
HAL Id: tel-01935268
https://theses.hal.science/tel-01935268

Submitted on 26 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Query Processing in Multistore Systems
Carlyna Bondiombouy

To cite this version:
Carlyna Bondiombouy. Query Processing in Multistore Systems. Other [cs.OH]. Université Montpel-
lier, 2017. English. �NNT : 2017MONTS056�. �tel-01935268�

https://theses.hal.science/tel-01935268
https://hal.archives-ouvertes.fr

Délivré par l’Université de Montpellier

Préparée au sein de l’école doctorale I2S∗
Et de l’unité de recherche UMR 5506

Spécialité: Informatique

Présentée par Carlyna Bondiombouy
carlyna.bondiombouy@inria.fr

Traitement de requêtes dans les
systèmes multistores

Soutenue le 12/07/2017 devant le jury composé de :

Mme. Angela BONIFATI Professeur Université Claude Bernard Lyon 1 Rapporteur

M. Farouk TOUMANI Professeur Université Blaise Pascal Rapporteur

Mme. Sarah COHEN-BOULAKIA Maitre de Conférence (HDR) Université Paris-Sud Examinatrice

M. Pierre GENEVÈS Chargé de Recherche CNRS Examinateur

Mme. Esther PACITTI Professeur Université de Montpellier Examinatrice

M. Patrick VALDURIEZ Directeur de recherche Inria Directeur de thèse

∗ I2S: ÉCOLE DOCTORALE INFORMATION STRUCTURES SYSTÈMES

The Lord is gracious and
compassionate, slow to anger and
rich in love. The Lord is good to
all; he has compassion on all he
has made. All your works praise
you, Lord; your faithful people extol
you. They tell of the glory of your
kingdom and speak of your might,
so that all people may know of your
mighty acts and the glorious
splendor of your kingdom.

—Bible

ii

Dedication

To my family.

To children worldwide.

Acknowledgments

Thank you my LORD, my victory Butterfly, my Redeemer for always being there for me,
thank you for your superabundant graces unworthy. You are my all, the one in whom I
find my worth, I am nothing without you my faithful friend. Victory belongs to JESUS,
I can do all this through him who gives me strength. Your grace is enough for me, dear
husband you are the reason that I live. I put my trust and hope in you, you are my provider.
All of the glory, the honor and the praise belong to you.

I would like to express my profound gratitude to Patrick Valduriez my thesis supervi-
sor, for his helpful assistance, great availability, patience, precious advice and encourage-
ment. His competence, scientific rigor and clairvoyance have taught me a lot. They have
been and will remain engines of my work.

I thank Boyan Kolev and Oleksandra Levchenko without whom this thesis would not
be what it is, as much by the discussions, the suggestions, and the contributions. I thank
Esther Pacitti for her availability, valuable advices on my research and my career planning.
I am thankful to the collaborators and contributors during my thesis. To Ricardo Jiménez-
Peris, Raquel Pau, José Pereira and Pavlos Kranas for the great collaboration that we had
in the CoherentPaas project.

Thanks also go to the committee members Farouk Toumani, Angela Bonifati, Pierre
Genevès, Sarah Cohen-Boulakia and Esther Pacitti, for spending their time to evaluate my
thesis, for their profound and carefully aimed comments and suggestions during the oral
defense. This work would not have been possible without the support of the Congolese
State, which enabled me, thanks to an allocation of research, to devote myself serenely to
the elaboration of my thesis.

I would also like to record my sincere thanks to all members of the Zenith team. Spe-
cial thanks to Dennis Shasha, Djamel Yagoubi, Sakina Mahboubi, Miguel Liroz, Ji Liu,
Medhi Zitouni and Maximilien Servajean who gave me helpful advice on my research
work. Thanks also go to Florent Masseglia, Reza Akbarinia, Laurence Fontana, Khadidja
Meguelati, Titouan Lorieul, Saber Salah, Reda Bouadjenek, Rim Moussa, Daniel Gas-
par, Valentin Leveau and Sen Wang with whom, I often recall the happy time we spent
together.

I would like to thank my parents for all the opportunities they have offered me to
achieve the greatest success. Thank you for teaching me how to love. To my sisters,
brothers, nieces, nephews, aunts, uncles, grandmothers and grandfathers thank you. Your
love, prayers and guidance have helped me to face all the trials. To my angels: Samuel
and Elijah, who taught me that life is a gift, a treasure, a grace to be received and to be

iii

iv 0. Acknowledgments

given away.
I thank Dovene Agogue, Nora Aouba, Josiane Mendy, Bettina Ibouanga, Arnaud

Nzomambou, More Ogounde, Tresor Pemosso, Audrey Bouhouama Kassa, Polha Guimbi,
Tidiane Cherif Fall, Bouanga Solila, Yoka Nida, Anna Ngouba, Styven Lankiang, Davina
Makosso, Aurore Ngono, Marie Fernandez Boni, Florent Fernandez and Armelle Nzang.
The times spent together, your advice, your suggestions and your words of encourage-
ment have illuminated my life. I would like to acknowledge Frederic Kikadidi for his
support, for reviewing my thesis and providing valuable feedback.

I express my gratitude to the professors Abdoul Aziz and Oumar Diankha for their
support, for sharing their valuable research experience with me. I would like to thank the
Musika team in particular: Agnès, Marie, and Céline. They made my life a truly memo-
rable experience. I would like to thank Francois Baty Sorel and Marie Pluzanski for moral
support and encouragement. I express my thanks to Brigitte Manckoundia, Gabrielle At-
tibayeba, Narcisse Nadjingar, Mamoudou Ibrahima, Alain Loufimpou, Yoka Noelle, Vic-
tor Gbenou, Braithe Mangombi, Amaelle Otandault, Grace Embolo, Armide Meboua,
Julie Minsta, Chardel Gokini, Géraud Fokou, Amiel Balebana, Debora Issoibeka, Re-
becca Yaca, Carelle Koutchanou, Bernadette Faye, Therese Nouga and her family for
their helps and valuable advices.

I would like to express my heartfelt thanks to Lalou Yavoucko, Kilone Manta Mon-
deila, Gerrys Mboumba, Anais Gabiot, Sabrina Mathat, Amegbo Assogba, Narcisse Badi-
ette, Marie Thiamane, Debora Batchi, Nailoth Betty, Ray Loubayi, Jose Kotshi, Hapsita
Oriane Ady, Francis Ganga, Benny Boungou, Anne-Marie Manga, Djennie Doukaga,
Judith Poaty, Bonheur Djatto, Sara Tchibinda, Cinthia Elenga, Yedisa Makosso, Zoé
Elenga, Caprel Tchissambou, Group of adoration of sainte Bernadette, Olga Kouikani,
Gerolg Sita, Marie Nkounkou, Emmanuel Ehounda, Boverly Mandiangou, Patric Mbah,
Mariette Nkama, Marcelle Kombo, Elise Assala and Anaelle Kibelolo.

I am also very grateful to Ismael Mayaki, Bery Mbaiossoum, Guy Ngaha, Théophile
Ngapa, Marie Ngapa, Moustapha Bikienga, Zakaria Sahraoui, Raoul Tiam and Henry
Teguiak. I would like to thank everyone at UM, LIRMM, Inria and all the other people
who had a direct or indirect contribution to this work and were not mentioned above. I
appreciate their help and support.

Résumé

Le cloud computing a eu un impact majeur sur la gestion des données, conduisant à une
prolifération de nouvelles solutions évolutives de gestion des données telles que le sto-
ckage distribué de fichiers et d’objets, les bases de données NoSQL et les frameworks de
traitement de données. Cela a conduit également à une grande diversification des inter-
faces aux SGBD et à la perte d’un paradigme de programmation commun, ce qui rend
très difficile l’intégration de données pour un utilisateur, lorsqu’elles se trouvent dans des
sources de données spécialisées, par exemple, relationnelle, document et graphe.

Dans cette thèse, nous abordons le problème du traitement de requêtes avec plusieurs
sources de données dans le cloud, où ces sources ont des modèles, des langages et des
API différents. Cette thèse a été préparée dans le cadre du projet européen CoherentPaaS
et, en particulier, du système multistore CloudMdsQL. CloudMdsQL est un langage de
requête fonctionnel capable d’exploiter toute la puissance des sources de données locales,
en permettant simplement à certaines requêtes natives portant sur les systèmes locaux
d’être appelées comme des fonctions et en même temps optimisées, par exemple, en ex-
ploitant les prédicats de sélection, en utilisant le bindjoin, en réalisant l’ordonnancement
des jointures ou en réduisant les transferts de données intermédiaires.

Dans cette thèse, nous proposons une extension de CloudMdsQL pour tirer pleinement
parti des fonctionnalités des frameworks de traitement de données sous-jacents tels que
Spark en permettant l’utilisation ad hoc des opérateurs de map/filter/reduce (MFR) définis
par l’utilisateur en combinaison avec les ordres SQL traditionnels. Cela permet d’effectuer
des jointures entre données relationnelles et HDFS. Notre solution permet l’optimisation
en permettant la réécriture de sous-requêtes afin de réaliser des optimisations majeures
comme le bindjoin ou le filtrage des données le plus tôt possible.

Nous avons validé notre solution en implémentant l’extension MFR dans le moteur
de requête CloudMdsQL. Sur la base de ce prototype, nous proposons une validation
expérimentale du traitement des requêtes multistore dans un cluster pour évaluer l’impact
sur les performances de l’optimisation. Plus précisément, nous explorons les avantages
de l’utilisation du bindjoin et du filtrage de données dans des conditions différentes. Dans
l’ensemble, notre évaluation des performances illustre la capacité du moteur de requête
CloudMdsQL à optimiser une requête et à choisir la stratégie d’exécution la plus efficace.

v

vi 0. Résumé

Titre en français

Traitement de requêtes dans les systèmes multistores

Mots-clés

• Systèmes de gestion de données dans le cloud

• Systèmes multistores

• Systèmes multi-bases de données

• Traitement de requêtes

Abstract

Cloud computing is having a major impact on data management, with a proliferation
of new, scalable data management solutions such as distributed file and object storage,
NoSQL databases and big data processing frameworks. This also leads to a wide diversi-
fication of DBMS interfaces and the loss of a common programming paradigm, making
it very hard for a user to integrate its data sitting in specialized data stores, e.g. relational,
documents and graph data stores.

In this thesis, we address the problem of query processing with multiple cloud data
stores, where the data stores have different models, languages and APIs. This thesis has
been prepared in the context of the CoherentPaaS European project [1] and, in particular,
the CloudMdsQL multistore system. CloudMdsQL is a functional query language able to
exploit the full power of local data stores, by simply allowing some local data store native
queries to be called as functions, and at the same time be optimized, e.g. by pushing down
select predicates, using bind join, performing join ordering, or planning intermediate data
shipping.

In this thesis, we propose an extension of CloudMdsQL to take full advantage of the
functionality of the underlying data processing frameworks such as Spark by allowing
the ad-hoc usage of user defined map/filter/reduce (MFR) operators in combination with
traditional SQL statements. This allows performing joins between relational and HDFS
big data. Our solution allows for optimization by enabling subquery rewriting so that
bind join can be used and filter conditions can be pushed down and applied by the data
processing framework as early as possible.

We validated our solution by implementing the MFR extension as part of the Cloud-
MdsQL query engine. Based on this prototype, we provide an experimental validation of
multistore query processing in a cluster to evaluate the impact on performance of opti-
mization. More specifically, we explore the performance benefit of using bind join and
select pushdown under different conditions. Overall, our performance evaluation illus-
trates the CloudMdsQL query engine’s ability to optimize a query and choose the most
efficient execution strategy.

vii

viii 0. Abstract

Title in English

Query Processing in Multistore Systems

Keywords

• Cloud data stores

• Multistore systems

• Multidatabase systems

• Query processing

ix

Équipe de Recherche
Zenith Team, Inria & LIRMM

Laboratoire
LIRMM - Laboratoire d’Informatique, Robotique et Micro-électronique de Montpellier

Adresse
Université Montpellier
Bâtiment 5
CC 05 018
Campus St Priest - 860 rue St Priest
34095 Montpellier cedex 5

Résumé Étendu

Introduction
Le cloud a eu un impact majeur sur la gestion des données, conduisant à une prolifération
de nouvelles solutions telles que le stockage de fichiers et d’objets distribués (ex. GFS,
HDFS), les bases de données NoSQL (ex. Hbase, MongoDB, No4J) et les frameworks
de traitement de données massives (ex. MapReduce, Spark). Ces solutions ont été la base
d’une riche offre de services de cloud (IaaS, PaaS, SaaS, DaaS, etc.). Cependant, cela
conduit à une grande diversification des interfaces des SGBD et à la perte d’un paradigme
de programmation commun.

Pour la gestion des données dans le cloud, on peut s’appuyer sur les systèmes de
gestion de données relationnels (SGBDR), qui disposent d’une version distribuée et pa-
rallèle. Cependant, les SGBDR sont critiqués depuis quelques années pour leur approche
taille unique [54]. Bien qu’ils aient été en mesure d’intégrer le support pour toutes sortes
de données (par exemple, des objets multimédias, des documents XML) et de nouvelles
fonctions, cela a entraîné une perte de performances, de simplicité et de flexibilité pour
les applications avec des exigences spécifiques. Cette critique a conduit au développe-
ment de SGBD plus spécialisés pour un type d’application. Ce qui rend difficile pour un
utilisateur d’intégrer ses données qui résident dans des bases de données spécialisées, par
exemple, relationnelles, documents et graphes. Considérons par exemple un utilisateur
qui a une base de données relationnelle contenant des auteurs, une base de documents
contenant des revues et une base de données graphe contenant les relations entre auteurs,
et veut s’informer sur les conflits d’intérêts dans l’examen de certains documents. La so-
lution principale aujourd’hui serait de fournir un programme (par exemple écrit en Java)
qui accède aux trois bases de données via leurs API et intègre les données (en mémoire).
Cette solution est très laborieuse et difficilement extensible (par exemple, pour traiter une
nouvelle base de données).

Cette thèse a été préparée dans le cadre du projet européen CoherentPaaS [1]. Ce pro-
jet a dû faire face à deux problèmes majeurs de la gestion des données dans le cloud : la
perte de cohérence des données due à l’absence de transactions et le fait que les requêtes
dans les bases de données doivent être programmées et optimisées manuellement. Cohe-
rentPaaS s’attaque à ce problème en fournissant une plateforme PaaS riche avec une inté-
gration cohérente, évolutive et efficace des technologies de gestion des données NoSQL,
SQL et de traitement d’événements complexes (CEP). Pour ce faire, CoherentPaaS fournit

xi

xii 0. Résumé Étendu

un modèle de programmation et un langage communs pour interroger différentes bases de
données. La plateforme est conçue pour permettre à différents sous-ensembles des don-
nées d’un utilisateur de se matérialiser dans différents modèles de données, de sorte que
chaque sous-ensemble est traité de la manière la plus efficace en fonction de ses modèles
d’accès aux données les plus courants. D’autre part, une application peut toujours accéder
à une base de données directement, sans utiliser notre moteur de requête. Cela constitue
un système de stockage de données multiples avec des niveaux élevés d’hétérogénéité et
d’autonomie locale.

Dans cette thèse, nous nous concentrons sur le problème du traitement efficace des re-
quêtes de données hétérogènes avec un langage commun. Le problème peut être exprimé
comme suit. Soit Q(S1, S2, ...Sn) une requête sur n bases de données, chacune avec un
modèle de données et un langage de requête différents, et dans certains cas (par exemple
une base de documents, une base de données graphe) une API différente, le problème est
de proposer une approche pour traduire Q dans un plan d’exécution de requêtes optimisé
(QEP), avec une gestion efficace des résultats intermédiaires.

Afin de relever ces défis, CoherentPaaS propose le système multistore et son langage
fonctionnel CloudMdsQL pour interroger plusieurs bases de données hétérogènes à l’aide
de requêtes imbriquées. Une requête CloudMdsQL peut exploiter toute la puissance des
bases de données locales, en permettant simplement à certaines requêtes natives sur des
données locales d’être appelées en tant que fonctions et en même temps optimisées sur
la base d’un modèle de coût simple. L’architecture du moteur de requête est entièrement
distribuée, de sorte que les nœuds du moteur de requête peuvent communiquer direc-
tement entre eux, en échangeant du code (des plans de requêtes) et des données. Cette
architecture distribuée offre des opportunités importantes d’optimisation, en particulier,
de réduire au minimum l’expédition de données entre les nœuds, de sélectionner le plu-
tôt possible de prédicats, l’utilisation du bindjoin [32] et l’ordonnancement de jointures
tout en réduisant le temps d’exécution, le coût de communication et le trafic réseau. Ces
possibilités d’optimisation sont exploitées par le compilateur CloudMdsQL.

Dans le contexte des systèmes multistores, une grande attention est accordée à l’inté-
gration des données non structurées généralement stockées dans HDFS avec des données
relationnelles. Une solution principale est d’utiliser un moteur de requête relationnel qui
permet aux requêtes de type SQL de récupérer des données de HDFS. Cette solution est
utilisée par exemple dans le système Polybase de Microsoft pour intégrer des données
HDFS dans SQL Server Parallel Data Warehouse (PDW). Cependant, PDW doit four-
nir une vue relationnelle des données non structurées ce qui est difficile et pas toujours
faisable.

Dans cette thèse, nous proposons une extension du système CloudMdsQL afin de ti-
rer pleinement parti des fonctionnalités des frameworks de traitement de données HDFS
en permettant l’utilisation des opérateurs map/filter/reduce (MFR) définis par l’utilisateur
en combinaison avec les ordres SQL traditionnels. Notre solution permet l’optimisation
grâce à la réécriture de sous-requêtes afin que le bindjoin puisse être utilisé et que les
conditions de filtrage puissent être poussées et appliquées le plutôt possible par le frame-
work.

xiii

Cette thèse contient 5 chapitres principaux : vue d’ensemble du traitement des re-
quêtes dans les systèmes multistores ; conception de CloudMdsQL ; extension de CloudMd-
sQL avec MFR ; prototype et validation expérimentale. Nous décrivons ci-dessous ces
chapitres, puis donnons une conclusion qui résume les contributions et propose des direc-
tions de recherche futures.

Vue d’ensemble du traitement des requêtes dans les sys-
tèmes multistores
Nous donnons un aperçu du traitement des requêtes dans les systèmes multistores. Nous
commençons par introduire les solutions récentes de gestion des données dans le cloud et
le traitement des requêtes dans les systèmes multi-bases de données.

Les systèmes multistores [40] (également appelés polystores [25]) fournissent un ac-
cès intégré à plusieurs base de données dans le cloud via un ou plusieurs langages de
requête. Divers systèmes multistores ont été construits, avec des objectifs, des architec-
tures et des approches de traitement de requêtes différents. Pour faciliter la comparaison,
nous divisons ces systèmes en fonction du niveau de couplage avec les bases de données
sous-jacentes, c’est-à-dire faiblement couplés, fortement couplés et hybrides.

• Les systèmes faiblement couplés s’inspirent des systèmes multi-bases de données
en ce sens qu’ils peuvent traiter des bases de données autonomes, qui peuvent alors
être accédés par le langage commun du système multistore ainsi que séparément
par leur langage local. Ils suivent l’architecture médiateur-wrapper avec plusieurs
bases de données (par exemple NoSQL et SGBDR). Chaque base de données est
autonome, c’est-à-dire contrôlée localement, et peut être accédée par d’autres ap-
plications.

• Les systèmes fortement couplés visent à interroger efficacement les données struc-
turées et non structurées. Ils peuvent également avoir un objectif spécifique, comme
l’auto-optimisation ou l’intégration des données HDFS et SGBDR. Cependant, ils
sacrifient l’autonomie des systèmes au profit des performances de sorte que les
bases de données ne peuvent être accessibles que par le système multistore, di-
rectement à travers leur API locale. Comme les systèmes faiblement couplés, ils
fournissent un langage unique pour interroger les données hétérogènes. Cependant,
le processeur de requêtes utilise directement les interfaces locales de stockage de
données, ou dans le cas de HDFS, il interface un framework de traitement de don-
nées telle que MapReduce ou Spark. Ainsi, lors de l’exécution de la requête, le
processeur de requêtes accède directement aux bases de données, ce qui est effi-
cace. Cependant, le nombre de bases de données qui peuvent être interfacés est
généralement très limité.

• Les systèmes hybrides combinent les avantages des systèmes faiblement couplés,
notamment l’accès à de nombreuses bases de données différentes, et des systèmes

xiv 0. Résumé Étendu

fortement couplés, notamment l’accès efficace à certaines bases de données direc-
tement à travers leur interface locale. L’architecture suit l’architecture médiateur-
wrapper, tandis que le processeur de requêtes peut également accéder directement
à certaines bases de données, par exemple, HDFS via MapReduce ou Spark.

Nous examinons et analysons certains systèmes multistores représentatifs pour chaque
catégorie : (1) BigIntegrator, Forward et QoX ; (2) Polybase, HadoopDB et Estocada ; (3)
Spark SQL, BigDAWG et CloudMdsQL. Nos comparaisons révèlent plusieurs tendances
importantes. La principale tendance qui domine est la capacité d’intégrer des données re-
lationnelles (stockées dans desSGBDR) avec d’autres types de données dans différentes
bases de données, tels que HDFS ou NoSQL. Cependant, une différence importante entre
les systèmes multistores réside dans le type de bases de données pris en charge. Nous
notons également l’importance croissante de l’accès à HDFS au sein de Hadoop, en parti-
culier avec MapReduce ou Spark. Une autre tendance est l’émergence de systèmes multis-
tores auto-ajustables, dont l’objectif est d’exploiter les bases de données disponibles pour
les performances. En termes de modèle de données et de langage de requête, la plupart
des systèmes fournissent une abstraction relationnelle de type SQL.

Conception du système multistore CloudMdsQL
CloudMdsQL est un langage SQL fonctionnel, capable d’interroger plusieurs bases de
données hétérogènes (relationnelles et NoSQL) au sein d’une requête unique pouvant
contenir des invocations intégrées dans l’interface de requête native de chaque base de
données. La principale innovation est qu’une requête CloudMdsQL peut exploiter toute
la puissance des bases de données locales, en permettant simplement à certaines requêtes
natives sur données locales (par exemple, une requête de recherche breadth-first sur une
base de données graphe) d’être appelées comme des fonctions et en même temps d’être
optimisées avec un modèle de coût simple, par exemple en exploitant les prédicats de
sélection ; en utilisant le bindjoin ; en exécutant l’ordonnancement de jointure ou en pla-
nifiant la transmission de données intermédiaires.

Les solutions employées dans les systèmes multi-bases de données [24, 46] ne s’ap-
pliquent pas directement aux systèmes multistores. Tout d’abord, notre langage commun
ne s’utilise pas pour interroger les bases de données sur le Web, qui pourraient être en
très grand nombre. Dans le cloud une requête porte sur quelques bases de données et
l’utilisateur doit avoir des droits d’accès sur chaque base de données. Ensuite, les bases
de données peuvent avoir des langages très différents, allant de l’interface très simple get
/put dans les bases de données clé-valeur, à des langages SQL ou SPARQL complets.
Et aucun langage unique ne peut capturer tous les autres efficacement, par ex. SQL ne
peut pas exprimer directement la traversée de chemin dans un graphe (bien sûr, nous pou-
vons représenter un graphe en relations mais cela nécessite de traduire des traversées de
chemins en jointures coûteuses). Enfin, les bases de données NoSQL peuvent être sans
schéma, ce qui rend quasiment impossible de dériver un schéma global. Enfin, ce dont
l’utilisateur a besoin, c’est la capacité d’exprimer des requêtes puissantes pour exploiter

xv

toute la puissance des différentes langages de base de données, par exemple, exprimer
directement une traversée de chemin dans une base de données de graphe. Pour cela, nous
avons besoin d’un nouveau langage de requête.

Nous pouvons traduire ces observations en cinq besoins principaux pour notre langage
commun :

1. Intégrer des requêtes entièrement fonctionnelles sur différentes bases de données
NoSQL et SQL à l’aide du mécanisme de requête native de chaque base de données ;

2. Permettre aux requêtes imbriquées d’être arbitrairement chaînées en séquences, le
résultat d’une requête (pour une base de données) peut être utilisé comme entrée
d’une autre (pour une autre base de données) ;

3. Etre indépendant du schéma, de sorte que les bases de données sans ou avec des
schémas différents peuvent être facilement intégrés ;

4. Autoriser des transformations de métadonnées de données, par exemple, convertir
les attributs ou les relations en données et vice versa [61] ;

5. Etre facilement optimisable de sorte que l’optimisation efficace des requêtes, in-
troduite dans les systèmes de multi-bases de données, puisse être réutilisée (par
exemple, exploiter le bindjoin [32] ou transférer les plus petits résultats intermé-
diaires).

Le langage CloudMdsQL, et son moteur de requêtes répondent à ces besoins. Alors
que les quatre dernièrs besoins ont bien été introduits dans les systèmes multi-bases de
données, CloudMdsQL contribue à satisfaire aussi le premier. Le langage est capable
d’interroger plusieurs bases de données hétérogènes au sein d’une seule requête contenant
des sous-requêtes imbriquées, chacune renvoyant à une base de données particulière et
pouvant contenir des invocations incorporées dans l’interface de requête native du système
de données local.

La conception du moteur de requête profite du fait qu’il fonctionne dans une pla-
teforme de cloud. Contrairement à l’architecture traditionnelle médiateur-wrapper où le
médiateur et les wrappers sont centralisés, le système CLoudMdsQL a une architecture
entièrement distribuée qui offre d’importantes possibilités d’optimisation, par exemple,
en minimisant les transferts de données entre nœuds. Cela permet de réutiliser les tech-
niques d’optimisation de requêtes qui sont à la base du traitement des requêtes distribuées
[46].

Extension de CloudMdsQL avec MFR
CloudMdsQL est capable d’exploiter la pleine puissance des bases de données locales, en
permettant simplement à certaines requêtes natives des bases de données locales d’être ap-
pelées comme des fonctions et en même temps d’être optimisées, par exemple, en utilisant

xvi 0. Résumé Étendu

les prédicats sélectifs le plus tôt possible, en utilisant le bindjoin, en réalisant l’ordonnan-
cement de jointure ou en planifiant la transmission de données intermédiaire.

Notre principale contribution dans cette thèse est d’étendre CloudMdsQL pour in-
tégrer les données à partir de différentes bases de données, y compris les données non
structurées (HDFS) accessibles à travers des frameworks de traitement des données. Cela
permet d’effectuer des jointures entre des données relationnelles et HDFS accédé via le
framework Spark. Nous définissons une notation simple (dans CloudMdsQL) pour spéci-
fier de manière déclarative la séquence des opérateurs map/filter /reduce (MFR).

Nous supposons que chaque base de données est entièrement autonome, c’est-à-dire
que le moteur de requête n’a aucun contrôle sur la structure et l’organisation des données
dans les bases de données. Pour cette raison, l’architecture de notre moteur de requête est
basée sur l’approche traditionnelle médiateur-wrapper. Toutefois, les utilisateurs doivent
être conscients de la façon dont les données sont organisées dans les bases de données,
de sorte qu’ils écrivent des requêtes valides. Une requête unique de notre langage peut
demander que les données soient récupérées dans deux bases de données, puis une jointure
à effectuer sur les jeux de données récupérés. La requête contient donc des invocations
intégrées aux bases de données sous-jacentes, exprimées sous forme de sous-requêtes.

Comme notre langage de requête est fonctionnel, il permet un couplage strict entre
les données et les fonctions. Une sous-requête, à destination du framework de traitement
des données, est représentée par une séquence d’opérations MFR, exprimée dans une
notation formelle. D’autre part, SQL est utilisé pour exprimer les sous-requêtes sur les
bases de données relationnelles ainsi que la requête principale qui effectue l’intégration
des données récupérées par toutes les sous-requêtes. Ainsi, une requête bénéficie à la fois
d’une grande expressivité (en permettant l’utilisation ad hoc des opérateurs MFR définis
par l’utilisateur en combinaison avec les ordres SQL traditionnels) et l’optimisation (en
permettant la réécriture de sous-requête afin que les conditions de filtrage et le bindjoin
puissent être poussées et exécutées par la base de données le plus tôt possible).

Prototype
Nous avons développé l’extension MFR comme extension du moteur de requête CloudMd-
sQL. Chaque nœud du moteur de requête se compose de deux parties - master et worker
- et est colocalisée à chaque nœud de la base de données dans un cluster d’ordinateurs.
Un nœud master prend comme entrée une requête et produit un plan de requête, qu’il
envoie à un nœud du moteur de requête choisi pour son exécution. Il utilise un planifica-
teur de requêtes qui effectue l’analyse et l’optimisation des requêtes et produit un plan de
requête sérialisé qui peut être facilement transféré entre les nœuds du moteur de requête.
Les workers collaborent pour exécuter un plan de requête, produit par un master, au tra-
vers des bases de données sous-jacentes impliquées dans la requête. Chaque nœud worker
agit comme un processeur de base de données léger et se compose de plusieurs modules
génériques (c’est-à-dire la même bibliothèque de code) : un contrôleur d’exécution de re-
quêtes, un moteur d’opérateurs, un système de stockage de tables, et un module wrapper

xvii

spécifique à un système de données.
L’implémentation actuelle du moteur de requête utilise une version modifiée du SGBD

Open Source Derby pour accepter les requêtes CloudMdsQL et transformer le plan d’exé-
cution correspondant aux opérations SQL Derby. Pour étendre le moteur de requête Cloud-
MdsQL avec MFR, nous avons développé un planificateur MFR pour être utilisé par le
wrapper du framework de traitement de données. Le planificateur MFR trouve des oppor-
tunités d’optimisation et traduit la séquence résultante d’opérations MFR à une séquence
de méthodes API du framework à exécuter.

Nous avons validé le moteur de requête CloudMdsQL avec des wrappers pour les
bases de données suivantes : Sparksee, une base de données graphe avec une API Python ;
Derby, une base de données relationnelle accessible via son pilote JDBC ; MongoDB,
une base de données documents avec une API Java ; et Apache Spark un framework de
traitement de données au-dessus de HDFS, accessibles par une API Apache Spark.

Validation Expérimentale
En nous servant du prototype de moteur de requête CloudMdsQL, nous avons effectué
une validation expérimentale du traitement des requêtes multistores dans un cluster pour
évaluer l’impact de l’optimisation sur les performances. Plus précisément, nous explorons
les avantages de l’utilisation du bindjoin, une technique très efficace, dans des conditions
différentes. Dans notre validation expérimentale, nous nous concentrons sur des requêtes
qui peuvent exprimer une intégration de données dans plusieurs bases de données, en
particulier NoSQL, SGBDR et HDFS accessibles via le framework Spark. D’abord, nous
évaluons l’impact de la réécriture et de l’optimisation des requêtes sur le temps d’exécu-
tion dans un cluster en utilisant trois bases de données : relationnelle (Derby), document
(MongoDB) et graphe (Sparksee).

Nous montrons les temps d’exécution pour 3 plans d’exécutions différents de 5 re-
quêtes. Nous comparons les temps d’exécution, avec différents ordres de jointure, trans-
ferts intermédiaires de données et réécritures de sous-requêtes. Nous explorons également
les avantages de l’utilisation du bindjoin dans différentes conditions. Les résultats des ex-
périences montrent que le troisième QEP de chaque requête utilisant le bindjoin est bien
meilleur que les deux premiers en termes de temps d’exécution.

Ensuite, nous évaluons notre approche MFR dans un cluster Grid5000 avec trois bases
de données : PostgreSQL, MongoDB et HDFS. Nous avons validé notre approche en
utilisant 3 requêtes différentes, en exécutant chacune avec 3 différentes configurations
HDFS pour évaluer le passage à l’échelle. Nous comparons les performances entre les
QEP sans bindjoin et les QEP avec bindjoin. Les résultats montrent que le bénéfice de
l’optimisation bindjoin est plus élevé dans les configurations avec un nombre plus élevé
de nœuds (16 nœuds) en termes de temps d’exécution. De plus, la quantité de données
traitées est réduite pendant l’exécution de la séquence MFR en réordonnant les opérateurs
MFR selon les règles déterminées.

Dans l’ensemble, notre évaluation des performances illustre la capacité du moteur de

xviii 0. Résumé Étendu

requête CloudMdsQL à optimiser une requête et à bien choisir la stratégie d’exécution la
plus efficace.

Conclusion
Dans cette thèse, nous avons abordé le problème du traitement des requêtes avec plusieurs
bases de données dans le cloud, où les systèmes de données ont des modèles, des langages
et des API différents.

Nous avons proposé une extension du système multistore CloudMdsQL pour tirer plei-
nement parti des fonctionnalités des frameworks de traitement de données sous-jacents
tels que Spark. CloudMdsQL est un langage de requête fonctionnel capable d’exploiter
toute la puissance des systèmes de données sous-jascents, en permettant simplement à
certaines requêtes natives d’être appelées comme des fonctions et en même temps opti-
misées, par exemple, en traitant les prédicats sélectifs le plutôt possible, en utilisant le
bindjoin, en réalisant l’ordonnancement de jointure ou en planifiant la transmission de
données intermédiaires. Notre extension permet l’utilisation des opérateurs MFR définis
par l’utilisateur en combinaison avec les ordres SQL traditionnels. Cela permet d’effectuer
des jointures entre données relationnelles et HDFS. Notre solution permet l’optimisation
en permettant la réécriture de la sous-requête afin que le bindjoin puisse être utilisé et
que les conditions de filtrage puissent être poussées et appliquées le plutôt possible par le
traitement de données.

Nous avons validé notre solution en implémentant l’extension MFR dans le moteur
de requête CloudMdsQL. Sur la base de ce prototype, nous avons fait une validation
expérimentale du traitement des requêtes multistore dans un cluster pour évaluer l’impact
de l’optimisation sur les performances. Plus précisément, nous explorons les avantages de
l’utilisation du bindjoin et de la sélection le plus tôt possible dans différentes conditions.
Dans l’ensemble, notre évaluation des performances illustre la capacité du moteur de
requête CloudMdsQL à optimiser une requête et à bien choisir la stratégie d’exécution la
plus efficace.

La recherche sur les systèmes multistores est relativement récente, avec de nouveaux
problèmes. Sur la base de nos contributions, nous pouvons identifier les orientations de
recherche suivantes.

Prise en charge des vues multistores
Les vues ont été largement utilisées dans les multi-bases de données pour assurer la trans-
parence à la distribution et l’hétérogénéité, cachant le fait que les données soient sto-
ckées dans différents SGBD. L’ajout de vues dans CloudMdsQL faciliterait l’écriture des
requêtes sur plusieurs bases de données puisque les expressions de table nécessaires au
mappage des données vers le modèle CloudMdsQL seraient capturées par des expressions
de vue.

Cela nécessite la définition d’un langage de définition de vues pour CloudMdsQL et

xix

l’adaptation de la réécriture de requêtes pour traiter les vues. Toutefois, comme CloudMd-
sQL prend en charge les fonctions natives, le traitement des requêtes à l’aide de vues de-
vient plus difficile. Par exemple, une requête CloudMdsQL peut intégrer des données à
partir d’une vue multistore MSV , peut-être définie par des fonctions définies par l’uti-
lisateur, et une base de données DS par une fonction définie par l’utilisateur. Mais DS
pourrait faire partie de MSV et une simple réécriture de la requête aurait accès à DS
deux fois.

Une solution serait d’effectuer une analyse de requête pour découvrir que DS fait
partie de MSV et réécrire la requête de sorte que DS soit accédée une seule fois, mais en
produisant deux tables (une pour chaque fonction native), qui sont ensuite combinées. Une
approche plus complexe consisterait à identifier le sous-ensemble des prédicats dans des
fonctions natives qui pourraient être combinées, par ex. en faisant l’union des prédicats
simples, et ainsi produire une table unique.

Support des vues matérialisées
Pour accélérer le traitement des requêtes analytiques, les vues multistores peuvent être
matérialisées, comme dans les entrepôts de données. Certains systèmes multistores sup-
portent des vues matérialisées, mais d’une manière simple. Par exemple, les vues matéria-
lisées opportunistes d’Odyssey permettent de mettre en cache et de réutiliser les résultats
de la requête. Toutefois, les données mises en cache ne sont pas actualisées à la suite des
mises à jour des données de base.

Le support des vues matérialisées multistores nécessiterait de traiter le problème de
la maintenance de vue, c’est-à-dire de maintenir les données matérialisées en cohérence
avec les données de base qui peuvent être mises à jour. Ce problème est traité dans les
entrepôts de données à l’aide des SGBDR et des outils Extract-Transform-Load (ETL).
Les ETL s’interfacent avec les sources de données et extraient les données mises à jour
de plusieurs façons, en fonction des capacités des sources de données, c’est-à-dire des
notifications de mise à jour, de l’extraction incrémentale des données de mise à jour ou
uniquement de l’extraction complète des données.

Dans le contexte des systèmes multistores, nous devrions étendre les modules wrapper
avec la capacité d’extraction des ETL. Le problème principal est que les bases de données
non relationnelles ne supportent généralement pas les notifications de mise à jour et que
l’extraction complète peut constituer l’option courante et coûteuse, ce qui nécessite de
comparer chaque extraction avec la précédente pour identifier les modifications.

Une solution au problème de la maintenance de vue matérialisée consiste à calculer la
vue de façon incrémentalle, en utilisant des tables différentielles qui capturent les données
mises à jour. Nous pourrions adapter cette solution dans le contexte des systèmes multis-
tores, dans le cas simple des définitions de vue non récursives en adaptant des algorithmes
efficaces comme le célèbre algorithme par comptage [31].

xx 0. Résumé Étendu

Traitement parallèle des requêtes multistores
Pour réussir les analyses de données massives, il est essentiel d’intégrer des données pro-
venant de plusieurs bases de données. Cela peut être fait en étendant un moteur OLAP
parallèle (OPE) avec les capacités de CloudMdsQL. Les OPE exploitent généralement
le parallélisme intra-requête (à la fois inter-opération et intra-opération) pour obtenir de
hautes performances.

étant donné un OPE avec des capacités CloudMdsQL, le problème est d’intégrer (par
exemple joindre) de grandes masses de données à partir d’une ou plusieurs bases de don-
nées dans l’OPE, d’une manière qu’il exploite le parallélisme. Cependant, bien que toutes
les bases de données que nous avons utilisées fournissent un support pour le partition-
nement des données et le traitement parallèle, le moteur CloudMdsQL n’utilise pas le
parallélisme. C’est parce que nous avons un wrapper, un moteur d’opérateurs et un client
de base de données sur un serveur, donc une requête lourde à une base de données pro-
duira de grandes quantités de données qui seront centralisées sur ce serveur.

Une approche prometteuse consiste à introduire le parallélisme entre les requêtes dans
le moteur CloudMdsQL. Cela nécessite la capacité des wrappers d’accéder directement
aux partitions des bases de données (aux nœuds de données, et non aux nœuds princi-
paux). Selon les bases de données, ceci peut être plus ou moins difficile. Par exemple,
HDFS facilite la tâche en fournissant un accès direct aux chunks de données. Mais les
SGBDR obligent généralement à accéder aux données partitionnées par l’intermédiaire
d’un nœud central maître.

Gestion des flux de données
Les moteurs de traitement de flux (SPE) deviennent omniprésents pour le traitement et
l’analyse des données en temps réel. Contrairement aux bases de données, de nouvelles
données sont générées continuellement dans un ordre fixe (par exemple, par l’heure d’ar-
rivée ou par un horodatage ajouté aux données) et traitées à la volée à l’aide de requêtes
continues. Cependant, il est également nécessaire de combiner des données en continu
avec des données stockées dans de multiples systèmes. Ainsi, une direction importante de
la recherche dans BigDAWG, est de coupler une SPE avec un système multistore.

Ensuite, le problème majeur est de supporter le traitement des données en temps réel
sur les données en temps réel et stockées.

L’approche utilisée dans BigDAWG est de fournir un îlot de flux de données qui est
pris en charge par le SPE S-Store [18] qui est fortement couplé avec les autres bases de
données. Les requêtes S-Store reposent sur des opérateurs pour la gestion de flux bien
connus, comme le filtrage, la jointure, l’agrégat et la fenêtre glissante. Cette approche
pourrait être adaptée pour étendre le système multistore CloudMdsQL avec des données
en continu. Cela nécessite d’étendre le modèle de données CloudMdsQL avec des données
ordonnées et des opérateurs de diffusion en continu. Pour supporter le traitement des
données en temps réel sur les données stockées, nous pourrions alors exploiter des vues
matérialisées stockées en mémoire et le parallélisme.

xxi

Benchmarking des systèmes multistores
A mesure que les systèmes multistores arrivent à maturité, le besoin de benchnmarks
augmente nécessairement. Une première étape dans cette direction est le benchmark du
système CloudMdsQL [39]. Ce benchmark utilise le standard benchmark TPC H (www.
tpc.org/tpch) avec 8 jeux de données répartis sur 5 bases de données différentes,
chacune ayant des interfaces et des modèles de données différents : relationnel, clé-valeur,
document, et un moteur OLAP. Les requêtes TPC H et les cas de test sont divisés en deux
groupes qui mettent l’accent sur les performances grâce au bindjoin et au support des
requêtes natives.

Le benchmark CloudMdsQL se concentre principalement sur les opérateurs relation-
nels et leurs équivalents dans les bases de données non-SQL. Comme travail futur, il fau-
dra l’étendre pour évaluer les avantages de performances dans le contexte d’opérateurs
spécifiques de base de données, tels que les parcours de graphe ou les requêtes sur des
documents. Ensuite, on pourrait généraliser pour comparer les performances de différents
systèmes multistores.

Publications
Les contributions de cette thèse ont conduit aux publications suivantes :

• Carlyna Bondiombouy, Patrick Valduriez. Query Processing in Multistore Systems :
an overview. International Journal of Cloud Computing, 5(4) : 309− 346, 2016.

• Boyan Kolev, Carlyna Bondiombouy, Patrick Valduriez, Ricardo Jiménez-Peris,
Raquel Pau, José Pereira. Demonstration of the CloudMdsQL Multistore System.
BDA’2016 : Gestion de données - principes, technologies et applications, 2016, 14.

• Carlyna Bondiombouy, Boyan Kolev, Patrick Valduriez, Oleksandra Levchenko.
Multistore Big Data Integration with CloudMdsQL. BDA’2016 : Gestion de don-
nées - principes, technologies et applications, 2016, 5.

• Boyan Kolev, Patrick Valduriez, Carlyna Bondiombouy, Ricardo Jiménez-Peris,
Raquel Pau, José Pereira. CloudMdsQL : querying heterogeneous cloud data stores
with a common language. Distributed and Parallel Databases, 34(4) : 463 − 503,
2016.

• Carlyna Bondiombouy, Boyan Kolev, Oleksandra Levchenko, Patrick Valduriez.
Multistore Big Data Integration with CloudMdsQL. Transactions Large-Scale Data-
and Knowledge-Centered Systems, 28 : 48− 74, 2016.

• Boyan Kolev, Carlyna Bondiombouy, Oleksandra Levchenko, Patrick Valduriez,
Ricardo Jiménez-Peris, Raquel Pau, José Orlando Pereira. Design and Implemen-
tation of the CloudMdsQL Multistore System. International Conference on Cloud
Computing and Services Science (CLOSER), volume 1 : 352−−359, 2016.

www.tpc.org/tpch
www.tpc.org/tpch

xxii 0. Résumé Étendu

• Boyan Kolev, Carlyna Bondiombouy, Patrick Valduriez, Ricardo Jiménez-Peris,
Raquel Pau, José Pereira. The CloudMdsQL Multistore System. ACM SIGMOD
International Conference on Data Management, 2113−−2116, 2016.

• Carlyna Bondiombouy, Boyan Kolev, Oleksandra Levchenko, Patrick Valduriez.
Integrating Big Data and Relational Data with a Functional SQL-like Query Lan-
guage. Database and Expert Systems Applications (DEXA), 1 : 170−−185, 2015.

• Carlyna Bondiombouy. Query Processing in Cloud Multistore Systems. BDA’ 2015 :
Gestion de données - principes, technologies et applications, 2015, 2.

Contents

Acknowledgments iii

Résumé v

Abstract vii

Résumé Étendu xi

1 Introduction 1
1.1 Thesis Context . 1
1.2 Contributions . 2
1.3 Organization of the Thesis . 5

2 Overview of Query Processing in Multistore Systems 7
2.1 Introduction . 7
2.2 Cloud Data Management . 8

2.2.1 Distributed Storage . 10
2.2.1.1 Block-based Distributed File Systems 11
2.2.1.2 Object-based Distributed File Systems 12
2.2.1.3 Combining Block Storage and Object Storage 13

2.2.2 NoSQL Systems . 14
2.2.2.1 Key-Value Stores . 14
2.2.2.2 Wide Column Stores 15
2.2.2.3 Document Stores . 16
2.2.2.4 Graph Data stores . 17

2.2.3 Data Processing Frameworks . 18
2.2.3.1 Concluding Remarks 20

2.3 Multidatabase Query Processing . 21
2.3.1 Mediator-Wrapper Architecture 21
2.3.2 Multidatabase Query Processing Architecture 22
2.3.3 Multidatabase Query Processing Techniques 23

2.3.3.1 Heterogeneous Cost Modeling 23
2.3.3.2 Heterogeneous Query Optimization 24
2.3.3.3 Adaptive Query Processing 26

xxiii

xxiv CONTENTS

2.4 Multistore Systems . 27
2.4.1 Loosely-Coupled Multistore Systems 27
2.4.2 Tightly-Coupled Multistore Systems 31
2.4.3 Hybrid systems . 35
2.4.4 Comparative Analysis . 38

2.5 Conclusion . 40

3 Design of CloudMdsQL 41
3.1 Overview . 41
3.2 Related Work . 42
3.3 Basic Concepts . 44

3.3.1 Data Model . 44
3.3.2 Language Concepts . 45

3.4 Query Engine Architecture . 46
3.4.1 Overview . 46
3.4.2 Master . 48
3.4.3 Worker . 49

3.5 Query Language . 50
3.5.1 Named Table Expressions . 50
3.5.2 Nested Queries . 52

3.5.2.1 Within SQL Expressions 52
3.5.2.2 Within Native Expressions 53

3.5.3 CloudMdsQL SELECT Statement 55
3.6 Query Processing . 57

3.6.1 Query Decomposition . 57
3.6.2 Query Optimization . 58
3.6.3 Query Execution . 60
3.6.4 Interfacing Data Stores . 61

3.6.4.1 Querying SQL Compatible NoSQL Data Stores 62
3.6.4.2 SQL Capabilities . 62
3.6.4.3 Using Native Queries 64

3.7 Use Case Example . 65
3.8 Conclusion . 72

4 Extending CloudMdsQL with MFR 73
4.1 Overview . 73
4.2 Query Language . 75

4.2.1 MFR Notation . 75
4.2.2 Combining SQL and MFR . 77

4.3 Query Engine Architecture . 78
4.4 Query Processing . 80

4.4.1 Query Optimization . 80
4.4.2 MFR Rewrite Rules . 81

CONTENTS xxv

4.4.3 Bind Join . 82
4.5 Use Case Example . 83
4.6 Conclusion . 89

5 Prototype 91
5.1 Overview . 91
5.2 Query Planner . 92
5.3 Execution Engine . 94
5.4 Wrappers . 96
5.5 Conclusion . 96

6 Experimental Validation 99
6.1 Experimental Setup . 99
6.2 CloudMdsQL Experimentation . 100

6.2.1 Datasets . 100
6.2.2 Experimental Results . 101

6.3 MFR Experimentation . 105
6.3.1 Datasets . 105
6.3.2 Experimental Results . 106

6.4 Conclusion . 109

7 Conclusion 111
7.1 Contributions . 111
7.2 Directions for Future Work . 113

Bibliography 117

Chapter 1

Introduction

Cloud computing is having a major impact on data management, with a proliferation of
new scalable, solutions such as distributed file and object storage, NoSQL databases and
big data processing frameworks. These solutions have been the basis for a rich offering
of services (IaaS, PaaS, SaaS, DaaS, etc.) that can be used to build cloud data-intensive
applications. However, this has also led to a wide diversification of DBMS interfaces and
the loss of a common programming paradigm.

For cloud data management, one could rely on RDBMSs as most of them have a dis-
tributed and parallel version. However, RDBMSs have been lately criticized for their "one
size fits all" approach [54]. Although they have been able to integrate support for all kinds
of data (e.g. multimedia objects, XML documents) and new functions, this has resulted
in a loss of performance, simplicity and flexibility for applications with specific, tight
performance requirements. Therefore, it has been argued that more specialized DBMS
engines are needed.

This makes it very hard for a user to integrate its data sitting in specialized data stores,
e.g. relational, documents and graph data stores. For example, consider a user who gives
a relational data store with authors, a document store with reviews, and a graph data store
with author friendships, wants to find out about conflicts of interests in the reviewing of
some papers. The main solution today would be to provide a program (e.g. written in
Java) that accesses the three data stores through their APIs and integrates the data (in
memory). This solution is obviously labor-intensive, complex and not easily extensible
(e.g. to deal with a new data store).

1.1 Thesis Context
This thesis has been prepared in the context of the CoherentPaaS European project [1].
This project had to deal with two issues faced by current cloud data store management
frameworks: the loss of data consistency due to the lack of transactions, and the fact that
queries across data stores need be programmed and optimized manually. CoherentPaaS
addresses this problem by providing a rich PaaS with a coherent, ultra-scalable, and effi-
cient integration of NoSQL, SQL and Complex Event Processing (CEP) data management

1

2 1. Introduction

technologies.
However, unlike in the current cloud landscape, CoherentPaaS provides a common

programming model and language to query multiple data stores. The platform is de-
signed to allow different subsets of enterprise data to be materialized within different data
models, so that each subset is handled in the most efficient way according to its most com-
mon data access patterns. On the other hand, an application can still access a data store
directly, without using our query engine. This constitutes a multiple data store systems
with high levels of heterogeneity and local autonomy.

In this thesis, we focus on the problem of efficient query processing of heterogeneous
data stores with a common language. The problem can be expressed as follows: Let
Q(S1, S2, . . . Sn) be an query, over n data stores, each with a different data model and
query language, and in some cases (e.g. a document store, a graph data store) a different
API, propose an approach to translate Q into an optimized query execution plan (QEP),
with efficient management of intermediate results.

In order to address these challenges, CoherentPaaS proposes a multistore system with
a functional language (CloudMdsQL), for querying multiple heterogeneous data stores
using nested queries. A CloudMdsQL query can exploit the full power of the local data
stores, by simply allowing some local data store native queries to be called as functions,
and at the same time be optimized based on a simple cost model. The architecture of the
query engine is fully distributed, so that query engine nodes can directly communicate
with each other, by exchanging code (query plans) and data. This fully distributed archi-
tecture provides important opportunities for optimization, in particular, minimizing data
shipping between nodes, select predicate pushdown, bind join, and join ordering while
reducing execution time, communication cost and network traffic. These optimization
opportunities are exploited by the CloudMdsQL compiler.

In the context of multistore systems, much attention is being paid on the integration
of unstructured big data typically stored in HDFS with relational data. One main solution
is to use a relational query engine that allows SQL-like queries to retrieve data from
HDFS. This solution is used for instance in Polybase from Microsoft to integrate HDFS
data within SQL Server Data Warehouse. However, it requires the system to provide a
relational view of the unstructured data and hence is not always feasible. In this thesis,
we propose an extension of CloudMdsQL to take full advantage of the functionality of
the underlying data processing frameworks by allowing the ad-hoc usage of user defined
map/filter/reduce (MFR) operators in combination with traditional SQL statements. Our
solution allows for optimization by enabling subquery rewriting so that bind join can
be used and filter conditions can be pushed down and applied by the data processing
framework as early as possible.

1.2 Contributions
The main contributions of this thesis are:

• An overview of query processing in multistore systems. We give an overview of

1.2 Contributions 3

query processing in multistore systems. We start by introducing the recent cloud
data management solutions and query processing in multidatabase systems. Then,
we describe and analyze some representative multistore systems, based on their
architecture, data model, query languages and query processing techniques. To
ease comparison, we divide multistore systems based on the level of coupling with
the underlying data stores, i.e., loosely-coupled, tightly-coupled and hybrid. Our
analysis reveals some important trends, which we discuss.

• The extension of CloudMdsQL with MFR notation. CloudMdsQL is a func-
tional query language able to exploit the full power of local data stores, by sim-
ply allowing some local data store native queries to be called as functions, and at
the same time be optimized, e.g. by pushing down select predicates, using bind
join, performing join ordering, or planning intermediate data shipping. Our main
contribution is to extend CloudMdsQL to integrate data retrieved from different
data stores, including unstructured (HDFS) data accessed through a data process-
ing frameworks. It allows performing joins between relational and HDFS data,
and extend the query engine with operators for the Spark framework. We define a
simple notation (in CloudMdsQL) to specify in a declarative way the sequence of
map/filter/reduce (MFR) operators. We exploit the full power of the frameworks
, yet avoiding the use of SQL engines on top of them. Furthermore, we allow for
optimization by enabling subquery rewriting so that bind join can be used and filter
conditions can be pushed down and applied by the data processing framework as
early as possible.

• Prototype. We have developed the MFR extension as part of the CloudMdsQL
query engine. Each query engine node consists of two parts – master and worker –
and is collocated at each data store node in a computer cluster. A master node takes
as input a query and produces a query plan, which it sends to one chosen query
engine node for execution. It uses a query planner that performs query analysis and
optimization, and produces a query plan serialized that can be easily transferred
across query engine nodes. Workers collaborate to execute a query plan, produced
by a master, against the underlying data stores involved in the query. Each worker
node acts as a lightweight runtime database processor atop a data store and is com-
posed of three generic modules (i.e. same code library) - query execution controller,
operator engine, and table storage - and one wrapper module that is specific to a data
store. The current implementation of the query engine uses a modified version of
the open source Derby database to accept CloudMdsQL queries and transform the
corresponding execution plan into Derby SQL operations. To extend the Cloud-
MdsQL query engine with MFR, we developed an MFR planner to be used by the
wrapper of the data processing framework (DPF). The MFR planner finds opti-
mization opportunities and translates the resulting sequence of MFR operations to
a sequence of DPF’s API methods to be executed.

• Experimental validation. Based on the CloudMdsQL query engine prototype, we

4 1. Introduction

give an experimental validation of multistore query processing in a cluster to eval-
uate the impact on performance of optimization. More specifically, we explore the
performance benefit of using bind join, a very efficient technique, under different
conditions. In our experimental validation, we focus on queries that can express
an integration of data across several data stores, in particular, NoSQL (graph and
document data stores), RDBMS and HDFS accessed through the Spark framework.
Overall, the experimental results confirm the importance of using simple optimiza-
tion techniques to reduce query execution times.

These contributions have led to the following publications:

• Carlyna Bondiombouy, Patrick Valduriez. Query Processing in Multistore Systems:
an overview. International Journal of Cloud Computing, 5(4) : 309− 346, 2016.

• Boyan Kolev, Carlyna Bondiombouy, Patrick Valduriez, Ricardo Jiménez-Peris,
Raquel Pau, José Pereira. Demonstration of the CloudMdsQL Multistore System.
BDA’2016: Gestion de données - principes, technologies et applications, 2016, 14.

• Carlyna Bondiombouy, Boyan Kolev, Patrick Valduriez, Oleksandra Levchenko.
Multistore Big Data Integration with CloudMdsQL. BDA’2016: Gestion de données
- principes, technologies et applications, 2016, 5.

• Boyan Kolev, Patrick Valduriez, Carlyna Bondiombouy, Ricardo Jiménez-Peris,
Raquel Pau, José Pereira. CloudMdsQL: querying heterogeneous cloud data stores
with a common language. Distributed and Parallel Databases, 34(4) : 463 − 503,
2016.

• Carlyna Bondiombouy, Boyan Kolev, Oleksandra Levchenko, Patrick Valduriez.
Multistore Big Data Integration with CloudMdsQL. Transactions Large-Scale Data-
and Knowledge-Centered Systems, 28 : 48− 74, 2016.

• Boyan Kolev, Carlyna Bondiombouy, Oleksandra Levchenko, Patrick Valduriez,
Ricardo Jiménez-Peris, Raquel Pau, José Orlando Pereira. Design and Implemen-
tation of the CloudMdsQL Multistore System. International Conference on Cloud
Computing and Services Science (CLOSER), 1 : 352−−359, 2016.

• Boyan Kolev, Carlyna Bondiombouy, Patrick Valduriez, Ricardo Jiménez-Peris,
Raquel Pau, José Pereira. The CloudMdsQL Multistore System. ACM SIGMOD
International Conference on Data Management, 2113−−2116, 2016.

• Carlyna Bondiombouy, Boyan Kolev, Oleksandra Levchenko, Patrick Valduriez.
Integrating Big Data and Relational Data with a Functional SQL-like Query Lan-
guage. Database and Expert Systems Applications (DEXA), 1 : 170−−185, 2015.

• Carlyna Bondiombouy. Query Processing in Cloud Multistore Systems. BDA’-
2015: Gestion de données - principes, technologies et applications, 2015, 2.

1.3 Organization of the Thesis 5

1.3 Organization of the Thesis
The remaining chapters of the thesis are organized as follows.

Chapter 2: State of The Art
In this chapter, we review the state of the art of query processing in multistore systems.
First, we present different cloud data management solutions, including distributed file
systems, NoSQL systems and data processing systems. Then, we review the main query
processing techniques from multidatabase systems since they also deal with heteroge-
neous data stores. Finally, we introduce the three kinds of multistore systems (Loosely-
coupled, Tightly-coupled and Hybrid systems), compare the functionality and implemen-
tations techniques of each system.

Chapter 3: Design of CloudMdsQL
In this chapter, we describe the CloudMdsQL language and its query engine. First, we
discuss the state of the art solutions for multidatabase systems, and we analyze the limita-
tions of the existing approaches. Then, we describe the main concepts of CloudMdsQL,
including the data model and the language. Afterward, we present the architecture of
the query engine and the principal components. We present in detail the different query
processing steps of CloudMdsQL according to the query engine architecture. Finally, we
illustrate the query processing steps with a use case.

Chapter 4: Extending CloudMdsQL with MFR
In this chapter, we present our extension of CloudMdsQL to express subqueries that can
take full advantage of the functionality of a data processing framework when accessing
unstructured data stores such as HDFS. First, we present our approach. Next, we intro-
duce the language and the MFR notation. Then, we describe the query engine architec-
ture of our system. Afterward, we present the query processing steps and show the MFR
rewrite rules. Finally, we illustrate our solution with a use case example.

Chapter 5: Prototype
In this chapter, we describe the implementation of the CloudMdsQL query engine and
our MFR extension. First, we describe the query planner component, which compiles a
CloudMdsQL query and generates a query execution plan to be processed by the query
engine. Then, we present the execution engine with its modules (query execution con-
troller, operator engine, table storage and wrappers). Finally, we describe the specific
wrappers that have been implemented in the CoherentPaaS project to interface with data
stores.

6 1. Introduction

Chapter 6: Experimental Validation
This chapter present our experimental validation of CloudMdsQL and our MFR extension.
First, we describe our experimental setup. Then, we give an experimental validation of
CloudMdsQL. Finally, we present the experimental validation of the MFR extension.

Chapter 7: Conclusion
In this chapter, we summarize and discuss the main contributions of this thesis. We also
give some directions for future work.

Chapter 2

Overview of Query Processing in
Multistore Systems

Building cloud data-intensive applications often requires using multiple data stores (HDFS,
NoSQL, RDBMS, etc.), each optimized for one kind of data and tasks. However, the wide
diversification of data store interfaces makes it difficult to access and integrate data from
multiple data stores. This important problem has motivated the design of a new genera-
tion of systems, called multistore systems, which provide integrated or transparent access
to a number of cloud data stores through one or more query languages. In this chapter, we
give an overview of query processing in multistore systems. The objective is not to give
an exhaustive survey of all systems and techniques, but to focus on the main solutions
and trends, based on the study of nine representative systems (3 for each class namely:
loosely-coupled, tightly-coupled, ans hybrid systems). This chapter is based on [15].

This chapter is organized as follows. Section 2.1 introduces the chapter and a classi-
fication of multistore systems. In Section 2.2, we introduce the recent cloud data man-
agement, including distributed file systems, NoSQL systems and data processing frame-
works. In Section 2.3, we review the main query processing techniques for multidatabase
systems, based on the mediator-wrapper architecture. Finally, in Section 2.4, we ana-
lyze the three kinds of multistore systems, based on their architecture, data model, query
languages and query processing techniques. Section 2.5 concludes and discusses open
issues.

2.1 Introduction
The problem of accessing heterogeneous data stores, i.e. managed by different data man-
agement systems such as RDBMS and XML DBMS, has long been studied in the context
of multidatabase systems [46] (also called federated database systems, or more recently
data integration systems [24]). Most of the work on multidatabase query processing has
been done in the context of the mediator-wrapper architecture, using a declarative, SQL-
like language. The mediator-wrapper architecture allows dealing with three major proper-

7

8 2. Overview of Query Processing in Multistore Systems

ties of the data stores: distribution (i.e. located at different sites), heterogeneity (i.e. with
different data models and languages) and autonomy (i.e. under local control) [46].

The state-of-the-art solutions for multidatabase query processing can be useful to
transparently access multiple data stores in the cloud. However, operating in the cloud
makes it quite different from accessing data stores on a wide-area network or the Internet.
First, the kinds of queries are different. For instance, a web data integration query, e.g.
from a price comparator, could access lots of similar web data stores, whereas a cloud
query should be on a few but quite different cloud data stores and the user needs to have
access rights to each data store. Second, both mediator and data source wrappers can only
be installed at one or more servers that communicate with the data stores through the net-
work. However, operating in a cloud, where data stores are typically distributed over the
nodes of a computer cluster, provides more control over where the system components
can be installed and thus, more opportunities to design an efficient architecture.

These differences have motivated the design of more specialized multistore systems
[40] (also called polystores [25]) that provide integrated access to a number of cloud data
stores through one or more query languages. Several multistore systems are being built,
with different objectives, architectures and query processing approaches, which makes it
hard to compare them. To ease comparison, we divide multistore systems based on the
level of coupling with the underlying data stores, i.e. loosely-coupled, tightly-coupled
and hybrid.

Loosely-coupled systems are reminiscent of multidatabase systems in that they can
deal with autonomous data stores, which can then be accessed through the multistore
system common language as well as separately through their local language.

Tightly-coupled systems trade autonomy for performance, typically in a shared-nothing
cluster, so that data stores can only be accessed through the multistore system, directly
through their local language.

Hybrid systems tightly-couple some data stores, typically an RDBMS, and loosely-
couple some others, typically HDFS through a data processing framework like MapRe-
duce or Spark.

2.2 Cloud Data Management
Some important characteristics of cloud data have been considered for designing data
management solutions. Cloud data can be very large, unstructured or semi-structured,
and typically append-only (with rare updates). And cloud users and application devel-
opers may be in high numbers, but not DBMS experts. Therefore, current cloud data
management solutions have traded ACID (Atomicity, Consistency, Isolation and Durabil-
ity) transactional properties for scalability, performance, simplicity and flexibility [49].

The preferred approach of cloud providers is to exploit a shared-nothing cluster [46],
i.e. a set of loosely connected computer servers with a very fast, extensible interconnect
(e.g. Infiniband). When using commodity servers with internal direct-attached storage,
this approach provides scalability with excellent performance-cost ratio. Compared to

2.2 Cloud Data Management 9

traditional DBMSs, cloud data management uses a different software stack with the fol-
lowing layers: distributed storage, database management and distributed processing. In
the rest of this section, we introduce this software stack and present the different layers in
more details.

Cloud data management (see Figure 2.1) relies on a distributed storage layer, wher-
eby data is typically stored in files or objects distributed over the nodes of a shared-
nothing cluster. This is one major difference with the software stack of current DBMSs
that relies on block storage. Interestingly, the software stack of the first DBMSs was
not very different from that used now in the cloud. The history of DBMSs is interesting
to understand the evolution of this software stack. The very first DBMSs, based on the
hierarchical or network models, were built as extensions of a file system, such as COBOL,
with inter-file links. And the first RDBMSs too were built on top of a file system. For
instance, the famous Ingres RDBMS [55] was implemented atop the Unix file system.
But using a general-purpose file system was making data access quite inefficient, as the
DBMS could have no control over data clustering on disk or cache management in main
memory. The main criticism for this file-based approach was the lack of operating system
support for database management (at that time) [53]. As a result, the architecture of
RDBMSs evolved from file-based to block-based, using a raw disk interface provided by
the operating system. A block-based interface provides direct, efficient access to disk
blocks (the unit of storage allocation on disks). Today all RDBMSs are block-based, and
thus have full control over disk management.

Figure 2.1 – Cloud data management software stack

The evolution towards parallel DBMSs kept the same approach, in particular, to ease
the transition from centralized systems. Parallel DBMSs use either a shared-nothing or
shared-disk architecture. With shared-nothing, each node (e.g. a server in a cluster)
has exclusive access to its local disk through internal direct-attached storage. Thus, big
relational tables need be partitioned across multiple disks to favor parallel processing.
With shared-disk, the disks are shared among all nodes through a storage area network,
which eases parallel processing. However, since the same disk block can be accessed in

10 2. Overview of Query Processing in Multistore Systems

concurrent mode by multiple cluster nodes, a distributed lock manager [46] is necessary
to avoid write conflicts and provide cache coherency. In either architecture, a node can
access blocks either directly through direct-attached storage (shared-nothing) or via the
storage area network (shared-disk).

In the context of cloud data management, we can identify two main reasons why
the old DBMS software stack strikes back. First, distributed storage can be made fault-
tolerant and scalable (e.g. HDFS), which makes it easier to build the upper data manage-
ment layers atop (see Figure 2.1). Second, in addition to the NoSQL layer (e.g. Hbase
over HDFS), data stored in distributed files can be accessed directly by a data processing
framework (e.g. MapReduce or Spark), which makes it easier for programmers to express
parallel processing code. The distributed processing layer can then be used for declarative
(SQL-like) querying, e.g. with a framework like Hive over MapReduce. Finally, at the top
layer, tools such as Pegasus (graph mining), R (statistics) and Mahout (machine learning)
can be used to build more complex big data analytics.

2.2.1 Distributed Storage
The distributed storage layer of a cloud typically provides two solutions to store data, files
or objects, distributed over cluster nodes. These two solutions are complementary, as they
have different purposes and they can be combined.

File storage manages data within unstructured files (i.e. sequences of bytes) on top
of which data can be organized as fixed-length or variable-length record. A file system
organizes files in a directory hierarchy, and maintains for each file its metadata (file name,
folder position, owner, length of the content, creation time, last update time, access per-
missions, etc.), separate from the content of the file. Thus, the file metadata must first be
read for locating the file’s content. Because of such metadata management, file storage
is appropriate for sharing files locally within a cloud data center and when the number
of files are limited (e.g. in the hundreds of thousands). To deal with big files that may
contain high numbers of records, files need be partitioned and distributed, which requires
a distributed file system.

Object storage manages data as objects. An object includes its data along with a vari-
able amount of metadata, and a unique identifier in in a flat object space. Thus, an object
can be represented as a triple (oid, data, metadata), and once created, it can be directly
accessed by its oid. The fact that data and metadata are bundled within objects makes it
easy to move objects between distributed locations. Unlike in file systems where the type
of metadata is the same for all files, objects can have variable amounts of metadata. This
allows much user flexibility to express how objects are protected, how they can be repli-
cated, when they can be deleted, etc. Using a flat object space allows managing massive
amounts e.g. billions or trillions) of unstructured data. Finally, objects can be easily ac-
cessed with a simple REST-based API with put and get commands easy to use on Internet
protocols. Object stores are particularly useful to store a very high number of relatively
small data objects, such as photos, mail attachments, etc. Therefore, most cloud providers
leverage an object storage architecture, e.g. Amazon Web Services S3, Rackspace Files,

2.2 Cloud Data Management 11

Microsoft Azure Vault Storage and Google Cloud Storage.
Distributed file systems in the cloud can then be divided between block-based, extend-

ing a traditional file system, and object-based, leveraging an object store. Since these are
complementary, there are also systems that combine both. In the rest of this section, we
illustrate these three categories with representative systems.

2.2.1.1 Block-based Distributed File Systems

One of the most influential systems in this category is Google File System (GFS). GFS
[29] has been developed by Google (in C++ on top of Linux) for its internal use. It is used
by many Google applications and systems, such as Bigtable and MapReduce, which we
discuss next.

Similar to other distributed file systems, GFS aims at providing performance, scal-
ability, fault-tolerance and availability. However, the targeted systems, shared-nothing
clusters, are challenging as they are made of many (e.g. thousands of) servers built from
inexpensive hardware. Thus, the probability that any server fails at a given time is high,
which makes fault-tolerance difficult. GFS addresses this problem. It is also optimized
for Google data-intensive applications, such as search engine or data analysis. These ap-
plications have the following characteristics. Firstly, their files are very large, typically
several gigabytes, containing many objects such as web documents. Secondly, workloads
consist mainly of read and append operations, while random updates are rare. Read oper-
ations consist of large reads of bulk data (e.g. 1 MB) and small random reads (e.g. a few
KBs). The append operations are also large and there may be many concurrent clients
that append the same file. Thirdly, because workloads consist mainly of large read and
append operations, high throughput is more important than low latency.

GFS organizes files as a tree of directories and identifies them by pathnames. It pro-
vides a file system interface with traditional file operations (create, open, read, write,
close, and delete file) and two additional operations: snapshot and record append. Snap-
shot allows creating a copy of a file or of a directory tree. Record append allows ap-
pending data (the "record") to a file by concurrent clients in an efficient way. A record
is appended atomically, i.e. as a continuous byte string, at a byte location determined by
GFS. This avoids the need for distributed lock management that would be necessary with
the traditional write operation (which could be used to append data).

The architecture of GFS is illustrated in Figure 2.2. Files are divided into fixed-size
partitions, called chunks, of large size, i.e. 64 MB. The cluster nodes consist of GFS
clients that provide the GFS interface to applications, chunk servers that store chunks
and a single GFS master that maintains file metadata such as namespace, access control
information, and chunk placement information. Each chunk has a unique id assigned by
the master at creation time and, for reliability reasons, is replicated on at least three chunk
servers (in Linux files). To access chunk data, a client must first ask the master for the
chunk locations, needed to answer the application file access. Then, using the information
returned by the master, the client can request the chunk data to one of the replicas.

This architecture using single master is simple. And since the master is mostly used

12 2. Overview of Query Processing in Multistore Systems

Figure 2.2 – GFS architecture

for locating chunks and does not hold chunk data, it is not a bottleneck. Furthermore, there
is no data caching at either clients or chunk servers, since it would not benefit large reads.
Another simplification is a relaxed consistency model for concurrent writes and record
appends. Thus, the applications must deal with relaxed consistency using techniques such
as checkpointing and writing self-validating records. Finally, to keep the system highly
available in the face of frequent node failures, GFS relies on fast recovery and replication
strategies.

There are open source implementations of GFS, such as Hadoop Distributed File Sys-
tem (HDFS), a popular Java product. HDFS has been initially developed by Yahoo and
is now the basis for the successful Apache Hadoop project, which together with other
products (MapReduce, Hbase) has become a standard for big data processing. There are
other important open source block-based distributed file systems for cluster systems, such
as GlusterFS for shared-nothing and Global File System 2 (GFS2) for shared-disk, both
being now developed by Red Hat for Linux.

2.2.1.2 Object-based Distributed File Systems

One of the first systems in this category is Lustre, an open source file system [59]. Lustre
was initially developed (in C) at Carnegie Mellon University in the late 1990s, and has
become very popular in High Performance Computing (HPC) and scientific applications
in the cloud, e.g. Intel Cloud Edition for Lustre. The architecture of the Lustre file system
has three main components:

• One or more metadata servers that store namespace metadata, such as filenames,
directories, access permissions, etc. Unlike block-based distributed file systems,
such as GFS and HDFS, where the metadata server controls all block allocations,
the Lustre metadata server is only involved when opening a file and is not involved
in any file I/O operations, thus avoiding scalability bottlenecks.

• One or more object storage servers that store file data on one or more object storage
targets (OSTs). An object storage server typically serves between two and eight
OSTs, with each OST managing a single local disk file system.

2.2 Cloud Data Management 13

• Clients that access and use the data. Lustre presents all clients with a unified names-
pace for all of the files and data, using the standard file system interface, and allows
concurrent and coherent read and write access to the files in the file system.

These three components can be located at different server nodes in a shared-disk clus-
ter, with disk storage connected to the servers using storage area network. Clients and
servers are connected with the Lustre file system using a specific communication infras-
tructure called Lustre Networking (LNET). Lustre provides cache consistency of files’
data and metadata by a distributed lock manager. Files can be partitioned using data
striping, a technique that segments logically sequential data so that consecutive segments
are stored on different disks. This is done by distributing objects across a number of ob-
ject storage servers and OSTs. To provide data reliability, objects in OSTs are replicated
using primary-copy replication and RAID6 disk storage technology.

When a client accesses a file, it completes a filename lookup on the metadata server
and gets back the layout of the file. Then, to perform read or write operations on the file,
the client interprets the layout to map the operation to one or more objects, each residing
on a separate OST. The client then locks the file range being operated on and executes
one or more parallel read or write operations directly to the OSTs. Thus, after the initial
lookup of the file layout, unlike with block-based distributed file systems, the metadata
server is not involved in file accesses, so the total bandwidth available for the clients to
read and write data scales almost linearly with the number of OSTs in the file system.

Another popular open source object-based distributed file system is XtreemFS [36].
XtreemFS is highly fault-tolerant, handling all failure modes including network splits,
and highly-scalable, allowing objects to be partitioned or replicated across shared-nothing
clusters and data centers.

2.2.1.3 Combining Block Storage and Object Storage

An important trend for data management in the cloud is to combine block storage and
object storage in a single system, in order to support both large files and high numbers of
objects. The first system that combined block and object storage is Ceph [58]. Ceph is an
open source software storage platform, now developed by Red Hat, which combines ob-
ject, block, and file storage in a shared-nothing cluster at exabyte scale. Ceph decouples
data and metadata operations by eliminating file allocation tables and replacing them with
data distribution functions designed for heterogeneous and dynamic clusters of unreliable
object storage devices (OSDs). This allows Ceph to leverage the intelligence present in
OSDs to distribute the complexity surrounding data access, update serialization, replica-
tion and reliability, failure detection, and recovery. Ceph and GlusterFS are now the two
major storage platforms offered by Red Hat for shared-nothing clusters.

HDFS, on the other hand, has become the De facto standard for scalable and reliable
file system management for big data. Thus, there is much incentive to add object storage
capabilities to HDFS, in order to make data storage easier for cloud providers and users.
In Azure HDInsight, Microsoft’s Hadoop-based solution for big data management in the
cloud, HDFS is integrated with Azure Blob storage, the object storage manager, to operate

14 2. Overview of Query Processing in Multistore Systems

directly on structured or unstructured data. Blob storage containers store data as key-value
pairs, and there is no directory hierarchy.

Hortonworks, a distributor of Hadoop software for big data, has recently started a new
initiative called Ozone, an object store that extends HDFS beyond a file system, toward
a more complete storage layer. Similar to GFS, HDFS separates metadata management
from a block storage layer. Ozone uses the HDFS block storage layer to store objects
identified by keys and adds a specific metadata management layer on top of block storage.

2.2.2 NoSQL Systems
NoSQL systems are specialized DBMSs that address the requirements of web and cloud
data management. As an alternative to relational data stores, they support different data
models and different languages than standard SQL. They emphasize scalability, fault-
tolerance and availability, sometimes at the expense of consistency. NoSQL (Not Only
SQL) is an overloaded term, which leaves much room for interpretation and definition.
In this chapter, we consider the four main categories of NoSQL systems that are used in
the cloud: key-value, wide column, document and graph. In the rest of this section, we
introduce each category and illustrate with representative systems.

2.2.2.1 Key-Value Stores

In the key-value data model, all data is represented as key-value pairs, where the key
unlikely identifies the value. Object stores, which we discussed above, can be viewed as
a simple form of key-value store. However, the keys in key-value stores can be sequences
of bytes of arbitrary length, not just positive integers, and the values can be text data, not
just Blobs. Key-values stores are schemaless, which yields great flexibility and scalability.
They typically provide a simple interface such as put (key, value), value = get (key), delete
(key).

A popular key-value store is Dynamo [22], which is used by some of Amazon’s core
services that need high availability. To achieve scalability and availability, Dynamo sac-
rifices consistency under some failure scenarios and uses a synthesis of well known peer-
to-peer techniques [47]. Data is partitioned and replicated across multiple cluster nodes
in several data centers, which allows to handle entire data center failures without a data
outage. The consistency among replicas during updates is maintained by a quorum-like
technique and an asynchronous update propagation protocol. Dynamo employs a gossip
based distributed failure detection and membership protocol. To facilitate replica consis-
tency, it makes extensive use of object versioning and application-assisted conflict reso-
lution in a manner that provides a novel interface for developers to use. Other popular
key-value stores are Memcached, Riak and Redis.

An extended form of key-value store is able to store records, as sets of key-value pairs.
One key, called major key or primary key, e.g. a social security number, uniquely iden-
tifies the record among a collection of records, e.g. people. The keys are usually sorted,
which enables range queries as well as ordered processing of keys. Amazon SimpleDB

2.2 Cloud Data Management 15

and Oracle NoSQL data store are examples of advanced key-value stores. Many systems
provide further extensions so that we can see a smooth transition to wide column store
and document stores, which we discuss next.

2.2.2.2 Wide Column Stores

Wide column stores are advanced key-value stores, where key-value pairs can be grouped
together in columns within tables. They combine some of the nice properties of relational
data stores, i.e. representing data as tables, with the flexibility of key-value stores, i.e.
schemaless data.

Each row in a table is uniquely identified by a row key, which is like a mono-attribute
key in a relational table. But unlike in a relational table, where columns can only contain
atomic values, tables contain wide columns, called column families. A column family is a
set of columns, each of which has a name, a value, and a timestamp (used for versioning)
and within a column family, we can have different columns in each row. Thus, a column
family is like a nested table within a column. Figure 2.3 shows a simple example of wide
column table with two rows. The first column is the row key. The two other columns are
column families.

Figure 2.3 – A wide column table with two rows

Wide column stores extend the key-value store interface with more declarative con-
structs that allow scans, exact-match and range queries over column families. They
typically provide an API for these constructs to be used in a programming language.
Some systems also provide an SQL-like query language, e.g. Cassandra Query Language
(CQL).

At the origin of wide column stores is Google Bigtable [19], a database storage system
for shared-nothing clusters. Bigtable uses GFS for storing structured data in distributed
files, which provides fault-tolerance and availability. It also uses a form of dynamic data
partitioning for scalability. And like GFS, it is used by popular Google applications, such
as Google Earth, Google Analytics and Google+.

In a Bigtable row, a row key is an arbitrary string (of up to 64KB in the original
system). A column family is a unit of access control and compression. A column family
is defined as a set of columns, each identified by a column key. The syntax for naming
column keys is family:qualifier, e.g. "email:gmail.com" in Figure 2.3. The qualifier,
e.g. "gmail.com", is like a relational attribute value, but used as a name as part of the
column key to represent a single data item. This allows the equivalent of multi-valued

16 2. Overview of Query Processing in Multistore Systems

attributes within a relational table, but with the capability of naming attribute values. In
addition, the data identified by a column key within a row can have multiple versions,
each identified by a timestamp (a 64 bit integer).

Bigtable provides a basic API for defining and manipulating tables, within a program-
ming language such as C++. The API offers various operators to write and update values,
and to iterate over subsets of data, produced by a scan operator. There are various ways
to restrict the rows, columns and timestamps produced by a scan, as in a relational select
operator. However, there are no complex operators such as join or union, which need to
be programmed using the scan operator. Transactional atomicity is supported for single
row updates only.

To store a table in GFS, Bigtable uses range partitioning on the row key. Each table
is divided into partitions, each corresponding to a row range. Partitioning is dynamic,
starting with one partition (the entire table range) that is subsequently split into multiple
partitions as the table grows. To locate the (user) partitions in GFS, Bigtable uses a
metadata table, which is itself partitioned in metadata tablets, with a single root tablet
stored at a master server, similar to GFS’s master. In addition to exploiting GFS for
scalability and availability, Bigtable uses various techniques to optimize data access and
minimize the number of disk accesses, such as compression of column families as in
column stores, grouping of column families with high locality of access and aggressive
caching of metadata information by clients.

Bigtable builds on other Google technologies such as GFS and Chubby Lock Service.
In May 2015, a public version of Bigtable was launched as Google Cloud Bigtable. There
are popular open source implementations of Bigtable, such as: Hadoop Hbase that runs
on top of HDFS; Cassandra that combines ideas from Bigtable and DynamoDB; and
Accumulo.

2.2.2.3 Document Stores

Document stores are advanced key-value stores, where keys are mapped into values of
document type, such as JSON, YAML or XML. Documents are typically grouped into
collections, which play a role similar to relational tables. However, documents are dif-
ferent than relational tuples. Documents are self-describing, storing data and metadata
(e.g. markups in XML) altogether and can be different from one another within a col-
lection. Furthermore, the document structures are hierarchical, using nested constructs,
e.g. nested objects and arrays in JSON. In addition to the simple key-value interface to
retrieve documents, document stores offer an API or query language that retrieve docu-
ments based on their contents. Document stores make it easier to deal with change and
optional values, and to map into program objects. This makes them attractive for modern
web applications, which are subject to continual change, and where speed of deployment
is important.

The most popular NoSQL document store is MongoDB [48], an open source software
written in C++. MongoDB provides schema flexibility, high availability, fault-tolerance
and scalability in shared-nothing cluster. It stores data as documents in BSON (Binary

2.2 Cloud Data Management 17

JSON), an extension of JSON to include additional types such as int, long, and floating
point. BSON documents contain one or more fields, and each field contains a value of a
specific data type, including arrays, binary data and sub-documents.
MongoDB provides a rich query language to update and retrieve BSON data as func-
tions expressed in JSON. The query language can be used with APIs in various program-
ming languages. It allows key-value queries, range queries, geospatial queries, text search
queries, and aggregation queries. Queries can also include user-defined JavaScript func-
tions.

To provide efficient access to data, MongoDB includes support for many types of sec-
ondary indexes that can be declared on any field in the document, including fields within
arrays. These indexes are used by the query optimizer. To scale out in shared-nothing
clusters of commodity servers, MongoDB supports different kinds of data partitioning:
range-based (as in Bigtable), hash-based and location-aware (whereby the user specifies
key-ranges and associated nodes). High-availability is provided through primary-copy
replication, with asynchronous update propagation. Applications can optionally read from
secondary replicas, where data is eventually consistent 1. MongoDB supports ACID trans-
actions at the document level. One or more fields in a document may be written in a single
transaction, including updates to multiple sub-documents and elements of an array. Mon-
goDB makes extensive use of main memory to speed up data store operations and native
compression, using its storage engine (WiredTiger). It also supports pluggable storage
engines, e.g. HDFS, or in-memory, for dealing with unique application demands.

Other popular document stores are CouchDB, Couchbase, RavenDB and Elastic-
search. High level query languages can also be used on top of document stores. For
instance, the Zorba query processor supports two different query languages, the standard
XQuery for XML and JSONiq for JSON, which can be used to seamlessly process data
stored in different data stores such as: Couchbase, Oracle NoSQL Data store and SQLite.

2.2.2.4 Graph Data stores

Graph data stores represent and store data directly as graphs which allows easy expression
and fast processing of graph-like queries, e.g. computing the shortest path between two
nodes in the graph. This is much more efficient than with a relational data store where
graph data need be stored as separated tables and graph-like queries require repeated,
expensive join operations. Graph data stores have become popular with data-intensive
web-based applications such as social networks and recommender systems.

Graph data stores represent data as nodes, edges and properties. Nodes represent
entities such as people or cities. Edges are lines that connect any two nodes and represent
the relationship between the two. Edges can be undirected, in which case the relationship
is symmetric, or directed, in which case the relationship is asymmetric. Properties provide
information to nodes, e.g. a person’s name and address, or edges, e.g. the name of the
relationship such as "friend". The data graph is typically stored using a specific storage

1Eventual consistency is a form of consistency, weaker than strong consistency, which says that if we
stop having replica updates, then all replicas reach the same state.

18 2. Overview of Query Processing in Multistore Systems

manager that places data on disk so that the time needed for graph-specific access patterns
is minimized. This is typically accomplished by storing nodes as close as possible to their
edges and their neighbor nodes, in the same or adjacent disk pages.

Graph data stores can provide a flexible schema, as in object data stores where objects
are defined by classes, by specifying node and edge types with their properties. This
facilitates the definition of indexes to provide fast access to nodes, based on some property
value, e.g. a city’s name. Graph queries can be expressed using graph operators through
a specific API or a declarative query language, e.g. the Pixy language that works on any
graph data store compatible with its API.

A popular graph data store is Neo4j [16], a commercially supported open source soft-
ware. It is a robust, scalable and high-performance graph data store, with full ACID
transactions. It supports directed graphs, where everything is stored in the form of ei-
ther a directed edge, a node or an attribute. Each node and edge can have any number
of attributes. Neo4j enforces that all operations that modify data occur within a transac-
tion, guaranteeing data consistency. This robustness extends from single server embedded
graphs to shared-nothing clusters. A single server instance can handle a graph of billions
of nodes and relationships. When data throughput is insufficient, the graph data store can
be distributed and replicated among multiple servers in a high availability configuration.
However, graph partitioning among multiple servers is not supported (although there are
some projects working on it). Neo4j supports a declarative query language called Cypher,
which aims at avoiding the need to write traversals in code. It also provides REST proto-
cols and a Java API. As of version 2.0, indexing was added to Cypher with the introduction
of schemas.

Other popular graph data stores are InfiniteGraph [4], Titan [7], GraphBase [2], Trinity
[50, 8] and Sparksee [6].

2.2.3 Data Processing Frameworks
Most unstructured data in the cloud gets stored in distributed files such as HDFS and needs
to be analyzed using user programs. However, to make application programs scalable
and efficient requires exploiting parallel processing. But parallel programming of com-
plex applications is hard. In the context of HPC, parallel programming libraries such as
OpenMP for shared-memory or Message Passing Interface (MPI) for shared-nothing are
used extensively to develop scientific applications. However, these libraries are relatively
low-level and require careful programming. In the context of the cloud, data process-
ing frameworks have become quite popular to make it easier for programmers to express
parallel processing code. They typically support the simple key-value data model and
support operators that are automatically parallelized. All the programmer has to do is to
provide code for these operators. The most popular data processing frameworks, MapRe-
duce, Spark and now Flink, differ in the functionality they offer in terms of operators, as
well as in terms of implementation, for instance, disk-based versus in-memory. However,
they all target scalability and fault-tolerance in shared-nothing clusters.

MapReduce [21] is a popular framework for processing and generating large datasets.

2.2 Cloud Data Management 19

It was initially developed by Google in C++ as a proprietary product to process large
amounts of unstructured or semi-structured data, such as web documents and logs of web
page requests, on large shared-nothing clusters of commodity nodes and produce various
kinds of data such as inverted indices or URL access frequencies. Different implementa-
tions of MapReduce are now available such as Amazon MapReduce (as a cloud service)
or Hadoop MapReduce (as a Java open source software).

MapReduce enables programmers to express in a simple, functional style their compu-
tations on large data sets and hides the details of parallel data processing, load balancing
and fault-tolerance. The programming model includes only two operations, map and re-
duce, which we can find in many functional programming languages such as Lisp and
ML. The map operation is applied to each record in the input data set to compute one or
more intermediate (key, value) pairs. The reduce operation is applied to all the values that
share the same unique key in order to compute a combined result. Since they work on in-
dependent inputs, map and reduce can be automatically processed in parallel, on different
data partitions using many cluster nodes.

Figure 2.4 gives an overview of MapReduce execution in a cluster. There is one
master node (not shown in the figure) in the cluster that assigns map and reduce tasks to
cluster nodes, i.e. map and reduce nodes. The input data set is first automatically split
into a number of partitions, each being processed by a different map node that applies
the map operation to each input record to compute intermediate (key,value) pairs. The
intermediate result is divided into n partitions, using a partitioning function applied to the
key (e.g. hash(key) mod n).

Map nodes periodically write to disk their intermediate data into n regions by applying
the partitioning function and indicate the region locations to the master. Reduce nodes are
assigned by the master to work on one or more partitions. Each reduce node first reads the
partitions from the corresponding regions on the map nodes, disks, and groups the values
by intermediate key, using sorting. Then, for each unique key and group of values, it calls
the user reduce operation to compute a final result that is written in the output data set.

Figure 2.4 – Overview of MapReduce execution

Fault-tolerance is important as there may be many nodes executing map and reduce

20 2. Overview of Query Processing in Multistore Systems

operations. Input and output data are stored in GFS that already provides high fault-
tolerance. Furthermore, all intermediate data are written to disk, which helps checkpoint-
ing map operations and thus provides tolerance to soft failures. However, if one map
node or reduce node fails during execution (hard failure), the task can be scheduled by
the master onto other nodes. It may also be necessary to re-execute completed map tasks,
since the input data on the failed node disk is inaccessible. Overall, fault-tolerance is
fine-grained and well-suited for large jobs.

The often mentioned advantages of MapReduce are its abilities to express various
(even complicated) map and reduce functions, and its extreme scalability and fault-tole-
rance. However, it has been criticized for its relatively low-performance due to the exten-
sive use of disk accesses, in particular compared with parallel DBMSs [54]. Furthermore,
the two functions map and reduce are well-suited for OLAP-like queries with data selec-
tion and aggregation but not appropriate for interactive analysis or graph processing.

Spark is an Apache open source data processing framework in Java originally devel-
oped at UC Berkeley [63]. It extends the MapReduce model for two important classes of
analytics applications: iterative processing (machine learning, graph processing) and in-
teractive data mining (with R, Excel or Python). Compared with MapReduce, it improves
the ease of use with the Scala language (a functional extension of Java) and a rich set of
operators (map, reduce, filter, join, sortByKey, aggregateByKey, etc.). Spark provides an
important abstraction, called Resilient Distributed Dataset (RDD), which is a collection
of elements partitioned across cluster nodes. RDDs can be created from disk-based resi-
dent data in files or intermediate data produced by transformations with Scala programs.
They can also be made memory-resident for efficient reuse across parallel operations.

Flink is the latest Apache open source data processing framework. Based on the
Stratosphere prototype [26], it differs from Spark by its in-memory runtime engine which
can be used for real time data streams as well as batch data processing. It runs on HDFS
and supports APIs for Java and Scala.

2.2.3.1 Concluding Remarks

The software stack for data management in the cloud, with three main layers (distributed
storage, database management and distributed processing) has led to a rich ecosystem
with many different solutions and technologies, which are still evolving. Although HDFS
has established itself as the standard solution for storing unstructured data, we should
expect evolutions of distributed file systems that combine block storage and object storage
in a single system. For data management, most NoSQL data stores, except graph data
stores, rely on (or extend) the key-value data model, which remains the best option for
data whose structure needs to be flexible. There is also a rapid evolution of data processing
frameworks on top of distributed file systems. For example, the popular MapReduce
framework is now challenged by more recent systems such as Spark and Flink. Multistore
systems should be able to cope with this evolution.

2.3 Multidatabase Query Processing 21

2.3 Multidatabase Query Processing
A multidatabase system provides transparent access to a collection of multiple, hetero-
geneous data stores distributed over a computer network [46]. In addition to be hetero-
geneous and distributed, the data stores can be autonomous, i.e. controlled and managed
independently (e.g. by a different data store administrator) of the multidatabase system.

Since the data stores already exist, one is faced with the problem of providing in-
tegrated access to heterogeneous data. This requires data integration, which consists in
defining a global schema for the multidatabase over the existing data and mappings be-
tween the global schema and the local data store schemas. Once data integration is done,
the global schema can be used to express queries over multiple data stores as if it were a
single (global) data store.

Most of the work on multidatabase query processing has been done in the context
of the mediator-wrapper architecture [56]. This architecture and related techniques can
be used for loosely-coupled multistore systems, which is why we introduce them. In the
rest of this section, we describe the mediator-wrapper and multidatabase query processing
architectures, and the query processing techniques.

2.3.1 Mediator-Wrapper Architecture
In this architecture (see Figure 2.5), there is a clear separation of concerns: the mediator
deals with data store distribution while the wrappers deal with data store heterogeneity
and autonomy. This is achieved by using a common language between mediator and
wrappers, and the translation to the data store language is done by the wrappers.

Each data store has an associated wrapper that exports information about the source
schema, data and query processing capabilities. To deal with the heterogeneous nature
of data stores, wrappers transform queries received from the mediator, expressed in a
common query language, to the particular query language of the source. A wrapper sup-
ports the functionality of translating queries appropriate to the particular server, and re-
formatting answers (data) appropriate to the mediator. One of the major practical uses of
wrappers has been to allow an SQL-based DBMS to access non SQL data stores.

The mediator centralizes the information provided by the the wrappers in a unified
view of all available data (stored in a global catalog). This unified view can be of two
fundamental types [42]: local-as-view (LAV) and global-as-view (GAV). In LAV, the
global schema definition exists, and each data store schema is treated as a view definition
over it. In GAV on the other hand, the global schema is defined as a set of views over
the data store schemas. These views indicate how the elements of the global schema
can be derived, when needed, from the elements of the data store schemas. The main
functionality of the mediator is to provide uniform access to multiple data stores and
perform query decomposition and processing using the wrappers to access the data stores.

22 2. Overview of Query Processing in Multistore Systems

Figure 2.5 – Mediator-Wrapper architecture

2.3.2 Multidatabase Query Processing Architecture
We assume the input is a query on relations expressed on a global schema in a declarative
language, e.g. SQL. This query is posed on global relations, meaning that data distribution
and heterogeneity are hidden. Three main layers are involved in multidatabase query
processing.

Figure 2.6 – Generic layering scheme for multidatabase query processing (modified after
[46]).

2.3 Multidatabase Query Processing 23

The first two layers map the input query into an optimized query execution plan (QEP).
They perform the functions of query rewriting, query optimization and some query execu-
tion. The first two layers are performed by the mediator and use meta-information stored
in the global catalog (global schema, data store location, cost information, etc.). Query
rewriting rewrites the input query into a query on local relations, using the global schema.
Thus, the global schema provides the view definitions (i.e. GAV or LAV mappings be-
tween the global relations and the local relations stored in the data stores) and the query
is rewritten using the views.

The second layer performs distributed query optimization and (some) execution by
considering the location of the relations and the different query processing capabilities
of the data stores exported by the wrappers. The distributed QEP produced by this layer
groups within subqueries the operations that can be performed by the data stores and
wrappers. As in centralized DBMSs, query optimization can be static or dynamic. How-
ever, the lack of homogeneity in multidatabase systems (e.g. some data stores may have
unexpected long delays in answering) make dynamic query optimization important. In the
case of dynamic optimization, there may be subsequent calls to this layer after execution
by the next layer. This is illustrated by the arrow showing results coming from the next
layer. Finally, this layer integrates the results coming from the different wrappers to pro-
vide a unified answer to the users query. This requires the capability of executing some
operations on data coming from the wrappers. Since the wrappers may provide very lim-
ited execution capabilities, e.g. in the case of very simple data stores, the mediator must
provide the full execution capabilities to support the mediator interface.

The third layer performs query translation and execution using the wrappers. Then
it returns the results to the mediator which can perform result integration from different
wrappers and subsequent execution. Each wrapper maintains a wrapper schema that in-
cludes the local schema and mapping information to facilitate the translation of the input
subquery (a subset of the QEP) expressed in a common language into the language of the
data store. After the subquery is translated, it is executed by the data store and the local
result is translated back in the common format.

2.3.3 Multidatabase Query Processing Techniques
The three main problems of query processing in multidatabase systems are: heteroge-
neous cost modeling, heterogeneous query optimization, to deal with different capabili-
ties of data stores’ DBMSs and adaptive query processing, to deal with strong variations
in the environment (failures, unpredictable delays, etc.).

2.3.3.1 Heterogeneous Cost Modeling

Heterogeneous cost modeling refers to cost function definition, and the associated prob-
lem of obtaining cost-related information from the data stores. Such information is impor-
tant to estimate the costs of executing subqueries at the data stores, which in turn are used
to estimate the costs of alternative QEPs generated by the multidatabase query optimizer.

24 2. Overview of Query Processing in Multistore Systems

There are three alternative approaches for determining the cost of executing queries in a
multidatabase system: black-box, customized and dynamic.

The black-box approach treats the data stores as a black box, running some test queries
on them, and from these determines the necessary cost information. It is based on running
probing queries on data stores to determine cost information. Probing queries can, in fact,
be used to gather a number of cost information factors. For example, probing queries
can be issued to retrieve data from data stores to build up and update the multidatabase
catalog. Statistical probing queries can be issued that, for example, count the number
of tuples of a relation. Finally, performance measuring probing queries can be issued to
measure the elapsed time for determining cost function coefficients.

The customized approach uses previous knowledge about the data stores, as well as
their external characteristics, to subjectively determine the cost information. The basis for
this approach is that the query processors of the data stores are too different to be repre-
sented by a unique cost model. It also assumes that the ability to accurately estimate the
cost of local subqueries will improve global query optimization. The approach provides a
framework to integrate the data stores cost model into the mediator query optimizer. The
solution is to extend the wrapper interface such that the mediator gets some specific cost
information from each wrapper. The wrapper developer is free to provide a cost model,
partially or entirely.

The above approaches assume that the execution environment is stable over time.
However, on the Internet for instance, the execution environment factors are frequently
changing. The dynamic approach consists in monitoring the runtime behavior of data
stores and dynamically collecting the cost information Three classes of environmental
factors can be identified based on their dynamicity. The first class for frequently changing
factors (every second to every minute) includes CPU load, I/O throughput, and avail-
able memory. The second class for slowly changing factors (every hour to every day)
includes DBMS configuration parameters, physical data organization on disks, and data
store schema. The third class for almost stable factors (every month to every year) in-
cludes DBMS type, data store location, and CPU speed. To face dynamic environments
where network contention, data storage or available memory change over time, a solution
is to extend the sampling method and consider user queries as new samples.

2.3.3.2 Heterogeneous Query Optimization

In addition to heterogeneous cost modeling, multidatabase query optimization must deal
with the issue of the heterogeneous computing capabilities of data stores. For instance,
one data store may support only simple select operations while another may support com-
plex queries involving join and aggregate. Thus, depending on how the wrappers export
such capabilities, query processing at the mediator level can be more or less complex.
There are two main approaches to deal with this issue depending on the kind of interface
between mediator and wrapper: query-based and operator-based.

2.3 Multidatabase Query Processing 25

Query-based Approach

In the query-based approach, the wrappers support the same query capability, e.g. a subset
of SQL, which is translated to the capability of the data store. This approach typically
relies on a standard DBMS interface such as Open Database Connectivity (ODBC) or
its many variations (e.g. JDBC). Thus, since the data stores appear homogeneous to the
mediator, query processing techniques designed for homogeneous distributed DBMS can
be reused. However, if the data stores have limited capabilities, the additional capabilities
must be implemented in the wrappers, e.g. join queries may need to be handled at the
mediator, if the data store does not support join.

Since the data stores appear homogeneous to the mediator, a solution is to use a tra-
ditional distributed query optimization algorithm with a heterogeneous cost model. How-
ever, extensions are needed to convert the distributed execution plan into subqueries to be
executed by the data stores and subqueries to be executed by the mediator. The hybrid
two-step optimization technique is useful in this case: in a first step, a static plan is pro-
duced by a centralized cost-based query optimizer; in a second step, at startup time, an
execution plan is produced by carrying out site selection and allocating the subqueries to
the sites.

Operator-based Approach

In the operator-based approach, the wrappers export the capabilities of the data stores
through compositions of relational operators. Thus, there is more flexibility in defining
the level of functionality between the mediator and the wrapper. In particular, the different
capabilities of the data stores can be made available to the mediator.

Expressing the capabilities of the data stores through relational operators allows tighter
integration of query processing between mediator and wrappers. In particular, the mediator-
wrapper communication can be in terms of sub plans. We illustrate the operator-based
approach with planning functions proposed in the Garlic project [32]. In this approach,
the capabilities of the data stores are expressed by the wrappers as planning functions
that can be directly called by a centralized query optimizer. It extends a traditional query
optimizer with operators to create temporary relations and retrieve locally stored data. It
also creates the PushDown operator that pushes a portion of the work to the data stores
where it will be executed.

The execution plans are represented, as usual, with operator trees, but the opera-
tor nodes are annotated with additional information that specifies the source(s) of the
operand(s), whether the results are materialized, and so on. The Garlic operator trees
are then translated into operators that can be directly executed by the execution engine.
Planning functions are considered by the optimizer as enumeration rules. They are called
by the optimizer to construct sub plans using two main functions: accessPlan to access a
relation, and joinPlan to join two relations using access plans. There is also a join rule for
bind join. A bind join is a nested loop join in which intermediate results (e.g. values for
the join predicate) are passed from the outer relation to the wrapper for the inner relation,
which uses these results to filter the data it returns. If the intermediate results are small

26 2. Overview of Query Processing in Multistore Systems

and indexes are available at data stores, bindings can significantly reduce the amount of
work done by a data store. Furthermore, bindings can reduce communication cost.

Using planning functions for heterogeneous query optimization has several advan-
tages. First, planning functions provide a flexible way to express precisely the capabili-
ties of data stores. In particular, they can be used to model non relational data stores such
as web sites. Second, since these rules are declarative, they make wrapper development
easier. Finally, this approach can be easily incorporated in an existing, centralized query
optimizer.

The operator-based approach has also been used in DISCO, a multidatabase system
designed to access data stores over the web [56]. DISCO uses the GAV approach and
an object data model to represent both mediator and data store schemas and data types.
This allows easy introduction of new data stores with no type mismatch or simple type
mismatch. The data store capabilities are defined as a subset of an algebraic machine
(with the usual operators such as scan, join and union) that can be partially or entirely
supported by the wrappers or the mediator. This gives much flexibility for the wrapper
implementers to decide where to support data store capabilities (in the wrapper or in the
mediator).

2.3.3.3 Adaptive Query Processing

Multidatabase query processing, as discussed so far, follows essentially the principles
of traditional query processing whereby an optimal QEP is produced for a query based
on a cost model, and then this QEP is executed. The underlying assumption is that the
multidatabase query optimizer has sufficient knowledge about query runtime conditions
in order to produce an efficient QEP and the runtime conditions remain stable during
execution. This is a fair assumption for multidatabase queries with few data stores running
in a controlled environment. However, this assumption is inappropriate for changing
environments with large numbers of data stores and unpredictable runtime conditions as
on the Web.

Adaptive query processing is a form of dynamic query processing, with a feedback
loop between the execution environment and the query optimizer in order to react to un-
foreseen variations of runtime conditions. A query processing system is defined as adap-
tive if it receives information from the execution environment and determines its behavior
according to that information in an iterative manner [11]. In the context of multidatabase
systems, the execution environment includes the mediator, wrappers and data stores. In
particular, wrappers should be able to collect information regarding execution within the
data stores.

Adaptive query processing adds to the traditional query processing process the fol-
lowing activities: monitoring, assessing and reacting. These activities are logically imple-
mented in the query processing system by sensors, assessment components, and reaction
components, respectively. These components may be embedded into control operators
of the QEP, e.g. an Exchange operator. Monitoring involves measuring some environ-
ment parameters within a time window, and reporting them to the assessment component.

2.4 Multistore Systems 27

The latter analyzes the reports and considers thresholds to arrive at an adaptive reaction
plan. Finally, the reaction plan is communicated to the reaction component that applies
the reactions to query execution.

2.4 Multistore Systems
Multistore systems provide integrated access to a number of cloud data stores such as
NoSQL, RDBMS or HDFS, sometimes through a data processing framework such as
Spark. They typically support only read-only queries, as supporting distributed transac-
tions across data stores is a hard problem. We can divide multistore systems based on the
level of coupling with the underlying data stores: loosely-coupled, tightly-coupled and
hybrid. In this section, we introduce for each class a set of representative systems, with
their architecture and query processing. We end the section with a comparative analysis.

In presenting these systems, we strive to use the same terminology we used so far in
this chapter. However, it is not easy as we often need to map the specific terminology
used in the original papers and ours. When necessary, to help the reader familiar with
some systems, we make precise this terminology mapping.

2.4.1 Loosely-Coupled Multistore Systems
Loosely-coupled multistore systems are reminiscent of multidatabase systems in that they
can deal with autonomous data stores, which can be accessed through the multistore sys-
tem common interface as well as separately through their local API. They follow the
mediator-wrapper architecture with several data stores (e.g. NoSQL and RDBMS) as de-
picted in Figure 2.7. Each data store is autonomous, i.e. locally controlled, and can be
accessed by other applications. Like web data integration systems that use the mediator-
wrapper architecture, the number of data stores can be very high.

Figure 2.7 – Loosely-coupled multistore systems

28 2. Overview of Query Processing in Multistore Systems

There are two main modules: one query processor and one wrapper per data store.
The query processor has a catalog of data stores, and each wrapper has a local catalog of
its data store. After the catalogs and wrappers have been built, the query processor can
start processing input queries from the users, by interacting with wrappers. The typical
query processing is as follows:

1. Analyze the input query and translate it into subqueries (one per data store), each
expressed in a common language, and an integration subquery.

2. Send the subqueries to the relevant wrappers, which trigger execution at the corre-
sponding data stores and translate the results into the common language format.

3. Integrate the results from the wrappers (which may involve executing operators
such union and join), and return the results to the user. We describe below three
loosely-coupled multistore systems: BigIntegrator, Forward and Qox.

BigIntegrator

BigIntegrator [64] supports SQL-like queries that combines data in Bigtable data stores
in the cloud and data in relational data stores. Bigtable is accessed through the Google
Query Language (GQL), which has very limited query expressions, e.g. no join and only
basic select predicates. To capture GQL’s limited capabilities, BigIntegrator provides a
novel query processing mechanism based on plugins, called absorber and finalizer, which
enable to pre and post-process those operations that cannot be processed by Bigtable.
For instance, a "LIKE" select predicate on a Bigtable or a join of two Bigtables will be
processed through operations in BigIntegrator’s query processor.

BigIntegrator uses the LAV approach for defining the global schema of the Bigtable
and relational data stores as flat relational tables. Each Bigtable or relational data store
can contain several collections, each represented as a source table of the form "table-
name_source-name", where table-name is the name of the table in the global schema and
source-name is the name of the data source. For instance, "Employees_A" represents
an Employees table at source A, i.e. a local view of Employees. The source tables are
referenced as tables in the SQL queries.

Figure 2.8 illustrates the architecture of BigIntegrator with two data stores, one rela-
tional data store and one Bigtable data store. Each wrapper has an importer module and
absorber and finalizer plug-ins. The importer creates the source tables and stores them in
the local catalog. The absorber extracts a subquery, called access filter, from a user query
that selects data from a particular source table, based on the capabilities of the source. The
finalizer translates each access filter (produced by the absorber) into an operator called in-
terface function, specific for each kind of source. The interface function is used to send a
query to the data store (i.e. a GQL or SQL query).

Query processing is performed in three steps, using an absorber manager, a query
optimizer and a finalizer manager. The absorber manager takes the (parsed) user query
and, for each source table referenced in the query, calls the corresponding absorber of its

2.4 Multistore Systems 29

Figure 2.8 – BigIntegrator

wrapper. In order to replace the source table with an access filter, the absorber collects
from the query the source tables and the possible other predicates, based on the capabili-
ties of the data store. The query optimizer reorders the access filters and other predicates
to produce an algebra expression that contains calls to both access filters and other rela-
tional operators. It also performs traditional transformations such as select push down and
bind join. The finalizer manager takes the algebra expression and, for each access filter
operator in the algebra expression, calls the corresponding finalizer of its wrapper. The
finalizer transforms the access filters into interface function calls.

Finally, query execution is performed by the query processor that interprets the alge-
bra expression, by calling the interface functions to access the different data stores and
executing the subsequent relational operations, using in-memory techniques.

Forward

The Forward multistore system, or so-called Forward middleware in [45], supports SQL++
, an SQL-like language designed to unify the data model and query language capabilities
of NoSQL and relational data stores. SQL++ has a powerful, semi-structured data model
that extends both the JSON and relational data models. FORWARD also provides a rich
web development framework [27], which exploits its JSON compatibility to integrate vi-
sualization components (e.g. Google Maps).

The design of SQL++ is based on the observation that the concepts are similar across
both data models, e.g. a JSON array is similar to an SQL table with order, and an SQL
tuple to a JSON object literal. Thus, an SQL++ collection is an array or a bag, which may
contain duplicate elements. An array is ordered (similar to a JSON array) and each ele-
ment is accessible by its ordinal position while a bag is unordered (similar to a SQL table).

30 2. Overview of Query Processing in Multistore Systems

Furthermore, SQL++ extends the relational model with arbitrary composition of complex
values and element heterogeneity. As in nested data models, a complex value can be either
a tuple or collection. Nested collections can be accessed by nesting SELECT expressions
in the SQL FROM clause or composed using the GROUP BY operator. They can also
be unnested using the FLATTEN operator. And unlike an SQL table that requires all tu-
ples to have the same attributes, an SQL++ collection may also contain heterogeneous
elements comprising a mix of tuples, scalars, and nested collections.

Forward uses the GAV approach, where each data store (SQL or NoSQL) appears to
the user as an SQL++ virtual view, defined over SQL++ collections. Thus, the user can
issue SQL++ queries involving multiple virtual views. The Forward architecture is that of
Figure 2.7, with a query processor and one wrapper per data store. The query processor
performs SQL++ query decomposition, by exploiting the underlying data store capabili-
ties as much as possible. However, given an SQL++ query that is not directly supported
by the underlying data store, Forward will decompose it into one or more native queries
that are supported and combine the native query results in order to compensate for the se-
mantics or capabilities gap between SQL++ and the underlying data store. Although not
described in the original paper [45] cost-based optimization of SQL++ queries is possi-
ble, by reusing techniques from multidatabase systems when dealing with flat collections.
However, it would be much harder considering the nesting and element heterogeneity
capabilities of SQL++.

QoX

QoX [52] is a special kind of loosely-coupled multistore system, where queries are an-
alytical data-driven workflows (or data flows) that integrate data from relational data
stores, and various execution engines such as MapReduce or Extract-Transform-Load
(ETL) tools. A typical data flow may combine unstructured data (e.g. tweets) with struc-
tured data and use both generic data flow operations like filtering, join, aggregation and
user-defined functions like sentiment analysis and product identification. In a previous
work [51], the authors proposed a novel approach to ETL design that incorporates a suite
of quality metrics, termed QoX, at all stages of the design process. The QoX Optimizer
deals with the QoX performance metrics, with the objective of optimizing the execution
of data flows that integrate both the back-end ETL integration pipeline and the front-end
query operations into a single analytics pipeline.

The QoX Optimizer uses xLM, a proprietary XML-based language to represent data
flows, typically created with some ETL tool. xLM allows capturing the flow structure,
with nodes showing operations and data stores and edges interconnecting these nodes, and
important operation properties such as operation type, schema, statistics, and parameters.
Using appropriate wrappers to translate xLM to a tool-specific XML format and vice
versa, the QoX Optimizer may connect to external ETL engines and import or export data
flows to and from these engines.

Given a data flow for multiple data stores and execution engines, the QoX Optimizer
evaluates alternative execution plans, estimates their costs, and generates a physical plan

2.4 Multistore Systems 31

(executable code). The search space of equivalent execution plans is defined by flow
transformations that model data shipping (moving the data to where the operation will be
executed), function shipping (moving the operation to where the data is), and operation
decomposition (into smaller operations). The cost of each operation is estimated based
on statistics (e.g. cardinalities, selectivities). Finally, the QoX Optimizer produces SQL
code for relational data store engines, Pig and Hive code for MapReduce engines, and
creates Unix shell scripts as the necessary glue code for orchestrating different subflows
running on different engines. This approach could be extended to access NoSQL engines
as well, provided SQL-like interfaces and wrappers.

2.4.2 Tightly-Coupled Multistore Systems
Tightly-coupled multistore systems aim at efficient querying of structured and unstructured
data for (big) data analytics. They may also have a specific objective, such as self-tuning
or integration of HDFS and RDBMS data. However, they all trade autonomy for per-
formance, typically in a shared-nothing cluster, so that data stores can only be accessed
through the multistore system, directly through their local API.

Like loosely-coupled systems, they provide a single language for querying of struc-
tured and unstructured data. However, the query processor directly uses the data store
local interfaces (see Figure 2.9), or in the case of HDFS, it interfaces a data processing
framework such as MapReduce or Spark. Thus, during query execution, the query pro-
cessor directly accesses the data stores. This allows efficient data movement across data
stores. However, the number of data stores that can be interfaced is typically very limited.

Figure 2.9 – Tightly-coupled multistore systems

In the rest of this section, we describe three representative tightly-coupled multistore
systems: Polybase, HadoopDB and Estocada. Two other interesting systems are Odyssey
and JEN. Odyssey [34] is a multistore system that can work with different analytic en-
gines, such as parallel OLAP system or Hadoop. It enables storing and querying data
within HDFS and RDBMS, using opportunistic materialized views, based on MISO [41].

32 2. Overview of Query Processing in Multistore Systems

MISO is a method for tuning the physical design of a multistore system (Hive/HDFS and
RDBMS), i.e. deciding in which data store the data should reside, in order to improve the
performance of big data query processing. The intermediate results of query execution
are treated as opportunistic materialized views, which can then be placed in the under-
lying stores to optimize the evaluation of subsequent queries. JEN [62] is a component
on top of HDFS to provide tight-coupling with a parallel RDBMS. It allows joining data
from two data stores, HDFS and RDBMS, with parallel join algorithms, in particular, an
efficient zigzag join algorithm, and techniques to minimize data movement. As the data
size grows, executing the join on the HDFS side appears to be more efficient.

Polybase

Polybase [23] is a feature of the SQL Server Parallel Data Warehouse (PDW) product,
which allows users to query unstructured (HDFS) data stored in a Hadoop cluster using
SQL and integrate them with relational data in PDW. The HDFS data can be referenced
in Polybase as external tables, which make the correspondence with the HDFS file on
the Hadoop cluster, and thus be manipulated together with PDW native tables using SQL
queries Polybase leverages the capabilities of PDW, a shared-nothing parallel DBMS. Us-
ing the PDW query optimizer, SQL operators on HDFS data are translated into MapRe-
duce jobs to be executed directly on the Hadoop cluster. Furthermore, the HDFS data can
be imported/exported to/from PDW in parallel, using the same PDW service that allows
shuffling PDW data among compute nodes.

Figure 2.10 – Polybase architecture

The architecture of Polybase, which is integrated within PDW, is shown in Figure 2.10.
Polybase takes advantage of PDW’s Data Movement Service (DMS), which is responsible
for shuffling intermediate data across PDW nodes, e.g. to repartition tuples, so that any
matching tuples of an equi-join be collocated at the same computing node that performs
the join. DMS is extended with an HDFS Bridge component, which is responsible for all

2.4 Multistore Systems 33

communications with HDFS. The HDFS Bridge enables DMS instances to also exchange
data with HDFS in parallel (by directly accessing HDFS splits).

Polybase relies on the PDW cost-based query optimizer to determine when it is advan-
tageous to push SQL operations on HDFS data to the Hadoop cluster for execution. Thus,
it requires detailed statistics on external tables, which are obtained by exploring statisti-
cally significant samples of HDFS tables. The query optimizer enumerates the equivalent
QEPs and select the one with least cost. The search space is obtained by considering the
different decompositions of the query into two parts: one to be executed as MapReduce
jobs at the Hadoop cluster and the other as regular relational operators at the PDW side.
MapReduce jobs can be used to perform select and project operations on external tables,
as well as joins of two external tables. However, no bind join optimization is supported.
The data produced by the MapReduce jobs can then be exported to PDW to be joined with
relational data, using parallel hash-based join algorithms.

One strong limitation of pushing operations on HDFS data as MapReduce jobs is
that even simple lookup queries have long latencies. A solution proposed for Polybase
[28] is to exploit an index built on the external HDFS data using a B+-tree that is stored
inside PDW. This method leverages the robust and efficient indexing code in PDW without
forcing a dramatic increase in the space that is required to store or cache the entire (large)
HDFS data inside PDW. Thus, the index can be used as a pre-filter by the query optimizer
to reduce the amount of work that is carried out as MapReduce jobs. To keep the index
synchronized with the data that is stored in HDFS, an incremental approach is used which
records that the index is out-of-date, and lazily rebuilds it. Queries posed against the index
before the rebuild process is completed can be answered using a method that carefully
executes parts of the query using the index in PDW, and the remaining part of the query
is executed as a MapReduce job on just the changed data in HDFS.

HadoopDB

The objective of HadoopDB [9] is to provide the best of both parallel DBMS (high-
performance data analysis over structured data) and MapReduce-based systems (scala-
bility, fault-tolerance, and flexibility to handle unstructured data) with an SQL-like lan-
guage (HiveQL). To do so, HadoopDB tightly couples the Hadoop framework, including
MapReduce and HDFS, with multiple single-node RDBMS (e.g. PostgreSQL or MySQL)
deployed across a cluster, as in a shared-nothing parallel DBMS.

HadoopDB extends the Hadoop architecture with four components: database con-
nector, catalog, data loader, and SQL-MapReduce-SQL (SMS) planner. The database
connector provides the wrappers to the underlying RDBMS, using JDBC drivers. The
catalog maintains information about the data stores as an XML file in HDFS, and is used
for query processing. The data loader is responsible for (re)partitioning (key, value) data
collections using hashing on a key and loading the single-node databases with the parti-
tions (or chunks). The SMS planner extends Hive, a Hadoop component that transforms
HiveQL into MapReduce jobs that connect to tables stored as files in HDFS. This archi-
tecture yields a cost-effective parallel RDBMS, where data is partitioned both in RDBMS

34 2. Overview of Query Processing in Multistore Systems

tables and in HDFS files, and the partitions can collocated at cluster nodes for efficient
parallel processing.

Query processing is simple, relying on the SMS planner for translation and optimiza-
tion, and MapReduce for execution. The optimization consists in pushing as much work
as possible into the single node databases, and repartitioning data collections whenever
needed. The SMS planner decomposes a HiveQL query to a QEP of relational opera-
tors. Then the operators are translated to MapReduce jobs, while the leaf nodes are again
transformed into SQL to query the underlying RDBMS instances. In MapReduce, repar-
titioning should take place before the reduce phase. However, if the optimizer detects
that an input table is partitioned on a column used as aggregation key for Reduce, it will
simplify the QEP by turning it to a single Map-only job, leaving all the aggregation to be
done by the RDBMS nodes. Similarly, repartitioning is avoided for equi-joins as well, if
both sides of the join are partitioned on the join key.

Estocada

Estocada [17] is a self-tuning multistore system with the goal of optimizing the perfor-
mance of applications that must deal with data in multiple data models, including rela-
tional, key-value, document and graph. To obtain the best possible performance from
the available data stores, Estocada automatically distributes and partitions the data across
the different data stores, which are entirely under its control and hence not autonomous.
Hence, it is a tightly-coupled multistore system.

Data distribution is dynamic and decided based on a combination of heuristics and
cost-based decisions, taking into account data access patterns as they become available.
Each data collection is stored as a set of partitions, whose content may overlap, and each
partition may be stored in any of the underlying data stores. Thus, it may happen that a
partition is stored in a data store that has a different data model than its native one. To
make Estocada applications independent of the data stores, each data partition is inter-
nally described as a materialized view over one or several data collections. Thus, query
processing involves view-based query rewriting.

Estocada support two kinds of requests, for storing data and querying, with three
main modules: storage advisor, catalog, query processor and execution engine. These
components can directly access the data stores through their local interface. The query
processor deals with single model queries only, each expressed in the query language of
the corresponding data store. However, to integrate various data stores, one would need a
common data model and language on top of Estocada. The storage advisor is responsible
for partitioning data collections and delegating the storage of partitions to the data stores.
For self-tuning the applications, it may also recommend repartitioning or moving data
from one data store to the other, based on access patterns. Each partition is defined as
a materialized view expressed as a query over the collection in its native language. The
catalog keeps track of information about partitions, including some cost information about
data access operations by means of binding patterns which are specific to the data stores.

Using the catalog, the query processor transforms a query on a data collection into

2.4 Multistore Systems 35

a logical QEP on possibly multiple data stores (if there are partitions of the collection
in different stores). This is done by rewriting the initial query using the materialized
views associated with the data collection, and selecting the best rewriting, based on the
estimated execution costs. The execution engine translates the logical QEP into a physical
QEP which can be directly executed by dividing the work between the data stores and
Estocada’s runtime engine, which provides its own operators (select, join, aggregate, etc.).

2.4.3 Hybrid systems
Hybrid systems try to combine the advantages of loosely-coupled systems, e.g. accessing
many different data stores, and tightly-coupled systems, e.g. accessing some data stores
directly through their local interface for efficient access. Therefore, the architecture (see
Figure 2.11) follows the mediator-wrapper architecture, while the query processor can
also directly access some data stores, e.g. HDFS through MapReduce or Spark.

Figure 2.11 – Hybrid architecture

We describe below the three hybrid multistore systems: SparkSQL, CloudMdsQL and
BigDAWG.

SparkSQL

SparkSQL [10] is a recent module in Apache Spark that integrates relational data pro-
cessing with Spark’s functional programming API. It supports SQL-like queries that can
integrate HDFS data accessed through Spark and external data stores (e.g. relational data
stores) accessed through a wrapper. Thus, it is a hybrid multistore system with tight-
coupling of Spark/HDFS and loose-coupling of external data stores.

SparkSQL uses a nested data model that includes tables and DataFrames. It supports
all major SQL data types, as well as user-defined types and complex data types (structs,
arrays, maps and unions), which can be nested together. A DataFrame is a distributed
collection of rows with the same schema, like a relational table. It can be constructed
from a table in an external data store or from an existing Spark RDD of native Java or
Python objects. Once constructed, DataFrames can be manipulated with various relational
operators, such as WHERE and GROUPBY, which take expressions in procedural Spark
code.

36 2. Overview of Query Processing in Multistore Systems

Figure 2.12 – SparkSQL architecture

Figure 2.12 shows the architecture of SparkSQL, which runs as a library on top of
Spark, The query processor directly accesses the Spark engine through the Spark Java
interface, while it accesses external data stores (e.g. an RDBMS or a key-value store)
through the SparkSQL common interface supported by wrappers (JDBC drivers). The
query processor includes two main components: the DataFrame API and the Catalyst
query optimizer. The DataFrame API offers tight integration between relational and pro-
cedural processing, allowing relational operations to be performed on both external data
stores and Spark’s RDDs. It is integrated into Spark’s supported programming languages
(Java, Scala, and Python) and supports easy inline definition of user-defined functions,
without the complicated registration process typically found in other data store systems.
Thus, the DataFrame API lets developers seamlessly mix relational and procedural pro-
gramming, e.g. to perform advanced analytics (which is cumbersome to express in SQL)
on large data collections (accessed through relational operations).

Catalyst is an extensible query optimizer that supports both rule-based and cost-based
optimization. The motivation for an extensible design is to make it easy to add new
optimization techniques, e.g. to support new features of SparkSQL, as well as to enable
developers to extend the optimizer to deal with external data stores, e.g. by adding data
store specific rules to push down select predicates. Although extensible query optimizers
have been proposed in the past, they have typically required a complex language to specify
rules, and a specific compiler to translate the rules into executable code. In contrast,
Catalyst uses standard features of the Scala functional programming language, such as
pattern-matching, to make it easy for developers to specify rules, which can be complied
with Java code.

Catalyst provides a general transformation framework for representing query trees and
applying rules to manipulate them. This framework is used in four phases: (1) query anal-
ysis, (2) logical optimization, (3) physical optimization, and (4) code generation. Query
analysis resolves name references using a catalog (with schema information) and pro-
duces a logical plan. Logical optimization applies standard rule-based optimizations to
the logical plan, such as predicate pushdown, null propagation, and Boolean expression

2.4 Multistore Systems 37

simplification. Physical optimization takes a logical plan and enumerates a search space
of equivalent physical plans, using physical operators implemented in the Spark execution
engine or in the external data stores. It then selects a plan using a simple cost model, in
particular, to select the join algorithms. Code generation relies on the Scala language, in
particular, to ease the construction of abstract syntax trees (ASTs) in the Scala language.
ASTs can then be fed to the Scala compiler at runtime to generate Java bytecode to be
directly executed by compute nodes.

To speed up query execution, SparkSQL exploits in-memory caching of hot data using
a columnar storage (i.e. storing data collections as sections of columns of data rather
than as rows of data). Compared with Spark’s native cache, which simply stores data
as Java native objects, this columnar cache can reduce memory footprint by an order of
magnitude by applying columnar compression schemes (e.g. dictionary encoding and
run-length encoding). Caching is particularly useful for interactive queries and for the
iterative algorithms common in machine learning.

BigDAWG

Like multidatabase systems, all the multistore systems we have seen so far provide trans-
parent access across multiple data stores with the same data model and language. The
BigDAWG (Big Data Analytics Working Group) multistore system (called polystore) [25]
takes a different path, with the goal of unifying querying over a variety of data models
and languages, Thus, there is no common data model and language. A key user ab-
straction in BigDAWG is an island of information, which is a collection of data stores
accessed with a single query language. And there can be a variety of islands, includ-
ing relational (RDBMS), Array DBMS, NoSQL and Data Stream Management System
(DSMS). Within an island, there is loose-coupling of the data stores, which need to pro-
vide a wrapper (called shim) to map the island language to their native one. When a
query accesses more than one data store, objects may have to be copied between local
data stores, using a CAST operation, which provides a form of tight-coupling. This is
why BigDAWG can be viewed as a hybrid multistore system.

The architecture of BigDAWG is highly distributed, with a thin layer that interfaces
the tools (e.g. visualization) and applications, with the islands of information. Since
there is no common data model and language, there is no common query processor either.
Instead, each island has its specific query processor. Query processing within an island
is similar to that in multidatabase systems: most of the processing is pushed to the data
stores and the query processor only integrates the results. The query optimizer does not
use a cost model, but heuristics and some knowledge of the high performance of some
data stores. For simple queries, e.g. select-project-join, the optimizer will use function
shipping, in order to minimize data movement and network traffic among data stores. For
complex queries, e.g. analytics, the optimizer may consider data shipping, to to move the
data to a data store that provides a high-performance implementation.

A query submitted to an island may involve multiple islands. In this case, the query
must be expressed as multiple subqueries, each in a specific island language. To specify

38 2. Overview of Query Processing in Multistore Systems

the island for which a subquery is intended, the user encloses the subquery in a SCOPE
specification. Thus, a multi-island query will have multiple scopes to indicate the ex-
pected behavior of its subqueries. Furthermore, the user may insert CAST operations to
move intermediate datasets between islands in an efficient way. Thus, the multi-island
query processing is dictated by the way the subqueries, SCOPE and CAST operations are
specified by the user.

2.4.4 Comparative Analysis
The multistore systems we presented above share some similarities, but do have important
differences. The objective of this section is to compare these systems along important
dimensions and identify the major trends. Although we have not yet presented it, we
include CloudMdsQL, which is the focus of this thesis. We divide the dimensions between
functionality and implementation techniques.

Multistore system Objective Data model Query language Data stores
Loosely-coupled
BigIntegrator Querying relational Relational SQL-like BigTable, RDBMS

and cloud data
Forward Unifying relational JSON-based SQL++ RDBMS, NoSQL

and NoSQL
QoX Analytic data Graph XML-based RDBMS,

flows MapReduce, ETL
Tightly-coupled
Polybase Querying Hadoop Relational SQL HDFS, RDBMS

from RDBMS
HadoopDB Querying RDBMS Relational SQL-like (HiveQL) HDFS, RDBMS

from Hadoop
Estocada Self-tuning No common Native query RDBMS, NoSQL

model languages
Hybrid
SparkSQL SQL on top of Nested SQL-like HDFS, RDBMS

Spark
BigDAWG Unifying relational No common Island query RDBMS,

and NoSQL model languages, with NoSQL, Array DBMS,
CAST and SCOPE DSMSs
operators

CloudMdsQL Querying relational JSON-based SQL-like with RDBMS, NoSQL
and NoSQL native subqueries HDFS

Table 2.1 – Functionality of multistore systems.

Table 2.1 compares the functionality of multistore systems along four dimensions:
objective, data model, query language, and data stores that are supported. Although all
multistore systems share the same overall goal of querying multiple data stores, there
are many different paths toward this goal, depending on the functional objective to be
achieved. And this objective has important impact on the design choices. The major trend

2.4 Multistore Systems 39

that dominates is the ability to integrate relational data (stored in RDBMS) with other
kinds of data in different data stores, such as HDFS (Polybase, HadoopDB, SparkSQL,
JEN) or NoSQL (BigTable only for BigIntegrator, document stores for Forward). Thus,
an important difference lies in the kind of data stores that are supported. For instance,
Estocada, BigDAWG and CLoudMdsQL can support a wide variety of data stores while
Polybase and JEN target the integration of RDBMS with HDFS only. We can also note the
growing importance of accessing HDFS within Hadoop, in particular, with MapReduce or
Spark, which corresponds to major use cases in structured/unstructured data integration.

Another trend is the emergence of self-tuning multistore systems, such as Estocada
and Odyssey, with the objective of leveraging the available data stores for performance.
In terms of data model and query language, most systems provide a relational/ SQL-like
abstraction. However, QoX has a more general graph abstraction to capture analytic data
flows. And both Estocada and BigDAWG allow the data capture analytic data flows.
And both Estocada and BigDAWG allow the data stores to be directly accessed with their
native (or island) languages. CloudMdsQL also allows native queries, but as subqueries
within an SQL-like language.

Multistore system Special modules Schemas Query processing Query optimization
Loosely-coupled
BigIntegrator Importer, LAV Access filters Heuristics

absorber, finalizer
Forward Query processor GAV Data store Cost-based

capabilities
QoX Dataflow engine No Data/function Cost-based

shipping,
operation
decomposition

Tightly-coupled
Polybase HDFS bridge GAV Query splitting Cost-based
HadoopDB SMS planer, db GAV Query splitting Heuristics

connector
Estocada Storage advisor Materialized View-based query Cost-based

views rewriting
Hybrid
SparkSQL Catalyst Dataframes In-memory Cost-based

extensible caching
optimizer using columnar

storage
BigDAWG Island query GAV within Function/data Heuristics

processors islands shipping
CloudMdsQL Query planner No Bind join Cost-based

Table 2.2 – Implementation techniques of multistore systems.

Table 2.2 compares the implementation techniques of multistore systems along four
dimensions: special modules, schema management, query processing, and query opti-
mization. The first dimension captures the system modules that either refine those of
the generic architecture (e.g. importer, absorber and finalizer, which refine the wrap-
per module, Catalyst extensible optimizer or QoX’s data flow engine, which replace the

40 2. Overview of Query Processing in Multistore Systems

query processor) or bring new functionality (e.g. Estocada’s storage advisor). Most mul-
tistore systems provide some support for managing a global schema, using the GAV or
LAV approaches, with some variations (e.g. BigDAWG uses GAV within (single model)
islands of information). However, QoX, Estocada, SparkSQL and CloudMdsQL do not
support global schemas, although they provide some way to deal with the data stores local
schemas.

The query processing techniques are extensions of known techniques from distributed
database systems, e.g. data/function shipping, query decomposition (based on the data
stores’s capabilities, bind join, select pushdown). Query optimization is also supported,
with either a (simple) cost model or heuristics.

2.5 Conclusion
In this chapter, we gave an overview of query processing in multistore systems, focus-
ing on the main solutions and trends. We started by introducing cloud data management,
including distributed file systems such as HDFS, NoSQL systems and data processing
frameworks (such as MapReduce and Spark) and query processing in multidatabase sys-
tems. Then, we described and analyzed representative multistore systems, based on their
architecture, data model, query languages and query processing techniques. To ease com-
parison, we divided multistore systems based on the level of coupling with the underlying
data stores, i.e. loosely-coupled, tightly-coupled and hybrid.

We analyzed three multistore systems for each class: BigIntegrator, Forward and
QoX (loosely-coupled); Polybase, HadoopDB and Estocada (tightly-coupled); Cloud-
MdsQL, SparkSQL and BigDAWG (hybrid). Our comparisons reveal several important
trends. The major trend that dominates is the ability to integrate relational data (stored in
RDBMS) with other kinds of data in different data stores, such as HDFS or NoSQL. How-
ever, an important difference between multistore systems lies in the kind of data stores that
are supported. We also note the growing importance of accessing HDFS within Hadoop,
in particular, with MapReduce or Spark. Another trend is the emergence of self-tuning
multistore systems, with the objective of leveraging the available data stores for perfor-
mance. In terms of data model and query language, most systems provide a relational/
SQL-like abstraction. However, QoX has a more general graph abstraction to capture an-
alytic data flows. And both Estocada and BigDAWG allow the data stores to be directly
accessed with their native (or island) languages.

The query processing techniques are extensions of known techniques from distributed
database systems, e.g. data/function shipping, query decomposition (based on the data
stores capabilities, bind join, select pushdown). And query optimization is supported,
with either a (simple) cost model or heuristics.

Chapter 3

Design of CloudMdsQL

In this chapter, we present the design of the Cloud Multidatastore Query Language (Cloud-
MdsQL), and its query engine. CloudMdsQL is a functional SQL-like language, capable
of querying multiple heterogeneous data stores (relational and NoSQL) within a single
query that may contain embedded invocations to each data store’s native query interface.
The major innovation is that a CloudMdsQL query can exploit the full power of local
data stores, by simply allowing some local data store native queries (e.g. a breadth-first
search query against a graph data store) to be called as functions, and at the same time be
optimized based on a simple cost model, e.g. by pushing down select predicates, using
bind join, performing join ordering, or planning intermediate data shipping. This chapter
is based on [40].

This chapter is organized as follows. Section 3.1 gives an overview of the chapter.
Section 3.2 discusses related work in more details. Section 3.3 introduces CloudMdsQL’s
basic concepts, including its data model and language constructs. Section 3.4 presents
the architecture of the query engine and its main components. Section 3.5presents the
language in more details. Section 3.6 reveals the query processing steps. Section 3.7
gives an example walkthrough. Section 3.8 concludes.

3.1 Overview
The state of the art solutions for multidatabase systems [24, 46] (see Section 3.2) do not
directly apply to multistore systems. First, our common language is not for querying
data stores on the web, which could be in very high numbers. A query should be on
a few cloud data stores (perhaps less than 10) and the user needs to have access rights
to each data store. Second, the data stores may have very different languages, ranging
from very simple get/put in key-value stores, to full SQL or SPARQL languages. And
no single language can capture all the others efficiently, e.g. SQL cannot express graph
path traversal (of course, we can represent a graph with two relations Edges and Nodes,
but this requires translating path traversals into expensive joins). Even a graph query
language, which is very general, cannot capture an array data model easily. Third, NoSQL
data stores can be without schema, which makes it (almost) impossible to derive a global

41

42 3. Design of CloudMdsQL

schema. Finally, and very important, what the user needs is the ability to express powerful
queries to exploit the full power of the different data store languages, e.g. directly express
a path traversal in a graph data store. For this, we need a new query language.

We can translate these observations into five main requirements for our common lan-
guage:

1. To integrate fully-functional queries against different NoSQL and SQL data stores
using each data store’s native query mechanism;

2. To allow nested queries to be arbitrarily chained together in sequences, so the result
of one query (for one data store) may be used as the input of another (for another
data strore);

3. To be schema independent, so that data stores without or with different schemas
can be easily integrated;

4. To allow data-metadata transformations, e.g. to convert attributes or relations into
data and vice versa [61];

5. To be easily optimizable so that efficient query optimization, introduced in state
of the art multidatabase systems, can be reused (e.g. exploiting bind joins [32] or
shipping the smallest intermediate results).

The CloudMdsQL, and its query engine, addresses these requirements. While the
latter four have already been identified as requirements and introduced in multidatabase
mediator-wrapper architectures, CloudMdsQL contributes to satisfying also the first one.
The language is capable of querying multiple heterogeneous data stores (e.g. relational
and NoSQL) within a single query containing nested subqueries, each of which refers to
a particular data store and may contain embedded invocations to the data store’s native
query interface.

The design of the query engine takes advantage of the fact that it operates in a cloud
platform. Unlike the traditional mediator-wrapper architectural model where mediator
and wrappers are centralized, we propose a fully distributed architecture that yields im-
portant optimization opportunities, e.g. minimizing data transfers between nodes. This al-
lows us to reuse query decomposition and optimization techniques from distributed query
processing [46].

3.2 Related Work
The common data model and query language used by a mediator (see Figure 2.5) have a
major impact on the effectiveness of data store integration. The two dominant solutions
today, with major product offerings, are relational/SQL and XML Xquery, each having
its own advantages. The relational model provides a simple data representation (tables)
for mapping the data stores, but with rigid schema support. The major advantage of a

3.2 Related Work 43

relational solution is that SQL is familiar to users and developers, with SQL APIs used
by many tools, e.g. in business intelligence. Furthermore, recent extensions of SQL such
as SQL/XML include support for XML data types. On the other hand, the XML model
provides a tree-based representation that is appropriate for Web data, which are typically
semi-structured, and flexible schema capabilities. As a particular case, XML can represent
relational tables, but at the expense of more complex parsing. XQuery is now a complete
query language for XML, including update capabilities, but more complex than SQL. As
a generalization for Web linked data, there is also current work based on RDF/SPARQL
[33]. There is still much debate on relational versus XML, but in the cloud, relational-like
data stores, e.g. NoSQL key-value stores such as Google Bigtable and Hadoop Hbase, are
becoming very popular, thus making a relational-like model attractive.

The main requirements for a common query language (and data model) are support
for nested queries, schema independence and data-metadata transformation [61]. Nested
queries allow queries to be arbitrarily chained together in sequences, so the result of one
query (for one data store) may be used as the input of another (for another data store).
Schema independence allows the user to formulate queries that are robust in front of
schema evolution. Data-metadata transformation is important to deal with heterogeneous
schemas by transforming data into metadata and conversely, e.g. data into attribute or
relation names, attribute names into relation names, relation names into data. These re-
quirements are not supported by query languages designed for centralized data stores, e.g.
SQL and XQuery. Therefore, federated query languages need major extensions of their
centralized counterpart.

We now discuss briefly two kinds of such extensions of major interest: relational
languages and functional SQL-like languages. In [61], the authors propose an extended
relational model for data and metadata integration, the Federated Relational Data Model,
with a relational algebra, Federated Interoperable Relational Algebra (FIRA) and an SQL-
like query language that is equivalent to FIRA, Federated Interoperable Structured Query
Language (FISQL). FIRA and FISQL support the requirements discussed above, and the
equivalence between FISQL and FIRA provides the basis for distributed query optimiza-
tion. FISQL and FIRA appear as the best extensions of SQL-like languages for data and
metadata integration. In particular, it allows nested queries. But as with SQL, it is not
possible to express some complex control on how queries are nested, e.g. using pro-
gramming language statements such as IF THEN ELSE, or WHILE. Note that, to express
control over multiple SQL statements, SQL developers typically rely on an imperative
language such as Java in the client layer or a stored procedure dialect such as PLSQL in
the data store layer. Another major limitation of the relational language approach is that it
does not allow exploiting the full power of the local data store repositories. For instance,
mapping an SQL-like query to a graph data store query will not exploit the graph DBMS
capabilities, e.g. generating a breadth-first search query.

Database programming languages (DBPLs) have been proposed to solve the infamous
impedance mismatch between programming language and query language. A functional
language has several advantages for accessing heterogeneous data stores. First, nested
queries and complex control can be easily supported. Second and more important, the

44 3. Design of CloudMdsQL

full power of the local data store repositories could be exploited, by simply allowing local
data store queries, e.g. a breadth-first search query, to be called as native functions. In
particular, functional DBPLs such as FAD [20] can represent all query building blocks as
functions and function results can be used as input to subsequent functions, thus making
it easy to deal with nested queries with complex control. The first SQL-like functional
DBPL is Functional SQL [57]. However, DBPLs are also full-fledge programming lan-
guages, aimed to develop complex data-intensive applications. This generality makes
them hard to optimize [35]. But for accessing heterogeneous data stores in the cloud, we
do not need a full-fledge DBPL. More recently, FunSQL [12] has been proposed for the
cloud, to allow shipping the code of an application to its data. Another popular func-
tional DBPL is LINQ [44], whose goal is to reconcile object-oriented programming, with
relations and XML. LINQ allows any .NET programming language to manipulate gen-
eral query operators (as functions) with two domain-specific APIs that work over XML
(XLinq) and relational data (DLinq) respectively. The operators over relational data pro-
vide a simple object-relational mapping that makes it easy to specify wrappers to the
underlying RDBMS.

3.3 Basic Concepts
The common querying model targets integration of data from several stores based on a
diverse set of data models, mediating the data through a common data model. Conse-
quently, the common query language and its data model are designed to achieve such data
integration accordingly.

3.3.1 Data Model
CloudMdsQL sticks to the relational data model, because of its intuitive data representa-
tion, wide acceptance and ability to integrate datasets by applying joins, unions and other
relational algebra operations. To be robust against schema evolution and driven by the
fact that NoSQL data stores can be schema-less, CloudMdsQL keeps its common data
model schema-less, while at the same time it is designed to ensure that all the datasets
retrieved from the data stores match the common data model.

Operators. The common data model supports basic relational operators (projection,
selection, joins, aggregation, sorting and set operations). In addition, in order to satisfy
the common language requirements, the data model includes another two operators as fol-
lows. First, to support data and data-metadata transformations, CloudMdsQL introduces
a Python operator that can perform user-defined operations over intermediate relations
and/or generate synthetic data by executing embedded code of the programming language
Python. Second, the requirement for running optimal nested queries from heterogeneous
data stores implies the usage of the bind join method [32], which uses the data retrieved
from one data store to rewrite the query to another data store, so that from the latter are
retrieved only the tuples that match the join criteria.

3.3 Basic Concepts 45

Data Types. The CloudMdsQL data model supports a minimal set of data types,
enough to capture data types supported by the data models of most data stores: scalar data
types – integer, float, string, binary, timestamp; composite data types – array, dictionary
(associative array); null values. Standard operations over the above data types are also
available: arithmetic operations, concatenation and substring, as well as operations for
addressing elements of composite types (e.g. array[index] and dictionary[’key’]). Type
constructors for the composite data types follow the well-known JSON-style constructors:
an array is expressed as a comma separated list of values, surrounded by brackets; a
dictionary is expressed as a comma separated list of key:value pairs, surrounded by curly
braces.

3.3.2 Language Concepts
The CloudMdsQL language itself is SQL-based with the extended capabilities for em-
bedding native queries to data stores and embedding procedural language constructs. The
involvement of the latter is necessitated by the requirement for performing data and data-
metadata transformations and conversions of arbitrary datasets to relations in order to
comply with the common data model. To support such procedural programmability,
CloudMdsQL queries can contain embedded constructs of the programming language
Python, the choice of which is justified by its richness of data types, native support for
iteration with generator functions, ease of use, richness in standard libraries and wide us-
age. An important concept in CloudMdsQL is the notion of "table expression", inspired
from XML table views [30, 43], which is generally an expression that returns a table (i.e.
a structure, compliant with the common data model). A table expression is used to rep-
resent a nested query and usually addresses a particular data store. Three kinds of table
expressions are distinguished:

• Native table expressions, using a data store’s native query mechanism;

• SQL table expressions, which are regular nested SELECT statements;

• Embedded blocks of Python statements that produce relations.

A table expression is usually assigned a name and a signature, thus turning it into
a "named table expression", which can be used in the FROM clause of the query like
a regular relation. Named table expression’s signature defines the names and types of
the columns of the returned relation. Thus, each CloudMdsQL query is executed in the
context of an ad-hoc schema, formed by all named table expressions within the query.
This approach fills the gap produced by the lack of a global schema and allows the query
compiler to perform semantic analysis of the query. A named table expression is usu-
ally defined as a query against a particular data store and contains references to the data
store’s data structures. However, the expression can also instantiate other named table
expressions, defined against other data stores, thus chaining data as per the requirement
for nesting queries.

46 3. Design of CloudMdsQL

For example, the following simple CloudMdsQL query contains two subqueries, de-
fined by the named table expressions T1 and T2, and addressed respectively against the
data stores DB1 (an SQL data store) and DB2 (a MongoDB data store):

T1(x int, y int)@DB1 = (SELECT x, y FROM A)

T2(x int, z string)@DB2 = {*
db.B.find({$lt: {x, 10}}, {x:1, z:1, _id:0}) *}

SELECT T1.x, T2.z

FROM T1, T2

WHERE T1.x = T2.x AND T1.y <= 3

The purpose of this query is to perform relational algebra operations (expressed in the
main SELECT statement) on two datasets retrieved from a relational and a document data
store. The two subqueries are sent independently for execution against their data stores in
order the retrieved relations to be joined by the common query engine. The SQL table ex-
pression T1 is defined by an SQL subquery, while T2 is a native expression using a Mon-
goDB query that retrieves from the document collection B the attributes x and z of those
documents for which x < 10. The subquery of expression T1 is subject to rewriting
by pushing into it the filter condition y <= 3, specified in the main SELECT statement,
thus reducing the amount of the retrieved data by increasing the subquery selectivity. The
so retrieved datasets are then converted to relations following their corresponding signa-
tures, so that the main CloudMdsQL SELECT statement can be processed with semantic
correctness.

3.4 Query Engine Architecture
Although the focus of this chapter is on the design of the CloudMdsQL language, we still
need to show how queries can be optimized and processed in a cloud environment. Thus,
in this section, we introduce the architecture of the query engine, with its main compo-
nents, and briefly introduce query processing, which will be more detailed in Sections 3.6
and 3.7. We ignore fault-tolerance, which is out of the scope of this chapter.

3.4.1 Overview
The design of the query engine takes advantage of the fact that it operates in a cloud
platform, with full control over where the system components can be installed. This is
quite different from web data integration systems for instance, where both mediator and
data store wrappers can only be installed at one or more servers that communicate with
the data stores through the network. In our context, the query engine is part of a more
general platform (CoherentPaaS) that allows deployment over one or more data centers.
For simplicity in this chapter, we consider the case of a single data center, i.e. a computer

3.4 Query Engine Architecture 47

cluster.

Figure 3.1 – Architecture of the query engine

The architecture of the query engine is fully distributed (see Figure 3.1), so that query
engine nodes can directly communicate with each other, by exchanging code (query plans)
and data. Thus, the query engine does not follow the traditional mediator-wrapper archi-
tectural model where mediator and wrappers are centralized. This distributed architecture
yields important optimization opportunities, e.g. minimizing data transfers by moving the
smallest intermediate data for subsequent processing by one particular node.

Each query engine node consists of two parts – master and worker – and is collocated
at each data store node in a computer cluster. Each master or worker has a communica-
tion processor that supports send and receive operators to exchange data and commands
between nodes. To ease readability in Figure 3.1, we separate master and worker, which
makes it clear that for a given query, there will be one master in charge of query planning
and one or more workers in charge of query execution. To illustrate query processing with
a simple example, let us consider a query Q on two data stores in a cluster with two nodes
(e.g. the query introduced in Section 3.3.2). Then a possible scenario for processing Q,
where the node id is written in subscript, is the following:

• At client, send Q to Master1.

• At Master1, produce a query plan P (see Figure 3.2) for Q and send it to Worker2,
which will control the execution of P.

48 3. Design of CloudMdsQL

• At Worker2, send part of P, say P1, to Worker1, and start executing the other part of
P, say P2, by querying Data Store2.

• At Worker1, execute P1 by querying Data Store1, and send result to Worker2.

• At Worker2, complete the execution of P2 (by integrating local data with data re-
ceived from Worker1), and send the final result to the client.

Figure 3.2 – A simple query plan

This simple example shows that query execution can be fully distributed among the
two nodes and the result sent from where it is produced directly to the client, without the
need for an intermediate node.

3.4.2 Master
Since there are multiple masters (one at each cluster node), the client chooses one of them
to send a query to. Although load balancing is not crucial as masters do not carry heavy
loads, we can still do it using a random pick or a simple round robin process at the client
side to distribute queries across masters.

A master takes as input a query and produces a query plan, which it sends to one
chosen query engine node for execution. The query planner performs query analysis and
optimization, and produces a query plan serialized in a JSON-based intermediate format
that can be easily transferred across query engine nodes. Each operation in the plan carries
the identifier of the query engine node that is in charge of performing it. Thus, the topmost
operation determines the first worker, to which the master should send the query plan. As
for declarative query languages (e.g. SQL), a query plan can be abstracted as a tree
of CloudMdsQL operators and communication (send/receive) operators to exchange data
and commands between query engine nodes. This allows us to reuse query decomposition
and optimization techniques from distributed query processing [46], which we adapt to
our fully distributed architecture. In particular, we strive to:

3.4 Query Engine Architecture 49

• Minimize local execution time in the data stores, by pushing down select operations
in the data store subqueries and exploiting bind join by query rewriting;

• Minimize communication cost and network traffic by reducing data transfers be-
tween workers.

To compare alternative rewritings of a query, the query planner uses a simple cata-
log, which is replicated at all nodes in primary copy mode. The catalog provides basic
information about data store collections such as cardinalities, attribute selectivities and
indexes, and a simple cost model. Such information can be given with the help of the data
store administrators. The query language provides a possibility for the user to define cost
and selectivity functions whenever they cannot be derived from the catalog, mostly in the
case of using native subqueries. The search space explored for optimization is the set of
all possible rewritings of the initial query, by pushing down select operations, expressing
bind joins, join ordering, and intermediate data shipping. Unlike in traditional query op-
timization where many different permutations are possible, this search space is not very
large, so we can use a simple exhaustive search strategy.

3.4.3 Worker
Workers collaborate to execute a query plan, produced by a master, against the underly-
ing data stores involved in the query. As illustrated in Section 3.4.2, there is a particular
worker, selected by the query planner, which becomes in charge of controlling the exe-
cution of the query plan. This worker can subcontract parts of the query plan to other
workers and integrate the intermediate results to produce the final result.

Each worker node acts as a lightweight runtime data store processor atop a data store
and is composed of three generic modules (i.e. same code library) - query execution
controller, operator engine, and table storage - and one wrapper module that is specific to
a data store. These modules provide the following capabilities:

• Query execution controller: initiates and controls the execution of a query plan (re-
ceived from a master or worker) by interacting with the operator engine for local
execution or with one or more workers (through communication processors) in case
part of the query plan needs to be subcontracted. In the latter case, the query exe-
cution controller will synchronize the execution of the operator(s) that require the
intermediate results produced by the distant workers, once they are received back.

• Operator engine: executes the query plan operators on data retrieved from the wrap-
per, from another worker, or from the table storage. These operators include Cloud-
MdsQL operators to execute table expressions in the query and communication
(send/receive) operators to exchange data with other workers. Some operators are
simply passed on to the wrapper for producing intermediate results from the data
store. The operator engine may write intermediate relations to the table storage.

50 3. Design of CloudMdsQL

• Table Storage: provides efficient, uniform storage (main memory and disk) for in-
termediate and result data in the form of tables. Storage of intermediate data is nec-
essary in particular cases, e.g. when an intermediate relation needs to be consumed
by more than one operator or when it participates in a blocking operation such as
aggregation, sorting or nested-loop join. In other cases, intermediate relations are
directly pulled by the consuming operator.

• Wrapper: interacts with its data store through its native API to retrieve data, trans-
forms the result in the form of table, and writes the result in table storage or delivers
it to the operator engine. To query its data store, each wrapper is invoked by the
operator engine through generic interface methods, which it maps to data store spe-
cific API calls. Wrappers are discussed in more detail in Section 3.6.4.

3.5 Query Language
The major innovation of CloudMdsQL refers to the involvement of native subqueries
and the way both SQL and native subqueries interoperate with each other to provide the
desired coherence across all data stores. In this section we provide details about how
multiple diverse data stores can be queried through CloudMdsQL by means of nested
table expressions.

Named table expressions are definitions of temporary (at query level) tables represent-
ing nested subqueries against data stores and their signatures define the names and types
of the attributes of the returned relations. Within a single CloudMdsQL query, all named
table expressions form an ad-hoc schema, in the context of which the main SELECT
statement of the query is processed and its semantic correctness is verified. Embedded
Python constructs that can be used to define Python named table expressions necessitate
the involvement of special conventions, the usage of which provides the required query
expressivity and ability for nesting subqueries.

3.5.1 Named Table Expressions
Named table expressions are defined in the header of a CloudMdsQL query, preceding
the main SELECT statement, and are instantiated in the FROM clause and/or from the
definitions of other named expressions. The basic syntax of a named table expression is
the following:

<expr-name>(<colname> <type>, ...)[@<datastore>]=<expr-def>

The declaration consists of the name of the expression, followed by its signature,
which specifies the names and types of the attributes of the result relation, reference to
the underlying data store, which the subquery is addressed to, and expression definition.
An SQL expression definition should be surrounded by parentheses, which implies that
the compiler processes it and transforms it to a subquery plan, part of the global execution
plan, and therefore is subject to analysis, optimization and/or rewriting. A native/Python

3.5 Query Language 51

expression definition must be surrounded by native expression brackets, which is the fol-
lowing pair of opening / closing bracket symbols: {*. . . *}. Named table expressions are
classified according to the way they interface the underlying data stores and/or intermedi-
ate relations, as follows.

Native named table expressions represent subqueries to data stores using their native
query mechanism. They are executed in the context of a particular connection to a data
store. The expression definition is a native query or code that should contain invocations
to the native interface of the data store and produce a relation with the declared signature.
The code is surrounded by native expression brackets, which gives information to the
query engine not to process the contained expression but pass it as a black box to the
corresponding wrapper. However, a native expression can still use as input intermediate
data retrieved by other named table expressions, thus providing full capability for nesting
queries. The query engine allows this by exposing the query execution context to the
wrappers, like it does for Python expressions (see below).

SQL named table expressions are expressed as regular SELECT statements. They
are quite different from native expressions, since they are compiled and analyzed by the
query planner, as opposed to native expressions which are considered as black boxes
and are not subject to analysis. An SQL expression against a data store contains in its
FROM clause references to the data store tables. However, to provide support for nested
querying, each SQL expression can also instantiate other named table expressions from
the context of the current CloudMdsQL query (nested SQL queries are more detailed in
Section 3.5.2.1). Furthermore, each data store subquery, expressed as an SQL expression,
is subject to rewriting, whenever selection pushdowns or bind joins take place.

CloudMdsQL query
T1(x int, y int)@DB1={

SELECT x, y, z FROM A}

T2 (x int, z string)@DB2= {*
db.B.find({$lt:{x,10}},

{x:1, z:1, _id:0}) *}

SELECT T1.x, T2.z

FROM T1, T2

WHERE T1.x = T2.x

AND T1.y <= 3

=⇒

Query plan after Query plan after
decomposition selection pushdown

To illustrate the usage of native and SQL table expressions and give a basic notion of
how they are handled by the query planner, let us come back to the example, introduced
in Section 3.3.2. The CloudMdsQL query below contains an SQL named table expression

52 3. Design of CloudMdsQL

T1 and a native named table expression T2. The query plan after decomposition shows
that the SQL expression T1 is decomposed to a sub-plan assigned to the data store db1,
while the sub-plan for db2 contains only a single node, corresponding to the definition
of the native expression T2. Thus, the sub-plan for db1 may be modified by the planner,
e.g. by pushing operations into it, as it is shown with the plan after selection pushdown.
All the query processing steps are detailed in Section 3.6.

3.5.2 Nested Queries
As stated in the language requirements, CloudMdsQL must provide a mechanism for nest-
ing queries – i.e. a named table expression must be able to instantiate other named table
expressions, available in the execution context of the same query, and use their result sets
as input. This is achievable in all types of expressions: in native/Python expressions by
invoking the CloudMdsQL object, and in SQL expressions by simply referencing named
table instantiations directly in the FROM clause, often in combination with references to
the data store’s tables.

3.5.2.1 Within SQL Expressions

An SQL expression against a data store contains references to data store tables, but may
also refer to named table expressions in its FROM clause. If the SQL expression contains
such mixed references, its corresponding subquery plan is split by the query compiler into
two sub-plans. The first one contains only references to data store tables and is identified
as a subquery plan that will be passed to the wrapper. The other one references only the
root node of the first sub-tree and instantiations of other named table expressions from the
context of the CloudMdsQL query and will be executed by the query engine as part of the
common execution plan. This is illustrated with the following example:

Original query Rewritten equivalent query
T1(x int, y int)@DB2={* T1(x int, y int)@DB2={*
db.B.find({$lt:{x,10}}, db.B.find({$lt:{x,10}},

{x:1,y:1,_id:0}) *} {x:1,y:1,_id:0}) *}

T2 (x int, y int, z string)@DB1=(T2(x int, y int, z string)@DB1=(

SELECT A.x, T1.y, B.z SELECT A.x, B.z

FROM A JOIN B ON A.id=B.id FROM A JOIN B ON A.id=B.id)

JOIN T1 ON A.x=T1.x) SELECT T2.x, T1.y, T2.z

SELECT x, y, z FROM T2 FROM T2 JOIN T1 ON T2.x=T1.x

Here the query planner, upon parsing the original query and building the subquery plan
for T2, detects the usage of the named table T1, plans the join with T1 as the outermost
operation within the sub-plan, and pulls it into the common plan, thus transforming the
whole query plan to correspond to the rewritten equivalent query above. In some more
complex cases, the planner may not be able to place as outermost all the operations that

3.5 Query Language 53

involve named table expressions; in such cases, the planner will split the sub-plan in order
to be able to pull such operations from the sub-plan, which may result in building more
than one sub-plans that originate from a single subquery.

Another nested query scenario is when a named table is referred in a sub-select state-
ment within the subquery, thus making the result set of the named table an input to the
subquery, as in the following example:

T1(x int, y int)@DB2 ={* db.B.find({$lt:{x,10}},{x:1,y:1,_id:0}) *}

T2(x int, z string)@DB1 = (

SELECT A.x, B.z FROM A JOIN B ON A.id = B.id

WHERE A.x IN (SELECT x FROM T1 WHERE y > 0))

SELECT x, z FROM T2

To process the subquery T2, the query engine must first retrieve the table T1, evaluate
the sub-select SELECT x FROM T1 WHERE y > 0, and then transform it to a list of
the distinct values of T1.x to replace the sub-select with that list of values. This is similar
to the processing of bind joins, which is explained in detail in Section 3.6.2.

3.5.2.2 Within Native Expressions

This section focuses on the capability of nesting subqueries within native/Python expres-
sions. CloudMd sQL introduces two approaches that allow the programmer to write ex-
pression definitions that iterate through data retrieved by other subqueries – table itera-
tion and join iteration.

With table iteration, the Python code of a table expression can iterate through the
result set of another table expression by requesting a forward iterator through the Cloud
MdsQL object, instantiating the iterated table by its name. Because of the forward it-
eration pattern and due to the pipelining fashion of the query execution, the Python ex-
pression will start consuming tuples once a few tuples of the iterated table are available,
without having to wait for the entire table to be retrieved. To build a relevant and adequate
QEP, the query compiler needs to identify all dependencies between table expressions, i.e.
for each named expression, the engine needs to know which other named table expressions
it iterates through. For native/ Python expressions, since a black-box approach is used, the
query engine does not perform any processing of the code; therefore the referenced inside
the expression tables must be explicitly specified in the expression’s signature. CloudMd-
sQL provides an additional REFERENCING clause, by which the programmer specifies
that the expression definition performs iterations through a named table instantiation.

For example, let us consider the following query, assuming that DB1 is a relational
data store with a table person, containing names and addresses of persons, and DB2 is
a graph data store with Python API providing the function GetShortest Distance,
which finds the shortest distance between two cities. Now we want to query both data
stores to retrieve persons who work in department Herault, the cities where they live and
work and what is the distance between their home and work cities.

54 3. Design of CloudMdsQL

person_herault(name string, h_city string, w_city string)@DB1 = (

SELECT name, home_city, work_city

FROM person p

WHERE work_dept = ’Herault’)

person_distance(name string,h_city string,w_city string,distance int

REFERENCING person_herault)@DB2 =

{* for (n, hc, wc) in CloudMdsQL.person_herault:

yield (n, hc, wc, GetShortestDistance(hc, wc)) *}

SELECT name, h_city, w_city, distance FROM person_distance;

The execution flow of the above query is quite straightforward. It contains special-
ized subqueries which are chained in a strict way – first the table person_herault is
retrieved for persons who work in Herault; then its dataset is used as input to the other sub-
query, the result of which is the table person_distance that contains one more col-
umn retrieved from the graph data store by calling its function GetShortestDistance;
and finally a projection in the main SELECT statement defines the format of the result ta-
ble. This approach provides good functionality because it allows arbitrary chaining of data
across subqueries. But it tends to involve less flexible queries, because it does not allow
selection pushdown, and hence requires specialized subqueries like person_herault,
where the filter condition must be specified in the subquery.

The join iteration approach is applicable for any native/Python table expression that
is one of the sides of an equi-join. The query execution requires that the other side of
the join (we will call it "the outer relation") is evaluated first, so that the native/Python
expression can generate its tuples by iterating through the values of the join attribute(s)
of the outer relation. Thus, only tuples that match the join criteria are generated. This
approach also allows for a native/Python subquery to use as input the result set of another
subquery, but in a different way – in combination with a join operation. For example, the
results from the above query can be retrieved using join iteration by the following query:

person(name string,h_city string,w_city string,w_dept string)@DB1 = (

SELECT name, home_city, work_city, work_dept

FROM person p)

distance(city_1 string, city_2 string, distance int

JOINED ON city_1, city_2)@DB2 =

{* for (c1, c2) in CloudMdsQL.Outer:

yield (c1, c2, GetShortestDistance(c1, c2)) *}

SELECT p.name, p.h_city, p.w_city, d.distance

FROM person p JOIN distance d

ON p.h_city = d.city_1 AND p.w_city = d.city_2

WHERE p.w_dept = ’Herault’;

The first thing to notice here is that the subqueries are more generic – the table ex-

3.5 Query Language 55

pression person represents a projection over relational data without filters; the table
expression distance defines a relation where each tuple consists of a pair of cities and
the distance between them. And the whole query is more manipulable, because the fil-
ter condition w_dept = ’Herault’ is specified in the main SELECT statement, but
it can be pushed down into the subquery. Thus, if the two named table expressions are
stored in the global catalog, they can be reused in a wider range of queries.

The JOINED ON clause in the signature of the Python expression declares that when-
ever the table distance participates in an equi-join with another relation on the at-
tributes specified in the clause, the expression will generate its tuples by iterating through
the values of the join attributes of the outer relation. The query is processed as follows.
First, the subquery against DB1 is rewritten by adding the condition work_dept =
’Herault’ and removing work_dept from the projection (it is not needed for the ex-
ecution of the common query plan). Then, the subquery is executed and the query engine
starts retrieving from DB1 tuples that form the result set of the outer relation. Then, the
wrapper of DB2 starts the execution of the Python code that queries the graph data store.
It consumes a projection on the attributes h_city and w_city of the outer relation,
iterating through it via the special iterator object CloudMdsQL.Outer, and generates
the tuples of its own result set.

To handle join iteration, the operator engine pipelines the join attribute values of the
outer relation to the iterator object, which allows for the native/Python expression to start
immediately iterating through them as soon as a few tuples are available, without hav-
ing to wait for the entire outer relation to be retrieved. Once a tuple is generated by the
native/Python expression, the operator engine immediately joins it with its correspond-
ing tuple from the outer relation, thus performing the join on-the-fly with minimal cost.
During the join execution, a hash map is maintained, where each already iterated join at-
tribute value is mapped to zero or more tuples generated by the native/Python expression.
Thus, the iteration is performed over a set of distinct values of the join attribute(s) of the
outer relation, which saves from duplicate invocations of native API functions that can be
expensive (e.g. GetShortestDistance).

3.5.3 CloudMdsQL SELECT Statement
SELECT queries in CloudMdsQL retrieve data from several data stores using embedded
subqueries (for each data store) and integrate the data to build the result dataset. The
CloudMdsQL SELECT statement looks like a typical SQL SELECT statement but sup-
plements it with a header containing definitions of named table expressions:

[<named-table-expr> ...]

SELECT <column_list>

<from_clause>

[<where_clause>]

[<group_clause>]

[<having_clause>]

56 3. Design of CloudMdsQL

[<order_clause>]

[<limit_clause>]

Some of the clauses have CloudMdsQL specifics. [<named-table-expr>...]
is an optional list of named table expressions as per the corresponding syntaxes described
above. Names of table expressions must be unique within both the local (in the same
query) and global (stored named expressions) context. The generic syntax of a named
table expression definition is presented below.

<expr-name>(<colname> <type>, ...

[WITHPARAMS <paramname> <type>, ...]

[REFERENCING <tablename>, ...]

[JOINED ON <colname>, ...]

[CARDINALITY = <cardinality_function>]

[SELECTIVITY(<colname>, ...) = <selectivity_function>]

)[@<datastore>] = <expr-def>

Its signature may contain certain optional clauses, as follows. The WITHPARAMS
clause specifies the names and types of the parameters, if any. The REFERENCING clause
specifies the names of other named table expressions that are used within a native named
table expression. The JOINED ON clause specifies the names of the columns of the table
expression on which a join iteration method will be performed. The CARDINALITY
clause specifies a user-defined cost function that can be used by the optimizer to estimate
the expected cardinality of the named expression’s result set. The function is expressed as
an arithmetic expression that may refer to the cardinalities of the referenced named tables,
e.g. card(T1), and/or any of the named table expression’s parameters. Similarly, a
SELECTIVITY function may also be defined, which can give an estimate of the expected
selectivity of an equality condition on the specified columns.

<from_clause> is a regular SQL FROM clause containing references to named
table expressions – global or ad-hoc, parameterized or not. If a table refers to a param-
eterized expression, parameter values should be specified in parentheses. The FROM
clause may contain JOIN expressions, specifying explicit join ordering and conditions.
The JOIN keyword may be followed or preceded by execution directive in parentheses,
which will override optimizer’s decisions and will explicitly make the query engine per-
form a concrete method (e.g. bind join, hash, merge or nested-loop).

In the <where_clause> there can be specified a filter predicate expression. The
query compiler will transform it to normal conjunctive form, thus determining the exact
selection operations to be performed as part of the execution plan. The optimizer will
then find the most appropriate place of each selection operation and push it down as much
as possible in the execution plan tree. This optimization can finally result in rewriting
subqueries to data stores by adding filter conditions, if the optimizer finds an opportunity
to increase the selectivity of the subquery. However, only subqueries defined with SQL
named table expressions can benefit from such an optimization.

3.6 Query Processing 57

3.6 Query Processing
In this section, we briefly describe in more detail the different steps of CloudMdsQL
query processing, according to the query engine architecture (see Section 3.4), i.e. query
decomposition, optimization and execution. We also discuss the details of interfacing
data stores through wrappers. We end with a use case example showing the different
query processing steps.

3.6.1 Query Decomposition
During query decomposition, the query planner compiles the query and builds a prelim-
inary query execution plan (QEP). A query plan in its simplest form is a tree structure,
representing relational operations, where the leaf nodes are references to tables, results
from the execution of the subqueries against data stores. At this step, the planner also
prepares a set of native queries which will be passed to the corresponding wrappers and
hence to the underlying data stores (this process will be explained later). Each node of the
query plan represents a relational operation and an intermediate relation, resulting from
the operation. For more complex queries, since the language allows a single named table
expression to be used as operand to several operations (e.g. referenced in other named ta-
ble expressions and also in the main SELECT statement), it is possible for an intermediate
relation to be the input of more than one operator, therefore the query plan appears to be
a directed acyclic graph rather than a tree structure. If cyclic references exist, they will be
discovered by the query engine at decomposition time and the query will be rejected.

While building the execution strategy, the planner identifies a forest of sub-trees within
the query plan, each of which is associated to a certain data store. Each of these sub-
plans is meant to be delivered to the corresponding wrapper, which has to translate it to
a native query and execute it against its data store (for SQL subqueries, this process is
more detailed in Section 3.6.4.1). The rest of the QEP is the part that will be handled by
the query engine. So now we outline two main subsets of the global execution plan: (1) a
forest of sub-trees that will be executed locally by each data store and (2) a common query
plan that will be executed by the query engine with leaf nodes consuming the relations
returned by each wrapper as result of sub-plan execution. At query decomposition step,
the boundary between the two subsets is preliminary and may be modified during the
query optimization step by pushing operations from the common plan to sub-plans to
improve the overall execution efficiency or by pulling operations from sub-plans to the
common plan in case a data store is not capable of handling them.

The next step of the decomposition is the semantic analysis of the query. Within only
the common query plan, all table and column names are verified against the query’s ad-
hoc schema. On the other hand, since the query engine is agnostic to the underlying data
stores’ schemas, it does not perform semantic analysis of sub-plans, presuming that this
will be done by the data stores upon handling each subquery’s native equivalent. In fact,
all the sub-plans are kept as abstract syntax trees and are never transformed into execution
plans. Thus, the query engine is exempt from gathering full metadata from data stores,

58 3. Design of CloudMdsQL

except those metadata needed by the optimizer, e.g. the availability of indexes and some
statistics.

3.6.2 Query Optimization
At query optimization step, the query planner generates different alternatives to the pre-
liminary query plan and compares their costs using the cost model and the cost and meta-
data information, provided by the catalog or by the user. The cost information includes
cardinalities and attribute selectivities of either a whole subquery or a particular data store
table. To provide as much cost information as possible, each wrapper implementation
should consider the cost-estimating capability of its data store and expose cost functions
following one or more of the methods below:

• For a relational data store, if the data store can efficiently estimate the cost of a
subquery and the size of its result set (like EXPLAIN on prepared statements), the
query planner may benefit from this to directly ask a data store through its wrapper
to estimate the cost of a subquery.

• If the data store is not capable of estimating the cost of a subquery, but keeps data
store statistics (such as cardinalities, number of distinct values per column, etc.),
the wrapper implementation should make use of all available data store statistics to
provide implementations of the desired cost functions.

• If none of the above methods are applicable, but the data store supports aggregate
queries like COUNT(*), MIN and MAX, the wrapper should contribute to the cat-
alog information by periodically running in background probing queries, thus syn-
thesizing and keeping statistics such as the number of tuples in a table, the number
of distinct values of an attribute, and the min/max values of an attribute.

• However, because of the lack of cost models in some NoSQL data stores and the
limited (or lack of) capability to build data store statistics, the CloudMdsQL query
engine gives its data store administrator the possibility to define cost functions that
give default cost information in case it cannot be retrieved using the above methods.

• Finally, the user may also provide user-defined cost functions, which is particularly
useful in the case of native queries. For example, the native named table expression
below defines a simple cardinality function, which gives information that the esti-
mated cardinality of the returned table will be equal to the cardinality of the Outer
relation, over which the native expression performs iteration.

distance(city_1 string, city_2 string, distance int

JOINED ON city_1, city_2

CARDINALITY = card(Outer))@DB2 =

{* for (c1, c2) in CloudMdsQL.Outer:

3.6 Query Processing 59

yield (c1, c2, GetShortestDistance(c1, c2)) *}

With this cost information, the query optimizer executes its search strategy to transform
the preliminary execution plan into an optimized one. Notice that, when building its
search space, the optimizer considers all sub-plans that are assigned to data stores just
as atomic leaf nodes, meaning that the operations within the sub-plans are not subject to
reordering. The search space explored for optimization is the set of all possible rewritings
of the initial query, by pushing down select operations, expressing bind joins, join order-
ing, and intermediate data shipping. The result from the optimization step is an optimized
QEP, where, besides the possibly modified order of common plan operations, additional
information may be assigned to each operation as follows. Each binary operation (join or
union) carries the identifier of the query engine node that is in charge of performing it,
thus determining which intermediate relation will be shipped. Each equi-join operation
carries also the join method to be performed – hash, nested-loop, merge, or bind join

Bind join [32] is an efficient method for performing semi-joins across heterogeneous
data stores that uses subquery rewriting to push the join conditions. The approach to per-
form a bind join is the following: the left-hand side relation is retrieved, during which the
tuples are stored in an intermediate storage and the distinct values of the join attribute(s)
are kept in a list of values, which will be passed as a filter to the right-hand side subquery.
For example, let us consider the following CloudMdsQL query:

A(id int, x int)@DB1 = (SELECT a.id, a.x FROM a)

B(id int, y int)@DB2 = (SELECT b.id, b.y FROM b)

SELECT a.x, b.y FROM b JOIN a ON b.id = a.id

Let us assume that the query planner has decided to use the bind join method and
that the join condition will be bound to the right-hand side of the join operation. First,
the relation B is retrieved from the corresponding data store using its query mechanism.
Then, the distinct values of B.id are used as a filter condition in the query that retrieves
the relation A from its data store. Assuming that the distinct values of B.id are b1...bn,
the query to retrieve the right-hand side relation of the bind join uses the following SQL
approach (or its equivalent according to the data store’s query language):

SELECT a.id, a.x FROM a WHERE a.id IN (b1, ..., bn)

Thus, only the rows from A that match the join criteria are retrieved. In order to
perform this operation, the final subquery to retrieve relation A must be composed by
the query engine during runtime. Therefore, for each right-hand side of a bind join, the
query compiler prepares an "almost ready" native query sentence, with placeholders for
including the bind join condition, which will be added later by the query engine during
runtime.

In order to estimate the expected performance gain of a bind join, the query optimizer
takes into account the availability and type of indexes on the join attributes of the right-

60 3. Design of CloudMdsQL

hand side relation in the data store. Whenever such information is available from the data
store, the wrapper should be able to provide it. Failing to do so will prevent the planner
from planning bind join, as bind joins are beneficial only in case the join attributes are
indexed.

Subquery rewriting can be planned by the optimizer in several occasions: (a) selection
pushdowns, which result in pushing filter conditions from the common plan to sub-trees;
(b) usage of bind joins which implies adding filter conditions to the subquery in order to
allow the retrieval of only those tuples that match the join criteria; (c) taking advantage
of sort-merge joins which requires adding sorting operations to subqueries in order to
guarantee that the retrieved relations are sorted by their join attributes. The first rewriting
approach is considered always efficient, i.e. whenever the data store is capable of han-
dling it, the optimizer will plan selection pushdown. However, bind joins or merge joins
will be planned either if explicitly specified by CloudMdsQL directives or as a result of
optimization decision, of course taking into account data store’s capabilities as well.

3.6.3 Query Execution
The QEP is passed to the first worker node for execution. The query execution controller
is responsible for interpreting it and controlling its execution by passing native queries to
the corresponding wrappers and instructing them to deliver the retrieved datasets to the
operator engine and providing the operator engine the sequence of operators it must apply
to the retrieved datasets.

The execution plan is received by the query execution controller in the form of a JSON
document that contains sufficient information to configure and run efficiently each of the
CloudMdsQL operations. The first step of the query execution controller is to identify the
sub-plans within the plan that are associated to the collocated with the worker data store.
Each sub-plan is sent to its corresponding data store wrapper to be translated into a native
query. Then, the query execution controller identifies the parts of the common query
plan associated with other worker nodes and sends them to their corresponding query
execution controllers. For the rest of the query plan, the query execution controller looks
for all named tables and temporary results involved in the execution plan, identifies the
dependencies and configures their behavior. Finally, the query operator must be aware of
parameterized operations that can return distinct results depending on the different input
parameters.

Whenever possible, relations are just pipelined as a stream of volatile tuples from one
operator to another, while in other cases the results are cached inside the table storage for
later use. The table storage is used to store an intermediate relation, anytime the relation
cannot be directly pipelined to its consuming operator, which happens in particular cases:

• If a named table expression is used more than once within the query and thus ap-
pears an operand to more than one operator;

• If the intermediate relation is an operand to a blocking operation, such as sorting or
grouping;

3.6 Query Processing 61

• If the intermediate relation is the inner side of a nested-loop or hash join.

The table storage strives to use resources efficiently – it keeps an intermediate relation
in-memory unless its size becomes so big that it must be spilled to disk. The query planner
takes care not to plan for storing large tables, e.g. whenever an intermediate relation with
big expected cardinality is involved in a hash or nested-loop join, the query planner will
assign it to the outer side of the join, thus trying to keep large tables in the pipeline stream
rather than storing them, in order to avoid table storage overflows.

The operator engine is then responsible for executing the operators in the order speci-
fied by the query execution controller. When a native call is required, the operator invokes
the wrapper and opens a stream of external data that is ingested into the pipeline and, op-
tionally, cached into the table storage. When the operator requires an existing named
table, it is retrieved from the table storage and pipelined into the query execution flow.
Data is never directly provided from operators to the wrapper: when necessary, the oper-
ator informs which named tables are required to solve the operation inside the data store.
There is also a specific operator for CloudMdsQL that executes a Python program and
pipelines the result in the form of tuples.

This iterator approach obtains tuples as soon as they are generated unless there exists
a blocking operation. The resulting tuples are stored as a temporary named table into the
table storage. This final table can be retrieved by the application with a forward sequential
tuple iterator that supports rewinding and repositioning into marked rows. When the
named table is no longer required it is automatically removed from the table storage.

3.6.4 Interfacing Data Stores
Wrappers are implemented as plugins to the query engine. In order for a data store to
be accessed through the query engine, the wrapper developer must implement the corre-
sponding wrapper following a common interface that is used by the query processor to
interact with all wrappers. Whenever a CloudMdsQL query is processed, the query engine
prepares a set of native subqueries (or subquery plans) that need to be executed against the
data stores. The engine then passes each subquery to the corresponding wrapper, which
is responsible for the following:

• The execution of native subqueries against the data store, for which there are two
possibilities: (1) Server-side execution: The wrapper passes the query to the data
store for remote execution (e.g. SQL); (2) Client-side execution: The wrapper
executes the query locally, accessing the data store through a client library and
API (e.g. Sparksee and its Python API);

• To guarantee that the retrieved data matches the number and types of columns,
specified in the signature of the expected dataset in the CloudMdsQL query;

• To deliver the tuples of the retrieved datasets to the operator engine;

62 3. Design of CloudMdsQL

• To be able to instantiate other named table expressions, hence to access intermediate
relations from the operator engine (table storage) during execution.

To add support for a new data store to the query engine, the data store administrator
must implement a new wrapper. Whether the new data store will be subqueried through
CloudMdsQL with SQL or native expressions depends on the data store’s native query
mechanism. If the new data store is an RDBMS or a mapping between the data store’s
query interface and SQL statements exist, the data store can be queried with SQL ex-
pressions and its wrapper should be implemented to handle subquery plans by translating
them to native queries (see Sections 3.6.4.1 and 3.6.4.2). Otherwise, the data store must
be queried with native expressions and the wrapper implementation should handle only
native queries (see Section 3.6.4.3).

3.6.4.1 Querying SQL Compatible NoSQL Data Stores

Since the data model of some NoSQL data stores (e.g. key-value or document data stores)
can be considered as a subset of the relational model, in most cases it is possible to map
simple SQL commands to native queries, without compromising the functionality. In fact,
SQL-like languages are already commonly used with data stores based on the BigTable
data model, e.g. CQL for Cassandra. For such data stores, the recommended approach for
subquerying within CloudMdsQL is to use SQL table expressions against the data store,
even though the data store does not natively support SQL.

Whenever an SQL table expression is used as a nested query against a data store, it
is considered as a sub-select statement and hence is transformed into a sub-tree in the
QEP. Thus, each SQL table expression can be subject to further transformations and may
be possibly rewritten by the optimizer before submitted for execution to the data store.
This allows the CloudMdsQL engine to perform optimizations of the global QEP (like
pushing selections, projections, aggregations, and joins down the tree into sub-plans) or
take advantage of bind joins, etc. However, besides pushing down operations, the query
optimizer does not perform further optimization (such as operation reordering) on a sub-
plan, because it will only be used for building the corresponding native query, which
normally is supposed to be optimized by the data store’s optimizer. Each sub-plan is then
delivered to the corresponding wrapper, which interprets and transforms it to a native
query in order to execute it against the data store using its native query mechanism.

3.6.4.2 SQL Capabilities

In order to build executable subquery plans, the query planner must be aware of the capa-
bilities of the corresponding data store to perform operations supported by the common
data model. Therefore, the wrapper implementer must identify the subset of the common
algebra that is supported by the data store. Thus the query planner can take the decision
which parts of the global query plan can be handled locally by the data stores and which
part should remain in the common query plan (see Section 3.6.1). For example, a Mon-
goDB data store can perform selection operations – analogous to the document collection

3.6 Query Processing 63

method find() – but is not able to perform joins. Being aware of that, the query planner can
push selection operations down to the subquery plan, but will assign any join operation
between MongoDB document collections to the common query plan.

The method to handle data store capabilities, proposed in [56] requires that the query
engine serializes the subquery plan (or single operations from it) to a sentence of a specific
language that should be matched against a pattern, provided by the corresponding wrapper
– if the validation succeeds, then the data store is capable of executing the subquery. Thus
the query planner can determine the boundary between the common query plan the sub-
plan that will be handled by the data store.

In CloudMdsQL, a similar approach is proposed which makes use of JSON schemas
[5] as an instrument for the wrapper to express its data store’s capabilities. To test the
executability of a sub-plan (or a single operation) against a data store, the query planner
serializes it to a JSON document that has to be validated against the JSON schema ex-
posed by the wrapper. Below is an example of a capability JSON schema for a key-value
data store that is capable only of performing selection operations involving comparisons
on the ’key’ attribute (only certain elements of the schema object are shown):

{ "properties": {

"op": { "type": "string", "pattern": "SELECT" },

"tableref": { "type": "string" },

"filter": { "$ref": "#/definitions/expression" } },

"definitions": {

"expression": { "oneOf": [

{ "$ref": "#/definitions/comparison" },

{ "$ref": "#/definitions/function" }] },

"comparison": { "properties": {

"comp": { "type": "string", "pattern": "= | < | > | <= | >= | <>" },

"lhs": { "properties": {

"colref": { "type": "string", "pattern": "key" }, },

"rhs": { "type": "string" } } },

"function":{ "properties": {

"func": { "type": "string", "pattern": "AND|OR" },

"lhs": { "$ref": "#/definitions/expression" },

"rhs": { "$ref": "#/definitions/expression" } } }

} }

Now let us consider the following subquery that is composed of two conjunctive se-
lection conditions, each of which is tested against the capability specification. The result
shows that condition #1 can be handled by a selection operation in the key-value data
store and therefore it will be left in the subquery, while condition #2 doesn’t pass the vali-
dation, and therefore will be pulled up in the common plan to be processed by to common
query engine.

64 3. Design of CloudMdsQL

SELECT key, value FROM tbl WHERE key BETWEEN 10 AND 20 AND value > key

Condition#1:key BETWEEN 10 AND 20 Condition#2:value>key
Validation: success Validation: failure
{"op": "SELECT", {"op": "SELECT",

"tableref": "tbl", "tableref": "tbl",

"filter": { "filter": {

"func": "AND", "comp": ">",

"lhs": { "comp": ">=", "lhs": {"colref": "value"},

"lhs": {"colref": "key"}, "rhs": {"colref": "key"}

"rhs": "10" }, }

"rhs": { "comp": "<=", }

"lhs": {"colref": "key"},

"rhs": "20" } } }

3.6.4.3 Using Native Queries

In a CloudMdsQL query, to write native named table expression subqueries against SQL
incompatible data stores, embedded blocks of native query invocations are used. In such
occasions, the wrapper is thin – it just takes the subquery as is and executes it against the
data store without having to analyze the subquery or synthesize it from a query plan. Thus
the wrapper provides transparency allowing CloudMdsQL queries to take the most of
each data store’s native query mechanism. When the data store does not have a text-based
native query language but offers only an API, the wrapper is expected to expose such API
through an embedded scripting language. This language must fulfill the following two
requirements:

• Each query must produce a relation according to the common data model; the cor-
responding wrapper is then responsible to convert the data set to match the declared
signature, if needed.

• In order to fulfill the requirement for nested tables support, the language should
provide a mechanism to instantiate and use data retrieved by other named table
expressions.

In this chapter we use Python as an example of embedded language used by a wrap-
per. The requirements above are satisfied by the yield keyword and CloudMdsQL object,
similarly to what happens in Python named table expressions.

3.7 Use Case Example 65

3.7 Use Case Example
To illustrate the details of CloudMdsQL query processing, we consider three data stores
(briefly referred to as DB1, DB2 and DB3) as follows:

DB1 is a relational (e.g. Derby) data store storing information about scientists in the
following table:
Scientists:

Name Affiliation Country
Ricardo UPM Spain

Martin CWI Netherlands

Patrick INRIA France

Boyan INRIA France

Larri UPC Spain

Rui INESC Portugal

DB2 is a document (e.g. MongoDB) data store containing the following collections of
publications and reviews:

Publications(

{id:1, title:’Snapshot Isolation’, author:’Ricardo’, date:’2012-11-10’},

{id:5, title:’Principles of DDBS’, author:’Patrick’, date:’2011-02-18’},

{id:8, title:’Fuzzy DBs’, author:’Boyan’, date:’2012-06-29’},

{id:9, title:’Graph DBs’, author:’Larri’, date:’2013-01-06’})

Reviews (

{pub_id:1, reviewer:’Martin’, date:’2012-11-18’, review:’...text...’},

{pub_id:5, reviewer:’Rui’, date:’2013-02-28’, review:’...text...’},

{pub_id:5, reviewer:’Ricardo’, date:’2013-02-24’, review:’...text...’},

{pub_id:8, reviewer:’Rui’, date:’2012-12-02’, review:’...text...’},

{pub_id:9, reviewer:’Patrick’, date:’2013-01-19’, review:’...text...’})

DB3 is a graph data store (e.g. Sparksee) representing a social network with nodes repre-
senting persons and ’friend-of’ links between them:
We now reveal step by step how the following CloudMdsQL query is processed by the en-
gine. The query involves all the three data stores and aims to discover ’conflicts of interest
in publications from Inria reviewed in 2013’ (a conflict of interest about a publication is
assumed to exist if the author and reviewer are friends or friends-of-friends in the social
network). The subquery against DB3 uses the Sparksee Python API and user-defined
functions and in particular, a function FindShort estPathByName defined over a
graph object, which seeks the shortest path between two nodes by performing breadth-
first search, referring the nodes by their ’name’ attributes and limited to a maximal length

66 3. Design of CloudMdsQL

of the sought path.

scientists(name string, affiliation string)@DB1 = (

SELECT name, affiliation

FROM scientists)

pubs_revs(id int, title string, author string, reviewer string,

review_date timestamp)@DB2 =

(SELECT p.id, p.title, p.author, r.reviewer, r.date

FROM publications p, reviews r

WHERE p.id = r.pub_id)

friendships(person1 string, person2 string, level int

JOINED ON person1, person2

WITHPARAMS maxlevel int

CARDINALITY = card(Outer)/2)@DB3 =

{* for (p1, p2) in CloudMdsQL.Outer:

sp = graph.FindShortestPathByName(p1, p2, $maxlevel)

if sp.exists():

yield (p1, p2, sp.get_cost()) *}

friendship_levels(level int, friendship string

WITHPARAMS maxlevel int

CARDINALITY = maxlevel) =

{* for i in range(0, $maxlevel):

yield (i + 1, ’friend’ + ’-of-friend’ * i) *}

SELECT pr.id, pr.title, pr.author, pr.reviewer, l.friendship

FROM scientists s, pubs_revs pr,

friendships(2) f, friendship_levels(2) l

WHERE s.name = pr.author

AND pr.author = f.person1 AND pr.reviewer = f.person2

AND f.level = l.level

AND pr.review_date BETWEEN ’2013-01-01’ AND ’2013-12-31’

AND s.affiliation = ’INRIA’;

This query contains two SQL subqueries – one against a relational data store and the
other against a document data store. The parameterized native named table expression

3.7 Use Case Example 67

friendships against the graph data store defines a relation that represents the level
of friendship between two persons (expressed by the length of the shortest path between
them). The parameter maxlevel indicates a maximal value for the length of the sought
path; the expression is invoked with actual value of the parameter maxlevel=2, mean-
ing that only relationships of type direct-friend or friend-of-friend will be found. The pa-
rameterized Python named table expression friendship_levels generates synthetic
data containing textual representations of friendship levels between 1 and maxlevel.
Both the native and Python expressions provide cardinality functions that will be used by
the query planner to compare different QEP. The main select statement specifies the join
operations to integrate data retrieved from the three data stores. Upon query decomposi-
tion the query planner prepares the preliminary execution plan shown on Figure 3.3.

Figure 3.3 – Preliminary execution plan

In this notation the rectangles denote the boundary between the common QEP and
the sub-plans that are delivered to the wrappers for execution against data stores. Each
operator is denoted by a circle with the operator symbol inside. The operator symbols N
and Py correspond to the native expression and Python operator respectively. In subscript
to each operation, additional information is specified, such as the name of the expression
for native/Python operations, and the filter/join condition for selection/ join operations. In
superscript, the columns of the corresponding intermediate relation are specified.

In the next step, the query planner verifies the executability of sub-plans against the
capability specifications provided by each wrapper. First, it finds out that the MongoDB

68 3. Design of CloudMdsQL

Figure 3.4 – Optimized execution plan

data store DB2 is not capable of performing the join between publications and
reviews, therefore, it splits the sub-tree against DB2 into two sub-trees, aiming at
independent retrieval of the two relations, and pulls the join operation in the common
execution plan to be executed by the common query engine. Next, the optimizer seeks
for opportunities for selection pushdowns, coordinating them as well with data store’s
capabilities. Thus, the selection s.affiliation = ’INRIA’ is pushed into the
sub-tree for DB1 and the selection pr.review_date BETWEEN ’2013-01-01’
AND ’2013-12-31’ is pushed into the sub-tree for DB2 that has to retrieve data from
reviews. Doing this, the optimizer determines that the columns s.affiliation
and pr.review_date are no longer referenced in the common execution plan, so they
are simply removed from the corresponding projections on scientists and reviews
from DB1 and DB2.

We assume that the Derby and MongoDB wrappers export the needed by the query
optimizer metadata to the query engine’s catalog. Taking also into account the cardinal-
ities estimated by the user-defined cost functions of the native and Python expressions,
the query planner searches for an optimal QEP, considering the usage of bind joins, join
ordering, and the worker nodes in charge of each operation (which defines the way of
shipping intermediate data). At the end of the optimization step, the preliminary plan is
transformed into the plan on Figure 3.4 that is passed to the query execution controller of
node3.

3.7 Use Case Example 69

Each join operation in the QEP is supplemented with the identifier of the node that is
in charge of executing it. The enumeration of the nodes is according to the indexes of the
collocated data stores as we named them, i.e. node1 is collocated with DB1, etc. The join
between scientists and publications is marked with the label bind, which
means that a bind join method will be performed.

The QEP is executed by performing the following steps, including the sequence of
queries executed against the three data stores:

1. The Derby wrapper at node1 sends the following SQL statement to retrieve data
from the scientists table in the Derby data store DB1, retrieves the corre-
sponding intermediate relation, and transfers it to the operator engine of node2:
SELECT name FROM scientists WHERE affiliation = ’INRIA’

Name
Patrick

Boyan

While retrieving the above tuples to the operator engine, the latter stores them in
its temporary table storage and builds a set of distinct values of the column name,
necessary for the next step.

2. The MongoDB wrapper at node2 prepares a native query to send to the MongoDB
data store DB2 to retrieve those tuples from publications that match the bind
join criteria. It takes into account the bind join condition derived from the already
retrieved data from DB1 and generates a MongoDB query whose SQL equivalent
would be the following:

SELECT id, title, author FROM publications

WHERE author IN (’Patrick’, ’Boyan’)

However, the wrapper for DB2 does not generate an SQL statement, instead it gen-
erates directly the corresponding MongoDB native query:

db.publications.find(

{ author: {$in:[’Patrick’, ’Boyan’]} },

{ id: 1, title: 1, author: 1, _id: 0 })

Upon receiving the result dataset (a MongoDB document collection), the wrapper
converts each document to a tuple, according to the signature of the named table
expression pubs_revs, and then pipelines the tuples to the operator engine, which
performs the actual join operation using the already retrieved result set from step 1.

70 3. Design of CloudMdsQL

The result of the bind join is the contents of the following intermediate relation:

id Title Author
5 Principles of DDBS Patrick

8 Fuzzy DBs Boyan

Since this relation will be consumed by only one operator, the operator engine does
not need to store it in the table storage; therefore the tuples are simply pipelined as
input to the operation described in step 4.

3. Independently from steps 1 and 2, the wrapper prepares another MongoDB query
for DB2 that, taking into account the pushed down selection, retrieves reviews made
in 2013. The generated native query (preceded by its SQL equivalent) and the result
intermediate relation are as follows:

SELECT pub_id, reviewer FROM reviews

WHERE date BETWEEN ’2013-01-01’ AND ’2013-12-31’

db.reviews.find(

{ date: {$gte:’2013-01-01’, $lte:’2013-12-31’} },

{ pub_id: 1, reviewer: 1, _id: 0 })

Pub_id Reviewer
5 Rui

5 Ricardo

9 Patrick

4. The intermediate relations from steps 2 and 3 are joined by the operator engine at
node2 to result in another intermediate relation, which is transferred to the operator
engine of node3 to be pipelined to the next join operator:

id Title Author Reviewer
5 Principles of DDBS Patrick Rui

5 Principles of DDBS Patrick Ricardo

5. The query engine sends to the wrapper of DB3 the Python code to be executed
against the graph data store. It also provides an entry point to the intermediate
data, represented by the special Python object CloudMdsQL. The wrapper of DB3
has preliminarily initialized the object graph, needed to reference the data store’s

3.7 Use Case Example 71

graph data. The Python code of the named table expression friendships iter-
ates through a projection on the join attribute columns of tuples pipelined from the
intermediate relation of step 4. For each tuple it tests if there exists a path with
maximal length maxlevel=2 between the author and reviewer in the graph data
store. The produced tuples are as follows:

Person1 Person2 Level
Patrick Ricardo 2

As the above tuples are generated by the Python expression friendships, they
are immediately joined with their corresponding tuples of the relation from step 4
to produce the next intermediate relation:

id Title Author Reviewer Level
5 Principles of DDBS Patrick Ricardo 2

6. Independently from all of the above steps, the operator engine at node3 executes the
Python code of the expression friendship_levels, instantiated with param-
eter value maxlevel=2 to produce the relation:

Level Friendship
1 friend

2 friend-of-friend

Essentially, the involvement of this Python operator is not needed for the purpose of
the query, because the textual representation of a level of friendship can be gener-
ated directly within the code of the native expression friend ships. However,
we include it in the example in order to demonstrate a wider range of CloudMdsQL
operators.

7. Finally, the root join operation is performed, taking as input the pipelined tuples of
the intermediate relation from step 5 and matching them to the one from step 6, to
produce the final result:

id Title Author Reviewer Friendship
5 Principles of DDBS Patrick Ricardo friend-of-friend

This use case example demonstrates that the proposed query engine achieves its
objectives by fulfilling the five requirements as follows:

(a) It preserves the expressivity of the local query languages by embedding native
queries, as it was demonstrated with the named table expression friend-
ships.

72 3. Design of CloudMdsQL

(b) It allows nested queries to be chained and nesting is allowed in both SQL
and native expressions, as it was demonstrated in two scenarios. First, the
subquery against the MongoDB data store DB2 uses as input the result from
the subquery to the relational data store DB1. Second, the subquery against
the Sparksee graph data store DB3 iterates through data retrieved from the
other two data stores.

(c) The proper functioning of the query engine does not depend on the data stores’
schemas; it simply converts the data retrieved from data stores to match the
ad-hoc schema defined by the named table expressions’ signatures.

(d) It allows data-metadata transformations as it was demonstrated with the named
table expression friendships: metadata (the length of a path in the graph
data store) is converted to data (the level of friendship). It also allows data to
be synthesized as with the Python table expression friendship_levels.

(e) It allows for optimizing the query execution by rewriting subqueries according
to the bind join condition and the pushed down selections and planning for
optimal join execution order and intermediate data transfer.

3.8 Conclusion
In this chapter, we described CloudMdsQL, a common language for querying and inte-
grating data from heterogeneous cloud data stores and its query engine. By combining
the expressivity of functional languages and the manipulability of declarative relational
languages, it stands in "the golden mean" between the two major categories of query lan-
guages with respect to the problem of unifying a diverse set of data management systems.
CloudMdsQL satisfies all the legacy requirements for a common query language, namely:
support of nested queries across data stores, data-metadata transformations, schema inde-
pendence, and optimizability. In addition, it allows embedded invocations to each data
store’s native query interface, in order to exploit the full power of data stores’ query
mechanism.

The architecture of the CloudMdsQL query engine is fully distributed, so that query
engine nodes can directly communicate with each other, by exchanging code (query plans)
and data. Thus, the query engine does not follow the traditional mediator-wrapper archi-
tectural model where mediator and wrappers are centralized. This distributed architecture
yields important optimization opportunities, e.g. minimizing data transfers by moving the
smallest intermediate data for subsequent processing by one particular node. The wrap-
pers are designed to be transparent, making the heterogeneity explicit in the query in favor
of preserving the expressivity of local data stores’ query languages. CloudMdsQL sticks
to the relational data model, because of its intuitive data representation, wide acceptance
and ability to integrate datasets by applying joins, unions and other relational algebra
operations.

Chapter 4

Extending CloudMdsQL with MFR

With the advent of multistore systems, integration of unstructured big data typically stored
using HDFS with relational data becomes a requirement. One main solution is to use a
relational query engine that allows SQL-like queries to retrieve data from HDFS, which
requires the system to provide a relational view of the unstructured data and hence is not
always feasible. This chapter is based on [13, 14].

In this chapter, we extend CloudMdsQL to take full advantage of the functionality of
the underlying data processing frameworks by allowing the ad-hoc usage of user-defined
map/filter/reduce (MFR) operators in combination with traditional SQL statements. Fur-
thermore, our solution allows for optimization by enabling subquery rewriting so that
bind join can be used and filter conditions can be pushed down and applied by the data
processing framework as early as possible.

This chapter is organized as follows. The decision made to use our extending language
is done in Section 4.1. Section 4.2 introduces the language and its notation to express
map/filter/reduce subqueries. Section 4.3 presents the architecture of the query engine.
Section 4.4 elaborates more on the query processing and presents the properties of MFR
operators that constitute rewrite rules to perform query optimization. Section 4.5 gives a
use case example walkthrough. Section 4.6 concludes.

4.1 Overview
Multistore systems provide integrated access to multiple, heterogeneous data stores -
through a single query engine. Much attention is being paid on the integration of un-
structured big data (e.g. produced by web applications) typically stored in HDFS with
relational data, e.g. in a data warehouse. One main solution is to use a relational query
engine (e.g. Apache Hive) on top of a data processing framework (e.g. Hadoop MapRe-
duce), which allows SQL-like queries to retrieve data from HDFS. However, this requires
the system to provide a relational view of the unstructured data, which is not always feasi-
ble. In case the data store is managed independently from the relational query processing
system, complex data transformations may need to take place (e.g. by applying specific
map-reduce jobs) before the data can be processed by means of relational operators. Let

73

74 4. Extending CloudMdsQL with MFR

us illustrate the problem, which will be the focus of this chapter, with the following sce-
nario.
Example scenario. An editorial office needs to find appropriate reporters for a list of
publications based on given keywords. For the purpose, the editors need an analysis of
the logs from a scientific forum stored in a Hadoop cluster in the cloud to find experts in
a certain research field, considering the users who have mentioned particular keywords
most frequently; and these results must be joined to the relational data in an RDBMS
containing author and publication information. However, the forum application keeps log
data about its posts in a non-tabular structure (the left side of the example below), namely
in text files where a single record corresponds to one post and contains a fixed number
of fields about the post itself (timestamp and username in the example) followed by a
variable number of fields storing the keywords mentioned in the post.

2014-12-13, alice, storage, cloud
2014-12-22, bob, cloud, virtual, app
2014-12-24, alice, cloud

→

KW expert freq
cloud alice 2

storage alice 1

virtual bob 1

app bob 1

The unstructured log data needs to be transformed into a tabular dataset containing for
each keyword the expert who mentioned it most frequently (the right side of the example
above). Such transformation requires the use of programming techniques like chaining
map/reduce operations that should take place before the data is involved in relational
operators. Then the result dataset will be ready to be joined with the publication data re-
trieved from the RDBMS in order to suggest an appropriate reviewer for each publication.
Being able to request such data processing with a single query is the scenario that moti-
vates our work. However, the challenge in front of the query processor is optimization,
i.e. it should be able of analyzing the operator execution flow of a query and perform-
ing operation reordering to take advantage of well-known optimization techniques (e.g.
selection pushdowns and use of semi-joins) in order to yield efficient query execution.

Existing solutions to integrate such unstructured and structured data do not directly
apply to solve our problem, as they rely on having a relational view of the unstructured
data, and hence require complex transformations. SQL engines, such as Hive, on top of
distributed data processing frameworks are not always capable of querying unstructured
HDFS data, thereby forcing the user to query the data by defining map/reduce functions.

Our approach is different as we propose a query language that can directly express
subqueries that can take full advantage of the functionality of the underlying data pro-
cessing frameworks. Furthermore, the language should allow for query optimization, so
that the query operator execution sequence specified by the user may be reordered by tak-
ing into account the properties of map/filter/reduce operators together with the properties
of relational operators. This is especially useful for applying efficient query optimization
by exploiting bind joins [32]; and we pay special attention to this throughout our experi-

4.2 Query Language 75

mental evaluation. Finally, we want to respect the autonomy of the data stores, e.g. HDFS
and RDBMS, so that they can be accessible and controlled from outside our query engine
with their own interface.

We extend CloudMdsQL to retrieve data from three different kinds of data stores - an
RDBMS and a distributed data processing framework such as Apache Spark or Hadoop
MapReduce on top of HDFS - and combine them by applying data integration operators
(mostly joins). We assume that each data store is fully autonomous, i.e. the query engine
has no control over the structure and organization of data in the data stores. For this rea-
son, the architecture of our query engine is based on the traditional mediator-architectural
approach [60] that abstracts the query engine from the specifics of each of the underlying
data stores. However, users need to be aware of how data are organized across the data
stores, so that they write valid queries. A single query of our language can request data to
be retrieved from both stores and then a join to be performed over the retrieved datasets.
The query therefore contains embedded invocations to the underlying data stores, ex-
pressed as subqueries. As our query language is functional, it introduces a tight coupling
between data and functions. A subquery, addressing the data processing framework, is
represented by a sequence of map/filter/reduce operations, expressed in a formal nota-
tion. On the other hand, SQL is used to express subqueries that address the relational
data store as well as the main statement that performs the integration of data retrieved
by all subqueries. Thus, a query benefits from both high expressivity (by allowing the
ad-hoc usage of user-defined map/filter/reduce operators in combination with traditional
SQL statements) and optimizability (by enabling subquery rewriting so that bind join and
filter conditions can be pushed inside and executed at the data store as early as possible).

4.2 Query Language
In this section, we introduce a formal notation to define Map/Filter/Reduce (MFR) sub-
queries in CloudMdsQL that request data processing in an underlying big data processing
framework (DPF). Then we give an overview of how MFR statements are combined with
SQL statements to express integration queries against a relational data store and a DPF.
Notice that the data processing defined in an MFR statement is not executed by the query
engine, but is meant to be translated to a sequence of invocations to API functions of the
DPF. We use Apache Spark as an example of DPF, but the concept can be generalized to
a wider range of frameworks that support the MapReduce programming model (such as
Hadoop MapReduce, CouchDB, etc.).

4.2.1 MFR Notation
An MFR statement represents a sequence of MFR operations on datasets. A dataset is
considered simply as an abstraction for a set of tuples, where a tuple is a list of values,
each of which can be a scalar value or another tuple. Although tuples can generally
have any number of elements, mostly datasets that consist of key-value tuples are being

76 4. Extending CloudMdsQL with MFR

processed by MFR operations. In terms of Apache Spark, a dataset corresponds to an
RDD (Resilient Distributed Dataset - the basic programming unit of Spark). Each of the
three major MFR operations (MAP, FILTER and REDUCE) takes as input a dataset and
produces another dataset by performing the corresponding transformation. Therefore, for
each operation there should be specified the transformation that needs to be applied on
tuples from the input dataset to produce the output tuples. Normally, a transformation
is expressed with an SQL-like expression that involves special variables; however, more
specific transformations may be defined through the use of lambda functions.

Core operators. The MAP operator produces key-value tuples by performing a spec-
ified transformation on the input tuples. The transformation is defined as an SQL-like
expression that will be evaluated for each tuple of the input data set and should return
a pair of values. The special variable TUPLE refers to the input tuple and its elements
are addressed using a bracket notation. Moreover, the variables KEY and VALUE may
be used as aliases to TUPLE[0] and TUPLE[1] respectively. The FILTER operator se-
lects from the input tuples only those, for which a specified condition is evaluated to true.
The filter condition is defined as a boolean expression using the same special variables
TUPLE, KEY and VALUE. The REDUCE operator performs aggregation on values asso-
ciated with the same key and produces a key-value dataset where each key is unique. The
reduce transformation may be specified as an aggregate function (SUM, AVG, MIN,
MAX or COUNT). Similarly to MAP, two other mapping operators are introduced: FLAT
_MAP may produce numerous output tuples for a single input tuple; and MAP_VALUES
defines a transformation that preserves the keys, i.e. applicable only to the values.

Let us consider the following simple example inspired by the popular MapReduce tu-
torial application "word count". We assume that the input dataset for the MFR statement
is a list of words. To count the words that contain the string "cloud", we write the follow-
ing composition of MFR operations:

MAP(KEY, 1).FILTER(KEY LIKE ’%cloud%’).REDUCE(SUM)

The first operation transforms each tuple (which has a single word as its only element)
of the input dataset into a key-value pair where the word is mapped to a value of 1. The
second operation selects only those key-value pairs for which the key contains the string
"cloud". And the third one groups all tuples by key and performs a sum aggregate on the
values for each key.

To process this statement, the query engine first looks for opportunities to optimize
the execution by operator reordering. By applying MFR rewrite rules (explained in detail
in Section 4.4.2), it finds out that the FILTER and MAP operations may be swapped so
that the filtering is applied at an earlier stage. Further, it translates the sequence of op-
erations into invocations of the underlying DPF’s API. Notice that whenever a REDUCE
transformation function has the associative property (like the SUM function), an addi-
tional combiner function call may be generated that precedes the actual reducer, so that
as much data as possible will be reduced locally; e.g., this would be valid in the case of
Hadoop MapReduce as the DPF, because it does not automatically perform local reduce.

4.2 Query Language 77

In the case of Apache Spark as the DPF, the query engine generates the following Python
fragment to be included in a script that will be executed in Spark’s Python environment:

dataset.filter(lambda k: ’cloud’ in k) \

.map(lambda k: (k, 1)) \

.reduceByKey(lambda a, b: a + b)

In this example, all the MFR operations are translated to their corresponding Spark
functions and all transformation expressions are translated to Python anonymous func-
tions. In fact, to increase its expressivity, the MFR notation allows direct usage of anony-
mous functions to specify transformation expressions. This allows user-defined mapping
functions, filter predicates, or aggregates to be used in an MFR statement. The user, how-
ever, needs to be aware of how the query engine is configured to interface the DPF, in
order to know which language to use for the definition of inline anonymous functions
(e.g. Spark may be used with Python or Scala, CouchDB - with JavaScript, etc.).

Input/output operators are normally used for transformation of data before and af-
ter the core map/filter/reduce execution chain. The SCAN operator loads data from its
storage and transforms it to a dataset ready to be consumed by a core MFR operator. The
PROJECT operator converts a key-value dataset to a tabular dataset ready to be involved
in relational operations.

4.2.2 Combining SQL and MFR
Queries that integrate data from both a relational data store and a DPF usually consist of
two subqueries (one expressed in SQL that addresses the relational data store and another
expressed in MFR that addresses the DPF) and an integration SELECT statement. The
syntax follows the CloudMdsQL grammar introduced in 3. A subquery is defined as
a named table expression, i.e. an expression that returns a table and has a name and
signature. The signature defines the names and types of the columns of the returned
relation. Thus, each query, although agnostic to the underlying data stores’ schemas,
is executed in the context of an ad-hoc schema, formed by all named table expressions
within the query. A named table expression can be defined by means of either an SQL
SELECT statement (that the query compiler is able to analyze and possibly rewrite) or
a native expression (that the query compiler considers as a black box and passes to the
wrapper as is, thus delegating it the processing of the subquery).

We extend the usability of CloudMdsQL by adding the capability of handling MFR
subqueries against DPFs and combining them with subqueries against other data stores.
This is done in full compliance with CloudMdsQL properties, such as the ability to ex-
press nested subqueries (so that the output of one subquery, e.g. against an RDBMS, can
be used as input to another subquery, e.g. MFR) which we further illustrate by the us-
age of bind joins. MFR subqueries are expressed as native named table expressions; this
means that they are passed to their corresponding wrappers to process them (explained in
more detail in Section 4.3).

78 4. Extending CloudMdsQL with MFR

In general, a single query can address a number of data stores by containing several
named table expressions. We will now illustrate with a simple example how SQL and
MFR statements can be combined, and in Section 4.5 will focus on a more sophisticated
example involving 3 data stores. The following sample query contains two subqueries,
defined by the named table expressions T1 and T2, and addressed respectively against the
data stores aliased with identifiers rdb (for the SQL data store) and hdfs (for the DPF):

T1 (title string, kw string)@rdb = (SELECT title, kw FROM tbl)

T2 (word string, count int)@hdfs = {*
SCAN(TEXT,’words.txt’)

.MAP(KEY,1).REDUCE(SUM).PROJECT(KEY,VALUE) *}

SELECT title, kw, count FROM T1 JOIN T2 ON T1.kw = T2.word

WHERE T1.kw LIKE ’%cloud%’

The purpose of this query is to perform relational algebra operations (expressed in the
main SELECT statement) on two datasets retrieved from a relational data store and a DPF.
The two subqueries are sent independently for execution against their data stores in order
the retrieved relations to be joined by the query engine. The SQL table expression T1 is
defined by an SQL subquery. T2 is an MFR expression that requests data retrieval from a
text source and data processing by the specified map/reduce operations. Both subqueries
are subject to rewriting by pushing into it the filter condition kw LIKE ’%cloud%’,
specified in the main SELECT statement, thus reducing the amount of the retrieved data
by increasing the subquery selectivity and the overall efficiency. The so retrieved datasets
are then converted to relations following their corresponding signatures, so that the main
SELECT statement can be processed with semantic correctness. The PROJECT operator
in the MFR statement provides a mapping between the dataset fields and the named table
expression columns.

4.3 Query Engine Architecture
In this section, we briefly describe the architecture of our system with an overview of the
required steps to process a query. The query language presented hereby assumes a query
engine that follows the traditional mediator-wrapper architectural approach. By explicitly
naming a data store identifier in a named table expression’s signature, the query addresses
the specific wrapper that is preliminarily configured and responsible for handling sub-
queries against the corresponding data store. Thus, a query can express an integration of
data across several data stores, and in particular, integration of structured (relational DB),
semi-structured (document DB), and unstructured (distributed storage, based on HDFS)
data.

Figure 4.1 depicts the corresponding system architecture, containing a CloudMdsQL
compiler, a common query processor (the mediator), three wrappers, and the three data
stores a distributed data processing framework (DPF), an RDBMS, and a document data

4.3 Query Engine Architecture 79

store. The DPF is in charge of performing parallel data processing over a distributed data
store. In this architecture, each data store has an associated wrapper that is responsible for
executing subqueries against the data store and converting the retrieved datasets to tables
matching the requested number and types of columns, so that they are ready to be con-
sumed by relational operators at the query processor. The query processor consumes the
query execution plan generated by the compiler and interacts with the wrappers through a
common interface to: request handling of subqueries, centralize the information provided
by the wrappers, and integrate the subqueries’ results. The wrappers transform subqueries
provided via the common interface into queries for the data stores. This generic architec-
ture gives us the possibility to use a specific implementation of the query processor and
DPF wrapper, while reusing the CloudMdsQL query compiler and wrappers for relational
and document data stores. Although we can also reuse the CloudMdsQL query engine that
has a distributed architecture.

Figure 4.1 – Basic architecture of the query engine with MFR

Each of the wrappers is responsible for completing the execution of subqueries and
retrieving the results. Upon initialization, each wrapper may provide to the query com-
piler the capability of its data store to process pushed down operations [40]. In our setup,
all the three wrappers can accept pushdowns of filter predicates. Both the relational and
document data store wrappers accept requests from the query processor in the form of
query execution sub-plans represented as trees of relational algebra operators, resulting
from the compilation of the SELECT statements expressed in the corresponding SQL
named table expressions. The sub-plans may include selection operations resulting from
pushed down predicates. The wrapper of the relational data store has to build a SELECT
statement out of a query sub-plan and to run it against its data store; then it retrieves the

80 4. Extending CloudMdsQL with MFR

datasets and delivers them to the query processor in the corresponding format. The wrap-
per of the document data store (in our case, MongoDB) has to translate the sequence of
relational operators from a query sub-plan to the corresponding sequence of MongoDB
API calls; then it converts the resulting documents to tuples that match the signature of
the corresponding named table expression [40].

The wrapper of the distributed data processing framework has a slightly different be-
havior as it processes MFR expressions wrapped in native subqueries. First it parses and
interprets a subquery written in MFR notation; then uses the MFR planner to find opti-
mization opportunities; and finally translates the resulting sequence of MFR operations to
a sequence of DPF’s API methods to be executed. Once a dataset is retrieved as a result
of the subquery execution, the wrapper provides it to the query processor in the format
requested by the corresponding named table expression signature. The MFR planner de-
cides where to position pushed down operations; e.g. it applies rules for MFR operator
reordering to find the optimal place of a filter operation in order to apply it as early as
possible and thus to reduce the query execution cost. To search for alternative operation
orderings, the planner takes into account MFR rewrite rules, introduced in next section.

4.4 Query Processing
The query compiler first decomposes the query into a preliminary query execution plan
(QEP), which, in its simplest form, is a tree structure representing relational operations.
At this step, the compiler also identifies sub-trees within the query plan, each of which is
associated to a certain data store. Each of these sub-plans is meant to be delivered to the
corresponding wrapper, which has to translate it to a native query and execute it against
its data. The rest of the QEP is the common plan that will be handled by the query engine.

4.4.1 Query Optimization
Before its actual execution, a QEP may be rewritten by the query optimizer. To compare
alternative rewritings of a query, the optimizer uses a simple catalog, which provides ba-
sic information about data store collections such as cardinalities, attribute selectivities and
indexes, and a simple cost model. Because of the autonomy of the underlying data stores,
in order to derive local cost models, various classical black-box approaches for hetero-
geneous cost modeling, such as probing [66] and sampling [65, 67], have been adopted
by the query optimizer. Thus, cost information can be collected by the wrappers and ex-
posed to the optimizer in the form of cost functions or data store statistics. Furthermore,
the query language allows for user-defined cost and selectivity functions. And in case of
lack of any cost information, heuristic rules are applied.

In our concrete example scenario with PostgreSQL, MongoDB, and MFR subqueries,
we use the following strategy. The query optimizer executes an EXPLAIN request to
PostgreSQL to directly estimate the cost of a subquery. The MongoDB wrapper runs in
background probing queries to collect cardinalities of document collections, index avail-

4.4 Query Processing 81

abilities, and index value distributions (to compute selectivities) and caches them in the
query engine’s catalog. As for an MFR subquery, if there is no user-provided cost infor-
mation, the optimizer assumes that it is more expensive than SQL subqueries and plans
it at the end of the join order, which would also potentially benefit from the execution of
bind joins.

The search space explored for optimization is the set of all possible rewritings of the
initial query, by pushing down select operations, expressing bind joins, and join ordering.
Unlike in traditional query optimization where many different permutations are possible,
this search space is not very large, so we use a simple exhaustive search strategy.

Subquery rewriting takes place in order to request early execution of some operators
and thus to increase its overall efficiency. Although several operations are subject to
pushdowns across subqueries, we concentrate on the inclusion of only filter operations
inside an MFR subquery. Generally, this is done in two stages: first, the query processor
determines which operations can be pushed down for remote execution at the data stores;
and second, the MFR planner may further determine the optimal place for inclusion of
pushed down operations within the MFR operator chain by applying MFR rewrite rules
(explained later in this section). Pushing a selection operation inside a subquery, either in
SQL query or MFR operation chain, is usually considered beneficial, because it delegates
the selection directly to the data store, which allows for early reducing of the size of data
processed and retrieved from the data stores.

4.4.2 MFR Rewrite Rules
In this section, we introduce and enumerate some rules for reordering of MFR operators,
based on their algebraic properties. These rules are used by the MFR planner to optimize
an MFR subquery after a selection pushdown takes place.

Rule #1 (name substitution): upon pushdown, the filter is included just before the PRO
JECT operator and the filter predicate expression is rewritten by substituting column
names with references to dataset fields as per the mapping defined by the PROJECT ex-
pressions. After this initial inclusion, other rules apply to determine whether it can be
moved even farther. Example:

T1(a int, b int)@db1 = {*PROJECT(KEY, VALUE[0]) *}

SELECT a, b FROM T1 WHERE a > b

is rewritten to:
T1(a int, b int)@db1 ={*FILTER(KEY>VALUE[0])

.PROJECT(KEY,VALUE[0])*}

SELECT a, b FROM T1

Rule #2: REDUCE(<transformation>).FILTER(<predicate>) is equivalent
to FILTER(<predicate>).REDUCE(<transformation>), if predicate con-
dition is a function only of the KEY, because thus, applying the FILTER before the

82 4. Extending CloudMdsQL with MFR

REDUCE will preserve the values associated to those keys that satisfy the filter condition
as they would be if the FILTER was applied after the REDUCE. Analogously, under the
same conditions, MAP_VALUES(<transformation>) .FILTER(<predicate>)
is equivalent to FILTER(<predicate>).MAP_VALUES(<transformation>).

Rule #3: MAP(<expr_list>).FILTER(<predicate1>) is equivalent to FIL-
TER(<predicate2 >).MAP(<expr_list>), where predicate1 is rewritten
to predicate2 by substituting KEY and VALUE as per the mapping defined in expr_-
list. Example:

MAP(VALUE[0], KEY).FILTER(KEY > VALUE)→
FILTER(VALUE[0] > KEY).MAP(VALUE[0], KEY)

Since planning a filter as early as possible always increases the efficiency, the planner
always takes advantage of moving a filter by applying rules #2 and #3 whenever they are
applicable.

4.4.3 Bind Join
Bind join [32] is an efficient method for implementing semi-joins across heterogeneous
data stores that uses subquery rewriting to push the join conditions. We adapt the bind
join approach for MFR subqueries and we focus on it in our experimental evaluation, as
it brings a significant performance gain in certain occasions.

Using bind join between relational data (expressed in an SQL named table expres-
sion) and big data (expressed in an MFR named table expression) allows for reducing the
computation cost at the DPF and the communication cost between the DPF and the query
engine. This approach implicates that the list of distinct values of the join attribute(s) from
the relation, preliminarily retrieved from the relational data store, and is passed as a filter
to the MFR subquery. To illustrate the approach, let us consider the following SELECT
statement performing a join between an SQL named table R and an MFR named table H:

SELECT H.x, R.y FROM R JOIN H ON R.id = H.id WHERE R.z=’abc’

To process this query using the bind join method, first, the table R is retrieved from
the relational data store; then, assuming that the distinct values of R.id are r1...rn,
the condition id IN (r1, ..., rn) is passed as a FILTER to the MFR subquery that re-
trieves the dataset H from HDFS data store. Thus, only the tuples from H that match the
join criteria are retrieved. Moreover, if the filter condition can be pushed even further
in the MFR chain (according to the MFR rewrite rules) and thus to overcome at least
one REDUCE operation, this may lead to a significant performance boost, as data will be
filtered before at least one shuffle phase.

To estimate the expected performance gain of a bind join, the query optimizer takes
into account the overhead a bind join may produce. First, when using bind join, the

4.5 Use Case Example 83

query engine must wait for the SQL named table to be fully retrieved before initiating
the execution of the MFR subquery. Second, if the number of distinct values of the join
attribute is large, using a bind join may slower the performance as it requires data to be
pushed into the MFR subquery. In the example above, the query engine first asks the
RDBMS (e.g. by running an EXPLAIN statement) for an estimation of the cardinality
of data retrieved from R, after rewriting the SQL subquery by including the selection
condition R.z=’abc’. If the estimated cardinality does not exceed a certain threshold,
the optimizer plans for performing a bind join that can significantly increase the MFR
subquery selectivity and affect the volume of transferred data.

4.5 Use Case Example
In this section, we reveal the steps the query engine takes to process a query using se-
lection pushdown and especially bind join as optimization techniques. We also focus on
the way the query engine dynamically rewrites the MFR subquery to perform a bind join.
We consider three distinct data stores: PostgreSQL as the relational data store (referred
to as rdb), MongoDB as the document data store (referred to as mongo) which will
be subqueried by SQL expressions that are mapped by the wrapper to MongoDB calls,
and an HDFS cluster (referred to as hdfs) processed using the Apache Spark framework.

Datasets. For the use case walkthrough we consider small sample datasets in the con-
text of the multistore query example described in Section 4.1.
The rdb data store stores structured data about scientists and their affiliations in the fol-
lowing table:

Scientists:

Name Affiliation Country
Ricardo UPM Spain

Martin CWI Netherlands

Patrick INRIA France

Boyan INRIA France

Larri UPC Spain

Rui INESC Portugal

The mongo data store contains a document collection about publications including their
keywords as follows:

Publications(

{ title:’Snapshot Isolation in Cloud DBs’, author:’Ricardo’,

keywords: [’transaction’,’cloud’] },

{ title:’Principles of Distributed Cloud DBs’, author:’Patrick’,

84 4. Extending CloudMdsQL with MFR

keywords: [’cloud’, ’storage’] },

{ title:’Graph Data stores’, author:’Larri’, keywords:[’graph’, ’NoSQL’]})

HDFS stores unstructured log data from a scientific forum in text files where a single
record corresponds to one post and contains a timestamp and username followed by a
variable number of fields storing the keywords mentioned in the post:

Posts (date, author, kw1, kw2,...,kwn)

2014-11-10, alice, storage, cloud
2014-11-10, bob, cloud, virtual, app
2014-11-10, alice, cloud

Query 1. This query aims at finding appropriate reviewers for publications of authors
with a certain affiliation. It considers each publication keywords and the experts who
have mentioned them most frequently on the scientific forum. The query combines data
from the three data stores and can be expressed as follows.

scientists(name string, affiliation string)@rdb = (

SELECT name, affiliation

FROM scientists)

publications(autor string, title string, keywords array)@mongo = (

SELECT author, title, keywords

FROM publications)

experts(kw string, expert string)@hdfs = {*
SCAN(TEXT, ’posts.txt’, ’,’) (op1)

.FLAT_MAP(lambda data: product (data[2:], [data[1]])) (op2)

.MAP(TUPLE, 1) (op3)

.REDUCE(SUM) (op4)

.MAP(KEY[0], (KEY[1], VALUE)) (op5)

.REDUCE(lambda a, b: b if b[1] > a[1] else a) (op6)

.PROJECT(KEY, VALUE[0]) (op7) *}

SELECT p.author, p.title, e.kw, e.expert

FROM scientists s, publications p, experts e

WHERE s.affiliation = ’INRIA’

AND p.author = s.name

AND e.kw IN p.keywords

Query 1 contains three subqueries. The first two subqueries is a typical SQL statement to
get data about respectively scientists (from PostgreSQL) and scientific publications (from

4.5 Use Case Example 85

MongoDB). The third subquery is an MFR operation chain that transforms the unstruc-
tured log data from the forum posts and represents the result of text analytics as a relation
that maps each keyword to the person who has most frequently mentioned it. To achieve
the result dataset, the MFR operations request transformations over the stored data, each
of which is expressed either in a declarative way or with anonymous (lambda) Python
functions.

The SCAN operation op1 reads data from the specified text source and splits each line
to an array of values. Let us recall that the produced array contains the author of the
post in its second element and the mentioned keywords in the subarray starting from the
third element. The following FLAT_MAP operation op2 consumes each emitted array as
a tuple and transforms each tuple using the defined Python lambda function, which per-
forms a Cartesian product between the keywords subarray and the author, thus emitting a
number of keyword-author pairs. Each of these pairs is passed to the MAP operation op3,
which produces a new dataset, where each keyword-author pair is mapped to a value of 1.
Then the REDUCE operation op4 aggregates the number of occurrences for each keyword-
author pair. The next MAP operation op5 transforms the dataset by mapping each keyword
to a pair of author-occurrences. The REDUCE op6 finds for each keyword the author with
the maximum number of occurrences, thus finding the expert who has mostly used the
keyword. Finally, the PROJECT defines the mapping between the dataset fields and the
columns of the returned relation.

Query Processing. First, Query 1 is compiled into the preliminary execution plan, de-
picted in Figure 4.2. Then, the query optimizer finds the opportunity for pushing down
the condition affiliation = ’INRIA’ into the relational data store. Thus, the se-
lection condition is included in the WHERE clause of the subquery for rdb. Doing this,
the compiler determines that the column s.affiliation is no longer referenced in
the common execution plan, so it is simply removed from the corresponding projection
on scientists from rdb. This pushdown implies increasing the selectivity of the
subquery, which is identified by the optimizer as an opportunity for performing a bind
join. To further verify this opportunity, the query optimizer asks rdb to estimate the car-
dinality for the rewritten SQL subquery and, considering also the availability of an index
on the field author in the MongoDB collection publications, the optimizer plans
for bind join by pushing into the sub-plan for MongoDB the selection condition author
IN <authors>, where <authors> refers to the list of distinct values of the s.name
column, which will be determined at runtime.

Analogously, by using the catalog information provided by the MongoDB wrapper
to estimate the cardinality of the join between scientists and publications, the optimizer
plans to also involve the MFR subquery into a bind join and thus pushes the bind join
condition kw IN (<keywords>). Here, <keywords> is a placeholder for the list
of distinct keywords retrieved from the column p.keywords. Recall that each value
in p.keywords is an array, so the query processor will have to first flatten the in-
termediate relation by transforming the array-type column p.keywords to a scalar-type
column named _keywords. Since p.keywords participates in the join condition kw IN

86 4. Extending CloudMdsQL with MFR

Figure 4.2 – Preliminary query plan for Query 1

keywords, its flattening leads to transforming the join to an equi-join which allows for
the query engine to utilize efficient methods for equi-joins.

Furthermore, the MFR planner seeks for opportunities to move the bind join filter
condition kw IN (<keywords>) earlier in the MFR operation chain by applying the
MFR rewrite rules, explained below. At this stage, although <keywords> is not known,
the planner has all the information needed to apply the rules. After these transformations,
the optimized query plan (Figure 4.3) is executed by the query processor. In this notation,
we use the symbol F to denote the flattening operator.

To execute the query plan, the query engine takes the following steps:

1. The query processor delivers to the wrapper of rdb the following SQL statement,
rewritten by taking into account the pushed selection condition, for execution against
the PostgreSQL data store, and waits for the corresponding result set to be retrieved
in order to compose the bind join condition for the next step.

SELECT name

FROM scientists

WHERE affiliation = ’INRIA’

2. The MongoDB wrapper prepares a native query to send to the MongoDB data store
to retrieve those tuples from publications that match the bind join criteria. It
takes into account the bind join condition derived from the already retrieved data

4.5 Use Case Example 87

Figure 4.3 – Optimized query plan for Query 1

Name
Patrick

Boyan

from rdb and generates a MongoDB query whose SQL equivalent would be the
following:

SELECT title, author, keywords FROM publications

WHERE author IN (’Patrick’, ’Boyan’)

However, the wrapper does not generate an SQL statement; instead it generates di-
rectly the corresponding MongoDB native query:

db.publications.find(

{ author: {$in:[’Patrick’, ’Boyan’]} },

{ title: 1, author: 1, keywords: 1, _id: 0 })

Upon receiving the result dataset (a MongoDB document collection), the wrap-
per converts it to a table, according to the signature of the named table expression

88 4. Extending CloudMdsQL with MFR

publications, ready to be joined with the already retrieved result set from step
1. The result of the bind join is the contents of the following intermediate relation:

author title keywords
Patrick Principles of DDBS [’cloud’, ’storage’]

3. The flattening operator transforms the intermediate relation from step 2 to the fol-
lowing one:

author title _keywords
Patrick Principles of DDBS cloud

Patrick Principles of DDBS storage

4. The query processor identifies a list of the distinct values of the join attribute
_keywords and derives from it the bind join condition kw IN (’cloud’,
’storage’) to push inside the subquery against hdfs.

5. The MFR planner for the wrapper of hdfs decides at which stage of the MFR se-
quence to insert the filter, by applying a number of rewrite rules. According to rule
#1, the planner initially inserts the filter just before the PROJECT op7 by rewriting
the condition expression as follows:

.FILTER(KEY IN (’cloud’, ’storage’))

Next, by applying consecutively rules #2 and #3, the planner moves the FILTER
before the MAP op5 by rewriting its condition expression according to rule #3:

.FILTER(KEY[0] IN (’cloud’, ’storage’))

Analogously, rules #2 and #3 are applied again, moving the FILTER before op3,
rewriting the expression once again, and thus settling it to its final position. After all
transformations the MFR subquery is converted to the final MFR expression below.

SCAN(TEXT, ’posts.txt’, ’,’)

.FLAT_MAP(lambda data: product(data[2:], [data[1]]))

.FILTER(TUPLE[0] IN (’cloud’, ’storage’))

.MAP(TUPLE, 1)

.REDUCE(SUM)

.MAP(KEY[0], (KEY[1], VALUE))

.REDUCE(lambda a, b: b if b[1] > a[1] else a)

4.6 Conclusion 89

6. The wrapper interprets the reordered MFR sequence, translates it to the Python
script below as per the Python API methods of Spark, and executes it within the
Spark framework.

sc.textFile(’posts.txt’).map(lambda line:line.split(’,’)) \

.flatMap(lambda data: product(data[2:], [data[1]])) \

.filter(lambda tup: tup[0] in [’cloud’,’storage’]) \

.map(lambda tup: (tup, 1)) \

.reduceByKey(lambda a, b: a + b) \

.map(lambda tup: (tup[0][0], (tup[0][1], tup[1]))) \

.reduceByKey(lambda a, b: b if b[1] > a[1] else a)

The result of MFR query reordering and interpreting on Spark is another interme-
diate relation:

kw expert
cloud alice

storage alice

7. The intermediate relations from steps 3 and 6 are joined to produce the final result
that lists the suggested experts for each publication regarding the given keywords:

author title kw expert
Patrick Principles of DDBS cloud alice

Patrick Principles of DDBS storage alice

4.6 Conclusion
In this chapter, we extended the CloudMdsQL query language with a simple notation
to specify the sequence of MFR operators for the data processing frameworks , and we
propose a query engine based on CloudMdsQL query engine in order to integrate data
from relational, NoSQL, and big data stores (such as HDFS).

Our query language can directly express subqueries that can take full advantage of
the functionality of the underlying data stores and processing frameworks. Furthermore,
it allows for query optimization, so that the query operator execution sequence specified
by the user may be reordered by taking into account the properties of map/filter/reduce
operators together with the properties of relational operators.

Chapter 5

Prototype

To validate our proposed MFR extension, we have developed a prototype as part of the
CloudMdsQL query engine. Remember form Chapter 3 that each query engine node
consists of two parts (master and worker) and is collocated at each data store node in
a computer cluster. A master node takes as input a query and produces a query plan,
which it sends to one chosen query engine node for execution. It uses a query planner that
performs query analysis and optimization, and produces a query plan serialized that can
be easily transferred across query engine nodes. Workers collaborate to execute a query
plan, produced by a master, against the underlying data stores involved in the query. Each
worker node acts as a lightweight runtime database processor atop a data store and is
composed of three generic modules (i.e. same code library) - query execution controller,
operator engine, and table storage - and one wrapper module that is specific to a data
store.

In this chapter, we describe the implementation of the CloudMdsQL query engine and
our MFR extension. It is based on [38, 37].

This chapter is organized as follows. Section 5.1 gives an overview of the chap-
ter. Section 5.2 describes the query planner component, which compiles a CloudMdsQL
query and generates a query execution plan to be processed by the query engine. Section
5.3 presents the execution engine with its modules (query execution controller, operator
engine, table storage and wrappers). Section 5.4 introduces the specific wrappers that
have been implemented in the CoherentPaaS project to interface with data stores. Section
5.5 concludes.

5.1 Overview
The current implementation of the query engine uses a modified version of the open
source Derby DBMS to accept CloudMdsQL queries and transform the corresponding
execution plan into Derby SQL operations. To extend the CloudMdsQL query engine
with MFR, we developed an MFR planner to be used by the wrapper of the data process-
ing framework (DPF). The MFR planner finds optimization opportunities and translates

91

92 5. Prototype

the resulting sequence of MFR operations to a sequence of DPF’s API methods to be
executed. Figure 5.1 shows the various components of the query engine prototype.

Figure 5.1 – Query engine implementation components

5.2 Query Planner
The query planner is implemented in C++; it compiles a CloudMdsQL query and gener-
ates a query execution plan (QEP) to be processed by the query execution engine. The
result of the query planning is the JSON serialization of the generated QEP, which is rep-
resented as a directed acyclic graph, where leaf nodes are references to named tables and
all other nodes represent relational algebra operations. The query planning process goes
through several phases, which we briefly focus on below.

The query compiler uses the Boost.Spirit framework for parsing context-free gram-
mars, following the recursive descent approach. Boost.Spirit allows grammar rules to be
defined by means of C++ template metaprogramming techniques. Each grammar rule has

5.2 Query Planner 93

an associated semantic action, which is a C++ function that should return an object, cor-
responding to the grammar rule.
The compiler first performs lexical and syntax analyzes of a CloudMdsQL query to de-
compose it into an abstract syntax tree (AST) that corresponds to the syntax clauses of
the query.

At this stage the compiler identifies a forest of sub-trees within the AST, each of which
is associated to a certain data store (labeled by a named table) and meant to be delivered to
the corresponding wrapper to translate it to a native query and execute it against the data
store. The rest of the AST is the part that will be handled by the common query engine
(the common query AST).

Furthermore, the compiler performs a semantic analysis of the AST by first resolving
the names of tables and columns according to the ad-hoc schema of the query following
named table signatures. Datatype analysis takes place to check for datatype compatibili-
ties between operands in expressions and to infer the return datatype of each operation in
the expression tree, which may be further verified against a named table signature, thus
identifying implicit typecasts or type mismatches. WHERE clause analysis is performed
to discover implicit equi-join conditions and opportunities for moving predicates earlier
in the common plan. The crossreference analysis aims at building a graph of dependen-
cies across named tables. Thus the compiler identifies named tables that participate in
more than one operation, which helps the execution controller to plan for storing such
intermediate data in the table storage. In addition, the optimizer avoids pushing down
operations in the sub-trees of such named tables. To make sure that the dependency graph
has no cycles, hence the generated QEP will be a directed acyclic graph, the compiler
implements a depth-first search algorithm to detect and reject any query that has circular
references.

Error handling is performed at the compilation phase. Errors are reported as soon
as they are identified (terminating the compilation execution), together with the type of
the error and the context, within which they were found (e.g. unknown table or column,
ambiguous column references, incompatible types in expression, etc.).

The query optimizer uses the cost information in the catalog and implements a sim-
ple exhaustive search strategy to explore all possible rewritings of the initial query, by
pushing down select operations, expressing bind joins, join ordering, and intermediate
data shipping. Furthermore, it uses the capability manager to validate each rewritten
subquery against its data store capability specification, which is exported by the wrapper
into the catalog in the form of a JSON schema. Thus, the capability manager simply se-
rializes each sub-tree of the AST into a JSON object and attempts to validate it against
the corresponding JSON schema. This allows a rewritten sub-plan to a data store to be
validated by the query planner before it is actually delivered to the wrapper for execution;
and in case the validation fails, the rewriting action (e.g. selection pushdown) is reverted.

The QEP builder is responsible for the generation of the final QEP, ready to be han-
dled by the query execution engine, which also includes: resolving attribute names to
column ordinal positions considering the named table expression signatures, removing
columns from intermediate projections in case they are no longer used by the operations

94 5. Prototype

above (e.g. as a result of operation pushdown), and serializing the QEP to JSON.

5.3 Execution Engine
The main reasons to choose Derby data store to implement the operator engine are because
Derby:

• Allows extending the set of SQL operations by means of CREATE FUNCTION
statements. This type of statements creates an alias, which an optional set of pa-
rameters, to invoke a specific Java component as part of an execution plan.

• Has all the relational algebra operations fully implemented and tested.

• Has a complete implementation of the JDBC API.

• Allows extending the set of SQL types by means of CREATE TYPE statements. It
allows working with dictionaries and arrays.

Having a way to extend the available Derby SQL operations allows designing the
resolution of the named table expressions. In fact, the query engine requires three
different components to resolve the result sets retrieved from the named table ex-
pressions:

• WrapperFunction: To send the partial execution plan to a specific data store
using the wrappers interfaces and retrieve the results.

• PythonFunction: To process intermediate result sets using Python code.

• NestedFunction: To process nested CloudMdsQL queries.
Named table expressions admit parameters using the keyword WITHPARAMS.
However, the current implementation of the CREATE FUNCTION statement
is designed to bind each parameter declared in the statement with a specific
Java method parameter. In fact, it is not designed to work with Java methods
that can be called with a variable number of parameters, which is a feature in-
troduced since Java 6. To solve this gap, we have modified the internal valida-
tion of the CREATE FUNCTION statement and how to invoke Java methods
with a variable number of parameters during the evaluation of the execution
plan. For example, imagine that the user declares a named table expression
T1 that returns 2 columns (x and y) and has a parameter called a as follows:

T1(x int, y string

WITHPARAMS a string)@db1 =
(SELECT x, y FROM tbl WHERE id = $a)

The query execution controller will produce dynamically the following CREATE
FUNCTION statement:

5.3 Execution Engine 95

CREATE FUNCTION T1 (a VARCHAR(50))
RETURNS TABLE (x INT, y VARCHAR(50))
LANGUAGE JAVA
PARAMETER STYLE DERBY_JDBC_RESULT_SET
READS SQL DATA
EXTERNAL NAME ’WrapperFunction.execute’

It is linked to the following Java component, which will use the wrapper in-
terfaces to establish a communication with the data store db1:

public class WrapperFunction {

public static ResultSet execute(

String namedExprName,

Long queryId,

Object... args

/*dynamic args*/

) throws Exception {

//Code to invoke the wrappers } }

Therefore, after accepting the execution plan in JSON format, the query execution
controller parses it, identifies the sub-plans within the plan that are associated to a named
table expression and dynamically executes as many CREATE FUNCTION statements
as named table expressions exist with a unique name. As a second step, the execution
engine evaluates which named expressions are queried more than once and must be cached
into the temporary table storage, which will be always queried and updated from the
specified Java functions to reduce the query execution time. Finally, the last step consists
of translating all operation nodes that appear in the execution plan into a Derby specific
SQL execution plan. Once the SQL execution plan is valid, the Derby core (which acts
as the operator engine) produces a dynamic byte code that resolves the query that can be
executed as many times as the application needs.

Derby implements the JDBC interface and an application can send queries though the
Statement class. So, when the user has processed the query result and closed the state-
ment, the query execution controller drops the previously created functions and cleans the
temporary table storage.

To process data in distributed data stores we used a specific implementation of the Op-
erator Engine and the MFR wrapper, adapting the parallel SQL engine Spark SQL ([10])
to serve as the operator engine, thus taking full advantage of massive parallelism when
joining HDFS with relational data. To do this, each execution (sub-)plan is translated to a
flow of invocations of Spark SQL’s DataFrame API methods.

96 5. Prototype

5.4 Wrappers
The wrappers are Java classes implementing a common interface used by the operator
engine to interact with them. A wrapper may store locally catalog information and capa-
bilities, which it provides to the query planner periodically or on demand. Each wrapper
also implements a finalizer, which translates a CloudMdsQL sub-plan to a native data
store query.

We have validated the query engine using four data stores – Sparksee (a graph data
store with Python API), Derby (a relational data store accessed through its Java Database
Connectivity (JDBC) driver), MongoDB (a document data store with a Java API), and
unstructured data stored in an HDFS cluster and processed using Apache Spark as big
data processing framework (DPF). To be able to embed subqueries against these data
stores, we developed wrappers for each of them as follows.

The wrapper for Sparksee accepts as raw text the Python code that needs to be ex-
ecuted against the graph data store using its Python client API in the environment of a
Python interpreter embedded within the wrapper.

The wrapper for Derby executes SQL statements against the relational data store using
its JDBC driver. It exports an explain() function that the query planner invokes to get
an estimation of the cost of a subquery. It can also be queried by the query planner about
the existence of certain indexes on table columns and their types. The query planner may
then cache this metadata information in the catalog.

The wrapper for MongoDB is implemented as a wrapper to an SQL compatible data
store, i.e. it performs native MongoDB query invocations according to their SQL equiv-
alent. The wrapper maintains the catalog information by running probing queries such
as db.collection.count() to keep actual data store statistics, e.g. cardinalities of
document collections. Similarly to the Derby wrapper, it also provides information about
available indexes on document attributes.

The MFR wrapper implements an MFR planner to optimize MFR expressions in ac-
cordance with any pushed down selections. The wrapper uses Spark’s Python API, and
thus translates each transformation to Python lambda functions. Besides, it also accepts
raw Python lambda functions as transformation definitions. The wrapper executes the
dynamically built Python code using the reflection capabilities of Python by means of the
eval() function. Then, it transforms the resulting RDD into a Spark DataFrame.

5.5 Conclusion
In this chapter, we described the prototype of the CloudMdsQL query engine and our
MFR extension. The query engine includes a query planner that performs query analysis
and optimization, and produces a query plan, and a lightweight runtime database proces-
sor atop each data store that is composed of three generic modules (i.e. same code library)
- query execution controller, operator engine, and table storage - and one wrapper module
that is specific to a data store. The query planner is implemented in C++, the operator

5.5 Conclusion 97

engine is based on the Derby DBMS; and the wrappers are implemented in Java.
The current implementation of the query engine uses a modified version of the open

source Derby DBMS to accept CloudMdsQL queries and transform the corresponding ex-
ecution plan into Derby SQL operations. To extend the CloudMdsQL query engine with
MFR, we developed an MFR planner in Java to be used by the wrapper of the data process-
ing framework (DPF). The MFR planner finds optimization opportunities and translates
the resulting sequence of MFR operations to a sequence of DPF’s API methods to be
executed.

We validated the CloudMdsQL query engine with wrappers for four data stores: Spark-
see, a graph data store with Python API; Derby, a relational data store accessed through
its JDBC driver; MongoDB, a document data store with a Java API; and Apache Spark a
data processing framework on top of HDFS, accessed by Apache Spark API.

Chapter 6

Experimental Validation

Based on the CloudMdsQL query engine prototype (see Chapter 5), we give an exper-
imental validation of multistore query processing in a cluster to evaluate the impact on
performance of optimization. More specifically, we explore the performance benefit of
using bind join, a very efficient technique, under different conditions. In our experimen-
tal validation, we focus on queries that can express an integration of data across several
data stores, in particular, NoSQL (graph and document data stores), RDBMS and HDFS
accessed through the Spark framework. This chapter is based on [40, 14].

This chapter is organized as follows. Section 6.1 describes our experimental setup.
Section 6.2 shows the CloudMdsQL experimental validation. Section 6.3 presents the
MFR experimentation. Section 6.4 concludes.

6.1 Experimental Setup
We described below both setups used for experiments.

CloudMdsQL Experimental Setup
We loaded the generated datasets in 4 data stores, each running on a separate node in a
cluster, as follows: Apache Derby at node1 stores the scientists table, MongoDB
at node2 and node3 stores respectively the publications and reviews document
collections, and the Sparksee graph data store at node4. The data store identifiers that we
use within our queries are respectively DB1, DB2, DB3, and DB4. Each node in the cluster
runs on a quad-core CPU at 2.4GHz, 32 GB main memory, 1.5Gbps HDD throughput, and
the network bandwidth is 1Gbps.

MFR Experimental Setup
To evaluate the impact of optimization on query execution, we use a cluster of the GRID
5000 platform ([3]), with one node for PostgreSQL and MongoDB and 4 to 16 nodes
for the HDFS cluster. The Spark cluster, used as both the DPF and the query processor,

99

100 6. Experimental Validation

is collocated with the HDFS cluster. Each node in the cluster runs on 16 CPU cores at
2.4GHz, 64GB main memory, and the network bandwidth is 10Gbps.

6.2 CloudMdsQL Experimentation
The experimental validation shows the ability of the query engine to optimize Cloud-
MdsQL queries, as optimizability is one of the objectives of the query language. Our
experiment illustrate the impact of each optimization technique on the overall efficiency
of the query execution.

In this section, we introduce the datasets, and we present our experimental results.

6.2.1 Datasets
We performed our experimental evaluation in the context of the use case example, pre-
sented in Section 3.7. For this purpose, we generated data to populate the Derby table sci-
entists, the MongoDB document collections publications and reviews, and the Sparksee
graph data store with scientists and friendship relationships between them. The datasets
have the following characteristics:

• Table scientists contains 10k rows, distributed over 1000 distinct affiliations,
thus setting to 0.1% the selectivity of an arbitrary equality condition on the affili
ation attribute.

• Collection publications contains 1M documents, with uniform distribution of
values of the author attribute, making 100 publications per scientist. The total
size of the collection is 1GB.

• Collection reviews contains 4M documents, making 4 reviews per publication.
The date attribute contains values between 2012-01-01 and 2014-12-31. This sets
to 33% the selectivity of the predicate year(date) = 2013. The review attribute
contains long string values. The total size of the collection is 20GB.

• The graph data store contains one node per scientist and 500k edges between them.
This data is generated to assure that for each publication, 2 out of 4 reviewers are
friends or friend-of-friends to the author.

• The catalog contains sufficient information, collected through the Derby and Mon-
goDB wrappers, about the above specified cardinalities and selectivities. It also
contains information about the presence of indexes on the attributes scientists.
affiliation, publications.id, publications.author, reviews
.date, reviews.pub_id, and reviews.reviewer,

6.2 CloudMdsQL Experimentation 101

6.2.2 Experimental Results
We prepared 5 different queries. For each of them we chose 3 alternative QEPs to run and
compare their execution times, with different join orders, intermediate data transfer, and
subquery rewritings. The execution times for the different QEPs are illustrated in each
query’s corresponding graphical chart.

All the queries use the following common named table expressions, which we created
as stored expressions:

CREATE NAMED EXPRESSION

scient(name string, affiliation string)@DB1 = (

SELECT name, affiliation FROM scientists);

CREATE NAMED EXPRESSION

pubs(id int, title string, author string)@DB2 = (

SELECT id, title, author FROM publications);

CREATE NAMED EXPRESSION

revs(pub_id int, reviewer string, date timestamp, review string)@DB3 =

(SELECT pub_id, reviewer, date, review FROM reviews);

CREATE NAMED EXPRESSION

friends(name string, friend string JOINED ON name

CARDINALITY = 100*card(Outer))@DB4 =

{* for n in CloudMdsQL.Outer:

for f in graph.GetNeighboursByName(n):

yield (n, f.getName()) *};

CREATE NAMED EXPRESSION

friendships(person1 string, person2 string, friendship string

JOINED ON person1, person2 WITHPARAMS maxlevel int

CARDINALITY = card(Outer))@DB4 =

{* for (p1, p2) in CloudMdsQL.Outer:

sp = graph.FindShortestPathByName(p1, p2, $maxlevel)

if sp.exists():

yield (p1, p2, ’friend’ + ’-of-friend’ * (sp.get_cost()-1)) *};

Thus, each of the queries is expressed as a single SELECT statement that uses the above
named table expressions. For each of the queries we describe the alternative QEPs with
a text notation, using the special symbols ./ for joins, ./ for bind joins (where the join
condition is bound to the right side of the join), σ() for selections, and @ in subscript to
denote the node at which the operation is performed. If a selection is marked with @QE
in subscript, then it is performed by the query engine, otherwise it is pushed down to be
executed by the data store. The operation order is specified explicitly using parentheses.
The relations within the QEP are referred with their first letter in capital, e.g. R stands for
reviews.

102 6. Experimental Validation

Query 1 involves 2 tables and focuses on selection pushdowns and bind joins. The selec-
tivity of the WHERE clause predicate is approximately 0.1%, which explains the benefit
of the pushed down selection in QEP12 that reduces significantly the data retrieved from
the reviews document collection in DB3. Using a bind join in QEP13 reduces to 0. % the
data retrieved from the publications collection.

SELECT p.id, p.title, p.author,
r.reviewer, r.review

FROM pubs p JOIN revs r ON p.id = r.pub_id

WHERE r.date = ’2013-05-01’

The alternative query plans are:

QEP11: σQE (R) ./@3 P

QEP12: σ (R) ./@3 P

QEP13: σ (R) ./@3 P

Figure 6.1

Query 2 involves 3 tables and focuses on the importance of choosing the optimal data
shipping direction. All the plans involve the retrieval and transfer of a selection (6GB) on
the reviews collection and the entire publications collection (1GB). QEP21 re-
trieves both tables remotely. QEP22 retrieves P locally and R remotely. QEP23 retrieves
R locally and σ(S) ./ P (only 1MB) remotely. Although bind joins are applicable in all
QEPs, we do not use them in order to focus on shipping of unfiltered data.

SELECT p.id, p.title, p.author, r.reviewer, r.review

FROM pubs p JOIN revs r ON p.id = r.pub_id

JOIN scient s ON s.name = p.author

WHERE r.date BETWEEN ’2013-01-01’ AND ’2013-12-31’

AND s.affiliation = ’affiliation1’

The alternative query plans are:

6.2 CloudMdsQL Experimentation 103

QEP21: (σ (S) ./ @1 P) ./ @1 σ (R)

QEP22: (σ (S) ./ @2 P) ./ @2 σ (R)

QEP23: (σ (S) ./ @2 P) ./ @3 σ (R)

Figure 6.2

Query 3 involves 3 tables, of which the table scientists is used twice. To distinguish
them, in the description of QEPs we use the symbols Sa and Sr. Because of the use of
bind joins, this query handles much less data and executes much faster compared to the
previous queries. The query focuses on different join orders, the effect of which comes
mostly from the different selectivities of the bind join conditions.

SELECT p.id, p.title, p.author, r.reviewer, r.review, sr.affiliation

FROM pubs p JOIN revs r ON p.id = r.pub_id

JOIN scient sa ON sa.name = p.author

JOIN scient sr ON sr.name = r.reviewer

WHERE sa.affiliation = ’affiliation1’ AND

sr.affiliation IN (’affiliation2’, ’affiliation3’

The alternative query plans are:

QEP31: ((σ (Sr) ./@3 R) ./@3 P) ./@3 σ (Sa)

QEP32: ((σ (Sa) ./@2 P) ./@3 R) ./@3 σ (Sr)

QEP33: (σ (Sa) ./@2 P) ./@3 (σ (Sr) ./@3 R)

Query 4 includes the friendships subquery against the graph data store and focuses
on the involvement of native named table expressions, using join iteration, and the usage
of expensive native operations, such as breadth-first search. As the QEPs correspond to
the ones for Query 3, the execution times depend on the join orders, but also on the num-
ber of distinct values of the relation to be joined with the friendships expression,
which determines how many times breadth-first search is invoked.

SELECT p.id, p.title, p.author, r.reviewer,

104 6. Experimental Validation

Figure 6.3

r.review, f.friendship

FROM pubs p JOIN revs r ON p.id = r.pub_id

JOIN scient sa ON sa.name = p.author

JOIN scient sr ON sr.name = r.reviewer

JOIN friendships(2) f ON p.author = f.person1

AND r.reviewer = f.person2

WHERE sa.affiliation = ’affiliation1’ AND

sr.affiliation IN (’affiliation2’, ’affiliation3’)

The alternative query plans are:

QEP41: (((σ (Sr) ./@3 R) ./@3 P) ./@3 F) ./@3 σ (Sa)

QEP42: (((σ (Sa) ./@2 P) ./@3 R) ./@3 F) ./@3 σ (Sr)

QEP43: ((σ (Sa) ./@2 P) ./@3 (σ (Sr) ./@3 R)) ./@3 F

Figure 6.4

Query 5 resembles Query 4, but uses the friends native subquery that invokes another
native operation that yields many output tuples for a single input tuple. Like for Query
4, the join order determines when the native expression is invoked and the number of its
input tuples.

SELECT p.id, p.title, p.author, r.reviewer,

6.3 MFR Experimentation 105

r.review, f.friend

FROM pubs p JOIN revs r ON p.id = r.pub_id

JOIN scient sa ON sa.name = p.author

JOIN scient sr ON sr.name = r.reviewer

JOIN friends f ON r.reviewer = f.name

WHERE sa.affiliation = ’affiliation1’ AND

sr.affiliation IN (’affiliation2’, ’affiliation3’)

The alternative query plans are:

QEP51: (((σ (Sr) ./@3 R) ./@3 P) ./@3 F) ./@3 σ (Sa)

QEP52: (((σ (Sa) ./@2 P) ./@3 R) ./@3 F) ./@3 σ (Sr)

QEP53: ((σ (Sa) ./@2 P) ./@3 (σ (Sr) ./@3 R)) ./@3 F

Figure 6.5

6.3 MFR Experimentation
This section, reports on experiments designed to test the effectiveness of our approach (ex-
tending CloudMdsQL with MFR) through experimental validation with three data stores
and representative queries.

In this section, we first introduce the datasets, based on the use case example in chapter
4. Finally, we present our experimental results.

6.3.1 Datasets
Our experimental evaluation is based on the use case example presented in 4.5. For this
purpose, we generated data to populate the PostgreSQL table scientists, the Mon-
goDB document collection publications, and text files with unstructured log data
stored in HDFS. The datasets have the following characteristics:

106 6. Experimental Validation

• Table scientists contains 10K rows, distributed over 1000 distinct affiliations,
making 10 authors per affiliation.

• Collection publications contains 10M documents, with uniform distribution
of values of the author attribute, making 1K publications per scientist. Each publi-
cation is randomly assigned a set of 6 to 10 keywords out of 10K distinct keyword
values. Also, there is an association between authors and keywords, so that all the
publications of a single author reference only 1% of all the keywords. This means
that a join involving the publications of a single author will have a selectivity factor
of 1%; hence 100 distinct values for the bind join condition. The total size of the
collection is 10GB.

• HDFS contains 16K files distributed between the nodes, with 100K tuples per file
making 1.6 billion tuples, corresponding to posts from 10K forum users with 10K
distinct keywords mentioned by them. The first field of each tuple is a timestamp
and does not have an impact on the experimental results. The second field contains
the author of the post as a string value. The remainder of the tuple line contains 1
to 10 keyword string values, randomly chosen out of the same set of 10K distinct
keywords. The total size of the data is 124GB.

6.3.2 Experimental Results
We prepared 3 different queries. We execute each of them in three different HDFS cluster
setups - with 4, 8, and 16 nodes. We compare the execution times without and with bind
join to the MFR subquery, which are illustrated in each query’s corresponding graphical
chart. We do not focus on evaluating the bind join between PostgreSQL and MongoDB,
as its benefit is less significant when compared to the benefit of doing bind join to the
MFR subquery, because of the big difference in data sizes.

All the queries use the following common named table expressions, which we created
as stored expressions:

CREATE NAMED EXPRESSION

scientists(name string, affiliation string)@rdb = (

SELECT name, affiliation

FROM scientists);

CREATE NAMED EXPRESSION

publications(author string, title string, keywords array)@mongo = (

SELECT author, title, keywords

FROM publications);

CREATE NAMED EXPRESSION

experts(kw string, expert string)@hdfs = {*
SCAN(TEXT, ’posts.txt’, ’,’)

6.3 MFR Experimentation 107

.FLAT_MAP(lambda data: product(data[2:], [data[1]]))

.MAP(TUPLE, 1)

.REDUCE(SUM)

.MAP(KEY[0], (KEY[1], VALUE))

.REDUCE(lambda a, b: b if b[1] > a[1] else a)

.PROJECT(KEY, VALUE[0]) *};

CREATE NAMED EXPRESSION

experts_alt(kw string, expert string)@hdfs = {*
SCAN(TEXT, ’posts.txt’, ’,’)

.FLAT_MAP(lambda data: product(data[2:], [data[1]]))

.MAP_VALUES(lambda v: Counter([v]))

.REDUCE(lambda C1, C2: C1 + C2)

.MAP_VALUES(lambda C: \

reduce(lambda a,b: b if b[1] > a[1] else a, C.items()))

.PROJECT(KEY, VALUE[0]) *};

Each of the queries is expressed as a single SELECT statement that uses the above
named table expressions. The named tables scientists, publications, and
experts have exactly the same definition as in the use case example from Section 4.5.

The named table experts_alt does the same as experts, but its MFR sequence
contains only one REDUCE (respectively, it does only one shuffle) and more complex
map functions. It uses Python’s Counter dictionary collection, with the additive property
to sum up numeric values grouped by the key. The first MAP_VALUES maps a keyword to
a Counter object, initialized with a single author key. Then the REDUCE sums all Counter
objects associated to a single keyword, so that the result from it is an aggregated Counter
dictionary, where an author is mapped to a number of occurrences of the keyword. The
final MAP_VALUES uses Python’s reduce() function (note that this is not Spark’s re-
duce operator) to choose from all items in a Counter the author with the highest number
of occurrences for a keyword.

Query 0 involves only the MongoDB data store and the DPF to find experts for the
publications of only one author. Thus, the selectivity factor of the bind join is 1%, as
the number of keywords used by a single author is 1% of the total number of keywords.
As we experimented with different number of nodes, we observe that the query execution
efficiency and the benefit of the bind join scale well when the number of nodes increases.
This is also observed in the rest of the queries.

–Query0
SELECT p.author, p.title,

e.kw, e.expert

FROM publications p, experts e

WHERE p.author = ’author1’

108 6. Experimental Validation

AND e.kw IN p.keywords

Figure 6.6

Query 1, as already introduced in Section 4.5, involves all the data stores and aims at
finding experts for publications of authors with a certain affiliation. This makes a selec-
tivity factor of 10% for the bind join, as there are 10 authors per affiliation. In addition,
we explore another variant of the query, filtered to three affiliations, or 30% selectivity
factor of the bind join. We enumerate the two variants as Query1.1 and Query 1.2.

–Query 1.1: selectivity factor 10%
SELECT p.author, p.title, e.kw, e.expert

FROM scientists s, publications p, experts e

WHERE s.affiliation = ’affiliation1’

AND p.author = s.name AND e.kw IN p.keywords

–Query 1.2: selectivity factor 30%
SELECT p.author, p.title, e.kw, e.expert

FROM scientists s, publications p, experts e

WHERE s.affiliation IN (’affiliation1’,’affiliation2’,’affiliation3’)

AND p.author = s.name AND e.kw IN p.keywords

Figure 6.7

6.4 Conclusion 109

Query 2 does the same as Query 1, but uses the MFR subquery experts_alt ,
which uses more sophisticated map functions, but makes only one shuffle, where the key
is a keyword. For comparison, the MFR expression experts makes two shuffles, of
which the first one uses a bigger key, composed of a keyword-author pair. Therefore, the
corresponding Spark computation of Query 2 involves much smaller size of data to be
shuffled compared to Query 1, which explains its better overall efficiency and higher rel-
ative benefit of using bind join. Like with Query 1, we explore two variants with different
selectivity factors of the bind join condition.

–Query 2.1: selectivity factor 10%
SELECT p.author, p.title, e.kw, e.expert

FROM scientists s, publications p, experts_alt e

WHERE s.affiliation = ’affiliation1’

AND p.author = s.name AND e.kw IN p.keywords

–Query 2.2: selectivity factor 30%
SELECT p.author, p.title, e.kw, e.expert

FROM scientists s, publications p, experts_alt e

WHERE s.affiliation IN (’affiliation1’,

’affiliation2’, ’affiliation3’)

AND p.author = s.name AND e.kw IN p.keywords

Figure 6.8

The results show the significant benefit of performing bind join in our experimental
scenario, despite the overhead it produces.

6.4 Conclusion
In this chapter, we gave our experimental validation of CloudMdsQL and our MFR ex-
tension. More specifically, we explored the performance benefit of using bind join, a very
efficient technique, under different conditions. In our experimental validation, we focused

110 6. Experimental Validation

on queries that can express an integration of data across several data stores, in particu-
lar, NoSQL (graph and document data stores), RDBMS and HDFS accessed through the
Spark framework.

First, we evaluated the impact of CloudMdsQL query rewriting and optimization on
execution time on a cluster using three data stores: relational (Derby), document (Mon-
goDB), and graph (Sparksee). We showed the execution times for 3 different executions
plans of 5 queries. We compared the execution times, with different join orders, interme-
diate data transfer, and subquery rewritings. We also explored the performance benefit
of using bind join under different conditions. The results experiments show that the third
QEP of each query using bind join is much better than the first two QEP, in terms of
execution time, and we handle less data.

Second, we evaluated our MFR approach in a Grid5000 cluster with three data stores :
PostgreSQL, MongoDB and HDFS. We validated our approach using 3 different queries,
by executing each one with 3 different HDFS configurations to assess scalability. We
compared the performance between the costs of the QEPs without bind join and the QEPs
with bind join. The results show that the benefit of the bind join optimization is higher
in configurations with higher number of nodes (16 nodes) in terms of execution time.
In addition, the amount of processed data is reduced during the execution of the MFR
sequence by reordering MFR operators according to the determined rules.

Overall, our performance evaluation illustrates the CloudMdsQL query engine’s abil-
ity to optimize a query and choose the most efficient execution strategy.

Chapter 7

Conclusion

In this thesis, we addressed the problem of query processing with multiple cloud data
stores, where the data stores have different models, languages and APIs. This thesis has
been prepared in the context of the CoherentPaaS European project [1] and, in particular,
the CloudMdsQL multistore system. In this context, a major need is the integration of
relational data and unstructured big data, typically stored in HDFS and accessed through
a data processing framework such as Spark. In this thesis, we proposed an extension of
CloudMdsQL to take full advantage of the functionality of the underlying data processing
frameworks by allowing the ad-hoc usage of user defined map/filter/reduce (MFR) opera-
tors in combination with traditional SQL statements. Our solution allows for optimization
by enabling subquery rewriting so that bind join can be used and filter conditions can be
pushed down and applied by the data processing framework as early as possible.

In the rest of the chapter, we summarize and discuss our contributions and propose
some directions for future work.

7.1 Contributions

An overview of query processing in multistore systems
We reviewed the state-of-the-art in query processing in multistore systems. First, we
introduced cloud data management solutions and technologies, including distributed file
systems, NoSQL systems and data processing frameworks. Then, we introduced query
processing in multidatabase systems, which be resued and adapted to multistore systems.
To ease comparison, we divided multistore systems based on the level of coupling with
the underlying data stores, i.e., (1) loosely-coupled, (2) tightly-coupled and (3) hybrid.

We surveyed and analyzed some representative multistore systems for each category:
(1) BigIntegrator, Forward and QoX; (2) Polybase, HadoopDB and Estocada; (3) Spark-
SQL, BigDAWG and CloudMdsQL. We compared their functionality along several di-
mensions: objective, data model, query language, and supported data stores. We also
compared their implementation techniques along special modules, e.g. dataflow engine
(QoX), HDFS bridge (Polybase), island query processors (BigDAWG) and query plan-

111

112 7. Conclusion

ner (CloudMdsQL), schema management, and query processing. The comparisons reveal
several trends: the ability to integrate relational data (stored in RDBMS) with other kinds
of data stores; the growing importance of accessing HDFS within Hadoop and the fact
that most systems provide a relational/ SQL-like abstraction.

The extension of CloudMdsQL with MFR notation
We extended the CloudMdsQL language to integrate data retrieved from different data
stores, including unstructured (HDFS) data accessed through a data processing frame-
work. This allows performing joins between relational and HDFS data.

We defined a simple notation (in CloudMdsQL) to specify in a declarative way the
sequence of map/filter/reduce (MFR) operators. We exploit the full power of the frame-
works , yet avoiding the use of SQL engines on top of them. Furthermore, we allow
for optimization by enabling subquery rewriting so that bind join can be used and filter
conditions can be pushed down and applied by the data processing framework as early as
possible. The query operator execution sequence specified by the user may be reordered
by taking into account the properties of MFR operators together with the properties of re-
lational operators, yet allowing for optimization through the use of bind join and operator
reordering. We illustrated our approach with a use case that reveals how the query engine
dynamically rewrites the MFR subquery to perform bind join optimization.

Prototype
We developed the MFR extension as part of the CloudMdsQL query engine. The query
engine includes a query planner that performs query analysis and optimization, and pro-
duces a query plan, and a lightweight runtime database processor atop each data store
that is composed of three generic modules (i.e. same code library) - query execution con-
troller, operator engine, and table storage - and one wrapper module that is specific to a
data store.

The current implementation of the query engine uses a modified version of the open
source Derby database to accept CloudMdsQL queries and transform the corresponding
execution plan into Derby SQL operations. To extend the CloudMdsQL query engine
with MFR, we developed an MFR planner to be used by the wrapper of the data process-
ing framework (DPF). The MFR planner finds optimization opportunities and translates
the resulting sequence of MFR operations to a sequence of DPF’s API methods to be
executed.

We validated the CloudMdsQL query engine with wrappers for four data stores: Spark-
see, a graph data store with Python API; Derby, a relational data store accessed through
its JDBC driver; MongoDB, a document data store with a Java API; and Apache Spark a
data processing framework on top of HDFS, accessed by Apache Spark API.

7.2 Directions for Future Work 113

Experimental validation
Based on the CloudMdsQL query engine prototype, we performed an experimental vali-
dation of multistore query processing in a cluster to evaluate the impact on performance of
optimization. More specifically, we explored the performance benefit of using bind join,
a very efficient technique, under different conditions. In our experimental validation, we
focused on queries that can express an integration of data across several data stores, in par-
ticular, NoSQL (graph and document data stores), RDBMS and HDFS accessed through
the Spark framework.

First, we evaluated the impact of query rewriting and optimization on execution time
on a cluster using three data stores: relational (Derby), document (MongoDB), and graph
(Sparksee). We showed the execution times for 3 different executions plans of 5 queries.
We compared the execution times, with different join orders, intermediate data transfer,
and subquery rewritings. We also explored the performance benefit of using bind join
under different conditions. The results experiments show that the third QEP of each query
using bind join is much better than the first two QEP, in terms of execution time, and we
handle less data.

Second, we evaluated our MFR approach in a Grid5000 cluster with three data stores :
PostgreSQL, MongoDB and HDFS. We validated our approach using 3 different queries,
by executing each one with 3 different HDFS configurations to assess scalability. We
compared the performance between the costs of the QEPs without bind join and the QEPs
with bind join. The results show that the benefit of the bind join optimization is higher
in configurations with higher number of nodes (16 nodes) in terms of execution time.
In addition, the amount of processed data is reduced during the execution of the MFR
sequence by reordering MFR operators according to the determined rules.

Overall, our performance evaluation illustrates the CloudMdsQL query engine’s abil-
ity to optimize a query and choose the most efficient execution strategy.

7.2 Directions for Future Work
Research on multistore systems is fairly recent and there are many new issues. Based on
our contributions, we can identify the following research directions.

Support of multistore views
Views have been widely used in multidatabases to provide distribution and heterogeneity
transparency, hiding that data is stored in different DBMSs. Adding views in CloudMd-
sQL would make it easier for users to write queries over multiple data stores since the
table expressions that are needed for mapping data to the CloudMdsQL model would be
captured by view expressions.

This would require the definition of a view definition language for CloudMdsQL,
through either LAV or GAV approaches, and adapting query rewriting to deal with views.
However, since CloudMdsQL supports native functions, query processing using views

114 7. Conclusion

becomes more difficult. For instance, a CloudMdsQL query could integrate data from a
multistore view MSV , perhaps defined through user-defined functions, and a data store
DS also through a user-defined function. But DS could be part of MSV and a simple
rewrite of the query would access DS twice.

One solution would be to perform query analysis to discover that DS is part of MSV
and rewrite the query so that DS is accessed only once, but producing two tables (one for
each native function), which are later combined. A more complex approach would be to
identify the subset of the predicates in native functions that could be combined, e.g. by
“ANDing” simple predicates, and thus produce a single table.

Support of materialized views
To speed up the processing of analytical queries, multistore views could be materialized,
as in data warehouse. Some multistore systems support materialized views, yet in a simple
way. For instance, Odyssey’s opportunistic materialized views allow to cache and reuse
query results. However, the cached data are not refreshed as a result of updates to the base
data.

Supporting materialized multistore views would require to deal with the problem of
view maintenance, i.e. keeping the materialized data consistent with the base data which
may be updated. This problem is addressed in data warehouse using RDBMSs and
Extract-Transform-Load (ETL) tools. ETLs interface with the data sources and extract
the updated data in several ways, depending on the capabilities of the data sources, i.e.
update notifications, incremental extract of the update data or only full extract of the data.
In the context of multistore systems, we would need to extend the wrapper modules with
the extract capability of ETLs. Then, the major problem is that non relational data stores
typically do not support update notifications and that full extract may the common, ex-
pensive option, requiring to compare each new extract with the previous one to identify
changes.

A solution to the problem of materialized view maintenance is to compute the view
incrementally, using differential tables that capture the updated data. We could adapt this
solution in the context of multistore systems, in the simple case of non recursive view
definitions by adapting efficient algorithms like the popular counting algorithm [31].

Parallel processing of multistore queries
To make big data analytics successful, it is critical to be able to integrate data from mul-
tiple data stores. This can be done by extending an OLAP parallel engine (OPE) with
the capabilities of CloudMdsQL. OPEs typically exploit intra-query (both inter-operation
and intra-operation) parallelism to scale up and yield high performance.

Given an OPE with CloudMdsQL capabilities, the problem is to integrate (e.g. join)
big data from one or more data stores in the OPE, in a way that exploits parallelism.
However, although all the data stores we have used provide support for data partitioning
and parallel processing, the CloudMdsQL engine does not exploit parallelism. This is

7.2 Directions for Future Work 115

because we have a wrapper, operator engine and data store client at one server, so a big
data query to that data store will produce big data that gets centralized at that server.

One promising approach is to introduce intra-query parallelism within the CloudMd-
sQL engine. This requires the ability of the wrappers to directly access the data stores’
partitions (at data nodes, not master nodes). Depending on the data stores, it may be more
or less difficult. For instance, HDFS makes it easy by providing direct access to data
chunks. But RDBMSs typically force to access partitioned data through a central master
node.

Dealing with data streams
Stream processing engines (SPEs) are becoming ubiquitous for real-time data processing
and data analysis. Unlike with data stores, new data are generated continually in fixed
order (e.g. by arrival time or by a timestamp appended to the data) and processed on-
the-fly using continuous queries. However, it is also necessary to combine streaming data
with data stored in multiple systems. Thus, an important direction of research, pioneered
in BigDAWG, is to couple an SPE with a multistore system.

Then, the major problem is to support real-time data processing on both real-time and
stored data. The approach used in BigDAWG is to provide a data stream island that is
supported by a new SPE (S-Store [18]) that is tighlty-coupled with the other data stores.
S-Store queries rely on well-known streaming primitives, including filter, join, aggregate,
and window. This approach could be adapted to extend the CloudMdsQL multistore
system with streaming data. This requires extending the CloudMdsQL data model with
ordered data and streaming operators. To support real-time data processing on the stored
data, we could exploit materialized views stored in memory and parallelism.

Benchmarking multistore systems
As multistore systems get mature, the need for benchnmarks will necessarily increase.
A first step in this direction is the benchmarking of the CloudMdsQL system [39]. The
CloudMdsQL benchmark uses the standard TPC H benchmark (www.tpc.org/tpch)
with 8 datasets over 5 different data stores, each having different interfaces and data mod-
els: relational, key-value, document, graph databases, and an OLAP engine. The TPC H
queries and test cases are divided in two groups that focus on the performance benefits
thanks to bind joins and the support of native queries.

The CloudMdsQL benchmark focuses mostly on relational operators and their equiva-
lents in non-SQL data stores. As a further work, it will need to be extended to evaluate the
performance benefits in the context of data store specific operators, such as graph traver-
sals or queries on nested documents. Then, it could be used to compare the performance
of various multistore systems.

www.tpc.org/tpch

Bibliography

[1] Coherentpaas project. coherentpaas.eu.

[2] Graphbase. https://jena.apache.org/documentation/javadoc/
jena/org/apache/jena/graph/impl/GraphBase.html.

[3] Grid5000. http://www.grid5000.fr.

[4] Infinitegraph. http://www.objectivity.com/products/
infinitegraph/.

[5] Json schema and hyper-schema. http://json-schema.org.

[6] Sparksee. http://www.sparsity-technologies.com/.

[7] Titan. https://github.com/thinkaurelius/titan/wiki.

[8] Trinity. https://www.microsoft.com/en-us/research/project/
trinity/.

[9] ABOUZEID, A., BAJDA-PAWLIKOWSKI, K., ABADI, D., RASIN, A., AND SIL-
BERSCHATZ, A. Hadoopdb: An architectural hybrid of mapreduce and DBMS tech-
nologies for analytical workloads. Proceedings of the VLDB Endowment (PVLDB)
2, 1 (2009), 922–933.

[10] ARMBRUST, M., XIN, R., LIAN, C., HUAI, Y., LIU, D., BRADLEY, J., MENG,
X., KAFTAN, T., FRANKLIN, M., GHODSI, A., AND ZAHARIA, M. Spark SQL:
relational data processing in spark. In ACM SIGMOD Int. Conf. on Management of
Data (2015), pp. 1383–1394.

[11] AVNUR, R., AND HELLERSTEIN, J. Eddies: Continuously adaptive query process-
ing. In ACM SIGMOD Int. Conf. on Management of Data (2000), pp. 261–272.

[12] BINNIG, C., REHRMANN, R., FAERBER, F., AND RIEWE, R. Funsql: it is time
to make SQL functional. In Int. Conf. on Extending Database Technology (EDBT)
(2012), pp. 41–46.

117

coherentpaas.eu
https://jena.apache.org/documentation/javadoc/jena/org/apache/jena/graph/impl/GraphBase.html
https://jena.apache.org/documentation/javadoc/jena/org/apache/jena/graph/impl/GraphBase.html
http://www.grid5000.fr
http://www.objectivity.com/products/infinitegraph/
http://www.objectivity.com/products/infinitegraph/
http://json-schema.org
http://www.sparsity-technologies.com/
https://github.com/thinkaurelius/titan/wiki
https://www.microsoft.com/en-us/research/project/trinity/
https://www.microsoft.com/en-us/research/project/trinity/

118 7. Bibliography

[13] BONDIOMBOUY, C., KOLEV, B., LEVCHENKO, O., AND VALDURIEZ, P. Inte-
grating big data and relational data with a functional sql-like query language. In Int.
Conf. on Database and Expert Systems Applications (DEXA) (2015), pp. 170–185.

[14] BONDIOMBOUY, C., KOLEV, B., LEVCHENKO, O., AND VALDURIEZ, P. Mul-
tistore big data integration with cloudmdsql. Trans. on Large-Scale Data- and
Knowledge-Centered Systems (TLDKS) 28 (2016), 48–74.

[15] BONDIOMBOUY, C., AND VALDURIEZ, P. Query processing in multistore systems:
an overview. Int. Journal of Cloud Computing (IJCC) 5, 4 (2016), 309–346.

[16] BRUGGEN, R. V. Learning Neo4j. Packt Publishing Limited, 2014.

[17] BUGIOTTI, F., BURSZTYN, D., D., A., ILEANA, I., AND MANOLESCU, I. Invisi-
ble glue: Scalable self-tuning multi-stores. In Int. Conf. on Innovative Data Systems
Research (CIDR) (2015), p. 7.

[18] ÇETINTEMEL ET AL., U. S-store: A streaming newsql system for big velocity
applications. Proceedings of the VLDB Endowment (PVLDB) 7, 13 (2014), 1633–
1636.

[19] CHANG, F., DEAN, J., GHEMAWAT, S., HSIEH, W., WALLACH, D., BURROWS,
M., CHANDRA, T., FIKES, A., AND GRUBER, R. Bigtable: A distributed storage
system for structured data. ACM Trans. on Computer Systems 26, 2 (2008), 4:1–
4:26.

[20] DANFORTH, S., AND VALDURIEZ, P. A FAD for data intensive applications. IEEE
Trans. Knowl. Data Eng. 4, 1 (1992), 34–51.

[21] DEAN, J., AND GHEMAWAT, S. Mapreduce: Simplified data processing on large
clusters. In Symposium on Operating Systems Design and Implementation (OSDI)
(2004), pp. 137–150.

[22] DECANDIA, G., HASTORUN, D., JAMPANI, M., KAKULAPATI, G., LAKSHMAN,
A., PILCHIN, A., SIVASUBRAMANIAN, S., VOSSHALL, P., AND VOGELS, W. Dy-
namo: amazon’s highly available key-value store. In ACM Symposium on Operating
Systems Principles (SOSP) (2007), pp. 205–220.

[23] DEWITT, D., HALVERSON, A., NEHME, R., SHANKAR, S., AGUILAR-SABORIT,
J., AVANES, A., FLASZA, M., AND GRAMLING, J. Split query processing in
polybase. In ACM SIGMOD Int. Conf. on Management of Data (2013), pp. 1255–
1266.

[24] DOAN, A., HALEVY, A. Y., AND IVES, Z. G. Principles of Data Integration.
Morgan Kaufmann, 2012.

119

[25] DUGGAN, J., ELMORE, A., STONEBRAKER, M., BALAZINSKA, M., HOWE, B.,
KEPNER, J., MADDEN, S., MAIER, D., MATTSON, T., AND ZDONIK, S. The
bigdawg polystore system. SIGMOD Record 44, 2 (2015), 11–16.

[26] EWEN, S., SCHELTER, S., TZOUMAS, K., WARNEKE, D., AND MARKL, V. Iter-
ative parallel data processing with stratosphere: an inside look. In ACM SIGMOD
Int. Conf. on Management of Data (2013), pp. 1053–1056.

[27] FU, Y., ONG, K. W., PAPAKONSTANTINOU, Y., AND ZAMORA, E. FOR-
WARD: data-centric uis using declarative templates that efficiently wrap third-party
javascript components. Proceedings of the VLDB Endowment (PVLDB) 7, 13
(2014), 1649–1652.

[28] GANKIDI, V., TELETIA, N., PATEL, J., HALVERSON, A., AND DEWITT, D. In-
dexing HDFS data in PDW: splitting the data from the index. Proceedings of the
VLDB Endowment (PVLDB) 7, 13 (2014), 1520–1528.

[29] GHEMAWAT, S., GOBIOFF, H., AND LEUNG, S. The google file system. In ACM
Symposium on Operating Systems Principles (SOSP) (2003), pp. 29–43.

[30] GODFREY, P., GRYZ, J., HOPPE, A., MA, W., AND ZUZARTE, C. Query rewrites
with views for XML in DB2. In Int. Conf. on Data Engineering (ICDE) (2009),
pp. 1339–1350.

[31] GUPTA, A., MUMICK, I. S., AND SUBRAHMANIAN, V. S. Maintaining views in-
crementally. In ACM SIGMOD Int. Conf. on Management of Data (1993), pp. 157–
166.

[32] HAAS, L., KOSSMANN, D., WIMMERS, E., AND YANG, J. Optimizing queries
across diverse data sources. In Int. Conf. on Very Large Databases (VLDB) (1997),
pp. 276–285.

[33] HAASE, P., MATHÄSS, T., AND ZILLER, M. An evaluation of approaches to fed-
erated query processing over linked data. In Int. Conf. on Semantic Systems, (I-
SEMANTICS) (2010).

[34] HACIGÜMÜS, H., SANKARANARAYANAN, J., TATEMURA, J., LEFEVRE, J., AND

POLYZOTIS, N. Odyssey: A multi-store system for evolutionary analytics. Pro-
ceedings of the VLDB Endowment (PVLDB) 6, 11 (2013), 1180–1181.

[35] HART, B. E., VALDURIEZ, P., AND DANFORTH, S. Parallelizing FAD using
compile-time analysis techniques. IEEE Data Engineering Bulletin 12, 1 (1989),
9–15.

[36] HUPFELD, F., CORTES, T., KOLBECK, B., STENDER, J., FOCHT, E., HESS, M.,
MALO, J., MARTÍ, J., AND CESARIO, E. The xtreemfs architecture - a case for

120 7. Bibliography

object-based file systems in grids. Concurrency and Computation: Practice and
Experience 20, 17 (2008), 2049–2060.

[37] KOLEV, B., BONDIOMBOUY, C., LEVCHENKO, O., VALDURIEZ, P., JIMÉNEZ-
PERIS, R., PAU, R., AND PEREIRA, J. O. Design and implementation of the cloud-
mdsql multistore system. In Int. Conf. on Cloud Computing and Services Science
(CLOSER) (2016), pp. 352–359.

[38] KOLEV, B., BONDIOMBOUY, C., VALDURIEZ, P., JIMÉNEZ-PERIS, R., PAU, R.,
AND PEREIRA, J. The cloudmdsql multistore system. In ACM SIGMOD Int. Conf.
on Management of Data (2016), pp. 2113–2116.

[39] KOLEV, B., PAU, R., LEVCHENKO, O., VALDURIEZ, P., JIMÉNEZ-PERIS, R.,
AND PEREIRA, J. O. Benchmarking polystores: The cloudmdsql experience. In
IEEE Int. Conf. on Big Data (2016), pp. 2574–2579.

[40] KOLEV, B., VALDURIEZ, P., BONDIOMBOUY, C., JIMÉNEZ-PERIS, R., PAU, R.,
AND PEREIRA, J. Cloudmdsql: querying heterogeneous cloud data stores with a
common language. Distributed and Parallel Databases 34, 4 (2016), 463–503.

[41] LEFEVRE, J., SANKARANARAYANAN, J., HACIGÜMÜS, H., TATEMURA, J.,
POLYZOTIS, N., AND CAREY, J. MISO: souping up big data query processing
with a multistore system. In ACM SIGMOD Int. Conf. on Management of Data
(2014), pp. 1591–1602.

[42] LENZERINI, M. Data integration: A theoretical perspective. In ACM SIG-
MOD/PODS (Principles of Database Systems) Conf. (2002), pp. 233–246.

[43] LIU, Z. H., CHANG, H. J., AND STHANIKAM, B. Efficient support of xquery
update facility in XML enabled RDBMS. In Int. Conf. on Data Engineering (ICDE)
(2012), pp. 1394–1404.

[44] MEIJER, E., BECKMAN, B., AND BIERMAN, G. M. LINQ: reconciling object,
relations and XML in the .net framework. In ACM SIGMOD Int. Conf. on Manage-
ment of Data (2006), p. 706.

[45] ONG, K. W., PAPAKONSTANTINOU, Y., AND VERNOUX, R. The SQL++
semi-structured data model and query language: A capabilities survey of sql-on-
hadoop, nosql and newsql databases. ACM Computing Research Repository (CoRR)
abs/1405.3631 (2014).

[46] ÖZSU, M. T., AND VALDURIEZ, P. Principles of Distributed Database Systems,
Third Edition. Springer, 2011.

[47] PACITTI, E., AKBARINIA, R., AND DICK, M. E. P2P Techniques for Decentral-
ized Applications. Synthesis Lectures on Data Management. Morgan & Claypool
Publishers, 2012.

121

[48] PLUGGE, E., HAWKINS, T., AND MEMBREY, P. The Definitive Guide to Mon-
goDB:The NoSQL Database for Cloud and Desktop Computing. Apress, 2010.

[49] RAMAKRISHNAN, R. Data management in the cloud. In Int. Conf. on Data Engi-
neering (ICDE) (2009), p. 5.

[50] SHAO, B., WANG, H., AND LI, Y. Trinity: a distributed graph engine on a memory
cloud. In ACM SIGMOD Int. Conf. on Management of Data (2013), pp. 505–516.

[51] SIMITSIS, A., WILKINSON, K., CASTELLANOS, M., AND DAYAL, U. Qox-driven
ETL design: reducing the cost of ETL consulting engagements. In ACM SIGMOD
Int. Conf. on Management of Data (2009), pp. 953–960.

[52] SIMITSIS, A., WILKINSON, K., CASTELLANOS, M., AND DAYAL, U. Optimizing
analytic data flows for multiple execution engines. In ACM SIGMOD Int. Conf. on
Management of Data (2012), pp. 829–840.

[53] STONEBRAKER, M. Operating system support for database management. Commu-
nications of the ACM 24, 7 (1981), 412–418.

[54] STONEBRAKER, M., ABADI, D., DEWITT, D., MADDEN, S., PAULSON, E.,
PAVLO, A., AND RASIN, A. Mapreduce and parallel dbmss: friends or foes? Com-
munications of the ACM 53, 1 (2010), 64–71.

[55] STONEBRAKER, M., WONG, E., KREPS, P., AND HELD, G. The design and
implementation of ingres. ACM Trans. on Database Systems 1, 3 (1976), 198–222.

[56] TOMASIC, A., RASCHID, L., AND VALDURIEZ, P. Scaling access to heterogeneous
data sources with DISCO. IEEE Trans. Knowl. Data Eng. 10, 5 (1998), 808–823.

[57] VALDURIEZ, P., AND DANFORTH, S. Functional SOL (fsol), an SQL upward-
compatible database programming language. Information Sciences 62, 3 (1992),
183–203.

[58] WEIL, S., BRANDT, S., MILLER, E., LONG, D., AND MALTZAHN, C. Ceph:
A scalable, high-performance distributed file system. In Symposium on Operating
Systems Design and Implementation (OSDI) (2006), pp. 307–320.

[59] WHITE, T. Hadoop - The Definitive Guide: Storage and Analysis at Internet Scale.
O’Reilly, 2012.

[60] WIEDERHOLD, G. Mediators in the architecture of future information systems.
IEEE Computer 25, 3 (1992), 38–49.

[61] WYSS, C. M., AND ROBERTSON, E. L. Relational languages for metadata integra-
tion. ACM Trans. on Database Systems 30, 2 (2005), 624–660.

122 7. Bibliography

[62] YUANYUAN, T., ZOU, T., OZCAN, F., GONSCALVES, R., AND PIRAHESH, H.
Joins for hybrid warehouses: Exploiting massive parallelism and enterprise data
warehouses. In Int. Conf. on Extending Database Technology (EDBT) (2015),
pp. 373–384.

[63] ZAHARIA, M., CHOWDHURY, M., FRANKLIN, M., SHENKER, S., AND STOICA,
I. Spark: Cluster computing with working sets. In USENIX Workshop on Hot Topics
in Cloud Computing (HotCloud) (2010), pp. 10–10.

[64] ZHU, M., AND RISCH, T. Querying combined cloud-based and relational databases.
In Int. Conf. on Cloud and Service Computing (CSC) (2011), pp. 330–335.

[65] ZHU, Q., AND LARSON, P. A query sampling method of estimating local cost
parameters in a multidatabase system. In Int. Conf. on Data Engineering (ICDE)
(1994), pp. 144–153.

[66] ZHU, Q., AND LARSON, P. Global query processing and optimization in the cords
multidatabase system. In Int. Conf. on Parallel and Distributed Computing Systems
(1996), pp. 640–647.

[67] ZHU, Q., SUN, Y., AND MOTHERAMGARI, S. Developing cost models with qual-
itative variables for dynamic multidatabase environments. In Int. Conf. on Data
Engineering (ICDE) (2000), pp. 413–424.

	Acknowledgments
	Résumé
	Abstract
	Résumé Étendu
	Introduction
	Thesis Context
	Contributions
	Organization of the Thesis

	Overview of Query Processing in Multistore Systems
	Introduction
	Cloud Data Management
	Distributed Storage
	Block-based Distributed File Systems
	Object-based Distributed File Systems
	Combining Block Storage and Object Storage

	NoSQL Systems
	Key-Value Stores
	Wide Column Stores
	Document Stores
	Graph Data stores

	Data Processing Frameworks
	Concluding Remarks

	Multidatabase Query Processing
	Mediator-Wrapper Architecture
	Multidatabase Query Processing Architecture
	Multidatabase Query Processing Techniques
	Heterogeneous Cost Modeling
	Heterogeneous Query Optimization
	Adaptive Query Processing

	Multistore Systems
	Loosely-Coupled Multistore Systems
	Tightly-Coupled Multistore Systems
	Hybrid systems
	Comparative Analysis

	Conclusion

	Design of CloudMdsQL
	Overview
	Related Work
	Basic Concepts
	Data Model
	Language Concepts

	Query Engine Architecture
	Overview
	Master
	Worker

	Query Language
	Named Table Expressions
	Nested Queries
	Within SQL Expressions
	Within Native Expressions

	CloudMdsQL SELECT Statement

	Query Processing
	Query Decomposition
	Query Optimization
	Query Execution
	Interfacing Data Stores
	Querying SQL Compatible NoSQL Data Stores
	SQL Capabilities
	Using Native Queries

	Use Case Example
	Conclusion

	Extending CloudMdsQL with MFR
	Overview
	Query Language
	MFR Notation
	Combining SQL and MFR

	Query Engine Architecture
	Query Processing
	Query Optimization
	MFR Rewrite Rules
	Bind Join

	Use Case Example
	Conclusion

	Prototype
	Overview
	Query Planner
	Execution Engine
	Wrappers
	Conclusion

	Experimental Validation
	Experimental Setup
	CloudMdsQL Experimentation
	Datasets
	Experimental Results

	MFR Experimentation
	Datasets
	Experimental Results

	Conclusion

	Conclusion
	Contributions
	Directions for Future Work

	Bibliography

