, is the current-voltage characteristics (IV) bias curve of the device, this curve gives the indication that the device under test is biased properly, and that it is in good working condition. Figure 60 (c) shows the light-current-voltage (LIV) power measurement curve of the device under test, Figure, vol.60

, From Figure 60 (c), we observed that the optical power of the LED source was around 0, p.3

, However, this experiment still need to be re-investigated in other to confirm these results II. Scientific publications that emanated from this work, International Journal Article Published

A. Kingsley, *. Ogudo, D. Schmieder, L. W. Snyman, D. Foty et al., South Africa), issue.JM3, 2013.

, Optical propagation and Refraction in Silicon CMOS Structure at 750nm;Realization of an on Chip optical Link, MEMS MOEMS, vol.12, issue.1, p.13015, 2013.

L. W. Snyman, . Member, K. Ieee, J. Xu, K. A. Polleux et al., IEEE Journal of Quantum Electronics, vol.51, issue.7, 2015.

, Higher Intensity SiAvLEDs in an RF Bipolar Process Through Carrier Energy and Carrier Momentum Engineering

. Lw-snyman, . Polleux, K. A. Du-plessis, and *. Ogudo, Stimulating 600-650 nm Wavelength Optical Emission in Monolithically Integrated Silicon LEDs through controlled Injection-Avalanche and Carrier Density Balancing Technology, IEEE Journal of Quantum Electronics, vol.53, 2017.

X. Kaikai, *. Ogudo, H. Snyman, and . Aharoni, Optoelectronics and Advanced Materials, Rapid Communications, vol.11, issue.3-4, pp.164-166, 2017.

, Silicon light-emitting device for fast optical interconnect and fast sensing applications in the GHz frequency range in standard IC technology

A. Kingsley, *. Ogudo, L. W. Snyman, J. Polleux, C. Viana et al., 10-40GHz on chip micro-optical link with all integrated Si Av LED optical sources, Proc. of SPIE, vol.8991, pp.899108-899109, 2014.

. A. Kingsley, *. Ogudo, J. Polleux, L. Snyman, C. Viana-and-zerihun-tegegne-3-rd et al., Realization of 10 GHz minus 30dB On-chip Optical Link with Si-Ge Bi-polar Technologys

L. W. Snyman, J. Polleux, K. A. Ogudo, *. , C. Viana et al., High Intensity 100 nW 5 GHz Silicon Avalanche LED utilizing carrier energy and momentum engineering, Proc. of SPIE, vol.8990, pp.89900-89901, 2014.

B. Chapter, ;. Kingsley, A. Ogudo, *. Lukas, and W. , Silicon Avalanche Based Light Emitting Diodes and Their Potential Integration into CMOS and RF Integrated Circuit Technology, Authors: Kaikai Xu

J. Snyman, Q. Polleux, G. Yu, and . Li,

I. V. References,

F. , E. A. Kimberling, and L. C. , Silicon-Based Technology for Integrated Optoelectronics, MRS) Bulletin, vol.23, issue.4, pp.39-47, 1998.

M. and D. A. , Silicon integrated circuits shine, Nature, vol.384, issue.6, p.307, 1996.

S. , L. W. Aharoni, H. Bibr, A. Bogalecki, A. Canning et al., Optical sources, integrated optical detectors and optical waveguides in standard CMOS integrated circuitry, 2000.

B. , M. Micheal, J. Liu, J. F. Ahn, D. H. Sparacin et al., Process flow innovations for photonic device integration in CMOS, SPIE Photonics West, vol.6898, issue.4, pp.689-804, 2008.

F. , E. Voirin, G. Lagos, A. Moret, and J. M. , MOS-Based Technology for Integrated Opto-electronic Circuits, Scientific and Technical Report CSEM, vol.26, issue.5, p.26, 1993.

R. , L. K. , E. , M. Post, E. Tarr et al., A CMOS compatible rib waveguide with local oxidation of silicon isolation, Proc SPIE Photonics West, vol.6477, issue.0L, pp.64-77, 2007.

S. , L. W. Du-plessis, M. Bellotti, and E. , Increasing the emission intensity of p+np+ CMOS LED's (450-750 nm) by means of depletion layer profiling and defect engineering techniques, IEEE Journal of Quantum Electronics, vol.46, issue.6, pp.906-919, 2010.

, Almae Technologies SAS Paris region)

J. M. , Development of Silicon Photonics Devices Using Microelectronic Tools for the Integration on Top of a CMOS Wafer, Advances in Optical technologies, 2008.

F. , E. A. Kimberling, and L. C. , Silicon-Based Technology for Integrated Optoelectronics, MRS) Bulletin, vol.23, issue.4, pp.39-47, 1998.

M. and D. A. , Silicon integrated circuits shine, Nature, vol.384, issue.6, p.307, 1996.

S. , L. W. Aharoni, H. Bibr, A. Bogalecki, A. Canning et al., Optical sources, integrated optical detectors and optical waveguides in standard CMOS integrated circuitry, 2000.

W. and K. , Electronics and Photonics convergence on Silicon CMOS Platforms, SPIE Photonics West, vol.5357, issue.16, pp.53-57, 2004.

B. , M. Micheal, J. Liu, J. F. Ahn, D. H. Sparacin et al., Process flow innovations for photonic device integration in CMOS, SPIE Photonics West, vol.6898, issue.4, pp.689-804, 2008.

F. , E. Voirin, G. Lagos, A. Moret, and J. M. , MOS-Based Technology for Integrated Opto-electronic Circuits, Scientific and Technical Report CSEM, vol.26, issue.5, p.26, 1993.

R. , L. K. , E. , M. Post, E. Tarr et al., A CMOS compatible rib waveguide with local oxidation of silicon isolation, Proc SPIE Photonics West, vol.6477, issue.0L, pp.64-77, 2007.

A. , N. Kerns, S. E. Kerns-jr, D. V. Hoffmann, A. Charles et al., A multidimensional model for photon generation in silicon junctions in avalanche breakdown, IEEE Trans. Electron Devices, vol.46, issue.5, pp.1022-1027, 1999.

B. , J. Sano, N. Yoshii, and A. , Hot carrier luminescence in Silicon, Phy Rev B, vol.45, issue.11, pp.5848-5856, 1992.

C. , L. Brunetti, R. Jacobone, C. Fischetti, and M. , Polarization analysis of hot-carrier emission in silicon, Semicondoctor Science Technology, vol.9, issue.9, pp.647-676, 1994.

G. , W. G. Mckay, and K. G. , Visible light emission from a silicon p-n junction, Phy Rev, vol.102, issue.102, pp.369-376, 1956.

K. , J. Seitz, P. Steigmeier, E. F. Auderset, H. Delley et al., Light emitting diodes in industrial CMOS technology, Sens and Act, vol.37, issue.37, pp.527-533, 1993.

L. , Z. , F. Bibliasrdi, S. Manfredi, and M. , On the Brehmstrahlung origin of hot-carrier-induced photons in silicon devices, IEEE Trans. Electron Devices, issue.40, pp.577-582, 1993.

N. and R. , Visible light emission from a silicon p-n junction, Phy Rev, vol.100, issue.100, pp.700-703, 1955.

S. , L. W. Bellotti, and E. , New Interpretation of Photonic Yield Processes (450750 nm) in Multi-junction Si CMOS LEDs : Simulation and Analyses, Silicon Photonics IV, vol.7606, issue.13, pp.277-786, 2010.

D. U. Plessis, M. Aharoni, H. Snyman, and L. W. , A silicon trans-conductance light emitting device (TRANSLED), Sensors and Actuators A, vol.80, issue.3, pp.242-248, 2000.

D. U. Plessis, M. Aharoni, H. Snyman, and L. W. , Spatial and intensity modulation of light emission from a silicon LED matrix, IEEE Photonics Technology Letters, vol.14, issue.6, pp.768-770, 2002.

S. and L. W. , Integrating Micro-Photonic Systems and MOEMS into Standard Silicon CMOS Integrated Circuitry, Optoelectronics-Devices and Applications, pp.10-40, 2011.

S. , L. W. Bellotti, and E. , New Interpretation of Photonic Yield Processes (450750 nm) in Multi-junction Si CMOS LEDs : Simulation and Analyses, Silicon Photonics IV, vol.7606, issue.13, pp.277-786, 2010.

S. , L. W. Du-plessis, M. Aharoni, and H. , Three terminal optical sources (450nm-750nm) for next-generation silicon CMOS OEIC's, Pro SPIE MIXDES, vol.5, issue.5, pp.737-747, 2005.

G. , 0, 35 ?m BiCMOS design and processing procedures, 2002.

, 1.2 micron design rules and process parameters, ORBIT, 2002.

C. , A. Bhuva, B. Schrimpf, and R. , High-speed light modulation in avalanche breakdown mode for Si diodes, IEEE Electron. Device Lett, vol.25, issue.9, pp.628-630, 2004.

J. M. Senior and M. Y. Jamro, Optical Fiber Communications: Principles and Practice. Europe: Pearson Education Limited, 2009.

S. and S. M. , Semiconductor Devices:Physics and Technology, 1985.

C. , A. Bhuva, B. Schrimpf, and R. , High-speed light modulation in avalanche breakdown mode for Si diodes, IEEE Electron. Device Lett, vol.25, issue.9, pp.628-630, 2004.

J. M. Senior and M. Y. Jamro, Optical Fiber Communications: Principles and Practice. Europe: Pearson Education Limited, 2009.

S. and S. M. , Semiconductor Devices:Physics and Technology, 1985.

A. , N. Kerns, S. E. Kerns-jr, D. V. Hoffmann, A. Charles et al., A multi-dimensional model for photon generation in silicon junctions in avalanche breakdown, IEEE Trans. Electron Devices, vol.46, issue.5, pp.1022-1027, 1999.

B. , J. Sano, N. Yoshii, and A. , Hot carrier luminescence in Silicon, Phy Rev B, vol.45, issue.11, pp.5848-5856, 1992.

G. , W. G. Mckay, and K. G. , Visible light emission from a silicon p-n junction, Phy Rev, vol.102, issue.102, pp.369-376, 1956.

L. , Z. , F. Bibliasrdi, S. Manfredi, and M. , On the Brehmstrahlung origin of hot-carrier-induced photons in silicon devices, IEEE Trans. Electron Devices, issue.40, pp.577-582, 1993.

S. , L. W. Bellotti, and E. , New Interpretation of Photonic Yield Processes (450750 nm) in Multi-junction Si CMOS LEDs: Simulation and Analyses, Silicon Photonics IV, vol.7606, issue.13, pp.277-786, 2010.

S. , L. W. Du-plessis, M. Aharoni, and H. , Three terminal optical sources (450nm-750nm) for next-generation silicon CMOS OEIC's, Pro SPIE MIXDES, vol.5, issue.5, pp.737-747, 2005.

S. , L. W. Du-plessis, M. Aharoni, and H. , Two order increase in the optical emission intensity of CMOS integrated circuit LED's (450-750 nm) Comparison of n+pn and p+np designs, Proc SPIE Photonics West, vol.5730, issue.6, pp.59-72, 2006.

S. , L. W. Bellotti, and E. , New Interpretation of Photonic Yield Processes (450750 nm) in Multi-junction Si CMOS LEDs: Simulation and Analyses, Silicon Photonics IV, vol.7606, issue.13, pp.277-786, 2010.

S. , L. W. Bellotti, and E. , New Interpretation of Photonic Yield Processes (450750 nm) in Multi-junction Si CMOS LEDs: Simulation and Analyses, Silicon Photonics IV, vol.7606, issue.13, pp.277-786, 2010.

S. and L. W. , Integrating Micro-Photonic Systems and MOEMS into Standard Silicon CMOS Integrated Circuitry, Optoelectronics-Devices and Applications, pp.10-40, 2011.

R. , L. K. , E. , M. Post, E. Tarr et al., A CMOS compatible rib waveguide with local oxidation of silicon isolation, Proc SPIE Photonics West, vol.6477, issue.0L, pp.64-77, 2007.

F. , E. Voirin, G. Lagos, A. Moret, and J. M. , MOS-Based Technology for Integrated Opto-electronic Circuits, Scientific and Technical Report CSEM, vol.26, issue.5, p.26, 1993.

S. and S. M. , Semiconductor Devices:Physics and Technology, 1985.

S. , L. W. Du-plessis, M. Bellotti, and E. , , 2010.

, 8 eV) in Silicon p+np+ injection-avalanche CMOS LEDs as function of depletion layer profiling and defect engineering, IEEE Journal of Quantum Electronics USA, vol.46, issue.6, pp.906-919

R. , M. D. Polleux, J. Algani, and C. , Design and implementation of SiGe HPTs using an 80GHz SiGe bipolar process technology, IEEE 8th International Conference on Group IV Photonics (GFP), vol.11, pp.243-245, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01709232

C. and C. , Trends and Challenges in More Moore and More than Moore Research, Proceedings of the South African Conference on Semiconductors and Superconductors (SACSST), vol.SACSST, pp.1-6, 2009.

F. , E. A. Kimberling, and L. C. , Silicon-Based Technology for Integrated Optoelectronics, MRS) Bulletin, vol.23, issue.4, pp.39-47, 1998.

N. Savage, Linking with Light, IEEE Spectrum, vol.39, issue.1, pp.32-36, 2002.

O. and R. , Applications of Silicon-Based Optoelectronics, MRS Bulletin, vol.8, issue.8, pp.20-47, 1998.

W. and K. , Electronics and Photonics convergence on Silicon CMOS Platforms, SPIE Photonics West, vol.5357, issue.16, pp.53-57, 2004.

B. , M. Micheal, J. Liu, J. F. Ahn, D. H. Sparacin et al., Process flow innovations for photonic device integration in CMOS, SPIE Photonics West, vol.6898, issue.4, pp.689-804, 2008.

N. Savage, Linking with Light, IEEE Spectrum, vol.39, issue.1, pp.32-36, 2002.

W. and K. , Electronics and Photonics convergence on Silicon CMOS Platforms, SPIE Photonics West, vol.5357, issue.16, pp.53-57, 2004.

W. and K. , Electronics and Photonics convergence on Silicon CMOS Platforms, SPIE Photonics West, vol.5357, issue.16, pp.53-57, 2004.

L. , J. F. Sun, and X. , Ge-on-Si Laser operating at room temperature, Optics Letters, vol.35, issue.5, pp.679-681, 2010.

B. , M. Micheal, J. Liu, J. F. Ahn, D. H. Sparacin et al., Process flow innovations for photonic device integration in CMOS, SPIE Photonics West, vol.6898, issue.4, pp.689-804, 2008.

G. , G. Narasimha, A. Analui, B. Liang, Y. Sleboda et al., A 40Gbps CMOS Photonics Tranceiver, Proc SPPIE Silicon Photonics II. SPIE, pp.1-8, 2007.

L. , J. F. Sun, and X. , Ge-on-Si Laser operating at room temperature, Optics Letters, vol.35, issue.5, pp.679-681, 2010.

P. , J. Moutier, F. Billabert, A. L. Rumelhard, C. Sönmez et al., An Heterojunction SiGe/Si Phototransistor for Opto-Microwave Applications: Modelling and first Experimental Results, GAAS Conference of the European Microwave, pp.231-234, 2003.
URL : https://hal.archives-ouvertes.fr/hal-01835054

J. M. Senior and M. Y. Jamro, Optical Fiber Communications: Principles and Practice. Europe: Pearson Education Limited, 2009.

Y. and T. , Low-cost, High Efficiency and High-Speed SiGe Phototransistors in Commercial BiCMOS, IEEE Photonics Technology Letters, vol.18, issue.1, 2006.

B. , M. Micheal, J. Liu, J. F. Ahn, D. H. Sparacin et al., Process flow innovations for photonic device integration in CMOS, SPIE Photonics West, vol.6898, issue.4, pp.689-804, 2008.

R. , L. K. , E. , M. Post, E. Tarr et al., A CMOS compatible rib waveguide with local oxidation of silicon isolation, Proc SPIE Photonics West, vol.6477, issue.0L, pp.64-77, 2007.

B. , M. Micheal, J. Liu, J. F. Ahn, D. H. Sparacin et al., Process flow innovations for photonic device integration in CMOS, SPIE Photonics West, vol.6898, issue.4, pp.689-804, 2008.

B. , J. C. Aharoni, H. Du-plessis, and M. , Visible Light from Guard ring Avalanche Silicon Photodiodes at Different Current Levels, South African Journal of Physics, vol.16, issue.2, pp.149-152, 1993.

F. and P. M. , Progress Toward Nano-scale Silicon Light Emitters, IEEE Journal,Selected Topics in Quantum Electron, vol.4, issue.1, pp.1020-1028, 1998.

M. A. Green, J. Zhao, A. Wang, P. Reece, and M. Gal, Efficient silicon lightemitting diodes, Nature Science, vol.414, issue.1, pp.805-808, 2001.

H. , K. D. Tsybeskov, L. Duttagupta, S. P. Fauchet, and P. M. , Silicon-based visible light-emitting devices integrated into microelectronic circuits, Nature, vol.384, issue.1, pp.338-341, 1996.

K. , J. Seitz, P. Steigmeier, E. F. Auderset, H. Delley et al., Light emitting diodes in industrial CMOS technology, Sens and Act, vol.37, issue.37, pp.527-533, 1993.

S. , L. W. Aharoni, H. Du-plessis, M. Gouws, and R. B. , Increased efficiency of silicon light emitting diodes in a standard 1.2 micron complementary metal oxide semiconductor technology, Optical Engineering, vol.37, issue.1, pp.2133-2141, 1998.

U. Vogel, D. Kreye, S. Reckziegel, M. Torker, C. Grillberger et al., OLED-on-CMOS Integration for Optoelectronic Sensor Applications, Proc. of SPIE Silicon Photonics II, pp.1-8, 2007.

M. A. Green, J. Zhao, A. Wang, P. Reece, and M. Gal, Efficient silicon lightemitting diodes, Nature Science, vol.414, issue.1, pp.805-808, 2001.

M. A. Green, J. Zhao, A. Wang, P. Reece, and M. Gal, Efficient silicon lightemitting diodes, Nature Science, vol.414, issue.1, pp.805-808, 2001.

S. , L. W. Aharoni, H. Du-plessis, M. Gouws, and R. B. , Increased efficiency of silicon light emitting diodes in a standard 1.2 micron complementary metal oxide semiconductor technology, Optical Engineering, vol.37, issue.1, pp.2133-2141, 1998.

U. Vogel, D. Kreye, S. Reckziegel, M. Torker, C. Grillberger et al., OLED-on-CMOS Integration for Optoelectronic Sensor Applications, Proc. of SPIE Silicon Photonics II, pp.1-8, 2007.

H. , K. D. Tsybeskov, L. Duttagupta, S. P. Fauchet, and P. M. , Silicon-based visible light-emitting devices integrated into microelectronic circuits, Nature, vol.384, issue.1, pp.338-341, 1996.

U. Vogel, D. Kreye, S. Reckziegel, M. Torker, C. Grillberger et al., OLED-on-CMOS Integration for Optoelectronic Sensor Applications, Proc. of SPIE Silicon Photonics II, pp.1-8, 2007.

M. A. Green, J. Zhao, A. Wang, P. Reece, and M. Gal, Efficient silicon lightemitting diodes, Nature Science, vol.414, issue.1, pp.805-808, 2001.

S. , L. W. Du-plessis, M. Seevinck, E. Aharoni, and H. , An efficient, low voltage, high frequency silicon CMOS light emitting device and electro-optical interface, IEEE Electron Device Letters, vol.20, issue.1, pp.614-617, 1999.

B. , J. C. Aharoni, H. Du-plessis, and M. , Visible Light from Guard ring Avalanche Silicon Photodiodes at Different Current Levels, South African Journal of Physics, vol.16, issue.2, pp.149-152, 1993.

K. , J. Seitz, P. Steigmeier, E. F. Auderset, H. Delley et al., Light emitting diodes in industrial CMOS technology, Sens and Act, vol.37, issue.37, pp.527-533, 1993.

S. , L. W. Aharoni, H. Du-plessis, M. Gouws, and R. B. , Increased efficiency of silicon light emitting diodes in a standard 1.2 micron complementary metal oxide semiconductor technology, Optical Engineering, vol.37, issue.1, pp.2133-2141, 1998.

K. , J. Seitz, P. Steigmeier, E. F. Auderset, H. Delley et al., Light emitting diodes in industrial CMOS technology, Sens and Act, vol.37, issue.37, pp.527-533, 1993.

A. , H. Du-plessis, and M. , The Spatial Distribution of Light from Silicon LED's, Journal of Sensors and Actuators A, vol.53, issue.3, pp.233-237, 1996.

D. U. Plessis, M. Aharoni, H. Snyman, and L. W. , Spatial and intensity modulation of light emission from a silicon LED matrix, IEEE Photonics Technology Letters, vol.14, issue.6, pp.768-770, 2002.

S. , L. W. Du-plessis, M. Aharoni, and H. , Injection-avalanche based n+pn, 2007.

, Si CMOS LED's (450nm. 750nm) with two order increase in light emission intensity-Applications for next generation silicon-based optoelectronics, Jpn. Journal. Applied. Physics, vol.46, issue.4B, pp.2474-2480

S. , L. W. Du-plessis, M. Bellotti, and E. , Increasing the emission intensity of p+np+ CMOS LED's (450-750 nm) by means of depletion layer profiling and defect engineering techniques, IEEE Journal of Quantum Electronics, vol.46, issue.6, pp.906-919, 2010.

O. , K. A. Schmieder, D. Foty, D. Snyman, and L. W. , Optical propagation and refraction in silicon complementary metal-oxide-semiconductor structures at 750nm: toward on chip optical links and microphotonic systems, Journal of Micro and Nano Lithography, vol.12, issue.1, pp.1-13, 2013.

J. M. Senior, Optical Detectors and Optical Sources, Optical Fiber Communications, Principles and Practice. Third, pp.456-465, 2008.

S. , L. W. Du-plessis, M. Aharoni, and H. , Injection-avalanche based n+pn, 2007.

, Si CMOS LED's (450nm. 750nm) with two order increase in light emission intensity-Applications for next generation silicon-based optoelectronics, Jpn. Journal. Applied. Physics, vol.46, issue.4B, pp.2474-2480

S. , L. W. Du-plessis, M. Bellotti, and E. , Increasing the emission intensity of p+np+ CMOS LED's (450-750 nm) by means of depletion layer profiling and defect engineering techniques, IEEE Journal of Quantum Electronics, vol.46, issue.6, pp.906-919, 2010.

S. , K. Zimmermann, and H. , Highly sensitive optical receivers, High Performance Electron Devices for Microwave and Opto-electronic Applications, 2006.

Z. and H. , Improved CMOS-integrated Photodiodes and their Application in OEICs, IEEE EDMO, vol.25, issue.9, pp.346-351, 1997.

C. , A. Bhuva, B. Schrimpf, and R. , High-speed light modulation in avalanche breakdown mode for Si diodes, IEEE Electron. Device Lett, vol.25, issue.9, pp.628-630, 2004.

P. , J. Moutier, F. Billabert, A. L. Rumelhard, C. Sönmez et al., An Heterojunction SiGe/Si Phototransistor for Opto-Microwave Applications: Modelling and first Experimental Results, GAAS Conference of the European Microwave, pp.231-234, 2003.
URL : https://hal.archives-ouvertes.fr/hal-01835054

S. , K. Zimmermann, and H. , Highly sensitive optical receivers, High Performance Electron Devices for Microwave and Opto-electronic Applications, 2006.

Z. and H. , Improved CMOS-integrated Photodiodes and their Application in OEICs, IEEE EDMO, vol.25, issue.9, pp.346-351, 1997.

J. M. Senior, Optical Detectors and Optical Sources, Optical Fiber Communications, Principles and Practice. Third Ed, pp.456-465, 2008.

P. , J. Moutier, F. Billabert, A. L. Rumelhard, C. Sonmez et al., A Strained SiGe layer Heterojunction Bipolar Phototransistor for Short-Range Opto-Microwave Applications, IEEE International Topical Meeting on Microwave Photonics MWP2003, 2003.
URL : https://hal.archives-ouvertes.fr/hal-01835041

P. , J. Moutier, F. Billabert, A. L. Rumelhard, C. Sönmez et al., An Heterojunction SiGe/Si Phototransistor for Opto-Microwave Applications: Modelling and first Experimental Results, GAAS Conference of the European Microwave, pp.231-234, 2003.
URL : https://hal.archives-ouvertes.fr/hal-01835054

R. , M. D. Polleux, J. Algani, and C. , Design and implementation of SiGe HPTs using an 80GHz SiGe bipolar process technology, IEEE 8th International Conference on Group IV Photonics (GFP), vol.11, pp.243-245, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01709232

S. Burla, RF Engineering Meets Optoelectronics Progress in Integrated. Microwave Photonics" IEEE Microwave Magazine, pp.1527-3342, 2015.

J. Capmany and A. L. Et, Innovative Concepts in Microwave Photonics

J. Nanni, G. Tartarini, S. Rusticelli, F. Perini, C. Viana et al., , p.850

, VCSEL-based Radio over Fiber systems for manifold applications, FOTONICA 2015, 2015.

S. , L. W. Aharoni, H. , D. U. Plessis, M. Marais et al., Planar light emitting electro-optical interfaces in standard silicon complementary metal oxide semiconductor integrated circuitry, Optical Engineering, vol.12, issue.41, pp.3230-3240, 2002.

S. , L. W. Aharoni, H. Du-plessis, M. And, G. et al., Increased efficiency of silicon light emitting diodes in a standard 1.2 micron complementary metal oxide semiconductor technology, SPIEE Optical Engineering, vol.37, issue.7, pp.2133-2141, 1998.

K. J. Seitz, E. F. Steigmeier, H. Auderset, and D. B. And, Lightemitting devices in Industrial CMOS technology, Sensors and Actuators, pp.527-533, 1993.

S. , L. W. Auderset, H. Derendinger, M. Patterson, B. D. And et al., Efficient electroluminescence from 2-and 3-junction silicon structures, 111B of the Paul Scherrer Institute, vol.28, 1996.

S. , L. W. Du-plessis, M. Seevinck, E. And, A. et al., An efficient, low voltage, high frequency silicon CMOS light emitting device and electro-optical interface, IEEE Electron Device Letters, vol.20, issue.12, pp.614-617, 1999.

S. , L. W. Auderset, H. Derendinger, M. Patterson, B. D. And et al., Efficient electroluminescence from 2-and 3-junction silicon structures, 111B of the Paul Scherrer Institute, vol.28, 1996.

Z. Pie, J. W. Shi, Y. Hsu, F. C. Yuan, and . Lu, Bandwidth Enhancement in an Integrated SiGe Phototransistor by Removal of Excess carriers, IEEE Electronics Device Letter, vol.25, issue.5, 2004.

K. A. Ogudo, D. Schmieder, D. Foty-and, and L. W. Snyman, Optical propagation and refraction in silicon complementary metal-oxide semiconductor structures at 750nm: toward on chip optical links and microphotonic systems, Journal of Micro and Nano Lithography, vol.12, issue.1, pp.1-13, 2013.

X. U. , K. And, L. I. , and G. , A three terminal silicon PMOSFET light emitting device (LED) for optical intensity modulation, IEEE Photonic J (4), vol.6, pp.2159-2168, 2013.

S. , L. W. Du-plessis, M. And, B. , and E. , Photonic transitions (1.4 eV-2.8 eV) in Silicon p+np+ injection-avalanche CMOS LEDs as function of depletion layer profiling and defect engineering, IEEE Journal of Quantum Electronics, vol.46, issue.6, pp.906-919, 2010.

L. W. Snyman, J. Polleux, K. A. Ogudo, C. Viana, and . Sebastian-wahl, High Intensity 100 nW 5 GHz Silicon Avalanche LED utilizing carrier energy and momentum engineering, Proc. of SPIE, vol.8990, pp.89900-89901, 2014.

S. , L. W. Aharoni, H. And, and M. Plessis, Two order increase in the quantum efficiency of silicon CMOS n+pn avalanche-based light emitting devices as a function of current density, IEEE Photonic Technology Letters, vol.17, issue.10, pp.2041-2043, 2005.

G. Chan, R. Basu, and B. Mukhopadhyay-&-prasanta-k,

, Design and Modeling of GeSn-Based Heterojunction Phototransistors for Communication Applications, IEEE Journal of Selected Topics in Quantum Electronics, issue.6, p.22, 2016.

S. , L. W. Auderset, H. Derendinger, M. Patterson, B. D. And et al., Efficient electroluminescence from 2-and 3-junction silicon structures" Applied physics, Annual Report1996/Annex.111B of the Paul Scherrer Institute, vol.28, 1996.

L. W. Snyman, J. Polleux, K. A. Ogudo, C. Viana, and . Sebastian-wahl, High Intensity 100 nW 5 GHz Silicon Avalanche LED utilizing carrier energy and momentum engineering, Proc. of SPIE, vol.8990, pp.89900-89901, 2014.

G. , A. Jaouad, A. Grondin, E. Aimez, V. Charette et al., Fabrication of Silicon-Nitride waveguides for visible-light using PECVD: a study of the effect of plasma frequency on optical properties, Optics Express, vol.116, issue.18, pp.13509-13516, 2008.

R. Design-group, Optical Simulation Software BeamPROP. UK: Rsoft Design group, 2012.

T. Semiconductors-foundary, 2014: www.telefunken.com/signal specialty semiconductor foundry

Z. G. Tegegne, SiGe/Si Microwave Photonic Phototransistors and Interconnects towards Siliconbased full Optical Links, 2016.
URL : https://hal.archives-ouvertes.fr/tel-01550015

Z. G. Tegegne, C. Viana, J. L. Polleux, M. Grzeskowiak, and E. Richalot, Edge illuminated SiGe Heterojunction Phototransistor for RoF applications, IEEE/IET Electronics Letters, vol.51, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01436923