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Résumé

La statistique robuste est une branche de la statistique qui s’intéresse à l’analyse
de données contenant une proportion significative d’observations contaminées avec
des erreurs dont l’ampleur et la structure peuvent être arbitraires. Les estimateurs
robustes au sens du point de rupture sont généralement définis comme le minimum
global d’une certaine measure non-convexe des erreurs, leur calcul est donc un pro-
blème d’optimisation globale très coûteux. L’objectif de cette thèse est d’étudier les
contributions possibles des méthodes d’optimisation globale modernes à l’étude de
cette classe de problèmes.

La première partie de la thèse est consacrée au τ -estimateur pour la régression
linéaire robuste, qui est défini comme étant un minimum global d’une fonction non-
convexe et dérivable. Nous étudions l’impact des techniques d’agglomération et
des conditions d’arrêt sur l’efficacité des algorithmes existants. Les conséquences
de certains phénomènes liés au voisin le plus proche en grande dimension sur ces
algorithmes agglomératifs d’optimisation globale sont aussi mises en évidence.

Dans la deuxième partie de la thèse, nous étudions des algorithmes déterministes
pour le calcul de l’estimateur de moindres carrés tronqués, qui est défini à l’aide d’un
programme en nombres entiers non linéaire. En raison de sa nature combinatoire,
nous avons dirigé nos efforts vers l’obtention des bornes inférieures pouvant être
utilisées dans un algorithme du type branch-and-bound. Plus précisément, nous
proposons une relaxation par un programme sur le cône de deuxième ordre, qui
peut être renforcée avec des coupes dont nous présentons l’expression explicite. Nous
fournissons également des conditions d’optimalité globale.
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Abstract

Robust statistics is a branch of statistics dealing with the analysis of data containing
contaminated observations. The robustness of an estimator is measured notably by
means of the breakdown point. High-breakdown point estimators are usually defined
as global minima of a non-convex scale of the errors, hence their computation is
a challenging global optimization problem. The objective of this dissertation is to
investigate the potential contributions of modern global optimization methods to
this class of problems.

The first part of this thesis is devoted to the τ -estimator for linear regression,
which is defined as a global minimum of a nonconvex differentiable function. We
investigate the impact of incorporating clustering techniques and stopping conditions
in existing stochastic algorithms. The consequences of some phenomena involving
the nearest neighbor in high dimension on clustering global optimization algorithms
is thoroughly discussed as well.

The second part is devoted to deterministic algorithms for computing the least
trimmed squares regression estimator, which is defined through a nonlinear mixed-
integer program. Due to the combinatorial nature of this problem, we concentrated
on obtaining lower bounds to be used in a branch-and-bound algorithm. In par-
ticular, we propose a second-order cone relaxation that can be complemented with
concavity cuts that we obtain explicitly. Global optimality conditions are also pro-
vided.
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Presentation of the statistical
problem

Robust statistics is a branch of statistics dealing with the analysis of data that may
contain large portions of contaminated observations. The origin of such contamina-
tion can be very diverse. In Figure 1, we show an example where the contamination
comes from measurement errors (Rousseeuw and Leroy, 1987). For each year from
1950 to 1973, the number of outgoing international phone calls from Belgium are
plotted. The bulk of the data follows a linear model; nonetheless, there are 6 ob-
servations that deviate from the majority. In fact, during the period between 1964
and 1969, there was a change on the recording system, which actually recorded the
total duration, in minutes, of the international phone calls instead of the number of
calls.
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Figure 1: International phone calls from Belgium in the period 1950-1973.

A case where a subpopulation acts differently is shown in Figure 2. There are
plotted, for 32 chemical compounds, a quantity called the krafft point versus a
molecular descriptor called heat of formation. There is a main group that follows a
regression line, but there is also, besides some few outliers at right, a second, smaller
group forming what seems to be another regression line. The observations in the
second group correspond to sulfonates.
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2 PRESENTATION OF THE STATISTICAL PROBLEM
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Figure 2: Krafft point for 32 chemical compounds.

Therefore, due to diversity of the possible situations, it is impossible to make
assumptions on the magnitude nor on the structure of the contamination.

Besides robustness, in a sense to be specified soon, robust regression estimators
satisfy statistical properties such as asymptotic normality, square-root rate of con-
vergence and equivariance properties. Though, the use of robust estimators is not
as widespread as one could expect; mainly because their computation is very time
consuming and, unlike many other problems arising in statistics, the difficult prob-
lems involved in computing robust estimators are almost unknown to optimization
specialists. The objective of this thesis is to explore the potential improvements that
can be obtained in the computing efficiency by taking advantage of recent advances
in optimization.

Robust statistics is nowadays a well-established discipline, and most classical
statistical procedures have a robust counterpart. However, it is customary to con-
sider separately the case of multivariate analysis from linear regression. In many
circumstances the linear model assumption leads to work in lower dimension than
in multivariate analysis.

The regression context
The linear regression context is the following:

• Observed sample {x1, ..., xn} ⊆ Rd;

• response y = (y1, ..., yn) ∈ Rd;

• linear model assumption
yi = x′iβ + δi,

with δi independent and identically distributed , E[δi] = 0, V ar[δi] = σ2;
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• The observations are rows of a matrix X ∈ Rn×d,

X =


x1

x2
...
...
xn

 =


x

(1)
1 x

(2)
1 · · · x

(d)
1

x
(1)
2 x

(2)
2 · · · x

(d)
2

...
...

...
...

...
...

...
...

x
(1)
n x

(2)
n · · · x

(d)
n

 ;

• for β ∈ Rd, we denote by r(β) the vector of residuals r = y − Xβ, with
components ri = yi − x′iβ.

Our objective is to obtain estimators β̂(X, y) of the parameter β satisfying addi-
tionally some equivariance properties:

β̂(X,λy +Xγ) = λβ̂(X, y) + γ for all λ ∈ R, γ ∈ Rd,

and for all nonsingular d× d matrix A:

β̂(XA, y) = A−1β̂(X, y).
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Figure 3: LS regression on a dataset with 20% of contamination.

Classical estimators satisfy these properties, but break down in presence of con-
tamination. Let us take as an example the well-known least squares estimator, which
is defined as

β̂LS = Arg min
β̂∈Rd

SLS(r(β̂)),
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Figure 4: L1 and LS regressions on a toy example.

where

SLS(r) =
n∑
i=1

r2
i = ‖r‖2

2. (1)

We can see in Figure 3 the rout of the LS estimator on a dataset with 20% of
contamination. It has been observed that the quadratic scale in (1) overweights
observations with large residuals. Then it seems reasonable to replace the quadratic
scale by a scale with linear growth that should result in an estimator less sensitive
to outlying observations. Such an estimator is the so-called (with a slight abuse of
notation) L1 estimator, defined as the minimizer of the `1 norm of residuals,

β̂L1 = Arg min
β̂∈Rd

‖r(β̂)‖1,

The example of Figure 4, presented in Clarke (1983) as an application of non smooth
optimization in statistics, confirms somehow this intuition; however, the `1 regression
over the dataset of Figure 3 does not give better results than the least squares
regression, as shown in Figure 5.

These contradictory signals raise the need for a clear definition of what «robust»
means. This will be the subject of the next section.

A measure of robustness: the Breakdown Point
As the previous examples about the L1 estimator highlight, it is necessary to formal-
ize the idea of robustness. Hereafter we will adopt the robustness notion introduced
by Donoho and Huber (1983), which is based on the concept of breakdown point
(BDP). Roughly speaking, the BDP of an estimator on a sample is defined as the
minimum fraction of the observations that need to be replaced by arbitrary ones for
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Figure 5: `1 regression on the same dataset with a 20% of contamination as in Figure
3.

the estimator to take on arbitrary values. The concept of BDP is consistent with
the requirement that no hypothesis can be made on the distribution of the contam-
ination, as it only depends on the fraction of the sample that is to be corrupted.
The formal definition of the BDP is the following: consider any sample of n points
(X, y) and let T be a regression estimator, T (X, y) = β̂. Then consider all possible
corrupted samples (X ′, y′) that are obtained by replacing m of the original points
by arbitrary values. Let us denote by bias(m;T,X, y) the maximum bias that can
be caused by such a contamination

bias(m;T,X, y) = sup
X′,y′
‖T (X, y)− T (X ′, y′)‖2. (2)

The breakdown point of the estimator T at the sample (X, y) is defined as

ε∗n(T,X, y) = min
{m
n
| bias(m;T,X, y) =∞

}
.

In order to compare different estimators, one usually considers the asymptotic be-
haviour of ε∗n(T,X, y):

ε∗(T,X, y) = lim
n→∞

ε∗n(T,X, y).

So, as ε∗n(β̂LS, X, y) = ε∗n(β̂L1 , X, y) = 1/n for any sample (X, y), one says that both
the LS and the L1 estimators have a breakdown point of 0%.

Note that in equation (2) contamination of any type and magnitude is allowed.
This is the main difference with the approach of Robust Optimization, which searches
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for an optimal solution to problems involving uncertain data on the objective func-
tion f0 and/or on the constraints fi, for which one can specify an uncertainty set
U :

min
x
{f0(x, ζ) | fi(x, ζ) ≤ 0, i = 1, ...,m. ∀ζ ∈ U}.

In general, robust optimization counterparts to classical estimators will not have a
higher breakdown point than the original estimator. However, in problems where
the uncertainty can be confidently supposed to belong to well-defined (convex!) un-
certainty sets, the robust optimization framework could be preferable, since there
exists efficient polynomial-time algorithms for solving those problems. The inter-
ested reader is referred to the article by Ben-Tal and Nemirovski (2008) for further
details.

The BDP of the L1 estimator

As the example in Figure 5 suggests, ε∗(β̂L1 , X, y) = 0 if contamination is allowed in
X. However, since the L1 estimator can be efficiently computed, there has been some
interest on its BDP robustness in the case of planned experiments, namely, when the
matrix of regressors X is deterministic and only y can be contaminated. In this case
there exists some characterizations of ε∗(β̂L1 , X, y), which can be positive. Let m∗
be the largest integer such that for any set S ⊆ {1, ..., n} of cardinality m∗,

max
‖ξ‖=1

∑
i/∈S |x′iξ|∑
|x′iξ|

≥ 1

2
,

then ε∗(β̂L1 , X) = (m∗ + 1)/n (see He et al., 1990; Mizera and Müller, 2001). The
combinatorial nature of this characterization makes the BDP of the L1 estimator
very difficult to compute, thus unmanageable. Giloni and Padberg (2004) gave
another characterization based on the linear structure of the problem, which involves
solving a Mixed-Integer Program (MIP) with 2n integer variables.

Nevertheless, the intuition behind the example of Figure 4 is not completely
without foundation. Candes and Tao (2005) showed the following: assume that
we want to recover the vector β from corrupted measurements y = Xβ + e, for a
deterministic matrix X and an arbitrary unknown vector of errors e. Then β is the
unique solution to

min
g∈Rd
‖y −Xg‖1,

provided that the `0 “norm”, or cardinality norm of e, ‖e‖0 = cardinality({i | ei 6= 0})
is less than or equal to some η > 0. The number η must satisfy δη + θη,η + θη,2η < 1,
where

δη = max
|J |≤η,c∈R|J|

∣∣∣∣‖FJc‖2

‖c‖2
− 1

∣∣∣∣ , θη,η′ = max
|J |≤η,|J ′|≤η′;c∈R|J|;c′∈R|J′|

|〈FJc, FJ ′c′〉|
‖c‖‖c′‖

,

and F is any matrix F such that FX = 0. For an index set J , FJ denotes the sub
matrix of the rows of F indexed by J . Since the result holds under the hypothe-
sis that uncontaminated observations have null residuals, this framework is rather
adapted to signal recovery. It is not surprising that in the example of Figure 4 the
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majority of the observations pass exactly through a line. Going even deeper into the
theoretical basis of this results we can find a result due to Fazel (2002) stating that
the `1 norm is indeed the convex envelope of the cardinality norm `0 over the unit
ball. In simple words, the `1 norm is the one that gives the least weight to large-
residuals observations while keeping the problem convex. In the following section
we will describe a class of estimators with a high breakdown point. As it could be
expected, they involve nonconvex minimization problems.

High BDP estimators
Robust estimators are defined similarly to the LS and L1 estimators, but the
quadratic and linear scales of residuals are replaced by robust residual scales, which
are not influenced by observations with huge residuals. We present below two such
robust scales, M−estimates of scale and L−estimates of scale. The former defines
robust estimators whose computation involve continuous nonconvex optimization
problems, and the later gives raise to mixed-integer nonlinear programs (MINLPs).

Robust estimators based on L−estimates of scale

L−scales: definition Let |r|(1) ≤ ... ≤ |r|(n) be the ordered absolute values of
residuals. L−estimates of scale are defined as weighted `1 or `2 norms of the |r|(i)s,

n∑
i=1

ai|r|(i), or

(
n∑
i=1

ai|r|2(i)

)1/2

, (3)

where the ais are nonnegative constants.

The least trimmed squares (LTS) estimator It is defined by minimizing an
L−scale as in the second form in (3), with ai = 1 for 1 ≤ i ≤ h and ai = 0 for
h < i ≤ n, for a given h. In other words, the LTS estimator is defined as

β̂LTS = Arg min
β̂∈Rd

SLTS(r(β̂)), (4)

where

SLTS(r) =

(
h∑
i=1

|r|2(i)

)1/2

.

The breakdown point of the LTS estimator depends on h, and the optimal choice
is h = bn/2c+ b(p+ 1)/2c which leads to a BDP of nearly 50% (Rousseeuw and
Leroy, 1987).

From an optimization viewpoint, problem (4) can be written as the following
MINLP:

min
β̂∈Rd

wi∈{0,1}

(
n∑
i=1

wiri(β̂)2

)1/2

(5)
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subject to the constraint
n∑
i=1

wi ≥ h.

Rousseeuw and Driessen (2006) describe a stochastic algorithm for approximating
the LTS estimator. It has been implemented and incorporated into the robust-
base package in R. The only known deterministic approach is that of Giloni and
Padberg (2002), where the authors study the polytope defined by the constraints
wi ∈ {0, 1},

∑
wi ≥ h and show that the relaxed problem attains the minimum at

an extreme point, which necessarily is 0− 1. Then the authors propose a heuristic
algorithm.

The least median of squares (LMS) estimator The LMS estimator is defined
as a minimizer of the median of the residuals:

β̂LMS = Arg min
β̂∈Rd

median
i=1,...,n

|r|(i) = Arg min
β̂∈Rd

|r|(h),

where h = bn/2c. It minimizes an L−scale as in the first form of (3), with ai = 0
except for ah which equals 1. The breakdown point of the LMS estimator is the same
as that of the LTS estimator. As for the LTS estimator, there exists a stochastic
algorithm, implemented in R, for approximating the LTA estimator; Giloni and
Padberg (2002) conducted a theoretical study of this estimator.

The least trimmed absolute deviations (LTA) estimator The LTA estima-
tor is defined in the same way as the LTS estimator, but using the first form in (3),
i.e it minimizes the least trimmed absolute deviations:

β̂LTA = Arg min
β̂∈Rd

SLTA(r(β̂)),

where

SLTA(r) =
h∑
i=1

|r|(i).

The breakdown point of the LTA estimator is the same as that of the LTS estimator.
It has the advantage with respect to LTS that by adding (or splitting) the variables
it can be written as a linear MIP. Hawkins and Olive (1999) proposed to solve it
exactly by simple enumeration, using the following property of the L1 minimizer:
there always exists a subset of size d for which the fit is exact, i.e the residuals are
0. Hence it suffices to enumerate all subsets of size d, instead of the more numerous
subsets of size h.

Robust estimators based on M−estimates of scale

M−scales: definition The M−estimate of scale, SM(r), is defined for each r as
the solution of

1

n

n∑
i=1

ρ

(
ri
SM

)
= b,
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where the function ρ : R→ R+ satisfies the following hypotheses:

R1. ρ is even and twice continuously differentiable.

R2. ρ(0) = 0.

R3. ρ is strictly increasing on [0, c], for some 0 < c < +∞.

R4. ρ is constant on [c,∞).

The constant b is conveniently defined as b =
∫
ρ(t)dΦ(t), where Φ denotes the

standard normal distribution, in order to obtain consistency for the scale at the
normal error model.
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Figure 6: Two admissible ρ functions.

τ-estimator of regression The τ -estimator of regression, β̂τ , is defined as

β̂τ = Arg min
β̂∈Rd

S2
M(r(β̂))

1

nb2

n∑
i=1

ρ2

(
ri(β̂)

SM(r(β̂))

)
, (6)

where SM(r) is an M − scale:

1

n

n∑
i=1

ρ1

(
ri

SM(r)

)
= b1, (7)

ρ1 and ρ2 are functions satisfying R1-R4, and b1, b2 are real constants.
The breakdown point of τ estimators equals ε∗ = b1/ρ1(c). Hence, for an ad-

equate choice of the function ρ1 the maximal breakdown point of 50% can be ob-
tained. Similarly, by adjusting the function ρ2, the asymptotic efficiency at the
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Figure 7: The τ objective function (top), and the τ -estimator fitting (bottom), for
the same data as in Figure 3.
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normal distribution can be made arbitrarily close to 1. A related estimator is the
so-called S-estimator, defined in the same way as τ -estimators, but replacing the
objective function (6) just by β̂ 7→ S2

M(r(β̂)). It has the same robustness properties
of τ -estimators but a lower efficiency.

The main difficulty in computing τ -estimators comes from its lack of convex-
ity. In fact, in the context of estimators based on residual scales, convexity and
robustness are antagonist concepts. For example, for the simpler S-estimators, the
first-order optimality condition reads:

n∑
i=1

ρ′

(
ri(β̂)

SM(r(β̂))

)
xi = 0

which is a weighted mean with weights wi = ρ′(ri(β̂)/SM(r(β̂))). Therefore, a convex
ρ would give higher weights to observations with larger residuals. Note that the
weights depend on the residuals, and so they are adaptive. This is a difference with
estimators based on L-scales, where the weights have a rigid structure. This is an
advantage from the viewpoint of statistics, but it is a drawback from an optimization
point of view. Actually, we could not find any structure to exploit, contrarily to the
LTS optimization problem, which is known to be a concave minimization problem
(which is a type of “structured” nonconvexity). For this reason, we will investigate
stochastic algorithms for τ -estimators, that adapt themselves to a wide class of
problems. For the more structured LTS we will settle for warranted optimal solutions
taking advantage of the structure of the problem.

A word on the multivariate case
For completeness, we will briefly describe here the multivariate context. We have a
data set Z = {x1, ..., xn} ⊆ Rd. We suppose that the n observations are independent
realizations of a certain random variable X , which follows an elliptic distribution
with induced measure absolutely continuous with respect to the Lebesgue measure,
with a density h of the form

h(x) = det(Σ)−1/2f((x− µ)Σ−1(x− µ)), (8)

where µ ∈ Rd is called the location, Σ is a d× d positive definite matrix (henceforth
Σ � 0) called scatter matrix, and f is an arbitrary positive function. Two random
variables with the same scatter matrix, up to some multiplicative factor, are said to
have the same shape but different size. The expression in the argument of f in (8)
is called Mahalanobis distance, it is the squared norm of the vector x − µ, for the
norm induced by the inner product 〈·, ·〉Σ−1 = 〈·,Σ−1·〉. In the sequel we shall use
the following notation for the Mahalanobis distance:

d2(x, µ; Σ) , (x− µ)′Σ−1(x− µ).

Our objective will be to estimate the location µ and the scatter matrix Σ from
the data set Z, which may be strongly contaminated. We shall search for estimators
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satisfying the same equivariance properties as their regression counterparts,

µ̂(AZ + b) = Aµ̂(Z) + b, Σ̂(AZ + b) = AΣ̂(Z)A′,

for any invertible d× d matrix A and any b ∈ Rd.
The maximum likelihood estimators, which are also the LS estimators, are the

empirical mean for location,

µ̂(Z) =
1

n

n∑
i=1

xi,

and the unbiased estimator

Σ̂(Z) =
1

n− 1

n∑
i=1

(xi − µ̂(Z))(xi − µ̂(Z))′,

for the scatter matrix.
The breakdown point for multivariate location is defined in the same way as for

regression, namely, the smallest fraction of observations that need to be replaced
by arbitrary ones to render the bias unbounded. For the scatter matrix, a usual
measure of bias is max(λd(Σ̂), λ1(Σ̂)), where λd(Σ̂) and λ1(Σ̂) denote the largest
and the smallest eigenvalue of Σ̂, respectively. Robust estimators for multivariate
location are defined similarly as for regression, minimizing a robust scale, but this
time the residuals are replaced by the Mahalanobis distances. The τ -estimators
for multivariate location and scatter are defined as minimizers of the optimization
problem

min
µ,Σ

det(Σ)

[
n∑
i=1

ρ1(d2(x, µ; Σ))

]d
s.t

n∑
i=1

ρ2(d2(x, µ; Σ)) ≤ b,

µ ∈ Rd,Σ � 0, symmetric,

where the functions ρ1, ρ2 play a role analogous to the functions in (6) and (7), and
are required to satisfy the same hypotheses. The S-estimator of multivariate location
and scatter is obtained through the same problem but keeping only det(Σ) in the
objective function. An estimator analogous to the LTS regression estimator exists
for multivariate robust estimation, it is called the Minimum Covariance Determinant
(MCD). For a given bn/2c < h ≤ n, the MCD is defined as the mean and covariance
matrix of a subsample of size h for which the determinant of the covariance matrix
is minimum.

For S and τ -estimators there exist undocumented implementations of stochastic
algorithms similar to those existing for regression. The literature for the MCD is
more extensive; we can cite Rousseeuw and Driessen (1998) for two-step stochastic
algorithms based on subsampling and concentration steps. Recently, Schyns et al.
(2010) presented an algorithm based on a new approach consisting of relaxing the
variables of the combinatorial problem for dealing finally with a smooth problem in
continuous variables. Agulló (1997) proposed a branch-and-bound algorithm for the
exactly computing the MCD estimator. Recently, Nguyen and Welsch (2010) pro-
posed a method for robust covariance estimation. It is not a high breakdown point
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estimator, but it is defined through a positive semidefinite program and therefore it
can be efficiently computed even for large data sets.
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Part I

Stochastic algorithms for
approximately solving continuous
global optimization problems.
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Chapter I.1

Introduction

The first part of this thesis is devoted to τ -estimators for robust regression. This
choice was done because the τ -estimator enjoys the best statistical properties: the
robustness and the efficiency of the τ -estimator can be tuned simultaneously without
trade-off. The computation of the τ -estimator of regression involves a non-convex
differentiable optimization problem in continuous variables. One of its major dif-
ficulties, besides non-convexity, is that the feasible domain of optimization is the
whole Euclidean space. Therefore, exhaustive exploration of the feasible domain is
impossible; this rules out most deterministic algorithms for global optimization in
continuous variables. At that point stochastic algorithms are one alternative, but
the unboundedness of the domain appears as an issue again. However, this inconve-
nient has already been overcome in existing algorithms for robust regression. Most
of them are based on a sampling technique called subsampling. Originally conceived
for the LTS estimator, subsampling consists of drawing from a multinomial distri-
bution a subsample of h observations, with d+ 1 ≤ h ≤ n, from which a candidate
β ∈ Rd can be obtained as the LS fit to that subsample. Even if for the LTS
optimization problem (4) subsampling boils down to uniformly sampling on the fea-
sible domain {w ∈ [0, 1]n,

∑n
i=1wi = h}, the rationale behind subsampling, namely

that by drawing enough subsamples we should have the chance to pick at least one
outlier-free subsample, remains appealing for any stochastic algorithm intended to
compute robust estimators.

Sampling is the cornerstone of any stochastic optimization algorithm. Once a
way of sampling over the region of interest is available, a range of alternatives show
up, each one more or less adapted to some specific application.

Most authors classify stochastic global optimization algorithms into (see Schoen,
1991; Törn and Žilinskas, 1989, for good surveys on the subject):

• Two-phase algorithms.

• Heuristic algorithms.

• Algorithms based on a stochastic model of the function.

The first two families of algorithms form a subclass to which we will further
restrict ourselves, because they permit to take advantage of the differentiability of

17
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the objective function to perform local searches. The reader interested in the last
family of algorithms is refered to Betrò (1991) for a detailed review.

Let us briefly describe two heuristic algorithms that have shown the best perfor-
mance in practice: simulated annealing (SA) and tabu search (TS). The basic idea
of SA is to move through the search space by randomly choosing a neighbor of the
current point that decreases the value of the objective function. However, to avoid
being trapped in a local minimum, it may randomly allow a move that increases
the objective function. A move from the current point to a new one is accepted
with probability min{1, exp(−∆/T )}, where ∆ is the potential increase on the ob-
jective function that would result from this move, and T > 0 is a tuning constant
called temperature. Note that when T → 0 the probability of accepting a move that
does not improve the objective function decreases rapidly. The algorithm starts
with a relatively large value of T which is then gradually reduced during the search.
Eventually the algorithm freezes in a local minimum because no uphill moves can
be accepted. Among all points visited by the algorithm the one with the smallest
objective function is chosen as the approximate minimizer. Even if it was originally
inspired from the physical process of driving a system to its minimum energy state
by a “cooling” process, simulated annealing possesses a theoretical motivation. Let
Ω denote the domain of interest. The Boltzmann distribution on Ω, πT , is defined
as

πT (β) ∝ e
−σ(β)
T , β ∈ Ω (I.1.1)

where T > 0 is the temperature. It can be proved that πT converges, as T → 0,
to the uniform distribution over the set of global minimizers of the function σ.
Since sampling from (I.1.1) would require the evaluation of σ on every point of
Ω, the Metropolis algorithm can be used to obtain random samples from πT ; the
Metropolis algorithm consists in simulating a sample path of a Markov process with
transition kernel given by

KT (x, y) = e
[σ(y)−σ(x)]+

T R(x, y)

for any symmetric irreducible matrix R. Unlike SA, TS moves deterministically to
the point that has the lowest objective value among all the neighbors. Once the
search arrives at a local minimum in this way, the algorithm has to make an uphill
move (the algorithm is forced to make a move even if every possible neighbor would
yield an increase in objective value). In order to avoid that the algorithm immedi-
ately moves back to the local minimum in the next step, and thus become trapped,
TS uses a tabu list that forbids moves that could yield to previously visited local
minima, even if they would produce a better objective value.

On the other hand, there are two-phase algorithms. All of the algorithms in this
class of algorithms proceed in three stages:

1. Sampling.

2. Local optimization.

3. Check stopping condition.
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In Flores (2010), we have shown that most of the existing algorithms for robust
regression fit in this class of algorithms. Furthermore, the computational study in
Salibian-Barrera et al. (2008) shows that for optimization problems associated to
robust regression, two-phase methods outperform heuristic algorithms. Neverthe-
less, stopping conditions are currently absent in existing algorithms. They also pass
by clustering techniques that in some problems have helped to improve efficiency of
two-phase algorithms. The impact of stopping conditions and clustering techniques
for the approximation of robust regression estimators is the subject of Chapter I.2.
This work is published in Flores (2010).

The main conclusion of Chapter I.2 is that stopping conditions are a valuable
improvement to existing algorithms for robust regression. On the contrary, the
impact of performing clustering is rather disappointing, especially in middling and
high dimension. In Chapter I.3, one possible reason of the performance degradation
of clustering global optimization in higher dimension is studied: the counter-intuitive
behavior of the nearest neighbor in high dimension.
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Chapter I.2

On the efficient computation of
robust regression estimators
S. Flores.
Computational Statistics & Data Analysis 54 (12), 3044–3056.

I.2.1 Introduction

Robust regression methods have been introduced to cope with the need left by clas-
sical techniques for methods that work well in the presence of contamination in the
data. Particular interest has been focused on estimators with a high breakdown
point as defined by Donoho and Huber (1983). Most of these methods combine
robustness with desirable statistical properties such as consistency and asymptotic
normality.Nonetheless, they are defined by means of difficult global minimization
problems; hence, their computation is very time consuming. We address the prob-
lem of the efficient computation of robust estimators for statistical regression based
on M-scales. The principal aim of our work is to investigate to what extent the
most recent developments in the field of optimization can help improve the existing
computational methods.

Let us consider the classical linear regression model

yi = x′iβ + εi, i = 1, ..., n,

with errors terms εi identically distributed with zero center and independent from
the covariates xi. We shall denote by y the vector with components yi, by X the
n× d matrix with ith row xi, and by r the vector of residuals r(β) = y −Xβ with
components ri = yi − x′iβ.

Many robust estimators of the regression coefficients β ∈ Rd based on n inde-
pendent observations (yi,xi) ∈ R× Rd can be defined as:

β̂ = Arg min
β∈Rd

σ̂(r(β)), (P)

where σ̂ is a scale estimator. An important case of (P) is the S-estimator, defined
with σ̂(r) = s(r), where s : Rn → R+ is an M-estimator of scale, or M-scale (Huber,
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1981), defined implicitly through:

1

n

n∑
i=1

ρ

(
ri
s(r)

)
= b. (I.2.1)

The function ρ : R→ R+ is required to satisfy the following assumptions:

1. ρ is even and twice continuously differentiable,

2. ρ(0) = 0,

3. ρ is strictly increasing on [0, c], for some 0 < c < +∞,

4. ρ is constant on [c,∞).

Any function satisfying these assumptions will be called in the sequel a “rho func-
tion".
The constant b is conveniently defined as

b = EΦ(ρ), (I.2.2)

where Φ denotes the standard normal distribution, in order to obtain consistency
for the scale at the normal error model.

The S-estimator has very good robustness properties, but it lacks efficiency.
Robustness is to be understood in the sense of the breakdown point, which is the
minimum fraction of the observations that need to be shifted for the estimator to take
on arbitrary values. In fact, there is a tradeoff between robustness and efficiency,
and for a breakdown point of 50%, efficiency can be as low as 28.7% (Maronna et al.,
2006, pp. 131). MM -estimators were introduced to fill this gap. They are obtained
by local minimization of a suitable function using an S-estimator as starting point.
In this way, they can combine efficiency with a high breakdown point. See Maronna
et al. (2006, Sec. 5.5) for details. However, τ -estimators have lower bias curves,
and their computing effort is comparable to computing the S-estimator, which is
instrumental in the computation of MM -estimators.

In this paper, we shall focus on τ -estimators, introduced in Yohai and Zamar
(1988), which are defined as minimizers of the function

σ̂(β) =
s(r(β))2

nb2

n∑
i=1

ρ2

(
ri(β)

s(r(β))

)
, β ∈ Rd, (I.2.3)

where ρ2 is a rho function and b2 is adjusted to ρ2 as in (I.2.2). This choice is
motivated by the robustness and efficiency properties of this estimator. Indeed, τ
estimators have a breakdown point ε∗ = b/ρ1(c); hence, for an adequate choice of
the function ρ1, the maximal breakdown point of 50% can be obtained. Similarly, by
adjusting the function ρ2, the asymptotic efficiency at the normal distribution can
be made arbitrarily close to 1. However, computing τ -estimators involves solving a
difficult global optimization problem. Roughly speaking, global optimization meth-
ods can be classified (Archetti and Schoen, 1984) into deterministic methods and
stochastic or probabilistic methods. Deterministic methods look for a guaranteed
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global optimum, while stochastic methods settle for a point that is a global optimum
within an allowed margin or with a certain probability. More ambitious, determin-
istic methods are time consuming, and their range of applicability is limited to very
specific classes of problems, or to problems that are of small size. The interested
reader should refer to Agulló (2001) for a deterministic robust regression algorithm.

Most of the existing methods for computing robust estimators are stochastic
and, more specifically, based on random subsampling. These methods operate by
computing candidates βs based on subsamples of the observations and then starting
local minimizations from each of these candidates. Therefore, they are also called
multistart methods. Section I.2.2 is devoted to the local minimization aspects of
computing τ -estimators. We should stress that this is the only part of our paper that
is estimator-specific. The global part of our discussion is relevant to any objective
function σ̂, provided that a way to perform local minimizations is available. Then, in
Section I.2.3, we will briefly describe clustering global optimization methods, which
is a class of multistart methods that uses clustering analysis techniques (Törn and
Žilinskas, 1989) in order to reduce the number of local minimizations needed to
find a global minimum. Section I.2.4 discusses stopping conditions for multistart
methods. Section I.2.5 shows how the existing methods for robust regression fit into
the framework of clustering global optimization. In Section I.2.6, we present a few
numerical tests comparing the different methods. In particular, the effectiveness
of clustering techniques and stopping conditions is evaluated. We finish with our
conclusions in Section I.2.7.

I.2.2 Local minimization issues
As already mentioned in the introduction, we focus on the problem of finding global
minima of the function

σ̂(β) =
s(r(β))2

nb2

n∑
i=1

ρ2

(
ri(β)

s(r(β))

)
, β ∈ Rd,

where the robust scale s(r(β)) is implicitly defined by:

1

n

n∑
i=1

ρ1(ri(β)/s(r(β)) = b1.

All the global optimization methods that we consider in this paper rely on local
minimizations, and moreover, a major part of their computing time is spent in
local minimizations. This is why fast and reliable local minimization algorithms are
crucial. When the Hessian of the objective function is available, the most efficient
local minimization algorithm is the Newton-Raphson method. Nevertheless, due to
the flat parts present in the function ρ, the Hessian of the τ -objective function may
contain large portions filled with zeros, and therefore, it is ill-conditioned. A good
alternative for computing local minima of (I.2.3) is the Iterated Reweighted Least
Squares (IRLS) algorithm (Salibian-Barrera et al., 2008). Although it has a slower
rate of convergence, in practice it has proven to be quite efficient and stable. At
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each iteration, the IRLS algorithm solves a weighted least squares problem, which is
equivalent to minimizing a quadratic local approximation of the objective function.
In this section, we propose to use inexact solutions of the weighted least squares
problems at each iteration, and we evaluate the gain in efficiency.

The IRLS step is derived from the necessary condition for optimality:

gτ (β) :=
∂σ̂

∂β
= 0.

An expression for gτ (β) has been obtained in Yohai and Zamar (1988):

gτ (β) =
−2

n
X ′W (β)r(β).

Here, W (β) denotes the diagonal matrix with entries wj(β), where

wj(β) =
ω(β)ρ′1(ej(β)) + ρ′2(ej(β))

ej(β)
, (I.2.4)

with the following notations:

ei(β) =
ri(β)

s(β)
, ω(β) =

∑n
i=1[2ρ2(ei(β))− ρ2

′(ei(β))ei(β)]∑n
i=1 ρ

′
1(ei(β))ei(β)

.

This leads to the matrix form of the optimality condition:

X ′W (β)Xβ = X ′W (β)y. (I.2.5)

Disregarding the fact that the matrixW depends (nonlinearly) upon β, the system of
equations (I.2.5) are the normal equations associated to the Weighted Least Squares
problem with weights W . It is a fixed point equation, so the iterative method

βk+1 = (X ′W (βk)X)−1X ′W (βk)y (I.2.6)

has been proposed to solve it in Salibian-Barrera et al. (2008). These are the IRLS
iterations.

For each iteration, IRLS constructs a quadratic approximation of the true objec-
tive function, where the minimum of this quadratic approximation is the subsequent
iterate. The computational cost of each iteration is equivalent to the cost of com-
puting the weights (I.2.4) and solving the system (I.2.6). Computing the weights
(I.2.4) is costly because this requires the computation of an M-estimator of scale.
Therefore, Salibian-Barrera et al. (2008) have proposed to replace the M-scale in
(I.2.4) with an approximate value whereby the resulting iterations are known as
approximated IRLS iterations. Approximated IRLS solves the d × d linear system
(I.2.6) for each iteration, which corresponds to finding the minimum of a quadratic
local approximation of the true objective function. However, when d is not small,
the computational burden of solving a linear system for each iteration can be non-
negligible. Keeping in mind that our objective is to solve (I.2.5), an approximate
solution of the instrumental subproblem (I.2.6) should be enough. In fact, replacing
y = r(β) +Xβ and setting Bk = 2X ′W (βk)X/n in (I.2.6), we obtain

−Bkβk+1 = −Bkβk + gτ (βk).
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In this form, the IRLS resembles the so called quasi-Newton methods, whose
iterations are of the form (Nocedal and Wright, 2006) −Bkβk+1 = −Bkβk+αkgτ (βk),
for an adequate steplength αk > 0.

It has been proved (Nocedal and Wright, 2006, Subsec. 5.7.1) that for quasi-
Newton methods, a “good enough” direction suffices to keep convergence.

In order to evaluate the efficacy of this approach, we compared the computing
time required to perform local minimizations by solving approximately (I.2.6), which
will henceforth be denoted as the Iterated Inexact Reweighted Least Squares (IIRLS),
with the computing time of the approximated IRLS iterations.

In our tests, we used the LSQR algorithm (Björck, 1996) to calculate approxi-
mated solutions to least squares problems. This algorithm can handle problems with
non-square matrices, and it is stable and easily available on the Matlab environment.

In Figure I.2.1, we show the results obtained from the IIRLS. The abbreviation
IIRLS5 (respectively IIRLS20) stands for the algorithm performing 5 (respectively
20) iterations of the LSQR algorithm for each approximated IRLS iteration. We
denoted IARLS as the approximated IRLS algorithm introduced in Salibian-Barrera
et al. (2008) that uses approximated M-scales for computing the weights. This is
subsequently used to solve (I.2.6) using a direct method.

We plot, for different values of d from 5 to 200, the average time spent by each
algorithm over 500 local minimizations of the function (I.2.3) with different datasets
and different starting points generated as described in Section I.2.6. In all the cases,
the IIRLS algorithm found the same local minimum as IARLS, although it usually
needed more iterations to converge. Nevertheless, the economy in time of performing
inexact iterations compensated for the increase in the number of iterations.

We see in Figure I.2.1 that for d = 5, there is not a great difference among the
three methods, but the difference increases with d and becomes of great importance
for d in the medium and large range. Considering the fact that the quality of the
results is exactly the same, it is worthwhile to use IIRLS for local minimizations.

I.2.3 Clustering methods
This section describes a technique for solving global optimization problems, such
as (P), by incorporating clustering analysis techniques. The objective of clustering
methods in global optimization (Törn and Žilinskas, 1989) is to identify groups of
βs such that, if used as an initial point in a local minimization, every member of
the same group yields the same local minimum. Thus, it would suffice to perform
only one local minimization from each of these groups in order to locate all local
minima, and the best of these minima would be a global minimum. A schematic
explanation of clustering methods is presented in Figure I.2.2.

It consists in repeating the following steps iteratively, which we shall describe in
detail in the rest of the section.

1. Sampling: sample candidates βs. Add them to the candidates sampled in
previous iterations.

2. Concentration and/or selection: concentrate the sampled candidates around
the minima in order to facilitate the clustering.
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Figure I.2.1: Average times needed to find a solution to (I.2.5) with respect to d,
using approximated (IARLS) and inexact (IIRLS5 and IIRLS20) iterations.
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Figure I.2.2: Schematic representation of clustering methods, at the sth iteration.

3. Clustering: identify groups of candidates suspected to converge towards the
same minimum.

4. Stopping condition: decide whether it is worthwhile to continue, taking into
account the outcome of the local minimizations. If so, go back to (1), otherwise
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stop.

Let us describe in detail the first three steps: sampling, concentration/selection
and clustering. For clarity of the exposition, stopping conditions will be discussed
separately in the next section.

I.2.3.1 Sampling

In absence of additional information, candidates are usually sampled uniformly in the
feasible region. However, when the feasible region is unbounded, it is not completely
clear how the sampling should be done.

For the particular case of robust regression, Ruppert (1992) proposed a method
known as random subsampling : candidates βi, i = 1, ..., N, are constructed by draw-
ing random subsamples of size h ≥ d from the data and letting βi be the least
squares fit to the ith subsample. The rationale behind this method is that for a
large enough N , at least one outlier-free subsample could be sampled, which should
give a good candidate, hopefully in the neighborhood of a global minimum.

I.2.3.2 Concentration and/or selection

The concentration step consists of performing some iterations of a local minimization
procedure, usually one, starting from each candidate. In the selection step, a pre-
specified fraction of the sampled candidates with lowest function value is retained.
It has been proposed (Törn and Žilinskas, 1989) to do only the concentration step,
only the selection step or both. For robust regression, Ruppert (1992) proposed to
do selection and then concentration, while Salibian-Barrera et al. (2008) explored
the use of concentration followed by selection. The term “concentration step” has
already been used in Rousseeuw and Driessen (1998) to denote a particular local
minimization procedure for the LTS estimator. In the sequel, we will use this term
in the broader context described previously.

I.2.3.3 Clustering

Many ways to perform clustering for global optimization have been proposed (Törn
and Žilinskas, 1989). Here, we review only Single Linkage, which is the simplest
method (Rinnooy Kan and Timmer, 1987a).

Single linkage

At each iteration k, compute the radius rk = 1√
π

(
Γ(1 + d/2) ξ ln(kN)

kN

)1/d

, for some
ξ > 0. Where Γ denotes the gamma function.
The single linkage algorithm consists in iterating the following three steps until all
points have been assigned to a cluster

1. Choose a local minimum to be used as seed.
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2. Initialize the cluster with the seed.

3. Grow cluster : given a partially constructed cluster,
iterate :

(a) find the unclustered point closest to the cluster.

(b) if this point is within distance rk from the cluster, add it to the cluster
and repeat (3a). Otherwise, go back to step (1) and start the next cluster.

The theoretical convergence properties of Single Linkage have been proved to
minimize a function over a bounded set S, supposing that the initial candidates have
been sampled uniformly over S (and that no concentration step has been performed).
The proof proceeds by estimating the probability that a local minimization is started
from a point a at iteration k. This probability is bounded by the probability that
there exists another candidate within distance rk with a lower function value. This
is because if the ball with center a and radius rk contains a candidate z with lower
function value, then if z is assigned to a cluster, a will be assigned to the same
cluster. Moreover, if in step (1) the local minimizations are performed by first
considering the candidates with lower function values, then we will not apply a local
minimization to a before z is assigned to a cluster.

Therefore, the choice

rk =
1√
π

(
Γ

(
1 +

d

2

)
ξVolume(S)

ln(kN)

kN

)1/d

, ξ > 0,

makes the probability of applying a local minimization to any candidate decrease
with k, for any 0 < η < 1/2, as O(k1−ηξ). See Rinnooy Kan and Timmer (1987a)
for the details.

In the interest of improving the effectiveness of the clustering method, we take
into account the following facts that could be detrimental to the clustering method:

In Kaufman and Rousseeuw (1990, Ch.5), various techniques of agglomerative
clustering are examined. The authors alert about the chaining effect of single linkage,
which makes the clusters stick to each other because of the formation of chains, and
argue, based on theoretical analysis and practice, that some other techniques such
as complete linkage or average linkage would be better suited for most problems. We
have incorporated this insight into our numerical experiments, despite the fact that
the previous theoretical analysis for adjusting the radius rk at each iteration does
not carry over to the case where we consider the maximum distance to the cluster
(complete linkage) or the average distance to the cluster (average linkage). In both
cases the existence of a point within radius r with a lower function value does not
ensure that a local minimization will not be started, unless there is a relationship
between r and the (unknown) diameter of the cluster.

In Beyer et al. (1999), it had been pointed out that, for points sampled from a
broad set of distributions, the distance of any of this points to its nearest neighbor
becomes very close to the distance to the farthest point as the dimension increases.
This essentially means that the notion of nearest neighbor loses much of its meaning
in high dimension. Later on, in Aggarwal et al. (2001), the role played in this
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phenomenon by the norm used to measure distances was devealed. It was shown
that, in expectation as d → ∞, the gap goes to 0 for the ∞-norm, tends to a
constant for the Euclidean norm, and goes to ∞ for the 1-norm.

In our numerical tests in Section I.2.6 we compare the actual impact of these
two factors on the performance of clustering.

I.2.4 A stopping condition

A crucial issue in global optimization algorithms is the tradeoff between solution
accuracy and computing time. In practice, this dilemma is the decision about when
to stop.

When using random subsampling (Maronna et al., 2006, Sec 5.7.2), the mini-
mization (P) over the whole Rd is reduced to a search over a finite set of candidates
generated from subsamples. For the probability of picking one outlier-free subsam-
ple from a sample with a fraction ε of contamination to be greater than 1 − δ, we
need to sample a number N of candidates such that:

N ≥ |log(δ)|
|log(1− (1− ε)d)|

. (I.2.7)

Unfortunately, this approach has some drawbacks. First, the number N in (I.2.7)
grows exponentially with d. For instance, if δ = 0.01 and ε = 0.25, we should sample
1450 candidates for d = 20, 25786 for d = 30 and more than 80 millions for d = 50.
Furthermore, it depends on the fraction ε of contamination, which is not known in
advance.

The main disadvantage of this criterion is its rigidity; it is an a priori criterion.
Information about actually sampled candidates is completely disregarded. Thus,
the algorithm will continue in the same way after 10 local minimizations as if it has
found 8 local minima or only 1.

Adaptive criteria try to estimate the fraction of the search region that has been
actually explored, using the observed information about the structure of each partic-
ular problem. Then, for a given level of accuracy, the running time of the algorithm
will depend on the problem complexity, expressed mainly through the number of
local minima that are found given a number of local minimizations.

In the sequel, we will describe an approach to this problem that uses Bayes’
theorem to incorporate information gathered during the optimization process in
order to decide when to stop. It was introduced in Boender and Rinnooy Kan
(1987) and refined in Piccioni and Ramponi (1990). The framework is the following:
a sequential sample is drawn from a multinomial distribution with an unknown
number of cells and unknown cell probabilities. In our context, each cell will be
associated with one minimum of problem (P) and will be filled with the subsamples
whose candidates converge after a local minimization to the minimum associated
with this cell. The cell probabilities will be the fraction of subsamples in the cell.

Let us consider a small illustrative example. In Figure I.2.3, we elucidate a case
with n = 20 and d = 4 where the objective function in (P) has 4 local minima
β?1 , β

?
2 , β

?
3 and β?4 . Seven subsamples have been drawn, thus yielding by least squares
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β?1 β?2 β?3 β?4
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Figure I.2.3: An example of subsampling with n = 20 and d = 4. Seven subsamples
have been sampled among the 4845 possible subsamples, coming from three of the
four cells.

seven candidates β1, ..., β7. If local minimizations were started from these candi-
dates, β3 would converge towards β?1 . β2 and β4 would converge to β?3 . Candidates
β1, β5, β6 and β7 would converge to β?4 , and the minimum β?2 would remain undis-
covered. Thus, we have observed 3 cells associated with the minima β?1 , β?3 and β?4 ,
with observed frequencies of 1, 2 and 4.
In general, let β?1 , β?2 , ..., β?k , be the local minima. Let ϑi, i = 1, ..., k, denote the prob-
abilities of each cell. In the Bayesian approach, the unknowns k, ϑ1, ..., ϑk are sup-
posed to be themselves random variables K,Θ1, ...,Θk with realizations k, ϑ1, ..., ϑk
for which a priori distributions can be specified. Given the outcome (m1, ...,mw)
of a number of local searches, Bayes theorem is used to compute an a posteri-
ori distribution. Following the approach of Piccioni and Ramponi (1990), we will
suppose that different minima have different function values, σ̂(β?i ) 6= σ̂(β?j ) for
i 6= j. In such case, the minima can be ordered according to their function values
σ̂(β?1) < σ̂(β?2) < ... < σ̂(β?k). The same will be done with the minima found in
experiments. Hence, we can compute the statistics Ol = MJl , l = 1, ...,Wm, where
Mi denotes the observed frequency of the ith minimum ( M1 = 1, M2 = 0, M3 = 2
and M4 = 4 in our example), Jl the index of the lth observed minimum (in the
example J1 = 1, J2 = 3 and J3 = 4) and Wm the number of (different) observed
minima after sampling m candidates. In simple words, Ol is the frequency of the
lth observed minimum.

A particularly interesting quantity from the stopping criteria viewpoint is H =
J1− 1, which denotes the number of undiscovered local minima with better function
value than the observed minima. Supposing a priori that the number of cells K
follows an improper uniform discrete distribution on [1,∞), and that given K = k,
the cell probabilities Θ1, ...,Θk are jointly uniformly distributed on the k − 1 unit
simplex, the following conditional probability for H can be obtained, when m ≥ 2
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and w ≤ m− 2 (Piccioni and Ramponi, 1990, Corollary 2):

P(H = h|Wm = w,Ol = ml, l=1,...,w) = (m− w − 1)
(m− 2)!(w + h− 1)!

(w − 1)!(m+ h− 1)!
.

In particular, the probability that the global minimum has been already discovered
is

Pm,w := P(H = 0|Wm = w) =
m− w − 1

m− 1
, w ≤ m− 2. (I.2.8)

Using (I.2.8) we can readily devise a stopping condition, namely, to stop when the
probability of having found the global minimum reaches a prespecified threshold.

The probability Pm,w is undefined when w = m − 1 or when w = m. However,
in practice, this only occurs during the first two or three iterations. In this case,
because we do not have evidence that the search region has been well explored, we
should keep the algorithm running.

For example, let us consider the robust regression problem (P) for the stackloss
dataset (Maronna et al., 2006, pp. 381). The Multistart method consist of sam-
pling candidates βs and starting a local minimization from each of them, until the
probability (I.2.8) reaches a given threshold. Let us consider the thresholds 0.3, 0.6
and 0.9. The first threshold 0.3 is reached after 4 local minimizations, which give 2
different local minima, none of which is the global one. The threshold 0.6 is reached
after 9 local minimizations and 3 minima, one of which is the global minimum. Fi-
nally, the threshold 0.9 is reached after 42 local minimizations, producing 4 local
minima.

Of course, since it is a random algorithm, its running is unlikely to be the same
every time. What should be retained is that higher thresholds give more accurate
results in the sense that the search region is more exhaustively explored, and this is
done adaptively. Needless to say, a more exhaustive search will take longer than a
rougher one. In general, there is not an easy way to guess how long will it take to
solve problem (P) within a given accuracy, but one can always impose a time limit,
and the value (I.2.8) can be given as information to the user at the end.

We would like to stress the fact that this approach works for any algorithm
based on subsampling and local searches, even if the objective is to compute other
estimators, such as LTS, or beyond the context of linear regression, such as the
location and scatter estimation problem.

Stopping conditions based on (I.2.8) can also be used for algorithms described
in Section I.2.3 that try to foresee the result of a local minimization, and to avoid
it if it is likely to re-discover an existing minimum. In that case, in (I.2.8) m will
be the number of sampled candidates and not the number of local searches actually
carried out. The reason is that clustering methods are supposed to give the same
outcome one could have obtained by starting local searches from each candidate.
Nevertheless, the precision of the stopping condition will be subordinated to that
of the clustering method; if it alters the outcome of the algorithm, the current a
posteriori probability will be updated with wrong information.
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I.2.5 A clustering global optimization point of view
of robust regression estimation

We have already mentioned that most existing methods for computing robust re-
gression estimators can be described as clustering methods, as described in Section
I.2.3. In this section we shall describe them, and we will see how they perform each
of the steps discussed in Section I.2.3.

I.2.5.1 Random resampling

The original version of random resampling was introduced by Rousseeuw in Rousseeuw
(1984) for computing the least median of squares estimator, and it was further refined
and adapted for S-estimators by Ruppert in Ruppert (1992). Rousseeuw’s original
version introduced the sampling technique used by most existing algorithms, and
his algorithm consisted only of sampling and choosing the candidate with the least
scale. The modification of Ruppert, illustrated in Figure I.2.4, included selection
and local minimization applied, without clustering, to the best candidates. The
details of each step are described below.

Given parameters N , t, do once:

• Sampling: Use Rousseeuw’s random subsampling.

• Concentration-Selection: No concentration step is performed, but a selection
of the t best candidates is done.

• Clustering: No clustering is performed. A local minimization is started from
each candidate until convergence.

• Stopping condition: There is no stopping criterion. The number of sampled
candidates is fixed in advance.

Selection IRLS

β1

β2

β3
...
βN

↘
t best
↗

β1
...
βt

→
...
→

β?1
...
β?t

Figure I.2.4: Schematic representation of Ruppert’s version of random resampling.

I.2.5.2 Fast-S, Fast-τ

The “Fast-S” algorithm was presented in Salibian-Barrera and Yohai (2006) for S-
estimators, and it was modified to cope with τ -estimators in Salibian-Barrera et al.
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(2008). This modification was called “Fast-τ ”. From the global optimization view-
point, it extended Random Resampling by adding a concentration step. As for
random resampling, we give below a schematic illustration and a detailed descrip-
tion of each step. Given parameters N, ς and t, iterate the following steps:

• Sampling: Use Rousseeuw’s random resampling.

• Concentration: Apply ς steps of IRLS to each candidate. Select the t candi-
dates with best objective function.

• Clustering: No clustering is performed.

• Stopping condition: There is no stopping condition; the number of sampled
candidates is fixed in advance.

IRLS Selection IRLS
β1

β2

β3
...
βN

→
→
→
...
→

βς1
βς2
βς3
...
βςN

↘
t best
↗

βς1
...
βςt

→
...
→

β?1
...
β?t

Figure I.2.5: Schematic representation of the Fast-S and Fast-τ methods.

I.2.5.3 Fast-τ with stopping condition.

As previously observed, the considered algorithms for computing robust regression
estimators are all particular instances of the general clustering procedure depicted
in Figure I.2.2.

The first one, random resampling, consists only of sampling and selection, Fast-τ
adds a concentration step. Unlike clustering, the addition of an adequate stopping
condition does not add computational work. For this reason, we introduce here a
modification of Fast-τ for including stopping criteria, without doing clustering. It
simply executes Fast-τ iteratively, and at the end of each iteration, it adds the (even-
tually new) minima found on the list of minima encountered in previous iterations,
and evaluates a stopping condition. In our case, we require the probability PkN,w
defined by (I.2.8) to exceed a given threshold θ.

Our proposition is summarized in Figure I.2.6. For given parameters N, ς and t,
and a probability of success θ,

Note that under this form, the modified version of Fast-τ does not exactly fit in
the framework illustrated in Fig I.2.2 because the selection is performed considering
only the candidates sampled in the last iteration and disregarding the ones from
previous iterations.
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IRLS Selection IRLS Add New Min. Stop. Cond.

β1

β2

β3
...
βN

→
→
→
...
→

βς1
βς2
βς3
...
βςN

↘
t best
↗

βς1
...
βςt

→
...
→

β?1
...
β?t

→

β?1
β?2
...
β?w

→ if PsN,w ≥ θ
stop

Figure I.2.6: The proposed modification of Fast-τ including a stopping condition.

I.2.6 Numerical tests
We conducted numerical experiments in order to investigate the impact of clustering
techniques and stopping criteria. As in Ruppert (1992) and Salibian-Barrera et al.
(2008), we consider simulated data contaminated with clustered outliers, where con-
tamination is highly concentrated around outlying values.

• (1 − δ)100% of the points follow the regression model y = Xβ + ε , where
the d − 1 covariates are distributed as Nd−1(0, Id−1), xid = 1 is the intercept,
εi ∼ N(0, 1) and β = 0.

• δ100% of the points are “bad” high-leverage points: the covariates now follow
a Nd−1(s, 0.12Id−1) distribution where s = (100, 0, ..., 0)t , and the response
variables yi ∼ N(100l, 0.12). In the following we will call the parameter l the
“contamination slope”.

For evaluating the stopping condition, we tested only Multistart, and we compare
it with Fast-τ using N = 50 samples. For performance evaluations, we tested all the
algorithms described in Section I.2.5, except for Random Resampling (Subsection
I.2.5.1). The reason for excluding Random Resampling from those tests is that we
included the Fast-τ algorithm, and the numerical tests reported in Salibian-Barrera
et al. (2008) already compared Fast-τ with Random Resampling, among others, and
showed that it outperforms Random Resampling.

The clustering methods were implemented by the author in Matlab and are
available upon request. In our test, it was always executed with the same pa-
rameters: at each iteration, N = 100 candidates are sampled and added to the
sample, then a concentration step consisting of one IRLS iteration (cf. Section
I.2.2) and a selection of the best 10% of the concentrated candidates is performed
(see Figure I.2.2). Concerning the radius used for the clustering, as the min-
imization in (P) is done over the unbounded domain Rd, we used the formula
rk = π−1/2 (Γ(1 + d/2)ξ ln(kN)/(kN))1/d , for a predefined ξ > 0. After exten-
sive experiments, we realized that the results are rather insensitive to the choice of
the parameter ξ. We set ξ = 40 in our tests. For the tests involving the Fast-τ
algorithm, we used the code available from the webpage of Matias Salibian-Barrera.
We used the parameters ς = 2 and t = 5 (see Figure I.2.5). The number N of initial
candidates changed from test to test and is indicated each time.
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Both Fast-τ and Single Linkage clustering were fitted with a stopping condition.
In all cases, it consisted in stopping when the probability Pm,w defined in (I.2.8)
reached a given threshold θ.

Concerning the performance in terms of computing time, for each algorithm we
saved the required time TA. Then, we computed the ratio RT = TA/TR, where TR
is the time required by an algorithm used as reference. We usually used Fast-τ as
reference, with different parameters depending on the test. This ratio is what we
call the relative computing time. In this way, the results are machine-independent;
and easier to compare.

As it is not feasible to know certainly if the returned solution is the global mini-
mum, we only give the relative τ -scale with respect to a reference algorithm, σ̂A/σ̂R,
where σ̂A and σ̂R are the values of the objective (I.2.3). We call this ratio “rela-
tive τ -scale”. Similarly to the results reported in Salibian-Barrera and Yohai (2006)
for S-estimators, for the particular type of contamination that we are considering,
often the coefficient β̂1 over the 500 samples forms two well-separated groups: one
highly concentrated around the contamination slope, and another one more dis-
persed around 0, the slope of the data without contamination, hereafter referred to
as “clean slope”. In those cases, we also show the percentage of samples for which
the “slope” is around 0. Note that it is not uncommon that minima with the con-
tamination slope had better function values (I.2.3) than minima around the “clean”
slope, especially for those with high proportions of outliers.

In Subsection I.2.6.1 we evaluate the impact of the stopping condition. We
discuss in detail how it behaves when applied to Multistart with threshold values
ranging in a wide range. Our second and third test, presented in Subsection I.2.6.2
and I.2.6.3 , evaluate the performance of the considered algorithms in two different
kinds of situations. In I.2.6.2, this is done for a small problem, whose complexity
varied only through the change in the dimension d. In the third test, presented in
Subsection I.2.6.3, we compare the performance of the considered algorithms, the
parameter used to control the complexity of the problems was the contamination
slope l.

I.2.6.1 Analysis of the stopping condition

The objective of this Subsection is to scrutinize the impact of the stopping condition
presented in Section I.2.4 on the algorithms in Section I.2.5. The datasets were
generated as indicated at the beginning of Section I.2.6, with n = 400 observations
in dimension d = 15. The contamination fraction was δ = 40% forming two groups
of 20% each with contamination slopes l = 2 and l = 4. The objective of using
two groups of outliers was to increase the number of local minima, which would
better illustrate the effectiveness of the stopping condition, since the complexity
of the problems heavily depends on the number of local minima. The algorithms
compared were Multistart (MS), which consist of sampling candidates and launching
a local minimization from each of them; it is the same as the Random Resampling
algorithm (cf. Section I.2.5.1) without selection. and Fast-τ with N = 50 samples
(FT50). Multistart stopped as soon as the probability Pm,w in (I.2.8) reached a
given threshold θ. In this section, we used the thresholds 0.3, 0.6, 0.9 and 0.95.
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In Table I.2.1 we show the following:

• The number of local minima, w.

• The quantity of sampled candidates, m.

• The effective value of the probability (I.2.8) at the termination of the algo-
rithm, Pm,w.

• The percentage of samples for which the estimate given by the algorithm had
the clean slope, around 0, at the row “% Slope ”.

• The relative running time with respect to FT50, TMS/TFT50.

• The relative τ -scale with respect to FT50, σ̂MS/σ̂FT50.

All the entries, except for the clean slope, are the average over 500 simulations.

Table I.2.1: Details of the execution of Multistart (MS) and Fast-τ with 50 samples
(FT50). The datasets consisted of n = 400 observations in dimension d = 15, with
a fraction of contamination of δ = 40%.

MS FT50
θ 0.3 0.6 0.9 0.95

w 1.2 1.2 1.7 2.4 2.2
m 3.19 4.69 19.08 50.24 50
Pm,w 0.47 0.66 0.9 0.95 0.96
% Slope 95.4 94.6 86.4 77.2 68.6
TMS/TFT50 0.17 0.24 0.96 2.52 1
σ̂MS/σ̂FT50 1.012 1.0116 1.0083 1.0045 1

By examinating the column corresponding to FT50 in Table I.2.1 we see that, in
this example with few local minima, most of the time the effective value of (I.2.8)
is already around 0.96; if the function used to have 5 local minima, it would be
around 0.9 and it would be around 0.8 if the function had 10 local minima. The
reason is that candidates are sampled in batches; thus, if each batch is of size N , the
only attainable threshold values are of the form (N − w − 1)/(N − 1), for positive
integers w. Since in MS, candidates are sampled one by one, it stops as soon as
the threshold is reached so it can be combined with low threshold values. On the
contrary, algorithms that do some kind of selection need to sample in batches; for
performing local searches, only from promising candidates. In the case of algorithms
performing clustering, a harsh selection is needed in order to well separate clusters
and prevent sticking to each other, thus the use of small batches is discouraged. As a
consequence, for all of the algorithms of Section I.2.5, if the objective function does
not have many local minima, only relatively high threshold values will be observed
in practice.
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However, MS illustrates quite well how the stopping condition works, since we see
how the number of discovered local minima and the number of sampled candidates
increases as the threshold increases. Even if the percentage of datasets for which
the estimate had the clean slope seems to indicate the contrary, the accuracy of
the result also improved. This can be seen by examining the relative τ -scale. We
see that MS gives worse results than FT50 for low threshold values, but this ratio
decreases for higher threshold values, showing the better performance of MS.

I.2.6.2 Many dimensions, many thresholds on a small prob-
lem

In our second test, we set the contamination fraction to δ = 0.2 and the contam-
ination slope to l = 2. For each d ∈ {5, 10, 15, 20}, we generated 500 datasets of
n = 100 points. We compare four algorithms:

• Fast-τ with N = 500 candidates (FT500).

• Fast-τ with N = 250 candidates (FT250).

• Fast-τ with a stopping condition (SC), described in subsection I.2.5.3. The
parameters are (see Figure I.2.6) N = 100, ς = 1 and t = 5.

• Single Linkage clustering as described in Subsection I.2.3.3 (SL), with the
parameters indicated at the beginning of this Section. Motivated by the ob-
servation at the end of Section I.2.4, we tested Single Linkage using the `1 and
the Euclidean norm. They are denoted as SL1 and SL2, respectively.

For those algorithms incorporating a stopping condition (SC and SL), the thresh-
old parameter θ took the values 0.95, 0.97 and 0.99. These results are shown in Table
I.2.2 for the algorithms with stopping condition, and in table I.2.3 for Fast-τ with
N = 250 and N = 1500 samples.

For algorithms with stopping condition, a curious situation appears, as the algo-
rithms performing clustering always perform worse than those without clustering,
but in low dimension, they find quite often a better solution than the optimal one,
in the sense that they find a non-global minimum with the clean slope. As the di-
mension increases, however, their performance degrades both in terms of objective
function and in the percentage of times that they find the clean slope. Single Link-
age using the `1 norm generally had better function values than using the Euclidean
norm, but the difference is negligible. In preliminary tests we also tried Complete
Linkage and Average Linkage clustering, but the results were essentially identical,
so we only used Single Linkage.

Overall, the Fast-τ algorithm with stopping condition using thresholds 0.95 and
0.97 achieves a good tradeoff between computing time and quality of the solution,
as it gives results almost as good as FT500 or even FT1500, but within a fraction
of time. By raising the threshold to 0.99, the results are similar to those of FT1500,
but with a larger computing time.
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Table I.2.2: Quality of the solution and computing effort for SC, SL1 and SL2. The
parameters of the contamination were l = 2 and δ = 0.2. The relative time and the
relative τ -scale are with respect to FT500

% Clean Slope Relative τ -scale Relative Time
d 95% 97% 99% 95% 97% 99% 95% 97% 99%

5
SC 58 58 58.2 1 1 1 0.34 0.35 0.74
SL1 88 88 88.2 1.019 1.019 1.02 0.15 0.16 0.49
SL2 88.4 88.4 88.4 1.021 1.021 1.021 0.1 0.1 0.29

10
SC 64.4 64.4 64.6 1 1 1 0.466 0.51 1.44
SL1 78.8 78.8 85.8 1.025 1.025 1.020 0.21 0.23 0.63
SL2 78 78 85 1.024 1.024 1.021 0.12 0.13 0.33

15
SC 68.8 69.2 69.8 1.003 1.002 0.999 0.48 0.64 2.45
SL1 32.8 33 52.4 1.104 1.103 1.069 0.23 0.24 0.65
SL2 36.4 36.4 53.8 1.090 1.090 1.064 0.14 0.15 0.4

20
SC 64.8 64.8 65.2 1.016 1.014 0.998 0.51 0.72 3.46
SL1 7.6 7.8 19.8 1.193 1.192 1.149 0.25 0.26 0.62
SL2 8.4 8.4 14.8 1.206 1.206 1.192 0.18 0.18 0.40

Table I.2.3: Quality of the solution and computing effort for FT250 and FT1500.
The parameters of the contamination were l = 2 and δ = 0.2. The relative time and
the relative τ -scale are with respect to FT500

d % Clean Slope Relative τ -scale Relative Time

5
FT250 58.2 1.000 0.57
FT1500 58.4 1.000 2.8

10
FT250 64.8 1.000 0.62
FT1500 64.6 0.999 2.63

15
FT250 71.4 1.001 0.64
FT1500 72.2 0.998 2.57

20
FT250 65.4 1.007 0.65
FT1500 69 0.996 2.6
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I.2.6.3 Varying complexity for a fixed dimension

In the next test, we examine the behavior of the algorithms for a fixed dimension,
but also for various proportions of outliers and contamination slopes. The closer the
contamination slope is to the clean slope, the more difficult it becomes to identify
the clean one.

We tested FT250, FT500, FT1500, SL and SC in dimension d = 10 with different
contamination slopes. The number of observations was fixed to n = 400, and the
proportion of outliers was δ = 10%, 15% and 20%. For SL and SC, the stopping
condition uses the threshold θ = 0.95; because the preliminary test did not show
significative improvements when we raised the threshold in these problems. Similarly
to the previous test, the use of different variants of clustering did not significantly
change the results; therefore we only tested Single Linkage clustering, with the usual
Euclidean norm.

The performance was measured as in the previous test. Namely, we compare
the objective function value with respect to a reference algorithm, and we keep the
percentage of the samples from which convergence occurred to a minimum with a
slope around 0. These two quantities were the measure of quality of the solution.
We also record the time relative to the time spent by FT500, as explained in the
previous section.

The quality of the solutions obtained by Fast-τ was identical to SC; thus, we do
not include it in the tables. The results of these test are in Table I.2.4.

Table I.2.4: Percentage of samples where the minimum found had the clean slope,
and time spent relative to FT500. For d = 10.

δ 10% 15% 20%

Slope 1.1 1.4 1.7 2 1.1 1.4 1.7 2 1.1 1.4 1.7 2

% Clean Slope
SC 62 100 100 100 0 26.4 98 100 0 0 3.2 61.8
SL 99 100 100 100 44.2 94.6 100 100 2.8 21.4 77.4 96.4

Relative Time
SC 0.34 0.33 0.34 0.35 0.37 0.38 0.40 0.39 0.39 0.41 0.44 0.39
SL 0.18 0.21 0.20 0.20 0.22 0.17 0.20 0.21 0.24 0.21 0.19 0.14
FT250 0.57 0.59 0.59 0.60 0.60 0.59 0.59 0.61 0.61 0.62 0.61 0.57
FT1500 2.71 2.70 2.69 2.68 2.58 2.69 2.62 2.57 2.57 2.56 2.60 2.78

Relative τ -scale
SL 1.01 1 1 1 1.07 1.04 1 1 1.01 1.04 1.07 1.01

As in the previous test, the algorithm with clustering has a very good running
time, about 20% of the time spent by Fast-τ , and in some cases, it gives a worse
solution to the minimization problem (P) than algorithms without clustering. Thus,
it does not compute the τ -estimator, but the result it gives has the clean slope. We
do not have a clear explanation for that, and we think this phenomenon bears closer
examination; in another article. We see once again that the stopping condition
permits to find the global minimum with a high probability in a proper computing
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time.

I.2.7 Conclusions and future work
We have investigated the effectiveness of the usage of clustering techniques and stop-
ping conditions for global optimization in the particular case of robust regression.
Our viewpoint is that of an user of robust regression who wants to compute robust
estimators without having to adjust parameters that depend upon the details of the
chosen algorithm.

The integration of a stopping condition is completely justified both by the quality
of the results and by the performance in terms of computing time. Additionally, it
is very simple to implement in new and existing software. It should be incorporated
in algorithms not only for computing τ -estimators, but also in any algorithm based
on subsampling and concentrations steps.

A threshold between 0.95 and 0.97 achieves a good compromise between efficiency
and quality of the results. A higher threshold value ensures a very good solution;
at an extra cost in terms of computing time. For routine utilization, a threshold
of 0.96 or 0.97 should give good results at a competitive computing time, which
will adapt by itself to the complexity of the problem. Additionally, it possesses a
very appealing interpretation in terms of probability of finding the global optimum,
independently of the particular problem under consideration.

In their present states, the existing clustering techniques for global optimization
do not seem to fit the needs of robust estimation problems. However, as shown
in Section I.2.5, they are a natural extension of the existing methods, and their
computing times and behavior in some difficult problems suggest that they deserve
further investigation.



Chapter I.3

High dimensional issues in clustering
(global optimization)

I.3.1 Introduction

While evaluating the use of clustering techniques to improve existing global opti-
mizations methods particularly suited for robust regression problems (Flores, 2010),
we were very disappointed by the poor performance of some clustering techniques
in dimension as moderate as 10 or 15. Trying to understand the breakdown of (sin-
gle linkage) clustering, we learned that the same problem had been highlighted by
computer science researchers working on high dimensional indexing (Beyer et al.,
1999; Aggarwal et al., 2001), and by people working with other clustering algorithms
(Schoen, 1999). In fact, the common point between clustering and indexing is the
nearest neighbor subproblem they rely on. Therefore, the problem is unlikely to be
restricted to single linkage clustering as, quoting from Locatelli and Schoen (1999,
pp. 380),

« All of the papers dealing with clustering methods base this decision on some
sort of nearest neighbor statistics - that is, the decision of starting a local search is
in some way connected with the fact that no point in a properly defined subset of the
sample is too near to the current one».

The phenomenon described in Beyer et al. (1999); Aggarwal et al. (2001) is:
under rather mild hypothesis, the distance to the nearest point approaches the
distance to the farthest point as the dimension increases. This essentially means
that the notion of nearest neighbor loses much of its meaning in middling and high
dimension.

The objective of this chapter is to go into the consequences of the blurring of
the notion of nearest neighbor for clustering algorithms in high dimension, and to
propose amendments permitting to uphold the efficacy of clustering algorithms as
the dimension increases.

41
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I.3.1.1 Clustering global optimization

We focus on the continuous global optimization problem,

min
β∈Ω

σ(β), (I.3.1)

where Ω ⊆ Rd is a compact set, and σ : Ω → R is a continuous function. We will
assume that a local minimization procedure is available.

Algorithm 1 Multilevel Single Linkage (MLSL)
Choose N > 0, ξ > 0 and γ ∈ (0, 1]. Set k := 0, X = ∅ and iterate:

1. Let k := k + 1;
2. let

r = rk,N,ξ = π−1/2

(
Γ

(
1 +

d

2

)
vol(Ω)ξ

log(kN)

kN

)1/d

; (I.3.2)

3. generate a uniform random sample of size N in Ω, add it to X ;
4. sort X by increasing function value, and select the γkN best of

them, call it Xk;
5. launch a local search algorithm from each point in Xk except if

• the distance of the point from the boundary is less than a
fixed threshold.

• the point is “too near” from a critical point

Or,

• if there exists another point with better function value at a
distance which is less than or equal to the radius rk;

6. Check if some stopping condition is satisfied, otherwise repeat from
step 1.

Rinnooy Kan and Timmer (1987a,b) introduced a stochastic global optimization
method for solving (I.3.1) using clustering techniques. It is an improvement of the
multistart (MS) method, which proceeds by sampling points uniformly on Ω, fol-
lowed by a local search from each of the sampled points. The MS method has the
evident disadvantage of potentially wasting time by launching several local searches
yielding the same minimum. The method proposed in the cited articles, called
multi-level single linkage (MLSL, Algorithm 1), aimed at overcoming this draw-
back by avoiding the local search if it is likely to find a minimum already known.
MLSL enjoys the following asymptotic properties as the number of iterations goes
to infinity:

P1. The best observed value converges to the global optimum with probability 1.
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P2. The probability of starting a local search decreases to 0.

P3. The algorithm performs a finite number of local searches with probability 1,
even if it runs forever.

Despite its strong theoretical properties, the necessity of revising at each iteration
the decisions about local searches and some other technical details left some room for
improving MLSL. This was done by Locatelli and Schoen (1996), where the authors
propose a family of algorithms for global optimization satisfying properties P1, P2
and P3 without the computational overhead of MLSL. In a later article (Locatelli
and Schoen, 1999), a particular member of this family, called simple linkage (SL,
Algorithm 2) was analyzed in detail and it was shown to make almost the same
decisions as MLSL.

Algorithm 2 Simple linkage (SL)
Choose ξ > 0 and ε > 0. Set k = 1, generate β1 uniformly and
iterate:

1. Let k = k + 1;
2. let rk be defined as in (I.3.2), with N=1;
3. generate a single uniform random point βk;
4. launch a local search from βk except if

∃j < k, ‖βj − βk‖2 ≤ rk : σ(βj) ≤ σ(βk) + ε; (I.3.3)

5. check stopping condition, if it is not met, repeat from step 1.

In Locatelli and Schoen (1999) it was also proved that SL enjoys property P2 if
and only if limk→∞ k

1/drk =∞, and that if ξ > 2d/2d then P3 holds as well.
A key difference between MLSL and SL is that MLSL never starts local searches

from points within a prescribed distance from the boundary, while SL allows local
searches to be started from any point in the feasible domain. This difference is
particularly important in high dimension. For instance, given a threshold distance
ν, the probability of sampling from a uniform distribution within distance ν from
the boundary of the unit cube is 1 − (1 − 2ν)d. Moreover, if local searches from
points at a distance from the boundary less than a fixed threshold ν are inhibited
in SL, then property P3 holds if ξ > 1. Even if the practical interest of property P3
is not clear, this is a first evidence that if radius rk,ξ is used, the parameter ξ should
vary with the dimension d.

Shortly after, Schoen (1999) pointed out some problems affecting clustering
global optimization algorithms in high dimensions, and proposed some solutions.
At that time there was already some evidence indicating that the use of formula
(I.3.2) forced algorithms to behave much like best start (BS), a quite inefficient ran-
dom sampling method that samples a point and launches a local search only if the
new point has the overall best function value.

The radius in equation (I.3.2) has been derived in Boender et al. (1982); Rin-
nooy Kan and Timmer (1987a) by approximating the distribution of the nearest
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neighbor statistic within a set of uniformly distributed points, and has been used
afterward in many clustering algorithms. In fact, rk was chosen in such a way that

πd/2

Γ(1 + d/2)
rdk = vol(Brk) = vol(Ω)ξ

log(k)

k
,

where Br denotes a ball of radius r for the `2 norm. The asymptotic development
for the Γ function, as d→∞ for fixed k, shows that (Schoen, 1999)

rk ∼
(
ξ
log(k)

k

)1/d

(d/2)1/2+2−d .

That number grows thus as
√
d for large d, as the diameter of the `2 unit ball does,

forcing the radius (I.3.2) to be too big at the first iterations. For these reasons,
Schoen (1999) proposed to use the `∞ norm instead, for which the diameter of the
unit ball is constant in any dimension. The resulting Algorithm, called ∞-Simple
Linkage (∞-SL), follows the lines of Algorithm 2, using the `∞ norm in (I.3.3), and
replacing radius rk,ξ by

sk = sk,ξ = (ξ log(k)/k)1/d . (I.3.4)

Algorithm ∞-SL satisfies property P3 for any ξ > 1.
Nevertheless, Beyer et al. (1999) pointed out that the difference between the

distance from any point to its nearest neighbor and the distance from the same
point to the farthest point in the sample, hereafter simply called the gap, shrinks to
0 as the dimension grows. Later on, in Aggarwal et al. (2001), the role played in this
phenomenon by the norm used to measure distances was revealed. It was shown,
for a wide range of distributions, that in expectation as d → ∞, the gap goes to 0
for the `∞ norm, tends to a constant for the `2 norm, and goes to∞ for the `1 norm
(see the left part of Figures I.3.4, I.3.3 and I.3.2).

In the next sections, using the results of Beyer et al. (1999) and Aggarwal et al.
(2001) on the behavior of the nearest neighbor in high dimensional spaces, we show
that the problem of choosing the radius is indeed very delicate. We propose an
alternative method intended to be independent of the dimension, the feasible domain
and the sampling distribution.

I.3.2 Nearest neighbor behavior in high dimension
In this section we shall show how the poor performance of clustering algorithms in
high dimension, particularly their excessive resemblance to MS or BS, is related to
the above-mentioned “gap phenomenon”.

Let us focus on condition (I.3.3) at step 3. of Algorithm 2 (the following also holds
for MLSL). Denote by Dk

min and Dk
max respectively the minimum and maximum

distance from the last sampled point βk to the other points βj, j = 1, ..., k − 1 in
the sample. Three scenarios are possible at this iteration:

i) rk < Dk
min. A local search will be started, independently of the function values

of the rest of the sample. At this iteration the algorithm will make the same
decision as Multistart, so we call this iteration a ‘Multistart iteration’.



I.3.2. NEAREST NEIGHBOR BEHAVIOR IN HIGH DIMENSION 45

50 100 150 200 250 300 350 400 450 500
1

1.5

2

2.5

3

3.5
Best Start (BS)

Multistart (MS)

Iteration k

` 2
-n
or
m

di
st
an

ce
s

Figure I.3.1: For each iteration k, the upper curve plots the maximum distance from
the last sampled point to the points sampled in previous iterations. Similarly, the
lowest curve indicates the minimum distance; between them we show the median of
the distances.

ii) Dk
min ≤ rk < Dk

max. A local search will be performed depending on the function
values of the fraction of the sample that is within a distance rk.

iii) Dk
max ≤ rk. A local search will be started only if βk has the best overall

function value. Thus, the algorithm will make the same decision as that of
best start, and we shall talk of a ‘best start iteration’.

We see that for small r, we are always in case (i), and the algorithm behaves like
multistart. On the contrary, for large r, the function value of all the points in the
sample are taken into account before performing a local search, hence the algorithm
behaves like best start. It is precisely for rk in the range between Dk

min and Dk
max

that more complex algorithms can outperform basic methods like multistart and
best start.

In Figure I.3.1, we illustrate the situation with Ω = [0, 1]35. During 500 itera-
tions, we show the maximum (top), minimum (bottom) and the median (between)
of the distances from the points sampled at previous iterations to the last sampled
point. For a given curve rk, at the ks for which the curve lies on the upper region,
the algorithm will behave like BS, and at those k for which the curve lies on the
lower region, the algorithm will make the same decision as MS. It results clear that
if the space between the top and the bottom curves wipes out and the choice of the
radius does not follows accordingly, the algorithm will behave either as MS or BS.

Going into the details, Aggarwal et al. (2001, Lemma 2) show, for a large set of
distributions, that for a sample of size N ,

C(p) ≤ lim
d→∞

E
(
Dmax −Dmin

d1/p−1/2

)
≤ (N − 1)C(p), (I.3.5)
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where C(p) is a constant depending on p, the distances being measured according to
the p-norm, andDmax (resp. Dmin) denotes the maximum (resp. minimum) distance
from any point to the other points in the sample. Note that Dk

min and Dk
max depend

also on the dimension and the norm. A similar result holds for “fractional norms”,
i.e for the maps (x1, ..., xd) 7→ (xp1 + · · ·+ xpd)

1/p with p ∈ (0, 1).
The result (I.3.5) announces that:

• for p > 2, the gap tends to 0 as the dimension d increases, promoting subite
switching from best start regime to a multistart regime;

• for p = 2, the gap tends, for a fixed number of sampled points, to an unknown
constant;

• for 1 ≤ p < 2, the gap increases to ∞ as the dimension raises.

As in (I.3.5) the limit as d → ∞ is taken for a constant sample size, and
in SL-type optimization algorithms the current sample at iteration k consists of
k points, we simulate the stage-wise sampling of algorithm 2 in dimensions d =
5, 10, 15, 20, 25, ..., 105. For k = 2, ..., 500, we sample uniformly a point βk in [0, 1]d,
then we compute the distance for the p-norm, ‖βk − βj‖p for j = 1, ..., k − 1 and
save the α-quantile qkα such that

α = P(‖βk − βj‖p ≤ qkα)

for α = 0, 0.25, 0.5, 0.75 and 1. In particular, the 1-quantile qk1 coincides with Dk
max,

and the 0-quantile qk0 coincides with Dk
min. For fixed d and α, most of the plots of

the distances against the iteration number k look much as Figure I.3.1. So a first
observation is that the influence of changing number of points k is not significant.
Much more interesting are the plots of the gap q1−q0 and the inter-quartile difference
q.75 − q.25 for varying d and fixed k, shown in Figures I.3.4, I.3.3 and I.3.2 for the
`∞, `2 and `1 norm, respectively.

As predicted by the theoretical results, for p =∞ (Figure I.3.2) the gap between
the curves depicting the closest point and the farthest point to βk vanishes as the
dimension increases. The augmentation of the number of points does not seem to
be significant enough to change this trend. For p = 2 (Figure I.3.3), the variability
due to the change in dimension is not significant. The situation is better when using
the `1 norm, as shown in Figure I.3.4. As predicted, the gap increases with dimen-
sion. We can also observe that even in the lowest considered dimension, d = 5, the
gap is of the same magnitude as for the `2 or `∞ norms. We conclude from these
observation that the `1 norm is the best alternative for distinguishing points in any
dimension. For p < 1, even if the maps (x1, ..., xd) 7→ (xp1+· · ·+xpd)1/p are not norms,
theoretical results say that the gap should increase faster than with p = 1, and this
is actually the case. Nevertheless, besides the embarrassment at interpreting the
outcome of functions that are not norms, they present the inconvenient that in low
dimension the gap is quite close to 0.

In Figure I.3.5 we show the effect of this phenomenon on a∞-SL-type algorithm.
For the first 150 iterations k, in dimension 20, 35, 50 and 75, we plot sk,ξ as defined



I.3.2. NEAREST NEIGHBOR BEHAVIOR IN HIGH DIMENSION 47

20 40 60 80 100
0

0.2

0.4

0.6

0.8

Dimension d

G
ap

in
` ∞

no
rm

k = 100; k = 250; k = 500.

20 40 60 80 100
0

0.2

0.4

0.6

0.8

Dimension d
In
te
r-
qu

ar
ti
le

di
ffe

re
nc
e
in
` ∞

-n
or
m

Figure I.3.2: The gap q1− q0 (left) and the inter-quartile difference q.75− q.25 (right)
for the `∞ norm.
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Figure I.3.3: The gap q1− q0 (left) and the inter-quartile difference q.75− q.25 (right)
for the `2 norm.
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Figure I.3.4: The gap q1− q0 (left) and the inter-quartile difference q.75− q.25 (right)
for the `1 norm.

in (I.3.4) with ξ = 2 (dotted line), and the `∞ distances from βk to its nearest point
in the sample, the farthest point in the sample and the median of the `∞ distances
from βk to the previously sampled points, as in Figure I.3.1. We see how, as the
dimension increases, both the curve sk and the curve of the median go up, but the
narrowing of the gap makes sk to get closer and closer to the curve of the farthest
distances, indicating that the algorithm behaves like BS with respect to deciding to
start (or not) a local search.

However, the numerical results reported in Schoen (1999) seemed rather good.
This is probably because of another modification they proposed: make the radius
depend on the sampled point. Again, this modification was introduced through the
parameter ξ, which is no longer fixed in advance as in Algorithm 2, but is computed
once βk has been sampled, and depends both on d and βk: ξ = ξd(βk).

I.3.3 Replacing radius by quantiles

The direct application of the nearest neighbor distribution to estimate the clustering
radius does not give good results during the first iterations. Moreover, finding a
useful functional form for r = r(k, d, ξ, βk, p) for more general domains than the
unit cube seems to be out of reach, even for uniformly distributed points.

A dual viewpoint is that of quantiles. At the beginning of iteration k, k − 1
points β1, ..., βk−1 have already been sampled. Then, we sample βk and every point
βi, i = 1, .., k − 1 is within distance r0 = mini ‖βk − βi‖p and r1 = maxi ‖βk − βi‖p
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plots have the same meaning as in Figure I.3.1
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from βk. Hence, by taking a radius r ≥ r1 we are considering all points, in other
words, we are considering the 1-quantile. On the other extreme, by taking r ≤ r0

the local search is launched without considering any function value, or equivalently,
taking the 0-quantile for the threshold radius.

In the same way, for intermediate radius r0 < r < r1 we are considering the
αr-quantile, with αr = P(‖βk − ·‖p ≤ r | β1, ..., βk−1). Conversely, if we consider the
α-quantile, 0 < α < 1, we can associate to this quantile a radius rα obtained as the
distance from βk to the farthest point within this quantile. Note that for α = 0 or
α = 1 we cannot associate a unique radius, but only the intervals [0, r0] and [r1,∞]
respectively.

Algorithm 3 Quantile Global Optimization (QGO)
Choose a norm p, a sampling distribution F and a sequence αk.
Set k=1, randomly generate β1 ∼ F and iterate:

1. Let k = k + 1;
2. randomly generate βk ∼ F and compute the `p-distance to the

previously sampled points;
3. let rk be the αk-quantile of the distances computed in 2;
4. launch a local search from βk except if

∃j < k, ‖βk − βj‖p ≤ rk and σ(βj) ≤ σ(βk); (I.3.6)

5. check stopping condition, if it is not met, repeat from step 1.

Based on the later observation, we propose and evaluate Algorithm 3, called
quantile global optimization (QGO). It is formulated for an arbitrary norm p and
sampling distribution F , and depends on the sequence {αk} of quantile orders.

Some key aspects should be taken into account for choosing the sequence αk:

• At the first iteration, the probability of finding a new minima is 1, hence we
perform an MS iteration.

• During the fist iterations, the probability of finding new minima is largest, so
we would like to be ‘close to MS’.

• As the iterations go, the probability of rediscovering known minima raises,
then we would like to start leaving from MS and getting closer to BS.

These guidelines suggest taking increasing sequences αk such that α0 = 0 and
αk → 1 as k →∞. For such a quantile order sequence, the following holds:

Theorem 1 Consider the QGO algorithm described hereabove, with 1 ≤ p ≤ ∞
and a sampling distribution F whose support contains the whole feasible domain Ω.
Then the following properties hold, as k →∞:

1. The best observed function value converges to the minimum of the function σ
over Ω with probability 1.



I.3.3. REPLACING RADIUS BY QUANTILES 51

2. If the sequence αk converges to 1, the probability of starting a local search
converges to 0.

Proof.
The first affirmation follows from the fact that since Ω ⊆ support(F ), then the
random sampling tends to cover the whole domain. Let us denote as σ̄k the best
observed value at iteration k. In order to prove 2, let us rewrite step 3 of Algorithm
3 as: launch a local search if

∀j < k, σ(βj) > σ(βk) or ‖βj − βk‖p > rk,

then, if we denote by EA
k the event «Algorithm A starts a local search at iteration

k », we have

P(EQGO
k ) = P

([⋂
j<k

{σ(βj) > σ(βk)}

]⋃[⋂
j<k

‖βj − βk‖p > rk

])
(I.3.7)

≤ P(σ(βj) > σ(βk), ∀j < k) + P(‖βj − βk‖p > rk,∀j < k)

= P(σ(βj) > σ(βk), ∀j < k) + (1− αk).

Next we rewrite {σ(βj) > σ(βk), ∀j < k} as {σ̄k > σ(βk)} to conclude that
P(σ(βj) > σ(βk), ∀j < k) = P({σ̄k > σ(βk)}) → 0, because σ̄k → infΩ σ. Since
1− αk → 0 as well, the second assertion follows. 2

In order to illustrate how the QGO algorithm works, in Figure I.3.6 we display an
hyperbolic tangent-shaped sequence αk → 1, and the corresponding radii obtained
using quantiles in the same situation as that of Figure I.3.1. We can observe that at
the beginning the algorithm behaves like MS, and tends asymptotically to behave like
BS, and this, independently of the dimension, the norm used to measure distances,
or the domain Ω.

A notable such sequence is αk = 1−pk, where pk denotes the probability of finding
a new minimum. This proposal follows closely the previous reasoning, since at the
first iteration the probability of finding a new minimum is 1, because no local minima
are known, so we have αk = 0, which means performing a multistart-type iteration.
Then, as the iterations go, pk → 0, and αk → 1. In practice the probabilities pk are
unknown. One possibility is to estimate them with the information gathered from
previous iterations, as in Boender and Rinnooy Kan (1987) or Piccioni and Ramponi
(1990). In Piccioni and Ramponi (1990), the probability of having found a global
optimum at iteration k, provided that in the previous iterations the algorithm has
found wk local minima, is:

αk = 1− pk =
k − wk − 1

k − 1
,

then αk → 1 as k → ∞, and therefore the probability of launching a local search
decreases to 0.

However, there is still a lot of freedom for choosing the sequence αk. The main
difficulty for imposing conditions on the sequence αk comes from the fact that in
QGO we are not just proposing to replace distance thresholds by quantiles, but
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also to use local information during the first iterations and more and more global
information as the number of iterations increases. This behavior has as consequence
that showing that the probability of launching a local search tends to 0 is quite easy,
since asymptotically QGO behaves as BS. However, obtaining the rate at which this
convergence occurs is much harder than for methods using a threshold that goes to
0, which use local techniques such as Taylor expansions for asymptotic analysis (see
eg. Rinnooy Kan and Timmer, 1987a, Lemma 7).



54CHAPTER I.3. HIGH DIMENSIONAL CLUSTERING GLOBAL OPTIMIZATION



Conclusion

In this first part of the thesis, we analyzed some possible approaches to the efficient
approximation of τ -estimators. The bibliographic review, both on global optimiza-
tion and on computational robust statistics, suggested that two-phase stochastic
algorithms coupled with appropriate stopping conditions, could help improving the
efficiency of state-of-the-art algorithms.

Our numerical tests confirmed that stopping conditions are a valuable tool, per-
mitting to shorten the computing time of existing algorithms while keeping the
quality of the solutions thereof obtained.

Clustering techniques proved to be useful in low dimension, but their efficacy
rapidly deteriorate in middling and high dimension. A deeper study of clustering
global optimization in higher dimensions shed some light on the problem. The ap-
proach of quantiles besides the advantage of being adaptive to the dimension and
the current sampled point, represents also a first step towards non-uniform sampling.

However, further research would be necessary to get more concluding results.
There may be many other factors influencing the efficiency of clustering methods in
high dimension. Just to mention one, let us cite a result of Ledoux and Talagrand
(1991) about concentration of measures: let λ denote the uniform measure on the
cube, and σ a Lipschitz function with Lipschitz constant L and median M . Then

λ(|σ −M | > t) ≤ ce−t
2/2s2

where c is a constant, and s2 = (2π)1/2L2. This could suggest that uniform sam-
pling is not a good strategy, since sampling far from the median, thus eventually
close to minima, is unlikely. This fact has been noticed by Schoen (1998), who
proposed to replace uniform random sampling by deterministic, well distributed,
sample points. Nevertheless, the simplicity of the uniform distribution permits to
have many explicit results, particularly useful for obtaining usable stopping condi-
tions. The theoretically ideal sampling distribution is given by (I.1.1) as T → 0.
Unfortunately, implementable version of this sampling strategy, notably simulated
annealing, does not perform better in practice than two-phase algorithms based on
uniform sampling.

All the experience collected from numerical experiments seems to indicate that
stochastic algorithms are able to provide “good” solutions to global optimization
problems. Nevertheless, the quality of the outcome is quite variable and difficult
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to foresee even for particular problem classes with loose computational-time con-
straints.



Part II

Deterministic algorithms for
mixed-integer bilinear programs.
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Chapter II.1

Introduction

The second part of this dissertation is devoted to the study of deterministic algo-
rithms for exact calculation of robust regression estimators. In particular, we shall
focus on robust regression estimators defined through L-estimates of scale.

We begin by recalling the definition of L-scales: Let |r(β)|(1) ≤ ... ≤ |r(β)|(n)

be the ordered absolute values of residuals (see model on page 3 ). L−estimates of
scale are defined as weighted `1 or `2 norms of |r(β)|(i),

n∑
i=1

ai|r|(i), or

(
n∑
i=1

ai|r|2(i)

)1/2

, (II.1.1)

where ai are nonnegative constants.
The restriction to this class of estimators is motivated by the fact that the rigid-

ity of scales (II.1.1) gives to the problem a combinatorial structure which permits
to solve it to optimality. Besides the exhaustive enumeration approach, that is fea-
sible only for very small problems, there exist many more sophisticated techniques
for solving global optimization problems; some of them are suited to a particular
subclass of problems, and others are applicable to a wide range of problems. The
method to be used here strongly depends on the characteristics of the particular
problem under consideration. Therefore, the first step will be to examine the prob-
lem of minimization of L-scales from an optimization point of view.

Let us concentrate on the problem

min
β∈Rd

n∑
i=1

ai|r(β)|p(i) (II.1.2)

for p equal to 1 or 2, and where the ais are such that ai = 1 if i ≤ h, and ai = 0
if i > h for a certain h ∈ {1, ...., n}, as it is the case for the LTS and the LTA
estimators (see pages 7 and 8).

Problem (II.1.2) can be written as a mixed integer nonlinear program using
the fact that for arbitrary r ∈ Rn, if r(1) ≤ r(2) ≤ · · · ≤ r(n) denote its ordered
components, then

h∑
i=1

r(i) = min

{
n∑
i=1

wiri

∣∣∣∣∣w ∈ {0, 1}d,
n∑
i=1

wi = h

}
, (II.1.3)
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and

min
β∈Rd

h∑
i=1

|r(β)|p(i) = min
β∈Rd

min
w∈C̃h

n∑
i=1

wi|r(β)|pi , (II.1.4)

where C̃h = {w ∈ {0, 1}d,
∑n

i=1wi = h}.
It is not difficult to check that we have an analogous formulation for the sum of

the largest residuals, replacing minimum by maximum.

n∑
i=n−h

r(i) = max

{
n∑
i=1

wiri

∣∣∣∣∣w ∈ {0, 1}d,
n∑
i=1

wi = h

}

= −min

{
−

n∑
i=1

wiri

∣∣∣∣∣w ∈ {0, 1}d,
n∑
i=1

wi = h

}
,

which for h = 1 amounts to minimizing the `∞-norm of the residuals.
Hereafter we consider the problem of computing the LTS estimator,

min
n∑
i=1

wiri(β)2,

β ∈ Rd,

w ∈ C̃h,

(II.1.5)

which is a MINLP, quadratic in β and linear in w.
Since the constraint w ∈ {0, 1}n can be equivalently expressed as w2

i − wi = 0,
problem (II.1.5) fits into the polynomial programming framework. Lasserre (2001)
introduced an innovative approach to polynomial global optimization that consists
in approximating the problem by a hierarchy of efficiently solvable relaxations. The
relaxation is exact for a sufficiently high order. Though, the large size of the relax-
ations for moderate-sized problems urged researchers on to exploit sparsity in order
to diminish the size of the relaxed problems. Lasserre (2006) and Waki et al. (2006)
went in that direction by putting forward lightweight relaxations under structured
sparsity assumptions. Nevertheless, even if sparsity is present, the relaxation of
order r of problem (II.1.5) involves (d + 1)2n

(
3+2r

2r

)
variables; so increasing by one

the number of observations will result in (d + 1)2
(

3+2r
2r

)
new variables added to the

relaxation of order r. To get an idea of the sizes, in dimension d = 10 adding one
observation would increase the number of variables of the first 5 relaxations by 1210,
4235, 10164, 19965 and 34606 respectively. The methodology of Lasserre (2001) is
intended to deal with a very wide class of problems; moreover it is a generalization
of the «lifting »procedure. Our objective will be to gain efficiency by exploiting the
characteristics of our particular problem.

Let us start by cutting problem (II.1.5) off as

min{ v(w) | w ∈ C̃h}, (II.1.6)

where v(w) is the marginal value of problem (II.1.5), obtained by minimization over
β ∈ Rd for fixed w ∈ C̃h,

v(w) = inf
β∈Rd

n∑
i=1

wiri(β)2. (II.1.7)
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Problem (II.1.6) is a combinatorial optimization problem over the discrete set C̃h.
In order to avoid the exhaustive enumeration of all of its elements, Agulló (2001)
proposed a branch-and-bound (BB) algorithm. A BB algorithm consists in enu-
merating in a tree the elements of C̃h, disregarding unpromising ones. In Figure
II.1.1 we depict the BB tree for a small example with the LTS estimator keeping 3
observations out of 6.

1

2

3 4 5 6

3

4 5 6

2

3

4 5 6

4

5 6

5

6

3

4

5 6

4

5

6

∅

Figure II.1.1: The BB tree for n = 6 and h = 3.

The circled nodes are called leaves. Each leaf represents a subset of 3 observa-
tions, which is obtained adding recursively the parent of each node until the root ∅
is reached. For example, in the branch of Figure II.1.2 there are two leaves, the leaf

∅

3

4

5 6

Figure II.1.2: A sample branch of the tree of Figure II.1.1.

at the right is associated to the subset of observations 6, 4 and 3, and that at left to
observations 5, 4 and 3. In terms of the optimization variable w, they are associated
to the points (0, 0, 1, 1, 0, 1)′ and (0, 0, 1, 1, 1, 0)′ respectively.

The BB algorithm proceeds by examining the branches from right to the left,
from top to the bottom; keeping track of the best solution obtained up to that
moment, called incumbent solution and denoted by w̄ in the sequel. At each node the
algorithm estimates the least function value that can be attained by a leaf belonging
to the subtree rooted at that node. If this lower bound exceeds the function value
of the incumbent solution, then we can safely discard that subtree, since we are sure
that it will not improve the incumbent solution.

A subtree rooted at a node in the BB tree is associated to a set of partially
prescribed points of C̃h. For instance, the branch in Figure II.1.2, rooted at the
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node (0, 0, 1, 0, 0, 0)′, consists of all the points in {0, 1}6 with (0, 0, 1)′ at the first
coordinates. Let us write these node constraints as Nw = ψ. Note that N is a
projection operator; in our example Nw = (w1;w2;w3) and ψ = (0, 0, 1)′. Therefore,
that branch can be ignored if the value of the problem

min v(w)
s.t

Nw = ψ,∑n
j=1wj = h,

w ∈ {0, 1}n,

(II.1.8)

is greater than the function value of the incumbent solution, which is an upper bound
for the optimal value of Problem (II.1.6). However, obtaining lower bounds for a
problem like (II.1.5) is not easy, because of the integer variables and the nonlinear-
ity/nonconvexity. In practice, the value of problem (II.1.8) is essentially as difficult
to compute as the value of the original problem, this is why we only settle for lower
bounds. The efficiency of a BB algorithm is intimately related to the tightness of
the lower bounds.

The algorithm of Agulló (2001) is based on a monotonicity property of the LTS
problem: in the LTS tree (see Figure II.1.1) every node has greater function value
than its father; this is because adding observations to the ordinary least-squares
regression can only increase the sum of the squared residuals. Thus the function
value at a node serves as lower bound for the whole subtree rooted at it. At each node
the algorithm compares the function value of its children to that of the incumbent
solution, hereafter denoted UB, and decides whether to prune it or not. If w+ is
one of those child nodes, and |I+| is the number of nonzero entries in w+, then:

1. If |I+| < d, since in dimension d we can always find an hyperplane that passes
through |I+| points, then v(w+) = 0 < UB. Thus, it cannot be discarded and
the analysis continues with its children.

2. If |I+| ≥ d, evaluate v(w+).

(a) If v(w+) < UB and w+ is a leaf, then a new incumbent solution have
been found; set UB = v(w+) and w̄ = w+. Otherwise repeat the analysis
with its children.

(b) If v(w+) > UB discard w+ and all its children.

The monotonicity lower bound presents two flaws:

• It does not provide lower bounds for nodes at the d highest levels.

• It does not look ahead. At each node the increase in function value due to
the inclusion of the children is exactly computed, but the contribution of the
rest of the observations added in the path to the leaves is underestimated
by 0. For instance, if n = 10 and h = 6 it says “the sum of the squared
residuals of a regression over six observations comprising observations 2, 4, 5
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and 8 will be greater than the sum of the squared residuals of the regression
over observations 2, 4, 5 and 8 themselves” without quantifying the minimum
increase in sum of squared residuals possible due to the incorporation of two
more observations.

The objective of the next two chapters is to obtain alternative lower bounds for
problem (II.1.8) when far from the leaves, in particular at the d upper levels. In
Chapter II.2 we introduce cuts for reducing the feasible domain of problem (II.1.8),
thus tightening the lower bounds. In fact, since the objective function in (II.1.7) is
linear in w, the function v is the pointwise minimum of linear functions

v(·) = min
β∈Rd

l′β·, with lβ = (r1(β)2, r2(β)2, ..., rn(β)2),

and consequently it is a closed concave function (Hiriart-Urruty and Lemaréchal,
1993a, Prop. IV.2.1.2). A first consequence of the concavity of the objective function
v is that minimization over C̃h = {w ∈ {0, 1}n, e′w = h} is equivalent to minimizing
over the polytope Ch = {w ∈ [0, 1]n, e′w = h}. The reason is that the global
minimum of a concave function over a convex set is always attained at an extreme
point; in the case of a polytope, at a vertex. The cuts obtained in Chapter II.2 are
based on the concavity of the function v, and moreover, they are called concavity
cuts. If we represent the cuts under the form of a linear system Cw ≤ b, then the
value of the problem (II.1.6) is the same as the value of

min v(w)
s.t

Cw ≤ b,∑n
j=1wj = h,

w ∈ [0, 1]n,

(II.1.9)

and the least value at a BB node given by problem (II.1.8) is the same as

min v(w)
s.t

Nw = ψ,
Cw ≤ b,∑n
j=1wj = h,

w ∈ [0, 1]n.

(II.1.10)

The reason is that concavity cuts eliminate portions of the feasible domain that
cannot host a global minimum. Note that the values of problems (II.1.6) and (II.1.8)
equal the value of problems (II.1.9) and (II.1.10) respectively, but relaxations of
problems (II.1.9) and (II.1.10) will have in general a higher value than relaxations
of (II.1.6) and (II.1.8).

Our approach for obtaining lower bounds for (II.1.9) is to cast it as a multi-
quadratic problem, in order to take advantage of techniques specifically conceived
for quadratic problems. Using a by-now classic technique, we lift the problem into
a space of matrices, to obtain a linear problem with second order cone constraints,
which is a relaxation of (II.1.9). By the way, under the same formulation and using
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a surrogate of a rank constraint that can be be decomposed as the difference of two
convex functions, we shall obtain global optimality conditions for problem (II.1.9).

Notations
In the sequel, we shall always use lowercase letters to name vectors and upper-
case letters to denote matrices. Vertical concatenation will be indicated by ‘;’ and
horizontal concatenation by ‘,’. For instance, (0; 1) is a column vector in R2, and
(0, 1) = (0; 1)′ is the row vector with the same entries. Similarly, if v1 and v2 are
two column vectors of the same length, then (v1, v2) is the matrix containing the
vectors v1 and v2 as columns, and (v1′; v2′) is the transpose of that matrix, contain-
ing v1′ and v2′ as rows. The column vector of length n with all components equal
to 1 will be denoted as e, it will be used notably for expressing the linear constraint∑n

j=1 wj = h in matrix form as e′w = h. For 1 ≤ p ≤ ∞, Bp denote the unit ball
for the p-norm. The space of real matrices of size s1× s2 will be denoted by Rs1×s2 ,
and the space of square symmetric matrices of size s × s by Ss. The space Rs1×s2

will be equipped with the inner product 〈A,B〉 = trace(B′A), where trace denotes
the sum of the diagonal elements, as usual. Given a vector v, D(v) will denote the
diagonal matrix with diagonal terms Dii = vi.; reciprocally, for a matrix A, d(A) is
the vector whose components are the diagonal elements of A, d(A)i = Aii. A matrix
of zeros of size s1 × s2 will be denoted by 0s1×s2 ; if s1 = s2 we just write 0s. We
will make use later of two well-known objects from convex analysis. For a compact
set E, δ(x | E) = supy∈E x

′y is the support function of the set E. The indicator
function of an arbitrary set E, denoted as IE, is the function defined as

IE(x) =

{
0 if x ∈ E
+∞ if x /∈ E.

For a function f finite at a point x, and ε ≥ 0, the ε-subgradient of f at x, denoted
∂εf(x), is the set of vectors s such that

f(y) ≥ f(x) + s′(y − x)− ε for all y.

For the particular case ε = 0 we shall use the notation ∂f(x) rather than ∂0f(x).



Chapter II.2

Concavity cuts for LTS

II.2.1 Tuy’s cuts for concave minimization over poly-
topes

Concavity cuts or Tuy’s cuts, introduced by Tuy (1964), are a domain-reduction
technique for concave minimization over a polytope C,

min
w∈C

v(w). (II.2.1)

Given a vertex of the polytope and a level γ, the concavity cut thereof obtained
discards a portion of C with a function value not better than γ. Lower values of
γ give raise to deeper concavity cuts, therefore γ is usually set as low as possible
in such a way that the concavity cut does not discard vertices with lower function
value than the incumbent solution.

Figure II.2.1 illustrates the construction of a concavity cut. The first step consists
in finding a sub-optimal vertex w0 to eliminate, and a level γ such that v(w0) > γ
(Fig. II.2.1-a). Then we find the hyperplane defining the concavity cut as follows.
Let w0 be the vertex of C to be eliminated and let us denote by u1, u2, ..., un ∈ Rn

the directions of the edges of C emanating from w0, and by cone(u1, ..., un) their
conical envelope {

∑n
i=1 λiui, λi ≥ 0} . Then,

K(w0) := w0 + cone(u1, ..., un)

is the smallest cone vertexed at w0 which contains C . To derive a concavity cut
we consider the level set L(γ) := {w ∈ Rn|v(w) ≥ γ}, which is commonly assumed
for the sake of simplicity to be closed and bounded. Note that since v is concave
L(γ) is convex (Fig. II.2.1-a). Let zi ∈ C and τ̄i be such that zi = w0 + τ̄iui are the
intersection points of the cone edges Ei(τi) := x0 +τiui, τi ≥ 0 with the boundary of
L(γ) (Fig. II.2.1-b). Then we determine the hyperplane described by the equation
c′(w − w0) = 1, which intersects the edges of K(w0) in L(γ), and contains at least
n of the points zi (Fig. II.2.1-c). This hyperplane is given by

c′ =

(
1

τ1

,
1

τ2

, ...,
1

τn

)′
U−1 (II.2.2)
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Figure II.2.1: Construction of a concavity cut.

where U = (u1, u2, · · · , un) is the matrix containing the directions ui as columns.
By construction, C ∩ {c′(w−w0) ≤ 1} ⊆ L(γ), thus C ∩ {c′(w−w0) ≤ 1}, shaded in
Fig. II.2.1-d), can be safely ignored from further consideration, without discarding
any point with better function value than the incumbent solution.

II.2.2 Concavity cuts for the LTS problem

In this section we discuss the construction of concavity cuts for minimization of the
function v defined in (II.1.7) over the polytope Ch = {w ∈ [0, 1]n, e′w = h}. There
are two issues that hinder obtaining concavity cuts for problem (II.2.1),

1. The polytope Ch is degenerate.

2. The level sets of v are unbounded.

The polytope C for n = 3 and h = 2 is depicted in Figure II.2.2, where each
vertex corresponds to a subset of 2 observations. In general, the polytope C lies on
the hyperplane H defined by the constraint e′w = h, and any vertex has (n − h)h
neighbors. Instead of making the effort to obtain n−1 directions to define a flat cone
on the hyperplane H, we will ignore the constraint e′w = h and we will construct
a concavity cut on the unit cube. The resulting cut constructed on the cube will
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0

e

(1, 0, 1)

(0, 1, 1)

(1, 1, 0)

Figure II.2.2: The LTS polytope for n = 3 and h = 2.

intersect H unless H and the cut are parallel, which is impossible as we will see
later. Incidentally, the BB tree nodes, other than the leaves, correspond to vertices
of the unit cube not belonging to the hyperplane e′w = h. Let w0 be an extreme
point of [0, 1]n and I0 = {j | (w0)j = 1} be the index set of the components equal
to one.

Let us define the directions u1, ..., un as

uj =

{
−ej if j ∈ I0

ej otherwise,
(II.2.3)

where ej is the jth euclidean unit vector (whose jth component is equal to 1 and
0 otherwise). We have that w0 + cone(u1, ..., un) is the smallest cone pointed at w0

that contains the unit cube. In Figure II.2.3 we see an example of cut on the unit
cube for the situation of Figure II.2.2 with n = 3 and h = 2. The next step to
construct the concavity cut on the cube is to determine the intersection point of
the rays w0 + τjuj, j = 1, ..., n with the boundary of L(γ), for γ < v(w0). In other
words, we look for τ̄j, j = 1, ..., n such that v(w0 + τ̄juj) = γ.

For j ∈ I0, by moving along the direction −τjej we will downweight observation
j , and we will eventually meet the boundary of L(γ). On the contrary, if j /∈ I0

we will move along the direction τjej, which amounts to add an observation with
weight τj, and we will always increase the objective value, for any τj > 0. This
means that the set L(γ) in unbounded in the direction uj for j /∈ I0; in this case we
will take τj = +∞. In fact, we are looking for the largest conical set vertexed at
w0, completely contained in L(γ) and possessing a concise description. Of course,
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Figure II.2.3: A concavity cut on the unit cube.

when the level sets are bounded, such a polyhedron can be obtained as described
hereabove.

The remaining computations in (II.2.2) are:

• Obtaining the ‘step sizes’ τ̄j for j ∈ I0.

• Inverting the matrix U that contains the directions uj as columns.

As we work on the unit cube, U is simply proportional to the identity matrix,
thus inverting that matrix is not an issue. So we turn next to the computation of
τ̄j for j ∈ I0.

Given that the function v is defined in (II.1.7) as the value of the convex mini-
mization problem

inf
β∈Rd

r(β)′D(w)r(β),

then we have, when det(X ′D(w)X) 6= 0,

v(w) = r(βw)′D(w)r(βw),

for the unique βw satisfying

X ′D(w)Xβw = X ′D(w)y. (II.2.4)

Since r(β) = y −Xβ,

v(w) =r(βw)′D(w)r(βw)

=(y −Xβw)′D(w)r(βw)

=y′D(w)r(βw)− β′w(X ′D(w)r(βw)),
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and rewriting (II.2.4) as X ′D(w)r(βw) = 0 we conclude that

v(w) = y′D(w)r(βw). (II.2.5)

Furthermore, as βw = (X ′D(w)X)−1X ′D(w)y,

v(w) = y′D(w)(y −Xβw)

= y′D(w)(y −X(X ′D(w)X)−1X ′D(w)y),

which motivates the introduction of the matrices

M(w) = X ′D(w)X

and

M̃(w) =

(
X ′D(w)X X ′D(w)y
y′D(w)X y′D(w)y

)
=

(
M(w) X ′D(w)y

y′D(w)X y′D(w)y

)
;

then by the Schur complement formula for determinants of block matrices we obtain

det(M̃(w)) = det(M(w)) det(y′D(w)y − (y′D(w)X)M(w)−1(X ′D(w)y))

= det(M(w)) det(y′D(w)[y −XM(w)−1X ′D(w)y])

= det(M(w)) det(y′D(w)[y −Xβw])

= det(M(w))y′D(w)r(βw)

= det(M(w))v(w),

(II.2.6)

which supplies us, provided that det(M(w)) 6= 0, with a convenient expression for
the objective function v,

v(w) =
det(M̃(w))

det(M(w))
.

The next step is to give a formula for v(w0 + τjuj), j ∈ I0. Let us compute
v(w − τjej). From the definition of matrices M and M̃ we have that

M(w − τjej) = M(w)− τjxjx′j, M̃(w − τ̄jej) = M̃(w)− τaja′j,

where aj = (xj; yj) ∈ Rn+1. Then,

v(w − τjej) =
det(M̃(w))(1− τa′jM̃(w)−1aj)

det(M(w))(1− τx′jM(w)−1xj)
= v(w)

1− τa′jM̃(w)−1aj

1− τx′jM(w)−1xj

and using that (Agulló, 2001, p. 429)

a′jM̃(w)−1aj = rj(w)2/v(w) + x′jM(w)−1xj,

where rj(w)2 = (yj − x′jβw)2 is the square of the jth residual, we obtain

v(w0 − τjej)− v(w0) =
−τjrj(w0)2

1− τjx′jM(w0)−1xj
. (II.2.7)
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Finally, using the notation ∆ , γ − v(w0), we obtain an explicit formula for the
step size τ̄j such that v(w0 − τ̄jej) = γ

τ̄j =
−∆

∆x′jM(w0)−1xj − rj(w0)2
. (II.2.8)

Combined with the general theory presented in Section II.2.1, these calculations
yield to the following result:

Proposition 1 Let γ be a positive real number, and let w0 be a point in Ch such
that γ < v(w0) and det(X ′D(w0)X) 6= 0. Then the vector c ∈ Rn defined as

cj =
rj(w0)2 − (γ − v(w0))x′j(X

′D(w0)X)−1xj

γ − v(w0)
(II.2.9)

if (w0)j = 1, and cj = 0 otherwise, defines a valid γ-cut for the function v over Ch,
i.e

Ch ∩ {c′(w − w0) ≤ 1} ⊆ {v ≥ γ}.
We would like to stress the fact that a closed-form expression for the concavity

cut as in (II.2.9) is quite unusual. It is crucial in our calculations to work on the
unit cube, firstly because we do not need to inverse the matrix U , and also because
for obtaining the step-sizes τ̄j we have used the Sherman-Morrison formula for the
inverse of a rank-one perturbation of a matrix. We see from (II.2.9) that the only
possibility to obtain a cut parallel to the hyperplane e′w = h is to take w0 = e, which
will never be the case in a BB algorithm, since all nodes have at most h non-zero
components. In general the situation will be that of Figure (II.2.3).

II.2.3 Numerical experiments
In order to get a first idea of the efficiency of the concavity cuts for the LTS problem,
we perform the following experiment. We randomly generate a standard normal
sample X of size n in R2, and a response yi = θ0 + Xθ + ε with θ0 = 1, θ = (1; 1)
and ε following a standard normal distribution. The number n is chosen small
enough to be able to generate all the vertices of Ch, corresponding to the number of
subsamples of size h. Then, we derive some cuts and keep track of the percentage
of vertices that have been eliminated so far.

In our implementation, we store the cuts as a linear system by defining

C =

−c
′
1

...
−c′nc

 , b =

 −(1 + c′1w1)
...

−(1 + c′ncwnc)

 ,

where w1, ..., wnc are the vertices used to construct the cuts. With this notation,
points w ∈ C such that Cw > b are eliminated by concavity cuts.

First of all, we need a “good” initial solution, whose function value will be used as
γ level for generating concavity cuts. In order to obtain such a “good” initial point,
we randomly generate a number of candidates and apply to each of them a “concen-
tration step”, that consists in repeating iteratively the following steps (Rousseeuw
and Driessen, 2006):
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n # subsamples 1 cut 2 cuts 3 cuts 4 cuts 5 cuts

21 5985 39.1 56.2 67.9 75.75 85.3
22 26334 47.5 70.5 83.9 90.8 94.2
23 100947 31.8 52.5 65.1 75.8 80.0
24 346104 28.3 40.7 55.8 59.0 70.9
25 1081575 11.7 26.1 40.1 51.0 57.1

Table II.2.1: Percentage of the vertices of C ruled out by the concavity cuts, with
h = 17.

Given a candidate w:

• Compute β̂ as the LS fit to the observations selected by w, the residuals
vector r and the ordered residuals |rπ(1)| ≤ |rπ(2)| ≤ · · · ≤ |rπ(n)|, where π is
the ordering, |rπ(i)| = |r|(i).

• Set w̄π(1) = w̄π(2) = · · · = w̄π(h) = 1 and 0 otherwise.

The best of the generated candidates after the previous procedure becomes the
incumbent solution w̄. Alternative methods for obtaining the improved candidate
are presented in Agulló (2001) and Schyns et al. (2010). Here, we described the
simplest one.

The cuts are generated by Procedure 4.

Procedure 4 Procedure for generating concavity cuts.
1. Draw an initial point w0 randomly, apply the concentration steps described

above to obtain the incumbent solution w̄. Set wk = w0, γ = v(w̄) and
C, b = [].

2. Iterate

• Derive a concavity cut from wk, add it to C, b.

• Let sC be the row vector of the sums of each column of C. Set the
component j of wk equal to 1 if j is one of the h smallest components of
sC .

• Test whether Cwk ≤ b, if so iterate, otherwise break.

The results are shown in Tables II.2.1 and II.2.2. In Table II.2.1 we show the
results obtained when fixing h = 17 and varying the number of observations from
n = 21 to n = 25. In Table II.2.2 the parameter h changes as a function of n as
h = round(3n/4), for n in the same range. These results show that for the tested
problem the bundle of cuts obtained from the very simple Procedure 4 rules out
in all cases more than a half of the subsamples. This evidence suggests that the
feasible domain of problem II.1.10 (with cuts) would be significantly narrower than
that of problem II.1.8 (without cuts).
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n h # subsamples 1 cut 2 cuts 3 cuts 4 cuts

21 16 20349 41.4 65.1 71.8 83.2
22 17 26334 36.2 68.2 82.4 89.4
23 17 100947 20.1 37.8 54.7 61.1
24 18 134596 38.1 60.4 73.9 85.8
25 19 177100 21.1 54.5 65.8 72.8

Table II.2.2: Percentage of the vertices of C ruled out by the concavity cuts, with
h = 3n/4.

II.2.4 Some final comments
In the context of a BB algorithm, concavity cuts will be derived from the leaves
that are visited and from nodes that are pruned by the lower bound criterion. The
distance from a vertex w0 to the hyperplane c′(w − w0) = 1 equals 1/‖c‖, and is
often used as a measure of the depth of the cut. Therefore, “sparse” vertices would
result in deeper cuts and it is expected that cuts from pruned nodes would yield
deeper cuts than cuts from leaves.

In large trees, adding one cut each time a node is pruned or a leaf is explored
can result in a very large number of cuts. Numerical experiments reported by Alarie
et al. (2001) suggest that better results are obtained by keeping only a fraction of
the cuts. It is suggested to drop cuts that are nearly collinear to existing ones.



Chapter II.3

The bilinear formulation and
SDP-type relaxations

In this chapter we reformulate the MINLP (II.1.9), whose optimal value equals the
sum of trimmed squares of the residuals of the LTS estimator, with its domain
reduced by concavity cuts, as a multi-quadratic problem. The objective of those re-
laxations is to obtain lower bounds for the optimal value of (II.1.9), or lower bounds
for the least value of a branch in the BB tree when they are complemented with
node constraints.

Recall from (II.2.5) that, for w such that det(X ′D(w)X) 6= 0,

v(w) = y′D(w)r(βw),

for the unique βw satisfying X ′D(w)r(βw) = 0. As a consequence, the function v
can be equivalently expressed, using that y′D(w) = w′D(y), as

v(w) = min
β∈Rd

w′D(y)r(β)

s.t
X ′D(w)r(β) = 0,

(II.3.1)

Therefore, problem (II.1.9) is equivalent to the quadratically constrained quadratic
problem (also called multi-quadratic problem, or even Q2P )

min
w,β

w′D(y)r(β)

s.t
X ′D(w)r(β) = 0,
Cw ≤ b,
e′w = h,
w ∈ {0, 1}n,
β ∈ Rd.

(II.3.2)

Problem (II.3.2) involves only linear terms in w and bilinear terms of the form
wkβj. It is possible, using a technique dating back to Glover (1975), to linearize
crossed products of integer and continuous variables by introducing a new variable

73
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Rkj along with a set of linear constraints to enforce that Rkj equals wkβj at all binary
realizations of w. This technique was used in Adams and Sherali (1993) to treat
mixed-integer bilinear programs under decoupled constraints w ∈ P1 ∩ {0, 1}n, β ∈
P2 for two bounded polyhedral sets P1 and P2. Nevertheless, those linearizations
ask the user to provide explicit bounds on β, which are then incorporated in the
linearized problem. If such bounds are not available, which is the case of general
regression problems, the problem can be solved with a “big box” constraint, but
the introduction of such large numbers results in weaker continuous relaxations (c.f.
Adams et al., 2004). Note that in our problem, obtaining such a bound before
computing the robust regression coefficient would mean that we can obtain reliable
information about the “true” or “clean” regression coefficient β from the eventually
contaminated dataX, y. For these reasons, in the next section we explore relaxations
that suit better the structure of our problem.

II.3.1 SDP and SOC relaxations

In semidefinite programming (SDP) one minimizes a linear function, possibly un-
der linear constraints, over the cone of positive semidefinite matrices. Although
semidefinite programs are a pretty general class of problems, they can be solved
very efficiently by interior-point methods. Semidefinite programming has drawn a
lot of attention in the last years, mainly because of its success in obtaining tight
lower bounds for hard combinatorial optimization problems. Vandenberghe and
Boyd (1996) give an excellent survey on the theory and applications of semidefinite
programming. In this section we analyze the SDP relaxation of problem (II.3.2), and
then we shall propose a derived relaxation which is better adapted to our problem.

We start by putting problem (II.3.2) in quadratic form. The objective function
w′D(y)r(β) and the constraint X ′D(w)r(β) = 0 can be written as z′Q̃0z+ q′0w, and

z′Q̃lz + q′lw = 0 l = 1, ..,m,

respectively, with z = (β, w) ∈ Rζ , ζ := n+d; and using, for l = 0, 1, ..., d, the block
matrix

Q̃l =


0d M ′

l

Ml 0n

 ,

where the n× d blocks Ml and the n× 1 vectors ql equals

M0 = −1

2
D(y)X, q0 = y2,

for l = 0, and for l = 1, ..., d,

(Ml)ij = XilXij, (ql)i = yiXil.



II.3.1. SDP AND SOC RELAXATIONS 75

For problem (II.3.2) in the form:

min
w,z

z′Q̃0z + q′0w

s.t
z′Q̃lz + q′lw = 0, l = 1, ..,m,
Cw ≤ b,
e′w = h,
w2
j = wj j = 1, ..., n,

z ∈ Rζ ,

(II.3.3)

the SDP relaxation is obtained by lifting problem (II.3.3) in a matrix space, using
the fact that

z′Qz = trace(z′Qz) = trace(Qzz′) = 〈Q, zz′〉.

Note that since the variable z is partitioned as z = (β, w), then the rank-one matrix
zz′ has the following block structure:

zz′ =

(
ββ′ βw′

wβ′ ww′

)
. (II.3.4)

Next we replace the product of vector variables zz′ by the matrix variable Z̃ ∈ Sζ ,

Z̃ =

(
B R′

R W

)
(II.3.5)

with B ∈ Sd, R ∈ Rn×d and W ∈ Sn, and we add the constraint Z̃ = zz′. The
constraints w2

j = wj become Wjj = wj, which can be written compactly as d(W ) =
w. Thus, the multi quadratic problem with cuts (II.3.3) is equivalent to

min
w∈Rn, Z̃∈Rn×d

〈Q̃0, Z̃〉+ q′0w

s.t

〈Q̃l, Z̃〉+ q′lw = 0, l = 1, ..,m,
Cw ≤ b,
e′w = h,
d(W ) = w,

Z̃ − zz′ = 0.

(II.3.6)

Let us introduce, for l = 0, 1, ..., d, the matrices

Ql =

(
0 q′l/2

ql/2 Q̃l

)
=


0d+1

ql
′

M ′
l

ql Ml 0n

 .

The SDP relaxation (which coincides with the Lagrangian relaxation) is obtained
by relaxing the non-convex constraint Z̃ − zz′ = 0 to Z̃ − zz′ < 0 , which can be
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expressed equivalently as Z < 0, with a matrix Z ∈ Sζ+1 structured as

Z =

 1 β′ w′

β B R′

w R W

 .

In this way we end up with the SDP relaxation of problem (II.3.2):

(SDP )



min
w∈Rn, Z∈Sζ+1

〈Q0, Z〉

s.t
〈Ql, Z〉 = 0, l = 1, ..,m,
Cw ≤ b,
e′w = h,
d(W ) = w,
Z < 0.

(II.3.7)

Since the data matrices Ql involved in problem (II.3.7) are sparse, the d × d
block B and the off-diagonal elements of the n × n block W appears only in the
semidefinite constraint. Thus, the solution to problem (II.3.7) cannot be unique,
since for a given feasible pair (w,Z), adding a positive-definite d× d matrix to the
block B of Z will keep the pair feasible without changing the objective value of the
pair. Besides of introducing a number of unnecessary variables, the non-uniqueness
is undesirable from a computational point of view.

Kim et al. (2003) introduced a transparent approach for dealing with sparsity.
It consists in replacing the SDP constraint by second order cone (SOC) constraints
that are implied by the SDP constraint. The second order cone Ku ⊆ Ru is defined
as Ku = {z ∈ Ru : z1 ≥ ‖(z2; z3; ...; zu)‖}; a constraint of the type z ∈ Ku is called
a SOC constraint. The condition Z < 0 implies that any principal submatrix of
Z is positive semidefinite. Saying that each 1 × 1 principal submatrix is positive
semidefinite amounts to imposing the positivity constraints Zii ≥ 0, i = 1, ..., ζ. The
2 × 2 principal submatrices are positive semidefinite if and only if (Zkj)

2 ≤ ZkkZjj
for any pair of indices (k, j). Together, they are equivalent to the SOC constraints∥∥∥∥(Zkk − Zjj2Zkj

)∥∥∥∥ ≤ Zkk + Zjj, or

Zkk + Zjj
Zkk − Zjj

2Zkj

 ∈ K3.

In our problem, for k = 1, d+ 2 ≤ j ≤ ζ + 1 we obtain w2
j ≤ Wjj, which, combined

with the constraint d(W ) = w, will imply that w2
j ≤ wj, then 0 ≤ wj,Wjj ≤ 1.

Note that the introduction of the matrix variable W becomes useless, since it only
appears due to the constraint w2

i − wi = 0, which will be relaxed to wi ∈ [0, 1]. If
we choose 2 ≤ k ≤ d+ 1 and d+ 2 ≤ j ≤ ζ + 1, we obtain

R2
kj ≤ BkkWjj.

This constraint expresses the logical implication Wjj = 0 ⇒ Rkj = 0, bringing into
play the diagonal of the matrix variable B. Ignoring inequalities involving the off-
diagonal elements of the blocks B and W , we obtain the SOC relaxation of problem
(II.3.2):
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(SOC)



min 2〈M0, R〉+ q′0w
s.t

2〈Ml, R〉+ q′lw = 0, l = 1, ..,m,
Cw ≤ b,
e′w = h,
‖($k − wj; 2Rkj)‖ ≤ $k + wj, k = 1, ..., d; j = 1, ..., n,
wj ≤ 1, j = 1, ..., n,
w ∈ Rn, R ∈ Rn×d, $ ∈ Rd.

(II.3.8)

This time we keep only the diagonal of the block B in the vector variable $ ∈ Rd;
we completely drop the blockW , and we introduce directly the constraint wj ∈ [0, 1]
instead.

Problem (II.3.8) is a convex problem, and can be efficiently solved using interior
points methods (see Alizadeh and Goldfarb, 2003, for a comprehensive exposition
of SOC programming). The only annoying point with it is the non-uniqueness of
the variable $. This inconvenient can be eliminated by adding a term of the form
µe′$, for small µ > 0 to the objective function in order to achieve uniqueness of $
without perturbing the solution of the problem. Note that if we had a bound for
the variable β, say |βk| ≤Mk, we could eliminate the variable $ replacing the SOC
constraint R2

kj ≤ bkwj by R2
kj ≤M2

kwj. This is in fact one of the linear inequalities
added by the above-mentioned linearization proposed in Adams and Sherali (1993).

The SOC relaxation can be seen as a compromise between the SDP relaxation
that gives tight bounds at a strong computational cost, and linear programming
relaxations, which are cheaper from a computational point of view but give much
weaker bounds.

II.3.2 Global optimality conditions

The objective of this section is to describe a reformulation of problem (II.3.2) that
keeps only the relevant crossed terms wjβk in bilinear programs. It is based on a
convenient writing of the condition R = wβ′ as a rank-one constraint, followed by a
formulation of that constraint as the difference of two convex functions.

Let us reconsider problem (II.3.8), with the SOC constraints replaced by the
exact definition of R as wβ′,

min 2〈M0, R〉+ q′0w
s.t

2〈Ml, R〉+ q′lw = 0, l = 1, ..,m,
Cw ≤ b,
e′w = h,
R = wβ′,
0 ≤ wj ≤ 1, j = 1, ..., n,
w ∈ Rn, R ∈ Rn×d, β ∈ Rd.

(II.3.9)
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Then we use the fact that

R = wβ′ if and only if rank
(

1 β′

w R

)
= 1,

to obtain:

min 〈A0, Z〉
s.t
〈Al, Z〉 = 0, l = 1, ...,m,
CZ(2 : n+ 1, 1) ≤ b,
n+1∑
j=2

Zj1 = h,

Z11 = 1,
0 ≤ Zj1 ≤ 1, j = 2, ..., n+ 1,
rank(Z) = 1,
Z ∈ R(n+1)×(d+1),

where Al =

0 01×d
ql 2Ml

 , l = 0, 1, ...,m, and Z(2 : n + 1, 1) denotes the n last

elements of the first column of the matrix Z. We introduce two additional matrices
Am+1 and Am+2 to express the constraints

∑n+1
j=2 Zj1 = h and Z11 = 1 respectively,

Am+1 =


0 01×d

e 0n×d

 , Am+2 =


1 0

0 0
,

 ,

and the matrices Ci, i = 1, ..., nc, to express the constraint CZ(2 : n + 1, 1) ≤ b as
〈Ci, Z〉 ≤ bi, i = 1, ..., nc. Each matrix Ci has only zeros, except for its first column
that equals (0; ci), where ci is the ith concavity cut (stored in the matrix C).

Let A1 : R(n+1)×(d+1) → Rm+2 and A2 : R(n+1)×(d+1) → Rnc be defined as

A1Z =(〈A1, Z〉; ...; 〈Am, Z〉; 〈Am+1, Z〉; 〈Am+2, Z〉),
A2Z =(〈C1, Z〉; ...; 〈Cnc, Z〉).

and f ∈ Rm+2 be the column vector defined by fi = 0, i = 1, ...,m and fm+1 =
fm+2 = 1.

Then we can rewrite problem (II.3.9) in compact form as:
min 〈A0, Z〉
s.t
A1Z = f,
rank(Z) = 1,
Z ∈ ∆,

(II.3.10)

where ∆ ⊆ R(n+1)×(d+1) is the convex set

∆ := {Z | A2Z ≤ b, 0 ≤ Zj1 ≤ 1 for j = 2, ..., n+ 1}.
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Note that problem (II.3.10) is an exact reformulation of problem (II.3.2) with
the constraint wj ∈ {0, 1} relaxed to wj ∈ [0, 1]. It is a linear problem in the matrix
variable Z except for the rank-one constraint. The rank function is non-convex and
not even continuous; in fact it is integer-valued and constant along rays. For these
reasons, the study of optimization problems involving the rank function is quite
recent. The Eckart-Young Theorem is possibly the only ‘old’ optimization result
involving the rank function. It gives an explicit solution to the problem of minimizing
the distance from an arbitrary matrix to the set of matrices of a given rank. A
significant breakthrough in the study of the rank function has been made by Fazel
(2002), by computing the convex envelope of the rank function restricted to a ball.
This result is of great importance for problems involving the rank in the objective
function. In the remaining of this section we shall focus rather on relaxations of
optimization problems under rank constraints, paying particular attention to the
rank-one constraint.

II.3.2.1 The rank-one constraint as the difference of convex
functions

Let a given n× d matrix A have the singular value decomposition

A = UD(ς)V ′,

where U and V are orthogonal matrices of size n × d and d × d respectively, and
ς ∈ Rd contains the singular values in decreassing order:

ς1 ≥ · · · ≥ ςd ≥ 0.

Let φ be a norm in Rd, then we can define an associated matrix norm in Rn×d as

‖A‖φ = φ(ς). (II.3.11)

By putting φ = ‖ · ‖2 we obtain the norm associated to the Frobenius inner product

‖A‖2
F = trace(A′A) =

d∑
i=1

ς2
i .

A very important case in the sequel will be φ = ‖ · ‖1, which originates the nuclear
norm

‖A‖∗ =
d∑
i=1

|ςi|.

The following function will play an important role in the study of the rank-one
constraint:

Definition 1 Let us define the continuous surrogate of the rank as the function
g : Rn×d → R given by

g(A) =

{
‖A‖2∗
‖A‖2F ,

if A 6= 0

0, if A = 0.
(II.3.12)
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This function has a close relationship with the rank function, as the following
proposition shows:

Proposition 2 The continuous surrogate of the rank, defined in (II.3.12) satisfies
the following properties:

G1. g(αA) = g(A), ∀A ∈ Rn×d, α 6= 0.

G2. 1 ≤ g(A) ≤ rank(A), ∀A ∈ Rn×d \ {0}.

G3. If all the non-zero singular values of A are equal, then g(A) = rank(A).

G4. rank(A) = 1 if and only if g(A) = 1.

Proof. Property G1 follows directly from the homogeneity of norms. As before, let
ς1 ≥ · · · ≥ ςd ≥ 0 be the singular values of A. By the definition of ‖A‖∗ and ‖A‖F ,
g(A) = ‖ς‖2

1/‖ς‖2
2 provided that A 6= 0. In that case ς1 > 0, thus scaling by α = 1/ς1

if necessary we can suppose that ς1 = 1. Then

1 ≤ ‖ς‖2 =

√√√√ d∑
i=1

ς2
i ≤

d∑
i=1

ς2
i ≤

∑
ςi, (II.3.13)

and since all the singular values are non-negative ‖ς‖1 =
∑d

i=1 ςi. As a consequence
‖ς‖2 ≤ ‖ς‖1 and g(A) ≥ 1 for any A 6= 0. Note also that equality holds in (II.3.13)
if and only if ς has at most one non-zero component, which is precisely what G4
states. For the upper bound we use that rank(A) = k if and only if ςi > 0 for
1 ≤ i ≤ k and ςi = 0 for k + 1 ≤ i ≤ d. Then ‖ς‖1 =

∑k
i=1 ςi = e′kς, where

ek is the vector with ones in the first k entries and zeros elsewhere. Then, by the
Cauchy-Schwarz inequality, ‖ς‖1 ≤ ‖ek‖2‖ς‖2 =

√
k‖ς‖2, hence g(A) ≤ k = rank(A)

and G2 is proved. For proving G3 it suffices to consider the case ς1 = · · · = ςk = 1.
Then ‖ς‖2

1 = k2, ‖ς‖2
2 = k and g(A) = k = rank(A). 2

Properties G1 and G2 show that the function g is a minorant of the rank function
with the same homogeneity. We will be mainly interested in property G4, which has
been proved in Malick (2007, Theorem 1) for the particular case of square symmetric
matrices with only ones on the diagonal, which is a corner of the ‖ · ‖∗-ball of radius
n. It can be directly obtained from G3 as well. Reciprocally, the problem with
fixed Frobenius norm has been studied by Fazel (2002), where they proved that,
for any M > 0, ‖ · ‖∗/M is the convex envelope of the rank function on the set
{A ∈ Rn×d | ‖A‖F ≤M}. This result has provided a theoretical background to the
so-called trace heuristic, that consists in replacing the rank function by the nuclear
norm in rank minimization problems. Properties G1 and G4 say that, for A 6= 0,
the rank-one constraint can be expressed as a difference-of-convex (dc) functions
constraint,

Proposition 3 Let A ∈ Rn×d \ {0}, then

rank(A) = 1⇐⇒ ‖A‖∗ − ‖A‖F ≤ 0. (II.3.14)
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This result permits to put the rank-one constraint in the context of dc program-
ming. In this way we have at hand global optimality conditions, local minimization
algorithms that exploits that structure and, of course, the advantage of working
with continuous, differentiable functions instead of the integer-valued rank function.

II.3.2.2 Rank constraints as a reverse-convex constraint

In this subsection we shall give yet another formulation of the rank constraint as
a reverse convex constraint. We say that a constraint is reverse convex if it can
be expressed as g(A) ≥ 0 for a convex function g, or equivalently as h(A) ≤ 0
for a concave function h. This formulation has the advantage of describing the set
{A | rank(A) ≤ k} for any 1 ≤ k ≤ d. Its weak point is that it is primarily formu-
lated for square matrices.

Let us suppose that A is a square positive semidefinite matrix, and let ς1 ≥ · · · ≥
ςd ≥ 0 be the eigenvalues of A. Then (Horn and Johnson, 1985, p. 191)

ςk+1 + · · ·+ ςd ≤ trace(U ′AU)

for any U ∈ Uk, where Uk denotes the set of n×(n−k) matrices such that U ′U = In.
Moreover, equality holds if and only if the columns of U form an orthonormal basis
of eigenvectors of the matrix A. In other words, we have

ςk+1 + · · ·+ ςd = min
U∈Uk

trace(U ′AU). (II.3.15)

As the function A 7→ trace(U ′AU) is linear for any U ∈ Uk, then the function

hk(A) = min
U∈Uk

trace(U ′AU)

is concave, and by virtue of (II.3.15), we have proved

Proposition 4 Let A be a d× d symmetric positive semidefinite matrix. Then

rank(A) ≤ k ⇐⇒ hk(A) ≤ 0.

Note that the function ς 7→ ςk+1 + · · · + ςd is concave (use (II.1.3) to write it
as a minimum of linear functions) as a function of the singular values, but the
function A 7→ ςk+1(A) + · · ·+ ςd(A), where ς(A) denote the vector of singular values
of A, is not necessarily a concave function of the matrix A, even for square A (cf.
Dacorogna and Marcellini, 1999, Theorem 7.8). For an optimal control problem,
Kim and Moon (2006) use the characterization above to devise a penalty method
for the rank constraint, since if U ∈ Uk then rank(A) > k ⇒ trace(U ′AU) > 0, thus
a term of the form αtrace(U ′AU) for α > 0 and U ∈ Uk acts as penalization of the
rank constraint violation.
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II.3.2.3 Global optimality conditions using ε-subdifferentials

In this section, using the dc formulation of the rank-one constraint (II.3.14), we
obtain global optimality conditions for problem (II.3.10).

Let us dualize the rank-one constraint, introducing a multiplier α > 0

min 〈A0, Z〉+ α(‖Z‖∗ − ‖Z‖F )
s.t A1Z = f,

Z ∈ ∆,

which we rearrange as:

min (〈A0, Z〉+ α‖Z‖∗)− α‖Z‖F
s.t A1Z = f,

Z ∈ ∆.
(II.3.16)

Then, for each α > 0, the value of problem (II.3.16) gives a lower bound for the
original problem. A matrix Z ∈ ∆ is a local optimum of problem (II.3.16) if there
exists vectors µ ∈ Rm+2, λ ∈ Rn and ν ∈ Rnc such that

A1Z = f,

A∗1µ+A∗2ν + Λ + α∂‖Z‖F ⊂ {A0}+ α∂‖Z‖∗,
(II.3.17)

where Λ is a matrix of zeros, except for the first column that equals (0;λ). The
multipliers λ and ν must also satisfy the complementarity conditions

λi ∈


{0} if 0 < zi < 1,

(−∞, 0] if zi = 0,

[0,∞) if zi = 1,

(II.3.18)

and
D(ν)(b−A2Z) ≤ 0,

respectively. Needless to say, if the solution of problem (II.3.16) is a rank-one matrix,
then we have obtained the global solution to problem (II.3.10).

Next we recall the characterization given in Watson (1992) for the subdifferential
of norms defined as in (II.3.11), at a matrix A = UD(ς)V ′,

∂‖A‖φ = conv{UD(s)V ′, s ∈ ∂φ(ς)}.

this result extends naturally to ε-subdifferentials

∂ε‖A‖φ = conv{UD(s)V ′, s ∈ ∂εφ(ς)}, ε ≥ 0. (II.3.19)

Similarly, since each `q norm is the support function of the unit ball for the dual
norm `q̄, with 1/q + 1/q̄ = 1,

‖ · ‖1 = δ(·|B∞), ‖ · ‖2 = δ(·|B2)

we have (see Hiriart-Urruty and Lemaréchal, 1993b, pp. 97)

∂εδ(d, C) = {s ∈ C : δ(d, C) ≤ s′d+ ε}, ε ≥ 0.
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Then, we obtain the expression for the ε-subgradient of a norm:

∂ε‖d‖q = {s ∈ Bq̄ : ‖d‖q ≤ s′d+ ε}.

Note that by Hölder inequality s′d ≤ ‖s‖q̄‖d‖q. Thus, for s ∈ Bq̄, s′d ≤ ‖d‖q, and
in the particular case ε = 0 we have an equality:

∂‖d‖q = {s ∈ Bq̄ : ‖d‖q = s′d}.

An interesting fact about ε-subgradients of norms, emanating directly from the later
characterization, is that, for any ε ≥ 2‖ς‖1,

∂ε‖ς‖2 = B2, and ∂ε‖ς‖1 = B∞.

This will be useful since for dc. programs there exist global optimality conditions
which are stated precisely in terms of ε-subgradients.

Proposition 5 A feasible matrix Z ∈ ∆ is a global optimum of problem (II.3.16)
if, for every 0 ≤ ε ≤ 2‖ς‖1, where ς is the vector of singular values of Z, there exist
ε1, ε2 satisfying ε1 + ε2 = ε, and vectors λ ∈ Nε2, µ ∈ Rm+2 and ν ∈ Rnc such that,

AZ = 0, (II.3.20)
A∗1µ+A∗2ν + Λ + α∂ε/α‖Z‖F ⊂ {A0}+ α∂ε1/α‖Z‖∗, (II.3.21)

D(ν)(b−A2Z) ≤ ε2, (II.3.22)

where Nε2 is the set of all vectors ξ ∈ Rn whose components verify:

ξj ∈


{0} if 0 < Zj1 < 1,

(−∞, ε2] if Zj1 = 0,

[−ε2,∞) if Zj1 = 1,

(II.3.23)

and Λ is as before.

Proof. Let us denote by H the kernel of the linear operator A1. Note that H is a
subspace of R(n+1)×(d+1). Then, rewrite the constraints of problem (II.3.16) using
indicator functions, defined as

IE(x) =

{
0 if x ∈ E,
+∞ if x /∈ E,

our problem becomes

min [α‖Z‖∗ + IH(Z) + I∆(Z)]− [α‖Z‖F + 〈−A0, Z〉] .

This is a dc program without constraints, whose global optimality conditions are

∂ε [α‖Z‖F + 〈−A0, Z〉] ⊆ ∂ε
[
α‖Z‖∗ + I{f}+H(Z) + I∆(Z)

]
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by using Hiriart-Urruty and Lemaréchal (1993b, Prop. XI.1.3.1.(ii) and (vi)) we
see that the left-hand of the inclusion equals −A0 + α∂ε/α‖Z‖F . For the right-hand
side, we have from Hiriart-Urruty and Lemaréchal (1993b, Prop. XI.1.3.2), that for
Z ∈ {f}+H

∂ε(‖Z‖∗ + I{f}+H(Z)) = ∂ε‖Z‖∗ +H⊥.

Then, since dom(‖ · ‖∗ + I{f}+H) ∩ dom(I∆) 6= ∅, we can apply Hiriart-Urruty and
Lemaréchal (1993b, Theo. XI.3.1.1.) to obtain,

∂ε [α‖Z‖∗ + IH(Z) + I∆(Z)] =
⋃

ε1+ε2=ε

(
α∂ε1/α‖Z‖∗ + ∂ε2I∆

)
+H⊥.

The final form follows by using that ker(A1)⊥ = Im(A∗1), and that ∂ε2I∆(Z) =
Λ +A∗2ν.
2

Note that in obtaining such a “closed” form of the global optimality conditions
we have greatly benefited from the linear structure of our problem, since ∂ε is a
singleton only for affine functions (cf. Hiriart-Urruty and Lemaréchal, 1993b, prop.
1.2.4).

Just to illustrate the mechanism, let us consider the toy example of pure rank
minimization over non-zero matrices:

min
R∈Rn×d\{0}

‖R‖∗ − ‖R‖F ,

whose solution set is obviously the ray of rank-one matrices. The global optimality
condition reads:

∂ε‖Z‖F ⊂ ∂ε‖Z‖∗.

Let Z = UD(ς)V ′ be a non-optimal candidate, then there exists ε > 0 such that

∂ε‖Z‖F \ ∂ε‖Z‖∗ 6= ∅,

this can occur only if
∂ε‖ς‖2 \ ∂ε‖ς‖1 6= ∅,

and
s ∈ ∂ε‖ς‖2 \ ∂ε‖ς‖1 =⇒ s ∈ B2, ‖ς‖2 ≤ s′ς + ε ≤ ‖ς‖1

but we know that in general ‖ς‖2 ≤ ‖ς‖1 with equality only if ς has at most one
non-zero component.

Proposition 5 is not directly related to the original problem (II.1.5), since it
gives a characterization of the global optimum of a transformation of the same
problem with the integer constraint relaxed. Its interest comes mainly from a global
optimization viewpoint, because it gives global optimality conditions for bilinear
problems, for which the SDP relaxation does not apply directly.
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Conclusions and perspectives

We have studied some global optimization problems involved in the computation of
high breakdown point regression estimators. Due to their advantageous statistical
properties, we consider robust estimators based on M -scales and robust estimators
based on L-scales. Robust estimators based on M -scales, and more particularly τ -
estimators of regression, can be tuned to have the desired breakdown point and also
the desired efficiency, therefore they are preferable from a statistical point of view. A
closer look shows that the efficiency of τ -estimators is obtained by giving a positive
weight to every observation with small scaled residuals. In contrast, estimators based
in L-scales trim a fraction of the observations independently of the value of their
residuals. However, in practice the rigidity of the L-scales gives to the optimization
problem a combinatorial structure that permits, time considerations aside, to find a
global optimum. Concerning robustness, for the LTS estimator the number of leaves
in the branch-and-bound tree equals

(
n
h

)
, and is maximal for h ∼ n/2, which gives

the maximal breakdown point. In general, better estimators involve more difficult
global optimization problems.

The first part of the thesis is devoted to the approximation of τ -estimators for
robust regression. Considering factors such as the non existence of a characterization
for the global optimum of the associated optimization problem and the unbound-
edness of the feasible domain that impedes an exhaustive inspection, we decided
to study two-steps stochastic algorithms based on random subsampling and local
searches that permit to take advantage of the differentiability of the problem. In
Flores (2010), after reviewing existing algorithms for approximating τ -estimators
and observing that most of them can be seen as restricted versions of clustering
global optimization algorithms, we investigate the impact of incorporating cluster-
ing techniques and stopping conditions. The main conclusions of these extensive
numerical tests are that stopping conditions improve the efficiency of existing algo-
rithms, while clustering techniques work well in low dimension, but they harm the
efficacy of the algorithm in middling and high dimension. The disappointing behav-
ior of clustering techniques in moderate dimension led us to further investigate the
reasons thereof in Chapter I.3. Since most clustering global optimization algorithms
rely in some way on the nearest neighbor, we payed particular attention to the gap
phenomenon affecting the notion of nearest neighbor in high dimension. We show
how the quantile order of distances to points in the sample acts as an index in [0, 1],
equal to 0 for multistart and equal to 1 for best start, and that the gap phenomenon
pushes algorithms to take extreme values and behave therefore as MS or BS. We
propose as an alternative to replace distance thresholds by quantiles. The main
strength of this approach, that motivates further research, is that it is independent
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of the dimension, the feasible domain and the sampling distribution.
Concerning this last point, it is worth to note that clustering global optimization

algorithms performing a concentration step (that consists in applying a few iterations
of a local minimization routine to each sampled point, see Törn and Žilinskas (1989)),
that performed very well in our tests of Chapter I.2, have been very little studied;
mainly because the sample after the concentration steps is no longer uniformly
distributed.

The choice of the sequence of quantile orders that characterizes the QGO al-
gorithm remains as an open question. Guidelines for choosing such sequences are
needed; the main difficulty in doing so is that our proposal consists not only in
replacing radius by quantiles, but also in using more and more global information
as the number of iterations increases. As a consequence, local techniques such as
Taylor expansions will not be useful for the asymptotic analysis of the algorithm.

The key points of the first part are:

• We position the existing algorithms in the context of clustering global opti-
mization.

• We introduce inexact iterations for accelerating the search for local minima.

• We perform extensive numerical tests in order to evaluate the impact of stop-
ping conditions and of clustering techniques in existing algorithms for approx-
imating the τ -estimator.

• We investigate the consequences of the gap phenomenon in clustering global
optimization algorithms.

• We prove the convergence of a new clustering-type algorithm intended to be
independent of the dimension, the optimization domain and the sampling dis-
tribution.

The main research direction emanating from the work in this part is undoubtedly
the search for some criteria permitting to find “good” quantile order sequences for
the QGO algorithm. At a longer term, what is needed is a better understanding
of the consequences of the interactions between sampling distribution and feasible
domain, such as the concentration of measures mentioned at the end of Chapter I.3.

The second part of the thesis is devoted to deterministic algorithms for com-
puting the least trimmed squares regression estimator, which is defined through a
nonlinear mixed-integer program. Due to the combinatorial nature of this prob-
lem, we concentrated on obtaining lower bounds to be used in a branch-and-bound
algorithm. It is known that the associated problem can be written as a concave
minimization problem over a polyhedral domain. Under this formulation, we obtain
a closed-form expression for concavity cuts, that can be derived at a negligible com-
putational cost. We also perform some preliminary numerical tests showing that
concavity cuts eliminate a considerable fraction of the vertices of the feasible poly-
hedron, which could considerably tighten lower bounds obtained from relaxations of
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the problem. Then, we show that the same problem can also be cast as a bilinear
program with bilinear constraints, and study the associated positive-semidefinite
and second-order cone programming relaxations. The last section deviates a few
from the original motivation, and is devoted to global optimality conditions for the
bilinear problem lifted into a matrix space. Before that, we introduce and study a
continuous minorant of the rank function that deserves attention by its own, and
we derive alternative formulations of some constraints involving the rank function
as difference-of-convex (dc) or reverse convex constraints. Finally, we use the dc
formulation of the rank-one constraint to obtain global optimality conditions for the
bilinear problem.

The key points of the second part are:

• We obtain explicit concavity cuts.

• We give a reformulation of the original mixed-integer nonlinear problem as a
bilinear problem with bilinear constraints.

• We propose a second-order cone programming relaxation to obtain lower bounds
to be used in a branch-and-bound algorithm, reinforced by concavity cuts.

• We conduct a study of rank constraints, obtaining dc and reverse convex for-
mulations of them.

• We obtain global optimality conditions for the bilinear problem.

We would have loved to test the tightness of the second-order cone programming
relaxation in practice through numerical experiments, but unfortunately this (time-
consuming!) task will remain at the place number one of the ToDo list. We expect
to continue with the research lines that led to the reformulations of rank constraints,
as we hope to contribute to the rapidly growing topic of rank optimization.

Let us conclude by mentioning the possible extensions of the work in this thesis to
the computation of robust estimators for multivariate analysis. The experience with
two-steps algorithms of Chapter I.2 will be very valuable for devising approxima-
tion algorithms for τ -estimators of multivariate location and scatter. In fact, some
advances in this direction have been made during a stay of the author at the De-
partment of statistics of the University of British Columbia in Vancouver, Canada.
That piece of work (still in progress), in collaboration with Matias Salibian-Barrera
and Ruben Zamar, led us to identify some issues specific to the multivariate case.
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