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Résumé

Cette thèse traite des phénomènes liés aux mathématiques financières et économiques.

Elle est composée de deux sujets de recherche indépendants. La première partie est

consacrée à deux contributions au problème de Merton.

Pour commencer, nous étudions le problème de l’investissement optimal et de la con-

sommation de Merton dans le cas de marchés discrets dans un horizon infini. Nous

supposons qu’il y a des frictions sur les marchés en raison de la perte due aux échanges

financières. Ces frictions sont modélisées par des fonctions de pénalités non linéaires où

les modèles classiques de coût de transactions étudiés par Magill et Constantinides [31]

et les marchés illiquides étudiés par Cetin, Jarrow et Protter dans [6] sont inclus dans

cette formulation. Dans ce contexte, la région de solvabilité est définie en tenant

compte de cette fonction de pénalité et chaque investisseur doit maximiser son util-

ité, dérivée de la consommation. Nous donnons la programmation dynamique du

modèle et nous prouvons l’existence et l’unicité de la fonction valeur. Des stratégies

optimales d’investissement et de consommation sont également construites. Ensuite,

nous étendons le modèle de Merton à un problème à plusieurs investisseurs. Notre

approche consiste à construire un modèle d’équilibre général déterministe dynamique.

Nous prouvons ensuite l’existence d’un équilibre du problème qui est un ensemble

de contrôles composés de processus de consommation et de portefeuille, ainsi que les

processus de prix qui en découlent afin que la politique de consommation de chaque

investisseur maximise son profil. Les résultats obtenus dans cette partie étendent

principalement les résultats récemment obtenus par Chebbi et Soner [10] ainsi qu’aux

d’autres résultats obtenus dans ce cadre dans la littérature.

Dans la deuxième partie, nous traitons le problème de l’existence d’un équilibre d’une

économie de production avec des ensembles d’allocations réalisables non-bornés où les

consommateurs peuvent avoir des préférences non-transitives non-complètes. Nous

introduisons une propriété asymptotique sur les préférences pour les consommations
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réalisables afin de prouver l’existence d’un équilibre. Nous montrons que cette con-

dition est vraie lorsque l’ensemble des allocations réalisables est compact ou aussi

lorsque les préférences sont représentées par des fonctions d’utilité dans le cas où

l’ensemble des niveaux d’utilité rationnels individuels réalisables est compact. Cette

hypothèse généralise la condition de CPP de Allouch [1] et couvre l’exemple de Page

et al. [40] lorsque les niveaux d’utilité disponibles définis ne sont pas compacts. Nous

étendons donc les résultats existants dans la littérature avec des ensembles réalisables

non bornés de deux façons en ajoutant la production et en prenant en compte des

préférences générales.

Mots-clés: problème de Merton, marché discret, horizon infini, marché à friction, pro-

grammation dynamique, équilibre, économie de production, quasi-équilibre, préférences

non transitives non complètes.
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Abstract

This PhD dissertation studies two independent research topics dealing with phenomena

issues from financial and economic mathematics.

This thesis is organized in two parts. The first part is devoted to two contributions to

the Merton problem.

First, we investigate the problem of optimal investment and consumption of Merton in

the case of discrete markets in an infinite horizon. We suppose that there is frictions

in the markets due to loss in trading. These frictions are modeled through nonlinear

penalty functions and the classical transaction cost studied by Magill and Constan-

tinides in [31] and illiquidity models studied by Cetin, Jarrow and Protter in [6] are

included in this formulation. In this context, the solvency region is defined taking into

account this penalty function and every investigator have to maximize his utility, that

is derived from consumption, in this region. We give the dynamic programming of

the model and we prove the existence and uniqueness of the value function. Optimal

investment and consumption strategies are constructed as well. We second extend the

Merton model to a multi-investors problem. Our approach is to construct a dynamic

deterministic general equilibrium model. We then provide the existence of equilibrium

of the problem which is a set of controls that is composed of consumption and portfolio

processes, as well as the resulting price processes so that each investor’s consumption

policy maximizes his lifetime expected. The results obtained in this part extends

mainly the results recently obtained by Chebbi and Soner [10] and other correspond-

ing results in the litterature.

The second part of this thesis deals with the problem of the existence of an equi-

librium of a production economy with unbounded attainable allocations sets where

the consumers may have non-complete non-transitive preferences. We introduce an

asymptotic property on preferences for the attainable consumptions in order to prove
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the existence of an equilibrium. We show that this condition holds true if the set

of attainable allocations is compact or, when preferences are representable by utility

functions, if the set of attainable individually rational utility levels is compact. This

assumption generalizes the CPP condition of Allouch [1] and covers the example of

Page et al. [40] when the attainable utility levels set is not compact. So we extend

the previous existence results with unbounded attainable sets in two ways by adding

a production sector and considering general preferences.

Keywords: Merton problem, discrete market, infinite horizon, market friction, after-

liquidation value, dynamic programming, equilibrium, production economy, unbounded

attainable allocations, quasi-equilibrium, non complete non transitive preferences.
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Chapter 1

Introduction

In this thesis, we first study the optimal investment and consumption problem of Mer-

ton in discrete time when there are frictions and second, we address the existence of

equilibrium for a production economy with unbounded attainable allocations sets.

In chapter 2, we study the Merton problem in an infinite horizon and discrete time

with frictions. We suppose that friction in the market is due to loss in trading. In this

context, we prove the dynamic programming of the model and by using a fixed point

approach, we deduce the existence and uniqueness of the value function.

In chapter 3, we extend the Merton model to a multi-investors problem. We model

the agent’s optimization problem in a framework of a dynamic deterministic general

equilibrium model. We use an intermediary model of truncated economy to prove the

existence of equilibrium of the problem which represents a set of controls that is com-

posed of consumption and portfolio processes, as well as the resulting price processes

so that each investor’s consumption policy maximizes his lifetime expected.

Chapter 4 deals with the problem of the existence of an equilibrium of a produc-

tion economy with unbounded attainable allocations sets. We introduce a sufficient

asymptotic condition on preferences that allows to prove the existence of equilibrium

with unbounded consumption sets and preference orderings need not be transitive.

Our approach is based on the use of a fixed point like argument and an asymptotic

argument.
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1.1. Merton Problem in discrete time with frictions

1.1 Merton Problem in discrete time with frictions

1.1.1 Overview on the Merton Problem

The portfolio optimization problem in the continuous time diffusion model was first

introduced by Merton in the two landmark papers [32,33], where he examined the com-

bined problem of optimal portfolio selection and consumption rules for an individual

when the individual’s income is generated by returns on assets and these returns are

stochastic. By assuming a model with constant coefficients and solving the relevant

Hamilton-Jacobi-Bellman equation, Merton [32] derived explicit solutions and optimal

strategies of the value function for both finite- and infinite-horizon models with spe-

cial types of utility functions for a multi-asset problem when the rate of returns are

generated by the Wiener Brownian-motion.

Formally, an investor must choose how much to consume and must allocate his wealth

between stocks and a risk-free asset so as to maximize expected utility. This invest-

ment strategy π, coupled with its c consumption, leads to a portfolio value X c,π
T at

time T .

The investor seeks to solve the following problem

sup
(c,π)∈A

E[

� T

0

exp−βs U1(cs)ds+ exp−βT U2(X
c,π
T )]

where U1, U2 are two classical utility functions, i.e. concave and increasing functions.

U1 and U2 represent respectively the utility of the agent relating to his instantaneous

consumption and to his final wealth. The growth property of these utility functions

reflects the fact that happiness increases with consumption, as to the concavity, it

represents the decrease property of the marginal interest to get (or to consume) a

little more money. The parameter β should not be confused with the rate of interest

without risk; in this model it represents a preference for the present. The set A is the

set of admissible strategies.

This problem has been extended and extensively used in financial models. One direc-

tion of extension has been to include market frictions and to study their impact on

2



1.1. Merton Problem in discrete time with frictions

the optimal decisions. This part of this thesis is a study in this direction in a case of

discrete time formulation.

1.1.2 Market Friction

A friction market is one that has transaction costs (including taxes) and restrictions

on trade (e.g. short sale constraints). Indeed, in financial markets expenses incurred in

the purchase or sale of a security are generally defined as transaction costs and usually

include commission, bid-ask spread and market impact. Commission is the amount of

a broker fee to effect a transaction, which can be a set price or can depend on the size

of the trade. The bid-ask spread is the difference between prices at which one can buy

a share of stock and then immediately sell it. The impact on the market is the cost

associated to the effect that a market participant has when he buys or sells an asset,

i.e. changing the price of the stock. Transaction costs can be expressed in terms of

trading vector �x. Typically, for small trades, meaning transaction costs that come

from the bid-ask spread and other brokerage fees, are simply modeled as a function that

is proportional to the amount traded. For large trades, there is market price impact,

which can be temporary when it affects a single transaction or permanent when it

affects every future transaction. Transaction costs are important to investors as they

are one of the key determinants of their net return. In addition, transaction costs

may represent capital gains taxes and are therefore to be included in the portfolio

rebalancing. Incorporating transaction costs into the portfolio optimization model

allows us to determine the optimal portfolio in the most cost-effective way.

In our context, market friction will be modeled by a convex penalty function which

englobes both transaction costs and illiquid market.

1.1.3 Optimal investment in friction market

As it is mentioned previously in 1971, Merton developed a mathematical model of the

optimal investment and consumption problem in continuous time. Ever since then,

there has been many attempts to generalize and develop the results of Merton in dif-

ferent ways. Dealing with the complete market in a direction to which a large portion

of the works has been devoted. One of the directions considered was the problem with

3



1.1. Merton Problem in discrete time with frictions

stochastic drift returns. In this sense, one could refer to Campbell and Viceira [5]

and Wachter [50]. In the meantime, other topics have received much attention and

popularity among which we can mention stochastic volatility and transaction cost

problems. We refer to Chacko and Viceira [9] for some explicit results for the cases

with stochastic volatility in incomplete markets.

In recent papers, the impact of transaction costs on the trading decisions of investors

has been studied intensively. The proportional transaction costs is a consequence of

the bid-ask spread and was first studied in the context of the Merton problem by Mag-

ill and Constantinides [31] and later by Constantinides [12]. They showed that when

investors pay proportional transaction costs to their investments, there is an area of

asset price variation within which no portfolio redesign will be considered (contrary

to the traditional portfolio theory results that show an optimal portfolio correspond-

ing to each new market state) and it is only when the change in the price of the

securities brings out the optimal portfolio of this zone that the investor proceeds a

redevelopment. This analysis justifies that interventions of the savers are sporadic,

especially when the variations of stock prices are of small amplitude. It should be

noted that they should involve large volumes and may occasionally strengthen market

volatility. In [12], Constantinides derives the optimal investment policy of an infinitely

lived agent who can trade a riskless and a risky asset. The return of the riskless as-

set is constant over time and that of the risky asset is Independently and identically

distributed. The risky asset carries transaction costs which are proportional to the

dollar value traded. Because the agent has CRRA preferences, the optimal policy in

the absence of transaction costs is to maintain a constant fraction of wealth invested

in the risky asset as in Merton [33]. In the presence of transaction costs, the agent

prevents this fraction from exiting an interval. When the fraction is strictly inside the

interval, the agent does not trade. The agent incurs a small utility loss from trans-

action costs, even though he trades infinitely often in their absence. Intuitively, the

derivative of his utility at the optimal policy is zero, and hence derivation from that

policy results in the second-order loss. This model was later put in a modern mathe-

matical framework in continuous time by Davis and Norman [15] who show that the

optimal no-trade interval policy exists, and propose a numerical method to compute it.

4



1.1. Merton Problem in discrete time with frictions

In discrete theory, the model is fully developed by Jouini and Kallal [27]. They showed

that a bid-ask spread price process is arbitrage free if and only if there exists an

equivalent probability measure that transforms some process between the bid and the

ask price processes into a martingale. A similar concept of friction is due to liquidity.

Indeed, recently Cetin, Jarrow and Protter [6] developed a mathematical model for

an illiquid market in which the notion of the stochastic supply curve which gives the

price of stock as a function of the trade size.

In Chebbi and Soner [10], the approach is similar to that of [7] and they provide

several extensions by studying the problem in multi-dimensions in a generality that

covers both transaction cost and illiquidity. Indeed, the model they consider proposes

a penalty function for trading. The penalty function considered represents trading

results in a loss which is a certain small percentage of the traded dollar amount. To

simplify the discussion, let us assume in this introduction that there is only one risky

asset. If at any time the investor decides to make a portfolio adjustment of α dollars

in his stock account, then he loses g(α) dollars to market friction. This function is as-

sumed to be a general non-negative convex with g(0) = 0. In the case of proportional

transaction costs g(α) = λ|α| and in one particular example of an illiquid market with

no bid-ask spread g(α) = λα2, where λ > 0 is a (small) market parameter. The dis-

crete time formulation has the advantage of studying several different types of market

frictions together through a general penalty function g. In a continuous time only

the structure of g near the origin is relevant. Hence, one has to distinguish the cases

when g is differentiable at the origin and when not. In contrast to continuous time, a

unifying approach is possible in discrete time.

Our first contribution in the first part of this thesis is to extend the model considered

in [10] to the case of an infinite horizon. Using the penalty function, we give the

dynamics of the cash and stock position. We then study the optimal investment and

the consumption problem of Merton. This problem is formulated as an optimization

problem in which every investor has to maximize his expected utility function under

a constraint condition defined by a solvency region. The utility function is derived

from consumptions and the solvency region is defined through a natural condition

concerning the non negativeness of what we call the after liquidation value, when

an investor is forced to liquidate all stock positions. Consequently, we prove the

5



1.1. Merton Problem in discrete time with frictions

dynamic programming of the model and by using a fixed point approach, we deduce

the existence and uniqueness of the value function.

1.1.4 Extensions of Merton problem to mutil-investors case

Our interest in the second contribution of the first part is to extend the Merton Problem

studied in the previous section to a multi-agent problem in market with frictions based

on the equilibrium general theory.

In the litterature, the articles Heaton and Lucas [26], Vayanos [48] , Vayanos and Vila

[49] and Lo, Mamaysky and Wang [30] study the behavior of the equilibrium resulting

from transmission costs. Heaton and Lucas [26] provide a stationary equilibrium under

transactions cost in which investors trade all the time in small quantities. In [48, 49],

the investor has a finite lifetime, transaction costs induce him to buy securities when

he is young that he can resell in order to secure his life during his old age.

Inspired by the recent work of Le Van and Pham in [29], we derive an equilibrium

of the Merton problem in a financial market with multi-agent in infinite horizon. We

study, in terms of price, consumption and portfolio, the dynamics of a financial-market

equilibrium that we can expect to observe when there are frictions. We assume a

riskless, perfectly liquid bond with a constant rate of return, and many risky stocks

that carry frictions. The prices that are accepted by agents when determining their

optimal consumption and portfolio policies requiring the fact that for all commodity

to be exactly owned, actually represent the prices at equilibrium. Equilibrium in this

market is defined as a set of controls which is composed of consumption and portfolio

processes, as well as the resulting price processes for financial assets, so that each

agent’s consumption policy maximizes his lifetime expected; that is this consumption

process is financed by the optimal portfolio process, financial markets clear and the

market for consumption good clears. Then, we determine a simple set of conditions

that are sufficient for equilibrium and we construct the equilibrium in the case where

there are transaction costs.

6



1.2. Equilibrium theory with unbounded allocation sets

1.2 Equilibrium theory with unbounded allocation

sets

1.2.1 Finite-dimensional economy

The economy is a human activity that involves production, distribution, exchange

and consumption of goods and services. Its complexity contrasts sharply with the

simplicity of a question that must be raised about its functioning. Since the seventies,

with the exception of the seminal paper of Mas-Colell [20] and a first paper of Shafer-

Sonnenschein [46], equilibrium for a finite dimensional standard economy has attracted

the attention of several researchers in different directions.

In the private ownership economy, a finite number of commodities are exchanged,

produced or consumed. a finite number of consumers who are endowed with initial

holdings of different commodities and consume the goods available in the market in

such a way that optimizes their preferences and satisfies their consumption plans

and budget constraints. For given prices, producers choose their production in the

production plan so as to maximize their profits.

The consumption of each consumer must be feasible. The production of each producer

must be possible and the market must be at a state of equilibrium.

A classical private ownership economy is completely characterized by

E = (Rl, (Xi, Pi,ωi)i∈I , (Yj)j∈J , (θi,j)i∈I,j∈J)

where L is a finite set of goods, so that RL is the commodity space and the price space.

I is a finite set of consumers, each consumer i has a consumption set Xi ⊂ RL and an

initial endowment ωi ∈ RL. The tastes of this consumer are described by a preference

correspondence Pi :
�

k∈I Xk → Xi. Pi(x) represents the set of strictly preferred

consumption to xi ∈ Xi given the consumption (xk)k �=i of the other consumers. J is

a finite set of producers and Yj ⊂ RL is the set of possible productions of firm j ∈ J .

For each i and j, θij is the portfolio of shares of the consumer i on the profit of the

producer j. The θij are nonnegative and for every j ∈ J ,
�

i∈I θij = 1. These shares

together with their initial endowment determine the wealth of each consumer.
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1.2. Equilibrium theory with unbounded allocation sets

We recall that an allocation (x, y) ∈
�

i∈I

Xi ×
�

j∈J

Yj is called attainable if and only if

�

i∈I

xi =
�

j∈J

yj +
�

i∈I

ωi.

An equilibrium of a private ownership economy is a t-uple (x̄, ȳ, p̄) consisting of an

attainable allocation (x̄, ȳ) and a nonzero price vector p̄ such that:

(a) For each i ∈ I, p̄ · x̄i ≤ p̄ · ωi + p̄ · (
�

j∈J θij ȳj) and

xi ∈ Pi(x̄, ȳ, p̄) =⇒ p̄ · xi > p̄ · x̄i,

(b) For every j ∈ J , for every yj ∈ Yj, p̄ · yj ≤ p̄ · ȳj,

(c)
�

i∈I x̄i =
�

i∈I ωi +
�

j∈J ȳj.

Condition (a) states that every consumer has chosen a consumption vector which

satisfies his preferences in Xi under his budget constraint. Condition (b) states that

each producer has maximized his profit in the production set. Condition (c) expresses

that (x̄, ȳ) is in a state of equilibrium.

One basic assumption of the consumer theory is that a consumer can always rank

consistently different commodity bundles to determine which one he prefers. This is

corresponds to what we call complete preferences. Second, transitivity of preferences

implies their strong coherence of their choices.

In the non-transitive equilibrium, consumers are not supposed to have a complete pref-

erence preorder on their consumption set. This is the case where potential consumer

choices have a strong coherence associated with transitivity, but where consumers can

not compare all pairs of commodity bundles in their consumption sets. The non-

transitive equilibrium also encompasses the case where consumers’ strict binary pref-

erences on consumption are the only data on consumer preferences and where these

are non-transitive relations. Finally, considering preference correspondences instead

of complete preference preorders is tantamount to introducing into a non-transitive

equilibrium the case where consumers have preferences over consumption vectors es-

tablished by the actions of other agents and relative prices.

8



1.2. Equilibrium theory with unbounded allocation sets

Several works including ( [3], [19], [18], [24], [44], [45]) have studied the existence of

equilibrium in economies with interdependent preferences and price-dependent prefer-

ences that may be non-transitive and non-complete.

1.2.2 Non compact attainable allocation

The problem of existence of an Arrow-Debreu equilibrium in economies with con-

sumption sets unbounded from below has appeared in several economic contexts.

Among those we can cite Equilibrium Models of asset Markets (Hart [25], Page [38],

Milne [35]), General Equilibrium more widely (Werner [51], Nelson [36], Page and

Wooders [41], [39] ) that established various conditions for existence of equilibria.

Some of these conditions imply the compactness of “the individually rational attain-

able allocations set”.

Earlier papers in the literature on existence of equilibrium in models with consumption

sets unbounded from below focused on establishing sufficient and necessary conditions

for existence of equilibrium. This is due to the fact that the consumption set need not

be bounded from below in an asset market economy where unlimited short sales are al-

lowed. Hart [25], first introduced the condition on preferences eventually known as the

no arbitrage condition which allows to prove the existence of a Walrasian equilibrium

with consumption sets unbounded from below. Since then, several works have dealt

with this question which has allowed to have a wide literature with different arbitrage

notions which generalizes and develops the condition of Hart on preferences.

One extension of the no-arbitrage condition (see Hammond, Page, Nielson, and Page

and Wooders ) was to consider a weaker hypothesis, “the compactness of the individ-

ually rational utility set” that represents the set of utility vectors in which each agent

receives no less than the utility of its initial endowment and no more than the util-

ity of his consumption in a feasible allocation. Furthermore, it has been shown that

the arbitrage conditions are not only sufficient but also necessary for the existence of

equilibrium in certain cases.

However, these conditions present some limitations. Firstly, they are not always neces-

sary to prove the existence of equilibrium. Indeed, Page et al. [40] provide an example

9



1.2. Equilibrium theory with unbounded allocation sets

of an economy in which an equilibrium exists but neither it satisfies any known no-

arbitrage condition nor it has a compact utility set for individually rational allocations.

Secondly, preferences may not satisfy transitivity.

In the same context, Allouch [1] provide a new type of no-arbitrage condition, called

CPP condition, to prove the existence of a quasi-equilibrium in an exchange economy

with short selling when the preference relations of the investors are represented by

a partial preorder. This setting encompasses the case of preference relations derived

from a utility function.

It is natural to consider an extension of the notions of arbitrage to the case with

non-transitive preferences. A new condition was introduced by Won and Yannelis [52]

where preferences need not be transitive or complete and the consumption set need

not be bounded from below. Within the framework of a general economy with non-

transitive and lower semi-continuous preferences, they provide a sufficient condition

for proving the existence of equilibrium, through which they emphasize non-symmetric

treatment of consumers where one of the consumers plays a particular role.

Our work is in this direction, we provide a sufficient condition (H3) to replace the

standard compactness of the attainable allocation set, which is suitably written to

deal with general preferences and we give a simple numerical example where the set

of the attainable allocations is not bounded and preferences are not representable by

utility functions but the preferences satisfy our asymptotic condition. More precisely,

we assume that for each sequence of attainable consumptions, there exists an attainable

consumption where the preferred sets are asymptotically close to the preferred sets of

the elements of the sequence. We also restrict our attention to the attainable allocation,

which are individually rational, in a sense adapted to the fact that preferences may

not be transitive.

We prove that our condition is satisfied when the attainable set is compact and when

preferences are represented by utility functions and the set of attainable individually

rational utility levels is compact. So, our result extends the previous ones in the

literature. Our asymptotic assumption is weaker than the CPP condition within the

framework considered by Allouch where preferences are transitive and have open lower

sections.
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1.2. Equilibrium theory with unbounded allocation sets

As for the contribution of Won and Yannelis, we provide an asymmetric assumption

(EWH3) for exchange economies. Won and Yannelis condition and the (EWH3) are

not comparable and both of them cover the example of Page et al [40].

Our assumption can be stated for an exchange economy or for a production economy

since it deals only with feasible consumption vectors and not with the associated

production vectors.

1.2.3 Existence of equilibrium with unbounded allocation sets

Since the seventies, with the exception of the seminal paper of Mas-Colell [20] and a

first paper of Shafer-Sonnenschein [46], equilibrium for a finite dimensional standard

economy is commonly proved using explicitly or implicitly equilibrium existence for

the associated abstract economy first introduced by Debreu and then developed in

many directions by several papers (see for example [3], [19], [18], [24], [44], [45]).

The methodology of applying this result to the economic model consists in considering

the equilibrium functioning of an economy as the equilibrium of a generalized game in

which agents are the consumers, the producers and an hypothetic additional agent, the

Walrasian auctioneer that corrects the eventual disequilibrium by making the excess

of demand over supply as expensive as possible.

Based on this approach and by using the CPP condition, Allouch [1] prove the exis-

tence of a quasi-equilibrium in an exchange economy when the preference relations of

the investors are represented by a partial preorder and when the consumption sets are

unbounded from below. Won and Yannelis [52] extend Allouch [1] to the case of non-

transitive preferences and they show that each economy with the truncated consump-

tion sets has an equilibrium under their sequential new assumption. Their argument is

based on the existence of a bounded sequence of allocations which are asymptotically

supported by the sequence of equilibrium prices for the truncated economies. The

limit of those prices and bounded allocations gives the equilibrium of the economy.

In our work, we consider a production economy with an unbounded attainable set

where the consumers may have non-complete non-transitive preferences. We use the

11



1.2. Equilibrium theory with unbounded allocation sets

asymptotic property on preferences for the attainable consumptions to get the equilib-

rium. We posit classical hypothesis such as closedness and convexity on consumption

and production sets. The definition of the “augmented preferences” due to Gale and

Mas-Collel (see [21], [22]) is slightly modified by using the convex hull of preferences

correspondences since, in our setting, we use non-convex preferences. This defini-

tion allows to have the local insatiability of consumers at any point of their attain-

able consumption set. We show that some properties are transmitted from equivalent

properties of the preferences correspondences like convexity, lower-semi-continuity and

irreflexivity. We define an abstract economy and a quasi-equilibrium of this abstract

economy that is equivalent to the quasi-equilibrium of the private ownership economy

initially introduced. We truncate consumption and production sets with a closed ball

with a radius large enough. Following an idea of Bergstrom [3], we modify the budget

sets in such a way that it will coincides with the original ones when the price belongs

to the unit sphere; in order to apply a fixed point like argument to the artificial trun-

cated economy. By applying our asymptotic assumption to the sequence of allocations

in growing associated compact economies, we prove that the attainable consumption

having preferred sets close to the ones of the consumption vectors of the compact

economies is a quasi-equilibrium of the original economy. Note that the originality of

the proof comes from the fact that the attainable allocation is not necessarily the limit

of the sequence of allocations considered.

Hence, our result on the existence of equilibrium extends the previous existence re-

sults with unbounded attainable sets in two ways by adding a production sector and

considering general preferences.
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Chapter 2

Merton Problem in an Infinite

Horizon and discrete time with

Frictions

ABSTRACT. We investigate the problem of optimal investment and consumption

of Merton in the case of discrete markets in an infinite horizon. We suppose that there

is frictions in the markets due to loss in trading. These frictions are modeled through

nonlinear penalty functions and the classical transaction cost and liquidity models are

included in this formulation. In this context, the solvency region is defined taking into

account this penalty function and every investigator have to maximize his utility, that

is derived from consumption, in this region. We give the dynamic programming of the

model and we prove the existence and uniqueness of the value function.

Keywords: Merton problem, discrete market, infinite horizon, market frictions, after

liquidation value, dynamic programming, value function.

2.1 Introduction

In a very known paper appeared in 1971, Merton developed and modeled the problem

of optimal investment and consumption in continuous time. Since it appeared, this
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2.1. Introduction

problem has been extensively investigated in the literature and extended in many

directions, we refer to the book of Karatzas and Shreve [28] for some extensions in this

way. Recently, Chebbi and Soner in [10] consider the model of Merton when there is

frictions in the market due to loss in trading. This paper is a study in this direction

and the markets considered are discrete in infinite horizon.

In the literature, we can find several types of market friction. The first one that

receive the most attention is the proportional transaction costs, first introduced and

studied in the context of Merton problem by Magill and Constantinides [31] and later

by Constantinides [12]. Recently, another concept of friction has been introduced by

Cetin, Jarrow and Protter [6] for an illiquid market and a related super-replication

problem studied by Cetin, Soner and Touzi [8]. Our concept of friction in this paper

will be formulated through a convex penalty function g in a discrete market considered

in an infinite horizon. This formulation will included both the function of proportional

costs considered in [31] and the one considered for an illiquid market with no bid and

ask spread [6] and it was also considered by Dolinsky and Soner [16]. The discrete time

formulation of Merton problem was firstly developed by Jouini and Kallal [27] and in

our context, the advantage of this type of formulation is that we can give a uniform

approach that covers both the two principal types of frictions, i.e. proportional costs

and illiquid markets, while in continuous time one have to distinguish the case when

g is differentiable at the origin or not.

In section 2, we extend the model of Merton with friction studied in [10] to the case

of an infinite horizon. Using the penalty function, we give the dynamics of the cash

and stock position.

In section 3, we study the optimal investment and the consumption problem of Merton.

This problem is formulated as an optimization problem in which every investor has

to maximize his expected utility function under a constraint condition defined by a

solvency region. The utility function is derived from consumptions and the solvency

region is defined through a natural condition concerning the non negativeness of what

we call the after liquidation value, when an investor is forced to liquidate all stock

positions. Then, we prove the dynamic programming of the model and by using a

fixed point approach, we deduce the existence and uniqueness of the value function.
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2.2. The Model

2.2 The Model

We consider a discrete market model in an infinite horizon. We suppose that the

market is with a money market account and N risky assets and we assume that

the money market account pays a return of fraction r > 0 of the invested amount.

The risky assets, called the stocks, provide a random return of R = (Rk)k≥1 with

values in [−1,∞)N . The returns are supposed to be identically and independently

distributed over time. We let µ be the common probability measure of R�
ks, which

is supposed to be finite on RN . We consider the probability space (Ω,F ,P) where

Ω = (RN)∞ denotes the space of events (ωk)k≥1 such that for all k ∈ N∗, ωk ∈ RN .

For k ∈ N∗, we define the canonical mapping process Bk(ω) = ωk, k ≥ 1, ω ∈ Ω.

We denote by Fk = σ(Bs; s ∈ {1, 2, ..., k}) the σ-field generated by the canonical

map, which represents the information that the investor has at any time k. We set

F∞ = σ(
�

k∈N Fk), with F0 = {∅,Ω} is the trivial σ-algebra.

Let P the product probability measure given by

P({ω ∈ Ω,ωk ∈ Ak, k ≥ 1}) =
�

k≥1

µ(Ak).

Now, we let the return vector at time k be given by Rk(ω) = Bk(ω) = ωk, k ∈ N∗. Then

R�
ks are Fk-measurable, hence R = (Rk)k≥1 is an (R)N -valued, F -adapted process. The

connection between the stock process S = (Sk)k≥1, where Si
k is the ith stock at time

k, and the return process R is simply given by

Si
k = Si

0

�

j≥1

[1 +Ri
j] ⇐⇒ Ri

k =
Si
k − Si

k−1

Si
k−1

, i = 1, · · · , N.

where Si
0 is the initial stock value. Since Ri

j ≥ −1, S is an (R+)N -valued F -adapted

process.

The portfolio position of the investor is an F -adapted, R×(R+)N -valued process (x, y)

and it has the following interpretation,

x = (xk)k≥1 = process of money invested in the money market account at any time k.

y = (yik)k≥1 = process of money invested in the i-th stock at any time k prior to the
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2.2. The Model

portfolio adjustment.

For k ≥ 1, let z = (zk)k≥1 be the process of the number of shares of stock held by

the investor at time k prior to the portfolio adjustment. Hence, zk is Fk−1-measurable

and z in an F -predictable process with values in RN . Moreover,

yik = zikS
i
k, i = 1, · · · , N ; k ∈ N

∗.

In our model, we assume that the market is with friction since trading results in a loss

is a certain small percentage of the traded dollar amount:

α
i
k := Si

k∆kz
i = Si

k (zik+1 − zik), i = 1, . . . , N, k ≥ 1. (2.1)

We thus suppose that there is a penalty function g : RN → [0,∞), in the market which

is assumed to be convex with g(0) = 0 and g ≥ 0.

In this context, the dynamics for the cash position will be the following:

xk+1 = (xk − �αk, 1� − g(αk)− ck) (1 + r), k ≥ 1, (2.2)

where the non-negative, F -adapted process c is the consumption of the investor, �·, ·�

denotes the usually inner product in RN .

Specific examples of a loss function in the literature are

g(α) =
N�

i=1

λi|α
i|, or g(α) =

N�

i=1

λi(α
i)2,

where λi’s are given non-negative (small) constants. The first of the above example

corresponds to the classical example of the proportional costs [15, 17, 27, 31, 47]. The

second, however, is a model of illiquidity [6,7,23]. origin. The main difference between

the two examples is the differentiability at the origin. Indeed, a non-differentiability

of g at the origin corresponds to a proportional transaction costs, or equivalently the

existence of a bid-ask spread in the market.
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2.3. Solvency Region

The dynamics of the y process is the classical one defined for k ≥ 1 by:

yik+1 = yik +
�
zik+1S

i
k+1 − zikS

i
k

�

= yik + Si
k

�
zik+1 − zik

�
+ zik+1

�
Si
k+1 − Si

k

�

= yik + αi
k + Si

kz
i
k+1

�
Si
k+1 − Si

k

Si
k

�

= yik + αi
k +

�
Si
k(z

i
k+1 − zik) + zikS

i
k

�
Ri

k+1

= yik + αi
k +

�
αi
k + yik

�
Ri

k+1

=
�
yik + αi

k

�
(1 + Ri

k+1). (2.3)

Notice that the dynamics of the state variables (x, y) in (3.2)-(3.4) are given only

through the process α and not z. Hence, in whatever follows, we use the F -adapted

process α instead of z.

We also note that the mark-to-market value

ωk := xk + �yk, 1� = xk +
N�

i=1

yik

satisfies the equation

ωk+1 = ωk + rxk + [αk + yk] ·Rk − αk ·�1r − ck(1 + r)− g(αk)(1 + r)

= ωk [1 + r + πk · (Rk+1 − r)]− ck(1 + r)− g(αk)(1 + r),

where πi
k := [αi

k + yik]/wk is the fraction of the mark-to-market value invested in the

stock after the portfolio adjustment. Indeed, this is the classical wealth equation when

there is no friction, i.e, when g ≡ 0.

2.3 Solvency Region

It is well known that the optimal investment and consumptions type problem of Merton

require a lower bound on the wealth like variables, see [28]. Otherwise, one may easily
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obtain non intuitive trivial results as consumption with no bound would be admissible.

In this context, an appropriate notion is to require the mark-to-market value of the

portfolio to be non-negative. In our model of markets with frictions, an admissibility

type condition can be defined by taking into account the penalty function.

For a portfolio position (x, y) ∈ R × (R+)N , we define the cash value or the after

liquidation value simply as the cash value of the position after the investor is forced to

liquidate (i.e., sell or close) all stock positions. Due to the loss function postulated in

(3.2) this value differs from the mark-to-market value defined in the previous subsec-

tion. Indeed, using the idea behind (3.2), with z0 = y/S0, z1 = 0, we obtain α0 = −y

and define,

L(x, y) := x+ �y, 1� − g(−y). (2.4)

The solvency region is then defined by,

L := {(x, y) ∈ R× R
N : L(x, y) > 0}.

Using these we define the admissible controls as the ones which keep all the future

portfolio values solvent with probability one.

Definition 2.1. A control process ν := {(ck,αk)}k=0,1,... consists of a non-negative,

F-adapted consumption process c and an RN -valued, F-adapted portfolio adjustment

process α. We say that a control process ν is admissible with initial position (x, y) ∈ L,

if the solution (xk, yk)k≥1 corresponding to 3.2-3.4 with initial data x0 = x, y0 = y and

controls (ck,αk) satisfies

L(xk, yk) = xk + �yk, 1� − g(−yk) ≥ 0, ⇐⇒ (xk, yk) ∈ L, ∀k ≥ 1,

P-almost surely. We denote by A(x, y) the set of all admissible controls.

✷

In the general context, we simply define

U(x, y) :=
�
(c,α) ∈ R

+ × R
N : L(x1((x, y), (c,α)), y1((x, y), (c,α))) ≥ 0, P− a.s.

�
,

(2.5)
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where (x1((x, y), (c,α)), y1((x, y), (c,α))) is the solution of the (3.2)-(3.4) with initial

data (x, y) and control process with (c0,α0) = (c,α). We may rewrite the admissibility

criterion using the sets U(x, y) as well. For future reference, we record this simple

connection,

(c,α) ∈ A(x, y) ⇐⇒ (ck,αk) ∈ U(xk, yk), ∀ k ≥ 0, (2.6)

where (xk, yk) is the solution of (3.2)-(3.4).

Lemma 2.3.1. For any (x, y) ∈ L, the admissible class of controls A(x, y)) (and also

U(x, y)) is nonempty and convex.

Proof.

To prove that A(x, y) �= ∅, take as a control process: c ≡ 0, α0 = −y and αk = 0 for

all k ≥ 1. Then, the solution of (3.2)-(3.4) at time k ≥ 1 is given by yk = 0 and

xk = (x+ �y, 1� − g(−y))(1 + r)k.

Then,

L(xk, yk) = xk = (x+ �y, 1� − g(−y))(1 + r)k ≥ 0,

since (x, y) ∈ L is equivalent to x + �y, 1� − g(−y)) ≥ 0. So U(x, y) (resp. A(x, y)) is

nonempty.

Now we want to show that A(x, y) is convex. Take (ci,αi) ∈ A(xi, yi), for i = 1, 2, i.e.

(cik,α
i
k) ∈ U(xi

k, y
i
k) for i = 1, 2 and k ≥ 1. For λ ∈ [0, 1], we note by c̄k = λc1k+(1−λ)c2k

and similarly ᾱk, x̄k, ȳk. We have:

L(x̄k, ȳk) = x̄k + ȳk − g(ᾱk)

= λ(x1
k + y1k) + (1− λ)(x2

k + y2k)− g(ᾱk)

≥ λg(α1
k) + (1− λ)g(α2

k)− g(ᾱk)

≥ 0
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since g is convex and (xi
k, y

i
k) ∈ L for i = 1, 2 and k ≥ 1.

✷

Now for δ > 0 and I ⊂ {1, . . . , N} define the set

Ω
δ,I := {Ri

1 ≤ r − δ, for i ∈ I, and Rj
1 ≥ r + δ, for j �∈ I}.

We provide a natural sufficient condition for U to be bounded.

Lemma 2.3.2. Suppose that for some δ > 0:

µ
�
Ω

δ,I
�
> 0, (2.7)

for every subset I ⊂ {1, . . . , N}. Then U(x, y) is a bounded subset of R+ ×RN for all

(x, y) ∈ L. In fact, it is locally uniformly bounded in (x, y).

Proof. It is clear that if (c,α) ∈ U(x, y), then c must be bounded by above. Now

suppose that there are (cm,αm) ∈ U(x, y) so that |αm| tends to infinity. Considering a

subsequence, we may assume that all components of αm converge (including the limit

points ±∞). First assume that (αm)i converges to plus infinity for some i. Set I to

be set of indices for which the limit point is plus infinity. Then, one can argue that

on the set Ωδ,I ,

L
�
(x− α ·�1− g(α)− c)(1 + r), (y + α)(1 +R1)

�

converges to minus infinity. Hence a contradiction to the fact that (cm,αm) ∈ U(x, y)

and thus the above expression is non-negative with probability one.

Now, if (αm)i converges to minus infinity for some i. We set I to be the complement

of the set on which the limit point is minus infinity and argue similarly.

✷
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2.4 Investment-consumption problem

In this model, we consider the classical problem of optimal investment and consump-

tion of Merton [28, 34]. In our context of an infinite horizon, we assume that the

investor derives utility from consumption. For a given initial position (x, y) and an

admissible process ν = (c,α) ∈ A(x, y), the utility is given by:

J(x, y, c,α) := E

�
∞�

k=0

ρkU(ck)

�
, (2.8)

where U : R+ → R, is a classical utility function, i.e., a concave, non-decreasing func-

tion satisfying the Inada condition and the given constant ρ ∈ (0, 1) is the impatience

parameter. Then, the problem is to maximize the total expected utility function J

over all admissible controls.

In what follows, the resulting optimal value is called the value function and is given

by:

V (x, y) = sup
(c,α)∈A(x,y)

J(x, y, c,α).

To simplify the presentation, we make the following assumption. However, most of

the result hold without this condition as well.

U is bounded. (2.9)

We set Umax be the upper bound of |U |.

Then, clearly,

|J(x, y, c,α)| ≤
∞�

k=0

ρkUmax =
Umax

1− ρ
.

In view of this

|V (x, y)| ≤
Umax

1− ρ
∀(x, y) ∈ L, (2.10)

recall that L is defined in (3.5).
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Remark 2.4.1. We recall that in the finite horizon case, the utility considered in [10]

for a given initial position (x, y), an horizon t and an admissible process ν = (c,α) ∈

A(x, y) is the following:

J(x, y, c,α) := E

�
t−1�

k=0

ρkU(ck) + ρtÛ(L(xt, yt))

�
,

where Û is as U . It is important to notice that when t is large, the second member

of this utility function formally goes to 0. This provides a connection between the two

problems. ✷

2.5 Dynamic Programming

In this section, we prove that the value function is the unique solution of the dynamic

programming equation.

Theorem 2.1. (Dynamic Programming) Assume (2.9) and (2.7). Then, the value

function is the unique continuous, concave, bounded solution of the following equation:

V (x, y) = sup
(c,α)∈U(x,y)

E [U(c) + ρ V (x1, y1)] , ∀ (x, y) ∈ L. (2.11)

where

(x1, y1) =
�
(x− α ·�1− g(α)− c)(1 + r), (y + α)(1 +R1)

�
.

Proof. Let C be the set of all continuous, concave, bounded function on L with the

supremum norm. Define a nonlinear operator T on C by,

T (h)(x, y) := sup
(c,α)∈U(x,y)

E [U(c) + ρ h (x1, y1)] , ∀ (x, y) ∈ L.

Since U is convex, U and h are concave, it is easy to show that T (h) is a concave

function on L. Moreover, for every (x, y) ∈ L,

|T (h)(x, y)| ≤ Umax + �h�∞.
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2.5. Dynamic Programming

Hence, T (h) is concave and bounded on L. Since h is continuous on L and U(x, y)

is locally uniformly bounded ly Lemma (2.3.2), it directly follows that Th is also

continuous. Hence, T (h) ∈ C.

Moreover, T is monotone, i.e.,

T (h) ≤ T (g),

whenever g ≤ h. Finally, for any g, h ∈ C,

|g(x, y)− h(x, y)| ≤ sup
(c,α)∈U(x,y)

ρE [| h(x1, y1)− g(x1, y1)|] ≤ ρ�g − h�∞ ∀ (x, y) ∈ L.

Hence, T is a monotone, contraction on C. Therefore, it has a unique fixed point in C.

Let v ∈ C be the unique fixed point of T . We claim that v = V . Indeed, let

(c∗,α∗) : L → R
+ × R

d

be a measurable function such that

(c∗,α∗)(x, y) ∈ U(x, y), (2.12)

and

v(x, y) = Tv(x, y) = U(c∗(x, y)) + ρE[v(x∗
1, y

∗
1)], ∀ (x, y) ∈ L, (2.13)

where

(x∗
1, y

∗
1) =

�
(x− α∗(x, y) ·�1− g(α∗(x, y))− c)(1 + r), (y + α∗(x, y))(1 +R1)

�
.

Such a measurable function exists because U is compact, U and v are concave and

continuous.

Now, fix (x0, y0) ∈ L and define (x∗
k, y

∗
k) be the solution of (3.2)-(3.4) with feedback

control (c∗,α∗). Set

(c∗k,α
∗
k) := (c∗(x∗

k, y
∗
k),α(x

∗
k, y

∗
k)), k = 0, 1, . . . .
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2.5. Dynamic Programming

Then, in view of (2.12) the resulting strategy ν∗ := {(c∗k,α
∗)}k=0,1,... ∈ A(x0, y0).

Moreover, by (2.13),

v(x∗
k, y

∗
k) = U(c∗k) + ρE[v(x∗

k+1, y
∗
k+1)|Fk], k = 0, 1, . . . .

Therefore,

v(x0, y0) = E[U(c∗0) + ρv(x∗
1, y

∗
1)]

= E[U(c∗0) + ρU(c∗1) + ρ2v(x∗
1, y

∗
1)]

= E

�
N�

k=0

ρkU(c∗k)

�
+ ρN+1

E[v(x∗
N+1, y

∗
N+1)].

Since v is bounded, the last term converges to zero as N tends to infinity. Hence,

v(x0, y0) = J(x0, y0, ν
∗).

Now, let ν ∈ A(x0, y0) be arbitrary and let (xk, yk) be the solution of (3.2)-(3.4) with

control ν and initial condition (x0, y0). Since v = T (v), for any k = 0, 1, . . .,

v(xk, yk) ≥ U(ck) + ρE [v(xk+1, yk+1)|Fk] .

By iterating the above inequality as done in the previous argument, we conclude that

v(x, y) ≥ J(x0, y0, ν), ∀ ν ∈ A(x0, y0).

Therefore, v = V . In particular, V ∈ C. ✷

Remark 2.5.1. Assume that the utility function U takes non-negative values. Then

we can show that the value function of (2.11) satisfies the transversality condition:

∀(c,α) ∈ U(x, y), lim
T→+∞

ρTV (xT , yT ) = 0.
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2.5. Dynamic Programming

Indeed, let (c,α) be in A(x, y), since U is a bounded subset of R+ ×RN and the utility

function U is non-negative, we have:

sup
(c,α)∈A(x,y)

J(x, y, c,α) ≤
U(M)

1− ρ
.

Hence,

∀T, lim
T→∞

ρTV (xT , yT ) = 0.
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Chapter 3

Multi-Agent equilibrium of Merton

problem with frictions

ABSTRACT. This paper considers the problem of optimal investment and consump-

tion of Merton in market frictions with many investors. We build an infinite-horizon

dynamic deterministic general equilibrium model in which each investor’s objective

is to choose a commodity consumption process and to manage his portfolio so as to

maximize the expected utility of his consumption over all controls, subject to having

nonnegative after liquidation value. The main result of this paper extends the corre-

sponding results obtained recently by Ounaies, Bonnisseau, Chebbi and Soner in [37]

and by Chebbi and Soner in [10], our approach is very different and is based on the

general equilbrium theory.

Keywords: Merton problem, infinite horizon, market frictions, dynamic program-

ming, T -truncated economy, equilibrium.

3.1 Introduction

The problem of optimal investment was first introduced by Merton in the two landmark

papers [32,34]. Since it appears, this problem has been widely studied and generalized

in different contexts as for example by including viscosity theory in Shreve and Soner

[47] and for illiquid markets by Cetin, Yarrow and Protter in [6].
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3.1. Introduction

In this paper, we focus our works on the Merton problem in the case of market frictions

and our objective is to study their effects on the asset prices and their impact on the

optimal decisions. In the literature, Magill and Constantinides [31], first studied the

proportional transaction costs in the context of the Merton problem in a continuous

time. In discrete time, the study of models with proportional transaction costs was

developed by Jouini and Kallal in [27] who considered a financial market with one non

risky asset taken as a numerary and normalized to 1, and one risky asset. They showed

that the absence of arbitrage is equivalent to the existence of at least an equivalent

probability measure that transforms some process between the bid and the ask price

processes of traded securities into a martingale.

Recently, Chebbi and Soner in [10] studied the problem of Merton with frictions in

discrete time and finite horizon for one investor. Their argument to prove the exis-

tence of an optimal strategy is based on solving a dynamic optimization problem and

then constructing the solution. This paper was extended to the infinite horizon by

Ounaies, Bonnisseau, Chebbi and Soner in [37] and the optimal strategy is obtained

by an argument of fixed points. Our work is in this direction, we consider the problem

of Merton in market frictions when there are many investors and our approach is very

different. We develop a general equilibrium model with multiple agents, we assume

a riskless, perfectly liquid bond with a constant rate of return and many risky stocks

that carry frictions in trading. There is a single infinitely-divisible commodity, and

each agent wishes to maximize his expected total utility from consumption of this

commodity over time. The prices that are accepted by agents when determining their

optimal consumption and portfolio policies requiring the fact that for all commodity

to be exactly owned, actually represent the prices at equilibrium.

Our paper is structured as follows: In section 2, We describe the model of Merton

problem and the dynamic programming of this model. As in [10] and [37], frictions

in markets are modelled by a non-linear (convex) penalty functions and a constraint

condition about liquidation value is defined.

In section 3, we study the agent’s optimization problem and market clearing. The

model of general equilibrium theory corresponding to Merton problem is constructed

and the notion of equilibrium of this economy is then defined.

27



3.2. The Model

In Section 4, we prove the main result of the paper about the existence of an optimal

strategy for the optimal investment and consumption problem of Merton. As an

intermediary step of the proof, we define the corresponding truncated economy, we

compactify this econmy and by an argument of limit, the equilibrium of this economy

will give us the equilibrium of the economy initially defined.

3.2 The Model

Let (Ω,F , P ) be the probability space where Ω = (RN)∞ denotes the space of events

(ωt)t≥1 such that for all t ∈ N∗, ωt ∈ RN . For t ∈ N∗, we define the canonical mapping

process Bt(ω) = ωt, t ≥ 1, ω ∈ Ω. We denote by Ft = σ(Bs; s ∈ {1, 2, ..., t}) the

σ-field generated by the canonical map, which represents the information available to

the investors at time t. We set F∞ = σ(
�

t∈N Ft), with F0 = {∅,Ω} is the trivial

σ-algebra. The probability measure on this space is represented by P : F → [0, 1]

with the usual properties that P (∅) = 0, P (Ω) = 1 and for a set of disjoint events

Ai ∈ F we have that P (∪iAi) =
�

i P (Ai). All the random variables and stochastic

processes in this and subsequent sections will be defined on this base.

In a discrete time setting, we consider a market with a money market account that

pays a return of fraction r > 0 of the invested amount and N risky assets that provide

a random return of R = (Rt)t≥1 with values in [−1,∞)N . The returns are supposed

to be identically and independently distributed over time. Let (pj)1≤j≤N denote the

strictly positive asset price process, which we shall suppose has the property

pjt = pj0
�

k≥1

[1 +Rj
k] ⇐⇒ Rj

t =
pjt − pjt−1

pjt−1

, j = 1, · · · , N. (3.1)

where pj0 is the initial stock value. We let the return vector at time t given by

Rt(ω) = Bt(ω) = ωt, t ∈ N∗, j = 1, · · · , N. Then Rt’s are Ft-measurable. Hence

R = (Rt)t≥1 is an (R)N -valued, F -adapted process. The process p is an (R+)N -valued

F -adapted process.
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3.2. The Model

We shall assume that there is a finite number m of individuals labeled i, (i = 1, 2, · · · ,m).

Let us consider the behavior of one individual. He has to select a portfolio of assets,

and there are N+1 different assets to choose from, labeled j, (j = 0, 1, 2, · · · , N). The

yield on any asset is assumed to be a random variable whose distribution is known to

the individual.

We shall use y = (yji,t)t≥1 to denote individual i’s process of money invested in the

j-th stock at any time t prior to the portfolio adjustment. We shall take the riskless

asset x = (xi,t)t≥1 to be the initial one which denote the process of money invested

in the money market account at any time t. Shares are traded, after payment of real

dividends, at a competitively determined price vector pt = (p1t , · · · , p
N
t ).

For t ≥ 1, the process zi,t the number of shares held by the i-th invetor at time t with

values in RN . Moreover,

yji,t = zji,tp
j
t , j = 1, · · · , N, i = 1, · · · ,m, t ≥ 1.

In our model, we suppose that the market is with frictions. For that, we thus assume

that there is transaction costs involved in buying or selling these financial assets which

are represented by a penalty function gi : R
N → RN

+ , in the market for an individual

i.

In this context, the dynamics of the riskless asset will be the following:

xi,t+1 =
�
xi,t − αi,t · 1− ptgi

�
(zi,t+1 − zi,t)

�
· 1− ci,t

�
(1 + r), t ≥ 1, (3.2)

where the non-negative, F -adapted process ci is the consumption of the i-th investor,

and αi is the portfolio adjustment process which is expressed as follows

α
j
i,t := p

j
t∆tz

j
i = p

j
t (zji,t+1 − z

j
i,t), j = 1, . . . , N, t ≥ 1. (3.3)

Now, suppose that portfolio rebalancing occurs between two time points; between time

t and time t + 1, we change the number of shares held from zi,t to zi,t+1 of the j-th
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3.3. The general equilibrium model of Merton problem

risky asset, and the cash held changes from yi,t to yi,t+1 such that

yji,t+1 = yji,t +
�
zji,t+1p

j
t+1 − zji,tp

i
t

�

= yji,t + pjt
�
zjt+1 − zjt

�
+ zjt+1

�
pjt+1 − pjt

�

= yjt + α
j
i,t + pjtz

j
i,t+1

�
pjt+1 − pjt

pjt

�

= yji,t + α
j
i,t +

�
pjt(z

j
i,t+1 − zji,t) + zji,tp

j
t

�
Rj

t+1

= yji,t + α
j
i,t +

�
α
j
i,t + yji,t

�
Rj

t+1

=
�
yji,t + α

j
i,t

�
(1 +Rj

t+1). (3.4)

One can point out that the process z = (zji,t)t≥1 is Ft−1-measurable, which in turn

implies the processes x and y are previsibles.

We also note that the mark-to-market value

ωi,t := xi,t + yi,t · 1 = xi,t +
N�

j=1

yji,t

Remark 3.2.1. In what follow, we use the dynamics of the state variables (x, y) F-

adapted process with terms of the F-adapted zi instead of αi since it is more adapted

to our approach for equilibrium.

3.3 The general equilibrium model of Merton prob-

lem

For a portfolio position (x, y) ∈ R × (R+)N , we define the after-liquidation value as

the cash value of the position after the investor is forced to liquidate (i.e., sell or close)

all stock positions. Due to the loss function postulated in (3.2) this value differs from

the mark-to-market value defined above and thus is written as follows

L(xi,t, yi,t) = xi,t + yi,t · 1− ptgi
�
(zi,t+1 − zi,t)

�
· 1

= xi,t + ptzi,t · 1− ptgi
�
(zi,t+1 − zi,t)

�
· 1 (3.5)
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3.3. The general equilibrium model of Merton problem

Then, the solvency condition is simply given by the requirement that L(xi,t, yi,t) ≥ 0

for all t ≥ 1, P -almost surely.

Now, each investor seeks to maximize his or her life time expected utility and solves

the following problem

Qi(x, y) : sup
(ci,t,zi,t)

E

�
∞�

t=0

ρtiui(ci,t)

�

subject to (solvency constraint) : xi,t + ptzi,t · 1− ptgi
�
(zi,t+1 − zi,t)

�
· 1 ≥ 0 a.e.

where for each investor i, ui is the classical utility function and ρti is the impatience

parameter.

Remark 3.3.1. One may use a model in which the loss function ptgi
�
(zi,t+1− zi,t)

�
is

replaced by Gi(pt(zi,t+1 − zi,t)), with some function Gi.

We define an infinite-horizon sequence of prices and quantities by:

(p, (ci, zi)
m
i=1)

where, for each i = 1, · · · ,m,

(p, ci, zi) =
�
(pt)

+∞
t=0 , (ci,t)

+∞
t=0 , (zi,t)

+∞
t=0

�
∈ (R+∞

+ )N × R
+∞
+ × (R+∞

+ )N ,

We Denote by E the economy which is characterized by a list

E = (RN , (ui, ρi, zi,−1)
m
i=1)

where zi,−1 is the initial number of stocks held.

Equilibrium in this economy is defined as a set of consumption policies and portfolio

policies along with the resulting price processes for the financial assets, such that the

consumption policy of each agent maximizes her lifetime expected utility, that this
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3.4. Existence of equilibrium

consumption policy is financed by the optimal portfolio policy, financial markets clear

so that and the market for consumption good clears. More precisely:

Definition 3.1. The stochastic process
�
p̄t, (c̄i,t, z̄i,t)

m
i=1

�∞
t=0

is an equilibrium of the

economy E if it satisfies the following conditions

1. Price positivity: p̄t > 0 for t ≥ 0.

2. Market clearing: at each t ≥ 0,

�m

i=1 c̄i,t + ptgi
�
(zi,t+1 − zi,t) · 1 = ωt, a.e.

�N

j=1 zji,t = 1 a.e., ∀i ∈ {1, · · · ,m},
�m

i=1 z0i,t = 0 a.e.

3. Optimal consumption plans: for each i,
�
(c̄i,t, z̄i,t)

m
i=1

�∞
t=0

is a solution of the

problem Qi(x, y).

Here, 1m is the m-dimensional column vector with all components equal to 1 and a.e.

means almost everywhere.

3.4 Existence of equilibrium

To prove the main result of this paper on the existence of equilibrium, some standard

assumptions are required.

Assumption(H1): ui is in C1, ui(0) = 0, u�
i(0) = ∞ and ui is strictly increasing,

concave, continuously differentiable.

Assumption(H2): At initial period 0, zi,−1 ≥ 0, and zi,−1 �= 0 for i = 1, · · · ,m.

Moreover, we assume that
�m

i=1 zi,−1 = 1m.

Assumption(H3): The penalty function gi : R
N → RN

+ , in the market is assumed

to be convex with gi(0) = 0 and gi ≥ 0 for i = 1, · · · ,m.
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3.4. Existence of equilibrium

Assumption(H4): For each i, utility of agent i is finite

∞�

t=0

ρtiui(ci,t) < ∞.

We first define the T -truncated economy ETas E in which there are no activities from

period T + 1 to the infinity, i.e., ci,t = zi,t = 0 for every i = 1, · · · ,m and t ≥ T + 1

and this economy will be compactified in the following way:

we define the bounded economy ET
b as ET but all the random variables are bounded.

Consider a finite-horizon bounded economy which goes on for T + 1 periods: t =

0, · · · , T . We fix sufficiently large quantity bounds Bc, Bz and so on, with:

Ci :=
�
(ci,0, · · · , ci,T ) : 0 ≤ ci,t ≤ Bc, ∀t ∈ {1, · · · , T}

�
= [0, Bc]

T+1;

Zi :=
�
(zji,1, · · · , z

j
i,T ) : 0 ≤ zji,t ≤ Bz, ∀t ∈ {1, · · · , T}

�
= [0, Bz]

T .

Now, we focus on the solvency constraint with zi,T+1 = 0. Consider the solvency set:

U
T
i (x, y) := {(ci, zi) ∈ Ci × Zi : xi,t + ptzi,t · 1− ptgi(zi,t+1 − zi,t) · 1 ≥ 0, P − a.s} .

and its interior

L
T
i (x, y) := {(ci, zi) ∈ Ci × Zi : xi,t + ptzi,t · 1− ptgi(zi,t+1 − zi,t) · 1 > 0, P − a.s} .

Once the T-truncated economy is well defined, we introduce the economy ET,�
b which

is defined as follows: For each � > 0 such that m� < 1, we define �-economy ET,�
b by

adding � units for each agent at date 0. Note that this trick is used to ensure that the

solvency set is non-empty. More precisely, the feasible set of agent i is given by

33



3.4. Existence of equilibrium

U
T,�
i (x, y) :=

�
(ci, zi) ∈ R

T+1
+ × (RT+1

+ )N :

(xi,0 + p0(zi,0 + �) · 1− p0gi(−(zi,0 + �)) · 1− ci,0)(1 + r) ≥ 0,

for each 1 ≤ t ≤ T : xi,t + ptzi,t · 1− ptgi(zi,t+1 − zi,t) · 1 ≥ 0, P − a.s.
�

L
T,�
i (x, y) :=

�
(ci, zi) ∈ R

T+1
+ × (RT+1

+ )N :

(xi,0 + p0(zi,0 + �) · 1− p0gi(−(zi,0 + �)) · 1− ci,0)(1 + r) > 0,

for each 1 ≤ t ≤ T : xi,t + ptzi,t · 1− ptgi(zi,t+1 − zi,t) · 1 > 0, P − a.s.
�

Lemma 3.4.1. The set LT,�
i (x, y) is non empty, for t = 0, · · · , T .

Proof. Indeed,

L (xi,1, yi,1)

= L
�
(xi,0 + p0(zi,0 + �) · 1− p0gi(−(zi,0 + �)) · 1− ci,0)(1 + r), (yj�i,0 + α

j�
i,0)(1 +Rj

1)
�

= L
�
(xi,0 + p0(zi,0 + �) · 1− p0gi(−(zi,0 + �)) · 1− ci,0)(1 + r), 0

�

= (xi,0 + p0(zi,0 + �) · 1− p0gi(−(zi,0 + �)) · 1− ci,0) (1 + r) ≥ 0

Now, since �, (zi,0 + �) > 0, we can choose ci,0 ∈ (0, Bc) and zi,0 ∈ (0, Bz) such that

(xi,0 + p0(zi,0 + �) · 1− p0gi(−(zi,0 + �)) · 1− ci,0) (1 + r) > 0

✷

Lemma 3.4.2. The set UT
i (x, y) has convex values.

Proof. Now we want to show that U(x, y) is convex. Take (cki,t,α
k
i,t) ∈ U(xk, yk), for

k = 1, 2 and t ≥ 1. For λ ∈ [0, 1], we note by c̄i,t = λc1i,t + (1− λ)c2i,t and similarly x̄i,t,

z̄i,t. We have:

34



3.4. Existence of equilibrium

L(x̄i,t, ȳi,t) = x̄i,t + p̄tz̄i,t · 1− p̄tg(z̄i,t+1 − z̄i,t) · 1

= λ(x1
i,t + p̄tz

1
i,t · 1) + (1− λ)(x2

i,t + p̄tz
2
i,t · 1)− p̄tg(z̄i,t+1 − z̄i,t) · 1

≥ p̄t[λg(z
1
i,t+1 − z1i,t) · 1 + (1− λ)g(z2i,t+1 − z2i,t) · 1− g(z̄i,t+1 − z̄i,t) · 1]

≥ 0

since g is convex and (xk
i,t, y

k
i,t) ∈ L̄ for k = 1, 2 and t ≥ 1.

✷

For simplicity, we denote Ui = Ci × Zi.

Lemma 3.4.3. LT,�
i (x, y) is lower semi-continuous correspondence on Ui and U

T,�
i (x, y)

is upper semi-continuous with compact convex values.

Proof. Since L
T,�
i (x, y) is non-empty and has open graph, then it is lower semi-

continuous correspondence. Since Ui is compact and the correspondence U
T,�
i (x, y)

has a closed graph, then U
T,�
i (x, y) is upper semi-continuous with compact values.

✷

Definition 3.2. The stochastic process
�
p̄t, (c̄i,t, z̄i,t)

m
i=1

�T
t=0

is an equilibrium of the

economy ET
b if it satisfies the following conditions:

1. Price positivity: p̄t > 0 for t = 0, 1, · · · , T

2. Market clearing:

m�

i=1

c̄i,0 + p0gi(−(z̄i,0 + �)) =
m�

i=1

xi,0 + p0(z̄
j
i,0 + �) ·�1, a.e.

m�

i=1

c̄i,t + ptgi(z̄i,t+1 − z̄i,t) =
m�

i=1

xi,t + p̄tz̄i,t · 1, a.e.
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3.4. Existence of equilibrium

3. Optimal consumption plans: for each i,
�
c̄i,t, z̄i,t

�T
t=1

is a solution of the maxi-

mization problem of agent i with the feasible set UT,�
i (x, y) such that

QT,�
i (x, y) : sup

(ci,t,zi,t)

E

�
T�

t=0

ρtui(ci,t)

�
.

Now, for i = 0, · · · ,m, we consider an element h = (hi) defined on X := B ×
�m

i=1 Ui

by

hi =

�
p for i = 0

(ci, zi) for i = 1, · · · ,m

where B = {p ∈ RN |�p� ≤ 1}.

We now define some correspondences. First, let ϕ0 (for additional agent 0) be a

correspondence defined as follows:

ϕ0 :
m�

i=1

Ui → 2B

ϕ0((hi)
m
i=0) := argmax

p∈B

�
(

m�

i=1

ci,0 + p0gi(−(zi,0 + �)) · 1− xi,0 − p0(zi,0 + �) · 1

+
T�

t=1

m�

i=1

ci,t + ptgi(zi,t+1 − zi,t) · 1− xi,t − ptz
j
i,t · 1

�
.

For each i = 1, · · · ,m, we define

ϕi : B → 2Ui

ϕi(p) := argmax(ci,zi)∈U(x,y)E

�
T�

t=0

ρtiui(ci,t)

�
.

Lemma 3.4.4. The correspondence ϕi is upper semi-continuous and non-empty, con-

vex, compact valued for each i = 1, · · · ,m.
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3.4. Existence of equilibrium

Proof. This is a direct consequence of the Maximum Theorem. ✷

According to the Kakutani Theorem, there exists
�
p̄, (c̄i,t, z̄i,t)

�
such that

p̄ ∈ ϕ0

�
(c̄i, z̄i)

m
i=1

�
(3.6)

(c̄i, z̄i) ∈ ϕi(p̄). (3.7)

For simplicity, we denote by

Ēt =
m�

i=1

c̄i,t − xi,t, t ≥ 0

F̄0 =
m�

i=1

gi(−(z̄ji,0 + �))− (z̄ji,0 + �) · 1

F̄t =
m�

i=1

gi(z̄i,t+1 − z̄i,t)− z̄ji,t · 1, t ≥ 1

Lemma 3.4.5. Under Assumptions (H1), (H2) and (H3) there exists an equilibrium

for the finite-horizon bounded �-economy ET,�
b .

Proof. We first start by proving that Ēt + p̄tF̄t = 0 and p̄t > 0 for t = 0, · · · , T.

Indeed, From (3.6), one can easily check that for every p ∈ B, we have:

T�

t=0

(pt − p̄t)F̄t ≤ 0. (3.8)

We recall the solvency constraint,

xi,t + p̄tzi,t · 1− p̄tgi(zi,t+1 − zi,t) · 1 ≥ 0
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3.4. Existence of equilibrium

Moreover, in any market satisfying the dynamic portfolio {(3.2),(3.4)} and for any

consumption process such that (c, z) ∈ UT,�(x, y), the value of an agent’s consumption

cannot exceed the value of his wealth. This leads to the following inequality:

xi,t + p̄tz̄i,t · 1− p̄tgi(z̄i,t+1 − z̄i,t) · 1 ≥ c̄i,t

xi,t − c̄i,t + p̄tz̄i,t · 1− p̄tgi(z̄i,t+1 − z̄i,t) · 1 ≥ 0 (3.9)

By summing the inequality (3.9) over i, we get that, for each t:

m�

i=1

xi,t − c̄i,t + p̄t

�
m�

i=1

z̄ji,t · 1− gi(z̄i,t+1 − z̄i,t) · 1

�
≥ 0

Ēt + p̄tF̄t ≤ 0 (3.10)

If p̄t = 0, we obtain that c̄i,t = Bc > ωi,t. Therefore for all t, we get
�m

i=1 c̄i,t >
�m

i=1 xi,t

which contradicts (3.10). Hence, we obtain as a result, p̄t > 0.

Now, since prices are strictly positive and the utility functions are strictly increasing,

all budget constraints are binding. By summing budget constraints (over i) at date t

we have.

Ēt + p̄tF̄t = 0.

Finally, the optimality of (c̄i, z̄i) is from (3.7). ✷

Note that if wealth becomes zero before time T , it stays there, and no further consump-

tion or investment takes place and this is due to the fact bankruptcy is an absorbing

state for the wealth process when (c, z) ∈ U(x, y).

Lemma 3.4.6. Under Assumptions (H1), (H2) and (H3) there exists an equilibrium

for the finite-horizon bounded economy ET
b .
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3.4. Existence of equilibrium

Proof. We have proved that for each � = 1
n
> 0, where n is an integer and large

enough, there exists an equilibrium called

equi(n) :=
�
p̄(n), (c̄i,t(n), z̄i,t(n))

m
i=1

�T
t=0

;

for the economy, ET,�n
b . Now, since prices and allocations are bounded, there exists

a subsequence (n1, n2, · · · , ) such that equi(ns) converges. However, without loss of

generality, we can assume that

�
p̄(n), (c̄i(n), z̄i(n))

m
i=1

�
→

�
p̄, (c̄i, z̄i)

m
i=1

�

when n goes to infinity.

Furthermore, by taking limit of market clearing conditions of the economy E T,�n
b , we

obtain market clearing conditions of the bounded truncated economy ET
b . ✷

Remark 3.4.1. we will go back to two points that will be useful later. First, one can

remark from (3.1) that at equilibrium p̄0 > 0. Indeed, if p̄0 = 0, then p̄t = 0, for all

t = 1, · · · , T , according to the optimality of (c̄i, z̄i). Second, if p̄0 �= 0 and zji,0 �= 0,

then the feasible set LT
i (x̄, ȳ) �= ∅. We can use the same argument in Lemma 4.3.1 to

prove that LT
i (x̄, ȳ) is non empty.

Lemma 3.4.7. For each i, (c̄i, z̄i) is optimal.

Proof. Since
�m

i=1 z
j
i,−1 = 1, for all j ∈ {1, · · · , N}, there exists an agent i such that

zi,−1 > 0. According to Remark 3.4.1, we have LT
i (x, y) �= ∅. We are going to prove

the optimality of allocation (c̄i, z̄i).

Let (ci, zi) be a feasible allocation of the maximization problem of agent i with the

feasible set UT
i (x̄, ȳ). We have to prove that E

��T

t=0 ρ
t
iui(ci,t)

�
≤ E

��T

t=0 ρ
t
iui(c̄i,t)

�
.

Since LT
i (x̄, ȳ) �= ∅, there exists (h)h≥0 and (chi , z

h
i ) ∈ LT

i (x̄, ȳ) such that (chi , z
h
i )

converges to (ci, zi). Then, for each i, we have

xi,t + p̄tz
h
i,t ·�1− p̄tgi(z

h
i,t+1 − zhi,t) > 0.
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3.4. Existence of equilibrium

Fixe h. Let n0 (n0 depends on h) be high enough such that for every n ≥ n0, (c
h
i , z

h
i ) ∈

U
T, 1

n

i (x̄(n), ȳ(n)). Therefore, we have E

��T

t=0 ρ
t
iui(c

h
i,t)

�
≤ E

��T

t=0 ρ
t
iui(c̄i,t(n))

�
.

Let n tend to infinity, we obtain E

��T

t=0 ρ
t
iui(c

h
i,t)

�
≤ E

��T

t=0 ρ
t
iui(c̄i,t)

�
.

Let h tend to infinity, we obtain E

��T

t=0 ρ
t
iui(ci,t)

�
≤ E

��T

t=0 ρ
t
iui(c̄i,t)

�
.

We have just proved the optimality of (c̄i, z̄i).

We now prove that p̄t > 0 for every t. Indeed, if p̄t = 0, the optimality of (c̄i, z̄i)

implies that c̄i,t = Bc > xi,t, contradiction.

✷

Once the existence of the equilibrium has been proved when � tends to 0, one proves

that this equilibrium holds for the truncated unbounded economy.

Lemma 3.4.8. An equilibrium for ET
b is an equilibrium for ET .

Proof. Let
�
p̄t, (c̄i,t, z̄i,t)

m
i=1

�T
t=0

be an equilibrium of ET
b . Note that zi,T+1 = 0 for

every i = 1, · · ·T . We can see that conditions (i) and (ii) in Definition (3.2) are hold.

We will show that condition (iii) are hold too.

For condition (iii), let ai := (c̄i,t, z̄i,t)
T
t=0 be a feasible plan of agent i.

Assume that
�T

t=0 ρ
t
iui(ci,t) >

�T

t=0 ρ
t
iui(c̄i,t). For each γ ∈ (0, 1), we define ai(γ) :=

γai + (1 − γ)āi. By definition of ET
b ,we can choose γ sufficiently close to 0 such that

ai(γ) ∈ Ci × Zi. It is clear that ai(γ) is a feasible allocation. By the concavity of the

utility function, we have

T�

t=0

ρtiui(ci,t(γ)) ≥ γ

T�

t=0

ρtiui(ci,t) + (1− γ)
∞�

t=0

ρtiui(c̄i,t)

>

T�

t=0

ρtiui(c̄i,t)

The linearity of mathematical expectation allows us to deduce

E

�
T�

t=0

ρtiui(ci,t(γ))

�
> E

�
T�

t=0

ρtiui(c̄i,t)

�
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3.4. Existence of equilibrium

Contradiction to the optimality of āi. So, we have shown that condition (iii) in

definition is hold.

✷

We consider the limit of sequences of equilibria in ET , when T → ∞. We use conver-

gence for the product topology.

We denote by (p̄T , (c̄Ti , z̄
T
i )

m
i=1

�
an equilibrium of the T -truncated economy ET . Since

�p̄t� ≤ 1, for every t ≤ T , c̄Ti ≤ Bc and
�m

i=1 z̄
T
i = 1 .Thus, we can assume that

(p̄T , (c̄Ti , z̄
T
i )

m
i=1

�
−→

�
p̄, (c̄i, z̄i)

m
i=1

�

when T goes to infinity.

One can easily check that all markets clear.

Now we can give the main result of this paper:

Theorem 3.1. Under Assumptions (H1), (H2),(H3) and (H4) there exists an equilib-

rium in the infinite horizon economy E .

Proof. We have shown that for each T ≥ 1, there exists an equilibrium for the econ-

omy ET .

Now, we consider a feasible allocation (ci, zi) of the problem Qi(p̄, z̄). We have to

prove that E [
�∞

t=0 ρ
t
iui(ci,t)] ≤ E [

�∞
t=0 ρ

t
iui(c̄i,t)].

We define (c�i, z
�
i)
T
t=0 as follows:

z�i,t = zi,t if t ≤ T − 1,

c�i,t = ci,t if t ≤ T − 1,

ci,t = zi,t = 0 if t > T

xi,T + p̄T z
�
i,T − p̄Tgi(−z�i,T ) = xi,T + p̄T zi,T − p̄T gi(−zi,T )
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3.4. Existence of equilibrium

We see that (c�i, z
�
i)
T
t=0 ∈ UT

i (x̄, ȳ).

Since LT
i (x̄, ȳ) �= ∅, there exists a sequence

�
(cni , z

n
i )

T
t=0

�∞
n=0

∈ LT
i (x̄, ȳ) with zni,T+1 = 0

and this sequence converges to (c�i, z
�
i)
T
t=0 when n tends to infinity . We have

xn
i,t + p̄tz

n
i,t − p̄tgi(z

n
i,t+1 − zni,t) > 0.

We can choose s0 high enough such that s0 > T and for every s ≥ s0, we have

xn
i,t + p̄stz

n
i,t − p̄stgi(z

n
i,t+1 − zni,t) > 0.

It means that (cni , z
n
i )

T
t=0 ∈ UT

i (x̄
s, ȳs). Therefore, we get

�T

t=0 ρ
t
iui(c

n
i,t) ≤

�s

t=0 ρ
t
iui(c̄

s
i,t).

Let s tend to infinity, we obtain
�T

t=0 ρ
t
iui(c

n
i,t) ≤

�∞
t=0 ρ

t
iui(c̄i,t).

Let n tend to infinity, we have
�T

t=0 ρ
t
iui(ci,t) ≤

�∞
t=0 ρ

t
iui(c̄i,t) for every T . As a

consequence, we have for every T

T−1�

t=0

ρtiui(ci,t) ≤
∞�

t=0

ρtiui(c̄i,t).

Let T tend to infinity, we obtain

∞�

t=0

ρtiui(ci,t) ≤
∞�

t=0

ρtiui(c̄i,t).

Then,

E

�
∞�

t=0

ρtiui(ci,t)

�
≤ E

�
∞�

t=0

ρtiui(c̄i,t)

�
.

Therefore, we have proved the optimality of (c̄i, z̄i).

Prices p̄t are strictly positive since the utility function of agent i is strictly increasing.

✷
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Chapter 4

Equilibrium of a production economy

with unbounded attainable allocations

set

ABSTRACT. In this paper, we consider a production economy with an unbounded

attainable set where the consumers may have non-complete non-transitive preferences.

To get the existence of an equilibrium, we provide an asymptotic property on pref-

erences for the attainable consumptions. We show that this condition holds true if

the set of attainable allocations is compact or, when preferences are representable by

utility functions, if the set of attainable individually rational utility levels is compact.

This assumption generalizes the CPP condition of Allouch (2002) and covers the ex-

ample of Page et al. (2000) when the attainable utility levels set is not compact. So

we extend the previous existence results with unbounded attainable sets in two ways

by adding a production sector and considering general preferences.

Keywords: production economy, unbounded attainable allocations, quasi-equilibrium,

non complete non transitive preferences.
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4.1. Introduction

4.1 Introduction

Since the seventies, with the exception of the seminal paper of Mas-Colell [20] and a

first paper of Shafer-Sonnenschein [46], equilibrium for a finite dimensional standard

economy is commonly proved using explicitly or implicitly equilibrium existence for

the associated abstract economy (see [3], [19], [18], [24], [44], [45]) in which agents

are the consumers, the producers and an hypothetic additional agent, the Walrasian

auctioneer. Moreover, in exchange economies, it is well-known that the existence of

equilibrium with consumption sets that are unbounded from below requires some non-

arbitrage conditions (see [25], [51], [11], [4], [13], [14], [2]). In [14], it is shown that

these conditions imply the compactness of the individually rational utility level set,

which is clearly weaker than assuming the compactness of the attainable allocation,

and the authors prove an existence result of an equilibrium under this last condition.

The purpose of our paper is to extend this result to finite dimensional production

economies with non-complete, non-transitive preferences, which may not be repre-

sentable by a utility function. Furthermore, we also allow preferences to be other

regarding in the sense that the preferred set of an agent depends on the consumption

of the other consumers. We posit the standard assumptions about the closedness, the

convexity and the continuity on the consumption side as well as on the production side

of the economy like in Florenzano [19] and a survival assumption. We only consider

quasi-equilibrium and we refer to the usual interiority of initial endowments or irre-

ducibility condition to get an equilibrium from a quasi-equilibrium (see for example

Florenzano [19] section 3.2).

The unboundedness of the attainable sets appears naturally in an economy with finan-

cial markets and short-selling. Using the Hart’s trick [25], we can reduce the problem

to a standard exchange economy when the financial markets are frictionless. But,

if there are some transaction costs, intermediaries like clearing house mechanisms or

other kind of frictions, this method is no more working and we then need to introduce

a production sector to encompass these frictions. That is why we add in this paper a

production sector, which is also justified if we want to analyze a stock market where

the payments of an asset depend on the production plan of a firm.

Considering non-complete, non-transitive preferences allows us to deal with Bewley
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4.1. Introduction

preferences where the agents have several criterions and a consumption is preferred to

another one only if all criterions are improved. Such preferences are not representable

by utility functions. They appear naturally in financial models where the objectives

is to minimize the risk according to some consistent measures.

Our main contribution is to provide a sufficient condition (H3) to replace the standard

compactness of the attainable allocation set, which is suitably written to deal with

general preferences. More precisely, we assume that for each sequence of attainable

consumptions, there exists an attainable consumption where the preferred consump-

tions can be approximated by preferred consumptions of the elements of the sequence.

Actually, we also restrict our attention to the attainable allocation, which are individu-

ally rational, in a sense adapted to the fact that preferences may not be transitive. The

formulation of our assumption is in the same spirit as the CPP condition of Allouch [1].

We prove that our condition is satisfied when the attainable set is compact and when

preferences are represented by utility functions and the set of attainable individually

rational utility levels is compact. So, our result extends the previous ones in the

literature. Our asymptotic assumption is weaker than the CPP condition within the

framework considered by Allouch where preferences are transitive and have open lower

sections.

To compare our work with the contribution of Won and Yannelis [52], we provide an

asymmetric assumption (EWH3) for exchange economies which is less demanding for

one particular consumer. We are not please with this assumption since the funda-

mentals of the economy are symmetric and there is no reason to treat a consumer

differently from the others. Won and Yannelis condition and the (EWH3) are not

comparable and both of them cover the example of Page et al [40]. Nevertheless, nei-

ther of these conditions covers Example 3.1.2 of Won and Yannelis. So, there is room

for further works to provide a symmetric assumption covering both examples.

We also remark that our condition deals only with feasible consumptions and not

with the associated productions. So, our condition can be identically stated for an

exchange economy or for a production economy. This means that even, if there exists

unbounded feasible productions, an equilibrium still exists if the attainable consump-

tion set remains compact. In other words, the key problem comes from the behavior of
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4.1. Introduction

the preferences for large consumptions and not from the geometry of the productions

sets at infinity.

To prove the existence of a quasi-equilibrium, we use several tricks borrowed from

various authors. Using a truncated economy in order to apply a fixed point theorem

to an artificial compact economy is an old trick as in the first equilibrium proofs. The

definition of the “augmented preferences” due to Gale and Mas-Collel (see [21], [22])

is slightly modified by using the convex hull of preferences correspondences since, in

our setting, we used non-convex preferences. This definition allows to have the local

insatiability of consumers at any point of their attainable consumption set. Further,

we restrict prices to be in the closed unit-ball of RL, the commodity space, and we

used modified budget sets, which are reduced to the original ones when prices be-

long to the unit-sphere using Bergstrom’s trick (see [3]). In this way, it is possible to

avoid the problem of discontinuity at the origin of some correspondences. Finally, we

are also considering a weakening of Assumption (H3) to prepare the discussion about

Won-Yannelis work. We apply our assumption on the asymptotic behavior of prefer-

ences to a sequence of quasi-equilibrium allocations in growing associated truncated

economies. We prove that the attainable consumption given by Assumption (H3) is a

quasi-equilibrium consumption of the original economy. The originality of the proof is

mainly contained in this last section.

The reminder of this paper is organized as follows. Section 2 describes the model,

gives the definition of a quasi-equilibrium and provide a simple numerical example

where the set of the attainable allocations is not bounded and preferences are not

representable by utility functions but satisfy our asymptotic condition. This example

is extended to a class of production economies illustrating the fact the key issue lies

in the consumption sector. In Section 3, we first introduce the definition of modi-

fied ”augmented preferences” and we prove some properties that are transmitted from

equivalent properties of the preferences correspondences like convexity, lower semicon-

tinuity and irreflexivity. Then, we define a new economy E � where the production sets

are the closed convex hull of the initial production sets. We show that the hypothe-

sis made on the original economy E still hold for E �. Last, we prove that one easily

deduces a quasi-equilibrium of E from a quasi-equilibrium of E �. Section 4 concludes

the present work by giving a proof of the existence of the quasi-equilibrium of the

production economy E � in two steps, a fixed point like argument and an asymptotic
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4.2. The Model

argument. The last section is devoted to compare Assumption (H3) with other con-

ditions in the literature on the existence of equilibrium with unbounded consumption

sets, in particular with the CPP condition of Allouch and to discuss the relationships

with the condition of Won and Yannelis.

4.2 The Model

In this paper, we consider the private ownership economy:

E = (RL, (Xi, Pi,ωi)i∈I , (Yj)j∈J , (θij)(i,j))

where L is a finite set of goods, so that RL is the commodity space and the price space.

I is a finite set of consumers, each consumer i has a consumption set Xi ⊂ RL and an

initial endowment ωi ∈ RL. The tastes of this consumer are described by a preference

correspondence Pi :
�

k∈I Xk → Xi. Pi(x) represents the set of strictly preferred

consumption to xi ∈ Xi given the consumption (xk)k �=i of the other consumers. J is

a finite set of producers and Yj ⊂ RL is the set of possible productions of firm j ∈ J .

For each i and j, θij is the portfolio of shares of the consumer i on the profit of the

producer j. The θij are nonnegative and for every j ∈ J ,
�

i∈I θij = 1. These shares

together with their initial endowment determine the wealth of each consumer.

Definition 4.2.1. An allocation (x, y) ∈
�

i∈I

Xi ×
�

j∈J

Yj is called attainable if:

�

i∈I

xi =
�

j∈J

yj +
�

i∈I

ωi.

We denote by A(E) the set of attainable allocations.

In this paper, we are only dealing with the existence of quasi-equilibrium. We refer to

the large literature on irreducibility, which provides sufficient conditions for a quasi-

equilibrium to be an equilibrium. The simplest one is the interiority of the initial

endowments linked with the possibility of inaction for the producers.
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4.2. The Model

Definition 4.2.2. A quasi-equilibrium of the private ownership economy is a pair of

an allocation ((x̄i)i∈I , (ȳj)j∈J) ∈
�

i∈I Xi ×
�

j∈J Yj and a non-zero price vector p̄ �= 0,

such that:

(a) (Profit maximization): for every j ∈ J , for every yj ∈ Yj, p̄ · yj ≤ p̄ · ȳj,

(b) (Quasi-demand): for each i ∈ I, p̄ · x̄i ≤ p̄ · ωi + p̄ · (
�

j∈J θij ȳj) and

xi ∈ Pi(x̄) ⇒ p̄ · xi ≥ p̄ · x̄i

(c) (Attainability):
�

i∈I x̄i =
�

i∈I ωi +
�

j∈J ȳj.

Notice that, in view of Condition (c), Condition (b) can be rephrased as

for every i ∈ I, p̄ · x̄i = p̄ · ωi + p̄ · (
�

j∈J

θij ȳj) and [xi ∈ Pi(x̄) ⇒ p̄ · xi ≥ p̄ · x̄i]

Before stating the assumptions considered on E , let us introduce some notations:

• ω =
�

i∈I ωi is the total initial endowment;

• Y =
�

j∈J Yj is the total production set;

• X̂ = {x ∈
�

i∈I Xi : ∃y ∈ Y :
�

i∈I xi = ω + y} is the set of all attainable

consumption allocations;

• Ŷ = {y ∈ Y : ∃x ∈
�

i∈I Xi :
�

i∈I xi = ω+ y} is the attainable total production

set.

In this paper, we consider the following hypothesis:

Assumption (H1) For every i ∈ I

(a) Xi is a non-empty, closed, convex subset of RL;

(b) [irreflexivity]∀x ∈
�

i∈I Xi, xi /∈ coPi(x) (the convex hull of Pi(x));
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(c) [lower semicontinuous] Pi :
�

k∈I Xk → Xi is lower semicontinuous;

(d) ωi ∈ Xi −
�

j∈J θi,jYj, i.e. there exists (xi, (yi,j)) ∈ Xi ×
�

j∈J Yj such that

xi = ωi +
�

j∈J θi,jyi,j;

(e) For each x ∈ X̂, one has Pi(x) �= ∅.

Assumption (H2) Y is a non-empty, closed and convex subset of RL.

To overcome the fact that we do not assume local non-satiation but only non-satiation,

we introduce the definition of “augmented preferences” as in Gale and Mas-Collel

( [21], [22]). We can avoid the use of augmented preferences if Assumption (H1)(e) is

replaced by xi belongs to the closure of Pi(x).

P̂i(x) = {x�
i ∈ Xi|x

�
i = λxi + (1− λ)x��

i , 0 ≤ λ < 1, x��
i ∈ coPi(x)},

Assumption (H3) For all sequence ((xν
i )) of X̂ such that for all i, xi ∈ P̂i(xν)c , there

exists a subsequence ((x
ϕ(ν)
i )) ∈ X̂ and (x̄i) ∈ X̂ such that for all i, for all ξi ∈ P̂i(x̄),

there exists an integer ν1 and a sequence (ξ
ϕ(ν)
i )ν≥ν1 convergent to (ξi) such that for

all ν ≥ ν1, for all i ∈ I, ξ
ϕ(ν)
i ∈ P̂i(x

ϕ(ν)).

Closedness and convexity are standard assumptions on consumptions and productions

sets. They imply in particular that commodities are perfectly divisible. Assumption

(H1)(c) is a weak continuity assumption on preferences. Assumption (H1)(b), i.e.

the irreflexivity, is made on the sets coPi(x) to avoid to assume the convexity of

the preference correspondences Pi. Assumption (H1)(d) implies that using his own

shares in the productive system, consumer i can survive without participating in any

exchange. This implies no trader will be allowed to starve no matter what the prices

are. It also insures that the set A(E) is nonempty. Usually, in exchange economy, this

assumption is merely written as ωi ∈ Xi, which corresponds to ωi = xi and y
i,j

= 0 for

all j. Assumption (H1)(e) assumes, for every i, the insatiability of the ith consumer

at any point of his attainable consumption set.
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Assumption (H3) is an attempt to weaken the compactness assumption on the global

attainable set A(E). A large literature tackles this question by considering what is

called a non-arbitrage condition (see for example [2], [4], [13], [14]). Our work is much

in the spirit of Dana et al. [13, 14] considering a compact set of attainable utility

levels as generalized by Allouch [1]. But, we remove the transitivity assumption on

preferences like in Won and Yannelis [52]. We discuss into details the relationships

with these contributions in the last section of the paper.

We assume that for each sequence of attainable consumptions, there exists an attain-

able consumption where the preferred consumptions can be approximated by preferred

consumptions of the elements of the sequence. Indeed, the element x̄ of X̂ is not nec-

essarily a cluster point of the sequence (xν) but any element strictly preferred to x̄ by

any agent is approachable by a sequence of elements strictly preferred to (xϕ(ν)). This

condition imposes some restriction on the asymptotic behaviour of the preferences for

attainable allocations in the sense that some preferred elements remain at a finite

distance of the origin even if the allocation is very far.

Note that the productions are not considered in Assumption (H3). So, only the total

production set matters since it determines the attainable consumptions. The fact

that some unbounded sequences of individual productions can be attainable does not

prevent the existence of an equilibrium as long as the total production set is not

modified.

Example 4.2.1. We present an example of an exchange economy where Assumption

(H3) is satisfied while the attainable set is not bounded and the preference correspon-

dences are not representable by utility functions. Then we extend it to a production

economy with a class of productions sets. Let us consider an exchange economy with

two commodities A and B and two consumers.

The consumption sets are given by

X1 = X2 = {(a, b) ∈ R
2|a+ b ≥ 0}

The attainable allocations set A(E) of the economy is then

A(E) = {((a, b), (ωA − a,ωB − b))|0 ≤ a+ b ≤ ωA + ωB}
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where (ωA,ωB) with ωA + ωB > 0 denotes the global endowment. The set A(E) is

clearly unbounded.

We consider the following continuous function Π : Xi → R2 defined by:

Π(a, b) = (
1

2
+

a− b

(|a− b|+ 1)(a2 + b2 + 2)
,
1

2
+

b− a

(|a− b|+ 1)(a2 + b2 + 2)
).

The preference correspondence is the same for the two consumers and it is defined by

Pi : X1 ×X2 → Xi

Pi((a1, b1), (a2, b2)) = {(α, β) ∈ Xi|Π(ai, bi) · (α, β) > Π(ai, bi) · (ai, bi)}

One easily checks that Assumption (H1) is satisfied by the preference relations since

Π is continuous so Pi has an open graph and Π(a, b) � (0, 0) so that the local non-

satiation holds true everywhere.

We remark that if (aνi , b
ν
i ) is a sequence of Xi such that �(aνi , b

ν
i )� converges to +∞

and aνi + bνi converges to a finite limit c, then Π(aνi , b
ν
i ) converges to (1/2, 1/2) and

Π(aνi , b
ν
i ) · (a

ν
i , b

ν
i ) converges to limν(1/2)(a

ν
i + bνi ) =

c
2
.

Let ((aν1, b
ν
1), (a

ν
2, b

ν
2)) be a sequence of A(E). If it has a bounded subsequence, then

this subsequence has a cluster point ((ā1, b̄1), (ā2, b̄2)). Then the desired property of

Assumption (H3) holds true thanks to the fact that the preference correspondences

have an open graph. See the proof of Proposition 4.5.1 (i).

If the sequence is unbounded, we remark that the sequences (aν
1+bν1) and (aν2+bν2) belongs

to [0,ωA+ωB] and for all ν, aν1+bν1+aν2+bν2 = ωA+ωB. So, there exists a subsequence

((a
ϕ(ν)
1 , b

ϕ(ν)
1 ), (a

ϕ(ν)
2 , b

ϕ(ν)
2 )) such that the sequences (a

ϕ(ν)
1 + b

ϕ(ν)
1 ) and (a

ϕ(ν)
2 + b

ϕ(ν)
2 )

converges respectively to c ∈ [0,ωA + ωB] and to ωA + ωB − c. Let us consider the

attainable allocation ((ā1 = c/2, b̄1 = c/2), (ā2 = (ωA + ωB − c)/2, b̄2 = (ωA + ωB −

c)/2)). We remark that Π(ā1, b̄1) = Π(ā2, b̄2) = (1/2, 1/2) and Π(ā1, b̄1) · (ā1, b̄1) =

(1/2)(ā1 + b̄1) = c/2 and Π(ā2, b̄2) · (ā2, b̄2) = (1/2)(ā2 + b̄2) = (ωA + ωB − c)/2. Let

i = 1, 2 and (ai, bi) ∈ Xi such that (ai, bi) ∈ Pi((ā1, b̄1), (ā2, b̄2)). From the definition

of Pi, one deduces that (1/2)(ai + bi) > (1/2)(āi + b̄i) = (1/2) limν→∞(a
ϕ(ν)
i + b

ϕ(ν)
i ) =

limν→∞ Π(a
ϕ(ν)
i , b

ϕ(ν)
i ) · (a

ϕ(ν)
i , b

ϕ(ν)
i ). Furthermore, since Π(a

ϕ(ν)
i , b

ϕ(ν)
i ) converges to

(1/2, 1/2), (1/2)(ai + bi) = limν→∞ Π(a
ϕ(ν)
i , b

ϕ(ν)
i ) · (ai, bi). Consequently, for ν large

enough, Π(a
ϕ(ν)
i , b

ϕ(ν)
i ) · (ai, bi) > limν→∞ Π(a

ϕ(ν)
i , b

ϕ(ν)
i ) · (a

ϕ(ν)
i , b

ϕ(ν)
i ), which means that
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(ai, bi) ∈ Pi((a
ϕ(ν)
1 , b

ϕ(ν)
1 ), (a

ϕ(ν)
2 , b

ϕ(ν)
2 )), so the desired property in Assumption (H3)

holds true. ✷

We now consider a finite collection of production sets (Yj)j∈J of R2 such that Y =
�

j∈J Yj is closed, convex, contains 0 and yA + yB ≤ 0 for all (yA, yB) ∈ Y . Let

us consider the production economy where the consumption sector is as above, the

production sector is described by (Yj)j∈J and the portfolio shares (θij) are any ones

satisfying the standard conditions. One easily checks that Assumption (H3) is satisfied

by this production economy since the attainable consumption set is smaller or equal to

the one of the exchange economy.

The main result of this paper is the following existence theorem of a quasi-equilibrium

for a production economy.

Theorem 4.1. Under Assumptions (H1), (H2) and (H3), there exists a quasi-equilibrium

of the economy E .

4.3 Preliminary results

First, we show that some properties of the preference correspondences Pi are still true

for P̂i.

Proposition 4.3.1. Assume that for all i, Xi is convex

(i) If Pi is lower semicontinuous on
�

i∈I Xi, then the same is true for P̂i.

(ii) P̂i(x) has convex values. Furthermore, if for all xi ∈ Xi, xi /∈ coPi(x), then

xi /∈ P̂i(x).

Proof.
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(i) Let x ∈
�

i∈I Xi and V an open subset of Xi such that

V ∩ P̂i(x) �= ∅.

Then, there exists ξi ∈ P̂i(x) ∩ V , which means that ξi = λxi + (1 − λ)ζi for

some λ ∈ [0, 1[, ζi ∈ coPi(x). Let � > 0 such that B(ξi, �) ⊂ V . Since the

correspondence Pi is lower semicontinuous, then coPi is lower semicontinuous

(see [19], page 154). Consequently, there exists a neighborhood W of x in
�

i∈I Xi

such that

x� ∈ W ⇒ coPi(x
�) ∩ B(ζi, �) �= ∅.

Thus, for all x� ∈ W , there exists ζ �i ∈ coPi(x
�) ∩ B(ζi, �). Let W � such that

W � = {x� ∈ W |�x�
i − xi� < �}.

Let x� ∈ W � and ξ�i = λx�
i + (1− λ)ζ �i, then ξ�i ∈ P̂i(x

�)

�ξ�i − ξi� ≤ λ�x�
i − xi�+ (1− λ)�ζ �i − ζi� < �.

Then, one gets ξ�i ∈ B(ξi, �) ⊂ V . Hence, ξ�i ∈ P̂i(x
�)∩ V , which proves the lower

semi-continuity of P̂i.

(ii) Let x ∈
�

i∈I Xi and zi, z
�
i ∈ P̂i(x) such that zi = xi + λ(ξi − xi) and z�i =

xi + β(ξ�i − xi) for some λ, β ∈]0, 1] and ξi, ξ
�
i ∈ coPi(x). For α ∈]0, 1[, we have:

αzi + (1− α)z�i = xi + αλξi + (1− α)βξ�i − [αλxi + (1− α)βxi]

= xi + αλξi + (1− α)βξ�i − [αλ+ (1− α)β]xi

= xi + γ(ξ��i − xi).

where γ = αλ + (1 − α)β and ξ��i = αλ
γ
ξi +

(1−α)β
γ

ξ�i. One easily checks that

γ ∈]0, 1] since λ, β ∈]0, 1] and ξ��i ∈ coPi(x). Then, αzi +(1−α)z�i ∈ P̂i(x) which

means that P̂i has convex values.

We prove by contraposition the irreflexivity. Let us suppose that xi ∈ P̂i(x) for

some i, then xi = λxi + (1 − λ)x�
i with λ ∈ [0, 1[ and x�

i ∈ coPi(x). Hence, we

have xi = x�
i ∈ coPi(x) which contradicts Assumption (H1)(b). ✷
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Now, we consider the following economy

E � = (RL, (Xi, P̂i,ωi)i∈I , (Y
�
j )j∈J , (θij)(i,j))

where the preference correspondences are replaced by the augmented preference cor-

respondences and the production sets are replaced by their closed convex hull, that is

for each j, Y �
j = coYj.

Lemma 4.3.1. Under assumption (H2), the economies E and E � have the same total

production set so the same attainable consumption set X̂.

Proof. Let Y � =
�

j∈J Y
�
j .

It is clear that Y ⊂ Y �. Conversely, Y � =
�

j∈J coYj ⊂ cl(
�

j∈J coYj), see [43] (Corol-

lary 6.6, page 48). Since the convex hull of a sum is the sum of the convex hulls, one

gets

Y � =
�

j∈J

c̄oYj ⊂ cl(
�

j∈J

coYj) = cl(co(
�

j∈J

Yj)) = coY.

Since Y is a non-empty closed, convex subset of RL, then coY = Y . Hence Y = Y �.

✷

Proposition 4.3.2. If ((x̄i), (ζ̄j), p̄) is a quasi-equilibrium of E �, then there exists

ȳ ∈
�

j∈J Yj such that ((x̄i), (ȳj), p̄) is a quasi-equilibrium of E .

Proof. Let ((x̄i), (ζ̄j), p̄) be a quasi-equilibrium of E �. So,
�

j∈J ζ̄j ∈
�

j∈J Y
�
j .

By Lemma 4.3.1,
�

j∈J Y
�
j = Y . Consequently, there exists ȳ ∈

�
j∈J Yj such that

�
j∈J ζ̄j =

�
j∈J ȳj. Hence

�
i∈I x̄i = ω +

�
j∈J ȳj. In other words, Condition (c) of

Definition 4.2.2 is satisfied.

Moreover, one can remark that ȳj ∈ Y �
j for every j. Consequently, p̄ · ȳj ≤ p̄ · ζ̄j. But

since
�

j∈J ζ̄j =
�

j∈J ȳj, one gets p̄ · ȳj = p̄ · ζ̄j.

We now show that condition (a) is satisfied. Let j ∈ J and yj ∈ Yj. Then, yj ∈ Y �
j ,

so, p̄ · yj ≤ p̄ · ζ̄j = p̄ · ȳj. Hence, p̄ · yj ≤ p̄ · ȳj and Condition (a) of Definition 4.2.2 is

satisfied.

Last, we show that condition (b) is satisfied. Since p̄ · ζ̄j = p̄ · ȳj for all j ∈ J , we have,

p̄ · x̄i ≤ p̄ ·ωi+
�

j∈J θi,j p̄ · ȳj for all i. Now, let i ∈ I and xi ∈ Xi such that xi ∈ Pi(x̄).

Since Pi(x̄) ⊂ P̂i(x̄), p̄ · xi ≥ p̄ · x̄i. ✷
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4.4 Existence of quasi-equilibria

In this section we consider the economy E � as defined above. We have seen in the

previous section that we can deduce the existence of a quasi-equilibrium of E from a

quasi-equilibrium of E �.

In what follow, we will consider Assumptions (H1’), (H2’) whose correspond to (H1),

(H2) but adapted to E � and the asymptotic assumption (WH3). In the previous section,

we have shown that (H1’) and (H2’) are satisfied by E � if Assumptions (H1), (H2) are

satisfied by E and (WH3) is weaker than (H3).

Assumption (H1’) For every i ∈ I

(a) Xi is a non-empty closed, convex subset of RL;

(b) [irreflexivity] ∀x ∈
�

i∈I Xi, xi /∈ P̂i(x);

(c) [lower semicontinuous] P̂i :
�

k∈I Xk → Xi is lower semicontinuous and convex

valued;

(d) ωi ∈ Xi −
�

j∈J θi,jY
�
j , i.e. there exists (xi, (yi,j)) ∈ Xi ×

�
j∈J Y

�
j such that

xi = ωi +
�

j∈J θi,jyi,j;

(e) For each x ∈ X̂, one has P̂i(x) �= ∅ and for all ξi ∈ P̂i(x), for all t ∈]0, 1],

tξi + (1− t)xi ∈ P̂i(x).

Assumption (H2’) For each j ∈ J , Y �
j is a closed, convex subset of RL.

To prepare the discussion on the relationships with the paper of Won and Yannelis, we

consider the following weakening of Assumption (H3). If A is a subset of RL, coneA

is the cone spanned by A.

Assumption (WH3) There exists a consumer i0 such that, for all sequence ((xν
i ))

of X̂ such that for all i, xi ∈ P̂i(xν)c , there exists a subsequence ((x
ϕ(ν)
i )) ∈ X̂ and

(x̄i) ∈ X̂ such that for all i, for all ξi ∈ P̂i(x̄), there exists an integer ν1 and a sequence

(ξ
ϕ(ν)
i )ν≥ν1 convergent to (ξi) such that for all ν ≥ ν1,
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ξ
ϕ(ν)
i0

∈ cone[P̂i0(x
ϕ(ν))− x̄

ϕ(ν)
i0

] + x̄
ϕ(ν)
i0

for all i �= i0,

ξ
ϕ(ν)
i ∈ P̂i(x

ϕ(ν)).

Assumption (WH3) is clearly weaker than (H3) since

P̂i0(x
ϕ(ν)) ⊂ cone[P̂i0(x

ϕ(ν))− x̄
ϕ(ν)
i0

] + x̄
ϕ(ν)
i0

But this assumption exhibits the drawback of being asymmetric. That is why we

did not emphasise it before since we think that further works should provide an even

weaker but symmetric assumption. We provide more comments in the last section

when we discuss the link with the work of Won and Yannelis.

We now state the existence result of a quasi-equilibrium for a finite private ownership

economy satisfying Assumptions (H1’), (H2’) and (WH3).

Theorem 4.2. If Assumptions (H1’), (H2’) and (WH3) are satisfied, then there exists

a quasi-equilibrium of the economy E �.

The idea of the proof is as follows: we first truncate consumption and production sets

with a closed ball with a radius large enough; following an idea of Bergstrom [3], we

modify the budget sets in such a way that it will coincides with the original ones when

the price belongs to the unit sphere; then, by applying the well known result of Gale

and Mas-Colell - Bergstrom about the existence of maximal elements to a suitable

family of lower semi-continuous correspondences, we obtain a sequence ((xν), (yν), pν)

such that ((xν), (yν)) is an attainable allocation of the economy A(E �), pν belongs to

the unit ball of RL, the domain of admissible prices, the producers maximize the profit

over the truncated production sets and the consumptions are maximal elements of the

preferences on the truncated consumption sets but with a relaxed budget constraint;

from Assumption (WH3) and the compactness of the price set, we obtain a subsequence

(xϕ(ν), yϕ(ν), pϕ(ν)) and an element (x̄, ȳ, p̄) such that the preferences at this point are

close to the preferences at xϕ(ν) for ν large enough and pϕ(ν) converges to p̄; finally, we

prove that (x̄, ȳ, p̄) is a quasi-equilibrium of E �. Note that the difficulty of the limit

argument comes from the fact that (x̄, ȳ) is not necessarily the limit of (xϕ(ν), yϕ(ν)).
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4.4.1 The fixed-point argument

From Assumption (H1’)(d), let us fix xi ∈ Xi and y
i,j

∈ Y �
j such that xi = ωi +�

j∈J θi,jyi,j for every i ∈ I. Let B̄ν be the closed ball with center 0 and radius ν with

ν large enough so that ω, xi, yi,j and ωi belong to Bν , the interior of B̄ν , for all i, j.

We consider the truncated economy obtained by replacing agent’s consumption set by

Xν
i = Xi ∩ B̄ν for all i0 �= i, and Xν

i0
= Xi ∩ B̄(�I+�J)ν . The production set becomes

Y ν
j = Y �

j ∩ B̄ν and the augmented preference correspondences are P̂ ν
i = P̂i ∩ Bν and

for i0 �= i, P̂ ν
i0

= P̂i0 ∩ B(�I+�J)ν . The closed unit ball B̄ = {x ∈ RL : �x� ≤ 1}

will be the price set. The truncation of Xi0 is chosen in such a way that if (x, y) ∈
�

i∈I X
ν
i ×

�
j∈J Y

ν
j is feasible, that is,

�
i∈I xi = ω+

�
j∈J yj, then xi0 belongs to the

open ball B(�I+�J)ν .

We now consider the economy

Eν =
�
R

L, (Xν
i , P̂

ν
i ,ωi)i∈I , (Y

ν
j )j∈J , (θi,j)(i∈I,j∈J)

�

where the consumption and production sets are compact.

Remark 4.4.1. For all i, the correspondence P̂ ν
i is lower semi-continuous. Indeed,

P̂ ν
i is the intersection of the lower semi-continuous correspondence P̂i and the constant

correspondence Bν (or B(�I+�J)ν), which has on open graph.

Remark 4.4.2. With the above remark and since B̄ν is convex and closed, note that

the compact economy E ν satisfies Assumption (H1’) but the non satiation of preferences

at attainable allocations and Assumption (H2’). Furthermore, Y ν
j is now compact.

Since each Y ν
j is compact, we can define for every p ∈ B̄ the profit function

πν
j (p) = sup p.Y ν

j = sup{p.yj : yj ∈ Y ν
j }

and the wealth of consumer i is defined by:

γν
i (p) = p.ωi +

�

j∈J

θijπ
ν
j (p).

Note that the function πν
j : B̄ → R is continuous since it is finite and convex.
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In what follows, we will use the following notations for simplicity

• Zν =
�

i∈I X
ν
i ×

�
j∈J Y

ν
j × B̄ and z = (x, y, p) denotes a typical element of Zν

• γ̂ν
i (z) = γν

i (p) +
1−�p�

�I

• �γν
i (z) = max{γ̂ν

i (z),
1
2
[γ̂ν

i (p) + p · xi]}

Remark 4.4.3. Note that p ·xi > �γν
i (z) > γ̂ν

i (z) when p ·xi > γ̂ν
i (z) and �γν

i (z) = γ̂ν
i (z)

when p · xi ≤ γ̂ν
i (z).

Let now N = I ∪ J ∪ {0} be the union of the set of consumers I indexed by i, the set

of producers J indexed by j and an additional agent 0 whose function is to react with

prices to a given total excess demand.

For all i ∈ I, we define the correspondences αν
i : Zν → Xν

i and �βν
i : Zν → Xν

i as

follows.

αν
i (z) = {ξi ∈ Xν

i : p · ξi ≤ γ̂ν
i (z)}

�βi

ν
(z) = {ξi ∈ Xν

i : p · ξi < �γν
i (z)}

From the construction of the extended budget set, one checks that for all i, the con-

sumption xi belongs to �βi

ν
(z) if xi /∈ αν

i (z). Indeed, from (H1’)(d),

xi = ωi +
�

j∈J

θi,jyi,j

since xi /∈ αi
ν(z), p · xi > γ̂ν

i (z) and �γν
i (z) > γ̂ν

i (z). Furthermore

p · xi = p · ωi +
�

j∈J

θi,jp · yi,j

≤ p · ωi +
�

j∈J

θi,jπ
ν
j (p)

≤ γ̂ν
i (z)

< �γν
i (z)

which means that xi belongs to �βi

ν
(z). Furthermore, since �γν

i is continuous, the

correspondence �βi

ν
has an open graph in Zν ×Xν

i .
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Now, for i ∈ I, we consider the mapping φν
i defined from Zν to Xν

i by:

φν
i (z) =

�
�βν
i (z) if xi /∈ αν

i (z)
�βν
i (z) ∩ P̂ ν

i (x) if xi ∈ αν
i (z)

For j ∈ J, we define φν
j from Zν to Y ν

j by:

φν
j (z) = {y�j ∈ Y ν

j | p · yj < p · y�j},

and the mapping φν
0 from Zν to B̄ is defined by:

φν
0(z) = {q ∈ B̄ | (q − p) · (

�

i∈I

xi − ω −
�

j∈J

yj) > 0}

Now we will apply to Zν and the correspondences (φi)
ν
i∈I , (φj)

ν
j∈J ,φ

ν
0 the well known

theorem of Gale and Mas-Colell [22]. We will actually use the Bergstrom version of

this theorem in [3], which is more adapted to our setting.

Theorem 4.3. (Gale and Mas-Colell - Bergstrom) For each k = 1, · · · , k̄, let Zk be a

nonempty, compact, convex subset of some finite dimensional Euclidean space. Given

Z =
�k̄

k=1 Zk, let for each k, φk : Z → Zk be a lower semicontinuous correspondences

satisfying for all z ∈ Z, zk /∈ coφk(z). Then there exists z̄ ∈ Z such that for each

k = 1, · · · , k̄:

φk(z̄) = ∅ (4.1)

For the correspondences (φν
j )j∈J and φν

0, one easily checks that they are convex valued,

irreflexive and lower semi-continuous since they have an open graph.

We now check that for all i ∈ I, the correspondence φν
i satisfies the assumption of

Theorem 4.3. We first remark that φν
i has convex valued since �βν

i and P̂i are so. We

now check the irreflexivity. If xi ∈ αν
i (z), then, from Assumption (H1’)(b), xi /∈ P̂i(x),

so xi /∈ φν
i (x) since φν

i (x) ⊂ P̂i(x). If xi /∈ αν
i (z), then from Remark 4.4.3, p·xi > �γν

i (z),

so xi /∈ �βν
i (z) = φν

i (z).

For the lower semi-continuity, let V be an open set and z such that φν
i (z) ∩ V �= ∅. If

xi /∈ αν
i (z), then p · xi > γ̂ν

i (z). Since γ̂ν
i is continuous, there exists a neighborhood

W of z such that for all z� ∈ W , p� · x�
i > γ̂ν

i (z
�). Since �βν

i has an open graph, there
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4.4. Existence of quasi-equilibria

existe a neighborhood W � of z such that for all z� ∈ W �, �βν
i (z

�) ∩ V �= ∅. So, for all

z� ∈ W ∩ W �, φν
i (z

�) ∩ V �= ∅ and consequently, φν
i is lower semi-continuous at z. If

xi ∈ αν
i (z), we first remark that �βi

ν
∩ P̂ ν

i is lower semicontinuous as an intersection

of a lower semicontinuous correspondence with an open graph correspondence. So,

there exists a neighborhood W of z such that for all z � ∈ W , �βi

ν
(z�)∩ P̂ ν

i (x
�)∩ V �= ∅.

This implies that �βi

ν
(z�) ∩ V �= ∅. Hence, in both cases, x�

i ∈ αν
i (z

�) or x�
i /∈ αν

i (z
�),

φν
i (z

�) ∩ V �= ∅ from the definition of φν
i . Thus φν

i is also lower semi-continuous at z

in this case.

From Theorem 4.3 , there exists z̄ν = (x̄ν , ȳν , p̄ν) ∈ Zν such that, for all k ∈ N

φν
k(z̄

ν) = ∅ (4.2)

As already noticed, since for all i ∈ I, xi ∈ �βν
i (z̄

ν) and φν
i (z̄

ν) = ∅, we conclude from

the definition of φν
i that �

p̄ν · x̄ν
i ≤ γ̂ν

i (z̄
ν)

�βν
i (z̄

ν) ∩ P̂ ν
i (x̄

ν) = ∅
(4.3)

Furthermore, from Remark 4.4.3, one deduces that �γν
i (z̄

ν) = γ̂ν
i (z̄

ν).

In addition, for all j ∈ J , since φν
j (z̄

ν) = ∅, we deduce that:

∀yj ∈ Y ν
j , p̄

ν · yj ≤ p̄ν · ȳνj = πν
j (p̄

ν), (4.4)

and since φν
0(z̄

ν) = ∅,

∀p ∈ B̄, p · (
�

i∈I

x̄ν
i − ω −

�

j∈J

ȳνj ) ≤ p̄ν · (
�

i∈I

x̄ν
i − ω −

�

j∈J

ȳνj ) (4.5)

We now prove that (
�

i∈I x̄
ν
i − ω −

�
j∈J ȳ

ν
j ) = 0. Indeed, if not, it follows from (4.5)

that p̄ν belongs to the boundary of B̄, that is �p̄ν� = 1 and p̄ν ·(
�

i∈I x̄
ν
i−ω−

�
j∈J ȳ

ν
j ) >

0. Now, by (4.3) and (4.4), for all i, p̄ν · x̄ν
i ≤ γ̂ν

i (z̄
ν) = γν

i (z̄
ν) = p̄ν ·ωi+

�
j∈J θi,j p̄

ν · ȳνj .

Summing up over i ∈ I these inequalities, one gets, p̄ν · (
�

i∈I x̄
ν
i − ω −

�
j∈J ȳ

ν
j ) ≤ 0,

which yields a contradiction. We thus have proved that (x̄ν , ȳν) ∈ A(Eν).

Remark 4.4.4. Since (x̄ν , ȳν) is feasible, we deduce that x̄ν
i0

belongs to the open ball

B(�I+�J)ν. From Assumption (H1’)(e), P̂i0(x̄
ν) is nonempty and for all ξi0 ∈ P̂i0(x̄

ν)
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4.4. Existence of quasi-equilibria

and for all t ∈]0, 1], tξi0 + (1 − t)x̄ν
i0
∈ P̂i0(x̄

ν). For t small enough, tξi0 + (1 − t)x̄ν
i0

belongs to B(�I+�J)ν, so to P̂ ν
i0
(x̄ν). From (4.3), p̄ν · (tξi0 + (1− t)x̄ν

i0
) ≥ γ̂ν

i0
(z̄ν). At the

limit when t tends to 1, knowing from (4.3) that p̄ν · x̄ν
i0
≤ γ̂ν

i0
(z̄ν), one gets

p̄ν · x̄ν
i0
= γ̂ν

i0
(z̄ν) (4.6)

from which one deduces that

∀ξi0 ∈ P̂i0(x̄
ν), p̄ν · ξi0 ≥ γ̂ν

i0
(z̄ν) (4.7)

4.4.2 The limit argument

We first show that we can apply Assumption (WH3) to the sequence ((x̄ν
i )) built in the

previous sub-section. We have already proved that x̄ν is attainable in the truncated

economy Eν , so it is also attainable in the economy E �. It remains to show that

xi ∈ P̂i(x̄ν)c for all i.

There are two cases. First, if p̄ν · xi < γ̂ν
i (z̄

ν), which means that xi ∈ �βν
i (z̄

ν), then,

from (4.3), xi /∈ P̂ ν
i (x̄

ν) = P̂i(x̄
ν) ∩ Bν . Since xi ∈ Bν as ν has been chosen large

enough, one deduces that xi /∈ P̂i(x̄
ν) and therefore xi ∈ P̂i(x̄ν)c.

If p̄ν · xi ≥ γ̂ν
i (z̄

ν), as xi ∈ �βν
i (z̄

ν) and γ̂ν
i (z̄

ν) = �γν
i (z̄

ν), we actually have the equality

p̄ν · xi = γ̂ν
i (z̄

ν). We remark that γ̂ν
i (z̄

ν) = γν
i (z̄

ν) + 1−�p̄ν�
�I

= p̄ν · xi = p̄ν · (ωi +
�

j∈J θi,jyi,j) ≤ γν
i (z̄

ν). So, �p̄ν� = 1. By contradiction, we prove that xi ∈ P̂i(x̄ν)c.

Indeed, if not, xi ∈ int P̂i(x̄
ν) and there exists ρ > 0 such that B(xi, ρ) ⊂ P̂i(x̄

ν) and

B(xi, ρ) ⊂ Bν . Since p̄ν �= 0, there exists ξνi ∈ B(xi, ρ) such that p̄ν · ξνi < p̄ν · xi =

γ̂ν
i (z̄

ν) and this contradicts (4.3) since ξνi ∈ B(xi, ρ) ⊂ P̂ ν
i (x̄

ν).

We now consider the subsequence ((x̄
ϕ(ν)
i )) of X̂ and ((x̄i)) ∈ X̂ as given by Assumption

(WH3). From the definition of X̂, there exists (ȳj) ∈
�

j∈J Y
�
j such that

�
i∈I x̄i =�

i∈I ωi +
�

j∈J ȳj. Since B̄ is compact, we can assume without any loss of generality

that the sequence (p̄ϕ(ν)) converges to p̄ ∈ B̄.

Now let (yj) ∈
�

j∈J Y
�
j , (ξi) ∈

�
i∈I P̂i(x̄) and λ ∈ [0, 1[. Such (ξi) exists from

Assumption (H1’)(e). Furthermore, from the definition of the extended preferences,

note that ξλi = λx̄i + (1− λ)ξi ∈ P̂i(x̄).
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4.4. Existence of quasi-equilibria

By (WH3), there exists an integer ν1 and a sequence (ξ
ϕ(ν)
i )ν≥ν1 convergent to ξλi

such that for all ν ≥ ν1, ξ
ϕ(ν)
i0

∈ cone{P̂i0(x̄
ϕ(ν)) − x̄

ϕ(ν)
i0

} + x̄
ϕ(ν)
i0

and for all i �= i0,

ξ
ϕ(ν)
i ∈ P̂i(x̄

ϕ(ν)). Since the sequence (ξ
ϕ(ν)
i )ν≥ν1 is convergent, it is bounded and for

ν large enough, for all i �= i0, ξ
ϕ(ν)
i belong to Bν , so ξ

ϕ(ν)
i ∈ P̂ ν

i (x̄
ϕ(ν)), ∀ν ≥ ν1. We

deduce from (4.3) that ξ
ϕ(ν)
i /∈ �βν

i (z̄
ϕ(ν)), that is, p̄ν · ξ

ϕ(ν)
i ≥ �γν

i (z̄
ν) = γ̂ν

i (z̄
ν). Using

the same argument as in Remark 4.4.4, one deduces that p̄ν · x̄
ϕ(ν)
i = γ̂ν

i (z̄
ν). So, from

Remark 4.4.4, for all i ∈ I,

p̄ν · x̄
ϕ(ν)
i = p̄ϕ(ν) · ωi +

�

j∈J

θi,j p̄
ϕ(ν) · ȳ

ϕ(ν)
j +

1− �p̄ϕ(ν)�

�I

Summing over i these inequalities and knowing that (x̄ϕ(ν), ȳϕ(ν)) is a feasible alloca-

tion, we conclude that �p̄ϕ(ν)� = 1 and at the limit, �p̄� = 1.

For all i �= i0,

p̄ϕ(ν) · ξ
ϕ(ν)
i ≥ γν

i (z̄
ν) = p̄ϕ(ν) · ωi +

�

j∈J

θi,j p̄
ϕ(ν) · ȳ

ϕ(ν)
j

and for i0, there exists α ≥ 0 and ζ
ϕ(ν)
i0

∈ P̂i0(x̄
ϕ(ν)) such that,

p̄ϕ(ν) · ξ
ϕ(ν)
i0

= p̄ϕ(ν) · [x̄
ϕ(ν)
i0

+ α(ζ
ϕ(ν)
i0

− x̄
ϕ(ν)
i0

)]

From (4.6) and (4.7), p̄ϕ(ν)·x̄
ϕ(ν)
i0

= γ̂ν
i0
(z̄ν) = γν

i0
(z̄ν) and p̄ϕ(ν)·ζ

ϕ(ν)
i0

≥ γ̂ν
i0
(z̄ν) = γν

i0
(z̄ν),

so, since α ≥ 0, one concludes that

p̄ϕ(ν) · ξ
ϕ(ν)
i0

≥ γν
i0
(z̄ν) = p̄ϕ(ν) · ωi0 +

�

j∈J

θi0,j p̄
ϕ(ν) · ȳ

ϕ(ν)
j

For ν large enough, for all j ∈ J , yj ∈ B̄ν . So, (yj) ∈
�

j∈J Y
ν
j , and from (4.4), one

gets

p̄ϕ(ν) · ξ
ϕ(ν)
i ≥ p̄ϕ(ν) · ωi +

�

j∈J

θi,j p̄
ϕ(ν) · yj (4.8)
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4.4. Existence of quasi-equilibria

In particular, for (ȳj) ∈
�

j∈J Y
�
j , one gets

p̄ϕ(ν) · ξ
ϕ(ν)
i ≥ p̄ϕ(ν) · ωi +

�

j∈J

θi,j p̄
ϕ(ν) · ȳj (4.9)

Passing to the limit in (4.8) and (4.9), we obtain:

p̄ · ξλi ≥ p̄ · ωi +
�

j∈J

θi,j p̄ · yj (4.10)

and

p̄ · ξλi ≥ p̄ · ωi +
�

j∈J

θi,j p̄ · ȳj (4.11)

The two above inequalities hold true for any i ∈ I, ξi ∈ P̂i(x̄), λ ∈ [0, 1[ and (yj) ∈�
j∈J Y

�
j . Knowing that (x̄, ȳ) is an attainable allocation, we will show that (x̄, ȳ, p̄) is

a quasi-equilibrium of the economy E �, which completes the proof.

When λ goes to 1 in (4.10) and (4.11), one gets

p̄ · x̄i ≥ p̄ · ωi +
�

j∈J

θi,j p̄ · yj (4.12)

and

p̄ · x̄i ≥ p̄ · ωi +
�

j∈J

θi,j p̄ · ȳj (4.13)

Since (x̄, ȳ) is a feasible allocation, summing over i the inequalities in (4.13), one

deduces that

p̄ · x̄i = p̄ · ωi +
�

j∈J

θi,j p̄ · ȳj (4.14)

Taken λ = 0 in (4.11), we obtain for all i ∈ I, for all ξi ∈ P̂i(x̄),

p̄ · ξi ≥ p̄ · ωi +
�

j∈J

θi,j p̄ · ȳj (4.15)
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So, the quasi-demand condition (b) of Definition 4.2.2 is satisfied.

Finally, from (4.12) and (4.13), for all (yj) ∈
�

j∈J Y
�
j , one gets

p̄ · ωi +
�

j∈J

θi,j p̄ · yj ≤ p̄ · ωi +
�

j∈J

θi,j p̄ · ȳj (4.16)

Summing over i, we get �

j∈J

p̄ · yj ≤
�

j∈J

p̄ · ȳj

For any j ∈ J , applying this inequality to y � ∈
�

j∈J Y
�
j defined by y�j� =

�
yj if j � = j

ȳ�j if j � �= j
,

it readily follows that

p̄ · yj ≤ p̄ · ȳj (4.17)

which means that the profit maximization condition (a) of Definition 4.2.2 is also

satisfied. ✷

4.5 Relationship with the literature

In this section, we compare Assumption (H3) with other conditions in the literature

on the existence of equilibrium with unbounded consumption sets. We show that

Assumption (H3) is weaker than the compactness of the set of individually rational

and attainable allocations or utility levels and the CPP condition of Allouch. We also

explain the relationships with the condition of Won and Yannelis.

4.5.1 Compactness of the attainable utility set

The following proposition shows that Assumption (H3) is weaker than the compactness

of A(E) or U the attainable utility set. We use the following assumption on preferences

as in Allouch.

Assumption (H4) The utility function ui is lower semi-continuous and strictly quasi-

concave, that is, for all (xi, zi) ∈ Xi×Xi with ui(zi) > ui(xi) then ui(λxi+(1−λ)zi) >

ui(xi) for all λ ∈ [0, 1[.
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If Pi is represented by a utility function ui satisfying Assumption (H4), i.e.:

Pi(x) = {x�
i ∈ Xi : ui(x

�
i) > ui(xi)}

then, Pi(x) = P̂i(x), for all x ∈
�

i∈I Xi. If the preferences of all consumers are

represented by a utility function, the set of attainable utility level U is defined as:

U = {(v1, v2, ..., vm) ∈ R
I
+ : ∃x ∈ X̂ s.t. ui(xi) ≤ vi ≤ ui(xi)},

In an exchange economy with the survival assumption ωi ∈ Xi for all i, the set U is

just the set of individually rational attainable consumptions.

Proposition 4.5.1. Under Assumption (H1),

(i) If A(E) is compact, then (H3) is satisfied.

(ii) If the preferences of all consumers are represented by a utility function satisfying

Assumption (H4) and if U is compact, then Assumption (H3) is satisfied.

Proof.

(i) Let ((xν
i )) be a sequence in X̂. From the definition of X̂, there exists a sequence

((yνj )) of
�

j∈J Yj such that ((xν
i ), (y

ν
j )) ∈ A(E). Since A(E) is compact, there exists

a subsequence ((x
ϕ(ν)
i ), (y

ϕ(ν)
j )) convergent to ((x̄i), (ȳj)) ∈ A(E). Let i ∈ I and ξi ∈

P̂i(x̄). For all integer k ≥ 1, we set Vk = {x ∈
�

i∈I Xi|B(ξi,
1
k
) ∩ P̂i(x) �= ∅}. Since

Pi is lower semi-continuous, so is P̂i. Hence, Vk is an open neighborhood containing

x̄. Since (xϕ(ν)) converges to x̄, there exists an integer ν̄(k) such that for all ν ≥ ν̄(k),

xϕ(ν) ∈ Vk. We can assume without loss of generality that for all k ≥ 1, the sequence

(ν̄(k)) is strictly increasing, which implies that for all ν ≥ ν̄(1), there exists a unique

integer κ(ν) such that ν̄(κ(ν)) ≤ ϕ(ν) < ν̄(κ(ν) + 1). Hence, we have xϕ(ν) ∈ Vκ(ν)

and there exists (ξ
ϕ(ν)
i ) such that ξ

ϕ(ν)
i ∈ B(ξi,

1
κ(ν)

) ∩ P̂i(x
ϕ(ν)). Now, since ϕ(ν) goes

to infinity and for all k ≥ 1, (ν̄(k)) is strictly increasing, then κ(ν) goes to infinity.

Hence, the sequence (ξ
ϕ(ν)
i ) converges to ξi and for all ϕ(ν) ≥ ν̄(1), ξ

ϕ(ν)
i ∈ P̂i(x

ϕ(ν)).

So, Assumption (H3) holds true.

(ii) Let ((xν
i )) be a sequence in X̂ such that for all i, xi ∈ P̂i(xν)c. Since Pi(x) = {x�

i ∈

Xi : ui(x
�
i) > ui(xi)} and xi ∈ P̂i(xν)c ⊂ Pi(xν)c, for all i ∈ I, the lower semicontinuity
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of ui implies that ui(xi) ≤ ui(x
ν
i ). Let now consider the sequence (vνi ) defined by

(vνi ) = (ui(x
ν
i ))

For all i ∈ I, we have ui(xi) ≤ vνi = ui(x
ν
i ) so (vνi ) ∈ U. Since U is compact, there

exists a subsequence (v
ϕ(ν)
i ) = (ui(x

ϕ(ν)
i )) convergent to v̄i ∈ U . By definition of U ,

there exists (x̄i) ∈ X̂ such that v̄i ≤ ui(x̄i) for all i ∈ I. Let i ∈ I and ξi ∈ P̂i(x̄).

Since under Assumption (H4), Pi(x̄) = P̂i(x̄), then ui(x̄i) < ui(ξi). Consequently

v̄i ≤ ui(x̄i) < ui(ξi) for all i ∈ I. Since (ui(x
ϕ(ν)
i )) converges to v̄i, there exists ν1

such that for all ν ≥ ν1, ui(x
ϕ(ν)
i ) < ui(ξi), hence ξi ∈ Pi(x

ϕ(ν)) ⊂ P̂i(x
ϕ(ν)).Then, the

constant sequence (ξi) satisfies ξi ∈ P̂i(x
ϕ(ν)) for all ν ≥ ν1 and converges to ξi. ✷

4.5.2 Comparison with the CPP condition of Allouch

We recall the following definition of the CPP condition considered by Allouch [1].

Definition 4.5.1. The economy E satisfies the CPP condition if for every sequence

((xν
i )) of X̂, there exists a subsequence ((x

ϕ(ν)
i )) ∈ X̂, an element (ξi) ∈ X̂ and a

sequence (ξ
ϕ(ν)
i )ν≥ν1 convergent to ξi with ξ

ϕ(ν)
i ∈ P̂i(x

ϕ(ν)), for all ν.

Beside this assumption, Allouch also assumes that the preference relations are tran-

sitive, have open lower-section and that the augmented preferences are equal to the

preferences. Assumption (H3) and the CPP condition have the same flavour, but

the transitivity allows to consider a unique sequence (ξ
ϕ(ν)
i ) whereas Assumption (H3)

needs a sequence for each preferred element.

Proposition 4.5.2. Let us assume that the preference relations are transitive, have

open lower-section and are equal to the augmented preferences. Then if the CPP

condition is satisfied, Assumption (H3) holds true.

Proof. Let a sequence ((xν
i )) of X̂. From the CPP condition, there exists a subse-

quence ((x
ϕ(ν)
i )) and (ξi) ∈ X̂, there exists a sequence (ξ

ϕ(ν)
i ) convergent to ξi with

ξ
ϕ(ν)
i ∈ P̂i(x

ϕ(ν)) = Pi(x
ϕ(ν)), for all ν. Let i ∈ I and ζi ∈ Pi(ξ). Since Pi has open

lower sections, there exists a neighborhood V of ξ such that for all ξ � ∈ V , zi ∈ Pi(ξ
�).
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Since the sequence (ξϕ(ν)) converges to ξ, we have ξϕ(ν) ∈ V , for ν large enough.

Consequently, zi ∈ Pi(ξ
ϕ(ν)). Since Pi is transitive and since ξ

ϕ(ν)
i ∈ Pi(x

ϕ(ν)) and

zi ∈ Pi(ξ
ϕ(ν)), one gets zi ∈ Pi(x

ϕ(ν)). Therefore, the constant sequence (zi) satisfies

zi ∈ P̂i(x
ϕ(ν)) for all ν large enough and converges to zi. ✷

4.5.3 Comparison with Won and Yannelis work

To compare our contribution to the one of Won and Yannelis [52], we restrict our

attention to an exchange economy. Indeed, the initial endowments ωi are used as

a reference point on the budget line and there is no equivalent consumption in a

production economy. The frameworks and the basic assumptions are quite similar and

we focused our attention on the asymptotic condition corresponding to our Assumption

(H3). To state it, we borrow the following notations from [52]. For x ∈
�

i∈I Xi, for

all i ∈ I, ri(x) = max{�xk� | k �= i} and B̄(0, r) denotes the closed ball of center 0

and radius r. We now state Assumption (B7a) of Won and Yannelis.

Assumption (B7a) There exists a consumer i0 ∈ I such that for all sequence ((xν
i ))

of X̂ with ωi ∈ P̂i(xν)c for all i and for all ν, there exists a subsequence ((x
ϕ(ν)
i )) and

a sequence (yϕ(ν)) convergent to a point y ∈ X̂, such that, for all ν,

Pi0(y
ϕ(ν)) ⊂ cone[Pi0(x

ϕ(ν))− {ωi0}] + {ωi0}

and for all i �= i0,

Pi(y
ϕ(ν)) ∩ B̄(0, ri0(x

ϕ(ν))) ⊂ cone[Pi(x
ϕ(ν)) ∩ B̄(0, ri0(x

ϕ(ν)))− {ωi}] + {ωi}.

We first remark that Assumption (H3) does not require the sequence (yϕ(ν)) and the

inclusion of the associated preferred set, or a truncation of it, in a set generated by the

preferred set of xϕ(ν). Indeed, our assumption has the flavour of the CPP condition of

Allouch.

Note that the use of the cone operator enlarges the set [Pi0(x
ϕ(ν))]−{ωi0}] or [Pi(x{ωi0})∩

B̄(0, ri0(x{ωi0}))−{ωi}], so the condition is weaker than assuming Pi0(y
ϕ(ν)) ⊂ Pi0(x

ϕ(ν))

and Pi(y
ϕ(ν)) ∩ B̄(0, ri0(x

ϕ(ν))) ⊂ Pi(y
ϕ(ν)) ∩ B̄(0, ri(x

ϕ(ν))) for all i �= i0. Note that,

thanks to the lower semi-continuity of the preferences, Assumption (H3) is weaker
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than assuming the existence of the convergent sequence (yϕ(ν)) and the inclusion

Pi(y
ϕ(ν)) ⊂ Pi(x

ϕ(ν)). So, at this stage, the two assumptions are not comparable.

But Assumption (B7a) exhibits a non symmetric treatment of the consumers with

Consumer i0 playing a particular role with no truncation by the ball B(0, ri0(x)).

Furthermore, the radius ri0(x) is suitably chosen to be the smallest radius such that

all consumptions x
ϕ(ν)
i belongs to the ball for all i �= i0. We have no hint about the

possibility to choose a larger radius. So, the choice of this particular radius seems to be

ad hoc. In view of our argument above, we can understand why we can have a weaker

condition on one consumer. In the truncated economy before the limit argument, we

can choose a large enough radius to truncate the consumption set of one consumer i0

such that all feasible allocation (x), the consumption xi0 belongs to the interior of the

ball. This allows us to prove that the whole preferred set is above the budget line.

Whereas for the other consumers, we have only the truncated preferred set above the

budget line. That is why, in Assumption (B7a), the condition for all i �= i0 involves

the truncated preferred set Pi(x
ϕ(ν)) ∩ B̄(0, ri0(x

ϕ(ν))).

The major advantage of Assumption (B7a) comes from the fact that it is satisfied

by the example Page et al [40] where an equilibrium exists with an unbounded set

of attainable individually rational utility level. We easily check that this example

satisfies the following asymmetric weakening of Assumption (H3) in the framework of

an exchange economy:

Assumption (EWH3) There exists a consumer i0 ∈ I, such that for all sequence

((xν
i )) of X̂ such that for all i, ωi ∈ P̂i(xν)c , there exists a subsequence ((x

ϕ(ν)
i )) ∈ X̂

and (x̄i) ∈ X̂ such that for all i, for all ξi ∈ P̂i(x̄), there exists an integer ν1 and a

sequence (ξ
ϕ(ν)
i )ν≥ν1 convergent to ξi with, for all ν ≥ ν1,

ξ
ϕ(ν)
i0

− ωi0 ∈ cone[P̂i0(x
ϕ(ν))− ωi0 ]

and for all i �= i0,

ξ
ϕ(ν)
i ∈ P̂i(x

ϕ(ν)).

We did not consider and emphasise this assumption previously since its asymmetry is

an hint that there is still room for improvements to get a still weaker and symmetric

assumption. We can easily adapt the proof of Section 4 to check that assumption

(EWH3) is sufficient for the existence of quasi-equilibrium in exchange economies.
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4.5. Relationship with the literature

Finally, we discuss Example 3.1.2 of Won and Yannelis. Clearly, Assumption (EWH3)

does not cover this example.The authors claim that this example satisfies their weaker

assumption (B7). The argument is based on the fact that there is no equilibrium in

the truncated economy except the no-trade one with the two consumptions equal to

0 and any positive price. Actually, it seems to us that the price p = (0, 1) associated

to the consumptions x1 = (r, 0) and x2 = (−r, 0) is an equilibrium when the first

agent has a truncated budget set B̄(0, r). In that case, the set P1(x) ∩ B̄(0, r2(x)) is

empty, so is the set G2(x) with the notation of the paper. Consequently, finding an

assumption covering Example 3.1.2 of [52] is still an open challenge.
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