ froot | froot ∈ F ∧ froot ∈ F (pj) ∧ froot ∈ F (pk).

In our approach, we consider that products must be distinguished at business-level. Therefore,
no two products are allowed to implement exactly the same features.

R3: we prohibit that two products in the SPL implement exactly the same set of features,
regardless if their implementation is identical or not. Thus, ∀pj ∈ P ,@ pk ∈ P | F (pj) = F (pk).

Since no two products are accepted if they implement the same features, respectively, no
two products are supposed to have the same implementation. Furthermore, if two products
implement different features, they are supposed to have different implementations (different
asset instances). Therefore, in our approach, we enforce that no two products should have the
same asset instances.

R4: we prohibit that two products in the SPL have exactly the same implementation. In other
words, no two products should have exactly the same asset instances. Thus, given two products
(pj, pk) ∈ P if they employ the same assets, they might exploit some, but definitely not all the
same asset instances. Thus, if A(pj) = A(pk)⇒ AI(pj) 6= AI(pk).

Based on R3 and R4, a product is accepted for migration if there does not exist another
product that implements the same features or exploits exactly the same set of assets.

If a product pj implements a set of features that is subset of the set of features implemented
by another product pk, and the assets employed by pj are not part of the ones employed by

68

4.5. Product Line Limitations Chapter 4. Migration process

pk, then each product is employing a different set of assets to implement the same features.
Therefore, this is considered as an anomaly that produces uncorrelated artifacts.

R5: given two products (pj, pk) ∈ P , if pk implements all the features implemented by pj
and more, pk must employ all the assets employed by pj and – not necessarily but most likely –
more. Thus, if F (pj) ⊂ F (pk)⇒ A(pj) ⊆ A(pk).

Property 4.4.1 (Complete SPL) :
An SPL is complete, if all validation requirements are satisfied and each of its artifacts partici-
pates in at least one correlation.

In our approach, the migration process is accomplished if the SPL to be generated is a
complete SPL.

4.5 Product Line Limitations
Architecture as a keystone of the SPL:
Extraction of assets, and respectively asset instances is done based on their corresponding file
name and the path under which they are located in the PV(s) from which they are extracted.
Therefore, a change in folder structure, or in the name of a file in a certain PV implies the
identification of a new asset for the file in concern, which causes an inconsistency in the SPL
structure and an identification of spurious correlations. Thus, the extraction of the SPL assets is
dependent on the architecture of the PVs. Similarly, the features of the SPL are extracted from
the PVs FMs. Therefore, any change in FMs affects the identified features, and respectively the
SPL correlations.

Asset instance uniqueness:
Since assets are identified by the path and the name of the file to which they refer, and an asset
instance is a version of the file existing in one or more PVs, then, it is not possible to have two
instances of the same asset in a product. A product can exploit only one asset instance of a
certain asset.

Theoretically identified correlations:
The identified correlations are discovered based on the theory that we defined in this chapter, by
analyzing the variability between the PVs artifacts. Despite that we aim to reach the highest
precision in the identified correlations, our approach does not guarantee that all identified
correlations are certain, because variability between PVs might be identified by means of a set of
features and not a single feature. For instance, if a set of features CF = {f1, ..., fn} consists of
the common features between all SPL products, and a set of assets CA = {a1, ..., am} is the set
of common assets between all SPL assets, our approach generates an equivalence correlation
between each feature fj ∈ CF and each asset aj ∈ CA, however, nothing guarantees in practice
that each fj ∈ CF is in correlation with each asset aj ∈ CA and vice versa. Similarly, if a
set of features PF = {f1, ..., fn} is implemented by a product and not others, each asset aj of

69

4.5. Product Line Limitations Chapter 4. Migration process

the set of asset PA = {a1, ..., am} employed to implement the features will be in correlation
with each feature fj ∈ PF , however, nothing guarantees this in practice. Despite that the
correlations identified by our approach may not guarantee a high precision when few PVs are
initially migrated, our approach ensures a continuous refinement of the correlations that gain
precision over time with each integration of a new product in the SPL.

Example 6: Example of uncorrelated asset if R5 violated

In this example, we illustrate a situation in which an asset has no correlations due to the
violation of the requirement R5.

In this situation, we have two PVs, as shown in Table 4.5, px implements the features
welcome and news, and py implements the featureswelcome, news and contact. Table 4.6
shows the assets and their corresponding instances exploited by the products.

Table 4.5: Product variants with their corresponding features

welcome news contact

px X X
py X X X

Table 4.6: Product variants with their corresponding asset instances

Product Asset instance

px
index.html1

news.html1

py

home.html1

news.html1

contact.html1

Table 4.7 shows the correlations between the features and the assets, and as shown,
the asset index.html has no correlations. This occurred because index.html was not
employed by py where we have home.html instead. Since the features implemented by px
are subset of the ones implemented by py, all assets employed by px were supposed to be
employed by py. Apparently, both index.html in px and home.html in py implement the
welcome feature while they have different names. R5 was set to detect such situations and
prevent the construction of an incomplete SPL.

Table 4.7: Correlations between features and assets

Feature CT Asset

welcome ⇔ news.html
news ⇔ news.html
contact ⇔ home.html
contact ⇔ contact.html

70

4.6. Summary Chapter 4. Migration process

Ad-hoc algorithm to identify correlations:
In our approach, we defined our own ad-hoc algorithm to identify mappings instead of relying
on formal classification algorithms such as Formal Concept Analysis (FCA). However, we relied
on our algorithm because we are interested in identifying feature correlations at both asset and
asset instance level. Moreover, the constraints imposed by our algorithm allow to identify less
correlations compared to FCA algorithm, which gives a higher level of correctness to the SPL
correlations.

4.6 Summary
In this chapter, we responded to the first challenge addressed in the dissertation. By migrating

PVs into the SPL, we enabled variability management and allowed the automated derivation of
the products from the SPL. In addition, we identified the mappings between the SPL artifacts
in terms of correlations.

To allow the derivation of the migrated PVs from the SPL, the restrictive FM is generated
from the FMs of the migrated PVs. The restrictive FM permits the configuration of the SPL
features in order to reuse the SPL products.

The identified correlations represent the mappings between the SPL features and assets and
respectively between the features and the asset instances. These correlations are supposed to
facilitate the reuse of SPL artifacts in order to create new products. We explain this process
throughout the upcoming chapters.

The PVs to be migrated must respect some structural requirements, in order to make sure that
their migration will result in a complete SPL. A complete SPL guarantees that the structure of
the composed SPL is correct, and each artifact has at least one correlation.

Managing variability and allowing the automated derivation of the migrated PVs are impor-
tant steps towards reuse. However, investing in the SPL products artifacts in order to derive
new products that are not provided by the SPL is essential. Customers are about to request new
requirements on a frequent basis, thus, new products are supposed to be derived on a continuous
basis. In the next chapter, we address this need, and present our approach in supporting software
engineers in deriving new software products.

71

4.6. Summary Chapter 4. Migration process

72

CHAPTER 5

CONFIGURATION PROCESS

Contents
5.1 Introduction . 74

5.2 Configuration . 75

5.2.1 Free Feature Model Generation . 78

5.3 Configuration Modes . 78

5.3.1 Restrictive Mode . 79

5.3.2 Free Mode . 79

5.4 Configuration Scenarios . 79

5.4.1 Possible Configuration Scenarios 79

5.5 Derivation Operations . 83

5.6 Summary . 87

73

5.1. Introduction Chapter 5. Configuration Process

5.1 Introduction

The main goal when adopting SPLs is reuse [TH03]. Reuse is an essential need when
developing a family of software products. An organization that has developed a family of
software products aims to target new customers that belong to the same market segment, in order
to increase its profits. Thus, reusing the ready-made software products to respond to the needs
of the new customers increases the orgranization profits. By enabling reuse, SPLs decrease
development costs and time to market and increase software quality [PBV05]. Moreover, an
organization must deal with the continuous market demands and technology changes that involve
the development of new software products [HVLG12]. Since the new products respond to the
same market segment, they are supposed to implement some features that are already imple-
mented by the existing products. Therefore, instead of redeveloping the assets corresponding to
those features, software engineers seek to reuse the existing products artifacts and develop only
the assets required to implement the new features. For this purpose, the products implementing
the required features have to be determined and mappings between features and the assets
contributing in their implementation have to be identified. In the previous chapter, we proposed
in our approach a mechanism to identify those mappings, and we called them correlations.

Prior to the derivation of a product variant, the SPL feature model has to be configured, in
order to select the features required for the derivation. Further, some new features that are not
offered by the existing PVs might be required. Hence, in this chapter, we address Challenge 1.b
of this dissertation, by presenting how we support the configuration process, that is a preliminary
step before deriving a product variant. As well, we address Challenge 2.a in terms of allowing
the addition of new features during the configuration. Our approach supports the derivation of
new products and allows the derivation of existing ones as well. We identify four possible situa-
tions that can arise. A software engineer might proceed with a valid configuration, by selecting
a set of features that are implemented exactly by an existing product. Hence, an automated
derivation of the corresponding product has to be done. Figure 5.1a illustrates this situation. A
second situation occurs when the configuration is valid, but still new features have to be added.
Hence, in our approach, we enable the addition of new features directly during the configuration.
Similarly to the previous situation, the corresponding product is provided, however, a manual
completion is required to add the new features and thus, create a new product. Figure 5.1b
illustrates this situation. Another situation might occur, in which the software engineer selects a
set of features that are part of the implementation of an existing product or spread on several
products. Hence, the configuration is invalid, since no existing product implements all and
only the required features. Therefore, a new product has to be constructed. In this situation,
we aim to support the derivation of the possible scenarios and operations to perform in order
to derive the new product. We call the product to derive the “desired product”. Figure 5.1c
illustrates the third situation. Finally, a software engineer might select features corresponding
to an invalid configuration, but also adds new features. Same as previous situation, we aim to
support the derivation with the possible scenarios and operations and let software engineer add
the new features. Figure 5.1d illustrates the fourth situation. To enable invalid configurations, we
generate a free FM that corresponds to a constraint-free version of the restrictive FM. Therefore,
the selection of any possible combination of features during a configuration is now possible
(Objective 17). Further, we suggest the possible scenarios by means of operations to perform
at asset level, that software engineers can rely on to derive the desired product (Objective 12).
Several scenarios might be possible to derive a certain product, and several operations might be
possible at each asset level. Therefore, instead of proposing a single solution, we propose to

74

5.2. Configuration Chapter 5. Configuration Process

software engineers the possible scenarios and operations. Hence, we guide the derivation without
automating it or imposing a specific solution (Objective 14). Thus, we keep decision-making
for software engineers that construct the products on their own.

5.2 Configuration
When a software engineer decides to derive a product, she has to identify the required

features, in order to figure out if there exists a product that implements entirely those features.
This process is done systematically when configuring the FM of an SPL, that we call in our
approach restrictive FM. However, the restrictive FM limits the configuration to the exact set
of products offered by the SPL. We highlighted earlier on the importance of developing new
software products, in order to satisfy the arising market demands. A new product might require
the implementation of new features that were not offered by the SPL products. Thus, in
our approach, we are interested in supporting organizations in growing their product line by
developing new products. Therefore, we enable the integration of new features in the SPL, by
defining them through the configuration of a new product.

Definition 5.2.1 (Configuration) :
We define a configuration cf as a triple 〈id, {fj, ..., fn}, {fx, ..., fz}〉 where id is the identifier
of the configuration. The set of features {fj, ..., fn} are the features required to build the
desired product and offered by the SPL, while {fx, ..., fz} are the new features required to
build the desired product and not offered by the SPL. We note {fj, ..., fn} as EF (cf), where
EF (cf) ⊆ F stands for existing features and {fx, ..., fz} noted as NF (cf) 6⊂ F stands for new
features.

During the configuration of an FM, we identify three categories of features:

— Required existing feature: a selected feature implemented by one or more products of the
SPL and required for the derivation of the desired product.

— Unrequired existing feature: an unselected feature implemented by one or more products
of the SPL and not required for the derivation of the desired product.

— Required new feature: a selected feature that is not implemented by any of the SPL
products, but required for the derivation of the desired product.

Inspired from [KNGDNK+16], we determine the following properties, that specify the
relationship between a configuration and a SPL product:

Property 5.2.1 (Product contributes in configuration) :
An SPL product p ∈ P contributes in a configuration cf if p implements at least one feature
required by cf , thus EF (cf) ∩ F (p) 6= {φ}. In other words, ∃fj ∈ F (p), fj ∈ EF (cf).

Property 5.2.2 (Product realizes a configuration) :
An SPL product p ∈ P realizes a configuration cf if all and only the features required by cf are
implemented by p, thus if EF (cf) = F (p). In other words, ∀fj ∈ EF (cf), fj ∈ F (p) ∧ @fk ∈
F (p), fk /∈ EF (cf).

75

5.2. Configuration Chapter 5. Configuration Process

(a) Derivation of existing product

(b) Derivation of new product by adding new features to existing one

(c) Derivation of new product by using existing features

(d) Derivation of new product by using existing features and adding new ones

Figure 5.1: Derivation process

76

5.2. Configuration Chapter 5. Configuration Process

Property 5.2.3 (Product covers a configuration) :
An SPL product p ∈ P covers a configuration cf if all features required by cf are implemented
by p, but p implements in addition some features that are not required by cf , thus if EF (cf) ⊂
F (p). In other words, ∀fj ∈ EF (cf), fj ∈ F (p) ∧ ∃fk ∈ F (p), fk 6∈ EF (cf).

Figure 5.2 shows an SPL example that consists of four products and illustrates the features
implemented by each product. Given a configuration cfk where EF (cfk) = {f4, f7}, we can
say that:

— p1 contributes in cfk, since EF (cfk) ∩ F (p1) = {f4}.

— p2 covers cfk, since EF (cfk) ⊂ F (p2), where {f4, f7} ⊂ {f1, f2, f3, f4, f5, f6, f7}.

— p3 covers cfk, since EF (cfk) ⊂ F (p3), where {f4, f7} ⊂ {f4, f6, f7}.

— p4 realizes cfk, since EF (cfk) = F (p4) = {f4, f7}.

Figure 5.2: An SPL example

Several questions might arise during the configuration of the restrictive FM, in order to
derive the desired product:

1. Is there a product in SPL that realizes the configuration, or do we have to break the
constraints imposed by the restrictive FM in order to achieve the configuration?

2. Does the SPL offers all the features required by the desired product? Or there exists
some new required features that are not offered by the SPL products?

3. If new features are required, how can a software engineer express the need of new features
during the configuration and how those features can be added to the SPL FM?

Selecting a set of features that do not correspond to a valid configuration is not possible
via the restrictive FM. A configuration via the restrictive FM is restricted by the constraints
that define the variability between its features. Therefore, the only possible configurations that
can be made through restrictive FM are the ones for which there exists a product that realizes

77

5.3. Configuration Modes Chapter 5. Configuration Process

the configuration. On the other side, in order to introduce new features required by the desired
product, we enable the addition of new features through a configuration made on a restrictive
FM. Thus, despite that the restrictive FM allows an automated derivation of the SPL products,
it does not permit the configuration of new ones, except the ones that involve the addition of
new features on top of a product that realizes the configuration.

5.2.1 Free Feature Model Generation

Since a restrictive FM does not allow to break the constraints imposed by the SPL variability,
we define a free FM in which a software engineer can select a set of features that does not
correspond to a valid configuration.

Definition 5.2.2 (Free FM) :
A free FM is a constraint-free feature model that includes all the features of a restrictive FM
where all features are optional except the root feature, without defining any constraint.

Example 7: Running example Restrictive and Free FMs

As shown below, the free FM of the running example has all its features optional and no
constraints between them, although it respects the structure of the restrictive FM. In other
words, a software engineer can select any combination of features from the free FM to
configure a new product, with a one condition that, if a feature is selected its parent feature
is automatically selected.

(a) Restrictive FM (b) Free FM

Figure 5.3: Running example Restrictive and Free FMs

5.3 Configuration Modes

We defined for an SPL two FMs: restrictive FM and free FM. In derivation process, we
define respectively two configuration modes – restrictive and free – where each employs its
corresponding FM, to allow a software engineer to perform a configuration, in order to derive
a product. Regardless the FM in use to configure a product, we enable the definition of new
features at the configuration level, so that, software engineers can add new features to create
new products, whenever those features are not provided by the SPL.

78

5.4. Configuration Scenarios Chapter 5. Configuration Process

5.3.1 Restrictive Mode
A restrictive mode employs the restrictive FM, which restricts a configuration to a set of

features that correspond to an existing product. Therefore, it allows the automated derivation of
existing products. Moreover, since we enabled the definition of new features at the configuration
level, software engineers are able to define features in restrictive mode, and therefore, derive
new products that their required existing features are realized by a product in the SPL.

5.3.2 Free Mode
A free mode employs the free FM which is a constraint-free FM, that allows the selection of

any set of features, since all features are optional. Therefore, free mode allows the derivation of
a new product by collecting features from one or several existing products, in addition to the
possibility of adding new features that are not provided by the SPL.

5.4 Configuration Scenarios
When a software engineer selects a set of features in restrictive mode, either the configuration

is valid, and thus, the set of required existing features is realized by one and only one product,
or the configuration is invalid, and thus, the configuration is to be performed in free mode. If
the set of required existing features is not realized by a single product, then, there might exist a
product that covers this configuration, or there might exist a combination of products, where
each product contributes in the configuration and the combination by itself realizes or covers
the configuration. Therefore, we call a configuration scenario, a possible scenario to achieve a
configuration. Indeed, a configuration can be achieved by several configuration scenarios.

Definition 5.4.1 (Configuration scenario) :
We define for each configuration cfj a set of configuration scenarios {cs1(cfj), ..., csn(cfj)}
noted asCS(cfj), where a configuration scenario csi(cfj) is defined as a pair 〈{〈pk, {fq, ..., fs}〉},
{fx, ..., fz}〉, where {〈pk, {fq, ..., fs}〉} is a combination of products that can be reused to
achieve the configuration and {fx, ..., fz} is NF (cf) if any. A product is candidate for a con-
figuration scenario if it implements at least one of the features of EF (cf). Further, for each
combination, the unrequired features {fq, ..., fs} implemented by a candidate product pk are
identified.

Property 5.4.1 (Products of a configuration scenario) :
Given a configuration scenario csi(cfj) of a configuration cfj , the combination of products
participating in csi(cfj) are noted as P (csi(cfj)).

5.4.1 Possible Configuration Scenarios
Since several scenarios might be determined for a certain configuration, we identify the

possible configuration scenarios to achieve a configuration as follows:

Integrality: A configuration cfj can be achieved by integrality (S1 in Figure 5.4) if there
exists a configuration scenario csi(cfj) that consists of a product in the SPL that realizes the

79

5.4. Configuration Scenarios Chapter 5. Configuration Process

Figure 5.4: Possible scenarios to achieve a configuration

set of required existing features selected in the configuration. Integrality can arise in restrictive
mode.

Restriction: A configuration cfj can be achieved by restriction (S2 in Figure 5.4) if there
exists a configuration scenario csi(cfj) that consists of a product in the SPL that covers the set
of required existing features selected in the configuration. Restriction can arise in free mode.

Integral composition: A configuration cfj can be achieved by integral composition (S3 in
Figure 5.4) if there exists a configuration scenario csi(cfj) that consists of a combination of
products in the SPL where each product contributes in the configuration, and the combination
realizes the set of required existing features selected in the configuration. Integral composition
can arise in free mode.

Restrictive composition: A configuration cfj can be achieved by restrictive composition (S4
in Figure 5.4) if there exists a configuration scenario csi(cfj) that consists of a combination of
products in the SPL where each product contributes in or covers the configuration, and the
combination covers the set of required existing features selected in the configuration. Restrictive
composition can arise in free mode.

Extension: A configuration cfj can be achieved by extension (S5 in Figure 5.4) if there exists
a configuration scenario csi(cfj) that consists of a product in the SPL that realizes the set of
required existing features selected in the configuration, and the configuration has in addition
some selected required new features. Extension can arise in restrictive mode. An extension is an
integrality with required new features.

Restrictive extension: A configuration cfj can be achieved by restrictive extension (S6 in
Figure 5.4) if there exists a configuration scenario csi(cfj) that consists of a product in the
SPL that covers the set of required existing features selected in the configuration, and the
configuration has in addition some selected required new features. Restrictive extension can
arise in restrictive mode. A restrictive extension is a restriction with required new features.

80

5.4. Configuration Scenarios Chapter 5. Configuration Process

Extensive composition: A configuration cfj can be achieved by extensive composition (S7
in Figure 5.4) if there exists a configuration scenario csi(cfj) that consists of a combination of
products in the SPL where each product contributes in the configuration, and the combination
realizes the set of required existing features selected in the configuration, and the configuration
has in addition some selected required new features. Extensive composition can arise in free
mode. An extensive composition is an integral composition with required new features.

Restrictive extensive composition: A configuration cfj can be achieved by restrictive ex-
tensive composition (S8 in Figure 5.4) if there exists a configuration scenario csi(cfj) that
consists of a combination of products in the SPL where each product contributes in or covers
the configuration, and the combination covers the set of required existing features selected in
the configuration, and the configuration has in addition some selected required new features.
Restrictive extensive composition can arise in free mode. A restrictive extensive composition is a
restrictive composition with required new features.

Given the SPL shown in Figure 5.2 that consists of four products, we demonstrate on some
configurations made in both restrictive and free mode, the possible configuration scenarios that
we presented above.

Restrictive mode configuration scenarios:

Let cf5 a new configuration, where EF (cf5) = {f1, f2, f3, f4} and NF (cf5) = {φ}. The
product p1 realizes cf5 since F (p1) = EF (cf5). Thus, cs1(cf5) = 〈{〈p1, {φ}〉}, {φ}〉 (integral-
ity).

Let cf6 a new configuration, where EF (cf6) = {f4, f7} and NF (cf6) = {f8}. The product
p4 realizes cf6 since F (p4) = EF (cf6). Thus, cs1(cf6) = 〈{〈p4, {φ}〉}, {f8}〉 (extension).

Whenever exists a product pj that realizes a configuration cfk where F (pj) = EF (cfk),
the only configuration scenario to be considered for this configuration is the integrality that is
achieved by pj if NF (cfk) = {φ} or the extension if NF (cfk) 6= {φ}.

Free mode configuration scenarios

Let cf7 a new configuration, where EF (cf7) = {f1, f2, f3, f4, f7} and NF (cf7) = {φ}. No
product in SPL realizes cf7. However, several configuration scenarios are possible for cf7:

— cs1(cf7) = 〈{〈p2, {f5, f6}〉}, {φ}〉 (restriction).

— cs2(cf7) = 〈{〈p1, {φ}〉, 〈p2, {f5, f6}〉}, {φ}〉 (restrictive composition).

— cs3(cf7) = 〈{〈p1, {φ}〉, 〈p3, {f6}〉}, {φ}〉 (restrictive composition).

— cs4(cf7) = 〈{〈p1, {φ}〉, 〈p4, {φ}〉}, {φ}〉 (integral composition).

— cs5(cf7) = 〈{〈p2, {f5, f6}〉, 〈p3, {f6}〉}, {φ}〉 (restrictive composition).

— cs6(cf7) = 〈{〈p2, {f5, f6}〉, 〈p4, {φ}〉}, {φ}〉 (restrictive composition).

81

5.4. Configuration Scenarios Chapter 5. Configuration Process

— cs7(cf7) = 〈{〈p1, {φ}〉, 〈p2, {f5, f6}〉, 〈p3, {f6}〉}, {φ}〉 (restrictive composition).

— cs8(cf7) = 〈{〈p1, {φ}〉, 〈p2, {f5, f6}〉, 〈p4, {φ}〉}, {φ}〉 (restrictive composition).

— cs9(cf7) = 〈{〈p2, {f5, f6}〉, 〈p3, {f6}〉, 〈p4, {φ}〉}, {φ}〉 (restrictive composition).

— cs10(cf7) = 〈{〈p1, {φ}〉, 〈p2, {f5, f6}〉, 〈p3, {f6}〉, 〈p4, {φ}〉}, {φ}〉 (restrictive composi-
tion).

Let cf8 a new configuration, where EF (cf8) = {f1, f2, f3} and NF (cf8) = {f9, f10}. No
product in SPL realizes cf8. However, several configuration scenarios are possible for cf8:

— cs1(cf8) = 〈{〈p1, {f4}〉}, {f9, f10}〉 (restrictive extension).

— cs2(cf8) = 〈{〈p2, {f5, f6, f7}〉}, {f9, f10}〉 (restrictive extension).

— cs3(cf8) = 〈{〈p1, {f4}〉, 〈p2, {f5, f6, f7}〉}, {f9, f10}〉 (restrictive extensive composition).

Example 8: Running example configuration of a new product

Given the products of the running example and their corresponding features as shown in Ta-
ble 1.1. Let cf4 a new configuration, whereEF (cf4) = {ManageMatches, AddMatches,
DeleteMatches} and NF (cf4) = {φ}. No product realizes cf4, however, several config-
uration scenarios are possible:

— cs1(cf4) = 〈{〈p2, {ModifyMatches}〉}, {φ}〉 (restriction)

— cs2(cf4) = 〈{〈p1, {ModifyMatches}〉, 〈p2, {ModifyMatches}〉}, {φ}〉
(restrictive composition)

— cs3(cf4) = 〈{〈p2, {ModifyMatches}〉, 〈p3, {φ}〉}, {φ}〉 (restrictive composition)

— cs4(cf4) = 〈{〈p1, {ModifyMatches}〉, 〈p2, {ModifyMatches}〉, 〈p3, {φ}〉}, {φ}〉
(restrictive composition)

When a configuration is achieved in free mode, where no product realizes it, the products
or combinations of products that realize or cover the required existing features are identified
via configuration scenarios. Most likely, several configuration scenarios are found for a certain
configuration. Thus, a software engineer has to chose the “appropriate” configuration scenario
to derive the desired product. However, the question is: “how to determine the appropriate
configuration scenario?”.

One might consider a restrictive composition more expensive in terms of time and devel-
opment efforts compared to restriction, since restrictive composition involves more products.
Also, logically someone might consider a restrictive composition involving n products more
expensive than a restrictive composition involving n−1 products. Moreover, one might consider
a restriction more expensive than an integral composition, since restriction requires the removal
of some features. On the contrary, someone else might consider integral composition more
expensive than restriction, by considering that removal of some features is less expensive than
integrating assets from several products to derive a new product. As demonstrated, it is am-
biguous for us to determine what is the “appropriate” configuration scenario to derive a desired

82

5.5. Derivation Operations Chapter 5. Configuration Process

product, if the choice has to be taken according to the products and features involved in the
configuration scenario. However, the software developer who developed the product variants is
the one responsible to determine the “appropriate” solution, since she knows better the code and
how the software variants are composed. Therefore, we aim to suggest to end users the possible
solutions and let them be the decision makers.

5.5 Derivation Operations
The implementation of the SPL products is achieved via their asset instances. Thus, to

help software engineers to determine the “appropriate” configuration scenario, we must take
into consideration the operations required to derive a desired product according to the asset
instances exploited by the products involved in each configuration scenario. This process has to
be realized through the following steps:

1. Identify the assets required to implement the desired product.

2. Determine the possible operations to perform on each asset, in order to obtain an asset
instance that fulfills the implementation of the desired product features.

3. Map each configuration scenario to its corresponding operations.

These steps involve the examination of the correlations identified between the features and
the assets as well as their instances.

Definition 5.5.1 (Required assets for derivation) :
An asset a is required for deriving a desired product, if there exists at least a feature f such as,
f is in correlation with a and f is one of the required existing features of the configuration cf
built to achieve the derivation of the desired product. Hence, we note the required assets of cf
as A(cf), where A(cf) = {a | ∃f ∈ EF (cf), c(f, a)} .

For each identified required asset, several operations might be possible to produce an asset
instance that serves for the implementation of the required features of the configuration.

1. An asset instance has to be cloned,

2. then modified if necessary to remove implementation fragments corresponding to some
features that it implements and unrequired by the configuration,

3. and if there still exists some required features that are not implemented by the cloned
instance, their implementation fragments must be extracted from the other instances of
the asset and integrated in the clone.

The resulting asset instance of each required asset has to implement the set of features
F (a)

⋂
EF (cf). Thus, we identify three types of actions that might be taken over the instances

of a required asset in order to produce the desired instance:

1. Clone and Retain (CRT): clone an asset instance and retain it as it is, without modifying
its implementation.

83

5.5. Derivation Operations Chapter 5. Configuration Process

2. Clone and Remove (CRM): clone an asset instance, and remove from it the implemen-
tation fragments corresponding to the features that it is in correlation with but are not
required by the configuration.

3. Extract and Add (ETA): extract from an asset instance the implementation fragments
of some features required by the configuration, and add them to a cloned instance under
construction. An ETA action is used only as a subsequent to a CRT or CRM action in
order to complete the construction of a cloned instance with extracted implementation
fragments.

Definition 5.5.2 (Action) :
An action ac is defined as a triple 〈type, ai, {fj, ..., fn}〉, where type corresponds to one of the
types defined above: {CRT,CRM,ETA}. For CRT and CRM actions, ai corresponds to the
asset instance to clone. For an ETA action, ai corresponds to an asset instance to extract from.
Whereas, {fj, ..., fn} corresponds to the set of features to remove from ai if the action is CRM ,
or to extract from ai if the action is ETA, while it is an empty set for a CRT action.

Hence, the resulting asset instance for a required asset is produced by cloning an asset
instance exploited by a product of the configuration scenario using a CRT or CRM action,
removing the implementation fragments corresponding to the unrequired features in case of
a CRM action, and extracting the remaining required features from other instances using an
ETA action, if any.

Example 9: Some actions on a configuration from running example

Based on Example 8, EF (cf4) = {ManageMatches, AddMatches,DeleteMatches}
and according to Table 4.3, the asset SaveMatch.java is in correlation with the features
ManageMatches,AddMatches andModifyMatches. Thus, the asset SaveMatch.java
is required and the resulting instance has to integrate implementation fragments corre-
sponding EF (cf4)

⋂
F (SaveMatch.java) = {ManageMatches, AddMatches}. The

resulting instance might be a possible result of a CRT action, which consists of cloning the
instance SaveMatch.java2 that is in correlation with {ManageMatches, AddMatches}
and retaining it as it is. Another possible result can be obtained using aCRM action applied
on instance SaveMatch.java1 by cloning it and removing the implementation fragments
corresponding to the unrequired feature ModifyMatches.

It is required sometimes to make several actions in order to obtain the needed asset instance.
This occurs when a CRT or CRM action is accompanied with one or more ETA actions on
several instances of the asset, in order to create a new instance. We call this set of actions as
“operations”.

Definition 5.5.3 (Operation) :
We define an operation as the set of actions needed to produce the desired asset instance. Thus,
an operation op is a triple 〈a, {ac1, ..., acn}, ai〉, where a ∈ A(cf) is the required asset, and
{ac1, ..., acn} noted as AC(op) is the set of actions to be made to obtain the desired asset
instance ai.

84

5.5. Derivation Operations Chapter 5. Configuration Process

We categorize the possible operations to perform into three groups:

— Concludable operations: an operation is considered concludable if it is composed of
one and only one CRT action. Hence, it is not supposed to require efforts except a clone
of its corresponding asset instance.

— Substitutional operations: an operation is considered substitutional if there exists an
asset instance in SPL that is in correlation with all and only the features required for the
asset instance that it is supposed to produce. Therefore, a substitutional operation is a
kind of alert that warns a software developer that there already exists an asset instance
exploited by a product that is not part of the configuration scenario, and that asset instance
implements the exact set of required features. This situation occurs on the first operation
corresponding to the asset SaveMatch.java presented in Table 5.1.

— Constructive operations: an operation is considered constructive if it aims to deliver a
new asset instance that is not provided by the SPL. Hence, it requires some efforts from
a software developer to produce the asset instance.

Example 10: Some operations on a configuration from running example

Given the asset style.css of the running example, and based on configuration cf4 introduced
in Example 8, we identify the possible operations to perform at the level of the asset
style.css, in order to obtain the desired instance:

— op1 = 〈style.css, {〈CRM, style.css1, {ModifyMatches}〉, 〈ETA, style.css2,
{DeleteMatches}〉}, style.css4〉 consists of cloning the asset instance style.css1

and removing from it the implementation fragments corresponding to the feature
ModifyMatches, then extracting the implementation fragments corresponding to
the feature DeleteMatches from style.css2 and adding them to the clone, in order
to obtain the desired instance style.css4.

— op2 = 〈style.css, {〈CRM, style.css2, {ModifyMatches}〉}, style.css4〉 consists
of cloning the asset instance style.css2 and removing from it the implementation
fragments corresponding to the feature ModifyMatches in order to obtain the
desired instance style.css4.

— op3 = 〈style.css, {〈CRT, style.css3, {φ}〉, 〈ETA, style.css2, {DeleteMatches}〉},
style.css4〉 consists of cloning the asset instance style.css3, then extracting the imple-
mentation fragments corresponding to the feature DeleteMatches from style.css2

and adding them to the clone, in order to obtain the desired instance style.css4.

Table 5.1 shows the possible configuration scenarios corresponding to the configuration
cf4 and their possible operations to perform.

Once operations are identified, they are mapped to the configuration scenarios. For each
configuration scenario, several operations are assigned. Precisely, at the level of each required
asset, one or several operations might be possible to construct the desired instance of the asset.
Therefore, to achieve the derivation of a new product variant, a software developer is provided
with all possible configuration scenarios, and all possible operations that can be performed at
asset level. For each required asset, only one operation has to be selected.

85

5.5. Derivation Operations Chapter 5. Configuration Process

Table 5.1: Possible configuration scenarios of cf4 with their possible operations

Configuration scenario
cs1(cf4) = 〈{〈p2, {ModifyMatches}〉}, {φ}〉

Asset Operations
match.jsp 〈match.jsp, {〈CRT,match.jsp1, {φ}〉},match.jsp1〉

SaveMatch.java
〈SaveMatch.java, {〈CRM,SaveMatch.java1,
{ModifyMatches}〉}, SaveMatch.java2〉

style.css 〈style.css, {〈CRM, style.css2, {ModifyMatches}〉}, style.css4〉

DeleteMatch.java
〈DeleteMatch.java, {〈CRT,DeleteMatch.java1, {φ}〉},
DeleteMatch.java1〉

Configuration scenario
cs2(cf4) = 〈{〈p1, {ModifyMatches}〉, 〈p2, {ModifyMatches}〉}, {φ}〉

Asset Operations
match.jsp 〈match.jsp, {〈CRT,match.jsp1, {φ}〉},match.jsp1〉

SaveMatch.java
〈SaveMatch.java, {〈CRM,SaveMatch.java1,
{ModifyMatches}〉}, SaveMatch.java2〉

style.css
〈style.css, {〈CRM, style.css1, {ModifyMatches}〉,
〈ETA, style.css2, {DeleteMatches}〉}, style.css4〉
〈style.css, {〈CRM, style.css2, {ModifyMatches}〉}, style.css4〉

DeleteMatch.java
〈DeleteMatch.java, {〈CRT,DeleteMatch.java1, {φ}〉},
DeleteMatch.java1〉

Configuration scenario
cs3(cf4) = 〈{〈p2, {ModifyMatches}〉, 〈p3, {φ}〉}, {φ}〉

Asset Operations
match.jsp 〈match.jsp, {〈CRT,match.jsp1, {φ}〉},match.jsp1〉

SaveMatch.java
〈SaveMatch.java, {〈CRM,SaveMatch.java1,
{ModifyMatches}〉}, SaveMatch.java2〉
〈SaveMatch.java, {〈CRT, SaveMatch.java2, {φ}〉},
SaveMatch.java2〉

style.css
〈style.css, {〈CRM, style.css2, {ModifyMatches}〉}, style.css4〉
〈style.css, {〈CRT, style.css3, {φ}〉, 〈ETA, style.css2,
{DeleteMatches}〉}, style.css4〉

DeleteMatch.java
〈DeleteMatch.java, {〈CRT,DeleteMatch.java1, {φ}〉},
DeleteMatch.java1〉

Configuration scenario
cs4(cf4) = 〈{〈p1, {ModifyMatches}〉, 〈p2, {ModifyMatches}〉, 〈p3, {φ}〉}, {φ}〉

Asset Operations
match.jsp 〈match.jsp, {〈CRT,match.jsp1, {φ}〉},match.jsp1〉

SaveMatch.java
〈SaveMatch.java, {〈CRM,SaveMatch.java1,
{ModifyMatches}〉}, SaveMatch.java2〉
〈SaveMatch.java, {〈CRT, SaveMatch.java2, {φ}〉},
SaveMatch.java2〉

style.css

〈style.css, {〈CRM, style.css1, {ModifyMatches}〉,
〈ETA, style.css2, {DeleteMatches}〉}, style.css4〉
〈style.css, {〈CRM, style.css2, {ModifyMatches}〉}, style.css4〉
〈style.css, {〈CRT, style.css3, {φ}〉, 〈ETA, style.css2,
{DeleteMatches}〉}, style.css4〉

DeleteMatch.java
〈DeleteMatch.java, {〈CRT,DeleteMatch.java1, {φ}〉},
DeleteMatch.java1〉

86

5.6. Summary Chapter 5. Configuration Process

5.6 Summary
In this chapter, we presented how we support the configuration of a product variant prior

to its derivation in two configuration modes. A configuration made in restrictive mode allows
an automated derivation of an existing product or the derivation of a new product based on the
integration of new features into an existing one. A configuration made in free mode allows the
derivation of a new product. We guide this derivation by providing the possible configuration
scenarios and the operations to perform at each required asset level in order to construct the
asset instances of the desired product.

Since several configuration scenarios are possible and several operations might be identified
at an asset level, we keep the choice of the appropriate configuration scenario and operations to
the software developer who is supposed to be familiar with product variants and their source
code. In this upcoming chapter, we introduce an additional parameter to support the product
derivation by estimating the cost of the operations to perform and globally the cost of each
configuration scenario. In chapter 7, we explain how we suggest to end users the possible
configuration scenarios and operations, in a way that facilitates on them the selection of the
appropriate ones according to their own preferences.

87

5.6. Summary Chapter 5. Configuration Process

88

CHAPTER 6

TOWARDS COST-ESTIMATED DERIVATION

Contents
6.1 Introduction . 90

6.2 Cost-Estimation . 90

6.2.1 Action Type Weight . 90

6.2.2 Correlation Degree . 90

6.2.3 Action Cost . 92

6.2.4 Operation Cost . 94

6.2.5 Configuration Scenario Cost . 95

6.3 Summary . 96

89

6.1. Introduction Chapter 6. Towards Cost-Estimated Derivation

6.1 Introduction

In the previous chapter, we proposed two configuration modes to support the configuration
prior to the derivation of a product variant. We presented how we provide the possible configu-
ration scenarios and operations to perform to fulfill the derivation. We highlighted earlier on
the importance of assigning the decision to make to the software engineers who are supposed
to be familiar with the SPL product and their source code, so they can choose the appropriate
configuration scenario and operations for derivation. Despite that, a configuration might have a
large number of possible configuration scenarios on the one side and each required asset might
have a large number of possible operations on the other side. As presented in Challenge 1.c,
this multiplicity of choices can turn the software engineers decisions difficult. For this purpose,
we supply our approach with an estimation of the cost of the operations to perform and the
cost of each configuration scenario, that we introduce in this chapter (Objective 13). This cost
estimation is supposed to be an additional argument that supports software engineers in selecting
a configuration scenario and the operations to perform at asset level to achieve the derivation of
the desired product.

In this chapter, we demonstrate the cost estimation only on the excerpt of assets of the
running example to keep the explanation simple. We note that the product variants of the
running example employ more assets than the ones presented in Table 1.2, and applying the cost
estimation functions on the excerpt of assets produces different cost values, however, it gives
analogical results to the whole running example.

6.2 Cost-Estimation

6.2.1 Action Type Weight

The cost of an operation is estimated based on the actions that it is composed of. In case of a
CRT action, an asset instance has to be cloned without being modified, therefore, no cost has to
be allocated. In case of a CRM action, an asset instance has to be cloned and implementation
fragments corresponding to one or more features must be removed from the cloned instance.
Similarly, for an ETA action, implementation fragments corresponding to one or more features
must be extracted from an instance and integrated in the cloned instance. Therefore, for both
CRM and ETA a cost has to be allocated. We assume that an ETA action costs 50% additional
efforts compared to a CRM action, since it consists in adding the extracted fragments to the
clone after their extraction.

Definition 6.2.1 (Action type weight) :
We define an action type weight denoted aw, where aw = 0 for CRT , aw = 1 for CRM and
aw = 1.5 for ETA.

6.2.2 Correlation Degree

We estimate the cost of removing or extracting a feature based on the following global
assumption:

90

6.2. Cost-Estimation Chapter 6. Towards Cost-Estimated Derivation

“as much as the correlation degree between a feature and an asset instance is high, the
removal or extraction of the feature from the asset instance becomes hard”.

We define correlation degree based on the following assumptions:

— As much as the number of features that an asset instance is in correlation with (F (ai))
increases, the correlation degree between the asset instance and any of those features
decreases. Hence, the impact of the feature f ∈ F (ai) is proportional to 1÷ |F (ai)|.

— As much as the number of assets that a feature is in correlation with (A(f)) increases,
the correlation degree between the feature and any of those assets decreases. Hence, the
impact of an asset a ∈ A(f) is proportional to 1÷ |A(f)|.

— As much as the number of instances of an asset that a feature is in correlation with
increases, in relation to the overall number of instances of the asset (AI(f/a)), the
correlation degree between the feature and the asset increases. Hence, the number of
instances of a that f is in correlation with, in relation to the overall number of instances
of a corresponds to |AI(f/a)| ÷ |AI(a)|.

Definition 6.2.2 (Correlation degree) :
We define a correlation degree between a feature f and an asset instance ai as:

cd(f, ai) =
1

|F (ai)|
× 1

|A(f)|
× |AI(f/a)|
|AI(a)|

Example 11: Asset instance correlated features from running example

Referring to Table 4.4, we compute the number of features that each asset instance is in
correlation with: |F (ai)|.

Table 6.1: Running example asset instance correlated features

AssetInstance |F (ai)|

match.jsp1 2
SaveMatch.java1 3
SaveMatch.java2 2
style.css1 3
style.css2 4
style.css3 2
DeleteMatch.java1 1

91

6.2. Cost-Estimation Chapter 6. Towards Cost-Estimated Derivation

6.2.3 Action Cost

Definition 6.2.3 (Action cost) :
The cost of an action is defined as the sum of the correlation degrees of the features that have
to be removed or extracted from the asset instance of this action, multiplied by the action type
weight aw.

Let ac = 〈type, ai, {fj, ..., fn}〉, cost(ac) =
fn∑
fj

(cd(fj, a
i)× aw)

Example 12: Feature correlated assets from running example

Referring to Table 4.3, we compute the number of assets that each feature is in correlation
with: |A(f)|.

Table 6.2: Running example feature correlated assets

Feature |A(f)|

ManageMatches 3
AddMatches 3
ModifyMatches 2
DeleteMatches 2

Example 13: Instances of assets from running example

Referring to Table 1.2, we compute the number of instances of each asset of the running
example: |AI(a)|.

Table 6.3: Running example instances of assets

Asset |AI(a)|

match.jsp 1
SaveMatch.java 2
style.css 3
DeleteMatch.java 1

92

6.2. Cost-Estimation Chapter 6. Towards Cost-Estimated Derivation

Example 14: Feature correlated asset instances from running example

Referring to Table 4.4, we compute the number of instances of each asset correlated with
each feature of the running example: |AI(f/a)|.

Table 6.4: Running example features correlated asset instances

Feature Asset |AI(f/a)|

ManageMatches match.jsp 1
AddMatches match.jsp 1
ManageMatches SaveMatch.java 2
AddMatches SaveMatch.java 2
ModifyMatches SaveMatch.java 1
ManageMatches style.css 3
AddMatches style.css 3
ModifyMatches style.css 2
DeleteMatches style.css 1
DeleteMatches DeleteMatch.java 1

Example 15: Correlation degrees from running example

Referring to Table 4.4å and the examples listed above, we compute the correlation degrees
between the running example features and asset instances.

Table 6.5: Correlation degrees between features and asset instances of the running example

Feature Assetinstance cd(f, ai)

ManageMatches match.jsp1 0.1666
AddMatches match.jsp1 0.1666
ManageMatches SaveMatch.java1 0.1111
AddMatches SaveMatch.java1 0.1111
ModifyMatches SaveMatch.java1 0.0833
ManageMatches SaveMatch.java2 0.1666
AddMatches SaveMatch.java2 0.1666
ManageMatches style.css1 0.1111
AddMatches style.css1 0.1111
ModifyMatches style.css1 0.1111
ManageMatches style.css2 0.0833
AddMatches style.css2 0.0833
ModifyMatches style.css2 0.8333
DeleteMatches style.css2 0.0416
ManageMatches style.css3 0.1666
AddMatches style.css3 0.1666
DeleteMatches DeleteMatch.java1 0.5000

93

6.2. Cost-Estimation Chapter 6. Towards Cost-Estimated Derivation

Example 16: Actions cost from running example

Referring to Table 6.5, we compute the estimated cost of the the running example actions
of the configuration cf4.

Table 6.6: Configuration cf4 actions estimated cost
Action cost(ac)
〈CRT,match.jsp1, {φ}〉 0.0000
〈CRM,SaveMatch.java1, {ModifyMatches}〉 0.0833
〈CRT, SaveMatch.java2, {φ}〉 0.0000
〈CRM, style.css1, {ModifyMatches}〉 0.1111
〈ETA, style.css2, {DeleteMatches}〉 0.0625
〈CRM, style.css2, {ModifyMatches}〉 0.0833
〈CRT, style.css3, {φ}〉 0.0000
〈CRT,DeleteMatch.java1, {φ}〉 0.0000

6.2.4 Operation Cost

Definition 6.2.4 (Operation cost) :
The cost of an operation is defined as the sum of the cost of all its actions.

Let op = 〈a, {ac1, ..., acn}, ai〉, cost(op) =
n∑

j=1

cost(acj)

Example 17: Operations cost from running example

Referring to the operations of the configuration cf4 of the running example listed in
Table 5.1 and the examples listed above, we compute the estimated cost of the the running
example operations of the configuration cf4.

Table 6.7: Configuration cf4 operations estimated cost
Operation cost(op)
〈match.jsp, {〈CRT,match.jsp1, {φ}〉},match.jsp1〉 0.0000
〈SaveMatch.java, {〈CRM,SaveMatch.java1,
{ModifyMatches}〉}, SaveMatch.java2〉 0.0833

〈SaveMatch.java, {〈CRT, SaveMatch.java2, {φ}〉},
SaveMatch.java2〉 0.0000

〈style.css, {〈CRM, style.css1, {ModifyMatches}〉,
〈ETA, style.css2, {DeleteMatches}〉}, style.css4〉 0.1736

〈style.css, {〈CRM, style.css2, {ModifyMatches}〉}, style.css4〉 0.0833
〈style.css, {〈CRT, style.css3, {φ}〉, 〈ETA, style.css2,
{DeleteMatches}〉}, style.css4〉 0.0625

〈DeleteMatch.java, {〈CRT,DeleteMatch.java1, {φ}〉},
DeleteMatch.java1〉 0.0000

94

6.2. Cost-Estimation Chapter 6. Towards Cost-Estimated Derivation

6.2.5 Configuration Scenario Cost
To determine the cost of a configuration scenario, we have to take into consideration the

operations available at each required asset level. Since several operations are possibly identified
at each required asset level, we consider only the operation having the lowest cost for each asset
when computing the cost of a configuration scenario.

Definition 6.2.5 (Configuration Scenario cost) :
The cost of a configuration scenario is defined as the sum of the estimated cost of the operations
having the lowest cost at each asset level.

Let cs = {op1, ..., opn}, cost(cs) =
n∑

j=1

cost(opj)

Example 18: Configuration scenario cost from running example

Referring to Table 6.7, we compute the estimated cost of the the running example configu-
ration scenarios of the configuration cf4.

Table 6.8: Configuration cf4 configuration scenarios estimated cost

Configuration scenario cost(csi(cf4))

cs1(cf4) 0.1666
cs2(cf4) 0.1666
cs3(cf4) 0.0625
cs4(cf4) 0.0625

It is possible to have several configuration scenarios with the same estimated cost. A situation
that most likely occurs is when the products involved in a configuration scenario are subset of the
ones involved in the other configuration scenario. Therefore, the operations having the lowest
cost at each asset level are similar for those configuration scenarios and their overall cost is equal.
Further, another situation that occasionally occurs is when two configuration scenarios have the
same cost without having their involved set of products subset of each other. To facilitate the
selection of a configuration scenario in such situations, we prioritize the configuration scenarios
having the same cost as follows:

Given two configuration scenarios cs1 and cs2, where cost(cs1) = cost(cs2). The config-
uration scenario cs1 is given a selection priority over cs2 if one the following conditions is
true:

1. P (cs1) ⊂ P (cs2)

2. |AM(cs1)| < |AM(cs2)|

where P (csi) is the set of products involved in a configuration scenario and AM(csi) is the
number of required assets in csi that require a modification. Thus, software engineers can rely

95

6.3. Summary Chapter 6. Towards Cost-Estimated Derivation

on this proposed prioritization, to select a configuration scenario when several ones have the
same estimated cost.

Example 19: Configuration scenarios having same cost

Referring to Table 6.8 of the running example, cs1(cf4) and cs2(cf4) have the same cost,
however, cs1(cf4) is composed of one product (p2) which is a subset of the products from
which cs2(cf4) is composed (p1 and p2). Similarly, cs3(cf4) and cs4(cf4) have the same
cost, however, cs3(cf4) is composed of two product (p2 and p3) which are subset of the
products from which cs4(cf4) is composed (p1, p2 and p3).

6.3 Summary
In this chapter, we presented an additional argument to support software engineers when

deriving a new product variant. This arguments consists of a cost estimation of the proposed
configuration scenarios and their corresponding operations. Providing the estimated cost of
the operations facilitates the selection of an operation when several operations are possible to
construct an asset instance. Similarly, it facilitates the selection of a configuration scenario when
several ones are proposed. Therefore, a software developer can rely on the estimated cost of
the configuration scenarios as an additional parameter to make her decisions during product
derivation.

96

CHAPTER 7

DERIVATION AND EVOLUTION PROCESS

Contents
7.1 Introduction . 98

7.2 Product Derivation . 99

7.2.1 Derivation FM . 99

7.2.2 Selection Factors . 100

7.2.2.1 Numbers and indicators 100

7.2.2.2 Developer Preferences 101

7.2.2.3 Cost Estimation . 102

7.3 Product Line Evolution . 102

7.3.1 Product Variant Integration . 103

7.3.2 Feature Models Re-generation . 103

7.3.3 Correlations and Correlation Indicators Update 103

7.3.3.1 Correlations Update . 104

7.3.3.2 Correlation Indicators Update 108

7.3.4 Product Line Re-Definition . 108

7.4 Summary . 108

97

7.1. Introduction Chapter 7. Derivation and Evolution Process

7.1 Introduction

We focused throughout our approach on keeping decision making during product derivation
on behalf of software engineers. We are interested in guiding software engineers without im-
posing a solution on them to accomplish the derivation (Objective 14). In Chapter 5 of this
dissertation, we explained how we identify the possible configuration scenarios and operations
to perform to derive a desired product. Hence, software engineers must have the complete
freedom to select the solution that they consider suitable for derivation, based on their own pref-
erences. Therefore, we aim to conserve the ownership feature of the Clone-and-Own approach,
since software engineers rely on our guidance to build the desired product on their own. We
strengthened our support in Chapter 6, by estimating the cost of the possible operations and
respectively the cost of the possible configuration scenarios. Thus, to derive the desired product,
a software engineer can select the appropriate configuration scenario and operations and rely on
the estimated costs as an additional argument of support.

In this chapter, we address Challenge 2.b by explaining how product derivation can be
accomplished and how the SPL can be evolved after the derivation, by integrating the derived
product into it. Hence, we adopt a reactive SPL evolution (Objective 15). To evolve the SPL,
when integrating a new product variant, we perform an automated and incremental update of
the SPL correlations. This step involves further, an update of the correlation indicators that
we introduced in Chapter 6, in order to keep the cost estimation values consistent. Moreover,
we address Challenge 2.a to re-structure the features after adding a new product. Hence, to
enable the selection of the newly added features in the future configurations, we re-generating
the SPL restrictive FM and free FM (Objective 18). The SPL evolution process is presented
in Figure 7.1.

Figure 7.1: SPL evolution process.

98

7.2. Product Derivation Chapter 7. Derivation and Evolution Process

7.2 Product Derivation

7.2.1 Derivation FM

Several configuration scenarios might be possible to derive a new product variant. Respec-
tively, for each required asset, several operations might be proposed, where only one has to be
chosen. We mentioned earlier that we are interested in allowing software engineers to select
either a configuration scenario and operations corresponding to it, or select operations from
different configuration scenarios. Furthermore, we aim to provide software engineers with
additional arguments, to allow them to select a configuration scenario and operations based on
their own preferences. Such arguments concern the products involved by each configuration
scenario and the asset instances involved in each operation. When software engineers know a
configuration scenario is composed of which products, and an operation requires which asset
instances, they will be able to make selections based on their own preferences. The proposed
variability at configuration scenarios, products, operations and asset instances levels necessitates
the existence of a constraints system that controls the selection. For this purpose, we define a
derivation FM, which is built according to the corresponding configuration.

Definition 7.2.1 (Derivation FM) :
We define a derivation FM as a constraint system represented in a feature model, offering a
controlled selection of the operations to perform to achieve a derivation.

A generated derivation FM uses a classic FM formalism, but serves only in supporting
the selection of the operations. The structural features of a derivation FM are the proposed
configuration scenarios of a configuration, their corresponding products, the required assets,
the possible operations to perform at each asset level and their corresponding asset instances.
Configuration scenarios are considered as optional features, as long as more than one scenario
is proposed. Similarly, their corresponding products are considered optional, except products
that are part of all configuration scenarios are mandatory. The required assets are mandatory,
since for each one of them an operation has to be selected. The operations corresponding to a
required asset are represented as an alternative group of features, where only one operation for
a required asset has to be selected. Respectively, if only one operation is proposed for a certain
asset, it is represented as a mandatory feature. The asset instances of an asset are represented as
an or group of features, since more than one instance can be required by a selected operation.
If an instance is required by all possible operations of its asset, it is represented as mandatory.
Similarly, if only one instance is proposed it is represented as mandatory. The constraints
between the derivation FM features are constructed as follows:

— A configuration scenario implies an operation or an or group of operations (when a
configuration scenario proposes more than one operation for a required asset).

— An operation implies an asset instance or an and group of asset instances (when an
operation requires more than one asset instance for a required asset).

— An asset instance implies a product or an or group of products (when the asset instance is
exploited by more than one product).

99

7.2. Product Derivation Chapter 7. Derivation and Evolution Process

Definition 7.2.2 (Derivation scenario) :
We define a derivation scenario of a given configuration cf noted as ds(cf), as the set of
operations selected from the derivation FM to derive the desired product.

Selecting the operations to perform from derivation FM is a time-saving practice, since i.e.
if a configuration scenario is selected, its corresponding operations and asset instances remain
selectable, while the other ones are automatically disabled. Similarly, when an operation is
selected, its corresponding asset instances are selected and its adjacent operations are deselected.

Example 20: Running example derivation FM

The generated derivation FM of the configuration cf4 of the running example is shown in
Figure 7.2. It represents the four possible configuration scenarios as optional features and
there corresponding products. Since product p2 is needed in the four configuration scenarios,
it is a mandatory feature. For the assets DeleteMatch.java and match.jsp, since there
exists one possible operation that requires one asset instance, their corresponding operation
and asset instance are mandatory. The assets style.css and SaveMatch.java have several
possible operations, therefore, their possible operations are represented within an alternative
group, enforcing the selection of only one operation. On the other side, their asset instances
are represented within an or group, since an instance might be required by more than
one operation. The asset instance style.css2 is mandatory, since it is required by all the
three possible operations of the asset style.css. The features “ConfigurationScenario”,
“Products”, “Assets”, the features corresponding to the assets names “DeleteMatch.java”,
“style.css”, “match.jsp”, “SaveMatch.java”, and the features starting with “Operations_”
and “Instances_” are structural level features.

7.2.2 Selection Factors

Our approach allows the selection of a configuration scenario and operations based on three
factors: numbers and indicators, developer preferences and cost estimation.

7.2.2.1 Numbers and indicators

Software engineers can rely on numbers and indicators to select an appropriate configuration
scenario. For instance, they might be interested in selecting the configuration scenario involving
the least number of products or the configuration scenario that has the least number of operations
that require an asset modification.

Example 21: Selection based on numbers and indicators

When achieving the configuration cf4 of the running example, a software developer might
be interested in selecting the configuration scenario cs1 since it is composed of the least
number of products (only p2), or the configuration scenario cs3 having the least number of
operations that require a modification of assets.

100

7.2. Product Derivation Chapter 7. Derivation and Evolution Process

Figure 7.2: Running example cf4 derivation FM

7.2.2.2 Developer Preferences

We also allow software developers to select the suitable scenario or operations to perform
based on their personal preferences, according to their experience in developing the SPL product
variants. A software developer might be interested in selecting the configuration scenario that is
composed of the products that she is most familiar with. Moreover, the generated derivation FM
allows to filter the operations based on the deselection of some undesirable products. Further, the
derivation FM allows to filter operations by deselecting undesirable instances of assets whenever
possible, such as old or untrusted instances. Thus, the constraints system allows not only to take
the developer preferences into consideration, but also to reduce the number of decisions to be
taken that simplifies the construction of the derivation scenario.

Example 22: Selection based on developer preferences

When achieving the configuration cf4 of the running example, a software developer might
be interested in working with configuration scenario cs3 that involves p3, which is a recently
developed product, instead of working with cs1 that involves p1, which became an old
product.

101

7.3. Product Line Evolution Chapter 7. Derivation and Evolution Process

7.2.2.3 Cost Estimation

The second factor is to provide an estimated cost in terms of development effort and time for
each operation and respectively for each configuration scenario. The cost estimation proposed in
Chapter 6 is an additional selection indicator that software developers can rely on. For instance,
a software developer might select the configuration scenario having the least estimated cost.
Similarly, she might select the operation having the least cost at each asset level, in order to
compose the derivation scenario. Moreover, a software engineer has the possibility to select
operations that do not necessarily belong to the same configuration scenario, as long as she
selects one operation for each required asset. For instance, she can select the operations having
the lowest estimated cost for all required assets, regardless if the operations belong to the same
configuration scenario or not.

Example 23: Selection based on cost estimation

When achieving the configuration cf4 of the running example, a software developer
might select the configuration scenario cs3(cf4) that has the least estimated cost (see
Table 6.8) and is composed of less products compared to cs4(cf4) having the same
estimated cost. In this same concept, she might prefer the selection of the operation
〈ETA, style.css2, {DeleteMatches}〉 for the asset style.css, since it has the least esti-
mated cost (see Table 6.7) from the three possible operations of style.css.

7.3 Product Line Evolution
Despite that the main goal of our approach is to guide the derivation of new product variants

from the SPL, we consider that it is essential to permit the reuse of the newly derived products
in future derivations. On the one side, a newly derived product variant can be requested in
future, hence, it must be integrated in the SPL, in order to be offered as one of the available
ready-made product variants. On the other side, the features introduced by the newly derived
products might be requested in future by other products, and therefore, their injection in the
SPL feature models improves reuse. Similarly, the newly constructed asset instances resulting
from the derivation are necessary to accomplish the implementation level of the injected features,
as well as the existing ones.

The product line evolution is achieved through the following activities:

1. Product variant integration

2. Correlations and correlation indicators update

3. Feature models re-generation

It is important to mention that, product line evolution is necessary, only when a configuration
is not achieved by integrality. In other words, a product resulting from a valid configuration is
already provided by the SPL, and hence, does not require a product line evolution. Otherwise,
a configuration made in restrictive mode and introducing new features, or made in free mode,
produces a new product that is not offered by the SPL, and hence, requires a product line
evolution to integrate it.

102

7.3. Product Line Evolution Chapter 7. Derivation and Evolution Process

7.3.1 Product Variant Integration

Once a software developer composes the derivation scenario of the desired product, she is
provided with the implementation files (asset instances) corresponding to the selected operations
in the derivation scenario. At this level, the configuration FM is memorized, including if any, the
new features added during configuration. Once the software developer fulfills the implementation
of the desired product, the integration can be achieved. A product variant integration consists
first of the addition of a new product pj in the SPL products P . Second, it consists in an
automated identification of the newly added assets (if any) and asset instances.

Example 24: Integration of product p4 of the running example

The product p4 shown in Table 7.1 is the result of the configuration scenario cf4. The
integration of product p4 in SPL led to the identification of a new asset instance style.css4.

Table 7.1: Product p4 asset instances
Product Assetversion

p4

match.jsp1

SaveMatch.java1

style.css4

DeleteMatch.java1

7.3.2 Feature Models Re-generation

Whenever a configuration leads to the derivation of a new product variant that is not provided
by the SPL, the feature models of the SPL (restrictive and free) require an update, regardless
if the product variant introduces new features or implements a set of features that are not re-
alized by an existing variant. As mentioned earlier, when a selected set of features during a
configuration do not correspond to a valid configuration, the selected features are saved in a
configuration FM, in order to be used to update the SPL feature models once the corresponding
product is integrated.

To re-generate the restrictive FM, we perform a FAMILIAR merge operation [ACLF13] on
the restrictive FM and the newly derived product FM, to obtain an updated restrictive FM, that
integrates the configuration of the integrated product.

An update of the SPL restrictive FM implies a re-generation of the free FM, in order to
remain consistent. However, the free FM is a constraint-free FM with all features optional except
the root feature. Therefore, a re-generation of the free FM is performed only if the integrated
product variant introduces new features that were not offered by the SPL prior to its derivation.

7.3.3 Correlations and Correlation Indicators Update

Integrating a new product variant into the SPL requires an update of the correlations between
features and assets and between features and asset instances, in order to keep the correlations
consistent with the SPL artifacts changes. Consequently, an update of correlations implies an

103

7.3. Product Line Evolution Chapter 7. Derivation and Evolution Process

update of the correlation indicators that are used during cost estimation.

Example 25: FAMILIAR merge operation to re-generate SPL restrictive FM

Below are the FMs of the running example SPL and product p4 in FAMILIAR language. A
FAMILIAR merge operation re-generates the SPL restrictive FM.

Listing 7.1: Restrictive FM in FAMILIAR language before merge
fm_spl = FM (ManageMatches: AddMatches [ModifyMatches] [DeleteMatches];
DeleteMatches -> ModifyMatches;)

Listing 7.2: FM of product p4
fm_p4 = FM (ManageMatches: AddMatches DeleteMatches;)

Listing 7.3: FAMILIAR merge operation over SPL restrictive FM and FM of p4
fm_spl = merge sunion fm_spl fm_p4

Listing 7.4: Re-generated restrictive FM from FAMILIAR merge operation
fm_spl: (FEATURE_MODEL) ManageMatches: AddMatches [ModifyMatches] [DeleteMatches];

Example 26: Free FM eventual re-generation

Since the derivation of product p4 of the running example did not introduce new features
that were not provided by the SPL, the free FM does not require a re-generation. However,
if we consider a new product p5 that introduces a new feature Stats, which is not offered
by SPL, the integration of p5 would require a re-generation of the free FM.

7.3.3.1 Correlations Update

We provide an automated and incremental update of the SPL correlations. Correlations up-
dates eventually touch the features implemented, assets employed, and asset instances exploited
by the integrated product variant.

At feature to asset correlations level, three possible situations might occur:

— An addition of a new correlation.

— A removal of an existing correlation.

— A transformation of an equivalence correlation into an implication correlation.

At feature to asset instance correlations level, two possible situation might occur:

— An addition of a new correlation.

— A removal of an existing correlation.

104

7.3. Product Line Evolution Chapter 7. Derivation and Evolution Process

The following rules must be applied in the given order.

An addition of a feature to asset correlation occurs in two conditions:

1. If the integrated product implements a new feature nf that was not implemented by
any other product of SPL and employs a new asset na that was not employed by any
other product, then a new feature to asset equivalence correlation is added: nf ⇔ na.
Consequently, a new feature to asset instance correlation is added between nf and na1,
where na1 is exploited by the integrated product and corresponds to the first asset instance
of an.

2. If the integrated product implements a new feature nf that was not implemented by any
other product of SPL and employs an existing asset ea that was already employed by
another product, and the integrated product exploits a new asset instance ean of ea that
was not exploited by any other product, then a new feature to asset implication correlation
is added: nf ⇒ ea. Consequently, a new feature to asset instance correlation is added
between nf and ean.

A removal of a feature to asset correlation occurs in the following condition:

1. If there exists a correlation between an existing feature ef and an existing asset ea, and
the integrated product implements ef without employing ea, the correlation c(ef, ea) is
removed. Consequently, since none of the instances of ea is exploited by the integrated
product, all feature to asset instance correlations between ef and the asset instances of ea
are removed.

A transformation of an equivalence correlation to an implication correlation at a feature to
asset correlation level occurs in only one condition:

1. If there exists an equivalence correlation between an existing feature ef and an existing
asset ea, and the integrated product does not implement ef but still employs ea, and a new
instance ean of ea is exploited by the integrated product, then, the equivalence correlation
ef ⇔ ea is transformed into an implication correlation ef ⇒ ea. Consequently, a new
correlation is added between ean and each existing feature that ea is in correlation with
and implemented by the integrated product.

Example 27: Running example correlations update

Referring to Table 7.1, the integration of the product p4 in the SPL of the running example
led to the addition of the following feature to asset instance correlations between the newly
added asset instance style.css4 and the features implemented by p4.

Table 7.2: Added correlations after integration of product p4
Feature Assetinstance

ManageMatches style.css4

AddMatches style.css4

DeleteMatches style.css4

105

7.3. Product Line Evolution Chapter 7. Derivation and Evolution Process

Example 28: Running example correlation indicators update

The added correlations of Table 7.2 involve an update of the correlation indicators of the
running example. We represent the added or updated entries of the correlation indicators
tables in bold in the tables shown below. An entry for the asset instance style.css4 is added
to the asset instance correlated features table (Table 7.3) which is correlated to 3 features
(the ones implemented by p4).

Table 7.3: Updated running example asset instance correlated features after integration of
product p4

AssetInstance |F (ai)|

match.jsp1 2
SaveMatch.java1 3
SaveMatch.java2 2
style.css1 3
style.css2 4
style.css3 2
style.css4 3
DeleteMatch.java1 1

The feature correlated assets (Table 6.2) does not require any update since the integra-
tion of product p4 did not require any update of correlations between features and assets.

The addition of a new instance of style.css is reflected by the updated entry of this
asset in the instances of assets (Table 7.4).

Table 7.4: Updated running example instances of assets after integration of product p4
Asset |AI(a)|

match.jsp 1
SaveMatch.java 2
style.css 4
DeleteMatch.java 1

The addition of the new correlations presented in Table 7.2 implies an update of their
corresponding entries in the features correlated asset instances (Table 7.5).

106

7.3. Product Line Evolution Chapter 7. Derivation and Evolution Process

Table 7.5: Updated running example features correlated asset instances after integration of
product p4

Feature Asset |AI(f/a)|

ManageMatches match.jsp 1
AddMatches match.jsp 1
ManageMatches SaveMatch.java 2
AddMatches SaveMatch.java 2
ModifyMatches SaveMatch.java 1
ManageMatches style.css 4
AddMatches style.css 4
ModifyMatches style.css 2
DeleteMatches style.css 2
DeleteMatches DeleteMatch.java 1

The updates of the correlation indicators illustrated above affect the correlation degrees,
as shown in Table 7.6. New entries corresponding to the correlations between the added
asset instance style.css4 and the features in correlation with are added. In addition, some
entries corresponding to the other instances of style.css and the features in correlation
with where updated.

Table 7.6: Updated correlation degrees between features and asset instances of the running
example after integrating product p4

Feature Assetinstance cd(f, ai)

ManageMatches match.jsp1 0.1666
AddMatches match.jsp1 0.1666
ManageMatches SaveMatch.java1 0.1111
AddMatches SaveMatch.java1 0.1111
ModifyMatches SaveMatch.java1 0.0833
ManageMatches SaveMatch.java2 0.1666
AddMatches SaveMatch.java2 0.1666
ManageMatches style.css1 0.1111
AddMatches style.css1 0.1111
ModifyMatches style.css1 0.0833
ManageMatches style.css2 0.0833
AddMatches style.css2 0.0833
ModifyMatches style.css2 0.0625
DeleteMatches style.css2 0.0625
ManageMatches style.css3 0.1666
AddMatches style.css3 0.1666
ManageMatches style.css4 0.1111
AddMatches style.css4 0.1111
DeleteMatches style.css4 0.0833
DeleteMatches DeleteMatch.java1 0.5000

107

7.4. Summary Chapter 7. Derivation and Evolution Process

7.3.3.2 Correlation Indicators Update

An update of a correlation implies an update in correlation indicators. The correlation degree
between a feature f and an asset instance ai noted cd(f, ai) is affected by four indicators that
must be updated, in order to reflect the update on the correlation degree. These indicators are:

— The number of features correlated to the asset instance |F (ai)|. This indicator is affected
by the addition or removal of a correlation between the asset instance ai and any feature.

— The number of assets correlated to the feature |A(f)|. This indicator is affected by the
addition or removal of a correlation between the feature f and any asset.

— The number of instances of the asset |AI(a)|. This indicator is affected by an addition of
a new instance of the asset a.

— The number of instances of the asset that the feature is in correlation with |AI(f/a)|. This
indicator is affected by an addition or a removal of correlations between the feature f and
the instances of the asset a.

7.3.4 Product Line Re-Definition
The migration process presented in Chapter 4, can occur during the lifetime of the product

line. When refactoring shared assets is needed, or redefining existing feature models and
their structure, software engineers can decide to re-create the product line by relaunching the
migration process. Since this process is automated, it can done at any time without affecting the
productivity. It is then a support for evolution of the SPL.

7.4 Summary
With this chapter, we conclude the contribution part of our dissertation. Our contribution

consisted on guiding the derivation of new product variants from an SPL based on C&O and
evolving the SPL by integrating the newly derived variants into it. After defining the SPL
and migrating its products and their artifacts in Chapter 4, we presented how we support
the configuration of a desired product in Chapter 5, by identifying the possible configuration
scenarios and operations to perform to achieve the derivation. In Chapter 6, we provided a cost
estimation for the configuration scenarios and operations.

In this chapter, we presented how we support the derivation of the desired product, as a
subsequent step after the configuration. Once the software engineer selects the required features
for the desired product, we propose by means of a derivation FM the possible configurations
and operations to perform at asset level. Hence, a software engineer selects the appropriate
configuration scenario and operations based on indicators and number, her personal preferences
and the cost estimation provided. We provide a reactive SPL evolution by integrating the newly
developed PVs. A product variant integration consists of an automated identification of the new
artifacts, an auto re-generation of the restrictive and free FMs and an automated and incremental
update of the correlations and correlation indicators. Therefore, the new variants and their
corresponding artifacts become subject to reuse in future derivations.

108

Part III

Implementation and Validation

109

CHAPTER 8

SUCCEED FRAMEWORK

Contents
8.1 Introduction . 112

8.2 Migration Process . 112

8.2.1 Product Line Initialization . 112

8.2.2 Product Variants Supply . 112

8.2.3 Restrictive FM supply . 112

8.2.4 Free FM generation . 113

8.2.5 Assets and asset instances identification 113

8.2.6 Correlations Identification . 114

8.3 Configuration Process . 115

8.4 Derivation Process . 117

8.5 Evolution Process . 119

8.6 Summary . 120

111

8.1. Introduction Chapter 8. SUCCEED Framework

8.1 Introduction
In this chapter, we describe the implementation of our approach. We implemented our

approach by developing a framework called SUCCEED that stands for SUpporting Clone-and-
own with Cost-EstimatEd Derivation. SUCCEED allows to migrate a set of product variants
into an SPL to support the configuration and derivation of a new variant and to permit an
enrichment of the SPL with the newly derived variants. The time this dissertation was written,
SUCCEED was partially implemented with a graphical user interface, while other modules
of its implementation where available only with a command line interface. Hence, we aim to
provide in future a complete graphical user interface support for SUCCEED that covers all its
modules. SUCCEED is developed using Java technology, based on a Java web service, and the
graphical interface consists of a web application developed mainly using JavaScript AngularJS
framework.

8.2 Migration Process

8.2.1 Product Line Initialization
In order to integrate existing PVs, the name of the SPL to be created and the path under

which it will be located are specified by a software engineer. Under this path, SUCCEED
specifies a git repository [CS14], in which the migrated product variants will be pushed.

Ignoring files from being tracked is a useful functionality provided by git. SUCCEED allows
to specify the files and directories to be ignored, such as specific type of files and external
libraries, which do not belong to the product line artifacts.

8.2.2 Product Variants Supply
The existing product variants to be migrated are given as an input to SUCCEED. For each

PV, a unique name has to be assigned to it, and the repository in which its artifacts are located
has to be specified. In addition, an FM representing the features that it implements has to be
provided. A git branch [CS14] is created for each migrated PV, and the product name is assigned
to the branch name. The implementation files corresponding to a PV are committed within
its branch. As a result, the product line repository will consist of n branches and n commits
(one commit per branch) where n is the number of existing product variants. The adopted git
structural definition of the SPL enables a simple retrieval of an existing product, whenever it
is required by a configuration. Moreover, it provides an independent evolution of each variant
within its branch, when this evolution consists of a maintenance of the implementation code and
not an update of the variant at specification level (features).

8.2.3 Restrictive FM supply
After supplying the PVs with their corresponding FMs, a global FM of the product line is

generated by SUCCEED, as the FAMILIAR merge [ACLF13] of the PVs FMs. This is what we
call in our approach the restrictive FM. The restrictive FM provides an abstract representation

112

8.2. Migration Process Chapter 8. SUCCEED Framework

of the supplied PVs in terms of business features. It has to allow the configuration of the exact
set of the migrated PVs. A structural defect in the provided FMs of the PVs or of the restrictive
FM prevents the initialization of the SPL. For instance, this might result of PVs not having a
common root feature in their corresponding FMs.

8.2.4 Free FM generation

To enable configurations that break the constraints imposed by the restrictive FM, the free
FM has to be generated. We defined an algorithm that applies the following operations on a copy
of the restrictive FM:

1. Remove all constraints

2. Remove a group (or, alternative) and connect its children features directly to the parent of
the group as optional features

3. Transform a mandatory feature into an optional feature (except for the root feature)

Since the free FM has all its features optional (except the root) and has constraints, any set
of selected features including the root can be selected during configuration, allowing a complete
reuse at features level.

8.2.5 Assets and asset instances identification

From the product variant base, SUCCEED identifies the common artifacts of several prod-
ucts, those that are unique and those that exhibit variations. We characterize as “assets”, the
file path of the artifacts and as “asset instances” the artifacts themselves (implementation files).
Thus to the same asset can correspond to several asset instances (implementations).

Algorithm 1 describes the mechanism that we adopt to define the SPL products and extract
assets and their corresponding asset instances from the PVs. The algorithm loops over the
implementation files of each PV. For each PV we define a corresponding product in SPL. For
each file in a PV, if it does not exist an asset in SPL assets (A) that has the same path name as
the file, a new asset is created and the path name of the file is assigned to it. Then, a new asset
instance is created, an instance number 1 is assigned to it, in addition to the path corresponding
to its implementation file. The asset instance is registered as an instance of the asset (being the
first in this case), and registered as one of the instances exploited by the product created during
the current iteration. As well, the asset is registered as one of the SPL assets. Otherwise, if
there exists an asset having the same path name, an additional test is done to check if one of
its instances has the same implementation of the file. We consider that two implementations
are equal if their content is similar, regardless if their string values are equal [CS14]. If so, the
identified instance is appended to the list of asset instances exploited by the product. Otherwise,
a new instance is created, assigned a new instance number (computed from the number of
instances that the asset already has), in addition to the path corresponding to its implementation
file. As well, the asset instance is appended to the instances of the identified asset, and to the
asset instances exploited by the product.

113

8.2. Migration Process Chapter 8. SUCCEED Framework

Algorithm 1 Assets extraction and products definition

Input: PV {files} a set of Product Variants
Output: A a set of Assets, P a set of Products

1: Initialize: A = {},P = {}
2: for all pv ∈ PV do
3: new p
4: for all file ∈ files(pv) do
5: if 6 ∃ (a ∈ A

∧
name(a) = name(file)) then

6: new a
7: name(a)← name(file)
8: new ai

9: instanceNo(ai)← 1
10: implementation(ai)← implementation(file)
11: AI(a).append(ai)
12: AI(p).append(ai)
13: A.append(a)
14: else
15: if ∃ (ai ∈ AI(a)

∧
implementation(ai) = implementation(file))* then

16: AI(p).append(ai)
17: else
18: new ai

19: instanceNo(ai)← size(AI(a)) + 1
20: implementation(ai)← implementation(file)
21: AI(a).append(ai)
22: AI(p).append(ai)
23: end if
24: end if
25: end for
26: P .append(p)
27: end for

*Two implementations are equal if the diff between them is null

8.2.6 Correlations Identification

Algorithm 2 represents how correlations are identified. After identifying the SPL products
P , features F collected from the products FMs, assets A and their corresponding instances,
SUCCEED identifies the SPL correlations C. As presented in Algorithm 2, for all assets A, for
each a ∈ A, we loop on all features of F . A correlation between an asset a and a feature f holds
each product implementing f employs a and each product employing a implements f , hence
if P (a) = P (f), or if each product implementing f employs a, hence P (a) ⊂ P (f) and for
each instance ai of a exploited by a product implementing f , ai is not exploited by any product
that is not implementing f . When a correlation holds, if P (a) = P (f) the correlation type is an
equivalence, otherwise it is an implication. Each feature to asset correlation c(f, a) is appended
to the SPL correlations C. For each identified feature to asset correlation, the instances of the
asset must be evaluated to determine if they are in correlation with the feature. A feature to
asset instance correlation holds if there already exists a feature to asset correlation c(f, a), and
there exists at least a product that implements f and exploits ai. Moreover, each feature to asset
instance correlation is appended to the SPL correlations C.

114

8.3. Configuration Process Chapter 8. SUCCEED Framework

If an artifact (feature, asset, or asset instance) has no correlations, the SPL is not considered
complete. For this reason, SUCCEED displays a warning informing that the tool does not
guarantee the support and evolution of the SPL.

Algorithm 2 Correlations identification
Input: P Products of SPL, A Assets of SPL, F Features of SPL
Output: C Correlations of SPL

1: Initialize: C = {}
2: for all a ∈ A do
3: for all f ∈ F do
4: if [P (a) = P (f)]

∨
[P (a) ⊂ P (f) ∧ ∀ai ∈ AI(P (f)), ai /∈ AI(P (a) \ P (f))] then

5: new c(f, a)
6: if P (a) = P (f) then
7: c(f, a).type← equivalence
8: else
9: c(f, a).type← implication

10: end if
11: C.append(c(f, a))
12: for all ai ∈ AI(a) do
13: if ∃ p, f ∈ F (p), ai ∈ AI(p) then
14: new c(f, ai)
15: C.append(c(f, ai))
16: end if
17: end for
18: end if
19: end for
20: end for

8.3 Configuration Process
SUCCEED provides two configuration modes. Figure 8.1 shows a configuration in restric-

tive mode and Figure 8.2 shows a configuration in free mode. When a new configuration is
initiated, the default configuration mode is restrictive mode. In a restrictive mode, mandatory
features are selected automatically and cannot be deselected, as shown in Figure 8.1 i.e. fea-
tures Rounds, Stages, Groups, Standing. In contrary, optional features, such as Players,
Replays, Calendar and News, are by default unselected, and can be selected (i.e. Calendar
and News) or deselected (i.e. Replays). A deselection of a parent feature, implies a deselection
of its children features. Further, depending on the cross-tree constraints of the restrictive FM,
a selection of a feature might imply an automatic selection or deselection of other features in
the FM configuration i.e. if no product implements both Players and Replays, selecting the
feature Players will automatically deselects the feature Replays.

Switching from restrictive mode to free mode during a configuration can be made with a
single click. A first-time switch from restrictive to free mode takes the actual state of the config-
uration in restrictive mode as an initial state during the free mode. In other words, all selected

115

8.3. Configuration Process Chapter 8. SUCCEED Framework

Figure 8.1: An example of a configuration in restrictive mode

Figure 8.2: An example of a configuration in free mode

features are selected in free mode, and all deselected features are deselected in free mode. Since
no mandatory features in free mode except the root feature, all features can be deselected. As
shown in Figure 8.2, the feature Rounds i.e. which is initially a mandatory feature in restrictive
mode can be deselected in free mode since it became an optional feature. Similarly to restrictive
mode, if a parent feature is deselected its children features are automatically deselected, hence,
deselecting Rounds will automatically deselect Stages, Groups and Standing. In contrary
to restrictive mode, no constraints are present in free mode, hence, selecting or deselecting
a feature affects only its children features. Since all features except root are optional in free
mode, we provide two button actions to facilitate the selection/deselection of features. The first
option allows to auto-select all unselected features, and the second allows to auto-deselect all
unselected features. Hence, a software engineer can either select all required features and use the

116

8.4. Derivation Process Chapter 8. SUCCEED Framework

auto-deselect action to deselect all other unrequired features, or deselects all unrequired features
and use the auto-select action to select all required features. Recall that those two actions are
available only in free mode.

Switching back to restrictive mode is again possible. This action saves the actual state of the
free mode and switches back to the last state of the restrictive mode before the switch made to
free mode. Thus, a current configuration can have two independent flows in each mode.

One of the important functionalities that we introduced in our approach is the possibility of
adding new features during the configuration. This functionality is available in both restrictive
and free mode. A new feature can be added only as a child for a selected feature i.e. as show in
Figure 8.1 a child feature cannot be added for the feature Players which is currently unselected
neither for the feature Replays which is currently deselected. A feature added in restrictive
mode is not added automatically in free mode, except for the first-time switch from restrictive to
free mode. Similarly no two features can have the same name. It is possible to add a feature
in restrictive mode and adding it with the same name later on in free mode, however, it is
prohibited to add two new features with same name in same mode, or also adding a new feature
with the name of an existing one. A feature added during a configuration is not visible in other
configurations. It becomes visible only if the configuration was achieved by a derivation of a
new product and the product is integrated into the SPL.

The configuration process is accomplished by selecting all the required features, deselecting
all the unrequired ones and adding the new features if any. Once done, the configuration is saved
and the selected features are memorized. In addition, the new features added to the configuration
are memorized. Next is the derivation process where operations to perform to derive the desired
product are to be selected.

8.4 Derivation Process

The derivation process is dependent on the configuration process. If the configuration is done
in restrictive mode, this means that an existing product implements all and only the required
existing features for the desired product. Hence, SUCCEED proposes the implementation files
of this product as a solution and mentions the need of integrating the new features added during
configuration, if any, in the proposed files. Hence, if new features have to be added, our approach
does not provide any guidance concerning which assets are suspect to modification to integrate
the new features.

If the configuration is done in free mode, SUCCEED proposes the possible configuration
scenarios and operations, in addition to their corresponding estimated costs, based on the gener-
ated derivation FM. Figure 8.3 shows the SUCCEED interface corresponding to the derivation
FM of the running example. Recall that the derivation FM is automatically generated according
to the automatically identified configuration scenarios and operations as a subsequent step to the
configuration process.

According to Figure 8.3, the interface displays the four possible configuration scenarios of
the running example with their corresponding estimated cost, where only one configuration can
be selected. Recall that the default estimated cost corresponding to each configuration scenario,

117

8.4. Derivation Process Chapter 8. SUCCEED Framework

Figure 8.3: Running example derivation process in SUCCEED

118

8.5. Evolution Process Chapter 8. SUCCEED Framework

prior to operations selection, is the sum of its lowest cost operation for each required asset. This
value might be updated upon the selection of operations, i.e. in case an operation having a higher
cost was selected for a required asset. A flag icon (see configuration scenario cs3) is displayed
next to the recommended configuration scenario, the one having the lowest estimated cost. The
configuration scenarios cs3 and cs4 have the same estimated cost, since the operations having
the lowest cost at each asset level are similar for both. However, cs3 is given the recommended
configuration scenario title, because its products are subset of the ones of cs4.

Product p2 is displayed as mandatory, because all the proposed operations require an asset
instance exploited by p2. Deselecting an optional product implies an automatic deselection of
the asset instances exploited only by it, in addition to the operations that use those instances.
For example, deselecting p1 implies a deselection of instance style.css1 which is not exploited
by another product, and a deselection of the first operation of style.css which uses this instance.

For an asset having one operation, the operation is displayed as mandatory, similarly to the
instances that it uses. The assets match.jsp and DeleteMatch.java are two examples of this
situation.

Once a configuration scenario is selected, all operations that do not correspond to it are
automatically deselected. For example, if cs3 is selected, the first operation of style.css is
automatically deselected since it uses the instance style.css1 that is not implemented by any
of the products p2 and p3 of cs3. Furthermore, the operations composed of a single CRT
action corresponding to the selected configuration scenario are automatically selected since their
estimated cost is 0. For instance, when cs3 is selected, the CRT operation of SaveMatch.java
is automatically selected, and consequently, its selection implies an automatic deselection of the
first operation of SaveMatch.java, since only one operation can be selected per asset.

Moreover, if more than one operations are proposed for a required asset, and one the pro-
posed operations is a single CRT operation, an exclamation mark icon is displayed near the
other proposed operations for the asset, to represent a warning that there already exists an asset
instance implementing all and only the required existing features. The first operation proposed
for SaveMatch.java represents this situation, where this operation proposes the construction of
a new instance, that is supposed to be similar to the already existing instance SaveMatch.java2.

Furthermore, deselecting an asset instance implies an automatic deselection of the operations
that use the deselected asset instance. For example, deselecting style.css1 for considering it an
old undesired instance for derivation, implies an automatic deselection of the first operation of
style.css that uses this instance.

Finally, for each required asset, one operation has to be selected. Recall that the operations
selection can be made regardless the configuration scenarios they belong to, by selecting
operations that belong to different configuration scenarios.

8.5 Evolution Process

Once the derived product is constructed, it has to be integrated in SUCCEED in order to
permit its systematic reuse and respectively the reuse of its artifacts for deriving new variants.

119

8.6. Summary Chapter 8. SUCCEED Framework

To integrate the derived product, its implementation files are provided. Hence, a new branch is
created in the git repository that contains the SPL products, where the name of the product is
used as the branch name. The provided implementation files are committed within the created
branch.

The integration of a new product implies an automated discovery of new assets and asset
instances, and an automated update of the SPL correlations and correlation indicators, as
explained in Chapter 7. The identification of a new file (a file that was not employed by any
other existing product) in the provided implementation files of the derived product, leads to the
identification of a new asset and a new instance corresponding to it. The identification of new
instances of an asset is done by performing a diff operation to compare a certain file with the
existing instances having the same name.

To permit the reuse of the integrated product and its corresponding artifacts in future
derivations, SUCCEED performs an automated update of the restrictive and free FMs as
explained in Chapter 7. Consequently, the features added during the configuration of the
integrated product if any, become visible in new configurations. Further, the selection of the
set of features implemented by the integrated product refers now to a valid configuration that
implies an automated derivation of the newly integrated product.

8.6 Summary
In this chapter, we presented an overview of the SUCCEED framework that implements

our approach. The SUCCEED framework covers the life cycle of our approach. It first allows
the migration of existing product variants into an SPL. Second, it permits the generation of
new configurations in both restrictive and free modes. Third, it supports the derivation with
the possible configuration scenarios and operations, as well as their estimated cost. Finally, it
enables the enrichment of the SPL with the newly derived products.

Nowadays, not all modules of SUCCEED are supported with a graphical user interface.
Therefore, we aim to provide graphical interface to the command line interface modules of the
approach and connect its modules in a standalone framework.

120

CHAPTER 9

APPROACH VALIDATION

Contents
9.1 Introduction . 122

9.2 Validation . 122

9.2.1 Experiments . 122

9.2.2 Results analysis . 123

9.2.3 Overtaking Challenges . 124

9.3 Limitations . 125

9.4 Threats to Validity . 125

9.5 Summary . 126

121

9.1. Introduction Chapter 9. Approach Validation

9.1 Introduction
We validate our approach in this chapter based on experiments made on a case study

consisting of a family of 8 product variants. We measure and analyze indicators corresponding
to the configuration, derivation and integration of new product variants, in order to evaluate the
effectiveness of our approach. In addition, we present in this chapter some limitations of our
approach and threats to validity.

9.2 Validation

9.2.1 Experiments
We achieved the validation by analyzing statistical information that we collected upon the

configuration and the incremental derivation of 5 new variants and their incremental integration
in the case study SPL that consists initially of 3 variants. By incremental derivation and integra-
tion, we mean that each newly derived variant is integrated in the SPL, the SPL restrictive and
free FMs are auto re-generated and the correlations are updated prior to the derivation of another
variant. Hence, each newly derived variant becomes a support element during the upcoming
derivation. The SPL comprises when it has its 8 PVs a total of 93 features, 271 assets and 296
asset instances with an average of 66 features, 214 assets and 4.7KLOCs per PV.

Table 9.1 shows the number of features added during each configuration and the number of
assets and asset instances added to the SPL after the derivation of the PV corresponding to each
configuration. In order to evaluate the effectiveness of our approach, we measured and analyzed
significant indicators (see Figure 9.3) concerning the number of configuration scenarios and
operations of the 5 configurations of the case study.

Table 9.1: Metrics of 5 sequential configurations to derive new PVs

Configuration cf4 cf5 cf6 cf7 cf8
Number of features added by the configuration 0 0 25 0 0
Number of Assets added after derivation 0 0 8 0 24
Number of Asset instances added after derivation 3 1 11 1 25

The 8 PVs of the case study correspond to a family of Web applications developed to post
news, media, and results of a soccer competition1. Each PV consists of a restful web service
written in Jersey, a database structure built in MySQL, and client-side Web interfaces written in
HTML, CSS and JavaScript frameworks including AngularJS, JQuery, UI-Router, Bootstrap
and others. Table 9.2 shows the main features implemented by the 8 product variants.

Figure 9.1 and Figure 9.2 show some graphical interfaces of products p7 and p8. Product
p7 corresponds to the Champions League 2016 competition, while product p8 corresponds to
EURO 2016 competition. Since feature Matches is implemented by both p7 and p8, their
corresponding interfaces look similar (see Figure 9.1a and Figure 9.2a). The interface displaying
match details defers between p7 and p8, since the former implements feature Match facts while

1The case study products do not correspond to the running examples products, which were demonstrated
throughout the dissertation.

122

9.2. Validation Chapter 9. Approach Validation

Table 9.2: Main features of case study product variants

Features Products
p1 p2 p3 p4 p5 p6 p7 p8

Competition X X X X X X X X
Matches X X X X X X X X
Rounds X X X X X X X X
Teams X X X X X X X X
Players X X X X X X
News X X X X

Match facts X X X X
Match stats X X

the latter implements Match facts and also Match stats, which corresponds to the statistical
tables displayed below the match facts (see Figure 9.1b and Figure 9.2b). Further, since product
p7 does not implement the feature News, the “News” item is not part of its menu. On the
contrary, product p8 implements the feature News (see Figure 9.2c) and the item “News” is part
of its menu.

9.2.2 Results analysis
As shown in Figure 9.3a, the number of configuration scenarios per configuration increases

considerably whenever the family of software products becomes richer. This is due to the
injection of the newly derived products in the SPL, that become candidates for derivation of
other products. Respectively, Figure 9.3b shows that the average number of products involved
in a configuration scenario increases too. Identifying the possible configuration scenarios for
a given configuration is time-consuming if done manually, especially when the SPL becomes
mature, since it is proportional to the number of products that partially implement the required
features. Our approach resolves this difficulty by automating the identification of the possible
configuration scenarios. When the number of products involved in a configuration scenario
becomes elevated, software engineers aim to prioritize the possible configuration scenarios
based on preferences over products, i.e. by preferring configuration scenarios that involve
the products that they are most familiar with. The generated derivation FM provided by our
approach satisfies this need by allowing software engineers to filter the possible configuration
scenarios by deselecting undesired products.

Figure 9.3c shows that the number of required existing assets per configuration is high for the
case study with an average of 88%. In other words, each newly derived product is constructed
by reusing around 88% of the SPL assets. This indicator reflects the degree of reuse that SPLs
can offer in general and our approach in particular. Identifying the required assets for a product
derivation can be a tedious and time-consuming task when done manually, especially when the
SPL consolidates a large amount of assets. Our approach copes this problem by providing an
automated discovery of the required assets for derivation.

Despite that the number of required assets can be large, the number of assets to modify might
be few, same as shown in Figure 9.3d, where for the case study the average number of assets to
modify is only 2%. This indicator might widely vary in other case studies, depending on the

123

9.2. Validation Chapter 9. Approach Validation

variability level it provides, as well as the features interaction level, reflected in the way in which
the assets are constructed. Regardless if the number of assets to modify is low or high, software
engineers have to identify between the required assets, which ones are to be modified to achieve
the derivation. This step is expensive if done manually, since it requires a content check of the
asset instances of each required asset. In contrary, our approach automatically identifies the
assets that require modification, based on the automatically defined operations at each asset level.
Hence, software engineers recognize which asset instances have to be cloned and retained for
derivation without being modified and which asset instances require to be cloned and modified.
Figure 9.3e shows that the average number of operations per asset for each configuration is very
low in this case study. This is due to the low number of assets to modify, where for most assets
the only proposed operation consists of a single clone and retain (CRT) action. For the assets
that have several proposed operations, the provided cost estimation at operation level facilitates
the choice of a favorable operation. Moreover, the selection of a favorable operation can be
made based on the asset instances involved in the operation, since the derivation FM specifies
the asset instances of each operation.

Finally, the elevated number of possible configuration scenarios makes difficult the choice of
a favorable scenario for derivation. However, the cost estimation provided by our approach can
facilitate the choice of a favorable scenario. Figure 9.3f shows that the coefficient of variation
between the estimated cost of the configuration scenarios ranges between 36% and 99% with an
average of 64%. This means that the variation between the estimated cost of the configuration
scenarios is elevated, which can facilitate the choice of a favorable scenario. Moreover, the ele-
vated coefficient of variation reflects that if software engineers select the configuration scenarios
having the lowest estimated cost, they are supposed to save a considerable amount of time and
effort during derivation.

9.2.3 Overtaking Challenges

Challenge 1.a consisted on identifying mappings between features and assets. The average
number of assets to modify per configuration scenario (see Figure 9.3d) decreases as long as new
products are integrated in the SPL. This is due to the purification of the identified correlations.
Since correlations are updated each time a new variant is integrated in the SPL, they get a better
level of precision, and therefore, the estimated number of products to modify decreases and the
proposed operations become more precise.

Challenge 1.b consisted on identifying the possible configuration scenarios and asset level
operations. Our experiments on the case study verified that all possible configuration scenarios
and operations where identified and since this step is automated by our approach, it saves a large
amount of time compared to a manual identification process.

Challenge 1.c consisted on facilitating the choice of configuration scenarios and asset level
operations. Figure 9.3a shows that the number of possible configuration scenarios increases
accordingly to the maturity of the SPL. This reflects the necessity of facilitating their selection.
As shown in Figure 9.3f, the coefficient of variation between the estimated cost of the possible
configuration scenario is high, which facilitates the selection. Moreover, the user preferences
options that we proposed contribute in facilitating the selection.

124

9.3. Limitations Chapter 9. Approach Validation

Challenge 2.a consisted on helping the definition of new features when adding new variants
and structuring the SPL features after integration. Table 9.1 shows that 25 features where added
to derive product p6. Moreover, those features where reused in the derivation of the new products
(p7 and p8).

Finally, Challenge 2.b consisted on integrating the newly derived products into the SPL. As
shown in Figure 9.3a and Figure 9.3b, the new products where used as part of the proposed
configuration scenarios for future derivations. As well, the new features that they implemented
where reused in the derivation of new products.

9.3 Limitations
A limitation of our approach is that it is dependent on the architecture of the developed SPL.

A change in structure or naming of the SPL artifacts affects the identified correlations. However,
adhering to the proposed operations during product derivation avoids such inconsistencies.
Further, our approach permits to reconstruct the SPL in case a refactoring is needed, without
extra efforts or loss of information.

Another limitation is that asset instances are identified at file level, while several related
works when performing feature identification or feature location [FLLHE14, Mar16], map
features to implementation blocks of several files. Such techniques can be complementary to
our approach, since we consider that guidance is the most meaningful when provided at file level.

Moreover, our approach does not propose any guidelines regarding the modification of code
fragments inside files. Therefore, the adapters employed in [FLLHE14] and [Mar16] to identify
the blocks of artifacts can be used to provide this guidance, especially when the files of the
migrated products correspond to artifact types to which adapters are provided. Similarly, the
hints proposed by [FLLHE14] when product completion is required to achieve the derivation
improve the guidance that can be proposed.

Finally, in our approach we did not take into consideration organizational factors such
as coordination between development team members, development phases, criteria selection
and prioritization, product release, and customer feedback [BBS11, BWW+18]. Similarly, we
did not integrate international distortions in our approach when defining our cost estimation
functions [MBF12]. We consider such factors beyond the core of our approach, especially when
our approach aims only to provide guidance without imposing derivation solutions.

9.4 Threats to Validity
Conclusion Validity In our experiments, and based on the polyglot nature of the software
products we are working on, we concluded that increasing number of products in the SPL
increases the number of possible configuration scenarios (see Figure 9.3a). However, in some
architectures where features are not propagated on several products, this conclusion might
become wrong. Whereas, in our experiments we did not identify a relationship between the
average number of products in a configuration scenario (see Figure 9.3b) and the average number
of possible operations per asset (see Figure 9.3e). Despite that the graph indicators show this
relationship for the case study, we consider that it might not be the case for other case studies.

125

9.5. Summary Chapter 9. Approach Validation

Internal Validity In our case study, we considered that one of the reasons of the elevated
number of required assets (see Figure 9.3c) is due to the architecture of polyglot systems, where
feature interaction is elevated. However, other unidentified factors might also affect the number
of required assets, especially for case studies of different architectures employing different
artifact types.

Construct Validity The experiments were made on a case study that we developed. Indeed,
due to our limited time and resources, we could not achieve experiments on industrial case
studies, to measure the effectiveness of our approach on real industrial situations. If done, it can
bring valuable indicators that show the variation between the time spent by software engineers
to manually accomplish tasks such as identifying configuration scenarios, required assets, assets
to modify and operations, compared to the automation that our approach provides of those tasks.

External Validity It is clear that the order in which the configurations and respectively the
derivation and integration of new products are made produces different outputs of the experiments
results. Our approach guarantees for the experiments that we made, that no matter what is
the order in which the products are derived and integrated in the SPL, the final state of the
SPL in terms of features models, identified artifacts and correlations is the same. Since we
did not perform experiments on all kinds of software families, we are not able to validate that
our assumption can always be true. Similarly, the outcome of our experiments corresponds to
the structure of the case study, hence, another case study having different architecture such as
monoglot systems, and using other artifact type such as images, might produce different results.

9.5 Summary
In this chapter, we validated our approach on a real case study to demonstrate its effective-

ness. The indicators of Figure 9.3 reveal the importance of providing the necessary support
to software engineers to accomplish the derivation of new products. Our approach automates
several time-consuming and tedious tasks, such as the identification of the possible configuration
scenarios and required assets, the identification of the assets that require modification, and the
operations to perform to achieve the derivation. Moreover, our experiments show that the gener-
ated derivation FM for each configuration facilitates the choice of the favorable configuration
scenario and operations, by providing an environment allowing software engineers to make their
choices based on their own preferences and based on the cost estimation of the configuration
scenarios and operations.

Finally, we presented in this chapter some limitations of our approach in addition to the
conclusion, internal, construct and external threats to validity.

126

9.5. Summary Chapter 9. Approach Validation

(a) Matches interface of product p7

(b) Match details interface of product p7

Figure 9.1: Case study graphical interfaces of product p7

127

9.5. Summary Chapter 9. Approach Validation

(a) Matches interface of product p8

128

9.5. Summary Chapter 9. Approach Validation

(b) Match details interface of product p8

129

9.5. Summary Chapter 9. Approach Validation

(c) News interface of product p8

Figure 9.2: Case study graphical interfaces of product p8

130

9.5. Summary Chapter 9. Approach Validation

(a) Number of configuration scenarios per
configuration

(b) Average number of products in a configuration
scenario per configuration

(c) Number of required existing assets per
configuration

(d) Average number of assets to modify per
configuration scenario per configuration

(e) Average number of operations per asset per
configuration

(f) Coefficient of variation of configuration
scenarios cost per configuration

Figure 9.3: Case study indicators

131

9.5. Summary Chapter 9. Approach Validation

132

Part IV

Conclusion and Perspectives

133

CHAPTER 10

CONCLUSION AND PERSPECTIVES

Contents
10.1 Conclusion . 136

10.2 Perspectives . 138

135

10.1. Conclusion Chapter 10. Conclusion and Perspectives

10.1 Conclusion

In this dissertation, we proposed an approach to support the derivation of unplanned product
variants in a software product line context using clone-and-own practice. The proposed approach
allows the integration of existing product variants into a software product line. Moreover, it
supports the derivation of new product variants using clone-and-own, by proposing the possible
scenarios and operations to achieve the derivation. This support is strengthened by a cost
estimation of the possible scenarios and operations and a constraints system guiding software
engineers to perform the derivation based on their own preferences. Furthermore, the proposed
approach enables the integration of the derived products into the software product line, to permit
their reuse in future derivation.

Our approach addresses software families developed in a feature-oriented development
context using clone-and-own, where the functionalities implemented in product variants are ex-
pressed as business-level features. To allow a systematic reuse of product variants, our approach
offers an automated integration of existing product variants into a software product line. This
process is accompanied with an automated and controlled construction of a feature model called
restrictive FM, to enable the configuration and automated derivation of the existing product
variants.

Since arising customer requirements and technology changes necessitate the development
of new products, our approach fulfills this need by allowing the derivation of new product
variants from the constructed product line. Therefore, our approach allows the definition of new
features during the configuration of the restrictive FM, whenever the features required for a
new product consist of a set of features realized by an existing product and some new features
not implemented yet. However, if the required features are not realized by a single product,
the restrictive FM does not permit their selection, regardless if they contain new features or
not. For this purpose, another feature model is generated, as a constraint-free version of the
restrictive FM, where all features except root feature are optional. Indeed, this feature model
called free FM allows the configuration of new products, by selecting a set of features that is not
realized by a single existing product, with the possibility of defining new features throughout
the configuration as well.

In order to reuse artifacts from existing products to derive a new one, the products im-
plementing the required existing features, and respectively the assets that accomplished their
implementation have to be identified. Therefore, we defined an automated mechanism to identify
mappings between the product line artifacts. Mappings are called correlations, and correlations
are established between features and assets on the one side, and between feature and asset
instances on the other side. Asset instances correspond to the versions of the assets.

Relying on the identified correlations, and according to the features selected in a configura-
tion, our approach automatically determines the possible configuration scenarios and respectively
operations to perform, in order to achieve the derivation of a new product. Operations correspond
to actions to take over asset instances, in order to construct the necessary asset instances for the
derivation. Such actions can be a clone of an existing instance, with the possibility of adding
or removing implementation fragments corresponding respectively to required or unrequired
features. A configuration scenario is a set of products that constitutes a source to achieve the
derivation of a new product. Hence, to support software engineers in achieving the derivation,

136

10.1. Conclusion Chapter 10. Conclusion and Perspectives

our approach proposes its possible configuration scenarios and operations.

We strengthen our support by generating a constraints system for each configuration, in order
to facilitate the selection of a configuration scenario and operations. This constraints system is
constructed as a feature model that we call derivation FM. The features of the derivation FM are
the configuration scenarios, their products, their operations and their corresponding assets and
asset instances, while the constraints correspond to the dependencies between them. Hence, the
generated derivation FM allows software engineers to select the favorable configuration scenario
and operations based on their own preferences i.e. by selecting the configuration scenario that
requires the least number of operations imposing a construction of a new asset instance, or the
configuration scenario composed of the products that they are most familiar, or the operations
involving the asset instances that they worked on.

Since the number of possible configuration scenarios and operations to achieve a product
derivation can be elevated, we defined a cost-estimation function to estimate the cost in terms
of efforts and development time that might be required to perform an operation. Respectively,
the operations estimated cost allows to estimate the cost of configuration scenarios. Thus, we
provide software engineers with the cost estimation as an additional argument that they can rely
on to select their favorable configuration scenario and operations.

After the derivation of a new product, to allow its reuse in future derivations, our approach
permits its automated integration in the product line. Hence, our approach enables the evolution
of the product line, by integrating new products and respectively, by automatically updating the
correlations and auto re-generating the restrictive and free FMs.

We implemented our approach by developing a framework called SUCCEED that stands for
SUpporting Clone-and-own with Cost-EstimatEd Derivation. SUCCEED provides graphical user
interfaces, which allow to migrate a set of product variants into a product line, support the config-
uration and derivation of a new variant, and the enrichment of the product line with new products.

We validated our approach based on experiments made on a real case study consisting of
8 product variants, by performing an incremental derivation and integration of 5 variants into
a product line composed initially of 3 variants. The results revealed the importance of our
approach in providing the necessary support to software engineers to accomplish the derivation
of new products. Experiments showed that our approach supports and simplifies the derivation
by automating several time-consuming and tedious tasks, by facilitating the choice of the favor-
able configuration scenario and operations and by providing an environment allowing software
engineers to make their choices based on their own preferences and based on the proposed cost
estimations.

In our approach, we consider software engineers as the main decision-makers. Hence, we
support them with valuable elements to derive new products by themselves, without imposing
on them a specific or automated derivation solution. By this, we preserve the “own” strength
point of the clone-and-own approach, where software engineers own their code since they know
the source of the clones and how it was constructed.

137

10.2. Perspectives Chapter 10. Conclusion and Perspectives

10.2 Perspectives
In our perspectives, we aim to validate our approach on more sophisticated systems of differ-

ent architectures such as industrial case studies. Further, we aim to measure the effectiveness of
our approach in terms of efforts and time saving, when compared to the classic clone-and-own
approach. Such experiments should allow to determine valuable indicators that show the vari-
ation between the time spent by software engineers to manually accomplish derivation tasks
compared to the automation that our approach provides of those tasks.

We consider our approach as complementary to several related works. Therefore, as fu-
ture work, we are interested for example in integrating the techniques used by [FLLHE14]
and [MZB+15b], to identify mappings between features and assets of monoglot product variants,
but preserving the clone-and-own decisions on behalf of software engineers.

Finally, we give interest in integrating our approach in a wider development context, in
which we take into consideration organizational factors and international distortions when
defining our cost estimation functions, such as coordination between development team mem-
bers, development phases, criteria selection and prioritization, product release and customer
feedback [BBS11, MBF12, BWW+18].

138

10.2. Perspectives Chapter 10. Conclusion and Perspectives

139

10.2. Perspectives Chapter 10. Conclusion and Perspectives

140

LIST OF ABBREVIATIONS

C&O Clone-and-Own

CT Correlation Type

FCA Formal Concept Analysis

FM Feature Model

FODA Feature-Oriented Domain Analysis

LPL Ligne de Produits Logiciels

PV Product Variant

SPL Software Product Line

SPLE Software Product Line Engineering

SUCCEED SUpporting Clone-and-own with Cost-EstimatEd Derivation

VCS Version Control System

141

List of Abbreviations List of Abbreviations

142

LIST OF FIGURES

1.1 Main interfaces of the running example variants 5

2.1 Software Product Line Activities [Nor02] . 19
2.2 Software Product Line Engineering Framework [PBV05] 20
2.3 Costs for developing n kinds of systems as single systems compared to product

line engineering [PBV05] . 22
2.4 Time to market with and without product line engineering [PBV05] 23
2.5 Negative and positive variability [VG07] . 24
2.6 A sample feature model and a configuration [BSRC10] 26

3.1 Relevant activities during extractive SPL adoption for leveraging artefact vari-
ants [Mar16] . 33

3.2 Word clouds visualization functionality for feature naming [Mar16] 35
3.3 The ECCO workflow [FLLHE15] . 42
3.4 The ECCO version control system workflow [Lin16] 43
3.5 Challenges and objectives . 50
3.6 Approach overview . 53

4.1 Migration process . 57
4.2 Running example SPL global FM . 60
4.3 SPL model diagram . 63
4.4 Examples of feature to asset correlation . 65
4.5 Correlations model diagram . 66

5.1 Derivation process . 76
5.2 An SPL example . 77
5.3 Running example Restrictive and Free FMs 78
5.4 Possible scenarios to achieve a configuration 80

7.1 SPL evolution process. 98
7.2 Running example cf4 derivation FM . 101

8.1 An example of a configuration in restrictive mode 116
8.2 An example of a configuration in free mode 116
8.3 Running example derivation process in SUCCEED 118

9.1 Case study graphical interfaces of product p7 127
9.2 Case study graphical interfaces of product p8 130
9.3 Case study indicators . 131

143

List of Figures List of Figures

144

LIST OF TABLES

1.1 Running example product variants with their corresponding features 3
1.2 Running example product variants with an excerpt of their corresponding assets 4

2.1 A configuration space corresponding to the FM of Figure 2.6 27

3.1 A comparison of the key characteristics of the main related work tools 49

4.1 Running example product variants with their implementation files and feature
models . 59

4.2 Running example relationships between assets, asset instances and product variants 63
4.3 Correlations between features and assets of the running example 66
4.4 Correlations between features and asset instances of the running example . . . 67
4.5 Product variants with their corresponding features 70
4.6 Product variants with their corresponding asset instances 70
4.7 Correlations between features and assets . 70

5.1 Possible configuration scenarios of cf4 with their possible operations 86

6.1 Running example asset instance correlated features 91
6.2 Running example feature correlated assets . 92
6.3 Running example instances of assets . 92
6.4 Running example features correlated asset instances 93
6.5 Correlation degrees between features and asset instances of the running example 93
6.6 Configuration cf4 actions estimated cost . 94
6.7 Configuration cf4 operations estimated cost 94
6.8 Configuration cf4 configuration scenarios estimated cost 95

7.1 Product p4 asset instances . 103
7.2 Added correlations after integration of product p4 105
7.3 Updated running example asset instance correlated features after integration of

product p4 . 106
7.4 Updated running example instances of assets after integration of product p4 . . 106
7.5 Updated running example features correlated asset instances after integration of

product p4 . 106
7.6 Updated correlation degrees between features and asset instances of the running

example after integrating product p4 . 107

9.1 Metrics of 5 sequential configurations to derive new PVs 122
9.2 Main features of case study product variants 123

145

List of Tables List of Tables

146

LIST OF ALGORITHMS

1 Assets extraction and products definition . 114
2 Correlations identification . 115

147

LIST OF ALGORITHMS LIST OF ALGORITHMS

148

TABLE OF OBJECTIVES

O.1 Reuse in feature-oriented software development 15
O.2 Adopting clone-and-own as a starting point . 17
O.3 Relying on software product line as a sustainable solution 23
O.4 Modeling variability through a feature model . 26
O.5 Combining clone-and-own and software product line 29
O.6 Extractive migration approach . 32
O.7 Business-level feature identification . 36
O.8 Global mapping between features and assets . 37
O.9 Language-independent mappings identification 38
O.10 Capturing features interactions . 39
O.11 Smooth migration in the accurate moment . 41
O.12 Supporting derivation with the possible scenarios 44
O.13 Cost-estimated derivation . 44
O.14 Software engineers as decision makers . 44
O.15 Reactive SPL evolution . 46
O.16 Incremental traceability between features and assets 46
O.17 Allow a complete reuse . 47
O.18 Managing feature model evolution . 47

149

Table of Objectives Table of Objectives

150

TABLE OF DEFINITIONS AND PROPERTIES

4.2.1 Definition (Feature) . 58
4.2.2 Definition (Feature Model) . 58
4.2.3 Definition (Restrictive FM) . 59
4.2.4 Definition (Asset Instance) . 60
4.2.5 Definition (Asset) . 61
4.2.6 Definition (Product) . 61
4.2.7 Definition (Product implements features) . 61
4.2.8 Definition (Software Product Line SPL) . 61
4.2.9 Definition (Artifact) . 62
4.2.10 Definition (Product employs assets and exploits asset instances) 62
4.2.11 Definition (Feature implemented by products) 62
4.2.12 Definition (Asset employed by products) . 62
4.2.13 Definition (Asset instance exploited by products) 62
4.2.1 Property (SPL facts) . 62
4.2.2 Property (Asset instance uniqueness in product) 62
4.3.1 Definition (Correlation) . 64
4.3.2 Definition (Feature to Asset Correlation) . 64
4.3.3 Definition (Correlation Type) . 64
4.3.4 Definition (Feature to Asset Instance Correlation) 66
4.3.5 Definition (Asset correlated features) . 67
4.3.6 Definition (Asset instance correlated features) 67
4.3.7 Definition (Feature correlated assets) . 67
4.3.8 Definition (Feature correlated asset instances) 67
4.4.1 Property (Complete SPL) . 69

5.2.1 Definition (Configuration) . 75
5.2.1 Property (Product contributes in configuration) 75
5.2.2 Property (Product realizes a configuration) 75
5.2.3 Property (Product covers a configuration) 77
5.2.2 Definition (Free FM) . 78
5.4.1 Definition (Configuration scenario) . 79
5.4.1 Property (Products of a configuration scenario) 79
5.5.1 Definition (Required assets for derivation) 83
5.5.2 Definition (Action) . 84
5.5.3 Definition (Operation) . 84

6.2.1 Definition (Action type weight) . 90
6.2.2 Definition (Correlation degree) . 91
6.2.3 Definition (Action cost) . 92

151

Table of Definitions and Properties Table of Definitions and Properties

6.2.4 Definition (Operation cost) . 94
6.2.5 Definition (Configuration Scenario cost) . 95

7.2.1 Definition (Derivation FM) . 99
7.2.2 Definition (Derivation scenario) . 99

152

TABLE OF EXAMPLES

1 Product variants implementation files and feature models 58
2 Applying the FAMILIAR merge operation to construct the SPL FM 60
3 Running example extracted assets and instances . 62
4 Running example feature to asset correlations . 64
5 Running example feature to asset instance correlations 67
6 Example of uncorrelated asset if R5 violated . 70
7 Running example Restrictive and Free FMs . 78
8 Running example configuration of a new product 82
9 Some actions on a configuration from running example 84
10 Some operations on a configuration from running example 85
11 Asset instance correlated features from running example 91
12 Feature correlated assets from running example . 92
13 Instances of assets from running example . 92
14 Feature correlated asset instances from running example 92
15 Correlation degrees from running example . 93
16 Actions cost from running example . 93
17 Operations cost from running example . 94
18 Configuration scenario cost from running example 95
19 Configuration scenarios having same cost . 96
20 Running example derivation FM . 100
21 Selection based on numbers and indicators . 100
22 Selection based on developer preferences . 101
23 Selection based on cost estimation . 102
24 Integration of product p4 of the running example . 103
25 FAMILIAR merge operation to re-generate SPL restrictive FM 104
26 Free FM eventual re-generation . 104
27 Running example correlations update . 105
28 Running example correlation indicators update . 105

153

Table of Examples Table of Examples

154

LISTINGS

4.1 Running example PVs FMs in FAMILIAR language 60
4.2 FAMILIAR merge operation over PVs FMs 60
4.3 SPL FM generated from FAMILIAR merge operation 60
7.1 Restrictive FM in FAMILIAR language before merge 104
7.2 FM of product p4 . 104
7.3 FAMILIAR merge operation over SPL restrictive FM and FM of p4 104
7.4 Re-generated restrictive FM from FAMILIAR merge operation 104

155

LISTINGS LISTINGS

156

BIBLIOGRAPHY

[ABKS16] Sven Apel, Don Batory, Christian Kästner, and Gunter Saake. Feature-
Oriented Software Product Lines. Springer, 2016.

[Ach11] Mathieu Acher. Managing, multiple feature models: foundations, languages
and applications. PhD thesis, Nice, 2011.

[ACLF13] Mathieu Acher, Philippe Collet, Philippe Lahire, and Robert B. France. Famil-
iar: A domain-specific language for large scale management of feature models.
In Science of Computer Programming, volume 78, pages 657–681. Elsevier,
June 2013.

[ACR09] Hugo Arboleda, Rubby Casallas, and Jean-Claude Royer. Dealing with fine-
grained configurations in model-driven SPLs. In SPLC, pages 1–10, 2009.

[AG06] Giuliano Antoniol and Yann-Gael Gueheneuc. Feature identification: An epi-
demiological metaphor. IEEE Trans. Softw. Eng., 32(9):627–641, September
2006.

[AGM+06] Vander Alves, Rohit Gheyi, Tiago Massoni, Uirá Kulesza, Paulo Borba, and
Carlos Lucena. Refactoring product lines. In Proceedings of the 5th Interna-
tional Conference on Generative Programming and Component Engineering,
GPCE ’06, pages 201–210, New York, NY, USA, 2006. ACM.

[AHC+12] Mathieu Acher, Patrick Heymans, Philippe Collet, Clément Quinton, Philippe
Lahire, and Philippe Merle. Feature model differences. In Advanced Informa-
tion Systems Engineering, pages 629–645. Springer, 2012.

[AK08] Samuel A Ajila and Ali B Kaba. Evolution support mechanisms for software
product line process. Journal of Systems and Software, 81(10):1784–1801,
2008.

[AK09] Sven Apel and Christian Kästner. An overview of feature-oriented software
development. Journal of Object Technology, 8(5):49–84, 2009.

[ALHL+17] Wesley KG Assunção, Roberto E Lopez-Herrejon, Lukas Linsbauer, Silvia R
Vergilio, and Alexander Egyed. Reengineering legacy applications into soft-
ware product lines: a systematic mapping. Empirical Software Engineering,
22(6):2972–3016, 2017.

[AM14] R AL-Msie’Deen. Reverse Engineering Feature Models from Software Vari-
ants to Build Software Product Lines. PhD thesis, PhD thesis, University of
Montpellier, 2014.

157

Bibliography Bibliography

[AmSH+13] Ra’fat Al-msie’deen, Abdelhak-Djamel Seriai, Marianne Huchard, Christelle
Urtado, and Sylvain Vauttier. Mining features from the object-oriented source
code of software variants by combining lexical and structural similarity. In
Proceedings of the 2013 IEEE 14th International Conference on Information
Reuse & Integration (IRI), pages 586–593, San Francisco, CA, 2013.

[ANCM12] Vallabh Anwikar, Ravindra Naik, Adnan Contractor, and Hemanth Makkap-
ati. Domain-driven technique for functionality identification in source code.
SIGSOFT Softw. Eng. Notes, 37(3):1–8, May 2012.

[AR13] Hugo Arboleda and Jean-Claude Royer. Model-Driven and Software Product
Line Engineering. John Wiley & Sons, 2013.

[Ara89] G. Arango. Domain analysis: from art form to engineering discipline. In
Proceedings of the 5th international workshop on Software specification and
design - IWSSD ’89, volume 14, pages 152–159, New York, New York, USA,
April 1989. ACM Press.

[AV14] Wesley Klewerton Guez Assunção and Silvia Regina Vergilio. Feature location
for software product line migration: a mapping study. In Proceedings of the
18th International Software Product Line Conference: Companion Volume for
Workshops, Demonstrations and Tools-Volume 2, pages 52–59. ACM, 2014.

[Bat05] Don Batory. Feature models, grammars, and propositional formulas. In SPLC,
volume 3714, pages 7–20. Springer, 2005.

[BBS11] Jan Bosch and Petra M. Bosch-Sijtsema. Introducing agile customer-centered
development in a legacy software product line. Softw. Pract. Exper., 41(8):871–
882, July 2011.

[BEG+11] Ebrahim Bagheri, Faezeh Ensan, Dragan Gasevic, Marko Boskovic, et al. Mod-
ular feature models: Representation and configuration. Journal of Research
and Practice in Information Technology, 43(2):109, 2011.

[Bel08] Radim Belohlavek. Introduction to formal concept analysis. Palacky Univer-
sity, Department of Computer Science, Olomouc, 2008.

[BFK+99] Joachim Bayer, Oliver Flege, Peter Knauber, Roland Laqua, Dirk Muthig,
Klaus Schmid, Tanya Widen, and Jean-Marc DeBaud. Pulse: A methodology
to develop software product lines. In Proceedings of the 1999 Symposium on
Software Reusability, SSR ’99, pages 122–131, New York, NY, USA, 1999.
ACM.

[BL07] Hongyu Pei Breivold and Magnus Larsson. Component-based and service-
oriented software engineering: Key concepts and principles. In Software
Engineering and Advanced Applications, 2007. 33rd EUROMICRO Confer-
ence on, pages 13–20. IEEE, 2007.

[BLnC16] Manuel Ballarin, Raúl Lapeña, and Carlos Cetina. Leveraging feature location
to extract the clone-and-own relationships of a family of software products. In
Proceedings of the 15th International Conference on Software Reuse: Bridging
with Social-Awareness - Volume 9679, ICSR 2016, pages 215–230, New York,
NY, USA, 2016. Springer-Verlag New York, Inc.

158

Bibliography Bibliography

[BLR+15] Thorsten Berger, Daniela Lettner, Julia Rubin, Paul Grünbacher, Adeline
Silva, Martin Becker, Marsha Chechik, and Krzysztof Czarnecki. What is a
feature?: A qualitative study of features in industrial software product lines. In
Proceedings of the 19th International Conference on Software Product Line,
SPLC ’15, pages 16–25, New York, NY, USA, 2015. ACM.

[Bos07] Jan Bosch. Software product families: towards compositionality. Fundamental
Approaches to Software Engineering, pages 1–10, 2007.

[Bos10] Jan Bosch. Toward compositional software product lines. IEEE software,
27(3):29–34, 2010.

[BP14] Goetz Botterweck and Andreas Pleuss. Evolution of Software Product Lines,
pages 265–295. Springer Berlin Heidelberg, Berlin, Heidelberg, 2014.

[BPD+10] Goetz Botterweck, Andreas Pleuss, Deepak Dhungana, Andreas Polzer, and
Stefan Kowalewski. Evofm: Feature-driven planning of product-line evolution.
In Proceedings of the 2010 ICSE Workshop on Product Line Approaches in
Software Engineering, PLEASE ’10, pages 24–31, New York, NY, USA, 2010.
ACM.

[BPPK09] Goetz Botterweck, Andreas Pleuss, Andreas Polzer, and Stefan Kowalewski.
Towards feature-driven planning of product-line evolution. In Proceedings of
the First International Workshop on Feature-Oriented Software Development,
FOSD ’09, pages 109–116, New York, NY, USA, 2009. ACM.

[BSRC10] David Benavides, Sergio Segura, and Antonio Ruiz-Cortés. Automated analy-
sis of feature models 20 years later: A literature review. Information Systems,
35(6):615–636, 2010.

[BWW+18] Deepika Badampudi, Krzysztof Wnuk, Claes Wohlin, Ulrik Franke, Darja
Smite, and Antonio Cicchetti. A decision-making process-line for selection
of software asset origins and components. Journal of Systems and Software,
135:88–104, 2018.

[CA05] Krzysztof Czarnecki and Michał Antkiewicz. Mapping features to models: A
template approach based on superimposed variants. In International confer-
ence on generative programming and component engineering, pages 422–437.
Springer, 2005.

[CAK+05] Krzysztof Czarnecki, Michal Antkiewicz, Chang Hwan Peter Kim, Sean
Lau, and Krzysztof Pietroszek. Model-driven software product lines. In
Companion to the 20th annual ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications, pages 126–127. ACM,
2005.

[CBK+13] Rafael Capilla, Jan Bosch, Kyo-Chul Kang, et al. Systems and software
variability management. Concepts Tools and Experiences, 2013.

[CHE04] Krzysztof Czarnecki, Simon Helsen, and Ulrich Eisenecker. Staged configura-
tion using feature models. In SPLC, volume 3154, pages 266–283. Springer,
2004.

159

Bibliography Bibliography

[CN01] Paul Clements and Linda M Northrop. Software Product Lines : Practices
and Patterns. Addison-Wesley Professional, 2001.

[CS14] Scott Chacon and Ben Straub. Pro Git, Second Edition. Apress, 2014.

[Dav87] Stanley M. Davis. Future Perfect. Addison-Wesley, Boston, Massachusetts,
1987.

[DDF+90] Scott Deerwester, Susan T Dumais, George W Furnas, Thomas K Landauer,
and Richard Harshman. Indexing by latent semantic analysis. Journal of the
American society for information science, 41(6):391, 1990.

[DDH+13] Jean-Marc Davril, Edouard Delfosse, Negar Hariri, Mathieu Acher, Jane
Cleland-Huang, and Patrick Heymans. Feature model extraction from large
collections of informal product descriptions. In Proceedings of the 2013 9th
Joint Meeting on Foundations of Software Engineering, pages 290–300. ACM,
2013.

[DRB+13] Yael Dubinsky, Julia Rubin, Thorsten Berger, Slawomir Duszynski, Martin
Becker, and Krzysztof Czarnecki. An exploratory study of cloning in industrial
software product lines. In Software Maintenance and Reengineering (CSMR),
2013 17th European Conference on, pages 25–34. IEEE, 2013.

[DRGP13] Bogdan Dit, Meghan Revelle, Malcom Gethers, and Denys Poshyvanyk. Fea-
ture location in source code: a taxonomy and survey. Journal of software:
Evolution and Process, 25(1):53–95, 2013.

[DSB05] Sybren Deelstra, Marco Sinnema, and Jan Bosch. Product derivation in
software product families: a case study. Journal of Systems and Software,
74(2):173–194, January 2005.

[FF98] B. Faltings and E.C. Freuder. Configuration [Guest Editor’s Introduction].
IEEE Intelligent Systems and their Applications, 13(4):32–33, July 1998.

[FLLHE14] Stefan Fischer, Lukas Linsbauer, Roberto Erick Lopez-Herrejon, and Alexan-
der Egyed. Enhancing clone-and-own with systematic reuse for developing
software variants. In Software Maintenance and Evolution (ICSME), 2014
IEEE International Conference on, pages 391–400. IEEE, 2014.

[FLLHE15] Stefan Fischer, Lukas Linsbauer, Roberto E Lopez-Herrejon, and Alexander
Egyed. The ecco tool: Extraction and composition for clone-and-own. In
Proceedings of the 37th International Conference on Software Engineering-
Volume 2, pages 665–668. IEEE Press, 2015.

[FV03] David Faust and Chris Verhoef. Software product line migration and deploy-
ment. Software: Practice and Experience, 33(10):933–955, 2003.

[GH04] Hassan Gomaa and Mohamed Hussein. Software reconfiguration patterns for
dynamic evolution of software architectures. In Software Architecture, 2004.
WICSA 2004. Proceedings. Fourth Working IEEE/IFIP Conference on, pages
79–88. IEEE, 2004.

160

Bibliography Bibliography

[Gro17] Gartner Group. Gartner Says Worldwide IT Spending Forecast to Grow
2.4 Percent in 2017. https://www.gartner.com/newsroom/id/
3759763, 2017. [Online; accessed 27-December-2017].

[Her85] American Heritage. The American Heritage Dictionary. 1985.

[Hul03] Anette Hulth. Improved automatic keyword extraction given more linguistic
knowledge. In Proceedings of the 2003 conference on Empirical methods in
natural language processing, pages 216–223. Association for Computational
Linguistics, 2003.

[HVLG12] Wolfgang Heider, Michael Vierhauser, Daniela Lettner, and Paul Grunbacher.
A case study on the evolution of a component-based product line. In Software
Architecture (WICSA) and European Conference on Software Architecture
(ECSA), 2012 Joint Working IEEE/IFIP Conference on, pages 1–10. IEEE,
2012.

[HWK06] L. Hotz, K. Wolter, and T. Krebs. Configuration in Industrial Product Families:
The ConIPF Methodology. IOS Press, Inc., 2006.

[IRBW16] Nili Itzik, Iris Reinhartz-Berger, and Yair Wand. Variability analysis of
requirements: Considering behavioral differences and reflecting stakeholders’
perspectives. IEEE Transactions on Software Engineering, 42(7):687–706,
2016.

[JBAC15] Wenbin Ji, Thorsten Berger, Michal Antkiewicz, and Krzysztof Czarnecki.
Maintaining feature traceability with embedded annotations. In Proceedings
of the 19th International Conference on Software Product Line, pages 61–70.
ACM, 2015.

[JLL05] He Jifeng, Xiaoshan Li, and Zhiming Liu. Component-based software engi-
neering. Lecture notes in computer science, 3722:70, 2005.

[Jun08] Ulrich Junker. Preference-based problem solving for constraint programming.
In Recent Advances in Constraints, pages 109–126. 2008.

[KA13] Christian Kästner and Sven Apel. Feature-oriented software development.
In Generative and Transformational Techniques in Software Engineering IV,
pages 346–382. Springer, 2013.

[KCH+90] Kyo C Kang, Sholom G Cohen, James A Hess, William E Novak, and
A Spencer Peterson. Feature-oriented domain analysis (foda) feasibility study.
Technical report, Carnegie-Mellon Univ Pittsburgh Pa Software Engineering
Inst, 1990.

[KDO14] Christian Kästner, Alexander Dreiling, and Klaus Ostermann. Variability
mining: Consistent semi-automatic detection of product-line features. IEEE
Transactions on Software Engineering, 40(1):67–82, 2014.

[KLD02] Kyo C Kang, Jaejoon Lee, and Patrick Donohoe. Feature-oriented product
line engineering. IEEE software, 19(4):58–65, 2002.

161

https://www.gartner.com/newsroom/id/3759763
https://www.gartner.com/newsroom/id/3759763

Bibliography Bibliography

[KNGDNK+16] Ganesh Khandu Narwane, José Angel Galindo Duarte, Shankara
Narayanan Krishna, David Benavides, Jean-Vivien Millo, and S Ramesh.
Traceability analyses between features and assets in software product lines.
Entropy, July 2016.

[Kru92] Charles W. Krueger. Software reuse. ACM Comput. Surv., 24(2):131–183,
1992.

[Kru01] CharlesW Krueger. Easing the transition to software mass customization.
In International Workshop on Software Product-Family Engineering, pages
282–293. Springer, 2001.

[LBC16] Raúl Lapeña, Manuel Ballarin, and Carlos Cetina. Towards clone-and-own
support: locating relevant methods in legacy products. In Proceedings of
the 20th International Systems and Software Product Line Conference, pages
194–203. ACM, 2016.

[LBL06] Jia Liu, Don Batory, and Christian Lengauer. Feature oriented refactoring of
legacy applications. In Proceedings of the 28th international conference on
Software engineering, pages 112–121. ACM, 2006.

[LELH16] Lukas Linsbauer, Alexander Egyed, and Roberto Erick Lopez-Herrejon. A
variability aware configuration management and revision control platform. In
Proceedings of the 38th International Conference on Software Engineering
Companion, pages 803–806. ACM, 2016.

[LFL98] Thomas K Landauer, Peter W Foltz, and Darrell Laham. An introduction to
latent semantic analysis. Discourse processes, 25(2-3):259–284, 1998.

[LHLE15] Roberto E Lopez-Herrejon, Lukas Linsbauer, and Alexander Egyed. A system-
atic mapping study of search-based software engineering for software product
lines. Information and software technology, 61:33–51, 2015.

[Lin16] Lukas Linsbauer. Feature-oriented and distributed version control system,
2016.

[LKL02] Kwanwoo Lee, Kyo C Kang, and Jaejoon Lee. Concepts and guidelines
of feature modeling for product line software engineering. In International
Conference on Software Reuse, pages 62–77. Springer, 2002.

[LLHE16] Lukas Linsbauer, Roberto Erick Lopez-Herrejon, and Alexander Egyed. Vari-
ability extraction and modeling for product variants. Software & Systems
Modeling, Jan 2016.

[LnFPC16] Raúl Lapeña, Jaime Font, Francisca Pérez, and Carlos Cetina. Improving
feature location by transforming the query from natural language into require-
ments. In Proceedings of the 20th International Systems and Software Product
Line Conference, SPLC ’16, pages 362–369, New York, NY, USA, 2016.
ACM.

[LnFPC17] Raúl Lapeña, Jaime Font, Óscar Pastor, and Carlos Cetina. Analyzing the im-
pact of natural language processing over feature location in models. SIGPLAN
Not., 52(12):63–76, October 2017.

162

Bibliography Bibliography

[LSR07] Frank J. van der Linden, Klaus Schmid, and Eelco Rommes. Software Product
Lines in Action: The Best Industrial Practice in Product Line Engineering.
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2007.

[LYSL07] Yi-yuan Li, Jian-wei Yin, Dong-cai Shi, and Yin Li. Feature configuration
modeling and problem solving for software product line. In Computer and
Computational Sciences, 2007. IMSCCS 2007. Second International Multi-
Symposiums on, pages 531–536. IEEE, 2007.

[MAGDC+16] David Méndez-Acuña, José Angel Galindo Duarte, Benoit Combemale, Ar-
naud Blouin, Benoit Baudry, and Gurvan Le Guernic. Reverse-engineering
reusable language modules from legacy domain-specific languages. In In-
ternational Conference on Software Reuse, Proceedings of the International
Conference on Software Reuse, Limassol, Cyprus, June 2016.

[Mar16] Jabier Martinez. Mining software artefact variants for product line migration
and analysis. Theses, Université Pierre et Marie Curie - Paris VI, October
2016.

[MBF12] Ana Magazinius, Sofia Börjesson, and Robert Feldt. Investigating inten-
tional distortions in software cost estimation–an exploratory study. Journal of
Systems and Software, 85(8):1770–1781, 2012.

[ME08] Ralf Mitschke and Michael Eichberg. Supporting the evolution of software
product lines. In ECMDA Traceability Workshop (ECMDA-TW), pages 87–96,
2008.

[MP14] Andreas Metzger and Klaus Pohl. Software product line engineering and
variability management: achievements and challenges. Proceedings of the on
Future of Software Engineering - FOSE 2014, pages 70–84, 2014.

[MZB+15a] Jabier Martinez, Tewfik Ziadi, Tegawendé F Bissyandé, Jacques Klein, and
Yves Le Traon. Automating the extraction of model-based software product
lines from model variants (t). In Automated Software Engineering (ASE), 2015
30th IEEE/ACM International Conference on, pages 396–406. IEEE, 2015.

[MZB+15b] Jabier Martinez, Tewfik Ziadi, Tegawendé F Bissyandé, Jacques Klein, and
Yves Le Traon. Bottom-up adoption of software product lines: a generic and
extensible approach. In Proceedings of the 19th International Conference on
Software Product Line, SPLC 2015, Nashville, TN, USA, July 20-24, 2015,
pages 101–110, 2015.

[MZB+16] Jabier Martinez, Tewfik Ziadi, Tegawendé F Bissyandé, Jacques Klein, and
Yves Le Traon. Name suggestions during feature identification: the variclouds
approach. In Proceedings of the 20th International Systems and Software
Product Line Conference, pages 119–123. ACM, 2016.

[MZB+17] Jabier Martinez, Tewfik Ziadi, Tegawendé F Bissyandé, Jacques Klein, and
Yves Le Traon. Bottom-up technologies for reuse: Automated extractive
adoption of software product lines. In Proceedings of the 39th International
Conference on Software Engineering Companion, pages 67–70. IEEE Press,
2017.

163

Bibliography Bibliography

[MZKLT14] Jabier Martinez, Tewfik Ziadi, Jacques Klein, and Yves Le Traon. Identifying
and visualising commonality and variability in model variants. In ECMFA
2014 European Conference on Modelling Foundations and Applications, 2014.

[MZM+14] Jabier Martinez, Tewfik Ziadi, Raul Mazo, Tegawendé F Bissyandé, Jacques
Klein, and Yves Le Traon. Feature relations graphs: A visualisation paradigm
for feature constraints in software product lines. In Software Visualization
(VISSOFT), 2014 Second IEEE Working Conference on, pages 50–59. IEEE,
2014.

[NBA+15] L. Neves, P. Borba, V. Alves, L. Turnes, L. Teixeira, D. Sena, and U. Kulesza.
Safe evolution templates for software product lines. J. Syst. Softw., 106(C):42–
58, August 2015.

[NCB+07] Linda Northrop, Paul Clements, Felix Bachmann, John Bergey, Gary Chastek,
Sholom Cohen, Patrick Donohoe, Lawrence Jones, Robert Krut, Reed Little,
et al. A framework for software product line practice, version 5.0. SEI.–2007–
http://www. sei. cmu. edu/productlines/index. html, 2007.

[Nor02] Linda M Northrop. Sei’s software product line tenets. IEEE software, 19(4):32–
40, 2002.

[Par76] David Lorge Parnas. On the design and development of program families.
IEEE Transactions on software engineering, (1):1–9, 1976.

[PBD+12] Andreas Pleuss, Goetz Botterweck, Deepak Dhungana, Andreas Polzer, and
Stefan Kowalewski. Model-driven support for product line evolution on feature
level. J. Syst. Softw., 85(10):2261–2274, October 2012.

[PBV05] K. Pohl, G. Böckle, and F. Van Der Linden. Software Product Line Engi-
neering. Foundations, Principles, and Techniques. Uwplatt.Edu, 49(12):467,
2005.

[RC12] Julia Rubin and Marsha Chechik. Combining related products into product
lines. In Fase, volume 12, pages 285–300. Springer, 2012.

[RC13a] Julia Rubin and Marsha Chechik. A framework for managing cloned product
variants. In Proceedings of the 2013 International Conference on Software
Engineering, pages 1233–1236. IEEE Press, 2013.

[RC13b] Julia Rubin and Marsha Chechik. A survey of feature location techniques. In
Domain Engineering, pages 29–58. Springer, 2013.

[RCC13] Julia Rubin, Krzysztof Czarnecki, and Marsha Chechik. Managing cloned
variants: a framework and experience. In Proceedings of the 17th International
Software Product Line Conference, pages 101–110. ACM, 2013.

[RKBC12] Julia Rubin, Andrei Kirshin, Goetz Botterweck, and Marsha Chechik. Manag-
ing forked product variants. In Proceedings of the 16th International Software
Product Line Conference-Volume 1, pages 156–160. ACM, 2012.

164

Bibliography Bibliography

[RSH+13] AL Ra’Fat, Abdelhak Seriai, Marianne Huchard, Christelle Urtado, Sylvain
Vauttier, and Hamzeh Eyal Salman. Feature location in a collection of software
product variants using formal concept analysis. In International Conference
on Software Reuse, pages 302–307. Springer, 2013.

[SB99] Mikael Svahnberg and Jan Bosch. Evolution in software product lines. Soft-
ware Maintenance, 11(6):391–422, 1999.

[SBB+10] Ina Schaefer, Lorenzo Bettini, Viviana Bono, Ferruccio Damiani, and Nico
Tanzarella. Delta-oriented programming of software product lines. Software
Product Lines: Going Beyond, pages 77–91, 2010.

[Sch06] Douglas C Schmidt. Model-driven engineering. COMPUTER-IEEE COM-
PUTER SOCIETY-, 39(2):25, 2006.

[SE08] Klaus Schmid and Holger Eichelberger. A requirements-based taxonomy of
software product line evolution. Electronic Communications of the EASST, 8,
2008.

[SHT06] Pierre-Yves Schobbens, Patrick Heymans, and Jean-Christophe Trigaux. Fea-
ture diagrams: A survey and a formal semantics. In Requirements Engineering,
14th IEEE international conference, pages 139–148. IEEE, 2006.

[SHTB07] Pierre-Yves Schobbens, Patrick Heymans, Jean-Christophe Trigaux, and Yves
Bontemps. Generic semantics of feature diagrams. Comput. Netw., 51(2):456–
479, February 2007.

[SHU+13] Abdelhak-Djamel Seriai, Marianne Huchard, Christelle Urtado, Sylvain Vaut-
tier, Hamzeh Eyal-Salman, et al. Mining features from the object-oriented
source code of a collection of software variants using formal concept analysis
and latent semantic indexing. In The 25th International Conference on Soft-
ware Engineering and Knowledge Engineering, page 8. Knowledge Systems
Institute Graduate School, 2013.

[SRG11] Klaus Schmid, Rick Rabiser, and Paul Grünbacher. A comparison of decision
modeling approaches in product lines. In Proceedings of the 5th Workshop
on Variability Modeling of Software-Intensive Systems, VaMoS ’11, pages
119–126, New York, NY, USA, 2011. ACM.

[SV02] Klaus Schmid and Martin Verlage. The economic impact of product line
adoption and evolution. IEEE software, 19(4):50–57, 2002.

[TH03] Jean-Christophe Trigaux and Patrick Heymans. Software Product Lines : State
of the art. PhD thesis, 2003.

[TKB+14] Thomas Thüm, Christian Kästner, Fabian Benduhn, Jens Meinicke, Gunter
Saake, and Thomas Leich. Featureide: An extensible framework for feature-
oriented software development. Science of Computer Programming, 79:70–85,
2014.

165

Bibliography Bibliography

[VG07] Markus Voelter and Iris Groher. Product line implementation using aspect-
oriented and model-driven software development. In Proceedings of the 11th
International Software Product Line Conference, SPLC ’07, pages 233–242,
Washington, DC, USA, 2007. IEEE Computer Society.

[vGBS01] Jilles van Gurp, Jan Bosch, and Mikael Svahnberg. On the notion of variability
in software product lines. In Proceedings of the Conference on Software
Architecture, pages 45–54, 2001.

[Wil96] Rudolf Wille. Introduction to formal concept analysis. Fachbereich Mathe-
matik, Technische Hochschule Darmstadt, 1996.

[WL99] David M. Weiss and Chi Tau Robert Lai. Software Product-line Engineering:
A Family-based Software Development Process. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1999.

[YPZ09] Yiming Yang, Xin Peng, and Wenyun Zhao. Domain feature model recovery
from multiple applications using data access semantics and formal concept
analysis. In Reverse Engineering, 2009. WCRE’09. 16th Working Conference
on, pages 215–224. IEEE, 2009.

[ZFdSZ12] Tewfik Ziadi, Luz Frias, Marcos Aurelio Almeida da Silva, and Mikal Ziane.
Feature identification from the source code of product variants. In Proceed-
ings of the 2012 16th European Conference on Software Maintenance and
Reengineering, CSMR ’12, pages 417–422, Washington, DC, USA, 2012.
IEEE Computer Society.

[ZHP+14] Tewfik Ziadi, Christopher Henard, Mike Papadakis, Mikal Ziane, and Yves
Le Traon. Towards a language-independent approach for reverse-engineering
of software product lines. In Proceedings of the 29th Annual ACM Symposium
on Applied Computing, pages 1064–1071. ACM, 2014.

[ZPXZ12] Gang Zhang, Xin Peng, Zhenchang Xing, and Wenyun Zhao. Cloning prac-
tices: Why developers clone and what can be changed. In Software Mainte-
nance (ICSM), 2012 28th IEEE International Conference on, pages 285–294.
IEEE, 2012.

166

	Introduction
	Context and Motivation
	Running Example
	Challenges
	Contributions
	Organization of the Dissertation

	I Background and State of the Art
	Background
	Software Reuse
	Clone-and-Own Approach
	Definition
	Benefits and Drawbacks

	Software Product Lines
	Definition
	Software Product Line Engineering
	Benefits and Drawbacks
	Variability Management
	Feature Model
	Product Configuration
	Product Derivation

	Summary and Contribution Decisions

	Related Work
	Software Product Line Adoption
	Migration Approach
	Migration Steps
	Migration Moment

	Product Derivation Support
	Software Product Line Evolution
	Summary and Contribution Choices

	II Approach Contributions
	Migration process
	Introduction
	Product Line Definition
	Feature Model Generation
	Products and Assets Extraction and Storage

	Correlations Identification
	Product Line Validation
	Product Line Limitations
	Summary

	Configuration Process
	Introduction
	Configuration
	Free Feature Model Generation

	Configuration Modes
	Restrictive Mode
	Free Mode

	Configuration Scenarios
	Possible Configuration Scenarios

	Derivation Operations
	Summary

	Towards Cost-Estimated Derivation
	Introduction
	Cost-Estimation
	Action Type Weight
	Correlation Degree
	Action Cost
	Operation Cost
	Configuration Scenario Cost

	Summary

	Derivation and Evolution Process
	Introduction
	Product Derivation
	Derivation fm
	Selection Factors

	Product Line Evolution
	Product Variant Integration
	Feature Models Re-generation
	Correlations and Correlation Indicators Update
	Product Line Re-Definition

	Summary

	III Implementation and Validation
	SUCCEED Framework
	Introduction
	Migration Process
	Product Line Initialization
	Product Variants Supply
	Restrictive fm supply
	Free fm generation
	Assets and asset instances identification
	Correlations Identification

	Configuration Process
	Derivation Process
	Evolution Process
	Summary

	Approach Validation
	Introduction
	Validation
	Experiments
	Results analysis
	Overtaking Challenges

	Limitations
	Threats to Validity
	Summary

	IV Conclusion and Perspectives
	Conclusion and Perspectives
	Conclusion
	Perspectives

	List of Abbreviations
	List of Figures
	List of Tables
	List of Algorithms
	Table of Objectives
	Table of Examples
	Table of Listings
	Bibliography

