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Marie Beurton-Aimar
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Alain Denise
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Introduction

Systems biology is an ever-expanding field where new developments in molec-
ular biology techniques yield richer biological data (a few examples being genomic,
transcriptomic, proteomic, interactomic, and metabolomic data) or produce such
data faster. This deluge of biological information creates the need for increasingly
specialized and efficient processing and analysis algorithms. A strong emphasis
is placed on integrative approaches capable of incorporating data from heteroge-
neous sources in order to advance our understanding when considering the whole-
ness of cellular systems.

In this context, numerous approaches for heterogeneous biological networks
are modeled as graph problems. Broadly speaking, such approaches are directed
either at the integration of heterogeneous networks, or at motif extraction. From
an algorithmic point of view, the work presented in this thesis fits within the latter
category. Its main goal is to explore the relationship between metabolism and the
genome.

Genomic data and chemical reactions embody the dual aspect of metabolism
[Muto et al., 2013] that allows exploring the links between genome evolution and
chemical evolution of enzyme-catalyzed reactions [Kanehisa, 2013]. It is well estab-
lished that neighboring reactions corresponding to neighboring genes underline an
evolutionary advantage in keeping the genes involved in succeeding reactions in
close genomic proximity [Alves et al., 2002; Rison et al., 2002]. Finding almost identi-
cal sequences of reactions being catalyzed by products of neighboring genes in var-
ious species suggests that such sequences are made up of key enzymatic steps, best
performed when their encoding genes are adjacent and co-transcribed. This type
of metabolic and genomic organization strongly suggests the various species have
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2 Introduction

been under strong evolutionary pressure to optimize the expression of enzyme-
coding genes involved in successive reactions [Zaslaver et al., 2006; Wells et al.,
2016].

This thesis focuses on the identification of conserved metabolic and genomic
patterns. Roughly speaking, metabolic and genomic patterns can be defined as corre-
sponding neighborhoods of reactions and genes for a given species. More precisely,
metabolic and genomic patterns may be described as sequences of reactions having
certain features, such that the reactions are catalyzed by products of neighboring
genes. Conserved metabolic and genomic patterns represent similar neighborhoods of
reactions and genes for a variety of species. Interspecies comparisons based on con-
served patterns may help to shed light onto the evolution of conserved metabolic
and genomic neighborhoods.

The identification of metabolic and genomic patterns requires extraction of rel-
evant information from metabolic and genomic contexts as well as its simultane-
ous integrated analysis. Knowledge extraction from biological networks has been
the topic of numerous research efforts, mainly concentrated on ’omics’ data inte-
gration, network alignment, and network mining. The problem addressed in this
thesis involves knowledge extraction from heterogeneous (as opposed to homoge-
neous) biological networks, containing different types of information that describe
distinct aspects of related processes for the same biological entity. The source of
biological data used in this thesis is the well-known KEGG (Kyoto Encyclopedia of
Genes and Genomes) knowledge base.

The main contributions of this thesis are the following:

• We propose algorithms for trail finding, corresponding to the identification of
metabolic and genomic patterns. Trails of reactions are sequences in which re-
actions (but not the links between them) may be repeated in order to account
for cycles, which are ubiquitous in metabolism.

• We describe two trail grouping methods, corresponding to the detection of
conserved metabolic and genomic patterns.

• We introduce CoMetGeNe, a fully automated open-source pipeline for the de-
tection of metabolic and genomic patterns and their conservation.

• We conduct an investigation into the metabolic and genomic organization of
a bacterial data set.

• We provide preliminary results on the integration of a chemical similarity
criterion into the trail grouping methodology, leading to the identification
of metabolic and genomic patterns that perform the same types of chemical
transformations.
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• In addition, we report existing consistency issues in the KEGG knowledge
base and outline approaches for their systematic discovery.

This document is organized as follows:

• Chapters I and II provide the necessary biological and graph-theoretical back-
ground, respectively, for the work presented in this thesis. Chapter II also re-
views state of the art methods for the comparison of heterogeneous biological
networks.

• Chapter III represents the transition between the background chapters and
the pure contribution chapters. On the one hand, it introduces the KEGG
knowledge base, an essential resource for the metabolic and genomic data
used in the applications presented herein. On the other hand, this chapter
contributes to the detection of consistency issues in KEGG, relevant to the
bioinformatics community relying on this knowledge base.

• Chapters IV, V, and VI refer to pattern detection. Chapter IV proposes a
method for trail finding, which translates to the identification of metabolic
and genomic patterns. Chapter V describes how such patterns may be ana-
lyzed and grouped in order to reveal conserved metabolic and genomic con-
texts across multiple species. Chapter VI gives a brief overview of CoMetGeNe,
an open-source pipeline that we designed to detect metabolic and genomic
patterns, as well as their conservation.

• Chapter VII shows how the trail finding and trail grouping methodologies
reveal conserved metabolic and genomic patterns in practice. A data set of
50 bacterial species chosen to represent major phyla of the bacterial tree of
life is investigated using CoMetGeNe. The patterns thus discovered are then
described and analyzed, revealing interesting aspects of the relationship be-
tween metabolic architecture and genome structure.

• Chapter VIII discusses how the definition of metabolic and genomic patterns
may account for the similarity of the chemical transformations performed
by reactions in CoMetGeNe trails. Two approaches for evaluating the chemi-
cal similarity of CoMetGeNe trails are proposed and illustrated using prelimi-
nary results. The developments in this chapter are not yet integrated into the
CoMetGeNe pipeline.

This document concludes with a short chapter that summarizes our main con-
tributions and outlines future research prospects.
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6 Chapter I. Biological context

1 Introduction

This chapter introduces the biological context of this thesis.

In the first part of the chapter, metabolism is presented as a system where differ-
ent actors interact. Enzymes play an important role in this system, as they enable
chemical reactions to take place. In addition, enzymes are frequently the target of
diverse mechanisms that allow metabolism to evolve.

The rest of the chapter describes the interconnection between the metabolism
of an organism and its genome. Genes encode proteins and special proteins called
enzymes make metabolism possible, but how can we tell what the purpose of any
given gene is? The answer to this question is explored throughout the sections on
homology and functional annotation.

2 Metabolism

Several definitions for metabolism exist. Metabolismmetabolism can be seen as the set
of life-sustaining biochemical processes that allow a cell to develop, reproduce,
and interact with its environment. The term “metabolism” comes from Greek and
signifies “change” or “transformation”.

With respect to organism survival, metabolism is divided into primary metab-
olism and secondary metabolism. Primary metabolismprimary

metabolism

consists in metabolic trans-
formations that are essential for survival and is usually well conserved across the
tree of life. Secondary metabolismsecondary

metabolism

consists in metabolic transformations that are not
essential for survival under normal conditions. Antibiotics and toxins are examples
of end products of secondary metabolism.

2.1 Main metabolic actors

A metabolic networkmetabolic

network

can be defined as the complete set of metabolic transfor-
mations that determine the properties of a cell. From a computer science point of
view, a metabolic network can be conceptualized as a collection of objects and their
respective relations. Metabolic networks can be modeled intuitively with respect
to objects and the relations between them through a UML diagram (see Figure I.1).
This section describes the main actors involved in metabolism. An introduction to
the analysis of metabolic networks can be found in Lacroix et al. [2008].

Chemical compoundscompound

(metabolite)

or metabolites are small molecules that are intermedi-
ate products of metabolism. They can be synthesized and/or degraded within an
organism, and they can be imported and/or exported. The main atom types in the
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Figure I.1 Simplified UML view of the various objects involved in a metabolic
network. A replication unit refers to a region of nucleic acid that replicates from
a single origin of replication. In general, a replication unit corresponds to the en-
tire chromosome in prokaryotes, whereas in eukaryotes there are multiple repli-
cation units per chromosome. Arrows with black arrowheads represent relations
between objects. Symbols on either side of such arrows represent relation cardi-
nality. 0..* means zero or more. For example, in the relation “codes for” between
“gene” and “protein”, a gene can encode one or several proteins (in the case of al-
ternative splicing), or no protein if the gene does not code for a protein. A protein
can be produced by one or more genes, or supplied by the environment (hence the
0 in the cardinality for “gene”). Reproduced with permission from Lacroix et al.
[2008] © 2008 IEEE.

composition of metabolites are carbon (C), oxygen (O), hydrogen (H), nitrogen (N),
sulfur (S), and phosphorus (P). Some compounds may contain metal atoms, such
as iron (Fe), magnesium (Mg), or zinc (Zn).

Biochemical reactions reactionconsist in the transformation of a set of one or more com-
pounds called substrates into a set of one or more compounds called products. Reac-
tions that can occur in either direction are called reversible, while reactions that can
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take place in only one direction are irreversible. The vast majority of biochemical
reactions are not spontaneous and require catalysis in order to perform the chemical
transformation of metabolites in a reasonable amount of time (on the time scale of
cell metabolism). While reaction catalysts are generally proteins or protein com-
plexes (see below), certain RNA molecules called ribozymes can also serve as cat-
alysts [Lilley, 2003]. For example, ribosomes are ribozymes [Cech, 2000], catalyz-
ing peptide bond formation (for linking amino acids together) through a peptidyl
transferase activity.

Enzymesenzyme are proteins or protein complexes encoded by one or several genes. A
substrate binds a special region of an enzyme called active site, where it undergoes
the biochemical reaction that the enzyme catalyzes. The relation between enzymes
and reactions is not one-to-one, as a single reaction may be catalyzed by several
enzymes, and a single enzyme may catalyze one or several reactions. Enzymes
without strict specificity are called promiscuous enzymes and they can, for example,
accept several similar substrates [Nobeli et al., 2009].

Cofactorscofactor are small molecules that bind to certain enzymes, with the effect of
increasing or decreasing their activity. When binding, a cofactor generally induces
a conformational change in the binded enzyme [Kern and Zuiderweg, 2003]. Cofac-
tors with positive effects on enzyme activity are called allosteric activators, whereas
those with negative effects are allosteric inhibitors. The term “allostery” signifies that
the binding site for a cofactor is physically distinct from the enzyme’s active site.

2.2 Enzymatic activities

With the first identification of an enzyme in 1833 and the introduction of the
term “enzyme” in 1876, the early days of biochemistry were plagued by a system-
atic confusion in the naming of enzymes. It was not until the 1950s that enzymolo-
gists started addressing this problem [Tipton and Boyce, 2000].

Today, the only official enzyme nomenclature is the one established by the
Nomenclature Committee of the International Union of Biochemistry and Molecu-
lar Biology (IUBMB). In this nomenclature system, Enzyme Commission numbers
(EC numbers)EC number are assigned to enzymes, based on the chemical reactions that the
enzymes catalyze [Webb, 1992]. It is important to note that an EC number is not
equivalent to an enzyme, nor to a reaction. EC numbers simply describe enzyme-
catalyzed reactions, which means that two distinct reactions can have the same EC
number if they involve chemically similar transformations.

An EC number is formed by four numbers separated by periods. The first three
numbers designate the enzyme class, subclass, and sub-subclass, respectively. The
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fourth is a serial number uniquely identifying the activity among other activities of
the same class, subclass, and sub-subclass. The serial number conveys details on
substrate specificity and cofactors. For example, EC 2.7.2.4 represents an aspartate
kinase (Figure I.2).

2.7.2.4

Class (transferases)

Type of substrate 
(transferring 
phosphorous-
containing groups)

Nature of the reaction 
(phosphotransferases 
with a carboxy group 
as acceptor)

Serial number 
identifying the 
activity (aspartate 
kinase)

Figure I.2 Anatomy of an EC number

EC numbers are currently organized in six major classes (Figure I.3): EC 1 (ox-
idoreductases), EC 2 (transferases), EC 3 (hydrolases), EC 4 (lyases), EC 5 (iso-
merases), and EC 6 (ligases).

Figure I.3 Illustration of the six major enzymatic classes. Reproduced from
Keller et al. [2015] (licensed under CC BY 4.0).

Despite their widespread use, EC numbers have important drawbacks when

https://creativecommons.org/licenses/by/4.0
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used for functional annotation (see section 3.3) and inference of metabolic path-
ways (see section 2.3). Some of these drawbacks are discussed below. In addition,
the reader may consult McDonald and Tipton [2014] for a survey of advances and
challenges in enzyme classification.

Since the EC number classification has been in use since the 1950s when sub-
mission criteria were not as strict as nowadays1, several older entries describe en-
zymatic activities with no associated experimental evidence for the reactions be-
ing catalyzed, while for other entries no candidate sequence has yet been deter-
mined. In 2004, Karp [2004] called for a collective effort combining bioinformatics
and experimental approaches in order to assign at least one amino acid sequence
to every biochemically characterized enzymatic activity. At the time of the study,
it was found that 38% of EC numbers were lacking sequence data. The follow-
ing year, Lespinet and Labedan [2005] coined the expression “orphan enzymes” to
describe enzymatic activities without associated amino acid sequences. A decade
after Karp’s call to initiative, Sorokina et al. [2014] reported that the percentage of
orphan enzymes had decreased from 38% to 22%.

EC numbers are not appropriate for the inference of metabolic pathways from
complete genomes because of inherent differences between various types of metab-
olism. For example, in the KEGG knowledge base (see Chapter III), the metabolic
network is a reference map representing the set of all known metabolic variations
for all sequenced organisms. This is precisely the reason for which KEGG is used as
a source of metabolic information throughout this thesis. Unlike MetaCyc, KEGG
has a top-down approach to representing metabolism, with less pathway maps en-
compassing more reactions than pathways in MetaCyc, on average [Altman et al.,
2013]. In KEGG, the general metabolism of a given species is a subset of the refer-
ence metabolic map. Using solely EC numbers to infer metabolic pathways for a
newly sequenced organism is error-prone, as half of the reactions in KEGG path-
way maps did not have an associated EC number in 2013 [Kanehisa, 2013] and not
all EC numbers have associated sequence data (see above).

Promiscuous enzymes can catalyze more than a single reaction, in which case
they might be assigned different EC numbers. The use of a rigid hierarchy is im-
practical in this case, as it does not allow easy identification of an enzyme based on
the EC number that is assigned to it. For example, Bastard et al. [2014] described
a strategy for exploring the functional diversity of a previously uncharacterized
enzyme family. They found that 20% of the enzymes in this family displayed im-

1Enzyme nomenclature (2018): recommendations of the Nomenclature Committee of the Inter-
national Union of Biochemistry and Molecular Biology on the nomenclature and classification of
enzymes by the reactions they catalyze: http://www.sbcs.qmul.ac.uk/iubmb/enzyme

http://www.sbcs.qmul.ac.uk/iubmb/enzyme
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portant substrate promiscuity, acting on at least five different substrates.

Finally, non-enzymatic reactions, for which the EC hierarchy is not applicable,
are known to play important roles in metabolic networks [Keller et al., 2015].

2.3 Metabolic pathway

While a metabolic network can be seen as the complete set of metabolic transfor-
mations, a metabolic pathway is a subjective interpretation of the manner in which
a metabolic network is partitioned. Although there is no consensus on a formal
definition for metabolic pathways [Faust et al., 2011; Lacroix et al., 2008], several
definitions that have been proposed over time are summarized below (from Faust
et al. [2011]).

Source–target definition A metabolic pathway is a “sequence of enzyme-cata-
lyzed reactions by which a living organism transforms an initial source compound
into a final target compound” [Nelson and Cox, 2005]. This definition does not take
into account branched pathways, nor spontaneous reactions.

Topological definition “A metabolic network is a directed reaction graph with sub-
strates as vertices and directed, labeled edges denoting reactions between sub-
strates catalyzed by enzymes (labels). A metabolic pathway is a special case of a
metabolic network with distinct start and end points, initial and terminal vertices,
respectively, and a unique path between them” [Forst and Schulten, 1999]. In other
words, a metabolic pathway is seen as a subnetwork of a metabolic network. This
definition accounts for branched pathways and spontaneous reactions, but it does
not distinguish among biochemically valid and invalid pathways.

Atom flow definition A metabolic pathway “from metabolite X to Y is defined as
a sequence of biochemical reactions through which at least one carbon atom in X
reaches Y. Only carbon atoms are considered [...]. A metabolite Y is called reachable
from X if there is a pathway from X to Y” [Arita, 2004]. This definition does not
take into account transformations on molecules without carbon atoms.

Functional definition A metabolic pathway is “a set of interconnected reactions
that can be activated coordinately to ensure a particular cellular function” [Faust
et al., 2011]. As noted by its authors, this definition cannot be effectively exploited
unless an exact definition of cellular function has been provided.
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In the context of this thesis, the term metabolic pathway is used interchangeably
with the concept of metabolic pathway mapmetabolic

pathway map

from KEGG (see Chapter III). Since KEGG
provides a global, top-down view of metabolism, a metabolic pathway map may
represent a collection of metabolic pathways (according to the above definitions),
grouped around a central metabolic process.

2.4 Representation of metabolic networks

Metabolism can be modeled through either graph representations or constraint-
based approaches [Lacroix et al., 2008]. The latter approach is not used throughout
this thesis. Briefly, constraint-based modeling consists in representing the meta-
bolic network as a stoichiometric matrix. The distribution of mass fluxes is ana-
lyzed under steady state and thermodynamic constraints.

When modeling metabolism by means of graphs, it is natural to consider the
directed case (see definition II.1), as reactions can be reversible (see section 2.1).
However, applications exist where undirected graphs have been employed. The
most commonly used graph models are listed below.

Compound network The compound networkcompound

network

is a directed graph in which vertices
are compounds. An arc from a compound A to a compound B represents the fact
that A and B are the substrate and product, respectively, of a metabolic reaction.

Reaction network The reaction networkreaction

network

is a directed graph in which vertices are
reactions. An arc from a reaction ri to a reaction rj signifies that ri produces a
compound that is also a substrate for the reaction rj. This is the modeling that
we choose for the method proposed in Chapter IV.

Bipartite graph If both compounds and reactions need to be accounted for, a bi-
partite graph may be used2. A bipartite graph has two types of vertices and each
of its arcs has endpoints in both types of vertices (see also definition II.12). The
two types of vertices in the bipartite representation are reactions and compounds,
respectively.

A problem that arises in practice is obtaining overly-connected graphs because
of hub compounds (i.e., highly connected compounds such as water, ATP, or cofac-
tors). Three possible strategies for dealing with this problem are discussed below.

2Equivalently, a hypergraph may be used instead of a bipartite graph.
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Removing ubiquitous compounds Frequent metabolites can be removed from
the graph representation by deleting the corresponding compound vertices. This
approach has the disadvantage of removing legit metabolites in certain situations.
For example, ATP is a frequent compound that would get removed using this strat-
egy. However, ATP is also a main compound in the reaction leading to its synthesis
from ADP.

Distinguishing main from side compounds This strategy keeps all the vertices
but removes arcs from the graph model, for example between a compound C and
a reaction r if C is a side compound or a cofactor involved in r in the case of a bi-
partite graph representation. The KEGG knowledge base (see Chapter III) used to
contain this information in the RPAIR database [Kotera et al., 2004; Faust et al., 2009;
Muto et al., 2013], allowing to distinguish main and side compounds, or cofactors,
for example. The distinction was made based on the atom flow within and between
molecules, but the assignment was made manually. Due to the effort required to
manually create and maintain these assignments, the RPAIR database was discon-
tinued in 20163.

Relabeling vertices If compounds and reactions have unique labels, reactions
and the compounds participating in reactions can be clearly distinguished from
repeated occurrences of the same reactions and/or compounds. Consequently, this
strategy avoids the topological hub problem and is the strategy used in this thesis
(see sections III.2.3 and IV.2 for more details).

2.5 Metabolic evolution

This section summarizes the most important views on the origins of metabolic
pathways and briefly describes the forces at play in metabolic evolution.

2.5.1 Main hypotheses

Several hypotheses have been proposed to explain the origin and evolution of
metabolic pathways, three of which are presented here (see also Fani and Fondi
[2009]). Rather than viewing these hypotheses in opposition, they can be seen as
models of putative metabolic evolution. Any given hypothesis cannot realistically
explain every particular detail of current-day metabolic pathways. Instead, the

3The announcement on KEGG RPAIR being discontinued dates from May 18, 2016 and can be
found at https://www.kegg.jp/kegg/docs/announce.html?past. KEGG RPAIR was effectively dis-
continued on October 1, 2016.

https://www.kegg.jp/kegg/docs/announce.html?past
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following hypotheses propose complementary models that may be used jointly to
gain insight into metabolic evolution. It has already been suggested that a network
perspective may serve to reconcile the different hypotheses on the origin and evo-
lution of metabolism [Díaz-Mejía et al., 2007].

Retrograde hypothesis The retrograde hypothesisretrograde

hypothesis

[Horowitz, 1945], also known as
the stepwise hypothesis, proposes that sequential enzymes may have been acquired
in reverse order with respect to their order in extant (current-day) pathways. The
underlying assumption is that preexisting chemical compounds were already avail-
able in the “primordial soup”, and that they could be synthesized via chemical
reactions when depleted.

Time

B A

B A

B A

C

CD

Figure I.4 Schematic representation of the retrograde hypothesis. Enzymes are
colored circles. A, B, C, and D are chemical compounds.

Figure I.4 illustrates the retrograde hypothesis. If compound A was essential
for survival, its depletion would put the organism under selective pressure. Or-
ganisms capable of producing the red enzyme to obtain A from a preexisting pre-
cursor B would survive. Then, as B became depleted, in some organisms the gene
encoding the red enzyme might get duplicated. In turn, some of the copies might
be mutated versions that would encode the yellow enzymes instead of the red one,
becoming thus capable of synthesizing compound B from its precursor C. Finally,
the same process would take place when C became depleted, with some organisms
being able to obtain it from compound D using the green enzyme.

In support of the retrograde hypothesis, Alves et al. [2002] have found that ho-
mologous enzymes (i.e., with a common origin; see section 3.2) are less than three
steps away from each other with a significantly higher frequency than non homol-
ogous enzymes.
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Patchwork hypothesis The patchwork hypothesis patchwork

hypothesis

[Jensen, 1976] proposes that met-
abolic pathways may have evolved by recruiting enzymes with low specificity,
i.e. multifunctional enzymes that can react with a broad range of substrates. Fol-
lowing gene duplication events, recruited enzymes would increase their substrate
specificity, becoming more effective at catalyzing a narrower range of substrates.
The ancestral enzymes could thus be recruited for other pathways.
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Figure I.5 Schematic representation of the patchwork hypothesis. Inspired by
Fani and Fondi [2009]. In both panels, the two horizontal lines signify gene dupli-
cation events followed by evolutionary divergence. (a) Progressive specialization
of a multifunctional enzyme E0. (b) Hypothetical structure of the metabolic path-
ways involving the enzymes from panel (a).

Figure I.5 illustrates the patchwork hypothesis. Panel (a) shows that, follow-
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ing a gene duplication event, the multifunctional enzyme E0 narrows down its
substrate specificity from three to two substrates (E′1). A specialized enzyme is
also formed (E1). Following a second gene duplication event, E′1 gives rise to two
specialized enzymes, E2 and E3. In parallel, panel (b) shows that how the three
metabolic pathways involving these enzymes might have formed. Whenever more
specialized enzymes replace multifunctional enzymes (for instance, when E0 is re-
placed by E1 and E′1), the more primitive multifunctional enzyme can be recruited
in other pathways.

In support of the patchwork hypothesis, Teichmann et al. [2001] have found that
homologous enzymes in Escherichia coli belong to distinct pathways twice as often
than they appear in the same pathway.

Semienzymatic origin of metabolic pathways In order to explain the earlysemienzymatic

origin

origins
of metabolic pathways, Lazcano and Miller [1999] have proposed that non-specific
enzymes might have operated slight changes in the chemical environment of the
“primordial soup”, thus enabling certain reactions to occur spontaneously.

2.5.2 Mechanisms

Gene duplication Gene duplication is a powerful mechanism for evolution in
general. Duplicated genes may conserve their function if the functional redun-
dancy is beneficial. They can also specialize further (a process known as subfunc-
tionalization), acquire novel functions (neofunctionalization), or become inactivated
(pseudogenization) [Zhang, 2003]. Both the retrograde and the patchwork hypothe-
ses assume gene duplication events (see section 2.5.1 above).

It was proposed that, in plants, the presence of duplicated genes can be selected
or counter-selected, according to the required level of genetic variation [Klieben-
stein, 2008]. According to this model, gene duplication (hence variation) is ben-
eficial in secondary metabolism, but detrimental in primary metabolism. Other
studies have focused on the role that gene duplication plays in yeast [Kuepfer et al.,
2005] and bacterial [Marri et al., 2006] metabolism. In addition, an in silico network
perspective approach was used to analyze the impact of gene duplication on the
evolution of metabolism in E. coli [Díaz-Mejía et al., 2007].

Pathway duplication Conceptually, pathway duplication complements the patch-
work hypothesis (see section 2.5.1 above), which suggests that new pathways may
have emerged through the reuse of existing pathways and the recruitment of new
enzymes. For example, Gerlee et al. [2009] studied the phenomenon of pathway
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duplication in computer-simulated organisms as well as in the yeast metabolic net-
work and suggested that pathway duplication is an important mechanism in the
emergence of novel metabolic function.

Horizontal gene transfer Horizontal gene transfer is the process by which genetic
material gets transferred between different species (as opposed to “vertical” trans-
mission from parent to offspring, which takes place within the same species). Hor-
izontal gene transfer occurs frequently in bacteria, being the main mechanism for
acquiring antibiotic resistance. It has been shown that horizontal gene transfer is
equally involved in the evolution of prokaryotic metabolic pathways [Pál et al.,
2005; Iwasaki and Takagi, 2009].

Enzyme promiscuity The concept of enzyme promiscuity, referring to the ability
of an enzyme to catalyze a side reaction in addition to its main reaction, is closely
linked to the patchwork hypothesis on the origins and evolution of metabolic path-
ways (see section 2.5.1 above) [Nobeli et al., 2009; Khersonsky and Tawfik, 2010].
While usually taking place in an enzyme’s active site, promiscuous enzymatic ac-
tivity where the active site is not involved has also been reported [Taglieber et al.,
2007].

Depending on how promiscuous enzymatic activities are classified, several lev-
els or types of promiscuity can be defined. Without going into details, a clear dis-
tinction can be made between catalytic promiscuity (when referring to an enzyme
that performs different chemical transformations) and substrate promiscuity (when
referring to an enzyme that uses similar substrates to perform a given reaction).
Braakman and Smith [2012] observed that substrate promiscuity is the main type
of promiscuity leading to the diversification of protein families.

A method for the quantification of enzyme promiscuity [Carbonell and Faulon,
2010] based on molecular signatures [Faulon et al., 2003] (see also Chapter VIII) has
led to the finding that promiscuous enzymes are mainly involved in amino acid
and lipid metabolism [Carbonell et al., 2011a]. The authors advanced the explana-
tion that reactions from amino acid and lipid metabolism, being probably the earli-
est form of biochemical reactions, were and still are performed by multifunctional
enzymes.

Cofactors It has been proposed that cofactors play an important role in shaping
metabolic evolution [Braakman and Smith, 2012]. As topological hubs in meta-
bolic pathways, cofactors are found in key positions to exert control over metabo-
lism. The authors equally note that cofactors, occupying an intermediary position
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between small molecules and more complex metabolites, may have provided the
support for transitioning from mineral-based to organic chemistry.

Ribozymes In support of the RNA world hypothesis, it has been proposed that
ribozymes may have played a critical part in the origins of life through their dou-
ble role as support for genetic information and in their crude ability to serve as
chemical catalysts [Lilley, 2003; Cech, 2012].

Chemical selection Meléndez-Hevia et al. [2008] propose that chemical selection
preceded natural selection in protocellular entities. In effect, as natural selection
requires genetic information, metabolism, and membranes in order to operate, the
authors hypothesized that, in the absence of these prerequisites, the emergence
of life was governed by a chemical pre-enzymatic selection process that relied on
stoichiometry and thermodynamic strategies.

3 Relationship between metabolism and the genome

This section aims to clarify the link between metabolism (see section 2) and the
genome. First, the molecular mechanisms leading to proteins synthesis are pre-
sented. Next, the notion of homology is introduced. Homology, a central concept
in phylogenetics and evolutionary biology, is an important indicator to the func-
tion of biological sequences. Finally, the section concludes with an overview of the
approaches used to predict protein function, collectively referred to as functional
annotation.

3.1 From genes to proteins

The flow of genetic information is explained by the so-called central dogma of
molecular biology, formulated in 1958 by Francis Crick and revised in 1970 [Crick,
1970]. An updated view of the central dogma is given in Figure I.6. The rest of this
section briefly describes the entities involved in the central dogma, namely DNA,
RNA, and proteins, as well as the molecular processes connecting DNA to RNA
(transcription) and RNA to proteins (translation). Transcription and translation
enable gene expressiongene expression , the mechanism through which genetic information is used
to obtain a functional gene product. DNA replication, as well as the two infrequent
types of information flow (reverse transcription and RNA replication) are beyond
the scope of this introduction. An in-depth explanation on these topics is provided
in Alberts et al. [2008]. Note that this section only presents a simplified version of
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transcription and translation in prokaryotes. The same processes in eukaryotes are
much more complex [Alberts et al., 2008].

DNA RNA Protein
Reverse transcription

Transcription
Translation

DNA replication RNA replication

Figure I.6 The central dogma of molecular biology. Arrows with, respectively
without contours represent general (frequent), respectively special (infrequent)
types of information flow.

The support for genetic information is typically a macromolecule called deoxyri-
bonucleic acid (DNA). The other nucleic acid is ribonucleic acid (RNA), but it only
serves as support for genetic information in RNA-based viruses. A consensus has
still not been reached regarding the inclusion of viruses in the tree of life [Koonin
and Starokadomskyy, 2016; Moreira and López-García, 2009].

DNA DNA (deoxyribonucleic acid) is a double-stranded helix made up of four
types of building blocks called nucleotides. Each nucleotide is composed of a five-
carbon sugar molecule called deoxyribose, a phosphate group, and a nitrogenous
base. The four types of nitrogenous bases are adenine (A), cytosine (C), guanine
(G), and thymine (T). The nitrogenous bases on opposite DNA strands form base
pairs base pairby establishing hydrogen bonds between A and T, and between C and G (see
Figure I.7).

In its double-stranded form, DNA is the main constituent of chromosomes.
Most prokaryotes (bacteria and archaea) have a single circular chromosome con-
taining most of the organism’s genetic information. Certain organisms (with bac-
teria being the most frequent) may also exhibit plasmids, meaning small DNA mol-
ecules that are found outside of the chromosome and that can replicate indepen-
dently. The term genome designates the physical support for genetic information
in a given organism. Prokaryotic genomes, for example, typically consist of a chro-
mosome and sometimes one or several plasmids. A gene is a portion of a DNA
molecule that can be transcribed into RNA (see below).

RNA RNA (ribonucleic acid) is similar to DNA in its composition. It is made
up of ribonucleotides in which the five-carbon sugar molecule is ribose (instead of
deoxyribose). The thymine nitrogenous base in DNA is replaced with uracil (U)
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Figure I.7 DNA structure. Bottom panel: a nucleotide, with its sugar, phos-
phate, and nitrogenous base. Upper panel (left): structure of the DNA double
helix, with its sugar and phosphate backbone and hydrogen bonds between base
pairs. Upper panel (right): double hydrogen bonds form between thymine and
adenine nitrogenous bases on opposite DNA strands, and triple hydrogen bonds
form between guanine and cytosine. Source: OpenStax [CC BY 4.0], via Wikime-
dia Commons.

in RNA. There are several types of RNA, the three most common being messenger
RNA (mRNA), transfer RNA (tRNA) and ribosomal RNA (rRNA).

DNA molecules are very large in comparison to RNA. The human genome,
for instance, has over 3 billion base pairs organized in 23 pairs of chromosomes.
Because of its size, DNA needs to be packed into a highly compact form within
a cell. RNA, however, is a short molecule with respect to DNA. Often existing as
a single strand, RNA is thus free to fold onto itself and adopt three-dimensional

https://creativecommons.org/licenses/by/4.0
https://commons.wikimedia.org/w/index.php?curid=30131206
https://commons.wikimedia.org/w/index.php?curid=30131206
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conformations that serve various functional roles.

Proteins Proteins are macromolecules formed by one or several amino acid chains.
They are synthesized from mRNA during translation (see below). A special class of
proteins are enzymes, which catalyze biochemical reactions as explained in section
2.1.

Figure I.8 The four levels of protein structure. Source: Thomas Shafee [CC BY
4.0], via Wikimedia Commons.

Similarly to RNAs, proteins adopt three-dimensional conformations that are
linked to their function. There are four levels of protein structure (Figure I.8): the
primary structure is the amino acid sequence; the secondary structure refers to local

https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://commons.wikimedia.org/wiki/File:Protein_structure_(full).png
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segments of the protein, the most common being α-helices and β-sheets; the ter-
tiary structure is the three-dimensional form of the protein; finally, the quaternary
structure refers to proteins that are made up of several monomers (subunits).

Transcription Transcription is the process through which a portion of DNA gets
copied into a RNA molecule by an enzyme complex named RNA polymerase. This
task is rendered possible by the identification of the start and end points of a gene,
named promoter and terminator, respectively. In prokaryotes, several genes can
share the same promoter and terminator. In such cases, they are transcribed jointly
into a single RNA molecule. It is therefore more appropriate to use the term tran-
scription unit to refer to what gets transcribed.

If genes in a transcription unit encode proteins, they are transcribed into mRNA.
Such genes are referred to as protein-coding genes. Alternatively, genes may not
code for proteins, but for non-coding RNAs, including tRNA and rRNA (see trans-
lation below).

RNA polymerase

Messenger RNA

Coding strand

Template strand

5’

3’3’

5’

5’

Figure I.9 Simplified view of bacterial transcription. The direction of the RNA
polymerase is indicated by the purple arrow. The template strand (in purple) must
be traversed in the 3’→ 5’ direction. The messenger RNA, complementary to the
template strand and an exact copy of the coding strand (with thymine replaced
by uracil), is thus elongated in the 5’ → 3’ direction. Adapted from: Genomics
Education Programme [CC BY 2.0], via Wikimedia Commons.

The two DNA strands are complementary and antiparallel, which is represented
through the notations 5’→ 3’ and 3’→ 5’ (with respect to the DNA sugar-phosphate
backbone), as shown in Figure I.7 (upper left). In order for a transcription unit to
get transcribed, the RNA polymerase traverses the strand containing the transcrip-
tion unit (named coding strand) in the 5’→ 3’ direction. It then synthesizes the RNA

https://creativecommons.org/licenses/by/2.0
https://commons.wikimedia.org/wiki/File:Process_of_transcription_(13080846733).jpg
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transcript using the other strand, named template strand, as a template. The mRNA
transcript is complementary to the template strand and an exact copy of the cod-
ing strand in which thymine is replaced with uracil. Figure I.9 shows a simplified
model of transcription in bacteria.

Translation Translation is the process through which the genetic information in
mRNA molecules is decoded in order to synthesize proteins. Translation takes
place in small complexes named ribosomes, made up of proteins and rRNA. The
ribosome moves along the mRNA molecule and, for every group of three ribonu-
cleotides, adds an amino acid according to the genetic code (see Shu [2017]) to the
growing polypeptide chain. Amino acids are provided to ribosomes by bounded
tRNA molecules.

3.2 Homology of biological sequences

Homology is an important, albeit often misused, concept with important evo-
lutionary and functional connotations [Koonin, 2005].

Two genes are said to be homologous homologyif they are derived from a common an-
cestral gene sequence. If two genes that evolved separately have a similar function,
they are called analogous analogy. An example of analogy is the case of non-homologous
isofunctional enzymes [Omelchenko et al., 2010], which catalyze the same reac-
tion without sharing a common evolutionary history. In general, homologous se-
quences present high sequence similarity. Figure I.10 shows an evolutionary sce-
nario of five homologous genes.

Two genes are said to be orthologous orthologyif they are derived from a common an-
cestral sequence through a speciation event. In Figure I.10, gene colors represent
species. Genes in any gene pair involving the species in green are orthologous,
due to the speciation event S1: (x1, z1), (y1, z1), (x2, z1), (y2, z1). With respect to the
speciation event S2, the pairs (x1, y1) and (x2, y2) are orthologs.

Two genes are said to be paralogous paralogyif they are derived from a common an-
cestral sequence following a gene duplication event. In Figure I.10, all pairs genes
issued from the duplication event indicated by a red star are paralogous: (x1, x2),
(y1, y2), (x1, y2), and (x2, y1). Two special cases of orthology can be defined with
respect to a speciation event of reference:

• Paralogous genes are called in-paralogs in-paralogyif they were duplicated after the spe-
ciation event of reference. For example, genes (x1, y2) in Figure I.10 are in-
paralogs with respect to the speciation event S1.
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S1

S2 S2

y2 z1x2y1x1

Figure I.10 Evolutionary scenario of a gene family. In this scenario, two specia-
tion events (S1 and S2) and a duplication event (red star) took place, leading to the
gene family {x1, y1, x2, y2, z1}. Each gene color represents a species. All genes are
homologous to each other. Pairs (x1, y1), (x2, y2), (xi, z1) and (yi, z1) are ortholo-
gous (with i ∈ {1, 2}). Pairs (x1, x2), (y1, y2), (x1, y2), and (x2, y1) are paralogous.
Inspired by Altenhoff and Dessimoz [2012].

• Paralogous genes are called out-paralogsout-paralogy if they were duplicated before the
speciation event of reference. For example, genes (x1, y2) in Figure I.10 are
out-paralogs with respect to the speciation event S2.

3.3 Functional annotation

As of the writing of this thesis, nearly 200,000 genomes are available at NCBI
in various degrees of assembly completion, of which almost 30,000 are completely
assembled4. In spite of these impressive figures, sequencing and assembling ge-
nomes are only the first steps to deciphering them. The next step is to understand
what makes living things tick, and in order to do so knowledge of gene function is
required. The process of associating functions to biological sequences is known as
functional annotationfunctional

annotation

. It relies on several strategies that this section attempts to sum-
marize. It should be noted that the various methods used to predict protein func-
tion can and should be used in combination, as this leads to an overall increased
prediction accuracy. Furthermore, integrating several approaches and types of data
may enable the discovery of novel protein functions [Lobb and Doxey, 2016].

A large-scale community initiative named CAFA (Critical Assessment of Func-
tional Annotation) evaluated existing functional annotation methods in 2010–2011

4The full list of NCBI genomes is available at the following address: https://www.ncbi.nlm.nih.
gov/genome/browse. All degrees of assembly completion are shown by default. Filters in the web
interface allow to display only completely assembled genomes.

https://www.ncbi.nlm.nih.gov/genome/browse
https://www.ncbi.nlm.nih.gov/genome/browse
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[Radivojac et al., 2013] and 2013–2014 [Jiang et al., 2016], showing significant im-
provements from the first to the second assessment. An alternative and more epis-
temological view is given by Galperin and Koonin [2010] on the current under-
standing of genomes based on the current state of functional characterization.

3.3.1 Sequence similarity

As explained in section 3.2, homology shows whether two biological sequences
share a common evolutionary history. It is widely assumed that sequence similar-
ity correlates with functional similarity. Thus, historically, functional annotation
has been performed by sequence comparison and transfer of functional characteri-
zation if a pre-determined threshold of similarity is reached. The most commonly
used programs are FASTA [Pearson and Lipman, 1988] and BLAST (with its version
PSI-BLAST for finding distantly-related protein sequences) [Altschul et al., 1997].

However, this strategy has the drawback of overpredicting protein function
[Schnoes et al., 2009; Moreno-Hagelsieb and Hudy-Yuffa, 2014]. It is therefore nec-
essary to complement sequence similarity search with other methods.

3.3.2 Orthology

There is proof to support the idea that orthologous sequences share similar
functions [Rogozin et al., 2014]. This phenomenon should however be considered a
statistical trend rather than a rule or an implication [Gabaldón and Koonin, 2013].

For a newly sequenced genome of a species A, identifying genes of A that are or-
thologs of functionally characterized genes in another organism B allows the trans-
fer of functional annotation for these orthologous genes from B to A. For example,
suppose A and B are the species in yellow and blue, respectively, in Figure I.10.
Then the functional annotation of genes y1 and y2 in B can be transferred to the
genes x1 and x2, respectively, in species A.

Different orthology prediction methods are compared in Kristensen et al. [2011];
Altenhoff and Dessimoz [2012].

3.3.3 Genomic context

Genomic context can provide important clues to functional associations [Moreno-
Hagelsieb and Santoyo, 2015], especially in prokaryotes.

A particularly useful resource for the exploration of genomic context is the
STRING database [Szklarczyk et al., 2014] (used in Chapter VII), as it integrates
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not only protein–protein interaction data, but also genomic context and domain
information, along with relevant literature references.

Synteny Synteny represents the physical co-localization of genes on the same chro-
mosome for a given species. In genomics, conserved synteny blockssynteny blocks can lead to evo-
lutionary insights by indicating that particular genome regions in several species
originate from an ancestral genomic region. For example, conserved synteny blocks
have been used to reconstruct the architecture of the ancestral chromosome in the
yeast genus Lachancea [Vakirlis et al., 2016].

Conserved synteny blocks are also interesting for functional predictions [Over-
beek et al., 1999; Rogozin et al., 2002]. Several detection and visualization tools
for synteny detection have been proposed [Gehrmann and Reinders, 2015; Drillon
et al., 2014; Lemoine et al., 2008; Sinha and Meller, 2007]. In addition, graph-the-
oretical approaches based on the extraction of maximal common connected com-
ponents allow for gaps [Boyer et al., 2005], may process multiple input genomes
[Deniélou et al., 2009], and allow for partial correspondence between the aligned
networks [Deniélou et al., 2011].

Operons An operonoperon is a group of co-localized genes that are co-regulated and co-
transcribed (see also transcription in section 3.1). Genes in operons tend to be re-
lated to a given biological function [Overbeek et al., 1999]. It was estimated that
approximately 60% of genes in E. coli are organized in operons [Moreno-Hagelsieb,
2015]. In general, operons are well conserved among species, although some genes
may be rearranged, gained/lost, or duplicated [Ream et al., 2015].

Gene fusion events A gene fusion event is a physical coupling of genes that are
likely to be functionally coupled as well [Enright and Ouzounis, 2001; Yanai et al.,
2001]. This type of information should therefore be considered when inferring pro-
tein function. An example of functional association through gene fusion will be
presented in section VII.4.

Phylogenetic profiles Phylogenetic profiles describe the presence or absence of a
gene or protein family across a given group of organisms [Pellegrini et al., 1999]. Al-
though primarily used to reveal coevolution, phylogenetic profiles are also useful
to infer functional associations [Wu et al., 2003] as well as to to predict protein–
protein interactions [Sun et al., 2005] and candidate genes for orphan enzymes
[Chen and Vitkup, 2006] (see section 2.2). The quality of prediction, however, is
dependent on the choice of genomes [Jothi et al., 2007].
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3.3.4 Protein structure

Since the end of the last century, the scientific community expected that, as pro-
tein structures became available, they would help explain protein function, espe-
cially in the absence of functionally characterized homologues [Hegyi and Gerstein,
1999].

Methods of functional prediction from protein sequence and structure have
been reviewed over the years [Watson et al., 2005; Lee et al., 2007; Mills et al., 2015;
Lobb and Doxey, 2016]. As noted in the introduction, sequence-based and struc-
ture-based approaches are not mutually exclusive and are often used jointly.

A protein sequence (its primary structure) may contain domain protein domaininformation.
Functional and structural domains are portions of a protein’s secondary and ter-
tiary structure that are highly conserved and can therefore be found almost unal-
tered in several species. Several online resources including Pfam [Finn et al., 2015]
and InterPro [Mitchell et al., 2014] may be used to detect protein domains in an
input amino acid sequence.

Other approaches involve the analysis of local characteristics in the secondary
and tertiary structure of a protein by comparison against large collections of known
motifs. Examples include elements of secondary structure (α-helices and β-sheets),
active sites, or ligand binding sites.

In addition, docking approaches have been used successfully to predict protein
function. For example, Zhao et al. [2013] performed metabolite docking against
multiple proteins in a metabolic pathway, which allowed them to predict the func-
tion of a previously uncharacterized enzyme. The integration of genomic context
information enabled to equally determine the role of the enzyme in the pathway.
The functional prediction was subsequently validated experimentally.

3.3.5 Rule-based systems

Another avenue that can be explored in order to predict the function of biolog-
ical sequences is to use rule-based systems.

One possibility is to map elements of a functional hierarchy (such as MIPS Fun-
Cat [Ruepp et al., 2004]) or ontology (such as Gene Ontology [GO Consortium,
2001]) onto target sequences (i.e. the sequence to annotate), as in Azé et al. [2008]
and Rance et al. [2009].

In addition, there exist description schemes capable of enriching functional an-
notation in Gene Ontology. For example, BioΨ is a four-level biological process
description scheme, partly overlapping with Gene Ontology descriptions [Mazière
et al., 2004]. Although not primarily aimed at functional prediction, BioΨ was used
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to annotate the tricarboxylic acid cycle, revealing information that was not readily
available for automated analysis tasks [Mazière et al., 2007].

Another possibility is to automate the reasoning process of a human annota-
tor by integrating knowledge on the target sequence from several sources, includ-
ing BLAST results (see section 3.3.1 above), orthology information, and known do-
mains [Xavier et al., 2015].

Methods aimed at assisting biocurators by evaluating annotation consistency
have also been proposed. One such example is GROOLS [Mercier et al., 2018], an
expert system using paraconsistent logic.

4 Concluding remarks

The biological context of the thesis was detailed throughout this chapter.
Metabolism was described from a functional perspective and the main mech-

anisms of metabolic evolution were examined in a brief survey. What stands out
from this survey is that metabolism evolves with the emergence of new function.
Protein function, however, cannot be properly understood without exploring its
connection to the genome. The aim of all genome sequencing projects is to be able
to ultimately decipher the blueprint of living beings. This means going from know-
ing what makes up a genome to understanding how the different cogwheels work
together to give rise to biological function.

In the absence of experimental characterizations of proteins, the scientific com-
munity makes great efforts at predicting their function. Many of these efforts are
based on sequence data, in which the role of homology is cornerstone. Different ap-
proaches focus on exploiting the relation between protein structure and function,
while others integrate genomic context information or employ rule-based systems.
These approaches are collectively used for functional annotation.

The next chapter reviews current graph-theoretical approaches used in systems
biology, focusing in particular on graph-theoretical approaches for heterogeneous
biological networks.
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1 Introduction

Numerous real-life systems and processes can be modeled as graphs. One may
think of public transportation and social networks, for instance. In fact, graphs and
graph algorithms are ubiquitous. For example, Google search results are obtained
from a knowledge graph [Sullivan, 2012], computer-aided navigation (GPS) finds
shortest routes, and pathfinding in video games (consisting in finding an optimal
route while avoiding obstacles) relies on graph theory algorithms [Algfoor et al.,
2015].

Biological networks are equally represented as graphs. This chapter describes
topological, alignment, and mining approaches used in systems biology. Since the
graph-theoretical context of this thesis is that of heterogeneous networks, existing
methods for aligning and mining heterogeneous networks are discussed.

2 Elements of graph theory

This section presents basic graph theory notions that are used throughout this
thesis. For more details on this topic, the reader may consult Balakrishnan and
Ranganathan [2012], West [2001], and Bang-Jensen and Gutin [2008].

Definition II.1. A graphgraph is an ordered pair G = (V, E), where V is the vertex set of
G and E ⊆ V × V is the set of edgesedge of G. An undirected graph is a graph in which
edges have no orientation, whereas in a directed graph edges have orientation and
are called arcsarc for convenience.

Remark. The notation V(G) is often used to denote the vertex setvertex set of a graph G.

Remark. A directed graph is often called a digraphdigraph .

Example. In Figure II.1, G is an undirected graph (panel a) and D is a directed graph
(panel b). Both G and D have the same vertex set V(G) = V(D) = {1, 2, 3, 4, 5, 6}.

Definition II.2. Let G = (V, E) be a graph and X ⊆ V a subset of vertices of G.
The subgraph of G induced by X

induced

subgraph , denoted G[X], is the graph G′ = (X, E′) where
E′ = {(u, v) | u, v ∈ X and (u, v) ∈ E}.

Example. If the subset of vertices of G is X = {1, 2, 3, 5} for the graph G in Figure
II.1a, then G[X] is the graph G′ in Figure II.1c.

Definition II.3. An undirected graph is connectedconnected

graph

if every vertex is reachable from
any other vertex.
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Figure II.1 Examples of graphs. (a) G is an undirected graph. (b) D is a directed
graph. Strongly connected components in D are highlighted in gray (see defini-
tion II.7). (c) G′ is the subgraph of G induced by the vertex subset X = {1, 2, 3, 5}.
Connected components in G′ are highlighted in gray (see definition II.4). (d) L(D)
is the line graph of the directed graph D in (b).

Example. Graph G in Figure II.1a is connected, as each of its vertices is reachable
from any vertex in G. The graph G′ (Figure II.1c), however, is not connected, be-
cause vertex 5 is unreachable.

Definition II.4. A connected component connected

component

of an undirected graph G is a maximal con-
nected subgraph of G.

Remark. In other words, a connected component is connected internally, but has no
edges linking it to remaining vertices in G [Dasgupta et al., 2006].

Remark. If G only has one connected component, then G is connected.

Example. The unique connected component of graph G in Figure II.1a is the graph
itself, as G is connected. The graph G′ in Figure II.1c has two connected compo-
nents, with vertex sets {1, 2, 3} and {5}, respectively (highlighted in gray in the
figure).

Definition II.5. Given an undirected graph G = (V, E), a clique cliqueis a subset V ′ ⊆ V
of vertices such that (u, v) ∈ E for any u, v ∈ V ′.
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Example. The maximum clique in the graph G in Figure II.1a is {1, 2, 4}. The other
cliques correspond to the remaining edges in G: {1, 3}, {3, 6}, and {5, 6}.

Definition II.6. A directed graph is strongly connectedstrongly

connected

digraph

if any two vertices in D are
mutually reachable.

Example. The graph D in Figure II.1b is not strongly connected because it is not
possible to reach vertex 3 from vertex 2, for instance.

Definition II.7. A strongly connected componentstrongly

connected

component

of a directed graph D is a maximal
strongly connected subgraph of D.

Example. The graph D in Figure II.1b has three strongly connected components
(highlighted in gray), with vertex sets {1, 2, 4}, {3}, and {5, 6}, respectively.

Definition II.8. Let D = (V, A) be a directed graph. The line graphline graph of D is the
directed graph L(D) = (A, A′) in which:

(i) The set of vertices of L(D), A, represents the arcs of graph D, and
(ii) The set of arcs of L(D), A′, represents adjacencies between arcs of D, i.e.

(x, y) ∈ A′ if and only if x = (r, s) and y = (s, t), with r, s, t ∈ A.

Example. The graph L(D) in Figure II.1d is the line graph of the directed graph D
in Figure II.1b.

Definition II.9 (Balakrishnan and Ranganathan [2012]). A walkwalk in a directed graph
D is an ordered sequence of vertices (v1, v2, . . . , vk) such that vi ∈ V(D) for every
i ∈ {1, . . . , k} and (vi, vi+1) is an arc of D for every i ∈ {1, . . . , k− 1}.

Remark. An equivalent definition can be formulated for an undirected graph by
replacing arcs with edges.

Example. The sequence (3, 1, 4, 2, 1, 4) is a walk in the directed graph D in Figure
II.1b. Vertices 1 and 4 are repeated. The arc (1, 4) is also repeated.

Definition II.10 (Balakrishnan and Ranganathan [2012]). A pathpath is a walk without
repeated vertices.

Example. The sequence (3, 1, 4, 2) is a path in the directed graph D in Figure II.1b.
No vertex is repeated.

Definition II.11 (Balakrishnan and Ranganathan [2012]). A trailtrail is a walk without
repeated arcs (or edges, in the undirected case).
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Example. The sequence (3, 1, 4, 2, 1) is a trail in the directed graph D in Figure II.1b.
Vertex 1 is repeated. No arcs are repeated.

Definition II.12. A graph G = (V, E) is called bipartite bipartite graphif its vertex set can be di-
vided in two disjoint subsets X and Y such that every edge (or arc in the directed
case) in G has one of its endpoints in X and the other in Y.

Example. The directed graph in Figure II.2 is bipartite. It has two types of vertices
(green squares and gray circles) and none of its arcs have both endpoints in the
same type of vertex.

a

1

b

c 2 3

d

e

f

g

Figure II.2 Bipartite digraph. The two disjoint sets of vertices are {1, 2, 3} (green
squares) and {a, b, c, d, e, f , g} (gray circles).

3 Graph-theoretical approaches in systems biology

From molecular through cellular to ecosystem level, biological systems can be
modeled using graphs. At the molecular level, metabolic networks (see Chapter I),
genomic context, gene regulatory networks, protein–protein interaction networks,
and so on, are all examples of biological systems that may be modeled through
graph-based representations. Since graph-theoretical approaches are ubiquitous in
biology, this section only concentrates on the usage of such approaches in systems
biology. They have been grouped into three broad categories, namely graph topol-
ogy, graph alignment, and graph mining approaches.

Additionally, two other classes of graph theory problems with applications in
systems biology are being actively researched: graph coloring and covering prob-
lems. Graph coloring is often a subproblem of graph mining [Lacroix, 2007; Sikora,
2011] and graph decomposition [Mohamed-Babou, 2012] problems. Covering prob-
lems have a variety of applications, one example being the use of vertex covering
to find maximal cliques, where a maximal clique is a clique (see definition II.5) in a
graph G such that no other vertex of G can be added to it [Chesler and Langston,
2007]. These two classes of problems, however, will not be discussed further.
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3.1 Network topology

Network topology is an extremely vast field. An in-depth review on the struc-
ture (and dynamics, which are not discussed here) of complex networks is available
in Boccaletti et al. [2006].

3.1.1 Common measures

The most basic level of network analysis involves its topological study. The
numerous topological measures that can be computed allow to effectively capture
the organization of a biological network, providing insights into its function and
stability. Instead of summarizing frequently employed topological measures (see
Steuer and López [2008]; Koschützki [2008]; Pavlopoulos et al. [2011] for this pur-
pose), this section only lists a few very common ones with the aim of showing how
they can lead to new findings in systems biology.

Note that, although the following definitions are given for the undirected case,
equivalents for directed graphs exist.

Definition II.13. Given a connected undirected graph G = (V, E), the characteristic
path length

characteristic

path length L of G is the average shortest distance between any two vertices in G.
Formally, let dij be the shortest distance between vertices i and j in G. If i and j
belong to different connected components, then dij = ∞. Then:

L = ∑
i,j∈V

dij

n(n− 1)

Example. The graph G in Figure II.1a has a characteristic path length of 2.07.

Definition II.14. In an undirected graph, the degreedegree of a vertex u is the number of
edges incident to it and is denoted as deg(u).

Example. For graph G in Figure II.1a, deg(1) = 3, deg(2) = deg(3) = deg(4) =

deg(6) = 2, and deg(5) = 1.

Definition II.15 (Rubinov and Sporns [2010]). The clustering coefficientclustering

coe�cient

C of an undi-
rected graph G = (V, E) is a measure of the degree to which vertices in G tend to
cluster together. Formally, let aij denote whether an edge between vertices i and j
in G exists, with aij = 1 if (i, j) ∈ E and aij = 0 if (i, j) /∈ E. Then:

C =
1
|V| ∑

i∈V

∑j,k∈V aijaikajk

deg(i)(deg(i)− 1)
,

where deg(i) is the degree of vertex i (see definition II.14).
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Definition II.16 (Asensio et al. [2017]). Given an undirected graph G = (V, E), the
betweenness centrality

betweenness

centralityof a vertex k in G is the value

cb(k) = ∑
i,j∈V
i 6=j 6=k

σij(k)
σij

,

where σij is the number of shortest paths between vertices i and j, and σij(k) is the
number of shortest paths between i and j passing through k.

Example. In Figure II.3, vertex k has high betweenness centrality as all shortest
paths between vertices in the blue and red subnetworks pass through k.

Figure II.3 Betweenness centrality. The degree of a vertex does not necessarily
reflect its importance in the network. Although vertex k′ has a high degree, its
removal would not affect communication within the network. However, as ver-
tex k has high betweenness centrality, its removal would impact communication.
Adapted with permission from Steuer and López [2008] © 2008 John Wiley and
Sons.

Below are just three examples of research in systems biology relying on topo-
logical measures.

Durek and Walther [2008] compared the topologies of protein–protein interac-
tion (PPI) networks and metabolic networks. It was found that enzymes with high
flux rates tend to be highly connected and occupy central positions in PPI networks.
This was established on the basis of strong correlations between flux rate in meta-
bolic networks on the one hand and the clustering coefficient (see definition II.15)
and betweenness centrality (see definition II.16) in PPI networks the other hand.

Sorokina et al. [2015] proposed a novel representation of metabolism based on
reaction similarity. The EC number nomenclature (see section I.2.2) is a rigid clas-
sification of enzymatic activities in which similarities are crudely assigned within
a predefined hierarchy. In contrast, the authors of this paper advanced a method
of grouping together reactions that perform similar chemical transformations in
terms of atom and bond changes. In this new representation, vertices in the meta-
bolic network are no longer reactions, but groups of similar reactions. The authors
defined three topological measures for weighing nodes in the network according
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to different biological meanings. These weights were subsequently used in scoring
functions that allowed the identification of reaction modules in the new network
representation.

Asensio et al. [2017] analyzed the role of protein–protein interactions in infec-
tious diseases, more specifically within the pathogen and human–pathogen inter-
actomes. Starting from the observation that highly connected nodes in protein net-
works tend to be essential [He and Zhang, 2006], Asensio et al. [2017] tackled the
case of pathogenic bacteria that need to keep their host alive for their own survival.
While the outcome of targeting nodes with high betweenness centrality (see defini-
tion II.16) in the host network would result in lethal effects for both the host and the
pathogen, it was found that pathogens target the host network without disrupting
it. It was also shown that the outcome of infection is proportional to the pathogen’s
ability to reorganize the host interactome. These findings open the perspective
of designing drugs that target strategic interactions within the host–pathogen in-
teractome, in addition to traditional drugs that only target essential proteins for
pathogen survival.

3.1.2 Network models

No discussion of topological approaches in systems biology would be complete
without examining the topology of biological networks themselves. Several net-
work models have been proposed over the years, linking topology to function and
network evolution. For a review on the topic, see Yamada and Bork [2009]. This
section does not address network evolution.

Random model The earliest network model is the Erdős-Rényi random graph
model [Erdős and Rényi, 1959] (Figure II.4a), in which the probability that two
vertices are connected by an edge is distributed uniformly at random. Among the
several variations of this model, the most common is Gn,p describing a graph with
n vertices in which any given edge is present with probability p. These graphs do
not represent biological data well [Milenković and Pržulj, 2012].

A further development is the generalized random graph model, in which edges
are chosen at random as in the Erdős-Rényi model, but the degree distribution is
predetermined [Newman et al., 2001]. Although these graphs preserve the degree
distribution of a protein–protein interaction network, for example, the clustering
coefficient differs [Milenković and Pržulj, 2012].
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Figure II.4 Topological models. Reprinted by permission from Springer Nature:
(a)-(d) Milenković and Pržulj [2012] © 2012, (e) Barabási and Oltvai [2004] © 2004.
(a) An Erdős-Rényi random graph. (b) A small-world network. (c) A scale-free
network. (d) A geometric random graph. (e) A hierarchical network.
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Small-world model Watts and Strogatz [1998] introduced this model in order to
generate networks with a connection topology ranging from regular (i.e. where
each vertex is connected to its k nearest neighbors) to random (Figure II.4b). In this
model, edges of the regular graph are reconnected at random with probability p,
where p = 0 corresponds to regularity and p = 1 corresponds to randomness. For
intermediate values of p, the graph has a high clustering coefficient (see definition
II.15) and small characteristic path length (see definition II.13), as would be ex-
pected of a random graph. Using this model, the authors showed that the neuronal
network of Caenorhabditis elegans exhibits small-world characteristics, although this
claim has been refuted (see geometric model below).

Studying the metabolic network of Escherichia coli, Wagner and Fell [2001] con-
cluded that it exhibits characteristics of a small-world network. They further hy-
pothesized that such an architecture would favor the minimization of response time
in case of perturbations or of transition time between metabolic states. Arita [2004]
employed a more realistic graph representation of the E. coli metabolic network, in
which transfers of atoms between compounds were accounted for. Using this rep-
resentation, it was shown that the characteristic path length (see definition II.13)
was much longer than initially believed.

Scale-free model Barabási and Albert [1999] proposed the scale-free model to ex-
plain the topology of complex networks such as the world wide web or citation
patterns in scientific literature (Figure II.4c). This model is characterized by the fact
that its degree distribution P(k) (i.e. the probability that a given node has degree k)
decays as a power law, following P(k) ∼ k−γ, where γ is between 2 and 4. In scale-
free networks, a few highly connected nodes (vertices having a high degree) called
hubs maintain the network’s overall connectivity. This topology is particularly ro-
bust against random failure, as it was shown that failure of up to 45% of the nodes
still allows for an essentially connected network, if the nodes are randomly chosen
[Albert et al., 2000]. Since this resilience property is ensured by hubs, it means that
they are vulnerable to targeted attacks, however. Targeted attacks seek to eliminate
nodes with high betweenness centrality (see definition II.16).

Barabási and Albert [1999] proposed that the power law of the degree distribu-
tion is explained by two factors. The first is network growth and refers to the fact
that in this type of network new nodes are created continuously. The second factor
is called preferential attachment and describes the fact that new nodes are not con-
nected at random, being instead linked preferentially with already well connected
nodes.

The scale-free model was found to be applicable to metabolic networks by Jeong
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et al. [2000], who demonstrated that the metabolic networks of 43 organisms exhib-
ited a scale-free topology, with γ = 2.2. Later, Barabási and Oltvai [2004] proposed
that, apart from metabolic networks, most cellular networks can be described ac-
cording to the scale-free model, including protein–protein interaction (PPI), signal-
ing, and gene regulatory networks.

Several authors disagreed with the conclusion of Jeong et al. [2000] that met-
abolic networks are scale-free. For example, Tanaka [2005] argues that metabolic
networks are scale-rich rather than scale-free, as the degree distribution of metabo-
lites is observed on highly dissimilar scales between the full system level, where it
indeed follows a power law, and the module level, where it is exponential.

In addition, Pereira-Leal et al. [2004] argued that the essential proteins in the
baker’s yeast PPI network form an exponential core. The authors suggest that
the ancestral network possessed an exponential distribution and that relaxed con-
straints on preferential attachment enable the emergence of such exponential topolo-
gies. Pržulj et al. [2004] also disagreed with Barabási and Oltvai [2004] on PPI net-
works being scale-free (see geometric model below).

Geometric model In geometric graphs, vertices distributed in a two- or three-
dimensional space are linked by edges if a certain distance criterion is met (Figure
II.4d). Morita et al. [2001] modeled the neuronal network of C. elegans as a ge-
ometric graph. C. elegans is a nematode having a fixed number of cells (959 in
the adult hermaphrodite and 1031 in the male). It is therefore an extremely in-
teresting model organism in developmental biology, as well as in neurobiology
since the adult hermaphrodite has precisely 302 neurons, of which 282 make up
the somatic nervous system. The authors argued that the small-world model pro-
posed by Watts and Strogatz [1998] did not account for the complete (i.e. fully
connected) subgraphs observed on the complete neuronal “wiring diagram” of C.
elegans which had been available since 1986 [White et al., 1986].

However, geometric graphs are most commonly associated with PPI networks.
Pržulj et al. [2004] were the first to model PPI networks using geometric graphs,
showing that the interactomes of the baker’s yeast and fruit fly showed a better
fit against this model than against the scale-free model proposed by Barabási and
Albert [1999]. They also hypothesized that only the noise in PPI networks is scale-
free. An extension of this study further confirmed that geometric random graphs
are better at modeling PPI networks for the 14 eukaryotic interactomes that were
analyzed than random Erdős-Rényi or random scale-free graphs [Pržulj, 2007]. The
same group proposed a development of the geometric model that integrates the
concept of evolutionary dynamics [Pržulj et al., 2010].
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Hierarchical model Ravasz et al. [2002] refined the scale-free model proposed
by Barabási and Albert [1999] into a hierarchical model simultaneously exhibiting
scale-free topology and embedded modularity (Figure II.4e). This model is char-
acterized by the fact that the clustering coefficient (see definition II.15) of a node
of degree k decays as C(k) ∼ k−1. The authors validated their model by measur-
ing the clustering coefficient in the metabolic networks of 43 organisms. The study
suggested that metabolic networks contain several large modules which, in turn,
are made up of smaller but more integrated submodules.

3.1.3 Summary

Topological measures have the potential to yield a wealth of information on
network structure. Moreover, metabolic networks are quite accurately described
by certain network models. With respect to the aim of this thesis, however, mo-
tif extraction from heterogeneous biological networks cannot directly benefit from
approaches focusing on network topology. Indirectly, topological measures may
serve to refine motif extraction algorithms by adjusting the extraction strategy ac-
cording to the overall network connectivity. Several possibilities are outlined in the
Conclusions and perspectives chapter.

3.2 Network alignment

Network alignment consists in determining a mapping between the nodes of
two (or more) input networks such that a given cost function is maximized. Since
the underlying subgraph isomorphism problem is NP-complete, network align-
ment methods use heuristics to compare networks [Guzzi and Milenković, 2018].

Network alignment approaches can be either local or global.local network

alignment

Local network align-
ment (LNA) identifies small network regions that likely represent highly conserved
structures (Figure II.5a). In contrast, global network alignmentglobal network

alignment

(GNA) seeks map-
pings at the level of the whole input networks, which often results in subopti-
mally matched local structures (Figure II.5b). In general, existing LNA algorithms
find topologically small but functionally conserved structures, whereas GNA algo-
rithms find topologically large but poorly functionally conserved structures [Guzzi
and Milenković, 2018].

For both local and global approaches, network alignment can be performed
on two or more networks, corresponding to pairwise alignment (Figure II.6a) and
multiple alignment (Figure II.6b), respectively.

Numerous local and global, pairwise and multiple network alignment algo-
rithms have been proposed. The purpose of this section is not to enumerate or
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Figure II.5 Local versus global network alignment. (a) Local alignment.
(b) Global alignment. Reproduced from Faisal et al. [2015] (licensed under CC
BY 4.0).

Figure II.6 Pairwise versus multiple network alignment. (a) Pairwise align-
ment. (b) Multiple alignment. Reproduced from Faisal et al. [2015] (licensed under
CC BY 4.0).

compare such approaches, but to give the general idea of network alignment and
its applications, and to present the currently open questions in the field. For more
information, the interested reader may turn to Chen et al. [2009] for an integer pro-
gramming formulation of pairwise alignment; to Clark and Kalita [2014] for a com-
parison of pairwise LNA algorithms; or to Mohammadi and Grama [2012]; Faisal
et al. [2015]; Guzzi and Milenković [2018] for a general network alignment overview
and a comparison of existing algorithms.

Applications Network alignment is commonly used as a complementary method
to sequence alignment for transferring functional annotation. Recall from section
I.3.2 that paralogs (homologous sequences separated by a duplication event) can
be either in-paralogs (recent paralogs) or out-paralogs (ancient paralogs) with re-
spect to a speciation event of reference. As paralogous sequences usually diverge in
function after the duplication event, it is more likely for in-paralogs to be true func-

https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
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tional orthologs, since the duplication is more recent. When sequence similarity is
not enough to identify true functional orthologs, other types of networks may be
aligned to exclude out-paralogs [Mohammadi and Grama, 2012]. For example, an
alignment of protein–protein interaction networks taking homology information
into account may prove useful (Figure II.7).

XBQA YB
Sequence alignment 

against species B

YBPB

XB

RB ZB

WB

QA

PA

RA TB

Figure II.7 Network alignment may complement sequence alignment. The
query protein QA in species A has two homologous sequences XB and YB in
species B. If the protein–protein interaction networks of the two species are
known, a network alignment that also takes sequence homology into account
(here, PB and RB are homologues of PA and RA, respectively) reveals that XB is a
true functional ortholog for QA.

Additional applications of network alignment include the identification of con-
served functional modules across different species, revealing evolutionary relation-
ships, and disease discovery [Mohammadi and Grama, 2012; Faisal et al., 2015].

Open question Here are summarized currently open questions in the field of net-
work alignment (see Guzzi and Milenković [2018]).

Guzzi and Milenković [2018] discuss the possible reconciliation of local and
global network alignment. Since there appears to be a conflict between functional
(LNA) versus topological (GNA) fit, network aligners typically perform a single
type of alignment. Although there exists one integrative algorithm to date that can
be parametrized to perform either local or global alignment, it is not integrative in
the sense that it does not improve either LNA or GNA compared to the other LNA-
or GNA-specific aligners.

Another open question is related to the comparison of different alignments and
to the evaluation of alignment quality. Although different metrics exist, focusing
either on functional or topological quality, it would be beneficial if these (and pos-
sible new) measures could be integrated into a single unified framework.

In terms of applicability of alignment methods for biological networks to other
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types of networks, it may be easier to adapt GNA algorithms because, unlike LNA
approaches, they are directed at topological instead of functional network features.
However, a limiting factor for their applicability to other domains is scalability.
Currently existing network alignment methods would first need to be rendered
more efficient.

Summary While network alignment comes closer to motif extraction than topo-
logical approaches, it is directly applicable to heterogeneous biological networks
under very specific problem formulations (see section 4.2.1). The next section briefly
surveys network mining approaches.

3.3 Network mining

Network (or graph) mining refers to the problem of searching for a particular
pattern in a graph. Most graph mining approaches fall under two broad categories:
frequent subgraph mining (FSM) and recurrent pattern mining. Parthasarathy et al.
[2010]; Li et al. [2012] provide a general overview of graph mining in systems biol-
ogy. For a general introduction to pattern mining, see Cheng et al. [2010].

Frequent subgraph mining A subgraph is frequent in a collection of graphs or in
a single large network if it occurs with a frequency equal to or greater than a given
threshold. However, exhaustive enumeration of all possible subgraphs in order
to determine whether they are frequent is computationally intractable. Different
approaches for frequent subgraph mining exist (see Jiang et al. [2013] for existing
algorithms), the classical ones being Apriori-based and pattern growth (for more
details, see Yan and Han [2006]):

• Apriori-based approaches start with small subgraphs that are extended at
each iteration with an additional vertex or edge, using a breadth-first search1

strategy. New subgraphs are created by joining existing smaller subgraphs.
• Pattern growth approaches use a depth-first search2 strategy in which every

newly discovered subgraph g is extended recursively until every frequent
subgraph that contains g is discovered.

1Breadth-first search (BFS) is a graph traversal algorithm. Starting with a given vertex, BFS ex-
plores every direct neighbor of the starting vertex, then every directly neighboring vertex of a given
neighbor of the starting node, and so on, until no more vertices can be explored.

2Depth-first search (DFS) is a graph traversal algorithm. Starting with a given vertex, DFS explores
as far as possible in terms of depth (a neighbor of the starting node, then the first neighbor of this
node, and so on) before backtracking.



44 Chapter II. State of the art

Recurrent pattern mining This category includes graph mining algorithms for
various patterns, such as coherent dense subgraphs [Hu et al., 2005], frequent dense
vertex sets [Li et al., 2012], densest connected subgraphs [Wu et al., 2016], etc.

Examples Below are a few examples of graph mining applications in systems bi-
ology.

Cakmak and Ozsoyoglu [2007] represented metabolic pathways as pathways
of functionality templates, meaning graphs with Gene Ontology (GO) [GO Con-
sortium, 2001] annotations instead of enzymes. They then mined for frequent func-
tionality patterns (patterns made up of GO terms) in metabolic networks of different
species, which allowed to infer previously unknown pathways.

Yan et al. [2007] proposed an algorithm for mining frequent dense vertex sets in
coexpression graphs. The immediate applicability of this method is to detect po-
tential transcriptional modules, given many microarray data sets.

Cheng and Yan [2017] modeled protein–RNA complexes as residue graphs,
then mined for common subgraphs in protein–RNA interfaces in order to predict
RNA binding sites. The study also pointed out residue patterns that might con-
tribute to binding affinity.

Reinharz et al. [2018] developed a method for identifying conserved structural
modules in three-dimensional RNA structures, based on interactions rather than
sequence information. The methodology involved mining for recurrent subgraphs
with a given topology.

Summary The graph mining methods described herein are implicitly applicable
to a single network. The next section examines approaches specifically aimed at
several networks.

4 Approaches for heterogeneous biological networks

In systems biology, two networks are said to be heterogeneousheterogeneous

networks

if they contain
different types of information describing distinct aspects of related processes for
the same biological entity. For example, a set of heterogeneous networks would
include at least two items such as the genomic context of an organism and any one
of the following networks: its metabolic, coexpression, regulation, signaling, and
protein–protein interaction networks.

Integrating heterogeneous biological data may help to elucidate particular as-
pects of an organism’s lifestyle. For example, Tonon et al. [2011] proposed an in-
tegrative approach to the study of abiotic stress in brown algae of the genus Ec-
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tocarpus. This approach, consisting in the integration of metabolomic, genomic,
and transcriptomic data sets, allowed to uncover mechanisms of acclimation and
adaptation to abiotic conditions. However, this section only discusses graph-based
approaches for heterogeneous biological networks specifically aimed at pattern de-
tection.

This section presents existing approaches for aligning or mining heterogeneous
biological networks. Since both types of approaches result in identifying subgraphs
across the input networks such that certain constraints are fulfilled, the approaches
discussed herein are divided into pioneering works and general frameworks. The
first category contains methods that have been proposed in order to solve a very
specific problem, whereas methods in the second category are general-purpose and
more easily adaptable to different types of biological data.

A brief discussion for each of the two categories summarizes the reasons for
which a different strategy was adopted in this thesis. In particular, the output of
each method is compared with the type of sought motif. Our aim is to detect met-
abolic and genomic patterns, defined as trails of reactions catalyzed by products of
neighboring genes. Recall that, as opposed to paths, trails may contain repeated
vertices, but not repeated arcs (see definition II.11). Hence, identifying trails in-
stead of paths has the advantage of capturing metabolic routes that may contain
cycles. On the one hand, a trail corresponds to a group of genes that are directly
involved in a sequence of metabolic reactions. A subgraph, on the other hand, has
the drawback of mixing together several metabolic routes.

4.1 Pioneering works

4.1.1 Correlated gene clusters

Ogata et al. [2000] proposed a heuristic graph comparison algorithm for ex-
tracting functionally related enzyme clusters functionally

related enzyme

cluster

(FRECs). A FREC is defined as a set
of enzymes catalyzing successive reactions in a metabolic pathway such that the
enzymes are encoded by genes in close locations on the chromosome.

In this comparison approach, both the order of genes on the chromosome and
metabolic pathways are modeled as undirected graphs. The order of genes on the
chromosome is represented as an undirected graph G1 = (V1, E1) with genes for
vertices. G1 takes into account the circularity or linearity of the chromosome while
ignoring the direction of transcription. If the organism under study has several
chromosomes, then G1 has several connected components. A metabolic pathway is
represented as an undirected graph G2 = (V2, E2) with enzymes for vertices. Two
vertices are connected by an edge if the enzymes they represent are involved in
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reactions sharing the same chemical compound as product and substrate, respec-
tively. Since G2 is undirected, all reactions are considered to be reversible.

The mapping between the two graphs G1 and G2 is given by a many-to-many
correspondence function based on EC numbers between V1 and V2. The mapping is
many-to-many because a given enzyme may catalyze several reactions and a given
reaction may involve several enzymes (i.e. an enzyme complex that is the product
of several genes).

Two gap parameters γ1 and γ2 are defined, representing the number of genes
and enzymes that can be skipped in G1 and G2, respectively. Initially, every pair
of corresponding vertices in V1 and V2 forms a cluster. Two clusters Ci and Cj are
merged if there is a shortest path in both G1 and G2 between a vertex in Ci and
a vertex in Cj such that the length of the path is at most γ1 + 1 in G1 and γ2 + 1
in G2, respectively. Clusters are merged according to this procedure until no more
clusters can be merged. When this happens, the resulting clusters are FRECs.
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Figure II.8 Correlated gene clusters. C1 (in yellow) and C2 (in purple) are two
correlated gene clusters, linked by hyperedges h1, . . . , h4 and h5, . . . , h9, respec-
tively. Inspired by Nakaya et al. [2001].

Nakaya et al. [2001] extended this algorithm in order to handle multiple graphs
with either genes or gene products for vertices. The mapping between vertices of
two different graphs is established using hyperedges. This approach extends the
notion of FRECs by defining and identifying correlated gene clusterscorrelated gene

cluster

. A correlated
gene cluster is a set of corresponding vertices in the input graphs (i.e. vertices
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linked by hyperedges). In Figure II.8, C1 and C2 are two correlated gene clusters in
the input graphs G1, G2, and G3. This extension allows to determine simultaneous
correlations between different data sets, such as genomic, metabolic, PPI, or coex-
pression data. In addition, if at least two among the input graphs represent gene
order on the chromosome, the correspondence between their vertices is established
on the basis of bidirectional best hits (see KEGG SSDB in section III.2.2).

4.1.2 Operon prediction

Observing that enzymes encoded by genes belonging to an operon tend to cat-
alyze successive reactions, Zheng et al. [2002] developed a method for operon pre-
diction using metabolic and genomic data.

Similarly to the previous method (see 4.1.1 above), metabolic pathways and
gene order on the chromosome are both represented as undirected graphs. The
correspondence between genes and enzymes is based on EC numbers.

Chromosome

Layer 1

Layer 2

Predicted operon

Metabolic pathway

Figure II.9 Graphical representation of breadth-first search (BFS) traversal.
Here, BFS starts with the vertex in black in the metabolic pathway. In this ex-
ample, BFS is ran for a depth of 2. The first layer in the traversal “tree” on the
right contains the direct neighbors of the black vertex. The second layer contains
the direct neighbors of the vertices in the first layer. Inspired by Zheng et al. [2002].

The algorithm for operon prediction is a three-step process:

1. The matching step uses a modified version of breadth-first search (BFS) in
which every vertex in the graph representing a metabolic pathway is, in turn,
the starting vertex for traversal. For each starting vertex, a tree-like struc-
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ture resulting from BFS traversal, called the traversal treetraversal tree , is constructed3. It is
checked whether nodes in the traversal tree are found within a same region
of the chromosome. Since this method is aimed at predicting operons, not
at identifying correlated gene clusters (see 4.1.1), BFS runs up to a predeter-
mined (but configurable) depthBFS depth of 3, meaning that only reactions up to three
steps away from the root vertex are visited. For example, BFS is ran with a
depth of 2 starting from the black vertex in Figure II.9. At the end of this step,
putative operons are identified.

2. The pruning step is aimed at increasing the specificity of the algorithm and
consists in eliminating genes at the extremities of putative operons identified
during the matching step if they are separated from other genes in the group
by at least two other genes.

3. The merging step (called clustering step by the authors) takes place at the very
end, once the matching and pruning steps have been performed for every
vertex in every metabolic pathway of the species under study. The merging
step consists in merging overlapping clusters reported after the matching and
pruning steps.

4.1.3 Evolutionary modules

Spirin et al. [2006] integrated metabolic networks and genomic associations in
order to reveal evolutionary modules. Evolutionary modulesevolutionary

module

are defined as regions
of the metabolic network made up of highly connected reactions that are also highly
associated from a comparative genomics standpoint. Two genes are said to be asso-
ciated

associated

genes if, in different organisms, their neighborhoods are conserved, if they exhibit
co-occurrence, and/or if they can be found fused together.

The integrated metabolic–genomic networkintegrated

metabolic�

genomic

network

is an undirected graph with reactions
for vertices, connected by two types of edges representing metabolic and genomic
associations, respectively. A metabolic edge connects two reactions if they share
a metabolite. Ubiquitous metabolites (such as ATP, phosphate, H+, etc.) are ex-
cluded in order to avoid reaction over-connectivity. Two reactions are connected
by a genomic edge if they are catalyzed by enzymes or enzyme subunits encoded
by associated genes (see above).

Two algorithms that use the integrated metabolic–genomic network to search
for clusters (evolutionary modules) are proposed. One is a Monte Carlo algorithm
seeking to maximize the number of edges of both types (metabolic and genomic) for

3Stricly speaking, the traversal tree is not actually a tree, as a node can have multiple parents (see
for example the yellow node in Figure II.9).
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a set of reactions. The second algorithm identifies clusters where each pair of nodes
is connected by two paths, made up of metabolic and genomic edges, respectively.
This second algorithm relies on exact enumeration of connected components on
metabolic edges. Successive refinements lead to the identification of clusters linked
by both types of edges, as shown in Figure II.10.

Figure II.10 Illustration of cluster detection. Orange and blue edges corre-
spond to metabolic and genomic associations, respectively. In a first approxima-
tion, all seven vertices are in a connected component linked by orange edges. In
a second approximation, the top vertex is excluded as it is not connected by blue
edges to the remaining vertices. In a third approximation, the two clusters high-
lighted in gray are finally identified, as every pair of vertices in each cluster is
connected by paths with orange, respectively blue, edges. Inspired by Spirin et al.
[2006] (supplementary information).

4.1.4 Discussion

The approaches presented in sections 4.1.1 and 4.1.2 map genes to enzymes via
EC numbers. (The mapping method is not mentioned in 4.1.3.) This is problematic,
as not every reaction has an associated EC number, and some reactions only have
partial EC numbers (see also section I.2.2). It is preferable to map genes to enzymes
using already established associations. For KEGG, this information is available in
KGML files (see section III.2.3).

It is important to note that reaction directionality is lost in all three approaches,
because metabolic pathways are represented as undirected graphs.

The heuristic aspect of the algorithm proposed by Ogata et al. [2000] and Nakaya
et al. [2001] (see 4.1.1) resides in the fact that only shortest paths between vertices of
two clusters are computed. In the case of cycles as in Figure II.11, merging clusters
is only possible if the gap parameters are adjusted accordingly. For the example
in Figure II.11, γ1 would need to be set at least to 1. This method is therefore not
guaranteed to return (undirected) trails corresponding to cycles in the metabolic
pathway.

Although designed for operon prediction, the method proposed by Zheng et al.
[2002] (see 4.1.2) could be adapted to detect groups of neighboring genes such that
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(Pathway)
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Figure II.11 Correlated gene clusters are not maximal (see 4.1.1). The correlated
gene cluster C1 (yellow solid contours) is not maximal, as the algorithm computes
shortest paths and not cycles. The maximal correlated gene cluster is shown with
a dashed yellow contour. Clusters C1 and C2 are merged if a shortest path exists
in both graphs between the red and blue vertices. Since the shortest path in G1
between the red and blue vertices has length 2, γ1 needs to be at least 1.

their products are involved in neighboring reactions by relaxing the BFS depth pa-
rameter in the matching step and by removing the pruning step altogether. Nev-
ertheless, reactions corresponding to a group of genes identified using this method
do not necessarily form a metabolic route (a trail in the undirected case). For ex-
ample, the gene products of the predicted operon in Figure II.9 are involved in a
several metabolic routes forming a “branched” subgraph.

Searching for evolutionary modules using the method developed by Spirin et al.
[2006] produces clusters of reactions linked by both metabolic and genomic associ-
ations (see 4.1.3). However, although the genomic edges among a cluster mean that
genes involved in the reactions connected by such edges are neighbors on the chro-
mosome, the metabolic edges do not necessarily correspond to a metabolic route.
Using as example part of the metabolic pathway (with edge orientation) and the
chromosome portion in Figure II.9, Figure II.12 shows a cluster in the integrated
network where the metabolic edges do not correspond to a metabolic route.

4.2 General frameworks

4.2.1 Connectons

Boyer et al. [2005] designed a framework for extracting various motifs as com-
mon connected components from an undirected correspondence multigraph rep-
resenting the input networks and the relations between them. Examples of motifs
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ChromosomeMetabolic pathway Integrated 
metabolic–genomic 

network 

Figure II.12 Example of an integrated metabolic–genomic network. Metabolic
edges in the integrated network are shown in orange, and genomic edges in blue.
Since reaction directionality is lost, metabolic edges do not necessarily correspond
to actual metabolic routes.

include syntons (neighboring genes for two or more species), metabolons (neigh-
boring genes whose products are involved in connected metabolic reactions), and
interactons (neighboring genes encoding physically interacting proteins).

In the correspondence multigraph correspondence

multigraph

, vertices are connected by different types of
edges. Edge type is defined according to a correspondence relation. For example,
vertices might be reactions and two different types of edges between vertices may
describe which reactions are connected in a metabolic pathway and which are cat-
alyzed by products of neighboring genes. In this respect, the integrated metabolic–
genomic network in the method proposed by Spirin et al. [2006] (see 4.1.3 above)
is similar to the correspondence multigraph. By changing the correspondence rela-
tion, the multigraph can accommodate different types of data. For example, it can
be used to represent interacting proteins in relation to gene order on the chromo-
some. As the name implies, common connected components common

connected

components

are maximal subgraphs
in the multigraph such that any two vertices are connected by paths consisting ex-
clusively of edges of a given type, for all types of edges in the multigraph.

While this method could in theory handle multiple input graphs, in practice
the size of the correspondence multigraph is exponential in the number of net-
works when the correspondence between vertices is not one-to-one. The same
group therefore proposed an improved framework that handles larger numbers of
input networks by building an undirected network alignment multigraph on-the-fly
[Deniélou et al., 2009]. The concept of connecton was also introduced such that it
generalizes syntons, metabolons, and interactons. A connecton connectonis defined as a max-
imal subgraph in the multigraph such that, for each relation type, it is a connected
component for that particular relation type.
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A further development allowing the correspondence between aligned networks
to be partial was employed for the detection of synteny blocks in bacteria [Deniélou
et al., 2011].

4.2.2 SIPPER

Meanwhile, Bordron et al. [2011] presented SIPPER, a method that was illus-
trated on the integrated genomic and metabolic network of Escherichia coli. SIPPER
returns the k shortest paths between two reactions.

The integrated networkintegrated

network

is a directed weighted graph where each vertex is labeled
with a gene–reaction pair. The mapping between reactions and genes is based on
EC numbers. Arc weights in the integrated network represent the distance between
genes within the genome. Arc weights are used to compute path length, which is
defined as the ratio between the total weight of the path and the number of distinct
reactions in the path. The shortest integrated path between two reactions is called
a 1-SIP. SIPPER uses a heuristic algorithm to compute the k shortest paths between
a source and a destination reaction, thus yielding a subgraph of the integrated net-
work called a k-SIP.

4.2.3 Longest path heuristic

Fertin et al. [2012] proposed a framework for the comparison of two hetero-
geneous biological networks, modeled by a directed graph D and an undirected
graph G′, respectively. For example, D may represent a metabolic network and
G′ may represent gene order on the chromosome, or a protein–protein interaction
network.

The framework requires two simplifications, as it takes as input a directed acyc-
lic graph (DAG) D and an undirected graph G on the same vertex set. In other
words, instead of using a correspondence function between the vertex sets of two
heterogeneous networks (see methods in 4.1.1, 4.1.2, 4.1.3, and 4.2.1) or applying
joint double labels to vertices (see method in 4.2.2), this method requires both the
correspondence function and the construction of an additional undirected graph

additional

undirected

graph

G on
the same vertex set as the DAG D. An example of construction is given in Figure
II.13.

The framework uses a heuristic algorithm for determining a longest path P in
D such that P induces a connected subgraph in G. Depending on the nature of
the initial graph G′, the algorithm can be used to find paths of reactions catalyzed
by products of neighboring genes, or by physically interacting proteins. Since the
heuristic can only be applied on DAGs, a decomposition into DAGs [Blin et al.,
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a b c d
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GD

G’

Figure II.13 Construction of an additional undirected graph. The algorithm
proposed by Fertin et al. [2012] compares a directed acyclic graph D and an undi-
rected graph G′ by indirectly comparing D and an additional undirected graph G,
where both D and G have the same vertex set. A correspondence function asso-
ciates a subset of vertices of G′ to every vertex in D. This correspondence function
is used to construct G by “translating” every edge in G′. Here, D is a metabolic
pathway (with reactions for vertices) and G′ is the order of genes on the chromo-
some (with genes for vertices). For the purpose of this example, edges in G and
G′ are labeled. The third gene (black and dark blue) is involved in both the black
and dark blue reactions. When constructing G, edges b and c in G′ need to be
“translated” accordingly. For instance, the edge c in G′ links the black and dark
blue genes with the green gene. Thus, this edge results in adding an edge between
the black and green reactions in G, as well as an edge between the dark blue and
green reactions (both are labeled c in graph G).

2011] is necessary if the metabolic pathway contains cycles (which is almost always
the case). Complexity results and proofs are provided in Fertin et al. [2015] for this
problem that is NP-hard in the general case (i.e. when D is not a DAG).

4.2.4 Discussion

The framework proposed by Boyer et al. [2005]; Deniélou et al. [2009, 2011] (see
4.2.1) extracts undirected subgraphs. In the context of metabolic pathways, this
means that reaction directionality is lost.

The method proposed by Bordron et al. [2011] (see 4.2.2) extracts subgraphs
consisting in the k shortest paths between two reactions. This implies that reac-
tion pairs need to be defined beforehand. Moreover, a post-processing step is also
necessary because the shortest path between two reactions may include arcs with
weights indicating that the genes involved in the reactions are too far apart to allow
for any meaningful biological interpretation. For example, the 1-SIP in Figure 2a in
Bordron et al. [2011] involves two genes separated by 43 other genes (the reactions
are linked by an arc with weight 44).
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The heuristic algorithm presented by Fertin et al. [2012] (see 4.2.3) is applica-
ble to DAGs. This simplification was performed because the longest path prob-
lem is NP-hard in the general case [Fertin et al., 2015]. However, metabolic path-
ways cannot be realistically modeled as DAGs because they typically contain cy-
cles (a simple example being reversible reactions). Decomposing a directed graph
into DAGs is not straightforward [Blin et al., 2011] and may lead to loss of solu-
tions. Avoiding solution loss would involve a post-processing merging step, where
longest paths obtained in the decomposed graph would be concatenated with other
partially overlapping paths (where applicable).

Interestingly, the algorithm proposed by Fertin et al. [2012] searches for a longest
path, unlike other methods that focus on shortest paths. In the context of metabolic
and genomic patterns, it is meaningful to search for maximal sequences of reactions
catalyzed by products of neighboring genes. In Chapter IV, we therefore use the
longest path problem formulation as a starting point for extracting “longest” trails.

5 Concluding remarks

After briefly introducing several notions of graph theory, this chapter gave an
overview of graph-theoretical methods used in systems biology, namely topologi-
cal, alignment, and mining approaches.

A particular emphasis was placed upon heterogeneous biological networks. We
reviewed existing algorithms aimed at extracting patterns from such networks. It
was found that none of these methods could be used nor adapted to extract patterns
representing trails of reactions from a metabolic pathway such that the enzymes
catalyzing the reactions are encoded by neighboring genes. These patterns would
enable the exact identification of metabolic and genomic patterns.

For the purpose of extracting such patterns, an algorithm relying on trail finding
is investigated in Chapter IV. Trail extraction conveys more biological meaning
than subgraph extraction and richer information (in terms of reactions and cycles)
than path extraction. Thus, in metabolic pathways modeled as directed graphs,
trails have the ability to capture cycles, take reaction directionality into account,
and guarantee that reactions in the trails correspond to actual metabolic routes.

Before proceeding to trail finding, however, the next chapter makes a neces-
sary incursion through the KEGG knowledge base, as it is the primary source for
the metabolic and genomic information used in the applications presented in this
thesis.
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1 Introduction

Recall from Chapter I that we have chosen to use the KEGG (Kyoto Encyclo-
pedia of Genes and Genomes)1 knowledge base because it provides a global, top-
down view of metabolism, as opposed to MetaCyc which goes into greater levels
of detail on individual metabolic pathways.

Since its inception, the primary purpose of KEGG has been linking sequence
data to biological function, at molecular as well as higher levels. Continually ex-
panding since 1995, KEGG currently includes genomic, chemical, systems, and
health information, making it a de facto reference for applications ranging from ge-
nome analysis to metabolic engineering.

Since the applications presented in this thesis rely on KEGG as the main source
for metabolic and genomic information, the present chapter begins with an over-
view of the knowledge base. The overview gives a brief historical background on
the beginnings of KEGG, then details the structure and role of the different com-
ponents of the knowledge base. Finally, we discuss our contribution to detecting
potential inconsistencies in KEGG.

2 Overview of the KEGG knowledge base

2.1 Historical context

The first organisms to have had their genomes sequenced were two viruses: the
bacteriophage MS2, a single-stranded RNA virus sequenced in 1976, and the bac-
teriophage ΦX174, a single-stranded DNA virus sequenced the following year. In
1995, Haemophilus influenza, a pathogenic bacterium, was the first free-living organ-
ism to have had its genome completely sequenced.

As more efficient sequencing methods were being developed, Minoru Kane-
hisa, Professor at the Institute for Chemical Research, Kyoto University, anticipated
the need to interpret and exploit genome sequence data. Having been part of the
team that created GenBank in the 1980s, in 1995 Kanehisa began developing KEGG
PATHWAY, a collection of manually drawn pathway maps. The first description of
KEGG was published one year later [Kanehisa, 1996], when KEGG included infor-
mation on pathways, genes, and compounds, interconnected via EC numbers. The
paper stated that a major objective of KEGG was linking structural to functional
data. As a visionary scientist, Kanehisa also predicted the emergence of metabolic
engineering, which he referred to as pathway engineering, in the 21st century.

1KEGG website: https://www.kegg.jp

https://www.kegg.jp
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For the past two decades, KEGG has been constantly extended and enriched
with new information, without deviating from its original purpose.

2.2 KEGG databases

As of the writing of this thesis, KEGG contains 18 databases, broadly cate-
gorized as systems information, genomic information, chemical information, and
health information resources (Figure III.1). The databases are handled through
an integrated distributed database retrieval system named DBGET/LinkDB [Fu-
jibuchi et al., 1998].

Systems information
KEGG PATHWAY Pathway maps, reference (total) 525 (582,047)
KEGG BRITE Functional hierarchies, reference (total) 202 (208,660)
KEGG MODULE KEGG modules, reference (total) 792 (474,998)

Genomic information
KEGG ORTHOLOGY KEGG Orthology (KO) groups 22,126
KEGG GENOME KEGG organisms and selected viruses 5,777
KEGG GENES Genes in KEGG organisms and other categories 26,476,450
KEGG SSDB Best hit relations within GENES 246,097,838,675

Bi-directional best hit relations within GENES 12,933,922,017

Chemical information (KEGG LIGAND)
KEGG COMPOUND Metabolites and other small molecules 18,335
KEGG GLYCAN Glycans 11,032
KEGG REACTION Biochemical reactions 10,921
KEGG RCLASS Reaction class 3,108
KEGG ENZYME Enzyme nomenclature 7,214

Health information (KEGG MEDICUS)
KEGG NETWORK Disease-related network elements 348
KEGG VARIANT Human gene variants 169
KEGG DISEASE Human diseases 2,094
KEGG DRUG Drugs 10,512
KEGG DGROUP Drug groups 2,062
KEGG ENVIRON Crude drugs and health-related substances 856

Figure III.1 Overview of the KEGG knowledge base as of June 2018. For each
of the four categories are listed currently existing KEGG databases along with the
number of entries in each database. The numbers in parentheses include com-
putationally generated organism-specific entries. The values were retrieved from
the statistics page (https://www.kegg.jp/kegg/docs/statistics.html) on June
14, 2018.

Systems information The systems information category of the KEGG knowledge
base contains the following databases:

https://www.kegg.jp/kegg/docs/statistics.html
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• KEGG PATHWAY (since 1995) is a collection of manually drawn pathway
maps for primary and secondary metabolism (as well as global and overview
maps), genetic information processing (such as transcription and translation),
environmental information processing (such as signal transduction), cellular
processes (such as the cell cycle), organismal systems (such as the immune
system), human diseases, and drug development. As explained in section
I.2.3, metabolic pathway maps in KEGG may group several metabolic path-
ways around a central metabolic process. Moreover, reference maps provide
a global view on metabolism by cumulating every known metabolic variation
for every sequenced organism. Metabolic pathway maps for a given species
are thus subsets of the reference maps, in which only the reactions known to
be performed by the given species are marked as present.

• KEGG BRITE (since 2005) is an ontology of functional hierarchies linking dif-
ferent biological entities, such as genes and proteins, compounds and reac-
tions, or diseases and drugs [Kanehisa et al., 2011].

• KEGG MODULE (since 2006) is a collection of functional units called modules,
defined by boolean expression of orthology groups [Kanehisa et al., 2013] (see
KEGG ORTHOLOGY below). Functional units describe enzyme complexes
and conserved subpathways in metabolic pathways, among others.

Genomic information The genomic information category of the KEGG knowl-
edge base contains the following databases:

• KEGG ORTHOLOGY (since 2002) is a database of molecular function con-
sisting of a collection of orthologs. KO (KEGG ORTHOLOGY) entries are
defined as sequence similarity groups and assigned identifiers referred to as
K numbers.K number Genome annotation in KEGG is done by assigning K numbers
to individual genes in the KEGG GENES database (see below). The assign-
ment of K numbers to genes involves both manual and automatic strategies
[Kanehisa et al., 2016b]. Thus, an advantage of genome annotation in KEGG
over other sequence databases is that functional annotation performed using
KO assignments is not associated to the sequence itself and does not entail its
redefinition [Kanehisa, 2017]. See KEGG SSDB below for more details.

• KEGG GENOME (since 2000) is a collection of organisms with complete ge-
nomes. Each species is designated by its three- or four-letter code [KEGG
Organisms]. There are currently 5,777 species present in KEGG GENOME, of
which ~8% eukaryotes, ~82% bacteria, ~5% archaea, and ~5% viruses.
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• KEGG GENES (since 1995) contains the repertoire of genes (retrieved from
RefSeq or GenBank) for all the species with complete genomes present in
KEGG GENOME. The database currently contains over 26 million gene en-
tries.

• KEGG SSDB (Sequence Similarity DataBase, since 2001) is a database resource
on similarity of protein-coding genes and (bidirectional) best hits [Kanehisa
et al., 2002, 2013]. Amino acid sequence similarity is computed for all possi-
ble pairs of protein-coding genes for all complete genomes (currently more
than 5,700) and stored in SSDB if a certain threshold is reached. In sequence
analysis, a bidirectional

best hit

bidirectional best hit describes the relationship between a sequence
a in genome A and another sequence b in genome B, if a is the best hit for the
query b against all sequences in genome A and if b is the best hit for the query
a against all sequences in B. Bidirectional best hits are widely employed as a
strong indicator of orthology. Yet, Dalquen and Dessimoz [2013] have shown
that this approach fails to detect orthologous sequences if gene duplication
events took place after speciation. Although not explicitly stated, the (non-
bidirectional) best hit information is probably used in SSDB along several
other criteria such as presence of protein domains [Itoh et al., 2002; Minowa
et al., 2003] to identify paralog sequences and to refine ortholog detection
for the computational generation of paralog and ortholog clusters [Kanehisa
et al., 2004]. Internally, SSDB is used as a graph resource of genes connected
by weighted arcs, where arc weight is a function of sequence similarity and
arc orientation is given by best hit relations. Clique-like subgraphs in the
SSDB graph are the basis for genome annotation and establishment of KO
entries, followed by manual curation when discrepancies are detected [Kane-
hisa et al., 2013] (see KEGG ORTHOLOGY above).

Chemical information The chemical information category of the KEGG knowl-
edge base contains the following databases, collectively referred to as KEGG LIG-
AND:

• KEGG COMPOUND (since 1995) contains compounds with biological roles
(currently, over 18,000). To each compound is assigned a unique identifier
starting with the letter C and followed by 5 digits, referred to as the C num-
ber. C numberThe database also offers the possibility to search for similar chemical
structures [Hattori et al., 2010]. Chemical similarity is evaluated by extracting
maximal common subgraphs from graphs representing chemical structures
[Hattori et al., 2003].
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• KEGG GLYCAN (since 2003) contains experimentally determined glycan struc-
tures (currently, over 11,000) [Hashimoto et al., 2006].

• KEGG REACTION (since 1998) is a collection of substrate–pair relations, rep-
resenting mostly enzymatic reactions. To each reaction is assigned a unique
identifier starting with the letter R and followed by 5 digits, referred to as the
R number.R number Reactions are linked to enzyme K numbers (see KEGG ORTHOL-
OGY above). The database currently contains over 10,000 reaction entries.

• KEGG RCLASS (since 2010) defines reaction classes that are subsequently
used to classify R numbers from the KEGG REACTION database. A reac-
tion class is a type of chemical transformation between pairs of substrates and
products of a reaction. Reaction classes are described by the RDM patterns in-
troduced by Hattori et al. [2003], where a RDM pattern represents changes at
the reaction center (R), the difference region (D), and the matched region (M)
of a substrate–product pair. RDM patterns express chemical transformations
in terms of the 68 atom types present in KEGG2, describing the atomic envi-
ronment of carbon, nitrogen, oxygen, sulfur, phosphorus, and “other” atoms
in chemical compounds. It is possible that a given R number is associated to
several reaction classes. For example, a reaction A + B → C + D in which C
and D are obtained from A and B, respectively, would be associated to two
reaction classes, describing the RDM patterns of the transformations A → C
and B→ D, respectively.

• KEGG ENZYME (since 1995) is an implementation of the enzyme nomencla-
ture (EC numbersEC number ) produced by IUBMB/IUPAC. Although the only official
enzyme nomenclature, the EC number hierarchy presents some important
limitations (see section I.2.2). EC numbers were the primary identifiers for
the construction of pathways from complete genomes until 2002, when they
were replaced with K numbers (see KEGG ORTHOLOGY above).

Health information The health information category of the KEGG knowledge
base, collectively referred to as KEGG MEDICUS, contains information on drugs
that are currently approved in Japan, Europe, and the United States (KEGG DRUG),
on drug interactions (KEGG DGROUP3), on health-related substances (KEGG EN-
VIRON), on human diseases, viewed as perturbed molecular networks (KEGG

2KEGG atom types: https://www.kegg.jp/kegg/reaction/KCF.html
3KEGG DGROUP generalizes drug compounds in the same way that KEGG ORTHOLOGY gen-

eralizes pathway maps. It contains groups of drugs that are structurally and functionally related.

https://www.kegg.jp/kegg/reaction/KCF.html
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DISEASE), and on variations of perturbant agents in human diseases (KEGG NET-
WORK and KEGG VARIANT).

2.3 KGML format

In order to facilitate the exchange of pathway maps, KEGG uses KGML, its own
XML-based markup language [KGML]. In a nutshell, the information contained
within a KGML file describes how reactions and compounds are linked. Using the
KGML terminology, reactions are linked through relations relation, whereas compounds are
linked through reactions reaction.

Before going into more technical detail, a simple example will be examined.
Consider the three reactions in Figure III.2, where the two reactions represented as
green rectangles are performed and are connected through the compound C04882.
The reaction represented as a white rectangle is performed by other species but is
absent from the organism for which the pathway fragment is shown. The relevant
part of the corresponding KGML file is presented in the listing in Figure III.3.

C00993
(41)

C04877
(66)

C04882
(67)

C17556
(40)

C05897
(68)

R04617
(23)

R05630
(35)

C17558
(43)

R05626
(37)

Figure III.2 Portion of the peptidoglycan biosynthesis pathway in Escherichia
coli (map eco00550). Reactions (R numbers) are represented as rectangles, which
are green if the reaction is performed or white if the reaction is absent. Com-
pounds (C numbers) are represented as gray ovals. Numbers in parentheses rep-
resent unique internal KGML identifiers.

Entities such as compounds and reactions have a unique numerical identifier
KGML idin KGML files (such as 23 for R04617). Although reactions and compounds have

unique identifiers respectively called R and C numbers, an internal relabeling is
preferable for multiplicity issues, such as the same compound appearing more than
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once in a given pathway map, or a reaction being the result of the chemical trans-
formations described by more than a single R number.

In the KGML fragment in Figure III.3, the relation (text in green) between
the entries with the identifiers 23 (R04617) and 35 (R05630) is established through
the compound with the identifier 67 (C04882). The compounds are linked through
reaction tags (text in red). For example, R04617 is an irreversible reaction trans-
forming the substrate compounds with the identifiers 66 (C04877) and 41 (C00993)
into a product compound with the identifier 67 (C04882).

<!-- Creation date: Apr 10, 2017 09:30:15 +0900 (GMT+9) -->
<pathway name="path:eco00550" org="eco" number="00550"

title="Peptidoglycan biosynthesis"...>
...
<entry id="41" name="cpd:C00993" type="compound"...>...</entry>
<entry id="66" name="cpd:C04877" type="compound"...>...</entry>
<entry id="43" name="cpd:C17558" type="compound"...>...</entry>
<entry id="67" name="cpd:C04882" type="compound"...>...</entry>
<entry id="40" name="cpd:C17556" type="compound"...>...</entry>
<entry id="68" name="cpd:C05897" type="compound"...>...</entry>
<entry id="23" name="eco:b0086" type="gene" reaction="rn:R04617"...>...</entry>
<entry id="37" name="ko:K00887" type="ortholog" reaction="rn:R05626"...>...
</entry>
<entry id="35" name="eco:b0087" type="gene" reaction="rn:R05630"...>...</entry>
...
<relation entry1="23" entry2="35" type="ECrel">

<subtype name="compound" value="67"/>
</relation>
...
<reaction id="23" name="rn:R04617" type="irreversible">

<substrate id="66" name="cpd:C04877"/>
<substrate id="41" name="cpd:C00993"/>
<product id="67" name="cpd:C04882"/>

</reaction>
<reaction id="35" name="rn:R05630" type="irreversible">

<substrate id="40" name="cpd:C17556"/>
<substrate id="67" name="cpd:C04882"/>
<product id="68" name="cpd:C05897"/>

</reaction>
...

</pathway>

Figure III.3 Portion of the KGML file corresponding to the pathway fragment
in Figure III.2. Only the relevant parts of the KGML file corresponding to map
eco00550 have been extracted (omissions are indicated by ellipses).

In XML terminology, <pathway>...</pathway>, <entry>...</entry>, <rela-
tion>...</relation>, and <reaction>...</reaction> are called XML elements,
with <pathway>...</pathway> being the XML root. An XML element can option-
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ally have one or more attributes, representing name–value pairs. For the first entry
in the listing in Figure III.3, id, name, and type are attribute names, their values being
"41", "cpd:C00993", and "compound", respectively.

The main elements in the KGML specification are entry, relation, and reac-

tion, all three being direct child elements of the pathway root. As illustrated in the
previous example, relation relationelements describe how reactions are connected, while
reaction reactionelements describe how compounds are linked through reactions.

Biological entities such as reactions and compounds are specified in KGML us-
ing entry entryelements. There are several possible entry types, for example ortholog

for KO groups, enzyme for enzymes, reaction for reactions, gene for gene products,
or compound for chemical compounds including glycans. All the entry types among
the ones listed, with the exception of compound, can have one or several names. This
means, for example, that an entry of type gene can be a list of gene identifiers, which
corresponds to the case where several gene products are involved in a reaction.

Entries corresponding to reactions receive an additional attribute called reac-

tion, not to be confounded with reaction elements which are shown in red in Fig-
ure III.3. For organism-specific pathway maps (such as eco00550), there are only
two possible values for the type of an entry with a reaction attribute:

• gene geneif the reaction is present for the species in question, in which case the
name attribute is a gene identifier, or a group of gene identifiers.

• ortholog orthologif the species does not perform the reaction, in which case the name

attribute is a KO group designated by a K number (see KEGG ORTHOLOGY
in section 2.2), or a list of K numbers.

For example, consider the entries with the identifiers 23 and 37 in the listing in
Figure III.3. The first of the two (identifier 23) describes a reaction of type gene,
meaning that the reaction R04617 (upper green rectangle in Figure III.2) is present
in E. coli and is performed by the product of gene b0086. The other entry (identifier
37) describes a reaction of type ortholog, meaning that the reaction R05626 (white
rectangle in Figure III.2) belonging to the KO group K00887 is absent from E. coli.

There are currently four types of KEGG pathway maps that can be retrieved in
KGML format:

• Organism-specific pathway maps, linked to KEGG GENES entries. The path-
way map prefix is the three- or four-letter organism code [KEGG Organisms],
e.g. eco00550 for the peptidoglycan biosynthesis pathway of Escherichia coli
K-12 MG1655.
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• Reference pathway maps linked to KEGG ORTHOLOGY entries (K num-
bers), with prefix ko (e.g. ko00550).

• Reference pathway maps linked to KEGG REACTION entries (R numbers),
with prefix rn (e.g. rn00550).

• Reference pathway maps linked to KEGG ENZYME entries (EC numbers),
with prefix ec (e.g. ec00550).

The four types of pathway maps can be retrieved directly through the KEGG
web site, via the KEGG FTP, or using the KEGG REST API (see section 2.4 below).

2.4 REST API

The KEGG REST API offers the possibility to extract information from various
KEGG databases and to download pathway maps in KGML format (see section
2.3 above) using HTTP requests. In case of a HTTP status code from the KEGG
server indicating success, the response to the REST query is usually a text file (or
an image). This renders KEGG particularly well-suited for programming purposes.
The CoMetGeNe pipeline developed over the course of this thesis (see Chapter VI)
makes extensive use of the KEGG REST API.

Below are a few basic usage examples of the KEGG REST API.

Example 1. http://rest.kegg.jp/find/genome/escherichia+colifind

This query lists all strains of Escherichia coli present in KEGG GENOME.

Example 2. http:/rest.kegg.jp/list/ecolist

This query lists all genes of Escherichia coli K-12 MG1655 (eco).

Example 3. http://rest.kegg.jp/get/eco:b0086+eco:b0087

This query retrieves two entries in KEGG GENES for E. coli (eco), corresponding
to the genes b0086 and b0087. Gene name, definition, position on the chromosome,
strand, and sequence data are available, among others. KEGG REST getget queries
usually accept up to 10 parameters that are concatenated with a plus sign, as in this
example.

Example 4. http:/rest.kegg.jp/list/pathway/eco

This query lists all pathway maps of E. coli (eco).

Example 5. http://rest.kegg.jp/get/eco00550/kgml

This query retrieves the peptidoglycan biosynthesis pathway map of E. coli
(eco00550) in KGML format.

http://rest.kegg.jp/find/genome/escherichia+coli
http:/rest.kegg.jp/list/eco
http://rest.kegg.jp/get/eco:b0086+eco:b0087
http:/rest.kegg.jp/list/pathway/eco
http://rest.kegg.jp/get/eco00550/kgml
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Example 6. http://rest.kegg.jp/get/ko00550/kgml

This query retrieves the reference KEGG ORTHOLOGY peptidoglycan biosyn-
thesis pathway map (ko00550) in KGML format.

Example 7. http://rest.kegg.jp/get/C04882/mol

This query retrieves the compound C04882 as an MDL Molfile (mol), a common
format used in chemoinformatics.

Example 8. http://rest.kegg.jp/list/reaction

This query lists all entries in the KEGG REACTION database.

Example 9. http://rest.kegg.jp/get/R04617

This query retrieves the R04617 entry in the KEGG REACTION database.

The previous examples have shown how the KEGG REST API can be used to
search (find and list) and retrieve entries (get) from a given KEGG database. A
powerful feature of this API is the link linkcommand, allowing to cross-reference two
databases. Some of the capabilities of the link command are demonstrated in the
examples below.

Example 10. http://rest.kegg.jp/link/eco/eco00550

This query lists all E. coli (eco) genes whose products catalyze reactions in the
peptidoglycan biosynthesis pathway (eco00550).

Example 11. http://rest.kegg.jp/link/pathway/eco:b0086

This query lists all E. coli (eco) pathways in which the product of gene b0086 is
involved.

Example 12. http://rest.kegg.jp/link/reaction/rn00550

This query lists all R numbers that are present in the reference peptidoglycan
biosynthesis pathway map linked to KEGG REACTION (rn00550).

Example 13. http://rest.kegg.jp/link/reaction/enzyme

This query retrieves the associations between EC numbers and R numbers.
Note that the correspondence is not one-to-one, as there exist R numbers with zero,
one, or more associated EC numbers, as well as EC numbers with zero, one, or
more associated R numbers.

Example 14. http://rest.kegg.jp/link/reaction/ko

This query retrieves the associations between K numbers and R numbers. Note
that the correspondence is not one-to-one, as there exist R numbers with zero, one,
or more associated K numbers, as well as K numbers with zero, one, or more asso-
ciated R numbers.

http://rest.kegg.jp/get/ko00550/kgml
http://rest.kegg.jp/get/C04882/mol
http://rest.kegg.jp/list/reaction
http://rest.kegg.jp/get/R04617
http://rest.kegg.jp/link/eco/eco00550
http://rest.kegg.jp/link/pathway/eco:b0086
http://rest.kegg.jp/link/reaction/rn00550
http://rest.kegg.jp/link/reaction/enzyme
http://rest.kegg.jp/link/reaction/ko
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3 Consistency issues in KEGG

This section describes actual, as well as potential inconsistencies in KEGG, as a
result of several problems that I encountered while using the knowledge base from
a programming perspective (see sections 2.3 and 2.4 above).

In late October 2017 I contacted KEGG through the feedback form on the web-
site to report I had found (by chance) that three reactions for Streptococcus pneu-
moniae ST556 (snd), which were present in the pentose and glucuronate intercon-
versions pathway (snd00040), were marked as absent in the ascorbate and aldarate
metabolism pathway (snd00053). Almost three weeks later, they let me know the
maps had been corrected. As it turned out, not only had they corrected the maps,
but they had also suppressed three orthology (KO) groups in the process. This ex-
change prompted me to investigate orthology associations more carefully and to
screen for different types of inconsistencies in KEGG in a systematic manner.

Previous works have already reported mostly annotation-related errors in pub-
lic databases, including KEGG. Schnoes et al. [2009] reported varying degrees of
functional misannotation in enzyme superfamilies and showed that the most fre-
quent error was functional overprediction. Green and Karp [2005] examined the
case of genes annotated with partial EC numbers (such as EC 4.2.1.-). At the time
of the study, orthology (KO) groups had already been introduced in KEGG. Recall
from section 2.2 that KO groupsKO group are sequence similarity groups to which individ-
ual genes are assigned. The genes in a given KO group would thus catalyze all
the reactions associated to that group. The authors deduced that EC numbers also
played a role in the establishment of KO groups, in the sense that all the genes
in a given KO group k were considered to be involved in all the reactions being
assigned an EC number associated to k. While this reasoning is likely correct for
complete EC numbers, in the case of partial EC numbers it leads to the incorrect
functional characterization of the genes in such a KO group.

The issue reported by Green and Karp [2005] has since been addressed by KEGG
in several ways. First, KO groups are continuously updated and refined [Kanehisa
et al., 2015]. Second, the assignment of reactions to KO groups takes place on a
much finer scale than before4. Currently, 95% of all KO groups present in reference
KEGG ORTHOLOGY maps have at most 5 associated reactions5. At the same time,
reactions may be assigned to several KO groups, seemingly connected by logical
and operators. A species with no associated gene to one of the KO groups assigned

4Personal observation
5A reaction is annotated with the K numbers of the genes that are involved in the reaction (see

also section 3.2).
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to a particular reaction is considered as not performing that reaction. Third, par-
tial EC numbers are handled differently than complete EC numbers6. As more
sequences are found to be similar with other genes assigned to a KO group, this
group is divided into smaller and more specific similarity subgroups. Thus, even
if a partial EC number is associated to a KO group, it does not define it entirely.
Orthology groups with only one associated EC number being a partial EC number
are generally associated to a very low number of reactions.

The types of consistency problems I draw attention to in this section, although
related to the internal structure of the KEGG knowledge base, affect both its ex-
ploitation from a programming point of view, as well as its standard usage as a
biological encyclopedia linking structure to function.

It is not always straightforward to decide whether apparent discrepancies ob-
served between different KEGG databases are actual problems that should be sig-
naled, or just particular instances of complex resource cross-linking. In the former
case I report actual consistency issues (see section 3.1), whereas discrepancies in the
latter case are reported as potential consistency issues (see section 3.2) warranting
closer investigation.

Due to the intricate nature of KEGG and to an incomplete comprehension of
the in-house procedures that are used during the maintenance and update of the
knowledge base despite a thorough literature review (see section 2.2), the consis-
tency issues signaled herein should only be considered preliminary results. Since
this contribution is quite recent, the necessary steps for contacting the KEGG main-
tainers regarding the consistency issues reported herein will be taken in the near
future.

3.1 Disconnected reactions in KEGG ORTHOLOGY maps

Description Certain reactions in KEGG pathway maps are disconnected from the
rest of the pathway at the KGML level. This applies to both organism-specific and
reference maps (ko, rn, and ec).

Example Figures III.4 and III.5 below illustrate the problem. Figure III.4 shows
the same pathway as Figure III.2 in which an additional reaction, R01150, is present.
Its product is the compound C00993, one of the two substrates of the reaction
R04617. When accessing the pathway map online7, no problem is apparent, as re-

6Personal observation
7The peptidoglycan biosynthesis pathway in E. coli is available at the following address: https:

//www.genome.jp/kegg-bin/show_pathway?eco00550. In June 2018, the latest version of this pathway
map dates from April 10, 2017.

https://www.genome.jp/kegg-bin/show_pathway?eco00550
https://www.genome.jp/kegg-bin/show_pathway?eco00550


68 Chapter III. The KEGG knowledge base

C00993
(41)

C04877
(66)

C04882
(67)

C17556
(40)

C05897
(68)

R04617
(23)

R05630
(35)

C17558
(43)

R05626
(37)

C00133
(42)

R01150
(30)

Figure III.4 Portion of the peptidoglycan biosynthesis pathway in Escherichia
coli (map eco00550). Dashed arrows represent missing reaction KGML elements.
See Figure III.2 for other explanations.

R01150 (30)

R04617 (23)

R05630
(35)

C00133 (42)

C00993 (41)

C04877 (66)

C17556 (40)

C04882 
(67)

C05897 (68)

C17558 
(43) R05626

(37)

Figure III.5 Portion of the peptidoglycan biosynthesis pathway in E. coli.
Adapted from KEGG PATHWAY, map eco00550 (April 10, 2017 version). This is
a fragment of Figure VII.13. Reactions are labeled in red with their corresponding
R numbers. Compounds are labeled in black with their corresponding C num-
bers. Reactions and compounds are the same as those in Figure III.4. Numbers in
parentheses represent KGML identifiers.
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actions R01150 and R04617 are seemingly connected (Figure III.5). The problem,
however, lies in the KGML file, where the compound C00993 does not perform the
link between the two reactions (signaled by dashed arrows in Figure III.4).

In section 2.3 it was explained that KGML entries are linked by relation ele-
ments in the case of reactions (R numbers), and by reaction elements in the case
of compounds (C numbers). The KGML file corresponding to the pathway map
eco00550 used in this example has the correct relation linking reactions R01150

and R04617:

<relation entry1="30" entry2="23" type="ECrel">

<subtype name="compound" value="41"/>

</relation>

However, the following reaction KGML element is missing:

<reaction id="30" name="rn:R01150" type="irreversible">

<substrate id="42" name="cpd:C00133"/>

<product id="41" name="cpd:C00993"/>

</reaction>

Interestingly, all peptidoglycan biosynthesis pathways that were examined man-
ifested the problem of reaction R01150 being disconnected. The reason is the fact
that all pathway maps in KEGG are drawn with KEGG ORTHOLOGY (KO) groups
[Kanehisa, 2017]. It would appear then that this type of error initially took place
at the level of reference KO maps and was then propagated to all species-specific
maps (as well as rn and ec reference maps).

Approach The approach proposed in order to identify occurrences of discon-
nected reactions in KEGG pathway maps is to simply test for all KO maps whether
entries with a reaction attribute have a corresponding reaction element in the
same KGML file.

Results This approach allowed to determine all occurrences of reactions with
missing links in KO maps. A total of 255 such instances were found (see Appendix
A.1), of which 174 (68%) occur in metabolic pathways excluding global and over-
view maps (i.e., occur in maps with identifiers less than 01100).

Discussion The particular anomaly presented in Figures III.4 and III.5 is the rea-
son for which the case study in section VII.5 uses data extracted from KEGG in
September 2016 instead of June 2018. The previous version of the map eco00550
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(May 28, 2015) had the reaction R01150 correctly linked to the rest of the path-
way. (As will be shown in Chapter VII, this allowed to identify both trails in Fig-
ure VII.13, whereas with the current version only the trail highlighted in yellow is
found.)

Although disconnected reactions do not affect KEGG users browsing through
the website, they have a deep effect when handling the KGML files from a pro-
gramming perspective. Methods relying on the information provided in KGML
files lead to the construction of incomplete graphs in the case of reactions that are
disconnected from the rest of the pathway. These graph-based models are typically
used in bioinformatic studies, where accurate biological information and represen-
tation is critical for correct comprehension and interpretation.

3.2 Inconsistent reactions between pathway maps

Description Reactions may belong to more than a single pathway map. In some
cases, they are marked as present in one pathway map, but absent from another,
for the same species.

Example Figures III.6 and III.7 below show the same reaction, R02773 (in red), be-
ing present in the first pathway map (green rectangle) and absent in the second one
(white rectangle). Both pathway maps belong to the same species, Actinoplanes sp.
SE50/110 (ase). The difference is that in both cases the reaction R02773 is associated
to different KO groups.

As explained in section 2.2, KO or orthology groupsKO group are similarity groups (in
terms of amino acid sequence) to which genes are assigned when a new genome
is annotated in KEGG. In the case of enzyme-coding genes, their products are in-
volved in the catalysis of one or several reactions. The KO groups of enzyme-
coding genes are therefore transferred to the catalyzed reactions, which explains
why reactions are also associated to K numbers.

In the pathway in Figure III.6, the reaction R02773 is performed by the product
of gene ACPL_3667. The K number associated to this gene is K20428 and corre-
sponds to orthologs of gene acbV (see light blue circle in Figure III.8). In Figure
III.7, however, the same reaction is associated to two other K numbers, K13308 and
K21328, that have no associated genes in Actinoplanes sp.

Groups K20428 and K13308 are only associated to the reaction R02773 and both
share the same definition, with K13308 corresponding to desI and eryCIV orthologs
(see light and dark blue circles in Figure III.8).

The third KO group, K21328, contains orthologs of calS13 and atmS13 genes.
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R02773
(K20428)

Figure III.6 Portion of the acarbose and validamycin biosynthesis pathway
in Actinoplanes sp. SE50/110. Adapted from KEGG PATHWAY, map ase00525
(January 24, 2017 version). The reaction R02773 (in red) is present and is associated
to the KO group K20428.

  

R02773
(K13308, K21328)

Figure III.7 Portion of the polyketide sugar unit biosynthesis pathway in
Actinoplanes sp. Adapted from KEGG PATHWAY, map ase00523 (March 3, 2017
version). The reaction R02773 (in red) is absent and is associated to the KO groups
K13308 and K21328.
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calS13 has the same functional definition as acbV (for K20428), as well as desI and
eryCIV (for K13308), whereas atmS13 has a different functional definition (as shown
by Singh et al. [2015] for another member of the Actinobacteria phylum). This third
KO group (K21328) is associated to R02773 as well as another reaction, R11475 (see
magenta circle in Figure III.8), which is absent from Actinoplanes sp8.

Figure III.8 below summarizes the definition and composition of these three
orthology groups.

K13308 
(desI, eryCIV)

K21328 
(calS13, atmS13)

K20428 (acbV)

R02773

R11475

dTDP-4-amino-4,6-
dideoxy-D-glucose 
transaminase

 
dTDP-4-amino-2,4-

dideoxy-beta-L-
xylose 

transaminase

Figure III.8 Definition of three orthology groups. The KO groups K20428,
K13308, and K21328 are represented by light blue, dark blue, and magenta circles,
respectively. Each group contains orthologous genes of a given type, indicated in
parentheses. The definition of each KO group corresponds to the ortholog color(s)
in parentheses and is indicated by arrows. In the case of K21328, its bifunctional
definition is indicated by a blue and red color code (hence magenta for the KO
group as a whole).

Since the same reaction R02773 belongs to both pathway maps (Figures III.6
and III.7), marking it as present in one map but absent from the other appears
inconsistent. In terms of orthology, only orthologous sequences of dTDP-4-amino-
4,6-dideoxy-D-glucose transaminases seem to be involved in this reaction. Two al-
ternative explanations can be proposed for the reaction R02773 being inconsistently
marked as present or absent between the two pathway maps ase00525 (Figure III.6)
and ase00523 (Figure III.7), respectively. The first possible explanation regards an
overspecialization in the assignment of gene ACPL_3667 to KO groups. In effect,
this gene (an acbV ortholog) was uniquely assigned to group K20428. Perhaps that
an overly strict assignment procedure overlooked its inclusion in one of the two
other KO groups. The second possible explanation also regards an overspecializa-
tion, this time in terms of establishment of KO groups. When the reference map for

8Reaction R11475 is defined as being a dTDP-4-amino-2,4-dideoxy-beta-L-xylose:2-oxoglutarate
aminotransferase.
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the pathway in Figure III.7 was drawn, perhaps only orthologs in groups K13308

and K21328 were known as being able to catalyze R02773. If none of these explana-
tions holds true, then it is the very concept of reaction (in terms of R numbers) that
would have to be reexamined.

Approach In order to identify reactions being treated inconsistently between path-
way maps in terms of presence and absence (such as reaction R02773 in the preced-
ing example), it is necessary to define the properties of such reactions. The ap-
proach proposed here is a two-step process in which the first step identifies candi-
date reactions according to a very broad definition, whereas the second step allows
to select reactions (among the proposed candidates) with respect to stricter criteria.

Definition III.1. Let r be a reaction that may appear in n pathway maps Pr =

{p1, . . . , pn}. Let S be a species having a subset of pathway maps P′r ⊆ Pr such
that |P′r | ≥ 2. If there exist two pathway maps pi and pj in P′r for species S such
that r is present in pi but absent from pj, the reaction r is referred to as potentially
inconsistent

potentially

inconsistent

reactionwith respect to S.

The first step of the proposed approach consists in applying definition III.1
above for selecting candidate reactions that are present in some pathway maps but
absent from others. Explanations may be found for such potentially inconsistent
reactions when examining the associated EC numbers and KO groups. Several
strategies may be used in the second step of the approach by formulating different
definitions of (actually) inconsistent reactions, two of which are presented below.

Definition III.2 below was used to identify the reaction R02773 (see Figures III.6
and III.7) by selecting reactions (among potentially inconsistent candidates) with
the same EC numbers but disjoint sets of associated KO groups.

Definition III.2. Let r be a potentially inconsistent reaction for a given species S
and let pi and pj be two pathway maps of S such that r is present in pi but absent
from pj. Let Ei and Ej be the sets of EC numbers associated to r in the pathway maps
pi and pj, respectively. Likewise, let Ki and Kj be the sets of K numbers (KO groups)
associated to r in the pathway maps pi and pj, respectively. Then the reaction r is
referred to as (actually) inconsistent

inconsistent

reactionwith respect to S if Ei = Ej and Ki ∩ Kj = ∅.

Definition III.3 below selects reactions (among potentially inconsistent candi-
dates) with disjoint sets of associated EC numbers and KO groups.

Definition III.3. Let r be a potentially inconsistent reaction for a given species S
and let pi and pj be two pathway maps of S such that r is present in pi but absent
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from pj. Let Ei and Ej be the sets of EC numbers associated to r in the pathway maps
pi and pj, respectively. Likewise, let Ki and Kj be the sets of K numbers (KO groups)
associated to r in the pathway maps pi and pj, respectively. Then the reaction r is
referred to as (actually) inconsistent

inconsistent

reaction with respect to S if Ei ∩ Ej = ∅ and Ki ∩ Kj = ∅.

Results The approach presented above was applied on all organism-specific path-
way maps with the exception of global and overview maps (i.e., maps whose identi-
fiers are greater than or equal to 01100), for all species present in KEGG GENOME.
Organism-specific maps were retrieved from the KEGG FTP in November 2017.
Associations between K numbers, R numbers, and EC numbers were retrieved via
the KEGG REST API using the link command (see section 2.4, examples 13 and
14). A total of 377,421 organism-specific pathway maps belonging to 5,084 species
were analyzed.

Table III.1 below summarizes the findings using definition III.1 for potentially
inconsistent reactions, and either definition III.2 or III.3 for inconsistent reactions.
The table shows the number and percentage of species with at least one occurrence
of (potentially) inconsistent reactions, as well as the total number of occurrences,
the number of occurrences per species, and the number of unique (potentially) in-
consistent reactions among all occurrences.

Definition III.1 Definition III.2 Definition III.3

Nb. species affected 4,910 1,515 4,762
% species affected 96.58% 29.8% 93.67%
Total nb. occurrences 37,188 2,146 18,553
Nb. occurrences/species 7.31 0.42 3.9
Unique reactions 99 17∗ 41†

Table III.1 Summary of (potentially) inconsistent reactions. All organism-
specific pathway maps present in KEGG in November 2017 were analyzed, with
the exception of global and overview maps. The second column (Definition III.1)
corresponds to potentially inconsistent reactions. The third (Definition III.2) and
fourth (Definition III.3) columns correspond to inconsistent reactions, according to
the respective definitions.
∗ The first occurrence (in any species) is listed in Appendix A.2.1.
† The first occurrence (in any species) is listed in Appendix A.2.2.

Discussion Reactions present in some organism-specific pathway maps but ab-
sent from others are disrupting for the biological comprehension of the metabolic
pathways in which they are featured.
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Identifying such reactions requires a specific definition taking into account the
associations between reactions (R numbers), EC numbers, and KEGG orthology
groups (K numbers). The definitions III.2 or III.3 presented in this section provide
examples of the type of criteria that might be used. Other definitions of inconsistent
reactions can be envisaged. For example, potentially inconsistent reactions can be
screened in terms of intersections, such as selecting reactions with non disjoint sets
of associated EC numbers and K numbers.

Once a working definition for inconsistently treated reactions (in terms of pres-
ence and absence from pathway maps of a given species) has been chosen, it will
probably be necessary to examine orthology group definition and composition in
detail (see Figures III.6, III.7, and III.8 for an example) and consult the existing lit-
erature in order to evaluate the correctness of qualifying a given reaction as incon-
sistent. This process would undoubtedly be made easier if more details concerning
the procedure of assigning genes and reactions to KO groups were common knowl-
edge.

4 Concluding remarks

This chapter gave an overview of KEGG (Kyoto Encyclopedia of Genes and
Genomes), an important knowledge base whose main objective is linking sequence
data to biological function. Over the years, KEGG has expanded to include various
genomic, chemical, and health information, although the primary focus remains
systems information, with a particular emphasis on pathway maps.

The overview detailed the role of the main KEGG databases and their intercon-
nections. In addition, the KGML format, used for the exchange of KEGG pathway
maps, was described. The KEGG REST API, a valuable resource for searching, re-
trieving, and cross-linking data from different KEGG databases, was also briefly
commented.

Through extensive usage of the KEGG resource, certain anomalies related to
the overall consistency of the knowledge base become apparent. This chapter pre-
sented two such consistency issues, the first one affecting the network information
conveyed through KGML files, and the second one concerning the intricate rela-
tionship between reactions, orthology groups, and EC numbers.

The incursion through KEGG is significant in the context of this thesis, because
the knowledge base served as the primary source for the biological data used in
Chapter VII to illustrate the methods proposed in Chapters IV and V through the
bioinformatics tool specifically developed for this purpose and introduced in Chap-
ter VI.
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1 Introduction

This chapter presents an exact method of graph mining in the context of het-
erogeneous biological networks. The method is termed trail findingtrail �nding and its purpose
is to identify relevant patterns of biological interest. More specifically, it is used to
detect metabolic and genomic patterns, defined as maximal trails of reactions cata-
lyzed by products of neighboring genes. Recall from section II.4 that trails allow to
capture cycles in metabolic pathways, while taking into account reaction direction-
ality and guaranteeing that reactions in the trails correspond to actual metabolic
routes.

We first explain the model used to represent biological networks. Next, we
formally state the problem in graph theory terms. An overview of the trail finding
method is given, followed by the detailed description of the algorithms that we
propose. Finally, an improvement rendering the method more flexible is discussed.

In this thesis, trail finding focuses on metabolic pathways and genomic context.
The method is however adaptable to other types of biological networks, requiring
only minor adjustments to the model.

2 Model

A non-spontaneous metabolic reaction is catalyzed by one or several enzymes.
A given enzyme can be encoded by one or several genes. Metabolic pathways
and genomic context are regarded as networks of reactions and genes, respectively.
The relation between metabolic pathways and their encoding genes is represented
using a classical model involving two graphs and a correspondence function:

(i) Genomes (viewed as gene networks) are represented as undirected graphs
with protein-coding genes for vertices (Figure IV.1a). Two protein-coding
genes are connected by an edge if they are neighbors on the same strand of
the same chromosome. For example, genes Y and Z are neighbors, therefore
they are linked by the edge (Y, Z).

(ii) Metabolic pathways are represented as directed graphs with reactions for ver-
tices (Figure IV.1b). An arc leading from a reaction ri to another reaction rj

signifies that ri produces a metabolite that is a substrate for rj. For example,
the arc (r4, r9) translates the fact that the product of r4 is a substrate for r9. In
order to avoid linking the same reaction r to different parts of the pathway in
case r is present more than once, a relabeling of reactions with unique iden-
tifiers can be used. When using KEGG (Kyoto Encyclopedia of Genes and
Genomes) [Kanehisa et al., 2016a], the unique labels take the form of KGML
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Figure IV.1 Illustration of the model used to represent metabolic pathways
and genomic context. (a) The undirected graph G′ represents the gene order of
a given species. The reactions that gene products catalyze are indicated above
each gene. (b) The directed graph D represents a metabolic pathway of the same
species as in (a). (c) The correspondence between reactions in D and genes in
G′. (d) G is an undirected graph with the same vertex set as D built using the
correspondence between reactions and genes. G represents gene neighborhood
with respect to the reactions that the gene products catalyze.
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identifiers (see section III.2.3).
(iii) For a given species S, the relation between one of its metabolic pathways and

its genome takes the form of a correspondence function associating genes to
reactions: for any given reaction r, the correspondence function returns the
set of genes of species S that encode enzymes catalyzing reaction r (e.g. in
Figure IV.1c, Z is the unique gene that encodes an enzyme catalyzing reaction
r4). This information can be found in knowledge bases such as KEGG which,
for a given species, contains information on its metabolic pathways, the re-
actions that the species performs, and the genes associated to these reactions
(see Chapter III).

The trail finding method requires two input graphs possessing the same vertex
set. Thus, an additional undirected graph is constructed as described by Mohamed-
Babou [2012] such that it reflects gene neighborhood with respect to the reactions
that the gene products catalyze (Figure IV.1d). The additional graph links two reac-
tions ri and rj with an edge if at least one of the genes encoding an enzyme involved
in reaction ri is adjacent to a gene encoding an enzyme involved in reaction rj. For
example, genes X and Y are neighbors in G′ (Figure IV.1a). Gene X codes for an
enzyme involved in reaction r8, while gene Y codes for an enzyme involved in re-
actions r9 and r10. To reflect adjacency between genes X and Y in G′, reactions r8

and r9, respectively r8 and r10, are linked by an edge in G (Figure IV.1d).

3 Problem formulation

Given a metabolic pathway and the genomic context for the same species, the
patternsbiological

patterns

of biological interest captured by the trail finding method are maximal
chains of reactions being catalyzed by products of neighboring genes.

The problem was initially formulated under the name of LONGEST SUPPORTED

PATH (LSP) by Fertin et al. [2015], as follows:

LONGEST SUPPORTED PATH (LSP)
Input: A directed graph D = (V, A), an undirected graph G = (V, E).
Output: A longest path P in D such that G[V(P)] is connected.

The solution for LSP is thus a longest path in the directed graph D inducing
a connected subgraph in the undirected graph G. The vast majority of metabolic
pathways, however, exhibit cycles (e.g. reversible reactions). Taking cycles into
account requires that solutions be authorized to contain repeated vertices. Recall
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from Chapter II that, contrary to paths, trails can contain repeated vertices, but not
repeated arcs (see definitions II.9, II.10, and II.11).

We now define the concept of span and propose a new problem formulation
that provides trails as solutions, instead of paths.

Definition IV.1. The span spanof a trail T represents the number of distinct vertices in
T.

Example. If T is the trail (r2, r3, r7, r8, r3, r4) in Figure IV.1b, then the span of T is 5,
because vertex r3 is repeated.

MAXIMUM SPAN SUPPORTED TRAIL (MaSST)
Input: A directed graph D = (V, A), an undirected graph G = (V, E), an arc
(u, v) in D.
Output: A trail of maximum span T in D passing through (u, v) such that
G[V(T)] is connected.

Whereas LSP produces a path for every graph D, MaSST outputs trails of max-
imum span passing through arcs of D if the vertex sets of these trails induce con-
nected subgraphs in G. The choice of producing a trail for every arc in D is de-
liberate in order to ensure that more than a single trail is retrieved per graph (see
below).

For example, for graphs D (Figure IV.1b) and G (Figure IV.1d) and the arc
(r1, r2), MaSST outputs one of the two following trails of span 8: t1 = (r1, r2, r3,
r7, r8, r3, r4, r9, r10) or t2 = (r1, r2, r7, r8, r3, r4, r9, r10). Both t1 and t2 start with r1

because this is the only way to include the arc (r1, r2) in the trails. For any other arc
in D, the output of MaSST is either of the two following trails of span 9: t3 = (r5, r6,
r2, r3, r7, r8, r3, r4, r9, r10) or t4 = (r5, r6, r2, r7, r8, r3, r4, r9, r10). (Alternatively, t3 and
t4 may start with vertex r4 followed by r5, which does not change their span.) Since
t3 and t4 must include arcs in D other than (r1, r2), maximizing their span implies
passing through as many reactions as possible. For the graph D (Figure IV.1b), the
only way to accomplish this is if both trails start with vertex r5 (or with vertex r4

followed by r5). Capturing trails of span 8 (either t1 or t2) as well as trails of span
9 (either t3 or t4) reveals that the genes involved in these partly overlapping trails
are all neighbors on the chromosome. If only trails of span 9 were returned (either
t3 or t4), the information that r1 is catalyzed by the product of a gene in the same
genomic context as the others would have been lost.

For practical purposes (see section 4.2 below), MaSST is solved by using the line
graph of D (see definition II.8).
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Definition IV.2. Let D be a directed graph and L(D) be its line graph. Let P =

(a1, a2, . . . , ak) be a path in L(D), where ai = (ti−1, ti), 1 ≤ i ≤ k, are arcs in D. The
trail in D correspondingcorresponding

trail

to P, denoted L−1(P), is the trail T = (t0, t1, t2, . . . , tk−1, tk).
If P is an empty path, then L−1(P) is an empty trail.

Example. If P is the path ((r3, r7), (r7, r8), (r8, r3)) in the line graph L(D) in Figure
IV.2b, then L−1(P) is the trail (r3, r7, r8, r3) in the directed graph D in Figure IV.2a.

A problem formulation equivalent to MaSST, MAXIMUM SPAN SUPPORTED COR-
RESPONDING TRAIL (MaSSCoT), is further proposed:

MAXIMUM SPAN SUPPORTED CORRESPONDING TRAIL (MaSSCoT)
Input: A directed graph D = (V, A), an undirected graph G = (V, E), an arc
(u, v) in D.
Output: A path P in the line graph of D such that L−1(P) has maximum span,
passes through (u, v), and G[V(L−1(P))] is connected.

LSP has been shown to be NP-hard in the general case [Fertin et al., 2015]. The
authors have shown that LSP remains NP-hard even if D is acyclic and G is a tree
with diameter 4. We prove below that MaSST and MaSSCoT are alsoNP-hard in the
general case. The proof makes use of MAXIMUM SPAN TRAIL (MaST), a problem
formulation closely related to MaSST:

MAXIMUM SPAN TRAIL (MaST)
Input: A directed graph D = (V, A), an undirected graph G = (V, E).
Output: A trail of maximum span T in D such that G[V(T)] is connected.

Proposition IV.1. MaST is NP-hard.

Proof. LSP is NP-hard even if D is acyclic and G is a tree with diameter 4 [Fertin
et al., 2015]. Now, if D is acyclic, then LSP and MaST have exactly the same solution.
Thus MaST is NP-hard (even if D is acyclic and G is a tree with diameter 4).

Corollary IV.1 (of proposition IV.1). MaSST is NP-hard.

Proof. Suppose that MaSST is polynomially tractable. Then, by applying it on all
arcs of D in turn, MaST can be solved in polynomial time as well. But MaST is
NP-hard (proposition IV.1).
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Lemma IV.1. Let D = (V, A) be a directed graph and L(D) be its line graph. Let
P = (a1, a2, . . . , ak) be a path in L(D), where ai = (ti−1, ti) for i ∈ {1, . . . , k} are
edges in D. Then the unique vertex sequence (t0, t1, t2, . . . , tk−1, tk) associated to P
is a trail in D.

Proof. By construction of P, the vertex sequence T = (t0, t1, t2, . . . , tk−1, tk) is
unique and is a walk in D. Since P has no repeated vertices, T contains no repeated
arcs. T is therefore a trail in D.

Corollary IV.2 (of proposition IV.1). MaSSCoT is NP-hard.

Proof. A path in the line graph of a directed graph D is a trail in D (lemma IV.1).
Given the MaSST problem formulation, let T = L−1(P) be the trail in D correspond-
ing to P. Then T is the solution to the MaSSCoT problem formulation. MaSST and
MaSSCoT are therefore equivalent. Since MaSST is NP-hard (corollary IV.1), it fol-
lows that MaSSCoT is also NP-hard.

4 General approach

This section presents an overview of the trail finding method, before introduc-
ing the actual algorithm in section 5. The trail finding method solves MaSST with
an exact approach that uses the MaSSCoT problem formulation internally. Trail
finding starts off by reducing the input graphs D and G while ensuring no solution
is lost (see 4.1). Next, trail finding in D is replaced by path finding in the line graph
of D involving minimal path enumeration (see 4.2). Finally, partial paths enumer-
ated in the line graph of D are concatenated in order to produce a solution for the
MaSST problem (see 4.3).

4.1 Graph reduction

Fertin et al. [2012] introduced the concept of a cover set of a path and proposed
an algorithm to compute it. Briefly, given two graphs D (directed) and G (undi-
rected) on the same vertex set U, as well as a path P in D, the cover set cover setof P with
respect to D and G is a maximal subset of U containing only vertices that might
extend P into a path P′ such that G[V(P′)] and the undirected graph underlying
D[V(P′)] stay connected.

We have shown that, for a given arc (u, v) in D, reducing the input graphs D
and G to the cover set S of (u, v) and feeding these reduced graphs D[S] and G[S]
as input to MaSST and MaSSCoT yields the same solution as providing D and G as
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input. (The proof is provided in Appendix B.) In other words, graphs D and G can
be reduced without loss of solutions.

4.2 Path finding in the line graph

The problem of trail enumeration in the directed graph D modeling a meta-
bolic pathway is naturally solved by performing path enumeration in the line graph
L(D). In other words, MaSST is solved using the MaSSCoT problem formulation.
In effect, to a given path in L(D) corresponds a unique trail in D, as shown in
lemma IV.1. Figure IV.2b shows the line graph corresponding to the directed graph
in Figure IV.2a.

Path enumeration in L(D) is restricted to a minimum using the following three-
step process:

1. The strongly connected components (SCCs, see definition II.7) of L(D) and its
condensation graph are computed, where a condensation graph results from
replacing every SCC with a single vertex (Figure IV.2). Note that condensa-
tion graphs are acyclic by definition.

2. For every SCC of L(D), vertices acting as entry pointsentry point from predecessor SCCs,
as well as vertices acting as exit pointsexit point to successor SCCs are determined. For
example, in Figure IV.2b, vertices (r2, r3) and (r2, r7) are entry points for the
SCC S2 when coming from the predecessor SCC S1. Vertex (r3, r4) in S2 is an
exit point when heading to the SCC S3. In S3, vertex (r4, r9) is both an entry
point when coming from predecessor S2 and an exit point when heading to
successor S4. S1 has no predecessor SCCs and S4 has no successor SCCs.

3. For every SCC X of L(D), path enumeration is performed only between strict-
ly necessary source and destination vertices, as follows: (i) if X has at least one
predecessor and one successor SCC, then paths are enumerated between all
possible pairs of entry and exit points for these SCCs; (ii) if X has no prede-
cessor and at least one successor SCC, then paths are enumerated between
every vertex of X and exit points towards the successor SCC(s); (iii) if X has
at least one predecessor and no successor SCC, then paths are enumerated
between entry points from the predecessor SCC(s) and every vertex of X; (iv)
only if X has no predecessor and no successor SCCs, paths are enumerated
between every pair of vertices of X.

The paths obtained through step 3 above are evaluated in terms of span and
length of their corresponding trails in D and the best candidate paths among them
are retained. They are referred to as best partial paths.best partial

paths

Among two partial paths P
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Figure IV.2 Example of a directed graph, its line graph, and the condensation
graph of the line graph. (a) A directed graph D. (b) The directed graph L(D)
represents the line graph of the directed graph D in (a). By definition of the line
graph, vertices of L(D) are arcs of D. Strongly connected components (SCCs)
of L(D) are shaded in gray and are assigned a label Si. (c) The directed graph
C represents the condensation graph of the line graph L(D) in (b), obtained by
replacing every SCC of L(D) with a single vertex.

and P′ in a SCC of the line graph, the best one is either the path with a correspond-
ing trail in D of maximum span or, in case both L−1(P) and L−1(P′) have equal
span, the path with a corresponding trail in D of minimum length.

The interest of the maximum span and minimum length criteria is illustrated
by the following example. Let P = ((r9, r10)) and P′ = ((r9, r10), (r10, r9)) be two
paths in the SCC S4 of L(D) in Figure IV.2b. Their corresponding trails in D are
L−1(P) = (r9, r10) and L−1(P′) = (r9, r10, r9), respectively. While both L−1(P) and
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L−1(P′) have span 2, L−1(P) has length 1, whereas L−1(P′) has length 2. Since
P′ contributes no new information to the trail it yields, it is preferable to retain P
among the two candidate paths in the line graph.

4.3 Concatenation of partial paths

Every path in the condensation graph C of L(D) is “translated” into one or
several paths in L(D) by concatenating best partial paths in SCCs of L(D). Let qi

and qj be two consecutive vertices of a path Q in C of length at least 1. Let Si and Sj

be the SCCs in L(D) corresponding to qi and qj, respectively. Then Q has more than
one corresponding path in L(D) if Si has at least two exit points when heading to
the successor SCC Sj, or if Sj has at least two entry points when coming from the
predecessor SCC Si.

For example, there are two paths in L(D) (Figure IV.2b) corresponding to path
Q1 = (S1, S2, S3, S4) in C (Figure IV.2c): P1 = ((r1, r2), (r2, r7), (r7, r8), (r8, r3), (r3, r4),
(r4, r9), (r9, r10)) and P′1 = ((r1, r2), (r2, r3), (r3, r7), (r7, r8), (r8, r3), (r3, r4), (r4, r9),
(r9, r10)). The corresponding trails in D (Figure IV.2a) are L−1(P1) = (r1, r2, r7, r8,
r3, r4, r9, r10) and L−1(P′1) = (r1, r2, r3, r7, r8, r3, r4, r9, r10), both with span 8. Note
that if P1 (respectively P′1) passed through vertices (r4, r5), (r5, r6), and (r6, r2) in
L(D) (Figure IV.2b), then P1 (respectively P′1) would be a trail in L(D) instead of a
path, which is not allowed. In effect, since path Q1 in C starts with S1, the vertex
(r1, r2) in L(D) needs to be the first in any path in L(D) corresponding to Q1 in C.
Furthermore, paths in S2 need to start with either vertex (r2, r3) or (r2, r7), as these
are the only two vertices following (r1, r2). Moreover, the path in S2 would need
to end with vertex (r3, r4), as it is the only vertex leading to S3, the third vertex of
path Q1 in C. It follows then that any walk in L(D) starting with vertex (r1, r2)

and passing through vertices (r4, r5), (r5, r6), and (r6, r2) would necessarily pass
through vertex (r3, r4) twice, which means it would be a trail instead of a path.

In order to determine the solution to the MaSST problem, all paths in the con-
densation graph of L(D) are enumerated such that their corresponding paths in
L(D) contain the SCC possessing the input arc (u, v) as vertex. If a path in L(D) ob-
tained by concatenating best partial paths contains vertex (u, v), it is then evaluated
in terms of its span by comparing it to the best current solution and by updating
the current solution if necessary.

For example, let (u, v) = (r2, r7) in the graph D in Figure IV.2a. After translating
path Q1 = (S1, S2, S3, S4) in C to a path in L(D), the best current solution P1 has span
8 as shown above. Note that P1 is a solution since it includes the input arc (r2, r7)

and G[V(L−1(P1))] is connected (see Figure IV.1d). Now, suppose the path Q2 =
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(S2, S3, S4) in C (Figure IV.2c) is enumerated. There is one corresponding path in
L(D) (Figure IV.2b) passing through (r2, r7), obtained by concatenation of best par-
tial paths in S2, S3, and S4. The best partial path in S2 ends in vertex (r3, r4) (which
is an exit point when heading toward S3) and may start with any vertex in S2,
provided the corresponding trail in D has maximum span. The path in L(D) cor-
responding to Q2 is therefore P2 = ((r5, r6), (r6, r2), (r2, r7), (r7, r8), (r8, r3), (r3, r4),
(r4, r9), (r9, r10)), for which L−1(P2) has span 9. When P1 and P2 are compared, the
best current solution now becomes P2 because P2 has maximum span and because
G[V(L−1(P2))] is connected (see Figure IV.1d).

5 Algorithm HNET

The trail finding method is embodied by HNET (Heterogeneous Network min-
ing), an algorithm that solves the MaSST problem using the MaSSCoT formulation
internally (Algorithm 1).

Algorithm 1 HNET(D, G, (u, v))

Input: A directed graph D = (V, A), an undirected graph G = (V, E), an arc (u, v)
in D.

Output: A trail T of maximum span in D that includes (u, v) such that G[V(T)] is
connected, or ∅ if no such trail exists.

1: D, G ← GRAPHREDUCTION(D, G, (u, v))
2: L(D)← LINEGRAPH(D)
3: C ← CONDENSATIONGRAPH(L(D))
4: A ← ACCESSPOINTS(L(D))
5: B ← PARTIALPATHS(L(D), A)
6: Let a ∈ V(C) such that the SCC of L(D) corresponding to a contains (u, v)
7: P← ∅
8: for all s ∈ V(C) do
9: for all t ∈ V(C) do

10: for all Q in ENUMERATEPATHS(C, s, t) do
11: if a ∈ V(Q) then
12: for all P′ in FINDPATHS(L(D), Q, B) do
13: if (u, v) ∈ V(P′) and G[V(L−1(P′))] is connected then
14: P← BESTPATH(P, P′)
15: return L−1(P)

Unlike the heuristic solution introduced in Fertin et al. [2012] to the LSP prob-
lem, HNET is an exact algorithm as it is guaranteed to return a trail of maximum
span in D passing through the input arc (u, v) such that G[V(L−1(P))] is connected,
if such a trail exists. However, HNET is not exhaustive with respect to the more
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general problem of determining all trails passing through (u, v) such that these
trails induce connected subgraphs in G. Since HNET solves the MaSST problem, it
means that if several trails of maximum span pass through a given arc (u, v) in D,
then only one such trail is reported as solution.

The bottleneck in HNET is path enumeration at line 5, which can be exponential
with respect to the size of the graph (recall that MaSST and MaSSCoT are NP-hard).
The worst-case scenario occurs when all possible paths are enumerated between all
pairs of vertices in a SCC. This scenario occurs in two distinct cases which nonethe-
less rarely arise in practice. The first case is that of SCCs of D that are completely
disconnected from the rest of the graph. Sequences of reactions in metabolic path-
ways that are completely disconnected from the rest of the pathway are typically
very short (on average, shorter than 2 reactions for the 50 species in Table VII.1) and
therefore not limiting for exhaustive path enumeration. The second case is when D
is strongly connected, corresponding to the infrequent situation in which a chain
of reactions leads from any reaction ri to any other reaction rj of a given metabolic
pathway, and vice versa.

An overview of algorithm HNET is given in subsection 5.1, followed by detailed
descriptions of the sub-algorithms used by HNET (subsections 5.2, 5.3, and 5.4).

5.1 Overview

In the following, assume: D = (V, A) is a directed graph; (u, v), an arc in D;
G = (V, E), an undirected graph; L(D), the line graph of D; and C, the condensa-
tion graph of L(D).

Algorithm GRAPHREDUCTION (line 1) returns the reduced graphs D and G (see
section 4.1 above). For graphs D and G in Figure IV.1 (panels b and d), the re-
duced and unreduced graphs are the same. LINEGRAPH (line 2) returns the line
graph L(D) of the reduced input graph (for example, L(D) in Figure IV.2b is the
line graph of graph D in Figure IV.2a). CONDENSATIONGRAPH (line 3) returns the
condensation graph of L(D), i.e. the directed acyclic graph obtained by replacing
every SCC of L(D) by a single vertex (for example, graph C in Figure IV.2c is the
condensation graph of graph L(D) in Figure IV.2b).

Algorithm ACCESSPOINTS (see section 5.2 below) determines entry and exit
points for every SCC X of L(D), from SCCs that are predecessors of X and toward
SCCs that are successors of X (see section 4.2 above, step 2). This information is
stored in a data structure A that the algorithm returns at line 4. Algorithm PAR-
TIALPATHS (see section 5.3 below) then usesA to compute best paths in every SCC
X of L(D) (in terms of span of their corresponding trails in D) between all possible
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pairs of source and destination vertices. Source vertices are entry points from pre-
decessor SCCs if X has predecessors, and vertices of X otherwise. Conversely, des-
tination vertices are exit points to successor SCCs if X has successors, and vertices
of X otherwise. These paths, called best partial

paths

best partial paths, are stored in a data structure
B that the algorithm returns at line 5 (see section 4.2 above, step 3).

At line 6, HNET determines a, the vertex of C whose corresponding SCC in
L(D) contains the input arc (u, v) as a vertex. Next, all possible paths in C are
enumerated (lines 8–14) and, if they contain vertex a, the corresponding paths in
L(D) are obtained by concatenation of best partial paths stored in B. The best
current solution is updated accordingly.

A path P in L(D) qualifies as a best current solution best current

solution

if the trail in D correspond-
ing to P, L−1(P), fulfills the following conditions:

(i) It contains the input arc (u, v);
(ii) Its vertex set induces a connected subgraph in G;

(iii) It has maximum span so far.

Algorithm ENUMERATEPATHS at line 10 returns all paths starting with vertex s
and ending in vertex t in the condensation graph C. If s and t are the same vertex,
the algorithm returns either one. Algorithm FINDPATHS (see section 5.4 below)
at line 12 returns all paths in L(D) corresponding to path Q in the condensation
graph C, obtained by concatenation of best partial paths stored in B. Given two
paths in L(D), algorithm BESTPATH at line 14 returns the best current path, i.e. the
path whose corresponding trail in D has greater span than the other (see section 4.3
above).

Finally, HNET returns the trail in D corresponding to a best solution (line 15),
effectively solving the MaSST problem. An additional consistency check is per-
formed as detailed in Mohamed-Babou [2012] to ensure that the trail L−1(P) also
“makes sense” when passing from G to the initial graph G′ (see section 2 and Fig-
ure IV.1 above). We check whether vertices in G′ corresponding to the vertex set
of the trail are connected. Note that Mohamed-Babou [2012] describes the check
that needs to be performed to ensure consistency between a solution returned by
the heuristic implementation of LSP (see section 3) and an additional graph G, con-
structed as detailed in section 2.

5.2 Algorithm ACCESSPOINTS

For every strongly connected component (SCC, see definition II.7) X of L(D),
all its entry and exit points are determined with respect to possible predecessor and
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successor SCCs of X in L(D) using algorithm 2 (ACCESSPOINTS) presented below.
First, predecessor and successor SCCs, as well as entry and exit points, are formally
defined below.

Definition IV.3. Let X be a SCC in a directed graph D. A SCC W in D is apredecessor

SCC

predecessor
of X if there exists an arc (w, x) from a vertex w in W to a vertex x in X. In this case,
x is an entry point in Xentry point when coming from the predecessor SCC W.

Example. The SCC S1 has no predecessor SCC in the line graph L(D) in Figure IV.2b.
Vertices (r2, r3) and (r2, r7) are entry points for the SCC S2 when coming from the
predecessor SCC S1.

Definition IV.4. Let X be a SCC in a directed graph D. A SCC Y in D is asuccessor SCC successor
of X if there exists an arc (x, y) from a vertex x in X to a vertex y in Y. In this case,
x is an exit point in Xexit point when heading toward the successor SCC Y.

Example. The SCC S4 has no successor SCC in the line graph L(D) in Figure IV.2b.
Vertex (r3, r4) is an exit point for the SCC S2 when heading toward the successor
SCC S3. In S3, vertex (r4, r9) is both an entry point when coming from the prede-
cessor SCC S2 and an exit point when heading toward the successor SCC S4.

Remark. Entry and exit points for a given SCC are collectively referred to asaccess points access
points.

Algorithm 2 below returns entry and exit point information for every SCC in D
(defined hereafter).

For every SCC X of the input graph D, algorithm 2 (ACCESSPOINTS) determines
entry point information (lines 3–8, see definition IV.5) and exit point information
(lines 9–14, see definition IV.6). Access point information for X is stored in the
data structure A at line 15. If X has no predecessor SCC, then all vertices of X are
implicitly considered to be entry points for X (line 8), with the predecessor of X
being undefined (⊥). Similarly, if X has no successor SCC, then all vertices of X are
implicitly considered to be exit points for X (line 14), with the successor of X being
undefined (⊥).

Definition IV.5. Let X be a SCC in a directed graph D. The set of all tuples (W, {x1,
. . . , xk}) where xi is an entry point of X when coming from a predecessor SCC W
represents entry point information for X and is denoted IX.

Definition IV.6. Let X be a SCC in a directed graph D. The set of all tuples (Y, {x′1,
. . . , x′k′}) where x′i is an exit point of X when heading toward a successor SCC Y
represents exit point information for X and is denoted OX.
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Algorithm 2 ACCESSPOINTS(D)

Input: A directed graph D = (V, A).
Output: A data structureA storing entry and exit point information for every SCC

in D.
1: A ← ∅
2: for all X in STRONGLYCONNECTEDCOMPONENTS(D) do
3: if there exists at least one predecessor of X in D then
4: IX ← ∅
5: for all W predecessor of X do
6: IX ← IX ∪ (W, {x ∈ X | (w, x) ∈ A, w ∈W})
7: else
8: IX ← (⊥, {x ∈ X})
9: if there exists at least one successor of X in D then

10: OX ← ∅
11: for all Y successor of X do
12: OX ← OX ∪ (Y, {x ∈ X | (x, y) ∈ A, y ∈ Y})
13: else
14: OX ← (⊥, {x ∈ X})
15: A[X]← (IX, OX)
16: return A

Suppose algorithm 2 takes as input the graph L(D) in Figure IV.3. Then:

• For the SCC S1, entry point information is IS1 = (⊥, {(1, 2), (2, 1)}), since S1

has no predecessor SCC. Exit point information for S1 is OS1 = (S2, {(2, 1)})∪
(S3, {(1, 2)}), meaning that (2, 1) is an exit point for S1 when heading to the
successor SCC S2 and that (1, 2) is an exit point for S1 when heading to S3.

• For the SCC S2, entry point information is IS2 = (S1, {(1, 5)}) and exit point
information is OS2 = (S4, {(1, 5)}), meaning that vertex (1, 5) is both an entry
point for S2 when coming from the predecessor SCC S1, and an exit point
when heading to the successor SCC S4.

• Similarly, for the SCC S3, entry point information is IS3 = (S1, {(2, 3)}) and
exit point information is OS3 = (S4, {(2, 3)}).

• For the SCC S4, entry point information is IS4 = (S3, {(3, 4)}) ∪ (S2, {(5, 3)})
and exit point information is OS4 = (⊥, {(3, 4), (4, 5), (5, 3)}), since S4 has no
successor SCC.

5.3 Algorithm PARTIALPATHS

Algorithm 3 (PARTIALPATHS) below determines best partial paths for every
SCC of the line graph L(D) between all possible pairs of access points in X. Partial
paths and best partial paths are formally defined below.
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(2, 1)

(2, 3)

(5, 3)

(3, 4)

(1, 5)

(4, 5)

S3

S4S1 S2

Figure IV.3 Example of a directed graph and its line graph. L(D) is the line
graph of D. SCCs of L(D) are shaded in gray and are assigned a label Si.

Definition IV.7. A partial pathpartial path in a SCC X of a line graph L(D) is a path in X be-
tween an entry point s when coming from a predecessor SCC W and an exit point t
when heading toward a successor SCC Y.

Remark. If X has no predecessor SCCs, any vertex in X can play the role of an entry
point for a partial path in X. Similarly, if X has no successor SCCs, any vertex in X
can play the role of an exit point for a partial path in X.

Definition IV.8. Given a set P of partial paths in a SCC X of a line graph L(D)

between an entry point s when coming from a predecessor SCC W and an exit
point t when heading toward a successor SCC Y, a best partial pathbest partial path is a path P in
P such that its corresponding trail in D has maximum span, or maximum span
and minimum length, in case several paths in P have corresponding trails in D of
maximum span.

Algorithm 3 PARTIALPATHS(L(D), A)

Input: A line graph L(D) and a data structureA storing entry and exit point infor-
mation for every SCC in L(D) as specified in algorithm ACCESSPOINTS.

Output: A data structure B storing a best partial path for every quintuplet
(X, W, Y, s, t) (see text).

1: B ← ∅
2: for all X in STRONGLYCONNECTEDCOMPONENTS(L(D)) do
3: (IX, OX)← A[X]
4: for all (W, s) ∈ IX do
5: for all (Y, t) ∈ OX do
6: for all P in ENUMERATEPATHS(X, s, t) do
7: EVALUATEPATH(P, X, W, Y, s, t, B)
8: return B

Algorithm 3 (PARTIALPATHS) retrieves access point information for every SCC
X of L(D) at line 3. All paths in every SCC of L(D) between every entry point
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s when coming from a predecessor SCC W and every exit point t when heading
toward a successor SCC Y are enumerated at lines 4–6, and a best partial path
among them is retained at line 7. (Recall that algorithm ENUMERATEPATHS at line 6
takes as input a graph G and two vertices s and t in V(G), and returns all paths in G
between s and t. If s and t are the same vertex, then algorithm ENUMERATEPATHS

returns either one.)

Algorithm 3 (PARTIALPATHS) returns a data structure B (line 8) storing best
partial paths for every SCC of L(D). B is an array indexed by quintuplets of the
form (X, W, Y, s, t). For each such quintuplet, B stores a best partial path P in
the SCC X of L(D) between vertices s and t, when coming from a predecessor SCC
W and when heading toward a successor SCC Y. Initially empty, B is updated us-
ing algorithm EVALUATEPATH (see below) such that, when execution of algorithm
PARTIALPATHS is finished, B contains only best partial paths for every quintuplet
(X, W, Y, s, t). If the predecessor W is undefined (⊥), then s is also undefined
and B stores a best partial path in X from any vertex in X to t. Similarly, if Y is
undefined, then t is also undefined and B stores a best partial path in X from s to
any vertex of X. If both W and Y are undefined, then B stores a best partial path in
X from any vertex to any other vertex in X.

Partial paths in SCCs of L(D) are evaluated in terms of span, length, and type.

5.3.1 Path evaluation in terms of span and length

Every partial path in a SCC of a line graph L(D) between possible pairs of entry
and exit points is evaluated in terms of the span (see definition IV.1) and length of
its corresponding trail in the directed graph D. As explained in subsection 4.2,
paths with corresponding trails of maximum span and minimum length are to be
preferred. Algorithm 4 (BESTPATH) below shows how the selection is made.

Algorithm 4 BESTPATH(P, P′)

Input: Two paths P and P′ in a line graph L(D).
Output: The path among P and P′ whose corresponding trail in D has maximum

span or, in case both trails in D corresponding to P and P′ have equal span, the
one whose corresponding trail in D has minimum length.

1: if SPAN(L−1(P)) > SPAN(L−1(P′)) then
2: return P
3: if SPAN(L−1(P)) = SPAN(L−1(P′)) and |L−1(P)| < |L−1(P′)| then
4: return P
5: return P′



94 Chapter IV. Trail finding

5.3.2 Path evaluation in terms of path type

The type of a partial path P in a SCC X of L(D) between vertices s and t in
X reflects the role that s and t play in relation to the access points of X. More
specifically, if the trail in D corresponding to P has maximum span, P can be a path
in X:

(a) Between entry point s when coming from a SCC W and an arbitrary vertex t;
(b) Between an arbitrary vertex s and exit point t when heading toward a SCC Y;
(c) Between entry point s when coming from a SCC W and exit point t when

heading to a SCC Y.

Algorithm 5 EVALUATEPATH(P, X, W, Y, s, t, B)

Input: A path P in the SCC X of a line graph between vertices s and t in X, when
coming from SCC W and heading toward SCC Y, and a data structure B storing
the best partial paths so far.

Output: B is updated with P for the quintuplet Q = (X, W, Y, s, t) if P is a
better partial path than the one currently stored in B for Q. B is updated to
retain a path in X whose corresponding trail has maximum span so far: (a) in
X between entry point s and any vertex of X; (b) in X between any vertex of X
and exit point t; (c) in X between entry point s and exit point t.

1: if W 6= ⊥ then
2: EVALUATEPATHAUX(P, X, W, ⊥, s, ⊥, B) /* case (a) */

3: if Y 6= ⊥ then
4: EVALUATEPATHAUX(P, X, ⊥, Y, ⊥, t, B) /* case (b) */

5: if W 6= ⊥ and Y 6= ⊥ then
6: EVALUATEPATHAUX(P, X, W, Y, s, t, B) /* case (c) */

Algorithm 5 (EVALUATEPATH) distinguishes partial paths in L(D) according
to their type, as explained above. Internally, it uses a helper procedure named
EVALUATEPATHAUX (algorithm 6) in order to determine whether the partial path
stored in B for quintuplet Q = (X, W, Y, s, t) should be updated.

5.4 Algorithm FINDPATHS

Algorithm 7 (FINDPATHS) below starts out by initializing P , a list that will store
paths in L(D) corresponding to a path Q in the condensation graph (line 1). At line
2, P is given as an input/output parameter to the recursive algorithm CONCATE-
NATEPARTIALPATHS (algorithm 8, see below). As CONCATENATEPARTIALPATHS

recurses, best partial paths stored in B are concatenated and the resulting paths in
L(D) corresponding to a path Q in the condensation graph of L(D) are stored in
P . When recursion finishes, FINDPATHS returns the list P (line 3).
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Algorithm 6 EVALUATEPATHAUX(P, X, W, Y, s, t, B)

Input: A path P in the SCC X of a line graph between vertices s and t in X, when
coming from SCC W and heading toward SCC Y, and a data structure B storing
the best partial paths so far.

Output: B is updated with P for the quintuplet Q = (X, W, Y, s, t) if there is
no partial path stored in B for Q or if P is a better partial path than the one
currently stored in B for Q.

1: if B[(X, W, Y, s, t)] = ∅ then
2: B[(X, W, Y, s, t)]← P
3: else if P = BESTPATH(P, B[(X, W, Y, s, t)]) then
4: B[(X, W, Y, s, t)]← P

Algorithm 8 (CONCATENATEPARTIALPATHS) recursively extends a partial so-
lution P with a best partial path P′ stored in B, the data structure returned by algo-
rithm 3 (PARTIALPATHS).

Recursion proceeds for every index of a path Q in the condensation graph of
L(D) and stops when the index exceeds the length of the path. Whenever this
happens, it means that a path in L(D) has been retrieved by concatenation of best
partial paths in B and can be appended to the list P of paths in the line graph
corresponding to the path Q in the condensation graph (lines 1–2). The list of paths
P is initialized to the empty set in algorithm 7 (FINDPATHS), before algorithm 8
(CONCATENATEPARTIALPATHS) is invoked.

If recursion does not stop for a given index i, CONCATENATEPARTIALPATHS

proceeds to determine the SCC X corresponding to the vertex at position i in Q
(Qi) at line 4. Next, the SCC W acting as predecessor of X is determined at lines 6–
11, along with all vertices in X acting as sources in relation to W (PW). Similarly, the
SCC Y acting as successor of X is determined at lines 12–17, along with all vertices
in X acting as sinks in relation to Y (SY).

Recursion actually takes place at lines 19–22. For every pair of vertices (s, t)
representing an entry point for the SCC X when coming from W and an exit point
for X when heading toward Y, respectively, the best partial path P′ stored in B
for the quintuplet (X, W, Y, s, t) is retrieved at line 21. CONCATENATEPARTIAL-
PATHS is then called for the next value of the index i and the path resulting from
the concatenation of P and P′, denoted by P t P′, at line 22.

When recursion finishes due to the index i being greater than the length of path
Q in the condensation graph, the current path P in L(D) is added to the list of
paths P at lines 1–2. The current call to CONCATENATEPARTIALPATHS is popped
off the execution stack and the algorithm resumes to using P, the path in L(D) it
started with before concatenating P′. This way, a new pair (s, t) of vertices in X
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Algorithm 7 FINDPATHS(L(D), Q, B)

Input: A line graph L(D), a path Q in the condensation graph of L(D), and a data
structure B storing best partial paths for all SCCs of L(D) as specified in algo-
rithm PARTIALPATHS.

Output: All paths in L(D) corresponding to path Q in the condensation graph of
L(D).

1: P ← ∅
2: CONCATENATEPARTIALPATHS(L(D), Q, 1, ∅, P , B)
3: return P

Algorithm 8 CONCATENATEPARTIALPATHS(L(D), Q, i, P, P , B)

Input: A line graph L(D), a path Q in the condensation graph of L(D), an index
i between 1 and |V(Q)| + 1, a path P in L(D) obtained by concatenation of
partial paths for the first i − 1 vertices of Q, an input/output list P storing
paths in L(D) corresponding to Q obtained by concatenation of best partial
paths in B, and a data structure B storing best partial paths for all SCCs of
L(D) as specified by algorithm PARTIALPATHS.

Output: P contains paths in L(D) corresponding to path Q in the condensation
graph of L(D). The paths in P are obtained by concatenation of best partial
paths stored in B.

1: if i = |V(Q)|+ 1 then
2: P ←P ∪ P
3: else
4: Let X be the SCC in L(D) corresponding to vertex Qi in C
5:
6: if i = 1 then
7: W ← ⊥
8: PW ← {⊥}
9: else

10: Let W be the SCC in L(D) corresponding to vertex Qi−1 in C
11: PW ← {x ∈ X | (w, x) an arc in L(D) with w ∈W}
12: if i = |V(Q)| then
13: Y ← ⊥
14: SY ← {⊥}
15: else
16: Let Y be the SCC in L(D) corresponding to vertex Qi+1 in C
17: SY ← {x ∈ X | (x, y) an arc in L(D) with y ∈ Y}
18:
19: for all s ∈ PW do
20: for all t ∈ SY do
21: P′ ← B[(X, W, Y, s, t)]
22: CONCATENATEPARTIALPATHS(L(D), Q, i + 1, P t P′, P , B)
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(respectively acting as sources when coming from W, and as sinks when heading
toward Y) can be examined.

6 Allowing for skipped vertices

The MaSST and MaSSCoT formulations imply that solutions consist of strictly
neighboring reactions catalyzed by products of strictly neighboring genes. As in
a previous graph-based approach for the integration of heterogeneous biological
data in another context [Boyer et al., 2005], a preprocessing step was added to algo-
rithm HNET (algorithm 1) in order to allow for non contiguous reactions and/or
genes. The preprocessing step consists in modifying the input graphs by adding
arcs (respectively edges) between vertices separated by at most δD other reactions
(respectively δG other genes). δD and δG are referred to as the gap parameters. gap parametersTheir
value should be set quite low (e.g. at most 3) for ensuring that the trails produced
by HNET are relevant from a biological point of view.

For example, black solid edges corresponding to δG = 0 link genes A through
E in the undirected graph G in Figure IV.4. One gene can be skipped if δG is set
to 1, in which case the edge set of G includes the dashed black edges. Finally, if
two genes can be skipped (δG = 2), the edge set of G also includes the dotted blue
edges.

δG = 0
δG = 1
δG = 2

A B D ECG

Figure IV.4 Illustration of the gap parameter δG. If δG is positive, supplemen-
tary edges need to be added to G.

In a similar fashion to δG, the gap parameter δD allows to skip reactions through
the introduction of supplementary arcs in D.

7 Concluding remarks

This chapter presented a method for identifying trails of reactions in a met-
abolic pathway catalyzed by products of neighboring genes, easily adaptable to
other types of biological networks with only minor modifications to the underly-
ing model. We have therefore presented a generic method, applicable to different



98 Chapter IV. Trail finding

kinds of biological data. The problem was formulated in graph theory terms and
the exact algorithm HNET was proposed for trail finding. Although the problem
is polynomially intractable in the general case, in practice HNET performs quite
well as it reduces the computationally expensive operation of path enumeration
to the strictly necessary minimum. The trail finding method proposed herein is
hence very promising when applied to heterogeneous biological networks such as
metabolic pathways and genomic context. The next chapter lays out the theoretical
framework for exploiting HNET trails.
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1 Introduction

The previous chapter presented trail finding, a method that identifies trails of
reactions being catalyzed by products of neighboring genes for a given species.
The present chapter shows how these species-specific patterns of metabolic and
genomic organization can be exploited in order to detect the conservation of such
patterns across a vast array of different species.

For simplicity, let trails of reactions catalyzed by products of neighboring genes
for a given species, as identified using the trail finding method presented in Chap-
ter IV, be called metabolic and genomic patternsmetabolic and

genomic pattern

for a given species.
We first explain the comparative approach for metabolic and genomic patterns,

delineating three possible solutions and justifying the choice for trail grouping.
Next, we introduce the underlying concept in trail grouping, namely reaction sets.
Subsequently, two methods of trail grouping, focusing on the conservationconservation of meta-
bolic and genomic context, respectively, are presented and discussed. Two complex
trail grouping situations that arise in practice are also illustrated. Finally, this chap-
ter concludes with a general discussion about trail grouping.

2 Comparative approach

The objective of the comparative approach is to exploit metabolic and genomic
patterns obtained for several species in order to analyze their degree of conserva-
tion, both in terms of metabolic, as well as genomic, context. This section discusses
three possible solutions for comparing metabolic and genomic patterns. Each solu-
tion is evaluated in terms of detection of metabolic and genomic context, as well as
ability to capture the conservation of such patterns across multiple species.

The three solutions discussed here are illustrated on the example in Figure V.1.
Assume the following:

• The trail T = (r1, r2, r3) was identified for species S1 and S2;
• The trail T′ = (r1, r′2, r3) was identified for species S3;
• Species S1 and S2 do not perform the reaction r′2;
• Species S3 does not perform the reaction r2.

2.1 Trail pooling

Trails identified by the trail finding method can be pooled together in order to
determine which trails are common to several species. Trail pooling specifically
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r1

r2

r2

r3

’

S2 A2 B2 C2X2

S1 A1 B1 C1

S3 A3 B3 C3’

r1 r2 r3

r1 r2 r3

r1 r2 r3’

a b

Figure V.1 A metabolic pathway and the genomic context for three species.
(a) A metabolic pathway with two possible metabolic routes: T = (r1, r2, r3) and T′

= (r1, r′2, r3). (b) Genomic context for three species S1, S2, and S3. Genes belonging
to the same chromosomal strand are shown as rectangles. Neighboring genes are
linked by solid black edges. Reactions in which gene products are involved are
specified above each gene, with the exception of gene X2 of species S2 which does
not encode an enzyme. Reactions belong to the pathway in (a).

consists in pooling trails in order to obtain the set of all trails identified for every
analyzed species, regardless of the values of the gap parameters (see section IV.6).
These values would however become available when investigating a particular trail
in the pool, for every species possessing the trail.

Detection of metabolic and genomic patterns Using the example in Figure V.1,
trail pooling would detect the trail T as being shared by species S1 and S2. S1

performs the reactions in T using products of strictly neighboring genes, whereas
for species S2 one gene was omitted. It would also be reported that species S3

possesses the trail T′.

Conservation of metabolic and genomic patterns This approach would however
fail to show that T′ is alternative metabolic route to T. Although the trails T and
T′ share the reactions r1 and r3 and although the genes involved in r1 and r3 are
neighbors for all three species (if one or two genes are skipped), this metabolic and
genomic pattern would not be apparent using a trail pooling approach.

2.2 Trail clustering

Trails obtained via trail finding can be clustered by using a particular cluster-
ing method and a particular (dis)similarity measure for trails. Depending on the
selected method and measure, different results may be obtained.
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For the purpose of this example, assume hierarchical clustering is chosen and
that the Jaccard distance is used for cluster establishment. The Jaccard distance
uses the ratio between the number of reactions present in two given trails and the
total number of reactions involved in the two trails. This distance measure leads to
the establishment of clusters reflecting trail similarity in terms of shared reactions.
While on the surface it might seem promising, trail clustering exhibits two main
disadvantages, discussed below.

Detection of metabolic and genomic patterns Using the example in Figure V.1,
the Jaccard distance between trails T and T′ is calculated as follows:

DJ = 1− |T ∩ T′|
|T ∪ T′|

where |T ∩ T′| denotes the number of reactions shared between the trails T and
T′ (here, 2) and |T ∪ T′| denotes the total number of reactions involved in the two
trails (here, 4). Hence, for this example, the Jaccard distance between the trails T
and T′ is 0.5. If the cutoff for hierarchical clustering is at least 0.5, the two trails
are clustered together. Since hierarchical clustering is an exploratory approach, the
cutoff value is context-dependent, meaning its value is chosen in accordance with
the majority of the data to be clustered. For instance, if the trails to be clustered are
highly similar (i.e. their respective Jaccard distances are closer to 0 rather than 1),
the cutoff value is likely to be smaller than 0.5, which in turn means that trails T
and T′ will belong to different clusters.

Conservation of metabolic and genomic patterns Trail clustering does not allow
a direct view on the whole array of species under study. It other words, while trail
clustering manages to capture metabolic and genomic patterns if the cutoff value
is chosen accordingly, it does not reflect their inter-specific degree of conservation.
The only way to obtain the species distribution for trails from a given cluster is to
investigate each of its trails in turn. For the example in Figure V.1, the trails T and
T′ belong to the same cluster assuming the cutoff value is at least 0.5. Although
being in the same cluster means these trails are similar with respect to reaction
composition, it is not known in advance that they occur in species S1, S2, and S3.

2.3 Trail grouping

This approach examines trails of a given reference species in terms of their met-
abolic and genomic conservation across the remaining species under study. Instead
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of directly comparing trails of the reference species to trails of the other species, trail
grouping determines:

(a) whether reactions involved in trails of the reference species are catalyzed by
products of neighboring genes in other species, and

(b) whether genes of the reference species involved in reactions in a given trail
have neighboring functionally similar genes in other species. (Functionally
similar genes

functionally

similar genesencode enzymes that catalyze the same reaction.)

For the example in Figure V.1, the objectives (a) and (b) above can be accom-
plished by examining the metabolic context for the trails T and T′, as well as the
genomic context for species S1, S2, and S3 for genes involved in these two trails
(Table V.1). As the exact details take up the rest of this chapter, conjecture for now
that trail grouping attains the previously stated objectives.

Reaction S1 S2 S3

r1 A1 A2 A3
r2 B1 B2 —
r′2 — — B′2
r3 C1 C2 C3

Table V.1 Metabolic and genomic context with respect to Figure V.1. For every
reaction involved in the two trails T and T′ in Figure V.1a, it is shown which genes
in species S1, S2, and S3 in Figure V.1b encode the required enzymes.

Detection of metabolic and genomic patterns Although trails of the reference
species obtained via trail finding are not directly compared to trails of the remain-
ing species under study, by choosing an appropriate manner of summarizing met-
abolic and genomic information (similar to Table V.1), it is possible to determine
whether a target species shares a common trail with the reference species, partially
or entirely. For example, the trail T occurs in species S1 and S2 entirely, whereas
only the reactions r1 and r3 from the trail T′ occur in these species (Figure V.1 and
Table V.1).

Conservation of metabolic and genomic patterns As explained in the previous
paragraph, metabolic and genomic patterns are detected whether the matches be-
tween the various species are partial or complete. This allows to effectively study
inter-specific variations at both the metabolic and genomic levels or, in other words,
the conservation of metabolic and genomic patterns.
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2.4 Summary

The three possible solutions for a comparative approach capable of exploiting
trail finding results were evaluated according to their ability to detect metabolic
and genomic patterns, as well as conserved such patterns. The conclusions are
summarized in Table V.2.

By definition, all three approaches are able to detect metabolic and genomic
patterns, although trail pooling does not contribute any new knowledge from this
point of view. Trail clustering promisingly brings together similar trails but fails at
detecting conservation. Finally, trail grouping fulfills both criteria. The rest of this
chapter describes the theoretical framework for trail grouping.

Approach Detection Conservation

Trail pooling (yes) no
Trail clustering yes no
Trail grouping yes yes

Table V.2 Comparison of trail pooling, trail clustering, and trail grouping.
Summary of the three comparative approaches with respect to the detection and
conservation of metabolic and genomic patterns.

3 Reaction sets

For reasons detailed in this section, trail grouping treats trails as reaction sets,
meaning that the order of reactions is not taken into account and that repeated
reactions are ignored. In Figure V.2, trails T1 = (r2, r7, r8, r3, r4) and T2 = (r2,
r3, r7, r8, r3, r4) both have the same corresponding reaction set {r2, r3, r4, r7, r8}.
Henceforth, reaction sets corresponding to trails produced by the HNET algorithm
(see section IV.5) will be called HNET reaction sets.HNet reaction

set The definition of conserved metabolic and genomic patterns (in terms of meta-
bolic and gene neighborhoods) needs to be able to accommodate slight variations
between species.

One such variation is encountering a different reaction order between trails. For
example, if trails (r9, r10) and (r10, r9) are identified for two different species for the
pathway in Figure V.2, these trails naturally constitute a conserved pattern for the
two species.

Another variation that needs to be taken into account is best illustrated with the
example of trails T1 and T2 above. If these trails are obtained for different species,
the common denominator is that both species perform the same five reactions us-



4. Theoretical framework for trail grouping 105

r1

r2

r3

r4

r6

r5 r9 r10

r7

r8

Figure V.2 Example of a metabolic pathway. Vertices represent reactions. This
figure is identical to Figure IV.1b.

ing products of neighboring genes, irrespective of reaction order and of whether
reaction r3 is repeated.

Another example of variation that should not prevent the identification of con-
served patterns is related to reactions (or genes) that are present in trails of some,
but not all, of the species. For example, suppose the trails (r2, r3, r7) and (r3, r7,
r8) are identified for two different species for the pathway in Figure V.2. The fact
that reactions r3 and r7 are common to both trails and are catalyzed by products of
neighboring genes for both species should be identified as a conserved pattern.

The necessity of accommodating these types of trail variations explains the
choice for processing HNET trails as HNET reaction sets during the present trail
grouping step.

4 Theoretical framework for trail grouping

Let P be the panel of species under study. Trail grouping requires the designa-
tion of a reference species reference

species

S among the species in P . Trails of the reference species
obtained via trail finding are processed as HNET reaction sets in order to detect
conservation of their metabolic and genomic patterns across the remaining species
in P .

Let RS be the set of all HNET reaction sets of S. Note that reaction sets in RS

are not disjoint. From a biological standpoint, RS represents the pool of trails of the
reference species obtained through trail finding, viewed in terms of HNET reaction
sets.

In order for trail grouping to accommodate genomic variations between species,
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it is considered that two genes of a given species are neighborsneighboring

genes

if they are separated
by at most three other genes on the same strand of the same chromosome.

The remainder of this section presents two methods for trail grouping:

• Trail grouping by reactionsgrouping by

reactions

consists in grouping reactions of the reference species
according to the HNET reaction sets they belong to. This method focuses
more on conserved metabolic, rather than genomic, patterns.

• Trail grouping by genesgrouping by

genes

consists in grouping HNET reaction sets of the reference
species according to its gene order. This method focuses more on conserved
genomic, rather than metabolic, patterns.

Assume the trail t = (r6, r2, r3, r7, r8) has been identified by the trail finding
method in the pathway in Figure V.2 for a reference species S. The genomic contexts
of species S and another species S1 are shown in Figure V.3. Both methods will be
illustrated on this example.

S

S1

  U   X   V  W   T

  A1  W1   B1   T1   X1

r2 r8 r3 r7 r6

r2 r7 – r6 r8

Figure V.3 Gene neighborhood for species S and S1. Genes belonging to the
same chromosomal strand are shown as rectangles. Neighboring and non neigh-
boring genes are linked with continuous and dotted edges, respectively. Reac-
tions in which gene products are involved are specified above each gene, with
the exception of gene B1 of species S1 which does not code for an enzyme. Reac-
tions belong to the pathway in Figure V.2. R represents a HNET reaction set of S.
R′ = {r6, r7, r8} designates a maximal subset of R such that genes of S1 involved
in reactions inR′ (in bold) are neighbors.

4.1 Grouping by reactions

Grouping trails by reactions for the reference species S consists in construct-
ing a table Tr

S where rows represent reactions in every HNET reaction set of S and
columns represent the remaining species in P . Table Tr

S reflects conserved met-
abolic patterns between the reference species and the rest of the panel through
the three possible symbols that can be assigned to each cell. These symbols al-
low to easily distinguish which reactions of the reference species are not present
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in the other species (blanks), and which are catalyzed by products of neighboring
(crosses) and non neighboring (dots) genes of the other species.

For example, for the trail t = (r6, r2, r3, r7, r8) in Figure V.2 and the gene neigh-
borhood in Figure V.3 for the reference species S and another species S1, Tr

S is rep-
resented by the first (R) and fourth (S1) columns in Table V.3. Reaction r3 is not
performed by species S1. Reactions r6, r7, and r8 are performed by neighboring
genes of S1 (T1, W1, and X1, respectively), whereas reaction r2 involves the product
of a distant gene.

R S genes S1 genes S1

r6 T T1 ×
r2 U A1 .

r3 V −
r7 W W1 ×
r8 X X1 ×
R′ Neighboring Neighboring

Table V.3 Trail grouping by reactions for the reference species S against an-
other species S1 (column S1). This is an extended version of the trail grouping by
reactions table Tr

S, where columns “S genes” and “S1 genes” have been added for
convenience. Entries in bold in columnsR, “S genes”, and “S1 genes” respectively
designate R′ and neighboring genes in S and S1 (see table footer). R represents
a HNET reaction set of S. Symbols in column S1 represent conserved metabolic
patterns between species S and S1 for reactions in R. Roughly speaking, R′ des-
ignates a maximal subset of R such that genes of S1 involved in reactions in R′
are neighbors (see text for formal definitions).

Rows in table Tr
S represent reactions in RS and are ordered by HNET reaction

sets of S. Note that a given reaction performed by species S appears several times
in Tr

S if it belongs to several HNET reaction sets. Columns represent the remain-
ing species in P and are ordered according to evolutionary distance to S, such that
species phylogenetically closer to S have lower column indexes than species phy-
logenetically distant from S.

Let Tr
S[i, j] denote the cell in Tr

S on row i and column j. Let ri denote the reaction
of species S corresponding to row i in Tr

S. Let S1 denote the species corresponding
to column j in Tr

S. Let R ⊆ RS denote the HNET reaction set of species S to which
reaction ri belongs. For the example presented above, the HNET reaction set of
species S that is investigated is R = {r2, r3, r6, r7, r8} (see the first column (R) in
Table V.3).

Let R′ denote a maximal subset of R such that the genes of S1 involved in R′
are neighbors. For the above example, the subset R′ is {r6, r7, r8} (see R′, i.e.
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entries in bold in the first column (R) in Table V.3) because reactions in R′ involve
the neighboring genes T1, W1, and X1, respectively, in species S1 (even though gene
B1 is skipped).

One of the following three symbols is assigned to each cell Tr
S[i, j]:

• a cross (×) if ri ∈ R′.
• a dot (.) if ri ∈ R−R′ and ri is performed by species S1.
• a blank if ri ∈ R−R′ and ri is not performed by species S1.

For the above example (see the fourth column (S1) in Table V.3), the cells cor-
responding to reactions in R′ receive a cross symbol (×). Since reaction r2 in R is
performed in S1 by gene A1 and does not belong to R′, the corresponding cell on
column S1 in Tr

S receives a dot symbol (.). Finally, reaction r3 is absent from S1,
therefore the corresponding cell receives a blank. The interpretation is that reac-
tions r6, r7, and r8 are performed in species S1 by products of neighboring genes.
Reaction r3 is absent from S1, whereas the gene involved in r2 is not a neighbor of
genes involved in reactions r6, r7, and r8.

4.2 Grouping by genes

Two genes encoding enzymes involved in the same metabolic reaction are re-
ferred to as functionally similar genes.functionally

similar genes

Functionally similar genes in two species can
be either analogues (products of convergent evolution) or homologues (products
of divergent evolution).

Grouping trails by genes consists in constructing a table Tg
S where rows repre-

sent genes of the reference species S involved in HNET reaction sets shared by S
and at least one other species in P , and columns represent the remaining species
in P . Table Tg

S reflects conserved genomic patterns between the reference species
and the rest of the panel through the two possible symbols that can be assigned to
each cell. These symbols allow to easily distinguish genes of S with neighboring
(crosses) and non neighboring (dots) functionally similar genes in other species.

For example, for the trail t = (r6, r2, r3, r7, r8) in Figure V.2 and the gene neigh-
borhood in Figure V.3 for the reference species S and another species S1, Tg

S is rep-
resented by the second (G) and fourth (S1) columns in Table V.4. Genes X1, W1, and
T1 of S1 respectively have the neighboring functionally similar genes X, W, and T
in the reference species S (hence the cross symbols).

Let RS1 be the set of all HNET reaction sets for species S1 ∈ P − {S}. Let R be
the set of HNET reaction sets defined by:
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R G H S1

r2 U A1 .

r8 X X1 ×
r3 V − .

r7 W W1 ×
r6 T T1 ×

G′ H′

Table V.4 Trail grouping by genes for the reference species S against another
species S1 (column S1). This is an extended version of the trail grouping by genes
table Tg

S , where columns R and H have been added for convenience. Entries in
bold in columns G and H respectively designate G ′ and H′ (see table footer). R
represents a HNET reaction set of S. G represents a group of neighboring genes
of S whose products catalyze the respective reactions inR. Symbols in column S1
in Tg

S represent conserved genomic patterns between species S and S1 for genes
in G. Roughly speaking, H designates genes in S1 involved in reactions in R; H′
designates neighboring genes in H involved in reactions in R. H′ maximizes the
number of genes in G ′, where genes in H′ and G ′ ⊆ G are involved in the same
reactions inR (see text for formal definitions).

R = RS ∩
( ⋃

S1∈P−{S}
RS1

)
Hence, R represents the set of HNET reaction sets common to S and at least

one other species in P . Let GS be the set of genes of the reference species S that
are involved in reactions belonging to HNET reaction sets of R. From a biological
standpoint, GS represents the pool of genes of the reference species encoding en-
zymes involved in HNET reaction sets common to S and at least one other species
in P .

Rows in table Tg
S represent genes from GS and are ordered by chromosome and

strand, according to the position of genes on the strand. Columns represent the re-
maining species in P and are ordered according to evolutionary distance to S, such
that species phylogenetically closer to S have lower column indexes than species
phylogenetically distant from S.

Let S1 denote the species corresponding to column j in Tg
S . Let G be a subset of

GS such that genes in G are neighbors on the same strand and chromosome of S.
For the example presented above, the gene group of species S that is investigated
is G = {U, X, V, W, T} (see the second column (G) in Table V.4).

Let R be the set of reactions in all HNET reaction sets in which the genes in G
are involved. Formally,R is the set of all reactions r such that:
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(a) there exists a reaction set h of species S such that r ∈ h, and
(b) there exists a gene g ∈ G such that g is involved in r.

In other words, given a group G of neighboring genes of S, R is the set of reac-
tions in trails common to S and at least one other species in P such that reactions
in R are catalyzed by products of genes in G. For the above example, R is {r2, r3,
r6, r7, r8} (see the first column (R) in Table V.4).

Let H be the set of genes of S1 involved in reactions in R. That is, given R, the
genome for species S1, and the correspondence between reactions in R and genes
of S1, H is the set of genes in S1 (along with their position on the chromosome)
such that every gene in H is involved in at least one reaction in R. For the above
example,H = {A1, X1, W1, T1} (see the third column (H) in Table V.4).

Let H′ ⊆ H be neighboring genes in H, and let G ′ ⊆ G such that genes in H′
and G ′ are involved in the same reactions in R. H′ is chosen such as to maximize
|G ′|, i.e. the number of genes in G involved in the same reactions as neighboring
genes inH.

For the above example, gene A1 is not a neighbor of gene W1, therefore H′
must be a strict subset of H. There are several possible strict non-empty subsets of
H of neighboring genes, other than singletons: {W1, T1}, {W1, X1}, {T1, X1}, and
{W1, T1, X1}. The subset ofH that is of interest isH′ = {W1, T1, X1}, as it maximizes
the number of genes in G involved in reactions in R; G ′ is thus {X, W, T} (see H′
and G ′, i.e. entries in bold in the third (H) and second (G) columns, respectively,
in Table V.4). The genes inH′ can be considered neighboring because only gene B1

needs to be skipped as it does not encode an enzyme. Thus the subset of reactions
ofR catalyzed by genes inH′ is {r6, r7, r8}.

Let Tg
S [i, j] denote the cell in Tg

S on row i and column j, where i is the index in GS

of a gene gi in G. One of the following two symbols is assigned to each cell Tg
S [i, j]:

• a cross (×) if gi ∈ G ′.
• a dot (.) if gi ∈ G − G ′.

For the above example, cells for genes U and V receive a dot symbol (.), whereas
cells for genes X, W, and T receive a cross symbol (×) (see the second (G) and fourth
(S1) columns in Table V.4). The interpretation is that genes X, W, and T of the ref-
erence species are involved in reactions catalyzed by neighboring genes in species
S1.
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5 Special situations

This section presents two case studies of complex situations that arise in practice
when dealing with biological data. They are illustrated using the method of trail
grouping by genes.

5.1 The number of genes in the reference species is maximized

Here is addressed the aspect of the formal definition of Tg
S requiring that H′

maximizes |G ′|. In other words, given a group G of genes of the reference species
S involved in reactions of a HNET reaction set of S, G ′ is the maximum subset of
genes in G having neighboring functionally similar genes in the target species.

As before, consider the trail t = (r6, r2, r3, r7, r8) was obtained for a reference
species S for the pathway in Figure V.2. The genomic context of species S and
another species S2 is shown in Figure V.4. Trail grouping by genes is represented
by the second (G) and fourth (S2) columns in Table V.5.

S

S2

  T   U   V  W   X

  T2   U2   V2  W2   X2

r6 r2 r3 r7 r8

r6 r2 r3 r7 r8

Figure V.4 Gene neighborhood for species S and S2. Genes belonging to the
same chromosomal strand are shown as rectangles. Neighboring and non neigh-
boring genes are linked with continuous and dotted edges, respectively. Reactions
in which gene products are involved are specified above each gene. Reactions be-
long to the pathway in Figure V.2.

R G H S2

r6 T T2 .

r2 U U2 .

r3 V V2 ×
r7 W W2 ×
r8 X X2 ×

G′ H′

Table V.5 Trail grouping by genes for the reference species S against another
species S2 (column S2). The HNET trail under study is t = (r6, r2, r3, r7, r8),
obtained for the pathway in Figure V.2. For more details see Table V.4.
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The gene group of species S that is investigated here is G = {T, U, V, W, X} (see
the second column (G) in Table V.5). The set of reactions from all HNET reaction
sets in which genes in G are involved is R = {r2, r3, r6, r7, r8} (see the first column
(R) in Table V.5).

The set of genes of species S2 involved in reactions in R is H = {T2, U2, V2,
W2, X2} (see the third column (H) in Table V.5). All genes in G are neighbors in
the reference species S. However, for species S2, genes in H are separated into two
groups of neighboring genes: {T2, U2} and {V2, W2, X2}, respectively (Figure V.4).

The genes in subset H′ ⊆ H must be neighbors for species S2, therefore H′ is
either {T2, U2} or {V2, W2, X2}. If H′ = {T2, U2}, then the reactions catalyzed in R
by genes in H′ are {r6, r2}, and the genes of the reference species involved in these
reactions are G ′ = {T, U}. If H′ = {V2, W2, X2}, then the reactions in R catalyzed
by genes in H′ are {r3, r7, r8}, and the genes of the reference species involved in
these reactions are G ′ = {V, W, X}. The correct choice for H′ is therefore H′ =
{V2, W2, X2}, as it corresponds to |G ′| = 3 instead of |G ′| = 2 (see H′, i.e. entries in
bold in the third column (H) in Table V.5).

The subset G ′ indicates how cells in Tg
S on the column corresponding to species

S2 are filled; as can be seen in Table V.5, cells for genes T and U receive a dot symbol
(.), whereas cells for genes V, W, and X receive cross symbols (×). The interpre-
tation is that genes V, W, and X of the reference species are involved in reactions
catalyzed by neighboring functionally similar genes in species S2. The same is true
of the other two genes T and U, however. The reason Tg

S shows these two genes as
not having neighboring functionally similar genes in species S2 is twofold. On the
one hand, {T, U} is not the maximum subset of G having neighboring functionally
similar genes in species S2 (as shown, the maximum subset is G ′ = {V, W, X}). On
the other hand, even though all genes in G have neighboring functionally similar
genes in species S2, the sets of genes {T2, U2} and {V2, W2, X2} in S2 are not neigh-
bors on the chromosome. It would therefore be misleading to indicate that genes
of the reference species V, W, and X, as well as genes T and U, have neighboring
functionally similar genes in species S2.

Maximizing the number of neighboring genes of the reference species in the
context of trail grouping by genes represents a greedy strategy. It increases the
probability of detecting large similar conserved patterns at the genomic level across
the remaining species under study.
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5.2 The enzyme–reaction association is not one-to-one

This example elaborates on the previous one (see section 5.1 above). As the
preceding example, it shows that, for trail grouping by genes, the number of neigh-
boring genes of the reference species is maximized. Unlike the previous example,
here are illustrated the cases where the product of one gene is involved in several
reactions, and where one reaction involves the products of several genes.

Consider the trail t = (r6, r2, r3, r7) was obtained for a reference species S for
the pathway in Figure V.2. The genomic context of species S and another species
S3 is shown in Figure V.5. Trail grouping by genes is represented by the second (G)
and fourth (S3) columns in Table V.6.

S

S3

  T   U   V  W  W’

  T3   U3   V3  W3

r6 r1, r2 r3 r7 r7

r6 r2 r3 r7
  U3

r1
’

Figure V.5 Gene neighborhood for species S and S3. Genes belonging to the
same chromosomal strand are shown as rectangles. Neighboring and non neigh-
boring genes are linked with continuous and dotted edges, respectively. Reactions
in which gene products are involved are specified above each gene. Reactions be-
long to the pathway in Figure V.2.

R G H S3

r6 T T3 .

r1
r2

U U′3
U3

.

r3 V V3 ×

r7
W
W ′ W3

×
×

G′ H′

Table V.6 Trail grouping by genes for the reference species S against another
species S3 (column S3). The HNET trail under study is t = (r6, r2, r3, r7), obtained
for the pathway in Figure V.2. For more details see Table V.4.

Figure V.5 shows that the reactions r1 and r2 are performed by the product of a
unique gene U in the reference species S, whereas in species S3 the two reactions
involve the two separate genes U′3 and U3. Conversely, the reaction r7 is catalyzed



114 Chapter V. Trail grouping

by two enzymes encoded by the genes W and W ′ in the reference species S, whereas
species S3 performs this reaction using solely the product of a gene W3.

The gene group of species S that is investigated here is G = {T, U, V, W, W ′}
(see the second column (G) in Table V.6). Recall that in trail grouping by genes are
considered reactions from all HNET reaction sets in which genes in G are involved.
This includes the reaction r1. R is therefore the set {r1, r2, r3, r6, r7} (see the first
column (R) in Table V.6).

The set of genes of species S3 involved in reactions in R is H = {T3, U3, U′3,
V3, W3} (see the third column (H) in Table V.6). All genes in G are neighbors in
the reference species S. However, for species S3, genes in H are separated into two
groups of neighboring genes: {T3, U3, U′3} and {V3, W3}, respectively (Figure V.5).

The genes in subset H′ ⊆ H must be neighbors for species S3, therefore H′
is either {T3, U3, U′3} or {V3, W3}. If H′ = {T3, U3, U′3}, then the reactions in R
catalyzed by genes in H′ are {r6, r1, r2}, and the genes of the reference species in-
volved in these reactions are G ′ = {T, U}. If H′ = {V3, W3}, then the reactions in
R catalyzed by genes in H′ are {r3, r7}, and the genes of the reference species in-
volved in these reactions are G ′ = {V, W, W ′}. The correct choice forH′ is therefore
H′ = {V3, W3}, as it corresponds to |G ′| = 3 instead of |G ′| = 2 (see H′, i.e. entries
in bold in the third column (H) in Table V.6).

The subset G ′ indicates how cells in Tg
S on the column corresponding to species

S3 are filled; as can be seen in Table V.6, cells for genes T and U receive a dot symbol
(.), whereas cells for genes V, W, and W ′ receive cross symbols (×). The interpre-
tation is that genes V, W, and W ′ of the reference species are involved in reactions
catalyzed by neighboring genes in species S3, and are the maximum subset in G
having neighboring functionally similar genes in species S3. Although the genes T
and U are equally neighbors in S and have neighboring functionally similar genes
in S3, the functionally similar genes to T and U are separated on the chromosome
from the functionally similar genes to V, W, and W ′.

This example shows that trail grouping is a robust method, capable of handling
the complex biological associations between metabolism and genomic context.

6 Discussion

Following trail finding, trail grouping is a second step leading from metabolic
and genomic patterns for a single species (HNET trails) to the identification of po-
tentially interesting conserved metabolic and genomic patterns in interspecies com-
parisons. In order to capture the most relevant conserved patterns across multiple
species, it is fundamentally important to go beyond strictly matching patterns by
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accommodating possible trail variations, such as trail directionality, reaction order,
repetition of reactions, as well as different but overlapping sets of reactions and/or
neighboring genes. The necessity of incorporating these variations for establishing
conserved interspecies patterns requires processing trails as HNET reaction sets
during the trail grouping step.

Once trail grouping has identified potentially interesting conserved patterns,
the metabolic and genomic patterns conserved across multiple species can be an-
alyzed on a case-by-case basis. During this third analysis step, HNET reaction
sets should be considered in their metabolic context and hence treated yet again
as trails. In their metabolic context, trails contain information on cycles and reac-
tion directionality, and correspond to actual metabolic routes.

To provide a powerful and flexible way to analyze trails obtained through trail
finding as explained in the previous chapter, two trail grouping methods are pro-
posed, respectively termed trail grouping by genes and by reactions.

On the one hand, trail grouping by genes is restricted to genes of the refer-
ence species that are involved in HNET reaction sets common to at least one other
species. This approach has the distinct advantage of keeping together neighboring
genes that potentially make up for more than a single trail for the reference species
(an example is given in section VII.5).

On the other hand, trail grouping by reactions identifies all HNET reaction sets
for the reference species, which makes it possible to retrieve valuable information in
the form of alternative reactions that might have been filtered out when grouping
trails by genes. Suppose the reference species is the only species in the selected
panel to perform a given metabolic route M, while also sharing some reactions
with other species in the panel. If the shared reactions as well as those specific to
the metabolic route M involve neighboring genes in the reference species, then the
specific route M, while not visible when grouping trails by genes, will be present
in trail grouping by reactions. Consider the case of species S3 in Figure V.1, chosen
as reference species. It is the only species among S1, S2, and S3 for which the HNET

trail T′ = (r1, r′2, r3) was identified. This trail is present (as a HNET reaction set)
when performing grouping by reactions for the reference species S3.

Notice that from trail grouping by genes alone it is not possible to decide wheth-
er the reactions catalyzed by genes that receive a dot symbol (.) in the column
corresponding to a species S1 other than the reference species are absent from S1

or performed by products of non neighboring genes. Trail grouping by reactions
however distinguishes the two cases by assigning a dot symbol to reactions that are
not catalyzed by products of neighboring genes in S1, or a blank if the reaction in
question is absent from S1.
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7 Concluding remarks

This chapter introduced trail grouping, a theoretical framework for the identifi-
cation of conserved metabolic and genomic patterns across multiple species. With
respect to a given reference species, the two proposed methods, trail grouping by
reactions and by genes, identify conserved metabolic and genomic patterns, respec-
tively. Jointly, the two methods allow to flexibly exploit trails detected using the
trail finding method (Chapter IV). After a brief presentation of CoMetGeNe (Chap-
ter VI), a pipeline designed to perform trail finding and trail grouping, concrete
examples of (conserved) metabolic and genomic patterns will be presented and
discussed in Chapter VII.
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1 Introduction

The previous chapters introduced trail finding (Chapter IV) and trail group-
ing (Chapter V), two methods that were designed during this thesis to identify
conserved metabolic and genomic patterns across multiple species. This chapter
describes how CoMetGeNe, especially created for this purpose, achieves trail finding
and trail grouping in practice.

CoMetGeNe,CoMetGeNe short for Conserved Metabolic and Genomic Neighborhoods, is a Python
pipeline implementing trail finding and trail grouping. Given one or several query
species, CoMetGeNe detects sequences of reactions in metabolic pathways of the
query species such that the reactions are catalyzed by products of neighboring
genes. Trail grouping allows to group CoMetGeNe trails obtained for a given ref-
erence species by either reactions or genes.

2 Trail finding

Trail finding can be performed for one or several species using the convenient
command-line interface proposed by the script CoMetGeNe.py (and the accompany-
ing script CoMetGeNe_launcher.py for parallel execution). The only required infor-
mation is the species to be analyzed (designated by its three- or four-letter KEGG
identifier [KEGG Organisms]) and the directory where metabolic pathways of the
species in question will be stored. The listing in Figure VI.1 details the command-
line interface for CoMetGeNe.py and offers a usage example.

By default, the gap parameters δD and δG are set to 0, meaning that no reactions
or genes, respectively, are skipped (see section IV.6). Optionally, other values can be
assigned to these parameters using the options -dD and -dG in the listing in Figure
VI.1. The trails produced by CoMetGeNe.py can be saved in an optional output file
using the option -o in the listing in Figure VI.1.

2.1 Automatic data retrieval

CoMetGeNe.py automatically extracts the necessary metabolic and genomic in-
formation from KEGG using the KEGG REST API. Metabolic pathways are stored
in KGML format (see section III.2.3 and [KGML]) in a user-specified directory (see
DIR in the listing in Figure VI.1). Only metabolic pathway maps, excluding global
and overview maps, are extracted (i.e., maps whose KEGG identifiers are greater
than or equal to 01100 are excluded). Genomic information is stored in binary
format. In addition, information linking EC numbers to R numbers is equally re-
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usage: CoMetGeNe.py [-h] [--delta_G NUMBER] [--delta_D NUMBER]
[--timeout SECONDS] [--output OUTPUT] [--skip-import]
ORG DIR

Determines maximum trails of reactions for the specified organisms such that the
genes encoding the enzymes involved in the trails are neighbors.

A trail of reactions is a sequence of reactions that can repeat reactions
(vertices), but not arcs between reactions.

Metabolic pathways and genomic information are automatically retrieved from the
KEGG knowledge base.

Required arguments:
ORG query organism (three- or four-letter KEGG code, e.g.

’eco’ for Escherichia coli K-12 MG1655). See full list
of KEGG organism codes at
http://rest.kegg.jp/list/genome

DIR directory storing metabolic pathways for the query
organism ORG or where metabolic pathways for ORG will
be downloaded

Optional arguments:
-h, --help show this help message and exit
--delta_G NUMBER, -dG NUMBER

the NUMBER of genes that can be skipped (default: 0)
--delta_D NUMBER, -dD NUMBER

the NUMBER of reactions that can be skipped (default: 0)
--timeout SECONDS, -t SECONDS

timeout in SECONDS (default: 300)
--output OUTPUT, -o OUTPUT

output file
--skip-import, -s skips importing metabolic pathways from KEGG,

attempting to use locally stored KGML files if they
are present under the specified directory (DIR)

Example: running

python2 CoMetGeNe.py eco data/ -dG 2 -o eco.out

downloads metabolic pathways for species ’eco’ to directory ’data/’. Trail
finding is performed, allowing two genes to be skipped at most (-dG 2).
Reactions cannot be skipped (-dD is 0 by default). Maximum trails of reactions
such that the reactions are catalyzed by products of neighboring genes are saved
in the output file ’eco.out’.

Figure VI.1 Command-line options for CoMetGeNe.py
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trieved and stored in binary format for subsequent runs; it is used exclusively for
trail output.

Storing metabolic pathways and genomic information for a given species allows
to perform trail finding without re-downloading the same data for subsequent ex-
ecutions, e.g. when CoMetGeNe.py is ran for the same species but with different gap
parameters.

2.2 Blacklisted pathways

Since the underlying problem formulation for trail finding is NP-hard (see sec-
tion IV.3), CoMetGeNe.py uses a configurable timeout (defaulting to 5 minutes) for
analyzing a given metabolic pathway (see option -t in the listing in Figure VI.1). If
this timeout is reached without producing any results, then the pathway in ques-
tion is “blacklisted”, i.e. it is added to a list of exclusions for the species and com-
bination of gap parameters for which the analysis could not be finished. This pre-
vents CoMetGeNe from further attempting to analyze the given pathway for sub-
sequent executions if the gap parameters increase. For example, a pathway that
is blacklisted for (δD = 2, δG = 2) will not be further analyzed for (δD, δG) ∈
{(2, 2), (2, 3), (3, 2), (3, 3)}. The blacklist is stored locally as a text file.

2.3 Parallel execution

An important speedup is attained if CoMetGeNe.py is ran in parallel using the
accompanying script CoMetGeNe_launcher.py. Restrictions inherent to KEGG limit
pathway and genomic information retrieval to 3 and 2 threads, respectively. Trail
finding in CoMetGeNe can, however, take full advantage of the maximum number
of physical threads.

Although CoMetGeNe_launcher.py does not provide a command-line interface,
it can be easily configured to perform multithreaded trail finding. Thus, the desired
list of species, the values of the gap parameters δD and δG, as well as the directories
storing metabolic pathways and trail finding results can be specified by modifying
one or several variables.

3 Trail grouping

Once CoMetGeNe results are available for several species, trail grouping can be
performed in order to identify conserved interspecies metabolic and genomic pat-
terns, as described in sections V.4.1 and V.4.2. The script grouping.py provides
this functionality and offers the possibility to save the tables Tr

S (trail grouping by
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reactions) and Tg
S (trail grouping by genes) for a given reference species in CSV

format.
Three binary files are created when grouping trails by either reactions or genes.

They contain pathway data, genomic information, and parsed CoMetGeNe results
that can be reused when choosing another species as reference.

The listing in Figure VI.2 details the command-line interface for grouping.py

and offers a usage example.

usage: grouping.py [-h] [--output OUTPUT] {genes,reactions} RESULTS KGML ORG

Groups CoMetGeNe trails by either genes or reactions, optionally producing
a CSV file.

Required arguments:
{genes,reactions} type of trail grouping to perform (possible values:

’genes’ or ’reactions’)
RESULTS directory storing CoMetGeNe results
KGML directory containing input KGML files
ORG reference species (KEGG organism code)

Optional arguments:
-h, --help show this help message and exit
--output OUTPUT, -o OUTPUT

output file (CSV)

KGML needs to contain a subdirectory for every species for which a result file
is present in RESULTS. The subdirectory names need to be the three- or four-
letter KEGG codes for the species in question (e.g. ’bsu’, ’eco’, ’pae’,
etc.). Each species subdirectory is expected to contain metabolic pathways in
KGML format.

Example: running

python2 grouping.py genes results/ data/ eco -o grouping_gene_eco.csv

will perform trail grouping by genes for the reference species ’eco’. The
CoMetGeNe results are stored in ’results/’, and the KGML files are available in
’data/’. A CSV file is produced (’grouping_gene_eco.csv’).

Figure VI.2 Command-line options for grouping.py

Note that phylogenetic relationships are not established automatically. Trail
grouping as implemented by grouping.py displays species in Table VII.1 in phylo-
genetic order for any given reference species among the ones in the table. If other
species are present in the data set, however, they are ordered lexicographically and
a warning invites the user to manually define a phylogeny for the new species un-
der study.
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4 Requirements and availability

CoMetGeNe is a cross-platform pipeline written in Python. It requires Python 2.7
and the Python libraries lxml1 and NetworkX2.

In order to automatically extract metabolic pathway maps and genomic infor-
mation from KEGG, CoMetGeNe needs an active internet connection. A multi-core
CPU is recommended for faster (multithreaded) trail finding.

The CoMetGeNe pipeline is freely available under a MIT license and can be ob-
tained at https://cometgene.lri.fr.

5 Concluding remarks

This chapter presented CoMetGeNe, a robust implementation of the trail finding
and trail grouping methods, described in the previous two chapters.

The next chapter discusses several findings detected using CoMetGeNe, advanc-
ing it as an exploratory tool that allows biologists and bioinformaticians to easily
identify conserved metabolic and genomic patterns between species they choose to
study.

1lxml is available at the following address: http://lxml.de
2NetworkX is available at the following address: https://networkx.github.io

https://cometgene.lri.fr
http://lxml.de
https://networkx.github.io
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1 Introduction

The previous chapter introduced CoMetGeNe, a pipeline implementing both trail
finding (Chapter IV) and trail grouping (Chapter V). The present chapter illustrates
several metabolic and genomic patterns identified using CoMetGeNe on a selected
bacterial data set. Investigating the degree of conservation of these metabolic and
genomic patterns reveals insights as well as surprising findings regarding links
between genomic organization and metabolic architecture. Unexpectedly, careful
analysis of CoMetGeNe results also calls attention to existing annotation problems in
public knowledge bases.

This introduction presents the data set on which CoMetGeNe was executed (see
1.1), as well as an overview of CoMetGeNe results (see 1.2). Section 1.3 explains
important aspects concerning the figures in this chapter.

The rest of the chapter discusses several examples of conserved metabolic and
genomic patterns detected for Bacillus subtilis and Escherichia coli, in increasing or-
der of relevance.

1.1 Bacterial data set

We have chosen to focus on prokaryotes because of their propensity for orga-
nization of genes into operons [Moreno-Hagelsieb, 2015]. Although eukaryotes
exhibit gene clustering to a certain extent [Hurst et al., 2004], such an organization
is quite infrequent.

While the organization of prokaryotic genes into operons has long been known
and studied, CoMetGeNe does not focus specifically on operons. It uncovers them
if the resulting proteins are involved in consecutive steps in a metabolic pathway,
but it also uncovers genes that are adjacent to operons if the proteins they encode
belong to the same trail of reactions. For example, CoMetGeNe identifies a trail of
six reactions for E. coli in the valine, leucine, and isoleucine biosynthesis pathway
(eco00290) representing the conversion of threonine into leucine (data not shown).
This trail involves five genes of E. coli, four of which constitute the ilvMEDA region
of the ilvLGMEDA operon. The fifth gene, ilvC, is not part of this operon as its
transcription is regulated by expression of ilvY [Wek and Hatfield, 1988].

For this study, a data set of 50 bacterial species spanning major phyla of the
bacterial tree of life was chosen (Table VII.1). The data set is therefore representative
of the whole bacterial domain.

Recall from Chapter V that when trail grouping is performed for the reference
species, the remaining species in the data set are ordered by increasing evolutionary
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Species Strain Class
KEGG
code

Escherichia coli K-12 MG1655 γ-proteobacteria eco
Yersinia pestis CO92 (biovar Orientalis) γ-proteobacteria ype
Vibrio cholerae O395 γ-proteobacteria vco
Shewanella putrefaciens CN-32 γ-proteobacteria spc
Pseudomonas aeruginosa PAO1 γ-proteobacteria pae
Xylella fastidiosa 9a5c γ-proteobacteria xfa
Ralstonia solanacearum GMI1000 β-proteobacteria rso
Neisseria meningitidis MC58 (serogroup B) β-proteobacteria nme
Acidithiobacillus ferrivorans — Acidithiobacillia afi
Agrobacterium radiobacter — α-proteobacteria ara
Rickettsia rickettsii Iowa α-proteobacteria rrj
Geobacter sulfurreducens PCA δ-proteobacteria gsu
Nitrospira defluvii — Nitrospira nde
Acidobacterium capsulatum — Acidobacteriales aca
Desulfurispirillum indicum — Chrysiogenetes din
Fusobacterium nucleatum subsp. nucleatum ATCC 25586 Fusobacteriia fnu
Denitrovibrio acetiphilus — Deferribacteres dap
Thermodesulfatator indicus — Thermodesulfobacteria tid
Aquifex aeolicus — Aquificae aae
Bacillus subtilis subsp. subtilis 168 Bacilli bsu
Listeria monocytogenes EGD-e Bacilli lmo
Staphylococcus aureus subsp. aureus N315 (MRSA/VSSA) Bacilli sau
Lactobacillus acidophilus NCFM Bacilli lac
Streptococcus pneumoniae ST556 Bacilli snd
Clostridium perfringens 13 Clostridia cpe
Mycoplasma pneumoniae M129 Mollicutes mpn
Synechocystis sp. PCC 6803 Cyanobacteria (phylum) syn
Prochlorococcus marinus subsp. marinus CCMP1375 Cyanobacteria (phylum) pma
Chloroflexus aurantiacus — Chloroflexia cau
Bifidobacterium breve ACS-071-V-Sch8b Actinobacteria bbv
Corynebacterium glutamicum ATCC 13032 (Kyowa Hakko) Actinobacteria cgl
Mycobacterium tuberculosis H37Rv Actinobacteria mtv
Streptomyces coelicolor — Actinobacteria sco
Deinococcus radiodurans — Deinococci dra
Thermus thermophilus HB27 Thermi tth
Fimbriimonas ginsengisoli — Fimbriimonadia fgi
Acetomicrobium mobile — Synergistia amo
Thermotoga maritima MSB8 Thermotogae tmm
Caldisericum exile — Caldisericia cex
Dictyoglomus thermophilum — Dictyoglomia dth
Fibrobacter succinogenes — Fibrobacteria fsu
Gemmatimonas aurantiaca — Gemmatimonadetes gau
Chlorobium phaeobacteroides DSM 266 Chlorobia cph
Bacteroides fragilis YCH46 Bacteroidia bfr
Rhodopirellula baltica — Planctomycetia rba
Chlamydia pneumoniae CWL029 Chlamydiia cpn
Opitutus terrae — Opitutae ote
Borrelia burgdorferi N40 Spirochaetia bbn
Elusimicrobium minutum — Elusimicrobia emi
Helicobacter pylori 26695 ε-proteobacteria heo

Table VII.1 The data set of 50 bacterial species chosen for this study
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distance to the reference species. The ordering of species in the data set with respect
to the reference species uses the phylogeny in Figure 2 by Rinke et al. [2013].

Note that phylogeny, especially bacterial phylogeny, is an ever-moving field.
Yarza et al. [2014] have pointed out that, in the case of proteobacteria, only Al-
phaproteobacteria, Betaproteobacteria, and Gammaproteobacteria form a mono-
phyletic group. Deltaproteobacteria and Epsilonproteobacteria show an important
divergence from this monophyletic group in terms of 16S ribosomal RNA sequence,
which led the authors to propose that the Proteobacteria phylum rank be reconsid-
ered. More recently, Parks et al. [2017] have shown that the Deltaproteobacteria
class is polyphyletic. The phylogenetic relationships used in trail grouping be-
tween the species in Table VII.1 do not incorporate these recent findings, as the
work presented herein has been started before the latest relevant study.

1.2 Overview of CoMetGeNe results

Trail finding and trail grouping were performed on the bacterial data set in Ta-
ble VII.1, with gap parameters δD and δG ranging from 0 to 3 (see section IV.6). Ge-
nome size varies between 1062 and 8300 genes, with an average of approximately
3270 genes. In total, 3709 pathways were extracted (74 pathways per species, on
average). Metabolic and genomic data used in the examples presented in sections
2, 3, and 4 were extracted from KEGG in June 2018. The data for the case study in
section 5 was extracted in September 2016, for reasons explained in section III.3.1.

Using the metabolic and genomic information extracted from KEGG in June
2018, a total of 4179 CoMetGeNe trails were identified. Of these, 2620 (62.7%) occur
solely in a single species. The number of trails per species varies between 19 and
501, with an average of 201 trails. Table VII.2 shows trail span distribution (recall
that the span of a CoMetGeNe trail represents the number of distinct reactions in the
trail). The majority of trails are short, consisting of up to three distinct reactions.
Other trails, however, have as many as 35 unique reactions, e.g. for the fatty acid
biosynthesis pathway in Bifidobacterium breve (bbv00061) and Streptococcus pneumo-
niae (snd00061). A total of 121 out of 3709 pathways were blacklisted, amounting
to 3.3% of the data set (see section VI.2.2).

Trail span Percentage of trails

1−3 56.4%
4−10 38.7%
11−35 4.9%

Table VII.2 Distribution of trail span
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The trail finding run time for CoMetGeNe for the whole data set of 50 bacterial
species (Table VII.1) was under 4 hours and 30 minutes when using 8 threads.1 The
trail finding run time does not take into account the time required to automatically
retrieve data from KEGG, as this is dependent upon the Internet connexion speed
and upon the number and size of the selected genomes. In the experimental setup
used in this thesis, metabolic pathways and genomic information were retrieved in
12 and 76 minutes, respectively. When each of the species in the data set is taken
in turn as reference species, trail grouping by reactions and by genes takes approx-
imately one hour in total. Thus, data retrieval from KEGG for the data set in Table
VII.1, followed by trail finding and trail grouping, amounted to approximately 7
hours.

Considering the quantity of metabolic and genomic data to be retrieved and
analyzed, as well as the exponential nature of the HNET algorithm (see section IV.5)
due to MaSST and MaSSCoT being NP-hard (see section IV.3), the total trail finding
run time (including data retrieval) for the selected data set was quite satisfactory,
amounting to less than 6 hours. Moreover, CoMetGeNe execution time is linear with
respect to the number of species to analyze.

1.3 Figure information

For the figures in this chapter illustrating trail grouping, the colors used in
the table headers represent the bacterial superphylum. Alphaproteobacteria, Be-
taproteobacteria, Gammaproteobacteria, and Deltaproteobacteria are highlighted
in pink; Terrabacteria, in brown; Sphingobacteria (FCB bacteria), in yellow; and
Planctobacteria (PVC bacteria), in light green.

The naming scheme for E. coli genes uses the Blattner identifiers or b numbers.
Consecutive b numbers usually reflect neighboring genes (e.g. the genes b0086 and
b0087 are consecutive).

The naming scheme for B. subtilis genes has the form BSUXXXX0, where X is a
digit. Increments of 10 in identifiers of B. subtilis genes usually reflect neighboring
genes (e.g. the genes BSU28300 and BSU28310 are consecutive).

1The test machine was a quad-core 2.6 GHz Intel Xeon E5-2623 v4 (Broadwell) with 10 MB L3 cache
and 64 GB of RAM, running under Ubuntu GNU/Linux 16.04.3 LTS. Although the test machine has
64 GB of main memory, running CoMetGeNe on a single thread only requires approximately 100 MB
of RAM.
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2 Branching in metabolic pathways

Figure VII.1 shows a CoMetGeNe trail for Bacillus subtilis in the valine, leucine,
and isoleucine biosynthesis pathway, representing the conversion of pyruvate into
a precursor of leucine. CoMetGeNe produced this trail by skipping the reaction
R04441 (EC 4.2.1.9), with gap parameter δD set to 1.

BSU28300
BSU28310
BSU36010

(R00226)

BSU28290
(R05071)

BSU28290
(R04440)

BSU28280
(R01213)

BSU28250
BSU28260
(R03968)

BSU28250
BSU28260
(R04001)

BSU28270 
(R04426)

(R04441)

Figure VII.1 Partial view of the valine, leucine, and isoleucine biosynthesis
pathway in Bacillus subtilis. Adapted from KEGG PATHWAY, map bsu00290
(March 7, 2017 version). Shown here is a CoMetGeNe trail consisting in the reac-
tions with red contours. Reactions in the trail are labeled with the corresponding
KEGG reaction identifiers (R numbers) and with the gene identifiers of the genes
involved in the reactions. The reaction R04441 performing the enzymatic activ-
ity 4.2.1.19 was skipped (δD = 1). Genes with black identifiers do not belong to
the gene group in Figure VII.2. Genes with red identifiers are neighbors on the
negative strand of the B. subtilis chromosome.

Figures VII.2 and VII.3 respectively show the corresponding grouping by genes
and by reactions for B. subtilis as reference species and 30 other bacteria from the
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data set (members of the Terrabacteria superphylum, Gammaproteobacteria, and
8 other species). Trail grouping by genes and by reactions for the full data set is
presented in Figures C.1 and C.2, respectively.

bsu00290_g

Page 1

lmo sau lac snd cpe mpn syn pma cau bbv cgl mtv sco dra tth fgi cex gau cpn bbn emi heo fnu eco ype vco spc pae xfa rrj

BSU28250 x x . . . . . x x . . x . . . . . . . . x . . x x x x . . .

BSU28260 x x . . . . . x x . . x . . . . . . . . x . . x x x x . . .

BSU28270 x x . . . . . . . . . x . . . . . . . . . . . x x x x . . .

BSU28280 x x . . . . . . x . . . . . x . . . . . . . . x x x x . x .

BSU28290 x x . x . . . . x . x x x x x x . . . . . . . . . . . x x .

BSU28300 x x . x . . . . x x x x x x x x . . . . . . . . . . . x x .

BSU28310 x x . x . . . . x x x x x x x x . . . . . . . . . . . x x .

B. subtilis 
gene

Figure VII.2 Group of homologous genes involved in the trail in Figure VII.1.
Columns in gray correspond to species without neighboring functionally similar
genes to the genes in B. subtilis involved in this trail. Cells in light yellow rep-
resent species that have neighboring functionally similar genes to at least two B.
subtilis genes involved in the trail, but not for the gene BSU28280 involved in the
reaction R01213 (EC 2.3.3.13). Colors in the table header designate the bacterial su-
perphylum (see section 1.3 for details). See Figure C.1 for the grouping by genes
corresponding to this trail for all the species in the data set.

bsu00290_r

Page 1

reaction lmo sau lac snd cpe mpn syn pma cau bbv cgl mtv sco dra tth fgi cex gau cpn bbn emi heo fnu eco ype vco spc pae xfa rrj

R03968 x x  x   . x x . . x . . . .     x   x x x x x .  

R04001 x x  x   . x x . . x . . . .     x   x x x x x .  

R04426 BSU28270 x x  x   . . . . . x . . . .        x x x x x .  

R01213 BSU28280 x x  x   . . x . . . . . x .        x x x x . x  

R05071 BSU28290 x x  .   . . x x x x x x x x      .  . . . . . x  

R04440 BSU28290 x x  .   . . x x x x x x x x      .  . . . . . x  

R00226 x x  .   . . x . x x x x x x        . . . . . x  

B. subtilis 
gene

BSU28250 
BSU28260
BSU28250 
BSU28260

BSU28300 
BSU28310 
BSU36010

Figure VII.3 Group of reactions defining the trail in Figure VII.1. The cells in
gray correspond to species lacking all or a vast majority of reactions from this trail.
Cells in light yellow represent species that have neighboring functionally similar
genes to B. subtilis genes involved in at least two reactions in the trail, but not
in reaction R01213 (EC 2.3.3.13). Cells in blue and orange correspond to species
having neighboring functionally similar genes to B. subtilis genes involved in the
last and first three reactions in the trail, respectively. Colors in the table header
designate the bacterial superphylum (see section 1.3 for details). See Figure C.2
for the grouping by reactions corresponding to this trail for all the species in the
data set.

A total of six species perform all the reactions in the trail in Figure VII.1 using
products of neighboring functionally similar genes to B. subtilis genes involved in
this trail (species highlighted in purple in Figure C.1). In contrast, 12 species in the
data set (almost 25%) do not have neighboring functionally similar genes to genes
in B. subtilis involved in this trail. They are highlighted in gray in Figures VII.2 and
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C.1. Figure VII.3 shows that, among these species:

• Synechocystis sp. PCC 6803 (syn) performs every reaction in this CoMetGeNe

trail using products of distant genes.
• Elusimicrobium minutum (emi) and Helicobacter pylori (heo) only perform two

of the reactions in the trail. In effect, both species have been shown to re-
quire certain amino acids for growth, including valine, leucine and isoleucine
[Herlemann et al., 2009; Reynolds and Penn, 1994].

• The nine remaining species lack every reaction in the trail.

From the trail grouping by reactions in Figures VII.3 and C.2 it is apparent that
the first three (R00226, R05071, R04440) as well as the last three reactions (R03968,
R04001, R04426) in the trail are often performed by products of neighboring func-
tionally similar genes to genes in B. subtilis (species highlighted in orange and blue,
respectively, in the two figures). The reaction in between, R01213 (EC 2.3.3.13), in-
volves the product of gene BSU28280 in B. subtilis. Among the species in the data
set having at least two neighboring functionally similar genes to B. subtilis genes
involved in the trail in Figure VII.1:

• Slightly more than half of the species (19 out of 36 species) perform R01213

using the product of a gene neighboring other genes involved in the trail
(Figure C.2).

• Slightly less than half of the species (17 out of 36 species) perform R01213

using the product of distant genes from other neighboring genes involved in
the trail (see the species highlighted in light yellow in Figures VII.3 and C.2).

These observations naturally lead to inquire into likely reasons for which the
genes whose products are involved in either the first three of the last three reactions
in the CoMetGeNe trail in Figure VII.1 seem to be constrained to be adjacent, unlike
the gene whose product catalyzes the reaction R01213.

A possible explanation is the fact that reaction R01213 is the branching point be-
tween the valine and the leucine biosynthesis pathways (Figure VII.1). The metabo-
lite 2-oxoisovalerate can serve as substrate for either valine or 2-isopropylmalate.
It would therefore make sense that certain species optimize valine biosynthesis by
keeping the required genes in physical proximity on the chromosome, while others
focus on leucine production once the branching point between the two pathways
is reached.

This example suggests that branching points in metabolic pathways sometimes
imply certain gene arrangements that favor a particular branch.
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3 Conserved metabolic and genomic sub-patterns

Figure VII.4 shows a CoMetGeNe trail for Bacillus subtilis in the purine metab-
olism pathway, representing the conversion of glutamine and phosphoribosyl py-
rophosphate (PRPP) into inosine monophosphate (IMP), an important intermediate
in purine metabolism.

BSU06490 
(R01072)

BSU06530 
(R04144)

BSU02230
BSU06510 
(R04325)

BSU06460
BSU06470
BSU06480 
(R04463)

BSU06500 
(R04208)

BSU06430 
(R07404)

BSU06420 
(R07405)

BSU06450 
(R04591)

BSU06440 
(R04559)

BSU06520 
(R04560)

BSU06520 
(R01127)

Figure VII.4 Partial view of the purine metabolism pathway in Bacillus sub-
tilis. Adapted from KEGG PATHWAY, map bsu00230 (April 11, 2018 version).
Shown here is a CoMetGeNe trail consisting in the reactions with red contours.
Reactions in the trail are labeled with the corresponding KEGG reaction identi-
fiers (R numbers) and with the gene identifiers of the genes involved in the re-
actions. Genes with black identifiers do not belong to the gene group in Figure
VII.5. Genes with red identifiers are neighbors on the positive strand of the B.
subtilis chromosome.

Figures VII.5 and VII.6 respectively show the corresponding trail grouping by
genes and by reactions for B. subtilis as reference species and 27 other bacteria from
the data set. Trail grouping by genes and by reactions for the full data set is pre-
sented in Figures C.3 and C.4, respectively. Figure C.3 shows that approximately
one fifth of the species in the data set present neighboring functionally similar genes
encoding most of the enzymes for the different steps in the trail in Figure VII.4.
These species are present in Figure VII.5 and are generally close to B. subtilis from
a phylogenetic point of view, as indicated by the cross symbols (×) concentrated
mainly at the left of figure.

Several species receive only dot symbols (.) in the grouping by genes in Figure
VII.5, meaning they either do not have neighboring functionally similar genes to
genes of B. subtilis involved in the trail, or that they do not perform the reactions
in the trail. As it turns out from the trail grouping by reactions presented in Figure
VII.6, for the six species highlighted in gray:

• The trail is entirely absent for Mycoplasma pneumoniae (mpn), Caldisericum exile
(cex), Chlamydia pneumoniae (cpn), and Borrelia burgdorferi (bbn).
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bsu00230_g

Page 1

lmo sau lac snd cpe mpn amo tmm cex dth fsu cpn ote bbn emi heo din fnu dap eco ype vco spc pae xfa rrj gsu

BSU06420 x x x x x . x . . . x . . . x . . x . . . . . . . . .

BSU06430 x x x x . . . . . . . . . . . . . . . . . . . . . . .

BSU06440 x . . x . . . . . x . . . . . . . . . . . . . . . . x

BSU06450 x x x x x . x x . . . . . . x . x x . . . . . . . . .

BSU06460 x x x x x . x x . x . . . . x . x x x . . . . . . . x

BSU06470 x x x x x . x x . x . . . . x . x x x . . . . . . . x

BSU06480 x x x x x . x x . x . . . . x . x x x . . . . . . . x

BSU06490 x x x x x . x x . x . . x . x . . x x . . . . . . . x

BSU06500 x x x x x . x x . x . . x . x . . x . x x x x x x . .

BSU06510 x x x x x . x x . x . . . . x . . x . x x x x x x . .

BSU06520 x x x x x . x x . . . . . . x . . x . . . . . . . . .

BSU06530 x x x x x . x x . x x . . . x . . x . . . . . . . . .

B. subtilis 
gene

Figure VII.5 Group of homologous genes involved in the trail in Figure VII.4.
Colors in the table header designate the bacterial superphylum (see section 1.3 for
details). See Figure C.3 for the grouping by genes corresponding to this trail for
all the species in the data set.

bsu00230_r

Page 1

reaction lmo sau lac snd cpe mpn amo tmm cex dth fsu cpn ote bbn emi heo din fnu dap eco ype vco spc pae xfa rrj gsu

R07405 BSU06420 x x x x x  x .  . x  .  x  . x x . . . . . .  x

R07404 BSU06430 x x x x    .            . . . . . .   

R04559 BSU06440 x . . x .  . .  x .  .  . . . . . . . . . . .  .

R04591 BSU06450 x x x x x  x x  . .  .  x  . x . . . . . . . . .

R04463 x x x x x  x x  x .  .  x  . x . . . . . . .  .

R01072 BSU06490 x x x x x  x x  x .  x  x  . x . . . . . . .  .

R04208 BSU06500 x x x x x  x x  x .  x  x  x x . . . . . . .  .

R04325 x x x x x  x x  x .  .  x  x x . . . . . . .  .

R04560 BSU06520 x x x x x  x x  . .  .  x  . x x x x x x x x  x

R01127 BSU06520 x x x x x  x x  . .  .  x  . x x x x x x x x  x

R04144 BSU06530 x x x x x  x x  x x  .  x . x x x x x x x x x  x

B. subtilis 
gene

BSU06460 
BSU06470 
BSU06480

BSU02230 
BSU06510

Figure VII.6 Group of reactions defining the trail in Figure VII.4. Cells in
gray correspond to species lacking all or a vast majority of reactions from this
trail. Cells in light yellow correspond to species that do not perform the reaction
R07404, if these species possess neighboring functionally similar genes for at least
two reactions in the trail. Cells in blue correspond to the maximum set of reac-
tions among the reactions in the trail that are common to different species and
performed by neighboring functionally similar genes in these species. Cells in
orange correspond to reactions performed by products of neighboring genes in
Gammaproteobacteria. Colors in the table header designate the bacterial super-
phylum (see section 1.3 for details). See Figure C.4 for the grouping by reactions
corresponding to this trail for all the species in the data set.
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• The trail is partially absent for Helicobacter pylori (heo) and Rickettsia rickettsii
(rrj), with only two and one reaction present, respectively.

The reaction R07404 (EC 6.3.4.18) stands out among the reactions in Figure VII.6
because it is absent in several of the species exhibiting neighboring genes involved
in at least two reactions in the trail. The ten species in question are highlighted
in light yellow in Figure VII.6 and perform the reaction R07405 (EC 5.4.99.18), im-
mediately following R07404. The two reactions R07404 (EC 6.3.4.18) and R07405

(EC 5.4.99.18) provide an alternative route leading from aminoimidazole ribotide
(AIR) to 5’-phosphoribosyl-4-carboxy-5-aminoimidazole (CAIR) instead of the di-
rect route represented by the reaction R04209 (EC 4.1.1.21 in Figure VII.4). It has
been shown that EC 4.1.1.21 is the alternative present in vertebrates to convert AIR
to CAIR, whereas bacteria prefer the other alternative involving EC 6.3.4.18 and EC
5.4.99.18 [Firestine et al., 1994]. The enzymatic activity EC 6.3.4.18 is also reported
absent in the ten species for the superpathway of purine nucleotides de novo biosyn-
thesis II (DENOVOPURINE2-PWY) in MetaCyc. As the information on EC 6.3.4.18
is coherent between KEGG and MetaCyc, it would appear that, in the case of the
ten species highlighted in light yellow in Figure VII.6, no suitable candidate gene
has yet been determined as encoding the enzyme performing this step.

Cells highlighted in blue in Figure VII.6 correspond to the maximum set of re-
actions in the trail that are catalyzed by products of functionally similar genes in
several species:

• Listeria monocytogenes (lmo), Staphylococcus aureus (sau), Lactobacillus acidophilus
(lac), Streptococcus pneumoniae (snd), and Clostridium perfringens (cpe), all mem-
bers of the Firmicutes phylum;

• Acetomicrobium mobile (amo), a member of the Synergistetes phylum;
• Thermotoga maritima (tmm), a member of the Thermotogae phylum;
• Elusimicrobium minutum (emi), a member of the Elusimicrobia phylum;
• Fusobacterium nucleatum (fnu), a member of the Fusobacteria phylum.

As shown in Figure VII.6, the eight reactions highlighted in blue always involve
neighboring genes, whereas the remaining reactions might involve neighboring
genes for the species in question. While gene order conservation is to be expected
to some extent for closely related species (B. subtilis and the five other Firmicutes),
it is not clear how or why the same pattern occurs in the four other species listed
above. Since not much is known about A. mobile (amo) and E. minutum (emi), addi-
tional information on these species’ environment and lifestyle might contribute to
explain the conserved metabolic and genomic pattern detected here.
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Additionally, a more intriguing conserved metabolic and genomic pattern a-
mong closely related species exists. Upon initial consideration, it would appear
that only the three reactions highlighted in orange in Figure VII.6 are catalyzed by
products of neighboring functionally similar genes to BSU06520 and BSU06530 in
the six Gammaproteobacteria species in the data set. From the trail grouping by
genes in Figure VII.5, however, it can be seen that these six species also have neigh-
boring functionally similar genes to BSU06500 and BSU06510. Closer inspection
reveals an interesting sub-patternmetabolic and

genomic

sub-pattern

of conserved metabolic and genomic organization for
the six Gammaproteobacteria, as illustrated in Figures VII.7 and VII.8. bsu00230_gamma

Page 1

reaction eco ype vco spc pae xfa

R07405 BSU06420 b0523 YPO3076 VC0395_A2468 Sputcn32_1041 PA5425 XF_2672

R07404 BSU06430 b0522 YPO3077 VC0395_A2467 Sputcn32_1040 PA5426 XF_2671

R04559 BSU06440 b1131 YPO1636 VC0395_A0644 Sputcn32_2235 XF_1553

R04591 BSU06450 b2476 YPO3059 VC0395_A0811 Sputcn32_0608 PA1013 XF_0205

R04463 b2557 YPO2921 VC0395_A0395 Sputcn32_2642 PA3763 XF_1423

R01072 BSU06490 b2312 YPO2772 VC0395_A0525 Sputcn32_2437 PA3108 XF_1949

R04208 BSU06500 b2499 YPO2828 VC0395_A1819 Sputcn32_1596 PA0945 XF_0587

R04325 XF_0585

R04560 BSU06520 b4006 YPO3728 VC0395_A2653 Sputcn32_3401 PA4854 XF_1975

R01127 BSU06520 b4006 YPO3728 VC0395_A2653 Sputcn32_3401 PA4854 XF_1975

R04144 BSU06530 b4005 YPO3729 VC0395_A2652 Sputcn32_3402 PA4855 XF_1976

B. subtilis 
gene

PA2629 
PA3516 
PA3517

BSU06460 
BSU06470 
BSU06480

BSU02230 
BSU06510

b1849 
b2500

YPO1775 
YPO2829

VC0395_A0850 
VC0395_A1820

Sputcn32_1001 
Sputcn32_1595

PA0944 
PA3451

Figure VII.7 The group of reactions shown in Figure VII.6 for Gammapro-
teobacteria. For each species, identifiers of genes encoding the enzymes involved
each reaction are shown in the corresponding cells. Gene identifiers in bold for
R04325 designate the genes neighboring those involved in the reaction R04208.
Rows with the same background color correspond to reactions from the trail in
Figure VII.4 catalyzed by products of neighboring genes. Color-coded reactions
are shown in their metabolic context in Figure VII.8.

Thus, for each of the six species of γ-proteobacteria in Figure VII.7:

• The three reactions highlighted in orange are catalyzed by two neighboring
genes (one gene for R04144 and a second gene for both R04560 and R01127).

• The two reactions highlighted in light orange are catalyzed by products of
neighboring genes. For Escherichia coli (eco), Yersinia pestis (ype), Shewanella
putrefaciens (spc), and Pseudomonas aeruginosa (pae), a distant second gene is
equally involved in reaction R04325. For Xylella fastidiosa (xfa), only one gene
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   R01072

   R04144

   R04325   R04463
 

   R04208

   R07404   R07405

   R04591

 
   R04559

     R04560

      R01127

Figure VII.8 Partial view of the general purine metabolism pathway. Adapted
from KEGG PATHWAY, map00230 (April 11, 2018 version). The reactions involved
in the trail in Figure VII.4 are labeled with their respective R numbers. Reactions
with the same color are catalyzed by products of neighboring genes in the six
Gammaproteobacteria in Figure VII.7. Color-coded reactions are the same as in
Figure VII.7.

(XF_0585) is involved in this reaction. The genes XF_0585 and XF_0587 in X.
fastidiosa are not strict neighbors, being separated by the gene XF_0586 which
encodes a hypothetical protein.

• The two reactions highlighted in yellow are catalyzed by products of neigh-
boring genes.

Although the genes involved in the 7 out of the 11 reactions present in Fig-
ure VII.8 highlighted with the same color code as in Figure VII.7 are not neigh-
bors between themselves for the six species, they represent pairs of neighboring
genes. Moreover, since the six species in question are closely related in terms of
phylogeny, it seems highly probable that the six extant (current-day) species of
Gammaproteobacteria preserved this particular genomic organization, having in-
herited it from a common ancestor.

This example identifies two different conserved metabolic and genomic pat-
terns among closely related species. The first pattern involves strictly neighbor-
ing functionally similar genes (cells highlighted in blue in Figure VII.6), whereas
the second one is actually a sub-pattern metabolic and

genomic

sub-pattern

involving pairs of neighboring functionally
similar genes for groups of two or three reactions (Figures VII.7 and VII.8).

4 Discovery of unexpected gene ordering patterns

Figure VII.9 shows a CoMetGeNe trail for Escherichia coli in the glycine, serine, and
threonine metabolism pathway (eco00260), representing the conversion of aspar-
tate into threonine. CoMetGeNe produced this trail by skipping the reaction R02291

(EC 1.2.1.11), with gap parameter δD set to 1.
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b0004 (R01466)

b0003 (R01771)

b0002, b3940 
(R01773, R01775)

b0002, b3940, b4024 (R00480)

(R02291)

Figure VII.9 Partial view of the glycine, serine, and threonine metabolism
pathway in Escherichia coli. Adapted from KEGG PATHWAY, map eco00260
(October 26, 2017 version). Shown here is a CoMetGeNe trail consisting in the reac-
tions with red contours. Reactions in the trail are labeled with the corresponding
KEGG reaction identifiers (R numbers) and with the gene identifiers of the genes
involved in the reactions. The reaction R02291 performing the enzymatic activ-
ity 1.2.1.11 was skipped (δD = 1). Genes with black identifiers do not belong to
the gene group in Figure VII.10. Genes with red identifiers are neighbors on the
positive strand of the E. coli chromosome.

Figures VII.10 and VII.11 respectively show the corresponding grouping by
genes and by reactions for E. coli as reference species and 30 other bacteria from
the data set. Trail grouping by genes and by reactions for the full data set is pre-
sented in Figures C.5 and C.6, respectively. In the case of the 11 species highlighted
in light yellow in Figure VII.10, functionally similar genes to b0003 are not neigh-
bors of functionally similar genes to b0002 and b0004. The relevant genomic con-
text for these species and two additional ones, Denitrovibrio acetiphilus (dap) and
Rhodopirellula baltica (rba), is shown in Figure VII.12.

Figure VII.11 shows that, of the species highlighted in light yellow in Figure
VII.10, Caldisericum exile (cex), Gemmatimonas aurantiaca (gau), and Bacteroides frag-
ilis (bfr) do not perform reaction R01771 (EC 2.7.1.39), in which the product of gene
b0003 is involved (species highlighted in gray). Only Lactobacillus acidophilus (lac)
conserved the functionally similar gene LBA1211 as a neighbor of the gene per-
forming the reaction {R01773, R01775} (see also Figure VII.12). The functionally
similar genes to b0003 for the other species highlighted in light yellow in Figure
VII.10 exist, but they are located farther on the bacterial chromosome.

Figure VII.12 shows that strictly neighboring functionally similar genes involved
in reactions {R01773, R01775} (EC 1.1.1.3, in green) and R01466 (EC 4.2.3.1, in
blue) are conserved for Pseudomonas aeruginosa (pae), Ralstonia solanacearum (rso),
Acidithiobacillus ferrivorans (afi), Nitrospira defluvii (nde), and Desulfurispirillum in-
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eco00260_g
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ype pae xfa rso nme afi gsu nde din dap aae bsu sau lac mpn syn pma tth fgi cex fsu gau cph bfr rba cpn ote bbn emi heo

b0002 x x x x . x . x x x . x x x . . . x . x . x . x . . x . x .

b0003 x . x . . . . . . . . x x . . . . . x . . . x . . . . . x .

b0004 x x x x . x . x x . . x x x . . . x x x . x x x . . x . x .

E. coli 
gene

Figure VII.10 Group of homologous genes involved in the trail in Figure VII.9.
Eleven of the species in the data set (highlighted in light yellow) either do not have
functionally similar genes to b0003, or are not contiguous with genes functionally
similar to b0002 and b0004. Colors in the table header designate the bacterial su-
perphylum (see section 1.3 for details). See Figure C.5 for the grouping by genes
corresponding to this trail for all the species in the data set.

eco00260_r

Page 1

reaction ype pae xfa rso nme afi gsu nde din dap aae bsu sau lac mpn syn pma tth fgi cex fsu gau cph bfr rba cpn ote bbn emi heo

R00480 x . x . . . . x x x . . . .  . . . . x . x . x . . x  . .

x x x x . x . x x x . x x x  . . x . x . x . x .  .  x .

R01771 b0003 x . x . . .  . .  . x x x  . . . x  .  x    .  x .

R01466 b0004 x x x x . x . x x . . x x .  . . x x x . x x x .  x  x .

E. coli 
gene

b0002 
b3940 
b4024

{R01773, 
R01775}

b0002 
b3940

Figure VII.11 Group of reactions defining the trail in Figure VII.9. Cells high-
lighted in gray correspond to the three species among the ones highlighted in
light yellow in Figure VII.10 that do not perform reaction R01771 (catalyzed by
the product of gene b0003 in E. coli). Colors in the table header designate the bac-
terial superphylum (see section 1.3 for details). See Figure C.6 for the grouping by
reactions corresponding to this trail for all the species in the data set.

dicum (din). Interestingly, bi-functional enzymes catalyzing both reactions R00480

(EC 2.7.2.4, in yellow) and {R01773, R01775} (EC 1.1.1.3, in green) are present for
E. coli (eco), C. exile (cex), G. aurantiaca (gau), and B. fragilis (bfr).

Intriguingly, in species N. defluvii (nde), D. indicum (din), and B. fragilis (bfr), the
genes involved in reactions R00480 (EC 2.7.2.4, in yellow) and R01466 (EC 4.2.3.1,
in blue) are separated by a gene whose product is involved in the reaction R01518

(EC 5.4.2.12, in red).

The bacterial data set was examined in order to determine whether other species
exhibit a similar gene ordering pattern. Only D. acetiphilus (dap) and R. baltica (rba)
have neighboring genes involved in R01518 and other reactions from the trail in
Figure VII.9. The common denominator for all five species seems to be that the
genes whose products catalyze reactions R01518 (EC 5.4.2.12, in red) and R00480

(EC 2.7.2.4, in yellow) are strict neighbors (Figure VII.12). Reaction R01518 makes
use of a phosphomutase activity for transferring a phosphate group within the
same molecule (phosphoglycerate), whereas R00480 employs a phosphotransferase
activity for adding a phosphate group to aspartate using ATP.

Although there is no obvious link between the two reactions aside from the
transfer of a phosphate group, it could be an instance of genomic hitchhiking [Ro-
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eco

pae

rso

afi

nde

din

lac

tth

cex

gau

bfr

ote

dap

rba

b0002 b0003 b0004

PA3736 PA3735

RSc1327 RSc1328

Acife_0865 Acife_0866

NIDE4114 NIDE4113 NIDE4112 NIDE4111

Selin_0814 Selin_0815 Selin_0816 Selin_0817

LBA1214 LBA1215

LBA1212 LBA1211

TT_C0115 TT_C0116 TT_C0117

CSE_05360 CSE_05370 CSE_05380

GAU_1367 GAU_1368

GAU_1795 GAU_1794

BF0608 BF0609 BF0610

Oter_3519 Oter_3518

Dacet_1419 Dacet_1418 Dacet_1417

RB8924 RB8926

R00480 
(EC 2.7.2.4)

R02291
(EC 1.2.1.11)

R01773 R01775
(EC 1.1.1.3)

R01466
(EC 4.2.3.1)

R01518
(EC 5.4.2.12)

R01771
(EC 2.7.1.39)

Figure VII.12 Genomic context for genes involved in the trail in Figure VII.9.
Two additional reactions are shown: R02291 (EC 1.2.1.11) linking reactions R00480
(EC 2.7.2.4) and {R01773, R01775} (EC 1.1.1.3), and R01518 (EC 5.4.2.12) represent-
ing a phosphoglycerate mutase activity farther along the glycine, serine, and thre-
onine metabolism pathway. Neighboring genes are linked by an edge. Genes are
color-coded according to the reactions in which the enzymes they encode take
part. Two pairs of neighboring genes on different strands of the bacterial chromo-
some are shown for L. acidophilus (lac) and G. aurantiaca (gau). The gene in white
in Thermus thermophilus (tth) codes for a hypothetical protein. D. acetiphilus (dap)
and R. baltica (rba) exhibit a similar gene ordering pattern to N. defluvii (nde), D.
indicum (din), and B. fragilis (bfr) (see text).

gozin et al., 2002]. This means that operons sometimes contain functionally unre-
lated genes that nonetheless share similar expression requirements with the rest of
the operon. It is possible that gene apgM (encoding the enzyme involved in reac-
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tion R01518, in red) benefits from the expression levels of the genes involved in the
trail in Figure VII.9. At any rate, a physiological and/or biochemical reason for the
coexpression of apgM and the gene involved in R00480 (in yellow) seems to exist,
since the two genes are neighbors across the bacterial domain, as reported in the
STRING database [Szklarczyk et al., 2014] (see Figure C.7).

In light of these observations, two hypotheses can be formulated:

(a) This particular genomic arrangement pattern has occurred independently sev-
eral times during the evolution of extant bacterial species, or

(b) The ancestor of the bacterial domain exhibited this exact genomic arrange-
ment, which was subsequently lost.

Hypothesis (b) cannot be excluded as not enough evidence is available to do so,
but it can be considered less likely [Panchen, 1982] than hypothesis (a), which is the
most parsimonious.

This example is an interesting instance of trail grouping by genes featuring an
intriguing motif of absence of neighboring functionally similar genes in an impor-
tant number of species. Upon closer investigation, an unexpected gene ordering
pattern is uncovered for five of the species in the data set.

5 Case study: Exploring steps of peptidoglycan biosynthe-
sis

Figure VII.13 illustrates trail finding by CoMetGeNe on the well-studied biologi-
cal process of peptidoglycan biosynthesis [Barreteau et al., 2008]. Peptidoglycan is
the main constituent of the bacterial cell wall, providing its structural strength and
determining cell shape. Manifesting an important diversity at both the chemical
and architectural levels [Vollmer et al., 2008; Turner et al., 2014], peptidoglycan is
present in the vast majority of bacteria.

The yellow and purple trails in Figure VII.13, recovered in the peptidoglycan
biosynthesis pathway of Escherichia coli (eco00550), represent the conversion of
UDP-N-acetylmuramate (UDP-MurNAc) into a precursor of DAP-type peptidogly-
can and into a precursor of lysine-type peptidoglycan, respectively. Figure VII.14
shows the genes encoding the enzymes involved in these trails: murE (b0085), murF
(b0086), mraY (b0087), murD (b0088), murG (b0090), murC (b0091), and ddlB (b0092).
Note that both trails produced by CoMetGeNe were obtained by skipping gene ftsW
(b0089), with the gap parameter δG set to 1.
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b0091 / murC (R03193)

b0088 / murD (R02783)

b0092 / ddlB, b0381 
(R01150)

b0085 / murE
(R02788)

b0086 / murF
(R04617)

b0086 / murF
(R04573)

b0087 / mraY
(R05629)

b0090 / murG
(R05662)

DAP-type peptidoglycanLys-type peptidoglycan
(Staphylococcus)

b0087 / mraY
(R05630)

b0090 / murG
(R05032)

murE
(R02786)

Figure VII.13 Partial view of the peptidoglycan biosynthesis pathway in Es-
cherichia coli. Adapted from KEGG PATHWAY, map eco00550 (May 28, 2015
version). Shown here are two CoMetGeNe trails, highlighted in yellow and purple.
The gap parameter δG was set to one (thus allowing to skip one gene). Reactions
in the trails are labeled with the corresponding KEGG reaction identifiers (R num-
bers) and with the Blattner identifiers and gene names of the genes involved in the
reactions. Genes with black identifiers do not belong to the gene group in Figure
VII.15. Genes with red identifiers are neighbors on the positive strand of the E. coli
chromosome (see Figure VII.14). Dashed arrows from a metabolite m to another
metabolite m′ signify that a chain of reactions, omitted in this figure for clarity,
leads from m to m′.

murE murF mraY murD ftsW murG murC ddlB

Figure VII.14 Genomic context for E. coli genes involved in the trails in Figure
VII.13. The gene in gray is not involved in the trails. The genes are located on the
positive strand of the bacterial chromosome.
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eco00550_g_short

Page 1

gsu aae sau mpn syn pma fgi rba ote

b0085 x . . . . . x . x

b0086 . . . . . . x . x

b0087 x . x . . . x . x

b0088 x . x . . . x . x

b0090 x . . . . . x . x

b0091 x . . . . . . . .

b0092 x . x . . . x . x

E. coli 
gene

Figure VII.15 Group of homologous genes involved in the trails in Figure
VII.13. See Figure C.8 for the grouping by genes corresponding to these trails
for all the species in the data set.

eco00550_r_short

Page 1

reaction gsu aae sau mpn syn pma fgi rba ote

R02788 b0085 x .   . . x . x

R04617 b0086  . .  . . x  x

R05630 b0087 x . x  . . x  x

R02783 b0088 x . x  . . x  x

R05032 b0090 x . .  . . x  x

R03193 b0091 x . .  . .    

E. coli 
gene

Figure VII.16 Group of reactions defining the trail in yellow in Figure VII.13.
Cells in gray designate missing reactions. See Figure C.9 for the grouping by re-
actions corresponding to this trail for all the species in the data set.

eco00550_r2_short

Page 1

reaction gsu aae sau mpn syn pma fgi rba ote

R04573 b0086  . x  . . x  x

R05629 b0087 x . .  . . x  x

R05662 b0090 x . .  . . x  x

R01150 x . x  . . x . x

E. coli 
gene

b0092 
b0381

Figure VII.17 Group of reactions defining the trail in purple in Figure VII.13.
Cells in gray designate missing reactions. See Figure C.10 for the grouping by
reactions corresponding to this trail for all the species in the data set.
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The skipped gene encodes the FtsW protein, which plays an essential role in cell
division [Boyle et al., 1997]. Moreover, it has been shown that FtsW is also a trans-
porter of peptidoglycan precursors across the inner membrane [Mohammadi et al.,
2011]. It is therefore interesting that the gene encoding this transporter, although
not included in the trail, is found in the same neighborhood as other peptidogly-
can biosynthesis genes. This underlines the capacity of the trail finding method to
identify trails of reactions that are compatible with their genomic context.

Trail grouping was performed for E. coli (eco) as reference species. Figure VII.15
illustrates the portion of table Tg

eco (trail grouping by genes) corresponding to the
trails in Figure VII.13, for E. coli and 9 other bacterial species presenting interesting
features. Likewise, Figures VII.16 and VII.17 illustrate the portions of table Tr

eco

(trail grouping by reactions) corresponding to the trails highlighted in yellow and
in purple in Figure VII.13, respectively. Trail grouping for the full data set is pre-
sented in Figure C.8 (trail grouping by genes), Figure C.9 (grouping by reactions
for the yellow trail), and Figure C.10 (grouping by reactions for the purple trail).

Trail grouping by genes identifies genes of the reference species with neighbor-
ing functionally similar genes in other species. The degree of conservation of gene
neighborhood for the genes involved in a given trail is proportional to the number
of cross symbols (×) in Tg

S for the reference species S. The number of crosses in Tg
eco

(Figure C.8) confirms that the trails in Figure VII.13 are frequently found for the
species in the data set, albeit with varying degrees of conservation of gene neigh-
borhood. This finding represents a positive control, being consistent with the fact
that most bacteria possess peptidoglycan cell walls. Cells with dot symbols (.) in
Tg
eco (Figures VII.15 and C.8) do not allow to distinguish between non neighboring

and missing genes. However, Figures VII.16 and VII.17 identify species with miss-
ing reactions (in gray in the figures) with respect to E. coli: Geobacter sulfurreducens
(gsu), Staphylococcus aureus (sau), Mycoplasma pneumoniae (mpn), Fimbriimonas gin-
sengisoli (fgi), Rhodopirellula baltica (rba), and Opitutus terrae (ote). The remaining
species perform all the reactions but do not necessarily have contiguous genes cod-
ing for the required enzymes. Among the six species with missing reactions with
respect to E. coli, M. pneumoniae (mpn) is a negative control, as it is well-known that
it is devoid of a cell wall [Waites and Talkington, 2004]; the five other species are
discussed below.

5.1 Incomplete annotations

G. sulfurreducens (gsu), a Deltaproteobacterium [Caccavo et al., 1994] with a pep-
tidoglycan dry weight fraction of 4% [Mahadevan et al., 2006], is reportedly missing
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reactions R04617 (Figure VII.16) and R04573 (Figure VII.17), which should be cata-
lyzed by MurF (Figure VII.13).

The KEGG GENES entry GSU3073 is annotated as murF2. Regardless, this gene
is not associated to either of the reactions R04617 or R04573 in the pathway map
gsu00550. As of the writing of this thesis (June 2018), the latest version of the path-
way map gsu005503 dates from April 10, 2017. GSU3073 is located in the same gene
neighborhood as the other genes encoding the enzymes for the reactions in Figures
VII.16 and VII.17. Moreover, as revealed by CoMetGeNe, every other reaction in the
two trails in Figure VII.13 is performed by enzymes encoded by neighboring genes.

The functional annotation murF for the gene GSU3073 is confirmed by perform-
ing a protein BLAST [Altschul et al., 1997] for the E. coli MurF query sequence
against G. sulfurreducens (NCBI taxon 35554). The matching protein WP_010943698
(40% identity, 98% query cover, E-value 1e−76) corresponds to the gene GSU3073
via the identical protein YP_006589581.

If two reactions can in theory be catalyzed by a unique enzyme, both reactions
do not necessarily occur in a given species that produces the enzyme in question.
For G. sulfurreducens, it is expected that it synthesizes peptidoglycan [Mahadevan
et al., 2006] using the metabolic route leading to DAP-type peptidoglycan (instead
of staphylococcal lysine-type peptidoglycan). This metabolic route passes through
the reaction R04617 in Figure VII.13.

The missing reaction R04617 for G. sulfurreducens (gsu) is hence an instance of
incomplete annotation in the KEGG knowledge base in the sense that the gene
GSU3073 has not yet been associated to the reaction R04617.

5.2 Alternative metabolic routes

S. aureus (sau) is a Gram-positive bacterium [Willey et al., 2008], well-known
to produce lysine-type peptidoglycan (dashed arrow in Figure VII.13) instead of
DAP-type peptidoglycan. This is accomplished using the alternative route passing
through reactions R02783 (EC 6.3.2.9) and R02786 (EC 6.3.2.7). The metabolic route
leading to lysine-type peptidoglycan in Staphylococcus shares the two reactions cat-
alyzed by MurC (R03193) and MurD (R02783) with the route leading to DAP-type
peptidoglycan. Equivalents of the other four reactions in the trail highlighted in
yellow exist in lysine-type peptidoglycan biosynthesis and are performed by the
same enzymes (MurE, MurF, MraY, and MurG) on UDP-MurNAc substrates hav-
ing lysine (instead of DAP) residues (Figure VII.13).

2KEGG GENES entry for GSU3073: http://www.genome.jp/dbget-bin/www_bget?gsu:GSU3073
3The peptidoglycan biosynthesis pathway in G. sulfurreducens is available at the following address:

https://www.genome.jp/kegg-bin/show_pathway?gsu00550.

http://www.genome.jp/dbget-bin/www_bget?gsu:GSU3073
https://www.genome.jp/kegg-bin/show_pathway?gsu00550
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As illustrated in Figure VII.16, two genes among those involved in peptidogly-
can biosynthesis in S. aureus are neighbors (mraY and murD). From Figure VII.17, it
can be seen that the genes corresponding to murF and ddlB in E. coli (which is ddlA
in S. aureus) are also neighbors. Recall that trail grouping by reactions (see section
V.4.1) determines a maximal subset of reactions R′ from a given trail (assessed as
a HNET reaction set R) of the reference species such that the reactions in R′ are
catalyzed by products of neighboring genes in the target species. For the reaction
set R in Figure VII.17, there are two such maximal subsets, {R04573, R01150} and
{R05629, R05662}. (See section 3 for another example.)

This example shows that missing reactions for a given organism with respect to
the reference species may indicate the existence of an alternative metabolic route
for the organism in question with respect to the reference species.

5.3 A possibly erroneous ORF prediction

F. ginsengisoli (fgi), a member of the recent Armatimonadetes phylum, is re-
portedly missing the reaction R03193 (EC 6.3.2.8 in Figure VII.13) which should be
catalyzed by MurC (Figure VII.16). This species has nevertheless been described
as synthesizing DAP-type peptidoglycan [Im et al., 2012]. Moreover, F. ginsengisoli
performs every other reaction in the trail highlighted in yellow in Figure VII.13 us-
ing products of neighboring genes (Figure VII.18). We have therefore proceeded
to a protein BLAST [Altschul et al., 1997] search against F. ginsengisoli (NCBI taxon
1005039) with the MurC sequence of Chthonomonas calidirosea, another member of
the Armatimonadetes phylum, as query.

ftsWmurG4784 murD mraY murF murE47854783

Figure VII.18 Genomic context for F. ginsengisoli genes involved in the trails
in Figure VII.13. The genes in gray are not involved in the trails. The genes are
located on the negative strand of the bacterial chromosome. 4783, 4784, and 4785
stand for OP10G_4783, OP10G_4784, and OP10G_4785, respectively. The gene in
green (labeled 4784) is annotated as ddl.

The search was inconclusive, as the best match (WP_025227986 with 39% iden-
tity, 71% query cover, E-value 9e−67) corresponds to the gene OP10G_4783 which
encodes a hypothetical protein roughly half the size of MurC and with no known
domains (see 4783 in Figure VII.18). The second best match (AIE88152 with 47%
identity, 34% query cover, E-value 8e−39) corresponds to the gene OP10G_4784
which is a D-alanine–D-alanine ligase (ddl), being involved in the reaction R01150 in
the peptidoglycan biosynthesis pathway (Figure VII.13 and 4784 in Figure VII.18).
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The functional assignment ddl is not a genomic (RefSeq or GenBank) annotation,
but a K number assignment. Recall that the KEGG ORTHOLOGY (KO) database as-
signs a K number (or KO identifier) to an individual gene if this gene is determined
to be an ortholog of sequences from the KO group designated by the K number (see
section III.2.2).

Intriguingly, the gene OP10G_4784 has been annotated in GenBank as a UDP-
N-acetylmuramate–L-alanine ligase, which describes the role of MurC. Further-
more, in addition to the expected ddl-specific domains due to the KO assignment in
KEGG, OP10G_4784 also exhibits a Mur_ligase_C domain annotation, correspond-
ing to the C-terminal Mur ligase domain. MurC proteins should however possess
additional middle and/or catalytic domains. These findings led to investigate the
possibility of OP10G_4784 being a fusion between murC and ddl. Although the
STRING database [Szklarczyk et al., 2014] reports that fusions of murC and ddl oc-
cur frequently in the Chlamydiae phylum, it does not appear to be the case for
OP10G_4784 due to missing Mur ligase domains and different sequence size with
respect to murC–ddl fusions in Chlamydiae.

Interestingly, a Mur ligase catalytic domain is reported for the short neighboring
gene OP10G_4785 (RefSeq: WP_084179698), labeled as 4785 in Figure VII.18. Fur-
thermore, OP10G_4785 has been annotated as a UDP-N-acetylmuramate–L-alanine
ligase (MurC) in GenBank. Its surrounding genes are ddl (OP10G_4784) and murG
(OP10G_4786), which is the established genomic context for murC in bacteria that
maintain the genes involved in peptidoglycan biosynthesis organized into operons.
A KEGG ortholog search for OP10G_4785 reveals longer murC ortholog sequences
in other species. Two hypotheses are therefore possible:

(a) The activity EC 6.3.2.8 is performed jointly by products of genes OP10G_4784
and OP10G_4785 in F. ginsengisoli (fgi), or

(b) The open reading frame (ORF) for OP10G_4784 was incorrectly predicted, the
ddl coding sequence erroneously including a Mur_ligase_C domain that may
in fact belong to OP10G_4785.

Hypothesis (a) does not seem to be likely because bacteria typically have only
one gene encoding the MurC enzyme. Hypothesis (b) on the other hand describes
a situation that can arise in practice due to the automatic processes involved in ge-
nome annotation. If hypothesis (b) above is verified, the redefined coding sequence
neighboring ddl is likely murC. The dashed red line in Figure VII.19 between the C-
terminal region of the Mur ligase (Mur_ligase_C) and the N-terminal region of the
D-alanine–D-alanine ligase (Dala_Dala_lig_N) domains signifies that another stop
codon for the ORF of OP10G_4784 might be found in this inter-domain region of
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OP10G_4784OP10G_4785

5’ 3’ 5’ 3’5’ 3’

Figure VII.19 Possible incorrect ORF prediction in OP10G_4784. Adapted
from KEGG SSDB motif search. Genes OP10G_4784 and OP10G_4785 are shown
as thick horizontal lines (in black). Underneath each gene are shown the asso-
ciated Pfam domains with an E-value less than 1e−07. The dashed line in red
represents the incorrect ORF prediction hypothesis.

approximately 80 amino acid residues (corresponding to approximately 240 nu-
cleotides).

Note that the gene OP10G_4784 is shown at the left of OP10G_4785 in Figure
VII.18, and at the right in Figure VII.19. This is normal, as Figure VII.18 shows how
genes are organized on the negative chromosomal strand (3’→ 5’, with 3’ at the left
by convention), whereas Figure VII.19 shows genes in the 5’→ 3’ direction. (Refer
to Figure I.9 and section I.3.1 for more information.)

This analysis shows that missing reactions with respect to the reference species
may indicate the existence of incorrect genomic annotations.

5.4 Outdated annotations

R. baltica (rba), as other Planctomycetes, has been thought to be lacking pep-
tidoglycan [Fuerst and Sagulenko, 2011]. Consistent with annotations in KEGG
reflecting the existing genome annotations, CoMetGeNe only identifies one reaction
among the six in the trail highlighted in yellow in Figure VII.13 as being present
in R. baltica. In addition, no peptidoglycan biosynthesis genes are currently listed
in the STRING database [Szklarczyk et al., 2014] for other Planctomycetes beside
members of the Planctomyces genus. However, Jeske et al. [2015] have biochemically
demonstrated that sugar and peptide components of peptidoglycan are present in
Planctomycetes. The study also uses an in silico approach to identify candidate
peptidoglycan biosynthesis genes in R. baltica and other Planctomycetes.

The fact that the findings of this study are yet to be reflected in existing annota-
tions indicates the difficulty of validating proposed gene function. Consequently,
CoMetGeNe correctly identifies the only reaction in the trail highlighted in yellow in
Figure VII.13 that is associated to an annotated gene in R. baltica (rba).
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5.5 Missing annotations

O. terrae (ote), a member of the subdivision 4 of the Verrucomicrobia phylum,
had been thought to be one of the very few exceptions of free-living bacteria with-
out peptidoglycan [Yoon, 2011]. Using CoMetGeNe, it was however determined that
all reactions in the trail highlighted in yellow in Figure VII.13 are present in O.
terrae (Figure VII.16), with the exception of reaction R03193 which should be cata-
lyzed by MurC. Furthermore, the five present reactions are catalyzed by products
of neighboring genes.

These CoMetGeNe results are in agreement with the data obtained by Rast et al.
[2017], who have recently challenged the concept of free-living bacteria lacking
peptidoglycan. They proved that members of the Opitutaceae family do possess
peptidoglycan cell walls. We propose the candidate murC gene in O. terrae to be
Oter_2637, following a protein BLAST [Altschul et al., 1997] for the E. coli MurC
query sequence (WP_012375453 with 29% identity, 94% query cover, E-value 5e−41).

This is an instance of missing annotation from public knowledge bases.

5.6 Summary

This case study illustrated two CoMetGeNe trails detected in the peptidoglycan
biosynthesis pathway of E. coli, identified by skipping one gene. Both trails corre-
spond to the same group of genes, retrieved for the reference species E. coli when
grouping its CoMetGeNe trails by genes. The analysis of this case study was con-
ducted by focusing on missing reactions with respect to the reference species.

Perhaps counter-intuitively, missing reactions do not always translate to species
that lack a particular metabolic route, as is the case for M. pneumoniae (mpn in Fig-
ures VII.16 and VII.17). When a target species performs some, but not all, of the
reactions in a trail of the reference species, the missing reaction(s) may indicate that
an alternative metabolic route exists in the target species with respect to the refer-
ence species (see section 5.2). It was shown here that missing reactions with respect
to the reference species may also signal incomplete annotations, such as the gene
GSU3073 in G. sulfurreducens (see section 5.1), or even outdated (see section 5.4) or
missing annotations, as is the case for MurC in O. terrae (see section 5.5). Finally,
in some rare cases, missing reactions may also point out possible annotation errors
at the genomic level, as is the case of the gene OP10G_4784 in F. ginsengisoli (see
section 5.3).



148 Chapter VII. Identification of metabolic and genomic patterns

6 Concluding remarks

This chapter demonstrated how trail finding (Chapter IV) and trail grouping
(Chapter V) are performed using CoMetGeNe (Chapter VI) on the metabolic path-
ways and genomic contexts of a selection of representative bacterial species.

Several instances of conserved metabolic and genomic patterns were discussed,
revealing the existence of strong relationships between metabolic architecture and
genome structure. In some situations, links between metabolic and genomic con-
text are detected as conserved metabolic and genomic patterns, although the bio-
chemical rationale for these associations is not readily apparent. A case was made
for the attentive investigation of missing reactions with respect to the reference
species. It was shown that divergent conserved metabolic and genomic patterns
may indicate that certain species possess alternative metabolic routes with respect
to the reference species. In other cases, however, missing reactions indicate poten-
tial annotation problems in public knowledge bases. Several concrete reannotations
were suggested in the case study.

The trail finding and trail grouping methodologies (as well as their implemen-
tation represented by CoMetGeNe) are thus exploratory tools that may help provide
insights into metabolic evolution and the links between metabolic and genomic
contexts. The findings presented in this chapter emphasize the discovery aspect of
trail finding and trail grouping as performed by CoMetGeNe, leading to the formu-
lation of several biological hypotheses.

The next chapter proposes an alternative definition of conserved metabolic and
genomic patterns by modulating the definition of metabolic patterns in terms of
similarity of chemical reactions.
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1 Introduction

The previous chapters (Chapter IV through Chapter VII) were aimed at detect-
ing metabolic and genomic patterns, defined as trails (see definition II.11) of reactions
being catalyzed by products of neighboring genes. The trail grouping methodology
(Chapter V) helps to uncover similar metabolic and genomic patterns across multi-
ple species. In such cases, metabolic and genomic patterns are said to be conserved.
The definition of conserved patterns allows for flexibility in the sense that strict
matching is not enforced. Thus, reaction and/or gene order may differ. Moreover,
all reactions and/or functionally similar genes are not required to be present.

Therefore, while trail grouping allows to group together several similar CoMet-
GeNe trails, their similarity is based on the simple presence or absence of reactions.
A less naïve measure for trail similarity would be based on the nature of the chemi-
cal transformations performed by reactions in the trails. The ability to qualify trails
as being chemically similar and to quantify this similarity would enable the identi-
fication of “extended” metabolic and genomic patterns in which reactions may be
different as long as they perform the same chemical transformations.

We introduce the term chemical, metabolic, and genomic patternchemical,

metabolic, and

genomic pattern

to describe a
group of CoMetGeNe trails in which reactions are chemically similar. In other words,
two or more trails of reactions catalyzed by products of neighboring genes form
a chemical, metabolic, and genomic pattern if the chemical transformations per-
formed by the reactions in the trails are similar.

Numerous measures exist for evaluating chemical similarity [Bender and Glen,
2004]. The work presented in this chapter relies on a descriptor of atom neighbor-
hood (section 2) that is subsequently used to compute reaction signatures (section
3). Two methods based on reaction signatures are then proposed in order to de-
termine the chemical similarity of CoMetGeNe trails. The first one is a qualitative
approach (section 4), while the second one is quantitative (section 5).

2 Signature molecular descriptor

Introduced by Faulon et al. [2003], the signature molecular descriptor is a descrip-
tion scheme for chemical compounds, in which a molecule is characterized by the
neighborhood of each of its atoms up to a given distance. The underlying represen-
tation of a compound is the molecular graphmolecular graph , which is an undirected graph where
vertices represent atoms and edges represent bonds between atoms.
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a bM

Figure VIII.1 Computation of the molecular signature of a compound M.
Adapted from Carbonell et al. [2011b] (licensed under CC BY 2.0). To simplify,
hydrogen atoms are not shown in the signatures. (a) Atomic signatures are deter-
mined for every atom in the molecule. The signature of the carbon atom in blue
is shown for heights h = 0 (the carbon atom itself), h = 1 (the carbon atom in blue
surrounded by the three carbon atoms in green), and h = 2 (the carbon atom in
blue surrounded by the three carbon atoms in green at a distance of 1, and by
the carbon atom in orange at a distance of 2). (b) The molecular signature of the
compound M (in a) of height 1, 1σ(M), is shown. The molecular signature of M
contains lexicographically sorted atomic signatures for every atom in M, accom-
panied by their counts.

Figure VIII.2 Computation of the reaction signature of a reaction r. Adapted
from Carbonell et al. [2011b] (licensed under CC BY 2.0). To simplify, hydrogen
atoms are not shown in the signatures. The reaction signature of height 1 for the
reaction r : S1 + S2 → P1 + P2, 1σ(r), is given by the subtraction (net difference)
of substrates from products in terms of descriptors of height 1.

https://creativecommons.org/licenses/by/2.0
https://creativecommons.org/licenses/by/2.0
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Atomic signature The atomic signatureatomic

signature

of height h of an atom a is a description of
the neighborhood of atom a up to a maximal distance h. For example, the atomic
signature of the carbon atom in blue in Figure VIII.1a of height 1 is [C]([C][O]=[O]),
meaning that the neighbors of the carbon atom in blue at a distance of 1 are another
carbon atom (in green in the figure) and two oxygen atoms, one of them having a
double bond with the carbon atom in blue.

Note that it is also possible to determine the signature of a bond of a given
height. Similar to the signature of an atom, the signature of a bond b describes its
neighborhood up to a given distance in terms of surrounding bonds. For simplicity,
this section only refers to atomic neighborhood.

Molecular signature The molecular signaturemolecular

signature

of height h of a compound M, de-
noted hσ(M), is the lexicographically sorted set of every atomic signature of height
h in M, preceded by its count (i.e. number of occurrences in M). Figure VIII.1b
shows the molecular signature of height 1 for the compound in Figure VIII.1a. For
example, the atomic signatures of the oxygen atoms in the molecule occur only
once: [O](=[C]) for the oxygen atom linked by a double bond to the atom carbon in
blue in Figure VIII.1a, and [O]([C]) for the oxygen atom linked by a simple bond.
The atomic signature [C]([C][C]) appears four times in the molecular signature
1σ(M), because M contains four carbon atoms surrounded by two other carbon
atoms (the ones in green and orange, and the two other carbon atoms immediately
at their left).

The molecular signature can be computed using the MolSig software [Carbonell
et al., 2013], which returns compound signatures in a SMILES-like format [Weininger,
1988].

Reaction signature The reaction signaturereaction

signature

of height h of a reaction r is obtained by
subtracting the molecular signatures of height h of substrates of r from the molec-
ular signatures of height h of products of r. Formally, reactions have the general
equation r : s1S1 + . . .+ snSn → p1P1 + . . .+ pmPm, where si and pj are the stoichio-
metric coefficients of substrates Si and products Pj, respectively. Then, the reaction
signature of height h of a reaction r is defined as the following vector [Carbonell
et al., 2011b]:

hσ(r) =
(

∑
Pj∈r

pj
hσ(Pj)− ∑

Si∈r
si

hσ(Si)

)
For example, Figure VIII.2 shows how the reaction signature of height 1 is com-

puted for a reaction featuring the compound in Figure VIII.1 as product.
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Quantification of reaction similarity In general, it can be assumed that two reac-
tions sharing the same reaction signature of a given height perform the same type
of chemical transformation1. Under this assumption, reaction signatures only offer
a qualitative measure of chemical similarity: two reactions either have the same
signature, or they do not. In order to quantify the similarity between two reactions,
Carbonell et al. [2011b] adapted the Tanimoto similarity coefficient to reaction sig-
natures as follows:

hTc(ri, rj) =
|hσ(ri) · hσ(rj)|

|hσ(ri)|2 + |hσ(rj)|2 − |hσ(ri) · hσ(rj)|
hTc(ri, rj) is a real number between 0 and 1, with 0 for complete dissimilarity

and 1 when the two reactions share the same signature.

3 Computation of reaction signatures

In order to compute reaction signatures, chemical compounds were first re-
trieved from KEGG in MDL Molfile format (see the KEGG REST query number 7
in section III.2.4). As described in Sorokina et al. [2015], compounds were first stan-
dardized by applying protonation and aromatization2 as needed using the Mol-
convert utility3. Next, signature molecular descriptors [Carbonell et al., 2013] for
the compounds were computed using the MolSig software4 for diameters ranging
between 0 and 9 (see below).

The diameter signature

diameter

of a signature is a concept used in the MolSig software to abstract
the type of signature for a given height. Thus, even diameters refer to atomic neigh-
borhood while odd diameters refer to bond neighborhood. An even diameter d
means that the molecular signature of a compound is computed by describing the
neighborhood of every atom in the compound up to a maximum height d/2. Sim-
ilarly, an odd diameter d means that the neighborhood of every bond in the com-
pound is described up to a maximum height (d− 1)/2.

In other words, molecular signature descriptors were computed for compounds
in KEGG for heights ranging from 0 (diameters 0 and 1 for atom and bond neigh-
borhood, respectively) to 4 (diameters 8 and 9).

1This is often not the case for low height signatures, as shall be seen in sections 4 and 5.
2Protonation and aromatization refer to the addition of hydrogen atoms and the formation of

aromatic systems, respectively.
3Molconvert can be obtained from the ChemAxon website (https://chemaxon.com) as part of the

Marvin suite.
4MolSig can be obtained from http://molsig.sourceforge.net.

https://chemaxon.com
http://molsig.sourceforge.net
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In addition, stoichiometric coefficients were normalized for the reactions hav-
ing equations that contain literals. For example, reaction R03042 has the following
definition:

Polyphosphate(n) + H2O <=> Polyphosphate(n-1) + Orthophosphate

The associated equation for reaction R03042 is:

C00404(n) + C00001 <=> C00404(n-1) + C00009

For the above example, the normalization consists in replacing n with 1.
As explained in section VI.2.1, CoMetGeNe retrieves only metabolic pathway

maps from KEGG. In total, 2,438 reactions are present in the KGML files (see section
III.2.3) that were analyzed. Since it is only possible to compute reaction signatures
if the structures of all participating compounds are available, reaction signatures
were computed for 2,251 of the reactions present in the analyzed KGML files as de-
scribed in section 2 above. Figure VIII.3 shows the breakdown of reactions present
in KEGG.

Among reaction signatures, some are emptyempty signature because the difference of signature
molecular descriptors between products and substrates is zero. Figure VIII.4 shows
the example of an isomerisation reaction that falls within this category.

Among the 2,438 reactions present in KGML files, 1,468 (60%) belong to CoMet-

GeNe trails. Table VIII.1 shows the number of reaction signatures for reactions in
CoMetGeNe trails with computable and non-empty signatures, as well as the aver-
age number of reactions associated to a given reaction signature.

4 Sets of reaction signatures

4.1 Approach

This approach consists in associating sets of reaction signatures to CoMetGeNe

trails (see Figure VIII.5 for an overview).
Recall from section V.3 that CoMetGeNe trails are transformed into reaction sets

in order to allow for variations in terms of reaction and/or gene order, as well as
composition. Once reaction sets are determined, the next step is to “translate” them
into sets of reaction signatures. A formal definition follows.

Definition VIII.1. Let R = {r1, r2, . . . , rn} be a reaction set associated to a CoMet-

GeNe trail. The set of reaction signaturesset of reaction

signatures

associated to R at diameter d is the set⋃
i∈{1,...,n}

dσ(ri), where dσ(r) is the reaction signature of a reaction r at diameter
d.
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Reactions 
in KEGG
(10,484)

Reactions 
in analyzed 
KGML files
(2,438)

Reactions in KEGG with 
associated signatures

(9,340)

Reactions in analyzed KGML files 
with associated signatures 

(2,251)

Figure VIII.3 Breakdown of reactions in KEGG with respect to reaction sig-
natures. Among the 10,484 reactions present in KEGG (March 2017), 9,340 (89%)
have an associated signature and 2,438 (23%) are present in the KGML files an-
alyzed by CoMetGeNe. Among the 2,438 reactions present in KGML files, 2,251
(representing 92% of the 2,438 reactions in KGML files) have an associated signa-
ture.

Figure VIII.4 Reaction R11264 (isomerisation of 2-methylaconitate). 2-methyl-
trans-aconitate (C21250) is transformed into cis-2-methylaconitate (C04225). The
associated reaction signature is empty. Reproduced from KEGG REACTION.

Signature
diameter 0 1 2 3 4 5 6 7 8 9

#signatures 72 266 531 774 931 1018 1081 1122 1150 1173
#reactions 373 991 1267 1298 1348 1351 1354 1354 1354 1354
#react./sign. 5.18 3.73 2.39 1.68 1.45 1.33 1.25 1.21 1.18 1.15

Table VIII.1 Reaction signature statistics for reactions in CoMetGeNe trails. For
every signature diameter between 0 and 9, are shown the number of non-empty
reaction signatures (#signatures), the number of reactions in CoMetGeNe trails with
computable and non-empty signatures (#reactions), and the average number of
reactions per signature (#react./sign.).
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R1    → R3    → R2    → R3    → R4

R1    → R3    → R4

R1    → R3    → R4    → R5

R6    → R7    → R8

R6    → R7    → R9    → R10

CoMetGeNe trails

{  R1  ,    R2  ,    R3  ,   R4   }

{  R1  ,    R3  ,    R4  }

{  R1  ,    R3  ,    R4  ,   R5   }

{  R6  ,    R7  ,    R8  }

{  R6  ,    R7  ,    R9  ,   R10  }

 
Reaction sets with associated 

reaction signatures

{R1, R2, R3, R4}

{R1, R3, R4}
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{R6, R7, R8}
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{        ,         ,             }

{        ,         ,             }

Sets of reaction signatures

T1 

T2

T3

T4

T5

T5

T4

T3

T2

T1

Figure VIII.5 Overview of the approach consisting in transforming reaction
sets into sets of reaction signatures. Trail composition and reaction directionality
are abstracted by transforming CoMetGeNe trails (T1 to T5) into reaction sets. In this
approach, reaction signatures are integrated by determining the set of reaction
signatures corresponding to a given CoMetGeNe reaction set. In this example, the
reaction sets associated to trails T1 and T3 have the same corresponding set of
reaction signatures. It is also the case for the reaction sets associated to trails T2
and T5.

A reaction set has a unique corresponding set of reaction signatures. However,
a given set of reaction signatures may correspond to several reaction sets. For ex-
ample, the reaction sets associated to trails T2 and T5 in Figure VIII.5 have the same
corresponding set of reaction signatures (consisting in the yellow, red, and blue sig-
natures). This property enables a qualitative evaluation of reaction set similarity,
and hence of trail similarity.

Two measures need to be taken in order to avoid to incorrectly qualify two
reaction sets as similar. The first measure consists in only considering completecomplete set of

reaction

signatures

sets
of reaction signatures. In a complete set of reaction signatures, every reaction in the
associated reaction set(s) has a computable signature. The second measure consists
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in ignoring sets of reaction signatures that contain empty signatures (see section 3).
A set of reaction signatures without empty signatures is referred to as valid

valid set of

reaction

signatures

.

4.2 Results

To the 4,179 trails produced by CoMetGeNe (see section VII.1.2) correspond 3,712
reaction sets (for an average of 1.13 CoMetGeNe trails per reaction set). Sets of reac-
tion signatures corresponding to CoMetGeNe reaction sets were determined accord-
ing to definition VIII.1 above, for signature diameters between 0 and 9. Addition-
ally, sets of reaction signatures that were incomplete or contained empty signatures
were ignored (see above).
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Figure VIII.6 Sets of reaction signatures derived from reaction sets. A set of
reaction signatures is associated to every CoMetGeNe reaction set. Sets of reaction
signatures in which a reaction signature exists (can be computed) for every reac-
tion in the CoMetGeNe reaction set are referred to as complete sets of reaction sig-
natures. Here are shown only complete sets of reaction signatures in which every
signature is non-empty (i.e. valid sets of reaction signatures). Bar labels designate
the signature height for atom (A) and bond (B) neighborhood. Values above each
bar represent the mean number of reaction sets (with computable and non-empty
signatures for every reaction) corresponding to one complete set of reaction sig-
natures without any empty signatures.

Figure VIII.6 shows the number of complete and valid sets of reaction signa-
tures for different values of the signature diameter. Among the total number of sets
of reaction signatures, the complete and valid sets represent between 31.56% (atom
type signature of height 0) and 88.01% (bond type signature of height 4), with an
average of 75.3%.
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The average number of reactions sets with computable and non-empty signa-
tures per complete and valid set of reaction signatures is indicated above each bar
in Figure VIII.6.

The sets of reaction signatures of interest are sets corresponding to at least two
reaction sets (in green in Figure VIII.6). These sets of reaction signatures amount
to between 4.29% and 4.86% (for bond and atom type signatures, respectively, of
height 4), and 23.63% and 28.17% (for bond and atom type signatures, respectively,
of height 0) of the total number of complete and valid sets of reaction signatures at
each diameter.

4.3 Examples

4.3.1 Partially overlapping trails in different species

Figure VIII.7 shows a portion of the propanoate metabolism pathway (map00640)
representing the conversion of propanoate into succinate. Two reaction sets corre-
sponding to trails obtained for Escherichia coli and Vibrio cholerae were found to have
the same associated set of reaction signatures in which reactions R04424 (in blue)
and R11263 (in orange) share the same reaction signature. The set of reaction sig-
natures was obtained for both atom and bond neighborhood signature types, for
heights from 1 to 4.

This example highlights the interest of using sets of reaction signatures. In ad-
dition to the metabolic and genomic patterns meaning that the two mostly over-
lapping trails are catalyzed by products of neighboring genes for both species, the
corresponding set of reaction signatures shows that the non-overlapping reactions
(R04424 for E. coli and R11263 for V. cholerae) perform the same type of chemical
transformation.

Trail grouping (described in Chapter V) is not able to capture this pattern. In-
deed, grouping by reactions results in a reaction set for E. coli that includes the re-
action R04424, and in a reaction set for V. cholerae that includes the reaction R11263.
However, the two tables Tr

eco and Tr
vco need to be manually compared in order to

determine trail overlap. Moreover, trail grouping does not evaluate chemical simi-
larity between trails.

Nevertheless, there is an advantage to the extraction of simpler metabolic and
genomic patterns (without the chemical aspect). The reaction R11264 (in orange)
is performed by V. cholerae using the product of a gene that is found in the same
genomic context as the genes involved in the other reactions in the trail. This reac-
tion, however, is an isomerisation, meaning that its substrate and product have the
same chemical formula but with a different arrangement of atoms. For this reason,
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R01354

R00926

R00931

R00409

R04425

R11264

R11263R04424

Both

V. cholerae

E. coli

Figure VIII.7 Partial view of the propanoate metabolism pathway. Adapted
from KEGG PATHWAY map00640 (November 1, 2017 version). Shown here is a
set of reaction signatures with two associated CoMetGeNe reaction sets. The re-
action set in green and blue corresponds to a CoMetGeNe trail in Escherichia coli,
and the one in green and orange to Vibrio cholerae. Reactions are labeled with
the corresponding KEGG reaction identifiers (R numbers). Reactions with empty
rectangles (labels in italics) are not part of the set of reaction signatures. Reac-
tion R04425 (in green) is performed by both species using the products of distant
genes. Reaction R11264 (in orange), having an empty signature for diameters from
0 to 9, is performed by V. cholerae using the product of a gene that shares the same
neighborhood as the other genes involved in the green and orange trail.

the associated reaction signature is empty (see Figure VIII.4). Whereas a chemical,
metabolic, and genomic pattern would not be able to capture this transformation,
a simpler metabolic and genomic pattern may include reactions with empty signa-
tures.
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4.3.2 Non-overlapping trails in the same species

Figure VIII.8 shows two CoMetGeNe trails obtained for Bacteroides fragilis in the
tricarboxylic acid cycle (panel a) and in the valine, leucine, and isoleucine biosyn-
thesis pathway (panel b), respectively.

R00351
R01325 R01900

R01213

R03968

R04001

a

b

Figure VIII.8 A chemical, metabolic, and genomic pattern for Bacteroides frag-
ilis. Shown here is a set of reaction signatures with two associated reaction sets
(one in each pathway). Reactions are labeled with the corresponding KEGG re-
action identifiers (R numbers). Reactions with the same color have the same sig-
nature of height 1 for atom neighborhood. (a) Partial view of the tricarboxylic
acid cycle. Adapted from KEGG PATHWAY, map bfr00020 (June 7, 2018 ver-
sion). (b) Partial view of the valine, leucine, and isoleucine biosynthesis pathway.
Adapted from KEGG PATHWAY, map bfr00290 (March 7, 2017 version).

The two trails, and consequently their corresponding reaction sets, are disjoint.
However, both reaction sets are associated to the same set of reaction signatures
of height 1 for atom neighborhood. Reactions having the same signature are dis-
played with the same color in Figure VIII.8.

Interestingly, while the two pairs of reactions in yellow and light orange are
found to be similar using EC-BLAST [Rahman et al., 2014], this is not the case for
the reactions in dark orange (R01900 and R04001). EC-BLAST is a fingerprint-based
chemical similarity search tool for reactions. Similarity is expressed as a score be-
tween 0 (no similarity) and 1 (maximum similarity). One of the methods proposed
by EC-BLAST is bond similarity, in which fingerprints of bond change patterns
are compared. This method reports that the pairs of reactions in yellow and light
orange have bond similarity scores of 0.91 and 1.00, respectively. Another search
method, based on comparing reaction center information, is the only one to report
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that reactions R01900 and R04001 are similar, with a relatively low score of 0.61.

-1.0 [C]([H][C][C][C]) 

-1.0 [C]([H][C][C][O]) 

-1.0 [H]([C]) 

-1.0 [O]([H][C]) 

 1.0 [C]([C][C]=[C]) 

 1.0 [C]([H][C]=[C]) 

 1.0 [H]([O]) 

 1.0 [O]([H][H])

R01900

R04001

Figure VIII.9 Reactions R01900 and R04001 have the same signature of height 1
for atom neighborhood. Each descriptor in the reaction signature (right) is color-
coded, with the corresponding atoms highlighted in the same color for the two
reactions. Adapted from KEGG REACTION.

As shown in Figure VIII.9, although the substructures of the chemical com-
pounds involved in these reactions differ, their overall structure is similar. Both
substrates and products consist of three-carbon backbones with carboxyl groups
at one end. Additionally, the product backbones exhibit a double carbon–carbon
bond. Since the reaction signature for R01900 and R04001 is essentially based on
backbone atoms and their direct neighbors, it follows that substructures do not
play an important role in the specificity of these two chemical transformations. It
is therefore relevant to describe the two reactions as similar.

This example illustrates how sets of reaction signatures may help uncover sub-
tler metabolic and genomic organization patterns. Two distinct CoMetGeNe trails
obtained for the same species in different pathways may in fact perform the same
types of chemical transformations. If this is the case, it can be hypothesized that
the genes involved in reactions having the same signature originate from a gene
duplication event. Indeed, KEGG SSDB (see section III.2.2) reports that the genes
in B. fragilis involved in the reactions in light orange in Figure VIII.8 are paralogs5.

5https://www.kegg.jp/ssdb-bin/ssdb_paralog?org_gene=bfr:BF3755

https://www.kegg.jp/ssdb-bin/ssdb_paralog?org_gene=bfr:BF3755
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5 Sets of reaction signature clusters

5.1 Approach

We propose associating sets of reaction signature clusters to CoMetGeNe trails
(see Figure VIII.10 for an overview of the approach).

The similarity between reaction signatures is quantified using the Tanimoto co-
efficient (see section 2). Since this coefficient is a real number between 0 and 1,
the distance between two reaction signatures dσ(ri) and dσ(rj) at diameter d is ex-
pressed as 1− dTc(ri, rj), where dTc(ri, rj) is the Tanimoto coefficient applied to the
two reaction signatures. Average linkage hierarchical clustering is performed in
order to group together similar reaction signatures. Conservative cutoff thresholds
ranging between 0.01 and 0.10 are used in order to avoid “over-clustering”. Since
reaction signatures represent the first level of reaction similarity, clustering them in
an overly relaxed manner may lead to clusters that describe quite different chem-
ical transformations. The idea is to group together comparable chemical transfor-
mations that do not have the same reaction signature. Overdoing this grouping
process risks to be devoid of biochemical meaning.

Similarly to the first approach (see section 4.1 above), CoMetGeNe trails are trans-
formed into their corresponding reaction sets. Reaction sets are then “translated”
into sets of reaction signature clusters. A formal definition follows.

Definition VIII.2. Let R = {r1, r2, . . . , rn} be a reaction set associated to a CoMet-

GeNe trail. The set of reaction signature clusters
set of reaction

signature

clusters

associated to R for a given cutoff
threshold t is the set ⋃

i∈{1,...,n}
Ct(

dσ(ri))

where Ct(dσ(ri)) is the cluster of reaction signatures obtained for threshold t that
contains the signature dσ(ri) of reaction ri at diameter d.

A reaction set has a unique corresponding set of reaction signature clusters.
However, a given set of reaction signature clusters may correspond to several re-
action sets. For example, the reaction sets associated to trail T2 and T5 in Figure
VIII.10 have the same corresponding set of reaction signature clusters. It consists in
the yellow, red, and blue clusters, each of them containing several similar reaction
signatures (in the figure, the similarity between reaction signatures is represented
by signatures of the same color). This property enables a quantitative evaluation of
reaction set similarity, and hence of trail similarity, in which the quantitative aspect
is given by the Tanimoto coefficient between two reaction signatures.
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Figure VIII.10 Overview of the approach consisting in transforming reaction
sets into sets of reaction signature clusters. CoMetGeNe trails (T1 to T5) are trans-
formed into reaction sets. Clusters of reaction signatures are established on the
basis of reaction signature similarity. In this approach, reaction signatures are in-
tegrated by determining the set of reaction signature clusters corresponding to a
given CoMetGeNe reaction set. In this example, the reaction sets associated to trails
T1 and T3 have the same corresponding set of reaction signature clusters. It is also
the case for the reaction sets associated to trails T2 and T5.
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As in the case of the previous approach, measures need to be taken to prevent
dissimilar reaction sets from being qualified as similar. The first measure is to only
consider sets of reaction signature clusters associated to reaction sets in which ev-
ery reaction has a computable signature. Such a set of reaction signature clusters is
referred to as complete

complete set of

reaction

signature

clusters

. The second measure consists in ignoring sets of reaction sig-
nature clusters containing clusters that feature empty signatures. A set of reaction
signature clusters without empty signatures is referred to as validvalid set of

reaction

signature

clusters

.

5.2 Results

Tanimoto coefficients were computed for every possible pair of reactions present
in CoMetGeNe trails, for signature diameters ranging from 0 through 9. Bottom-up
hierarchical clustering was then performed on reaction signatures, using average
linkage and a cutoff threshold ranging between 0.01 and 0.10 by increments of
0.01. As explained in the previous section (see 5.1), these conservative values have
been chosen in order to avoid the over-clustering of reaction signatures and, conse-
quently, the loss of biological meaning.

Table VIII.2 shows averages over the ten cutoff thresholds for the number of
reaction signature clusters, the percentage of clusters among them that contain a
single reaction signature (i.e., singleton clusters), and the number of reaction sig-
natures per cluster. If the values obtained for diameters 0 and 1 are ignored, as
signatures of height 0 are very general, this table confirms that the clustering is in-
deed minimal. Thus, on average for the ten cutoff thresholds, at least 96% of all
clusters are singletons, and the average number of reaction signatures per cluster
is between 1.01 and 1.06. Higher values of the cutoff threshold would result in less
singleton clusters with the effect that clusters would contain more reaction signa-
tures, on average.

Figure VIII.11 shows the number of complete and valid sets of reaction signa-
ture clusters for different values of the signature diameter, averaged for clustering
cutoff thresholds between 0.01 and 0.10. Among the total number of sets of reac-
tion signature clusters, the complete and valid sets represent between 45.53% (atom
type signature of height 0) and 91.63% (bond type signature of height 4), with an
average of 82.36%.

The average number of reaction sets with computable and non-empty signa-
tures per complete and valid set of reaction signature clusters is indicated above
each bar in Figure VIII.11. These values are averaged across the ten cutoff thresh-
olds. They are very close to the average number of reaction sets per set of reaction
signatures (see Figure VIII.6).
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Diameter <#clusters> ± SD <%singleton> ± SD <#signatures/cluster>

0 58.70 ± 4.78 90.65% ± 2.11% 1.23
1 247.20 ± 13.09 94.12% ± 4.05% 1.08
2 520.00 ± 11.00 98.15% ± 1.73% 1.02
3 729.50 ± 34.86 96.23% ± 2.82% 1.06
4 902.50 ± 30.18 97.42% ± 2.39% 1.03
5 981.10 ± 29.80 97.01% ± 2.52% 1.04
6 1041.70 ± 34.52 96.98% ± 2.50% 1.04
7 1090.30 ± 21.01 97.36% ± 1.66% 1.03
8 1113.60 ± 28.07 97.30% ± 2.09% 1.03
9 1158.30 ± 12.76 98.88% ± 0.96% 1.01

Table VIII.2 Statistics for clusters of reaction signatures corresponding to re-
actions in CoMetGeNe trails. For every signature diameter between 0 and 9 are
shown the average number of reaction signature clusters ± standard deviation
(<#clusters> ± SD), the percentage of singleton clusters ± standard deviation
(<%singleton> ± SD), and the average number of reaction signatures per clus-
ter (<#signatures/cluster>). Values are averaged for clustering cutoff thresholds
between 0.01 and 0.10. Singleton clusters are clusters of reaction signatures with
a single associated reaction signature.
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Figure VIII.11 Sets of reaction signature clusters derived from reaction sets.
Reaction signatures are clustered on the basis of a distance criterion that reflects
the similarity between signatures. Every CoMetGeNe reaction set in which all re-
actions have computable reaction signatures is then assigned to a set of reaction
signature clusters. Such a set is said to be a complete set of reaction signature clus-
ters. Here are shown, for every signature diameter, the mean numbers of complete
sets of reaction signature clusters in which every reaction signature is non-empty
(i.e. valid sets of reaction signature clusters), averaged for clustering cutoff thresh-
olds between 0.01 and 0.10. Bar labels designate the signature height for atom (A)
and bond (B) neighborhood. Values above each bar represent the mean number of
reaction sets (with computable and non-empty signatures for every reaction) cor-
responding to one complete set of reaction signature clusters without any empty
signatures.
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The sets of reaction signature clusters of interest are sets corresponding to at
least two reaction sets (in green in Figure VIII.11). On average, these sets of reaction
signature clusters amount to between 8.59% and 9.67% (for bond and atom type
signatures, respectively, of height 4), and 42.77% and 64.96% (for bond and atom
type signatures, respectively, of height 0) of the total number of complete and valid
sets of reaction signature clusters at each diameter. These percentages are roughly
two times greater than those corresponding to Figure VIII.6 and representing the
fraction of sets of reaction signatures of interest. Thus, although the clustering of
reaction signatures is minimal as illustrated in Table VIII.2, it is also effective, since
the ratio of interesting sets is significantly higher than in the previous approach.

5.3 Metabolic building blocks

Figure VIII.12 shows two CoMetGeNe trails obtained for Acetomicrobium mobile
in the pathways for arginine (top) and lysine (bottom) biosynthesis. Each color
represents a pair of similar reactions. For signature diameters between 2 and 4,
every pair of reactions shares the same signature (the Tanimoto coefficient is 1). The
similarity coefficients in the figure refer to a signature diameter of 5. If clustering
of similar reaction signatures had not been performed, these trails would not have
been reported as similar at diameter 5. For diameters 6 through 9, the trails are no
longer identified as similar.

Apart from representing metabolic and genomic patterns, these trails are also
chemically similar. Although this information is available using lower diameters
(2, 3, or 4), the example illustrates how higher diameters can still yield meaningful
biological information when only minimal clustering is performed.

Moreover, this chemical, metabolic, and genomic pattern is an example of meta-
bolic building block, or module. In the literature, metabolic modules are seen as suc-
cessive enzymatic steps performing similar chemical transformations [Muto et al.,
2013; Sorokina et al., 2015].

A. mobile is the only species among those in Table VII.1 to possess these two
CoMetGeNe trails. The genes involved in these two trails are the same, meaning
that A. mobile uses products of the same genes to synthesize arginine and lysine.
Interestingly, this is not the case for the other species in the data set. Among them,
for example, all Terrabacteria use a parallel metabolic route to obtain arginine, and
a different route altogether for lysine biosynthesis.
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Figure VIII.12 A chemical, metabolic, and genomic pattern for Acetomicro-
bium mobile. Top: Partial view of the arginine biosynthesis pathway in A. mobile.
Adapted from KEGG PATHWAY, map amo00220 (July 20, 2017 version). Bottom:
Partial view of the lysine biosynthesis pathway in A. mobile. Adapted from KEGG
PATHWAY, map amo00300 (June 23, 2017 version). Shown here is a set of reaction
signature clusters with two associated CoMetGeNe reaction sets (one in each path-
way). Reactions are labeled with the corresponding KEGG reaction identifiers (R
numbers). Reactions with the same color have similar or identical signatures at
diameter 5, as indicated by the Tanimoto coefficients between each pair of similar
reactions.

6 Discussion

Metabolic modularity Perhaps the most natural application for chemical similar-
ity is to detect enzymatic “building blocks” revealing metabolic modularity.

The two approaches presented in this chapter uncover chemical, metabolic,
and genomic patterns that often translate to metabolic modules. Approaches that
perform the exhaustive enumeration of possible sequences of reaction steps de-
fine modules as successive reactions performing the same type of transformations,
as has been done by Muto et al. [2013] (using fingerprint-based signatures) and
Sorokina et al. [2015] (using reaction signatures). In this thesis, a metabolic

module

metabolic module
is a chemical, metabolic, and genomic pattern. In other words, most definitions in
the literature require modules to fulfill two criteria (chemical similarity and meta-
bolic context), whereas in this thesis they fulfill three criteria: chemical similarity,
metabolic context, and genomic context.

Sets of reaction signatures The approach consisting in associating sets of reaction
signatures to CoMetGeNe trails (see section 4) is a qualitative approach. It allows
to establish chemical similarity between reaction sets corresponding to CoMetGeNe
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trails that may be either partly overlapping (see 4.3.1) or disjoint (see 4.3.2).

Sets of reaction signatures of interest are those corresponding to at least two
reaction sets. As can be seen from Figure VIII.6, most sets of reaction signatures of
interest are found for heights 1 and 2, especially for atom type signatures.

Of the ten signature diameters that were tested, those corresponding to height
0 are very generic, as they only provide the remaining counts of atoms or bonds
after subtracting molecular signatures of the substrates from those of the reaction
products.

Signatures of heights 3 and 4 are very specific, describing atom and bond neigh-
borhood at up to 3 and 4 surrounding atoms and bonds, respectively. Although
very few sets of reaction signatures at these heights have more than one corre-
sponding reaction set, they capture almost identical reactions, for example reac-
tions in which coenzymes are either NAD+/NADH or NADP+/NADPH6, or reac-
tions hydrolyzing purine mononucleotides7. Consequently, sets of reaction signa-
tures at theses heights containing reactions in disjoint reaction sets often describe
parallel metabolic blocks involving the same types of chemical transformations.

Sets of reaction signatures complement trail grouping in CoMetGeNe by identi-
fying chemical, metabolic, and genomic patterns, that is, metabolic and genomic
patterns in which reactions perform similar chemical transformations. If they in-
volve disjoint CoMetGeNe trails and occur in the same species (see Figure VIII.8),
chemical, metabolic, and genomic patterns highlight metabolic modularity. If oc-
curring in different species and involving partially overlapping (see Figure VIII.7)
or disjoint CoMetGeNe trails, such chemical, metabolic, and genomic patterns may
reveal subtler conservation aspects of metabolic and genomic organization, while
also offering insights into metabolic evolution.

When two reactions have the same signature at lower heights (e.g. 1 and 2),
but not at greater heights (e.g. 3 and 4), it means that the reactions are similar, but
not “that similar”. The very difficulty in explaining the difference between such
reactions points out the fact that the limitation of using sets of reaction signatures
is their inability to quantify reaction similarity. This limitation is addressed by a
second approach that makes use of sets of reaction signature clusters (see below).

Sets of reaction signature clusters The approach consisting in associating sets
of reaction signature clusters to CoMetGeNe trails (see section 5) is a quantitative

6For instance, reactions R10221 and R01528 have the same signature of height 4: https://www.
genome.jp/dbget-bin/www_bget?R10221+R01528

7For instance, reactions R00183 and R01227 have the same signature of height 4: https://www.
genome.jp/dbget-bin/www_bget?R00183+R01227

https://www.genome.jp/dbget-bin/www_bget?R10221+R01528
https://www.genome.jp/dbget-bin/www_bget?R10221+R01528
https://www.genome.jp/dbget-bin/www_bget?R00183+R01227
https://www.genome.jp/dbget-bin/www_bget?R00183+R01227
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approach. It allows to establish chemical similarity between reaction sets corre-
sponding to CoMetGeNe trails in which reactions may not share the same reaction
signatures.

Similarly to the previous approach, most sets of reaction signatures of interest
are found for lower heights (1 and 2). However, as shown in the example (see 5.3),
higher diameters may contain interesting trails due to clustering of similar reaction
signatures.

By quantifying reaction similarity, this method provides a solution to the prob-
lematic situation in which reaction signatures are distinct although chemically close.
Trails that would otherwise be considered different may be found similar when
passing from sets of reaction signatures to sets of reaction signature clusters.

Since the quantification of reaction similarity is performed through clustering,
care needs to be taken in the choice of the cutoff threshold. Small values were used
in this application (ranging from 0.01 to 0.10) in order to avoid over-clustering.
However, manual analysis of several groups of trails hinted to the fact that, in some
situations, thresholds up to 0.20 may be pertinent.

Many chemical, metabolic, and genomic patterns identified using sets of reac-
tion signature clusters fall within the category of “metabolic building blocks”, rep-
resenting successive reactions that generally occur in distinct pathways and lead to
the production of similar compounds through similar chemical transformations. In
this thesis, modules are further restricted to metabolic building blocks that involve
products of neighboring genes.

7 Concluding remarks

This chapter proposed a refinement of the concept of metabolic and genomic
patterns. When taking into account reaction similarity, certain CoMetGeNe trails re-
veal chemical, metabolic, and genomic patterns. These patterns still represent reac-
tions that are catalyzed by products of neighboring genes, with the distinction that
the transformations they perform are chemically similar.

Chemical similarity is evaluated using two approaches, the first one qualitative
(sets of reaction signatures) and the second one quantitative (sets of reaction sig-
nature clusters). Both approaches reuse the concept of reaction sets introduced for
trail grouping.

The qualitative approach consists in associating reaction sets to sets of reaction
signatures. Thus, several reaction sets associated to a single set of reaction signa-
tures indicate that the reaction sets in question are chemically similar.

The quantitative approach consists in clustering similar reaction signatures and
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in associating reaction sets to sets of reaction signature clusters. In this approach,
reaction sets are treated as similar if the reactions they contain perform somewhat
different, but chemically close transformations.

Intuitively, chemical, metabolic, and genomic patterns allow for an extension of
trail grouping in which reaction sets are replaced by sets of either reaction signa-
tures or reaction signature clusters. In practice, the advantage of such a trail group-
ing method is that it complements “classical” trail grouping by revealing metabolic
modules. Although several definitions of metabolic modules exist, in this approach
they are seen as elementary building blocks of metabolism linking genomic organi-
zation to metabolic function. More specifically, conserved chemical, metabolic, and
genomic patterns reflect the fact that the organization of genomic context is con-
served for several species in order to perform a given type of metabolic function.



Conclusions and perspectives

This thesis fits within the field of systems biology and addresses a problem re-
lated to heterogeneous biological networks. It focuses on the relationship between
metabolism and genomic context through a graph mining approach.

It is well-known that succeeding enzymatic steps involving products of genes in
close proximity on the chromosome translate an evolutionary advantage in main-
taining this neighborhood relationship at both the metabolic and genomic levels.
We therefore chose to focus on the detection of neighboring reactions being cata-
lyzed by products of neighboring genes, where the notion of neighborhood may
be modulated by allowing the omission of several reactions and/or genes. More
specifically, the sought motifs are trails of reactions (that is, reaction sequences
in which reactions may be repeated) being catalyzed by products of neighboring
genes. For simplicity, these motifs are called metabolic and genomic patterns.

The particular choice of extracting trails is motivated by three aspects. The first
one is the fact that cycles are ubiquitous in metabolism and the only way to cap-
ture them is to repeat the reactions that serve as entry and exit points to and from
cycles, respectively. The second and third aspects are related to the biological sig-
nificance of the extracted motifs. First, by representing motifs in directed graphs,
trails incorporate reaction directionality. Various approaches extract subgraphs in
the undirected case, which results in ignoring reaction directionality. This means
that there may be no metabolic routes corresponding to the extracted motifs. Then,
trails of reactions translate metabolic routes. Thus, by the very problem defini-
tion, neighboring genes involved in a given trail are guaranteed to be involved in
the corresponding metabolic route. If subgraphs were extracted, the neighboring
genes involved in the reactions defining the subgraphs would not necessarily be
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neighbors for the different corresponding metabolic routes.

In addition to the identification of metabolic and genomic patterns, we also in-
vestigate the degree of conservation of such patterns among multiple species. Simi-
larly to the notion of metabolic and genomic neighborhood, a flexible definition of
pattern conservation is adopted. Thus, when evaluating conservation, the order of
reactions in trails and the order of functionally similar genes on the chromosome
may differ between species. Moreover, the conservation may be partial, meaning
that the composition of trails and genomic contexts may vary, with some species
having only conserved part of a metabolic and genomic pattern detected in other
organisms.

The exploration of the relationship between metabolism and genomic context
is therefore captured by the two main objectives of this thesis: the detection of
metabolic and genomic patterns for a single species on the one hand, and the study
of conserved metabolic and genomic patterns among multiple species on the other
hand.

Contributions

Trail finding In order to detect metabolic and genomic patterns for a given species,
we propose a heterogeneous graph mining methodology called trail finding (see
Chapter IV). The underlying graph model may be easily modified in order to ac-
commodate different types of biological data, such as metabolic pathways and
protein–protein interaction networks. We present the exact algorithm HNET which
performs trail enumeration in a metabolic pathway. Trail enumeration in a directed
graph is naturally solved through path enumeration in its line graph. The scope of
this computationally expensive operation is decreased by applying a reduction to
the input graphs, and is further restricted to only enumerate paths between vertices
that are susceptible to be part of the sought solution.

Trail grouping In order to detect conserved metabolic and genomic patterns be-
tween several species, we propose a methodology called trail grouping (see Chap-
ter V). In order to account for variations between similar trails in terms of reaction
and/or gene order, as well as their respective presence or absence, trail grouping
transforms trails into reaction sets. Two approaches are proposed for evaluating the
conservation of trails belonging to a designated reference species: trail grouping
by reactions, focusing on the conservation of metabolic patterns, and trail group-
ing by genes, focusing on the conservation of genomic patterns. Both approaches
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construct tables akin to phylogenetic profiles for reactions sets or groups of neigh-
boring genes involved in trails of the reference species. Jointly, these profiles allow
to compare the degree of trail conservation among the species under study.

CoMetGeNe The trail finding and trail grouping methodologies are implemented in
an easy-to-use open-source pipeline called CoMetGeNe, short for Conserved Metabolic
and Genomic Neighborhoods (see Chapter VI). CoMetGeNe, available at the address
https://cometgene.lri.fr, is used to analyze a set of 50 bacterial species span-
ning major phyla of the bacterial tree of life (see Chapter VII), showing that the trail
finding and trail grouping methodologies serve as exploratory tools for investigat-
ing the links between metabolic and genomic contexts. We highlight the discovery
aspect of our approach, showing that the identified metabolic and genomic pat-
terns may lead to biological insights, to the formulation of biological hypotheses,
as well as to the detection of annotation problems in public knowledge bases as a
side effect.

A paper summarizing these contributions has been submitted to BMC Bioinfor-
matics on June 25, 2018 [Zaharia et al., 2018]. It describes the trail finding and trail
grouping methodologies, presents the CoMetGeNe pipeline, and outlines examples
of biological applications (sections VII.4 and VII.5).

Extension to chemical similarity The notion of metabolic and genomic patterns
can be extended to account for the chemical similarity between several trails (see
Chapter VIII). These extended patterns are called chemical, metabolic, and genomic
patterns and reflect the fact that the nature of the chemical transformations is an-
other factor in the relationship between metabolism and the genome. One of the
possible definitions of chemical similarity is used to compute reaction signatures.
We then propose two approaches that extend the grouping of CoMetGeNe trails. The
first one is qualitative and consists in deciding whether two reactions are similar,
whereas the second one allows to quantify reaction similarity. The two approaches
reuse the concept of reaction sets, by associating them to either sets of reaction sig-
natures, or to sets of reaction signature clusters. Existing studies on metabolic mod-
ularity usually define metabolic modules as sequences of chemically similar enzy-
matic transformations. We show that chemical, metabolic, and genomic patterns
correspond to a particular type of metabolic modules in which the genes encoding
the enzymes are neighbors.

https://cometgene.lri.fr
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Detection of consistency issues in KEGG Through the extensive use of the KEGG
knowledge base (see Chapter III) during the course of this thesis, several consis-
tency issues became apparent. Two cases are illustrated, the first concerning dis-
connected reactions in pathway maps, and the second concerning reactions being
inconsistently marked as present and absent between pathway maps of the same
species. In both cases, a general approach allowing to systematically identify such
occurrences is outlined. Whereas the first issue is immediately noticeable, the sec-
ond one may be subject to interpretation depending on the definition of inconsis-
tent treatment of reactions. Nevertheless, we report these issues since such dis-
crepancies between various KEGG databases may have an important impact on
the bioinformatic community relying on KEGG as a reference resource for linking
genome to function.

Perspectives

Trail finding It would be interesting to tailor existing approaches (see section
II.4) that extract undirected subgraphs to perform a post-processing step checking
whether these motifs correspond to actual metabolic routes. If this is the case, an
additional filtering step would only retain the routes involving neighboring genes.
These modified methods could then be benchmarked against CoMetGeNe in terms
of pattern detection and execution time.

In addition, network topology (see section II.3.1) may be used to adjust the trail
finding strategy. A first possibility is to directly perform path finding in metabolic
pathways or their subgraphs instead of passing through the line graph (see section
IV.4.2) if no cycles exist. Deciding whether cycles are present can be performed
using a depth-first search in which back edges indicate cycles. A second possibility
referring to connectivity aspects would be to only focus on trails passing through
reactions playing important roles in a given metabolic pathway. Two examples
are hub reactions, meaning reactions with high degree (see definition II.14), and
critical reactions for the overall network connectivity, meaning reactions with high
betweenness centrality (see definition II.16). Such an approach might prove useful
if the whole metabolic network would be considered for trail finding instead of
isolated pathways.

Trail grouping and reaction similarity As explained in Chapter VIII, the defini-
tion of chemical, metabolic, and genomic patterns may be used for an extended
version of trail grouping in which reaction sets would be replaced by either sets of
reaction signatures or sets of reaction signature clusters. As explained previously,
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this approach has the benefit of detecting metabolic modules in which the genes
that encode enzymes performing similar transformations are neighbors. Although
the general approach is outlined in Chapter VIII, the theoretical framework for trail
grouping still needs to be modified accordingly. The preliminary results that were
presented have been obtained using a proof-of-concept piece of software code that
requires extensive improvements prior to its integration into CoMetGeNe.

Reaction similarity is established through the use of the signature molecular
descriptor. To simplify, the signature of a reaction is given by the atoms and bonds
that are not common to its substrates and products. However, this approach does
not guarantee that the remaining atoms and bonds are actually the ones that were
modified during the reaction. For this purpose, atom-to-atom mapping approaches
should be considered.

As shown in Chapter VIII, reactions with empty signatures are problematic.
As a precautionary measure, reaction sets having reactions with empty signatures
have been excluded from the analysis. This constraint could however be removed,
which would result in additional chemical, metabolic, and genomic patterns that
might prove meaningful. Assuming that reaction signatures as well as similarity
coefficients are precomputed for several diameters, another possible solution for
handling reactions with empty signatures is to consider that two such reactions
share the same signature if they both have a maximum similarity coefficient for
higher values of the signature diameter. This would in turn impact the quantitative
approach (see section VIII.5), for which the clustering method should be refined.

Visualization Although CoMetGeNe is an easy-to-use pipeline, it does not offer
any visualization options. From a user’s perspective, it would be practical to have
an integrated viewer that highlights the obtained trails (for trail finding) or reac-
tions in slightly different trails in different species (for trail grouping). Another
point of interest (currently lacking from KEGG) is the ability to link in a one-step
process the definition of a given reaction to the gene(s) involved in this reaction.
During my teaching activities, I conceived two projects1 addressing these aspects
and presented them to two groups of first year Master’s students in bioinformatics.
Their implementation (in Java) indicates that elegant visualization solutions can
be realistically envisaged. Such solutions would simplify the biological interpreta-
tion of metabolic and genomic patterns detected using CoMetGeNe by automatically
highlighting them in an integrated viewer.

1Visualization and superposition of metabolic pathways (2016/2017): https://www.lri.fr/
~zaharia/EdC2016/Projet_EdC_2016_2017.pdf. KEGG browser (2017/2018): https://www.lri.fr/
~zaharia/EdC2017/Projet_EdC_2017_2018.pdf.

https://www.lri.fr/~zaharia/EdC2016/Projet_EdC_2016_2017.pdf
https://www.lri.fr/~zaharia/EdC2016/Projet_EdC_2016_2017.pdf
https://www.lri.fr/~zaharia/EdC2017/Projet_EdC_2017_2018.pdf
https://www.lri.fr/~zaharia/EdC2017/Projet_EdC_2017_2018.pdf
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A
Appendices for Chapter III

1 Disconnected reactions in KEGG ORTHOLOGY maps

This appendix corresponds to section III.3.1 and lists all occurrences of discon-
nected reactions in KEGG ORTHOLOGY (KO) maps, retrieved via the KEGG FTP
in June 2018. Each line displays the name of the KO map, followed by the R num-
ber(s) corresponding to a reaction that is not linked in the given map. KO maps are
listed in ascending order of their identifiers.

ko00073.xml R09448 R09455 R09456

ko00073.xml R09451 R09452 R09454

---

ko00130.xml R04985 R04986

ko00130.xml R05000 R05615

ko00130.xml R05000 R05616 R07273

ko00130.xml R08768 R04987

ko00130.xml R08769 R04988

ko00130.xml R08771 R04711

ko00130.xml R08773 R04982

ko00130.xml R08773 R04989

ko00130.xml R08774 R04983

ko00130.xml R08774 R04990

ko00130.xml R08775 R04984

ko00130.xml R08775 R06146

ko00130.xml R08781 R02175 R07235

ko00130.xml R08781 R05614

---

ko00271.xml R00177

ko00271.xml R00178

ko00271.xml R00179

201



202 A. Appendices for Chapter III

ko00271.xml R00192

ko00271.xml R00194

ko00271.xml R00648

ko00271.xml R00650

ko00271.xml R00653

ko00271.xml R00654

ko00271.xml R00946

ko00271.xml R00999

ko00271.xml R01001

ko00271.xml R01286

ko00271.xml R01287 R02026

ko00271.xml R01288

ko00271.xml R01290

ko00271.xml R01291

ko00271.xml R01401

ko00271.xml R01402

ko00271.xml R01776

ko00271.xml R01777

ko00271.xml R01920

ko00271.xml R02025

ko00271.xml R02026

ko00271.xml R02821

ko00271.xml R03217

ko00271.xml R03260

ko00271.xml R03659

ko00271.xml R03940

ko00271.xml R04143

ko00271.xml R04405

ko00271.xml R04420

ko00271.xml R04858

ko00271.xml R07214

ko00271.xml R07363

ko00271.xml R07364

ko00271.xml R07392

ko00271.xml R07393

ko00271.xml R07394

ko00271.xml R07396

---

ko00281.xml R08087 R08096

ko00281.xml R10125 R10126

---

ko00333.xml R11662

ko00333.xml R11673

---

ko00460.xml R11639 R11640

ko00460.xml R11641 R11642
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---

ko00512.xml R05908

ko00512.xml R05912

ko00512.xml R05913

---

ko00513.xml R05970

ko00513.xml R05972

ko00513.xml R05973

ko00513.xml R05976

ko00513.xml R05987

ko00513.xml R06127

ko00513.xml R06128

ko00513.xml R06238

ko00513.xml R06258

ko00513.xml R06260

ko00513.xml R06261

ko00513.xml R06722

ko00513.xml R11316

---

ko00514.xml R03380

ko00514.xml R04491

ko00514.xml R07620

ko00514.xml R09290

ko00514.xml R09295

ko00514.xml R09296

ko00514.xml R09297 R09298

ko00514.xml R09299

ko00514.xml R09300

ko00514.xml R09301

ko00514.xml R09302

ko00514.xml R09303

ko00514.xml R09304

ko00514.xml R09315

ko00514.xml R09316

---

ko00522.xml R06467 R06465

ko00522.xml R06470 R06468

ko00522.xml R06473 R06472

ko00522.xml R06475 R06474

ko00522.xml R06477 R06476

ko00522.xml R06479 R06478

ko00522.xml R06481 R06480

ko00522.xml R06483 R06482

ko00522.xml R06488 R06484

ko00522.xml R06489 R06485

ko00522.xml R06490 R06486
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ko00522.xml R06491 R06487

ko00522.xml R06496 R06492

ko00522.xml R06497 R06493

ko00522.xml R06498 R06494

ko00522.xml R06499 R06495

ko00522.xml R06503 R06504 R06505

---

ko00534.xml R05925

ko00534.xml R05926

ko00534.xml R05927

ko00534.xml R05928

ko00534.xml R10138

ko00534.xml R10139

---

ko00540.xml R01994

ko00540.xml R01996

ko00540.xml R01997

---

ko00550.xml R01150

---

ko00563.xml R05924

ko00563.xml R07129

---

ko00592.xml R07893 R07894

---

ko00601.xml R05978 R06029

ko00601.xml R06024 R06027

ko00601.xml R06025 R06075 R06095 R06230 R06221 R06224 R06227

ko00601.xml R06035 R06085 R06090

ko00601.xml R06037 R06232

ko00601.xml R06038 R06222 R06076

ko00601.xml R06085 R06086 R06089 R06090

ko00601.xml R06086 R06089

ko00601.xml R06156 R06170

ko00601.xml R06165 R06155 R06164 R06163 R06162

ko00601.xml R06169 R06168

---

ko00604.xml R05938 R05939 R05946 R05952

ko00604.xml R05956 R05941 R05948 R05953

ko00604.xml R05957 R05942 R05949 R05954

ko00604.xml R05958 R05943 R05950 R05955

ko00604.xml R05959 R05945 R05951

---

ko00627.xml R04489 R04278 R04279

---

ko00710.xml R00341
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ko00710.xml R00343

---

ko00830.xml R02366 R02367

---

ko00860.xml R09063

ko00860.xml R09065

ko00860.xml R11510

ko00860.xml R11511

ko00860.xml R11512

ko00860.xml R11513

---

ko00906.xml R04218 R07270

ko00906.xml R09653

ko00906.xml R09692

---

ko00910.xml R00025

---

ko00920.xml R00295

ko00920.xml R11487

ko00920.xml R11546

---

ko00942.xml R06544 R07928

ko00942.xml R07880 R07930

ko00942.xml R07882 R07931

ko00942.xml R07883 R07944

ko00942.xml R07927 R07873

ko00942.xml R07929 R07926

---

ko00980.xml R07004 R07003

ko00980.xml R07013 R07014

ko00980.xml R07024 R07023

ko00980.xml R07025 R07026

ko00980.xml R07066 R07068

ko00980.xml R07071 R07072

ko00980.xml R09412 R09413

ko00980.xml R09414 R09415

ko00980.xml R09426 R09427

---

ko00982.xml R08286 R08287

ko00982.xml R08324 R08325 R08326

---

ko00983.xml R08256 R08257

---

ko01040.xml R02222 R03370

ko01040.xml R07758 R07762

ko01040.xml R07759 R07763
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ko01040.xml R07760 R07764

ko01040.xml R07761 R07765

ko01040.xml R07934

ko01040.xml R07935

ko01040.xml R07936

ko01040.xml R07937

ko01040.xml R07950

ko01040.xml R07951

ko01040.xml R07952

ko01040.xml R07953

ko01040.xml R11043

---

ko01056.xml R06643 R06644 R06645

ko01056.xml R09258 R06635 R06637

ko01056.xml R09259

ko01056.xml R09263 R09264

ko01056.xml R09266 R09267

ko01056.xml R09268

ko01056.xml R09269

ko01056.xml R11516

---

ko01100.xml R00926 R01354 R00920 R00928

ko01100.xml R01701 R07599 R07600

ko01100.xml R01702 R07601 R07602

ko01100.xml R02736 R02035

ko01100.xml R03098 R04863 R04390 R03102 R03103

ko01100.xml R03968 R04001

ko01100.xml R04225 R07603 R07604

ko01100.xml R04440 R05071

ko01100.xml R05068 R05069

ko01100.xml R05269 R05267

ko01100.xml R05369 R05370

ko01100.xml R05386 R05387

ko01100.xml R05972

ko01100.xml R06268 R06269 R06270 R06265 R06266 R06267

ko01100.xml R06291 R06292 R06293

ko01100.xml R06294 R06295 R06297

ko01100.xml R06322 R06323 R06326

ko01100.xml R07558 R07559

ko01100.xml R07889 R07890

ko01100.xml R07893 R07894

ko01100.xml R07897 R07898

ko01100.xml R08549 R01700 R02570 R07618 R01197

ko01100.xml R09883

---

ko01110.xml R00014 R03270 R02569 R07618
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ko01110.xml R07603 R07604 R03174 R07618

ko01110.xml R08549 R01700 R02570 R07618

ko01110.xml R09625

ko01110.xml R10671 R10672 R08660 R08661 R08662

ko01110.xml R11510

ko01110.xml R11511

ko01110.xml R11512

ko01110.xml R11513

---

ko01120.xml R00014 R03270 R02569 R07618 R01196 R10866 R00212

ko01120.xml R00295

ko01120.xml R00621 R03316 R02570 R07618 R01197

ko01120.xml R00787 R00789 R00790 R05712

ko01120.xml R02073 R04779 R04780 R09084

ko01120.xml R04198 R04199

ko01120.xml R09883

---

ko01130.xml R00014 R03270 R02569 R07618 R01196 R01197

ko01130.xml R00768

ko01130.xml R06696 R09314 R05705

ko01130.xml R06747

ko01130.xml R07603 R07604 R03174 R07618

ko01130.xml R08549 R01700 R02570 R07618

ko01130.xml R08851 R08853

ko01130.xml R08852 R08854

ko01130.xml R09313 R05705

ko01130.xml R10937

---

ko01200.xml R00475 R00009

ko01200.xml R00756 R04779 R09084

ko01200.xml R00762 R04780

ko01200.xml R01520 R01521 R07147

ko01200.xml R05339 R09780

---

ko01212.xml R02222 R03370

ko01212.xml R11043

---

ko01230.xml R03896 R03898

ko01230.xml R05069 R05068

ko01230.xml R05071 R04440

2 Inconsistent reactions between pathway maps

This appendix corresponds to section III.3.2. It lists the first occurrence for ev-
ery reaction found to be inconsistent according to definitions III.2 and III.3 at least
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once among two different organism-specific KEGG pathway maps belonging to a
given species. For each occurrence, the three- or four-letter organism code is dis-
played, as well as the complete list of pathway maps where the reaction is present,
respectively absent, along with all associated EC numbers and K numbers. If no
EC number is indicated, it is either unknown or a partial EC number that is only
present in the pathway map drawing, but not through the KGML files, nor through
the KEGG REST API. Note that global and overview maps (i.e., maps whose iden-
tifiers are greater than or equal to 01100) are excluded from this analysis.

2.1 Same EC numbers, disjoint K numbers

The first occurrence among the 17 inconsistent reactions according to definition
III.2 are listed below.

cag: R00237 present in [00720 (4.1.3.25) ({K08691})]

absent in [00660 (4.1.3.25) ({K18292})]

aay: R00829 present in [00362 (2.3.1.174) ({K07823})]

absent in [00360 (2.3.1.174) ({K02615})]

aaa: R00982 present in [00627 (6.2.1.32) ({K08295})]

absent in [00405 (6.2.1.32) ({K18000})]

acj: R01975 present in [00720 (1.1.1.35) ({K15016})]

absent in [00071 (1.1.1.35) ({K00022, K07516, K10527, K07514, K01825,

K01782}),

00380 (1.1.1.35) ({K01825, K01782, K00022, K07514}),

00650 (1.1.1.35) ({K00022, K07516, K01825, K01782, K07514})]

aag: R02164 present in [00020 (1.3.5.1, 1.3.5.4) ({K00234, K00235, K00236, K00237,

K00239, K00240, K00241, K00242,

K18859, K18860})]

absent in [00620 (1.3.5.1, 1.3.5.4) ({K00244, K00245, K00246, K00247}),

00650 (1.3.5.1, 1.3.5.4) ({K00239, K00240, K00241, K00242,

K18859, K18860};

{K00244, K00245, K00246, K00247,

K00239, K00240, K00241, K00242,

K18859, K18860})]

ase: R02773 present in [00525 (2.6.1.33) ({K20428})]

absent in [00523 (2.6.1.33) ({K13308, K21328})]

acj: R03026 present in [00720 (4.2.1.17) ({K15016})]

absent in [00071 (4.2.1.17) ({K01692, K10527, K01825, K01782, K07511,

K13767, K07514, K07515}),

00362 (4.2.1.17) ({K01692, K01782, K01825, K13767}),

00380 (4.2.1.17) ({K01692, K01825, K01782, K07511, K07514,

K07515}),

00627 (4.2.1.17) ({K01692, K07515, K07514, K07511}),

00650 (4.2.1.17) ({K01692, K01825, K01782, K07515, K07514,
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K07511, K01715})]

aai: R05850 present in [00040 (5.1.3.4) ({K01786, K03080})]

absent in [00053 (5.1.3.4) ({K03077})]

hch: R06746 present in [00333 () ({K21780, K21781})]

absent in [00401 () ({K12720}; {K12719})]

cfar: R07125 present in [00053 (4.1.1.85) ({K03078})]

absent in [00040 (4.1.1.85) ({K03081})]

cmo: R07676 present in [00053 (1.1.1.365) ({K19642})]

absent in [00040 (1.1.1.365) ({K19634})]

actn: R08956 present in [00405 (2.6.1.86) ({K13063})]

absent in [01059 (2.6.1.86) ({K20159, K21175})]

acid: R09097 present in [00622 (1.2.1.87) ({K18366})]

absent in [00640 (1.2.1.87) ({K13922})]

aho: R09280 present in [00720 (1.2.1.76) ({K15038, K15017})]

absent in [00650 (1.2.1.76) ({K18119})]

aho: R09281 present in [00720 () ({K14465})]

absent in [00650 () ({K18121})]

csy: R09289 present in [00720 () ({K18602})]

absent in [00240 () ({K16066}; {K09019})]

aac: R10507 present in [00330 () ({K00318})]

absent in [00332 () ({K18318, K18319})]

2.2 Disjoint EC numbers and K numbers

The first occurrence among the 41 inconsistent reactions according to definition
III.3 are listed below.

cuv: R00014 present in [00010 (4.1.1.1) ({K01568})]

absent in [00020 (1.2.4.1) ({K00163, K00161, K00162}),

00620 (1.2.4.1) ({K00163, K00161, K00162})]

acy: R00214 present in [00620 (1.1.1.38) ({K00027})]

absent in [00710 (1.1.1.39) ({K00028})]

aja: R00230 present in [00620 () ({K04020})]

absent in [00430 (2.3.1.8) ({K13788, K00625, K15024}),

00680 (2.3.1.8) ({K00625, K13788})]

bpg: R00289 present in [00520 (2.7.7.64) ({K12447})]

absent in [00040 (2.7.7.9) ({K00963}),

00052 (2.7.7.9) ({K00963}),

00500 (2.7.7.9) ({K00963})]

app: R00485 present in [00250 (3.5.1.38) ({K05597})]

absent in [00460 (3.5.1.1) ({K01424})]

aaci: R00489 present in [00410 (4.1.1.15) ({K01580})]

absent in [00770 (4.1.1.11) ({K01579, K18933, K18966})]

abe: R00702 present in [00100 (2.5.1.21) ({K00801}),

00909 (2.5.1.21) ({K00801})]
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absent in [00906 (2.5.1.96) ({K10208})]

aam: R00711 present in [00010 (1.2.1.5) ({K00129})]

absent in [00620 () ({K00138})]

aac: R00734 present in [00350 (2.6.1.1, 2.6.1.9) ({K14454, K14455, K00811, K00812,

K00813, K11358, K15849}; {K00817}),

00400 (2.6.1.1, 2.6.1.9) ({K14454, K14455, K00811, K00812,

K00813, K11358, K15849}; {K00817}),

00401 (2.6.1.1, 2.6.1.9) ({K00817}; {K00812, K00813, K11358})]

absent in [00130 (2.6.1.5, 2.6.1.57) ({K00815, K00838})]

aba: R00736 present in [00350 (4.1.1.28) ({K01593})]

absent in [00680 (4.1.1.25) ({K18933})]

bdi: R00737 present in [00940 (4.3.1.25) ({K13064})]

absent in [00350 (4.3.1.23) ({K10774})]

aaf: R00801 present in [00500 (3.2.1.26) ({K01193})]

absent in [00052 (3.2.1.10, 3.2.1.20, 3.2.1.48) ({K12047, K01187, K12316,

K12317};

{K01182, K01203})]

aaa: R00829 present in [00362 (2.3.1.16) ({K00632})]

absent in [00360 (2.3.1.174) ({K02615})]

acm: R00908 present in [00410 (2.6.1.55) ({K15372})]

absent in [00640 (2.6.1.19) ({K13524, K07250, K00823})]

aho: R00919 present in [00720 (1.3.1.84) ({K14469, K15020})]

absent in [00640 () ({K19745})]

aac: R01175 present in [00071 (1.3.8.7) ({K00249})]

absent in [00650 (1.3.8.1) ({K00248})]

bbo: R01177 present in [00071 (2.3.1.9) ({K00626})]

absent in [00062 (2.3.1.16) ({K07508, K07509})]

aak: R01196 present in [00010 (1.2.7.11) ({K00174, K00175}),

00020 (1.2.7.11) ({K00174, K00175}),

00620 (1.2.7.11) ({K00174, K00175}),

00650 (1.2.7.11) ({K00174, K00175})]

absent in [00680 (1.2.7.1) ({K00169, K00170, K00171, K00172})]

aad: R01274 present in [01040 () ({K10804})]

absent in [00062 (3.1.2.22) ({K01074}; {K01074})]

aaci: R01388 present in [00630 (1.1.1.26) ({K00015})]

absent in [00260 (1.1.1.29) ({K00018, K15893, K15919}),

00680 (1.1.1.29) ({K00018})]

aac: R01434 present in [00290 (1.4.1.9) ({K00263})]

absent in [00280 (1.4.1.23) ({K00271})]

xhr: R01786 present in [00010 (2.7.1.2) ({K12407, K00845}),

00052 (2.7.1.2) ({K00845, K12407})]

absent in [00520 (2.7.1.1) ({K00844}; {K00844})]

aaj: R01914 present in [00410 (1.5.99.6) ({K00316})]

absent in [00330 (1.5.3.14) ({K13366})]

bvg: R02078 present in [00350 (1.10.3.1) ({K00422})]

absent in [00965 (1.14.18.1) ({K00505})]
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bvg: R02080 present in [00350 (4.1.1.25) ({K01592}),

00950 (4.1.1.25) ({K01592})]

absent in [00965 (4.1.1.28) ({K01593})]

acx: R02549 present in [00330 () ({K12254})]

absent in [00410 (1.2.1.19) ({K00137})]

acis: R02739 present in [00010 (5.1.3.15) ({K01792})]

absent in [00030 (5.3.1.9) ({K01810, K06859, K13810, K15916})]

aaa: R02869 present in [00330 (2.5.1.16) ({K00797}),

00410 (2.5.1.16) ({K00797})]

absent in [00270 (2.5.1.22) ({K00802}),

00480 (2.5.1.22) ({K00802})]

afg: R03045 present in [00410 (4.2.1.17) ({K01692, K01825, K01782, K07515, K07514,

K07511}),

00640 (4.2.1.17) ({K01692, K01825, K01782, K07515, K07514,

K07511})]

absent in [00720 (4.2.1.116) ({K14469, K15019})]

adu: R03264 present in [00909 () ({K15891})]

absent in [00900 (1.1.1.216) ({K15890})]

sco: R04014 present in [00333 () ({K21791})]

absent in [00061 (3.1.2.14, 3.1.2.21) ({K01071, K10781})]

aad: R04364 present in [00300 (2.3.1.89) ({K05822})]

absent in [00261 () ({K19107})]

aamy: R05578 present in [00970 (6.1.1.24) ({K09698})]

absent in [00860 (6.1.1.17) ({K01885, K14163})]

aja: R05705 present in [00740 (1.5.1.36) ({K00484})]

absent in [01057 () ({K14631}; {K14631})]

hch: R06746 present in [00333 () ({K21780, K21781})]

absent in [00401 () ({K12720}; {K12719})]

hch: R06747 present in [00333 (1.3.8.14) ({K21782})]

absent in [00401 () ({K12721})]

aaa: R06941 present in [00360 (1.1.1.157) ({K00074})]

absent in [00930 (1.1.1.35) ({K00022, K07514, K01825, K01782})]

aaa: R07136 present in [00270 (1.1.1.37) ({K00024, K00025, K00026})]

absent in [00680 (1.1.1.337) ({K05884})]

aho: R09281 present in [00720 () ({K14465})]

absent in [00650 () ({K18121})]

aho: R09289 present in [00720 (1.1.1.298) ({K14468, K15039})]

absent in [00240 () ({K16066}; {K09019})]

aac: R10507 present in [00330 () ({K00318})]

absent in [00332 () ({K18318, K18319})]
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This appendix proves the claim stated in section IV.4.1, namely that it is possible
to reduce the input graphs D and G for the MaSST and MaSSCoT problems without
loss of solutions. More precisely, MaSST and MaSSCoT yield the same solution
when provided with the unreduced graphs D and G, as well as when provided
with the graphs D and G reduced to their cover set with respect to a path P in D.

1 Notations

The following notations are used for a directed graph D:

• D∗ is the underlying undirected graph of D obtained by removing arc orien-
tations.

• If G is an undirected graph such that V(D) = V(G) and P is a path in D, the
notation CCC(D∗, G, P) designates the common connected component of D∗

and G containing all vertices in P, if such a component exists. If it does not,
then CCC(D∗, G, P) = ∅.

• For a vertex v of D, S+
v designates the descendants of v, i.e. the set of vertices

in D that are reachable by a path from vertex v.
• For a vertex v of D, S−v designates the ancestors of v, i.e. the set of vertices in

D reaching vertex v by a path in D.

2 Cover set definition

The definition of cover set of a path uses the concept of bridge, defined as fol-
lows by Fertin et al. [2012]:
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Definition B.1. Let D = (V, A) be a directed graph, G = (V, E) an undirected
graph, and P a path in D. A vertex r ∈ V is said to be a bridge of P with respect
to G if there is no common connected component of D∗[V − {r}] and G[V − {r}]
containing all the vertices of P (i.e., CCC(D∗[V − {r}], G[V − {r}], P) = ∅).

Example. In Figure B.1, vertex 4 is a bridge for path P = (1, 2, 3) with respect to
G. If this vertex is removed, the vertices of P are found in two distinct connected
components of G.

1 2 3

4

1 2 3

4

D G

Figure B.1 The directed graph D and the undirected graph G have the same
vertex set.

Fertin et al. [2012] define the cover set of a path as follows:

Definition B.2. Let D = (V, A) be a directed graph, G = (V, E) an undirected
graph, and P = (v1, v2, . . . , vk) a path in D. The cover set of path P in D with respect
to G is the subset X ⊆ V satisfying:

1. V(P) ⊆ X ⊆ S−v1
∪ S+

vk
∪V(P).

2. D∗[X] and G[X] are connected.
3. If r is a bridge of P in D[X] with respect to G[X] then X ⊆ S−r ∪ S+

r ∪ {r}.
4. X is maximal (with respect to the inclusion order).

Example. Figure B.2 shows the cover set of the path P = (3, 4, 5) in D with respect
to G. Vertices 2, 3, 4, 5, 6, and 8 are bridges of P with respect to G (see Definition
B.1).

1

2 3 4 5 6 7

8 910D

1

2 3 4 5 6 7

8 910G

Figure B.2 Cover set of the path P = (3, 4, 5) in D with respect to G. The cover
set of P is shown in solid black.

Mohamed-Babou [2012] shows that, if it exists, the cover set of a path is unique.
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3 Graph reduction

Both MaSST and MaSSCoT take as input a directed graph D = (V, A), an undi-
rected graph G = (V, E), and an arc (u, v) in D. Let S be the cover path of arc (u, v)
in D with respect to G. We prove that D and G can respectively be replaced with
D[S] and G[S], yielding the same solutions.

Following is a lemma for which the proof is omitted (as it is straightforward).

Lemma B.1. Let G = (V, E) be an undirected graph and let A, B and C be three
subsets of V. If G[A ∪ B] and G[B ∪ C] are connected, then G[A ∪ B ∪ C] is con-
nected.

The following definition introduces a shorthand notation for the remainder of
this appendix.

Definition B.3. Let D = (V, A) be a directed graph, G = (V, E) be an undirected
graph and P be a path in D. If a trail T in D exists such that (i) T ⊇ P, (ii) G[V(T)]
is connected and (iii) @T′ trail in D such that T′ ⊇ P, G[V(T′)] is connected and
span(T′) > span(T), then T is said to verify the property of being a trail of maximum
span in D for P with respect to G, which is denoted as SP(D, G).

Lemma B.2. Let D = (V, A) be a directed graph, G = (V, E) an undirected graph,
P a path in D, and S the cover set of P in graphs D and G. If a trail T in D exists
such that T verifies SP(D, G), then V(T) ⊆ S.

Proof. T ⊇ P by hypothesis (i) of definition B.3 and S ⊇ V(P) by definition of the
cover set. It follows that V(T) ∩ S 6= ∅. Let I = V(T) ∩ S be the set of vertices
shared by T and S. Let {t1, . . . , tk} = V(T) − I be the set of vertices of T not
shared with S.

G[V(T)] is connected by hypothesis (ii) of definition B.3, therefore G[{t1, . . . , tk}
∪I] is connected. Since G[S] is connected (by definition of the cover set), it means
that G[{t1, . . . , tk} ∪ S] = G[{t1, . . . , tk} ∪ I ∪ (S− I)] is also connected (by lemma
B.1). Also, D∗[V(T)] is connected because T is a trail in D, which means that
D∗[{t1, . . . , tk} ∪ I] is connected. Since D∗[S] is connected (by definition of the
cover set), it means that D∗[{t1, . . . , tk} ∪ S] = D∗[{t1, . . . , tk} ∪ I ∪ (S− I)] is also
connected (by lemma B.1).

But if G[{t1, . . . , tk}∪S] and D∗[{t1, . . . , tk}∪S] are connected, then property 4
of definition B.2 concerning the maximality of S is contradicted. Therefore S cannot
be maximal unless {t1, . . . , tk} = ∅. Hence V(T) ⊆ S.
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Proposition B.1. Let D = (V, A) be a directed graph, G = (V, E) an undirected
graph, P a path in D, and S the cover set of P in graphs D and G. If a trail T
in D exists such that T verifies SP(D, G), then T is also a trail in D[S] verifying
SP(D[S], G[S]), that is, (i) T ⊇ P, (ii) G[S ∩ V(T)] is connected and (iii) T has
maximum span in D[S].

Proof. Let T be a trail in D such that T verifies SP(D, G). By lemma B.2, V(T) ⊆ S,
therefore T is also a trail in D[S]. We now prove that T verifies properties (i)-(iii)
for graphs D[S] and G[S].

(i) By hypothesis (i) of definition B.3, T ⊇ P.

(ii) Since V(T) ⊆ S, G[S ∩ V(T)] = G[V(T)]. Since G[V(T)] is connected by
hypothesis (ii) of definition B.3, it follows that G[S ∩V(T)] is connected.

(iii) Suppose there exists a trail T′ in D[S] such that T′ ⊇ P, G[S ∩ V(T′)] is con-
nected, and span(T′) > span(T). Because T′ is a trail in D[S], V(T′) ⊆ S,
which implies that S∩V(T′) = V(T′). Since G[S∩V(T′)] is connected, it fol-
lows that G[V(T′)] is also connected. Moreover, from definition B.2 it follows
that S ⊆ V. Therefore, T′ is also a trail in D. Hypotheses (i)-(ii) of defini-
tion B.3 are thus fulfilled for T′ in D, with T′ having greater span than T.
However, this contradicts hypothesis (iii) for SP(D, G), this property being
satisfied by T. Hence, no trail T′ can exist in D[S] that includes P such that
G[S ∩ V(T′)] is connected and such that T′ has greater span than T. T has
therefore maximum span in D[S] with respect to properties (i) and (ii).

We have thus proven that, if a trail T in D exists such that T verifies SP(D, G),
then T is also a trail in D[S] that verifies SP(D[S], G[S]). The converse is also true
(see below).

Proposition B.2. Let D = (V, A) be a directed graph, G = (V, E) an undirected
graph, P a path in D, and S the cover set of P in graphs D and G. If a trail T in D[S]
exists that verifies SP(D[S], G[S]), then T is also a trail in D verifying SP(D, G),
that is, (i) T ⊇ P, (ii) G[V(T)] is connected and (iii) T has maximum span in D.

Proof. This proposition is the converse of proposition B.1. Let T be a trail in D[S]
such that T verifies SP(D[S], G[S]). By definition B.2, S ⊆ V, therefore T is also a
trail in D. We now be prove that T verifies properties (i)-(iii) for graphs D and G.

(i) By hypothesis (i) of definition B.3, T ⊇ P.
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(ii) Since T is a trail in D[S], V(T) ⊆ S. Then S ∩ V(T) = V(T), and since
G[S ∩ V(T)] is connected by hypothesis (ii) of definition B.3, it follows that
G[V(T)] is connected.

(iii) Suppose there exists a trail T′ in D such that T′ ⊇ P, G[V(T′)] is connected,
and span(T′) > span(T). By lemma B.2, V(T′) ⊆ S and therefore S∩V(T′) =
V(T′). Since G[V(T′)] is connected, it follows that G[S ∩ V(T′)] is also con-
nected. Moreover, T′ is also a trail in D[S] (because V(T′) ⊆ S). Hypotheses
(i)-(ii) of definition B.3 are thus fulfilled for T′ in D[S], with T′ having greater
span than T. However, this contradicts hypothesis (iii) for SP(D[S], G[S]),
this property being satisfied by T. Hence, no trail T′ can exist in D that in-
cludes P such that G[V(T′)] is connected and such that T′ has greater span
than T. T has therefore maximum span in D with respect to properties (i) and
(ii).

We have thus proven that, if a trail T in D[S] exists such that T verifies SP(D[S],
G[S]), then T is also a trail in D that verifies SP(D, G).

From propositions B.1 and B.2, it follows that, in the context of the MaSST prob-
lem formulation (see section IV.3), the same solution is obtained for the input arc
(u, v) whether MaSST is ran on the input graphs D and G, or on the input graphs
D and G reduced to their cover set with respect to the arc (u, v) (i.e. on D[S] and
G[S], where S is the cover set of (u, v) in graphs D and G).





C
Appendices for Chapter VII

219



220 C. Appendices for Chapter VII
b

su0
02

9
0_

ge
ne

s

P
a

ge
 1

lm
o

sau
lac

snd
cpe

m
pn

syn
pm

a
cau

bbv
cgl

m
tv

sco
dra

tth
fgi

am
o

tm
m

cex
dth

fsu
gau

cph
bfr

rba
cpn

ote
bbn

em
i

heo
din

fnu
dap

tid
aae

nde
aca

eco
ype

vco
spc

pae
xfa

rso
nm

e
afi

ara
rrj

gsu

B
S

U
28250

x
x

.
.

.
.

.
x

x
.

.
x

.
.

.
.

.
x

.
x

.
.

x
x

.
.

.
.

x
.

.
.

.
x

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x

B
S

U
28260

x
x

.
.

.
.

.
x

x
.

.
x

.
.

.
.

.
x

.
x

.
.

x
x

.
.

.
.

x
.

.
.

.
x

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x

B
S

U
28270

x
x

.
.

.
.

.
.

.
.

.
x

.
.

.
.

x
x

.
x

.
.

x
x

.
.

.
.

.
.

.
.

.
.

.
x

x
x

x
x

x
.

.
.

.
.

.
.

.

B
S

U
28280

x
x

.
.

.
.

.
.

x
.

.
.

.
.

x
.

x
x

.
x

.
.

x
x

.
.

.
.

.
.

.
.

.
.

.
x

x
x

x
x

x
.

x
x

.
.

.
.

x

B
S

U
28290

x
x

.
x

.
.

.
.

x
.

x
x

x
x

x
x

x
x

.
x

.
.

x
.

x
.

x
.

.
.

.
.

x
x

.
x

x
.

.
.

.
x

x
x

x
x

.
.

x

B
S

U
28300

x
x

.
x

.
.

.
.

x
x

x
x

x
x

x
x

x
x

.
x

x
.

x
.

x
.

x
.

.
.

x
.

x
.

.
x

x
.

.
.

.
x

x
x

x
x

x
.

x

B
S

U
28310

x
x

.
x

.
.

.
.

x
x

x
x

x
x

x
x

x
x

.
x

x
.

x
.

x
.

x
.

.
.

x
.

x
.

.
x

x
.

.
.

.
x

x
x

x
x

x
.

x

B
. sub

tilis 
gene

Figure
C

.1
G

roup
of

genes
involved

in
the

C
o
M
e
t
G
e
N
e

trail
in

Figure
V

II.1,
obtained

for
the

valine,
leucine,

and
isoleucine

biosynthesis
pathw

ay
in

Bacillus
subtilis

(b
s
u
0
0
2
9
0).

This
is

the
com

plete
trailgrouping

by
genes

corresponding
to

Figure
V

II.2.
C

olum
ns

in
purple

and
gray

correspond
to

species
w

ith
neighboring

functionally
sim

ilar
genes

to
all,respectively

none,of
the

genes
in

B.subtilis
involved

in
this

trail.
C

ells
in

light
yellow

represent
species

that
have

neighboring
functionally

sim
ilar

genes
to

at
least

tw
o

B.subtilis
genes

involved
in

the
trail,

but
not

for
the

gene
BSU

28280
involved

in
the

reaction
R
0
1
2
1
3

(EC
2.3.3.13).

C
olors

in
the

table
header

designate
the

bacterial
superphylum

(see
section

V
II.1.3

for
details).

bsu
00

2
90

_re
a

ction
s

P
a

ge
 1

reaction
lm

o
sau

lac
snd

cpe
m

pn
syn

pm
a

cau
bbv

cgl
m

tv
sco

dra
tth

fgi
am

o
tm

m
cex

dth
fsu

gau
cph

bfr
rba

cpn
ote

bbn
em

i
heo

din
fnu

dap
tid

aae
nde

aca
eco

ype
vco

spc
pae

xfa
rso

nm
e

afi
ara

rrj
gsu

R
03968

x
x

 
x

 
 

.
x

x
.

.
x

.
.

.
.

.
x

 
x

x
 

x
x

.
 

.
 

x
 

x
 

.
x

.
.

x
x

x
x

x
x

.
.

.
.

x
 

x

R
04001

x
x

 
x

 
 

.
x

x
.

.
x

.
.

.
.

.
x

 
x

x
 

x
x

.
 

.
 

x
 

x
 

.
x

.
.

x
x

x
x

x
x

.
.

.
.

x
 

x

R
04426

B
S

U
28270

x
x

 
x

 
 

.
.

.
.

.
x

.
.

.
.

x
x

 
x

.
 

x
x

.
 

.
 

 
 

.
 

.
.

.
x

x
x

x
x

x
x

.
.

.
.

x
 

.

R
01213

B
S

U
28280

x
x

 
x

 
 

.
.

x
.

.
.

.
.

x
.

x
x

 
x

.
 

x
x

.
 

.
 

 
 

.
 

.
.

.
x

x
x

x
x

x
.

x
x

.
.

.
 

x

R
05071

B
S

U
28290

x
x

 
.

 
 

.
.

x
x

x
x

x
x

x
x

x
x

 
x

.
 

x
.

x
 

x
 

 
.

.
 

x
x

.
x

x
.

.
.

.
.

x
x

x
x

.
 

x

R
04440

B
S

U
28290

x
x

 
.

 
 

.
.

x
x

x
x

x
x

x
x

x
x

 
x

.
 

x
.

x
 

x
 

 
.

.
 

x
x

.
x

x
.

.
.

.
.

x
x

x
x

.
 

x

R
00226

x
x

 
.

 
 

.
.

x
.

x
x

x
x

x
x

x
x

 
x

.
 

x
.

x
 

x
 

 
 

.
 

x
.

.
x

x
.

.
.

.
.

x
x

x
x

.
 

x

B
. subtilis 
gene

B
S

U
28250 

B
S

U
28260

B
S

U
28250 

B
S

U
28260

B
S

U
28300 

B
S

U
28310 

B
S

U
36010

Figure
C

.2
G

roup
of

reactions
defining

the
C
o
M
e
t
G
e
N
e

trail
in

Figure
V

II.1,
obtained

for
the

valine,
leucine,

and
isoleucine

biosynthesis
pathw

ay
in

Bacillus
subtilis

(b
s
u
0
0
2
9
0).

This
is

the
com

plete
trail

grouping
by

reactions
corresponding

to
Figure

V
II.3.

The
cells

in
gray

correspond
to

species
lacking

allor
a

vastm
ajority

ofreactions
from

this
trail.

C
ells

in
lightyellow

representspecies
thathave

neighboring
functionally

sim
ilar

genes
to

B.subtilis
genes

involved
in

atleasttw
o

reactions
in

the
trail,butnotin

reaction
R
0
1
2
1
3

(EC
2.3.3.13).

C
ells

in
blue

and
orange

correspond
to

species
having

neighboring
functionally

sim
ilar

genes
to

B.subtilis
genes

involved
in

the
lastand

firstthree
reactions

in
the

trail,respectively.C
olors

in
the

table
header

designate
the

bacterialsuperphylum
(see

section
V

II.1.3
for

details).



C. Appendices for Chapter VII 221

b
su0

02
3

0_
ge

ne
s

P
a

ge
 1

lm
o

sau
lac

snd
cpe

m
pn

syn
pm

a
cau

bbv
cgl

m
tv

sco
dra

tth
fgi

am
o

tm
m

cex
dth

fsu
gau

cph
bfr

rba
cpn

ote
bbn

em
i

heo
din

fnu
dap

tid
aae

nde
aca

eco
ype

vco
spc

pae
xfa

rso
nm

e
afi

ara
rrj

gsu

B
S

U
06420

x
x

x
x

x
.

.
.

.
.

.
.

.
.

.
x

x
.

.
.

x
.

.
.

x
.

.
.

x
.

.
x

.
x

x
.

.
.

.
.

.
.

.
x

.
.

.
.

.

B
S

U
06430

x
x

x
x

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

x
.

.
.

.
.

.
.

.
x

.
.

.
.

.
.

.
.

.
x

.
.

.
.

.

B
S

U
06440

x
.

.
x

.
.

.
.

.
.

.
.

.
.

x
.

.
.

.
x

.
x

.
.

.
.

.
.

.
.

.
.

.
.

.
x

.
.

.
.

.
.

.
.

.
x

x
.

x

B
S

U
06450

x
x

x
x

x
.

.
.

.
x

.
.

x
x

x
x

x
x

.
.

.
x

.
.

.
.

.
.

x
.

x
x

.
.

.
x

.
.

.
.

.
.

.
x

.
x

x
.

.

B
S

U
06460

x
x

x
x

x
.

x
x

.
x

x
x

x
x

x
.

x
x

.
x

.
x

x
.

.
.

.
.

x
.

x
x

x
.

.
x

x
.

.
.

.
.

.
.

.
x

x
.

x

B
S

U
06470

x
x

x
x

x
.

x
x

.
x

x
x

x
x

x
.

x
x

.
x

.
x

x
.

.
.

.
.

x
.

x
x

x
.

.
x

x
.

.
.

.
.

.
.

.
x

x
.

x

B
S

U
06480

x
x

x
x

x
.

x
x

.
x

x
x

x
x

x
.

x
x

.
x

.
x

x
.

.
.

.
.

x
.

x
x

x
.

.
x

x
.

.
.

.
.

.
.

.
x

x
.

x

B
S

U
06490

x
x

x
x

x
.

.
x

.
.

x
x

.
x

x
.

x
x

.
x

.
x

.
.

.
.

x
.

x
.

.
x

x
.

x
x

x
.

.
.

.
.

.
.

.
.

.
.

x

B
S

U
06500

x
x

x
x

x
.

.
.

.
.

x
x

.
.

.
.

x
x

.
x

.
.

.
.

.
.

x
.

x
.

.
x

.
.

.
.

.
x

x
x

x
x

x
.

.
.

.
.

.

B
S

U
06510

x
x

x
x

x
.

.
.

x
x

.
.

.
.

.
.

x
x

.
x

.
.

.
.

.
.

.
.

x
.

.
x

.
.

.
.

.
x

x
x

x
x

x
.

.
.

.
.

.

B
S

U
06520

x
x

x
x

x
.

.
.

.
.

.
.

.
.

.
.

x
x

.
.

.
.

.
.

.
.

.
.

x
.

.
x

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.

B
S

U
06530

x
x

x
x

x
.

.
.

x
.

.
.

x
.

.
.

x
x

.
x

x
.

.
.

.
.

.
.

x
.

.
x

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.

B
. sub

tilis 
gene

Figure
C

.3
G

roup
of

genes
involved

in
the

C
o
M
e
t
G
e
N
e

trailin
Figure

V
II.4,obtained

for
the

purine
m

etabolism
pathw

ay
in

Bacillus
subtilis

(b
s
u
0
0
2
3
0).

This
is

the
com

plete
trailgrouping

by
genes

corresponding
to

Figure
V

II.5.
C

olors
in

the
table

header
designate

the
bacterial

superphylum
(see

section
V

II.1.3
for

details).



222 C. Appendices for Chapter VII

bsu
00

2
30

_re
a

ction
s

P
a

ge
 1

reaction
lm

o
sau

lac
snd

cpe
m

pn
syn

pm
a

cau
bbv

cgl
m

tv
sco

dra
tth

fgi
am

o
tm

m
cex

dth
fsu

gau
cph

bfr
rba

cpn
ote

bbn
em

i
heo

din
fnu

dap
tid

aae
nde

aca
eco

ype
vco

spc
pae

xfa
rso

nm
e

afi
ara

rrj
gsu

R
07405

B
S

U
06420

x
x

x
x

x
 

.
.

.
.

.
.

.
.

.
x

x
.

 
.

x
.

.
.

x
 

.
 

x
 

.
x

x
x

x
.

.
.

.
.

.
.

.
x

.
.

.
 

x

R
07404

B
S

U
06430

x
x

x
x

 
 

.
.

.
.

.
.

.
.

.
.

 
.

 
 

 
.

 
 

x
 

 
 

 
 

 
 

 
x

.
.

.
.

.
.

.
.

.
x

.
.

.
 

 

R
04559

B
S

U
06440

x
.

.
x

.
 

.
.

.
.

x
x

.
.

x
.

.
.

 
x

.
x

.
.

.
 

.
 

.
.

.
.

.
.

.
x

.
.

.
.

.
.

.
.

.
x

x
 

.

R
04591

B
S

U
06450

x
x

x
x

x
 

.
.

.
x

x
x

.
x

x
x

x
x

 
.

.
x

.
.

.
 

.
 

x
 

.
x

.
.

.
x

.
.

.
.

.
.

.
x

.
x

x
.

.

R
04463

x
x

x
x

x
 

x
x

.
x

.
.

.
x

x
.

x
x

 
x

.
x

x
.

.
 

.
 

x
 

.
x

.
.

.
x

x
.

.
.

.
.

.
.

.
x

x
 

.

R
01072

B
S

U
06490

x
x

x
x

x
 

.
x

.
.

.
.

.
x

x
.

x
x

 
x

.
x

.
.

.
 

x
 

x
 

.
x

.
.

x
x

x
.

.
.

.
.

.
.

.
.

.
 

.

R
04208

B
S

U
06500

x
x

x
x

x
 

.
.

.
.

.
.

.
.

.
.

x
x

 
x

.
.

.
.

.
 

x
 

x
 

x
x

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
 

.

R
04325

x
x

x
x

x
 

.
.

x
x

.
.

x
.

.
.

x
x

 
x

.
.

.
.

.
 

.
 

x
 

x
x

.
 

.
.

.
.

.
.

.
.

.
.

.
.

.
 

.

R
04560

B
S

U
06520

x
x

x
x

x
 

.
.

.
.

.
.

x
.

.
.

x
x

 
.

.
.

.
.

.
 

.
 

x
 

.
x

x
.

.
.

.
x

x
x

x
x

x
.

.
.

.
 

x

R
01127

B
S

U
06520

x
x

x
x

x
 

.
.

.
.

.
.

x
.

.
.

x
x

 
.

.
.

.
.

.
 

.
 

x
 

.
x

x
.

.
.

.
x

x
x

x
x

x
.

.
.

.
 

x

R
04144

B
S

U
06530

x
x

x
x

x
 

.
.

x
.

x
x

.
.

.
.

x
x

 
x

x
.

.
.

.
 

.
 

x
.

x
x

x
.

.
.

.
x

x
x

x
x

x
.

.
.

.
 

x

B
. subtilis 
gene

B
S

U
06460 

B
S

U
06470 

B
S

U
06480

B
S

U
02230 

B
S

U
06510

Figure
C

.4
G

roup
ofreactions

defining
the

C
o
M
e
t
G
e
N
e

trailin
Figure

V
II.4,obtained

for
the

purine
m

etabolism
pathw

ay
in

Bacillus
subtilis

(b
s
u
0
0
2
3
0).

T
his

is
the

com
plete

trailgrouping
by

reactions
corresponding

to
Figure

V
II.6.

C
ells

in
gray

correspond
to

species
lacking

all
or

a
vast

m
ajority

of
reactions

from
this

trail.
C

ells
in

light
yellow

correspond
to

species
that

do
not

perform
the

reaction
R
0
7
4
0
4,if

these
species

possess
neighboring

functionally
sim

ilar
genes

for
atleasttw

o
reactions

in
the

trail.C
ells

in
blue

correspond
to

the
m

axim
um

setof
reactions

am
ong

the
reactions

in
the

trailthat
are

com
m

on
to

different
species

and
perform

ed
by

neighboring
functionally

sim
ilar

genes
in

these
species.

C
ells

in
orange

correspond
to

reactions
perform

ed
by

products
of

neighboring
genes

in
G

am
m

aproteobacteria.
C

olors
in

the
table

header
designate

the
bacterialsuperphylum

(see
section

V
II.1.3

for
details).



C. Appendices for Chapter VII 223

e
co0

02
6

0_
ge

ne
s

P
a

ge
 1

ype
vco

spc
pae

xfa
rso

nm
e

afi
ara

rrj
gsu

nde
aca

din
fnu

dap
tid

aae
bsu

lm
o

sau
lac

snd
cpe

m
pn

syn
pm

a
cau

bbv
cgl

m
tv

sco
dra

tth
fgi

am
o

tm
m

cex
dth

fsu
gau

cph
bfr

rba
cpn

ote
bbn

em
i

heo

b0002
x

x
x

x
x

x
.

x
.

.
.

x
.

x
.

x
.

.
x

x
x

x
x

.
.

.
.

.
x

x
x

x
.

x
.

x
x

x
x

.
x

.
x

.
.

x
.

x
.

b0003
x

x
x

.
x

.
.

.
.

.
.

.
x

.
.

.
.

.
x

x
x

.
x

.
.

.
.

.
x

x
x

x
.

.
x

x
x

.
x

.
.

x
.

.
.

.
.

x
.

b0004
x

x
x

x
x

x
.

x
.

.
.

x
x

x
.

.
.

.
x

x
x

x
.

.
.

.
.

.
.

.
x

x
.

x
x

x
x

x
x

.
x

x
x

.
.

x
.

x
.

E
. coli 

gene

Figure
C

.5
G

roup
of

genes
involved

in
the

C
o
M
e
t
G
e
N
e

trail
in

Figure
V

II.9,
obtained

for
the

glycine,
serine,

and
threonine

m
etabolism

pathw
ay

in
Escherichia

coli(e
c
o
0
0
2
6
0).This

is
the

com
plete

trailgrouping
by

genes
corresponding

to
Figure

V
II.10.

Eleven
of

the
species

in
the

data
set

(highlighted
in

light
yellow

)
either

do
not

have
functionally

sim
ilar

genes
to

b0003,
or

are
not

contiguous
w

ith
genes

functionally
sim

ilar
to

b0002
and

b0004.
C

olors
in

the
table

header
designate

the
bacterial

superphylum
(see

section
V

II.1.3
for

details).

eco
00

2
60

_re
a

ction
s

P
a

ge
 1

reaction
ype

vco
spc

pae
xfa

rso
nm

e
afi

ara
rrj

gsu
nde

aca
din

fnu
dap

tid
aae

bsu
lm

o
sau

lac
snd

cpe
m

pn
syn

pm
a

cau
bbv

cgl
m

tv
sco

dra
tth

fgi
am

o
tm

m
cex

dth
fsu

gau
cph

bfr
rba

cpn
ote

bbn
em

i
heo

R
00480

x
x

x
.

x
.

.
.

.
.

.
x

.
x

 
x

.
.

.
.

.
.

.
.

 
.

.
.

 
.

.
.

.
.

.
x

x
x

x
.

x
.

x
.

.
x

 
.

.

x
x

x
x

x
x

.
x

.
 

.
x

.
x

 
x

.
.

x
x

x
x

x
 

 
.

.
.

x
x

x
x

.
x

.
.

x
x

x
.

x
.

x
.

 
.

 
x

.

R
01771

b0003
x

x
x

.
x

.
.

.
.

 
 

.
x

.
.

 
 

.
x

x
x

x
x

 
 

.
.

.
x

x
x

x
.

.
x

x
x

 
x

.
 

x
 

 
 

.
 

x
.

R
01466

b0004
x

x
x

x
x

x
.

x
.

 
.

x
x

x
 

.
.

.
x

x
x

.
.

 
 

.
.

.
.

.
x

x
.

x
x

x
x

x
x

.
x

x
x

.
 

x
 

x
.

E
. coli 

gene

b0002 
b3940 
b4024 

{R
01773, 

R
01775}

b0002 
b3940

Figure
C

.6
G

roup
of

reactions
defining

the
C
o
M
e
t
G
e
N
e

trail
in

Figure
V

II.9,
obtained

for
the

glycine,
serine,

and
threonine

m
etabolism

pathw
ay

in
Escherichia

coli(e
c
o
0
0
2
6
0).

This
is

the
com

plete
trail

grouping
by

reactions
corresponding

to
Figure

V
II.11.C

olors
in

the
table

header
designate

the
bacterialsuperphylum

(see
section

V
II.1.3

for
details).



224 C. Appendices for Chapter VII

apgM
lysC

thrC
2

serA
pgk

eno
tktA

N
ID
E
0515

N
ID
E
0356

O
rthologs

Figure C.7 Neighborhood evidence from STRING [Szklarczyk et al., 2014] for the query
protein ApgM (NIDE4112) in Nitrospira defluvii. The legend below the figure shows the or-
thologous sequences corresponding to each gene color. Quoting STRING, horizontal sections
indicate that the orthology relations of the gene are complex. This is either due to gene duplication
events (paralogy), or due to technical problems when assigning orthology.
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Résumé substantiel

La biologie des systèmes est un domaine en continuelle expansion où les nou-
veaux développements en matière de techniques de biologie moléculaire génèrent
des données plus riches ou accélèrent la production de telles données. Ce déluge
d’informations génomiques, transcriptomiques, protéomiques, interactomiques et
métabolomiques, pour n’en citer que quelques exemples, crée la nécessité de dis-
poser d’algorithmes de traitement et d’analyse de plus en plus spécialisés et effi-
caces. Un accent particulier est mis sur des approches intégratives capables d’incor-
porer des données issues de sources hétérogènes afin d’approfondir notre com-
préhension quand les systèmes cellulaires sont considérés dans leur totalité.

Dans ce contexte, de nombreuses approches destinées aux réseaux biologiques
hétérogènes sont modélisées comme des problèmes de théorie des graphes. En
général, de telles approches visent soit l’intégration de réseaux hétérogènes, soit
l’extraction de motifs à partir de ces réseaux. D’un point de vue algorithmique, les
travaux présentés dans cette thèse s’inscrivent dans la dernière catégorie. Le but
principal de cette thèse est d’explorer la relation entre le métabolisme et le génome.

Il est communément admis que des étapes enzymatiques successives impli-
quant des produits de gènes situés à proximité sur le chromosome traduisent un
avantage évolutif du maintien de cette relation de voisinage au niveau métabolique
ainsi que génomique. En conséquence, nous avons choisi de nous concentrer sur la
détection de réactions voisines catalysées par des produits de gènes voisins, où la
notion de voisinage peut être modulée en autorisant que certaines réactions et/ou
gènes soient omis. Plus spécifiquement, les motifs recherchés sont des trails de réac-
tions (c’est-à-dire des séquences de réactions pouvant répéter des réactions, mais
pas les liens entre elles) catalysées par des produits de gènes voisins. De tels motifs
de voisinage sont appelés des motifs métaboliques et génomiques.
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Le choix d’extraire des trails est motivé par trois aspects. Premièrement, les trails
sont les seuls motifs capables de capturer des cycles dans des voies métaboliques.
Deuxièmement, il s’agit de trails dans des graphes orientés, préservant l’orientation
des réactions. Enfin, les trails garantissent le fait que les motifs extraits correspon-
dent à des routes métaboliques réelles, à la différence des méthodes extrayant des
sous-graphes.

En plus de l’identification des motifs métaboliques et génomiques, nous étu-
dions leur degré de conservation entre une multitude d’espèces. De façon analogue
à la notion de voisinage métabolique et génomique, nous proposons une défini-
tion flexible pour la conservation des motifs. Ainsi, en évaluant la conservation
d’un motif métabolique et génomique, l’ordre des réactions dans des trails ainsi
que l’ordre des gènes fonctionnellement similaires au niveau du chromosome peu-
vent être différents entre les espèces. Par ailleurs, la conservation peut être par-
tielle, traduisant le fait que les contenus des trails et des contextes génomiques
peuvent varier, avec certaines espèces ayant conservé juste des parties d’un mo-
tif métabolique et génomique détecté dans d’autres organismes.

Afin de détecter des motifs métaboliques et génomiques pour une espèces don-
née, nous proposons une méthodologie de fouille de graphes hétérogènes dont la
modélisation sous-jacente est facilement adaptable à d’autres types de données bi-
ologiques. Nous présentons un algorithme exact pour énumérer des trails dans
une voie métabolique, reposant sur l’énumération des chemins dans le line graph
associé. Cette opération coûteuse du point de vue computationnel est limitée par
une réduction des graphes de départ et par le fait qu’on énumère uniquement des
chemins entre sommets pouvant appartenir à la solution finale.

Nous proposons également une méthodologie pour regrouper les trails obtenus
afin de détecter des motifs métaboliques et génomiques conservés. Pour prendre en
compte les variations entre trails similaires en termes d’ordre des réactions et/ou de
gènes, ainsi qu’en termes de leur présence ou absence, les trails sont traduits en en-
sembles de réactions. Nous décrivons deux approches pour évaluer la conservation
des trails appartenant à une espèce désignée comme référence: le regroupement par
réactions, focalisé sur la conservation des motifs métaboliques, et le regroupement
par gènes, focalisé sur la conservation des motifs génomiques. Les deux approches
construisent des tables similaires aux profils phylogénétiques pour des ensembles
de réactions ou groupes de gènes voisins impliqués dans des trails de l’espèce de
référence. Conjointement, ces deux approches permettent de comparer le degré de
conservation des trails parmi les espèces étudiées.

Les méthodologies d’extraction et de regroupement des trails sont implémen-
tées dans un pipeline libre appelé CoMetGeNe (Conserved Metabolic and Genomic
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Neighborhoods). À l’aide de ce logiciel, nous analysons un jeu de données de 50
espèces bactériennes représentant les principaux phylums du domaine bactérien
de l’arbre du vivant. Nous montrons que l’extraction des trails ainsi que leur re-
groupement sont des méthodologies exploratoires permettant de découvrir des
liens entre contextes métaboliques et génomiques. L’intérêt de notre approche est
mis en évidence en montrant que les motifs métaboliques et génomiques identifiés
peuvent conduire à des intuitions biologiques, à la formulation d’hypothèses bi-
ologiques, ainsi qu’à la découverte de problèmes d’annotation dans des bases de
connaissances.

La notion de motif métabolique et génomique est étendue pour prendre en
compte la similarité chimique entre trails. Ceci nous conduit à identifier des motifs
étendus, appelés motifs chimiques, métaboliques et génomiques. Ils reflètent le fait que
la nature chimique des transformations effectuées est un facteur supplémentaire
dans la relation entre le métabolisme et le génome. En utilisant une approche ex-
istante de chémoinformatique, on calcule des signatures réactionnelles, consistant
en une description des atomes et liens atomiques qui diffèrent entre les substrats
et les produits d’une réaction donnée. Nous proposons deux approches pour re-
grouper les trails obtenus avec CoMetGeNe en fonction de leur similarité chimique,
en utilisant les signatures réactionnelles. La première est une approche qualitative
consistant à remplacer les ensembles de réactions par des ensembles de signatures
réactionnelles. La deuxième approche est quantitative et consiste à remplacer les
ensembles de réactions par des clusters de signatures réactionnelles. En général, les
études portant sur la modularité du métabolisme définissent les modules comme
étant des séquences de transformations enzymatiques similaires du point de vue
chimique. Nous montrons que les motifs chimiques, métaboliques et génomiques
détectés à l’aide des signatures réactionnelles correspondent à une classe de mod-
ules métaboliques ayant la particularité que les gènes encodant les enzymes im-
pliquées sont voisins.

Finalement, une dernière contribution est la détection de problèmes de consis-
tance dans la base de connaissances KEGG. Celle-ci est une ressource de référence
en biologie des systèmes, son objectif principal étant de lier les séquences aux fonc-
tions biologiques. L’utilisation intensive de cette ressource durant les travaux de
cette thèse nous ont amenée à remarquer plusieurs types d’inconsistances entre les
différentes bases de données de KEGG. Nous exposons ici deux types de tels prob-
lèmes, en donnant des approches générales pour leur inventaire systématique.
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