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Abstract

The standard d-dimensional parabolic–parabolic Keller–Segel model for chemotaxis describes the
time evolution of the density of a cell population and of the concentration of a chemical attractant.

This thesis is devoted to the study of the parabolic–parabolic Keller-Segel equations using
probabilistic methods. To this aim, we give rise to a non linear stochastic differential equation of
McKean-Vlasov type whose drift involves all the past of one dimensional time marginal
distributions of the process in a singular way. These marginal distributions coupled with a
suitable transformation of them are our probabilistic interpretation of a solution to the Keller
Segel model. In terms of approximations by particle systems, an interesting and, to the best of our
knowledge, new and challenging difficulty arises: each particle interacts with all the past of the
other ones by means of a highly singular space-time kernel.

In the one-dimensional case, we prove that the parabolic-parabolic Keller-Segel system in the
whole Euclidean space and the corresponding McKean-Vlasov stochastic differential equation are
well-posed in well chosen space of solutions for any values of the parameters of the model. Then,
we prove the well-posedness of the corresponding singularly interacting and non-Markovian
stochastic particle system. Furthermore, we establish its propagation of chaos towards a unique
mean-field limit whose time marginal distributions solve the one-dimensional parabolic-parabolic
Keller-Segel model.

In the two-dimensional case there exists a possibility of a blow-up in finite time for the
Keller-Segel system if some parameters of the model are large. Indeed, we prove the
well-posedness of the mean field limit under some constraints on the parameters and initial
datum. Under these constraints, we prove the well-posedness of the Keller-Segel model in the
plane. To obtain this result, we combine PDE analysis and stochastic analysis techniques.

Finally, we propose a fully probabilistic numerical method for approximating the two-dimensional
Keller-Segel model and survey our main numerical results.

Keywords: McKean-Vlasov stochastic processes; stochastic particle systems with singular
non-Markovian interaction; probabilistic methods for PDEs; Keller-Segel PDE; chemotaxis models.
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Résumé

En chimiotaxie, le modèle parabolique-parabolique classique de Keller-Segel en dimension d décrit
l’évolution en temps de la densité d’une population de cellules et de la concentration d’un
attracteur chimique.

Cette thèse porte sur l’étude des équations de Keller-Segel parabolique-parabolique par des
méthodes probabilistes. Dans ce but, nous construisons une équation différentielle stochastique
non linéaire au sens de McKean-Vlasov dont le coefficient dont la coefficient de dérive dépend, de
manière singulière, de tout le passé des lois marginales en temps du processus. Ces lois marginales
couplées avec une transformation judicieuse permettent d’interpréter les équations de Keller-Segel
de manière probabiliste. En ce qui concerne l’approximation particulaire il faut surmonter une
difficulté intéressante et, nous semble-t-il, originale et difficile: chaque particule interagit avec le
passé de toutes les autres par l’intermédiaire d’un noyau espace-temps fortement singulier.

En dimension 1, quelles que soient les valeurs des paramètres de modèle, nous prouvons que les
équations de Keller-Segel sont bien posées dans tout l’espace et qu’il en est de même pour
l’équation différentielle stochastique de McKean-Vlasov correspondante. Ensuite, nous prouvons
caractère bien posé du système associée des particules en interaction non markovien et singulière.
Nous établissons aussi la propagation du chaos vers une unique limite champ moyen dont les lois
marginales en temps résolvent le système Keller-Segel parabolique-parabolique.

En dimension 2, des paramètres de modèle trop grands peuvent conduire à une explosion en temps
fini de la solution aux équations du Keller-Segel. De fait, nous montrons le caractère bien posé du
processus non-linéaire au sens de McKean-Vlasov en imposant des contraintes sur les paramètres
et données initiales. Pour obtenir ce résultat, nous combinons des techniques d’analyse
d’équations aux dérivées partielles et d’analyse stochastique.

Finalement, nous proposons une méthode numérique totalement probabiliste pour approcher les
solutions du système Keller-Segel bi-dimensionnel et nous présentons les principaux résultats de
nos expérimentations numériques.

Mots clefs: processus stochastiques de McKean-Vlasov; particules stochastiques en interaction
non markovien et singulière; methodes probabilistes pour les EDP; EDP de Keller-Segel; modèles
de chimiotaxie.
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Chapter 1

On the Keller-Segel model for chemotaxis:

From the literature to our main results

The standard d-dimensional parabolic–parabolic Keller–Segel model for chemotaxis describes the
time evolution of the density ρt of a cell population and of the concentration ct of a chemical
attractant:





∂tρ(t, x) = ∇ · (12∇ρ− χρ∇c)(t, x), t > 0, x ∈ Rd,

∂tc(t, x) =
1
2△c(t, x)− λc(t, x) + ρ(t, x), t > 0, x ∈ Rd.

ρ(0, x) = ρ0(x), c(0, x) = c0(x).

The goal of this thesis is to propose a new probabilistic interpretation for this non-linear doubly
parabolic system and analyze it from theoretical and numerical viewpoint.

In this introductory chapter we provide an overview of the literature concerning this model and
our main results.

We start with biological phenomena aimed to be modeled by the Keller-Segel system: chemotaxis.
In Section 1.1 we define it, revisit the historical aspect of its investigation and give some examples
of biological processes governed by or involving chemotaxis.

Then, Section 1.2 explains the behaviour of cells when undergoing chemotaxis on a micro and a
macro level. Afterwards, we review the pioneer work of Keller and Segel [46, 47, 48] who pose the
above system of PDEs in its more general form.

Since it has been posed, the system is a subject of huge amount of PDE analysis literature. An
interesting phenomenon emerging from it is the possibility of a blow-up in finite time. A selection
of the PDE analysis results on the Keller-Segel system is given in Section 1.3.

Recently, probabilistic interpretations have appeared for mollified or parabolic-elliptic versions of
the fully parabolic model. In Section 1.4 we review the state of the art for these stochastic
approaches.

In Section 1.5 we present and discuss our own probabilistic interpretation: a McKean-Vlasov
stochastic process whose drift involves all the past of one dimensional time marginals of the
process in a singular way. These time marginals coupled with a suitable transformation of them
are our candidate for a solution to the Keller-Segel system. In terms of approximations by particle
systems, an interesting and, to the best of our knowledge, new and challenging difficulty arises:
each particle interacts with all the past of the other ones by means of a highly singular space-time
kernel. In this Section we also state our main results and summarize some of our numerical results.

1



Chapter 1. On the Keller-Segel model for chemotaxis: From the literature to our main results 2

1.1 Our biological motivations: Phenomena of chemotaxis

In order to give meaning to the notion of chemo-taxis, we will start from the suffix taxis (pl.
taxes), an ancient Greek word for arrangement. Taxis represents oriented movement of a motile
organism in response to a stimulus (e.g. light, temperature, food). The movement can be directed
towards or away from the stimulus. In the first case, we have positive taxis and in the later
negative taxis. It is important to emphasize that only the motile organisms are capable of
performing such movements. Motile essentially means able to move by itself. For example, bacteria
cells use structures called flagella to enable these movements. Taxes should not be confused with
tropism and kinesis. These are another classes of movements in response to a stimulus. The first
one represents the movements that include growth towards or away from the stimulus. The
difference is that in taxes the organism must have motility and the exhibited movement is not
growth, but rather a guided change of position. On the other hand, in kinesis, the presence of
stimulus influences the changes of velocity of the organism, but not its direction in movement.

Taxes are also classified by the type of stimulus governing them, which is indicated by a prefix.
Photo-taxis is governed by light, thermo-taxis by temperature. If the presence of oxygen triggers
the movements, we have aero-taxis. Finally, a chemical stimulus is responsible for chemo-taxis.

Since the end of 17th century and Leeuwenhoek’s advances in the field of microbiology, scientists
have been studying the movements of organisms. However, bacterial chemotaxis was discovered
two centuries after by Engelmann [27] and Pfeffer [63, 64]. By Pfeffer’s original definition,
chemotaxis is defined as anything that causes the oriented movement of an organism or a cell
relative to a chemical gradient. In his work, Pfeffer also gave the basis for assays on how to detect
chemotaxis, i.e. the capillary method [63, 64]. Chemical that prompts positive chemotaxis was
called the chemo-attractant, while chemical that causes the organism to flee away from the source
was called chemo-repellent. Chemo-attractants usually represent favourable environment for the
organism, e.g. food, while the chemo-repellents are noxious substances, such as poisons. One
interesting consequence of positive chemotaxis is cell aggregation. The chemo-attractants
produced by the fellow species increase self-attraction among the population and further stimulate
cell aggregation [18].

The study of the phenomena of chemotaxis may be divided into two periods: before 1960’s and
after. As mentioned in [4], the work before 1960’s was carried out in complex media and was of a
quite subjective nature. The review of this period is given in [6, 80, 81]. In the second period, the
first priority was to develop conditions for obtaining motility and chemotaxis in defined media
[1, 5, 2, 3] . Then it was important to find quantitative methods that objectively detect
chemotaxis [1, 77]. This work, mostly by Adler, altered the attention from phenomenological to
quantitative research and initiated studies to reveal the molecular mechanism of bacterial
chemotaxis. Afterwards, the number of groups studying bacterial chemotaxis has been
continuously rising. Bacterial motility and chemotaxis have been studied most intensively in
Escherichia coli and its close relative Salmonella enterica serovar Typhimurium. We refer to [26]
for a very complete and thorough further reading, which deals not only with bacterial chemotaxis,
but also with chemotaxis as a mean of cell-cell communication, chemotaxis in amoeba, blood cells,
sperm cells and nervous system.

After such an extensional research in the field, natural question that poses itself is what the
significance of chemotaxis is. It has been established that chemotaxis plays a role in some of the
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most important biological processes, not only for humans, but for almost all species.

Naturally, we start from the role of chemotaxis in reproduction, as it is the essential process for
existance of life. It is firstly discovered in marine species [54] that chemotaxis is responsible of
guided movement of spermatozoa to the egg during fertilization. The research spread to all
species, from non-mammals to mammals. It has been established that for humans and some other
mammals, chemotaxis besides the previous role in guiding, has a selective role as well. Namely,
not all of the spermatozoa have the ability to fertilize the egg. The ones that do have it are
chemotactically responsive. Chemotaxis is in charge for selecting them and then guiding towards
the egg. For a full review on sperm chemotaxis we refer to Chapter 7 in [26].

Not only does the chemotaxis have a reproductive role, but it also appears in the embryonic phase
once the fertilization is successfully completed. During the development of the embryo, cell
migration has a crucial role in morphogenetic processes and formation of nervous system [35].
Many of these migration are caused by chemotaxis. The development and especially wiring of
nervous system depends on the precise guidance of axonal growth cones to their targets.
Mechanism underlying it is again chemotaxis [25].

Furthermore, we find its role in functioning of the immune system. Certainly, movement and quick
response are essential when it come to the immune system. In order to threat an infection, the
white blood cells need to migrate towards it. They are attracted by the change of chemical
gradient that the infection produces [58].

So far, we have only seen the positive aspects of chemotactic movements. However, a negative
aspect is the participation of chemotaxis in cancer metastasis and progression. Once the tumor
had affected a certain tissue, cancer cells use chemotaxis to migrate towards the surrounding
tissue and invade blood vessels [67].

An interesting role of chemotaxis can be found in agronomy and the use of bio-fertilizers. Namely,
certain groups of bacteria in the rhizosphere region of soil positively influences plant growth.
Bacteria successfully colonizes the rhizosphere thanks to chemotactic attraction from the root
exudates of the plants [61].

We conclude this part with one fascinating way to use chemotaxis in medical purposes.
Particularly, in construction of nanorobots for human drug delivery. The idea is to design
autonomously moving artificial cells which would carry drugs and be capable of chemotactic
movements. These movements would rely on artificial chemotaxis. This concept is described and
analyzed in [50].

1.2 Modelling of chemotaxis and the Keller–Segel approach

As the biological research of the phenomenon grew and altered its interest towards experiments,
the need for mathematical models for chemotaxis emerged. Mathematical models help in better
understanding of experimental results and allow biologists to study different characteristics of
bacterial systems without the need to intensively repeat the experiments. When one desires to
mathematically model chemotaxis, first the goal and nature of the results should be clearly
defined. That is to say, are we interested in the particular behaviour of one individual (cell,
bacteria) of the population or of the whole population at once. This leads us to two main
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approaches when modelling chemotactic movements, the microscopic and macroscopic approaches,
respectively.

As the microscopic models focus on the individual cell, it is important to understand the
biological processes that are happening within it when the cell becomes chemotactically active.
We will try to illustrate it on the example of E. Coli, as its chemotaxis is understood best. When
there is no stimuli in its environment, E. Coli swims in a random walk. The random walk takes
on a biased character, towards the attractant or away from the repellent, as soon as the presence
of stimuli is sensed. The movement itself is a series of ”runs” and ”tumbles”. Runs are movements
following a (fairly) straight line, which are suddenly interrupted by a change in the direction, a
tumble. When E. Coli exhibits positive chemotaxis, the number of tumbles decrease. The opposite
happens with the negative chemotaxis. If there is a change of gradient in the extra-cellular
environment, the bacterium is unable to detect it along its own length, because its size is too
small. Instead, the cell is equipped with membrane receptors, which are able to distinguish very
low attractant concentrations. Once the attractant is detected, the receptor passes the signal
inside the cell. Thanks to the intra-cellular proteins, called Che proteins (from Chemotaxis
proteins), a signaling cascade occurs and finally arrives to flagellar motors. Then, the flagella are
rotated clockwise or counterclockwise, depending on the type of the stimulus. Clockwise rotation
leads to tumbling and counterclockwise to runs. An important part of the process is also the
adaptation, which includes resetting of receptors, as if they have not been stimulated at all.
Furthermore, since the bacteria are able to sense a tiny change in gradients, they need to be able
to amplify the signal (gain process).

The mathematical models for one cell try to represent above mentioned processes, individually or
together. So far, none of the models was able to reproduce well all of them together. One of the
reasons is that they all occur in different time scales. The models which do a good job in
representing ligand binding and adaptation, can not represent well also the chemoreceptor
sensitivity and gain and vice versa. For a review on these and many other processes and how they
have been modeled in the literature, we refer to the thorough and comprehensive review by
Tindall et. al [75].

Now, we will see how a population exhibiting chemotactic activity behaves on the example of
slime molds. Slime molds are populations of amoebae that grow by cell division. The cells wander
around their environment exhausting food supplies which they are able to find using chemotaxis.
Once the nourishment is consumed, cells disperse uniformly around the area at their disposal. A
while later, some of the cells begin emitting a signal that attracts other cells who start moving
towards it and are triggered to emit the same attracting signal. The cells aggregate, forming a
slug that may move, respond to chemical stimuli and detect food sources. Eventually, the slug
produces fruiting bodies and releases spores in order to recommence the life cycle. The pioneer of
biological research of slime molds was Bonner (see e.g. [9]). What is fascinating about slime molds
even today, is that individually, they are very simple organisms that exhibit ”intelligent”
behaviour once they aggregate. In the study [74], the authors were even able to reproduce a map
of Tokyo rail system once the different stimuli were put in the right places.

Motivated by describing the onset of slime mold aggregation using a macroscopic approach,
Evelyn F. Keller and Lee A. Segel propose in [46] a model of four coupled parabolic equations.

Namely, the authors start from the individual properties of the cells in order to derive a model for
the aggregation stage. Let ρ(t, x) denote the density of the amoebae at point x in time t, c(t, x)
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denotes the concentration of the chemo-attractant (acrasin), η(t, x) denotes the concentration of
the enzyme that degrades the chemo-attractant (acrasinase) and, finally, ν(t, x) denotes the
concentration of a bio-chemical complex V formed by acrasin and arcasinase. The individual
properties taken into account are the following:

1. The amoeba moves according to a random motion analogous to a diffusion that is biased
towards the direction of the positive gradient of the attractant.

2. The acrasin is produced by the amoebae with rate f(c).

3. The acrasinase is produced by the amoebae with rate g(c, η).

4. The complex V dissociates into arcasinase and a degraded product (d.p.):

c+ η
k1
⇄

k−1

V
k2→ η + d.p.

5. Acrasin, arcasinase and the complex V diffuse according to Fick’s law.

In order to derive the equation for ρ, the authors use the mass balance equation and the fact that
the flux of amobea mass is proportional to ∇ρ (by Fick’s law) and ∇c (by Fourier’s law). Birth
and death are not taken into account. Thus,

∂

∂t
ρ(t, x) = ∇ · (D1(ρ, c)∇ρ− χ(ρ, c)∇c).

Here, D1 represents the strength of the random movement and χ the impact of the
chemo-attractant gradient to the flow of the population. The chemo-attractant diffuses according
to Fick’s law and its dynamics involves its production and consumption rates as described above,

∂

∂t
c(t, x) = Dc△c+ f(c)ρ− k1cη + k−1ν.

The equations for η and ν are derived in the same way. The authors arrive to the following system:





∂
∂tρ(t, x) = ∇ · (D1(ρ, c)∇ρ− χ(ρ, c)∇c), t > 0, x ∈ Rd,
∂
∂tc(t, x) = Dc△c+ f(c)ρ− k1cη + k−1ν, t > 0, x ∈ Rd,
∂
∂tη(t, x) = Dη△η + ρg(c, η)− k1cη + (k−1 + k2)ν, t > 0, x ∈ Rn,
∂
∂tν(t, x) = Dν△ν + k1cη − (k−1 + k2)ν, t > 0, x ∈ Rd,

ρ(0, x) = ρ0(x), c(0, x) = c0, η(0, x) = η0, ν(0, x) = ν0, x ∈ Rd.

(1.1)

Here k−1, k1 and k2 are positive constants.

Then, the authors argue that the aggregation occurs as, in some point of maturation, the
individual properties of the cells change. Thus, a uniform distribution is no longer favorable and it
becomes unstable. The objective is to see how such change in individual cells impacts the whole
population, rather to explain why and how such change happens. In order to do so, the authors
propose a simplified version of the latter system ”as it is useful for the sake of clarity to employ
the simplest reasonable model” [46, p. 403]. They assume that the bio-chemical complex V is in a
steady state w.r.t. the chemical reaction: k1cη − (k−1 + k2)ν = 0 and that the total concentration
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of the free and bound degradant is constant: η + ν = η0. Thus, (1.1) transforms into the following
system of non-linear parabolic equations:





∂

∂t
ρ(t, x) = ∇ · (D1(ρ, c)∇ρ− χ(ρ, c)∇c), t > 0, x ∈ Rd,

∂

∂t
c(t, x) = Dc△c+ f(c)ρ− k(c)c, t > 0, x ∈ Rd,

ρ(0, x) = ρ0(x), c(0, x) = c0, x ∈ Rd.

(1.2a)

(1.2b)

Then, the authors study how a small time dependent perturbation of the uniform configuration
influences a linearized version of (1.2) for d = 2. They find conditions under which the uniform
state is temporarily or definitely perturbed. The latter may be interpreted as the beginning of
aggregation. Finally, analyzing these conditions, the conclusion is that a definite perturbation
occurs as a result of: i) increase in the sensitivity of the population to a given acrasin gradient,
ii) increase in the rate which cells produce the acrasin or iii) increase in the rate of acrasin
production (f) due to high acrasin production. In other words, if the cells are too sensitive to a
certain attractant or they start producing too much of it, we may expect an aggregation. This
claim will often be revisited in this thesis.

The above work is followed by two more articles by the same authors [47, 48]. In [47], the
chemotaxis of amoebae is modelled when the concentration of the acrasin c is assumed to be
given. Equation (1.2a) is viewed as evolution of a probability density function and is derived as
collective behaviour of individual cell behaviours, where D1(ρ, c) = µ(c) and χ(ρ, c) = ρχ(c). In
[48], the authors use the system (1.2) in d = 1 to reproduce the experimental results of Adler’s
capillary essays. They assume again the specific form of motility and sensitivity functions:
D1(ρ, c) = µ(c) and χ(ρ, c) = ρχ(c). In (1.2b), k(c) is supposed to be zero and the cells no longer
produce the chemo-attractant but consume it with the rate f(c) (i.e. the sign in front of f(c)ρ has
changed). The goal was to observe the traveling bands of bacteria up to the capillary tube, as in
the experimental case and to compare with the experimental data some quantitative properties
(width and speed of the traveling bands). The comparison result were encouraging, but as the
authors notice, what is more encouraging is that their model is capable of describing different
assays of chemotaxis and that their framework may serve when describing other collective
chemotactic phenomena.

Indeed, we deliberately used here the technical terms ”ameboe”, ”acrasin”, ”acrasinase” in order
to help the reader concretize this example of chemotactic activity. Once one understands the
phenomenon behind it and the mathematical description of Keller and Segel, one could easily
change these words with ”cell population”, ”chemo-attractant” and ”chemo-degradant”,
respectively and obtain a general model for chemotaxis. Nowadays, any model of the following
form is called a Keller-Segel type model:





∂
∂tρ(t, x) = ∇ · (f1(ρ, c)∇ρ− χ(ρ, c)∇c) + f2(ρ, c), t > 0, x ∈ Rd,
∂
∂tc(t, x) = Dc△c+ f3(c, ρ)− f4(c, ρ)c, t > 0, x ∈ Rd,

ρ(0, x) = ρ0(x), c(0, x) = c0, x ∈ Rd.

(1.3)

Here the function f2 accounts for birth and death of the cell population. It is usually neglected
assuming the phenomena occurs over a short period of time.

This thesis will be devoted to the so-called classical Keller–Segel model of parabolic-parabolic type
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given by 



∂tρ(t, x) = ∇ · (∇ρ− χρ∇c)(t, x), t > 0, x ∈ Rd,

α ∂tc(t, x) = △c(t, x)− λc(t, x) + ρ(t, x), t > 0, x ∈ Rd,

ρ(0, x) = ρ0(x), c(0, x) = c0(x), x ∈ Rd.

(1.4a)

(1.4b)

where λ ≥ 0 and α, χ > 0. It corresponds to f1(ρ, c) ≡ const, χ(ρ, c) = χρ, f2 ≡ 0, f3(c, ρ) = ρ and
f4(c, ρ) = λ in (1.3). This system is as well called the ”minimal model” as it does not involve
complicated functions for sensitivity of the population, production and decay of chemo-attractant
but rather simple linear functions. Still, it is rich enough to describe the phenomena in question as
we will see in the next section.

Notice that the first equation in (1.4) preserves total mass as long as the solutions are well
defined. We will denote

M :=

∫

Rd

ρ0(x)dx =

∫

Rd

ρ(t, x)dx.

We also remark that when α = 0, (1.4b) is an elliptic equation and the system may be decoupled
using Green’s functions. This is the so-called parabolic–elliptic version of the model. Even though
this thesis is focused on the case α = 1 (more general on α > 0), we will see that the two cases are
somehow inseparable since the techniques used to analyze the parabolic-elliptic model are the
groundwork for the doubly parabolic model.

1.3 PDE analysis of the Keller-Segel system

As the Keller-Segel system is designed to model the onset of cell aggregation when triggered by
chemical stimulus, it is no surprise that the solutions may blow-up in finite time. The definition of
the blow-up in finite time for a solution (ρ, c) is the following : there exists a time T0 < ∞ such
that ρt converges to a measure not belonging to L1(Rd) as t → T0. In general, the question of
well-posedness of (1.4) is a subject of an extensive amount of PDE literature over the past almost
40 years. A very complete review of the results obtained until early 2000’s can be found in
Horstmann [41, 42]. Then, we suggest to the interested reader the review of Perthame [62] which
after a theoretical review of the Keller-Segel system shows its connection with kinetic models for
chemotaxis and the work of Hillen and Painter [39] reviewing results on different variations
of (1.4).

The principal conclusion when investigating the literature about the Keller-Segel system is that
whether we have global well-posedness or a blow up in finite time is highly correlated with the
space dimension of the problem. In addition, various results obtained depend also on the
prescribed initial and possible boundary conditions, type of the domain and value of parameter α.

Here we will summarize some of the results in the literature and will classify them in three groups:
d = 1, d = 2 and d ≥ 3.

The one-dimensional case

The well-posedness of (1.4) in d = 1 is the least elaborate case. It was previously studied by Osaki
and Yagi [60] and Hillen and Potapov [40]. The conclusion is: The solution exists globally in time
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on bounded intervals with periodic or Neumann boundary conditions.

In [60] the authors analyze a more general model:




∂tρ(t, x) = a ∂2ρ
∂x2 − ∂

∂x(ρ
∂
∂xχ(c) t > 0, x ∈ I,

∂tc(t, x) =
∂2c
∂x2 − λc(t, x) + dρ(t, x), t > 0, x ∈ I,

ρ(0, x) = ρ0(x), c(0, x) = c0(x), x ∈ I
∂ρ
∂ (t, α) = ∂ρ

∂ (t, β) = ∂c
∂ (t, α) = ∂c

∂ (t, β) = 0, t > 0,

(1.5)

where I = (α, β). They assume χ is a smooth function on (0,∞), differentiable three times and
that these derivatives satisfy certain estimates. The case χ(c) = χc, χ > 0 corresponding to (1.4),
is included in their assumptions. Supposing ρ0 ∈ L2(I) ∩ L1(I), c0 ∈ H1(I) and infI c0(x) > 0,
they prove (1.5) admits a unique global solution belonging to

ρ ∈ C([0,∞);L2(I)) ∩ C1((0,∞);L2(I)) ∩ C((0,∞);H2
N (I)),

c ∈ C([0,∞);H1(I)) ∩ C1((0,∞);H1(I)) ∩ C((0,∞);H3
N (I)).

Here the subscript N emphasizes that the Neumann boundary condition is satisfied by functions
belonging to H2

N (I) and H3
N (I). They prove such solution is a classical solution in the case of

(1.4).

Their well-posedness proof is divided into two steps: first, they establish the existence of a unique
local in time solution to (1.5). Second, they prove the following energy estimate:

∂

∂t

∫

I

((
∂2ρ

∂x2

)2

+

(
∂2c

∂x2

)2
)
dx+

∫

I

(
a

2

(
∂3ρ

∂x3

)2

+
b

2

(
∂4c

∂x4

)2
)
dx

+

∫

I

((
∂2ρ

∂x2

)2

+ λ

(
∂4c

∂x4

)2
)
dx ≤ p(‖ρ‖H1 + ‖c‖H2).

This helps them to extend the local solution to an arbitrary time horizon T > 0.

The work in [40] concerns the classical model (1.4) on a bounded interval (0, l) with either
Neumann or periodic boundary conditions. The global well-posedness is obtained assuming that
ρ0 ∈ L∞(I) ∩ L1(I) and c0 ∈ W σ,p(I), where p and σ belong to a particular set of parameters.
This set is defined as follows: a tuple of parameters (σ, p, r, P,Q) is admissible if

1 < σ < 2,
1

σ − 1
< p < ∞,

2p

σp+ 1
< r <

1

σ − 1

1 < P < 1
1

p
,

1

P
+

1

Q
= 1,

1

p
<

Q

r
<

1

p
+ 2.

The result again is obtained by globalizing a local solution obtained applying Banach’s fixed point
theorem. Then, this solution is turned into a global one by using the regularity of heat semi-group
and the mild formulation of (1.4).

The two-dimensional case

In the parabolic-elliptic version of the system, i.e. when α = 0, one may decouple the equations by
expressing c in terms of ρ using Green’s functions. In this setting, the system exhibits a threshold
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behaviour: if Mχ < 8π the solutions exists globally in time, if Mχ > 8π every solution blows-up
in finite time (see e.g. Blanchet et. al [8] and Nagai and Ogawa [56]). As for the profile of the
singularity, Herrero and and Velázquez [37] prove existence of a radially symmetric solution on a
disc with Neumann boundary condition that blows-up at the origin in finite time by acquiring a
δ-function type singularity. This phenomenon is called in the literature the ”chemotactic
collapse”. The condition in the threshold implies that in order to form a singularity, the total
mass of the cell population needs to be large or the attraction of the chemical needs to be very
strong. This is in accordance with the conclusions made by Keller and Segel in [46] when
analyzing the instability of the system.

On the other hand, the parabolic-parabolic model (1.4) expresses a less straight-forward
behaviour. It has been proved that when Mχ < 8π one has global existence (see Calvez and
Corrias [20], Mizogouchi [55]). However, in Biller et. al [7] the authors find an initial configuration
of the system in which a global solution in some sense exists with Mχ > 8π. Then, Herrero and
Velázquez [38] construct a radially symmetric solution on a disk that blows-up and develops
δ-function type singularities. Finally, unique solution with any positive mass exists when the
reverse diffusion of the chemoattractant is large enough (Corrias et. al [22]). Thus, in the case of
parabolic-parabolic model, the value 8π can still be understood as a threshold, but in a different
sense: under it there is global existence, over it there exists a solution that blows up.

In [20] the authors obtain the global existence when M < 8π and α = χ = 1 assuming as well that

1. ρ0 ∈ L1(R2) ∩ L1(R2, log(1 + |x|2)dx) and ρ0 log ρ0 ∈ L1(R2);

2. c0 ∈ H1(R2) if λ > 0 or c0 ∈ L1(R2) and |∇c0| ∈ L2(R2) if α = 0;

3. ρ0c0 ∈ L1(R2).

Notice that the mass condition is equivalent to Mχ < 8π for a given χ > 0 by rescaling of (1.4).
In the same sub-critical case, the global existence result is obtained in [55] assuming
ρ0 ∈ L1(R2) ∩ L∞(R2) and c0 ∈ H1(R2) ∩ L1(R2). Both of these works use energy methods to
prove the apriori estimates for the solutions of (1.4). Then, these estimates lead to existence of
global solution in sub-critical case. The free energy functional associated to (1.4) is

E(t) =
∫

R2

ρ(t, x) log c(t, x) dx−
∫

R2

ρ(t, x)c(t, x) dx+
1

2

∫

R2

|∇c(t, x)|2 dx+
λ

2

∫

R2

c2(t, x) dx.

The technical computations exploit in [55] the Trudinger-Moser inequality while in [20] two
alternatives are proposed: either to use the so-called Onfori inequality on the whole space or the
Hardy-Littlewood-Sobolev inequality.

In addition, in [55] the critical case M = 8π is treated. Under the assumptions
ρ0 ∈ L1(R2) ∩ L∞(R2), ρ0 ∈ L1(R2, log(1 + |x|2)dx), ρ0 log ρ0 ∈ L1(R2) and c0 ∈ H1(R2) ∩ L1(R2),
global existence for (1.4) is obtained.

On the other hand, in [22], global existence and uniqueness is obtained for any positive mass M
under some restriction on the parameter α > 0 and the initial datum. The authors are interested
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in the so-called integral solution to (1.4) that is a couple that satisfies

ρ(t, ·) = G(t, ·) ∗ ρ0 −
2∑

i=1

∫ t

0
∇iG(t− s, ·) ∗ (ρ(s, ·)∇ic(t, ·)) ds

c(t, ·) = e−
λ
α
tG(

t

α
, ·) ∗ c0 +

∫ t

0
e−

λ
α
(t−s)G(

t− s

α
, ·) ∗ ρ(s, ·) ds,

(1.6)

where G(t, x) = 1
4πte

− |x|2
4t . This formulation is also known as mild form of (1.4) or the Duhamel’s

formula. It is supposed χ = 1. The following theorem is proved:

Theorem 1.3.1 (Theorem 2.1 [22]). Let α > 0, λ ≥ 0, ρ0 ∈ L1(R2) and c0 ∈ H1(R2). There
exists δ = δ(M,α) and T = T (M,α) such that if ‖∇c0‖L2(R) < δ there exist an integral solution
(1.6) of the Keller-Segel model with ρ ∈ L∞((0, T );L1(R2)) and |∇c ∈ L∞((0, T );L2(R2))|.
Moreover, the total mass M is conserved and there exists a constant C = C(α) such that if
M < C(α), the solution is global and

t
1− 1

p ‖ρ(t, ·)‖Lp(R2) ≤ C(M,α), t > 0,

t
1
2
− 1

r ‖∇c(t, ·)‖Lr(R2) ≤ C(M,α), t > 0,

for all p ∈ [1,∞] and r ∈ [2,∞].

In order to prove this result, the authors apply Banach’s fixed point theorem iterating the
formulation (1.6). In order to exhibit a contraction the condition on the initial datum emerges. In
order to pass from local to global solution in time, the condition on the mass emerges. However,
as the latter is of the form

C1α
a
√
M + C2α

b‖∇c0‖L2(R) < 1,

for some constants C1, C2, b > 0 and a < 0, one can have M as large as one likes as soon as α is
large enough as well. For the same reason, the smaller is α, the more restrictive is the condition
on the mass. Once the existence is proved, uniqueness and positivity of solutions follow from the
following theorem

Theorem 1.3.2 (Theorem 2.6 [22]). Let α > 0, λ ≥ 0 and let ρi0 ∈ L1(R2) and ci0 ∈ H1(R2),
i = 1, 2, be two initial data sufficiently small so that the corresponding solutions (ρi, ci) of (1.6)
are global. Then, for any p ∈ [1,∞] and r ∈ [2,∞], there exists C = C(p, r) > 0 independent of t,
such that for t > 0 it holds

t
1− 1

p ‖ρ1(t, ·)− ρ2(t, ·)‖Lp(R2) + t
1
2
− 1

r ‖∇c1(t, ·)−∇c2(t, ·)‖Lr(R2)

≤ C(‖ρ10 − ρ20‖Lp(R2) + ‖∇c10 −∇c20‖Lr(R2)).

The case d ≥ 3

When d ≥ 3 the total mass is no longer the relevant parameter for the well-posedness analysis, but

rather the L
d
2
+ε(R2)-norms where ε ≥ 0.

In fact, for the parabolic–elliptic model, Corrias et. al. [24] assume that ρ0 ∈ Lp(Rd) for any
1 ≤ p < ∞ and is non-negative. Then, they prove that there exists a constant K0(χ, d) such that



11 1.4. Our mathematical motivations: Singular McKean-Vlasov dynamics

if ‖ρ0‖
L

d
2 (R2)

≤ K0, then the elliptic model has a global weak solution that preserves the initial

mass and satisfies some Lp(Rd)-norm estimates. Then, they prove that the elliptic system has no

global smooth solution with fast decay if the quantity
(∫

Rd ρ0(x) dx
) d

d−2 is large. However, such a

condition cannot be replaced by a condition on the magnitude of L
d
2 (R2)-norm of ρ0 as in the case

of d = 2.

Corrias and Perthame [23] study the purely parabolic-parabolic case (1.4) with α = 1. Assuming
that ρ0 ∈ L1(Rd) ∩ La(Rd), where d

2 < a ≤ d and ∇c0 ∈ Ld(Rd), they prove that if
‖ρ0‖La(Rd) + ‖∇c0‖Ld(Rd) ≤ C(d, a) the parabolic system has at least one weak and global positive
solution satisfying a certain estimate. When proving the existence they work with the integral
formulation (1.6) in dimension d and prove some a priori estimates. A rigorous derivation of such
estimates of a regularized version of the integral equation gives in the limit a weak solution.

1.4 Our mathematical motivations: Singular McKean-Vlasov dy-

namics

Analyzing a non-linear parabolic PDE of the McKean-Vlasov type through the associated
stochastic process became a classical topic in probability theory over the past 30 years. The idea
is to see such a PDE as a Fokker-Planck equation for a time evolution of a probability measure
that is a time marginal of a stochastic process. A simple example is the following equation

∂

∂t
µt = △µt −∇ · ((φ ∗ µt)µt),

where φ : Rd → Rd is a given kernel and µ0 an initial condition. Then, by Itô’s formula, one can
prove that the marginal distributions (µt)t≥0 of the solution to the following stochastic process

{
dXt =

( ∫
φ(Xt − y)µt(dy)

)
dt+ dWt,

X0 ∼ u0, Xt ∼ µt

satisfies the above PDE (see Chapter 2 for more details). As the goal of this thesis is to construct
and analyze such a stochastic interpretation for the parabolic-parabolic Keller-Segel equations, we
review here the current state of the art on this topic.

Recently, stochastic interpretations have been proposed for a simplified version of the model in
d = 2, that is, 




∂tρ(t, x) = ∇ · (∇ρ− χρ∇c)(t, x), t > 0, x ∈ R2,

−△c(t, x) = ρ(t, x), t > 0, x ∈ Rd,

ρ(0, x) = ρ0(x), c(0, x) = c0.

(1.7)

This is the parabolic-elliptic model which corresponds to the case α = 0 and λ = 0 in (1.4). These
interpretations all rely on the fact that, in the case of (1.7), the equations for ρt and ct can be
decoupled and ct can be explicited as the convolution of ρt and a logarithmic kernel. Thus, one
obtains the following closed form of the above system:

∂tρ(t, x) = △ρ(t, x)− χ∇ · ((k ∗ ρ(t, ·))ρ(t, x)), (1.8)
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where k(x) = − x
2π|x|2 . Consequently, the corresponding stochastic process of McKean–Vlasov type

whose ρt is the time marginal density involves the singular interaction kernel k. That is why, so
far, only partial results are obtained and heavy techniques are used to get them.

Namely, the first stochastic interpretation of (1.7) is due to Haškovec and Schmeiser [36] who
analyze a particle system with McKean–Vlasov interactions and Brownian noise. More precisely,
as the ideal interaction kernel k is strongly singular, they introduce a kernel with a cut-off
parameter and obtain the tightness of the particle probability distributions w.r.t. the cut-off
parameter and the number of particles. They also obtain partial results in the direction of the
propagation of chaos (rigorously defined in Chapter 2). Then, Godinho and Quiñinao [33] analyze
the case where k is replaced by −x

2π|x|1+α for some α ∈ (0, 1). They prove the well-posedness of the

corresponding particle system and propagation of chaos towards the limit equation.

More recently, Fournier and Jourdain [31] and Cattiaux and Pédèches [21] study to the following
Mc-Kean-Vlasov stochastic equation related to (1.8):

{
dXt =

√
2dWt + χ(k ∗ ρ(t, ·))(Xt)dt,

Xt ∼ ρt, X0 ∼ ρ0.
(1.9)

The connection between (1.9) and (1.8) is established by Itô’s formula (see Chapter 2 for such a
connection in a general setting). An habitual approach is to analyze the corresponding mean field
model {

dXi,N
t =

√
2dW i

t +
χ
N

∑N
i=1 k(X

i,N
t −Xj,N

t )dt,

Xi,N
0 i. i. d. ∼ ρ0.

(1.10)

and prove that when N → ∞, the empirical measure µN = 1
N

∑N
i=1 δXi,N weakly converges to the

law of the process (1.9) (propagation of chaos). Due to the singular nature of k it is not obvious
that system (1.10) is well defined. Nevertheless, Fournier and Jourdain [31] almost achieve this
program in the subcritical case. Namely, when χ < 2π, they obtain the well–posedness of the
particle system. In addition, they obtain a consistency property which is weaker than the
propagation of chaos. They also describe complex behaviors of the particle system in the sub and
super critical cases. Cattiaux and Pédèches [21] obtain the well-posedness of this particle system
without cut-off by using Dirichlet forms rather than pathwise approximation techniques. They
leave the other stages of the program for some future work.

Theorem 1.4.1 (Theorems 5 and 6 [31]). Let N ≥ 2 and χ < 2πN
N−1 . Assume ρ0 has a finite

moment of order 1. There exists a solution (Xi,N
t )t≥0,1≤i≤N to (1.10). In addition, the family

{(Xi,N
t )t≥0, 1 ≤ i ≤ N} is exchangeable and for any α ∈ ( (N−1)χ

2πN , 1) and any T > 0 one has

E

∫ T

0

∣∣X1,N
s −X2,N

s

∣∣α−2
ds ≤ (2

√
2E(1 + |X1,N

0 |2)1/2 + 4
√
2T )α

α(2α− (N−1)χ
πN )

. (1.11)

Next, suppose χ < 2π. Then

i) The sequence (µN ))N≥2 is tight.

ii) Any (possibly random) weak limit point µ of (µN )N≥2 is a.s. the law of a solution to the
nonlinear SDE (1.9).



13 1.4. Our mathematical motivations: Singular McKean-Vlasov dynamics

iii) In particular, one can find a subsequence Nk such that (µNk
t ))t≥0 goes in law, as k → ∞, to

some (µt)t≥0, which is a.s. a weak solution to (1.8).

The main tool in showing these results is that (1.11) apriori holds true. Thus, the authors start
from a regularized version of (1.10) and are able to build their way up towards (1.8). In fact,
thanks to (1.11) one is able to control the effect of the singularity of the kernel, i. e. one can show
that the Lebesgue measure of the set of crossing times between particles is null, independently of
the number of particles. Two main drawbacks of this result are that it holds in a very sub-critical
case (χ < 2π) and that it is not a propagation of chaos result, but rather a tightness/consistency
result. The reason is that the uniqueness does not hold in the class of weak solutions the authors
work in. Then, the next theorem ensures the existence of the particle system until 3-particles
collide.

Theorem 1.4.2 (Theorem 7 [31]). Let χ > 0 and N > max{2, χ
2π} be fixed. There exists a

solution (Xi,N
t )0≤t<τN ,1≤i≤N to (1.10) where

τN := sup
l≥1

inf{t ≥ 0 : ∃i, j, k pairwise different such that

|Xi,N
t −Xj,N

t |+ |Xi,N
t −Xk,N

t |+ |Xj,N
t −Xk,N

t | ≤ 1

l
}.

The family (Xi,N
t )0≤t<τN ,1≤i≤N is exchangeable and for any α ∈ ( χ

2πN , 1), a.s. for any t ∈ [0, τN )
one has ∫ t

0
|X1,N

s −X2,N
s |α−2 ds < ∞.

Finally, it holds that

i) τN = ∞ a.s. if χ ≤ 8πN−2
N−1 ,

ii) τN < ∞ a.s. if χ > 8πN−2
N−1 .

The main ingredient when proving the preceding result is to show that the process
RI

t = 1
2

∑ |Xi,N
t − X̄I |2 where I ⊂ {1, . . . , N} and X̄I = 1

|I|
∑

i∈I X
i,N
t behaves almost like a

square of a Bessel process of dimension (|I| − 1)(2− χ|I|
4πN ). Then, the condition on χ ensures that

for all |I| ≥ 3 the dimension of the Bessel process is greater than 2. Thus, the process RI
t never

reaches zero and no collision involving three or more particles occur. However, the main difficulty
lies in the above mentioned almost like square Bessel process behaviour of RI : when |I| = N it is
exactly the square of a Bessel process, then by backward induction it is shown that some terms
can be neglected and that square Bessel behaviour holds even when |I| < N .

Contrary to [31] for proving the existence part, Cattiaux and Pédèches [21] use Dirichlet forms. In
fact, they prove that the form

E(f, g) =
∫

M
< ∇f,∇g >, f, g ∈ C∞

0 (M).

is regular and local (M is given below). The main result in [21] is the following theorem:

Theorem 1.4.3 (Theorem 1.2 [21]). Let
M = { there exists at most one pair i 6= j such that X i,N = Xj,N}. Then
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• For N ≥ 4 and χ < 8π N
N−1 , there exists a unique (in distribution) non explosive solution of

(1.10), starting from any x ∈ M . Moreover, the process is strong Markov, lives in M and
admits a symmetric σ- finite, invariant measure given by

µ(dX1, . . . , dXN ) =
∏

1≤i<j≤N

|Xi −Xj |− χ
N dX1, . . . , dXN .

• For N ≥ 2 and χ > 8π the system (1.10) does not admit any global (in time) solution.

• For N ≥ 2 and χ = 8π, either the system (1.10) explodes or the N particles are glued in
finite time.

The techniques in [31] and [21] are based on the particular structure of the interaction kernel and
on the fact the process they are constructing is strongly Markov. We will see that the latter will
not be the case with our interpretation and thus, we will not be able to adapt their techniques in
this thesis.

In the fully parabolic case of (1.4) (α > 0), recently a probabilistic interpretation of a smoothed
Keller-Segel alike system of parabolic type was developed. For a parabolic–parabolic version of the
model with a smooth coupling between ρt and ct, Budhiraja and Fan [17] study a particle system
with a smooth time integrated kernel and prove it propagates chaos. Moreover, adding a forcing
potential term to the model, under a suitable convexity assumption, they obtain uniform in time
concentration inequalities for the particle system and uniform in time error estimates for a
numerical approximation of the limit non-linear process. As our main focus is (1.4) in the case
α > 0 without any cut-off, we will not enter in the details of these results. Similarly, in Stevens
[69] a probabilistic interpretation of a smooth Keller-Segel system is proposed.

We conclude this chapter by reviewing some examples from the literature of McKean-Vlasov
stochastic processes with singular interaction arising as probabilistic interpretations of non-linear
Fokker-Planck equations. Osada [59] studies an SDE related to 2D-Navier-Stokes equation written
in vorticity formulation. The interaction kernel is of the form K(x) = xt

|x|2 . Jourdain and

Méléard [44] study a non-linear diffusion with normal reflecting boundary conditions and a
singularity that involves the Poisson kernel related to vortex equation. Fournier and Hauray [30]
study the 3-d Landau equation where the kernel is of the form k(x) = −2|x|γx , for γ ∈ (−2, 0).
Calderoni and Pulvirenti [19] study the Burger’s equation, where the interaction kernel is the
δ-dirac function. Bossy and Talay [14] interpret the solution of the Burger’s equation as a
distribution function of a probability measure solving a PDE of Mc-Kean Vlasov type where the
interaction kernel becomes the Heaviside function. Bossy et. al. [13] study the Lagrangian
stochastic model where the interaction is given through a conditional expectation, while Bossy
and Jabir [12] study the Lagrangian stochastic model with specular reflections on the boundary.
Le Cavil et. al. [51] study the stochastic process and particle system related to a nonconservative
McKean-Vlasov PDE with the coefficients depending of the marginal densities. Other types of
singularities have bees studied in the case of particle systems with collisions related to Boltzman
or Landau equations: see e.g. Guérin and Méléard [34] and Fournier [29].
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1.5 Our probabilistic interpretation of the parabolic-parabolic Keller-

Segel system and main results

1.5.1 Probabilistic interpretation

In order to build a stochastic interpretation of (1.4), we will in the sequel formally decouple the
Keller-Segel system. From now on we set α = 1.

Assume for a moment the function c(t, x) is given and let us start from (1.4a):

∂tρ(t, x) = △ρ(t, x)−∇ · (χρ(t, x)∇c(t, x)), t > 0, x ∈ Rd.

Then, by Itô’s formula, the time marginal distributions (ρ(t, ·))t≥0 of the process (Xt)t≥0 solution
to {

dXt = χ∇c(t,Xt)dt+
√
2dWt, t ≥ 0

X0 ∼ ρ0
(1.12)

satisfy (1.4a). We have already noticed that the integral (or Feynman-Kac) representation of the
equation for c is

c(t, x) = e−λt(G(t, ·) ∗ c0)(x) +
∫ t

0
e−λ(t−s)(G(t− s, ·) ∗ ρ(s, ·))(x) ds, (1.13)

where G(t, x) = 1
(4πt)d/2

e−
|x|2
4t . Therefore, we can formally compute ∇c(t, x). Taking into account

that we do not wish to derive the function ρ, one has

∇c(t, x) = e−λt∇((G(t, ·) ∗ c0)(x)) +
∫ t

0
e−λ(t−s)(∇G(t− s, ·) ∗ ρ(s, ·))(x)) ds.

Plugging the preceding equation into (1.12), one obtains the following McKean-Vlasov non-linear
stochastic dynamics:

{
dXt = χe−λt(G(t, ·) ∗ ∇c0)(Xt)dt+ χ

{∫ t
0

∫
Rd Kt−s(Xt − y)ρ(s, y) dy ds

}
dt+

√
2dWt, t ≤ T,

X0 ∼ p0, Xt ∼ ρ(t, x)dx,

(1.14)

where Kt(x) := e−λt∇G(t, x) = e−λt −x

2(4π)
d
2 t

d
2+1

e−
|x|2
4t and T > 0 is an arbitrary time horizon.

Notice that (Xt)t≤T is a d-dimensional stochastic process and that we impose that for any t > 0,
the law of Xt is absolutely continuous w.r.t. Lebesgue’s measure. The drift of (1.14) has two
components: one that depends on the initial concentration and one that depends on the time
marginals of the law of the process. What is unusual is that the interaction between the solution
and its probability law happens not only in space, at each time t, but as well in time. That is, at
each time t > 0 the drift involves all the time marginals up to time t. This sets (1.14) apart from
the general setting of McKean-Vlasov processes (see e.g. Sznitman [72]). Another point we would
like to insist on is the singular nature of the interaction kernel K. As the Gaussian density is
derived in space, a singularity emerges in time and it is of order 1

t
d
2+1

. Remark as well that the

limit lim(t,x)→(0,0)Kt(x) is not well defined. This singularity should be integrated in time and we
expect that the convolution in space will somehow smooth it. Throughout the thesis, we will refer
to the equations of the form (1.14) as ”the non-linear SDEs with space and time interactions”.
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To conclude, our probabilistic interpretation of (1.4) is the non-linear stochastic equation (1.14)
paired with the transformation (1.13) of the time marginal laws of (1.14). In order to come back
to the Keller-Segel equations (1.4), one should follow the following program:

Step 1 Construct a (weak) solution to (1.14) and extract the family of densities (ρ(t, ·))t≥0.

Step 2 Construct the family (c(t, ·))t≥0 as a transformation of ρ as in (1.13).

Step 3 Prove the pair (ρ, c) satisfies (1.4).

Step 3 of the program requires that an adequate notion of solution is precised. The main
question we tried to reply in this thesis is whether this program can be carried out in different
spatial dimensions of the problem and under which conditions.

Another natural question is to associate to (1.14) the corresponding system of interacting
particles. Namely, plugging the empirical measure of N particles in the place of the unknown law
of the process in (1.14), one obtains the following system of stochastic equations:





dXi,N
t =

√
2dW i

t + χe−λt(∇c0 ∗G(t, ·))(Xi,N
t )dt+{

χ
N

∑N
j=1

∫ t
0 Kt−s(X

i,N
t −Xj,N

s )ds ✶{Xi,N
t 6=Xj,N

t }

}
dt, t ≤ T,

Xi,N
0 , i.i.d. and independent of W := (W i, 1 ≤ i ≤ N).

(1.15)

Here the W i’s are N independent standard d-dimensional Brownian motions and X1,N
0 is

distributed according to ρ0. System (1.15) inherits from (1.14) that at each time t > 0 each
particle interacts in a singular way with the past of all the other particles. In fact, as soon as a
particle at time t crosses the past of another particle, we do not know how to integrate the
singularity in time. The only hope in that case is that the instant s in the past in which the
encounter happens is far away from t. As lim(t,x)→(0,0)Kt(x) is not well defined, we must ensure

that when s → t, the integral
∫ t
0 Kt−s(X

i,N
t −Xj,N

s )ds is well defined. That is why, first of all, we
will not consider an interaction of a particle with itself. Then, we will set an interaction to zero
every time Xi,N

t = Xj,N
t . That is why the indicator ✶{Xi,N

t 6=Xj,N
t } is added to the dynamics. In

order to justify it does not influence the dynamics, we should always make sure that the set
{t ≤ T,Xi,N

t = Xj,N
t , i 6= j} has Lebesgue measure zero. The non-Markovian nature of the particle

system makes it impossible to adapt the techniques used in the elliptic case [21, 31].

Many questions arise when one considers (1.15): Is it well-defined? Under which conditions? Does
it propagate chaos? Does it exhibit agglomerations according to χ in the two-dimensional case?
This thesis aims to reply to them and set a foundation for future works on (1.14) and (1.15).

Before passing to the main results of this thesis, we give an illustration of the behaviour of the
particle system through a numerical simulation. In d = 2 we apply the Euler scheme to (1.15).
The particles are initially distributed according to the uniform distribution on the square
[−1, 1]× [−1, 1]. The initial concentration has been chosen to be a standard two dimensional
Gaussian density. When χ is large the particles very quickly form an agglomeration in the center
of the domain where the initial concentration attains its maximum. On the contrary, when χ is
small the particles diffuse in the plain and the diffusion prevails the singular interaction of the
particles. A typical result of such a simulation is given in Figure 1.1 (the pictures will be enlarged
in our last chapter).
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(a) t = 0 (b) t = 0.1 (c) t = 0.3 (d) t = 1

(e) t = 0 (f) t = 0.1 (g) t = 0.3 (h) t = 1

Figure 1.1: (a)-(e): χ = 50; (f)-(j): χ = 1. Euler scheme is applied to (1.15), withN = 1000, d = 2.
Particles are initially distributed uniformly on [−1, 1]× [−1, 1]. Initial concentration of the chemical
is a centered Gaussian density. When χ is large an agglomeration of particles appear in the center
of the domain, whilst when χ is small the particles diffuse.

1.5.2 Main results of the thesis

In this thesis we introduce and analyze a new probabilistic interpretation of the
parabolic-parabolic Keller-Segel model without cut-off in the cases d = 1 and d = 2. Our first goal
is to carry out the above defined program and validate our approach by getting new
well-posedness results for (1.4) in the parabolic-parabolic case (α = 1). Our second objective is to
study the corresponding particle system.

We start with Chapter 2 that introduces the probabilistic tools and notions needed on a smoothed
version of (1.14). Namely, as soon as there is some regularity on the interaction kernel, one can
adapt the arguments in Sznitman [72] in order to obtain well-posedness and propagation of chaos
for a McKean-Vlasov SDE with a time and space interaction. The connection of such an SDE and
a non-linear parabolic PDE is established.

In Chapter 3 we study (1.14) in d = 1 and prove it is well defined and provides a unique solution
for the Keller-Segel system in d = 1. This result is available as a preprint [73].

Chapter 4 proposes another way to deal with the one-dimensional McKean-Vlasov SDE and
proves some Sobolev regularity results on time marginals of the law of the solution.

In Chapter 5 we deal with the one-dimensional particle system and prove it is well defined and it
propagates chaos towards the process built in Chapter 3. This is a joint work with Jean-Francois
Jabir [43].

The two-dimensional McKean-Vlasov SDE is studied in Chapter 6. After proving it is
well-defined, we establish the connection with the two-dimensional Keller-Segel system.

Finally, Chapter 7 describes and studies a purely probabilistic method to approximate the
solutions of the fully parabolic two dimensional Keller-Segel system. In addition, it gives some
theoretical insights about the particle system in d = 2.
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Let us summarize our main results.

The one-dimensional case

Our first main result is given in Chapter 3. It concerns the well-posedness of a non-linear
one-dimensional stochastic differential equation (SDE) with time and space interaction. As our
technique of analysis is not limited to the above kernel K, we consider the following
McKean-Vlasov stochastic equation:

{
dXt = b(t,Xt)dt+

{∫ t
0 (kt−s ∗ ps)(Xt)ds

}
dt+ dWt, t ≤ T,

ps(y)dy := L(Xs), X0 ∼ p0.
(1.16)

The set of hypothesis (H) assumed on the kernel k is given in Chapter 3 and among them the key
one is k ∈ L1((0, T ]× R).

Due to the singular nature of the kernel, (1.16) cannot be analyzed by means of standard coupling
methods or Wasserstein distance contractions as in Chapter 2. Both to construct local in time
solutions and to go from local to global solutions, an important issue consists in properly defining
the set of weak solutions. Namely, without any assumption on the initial density ρ0, we need to
add the following constraint in the classical definition of a weak solution to (1.16):

• The probability distribution P ◦X−1 has time marginal densities (pt, t ∈ [0, T ]) with respect
to Lebesgue measure which satisfy

∀0 < t ≤ T, ‖pt‖L∞(R) ≤
CT√
t
. (1.17)

To prove that this constraint is satisfied in the limit of an iterative procedure (where the kernel is
not cut off), the norms of the successive time marginal densities cannot be allowed to
exponentially depend on the L∞-norm of the successive corresponding drifts. They neither can be
allowed to depend on Hölder-norms of the drifts. Therefore, we use an accurate estimate (with
explicit constants) on densities of one-dimensional diffusion processes with bounded measurable
drifts which is obtained by a stochastic technique rather than by PDE techniques (See Section
3.3). This strategy allows us to get uniform bounds on the sequence of drifts, which is essential to
get existence and uniqueness of the local solution to the non-linear martingale problem solved by
any limit of the Picard procedure, and to suitably paste local solutions when constructing the
global solution.

Theorem (3.2.3). Let T > 0. Suppose that p0 ∈ L1(R) is a probability density function and
b ∈ L∞([0, T ]× R) is continuous w.r.t. the space variable. Under the hypothesis (H), Eq. (1.16)
admits a unique weak solution (in the above sense which includes (1.17)).

The Hypothesis (H) is satisfied by the Keller-Segel kernel K. Thus, applying the above theorem to
it, we extract the family of marginals ρ and complete Step 1 from our program. Then, we
perform the Step 2 by considering the function c as transformation of ρ according to (1.13).
Then, we are in the position to prove the well-posedness for the Keller-Segel system in d = 1. The
precise notion of solution is given in Chapter 3. Our strategy consists in proving the time marginal
distributions of the exhibited weak solutions satisfy the mild formulation (1.6) (for d = 1) of the
system. To this end, we impose the condition (1.17) on the function ρ. Finally, the Step 3 follows.
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Corollary (3.2.6). Assume that ρ0 ∈ L1(R) and c0 ∈ C1
b (R). Given any χ > 0, λ ≥ 0 and T > 0,

the time marginals ρ(t, x) ≡ pt(x) of the probability distribution of the unique solution to
Eq. (1.14) with d = 1 and the corresponding function c(t, x) provide a global solution to (1.4) with
d = 1 in some sense. Any other solution (ρ1, c1) with the same initial condition (ρ0, c0) satisfies

‖ρ1(t, ·)− ρ(t, ·)‖L1(R) = 0 and ‖∂c1

∂x (t, ·)− ∂c
∂x(t, ·)‖L1(R) = 0 for every 0 ≤ t ≤ T .

This seems to notably improve the results in [60, 40].

Chapter 4 revisits the work done on the level of the non-linear process in Chapter 3, through a
regularization procedure. Namely, we regularize the interaction kernel K and combines the results
from Chapter 2 and Chapter 3 to prove the regularized equation in the limit (when the
regularization parameter vanishes) satisfies (1.14) in d = 1. The goal then is to obtain the rate of
convergence of the marginal laws of the solution to the regularized equation to the marginal laws
of the solution to (1.14) in d = 1. In order to get this rate of convergence, we prove some Sobolev
regularity results for the one-dimensional marginals of a stochastic process with bounded and
measurable drift.

The objective of Chapter 5 is to analyze the particle system related to (1.14) in d = 1. As neither
the linear part of the drift plays any role, nor the parameters of the equation, we set α = 1, λ = 0,
χ = 1, and c′0 ≡ 0. We thus consider the following particle system:

{
dXi,N

t =
{

1
N

∑N
j=1,j 6=i

∫ t
0 Kt−s(X

i,N
t −Xj,N

s )ds ✶{Xi,N
t 6=Xj,N

t }

}
dt+ dW i

t ,

Xi,N
0 i.i.d. and independent of W := (W i, 1 ≤ i ≤ N),

(1.18)

where the W i’s are N independent standard Brownian motions. Compared to the stochastic
particle systems introduced for the parabolic–elliptic model, an interesting fact occurs: the
difficulties arising from the singular interaction can now be resolved by using purely Brownian
techniques rather than by using Bessel processes. The construction of a weak solution to (1.18)
involves arguments used by Krylov and Röckner [49, Section 3] to construct a weak solution to
SDEs with singular drifts. It relies on the Girsanov transform which removes all the drifts of
(1.18). Our calculation is based on the fact that the kernel K is in L1(0, T ;L2(R)).

Theorem (5.2.1). Given 0 < T < ∞ and N ∈ N, there exists a weak solution
(Ω,F , (Ft; 0 ≤ t ≤ T ),QN ,W,XN ) to the N -interacting particle system (1.18) that satisfies, for
any 1 ≤ i ≤ N ,

QN



∫ T

0


 1

N

N∑

j=1,j 6=i

∫ t

0
Kt−s(X

i,N
t −Xj,N

s )ds✶{Xi,N
t 6=Xj,N

t }




2

dt < ∞


 = 1.

Notice that in the above result, no additional condition on the initial law is necessary. Due to the
singular nature of the kernel K, we need to introduce a partial Girsanov transform of the
N -particle system in order to obtain uniform in N bounds for moments of the corresponding
exponential martingale. We believe this trick may be useful when proving tightness and
propagation of chaos for other particle systems with singular interactions.

Theorem (5.2.5). Assume that the Xi,N
0 ’s are i.i.d. and that the initial distribution of X1,N

0 has

a density ρ0. The empirical measure µN = 1
N

∑N
i=1 δXi,N of (1.18) converges in the distribution

sense, when N → ∞, to the unique weak solution of (1.14).
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To the best of our knowledge, this is the first time in the literature that the parabolic-parabolic
Keller-Segel system without cut-off is derived as a limit of a system of interacting stochastic
particles, when the number of particles tends to infinity.

The two-dimensional case

In Chapter 6 we study (1.14) in d = 2. The increase of dimension leads to an increase in
singularity of the kernel K. We start with explaining why L∞-spaces are no longer a good choice
for the drift and density of the to be constructed stochastic process. As a consequence, we turn to
the Lp-spaces. We redefine the notion of a weak solution to our McKean-Vlasov SDE by including
the following constraint:

• The probability distribution P ◦X−1 has time marginal densities (pt, t ∈ (0, T ]) with respect
to Lebesgue measure which satisfy for any

∀1 < q < ∞ ∃Cq > 0, sup
t≤T

t
1− 1

q ‖pt‖Lq(R2) ≤ Cq. (1.19)

To prove that this constraint is satisfied, we conveniently regularize the McKean-Vlasov SDE and
apply the results from Chapter 2. Then we analyze the associated regularized mild equation and
prove estimates of type (1.19) for the regularized densities. These estimates are uniform w.r.t. the
regularizing parameter under a condition involving the parameter χ and the size of initial datum.
Once such an estimate is obtained, we prove the convergence of martingale problems related to
regularized dynamics towards the our NLSDE. We obtain the following theorem:

Theorem (6.2.3). Let T > 0 and suppose that X0 has a probability density function p0.
Furthermore, assume that c0 ∈ H1(R2). Then, Equation (1.14) in d = 2 admits a weak solution
under the following condition

Aχ‖∇c0‖L2(R2) +B
√
χ < 1, (1.20)

where A and B are defined as in Proposition 6.3.7.

Extract the time marginals ρ of the constructed solution to (1.14) to complete Step 1 from our
program. Then, we perform the Step 2 by considering the function c as transformation of ρ
according to (1.13). Thanks to the estimates in (1.19), we obtain

∀2 ≤ r ≤ ∞ ∃Cr > 0, sup
t≤T

t
1
2
− 1

r ‖∇ct‖Lr(R2) ≤ Cr.

Then, we prove the well-posedness for the Keller-Segel system in d = 2. The precise notion of
solution is given in Chapter 6. Again, we aim to satisfy the mild formulation (1.6) of the system
and impose the condition (1.19) on the function ρ. Finally, the Step 3 is a consequence of
Theorem 6.2.3.

Corollary (6.2.5). Let ρ0 a probability density function and c0 ∈ H1(R2). Under the
condition (1.20) the system (1.4) in d = 2 admits a unique solution in some sense.

Concerning the particle system in d = 2, at the present, we do not have a mathematical answer to
the question of its well-posedness. We cannot apply the techniques from Chapter 5 as for q ≥ 2,
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the L1((0, T );Lq(R2))–norm of the interaction kernel explodes. In Chapter 7 we give some
theoretical insights about this problematic. In short, the increase in singularity together with the
non-Markovian setting lead to strong difficulties when turning to Girsanov or trajectorial
techniques. The well-posedness of the 2-d particle system without cut-off remains open for some of
our future works. In this Chapter 7 we also analyze a probabilistic numerical method to
approximate the system (1.4) in d = 2 coming from our stochastic interpretation for it. We
compare it with another numweical method proposed by Fatkullin [28] which combines stochastic
simulations and PDE resolution.





Chapter 2

McKean-Vlasov equations with smooth time

and space interaction

2.1 Introduction

In this chapter we study a McKean-Vlasov stochastic equation with space and time interaction as
in (1.14) where the singular kernel K is replaced with a smooth kernel L. Under some
assumptions on boundness and Lipschitz continuity in space for L, we prove that in such a setting
one can modify the classical techniques in Sznitman [72] to obtain the existence of the solution
and propagation of chaos for the corresponding particle system. Then, we explore the connections
between such non-linear SDE and a non-linear parabolic equation. Namely, we derive the
Fokker-Planck equation and its mild formulation for the marginal laws of the process. Thus, we
see how the empirical measure of the associated particle system can be used to approximate the
solution to a non-linear parabolic equation.

The purpose of this chapter is to illustrate that the singular interaction is the main difficulty in
(1.14) despite its unusual form (integral in time and space). Moreover, on an example with regular
interaction we wanted to show the main arguments behind the connections PDE-SDE and the so
called particle methods for non-linear parabolic PDEs. In addition, we use the opportunity to
define some classical notions of probability theory in this new setting that will be necessary to
read this thesis (weak solutions, martingale problems, propagation of chaos).

The plan of the chapter is the following: In Section 2.2 we study the above mentioned NLSDE and
prove its well-posedness and the propagation of chaos for the associated particle system. In
Section we derive the associated Fokker-Planck equation, mild equation and some properties for
the one dimensional time marginals of the process.

2.2 Non-linear stochastic equations with smooth time and space

interactions

Let T > 0. On a filtered probability space (Ω,F ,P, (Ft)) equipped with a d–dimensional Brownian
motion (W ) and an F0−measurable random variable X0, we study the stochastic equation

{
dXt = dWt +

{∫ t
0

∫
Rd L(t− s,Xt − y)Qs(dy) ds

}
dt, t ≤ T,

Qs := L(Xs), X0 ∼ q0,
(2.1)

23
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where L maps [0, T ]× Rd to Rd.

As the drift coefficient of (2.1) depends on the marginals of the unknown law of the process, we call
it a non-linear stochastic equation (NLSDE) in the sense of McKean–Vlasov. A typical example of
such equations is studied in Sznitman [72]. What differs Equation (2.1) from the setting in [72] is
that the interaction with the law of the process happens both in time and space. Nevertheless,
when the interaction kernel is sufficiently regular this does not induce any additional difficulty.

Let us define the notion of existence in law or weak solution for (2.1).

Definition 2.2.1. The family (Ω,F ,P, (Ft), X,W ) is said to be a weak solution to the equation
(2.1) up to time T > 0 if:

1. (Ω,F ,P, (Ft)) is a filtered probability space.

2. The process X := (Xt)t∈[0,T ] is Rd-valued, continuous, and (Ft)-adapted. In addition, the
probability distribution of X0 is q0.

3. The process W := (Wt)t∈[0,T ] is a d-dimensional (Ft)-Brownian motion.

4. Denote by (Qt, t ∈ [0, T ]) the time marginals of the probability distribution P ◦X−1. For all
t ∈ (0, T ] , one has that

P

(∫ t

0

∣∣∣∣
∫ s

0

∫

Rd

L(s− u,Xs − y)Qu(dy) ds

∣∣∣∣ dt < ∞
)

= 1.

5. P-a.s. the pair (X,W ) satisfies (2.1).

This is a classical definition of a weak solution (see e.g. [45]) to a stochastic equation. An
equivalent formulation is given in terms of the associated martingale problem. In the case of linear
SDEs this equivalence is explained in [45, Section 5.4]. The same arguments are valid for
non-linear SDEs. Thus, we pose the non-linear martingale problem associated to (2.1).

Definition 2.2.2. A probability measure Q on the canonical space C([0, T ];Rd) equipped with its
canonical filtration and a canonical process (wt) is a solution to the non-linear martingale problem
(MP ) if:

(i) Q0(dx) := Q ◦ w−1
0 (dx) = p0(dx).

(ii) For any t ∈ (0, T ], denote Qt(dx) := Q ◦ w−1
t (dx). Then,

∫ T

0

∫

Rd

∣∣∣∣
∫ t

0

∫

Rd

L(t− s, x− y)Qs(dy) ds

∣∣∣∣Qt(dx) dt < ∞

(iii) For any f ∈ C2
K(Rd) the process (Mt)t≤T , defined as

Mt := f(wt)− f(w0)−
∫ t

0

[1
2
△f(wu) +∇f(wu) ·

∫ u

0

∫
L(u− τ, wu − y)Qτ (dy) dτ

]
du

is a Q-martingale.
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Throughout this thesis, well-posedness of martingale problems will be our primary technique when
proving existence in law for NLSDEs of type (2.1). However, we will see in this chapter that once
the kernel L is regular enough, a fixed point kind of argument may be applied. Notice that in
both formulations we have an integrability condition for the drift term (Definition 2.2.1–4.,
Definition 2.2.2–(ii)). In order to satisfy it, some additional assumptions on the interaction kernel
or/and on the one-dimensional time marginals of the law of the process must be imposed. We will
suppose throughout this section the following hypothesis:

Hypothesis (H0). The function L : [0, T ]× Rd → Rd satisfies

∀(t, x) ∈ (0, T )× Rd, |L(t, x)| ≤ h1(t),

∀(t, x, y) ∈ (0, T )× Rd × Rd, |L(t, x)− L(t, y)| ≤ h2(t)|x− y|,

where hi : (0, T ) → R+ is such that there exists DT > 0 such that for any t ≤ T , one has∫ t
0 hi(s)ds ≤ DT .

Notice that the time interaction induces a slight change in (H0) with respect to what is assumed
on the interaction kernel in [72]. We still assume the kernel is bounded and Lipshitz in space, but
in order to treat the additional integral in time, we introduce the functions h1 and h2.

Let C((0, T );Rd) be a set of continuous Rd-valued functions defined on (0, T ) and PT be the set of
probability measures on C((0, T );Rd). For a Q ∈ PT and (t, x) ∈ (0, T )× Rd denote by

b(t, x; (Qs)s≤t) :=

∫ t

0

∫

Rd

L(t− s, x− y)Qs(dy) ds.

In view of Hypothesis (H0), for a given Q ∈ PT one has that

∀(t, x, y) ∈ (0, T )× Rd × Rd :

{
|b(t, x; (Qs)s≤t)| ≤ DT ,

|b(t, x; (Qs)s≤t)− b(t, y; (Qs)s≤t)| ≤ DT |x− y|.
(2.2)

This will ensure that the above discussed integrability conditions are fulfilled. As the kernel
associated to our Keller-Segel NLSDE does not have such nice properties, we will be prompt to
search for weak solutions in the spaces of measures whose one-dimensional time marginals have
some specific properties. Therefore, the above notion of weak solution will be redefined (cf.
Chapters 3 and 6).

For a smooth interaction kernel, we will prove the following theorem:

Theorem 2.2.3. Under the hypothesis (H0), Equation (2.1) admits a unique strong solution.

Thanks to (2.2), to prove Theorem 2.2.3 one could adapt the fixed point argument in the proof of
Theorem 1.1 in [72] adding the time interaction everywhere. In order to do so, let us introduce for
two measures m1,m2 ∈ PT , their distance with Wasserstein metric, given by

D1,T (m1,m2) = inf
π∈Π(m1,m2)

∫

C((0,T );Rd)×C((0,T );Rd)
sup
s≤T

|w1
s − w2

s | ∧ 1 dπ(w1, w2),

where Π(m1,m2) is the set of all couplings of m1 and m2. In view of Villani [79, Cor. 6.13 and
Thm. 6.18], Wasserstein distances metrize weak convergence and (PT , D1,T ) is a complete
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separable metric space. Two important properties of the Wasserstein metric follow from its
definition. Firstly, for two random processes X1 and X2 with laws m1 and m2, respectively, one
has

D1,T (m1,m2) ≤ E [sup
s≤T

|X1
s −X2

s | ∧ 1]. (2.3)

Secondly, taking another finite time t ≤ T and repeating all the definitions with natural extensions
of the same concepts from greater to smaller time, one obviously has

D1,t(m1,m2) ≤ D1,T (m1,m2), t ≤ T. (2.4)

Proof of Theorem 2.2.3. To prove Theorem 2.2.3, one should search for a fixed point of the map
Φ : PT → PT that to a given m ∈ PT associates the law of the solution to the following SDE:

{
dXt = dWt + b(t,Xt; (ms)s≤t)dt,

X0 ∼ p0.

Notice that this equation is well-defined in strong sense thanks to (2.2) (see e.g. [45, Thm. 5.2.9]).
To exhibit the fixed point, the following contraction inequality should be demonstrated for
m1,m2 ∈ PT :

D1,t(Φ(m1),Φ(m2)) ≤ CT

∫ t

0
D1,u(m1,m2)du.

To prove the latter, follow the steps in [72]. Always use (H0) when dealing with the time
interaction. Let m1,m2 ∈ PT . Associate to m1 the law of the solution of

X1
t = X0 +Wt +

∫ t

0

∫ s

0
b(u,X1

u; (m1,r)r≤u) du ds,

and to m2 the law of the solution of:

X2
t = X0 +Wt +

∫ t

0

∫ s

0
b(u,X2

u; (m2,r)r≤u) du ds.

Then,

|X1
s −X2

s | ≤
∣∣∣
∫ s

0

∫ u

0

[ ∫

C((0,T );Rd

L(u− α,X1
u − wα)dm1(w)

−
∫

C((0,T );Rd

L(u− α,X2
u − wα)dm2(w)

]
dαdu

∣∣∣ =: F (s).

Taking sups≤t of the previous expression and an expectation on both sides, one has

E [sup
s≤t

|X1
s −X2

s |] ≤ E [sup
s≤t

F (s)]. (2.5)

In the following computations CT is a constant that may change from line to line. Taking π to be
any coupling of m1 and m2, it comes

F (s) =
∣∣∣
∫ s

0

∫ u

0

∫

C((0,T );Rd)×C((0,T );Rd)

[
L(u− α,X1

u − w1
α)− L(u− α,X2

u − w2
α)
]
dπ(w1, w2) dα du

∣∣∣.
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In view of (H0), one has

|L(u− α,X1
u − w1

α)− L(u− α,X2
u − w2

α)| ≤ (2h1(u− α) + h2(u− α))|X1
u − w1

α −X2
u + w2

α| ∧ 1.

Therefore,

E [sup
s≤t

F (s)] ≤ CE

∫ t

0

∫ u

0
(h1(u− α) + h2(u− α))

∫

C((0,T );Rd)×C((0,T );Rd)

[
|X1

u −X2
u| ∧ 1 + |w1

α − w2
α| ∧ 1

]
dπ(w1, w2) dα du.

Then,

E [sup
s≤t

F (s)] ≤ 2CTE

∫ t

0
|X1

u −X2
u| ∧ 1 du

+

∫ t

0

∫ u

0
(h1(u− α) + h2(u− α))

∫

C((0,T );Rd)×C((0,T );Rd)
|w1

α − w2
α| ∧ 1 dπ(w1, w2)dα du.

Using that |X1
u −X2

u| ≤ supr≤u |X1
r −X2

r | and |w1
α −w2

α| ≤ supr≤u |w1
r −w2

r | and applying Fubini’s
theorem, one obtains

E [sup
s≤t

F (s)] ≤ CT

[ ∫ t

0
E[sup

r≤u
|X1

r−X2
r |∧1]du+

∫ t

0

∫

C((0,T );Rd)×C((0,T );Rd)
sup
r≤u

|w1
r−w2

r |∧1 dπ(w1, w2)du
]
.

Coming back to (2.5), one gets

E [sup
s≤t

|X1
s−X2

s |] ≤ CT

[ ∫ t

0
E[sup

r≤u
|X1

r−X2
r |∧1]du+

∫ t

0

∫

C((0,T );Rd)×C((0,T );Rd)
sup
r≤u

|w1
r−w2

r |∧1 dπ(w1, w2)du
]
.

Taking an infimum over all couplings π of m1 and m2 of the above expression, leads to

E [sup
s≤t

|X1
s −X2

s |] ≤ CT

∫ t

0
E [sup

r≤u
|X1

r −X2
r | ∧ 1]du+ CT

∫ t

0
D1,u(m1,m2)du.

Gronwall’s lemma implies

E [sup
s≤t

|X1
s −X2

s | ∧ 1] ≤ CT

∫ t

0
D1,u(m1,m2)du. (2.6)

As X1 and X2 have laws Φ(m1) and Φ(m2), respectively, the property (2.3) of the Waserstein
distance together with (2.6), lead to the contraction inequality

D1,t(Φ(m1),Φ(m2)) ≤ CT

∫ t

0
D1,u(m1,m2)du.

Firstly, we can conclude the weak uniqueness. Namely, let m1 and m2 be the laws of two weak
solutions to (2.1). Then, Φ(m1) = m1 and Φ(m2) = m2. In view of the above contraction
inequality, one has

D1,T (m1,m2) = D1,T (Φ(m1),Φ(m2)) ≤ CT

∫ T

0
D1,u(m1,m2)du.
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By Gronwall’s lemma, D1,T (m1,m2) = 0.

Secondly, the strong uniqueness for (2.1) follows. Assume we have two strong solutions with the
same notation as above. We have just seen that D1,T (m1,m2) = 0. In view of (2.6) and (2.4), one
has

E [sup
s≤T

|X1
s −X2

s |] ≤ CTD1,T (m1,m2) = 0.

This implies strong uniqueness.

Finally, by the standard contraction argument, one gets weak existence. Construct the sequence
{mk, k ∈ N} = {Φk(m),m ∈ N}. Here m is any element of PT . The contraction inequality leads to

D1,T (Φ
k+1(m),Φk(m)) ≤ CT

∫ T

0
D1,u(Φ

k(m),Φk−1(m))du.

Iterating this expression, one has

D1,T (Φ
k+1(m),Φk(m)) ≤ Ck

TT
k

k!
D1,T (Φ(m),m).

Since,
Ck

TTk

k! → 0 as k → ∞, the sequence (mk)k∈N is a Cauchy sequence. As the space PT is
complete with respect to the Wasserstein metric, there exists a probability measure Q such that
mk

w→ Q. By the construction of the sequence mk, Φ(Q) = Q.

The existence of a strong solution follows from the results of Yamada and Watanabe summarized
in Chapter 5.3 of [45].

A natural discretization of (2.1) is obtained by plugging the empirical measure of N particles in
the place of the law of the process. Like this, one obtains instead of one non-linear equation, a
system of N dependent linear equations. This system is called in the literature the particle system
associated to (2.1). It is defined on the product probability space (ΩN ,F⊗N ,P⊗N ) filtered by the
natural extension of the original filtration to the product space, and equipped with an
N -dimensional Brownian motion adapted to it. It reads

{
dXi,N

t = dW i
t +

{
1
N

∑N
j=1

∫ t
0 L(t− s,Xi,N

t −Xj,N
s )ds

}
dt,

Xi,N
0 i.i.d. ∼ p0.

(2.7)

Notice that the particle system inherits from the NLSDE the unusual interaction in time by
becoming non-Markovian. In each time t > 0 every particle interacts with all the past of all the
other particles.

Theorem 2.2.4. Under the hypothesis (H0), the particle system in (2.7) admits a unique strong
solution.

Proof. Notice that the drift of each particle is uniformly bounded according to (H0). Thus, by
Novikov’s condition one can use the Girsanov transform in order to construct a weak solution to
the particle system (see e.g. [45, Prop. 5.3.6]).
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As above, to finish the proof one should show that strong uniqueness holds. Let us drop the index
N for simplicity. Let X = (X1, . . . , XN ) and Y = (Y 1, . . . , Y N ) be two strong solutions to (2.7).
Then, in view of (H0), for i ≤ N and t ≤ T one has

|Xi
t − Y i

t | ≤
∫ t

0

1

N

N∑

i=1

∫ s

0
h2(s− u)(|Xi

s − Y i
s |+ |Xj

u − Y j
u |)du ds.

Notice that |Xi
s − Y i

s |+ |Xj
u − Y j

u | ≤ 2 supu≤smax1≤k≤N |Xk
u − Y k

u |. Thus,

|Xi
t − Y i

t | ≤ CT

∫ t

0
sup
u≤s

max
1≤k≤N

|Xk
u − Y k

u | ds.

Taking the maximum w.r.t. 1 ≤ i ≤ N and the supremum in t ≤ T , one gets

sup
t≤T

max
1≤i≤N

|Xi
t − Y i

t | ≤ CT

∫ t

0
sup
u≤s

max
1≤k≤N

|Xk
u − Y k

u | ds.

Apply Gronwall’s lemma to finish the proof.

An intuitive question that now can be posed is what happens with the particle system once
N → ∞. Do we recover (2.1)? In which sense? In order to answer it let us introduce the notion of
propagation of chaos.

Definition 2.2.5. Let uN a sequence of symmetric probabilities on C((0, T );Rd)N and u a
probability measure on C((0, T );Rd). uN is u-chaotic, if for any f1, . . . , fk ∈ Cb(C((0, T );Rd)),
any k ≥ 1:

limN→∞

∫

C((0,T );Rd)N
f1(x1) · · · fk(xk)uN (dx1 . . . dxN ) =

k∏

i=1

∫

C((0,T );Rd)
fi(x)u(dx).

In view of [72, Prop. 2.2-i)], UN is u-chaotic is equivalent to: a) the same definition with k = 2;
b) the sequence of empirical measures µN = 1

N

∑N
i=1 δXi (PT -valued random variables), converges

in law to the constant random variable u, where Xi are canonical coordinates on C((0, T );Rd)N .

Let us denote the law of the process in (2.1) and (2.7) by Q and QN , respectively. The notion of
propagation of chaos in this context tells us that if QN is Q-chaotic, then the joint law of any
k-tuple of particles (k ≥ 2), converges, when the number of particles goes to infinity, to the
product measure Q×k. Equivalently, it means that the empirical measure of N particles converges
in law to δP. This is the analogue to the law of large numbers in the context of a system of
interacting stochastic particles.

In order to establish the propagation of chaos in the above case we define N i.i.d. copies of (2.1)
on the same filtered probability space as the particle system,

{
dX̄i

t = σdW i
t + b(t, X̄i

t)dt+
{∫ t

0

∫
L(t− s, X̄i

t − y)qs(dy)ds
}
dt

qs := L(X̄i
s), X̄i

0 = Xi,N
0 .

(2.8)

We will prove the following claim:
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Theorem 2.2.6. Under the hypothesis (H0), for any i ≥ 1 and any T > 0:

sup
N

√
NE[supt≤T |Xi,N

t − X̄i
t |] < ∞.

Proof. We adapt the arguments in [72, Thm. 1.4]. For simplicity, we drop N in the notation of
(2.7). In addition, C or CT will denote constants that may change from line to line. One has

E[sup
t≤T

|Xi
t − X̄i

t |] ≤ E

∫ T

0

∣∣∣
∫ s

0

1

N

N∑

j=1

L(s− α,X i
s −Xj

α)−
∫

L(s− α, X̄i
s − y)pα(dy)dα

∣∣∣ ds.

Let us note L̃(t− s, x− x′) = L(t− s, x− x′)−
∫
L(t− s, x− y)ps(dy). Notice that

∣∣∣
∫ s

0

1

N

N∑

j=1

L(s− α,X i
s −Xj

α)−
∫

L(s− α, X̄i
s − y)pα(dy) dα

∣∣∣

≤
∫ s

0

1

N

N∑

j=1

{|L(s− α,X i
s −Xj

α)− L(s− α, X̄i
s −Xj

α)|+ |L(s− α, X̄i
s −Xj

α)− L(s− α, X̄i
s − X̄j

α)|}dα

+
∣∣ 1
N

N∑

j=1

∫ s

0
L̃(s− α, X̄i

s − X̄j
α)dα

∣∣.

In view of (H0), one has

E[sup
t≤T

|Xi
t − X̄i

t |] ≤
∫ T

0

∫ s

0
h2(s− α)E|Xi

s − X̄i
s|dα ds

+

∫ T

0

∫ s

0
h2(s− α)

1

N

N∑

j=1

E|Xj
α − X̄j

α|dα ds+

∫ T

0
E
∣∣ 1
N

N∑

j=1

∫ s

0
L̃(s− α, X̄i

s − X̄j
α)dα

∣∣ ds.

Summing the previous expression over i going from 1 to N and using that for α ≤ s, one has
|Xj

α − X̄j
α| ≤ supr≤s |Xj

r − X̄j
r | and for s ≤ T , one has |Xj

s − X̄j
s | ≤ supr≤s |Xj

r − X̄j
r |, we get

N∑

i=1

E[sup
t≤T

|Xi
t − X̄i

t |] ≤ DT

∫ T

0

N∑

i=1

E[sup
r≤s

|Xj
r − X̄j

r |]ds+

+DT

∫ T

0

N∑

j=1

E[sup
r≤s

|Xj
r − X̄j

r |]ds+ CT

∫ T

0
E
∣∣ 1
N

N∑

j=1

∫ s

0
L̃(s− α, X̄i

s − X̄j
α)dα

∣∣ds

= CT

∫ T

0

N∑

j=1

E[sup
r≤s

|Xj
r − X̄j

r |]ds+ CT

∫ T

0
E
∣∣ 1
N

N∑

j=1

∫ s

0
L̃(s− α, X̄i

s − X̄j
α)dα

∣∣ds.

Gronwall’s lemma implies that

N∑

i=1

E[sup
t≤T

|Xi
t − X̄i

t |] ≤ CT

∫ T

0
E
∣∣ 1
N

N∑

j=1

∫ s

0
L̃(s− α, X̄i

s − X̄j
α)dα

∣∣ds.

Fix an 1 ≤ i ≤ N . By symmetry in law of (2.7) and (2.8), one has

E[sup
t≤T

|Xi
t − X̄i

t |] ≤ CT

∫ T

0
E
∣∣ 1
N

N∑

j=1

∫ s

0
L̃(s− α, X̄i

s − X̄j
α)dα

∣∣ ds.



31 2.2. Non-linear stochastic equations with smooth time and space interactions

After the Cauchy-Schwarz inequality, it comes

E[sup
t≤T

|Xi
t − X̄i

t |] ≤ CT

∫ T

0

√√√√√ E

N2




N∑

j=1

∫ s

0
L̃(s− α, X̄i

s − X̄j
α)dα




2

ds. (2.9)

Notice that L̃ is centered,

E[L̃(t− s, x− X̄i
s)] = E[L(t− s, x− X̄i

s)]−
∫

L(t− s, x− y)ρ(s, dy) = 0.

This together with the fact that X̄j1
α and X̄j2

α are independent for j1 6= j2, implies that the mixed
terms of the squared sum are zero. For the other terms we use that L is bounded by h1, and thus
L̃ also is. One gets

E

N2




N∑

j=1

∫ s

0
L̃(s− α, X̄i

s − X̄j
α)dα




2

≤ 1

N2

N∑

j=1

E

(∫ s

0
L̃(s− α, X̄i

s − X̄j
α)dα

)2

≤ D2
T

1

N
. (2.10)

Combine (2.10) and (2.9) in order to conclude the proof.

Notice that Theorem 2.2.6 implies QN is Q-chaotic. Namely, denote by Q2,N the law of the couple
(X1,N , X2,N ). Then, weak convergence of the probability measure Q2,N to the product measure

Q×Q implies Definition 2.2.5 for k = 2. Q2,N and Q×Q belong to the space P(2)
T of probability

measures on C((0, T );Rd)× C((0, T );Rd). The definition of the Wasserstein metric can naturally
be rewritten for such a space and will satisfy the analogues of (2.3) and (2.4). Denote the

1-Wasserstein metric on P(2)
T by D

(2)
1,T . Thus,

D
(2)
1,T (Q

2,N ,Q×Q) ≤ E[sup
s≤T

|(X1,N
s , X2,N

s )− (X̄1
s , X̄

2
s )| ∧ 1] ≤ E[sup

s≤T
|X1,N

s − X̄1
s |] + E[sup

s≤T
|X2,N

s − X̄2
s |].

Applying Theorem 2.2.6 and letting N → ∞, one gets D
(2)
1,T (Q

2,N ,Q×Q) → 0.

The propagation of chaos property enables one to conclude a numerical algorithm for
approximating the law Q. It tells us that when N is large enough the empirical measure of N
particles behaves like the limit law. Thus, the empirical measure of these particles in, for example,
time t will approximate the marginal Qt. The particles in (2.7) are themselves approximated by
an Euler scheme. A natural question arising once such a numerical algorithm is constructed, is
what the rates of convergence in the number of particles and time discretization step of the Euler
scheme are. A review of such results for a NLSDE without time interaction can be found in Bossy
[11]. In this thesis such question will not be treated. However, one can imagine that with a slight
change of hypothesis on the interaction kernel (same as we did in (H0) w.r.t. [72]) one can obtain
some of the results mentioned in [11]. This remains to be checked in some of our future works.

We conclude this section with the following remark:

Remark 2.2.7. All the obtained results may be generalized to a stochastic process of the type
{

dXt = σ(Xt)dWt +
{∫ t

0

∫
Rd L(t− s,Xt − y)Qs(dy) ds

}
dt+ b(t,Xt)dt, t ≤ T,

Qs := L(Xs), X0 ∼ p0,
(2.11)

where σ : Rd → Rd and b : (0, T )× Rd → Rd are uniformly bounded on (0, T )× Rd and Lipschitz
functions in space with a uniform constant with respect to time. In that case the 2-Wasserstein
metric should be used.
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2.3 The associated McKean-Vlasov-Fokker-Planck equation

In the sequel Q will denote the law of the process X constructed in Theorem 2.2.3. We aim to
establish a connection between the time marginals of Q and the following Fokker-Planck equation:

{
∂
∂tµt =

1
2△µt −∇ · (b(t, ·; (µs)s≤t)µt), t ∈ (0, T ),

µt=0 = q0.
(2.12)

As the initial condition q0 is a probability measure, from the probabilistic point of view, Equation
(2.12) describes the time evolution of a probability measure µt. Let us define the notion of weak
solution for (2.12).

Definition 2.3.1. A measurable family (µt)t≤T of probability measures on Rd is a weak solution
to (2.12) if for any f ∈ C2

b (R
d) and any t ∈ (0, T ) one has

∫

Rd

f(x)µt(dx) =

∫

Rd

f(x)q0(dx) +

∫ t

0

∫

Rd

∇f(x) · b(s, x;Q)µs(dx) ds+
1

2

∫ t

0

∫

Rd

△f(x)µs(dx) ds.

Hypothesis (H0) implies that everything makes sense in the preceding equation.

Proposition 2.3.2. The family (Qt)t≤T of probability measures on Rd has the following
properties:

i) For any t ∈ (0, T ], Qt admits a probability density function qt. In addition, qt ∈ Lp(Rd) for
any 1 < p < ∞ and

∀0 < t ≤ T : ‖qt‖Lp(Rd) ≤
C

t
d
2
(1− 1

p
)
e(λ

′− 1
2
)Tβ2

,

where β := supt≤T ‖b(t, ·; (Qr)r≤t‖.

ii) (qt)t≤T is a weak solution to (2.12).

Proof. i) This result is directly implied by Méléard and Roelly [53, Lemma 1.1] as b is bounded.
We write the proof in order to explicit the Lp-norm estimate in function of β and t. Let
t ∈ (0, T ], p > 1 and p′ such that 1

p + 1
p′ = 1. For f ∈ C∞

K (Rd), define the linear functional

Ht(f) :=

∫

Rd

f(x)Qt(dx) = E(f(Xt)).

In view of Girsanov’s theorem (e.g. [45, Chapter 3, Thm. 5.1]), one has

Ht(f) = E(f(Wt +X0)(ZT )
−1)),

where ZT is the exponential martingale

ZT := e−
∫ T
0 b(s,Xs;(Qr)r≤s)·dWs− 1

2

∫ T
0 |b(s,Xs;(Qr)r≤s)|2 ds.
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Remember that (H0) provides the boundness of b and thus by Novikov’s condition ZT is a
martingale. Now, choose 1 < q < p′ and q′ such that 1

q +
1
q′ = 1. Hölder’s inequality for

λ = p′

q and λ′ such that 1
λ + 1

λ′ = 1 leads to

|Ht(f)| ≤
(
E(|f(X0 +Wt)|λ)

) 1
λ
(
E((ZT )

−λ′
)
) 1

λ′
=: AB.

Applying Hölder’s inequality for q and q′,

A =

(∫ ∫
|f(x+ y)|λgt(y) dy q0(dx)

) 1
λ

≤
(∫ (∫

|f(x+ y)|p′ dy
) 1

q

‖gt‖Lq′ (Rd) q0(dx)

) 1
λ

=

(
‖f‖

p′
q

Lp′ (Rd)
‖gt‖Lq′ (Rd)

) q
p′

= ‖f‖Lp′ (Rd)

C

t
d
2
(1− 1

q′ )
q
p′
.

Notice that

Bλ′
= E

(
eλ

′ ∫ T
0 b(s,X0+Ws;(Qr)r≤s)·dWs−(λ′)2

∫ T
0 |b(s,X0+Ws;(Qr)r≤s)|2 ds

e((λ
′)2−λ′

2
)
∫ T
0 |b(s,X0+Ws;(Qr)r≤s)|2 ds

)
.

Apply the Cauchy-Schwarz inequality. It comes

Bλ′ ≤ e((λ
′)2−λ′

2
)Tβ2

.

Therefore,

|Ht(f)| ≤
C

t
d
2
(1− 1

p
)
e(λ

′− 1
2
)Tβ2‖f‖Lp′ (Rd).

Then, Ht is a bounded linear functional defined on a dense subspace of Lp′(Rd). Therefore,
it extends to a bounded linear functional on Lp′(Rd). By Riesz representation theorems (e.g.
[15, Thm. 4.11 and 4.14]), there exists a unique qt ∈ Lp(Rd) such that qt is the probability

density of Qt and ‖qt‖Lp(Rd) ≤ C

t
d
2 (1− 1

p )
e(λ

′− 1
2
)Tβ2

.

ii) Let f ∈ C2
b (R

d). Apply Itô’s formula on f(Xt):

f(Xt) = f(X0) +

∫ t

0
∇f(Xs) · b(s,Xs; (qu)u≤s) ds+

∫ t

0
∇f(Xs) · dWs +

1

2

∫ t

0
△f(Xs) ds.

Taking the expectation on both sides one gets the condition from Definition 2.3.1.

Another way to connect the process in (2.1) and the PDE (2.12) is to show that the family (qt)t≤T

satisfies the following mild formulation of (2.12) in the sense of the distributions:

µt = gt ∗ p0 −
d∑

i=1

∫ t

0
∇igt−s ∗ (bi(s, ·; (µu)u≤t)µs) ds. (2.13)

Here a convolution involving a measure ν and a function f should be understood as
(f ∗ ν)(x) =

∫
f(x− y)ν(dy).
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Proposition 2.3.3. The marginals (qt)t∈(0,T ] satisfy in the sense of the distributions the mild
equation (2.13).

Proof. In order to derive (2.13) from (2.1) for f ∈ C2
b (R

d) consider the Cauchy problem

{
∂G
∂s + 1

2△G = 0, 0 ≤ s < t, x ∈ Rd,

lims→t− G(s, x) = f(x).
(2.14)

The function

Gt,f (s, x) =

∫
f(y)gt−s(x− y)dy

is a smooth solution to (2.14) where gt denotes the density of Wt. Applying Itô’s formula to
Gt,f (t,Xt) we get

Gt,f (t,Xt)−Gt,f (0, X0) =

∫ t

0

∂Gt,f

∂s
(s,Xs)ds+

∫ t

0
∇Gt,f (s,Xs) · b(s,Xs;Q) ds

+

∫ t

0
∇Gt,f (s,Xs) · dWs+

1

2

∫ t

0
△Gt,f (s,Xs)ds.

In view of (2.2) and (2.14), we obtain

Ef(Xt) = EGt,f (0, X0) +

∫ t

0
E [∇Gt,f (s,Xs) · b(s,Xs;Q)] ds =: I + II. (2.15)

On the one hand one has

I =

∫ ∫
f(y)gt(x− y)dy q0(dx) =

∫
f(y)(gt ∗ q0)(y)dy.

On the second hand one has

II =

∫ t

0

∫
∇x

[ ∫
f(y)gt−s(x− y)dy

]
· b(s, x; (qu)u≤s)qs(x) dx ds

= −
∫ t

0

∫ ∫
f(y)∇gt−s(y − x)dy · b(s, x; (qu)u≤s)qs(x) dx ds

= −
d∑

i=1

∫
f(y)

∫ t

0
[∇igt−s ∗ (bi(s, ·; (qu)u≤s)qs)](y) ds dy.

Thus (2.15) can be written as

∫
f(y)qt(y) dy =

∫
f(y)(gt ∗ q0)(y) dy −

d∑

i=1

∫
f(y)

∫ t

0
[∇igt−s ∗ (bi(s, ·; (qu)u≤s)qs)](y) ds dy,

which is the mild equation (2.13).

Remark that by constructing the stochastic process, we have not just built a family of probability
measures on Rd that is a solution to the Fokker-Planck equation. In fact we have built an object
that belongs to much wider class, a probability measure Q on the space of trajectories
C([0, T ];Rd). In addition, the stochastic process can be seen as the time evolution of one
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individual in an infinite population following the dynamics in (2.12). Thus, a micro model for
(2.12) is obtained. Then, a tool as Girsanov transform can provide us with additional information
about the solution of the PDE, like in Proposition 2.3.2 - i). The reader will see another purely
probabilistic technique to obtain L∞(Rd)-norm estimates for the marginal densities in Section 3.3.
Finally, one should not forget the particle system associated to the stochastic process and now to
the PDE. The propagation of chaos property, proved in the previous chapter, tells us that the
empirical measure of large number of particles converges towards the law of the stochastic process
and by that to a solution of (2.12). Thus, a numerical method for approximating the PDE is
obtained. This method is purely probabilistic and it is quite convenient since its complexity grows
linearly with the dimension d and not exponentially as it is the case with the deterministic
numerical methods for elliptic and parabolic PDE’s.

Notice that all the results proven in this chapter are due to the regularity assumption (H0) on the
interaction kernel L. It allowed us to adapt the classical proof of Sznitman to show well-posedness
of our time and space interacting Mc-Kean Vlasov diffusion. It ensured the well-posedness and
propagation of chaos of the associated particle system even though the setting in it is
non-Markovian. Finally, it justified all the computations when interpreting the marginal laws of
the process as a solution to a non-linear Fokker-Planck equation.

The interaction kernel associated to the Keller-Segel system does not enjoy the regularity
properties supposed in this chapter and thus, the above arguments do not apply. A specific
analysis needs to be developed to overcome the singularity of the kernel. In particular, to prove
the well-posedness of the mean field limit and of the associated system of particles one needs to
develop specific and original techniques of analysis.





Chapter 3

The one-dimensional case: The non-linear

stochastic equation

This chapter is written in collaboration with Denis Talay and it is available as a preprint [73].

3.1 Introduction

The standard d-dimensional parabolic–parabolic Keller–Segel model for chemotaxis describes the
time evolution of the density ρt of a cell population and of the concentration ct of a chemical
attractant: 




∂tρ(t, x) = ∇ · (12∇ρ− χρ∇c)(t, x), t > 0, x ∈ Rd,

α ∂tc(t, x) =
1
2△c(t, x)− λc(t, x) + ρ(t, x), t > 0, x ∈ Rd.

ρ(0, x) = ρ0(x), c(0, x) = c0(x).

(3.1)

For theoretical results on this system of PDEs and applications to Biology see Chapter 1.

Recently, stochastic interpretations have been proposed for a simplified version of the model, that
is, the parabolic-elliptic model which corresponds to the case α = 0. These interpretations all rely
on the fact that, in the parabolic-elliptic case, the equations for ρt and ct can be decoupled and ct
can be explicated as the convolution of ρt and a logarithmic kernel. Consequently, the
corresponding stochastic process of McKean–Vlasov type whose ρt is the time marginal density
involves the singular interaction kernel k(x) = − x

2π|x|2 (when λ = 0). This explains why, so far,

only partial results are obtained and heavy techniques are used to get them. A review of the
works by Haškovec and Schmeiser [36], Fournier and Jourdain [31] and Cattiaux and Pédèches [21]
is given in Section 1.4.

Budhiraja and Fan [17] have studied a McKean–Vlasov SDE related to a parabolic–parabolic
version of the model with a smooth coupling between ρ and c and a forcing potential term. Under
a suitable convexity assumption on the additional term, they obtain uniform in time concentration
inequalities for the corresponding particle system and uniform in time error estimates for a
numerical approximation of the exact McKean–Vlasov process.

We here deal with the parabolic–parabolic system (α > 0) without cut-off and study the
McKean-Vlasov stochastic representation of the mild formulation of the equation satisfied by ρt.
This representation involves a singular interaction kernel which is different from the one in the
above mentioned approaches and does not seem to have been studied in the McKean-Vlasov

37
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non-linear SDE literature. The system reads
{

dXt = b♯(t,Xt)dt+
{∫ t

0 (K
♯
t−s ∗ ps)(Xt)ds

}
dt+ dWt, t > 0,

ps(y)dy := L(Xs), X0 ∼ ρ0(x)dx,
(3.2)

where K♯
t (x) := χe−λt∇( 1

(2πt)d/2
e−

|x|2
2t ) and b♯(t, x) := χe−λt∇Ec0(x+Wt). Here, (Wt)t≥0 is a

d-dimensional Brownian motion defined on a filtered probability space (Ω,F ,P, (Ft)) and X0 is an
Rd-valued F0−measurable random variable. Notice that the formulation requires that the one
dimensional time marginals of the law of the solution are absolutely continuous with respect to
Lebesgue’s measure and that the process interacts with all the past time marginals of its
probability distribution through a functional involving a singular kernel.

The analysis of the well-posedness of this non-linear stochastic equation and the proof that ps is a
solution to (3.2) for any s are delicate, particularly in the multi-dimensional case when χ is large
enough to induce solutions with blow-ups in finite time (see Chapter 6). As numerical simulations
of the related particle system in Chapter 7 appear to be effective, it seems interesting to validate
our approach in the one-dimensional case.

The objective of this chapter is to prove general existence and uniqueness results for both the
deterministic system (3.1) and the stochastic dynamics (3.2) in d = 1. In Chapter 5 we show the
well-posedness and propagation of chaos property of the corresponding particle system where each
particle interacts with all the past of the other ones by means of a time integrated singular kernel.

In this one-dimensional framework the PDE (3.1) was previously studied by Osaki and Yagi [60]
and Hillen and Potapov [40] in bounded intervals I with periodic boundary conditions while we
here deal with the problem posed on the whole space R. In [60] one assumes ρ0 ∈ L2(I) ∩ L1(I),
c0 ∈ H1(I) and infI c0(x) > 0. In [40] one assumes ρ0 ∈ L∞(I) ∩ L1(I) and c0 ∈ W σ,p(I), where p
and σ belong to a particular set of parameters. Here, we only suppose that ρ0 is in L1(R).

We emphasize that we do not limit ourselves to the specific kernel K♯
t (x) related to the

Keller–Segel model. We below show that the stochastic differential equation of Keller-Segel type is
well-posed for a whole class of time integrated singular kernels. Due to the singular nature of the
kernel, the mean-field SDE cannot be analyzed by means of standard coupling methods or
Wasserstein distance contractions as in Chapter 2. Both to construct local in time solutions and
to go from local to global solutions, an important issue consists in properly defining the set of
weak solutions. Namely, without any assumption on the initial density ρ0, we need to introduce
some constraints on the time marginal densities. To prove that these constraints are satisfied in
the limit of an iterative procedure (where the kernel is not cut off), the norms of the successive
time marginal densities cannot be allowed to exponentially depend on the L∞-norm of the
successive corresponding drifts. They neither can be allowed to depend on Hölder-norms of the
drifts. Therefore, we use an accurate estimate (with explicit constants) on densities of
one-dimensional diffusion processes with bounded measurable drifts which is obtained by a
stochastic technique rather than the PDE techniques. This strategy allows us to get uniform
bounds on the sequence of drifts, which is essential to get existence and uniqueness of the local
solution to the non-linear martingale problem solved by any limit of the Picard procedure, and to
suitably paste local solutions when constructing the global solution.

The chapter is organized as follows. In Section 3.2 we state our main results. In Section 3.3 we
prove a preliminary estimate on the probability density of diffusion processes whose drift is only
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supposed Borel measurable and bounded. In Section 3.4 we study a non-linear
McKean-Vlasov-Fokker-Planck equation. In Section 3.5 we prove the local existence and
uniqueness of a solution to a non-linear stochastic differential equation more general than (3.2)
(for d = 1). In Section 3.6 we get the global well-posedness of this equation. In Section 3.7 we
apply the preceding result to the specific case of the one-dimensional parabolic–parabolic
Keller-Segel model. The appendix section 3.8 concerns an explicit formula for the transition
density of a particular diffusion. The appendix section 3.9 is a reminder on standard convolution
inequalities (used in this Chapter and some of the following ones).

Notation. In all the chapter we denote by CT , CT (b0, p0), etc., any constant which depends on
T and the other specified parameters, but is uniform w.r.t. t ∈ [0, T ] and may change from line. In
addition, for 1 ≤ p, q ≤ ∞ the space Lq((0, T );Lp(R)) denotes the space of functions

f : (0, T )× R → R such that
∫ T
0 ‖f(t, ·)‖qLp(R)dt < ∞.

3.2 Our main results

Our first main result concerns the well-posedness of a non-linear one-dimensional stochastic
differential equation (SDE) with a non standard McKean–Vlasov interaction kernel which at each
time t involves in a singular way all the time marginals up to time t of the probability distribution
of the solution. As our technique of analysis is not limited to the above kernel K♯, we consider the
following McKean-Vlasov stochastic equation:

{
dXt = b(t,Xt)dt+

{∫ t
0 (Kt−s ∗ ps)(Xt)ds

}
dt+ dWt, t ≤ T,

ps(y)dy := L(Xs), X0 ∼ p0,
(3.3)

and in all the sequel we assume the following conditions on the interaction kernel.

Hypothesis (H). The function K defined on R+ × R is such that for any T > 0:

1. For any t > 0, Kt is in L1(R).

2. For any t > 0 the function Kt(x) is a bounded continuous function on R.

3. The set of points x ∈ R such that limt→0Kt(x) < ∞ has full Lebesgue measure.

4. For any t > 0, the function f1(t) :=
∫ t
0

‖Kt−s‖L1(R)√
s

ds is well defined and bounded on [0, T ].

5. For any T > 0 there exists CT such that, for any probability density φ on R,

sup
(t,x)∈(0,T ]×R

∫
φ(y)‖K·(x− y)‖L1(0,t) dy ≤ CT .

6. Finally,

sup
0≤t≤T

∫ T

0
‖KT+t−s‖L1(R)

1√
s
ds ≤ CT .
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As emphasized in the introduction, the well-posedness of the system (3.3) cannot be obtained by
applying known results in the literature.

Given (t, x) ∈ R+ × R and a family of densities (pt)t≤T we set

B(t, x; p) :=

∫ t

0
(Kt−s ∗ ps)(x)ds. (3.4)

We now define the notion of a weak solution to (3.3).

Definition 3.2.1. The family (Ω,F ,P, (Ft), X,W ) is said to be a weak solution to the equation
(3.3) up to time T > 0 if:

1. (Ω,F ,P, (Ft)) is a filtered probability space.

2. The process X := (Xt)t∈[0,T ] is real-valued, continuous, and (Ft)-adapted. In addition, the
probability distribution of X0 has density p0.

3. The process W := (Wt)t∈[0,T ] is a one-dimensional (Ft)-Brownian motion.

4. The probability distribution P ◦X−1 has time marginal densities (pt, t ∈ [0, T ]) with respect
to Lebesgue measure which satisfy

∀0 < t ≤ T, ‖pt‖L∞(R) ≤
CT√
t
. (3.5)

5. For all t ∈ [0, T ] and x ∈ R, one has that
∫ t
0 |b(s, x)| ds < ∞.

6. P-a.s. the pair (X,W ) satisfies (3.3).

Remark 3.2.2. For any T > 0, Inequality (3.5) and Hypothesis (H-4) lead to

sup
0≤t≤T

sup
x∈R

|B(t, x, p)| ≤ CT .

The following theorem provides existence and uniqueness of the weak solution to (3.3).

Theorem 3.2.3. Let T > 0. Suppose that p0 ∈ L1(R) is a probability density function and
b ∈ L∞([0, T ]× R) is continuous w.r.t. the space variable. Under the hypothesis (H), Eq. (3.3)
admits a unique weak solution in the sense of Definition 3.2.1.

We finally state an easy result which is useful to prove the propagation of chaos in the case of
Keller-Segel kernel (see Chapter 5):

Corollary 3.2.4. In addition to the assumptions of Theorem 3.2.3 suppose the following
hypothesis:

H-7. for any t > 0, Kt is in L2(R) and the function f2(t) :=
∫ t
0

‖Kt−s‖L2(R)

s1/4
ds is well defined and

bounded on [0, T ].
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Then, there exists a unique weak solution to (3.3) in the sense of the Definition 3.2.1 modified as
follows: Instead of (3.5) one imposes

∀0 < t ≤ T, ‖pt‖L2(R) ≤
CT

t1/4
. (3.6)

Our next result concerns the well-posedness of the one-dimensional parabolic-parabolic
Keller-Segel model





∂ρ

∂t
(t, x) =

∂

∂x
· (1
2

∂ρ

∂x
− χρ

∂c

∂x
)(t, x), t > 0, x ∈ R,

∂c

∂t
(t, x) =

1

2

∂2c

∂x2
(t, x)− λc(t, x) + ρ(t, x), t > 0, x ∈ R,

ρ(0, x) = ρ0(x), c(0, x) = c0(x), x ∈ R,

(3.7a)

(3.7b)

where χ > 0 and λ ≥ 0. As this system preserves the total mass, that is,

∀t > 0,

∫

Ω
ρ(t, x)dx =

∫

Ω
ρ0(x)dx =: M,

the new functions ρ̃(t, x) := ρ(t,x)
M and c̃(t, x) := c(t,x)

M satisfy the system (3.7) with the new
parameter χ̃ := χM . Therefore, w.l.o.g. we may and do thereafter assume that M = 1.

Denote by gt the density of Wt. We define the notion of solution for the system (3.7):

Definition 3.2.5. Given the functions ρ0 and c0, and the constants χ > 0, λ ≥ 0, T > 0, the pair
(ρ, c) is said to be a solution to (3.7) if ρ(t, ·) is a probability density function for every 0 ≤ t ≤ T ,
c is in L∞([0, T ];C1

b (R)), one has ‖ρ(t, ·)‖L∞(R) ≤ CT√
t
for any t ∈ (0, T ], and the following equality

ρ(t, x) = gt ∗ ρ0(x)− χ

∫ t

0

∂gt−s

∂x
∗ ( ∂c

∂x
(s, ·) ρ(s, ·))(x) ds (3.8)

is satisfied in the sense of the distributions with

c(t, x) = e−λt(g(t, · ) ∗ c0)(x) +
∫ t

0
e−λs(gs ∗ ρ(t− s, ·))(x) ds. (3.9)

Notice that the function c(t, x) defined by (3.9) is a mild solution to (3.7b). These solutions are
known as integral solutions and they have already been studied in PDE literature for the
two-dimensional Keller-Segel model for which sub-critical and critical regimes exist depending on
the parameters of the model (see [22] and references therein). In the one-dimensional case there is
no critical regime as shown by the following result.

Corollary 3.2.6. Assume that ρ0 ∈ L1(R) and c0 ∈ C1
b (R). Given any χ > 0, λ ≥ 0 and T > 0,

the time marginals ρ(t, x) ≡ pt(x) of the probability distribution of the unique solution to Eq. (3.2)
with d = 1 and the corresponding function c(t, x) provide a global solution to (3.7) in the sense of
Definition 3.2.5. Any other solution (ρ1, c1) with the same initial condition (ρ0, c0) satisfies

‖ρ1(t, ·)− ρ(t, ·)‖L1(R) = 0 and ‖∂c1

∂x (t, ·)− ∂c
∂x(t, ·)‖L1(R) = 0 for every 0 ≤ t ≤ T .

Remark 3.2.7. From estimates in Section 3.3 we could deduce some additional regularity results
which we do not need here: See Remark 3.3.3. In particular, if ρ0 ∈ L∞(R), then
ρ ∈ L∞([0, T ];L1 ∩ L∞(R)). If ρ0 ∈ L2(R), then ρ ∈ L∞([0, T ];L1 ∩ L2(R)) and
t1/4‖ρt‖L∞(R) ≤ C; in addition, one can then easily find modifications of the hypotheses on the
kernel K allowing to get unique weak solutions with constraints on ‖pt‖L2(R). We prefer to only
suppose that ρ0 ∈ L1(R).
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3.3 Preliminary: A density estimate

In the sequel, we will get local solutions to (3.3) and extend them to global solutions by means of
an iterative procedure. The L∞-norms of the successive drifts are needed to be bounded from
above uniformly w.r.t. the iteration step. Standard density estimates obtained by using Girsanov
theorem or PDE analysis do not help to this purpose. The reason is that they involve constants
which exponentially depend on the L∞-norm (or even Hölder-norm) of the drifts. Namely, let X(b)

be a process defined by

X
(b)
t = X0 +

∫ t

0
b(s,X(b)

s ) ds+Wt, t ∈ [0, T ], (3.10)

where X0 = x. Suppose that the drift b(·, ·) is measurable and uniformly bounded. Denote by
β := supt∈[0,T ] ‖b(t, ·)‖L∞(R) and by p(t, x, y) the transition probability density of X(b). Formally,
from the mild equation satisfied by p, one gets

‖p(t, x, ·)‖L∞(R) ≤
C√
t
+ Cβ

∫ t

0

‖p(s, x, ·)‖L∞(R)√
t− s

ds.

Then, a Singular Gronwall lemma leads to an estimate that depends exponentially of β. To avoid
Gronwall’s lemma, we could use the fact that, in view of [53, Prop. 1.1], for any t > 0 one has
p(t, x, ·) ∈ Lq(R) with 1 < q < ∞. However, the proof is based on the Girsanov transform (see
Section 2.3) and therefore the Lq(R)-norm of the density depends exponentially of β. Thus, if we
would apply such an estimate in the mild equation instead of a Gronwall lemma as above, still we
would not avoid the exponential dependence on β.

We therefore proceed by using an accurate pointwise estimate (with explicit constants) on
densities of one-dimensional diffusions with bounded measurable drifts. Estimate (3.11) below is

obtained by using a stochastic technique. Its drawback is that the map y 7→ pβy (t, x, y) is not a
probability density function. However, it suffices to nicely bound the successive drifts of the
Picard iterations as shown by Proposition 3.5.3.

To obtain L∞(R) estimates for the transition probability density p(b)(t, x, y) of X(b) under the
only assumption that the drift b(t, x) is measurable and uniformly bounded we slightly extend the
estimate proved in Qian and Zheng [66] for time homogeneous drift coefficients b(x). We here
propose a proof different from the original one. It avoids the use of densities of pinned diffusions
and the claim that p(b)(t, x, y) is continuous w.r.t. all the variables which does not seem obvious to
us. In our proof we adapt the method in Makhlouf [52], the main difference being that instead of
the Wiener measure our reference measure is the probability distribution of the particular
diffusion process Xβ considered in [66] and defined by

Xβ
t = X0 + β

∫ t

0
sgn(y −Xβ

s ) ds+Wt.

Theorem 3.3.1. Let X(b) be the process defined in (3.10) with X0 = x. Let pβy (t, x, z) be the
transition density of Xβ. Assume β := supt∈[0,T ] ‖b(t, ·)‖∞ < ∞. Then for all y ∈ R and t ∈ (0, T ]
it holds that

p(b)(t, x, y) ≤ pβy (t, x, y) =
1√
2πt

∫ ∞

|x−y|√
t

ze−
(z−β

√
t)2

2 dz. (3.11)
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Proof. Let f ∈ C∞
K (R) and fix t ∈ (0, T ]. Consider the parabolic PDE driven by the infinitesimal

generator of Xβ :
{

∂u
∂t (s, x) +

1
2
∂2u
∂x2 (s, x) + βsgn(y − x)∂u∂x(s, x) = 0, 0 ≤ s < t, x ∈ R,

u(t, x) = f(x), x ∈ R.
(3.12)

In view of Veretennikov [78, Thm. 1] there exists a solution u(s, x) ∈ W 1,2
p ([0, t]×R). Applying

the Itô-Krylov formula to u(s,Xβ
s ) we obtain that

u(s, x) =

∫
f(z)pβy (t− s, x, z) dz.

The formula (3.35) from our appendix allows us to differentiate under the integral sign:

∂u

∂x
(s, x) =

∫
f(z)

∂pβy
∂x

(t− s, x, z) dz, ∀0 ≤ s < t ≤ T.

Fix 0 < ε < t. Now apply the Itô-Krylov formula to u(s,X
(b)
s ) for 0 ≤ s ≤ t− ε and use the

PDE (3.12). It comes:

E(u(t− ε,X
(b)
t−ε)) = u(0, x) + E

∫ t−ε

0
(b(s,X(b)

s )− βsgn(y −X(b)
s ))

∂u

∂x
(s,X(b)

s ) ds.

In view of Corollary 3.8.2 in the appendix there exists a function h ∈ L1([0, t]× R) such that

∀0 < s < t ≤ T, ∀y, z ∈ R, E

∣∣∣∣∣
∂pβy
∂x

(t− s,X(b)
s , z)

∣∣∣∣∣ ≤ CT,β,x,yh(s, z). (3.13)

Consequently,

E(u(t− ε,X
(b)
t−ε)) =

∫
f(z)pβy (t, x, z) dz

+

∫
f(z)

∫ t−ε

0
E

{
(b(s,X(b)

s )− βsgn(y −X(b)
s ))

∂pβy
∂x

(t− s,X(b)
s , z)

}
ds dz.

Let now ǫ tend to 0. By Lebesgue’s dominated convergence theorem we obtain
∫

f(z)p(b)(t, x, z)dz =

∫
f(z)pβy (t, x, z)dz

+

∫
f(z)

∫ t

0
E

{
(b(s,X(b)

s )− βsgn(y −X(b)
s ))

∂pβy
∂x

(t− s,X(b)
s , z)

}
ds dz.

Therefore the density p(b) satisfies:

p(b)(t, x, z) = pβy (t, x, z) +

∫ t

0
E

{
(b(s,X(b)

s )− βsgn(y −X(b)
s ))

∂pβy
∂x

(t− s,X(b)
s , z)

}
ds.

As noticed in [66], in view of Formula (3.36) from our appendix we have for any x ∈ R

(b(s, x)− βsgn(y − x))
∂

∂x
pβy (t− s, x, y) ≤ 0.
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This leads us to choose z = y in the preceding equality, which gives us

p(b)(t, x, y) = pβy (t, x, y) +

∫ t

0
E

{
(b(s,X(b)

s )− βsgn(y −X(b)
s ))

∂pβy
∂x

(t− s,X(b)
s , y)

}
ds,

from which
∀t ≤ T, p(b)(t, x, y) ≤ pβy (t, x, y).

We finally use Qian and Zheng’s explicit representation (see [66] and our appendix section 3.8).

Corollary 3.3.2. Assume X0 is distributed according to the probability density function p0 on R.

Denote by p(t, ·) the probability density of X
(b)
t . One has

‖p(t, ·)‖L∞(R) ≤
1√
2πt

+ β. (3.14)

Proof. In view of (3.11) we have

p(t, y) ≤ 1√
2πt

∫
p0(x)

∫ ∞

|x−y|√
t

ze−
(z−β

√
t)2

2 dz dx

≤ 1√
2πt

∫
p0(x)

∫ ∞

|x−y|√
t

−β
√
t
(z + β

√
t)e−

z2

2 dz dx

=
1√
2πt

(

∫
p0(x)e

− (|x−y|−βt)2

2t dx+ β
√
t

∫
p0(x)

∫ ∞

|x−y|√
t

−β
√
t
e−

z2

2 dz dx)

≤ 1√
2πt

∫
p0(x)e

− (|y−x|−βt)2

2t dx+ β.

Remark 3.3.3. If p0 ∈ L∞(R), the above calculation shows that

‖p(t, ·)‖L∞(R) ≤ 2‖p0‖L∞(R) + β.

If p0 ∈ Lq(R), q > 1, Hölder’s inequality leads to

1√
2πt

∫
p0(x)e

− (|y−x|−βt)2

2t dx ≤
‖p0‖Lq(R)√

2πt
(

∫
e−q

(|y−x|−βt)2

2t dx)1/q
′ ≤ Cqt

1
2q′

√
t

=
Cq

t
1
2q

.

3.4 A non-linear McKean–Vlasov–Fokker–Planck equation

Proposition 3.4.1. Let T > 0. Assume p0 ∈ L1(R), b ∈ L∞([0, T ]× R) and Hypothesis (H). Let
(Ω,F ,P, (Ft), X,W ) be a weak solution to (3.3) until T . Then,

1. The marginals (pt)t∈[0,T ] satisfy in the sense of the distributions the mild equation

∀t ∈ (0, T ], pt = gt ∗ p0 −
∫ t

0

∂gt−s

∂x
∗ (ps(b(s, ·) +B(s, · ; p))ds. (3.15)
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2. Equation (3.15) admits at most one solution (pt)t∈[0,T ] which for any t ∈ [0, T ] belongs to
L1(R) and satisfies (3.5).

Proof. We successively prove (3.15) and the uniqueness of its solution in L1(R).

1. Now, for f ∈ C2
b (R) consider the Cauchy problem

{
∂G
∂s (s, x) +

1
2
∂2G
∂x2 (s, x) = 0, 0 ≤ s < t, x ∈ R,

lims→t− G(s, x) = f(x).
(3.16)

The function

Gt,f (s, x) =

∫
f(y)gt−s(x− y)dy

is a smooth solution to (3.16). Applying Itô’s formula we get

Gt,f (t,Xt)−Gt,f (0, X0) =

∫ t

0

∂Gt,f

∂s
(s,Xs)ds+

∫ t

0

∂Gt,f

∂x
(s,Xs)(b(s,Xs) +B(s,Xs; p))ds

+

∫ t

0

∂Gt,f

∂x
(s,Xs)dWs+

1

2

∫ t

0

∂2Gt,f

∂x2
(s,Xs)ds.

Using (3.16) we obtain

Ef(Xt) = EGt,f (0, X0) +

∫ t

0
E

[
∂Gt,f

∂x
(s,Xs)(b(s,Xs) +B(s,Xs; p))

]
ds =: I + II. (3.17)

On the one hand, one has

I =

∫ ∫
f(y)gt(y − x)dy p0(x)dx =

∫
f(y)(gt ∗ p0)(y)dy.

On the second hand, one has

II =

∫ t

0

∫
∂

∂x

[ ∫
f(y)gt−s(x− y)dy

]
(b(s, x) +B(s, x; p))ps(x)dxds

=

∫ t

0

∫ ∫
f(y)

∂gt−s

∂x
(x− y)dy(b(s, x) +B(s, x; p))ps(x)dxds

= −
∫

f(y)

∫ t

0
[
∂gt−s

∂x
∗ ((b(s, ·) +B(s, ·; p))ps)](y)dsdy.

Thus (3.17) can be written as

∫
f(y)pt(y)dx =

∫
f(y)(gt ∗ p0)(y)dy −

∫
f(y)

∫ t

0
[
∂gt−s

∂x
∗ ((b(s, ·) +B(s, ·; p))ps)](y)dsdy,

which is the mild equation (3.15).
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2. Assume p1t and p2t are two mild solutions in the sense of the distributions to (3.15) which
satisfy

∃C > 0, ∀t ∈ (0, T ], ‖p1t ‖L∞(R) + ‖p2t ‖L∞(R) ≤
CT√
t
.

Then,

‖p1t − p2t ‖L1(R) ≤
∫ t

0
‖∂gt−s

∂x
∗ [B(s, · ; p1)p1s −B(s, · ; p2)p2s)‖L1(R)ds

+

∫ t

0
‖∂gt−s

∂x
∗ [b(s, · )(p1s − p2s)]‖L1(R)ds

≤
∫ t

0
‖∂gt−s

∂x
∗ [(B(s, ·; p1)−B(s, ·; p2))p1s]‖L1(R)ds

+

∫ t

0
‖∂gt−s

∂x
∗ [(p1s − p2s)B(s, · ; p2)]‖L1(R)ds

+

∫ t

0
‖∂gt−s

∂x
∗ [b(s, · )(p1s − p2s)]‖L1(R)ds

=: I + II + III.

As

‖∂gt−s

∂x
‖L1(R) =

C√
t− s

,

the convolution inequality (3.37) and Remark 3.2.2 lead to

II ≤
∫ t

0
‖∂gt−s

∂x
‖L1(R)‖(p1s − p2s)B(s, ·; p2)‖L1(R)ds ≤ CT

∫ t

0

‖p1s − p2s‖L1(R)√
t− s

ds.

As b is bounded, we also have

|III| ≤ CT

∫ t

0

‖p1s − p2s‖L1(R)√
t− s

ds.

We now turn to I. Notice that

‖B(s, ·; p1)−B(s, ·; p2)‖L1(R) ≤
∫ s

0
‖Ks−τ‖L1(R)‖p1τ − p2τ‖L1(R)dτ,

from which, since by hypothesis (pt) satisfies (3.5), one has

I ≤
∫ t

0

CT√
t− s

√
s

∫ s

0
‖Ks−τ‖L1(R)‖p1τ − p2τ‖L1(R)dτ ds

≤
∫ t

0
‖p1τ − p2τ‖L1(R)

∫ t

τ

CT√
t− s

√
s
‖Ks−τ‖L1(R)ds dτ.

In addition, using Hypothesis (H-4),

∫ t

τ

1√
t− s

√
s
‖Ks−τ‖L1(R)ds ≤

1√
τ

∫ t

τ

1√
t− s

‖Ks−τ‖L1(R)ds =
1√
τ

∫ t−τ

0

‖Ks‖L1(R)√
t− τ − s

ds ≤ CT√
τ
.
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It comes:

I ≤ CT

∫ t

0

‖p1τ − p2τ‖L1(R)√
τ

dτ.

Gathering the preceding estimates we obtain

‖p1t − p2t ‖L1(R) ≤ CT

∫ t

0

‖p1s − p2s‖L1(R)√
t− s

ds+ CT

∫ t

0

‖p1s − p2s‖L1(R)√
s

ds.

Applying a Singular Gronwall Lemma (see Lemma 3.4.2 below), we conclude

∀t ∈ (0, T ], ‖p1t − p2t ‖L1(R) = 0,

which ends the proof.

In the above proof we have used the following result:

Lemma 3.4.2. Let (u(t))t≥0 be a non-negative bounded function such that for a given T > 0,
there exists a positive constant CT such that for any t ∈ (0, T ]:

u(t) ≤ CT

∫ t

0

u(s)√
s
ds+ CT

∫ t

0

u(s)√
t− s

ds. (3.18)

Then, u(t) = 0 for any t ∈ (0, T ].

Proof. The relation in (3.18) reduces to

u(t) ≤ 2CT

√
t

∫ t

0

u(s)√
s
√
t− s

ds.

Iterating the preceding expression, one gets

u(t) ≤ (2CT )
2
√
t

∫ t

0

√
s√

s
√
t− s

∫ s

0

u(r)√
s− r

√
r
dr ds.

Fubini’s theorem leads to

u(t) ≤ (2CT )
2
√
t

∫ t

0

u(r)√
r

∫ s

0

1√
t− s

√
s− r

ds dr.

Using the definition of the β-function one arrives to

u(t) ≤ (2CT )
2
√
Tβ(

1

2
,
1

2
)

∫ t

0

u(r)√
r
dr.

Now, apply the classical Gronwall lemma to finish the proof.

3.5 A local existence and uniqueness result for Equation (3.3)

Set

D(T ) :=

∫ T

0

∫

R

|Kt(x)|dxdt < ∞. (3.19)

The main result in this section is the following theorem.

Theorem 3.5.1. Let T0 > 0 be such that D(T0) < 1. Assume p0 ∈ L1(R) and b ∈ L∞((0, T0)×R)
continuous w.r.t. space variable. Under Hypothesis (H), Equation (3.3) admits a unique weak
solution up to T0.
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Iterative procedure. Consider the following sequence of SDE’s. For k = 1

{
dX1

t = b(t,X1
t ) dt+

{∫ t
0 (Kt−s ∗ p0)(X1

t )ds
}
dt+ dWt,

X1
0 ∼ p0.

(3.20)

Denote the drift of this equation by b1(t, x). Supposing that, in the step k − 1, the one
dimensional time marginals of the law of the solution have densities (pk−1

t )t≥0, we define the drift
in the step k as

bk(t, x, pk−1) = b(t, x) +B(t, x; pk−1),

where B is as in (3.4). The corresponding SDE is

{
dXk

t = bk(t,Xk
t , p

k−1)dt+ dWt,

Xk
0 ∼ p0.

(3.21)

In order to prove the desired local existence and uniqueness result we set up the non-linear
martingale problem related to (3.3).

Definition 3.5.2. A probability measure Q on the canonical space C([0, T0];R) equipped with its
canonical filtration and a canonical process (wt) is a solution to the non-linear martingale problem
(MP (p0, T0, b)) if:

(i) Q0 = p0.

(ii) For any t ∈ (0, T0], the one dimensional time marginals of Q, denoted by Qt, have densities
qt w.r.t. Lebesgue measure on R. In addition, they satisfy

∀0 < t ≤ T0, ‖qt‖L∞(R) ≤
CT0√

t
. (3.22)

(iii) For any f ∈ C2
K(R) the process (Mt)t≤T0, defined as

Mt := f(wt)−f(w0)−
∫ t

0

[1
2

∂2f

∂x2
(wu)+

∂f

∂x
(wu)(b(u,wu)+

∫ u

0

∫
Ku−τ (wu−y)qτ (y)dydτ

)
]du

is a Q-martingale.

Notice that the arguments in Remark 3.2.2 justify that all the integrals in the definition of Mt are
well defined.

We start with the analysis of Equations (3.20)-(3.21).

Proposition 3.5.3. Same assumptions as in Theorem 3.5.1. Then, for any k ≥ 1, Equations
(3.20)-(3.21) Equations (3.20)-(3.21) admit unique weak solutions up to T0. For k ≥ 1, denote by
Pk the law of (Xk

t )t≤T0. Moreover, for t ∈ (0, T0], the time marginals Pk
t of Pk have densities pkt

w.r.t. Lebesgue measure on R. Setting βk = supt≤T0
‖bk(t, ·, pk−1)‖L∞(R) and b0 := ‖b‖L∞([0,T0]×R),

one has

∀0 < t ≤ T0, ‖pkt ‖L∞(R) ≤
C(b0, T0)√

t
and βk ≤ C(b0, T0).
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Finally, there exists a function p∞ ∈ L∞([0, T0];L
1(R)) such that

sup
t≤T0

‖pkt − p∞t ‖L1(R) → 0, as k → ∞.

Moreover,

∀0 < t ≤ T0, ‖p∞t ‖L∞(R) ≤
C(b0, T0)√

t
. (3.23)

Proof. We proceed by induction.

Case k = 1. In view of (H-5), one has β1 ≤ b0 +CT0 . This implies that the equation (3.20) has a
unique weak solution in [0, T0] with time marginal densities (p1t )t≤T0 which in view of Corollary
3.3.2 satisfy

∀t ∈ (0, T0], ‖p1t ‖L∞(R) ≤
1√
2πt

+ β1.

Case k > 1. Assume now that the equation for Xk has a unique weak solution and assume βk is
finite. In addition, suppose that the one dimensional time marginals satisfy

∀t ∈ (0, T0], ‖pkt ‖L∞(R) ≤
1√
2πt

+ βk.

In view of (H-4), the new drift satisfies

|bk+1(t, x; pk)| ≤ b0 +

∫ t

0
‖pks‖L∞(R)‖Kt−s‖L1(R)ds ≤ b0 +

∫ t

0
(

1√
2πs

+ βk)‖Kt−s‖L1(R)ds

≤ b0 + CT0 + βkD(T0).

Thus, we conclude that βk+1 ≤ b0 + CT0 + βkD(T0). Therefore, there exists a unique weak
solution to the equation for Xk+1. Furthermore, by Corollary 3.3.2:

∀t ∈ (0, T0], ‖pk+1
t ‖L∞(R) ≤

CT0√
t
+ βk+1.

Notice that

∀k > 1, βk+1 ≤ b0 + CT0 + βkD(T0) and β1 ≤ b0 + CT0 .

Thus, as D(T0) < 1, iterating the previous relation we have

∀k ≥ 1, βk ≤ b0 + CT0

1−D(T0)
+ b0 + CT0 (3.24)

and

‖pkt ‖L∞(R) ≤
CT0√

t
+ βk ≤ CT0√

t
+

b0 + CT0

1−D(T0)
+ b0 + CT0 . (3.25)

Finally, it remains to prove that the sequence pk converges in L∞([0, T0];L
1(R)). In order to do

so, we will prove pk is a Cauchy sequence. As the space is Banach’s, the convergence will follow.
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Applying the same procedure as in Section 3.4, one can derive the mild equation for (pkt )t∈[0,T0].

Thus, for every k ≥ 1, the marginals (pkt )t∈(0,T0] satisfy the mild equation

∀t ∈ (0, T ], pkt = gt ∗ p0 −
∫ t

0

∂gt−s

∂x
∗ (pksbk(s, ·, pk−1))ds (3.26)

in the sense of the distributions. Assume for a moment that we have proved that for any
0 < t ≤ T0, one has

‖pkt − pk−1
t ‖L1(R) ≤ CT0

∫ t

0

‖pk−1
s − pk−2

s ‖L1(R)√
s

ds. (3.27)

Remember that
∫ t
0 f(u1) . . .

∫ uk−1

0 f(uk)duk . . . du1 =
1
k!

(∫ t
0 f(u)du

)k
for any positive integrable

function f . Then, iterating (3.27) one gets,

‖pkt − pk−1
t ‖L1(R) ≤ 2

(CT0

√
t)k−1

(k − 1)!
.

Therefore, supt≤T0
‖pkt − pk−1

t ‖L1(R) → 0, as k → ∞ as desired.

It remains to prove the inequality (3.27). In the sequel C(T0) > 0 will denote a constant that
depends on T0 and may change from line to line. In view of (3.26), one has

‖pkt − pk−1
t ‖L1(R) ≤

∫ t

0
‖∂gt−s

∂x
∗ (pksbk(s, ·, pk−1)− pk−1

s bk−1(s, ·, pk−2))‖L1(R) ds

≤
∫ t

0

1√
t− s

‖bk−1(s, ·, pk−2)(pks − pk−1
s )‖L1(R) ds

+

∫ t

0

1√
t− s

‖(bk(s, ·, pk−1)− bk−1(s, ·, pk−2))pks‖L1(R) ds

=: I + II.

(3.28)

According to (3.24), one has

I ≤ C(T0)

∫ t

0

‖pks − pk−1
s ‖L1(R)√
t− s

ds.

According to (3.25), one has

II ≤ C(T0)

∫ t

0

1√
t− s

√
s

∫ s

0
‖Ks−u ∗ (pk−1

u − pk−2
u )‖L1(R) du ds.

Convolution inequality (3.37) and Fubini-Tonelli’s theorem lead to

II ≤ C(T0)

∫ t

0
‖pk−1

u − pk−2
u ‖L1(R)

∫ t

u

1√
t− s

√
s
‖Ks−u‖L1(R) ds du.

Apply the change of variables t− s = s′. It comes,

II ≤ C(T0)

∫ t

0

1√
u
‖pk−1

u − pk−2
u ‖L1(R)

∫ t−u

0

1√
s′
‖Kt−u−s′‖L1(R) ds

′ du.
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According to (H-4) one has

II ≤ C(T0)

∫ t

0

1√
u
‖pk−1

u − pk−2
u ‖L1(R) du.

Coming back to (3.28) and using our above estimates on I and II, we obtain

‖pkt − pk−1
t ‖L1(R) ≤ C(T0)

∫ t

0

‖pks − pk−1
s ‖L1(R)√
t− s

ds+ C(T0)

∫ t

0

1√
u
‖pk−1

u − pk−2
u ‖L1(R) du.

We are in the situation

Φ(t) := ‖pkt − pk−1
t ‖L1(R) ≤ A(t) + C

∫ t

0

Φ(s)√
t− s

ds,

where A(t) ≥ 0 is a bounded increasing function. Iterate this relation and use the monotonicity of
A. It comes

Φ(t) ≤ CTA(t) + C2

∫ t

0

1√
t− s

∫ s

0

Φ(u)√
s− u

du ds.

Apply Fubini’s theorem to get

Φ(t) ≤ CTA(t) + C2

∫ t

0
Φ(u)

∫ t

u

1√
t− s

√
s− u

ds du.

Notice that
∫ t
u

1√
t−s

√
s−u

ds =
∫ 1
0

1√
1−x

√
x
dx. Now, apply Gronwall’s lemma to get (3.27) and the

convergence of pk to p∞.

In order to obtain (3.23), fix t ∈ (0, T ] and use (3.25) and the fact that the convergence in L1(R)
implies the almost sure convergence of a subsequence.

Corollary 3.5.4. Same assumptions as in Proposition 3.5.3. Assume that (Pk)k≥1 admits a
weakly convergent subsequence (Pnk)k≥1. Denote its limit by Q. Then for any t ∈ (0, T0], one has
that Qt(dx) = p∞t (x)dx, where p∞ is constructed in Proposition 3.5.3.

Proof. Let f ∈ C∞
K (R). Then by weak convergence,

< f,Qt >= lim
k→∞

< f, pnk
t >=< f, p∞t > + lim

k→∞
< f, pnk

t − p∞t > .

In view of Proposition 3.5.3, one has

lim
k→∞

| < f, pnk
t − p∞t > | ≤ ‖f‖L∞(R) lim

k→∞
‖pnk

t − p∞t ‖L1(R) = 0.

Thus, < f,Qt >=< f, p∞t > which completes the proof.

Proposition 3.5.5. Same assumptions as in Theorem (3.5.1). Then,

1) The family of probabilities (Pk)k>1 is tight.

2) Any weak limit P∞ of a convergent subsequence of (Pk)k≥1 solves (MP (p0, T0, b)).
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Proof. In view of (3.24), we obviously have

∃CT0 > 0, sup
k

E|Xk
t −Xk

s |4 ≤ CT0 |t− s|2, ∀ 0 ≤ s ≤ t ≤ T0.

This is a sufficient condition for tightness (see e.g. [45, Chap.2, Pb.4.11]).

Let (Pnk) be a weakly convergent subsequence of (Pk)k≥1 and let P∞ denote its limit. Let us check
that P∞ solves the martingale problem (MP (p0, T0, b)). To simplify the notation, we below write
Pk instead of Pnk and p̄k−1 instead of pnk−1.

i) Each Pk
0 has density p0, and therefore P∞

0 also has density p0.

ii) Corollary 3.5.4 implies that the time marginals of P∞ are absolutely continuous with respect
to Lebesgue’s measure and satisfy (3.22).

iii) Set

Mt := f(wt)− f(w0)−
∫ t

0

[1
2

∂2f

∂x2
(wu) +

∂f

∂x
(wu)(b(u,wu) +

∫ u

0
(Ku−τ ∗ p∞τ )(wu)dτ)

]
du,

We have to prove

EP∞ [(Mt−Ms)φ(wt1 , . . . , wtN )] = 0, ∀φ ∈ Cb(R
N ) and 0 ≤ t1 < · · · < tN < s ≤ t ≤ T0, N ≥ 1.

The process

Mk
t := f(wt)− f(x(0))−

∫ t

0

[1
2

∂2f

∂x2
(wu) +

∂f

∂x
(wu)(b(u,wu) +

∫ u

0
(Ku−τ ∗ p̄k−1

τ )(wu)dτ
)
]du

is a martingale under Pk. Therefore, it follows that

0 = EPk [(Mk
t −Mk

s )φ(wt1 , . . . , wtN )]

= EPk [φ(. . . )(f(wt)− f(ws))] + EPk [φ(. . . )

∫ t

s

1

2

∂2f

∂x2
(wu)du]

+ EPk [φ(. . . )

∫ t

s

∂f

∂x
(wu)b(u,wu)du] + EPk [φ(. . . )

∫ t

s

∂f

∂x
(wu)

∫ u

0
(Ku−τ ∗ p̄k−1

τ )(wu) dτ du].

Since (Pk) weakly converges to P∞, the first two terms on the r.h.s. obviously converge.
Now, observe that

EPk [φ(. . . )

∫ t

s

∂f

∂x
(wu)

∫ u

0
(Ku−τ ∗ p̄k−1

τ )(wu) dτ du]

− EP∞ [φ(. . . )

∫ t

s

∂f

∂x
(wu)

∫ u

0
(Ku−τ ∗ p∞τ )(wu) dτ du]

=
(
EPk [φ(. . . )

∫ t

s

∂f

∂x
(wu)

∫ u

0
(Ku−τ ∗ p̄k−1

τ )(wu) dτ du]

− EPk [φ(. . . )

∫ t

s

∂f

∂x
(wu)

∫ u

0
(Ku−τ ∗ p∞τ )(wu) dτ du]

)

+
(
EPk [φ(. . . )

∫ t

s

∂f

∂x
(wu)

∫ u

0
(Ku−τ ∗ p∞τ )(wu) dτ du]

− EP∞ [φ(. . . )

∫ t

s

∂f

∂x
(wu)

∫ u

0
(Ku−τ ∗ p∞τ )(wu) dτ du]

)

=: I + II.
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Now, in view of (3.25) and the definition of D(T ) as in (3.19), one has

|I| ≤ ‖φ‖L∞(R)

∫ t

s

∫ u

0

∫
|∂f
∂x

(x)||(Ku−τ ∗ (p̄k−1
τ − p∞τ ))(x)|pku(x)dx dτ du

≤ ‖φ‖L∞(R)‖
∂f

∂x
‖L∞(R)

∫ t

s

CT0√
u

∫ u

0
‖Ku−τ‖L1(R)‖p̄k−1

τ − p∞τ ‖L1(R)dτ du

≤ CT0D(T0)‖φ‖L∞(R)‖
∂f

∂x
‖L∞(R) sup

r≤T0

‖p̄k−1
r − p∞r ‖L1(R).

Proposition 3.5.3 implies that I → 0 as k → ∞.

Now, to prove that II → 0, it suffices to prove that the functional F : C([0, T0];R) → R

defined by

w. 7→ φ(wt1 , . . . , wtN )

∫ t

s

∂f

∂x
(wu)

∫ u

0

∫
Ku−τ (wu − y)p∞τ (y) dy dτ du

is continuous. Let (wn) a sequence converging in C([0, T0];R) to w. Since φ is a continuous
function, it suffices to show that

lim
n→∞

∫ t

s

∂f

∂x
(wn

u)

∫ u

0

∫
Ku−τ (w

n
u − y)p∞τ (y) dy dτ du (3.29)

=

∫ t

s

∂f

∂x
(wu)

∫ u

0

∫
Ku−τ (wu − y)p∞τ (y) dy dτ du.

For (u, τ) ∈ [s, t]× [0, t], set

hu,τ (x) := ✶{τ < u}∂f
∂x

(xu)

∫
Ku−τ (x− y)p∞τ (y)dy.

The hypothesis (H-2) implies the continuity of hu,τ on R. Furthermore,

|hu,τ (x)| ≤ C✶{τ < u}‖p∞τ ‖L∞(R)‖Ku−τ‖L1(R) ≤
C√
τ
✶{τ < u}‖Ku−τ‖L1(R).

In view of (H-4), we apply the theorem of dominated convergence to conclude (3.29). This
ends the proof.

Proof of Theorem 3.5.1: Proposition 3.5.5 implies the existence of a weak solution
(Ω,F ,P, (Ft), X,W ) to (3.3) up to time T0. Thus, the marginals P ◦X−1

t =: pt satisfy
‖pt‖L∞(R) ≤ C√

t
, t ∈ (0, T0]. In addition, as |B(t, x; p)| ≤ C(T0), one has that (Ω,F ,P, (Ft), X,W )

is the unique weak solution of the linear SDE

dX̃t = b(t, X̃t)dt+B(t, X̃t; p)dt+ dWt, t ≤ T0. (3.30)

Now suppose that there exists another weak solution (Ω̂, F̂ , P̂, (F̂t), X̂, Ŵ ) to (3.3) up to T0 and
denote P̂ ◦ X̂−1

t (dx) = p̂t(x)dx. By Proposition 3.4.1 we have p̂t = pt, for t ≤ T0. Therefore,
(Ω̂, F̂ , P̂, (F̂t), X̂, Ŵ ) is a weak solution to (3.30), from which P̂ ◦ X̂−1 = P ◦X−1.
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3.6 Proof of Theorem 3.2.3: A global existence and uniqueness

result for Equation (3.3)

We now construct a solution for an arbitrary time horizon T > 0. We will do it by restarting the
equation after the time horizon T0 fixed in the previous section. We start with T = 2T0. Then, we
will see how to generalize this procedure for an arbitrary T > 0.

Throughout this section, we denote by Ω0 the canonical space C([0, T0];R) and by B0 its Borel σ-
field. We denote by Q1 the probability distribution of the unique weak solution to (3.3) up to T0

constructed in the previous section.

3.6.1 Solution on [0, 2T0]

Proposition 3.6.1. Let T0 > 0 be such that D(T0) < 1. Assume p0 ∈ L1(R) and let
b ∈ L∞([0, 2T0]× R) be continuous w.r.t. the space variable. Under the hypothesis (H), Equation
(3.3) admits a unique weak solution up to 2T0.

We start with analyzing the dynamics of (3.3) after T0 and informally explaining the construction
of a solution between T0 and 2T0. Assume, for a while, that Proposition 3.6.1 holds true. Denote
the density of Xt by p1t , for t ≤ T0 and by p2t , for t ∈ (T0, 2T0]. Let t ≥ 0. In view of Equation
(3.3), we would have

XT0+t = XT0 +

∫ T0+t

T0

b(s,Xs) ds+

∫ T0+t

T0

∫ s

0
(Ks−θ ∗ pθ)(Xs) dθ ds+WT0+t −WT0 .

Observe that

∫ T0+t

T0

∫ s

0
(Ks−θ ∗ pθ)(Xs) dθ ds =

∫ T0+t

T0

∫ T0

0
(Ks−θ ∗ p1θ)(Xs)dθds +

∫ T0+t

T0

∫ s

T0

(Ks−θ ∗ p2θ)(Xs) ds dt

=: B1 +B2.

The change of variables s− T0 = s′ leads to

B1 =

∫ t

0

∫ T0

0
(KT0+s′−θ ∗ p1θ)(XT0+s′) dθ ds′

and, in combination with θ − T0 = θ′, to

B2 =

∫ t

0

∫ T0+s′

T0

(KT0+s′−θ ∗ p2θ)(XT0+s′)dθds
′ =

∫ t

0

∫ s′

0
(Ks′−θ′ ∗ p2T0+θ′)(XT0+s′) dθ

′ ds′.

Now set Yt := XT0+t and p̃t(y) := p2T0+t(y). Consider the new Brownian motion

W t := WT0+t −WT0 . It comes:

Yt = Y0+

∫ t

0
b(s+T0, Ys)ds+

∫ t

0

∫ T0

0
(KT0+s′−θ ∗p1θ)(Ys) dθ ds+

∫ t

0

∫ s

0
(Ks′−θ′ ∗ p̃θ)(Ys) dθ ds+W t,
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for t ∈ [0, T0]. Setting

b1(t, x, T0) :=

∫ T0

0
(KT0+t−s ∗ p1s)(x)ds and b̃(t, x) := b(T0 + t, x),

we have

{
dYt = b̃(t, Yt)dt+ b1(t, Yt, T0)dt+

{∫ t
0 (Kt−s ∗ p̃s)(Yt)ds

}
dt+ dW t, t ≤ T0,

Y0 ∼ p1T0
(y)dy, Ys ∼ p̃s(y)dy.

(3.31)

To prove Proposition 3.6.1 we construct a weak solution to (3.31) on [0, T0] and suitably paste its
probability distribution with Q1. We then prove that the so defined measure solves the desired
non-linear martingale problem. Notice that the SDE (3.31) is of the same type as (3.3).

Lemma 3.6.2. Same assumptions as in Proposition 3.6.1. Denote by p1t the time marginals of

Q1. Set b1(t, x, T0) :=
∫ T0

0 (KT0+t−s ∗ p1s)(x)ds and b̃(t, x) := b(T0 + t, x). Then, Equation (3.31)
admits a unique weak solution up to T0.

Proof. Let us check that we can apply Theorem 3.5.1 to (3.31).

Firstly, by construction the initial law p1T0
of Y satisfies the assumption of Theorem 3.5.1.

Secondly, the role of the additional drift b is now played by the sum of the two linear drifts, b̃ and
b1. By hypothesis, b̃ is bounded in [0, T0]× R and continuous in the space variable. Using (3.5)
and (H-6) we conclude that b1 is bounded uniformly in t and x since

|b1(t, x, T0)| ≤ CT0

∫ T0

0

‖KT0+t−s‖L1(R)√
s

ds < CT0 .

To show that b1(t, x, T0) is continuous w.r.t. x we use (H-2) and proceed as at the end of the proof
of Proposition 3.5.5.

We now are in a position to apply Theorem 3.5.1: There exists a unique weak solution to (3.31)
up to T0.

Denote by Q2 the probability distribution of the process (Yt, t ≤ T0). Notice that Q2 is the
solution to the martingale problem (MP (p1T0

, T0, b̃+ b1)).

A new measure on C([0, 2T0];R). Let Q1, Q2 and (p1t ) be as above. Let (p2t ) denote the time
marginal densities of Q2. In particular, Q2

0 = Q1
T0
, i.e. p20(z)dz = p1T0

(z)dz. Define the mapping X0

from Ω0 to R as X0(w) := w0. Using [45, Thm.3.19, Chap.5] to justify the introduction of regular
conditional probabilities, for each y ∈ R we define the probability measure Q2

y on (Ω0,B0) by

∀A ∈ B0, Q2
y(A) = P2(A|X0 = y).

In particular,
Q2

y(w ∈ Ω0, w0 = y) = 1.
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We now set Ω := C([0, 2T0];R). For w
1
· , w

2
· ∈ Ω0 we define the concatenation w = w1 ⊗T0 w

2 ∈ Ω of
these two paths as the function in Ω defined by

{
wθ = w1

θ , 0 ≤ θ ≤ T0,

wθ+T0 = w1
T0

+ w2
θ − w2

0, 0 ≤ θ ≤ t− T0.

On the other hand, for a given path w ∈ Ω, the two paths w1
· , w

2
· ∈ Ω0 such that w = w1⊗T0 w

2 are

{
w1
θ = wθ, 0 ≤ θ ≤ T0,

w2
θ = wT0+θ, 0 ≤ θ ≤ T0.

We define the probability distribution Q on Ω equipped with its Borel σ–field as follows. For any
continuous and bounded functional ϕ on Ω,

EQ[ϕ] =

∫

Ω
ϕ(w) Q(dw) :=

∫

Ω0

∫

R

∫

Ω0

ϕ(w1 ⊗T0 w
2) Q2

y(dw
2) p1T0

(y) dy Q1(dw1). (3.32)

Notice that if ϕ acts only on the part of the path up to t ≤ T0 of any w· ∈ Ω, then

EQ[ϕ((wθ)θ≤t)] =

∫

Ω0

ϕ((wθ)θ≤t) Q
1(dx) = EQ1 [ϕ((wθ)θ≤t)]. (3.33)

Proof of Proposition 3.6.1. Let us prove that the probability measure Q solves the non–linear
martingale problem (MP (p0, 2T0, b)) on the canonical space C([0, 2T0];R).

i) By (3.33), it is obvious that Q0 = Q1
0. By construction, Q1

0 has density p0.

ii) Next, let us characterize the one dimensional time marginals of Q. For f ∈ Cb(R) and
t ∈ [0, 2T0], consider the functional ϕ(w) = f(wt), for any x ∈ C([0, 2T0];R). For t ≤ T0, by
(3.33),

EQ[ϕ(w)] =

∫

Ω0

f(wt) Q
1(dx) =

∫

R

f(z)p1t (z) dz.

Therefore, Qt(dz) = p1t (z)dz.

For T0 ≤ t ≤ 2T0, by (3.32),

EQ[ϕ(w)] =

∫

Ω0

∫

R

∫

Ω0

f(w2
t−T0

)Q2
y(dw

2) p1T0
(y) dy Q1(dw1) =

∫

R

∫

R

f(z)Q2
y,t−T0

(dz) p1T0
(y) dy.

By Fubini’s theorem:

EQ[ϕ(w)] =

∫

R

f(z)

∫

R

Q2
y,t−T0

(dz) p1T0
(y) dy.

Since Q2
0 = p1T0

we deduce

EQ[ϕ(w)] =

∫

R

f(z)p2t−T0
(z) dz,

which shows that Qt(dz) = p2t−T0
(z)dz.

Therefore, the one dimensional marginals of Q have densities qt which, by construction,
belong to L∞(R) and satisfy ‖qt‖L∞(R) ≤ C√

t
.
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iii) It remains to show that for f ∈ C2
K(R), the process Mt defined as

Mt := f(wt)−f(w0)−
∫ t

0

[1
2

∂2f

∂x2
(wu)+

∂f

∂x
(wu)(b(u,wu)+

∫ u

0

∫
Ku−τ (wu−y)qτ (y) dy dτ

)
]du

is a Q-martingale, i.e. EQ(Mt|Bs) = Ms.

(a) Let s ≤ t ≤ T0 :
For any n ∈ N , any continuous bounded functional φ on Rn, and any
t1 ≤ · · · ≤ tn ≤ s ≤ t ≤ T0, by (3.33):

EQ(φ(wt1 , . . . , wtn)(Mt −Ms)) = EQ1(φ(wt1 , . . . , wtn)(Mt −Ms)).

As Q1 solves (MP (p0, T0, b)) up to T0,

EQ(φ(wt1 , . . . , wtn)(Mt −Ms)) = 0.

(b) For s ≤ T0 ≤ t ≤ 2T0,

EQ(Mt|Bs) = EQ[EQ(Mt|BT0)|Bs].

Let us prove that EQ(Mt|BT0) = MT0 . Notice that

Mt −MT0 = f(wt)− f(wT0)−
∫ t

T0

1

2

∂2f

∂x2
(wu)du−

∫ t

T0

∂f

∂x
(wu)b(u,wu) du

−
∫ t

T0

∂f

∂x
(wu)

∫ u

0

∫
Ku−τ (wu − y)qτ (y) dy dτ du.

Write the last integral as
∫ t

T0

∂f

∂x
(wu)

∫ u

0

∫
Ku−τ (wu − y)qτ (y) dy dτ du

=

∫ t

T0

∂f

∂x
(wu)

∫ T0

0

∫
Ku−τ (wu − y)p1τ (y) dy dτ du

+

∫ t

T0

∂f

∂x
(wu)

∫ u

T0

∫
Ku−τ (wu − y)p2τ−T0

(y) dy dτ du =: I1 + I2.

Now,

I1 =

∫ t−T0

0

∂f

∂x
(wu+T0)

∫ T0

0

∫
Ku+T0−τ (wu+T0 − y)p1τ (y) dy dτ du.

For w ∈ Ω identify w1, w2 ∈ Ω0 such that w = w1 ⊗T0 w
2. Then,

I1 =

∫ t−T0

0

∂f

∂x
(w2

u)

∫ T0

0
(Ku+T0−τ ∗ p1τ )(w2

u) dτ du =

∫ t−T0

0

∂f

∂x
(w2

u)b1(u,w
2
u, T0)du.

Proceeding as above,

I2 =

∫ t−T0

0

∂f

∂x
(wu+T0)

∫ u

0

∫
Ku−τ (wu+T0 − y)p2τ (y) dy dτ du

=

∫ t−T0

0

∂f

∂x
(w2

u)

∫ u

0

∫
Ku−τ (w

2
u − y)p2τ (y) dy dτ du.
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Similarly

∫ t

T0

∂f

∂x
(wu)b(u,wu)du =

∫ t−T0

0

∂f

∂x
(wu+T0)b(u+ T0, wu+T0)du

=

∫ t−T0

0

∂f

∂x
(w2

u)b(u+ T0, w
2
u)du =

∫ t−T0

0

∂f

∂x
(w2

u)b̃(u,w
2
u)du.

It comes:

Mt −MT0 = f(w2
t−T0

)− f(w2
0)−

∫ t−T0

0

1

2

∂2f

∂x2
(w2

u)du−
∫ t−T0

0

∂f

∂x
(w2

u)b̃(u,w
2
u)du

−
∫ t−T0

0

∂f

∂x
(w2

u)
[
b1(u,w

2
u, T0) +

∫ u

0

∫
Ku−τ (w

2
u − y)p2τ (y) dy dτ

]
du =: F (w2).

By definition of the measure Q,

EQ(φ(wt1 , . . . wtn)(Mt −MT0)) =∫

Ω0

φ(w1
t1 , . . . , w

1
tn)

∫

R

∫

Ω0

F (w2)Q2
y(dw

2)p1T0
(y) dy Q1(dw1).

By the definition of Q2:

EQ(φ(wt1 , . . . wtn)(Mt −MT0)) =

∫

Ω0

φ(w1
t1 , . . . , w

1
tn)

∫

Ω0

F (w2) Q2(dw2) Q1(dw1).

As Q2 solves (MP (p1T0
, T0, b̃+ b1)), one has

EQ2(F ) =

∫

Ω0

F (w2) Q2(dw2) = 0.

Finally, we conclude that EQ(Mt|BT0) = MT0 and therefore EQ(Mt|Bs) = Ms for all
s ≤ T0 ≤ t ≤ 2T0.

(c) For T0 ≤ s ≤ t ≤ 2T0 : we may rewrite the difference Mt −Ms in the same manner:

Mt −Ms = f(w2
t−T0

)− f(w2
s−T0

)−
∫ t−T0

s−T0

1

2

∂2f

∂x2
(w2

u)du

−
∫ t−T0

s−T0

∂f

∂x
(w2

u)

[
b(u,w2

u)) + b1(u,w
2
u, T0) +

∫ u

0

∫
Ku−τ (wu+T0 − y)p2τ (y) dy dτ

]
du

=: F (w2).

Now, take t1 ≤ · · · ≤ tn < s. Let us suppose that the first m are before T0 and others
after. We have that

EQ(φ(wt1 , . . . wtn)(Mt −Ms)) =∫

Ω0

∫

R

∫

Ω0

F (w1
t1 , . . . , w

1
tm , w

2
tm+1−T0

, . . . , w2
tn−T0

)ϕ(w2) Q2
y(dw

2) p1T0
(y) dy Q1(dw1).
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Since Q2 solves (MP (p1T0
, T0, b̃+ b1)), one has that EQ2(φ′(w2

t′1
, . . . w2

t′n
)F ) = 0 for any

continuous bounded functional φ′ on Rn, any n ∈ N and any t′1 ≤ · · · ≤ t′n < s− T0.
Taking φ′(w2

t′1
, . . . w2

t′n
) = φ(w1

t1 , . . . , w
1
tm , w

2
tm+1−T0

, . . . , w2
tn−T0

) for a fixed x1, we

conclude that
∫

R

∫

Ω0

φ(w1
t1 , . . . , w

1
tm , w

2
tm+1−T0

, . . . , w2
tn−T0

)ϕ(w2) Q2
y(dw

2) p1T0
(y) dy = 0.

Therefore,
EQ(φ(wt1 , . . . wtn)(Mt −Ms)) = 0.

Thus, EQ(Mt|Bs) = Ms for T0 ≤ s ≤ t ≤ 2T0.

To summarize the preceding, we have just shown the existence of a solution to (MP (p0, 2T0, b)).
Finally, we proceed as in the proof of Theorem 3.5.1 to deduce the existence and uniqueness of a
weak solution to (3.3) up to 2T0.

3.6.2 End of the proof of Theorem 3.2.3: construction of the global solution

Given any finite time horizon T > T0, split the interval [0, T ] into n = [ TT0
] + 1 intervals of length

not exceeding T0 ([ TT0
] denoting the integer part of T

T0
) and repeat n times the procedure used in

the preceding subsection.

Remark 3.6.3. Using similar arguments as above one can construct a solution to (3.3) when the
initial condition p0 is in L∞(R) ∩ L1(R) or, respectively, L2(R) ∩ L1(R). In these cases we use
Remark 3.3.3 in the iterative procedure. Consequently, the weak solution is unique under the
constraint that the one dimensional marginal densities (pt)t≤T belong to
L∞((0, T );L∞(R) ∩ L1(R)) or, respectively, satisfy

‖pt‖L∞(R) ≤
CT

t1/4
.

3.7 Application to the one-dimensional Keller–Segel model

In this section we prove Corollary 3.2.6. We start with checking that K♯ satisfies Hypothesis (H).
The condition (H-1) is satisfied since for t > 0 one has

‖K♯
t‖L1(R) =

C√
t

∫
|z|e− z2

2 dz.

From the definition of K♯ it is clear that for t > 0, K♯
t is a bounded and continuous function on R.

The condition (H-3) is also obviously satisfied. As already noticed,

‖K♯
t−s‖L1(R) =

C√
t− s

,

from which,

f1(t) :=

∫ t

0

‖K♯
t−s‖L1(R)√

s
ds = C

∫ t

0

1√
s
√
t− s

ds = C

∫ 1

0

1√
x
√
1− x

dx = C,
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where C is a universal constant. Now let φ be a probability density on R. For (t, x) ∈ (0, T ]× R,
one has

∫
φ(y)‖K♯

· (x− y)‖L1(0,t) dy ≤ C

∫
φ(y)|x− y|

∫ t

0

1

s3/2
e−

|x−y|2
2s ds dy

=

∫
φ(y)|x− y|

∫ ∞

|x−y|√
t

z3

|x− y|3 e
− z2

2
|x− y|2

z3
dz dy

=

∫
φ(y)

∫

|x−y|√
t

e−
z2

2 dz dy.

This shows that (H-5) is satisfied. Finally, to prove (H-6) we notice that for every t ∈ [0, T ]

∫ T

0
‖K♯

T+t−s‖L1(R)
1√
s
ds ≤

∫ T

0

C√
T + t− s

√
s
ds ≤ C

∫ T

0

1√
T − s

√
s
ds = C.

Therefore, in view of Theorem 3.2.3, Equation (3.2) with d = 1 is well-posed.1

Denote by ρ(t, x) the time marginals of the constructed probability distribution. Now, define the
function c as in (3.9). In view of Inequality (3.6), for any t ∈ (0, T ] the function c(t, ·) is well
defined and bounded continuous. Let us show that c ∈ L∞([0, T ];C1

b (R)).

We have

∂c

∂x
(t, x) =

∂

∂x

(
e−λtE(c0(x+Wt)

)
+

∂

∂x

(
E

∫ t

0
e−λsρ(t− s, x+Ws)ds

)
.

Then observe that

E

∫ t

0
e−λsρ(t− s, x+Ws)ds =

∫ t

0
e−λs

∫
ρ(t− s, x+ y)

1√
2πs

e
−y2

4s dy ds

=

∫ t

0
e−λ(t−s)

∫
ρ(s, y)

1√
2π(t− s)

e
−(y−x)2

4(t−s) dy ds

=:

∫ t

0
f(s, x)ds.

As for any 0 < s < t

| ∂
∂x

1√
t− s

e
−(y−x)2

2(t−s) | ≤ |y − x|
2(t− s)3/2

e
−(y−x)2

2(t−s) ≤ C

t− s
,

we have
∂f

∂x
(s, x) = e−λ(t−s)

∫
ρ(s, y)

y − x

2
√
2π(t− s)3/2

e
−(y−x)2

2(t−s) dy.

Now, we repeat the same argument for ∂
∂x

∫ t
0 f(s, x)ds. In order to justify the differentiation under

the integral sign we notice that

|∂f
∂x

(s, x)| ≤ CT√
(t− s)s

.

1With similar calculations as for f1, one easily checks that the function f2 is bounded on any compact time interval.

Thus, Corollary 3.2.4 applies as well as Theorem 3.2.3.
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Gathering the preceding calculations we have obtained

∂c

∂x
(t, x) = e−λtEc′0(x+Wt) +

∫ t

0
e−λ(t−s)

∫
ρs(y)

y − x√
2π(t− s)3/2

e
−(y−x)2

2(t−s) dy ds.

Using the assumption on c0 and Inequality (3.5), for any t ∈ (0, T ] one has

‖ ∂c
∂x

(t, ·)‖L∞(R) ≤ ‖c′0‖L∞(R) + CT .

In addition, the preceding calculation and Lebesgue’s Dominated Convergence Theorem show that
∂c
∂x(t, ·) is continuous on R. We thus have obtained the desired property.

The above discussion shows that we are in a position to apply Proposition 3.4.1 with
b(t, x) ≡ χe−λtEc′0(x+Wt) and B(t, x; ρ) defined as in (3.4) with K ≡ K♯: the function ρ(t, x)
satisfies (3.8) in the sense of the distributions. Therefore, it is a solution to the Keller Segel
system (3.7) in the sense of Definition 3.2.5. We now check the uniqueness of this solution.

Assume there exists another solution ρ1 satisfying Definition 3.2.5 with the same initial condition
as ρ. For notation convenience, in the calculation below we set ct(x) := c(t, x), c1t (x) := c1(t, x),
ρt(x) := ρ(t, x), and ρ1t (x) := ρ1(t, x).

Using Definition 3.2.5,

‖ρ1t − ρt‖L1(R) ≤
∫ t

0
‖∂gt−s

∂x
∗ (∂c

1
s

∂x
ρ1s −

∂cs
∂x

ρs)‖L1(R)ds

≤
∫ t

0
‖∂gt−s

∂x
∗ (∂c

1

∂x
(ρ1s − ρs))‖L1(R)ds+

∫ t

0
‖∂gt−s

∂x
∗ (ρs(

∂c1

∂x
− ∂cs

∂x
))‖L1(R)ds

=: I + II.

Using standard convolution inequality (3.37) and ‖∂gt−s

∂x ‖L1(R) ≤ C√
t−s

we deduce:

I ≤ C

∫ t

0

‖ρ1s − ρs‖L1(R)√
t− s

ds and II ≤ C

∫ t

0

‖∂c1s
∂x − ∂cs

∂x ‖L1(R)√
t− s

√
s

ds.

Therefore

‖∂c
1
s

∂x
− ∂cs

∂x
‖L1(R) ≤

∫ s

0
‖(ρ1u − ρu) ∗

∂gs−u

∂x
‖L1(R)du ≤ C

∫ s

0

‖ρ1u − ρu‖L1(R)√
s− u

du, (3.34)

from which

II ≤ C

∫ t

0

1√
s
√
t− s

∫ s

0

‖ρ1u − ρu‖L1(R)√
s− u

du ds

≤ C

∫ t

0
‖ρ1u − ρu‖L1(R)

∫ t

u

1√
s
√
s− u

√
t− s

ds du ≤ CT

∫ t

0

‖ρ1u − ρu‖L1(R)√
u

du.

Gathering the preceding bounds for I and II we get

‖p1t − pt‖L1(R) ≤ CT

∫ t

0

‖p1s − ps‖L1(R)√
t− s

ds+ CT

∫ t

0

‖p1s − ps‖L1(R)√
s

ds.

Lemma 3.4.2 implies that ‖ρ1t − ρt‖L1(R) = 0 for every t ≤ T . In view of (3.34) we also have

‖∂c1t
∂x − ∂ct

∂x ‖L1(R) = 0. This completes the proof of Corollary 3.2.6.



Chapter 3. The one-dimensional case: The non-linear stochastic equation 62

3.8 Appendix A

We here propose a light simplification of the calculations in [66].

Proposition 3.8.1. Let y ∈ R and let β be a constant. Denote by pβy (t, x, z) the transition
probability density (with respect to the Lebesgue measure) of the unique weak solution to

Xt = x+ β

∫ t

0
sgn(y −Xs) ds+Wt.

Then

pβy (t, x, z) =
1√

2πt3/2

∫ ∞

0
eβ(|y−x|+ȳ−|z−y|)−β2

2
t(ȳ + |z − y|+ |y − x|)e−

(ȳ+|z−y|+|y−x|)2
2t dȳ

+
1√
2πt

eβ(|y−x|−|z−y|)−β2

2
t(e−

(z−x)2

2t − e−
(|z−y|+|y−x|)2

2t ).

(3.35)

In particular,

pβy (t, x, y) =
1√
2πt

∫ ∞

|x−y|√
t

ze−
(z−β

√
t)2

2 dz. (3.36)

Proof. Let f be a bounded continuous function. The Girsanov transform leads to

E(f(Xt)) = E(f(x+Wt)e
β
∫ t
0 sgn(y−x−Ws)dWs−β2

2
t).

Let La
t be the Brownian local time. By Tanaka’s formula ([45], p. 205):

|Wt − a| = |a|+
∫ t

0
sgn(Ws − a)dWs + La

t .

Therefore for a = y − x

∫ t

0
sgn(y − x−Ws)dWs = |y − x|+ La

t − |Wt − (y − x)|,

from which

E(f(Xt)) = E(f(x+Wt)e
β(|y−x|+Ly−x

t −|Wt−(y−x)|)−β2

2
t).

recall that (Wt, L
a
t ) has the following joint distribution (see [10, p.200,Eq.(1.3.8)]:





ȳ > 0 : P(Wt ∈ dz, La
t ∈ dȳ) = 1√

2πt3/2
(ȳ + |z − a|+ |a|)e− (ȳ+|z−a|+|a|)2

2t dȳ dz.

P(Wt ∈ dz, La
t = 0) = 1√

2πt
e−

z2

2t dz − 1√
2πt

e−
(|z−a|+|a|)2

2t dz.

It comes:

E(f(Xt)) =
1√

2πt3/2

∫

R

∫ ∞

0
f(x+ z)eβ(|y−x|+ȳ−|z−(y−x)|)−β2

2
t(ȳ + |z − (y − x)|+ |y − x|)

e−
(ȳ+|z−(y−x)|+|y−x|)2

2t dȳ dz

+
1√
2πt

∫

R

f(x+ z)eβ(|y−x|−|z−(y−x)|)−β2

2
t(e−

z2

2t − e−
(|z−(y−x)|+|y−x|)2

2t ) dz.
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The change of variables x+ z = z′ leads to

E(f(Xt)) =
1√

2πt3/2

∫

R

f(z′)
∫ ∞

0
eβ(|y−x|+ȳ−|z′−y|)−β2

2
t(ȳ + |z′ − y)|+ |y − x|)e−

(ȳ+|z′−y|+|y−x|)2
2t dȳ dz′

+
1√
2πt

∫

R

f(z′)eβ(|y−x|−|z′−y|)−β2

2
t(e−

(z′−x)2

2t − e−
(|z′−y|+|y−x|)2

2t )dz′,

from which the desired result follows.

In the next corollary we use the same notation as in the proof of Theorem 3.3.1.

Corollary 3.8.2. Let 0 < s < t ≤ T .Then for any z, y ∈ R, there exists CT,β,x,y such that

E|
(

∂

∂x
pβy

)
(t− s,X(b)

s , z)| ≤ CT,β,x,yh(s, z),

where h belongs to L1([0, t]× R).

Proof. By Girsanov’s theorem, for some constant CT,β we have

E

∣∣∣∣
(

∂

∂x
pβy

)
(t− s,X(b)

s , z)

∣∣∣∣ ≤ CT,β

√

E

∣∣∣∣
(

∂

∂x
pβy

)
(t− s,W x

s , z)

∣∣∣∣
2

.

Observe that

∂

∂x̄
pβy (t− s, x̄, z) =

β√
2π(t− s)

e−2β|z−y|e−
(|z−y|+|y−x̄|−β(t−s))2

2(t−s) sgn(x̄− y)

+
β√

2π(t− s)
e−β|z−y|−β2

2
(t−s)e

β|y−x̄|− (z−x̄)2

2(t−s) sgn(x̄− y)

+
z − x̄

2π(t− s)3/2
e−β|z−y|−β2

2
(t−s)e

β|y−x̄|− (z−x̄)2

2(t−s) .

The sum of the absolute values of the first two terms in the right-hand side is bounded from above
by

β√
2π(t− s)

e−2β|z−y|+β|y−x̄|.

Thus,

E

∣∣∣∣
(

∂

∂x
pβy

)
(t− s,X(b)

s , z)

∣∣∣∣ ≤
CT,β√
2π(t− s)

√
Ee2β|y−Wx

s |

+
CT,β

(t− s)3/2

√
E(|z −W x

s |2e2β|y−Wx
s |− (z−Wx

s )2

t−s ) =: B +A.

Notice that

A ≤ CT,β

(t− s)3/2
(E[|z −W x

s |4e−2
(z−Wx

s )2

t−s ]E[e4β|y−Wx
s |])1/4 =:

CT,β

(t− s)3/2
(A1A2)

1/4.
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Firstly, as there exists an α > 0 such that |a|4e−a2 ≤ Ce−αa2 , one has

A1 ≤ C(t− s)2
∫

e−α
(z−u)2

t−s gs(u− x)du ≤ (t− s)2+1/2

√
s+ (t− s)/(2α)

e
− (z−x)2

2(s+(t−s)/(2α)) .

Secondly,

A2 =

∫
e4β|y−u|gs(u− x)du = e−4βy

∫ ∞

y
e4βu

1√
s
e−

(u−x)2

2s du+ e4βy
∫ y

−∞
e−4βu 1√

s
e−

(u−x)2

2s du

= e4β(x−y)e8β
2s

∫ ∞

y

1√
s
e−

(u−x−4βs)2

2s du+ e4β(y−x)e8β
2s

∫ y

−∞

1√
s
e−

(u−x+4βs)2

2s du ≤ e8β
2sCβ,x,y.

Therefore,

A ≤ CT,β,x,y
1

(t− s)7/8
gs+(t−s)/(2α)(z − x).

The term B is treated in the similar way as A2.

3.9 Appendix B: A reminder on the standard convolution inequal-

ities

We give here the two standard convolution inequalities in their general form, as they are used in
the following chapters as well. The following is proven in Brezis [15, Thm. 4.15]:

Lemma 3.9.1 (The convolution inequality). Let f ∈ Lp(Rd) and g ∈ L1(Rd) with l ≤ p ≤ ∞ and
1
r = 1

q +
1
q − 1 ≥ 0. Then, f ∗ g ∈ Lp(Rd) and

‖f ∗ g‖Lp(Rd) ≤ ‖f‖Lp(Rd)‖g‖L1(Rd). (3.37)

The following is an extension of Lemma 3.37 and it is proven in [15, Thm. 4.33]:

Lemma 3.9.2 (The convolution inequality). Let f ∈ Lp(Rd) and g ∈ Lq(Rd) with l ≤ p, q ≤ ∞.
Then, f ∗ g ∈ Lr(Rd) and

‖f ∗ g‖Lr(Rd) ≤ ‖f‖Lp(Rd)‖g‖Lq(Rd). (3.38)



Chapter 4

The one-dimensional case: Regularization

approach to the non-linear stochastic equation

4.1 Introduction

In this chapter we adopt another approach in proving the well-posedness of the stochastic
differential equation related to Keller-Segel model in d = 1,

{
dXt = (c′0 ∗ gt)(Xt) +

{∫ t
0 (Kt−s ∗ ps)(Xt)ds

}
dt+ dWt, t > 0,

ρs(y)dy := L(Xs), X0 ∼ ρ0(x)dx,
(4.1)

where Kt(x) := χe−λt ∂
∂x(

1
(2πt)1/2

e−
x2

2t ) and b(t, x) := χe−λt ∂
∂xEc0(x+Wt). Namely, we regularize

the interaction kernel K and prove the regularized equation in the limit is (4.1). The goal of this
mini-chapter is now to obtain the rate of convergence of the marginal laws of the solution to the
regularized equation to the laws of Xt. This is an interesting question on its own when one deals
with McKean-Vlasov dynamics through a regularization procedure and it will involve Sobolev
regularity of a whole class of probability density functions. The latter will be obtained by the help
of heat kernel estimates in Strook and Varadhan [70].

From now on we will, in addition to ρ0 is a probability density function and c0 ∈ C1
b (R), suppose

that ρ0 ∈ L∞(R). This will smoothen out in time the L∞(R)-norm estimates of ρt and enable us
to get the rate of convergence. Namely, if ρ0 ∈ L∞(R), one has ‖ρt‖L∞(R) ≤ C (see Remark 3.6.3).
As seen in the previous chapter, the parameter χ > 0 plays no role in the mathematical analysis of
the problem. We will, thus, assume χ = 1.

A convenient regularization: For an ε > 0, define Kε
t (x) :=

−x√
2π(t+ε)

3
2
e−

x2

2t and

{
dXε

t = dWt + (c′0 ∗ gt)(Xε
t ) +

∫ t
0 (K

ε
t−s ∗ ρεs)(Xε

t ) ds dt, t ≤ T,

Xε
0 ∼ ρ0, Xε

t ∼ ρεt .
(4.2)

We denote the drift of (4.2) by bε(t, x; ρε) and by b(t, x; ρ) the drift of (4.1). The well-posedness of
(4.2) is due to Theorem 2.2.3. However, to get more information about the one-dimensional
marginals of the law of this process, one needs to apply Theorem 3.2.3 and Remark 3.6.3. It is
easy to check that Kε satisfies Hypothesis (H). For example, notice that for any 1 ≤ p < ∞,

‖Kε
t ‖Lp(R) ≤

Cp

t
1− 1

2p

,

65
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where the constants Cp do not depend on the regularization parameter ε. Thus, assuming that
ρ0 ∈ L1(R) ∩ L∞(R) and c0 ∈ C1

b (R), one has the following estimates:

∀0 < t ≤ T : ‖ρεt‖L∞(R) ≤ C, and ‖bε(t, ·; ρε)‖ ≤ C.

Thus, one has ‖ρεt‖L2(R) ≤ C. Since the L1-norm of the regularized kernel does not depend on ε,
neither do the above constants. This implies that for any sequence εk → 0 as k → ∞, one has the
tightness of (Xεk)’s w.r.t. k ≥ 1. It is easy to check that the solution to the martingale problem
corresponding to (4.2) converges to the one related to (4.1). Let P∞ be a weak limit of a
converging subsequence (Pk) of the laws of (Xεk). We will prove P∞ solves the NLMP related to
(4.1). We place ourselves in the context of Proposition 3.5.5 and adopt the notation from its proof
to this setting. In order not to repeat ourselves, we will not check all the requirements here, but
we will quickly review the most interesting details.

Define the functional Tt(g) by

Tt(g) :=

∫
g(y)P∞

t (dy), g ∈ CK(R).

By weak convergence we have

Tt(g) = lim
k→∞

∫
g(y)pkt (y)dy,

and thus

|Tt(g)| ≤ C‖g‖L2(R).

Therefore, for each 0 < t ≤ T0, Tt is a bounded linear functional on a dense subset of L2(R). Thus,
Tt can be extended to a linear functional on L2(R). By Riesz-representation theorem (e.g. [15,
Thm. 4.11 and 4.14]), there exists a unique p∞t ∈ L2(R) such that

∀0 < t ≤ T : ‖p∞t ‖L2(R) ≤ C

and p∞t is the probability density of P∞
t (dy).

In order to prove that

EPk [φ(. . . )

∫ t

s
f ′(x(u))bεk(u, x(u); ρεk) du] → EP[φ(. . . )

∫ t

s
f ′(x(u))b(u, x(u); ρ) du], as k → ∞,

one decomposes their difference into:

I = EPk [φ(. . . )

∫ t

s
f ′(x(u))b(u, x(u); ρεk) du]− EPk [φ(. . . )

∫ t

s
f ′(x(u))b(u, x(u); ρ) du]

and

II = EPk [φ(. . . )

∫ t

s
f ′(x(u))b(u, x(u); ρ) du]− EP[φ(. . . )

∫ t

s
f ′(x(u))b(u, x(u); ρ) du].

Convergence of II is due to the continuity of the functional inside the expectation. This has been
already proven in the proof of Proposition 3.5.5. Then, convergence of I is obtained in two steps:
firstly, one proves that for a fixed u ∈ [s, t], one has that |bεk(u, x; ρεk)− b(u, x(u); ρ)| → 0, as
k → ∞, secondly one bounds this difference by an integrable function of u independent of k. The
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conclusion will follow by dominated convergence. The integrable bound comes from the density
and kernel estimates. We now check the first step. Notice that

b(u, ·; ρ)− bεk(u, ·; ρεk) =
∫ s

0
(Ku−r ∗ (ρr − ρεkr ) + (Ku−r −Kεk

u−r) ∗ ρεkr ) dr.

For r < u, Ku−r is a continuous and bounded function on R. By weak convergence,

|Ku−r ∗ (ρr − ρεkr )| → 0, as k → ∞.

In addition,

|Ku−r ∗ (ρr − ρεkr )| ≤ C‖Ku−r‖L2(R) ≤
C

(u− r)
1
4

.

By dominated convergence, |
∫ s
0 Ku−r ∗ (ρr − ρεkr ) du| → 0, as k → ∞.

It remains to check that
∣∣∣∣
∫ s

0
(Ku−r −Kεk

u−r) ∗ ρεkr dr

∣∣∣∣→ 0, as k → ∞.

Now, for r < u, |Kεk
u−r(x)−Ku−r(x)| → 0, as k → ∞. We can apply dominated convergence as the

following bound is integrable in (0, s)× R:

|(Kεk
u−r(x(u)− y)−Ku−r(x(u)− y))ρεkr (y)| ≤ C|Ku−r(x(u)− y)|.

Finally, this concludes the first step and as well the convergence of I. Therefore, the martingale
problems converge and we obtain the existence of a solution to the NLMP related to (4.1). As
uniqueness holds P∞ is the law of the process X.

The plan is the following: in the Section 4.2, we prove the above mentioned Sobolev estimates and
in the Section 4.3, we prove that the rate of convergence of ρεt towards ρt in L1(R)-norm is of
order

√
ε. Let p > 1. The following notation will be used:

Lp((0, T );W 1
p (R)) :=

{
u ∈ Lp((0, T )× R)|∃ h ∈ Lp((0, T )× R) such that

∫

(0,T )×R

u(t, x)
∂

∂x
φ(t, x)dtdx = −

∫

(0,T )×R

h(t, x)φ(t, x)dtdx, ∀φ ∈ C∞
c ((0, T )× R)

}
.

4.2 Sobolev regularity of a certain class of probability densities

In the sequel, we will prove the result about the speed of convergence of ρεt to ρt by analyzing the
mild equations they satisfy. In order to find the rate of convergence of bε(t, ·; ρε) towards b(t, ·, ρ),
we will need some Sobolev regularity for ρεt and ρt. More generally, in this section we are
interested in diffusion processes in d = 1 with bounded and measurable drift and a constant
diffusion coefficient σ. Without loss of generality, we will assume σ = 1. Let T > 0, define

{
dXt = b(t,Xt)dt+ dWt, t ≤ T,

X0 ∼ ρ0
(4.3)

Suppose that supt≤T ‖b(t, ·)‖∞ < ∞ and ρ0 ∈ L1 ∩ L∞(R). In that case, Equation (4.3) admits a
unique weak solution (see [45], p. 327). In addition, by Girsanov theorem, the one dimensional
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time marginals of the solution are absolutely continuous with respect to Lebesgue measure and
since the drift is bounded they are as well uniformly bounded in time and space (see Section 3.3).
Let us denote with ρt the density of Xt. Then ρ := (ρt)0≤t≤T ∈ Lp((0, T )× R), for any p ≥ 1 .

One derives the mild equation satisfied by ρt as in Section 3.4,

ρt = gt ∗ ρ0 −
∫ t

0
(
∂

∂x
gt−s ∗ (ρsbs))ds, (4.4)

where gt(x) denotes centered one dimensional Gaussian density with variance equal to t. We will
prove the following theorem:

Theorem 4.2.1. Let 1 < p < 2 and p′ > 2 its conjugate. Assume that ρ0 ∈ L1 ∩ L∞(R). Then,
ρ ∈ Lp((0, T );W 1

p (R)) and

‖ ∂

∂x
ρ‖Lp((0,T )×R) ≤ C(t, b, ρ0).

The following is the estimate in Strook and Varadhan [71, p. 315]:

Lemma 4.2.2. Denote by Sd the set of d× d symmetric matrices. Let c : [0,∞) → Sd be a
measurable function for which there exists 0 < λ < Λ < ∞ with the property

λ|θ|2 ≤ 〈θ, c(t)θ〉 ≤ Λ|θ|2, t ≥ 0 and θ ∈ Rd.

Extend c to R by taking c(−s) = c(s), s ≥ 0 and set C(s, t) =
∫ t
s c(u)du for s ≥ t. Define

g(s, x; t, y) = ✶{(t−s)∈(0,∞)}
[
(2π)d det C(s, t)

]− 1
2
exp

{
−〈y − x,C(s, t)−1(y − x)〉

2

}

on (R× Rd)2. For f ∈ C∞
0 (R× Rd), define

Gf(s, x) =

∫ ∞

s

∫

Rd

g(s, x; t, y)f(t, y)dy dt

and

G⋆f(t, y) =

∫ t

−∞

∫

Rd

g(s, x; t, y)f(s, x)dx ds.

Then for all 1 < p < ∞ and for all 1 ≤ i, j ≤ d:

∥∥∥∥
∂2Gf

∂xi∂xj

∥∥∥∥
Lp(R×Rd)

≤ Cd(p, λ,Λ)‖f‖Lp(R×Rd)

and ∥∥∥∥
∂2G⋆f

∂yi∂yj

∥∥∥∥
Lp(R×Rd)

≤ Cd(p, λ,Λ)‖f‖Lp(R×Rd).

Proof of Theorem 4.2.1. Take f ∈ C∞
K ((0, T )× R). Define the linear functional

T̃p(f) =

∫

(0,T )×R

∂

∂x
f(t, x)ρt(x) dx dt.
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Assume for a moment that
|Tp(f)| ≤ C‖f‖Lp′ ((0,T )×R). (4.5)

Then, T̃p is a linear functional continuous for the Lp′((0, T )× R) norm, defined on a dense
subspace of Lp′((0, T )× R). Therefore, it extends to a bounded linear functional Tp on
Lp′((0, T )× R). By Riesz representation theorems (e.g. [15, Thm. 4.11 and 4.14]), there exists
h ∈ Lp((0, T )× R) such that for any f ∈ Lp′((0, T )× R):

Tp(f) =

∫

(0,T )×R

f(t, x)ht(x) dx dt.

Denote by ∂
∂xρt(x) := −h(x). Then it holds for any f ∈ C∞

K ((0, T )× R):
∫

(0,T )×R

∂

∂x
f(t, x)ρt(x) dx dt = −

∫

(0,T )×R
f(t, x)

∂

∂x
ρt(x) dx dt. (4.6)

In addition, ‖ ∂
∂xρ‖LP ((0,T )×R) ≤ C(t, b, p, p0). As ρ ∈ Lp((0, T )× R), the theorem is proved.

It remains to prove the relation in (4.5). Let f ∈ C∞
c ((0, T )× R). Multiply (4.4) by ∂

∂xf(t, x) and
integrate over (0, T )× R:

∫

(0,T )×R

∂

∂x
f(t, x)ρt(x) dx dt =

∫

(0,T )×R

∂

∂x
f(t, x)(gt ∗ ρ0)(x) dx dt

+

∫

(0,T )×R

∂

∂x
f(t, x)

∫ t

0
(
∂

∂x
gt−s ∗ (ρsbs))(x) ds dx dt =: A+B.

It comes down to controlling the terms A and B in terms of ‖f‖Lp′ ((0,T )×R).

Term A: We start by integrating by parts the space integral. Notice that by dominated
convergence, one has ∂

∂x(gt ∗ ρ0)(x) = ( ∂
∂xgt ∗ ρ0)(x). Therefore,

A = −
∫ T

0

∫

R

f(t, x)(
∂

∂x
gt ∗ ρ0)(x) dx dt.

Applying Hölder’s inequality,

|A| ≤ ‖f‖Lp′ ((0,T )×R)‖
∂

∂x
gt ∗ ρ0‖Lp((0,T )×R).

Notice that

‖ ∂

∂x
gt ∗ ρ0‖pLp((0,T )×R) =

∫ T

0
‖ ∂

∂x
gt ∗ ρ0‖pLp(R)dt.

As ‖ ∂
∂xgt‖L1(R) ≤ C√

t
and in view of Convolution inequality (3.37), one has

‖ ∂

∂x
gt ∗ ρ0‖pLp((0,T )×R) ≤

∫ T

0

C‖ρ0‖pLp(R)

tp/2
dt.

For any p > 1, one has ρ0 ∈ Lp(R) since ρ0 ∈ L1 ∩ L∞(R). Moreover, since 1 < p < 2 the
preceding integral is well defined and we have that

‖ ∂

∂x
gt ∗ ρ0‖pLp((0,T )×R) ≤ C(T, p, ‖ρ0‖Lp(R)).

Therefore,
|A| ≤ C(T, p, ‖ρ0‖Lp(R))‖f‖Lp′ ((0,T )×R).
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Term B: This term reads

B =

∫ T

0

∫

R

∫ t

0

∫

R

∂

∂x
f(t, x)

∂

∂x
gt−s(x− y)ρs(y)b(s, y) dy ds dx dt.

Here we will use the estimates of Lemma 4.2.2. To do so, we need to rewrite B in a convenient
form. Firstly, we conclude below that Fubini’s theorem applies to B so that we can change the
order of integration as we like. Indeed, b and ρ are uniformly bounded, ∂

∂xgt−s is integrable in
space and time and f ∈ C∞

K ((0, T )× R). Thus,

∫ T

0

∫

R

∫ t

0

∫

R

| ∂
∂x

f(t, x)
∂

∂x
gt−s(x− y)ρs(y)b(s, y)| dy ds dx dt

≤ C(b, ρ)

∫ T

0

∫

R

| ∂
∂x

f(t, x)|
∫ t

0

C√
t− s

ds dx dt ≤ C(b, ρ)
√
T

∫ T

0

∫

R

| ∂
∂x

f(t, x)| dx dt < ∞.

Therefore, we rewrite B as

B =

∫ T

0

∫

R

∫ T

s

∫

R

∂

∂x
f(t, x)

∂

∂x
gt−s(x− y) dx dt ρs(y)b(s, y) dy ds.

We focus on the inner integrals. Integrate by parts in space and then change the variables:

∫ T

s

∫

R

∂

∂x
f(t, x)

∂

∂x
gt−s(x− y) dx dt = −

∫ T

s

∫

R

∂2

∂x2
f(t, x+ y)gt−s(x) dx dt.

Notice that ∂2

∂x2 f(t, x+ y) = ∂2

∂y2
f(t, x+ y) and since f is regular, the order of integration and

derivation can be exchanged. It comes

∫ T

s

∫

R

∂

∂x
f(t, x)

∂

∂x
gt−s(x− y) dx dt = − ∂2

∂y2

∫ T

s

∫

R

f(t, x+ y)gt−s(x) dx dt.

After another change of variables,

∫ T

s

∫

R

∂

∂x
f(t, x)

∂

∂x
gt−s(x− y) dx dt = − ∂2

∂y2

∫ T

s

∫

R

f(t, x)gt−s(x− y) dx dt.

Therefore,

B = −
∫ T

0

∫

R

ρs(y)b(s, y)
∂2

∂y2
[

∫ T

s

∫

R

f(t, x)gt−s(x− y) dx dt] dy ds.

Applying Hölder’s inequality,

|B| ≤ C(b)‖ρ‖Lp((0,T )×R)

∥∥∥∥
∂2

∂y2

∫ T

·

∫

R

f(t, x)gt−·(x− ·) dx dt

∥∥∥∥
Lp′ ((0,T )×R)

.

Now, Lemma 4.2.2 provides a bound for the last term. The framework is the following. For d = 1,
we define c(t) ≡ 1. Then C(t, s) = t− s, s ≤ t. The function g(s, x; t, y) in Lemma 4.2.2 is here
g(s, x; t, y) := ✶{s ≤ t}gt−s(y − x). Define f̃(t, x) = ✶{0 ≤ t ≤ T}f(t, x). Then,the functional G
becomes

Gf̃(s, y) =

∫ ∞

s

∫

R

g(s, y; t, x)f̃(s, y)dxdt =

∫ T

s

∫

R

f(t, x)gt−s(x− y)dxdt.
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Applying the estimate in Lemma 4.2.2,

‖ ∂2

∂y2
Gf̃‖Lp′ ((0,T )×R) ≤ ‖ ∂2

∂y2
Gf̃‖Lp′ (R×R)) ≤ C‖f̃‖Lp′ (R×R)) = c‖f‖Lp′ ((0,T )×R).

Finally, this implies

|B| ≤ C(b, p)‖f‖Lp′ ((0,T )×R).

Combining the estimates of terms A and B, we obtain (4.5). Thus, the theorem is proved.

Remark 4.2.3. The relation (4.6) holds for a wider class of functions f . Namely, by density

arguments, it holds as well for f ∈ Lp′((0, T );W p′

1 (R)).

4.3 Rate of convergence

Theorem 4.3.1. Let 1 < p < 2, T > 0 and ε > 0. Then, for any t ≤ T one has

‖ρt − ρεt‖Lp(R) ≤ CT

√
ε.

Proof. Remember that by the iterative procedures applied to (4.1) and (4.2), one has that

1. Both drifts are uniformly bounded in time and space. Namely, b, bε ∈ L∞((0, T )× R).

2. By construction ρ ∈ L∞((0, T );L1(R) ∩ L∞(R)) and ρε ∈ L∞((0, T );L1(R) ∩ L∞(R)). In
addition, the estimate for ρε is uniform in ε.

We write the mild equations satisfied by ρ and ρε, respectively:

ρt = gt ∗ ρ0 −
∫ T

0

∂gt−s

∂x
∗ (ρsb(s, ·; ρ)) ds and ρεt = gt ∗ ρ0 −

∫ T

0

∂gt−s

∂x
∗ (ρεsbε(s, ·; ρε)) ds.

Notice that,

‖ρt − ρεt‖Lp(R) ≤
∫ t

0
‖∂gt−s

∂x
∗ ((ρs − ρεs)b(s, ·; ρ))‖Lp(R) ds

+

∫ t

0
‖∂gt−s

∂x
∗ ((b(s, ·, ρ)− bε(s, ·; ρε))ρεs)‖Lp(R) ds =: A+B.

By the convolution inequality (3.37), one has

A ≤ ‖b‖∞
∫ t

0
‖∂gt−s

∂x
‖L1(R)‖ρs − ρεs‖Lp(R) ds ≤ Cb

∫ ‖ρs − ρεs‖Lp(R)√
t− s

ds.

The difference of the two drifts writes as

b(s, ·; ρ)− bε(s, ·; ρε) =
∫ s

0
(Ks−r ∗ (ρr − ρεr) + (Ks−r −Kε

s−r) ∗ ρεr) dr.
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Thus, the term B decomposes to

B ≤
∫ t

0
‖∂gt−s

∂x
∗ (ρεs

∫ s

0
Ks−r ∗ (ρr − ρεr) dr)‖Lp(R)

+ ‖∂gt−s

∂x
∗ (ρεs

∫ s

0
(Ks−r −Kε

s−r) ∗ ρεr dr)‖Lp(R) ds =: B1 +B2.

We first treat B1. Applying the convolution inequality (3.37) twice and the bounds on ρεs, one has

B1 ≤ C

∫ t

0

1√
t− s

∫ s

0
‖Ks−r ∗ (ρr − ρεr)‖Lp(R) dr ds

≤ C

∫ t

0

1√
t− s

∫ s

0

1√
s− r

‖ρr − ρεr‖Lp(R) dr ds.

Applying Fubini’s theorem,

B1 ≤ C

∫ t

0
‖ρr − ρεr‖Lp(R)

∫ t

r

1√
t− s

√
s− r

ds dr ≤ C

∫ t

0
‖ρr − ρεr‖Lp(R) dr.

Let us pass to B2. This term will give us the rate of convergence. The convolution inequality and
the bound on the density lead to

B2 ≤ C

∫ t

0

1√
t− s

‖
∫ s

0
(Ks−r −Kε

s−r) ∗ ρεr dr‖Lp(R) ds.

Set

F (x) :=

∫ t

0

∫ −(x− y)

(s− r)3/2
e
− (x−y)2

2(s−r) ρεr(y)dy dr −
∫ t

0

∫ −(x− y)

(s− r + ε)3/2
e
− (x−y)2

2(s−r) ρεr(y)dy dr.

Notice that Theorem 4.2.1 applies to both ρ and ρε. Moreover, as for a fixed ε > 0 the drift of
(4.2) is in C∞

b (R), the density ρεt is differentiable everywhere (see e.g. Nualart [57]). Notice that,

−(x− y)

(s− r)3/2
e
− (x−y)2

2(s−r) = C
∂

∂y
gs−r(x−y) and

−(x− y)

(s− r + ε)3/2
e
− (x−y)2

2(s−r) = C

(
s− r

s− r + ε

)3/2 ∂

∂y
gs−r(x−y).

After an integration by parts

F (x) = C

∫ s

0

∫ (
1−

(
s− r

s− r + ε

)3/2
)
gs−r(x− y)

∂

∂y
ρεr(y)dy dr.

Notice that
∣∣∣∣∣1−

(
s− r

s− r + ε

)3/2
∣∣∣∣∣ =

∣∣∣∣∣
(s− r + ε)3/2 − (s− r + ε)

√
s− r + (s− r + ε)

√
s− r − (s− r)3/2

(s− r + ε)3/2

∣∣∣∣∣

=

∣∣∣∣
√
s− r + ε−√

s− r√
s− r + ε

+
ε
√
s− r

(s− r + ε)
√
s− r + ε

∣∣∣∣ ≤ 2

√
ε√

s− r
.

Next, we are interested in the Lp(R) norm of F . After the convolution inequality (3.37),

‖F‖Lp(R) ≤ C
√
ε

∫ s

0

1√
s− r

‖gs−r ∗
∂

∂x
ρεt‖Lp(R) dr ≤ C

√
ε

∫ s

0

1√
s− r

‖ ∂

∂x
ρεt‖Lp(R) dr.
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This implies that

B2 ≤ C
√
ε

∫ t

0

1√
t− s

∫ s

0

1√
s− r

‖ ∂

∂x
ρεt‖Lp(R) dr ds.

Fubini’s theorem and Hölder’s inequality lead to

B2 ≤ C
√
ε

∫ t

0
‖ ∂

∂x
ρεt‖Lp(R)

∫ t

r

1√
t− s

√
s− r

ds dr = C
√
ε

∫ t

0
‖ ∂

∂x
ρεt‖Lp(R) dr

≤ C
√
εt

1
p′

(∫ t

0
‖ ∂

∂x
ρεt‖pLp(R) dr

) 1
p

.

In view of Theorem 4.2.1, one gets
B2 ≤ CT

√
ε.

The constant CT depends on p0, T, c
′
0, but not on ε. Finally, the term B is estimated by

B ≤ C

∫ t

0
‖ρr − ρεr‖Lp(R) dr + CT

√
ε.

The estimates on A and B together lead to

‖ρt − ρεt‖Lp(R) ≤ CT

∫ t

0

1√
t− s

‖ρs − ρεs‖Lp(R)ds+ CT

√
ε.

It remains to apply Gronwall’s lemma in order to finish the proof.





Chapter 5

The one-dimensional case: Particle system

and propagation of chaos

This chapter is the subject of a paper [43] that appeared in Electronic Communications of
Probability. It is a joint work with Jean Francois Jabir (HSE Moscow) and Denis Talay.

5.1 Introduction

The standard d-dimensional parabolic–parabolic Keller–Segel model for chemotaxis describes the
time evolution of the density ρt of a cell population and of the concentration ct of a chemical
attractant: 




∂tρ(t, x) = ∇ · (12∇ρ− χρ∇c), t > 0, x ∈ Rd,

α∂tc(t, x) =
1
2△c− λc+ ρ, t > 0, x ∈ Rd,

ρ(0, x) = ρ0(x), c(0, x) = c0(x),

(5.1)

for some parameters χ > 0, λ ≥ 0 and α ≥ 0. See Chapter 1 or Perthame [62] and references
therein for theoretical results on this system of PDEs and applications to biology. When α = 0,
the system (5.1) is parabolic–elliptic, and when α = 1 (or more generally, when 0 < α ≤ 1), the
system is parabolic–parabolic.

For the parabolic–elliptic version of the model with d = 2, the first stochastic interpretation of this
system is due to Haškovec and Schmeiser [36] who analyze a particle system with McKean–Vlasov
interactions and Brownian noise. More precisely, as the ideal interaction kernel should be strongly
singular, they introduce a kernel with a cut-off parameter and obtain the tightness of the particle
probability distributions w.r.t. the cut-off parameter and the number of particles. They also
obtain partial results in the direction of the propagation of chaos. More recently, in the subcritical
case, that is, when the parameter χ of the parabolic–elliptic model is small enough, Fournier and
Jourdain [31] obtain the well–posedness of a particle system without cut-off. In addition, they
obtain a consistency property which is weaker than the propagation of chaos. They also describe
complex behaviors of the particle system in the sub and super critical cases. Cattiaux and
Pédèches [21] obtain the well-posedness of this particle system without cut-off by using Dirichlet
forms rather than pathwise approximation techniques.

For a parabolic–parabolic version of the model with a smooth coupling between ρt and ct,
Budhiraja and Fan [17] study a particle system with a smooth time integrated kernel and prove it
propagates chaos. Moreover, adding a forcing potential term to the model, under a suitable
convexity assumption, they obtain uniform in time concentration inequalities for the particle
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system and uniform in time error estimates for a numerical approximation of the limit non-linear
process.

In Section 1.4 the reader may found more details on [36, 31, 21].

For the pure parabolic–parabolic model without cut-off or smoothing, in the one-dimensional case
with α = 1, we have proved in Chapter 3 the well-posedness of PDE (5.1) and of the following
non-linear SDE:

{
dXt = b(t,Xt)dt+

{
χ
∫ t
0 (Kt−s ⋆ ρs)(Xt)ds

}
dt+ dWt, t > 0,

ρs(y)dy := L(Xs), X0 ∼ ρ0(x)dx,
(5.2)

where Kt(x) := e−λt ∂
∂x(

1
(2πt)1/2

e−
x2

2t ) and b(t, x) = e−λt ∂
∂xE[c0(x+Wt)].

Under the sole condition that the initial probability law L(X0) has a density, it is shown that the
law L(X) uniquely solves a non-linear martingale problem and its time marginals have densities.
These densities coupled with a suitable transformation of them uniquely solve the
one–dimensional parabolic–parabolic Keller–Segel system without cut-off. In Chapter 6 additional
techniques are developed for the two-dimensional version of (5.2).

The objective of this chapter is to analyze the particle system related to (5.2). It inherits from the
limit equation that at each time t > 0 each particle interacts in a singular way with the past of all
the other particles. We prove that the particle system is well–posed and propagates chaos to the
unique weak solution of (5.2). To the best of our knowledge, this is the first time in the literature
that the parabolic-parabolic Keller-Segel system is derived as a limit of a system of interacting
stochastic particles, when the number of particles tends to infinity. Compared to the stochastic
particle systems introduced for the parabolic–elliptic model, an interesting fact occurs: the
difficulties arising from the singular interaction can now be resolved by using purely Brownian
techniques rather than by using Bessel processes. Due to the singular nature of the kernel K, we
need to introduce a partial Girsanov transform of the N -particle system in order to obtain
uniform in N bounds for moments of the corresponding exponential martingale. Our calculation is
based on the fact that the kernel K is in L1(0, T ;L2(R)). Notice that in the case of the
multi-dimensional Keller–Segel particle system the L1(0, T ;L2(Rd))-norm of the kernel is infinite,
so these techniques can not be used in higher dimension. For more details see Chapter 7.

The chapter is organized as follows: In Section 5.2 we state our two main results and comment our
methodology. In Section 5.3 and Appendix we prove technical lemmas. In Section 5.4 we prove
our main results.

In all the chapter we denote by C any positive real number independent of N . Any time C will
depend on N or any other parameter that will be explicitly written.

5.2 Main results

Our main results concern the well–posedness and propagation of chaos of
{

dXi,N
t =

{
1
N

∑N
j=1,j 6=i

∫ t
0 Kt−s(X

i,N
t −Xj,N

s )ds ✶{Xi,N
t 6=Xj,N

t }

}
dt+ dW i

t ,

Xi,N
0 i.i.d. and independent of W := (W i, 1 ≤ i ≤ N),

(5.3)
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where Kt(x) =
−x√
2πt3/2

e−
x2

2t and the W i’s are N independent standard Brownian motions. It

corresponds to α = 1, λ = 0, χ = 1, and c′0 ≡ 0. It is easy to extend our methodology to (5.2)
under the hypotheses made in Chapter 3.

Theorem 5.2.1. Given 0 < T < ∞ and N ∈ N, there exists a weak solution
(Ω,F , (Ft; 0 ≤ t ≤ T ),QN ,W,XN ) to the N -interacting particle system (5.3) that satisfies, for
any 1 ≤ i ≤ N ,

QN



∫ T

0


 1

N

N∑

j=1,j 6=i

∫ t

0
Kt−s(X

i,N
t −Xj,N

s )ds ✶{Xi,N
t 6=Xj,N

t }




2

dt < ∞


 = 1. (5.4)

In view of Karatzas and Shreve [45, Chapter 5, Proposition 3.10], one has the following uniqueness
result:

Corollary 5.2.2. Weak uniqueness holds in the class of weak solutions satisfying (5.4).

The construction of a weak solution to (5.3) involves arguments used by Krylov and Röckner [49,
Section 3] to construct a weak solution to SDEs with singular drifts. It relies on the Girsanov
transform which removes all the drifts of (5.3).

Remark 5.2.3. Our construction shows that the law of the particle system is equivalent to
Wiener’s measure. Thus, a.s. the set {t ≤ T,Xi,N

t = Xj,N
t } has Lebesgue measure zero.

Our second main theorem concerns the propagation of chaos of the system (5.3). Before we
proceed to its statement, we need to define the non-linear martingale problem (MPKS) associated
to the non-linear SDE:

{
dXt =

{∫ t
0 (Kt−s ⋆ ρs)(Xt)ds

}
dt+ dWt, t ≤ T,

ρs(y)dy := L(Xs), X0 ∼ ρ0(x)dx.
(5.5)

For any measurable space E we denote by P(E) the set of probability measures on E.

Definition 5.2.4. Q ∈ P(C[0, T ];R) is a solution to (MPKS) if:

(i) Q0(dx) = ρ0(x) dx;

(ii) For any t ∈ (0, T ], the one dimensional time marginal Qt of Q has a density ρt w.r.t.
Lebesgue measure on R which belongs to L2(R) and satisfies

∃CT , ∀ 0 < t ≤ T, ‖ρt‖L2(R) ≤
CT

t1/4
;

(iii) Denoting by (x(t); t ≤ T ) the canonical process of C([0, T ];R), we have: For any f ∈ C2
b (R),

the process defined by

Mt := f(x(t))− f(x(0))−
∫ t

0

((∫ s

0

∫
Ks−r(x(s)− y)ρr(y)dydr

)
f ′(x(s)) +

1

2
f ′′(x(s))

)
ds

is a Q-martingale w.r.t. the canonical filtration.
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In Chapter 3, we have proven that (MPKS) admits a unique solution and that a suitable notion of
weak solution to (5.5) is equivalent to the notion of solution to (MPKS) (see Corollary 3.2.4).

Theorem 5.2.5. Assume that the Xi,N
0 ’s are i.i.d. and that the initial distribution of X1,N

0 has a

density ρ0. The empirical measure µN = 1
N

∑N
i=1 δXi,N of (5.3) converges in the distribution

sense, when N → ∞, to the unique weak solution of (5.5).

To prove the tightness and weak convergence of µN , we use a Girsanov transform which removes a
fixed small number of the drifts of (5.3) rather than all the drifts. This trick, which may be useful
for other singular interactions, allows us to get uniform w.r.t. N bounds for the needed Girsanov
exponential martingales.

5.3 Preliminaries

On the path space define the functional Ft as

Ft(x, x̂) =

(∫ t

0
Kt−s(xt − x̂s)ds ✶{xt 6=x̂t}

)2

, (5.6)

where (x, x̂) ∈ C([0, T ];R)× C([0, T ];R). The objective of this section is to show that∫ T
0 Ft(w, Y ) dt has finite exponential moments when w is a Brownian motion and Y is a process
independent of w. The following key property of the kernel Kt will be used:

‖Kt‖Lp(R) =

(
C

∫ ∞

0

z2

tp−
1
2

e−
pz2

2 dz

) 1
p

=
Cp

t
1− 1

2p

, 1 ≤ p < ∞. (5.7)

We will proceed as in the proof of the local Novikov Condition (see [45, Chapter 3, Corollary
5.14]) by localizing on small intervals of time.

Lemma 5.3.1. Let w := (wt) be a (Gt)-Brownian motion with an arbitrary initial condition µ0 on
some probability space equipped with a probability measure P and a filtration (Gt). There exists a
universal real number C0 > 0 such that

∀x ∈ C([0, T ];R), ∀0 ≤ t1 ≤ t2 ≤ T,

∫ t2

t1

E
Gt1
P [Ft(w, x)] dt ≤ C0

√
T
√
t2 − t1.

Proof. By the definition of F ,

∫ t2

t1

E
Gt1
P Ft(w, x)dt ≤

∫ t2

t1

∫ t

0

∫ t

0
E
Gt1
P |Kt−s(wt − xs)Kt−u(wt − xu)| ds du dt. (5.8)

Let gt(x) :=
1√
2πt

e−
x2

2t . In view of (5.7), one has

√∫
K2

t−s(y + wt1 − xs))gt−t1(y)dy ≤ C
‖Kt−s‖L2(R)

(t− t1)1/4
≤ C

(t− s)3/4(t− t1)1/4
.
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Here we used that the density of wt − wt1 is bounded by C√
t−t1

. We repeat the above calculations

replacing s with u. Coming back to (5.8), one has

∫ t2

t1

E
Gt1
P [Ft(w, x)] dt ≤

∫ t2

t1

C√
t− t1

∫ t

0

∫ t

0

1

(t− s)3/4(t− u)3/4
dsdudt =

∫ t2

t1

C
√
t√

t− t1
dt

≤ C0

√
T
√
t2 − t1.

Lemma 5.3.2. Same assumptions as in Lemma 5.3.1. Let C0 be as in Lemma 5.3.1. For any
κ > 0, there exists C(T, κ) independent of µ0 such that, for any 0 ≤ T1 ≤ T2 ≤ T satisfying
T2 − T1 <

1
C2

0Tκ2 ,

∀x ∈ C([0, T ];R), E
GT1
P

[
exp

{
κ

∫ T2

T1

Ft(w, x)dt

}]
≤ C(T, κ).

Proof. We adapt the proof of Khasminskii’s lemma in Simon [68]. Admit for a while we have
shown that there exists a constant C(κ, T ) such that for any M ∈ N

M∑

k=1

κk

k!
E
GT1
P

(∫ T2

T1

Ft(w, x)dt

)k

≤ C(T, κ), (5.9)

provided that T2 − T1 <
1

C2
0Tκ2 . The desired result then follows from Fatou’s lemma.

We now prove (5.9). By the tower property of conditional expectation,

E
GT1
P

[(∫ T2

T1

Ft(w, x)dt

)k
]
= k!

∫ T2

T1

∫ T2

t1

∫ T2

t2

· · ·
∫ T2

tk−2

∫ T2

tk−1

E
GT1
P

[
Ft1(w, x)Ft2(w, x)

× · · · × Ftk−1
(w, x)

(
E
Gtk−1

P Ftk(w, x)
) ]

dtk dtk−1 · · · dt2 dt1.

In view of Lemma 5.3.1,

∫ T2

tk−1

E
Gtk−1

P Ftk(w, x) dtk ≤ C0

√
T
√
T2 − tk−1 ≤ C0

√
T
√

T2 − T1.

Therefore, by Fubini’s theorem,

E
GT1
P

[(∫ T2

T1

Ft(w, x)dt

)k
]
≤ k!C0

√
T
√

T2 − T1

∫ T2

T1

∫ T2

t1

∫ T2

t2

· · ·
∫ T2

tk−2

E
GT1
P

[
Ft1(w, x)Ft2(w, x)

× · · · × Ftk−1
(w, x)

]
dtk−1 · · · dt2 dt1.

Now we repeatedly condition with respect to Gtk−i
(i ∈ {2, . . . , k − 1}) and combine Lemma 5.3.1

with Fubini’s theorem. It comes:

E
GT1
P

(∫ T2

T1

Ft(w, x)dt

)k

≤ k!(C0

√
T
√

T2 − T1)
k−1

∫ T2

T1

E
GT1
P [Ft1(w, x)]dt1 ≤ k!(C0

√
T
√

T2 − T1)
k.

Thus, (5.9) is satisfied provided that T2 − T1 <
1

C2
0Tκ2 .
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Proposition 5.3.3. Let T > 0. Same assumptions as in Lemma 5.3.1. Suppose that the filtered
probability space is rich enough to support a continuous process Y independent of w. For any
α > 0,

EP

[
exp

{
α

∫ T

0
Ft(w, Y )dt

}]
≤ C(T, α),

where C(T, α) depends only on T and α, but does neither depend on the law L(Y ) nor of µ0.

Proof. Denote by PY := P ◦ Y −1. Observe that

EP exp

{
α

∫ T

0
Ft(w, Y )dt

}
=

∫

C([0,T ];R)
EP exp

{
α

∫ T

0
Ft(w, x)dt

}
PY (dx). (5.10)

Set δ := 1
2C2

0Tα2 ∧ T , where C0 is as in Lemma 5.3.1. Set n :=
[
T
δ

]
, where

[
T
δ

]
denotes the greatest

integer less than or equal to T
δ . Then,

exp

{
α

∫ T

0
Ft(w, x)dt

}
=

n∏

m=0

exp

{
α

∫ T−mδ

(T−(m+1)δ)∨0
Ft(w, x) dt

}
.

Condition the right-hand side by G(T−δ)∨0. Notice that δ is small enough to be in the setting of
Lemma 5.3.2. Thus,

EP exp

{
α

∫ T

0
Ft(w, x)dt

}
≤ C(T, α)EP

n∏

m=1

exp

{
α

∫ T−mδ

(T−(m+1)δ)∨0
Ft(w, x) dt

}
.

Successively, conditioning by G(T−(m+1))∨0 for m ∈ {1, 2, . . . n} and using Lemma 5.3.2,

EP exp

{
α

∫ T

0
Ft(w, x)dt

}
≤ Cn(T, α)EP exp

{
α

∫ (T−nδ)∨0

0
Ft(w, x)dt

}
≤ C(T, α).

The proof is completed by plugging the preceding estimate into (5.10).

5.4 Existence of the particle system and propagation of chaos

5.4.1 Existence: Proof of Theorem 5.2.1

We start from a probability space (Ω,F , (Ft; 0 ≤ t ≤ T ),W) on which are defined an
N -dimensional Brownian motion W = (W 1, . . . ,WN ) and the random variables Xi,N

0 (see (5.3)).
Set

X̄i,N
t := Xi,N

0 +W i
t , t ≤ T

and X̄ := (X̄i,N , 1 ≤ i ≤ N). For x ∈ C([0, T ];R)N denote

bi,Nt (x) :=
1

N

N∑

j=1

∫ t

0
Kt−s(x

i,N
t − xj,Ns )ds ✶{xi,N

t 6=xj,N
t }
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and the vector of all the drifts as BN
t (x) := (b1,Nt (x), . . . , bN,N

t (x)). For a fixed N ∈ N, consider

ZN
T := exp

{∫ T

0
BN

t (X̄) · dWt −
1

2

∫ T

0

∣∣BN
t (X̄)

∣∣2 dt
}
.

To prove Theorem 5.2.1, it suffices to prove the following Novikov condition holds true (see e.g.
[45, Chapter 3, Proposition 5.13]):

Proposition 5.4.1. For any T > 0, N ≥ 1, κ > 0, there exists C(T,N, κ) such that

EW

(
exp

{
κ

∫ T

0
|BN

t (X̄)|2dt
})

≤ C(T,N, κ). (5.11)

Proof. Drop the index N for simplicity. Using the definition of BN
t and Jensen’s inequality one has

EW

[
exp

{
κ

∫ T

0

∣∣BN
t (X̄)

∣∣2 dt

}]
≤ EW


exp





1

N

N∑

i=1

1

N

N∑

j=1

∫ T

0
κNFt(X̄

i, X̄j) dt






 ,

where Ft is defined in (5.6). Applying one more time the Jensen’s inequality, we deduce

EW

[
exp

{
κ

∫ T

0

∣∣BN
t (X̄)

∣∣2 dt

}]
≤ 1

N

N∑

i=1

1

N

N∑

j=1

EW

[
exp

{
κN

∫ T

0
Ft(X̄

i, X̄j) dt

}]
.

As the X̄i’s are independent Brownian motions, we are in a position to use Proposition 5.3.3. This
concludes the proof.

5.4.2 Girsanov transform for 1 ≤ k < N particles

In the proof of Theorem 5.2.1 we used (5.7) and a Girsanov transform. However, the right-hand
side of (5.11) goes to infinity with N . Thus, Proposition 5.4.1 cannot be used to prove the
tightness and propagation of chaos of the particle system. We instead define an intermediate
particle system. Let us fix 1 ≤ k < N . Proceeding as in the proof of Theorem 5.2.1 one gets the
existence of a weak solution on [0, T ] to





dX̂ l,N
t = dW l

t , 1 ≤ l ≤ k,

dX̂i,N
t =

{
1
N

∑N
j=k+1

∫ t
0 Kt−s(X̂

i,N
t − X̂j,N

s ) ds ✶{X̂i,N
t 6=X̂j,N

t }

}
dt+ dW i

t , k + 1 ≤ i ≤ N,

X̂i,N
0 i.i.d. and independent of (W ) := (W i, 1 ≤ i ≤ N).

(5.12)
Below we set X̂ := (X̂i,N , 1 ≤ i ≤ N) and we denote by Qk,N the probability measure under which
W = (W 1, . . . ,WN ) is an N -dimensional Brownian motion and X̂ is well defined. Notice that
(X̂ l,N , 1 ≤ l ≤ k) is independent of (X̂i,N , k + 1 ≤ i ≤ N) and that (X̂i,N , k + 1 ≤ i ≤ N) interact
in the same way as (5.3) without first k particles. We now study the exponential local martingale
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associated to the change of drift between (5.3) and (5.12). For x ∈ C([0, T ];R)N set

β
(k)
t (x) :=

(
b1,Nt (x), . . . , bk,Nt (x),

1

N

k∑

i=1

∫ t

0
Kt−s(x

k+1
t − xis)ds ✶{xk+1

t 6=xi
t}
, . . . ,

1

N

k∑

i=1

∫ t

0
Kt−s(x

N
t − xis)ds ✶{xN

t 6=xi
t}

)
.

In the sequel we will need uniform w.r.t N bounds for moments of

Z
(k)
T := exp

{
−
∫ T

0
β
(k)
t (X̂) · dWt −

1

2

∫ T

0
|β(k)

t (X̂)|2dt
}
. (5.13)

Proposition 5.4.2. For any T > 0, γ > 0 and k ≥ 1 there exists N0 ≥ k and C(T, γ, k) s.t.

∀N ≥ N0, EQk,N exp

{
γ

∫ T

0
|β(k)

t (X̂)|2dt
}

≤ C(T, γ, k).

Proof. For x ∈ C([0, T ];R)N , one has

|β(k)
t (x)|2 =

k∑

i=1


 1

N

N∑

j=1

∫ t

0
Kt−s(x

i
t − xjs)ds ✶{xj

t 6=xi
t}




2

+
1

N2

N−k∑

j=1

(
k∑

i=1

∫ t

0
Kt−s(x

k+j
t − xis)ds ✶{xk+j

t 6=xi
t}

)2

.

By Jensen’s inequality,

|β(k)
t (x)|2 ≤ 1

N

k∑

i=1

N∑

j=1

Ft(x
i, xj) +

k

N2

N−k∑

j=1

k∑

i=1

Ft(x
k+j , xi),

where Ft is as in (5.6). For simplicity we below write E (respectively, X̂i) instead of EQk,N

(respectively, X̂i,N ). Observe that

E exp
{
γ

∫ T

0
|β(k)

t (X̂)|2dt
}

≤
(
E exp

{ k∑

i=1

2γ

N

N∑

j=1

∫ T

0
Ft(X̂

i, X̂j)dt
}) 1

2
(
E exp

{2γk
N2

N−k∑

j=1

k∑

i=1

∫ T

0
Ft(X̂

k+j , X̂i) dt
}) 1

2

=: A
1
2B

1
2 .

Now, Hölder’s and Jensen’s inequalities lead to

A ≤
( k∏

i=1

E exp
{
2γk

1

N

N∑

j=1

∫ T

0
Ft(X̂

i, X̂j)dt
}) 1

k ≤
( k∏

i=1

1

N

N∑

j=1

E exp
{
2γk

∫ T

0
Ft(X̂

i, X̂j)dt
}) 1

k
.

In view of Proposition 5.3.3, one has
A ≤ C(T, k, γ).
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Again, combine Hölder’s and Jensen’s inequalities. It comes

B ≤
(N−k∏

j=1

1

k

k∑

i=1

E exp
{2γk2

N

∫ T

0
Ft(X̂

k+j , X̂i)dt
}) 1

N−k
.

It now remains to prove that there exists N0 ∈ N such that

sup
N≥N0

E

[
exp

{
2γk2

N

∫ T

0
Ft(X̂

k+j , X̂i)dt

}]
≤ C(T, k, γ).

We postpone the proof of this inequality to the Appendix (see Proposition 5.5.1).

5.4.3 Propagation of chaos : Proof of Theorem 5.2.5

Tightness

We start with showing the tightness of {µN} and of an auxiliary empirical measure which is
needed in the sequel.

Lemma 5.4.3. Let QN be as above. The sequence {µN} is tight under QN . In addition, let
νN := 1

N4

∑N
i,j,k,l=1 δXi,N

. ,Xj,N
. ,Xk,N

. ,Xl,N
.

. The sequence {νN} is tight under QN .

Proof. The tightness of {µN}, respectively {νN}, results from the tightness of the intensity
measure {EQNµN (·)}, respectively{EQN νN (·)}: See Sznitman [72, Prop. 2.2-ii]. By symmetry, in
both cases it suffices to check the tightness of {Law(X1,N )}. We aim to prove

∃CT > 0, ∀N ≥ N0, EQN [|X1,N
t −X1,N

s |4] ≤ CT |t− s|2, 0 ≤ s, t ≤ T, (5.14)

where N0 is as in Proposition 5.4.2. Let Z
(1)
T be as in (5.13). One has

EQN [|X1,N
t −X1,N

s |4] = EQ1,N [(Z
(1)
T )−1|X̂1,N

t − X̂1,N
s |4].

As X̂1,N is a one dimensional Brownian motion under Q1,N ,

EQN [|X1,N
t −X1,N

s |4] ≤ (EQ1,N [(Z
(1)
T )−2])1/2(EQ1,N [|X̂1,N

t − X̂1,N
s |8])1/2

≤ (EQ1,N [(Z
(1)
T )−2])1/2C|t− s|2.

Observe that, for a Brownian motion (W ♯) under Q1,N ,

EQ1,N [(Z
(1)
T )−2] = EQ1,N exp

{
2

∫ T

0
β
(1)
t (X̂) · dW ♯

t −
∫ T

0
|β(1)

t (X̂)|2dt
}
.

Adding and subtracting 3
∫ T
0 |β(1)

t (X̂)|2dt and applying again the Cauchy-Schwarz inequality,

EQ1,N [(Z
(1)
T )−2] ≤

(
EQ1,N exp

{
6

∫ T

0
|β(1)

t (X̂)|2dt
})1/2

.

Applying Proposition 5.4.2 with k = 1 and γ = 6, we obtain the desired result.
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Convergence

For a space S we denote by P(S) the set of probability measures on it. To prove Theorem 5.2.5
we have to show that any limit point of {Law(µN )} is δQ, where Q is the unique solution to
(MPKS). Since the particles interact through an unbounded singular functional, we adapt the
arguments in Bossy and Talay [14, Thm. 3.2].

Let φ ∈ Cb(Rp), f ∈ C2
b (R), 0 < t1 < · · · < tp ≤ s < t ≤ T and m ∈ P(C([0, T ];R)). Set

G(m) :=

∫

C([0,T ];R)2
φ(x1t1 , . . . , x

1
tp)
(
f(x1t )− f(x1s)

− 1

2

∫ t

s
f ′′(x1u)du−

∫ t

s
f ′(x1u)✶{x1

u 6=x2
u}

∫ u

0
Ku−θ(x

1
u − x2θ)dθdu

)
dm(x1)⊗ dm(x2).

We start with showing that

lim
N→∞

E[
(
G(µN )

)2
] = 0. (5.15)

Observe that

G(µN ) =
1

N

N∑

i=1

φ(Xi,N
t1

, . . . , X i,N
tp )

(
f(Xi,N

t )− f(Xi,N
s )− 1

2

∫ t

s
f ′′(Xi,N

u )du

− 1

N

N∑

j=1

∫ t

s
f ′(Xi,N

u )✶{Xi,N
u 6=Xj,N

u }

∫ u

0
Ku−θ(X

i,N
u −Xj,N

θ )dθ du
)
.

Apply Itô’s formula to 1
N

∑N
i=1(f(X

i,N
t )− f(Xi,N

s )). It comes:

E[
(
G(µN )

)2
] ≤ C

N2
E

( N∑

i=1

∫ t

s
f ′(Xi,N

u )dW i
u

)2
≤ C

N
.

Thus, (5.15) holds true.

Suppose for a while we have proven the following lemma:

Lemma 5.4.4. Let Π∞ ∈ P(P(C([0, T ];R)4)) be a limit point of {law(νN )}. Then

lim
N→∞

E[
(
G(µN )

)2
] =

∫

P(C([0,T ];R)4)

{∫

C([0,T ];R)4

[
f(x1t )− f(x1s)−

1

2

∫ t

s
f

′′
(x1u)du

−
∫ t

s
f

′
(x1u)✶{x1

u 6=x2
u}

∫ u

0
Ku−θ(x

1
u − x2θ)dθ du

]
× φ(x1t1 , . . . , x

1
tp)dν(x

1, . . . , x4)

}2

dΠ∞(ν),

(5.16)

and

i) Any ν ∈ P(C([0, T ];R)4) belonging to the support of Π∞ is a product measure:
ν = ν1 ⊗ ν1 ⊗ ν1 ⊗ ν1.
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ii) For any t ∈ (0, T ], the time marginal ν1t of ν1 has a density ρ1t which satisfies

∃CT , ∀0 < t ≤ T, ‖ρ1t ‖L2(R) ≤
CT

t
1
4

.

Then, (5.15) and (5.16) imply

∫

P(C([0,T ];R)4)

{∫

C([0,T ];R)4

[
f(x1t )− f(x1s)−

1

2

∫ t

s
f

′′
(x1u)du

−
∫ t

s
f

′
(x1u)✶{x1

u 6=x2
u}

∫ u

0
Ku−θ(x

1
u − x2θ)dθ du

]
× φ(x1t1 , . . . , x

1
tp)dν(x

1, . . . , x4)

}2

dΠ∞(ν) = 0.

Let ν ∈ P(C([0, T ];R)4) belong to the support of Π∞. Then, parts i) and ii) of Lemma 5.4.4 lead
to

∫

C([0,T ];R)
φ(x1t1 , . . . , x

1
tp)
[
f(x1t )− f(x1s)−

1

2

∫ t

s
f ′′(x1u)du

−
∫ t

s
f ′(x1u)

∫ u

0

∫
Ku−θ(x

1
u − y)ρ1θ(y)dy dθ du

]
dν1(x1) = 0.

We deduce that ν1 solves (MPKS) and thus that ν1 = Q. As (MPKS) admits a unique solution,
the support of Π∞ reduces to Q⊗Q⊗Q⊗Q. Now, let φ a continuous and bounded functional on
C([0, T ];R)4 such that φ(x1, x2, x3, x4) = ϕ(x1). One one side, < Π∞, φ >=< δQ, ϕ >. On the
other side, by weak convergence and definition of φ, one has

< Π∞, φ >= lim
N→∞

E < νN , φ >= lim
N→∞

E < µN , ϕ >,

where convergent subsequences of νn and µn are not renamed. It follows that any limit point of
Law(µN ) is δQ, which ends the proof.

Proof of Lemma 5.4.4

Proof of (5.16): Step 1. Notice that

E[
(
G(µN )

)2
] =

1

N2
E

N∑

i,k=1

Φ2(X
i,N , Xk,N ) +

1

N3
E

N∑

i,k,l=1

Φ3(X
i,N , Xk,N , X l,N )

+
1

N3
E

N∑

i,j,k=1

Φ3(X
k,N , Xi,N , Xj,N ) +

1

N4
E

N∑

i,j,k,l=1

Φ4(X
i,N , Xj,N , Xk,N , X l,N ), (5.17)

where

Φ2(X
i,N , Xk,N ) := φ(Xi,N

t1
, . . . , X i,N

tp ) φ(Xk,N
t1

, . . . , Xk,N
tp )

(
f(Xi,N

t )− f(Xi,N
s )− 1

2

∫ t

s
f ′′(Xi,N

u )du
)(

f(Xk,N
t )− f(Xk,N

s )− 1

2

∫ t

s
f ′′(Xk,N

u )du
)
,

Φ3(X
i,N , Xk,N , X l,N ) := −φ(Xi,N

t1
, . . . , X i,N

tp ) φ(Xk,N
t1

, . . . , Xk,N
tp )

(
f(Xi,N

t )− f(Xi,N
s )− 1

2

∫ t

s
f ′′(Xi,N

u1
)du1

)∫ t

s
f ′(Xk,N

u )✶{Xk,N
u 6=Xl,N

u }

∫ u

0
Ku−θ(X

k,N
u −X l,N

θ ) dθ du,
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and

Φ4(X
i,N , Xj,N , Xk,N , X l,N ) :=

∫ t

s

∫ t

s

∫ u1

0

∫ u2

0
φ(Xi,N

t1
, . . . , X i,N

tp )φ(Xk,N
t1

, . . . , Xk,N
tp )f ′(Xi,N

u1
)

f ′(Xk,N
u2

)Ku1−θ1(X
i,N
u1

−Xj,N
θ1

)Ku2−θ2(X
k,N
u2

−X l,N
θ2

)✶{Xi,N
u1

6=Xj,N
u1

}✶{Xk,N
u2

6=Xl,N
u2

}dθ1 dθ2 du1 du2.

Let CN be the last term in the r.h.s. of (5.17). In Steps 2-4 below we prove that CN converges as
N → ∞ and we identify its limit. Define the function F on R2p+6 as

F (x1, . . . , x2p+6) := f ′(x1)f ′(x3)φ(x7, . . . , xp+6)φ(xp+7, . . . , x2p+6)

×Ku1−θ1(x
1 − x2)Ku2−θ2(x

3 − x4)✶{x1 6=x5}✶{x2 6=x6}✶{θ1<u1}✶{θ2<u2}.

We set CN =
∫ t
s

∫ t
s

∫ u1

0

∫ u2

0 AN dθ1 dθ2 du1 du2 with

AN :=
1

N4

N∑

i,j,k,l=1

E(F (Xi,N
u1

, Xj,N
θ1

, Xk,N
u2

, X l,N
θ2

, Xj,N
u1

, X l,N
u2

, Xi,N
t1

, . . . , X i,N
tp , Xk,N

t1
, . . . , Xk,N

tp )).

We now aim to show that AN converges pointwise (Step 2), that |AN | is bounded from above by an
integrable function w.r.t. dθ1 dθ2 du1 du2 (Step 3), and finally to identify the limit of CN (Step 4).

Proof of (5.16): Step 2. Fix u1, u2 ∈ [s, t] and θ1 ∈ [0, u1) and θ2 ∈ [0, u2). Define τN as

τN :=
1

N4

N∑

i,j,k,l=1

δ
Xi,N

u1
,Xj,N

θ1 ,Xk,N
u2

,Xl,N
θ2

,Xj,N
u1

,Xl,N
u2

,Xi,N
t1

,...,Xi,N
tp

,Xk,N
t1

,...,Xk,N
tp

.

Define the measure QN
u1,θ1,u2,θ2,t1,...,tp

on R2p+6 as follows: For any Borel set S in R2p+6

QN
u1,θ1,u2,θ2,t1,...,tp(S) = E(τN (S)).

The convergence of {law(νN )} implies the weak convergence of QN
u1,θ1,u2,θ2,t1,...,tp

to a measure on

R2p+6 defined by

Qu1,θ1,u2,θ2,t1,...,tp(S) :=

∫

P(C([0,T ];R)4)

∫

C([0,T ];R)4
✶S(x

1
u1
, x2θ1, x

3
u2
, x4θ2 , x

2
u1
, x4u2

, x1t1 , . . . ,

x1tp , x
3
t1 , . . . , x

3
tp)dν(x

1, x2, x3, x4)dΠ∞(ν).

Let us show that Qu1,θ1,u2,θ2,t1,...,tp admits an L2-density w.r.t. the Lebesgue measure on R2p+6.
Let h ∈ CK(R2p+6). By weak convergence,

∣∣< Qu1,θ1,u2,θ2,t1,...,tp , h >
∣∣

=

∣∣∣∣∣∣
lim

N→∞
1

N4

N∑

i,j,k,l=1

Eh(Xi,N
u1

, Xj,N
θ1 , Xk,N

u2
, X l,N

θ2
, Xj,N

u1
, X l,N

u2
, Xi,N

t1
, . . . , X i,N

tp , Xk,N
t1

, . . . , Xk,N
tp )

∣∣∣∣∣∣
.
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When, in the preceding sum, at least two indices are equal, we bound the expectation by ‖h‖∞.
When i 6= j 6= k 6= l, we apply Girsanov’s transform in Section 5.4.2 with four particles and
Proposition 5.4.2. This procedure leads to

∣∣< Qu1,θ1,u2,θ2,t1,...,tp , h >
∣∣ ≤ lim

N→∞

(
‖h‖∞

C

N

+
CT

N4

∑

i 6=j 6=k 6=l

(
Eh2(X̂i,N

u1
, X̂j,N

θ1 , X̂k,N
u2

, X̂ l,N
θ2

, X̂j,N
u1

, X̂ l,N
u2

, X̂i,N
t1

, . . . , X̂i,N
tp , X̂k,N

t1
, . . . , X̂k,N

tp )
)1/2 )

.

As for fixed i 6= j 6= k 6= l, the processes X̂i,N , X̂j,N , X̂k,N and X̂ l,N are independent Brownian
motions, we have

∣∣< Qu1,θ1,u2,θ2,t1,...,tp , h >
∣∣ ≤ Cu1,u2,θ1,θ2,t1,...,tp‖h‖L2(R2p+6).

It follows from Riesz’s representation theorem (e.g. [15, Thm. 4.11 and 4.14]) that
Qu1,θ1,u2,θ2,t1,...,tp has a density w.r.t. Lebesgue’s measure in L2(R2p+6). Therefore, the
functional F is continuous Qu1,θ1,u2,θ2,t1,...,tp - a.e. As for u1, u2 ∈ [s, t] and θ1 ∈ [0, u1), θ2 ∈ [0, u2)
F is bounded, by weak convergence one has

lim
N→∞

AN =< Qu1,θ1,u2,θ2,t1,...,tp , F > .

Proof of (5.16): Step 3. By definition of F we may restrict ourselves to the case i 6= j and
k 6= l. Use the Girsanov transforms from Section 5.4.2 with r ∈ {2, 3, 4} according to, respectively,
(i = k, j = l), (i = k, j 6= l), (i 6= k, j 6= l), etc. It comes:

AN =
∣∣∣ 1

N4

N∑

i,j,k,l=1

EQr,N ((Z
(r)
T )−1F (· · · ))

∣∣∣ ≤ 1

N4

N∑

i,j,k,l=1

(
EQr,N (Z

(r)
T )−2

)1/2 (
EQr,N (F 2(· · · ))

)1/2
.

By Proposition 5.4.2, EQr,N (Z
(r)
T )−2 can be bounded uniformly w.r.t. N (see the paragraph

Tightness). As the functions f and φ are bounded we deduce

√
EQr,N (F 2(· · · )) ≤ C✶{θ1<u1}✶{θ2<u2}

(
EQr,N (K2

u1−θ1(X̂
i,N
u1

− X̂j,N
θ1

)K2
u1−θ1(X̂

k,N
u2

− X̂ l,N
θ2

))
)1/2

,

for i 6= j and k 6= l. In view of (5.7), for any 0 < θ < u < T we have

(
EQr,N (K4

u−θ(X̂
i,N
u − X̂j,N

θ )
)1/4

≤ C

u1/8
‖Ku−θ‖L4(R) ≤

C

u1/8(u− θ)7/8
.

Therefore,
(
EQr,N (F 2(· · · ))

)1/2 ≤ C
✶{θ1<u1}✶{θ2<u2}

u
1/8
1 (u1 − θ1)7/8u

1/8
2 (u2 − θ2)7/8

.

We thus have obtained:

AN ≤ C
✶{θ1<u1}✶{θ2<u2}

u
1/8
1 (u1 − θ1)7/8u

1/8
2 (u2 − θ2)7/8

.

We remark that the r.h.s. belongs to L1((0, T )4).
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Proof of (5.16): Step 4. Steps 2 and 3 allow us to conclude that

lim
N→∞

CN =

∫ t

s

∫ t

s

∫ t

s

∫ t

s
< Qu1,θ1,u2,θ2,t1,...,tp , F > dθ1 dθ2 du1 du2.

By definition of Qu1,θ1,u2,θ2,t1,...,tp and F we thus have obtained that

lim
N→∞

CN =

∫

P(C([0,T ];R)4)

∫ t

s

∫ t

s

∫

C([0,T ];R)4
f ′(x1u1

)f ′(x3u2
)φ(x1t1 , . . . , x

1
tp)φ(x

3
t1 , . . . , x

3
tp)

×
∫ u1

0

∫ u2

0
Ku1−θ1(x

1
u1

− x2θ1)Ku2−θ2(x
3
u2

− x4θ2)✶{x1
u1

6=x2
u1

}✶{x3
u2

6=x4
u2

}

dν(x1, x2, x3, x4) dθ1 dθ2 du1 du2 dΠ∞(ν).

A similar procedure is applied to the three other terms in the r.h.s. of (5.17). We identify their
limits:

lim
N→∞

1

N2
E

N∑

i,k=1

Φ2(X
i,N , Xk,N ) =

∫

P(C([0,T ];R)4)

∫

C([0,T ];R)4
φ(x1t1 , . . . , x

1
tp)φ(x

3
t1 , . . . , x

3
tp)

(
f(x1t )− f(x1s)−

1

2

∫ t

s
f ′′(x1u) du

)(
f(x3t )− f(x3s)−

1

2

∫ t

s
f ′′(x3u) du

)
dν(x1, x2, x3, x4) dΠ∞(ν),

lim
N→∞

1

N3
E

N∑

i,k,l=1

Φ3(X
i,N , Xk,N , X l,N ) = −

∫

P(C([0,T ];R)4)

∫

C([0,T ];R)4
φ(x1t1 , . . . , x

1
tp)φ(x

3
t1 , . . . , x

3
tp)

(
f(x1t )− f(x1s)−

1

2

∫ t

s
f ′′(x1u) du

)∫ t

s
f ′(x3u)✶{x3

u 6=x4
u}

∫ u

0
Ku−θ(x

3
u − x4θ) du dθ

dν(x1, x2, x3, x4) dΠ∞(ν),

and

lim
N→∞

1

N3
E

N∑

k,i,j=1

Φ3(X
k,N , Xi,N , Xj,N ) = −

∫

P(C([0,T ];R)4)

∫

C([0,T ];R)4
φ(x1t1 , . . . , x

1
tp)φ(x

3
t1 , . . . , x

3
tp)

(
f(x3t )− f(x3s)−

1

2

∫ t

s
f ′′(x3u) du

)∫ t

s
f ′(x1u)✶{x1

u 6=x2
u}

∫ u

0
Ku−θ(x

1
u − x2θ) du dθ

dν(x1, x2, x3, x4) dΠ∞(ν).

Once all the limits in the r.h.s. of (5.17) are obtained, we use the claim i) of Lemma 5.4.4 to
obtain (5.16).

Proof of i) and ii). Now, we prove the claims i) and ii) of Lemma 5.4.4.

i) For any measure ν ∈ P(C([0, T ];R)4), denote its first marginal by ν1. One easily gets
Π∞ a.e., ν = ν1 ⊗ ν1 ⊗ ν1 ⊗ ν1 (see [14, Lemma 3.3]).
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ii) Take h ∈ CK(R). Using similar arguments as in the above Step 1, for any 0 < t ≤ T one has
Π∞(dν) a.e.,

< ν1t , h >= lim
N→∞

EQN < µN
t , h >= lim

N→∞
EQN (h(X

1,N
t )) = lim

N→∞
EQ1,N (Z

(1)
T h(W 1,N

t ))

≤ C

t1/4
‖h‖L2(R).

5.5 Appendix

Proposition 5.5.1. Same assumptions as in Proposition 5.3.3. There exists N0 ∈ N depending
only on T and α, such that

sup
N≥N0

EP

[
exp

{
α

N

∫ T

0

(∫ t

0
Kt−s(Yt − ws)ds✶{wt 6=Yt}

)2

dt

}]
≤ C(T, α).

Compared to the proof of Proposition 5.4.2, as w and Y exchanged places in the left-hand side, it
is not so obvious to use the independence of Brownian increments. However, the weight 1

N enables
us to skip the localization part (see Lemmas 5.3.1 and 5.3.2).

Proof. Fix N ∈ N. Set I :=
∫ T
0

(∫ t
0 Kt−s(Yt − ws)ds

)2
dt. One has

Ik ≤ C

(∫ T

0

∫ t

0

ds

(t− s)3/4

∫ t

0

(Yt − ws)
2

(t− s)9/4
e−

(Yt−ws)
2

t−s ds dt

)k

≤ CT k/4

(∫ T

0

∫ t

0

(Yt − ws)
2

(t− s)9/4
e−

(Yt−ws)
2

t−s ds dt

)k

.

For 0 ≤ s < T and for (ω, ω̂) ∈ C([0, T ];R)× C([0, T ];R), define the functional Hs as

Hs(ω, ω̂) =

∫ T

s

(ωt − ω̂s)
2

(t− s)9/4
e−

(ωt−ω̂s)
2

t−s dt.

As the processes Y and w are independent,

EP

(∫ T

0
Hs(Y,w)ds

)k

=

∫

C([0,T ];R)
EP

(∫ T

0
Hs(x,w)ds

)k

PY (dx).

As before we observe that, for any x ∈ C([0, T ];R),

EP

(∫ T

0
Hs(x,w)ds

)k

= k!

∫ T

0

∫ T

s1

· · ·
∫ T

sk−1

EP

(
E
Gsk−1

P (Hs1(x,w) . . . Hsk(x,w))
)
dsk . . . ds1.
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Using again that gsk−sk−1
(z) ≤ 1√

sk−sk−1
, one has

∫ T

sk−1

E
Gsk−1

P Hsk(x,w) dsk

=

∫ T

sk−1

∫ T

sk

∫
(xt − z − wsk−1

)2

(t− sk)9/4
e
−

(xt−z−wsk−1
)2

t−sk gsk−sk−1
(z) dz dt dsk

≤
∫ T

sk−1

1√
sk − sk−1

∫ T

sk

1

(t− sk)3/4

∫
z2e−z2 dz dt dsk ≤ CT 1/4

√
T − sk−1 ≤ CT 3/4.

Finally,

EP

(∫ T

0
Hs(x,w)ds

)k

≤ k!CT 3/4

∫ T

0

∫ T

s1

· · ·
∫ T

sk−2

EP

(
Hs1(x,w) . . . Hsk−1

(x,w)
)
dsk−1 . . . ds1.

Repeat the previous procedure k − 2 times. It comes:

EP

(∫ T

0
Hs(x,w)ds

)k

≤ k!Ck−1T 3(k−1)/4

∫ T

0
EP (Hs1(x,w)) ds1

≤ k!Ck−1T 3(k−1)/4

∫ T

0

1√
s1

∫ T

s1

1

(t− s1)3/4

∫
z2e−z2 dz dt ds1 ≤ k!CkT

3k
4 .

This implies that for any M ≥ 1,

EP

M∑

k=1

αkIk

Nkk!
≤

M∑

k=1

αkCkT k

Nk
.

Choose N0 large enough to have α
N0

CT < 1. To conclude, we apply Fatou’s lemma.



Chapter 6

The two-dimensional case: The non-linear

stochastic equation

6.1 Introduction

This chapter is devoted to the analysis of the Mc-Kean Vlasov non–linear SDE (1.14) with d = 2
and its connection with the two–dimensional Keller-Segel system. Its main contribution is in how
to deal with singular interaction kernels that lead to a process whose law has small chances to be
absolutely continuous w.r.t. Wiener’s measure. In addition, our procedure leads to a new
well-posedness result for the Keller-Segel system in d = 2.

On a filtered probability space (Ω,F ,P, (Ft)), equipped with a 2-dimensional Brownian motion
(Wt)t≥0, consider the SDE

{
dXt = dWt + b0(t,Xt)dt+ χ

{∫ t
0 e

−λ(t−s)
∫
Kt−s(Xt − y)ps(y)dy ds

}
dt, t ≤ T

ps(y)dy := L(Xs), X0 ∼ ρ0,
(6.1)

where X0 is an R2-valued F0−measurable random variable, gt denotes the probability density of
Wt and for (t, x) ∈ (0, T ]× R2

b0(t, x) := χe−λt(∇c0 ∗ gt)(x) and Kt(x) := ∇gt(x) = − x

2πt2
e−

|x|2
2t .

Here |x| denotes the Euclidean norm. Notice that Kt is a two dimensional vector. We denote its
coordinates by Ki

t with i = 1, 2 and

bi(t, x; p) = bi0(t,Xt) + χ

∫ t

0
e−λ(t−s)

∫
Ki

t−s(Xt − y)ps(y)dy ds dt.

The main difficulty when dealing with (6.1) is the singular nature of the kernel K. In Chapters 3
and 5 we overcame it thanks to the fact that the one–dimensional kernel (K♯) belonged to the
space L1((0, T );L1(R)) ∩ L1((0, T );L2(R)) and by the help of precise L∞(R)-norm density
estimates (see Section 3.3). When d = 2, the singularity in time of the kernel is stronger and
therefore estimates such as (3.14) do not seem to remain true.

The following technical lemmas will be used throughout this chapter and actually show that for
q ≥ 2, the L1((0, T );Lq(R2))–norm of Ki explodes. This was not the case in d = 1 and it is in this
sense that the two–dimensional kernel is more singular.
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Lemma 6.1.1. Let t > 0 and i ∈ {1, 2}. Then, for any 1 ≤ q < ∞ one has

‖Ki
t‖Lq(R2) = ‖∇igt‖Lq(R2) =

C1(q)

t
3
2
− 1

q

, (6.2)

where

C1(q) =
2

1
q
− 1

2

π
1− 1

2q q
1
q
+ 1

2

(
Γ(

q + 1

2
)

) 1
q

.

Here Γ(x) denotes the Gamma function: Γ(x) =
∫∞
0 zx−1e−z dz.

Proof. Let 1 ≤ q < ∞. One has

‖Ki
t‖Lq(R2) = ‖∇igt‖Lq(R2) =

1

2πt2

(∫

R2

|xi|qe−
q|x|2
2t dx

) 1
q

=
1

2πt2

(∫

R

e−q x2

2t dx

∫

R

|x|qe−q x2

2t dx

) 1
q

=
1

2πt2

(√
2πt√
q

2

∫ ∞

0
xqe−q x2

2t dx

) 1
q

.

Apply the change of variables qx2

2t = y. It comes

‖Ki
t‖Lq(R2) = ‖∇igt‖Lq(R2) =

1

2πt2

(√
2πt√
q

2

(
2t

q

) q−1
2
∫ ∞

0
y

q−1
2 e−y t

q
dy

) 1
q

=
1

2πt2

(
2t

q

) 1
q
+ 1

2

π
1
2q

(
Γ(

q + 1

2
)

) 1
q

.

This ends the proof.

The change of variables x√
t
= z leads to

Lemma 6.1.2. Let t > 0. Then, for any 1 ≤ q < ∞ one has

‖gt‖Lq(R2) =
C2(q)

t
1− 1

q

, (6.3)

where

C2(q) =
1

(2π)
1− 1

q q
1
q

.

The functions C1(q) and C2(q) will be used only when we need the explicit constants in a
computation. In all other cases we will use notation Cq that may change from line to line.

Discussion on the 1d-approach in the 2d-setting The change of the space dimension has a
significant impact on the techniques we used in Chapter 3 to prove the well-posedness of the
NLSDE. In Chapter 3, we used Picard’s iteration process to exhibit a weak solution. In each step
the L∞([0, T ]× R)-norm of the drift and L1((0, T ];L∞(R))-norm of the marginal densities were
controlled simultaneously. These controls were obtained thanks to a probabilistic method which
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exhibits sharp density estimates for a process whose drift is uniformly bounded in space and time
(see Section 3.3). A generalisation to the multidimensional case of the results in Section 3.3 can be
found in Qian et al. [65] in the case of time homogeneous drifts. There, the authors show that the
estimate of the transition density of a d-dimensional stochastic process is a product of
one-dimensional estimates provided that the Euclidean norm of the drift vector is uniformly
bounded. With the arguments we used in d = 1, one can easily extend the results in [65] to time
inhomogeneous drifts and get the following. Suppose that the drift b(t, x) of a two-dimensional
linear process (Xb) is bounded, i.e. sup(t,x)∈[0,T ]×R2 |b(t, x)| ≤ β. Then the two-dimensional

transition density of (Xb
t ) satisfies

pb(t, x, y) ≤
1

2πt

2∏

i=1

(∫ ∞

|xi−yi|√
t

ze−
(z−β

√
t)

2 dz

)
.

If the initial condition is assumed to belong to L1(R2), the arguments used to prove Corollary
3.3.2 lead to

pbt(y) ≤ β2 +
2β√
2πt

+
1

2πt
.

This estimate is not integrable in time. Consequently, it is too crude to be applied in each step of
the Picard’s iteration procedure developed in Section 3.5. One could overcome this by imposing
more regularity on the initial condition. For example, if p0 ∈ L∞(R2), one would get

pbt(y) ≤ β2 +
2β√
2πt

+ C‖p0‖L∞(R2).

Now, using the same notation as in Section 3.5, in view of (6.2) one would get the following
relation for the drift bounds in the iteration process :

βk+1 = χ‖∇c0‖∞ + Cχ(β2
k

√
T + βk + ‖p0‖L∞(R2)

√
T ).

Thus, when d = 2 one gets a quadratic relationship between the L∞-norms of successive drifts,
whereas the relationship was linear in the 1-d case (see Section 3.5). Therefore, in order to control
βk’s uniformly in k, one should impose conditions on χ, ‖p0‖L∞(R2), ‖∇c0‖∞ and T . The easiest
way to exhibit suitable conditions is to search for a positive zero of the polynomial

P (x) = Cχ
√
Tx2 + (Cχ− 1)x+ Cχ

√
T‖p0‖L∞(R2) + χ‖∇c0‖∞.

This leads to the constraints

χ <
1

C
and (Cχ− 1)2 ≥ 4Cχ

√
T (Cχ

√
T‖p0‖L∞(R2) + χ‖∇c0‖L∞(R2)).

These constraints are equivalent to

χC + 2χ
√
C
√
T (C

√
T‖p0‖L∞(R2) + ‖∇c0‖L∞(R2)) < 1. (6.4)

As we do not want χ to depend on the time horizon, a condition on T should be imposed that
depends on ‖∇c0‖∞ and ‖p0‖L∞(R2). This condition together with one on χ would suffice to get
tightness and local in time weak solutions for (6.1) up to a small time T1. Restarting this
procedure after the imposed time horizon becomes tricky as the norm of the new initial condition
increased, as well all as the constants involved in the condition (6.4). Thus, the new time horizon
T2 is much smaller than T1 and iterating the procedure leads to a sequence (Tk)k≥1 such that
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∑
k Tk < ∞. We believe it is impossible to get global well-posedness by applying the above

procedure. In addition, we do want a result as general as possible and no additional assumptions
on p0 except it being a probability density function.

All in all, the L∞([0, T ]× R2) and L1((0, T ];L∞(R2)) seem not to be a good choice for a
functional space for the drift and density of (6.1), respectively. The main reason is that the
density estimates at our disposal seem to be too crude in d = 2. It is thus necessary to change the
approach. We have chosen to use the Lq-spaces.

Formal discussion on an adequate Lq-space for the drift and density functions In
order to understand what kind of an Lq(R2)-estimate we can expect for the density pt of Xt, we
formally derive and analyze the mild equation for pt:

pt = gt ∗ p0 −
2∑

i=1

∫ t

0
∇igt−s ∗

(
ps

(
bi0(s, ·) + χ

∫ s

0
e−λ(s−r)Ki

s−r ∗ pr dr

))
ds.

The term ‖gt ∗ p0‖Lq(R2) can give an idea of the behaviour of ‖pt‖Lq(R2). In view of the convolution
inequality (3.37) and (6.3), one has

‖gt ∗ p0‖Lq(R2) ≤ ‖gt‖Lq(R2)‖p0‖L1(R2) =
Cq

t
1− 1

q

.

This prompts us to assume for a moment that for every 1 < q < ∞ there exists Cq > 0 such that

sup
t≤T

t
1− 1

q ‖pt‖Lq(R2) ≤ Cq. (6.5)

Then, the non-linear part of the drift satisfies for i ∈ {1, 2}
∥∥∥∥
∫ t

0
e−λ(t−s)Ki

t−s ∗ ps ds

∥∥∥∥
Lq(R2)

≤
∫ t

0
‖Ki

t−s‖L1(R2)‖ps‖Lq(R2) ds ≤ Cq

∫ t

0

1
√
t− ss

1− 1
q

ds.

The change of variables s
t = u leads to

∥∥∥∥
∫ t

0
e−λ(t−s)Ki

t−s ∗ ps ds

∥∥∥∥
Lq(R2)

≤ Cq

t
1
2
− 1

q

.

In order to have the same type of estimate for bi0 one needs to suppose that ∇c0 belongs to a
suitable Lr(R2) space for ∇c0. In view of (6.3) and the standard convolution inequality (3.38),

‖bi0(t, ·)‖Lq(R2) ≤ ‖gt‖Lm(R2)‖∇c0‖Lr(R2) ≤
‖∇c0‖Lr(R2)

t1−
1
m

,

where 1 + 1
q = 1

r +
1
m . Therefore, r should satisfy 1

2 − 1
q = 1

x − 1
q . Thus, one should have

∇c0 ∈ L2(R2). Notice that in order to apply the convolution inequality above we need q ≥ 2.

We conclude that if c0 ∈ H1(R2) and if the marginals of Xt satisfy (6.5), then the Lr(R2)-norm of
the drift b(t, x; p) for all r ≥ 2 satisfies

t
1
2
− 1

r ‖b(t, ·; p)‖Lr(R2) ≤ Cr. (6.6)
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The above discussion, motivates us to redefine the notion of a weak solution to our
McKean-Vlasov SDE (NLSDE) in order to include the constraints of type (6.5). To prove these
constraints are satisfied, we conveniently regularize the NLSDE and firstly apply the results from
Chapter 2. Then we analyze the associated regularized mild equation and prove estimates of type
(6.5) for the regularized densities. These estimates are uniform w.r.t. the regularizing parameter
under a condition involving the parameter χ and the size of initial datum. Once such an estimate
is obtained, we prove the convergence of martingale problems related to regularized dynamics
towards the our NLSDE.

The plan of the chapter is the following: Main results are stated in Section 6.2. A convenient
regularization is exhibited in Section 6.3 and the estimates on the time marginals of the
regularized equation are obtained; Existence (resp. well-posedness) for the NLSDE (resp.
Keller-Segel model) is proved in Section 6.4 (resp. Section 6.5); Uniqueness in law for the NLSDE
is proved in Section 6.6.

6.2 Main results

Having, in mind the discussion about convenient functional spaces above, we define the notion of
weak solution to (6.1).

Definition 6.2.1. The family (Ω,F ,P, (Ft), X,W ) is said to be a weak solution to the equation
(6.1) up to time T > 0 if:

1. (Ω,F ,P, (Ft)) is a filtered probability space.

2. The process X := (Xt)t∈[0,T ] is R2-valued, continuous, and (Ft)-adapted. In addition, the
probability distribution of X0 has density p0.

3. The process W := (Wt)t∈[0,T ] is a two-dimensional (Ft)-Brownian motion.

4. The probability distribution P ◦X−1 has time marginal densities (pt, t ∈ (0, T ]) with respect
to Lebesgue measure which satisfy for any

∀1 < q < ∞ ∃Cq > 0, sup
t≤T

t
1− 1

q ‖pt‖Lq(R2) ≤ Cq. (6.7)

5. For any t ∈ [0, T ] and x ∈ R2, one has
∫ t
0 |b0(s, x)| ds < ∞.

6. P-a.s. the pair (X,W ) satisfies (6.1).

Remark 6.2.2. Notice that under the condition c0 ∈ H1(R2) one gets applying Hölder’s inequality
and (6.3), ∫ t

0
|b0(s, x)| ds ≤ C‖∇c0‖L2(R2)

∫ t

0

1√
s
ds.

Moreover (6.7) implies

∫ t

0

∣∣∣∣
∫ s

0
Ks−u ∗ pu(x) du

∣∣∣∣ ds ≤ C

∫ t

0

1√
s
ds.
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The first objective of this chapter is to prove the following claim:

Theorem 6.2.3. Let T > 0 and suppose that X0 has a probability density function p0.
Furthermore, assume that c0 ∈ H1(R2). Then, Equation (6.1) admits a weak solution under the
following condition

Aχ‖∇c0‖L2(R2) +B
√
χ < 1, (6.8)

where A and B are defined as in Proposition 6.3.7 below.

We do not apply Picard’s iteration since in each iteration step we will need a well-posedness result
for a linear SDE whose drift satisfies (6.6). In view of Krylov and Röckner [49], the well-posedness
follows from a finite Lp((0, T );Lr(R2))-norm of the drift with 1

p + 1
r < 1

2 . Unfortunately, the

property in (6.6) will imply the opposite condition 1
p + 1

r > 1
2 for the same norm to be finite. We

do not see how to circumvent this without a cut-off. To prove Theorem 6.2.3 we will use a
regularization method. The goal is to prove that the time marginals of the regularized version of
(6.1) satisfy the property (6.7) with uniform constants with respect to the regularization
parameter. Then, the tightness will follow thanks to (6.6) for r = ∞. It will remain, then, to solve
the non-linear martingale problem related to (6.1).That is why we chose to only regularize instead
of iterating and regularizing. The well-posedness of the regularized equation will follow from
Chapter 2. In addition, the incompatibility of (6.6) and the condition in [49] makes us doubt that
Girsanov transform techniques would work and that the law of (6.1) is absolutely continuous
w.r.t. Wiener’s measure.

The next objective is to use Theorem 6.2.3 to get a well-posedness of the Keller - Segel model in
d = 2. The system reads





∂ρ

∂t
(t, x) = ∇ · (1

2
∇ρ(t, x)− χρ(t, x)∇c(t, x)), t > 0, x ∈ R2,

∂c

∂t
(t, x) =

1

2
△c(t, x)− λc(t, x) + ρ(t, x), t > 0, x ∈ R,

ρ(0, x) = ρ0(x), c(0, x) = c0,

(6.9a)

(6.9b)

where χ > 0 and λ ≥ 0. The parameter χ is called the chemotactic sensitivity and, together with
the total mass M :=

∫
ρ0(x) dx, plays an important role in the well-posedness theory for (6.9).

Notice that the two diffusion coefficient are deliberately chosen to be equal to 1
2 in order to have

unit diffusion coefficient and standard Gaussian kernel in the formulation of (6.1).

As seen in Section 1.2, Keller-Segel system was constructed to model the onset of cell aggregation
due to chemotactic behaviour of slime molds. Therefore, it is no wonder that critical regimes in
which the solutions blow-up in finite time have been found in the literature. The definition of this
phenomenon is the following:

∃ T0 < ∞ : sup
t≤T0

(‖ρt‖L∞(R2) + ‖ct‖L∞(R2)) = ∞.

Indeed, the question of global existence versus blow-up in d = 2 was extensively studied in the
PDE literature. We have no intention to review all of it here, but rather mention some of the
results. A very thorough review can be found in Horstmann [41].

In the parabolic-elliptic version of the system, i.e. when (6.9b) is in steady state, the behaviour of
the system has been completely understood. There, the system exhibits the ”threshold”
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behaviour: if Mχ < 8π the solutions are global in time, if Mχ > 8π every solution blows-up in
finite time (see e.g. Blanchet et. al [8] and Nagai and Ogawa [56]).

On the other hand, the fully parabolic model (6.9) expresses a less straight-forward behaviour. It
has been proved that when Mχ < 8π one has global existence (see Calvez and Corrias [20],
Mizogouchi [55]). However, in Biller et. al [7] the authors find an initial configuration of the
system in which a global solution in some sense exists with Mχ > 8π. Finaly, Herrero and
Velázquez [38] construct a radially symmetric solution on a disk that blows-up and develops
δ-function type singularities. Finally, unique solution with any positive mass exists under some
condition on the reverse diffusion coefficient of the chemoattractant and initial datum (Corrias et.
al [22]). Thus, in the case of parabolic-parabolic model, the value 8π can still be understood as a
threshold, but in a different sense: below it there is global existence, above it there exists a
solution that blows up.

The new functions ρ̃(t, x) := ρ(t,x)
M and c̃(t, x) := c(t,x)

M satisfy the system (6.9) with the new
parameter χ̃ := χM . Therefore, w.l.o.g. we may and do thereafter assume that M = 1. We
consider the following notion of solution to (6.9):

Definition 6.2.4. Given the functions ρ0 and c0, and the constants χ > 0, λ ≥ 0, T > 0, the pair
(ρ, c) is said to be a solution to (6.9) if ρ(t, ·) is a probability density function for every 0 ≤ t ≤ T ,
one has

∀1 < q < ∞ ∃Cq > 0 : sup
t≤T

t
1− 1

q ‖ρ(t, ·)‖Lq(R2) ≤ Cq,

and the following equality

ρ(t, x) = gt ∗ ρ0(x) + χ
2∑

i=1

∫ t

0
∇igt−s ∗ ∇ic(s, ·) ρ(s, ·))(x) ds (6.10)

is satisfied in the sense of the distributions with

c(t, x) = e−λt(g(t, · ) ∗ c0)(x) +
∫ t

0
e−λs(gs ∗ ρ(t− s, ·))(x) ds. (6.11)

Notice that the function c(t, x) defined by (6.11) is a mild solution to (6.9b). These solutions are
known as integral solutions and they have already been studied in PDE literature for the
two-dimensional Keller-Segel model (see [22] and references therein).

A consequence of Theorem 6.2.3 is the well-posedness of (6.9).

Corollary 6.2.5. Let ρ0 a probability density function and c0 ∈ H1(R2). Under the condition
(6.8) the system (6.9) admits a unique solution in the sense of Definition 6.2.4.

In [20] the authors obtain the global existence in sub-critical case assuming:

i) ρ0 ∈ L1(R2) ∩ L1(R2, log(1 + |x|2)dx) and ρ0 log ρ0 ∈ L1(R2);

ii) c0 ∈ H1(R2) if λ > 0 or c0 ∈ L1(R2) and |∇c0| ∈ L2(R2) if λ = 0;

iii) ρ0 c0 ∈ L1(R2).
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We should emphasize that their sub-critical condition translates into 4χ < 8π for (6.9) due to the
additional diffusion coefficients in it. In the same sub-critical case, the global existence result is
obtained in [55] assuming ρ0 ∈ L1(R2) ∩ L∞(R2) and c0 ∈ H1(R2) ∩ L1(R2). Our result does not
assume any additional conditions other than that ρ0 is a probability density function and
c0 ∈ H1(R2). The price to pay is the smallness condition (6.8) that not just involves the
parameter χ, but the size of the initial datum as well.

Corollary 6.2.5 is very similar to the result in [22, Thm. 2.1]. Indeed, the assumptions on initial
conditions are the same and as well the notion of solution. The objective is different in the sense
that the goal of [22] was to exhibit global existence for (6.9) for any positive mass and χ = 1 as
long as the following two conditions are satisfied

C1: There exists δ = δ(M,α) such that ‖∇c0‖L2(R) < δ,

C2: There exists C(α) such that M < C(α),

where α is the inverse diffusion coefficient of the chemo-attractant (see (1.4)). The condition on
the total mass is similar to (6.8) on χ, but as C grows with α, one can have M as large as one
likes as soon as α is large enough as well (see Section 1.3 for more details). In this chapter the
objective is to get results for the classical K-S model (α = 1) with respect to chemo-attractant
sensitivity (and mass). When we assume the same in the framework of [22], we see that we have
removed the assumption on the smallness of the initial datum (C1). The reason lies in our
method: in [22] the Banach’s fixed point is used to construct solutions locally in time (where C1
emerges) and then such solution is globalized (where C2 emerges). In our case only a condition of
C2 type appears as, thanks to our regularization procedure, we directly construct a global
solution. The well-posedness of the regularized equation comes from Chapter (2).

Finally, using the so-called transfer of uniqueness we prove the weak uniqueness for (6.1). Namely,
we will use the results in Trevisan [76] to prove the following theorem:

Theorem 6.2.6. Under a smallness condition on χ precised in Section 6.6, weak uniqueness in
the sense of Definition 6.2.1 holds for Eq. (6.1).

6.3 Regularization

We define the regularized version of the interaction kernel K and the linear part of the drift as
follows. For ε > 0 and (t, x) ∈ (0, T )× R2 define

Kε
t := − x

2π(t+ ε)2
e−

|x|2
2t , gεt (x) =:

1

2π(t+ ε)
e−

|x|2
2t and bε0(t, x) := χe−λt(∇c0 ∗ gεt )(x).

The regularized Mc-Kean-Vlasov equation reads
{

dXε
t = dWt + bε0(t,X

ε
t )dt+ χ

{∫ t
0 e

−λ(t−s)
∫
Kε

t−s(X
ε
t − y)µε

s(dy) ds
}
dt, t ≤ T,

µε
s := L(Xε

s ), Xε
0 ∼ p0,

(6.12)

Set

bε(t, x;µε) := bε0(t, x) + χ

∫ t

0
e−λ(t−s)

∫
Kε

t−s(x− y)µε
s(dy) ds.
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It is clear that there exists Cε > 0 such that for any t ∈ (0, T ), one has

∀x, y ∈ R2, |bε0(t, x)−bε0(t, y)|+|Kε
t (x)−Kε

t (y)| ≤ Cε|x−y| and |bε0(t, x)|+|Kε
t (x)| ≤ Cε. (6.13)

Notice that Cε → ∞ as ε → 0. Similar computations as the ones to get (6.2) and (6.3) lead to the
following estimates. For t ∈ (0, T ] and 1 ≤ q < ∞, one has

‖Kε,i
t ‖Lq(R2) ≤

C1(q)

(t+ ε)
3
2
− 1

q

and ‖gεt ‖Lq(R2) ≤
C2(q)

(t+ ε)
1− 1

q

. (6.14)

Proposition 6.3.1. Let T > 0, χ > 0, ∇c0 ∈ L2(R2) and p0 a probability density function on R2.
Then, for any ε > 0, Equation (6.12) admits a unique strong solution. Moreover, the one
dimensional time marginals of the law of the solution admit probability density functions, (pεt )t≤T .
In addition, for t ∈ (0, T ), pεt satisfies the following mild equation in the sense of the distributions:

pεt = gt ∗ p0 −
2∑

i=1

∫ t

0
∇igt−s ∗ (pεsbε,i(s, ·; pε))ds. (6.15)

Proof. In view of (6.13) and Theorem 2.2.3, the strong solution to Equation (6.12) is uniquely well
defined. In addition, as the drift term is bounded, we can apply Girsanov’s transformation and
conclude that the one dimensional time marginals of the law of the solution admit probability
density functions. By classical arguments (see Chapter 2), one can prove that for t ∈ (0, T ), pεt
satisfies (6.15) in sense of the distributions.

In the sequel, for 1 < q < ∞ , uniform in ε estimates on supt≤T t
1− 1

q ‖pεt‖Lq(R2) will be crucial.

They will imply uniform in ε estimates on supt≤T t
1
2
− 1

r ‖bε,i(t, ·)‖Lr(R2) for 2 ≤ r ≤ ∞. In
particular, for i = 1, 2 and t ∈ (0, T ],

‖bε,i(t, ·)‖L∞(R2) ≤
C√
t
.

The latter will enable us to prove tightness of the probability laws of (Xε).

6.3.1 Density estimates

For 0 < a, b < 1, we denote

β(a, b) :=

∫ 1

0

1

ua (1− u)b
du. (6.16)

Now we prove some technical lemmas that will be used throughout this chapter.

Lemma 6.3.2. Let t > 0 and 0 < a, b < 1. Then,
∫ t

0

1

sa(t− s)b
ds = t1−(a+b)β(a, b).

Proof. Observe that ∫ t

0

1

sa(t− s)b
ds =

1

t(a+b)

∫ t

0

1
(
s
t

)a (
1− s

t

)b ds.

The change of variables s
t = u implies the result.
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Lemma 6.3.3. Let t > 0. Then, the function bi0(t, ·) is continuous on R2 and for r ∈ [2,∞], one
has

‖bi0(t, ·)‖Lr(R2) ≤ χ‖∇c0‖L2(R2)(R2)

C2(
2r
r+2)

t
1
2
− 1

r

.

Proof. As ∇ic0 is only in L2(R2) we can not apply the classical results of convolution with a
continuous function. The continuity of bi0(t, ·) = χ∇ic0 ∗ gt is a direct consequence of [15, Ex.
4.30-3.] as for a t > 0 both gt and ∇ic0 belong to L2(R2). However, in this case, one can use the
particular form of the functions involved in the convolution to prove the continuity. Let xn → x in
R2 as n → ∞. To prove gt ∗∇ic0(xn) → gt ∗∇ic0(x) we need to bound |gt(xn − y)∇ic0(y)| with an
h(y) ∈ L1(R2). As gt is continuous we would then apply the dominated convergence theorem. Let
R > 0. Then there exists n0 ≥ 1 such that for n ≥ n0 one has that |xn − x| ≤ R. Then, by reverse
triangular inequality one has that

e−
|xn−y|2

2t ≤ e−
(|xn−x|−|y−x|)2

2t ≤ e
R2

2t e−
(|y−x|−R)2

2t .

Thus, we define h(y) = ∇ic0(y)
1

2πte
R2

2t e−
(|y−x|−R)2

2t and conclude h ∈ L1(R2) by Cauchy-Schwarz
inequality.

Let q ≥ 1 be such that 1
q +

1
2 = 1 + 1

r . By the convolution inequality (3.38)

‖bi0(t, ·)‖Lr(R2) ≤ χ‖∇ic0‖L2(R2)‖gt‖Lq(R2).

In view of estimates on ‖gt‖Lq(R2) and the relation above between r and q, one has

‖bi0(t, ·)‖Lr(R2) ≤ χ‖∇c0‖L2(R2)‖gt‖
L

2r
r+2

≤ χ‖∇c0‖L2(R2)

C2(
2r
r+2)

t1−( 1
r
+ 1

2
)
.

Repeating the arguments as in the preceding proof, one gets

Lemma 6.3.4. For t > 0 and r ∈ [2,∞] one has

‖bε,i0 (t, ·)‖Lr(R2) ≤ χ‖∇c0‖L2(R2)

C2(
2r
r+2)

(t+ ε)
1
2
− 1

r

.

Lemma 6.3.5. Let p0 a probability density function on R2 and 1 < q < ∞. One has

lim sup
t→0

t
1− 1

q ‖gt ∗ p0‖Lq(R2) = 0.

Proof. The proof is a special case of Lemma 8 in [16]. Let f ∈ CK(R2). Using the standard
convolution inequality (3.37), one has

t
1− 1

q ‖gt ∗ p0‖Lq(R2) ≤ t
1− 1

q ‖gt ∗ f‖Lq(R2) + t
1− 1

q ‖gt ∗ (p0 − f)‖Lq(R2)

≤ t
1− 1

q ‖gt‖L1(R2)‖f‖Lq(R2) + t
1− 1

q ‖gt‖Lq(R2)‖p0 − f‖L1(R2)

≤ ‖f‖Lq(R2)t
1− 1

q + C‖p0 − f‖L1(R2).
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Thus,

lim sup
t→0

t
1− 1

q ‖gt ∗ p0‖Lq(R2) ≤ C‖p0 − f‖L1(R2).

Since f is arbitrary, the r.h.s. can be arbitrarily small ( see e.g. [15, Theorem 4.3]) .

Define
N ε

q (t) := sup
s∈(0,t)

s
1− 1

q ‖pεs‖Lq(R2). (6.17)

The following lemma provides a first estimate for N ε
q (t) for a fixed ε > 0. This estimate is not the

optimal one in ε, but it is necessary in order to be sure that all the quantities we work with are
well defined. Also, it will be used in order to obtain the limit behaviour of N ε

q (t) as t → 0.

Lemma 6.3.6. Let 0 < t ≤ T and ε > 0 fixed. For any 1 < q < ∞, there exists Cε(T, χ) > 0 such
that

N ε
q (t) ≤ Cε(T, χ). (6.18)

Moreover, one has
lim
t→0

N ε
q (t) = 0. (6.19)

As Kε is smooth, we can propose a simplified version of the arguments in [16, p. 285-286] for the
proof of (6.19).

Proof. The drift of the regularized stochastic equation is bounded. Indeed, |Kε
t | ≤ C

ε3/2
and

Lemma 6.3.4 imply

‖bε,i(t, ·; pε)‖L∞(R2) ≤
C√
ε
+

Ct

ε3/2
=: Cε(1 + t).

For 1 < q < ∞ and q′ such that 1
q +

1
q′ = 1 integrate (6.15) w.r.t. a test function f ∈ Lq′(R2) and

apply Hölder’s inequality. It comes

∣∣∣∣
∫

pεt (x)f(x)dx

∣∣∣∣ ≤ ‖f‖Lq′ (R2)

(
‖gt ∗ p0‖Lq(R2) +

2∑

i=1

∫ t

0
‖∇igt−s ∗ (pεsbε,is )‖Lq(R2)ds

)
. (6.20)

a) Assume 1 < q < 2. The above drift bound and the convolution inequality (3.37) applied in
(6.20), lead to

‖pεt‖Lq(R2) ≤ ‖gt ∗ p0‖Lq(R2) + Cε(1 + t)
2∑

i=1

∫ t

0
‖∇igt−s‖Lq(R2)‖pεs‖L1(R2)ds.

In view of (6.2), we deduce that
∫ t

0
‖∇igt−s‖Lq(R2)‖pεs‖L1(R2) ds ≤ Cq

∫ t

0

1

(t− s)
3
2
− 1

q

= Cqt
1
q
− 1

2 .

Thus,

t
1− 1

q ‖pεt‖Lq(R2) ≤ t1−1/q‖gt ∗ p0‖Lq(R2) + t
1− 1

q
+ 1

q
−1/2

Cε(1 + t). (6.21)

To get (6.18), in (6.21) use the convolution inequality (3.37) and that ‖gt‖Lq(R2) =
C

t
1− 1

q
. To

get (6.19) use Lemma 6.3.5 for the first term of the r.h.s. of (6.21) and the fact that the
second term tends to zero as t → 0.
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b) Let q ≥ 2 and 1
p1

= 1
p2

= 1
2 + 1

2q . Then, 1 < p1, p2 < 2 and 1 + 1
q = 1

p1
+ 1

p2
. The convolution

inequality (3.38) and the drift estimate applied in (6.20), lead to

‖pεt‖Lq(R2) ≤ ‖gt ∗ p0‖Lq(R2) + Cε(1 + T )
2∑

i=1

∫ t

0
‖∇igt−s‖Lp1 (R2)‖pεs‖Lp2 (R2)ds.

In view of (6.2) and the result in a), one has

t
1− 1

q ‖pεt‖Lq(R2) ≤ t
1− 1

q ‖gt ∗ p0‖Lq(R2) + Cε(1 + T )t
1− 1

q

∫ t

0

Cq

(t− s)
3
2
− 1

p1

C(ε, T )

s
1− 1

p2

ds.

Apply Lemma 6.3.2 and use the relation between the exponents. It comes:

t
1− 1

q ‖pεt‖Lq(R2) ≤ t
1− 1

q ‖gt ∗ p0‖Lq(R2) + t
1− 1

q
C(ε, T )

t
1
2
− 1

q

β(1− 1

p2
,
3

2
− 1

p1
).

Repeating the last steps as in a), one can obtain the desired result.

The following proposition enables one to control f ε
q (t) for a fixed q and uniformly on small ε.

Proposition 6.3.7. Let T > 0 and fix a q ∈ (2, 4). Then, there exists C > 0 such that for any
t ∈ (0, T ], f ε

q (t) defined in (6.17) satisfies

∀0 < ε < 1 : N ε
q (t) ≤ C,

provided that

Aχ‖∇c0‖L2(R2) +B
√
χ < 1 (6.22)

where, C1, C2 and β(·, ·) being defined as in Lemmas 6.1.1, 6.1.2 and Eq. 6.16 respectively,

A = C1(q
′)C2(

2q

q + 2
)β(

3

2
−2

q
,
3

2
− 1

q′
) and B = 2

√
C2(q)C1(q′)C1(1)β(

3

2
− 2

q
,
3

2
− 1

q′
)β(1− 1

q
,
1

2
).

Proof. Let q′ > 1 be such that 1
q +

1
q′ = 1. Integrating (6.15) w.r.t. a test function f ∈ Lq′(R2),

one again starts from

∣∣∣∣
∫

pεt (x)f(x)dx

∣∣∣∣ ≤ ‖f‖Lq′ (R2)

(
‖gt ∗ p0‖Lq(R2) +

2∑

i=1

∫ t

0
‖∇igt−s ∗ (pεsbε,is )‖Lq(R2)ds

)
. (6.23)

Let us fix i ∈ {1, 2}, s < t and denote Ai
s := ‖∇igt−s ∗ (pεsbε,is )‖Lq(R2). Observe that 1

q′ +
2
q = 1 + 1

q .
Apply the convolution inequality (3.38) and then use (6.2). It comes

Ai
s ≤ ‖∇igt−s‖Lq′ (R2)‖pεsbε,is ‖

L
q
2 (R2)

≤
C1(q

′)‖bε,is ‖Lq(R2)s
1− 1

q ‖pεs‖Lq(R2)

(t− s)
3
2
− 1

q′ s
1− 1

q

≤ C1(q
′)N ε

q (t)
‖bε,is ‖Lq(R2)

(t− s)
3
2
− 1

q′ s
1− 1

q

.
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In view of Lemma 6.3.4, (6.14) and Lemma 6.3.2, we get

‖bε,is ‖Lq(R2) ≤
C2(

2q
q+2)χ‖∇c0‖L2(R2)

(s+ ε)
1
2
− 1

q

+ χ

∫ s

0
‖Ki,ε

s−u‖L1(R2)‖pεu‖Lq(R2)du

≤
C2(

2q
q+2)χ‖∇c0‖L2(R2)

s
1
2
− 1

q

+ χC1(1)N ε
q (t)

∫ s

0

1
√
s− u u

1− 1
q

ds

≤
C2(

2q
q+2)χ‖∇c0‖L2(R2) + χC1(1)N ε

q (t)β(1− 1
q ,

1
2)

s
1
2
− 1

q

.

It comes

Ai
s ≤ C1(q

′)χN ε
q (t)

C2(
2q
q+2)‖∇c0‖L2(R2) + C1(1)N ε

q (t)β(1− 1
q ,

1
2)

(t− s)
3
2
− 1

q′ s
3
2
− 2

q

.

Plug this into (6.20). The condition q ∈ (2, 4) ensures that 3
2 − 2

q < 1 and 3
2 − 1

q′ < 1. Thus,
Lemma 6.3.2 leads to

∣∣∣∣
∫

pεt (x)f(x)dx

∣∣∣∣ ≤ ‖f‖Lq′ (R2)

(
‖gt ∗ p0‖Lq(R2)

+ 2C1(q
′)χN ε

q (t)
C2(

2q
q+2)‖∇c0‖L2(R2) + C1(1)N ε

q (t)β(1− 1
q ,

1
2)

t
1− 1

q

β(
3

2
− 2

q
,
3

2
− 1

q′
)
)
.

Take sup‖f‖
Lq′=1 in the preceding inequality. It follows from the convolution inequality (3.37) and

(6.3) that

‖pεt‖Lq(R2) ≤
C2(q)

t
1− 1

q

+2C1(q
′)χβ(

3

2
− 2

q
,
3

2
− 1

q′
)N ε

q (t)
C2(

2q
q+2)‖∇c0‖L2(R2) + C1(1)N ε

q (t)β(1− 1
q ,

1
2)

t
1− 1

q

.

Let us denote

K1 := 2C1(q
′)C1(1)β(

3

2
− 2

q
,
3

2
− 1

q′
)β(1− 1

q
,
1

2
) and K2 := 2C1(q

′)C2(
2q

q + 2
)β(

3

2
− 2

q
,
3

2
− 1

q′
).

After rearranging the terms,

0 ≤ K1χ(N ε
q (t))

2 + (K2χ‖∇c0‖L2(R2) − 1)N ε
q (t) + C2(q). (6.24)

Under the assumptions

K2χ‖∇c0‖L2(R2) − 1 < 0 and (K2χ‖∇c0‖L2(R2) − 1)2 − 4K1C2(q)χ > 0,

the polynomial function

P (z) = K1χz
2 + (K2χ‖∇c0‖L2(R2) − 1)z + C2(q)

admits two positive roots. In view of Lemma 6.3.6 and (6.24), one has that limt→0N ε
q (t) = 0 and

P (N ε
q (t)) > 0 for any t ∈ [0, T ]. Necessarily, for any t ∈ [0, T ] N ε

q (t) is bounded from above by the
smaller root of the polynomial function P (z). As the constants do not depend on T and ε, this
estimate is uniform in time and does not depend on the regularization parameter.

Notice that the above condition is equivalent to

K2χ‖∇c0‖L2(R2) + 2
√

K1C2(q)χ < 1.

Denote A := K2 and B := 2
√

C2(q)K1 to finish the proof.
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Remark 6.3.8. The upper bound C of N ε
q (t) is given by

C =
1−Aχ‖∇c0‖L2(R2) −

√
(1−Aχ‖∇c0‖L2(R2))

2 −B2χ

2K1χ
.

Now, we will continue analyzing N ε
r (t), for different values of r. We will see that different

arguments are used when r < q and r > q. The result obtained for r < q will be used to control
‖bεt‖Lr(R2), for r ≥ 2.

Corollary 6.3.9. Same assumptions as in Proposition 6.3.7. Then, for 1 < r < q, it holds

∀ 0 < ε < 1, N ε
r (T ) ≤ Cr.

Proof. Let 1 < r < q. Define θ :=
1− 1

r

1− 1
q

. Then, 1
r = 1− θ + θ

q . As p
ε
t ∈ L1(R2), ”interpolation

inequalities” (see [15, p. 93]) lead to

‖pεt‖Lr(R2) ≤ ‖pεt‖1−θ
L1(R2)

‖pεt‖θLq(R2) ≤
Cθ

t
θ(1− 1

q
)
=:

Cr

t1−
1
r

.

Corollary 6.3.10. Same assumptions as in Proposition 6.3.7. Then, for 2 ≤ r ≤ ∞,

∀ 0 < ε < 1, ‖bεt‖Lr(R2) ≤
Cr(χ, ‖∇c0‖L2(R2))

t
1
2
− 1

r

Proof. In view of Lemma 6.3.4, one has for i ∈ {1, 2}

‖bi,εt ‖Lr(R2) ≤
C(χ, ‖∇c0‖L2(R2))

t
1
2
− 1

r

+ χ

∫ t

0
‖Kε,i

t−s ∗ pεs‖Lr(R2)ds. (6.25)

a) For r ∈ [2, q), Corollary 6.3.9 immediately implies

‖Kε,i
t−s ∗ pεs‖Lr(R2) ≤

C
√
t− ss1−

1
r

.

b) For q ≤ r ≤ ∞, choose p1 such that 1
p1

:= 1 + 1
r − 1

q . Notice that, as 2 < q ≤ r, it follows

that 1
2 < 1

p1
≤ 1. Applying the convolution inequality (3.38) and Corollary 6.3.9, one has

‖Kε,i
t−s ∗ pεs‖Lr(R2) ≤

C

(t− s)
3
2
− 1

p1 s
1− 1

q

.

To finish the proof, in both cases, one plugs the obtained estimates in (6.25) and applies
Lemma 6.3.2.

Corollary 6.3.11. Same assumptions as in Proposition 6.3.7. Then, for q < r < ∞, one has

∀ 0 < ε < 1, N ε
r (T ) ≤ Cr.



105 6.4. Proof of Theorem 6.2.3

Proof. Let 1 < q1, q2 < 2 such that 1
q1

= 1
q2

= 1
2 + 1

2r . Then, 1 +
1
r = 1

q1
+ 1

q2
. Convolution

inequality (3.38) leads to

‖pεt‖Lr(R2) ≤ ‖gt ∗ p0‖Lr(R2) +
2∑

i=1

∫ t

0
‖∇igt−s‖Lq1 (R2)‖pεsbε,is ‖Lq2 (R2) ds.

Let us apply Hölder’s inequality for 1
λ1

+ 1
λ2

= 1 such that λ1 =
q
2 ,

‖pεsbε,is ‖Lq2 (R2) ≤ ‖pεs‖Lλ1q2 (R2)‖bε,is ‖Lλ2q2 (R2).

Notice that 1 < λ1 < 2 since 2 < q < 4 by hypothesis. Then, λ2 > 2, thus λ2q2 > 2. In addition,
λ1q2 =

q
2q2 < q. In view of Corollaries 6.3.9 and 6.3.10, one has

‖pεsbε,is ‖Lq2 (R2) ≤
C

s
1− 1

λ1q2
+ 1

2
− 1

λ2q2

=
C

s
3
2
− 1

q2

.

Therefore,

t
1− 1

q ‖pεt‖Lr(R2) ≤ C + t
1− 1

q

∫ t

0

C

(t− s)
3
2
− 1

q1 s
3
2
− 1

q2

ds.

Apply Lemma 6.3.2 to finish the proof.

Notice that the choice of the constants A and B depends only on the initially chosen q ∈ (2, 4).
One may analyze the constants in Condition (6.22) in function of q to get an optimal condition on
χ.

6.4 Proof of Theorem 6.2.3

6.4.1 Tightness

Proposition 6.4.1. Let T > 0. Denote εk = 1
k , for k ∈ N. Pk denotes the law of the solutions to

(6.12) regularized with εk. If the initial law p0 is a probability density, ∇c0 ∈ L2(R2) and χ > 0
are such that Condition (6.22) is satisfied, then the probability laws (Pk)k≥1 are tight in
C([0, T ];R2) w.r.t. k ∈ N.

Proof. For m > 2 and 0 < s < t ≤ T , notice that

E|Xε
t −Xε

s |m ≤ E

((∫ t

s
bε,1(u,Xε

u)du

)2

+

(∫ t

s
bε,2(u,Xε

u)du

)2
)m

2

+ E|Wt −Ws|m.

In view of the drift estimate for r = ∞ in Corollary 6.3.10, one has

E|Xε
t −Xε

s |m ≤
(
2

∫ t

s

C(χ, ‖∇c0‖L2(R2))√
u

du

)m

+ C(t− s)
m
2 ≤ C(χ, ‖∇c0‖L2(R2))(t− s)

m
2 .

Kolmogorov’s criterion implies tightness.
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6.4.2 Existence

In order to prove the existence of a weak solution, we will prove that the following non-linear
martingale problem related to (6.1) admits a solution under the hypothesis of Theorem 6.2.3.

Definition 6.4.2. A probability measure Q on the canonical space C([0, T ];R2) equipped with its
canonical filtration and a canonical process (wt) is a solution to the non-linear martingale problem
(MP ) if:

(i) Q0 = p0.

(ii) For any t ∈ (0, T ], the one dimensional time marginals of Q, denoted by Qt, have densities qt
w.r.t. Lebesgue measure on R. In addition, they satisfy

∀r ∈ (1,∞) ∃C > 0 : sup
t∈(0,T )

t1−
1
r ‖qt‖Lr(R2) ≤ C.

(iii) For any f ∈ C2
K(R2) the process (Mt)t≤T , defined as

Mt := f(wt)−f(w0)−
∫ t

0

[1
2
△f(wu)+∇f(wu)·(b0(u,wu)+χ

∫ u

0

∫
Ku−τ (wu−y)qτ (y)dydτ

)
]du

is a Q-martingale.

In view of Proposition 6.4.1, there exists a weakly convergent subsequence of (Pk)k≥1 that we will
still denote by (Pk)k≥1. Denote its limit by P∞. Let us prove that P∞ solves the martingale
problem (MP ).

i) Each Pk
0 has density p0, and therefore P∞

0 also has density p0.

ii) Define the functional Λt(ϕ) by

Λt(ϕ) :=

∫

R2

ϕ(y)P∞
t (dy), ϕ ∈ CK(R2).

By weak convergence we have

Λt(ϕ) = lim
k→∞

∫
ϕ(y)pkt (y)dy,

and thus for any 1 < r < ∞ and its conjugate r′, in view of Proposition 6.3.7 and Corollaries
6.3.9 and 6.3.11 one has

|Λt(ϕ)| ≤
C

t1−
1
r

‖ϕ‖Lr′ (R2).

Therefore, for each 0 < t ≤ T , Λt is a bounded linear functional on a dense subset of
Lr′(R2). Thus, Λt can be extended to a linear functional on Lr′(R2). By
Riesz-representation theorem (e.g. [15, Thm. 4.11 and 4.14]), there exists a unique
p∞t ∈ Lr(R2) such that ‖p∞t ‖Lr(R2) ≤ C

t1−
1
r
and p∞t is the probability density of P∞

t (dy).
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iii) Set

M∞
t := f(wt)− f(w0)

−
∫ t

0

[
△f(wu) +∇f(wu) · (b0(u,wu) +

χ

8π

∫ u

0
e−λ(u−τ)

∫
Ku−τ (wu − y)p∞τ (y) dy dτ

)
]du.

In order to prove that (M∞
t )t≤T is a P∞ martingale, we will check that for any N ≥ 1,

0 ≤ t1 < · · · < tN < s ≤ t ≤ T and any φ ∈ Cb((R
2)N ), one has

EP∞ [(M∞
t −M∞

s )φ(wt1 , . . . , wtN )] = 0. (6.26)

As Pk solves the non–linear martingale problem related to (6.12) with εk = 1
k , one has

Mk
t := f(wt)− f(x(0))− χ

∫ t

0

[
△f(wu) +∇f(wu) · (bεk0 (u,wu)

+
χ

8π

∫ u

0
e−λ(u−τ)(Kεk

u−τ ∗ pkτ )(wu)dτ
)
]du

is a martingale under Pk. Thus,

0 = EPk [(Mk
t −Mk

s )φ(wt1 , . . . , wtN )] = EPk [φ(. . . )(f(wt)− f(ws))]

+ EPk [φ(. . . )

∫ t

s
△f(wu)du] + EPk [φ(. . . )

∫ t

s
∇f(wu) · bεk0 (u,wu)du]

+
χ

8π
EPk [φ(. . . )

∫ t

s
∇f(wu) ·

∫ u

0
e−λ(u−τ)(Kεk

u−τ ∗ pkτ )(wu)dτdu].

Since (Pk) weakly converges to P∞, the first two terms on the r.h.s. converge to their
analogues in (6.26). It remains to check the convergence of the last two terms. We will
analyze separately the parts coming from the linear and non-linear drifts.

Linear part Notice that for t > 0 and x ∈ R2

|bεk0 (t, x)− b0(t, x)| ≤ C
χe−λtεk
t(t+ εk)

∣∣∣∣
∫

R2

∇c0(x− y)e−
|y|2
2t dy

∣∣∣∣ ≤
εk‖∇c0‖L2(R2)√

t(t+ εk)
.

Thus, ‖bεk0 (t, ·)− b0(t, ·)‖L∞(R2) → 0, k → ∞ and from Lemmas 6.3.3 and 6.3.4 we have

‖bεk0 (t, ·)− b0(t, ·)‖L∞(R2) ≤
C√
t
.

Similarly, for t > 0 and r > 2,

‖bεk0 (t, ·)− b0(t, ·)‖Lr(R2) ≤ ‖∇c0‖L2(R2)
εk

t(t+ εk)
Ct

1
r
+ 1

2 .

Therefore,
‖bεk0 (t, ·)− b0(t, ·)‖Lr(R2) → 0, k → ∞ (6.27)

and from Lemmas 6.3.3 and 6.3.4 we have

‖bεk0 (t, ·)− b0(t, ·)‖Lr(R2) ≤
C

t
1
2
− 1

r

. (6.28)
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Now, observe that

EPk [φ(. . . )

∫ t

s
∇f(wu) · bεk0 (u,wu)du]− EP∞ [φ(. . . )

∫ t

s
∇f(wu) · b0(u,wu)du]

= (EPk [φ(. . . )

∫ t

s
∇f(wu) · bεk0 (u,wu)du]− EPk [φ(. . . )

∫ t

s
∇f(wu) · b0(u,wu)du])

+ (EPk [φ(. . . )

∫ t

s
∇f(wu) · b0(u,wu)du]− EP∞ [φ(. . . )

∫ t

s
∇f(wu) · b0(u,wu)du]) =: Ik + IIk.

We start from IIk. Define for x ∈ C([0, T ];R2) the functional

F (x) := φ(xt1 , . . . , xtN )

∫ t

s
∇f(xu) · b0(u, xu)du.

In view of Lemma 6.3.3, for u > 0 and i = 1, 2, the function bi0(u, ·) is bounded and
continuous on R2 and one has ‖bi0(t, ·)‖L∞(R2) ≤ C√

t
. By dominated convergence one gets

that F (·) is continuous. In addition, F (·) is bounded on C([0, T ];R2). Thus, by weak
convergence, IIk → 0, as k → ∞.

We turn to Ik:

|Ik| ≤ ‖φ‖∞
∫ t

s

2∑

i=1

∫

R2

|∇if(z)(b
εk,i
0 (u, z)− bi0(u, z))|pku(z) dz ds.

Apply the Hölder’s inequality for 1
λ + 1

λ′ = 1 such that 1 < λ < 2. In view of Corollary 6.3.9,
one has

|Ik| ≤ ‖φ‖∞‖∇f‖∞
∫ t

s

C

u1−
1
λ

2∑

i=1

‖bεk,i0 (u, ·)− bi0(u, ·)‖Lλ′ (R2)du.

In view of (6.27), ‖bεk,i0 (u, ·)− bi0(u, ·)‖Lλ′ (R2) → 0 as k → ∞. In addition (6.28) leads to

C

u1−
1
λ

2∑

i=1

‖bεk,i0 (u, ·)− bi0(u, ·)‖Lλ′ (R2) ≤
C

u
1
λ′+

1
2
− 1

λ′
.

By dominated convergence, Ik → 0, as k → ∞.

Non-linear part Let us first analyze the difference of the two drifts. Fix 0 < s < t,
x ∈ R2 and i ∈ 1, 2. Notice that

|Kεk,i
t−s (x)−Ki

t−s(x)| ≤
(t− s)εk + ε2k

(t− s)2(t− s+ εk)2
|xi|e

|x|2
2(t−s) .

Thus for any x ∈ R2 and any 0 < s < t, we have that |Kεk,i
t−s (x)−Ki

t−s(x)| → 0, k → ∞.
After integration, for any 1 < r < 2 one has

‖Kεk,i
t−s −Ki

t−s‖Lr(R2) ≤ Cr
(t− s)εk + ε2k

(t− s)2(t− s+ εk)2
(t− s)

1
2
+ 1

r .

Therefore, for any 0 < s < t, one gets

‖Kεk,i
t−s −Ki

t−s‖Lr(R2) → 0, k → ∞. (6.29)
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In addition, (6.2) and (6.14) lead to

‖Kεk,i
t−s −Ki

t−s‖Lr(R2) ≤ ‖Kεk,i
t−s‖Lr(R2) + ‖Ki

t−s‖Lr(R2) ≤
Cr

(t− s)
3
2
− 1

r

. (6.30)

For t > 0, x ∈ R2 and i ∈ 1, 2, one has
∣∣∣∣
∫ t

0
(Kεk,i

t−s ∗ pks)(x)ds−
∫ t

0
(Ki

t−s ∗ p∞s )(x)ds

∣∣∣∣ ≤
∣∣∣∣
∫ t

0
(Kεk,i

t−s ∗ pks)(x)ds−
∫ t

0
(Ki

t−s ∗ pks)(x)ds
∣∣∣∣

+

∣∣∣∣
∫ t

0
(Ki

t−s ∗ pks)(x)ds−
∫ t

0
(Ki

t−s ∗ p∞s )(x)ds

∣∣∣∣ =: Ak +Bk.

We start from Bk. For s < t and i = 1, 2, the kernel Ki
t−s(·) is a continuous and bounded

function on R2. Thus, by weak convergence we have that
limk→∞(Ki

t−s ∗ pks)(x) = (Ki
t−s ∗ p∞s )(x). In addition, for r > 2 Hölder’s inequality, part ii)

and Proposition 6.3.7 lead to

|(Ki
t−s ∗ pks)(x)− (Ki

t−s ∗ p∞s )(x)| ≤ Cr

(t− s)
3
2
− 1

r′ s1−
1
r

.

As the bound is integrable in (0, t), the dominated convergence theorem implies that
Bk → 0, as k → ∞.

In Ak we apply the Hölder’s inequality with 1 < r < 2 and the density bounds from
Corollary 6.3.9. It comes

|Ak| ≤
∫ t

0
‖Kεk,i

t−s −Ki
t−s‖Lr′ (R2)

Cr

s1−
1
r

ds.

In view of (6.29) and (6.30), one can apply the dominated convergence. Thus, Ak → 0, as
k → ∞. Finally, we obtain

lim
k→∞

∣∣∣∣
∫ t

0
(Kεk,i

t−s ∗ pks)(x)ds−
∫ t

0
(Ki

t−s ∗ p∞s )(x)ds

∣∣∣∣ = 0. (6.31)

As in the linear part, we decompose

EPk [φ(. . . )

∫ t

s
∇f(wu) ·

∫ u

0
(Kεk

u−τ ∗ pkτ )(wu)dτdu]

− EP∞ [φ(. . . )

∫ t

s
∇f(wu) ·

∫ u

0
(Ku−τ ∗ p∞τ )(wu)dτdu]

≤
(
EPk [φ(. . . )

∫ t

s
∇f(wu) ·

∫ u

0
(Kεk

u−τ ∗ pkτ )(wu)dτdu]

− EPk [φ(. . . )

∫ t

s
∇f(wu) ·

∫ u

0
(Ku−τ ∗ p∞τ )(wu)dτdu]

)

+
(
EPk [φ(. . . )

∫ t

s
∇f(wu) ·

∫ u

0
(Ku−τ ∗ p∞τ )(wu)dτdu]

− EP∞ [φ(. . . )

∫ t

s
∇f(wu) ·

∫ u

0
(Ku−τ ∗ p∞τ )(wu)dτdu]

)

=: Ck +Dk.
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Start from Dk. Similarly to the linear part, we need the boundness and continuity of the
functional

H(x) := φ(x(t1), . . . , x(tN ))

∫ t

s
∇f(x(u)) ·

∫ u

0
(Ku−τ ∗ p∞τ )(x(u))dτdu, x ∈ C([0, T ];R2).

The continuity comes from the fact that the kernel is a continuous function on R2 whenever
τ < u. Namely, if xn ∈ C([0, T ];R2) converges to x ∈ C([0, T ];R2), then
Ki

u−τ (xn(u)− y) → Ki
u−τ (x(u)− y). In addition |Ki

u−τ (xn(u)− y)p∞τ (y)| ≤ C
(u−τ)3/2

p∞τ (y),

for i ∈ {1, 2}, as n → ∞. Thus, by dominated convergence, for τ < u one has

Ki
u−τ ∗ p∞τ (xn(u)) → Ki

u−τ ∗ p∞τ (x(u)), n → ∞.

For 1
r +

1
r′ = 1 such that r > 2 apply Hölder’s inequality and after the estimate in ii). It

comes

|Ki
u−τ ∗ p∞τ (xn(u))| ≤

Cr

(u− τ)
3
2
− 1

r′ τ1−
1
r

.

By dominated convergence,
∫ u

0
(Ki

u−τ ∗ p∞τ )(xn(u))dτ →
∫ u

0
(Ki

u−τ ∗ p∞τ )(x(u))dτ, n → ∞.

Moreover, in view of Lemma 6.3.2, one has

∣∣∣∣∇f(xn(u)) ·
∫ u

0
Ku−τ ∗ p∞τ (xn(u))dτ

∣∣∣∣ ≤ C‖∇f‖∞
β(1− 1

r ,
3
2 − 1

r′ )√
u

.

Finally, after one more application of dominated convergence the continuity of the functional
H follows. This procedure obviously implies H is a bounded functional on C([0, T ];R2).
Thus, by weak convergence, Dk converges to zero.

We turn to Ck. Let us just for this part denote by bi(u, z) :=
∫ u
0 Ki

u−τ ∗ p∞τ (z)dτ and

bk,i(u, z) :=
∫ u
0 Kεk,i

u−τ ∗ p∞τ (z)dτ . Notice that

|Ck| ≤ ‖φ‖∞
∫ t

s

2∑

i=1

∫

R2

|∇if(z)(b
k,i(u, z)− bi(u, z))|pku(z)dz.

After Hölder inequality for 1
r +

1
r′ = 1 such that r > 2, one has

|Ck| ≤ ‖φ‖∞
∫ t

s

C

u1−
1
r′

2∑

i=1

(∫
|∇if(z)|r|bk,i(u, z)− bi(u, z)|rdz

)1/r

du.

Let u > 0. In view of (6.31), |bk,i(u, z)− bi(u, z)|r → 0 as k → ∞. Now, we do not omit
|∇if(z)|q as in the linear part. Instead, we use it in order to integrate in space with respect
to drift bounds. Namely, for u > 0 and i = 1, 2, we have seen that |bk,i(u, ·)|+ |bi(u, ·)| ≤ C√

u
.

Thus,

|∇if(z)|r|bk,i(u, z)− bi(u, z)|r ≤ C

u
r
2

|∇if(z)|r.

By dominated convergence,

‖∇if(·)(bk,i(u, ·)− bi(u, ·))‖Lr(R2) → 0, k → ∞.
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Using that ‖bk,i(u, ·)‖Lr(R2) + ‖bi(u, ·))‖Lr(R2) ≤ C

u
1
2− 1

r
, one gets

1

u1−
1
r′
‖∇if(·)(bk,i(u, ·)− bi(u, ·))‖Lr(R2) ≤ ‖∇if(·)‖∞

C

u
1
2
− 1

r
+1− 1

r′

Thus, by dominated convergence, we get that Ck → 0, as k → ∞.

As all the terms converge, we get that (6.26) holds true. Thus, the process (M∞
t )t≤T is a P∞

martingale.

6.5 Application to the two-dimensional Keller-Segel model

In this section we prove Corollary 6.2.5. The parameter λ does not play any role in the above
results. Therefore, we will assume here λ = 0. It is easy to extend the following arguments for
λ > 0.

Denote by ρ(t, ·) ≡ pt(x) the time marginals of the probability distribution constructed in
Theorem 6.2.3. As such, ρ satisfies for any 1 ≤ q < ∞,

sup
t≤T

t
1− 1

q ‖ρ(t, ·)‖Lq(R2) ≤ Cq.

The corresponding drift function satisfies for any 1 ≤ r ≤ ∞,

t
1
2
− 1

r ‖b(t, ·; ρ)‖Lr(R2) ≤ Cr.

Following the arguments in Proposition 2.3.3 one may derive the mild equation for ρ(t, ·). The
above estimates ensure that everything is well defined. Thus, one arrives to the following: for any
f ∈ C∞

K (R2) and any t ∈ (0, T ],

∫
f(y)ρ(t, y) dy =

∫
f(y)(gt ∗ ρ0)(y)dy

−
2∑

i=1

∫
f(y)

∫ t

0
[∇igt−s ∗ (bi(s, ·; ρ)ρ(s, ·))](y) ds dy.

Thus ρ satisfies in the sense of the distributions

ρ(t, ·) = gt ∗ ρ0 −
2∑

i=1

∫ t

0
∇igt−s ∗ (bi(s, ·; ρ))ρ(s, ·)) ds. (6.32)

Now, define the function c(t, x) as

c(t, x) := (g(t, ·) ∗ c0)(x) +
∫ t

0
ρ(t− s, ·) ∗ g(s, ·)(x) ds.

Thanks to the density estimates c(t, x) is well defined for all x ∈ R2 as soon as t > 0. Indeed,

|c(t, x)| ≤
‖c0‖L2(R2)√

t
+ C

∫ t

0
‖ρ(t− s, ·)‖L2(R2)‖gs‖L2(R2) ds ≤

‖c0‖L2(R2)√
t

+ Cβ(
1

2
,
1

2
).
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It is obvious that c(t, ·) ∈ L2(R2). Thanks to the density estimates and the fact that gt is strongly
derivable as soon as t > 0, c(t, x) is derivable in any point x and

∂

∂xi
c(t, x) = ∇i(g(t, ·) ∗ c0)(x) +

∫ t

0
(ρt−s ∗ ∇ig(s, ·))(x) ds.

The fact that c0 ∈ H1(R2) enables us to write ∇i(g(t, ·) ∗ c0) = (g(t, ·) ∗ ∇ic0). Now, remark that
χ ∂

∂xi
c(t, x) is exactly the drift in (6.32). Thus, the couple (ρ, c) satisfies Definition 6.2.4.

Assume there exists another couple (ρ1, c1) satisfying Definition 6.2.4 with the above initial
conditions (ρ0, c0). As such, they satisfy

∀ 1 ≤ q < ∞ ∃ C > 0 : sup
t≤T

t
1− 1

q ‖ρ1t ‖Lq(R2) ≤ C

and
∀ 2 ≤ r ≤ ∞ ∃ C > 0 : sup

t≤T
t
1
2
− 1

r ‖∇c1t ‖Lr(R2) ≤ C.

We are in the position to apply [22, Thm. 2.6] and conclude that for a 1 ≤ q < ∞ and a
2 ≤ r ≤ ∞, there exists a constant C(q, r) not depending on time such that for t > 0 it holds

t
1− 1

q ‖ρt − ρ1t ‖Lq(R2) + t
1
2
− 1

r ‖∇ct −∇c1t ‖Lr(R2) = 0

6.6 Weak uniqueness for the non-linear process: Proof of Theo-

rem 6.2.6

In this section we come back to the non-linear process (6.1) and prove Theorem 6.2.6. As the
parameter λ does not play any role, we will assume here λ = 0. It is easy to extend the following
arguments for λ > 0. In addition, the parameter χ already satisfies the requirement (6.22).

In the preceding section we proved that under the condition (6.22), the one-dimensional time
marginals of any weak solution to (6.1) are the solution to (6.9) in the sense of Definition 6.2.4.
Thus, they are uniquely determined as the function (ρ(t, ·))t≤T from the previous section. We
define the linearized process

{
dX̃t = b0(t, X̃t)dt+ χ

∫ t
0 Kt−s ∗ ρ(s, ·)(X̃t) ds dt+ dWt,

X̃0 ∼ ρ0.
(6.33)

We will denote in this section

b(t, x) := b0(t, x)dt+ χ

∫ t

0
Kt−s ∗ ρ(s, ·)(x) ds.

By definition, one has

∀r ∈ [2,∞] ∃C : sup
t≤T

t
1
2
− 1

r ‖b(t, ·)‖Lr(R2) ≤ C. (6.34)

Let us define the notion of solution to (6.33).
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Definition 6.6.1. The family (Ω,F ,P, (Ft), X̃,W ) is said to be a weak solution to the equation
(6.33) up to time T > 0 if:

1. (Ω,F ,P, (Ft)) is a filtered probability space.

2. The process X̃ := (X̃t)t∈[0,T ] is R2-valued, continuous, and (Ft)-adapted. In addition, the

probability distribution of X̃0 has density ρ0.

3. The process W := (Wt)t∈[0,T ] is a two-dimensional (Ft)-Brownian motion.

4. The probability distribution P ◦ X̃−1 has time marginal densities (p̃t, t ∈ (0, T ]) with respect
to Lebesgue measure which satisfy

∀ 1 < q < ∞ ∃ Cq > 0 ∀0 < t ≤ T, t
1− 1

q ‖p̃t‖Lq(R2) ≤ Cq. (6.35)

5. For any t ∈ [0, T ] and x ∈ R2, one has that
∫ t
0 |b0(s, x)| ds < ∞.

6. P-a.s. the pair (X̃,W ) satisfies (6.33).

It is clear that any solution to (6.1) in the sense of Definition 6.2.1 is a solution to (6.33) in the
sense the preceding definition. Therefore, if we prove uniqueness of the weak solution in the sense
of Definition 6.6.1 to (6.33), we will have the uniqueness of the solution in the sense of Definition
6.2.1 to (6.1).

In order to do so, we will use the so-called transfer of uniqueness proved in Trevisan [76]. The goal
is to use the [76, Lemma 2.12] in the sense i) implies ii). This result is stated in the sequel once
all the objects appearing in it are introduced. Firstly, let us define the mild equation associated to
the laws (p̃t)t≤T in the sense of distributions.

p̃t = gt ∗ ρ0 −
2∑

i=1

∫ t

0
∇igt−s ∗ (b(s, ·)p̃s) ds. (6.36)

We define the space R[0,T ] as follows

R[0,T ] := {(νt)t≤T :





1. ν0 = ρ0

2. νt is a probability density function

3. ∀1 < q < ∞, ∀0 < t ≤ T : t
1− 1

q ‖νt‖Lq(R2) < ∞ and νt satisfies (6.36).

We prove it admits a unique solution under a condition precised in the proof.

Lemma 6.6.2. Equation (6.36) admits a unique solution in the space R[0,T ] provided χ is small
enough.

Proof. Let us suppose there exist two families of densities (p̃1t )t≤T and (p̃2t )t≤T satisfying (6.7) and
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(6.35). We will prove supt≤T ‖p̃1t − p̃2t ‖L1(R2) = 0. Notice that

‖p̃1t − p̃2t ‖L1(R2) ≤
2∑

i=1

∫ t

0
‖∇igt−s ∗ ((bi0(s, ·+ bi(s, ·; ρ))(p̃1s − p̃2s))‖L1(R2) ds

≤
2∑

i=1

∫ t

0
‖∇igt−s‖L1(R2)‖bi0(s, ·) + bi(s, ·; ρ)‖L∞(R2)‖p̃1s − p̃2s‖L1(R2) ds

≤ sup
s≤t

‖p̃1s − p̃2s‖L1(R2)

2∑

i=1

∫ t

0

C1(1)√
t− s

‖bi0(s, ·) + bi(s, ·; ρ)‖L∞(R2) ds.

(6.37)

In view of Lemma 6.3.3, for any 0 < s ≤ T , one has

‖bi0(s, ·)‖L∞(R2) ≤ χ‖∇c0‖L2(R2)(R2)
C2(2)√

s
. (6.38)

Let q ∈ (2, 4) as in Proposition 6.3.7. According to the definition of ρ, one has

sups≤T s
1− 1

q ‖ρs‖Lq(R2) ≤ C(χ), where C(χ) is given in Remark 6.3.8. Apply Hölder’s inequality,
Lemma 6.11 and this estimate on ρ to obtain for any 0 < s ≤ T the following

‖bi(s, ·; ρ)‖L∞(R2) ≤ χC1(
q

q − 1
)C(χ)

β(1− 1
q ,

3
2 − 1

q′ )√
s

. (6.39)

Plug (6.38) and (6.39) in (6.37). It comes

‖p̃1t − p̃2t ‖L1(R2)

≤ 2 sup
s≤t

‖p̃1s−p̃2s‖L1(R2)β(
1

2
,
1

2
)C1(1)

(
χ‖∇c0‖L2(R2)(R2)C2(2) + χC1(

q

q − 1
)C(χ)β(1− 1

q
,
3

2
− 1

q′
)

)
.

Thus, supt≤T ‖p̃1t − p̃2t ‖L1(R2) = 0, provided that

H(χ) := 2β(
1

2
,
1

2
)C1(1)

(
χ‖∇c0‖L2(R2)(R2)C2(2) + χC1(

q

q − 1
)C(χ)β(1− 1

q
,
3

2
− 1

q′
)

)
< 1. (6.40)

Remember that χ already satisfies (6.22). In view of Remark 6.3.8, one has

χC(χ) =
1−Aχ‖∇c0‖L2(R2) −

√
(1−Aχ‖∇c0‖L2(R2))

2 −B2χ

2K1
.

Since χC(χ) → 0 as χ → 0, we have H(χ) → 0 as χ → 0. Thus it is possible to choose χ small
enough in order to satisfy in the same time (6.22) and (6.40).

Now, notice that for 0 < s ≤ t ≤ T one has

p̃t = gt−s ∗ (gs ∗ ρ0)−
2∑

i=1

∫ s

0
gt−s ∗ (∇igs−u ∗ (b(u, ·)p̃u)) du−

2∑

i=1

∫ t

s
∇igt−u ∗ (b(u, ·)p̃u) du.

Therefore

p̃t = gt−s ∗ p̃s −
2∑

i=1

∫ t

s
∇igt−u ∗ (b(u, ·)p̃u) du. (6.41)
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From here, for a ν ∈ R[0,s] we define

pνs,t = gt−s ∗ νs −
2∑

i=1

∫ t

s
∇igt−u ∗ (b(u, ·)pνs,u) du. (6.42)

Now we define for any 0 ≤ s ≤ T the space

R[s,T ] := {(pνs,t)s≤t≤T :





1. ν ∈ R[0,s]

2. ∀0 ≤ t ≤ T : ps,t is a probability density function

3. ∀1 < q < ∞, ∀s ≤ t ≤ T : (t− s)
1− 1

q ‖pνs,t‖Lq(R2) < ∞
4. (pνs,t)s≤t≤T satisfies (6.42).

We will prove the following lemma for the classes (R[s,T ])0≤s≤T .

Lemma 6.6.3. For any 0 ≤ s ≤ T , the following two properties are satisfied:

Property 1: Let (pνs,t)s≤t≤T ∈ R[s,T ] and let (qνs,t)s≤t≤T a family of probability measures that satisfies
(6.42) and is such that qνs,t ≤ Cpνs,t for t ∈ [s, T ]. Then, (qνs,t)s≤t≤T ∈ R[s,T ].

Property 2: Let r ≤ s and (qνr,t)r≤t≤T ∈ R[r,T ]. Then, the restriction (qνr,t)s≤t≤T belongs to R[s,T ].

Proof. Property 1: let s ∈ [0, T ], (pνs,t)s≤t≤T ∈ R[s,T ] and let (qνs,t)s≤t≤T a family of probability
measures that satisfies (6.42) and is such that qνs,t ≤ Cpνs,t for t ∈ [s, T ]. We should prove that
(qνs,t)s≤t≤T ∈ R[s,T ]. As for t ∈ [s, T ], we have qνs,t ≤ pνs,t then for a test function f ∈ CK(R2) one
has

|
∫

f(x)qνs,t(dx)| ≤ |
∫

f(x)pνs,t(x)dx|.

Let q > 1 and q′ > 1 such that 1
q +

1
q′ = 1. As (pνs,t)s≤t≤T ∈ R[s,T ], one has

|
∫

f(x)qνs,t(dx)| ≤ ‖f‖Lq′ (R2)‖pνs,t‖Lq(R2) ≤
C

(t− s)
1− 1

q

‖f‖Lq′ (R2).

By Riesz representation theorem, qνs,t is absolutely continuous with respect to Lebesgue’s measure.
We still denote its probability density by qνs,t and conclude

‖qνs,t‖Lq(R2) ≤
C

(t− s)
1− 1

q

.

Therefore, (qνs,t)s≤t≤T ∈ R[s,T ].

Property 2: Let r ≤ s and (qνr,t)r≤t≤T ∈ R[r,T ]. We should prove that the restriction (qνr,t)s≤t≤T

belongs to R[s,T ]. Let t ≥ s. Notice that

qνr,t = gt−s ∗ (gs−r ∗ νr)−
2∑

i=1

gt−s ∗
∫ s

r
∇igs−u ∗ (b(u, ·)qνr,t) du−

2∑

i=1

∫ t

s
∇igt−u ∗ (b(u, ·)qνr,t) du.

Therefore, for t ∈ [s, T ] one has

qνr,t = gt−s ∗ qνr,s −
2∑

i=1

∫ t

s
∇igt−u ∗ (b(u, ·)qνr,t) du.
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In addition, for t ∈ [s, T ] and r ≤ s, one has

(t− s)1−
1
m ‖qνr,t‖Lm(R2) ≤ (t− r)1−

1
m ‖qνr,t‖Lm(R2) ≤ C.

Thus the restriction (qνr,t)s≤t≤T belongs to R[s,T ].

We are ready to state the result [76, Lemma 2.12] in our framework:

Lemma 6.6.4. As R := (R[s,T ])0≤s≤T satisfies the properties in Lemma 6.6.3, the following
conditions are equivalent:

i) for every s ∈ [0, T ] and ν̄ ∈ R[0,s], there exists at most one ν ∈ R[s,T ] with νs = ν̄s.

ii) for every s ∈ [0, T ], if Q1 and Q2 are the laws of two weak solutions to (6.33) starting from s
with Q1

s = Q2
s, then Q1 = Q2.

To apply the preceding lemma in the sense i) implies ii) for s = 0, it remains to check that for a
fixed ν ∈ R[0,s] the equation (6.42) admits a unique solution in R[s,T ]. In order to do so, repeat
the same as in the proof of Lemma 6.6.2 to get the uniqueness of (6.42). As the constants do not
depend on t, T , one gets the same condition on χ for the uniqueness. We, thus, conclude the
uniqueness in law for (6.33) holds.



Chapter 7

The two-dimensional case: Particle system

and numerical simulations

The numerical simulations in this chapter were achieved in collaboration with Victor Martin-Lac,
research engineer in team Tosca, Inria from September 2017 to June 2018. They concern a
probabilistic numerical method designed to solve the 2-d-Keller-Segel system.

7.1 Introduction

The regularization method applied in Chapter 6 leads to a following particle approximation of
(6.1): For N ∈ N and ε > 0,

{
dXi,N,ε

t = dW i
t + bε0(t,X

i,Nε
t )dt+ χ

{
1
N

∑N
j=1

∫ t
0 K

ε
t−s(X

i,N,ε
t −Xj,N,ε

s )ds
}
dt,

Xi,N
0 i.i.d. ∼ p0.

(7.1)

where (W i)i≤N are standard 2-dimensional independent Brownian motions. In view of (6.13) and
Theorem 2.2.4, System (7.1) admits a unique strong solution. Then, according to Theorem 2.2.6
for a fixed ε > 0, the particle system propagates chaos towards (6.12). Thus, the empirical
measure µN,ε := 1

N

∑N
i=1 δXi,N,ε converges in law towards the law Pε of the regularized process in

(6.12) when N → ∞. Then, in view of Chapter (6), the law Pε converges to the law of the non
linear process in (6.1) when ε → 0. Thus, for a large N , a small ε and a t > 0, the empirical
measure µN,ε

t is a good approximation of the marginal density pt of Xt. Thus, applying the Euler
scheme to (7.1), we can construct a numerical approximation for the function pt.

A natural question concerns the behavior of the particle system (7.1) in the limit ε = 0. In other
words, is the following particle system well defined?

{
dXi,N

t = dW i
t + b0(t,X

i,N
t )dt+ χ

{
1
N

∑N
j=1

∫ t
0 Kt−s(X

i,N,
t −Xj,N,

s )ds
}
dt,

Xi,N
0 i.i.d. ∼ p0.

(7.2)

At the present, we do not have a mathematical answer to this question. This chapter is devoted to
some theoretical comments and some numerical simulations.

The plan is the following: we first see why the techniques used in Chapter 5 do not give results on
(7.2). Then, we analyze a purely probabilistic method to discretize the Keller-Segel system in
d = 2 coming from our probabilistic interpretation. Finally, we compare it with a
probabilistic-deterministic method recently proposed by Fatkullin [28].

117
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7.2 Theoretical insights: Extending the techniques from d = 1

We start from a probability space (Ω,F ,W) and the driftless system

{
dX̄i,N

t = dW i
t , t ≤ T

X̄i
0 i.i.d. ∼ p0,

(7.3)

Following the arguments in Chapter 5, we would like to add the drift terms in (7.2) using the
Girsanov transformation. To do so, for x ∈ C([0, T ]; (R2)N ) we denote by bit(x) the drift term of
the i–th particle and we aim to get the Novikov condition for the drift vector
BN

t (x) = (b1t , . . . , b
N
t ). The quantity of interest is

E exp

{
κ

∫ T

0
|BN

t (X̄)|2 dt

}
,

for κ > 0. As in Chapter 5, we develop the exponential in a sum

E exp

{
κ

∫ T

0
|BN

t (X̄)|2 dt

}
= E

∞∑

k=1

κk

k!

(∫ T

0
|BN

t (X̄)|2 dt

)k

. (7.4)

7.2.1 No Khasminskii’s lemma procedure

Let us assume b ≡ 0 and p0 = δ0. For k = 1 in (7.4) one of the terms we should control is

A := E

∫ T

0

(∫ t

0
K1

t−s(W
1
t −W 2

s ) ds

)2

dt.

We will often use the following standard formula for an integral of two one-dimensional Gaussian
densities: ∫

R

1√
2πσ2

1

e
− (x−m1)

2

2σ2
1

1√
2πσ2

2

e
− (x−m2)

2

2σ2
2 dx =

1√
2π
√
σ2
1 + σ2

2

e
− (m1−m2)

2

2(σ2
1+σ2

2) . (7.5)

In addition, we denote by g1d when we want to emphasize that we have the one-dimensional
Gaussian density. Now, notice that

A = 2

∫ T

0

∫ t

0

∫ t

s
E[K1

t−s(W
1
t −W 2

s )K
1
t−u(W

1
t −W 2

u )] du ds dt

= 2

∫ T

0

∫ t

0

∫ t

s

∫

R2

gt(z)

∫

R2

gs(y)K
1
t−s(z − y)

∫

R2

K1
t−u(z − x− y)gu−s(x) dx dy dz du ds dt.

Observe that K1
t−u(z − x− y) = ∂

∂z1
gt−u(z − x− y). Use (7.5) and compute the integral on R2 as a

product of integrals on R. It comes
∫

R2

K1
t−u(z − x− y)gu−s(x) dx =

∂

∂z1
gt−s(z − y) = K1

t−s(z − y).

Thus

A = 2

∫ T

0

∫ t

0
(t− s)

∫

R2

gt(z)

∫

R2

gs(y)(K
1
t−s(z − y))2 dy dz ds dt.
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Use again the same formula to integrate w.r.t. y2 and z2. It comes

∫

R

g1dt (z2)

∫

R

g1dt−s
2

(z2 − y2)g
1d
s (y2) dy2 dz2 = C

∫

R

g1dt (z2)g
1d
t+s
2

(z2) dz2 =
C√
3t+ s

.

Thus,

A = C

∫ T

0

∫ t

0

(t− s)3/2√
3t+ s

∫

R

g1dt (z1)

∫

R

g1ds (y1)
(z1 − y1)

2

(t− s)4
e−

(z1−y1)
2

t−s dy1 dz1 ds dt.

The change of variables z1−y1√
t−s

= y and Fubini’s theorem lead to

A = C

∫ T

0

∫ t

0

(t− s)3/2√
3t+ s

∫

R

g1dt (z1)

∫

R

g1ds (z1 − y
√
t− s)

y2(t− s)

(t− s)4
e−y2

√
t− s dy dz1 ds dt

= C

∫ T

0

∫ t

0

1√
3t+ s(t− s)

∫

R

y2e−y2
∫

R

g1dt (z1)g
1d
s (z1 − y

√
t− s) dz1 dy ds dt

= C

∫ T

0

∫ t

0

1√
3t+ s(t− s)

∫

R

y2e−y2 1√
t+ s

e
− (t−s)y2

2(t+s) dy ds dt

= C

∫ T

0

∫ t

0

1√
3t+ s(t− s)

∫

R

y2e
− (3t+s)y2

2(t+s) dy ds dt.

The singularity when s → t is not integrable. We conclude that A = ∞. Thus, it is not possible to
obtain the Novikov’s condition if the initial law is a Dirac measure.

Remark 7.2.1. The above computations do not change when adding an initial condition to the
Brownian motion.

7.2.2 Fernique’s theorem does not apply

In [32], Friz and Oberhauser show a generalised version of Fernique’s theorem which implies the
Novikov condition.

Theorem 7.2.2 (Thm. 2 [32]). Let (E,H, µ) be an abstract Wiener space. Assume
f : E → R ∪ {−∞,∞} is a measurable map and N ⊂ E a null set and c some positive constant
such that for any x /∈ N one has

• |f(x)| < ∞,

• ∀h ∈ H : |f(x)| ≤ c(|f(x− h)|+ σ|h|H).

Then, ∫
exp{η|f(x)|2} µ(dx) < ∞ if η <

1

2c2σ2
.

Here σ is defined as

σ := sup
ξ∈E⋆,|ξ|E⋆=1

(∫
< ξ, x >2 µ(dx)

) 1
2

< ∞.
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Let H be the standard Cameron-Martin space. In order to apply their Theorem 2, one should
define for x ∈ C([0, T ]; (R2)N )

f(x) :=

√∫ T

0
|BN

t (x)|2 dt.

Then it should be proved that

• f is finite W-a.e.

• f is a pseudo norm, i.e. for any h ∈ H

|f(x)| ≤ c(|f(x− h)|+ σ|h|H),

where |h|H =

√∫ T
0 (

.
h(s))2 ds.

Both conditions are problematic: we do not know how to prove that f is finite and the
exponential in the definition of the drift disables us to bound |f(x− h+ h)| with a linear
combination of |f(x− h)| and |h|H .

7.2.3 Main difficulties

At the present, we are still working on the well-posedness of (7.2). What makes this job difficult
is, as seen above, the singular nature of the interaction kernel. The increase of dimension lead to
an increase in time singularity which can no longer be tamed by using Brownian techniques. This
makes us doubt that the laws of the particles are actually absolutely continuous with respect to
Wiener’s measure, while its one dimensional marginals should be.

Thus, an idea might be to find a reference process different than (7.3) and then use the Girsanov
transformation. One choice for the reference system is the system containing only the linear part
of the drift, i.e. {

dX̄i,N
t = dW i

t + b0(t, X̄
i,N
t )dt, t ≤ T

X̄i
0 i.i.d. ∼ p0.

(7.6)

Using the regularization techniques from Chapter 6, one can prove that System (7.6) is well
defined under some condition on the size of χ and ‖∇c0‖L2(R). In addition, under these conditions

the laws pit of X̄
i,N
t satisfy

∀1 < q < ∞ ∃Cq > 0, sup
t≤T

t
1− 1

q ‖pit‖Lq(R2) ≤ Cq.

Unfortunately, such property is not powerful enough to control the time singularity of the kernel
and will not improve the computations done in Subsection 7.2.1. Until present, we have not found
a suitable reference particle system.

A completely different approach could be to start from the regularized system (7.1) and for a fixed
N try to get tightness of (X1,N,ε, ε > 0). Then, take a limit point and prove it satisfies (7.2). The
usual criterion of tightness we used in this thesis, leads us to the following quantity:

E



∫ t

s

χ

N

N∑

j=2

∫ u

0
Kε,i

u−θ(X
1,N,ε
u −Xj,N,ε

θ ) dθ du




m

.
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For an m ∈ N and m > 1, we could follow the Khasminskii’s argument as in Chapter 5 to control
this quantity. However, we will need the joint distribution of (X1,N,ε

u , Xj,N,ε
θ ) for some u 6= θ. The

non-markovian nature of the system prevents us of having a representation for marginal densities
of the laws of the particles. Thus, it is not clear how to get some estimates of the law of the above
written couple that could help us in integrating the singularity. Another way to get tightness
might be to follow the arguments of Fournier and Jourdain [31]. It would come done to control
uniformly in ε > 0 the following quantity quantity

E
χ

N

N∑

j=2

∫ T

0

∣∣∣∣
∫ u

0
Kε,i

u−θ(X
1,N,ε
u −Xj,N,ε

θ ) dθ

∣∣∣∣
2−α

du,

where α ∈ (0, 1) is to be chosen. Again, we are not sure how to proceed once the quantity of
interest is identified as we do not have information about the joint laws (X1,N,ε

u , Xj,N,ε
θ ) for some

u 6= θ. Another idea would be to apply a functional Itô’s formula in order to control the above
quantity. We have not tried this option yet.

The question of well-posedness of (7.2) without cut-off remains open for our future work.

7.3 Our probabilistic numerical method

For a fixed time horizon 0 < T < ∞, we choose △t > 0 and n ∈ N such that n△t = T . In the
sequel, we propose a discrete approximation (X̄k△t)1≤k≤n := (X̄1,N

k△t, . . . , X̄
N,N
k△t )1≤k≤n of (7.2).

Then, we use it to construct a discretization (ρ̄, c̄) of a solution (ρ, c) to (6.9).

For a given probability measure p0 on R2 we assume (X̄i,N
0 )1≤i≤N are independent identically

distributed according to p0. We suppose the initial concentration c0 ∈ H1(R2) is given and that in
each point x ∈ R2 we can compute ∇c0 ∗ gt(x). For 1 ≤ i ≤ N and 1 ≤ k ≤ n, we apply the Euler
scheme on (7.2). One gets

X̄i,N
(k+1)△t = X̄i,N

k△t +△t b0(k△t, X̄i,N
k△t) +△t

χ

N

N∑

j=1,j 6=i

V i,j
k△t + (W i

(k+1)△t −W i
k△t),

where V i,j
k△t =

∫ k△t
0 Kk△t−s(X̄

i,N
k△t −Xj,N

s ) ds. One way to discretize V i,j
k△t is to use the values

X̄j,N
0 , . . . , X̄j,N

k△t and Riemann sums. This is, of course, one of many possible choices when
discretizing this integral, but disputable when the integral is singular. Nevertheless, we set

Ṽ i,j
k△t =

k−1∑

l=0

△t K(k−l)△t(X̄
i,N
k△t − X̄j,N

l△t ).

Finally, we obtain the following discrete approximation of the particle system (7.2):

{
X̄i,N

(k+1)△t = X̄i,N
k△t +△t b0(k△t, X̄i,N

k△t) +△t χ
N

∑N
j=1,j 6=i Ṽ

i,j
k△t + (W i

(k+1)△t −W i
k△t)

X̄i,N
0 i. i. d. ∼ p0; Ṽ i,j

k△t =
∑k−1

l=0 △t K(k−l)△t(X̄
i,N
k△t − X̄j,N

l△t )
(7.7)

Notice that each X̄i,N
k△t is a two dimensional vector. The system (7.7) can be simulated easily.

First, one obtains N independent realizations of the distribution p0: x
1
0, . . . , x

N
0 and initializes
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X̄i,N
0 = xi0. In each time step of the discretization, we simultaneously calculate both coordinates of

X̄i,N
k△t, simulating two independent realizations of standard Gaussian law for the Brownian

increment. The non-Markovian nature of (7.2) manifests itself in terms of the complexity of the
above scheme. In order to compute (X̄i,N

T )1≤i≤N , on one hand, one needs to simulate O( N
△t)

realizations of a standard Gaussian random variable. On the other hand the kernel K needs to be
evaluated O( N2

△t2
) times. Thus, once we choose one of the classical methods to simulate Gaussian

random variables, asymptotically (when N → ∞ and △t → 0) the complexity of the interaction
term prevails and we have that the scheme is exponentially complex both in number of particles
and time step.

Now, we construct the time discretization (ρ̄(k△t, ·), c̄(k△t, ·))1≤k≤n. As ρ(t, ·) is the density of
the random variable Xt and the particle system is its discretization, the empirical measure
µN
t = 1

N

∑N
i=1 δXi,N

t
is an approximation for ρ(t, ·). Having this in mind and the mild equation

satisfied by the function c(t, ·), we set

{
ρ̄(k△t, x) = 1

N

∑N
i=1 δX̄i,N

k△t
(x),

c̄(k△t, x) = e−λk△tgk△t ∗ c0(x) + 1
N

∑N
i=1

∑k−1
l=1 △t e−λ△t(k−l) g(k−l)△t(x− X̄i,N

l△t).
(7.8)

Then one should choose the points in space in which (ρ̄, c̄) are evaluated. One way to do so is to
see what is the domain on which the system (7.7) evolves up to time T and then discretize it in a
grid with the steps (△x1,△x2). Notice that at each point xm of the grid the complexity of
computing c̃(T, xm) is of order O( N

△t2
).

We propose, thus, the couple (ρ̄, c̄) to be a numerical approximation of a solution to the
Keller-Segel system in dimension two. In order to justify the convergence of our scheme to it as
N → ∞ and △t → 0, one should prove that the particle system (7.2) is well defined and that the
propagation of chaos towards the law of the process (6.1) holds for it. Then, one should show that
the scheme (7.7) converges. As we do not intend to prove all this, our numerical method should
not be seen in a rigorous way. As mentioned in the introduction, all this can be proven in the
regularized case (see Eq. (6.12)).

Nevertheless, the numerical simulations seem to be effective as they are able to capture two
different behaviours of the solutions according to the size of the parameter χ. Namely, when χ is
large we observe an agglomeration of particles as the simulation advances. This induces a
formation of singularity in our approximations for ρ and c. When χ is small, the particles diffuse
and no singularity is detected (see Figure 7.1).

7.4 Comparison with another particle method

As two-dimensional Keller-Segel model may develop singularities, a probabilistic numerical
method seems to be more adapted than purely deterministic methods (such as finite elements or
Galerkin methods). The reason is that standard numerical schemes develop instabilities around
the singularities. In addition, these schemes can not carry on the computation once a singularity
has been formed. On the other hand, as seen in the preceding section, in stochastic particle
approaches singularities manifest themselves as agglomeration of particles. As such, they are not
harmful from a computational point of view. Thus, the simulation can continue after a formation
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(a) t = 0 (b) t = 0.1 (c) t = 0.3 (d) t = 1

(e) t = 0 (f) t = 0.1 (g) t = 0.3 (h) t = 1

Figure 7.1: (a)-(d): χ = 50; (e)-(h): χ = 1. Euler scheme is applied to (1.15), with N = 1000, d =
2. Particles are initially distributed uniformly on [−1, 1] × [−1, 1]. Initial concentration of the
chemical is a centered Gaussian density. When χ is large an agglomeration of particles appear in
the center of the domain, whilst when χ is small the particles diffuse.

of a singularity and we can have an idea what might happen in the system once such irregularity
is developed.

Probabilistic-Deterministic Particle Method of I. Fatkullin

The above remarks are noticed by Fatkullin in [28] who develops a probabilistic-deterministic
particle method (PDPM) for approximating (6.9) in a rectangular domain with Neumann no-flux
boundary condition. Namely, he applies a particle method for (6.9a) and a classical numerical
method for (6.9b) simultaneously. Let △τ be the time step of the particle simulation and △t of
concentration simulation, where the grid size is △x. The density function is reconstructed from N
independent realizations, obtained by applying the Euler scheme, of a linear stochastic process
related to the Fokker-Planck equation (6.9a):

Y(k+1)△τ = Yk△τ +△τ ∇c(Yk△τ ) +
√

△τN(0, 1).

By reflecting the particles escaping the space domain the no-flux boundary condition is enforced.
The ∇c is obtained by bilinear interpolation of values CX and CY obtained from the
concentration field Ci,j :

CXi,j =
1

2△x
[Ci+1,j(t)− Ci−1,j(t)], CY =

1

2△x
[Ci,j+1(t)− Ci,j−1(t)].

The particle field Pi,j is obtained from the particles positions by distributing a part of its weight
to four nearest neighbouring grid points. In order to get the concentration field Ci,j the author
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applies the implicit second order finite-difference scheme:

1

△t
[Ci,j(t+△t)− Ci,j(t) =

1

△x2
D

(2)
i,j C(t+△t)− λ2Ci,j(t+△t) + Pi,j(t),

where D(2) is the second order difference operator. Adaptive time step for the Euler scheme is
used in the vicinity of singularities in order to avoid artificial oscillations. For each particle, if
needed, the time step △t is divided into sub-intervals of size △τ so that |∇c(Yk△τ )| < △x.

The boundary problem

This mix of probabilistic and deterministic techniques is quite efficient and even though it uses an
implicit scheme for the concentration function, it is much faster than (7.8) as there is no
interaction between the particles.

However, its main drawback is the artificial boundary condition imposed on the particle evolution.
In fact, the particles are forced to stay in the domain which introduces a bias towards it. Namely,
an agglomeration of particles, once it is formed tends to migrate to the corner of the domain.
Fatkullin notices this in the case of the elliptic model when analyzing formation and interaction of
singularities. He argues that the singularities form and interact in the following way: the
agglomerations may form in different areas of the domain, then if close enough they attract one
another and eventually merge. Finally, they travel towards the boundary and concentrate around
the corners of the domain.

Simulating the PDPM in the parabolic-parabolic case, we notice the same phenomenon. Particle
agglomerations are attracted by each other and the boundary. We argue this event is artificial by
comparing PDPM with the purely probabilistic particle method (PPPM) in (7.7). In PPPM, we
do not introduce any constraint on the particle positions, but only decide the domain of
visualization for ρ and c once we see where most of the particles evolve up to a given time horizon.

As the position of an agglomeration obviously induces a peak in the approximation for the density
and concentration functions, we will compare the particle evolution of PPPM and PDPM in the
case a singularity is developed. We will be interested in formation of agglomerations, their
positions and time needed for them to develop.

Numerical results

We simulate N = 1000 particles using PPPM and PDPM. For both simulations we choose the
following parameters: α = 1, χ = 50, λ = 1, T = 3, △t = 0.00167, n = 1800. Initially, the particles
are uniformly distributed on the square [0, 1]× [0, 1], and the initial concentration is the standard
Gaussian two-dimensional density. In PDPM we have chosen the domain to be also equal to
[0, 1]× [0, 1] with △x1 = △x2 = 0.067. The particles are left to evolve according to PPPM and
PDPM.

The following graphs are a selection of various simulations run with different values of the
numerical parameters. The goal is to analyze qualitatively the graphs. Thus, even if with finer
discretization parameters the simulation is more accurate, qualitatively the same phenomena
occur always.
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An agglomeration is visible in both methods around the point (0, 0), although it appears sooner in
PPPM (Figure 7.2). Proceeding in time both of the agglomerations are well formed, but the one
in PDPM starts displacing from its initial position (Figure 7.3). Until T no changes occur in
PPPM, while the agglomeration in PDPM gets glued on the boundary (Figure 7.4).

In order to be sure that this is not due to a badly chosen set of discretization parameters, we
repeat the PDPM simulation for a finer grid in time and space. Namely, we choose T = 20,
△t = 0.001, △x = △y = 0.002 and all the other parameters as above. The results are given in
Figure 7.5. As in the parabolic-elliptic simulations in [28], the agglomeration ends up in the corner
of the domain.

(a) t = 0 (b) t = 0.2 (c) t = 0.4 (d) t = 0.81

(e) t = 0 (f) t = 0.2 (g) t = 0.4 (h) t = 0.81

Figure 7.2: (a)-(d): PDPM; (e)-(h): PPPM.



Chapter 7. The two-dimensional case: Particle system and numerical simulations 126

(a) t = 1.1 (b) t = 1.4 (c) t = 2.01 (d) t = 2.405

(e) t = 1.1 (f) t = 1.4 (g) t = 2.01 (h) t = 2.405

Figure 7.3: The continuation of the evoulution in Figure 7.2–(a)-(d): PDPM; (e)-(h): PPPM.

(a) t = 2.65 (b) t = 2.75 (c) t = 2.8 (d) t = 3

(e) t = 2.65 (f) t = 2.75 (g) t = 2.8 (h) t = 3

Figure 7.4: The continuation of the evoulution in Figure 7.3–(a)-(d): PDPM; (e)-(h): PPPM.
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(a) t = 0 (b) t = 0.5 (c) t = 1 (d) t = 2

(e) t = 4 (f) t = 8.186 (g) t = 10 (h) t = 12

(i) t = 12.5 (j) t = 12.845 (k) t = 13 (l) t = 20

Figure 7.5: PDPM: long time and finer grid.

If the domain is chosen far away from the initial conditions, then we can expect that no attraction
by the border happens. Indeed, if we choose the domain to be [−3, 3]× [−3, 3] and the initial
conditions as above, defined on the sub–domain [−1, 1]× [−1, 1], we do not observe the above
phenomenon up to large time horizons. In this setting it was easy to find a convenient domain as
we know the initial law and the PPPM tells us where most of the particles should be. However, if
the initial state is more complicated, one may have to choose a very big domain in order not to
influence the computations by its border. Then, most of the domain will most of the time be
empty. However, one will have to choose the space grid according to the size of domain. That will
imply more elements on the grid and useless computations in the zones where particles do not
pass their time. This will slow down the algorithm.

Conclusion:

a) The Fatkullin method is fast, but requires to a priori know where the particles will aggregate
which is impossible in practice. It also requires to properly define artificial boundary
conditions (the no flux condition may be violated by the true solution at the chosen artificial
boundary).
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b) The purely stochastic particle method allows one to solve the Keller-Segel equation without
any artificial boundary condition. However, the method needs some improvement as its its
main drawback is the computational time coming from the interaction of every particle with
the past of all the other particles.

7.5 Perspectives: How to improve our method?

The principal issue of our numerical scheme is computational time. The interaction between
particles involves their past and as we have chosen to use the Riemann sums to approximate the
integral

∫ t
0 Kt−s(X

i,N
t −Xj,N

s ) ds, we have to store all the positions:

Ṽ i,j
k△t =

k−1∑

l=0

△t e−λ(k−l)△tK(k−l)△t(X̄
i,N
k△t − X̄j,N

l△t ).

In addition, as we advance in time (k becomes larger), the computation of the interaction term
involves more elements and it is slower and slower. Just to give an idea, computing position of
1000 particles with 600 time steps takes around three hours on a personal computer. On the other
hand, PDPM does the same job in two seconds (see Figure 7.6).

Figure 7.6: Computational time of PPPM for N = 1000 and n = 600. The curve is provided by
our program during one of the simulations with the above parameters.

Some possible points to improve the computation time:

1. Neglect contributions far away in time: As soon as the current step in time (k)
becomes large enough, one may neglect the contribution of an interaction that happens ”far
away in time”. In fact, our conjecture is is that most of the magnitude of Ṽ i,j

k△t is due to the
last elements of the sum . The idea is to find a criterion that would discard some of the first
ones or use a default value for them as soon as k is large enough. However, the threshold for
k is random and thus needs a careful analysis.

2. Neglect contributions far away in space: If two particles are far away in space (even in
different times), the kernel is dominated by the exponential and thus such a contribution is
minimal. The idea is to find a criterion that neglects the contribution of X̄j,N

l△t to the drift of

X̄i,N
k△t if |X̄

j,N
l△t − X̄i,N

k△t| is large enough (l ≤ k).

Some possible points to improve the accuracy of the algorithm:
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1. Computations around zero: The particles are initialized in such a way that when the
time horizon is very small we do not see their interaction at all. The idea would be to
completely change some of the first time steps of the computations in order to better
capture the interaction between particles.

2. Singular integral approximation: As soon as two particles are very close at an instant of
time t, the integral

∫ t
0 Kt−s(X

i,N
t −Xj,N

s ) ds may become singular. In that case, Riemann
sums are not an appropriate way to discretize such an integral. It is necessary to diagnose
what the critical distance between the positions of two particles at time t is under which
numerical problems appear (instabilities, large values, etc.). It will also be necessary to find
an effective approximation method for critical cases of small (strictly positive) distances, or
to be reassured that this configuration appears very rarely during simulations.
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[43] Jabir, J.-F., Talay, D., and Tomašević, M. Mean–field limit of a particle approximation
of the one-dimensional parabolic–parabolic Keller-Segel model without smoothing. Electronic
Communications in probability 23, 84 (2018), 1–14.
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