
HAL Id: tel-01935719
https://theses.hal.science/tel-01935719v1

Submitted on 27 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The limits of Nečiporuk’s method and the power of
programs over monoids taken from small varieties of

finite monoids
Nathan Grosshans

To cite this version:
Nathan Grosshans. The limits of Nečiporuk’s method and the power of programs over monoids taken
from small varieties of finite monoids. Other [cs.OH]. Université Paris Saclay (COmUE); Université
de Montréal (1978-..), 2018. English. �NNT : 2018SACLN028�. �tel-01935719�

https://theses.hal.science/tel-01935719v1
https://hal.archives-ouvertes.fr


NNT: 2018SACLN028

The limits of Nečiporuk’s method and
the power of programs over monoids

taken from small varieties of finite
monoids

Thèse de doctorat de l’Université Paris-Saclay, préparée à l’École
Normale Supérieure de Cachan et de l’Université de Montréal

École doctorale n°580 : Sciences et technologies de l’information
et de la communication

Faculté des arts et des sciences, Département d’Informatique et
de Recherche Opérationnelle

Spécialité de doctorat : Informatique

Thèse présentée et soutenue à Cachan, le 25 septembre 2018, par

Grosshans Nathan

Composition du jury :

Diekert Volker Professeur, Universität Stuttgart Rapporteur / Examinateur externe
Függer Matthias Chargé de recherche, CNRS Examinateur / Membre du jury
Hamel Sylvie Professeur, Université de Montréal Présidente / Présidente-rapporteuse
McKenzie Pierre Professeur, Université de Montréal Directeur de thèse
Segoufin Luc Directeur de recherche, INRIA Directeur de thèse
Zeitoun Marc Professeur, Université de Bordeaux Rapporteur / Examinateur externe





Résumé

Cette thèse porte sur des minorants pour des mesures de complexité liées à des sous-classes de la classe P de langages pouvant
être décidés en temps polynomial par des machines de Turing. Nous considérons des modèles de calcul non uniformes tels
que les programmes sur monoïdes et les programmes de branchement.

Notre première contribution est un traitement abstrait de la méthode de Nečiporuk pour prouver des minorants,
indépendamment de toute mesure de complexité spécifique. Cette méthode donne toujours les meilleurs minorants connus
pour des mesures telles que la taille des programmes de branchements déterministes et non déterministes ou des formules
avec des opérateurs booléens binaires arbitraires ; nous donnons une formulation abstraite de la méthode et utilisons ce cadre
pour démontrer des limites au meilleur minorant obtenable en utilisant cette méthode pour plusieurs mesures de complexité.
Par là, nous confirmons, dans ce cadre légèrement plus général, des résultats de limitation précédemment connus et exhibons
de nouveaux résultats de limitation pour des mesures de complexité auxquelles la méthode de Nečiporuk n’avait jamais été
appliquée.

Notre seconde contribution est une meilleure compréhension de la puissance calculatoire des programmes sur monoïdes
issus de petites variétés de monoïdes finis. Les programmes sur monoïdes furent introduits à la fin des années 1980 par
Barrington et Thérien pour généraliser la reconnaissance par morphismes et ainsi obtenir une caractérisation en termes de
semi-groupes finis de NC1 et de ses sous-classes. Étant donné une variété V de monoïdes finis, on considère la classe P(V)

de langages reconnus par une suite de programmes de longueur polynomiale sur un monoïde de V : lorsque l’on fait varier
V parmi toutes les variétés de monoïdes finis, on obtient différentes sous-classes de NC1, par exemple AC0, ACC0 et NC1

quand V est respectivement la variété de tous les monoïdes apériodiques finis, résolubles finis et finis. Nous introduisons
une nouvelle notion de docilité pour les variétés de monoïdes finis, renforçant une notion de Péladeau. L’intérêt principal
de cette notion est que quand une variété V de monoïdes finis est docile, nous avons que P(V) contient seulement des
langages réguliers qui sont quasi reconnus par morphisme par des monoïdes de V. De nombreuses questions ouvertes à
propos de la structure interne de NC1 seraient réglées en montrant qu’une variété de monoïdes finis appropriée est docile,
et, dans cette thèse, nous débutons modestement une étude exhaustive de quelles variétés de monoïdes finis sont dociles.
Plus précisément, nous portons notre attention sur deux petites variétés de monoïdes apériodiques finis bien connues : DA
et J. D’une part, nous montrons que DA est docile en utilisant des arguments de théorie des semi-groupes finis. Cela nous
permet de dériver une caractérisation algébrique exacte de la classe des langages réguliers dans P(DA). D’autre part, nous
montrons que J n’est pas docile. Pour faire cela, nous présentons une astuce par laquelle des programmes sur monoïdes de
J peuvent reconnaître beaucoup plus de langages réguliers que seulement ceux qui sont quasi reconnus par morphisme par
des monoïdes de J. Cela nous amène à conjecturer une caractérisation algébrique exacte de la classe de langages réguliers
dans P(J), et nous exposons quelques résultats partiels appuyant cette conjecture. Pour chacune des variétés DA et J, nous
exhibons également une hiérarchie basée sur la longueur des programmes à l’intérieur de la classe des langages reconnus par
programmes sur monoïdes de la variété, améliorant par là les résultats de Tesson et Thérien sur la propriété de longueur
polynomiale pour les monoïdes de ces variétés.

Mots-clés Complexité algorithmique, minorants, Nečiporuk, programmes sur monoïdes, DA, J
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Abstract

This thesis deals with lower bounds for complexity measures related to subclasses of the class P of languages that can
be decided by Turing machines in polynomial time. We consider non-uniform computational models like programs over
monoids and branching programs.

Our first contribution is an abstract, measure-independent treatment of Nečiporuk’s method for proving lower bounds.
This method still gives the best lower bounds known on measures such as the size of deterministic and non-deterministic
branching programs or formulæ with arbitrary binary Boolean operators; we give an abstract formulation of the method
and use this framework to prove limits on the best lower bounds obtainable using this method for several complexity
measures. We thereby confirm previously known limitation results in this slightly more general framework and showcase
new limitation results for complexity measures to which Nečiporuk’s method had never been applied.

Our second contribution is a better understanding of the computational power of programs over monoids taken from
small varieties of finite monoids. Programs over monoids were introduced in the late 1980s by Barrington and Thérien as
a way to generalise recognition by morphisms so as to obtain a finite-semigroup-theoretic characterisation of NC1 and its
subclasses. Given a variety V of finite monoids, one considers the class P(V) of languages recognised by a sequence of
polynomial-length programs over a monoid from V: as V ranges over all varieties of finite monoids, one obtains different
subclasses of NC1, for instance AC0, ACC0 and NC1 when V respectively is the variety of all finite aperiodic, finite solvable
and finite monoids. We introduce a new notion of tameness for varieties of finite monoids, strengthening a notion of
Péladeau. The main interest of this notion is that when a variety V of finite monoids is tame, we have that P(V) does
only contain regular languages that are quasi morphism-recognised by monoids from V. Many open questions about the
internal structure of NC1 would be settled by showing that some appropriate variety of finite monoids is tame, and, in this
thesis, we modestly start an exhaustive study of which varieties of finite monoids are tame. More precisely, we focus on two
well-known small varieties of finite aperiodic monoids: DA and J. On the one hand, we show that DA is tame using finite-
semigroup-theoretic arguments. This allows us to derive an exact algebraic characterisation of the class of regular languages
in P(DA). On the other hand, we show that J is not tame. To do this, we present a trick by which programs over monoids
from J can recognise much more regular languages than only those that are quasi morphism-recognised by monoids from
J. This brings us to conjecture an exact algebraic characterisation of the class of regular languages in P(J), and we lay out
some partial results that support this conjecture. For each of the varieties DA and J, we also exhibit a program-length-
based hierarchy within the class of languages recognised by programs over monoids from the variety, refining Tesson and
Thérien’s results on the polynomial-length property for monoids from those varieties.

Keywords Computational complexity, lower bounds, Nečiporuk, programs over monoids, DA, J
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Introduction

The general framework. The theory of computation is the branch of mathematics1

that seeks to understand the foundations of computation. That branch was born during
and as a consequence of the early 20th century foundational crisis of mathematics, when
the need arose for mathematicians to formalise and understand precisely the notion of
an algorithm, informally an effective procedure defining a sequence of operations carrying
out a computation. Formalising computation hinges on models of computation, classes of
mathematical objects that each implement a computational strategy built from element-
ary computational steps. A computation is then a particular rolling out of such a strategy
given a certain mathematical object as input, which it transforms into a certain math-
ematical object called output. A given computational strategy therefore computes some
transformation of a set of mathematical objects into another such set. It should be clear
that the notion of computation depends on the model of computation. To each model of
computation, we can also associate one or more complexity measures: each of them re-
lies on some measure of computational cost associated to any computational strategy of
this model, and gives for any transformation (often restricted to be of a certain type), the
minimum cost of a computational strategy of this model computing that transformation.

A central example of a model of computation is the Turing machine: such a machine
has a read/write head and a register holding one of finitely many possible states. The
head points to a cell on an infinite one-dimensional discrete tape made of cells, each
containing a letter taken from a finite set (called an alphabet). At each step, the head
is positioned on a certain cell, reading some letter, and the register holds a certain state;
following a finite set of rules, depending on this letter and this state, the machine then
carries out the step by changing the state in its internal register, writing a letter in the cell
the head is currently on and moving its head one cell to the left or one cell to the right. A
computation is then the sequence of steps the machine does starting at an initial position,
holding an initial state in its internal register and with the input tape initialised to some

1If we consider theoretical computer science as being a branch of mathematics.



input and stopping in some final state. Two essential examples of associated complexity
measures are those based, respectively, on the notion of time (the number of steps done
by the machine for a given computation) and the notion of space (the number of cells used
by the machine for a given computation). Decision problems, in which given some input,
one shall give a yes/no answer as to whether this input verifies some property, are central
in the theory of computation. This is why the transformations we are mostly interested
in are those that correspond to the indicator function of some language (a set of words
over some given alphabet), that tells, for each word over the associated alphabet, whether
the word belongs to the language or not. When some computational strategy of a given
model of computation computes the indicator function of a language, we say it decides
that language.

Two important branches in the theory of computation are:

• computability theory, that seeks to understand, given a certain model of computa-
tion, what transformations can be computed by a computational strategy from this
model;

• computational complexity theory, that seeks to understand, given a certain model
of computation and an associated complexity measure, how efficiently, in terms of
computational cost (given by this measure), a transformation can be computed by
a computational strategy from this model.

This Ph.D. thesis deals with a subject rooted at the heart of the second aforementioned
branch. More precisely, a central question in computational complexity theory is to
understand the relationship between the class L of languages that can be decided by
Turing machines using an amount of space that is upper bounded logarithmically in
the length of the input word and the class P of languages that can be decided by Turing
machines using an amount of time that is upper bounded by a polynomial in the length
of the input. It is well known that L ⊆ P, but almost nothing is known about the reverse
inclusion, though it is widely believed not to hold.

A way to prove that P * L would be to show strong enough lower bounds on the size
of branching programs deciding some explicit language in P. A branching program on
binary words of length n is a directed acyclic graph with one source and two sink vertices,
one labelled 0, the other labelled 1, each internal node labelled by some position in the
input and having exactly two outgoing arcs, one labelled 0 and the other one labelled 1.
A certain input word then yields a unique path in that branching program that either
goes to the sink vertex labelled 0 (rejection) or to the sink vertex labelled 1 (acceptance).
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The fundamental measure of computational cost of a branching program is its size, the
number of its non-sink vertices. All this can easily be generalised to an arbitrary alphabet.
To decide a language of words of arbitrary length, we then provide a sequence of branching
programs, each deciding the restriction of that language to words of a different length; this
is why this model of computation is said to be non-uniform, as opposed to uniform models
of computation like Turing machines, verifying that we provide a sole computational
strategy for deciding a given language of words of arbitrary length. The measure of size
associated with that model is, for a given language, the function giving for each possible
input length the minimum size of any branching program deciding the restriction of that
language to words with that given length. The model of branching programs is another
well-studied model of computation and the complexity measure of size in this model
captures precisely the measure of space in the model of Turing machines, in that if a
language is decided by a Turing machine using space at most s(n) on any input word
of length n (s : N → N being a function satisfying some mild conditions), then it can
be decided by a sequence of branching programs, the one for length n ∈ N input words
being of size at most 2α·s(n) for some constant α ∈ R>0. Thus, proving a super-polynomial
lower bound on the size of branching programs deciding some explicit language in P would
separate the latter from L, because it would imply a super-logarithmic lower bound on
the amount of space used by any Turing machine deciding that language.

Although the branching program model is combinatorially simpler to handle than the
Turing machine model, such a lower bound is currently far out of reach, and a lower
bound in Θ(n2/ log2 n) is still the best we have been knowing for more than 50 years.
This state of affairs is similar to the case of the most common non-uniform models of
computation based on circuits. The latter have been the most studied non-uniform models
of computation because the measure of size of circuits with NOT and OR, AND gates
of fan-in 2 captures precisely the measure of time in the model of Turing machines, thus
giving a way to attack the most famous (and, perhaps, most fundamental) open question
in computational complexity theory: understanding the relationship between P and the
class NP of languages that can be decided by non-deterministic Turing machines using
an amount of time that is upper bounded by a polynomial in the length of the input.
Unfortunately, not even a super-linear lower bound on the size of such circuits is known,
while a super-polynomial lower bound on the size of such circuits deciding some explicit
language in NP would be needed.

This is, especially since the 1980s, why computational complexity theorists have mostly
focused on size lower bounds for circuits, branching programs and other related non-
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uniform models of computation on which some restrictions have been placed, in the hope
that proving such lower bounds would give new ideas to prove size lower bounds for the
unrestricted models. This approach has been rather successful, leading to some funda-
mental results in computational complexity theory, even if the aforementioned ultimate
hope failed to materialise for the moment (and still seems well out of reach). The present
Ph.D. thesis is a modest contribution to the advancement of that strand of research in
computational complexity theory.

Nečiporuk’s method. As pointed out earlier, the best lower bound known for the
size of branching programs deciding a language in NP is still, at the time of writing
of this thesis, the one proved by Nečiporuk more than 50 years ago Nečiporuk [1966],
that is in Θ(n2/ log2 n). Nečiporuk implicitly used a technique that has later on been
explicitly identified, defined and applied to several other complexity measures for different
models of computation, and also been exposed in several classical textbooks Savage [1976],
Wegener [1987, 2000], Jukna [2012]. The first contribution of this thesis is a formulation of
Nečiporuk’s lower bound method upstream from any specific complexity measure (which
had never been done systematically before) and the analysis of the limitations of the
method (in terms of the best lower bound obtainable) induced by upper bounds on the
complexity of deciding one specific language. This framework is then used to apply the
method and show its limitations for both classical computational models and associated
complexity measures as well as variants of those never studied before. In the end, in
this slightly more general framework, well-known lower bounds and limitation results are
reproved and new ones are shown.

Programs over monoids. The remainder of this Ph.D. thesis then concentrates on
one specific restricted variant of branching programs. Among the variants studied by
computational complexity theorists, bounded-width branching programs appeared to be of
particular interest, especially starting from the moment at which Barrington Barrington
[1989] proved the unexpected result that bounded-width polynomial-size branching pro-
grams decide all languages in NC1. NC1 is the class of languages decided by polynomial-
size logarithmic-depth circuits with NOT and OR, AND gates of fan-in 2, a central and
well-studied complexity class based on circuits whose depth has been restricted. Its inclu-
sion into L when considering an appropriate uniform variant is probably strict, but it is
still not excluded that NP ⊆ NC1. A wealth of the major lower bound results on the size
of restricted variants of circuits were obtained for variants in which circuits are required
to be of constant depth, variants which all correspond to important subclasses of NC1.
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As a direct follow-up of that result and its proof, Barrington and Thérien Barrington and
Thérien [1988] introduced the program-over-monoid model. Given some finite monoid
(M, ∗) and an alphabet Σ, an (M, ∗)-program P over Σ for input length n is simply a
sequence of instructions

(i1, f1)(i2, f2) · · · (il, fl) ,

where for each j, ij indicates some position in the input and fj associates an element of
M to each element of Σ. That way, P associates to each input word w over Σ of length
n a unique element of M ,

P (w) = f1(wi1) ∗ f2(wi2) ∗ · · · ∗ fl(wil) .

A language of words in Σn is then recognised by P if and only if it is equal to the set of
words in Σn to which the program P associates an element in some subset F of M . A
language of words of arbitrary length is for its part recognised by a sequence of (M, ∗)-
programs.

This model of computation and notion of recognition can be seen as a generalisation
of the notion of recognition through morphisms into finite monoids, a notion at the very
basis of algebraic automata theory. As for the case of classical recognition through such
morphisms, we are usually interested in the class of languages recognised by a sequence
of (M, ∗)-programs where (M, ∗) is a finite monoid drawn from some variety of finite
monoids V (such a variety being a class of finite monoids closed under direct product
and division, two basic operations on monoids). The striking result proved by Barrington
and Thérien (and in some following papers) is that NC1 and almost all of its well-known
subclasses (with the notable exception of TC0) can each be characterised as some class
P(V) of languages recognised by sequences of polynomial-length programs over monoids
taken from such a variety V. For instance, let us consider AC0, the class of languages
decided by polynomial-size constant-depth circuits with NOT and OR, AND gates of
unbounded fan-in, and ACC0 the same class with the addition of modular counting gates
— two of the most important subclasses of NC1. Then, we have that NC1, ACC0 and AC0

contain, respectively, exactly those languages recognised by polynomial-length programs
over monoids from the variety of all finite monoids, of finite solvable monoids and of finite
aperiodic monoids. In algebraic automata theory, lots of techniques have been developed
since the 1960s to characterise algebraically classes of regular languages by the varieties
of finite monoids recognising them through morphisms. The hope was, and still is, that
those would be generalisable to recognition through programs and help to tackle open
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computational-complexity-theoretic questions related to NC1 and its inner structure; or,
at least, lead to new semigroup-theoretic proofs of well-known results in that realm. The
most prominent and fundamental of these results is the one stating that for all m ≥ 2,
the language MODm of words over {0, 1} containing a number of 1s not divisible by m is
not in AC0.

But none of these hopes materialised for the moment, at the time of writing of this
thesis. As already explained for the case of lower bounds on the sizes of (unrestricted)
circuits, branching programs and other related non-uniform models of computation, one
general approach one can follow in face of such difficulties is to focus on more restricted
models and try to accumulate knowledge and techniques that could help in the unrestric-
ted setting. The program-over-monoid formalism offers a straightforward way to restrict
the power of the model, simply by restricting the “algebraic power” at hand by consider-
ing programs over monoids taken from some “small” (in the sense of inclusion) varieties;
the hope is then to reuse what we learn by studying the power of programs over monoids
taken from these “small” varieties when conducting that study with bigger varieties like
those given just above. The study of the expressiveness of programs over “small” variet-
ies of finite monoids also leads to questions interesting in their own right, often related
to algebraic automata theory and logic. Several previous works have followed that line
of research (e.g. Barrington et al. [1990], Gavaldà and Thérien [2003], Lautemann et al.
[2006], Maciel et al. [2000], McKenzie et al. [1991], Tesson and Thérien [2001]).

The second contribution of this Ph.D. thesis is twofold: at a general level, the in-
vestigation of a general property of the class of regular languages contained in P(V) for
any variety of finite monoids V; at a more specific level, the study of each of the case
V = DA and V = J, two well-known subvarieties of that of finite aperiodic monoids, im-
portant in algebraic automata theory and related fields. Exactly characterising the class
of regular languages in P(V) as V ranges over all possible varieties of finite monoids is
a fundamental task because, as shown in McKenzie et al. [1991], two classes P(V) and
P(W) are equal if and only if they contain exactly the same regular languages. Drawing
inspiration from the work of Péladeau, Straubing and Thérien Péladeau et al. [1997] for
programs over semigroups taken from finite semigroup varieties of a certain form, a new
notion of tameness of a variety of finite monoids V is introduced, that basically captures
the property that, for monoids stemming from this variety, recognition by polynomial-
length programs does not allow to recognise unexpectedly more regular languages than
classical morphism recognition.

The rest of the thesis then first shows that DA is tame, thus deriving an exact algebraic
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characterisation of the class of regular languages belonging to P(DA). Additionally,
other properties of independent interest concerning P(DA) are shown. The thesis at
last turns to J, the variety of so-called finite J-trivial monoids, a notable example of a
variety of finite monoids which is proven not to be tame. This means, most importantly,
that polynomial-length programs over monoids in J can recognise “much more” regular
languages than when only considering classical morphism recognition through monoids
in J. The sizeable last chapter in this thesis develops (yet unpublished) partial results
towards an algebraic characterisation of the class of regular languages belonging to P(J)
(along with some distinct small results about P(J)).

Outline of the thesis. This manuscript is organised as follows. This introduction
is followed by Chapter 1, whose aim is to introduce the basic notions used throughout
the thesis, give a brief history of computational complexity theory and precisely set the
scientific context of the thesis. Chapter 2 is dedicated to the work on Nečiporuk’s lower
bound method. Chapter 3 then moves on to give the necessary background in algebraic
automata theory before introducing the program-over-monoid formalism, giving some
general properties about it and examining its behaviour with respect to regular languages,
notably introducing the notion of tameness of a variety of finite monoids. Finally, building
on this, Chapter 4 and Chapter 5 deal with the computational power of polynomial-length
programs over monoids taken from DA and J, respectively. The thesis concludes with a
summary of the findings it presents and a list of ideas for future directions along the lines
of the work it reports.

Publications. The present Ph.D. thesis is partly based on two scientific publications:

• Beame et al. [2016], a journal article published in ACM ToCT the thesis’ author
co-wrote with Paul Beame and his two Ph.D. advisors, Pierre McKenzie and Luc
Segoufin, that in overwhelming majority corresponds to the contents of Chapter 2
as is;

• Grosshans et al. [2017], a conference article presented at the MFCS 2017 conference
the thesis’ author co-wrote with his two Ph.D. advisors, that forms the basis of
Subsection 3.4.2 in Chapter 3 and of Chapter 4.
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Chapter 1

Languages and computation

In this first chapter, we set the necessary mathematical background on which this Ph.D.
thesis relies as a whole, formalising most of the concepts mentioned in the introduction.
We then give a short history of the field of computational complexity theory, laying out
the context in which this thesis fits.

1.1 Some mathematical conventions

We start reviewing some conventions and notations that we will use throughout this thesis.

Sets. We will denote by N the set of all natural numbers (including 0), by Z the set of
all integers and R the set of all real numbers. For E any of these sets, E>0 shall denote
the set of positive numbers in E and E≥0 the set of non-negative numbers in E. Given
some positive natural number d, we shall denote by Z/dZ = {0, . . . , d − 1} the set of
integers modulo d. For n,m ∈ N, we denote by [[n,m]] the set of natural numbers from
n to m, which is empty if m < n. We also denote by [n] the set of integers from 1 to n,
i.e. [[1, n]], using the convention that [0] = ∅. For some set E, we will denote by P(E)

the powerset of E, i.e. the set of all subsets of E. For two sets E1 and E2, E1 ⊂ E2 shall
denote strict inclusion, and E1 ⊆ E2 inclusion or equality.

Indexed families. Let V be a subset of N. We view u ∈ EV as a sequence (ui)i∈V of
elements ui ∈ E for all i ∈ V . For all n ∈ N, we won’t also make the difference between
En and E[n].



Functions. For X some set, we shall denote by idX : X → X the identity function on
X, i.e. defined by idX(x) = x for all x ∈ X. Given a function f : X → Y from a set X to
a set Y and a subset S ⊆ X of X, we will denote by f |S : S → Y the restriction of f to
S, defined by f |S(x) = f(x) for all x ∈ S, and by f(S) = {f(x) | x ∈ S} the image of S
by f . We shall also denote by Im(f) the image of E by the function f , i.e. f(X). Given
T ⊂ Y , we will denote by f−1(T ) = {x ∈ X | f(x) ∈ T} the inverse image of T by f and
shall write f−1(y) when T is the singleton {y}.

Given two functions f : X → Y and g : Y → Z where X, Y and Z are sets, we will
denote by g ◦ f : X → Z the function obtained by composition of f and g, defined by
(g ◦ f)(x) = g(f(x)) for all x ∈ X. When X = Y , for each n ∈ N, we shall denote by
fn : X → X the composition of n copies of f , defined by

fn =

fn−1 ◦ f if n > 0

idE if n = 0
.

For all b ∈ R>0, the base b logarithm function will be denoted by logb.

Equivalence relations. Given an equivalence relation E ⊆ E × E on a set E, we will
denote by [e]E = {e′ ∈ E | e E e′} the equivalence class of e ∈ E relative to E and
E/E = {[e]E | e ∈ E} the quotient of E by E (the set of equivalence classes in E relative
to E).

Landau symbols. We will also use the following common Landau symbols. Let f : N →
R≥0 and g : N → R≥0, we will write:

• f(n) ∈ O(g(n)) if and only if there exist α ∈ R>0 and n0 ∈ N such that for all
n ∈ N, n ≥ n0 we have f(n) ≤ α · g(n);

• f(n) ∈ o(g(n)) if and only if for all α ∈ R>0, there exists n0 ∈ N such that for all
n ∈ N, n ≥ n0 we have f(n) ≤ α · g(n);

• f(n) ∈ Ω(g(n)) if and only if there exist α ∈ R>0 and n0 ∈ N such that for all
n ∈ N, n ≥ n0 we have f(n) ≥ α · g(n);

• f(n) ∈ ω(g(n)) if and only if for all α ∈ R>0, there exists n0 ∈ N such that for all
n ∈ N, n ≥ n0 we have f(n) ≥ α · g(n).

Given an additional function h : N → R≥0, we shall abuse notation by writing f(n) ∈
g(n)O(h(n)), f(n) ∈ g(n)o(h(n)), f(n) ∈ g(n)Ω(h(n)) or f(n) ∈ g(n)ω(h(n)) to express that
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there exists a function h′ : N → R≥0 respectly verifying h′(n) ∈ O(h(n)), h′(n) ∈ o(h(n)),
h′(n) ∈ Ω(h(n)) or h′(n) ∈ ω(h(n)) such that f(n) = g(n)h

′(n) for all n ∈ N.

1.2 Alphabets, words and languages

Let us start with the basics about alphabets, words and languages.

Alphabets and words The basic building block of languages is that of a letter, taken
from some alphabet.

Definition 1.2.1. An alphabet is a finite set of symbols, called letters.

Given an alphabet, we can define words by assembling letters from this one in a
sequence.

Definition 1.2.2. Let Σ be an alphabet.
A word w over (or on) Σ is a finite sequence of elements of Σ, i.e. an element of Σk for

some k ∈ N, and we say k is the length of the word w, written |w|. When k = 0, w is the
empty word, denoted by ε, the only element in Σ0, i.e. the empty sequence. Otherwise,
when k ∈ N>0, instead of (w1, . . . , wk), we usually write w1 · · ·wk.

We denote by Σ∗ the set of all words over Σ, i.e. Σ∗ =
⋃
k∈N Σ

k, and by Σ+ the set of
all non-empty words over Σ, i.e. Σ+ =

⋃
k∈N>0

Σk. For each l ∈ N, we also denote by Σ≤l

the set of all words over Σ of length at most l, i.e. Σ≤l =
⋃
k∈N,k≤l Σ

k.

Words can be combined by the operation of concatenation, that glues them together,
to obtain new words.

Definition 1.2.3. Let Σ be an alphabet. For words u ∈ Σk and v ∈ Σl (k, l ∈ N), we
denote by u · v or uv the word u · v = u1 · · ·ukv1 · · · vl in Σk+l which is the concatenation
of u and v.

We might from time to time need to talk about the letters that appear specifically in
a given word over some alphabet, and how many times each of those appears.

Definition 1.2.4. Let Σ be an alphabet. For a word w ∈ Σ∗, we will denote by alph(w)
the alphabet of w, i.e. the set of letters of Σ that appear in w. Given additionally some
specific letter a ∈ Σ, we will denote by |w|a the number of occurrences of the letter a in
w.
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Finally, another set of important notions is those talking about the different ways
some word can appear in another one, formalised below.

Definition 1.2.5. Let Σ be an alphabet and u, v  ∈ Σ∗ two words over Σ.

• We say that u is a subword of v if and only if v can be written as v = v0a1v1 · · · alvl
where l ∈ N, vi ∈ Σ∗ for all i ∈ [[0, l]] and u = a1 · · · al with ai ∈ Σ for all i ∈ [l]. For
all k ∈ N, k ≥ l, we also say that u is a k-subword of v.

• We say that u is a factor of v if and only if v can be written as v = v0uv1 where
v0, v1 ∈ Σ∗. Additionally, we say that u is a prefix of v if and only if v0 = ε, and
similarly we say that u is a suffix of v if and only if v1 = ε.

Languages Now that we have a notion of words, we can create collections of them to
form languages.

Definition 1.2.6. Let Σ be an alphabet. A language L over (or on) Σ is a set of words
over Σ, i.e. L ⊆ Σ∗. For any n ∈ N we define L=n = {w ∈ L | |w| = n} the set of words
(or finite language of words) of L of length n. Finally, we denote by χL : Σ∗ → {0, 1} the
indicator function of L, such that for all w ∈ Σ∗, χL(w) = 1 if and only if w ∈ L.

Remark 1.2.7. For a given alphabet Σ, we shall call the empty language ∅ and the full
language Σ∗ over Σ the trivial languages over Σ. Furthermore, given u ∈ Σ∗, we shall
sometimes, when the context is clear, write u for {u} (the language composed solely of
the word u).

Remark 1.2.8. We also could have chosen to have infinite alphabets or infinite words (or
both), but in this work, both will always be finite. In contrast, languages can be both
finite or infinite — and, in fact, we are usually interested in infinite languages.

A set of basic operations on languages to form new ones is the set of so-called Boolean
operations.

Definition 1.2.9. Let Σ be an alphabet.

• Let L ⊆ Σ∗ be a language over Σ. The complement of L (in Σ, but this is usually
clear from the context), denoted by L{, is the language L{ = Σ∗ \ L over Σ.

• Let L1, L2 ⊆ Σ∗ be two languages over Σ. The union (or sum) of L1 and L2, denoted
by L1 ∪L2 or L1 +L2, is simply the union of the two sets L1 and L2. Similarly the
intersection of L1 and L2, denoted by L1 ∩L2, is simply the intersection of the two
sets L1 and L2.
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• Let L1, . . . , Lk ∈ Σ∗ be k ∈ N>0 languages over Σ. A Boolean combination of
the languages L1, · · · , Lk is a language over Σ obtained by a finite combination of
unions, intersections or complements of these languages.

Another two basic operations operating on languages is the concatenation product
and the associated star operation.

Definition 1.2.10. Let Σ be an alphabet.

• Let L1, L2 ⊆ Σ∗ be two languages over Σ. The concatenation product (or product)
of L1 and L2, denoted by L1 · L2 or L1L2, is the language L1 · L2 = {w1 · w2 | w1 ∈
L1, w2 ∈ L2} over Σ.

• Let L ⊆ Σ∗ be a language over Σ. For all k ∈ N, the k-th power of L, denoted by
Lk, is the language Lk = L · L · · · · · L︸ ︷︷ ︸

k times

over Σ, using the convention that L0 = {ε}.

• Let L ⊆ Σ∗ be a language over Σ. The star of L, denoted by L∗, is the language
L∗ =

⋃
k∈N L

k over Σ. We also set L+ =
⋃
k∈N>0

Lk.

The last basic operation we may introduce is the quotient.

Definition 1.2.11. Let Σ be an alphabet. Let L ⊆ Σ∗ be a language over Σ. Given
some word u ∈ Σ∗, the left (right) quotient of L by u, denoted by u−1L (Lu−1), is the
language u−1L = {v ∈ Σ∗ | uv ∈ L} (Lu−1 = {v ∈ Σ∗ | vu ∈ L}) over Σ. For any subset
K ⊆ Σ∗ of words on Σ, the left (right) quotient of L by K, denoted by K−1L (LK−1), is
the language K−1L =

⋃
u∈K u

−1L (LK−1 =
⋃
u∈K Lu

−1) over Σ.

1.3 Models of computation and complexity classes

We now proceed to the definition of the main models of computation and associated
complexity classes used throughout this manuscript. The main references used here are
the book by Arora and Barak Arora and Barak [2009] and its French twin by Perifel Perifel
[2014].

1.3.1 Turing machines

For a formal definition of Turing machines, of computations performed on such machines
and of the notions of time and space taken by such computations, we refer the reader
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to Perifel [2014]. We shall abbreviate “deterministic Turing machine” by DTM and “non-
deterministic Turing machine” by NTM.

We define the usual Turing machine time and space complexity classes as follows. Let
f :  N → N, we define

• DTIME(f(n)) (NTIME(f(n))) as the class of all languages over any alphabet Σ that
are decided by a DTM (an NTM) running in time at most α ·f(|w|) (for all possible
executions) on any input w ∈ Σ∗, α ∈ R>0 being some constant depending only on
the DTM (the NTM);

• DSPACE(f(n)) (NSPACE(f(n))) as the class of all languages over any alphabet Σ

that are decided by a DTM (an NTM) halting and running in space at most α·f(|w|)
(for all possible executions) on any input w ∈ Σ∗, α ∈ R>0 being some constant
depending only on the DTM (the NTM).

We can now define the following well-known Turing machine complexity classes.

• The class of deterministic polynomial time P =
⋃
k∈N DTIME(nk).

• The class of non-deterministic polynomial time NP =
⋃
k∈N NTIME(nk).

• The class of deterministic logarithmic space L = DSPACE(log2(n)).

• The class of non-deterministic logarithmic space NL = NSPACE(log2(n)).

The models of DTMs and NTMs are uniform models of computation, because each
Turing machine works on input words of any length and to decide a language, one should
give a TM that works for all input lengths. As we shall see in the next subsection,
there also exist non-uniform models of computation where each associated computational
strategy works only on input words of a fixed length and to decide a language, one should
give a sequence of such computational strategies, one working for each possible input
length. To make the models based on Turing machines non-uniform, we can define the
notion of classes with advice.

Definition 1.3.1. Let f : N → N be a function and C a complexity class. Then we denote
C/f(n) the class of languages L over any alphabet Σ such that there exists a language K
over the alphabet Σ  ∪ {#} (where # is a new letter) and a sequence of words (un)n∈N

verifying that:

• un ∈ {0, 1}f(n) for all n ∈ N;
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• for all w ∈ Σ∗, w ∈ L if and only if w#u|w| ∈ K.

Of particular importance in our case will be the classes with polynomial length advice.

Definition 1.3.2. Let C be a complexity class. Then C/poly =
⋃
c,k∈N C/(c+ c · nk).

1.3.2 Circuits

The most important and common non-uniform models of computation are those based on
circuits.

Definition 1.3.3. Let Σ be an alphabet and Ω be a set of Boolean functions of the form
g : {0, 1}m → {0, 1} with m ∈ N>0. A circuit over basis Ω (or Ω-circuit) on ΣV , for some
finite set V ⊆ N, is a directed acyclic graph (whose vertices are also called gates) where

• there is a single sink vertex (also called output gate);

• every source vertex (also called input gate) is labelled by “xi ∈ Γ” for some i ∈ V

and Γ ⊆ Σ, or by one of the constants 0 and 1;

• every non-source vertex (also called internal gate) is labelled by some Boolean func-
tion g : {0, 1}m → {0, 1} (m ∈ N>0) from Ω and has exactly m predecessors, given
in a certain order.

The size of C, denoted by |C|, is the number of its non-source vertices, while the depth
of C, denoted by depth(C), is the length of the longest path from an input gate to the
output gate.

Given a non-output gate γ in C, we will call induced subcircuit of C at gate γ the
circuit over Ω on ΣV obtained from C by setting γ as the output gate and keeping only
the gates of C from which there exists a path to γ.

For each gate γ in C, we define fγ : ΣV → {0, 1} the function computed at gate γ in
the following way. For each w ∈ ΣV :

• if γ is an input gate labelled by “xi ∈ Γ” (i ∈ V and Γ ⊆ Σ), then fγ(w) = 1 if and
only if wi ∈ Γ, otherwise if γ is labelled by b ∈ {0, 1}, then fγ(w) = b;

• if γ is an internal gate labelled by g : {0, 1}m → {0, 1} (m ∈ N>0) and having
γ1, . . . , γm as predecessors, then fγ(w) = g(fγ1(w), . . . , fγm(w)).

C computes the function fo : Σ
V → {0, 1} where o is the output gate of C.
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Below we define how circuits decide languages and define complexity classes based on
the size and depth computational costs.

Definition 1.3.4. Let Σ be an alphabet. Let L ⊆ Σ∗ be a language on Σ. We say that
a sequence (Cn)n∈N of Ω-circuits (for some basis Ω) such that each Cn is on Σn for n ∈ N
decides L if and only if Cn computes χL|Σn for all n ∈ N.

Let Ω be some basis, as well as s : N → N and d : N → N two functions. We define
SIZE - DEPTHΩ(s(n), d(n)) (SIZEΩ(s(n)), DEPTHΩ(d(n))) as the class of languages L over
any alphabet Σ such that there exist a constant α ∈ R>0 and a sequence of Ω-circuits
(Cn)n∈N deciding L, where for all n ∈ N, |Cn| ≤ α · s(n) and depth(Cn) ≤ α · d(n)
(|Cn| ≤ α · s(n), depth(Cn) ≤ α · d(n)).

Let us now define some specific circuit complexity classes that will be referred to in
this manuscript. But first, we need to define some useful bases of Boolean functions.

Definition 1.3.5. We will denote by ¬ the Boolean NOT function and for all m ∈
N,m  ≥ 2, ∧m will denote the Boolean AND function on m inputs, and ∨m the Boolean
OR function on m inputs. Moreover, for all m, q ∈ N,m, q  ≥ 2, ≡q

m will denote the
boolean MOD-q function on m inputs, that is equal to 1 if and only if the number of
inputs that are 1 is not divisible by m.

We shall use three quite common bases:

• the basis B2 containing only NOT and the fan-in 2 OR and AND, i.e. B2 =

{¬,∧2,∨2};

• the basis B∞ containing NOT and arbitrary fan-in ORs and ANDs, i.e. B∞ =

{¬} ∪ {∧m | m ∈ N,m ≥ 2} ∪ {∨m | m ∈ N,m ≥ 2};

• for any q ∈ N, q ≥ 2, the basis C∞,q containing NOT and arbitrary fan-in ORs,
ANDs and MOD-qs, i.e. C∞,q = B∞ ∪ {≡q

m| m ∈ N,m ≥ 2}.

Definition 1.3.6. We define the following circuit complexity classes.

• For all i ∈ N,
NCi =

⋃
k∈N

SIZE - DEPTHB2(n
k, log2

i(n))

and NC =
⋃
i∈N NCi.
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• For all i ∈ N,
ACi =

⋃
k∈N

SIZE - DEPTHB∞(nk, log2
i(n))

and AC =
⋃
i∈N ACi.

• For all i ∈ N and q ∈ N, q ≥ 2,

ACCi[q] =
⋃
k∈N

SIZE - DEPTHC∞,q(n
k, log2

i(n)) ,

ACCi =
⋃
q∈N,q≥2 ACCi[q] and ACC =

⋃
i∈N ACCi.

It is a classical result that

NC0 ⊆ AC0 ⊆ ACC0 ⊆ NC1 ⊆ · · · ⊆ NCi ⊆ ACi ⊆ ACCi ⊆ NCi+1 ⊆ · · · ⊆ NC = AC = ACC

for all i ∈ N. Nevertheless, while all the inclusions in this infinite chain are widely
conjectured to be strict, the only which are actually proven to be so are the first two,
as well as the third one in the specific case of ACC0[p] for p ∈ N some prime, using the
following results.

For all m ∈ N,m ≥ 2, let

MODm = {w ∈ {0, 1}∗ | |w|1 6= 0 mod m}

be the language on the alphabet {0, 1} of words containing a number of 1’s not congruent
to 0 modulo m.

Theorem 1.3.7 (Furst et al. [1984], Ajtai [1983]). For all m ∈ N,m ≥ 2, MODm /∈ AC0.

Theorem 1.3.8 (Razborov [1987], Smolensky [1987]). Let p ∈ N and q ∈ N be two
distinct primes. Then MODp /∈ ACC0[q].

The size of circuits over the basis B2 (or even any other basis including B2) is an
important computational cost measure, as it captures the measure of time on DTMs, as
made precise below.

Proposition 1.3.9 ([Perifel, 2014, Proposition 5-Y]). For all t : N → N,

DTIME(t(n)) ⊆ SIZEB2(t(n)
2) .
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Proposition 1.3.10 ([Arora and Barak, 2009, Theorem 6.18], [Perifel, 2014, Proposition
5-AC]). We have

P/poly =
⋃
k∈N

SIZEB2(n
k) .

1.3.3 Branching programs

Other common non-uniform models of computation are those based on branching pro-
grams.

Definition 1.3.11. Let Σ be a finite alphabet. A non-deterministic branching program
(NBP) on ΣV , for a finite set V , is a tuple P = (X, δ, τ, s, t0, t1) where

• X is a finite set of vertices (or states);

• s ∈ X is the start (or source) vertex;

• t0, t1 ∈ X, t0 6= t1 are two distinct sink vertices;

• δ : X \{t0, t1}×Σ → P(X \{s}) gives the transition rules (for each non-sink vertex
and letter of the alphabet, the set of successors it is linked to thanks to arcs labelled
with this letter);

• τ : X \ {t0, t1} → V labels each non-sink vertex.

The size of P , denoted by |P |, is the number of its non-sink vertices, that is to say
|P | = |X \ {t0, t1}|.

Each assignment w ∈ ΣV defines a set of arcs

A[w] = {(u, v) ∈ X \ {t0, t1} ×X \ {s} | v ∈ δ(u,wτ(u))}

and thus a directed graph P [w] = (X,A[w]). P computes a function f : ΣV → {0, 1} given
by f(w) = 1 if and only if there exists a path (computation) in P [w] from state s to state t1.

P is a deterministic branching program (BP) if and only if the underlying directed
graph

(X, {(u, v) ∈ X \ {t0, t1} ×X \ {s} | ∃a ∈ Σ, v ∈ δ(u, a)})

is acyclic and each non-sink vertex of X has precisely one out-arc labelled by each possible
letter of Σ, i.e. |δ(u, a)| = 1 for all u ∈ X \ {t0, t1} and a ∈ Σ.

As for the case of circuits, we can now define how BPs and NBPs decide languages
and define complexity classes based on the size computational cost measure.
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Definition 1.3.12. For all finite alphabet Σ and function f : ΣV → {0, 1} (for V ⊆ N
finite) we denote by BP(f) and NBP(f) the minimum size of, respectively, a BP and an
NBP over ΣV computing f .

Let L ⊆ Σ∗ be a language on Σ. We say that a sequence (Pn)n∈N of BPs (NBPs) such
that each Pn is on Σn for n ∈ N decides L if and only if Pn computes χL|Σn for all n ∈ N.

For all s : N → N, we define BPSIZE(s(n)) (NBPSIZE(s(n))) as the class of languages
L over any alphabet Σ such that exist a constant α ∈ R>0 and a sequence of BPs (NBPs)
(Pn)n∈N deciding L, where for all n  ∈ N, |Pn| ≤ α ·s(n). We set PBP =

⋃
k∈N BPSIZE(nk)

and PNBP =
⋃
k∈N NBPSIZE(nk).

Similarly to the case of the size of circuits over the basis B2 that captures the measure
of time on DTMs, the size of BPs (NBPs) captures the measure of space on DTMs
(NTMs).

Proposition 1.3.13 ([Arora and Barak, 2009, Theorem 14.13]). For all s : N → N such
that s(n) ≥ log2(n) for all n ∈ N>0,

• DSPACE(s(n)) ⊆
⋃
c∈N BPSIZE(2c·s(n));

• NSPACE(s(n)) ⊆
⋃
c∈N NBPSIZE(2c·s(n)).

Proposition 1.3.14 (Razborov [1991]). We have the following equalities.

• L/poly = PBP.

• NL/poly = PNBP.

1.4 The great quest: on the relationship between
time and space and the power of non-determinism

1.4.1 Facing walls, or the embarrassing state of affairs in com-
putational complexity theory

As we know since the very beginning of the field of computational complexity theory,
which really started in 1965 (see Fortnow and Homer [2003], Perifel [2014]), under some
conditions, the more time we have on a deterministic Turing machine, the more languages
we can decide, and similarly, under some conditions, the more space we have on such
a machine, the more languages we can decide (this is an informal presentation — but
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sufficient for introductory purposes — of what is called, respectively, the deterministic
time hierarchy theorem [Perifel, 2014, Theorem 2-J] and the deterministic space hierarchy
theorem [Perifel, 2014, Theorem 4-N]). It is also well known that a deterministic Turing
machine running in time t(n) runs in space at most t(n) and, conversely, that such a
machine running in space s(n) ≥ log2(n) can be made to run in time at most 2α·s(n) for
some fixed constant α ∈ R>0 depending only on the machine.

That being said, it is absolutely remarkable that after more than 50 years of continu-
ous developments in computational complexity, we are not able to say anything more pre-
cise about the relationship between time and space complexities on deterministic Turing
machines. In particular, while it is intuitive to think that there exist languages decidable
in polynomial time in the size of the input on a deterministic Turing machine that cannot
be decided using only a logarithmic amount of space in the size of the input (i.e. L ⊂ P),
there exists no proof of that belief, which might as well be false.

The other huge wall faced by complexity theorists is trying to understand the influ-
ence of non-determinism on time and space complexities. Indeed, it seems natural to
think that allowing a Turing machine to do non-deterministic transitions would allow
it to save some time or space, in comparison to the case in which only deterministic
transitions are allowed. Back in 1970, Savitch showed that the space a TM can save by
making non-deterministic choices cannot be more than quadratic, i.e. NSPACE(s(n)) ⊆
DSPACE(s(n)2) for any s : N → N satisfying some mild conditions [Perifel, 2014, The-
orem 4-AS]. This proves that non-determinism does not make such a huge difference
for space complexity, and that we have for instance PSPACE =

⋃
k∈N DSPACE(nk) =⋃

k∈N NSPACE(nk) = NPSPACE. However, we do not know whether this inclusion is op-
timal, that is to say, it is not excluded that for some s : N → N, we have NSPACE(s(n)) ⊆
DSPACE(s′(n)) for some s′ : N   → N verifying s′(n) ∈ o(s(n)2): this means that even
48 years after the publication of Savitch’s result, we still have some interesting and
difficult open questions about the influence of non-determinism on space complexity,
especially in the case of logarithmic space bounded TMs (i.e. L vs NL). In contrast,
when it comes to time complexity, we know almost nothing about the influence of non-
determinism, excepting the elementary fact that NTIME(t(n)) ⊆

⋃
c∈N DTIME(2c·t(n)) for

any t : N → N [Perifel, 2014, Proposition 2-AG]. The state of affairs in the case of the
relationship between deterministic and non-deterministic time complexities on Turing ma-
chines is similar to the one in the case of deterministic time and space, and the most
famous open question in computational complexity theory, the relationship between poly-
nomial deterministic and non-deterministic time on Turing machines (or the P versus NP
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question) seems to be, for all we already know about P and NP, a deep mathematical
question Wigderson [2006], Allender [2009].

1.4.2 Finding small breaches in the walls, or how the field did
evolve

While the fundamental questions above still remain unanswered, the field of computational
complexity evolved much during its slightly more than 50 years of existence.

The focus in the beginning, until the end of the 1970s, was essentially directly on time
and space complexities on deterministic and non-deterministic Turing machines; this led
to results such as the aforementioned hierarchy theorems and, for lack of other separation
results between complexity classes, to the first results of the immensely fruitful theory
of resource bounded reducibility among languages and completeness within complexity
classes (the most important and significant case being that of NP-completeness: see,
e.g., Wigderson [2006], Allender [2009]). It soon became obvious, supported by a seminal
1975 result by Baker, Gill and Solovay [Perifel, 2014, Theorem 7-AA] and subsequent
results such as the one by Ladner and Lynch in 1976 Ladner and Lynch [1976], that
the diagonalisation techniques used so far, inherited from computability theory, and that
handle TMs merely as black boxes, would be of no use to solve some of the central
questions in computational complexity theory, among them the P versus NP and L versus
P questions. It was therefore necessary to develop techniques that would analyse the
precise internal working of Turing machines, but this is, as Perifel Perifel [2014] states it,
rather tricky due to the complicated definition of a Turing machine.

This is where the close relationship between time on DTMs and size of circuits, estab-
lished in 1972 by Savage Savage [1972], as well as the close relationship between space on
Turing machines and size of various types of branching programs, first observed in 1976 by
Masek Masek [1976] for the deterministic case, step in. Indeed, those relationships show
that proving lower bounds for the circuit-type and branching program-type complexity
measures would imply lower bounds for time and space Turing machine complexities, and
the fact is that these models of computation are somewhat easier to handle structurally
than TMs and are hence better suited for the precise internal analysis mentioned earlier.
But, as Boppana and Sipser state it in their 1989 survey Boppana and Sipser [1990], this
approach through non-uniform models of computation to proving lower bounds for Turing
machine complexity measures first did not help much, because proving size lower bounds
for general circuit-type or branching program-type models of computation appears to be
a difficult task, and the best lower bounds known at the end of the 1970s (which did, by
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the way, not evolve much until the time of redaction of this manuscript) were quite weak.
This approach started to really bear fruit in the 1980s when computational complexity

theorists started to consider restricted types of circuit or branching program models of
computation. Researchers were able to develop specific methods to prove significant lower
bounds on the sizes of sequences of circuits on which they placed restrictions such as (see
this survey Boppana and Sipser [1990] by Boppana and Sipser):

• requiring the depth of the circuits in the sequence to stay constant (those correspond
to the classes AC0 and ACC0[q] for q ∈ N, q ≥ 2);

• in the case of Boolean circuits (i.e. operating on {0, 1}), requiring that the basis at
use does not contain NOT (those are called monotone Boolean circuits);

• requiring that the underlying graphs of the circuits in the sequence are all trees
(those are called formulæ).

Similarly, researchers also developed specific methods to prove significant lower bounds
on the sizes of sequences of branching programs on which they placed restrictions such as
(see this survey Razborov [1991] by Razborov):

• requiring that each branching program in the sequence can have its set of ver-
tices partitioned into levels whose size does not exceed a constant (those are called
bounded-width branching programs);

• requiring that each branching program in the sequence can have its set of vertices
partitioned into levels, all vertices in one level being labelled with the same input
index (those are called oblivious branching programs);

• requiring that each branching program in the sequence verifies that any consistent
computation path from the start to a source vertex queries each input variable at
most once (those are called read-once branching programs).

In parallel, complexity theorists also started to introduce and study more and more
new types of computational models and associated complexity measures: this led to the
development of several new threads in computational complexity theory, sometimes deeply
linked with (or even rooted in) other domains in mathematics, that brought forth plenty
of new questions and further shaped the complicated and rich landscape of complexity
classes, but also gave novel insights into central complexity classes. Some of these threads
include the following — a much more precise account of them, as well as many other
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threads, can be found in classical references about computational complexity theory Arora
and Barak [2009], Perifel [2014], Jukna [2012] or historical surveys about the field Fortnow
and Homer [2003], Impagliazzo [2005].

• The study of the power of randomness as a computational resource, just like for the
case of non-determinism. Or, does allowing a Turing machine to do probabilistic
transitions allow it to save some time or space, in comparison to the case in which
only deterministic transitions are allowed? How efficiently can we remove the use
of randomness in computation?

• The study of the complexity of communication protocols, models of computation
where two or more players, each having a distinct input, communicate following a
given protocol to compute a function of all of the players’ inputs, the complexity of
a protocol being measured as the total amount of communication.

• The study of the power of adding quantum computation abilities to basically all
models of computation presented so far. The central question, in each case and for
each complexity measure, is how the quantum variant compares to the “classical”
variants (deterministic, non-deterministic, randomised, etc.) in terms of complexity.

• Descriptive complexity, that seeks to find out how expressive a logic must be so as
to express membership in a given language thanks to a formula in that logic.

All these threads in computational complexity theory are still very active at the time of
redaction of this manuscript and are also all largely of independent interest.

At the beginning of the second millennium, computational complexity theory had def-
initely become a mathematically important research field, as witnessed by its numerous
connections to other domains in mathematics (Aaronson even says that “today (2011, ed-
itor’s note) it draws on probability, number theory, combinatorics, representation theory,
Fourier analysis, and nearly every other subject about which yellow books are writ-
ten” Aaronson [2011]), its active research community as shown above, as well as the
mathematical challenging and deep questions it raises Wigderson [2006], Allender [2009].
Moreover, as Impagliazzo claims, computational complexity theory, though made up of
many threads, also exhibits a remarkable unity and connection between those, and “is
best tackled as a single, united field, not splintered into specialized subareas” Impagliazzo
[2005]. Some authors also point to the importance of computational complexity theory
in a wealth of other sciences, as well as in philosophy Wigderson [2006], Allender [2009],
Aaronson [2011].
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Unfortunately, while all this flurry of activity and new developments since the 1980s
brought several new techniques and a variety of new approaches and viewpoints for proving
complexity measure lower bounds, significant progress on central complexity measures
kept on facing new formal barriers, as explained in [Arora and Barak, 2009, Chapter 23].
In the 2000s and up to the date of writing of this manuscript, computational complexity
continued to be developed along the same lines as described above, trying to circumvent
these barriers. “Nevertheless”, as Perifel puts it Perifel [2014], “the big questions remain
without answer. The quest is not finished.”

1.4.3 This thesis

The big framework of this Ph.D. thesis is the approach to the L versus P question based
on lower bounds on the size of branching programs, its ultimate goal being to prove that
there exists a language in P that does not belong to PBP = L/poly, thus settling this
dauntingly difficult open question. If we zoom in into the lower levels of the NC hierarchy,
we actually have the following:

AC0 ⊆ ACC0 ⊆ NC1 ⊆ PBP ⊆ PNBP ⊆ AC1

(see Mahajan [2007] and [Vollmer, 1999, Figure 4.6], though in these references the inclu-
sion structure is presented for uniform versions of those classes, using a notion of uniform-
ity that we won’t elaborate — we refer the interested reader to Vollmer’s book Vollmer
[1999]), showing that PBP is well within the NC hierarchy, which is believed to be strict
and even such that P * NC. However, as we explained in the previous section, strictness
of the NC hierarchy is very far from being proven (we only know that AC0 is stricly in-
cluded in ACC0) and concerning its relationship to P, the best result currently known is
that P * ACC0[p] for p  ∈ N some prime (see Theorem 1.3.8). In fact, though considered
extremely unlikely by computational complexity theorists, it still isn’t ruled out that ac-
tually NP ⊆ ACC0 (the best result indicating this is wrong known at the time of writing
of this thesis is William’s result that NTIME(2n) * ACC0 Williams [2014]). This may be
why AC1 and its subclasses, that already yield a wealth of strikingly difficult and deep
questions (also because of fundamental links with formal language theory and logic —
see, e.g., Mahajan [2007] and [Vollmer, 1999, Chapter 4]), of whom most are still open,
has been one of the main playgrounds for research in the domain of lower bounds for non-
uniform models of computation since the 1980s, as witnessed by Jukna’s recent (at the
time of writing ot this thesis) book on the subject Jukna [2012]. (For instance, all lower
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bound results for restricted types of circuit or branching program models of computation
mentioned in the previous subsection are linked to classes inside AC1, except for those
holding for monotone Boolean circuits.)

This thesis precisely falls within this context of searching for lower bounds for com-
plexity measures on non-uniform models of computation corresponding to subclasses of
AC1: we first study Nečiporuk’s method to prove lower bounds for these complexity
measures, as well as for some complexity measures on variants of these non-uniform mod-
els of computation that may be more powerful (i.e. correspond to classes believed to be
bigger than AC1), in Chapter 2, before we move on to a restricted variant of branching
programs based on algebraic automata theory concepts capturing NC1 and its subclasses
in Chapter 3 and prove new results about mostly unstudied strict subclasses of AC0 cap-
tured with this variant in Chapter 4 and Chapter 5.
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Chapter 2

The Nečiporuk method and its
limitations

As explained in the previous chapter, computational complexity theorists do not know how
to prove “strong” complexity lower bounds in general non-uniform models of computation
and, in fact, relatively few methods exist to prove such bounds at all. Fifty-two years
ago, Nečiporuk wrote his famous two-page note entitled “A Boolean function” Nečiporuk
[1966]. That note contained the first super-linear lower bounds on the size of Boolean
formulæ over arbitrary bases and the size of contact schemes needed to compute some
explicit Boolean function, both corresponding to subclasses of AC1.

Nečiporuk’s Nečiporuk [1966] method still yields the best lower bounds known today
for explicit functions in a number of complexity measures. In particular, there are ex-
plicit functions for which Nečiporuk’s method yields lower bounds of Ω(n2/ logn) on
formula size over an arbitrary basis, Ω(n2/ log2 n) on deterministic branching program
size and on contact scheme size, and Ω(n3/2/ logn) on non-deterministic branching pro-
gram size, switching-and-rectifier network size, parity branching program size and span
program size. (All of these complexity measures, except probably for the two last ones,
related to subclasses of ACC1, are related to subclasses of AC1. Those not defined in the
previous chapter are specifically defined in Subsection 2.1.3.) All of these are the best
known lower bounds for these complexity measures for any explicit function. The first
two of these lower bounds are contained in Nečiporuk’s original paper Nečiporuk [1966].
Pudlák Pudlák [1987] points out that Nečiporuk’s method yields the third lower bound
for non-deterministic branching program size, as well as for switching-and-rectifier net-
work size Razborov [1991]; Karchmer and Wigderson Karchmer and Wigderson [1993]
point out that Pudlák’s observation extends to parity branching program size and hence



also applies to span program size.
Two simple explicit functions that yield the lower bounds mentioned above are the Ele-

ment Distinctness function and the Indirect Storage Access function (see Subsection 2.1.2).
Nečiporuk’s method relies on counting subfunctions induced on blocks in a partition

of the input variables, a concept introduced in Subsection 2.1.1. It is natural to try to
optimise the use of the method, both in terms of how the bound depends on the numbers
of subfunctions for each block in the partition and whether there are functions other than
Element Distinctness and Indirect Storage Access for which one can prove stronger lower
bounds.

For formula size over arbitrary bases, it is well known (see, e.g., Wegener [1987], Sav-
age [1976]) that Θ(n2/ logn) is indeed the best lower bound obtainable by Nečiporuk’s
method. Savage Savage [1976] also cites Paterson (unpublished) as improving the con-
stant factor in the bound. Similarly, Θ(n2/ log2 n) is the best lower bound obtainable by
Nečiporuk’s method for deterministic branching program size, as noted by Wegener [We-
gener, 1987, p. 422], who states the claim with a hint at its proof. Moreover, Alon and
Zwick Alon and Zwick [1989] derived the optimal multiplicative constant in this lower
bound as a function of the number of subfunctions of f in each block. Beame and McK-
enzie, in an unpublished note written in 2011 and now integrated in Section 2.2, form-
ally showed that the third lower bound also uses Nečiporuk’s method in an optimal way,
namely that the best bound on non-deterministic branching program size obtainable by
Nečiporuk’s method is indeed Θ(n3/2/ logn), as was already implicitly admitted. We ob-
serve that exactly the same arguments allow to show that this is also the best bound on
parity branching program size obtainable by Nečiporuk’s method. This automatically ap-
plies to span program size and switching-and-rectifier network size since these measures
are upper-bounded by parity and non-deterministic branching program size, respectively.

The main contribution of this chapter is to be found in Section 2.3, where we define
precisely what the Nečiporuk method actually is, independently from any specific com-
plexity measure, so as to provide a unifying framework in which it makes sense to speak
about the Nečiporuk method. Indeed, although Nečiporuk published his original result 50
years ago and his “technique” has been treated in several classical references (see Savage
[1976], Wegener [1987, 2000], Jukna [2012]), to the best of our knowledge, there did not
exist any abstract, measure-independent, unifying definition of the “method” that would
encompass all previous applications of the “method” and allow new ones to be carried out
easily, or at least in a clear way. The definition we suggest is in fact an abstract version
of the general definition that was considered by Alon and Zwick in Alon and Zwick [1989]
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for the case of deterministic branching programs. In this abstract framework we can then
show, in a generic way, that for any complexity measure, an upper bound on the com-
plexity, for this measure, of computing the Indirect Storage Access function with suitable
parameters yields an upper bound on the best lower bound obtainable using Nečiporuk’s
method (defined that way).

In Section 2.4, we then prove an upper bound on the complexity of all Indirect Storage
Access functions for each of the complexity measures introduced in Subsection 2.1.3. We
finally use those to prove that the more general and abstract definition of Nečiporuk’s
lower bound method introduced in this chapter yields the same lower bounds and hits the
same limits as those already known in the case of the size measure of non-determinitic and
parity branching programs (Section 2.5), deterministic branching programs (Section 2.6)
and formulæ (Section 2.7), as well as to prove new lower bounds and limitations results,
in this framework, for the size measure of limited non-deterministic variants of branching
programs (Section 2.6) and formulæ (Section 2.7). In each case, the Indirect Storage
Access function family with suitable parameters yields the asymptotically best-possible
lower bound.

The content of this chapter is almost taken as is from the article Beame et al. [2016].

2.1 Specific preliminaries

For k ∈ N>0 and a ∈ {0, 1}k we denote by bink(a) its associated natural number with
big-endian representation, i.e.

∑k
i=1 ai2

k−i. Throughout this chapter, the binary repres-
entation of a natural number will refer to its big-endian representation.

2.1.1 Boolean functions and subfunctions

In this chapter, we will essentially consider computation of Boolean functions in the
following sense: for n ∈ N, an n-ary Boolean function over V is a function f : {0, 1}V →
{0, 1}, where V ⊆ N and |V | = n. When V is not specified we assume that V = [n]. A
family of Boolean functions is an indexed family F = {fi}i∈I where I ⊆ N and such that
for all i ∈ I, fi is a Boolean function of arity i.

Subfunctions will play a key role in the lower bound method studied in this chapter,
the intuition being that the more different subfunctions a given Boolean function has, the
more difficult it is to compute it.
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Let f be an n-ary Boolean function. For any V ⊆ [n] and any ρ ∈ {0, 1}[n]\V , we
will denote by f |ρ the subfunction of f on V induced by the partial assignment ρ on
[n] \ V , that is the function f |ρ : {0, 1}V → {0, 1} such that for all y ∈ {0, 1}V , we have
f |ρ(y) = f(x) where xi = yi for all i ∈ V and xi = ρ(i) for all i ∈ [n] \ V . We will also
denote by rV (f) the total number of subfunctions of f on V , i.e. the cardinality of the
set sV (f) = {f |ρ | ρ ∈ {0, 1}[n]\V }.

The following easy lemma gives an upper bound on the total number of subfunctions
of a given Boolean function on a certain subset of input variable indices.

Lemma 2.1.1. Let f : {0, 1}n → {0, 1} be a Boolean function. For any V ⊆ [n],
rV (f) ≤ min{22|V |

, 2n−|V |}.

Proof. Since rV (f) counts the total number of subfunctions f |ρ : {0, 1}V → {0, 1} of f
on V induced by a partial assignment ρ ∈ {0, 1}[n]\V , it is at most the total number of
Boolean functions on |V | variables (i.e. 22

|V |) and the total number of assignments to
n− |V | variables (i.e. 2n−|V |).

Let f : {0, 1}V → {0, 1} be a Boolean function and i ∈ V . We say that f depends on
its i-th variable if there exist a, a′ ∈ {0, 1}V that differ only in the bit corresponding to
i such that f(a) 6= f(a′) (definition based on Jukna [2012]). In particular, if f does not
depend on a set W of variables and a, a′ ∈ {0, 1}V differ only on bits whose positions are
in W , then f(a) = f(a′). The following proposition shows that variables on which f does
not depend do not affect its number of subfunctions.

Proposition 2.1.2. Let f : {0, 1}n → {0, 1} be a Boolean function. Let V ⊆ [n] and
W ⊆ V such that for all i ∈ W , f does not depend on xi. Then for V ′ = V \ W ,
rV (f) = rV ′(f).

Proof. We give a bijection from sV (f) to sV ′(f). For g ∈ sV (f), say g = f |ρ for some
ρ ∈ {0, 1}[n]\V , define ψ(g) ∈ sV ′(f) by ψ(g) = g|ζ = f |ρζ where ζ = 0W assigns 0 to
all elements of W . By assumption, for all i ∈ W , f does not depend on xi so for all
ζ ′ ∈ {0, 1}W , f |ρζ′ = f |ρζ ; moreover, it is also easy to see that f |ρζ = f |ρ′ζ for any
ρ′ ∈ {0, 1}[n]\V such that g = f |ρ′ . Now let h′ ∈ sV ′(f). By definition, there is some
ρ′ ∈ {0, 1}[n]\V and ζ ′ ∈ {0, 1}W such that h′ = f |ρ′ζ′ and by assumption, the latter equals
f |ρ′ζ = ψ(g′) for g′ = f |ρ′ and hence ψ is surjective.

Similarly, for g, g′ ∈ sV (f) such that g 6= g′, we have that there exists a ∈ {0, 1}V

verifying g(a) 6= g′(a). Let ρ, ρ′ ∈ {0, 1}V such that g = f |ρ and g′ = f |ρ′ , and let
ζ ′ ∈ {0, 1}W such that ζ ′(i) = ai for all i ∈ W . Then ψ(g) = f |ρζ = f |ρζ′ 6= f |ρ′ζ′ =
f |ρ′ζ = ψ(g′), so ψ is 1-1 and hence rV (f) = |sV (f)| = |sV ′(f)| = rV ′(f).
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It will often also be useful to enlarge the size of the domain of a Boolean function
by adding additional input variables on which the function does not depend in order to
obtain complete families of Boolean functions even if we cannot build a specific Boolean
function for each possible input size.

Lemma 2.1.3. Let f : {0, 1}n → {0, 1} be a Boolean function. Let n′ ∈ N such that n′ > n

and let f ′ : {0, 1}n′ → {0, 1} be the Boolean function defined by f ′(a) = f(a1, . . . , an) for
all a ∈ {0, 1}n′. Then, for any V ⊆ [n], rV (f ′) = rV (f).

Proof. It is immediate by definition that for V ⊆ [n], sV (f ′) = sV (f).

2.1.2 Hard functions: Indirect Storage Access functions and Ele-
ment Distinctness

In this section we define two natural families of functions for which Nečiporuk’s method
is known to produce asymptotically optimal lower bounds for some complexity measures.
The first is the Element Distinctness function.

Definition 2.1.4. The Element Distinctness function EDN,m for m ≥ N is the Boolean
function that takes as input n = N · dlog2me bits representing N integers in [m] (output-
ting 0 on illegal inputs) and outputs 1 iff all the N integers have distinct values. When
n = 2k · 2k, we write EDn for the function EDN,N2 where N = 2k.

The second is the family of Indirect Storage Access functions. These will turn out
to be useful in a broader range of applications than the Element Distinctness function
and we will see that we can characterise Nečiporuk’s method in terms of the bounds it
achieves for these functions.

Indirect Storage Access functions seem to have been originally defined by Paul in Paul
[1977] to give an example of a family of Boolean functions for which we have a trade-off
between the minimum sizes of Boolean binary formulæ computing them and the minimum
sizes of Boolean binary circuits computing them.

Definition 2.1.5. The Indirect Storage Access function for k, ` ∈ N>0, denoted

ISAk,` : {0, 1}k+2k`+2` → {0, 1}

is such that for all a ∈ {0, 1}k+2k`+2` , ISAk,`(a) = aγ(a) where γ is computed from a as
follows.
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Let α(a) be the number represented in binary by the first k bits of a. Let β(a)
be the number represented in binary by the sequence of ` bits of a starting at position
k+1+ ` · α(a). Then γ(a) is the position k+2k`+1+ β(a). Informally speaking, ISAk,`

is just a function reading a bit using two levels of addressing: a k-bit pointer selects an
`-bit pointer (among 2k such pointers) that picks one bit from a 2`-bit data string.

It is known that both these families of Boolean functions yield the asymptotically
strongest lower bounds obtainable using Nečiporuk’s method for Boolean formula size
over arbitrary binary bases, and deterministic branching program complexity Wegener
[1987], Boppana and Sipser [1990], Wegener [2000]. The essence of the argument in each
case is the existence of a good partition with a large count of the number of subfunctions
on the variables of the partition.

Lemma 2.1.6. Let n = 2k · 2k > 0 for k ∈ N. There is a partition of [n] into blocks
V1, . . . , VN for N = 2k such that for all i ∈ [N ], |Vi| = 2k and rVi(EDn) =

(
N2

N−1

)
+ 1 ≥

NN−1 = 2k(2
k−1).

Proof. Each block in the partition V1, . . . , VN corresponds to the bits of one of the N
numbers for the EDN,N2 function. Observe that for each assignment of distinct values to
the N − 1 other blocks, the subfunction induced on the i-th block must be different, since
precisely those N − 1 values must be avoided for the function to have value 1. There are(
N2

N−1

)
possible choices of those N − 1 distinct values; for other assignments, we get the

constant 0 function.

We now see that for different choices of k and `, the function family ISAk,` provides
similar bounds but a more flexible range of parameters to obtain partitions of different
sizes.

Definition 2.1.7. In the definition of ISAk,`, we will refer to α(a) and β(a) as to the
primary and secondary pointers of the ISAk,` instance a. The bits of the secondary pointer
will be denoted sec1, . . . , sec`, and more generally the bits of the p-th secondary pointer
among the 2k such pointers in the instance at hand will be denoted sec[p]1, . . . , sec[p]` for
p ∈ [2k]. The 2` data bits will be referred to as Data and Data[b1, . . . , b`] will stand for
the data bit at position bin`(b1, . . . , b`) + 1. When the context is clear, bits of a will also
be viewed as input variable indices.

We now see that we can partition the set of input variables of ISAk,` in such a way
that the number of induced subfunctions is identical and maximal for all elements of the
partition but one: this is formalised in the following lemma.
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Lemma 2.1.8. For every k, ` ∈ N>0, there exists a partition V1, . . . , V2k , U of [k+2k`+2`]

such that |Vi| = ` and rVi(ISAk,`) = 22
` for all i ∈ [2k].

Proof. Let k, ` ∈ N>0. Consider the partition [k+2k`+2`] = V1]· · ·]V2k ]U where Vi is
the set {sec[i]1, . . . , sec[i]`} of indices of the ` variables forming the i-th secondary pointer
in the ISAk,` instance a. Then for each setting of the first k variables a1, . . . , ak of a, i.e,
for each value i = bink(a1, . . . , ak) of the primary pointer, every possible fixing of the 2`-
bit data string induces a different subfunction on Vi+1, hence rVi+1

(ISAk,`) = 22
` .

From ISAk,` we define the Indirect Storage Access functions family ISA = {ISAn}n∈N,
such that for all n ∈ N

• if n < 5, ISAn(a) = 0 for all a ∈ {0, 1}n;

• if there exists k ∈ N>0 such that n = hISA(k), then

ISAn = ISAk,k+dlog2 ke ;

• otherwise,
ISAn(a) = ISAk′,k′+dlog2 k′e(a1, . . . , an′)

for all a ∈ {0, 1}n where k′ = max{k ∈ N>0 | hISA(k) < n} and n′ = hISA(k
′).

where
hISA : N>0 → N>0

m 7→ m+ 2m(m+ dlog2me) + 2m+dlog2me .

ISA will be used to give, for each complexity measure we study in this chapter (this
notion will be precisely defined in the next subsection), an actual family of Boolean
functions that achieves the best lower bound obtainable using Nečiporuk’s lower bound
method (to be defined later). The setting of k and ` in its definition is crucial, because
if we would for example set ISAn = ISAk,k for all n ∈ N such that there exists k ∈ N>0

verifying n = k + 2kk + 2k, we would not reach the desired bounds.
The next lemma is a simple useful adaptation of Lemma 2.1.8.

Lemma 2.1.9. For all n ∈ N, n ≥ 5, there exist p, q ∈ N>0 verifying p ≥ 1
32

· n
log2 n

and
q ≥ n

16
such that there exists a partition V1, . . . , Vp, U of [n] such that rVi(ISAn) = 2q for

all i ∈ [p].

Proof. Let n ∈ N, n ≥ 5. Let k ∈ N>0 be the unique positive integer verifying hISA(k) ≤
n < hISA(k + 1) . Set n′ = hISA(k). By definition we have ISAn′ = ISAk,k+dlog2 ke. Let
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V1, . . . , V2k , U be a partition of [n′] such that rVi(ISAn′) = 22
k+dlog2 ke for all i ∈ [2k] as

given by Lemma 2.1.8. Moreover, by definition of ISAn and by Lemma 2.1.3 (for the case
in which n′ < n), we have that rVi(ISAn) = rVi(ISAn′) = 22

k+dlog2 ke for all i ∈ [2k].
Set q = 2k+dlog2 ke and p = 2k.
A bit of elementary algebra shows:

n ≤ hISA(k + 1) ≤ 16 · 2k+dlog2 ke = 16q ≤ 16 · 2k+log2 k+1 ≤ 32kp .

Hence q ≥ n
16

and p ≥ 1
32

· n
k
≥ 1

32
· n

log2 n
(as log2 n ≥ log2 2

k = k).

2.1.3 Computational models

Note that in this chapter, all the models of computation that we consider are Boolean, in
the sense that they all work only on input words over the alphabet {0, 1}.

First, in view of defining a model-independent notion of Nečiporuk’s method, we define
a complexity measure merely as a function that associates a non-negative integer to each
Boolean function, as follows.

Definition 2.1.10. A complexity measure on Boolean functions is a function

M :
⋃
n∈N

{0, 1}{0,1}n → N . (2.1)

Nečiporuk originally applied his technique to prove lower bounds for the size of BPs
and the size of binary formulæ, that we are going to define soon; his technique was later
used for size of NBPs: all these measures will be considered here. We will also apply it
to the size of a variant of NBPs, called parity branching programs, where acceptance
depends on the parity of the number of accepting paths. Parity branching programs
of polynomial size capture ⊕L, the class of languages such that there exists an NTM
running in logarithmic space that has an odd number of paths leading to acceptance for
a word if and only if this word belongs to the language.

Definition 2.1.11. An NBP P = (X, δ, τ, s, t0, t1) on {0, 1}V (for V ⊆ N finite) can also
be interpreted as a parity branching program (⊕BP) on {0, 1}V that computes a Boolean
function f⊕ : {0, 1}V → {0, 1} where for all a ∈ {0, 1}V , f⊕(a) = 1 if and only if there is
an odd number of paths in P [a] from start vertex s to accepting sink vertex t1. For any
Boolean function f :  {0, 1}V → {0, 1} (for V ⊆ N finite) we also denote by ⊕BP(f) the
minimum size of a ⊕BP computing f .

34



Further, we will apply Nečiporuk’s method to the size of BPs and binary formulæ
that have access to a limited amount of non-deterministic bits, measures to which the
method doesn’t seem to have been applied before. These two models are motivated
by the well-known observation that unrestricted non-deterministic Boolean formulæ cap-
ture NP (see Goldsmith et al. [1996]) and further by Klauck’s analysis of restricted non-
deterministic formulæ Klauck [2007]. We now define the first of these models, and the
associated complexity measure.

Definition 2.1.12. A branching program P is a δ-limited non-deterministic branching
program (δ-LNBP) for f : {0, 1}V → {0, 1} if and only if P is a deterministic branching
program computing a function f ′ : {0, 1}V ′ → {0, 1} with V ⊆ V ′ and |V ′ \ V | = δ such
that f(a) =

∨
b∈{0,1}V ′\V f ′(a, b). The size of the δ-LNBP P , denoted by |P |, is its size as

a BP. For any Boolean function f :  {0, 1}V → {0, 1} (for V ⊆ N finite) we also denote
by LNBPδ(f) the minimum size of a δ-LNBP computing f .

This definition of δ-limited non-deterministic BPs, which does not appear to have
been studied previously, is inspired by notions of limited non-determinism for other mod-
els Goldsmith et al. [1996], Hromkovic and Schnitger [2003], Klauck [2007].

Remark 2.1.13. The limited non-determinism of the δ-LNBP model is formulated in a
framework of verification of explicitly represented guesses that is typical for time-bounded
non-determinism. In contrast, the NBP model only represents non-deterministic guesses
implicitly, which allows them to be used without being stored, as is typical for space-
bounded computation. In particular, even if δ is unbounded (say δ = ∞), the smallest
∞-LNBP could be somewhat larger than the smallest equivalent NBP and vice-versa. It
is not difficult to see that an NBP of size s can be simulated by such an ∞-LNBP of size
at most 2s2. Indeed, simulating the k-way branch at a given state in this NBP in an ∞-
LNBP can be made by accessing dlog2 ke fresh non-deterministic bits in a decision tree
of size at most k; so since each of the s states of our original NBP branches to at most
s different states for each of the possible values 0 or 1, we get that we can simulate it
by an ∞-LNBP of size at most 2s2. Conversely, however, it is unclear by how much the
size would increase when simulating an ∞-LNBP by an NBP, but it is widely conjectured
to grow exponentially, since one can prove that polynomial size ∞-LNBPs capture (non-
uniform) NP, while polynomial size NBPs capture (non-uniform) NL. Hence, the reader
should keep in mind that LNBPs are not a restricted variant of NBPs.

Remark 2.1.14. Two other models comparable to the NBP are switching networks (also
called contact schemes), and the more general switching-and-rectifier (RS) networks (see
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Razborov [1991], Jukna [2012]). The graph of an RS network is almost the same as that
of an NBP except that its vertices remain unlabelled and each of its arcs is labelled
by some literal or remains unlabelled, with the acceptance condition that of the NBP.
(Switching networks are a special case of RS networks whose graphs are undirected.)
The size of an RS network is the number of its labelled arcs. Note that Jukna Jukna
[2012] calls RS networks “non-deterministic branching programs”, but we observe, as did
Razborov Razborov [1991], that the size measure of RS networks and the size measure of
NBPs used in this thesis are the same to within a constant factor. Indeed, one can simulate
NBPs by RS networks of at most twice the size – each NBP vertex becomes an RS vertex
with two new successors (one reached by an arc labelled ¬xi, the other reached by an arc
labelled xi, where i is the variable index labelling that vertex in the NBP) which have
unlabelled arcs pointing to the corresponding successor vertices in the NBP. Conversely,
RS networks can be simulated by NBPs of the same size. It can first be assumed w.l.o.g.
that any vertex in the RS network only has unlabelled arcs and arcs labelled by literals
from the same variable (any vertex having arcs labelled by literals from several different
variables can be replaced at no extra cost by a set of vertices connected by unlabelled
arcs having the property). Then, for each vertex u in the RS network that has out-arcs
labelled xi or ¬xi, we have a vertex u′ in the NBP labelled i and for each arc e from u to
v in the RS network,

• if e is unlabelled, we have two arcs (u′, w′) in the NBP, one labelled 0, the other
labelled 1, for each vertex w in the RS network that has labelled out-arcs and is
reachable from u via an unlabelled path starting with e (that uses unlabelled arcs
and whose intermediate vertices do not have labelled out-arcs);

• if e is labelled `

– and v has labelled out-arcs, we have an arc (u′, v′) in the NBP labelled accord-
ingly (0 if ` = ¬xi and 1 if ` = xi),

– otherwise v only has unlabelled out-arcs, and we have an arc (u′, w′) in the
NBP labelled accordingly (0 if ` = ¬xi and 1 if ` = xi) for each vertex w

in the RS network that has labelled out-arcs and is reachable from v via an
unlabelled path.

Span programs Karchmer and Wigderson [1993] can be simulated by parity branching
programs of at most twice the size – their size is also at most polynomial in parity
branching program size.
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As stated before, we will also apply Nečiporuk’s lower bound method to a certain type
of restricted circuits, namely binary formulæ which are circuits whose underlying graph
is a binary tree, whose internal gates may be labelled by any of the 16 possible Boolean
functions on 2 variables and whose input gates might also be labelled by a negation of
a given variable. The size of such circuits is then given by the number of non-constant
leaves they have.

Definition 2.1.15 (Deterministic and δ-limited non-deterministic formulæ, inspired by
Klauck [2007] and Jukna [2012]). A (deterministic) Boolean binary formula (BF) ϕ on
{0, 1}n (n ∈ N) is a binary tree with

• a single root,

• every internal node of arity 2,

• every internal node labelled by a function g : {0, 1}2 → {0, 1},

• every leaf labelled by one of 0, 1, x1, . . . , xn,¬x1, . . . ,¬xn.

The size of ϕ, denoted by |ϕ|, is the number of its non-constant leaves. ϕ computes
a Boolean function fϕ on {0, 1}n in the natural way by function composition. For any
Boolean function f :  {0, 1}V → {0, 1} (for V ⊆ N finite) we denote by L(f) the minimum
size of a BF computing f .

Let δ ∈ N. A δ-limited non-deterministic binary formula (δ-LNBF) on {0, 1}n ϕ is
a deterministic binary formula ϕ′ on {0, 1}n+δ. It computes a Boolean function fϕ such
that for a ∈ {0, 1}n, fϕ(a) =

∨
b∈{0,1}δ fϕ′(a, b). The size of the δ-LNBF ϕ, denoted by

|ϕ|, is its size as a BF. For any Boolean function f :  {0, 1}V → {0, 1} (for V ⊆ N finite)
we also denote by LLδ(f) the minimum size of a δ-LNBF computing f .

For f an n-ary Boolean function (n ∈ N), we call proof-checker function for f any
(n + δ)-ary function g for some δ ∈ N verifying that f(a) =

∨
b∈{0,1}δ g(a, b) for all

a ∈ {0, 1}n.

Lemma 2.1.16. Let δ ∈ N, let g : {0, 1}n+δ → {0, 1} and let f : {0, 1}n → {0, 1} (n ∈ N)
be given by f(a) =

∨
b∈{0,1}δ g(a, b) for all a ∈ {0, 1}n. Then, for all V ⊆ [n], we have

rV (f) ≤ B(rV (g), 2
δ) − 1 < rV (g)

2δ where B(m, r) =
∑r

i=0

(
m
i

)
is the volume of the

Hamming ball of radius r in {0, 1}m.

Proof. Let V ⊆ [n]. For ρ ∈ {0, 1}[n]\V , by definition, f |ρ =
∨
b∈{0,1}δ g|ρb. Since ρb assigns

all variables in [n+δ]\V , each function g|ρb is in sV (g). Therefore, each f |ρ ∈ sV (f) is the

37



∨
of 2δ functions in sV (g) (not necessarily distinct). Therefore over all choices of ρ, the

function f |ρ only depends on the set of between 1 and 2δ among these subfunctions of g
that are distinct (and not what values b with which each such subfunction is associated).
Therefore there are at mostB(rV (g), 2

δ)−1 possible distinct subfunctions f |ρ in sV (f).

2.2 Non-deterministic Branching Program Lower
Bounds via Shannon Bounds

In this section we describe the simplest form of Nečiporuk’s technique and its applications
in order to give some intuition about the technique. Readers may prefer to skip to the
generalised abstract definition of Nečiporuk’s method in Section 2.3. The simple version
here is based on the so-called “Shannon bounds” for a complexity measure. The Shannon
function for a complexity measure maps n to the maximum complexity of any Boolean
function over {0, 1}n in that measure. Lower bounds on the Shannon function typically
follow by a simple enumeration of the number of distinct functions of bounded measure.

For all n, s ∈ N, and M a complexity measure let us denote by Msem(n, s) the number
of distinct n-ary Boolean functions of complexity measure at most s. In particular, define
Nsem to be the function Msem for NBPs and ⊕sem be that for ⊕BPs. The next lemma is
the core of the simple version of Nečiporuk’s technique.

Lemma 2.2.1. For any n ∈ N, for any n-ary Boolean function f on V that depends on
all its inputs and any partition V1, . . . , Vp of V we have

NBP(f) ≥
p∑
i=1

max
{
|Vi| ,min{s ∈ N | Nsem(|Vi| , s) ≥ rVi(f)}

}
,

⊕BP(f) ≥
p∑
i=1

max
{
|Vi| ,min{s ∈ N | ⊕sem(|Vi| , s) ≥ rVi(f)}

}
.

Proof. Let n ∈ N, f be an n-ary Boolean function on V depending on all its inputs and
V1, . . . , Vp a partition of V . Let P be a Boolean NBP computing f . For all i ∈ [p] we will
denote by si ∈ N the number of vertices in P labelled by elements in Vi. It is clear that
P is of size at least

∑p
i=1 si.

Let i ∈ [p]. Observe that for every subfunction g of f on Vi, there is by definition a
partial assignment ρ on V \ Vi such that f |ρ = g, so it is not too difficult to see that g is
computed by the Boolean NBP of size si obtained from P by:
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1. removing all non-sink vertices labelled by elements not in Vi;

2. defining the new start vertex as one of the vertices whose label is in Vi and reachable
from the start vertex of P by a path of nodes labelled by elements outside of Vi
and arcs labelled consistently with ρ, then adding both an arc labelled 0 and an arc
labelled 1 from this new start vertex to each other such reachable vertex (except
for the extreme case of a constant function, in which we just set the start vertex as
the appropriate sink vertex);

3. connecting a vertex u to a vertex v by an arc labelled by a ∈ {0, 1} if and only if
there exists a path from u to v in P verifying that any intermediate vertex of the
path is labelled by an element outside of Vi, the first arc is labelled by a and each
arc (but the first one) is labelled consistently with ρ.

Thus, rVi(f) is necessarily upper-bounded by the number of semantically distinct such
NBPs we can build from P that way, which is in turn at most Nsem(|Vi| , si). Moreover,
since, by construction, f depends on all variables whose indices are in Vi, we have that
for each element ` ∈ Vi, P contains at least one vertex labelled by `, so si ≥ |Vi|. Hence,
for each i, si ≥ max

{
|Vi| ,min{s ∈ N | Nsem(|Vi| , s) ≥ rVi(f)}

}
. Since the NBP has size

at least
∑p

i=1 si and the NBP is arbitrary, the bound of the lemma follows.
The same argument also applies directly to yield the bound for ⊕BPs, with ⊕sem(|Vi| ,

s) replacing Nsem(|Vi| , s).

Proposition 2.2.2. Let s ≥ n. Then Nsem(n, s),⊕sem(n, s) < 22(s+1)2.

Proof. We simply count the number of distinct branching programs. Subject to renaming
and reorganising, any n-ary Boolean function computable by an NBP or ⊕BP of size at
most s, can be computed by one of size exactly s, having {vj}s+2

j=1 as vertices, v1 as start
vertex, vs+1 as 0-vertex and vs+2 as 1-vertex, where no arc goes to the 0-vertex (that is,
since what matters for the computation of both an NBP and a ⊕BP is the number of paths
from the start vertex to the 1-vertex, arcs ending in the 0-vertex are unnecessary). The
out-arcs at each node vi can be described by the subset of vertices vj, j 6= i and j 6= vs+1,
reached on each of values 0 and 1. There are (s − 1)! different ways of reordering the
names of vertices v2, . . . , vs that keep identical connectivity of the branching program and
hence the function it computes, both as an NBP and a ⊕BP. Hence, it directly follows
that Nsem(n, s),⊕sem(n, s) ≤ (22sn)s/(s − 1)! ≤ 22s

2
ss/(s − 1)!, since s ≥ n, therefore,

since s! ≥ (s/e)s, Nsem(n, s),⊕sem(n, s) ≤ 22s
2
ses < 22(s+1)2 .
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Definition 2.2.3. For the complexity measures M = NBP,⊕BP, the simple Nečiporuk
lower bound method consists of the following.

1. Giving explicitly a non-decreasing function b : N>0 → N such that for any n ∈ N, for
any n-ary Boolean function f on V that depends on all its inputs and any partition
V1, . . . , Vp of V , we have

∑p
i=1 max

{
|Vi| ,min{s ∈ N | Msem(|Vi| , s) ≥ rVi(f)}

}
≥∑p

i=1 b(rVi(f)).

2. For a given n-ary Boolean function g on V that depends on all the variables whose
indices are in V , explicitly choosing a partition V1, . . . , Vp of V , computing rVi(g)

for all i ∈ [p] and concluding that M(g) ≥
∑p

i=1 b(rVi(g)).

A function b satisfying the condition of Step 1 in the definition above is called a simple
Nečiporuk function for M.

We now give an explicit simple Nečiporuk function for NBP and ⊕BP.

Proposition 2.2.4. The function on N>0 → N given by m 7→
⌈√

1
2

log2m− 1
⌉

is a
simple Nečiporuk function for NBP and for ⊕BP.

Proof. We start by observing that the function on N>0 → N given by

m 7→

⌈√
1

2
log2m− 1

⌉

is obviously non-decreasing. Let n ∈ N, f be an n-ary Boolean function f on V

depending on all its variables and V1, . . . , Vp be a partition of V . Let i ∈ [p]. Let
si = max

{
|Vi| ,min{s ∈ N | Nsem(|Vi| , s) ≥ rVi(f)}

}
for all i ∈ [p]. We claim that

si ≥
⌈√

1
2

log2 rVi(f)− 1
⌉

for all i ∈ [p].
By definition, Nsem(|Vi| , si) ≥ rVi(f), and since si ≥ |Vi|, Proposition 2.2.2 implies that

Nsem(|Vi| , si) < 22(si+1)2 and hence 22(si+1)2 > rVi(f), that is to say, si >
√

1
2

log2 rVi(f)−1.

Since si is integral, we deduce that si ≥
⌈√

1
2

log2 rVi(f)− 1
⌉
. The lemma follows for

NBP; the argument for ⊕BP is identical replacing Nsem by ⊕sem.

This directly gives us the following lower bounds.

Proposition 2.2.5 (Pudlák [1987], Karchmer and Wigderson [1993]).

NBP(EDn),NBP(ISAn),⊕BP(EDn),⊕BP(ISAn) ∈ Ω
( n3/2

logn

)
.
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Proof. We first consider EDn for n = 2k2k and k ≥ 2. By Lemma 2.1.6 there is a partition
V1, . . . , VN of [n] for N = 2k such that rVi(EDn) ≥ NN−1 and |Vi| = 2k for all i ∈ [N ].
Applying Proposition 2.2.4, since EDn depends on all its variables, we have

NBP(EDn),⊕BP(EDn) ≥
N∑
i=1

⌈√
1

2
log2 rVi(EDn)− 1

⌉
≥ N ·

⌈√
1

2
log2N

N−1

⌉
−N

≥ N ·
√
N − 1

2
log2N −N

which is in Ω
(
N3/2(log2N)1/2

)
and hence Ω

(
n3/2

logn

)
since n is O(N log2N).

We now consider ISA. Let n ∈ N, n ≥ 32. Let V1, . . . , Vp, U be a partition of [n] such
that rVi(ISAn) = 2q for all i ∈ [p] where p, q ∈ N>0 verify p ≥ 1

32
· n

log2 n
and q ≥ n

16
as given

by Lemma 2.1.9. Applying Proposition 2.2.4, since ISAn depends on all its variables, we
have

NBP(ISAn),⊕BP(ISAn) ≥
p∑
i=1

⌈√
1

2
log2 rVi(ISAn)− 1

⌉

≥
p∑
i=1

(√1

2
log2(2

q)− 1
)
= p ·

(√q

2
− 1
)

≥ 1

32
· n

log2 n
·
(√ n

32
− 1
)

.

So NBP(ISAn),⊕BP(ISAn) ∈ Ω
(
n3/2

logn

)
.

To understand the best lower bounds we can prove with the simple Nečiporuk lower
bound method, we first give a lower bound on Nsem(n, s) and ⊕sem(n, s) (valid for suitable
values of n, s ∈ N) that will allow us to give an upper bound on all simple Nečiporuk
functions for NBP, ⊕BP. We do this by giving an easy upper bound on the size needed
by NBPs and ⊕BPs to compute any n-ary Boolean function1; i.e., simple upper bounds
on the Shannon function for NBP and ⊕BP.

Lemma 2.2.6. For any n-ary Boolean function f on {0, 1}n (n ∈ N),

NBP(f),⊕BP(f) ≤ 3 · 2
⌈
n
2

⌉
.

1Note that there are somewhat tighter but more complicated upper bounds of 2n/2+1 for NBP due
to Lupanov Lupanov [1958] and a tight asymptotic upper bound of 2(n+1)/2 for ⊕BP due to Nečipo-
ruk Nečiporuk [1962], respectively; see Jukna [2012].
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Proof. Assume that n = 2t is even. The constructed NBPs will have only one non-
deterministic level, will be the same for all functions for the other levels 1 to t − 1 and
t+ 1 to 2t, and every vertex at each level i will query variable xi.

The first t−1 levels form a complete decision tree of height t−1 on variables x1, . . . , xt−1

with a vertex at level t for each assignment a1 · · · at−1 to these variables. The last t
levels of the NBP consist of a complete fan-in tree of height t on variables xt+1, . . . , x2t as
follows: there is a vertex at level t′ > t for every assignment at′ · · · a2t to xt′ , . . . , xt and
there is an out-arc labelled at′ from this vertex to the vertex at level t′ + 1 corresponding
to at′+1 · · · a2t. The 1-output vertex has two in-arcs, one labelled a2t from each vertex
corresponding to an assignment a2t at level 2t.

Finally, we define the non-deterministic level t of the NBP for function f . For each
assignment a1 · · · a2t on which f evaluates to 1, there is an out-arc labelled at from the
vertex corresponding to a1 · · · at−1 at level t (which queries xt) to the vertex corresponding
to at+1 · · · a2t at level t+ 1.

The constructed NBP has at most 3 · 2t = 3 · 2n
2 vertices. By observing that there is

precisely one accepting path on any accepted input, we see that it is also a ⊕BP.

Corollary 2.2.7. For all n, s ∈ N, n ≥ 2
⌊
log2(

s
3
)
⌋
, Nsem(n, s),⊕sem(n, s) > 2

s2

36 .

Proof. Clearly Nsem(n, s) is non-decreasing in n, so it suffices to prove the corollary for
n = 2

⌊
log2(

s
3
)
⌋
. Then 3 · 2n

2 ≤ s < 6 · 2n
2 . There are precisely 22

n
> 2

s2

36 different Boolean
functions on n inputs and, by Lemma 2.2.6, each may be computed by an NBP or ⊕BP
of size at most s.

Theorem 2.2.8. Let F = {fn}n∈N be a family of Boolean functions. Let L : N → N
be such that for each n ∈ N, the lower bound L(n) for NBP(fn) or ⊕BP(fn) has been
obtained using the simple Nečiporuk lower bound method. Then, L(n) ∈ O

(
n3/2

logn

)
.

Proof. Let F = {fn}n∈N be a family of Boolean functions, where for each n ∈ N, fn
depends on all the variables in Dn ⊆ [n]. Let L : N → N be such that

L(n)

=max
{ p∑
i=1

max
{
|Vi| ,min{s ∈ N | Nsem(|Vi| , s) ≥ rVi(fn)}

} ∣∣∣ V1, . . . , Vp partition Dn

}
for all n ∈ N.

Let n ∈ N and V1, . . . , Vp be a partition of Dn. Let i ∈ [p] and set

si = max
{
|Vi| ,min{s ∈ N

∣∣ Nsem(|Vi| , s) ≥ rVi(fn)}
}

.
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Suppose that si = min{s ∈ N | Nsem(|Vi| , s) ≥ rVi(fn)} > |Vi|. Since Vi is non-empty
and si > |Vi|, we have si > 1. But as all four Boolean functions on one variable can
be computed by an NBP of size 1, we have Nsem(|Vi| , 1) ≥ 4, so that we must have
rVi(f) > 4. We now have two cases depending on |Vi|. If |Vi| < log2 log2 rVi(f) + 3 then,
by Lemma 2.2.6, since NBPs of size 3 ·2

⌈ ∣∣Vi∣∣
2

⌉
suffice to compute all functions on Vi, which

include those counted in rVi(fn),

si ≤ 3 · 2
⌈ ∣∣Vi∣∣

2

⌉
≤ 3 · 2(log2 log2 rVi (f))/2+2 = 12

√
log2 rVi(f) .

On the other hand, if |Vi| ≥ log2 log2 rVi(f) + 3 then, setting s =
⌈
6
√

log2 rVi(f)
⌉
, we

have

2 log2

(s
3

)
≤ 2 log2

(6√log2 rVi(f) + 1

3

)
≤ 2 log2

(7
3

√
log2 rVi(f)

)
≤ log2 log2 rVi(f) + 3

≤ |Vi|

so, by Corollary 2.2.7, we have that Nsem(|Vi| , s) > 2
s2

36 ≥ rVi(f), which means that
si ≤

⌈
6
√

log2 rVi(f)
⌉
. Therefore, for all n ∈ N,

L(n) ≤ max
{ p∑
i=1

max
{
|Vi| , 12

√
log2 rVi(f)

} ∣∣∣∣ V1, . . . , Vp partition Dn

}
.

Let n ∈ N, n ≥ 4. By Lemma 2.1.1, it follows that

L(n) ≤max
{ p∑
i=1

max
{
|Vi| , 12

√
log2(min{22

∣∣Vi∣∣ , 2n−|Vi|})
} ∣∣∣∣ V1, . . . , Vp partition Dn

}

=max
{ p∑
i=1

max
{
vi, 12

√
log2(min{22vi , 2n−vi})

} ∣∣∣∣ p∑
i=1

vi ≤ n and ∀i ∈ [p], vi > 0

}

≤max
{ p∑
i=1

max
{
vi, 12

√
min{2vi , n− vi}

} ∣∣∣∣ p∑
i=1

vi = n and ∀i ∈ [p], vi > 0

}

=max
{ p∑
i=1

h(vi)
∣∣∣ p∑
i=1

vi = n and ∀i ∈ [p], vi > 0
}

(??)

where h(v) = max
{
v, 12min{2v/2,

√
n− v}

}
for all v ∈ N.

Let now v1, . . . , vp realise the maximum in (??). Clearly, h(v) = 12 · 2v/2 for all
v ∈ N, v ≤ log2 n− 1 and hence h(v) + h(v′) ≤ h(v + v′) if v + v′ ≤ log2 n− 1. It follows
that without loss of generality we can assume that there exists at most one j ∈ [p] such

43



that vj is smaller than log2 n−1
2

. Such a small vj has h(vj) = 12 · 2vj/2 < 12 · n1/4. Let
now I ⊆ [p] such that i ∈ I if and only if h(vi) = vi. We have that

∑
i∈I h(vi) ≤ n by

definition of v1, . . . , vp. Moreover, in [p] \ I, there are at most 2n
log2 n−1

elements, since for
all i ∈ [p] \ {j}, vi ≥ log2 n−1

2
, and each such i verifies h(vi) ≤ 12

√
n− vi ≤ 12

√
n. Hence,

L(n) ≤
p∑
i=1

h(vi) ≤ 24 · n3/2

log2 n− 1
+ 12 · n1/4 + n ≤ 74 · n3/2

log2 n

which completes the proof, as the case of ⊕BPs is treated identically.

Limitations of this Formulation

Simply using some adaptation of Definition 2.2.3 would not allow us to recover the well-
known Ω

(
n2

logn

)
lower bound on the size of binary formulæ contained in Nečiporuk’s original

article Nečiporuk [1966]. Indeed, for all n, s ∈ N, let us denote by Fsem(n, s) the number
of n-ary Boolean functions on some fixed V computable by BFs of size at most s. We
can prove a Lemma analogous to Lemma 2.2.1 where NBP is replaced by L and Nsem

by Fsem. Similarly, we can define the simple Nečiporuk lower bound method for L as
in Definition 2.2.3, as well as simple Nečiporuk functions for L accordingly. However,
Lupanov showed (Lupanov [1960], see [Jukna, 2012, p.32]) that for all n ∈ N, any n-
ary Boolean function on some V can be computed by a BF of size at most α · 2n

log2 n

for some constant α ∈ R>0 (a result which is analogous to Lemma 2.2.6). Following
the same strategy as for the proofs of Corollary 2.2.7 and Theorem 2.2.8, we can show
that this implies there exists a constant β ∈ R>0 such that any simple Nečiporuk function
b : N>0 → N for L verifies b(m) ≤ β · log2m

log2 log2 log2m
for any sufficiently large m ∈ N>0. This

means that this does not allow us to recover the well-known Nečiporuk bounding function
of m 7→ 1

4
log2m (see e.g. [Jukna, 2012, Theorem 6.16]), and therefore also not Nečipo-

ruk’s original lower bound.
Even if we managed to adapt Definition 2.2.3 to the case of binary formulæ, we cannot

really do it in a clean way for all complexity measures we would like to study. If we
were to try to adapt Lemma 2.2.1 to the case of the size of limited non-deterministic
branching programs (LNBPs), we would define, as usual, for all n, s, δ ∈ N, the number
LNsem(n, s, δ) of n-ary Boolean functions on some fixed V computable by LNBPs of size
at most s and using δ non-deterministic bits. But then, it would be false to say that for
any δ, n ∈ N, for any n-ary Boolean function f depending on all of V and any partition
V1, . . . , Vp of V we have LNBPδ(f) ≥

∑p
i=1 max

{
|Vi| ,min{s ∈ N | LNsem(|Vi| , s, δ) ≥
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rVi(f)}
}

(this would induce an overcount, as we would most certainly count vertices
corresponding to non-deterministic variables several times).

These considerations led us to the more general formulation of the Nečiporuk method
described in the next section.

2.3 An abstract formulation of Nečiporuk’s method

In this section we define an abstract version of Nečiporuk’s lower bound method and
provide some model-independent meta-results on the limitations of this method.

The main idea of the general version of the method is, for a given Boolean function, to
partition its set of input variables and to lower bound its complexity by a sum over each
element of the partition of a partial cost that depends only on the number of subfunctions
of the function on the variables in this element. More formally, we state the method in
the following way.

Definition 2.3.1. For a given complexity measure M on Boolean functions, Nečiporuk’s
lower bound method consists of the following.

1. Giving explicitly a non-decreasing function b : N>0 → N such that for any n ∈ N,
for any n-ary Boolean function f and any partition V1, . . . , Vp of [n], we have

M(f) ≥
p∑
i=1

b(rVi(f)) .

2. For a given n-ary Boolean function g, explicitly choosing a partition V1, . . . , Vp of
[n], computing rVi(g) for all i ∈ [p] and concluding that M(g) ≥

∑p
i=1 b(rVi(g)).

A function b satisfying the condition of Step 1 in Nečiporuk’s method is called a
Nečiporuk function for M and we denote by NM the set of all Nečiporuk functions for M.

The first step of Definition 2.3.1 is usually not included in the Nečiporuk method. For
instance in Wegener [1987], Jukna [2012], an explicit Nečiporuk function b is given for a
complexity measure M and therefore the result concerning the limitation of the method
is relative to this function b. In the case of deterministic branching programs, the best
possible b was given by Alon and Zwick Alon and Zwick [1989], who use a similar definition
but we are not aware of any result of this kind for other complexity measures.

It follows from Definition 2.3.1 that the best lower bound achievable by the Nečiporuk
method for a family F = {fn}n∈N of Boolean functions and a complexity measure M is
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the function NM
F :

n 7→ max
{ p∑
i=1

b(rVi(fn))
∣∣∣ b ∈ NM ∧ V1, . . . , Vp partition of [n]

}
. (2.2)

2.3.1 Meta-results on Nečiporuk’s method

We now give two results concerning Nečiporuk’s method depending on hypotheses on
the complexity measure M. We will apply these results in the next section with the
appropriate constants and functions for each of the concrete computational models we
consider in this chapter.

The first meta-result is that an upper bound on the complexity of the functions ISAk,k

implies an upper bound on every b ∈ NM. Intuitively this is possible because by definition,
b entails a lower bound on M(f) for every function f .

Lemma 2.3.2. Let M be a given complexity measure on Boolean functions and assume
that we have a non-decreasing function gM : [1,+∞[ → R≥0 such that M(ISAk,k) ≤ gM(k)

for all k ∈ N>0 and there exists a constant α ∈ R>0 such that gM(k+1)
gM(k)

≤ α for all k ∈ N>0.
Then, any b ∈ NM is such that

b(m) ≤ α · gM(log2 log2m)

log2m

for all m ∈ N,m ≥ 4.

Proof. Let b ∈ NM. Let m ∈ N,m ≥ 4 and k ∈ N>0 be such that 22k ≤ m ≤ 22
k+1 . Hence

2k ≤ log2m ≤ 2k+1 and of course k ≤ log2 log2m ≤ k + 1. Consider now ISAk+1,k+1. By
Lemma 2.1.8 we have a partition V1, . . . , V2k+1 , U of the set of indices [(k + 1) + 2k+1(k +

1) + 2k+1] of the input variables of ISAk+1,k+1 such that rVi(ISAk+1,k+1) = 22
k+1 for all

i ∈ [2k+1]. By hypothesis, it therefore follows that:

gM(k + 1) ≥ M(ISAk+1,k+1)

≥
2k+1∑
i=1

b(rVi(ISAk+1,k+1)) + b(rU(ISAk+1,k+1))

≥
2k+1∑
i=1

b
(
22

k+1)
= 2k+1b

(
22

k+1) ,
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therefore b(22k+1
) ≤ gM(k+1)

2k+1 . But since gM(k+1)
gM(k)

≤ α, gM(k) ≤ gM(log2 log2m) (because
gM is non-decreasing and 1 ≤ k ≤ log2 log2m), b is non-decreasing and m ≤ 22

k+1 we have

b(m) ≤ b
(
22

k+1) ≤ gM(k + 1)

2k+1
≤ α · gM(log2 log2m)

log2m
.

The lemma follows.

Assuming an upper bound on every b ∈ NM, as given for instance by the previous
lemma, we can derive an upper bound on NM

F independently of the family of Boolean
functions F . That is to say that we can give an overall (asymptotic) upper bound on the
best complexity lower bounds we may obtain using Nečiporuk’s lower bound method for
the complexity measure M, exhibiting the limitation of the method.

Lemma 2.3.3. Let M be a given complexity measure on Boolean functions and assume
that we have a function hM : [4,+∞[ → R≥0 such that there exist x0 ∈ [28,+∞[ and a
constant α ∈ R>0 verifying that:

(i) hM is non-decreasing on [x0,+∞[;

(ii) hM(2x) ≥ log2 x for all x ∈ [log2 x0,+∞[;

(iii) hM(22
v
) + hM(22

v′
) ≤ hM(22

v+v′
) for all v, v′ ∈ N verifying 22

v ≥ x0 and 22
v′ ≥ x0;

(iv) for all b ∈ NM and m ∈ N,m ≥ 4, we have b(m) ≤ α · hM(m).

Then, for any family of Boolean functions F = {fn}n∈N, we have

NM
F (n) ≤ α ·

(
4 + hM(bx0c)

)
· n

log2 n
· hM(2n)

for all n ∈ N, n ≥ log2 x0.

Proof. The condition n ≥ log2 x0 ensures that hM(2n) is always well defined and sat-
isfies (ii). Let F = {fn}n∈N be a family of Boolean functions. For all n ∈ N>0, let
h′n : [n] → R be the function defined on [n] by

h′n(v) =

α · min{hM(22
v
), hM(2n−v)} if min{22v , 2n−v} ≥ x0

α · hM(bx0c) otherwise

for all v ∈ [n].
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Claim 2.3.4. If n ∈ N>0 and v ∈ [n] are such that v ≤ log2 n − 1 and 22
v ≥ x0 then

h′n(v) = α · hM(22
v
).

Proof. With the hypothesis of the claim we have

22
v ≤ 22

log2 n−1

= 2
n
2 ≤ 2n−log2 n+1 ≤ 2n−v ,

the middle inequality being a consequence of n ≥ log2 x0 ≥ 8. Hence in this case
min{22v , 2n−v} = 22

v which is greater than x0. As by (i) hM is non-decreasing we have
h′n(v) = α · hM(22

v
).

Let n ∈ N>0, b ∈ NM and V ⊆ [n], V 6= ∅. According to (iv), we have b(m) ≤ α·hM(m)

for all m ∈ N,m ≥ 4. Moreover, by Lemma 2.1.1, we have rV (fn) ≤ min{22|V |
, 2n−|V |},

so since b is non-decreasing, it follows that b(rV (fn)) ≤ b(min{22|V |
, 2n−|V |}). Now, if

min{22|V |
, 2n−|V |} ≥ x0, we get that

b(min{22|V |
, 2n−|V |}) ≤ α · hM(min{22|V |

, 2n−|V |}) by (iv)

= α · min{hM(22
|V |
), hM(2n−|V |)} by (i)

= h′n(|V |) ;

otherwise (i.e. min{22|V |
, 2n−|V |} < x0), we get that

b(min{22|V |
, 2n−|V |}) ≤ b(bx0c) ≤ α · hM(bx0c) = h′n(|V |)

since b is non-decreasing and bx0c ≥ 4. Hence, b(rV (fn)) ≤ h′n(|V |) for all n ∈ N>0,
b ∈ NM and V ⊆ [n], V 6= ∅. Therefore, by definition, it follows that for all n ∈ N>0, we
have

NM
F (n) = max

{ p∑
i=1

b(rVi(fn))
∣∣∣ b ∈ NM and V1, . . . , Vp partition of [n]

}
≤ max

{ p∑
i=1

h′n(|Vi|)
∣∣∣ V1, . . . , Vp partition of [n]

}
= max

{ p∑
i=1

h′n(vi)
∣∣∣ p∑
i=1

vi = n and ∀i ∈ [p], vi > 0
}

. (?)

Let n ∈ N, n ≥ log2 x0 and v1, . . . , vp ∈ N>0 such that
∑p

i=1 vi = n that realises the
maximum (?). We first show that without loss of generality we can assume that there
exists at most one j ∈ [p] such that min{22

vj
, 2n−vj} ≥ x0 and vj ≤ log2 n−1

2
.
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If this is not the case then we have v, v′ ∈ [n] such that min{22v , 2n−v, 22v
′
, 2n−v

′} ≥ x0

and v + v′ ≤ log2 n− 1. It follows from (iii) and Claim 2.3.4 that

h′n(v) + h′n(v
′) = α · (hM(22

v

) + hM(22
v′

)) ≤ α · hM(22
v+v′

).

But as v ≤ v + v′ ≤ log2 n− 1, we have

min{22v+v′

, 2n−(v+v′)} = 22
v+v′ ≥ 22

v

= min{22v , 2n−v} ≥ x0 ;

hence by Claim 2.3.4, α · hM(22
v+v′

) = h′n(v + v′) and h′n(v) + h′n(v
′) ≤ h′n(v + v′) and

the partition that unifies the corresponding elements would yield a bound at least as big
in (?).

If it exists this j is such that

h′n(vj) = α · hM(22
vj
) ≤ α · hM

(
22

log2 n−1
2

)
≤ α · hM(2n).

Consider now the remaining elements of the partition, i.e. those i ∈ [p] \ {j}. If
moreover we have min{22vi , 2n−vi} ≥ x0 then by definition of h′n we have

h′n(vi) ≤ α · hM(2n−vi) ≤ α · hM(2n) .

As for this case we have vi >
log2 n−1

2
there are at most 2n

log2 n−1
such i. Notice that

n
log2 n−1

≤ 3
2
· n

log2 n
for n ≥ 8.

If otherwise min{22vi , 2n−vi} < x0, then we have

h′n(vi) = α · hM(bx0c)

and there are at most n such i.
Putting all together, we get that

NM
F (n) ≤ max

{ p∑
i=1

h′n(vi)
∣∣∣ p∑
i=1

vi = n and ∀i ∈ [p], vi > 0
}

≤ α · hM(2n) +
3n

log2 n
· α · hM(2n) + n · α · hM(bx0c)

≤ α · hM(2n) +
3n

log2 n
· α · hM(2n) +

hM(2n)

log2 n
· n · α · hM(bx0c) by (ii)

≤ α ·
(
4 + hM(bx0c)

)
· n

log2 n
· hM(2n).
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2.4 Upper Bounds for the Computation of ISAk,`

The ISAk,` functions play a critical role in our approach to studying Nečiporuk’s method.
This section collects size upper bounds for computing ISAk,` on every model considered
in this chapter. These bounds will be required when limits to the Nečiporuk method for
these models are investigated.

Theorem 2.4.1. Let δ ∈ N. For all k, ` ∈ N>0,

NBP(ISAk,`),⊕BP(ISAk,`) ≤ 3 · 2k+
`
2 + 2` (2.3)

LNBPδ(ISAk,`) ≤

12 · 2k max
{

2`−δ

`−δ , `
}
+ 22`−δ

`−δ if ` > δ

2k(3`+ 1) + 2 · 2` if ` ≤ δ
(2.4)

BP(ISAk,`) ≤ 9 · 2
k+`

`
+

22`

`
(2.5)

LLδ(ISAk,`) ≤ 12 · 2k · max{2`−δ, `}+ 3 · 2` (2.6)

L(ISAk,`) ≤ 7 · 2k · 2` . (2.7)

Proof. Recall the notation used to refer to the bits of an ISAk,` instance a. Here we further
use a1, . . . , ak for the bits of the primary pointer p and (when relevant) xn+1, . . . , xn+δ for
the non-deterministic variables.

We begin with simple constructions:

Lemma 2.4.2. Let v1, . . . , vk, y1, . . . , yk, z1, . . . , z2k be Boolean variables, k ≥ 1.

1. A size 2k − 1 deterministic branching program can “read” v1, . . . , vk and route the
2k possible outcomes to 2k distinct arcs;

2. A size 3k deterministic branching program can test whether vi = yi holds for every
i ∈ [k];

3. A size 2k+1 − 2 deterministic branching program with 2k distinguished states sw for
w ∈ {0, 1}k can ascertain that (v1, . . . , vk) = w, i.e., has the property that for each
w, a computation started at sw accepts iff (v1, . . . , vk) = w;

4. A size 4k formula can test whether vi = yi holds for every i ∈ [k];

5. A formula with leaves z1, . . . , z2k and, for every i ∈ [k], with 2i leaves vi or ¬vi can
compute zbink(v1,...,vk)+1.
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Proof. For (1), a full binary tree suffices.
For (2), a size-3 program can test whether vi = yi for a fixed i, so a cascade of k such

programs can check equality for every i.
For (3), an inverted binary tree first queries v1 at each of 2k leaves sw, w ∈ {0, 1}k;

each answer a ∈ {0, 1} branches from sw to the unique state sw′ , among 2k−1 states at
the next level, for which w = aw′; each state at this next level queries v2 and branches to
one of 2k−2 states at the next level, and so on, down to level k with two states querying
vk, for a total of

∑
1≤i≤k 2

i states; every missing arc in the above description rejects.
For (4), the formula

∧
1≤i≤k[(vi ∧ yi)∨ (¬vi ∧¬yi)] expanded into a binary tree has 4k

leaves.
For (5), we note that (¬v1∧z1)∨(v1∧z2) computes zbin1(v1)+1 and use induction, having

computed zbink(0,v2,...,vk)+1 from the leaves z1, . . . , z2k−1 and the 2i leaves vi+1 or ¬vi+1 for
i ∈ [k− 1], and having computed zbink(1,v2,...,vk)+1 similarly from the leaves z2k−1+1, . . . , z2k

and 2i further leaves vi+1 or ¬vi+1 for i ∈ [k − 1].

The NBP case. If ` = 1 then, by Lemma 2.4.2.1, a (deterministic) BP of size 2k −
1 + 2k + 2 < 3 · 2k+`/2 + 2` computes ISAk,`. So let ` > 1. For every w ∈ {0, 1}d`/2e,
w′ ∈ {0, 1}b`/2c and p′ ∈ [2k], the NBP will have states s(w,w′), (p′, sw′) and p′. Together
with further states, the NBP implements the following:

• Read bits a1, . . . , ak, sec1, . . . , secd`/2e.

• Guess w′ ∈ {0, 1}b`/2c and branch to s(sec1,...,secd`/2e,w′), forgetting a1, . . . , ak.
(For every w′ ∈ {0, 1}b`/2c and for every a ∈ {0, 1}, every state querying secd`/2e,
i.e., every bottom node in the binary tree formed by the first stage, is connected to
the state s(sec1,...,secd`/2e−1,a,w

′) with an arc labelled a.)

• If Data[sec1, . . . , secd`/2e, w′] = 1 then guess the bits a′1, . . . , a′k of the primary pointer
p ∈ [2k] and branch to the state (bink(a′1, . . . , a′k) + 1, sw′).
(For every w ∈ {0, 1}d`/2e and w′ ∈ {0, 1}b`/2c, the state s(w,w′) queries Data[w,w′]

and connects via an arc labelled 1 to every state (p′, sw′), p′ ∈ [2k].)

• Ascertain that w′ was guessed correctly.
(For each p′ ∈ [2k] separately, apply Lemma 2.4.2.3 to the distinguished states
(p′, sw′), w′ ∈ {0, 1}b`/2c, to ascertain that a computation from (p′, sw′) reaches the
state p′ iff (sec[p′]d`/2e+1, . . . , sec[p′]`) = w′.)
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• Ascertain that p was guessed correctly.
(Apply Lemma 2.4.2.3, to the 2k distinguished states p′, to ascertain that (a1, . . . , ak)
= (a′1, . . . , a

′
k).)

The first stage uses 2k+d`/2e − 1 states by Lemma 2.4.2.1. The second stage needs the 2`

states s(w,w′). The fourth stage uses 2k times 2b`/2c+1−2 states by Lemma 2.4.2.3 (and also
includes the 2k+b`/2c states (p′, sw′)). The last stage uses 2k+1−2 states by Lemma 2.4.2.3
for a total < 2k(2d`/2e + 2 · 2b`/2c − 2) + 2k+1 + 2`, which equals 2k(3 · 2`/2) + 2` when ` is
even and 2k( 4√

2
· 2`/2) + 2` < 2k(3 · 2`/2) + 2` when ` is odd.

The ⊕BP case. It is easy to check that the above NBP has a unique accepting path
for any input for which ISAk,` is 1 and hence as a ⊕BP it also computes ISAk,`.

The LNBPδ case. If ` ≤ δ then the secondary ISAk,` pointer is no wider than δ, i.e.,
contains no more than δ bits. So a δ-LNBP can “store” the secondary pointer within its
first ` non-deterministic variables xn+1, . . . , xn+` and solve ISAk,` as follows:

• Read the primary pointer.

• Check that (sec1, . . . , sec`) = (xn+1, . . . , xn+`).

• Forget everything.

• Read xn+1, . . . , xn+`.

• Check that Data[xn+1, . . . , xn+`] = 1.

The first and second steps use 2k − 1 and 2k3` states respectively, appealing to
Lemma 2.4.2.1 and Lemma 2.4.2.2. Note that across the second step, neither the sec-
ondary pointer nor xn+1, . . . , xn+` are remembered. The third step merges every arc that
survived the second step and thus requires no state. The fourth and fifth steps require
2` − 1 and 2` states, for a total < 2k + 2k3`+ 2 · 2`.

Now suppose that ` > δ, i.e., the secondary pointer is strictly wider than δ. Let
m ∈ [` − δ − 1], to be set optimally later. A δ-LNBP can implement the following
strategy, where grey-shaded regions in the diagrams indicate the portion of the ISAk,`

variables that are remembered, at exponential cost in numbers of states, at any given
time.

1. Read the primary pointer:
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Figure 2.1 – LNBPδ(ISAk,`) upper bound, step 1
Uses 2k − 1 states as per Lemma 2.4.2.1.

2. Check δ contiguous secondary pointer bits for equality with xn+1, . . . , xn+δ:

Figure 2.2 – LNBPδ(ISAk,`) upper bound, step 2
Uses 2k times 3δ states, again by Lemma 2.4.2.2. None of the checked bits are
remembered.

3. Read `−m− δ other contiguous bits from the secondary pointer:

Figure 2.3 – LNBPδ(ISAk,`) upper bound, step 3
Uses 2k times (2`−m−δ − 1) states.

4. Forget the primary pointer:

Figure 2.4 – LNBPδ(ISAk,`) upper bound, step 4
No state required.

5. Read and remember the non-deterministic bits:

53



Figure 2.5 – LNBPδ(ISAk,`) upper bound, step 5
Uses 2`−m−δ(2δ − 1) < 2`−m states.

6. Read the data bits that remain candidates:

Figure 2.6 – LNBPδ(ISAk,`) upper bound, step 6
Uses 2`−m(22

m − 1) < 2`−m22
m states.

7. Forget the part of the secondary pointer that was read:

Figure 2.7 – LNBPδ(ISAk,`) upper bound, step 7
No state required.

8. Read the primary pointer:

Figure 2.8 – LNBPδ(ISAk,`) upper bound, step 8
Uses 22

m
(2k − 1) < 2k22

m states.

9. Read the secondary pointer bits that were never yet accessed:
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Figure 2.9 – LNBPδ(ISAk,`) upper bound, step 9
Uses 22

m
2k(2m − 1) < 2k2m22

m states.

10. Output the appropriate data bit from memory: no state required.

The resulting δ-LNBP has fewer than

2k + 2k3δ + 2k2`−δ−m + 2`−m + 2`−m22
m

+ 2k22
m

+ 2k2m22
m

states, which is less than

12 · 2k max
{ 2`−δ

`− δ
, `
}
+

22`−δ

`− δ

when m is set to
⌊
log2

(
`− δ − log2((`− δ)2)

)⌋
and `− δ ≥ 8 (and the degenerate case in

which 1 ≤ `− δ < 8 is treated separately by using a simpler method to compute ISAk,`).
The BP case. Follows from the LNBPδ case by setting δ = 0. More specifically,

stages 2 and 5 in the construction of the δ-LNBP are skipped.
The δ-LL case. We will not exploit more than ` non-deterministic variables amongst

xn+1, . . . , xn+δ so we suppose that δ ≤ `. Let m = ` − δ. The non-deterministic formula
V ∧D solves ISAk,` provided that V and D fulfil

V = 1 iff (secm+1, . . . , sec`) = (xn+1, . . . , xn+δ),

D = 1 iff Data[F1, . . . , Fm, xn+1, . . . , xn+δ] = 1,

and for 1 ≤ j ≤ m, Fj evaluates to secj. By Lemma 2.4.2.5, D exists such that

|D| = 2` + Σm
j=12

j · |Fj|+ Σ`
j=m+12

j < 3 · 2` + Σm
j=12

j · |Fj| . (2.8)

By Lemma 2.4.2.5, each formula Fj, 1 ≤ j ≤ m, can be constructed of size

|Fj| = 2k + Σk
j=12

j < 3 · 2k . (2.9)

By Lemma 2.4.2.4, for every p ∈ [2k], a formula Vp of size 4δ can be constructed that
evaluates to 1 iff (sec[p]m+1, . . . , sec[p]`) = (xn+1, . . . , xn+δ). The formula V can then be
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constructed using Lemma 2.4.2.5, taking z1, . . . , z2k as V1, . . . , V2k . The size of V is then

|V | =
2k∑
j=1

|Vj| +
k∑
j=1

2j < 2k · 4δ + 2k+1 ≤ 2k · 6` . (2.10)

Substituting (2.9) into (2.8) and using (2.10), the size of V ∧D is at most

2k · 6`+ 3 · 2` + 2m+13 · 2k ≤ 6 · 2k(`+ 2m) + 3 · 2` ≤ 12 · 2k · max{2m, `}+ 3 · 2`.

The L case. Follows from the δ-LL case by setting δ = 0. More sharply, V from that
construction is not needed, and |D| = 2`+

∑`
j=1 2

j |Fj| < 2`+3 · 2k · 2`+1 < 7 · 2k · 2`.

2.5 Non-deterministic and Parity Branching
Programs revisited

We note in this section that, in the case of NBP and ⊕BP, the flexibility added by
Definition 2.3.1 over Definition 2.2.3 yields no better lower bounds.

We first define the function bNBP,⊕BP : N>0 → N by

bNBP,⊕BP(m) =


⌈√

1
2

log2m− 1
⌉

if m ≥ 4

0 otherwise

for all m ∈ N>0. Using the same strategy as in the proofs of Lemma 2.2.1 and Proposi-
tion 2.2.4, we can prove the following.

Proposition 2.5.1. bNBP,⊕BP is a Nečiporuk bounding function for the NBP (respect-
ively, ⊕BP) size complexity measure; i.e., bNBP,⊕BP ∈ NNBP,N⊕BP.

Combining this with Lemmata 2.1.6 and 2.1.9, we can immediately derive asymptotic
lower bounds on NBP(EDn), NBP(ISAn), ⊕BP(EDn) and ⊕BP(ISAn) using Nečipo-
ruk’s method and hence on NNBP

ED , NNBP
ISA , N⊕BP

ED and N⊕BP
ISA .

Proposition 2.5.2. NBP(EDn), NBP(ISAn), ⊕BP(EDn), ⊕BP(ISAn) ∈ Ω
(
n3/2

logn

)
and

hence we have that NNBP
ED (n),NNBP

ISA (n),N⊕BP
ED (n),N⊕BP

ISA (n) are all Ω
(
n3/2

logn

)
.

Then, we can show that bNBP,⊕BP is in fact the asymptotically largest function in
NNBP ∪ N⊕BP and that the previous lower bound is in fact also the asymptotically
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largest we may obtain. To do this, we appeal to our upper bound from Theorem 2.4.1 on
the size of NBPs and ⊕BPs computing ISAk,` and apply Lemma 2.3.2.

Proposition 2.5.3. There exists a constant c ∈ R>0 verifying that any b ∈ NNBP∪N⊕BP

is such that b(m) ≤ c · bNBP,⊕BP(m) for all m ∈ N,m ≥ 4.

Proof. Let g : [1,+∞[ → R≥0 be the non-decreasing function defined by g(x) = 4 · 2 3
2
x

for all x ∈ [1,+∞[. Theorem 2.4.1 tells us that for all k ∈ N>0, we have

NBP(ISAk,k),⊕BP(ISAk,k) ≤ 3 · 2
3
2
k + 2k ≤ 4 · 2

3
2
k = g(k)

and moreover, g(k+1)
g(k)

= 4·2
3
2 (k+1)

4·2
3
2 k

= 2
√
2 for all k ∈ N>0. Therefore, by Lemma 2.3.2, any

b ∈ NNBP ∪N⊕BP verifies

b(m) ≤ 2
√
2 · g(log2 log2m)

log2m
= 2

√
2 · 4 · 2

3
2

log2 log2m

log2m
= 8

√
2 ·
√

log2m

for all m ∈ N,m ≥ 4.

Finally, using this and Lemma 2.3.3, we get the following result, showing that the
asymptotically greatest lower bound we may expect using Nečiporuk’s method for NBP
and ⊕BP is (asymptotically) equivalent to the lower bound for ISA given in Proposi-
tion 2.5.2.

Theorem 2.5.4. For any family of Boolean functions F = {fn}n∈N, NNBP
F (n),N⊕BP

F (n) ∈
O
(
n3/2

logn

)
.

Proof. We aim at applying Lemma 2.3.3 which requires four hypotheses, (i) to (iv).
For (i), let h : [4,+∞[ → R≥0 be the function defined by h(x) =

√
log2 x for all

x ∈ [4,+∞[ and x0 = 28; as required, h is non-decreasing on [28,+∞[.
For (ii), notice that h(2x) =

√
x ≥ log2 x for all x ∈ [28,+∞[.

For (iii), for all v, v′ ∈ N verifying 22
v ≥ 28 and 22

v′ ≥ 28, we have h(22v) + h(22
v′
) =√

2v +
√
2v′ ≤

√
2v+v′ = h(22

v+v′
) because x+ y ≤ xy when x, y ≥ 2.

For (iv), by Proposition 2.5.3, we know that there exists a constant α ∈ R>0 verifying
that any b ∈ NNBP∪N⊕BP is such that b(m) ≤ α·

√
log2m = α·h(m) for allm ∈ N,m ≥ 4.

We can therefore apply Lemma 2.3.3 with x0 = 28 and get that for any family of
Boolean functions F = {fn}n∈N and all n ∈ N, n ≥ 8,

NNBP
F (n),N⊕BP

F (n) ≤ α ·
(
4 + h(

⌊
28
⌋
)
)
· n

log2 n
· h(2n) = c · n

log2 n
·
√
n = c · n3/2

log2 n
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for some suitable constant c ∈ R>0, which implies that NNBP
F (n),N⊕BP

F (n) ∈ O
(
n3/2

logn

)
.

2.6 Deterministic and Limited Non-deterministic
Branching Programs

In this section, we focus on the model of Boolean deterministic branching programs, as
well as its limited non-deterministic counterpart. In the case of BP, results related to
the Nečiporuk method have been well-known for a long time (see for instance [Wegener,
1987, Chapter 14, Section 3] or Alon and Zwick [1989]). Reproving these results using
what we presented in Section 2.3 is an opportunity to confirm the usability and validity
of our approach.

Concerning limited non-deterministic branching programs, the definition of the model
itself, as well as the results presented in this section concerning Nečiporuk’s method for
the associated measure seem to be novel.

For all δ ∈ N, let us define the functions bLNBPδ
: N>0 → N and bBP : N>0 → N given

by

bLNBPδ
(m) =


⌈
1
6
hLNBPδ

(m)
⌉

if m ≥ 4

0 otherwise

and

bBP(m) =


⌈
1
6

log2m
log2 log2m

⌉
if m ≥ 4

0 otherwise

for all m ∈ N>0, where hLNBPδ
: [4,+∞[ → R is defined as

hLNBPδ
(x) =

max
{ log2 x

2δ(log2 log2 x−δ)
, log2 log2 x

}
if 22δ+1 ≤ x

log2 log2 x otherwise .

It is straightforward to see that bBP(m) ≤ bLNBP0(m) for all m ∈ N>0 and that equality
holds as soon as bBP(m) ≥ log2 log2m.

To prove that bBP ∈ NBP, we reuse the well-known idea that is classically followed (see
for instance Wegener [1987], Alon and Zwick [1989] or Jukna [2012]) to derive a specific
function b ∈ NBP, which is the fact that, given a Boolean function f and a Boolean BP P

that computes it, we can compute any subfunction f |ρ of f with a Boolean BP obtained
from P by “fixing” the values of the variables to which a value is affected by ρ (removing
the associated vertices and directly linking their predecessors to their successors through
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the arcs labelled accordingly). Therefore, if we denote by s the number of vertices in P

labelled by elements from V , we get that an upper bound on the maximum number of
subfunctions computed by BPs with s vertices obtained by “fixing” the values of a given set
of variables in a given BP implies a lower bound on s depending on rV (f), as this number
must be at least as big as rV (f). For the case of limited non-determinism, it suffices to
observe that a Boolean δ-LNBP (for δ ∈ N) computing some Boolean function f does
in fact deterministically compute a proof-checker function g for f . We can then combine
the aforementioned technique with Lemma 2.1.16 binding the number of subfunctions of
f on V and the number of subfunctions of g on V .

Proposition 2.6.1. bLNBPδ
∈ NLNBPδ

for all δ ∈ N. In particular, bBP ∈ NBP.

Proof. Let δ ∈ N. It is not too difficult to show that bLNBPδ
and bBP are non-decreasing,

we leave this to the reader.
Let f be an n-ary Boolean function on V , that verifies without loss of generality

V ∩ [δ] = ∅, and V1, . . . , Vp a partition of V . Let P be a Boolean δ-LNBP computing f
and let g be the (n+δ)-ary Boolean function computed by P when considering the δ non-
deterministic bits as regular input variables (that is, g is such that, for all a ∈ {0, 1}V ∪[δ],
g(a) = 1 if, and only if, P [a] contains a path from s to t1). g is a proof-checker function
for f .

For all i ∈ [p] we will denote by si ∈ N the number of vertices in P labelled by elements
in Vi, as well as q ∈ N the number of vertices labelled by elements in U = [δ]. It is clear
that P is of size

∑p
i=1 si + q ≥

∑p
i=1 si.

We now claim that si ≥ bLNBPδ
(rVi(f)) for all i ∈ [p].

Let i ∈ [p]. Let V ′
i be the subset of Vi containing all indices of variables on which

f depends. Then, by Lemma 2.1.2, rVi(f) = rV ′
i
(f). Moreover for each element l ∈ V ′

i ,
P contains at least one vertex labelled by l. By Lemma 2.1.1, it follows that rVi(f) =

rV ′
i
(f) ≤ 22

∣∣∣V ′
i

∣∣∣
≤ 22

si and si ≥ log2 log2(rVi(f)).
If rVi(f) ≤ 3 the claim is obvious from the definition of bLNBPδ

.
In the case where 4 ≤ rVi(f) < 42

δ we have
⌈
1
6

log2 log2(rVi(f))
⌉
= bLNBPδ

(rVi(f)) and
we are also done as si is an integer and si ≥ log2 log2(rVi(f)).

We now assume rVi(f) ≥ 42
δ . In particular this implies that si ≥ 1.

Observe that for all h : {0, 1}Vi → {0, 1} a subfunction of g on Vi, by definition, there
exists a partial assignment ρ ∈ {0, 1}V \Vi∪[δ] such that g|ρ = h, so it is not too difficult to
see that h is computed by the Boolean BP of size si obtained from P by:

1. removing all non-sink vertices labelled by elements not in Vi;
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2. defining the new start vertex as the only vertex whose label is in Vi and reachable
from the start vertex of P by a path of nodes labelled by elements outside of Vi and
arcs labelled consistently with ρ;

3. connecting a vertex u to a vertex v by an arc labelled by a ∈ {0, 1} if and only if
there exists a path from u to v in P verifying that any intermediate vertex of the
path is labelled by an element outside of Vi, the first arc is labelled by a and each
arc (but the first one) is labelled consistently with ρ.

Thus, rVi(g) is necessarily upper-bounded by the number of syntactically distinct such
BPs we can build from P that way. Since, for such a BP, there are at most si+2 possible
choices for the start vertex and by functionality of the set of arcs labelled 0 and the set
of arcs labelled 1 seen as successor relations, there are at most (si + 1)si possible choices
for the set of arcs labelled 0, as well as at most (si + 1)si possible choices for the set of
arcs labelled 1, rVi(g) is at most (si + 2)(si + 1)2si . Assuming 2 ≤ si we get:

rVi(g) ≤ (si + 2)(si + 1)2si = 2log2(si+2)+2si log2(si+1)

≤ 23si log2(si+2)

≤ 26si log2(si) as 2 ≤ si .

It follows that si ≥ 1
6
· log2(rVi (g))

log2 log2(rVi (g))
. If si = 1 it is clear as rVi(g) is then at most 4, and if

si ≥ 2 we would otherwise have

si log2(si) <
1

6
· log2(rVi(g))

log2 log2(rVi(g))
log2

(1
6
· log2(rVi(g))

log2 log2(rVi(g))

)
=

log2(rVi(g))

6
−

log2(rVi(g)) log2

(
6 log2 log2(rVi(g))

)
6 log2 log2(rVi(g))

<
log2(rVi(g))

6

(observe that the last inequality follows from the fact that the subtracted member must
necessarily be positive since rVi(g) ≥ 4). From Lemma 2.1.16 we have rVi(g) ≥ rVi(f)

1

2δ .
The function log2(x)

log2 log2(x)
being non-decreasing on

[
ee ln(2),+∞

[
and as log2(x)

log2 log2(x)
≤ 2 for

x ∈
[
4, ee ln(2)], we get for rVi(f)

1

2δ ≥ 4:

si ≥
1

6
· log2(rVi(f))

2δ
(

log2 log2(rVi(f))− δ
) .

In conclusion, for all δ, n ∈ N, and any n-ary Boolean function f on V and any par-
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tition V1, . . . , Vp of V , it holds that LNBPδ(f) ≥
∑p

i=1 bLNBPδ
(rVi(f)), hence bLNBPδ

∈
NLNBPδ

. It also directly follows that bBP ∈ NBP because bBP is non-decreasing and
bBP(m) ≤ bLNBP0(m) for all m ∈ N>0.

Let us define ΓLNBP : [2,+∞[× N>0 → R by

Γ(x, δ) =

max
{

x2

2δ(log2 x−δ) log2 x
, x
}

if 2δ+1 ≤ x

x otherwise

for all (x, δ) ∈ [2,+∞[ × N>0. Using the previous proposition and Lemma 2.1.9, we can
immediately derive the following asymptotic lower bound on NLNBP∆(n)

ISA for any ∆: N →
N.

Proposition 2.6.2. NLNBP∆(n)

ISA (n) ∈ Ω
(
ΓLNBP(n,∆(n))

)
for any ∆: N → N. In partic-

ular, NBP
ISA(n) ∈ Ω

(
n2

log2 n

)
.

Proof. Let ∆: N → N. Let n ∈ N, n ≥ 32. Let V1, . . . , Vp, U be a partition of [n] such
that rVi(ISAn) = 2q for all i ∈ [p] where p, q ∈ N>0 verify p ≥ 1

32
· n

log2 n
and q ≥ n

16
as

given by Lemma 2.1.9. We have, as log2

(
n
16

)
≥ log2 n

16
and x 7→

⌈
1
6
hLNBP∆(n)

(x)
⌉

is non-
decreasing on [4,+∞[ (facts which are not too difficult to prove), that

NLNBP∆(n)

ISA (n)

≥
p∑
i=1

bLNBP∆(n)
(rVi(ISAn)) + bLNBP∆(n)

(rU(ISAn))

≥
p∑
i=1

bLNBP∆(n)
(2q)

≥1

6
· 1

32
· n

log2 n
·

max
{ n

16

2∆(n)(log2( n
16

)−∆(n))
, log2(

n
16
)
}

if 42∆(n) ≤ 2
n
16

log2(
n
16
) otherwise

≥ 1

192
· n

log2 n
· 1

16
·

max
{

n
2∆(n)(log2(n)−∆(n))

, log2 n
}

if 2∆(n)+5 ≤ n

log2 n otherwise

≥ c

3072
· n

log2 n
·

max
{

n
2∆(n)(log2(n)−∆(n))

, log2 n
}

if 2∆(n)+1 ≤ n

log2 n otherwise
for some c below

=
c

3072
·

max
{

n2

2∆(n)(log2(n)−∆(n)) log2 n
, n
}

if 2∆(n)+1 ≤ n

n otherwise
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=
c

3072
· ΓLNBP(n,∆(n)) as desired .

In order to show the inequality above it suffices to show that log2 x ≥ cx
2α(log2(x)−α)

for
x ∈ I = [2α+1, 2α+5], α ≥ 0 and some constant c.

It suffices to show that the function f(x) = 2α log2(x) log2(
x
2α
)− cx is non-decreasing

on I. This concludes the claim as f(2α+1) = 2α(α+1)−c2α+1 ≥ 0 when α ≥ 0 and c ≤ 1
2
.

To see this notice that the derivative of f is 2α
( log2 x
x ln 2

+
log2( x

2α
)

x ln 2

)
− c that has the same sign

as g(x) = 2α log2

(
x2

2α

)
− xc ln 2 for x ∈ I.

The derivative of g is 2α+1

x ln 2
− c ln 2 that vanishes for a value x0 = 2α+1

c(ln 2)2
. Assuming

c ≤ 1
24(ln 2)2

we have x0 ≥ 2α+5 and the derivative of g is always non-negative on I.
We have g(2α+1) = 2α(α+2−2c ln 2) which is non-negative as soon as c ≤ 1

ln 2
. Hence

g is non-negative on I.
Hence taking c = 1

24(ln 2)2
yields the desired result.

Now we show that for all δ ∈ N, bLNBPδ
is in fact an asymptotically largest function

in NLNBPδ
(as well as for bBP and NBP) and that the previous bound is in fact also

the asymptotically largest we may obtain, using the meta-results of Section 2.3. To do
this, we appeal to our upper bound from Theorem 2.4.1 on the size of a δ-LNBP (or a
deterministic BP) computing ISAk,` and apply Lemma 2.3.2.

Proposition 2.6.3. There exists a constant c ∈ R>0 verifying that for each δ ∈ N, any
b ∈ NLNBPδ

is such that b(m) ≤ c · bLNBPδ
(m) for all m ∈ N,m ≥ 4. In particular, there

exists a constant c′ ∈ R>0 verifying that any b ∈ NBP is such that b(m) ≤ c′ · bBP(m) for
all m ∈ N,m ≥ 4.

Proof. Let δ ∈ N. Let g : [1,+∞[ → R≥0 be the non-decreasing function defined by

g(x) = 13 · 2x ·

max
{

2x−δ

x−δ , x
}

if δ + 1 ≤ x

x otherwise

for all x ∈ [1,+∞[.
Theorem 2.4.1 tells us that for all k ∈ N>0, we have

LNBPδ(ISAk,k) ≤

12 · 2k max
{

2k−δ

k−δ , k
}
+ 22k−δ

k−δ if δ + 1 ≤ k

2k(3k + 1) + 2 · 2k otherwise

≤

2k
(
12max

{
2k−δ

k−δ , k
}
+ 2k−δ

k−δ

)
if δ + 1 ≤ k

6 · 2kk otherwise
as k ≥ 1
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≤ g(k)

and moreover, g(k+1)
g(k)

≤ 4 for all k ∈ N>0. Indeed, let k ∈ N>0, there are two cases to
consider:

• if g(k + 1) = 13 · 2k+1(k + 1) then notice that we always have g(k) ≥ 13 · 2k · k.
Therefore we get g(k+1)

g(k)
≤ 13·2k+1(k+1)

13·2kk = 2(1 + 1
k
) ≤ 4;

• otherwise g(k + 1) = 13 · 2k+1 2k+1−δ

k+1−δ and notice that either g(k) ≥ 13 · 2k 2k−δ

k−δ

or k = δ. If k = δ it is simple to check that g(k+1)
g(k)

≤ 4 , otherwise we have
g(k+1)
g(k)

≤ 13·2k+1 2k+1−δ

k+1−δ

13·2k 2k−δ

k−δ

= 4 · k−δ
k+1−δ ≤ 4.

Therefore, by Lemma 2.3.2, any b ∈ NLNBPδ
verifies

b(m) ≤ 4 · g(log2 log2m)

log2m

= 4 ·

13 · 2log2 log2m

max
{

2log2 log2(m)−δ

log2 log2(m)−δ , log2 log2m
}

if δ + 1 ≤ log2 log2m

log2 log2m otherwise
log2m

= 52 ·

max
{ log2m

2δ(log2 log2(m)−δ) , log2 log2m
}

if 22δ+1 ≤ m

log2 log2m otherwise

≤ c · bLNBPδ
(m)

for all m ∈ N,m ≥ 4, where c ∈ R>0 is a sufficiently large constant.
In the case where δ = 0 notice that for m ≥ 4 we have log2 log2m ≤ d · log2 x

log2 log2 x
for

some suitable constant d.
So we can also conclude that for any b ∈ NBP = NLNBP0 , we have

b(m) ≤ 52 · max
{ log2m

log2 log2m
, log2 log2m

}
≤ c′ · log2m

log2 log2m

for all m ∈ N,m ≥ 4, where c′ ∈ R>0 is a sufficiently large constant.

Finally, using this and Lemma 2.3.3, we get the following result, showing that the
asymptotically greatest lower bound we may expect using Nečiporuk’s method for LNBPδ

for any δ ∈ N is (asymptotically) equivalent to the lower bound for ISA given in Propos-
ition 2.6.2.
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Theorem 2.6.4. For any family of Boolean functions F = {fn}n∈N and any ∆: N → N,
NLNBP∆(n)

F (n) ∈ O
(
ΓLNBP(n,∆(n))

)
.

In particular, NBP
F (n) ∈ O

(
n2

log2 n

)
.

Proof. Let δ ∈ N. We aim at applying Lemma 2.3.3 which requires four hypotheses, (i)
to (iv).

For (i), we set h as h(x) = hLNBPδ
(x) for all x ∈ [4,+∞[ and x0 = 28. One can verify

that h is non-decreasing on [28,+∞[.
For (ii), for all x ∈ [4,+∞[, we have h(2x) ≥ log2 log2(2

x) = log2 x.
For (iii), for all v, v′ ∈ N verifying 22

v ≥ 28 and 22
v′ ≥ 28, we need to show that

h(22
v
) + h(22

v′
) ≤ h(22

v+v′
). There are three cases to consider.

• If h(22v) = log2 log2(2
2v) = v and h(22

v′
) = log2 log2(2

2v
′
) = v′, then h(22

v
) +

h(22
v′
) = v + v′ = log2 log2(2

2v+v′
) ≤ h(22

v+v′
).

• If h(22v) = log2(22
v
)

2δ(log2 log2(22
v )−δ) = 2v−δ

v−δ > v and h(22
v′
) = log2 log2(2

2v
′
) = v′, then we

necessarily have v = δ + η for some η > 0.

Notice that η ≥ 2 because if η = 1 then v < 2, a contradiction.

We conclude by showing that h(22v) + h(22
v′
) = 2v−δ

v−δ + v′ ≤ 2η+v′

η+v′
≤ h(22

v+v′
).

Only the first inequality is non immediate. To see it, consider the function f(x) =

2η+x − (2
η

η
+ x)(η + x). A simple calculation shows that it is non-decreasing for

x ≥ 2 and η ≥ 2. The inequality follows as f(2) is non-negative when η ≥ 2.

• In the remaining case h(22v) = 2v−δ

v−δ > v and h(22
v′
) = 2v

′−δ

v′−δ > v′. It implies that
v ≥ δ+1 and v′ ≥ δ+1. Arguing as above we actually have v ≥ δ+2 and v′ ≥ δ+2,
otherwise v or v′ would be smaller than 2. We then have: h(22

v
) + h(22

v′
) =

2v−δ

v−δ + 2v
′−δ

v′−δ ≤ 2v+v′−2δ

(v−δ)(v′−δ) ≤
2v+v′−2δ

v+v′−2δ
≤ h(22

v+v′−δ
) ≤ h(22

v+v′
).

The first and second inequality are because x + y ≤ xy when both x and y are
greater than 2 (in the second case we use that v− δ ≥ 2 and v′ − δ ≥ 2). The third
one is by definition of h and the last one by monotonicity of h.

For (iv), by Proposition 2.6.3, we know that there exists a constant α ∈ R>0 verifying
that any b ∈ NLNBPδ

is such that b(m) ≤ α · h(m) for all m ∈ N,m ≥ 4.
We can therefore apply Lemma 2.3.3 with x0 = 28 and get that for any family of

Boolean functions F = {fn}n∈N and all n ∈ N, n ≥ 8,

NLNBPδ
F (n) ≤ α ·

(
4 + h(28)

)
· n

log2 n
· h(2n)
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= c · n

log2 n
·

max
{

n
2δ(log2(n)−δ)

, log2 n
}

if 22δ+1 ≤ 2n

log2 n otherwise

= c ·

max{ n2

2δ(log2(n)−δ) log2 n
, n} if 2δ+1 ≤ n

n otherwise

= c · ΓLNBP(n, δ)

for some suitable constant c ∈ R>0.
Thus, since this holds for all δ ∈ N, we get the desired result.

2.7 Deterministic and Limited Non-deterministic
Formulæ

In this section, we focus on the model of Boolean binary formulæ and its limited non-
deterministic variant. L is one of the two measures that were considered in Nečiporuk’s
original article Nečiporuk [1966] who gave an Ω( n2

logn) lower bound for this complexity
measure. If the model is restricted to the case of binary formulæ where only 2-ary AND
and OR gates can be used, stronger lower bounds can be proven, the best known for
instance being almost cubic and due to Håstad (see Håstad [1998]). Just as in Section 2.6,
results for the Nečiporuk method for binary formulæ are known (see for instance [Wegener,
1987, Chapter 8, Section 7]), but we do not know about any attempt to consider the
method in its full generality: an approach that would explicitly try to find the best
Nečiporuk function as done in Alon and Zwick [1989] for the case of BPs rather than just
giving one.

Concerning limited non-deterministic binary formulæ, Nečiporuk’s lower bound me-
thod never seems to have been applied to the associated complexity measure, at least in a
direct combinatorial sense that excludes Klauck’s communication complexity formulation
of the method Klauck [2007].

For all δ ∈ N, let us define the function bLLδ
: N>0 → N given by

bLLδ
(m) =


⌈
1
4

max
{ log2m

2δ
, log2 log2m

}⌉
if m ≥ 4

0 otherwise

for all m ∈ N>0. We denote by bL the function bLL0 .
We first prove that bL ∈ NL and bLLδ

∈ NLLδ
. This is similar to the limited non-
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deterministic branching program case.

Proposition 2.7.1. bLLδ
∈ NLLδ

for all δ ∈ N. In particular, bL ∈ NL.

Proof. Let δ ∈ N. It is fairly obvious that bLLδ
is non-decreasing.

Let f be an n-ary Boolean function on V , that verifies without loss of generality
V ∩ [δ] = ∅, and V1, . . . , Vp a partition of V . Let φ be a Boolean δ-LNBF computing
f and let g be the (n + δ)-ary Boolean function computed by φ when considering the δ
non-deterministic bits as regular input variables.

For all i ∈ [p] we will denote by si ∈ N the number of leaves in φ labelled by literals
whose variable indices are in Vi, as well as q ∈ N the number of leaves in φ labelled by
literals whose variable indices are not in V . It is clear that |φ| =

∑p
i=1 si + q ≥

∑p
i=1 si.

To conclude it remains to show that si ≥ bLLδ
(rVi(f)) for all i ∈ [p].

Fix i ∈ [p]. The claim is obvious if rVi(f) ≤ 3 hence we assume rVi(f) ≥ 4. Let
V ′
i be the subset of Vi containing all indices of variables on which f depends. Then,

by Lemma 2.1.2, rVi(f) = rV ′
i
(f). Moreover for each l ∈ V ′

i , φ contains at least one
leaf labelled by a literal whose variable index is l. By Lemma 2.1.1, it follows that
rVi(f) = rV ′

i
(f) ≤ 22

∣∣∣V ′
i

∣∣∣
≤ 22

si . So we can conclude that si ≥ log2 log2(rVi(f)).
If rVi(f) ≤ 22

δ+1 , we have

⌈
1

4
· log2(rVi(f))

2δ

⌉
≤

⌈
1

4
·

log2

(
22

δ+1)
2δ

⌉
= 1 ≤

⌈
1

4
· log2 log2(rVi(f))

⌉
.

and therefore si ≥ bLLδ
(rVi(f)).

It remains to consider the case where rVi(f) > 22
δ+1 . Notice that this implies si > 0,

as 22
si ≥ rVi(f).

This part of the proof is taken from classical references, e.g. [Wegener, 1987, Proof of
Theorem 7.1] or [Jukna, 2012, Proof of Theorem 6.16]. We denote by Ti the subtree of φ
consisting of all paths from a leaf with a label in Vi to the root of φ. This tree has nodes
of fan-in 0, 1 or 2 and is non-empty since si > 0. Let Wi be the set of nodes of Ti that
have fan-in 2 and notice that |Wi| ≤ si− 1. Let Pi be the set of paths in Ti starting from
a leaf or a node in Wi and ending in a node in Wi or in the root of Ti and containing no
node in Wi as inner node. Notice that |Pi| ≤ 2 |Wi|+ 1 ≤ 2si.

For any partial assignment ρ ∈ {0, 1}V \Vi∪[δ], we obtain a formula φ|ρ of size si com-
puting g|ρ by replacing each variable in V \ Vi ∪ [δ] by the appropriate constant given by
ρ. This assignment induces that any part of φ|ρ corresponding to a path p in Pi, either
computes a constant function, or is the identity or negates its input. Reciprocally any of
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these four choices on p induces a subfunction of g. Hence we have rVi(g) ≤ 4|Pi| ≤ 24si .
As g is a proof-checker function for f , from Lemma 2.1.16 it follows that rVi(g) ≥

rVi(f)
1

2δ , therefore

si ≥
1

4
log2(rVi(g)) ≥

1

4
log2

(
rVi(f)

1

2δ

)
=

1

4
· log2(rVi(f))

2δ
.

Altogether, we have

si ≥
1

4
max

{ log2(rVi(f))

2δ
, log2 log2(rVi(f))

}
,

which implies that si ≥ bLLδ
(rVi(f)) as si is integral.

In conclusion for any n-ary Boolean function f on V and any partition V1, . . . , Vp of
V , it holds that LLδ(f) ≥

∑p
i=1 bLLδ

(rVi(f)), hence bLLδ
∈ NLLδ

.

Using this and Lemma 2.1.9, we can immediately derive the following asymptotic lower
bound on NLL∆(n)

ISA .

Proposition 2.7.2. NLL∆(n)

ISA (n) ∈ Ω
(
max

{
n2

2∆(n) log2 n
, n
})

for any ∆: N → N. In partic-
ular, NL

ISA(n) ∈ Ω
(
n2

logn

)
.

Proof. Let ∆: N → N. Let n ∈ N, n ≥ 32. Let V1, . . . , Vp, U be a partition of V such that
rVi(ISAn) = 2q for all i ∈ [p] where p, q ∈ N>0 verify p ≥ 1

32
· n

log2 n
and q ≥ n

16
as given by

Lemma 2.1.9. We have

NLL∆(n)

ISA (n) ≥
p∑
i=1

bLL∆(n)
(rVi(ISAn)) + bLL∆(n)

(rU(ISAn))

≥
p∑
i=1

1

4
· max

{ log2(2
q)

2∆(n)
, log2 log2(2

q)
}

= p · 1
4
· max

{ q

2∆(n)
, log2 q

}
≥ c1 ·

n

log2 n
· max

{ n

16 · 2∆(n)
, log2

( n
16

)}
≥ c2 · max

{ n2

2∆(n) log2 n
, n
}

because n ≥ 32 implies log2

( n
16

)
≥ log2 n

16

for some suitable constants c1, c2 ∈ R>0.

We now show that for all δ ∈ N, bLLδ
is in fact an asymptotically largest function in

NLLδ
. To this end, we appeal to the upper bound on LLδ(ISAk,`) from Theorem 2.4.1

and apply Lemma 2.3.2.
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Proposition 2.7.3. There exists a constant c ∈ R>0 verifying that for each δ ∈ N, any
b ∈ NLLδ

is such that b(m) ≤ c · bLLδ
(m) for all m ∈ N,m ≥ 4.

Proof. Fix δ ∈ N. Let g : [1,+∞[ → R≥0 be the non-decreasing function defined by
g(x) = 15 · 2x · max{2x−δ, x} for all x ∈ [1,+∞[.

Notice that g(k+1)
g(k)

≤ 4 for all k ∈ N>0.
Moreover, from Theorem 2.4.1 we have

LLδ(ISAk,k) ≤ 12 · 2k · max{2k−δ, k}+ 3 · 2k ≤ g(k)

for all k ∈ N>0. Therefore, by Lemma 2.3.2, any b ∈ NLLδ
verifies

b(m) ≤ 4 · g(log2 log2m)

log2m

= 4 · 15 · 2
log2 log2m · max{2log2 log2(m)−δ, log2 log2m}

log2m

= 60 · max
{ log2m

2δ
, log2 log2m

}
≤ c · bLLδ

(m)

for all m ∈ N,m ≥ 4, where c ∈ R>0 is a sufficiently large constant.

Finally, using this and Lemma 2.3.3, we show that the asymptotically greatest lower
bound we may expect using Nečiporuk’s method for LLδ for any δ ∈ N is (asymptotically)
equivalent to the lower bound for ISA given in Proposition 2.7.2.

Theorem 2.7.4. For any family of Boolean functions F = {fn}n∈N and any ∆: N → N,
NLL∆(n)

F (n) ∈ O
(
max

{
n2

2∆(n) log2 n
, n
})

.
In particular, NL

F (n) ∈ O
(
n2

logn

)
.

Proof. Fix δ ∈ N. We aim at applying Lemma 2.3.3 which requires four hypotheses, (i)
to (iv).

For (i), let h : [4,+∞[ → R≥0 be the function defined by

h(x) = max
{ log2 x

2δ
, log2 log2 x

}
for all x ∈ [4,+∞[ and x0 = 28; as required, h is non-decreasing on [28,+∞[.

For (ii), for all x ∈ [4,+∞[, we have h(2x) ≥ log2 log2(2
x) = log2 x.
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For (iii), for all v, v′ ∈ N verifying 22
v ≥ 28 and 22

v′ ≥ 28, we have h(22v) + h(22
v′
) ≤

h(22
v+v′

). Indeed, let v, v′ ∈ N such that 22
v ≥ 28 and 22

v′ ≥ 28, there are two cases to
consider.

• If h(22v) = log2 log2(2
2v) = v and h(22

v′
) = log2 log2(2

2v
′
) = v′, then h(22

v
) +

h(22
v′
) = v + v′ = log2 log2(2

2v+v′
) ≤ h(22

v+v′
).

• Otherwise, there is at least one w ∈ {v, v′} such that h(22w) = log2(22
w
)

2δ
= 2w−δ:

assume without loss of generality that it is v. Then, since 22
v ≥ 16, we have v ≥ 2,

so by hypothesis, it follows that 2v−δ > v ≥ 2. Moreover, h(22v
′
) = max{2v′−δ, v′} ≤

2v
′ , so using our usual observation about the relationship between the sum and the

product of two real numbers greater than or equal to 2, we get h(22v) + h(22
v′
) ≤

2v−δ + 2v
′ ≤ 2v+v

′−δ = log2(22
v+v′

)

2δ
≤ h(22

v+v′
).

For (iv), by Proposition 2.7.3, we know that there exists a constant α ∈ R>0 verifying
that any b ∈ NLLδ

is such that b(m) ≤ α · h(m) for all m ∈ N,≥ 4.
Therefore, by Lemma 2.3.3, for any family of Boolean functions F = {fn}n∈N and all

n ≥ 8, we have

NLLδ
F (n) ≤ α ·

(
4 + h(

⌊
28
⌋
)
)
· n

log2 n
· h(2n)

≤ c · n

log2 n
· max

{ n
2δ
, log2 n

}
= c · max

{ n2

2δ log2 n
, n
}

for some suitable constant c ∈ R>0.
Thus, since this holds for all δ ∈ N, we get the desired result.

2.8 Final insights

In this chapter, we have proposed a general interpretation of what it means to say “the
method of Nečiporuk”. We have applied the method to several complexity measures,
as reported in Table 2.I, and shown in particular that the limitations of the method
are very much determined by the complexity of the Indirect Storage Access function
under each measure, at least for those we studied in this chapter. We observe incidentally
that this also applies to the size measure of B2-circuits: while one can show that m →
dlog2 log2me − 1 is a Nečiporuk function for that measure, one sees that ISAk,` can be
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computed by a Boolean circuit of size at most 2k(k + 2`) + 3 · 2` (so in linear size).
This implies asymptotic optimality of that Nečiporuk function and further implies that
the best lower bound one might expect using Nečiporuk’s method for the size of Boolean
circuits is linear. Thus, our framework also applies to Boolean circuits, even though it only
allows to re-derive the well-known result that Nečiporuk’s method is unable prove super-
linear circuit size lower bounds. Indeed, as shown by Uhlig in 1991, there exist Boolean
functions having exponentially many different subfunctions that can be computed by
linear-size Boolean circuits (see [Jukna, 2012, Remark 6.19]). Note that our focus was not
on optimising the constant factors in the bounds obtained, most of which can certainly
be improved.

Our abstract definition of a Nečiporuk function was inspired by Alon and Zwick Alon
and Zwick [1989]. Our definition has the benefit of not specifying the way in which such
a function is obtained, be it some “semantic count” of the number of different Boolean
functions computable with a given cost, some “syntactic count” of the number of different
devices of that cost as done usually, or any other technique. While in the literature,
“Nečiporuk-style theorems” refer to giving an explicit Nečiporuk function as defined in
step 1 in Definition 2.3.1 Wegener [1987], Jukna [2012], Alon and Zwick [1989], it is natural
to ask whether we could even further twist the definition of a Nečiporuk function to get
more out of the method.

Looking at our meta-results and how we draw the limitation results for Nečiporuk’s
method applied to a specific measure M, namely using an upper bound on the ISAk,k

function for all k ∈ N>0, we observe that the main weakness of the method arises from
the requirement that a Nečiporuk function for M must verify the conditions presented
in step 1 of Definition 2.3.1 for every Boolean function. A natural question is therefore
whether restricting the class of Boolean functions for which these conditions should be
verified by a Nečiporuk function for M would allow to get stronger Nečiporuk functions
(and thus, lower bounds) for M for this specific class of Boolean functions. This seems to
be an interesting question to us, but is not treated in this chapter. Another interesting
similar question that was suggested to us by one of the anonymous referees of Beame et al.
[2016] is whether relaxing the condition “for any partition” in step 1 of Definition 2.3.1
to “there exists a partition” would allow to get stronger Nečiporuk functions.
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Complexity measure Best lower bound obtainable
Size of NBPs Θ

(
n3/2

logn

)
Size of ⊕BPs Θ

(
n3/2

logn

)
Size of LNBPs using ∆(n) non-deterministic bits Θ

(
n2

2∆(n)(log2(n)−∆(n)) log2 n

)
(?)

Size of BPs Θ
(

n2

log2 n

)
Size of LNBFs using ∆(n) non-deterministic bits Θ

(
n2

2∆(n) log2 n

)
(?)

Size of BFs Θ
(
n2

logn

)
Table 2.I – Bounds for the Indirect Storage Access function, which this chapter shows to
be the best lower bounds obtainable by Nečiporuk’s method for any function. The star
indicates that the true function is more complicated; however, this current formulation
holds for all ∆: N → N verifying ∆(n) ≤ log2 n− 1 for all n ∈ N.
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Chapter 3

Algebraic automata theory and
computational complexity theory

As we have seen in Section 1.4 of Chapter 1, while AC1 is believed to be well within the
(presumed) NC hierarchy, its internal structure and its relationship to classes like P or
even NP are far from being elucidated and are at the heart of some of the most challenging
open questions in computational complexity theory at the time of writing of thesis. And
this is still true if one restricts to NC1.

The main objectives of this chapter are to introduce the program-over-monoid formal-
ism, that gives an algebraic-automata-theoretic viewpoint on NC1 and its subclasses, and
to prove some modest new general results about this formalism. But first, we provide the
necessary background in finite semigroup theory (Section 3.1) and its connections to fi-
nite automata theory (Section 3.2). We then move on in Section 3.3 to define programs
over monoids, explain their importance as well as the challenges that arise in their study,
and give their general properties. We also lay out how our contributions fit within the
body of research aiming to understand their power in some restricted settings. In Sec-
tion 3.4, we study the link between regular languages and programs over monoids, explain
its importance and introduce a notion of tameness as a tool to understand it better. This
prepares the way for the last two chapter of the thesis, each dedicated to analysing the
computational power of programs over monoids in a particular restricted setting.

3.1 Finite semigroup theory

Finite semigroup theory has had, and still has, an immense impact in the study of finite
automata and is at the core of what is called algebraic automata theory.



We present the necessary background in this section and refer the reader to the classical
references by Eilenberg Eilenberg [1974, 1976] and Pin Pin [1986], as well as Pin [2016],
for a more thorough introduction to the theory of finite semigroups.

3.1.1 Basic definitions

We start with the definition of a semigroup and that of a monoid.

Definition 3.1.1. An internal composition law on a set E is a mapping from E × E to
E.

Definition 3.1.2. A semigroup is a pair (S, ∗) where S is a non-empty set and ∗ is an
internal composition law on S such that ∗ is associative: for all x, y, z ∈ S, (x ∗ y) ∗ z =

x ∗ (y ∗ z).
The order of (S, ∗) is the number of elements of S.

Definition 3.1.3. A monoid is a pair (M, ∗) where M is a set and ∗ is an internal
composition law on M such that:

• ∗ is associative: for all x, y, z ∈M , (x ∗ y) ∗ z = x ∗ (y ∗ z);

• ∗ has a neutral element (also called identity element, or simply identity): there
exists e ∈M such that for all m ∈M , e ∗m = m ∗ e = m.

The order of (M, ∗) is the number of elements of M .

Remark 3.1.4. A semigroup (monoid) with one unique element is called a trivial semigroup
(monoid).

Remark 3.1.5. For any semigroup or monoid (S, ∗), we might sometimes write xy instead
of x ∗ y when it is clear from the context and call ∗ multiplication or product of (S, ∗).

For X and Y two subsets of S, we shall denote by X ∗ Y , or XY when the context is
clear, the subset {xy | x ∈ X, y ∈ Y } of S. When X = {x} for some x ∈ S or Y = {y}
for some y ∈ S, we shall abuse notation and respectively write xY instead of XY or Xy
instead of XY .

Formally, for any p ∈ N>0 and x ∈ S, we shall denote by x∗,p the p-th power of x,
that is to say, the unique element of S obtained by multiplying x (through ∗) iteratively
by itself p− 1 times; we shall write xp when the context is clear.

Remark 3.1.6. For each monoid (M, ∗), it is easy to see that it has a unique neutral
element, called the neutral element (or the identity element or the identity) of (M, ∗),
unambiguously denoted by 1(M,∗).
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An example of a semigroup that isn’t a monoid is (N>0,+) where + denotes the
canonical addition on the set of positive natural numbers. However, (N,+) where +

denotes the canonical addition on the set of natural numbers is a monoid with identity
0, and in the same way (Z,+) is also a monoid with identity 0. Given d ∈ N, d ≥ 2, an
example of a finite monoid is (Z/dZ,+) where + denotes the canonical addition modulo d,
which has identity 0; but also (Z/dZ,×) where × denotes the canonical product modulo
d, which is a monoid with identity 1.

On rare occasions, we might also appeal to the notion of groups, monoids in which
each element can be inverted, defined next.

Definition 3.1.7. A group is a pair (G, ∗) that is a monoid verifying additionally that
any element of G is invertible: for each g ∈ G, there exists g′ ∈ G such that g ∗ g′ =
g′ ∗ g = 1(G,∗), called an inverse of g.

Looking at the previous examples, (N,+) isn’t a group, but (Z,+) is. Similarly, given
d ∈ N, d ≥ 2, (Z/dZ,+) is a group while (Z/dZ,×) isn’t.

It is sometimes useful to talk about the monoid obtained from a semigroup by adding
an identity element to it if it does not already contain one, as defined below.

Definition 3.1.8. Let (S, ∗) be a semigroup. We will denote by (S, ∗)1 = (S1, ∗1) the
monoid equal to (S, ∗) if the latter is already a monoid and otherwise such that S1 =

S ∪ {1} where 1 is a new element and ∗1 is the internal composition law on S1 extending
∗ such that s ∗1 1 = 1 ∗1 s = s for all s ∈ S1 and s1 ∗1 s2 = s1 ∗ s2 for all s1, s2 ∈ S.

A very important notion is the notion of semigroup and monoid congruences.

Definition 3.1.9. Let (S, ∗) be a semigroup. A congruence ∼ on the semigroup (S, ∗) is
a stable equivalence relation on S, i.e. such that for all s, t ∈ S and u, v ∈ S1, we have
s ∼ t implies u∗1s∗1v ∼ u∗1 t∗1v. We will denote by (S, ∗)/∼ = (S/∼, ∗/∼) the quotient
semigroup of (S, ∗) by ∼ where ∗/∼ is the internal composition law on S/∼ defined by
[s]∼ ∗/∼ [t]∼ = [s ∗ t]∼ for all [s]∼, [t]∼ ∈ S/∼.

We define congruence on monoids and quotient monoid of another monoid by a con-
gruence in the same way, by replacing “semigroup” with “monoid”.

The most fundamental transformation in algebra is that of a (homo)morphism, defined
below in the case of semigroups and monoids.

Definition 3.1.10. Let (S, ∗) and (T,⊥) be two semigroups. A mapping ϕ : S → T is a
semigroup morphism from (S, ∗) to (T,⊥) if and only if for all s1, s2 ∈ S, ϕ(s1)⊥ϕ(s2) =

75



ϕ(s1 ∗ s2). The semigroup morphism ϕ is called injective, surjective and bijective if and
only if the associated mapping has these properties. Moreover, we call ϕ a:

• semigroup isomorphism if and only if it is bijective (in that case, (S, ∗) and (T,⊥)

are called isomorphic);

• semigroup endomorphism if and only if (S, ∗) = (T,⊥);

• semigroup automorphism if and only if ϕ is both a semigroup isomorphism and
endomorphism.

Definition 3.1.11. Let (M, ∗) and (N,⊥) be two monoids. A mapping ϕ : M → N is a
monoid morphism from (M, ∗) to (N,⊥) if and only if for all m1,m2 ∈M , ϕ(m1)⊥ϕ(m2)

= ϕ(m1 ∗ m2), and ϕ(1(M,∗)) = 1(N,⊥). We use the terms injective, surjective, bijective,
isomorphism (isomorphic), endomorphism and automorphism for monoid morphisms as
for the case of semigroup morphisms.

For example, for all d ∈ N, d ≥ 2, the mapping

ϕ : N → Z/dZ
n 7→ n mod d

is a monoid morphism from (N,+) to (Z/dZ,+). However, the mapping

ψ : Z → N
n 7→ |n|

is not a monoid morphism from (Z,+) to (N,+) because ψ(3) + ψ(−2) = 5 6= 1 =

ψ(3 + (−2)).
Another fundamental notion is that of a subsemigroup (submonoid) of a semigroup

(monoid).

Definition 3.1.12. Let (S, ∗) and (T,⊥) be two semigroups. If T ⊆ S and ⊥ = ∗|T , we
say (T,⊥) is a subsemigroup of (S, ∗).

Definition 3.1.13. Let (M, ∗) and (N,⊥) be two monoids. If N ⊆ M , ⊥ = ∗|N and
1(M,∗) ∈ N , we say (N,⊥) is a submonoid of (M, ∗).

For example, (N>0,+) is a subsemigroup of (N,+) and (N,+) is a submonoid of (Z,+).
For a given semigroup (monoid) (S, ∗) and a subset E of S we call the subsemigroup

(submonoid) of (S, ∗) generated by E the inclusion-wise smallest semigroup (monoid) of
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(S, ∗) containing all of E. If that semigroup (monoid) is equal to (S, ∗), we say (S, ∗) is
generated by E. For instance, (N,+) is generated by {1}.

We now define very common operations on semigroups and monoids.

Definition 3.1.14. Let (S, ∗) and (T,⊥) be two semigroups.

• We denote by (S, ∗)× (T,⊥) = (S×T, ∗×⊥) the direct semigroup product of (S, ∗)
and (T,⊥), the semigroup whose internal composition law is defined as follows:

∗ × ⊥ : (S × T )× (S × T ) → S × T(
(s1, t1), (s2, t2)

)
7→ (s1 ∗ s2, t1⊥t2) .

• If there exists a surjective semigroup morphism from (S, ∗) to (T,⊥), we say (T,⊥)

is a semigroup quotient of (S, ∗).

• If there exists a subsemigroup (S̃, ∗̃) of (S, ∗) such that (T,⊥) is a semigroup quotient
of (S̃, ∗̃), we say (T,⊥) semigroup divides (S, ∗).

We define direct product of monoids, quotient of monoids and monoid division in the same
way, by replacing “semigroup” with “monoid”.

3.1.2 Varieties

We very often will consider classes of finite semigroups or monoids that share some prop-
erties and are “nice” in the sense that they are stable (also said closed) under the common
operations defined in the previous subsection. This leads to the notion of a variety defined
below.

Definition 3.1.15. A variety of finite semigroups is a class V of finite semigroups such
that:

• it contains all trivial semigroups (trivial semigroups containment);

• if (S, ∗) and (T,⊥) are two finite semigroups in V, then (S, ∗)× (T,⊥) is also in V
(closure under finite direct semigroup product);

• if (S, ∗) ∈ V and (T,⊥) is a finite semigroup that semigroup divides (S, ∗), then
(T,⊥) ∈ V (closure under semigroup division).

We define a variety of finite monoids in the same way, by replacing “semigroup” with
“monoid”.
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Remark 3.1.16. There is one unique variety of finite semigroups (monoids) that contains
exactly all trivial semigroups (monoids), that we will call the trivial variety of finite
semigroups (monoids).

For example, we will denote by S the variety of all finite semigroups, and by M the
variety of all finite monoids. We also denote by Msol the variety of all finite monoids
which do only contain solvable groups.1 Another variety we will use is the variety D of
all definite semigroups, containing all finite semigroups (S, ∗) verifying that there exists
k ∈ N>0 such that x ∗ y1 ∗ · · · ∗ yk = y1 ∗ · · · ∗ yk for all x, y1, . . . , yk ∈ S.

As we just saw for the case of D, a variety of finite semigroups or monoids might
be characterised equationally, that is to say, in an informal way, as the class of all finite
semigroups or monoids satisfying certain equalities. In fact, Reiterman showed Reiterman
[1982] that for a precise formal notion of (pseudo)identities and satisfaction of those
by finite semigroups or monoids (to be found in, e.g., Almeida and Weil [1995], Pin
[1997]), a class of finite semigroups (monoids) is a variety if and only if it can be defined
by some set of (pseudo)identities, i.e. it is equal to the class of all finite semigroups
(monoids) satisfying all identities in that set. Stating Reiterman’s result formally requires
topological notions and tools; what we will do in this thesis is only to use these equational
characterisations in a “self-contained manner” (as we did to define D), without referring
to a formal notion of an identity.

We can also build new finite semigroup (monoid) varieties from any class of finite
semigroups (monoids) as explained below.

Definition 3.1.17. Let C be a class of finite semigroups (monoids). We will denote by
〈C〉S (〈C〉M) the intersection of all varieties of finite semigroups (monoids) containing C,
which is a variety of finite semigroups (monoids), called the variety of finite semigroups
(monoids) generated by C.

We now define the notion of the wreath product between two semigroups, that we will
encounter subsequently.

Definition 3.1.18. Let (S, ∗) and (T,⊥) be two semigroups. The wreath product of (S, ∗)
and (T,⊥), denoted by (S, ∗) o (T,⊥), is the semigroup (ST

1 × T, �) where the internal
composition law � is such that for all (f, t), (f ′, t′) ∈ ST

1 × T , (f, t) � (f ′, t′) = (g, t⊥t′)
where g ∈ ST

1 is defined by g(x) = f(x) ∗ f ′(x⊥t) for all x ∈ T 1.
1The notion of a solvable group will only be mentioned once more in this thesis, further in this chapter.

The definition can be found in standard group theory books.
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A fundamental result in finite semigroup theory, showing the importance of this notion,
is the Krohn-Rhodes decomposition theorem Krohn and Rhodes [1965], stating that any
finite semigroup divides a (finite) wreath product of certain specific finite groups and
aperiodic semigroups (a finite semigroup (S, ∗) being aperiodic if and only if there exists
n ∈ N>0 verifying that sn = sn+1 for all s ∈ S).

For V and W two varieties of finite semigroups or monoids, at least one of which is a
variety of finite semigroups, the wreath product of V and W, denoted by V ∗ W, is the
variety of all finite semigroups that are semigroup divisors of wreath products of the form
(S, ∗) o (T,⊥) with (S, ∗) ∈ V and (T,⊥)  ∈ W. When V and W are varieties of finite
monoids, we define V ∗ W in the same way, but replacing “semigroup” with “monoid”.

3.1.3 Idempotents

Let (S, ∗) be a finite semigroup (monoid). An element e ∈ S is called an idempotent of S
if and only if e ∗ e = e. It is a classical basic result that there is a positive number (the
minimum such number), the idempotent power of (S, ∗), often denoted ω, such that for
any element s ∈ S, sω is idempotent.

Idempotents actually play a very important role when it comes to studying the struc-
tural properties of finite semigroups, as we will see in the next subsection. Here we
introduce one notion that crucially involves idempotents.

For V a variety of finite monoids, we say that a finite semigroup (S, ∗) is locally V
if, for every idempotent e of (S, ∗), the monoid (eSe, ∗|eSe) belongs to V; we denote
by LV the class of locally-V finite semigroups, which happens to be a variety of finite
semigroups. Equivalently, LV is the variety of all finite semigroups whose only finite
monoids semigroup-dividing them belong to V. Yet equivalently, LV is the inclusion-
wise maximal variety of finite semigroups that contains all finite monoids of V and only
those. A variety V is said to be local if V ∗ D = LV. This is not the usual definition of
locality, defined using categories, but it is equivalent to it [Tilson, 1987, Theorem 17.3].

3.1.4 Green’s relations

An essential tool to study the structure of semigroups (and monoids) is that of the so-
called Green’s preorder and equivalence relations.

Definition 3.1.19. Let (S, ∗) be a semigroup. We define Green’s preorder relations ≤J,
≤R, ≤L and ≤H such that for all s, t ∈ S

• s ≤J t if and only if there exist x, y ∈ S1 such that s = x ∗1 t ∗1 y;
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• s ≤R t if and only if there exists x ∈ S1 such that s = t ∗1 x;

• s ≤L t if and only if there exists x ∈ S1 such that s = x ∗1 t;

• s ≤H t if and only if s ≤R t and s ≤L t.

The equivalence relations associated with these preoders are called Green’s equivalence
relations J, R, L and H respectively, and are such that for all s, t ∈ S

• s J t if and only if s ≤J t and t ≤J s;

• s R t if and only if s ≤R t and t ≤R s;

• s L t if and only if s ≤L t and t ≤L s;

• s H t if and only if s ≤H t and t ≤H s.

For any semigroup (S, ∗), for all s, t ∈ S, we shall write

• s <J t if and only if s ≤J t and s 6J t;

• s <R t if and only if s ≤R t and s 6R t;

• s <L t if and only if s ≤L t and s 6L t;

• s <H t if and only if s ≤H t and s 6H t.

For any semigroup (S, ∗), we also define a fifth Green’s equivalence relation D that is
such that for all s, t ∈ S, s D t if and only if there exists u ∈ S such that s R u and u L t

if and only if there exists v ∈ S such that s L v and v R t. In fact, D is equal to J when
(S, ∗) is finite, but it isn’t the case in general.

The following is a well-known fact (see [Pin, 1986, Chapter 3, Proposition 1.4]).

Lemma 3.1.20. For all elements u and v of M , if u ≤R v and u J v, then u R v.
Similarly, if u ≤L v and u J v, then u L v.

Green’s relations are important, among other reasons, because they are instrumental
in characterising many fundamental varieties of finite monoids or semigroups.

Let (S, ∗) be a semigroup and E a relation on S. For each s ∈ S we will denote
by E(s) = {t ∈ S | s E t} the set of elements of S that are E-equivalent to s (the E-
equivalence class containing s). (S, ∗) is said to be E-trivial if and only if all E-classes in
S (i.e. E-equivalence classes in S) contain a sole element, i.e. E(s) = {s} for all s ∈ S.
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The classes of all finite J-trivial, R-trivial, L-trivial and H-trivial monoids each form
varieties of finite monoids denoted respectively by J, R, L and A. In fact, we can show
that a finite monoid (M, ∗) is aperiodic, i.e. such that there exists n ∈ N>0 verifying that
mn = mn+1 for all m ∈M , if and only if it is H-trivial. This is why we call the variety of
finite H-trivial monoids the variety of finite aperiodic monoids and denote it by A. The
following holds: J ⊂ R ⊂ A, J ⊂ L ⊂ A and R 6= L.

Concerning equational characterisations, we have that for any finite monoid (M, ∗) of
idempotent power ω,

• (M, ∗) ∈ A if and only if xω = xω+1 for all x ∈M ;

• (M, ∗) ∈ L if and only if (xy)ω = y(xy)ω for all x, y ∈M ;

• (M, ∗) ∈ R if and only if (xy)ω = (xy)ωx for all x, y ∈M ;

• (M, ∗) ∈ J if and only if (xy)ω = (xy)ωx = y(xy)ω for all x, y ∈M .

Those are well-studied natural varieties of finite monoids. Another well-studied variety
of finite monoids is DA, the variety of all finite monoids such that each of their D-classes
containing at least an idempotent forms an aperiodic subsemigroup of the monoid (i.e.
all the H-classes contained in this D-class are trivial and contain an idempotent as unique
element). The following holds: J ⊂ R ⊂ DA ⊂ A, J ⊂ L ⊂ DA ⊂ A. Equationally, we
have that any finite monoid (M, ∗) of idempotent power ω belongs to DA if and only if
(xy)ω = (xy)ωx(xy)ω for all x, y ∈M .

3.1.5 Some first links with formal language theory

The set of all words on some alphabet coupled with the concatenation operation forms a
monoid, as defined below.

Definition 3.1.21. Let Σ be an alphabet. The free monoid generated by Σ (or on Σ) is
the monoid (Σ∗, ·). The free semigroup generated by Σ (or on Σ) is the semigroup (Σ+, ·).

It is easy to see that for any alphabet Σ and any monoid (M, ∗), any monoid morphism
ϕ : Σ∗ → M from (Σ∗, ·) to (M, ∗) is uniquely determined by the images ϕ(a) of all
letters a ∈ Σ (and the same holds when replacing (Σ∗, ·) with (Σ+, ·) and “monoid” with
“semigroup”).

We call a stamp a surjective monoid morphism ϕ : Σ∗ → M from the free monoid
(Σ∗, ·) generated by some alphabet Σ to a finite monoid (M, ∗). When (M, ∗) is trivial,
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we also call ϕ trivial. We will sometimes encounter the important type of stamps defined
next.

Definition 3.1.22. Let (S, ∗) be a finite semigroup (monoid). The evaluation morphism
of (S, ∗) is the unique monoid morphism η(S,∗) : S

∗ → S1 from (S∗, ·) to (S, ∗)1 such that
η(S,∗)(s) = s for all s ∈ S.

3.1.6 C-varieties of stamps

We shall see that when studying the link between finite automata theory and compu-
tational complexity theory, it will actually be necessary to use a more general notion of
varieties whose elements are stamps rather than finite semigroups or monoids. The expos-
ition of this notion is based on Straubing [2002], Pin and Straubing [2005] and Chaubard
et al. [2006].

Let Σ and Γ be two alphabets, and let ϕ : Σ∗ →  Γ∗ be a monoid morphism from
(Σ∗, ·) to (Γ∗, ·). We say that ϕ is

• length-preserving (an lp-morphism) if and only if the image by ϕ of any letter in Σ

is a letter of Γ, i.e. ϕ(Σ) ⊆ Γ;

• non-erasing (an ne-morphism) if and only if the image by ϕ of any letter in Σ is a
non-empty word on Γ, i.e. ϕ(Σ) ⊆ Γ+;

• length-multiplying (an lm-morphism) if and only if there exists k ∈ N such that the
image by ϕ of any letter in Σ is a word on Γ of length k, i.e. ϕ(Σ) ⊆ Γk.

We consider a class C of monoid morphisms between two free monoids generated by
alphabets that satisfies the following properties:

• if f : Σ∗ → Γ∗ from (Σ∗, ·) to (Γ∗, ·) and g : Γ∗ → T∗ from (Γ∗, ·) to (T∗, ·) where Σ,
Γ and T are alphabets both are monoid morphisms in C, then the monoid morphism
g ◦ f : Σ∗ → T∗ does also belong to C (closure under composition);

• C contains all lp-morphisms;

• if f : Σ∗ → Γ∗ from (Σ∗, ·) to (Γ∗, ·) where Σ and Γ are alphabets is a monoid
morphism in C and g : T∗ → Λ∗ from (T∗, ·) to (Λ∗, ·) where T and Λ are alphabets
is a monoid morphism verifying {|g(b)| | b ∈ T} = {|f(a)| | a ∈ Σ}, then g does also
belong to C.
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For example, the classes of all lp-morphisms, all ne-morphisms, all lm-morphisms and
simply all morphisms (all-morphisms) all verify these properties. When C is equal to one
of these classes, we shall replace C by, respectively, lp, ne, lm or all in the vocabulary
prefixed by C and in symbols using C in the following.

By defining the appropriate notions of products of stamps and C-division of stamps,
a notion of C-varieties of stamps can be defined.

Definition 3.1.23. Let ϕ : Σ∗ → M and ψ : Γ∗ → N be two stamps such that Σ and Γ

are alphabets and (M, ∗) and (N,⊥) are, respectively, the associated finite monoids.

• If Σ = Γ, we denote by ϕ× ψ the product of ϕ and ψ, the stamp η : Σ∗ →M ′ such
that (M ′, ∗′) is the submonoid of (M, ∗)×(N,⊥) generated by {(ϕ(a), ψ(a)) | a ∈ Σ}
and η(a) = (ϕ(a), ψ(a)) for all a ∈ Σ.

• If there exist a monoid morphism f : Σ∗ →  Γ∗ in C from (Σ∗, ·) to (Γ∗, ·) and a
surjective monoid morphism α : Im(ψ ◦ f) → M from (Im(ψ ◦ f),⊥|Im(ψ◦f)) to
(M, ∗) verifying ϕ = α ◦ ψ ◦ f , we say ϕ C-divides ψ.

Definition 3.1.24. A C-variety of stamps is a class V of stamps such that:

• it contains all trivial stamps (trivial stamps containment);

• if ϕ : Σ∗ →M and ψ : Σ∗ → N are two stamps in V, then ϕ×ψ is also in V (closure
under finite stamp product);

• if ϕ : Σ∗ → M is a stamp in V and ψ : Γ∗ → N is a stamp that C-divides ϕ, then
ψ ∈ V (stability under C-division).

As for varieties of finite semigroups or monoids, we can also build up new C-varieties
of stamps from any class of stamps, as well as, actually, from any class of finite semigroups
or monoids.

Definition 3.1.25. Let D be a class of stamps. We will denote by 〈D〉C the intersection
of all C-varieties of stamps containing D, which is a C-variety of stamps, called the C-
variety of stamps generated by D. When D is a class of finite semigroups (monoids),
we shall denote by 〈D〉C the C-variety of stamps generated by the class of all stamps
ϕ : Σ∗ → M from a free monoid (Σ∗, ·) to a finite monoid (M, ∗) such that the finite
semigroup (ϕ(Σ+), ∗|ϕ(Σ+)) belongs to D ((M, ∗) belongs to D).
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Observe that to each variety of finite semigroups (monoids) V, we can associate the ne-
variety (all-variety) of all stamps ϕ : Σ∗ →M from a free monoid (Σ∗, ·) to a finite monoid
(M, ∗) such that the finite semigroup (ϕ(Σ+), ∗|ϕ(Σ+)) belongs to V ((M, ∗) belongs to
V), that is exactly 〈V〉ne (〈V〉all). This gives a bijective correspondence between varieties
of finite semigroups (monoids) and ne-varieties (all-varieties) of stamps.

Any all- or ne-variety of stamps is also an lm-variety of stamps. (This is because when
a stamp ϕ lm-divides a stamp ψ, we have that ϕ = α◦ψ◦f where α is an adequate monoid
morphism and f an adequate lm-morphism that is necessarily also an all-morphism and
an ne-morphism, except when f sends everything to the empty word, in which case ϕ
must be a trivial stamp.) A concrete example of an lm-variety of stamps (that is also
an lp-variety of stamps) is the class MOD of all stamps ϕ : Σ∗ → G from a free monoid
(Σ∗, ·) to a finite cyclic group (G, ∗) such that ϕ(a) = ϕ(b) for all a, b ∈ Σ (a cyclic group
being just a group generated by only one of its elements).

We end this subsection as well as this section by defining the wreath product of two
stamps.

Definition 3.1.26. Let ϕ : (Σ×N)∗ →M and ψ : Σ∗ → N be two stamps such that Σ is
an alphabet and (M, ∗) and (N,⊥) both are finite monoids. The wreath product of ϕ and
ψ, denoted by ϕ oψ, is the stamp µ : Σ∗ → K from (Σ∗, ·) to the finite monoid (K, �) such
that if for each a ∈ Σ, fa ∈MN is the function defined by fa(x) = ϕ(a, x) for all x ∈ N , we
have that (K, �) is the submonoid of (M, ∗) o (N,⊥) generated by {(fa, ψ(a)) | a ∈ Σ} and
µ is the unique monoid morphism from (Σ∗, ·) to (K, �) verifying that µ(a) = (fa, ψ(a))

for all a ∈ Σ.

For V and W two C-varieties of stamps, the wreath product of V and W, denoted by
V ∗ W, is the C-variety of all stamps that are C-divisors of wreath products of the form
ϕ o ψ with ϕ a stamp of V and ψ a stamp of W.

3.2 Recognition by morphisms

In fact, there is a very strong connection between finite semigroups (monoids) and finite
automata, the latter being known for defining exactly the class of regular languages by
Kleene’s seminal theorem. The algebraic theory of automata, that studies this connection,
has been a very active and fruitful research domain for over 60 years. Here, we present
some of the central results needed in the work presented in this thesis. As for the algebra
of finite semigroups and monoids, we refer the reader to Eilenberg [1974, 1976], Pin [1986],
as well as Pin [2016] for a more thorough introduction to the theory of regular languages,
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finite automata and the links with the algebra of finite semigroups and monoids. For the
case of C-varieties of languages, we refer the reader to Straubing [2002], Pin and Straubing
[2005] and Chaubard et al. [2006].

3.2.1 Regular languages and morphisms

Monoids can be used to compute, in the sense that they can be used to recognise languages
through the use of morphisms, as formalised below.

Definition 3.2.1. Let Σ be an alphabet and (M, ∗) a monoid. A language L ⊆ Σ∗ over
Σ is recognised by a monoid morphism ϕ : Σ∗ → M from (Σ∗, ·) to (M, ∗) if and only if
there exists P ⊆ M such that L = ϕ−1(P ). We will say that (M, ∗) recognises L if and
only if such a monoid morphism exists.

Example 3.2.2. The language a∗ over {a, b} is recognised by the unique monoid morph-
ism from ({a, b}∗, ·) to (Z/2Z,×) verifying ϕ(a) = 1 and ϕ(b) = 0, because a∗ = ϕ−1(1).

Example 3.2.3. The language a∗(ba∗ba∗)∗ over {a, b} is recognised by the unique mon-
oid morphism from ({a, b}∗, ·) to (Z/2Z,+) verifying ϕ(a) = 0 and ϕ(b) = 1, because
a∗(ba∗ba∗)∗ = ϕ−1(0).

Example 3.2.4. The language
{
w ∈ {a, b}∗

∣∣ |w|a 6= |w|b
}

over {a, b} is recognised by
the unique monoid morphism from ({a, b}∗, ·) to (Z,+) verifying ϕ(a) = 1 and ϕ(b) = −1,
because

{
w ∈ {a, b}∗

∣∣ |w|a 6= |w|b
}
= ϕ−1(Z \{0}).

One of the fundamental objects that comes into play when we talk about morphism-
recognition of some given language is the syntactic monoid, defined using the syntactic
congruence on the language’s alphabet, and to which we associate the syntactic morphism.

Definition 3.2.5. Let Σ be alphabet and L ⊆ Σ∗ a language over Σ. The syntactic
congruence of L is the congruence ∼L on (Σ∗, ·) such that for all u, v ∈ Σ∗, we have
u ∼L v if and only if, for all x, y ∈ Σ∗, xuy ∈ L ⇔ xvy ∈ L. The syntactic monoid of
L is M(L) = (Σ∗, ·)/∼L, the quotient monoid of (Σ∗, ·) by the syntactic congruence ∼L.
Finally, the syntactic morphism of L is the unique monoid morphism ηL : Σ

∗ → Σ∗/∼L

from (Σ∗, ·) to M(L) such that ηL(a) = [a]∼L
for all a ∈ Σ.

The reason why the syntactic monoid of a language is a fundamental object is because
of the following property stating that, in fact, it is the smallest monoid, with respect to
division, that recognises that language.
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Proposition 3.2.6. Let L ⊆ Σ∗ be a language over some alphabet Σ, M(L) = (Σ∗, ·)/∼L

its syntactic monoid and ηL : Σ∗ → Σ∗/∼L its syntactic morphism, where ∼L denotes the
syntactic congruence of L. Then, a monoid (M, ∗) recognises L if and only if M(L) divides
(M, ∗). Further, a stamp ϕ : Σ∗ →M from (Σ∗, ·) to a finite monoid (M, ∗) recognises L
if and only if ηL lp-divides ϕ.

Let us now recall the definition of the regular languages.

Definition 3.2.7. Let Σ be an alphabet. The set of regular languages over Σ, denoted
by Reg(Σ∗), is the smallest set of languages F over Σ satisfying the following conditions:

1. F contains the languages ∅ and {a} for each letter a ∈ Σ;

2. F is closed under finite union, i.e. if L1, L2 ∈ F , then L1 ∪ L2 ∈ F ;

3. F is closed under finite concatenation, i.e. if L1, L2 ∈ F , then L1 · L2 ∈ F ;

4. F is closed under star, i.e. if L ∈ F , then L∗ ∈ F .

We will denote by Reg the class of all regular languages, the union over all alphabets
Σ of Reg(Σ∗).

It is well known that the class of regular languages is exactly the class of languages
decided by deterministic finite automata (DFA). The fundamental theorem of algebraic
automata theory, at the very basis of it, is the following one. It states that regularity of
a language is equivalent to finiteness of its syntactic monoid, or, equivalently, to the fact
of being recognised by some finite monoid.

Theorem 3.2.8 (See [Eilenberg, 1974, Chapter III, Proposition 10.1 and Chapter VII,
Theorem 5.1] and [Eilenberg, 1976, Chapter VII, Section 6], as well as [Pin, 1986, Chapter
1, Proposition 2.1, Kleene’s theorem and Proposition 2.7]). Let L ⊆ Σ∗ be a language
over some alphabet Σ. The following statements are equivalent.

1. L is regular.

2. L is recognised by a finite monoid.

3. L’s syntactic congruence has finite index, which is equivalent to saying that its
syntactic monoid is finite.

4. L is decided by a deterministic finite automaton (DFA).
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3.2.2 Varieties of languages

As for finite semigroups and monoids, but also stamps, we very often consider classes of
regular languages that share some properties, that are closed under common operations
on languages. The set of operations under which those classes are closed may vary, but
what we want at least for any such class is that for any language it contains, one may
change the symbols of the alphabet over which this language is defined and still obtain a
language belonging to the class. More formally, we say a class of regular languages is a
correspondence F which associates with each alphabet Σ a set F(Σ∗) of regular languages
over Σ in such a way that, if σ : Σ → Γ is a bijection from alphabet Σ into alphabet
Γ, a language L belongs to F(Σ∗) if and only if σ(L) belongs to F(Γ∗). For a given
alphabet Σ, a lattice of languages over Σ is a set of languages over Σ containing the
empty language ∅, the full language Σ∗ and that is closed under finite union and finite
intersection. It is moreover a Boolean algebra of languages over Σ if it is additionally
closed under complement.

Definition 3.2.9. A variety of languages is a class of regular languages V such that for
every alphabets Σ and Γ:

• V(Σ∗) is a Boolean algebra of languages over Σ (closure under Boolean operations
and trivial languages containment);

• for every monoid morphism ϕ : Σ∗ → Γ∗ from (Σ∗, ·) to (Γ∗, ·), L ∈ V(Γ∗) implies
ϕ−1(L) ∈ V(Σ∗) (closure under inverses of monoid morphisms);

• if L ∈ V(Σ∗) and u ∈ Σ∗, u−1L ∈ V(Σ∗) and Lu−1 ∈ V(Σ∗) (closure under quo-
tients).

It is a classical result that the class of all regular languages Reg is a variety of lan-
guages. Another well-known variety of languages is the class of star-free regular languages
SF , such that for each alphabet Σ, the set SF(Σ∗) of star-free languages over Σ is the
smallest set of languages over Σ containing the languages ∅, {ε} and {a} for each letter
a ∈ Σ and that is closed under finite union, finite concatenation and complement.

One of the intentions behind this definition of a variety of languages is to have a
bijective correspondence between varieties of languages and varieties of finite monoids,
which gives an equivalent algebraic characterisation of such classes of languages. This is
made formal in the following.

Let the correspondence V → V associate to each variety of finite monoids V the
variety of languages V , also denoted by L(V), such that for every alphabet Σ, V(Σ∗)

87



is the set of all languages over Σ whose syntactic monoid belongs to V. Conversely, let
the correspondence V → V associate to each variety of languages V the variety of finite
monoids V, also denoted by M(V), generated by the syntactic monoids of the languages
in V .

Theorem 3.2.10 (Eilenberg — see [Eilenberg, 1976, Chapter VII, Theorem 3.2] and
[Pin, 1986, Chapter 2, Theorem 2.5 and Theorem 2.7]). The correspondences V → V and
V → V define mutually bijective correspondences between varieties of finite monoids and
varieties of languages.

By virtue of Theorem 3.2.8, it is straightforward to see that Reg is associated to
M, the variety of all finite monoids, through this correspondence. Concerning star-free
languages, one of the seminal results of algebraic automata theory is Schützenberger’s
theorem Schützenberger [1965], stating that the variety of finite monoids associated to
SF is exactly A, the variety of finite aperiodic monoids.

Let C be a class of monoid morphisms between free monoids generated by alphabets
satisfying the properties as required in Subsection 3.1.6. To obtain the same bijective
correspondence for C-varieties of stamps, we need to change the definition of a variety
of languages by restricting the class of monoid morphisms under inverses of which it is
closed to C-morphisms.

Definition 3.2.11. A C-variety of languages is a class of regular languages V such that
for every alphabets Σ and Γ:

• V(Σ∗) is a Boolean algebra of languages over Σ (closure under Boolean operations
and trivial languages containment);

• for every morphism ϕ : Σ∗ → Γ∗ in C from (Σ∗, ·) to (Γ∗, ·), L ∈ V(Γ∗) implies
ϕ−1(L) ∈ V(Σ∗) (closure under inverses of C-morphisms);

• if L ∈ V(Σ∗) and u ∈ Σ∗, u−1L ∈ V(Σ∗) and Lu−1 ∈ V(Σ∗) (closure under quo-
tients).

Let the correspondence V → V associate to each C-variety of stamps V the variety
of languages V , also denoted by L(V), such that for every alphabet Σ, V(Σ∗) is the
set of all languages over Σ whose syntactic morphism belongs to V. Conversely, let the
correspondence V → V associate to each variety of languages V the C-variety of stamps
V generated by the syntactic morphisms of the languages in V .
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Theorem 3.2.12 (See [Straubing, 2002, Theorem 1 and Theorem 2] and [Chaubard et al.,
2006, Subsection 1.3]). The correspondences V → V and V → V define mutually bijective
correspondences between C-varieties of stamps and C-varieties of languages.

Observe that, for any variety of finite monoids V, we have L(V) = L(〈V〉all).
Eilenberg’s theorem, Theorem 3.2.10, establishes a one-to-one correspondence between

varieties of finite monoids and varieties of languages, and Theorem 3.2.12 does it between
C-varieties of stamps and C-varieties of languages. But what about varieties of finite
semigroups? In fact, Eilenberg [Eilenberg, 1976, Chapter VII, Theorem 3.2s] did give a
one-to-one correspondence between varieties of finite semigroups and so-called +-varieties
of languages, however we won’t present it in this thesis. Indeed, those +-varieties of
languages have the annoying property of dealing with languages as subsets of Σ+, and not
Σ∗, for any alphabet Σ. Nevertheless, we can afford not presenting that correspondence in
our case, since, as we have seen, to each variety of finite semigroups V we can bijectively
associate the ne-variety 〈V〉ne of all stamps ϕ : Σ∗ → M from a free monoid (Σ∗, ·) to a
finite monoid (M, ∗) such that the finite semigroup (ϕ(Σ+), ∗|ϕ(Σ+)) belongs to V. We
thus define L(V) as being L(〈V〉ne) for any variety of finite semigroups V.

3.2.3 Wreath product principle

The so-called “wreath product principle”, originally due to Straubing Straubing [1979],
allows to characterise the languages belonging to L(V ∗ W) for V and W two varieties
of finite semigroups or monoids. We shall state the results and prove them in the more
general framework of C-varieties of stamps, inspired by Chaubard et al. [2006].2

Let ψ : Σ∗ → N be some stamp from a free monoid (Σ∗, ·) to a finite monoid (N,⊥).
We define the function σψ : Σ

∗ → (Σ×N)∗ inductively as follows: for all w ∈ Σ∗,

σψ(w) =

ε if w = ε

σψ(w
′)(a, ψ(w′)) otherwise, w = w′a for w′ ∈ Σ∗ and a ∈ Σ .

This means that for all n ∈ N>0, w ∈ Σn, we have

σψ(w1w2w3 · · ·wn) = (w1, 1(N,⊥))(w2, ψ(w1))(w3, ψ(w1w2)) · · · (wn, ψ(w1w2 · · ·wn−1)) .

Note that σψ is what is called in the literature (see e.g. Pin [2016]) a sequential function,
2We provide full proofs in this subsection, because our statements are different from those in Chaubard

et al. [2006], where this more general principle is stated, but without proofs.

89



realised by a sequential transducer.
Let C be a class of monoid morphisms between free monoids generated by alphabets

satisfying the properties as required in Subsection 3.1.6.
We can now state the wreath product principle.

Proposition 3.2.13 (Wreath product principle). Let ϕ : (Σ×N)∗ →M and ψ : Σ∗ → N

be two stamps such that Σ is an alphabet and (M, ∗) and (N,⊥) both are finite monoids.
Then, there exists a stamp η : (Σ × N)∗ → M ′ in 〈{ϕ}〉C from ((Σ × N)∗, ·) to a finite
monoid (M ′, ∗′) such that each language over Σ recognised by the wreath product ϕ o ψ is
a finite union of languages of the form W ∩ σ−1

ψ (V ), where W ⊆ Σ∗ is recognised by ψ

and V ⊆ (Σ×N)∗ is recognised by η.

Proof. Let µ = ϕ o ψ. Then µ is the stamp µ : Σ∗ → K from (Σ∗, ·) to the finite monoid
(K, �) such that if for each a ∈ Σ, fa ∈ MN is the function defined by fa(x) = ϕ(a, x)

for all x ∈ N , we have that (K, �) is the submonoid of (M, ∗) o (N,⊥) generated by
{(fa, ψ(a)) | a ∈ Σ} and µ is the unique monoid morphism from (Σ∗, ·) to (K, �) verifying
that µ(a) = (fa, ψ(a)) for all a ∈ Σ.

Consider now the finite monoid (MN , •) such that for all f, f ′ ∈ MN , f • f ′ = g

where g ∈ MN is defined by g(x) = f(x) ∗ f ′(x) for all x ∈ N . For all a ∈ Σ and
y ∈ N , let us define ga,y by ga,y(x) = fa(x⊥y) for all x ∈ N . We now let (K ′, •|K′) be
the submonoid of (MN , •) generated by {ga,y | a ∈ Σ, y ∈ N}. Let us now define the
stamp η : (Σ×N)∗ → K ′ as the unique monoid morphism from ((Σ×N)∗, ·) to (K ′, •|K′)

verifying that η(a, y) = ga,y for all (a, y) ∈ Σ×N .
Let w ∈ Σ+ and define n = |w|. By definition of µ, we have

µ(w) = (fw1 , ψ(w1)) � (fw2 , ψ(w2)) � · · · � (fwn , ψ(wn)) = (f, ψ(w))

where f ∈MN verifies that for all x ∈ N ,

f(x) = fw1(x) ∗ fw2(x⊥ψ(w1)) ∗ fw3(x⊥ψ(w1w2)) ∗ · · · ∗ fwn(x⊥ψ(w1w2 · · ·wn−1))

= η(w1, 1(N,⊥))(x) ∗ η(w2, ψ(w1))(x) ∗ η(w3, ψ(w1w2)) ∗ · · · ∗
η(wn, ψ(w1w2 · · ·wn−1))(x)

=
(
η(w1, 1(N,⊥)) • η(w2, ψ(w1)) • η(w3, ψ(w1w2)) • · · · • η(wn, ψ(w1w2 · · ·wn−1))

)
(x)

= η(σψ(w))(x) ,
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so that f = η(σψ(w)). Moreover, it holds that

µ(ε) = (1(MN ,•), 1(N,⊥)) =
(
η(ε), ψ(ε)

)
=
(
η(σψ(ε)), ψ(ε)

)
.

Hence, it follows that µ(w) =
(
η(σψ(w)), ψ(w)

)
for all w ∈ Σ∗.

Consider now some F ⊆ K. It is straightforward to see that

µ−1(F ) =
⋃

(f,x)∈F

ψ−1(x) ∩ σ−1
ψ (η−1(f))

where for each (f, x) ∈ F , ψ−1(x) is a language over Σ recognised by ψ and η−1(f) is a
language over Σ×N recognised by η.

It now remains to show that η ∈ 〈{ϕ}〉C. For each x ∈ N , let us define (Mx, ∗|Mx
)

as the submonoid of (M, ∗) generated by {ϕ(a, x⊥y) | a ∈ Σ, y ∈ N} and the stamp
ϕx : (Σ × N)∗ → Mx as the unique monoid morphism from (Σ × N)∗ to (Mx, ∗|Mx

)

verifying that ϕx(a, y) = ϕ(a, x⊥y) = fa(x⊥y) = ga,y(x) for all (a, y) ∈ Σ×N . The idea
is that the direct product

∏
x∈N(Mx, ∗|Mx

) is isomorphic to (K ′, •|K′), so that η lp-divides
(and hence C-divides) the product stamp

∏
x∈N ϕx. Moreover, it is straightforward to see

that for each x ∈ N , ϕx lp-divides (and hence C-divides) ϕ, so that η ∈ 〈{ϕ}〉C.

Conversely, the following holds.

Proposition 3.2.14. Let ϕ : (Σ×N)∗ →M and ψ : Σ∗ → N be two stamps such that Σ
is an alphabet and (M, ∗) and (N,⊥) both are finite monoids. Then, each language over
Σ that is a finite union of languages of the form W ∩σ−1

ψ (V ), where W ⊆ Σ∗ is recognised
by ψ and V ⊆ (Σ×N)∗ is recognised by ϕ, is recognised by the wreath product ϕ o ψ.

Proof. Let µ = ϕ o ψ. Then µ is the stamp µ : Σ∗ → K from (Σ∗, ·) to the finite monoid
(K, �) such that if for each a ∈ Σ, fa ∈ MN is the function defined by fa(x) = ϕ(a, x)

for all x ∈ N , we have that (K, �) is the submonoid of (M, ∗) o (N,⊥) generated by
{(fa, ψ(a)) | a ∈ Σ} and µ is the unique monoid morphism from (Σ∗, ·) to (K, �) verifying
that µ(a) = (fa, ψ(a)) for all a ∈ Σ.

Let P1, . . . , Pl ⊆ M and Q1, . . . , Ql ⊆ N , with l ∈ N>0. It is straightforward to see
there exists some F ⊆M ×N verifying

l⋃
i=1

ψ−1(Qi) ∩ σ−1
ψ (ϕ−1(Pi)) =

⋃
(m,x)∈F

ψ−1(x) ∩ σ−1
ψ (ϕ−1(m)) .

Let us define F ′ = {(f, x) ∈MN ×N | (f(1(N,⊥)), x) ∈ F}.
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Let w ∈ Σ+ and define n = |w|. By definition of µ, we have

µ(w) = (fw1 , ψ(w1)) � (fw2 , ψ(w2)) � · · · � (fwn , ψ(wn)) = (f, ψ(w))

where f ∈MN verifies that for all x ∈ N ,

f(x)

=fw1(x) ∗ fw2(x⊥ψ(w1)) ∗ fw3(x⊥ψ(w1w2)) ∗ · · · ∗ fwn(x⊥ψ(w1w2 · · ·wn−1))

=ϕ(w1, x⊥1(N,⊥)) ∗ ϕ(w2, x⊥ψ(w1)) ∗ ϕ(w3, x ⊥ψ(w1w2)) ∗ · · · ∗
ϕ(wn, x⊥ψ(w1w2 · · ·wn−1))

=ϕ
(
(w1, x⊥1(N,⊥))(w2, x⊥ψ(w1))(w3, x ⊥ψ(w1w2)) · · · (wn, x⊥ψ(w1w2 · · ·wn−1))

)
,

so that f(1(N,⊥)) = ϕ(σψ(w)). Moreover, it holds that µ(ε) = (e, 1(N,⊥)) = (e, ψ(ε)) where
e ∈ MN is defined by e(x) = 1(M,∗) for all x ∈ N , so that e(1(N,⊥)) = 1(M,∗) = ϕ(ε) =

ϕ(σψ(w)). Hence, it follows that for all w ∈ Σ∗, µ(w) = (f, ψ(w)) where f ∈MN verifies
f(1(N,⊥)) = ϕ(σψ(w)).

Given this, it is straightforward to see that⋃
(m,x)∈F

ψ−1(x) ∩ σ−1
ψ (ϕ−1(m)) = µ−1(F ′) ,

which concludes the proof, since µ−1(F ′) is a language recognised by µ.

We can now derive the following theorem.

Theorem 3.2.15. Let V and W be two C-varieties of stamps. Then for each alphabet
Σ, L(V ∗ W)(Σ∗) is the inclusion-wise smallest lattice of languages over Σ containing
L(W)(Σ∗) and the languages of the form σ−1

ψ (V ), where ψ : Σ∗ → N is some stamp in
W from (Σ∗, ·) to a finite monoid (N,⊥) and V ∈ L(V)((Σ×N)∗).

Proof. Fix Σ some alphabet. Let us denote by E the inclusion-wise smallest lattice of
languages over Σ containing L(W)(Σ∗) and the languages of the form σ−1

ψ (V ), where
ψ : Σ∗ → N is some stamp in W from (Σ∗, ·) to a finite monoid (N,⊥) and V ∈ L(V)((Σ×
N)∗).

Let L be some language in L(V ∗ W)(Σ∗) and let ηL : Σ∗ → J its syntactic morphism,
where (J, •) is its syntactic monoid. By definition, ηL is a stamp of V∗W, so it C-divides
some wreath product of the form ϕ o ψ : Γ∗ → K from (Γ∗, ·) to a finite monoid (K, �)
where ϕ : (Γ×N)∗ →M is a stamp in V from ((Γ×N)∗, ·) to a finite monoid (M, ∗) and
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ψ : Γ∗ → N is a stamp in W from (Γ∗, ·) to a finite monoid (N,⊥), Γ being an alphabet.
This means there exist a monoid morphism f : Σ∗ →  Γ∗ in C from (Σ∗, ·) to (Γ∗, ·) and a
surjective monoid morphism α : Im((ϕ oψ) ◦ f) → J from (Im((ϕ oψ) ◦ f), �|Im((ϕoψ)◦f)) to
(J, •) verifying ηL = α◦(ϕ oψ)◦f . We know there exists F ⊆ J such that L = η−1

L (F ), but
by Proposition 3.2.13 and Proposition 3.2.6, since (ϕoψ)−1(α−1(F )) is obviously recognised
by ϕ o ψ, (ϕ o ψ)−1(α−1(F )) is a finite union of languages of the form W ∩ σ−1

ψ (V ) where
W ∈ L(W)(Γ∗) and V ∈ L(V)((Γ×N)∗). This means that L = f−1((ϕ o ψ)−1(α−1(F )))

is a finite union of languages of the form f−1(W ) ∩ f−1(σ−1
ψ (V )) where W ∈ L(W)(Γ∗)

and V ∈ L(V)((Γ × N)∗), as inverses of monoid morphisms commute with union and
intersection. But since L(W) is a C-variety of languages and f belongs to C, f−1(W )

belongs to L(W)(Σ∗) for all W ∈ L(W)(Γ∗). Moreover, according to Claim 3.2.16 at
the end of the current proof, there exists a stamp ψ′ : Σ∗ → N ′ in W from (Σ∗, ·) to
a submonoid (N ′,⊥|N ′) of (N,⊥) such that for any V ∈ L(V)((Γ × N)∗) there exists
V ′ ∈ L(V)((Σ × N ′)∗) verifying f−1(σ−1

ψ (V )) = σ−1
ψ′ (V ′). So L belongs to E and as it is

true for any L, this shows L(V ∗ W)(Σ∗) ⊆ E .
Conversely, Proposition 3.2.14 combined with Proposition 3.2.6 tells us that any

language in L(W)(Σ∗) is necessarily also in L(V ∗ W)(Σ∗) (because the full language
(Σ × N)∗ for any finite monoid (N,⊥), whose inverse by σψ for any stamp ψ : Σ∗ → N

from (Σ∗, ·) to (N,⊥) is the full language Σ∗, can be recognised by any trivial stamp from
((Σ × N)∗, ·) to some trivial monoid, that necessarily belongs to V) as well as all lan-
guages of the form σ−1

ψ (V ), where ψ : Σ∗ → N is some stamp in W from (Σ∗, ·) to a finite
monoid (N,⊥) and V ∈ L(V)((Σ×N)∗) (because the full language Σ∗ can be recognised
by the stamp ψ). Since L(V ∗ W)(Σ∗) is closed under union and intersection, it follows
that E ⊆ L(V ∗ W)(Σ∗).

Therefore, L(V ∗ W)(Σ∗) = E .

Claim 3.2.16. Let Γ be an alphabet. Let ψ : Γ∗ → N be some stamp in W from (Γ∗, ·) to
a finite monoid (N,⊥) and f : Σ∗ →  Γ∗ a monoid morphism in C from (Σ∗, ·) to (Γ∗, ·).
Then there exists a stamp ψ′ : Σ∗ → N ′ in W from (Σ∗, ·) to a submonoid (N ′,⊥|N ′) of
(N,⊥) such that for any V ∈ L(V)((Γ×N)∗) there exists V ′ ∈ L(V)((Σ×N ′)∗) verifying
f−1(σ−1

ψ (V )) = σ−1
ψ′ (V ′).

Proof. Let us consider the stamp ψ′ : Σ∗ → N ′ from (Σ∗, ·) to the submonoid (N ′,⊥|N ′)

of (N,⊥) equal to ψ ◦ f , where N ′ = Im(ψ ◦ f). This means that ψ′ C-divides ψ, so that
ψ′ ∈ W.

Let V ∈ L(V)((Γ×N)∗); there exist ϕ : (Γ×N)∗ →M a stamp in V from ((Γ×N)∗, ·)
to a finite monoid (M, ∗) and F ⊆ M verifying V = ϕ−1(F ). We define the monoid
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morphism g : (Σ×N ′)∗ → (Γ ×N)∗ as the unique monoid morphism from ((Σ×N ′)∗, ·)
to ((Γ×N)∗, ·) verifying

g((a, x)) =

ε if |fa| = 0

(u1, x)(u2, x⊥ψ(u1)) · · · (u|u|, x⊥ψ(u1u2 · · ·u|u|−1)) otherwise (u = f(a))

for all (a, x) ∈ Σ × N ′. We have {|g((a, x))| | (a, x) ∈ Σ × N ′} = {|f(a)| | a ∈ Σ},
so that g does also belong to C, since it is a class of monoid morphisms between free
monoids generated by alphabets satisfying the properties as required in Subsection 3.1.6.
We can now consider the stamp ϕ′ : (Σ×N ′)∗ →M ′ from ((Σ×N ′)∗, ·) to the submonoid
(M ′, ∗|M ′) of (M, ∗) equal to ϕ ◦ g, where M ′ = Im(ϕ ◦ g). This means that ϕ′ C-divides
ϕ, so that ϕ′ ∈ V.

It is quite straightforward to prove that for all w ∈ Σ∗, g(σψ′(w)) = σψ(f(w)), by
induction on the length of w, so that g ◦ σψ′ = σψ ◦ f . Hence, we get that

f−1(σ−1
ψ (ϕ−1(F ))) = f−1(σ−1

ψ (ϕ−1(F ∩M ′))) = σ−1
ψ′ (g

−1(ϕ−1(F ∩M ′)))

= σ−1
ψ′ (ϕ

′−1
(F ∩M ′))

because ϕ(σψ(f(Σ∗))) = ϕ(g(σψ′(Σ∗))) ⊆ Im(ϕ ◦ g) =M ′. In conclusion, f−1(σ−1
ψ (V )) =

σ−1
ψ′ (V ′) where V ′ = ϕ′−1(F ∩M ′) is a language in L(V)((Σ×N ′)∗), by Proposition 3.2.6

since ϕ′ is a stamp in V recognising V ′.

This ends the proof of the theorem as all this is true for any alphabet Σ.

We only proved the wreath product principle in the more general framework of C-
varieties of stamps, but the following lemma shows us it can also be applied in the case
of varieties of finite semigroups or monoids. Indeed, for V and W two varieties of finite
semigroups or monoids, at least one of which is a variety of finite semigroups, we have
L(V ∗ W) = L(〈V ∗ W〉ne); and when V and W are varieties of finite monoids, we have
L(V ∗ W) = L(〈V ∗ W〉all).

Lemma 3.2.17. Let V and W be two varieties of finite semigroups or monoids, where
V or W is a variety of finite semigroups; then 〈V ∗W〉ne = 〈V〉ne ∗ 〈W〉ne. When V and
W are varieties of finite monoids, we have 〈V ∗ W〉all = 〈V〉all ∗ 〈W〉all.

Proof. Assume at least one of V and W is a variety of finite semigroups (the case when
both are varieties of finite monoids is treated similarly).
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Left-to-right inclusion. Let (S, ∗) ∈ V and (T,⊥) ∈ W be two finite semigroups. Let
(K, �) be the submonoid of (S1, ∗1)o(T 1,⊥1) generated by ST 1×T . Let η : (ST 1×T )∗ → K

be the unique monoid morphism from ((ST
1×T )∗, ·) to (K, �) such that η(f, t) = (f, t) for

all (f, t) ∈ ST
1 × T : it is obvious that it is a stamp of 〈V ∗ W〉ne, as (K, �) is isomorphic

to ((S, ∗) o (T,⊥))1.
Let ϕ : (ST 1 × T × T 1)∗ → S1 be the unique stamp from ((ST

1 × T × T 1)∗, ·) to
(S1, ∗1) such that for all (f, t, t′) ∈ ST

1 × T × T 1, ϕ(f, t, t′) = f(t′) ∈ S. Observe that
ϕ((ST

1 × T × T 1)+) = S, so that ϕ ∈ 〈V〉ne.
Let ψ : (ST 1×T )∗ → T 1 be the unique stamp from ((ST

1×T )∗, ·) to (T 1,⊥1) such that
for all (f, t) ∈ ST

1 ×T , ψ(f, t) = t. Observe that ψ((ST 1 ×T )+) = T , so that ψ ∈ 〈W〉ne.
Now, note that for each (f, t) ∈ ST

1 × T , f is the function of S1T
1

such that f(t′) =
ϕ(f, t, t′) for all t′ ∈ T 1. But (K, �) is the submonoid of (S1, ∗1) o (T 1,⊥1) generated by
ST

1 × T = {(f, ψ(f, t)) | (f, t) ∈ ST
1 × T} and η is the unique monoid morphism from

((ST
1×T )∗, ·) to (K, �) verifying that η(f, t) = (f, t) = (f, ψ(f, t)) for all (f, t) ∈ (ST

1×T ).
Hence, η is the wreath product ϕ o ψ of ϕ and ψ, so that η ∈ 〈V〉ne ∗ 〈W〉ne.

Let now more generally µ : Σ∗ → K ′ be a stamp from the free monoid (Σ∗, ·) generated
by the alphabet Σ to the finite monoid (K ′, �′) such that µ(Σ+) = U where (U, •) is some
finite semigroup dividing the wreath product (S, ∗) o (T,⊥). It is not too difficult to see
that µ lp-divides η, so that we also have µ ∈ 〈V〉ne ∗ 〈W〉ne.

As this is true for any two finite semigroups (S, ∗) ∈ V and (T,⊥) ∈ W, we have that
〈V ∗ W〉ne ⊆ 〈V〉ne ∗ 〈W〉ne.

Right-to-left inclusion. Let Σ be an alphabet. Let ϕ : (Σ × N)∗ → M be a stamp
in 〈V〉ne from ((Σ×N)∗, ·) to a finite monoid (M, ∗) and ψ : Σ∗ → N a stamp in 〈W〉ne

from (Σ∗, ·) to a finite monoid (N,⊥). This means that ϕ((Σ×N)+) = S where (S, ∗|S)
is a finite semigroup in V and ψ(Σ+) = T where (T,⊥|T ) is a finite semigroup in W.
For each a ∈ Σ, let fa ∈ MN be the function defined by fa(x) = ϕ(a, x) for all x ∈ N .
Let finally µ : Σ∗ → K be the stamp, from (Σ∗, ·) to the finite monoid (K, �), that is the
wreath product ϕ o ψ, so that we have that (K, �) is the submonoid of (M, ∗) o (N,⊥)

generated by {(fa, ψ(a)) | a ∈ Σ} and µ is the unique monoid morphism from (Σ∗, ·) to
(K, �) verifying that µ(a) = (fa, ψ(a)) for all a ∈ Σ.

For each a ∈ Σ, we know that, in fact, fa ∈ SN , because ϕ(a, x) ∈ S for all x ∈ N ,
and ψ(a) ∈ T . So, since (T,⊥|T )1 is isomorphic to (N,⊥), we get that the subsemigroup
of (M, ∗) o (N,⊥) generated by {µ(a) | a ∈ Σ} = {(fa, ψ(a)) | a ∈ Σ} is isomorphic to
a subsemigroup of (S, ∗|S) o (T,⊥|T ), so that (µ(Σ+), �|µ(Σ+)) semigroup-divides (S, ∗|S) o
(T,⊥|T ), which means µ ∈ 〈V ∗ W〉ne.
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More generally, we have that any stamp that ne-divides the wreath product µ = ϕ oψ
does necessarily also belong to 〈V ∗ W〉ne.

As this is true for any two stamps ϕ ∈ 〈V〉ne and ψ ∈ 〈W〉ne of which we can take the
wreath product, we have that 〈V ∗ W〉ne ⊇ 〈V〉ne ∗ 〈W〉ne.

For a given variety of finite monoids V, the two most important varieties obtained by
wreath product in this thesis are 〈V〉all∗MOD and V∗D. The latter is important because
it is central in the notion of locality of V, and the first is because of its intimate link with
the quasi-V lm-variety of stamps — yet to be defined — that will appear to be crucial
in the last section of the present chapter as well as in the next two chapters. We shall
only describe informally what the corresponding varieties of languages are (see Paperman
[2014]).

For each alphabet Σ, L(〈V〉all ∗ MOD)(Σ∗) is the inclusion-wise smallest lattice of
languages over Σ containing each language over Σ for which membership of each word
over Σ only depends on its length modulo some integer d ∈ N>0, as well as each language
L over Σ for which there is an integer d ∈ N>0 and a language L′ in L(V)((Σ× Z/dZ)∗)
such that L is the set of words w ∈ Σ∗ that belong to L′ after appending to each letter of
w its position minus 1 modulo d.

Similarly, for each alphabet Σ, L(V ∗ D)(Σ∗) is the inclusion-wise smallest lattice of
languages over Σ containing each language over Σ for which membership of each word
over Σ only depends on its k ∈ N last letters, as well as each language L over Σ for which
there is an integer k ∈ N and a language L′ in L(V)(Σ × Σ≤k) such that L is the set of
words w ∈ Σ∗ that belong to L′ after appending to each letter of w the word composed
of the k (or fewer when near the beginning of w) letters preceding that letter.

3.3 Recognition by programs

Morphisms into finite monoids only allow recognising regular languages. To recognise big-
ger classes of languages, such as the well-known complexity classes presented in Chapter 1,
there are two non-necessarily exclusive options:

• generalise the notion of finite monoid;

• generalise the notion of morphism.

One example mixing both is given by Krebs, Lange and Reifferscheid, who introduced
the notion of a finitely typed monoid (that may be infinite) and an associated notion of
a typed morphism in Krebs et al. [2007].
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Choosing option two alone, Barrington and Thérien introduced in Barrington and
Thérien [1988] the notion of recognition by finite monoids through programs, a general-
isation of morphisms, that has strong links with the notion of decision by sequences of
“small-depth” circuits. We are now going to present this notion and these links.

3.3.1 Definition and challenges

In Borodin et al. [1986], Borodin, Dolev, Fich and Paul introduced a special type of BPs,
levelled branching programs (LBPs). A branching program P = (X, δ, τ, s, t0, t1) on ΣV , for
some alphabet Σ and finite set V   ⊆ N, is said to be levelled if and only if its set of vertices
X can be partitioned into subsets L0, L1, . . . , Ll (l ∈ N) such that s ∈ L0, Ll = {t0, t1} and
for each i ∈ [[0, l−1]], any arc going out of some vertex u ∈ Li goes into a vertex v ∈ Li+1,
i.e. δ(u, a) ⊆ Li+1 for any a ∈ Σ. The length of P is l and its width is defined as the
size of its biggest level, i.e. maxi∈[[0,l]] |Li|. It then makes sense to consider bounded-width
levelled branching programs, that have a fixed maximum width (we will denote by w-LBP a
levelled branching program of width at most w ∈ N). In Borodin et al. [1986], the authors
proved that the language MAJORITY = {w ∈ {0, 1}∗ | |w|1 ≥

⌈
|w|
2

⌉
} on the alphabet

{0, 1} of words containing a majority of 1’s cannot be decided by a sequence of 2-LBPs
whose length is a function in O(n2/ logn). In fact, they conjectured that bounded-width
LBPs of polynomial length cannot decide MAJORITY, i.e. for any w ∈ N, MAJORITY
cannot be decided by a sequence of w-LBPs whose length is a function in O(nk) for some
k ∈ N.

However, it was a surprise when Barrington showed in Barrington [1989] that the
language MAJORITY is in fact decidable by bounded-width LBPs of polynomial length
and that moreover any language in NC1 has this property (the converse being more easily
seen to be true). To do this, he considered some even more specific type of BPs: those are
kind of LBPs such that, for some fixed width w ∈ N, each level is an instruction querying
the input at a given index and outputting a possibly different function f : [w] → [w]

for each possible queried value. Acceptance or rejection for a specific input word then
depends on the function obtained by composition of the individual functions output at
each level. Barrington showed that width 5 suffices, and more precisely that any language
in NC1 can be decided by a sequence of such specific LBPs of width 5 and polynomial
length that use only functions from the group (S5, ◦), the group of permutations over [5].
Barrington and Thérien soon discovered (see Barrington and Thérien [1988]) that this
specific definition of an LBP gives a way to meaningfully generalise finite automata to the
non-uniform setting by restricting the provenance of the functions used to a certain finite
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monoid. They introduced the notion of programs over monoids, that happens to give an
algebraic, finite semigroup-theoretical, point of view on NC1 and its subclasses.

Definition 3.3.1 (Programs over monoids). Let Σ be an alphabet and (M, ∗) be a finite
monoid. A program over the monoid (M, ∗) on Σn (or (M, ∗)-program on Σn), for some
n ∈ N, is a word P ∈ ([n] ×MΣ)∗ over the alphabet [n] ×MΣ, each letter of P being
an instruction. The length of P , denoted by |P | is the length of P as a word. If we let
l = |P |, we have P = (p1, f1)(p2, f2) · · · (pl, fl) with pi ∈ [n] and fi : Σ →M for all i ∈ [l].
We denote by ξP : Σ

n → M∗ the evaluation function of P that transforms each word
w ∈ Σn into a word over M of length l according to the instructions of P , i.e.

ξP (w) = f1(wp1)f2(wp2) · · · fl(wpl) .

Then, P uniquely defines a function from Σn to M obtained by multiplying out (in (M, ∗))
the elements of the word ξP (w) over M , i.e.

P (w) = f1(wp1) ∗ f2(wp2) ∗ · · · ∗ fl(wpl) = η(M,∗)(ξP (w))

for all w ∈ Σn, where η(M,∗) is the evaluation morphism of (M, ∗).

Remark 3.3.2. In the above definition, when P = ε, then ξP (w) = ε and P (w) = 1(M,∗)

for all w ∈ Σn.

Programs over monoids allow defining a new notion of recognition, generalising that
by morphisms in a non-uniform way, as follows.

Definition 3.3.3. Let Σ be an alphabet and (M, ∗) be a finite monoid.
For each n ∈ N, a language L ⊆ Σn is recognised by an (M, ∗)-program P on Σn if

and only if there exists F ⊆M such that L = P−1(F ).

Example 3.3.4. Consider the finite monoid (Z/2Z,×) where × denotes the canonical
product modulo 2. Let fa, fb ∈ (Z/2Z){a,b} such that fa(a) = fb(b) = 1 and fa(b) =

fb(a) = 0. For all n ∈ N, the (Z/2Z,×)-program

P2n = (1, fa) · · · (n, fa)(n+ 1, fb) · · · (2n, fb)

on {a, b}2n recognises the language {anbn}, as {anbn} = P−1(1).

Definition 3.3.5. Let Σ be an alphabet and (M, ∗) be a finite monoid. Let L ⊆ Σ∗ be a
language on Σ. We say that a sequence (Pn)n∈N of (M, ∗)-programs such that each Pn is
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on Σn for n ∈ N recognises L if and only if for each n ∈ N, Pn recognises L=n, i.e. there
exists a sequence (Fn)n∈N of subsets of M such that L=n = P−1

n (Fn) for each n ∈ N.
For all s : N → N and alphabet Σ, we define P(Σ∗, (M, ∗), s(n)) as the class of lan-

guages L over the alphabet Σ such that there exists a constant α ∈ R>0 and a sequence
of (M, ∗)-programs (Pn)n∈N recognising L, where for all n ∈ N, |Pn| ≤ α · s(n). We define

P(Σ∗, (M, ∗)) =
⋃
k∈N

P
(
Σ∗, (M, ∗), nk

)
as the set of languages over Σ that are recognised by sequences of polynomial-length
programs over (M, ∗); in that case, we also say that these languages are p-recognised by
these sequences of programs as well as by the finite monoid (M, ∗).

Let now V be a variety of finite monoids, we similarly define

P(Σ∗,V, s(n)) =
⋃

(M,∗)∈V

P(Σ∗, (M, ∗), s(n))

and P(Σ∗,V) =
⋃

(M,∗)∈V P(Σ∗, (M, ∗)).
Finally P((M, ∗), s(n)), P((M, ∗)), P(V, s(n)) and P(V) will just denote the union,

over all alphabets Σ, of the classes P(Σ∗, (M, ∗), s(n)), P(Σ∗, (M, ∗)), P(Σ∗,V, s(n)) and
P(Σ∗,V) respectively.

Example 3.3.6. Continuing with Example 3.3.4, for all n ∈ N, let us define the pro-
gram P2n+1 = ε over (Z/2Z,×) on {a, b}2n+1 that recognises ∅. Then, the sequence
of (Z/2Z,×)-programs (Pn)n∈N recognises {anbn | n ∈ N} which is, by the way, well
known to be a non-regular language. Thus, we have {anbn | n ∈ N} ∈ P((Z/2Z,×), n) ⊆
P((Z/2Z,×)).

The most striking aspect of this definition is that, as V ranges over varieties of finite
monoids, polynomial-length programs over monoids in V capture NC1 and all its known
subclasses3, and allow even to get a very fine variety-parametrised structure in NC1. This
points to deep links between computational complexity theory within NC1 and algebraic
automata theory.

Theorem 3.3.7 (Barrington and Thérien [1988]). We have the following equalities.

1. AC0 = P(A).
3Except TC0, defined using circuits having arbitrary fan-in threshold gates, in addition to NOT and

arbitrary fan-in AND and OR gates — although see Krebs et al. [2007] for such a characterisation using
the notion of finitely typed infinite monoids we briefly talked about in the beginning of this section.
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2. ACC0 = P(Msol).

3. NC1 = P(M).

Unfortunately, though this formalism sharpened the computational complexity theor-
ists’ understanding of NC1 and its subclasses and gave a new, algebraic way, to approach
those, it did not help to prove new separation results inside NC1 for the moment. At the
time of writing of this thesis, nobody has in fact even been able to reprove the now well-
established results on constant-depth circuits (e.g., that MOD2 /∈ AC0) by using novel
semigroup-theoretic-flavoured techniques. Thus, as this already seems to be a difficult
problem, proving new separation results directly using the “program over monoid” form-
alism seems currently to be out of reach, and the work around this formalism presented
in the two remaining chapters of this thesis represents a much more modest contribution.

“If you can’t solve a problem, then there is an easier problem you can solve: find
it.” Applying this principle by George Pólya (to be found in his book “How to Solve
It”), in the remainder of this chapter and the two that follow, we try to understand
the computational power of (polynomial-length) programs over monoids taken from small
varieties of finite (aperiodic) monoids4, using some more general observations on the link
between regular languages and program-recognition we first do. The hope behind this
line of work is that a better understanding of P(V) for varieties of finite monoids V ⊂ A
will trigger new insights into how to tackle questions about P(A) without the need for
constant-depth circuit lower bounds technology such as Håstad’s switching lemma and
Razborov’s method of approximations (see Jukna [2012]). The most fundamental of these
questions is to show that MODm /∈ P(A) for all m ∈ N,m ≥ 2. Solving this could in turn
give new ideas to attack open questions concerning the other common classes in NC1.

Our work in the remainder of this chapter and the two that follow builds on a consid-
erable body of previous research. McKenzie and Thérien in McKenzie and Thérien [1989],
and later together with Péladeau in McKenzie et al. [1991], were the first to define, and
propose a systematic investigation of, P(V) when V ranges over all varieties of finite mon-
oids, pinpointing the strong link between regular languages and program-recognition as
well as giving various results in the framework of such an investigation. Around the same
time, Barrington, Compton, Straubing and Thérien Barrington et al. [1992] managed to
give an exact characterisation of the regular languages on {0, 1} in AC0 and ACC0[p] for
all p ∈ N prime, building on the at the time recent constant-depth circuits size lower
bound results. Péladeau, in his Ph.D. thesis Péladeau [1990], introduced the notion of

4“Small” is not well defined here and just means, informally, that those varieties are quite restricted,
e.g. well within A, at the bottom of the infinite hierarchy of varieties of finite monoids it contains.
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a p-variety of finite monoids, in an attempt to prove an Eilenberg-type theorem in the
case of p-recognition by finite monoids (relying on a still unproven conjecture). Along
with Straubing and Thérien in a subsequent article Péladeau et al. [1997], he gave a gen-
eral characterisation of the class of regular languages p-recognised by semigroups taken
from any p-variety of finite semigroups of the form V ∗ LI where V is a variety of finite
monoids (when everything is appropriately carried over to the case of finite semigroups).
The property of being a p-variety has later been proven to hold for various varieties of
finite monoids by Straubing Straubing [2000, 2001] (although he used a stronger non-
equivalent notion of p-recognition by a finite monoid), as well as by Lautemann, Tesson
and Thérien Lautemann et al. [2006], but also for the variety of finite semigroups J ∗ LI
by Maciel, Péladeau and Thérien Maciel et al. [2000].

Concerning more specifically the computational power of programs over monoids taken
from small varieties of finite aperiodic monoids, we note an early article by Thérien Thérien
[1989] that precisely studies programs over aperiodic monoids and their unability to de-
cide MODm for some m ∈ N,m ≥ 2, using the at the time recent results on lower bounds
for the size of constant-depth Boolean circuits deciding these languages. Later on, along
with Tesson in Tesson and Thérien [2001], he carried out an in-depth study of the no-
tions of universality and polynomial-length property already at least implicitly considered
in Thérien [1989]. Tesson pushed this study slightly further in his Ph.D. thesis Tesson
[2003]. Gavaldà and Thérien Gavaldà and Thérien [2003] investigated the link between
programs over monoids taken from small varieties of finite aperiodic monoids (or semig-
roups) and restricted Boolean computation models such as DNFs and bounded-rank de-
cision trees to establish correspondences between classes.

Our contributions within this line of work, presented in the remainder of this chapter
and the two that follow, can be summarised in short as follows: we introduce a notion
that strengthens that of a p-variety of finite monoids, we apply the notion to study the
classes of regular languages p-recognised by monoids taken from, respectively, DA and
J, and we report some findings about the polynomial-length property for those monoids.
We point out that, to the best of our knowledge, all the definitions and results stated
from here onwards are new, unless otherwise stated. Subsection 3.4.2 in the next section
and Chapter 4 are based on the article Grosshans et al. [2017].

3.3.2 Some general properties of programs

In this subsection, we review some basic closure properties for recognition by programs,
most of them to be found in McKenzie et al. [1991] in the context of p-recognition, often
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refining their statements and proofs.
The first, and very obvious, property of programs, is that, no matter what variety

of finite monoids we consider, any trivial language can be recognised by a sequence of
programs of constant length (actually 0 length) over some finite monoid of that variety
(actually, any such monoid).

Proposition 3.3.8. For any variety of finite monoids V, for each alphabet Σ, we have
{∅,Σ∗} ⊆ P(V, 1).

Sequences of programs over monoids, each sequence recognising some language, can
be combined to recognise some Boolean combination of those languages.

Lemma 3.3.9. Let (M1, ∗1), . . . , (Mr, ∗r) be r ∈ N>0 finite monoids. For all n ∈ N and
for any Boolean combination L of languages L1, . . . , Lr ⊆ Σn such that each Li for i ∈ [r]

is recognised by an (Mi, ∗i)-program Pi on Σn, there exists an (M1, ∗1) × · · · × (Mr, ∗r)-
program P on Σn recognising L with |P | =

∑r
i=1 |Pi|.

Proof. Let n ∈ N and let L ⊆ Σn be some Boolean combination of languages L1, . . . , Lr ⊆
Σn such that each Li for i ∈ [r] is recognised by an (Mi, ∗i)-program Pi on Σn.

This means that for each i ∈ [r], there exists Fi ⊆Mi verifying Li = P−1
i (Fi) and

Pi = (pi,1, fi,1)(pi,2, fi,2) · · · (pi,li , fi,li)

where li = |Pi| and (pi,j, fi,j) ∈ [n]×Mi
Σ for each j ∈ [li].

Now for each i ∈ [r], we can define an (M1, ∗1)× · · · × (Mr, ∗r)-program P ′
i on Σn of

the same length as Pi so that

P ′
i = (pi,1, f

′
i,1)(pi,2, f

′
i,2) · · · (pi,li , f ′

i,li
)

where for each j ∈ [li], f ′
i,j ∈ (M1 × · · · ×Mr)

Σ is defined by

f ′
i,j(a) = (1(M1,∗1), . . . , 1(Mi−1,∗i−1), fi,j(a), 1(Mi+1,∗i+1), . . . , 1(Mr,∗r)) .

It is obvious that for all w ∈ Σn, we have

P ′
i (w) = (1(M1,∗1), . . . , 1(Mi−1,∗i−1), Pi(w), 1(Mi+1,∗i+1), . . . , 1(Mr,∗r)) .

Hence, we can set P to be the (M1, ∗1) × · · · × (Mr, ∗r)-program on Σn obtained by
concatenating the programs P ′

1 to P ′
r, i.e. P = P ′

1 · · ·P ′
r. By construction, we can directly
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see that for all w ∈ Σn, we have

P (w) = P ′
1(w) ∗ · · · ∗ P ′

r(w) = (P1(w), . . . , Pr(w))

where ∗ denotes the product of (M1, ∗1)× · · · × (Mr, ∗r).
As L is some Boolean combination of L1, . . . , Lr, there exist q ∈ N>0 and for each

i ∈ [q], languages Ki,1, . . . , Ki,r ⊆ Σn verifying that Ki,j is equal to Lj or its complement
Σn \ Lj for all j ∈ [r], such that

L =

q⋃
i=1

r⋂
j=1

Ki,j .

For all i ∈ [q] and j ∈ [r], we can now define F ′
i,j ⊆ Mj as Fj if Ki,j = Lj and Mj \ Fj

otherwise (Ki,j = Σn \ Lj), so that Ki,j = P−1
j (F ′

i,j). It is obvious that
⋂r
j=1Ki,j =

P−1(F ′
i,1×· · ·×F ′

i,r) for all i ∈ [q], so that if we set F =
⋃q
i=1 F

′
i,1×· · ·×F ′

i,r, we get that
L =

⋃q
i=1

⋂r
j=1Ki,j = P−1(F ), as inverses of functions commute with unions.

Hence, P is a (M1, ∗1) × · · · × (Mr, ∗r)-program on Σn that recognises L and is of
length exactly

∑r
i=1 |Pi|.

As a corollary, we can derive the following result.

Proposition 3.3.10. For any variety of finite monoids V and any function s : N → N,
we have that P(V, s(n)) is closed under Boolean combinations.

No one was ever able to prove the analogous proposition for varieties of finite semig-
roups, because it is most certainly false; however, to the best of our knowledge, no one
ever proved it to be false either.

To prove that a given language L is recognised by a sequence of programs over a
given finite monoid (M, ∗), it might sometimes be easier to think about that sequence of
programs as transforming input words into other words that will be tested for membership
in another language L′ that we already know to be recognised by a sequence of programs
over (M, ∗). This can be formalised through the notion of a program-reduction, most
probably first defined by Péladeau in his Ph.D. thesis Péladeau [1990].

Definition 3.3.11 (Program-reduction). Let Σ and Γ be two alphabets. A Γ-program
on Σn, for some n ∈ N, is a word Ψ ∈ ([n]× ΓΣ)∗ over the alphabet [n]× ΓΣ, each letter
of Ψ being an instruction. The length of Ψ, denoted by |Ψ| is the length of Ψ as a word.
If we let l = |Ψ|, we have Ψ = (p1, f1)(p2, f2) · · · (pl, fl) with pi ∈ [n] and fi : Σ → Γ for all
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i ∈ [l]. Ψ uniquely defines a function from Σn to Γl by transforming each word w ∈ Σn

into a word in Γl according to the instructions of Ψ, i.e.

Ψ(w) = f1(wp1)f2(wp2) · · · fl(wpl) .

Let now L ⊆ Σ∗ and K ⊆ Γ∗. We say that L program-reduces to K if and only if there
exists a sequence (Ψn)n∈N of Γ-programs such that Ψn is on Σn and L=n = Ψ−1

n (K=|Ψn|)

for each n ∈ N. Defining s : N → N by s(n) = |Ψn| for all n ∈ N, we say that (Ψn)n∈N is
a program-reduction from L to K of length s(n); when moreover there exists α ∈ R>0 and
k ∈ N verifying s(n) ≤ α · nk for all n ∈ N, we can say it is a p-reduction from L to K.

Proposition 3.3.12. Let Σ and Γ be two alphabets. Let (M, ∗) be a finite monoid. Given
some language K over Γ that is in P((M, ∗), s(n)) for some function s : N → N and some
other language L over Σ from which there exists a program-reduction to K of length t(n),
for t : N → N some function, we have that L ∈ P((M, ∗), s(t(n))).

In particular, when K is p-recognised by (M, ∗) and L p-reduces to K, we have that
L is also p-recognised by (M, ∗).

Proof. Let us take some language K over Γ that is in P((M, ∗), s(n)) for some function
s : N → N. This means there exists a sequence (Pn)n∈N of (M, ∗)-programs that recognises
L, that is to say, there exists a sequence (Fn)n∈N of subsets of M such that K=n = P−1

n (Fn)

for each n ∈ N. Moreover, there exists some α ∈ R>0 verifying that |Pn| ≤ α · s(n) for all
n ∈ N.

Let us also take some other language L over Σ from which there exists a program-
reduction to K of length t(n), for t : N → N some function. This means there exists a
sequence (Ψn)n∈N of Γ-programs that is a program-reduction of L to K of length t(n),
which implies that for each n ∈ N, |Ψn| = t(n) and L=n = Ψ−1

n (K=t(n)).
Let n ∈ N. Assume that

Pt(n) = (p1, f1)(p2, f2) · · · (pl, fl)

where l =
∣∣Pt(n)∣∣, pi ∈ [t(n)] and fi ∈MΓ for all i ∈ [l], as well as

Ψn = (q1, g1)(q2, g2) · · · (qt(n), gt(n))

where qi ∈ [n] and gi ∈ ΓΣ for all i ∈ [t(n)]. We can now build a new (M, ∗)-program on
Σn as

Qn = (qp1 , f1 ◦ gp1)(qp2 , f2 ◦ gp2) · · · (qpl , fl ◦ gpl) .
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Then, for all w ∈ Σn, if we set ŵ = Ψn(w) = g1(wq1)g2(wq2) · · · gt(n)(wqt(n)
), we have

Qn(w) = f1
(
gp1(wqp1 )

)
∗ f2

(
gp2(wqp2 )

)
∗ · · · ∗ fl

(
gpl(wqpl )

)
= f1(ŵp1) ∗ f2(ŵp2) ∗ · · · ∗ fl(ŵpl)

= Pt(n)(ŵ) = Pt(n)(Ψn(w)) .

This finally means that Qn = Pt(n) ◦Ψn, so that

L=n = Ψ−1
n (K=t(n)) = Ψ−1

n (P−1
t(n)(Ft(n))) = Q−1

n (Ft(n)) .

Moreover, we have that |Qn| = l ≤ α · s(t(n)).
Therefore, L is recognised by the sequence (Qn)n∈N of (M, ∗)-programs verifying that

|Qn| ≤ α · s(t(n)) for all n ∈ N. The conclusions of the proposition follow.

This result allows us to prove the following additional closure property.

Proposition 3.3.13. For any variety of finite monoids V and any k ∈ N, we have that
P
(
V, nk

)
is closed under quotients and inverses of lm-morphisms.

Proof. Let V be a variety of finite monoids and k ∈ N. Fix some alphabet Σ and let
L ⊆ Σ∗ be some language over Σ that is in P

(
V, nk

)
.

Closure under quotients. Let u  ∈ Σ∗. Consider u−1L. When |u| = 0, it is obvious
that u−1L = ε−1L = L belongs to P

(
V, nk

)
. Otherwise, we have |u| > 0. It is easy to

prove that {ε} and Σ+ both belong to P(V, 1) ⊆ P
(
V, nk

)
, so that the language L′ over

Σ defined by

L′ =

L ∪ {ε} if u ∈ L

L ∩ Σ+ otherwise (u /∈ L)

belongs to P
(
V, nk

)
by Proposition 3.3.10. We are now going to define a program-

reduction from u−1L to L′. For this, for each i ∈ [|u|] we define fui ∈ ΣΣ by fui(a) = ui

for all a ∈ Σ. Let n ∈ N>0; we define the Σ-program Ψn on Σn as

Ψn = (1, fu1) · · · (1, fu|u|)(1, idΣ) · · · (n, idΣ) .

It is direct to see that for all w ∈ Σn, Ψn(w) = uw, so that (u−1L)=n = {w ∈ Σn | uw ∈
L} = {w ∈ Σn | Ψn(w) ∈ L′} = Ψ−1

n (L′=n+|u|). Moreover, |Ψn| = n+ |u|.
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Now, we specifically define the Σ-program Ψ0 = ε on Σ0, the only way it can be
defined. By definition of L′, we necessarily have (u−1L)=0 = {u} ∩ L = Ψ−1

0 (L′=0) and
moreover, |Ψ0| = 0.

Therefore, (Ψn)n∈N is a program-reduction from u−1L to L′ of length t(n) where
t : N → N is defined by

t(n) =

n+ |u| if n > 0

0 otherwise (n = 0)

for all n ∈ N. This means, by Proposition 3.3.12, that u−1L ∈ P
(
V, (t(n))k

)
. But we

have 0k = (1 + |u|)k · 0k and (t(n))k = (n+ |u|)k ≤ (1 + |u|)k · nk for all n ∈ N>0, so that,
in conclusion, u−1L ∈ P

(
V, nk

)
.

We can prove that Lu−1 ∈ P
(
V, nk

)
in a very similar way.

Hence, P
(
V, nk

)
is closed under left and right quotients of L.

Closure under inverses of lm-morphisms. Let ϕ : Γ∗ → Σ∗ be an lm-morphism
from (Γ∗, ·) to (Σ∗, ·) where Γ is some alphabet. We are going to define a program-
reduction from ϕ−1(L) to L. For this, if we denote by l ∈ N the non-negative integer such
that ϕ(Γ) ⊆ Σl, for each i ∈ [l], we define fi ∈ ΣΓ by fi(a) = ϕ(a)i for all a ∈ Σ. Let
n ∈ N; we define the Σ-program Ψn on Γn as

Ψn = (1, f1) · · · (1, fl)(2, f1) · · · (2, fl) · · · · · · (n, f1) · · · (n, fl) .

It is direct to see that for all w ∈ Γn, Ψn(w) = ϕ(w), so that (ϕ−1(L))=n = {ϕ(w) ∈ L |
w ∈ Γn} = Ψ−1

n (L=l·n). Moreover, |Ψn| = l · n.
Therefore, (Ψn)n∈N is a program-reduction from ϕ−1(L) to L of length l · n. This

means, by Proposition 3.3.12, that ϕ−1(L) ∈ P
(
V, (l · n)k

)
. But we have (l · n)k = lk · nk

for all n ∈ N, so that, in conclusion, ϕ−1(L) ∈ P
(
V, nk

)
.

Hence, P
(
V, nk

)
is closed under inverse images of L through lm-morphisms.

In conclusion, since this holds for any language L over some alphabet Σ, we proved
the proposition.

We end this section with a definition, that is folklore, that will be useful when doing
syntactical manipulations of programs.

Definition 3.3.14. Let Σ be an alphabet and (M, ∗) be a finite monoid. For two programs
P and P ′ over (M, ∗) on Σn for some n ∈ N, we shall say that P ′ is a subprogram, a prefix
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or a suffix of P if and only if it is, respectively, a subword, a prefix or a suffix of P as
a word on [n] ×MΣ. We shall also say that P and P ′ are equivalent if and only if any
language L ⊆ Σn recognised by P is also recognised by P ′ and vice versa.

3.4 Regular languages and programs

As we already mentioned briefly in the previous section, in McKenzie et al. [1991], McK-
enzie, Péladeau and Thérien uncovered a deep link between the computational power of
polynomial-length programs over monoids taken from some variety of finite monoids V
and the class of regular languages that are p-recognised by finite monoids in V. And, in
fact, Péladeau’s notion of a p-variety of finite monoids Péladeau [1990] expresses, for a
given variety of finite monoids V, a certain notion of “well-behaviour” of p-recognition of
regular languages by monoids of V (compared to classical morphism-recognition by mon-
oids of V) that suffices to restate almost all conjectures about the internal structure of
NC1 as the fact that all varieties of finite monoids V respectively corresponding to the
concerned subclasses of NC1 are p-varieties. In this section, we shall elaborate on that
link and introduce a stronger notion of an sp-variety of finite monoids whose advantage
over the notion of a p-variety of finite monoids is that when it is verified for a given vari-
ety of finite monoids V, it directly entails an almost exact characterisation of the class
of regular languages p-recognised by monoids of V (which happens to be exact in many
cases).

3.4.1 First results and importance of regular languages in the
realm of programs

The first obvious link between recognition by morphisms and recognition by programs
is that for any finite monoid (M, ∗), any language over some alphabet Σ recognised by
(M, ∗) in the classical, morphism-sense, is also p-recognised by (M, ∗). This is formalised
in the following proposition, that is straightforward to prove.

Proposition 3.4.1. Let (M, ∗) be a finite monoid and Σ an alphabet. Then, any language
over Σ recognised by (M, ∗) is a also recognised by a sequence of linear-length (M, ∗)-
programs. More generally, for any variety of finite monoids V, L(V)(Σ∗) ⊆ P(Σ∗,V, n)
for any alphabet Σ, so that L(V) ⊆ P(V, n).

Moreover, the class of regular languages p-recognised by monoids taken from some
variety of finite monoids is an lm-variety of languages. This is proved by combining
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Propositions 3.3.8, 3.3.10 and 3.3.13 with the fact that the class of all regular languages
Reg is a variety of languages.

Proposition 3.4.2. Let V be a variety of finite monoids. Then P(V) ∩ Reg forms an
lm-variety of languages.

The concept of a program-reduction will be particularly useful in many cases in which
it will be easier, at no extra cost in final program length, to give a program-reduction from
some language L to some regular language in L(V) for some variety of finite monoids V,
rather than giving directly a sequence of programs over a finite monoid in V recognising
L. This is stated formally in the following easy corollary of Proposition 3.3.12.

Corollary 3.4.3. Let Σ and Γ be two alphabets. Let (M, ∗) be a finite monoid. Given
some language K over Γ that is recognised (classically) by (M, ∗) and some other language
L over Σ from which there exists a program-reduction to K of length s(n), for s : N → N
some function, we have that L ∈ P((M, ∗), s(n)).

This concept allows us to prove that for a wealth of varieties of finite monoids V, we not
only have that P(V) contains all of L(V), but also a good deal of other regular languages.

Let us say a stamp ϕ : Σ∗ →M from the free monoid (Σ∗, ·) generated by the alphabet
Σ to a finite monoid (M, ∗) is cyclic if and only if ϕ(a) = ϕ(b) for all a, b ∈ Σ. Observe
that, in this case, (M, ∗) is necessarily generated by its unique element m = ϕ(a) for any
a ∈ Σ, and is hence what is called a cyclic monoid. Since a stamp that lm-divides a cyclic
stamp is also cyclic and the stamp product of two cyclic stamps is cyclic as well (as is
directly seen from the definition of these operations), we have that the class of all cyclic
stamps is an lm-variety of stamps, that we will denote by CYC. Another example of an
lm-variety of cyclic stamps is MOD, that is simply CYC where stamps are restricted
to go into finite cyclic groups. The following result says that no matter what variety of
finite monoids V we consider, programs over monoids in V can always decorate each of
their input letters with the value of a counter given as the image through a cyclic stamp
ψ of the word of letters preceding it (i.e. transform the input word w into σψ(w); see
Subsection 3.2.3 for the definition of the sequential function σψ); in particular, they can
always handle the sort of “counting” introduced by the wreath product of a stamp into
a monoid of V with some cyclic stamp when it comes to recognising regular languages,
contrary to most cases of morphism-recognition.

Lemma 3.4.4. Let V be a variety of finite monoids. Let ψ : Σ∗ → N be a cyclic stamp
from the free monoid (Σ∗, ·) generated by some alphabet Σ to a finite monoid (N,⊥) and
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let V be a language over Σ×N that belongs to P(V, s(n)) for s : N → N some function.
Then, σ−1

ψ (V ) ∈ P(V, s(n)).

Proof. We know that L = σ−1
ψ (V ) is a language over Σ.

We shall now define a program-reduction from σ−1
ψ (V ) to V of linear length. Observe

first that since ψ is a cyclic stamp, for all n ∈ N, there exists xn ∈ N verifying ψ(Σn) =

{xn}. For all n ∈ N>0, we define fn ∈ (Σ × N)Σ by fn(a) = (a, xn−1) for all a ∈ Σ. Fix
n ∈ N. We define the (Σ×N)-program Ψn on Σn as

Ψn = (1, f1)(2, f2)(3, f3) · · · (n, fn) .

Then, for all w ∈ Σn, we have

Ψn(w) = f1(w1)f2(w2)f3(w3) · · · fn(wn)

= (w1, x0)(w2, x1)(w3, x2) · · · (wn, xn−1)

= (w1, ψ(ε))(w2, ψ(w1))(w3, ψ(w1w2)) · · · (wn, ψ(w1w2 · · ·wn−1))

= σψ(w) .

This means that Ψn = σψ|Σn , so that, since σ−1
ψ ((Σ×N)n) = Σn, we have

L=n = σ−1
ψ (V ) ∩ Σn = σ−1

ψ (V ∩ (Σ×N)n) = (σψ|Σn)
−1(V =n) = Ψ−1

n (V =n) ,

as inverses of functions commute with intersections.
Therefore, (Ψn)n∈N is a program-reduction from L to V of length n. Since there

exists some monoid (M, ∗) ∈ V such that V belongs to P((M, ∗), s(n)), it follows by
Proposition 3.3.12 that σ−1

ψ (V ) = L ∈ P(V, s(n)).

Proposition 3.4.5. For any variety of finite monoids V and any lm-variety of cyclic
stamps W, we have L(〈V〉all ∗ W) ⊆ P(V, n).

Proof. Let V be a variety of finite monoids and W an lm-variety of cyclic stamps.
Fix some alphabet Σ.

Let L ∈ L(W)(Σ∗). Let η : Σ∗ → M be its syntactic morphism, where (M, ∗) is its
syntactic monoid and let F ⊆M be such that L = η−1(F ).

By definition of L(W), η is a stamp of W; in particular, it is a cyclic stamp. This
means that for all n ∈ N, there exists mn ∈ M verifying η(Σn) = {mn}, so that either
L=n = Σn when mn ∈ F or L=n = ∅ when mn /∈ F .

109



Let now (N,⊥) be any finite monoid in V (that contains at least all trivial monoids
by definition). For each n ∈ N, we define Pn = ε to be the empty (N,⊥)-program on
Σn; for all n ∈ N, we then have that Pn(Σn) = {1(N,⊥)}, so that L=n = P−1

n (1(N,⊥)) when
mn ∈ F and L=n = P−1

n (∅) when mn /∈ F . Hence, (Pn)n∈N recognises L and as |Pn| = 0

for all n ∈ N, we have L ∈ P(V, n).
Hence, since this is true for any L ∈ L(W)(Σ∗), we have that L(W)(Σ∗) ⊆ P(V, n).

Let now ψ : Σ∗ → N be some stamp in W from (Σ∗, ·) to a finite monoid (N,⊥)

and V ∈ L(〈V〉all)((Σ × N)∗) = L(V)((Σ × N)∗). This means that V ∈ P(V, n) by
Proposition 3.4.1, so that by Lemma 3.4.4 we have that σ−1

ψ (V ) ∈ P(V, n).

Now since P(V, n) contains all languages of L(W)(Σ∗) and all languages of the form
σ−1
ψ (V ), where ψ : Σ∗ → N is some stamp in W from (Σ∗, ·) to a finite monoid (N,⊥) and
V ∈ L(〈V〉all)((Σ×N)∗), and since P(V, n) is closed under finite Boolean combinations
by Proposition 3.3.10, it follows by Theorem 3.2.15 that L(〈V〉all ∗ W)(Σ∗) ⊆ P(V, n).

In conclusion, as this is true for any alphabet Σ, we have L(〈V〉all ∗ W) ⊆ P(V, n).

But why be interested at all in the class of regular languages p-recognised by monoids
taken from some variety of finite monoids V beyond the quest for understanding this class
for its own sake? The work of McKenzie, Péladeau and Thérien McKenzie et al. [1991]
showed that any class of languages p-recognised by a monoid belonging to a variety of
finite monoids is uniquely characterised by the class of regular languages contained in the
variety, i.e. for all varieties of finite monoids V and W, we have P(V) = P(W) if and
only if P(V)∩Reg = P(W)∩Reg. So this means in particular that determining exactly
what regular languages are in P(V) is a fundamental problem that is often at least as
difficult as proving a separation between P(V) and some other class P(W).

Barrington, Compton, Straubing and Thérien Barrington et al. [1992] exactly charac-
terised the regular languages over {0, 1} in AC0 and ACC0[p] for all p ∈ N prime, building
on the at the time recent constant-depth circuits size lower bound results. Let L1 = MOD2

and L2 =
(
(0 + 1)2

)∗
(0 + 1) be two languages in {0, 1}∗. On the one hand, thanks to

the result of Furst, Saxe and Sipser Furst et al. [1984] and, independently, Ajtai Ajtai
[1983] (Theorem 1.3.7), we know that L1 /∈ AC0, while it is easy to see that L2 ∈ AC0. On
the other hand, M(L1) and M(L2) are isomorphic and if we define ϕ : {0, 1}∗ → {0, 1}∗

as the unique monoid endomorphism of ({0, 1}∗, ·) such that ϕ(0) = 11 and ϕ(1) = 1,
we have that L1 = ϕ−1(L2). So this implies that membership of a regular language in
the class AC0 ∩Reg does not solely depend on its syntactic monoid and that this class is
not a variety of languages, since it isn’t closed under inverses of monoid morphisms. But
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the authors of Barrington et al. [1992] managed to characterise that class in terms of the
syntactic morphisms of the regular languages it contains.

This prompted Straubing Straubing [2002] to define more general notions of varieties
of languages, each corresponding to a certain notion of varieties of stamps, namely the
notions of C-varieties of languages and associated C-varieties of stamps. Those notions
of varieties are interesting because they are parameterised by the class C of morphisms
between finitely generated free monoids that on one hand go through when considering
the property of stability under taking inverses of morphisms in the language varieties, and
on the other hand adapt the notion of division considered for the property of stability
under stamp division in the stamp varieties. And this is precisely what is needed for the
study of AC0 ∩Reg, because while AC0 ∩Reg is not closed under taking inverses of every
morphism between finitely generated free monoids, it is closed under taking inverses of
any such morphism which is length-multiplying.

Let ϕ : Σ∗ → M be some stamp from the free monoid (Σ∗, ·) generated by some
alphabet Σ to some finite monoid (M, ∗). Then, since M is finite, there exists s ∈ N>0

such that ϕ(Σs) = ϕ(Σ2s). We call the semigroup (ϕ(Σs), ∗|ϕ(Σs)) for the smallest such
s the stable semigroup of ϕ and

(
ϕ((Σs)∗), ∗|ϕ((Σs)∗)

)
its stable monoid. Given V some

variety of finite semigroups (monoids), we will denote by QV the class of quasi-V stamps,
which is the class of all stamps whose stable semigroup (monoid) is in V; it is an lm-
variety of stamps. (See Pin and Straubing [2005] and Dartois and Paperman [2014] for
further details.)

Why define all this? It is because the class of regular languages AC0 ∩Reg, as shown
in Barrington et al. [1992] for the case of languages over {0, 1} and as we will prove in
the next subsection, is exactly the lm-variety of languages whose syntactic morphisms are
quasi-aperiodic, i.e. belong to QA.5 That is to say, P(A)∩Reg = AC0 ∩Reg = L(QA).
Basically, this result means that, over finite aperiodic monoids, p-recognition does not
allow recognising many more regular languages than classical morphism-recognition: in
fact, as we shall see in the next subsection, we have 〈A〉all ∗ MOD = QA, so that p-
recognition over monoids in A informally only gives the ability to “count modulo some

5The way quasi-aperiodicity of some stamp η : Σ∗ → M from the free monoid (Σ∗, ·) generated by an
alphabet Σ to some finite monoid (M, ∗) is defined in Barrington et al. [1992] is as follows: for each t ∈ N,
η(Σt) contains no set S such that (S, ∗|S)1 is a non-aperiodic monoid. The class of all stamps verifying
this condition happens to be equal to QA, but it seems like, in general, it is not necessarily the case
that the class of all stamps η : Σ∗ → M verifying that for each t ∈ N, η(Σt) contains no set S such that
(S, ∗|S)1 does not belong to V is equal to QV. In fact, this first class does not even seem to always be an
lm-varieties of stamps. The standard definition of quasi-V stamps we use in this thesis was apparently
introduced by Straubing in Straubing [2002], about 10 years after the publication of Barrington et al.’s
article.
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positive integer” in addition to what can be done through morphism-recognition over
monoids in A. To study more systematically the varieties of finite monoids that are
similarly “well-behaved” with respect to regular language program-recognition, we have
to take a step back and try to characterise and understand the general properties these
varieties do share.

3.4.2 Tame varieties of finite monoids

For this we introduce the notion of an sp-variety of finite monoids. This notion is inspired
by the notion of p-varieties (program-varieties) of finite monoids originally defined by
Péladeau in his Ph.D. thesis Péladeau [1990]. The notion was used later by Straubing
in Straubing [2000, 2001] (noting that Straubing’s notion of p-recognition by a finite
monoid is strictly stronger), as well as by Lautemann, Tesson and Thérien in Lautemann
et al. [2006] and by Tesson alone in his own Ph.D. thesis Tesson [2003]. Furthermore, the
notion of a p-variety has also been defined for varieties of finite semigroups by Péladeau,
Straubing and Thérien in Péladeau et al. [1997] (using an adequate notion of programs
over semigroups, that we won’t define in this thesis) who obtained results similar to ours
for varieties of finite semigroups of the form V ∗ LI (equal to V ∗ D when V is a non-
trivial variety of finite monoids Straubing [1985]).

Let us first define the notion of the set of word problems over a given stamp, finite
semigroup or monoid.

Definition 3.4.6 (Following McKenzie et al. [1991]). Let ϕ : Σ∗ → M be a stamp from
the free monoid (Σ∗, ·) generated by some alphabet Σ to a finite monoid (M, ∗). We
denote by W(ϕ) the set of word problems over ϕ, made of all languages L over Σ such
that L = ϕ−1(F ) for some subset F of M , a word problem over ϕ. Given a finite semigroup
(monoid) (S, ∗), the set of word problems over (S, ∗), denoted by W((S, ∗)), is simply
W(η(S,∗)), the set of word problems over the evaluation morphism η(S,∗) of (S, ∗).

Intuitively, when the set of word problems over some finite semigroup (S, ∗) satisfies
the property that each language in the set is p-recognised by a monoid taken from some
fixed variety of finite monoids V, it means that polynomial-length programs over monoids
in V can simulate the multiplication in (S, ∗).

The first obvious thing to observe is that, for any variety of finite monoids V and for
any monoid (M, ∗) ∈ V, we have that W((M, ∗)) ⊆ L(V), so that, by Proposition 3.4.1,
it follows that W((M, ∗)) ⊆ P(V, n). For the same reasons, any finite semigroup (S,⊥)

verifying that (S,⊥)1 ∈ V also has its set of word problems contained in P(V, n). The
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notion of tameness we introduce requires a converse to the latter implication for finite
semigroups.

Definition 3.4.7. An sp-variety of finite monoids, which we shall also call a tame such
variety, is a variety V of finite monoids such that for any finite semigroup (S, ∗), if
W((S, ∗)) ⊆ P(V) then (S, ∗)1 ∈ V.

The notion of a p-variety of finite monoids in Lautemann et al. [2006] is similar to
our notion of an sp-variety, but the former only requires that any finite monoid (M, ∗)
verifying W((M, ∗)) ⊆ P(V) must in fact belong to V. Given some alphabet Σ, a language
L over Σ has a neutral letter if and only if there exists e ∈ Σ verifying that for all u, v ∈ Σ∗,
uv ∈ L ⇔ uev ∈ L; an equivalent definition of a p-variety of finite monoids is that
it is any variety of finite monoids V such that every regular language with a neutral
letter in P(V) is in L(V). The notion of p-variety thus inherently corresponds to the
kind of notion of “well-behaviour” we are looking for, but only for regular languages with
a neutral letter; it does in fact not necessarily imply “well-behaviour” for p-recognition of
languages without a neutral letter, as we shall see later in this subsection. This is why
our notion of tameness is stronger, as any sp-variety of finite monoids is also a p-variety
of finite monoids, but the converse is not always true. For instance, J is a p-variety of
finite monoids Tesson [2003], but our discussion at the end of this subsection shows that
J is not an sp-variety of finite monoids and in fact does not “behave well”.

The intuition behind this definition is that when a variety of finite monoids V is tame,
it cannot simulate multiplication in any finite semigroup (S, ∗) that does not belong to
V after adjoining, when necessary, an identity to make a monoid out of it. The next
proposition nails down the ”well behaviour”, i.e., the limited ability for p-recognising
regular languages, that the tameness of V entails.

Proposition 3.4.8. Let V be an sp-variety of finite monoids. Then P(V) ∩ Reg ⊆
L(QV).

A similar result was proven for varieties of finite semigroups of the form V ∗ LI
in Péladeau et al. [1997], where languages are considered to be subsets of Σ+ for some
alphabet Σ. Our proof follows the same lines.

Proof. Let L be a regular language in P((M, ∗)) for some finite monoid (M, ∗) ∈ V.
Let M(L) be the syntactic monoid of L and ηL its syntactic morphism. Let (S,⊥) be
the stable semigroup of ηL, in particular S = ηL(Σ

k) for some k ∈  N>0. We wish to
show that (S,⊥)1, which is isomorphic to the submonoid of M(L) of underlying subset
ηL((Σ

k)∗), is in V.

113



We show that W((S,⊥)) ⊆ P(V) and conclude from the fact that V is an sp-variety
of finite monoids that (S,⊥)1 ∈ V as desired. Let η(S,⊥) : S

∗ → S1 be the evaluation
morphism of (S,⊥). For each m ∈ S, consider L′

m = η−1
(S,⊥)(m); we wish to show that

L′
m ∈ P(V) for all m ∈ S. Since additionally when (S,⊥) is not a monoid, we have

η−1
(S,⊥)(1) = {ε} that is easily seen to belong to P(V), this implies that W((S,⊥)) ⊆ P(V)

by closure under union of P(V) ∩Reg, Proposition 3.4.2.
Fix m ∈ S. Let L′′

m = η−1
L (m). Since m belongs to the syntactic monoid of L and

ηL is the syntactic morphism of L, a classical algebraic argument [Pin, 1986, Chapter 2,
proof of Lemma 2.6] shows that L′′

m is a Boolean combination of quotients of L or their
complements. By Proposition 3.4.2, we conclude that L′′

m ∈ P(V).
By definition of (S,⊥), for any element s of S there is a word us of length k such that

ηL(us) = s. Notice that this is precisely where we need to work with (S,⊥) and not (S,⊥)1.
Let f : S∗ → Σ∗ be the unique lm-morphism from (S∗, ·) to (Σ∗, ·) sending s to us and

notice that L′
m = f−1(L′′

m). The result follows by closure of P(V) ∩ Reg under inverse
images of lm-morphisms, Proposition 3.4.2.

Dartois and Paperman showed [Dartois and Paperman, 2014, Corollary 18] (see also
Dartois [2014], Paperman [2014]) that, while 〈V〉all∗MOD ⊆ QV for any variety of finite
monoids V, locality of V implies that equality holds. This allows us to give an exact
characterisation of the lm-variety of regular languages p-recognised by monoids taken
from some local sp-variety of finite monoids.

Proposition 3.4.9. Let V be a local sp-variety of finite monoids. Then P(V) ∩ Reg =

L(QV).

Proof. By [Dartois and Paperman, 2014, Corollary 18], as V is local, we have QV =

〈V〉all ∗ MOD. Moreover, we know that MOD is an lm-variety of cyclic stamps, so
by Proposition 3.4.5, we have that L(QV) ⊆ P(V). We can conclude applying Proposi-
tion 3.4.8, as V is tame.

We don’t know whether it is always true that for non-local sp-varieties of finite monoids
V, L(QV) is contained in P(V).

An example of an sp-variety of finite monoids is the class of finite aperiodic monoids
A. This is a consequence of the celebrated result of Furst, Saxe and Sipser, and, independ-
ently, Ajtai, that for any integer m ∈ N,m ≥ 2, the language MODm of words over {0, 1}
that contain a number of 1’s not congruent to 0 modulo m is not in AC0 (Theorem 1.3.7).

Proposition 3.4.10. A is an sp-variety of finite monoids.
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Proof. Towards a contradiction, assume there would exist a finite semigroup (S, ∗) such
that (S, ∗)1 is not aperiodic but still W((S, ∗)) ⊆ P(A).

Then there is an x in S such that x∗,ω 6= x∗,ω+1 where ω ∈ N>0 is the idempotent
power of (S, ∗)1. Consider the morphism µ : {0, 1}∗ → S∗ from the free monoid ({0, 1}∗, ·)
to the free monoid (S∗, ·) sending 1 to x∗,ω+1 and 0 to x∗,ω: it is an lm-morphism (even
an lp-morphism). Let us now consider the language (η(S,∗) ◦ µ)−1(S1 \ {x∗,ω}) where
η(S,∗) : S

∗ → S1 is the evaluation morphism of (S, ∗): it is easy to see that it is MODm,
the language of all words over {0, 1} with a number of 1’s not congruent to 0 modulo m,
where m ∈ N,m ≥ 2 is the smallest positive integer such that x∗,ω+m = x∗,ω, that cannot
be 1 because x∗,ω 6= x∗,ω+1.

From the hypothesis that W((S, ∗)) ⊆ P(A), it follows that η−1
(S,∗)(S

1 \ {x∗,ω}) ∈
P(A), hence since µ is an lm-morphism and P(A)  ∩ Reg is closed under inverses of
lm-morphisms by Proposition 3.4.2, we have MODm = µ−1(η−1

(S,∗)(S
1 \ {x∗,ω})) ∈ P(A): a

contradiction to Theorem 1.3.7.

As A is local [Tilson, 1987, Example 15.5] and an sp-variety, it follows from Proposi-
tion 3.4.9 that the regular languages in P(A), hence in AC0, are precisely those in L(QA).
(This has originally been proven in Barrington et al. [1992] for the case of regular lan-
guages over {0, 1}.)

As partially observed by Tesson Tesson [2003], we can prove that for some variety of
finite monoids V to be a p-variety of finite monoids it is necessary and sufficient that for
any variety of finite monoids W not contained in V, P(V) 6= P(W) — put differently,
V is maximal in the sense that it is the unique inclusion-wise biggest variety of finite
monoids W verifying P(V) = P(W). This means that proving V to be a p-variety
of finite monoids is equivalent to giving an optimal separation result of P(V) from all
other complexity classes defined using p-recognition by monoids taken from some variety
of finite monoids not contained in V. For the case of sp-varieties of finite monoids, we
can only prove that this optimal separation result is a necessary condition.

Proposition 3.4.11. Let V be an sp-variety of finite monoids. Then, for any variety of
finite monoids W such that W * V, we have P(V) 6= P(W).

Proof. Let W be a variety of finite monoids such that W * V. This means that there
exists a finite monoid (M, ∗) ∈ W \ V. Since V is an sp-variety of finite monoids, we
necessarily have W((M, ∗)) * P(V), while W((M, ∗)) ⊆ P(W). Therefore, P(V) 6=
P(W).
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The converse statement is false for sp-varieties of finite monoids, and we will for
instance see that this optimal separation result holds for J which isn’t tame. This converse
statement fails precisely because of the ability for monoids taken from some variety of finite
monoids V to p-recognise any language recognised by the wreath product of a stamp
into a monoid of V with some cyclic stamp, Proposition 3.4.5. This ability allows, in
particular, for all interesting cases of varieties of finite monoids V, to p-recognise the
regular language of words over {a, b} starting with an a.

Lemma 3.4.12. For any non-trivial variety of finite monoids V, we have a(a + b)∗ ∈
P(V).

Proof. Let V be a non-trivial variety of finite monoids. Let (M, ∗) be a monoid from V
of order at least 2.

Consider the finite monoid (Z/2Z,×) where × denotes the canonical product modulo
2. Let us define the cyclic stamp ψ : {a, b}∗ → Z/2Z from the free monoid ({a, b}∗, ·)
to (Z/2Z,×) as the unique monoid morphism from ({a, b}∗, ·) to (Z/2Z,×) verifying
ψ(a) =  ψ(b) = 0. Then, it is direct to see that σψ(ε) = ε and σψ(w1w2w3 · · ·wn) =

(w1, 1)(w2, 0)(w3, 0) · · · (wn, 0) for all n ∈ N>0, w ∈ Σn.
Let m ∈ M be an element of M different from the identity 1(M,∗) and define the

monoid morphism ϕ : ({a, b} × Z/2Z)∗ → M from the free monoid (({a, b} × Z/2Z)∗, ·)
to (M, ∗) as the unique one satisfying ϕ(a, 1) = m and ϕ(a, 0) = ϕ(b, 1) = ϕ(b, 0) =

1(M,∗). Let V = ϕ−1(m). By definition, V does belong to L(V)(({a, b} × Z/2Z)∗) =

L(〈V〉all)(({a, b} × Z/2Z)∗) and since ψ ∈ CYC, it follows that σ−1
ψ (V ) is a language of

L(〈V〉all ∗ CYC)({a, b}∗) by Theorem 3.2.15.
It is easy to see that V does contain all words over {a, b}×Z/2Z that have one unique

letter (a, 1) but does not contain any of the words over that same alphabet that has no
letter (a, 1), so, since for all w ∈ {a, b}∗, σψ(w) does contain one unique letter (a, 1) when
w is of length at least 1 and starts with the letter a, and doesn’t contain any letter (a, 1)

otherwise, we have that σ−1
ψ (V ) = a(a+ b)∗.

In conclusion, as Proposition 3.4.5 tells us that L(〈V〉all ∗ CYC) ⊆ P(V), we have
a(a+ b)∗ ∈ P(V), which ends the proof of the proposition.

It is straightforward to see that a(a+ b)∗ has the property that the stable monoid of
its syntactic morphism is equal to its syntactic monoid, which implies the following using
the contrapositive of Proposition 3.4.8.

Lemma 3.4.13. If V is a non-trivial sp-variety of finite monoids, then M(a(a+b)∗) ∈ V.
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But the fact is exactly that there are p-varieties of finite monoids, like J Tesson [2003],
that do not contain M(a(a+b)∗). Thus, we have that P(J) 6= P(W) for any variety of finite
monoids W such that W * J while J is not an sp-variety of finite monoids. This shows
that moving from the notion of a p-variety of finite monoids to the stronger notion of an
sp-variety of finite monoids, we lose the equivalence with the optimal separation result of
Proposition 3.4.11.

That being said, this example also makes clear why we need to replace the notion of
a p-variety of finite monoids by the stronger notion of an sp-variety of finite monoids to
be able to guarantee “well-behaviour” of p-recognition of regular languages as stated by
Proposition 3.4.8: indeed, while J is a p-variety of finite monoids, we just showed that
P(J) ∩Reg * L(QJ).

Taking stock, there are two main motivations for an exhaustive study of exactly which
varieties of finite monoids are tame:

• because proving the tameness of a variety of finite monoids V is a big step towards
the exact characterisation of P(V) ∩ Reg, the lm-variety of regular languages p-
recognised by monoids in V;

• because proving the tameness of a variety of finite monoids V entails separation of
P(V) from every complexity class of the form P(W) where W is a variety of finite
monoids not contained in V.

To complete such a study would thus be of great interest for computational complexity
theory in general, because many of the conjectures about the internal structure of NC1

would be proven by showing some appropriate variety of finite monoids is tame. This for
instance is the case for the conjectured strict containment in NC1 of the class ACC0

(corresponding to p-recognition by monoids from Msol) Lautemann et al. [2006], the
current frontier of knowledge for lower bounds in computational complexity theory.

In the two next chapters of this thesis, we are pursuing a much humbler objective: to
start this study for two classical “small” varieties of finite aperiodic monoids, DA and J,
along with some other investigations about p-recognition by monoids drawn from these.
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Chapter 4

The power of programs over monoids
in DA

In this chapter we focus on p-recognition by monoids taken from the variety of finite
monoids DA. DA is a well-known “small” variety of finite aperiodic monoids whose
importance in algebraic automata theory and connections with other fields is well estab-
lished (see Tesson and Thérien [2002] for an eloquent testimony).

We start off with some specific preliminaries about DA in Section 4.1. The main
result of this chapter, the tameness of DA, is proven in Section 4.2; as a consequence, we
obtain that P(DA) ∩ Reg is exactly the lm-variety of languages L(QDA). Finally, we
investigate Tesson and Thérien’s polynomial-length property for monoids in DA Tesson
and Thérien [2001] in Section 4.3, where we give a fine hierarchy inside P(DA) for some
parameterisation of DA, refining Tesson and Thérien’s result.

The content of this chapter is based on the article Grosshans et al. [2017].

4.1 Specific preliminaries about DA

As we have seen in Section 3.1 of Chapter 3, DA is a strict subvariety of the variety
of finite aperiodic monoids A.1 Its equational characterisation is the following: a finite
monoid (M, ∗) of idempotent power ω belongs to DA if and only if (xy)ω = (xy)ωx(xy)ω

for all x, y ∈M .
The property we now state is crucial to many proofs involving DA and our work will

rely on this property as well.
1Is is, in fact, included in the lowest levels of the so-called dot-depth hierarchy inside A (see Pin [2017]).



Lemma 4.1.1. [Folklore] Let (M, ∗) be some monoid in DA. For all u, u′, r ∈ M , we
have that u R u′ and ur R u imply u′r R u. Similarly u L u′ and ru L u imply ru′ L u.

Informally, this lemma states that, given a monoid (M, ∗) ∈ DA, for any u ∈ M ,
whether ur for some r ∈ M is strictly smaller than u according to the ≤R preorder
(i.e., whether right-multiplication by r changes to a lower R-class) only depends on the
R-class of u and not on u itself.

4.1.1 Characterisation of L(DA)

The variety of languages L(DA) was first characterised by Schützenberger Schützenberger
[1976] using so-called unambiguous polynomials. Given an alphabet Σ, an unambigu-
ous monomial over Σ is a language L over Σ of the form A∗

0a1A
∗
1a2 · · ·A∗

k−1akA
∗
k for

some k ∈ N, where A0, A1, . . . , Ak−1, Ak are subsets of Σ and a1, a2, . . . , ak are letters
of Σ, verifying that for each w ∈ L, there exists a unique decomposition of the form
w = w0a1w1a2 · · ·wk−1akwk where wi ∈ A∗

i for each i ∈ [[0, k]]. An unambiguous polyno-
mial over Σ is then simply a (finite) disjoint union of unambiguous monomials over Σ.
Schützenberger’s result can then be stated as follows.

Theorem 4.1.2 (Schützenberger [1976]). For any alphabet Σ, L(DA)(Σ∗) is exactly the
set of all unambiguous polynomials over Σ.

Following Gavaldà and Thérien [2003], we use an alternative definition of the languages
recognised by a monoid in DA. We define by induction a hierarchy of classes of languages
SUMk, where SUM stands for strongly unambiguous monomial.

Definition 4.1.3. For a fixed finite alphabet Σ and for each k ∈ N, we define the set
of languages of strongly unambiguous monomials of degree at most k over Σ, denoted by
SUMk(Σ

∗), by induction on k. A language L ⊆ Σ∗ is in SUM0(Σ
∗) if it is of the form A∗

for some alphabet A ⊆ Σ. For each k ∈ N>0, a language L ⊆ Σ∗ is in SUMk(Σ
∗) if it is in

SUMk−1(Σ
∗) or L = L1aL2 for some languages L1 ∈ SUMi(Σ

∗) and L2 ∈ SUMj(Σ
∗),

where i, j ∈ N verify i + j = k − 1 and a ∈ Σ is such that no word of L1 contains the
letter a or no word of L2 contains the letter a. A language L of SUMk(Σ

∗) for k ∈ N is
called a strongly unambiguous monomial (SUM) over Σ and is said to be of degree l for
l ∈ N the minimum non-negative integer verifying L ∈ SUMl(Σ

∗).
For each k ∈ N, we then define the class of languages of strongly unambiguous monomi-

als of degree at most k, denoted by SUMk, simply as the union over all finite alphabets
Σ of SUMk(Σ

∗).
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Observe that a SUM is a more constrained form of an unambiguous monomial.
Gavaldà and Thérien stated without proof that a language L over some alphabet Σ is

recognised by a monoid in DA if and only if there is a k ∈ N such that L is a Boolean
combination of languages in SUMk Gavaldà and Thérien [2003]. This characterisation
can be deduced from results shown by Kufleitner and Weil in Kufleitner and Weil [2012]
(more precisely, by combining Corollary 3.16, Theorem 3.21 and Proposition 3.23 of their
article), but we move on to prove this result directly in this subsection, for completeness.

Lemma 4.1.4. For all k ∈ N, any language in SUMk has its syntactic monoid in DA.

Proof. We shall prove it by induction on k.

Base case k = 0. Let L ∈ SUM0(Σ
∗) for some alphabet Σ. This means that L = A∗

for some A ⊆ Σ. Let ∼L be the syntactic congruence of L and let ωL be the idempotent
power of L’s syntactic monoid M(L) = (M, ∗).

Let u, v ∈ Σ∗, we are now going to show that (uv)ωL ∼L (uv)ωLu(uv)ωL .
Let x, y ∈ Σ∗ satisfy x(uv)ωLy ∈ A∗ = L. This means that all letters appearing in x,

u, v and y belong to A∗, so that x(uv)ωLu(uv)ωLy ∈ A∗ = L.
Conversely, for all x, y ∈ Σ∗, we can show that when x(uv)ωLu(uv)ωLy ∈ L, we have

x(uv)ωLy ∈ L.
This shows that (uv)ωL ∼L (uv)ωLu(uv)ωL and as it is true for all u, v ∈ Σ∗, by

definition of the syntactic monoid of L, we have that (m∗n)∗,ωL = (m∗n)∗,ωL∗m∗(m∗n)∗,ωL

for all m,n ∈M , so that (M, ∗) does belong to DA.
This proves the base case.

Induction. Let k ∈ N>0 and assume that any language in SUMk−1 has its syntactic
monoid in DA.

Let L ∈ SUMk(Σ
∗) for some alphabet Σ. This means that either L is in SUMk−1(Σ

∗)

and so its syntactic monoid belongs to DA by inductive hypothesis, or L = L1aL2 for
some languages L1 ∈ SUMi(Σ

∗) and L2 ∈ SUMj(Σ
∗), where i, j ∈ N verify i+ j = k−1

and a ∈ Σ is such that no word of L1 contains the letter a or no word of L2 contains the
letter a. We shall only treat the case in which a does not appear in any of the words of
L1; the other case is treated symmetrically.

As L1 and L2 both belong to SUMk−1(Σ
∗), by inductive hypothesis, their respective

syntactic monoids belong to DA.
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Let ∼L, ∼L1 and ∼L2 be the syntactic congruences of L, L1 and L2 respectively and
let ωL, ωL1 and ωL2 be the idempotent power of, respectively, L’s, L1’s and L2’s syntactic
monoid. We shall moreover denote by M(L) = (M, ∗) the syntactic monoid of L.

Let u, v ∈ Σ∗, we are now going to show that (uv)ωL ∼L (uv)ωLu(uv)ωL . By definition
of the syntactic monoid of L and of ωL, it is not too difficult to see that this is equivalent
to showing that (uv)ω ∼L (uv)ωu(uv)ω where ω ∈ N>0 is the smallest multiple of ωL, ωL1

and ωL2 strictly bigger than ωL2 .
Let x, y ∈ Σ∗ such that w = x(uv)ωy ∈ L and consider w′ = x(uv)ωu(uv)ωy. Let

i ∈ [|w|] be the minimum integer in [|w|] such that wi = a; by definition of L, we
must have w1 · · ·wi−1 ∈ L1 and wi+1 · · ·w|w| ∈ L2. We also let i′ ∈ [|w′|] be the minimum
integer in [|w′|] such that w′

i′ = a (which necessarily exists, as a ∈ alph(w) ⊆ alph(w′)).

• If i corresponds to a position in the factor x of w, then i = i′ and we have
that w′

1 · · ·w′
i′−1 = x1 · · ·xi−1 ∈ L1. But, now, since ω is a multiple of ωL2 and

the syntactic monoid of L2 is in DA, we have (uv)ω ∼L2 (uv)ωu(uv)ω, so that,
because xi+1 · · · x|x|(uv)ωy = wi+1 · · ·w|w| ∈ L2, it follows that w′

i′+1 · · ·w′
|w′| =

xi+1 · · ·x|x|(uv)ωu(uv)ωy ∈ L2. Hence, w′ ∈ L.

• If i corresponds to a position in one of the factors uv of w, then this position is
necessarily in the first factor uv, say position κ ∈ [|uv|], by minimality of i, and we
have i = i′. So we have that w′

1 · · ·w′
i′−1 = x(uv)1 · · · (uv)κ−1 ∈ L1. Moreover, since

ω is strictly bigger than ωL2 and the syntactic monoid of L2 is in DA, hence is in par-
ticular aperiodic, we have (uv)ω−1 ∼L2 (uv)ω ∼L2 (uv)ωu(uv)ω ∼L2 (uv)ω−1u(uv)ω,
so that, because (uv)κ+1 · · · (uv)|uv|(uv)ω−1y = wi+1 · · ·w|w| ∈ L2, it follows that
w′
i′+1 · · ·w′

|w′| = (uv)κ+1 · · · (uv)|uv|(uv)ω−1u(uv)ωy ∈ L2. Hence, w′ ∈ L.

• If i corresponds to a position in the factor y of w, say position κ ∈ [|y|], then i′

also corresponds to position κ in the factor y of w′, otherwise it would violate the
minimality of i. So we have that w′

i′+1 · · ·w′
|w′| = yκ+1 · · · y|y| ∈ L2. But, now,

since ω is a multiple of ωL1 and the syntactic monoid of L1 is in DA, we have
(uv)ω ∼L1 (uv)ωu(uv)ω, so that, because x(uv)ωy1 · · · yκ−1 = w1 · · ·wi−1 ∈ L1, it
follows that w′

1 · · ·w′
i′−1 = x(uv)ωu(uv)ωy1 · · · yκ−1 ∈ L1. Hence, w′ ∈ L.

Therefore, in any case we have x(uv)ωu(uv)ωy ∈ L.
Let x, y ∈ Σ∗ satisfy x(uv)ωu(uv)ωy ∈ L. In a way similar to above, we can show that

then, x(uv)ωy ∈ L.
This shows that (uv)ωL ∼L (uv)ωLu(uv)ωL and as it is true for all u, v ∈ Σ∗, by

definition of the syntactic monoid of L, we have that (m∗n)∗,ωL = (m∗n)∗,ωL∗m∗(m∗n)∗,ωL
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for all m,n ∈M , so that (M, ∗) does belong to DA.
This concludes the inductive step and therefore the proof of the lemma.

Now, since L(DA) is by definition closed under Boolean combinations, we have shown
the following.

Proposition 4.1.5. For all k ∈ N, any Boolean combination of languages in SUMk does
belong to L(DA).

We now turn to the converse statement.

Lemma 4.1.6. Let (M, ∗) be some monoid in DA and ϕ : Σ∗ →M a monoid morphism
from some free monoid (Σ∗, ·) for Σ an alphabet to (M, ∗). Then, there exists k ∈ N such
that for all F ⊆M , ϕ−1(F ) is a Boolean combination of languages in SUMk(Σ

∗).

Proof. Let (M, ∗) be some monoid in DA and ϕ : Σ∗ → M a monoid morphism from
some free monoid (Σ∗, ·) for Σ an alphabet to (M, ∗).

For each element m ∈M , we define its J-depth, denoted by dJ(m), to be the maximal
l ∈ N such that there exist u0, u1, . . . , ul ∈ M verifying m = u0 <J u1 <J · · · <J ul =

1(M,∗); in a similar way we define its R-depth, denoted by dR(m) and its L-depth, denoted
by dL(m). It is direct to see that for all m ∈M , the J-, R- and L-depth of m each are at
most |M | − 1.

Let us also define the functions

f : [[0, |Σ| ]]× [[0, |M | − 1]]3 → N
(x1, x2, x3, x4) 7→ |M |3 · x1 + |M |2 · x2 + |M | · x3 + x4

and
〈·〉 : P(Σ)×M3 → [[0, |Σ| ]]× [[0, |M | − 1]]3

(Γ,m, s, t) 7→
(
|Γ| , dJ(m), |M | − 1− dR(s), |M | − 1− dL(t)

)
.

It is obvious that f is increasing.
We can now formulate the central claim in the proof of the present lemma.

Claim 4.1.7. For every alphabet Γ ⊆ Σ and m, s, t ∈ M , the language {u ∈ Γ∗ |
s∗ϕ(u)∗ t = m} over Γ is a (possibly empty) union of languages in SUM2f(〈Γ,m,s,t〉)−1(Σ

∗).

It is direct to see that, for all F ⊆M , since ϕ−1(F ) =
⋃
m∈F ϕ

−1(m), this claim entails
that ϕ−1(F ) is a Boolean combination of languages in SUM

2(|Σ|+1)·|M|3−1−1
(Σ∗).

Proof of the claim. We prove it by induction on the quadruplet 〈Γ,m, s, t〉.
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Base case |Γ| = 0. Let Γ = ∅ and let m, s, t ∈M . Then

{u ∈ Γ∗ | s ∗ ϕ(u) ∗ t = m} =

{ε} if s ∗ t = m

∅ otherwise (s ∗ t 6= m) .

Hence, since {ε} = ∅∗, we have that {u ∈ Γ∗ | s ∗ ϕ(u) ∗ t = m} is obviously a (possibly
empty) union of languages in SUM0(Σ

∗) ⊆ SUM2f(〈Γ,m,s,t〉)−1(Σ
∗).

This proves the base case.

Induction. Let Γ ⊆ Σ be an alphabet with at least one letter and let m, s, t ∈M . As-
sume that for any alphabet Γ′ ⊆ Σ and m′, s′, t′ ∈M verifying 〈Γ′,m′, s′, t′〉 < 〈Γ,m, s, t〉,
we have that the language {u′ ∈ Γ′∗ | s′ ∗ ϕ(u′) ∗ t′ = m′} over Γ′ is a (possibly empty)
union of languages in SUM2f(〈Γ′,m′,s′,t′〉)−1(Σ

∗).
Let L = {u ∈ Γ∗ | s ∗ ϕ(u) ∗ t = m}. If m 6≤R s or m 6≤L t, then L = ∅, which is

trivially an empty union of languages in SUM2f(〈Γ,m,s,t〉)−1(Σ
∗). So we now assume that

m ≤R s and m ≤L t. There are five possible cases.

Case 1: there exists a ∈ Γ such that s ∗ ϕ(a) <R s.
Let us set Γ′ = Γ \ {a}. Consider the language L′ = L ∩ Γ′∗ = {u′ ∈ Γ′∗ |

s ∗ ϕ(u′) ∗ t = m} over Γ′. Then, by inductive hypothesis for Γ′, m, s and t, since
〈Γ′,m, s, t〉 < 〈Γ,m, s, t〉, we have that L′ is a (possibly empty) union of languages in
SUM2f(〈Γ′,m,s,t〉)−1(Σ

∗) ⊆ SUM2f(〈Γ,m,s,t〉)−1(Σ
∗).

Moreover, consider S ′ = s ∗ ϕ(Γ′∗) ∗ ϕ(a) and, for each s′ ∈ S ′, define the language
Ls′ = {u′ ∈ Γ′∗ | s ∗ ϕ(u′) ∗ ϕ(a) = s′} over Γ′ and the language Ks′ = {u ∈ Γ∗ |
s′ ∗ ϕ(u) ∗ t = m} over Γ. Let now s′ ∈ S ′. By inductive hypothesis for Γ′, s′, s
and ϕ(a), since 〈Γ′, s′, s, ϕ(a)〉 < 〈Γ,m, s, t〉, Ls′ is a (possibly empty) union of languages
in SUM2f(〈Γ′,s′,s,ϕ(a)〉)−1(Σ

∗) ⊆ SUM2f(〈Γ,m,s,t〉)−1−1(Σ
∗). Further, since there exists some

u′ ∈ Γ′∗ such that s′ = s ∗ ϕ(u′) ∗ ϕ(a), we have that

s′ = s ∗ ϕ(u′) ∗ ϕ(a) ≤R s ∗ ϕ(u′) ≤R s .

This implies that, either s ∗ ϕ(u′) <R s and then we also have s′ <R s, or s ∗ ϕ(u′) R s,
which means by Lemma 4.1.1 that we necessarily also have s′ <R s ∗ ϕ(u′) R s, since
s ∗ ϕ(a) <R s. Therefore, the R-depth dR(s

′) of s′ is greater than the R-depth dR(s) of
s. Hence, by inductive hypothesis for Γ, m, s′ and t, since 〈Γ,m, s′, t〉 < 〈Γ,m, s, t〉,
we have that Ks′ is a (possibly empty) union of languages in SUM2f(〈Γ,m,s′,t〉)−1(Σ

∗) ⊆
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SUM2f(〈Γ,m,s,t〉)−1−1(Σ
∗). By distributivity of concatenation over union and since Ls′ does

not contain any word with the letter a, we have that Ls′aKs′ is a (possibly empty) union
of languages in SUM2f(〈Γ,m,s,t〉)−1(Σ

∗), and this is true for any s′ ∈ S ′.
We shall now conclude the proof for the present case by showing that

L = L′ ∪
⋃
s′∈S′

Ls′aKs′ ,

which is a (possibly empty) union of languages in SUM2f(〈Γ,m,s,t〉)−1(Σ
∗) by construction.

Let w ∈ L′ ∪
⋃
s′∈S′ Ls′aKs′ . If w ∈ L′, then it is obvious that w ∈ L. Otherwise,

there must exist s′ ∈ S ′ such that w ∈ Ls′aKs′ . This means that w can be decomposed
as w = u′au where u′ ∈ Ls′ and u ∈ Ks′ , so that s ∗ϕ(w) ∗ t = s ∗ϕ(u′) ∗ϕ(a) ∗ϕ(u) ∗ t =
s′ ∗ ϕ(u) ∗ t = m. Therefore, w ∈ L in that case also. Since this is true for any w ∈
L′ ∪

⋃
s′∈S′ Ls′aKs′ , we have L′ ∪

⋃
s′∈S′ Ls′aKs′ ⊆ L.

Now let w ∈ L. Either w does not contain the letter a, and then w ∈ L′. Or w does
contain the letter a and can be uniquely decomposed as w = u′au where u′ ∈ Γ′∗ and
u ∈ Γ∗. Since u′ ∈ Γ′∗, this means that s′ = s ∗ ϕ(u′) ∗ ϕ(a) belongs to S ′, so that u′

belongs to Ls′ . Moreover, as we know that s′ ∗ ϕ(u) ∗ t = s ∗ ϕ(u′) ∗ ϕ(a) ∗ ϕ(u) ∗ t =
s ∗ ϕ(w) ∗ t = m, we have that u belongs to Ks′ . Therefore, w = uau′ ∈ Ls′aKs′ . Hence
we can conclude that w ∈ L′ ∪

⋃
s′∈S′ Ls′aKs′ , so that, since this is true for any w ∈ L,

we have L ⊆ L′ ∪
⋃
s′∈S′ Ls′aKs′ .

This concludes the proof for the present case.

Case 2: there exists a ∈ Γ such that ϕ(a) ∗ t <L t.
We proceed as for Case 1 by symmetry.

Case 3: for all a ∈ Γ, we have s ∗ ϕ(a) R s, but m <R s.
In this case, by Lemma 4.1.1 we have that for all u ∈ Γ∗, s ∗ ϕ(u) R s. Let M ′ =

R(s)∩{m′ ∈M | m′ ∗ t = m} and, for each m′ ∈M ′, define the language Lm′ = {u ∈ Γ∗ |
s ∗ ϕ(u) = m′} over Γ. Let now m′ ∈M ′. Since m′ R s and m <R s, we necessarily have
that m <J m

′, otherwise we would have m R m′ by Lemma 3.1.20. This implies that
the J-depth dJ(m

′) of m′ is smaller than the J-depth dJ(m) of m. Hence, by inductive
hypothesis for Γ, m′, s and 1(M,∗), since 〈Γ,m′, s, 1(M,∗)〉 < 〈Γ,m, s, t〉, we have that Lm′ is a
(possibly empty) union of language in SUM

2
f(〈Γ,m′,s,1(M,∗)〉)−1

(Σ∗) ⊆ SUM2f(〈Γ,m,s,t〉)−1(Σ
∗),

and this is true for any m′ ∈M ′.
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We shall now conclude the proof for the present case by showing that

L =
⋃

m′∈M ′

Lm′ ,

which is a (possibly empty) union of languages in SUM2f(〈Γ,m,s,t〉)−1(Σ
∗) by construction.

Let w ∈
⋃
m′∈M ′ Lm′ . There must exist m′ ∈M ′ such that w ∈ Lm′ . This means that

s∗ϕ(w)∗ t = m′ ∗ t = m. Therefore, w ∈ L and since this is true for any w ∈
⋃
m′∈M ′ Lm′ ,

we have
⋃
m′∈M ′ Lm′ ⊆ L.

Now let w ∈ L. If we let m′ = s∗ϕ(w), then, by what we have seen just above, we have
m′ R s. Moreover, m′ ∗ t = s∗ϕ(w)∗ t = m by definition of L. This means that m′ ∈M ′,
so that w ∈ Lm′ . Hence, since this is true for any w ∈ L, we have L ⊆

⋃
m′∈M ′ Lm′ .

This concludes the proof for the present case.

Case 4: for all a ∈ Γ, we have ϕ(a) ∗ t L t, but m <L t.
We proceed as for Case 3 by symmetry.

Case 5: for all a ∈ Γ, we have s ∗ ϕ(a) R s and ϕ(a) ∗ t L t, and m R s and m L t.
Then, as in the two previous cases, we have that for all u ∈ Γ∗, s ∗ ϕ(u) R s and

ϕ(u) ∗ t L t.
If we have that s ∗ t <R s, then we have that s ∗ ϕ(w) ∗ t <R s R m for all w ∈ Γ∗ by

Lemma 4.1.1. If we have s ∗ t <L t, then, similarly, we have that s ∗ ϕ(w) ∗ t <L t L m

for all w ∈ Γ∗. This implies that in both cases L = ∅, which is trivially an empty union
of languages in SUM2f(〈Γ,m,s,t〉)−1(Σ

∗).
Otherwise, we have that s ∗ t R s and s ∗ t L t. This means, by Lemma 4.1.1, that

s ∗ ϕ(w) ∗ t ∈ R(s) ∩ L(t). As (M, ∗) is aperiodic and hence H-trivial, since we have
m ∈ R(s)∩L(t), it means that R(s)∩L(t) = R(m)∩L(m) = H(m), so by H-triviality of
(M, ∗), R(s)∩L(t) = {m}, showing that s∗ϕ(w)∗ t = m for all w ∈ Γ∗. This implies that
L = Γ∗, which is trivially a union of languages in SUM0(Σ

∗) ⊆ SUM2f(〈Γ,m,s,t〉)−1(Σ
∗).

This concludes the proof of the last case.

This ends the inductive step and therefore the proof of the claim.

As well as that of the lemma.

We can directly conclude the following from this lemma.

Proposition 4.1.8. Any language over some alphabet Σ recognised by a monoid in DA
is a Boolean combination of languages in SUMk(Σ

∗) for some k ∈ N.
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Finally, we get the desired characterisation.

Theorem 4.1.9. For any alphabet Σ, a language L belongs to L(DA)(Σ∗) if and only if
there exists k ∈ N such that L is a Boolean combination of languages in SUMk(Σ

∗).

4.1.2 A parameterisation of DA

For each k ∈ N, we denote by SULk the class of regular languages that are Boolean
combinations of languages in SUMk; it is a variety of languages as shown just below.
For each k ∈ N, we denote by DAk the variety of finite monoids generated by the
syntactic monoids of the languages in SULk; by Eilenberg’s theorem (Theorem 3.2.10),
we have that L(DAk), the variety of languages whose syntactic monoid belongs to DAk,
is exactly SULk.

We emphasise the fact that we cannot restrict SULk for k ∈ N to be the class of regular
languages that are unions of languages in SUMk, because then, while b∗aa∗, b∗ba∗ ∈
SUL1({a, b}∗), we would have b∗aa∗ ∩ b∗ba∗ = b∗baa∗ /∈ SUL1({a, b}∗), therefore SUL1

wouldn’t be a variety of languages.
Let us now show the following.

Proposition 4.1.10. For all k ∈ N, SULk is a variety of languages.

Closure under Boolean operations and trivial languages containment is obvious by
construction. Closure under quotients and inverses of monoid morphisms is respectively
given by the following two lemmata and by the fact that both quotients and inverses of
monoid morphisms commute with Boolean operations.

Lemma 4.1.11. For all k ∈ N, for all L ∈ SUMk(Σ
∗) where Σ is some alphabet and

u ∈ Σ∗, u−1L and Lu−1 both are unions of languages in SUMk(Σ
∗).

Proof. We prove it by induction on k.

Base case k = 0. Let L ∈ SUM0(Σ
∗) where Σ is some alphabet and u ∈ Σ∗. This

means that L = A∗ for some A ⊆ Σ. We have two cases: either alph(u) * A and then
u−1L = Lu−1 = ∅; or alph(u) ⊆ A and then u−1L = Lu−1 = A∗ = L. So u−1L and Lu−1

both are unions of languages in SUM0(Σ
∗). The base case is hence proved.

Inductive step. Let k ∈ N>0 and assume that the lemma is true for all k′ ∈ N, k′ < k.
Let L ∈ SUMk(Σ

∗) where Σ is some alphabet and u ∈ Σ∗. This means that either L is
in SUMk−1(Σ

∗) and hence u−1L and Lu−1 both are unions of languages in SUMk(Σ
∗) by
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applying the inductive hypothesis directly for L and u, or L = L1aL2 for some languages
L1 ∈ SUMi(Σ

∗) and L2 ∈ SUMj(Σ
∗) and some letter a ∈ Σ with i+ j = k− 1 verifying

that either no word of L1 contains the letter a or no word of L2 contains the letter a. We
shall only treat the case in which a does not appear in any of the words of L1; the other
case is treated symmetrically.

There are again two cases to consider, depending on whether a does appear in u or
not.

If a /∈ alph(u), then it is straightforward to check that u−1L = (u−1L1)aL2 and
Lu−1 = L1a(L2u

−1). By the inductive hypothesis, we get that u−1L1 is a union of
languages in SUMi(Σ

∗) and that L2u
−1 is a union of languages in SUMj(Σ

∗). Moreover,
it is direct to see that no word of u−1L1 contains the letter a. By distributivity of
concatenation over union, we finally get that u−1L and Lu−1 both are unions of languages
in SUMk(Σ

∗).
If a ∈ alph(u), then let u = u1au2 with u1, u2 ∈ Σ∗ and a /∈ alph(u1). It is again

straightforward to see that

u−1L =

u2−1L2 if u1 ∈ L1

∅ otherwise

and

Lu−1 = L1a(L2u
−1) ∪

L1u1
−1 if u2 ∈ L2

∅ otherwise
.

As before, by the inductive hypothesis, we get that L1u1
−1 is a union of languages in

SUMi(Σ
∗) and that both u2−1L2 and L2u

−1 are unions of languages in SUMj(Σ
∗). And,

again, by distributivity of concatenation over union, we get that u−1L and Lu−1 both are
unions of languages in SUMk(Σ

∗).
This concludes the inductive step and therefore the proof of the lemma.

Lemma 4.1.12. For all k ∈ N, for all L ∈ SUMk(Σ
∗) where Σ is some alphabet and

ϕ : Γ∗ → Σ∗ a monoid morphism from a free monoid (Γ∗, ·) for Γ an alphabet to (Σ∗, ·),
ϕ−1(L) is a union of languages in SUMk(Γ

∗).

Proof. We prove it by induction on k.

Base case k = 0. Let L ∈ SUM0(Σ
∗) where Σ is some alphabet and ϕ : Γ∗ → Σ∗ a

monoid morphism from a free monoid (Γ∗, ·) for Γ an alphabet to (Σ∗, ·). This means
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that L = A∗ for some A ⊆ Σ. It is straightforward to check that ϕ−1(L) = B∗ where
B = {b ∈ Γ | ϕ(b) ∈ A∗}. B∗ is certainly a union of languages in SUM0(Γ

∗). The base
case is hence proved.

Inductive step. Let k ∈ N>0 and assume that the lemma is true for all k′ ∈ N, k′ < k.
Let L ∈ SUMk(Σ

∗) where Σ is some alphabet and ϕ : Γ∗ → Σ∗ a monoid morphism
from a free monoid (Γ∗, ·) for Γ an alphabet to (Σ∗, ·). This means that either L is
in SUMk−1(Σ

∗) and hence ϕ−1(L) is a union of languages in SUMk(Γ
∗) by applying

the inductive hypothesis directly for L and ϕ, or L = L1aL2 for some languages L1 ∈
SUMi(Σ

∗) and L2 ∈ SUMj(Σ
∗) and some letter a ∈ Σ with i+ j = k − 1 verifying that

either no word of L1 contains the letter a or no word of L2 contains the letter a. We shall
only treat the case in which a does not appear in any of the words of L1; the other case
is treated symmetrically.

Let us define B = {b ∈ Γ | a ∈ alph(ϕ(b))} as the set of letters of Γ whose image
word by ϕ contains the letter a. For each b ∈ B, we shall also let ϕ(b) = ub,1aub,2 with
ub,1, ub,2 ∈ Σ∗ and a /∈ alph(ub,1). It is not too difficult to see that we then have

ϕ−1(L) =
⋃
b∈B

ϕ−1(L1ub,1
−1)bϕ−1(ub,2

−1L2) .

By the inductive hypothesis, by Lemma 4.1.11 and by the fact that inverses of monoid
morphisms commute with unions, we get that ϕ−1(L1ub,1

−1) is a union of languages in
SUMi(Γ

∗) and that ϕ−1(ub,2
−1L2) is a union of languages in SUMj(Γ

∗). Moreover,
it is direct to see that no word of ϕ−1(L1ub,1

−1) contains the letter b for all b ∈ B.
By distributivity of concatenation over union, we finally get that ϕ−1(L) is a union of
languages in SUMk(Γ

∗).
This concludes the inductive step and therefore the proof of the lemma.

Let us finish with some positive and negative examples of languages in L(DA) = SUL.
For instance, the language a(a + b)∗ of words over {a, b} starting with an a is in SUL,
because it is in SUL1({a, b}∗). Similarly, the language of words over {a, b, c} containing
at least one occurrence of c, the first of all the occurrences of c preceded by an a and the
last of those followed by a b, but not starting with abba is in SUL4({a, b, c}∗), since it is
equal to

(
(a+ b)∗ac(a+ b+ c)∗cb(a+ b)∗ ∪ (a+ b)∗acb(a+ b)∗

)
∩
(
abba(a+ b+ c)∗

){.
However, both the language (ab)∗ of words over {a, b} where a and b alternate, starting

with an a and ending with a b, and the language (a + b)∗bb(a + b)∗ of words over {a, b}
containing bb as a factor are provably not in SUL, because their respective syntactic
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monoids do not belong to DA.

4.2 Tameness of DA

The main result of this chapter is that DA is tame.

Theorem 4.2.1. DA is an sp-variety of finite monoids.

Combined with the fact that DA is local Almeida [1996], we obtain the following
result by Proposition 3.4.9.

Theorem 4.2.2. P(DA) ∩Reg = L(QDA).

We devote the rest of this section to proving Theorem 4.2.1. The result follows from
the following main technical contribution.

Proposition 4.2.3. (c+ ab)∗, (b+ ab)∗ and b∗((ab∗)k)∗ for any k ∈ N, k ≥ 2 are regular
languages not in P(DA).

Before proving the proposition we first show that it implies that DA is an sp-variety of
finite monoids. This implication is a consequence of the following lemma, which is a result
inspired by an observation in Tesson and Thérien [2002] stating that non-membership of
a given finite monoid (M, ∗) in DA implies non-aperiodicity of (M, ∗) or division of it by
(at least) one of two specific finite monoids.

Lemma 4.2.4. Let (S, ∗) be a finite semigroup such that (S, ∗)1 /∈ DA. Then, one of
(c+ab)∗, (b+ab)∗ or b∗((ab∗)k)∗ for some k ∈ N, k ≥ 2 is recognised by a monoid morphism
µ : Σ∗ → S1 from the appropriate free monoid (Σ∗, ·) to (S, ∗)1 such that µ(Σ+) ⊆ S.

Proof. Let ω ∈ N>0 be the idempotent power of (S, ∗)1.

Aperiodic case. Assume first that (S, ∗)1 is aperiodic. Then, since (S, ∗)1 /∈ DA, there
exist x, y in S such that (xy)ω 6= (xy)ωx(xy)ω.

Set e = (xy)ω, f = (yx)ω, s = ex and t = ye. Our hypothesis says that exe 6= e. We
now have two cases, depending on whether fyf = f or not.

Subcase fyf 6= f . Suppose fyf 6= f . In that case, let µ : {a, b, c}∗ → S1 be the
monoid morphism from the free monoid ({a, b, c}∗, ·) to (S, ∗)1 sending a to s, b to t and c
to e and consider the language L = µ−1({1, e}). We are now going to show that no word
of L can contain aa, bb, ac or cb as a factor.
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• Assume that L contains a word w with two consecutive a’s. Then w = w1aaw2 with
w1, w2 ∈ {a, b, c}∗ and as w ∈ L, either e = µ(w1)exexµ(w2) or 1 = µ(w1)exexµ(w2).
In both cases e = u1exeu2 for some suitable values of u1 and u2 taken from S. This
implies that

e = u1e(xeu2) = u21e(xeu2)
2 = u31e(xeu2)

3 = · · · = uω1 e(xeu2)
ω

and, similarly, that e = (u1ex)
ωeuω2 . Because (S, ∗)1 is aperiodic, this in turn entails

exeu2 = uω1 e(xeu2)
ω(xeu2) = uω1 e(xeu2)

ω = e

and
eu2 = (u1ex)

ωeuω2u2 = (u1ex)
ωeuω2 = e .

Hence exe = exeu2 = e, contradicting the fact that exe 6= e. So L does not contain
any word with two consecutive a’s.

• Assume that L contains a word w with the factor ac. Then w = w1acw2 with
w1, w2 ∈ {a, b, c}∗ and as w ∈ L, either e = µ(w1)exeµ(w2) or 1 = µ(w1)exeµ(w2).
So, as just before, in both cases e = u1exeu2 for some suitable values of u1 and u2

taken from S, which entails exe = e, contradicting the fact exe 6= e. So L does not
contain any word with the factor ac.

• Assume that L contains a word w with two consecutive b’s. Then w = w1bbw2 with
w1, w2 ∈ {a, b, c}∗ and as w ∈ L, either e = µ(w1)fyfyµ(w2) or 1 = µ(w1)fyfy

µ(w2), as ye = y(xy)ω = (yx)ωy = fy. In both cases f = u1fyfu2 for some
suitable values of u1 and u2 taken from S, because, by aperiodicity of (S, ∗)1, we
have yex = y(xy)ωx = (yx)ω+1 = (yx)ω = f . Similarly to what we did for the
factor aa, this implies that f = uω1 f(yfu2)

ω = (u1fy)
ωfuω2 , which in turn entails

f = fyfu2 = fu2. Hence fyf = fyfu2 = f , contradicting the fact that fyf 6= f .
So L does not contain any word with two consecutive b’s.

• Assume that L contains a word w with the factor cb. Then w = w1cbw2 with
w1, w2 ∈ {a, b, c}∗ and as w ∈ L, either e = µ(w1)eyeµ(w2) or 1 = µ(w1)eyeµ(w2).
So, similarly to what we did for the factor aa, in both cases e = u1eyeu2 for some
suitable values of u1 and u2 taken from S, which entails eye = e. Now this means
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that

eye = e

yeye = ye

fyfy = fy since ye = fy

fyfyx = fyx

fyf = f as fyx = (yx)ωyx = (yx)ω+1 = (yx)ω = f ,

contradicting the fact fyf 6= f . So L does not contain any word with the factor cb.

Because L is a language over the alphabet {a, b, c}, any word w in it is of the form
u0v1u1 · · ·uk−1vkuk where k ∈ N, v1, . . . , vk ∈ c+ and u0, . . . , uk ∈ (a+ b)∗. As w does not
contain aa nor bb as a factor, we have that u0, . . . , uk ∈ (b+ ε)(ab)∗(a+ ε). When k ≥ 1,
as moreover w does not contain ac nor cb as a factor, it follows that u1, . . . , uk−1 ∈ (ab)∗,
u0 ∈ (b+ε)(ab)∗ and uk ∈ (ab)∗(a+ε); u0 can therefore be written as βu′0 where u′0 ∈ (ab)∗

and β is b if u0 ∈ b(ab)∗ and the empty word otherwise, and uk can be written as u′kα where
u′k ∈ (ab)∗ and α is a if u1 ∈ (ab)∗a and the empty word otherwise. We now observe
that µ(ab) = exye = (xy)2ω+1 = (xy)ω = e by aperiodicity and we consider four different
cases.

• β = α = ε.

Then, µ(w) = µ(u′0v1u1 · · ·uk−1vku
′
k) = e.

• β = b and α = ε.

Then µ(w) = µ(b)µ(u′0v1u1 · · ·uk−1vku
′
k) = yee = ye that does not belong to {1, e},

otherwise we would have eye = e which would entail fyf = f , as shown in the
previous paragraph. But this contradicts the fact that w ∈ L, so this case cannot
occur.

• β = ε and α = a.

Then µ(w) = µ(u′0v1u1 · · ·uk−1vku
′
k)µ(a) = eex = ex that does not belong to {1, e},

otherwise we would have exe = e. But this contradicts the fact that w ∈ L, so this
case cannot occur.

• β = b and α = a.

Then µ(w) = µ(b)µ(u′0v1u1 · · ·uk−1vku
′
k)µ(a) = yeeex = yex = f by aperiodicity.

We have that f does not belong to {1, e}. Indeed, suppose for the sake of contra-
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diction that it does: there are two cases to examine. Either (yx)ω = f = e =

(xy)ω, and then exe = exf = (xy)ωx(yx)ω = (xy)ω(xy)ωx = (xy)ωx = ex. But
ex = (xy)ωx = x(yx)ω = x(xy)ωxy = xexy by aperiodicity, so ex = xωexyω. Hence
exy = xωexyωy = xωexyω = ex by aperiodicity, while exy = (xy)ωxy = (xy)ω = e

by aperiodicity again. So exe = ex = e, contradicting the fact exe 6= e. Or
(yx)ω = f = 1, and then fyf = y. But y = y(yx)ω = y(yx)ωyx = yyx by
aperiodicity, so y = yωyxω. Hence yx = yωyxωx = yωyxω = y by aperiodicity, while
yx = yx(yx)ω = (yx)ω = f by aperiodicity again. So fyf = y = f , contradicting
the fact fyf 6= f . Therefore, µ(w) does not belong to {1, e}, contradicting the fact
that w ∈ L, so this case cannot occur either.

This means that, necessarily, α = β = ε, so that u0, uk ∈ (ab)∗. And for the same reasons,
u0 ∈ (ab)∗ when k = 0. Therefore, we have w ∈ (c + ab)∗ and since it is true for any
w ∈ L, it follows that L ⊆ (c + ab)∗. Combined with the fact that µ((c + ab)∗) = {1, e},
we can conclude that µ−1({1, e}) = L = (c + ab)∗, showing (c + ab)∗ is recognised by µ

verifying µ({a, b, c}+) ⊆ S.

Subcase fyf = f . Suppose now fyf = f . In that case, let µ : {a, b}∗ → S1 be the
monoid morphism from the free monoid ({a, b}∗, ·) to (S, ∗)1 sending a to s and b to t

and consider the language L = µ−1({1, e, t}). Assume that L contains a word w with
two consecutive a’s. Then w = w1aaw2 with w1, w2 ∈ {a, b}∗ and as w ∈ L, we have
that µ(w1)exexµ(w2) is equal to t, e or 1. Since xt = xye = xy(xy)ω = (xy)ω = e by
aperiodicity, in all cases e = u1exeu2 for some suitable values of u1 and u2 taken from S,
which, as for the subcase fyf 6= f , implies exe = e, contradicting the fact exe 6= e. So L
does not contain any word with two consecutive a’s.

This means that any word in L belongs to (b + ab)∗(a + ε) so that any word w in
L is of the form uα where u ∈ (b + ab)∗ and α is a if w ∈ (b + ab)∗a and the empty
word otherwise. Since, as for the previous case, µ(ab) = e, but also µ(bb) = tt = yeye =

fyfy = fy = ye = t = µ(b), te = yee = ye = t and et = eye = efy = xfyfy = xfy = e

(by aperiodicity), we have that µ(u) ∈ {1, e, t}. Assume now that α = a. There are three
different cases.

• µ(u) = 1.

Then µ(w) = 1µ(a) = ex that does not belong to {1, e, t}, otherwise we would
have exe = e, because ete = et = e by the equalities proved just above. But this
contradicts the fact that w ∈ L, so this case cannot occur.
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• µ(u) = e.

Then µ(w) = eµ(a) = eex = ex that does not belong to {1, e, t} (see the previous
case). But this contradicts the fact that w ∈ L, so this case cannot occur.

• µ(u) = t.

Then µ(w) = tµ(a) = yeex = yex = f by aperiodicity. We have that f does
not belong to {1, e, t}. Indeed, suppose for the sake of contradiction that is does:
there are three cases to examine. Either (yx)ω = f = t = ye = y(xy)ω, and then
exe = (xy)ωx(xy)ω = x(yx)ω(xy)ω = xy(xy)ω(xy)ω = (xy)ω = e by aperiodicity,
contradicting the fact exe 6= e. Or (yx)ω = f = e = (xy)ω, and then exe =

(xy)ωx(xy)ω = (xy)ωx(yx)ω = (xy)ωx(yx)ωy(yx)ω = (xy)ω(xy)ω+1(xy)ω = (xy)ω =

e by aperiodicity and since fyf = f , contradicting the fact exe 6= e. Or (yx)ω =

f = 1, and then y = fyf = f = 1. But e = (xy)ω = xω, so exe = xωxxω =

xω = e, contradicting the fact exe 6= e. Therefore, µ(w) does not belong to {1, e, t},
contradicting the fact that w ∈ L, so this case cannot occur either.

This means that, necessarily, α = ε, so that w ∈ (b + ab)∗ and since it is true for any
w ∈ L, it follows that L ⊆ (b+ ab)∗. Combined with the fact that µ((b+ ab)∗) = {1, e, t},
we can conclude that µ−1({1, e, t}) = L = (b+ ab)∗, showing (b+ ab)∗ is recognised by µ
verifying µ({a, b}+) ⊆ S.

Non-aperiodic case. Assume now that (S, ∗)1 is not aperiodic. Then there is an x in
S such that xω 6= xω+1. Consider the monoid morphism µ : {a, b}∗ → S1 from the free
monoid ({a, b}∗, ·) to (S, ∗)1 sending a to xω+1 and b to xω, and the language L = µ−1(xω).
Let k ∈ N, k ≥ 2 be the smallest positive integer such that xω+k = xω, that cannot be 1

because xω 6= xω+1. Using this, for all w ∈ {a, b}∗, we have

µ(w) = x|w|·ω+|w|a = xω+(|w|a mod k) ,

so that w belongs to L if and only if |w|a = 0 mod k, that is, L is the language of all words
with a number of a’s divisible by k, b∗((ab∗)k)∗. In conclusion, b∗((ab∗)k)∗ is recognised
by µ verifying µ({a, b}+) ⊆ S.

Let now (S, ∗) be any finite semigroup such that W((S, ∗)) ⊆ P(DA). Let η(S,∗) : S∗ →
S1 be the evaluation morphism of (S, ∗). To show that (S, ∗)1 is in DA, we assume for the
sake of contradiction that it is not the case. Then Lemma 4.2.4 tells us that one of (c+ab)∗,
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(b + ab)∗ or b∗((ab∗)k)∗ for some k ∈ N, k ≥ 2 is recognised by a monoid morphism
µ : Σ∗ → S1 from the appropriate free monoid (Σ∗, ·) to (S, ∗)1 such that µ(Σ+) ⊆ S.

In all cases, we thus have a language L ⊆ Σ∗ equal to µ−1(Q) for some subset Q
of S1 with the morphism µ sending letters of Σ to elements of S. Consider then the
monoid morphism ϕ : Σ∗ → S∗ from the free monoid (Σ∗, ·) to the free monoid (S∗, ·)
sending each letter a ∈ Σ to µ(a), a letter of S: it is obvious that µ = η(S,∗) ◦ ϕ, so that
L = µ−1(Q) = (η(S,∗) ◦ ϕ)−1(Q) = ϕ−1(η−1

(S,∗)(Q)). As W((S, ∗)) ⊆ P(DA), it follows that
η−1
(S,∗)(Q) ∈ P(DA), hence since ϕ is an lm-morphism and P(DA) ∩ Reg is closed under

inverses of lm-morphisms by Proposition 3.4.2, we have L = ϕ−1(η−1
(S,∗)(Q)) ∈ P(DA): a

contradiction to Proposition 4.2.3.
In the remaining part of this section we prove Proposition 4.2.3.

Proof of Proposition 4.2.3. The idea of the proof is the following. We work by
contradiction and assume that we have a sequence of programs (Pn)n∈N over some monoid
(M, ∗) of DA recognising one of the targeted languages. Let n be much larger than the
order of (M, ∗). Consider a language of the form ∆∗ for some finite set ∆ of words (for
instance assume ∆ = {c, ab}, ∆ = {b, ab}, …). We will show that we can fix a constant
(depending on (M, ∗) and ∆ but not on n) number of entries to Pn such that Pn always
outputs the same value and there is a completion of the fixed entries in ∆∗; hence, if ∆ was
chosen so that there is actually a completion of the fixed entries in the targeted language
and one outside of it, Pn cannot recognise the restriction of that language to words of
length n. We cannot prove this for all ∆, in particular it will not work for ∆ = {ab} and
indeed (ab)∗ is in P(DA). The key property of our ∆ is that after fixing any letter at
any position, except maybe for a constant number of positions, one can still complete the
word into one within ∆∗. This is not true for ∆ = {ab} because after fixing a b at an odd
position all completions fall outside of (ab)∗.

We now spell out the technical details.
Let ∆ be a finite non-empty set of non-empty words. Let Σ be the corresponding

finite alphabet and let ⊥ be a letter not in Σ. A mask is a word over Σ ∪ {⊥}. The
positions of a mask carrying a ⊥ are called free while the positions carrying a letter in Σ

are called fixed. A mask λ′ is a submask of a mask λ if it is formed from λ by replacing
some occurrences of ⊥ by a letter in Σ or is simply equal to λ.

A completion of a mask λ is a word w over Σ that is built from λ by replacing all
occurrences of ⊥ by a letter in Σ. Notice that all completions of a mask have the same
length as the mask itself. A mask λ is ∆-compatible if it has a completion in ∆∗.

The dangerous positions of a mask λ are the positions within distance 2l − 2 of the
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fixed positions or within distance l − 1 of the beginning or the end of the mask, where l
is the maximal length of a word in ∆. A position that is not dangerous is said to be safe
and is necessarily free.

We say that ∆ is safe if the following holds. Let λ be a ∆-compatible mask. Let i be
any free position of λ that is not dangerous. Let a be any letter in Σ. Then the submask
of λ constructed by fixing a at position i is ∆-compatible. We have already seen that
∆ = {ab} is not safe. However our targeted ∆, ∆ = {c, ab}, ∆ = {b, ab}, ∆ = {a, b}
(and, in fact, all ∆ containing at least one word of length 1), are safe. We always consider
∆ to be safe in the following.

Finally, we say that a completion w of a mask λ is safe if w is a completion of λ
belonging to ∆∗ or is constructed from a completion of λ in ∆∗ by modifying only letters
at safe positions of λ, the dangerous positions remaining unchanged.

Let (M, ∗) be a monoid in DA whose identity we will denote by 1.
An element r of M is R-bad for u ∈ M if ur <R u. Similarly an element r of M is

L-bad for v ∈ M if rv <L v. By Lemma 4.1.1, it follows from (M, ∗) ∈ DA that being
R-bad or L-bad only depends on the R- or L-class, respectively.

Let n ∈ N. We are now going to prove the main technical lemma that allows us
to assert that after fixing a constant number of positions in the input of an (M, ∗)-
program on Σn, the input can still be completed into a word of ∆∗, but the program
can no longer make the difference between any two possible completions. To prove the
lemma, we define a relation ≺ on the set of quadruplets (λ, P, u, v) where λ is a mask
of length n, P is a program over (M, ∗) on Σn and u and v are two elements of M .
We will say that an element (λ1, P1, u1, v1) is strictly smaller than (λ2, P2, u2, v2), written
(λ1, P1, u1, v1) ≺ (λ2, P2, u2, v2), if and only if λ1 is a submask of λ2, P1 is a subprogram
of P2 and one of the following cases occurs:

1. u1 <R u2 and v1 = v2 and P1 is a suffix of P2 and u1P1(w)v1 = u2P2(w)v2 for all
safe completions w of λ1;

2. v1 <L v2 and u1 = u2 and P1 is a prefix of P2 and u1P1(w)v1 = u2P2(w)v2 for all
safe completions w of λ1;

3. u1 = u2 and v1 = 1 and P1 is a prefix of P2 and u2P2(w)v2 <J u1P1(w)v1 for all safe
completions w of λ1;

4. v1 = v2 and u1 = 1 and P1 is a suffix of P2 and u2P2(w)v2 <J u1P1(w)v1 for all safe
completions w of λ1.
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Note that, since (M, ∗) is finite, this relation is well-founded (that is, it has no infinite
decreasing chain, an infinite sequence of quadruplets µ0, µ1, µ2, . . . such that µi+1 ≺ µi for
all i ∈ N) and the maximal length of any decreasing chain depends only on (M, ∗) (it is
at most 2 · |M |2). For a given quadruplet, we shall also call its height the length of the
longest decreasing chain starting with that element minus 1.

To count the number of fixed positions, we define f : N → N by f(m) = (4l − 3)m+

2l−2 for all m ∈ N. It is obvious that f is non-decreasing. For all h ∈ N, we will denote by
gh = (2h · f)2h the function (2h · f) : N → N,m 7→ 2hf(m) composed 2h times. It is direct
to see that for each h ∈ N, gh is non-decreasing and that for each h1, h2 ∈ N, h1 ≤ h2, we
have gh1(m) ≤ gh2(m) for all m ∈ N. Finally, for a given mask λ, we denote by |λ|Σ the
number of letters in λ belonging to Σ, that is to say, the number of fixed positions in λ.

The following lemma is the key to the proof. It shows that modulo fixing a few entries,
one can fix the output.

Lemma 4.2.5. Let λ be a ∆-compatible mask of length n, let P be a program over (M, ∗)
on Σn, let u and v be elements of M such that (λ, P, u, v) is of height h. Then there is
an element t of M and a ∆-compatible submask λ′ of λ obtained by fixing a number of
free positions which is at most gh(|λ|Σ + h)− |λ|Σ, such that any safe completion w of λ′

verifies uP (w)v = t.

Proof. The proof goes by induction on ≺.
Let λ be a ∆-compatible mask of length n, let P be a program over (M, ∗) on Σn, let

u and v be elements of M such that (λ, P, u, v) is of height h, and assume that for any
quadruplet (λ′, P ′, u′, v′) strictly smaller than (λ, P, u, v), the lemma is verified. Consider
the following conditions concerning the quadruplet (λ, P, u, v):

(a) there does not exist any instruction (x, f) of P such that for some letter a the
submask λ′ of λ formed by setting position x to a (if it wasn’t already the case) is
∆-compatible and f(a) is R-bad for u;

(b) v is not R-bad for u;

(c) there does not exist any instruction (x, f) of P such that for some letter a the
submask λ′ of λ formed by setting position x to a (if it wasn’t already the case) is
∆-compatible and f(a) is L-bad for v;

(d) u is not L-bad for v.

We will now do a case analysis based on which of these conditions are violated or not.
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Case 1: condition (a) is violated. So there exists some instruction (x, f) of P such that for
some letter a the submask λ′ of λ formed by setting position x to a (if it wasn’t
already the case) is ∆-compatible and f(a) is R-bad for u. Let i be the smallest
number of such an instruction.

Let P ′ be the subprogram of P until instruction i−1. Let w be a safe completion of
λ: for any instruction (y, g) of P ′, as the submask λ′′ of λ formed by setting position
y to wy (if it wasn’t already the case) is ∆-compatible (by the fact that ∆ is safe
and w is a safe completion of λ), g(wy) cannot be R-bad for u, otherwise it would
contradict the minimality of i, so u R ug(wy). Hence, by Lemma 4.1.1, u R uP ′(w)

for all safe completions w of λ.

So, because f(a) is R-bad for u, any safe completion w of λ′, which is also a safe com-
pletion of λ, is such that uP (w)v ≤R uP

′(w)f(a) <R u R uP ′(w) by Lemma 4.1.1,
hence uP (w)v <J uP

′(w) by Lemma 3.1.20. So (λ′, P ′, u, 1) ≺ (λ, P, u, v), there-
fore, by induction we get a ∆-compatible submask λ1 of λ′ and a monoid element
t1 such that uP ′(w) = t1 for all safe completions w of λ1.

Let P ′′ be the subprogram of P starting from instruction i + 1. Notice that, since
u R t1 (by what we have proven just above), t1f(a) <R u (by Lemma 4.1.1) and
t1f(a)P

′′(w)v = uP ′(w)f(a)P ′′(w)v = uP (w)v for all safe completions w of λ1.
Hence, (λ1, P ′′, t1f(a), v) is strictly smaller than (λ, P, u, v) and by induction we get
a ∆-compatible submask λ2 of λ1 and a monoid element t such that t1f(a)P ′′(w)v =

t for all safe completions w of λ2.

Thus, any safe completion w of λ2 is such that

uP (w)v = uP ′(w)f(a)P ′′(w)v = t1f(a)P
′′(w)v = t .

Therefore λ2 and t form the desired couple of a ∆-compatible submask of λ and an
element of M .

By induction, since (λ′, P ′, u, 1) is of height h′ ≤ h− 1, the number of free positions
of λ fixed in λ1, i.e. |λ1|Σ − |λ|Σ, is at most

|λ′|Σ − |λ|Σ + gh′(|λ′|Σ + h′)− |λ′|Σ ≤ gh′(|λ|Σ + h)− |λ|Σ
≤ gh−1(|λ|Σ + h)− |λ|Σ ,

because of the properties of gh′ and gh−1 spelled out before stating the lemma.
Consequently, by induction again, as (λ1, P

′′, t1f(a), v) is of height h′′ ≤ h− 1, the
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number of free positions of λ fixed in λ2, i.e. |λ2|Σ − |λ|Σ, is at most

|λ1|Σ − |λ|Σ + gh′′(|λ1|Σ + h′′)− |λ1|Σ ≤ gh−1(|λ1|Σ + h′′)− |λ|Σ
≤ gh−1

(
gh−1(|λ|Σ + h) + h− 1

)
− |λ|Σ

≤ gh−1

(
(2h · f)2h−1

(|λ|Σ + h)
)
− |λ|Σ

≤ (2h · f)2h−1(
(2h · f)2h−1

(|λ|Σ + h)
)
− |λ|Σ

= (2h · f)2h(|λ|Σ + h)− |λ|Σ
= gh(|λ|Σ + h)− |λ|Σ ,

the desired bound, because of the properties of gh′ and gh−1 mentioned before stating
the lemma and because, as seen easily, gh−1(m) ≤ 2gh−1(m) = 2(2h−1 · f)2h−1

(m) ≤
(2h · f)2h−1

(m) for all m ∈ N, as well as h− 1 ≤ f(|λ|Σ + h) ≤ gh−1(|λ|Σ + h).

Case 2: condition (a) is verified but condition (b) is violated, so v is R-bad for u and Case 1
does not apply.

Let w be a safe completion of λ: for any instruction (x, f) of P , as the submask
λ′ of λ formed by setting position x to wx (if it wasn’t already the case) is ∆-
compatible (by the fact that ∆ is safe and w is a safe completion of λ), f(wx)
cannot be R-bad for u, otherwise condition (a) would be violated, so u R uf(wx).
Hence, by Lemma 4.1.1, u R uP (w) for all safe completions w of λ. Notice then
that uP (w)v <R uP (w) R u (by Lemma 4.1.1), hence uP (w)v <J uP (w) (by
Lemma 3.1.20) for all safe completions w of λ. So (λ, P, u, 1) ≺ (λ, P, u, v), therefore,
by induction, we obtain a ∆-compatible submask λ′ of λ and a monoid element t1
such that uP (w) = t1 for all safe completions w of λ′. If we set t = t1v, we get that
any safe completion w of λ′ is such that uP (w)v = t1v = t. Therefore λ′ and t form
the desired couple of a ∆-compatible submask of λ and an element of M .

By induction, since (λ, P, u, 1) is of height h′ ≤ h− 1, the number of free positions
of λ fixed in λ′, i.e. |λ′|Σ − |λ|Σ, is at most

gh′(|λ|Σ + h′)− |λ|Σ ≤ gh′(|λ|Σ + h)− |λ|Σ ≤ gh(|λ|Σ + h)− |λ|Σ ,

the desired bound, because of the properties of gh′ and gh explicited before stating
the lemma.

Case 3: condition (c) is violated. So there exists some instruction (x, f) of P such that for
some letter a the submask λ′ of λ formed by setting position x to a (if it wasn’t
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already the case) is ∆-compatible and f(a) is L-bad for v.

We proceed as for Case 1 by symmetry.

Case 4: condition (c) is verified but condition (d) is violated, so u is L-bad for v and Case 3
does not apply.

We proceed as for Case 2 by symmetry.

Case 5: conditions (a), (b), (c) and (d) are verified.

As it was in Case 2 and Case 4, using Lemma 4.1.1, the fact that condition (a)
and condition (c) are verified implies that u R uP ′(w) and v L P ′′(w)v for any
prefix P ′ of P , any suffix P ′′ of P and all safe completions w of λ. Moreover,
since condition (b) and condition (d) are verified, by Lemma 4.1.1, we get that
uP (w)v R u and uP (w)v L v for all safe completions w of λ. This implies that
(λ, P, u, v) is minimal for ≺ and that h = 0.

Let w0 be a completion of λ that is in ∆∗. Let λ′ be the submask of λ fixing all
free dangerous positions of λ using w0. Then, for any completion w of λ′, which is
a safe completion of λ by construction, we have that uP (w)v R u and uP (w)v L v.
As (M, ∗) is aperiodic and hence H-trivial, since we have uP (w0)v ∈ R(u) ∩ L(v),
it means that R(u) ∩ L(v) = R(uP (w0)v) ∩ L(uP (w0)v) = H(uP (w0)v), so by H-
triviality of (M, ∗), R(u)∩L(v) = {t} where t = uP (w0)v, showing that uP (w)v = t

for all completions w of λ′. Therefore λ′ and t form the desired couple of a ∆-
compatible submask of λ and an element of M .

Now, since the number of free positions of λ fixed in λ′, i.e. |λ′|Σ − |λ|Σ, is exactly
the number of free dangerous positions in λ, and as a position in λ is dangerous if it
is within distance 2l− 2 of a fixed position or within distance l− 1 of the beginning
or the end of λ, this number is at most

2 · |λ|Σ · (2l − 2) + 2 · (l − 1) = |λ|Σ · (4l − 4) + 2l − 2

= |λ|Σ · (4l − 3) + 2l − 2− |λ|Σ
= f(|λ|Σ)− |λ|Σ
= (20 · f)20(|λ|Σ + 0)− |λ|Σ
= g0(|λ|Σ + 0)− |λ|Σ ,

the desired bound.

This concludes the proof of the lemma.
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Setting ∆ = {c, ab} or ∆ = {b, ab} with Σ the associated alphabet, when applying
Lemma 4.2.5 with the trivial ∆-compatible mask λ of length n containing only free posi-
tions, with P some program over (M, ∗) on Σn and with u and v equal to 1, the resulting
mask λ′ has the property that we have an element t of M such that P (w) = t for any
safe completion w of λ′. Since the mask λ′ is ∆-compatible and has a number of free
positions upper-bounded by gh(|λ|Σ + h) − |λ|Σ where h is the height of (λ, P, u, v), a
number that does not depend on n (because the maximal length of any decreasing chain
depends only on (M, ∗)), as long as n is big enough, we have a safe completion w0 ∈ ∆∗

and a safe completion w1 /∈ ∆∗. Hence P cannot recognise ∆∗ ∩ Σn. This implies that
(c + ab)∗ /∈ P((M, ∗)) and (b + ab)∗ /∈ P((M, ∗)). Finally, for any k ∈ N, k ≥ 2, we can
prove that b∗((ab∗)k)∗ /∈ P((M, ∗)) by setting ∆ = {a, b} and completing the mask given
by the lemma by setting the letters in such a way that we have the right number of a’s
modulo k in one case and not in the other case.

This concludes the proof of Proposition 4.2.3 because the argument above holds for
any monoid in DA.

4.3 A fine hierarchy in P(DA)

The definition of p-recognition by a sequence of programs over a finite monoid given in
Definition 3.3.5 requires that for each n ∈ N, the program working on words of length
n has a length upper-bounded by some fixed polynomial in n. In the case of P(DA),
the polynomial-length restriction is without loss of generality: any monoid (M, ∗) in DA
has what Tesson and Thérien call the polynomial-length property in Tesson and Thérien
[2001], that is, there exists k ∈ N such that for any alphabet Σ there is a constant c ∈ N>0

such that any (M, ∗)-program on Σn for n ∈ N is equivalent to an (M, ∗)-program on Σn

of length at most c · nk (which they proved in the same article). In this section, we prove
two things: first, that the exponent k can be arbitrarily large depending on the monoid
(M, ∗), so that while P(DA, s(n)) collapses to P(DA) for any super-polynomial function
s : N → N, there does not exist any k ∈ N such that P(DA) collapses to P

(
DA, nk

)
; and

second, that when we restrict to DAd for some d ∈ N, in this case P(DAd) collapses to
P
(
DAd, n

max{d,1}) and this is optimal.

4.3.1 Strict hierarchy

For each k ∈ N>0, we exhibit a language Lk ⊆ {0, 1}∗ that can be recognised by a sequence
of programs of length O(nk) over a monoid (Mk, ∗k) in DAk but cannot be recognised by
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any sequence of programs of length O(nk−1) over any monoid in DA.
For a given k ∈ N>0, the language Lk expresses a property of the first k occurrences

of 1 for words over {0, 1}. To define Lk, we say that for some n ∈ N, S is a k-set over
n if S is a set where each element is an ordered tuple of k distinct elements of [n]. For
any sequence ∆ = (Sn)n∈N such that for each n ∈ N, Sn is a k-set over n — a sequence
we will call a sequence of k-sets — we set L∆ =

⋃
n∈NKn,Sn , where for each n ∈ N, Kn,Sn

is the set of words over {0, 1} of length n such that for each of them, it contains at least
k occurrences of 1 and the ordered k-tuple of the positions of the first k occurrences of 1
belongs to Sn.

On the one hand, we show that for all k ∈ N>0 there is a monoid (Mk, ∗k) in DAk

such that for any sequence of k-sets ∆, the language L∆ is recognised by a sequence of
programs over (Mk, ∗k) of length O(nk). The proof is done by an inductive argument on
k.

On the other hand, we show that for all k ∈ N>0 there is a sequence of k-sets ∆ such
that for any finite monoid (M, ∗) and any sequence of programs (Pn)n∈N over (M, ∗) of
length O(nk−1), L∆ is not recognised by (Pn)n∈N. This is done using a counting argument:
for some monoid order i ∈ N>0, for n ∈ N big enough, the number of languages in {0, 1}n

recognised by a program over some monoid of order i on {0, 1}n of length at most α ·nk−1

for α ∈ N>0 some constant is upper-bounded by a number that turns out to be smaller
than the number of different possible Kn,Sn , when the k-set Sn varies.

Upper bound. We start with the upper bound. Given k ∈ N>0, we define the alphabet
Yk = {e} ∪ {⊥l,>l | l ∈ [k]}; we are going to prove that for all k ∈ N>0 there exists a
language Zk ∈ SULk(Y ∗

k ) such that for all ∆ = (Sn)n∈N sequences of k-sets, there exists
a program-reduction from L∆ to Zk of length s(n), where s : N → N is some function
verifying s(n) ≤ 2nk for all n ∈ N, using the following proposition and the fact that the
language of words of length n ∈ N of L∆ is exactly Kn,Sn .

Proposition 4.3.1. For all k ∈ N>0 there is a language Zk ∈ SULk(Y ∗
k ) such that for

all n ∈ N and all k-sets Sn over n, we have Kn,Sn = Ψ−1
n,Sn

(Z
=
∣∣Ψn,Sn

∣∣
k ) where Ψn,Sn is a

Yk-program on {0, 1}n of length at most 2nk.

Proof. We first define by induction on k a family of languages Zk over the alphabet Yk.
For k = 0, Z0 is Y ∗

0 where Y0 = {e}. For k ∈ N>0, Zk is the set of words containing >k

and such that the first occurrence of >k has no ⊥k to its left, and the sequence between
the first occurrence of >k and the first occurrence of ⊥k or >k to its right, or the end of
the word if there is no such letter, belongs to Zk−1. A simple induction on k shows that
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Zk for k ∈ N is defined by the expression

Y ∗
k−1>kY

∗
k−2>k−1 · · ·Y ∗

1 >2Y
∗
0 >1Y

∗
k ,

and therefore it is in SUMk(Y
∗
k ) ⊆ SULk(Y ∗

k ).
Fix n ∈ N. If n = 0, the proposition follows trivially; otherwise, we define by induction

on k a Yk-program Pk(i, S) on {0, 1}n for every k-set S over n and every i ∈ [n+ 1].
For any k ∈ N>0, j ∈ [n] and S a k-set over n, let fj,S : {0, 1} → Yk be the function

defined by fj,S(0) = e and fj,S(1) = >k if j is the first element of some ordered k-tuple
of S, fj,S(1) = ⊥k otherwise. We also let gk : {0, 1} → Yk be the function defined by
gk(0) = e and gk(1) = ⊥k. Moreover, S|j denotes the (k − 1)-set over n containing the
ordered (k − 1)-tuples t̄ such that (j, t̄) ∈ S.

For k ∈ N>0, i ∈ [n + 1] and S a k-set over n, the Yk-program Pk(i, S) on {0, 1}n is
the following sequence of instructions:

(i, fi,S)Pk−1(i+ 1, S|i)(i, gk) · · · (n, fn,S)Pk−1(n+ 1, S|n)(n, gk) .

In other words, the program guesses the first occurrence j ∈ [[i, n]] of 1, returns ⊥k or >k

depending on whether it is the first element of an ordered k-tuple in S, and then proceeds
for the next occurrences of 1 by induction.

For k = 0, i ∈ [n + 1] and S a 0-set over n (that is empty or contains ε, the only
ordered 0-tuple of elements of [n]), the Y0-program P0(i, S) is the empty program ε.

A simple computation shows that for any k ∈ N, i ∈ [n+ 1] and S a k-set over n, the
number of instructions in Pk(i, S) is at most 2nk and even 0 when i = n+ 1.

A simple induction on k shows that when running on a word w ∈ {0, 1}n, for any
k ∈ N, i ∈ [n+ 1] and S a k-set over n, Pk(i, S) returns a word in Zk if and only if k = 0

or the ordered k-tuple of the positions of the first k occurrences of 1 starting at position
i in w exists and is an element of S.

Therefore, for any k ∈ N>0 and Sn a k-set over n, if we set Ψn,Sn = Pk(1, Sn), we have
Kn,Sn = Ψ−1

n,Sn
(Z

=
∣∣Ψn,Sn

∣∣
k ) where Ψn,Sn is a Yk-program on {0, 1}n of length at most 2nk.

Consequently, for all k ∈ N>0 and any sequence of k-sets ∆, since the language Zk is
in SULk(Y ∗

k ) and thus recognised by a monoid from DAk, we have, by Corollary 3.4.3,
that L∆ ∈ P

(
DAk, n

k
)
, as there is a program-reduction from it to Zk of length s(n),

where s : N → N is some function verifying s(n) ≤ 2nk for all n ∈ N.

Lower bound. The following claim is a simple counting argument.
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Claim 4.3.2. For all i ∈ N>0 and n ∈ N, the number of languages in {0, 1}n recognised
by programs over a monoid of order i on {0, 1}n, with at most l ∈ N instructions, is
upper-bounded by ii22i · (n · i2)l.

Proof. Fix a monoid (M, ∗) of order i. Since a program over (M, ∗) on {0, 1}n with less
than l instructions can always be completed into an equivalent such program with exactly
l instructions (using the identity of (M, ∗)), we only consider programs with exactly l

instructions. As Σ = {0, 1}, there are n · i2 choices for each of the l instructions of an
(M, ∗)-program on {0, 1}n. Such a program can recognise at most 2i different languages
in {0, 1}n. Hence, the number of languages in {0, 1}n recognised by (M, ∗)-programs on
{0, 1}n of length at most l is at most 2i · (n · i2)l. The result follows from the facts that
there are at most ii2 isomorphism classes of monoids of order i and that two isomorphic
monoids allow to recognise the same languages in {0, 1}n through programs.

If for some k ∈ N>0 and i ∈ [α], α ∈ N>0, we apply Claim 4.3.2 for all n ∈ N,
l = α · nk−1, we get a number µi(n) of languages that is in 2O(nk−1 log2(n)), which is
asymptotically strictly smaller than the number of distinct Kn,Sn when the k-set Sn over
n varies, which is 2(

n
k
), i.e. µi(n) is in o

(
2(

n
k
)).

Hence, for all j ∈ N>0, there exist an nj ∈ N and Tj a k-set over nj such that
no program over a monoid of order i ∈ [j] on {0, 1}nj and of length at most j · njk−1

recognises Knj ,Tj . Moreover, we can assume without loss of generality that the sequence
(nj)j∈N>0 is increasing. Let ∆ = (Sn)n∈N be such that Snj

= Tj for all j ∈ N>0 and Sn = ∅
for any n ∈ N verifying that it is not equal to any nj for j ∈ N>0. We show that no
sequence of programs over a finite monoid of length O(nk−1) can recognise L∆. If this
were the case, then let i be the order of the monoid. Let j ∈ N, j ≥ i be such that for any
n ∈ N, the n-th program has length at most j · nk−1. But, by construction, we know that
there does not exist any such program on {0, 1}nj recognising Knj ,Tj , a contradiction.

This implies the following hierarchy, using the fact that for all k ∈ N and all d ∈
N, d ≤ max{k− 1, 0}, any monoid from DAd is also a monoid from DAk, observing that
a∗ ∈ P({a, b}∗,DA0, n)\P({a, b}∗,DA0, 1) simply because any program over some finite
monoid (M, ∗) on {a, b}n for n ∈ N recognising an must have at least n instructions, one
for each input letter.

Proposition 4.3.3. For all k ∈ N, P
(
DA, nk

)
⊂ P

(
DA, nk+1

)
. More precisely, for all

k ∈ N and d ∈ N, d ≤ max{k − 1, 0}, P
(
DAk, n

d
)
⊂ P

(
DAk, n

d+1
)
.
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4.3.2 Collapse

Tesson and Thérien showed that for any monoid (M, ∗) in DA, there exists k ∈ N such
that for any alphabet Σ there is a constant c ∈ N>0 such that any (M, ∗)-program on Σn

for n ∈ N is equivalent to an (M, ∗)-program on Σn of length at most c · nk Tesson and
Thérien [2001]. We now show that if we further assume that (M, ∗) is in DAd for some
d ∈ N, then the exponent k can be assumed to be equal to max{d, 1} — but not less by
Proposition 4.3.3. This shows that proposition to be optimal in some sense.

Proposition 4.3.4. Let k ∈ N. Let (M, ∗) ∈ DAk and Σ be an alphabet. Then there
exists a constant c ∈ N>0 such that any program over (M, ∗) on Σn for n ∈ N is equivalent
to a program over (M, ∗) on Σn of length at most c · nmax{k,1}.

In particular, P(DAk) = P
(
DAk, n

max{k,1}) for all k ∈ N.

Observe that given P a program over some finite monoid (M, ∗) on Σn for n ∈ N and
Σ an alphabet, given some F ⊆M , we have

P−1(F ) = ξ−1
P

(
η−1
(M,∗)(F ) ∩M

|P |)
where η(M,∗) is the evaluation morphism of (M, ∗). Therefore, a language L ⊆ Σn is
recognised by P if and only if there exists a language K ⊆ M∗ recognised by η(M,∗)

verifying that L = ξ−1
P (K=|P |), i.e. w ∈ Σn belongs to L if and only if ξP (w) ∈ K.

Thus, a subprogram P ′ of P is equivalent to P if and only if for every language K ⊆M∗

recognised by η(M,∗) we have ξP (w) ∈ K ⇔ ξP ′(w) ∈ K for all w ∈ Σn. Moreover, every
language recognised by η(M,∗) is precisely a language of SULk(M∗) when (M, ∗) ∈ DAk

for some k ∈ N.
The result is hence a consequence of the following lemma and the fact that every

language in SULk(M∗) is a Boolean combination of languages in SUMk(M
∗), that is a

finite set of languages.

Lemma 4.3.5. Let Σ be an alphabet and (M, ∗) a finite monoid.
For all k ∈ N, there exists a constant c ∈ N>0 verifying that for any program P

over (M, ∗) on Σn for n ∈ N and any SUM K ∈ SUMk(M
∗) of degree k, there exists a

subprogram Q of P of length at most c · nmax{k,1} such that for any subprogram Q′ of P
that has Q as a subprogram, for all w ∈ Σn we have

ξP (w) ∈ K ⇔ ξQ′(w) ∈ K .

145



Proof. A program P over (M, ∗) on Σn for n ∈ N is a finite sequence (pi, fi) of instructions
where each pi is a positive natural number which is at most n and each fi is a function
from Σ to M . We denote by l the number of instructions of P . For each set I ⊆ [l] we
denote by P [I] the subprogram of P consisting of the subsequence of instructions of P
obtained after removing all instructions whose index is not in I. In particular, P [1,m]

denotes the initial sequence of instructions of P , until instruction number m.
We prove the lemma by induction on k, fixing the constant to be ck = |M |·3k·|Σ|max{k,1}

for a given k ∈ N.
The intuition behind the proof for a program P on inputs of length n and some

SUM K1γK2 of degree at least 2 is as follows. We assume that K1 does not contain
any word with the letter γ, the other case is done symmetrically. Consider the subset
of all indices Iγ ⊆ [l] that correspond, for a fixed letter a and a fixed position p in the
input, to the first instruction of P that would output the element γ when reading a at
position p. We then have that, given some w as input, ξP (w) ∈ K1γK2 if and only if
there exists i ∈ Iγ verifying that the element at position i of ξP (w) is γ, ξP [1,i−1](w) ∈ K1

and ξP [i+1,l](w) ∈ K2. The idea is then that if we set I to contain Iγ as well as all indices
obtained by induction for P [1, i − 1] and K1 and for P [i + 1, l] and K2, we would have
that for all w, ξP (w) ∈ K1γK2 if and only if ξP [I](w) ∈ K1γK2, that is ξP (w) where only
the elements at indices in I have been kept.

The intuition behind the proof when the SUM is of degree less than 2 is essentially
the same, but without induction.

We now spell out the details of the proof, starting with the inductive step.

Inductive step. Let k ∈ N, k ≥ 2 and assume the lemma proven for all k′ ∈ N, k′ < k.
Let P be a program over (M, ∗) on Σn for n ∈ N of length l ∈ N and some language K
in SUMk(M

∗) \ SUMk−1(M
∗). By definition, K = K1γK2 for γ ∈ M and some SUMs

K1 ∈ SUMk1(M
∗) of degree k1 and K2 ∈ SUMk2(M

∗) of degree k2 with k1+ k2 = k− 1.
Moreover either γ does not occur in any of the words of K1 or it does not occur in any of
the words of K2. We only treat the case where γ does not appear in any of the words in
K1, the other case is treated similarly by symmetry.

Observe that when n = 0, we necessarily have P = ε, so that the lemma is trivially
proven in that case. So we now assume n > 0.

For each p ∈ [n] and each a ∈ Σ consider within the sequence of instructions of P
the first instruction of the form (p, f) with f(a) = γ, if it exists. We let Iγ be the set of
indices of these instructions for all a and p. Notice that the size of Iγ is at most |Σ| · n.

For all i ∈ Iγ, we let Ji,1 be the set of indices of the instructions within P [1, i − 1]
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appearing in its subprogram obtained by induction for P [1, i− 1] and K1, and Ji,2 be the
same for P [i+ 1, l] and K2.

We now let I be the union of Iγ and Ji,1 and J ′
i,2 = {j + i | j ∈ Ji,2} for all i ∈ Iγ

(the translation being required because the first instruction in P [i+ 1, l] is the (i+ 1)-th
instruction in P ). We claim that Q = P [I], a subprogram of P , has the desired properties.

First notice that by induction the sizes of Ji,1 for all i ∈ Iγ are upper bounded by

|M | · 3k1 · |Σ|max{k1,1} · nmax{k1,1} ≤ |M | · 3k−1 · |Σ|max{k−1,1} · nmax{k−1,1}

= ck−1 · nmax{k−1,1} ,

as well as are those of J ′
i,2 for all i ∈ Iγ. Hence, since n ≥ 1 and k − 1 ≥ 1, the size of I

is at most

|Iγ|+
∑
i∈Iγ

|Ji,1|+
∑
i∈Iγ

∣∣J ′
i,2

∣∣ ≤ |Iγ|+ |Iγ| · ck−1 · nmax{k−1,1} + |Iγ| · ck−1 · nmax{k−1,1}

≤ 3 · |Iγ| · ck−1 · nmax{k−1,1}

≤ 3 · |Σ| · n · |M | · 3k−1 · |Σ|max{k−1,1} · nmax{k−1,1}

= |M | · 3k · |Σ|max{k,1} · nmax{k,1}

= ck · nmax{k,1} ,

so that P [I] has at most the required length.
Let Q′ be a subprogram of P that has Q as a subprogram: it means that there exists

some set I ′ ⊆ [l] containing I such that Q′ = P [I ′].
Take w ∈ Σn.
Assume now that ξP (w) ∈ K. Let i be the position in ξP (w) of label γ witnessing

the membership in K. Let (pi, fi) be the corresponding instruction of P . In particular
we have that fi(wpi) = γ. Because γ does not occur in any word of K1, for all j ∈ [i− 1]

such that pj = pi we cannot have fj(wpj) = γ. Hence i ∈ Iγ. By induction we have that
ξP [1,i−1][J ](w) ∈ K1 for any set J ⊆ [i − 1] containing Ji,1 and ξP [i+1,l][J ](w) ∈ K2 for any
set J ⊆ [l − i] containing Ji,2. Hence, if we set I ′1 = {j ∈ I ′ | j < i} as the subset of I ′ of
elements less than i and I ′2 = {j − i | j ∈ I ′, j > i} as the subset of I ′ of elements greater
than i translated by −i, we have ξP [I′](w) = ξP [1,i−1][I′1]

(w)γξP [i+1,l][I′2]
(w) ∈ K1γK2 = K.

Assume finally that ξP [I′](w) ∈ K. Let i be the index in I ′ whose instruction provides
the letter γ witnessing the fact that ξP [I′](w) ∈ K. This means that if we set I ′1 = {j ∈
I ′ | j < i} as the subset of I ′ of elements less than i and I ′2 = {j − i | j ∈ I ′, j > i}
as the subset of I ′ of elements greater than i translated by −i, we have ξP [I′](w) =
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ξP [1,i−1][I′1]
(w)γξP [i+1,l][I′2]

(w) with ξP [1,i−1][I′1]
(w) ∈ K1 and ξP [i+1,l][I′2]

(w) ∈ K2. If i ∈ Iγ,
then it means that I ′1 ⊆ [i − 1] contains Ji,1 and that I ′2 ⊆ [l − i] contains Ji,2 by
construction, so that, by induction, ξP (w) = ξP [1,i−1](w)γξP [i+1,l](w) ∈ K1γK2 = K. If
not this shows that there is an instruction (pj, fj) with j ∈ [i − 1], j ∈ I ′, pj = pi and
fj(wpj) = γ. But that would contradict the fact that γ cannot occur in K1.

Therefore, ξP (w) ∈ K ⇔ ξQ′(w) = ξP [I′](w) ∈ K, as desired.

Base case. There are two subcases to consider.

Subcase k = 1. Let P be a program over (M, ∗) on Σn for n ∈ N of length l ∈ N
and some language K in SUM1(M

∗) \ SUM0(M
∗).

Then K = A∗
1γA

∗
2 for γ ∈ M and some alphabets A1 ⊆ M and A2 ⊆ M . Moreover

either γ /∈ A1 or γ /∈ A2. We only treat the case where γ does not belong to A1, the other
case is treated similarly by symmetry.

We use the same idea as in the inductive step.
Observe that when n = 0, we necessarily have P = ε, so that the lemma is trivially

proven in that case. So we now assume n > 0.
For each p ∈ [n], each α ∈ M and a ∈ Σ consider within the sequence of instructions

of P the first and last instruction of the form (p, f) with f(a) = α, if they exist. We let
I be the set of indices of these instructions for all a, α and p. Notice that the size of I is
at most 2 · |M | · |Σ| · n ≤ |M | · 31 · |Σ|max{1,1} · nmax{1,1} = c1 · nmax{1,1}.

We claim that Q = P [I], a subprogram of P , has the desired properties. We just
showed it has at most the required length.

Let Q′ be a subprogram of P that has Q as a subprogram: it means that there exists
some set I ′ ⊆ [l] containing I such that Q′ = P [I ′].

Take w ∈ Σn.
Assume now that ξP (w) ∈ K. Let i be the position in ξP (w) of label γ witnessing

the membership in K. Let (pi, fi) be the corresponding instruction of P . In particular
we have that fi(wpi) = γ and this is the γ witnessing the membership in K. Because
γ /∈ A1, for all j ∈ [i− 1] such that pj = pi we cannot have fj(wpj) = γ. Hence i ∈ I ⊆ I ′.
From ξP [1,i−1](w) ∈ A∗

1 and ξP [i+1,l](w) ∈ A∗
2 it follows that ξP [I′∩[[1,i−1]]](w) ∈ A∗

1 and
ξP [I′∩[[i+1,l]]](w) ∈ A∗

2, showing that ξP [I′](w) = ξP [I′∩[[1,i−1]]](w)γξP [I′∩[[i+1,l]]](w) ∈ K.
Assume finally that ξP [I′](w) ∈ K. Let i be the index in I ′ whose instruction provides

the letter γ witnessing the fact that ξP [I′](w) ∈ K. This means that ξP [I′∩[[1,i−1]]](w) ∈ A∗
1

and ξP [I′∩[[i+1,l]]](w) ∈ A∗
2. If there is an instruction (pj, fj), with j ∈ [i−1] and fj(wpj) /∈ A1

then either j ∈ I ′ and we get a direct contradiction with the fact that ξP [I′∩[[1,i−1]]](w) ∈ A∗
1,

148



or j /∈ I ′ and we get a smaller j′ ∈ I ⊆ I ′ with the same property, contradicting again
the fact that ξP [I′∩[[1,i−1]]](w) ∈ A∗

1. Hence, for all j ∈ [i− 1], fj(wpj) ∈ A1. By symmetry
we have that for all j ∈ [[i+ 1, l]], fj(wpj) ∈ A2, showing that ξP (w) ∈ A∗

1γA
∗
2 = K.

Therefore, ξP (w) ∈ K ⇔ ξQ′(w) = ξP [I′](w) ∈ K, as desired.

Subcase k = 0. Let P be a program over (M, ∗) on Σn for n ∈ N of length l ∈ N
and some language K in SUM0(M

∗).
Then K = A∗ for some alphabet A ⊆M .
We again use the same idea as before.
Observe that when n = 0, we necessarily have P = ε, so that the lemma is trivially

proven in that case. So we now assume n > 0.
For each p ∈ [n], each α ∈ M and a ∈ Σ consider within the sequence of instructions

of P the first instruction of the form (p, f) with f(a) = α, if it exists. We let I be the
set of indices of these instructions for all a, α and p. Notice that the size of I is at most
|M | · |Σ| · n = |M | · 30 · |Σ|max{0,1} · nmax{0,1} = c0 · nmax{0,1}.

We claim that Q = P [I], a subprogram of P , has the desired properties. We just
showed it has at most the required length.

Let Q′ be a subprogram of P that has Q as a subprogram: it means that there exists
some set I ′ ⊆ [l] containing I such that Q′ = P [I ′].

Take w ∈ Σn.
Assume now that ξP (w) ∈ K. As ξP [I′](w) is a subword of ξP (w), it follows directly

that ξP [I′](w) ∈ A∗ = K.
Assume finally that ξP [I′](w) ∈ K. If there is an instruction (pj, fj), with j ∈ [l]

and fj(wpj) /∈ A then either j ∈ I ′ and we get a direct contradiction with the fact that
ξP [I′](w) ∈ A∗ = K, or j /∈ I ′ and we get a smaller j′ ∈ I  ⊆ I ′ with the same property,
contradicting again the fact that ξP [I′](w) ∈ A∗ = K. Hence, for all j ∈ [l], fj(wpj) ∈ A,
showing that ξP (w) ∈ A∗ = K.

Therefore, ξP (w) ∈ K ⇔ ξQ′(w) = ξP [I′](w) ∈ K, as desired.
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Chapter 5

The power of programs over monoids
in J

The last chapter of this thesis is similar in its objectives to the previous one, except
that we focus on p-recognition by monoids taken from the variety of finite monoids J.
It is another well-known “small” variety of finite aperiodic monoids, that is even strictly
included in DA. As explained in Chapter 3, J is especially interesting because it is not an
sp-variety of finite monoids, and we spend most of this long chapter trying to understand
the unexpected power p-recognition offers over classical morphism-recognition by monoids
from J when it comes to regular languages.

Section 5.1 first presents some specific preliminaries about J. Section 5.2 is then
dedicated to a fine hierarchy result inside P(J) based on the usual parameterisation of J,
very similar to the fine hierarchy result for DA. The remainder of this chapter is then
devoted to the study of P(J)∩Reg: in Section 5.3, we investigate the possibilities offered
by p-recognition by monoids from J and show that, actually, a whole strict superclass of
languages of L(J) can be recognised that way. We conjecture that this class essentially
suffices to characterise P(J)∩Reg and Section 5.4 presents a partial result that supports
this conjecture. The proof we give is, alas, long and complicated.

5.1 Specific preliminaries about J

As we did in the previous chapter, we also start this one with some specific definitions
and results about J that we will use, based essentially on Klíma and Polák [2010], but
also on [Pin, 2016, Chapter XI].

As we have seen in Section 3.1 of Chapter 3, J ⊂ DA ⊂ A. (This is because



while any finite J-trivial monoid (M, ∗) definitely verifies that each of its D-classes whose
sole element is an idempotent forms an aperiodic subsemigroup of (M, ∗), the monoid
M(a(a + b)∗) in DA is not J-trivial.) Its equational characterisation is the following: a
finite monoid (M, ∗) of idempotent power ω belongs to J if and only if (xy)ω = (xy)ωx =

y(xy)ω for all x, y ∈M .
For each k ∈ N and each alphabet Σ, let us define the equivalence relation ∼Σ

k on Σ∗

by u ∼Σ
k v if and only if u and v have the same set of k-subwords, for all u, v ∈ Σ∗. ∼Σ

k is
a congruence of finite index on Σ∗.

We define the variety of piecewise testable languages PT as the class of regular lan-
guages such that for every alphabet Σ, PT (Σ∗) is the set of all languages over Σ that are
Boolean combinations of languages of the form Σ∗a1Σ

∗a2Σ
∗ · · ·Σ∗alΣ

∗ (i.e. the language
of all words over Σ having a1a2 · · · al as a subword) where a1, a2, . . . , al ∈ Σ and l ∈ N. In
fact, for each alphabet Σ, PT (Σ∗) is the set of languages over Σ equal to a union of ∼Σ

k -
classes for some k ∈ N (see Simon [1975]). Simon showed Simon [1975] that a language is
piecewise testable if and only if its syntactic monoid is J-trivial, i.e. PT = L(J).

We can define a hierarchy of piecewise testable languages in a natural way. For k ∈ N,
let the variety of k-piecewise testable languages PT k be the class of regular languages such
that for every alphabet Σ, PT k(Σ

∗) is the set of all languages over Σ that are Boolean
combinations of languages of the form Σ∗a1Σ

∗a2Σ
∗ · · ·Σ∗alΣ

∗ where a1, a2, . . . , al ∈ Σ and
l ∈ N, l ≤ k. We then unsurprisingly have that for each alphabet Σ, PT k(Σ

∗) is the set
of languages on Σ equal to a union of ∼Σ

k -classes. If we then define the varieties of finite
monoids

Jk =

〈 ⋃
Σ alphabet

{(Σ∗/∼Σ
k , ·/∼Σ

k )}

〉
M

,

that is, the variety of finite monoids generated by the quotients of (Σ∗, ·) by ∼Σ
k for any

alphabet Σ, we have that a language is k-piecewise testable if and only if its syntactic
monoid belongs to Jk, i.e. PT k = L(Jk). (See [Klíma and Polák, 2010, Section 3].)

Finally, we define the shuffle of two languages.

Definition 5.1.1. Let Σ be an alphabet.
Let L1, L2 ⊆ Σ∗ be two languages over Σ. The shuffle of L1 and L2, denoted by L1�L2,

is the language L1� L2 = {w ∈ Σ∗ | w = u1v1 · · ·ukvk where k ∈ N>0, u1, v1, . . . , uk, vk ∈
Σ∗ s.t. u1 · · ·uk ∈ L1, v1 · · · vk ∈ L2} over Σ.

In the following, we consider that � has precedence over ∪ and ∩ (but of course not
over concatenation). An example of the shuffle of two languages is given by the language
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(a+ b+ c)∗bc∗b(a+ b+ c)∗ over the alphabet {a, b, c}, which is equal to the shuffle of the
languages (a+ b)∗bb(a+ b)∗ and c∗ over {a, b, c}.

For a given alphabet Σ and a word u ∈ Σ∗, we shall use this notion to simply write
u� Σ∗ for the language of all words over Σ having u as a subword.

Let us finish with some positive and negative examples of piecewise testable lan-
guages. For instance, the language a∗ of words over {a, b} not containing the letter b
is (1-)piecewise testable, since a∗ = (b� {a, b}∗){. Similarly, the language of words over
{a, b, c} containing abba or abacab as a subword but containing less than three times the
letter c is (6-)piecewise testable, since it is equal to (abba�{a, b, c}∗∪abacab�{a, b, c}∗)∩
(ccc� {a, b, c}∗){.

However, both the language a(a+ b)∗ of words over {a, b} starting with an a and the
language (a+ b)∗bb(a+ b)∗ of words over {a, b} containing bb as a factor are provably not
piecewise testable, because their respective syntactic monoids aren’t J-trivial.

5.2 A fine hierarchy in P(J)

As Tesson and Thérien proved in Tesson and Thérien [2001], any monoid in DA has the
polynomial-length property, so since J ⊂ DA, we have that any monoid in J also has
the polynomial-length property. Proposition 4.3.3 in the previous chapter shows that
there does not exist any k ∈ N such that P(DA) collapses to P

(
DA, nk

)
, but this

does not rule out the possibility that such a k would exist for P(J); moreover, we know
by that same proposition and Proposition 4.3.4 that for all k ∈ N, P(DAk) collapses to
P
(
DAk, n

max{k,1}) but not further, not telling us much about P(Jk). In this section, very
similar to Section 4.3 of the previous chapter, we show on the one hand that, as for DA,
while P(J, s(n)) collapses to P(J) for any super-polynomial function s : N → N, there
does not exist any k ∈ N such that P(J) collapses to P

(
J, nk

)
; and on the other hand

that, for each k ∈ N, P(Jk) does optimally collapse to P
(
Jk, n

dk/2e).
5.2.1 Strict hierarchy

In a way similar to Subsection 4.3.1 in Chapter 4, for each k ∈ N, we exhibit a language
Lk ⊆ {0, 1}∗ that can be recognised by a sequence of programs of length O(nk+1) over a
monoid (Mk, ∗k) in J2k+1 but cannot be recognised by any sequence of programs of length
O(nk) over any monoid in J.

Given k ∈ N, we say that for some n ∈ N, σ is a k-selector over n if σ is a function
of P([n])[n]

k that associates a subset of [n] to each vector in [n]k. For any sequence
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∆ = (σn)n∈N such that for each n ∈ N, σn is a k-selector over n — a sequence we will call
a sequence of k-selectors — we set L∆ =

⋃
n∈NKn,σn , where for each n ∈ N, Kn,σn is the

set of words over {0, 1} of length (k+1) ·n that can be decomposed into k+1 consecutive
blocks u(1), u(2), . . . , u(k), v of n letters where the first k blocks each contain 1 exactly once
and uniquely define a vector ρ in [n]k, where for all i ∈ [k], ρi is given by the position of
the only 1 in u(i) (i.e. u(i)ρi = 1) and v is such that there exists j ∈ σn(ρ) verifying that vj
is 1. Observe that for any k-selector σ0 over 0, we have L0,σ0 = ∅.

We now proceed similarly to what we did in Subsection 4.3.1 to show, on one hand,
that for all k ∈ N, there is a monoid (Mk, ∗k) in J2k+1 such that for any sequence of
k-selectors ∆, the language L∆ is recognised by a sequence of programs over (Mk, ∗k)
of length O(nk+1); and, on the other hand, that for all k ∈ N there is a sequence of k-
selectors ∆ such that for any finite monoid (M, ∗) and any sequence of programs (Pn)n∈N
over (M, ∗) of length O(nk), L∆ is not recognised by (Pn)n∈N.

Upper bound. We start with the upper bound. Given k ∈ N, we define the alphabet
Yk = {e,#} ∪ {⊥l,>l | l ∈ [k]}; we are going to prove that for all k ∈ N there exists
a language Zk ∈ PT 2k+1(Y

∗
k ) such that for all ∆ = (σn)n∈N sequences of k-selectors,

there exists a program-reduction from L∆ to Zk of length s(n), where s : N → N is some
function verifying s(n) ≤ 2 · (k+1)−k · nk+1 for all n ∈ N, using the following proposition
and the fact that the language of words of length n ∈ N of L∆ is exactly Kn′,σn′ when
there exists n′ ∈ N verifying n = (k + 1) · n′ (which implies a program length of at most
2 · (k + 1)−k · nk+1 = 2 · (k + 1) · n′k+1) and ∅ otherwise.

Proposition 5.2.1. For all k ∈ N there is a language Zk ∈ PT 2k+1(Y
∗
k ) such that ε /∈ Zk

and for all n ∈ N and all k-selectors σn over n, we have Kn,σn = Ψ−1
(k+1)·n,σn(Z

=
∣∣Ψ(k+1)·n,σn

∣∣
k )

where Ψ(k+1)·n,σn is a Yk-program on {0, 1}(k+1)·n of length at most 2 · (k + 1) · nk+1.

Proof. We first define by induction on k a family of languages Zk over the alphabet Yk.
For k = 0, Z0 is Y ∗

0 #Y ∗
0 . For k ∈ N>0, Zk is the set of words containing each of >k and

⊥k exactly once, the first before the latter, and verifying that the sequence between the
occurrence of >k and the occurrence of ⊥k belongs to Zk−1, i.e. Zk = Y ∗

k−1>kZk−1⊥kY
∗
k−1.

A simple induction on k shows that Zk for k ∈ N is defined by the expression

Y ∗
k−1>kY

∗
k−2>k−1 · · ·Y ∗

1 >2Y
∗
0 >1Y

∗
0 #Y ∗

0 ⊥1Y
∗
0 ⊥2Y

∗
1 · · · ⊥k−1Y

∗
k−2⊥kY

∗
k−1 ,

hence in particular it does not contain the empty word ε, and belongs to PT 2k+1(Y
∗
k ).

Fix n ∈ N. If n = 0, the proposition follows trivially since for any k-selector σ0 over
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0, we have L0,σ0 = ∅ and ε /∈ Zk; otherwise, we define by induction on k a Yk-program
Pk(d, σ) on {0, 1}(d+k+1)·n for every k-selector σ over n and every d ∈ N.

For any j ∈ [n] and σ a 0-selector over n, which is just a function in P([n]){ε}, let
hj,σ : {0, 1} → Y0 be the function defined by hj,σ(0) = e and hj,σ(1) = # if j ∈ σ(ε),
hj,σ(1) = e otherwise. For all k ∈ N>0, we also let fk and gk be the functions in Yk

{0,1}

defined by fk(0) = gk(0) = e, fk(1) = >k and gk(1) = ⊥k. Moreover, for any k-selector
σ over n, σ|j for j ∈ [n] denotes the (k − 1)-selector over n such that for all ρ′ ∈ [n]k−1,
i ∈ σ|j(ρ′) if and only if i ∈ σ((j, ρ′)).

For k ∈ N>0, d ∈ N and σ a k-selector over n, the Yk-program Pk(d, σ) on {0, 1}(d+k+1)·n

is the following sequence of instructions:

(d · n+ 1, fk)Pk−1(d+ 1, σ|1)(d · n+ 1, gk) · · · (d · n+ n, fk)Pk−1(d+ 1, σ|n)(d · n+ n, gk) .

In other words, for each position i ∈ [[d · n + 1, d · n + n]] with a 1 in the (d + 1)-th
block of n letters in the input, the program runs, between the symbols >k and ⊥k, the
program obtained by induction for the (k − 1)-selector over n obtained by restricting σ
to all vectors in [n]k whose first coordinate is i.

For k = 0, d ∈ N and σ a 0-selector over n, the Y0-program P0(d, σ) on {0, 1}(d+1)·n is
the following sequence of instructions:

(d · n+ 1, h1,σ)(d · n+ 2, h2,σ) · · · (d · n+ n, hn,σ) .

In other words, for each position i ∈ [[d ·n+1, d ·n+n]] with a 1 in the (d+1)-th block of
n letters in the input, the program outputs # if and only if i does belong to the set σ(ε).

A simple computation shows that for any k ∈ N, d ∈ N and σ a k-selector over n, the
number of instructions in Pk(d, σ) is at most 2 · (k + 1) · nk+1.

A simple induction on k shows that for any k ∈ N and d ∈ N, when running on a word
w ∈ {0, 1}(d+k+1)·n, for any σ a k-selector over n, Pk(d, σ) returns a word in Zk if and
only if when u(1), u(2), . . . , u(k), v are the last k + 1 consecutive blocks of n letters of w,
then u(1), u(2), . . . , u(k) each contain 1 exactly once and define the vector ρ in [n]k where
for all i ∈ [k], ρi is given by the position of the only 1 in u(i), verifying that there exists
j ∈ σn(ρ) such that vj is 1.

Therefore, for any k ∈ N and σn a k-selector over n, if we set Ψ(k+1)·n,σn = Pk(0, σn), we
have Kn,σn = Ψ−1

(k+1)·n,σn(Z
=
∣∣Ψ(k+1)·n,σn

∣∣
k ) where Ψ(k+1)·n,σn is a Yk-program on {0, 1}(k+1)·n

of length at most 2 · (k + 1) · nk+1.

Consequently, for all k ∈ N and any sequence of k-selectors ∆, since the language Zk is
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in PT 2k+1(Y
∗
k ) and thus recognised by a monoid from J2k+1, we have, by Corollary 3.4.3,

that L∆ ∈ P
(
J2k+1, n

k+1
)
, as there is a program-reduction from it to Zk of length s(n),

where s : N → N is some function verifying s(n) ≤ 2 · (k + 1)−k · nk+1 for all n ∈ N.

Lower bound. If for some k ∈ N and i ∈ [α], α ∈ N>0, we apply Claim 4.3.2 for all
n ∈ N, l = α · ((k+1) ·n)k, we get a number µi(n) of languages in {0, 1}(k+1)·n recognised
by programs over a monoid of order i on {0, 1}(k+1)·n with at most l instructions that is
in 2O(nk log2(n)), which is asymptotically strictly smaller than the number of distinct Kn,σn

when the k-selector σn over n varies, which is 2n
k+1 , i.e. µi(n) is in o(2nk+1

).
Hence, for all j ∈ N>0, there exist an nj ∈ N and τj a k-selector over nj such that no

program over a monoid of order i ∈ [j] on {0, 1}(k+1)·nj and of length at most j·((k+1)·nj)k

recognises Knj ,τj . Moreover, we can assume without loss of generality that the sequence
(nj)j∈N>0 is increasing. Let ∆ = (σn)n∈N be such that σnj

= τj for all j ∈ N>0 and
σn : [n]

k → P([n]), ρ 7→ ∅ for any n ∈ N verifying that it is not equal to any nj for j ∈ N>0.
We show that no sequence of programs over a finite monoid of length O(nk) can recognise
L∆. If this were the case, then let i be the order of the monoid. Let j ∈ N, j ≥ i be such
that for any n ∈ N, the n-th program has length at most j · nk. But, by construction,
we know that there does not exist any such program on {0, 1}(k+1)·nj recognising Knj ,τj ,
a contradiction.

This implies the following hierarchy, using the fact that for all k ∈ N and all d ∈
N, d ≤

⌈
k
2

⌉
− 1, any monoid from Jd is also a monoid from Jk.

Proposition 5.2.2. For all k ∈ N, P
(
J, nk

)
⊂ P

(
J, nk+1

)
. More precisely, for all k ∈ N

and d ∈ N, d ≤
⌈
k
2

⌉
− 1, P

(
Jk, n

d
)
⊂ P

(
Jk, n

d+1
)
.

5.2.2 Collapse

Looking at Proposition 5.2.2, it looks at first glance rather strange that, when restrict-
ing the monoids to be taken from Jk for some k ∈ N, we can only prove strictness of the
hierarchy inside P(Jk) up to exponent

⌈
k
2

⌉
. We now show, in a way similar to Subsec-

tion 4.3.2 in Chapter 4, that in fact P(Jk) does collapse to P
(
Jk, n

dk/2e) for all k ∈ N,
showing Proposition 5.2.2 to be optimal in some sense.

Proposition 5.2.3. Let k ∈ N. Let (M, ∗) ∈ Jk and Σ be an alphabet. Then there exists
a constant c ∈ N>0 such that any program over (M, ∗) on Σn for n ∈ N is equivalent to a
program over (M, ∗) on Σn of length at most c · ndk/2e.

In particular, P(Jk) = P
(
Jk, n

dk/2e) for all k ∈ N.
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As we observed in Subsection 4.3.2 of the previous chapter, given P a program over
some finite monoid (M, ∗) on Σn for n ∈ N and Σ an alphabet, a subprogram P ′ of P is
equivalent to P if and only if for every language K ⊆ M∗ recognised by the evaluation
morphism η(M,∗) of (M, ∗) we have ξP (w) ∈ K ⇔ ξP ′(w) ∈ K for all w ∈ Σn. Moreover,
every language recognised by η(M,∗) is precisely a language of PT k(M

∗) when (M, ∗) ∈ Jk

for some k ∈ N.
The result is hence a consequence of the following lemma and the fact that every

language in PT k(M
∗) is a union of ∼M

k -classes, each of those classes corresponding to all
words over M having the same set of k-subwords, that is finite.

Lemma 5.2.4. Let Σ be an alphabet and (M, ∗) a finite monoid.
For all k ∈ N, there exists a constant c ∈ N>0 verifying that for any program P over

(M, ∗) on Σn for n ∈ N and any word t ∈Mk, there exists a subprogram Q of P of length
at most c · ndk/2e such that for any subprogram Q′ of P that has Q as a subprogram, for
all w ∈ Σn, t is a subword of ξP (w) if and only if t is a subword of ξQ′(w).

Proof. A program P over (M, ∗) on Σn for n ∈ N is a finite sequence (pi, fi) of instructions
where each pi is a positive natural number which is at most n and each fi is a function
from Σ to M . We denote by l the number of instructions of P . As in the proof of
Lemma 4.3.5, for each set I ⊆ [l] we denote by P [I] the subprogram of P consisting of
the subsequence of instructions of P obtained after removing all instructions whose index
is not in I. In particular, P [1,m] denotes the initial sequence of instructions of P , until
instruction number m.

We prove the lemma by induction on k, fixing the constant to be ck = k! · |Σ|dk/2e for
a given k ∈ N.

The intuition behind the proof for a program P on inputs of length n and some t
of length at least 3 is as follows. Consider all the indices 1 ≤ i1 < i2 < · · · < is ≤ l

that correspond, for a fixed letter a and a fixed position p in the input, to the first
instruction of P that would output the element t1 when reading a at position p or to
the last instruction of P that would output the element tk when reading a at position p.
We then have that, given some w as input, t is a subword of ξP (w) if and only if there
exist 1 ≤ γ < δ ≤ s verifying that the element at position iγ of ξP (w) is t1, the element
at position iδ of ξP (w) is tk and t2 · · · tk−1 is a subword of ξP [iγ+1,iδ−1](w). The idea is
then that if we set I to contain i1, i2, . . . , is as well as all indices obtained by induction
for P [iγ + 1, iδ − 1] and t2 · · · tk−1 for all 1 ≤ γ < δ ≤ s, we would have that for all w, t
is a subword of ξP (w) if and only if it is a subword of ξP [I](w), that is ξP (w) where only
the elements at indices in I have been kept. The only problem is that in doing this, I
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would possibly be too big (possibly at least α · nd(k−2)/2e+2 for α some constant), because
the number of pairs 1 ≤ γ < δ ≤ s is quadratic in s and hence possibly in n. We solve
this problem by setting I to contain, in addition to i1, i2, . . . , is, all indices obtained by
induction for P [ij + 1, ij+1 − 1] and tα · · · tβ for all 1 ≤ j ≤ s − 1 (for which we have a
number of possibilities linear in s and hence at most linear in n) and 1 < α ≤ β < k (for
which we have a number of possibilities quadratic in k, a constant).

The intuition behind the proof when t is of length less than 3 is essentially the same,
but without induction.

Inductive step. Let k ∈ N, k ≥ 3 and assume the lemma proven for all k′ ∈ N, k′ < k.
Let P be a program over (M, ∗) on Σn for n ∈ N of length l ∈ N and some word t ∈Mk.

Observe that when n = 0, we necessarily have P = ε, so that the lemma is trivially
proven in that case. So we now assume n > 0.

For each p ∈ [n] and each a ∈ Σ consider within the sequence of instructions of P the
first instruction of the form (p, f) with f(a) = t1 and the last instruction of that form
with f(a) = tk, if they exist. We let I(1,k) be the set of indices of these instructions for all
a and p. Notice that the size of I(1,k) is at most 2 · |Σ| · n.

Let s =
∣∣I(1,k)∣∣ and let us denote I(1,k) = {i1, i2, . . . , is} where i1 < i2 < · · · < is. Given

α, β ∈ [k], we also set t(α,β) = tαtα+1 · · · tβ. For all α, β ∈ [k] such that 1 < α ≤ β < k and
j ∈ [s− 1], we let Jj,(α,β) be the set of indices of the instructions within P [ij +1, ij+1 − 1]

appearing in its subprogram obtained by induction for P [ij + 1, ij+1 − 1] and t(α,β).
We now let I be the union of I(1,k) and J ′

j,(α,β) = {e+ ij | e ∈ Jj,(α,β)} for all α, β ∈ [k]

such that 1 < α ≤ β < k and j ∈ [s − 1] (the translation being required because the
first instruction in P [ij + 1, ij+1 − 1] is the (ij + 1)-th instruction in P ). We claim that
Q = P [I], a subprogram of P , has the desired properties.

First notice that by induction the size of J ′
j,(α,β) for all α, β ∈ [k] such that 1 < α ≤

β < k and j ∈ [s− 1] is upper bounded by

(β − α + 1)! · |Σ|d(β−α+1)/2e · nd(β−α+1)/2e ≤ (k − 2)! · |Σ|d(k−2)/2e · nd(k−2)/2e .

Hence, the size of I is at most

∣∣I(1,k)∣∣+ s−1∑
j=1

∑
1<α≤β<k

∣∣J ′
j,(α,β)

∣∣
≤2 · |Σ| · n+ (2 · |Σ| · n− 1) · (k − 1) · (k − 2)

2
· (k − 2)! · |Σ|d(k−2)/2e · nd(k−2)/2e
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≤2 · |Σ| · n+ (2 · |Σ| · n− 1) · k · (k − 1)

2
· (k − 2)! · |Σ|d(k−2)/2e · nd(k−2)/2e

≤k! · |Σ|dk/2e · ndk/2e = ck · ndk/2e

as
∣∣{(α, β) ∈ N2 | 1 < α ≤ β < k}

∣∣ =∑k−1
j=2(k− j) =

∑k−2
j=1 j =

(k−1)·(k−2)
2

and 2 · |Σ| · n ≤
k!
2
· |Σ|d(k−2)/2e · nd(k−2)/2e since k ≥ 3, so that P [I] has at most the required length.
Let Q′ be a subprogram of P that has Q as a subprogram: it means that there exists

some set I ′ ⊆ [l] containing I such that Q′ = P [I ′].
Take w ∈ Σn.
Assume now that t is a subword of ξP (w). It means that there exist r1, r2, . . . , rk ∈ [l],

r1 < r2 < · · · < rk, such that for all j ∈  [k], frj(wprj ) = tj. By definition of I(1,k), there
exist γ, δ ∈ [s], γ < δ, such that iγ ≤ r1 < rk ≤ iδ and fiγ (wpiγ ) = t1 and fiδ(wpiδ ) = tk.
For each j ∈ [[γ, δ − 1]], let mj ∈ [[2, k]] be the smallest integer in [[2, k − 1]] such that
ij ≤ rmj

< ij+1, k if it does not exist, and Mj ∈ [[1, k − 1]] be the biggest integer in
[[2, k − 1]] such that ij ≤ rMj

< ij+1, 1 if it does not exist. Observe that, since for
each j ∈ [[γ, δ − 1]], t(mj ,Mj) = t(k,1) = ε if there does not exist any o ∈ [[2, k − 1]]

verifying ij ≤ ro < ij+1, we have t(2,k−1) =
∏δ−1

j=γ t
(mj ,Mj). For all j ∈ [[γ, δ − 1]], we have

that for any set J ⊆ [ij+1 − ij − 1] containing
⋃

1<α≤β<k Jj,(α,β), t(mj ,Mj) is a subword of
fij(wpij )ξP [ij+1,ij+1−1][J ](w) whenmj < k and rmj

= ij, and of ξP [ij+1,ij+1−1][J ](w) otherwise.
Indeed, let j ∈ [[γ, δ − 1]].

• If mj < k and rmj
= ij, then fij(wpij ) = frmj

(wprmj
) = tmj

and ij = rmj
< rmj+1 <

· · · < rMj
< ij+1, so t(mj+1,Mj) is a subword of ξP [ij+1,ij+1−1](w). This implies, directly

when mj = Mj or by induction otherwise, that for any set J ⊆ [ij+1 − ij − 1]

containing
⋃

1<α≤β<k Jj,(α,β), t(mj+1,Mj) is a subword of ξP [ij+1,ij+1−1][J ](w). This
implies in turn that t(mj ,Mj) is a subword of fij(wpij )ξP [ij+1,ij+1−1][J ](w).

• Otherwise, when mj = k, there does not exist any o ∈ [[2, k − 1]] verifying ij ≤
ro < ij+1, so t(mj ,Mj) = ε is trivially a subword of ξP [ij+1,ij+1−1][J ](w) for any set
J ⊆ [ij+1 − ij − 1] containing

⋃
1<α≤β<k Jj,(α,β). And when mj < k but rmj

6= ij, it
means that rmj

> ij, hence ij < rmj
< rmj+1 < · · · < rMj

< ij+1, so t(mj ,Mj) is a
subword of ξP [ij+1,ij+1−1](w). This implies, by induction, that t(mj ,Mj) is a subword
of ξP [ij+1,ij+1−1][J ](w) for any set J ⊆ [ij+1 − ij − 1] containing

⋃
1<α≤β<k Jj,(α,β).

Therefore, using the convention that i0 = 0 and is+1 = l+ 1, if we set, for each j ∈ [[0, s]],
I ′j = {e− ij | e ∈ I ′, ij < e < ij+1} as the subset of I ′ of elements strictly between ij and
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ij+1 translated by −ij, we have that t(2,k−1) is a subword of

ξP [iγ+1,iγ+1−1][I′γ ](w)fiγ+1(wpiγ+1
)ξP [iγ+1+1,iγ+2−1][I′γ+1]

(w) · · ·

fiδ−1
(wpiδ−1

)ξP [iδ−1+1,iδ−1][I′δ−1]
(w)

(since we have rmγ ≥ r2 > r1 ≥ iγ), so that, as fiγ (wpiγ ) = t1 and fiδ(wpiδ ) = tk, we have
that t = t1t

(2,k−1)tk is a subword of

ξP [1,i1−1][I′0]
(w)fi1(wpi1 )ξP [i1+1,i2−1][I′1]

(w) · · · fis(wpis )ξP [is+1,l][I′s](w) = ξP [I′](w) .

Assume finally that t is a subword of ξP [I′](w). Then it is obviously a subword of
ξP (w), as ξP [I′](w) is a subword of ξP (w).

Therefore, t is a subword of ξP (w) if and only if t is a subword of ξQ′(w) = ξP [I′](w),
as desired.

Base case. There are three subcases to consider.

Subcase k = 2. Let P be a program over (M, ∗) on Σn for n ∈ N of length l ∈ N
and some word t ∈M2.

We use the same idea as in the inductive step.
Observe that when n = 0, we necessarily have P = ε, so that the lemma is trivially

proven in that case. So we now assume n > 0.
For each p ∈ [n] and each a ∈ Σ consider within the sequence of instructions of P the

first instruction of the form (p, f) with f(a) = t1 and the last instruction of that form
with f(a) = t2, if they exist. We let I be the set of indices of these instructions for all a
and p. Notice that the size of I is at most 2 · |Σ| · n = 2! · |Σ|d2/2e · nd2/2e = c2 · nd2/2e.

We claim that Q = P [I], a subprogram of P , has the desired properties. We just
showed it has at most the required length.

Let Q′ be a subprogram of P that has Q as a subprogram: it means that there exists
some set I ′ ⊆ [l] containing I such that Q′ = P [I ′].

Take w ∈ Σn.
Assume now that t is a subword of ξP (w). It means there exist i1, i2 ∈ [l], i1 < i2 such

that fi1(wpi1 ) = t1 and fi2(wpi2 ) = t2. By definition of I, there exist i1′, i2′ ∈ I, such that
i1

′ ≤ i1 < i2 ≤ i2
′ and fi1′(wpi1′ ) = t1 and fi2′(wpi2′ ) = t2. Hence, as fi1′(wpi1′ )fi2′(wpi2′ )

is a subword of ξP [I′](w) (because I ⊆ I ′), we get that t = t1t2 is a subword of ξP [I′](w).
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Assume finally that t is a subword of ξP [I′](w). Then it is obviously a subword of
ξP (w), as ξP [I′](w) is a subword of ξP (w).

Therefore, t is a subword of ξP (w) if and only if t is a subword of ξQ′(w) = ξP [I′](w),
as desired.

Subcase k = 1. Let P be a program over (M, ∗) on Σn for n ∈ N of length l ∈ N
and some word t ∈M1.

We again use the same idea as before.
Observe that when n = 0, we necessarily have P = ε, so that the lemma is trivially

proven in that case. So we now assume n > 0.
For each p ∈ [n] and each a ∈ Σ consider within the sequence of instructions of

P the first instruction of the form (p, f) with f(a) = t1, if it exists. We let I be the
set of indices of these instructions for all a and p. Notice that the size of I is at most
|Σ| · n = 1! · |Σ|d1/2e · nd1/2e = c1 · nd1/2e.

We claim that Q = P [I], a subprogram of P , has the desired properties. We just
showed it has at most the required length.

Let Q′ be a subprogram of P that has Q as a subprogram: it means that there exists
some set I ′ ⊆ [l] containing I such that Q′ = P [I ′].

Take w ∈ Σn.
Assume now that t is a subword of ξP (w). It means there exists i ∈ [l] such that

fi(wpi) = t1. By definition of I, there exists i′ ∈ I such that i′ ≤ i and fi′(wpi′ ) = t1.
Hence, as fi′(wpi′ ) is a subword of ξP [I′](w) (because I ′ ⊆ I), we get that t = t1 is a
subword of ξP [I′](w).

Assume finally that t is a subword of ξP [I′](w). Then it is obviously a subword of
ξP (w), as ξP [I′](w) is a subword of ξP (w).

Therefore, t is a subword of ξP (w) if and only if t is a subword of ξQ′(w) = ξP [I′](w),
as desired.

Subcase k = 0. Let P be a program over (M, ∗) on Σn for n ∈ N of length l ∈ N
and some word t ∈M0.

We claim that Q = ε, a subprogram of P , has the desired properties.
First notice that the length of Q is 0 ≤ 0! · |Σ|d0/2e · nd0/2e = c0 · nd0/2e, at most the

required length.
Let Q′ be a subprogram of P that has Q as a subprogram. As t ∈M0, we necessarily

have that t = ε, which is a subword of any word in M∗. Therefore, we immediately get
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that for all w ∈ Σn, t is a subword of ξP (w) if and only if t is a subword of ξQ′(w), as
desired.

5.3 Regular languages in P(J)

As we showed in Chapter 3, J is not an sp-variety of finite monoids and it even contains
finite monoids that p-recognise languages outside L(QJ) (see Lemma 3.4.13).

In this section, we present some results that give a better understanding of what
regular languages can be p-recognised by monoids in J.

5.3.1 Non-tameness of J

Lemma 3.4.12 shows that the language a(a+ b)∗ over {a, b} does belong to P(J), while it
does not belong to L(QJ), showing J isn’t tame. But actually, the first thing to notice
is that, though none of them is in L(QJ), all languages of the form Σ∗u and uΣ∗ for Σ

an alphabet and u ∈ Σ+ are in P(J). Indeed, for each of these languages, a sequence
of constant-length programs over the J-trivial monoid (Z/2Z,×) (where × denotes the
canonical product modulo 2) recognising it can be built, where for each possible input
length, the associated program just checks if the |u| first (or last) letters are correct.
So, informally stated, programs over monoids in J can check for some constant-length
beginning or ending of their input words.

But programs over monoids in J can do even more. Indeed, it is easily seen that the
language (a+ b)∗ac+ does not belong to L(QJ) (just observe that the stable monoid of its
syntactic morphism is equal to its syntactic monoid, which is not J-trivial), yet (a+b)∗ac+

is p-recognised by a monoid in J. The crucial insight is that it can be program-reduced
in linear length to the piecewise testable language L of all words over {a, b, c} having
ca as a subword but not the subwords cca, caa and cb by using the following trick for
input length n ∈ N: reading the input letters in the order 2, 1, 3, 2, 4, 3, 5, 4, . . . , n, n − 1

(a reading technique we shall call “feedback-sweeping”), just outputting the letters read.
We are now going to formalise this proof.

Lemma 5.3.1. (a+ b)∗ac+ ∈ P(J, n).

Proof. Let Σ = {a, b, c}.
Let

L = ca� Σ∗ ∩ (cca� Σ∗){ ∩ (caa� Σ∗){ ∩ (cb� Σ∗){
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be the language of all words over Σ having ca as a subword but not the subwords cca,
caa and cb, that by construction is piecewise testable, i.e. belongs to L(J).

We are now going to build a program-reduction from (a+ b)∗ac+ to L. Let n ∈ N. If
n ≤ 1, we set Ψn to be ε, the empty Σ-program on Σn. Otherwise, if n ≥ 2, we set

Ψn = (2, idΣ)(1, idΣ)(3, idΣ)(2, idΣ)(4, idΣ)(3, idΣ)(5, idΣ)(4, idΣ) · · · (n, idΣ)(n− 1, idΣ) .

Let us define s : N → N by s(n) = |Ψn| for all n ∈ N, which is such that

s(n) =

0 if n ≤ 1

2n− 2 otherwise (n ≥ 2)

for all n ∈ N. Fix n ∈ N.
Let w ∈ ((a+b)∗ac+)=n: it means n ≥ 2 and there exist u ∈ (a+b)n1 with n1 ∈ [[0, n−2]]

and n2 ∈ [[0, n− 2]] verifying that w = uaccn2 and n1 + n2 = n− 2. We therefore have

Ψn(w) =

cac2n2 when n1 = 0

u2u1 · · ·un1un1−1aun1cac
2n2 otherwise (n1 > 0) ,

a word easily seen to belong to L=2n−2. Since this is true for all w ∈ ((a + b)∗ac+)=n, it
follows that ((a+ b)∗ac+)=n ⊆ Ψ−1

n (L=s(n)).
Let conversely w ∈ Ψ−1

n (L=s(n)). Since this means that Ψn(w) ∈ L=s(n), we necessarily
have n ≥ 2 as it must contain ca as a subword, so that

Ψn(w) = w2w1w3w2w4w3 · · ·wnwn−1 .

Let i, j ∈ [n] verifying that wi = c, wj = a and wiwj is a subword of Ψn(w). This means
that j ≥ i− 1, and we will now show that, actually, j = i− 1. Assume that j ≥ i+ 2; by
construction, this would mean that wiwjwj = caa is a subword of Ψn(w), a contradiction
to the fact it belongs to L. Assume otherwise that j = i+ 1; by construction, this would
either mean that wiwi−1wi+1wi is a subword of Ψn(w), which would imply one of caa, cba
and cca is a subword of Ψn(w), or that wi+1wiwi+2wi+1 is a subword of Ψn(w), which would
imply one of caa, cba and cca is a subword of Ψn(w), in both cases contradicting the
fact Ψn(w) belongs to L. Hence, we indeed have j = i− 1, and in particular that i ≥ 2.
Now, by construction, for each t ∈ [i− 2], we have that wtwiwi−1 = wtca is a subword of
Ψn(w) ∈ L, so that wt cannot be equal to c. Similarly, for each t ∈ [[i+1, n]], we have that
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wiwi−1wt = cawt is a subword of Ψn(w) ∈ L, so that wt must be equal to c. This means
that w1 · · ·wi−1 ∈ (a + b)∗ and wi+1 · · ·wn ∈ c∗, so that w ∈ (a + b)∗acc∗ = (a + b)∗ac+.
Since this is true for all w ∈ Ψ−1

n (L=s(n)), it follows that ((a+ b)∗ac+)=n ⊇ Ψ−1
n (L=s(n)).

Therefore, we have that ((a + b)∗ac+)=n = Ψ−1
n (L=s(n)) for all n ∈ N, so (Ψn)n∈N is

a program reduction from (a + b)∗ac+ to L of length s(n). So since L ∈ L(J), we can
conclude that (a+ b)∗ac+ ∈ P(J, s(n)) = P(J, n) by Corollary 3.4.3.

Using variants of this “feedback-sweeping” technique, we can prove that the phe-
nomenon just described is not an isolated case.

Lemma 5.3.2. We have the following.

(a+ b)∗ac+ ∈ P(J) \ L(QJ) ,

(a+ b)∗ac+a(a+ b)∗ ∈ P(J) \ L(QJ) ,

c+a(a+ b)∗ac+ ∈ P(J) \ L(QJ) ,(
(a+ c)2

)∗
(bb)∗ ∈ P(J) ∩ L(QJ) ,

(a+ b)∗bac+ ∈ P(J) \ L(QJ) ,

(a+ b)∗ac+(a+ b)∗ac+ ∈ P(J) \ L(QJ) .

Hence, we are tempted to say that there are “much more” regular languages in P(J)
than just those in L(QJ), even if it is not clear to us whether all of the languages in L(QJ)
are in P(J) or not. Consequently, by Proposition 3.4.8, we are tempted to add that it
contains “much more” sets of word problems than just those over semigroups (S, ∗) such
that in (S, ∗)1 ∈ J. But can we show any limit on the “algebraic complexity” of a finite
semigroup whose set of word problems is contained in P(J)? It turns out that we can,
relying on a known result and one proven in this thesis.

Obviously, since J ⊆ DA, we have P(J) ⊆ P(DA), so the tameness of DA, The-
orem 4.2.1, implies what follows, observing that 〈DA〉S is exactly the class of all finite
semigroups (S, ∗) such that (S, ∗)1 ∈ DA (see [Eilenberg, 1976, Chapter V, Proposition
1.2]).

Lemma 5.3.3. Let (S, ∗) be a finite semigroup such that (S, ∗) /∈ 〈DA〉S. Then, we have
W((S, ∗)) * P(J).

Moreover P(J) ∩Reg ⊆ L(QDA).

Moreover, since J ⊆ J ∗ D, we have P(J) ⊆ P(J ∗ D) (if we extend the program-
over-monoid formalism in the obvious way to finite semigroups) and Maciel, Péladeau
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and Thérien, in [Maciel et al., 2000, Theorem 7], proved1 that J ∗ D is a p-variety of
finite semigroups, i.e. for any finite semigroup (S, ∗), W((S, ∗)) ⊆ P(J ∗ D) if and only if
(S, ∗) ∈ J ∗ D. This implies the lemma below.

Lemma 5.3.4. Let (S, ∗) be a finite semigroup such that (S, ∗) /∈ J ∗ D. Then, we have
W((S, ∗)) * P(J).

Moreover P(J) ∩Reg ⊆ L(Q(J ∗ D)).

These two lemmata together finally show that if the set of word problems over some
finite semigroup is contained in P(J), then this semigroup must belong to the variety of
finite semigroups J ∗ D ∩ 〈DA〉S (intersection of two varieties of finite semigroups being
trivially seen to be itself a variety of finite semigroups).

In fact, Lemma 5.3.2 gives us good reasons to conjecture that the converse is also
true, i.e. that for any finite semigroup (S, ∗), (S, ∗) ∈ J ∗ D ∩ 〈DA〉S if and only if
W((S, ∗)) ⊆ P(J). Since a word problem over some semigroup in J ∗ D ∩ 〈DA〉S is a
language in L(J ∗ D ∩ 〈DA〉S), this would precisely follow from a proof of this conjecture
in addition to what we already know.

Conjecture 1. For any L ∈ L(J ∗ D ∩ 〈DA〉S), there exists a sequence (Pn)n∈N of pro-
grams over some monoid in J that decides L.

In fact, we even conjecture the following about the precise characterisation of the lm-
variety of regular languages p-recognised by a monoid taken from P(J).

Conjecture 2. P(J) ∩Reg = L(Q(J ∗ D ∩ 〈DA〉S)).

This second conjecture does not directly follow from the first one, because we do not
know whether Q(J ∗ D ∩ 〈DA〉S) = 〈J ∗ D ∩ 〈DA〉S〉ne ∗ MOD or not, a fact that
would allow us to deduce the truth of Conjecture 2 straightforwardly from the truth of
Conjecture 1 by Proposition 3.4.5.

Let us try to explain what we mean when we say we have “good reasons” for at least
Conjecture 1 to be true. Let Σ be an alphabet and u1, . . . , uk ∈ Σ+ (k ∈ N>0); we define
[u1, . . . , uk]Σ = Σ∗u1Σ

∗ · · ·Σ∗ukΣ
∗. The ne-variety of languages L(J ∗ D) is the ne-variety

of dot-depth one languages, that are Boolean combinations of languages of the form Σ∗u,
uΣ∗ and [u1, . . . , uk]Σ for Σ an alphabet, k ∈ N>0 and u, u1, . . . , uk ∈ Σ+ (see Straubing
[1985], Maciel et al. [2000], Pin [2017]). Though, for a given alphabet Σ, we cannot decide

1To be entirely rigorous, this is not exactly what they proved; to get precisely this, we need to appeal
to results of Straubing in Straubing [1985] identifying J ∗D as the variety of finite semigroups generated
by the syntactic semigroups of dot-depth one languages.
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whether some word u ∈ Σ+ of length at least 2 appears as a factor of any given word w in
Σ∗ with programs over finite J-trivial monoids (because Σ∗uΣ∗ /∈ L(QDA)), Lemma 5.3.2
and the possibilities offered by the “feedback-sweeping” technique give the impression
that we can do it when we are guaranteed that u appears at most a fixed number of
times in w (i.e. there exists some fixed l ∈ N such that ul is not a subword of w),
which seems somehow to be the effect of intersecting J ∗ D with 〈DA〉S on the class of
associated languages. This motivates the definition of threshold dot-depth one languages.

5.3.2 Threshold dot-depth one languages

The idea behind the definition of threshold dot-depth one languages is that we take
the basic building blocks of dot-depth one languages, of the form [u1, . . . , uk]Σ for Σ an
alphabet, k ∈ N>0 and u1, . . . , uk ∈ Σ+ (defined at the end of the previous section, just
above), and restrict them in the sense that, given some l ∈ N>0, membership of a word
does really depend on the presence of a given word ui as a factor if and only if it appears
less than l times as a subword, as defined formally below.

Definition 5.3.5. Let Σ be an alphabet. For all u ∈ Σ+ and l ∈ N>0, we define [u]Σ,l to
be the language of words over Σ containing l copies of u as a subword or u as a factor,
i.e. [u]Σ,l = Σ∗uΣ∗ ∪ ul � Σ∗, as well as the following three languages:

[u[Σ,l = Σ∗u

]u]Σ,l = uΣ∗

]u[Σ,l = u .

Then, for all u1, . . . , uk ∈ Σ+ (k ∈ N, k ≥ 2) and l ∈ N>0, we also define

[u1, . . . , uk]Σ,l = [u1]Σ,l  · · · [uk]Σ,l
[u1, . . . , uk[Σ,l = [u1]Σ,l  · · · [uk−1]Σ,l[uk[Σ,l

]u1, . . . , uk]Σ,l = ]u1]Σ,l[u2]Σ,l  · · · [uk]Σ,l
]u1, . . . , uk[Σ,l = ]u1]Σ,l[u2]Σ,l  · · · [uk−1]Σ,l[uk[Σ,l .

We additionally use the convention for l ∈ N>0 and ε an empty list of words in Σ+, that
[ε]Σ,l = Σ∗ and [ε[Σ,l = ]ε]Σ,l = ]ε[Σ,l = ∅.

It is obvious that for each Σ an alphabet, k ∈ N>0 and u1, . . . , uk ∈ Σ+, the language
[u1, . . . , uk]Σ,1 is equal to u1 · · ·uk � Σ∗. The language [ab, c]{a,b,c},3 contains all words
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over {a, b, c} such that they contain a letter c verifying that in the prefix up to that
letter, ababab appears as a subword or ab appears as a factor. Finally, the language (a+

b)∗ac+ over {a, b, c}, that Lemma 5.3.1 shows to belong to P(J), is equal to [c, a]{a,b,c},2
{∩

[c, b]{a,b,c},2
{ ∩ [ac]{a,b,c},2.

We can then define a threshold dot-depth one language as any language that is a
Boolean combination of languages of the form [u1, . . . , uk]Σ,l, [u1, . . . , uk[Σ,l, ]u1, . . . , uk]Σ,l
or ]u1, . . . , uk[Σ,l for Σ an alphabet, k, l ∈ N>0 and u1, . . . , uk ∈ Σ+. Intuitively, a threshold
dot-depth one language is a language of dot-depth one where detection of the presence of
a given factor works if and only if it does not appear too often as a subword.

Confirming the intuition briefly given at the end of the previous subsection, the tech-
nique of “feedback-sweeping” can indeed be generalised and pushed further to prove that
the whole class of all threshold dot-depth one languages is contained in P(J), and we
dedicate the remainder of this section to prove it. Let us just say a few words about
how this could help to prove Conjecture 1. Our intuition, as we explained in the previous
subsection, leads us to believe that, in fact, the class of all threshold dot-depth one lan-
guages is exactly the ne-variety of languages L(J ∗ D ∩ 〈DA〉S). Sadly, we were not able
to prove it and in the next section, we shall only give a partial result that supports this
belief.

Let us now move on to the proof of the following theorem.

Theorem 5.3.6. The class of all threshold dot-depth one languages is contained in P(J)∩
Reg.

Knowing that P(J)∩Reg is closed under Boolean operations (see Proposition 3.4.2),
our goal is to prove, given an alphabet Σ, l ∈ N>0 and u1, . . . , uk ∈ Σ+ (k ∈ N>0),
that [u1, . . . , uk]Σ,l is in P(J), and we can then easily handle the case of [u1, . . . , uk[Σ,l,
]u1, . . . , uk]Σ,l and ]u1, . . . , uk[Σ,l. To do this, we need to put [u1, . . . , uk]Σ,l in some normal
form. It is readily seen that [u1, . . . , uk]Σ,l =

⋃
q1,...,qk∈{1,l} L

(Σ,l)
(u1,q1)

· · ·L(Σ,l)
(uk,qk)

where each
L
(Σ,l)
(ui,qi)

for i ∈ [k] is defined in the following way.

Definition 5.3.7. Let Σ be an alphabet.
For all u ∈ Σ+, l ∈ N>0 and α ∈ [l],

L
(Σ,l)
(u,α) =

Σ∗uΣ∗ if α < l

ul � Σ∗ otherwise
.

Building directly a sequence of programs over a finite J-trivial monoid that decides
L
(Σ,l)
(u1,q1)

· · ·L(Σ,l)
(uk,qk)

for some q1, . . . , qk ∈ {1, l} seems however tricky. We need to split things
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even further by controlling precisely how many times each ui for i ∈ [k] appears in the right
place when it does less than l times. To do this, we consider, for each α1, . . . , αk ∈ [l],
the language R(Σ,l)

(u1,α1),...,(uk,αk)
of words w over Σ containing u1α1 · · ·ukαk as a subword and

such that for each i ∈ [k] verifying αi < l, given the shortest prefix v0 of w containing
u1

α1 · · ·ui−1
αi−1 as a subword and the shortest suffix v2 of w containing ui+1

αi+1 · · ·ukαk

as a subword, the factor v1 of w such that w = v0v1v2 does not contain more than αi

times ui as a subword. This is formalised below.

Definition 5.3.8. Let Σ be an alphabet.
For all u1, . . . , uk ∈ Σ+ (k ∈ N>0), l ∈ N>0, α1, . . . , αk ∈ [l], we set

R
(Σ,l)
(u1,α1),...,(uk,αk)

= (u1
α1 · · ·ukαk)� Σ∗ ∩

⋂
i∈[k],αi<l

(
(u1

α1 · · ·uiαi+1 · · ·ukαk)� Σ∗){ .

Now, for given α1, . . . , αk ∈ [l], we are interested in the words of R(Σ,l)
(u1,α1),...,(uk,αk)

that
are such that for each i ∈ [k] verifying αi < l, ui indeed appears as a factor in the right
place. We thus introduce a last language S(Σ,l)

(u1,αk),...,(uk,αk)
of words over Σ such that for

each i ∈ [k] verifying αi < l, it has a prefix containing u1α1 · · ·ui−1
αi−1 as a subword, a

suffix containing ui+1
αi+1 · · ·ukαk as a subword, and a factor ui in between. We formalise

this in the definition that follows.

Definition 5.3.9. Let Σ be an alphabet.
For all u1, . . . , uk ∈ Σ+ (k ∈ N>0), l ∈ N>0, α1, . . . , αk ∈ [l], we set

S
(Σ,l)
(u1,α1),...,(uk,αk)

=
⋂

i∈[k],αi<l

(
(u1

α1 · · ·ui−1
αi−1)� Σ∗)ui((ui+1

αi+1 · · ·ukαk)� Σ∗)
(where (u1

α1 · · ·ui−1
αi−1)� Σ∗ = Σ∗ when i = 1 and (ui+1

αi+1 · · ·ukαk)� Σ∗ = Σ∗ when
i = k).

Using these two previous definitions, we now have the normal form we were looking for
to prove Theorem 5.3.6: [u1, . . . , uk]Σ,l is equal to the union, over all α1, . . . , αk ∈ [l], of the
intersection of R(Σ,l)

(u1,α1),...,(uk,αk)
and S

(Σ,l)
(u1,αk),...,(uk,αk)

. To prove that [u1, . . . , uk]Σ,l ∈ P(J),
we can then prove R(Σ,l)

(u1,α1),...,(uk,αk)
∩ S(Σ,l)

(u1,αk),...,(uk,αk)
to be in P(J) for all α1, . . . , αk ∈ [l]

and conclude by closure of P(J) ∩Reg under union (see Proposition 3.4.2).
Though rather intuitive, the correctness of this way of decomposing [u1, . . . , uk]Σ,l is

not so straightforward to prove and, actually, we can only prove it when for each i ∈ [k],
the letters in ui are all distinct.
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Lemma 5.3.10. Let Σ be an alphabet, l ∈ N>0 and u1, . . . , uk ∈ Σ+ (k ∈ N>0) such that
for each i ∈ [k], the letters in ui are all distinct. Then,⋃

q1,...,qk∈{1,l}

L
(Σ,l)
(u1,q1)

· · ·L(Σ,l)
(uk,qk)

=
⋃

α1,...,αk∈[l]

(R
(Σ,l)
(u1,α1),...,(uk,αk)

∩ S(Σ,l)
(u1,α1),...,(uk,αk)

) .

Proof. Let Σ be an alphabet and l ∈ N>0. We prove it by induction on k ∈ N>0.

Base case k = 1. Let u1 ∈ Σ+ such that the letters in u1 are all distinct. It is clear
that ⋃

q1∈{1,l}

L
(Σ,l)
(u1,q1)

= (Σ∗u1Σ
∗ ∪ u1l � Σ∗)

=
( l−1⋃
α1=1

(
u1

α1
� Σ∗ ∩ (u1

α1+1
� Σ∗){ ∩ Σ∗u1Σ

∗) ∪ (u1
l
� Σ∗)

)
=
⋃
α1∈[l]

(R
(Σ,l)
(u1,α1)

∩ S(Σ,l)
(u1,α1)

) .

Induction. Let k ∈ N>0 and assume that for all u1, . . . , uk ∈ Σ+ such that for each
i ∈ [k], the letters in ui are all distinct, we have⋃

q1,...,qk∈{1,l}

L
(Σ,l)
(u1,q1)

· · ·L(Σ,l)
(uk,qk)

=
⋃

α1,...,αk∈[l]

(R
(Σ,l)
(u1,α1),...,(uk,αk)

∩ S(Σ,l)
(u1,α1),...,(uk,αk)

) .

Let now u1, . . . , uk+1 ∈ Σ+ such that for each i ∈ [k+1], the letters in ui are all distinct.

Right-to-left inclusion. Let

w ∈
⋃

α1,...,αk+1∈[l]

(R
(Σ,l)
(u1,α1),...,(uk+1,αk+1)

∩ S(Σ,l)
(u1,α1),...,(uk+1,αk+1)

) .

Let α1, . . . , αk+1 ∈ [l] witnessing this fact. As w ∈ R
(Σ,l)
(u1,α1),...,(uk+1,αk+1)

, we can de-
compose it as w = xy where x ∈ (u1

α1 · · ·ukαk)� Σ∗, y ∈ uk+1
αk+1 � Σ∗ and |y| is min-

imal. What we are going to do is, on the one hand, to prove that x ∈ R
(Σ,l)
(u1,α1),...,(uk,αk)

∩
S
(Σ,l)
(u1,α1),...,(uk,αk)

, so that we can apply the inductive hypothesis on x and get that there
exist q1, . . . , qk ∈ {1, l} such that x ∈ L

(Σ,l)
(u1,q1)

· · ·L(Σ,l)
(uk,qk)

; and, on the other hand, we are
going to prove that there exists qk+1 ∈ {1, l} verifying y ∈ L

(Σ,l)
(uk+1,qk+1)

. We now spell out
the details.
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For each i ∈ [k], αi < l, we have x /∈ (u1
α1 · · ·uiαi+1 · · ·ukαk)�Σ∗, otherwise we would

have w = xy ∈ (u1
α1 · · ·uiαi+1 · · ·uk+1

αk+1) � Σ∗. Also, for all i ∈ [k], αi < l, we have
that x ∈

(
(u1

α1 · · ·ui−1
αi−1)� Σ∗)ui((ui+1

αi+1 · · ·ukαk)� Σ∗), otherwise it would mean
that y = y1y2 with |y1| > 0, xy1 ∈

(
(u1

α1 · · ·ui−1
αi−1)� Σ∗)ui((ui+1

αi+1 · · ·ukαk)� Σ∗)
and y2 ∈ uk+1

αk+1 � Σ∗, contradicting the minimality of |y|. So x ∈ R
(Σ,l)
(u1,α1),...,(uk,αk)

∩
S
(Σ,l)
(u1,α1),...,(uk,αk)

, which means by inductive hypothesis that there exist q1, . . . , qk ∈ {1, l}
such that x ∈ L

(Σ,l)
(u1,q1)

· · ·L(Σ,l)
(uk,qk)

.
Remember now that the letters in uk+1 are all distinct. If αk+1 < l, since w ∈(

(u1
α1 . . . uk

αk) � Σ∗)uk+1Σ
∗, we must have y ∈ Σ∗uk+1Σ

∗. Indeed, by minimality of
|y|, y starts with the first letter of uk+1, which has pairwise distinct letters, so that uk+1

cannot appear as a factor of xy partly in x and partly in y; so if it were the case that
y does not contain uk+1 as a factor, we would have x ∈

(
(u1

α1 . . . uk
αk)� Σ∗)uk+1Σ

∗, so
that xy = w ∈ (u1

α1 . . . uk
αkuk+1

αk+1+1)� Σ∗, a contradiction with the hypothesis on w.
Hence, y ∈ L

(Σ,l)
(uk+1,αk+1)

. If αk+1 = l, then y ∈ uk+1
αk+1 � Σ∗ = L

(Σ,l)
(uk+1,αk+1)

. So, if we set

qk+1 =

1 if αk+1 < l

l otherwise
, then we get that y ∈ L

(Σ,l)
(uk+1,qk+1)

.

We can conclude that w = xy ∈ L
(Σ,l)
(u1,q1)

· · ·L(Σ,l)
(uk,qk)

L
(Σ,l)
(uk+1,qk+1)

.

Left-to-right inclusion. Let w ∈
⋃
q1,...,qk+1∈{1,l} L

(Σ,l)
(u1,q1)

· · ·L(Σ,l)
(uk+1,qk+1)

. The rough
idea of our proof here is to take αk+1 ∈ [l] the biggest integer in [l] such that w ∈(⋃

q1,...,qk+1∈{1,l} L
(Σ,l)
(u1,q1)

· · ·L(Σ,l)
(uk,qk

)
)
(uk+1

αk+1�Σ∗) and decompose w as w = xy where x ∈⋃
q1,...,qk∈{1,l} L

(Σ,l)
(u1,q1)

· · ·L(Σ,l)
(uk,qk)

, y ∈ uk+1
αk+1 � Σ∗ and |y| is minimal. By inductive hypo-

thesis, we know there exist α1, . . . , αk ∈ [l] such that x ∈ R
(Σ,l)
(u1,α1),...,(uk,αk)

∩S(Σ,l)
(u1,α1),...,(uk,αk)

and we then prove that xy ∈ R
(Σ,l)
(u1,α1),...,(uk+1,αk+1)

∩ S
(Σ,l)
(u1,α1),...,(uk+1,αk+1)

by distinguishing
between the case in which αk+1 = l and the case in which αk+1 < l. The first one is easy
to handle, the second one is much trickier.

We now spell out the details.

• Suppose we have

w ∈
⋃

q1,...,qk∈{1,l}

L
(Σ,l)
(u1,q1)

. . . L
(Σ,l)
(uk,qk)

L
(Σ,l)
(uk+1,l)

=
( ⋃
q1,...,qk∈{1,l}

L
(Σ,l)
(u1,q1)

. . . L
(Σ,l)
(uk,qk)

)
(uk+1

l
� Σ∗) .

Then w can be decomposed as w = xy where x ∈
⋃
q1,...,qk∈{1,l} L

(Σ,l)
(u1,q1)

· · ·L(Σ,l)
(uk,qk)

, y ∈
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uk+1
l
�Σ∗ and |y| is minimal. So by inductive hypothesis, there exist α1, . . . , αk ∈ [l]

such that x ∈ R
(Σ,l)
(u1,α1),...,(uk,αk)

∩ S(Σ,l)
(u1,α1),...,(uk,αk)

. Observe that this means we have
w ∈ (u1

α1 · · ·ukαkuk+1
l) � Σ∗ and for each i ∈ [k], αi < l, w /∈ (u1

α1 · · ·uiαi+1 · · ·
uk

αkuk+1
l)�Σ∗, otherwise it would mean that x ∈ (u1

α1 · · ·uiαi+1 · · ·ukαk)�Σ∗ by
minimality of |y|. Similarly, for all i ∈ [k], αi < l, it is obvious that we have

w = xy ∈
(
(u1

α1 · · ·ui−1
αi−1)� Σ∗)ui((ui+1

αi+1 · · ·ukαkuk+1
l)� Σ∗)

as x ∈
(
(u1

α1 · · ·ui−1
αi−1) � Σ∗)ui((ui+1

αi+1 · · ·ukαk) � Σ∗) and y ∈ uk+1
l
� Σ∗.

Hence, w ∈ R
(Σ,l)
(u1,α1),...,(uk,αk),(uk+1,l)

∩ S(Σ,l)
(u1,α1),...,(uk,αk),(uk+1,l)

.

• Or we have

w /∈
⋃

q1,...,qk∈{1,l}

L
(Σ,l)
(u1,q1)

· · ·L(Σ,l)
(uk,qk)

L
(Σ,l)
(uk+1,l)

=
( ⋃
q1,...,qk∈{1,l}

L
(Σ,l)
(u1,q1)

· · ·L(Σ,l)
(uk,qk)

)
(uk+1

l
� Σ∗)

but
w ∈

⋃
q1,...,qk∈{1,l}

L
(Σ,l)
(u1,q1)

· · ·L(Σ,l)
(uk,qk)

L
(Σ,l)
(uk+1,1)

.

Let αk+1 ∈ [l − 1] be the biggest integer in [l − 1] such that

w ∈
( ⋃
q1,...,qk∈{1,l}

L
(Σ,l)
(u1,q1)

· · ·L(Σ,l)
(uk,qk)

)
(uk+1

αk+1
� Σ∗)

which does exist by hypothesis. We can decompose w as w = xy where x ∈⋃
q1,...,qk∈{1,l} L

(Σ,l)
(u1,q1)

· · ·L(Σ,l)
(uk,qk)

, y ∈ uk+1
αk+1 � Σ∗ and |y| is minimal. So by in-

ductive hypothesis, there exist α1, . . . , αk ∈ [l] such that x ∈ R
(Σ,l)
(u1,α1),...,(uk,αk)

∩
S
(Σ,l)
(u1,α1),...,(uk,αk)

. We are now going to prove that

w = xy ∈ R
(Σ,l)
(u1,α1),...,(uk+1,αk+1)

∩ S(Σ,l)
(u1,α1),...,(uk+1,αk+1)

.

Among the obvious things to observe is that we have w ∈ (u1
α1 · · ·ukαkuk+1

αk+1)

� Σ∗ and for each i ∈ [k], αi < l,

w /∈ (u1
α1 · · ·uiαi+1 · · ·ukαkuk+1

αk+1)� Σ∗ ,
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otherwise it would mean that x ∈ (u1
α1 · · ·uiαi+1 · · ·ukαk) � Σ∗ by minimality of

|y|. Similarly, for all i ∈ [k], αi < l, it is obvious that we have

w = xy ∈
(
(u1

α1 · · ·ui−1
αi−1)� Σ∗)ui((ui+1

αi+1 · · ·ukαkuk+1
αk+1)� Σ∗)

as x ∈
(
(u1

α1 · · ·ui−1
αi−1)� Σ∗)ui((ui+1

αi+1 · · ·ukαk)� Σ∗) and y ∈ uk+1
αk+1 � Σ∗.

Now let us show that we have y ∈ Σ∗uk+1Σ
∗. Assume it weren’t the case: the letters

in uk+1 are pairwise distinct and moreover y starts with the first letter of uk+1 by
minimality of |y|, so uk+1 cannot appear as a factor of xy partly in x and partly in
y and, additionally,

w ∈
⋃

q1,...,qk∈{1,l}

L
(Σ,l)
(u1,q1)

· · ·L(l)
(uk,qk)

L
(Σ,l)
(uk+1,1)

=
( ⋃
q1,...,qk∈{1,l}

L
(Σ,l)
(u1,q1)

· · ·L(Σ,l)
(uk,qk)

)
Σ∗uk+1Σ

∗ ,

so we would have x ∈ (
⋃
q1,...,qk∈{1,l} L

(Σ,l)
(u1,q1)

· · ·L(Σ,l)
(uk,qk)

)Σ∗uk+1Σ
∗. But this either

contradicts the maximality of αk+1 or the fact that

w /∈
( ⋃
q1,...,qk∈{1,l}

L
(Σ,l)
(u1,q1)

· · ·L(Σ,l)
(uk,qk)

)
(uk+1

l
� Σ∗) .

Thus, we have w = xy ∈
(
(u1

α1 · · ·ukαk)� Σ∗)uk+1Σ
∗ as x ∈ (u1

α1 · · ·ukαk)� Σ∗.

Let us finish with the trickiest part, showing that w /∈ (u1
α1 · · ·ukαkuk+1

αk+1+1)�Σ∗.
Assume that w ∈ (u1

α1 · · ·ukαkuk+1
αk+1+1)� Σ∗. We then have that x ∈ (u1

α1 · · ·
uk

αkuk+1) � Σ∗, otherwise it would mean that y = y1y2 with |y1| > 0, xy1 ∈
(u1

α1 · · ·ukαkuk+1)�Σ∗ and y2 ∈ uk+1
αk+1�Σ∗, contradicting the minimality of |y|.

We can decompose x as x = x1x2 where x1 ∈ (u1
α1 · · ·ukαk)� Σ∗, x2 ∈ uk+1 � Σ∗

and |x2| is minimal. We claim that, actually, x1 ∈ R
(Σ,l)
(u1,α1),...,(uk,αk)

∩S(Σ,l)
(u1,α1),...,(uk,αk)

,
so that by inductive hypothesis, x1 ∈

⋃
q1,...,qk∈{1,l} L

(Σ,l)
(u1,q1)

· · ·L(Σ,l)
(uk,qk)

. But since
x2y ∈ uk+1

αk+1+1
� Σ∗, this means that

w = x1x2y ∈
( ⋃
q1,...,qk∈{1,l}

L
(Σ,l)
(u1,q1)

· · ·L(Σ,l)
(uk,qk)

)
(uk+1

αk+1+1
� Σ∗) ,
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contradicting the maximality of αk+1 or the fact that

w /∈
( ⋃
q1,...,qk∈{1,l}

L
(Σ,l)
(u1,q1)

· · ·L(Σ,l)
(uk,qk)

)
(uk+1

l
� Σ∗) .

So we can conclude that w /∈ (u1
α1 · · ·ukαkuk+1

αk+1+1)� Σ∗.

The claim that x1 ∈ R
(Σ,l)
(u1,α1),...,(uk,αk)

∩S(Σ,l)
(u1,α1),...,(uk,αk)

remains to be shown. We dir-
ectly see that for all i ∈ [k], αi < l, x1 /∈ (u1

α1 · · ·uiαi+1 · · ·ukαk)� Σ∗, otherwise it
would mean that x ∈ (u1

α1 · · ·uiαi+1 · · ·ukαk)�Σ∗. Let now i ∈ [k], αi < l, and as-
sume that x1 /∈

(
(u1

α1 · · ·ui−1
αi−1)�Σ∗)ui((ui+1

αi+1 · · ·ukαk)�Σ∗). We can decom-
pose x1 as x1 = x1,1x1,2 where x1,1 ∈ (u1

α1 · · ·uiαi)�Σ∗, x1,2 ∈ (ui+1
αi+1 · · ·ukαk)�

Σ∗ and |x1,1| is minimal. By hypothesis, we have x1,1 /∈
(
(u1

α1 · · ·ui−1
αi−1) �

Σ∗)uiΣ∗, otherwise we would have

x1 = x1,1x1,2 ∈
(
(u1

α1 · · ·ui−1
αi−1)� Σ∗)ui((ui+1

αi+1 · · ·ukαk)� Σ∗) .

As previously, the letters in ui are pairwise distinct, and x1,1 ends with the last
letter of ui by minimality of |x1,1|, so ui cannot appear as a factor of x partly in x1,1
and partly in x1,2x2. Thus, we have that

x1,2x2 ∈ Σ∗ui
(
(ui+1

αi+1 · · ·ukαk)� Σ∗)
because we know that x ∈

(
(u1

α1 · · ·ui−1
αi−1) � Σ∗)ui((ui+1

αi+1 · · ·ukαk) � Σ∗).
But this means that x = x1,1x1,2x2 ∈ (u1

α1 · · ·uiαi+1 · · ·ukαk) � Σ∗, a contradic-
tion. Hence, we can deduce that for all i ∈ [k], αi < l, x1 ∈

(
(u1

α1 · · ·ui−1
αi−1)�

Σ∗)ui((ui+1
αi+1 · · ·ukαk)� Σ∗). This finishes to show that

x1 ∈ R
(Σ,l)
(u1,α1),...,(uk,αk)

∩ S(Σ,l)
(u1,α1),...,(uk,αk)

.

Putting all together, we indeed also have that

w ∈ R
(Σ,l)
(u1,α1),...,(uk+1,αk+1)

∩ S(Σ,l)
(u1,α1),...,(uk+1,αk+1)

in the present case.
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In conclusion, in both cases,

w ∈
⋃

α1,...,αk+1∈[l]

(R
(Σ,l)
(u1,α1),...,(uk+1,αk+1)

∩ S(Σ,l)
(u1,α1),...,(uk+1,αk+1)

) .

So we can finally conclude that⋃
q1,...,qk∈{1,l}

L
(Σ,l)
(u1,q1)

· · ·L(Σ,l)
(uk+1,qk+1)

=
⋃

α1,...,αk+1∈[l]

(R
(Σ,l)
(u1,α1),...,(uk+1,αk+1)

∩ S(Σ,l)
(u1,α1),...,(uk+1,αk+1)

) .

This concludes the proof of the lemma.

Before proving the main lemma to be used in the proof of Theorem 5.3.6, we need a
useful decomposition lemma, that is straightforward to prove.

Lemma 5.3.11. Let Σ be an alphabet and u ∈ Σ+. Then, for all α ∈ N>0, each
w ∈ uα� Σ∗ ∩ (uα+1

� Σ∗){ verifies

w =
( α∏
i=1

|u|∏
j=1

(vi,juj)
)
y

where vi,j ∈ (Σ \ {uj})∗ for all i ∈ [α], j ∈ [|u|] and y ∈
⋃|u|
i=1

(∏i−1
j=1

(
(Σ \ {uj})∗uj

)
(Σ \

{ui})∗
)

.

Proof. Let Σ be an alphabet and u ∈ Σ+.
Take α ∈ N>0 and w ∈ uα� Σ∗ ∩ (uα+1

� Σ∗){.
As w ∈ uα�Σ∗, w can be decomposed as w = xy where x ∈ uα�Σ∗ and |x| is minimal.

Then, it is clearly necessarily the case that x =
∏α

i=1

∏|u|
j=1(vi,juj) with vi,j ∈ (Σ\{uj})∗ for

all i ∈ [α], j ∈ [|u|]. Moreover, as xy /∈ uα+1
�Σ∗, we necessarily have that y /∈ u�Σ∗, so

that there exists some i ∈ [|u|] verifying that u1 · · ·ui−1 is a subword of y but not u1 · · ·ui.
Thus, we have that y ∈

∏i−1
j=1

(
(Σ \ {uj})∗uj

)
(Σ \ {ui})∗.

This concludes the proof.

Remember that our goal is to prove, given an alphabet Σ, l ∈ N>0 and u1, . . . , uk ∈ Σ+

(k ∈ N>0) such that for each i ∈ [k], the letters in ui are all distinct, that for any
α1, . . . , αk ∈ [l], the language R

(Σ,l)
(u1,α1),...,(uk,αk)

∩ S
(Σ,l)
(u1,αk),...,(uk,αk)

is in P(J). The way
R

(Σ,l)
(u1,α1),...,(uk,αk)

and S
(Σ,l)
(u1,αk),...,(uk,αk)

are defined allows us to reason as follows. For each
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i ∈ [k] verifying αi < l, let Li be the language of words w over Σ containing xi,1uiαixi,2 as
a subword and such that, given the shortest prefix v0 of w containing xi,1 as a subword
and the shortest suffix v2 of w containing xi,2 as a subword, the factor v1 of w such that
w = v0v1v2 does not contain more than αi times ui as a subword and has ui as a factor,
with xi,1 = u1

α1 · · ·ui−1
αi−1 and xi,2 = ui+1

αi+1 · · ·ukαk . If we manage to prove that for
each i ∈ [k] verifying αi < l, Li ∈ P(J), then we can conclude that

R
(Σ,l)
(u1,α1),...,(uk,αk)

∩ S(Σ,l)
(u1,αk),...,(uk,αk)

= (u1
α1 · · ·ukαk)� Σ∗ ∩

⋂
i∈[k],αi<l

Li

does belong to P(J) by closure of P(J) ∩Reg under intersection, Proposition 3.4.2. The
lemma that follows, the main lemma in the proof of Theorem 5.3.6, exactly shows that
Li ∈ P(J) for each i ∈ [k] verifying αi < l. The proof of that lemma crucially uses the
“feedback sweeping” technique, but note that we actually don’t know how to prove it
when we do not enforce that for each i ∈ [k], the letters in ui are all distinct.

Lemma 5.3.12. Let Σ be an alphabet and u ∈ Σ+ such that its letters are all distinct.
For all α ∈ N>0 and x1, x2 ∈ Σ∗, we have

(x1u
αx2)� Σ∗ ∩

(
(x1u

α+1x2)� Σ∗){ ∩ (x1� Σ∗)u(x2� Σ∗) ∈ P(J) .

Proof. Let Σ be an alphabet and u ∈ Σ+ such that its letters are all distinct. Let α ∈ N>0

and x1, x2 ∈ Σ∗. We let

L = (x1u
αx2)� Σ∗ ∩

(
(x1u

α+1x2)� Σ∗){ ∩ (x1� Σ∗)u(x2� Σ∗) .

If |u| = 1, the lemma follows trivially because L is piecewise testable and hence belongs
to L(J), so we assume |u| > 1.

For each letter a ∈ Σ, we shall use 2 |u| − 1 distinct decorated letters of the form a(i)

for some i ∈ [[0, 2 |u| − 2]], using the convention that a(0) = a; of course, for two distinct
letters a, b ∈ Σ, we have that a(i) and b(j) are distinct for all i, j ∈ [[0, 2 |u| − 2]]. We
denote by A the alphabet of these decorated letters. The main idea of the proof is,
for a given input length n ∈ N, to build an A-program Ψn over Σn such that, given
an input word w ∈ Σn, it first ouputs the |u| − 1 first letters of w and then, for each i

going from |u| to n, outputs wi, followed by w(1)
i−1 · · ·w

(|u|−1)
i−|u|+1 (a “sweep” of |u| − 1 letters

backwards down to position i− |u| + 1, decorating the letters incrementally) and finally
by w

(|u|)
i−|u|+2 · · ·w

(2|u|−2)
i (a “sweep” forwards up to position i, continuing the incremental

decoration of the letters). The idea behind this way of rearranging and decorating letters
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is that, given an input word w ∈ Σn, as long as we make sure that w and thus Ψn(w)

do contain x1u
αx2 as a subword but not x1uα+1x2, then Ψn(w) can be decomposed as

Ψn(w) = y1zy2 where y1 ∈ x1 � Σ∗, y2 ∈ x2 � Σ∗, and |y1| , |y2| are minimal such that z
contains uβu(1)|u|−1 · · ·u

(|u|−1)
1 u

(|u|)
2 · · ·u(2|u|−2)

|u| uα−β as a subword for some β ∈ [α] if and only
if w ∈ (x1�Σ∗)u(x2�Σ∗). This means we can check whether w ∈ L by testing whether
w belongs to some fixed piecewise testable language over A. Let’s now write the proof
formally.

For each i ∈ [[0, 2 |u| − 2]], let

f (i) : Σ → A

a 7→ a(i)
.

For all i ∈ N, i ≥ |u|, we define

Φi = (i, f (0))

|u|−1∏
j=1

(i− j, f (j))

|u|∏
j=2

(i− |u|+ j, f (|u|+j−2)) .

For all n ∈ N, n < |u|, we define Ψn = ε. For all n ∈ N, n ≥ |u|, we define

Ψn =

|u|−1∏
i=1

(i, f (0))
n∏

i=|u|

Φi .

Finally, let K be the language of words over A having

ζβ = x1u
β−1u

|u|−1∏
j=1

u
(j)
|u|−j

|u|∏
j=2

u
(|u|+j−2)
j uα−βx2

for some β ∈ [α] as a subword but not x1uα+1x2.

Claim 5.3.13. The sequence (Ψn)n∈N of A-programs is a program-reduction from L to
K.

Let
s : N → N

n 7→

0 if n < |u|

|u| − 1 + (n− |u|+ 1) · (2 |u| − 1) otherwise .

It is direct to see that s(n) = |Ψn| ≤ (2 |u| − 1) · n for all n ∈ N.
Therefore, using this claim, (Ψn)n∈N is a program-reduction from L to K of length
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s(n), so since K is piecewise testable and hence is recognised (classically) by some monoid
from J, Corollary 3.4.3 tells us that L ∈ P(J, s(n)) = P(J, n).

Proof of claim. Let n ∈ N. If n < |u|, then it is obvious that for all w ∈ Σn, w /∈ (x1 �

Σ∗)u(x2 � Σ∗) so w /∈ L=n and also Ψn(w) = ε /∈ K=s(n), hence L=n = ∅ = Ψ−1
n (K=s(n)).

Otherwise, n ≥ |u|. We are going to show that L=n = Ψ−1
n (K=s(n)).

Left-to-right inclusion. Let w ∈ L=n. We want to show that Ψn(w) ∈ K=s(n).
We are first going to show that there exists some β ∈ [α] such that ζβ is a subword

of Ψn(w). The fact that w ∈ L=n means in particular that w ∈ (x1 � Σ∗)u(x2 � Σ∗)

and we can hence decompose w as w = y1zy2 where y1 ∈ (x1 � Σ∗), y2 ∈ (x2 � Σ∗), and
|y1|, |y2| are minimal. It follows necessarily that z ∈ uα� Σ∗ ∩ (uα+1

� Σ∗){ ∩ Σ∗uΣ∗ by
minimality of |y1| and |y2|. By Lemma 5.3.11, we have z =

(∏α
i=1

∏|u|
j=1(vi,juj)

)
y where

vi,j ∈ (Σ  \ {uj})∗ for all i ∈ [α], j ∈ [|u|] and y ∈
⋃|u|
i=1

(∏i−1
j=1

(
(Σ \ {uj})∗uj

)
(Σ \ {ui})∗

)
.

We know the letters in u are all distinct, so this means that there is no β ∈ [α − 1]

such that u is a factor of z partly in
∏|u|

j=1(vβ,juj) and partly in
∏|u|

j=1(vβ+1,juj), and
that u cannot appear as a factor of z partly in

∏|u|
j=1(vα,juj) and partly in y either.

Hence, since z ∈ Σ∗uΣ∗, by the way we decomposed z, there necessarily exists β ∈ [α]

such that
∏|u|

j=1(vβ,juj) ∈ Σ∗uΣ∗. Let γ, δ ∈ [n] such that wγ · · ·wδ =
∏|u|

j=1(vβ,juj),
w1 · · ·wγ−1 = y1

(∏β−1
i=1

∏|u|
j=1(vi,juj)

)
and wδ+1 · · ·wn =

(∏α
i=β+1

∏|u|
j=1(vi,juj)

)
yy2. By the

way β is defined, we have wδ−|u|+1 · · ·wδ = u, because δ is the first and only position in w
with the letter u|u| within the interval [[λ, δ]] verifying that wγ · · ·wδ−1 contains u1 · · ·u|u|−1

as a subword, and we observe additionally that δ ≥ γ + |u| − 1 ≥ |u|. This means that

Φδ(w) = f (0)(wδ)f
(1)(wδ−1) · · · f (|u|−1)(wδ−|u|+1)f

(|u|)(wδ−|u|+2) · · · f (2|u|−2)(wδ)

= u|u|

|u|−1∏
j=1

u
(j)
|u|−j

|u|∏
j=2

u
(|u|+j−2)
j .

Moreover,
γ−1∏
i=1

f (0)(wi) = w1 · · ·wγ−1 = y1
(β−1∏
i=1

|u|∏
j=1

(vi,juj)
)

,

δ−1∏
i=δ−|u|+1

f (0)(wi) = wδ−|u|+1 · · ·wδ−1 = u1 · · ·u|u|−1
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and
n∏

i=δ+1

f (0)(wi) = wδ+1 · · ·wn =
( α∏
i=β+1

|u|∏
j=1

(vi,juj)
)
yy2 .

So as
∏γ−1

i=1 (i, f
(0))
∏δ−1

i=δ−|u|+1(i, f
(0))Φδ

∏n
i=δ+1(i, f

(0)) is a subword of Ψn, we have that

ζβ = x1u
β−1u

|u|−1∏
j=1

u
(j)
|u|−j

|u|∏
j=2

u
(|u|+j−2)
j uα−βx2

is a subword of Ψn(w).
We secondly show that x1uα+1x2 cannot be a subword of Ψn(w). But this is direct

by construction of Ψn, otherwise we would have that x1uα+1x2 is a subword of w, contra-
dicting the fact that w ∈ L=n.

Hence, Ψn(w) ∈ K=s(n), and since this is true for all w ∈ L=n, we have L=n ⊆
Ψ−1
n (K=s(n)).

Right-to-left inclusion. We are going to prove the “contrapositive inclusion”.
Let w ∈ Σn \ L=n. We want to show that Ψn(w) /∈ K=s(n).
Let us start with the easy cases. If we have w /∈ (x1u

αx2)� Σ∗, then it means that
x1u

αx2 is not a subword of w and hence, by construction of Ψn, not a subword of Ψ(w)

either, so that there does not exist any β ∈ [α] such that ζβ is a subword of Ψn(w).
Similarly, if we have w ∈ (x1u

α+1x2)� Σ∗, then it means that x1uα+1x2 is a subword of
w and hence, by construction of Ψn, a subword of Ψn(w).

We now assume that w ∈ (x1u
αx2) � Σ∗ ∩

(
(x1u

α+1x2) � Σ∗){ while w /∈ (x1 �

Σ∗)u(x2 � Σ∗). We want to show that in this case, there does not exist any β ∈ [α]

such that ζβ is a subword of Ψn(w). Suppose for a contradiction that such a β exists; our
goal is to show, through a careful observation of what this implies on the letters in w by
examining how Ψn decorates the letters, that this contradictingly entails x1uα+1x2 is a
subword of w.

Since ζβ is a subword of Ψn(w), it is not too difficult to see there exist

p1, . . . , p|x1|+(β−1)·|u|, q1, . . . , q3|u|−2, r1, . . . , r(α−β)·|u|+|x2| ∈ [n]

verifying that
wp1 · · ·wp|x1|+(β−1)·|u| = x1u

β−1 ,
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wq1 · · ·wq3|u|−2
= u

|u|−1∏
j=1

u|u|−j

|u|∏
j=2

uj ,

wr1 · · ·wr(α−β)·|u|+|x2|
= uα−βx2

and

(p1, f
(0)) · · · (p|x1|+(β−1)·|u|, f

(0))(q1, f
(0)) · · · (q|u|, f (0))(q|u|+1, f

(1)) · · · (q2|u|−1, f
(|u|−1))

(q2|u|, f
(|u|)) · · · (q3|u|−2, f

(2|u|−2))(r1, f
(0)) · · · (r(α−β)·|u|+|x2|, f

(0))

is a subword of Ψn. By construction of Ψn, we have

p1 < · · · < p|x1|+(β−1)·|u| < q1 < · · · < q|u| < r1 < · · · < r(α−β)·|u|+|x2| ,

so this implies that w can be decomposed as w = y1zy2 where y1 ∈ x1�Σ∗, z ∈ uα�Σ∗

and y2 ∈ x2 � Σ∗, the positions p1, . . . , p|x1| corresponding to letters in y1, the positions
p|x1|+1, . . . , p|x1|+(β−1)·|u|, q1, . . . , q|u|, r1, . . . , r(α−β)·|u| corresponding to letters in z and the
positions r(α−β)·|u|+1, . . . , r(α−β)·|u|+|x2| corresponding to letters in y2.

We are now going to show that, in fact, q|u| < q2|u|−1 < q2|u| < · · · < q3|u|−2 < r1,
which implies z ∈ uα+1

� Σ∗ and thus the contradiction we are aiming for. Since w /∈
(x1 � Σ∗)u(x2 � Σ∗), we have z /∈ Σ∗uΣ∗, hence as wq|u| = u|u| and |u| > 1, there must
exist j ∈ [|u| − 1] such that wq|u|−j 6= u|u|−j and wq|u|−ι = u|u|−ι for all ι ∈ [[0, j − 1]]. By
construction of Ψn, we know that q|u|+j ≥ q|u|− j (because the instructions with f (j) after
an instruction with f (0) querying position p ∈ [n] all query a position at least equal to
p − j), but since u|u|−j 6= wq|u|−j and u|u|−j 6= u|u|−ι = wq|u|−ι for all ι ∈ [[0, j − 1]] as the
letters in u are all distinct, we get that q|u|+j > q|u|. By (backward) induction, we can
show that for all ι ∈ [[j + 1, |u| − 1]], q|u|+ι > q|u|. Indeed, given ι ∈ [[j + 1, |u| − 1]], we
have q|u|+ι−1 > q|u|, either by inductive hypothesis or directly in the base case ι = j+1 by
what we have just seen. So by construction of Ψn, we know that q|u|+ι ≥ q|u| (because the
instructions with f (ι) after an instruction with f (ι−1) querying position p ∈ [n] all query
a position at least equal to p − 1), but since u|u|−ι 6= u|u| = wq|u| as the letters in u are
all distinct, it follows that q|u|+ι > q|u|. Therefore, we have that q2|u|−1 > q|u|. Moreover,
by construction of Ψn, we also have q2|u|−1 < q2|u| < · · · < q3|u|−2 < r1 (because for each
ι ∈ [[0, |u| − 2]], the instructions with f (|u|+ι) after an instruction with f (|u|+ι−1) querying
position p  ∈ [n] all query a position at least equal to p + 1). So, to conclude, we have
p1 < · · · < p|x1|+(β−1)·|u| < q1 < · · · < q|u| < q2|u|−1 < q2|u| < · · · < q3|u|−2 < r1 < · · · <
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r(α−β)·|u|+|x2| and

wp1 · · ·wp|x1|+(β−1)·|u|wq1 · · ·wq|u|wq2|u|−1
wq2|u| · · ·wq3|u|−2

wr1 · · ·wr(α−β)·|u|+|x2|

=x1u
β−1uu1u2 · · ·u|u|uα−βx2 = x1u

α+1x2 .

This implies that w ∈ (x1u
α+1x2)� Σ∗, a contradiction. So there does not exist β ∈ [α]

such that ζβ is a subword of Ψ(w).
Therefore, in every case Ψn(w) /∈ K=s(n), and since this is true for all w ∈ Σn \ L=n,

we have Σn \ L=n ⊆ As(n) \Ψ−1
n (K=s(n)), which is equivalent to L=n ⊇ Ψ−1

n (K=s(n)).

This concludes the proof of the claim.

And the one of the lemma.

As we explained just before stating the previous lemma, we can now use it as the basic
building block to straightforwardly prove the result we were aiming for.

Lemma 5.3.14. Let Σ be an alphabet, l ∈ N>0 and u1, . . . , uk ∈ Σ+ (k ∈ N>0) such that
for each i ∈ [k], the letters in ui are all distinct. For all α1, . . . , αk ∈ [l], we have

R
(Σ,l)
(u1,α1),...,(uk,αk)

∩ S(Σ,l)
(u1,α1),...,(uk,αk)

∈ P(J) .

Proof. Let Σ be an alphabet, l ∈ N>0 and u1, . . . , uk ∈ Σ+ (k ∈ N>0) such that for each
i ∈ [k], the letters in ui are all distinct. Let α1, . . . , αk ∈ [l].

For each i ∈ [k] verifying αi < l, we define

Li =(u1
α1 · · ·ukαk)� Σ∗ ∩

(
(u1

α1 · · ·uiαi+1 · · ·ukαk)� Σ∗){∩(
(u1

α1 · · ·ui−1
αi−1)� Σ∗)ui((ui+1

αi+1 · · ·ukαk)� Σ∗) .

It is immediate to show that

R
(Σ,l)
(u1,α1),...,(uk,αk)

∩ S(Σ,l)
(u1,αk),...,(uk,αk)

= (u1
α1 · · ·ukαk)� Σ∗ ∩

⋂
i∈[k],αi<l

Li .

By Lemma 5.3.12, Li ∈ P(J) for each i ∈ [k] verifying αi < l. Moreover, since
(u1

α1 · · ·ukαk)�Σ∗ obviously is a piecewise testable language, it belongs to P(J). Thus,
we can conclude that R(Σ,l)

(u1,α1),...,(uk,αk)
∩ S

(Σ,l)
(u1,αk),...,(uk,αk)

belongs to P(J) by closure of
P(J) ∩Reg under intersection, Proposition 3.4.2.
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As already stated, we now can conclude by Lemma 5.3.10 and closure of P(J) ∩Reg
under Boolean operations, Proposition 3.4.2.

Corollary 5.3.15. Let Σ be an alphabet, l ∈ N>0 and u1, . . . , uk ∈ Σ+ (k ∈ N>0) such
that for each i ∈ [k], the letters in ui are all distinct. Then, [u1, . . . , uk]Σ,l ∈ P(J).

However, what we really want to obtain, is, given an alphabet Σ, l ∈ N>0 and
u1, . . . , uk ∈ Σ+ (k ∈ N>0) without putting any restriction on them, that [u1, . . . , uk]Σ,l
is in P(J). But, in fact, to remove the constraint that the letters must be all distinct in
each of the factors ui in the previous result, we simply have to decorate each of the input
letters with its position minus 1 modulo a big enough positive integer d. This is what we
do now.

Lemma 5.3.16. Let Σ be an alphabet, l ∈ N>0 and u1, . . . , uk ∈ Σ+ (k ∈ N>0). Then
[u1, . . . , uk]Σ,l ∈ P(J).

Proof. Let Σ be an alphabet, l ∈ N>0 and u1, . . . , uk ∈ Σ+ (k ∈ N>0).
Let d = maxi∈[k] |ui|. If d = 1, then the result is straightforward because the language

[u1, . . . , uk]Σ,l then belongs to L(J), so now we assume d ≥ 2. We let Σd = Σ×Z/dZ and
for all w ∈ Σ∗, for all i ∈ Z/dZ, we define w̃i =

∏|w|
j=1(wj, (j + i − 1) mod d). We also

let w̃ = w̃0 for all w ∈ Σ∗. Let us finally define ψ : Σ∗ → Z/dZ as the cyclic stamp from
(Σ∗, ·) to (Z/dZ,+) (the cyclic group over Z/dZ with canonical addition modulo d) such
that ψ(a) = 1 mod d for all a ∈ Σ. Observe that for all w ∈ Σ∗, w̃ = σψ(w).

For all v ∈ Σ+, |v| ≤ d, we define µ(v, 1) = v and

µ(v, l) = v1, . . . , v|v|, . . . . . . . . . , v1, . . . , v|v|︸ ︷︷ ︸
l times

.

For all v1, . . . , vk′ ∈ Σ+ (k′ ∈ N>0) such that |vi| ≤ d for each i ∈ [k′], we let

[v1, . . . , vk′ ]Σ,l,d =
⋃

i1,...,ik′∈Z/dZ

[ṽ1
i1 , . . . , ṽk′

ik′ ]Σd,l
,

that does belong to P(J) by Corollary 5.3.15 and closure of P(J)∩Reg under finite union
(Proposition 3.4.2), because since |vi| ≤ d for each i ∈ [k′], each ṽi

j for j ∈ Z/dZ has all
distinct letters.

This implies that for all q1, . . . , qk ∈ {1, l}, we have that [µ(u1, q1), . . . , µ(uk, qk)]Σ,l,d
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does belong to P(J), so that ⋃
q1,...,qk∈{1,l}

[µ(u1, q1), . . . , µ(uk, qk)]Σ,l,d

is a language over Σd belonging to P(J).
To conclude, it is not so difficult to see that

[u1, . . . , uk]Σ,l =
{
w ∈ Σ∗ ∣∣ w̃d ∈ ⋃

q1,...,qk∈{1,l}

[µ(u1, q1), . . . , µ(uk, qk)]Σ,l,d

}
= σ−1

ψ

( ⋃
q1,...,qk∈{1,l}

[µ(u1, q1), . . . , µ(uk, qk)]Σ,l,d

)
,

so that [u1, . . . , uk]Σ,l does also belong to P(J) by Lemma 3.4.4.

We can eventually straightforwardly extend the result to [u1, . . . , uk[Σ,l, ]u1, . . . , uk]Σ,l
and ]u1, . . . , uk[Σ,l.

Proposition 5.3.17. Let Σ be an alphabet, l ∈ N>0 and u1, . . . , uk ∈ Σ+ (k ∈ N>0). Then,
[u1, . . . , uk]Σ,l, [u1, . . . , uk[Σ,l, ]u1, . . . , uk]Σ,l and ]u1, . . . , uk[Σ,l do all belong to P(J).

Proof. Let Σ be an alphabet, l ∈ N>0 and u1, . . . , uk ∈ Σ+ (k ∈ N>0).
Then, Lemma 5.3.16 tells us that [u1, . . . , uk]Σ,l ∈ P(J). Moreover, we have

[u1, . . . , uk[Σ,l = [u1, . . . , uk]Σ,l ∩ Σ∗uk ,

]u1, . . . , uk]Σ,l = [u1, . . . , uk]Σ,l ∩ u1Σ
∗

and
]u1, . . . , uk[Σ,l = [u1, . . . , uk]Σ,l ∩ Σ∗uk ∩ u1Σ∗ ;

hence they all belong to P(J) since Σ∗uk as well as u1Σ∗ do (see the discussion right at
the beginning of Subsection 5.3.1), and P(J)∩Reg is closed under intersection, Proposi-
tion 3.4.2.

This finishes to prove Theorem 5.3.6 by closure of P(J)∩Reg under Boolean combin-
ations (Proposition 3.4.2).
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5.4 Dot-depth one strongly unambiguous monomials

As explained in the previous section, we believe that the class of all threshold dot-depth
one languages, proven to be contained in P(J), is in fact exactly the ne-variety of languages
L(J ∗ D ∩ 〈DA〉S), easily seen to be equal to L(J ∗ D) ∩ L(DA), which would imply
Conjecture 1 to be true.

One direction of the conjectured classes equality, that any threshold dot-depth one
language is in L(J ∗ D ∩ 〈DA〉S), is quite straightforward but a bit cumbersome to prove.
We now state and prove this result.

Proposition 5.4.1. Any threshold dot-depth one language belongs to L(J ∗ D ∩ 〈DA〉S).

Proof. To prove the proposition, by closure under Boolean operations of both L(J ∗ D)

and L(DA), it suffices to prove that for any Σ an alphabet, l ∈ N>0 and u1, . . . , uk ∈ Σ+

(k ∈ N>0), the languages [u1, . . . , uk]Σ,l, [u1, . . . , uk[Σ,l, ]u1, . . . , uk]Σ,l and ]u1, . . . , uk[Σ,l do
all belong to L(J ∗ D) ∩ L(DA). This is what we show in the following.

Let Σ be an alphabet, l ∈ N>0 and u1, . . . , uk ∈ Σ+ (k ∈ N>0). We first show that
[u1, . . . , uk]Σ,l ∈ L(J ∗ D) ∩ L(DA), and consequently we will be able to directly handle
the cases of [u1, . . . , uk[Σ,l, ]u1, . . . , uk]Σ,l and ]u1, . . . , uk[Σ,l.

Membership in L(J ∗ D). As given by Definition 5.3.7, we have that

[u1, . . . , uk]Σ,l =
⋃

q1,...,qk∈{1,l}

L
(l)
(u1,q1)

· · ·L(l)
(uk,qk)

,

where for all q1, . . . , qk ∈ {1, l}, L(l)
(u1,q1)

· · ·L(l)
(uk,qk)

is easily seen to be a dot-depth one
language. Hence, by closure of L(J ∗ D) under finite union, [u1, . . . , uk]Σ,l ∈ L(J ∗ D).

Membership in L(DA). Let now L = [u1, . . . , uk]Σ,l, let ∼ be its syntactic congruence
and let ω be the idempotent power of its syntactic monoid (M, ∗). Using the equational
characterisation of DA, we are now going to prove that (M, ∗) ∈ DA: that is, we are
going to prove that (m ∗ n)∗,ω = (m ∗ n)∗,ω ∗ m ∗ (m ∗ n)∗,ω for all m,n ∈ M , so that
(M, ∗) does belong to DA and thus [u1, . . . , uk]Σ,l to L(DA). To show that each pair of
elements of M verifies the previous equation, by definition of the syntactic monoid of L,
it suffices to show that (uv)ω ∼ (uv)ωu(uv)ω for all u, v ∈ Σ∗.

Let u, v ∈ Σ∗. Our aim is to show that (uv)ω ∼ (uv)ωu(uv)ω. By definition of the
syntactic monoid of L and of ω, it is not too difficult to see that this is equivalent to
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showing that (uv)ω
′ ∼ (uv)ω

′
u(uv)ω

′ where ω′ ∈ N>0 is the smallest multiple of ω not
smaller than

∑k
i=1 l · |ui| (why we need ω′ to be as big will become clear later on).

When both u and v are equal to the empty word, we trivially have that (uv)ω
′ ∼

(uv)ω
′
u(uv)ω

′ . So we now assume that at least one of u and v is not equal to the empty
word.

Let x, y ∈ Σ∗ such that w = x(uv)ω
′
y ∈ L and consider w′ = x(uv)ω

′
u(uv)ω

′
y.

Let’s now prove that w′ does also belong to L. When x or y belongs to L, then it is
obvious that w′ does also belong to it. We now assume that it is not the case. Let
i1 ∈ [k] be the smallest integer in [k] such that x does not belong to [u1, . . . , ui1 ]Σ,l and
i2 ∈ [k] the biggest integer in [k] such that y does not belong to [ui2 , . . . , uk]Σ,l, that do
exist by the hypothesis we just made. Let κ1 ∈ [[0, |x| ]] be the smallest integer in [|x|]
such that x1 · · ·xκ1 ∈ [u1, . . . , ui1−1]Σ,l when i1 > 1 and 0 otherwise; let symmetrically
κ2 ∈ [[1, |y|+1]] be the biggest integer in [|y|] such that yκ2 · · · y|y| ∈ [ui2+1, . . . , uk]Σ,l when
i2 < k and |y| + 1 otherwise. The idea to prove w′ ∈ L is to distinguish between three
cases when i1 ≤ i2, otherwise it is direct. When both the prefix x(uv)l·

∣∣ui1 ∣∣ of w and w′

belongs to [u1, . . . , ui1 ]Σ,l and the suffix (uv)l·
∣∣ui2 ∣∣y of w and w′ belongs to [ui2 , . . . , uk]Σ,l,

then we can conclude by using the fact that all the letters of the words ui1+1 to ui2−1

are to be found in the remaining factor in the middle of w, made solely of powers of
uv. Otherwise, the prefix x(uv)l·

∣∣ui1 ∣∣ of w and w′ does not belong to [u1, . . . , ui1 ]Σ,l or the
suffix (uv)l·

∣∣ui2 ∣∣y of w and w′ does not belong to [ui2 , . . . , uk]Σ,l. When the first possibility
is true, we can show that we necessarily have that the prefix x(uv)ω

′ of w and w′ as a
whole does not belong to [u1, . . . , ui1 ]Σ,l and then conclude after analysing how w does
consequently decompose into one prefix in [u1, . . . , ui1−1]Σ,l, one middle factor in [ui1 ]Σ,l
and one suffix in [ui1+1, . . . , uk]Σ,l, using κ1 and κ2. We proceed by symmetry when the
second possibility is true. We now move on to the details.

If i1 > i2, then we have that x belongs to [u1, . . . , ui1−1]Σ,l (which is well defined as
i1 > i2 ≥ 1) and that y belongs belongs to [ui1 , . . . , uk]Σ,l (which is also well defined as
k ≥ i1), so that w′ obviously belongs to L. Otherwise, i1 ≤ i2. We first observe that if
x(uv)ω

′ belongs to [u1, . . . , ui1 ]Σ,l, then x(uv)l·
∣∣ui1 ∣∣ does also belong to it. Indeed, assume

the hypothesis of the implication is true; there are two possible cases. Either all letters
of ui1 appear in uv: in that case we have (uv)l·

∣∣ui1 ∣∣ ∈ ui1
l
� Σ∗ ⊆ [ui1 ]Σ,l and hence

x(uv)l·
∣∣ui1 ∣∣ ∈ [u1, . . . , ui1 ]Σ,l. Or there is at least one letter in ui1 not appearing in uv:

since x /∈ [u1, . . . , ui1 ]Σ,l, either

• ui1 is a factor of x(uv)ω′ whose first letter is in xκ1+1 · · · x|x| and whose last letter is in
(uv)ω

′ , so that because |uv| ≥ 1, we have xκ1+1 · · ·x|x|(uv)l·
∣∣ui1 ∣∣ ∈ Σ∗ui1Σ

∗ ⊆ [ui1 ]Σ,l
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and hence x(uv)l·
∣∣ui1 ∣∣ ∈ [u1, . . . , ui1 ]Σ,l;

• or ui1 l is a subword of xκ1+1 · · ·x|x|(uv)ω
′ such that only its at most |ui1| − 1 last

letters appear in the factor (uv)ω
′ , so that we have xκ1+1 · · ·x|x|(uv)l·

∣∣ui1 ∣∣ ∈ ui1
l
�

Σ∗ ⊆ [ui1 ]Σ,l and hence x(uv)l·
∣∣ui1 ∣∣ ∈ [u1, . . . , ui1 ]Σ,l.

Symmetrically, we can prove that if (uv)ω
′
y belongs to [ui2 , . . . , uk]Σ,l, then (uv)l·

∣∣ui2 ∣∣y
does also belong to it. We now distinguish between three different cases.

• x(uv)l·
∣∣ui1 ∣∣ does not belong to [u1, . . . , ui1 ]Σ,l. By what we have shown just above,

this means that x(uv)ω′ does not belong to [u1, . . . , ui1 ]Σ,l either. Since w ∈ L, this
necessarily means that κ2 > 1 and that there exists κ′2 ∈ [[2, κ2]] verifying x1 · · ·xκ1 ∈
[u1, . . . , ui1−1]Σ,l, xκ1+1 · · · x|x|(uv)ω

′
y1 · · · yκ′2−1 ∈ [ui1 ]Σ,l and yκ′2 · · · y|y| ∈ [ui1+1, . . . ,

uk]Σ,l, implying i1 = i2 and that κ′2 can be taken equal to κ2 by the fact that y /∈
[ui2 , . . . , uk]Σ,l and yκ2 · · · y|y| ∈ [ui2+1, . . . , uk]Σ,l. If (uv)ω′

y belongs to [ui1 , . . . , uk]Σ,l,
then as x ∈ [u1, . . . , ui1−1]Σ,l, we have that w′ = x(uv)ω

′
u(uv)ω

′
y ∈ L. Otherwise,

since ui1 contains at least one letter not appearing in uv and |uv| ≥ 1, ui1 l must
be a subword of xκ1+1 · · ·x|x|(uv)ω

′
y1 · · · yκ′2−1 ∈ [ui1 ]Σ,l with at most |ui1 | − 1 of its

letters appearing in the factor (uv)ω′ , so that xκ1+1 · · ·x|x|(uv)ω
′
u(uv)ω

′
y1 · · · yκ′2−1 ∈

ui1
l
� Σ∗ ⊆ [ui1 ]Σ,l, also showing w′ = x(uv)ω

′
u(uv)ω

′
y ∈ L.

• (uv)l·
∣∣ui2 ∣∣y does not belong to [ui2 , . . . , uk]Σ,l. Symmetrically to the previous case,

we can show that w′ ∈ L.

• x(uv)l·
∣∣ui1 ∣∣ belongs to [u1, . . . , ui1 ]Σ,l and (uv)l·

∣∣ui2 ∣∣y belongs to [ui2 , . . . , uk]Σ,l. In this
case, for all i ∈ [[i1 + 1, i2 − 1]], we have that alph(ui) ⊆ alph(uv). Indeed, assume
there would exist i ∈ [[i1+1, i2−1]] such that alph(ui) * alph(uv); this would mean
that at least one letter of ui does appear in x or y but not in uv. So this would
imply that either there exists κ ∈ [|x|] such that xκ . . . x|x|(uv)ω

′
y ∈ [ui, . . . , uk]Σ,l

but xκ+1 . . . x|x|(uv)
ω′
y /∈ [ui, . . . , uk]Σ,l so that necessarily x1 · · ·xκ−1 and hence x

do belong to [u1, . . . , ui−1]Σ,l, contradicting the fact that x /∈ [u1, . . . , ui1 ]Σ,l since
i − 1 ≥ i1; or that (uv)ω

′
y ∈ [ui, . . . , uk]Σ,l, which would imply that y does belong

to [ui+1, . . . , uk]Σ,l, contradicting the fact that y /∈ [ui2 , . . . , uk]Σ,l since i + 1 ≤
i2. Hence, we have that (uv)ω

′−l·
∣∣ui1 ∣∣u(uv)ω′−l·

∣∣ui2 ∣∣, containing (uv)
∑i2−1

i=i1+1 l·|ui| as a
subword, belongs to ui1+1

l · · ·ui2−1
l
� Σ∗ ⊆ [ui1+1, . . . , ui2−1]Σ,l. Thus, putting all

together, we get that w′ = x(uv)ω
′
u(uv)ω

′
y ∈ L.

Therefore, in any case we have x(uv)ω′
u(uv)ω

′
y ∈ L.
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Let x, y ∈ Σ∗ such that x(uv)ω′
u(uv)ω

′
y ∈ L. In a way similar to above, we can show

that then, x(uv)ω′
y ∈ L.

This shows that (uv)ω ∼ (uv)ωu(uv)ω and as it is true for all u, v ∈ Σ∗, we eventually
get that [u1, . . . , uk]Σ,l ∈ L(DA).

Now that we have [u1, . . . , uk]Σ,l ∈ L(J ∗ D) ∩ L(DA), since both u1Σ
∗ and Σ∗uk

obviously belong to L(J ∗ D) ∩ L(DA), by closure under Boolean operations of both
L(J ∗ D) and L(DA), we have that [u1, . . . , uk[Σ,l = [u1, . . . , uk]Σ,l∩Σ∗uk, ]u1, . . . , uk]Σ,l =
[u1, . . . , uk]Σ,l ∩ u1Σ∗ and ]u1, . . . , uk[Σ,l = [u1, . . . , uk]Σ,l ∩ Σ∗uk ∩ u1Σ∗ do all also belong
to L(J ∗ D) ∩ L(DA).

This concludes the proof of the proposition.

That being done, how do we prove, conversely, that any language in L(J ∗ D ∩ 〈DA〉S)

is a threshold dot-depth one language? We do not know, or, more precisely, we only
know how to prove this in a particular case and we do not know whether the general
case is true. The most fruitful path we followed on the quest for such a proof is to try to
understand how unambiguous polynomials, languages from L(DA), look like when they
are restricted to also be dot-depth one languages, languages from L(J ∗ D), and prove
that they actually are threshold dot-depth one languages. What we managed to prove is
only that a strongly unambiguous monomial that is also a language of dot-depth one is a
threshold dot-depth one language.

Proposition 5.4.2. Any strongly unambiguous monomial over some alphabet Σ that is
also a dot-depth one language is in fact a threshold dot-depth one language.

We dedicate the remainder (and almost all) of this section to prove this proposition
— the main, partial, result of this section. Let us first just give some short remarks about
how we could fully prove the ne-variety of languages L(J ∗ D ∩ 〈DA〉S) to be contained
in the class of threshold dot-depth one languages and, as a consequence, Conjecture 1.

Given Proposition 5.4.2, it would “suffice” to prove that, in fact, any language in
L(J ∗ D ∩ 〈DA〉S), i.e. any unambiguous polynomial that is also a language of dot-depth
one, can be expressed as a Boolean combination of SUMs that each also are dot-depth one
languages. However, we are not sure this is true and have no idea about how complicated it
would be to prove it if it were the case. That being said, we must admit that the upcoming
proof of Proposition 5.4.2 has a complexity that is much too high for the result it proves
and that there must be better ways to prove any language in L(J ∗ D ∩ 〈DA〉S) to be
a threshold dot-depth one language; one of these ways could be adapting the technique
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based on graph congruences used by Knast to characterise algebraically dot-depth one
languages Knast [1983], later reformulated in terms of finite categories by Tilson Tilson
[1987].

5.4.1 Strongly unambiguous monomial trees

Definitions and properties

The very rough idea of our proof of Proposition 5.4.2 is to do an induction on a strongly
unambiguous monomial (SUM) that is also a language of dot-depth one so as to inductively
build a threshold dot-depth one language equal to this SUM. To do this, though, we need
to exploit some structure of SUMs.

The definition of a SUM directly gives a way to decompose it as a tree that is of the
type given by the definition below, not necessarily in a unique way.

Definition 5.4.3. Given an alphabet Σ, a strongly unambiguous monomial tree over Σ

(SUMT) is a rooted binary tree whose internal nodes are labelled by letters from Σ and
whose leaves are labelled by Kleene closures of alphabets subsets of Σ with two types of
edges, full and dashed edges, each internal node being linked to exactly one child with a
full edge and exactly one child with a dashed edge, such that the letter of this internal
node never appears in the subtree corresponding to this last child as a label of an internal
node or an element of a starred alphabet labelling a leaf.

To each such SUMT T we associate a unique SUM L(T ) over Σ obtained by concat-
enating the labels of it in the order given by an infix depth-first search. We say that L(T )
can be decomposed as T , which is a decomposition of L(T ).

Example 5.4.4. The following SUMT over {a, b, c}

a

{b, c}∗ c

b

{a, b}∗ ∅∗

{a, c}∗

is a decomposition of the SUM (b+ c)∗a(a+ b)∗bc(a+ c)∗ over {a, b, c}.

Observe that a SUMT that is a decomposition of a SUM can be arbitrary, which is
not very practical when it comes to manipulating it in our proof by induction of Propos-
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ition 5.4.2. Fortunately, any SUM can always be decomposed as a SUMT that is in a
certain normal form, defined below.

Definition 5.4.5. A SUMT over an alphabet Σ is a straight right normalised SUMT
(respectively a straight left normalised SUMT) over Σ if and only if either:

• it consists only of a root;

• its right (respectively left) branch has only full edges and all subtrees linked to this
branch are left (respectively right) normalised SUMTs over Σ.

We will say a SUMT over Σ is a bent right normalised SUMT (respectively a bent left
normalised SUMT) over Σ if and only if it is made of a right (respectively left) normalised
SUMT that is not only a root and such that its rightmost (respectively leftmost) leaf has
been replaced by a left (respectively right) normalised SUMT that is not only a root.

We shall abbreviate normalised SUMT with NSUMT and call such any straight or
bent, right or left normalised SUMT.

To put it in a (informal) nutshell, a straight NSUMT is a SUMT in which the only
path from the root to a leaf using only full edges always goes to the same side (that is
to say, it always goes to the right child or always goes to the left child), while a bent
NSUMT is a SUMT in which the only such path changes sides only once.

Example 5.4.6. Example 5.4.4 gives an example of a straight right NSUMT over {a, b, c}.
The following SUMT over {a, b, c}

a

{c}∗ a

{a, b}∗ {c}∗

is a bent right NSUMT over {a, b, c}. It is a decomposition of the SUM c∗a(a + b)∗ac∗

over {a, b, c} and the only other SUMT over {a, b, c} decomposing it is this one

a

{c}∗a

{a, b}∗{c}∗ ,

a bent left NSUMT over {a, b, c}.
Finally, the following SUMT over {a, b, c}
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a

{a, b}∗ b

{b}∗ {c}∗

is a decomposition of the SUM (a+b)∗ab∗bc∗ over {a, b, c} that is not normalised. However,
it can also be decomposed as the following straight left NSUMT over {a, b, c}

b

{c}∗a

{b}∗{a, b}∗ .

We now state and prove the following lemma that basically tells that any SUM can
always be decomposed as a normalised SUMT.

Lemma 5.4.7. Let L be a SUM over an alphabet Σ. Then L can be decomposed as an
NSUMT over Σ. Additionally, when L can be decomposed as a SUMT over Σ whose right
or left branch contains only full edges, then it can also be decomposed, respectively, as a
straight right or left NSUMT over Σ.

Proof. Let us fix an alphabet Σ.
We use the following observation: given a SUM A∗

0a1A
∗
1a2 · · ·A∗

k−1akA
∗
k with k ∈ N,

any language A∗
i ai+1 · · ·A∗

j−1ajA
∗
j for i, j ∈ [[0, k]], i ≤ j, that is equal to A∗

i when i = j, is
a SUM.

A root of a SUM A∗
0a1A

∗
1a2 · · ·A∗

k−1akA
∗
k with k ∈ N>0 is any letter ai which does not

occur to the left (a right-root) or to the right (a left-root). A non-zero-degree SUM must
have at least one root, may have several roots. A root may be left or right or both.

If a non-zero-degree SUM contains a right-root, we call it a right-SUM. Define left-
SUM similarly. A given SUM may be right or left or both.

The following claim proves the lemma.

Claim 5.4.8. Let L be a SUM over Σ of degree at least 1.

• If L is a right-SUM, it can be decomposed as a straight or bent right NSUMT. If
additionally L is not a left-SUM or can be decomposed as a SUMT whose right
branch contains only full edges, it can be decomposed as a straight right NSUMT.
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• If L is a left-SUM, it can be decomposed as a straight or bent left NSUMT. If
additionally L is not a right-SUM or can be decomposed as a SUMT whose left
branch contains only full edges, it can be decomposed as a straight left NSUMT.

Proof of the claim. We prove the claim by induction on the degree k of the SUMs.

Base case k = 1. Let A∗
0a1A

∗
1 be a SUM over Σ of degree 1. It is straightforward to see

that if it is a right-SUM, then it can be decomposed as the straight right NSUMT
a1

A∗
0 A∗

1

and if it is a left-SUM, then it can be decomposed as the straight left NSUMT
a1

A∗
0 A∗

1 .

Induction. Let k ∈ N, k ≥ 2 and assume the claim is true for all SUMs over Σ of degree
less than k.

Let L = A∗
0a1A

∗
1a2 · · ·A∗

k−1akA
∗
k be a SUM over Σ of degree k.

Assume L is a right-SUM. Let i ∈ [k] be the smallest integer in [k] such that ai is a
right-root of L (ai is the leftmost right-root of L). Then L can be written as L = L0aiL1

where L0 and L1 are SUMs over Σ and L0 is such that L0 ∩ Σ∗aiΣ
∗ = ∅. We now aim

to apply the inductive hypothesis to get an NSUMT ∆0 that is a decomposition of L0,
as well as an NSUMT ∆1 that is a decomposition of L1 and is necessary a straight right
NSUMT when L is not a left-SUM or can be decomposed as a SUMT whose right branch
contains only full edges. We can then combine them into a desired NSUMT T that is a
decomposition of L.

Note first that when L is not a left-SUM and i < k, then L1 is not a left-SUM either
by the simple fact that any left-root of L1 would also be a left-root of L. Moreover,
when L can be decomposed as a SUMT whose right branch contains only full edges
and i < k, then L1 can also be decomposed as a SUMT whose right branch contains
only full edges. Indeed, by hypothesis, we have L = K0aδ1 · · ·Kl−1aδlA

∗
k where l ∈ [k],

K0, . . . , Kl−1 are SUMs over Σ such that Kj−1 ∩ Σ∗aδjΣ
∗ = ∅ for all j ∈ [l] and δl = k.

Denote by j ∈ [[0, l− 1]] the unique integer in [[0, l− 1]] such that δj ≤ i < δj+1, using the
convention that δ0 = 0, and set K ′

j = A∗
i ai+1A

∗
i+1 · · ·A∗

δj+1−2aδj+1−1A
∗
δj+1−1. We have that
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L1 = K ′
jaδj+1

Kj+1 · · ·Kl−1aδlA
∗
k where K ′

j is a SUM over Σ such that K ′
j ∩Σ∗aδj+1

Σ∗ = ∅,
so that L1 can indeed also be decomposed as a SUMT whose right branch contains only
full edges.

Now, if i = 1, we have L0 = A∗
0 and let ∆0 = A∗

0. Otherwise, we know that L0

is a SUM over Σ of degree at least 1 and less than k, that cannot be a right-SUM by
minimality of i and hence also necessarily has the property that it is a left-SUM: in that
case we therefore apply the inductive hypothesis to let ∆0 be a straight left NSUMT that
is a decomposition of L0. As a consequence, in any case, ∆0 is a straight left NSUMT
that is a decomposition of L0.

For L1, there are three cases to consider.

• If i = k, we have L1 = A∗
k and we let ∆1 = A∗

k, a straight right NSUMT.

• Otherwise, we know that L1 is a SUM over Σ of degree at least 1 and less than k.
Assume L1 is a right-SUM. Then, by inductive hypothesis, we let ∆1 be a straight
or bent right NSUMT that is a decomposition of L1. If, in addition, we have that
L is not a left-SUM or can be decomposed as a SUMT whose right branch contains
only full edges, we know by what we proved just above that L1 is as such, so that
by inductive hypothesis, we let ∆1 be a straight right NSUMT.

• Otherwise, L1 is a SUM over Σ of degree at least 1 and less than k that is not a
right-SUM. Hence, it is necessarily a left-SUM: in that case we therefore apply the
inductive hypothesis to let ∆1 be a straight left NSUMT that is a decomposition of
L1.

Let now

T =

ai

∆0 ∆1 .

It is straightforward to see T is a SUMT over Σ that is a decomposition of L. Moreover,
since ∆0 is a straight left NSUMT, when ∆1 is a straight or bent right NSUMT given by
one of the two first cases just above, T is a straight or bent right NSUMT as well, and
when ∆1 is a straight left NSUMT given by the last case just above, T is a bent right
NSUMT. If additionally L is not a left-SUM or can be decomposed as a SUMT whose
right branch contains only full edges, we know by what we showed before that L1 is as
such when i < k, so that it must be a right-SUM. This in turn means ∆1 is necessarily a
straight right NSUMT given by one of the two first cases just above, so we can conclude
T is a straight right NSUMT, as wished.
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Assume now L is a left-SUM. In a symmetric way, we can show that it can be decom-
posed as a straight or bent left NSUMT and that, if additionally L is not a right-SUM
or can be decomposed as a SUMT whose left branch contains only full edges, it can be
decomposed as a straight left NSUMT.

This concludes the proof of the claim.

And the one of the lemma.

One thing will shall quite often do on SUMTs when manipulating them in the proof
of Proposition 5.4.2 is to remove a certain number of their rightmost or leftmost internal
nodes. We now define formally this operation of removing the rightmost or leftmost
internal node, called respectively right or left elimination.

Definition 5.4.9. Let T be a SUMT over an alphabet Σ. We define the right elimination
operation on T inductively on T as the operation associating RE(T ) to T in the following
way:

• if T = A∗, then RE(T ) = A∗;

• if

T =

a

∆0 ∆1

where ∆0 and ∆1 are SUMTs over Σ and the red edge is either full or dashed while
the blue one is of the opposite type, then RE(T ) = ∆0 when ∆1 consists only of a
root and

RE(T ) =

a

∆0 RE(∆1)

otherwise.

We define left elimination on T , denoted by LE(T ), in a symmetric way.

When we apply right or left elimination l ∈ N>0 times successively on a SUMT T over
an alphabet Σ (that is, we respectively apply the composition RE l of l copies of RE or
LE l of l copies of LE to T ), we respectively remove T ’s l rightmost or leftmost internal
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nodes. If T is the decomposition of the SUM A∗
0a1A

∗
1a2 · · ·A∗

k−1akA
∗
k (k ∈ N) over Σ, it is

obvious that we have

L
(
RE l(T )

)
= A∗

0a1A
∗
1a2 · · ·A∗

k−l−1ak−lA
∗
k−l

and
L
(
LE l(T )

)
= A∗

l al+1A
∗
l+1al+2 · · ·A∗

k−1akA
∗
k .

Finally, it will also be important to note that right and left elimination both preserve
fullness of the opposite branch. More precisely, for any SUMT T over an alphabet Σ

whose left (right) branch contains only full edges, RE(T )’s (LE(T )’s) left (right) branch
does also have the same property.

This notion of elimination and the associated observation we just made allow us to
normalise straight NSUMTs even more: given, for instance, a straight right NSUMT over
some alphabet Σ that is a decomposition of a SUM A∗

0a1A
∗
1a2 · · ·A∗

k−1akA
∗
k (k ∈ N) over

Σ, if we consider p ∈ [[0, k]] the smallest integer in [[0, k]] such that Ap is not empty, k
if it does not exist, then A∗

0a1A
∗
1a2 · · ·A∗

k−1akA
∗
k can be decomposed as a straight right

NSUMT whose right branch starts with a sequence of p nodes labelled by the letters from
a1 to ap. This result will be useful in our proof of Proposition 5.4.2 and we now state and
prove if formally.

Lemma 5.4.10. Let L = A∗
0a1A

∗
1a2 · · ·A∗

k−1akA
∗
k be a SUM over a finite alphabet Σ and

T an NSUMT over Σ that is a decomposition of it.
When the right branch of T contains only full edges, let p ∈ [[0, k]] be the smallest

integer in [[0, k]] such that Ap 6= ∅, k if it does not exist. Then L can also be decomposed
as the straight right NSUMT

a1

∅∗

∅∗ ∆

ap

where ∆ is a straight right NSUMT over Σ that is a decomposition of A∗
pap+1 · · ·A∗

k−1akA
∗
k

and the edges between the nodes labelled a1 to ap are all full.
When the left branch of T contains only full edges, the symmetric conclusion follows.
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Proof. Assume the right branch of T contains only full edges and let p ∈ [[0, k]] be the
smallest integer in [[0, k]] such that Ap 6= ∅, k if it does not exist.

It is rather direct to see that L can then be decomposed as
a1

∅∗

∅∗ LEp(T )

ap

where the edges between the nodes labelled a1 to ap are all full.
Moreover, since LEp(T ) still has the property that its right branch contains only full

edges, by Lemma 5.4.7, we get that A∗
pap+1 · · ·A∗

k−1akA
∗
k can be decomposed as a straight

right NSUMT ∆ over Σ.
The desired conclusion follows.

When the left branch of T contains only full edges, we proceed by symmetry.

SUMTs for languages of dot-depth one

Recall now that what we want to do is, given a SUM L over some alphabet Σ that is also
a dot-depth one language, prove that it is equal to a threshold dot-depth one language.
Now that we know by Lemma 5.4.7 that there necessarily exists an NSUMT T over Σ that
is a decomposition of L, we need to understand what properties T has that characterise
the fact that the SUM L it is a decomposition of is a language of dot-depth one.

We can actually give an inductive characterisation of the NSUMTs that are decompos-
itions of SUMs which are also languages of dot-depth one. This characterisation will be
very useful when manipulating those SUMTs in our inductive proof of Proposition 5.4.2.
The formal statement of the lemma giving that characterisation as well as its proof, both
technical, are left for the end of this section (Lemma 5.4.22); here we might only give an
intuitive presentation of that characterisation.

Let L = A∗
0a1A

∗
1a2 · · ·A∗

k−1akA
∗
k (k ∈ N) be a SUM over an alphabet Σ and T an

NSUMT over Σ that is a decomposition of it. Whether or not L is a language of dot-
depth one depends on the type, the shape and the labels of the normalised SUMT T .

• If T only consists of a root, then L is always a language of dot-depth one.
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• If T is a straight right NSUMT of the form

ai1

∆0 ai2

∆1

∆j−1 ak

∆j A∗
k

aij

where ∆0,∆1, . . . ,∆j−1,∆j (j ∈ N) are straight left NSUMTs over Σ and the edges
between the nodes labelled ai1 to aij are all full, then L is a language of dot-depth
one if and only if the language L(∆0)ai1L(∆1)ai2 · · · L(∆j−1)aijL(∆j) obtained by
applying right elimination on T is of dot-depth one and some technical condition
on Ak is verified. This condition states that for each p ∈ [[0, k − 1]], we have that
the intersection between Ap and Ak is empty, or at least some letter ap+1 to ak does
not belong to Ak, or the SUM A∗

pap+1 · · ·A∗
k−1akA

∗
k and SUMT LEp(T ) that is a

decomposition of it are very constrained.

• If T is a straight left NSUMT, then L is a language of dot-depth one if and only if
the symmetric conditions are verified.

• If T is a bent right NSUMT of the form

Θ0

Θ1

A∗

where

∆0 =

Θ0

A∗
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is a straight right NSUMT and

∆1 =

Θ1

A∗

is a straight left NSUMT, then L is a language of dot-depth one if and only if L(∆0)

and L(∆1) both are.

• If T is a bent left NSUMT, then L is a language of dot-depth one if and only if the
symmetric conditions are verified.

Some examples to illustrate this characterisation (that is not easy to grasp) as well as
the additional notions introduced in the next subsection are given in Subsection 5.4.3.

5.4.2 Specific preliminaries to the main proof

In our proof of Proposition 5.4.2, we need an additional set of specific definitions and
associated observations that we are going to present now.

Boolean combinations

The goal of the proof is to inductively build, given a SUM that is a language of dot-depth
one, a threshold dot-depth one language equal to this SUM. Threshold dot-depth one lan-
guages are Boolean combinations of languages of the form [u1, . . . , uk]Σ,l, [u1, . . . , uk[Σ,l,
]u1, . . . , uk]Σ,l or ]u1, . . . , uk[Σ,l for Σ an alphabet, k, l ∈ N>0 and u1, . . . , uk ∈ Σ+. In
the proof of Proposition 5.4.2, we will need to consider Boolean combinations in a more
syntactic (rather than semantic) way, so as to be able to make the aforementioned con-
struction work cleanly.

This is why we shall abuse terminology and also use the term “Boolean combination”
for a loose notion of a formula over {{,∪,∩}, a tree whose internal nodes are labelled
by Boolean operations and its leaves by languages over some alphabet Σ. Given such a
formula ψ, we shall denote by L(ψ) the language over Σ it defines.

Zouave languages

In fact, we will see that the proof we give for Proposition 5.4.2 is even more precise than
what we claimed up to that point. Namely, the basic building blocks in the Boolean
combination that we build inductively can always be assumed to verify l = 2.
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Given an alphabet Σ, we will call a Zouave language2 over Σ the language Σ∗ or
any language of the form [u1, . . . , uk]Σ,2, [u1, . . . , uk[Σ,2, ]u1, . . . , uk]Σ,2 or ]u1, . . . , uk[Σ,2 for
k ∈ N>0 and u1, . . . , uk ∈ Σ+.

To give some examples, for each Σ an alphabet and u ∈ Σ+, the piecewise testable
language u � Σ∗ is also a Zouave language, because u � Σ∗ = [u1, . . . , u|u|]Σ,2. The
language [ab, c]{a,b,c},2, containing all words over {a, b, c} such that they contain a letter c
verifying that in the prefixes up to that letter, abab appears a subword or ab appears as a
factor, is also a Zouave language. However, the language [ab, c]{a,b,c},3, which description
is the same as the previous one except that abab is replaced with ababab, is not a Zouave
language.

What our proof of Proposition 5.4.2 then does is to inductively build, given a SUM
that is a language of dot-depth one, a Boolean combination of Zouave languages equal to
this SUM.

Reversal

As the reader may have observed, there are two symmetric, right and left, versions of
straight NSUMTs and two symmetric, right and left, versions of bent NSUMTs. To avoid
treating symmetric cases in the proof of Proposition 5.4.2, we will reverse the NSUMT at
hand when needed to maintain the invariant that it always either is just a root or has a
full right edge at the root. The definition of the reversal of a SUM is straightforward and
is linked to the classical definition of the reversal of a language; we now give both.

Fix an alphabet Σ. For any word w ∈ Σ∗, we shall denote by wR = w|w|w|w|−1 · · ·w1

the reversed word of w. For each language L ⊆ Σ∗, we can then define LR = {wR | w ∈ L},
the reversed language of L.

If T is a SUMT over Σ, then we define the reversed SUMT TR over Σ in the following
way, by induction:

• if T = A∗ for some alphabet A ⊆ Σ, then TR = T ;

• if

T =

a

T1 T2

where a is a letter and T1, T2 are SUMTs over Σ, then
2In honour of the Zouave statue of the Alma bridge in Paris, whose feet are a well-known popular

threshold for the height of the river Seine such that, once reached, usually implies trouble for Parisians.
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TR =

a

TR
2 TR

1 ;

• if

T =

a

T1 T2

where a is a letter and T1, T2 are SUMTs over Σ, then

TR =

a

TR
2 TR

1 .

It is fairly easy to see that for each SUM L over Σ and SUMT T over Σ that is a
decomposition of L, we have LR = L

(
TR) and that LR is also a language of dot-depth

one if L is such a language.
Given a Boolean combination ψ of Zouave languages over Σ, we then need to define

the reversed such Boolean combination ψR. We do it straightforwardly in the following
way, by induction:

• if ψ = [u1, . . . , uk]Σ,2, then ψR = [uk, . . . , u1]Σ,2;

• if ψ = [u1, . . . , uk[Σ,2, then ψR = [uk, . . . , u1[Σ,2;

• if ψ = ]u1, . . . , uk]Σ,2, then ψR = ]uk, . . . , u1]Σ,2;

• if ψ = ]u1, . . . , uk[Σ,2, then ψR = ]uk, . . . , u1[Σ,2;

• if ψ = ψ{
0, then ψR = (ψR

0 )
{;

• if ψ = ψ1 ∪ ψ2, then ψR = ψR
1 ∪ ψR

2 ;

• if ψ = ψ1 ∩ ψ2, then ψR = ψR
1 ∩ ψR

2 .

Again, it is fairly easy to see that for each language L over Σ that can be expressed
as a Boolean combination ψ of Zouave languages over Σ, LR can be expressed by the
reversed such Boolean combination ψR.
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Composition

Given several Boolean combinations of Zouave languages obtained inductively, it is not
so direct to see how to combine them so as to obtain a new Boolean combination of
Zouave languages corresponding to a given SUM. For instance, given a SUM A∗

0a1A
∗
1a2A

∗
2

over some alphabet Σ, we might have, by induction, a Boolean combination ψ0 of Zou-
ave languages for A∗

0a1A
∗
1 and another Boolean combination ψ1 of Zouave languages for

A∗
1a2A

∗
2 that we need to combine in some way to obtain a Boolean combination of Zouave

languages for A∗
0a1A

∗
1a2A

∗
2. But it is not direct to see how to do that, considering that

each of ψ0 and ψ1 should “be applied” only to either a strict prefix or a strict suffix of the
whole word for which we want to determine membership in A∗

0a1A
∗
1a2A

∗
2. Assume that a1

does not belong to A0 and a2 does not belong to A2: the idea is that we can change each
Zouave language [u1, . . . , uk]Σ,2 with u1, . . . , uk  ∈ Σ+ (k ∈ N>0) to [u1, . . . , uk, a2]Σ,2 in
ψ0 and to [a1, u1, . . . , uk]Σ,2 in ψ1, and similarly for Zouave languages of the other forms;
we then obtain Boolean combinations of Zouave languages ψ′

0 and ψ′
1. The intent behind

that transformation is to make sure that, given some word w in Σ∗a2(Σ\{a2})∗, w belongs
to A∗

0a1A
∗
1a2(Σ\{a2})∗ if and only if it belongs to the language corresponding to ψ′

0, and,
similary, that, given some word w in (Σ \ {a1})∗a1Σ∗, w belongs to (Σ \ {a1})∗a1A∗

1a2A
∗
2

if and only if it belongs to the language corresponding to ψ′
1.

We now formalise this idea through the notion of composition. Given a Boolean
combination ψ of Zouave languages over some alphabet Σ and L a Zouave language over
Σ, we define the left composition of ψ with L, denoted by L ∗ψ, the Boolean combination
of Zouave languages defined in the following way, by induction:

• if ψ = Σ∗, then

– if L = Σ∗, then L ∗ ψ = Σ∗;

– if L = [v1, . . . , vl]Σ,2, then L ∗ ψ = [v1, . . . , vl]Σ,2;

– if L = [v1, . . . , vl[Σ,2, then L ∗ ψ = [v1, . . . , vl]Σ,2;

– if L = ]v1, . . . , vl]Σ,2, then L ∗ ψ = ]v1, . . . , vl]Σ,2;

– if L = ]v1, . . . , vl[Σ,2, then L ∗ ψ = ]v1, . . . , vl]Σ,2;

• if ψ = [u1, . . . , uk]Σ,2, then

– if L = Σ∗, then L ∗ ψ = [u1, . . . , uk]Σ,2;

– if L = [v1, . . . , vl]Σ,2, then L ∗ ψ = [v1, . . . , vl, u1, . . . , uk]Σ,2;

– if L = [v1, . . . , vl[Σ,2, then L ∗ ψ = [v1, . . . , vl, u1, . . . , uk]Σ,2;
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– if L = ]v1, . . . , vl]Σ,2, then L ∗ ψ = ]v1, . . . , vl, u1, . . . , uk]Σ,2;

– if L = ]v1, . . . , vl[Σ,2, then L ∗ ψ = ]v1, . . . , vl, u1, . . . , uk]Σ,2;

• if ψ = [u1, . . . , uk[Σ,2, then

– if L = Σ∗, then L ∗ ψ = [u1, . . . , uk[Σ,2;

– if L = [v1, . . . , vl]Σ,2, then L ∗ ψ = [v1, . . . , vl, u1, . . . , uk[Σ,2;

– if L = [v1, . . . , vl[Σ,2, then L ∗ ψ = [v1, . . . , vl, u1, . . . , uk[Σ,2;

– if L = ]v1, . . . , vl]Σ,2, then L ∗ ψ = ]v1, . . . , vl, u1, . . . , uk[Σ,2;

– if L = ]v1, . . . , vl[Σ,2, then L ∗ ψ = ]v1, . . . , vl, u1, . . . , uk[Σ,2;

• if ψ = ]u1, . . . , uk]Σ,2, then

– if L = Σ∗, then L ∗ ψ = [u1, . . . , uk]Σ,2;

– if L = [v1, . . . , vl]Σ,2, then L ∗ ψ = [v1, . . . , vl, u1, . . . , uk]Σ,2;

– if L = [v1, . . . , vl[Σ,2, then L ∗ ψ = [v1, . . . , vlu1, . . . , uk]Σ,2;

– if L = ]v1, . . . , vl]Σ,2, then L ∗ ψ = ]v1, . . . , vl, u1, . . . , uk]Σ,2;

– if L = ]v1, . . . , vl[Σ,2, then L ∗ ψ = ]v1, . . . , vlu1, . . . , uk]Σ,2;

• if ψ = ]u1, . . . , uk[Σ,2, then

– if L = Σ∗, then L ∗ ψ = [u1, . . . , uk[Σ,2;

– if L = [v1, . . . , vl]Σ,2, then L ∗ ψ = [v1, . . . , vl, u1, . . . , uk[Σ,2;

– if L = [v1, . . . , vl[Σ,2, then L ∗ ψ = [v1, . . . , vlu1, . . . , uk[Σ,2;

– if L = ]v1, . . . , vl]Σ,2, then L ∗ ψ = ]v1, . . . , vl, u1, . . . , uk[Σ,2;

– if L = ]v1, . . . , vl[Σ,2, then L ∗ ψ = ]v1, . . . , vlu1, . . . , uk[Σ,2;

• if ψ = ψ{
0, then L ∗ ψ = (L ∗ ψ0)

{;

• if ψ = ψ1 ∪ ψ2, then L ∗ ψ = (L ∗ ψ1) ∪ (L ∗ ψ2);

• if ψ = ψ1 ∩ ψ2, then L ∗ ψ = (L ∗ ψ1) ∩ (L ∗ ψ2).

We define the right composition of ψ with L, denoted by ψ ∗ L, in a symmetric way.
Composition realises what we need to combine several Boolean combinations of Zou-

ave languages in a way that each of them allows to check that a part of a given word be-
longs to a part of a fixed SUM, as we showcased in our example before defining formally
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composition. The next lemma is crucial to prove the correctness of the construction given
in the proof of Proposition 5.4.2: it says that under some conditions, composition allows
to check part of a word for membership in some SUM given by a Boolean combination
of Zouave languages, as we explained intuitively in our example. One of those conditions
is, in some cases, to verify a convenience property on a Boolean combination ψ of Zouave
languages, that intuitively states that the prefix or the suffix of words are not constrained
by the Zouave languages in ψ. Formally, a Boolean combination of Zouave languages over
some alphabet Σ will be called left-convenient if it does not contain any language of the
form ]u1, . . . , uk]Σ,2 or ]u1, . . . , uk[Σ,2 for Σ an alphabet, k ∈ N>0 and u1, . . . , uk ∈ Σ+

and right-convenient if it does not contain any language of the form [u1, . . . , uk[Σ,2 or
]u1, . . . , uk[Σ,2 for Σ an alphabet, k ∈ N>0 and u1, . . . , uk ∈ Σ+.

Lemma 5.4.11. Let Σ be an alphabet. Let ψ be a Boolean combination of Zouave
languages over Σ, let L be the corresponding language over Σ, let a1, . . . , ak, b1, . . . , bl ∈ Σ

(k ∈ N>0 and l ∈ N), u ∈ Σ∗ and c ∈ alph(uak). We have the following.

1. If ψ is left-convenient, then

L
(
[a1, . . . , ak]Σ,2 ∩ [a1, . . . , ak]Σ,2 ∗ ψ

)
=(Σ \ {a1})∗a1(Σ \ {a2})∗a2 · · · (Σ \ {ak})∗akL .

2. If |u| ≥ 1, then L
(
]u]Σ,2 ∩ ]u[Σ,2 ∗ ψ

)
= uL.

3. If ψ is right-convenient, ak /∈ alph(b1 · · · blu) and L ⊆ [a1, . . . , ak−1]Σ,2 ∩ [a1, . . . ,

ak−1, ak]Σ,2
{, then

L

(
[a1, . . . , ak−1, b1, . . . , bl, uak]Σ,2 ∩ [a1, . . . , ak−1, ak, c]Σ,2

{∩
ψ ∗ [b1, . . . , bl, uak]Σ,2

)
=Lb1(Σ \ {b1, ak})∗b2(Σ \ {b2, ak})∗ · · · bl(Σ \ {bl, ak})∗uak(Σ \ {c})∗ .

4. If ak /∈ alph(u) and L ⊆ [ak]Σ,2
{, then

L
(
[uak]Σ,2 ∩ [ak, c]Σ,2

{ ∩ ψ ∗ ]uak]Σ,2
)
= Luak(Σ \ {c})∗ .

5. If ak /∈ alph(u) and L ⊆ [c]Σ,2
{, then

L
(
[a1, . . . , ak−1, uak]Σ,2 ∩ [a1, . . . , ak−1, ak, c]Σ,2

{ ∩ [a1, . . . , ak−1, uak[Σ,2 ∗ ψ
)
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=(Σ \ {a1})∗a1(Σ \ {a2})∗a2 · · · (Σ \ {ak−1})∗ak−1(Σ \ {ak})∗uakL .

Note that in each case, a symmetric reversed version holds.

Proof. Let Σ be an alphabet. Let ψ be a Boolean combination of Zouave languages over
Σ, let L be the corresponding language over Σ, let a1, . . . , ak, b1, . . . , bl ∈ Σ (k ∈ N>0 and
l ∈ N), u ∈ Σ∗ and c ∈ alph(uak). Let us use a specific notation here to make things
clearer in this proof: for all K a language over Σ, we shall write K+ for K and K− for its
complement K{. We know that there exist α ∈ N>0 and for each i ∈ [α], βi ∈ N>0 Zouave
languages Li,1, . . . , Li,βi over Σ and associated signs γi,1, . . . , γi,βi ∈ {+,−} so that

L(ψ) = L =
α⋃
i=1

βi⋂
j=1

Li,j
γi,j .

The proof in each case is rather straightforward, even if it is sometimes a bit tedious
to write.

Case 1. Assume ψ is left-convenient. Let w ∈ (Σ \ {a1})∗a1(Σ \ {a2})∗a2 · · · (Σ \
{ak})∗akΣ∗. Then it can be uniquely decomposed as w = vw′ where v ∈ (Σ\{a1})∗a1(Σ\
{a2})∗a2 · · · (Σ \ {ak})∗ak and w′ ∈ Σ∗. For all κ ∈ N>0 and ν1, . . . , νκ ∈ Σ+, it is direct
to see that

[a1, . . . , ak]Σ,2 ∗ [ν1, . . . , νκ]Σ,2 = [a1, . . . , ak, ν1, . . . , νκ]Σ,2 = [a1, . . . , ak]Σ,2[ν1, . . . , νκ]Σ,2

=(Σ \ {a1})∗a1(Σ \ {a2})∗a2 · · · (Σ \ {ak})∗ak[ν1, . . . , νκ]Σ,2

and

[a1, . . . , ak]Σ,2 ∗ [ν1, . . . , νκ[Σ,2 = [a1, . . . , ak, ν1, . . . , νκ[Σ,2 = [a1, . . . , ak]Σ,2[ν1, . . . , νκ[Σ,2

=(Σ \ {a1})∗a1(Σ \ {a2})∗a2 · · · (Σ \ {ak})∗ak[ν1, . . . , νκ[Σ,2 .

This means that, since ψ is a Boolean combination of languages of the form [ν1, . . . , νκ]Σ,2
or [ν1, . . . , νκ[Σ,2 for κ ∈ N>0 and ν1, . . . , νκ ∈ Σ+,

w ∈ L
(
[a1, . . . , ak]Σ,2 ∗ ψ

)
=

α⋃
i=1

βi⋂
j=1

(
(Σ \ {a1})∗a1(Σ \ {a2})∗a2 · · · (Σ \ {ak})∗akLi,j

)γi,j
if and only if w′ ∈ L =

⋃α
i=1

⋂βi
j=1 Li,j

γi,j .
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Therefore, since [a1, . . . , ak]Σ,2 = (Σ \ {a1})∗a1(Σ \ {a2})∗a2 · · · (Σ \ {ak})∗akΣ∗, we
have that

L
(
[a1, . . . , ak]Σ,2 ∩ [a1, . . . , ak]Σ,2 ∗ ψ

)
=(Σ \ {a1})∗a1(Σ \ {a2})∗a2 · · · (Σ \ {ak})∗akL .

Case 2. Assume |u| ≥ 1. Let w ∈ uΣ∗. Then it can be uniquely decomposed as w = uw′

where w′ ∈ Σ∗. For all κ ∈ N>0 and ν1, . . . , νκ ∈ Σ+, it is direct to see that

]u[Σ,2 ∗ [ν1, . . . , νκ]Σ,2 = ]u, ν1, . . . , νκ]Σ,2 = ]u[Σ,2[ν1, . . . , νκ]Σ,2 = u[ν1, . . . , νκ]Σ,2 ,

]u[Σ,2 ∗ [ν1, . . . , νκ[Σ,2 = ]u, ν1, . . . , νκ[Σ,2 = ]u[Σ,2[ν1, . . . , νκ[Σ,2 = u[ν1, . . . , νκ[Σ,2 ,

]u[Σ,2 ∗ ]ν1, . . . , νκ]Σ,2 = ]uν1, ν2, . . . , νκ]Σ,2 = ]u[Σ,2]ν1, . . . , νκ]Σ,2 = u]ν1, . . . , νκ]Σ,2

and

]u[Σ,2 ∗ ]ν1, . . . , νκ[Σ,2 = ]uν1, ν2, . . . , νκ[Σ,2 = ]u[Σ,2]ν1, . . . , νκ[Σ,2 = u]ν1, . . . , νκ[Σ,2 .

This means that, since ψ is a Boolean combination of Zouave languages,

w ∈ L
(
]u[Σ,2 ∗ ψ

)
=

α⋃
i=1

βi⋂
j=1

(uLi,j)
γi,j

if and only if w′ ∈ L =
⋃α
i=1

⋂βi
j=1 Li,j

γi,j .
Therefore, since ]u]Σ,2 = uΣ∗, we have that L

(
]u]Σ,2 ∩ ]u[Σ,2 ∗ ψ

)
= uL.

Case 3. Assume ψ is right-convenient, ak /∈ alph(b1 · · · blu) and L ⊆ [a1, . . . , ak−1]Σ,2 ∩
[a1, . . . , ak−1, ak]Σ,2

{. Let w ∈ Σ∗b1(Σ\{b1, ak})∗b2(Σ\{b2, ak})∗ · · · bl(Σ\{bl, ak})∗uak(Σ\
{c})∗. Then it can be uniquely decomposed as w = w′v where v ∈ b1(Σ \ {b1, ak})∗b2(Σ \
{b2, ak})∗ · · · bl(Σ \ {bl, ak})∗uak(Σ \ {c})∗ and w′ ∈ Σ∗. For all κ ∈ N>0, ν1, . . . , νκ ∈ Σ+

and γ ∈ {+,−}, we can show that

Σ∗b1(Σ \ {b1, ak})∗b2(Σ \ {b2, ak})∗ · · · bl(Σ \ {bl, ak})∗uak(Σ \ {c})∗∩

[ν1, . . . , νκ]Σ,2
γ ∗ [b1, . . . , bl, uak]Σ,2

=Σ∗b1(Σ \ {b1, ak})∗b2(Σ \ {b2, ak})∗ · · · bl(Σ \ {bl, ak})∗uak(Σ \ {c})∗∩

[ν1, . . . , νκ, b1, . . . , bl, uak]Σ,2
γ
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=Σ∗b1(Σ \ {b1, ak})∗b2(Σ \ {b2, ak})∗ · · · bl(Σ \ {bl, ak})∗uak(Σ \ {c})∗∩(
[ν1, . . . , νκ]Σ,2b1(Σ \ {b1})∗b2(Σ \ {b2})∗ · · · bl(Σ \ {bl})∗

(
uakΣ

∗ ∪ (uak)
2
� Σ∗))γ

=[ν1, . . . , νκ]Σ,2
γb1(Σ \ {b1, ak})∗b2(Σ \ {b2, ak})∗ · · · bl(Σ \ {bl, ak})∗uak(Σ \ {c})∗

and, similarly,

Σ∗b1(Σ \ {b1, ak})∗b2(Σ \ {b2, ak})∗ · · · bl(Σ \ {bl, ak})∗uak(Σ \ {c})∗∩

]ν1, . . . , νκ]Σ,2
γ ∗ [b1, . . . , bl, uak]Σ,2

=]ν1, . . . , νκ]Σ,2
γb1(Σ \ {b1, ak})∗b2(Σ \ {b2, ak})∗ · · · bl(Σ \ {bl, ak})∗uak(Σ \ {c})∗ .

This means that, since ψ is a Boolean combination of languages of the form [ν1, . . . , νκ]Σ,2
or ]ν1, . . . , νκ]Σ,2 for κ ∈ N>0 and ν1, . . . , νκ ∈ Σ+,

w ∈L

(
Σ∗b1(Σ \ {b1, ak})∗b2(Σ \ {b2, ak})∗ · · · bl(Σ \ {bl, ak})∗uak(Σ \ {c})∗∩
ψ ∗ [b1, . . . , bl, uak]Σ,2

)

=
α⋃
i=1

βi⋂
j=1

Li,j
γi,jb1(Σ \ {b1, ak})∗b2(Σ \ {b2, ak})∗ · · · bl(Σ \ {bl, ak})∗uak(Σ \ {c})∗

if and only if w′ ∈ L =
⋃α
i=1

⋂βi
j=1 Li,j

γi,j .
Therefore, since [a1, . . . , ak−1, b1, . . . , bl, uak]Σ,2 ∩ [a1, . . . , ak−1, ak, c]Σ,2

{ ⊆ Σ∗b1(Σ \
{b1, ak})∗b2(Σ \ {b2, ak})∗ · · · bl(Σ \ {bl, ak})∗uak(Σ \ {c})∗ and L ⊆ [a1, . . . , ak−1]Σ,2 ∩
[a1, . . . , ak−1, ak]Σ,2

{, we have that

L

(
[a1, . . . , ak−1, b1, . . . , bl, uak]Σ,2 ∩ [a1, . . . , ak−1, ak, c]Σ,2

{∩
ψ ∗ [b1, . . . , bl, uak]Σ,2

)
=Lb1(Σ \ {b1, ak})∗b2(Σ \ {b2, ak})∗ · · · bl(Σ \ {bl, ak})∗uak(Σ \ {c})∗ .

Case 4. Assume ak /∈ alph(u) and L ⊆ [ak]Σ,2
{. Let w ∈ (Σ\{ak})∗uak(Σ\{c})∗. Then

it can be uniquely decomposed as w = w′v where v ∈ uak(Σ \ {c})∗ and w′ ∈ (Σ \ {ak})∗.
For all κ ∈ N>0, ν1, . . . , νκ ∈ Σ+ and γ ∈ {+,−}, as no word of (Σ \ {ak})∗uak(Σ \ {c})∗

has (uak)
2 or (νκuak)

2 as a subword, we can show that

(Σ \ {ak})∗uak(Σ \ {c})∗ ∩ [ν1, . . . , νκ]Σ,2
γ ∗ ]uak]Σ,2

=(Σ \ {ak})∗uak(Σ \ {c})∗ ∩ [ν1, . . . , νκ, uak]Σ,2
γ
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=(Σ \ {ak})∗uak(Σ \ {c})∗ ∩
(
[ν1, . . . , νκ]Σ,2

(
uakΣ

∗ ∪ (uak)
2
� Σ∗))γ

=
(
[ak]Σ,2

{ ∩ [ν1, . . . , νκ]Σ,2
γ)uak(Σ \ {c})∗ ,

(Σ \ {ak})∗uak(Σ \ {c})∗ ∩ [ν1, . . . , νκ[Σ,2
γ ∗ ]uak]Σ,2

=(Σ \ {ak})∗uak(Σ \ {c})∗ ∩ [ν1, . . . , νκ−1, νκuak]Σ,2
γ

=(Σ \ {ak})∗uak(Σ \ {c})∗ ∩
(
[ν1, . . . , νκ−1]Σ,2

(
νκuakΣ

∗ ∪ (νκuak)
2
� Σ∗))γ

=
(
[ak]Σ,2

{ ∩ [ν1, . . . , νκ[Σ,2
γ)uak(Σ \ {c})∗ ,

as well as, similarly,

(Σ \ {ak})∗uak(Σ \ {c})∗ ∩ ]ν1, . . . , νκ]Σ,2
γ ∗ ]uak]Σ,2

=
(
[ak]Σ,2

{ ∩ ]ν1, . . . , νκ]Σ,2
γ)uak(Σ \ {c})∗

and

(Σ \ {ak})∗uak(Σ \ {c})∗ ∩ ]ν1, . . . , νκ[Σ,2
γ ∗ ]uak]Σ,2

=
(
[ak]Σ,2

{ ∩ ]ν1, . . . , νκ[Σ,2
γ)uak(Σ \ {c})∗ .

This means that, since ψ is a Boolean combination of Zouave languages,

w ∈ L
(
(Σ \ {ak})∗uak(Σ \ {c})∗ ∩ ψ ∗ ]uak]Σ,2

)
=

α⋃
i=1

βi⋂
j=1

(
[ak]Σ,2

{ ∩ Li,jγi,j
)
uak(Σ \ {c})∗

if and only if w′ ∈ L = [ak]Σ,2
{ ∩ L =

⋃α
i=1

⋂βi
j=1

(
[ak]Σ,2

{ ∩ Li,jγi,j
)
.

Therefore, since [uak]Σ,2 ∩ [ak, c]Σ,2
{ = (Σ \ {ak})∗uak(Σ \ {c})∗, we have that

L
(
[uak]Σ,2 ∩ [ak, c]Σ,2

{ ∩ ψ ∗ ]uak]Σ,2
)
= Luak(Σ \ {c})∗ .

Case 5. Assume ak /∈ alph(u) and L ⊆ [c]Σ,2
{. Let w ∈ (Σ\{a1})∗a1 · · · (Σ\{ak−1})∗ak−1

(Σ \ {ak})∗uak(Σ \ {c})∗. Then it can be uniquely decomposed as w = vw′ where v ∈
(Σ \ {a1})∗a1 · · · (Σ \ {ak−1})∗ak−1(Σ \ {ak})∗uak and w′ ∈ (Σ \ {c})∗. For all κ ∈ N>0,
ν1, . . . , νκ ∈ Σ+ and γ ∈ {+,−}, as no word of (Σ \ {a1})∗a1 · · · (Σ \ {ak−1})∗ak−1(Σ \
{ak})∗uak(Σ\{c})∗ has a1 · · · ak−1(uak)

2 or a1 · · · ak−1(uakν1)
2 as a subword, we can show
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that

(Σ \ {a1})∗a1 · · · (Σ \ {ak−1})∗ak−1(Σ \ {ak})∗uak(Σ \ {c})∗∩

[a1, . . . , ak−1, uak[Σ,2 ∗ [ν1, . . . , νκ]Σ,2
γ

=(Σ \ {a1})∗a1 · · · (Σ \ {ak−1})∗ak−1(Σ \ {ak})∗uak(Σ \ {c})∗∩

[a1, . . . , ak−1, uak, ν1, . . . , νκ]Σ,2
γ

=(Σ \ {a1})∗a1 · · · (Σ \ {ak−1})∗ak−1(Σ \ {ak})∗uak(Σ \ {c})∗∩(
(Σ \ {a1})∗a1 · · · (Σ \ {ak−1})∗ak−1(Σ \ {ak})∗

(
uak ∪ (uak)

2
� Σ∗)[ν1, . . . , νκ]Σ,2)γ

=(Σ \ {a1})∗a1 · · · (Σ \ {ak−1})∗ak−1(Σ \ {ak})∗uak
(
[c]Σ,2

{ ∩ [ν1, . . . , νκ]Σ,2
γ) ,

(Σ \ {a1})∗a1 · · · (Σ \ {ak−1})∗ak−1(Σ \ {ak})∗uak(Σ \ {c})∗∩

[a1, . . . , ak−1, uak[Σ,2 ∗ ]ν1, . . . , νκ]Σ,2
γ

=(Σ \ {a1})∗a1 · · · (Σ \ {ak−1})∗ak−1(Σ \ {ak})∗uak(Σ \ {c})∗∩

[a1, . . . , ak−1, uakν1, ν2 . . . , νκ]Σ,2
γ

=(Σ \ {a1})∗a1 · · · (Σ \ {ak−1})∗ak−1(Σ \ {ak})∗uak(Σ \ {c})∗∩(
(Σ \ {a1})∗a1 · · · (Σ \ {ak−1})∗ak−1(Σ \ {ak})∗

(
uakν1 ∪ (uakν1)

2
� Σ∗)[ν2, . . . , νκ]Σ,2)γ

=(Σ \ {a1})∗a1 · · · (Σ \ {ak−1})∗ak−1(Σ \ {ak})∗uak
(
[c]Σ,2

{ ∩ ]ν1, . . . , νκ]Σ,2
γ) ,

as well as, similarly,

(Σ \ {a1})∗a1 · · · (Σ \ {ak−1})∗ak−1(Σ \ {ak})∗uak(Σ \ {c})∗∩

[a1, . . . , ak−1, uak[Σ,2 ∗ [ν1, . . . , νκ[Σ,2
γ

=(Σ \ {a1})∗a1 · · · (Σ \ {ak−1})∗ak−1(Σ \ {ak})∗uak
(
[c]Σ,2

{ ∩ [ν1, . . . , νκ[Σ,2
γ)

and

(Σ \ {a1})∗a1 · · · (Σ \ {ak−1})∗ak−1(Σ \ {ak})∗uak(Σ \ {c})∗∩

[a1, . . . , ak−1, uak[Σ,2 ∗ ]ν1, . . . , νκ[Σ,2
γ

=(Σ \ {a1})∗a1 · · · (Σ \ {ak−1})∗ak−1(Σ \ {ak})∗uak
(
[c]Σ,2

{ ∩ ]ν1, . . . , νκ[Σ,2
γ) .
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This means that, since ψ is a Boolean combination of Zouave languages,

w ∈ L

(
(Σ \ {a1})∗a1 · · · (Σ \ {ak−1})∗ak−1(Σ \ {ak})∗uak(Σ \ {c})∗∩
[a1, . . . , ak−1, uak[Σ,2 ∗ ψ

)

=
α⋃
i=1

βi⋂
j=1

(Σ \ {a1})∗a1 · · · (Σ \ {ak−1})∗ak−1(Σ \ {ak})∗uak
(
[c]Σ,2

{ ∩ Li,jγi,j
)

if and only if w′ ∈ L = [c]Σ,2
{ ∩ L =

⋃α
i=1

⋂βi
j=1([c]Σ,2

{ ∩ Li,jγi,j).
Therefore, since [a1, . . . , ak−1, uak]Σ,2 ∩ [a1, . . . , ak−1, ak, c]Σ,2

{ = (Σ \ {a1})∗a1 · · · (Σ \
{ak−1})∗ak−1(Σ \ {ak})∗uak(Σ \ {c})∗, we have that

L
(
[a1, . . . , ak−1, uak]Σ,2 ∩ [a1, . . . , ak−1, ak, c]Σ,2

{ ∩ [a1, . . . , ak−1, uak[Σ,2 ∗ ψ
)

=(Σ \ {a1})∗a1(Σ \ {a2})∗a2 · · · (Σ \ {ak−1})∗ak−1(Σ \ {ak})∗uakL .

Three measures on NSUMTs

To write the proof of Proposition 5.4.2, we have to introduce some slightly far-fetched
measures on NSUMTs to be used as parameters on which to do the induction. We could
probably use more natural parameters, but we did not find better ones.

Given an alphabet Σ, we shall define three measures on NSUMTs over Σ, major weight,
minor weight and constraint level, that will help us for the upcoming proof by induction.
If T is just a root or a bent NSUMT over Σ, these three measures are equal to −1 on T .
If T is a straight NSUMT over Σ that is a decomposition of a SUM A∗

0a1A
∗
1a2 · · ·A∗

k−1ak

A∗
k over Σ of degree k ∈ N>0, of the form

ai

∆0 ∆1

where i ∈ [k], ∆0 is a straight left NSUMT over Σ, ∆1 is a straight right NSUMT over
Σ and the red edge is either full or dashed while the blue one is of the opposite type.
Assuming the blue edge is full (and the red edge is therefore dashed), we define that

• the major weight of T is equal to k minus the number of nodes on the right branch
of T , not counting the nodes whose left subtrees only have leaves labelled by ∅∗;

• the minor weight of T is equal to k minus the number of nodes on the left branch
of ∆0, not counting the nodes whose right subtrees only have leaves labelled by ∅∗;
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• the constraint level of T is equal to the number of p ∈ [k−1] such that {ap+1, . . . , ak}
⊆ Ak and Ap ∩ Ak 6= ∅.

When the red edge is full (and the blue edge is therefore dashed), we define the major
weight, the minor weight and the constraint level of T in a symmetric way, replacing
“right” with “left”, “left” with “right”, “∆0” with “∆1”, “{ap+1, . . . , ak} ⊆ Ak” with
“{a1, . . . , ap−1} ⊆ A0” and “Ap ∩ Ak 6= ∅” with “A0 ∩ Ap 6= ∅”.

Example 5.4.12. The following straight right NSUMT over {a, b, c}

a

{b, c}∗ c

b

{a, b}∗ ∅∗

{a, c}∗

has major weight 3− 2 = 1, minor weight 3− 0 = 3 and constraint level 0.

Example 5.4.13. The following straight right NSUMT over {a, b, c}

c

{a, c}∗ a

∅∗ b

{a}∗ {a, b}∗

has major weight 3− 1 = 2, minor weight 3− 1 = 2 and constraint level 1.

Example 5.4.14. The following straight right NSUMT over {a, b, c}

a

c

{c}∗ ∅∗

b

∅∗ {a, b}∗

has major weight 3− 1 = 2, minor weight 3− 0 = 3 and constraint level 0.

208



Equational characterisation of J ∗ D

Let us finish with the equational characterisation of J ∗D, that we shall use several times
to prove that a language is of dot-depth one, i.e. belongs to L(J ∗ D).

Let L be some language over some alphabet Σ. In the following proofs of the technical
lemmata used in the main proof, to show that L ∈ L(J ∗ D), we might use Knast’s
equational characterisation of J ∗ D [Knast, 1983, Theorem 8] (see also [Straubing, 1985,
Theorem 8.1]): given η the syntactic morphism of L and ∼ its syntactic congruence, given
its syntactic monoid (M, ∗) and ω its idempotent power, the semigroup (η(Σ+), ∗|η(Σ+)),
that necessarily has the same idempotent power, belongs to J ∗ D if and only if for all
e1, a, e2, b, c, d ∈ ηL(Σ

+) such that e1 and e2 are idempotents, we have

(e1 ∗ a ∗ e2 ∗ b ∗ e1)∗,ω ∗ (e1 ∗ c ∗ e2 ∗ d ∗ e1)∗,ω

=(e1 ∗ a ∗ e2 ∗ b ∗ e1)∗,ω ∗ e1 ∗ a ∗ e2 ∗ d ∗ e1 ∗ (e1 ∗ c ∗ e2 ∗ d ∗ e1)∗,ω .

By definition of the syntactic monoid and morphism of L, this means that, equivalently,
L belongs to L(J ∗ D) if and only if for all e, s, f, t, u, v ∈ Σ+ such that η(e) and η(f) are
idempotents, we have

(esfte)ω(eufve)ω ∼ (esfte)ωesfve(eufve)ω .

We shall also use the fact that if L belongs to L(J ∗ D), then for all e, u, v ∈ Σ+ such
that η(e) is idempotent, we have (eueve)ω ∼ (eveue)ω, because

(eueve)ω ∼ (eeeee)ω(eueve)ω

∼ (eeeee)ωeeeve(eueve)ω

∼ (eveue)ωeve

∼ (eveue)ωeveee(eeeee)ω

∼ (eveue)ω(eeeee)ω

∼ (eveue)ω .

5.4.3 Some examples

The main proof of Proposition 5.4.2 heavily relies on Lemma 5.4.22, a technical result in-
troduced intuitively at the end of Subsection 5.4.1 and proved separately later that gives
an exact characterisation of the conditions a given NSUMT should verify in order for the
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SUM it is a decomposition of to belong to L(J ∗ D). Before moving to this main proof, we
start with some positive and negative examples of SUMs with respect to membership in
L(J ∗ D), along with an adequate Boolean combination of Zouave languages when mem-
bership holds. This should give the reader an idea about the conditions that any SUM
belonging to L(J ∗ D) verifies and how those can help to express them as a Boolean com-
binations of Zouave languages, using the notions introduced in the previous subsection.

Example 5.4.15. The SUM c∗a(a + b)∗ over {a, b, c}, that can be decomposed as the
following straight right NSUMT

a

{c}∗ {a, b}∗ ,

belongs to L(J ∗ D) because

c∗a(a+ b)∗ = [a]Σ,2 ∩
((

[c]Σ,2
{ ∩ ]a]Σ,2

)
∪
(
[c]Σ,2 ∩ [a, c]Σ,2

{ ∩ [b, c]Σ,2
{ ∩ [ca]Σ,2

))
.

However, the SUM c∗a(a+b+c)∗ over {a, b, c}, that can be decomposed as the following
straight right NSUMT

a

{c}∗ {a, b, c}∗ ,

does not belong to L(J ∗ D) because, if we denote by ∼ its syntactic congruence and ω

the idempotent power of its syntatic monoid, if it were the case we would have

(cωacωbcω)ω ∼ (cωbcωacω)ω

noting that while the first word belongs to c∗a(a + b + c)∗, the second one does not, a
contradiction.

Example 5.4.16. The SUM c∗a(a+ b)∗ac∗ over {a, b, c}, that can be decomposed as the
following bent right NSUMT

a

{c}∗ a

{a, b}∗ {c}∗ ,
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belongs to L(J ∗ D) because, if we denote by ψ1 the Boolean combination of Zouave
languages given for c∗a(a + b)∗ in the previous example and by ψ0 = ψR

1 one suited for
(a+ b)∗ac∗ =

(
c∗a(a+ b)∗

)R, we have

c∗a(a+ b)∗ac∗ = [a]Σ,2 ∩ [a]Σ,2 ∗ ψ1 ∩ ψ0 ∗ [a]Σ,2 .

However, the SUM c∗a(a + b + c)∗ac∗ over {a, b, c}, that can be decomposed as the
following bent right NSUMT

a

{c}∗ a

{a, b, c}∗ {c}∗ ,

does not belong to L(J ∗ D) because otherwise, by virtue of the fact that L(J ∗ D) is an
ne-variety of languages, we would have that c∗a(a + b + c)∗ =

(
c∗a(a + b + c)∗ac∗

)
a−1

belongs to L(J ∗ D), a contradiction to what we showed in the previous example.

Example 5.4.17. The SUM (b+ c)∗a(a+ b)∗bc(a+ c)∗ over {a, b, c}, that can be decom-
posed as the following straight right NSUMT

a

{b, c}∗ c

b

{a, b}∗ ∅∗

{a, c}∗

,

belongs to L(J ∗ D) because

(b+ c)∗a(a+ b)∗bc(a+ c)∗ = [a, b, c]Σ,2 ∩ [a, c, b]Σ,2
{ ∩ [a, bc]Σ,2 .

However, the SUM (b+c)∗a(a+b)∗bc(a+b+c)∗ over {a, b, c}, that can be decomposed
as the following straight right NSUMT

a

{b, c}∗ c

b

{a, b}∗ ∅∗

{a, b, c}∗

,
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does not belong to L(J ∗ D) because, if we denote by ∼ its syntactic congruence and ω

the idempotent power of its syntatic monoid, if it were the case we would have

(cωabccωaccω)ω ∼ (cωaccωabccω)ω

noting that while the first word belongs to (b+ c)∗a(a+ b)∗bc(a+ b+ c)∗, the second one
does not, a contradiction.

Example 5.4.18. The SUM (a+ c)∗caa∗b(a+ b)∗ over {a, b, c}, that can be decomposed
as the following straight right NSUMT

c

{a, c}∗ a

∅∗ b

{a}∗ {a, b}∗ ,

belongs to L(J ∗ D) because

(a+ c)∗caa∗b(a+ b)∗ = [cb]Σ,2
{ ∩ [c, a, b]Σ,2 ∩ [b, c]Σ,2

{ .

However, the SUM (a+c+d)∗ca(a+d)∗b(a+b)∗ over {a, b, c, d}, that can be decomposed
as the following straight right NSUMT

c

{a, c, d}∗ a

∅∗ b

{a, d}∗ {a, b}∗ ,

does not belong to L(J ∗ D) because, if we denote by ∼ its syntactic congruence and ω

the idempotent power of its syntatic monoid, if it were the case we would have

(dωcdωcadω)ωb ∼ (dωcadωcdω)ωb

noting that while the first word belongs to (a+ c+ d)∗ca(a+ d)∗b(a+ b)∗, the second one
does not, a contradiction.
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5.4.4 The main proof

We now give the main proof of Proposition 5.4.2, leaving the proof of some needed tech-
nical lemmata for the next subsection.

Proof of Proposition 5.4.2. Let us fix an alphabet Σ.
We are going to prove something a bit stronger by induction on k, on the number of

non-empty alphabets in {A1, . . . , Ak−1} (non-tail alphabets), on
∑k−1

i=1 |Ai|, on the major
and the minor weights and on the constraint level (parameters taken in that order): that
to any NSUMT T over Σ that is a decomposition of a SUM A∗

0a1A
∗
1a2 · · ·A∗

k−1akA
∗
k (k ∈ N)

over Σ in L(J ∗ D) we can associate a Boolean combination ϕ(T ) of Zouave languages
over Σ verifying that:

• L(ϕ(T )) = L(T ) = A∗
0a1A

∗
1a2 · · ·A∗

k−1akA
∗
k;

• if A∗
0a1A

∗
1a2 · · ·A∗

k−1akA
∗
k can be decomposed as a straight left NSUMT, then ϕ(T )

is left-convenient;

• if A∗
0a1A

∗
1a2 · · ·A∗

k−1akA
∗
k can be decomposed as a straight right NSUMT, then ϕ(T )

is right-convenient.

The basic idea of the proof goes like this: depending on the type of the NSUMT T , use
the characterisation given by Lemma 5.4.22 and the inductive hypothesis to build ϕ(T ).
This way of proceeding gives rise to several cases, subcases and even subsubcases that we
have to examine carefully; this is the reason why the proof is long and cumbersome in
some places, even if its basic idea is simple.

Note that given some A ⊆ Σ, we shall write a /∈ A instead of a ∈ Σ \ A.

Base case k = 0. For any alphabet A ⊆ Σ,

ϕ(A∗) =
⋂
b/∈A

[b]Σ,2
{

is the desired Boolean combination of Zouave languages.

Induction. Let (k, δ1, δ2, δ3, δ4, δ5) ∈ N>0×N2×(N∪{−1})3 and assume the statement
is true for any NSUMT over Σ that is a decomposition of a SUM over Σ of degree l in
L(J ∗ D), with number of non-empty non-tail alphabets σ1, sum of cardinals of non-
tail alphabets σ2, major weight σ3, minor weight σ4 and constraint level σ5 such that
(l, σ1, σ2, σ3, σ4, σ5) < (k, δ1, δ2, δ3, δ4, δ5).
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Let T be an NSUMT over Σ that is a decomposition of a SUM L = A∗
0a1A

∗
1a2 · · ·

A∗
k−1akA

∗
k over Σ of degree k in L(J ∗ D), with a number of non-empty alphabets in

{A1, . . . , Ak−1} equal to δ1,
∑k−1

i=1 |Ai| = δ2, major weight δ3, minor weight δ4 and con-
straint level δ5.

By what we discussed in Subsection 5.4.2, we can assume without loss of generality that
T ’s right edge at the root is full, otherwise we shall just get the expression ϕ(TR) for the
reversed NSUMT TR over Σ, that is a decomposition of the reversed SUM A∗

kakA
∗
k−1 · · · a2

A∗
1a1A

∗
0 over Σ, and set

ϕ(T ) = ϕ(TR)R .

There are several cases to consider, depending on the shape of T .

Case 1. T is a bent right NSUMT of the form
ai1,1

∆1,0 ai1,2

∆1,1

∆1,j1−1 ap

∆1,j1
ai2,j2

∆2,j2
ai2,j2−1

∆2,j2−1

∆2,1ap+1

∆2,0A∗
p

ai1,j1

ai2,1

where ∆1,0,∆1,1, . . . ,∆1,j1−1,∆1,j1 (j1 ∈ N) are straight left NSUMTs over Σ, ∆2,0,∆2,1,

. . . ,∆2,j2−1,∆2,j2 (j2 ∈ N) are straight right NSUMTs over Σ, p ∈ [[1, k− 1]] and the edges
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between the nodes labelled ai1,1 to ai1,j1 and ai2,1 to ai2,j2 are all full. We let

∆0 =

ai1,1

∆1,0 ai1,2

∆1,1

∆1,j1−1 ap

∆1,j1 A∗
p

ai1,j1

and

∆1 =

ai2,j2

∆2,j2
ai2,j2−1

∆2,j2−1

∆2,1ap+1

∆2,0A∗
p

ai2,1

.

By Lemma 5.4.22, both L(∆0) and L(∆1) are SUMs over Σ of degree less than k in
L(J ∗ D). Moreover, L(∆0) can be decomposed as a straight left NSUMT when L can and
L(∆1) can be decomposed as a straight right NSUMT when L can. Hence, by inductive
hypothesis, the Boolean combination ϕ(∆1) of Zouave languages is left-convenient, as
well as right-convenient when L can be decomposed as a straight right NSUMT, and
verifies L(ϕ(∆1)) = L(∆1), and the Boolean combination ϕ(∆0) of Zouave languages is
right-convenient, as well as left-convenient when L can be decomposed as a straight left
NSUMT, and verifies L(ϕ(∆0)) = L(∆0). It is quite direct to see that

L =(Σ \ {ai1,1})∗ai1,1 · · · (Σ \ {ai1,j1})
∗ai1,j1 (Σ \ {ap})∗apL(∆1)∩

L(∆0)ap+1(Σ \ {ap+1})∗ai2,1(Σ \ {ai2,1})∗ · · · ai2,j2 (Σ \ {ai2,j2})
∗ ,
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so that by Lemma 5.4.11 (and its reversed version),

ϕ(T ) =[ai1,1 , ai1,2 , . . . , ai1,j1 , ap]Σ,2 ∩ [ai1,1 , ai1,2 , . . . , ai1,j1 , ap]Σ,2 ∗ ϕ(∆1)∩

[ap+1, ai2,1 , . . . , ai2,j2−1
, ai2,j2 ]Σ,2 ∩ ϕ(∆0) ∗ [ap+1, ai2,1 , . . . , ai2,j2−1

, ai2,j2 ]Σ,2

is the desired Boolean combination of Zouave languages.

Case 2. T is a straight right NSUMT of the form
ai1

∆0 ai2

∆1

∆j−1 ak

∆j A∗
k

aij

where ∆0,∆1, . . . ,∆j−1,∆j (j ∈ N) are straight left NSUMTs over Σ and the edges
between the nodes labelled ai1 to aij are all full. We use the convention that i0 = 0 and
ij+1 = k.

In this case, it is less direct to see how to split T and apply the inductive hypothesis
on smaller NSUMTs (with respect to the order we consider for the proof by induction) so
as to build ϕ(T ).

Recall the characterisation given by Lemma 5.4.22: it says in particular that the fact
that L is a language of dot-depth one implies that for each p ∈ [[0, k− 1]], the intersection
between Ap and Ak is empty, or at least some letter ap+1 to ak does not belong to Ak, or
the SUM A∗

pap+1 · · ·A∗
k−1akA

∗
k and SUMT REp(T ) that is a decomposition of it are very

constrained. How can we use this condition to build a Boolean combination of Zouave
languages corresponding to L?

Imagine we can find some q ∈ [j + 1] and some p ∈ [[iq−1, iq − 1]] (i.e., such that ∆q−1

contains ap as label of an internal node) verifying that all of Ap+1, . . . , Aiq−1 are empty,
while Ap is not empty. If we denote by Θq−1 some straight left normalised version of
the SUM ∆q−1 whose iq − 1 − p internal nodes have been removed, this means that
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for any w ∈ L, either there exists some c ∈ Ap such that w can be decomposed as
w = v0ai1 · · · vq−2aiq−1vq−1cap+1 · · · aiq−1aiqvqaiq+1 · · · vjakvj+1 such that vι ∈ L(∆j) for
all ι ∈ [[0, j]] \ {q − 1}, vq−1 ∈ Θq−1 and vj+1 ∈ A∗

k, or w belongs to the language Lp
that is the SUM L where A∗

p has been replaced by ∅∗. The idea is that if we have the
additional guarantee that while Ak does not contain any element of Ap, all words of the
language ap+1 · · · aiq−1aiqL(∆q)aiq+1 · · · L(∆j)akA

∗
k do only contain letters from Ak, such

a letter c in a word w can be used so that the factor cap+1 · · · aiq−1aiq forms a delimiter
that allows to “wedge” the Boolean combinations of Zouave languages obtained by induc-
tion for NSUMTs that are decompositions of L(∆0)ai1 · · · L(∆q−2)aiq−1A

∗
iq−1

, L(Θq−1) and
L(∆q)aiq+1 · · · L(∆j)akA

∗
k and “apply” them to the correct factor of w so as to test its

membership in L. When no such letter c exists, we can essentially just use a Boolean
combination of Zouave languages obtained by induction for an NSUMT that is a decom-
position of Lp to test membership of w in L. This is the first subcase.

Now, if we do not have this additional guarantee, it may be because at least one of
ap+1, . . . , aiq does not belong to Ak while, still, all words of the language L(∆q)aiq+1 · · ·
L(∆j)akA

∗
k do only contain letters from Ak. If we take p′ ∈ [[p+ 1, iq]] to be such that ap′

does not belong to Ak while all words of the language ap′+1 · · · aiqL(∆q)aiq+1 · · · L(∆j)akA
∗
k

do only contain letters from Ak, we can essentially use this fact to rearrange T into a bent
right NSUMT that is also a decomposition of L (where the bend happens at an internal
node labelled by ap′) and conclude by induction. The second case is therefore the one
in which we can find some q ∈ [j + 1] and some p′ ∈ [[iq−1 + 1, iq]] verifying that all of
Ap′ , . . . , Aiq−1 are empty, and ap′ does not belong to Ak while all words of the language
ap′+1 · · · aiqL(∆q)aiq+1 · · · L(∆j)akA

∗
k do only contain letters from Ak.

The third and last subcase is then the complement of the disjunction of the two first
subcases. The idea for this case is that we consider q ∈ [j + 1] the biggest integer in
[j + 1] such that at least one of Aiq−1+1, . . . , Aiq−1 is non-empty or Aiq−1 is not con-
tained in Ak, 1 if it does not exist. Let then p ∈ [[iq−1, iq − 1]] be the biggest integer
in [[iq−1, iq − 1]] such that Ap is not empty, iq−1 if it does not exist. By construction
and since we are not in the second subcase, it then follows that all words of the lan-
guage ap+1 · · · aiq−1aiqL(∆q)aiq+1 · · · L(∆j)akA

∗
k do only contain letters from Ak. When

Ap is empty, then it necessarily means that q = 1 and p = 0, a specific subsubcase
that we handle separately. Otherwise, when Ap is not empty, then since we are not in the
first subcase, we must have that the intersection between Ap and Ak is non-empty. The
following strong restrictions hence are implied by Lemma 5.4.22:

• for each ι ∈ [[q, j]], the subtree ∆ι is reduced to the root (Ak \ {aiι+1})∗;
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• if p+ 1 < iq, then there exists some letter d ∈ Σ verifying that all letters from ap+1

to aiq−1 are equal to d and the intersection between Ap and Ak only contains d;

• all elements in Ak except aiq are also in Ap.

We can then consider different subsubcases depending on the values of q and p and for
each of them, use the previous properties in different ways to build a Boolean combination
of Zouave languages: we won’t explain further how we do that to avoid losing the reader
with too much details for this intuitive presentation.

We now spell out all the details for each of the three subcases, one after the other.
For all q ∈ [j + 1], let pq ∈ [[iq−1, iq − 1]] be the biggest integer in [[iq−1, iq − 1]] such

that Apq 6= ∅, iq−1 if it does not exist; by Lemma 5.4.10, L(∆q−1) can be decomposed as
the NSUMT

∆′
q−1 =

aiq−1

∅∗

∅∗Θq−1

apq+1

where Θq−1 is a straight left NSUMT over Σ that is a decomposition of A∗
iq−1

aiq−1+1 · · ·
A∗
pq−1apqA

∗
pq and the edges between the nodes labelled apq+1 to aiq−1 are all full.

Subcase 1. Assume there exists some q ∈ [j + 1] such that Apq 6= ∅, Apq ∩ Ak = ∅,
Aι ⊆ Ak for all ι ∈ [[iq, k − 1]] and {apq+1, . . . , ak} ⊆ Ak.

We know that Θq−1 is a straight left NSUMT of the form

aθl

Γl

Γ1A∗
iq−1

aθ1
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where Γ1, . . . ,Γl (l ∈ N) are straight right NSUMTs over Σ and the edges between
the nodes labelled aθ1 to aθl are all full, using the convention that Θq−1 is the sole
root A∗

iq−1
when l = 0. By Corollary 5.4.21 (because ∆q−1 can be replaced by ∆′

q−1

in T ), we get that L(Θq−1) also belongs to L(J ∗ D). Since Θq−1 is a straight left
NSUMT and L(Θq−1) is a SUM over Σ of degree less than k, by inductive hypothesis,
the Boolean combination ϕ(Θq−1) of Zouave languages is left-convenient and verifies
L(ϕ(Θq−1)) = L(Θq−1).

Let

Λ0 =

ai1

∆0 ai2

∆1

∆q−2 A∗
iq−1

aiq−1

where the edges between the nodes labelled ai1 to aiq−1 are all full, using the con-
vention that Λ0 is simply the root A∗

0 when q = 1. By Corollary 5.4.23 when
q > 1, otherwise using Lemma 5.4.19, we get that L(Λ0) also belongs to L(J ∗ D).
Moreover, L(Λ0) can be decomposed as a straight left NSUMT when L can. Since
Λ0 is a straight right NSUMT and L(Λ0) is a SUM over Σ of degree less than k, by
inductive hypothesis, the Boolean combination ϕ(Λ0) of Zouave languages is right-
convenient, as well as left-convenient when L can be decomposed as a straight left
NSUMT, and verifies L(ϕ(Λ0)) = L(Λ0).

Let also
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Λ1 =

aiq+1

∆q aiq+2

∆q+1

∆j−1 ak

∆j A∗
k

aij

where the edges between the nodes labelled aiq+1 to aij are all full, using the conven-
tion that Λ1 is simply the root A∗

k when q = j+1. By Corollary 5.4.21, we get that
L(Λ1) also belongs to L(J ∗ D). Since Λ1 is a straight right NSUMT and L(Λ1) is
a SUM over Σ of degree less than k, by inductive hypothesis, the Boolean combin-
ation ϕ(Λ1) of Zouave languages is right-convenient and verifies L(ϕ(Λ1)) = L(Λ1).

Let us denote by Tpq the straight right NSUMT T in which the label at the leaf
labelled by A∗

pq has been changed to ∅∗ and Lpq the associated SUM, which is
Lpq = A∗

0a1A
∗
1 · · ·A∗

pq−1apqapq+1A
∗
pq+1 · · ·A∗

k−1akA
∗
k. By Lemma 5.4.25 when pq = 0

or apq ∈ Apq , or otherwise Lemma 5.4.26 when apq /∈ Apq , we get that Lpq does also
belong to L(J ∗ D).

When pq > 0, as Lpq contains one non-tail non-empty alphabet less as L and can
be decomposed as a straight left NSUMT when L can, by inductive hypothesis,
the Boolean combination ϕ(Tpq) of Zouave languages is right-convenient, as well as
left-convenient when L can be decomposed as a straight left NSUMT, and verifies
L
(
ϕ(Tpq)

)
= L

(
Tpq
)
= Lpq .

Finally, when pq = 0, assume L can also be decomposed as the following straight
left NSUMT,
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T ′ =

aλm

Υm+1aλm−1

Υm

Υ2a1

A∗
0 Υ1

aλ1

where Υ1,Υ2, . . . ,Υm,Υm+1 (m ∈ N) are straight right NSUMTs over Σ and the
edges between the nodes labelled aλ1 to aλm are all full, using the convention that
λ0 = 1 and λm+1 = k + 1. Then L0 can be decomposed as the bent left NSUMT
T ′
0 that is T ′ in which the label at the leaf labelled by A∗

0 has been changed to ∅∗

and the arcs going from the node labelled a1 to its children have been switched, the
full one becoming dashed and vice versa. The major and minor weights of T ′

0 both
are equal to −1 while at least one of them is positive for T , and L0 can both be
decomposed as the straight right NSUMT T0 and the straight left NSUMT T ′ in
which the label at the leaf labelled by A∗

0 has been changed to ∅∗, so by inductive
hypothesis, the Boolean combination ϕ(T ′

0) of Zouave languages is both left- and
right-convenient and verifies L(ϕ(T ′

0)) = L(T ′
0) = L0.

Let w ∈ L. This means there exists a unique decomposition w = u0a1u1a2 · · ·uk−1

akuk such that uι ∈ A∗
ι for all ι ∈ [[0, k]]. When upq = ε, then either pq > 0

and we have w ∈ Lpq , or pq = 0, which necessarily means q = 1, and we have
w ∈ L0 = a1 · · · ai1−1ai1L(Λ1). Otherwise, when upq 6= ε, there exist c ∈ Apq and
v ∈ A∗

pq such that upq = vc. But note that as Apq ∩Ak = ∅, we have c /∈ Ak, so that
L(Λ1) ⊆ (Σ \ {c})∗ because Aι ⊆ Ak for all ι ∈ [[iq, k− 1]] and {apq+1, . . . , ak} ⊆ Ak.
So, as u0a1 · · ·uiq−1−1aiq−1uiq−1 ∈ L(Λ0), uiq−1aiq−1+1 · · ·upq−1apqv ∈ L(Θq−1) and
uiqaiq+1 · · ·uk−1akuk ∈ L(Λ1), this means that

w ∈L(Λ0)aθ1(Σ \ {aθ1 , aiq})∗ · · · aθl(Σ \ {aθl , aiq})∗capq+1 · · · aiq−1aiq(Σ \ {c})∗∩

(Σ \ {ai1})∗ai1 · · · (Σ \ {aiq−1})∗aiq−1L(Θq−1)capq+1 · · · aiq−1aiq(Σ \ {c})∗∩

(Σ \ {ai1})∗ai1 · · · (Σ \ {aiq−1})∗aiq−1(Σ \ {aiq})∗capq+1 · · · aiq−1aiqL(Λ1) .
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Thus, we can show that, in fact, if we let

K =

Lpq when pq > 0

L0 = a1 · · · ai1−1ai1L(Λ1) otherwise (pq = 0) ,

we have

L

=
⋃
c∈Apq

(
L(Λ0)aθ1(Σ \ {aθ1 , aiq})∗ · · · aθl(Σ \ {aθl , aiq})∗capq+1 · · · aiq−1aiq(Σ \ {c})∗∩
(Σ \ {ai1})∗ai1 · · · (Σ \ {aiq−1})∗aiq−1L(Θq−1)capq+1 · · · aiq−1aiq(Σ \ {c})∗∩
(Σ \ {ai1})∗ai1 · · · (Σ \ {aiq−1})∗aiq−1(Σ \ {aiq})∗capq+1 · · · aiq−1aiqL(Λ1)

)
∪K .

So by Lemma 5.4.11, if we let

ψ =



ϕ(Tpq) when pq > 0

ϕ(T ′
0) when pq = 0 and L can be decom-

posed as T ′

]a1 · · · ai1−1ai1 ] ∩ ]a1 · · · ai1−1ai1 [ ∗ ϕ(Λ1) otherwise (pq = 0 and L can’t be
decomposed as T ′) ,

we have that

ϕ(T )

=
⋃
c∈Apq

(
[ai1 , . . . , aiq−1 , aθ1 , . . . , aθl , capq+1 · · · aiq−1aiq ]Σ,2 ∩ [ai1 , . . . , aiq−1 , aiq , c]Σ,2

{∩
ϕ(Λ0) ∗ [aθ1 , . . . , aθl , capq+1 · · · aiq−1aiq ]Σ,2∩
[ai1 , . . . , aiq−1 ]Σ,2 ∗

(
[capq+1 · · · aiq−1aiq ]Σ,2 ∩ [aiq , c]Σ,2

{∩
ϕ(Θq−1) ∗ ]capq+1 · · · aiq−1aiq ]Σ,2

)
∩

[ai1 , . . . , aiq−1 , capq+1 · · · aiq−1aiq [Σ,2 ∗ ϕ(Λ1)
)

∪ ψ

is the desired Boolean combination of Zouave languages.

Subcase 2. Assume there exists some q ∈ [j + 1] and some p′ ∈ [[pq + 1, iq]] such that
ap′ /∈ Ak, Aι ⊆ Ak for all ι ∈ [[iq, k − 1]] and {ap′+1, . . . , ak} ⊆ Ak.
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When q = 1, let

Λ =

ai2

∆1

∆j−1 ak

∆j A∗
k

aij

where the edges between the nodes labelled ai2 to aij are all full, using the convention
that Λ is simply the root A∗

k when j = 0. By Corollary 5.4.21 (because ∆0 can be
replaced by ∆′

0 in T ), we get that both L(Λ) and L(Θ0) also belong to L(J ∗ D).
Since Λ is a straight right NSUMT, Θ0 is a straight left NSUMT and L(Λ) and L(Θ0)

both are SUMs over Σ of respective degrees less than k, by inductive hypothesis,
the Boolean combination ϕ(Λ) of Zouave languages is right-convenient and verifies
L(ϕ(Λ)) = L(Λ), and the Boolean combination ϕ(Θ0) of Zouave languages is left-
convenient and verifies L(ϕ(Θ0)) = L(Θ0). Note that as p′ ∈ [[p1 + 1, i1]] and
ap′ /∈ Ak, we have that L(Λ) ⊆ (Σ \ {ap′})∗ because Aι ⊆ Ak for all ι ∈ [[i1, k − 1]]

and {ap′+1, . . . , ak} ⊆ Ak. So, as L(Θ0) ⊆ (Σ \ {ai1})∗, we can show that

L = L(Θ0)ap1+1 · · · ai1−1ai1(Σ \ {ap′})∗ ∩ (Σ \ {ai1})∗ap1+1 · · · ai1−1ai1L(Λ) .

When q > 1, since ap′ 6= aι ∈ Ak and ap′ /∈ Aι ⊆ Ak for all ι ∈ [[p′ + 1, k]] (because
ap′ /∈ Ak), we can define another SUMT T ′ that is a decomposition of L in the
following way:
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T ′ =

ai1

∆0 ai2

∆1

∆q−2 ap′

ap′−1 ap′+1

∅∗

∅∗ aiq+1

∆q

∆j−1 ak

∆j A∗
k

aiq−1

aiq

aij

∅∗

∅∗Θq−1

apq+1

where the edges between the nodes labelled ai1 to aiq−1 , apq+1 to ap′−1, ap′+1 to aiq
and aiq+1 to aij are all full. The major and minor weights of T ′ both are equal
to −1 while at least one of them is positive for T , and L can be decomposed as
the straight right NSUMT T , so by inductive hypothesis, the Boolean combination
ϕ(T ′) of Zouave languages is right-convenient, as well as left-convenient when L can
be decomposed as a straight left NSUMT, and verifies L(ϕ(T ′)) = L(T ′) = L.
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Therefore, by Lemma 5.4.11,

ϕ(T ) =



ϕ(T ′) when q > 1

[ap1+1 · · · ai1−1ai1 ]Σ,2 ∩ [ai1 , ap′ ]Σ,2
{∩

ϕ(Θ0) ∗ ]ap1+1 · · · ai1−1ai1 ]Σ,2∩

[ap1+1 · · · ai1−1ai1 [Σ,2 ∗ ϕ(Λ)

otherwise (q = 1)

is the desired Boolean combination of Zouave languages.

Subcase 3. Assume now that for all q ∈ [j + 1], there exists ι ∈ [[iq, k − 1]] such that
Aι * Ak or {aiq+1, . . . , ak} * Ak or ({apq+1, . . . , aiq} ⊆ Ak and (Apq = ∅ or Apq ∩
Ak 6= ∅)). Denote by (?) this condition, which is the negation of the disjunction of
the conditions for the two first cases.

Let q ∈ [j + 1] be the biggest integer in [j + 1] such that pq > iq−1 or Apq * Ak,
1 if it does no exist. When q = j + 1, by condition (?), since there does not
exist any ι ∈ [[k, k − 1]] such that Aι * Ak and ∅ ⊆ Ak, we necessarily have that
{apj+1+1, . . . , ak} ⊆ Ak and (Apj+1

= ∅ or Apj+1
∩ Ak 6= ∅). Otherwise, it is easy

to see by (backward) induction that for each q′ ∈ [[q + 1, j + 1]], we necessarily
have Aι ⊆ Ak for all ι ∈ [[iq′−1, k − 1]] and {aiq′−1+1, . . . , ak} ⊆ Ak. Indeed, let
q′ ∈ [[q + 1, j + 1]].

• Assume q′ = j + 1. Because q < q′, we have pj+1 = ij and Apj+1
⊆ Ak by

maximality of q. By definition of pj+1, this entails Aij+1 = · · · = Ak−1 = ∅ ⊆
Ak, so that we necessarily have Aι ⊆ Ak for all ι ∈ [[ij, k− 1]]. Additionally, by
condition (?), we necessarily have {apj+1+1, . . . , aij+1

} = {aij+1, . . . , ak} ⊆ Ak.

• Assume q′ < j + 1. Because q < q′, we have pq′ = iq′−1 and Apq′ ⊆ Ak by
maximality of q. By definition of pq′ , this entails Aiq′−1+1 = · · · = Aiq′−1 =

∅ ⊆ Ak, so that, since we have Aι ⊆ Ak for all ι ∈ [[iq′ , k − 1]] (by in-
duction), we necessarily have Aι ⊆ Ak for all ι ∈ [[iq′−1, k − 1]]. Addition-
ally, by condition (?), since there does not exist any ι ∈ [[iq′ , k − 1]] such
that Aι * Ak and {aiq′+1, . . . , ak} ⊆ Ak (by induction), we necessarily have
{apq′+1, . . . , aiq′} ∪ {aiq′+1, . . . , ak} = {aiq′−1+1, . . . , ak} ⊆ Ak.

Hence Aι ⊆ Ak for all ι ∈ [[iq, k−1]] and {aiq+1, . . . , ak} ⊆ Ak, so that we necessarily
have {apq+1, . . . , aiq} ∪ {aiq+1, . . . , ak} = {apq+1, . . . , ak} ⊆ Ak and (Apq = ∅ or
Apq ∩ Ak 6= ∅) by condition (?). When Apq ∩ Ak 6= ∅, Lemma 5.4.22 tells us that:
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• for all ι ∈ [[q, j]], ∆ι = (Ak \ {aiι+1})∗;

• if pq + 1 < iq, then there exists d ∈ Σ verifying apq+1 = · · · = aiq−1 = d and
Apq ∩ Ak = {d};

• Ak ⊆ Apq ∪ {aiq}.

Assume that Apq ∩ Ak 6= ∅ and q < j + 1. Let

T ′ =

ai1

∆0 ai2

∆1

∆q−1 A∗
k

aiq

where the edges between the nodes labelled ai1 and aiq are all full be a SUMT
over Σ and L′ the SUM over Σ it is a decomposition of. By Lemma 5.4.24, since
{aiq+1, . . . , ak} ⊆ Ak, we get that L′ does also belong to L(J ∗ D). As T ′ is a
straight right NSUMT, L′ is a SUM of degree less than k and can be decomposed
as a straight left NSUMT when L can (see the next paragraph for more details), by
inductive hypothesis, the Boolean combination ϕ(T ′) of Zouave languages is right-
convenient, as well as left-convenient when L can be decomposed as a straight left
NSUMT, and verifies L(ϕ(T ′)) = L(T ′) = L′.

Let us justify the fact that L′ can be decomposed as a straight left NSUMT when
L can, because this is not so easy to see at first glance. So, assume L′ can be
decomposed as

ar

Γ1Γ0

where Γ0 is a straight left NSUMT over Σ and Γ1 is a straight right NSUMT over Σ.
As {aiq , . . . , ak} ⊆ Ak and the rightmost leaf of Γ1 is labelled by A∗

k, we necessarily
have r < iq, because it must be that ar /∈ Ak. Now, since LEr(T ′) is a SUMT over
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Σ that is a decomposition of A∗
rar+1 · · ·A∗

iq−1aiqA
∗
k and whose right branch contains

only full edges, by Lemma 5.4.7, we get a straight right NSUMT Γ′
1 over Σ that

is a decomposition of A∗
rar+1 · · ·A∗

iq−1aiqA
∗
k. Therefore, as by hypothesis we have

ar /∈ Aι for all ι ∈ [[r, k]] and ar /∈ {ar+1, . . . , ak}, we get that

ar

Γ′
1Γ0

is a straight left NSUMT over Σ that is a decomposition of L′.

By inductive hypothesis, we also directly have that the Boolean combination ϕ(A∗
k)

of Zouave languages is both left- and right-convenient and verifies L(ϕ(A∗
k)) = A∗

k.

Because in the present case,

L = L(∆0)ai1 · · · L(∆q−1)aiq(Ak \ {aiq+1})∗aiq+1 · · · (Ak \ {ak})∗akA∗
k ,

it is rather easy to see that

L =(Σ \ {ai1})∗ai1(Σ \ {ai2})∗ai2 · · · (Σ \ {aij})∗aij(Σ \ {ak})∗akΣ∗∩

(Σ \ {ai1})∗ai1(Σ \ {ai2})∗ai2 · · · (Σ \ {aiq})∗aiqA∗
k ∩ L′ ,

so that by Lemma 5.4.11,

ϕ(T ) = [ai1 , ai2 , . . . , aij , ak]Σ,2 ∩ [ai1 , ai2 , . . . , aiq ]Σ,2 ∗ ϕ(A
∗
k) ∩ ϕ(T ′)

is the desired Boolean combination of Zouave languages.

Otherwise, in all situations between which we now distinguish, we have Apq∩Ak 6= ∅
and q = j + 1, or Apq = ∅.

• pq = 0 (q = 1).

If A0 ∩ Ak 6= ∅, we have i1 = k, so by what we discussed just above, it follows
that

L =

A∗
0d
k−1akA

∗
k when 0 < k − 1

A∗
0akA

∗
k otherwise (0 = k − 1)

with Ak ⊆ A0 ∪ {ak} and, when 0 < k − 1, A0 ∩ Ak = {d}. This means that
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when 0 < k − 1, we have Ak ⊆ {d, ak} and hence

L = A∗
0d
k−1akA

∗
k

= A∗
0akA

∗
k ∩

k−2⋂
i=0

(
(diakΣ

∗){ ∩
⋂

c∈A0\{d}

(
(Σ \ {ak})∗cdiak(Σ \ {c})∗

){) .

When 0 < k − 1 and L can also be decomposed as a straight left NSUMT,
then it necessarily means that ak /∈ Ak and that its root is this last letter of the
monomial, because d ∈ Ak, so that in this case L ⊆ (Σ\{ak})∗dk−1ak(Σ\{ak})∗.

We can then show that, if we let

K =



(Σ \ {ak})∗dk−1ak(Σ \ {ak})∗ when 0 < k − 1 and L

can be decomposed as a
straight left NSUMT⋂k−2

i=0

(
(diakΣ

∗){∩⋂
c∈A0\{d}(
(Σ \ {ak})∗cdiak(Σ \ {c})∗

){)
when 0 < k − 1 and L

can’t be decomposed as
a straight left NSUMT

Σ∗ otherwise (0 = k − 1) ,

we have
L = (Σ \ {ak})∗akA∗

k ∩
⋂

b/∈A0∪{ak}

(Σ∗bΣ∗){ ∩K .

So, by Lemma 5.4.11 and since, when 0 < k − 1, for each i ∈ [[0, k − 2]] and
c ∈ A0 \ {d}, no word of A∗

0akA
∗
k has (cdiak)

2 as a subword, if we let

ψ =



[dk−1ak]Σ,2 when 0 < k − 1 and L can be decom-
posed as a straight left NSUMT⋂k−2

i=0

(
]diak]Σ,2

{∩⋂
c∈A0\{d} [cd

iak]Σ,2
{
) when 0 < k − 1 and L can’t be decom-

posed as a straight left NSUMT

Σ∗ otherwise (0 = k − 1) ,

we have that

ϕ(T ) = [ak]Σ,2 ∩ [ak]Σ,2 ∗ ϕ(A
∗
k) ∩

⋂
b/∈A0∪{ak}

[b]Σ,2
{ ∩ ψ
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is the desired Boolean combination of Zouave languages.

Otherwise, when A0 ∩ Ak = ∅, then we necessarily have A0 = ∅. Let

Λ =

ai2

∆1

∆j−1 ak

∆j A∗
k

aij

where the edges between the nodes labelled ai2 to aij are all full, using the
convention that Λ is simply the root A∗

k when j = 0. Applying Lemma 5.4.20,
we get that L(Λ) also belongs to L(J ∗ D). Since Λ is a straight right NSUMT
and L(Λ) is a SUM over Σ of degree less than k, by inductive hypothesis, the
Boolean combination ϕ(Λ) of Zouave languages is right-convenient and verifies
L(ϕ(Λ)) = L(Λ). It is rather straightforward to check that

L = a1 · · · ai1−1ai1L(Λ) .

Assume now L can also be decomposed as the following straight left NSUMT,

T ′ =

aλm

Υm+1aλm−1

Υm

Υ2a1

A∗
0 Υ1

aλ1

where Υ1,Υ2, . . . ,Υm,Υm+1 (m ∈ N) are straight right NSUMTs over Σ and
the edges between the nodes labelled aλ1 to aλm are all full, using the convention
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that λ0 = 1 and λm+1 = k + 1. Then, as A0 = ∅, L can also be decomposed
as the bent left NSUMT T ′′ that is T ′ in which the arcs going from the node
labelled a1 to its children have been switched, the full one becoming dashed
and vice versa. The major and minor weights of T ′′ both are equal to −1

while at least one of them is positive for T , and L can both be decomposed as
the straight right NSUMT T and the straight left NSUMT T ′, so by inductive
hypothesis, the Boolean combination ϕ(T ′′) of Zouave languages is both left-
and right-convenient and verifies L(ϕ(T ′′)) = L(T ′′) = L.
Therefore, by Lemma 5.4.11,

ϕ(T ) =


ϕ(T ′′) when L can be de-

composed as T ′

]a1 · · · ai1−1ai1 ]Σ,2 ∩ ]a1 · · · ai1−1ai1 [Σ,2 ∗ ϕ(Λ) otherwise (L can’t be
decomposed as T ′)

is the desired Boolean combination of Zouave languages.

• pq > 0 and pq = iq−1.
Then, it necessarily means that q > 1, otherwise we would have pq = i0 = 0,
and consequently that Apq * Ak by definition of q. So we must have Apq∩Ak 6=
∅ and q = j + 1 because Apq cannot be empty.
Note that j > 0 as j + 1 = q > 1. Let

Λ =

ai1

∆0 ai2

∆1

∆j−1 A∗
ij

aij

where the edges between the nodes labelled ai1 to aij are all full. By Corol-
lary 5.4.23, we get that L(Λ) also belongs to L(J ∗ D). Since Λ is a straight
right NSUMT, L(Λ) is a SUM of degree less than k and can be decomposed
as a straight left NSUMT when L can, by inductive hypothesis, the Boolean
combination ϕ(Λ) of Zouave languages is right-convenient, as well as left-
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convenient when L can be decomposed as a straight left NSUMT, and verifies
L(ϕ(Λ)) = L(Λ).

Let us finally denote by T ′ the straight right NSUMT T in which the label at
the leaf labelled by A∗

ij
has been changed to (Ak \{ak})∗ and L′ the associated

SUM, which is L′ = A∗
0a1A

∗
1 · · ·A∗

ij−1aij(Ak \ {ak})∗aij+1A
∗
ij+1 · · ·A∗

k−1akA
∗
k.

By Lemma 5.4.27, since {aij+1, . . . , ak} ⊆ Ak, Ak ⊆ Aij ∪ {ak} and Aij+1 =

· · · = Ak−1 = ∅ ⊆ Ak, we get that L′ does also belong to L(J ∗ D). As
the sum of non-tail alphabet cardinals in L′ is less than this of L (because
Aij * Ak \ {ak} and ij = pq > 0) and L′ can be decomposed as a straight left
NSUMT when L can, by inductive hypothesis, the Boolean combination ϕ(T ′)

of Zouave languages is right-convenient, as well as left-convenient when L can
be decomposed as a straight left NSUMT, and verifies L(ϕ(T ′)) = L(T ′) = L′.

By inductive hypothesis, we also directly have that the Boolean combination
ϕ
(
(Aij ∪ {ak})∗

)
of Zouave languages is both left- and right-convenient and

verifies L
(
ϕ
(
(Aij ∪ {ak})∗

))
= (Aij ∪ {ak})∗.

In the present case, we have

L =

L(∆0)ai1 · · · L(∆j−1)aijA
∗
ij
dk−1−ijakA

∗
k when ij < k − 1

L(∆0)ai1 · · · L(∆j−1)aijA
∗
ij
akA

∗
k otherwise (ij = k − 1)

with Ak ⊆ Aij ∪ {ak} and, when ij < k − 1, Aij ∩ Ak = {d}. This means that
when ij < k−1, we have Ak ⊆ {d, ak} and hence for any b ∈ Aij\{d} = Aij\Ak,
since A∗

k ⊆ (Σ \ {c})∗ for all c ∈ Aij \ {d},

(Σ \ {ai1})∗ai1 · · · (Σ \ {aij})∗aijA∗
ij
b(Aij \ {b})∗akA∗

k∩

(Σ \ {ai1})∗ai1 · · · (Σ \ {aij})∗aijA∗
ij
dk−1−ijakA

∗
k

=(Σ \ {ai1})∗ai1 · · · (Σ \ {aij})∗aijA∗
ij
b(Aij \ {b})∗akA∗

k∩
k−2−ij⋂
i=0

⋂
c∈Aij

\{d}

(
(Σ \ {ai1})∗ai1 · · · (Σ \ {aij})∗aij(Σ \ {ak})∗

cdiak(Σ \ {c})∗
){ .
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We let

K =



⋂k−2−ij
i=0

⋂
c∈Aij

\{d}
(
(Σ \ {ai1})∗ai1 · · ·

(Σ \ {aij})∗aij(Σ \ {ak})∗

cdiak(Σ \ {c})∗
){

when ij < k − 1

Σ∗ otherwise (ij = k − 1) .

Let w ∈ L. This means there exists a unique decomposition w = u0a1u1a2 · · ·
uk−1akuk such that uι ∈ A∗

ι for all ι ∈ [[0, k]]. When uij ⊆ (Ak \ {ak})∗,
then we have w ∈ L′. Otherwise, when uij * (Ak \ {ak})∗, there exist b ∈
Aij \ Ak, v0 ∈ A∗

ij
and v1 ∈ (Aij \ {b})∗ such that uij = v0bv1. But note

that, as b /∈ Ak ∪ {ak} (because ak /∈ Aij), we have (Aij \ {b})∗akA∗
k ⊆ (Σ \

{b})∗. So, as u0a1 · · ·uij−1aijv0 ∈ L(Λ) and v1aij+1uij+1aij+2 · · ·uk−1akuk =

v1d
k−1−ijakuk ∈ (Aij \ {b})∗dk−1−ijakA

∗
k ⊆ (Aij \ {b})∗akA∗

k when ij < k − 1

and v1aij+1uij+1aij+2 · · ·uk−1akuk = v1akuk ∈ (Aij \ {b})∗akA∗
k otherwise (ij =

k − 1), this means that

w ∈(Σ \ {ai1})∗ai1 · · · (Σ \ {aij})∗aijA∗
ij
b(Aij \ {b})∗akA∗

k∩

L(Λ)b(Σ \ {b})∗ ∩K .

Thus, we can show that, in fact, we have

L =
⋃

b∈Aij
\Ak

(
(Σ \ {ai1})∗ai1 · · · (Σ \ {aij})∗aijA∗

ij
b(Aij \ {b})∗akA∗

k∩
L(Λ)b(Σ \ {b})∗ ∩K

)
∪ L′ .

So by Lemma 5.4.11, observing that

(Σ \ {ai1})∗ai1 · · · (Σ \ {aij})∗aijA∗
ij
b(Aij \ {b})∗akA∗

k

=(Σ \ {ai1})∗ai1 · · · (Σ \ {aij})∗aij(Σ \ {ak})∗akA∗
k∩

(Σ \ {ai1})∗ai1 · · · (Σ \ {aij})∗aij(Aij ∪ {ak})∗∩

(Σ \ {ai1})∗ai1 · · · (Σ \ {aij})∗aij(Σ \ {b})∗b(Σ \ {ak})∗akΣ∗

for all b ∈ Aij \Ak, and since, when ij < k− 1, for each i ∈ [[0, k− 2− ij]] and
c ∈ Aij \ {d}, no word of (Σ \ {ai1})∗ai1 · · · (Σ \ {aij})∗aijA∗

ij
b(Aij \ {b})∗akA∗

k
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has ai1 · · · aij(cdiak)2 as a subword, if we let

ψ =


⋂k−2−ij
i=0

⋂
c∈Aij

\{d} [ai1 , . . . , aij , cd
iak]Σ,2

{ when ij < k − 1

Σ∗ otherwise (ij = k − 1)
,

we have that

ϕ(T ) =
⋃

b∈Aij
\Ak

(
[ai1 , . . . , aij , b, ak]Σ,2 ∩ [ai1 , . . . , aij , ak]Σ,2 ∗ ϕ(A∗

k)∩
[ai1 , . . . , aij ]Σ,2 ∗ ϕ

(
(Aij ∪ {ak})∗

)
∩ ϕ(Λ) ∗ [b]Σ,2 ∩ ψ

)
∪ ϕ(T ′)

is the desired Boolean combination of Zouave languages.

• pq > iq−1.
Then, it necessarily means that Apq 6= ∅ by definition of pq (otherwise we would
have pq = iq−1), so that Apq ∩ Ak 6= ∅ and q = j + 1.
We shall denote pq = pj+1 simply by p.
We know Θj is of the form

al

ΛΓ0

A∗
ij

where l ∈ [[ij + 1, p]], Γ0 is a straight left NSUMT over Σ whose leftmost leaf
has been suppressed (and hence which might be empty) and Λ is a straight
right NSUMT over Σ. We can actually assume that l is the biggest integer
in [[ij + 1, p]] such that al does not appear in any word of A∗

l al+1 · · ·A∗
p−1apA

∗
p:

indeed, if there would exist l′ ∈ [[l + 1, p]] such that al′ does not appear in any
word of A∗

l′al′+1 · · ·A∗
p−1apA

∗
p, we could obtain a straight left NSUMT that is

also a decomposition of L(Θj) by putting al′ at the root, putting a straight
right NSUMT that is a decomposition of A∗

l′al′+1 · · ·A∗
p−1apA

∗
p as the right child

(that exists since LE l′−l(Λ)’s right branch contains only full edges), and putting
a straight left NSUMT that is a decomposition of A∗

ij
aij+1 · · ·A∗

l′−2al′−1A
∗
l′−1

as the left child (that exists since REp−l′+1(Θj)’s left branch contains only full
edges).
Let now p′ ∈ [[l, p]] be the smallest integer in [[l, p]] such that Ap′ 6= ∅, which
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necessarily exists since Ap 6= ∅. Then, by Lemma 5.4.10, L(Θj) can also be
decomposed as follows

al

al+1Γ0

A∗
ij ∅∗

∅∗

ap′

Γ1

A∗
p

where Γ1 is a straight right NSUMT over Σ whose rightmost leaf has been
suppressed (and hence which might be empty) and the edges between the
nodes labelled al+1 to ap′ are all full.

Let
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T ′ =

ai1

∆0 ai2

∆1

∆j−1 al

al+1

∅∗

∅∗

ak−1 A∗
k

aij

Γ0

A∗
ij

ap′

Γ1

ak

∅∗

∅∗A∗
p

ap+1

where the edges between the nodes labelled ai1 to aij , al+1 to ap′ and ap+1 to
ak−1 are all full, using the convention that T ′ is rooted at al when j = 0. It
is also a SUMT that is a decomposition of L because {ap+1, . . . , ak} ⊆ Ak and
al /∈ Ap ∪ {ak}, so that al /∈ Ak ⊆ Ap ∪ {ak}. When j > 0, the major and
minor weights of T ′ are both equal to −1 while at least one of them is positive
for T . Further, when j = 0, when at least one of A1, . . . , Al−1 is non-empty
or it isn’t the case but p′ < p, then, respectively, the major weight of T ′ is
at most k − 2 while that of T is k − 1, or the minor weight of T ′ is at most
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k − 2 while that of T is k − 1 (because, by maximality of l, there can only be
one node on the left branch of the left subtree of the root of T whose right
subtree has at least one leaf not labelled by ∅∗), the major weight being the
same. Finally, when j = 0, when A1, . . . , Al−1 are all empty and p′ = p but the
constraint level of T ′ is 0, we have that its constraint level is 0 while that of T
is 1 because A1 = · · · = Ap−1 = Ap+1 = · · · = Ak−1 = ∅ and al /∈ Ak. So, as L
can be decomposed as the straight right NSUMT T , by inductive hypothesis,
the Boolean combination ϕ(T ′) of Zouave languages is right-convenient, as well
as left-convenient when L can be decomposed as a straight left NSUMT, and
verifies L(ϕ(T ′)) = L(T ′) = L. Therefore,

ϕ(T ) = ϕ(T ′)

is the desired Boolean combination of Zouave languages.

The last case to examine is hence when j = 0, A1 = · · · = Ap−1 = Ap+1 = · · · =
Ak−1 = ∅, {a1, . . . , ap} ⊆ A0 and A0 ∩Ap 6= ∅, the only way for the constraint
level of T ′ to be greater than 0 (1 exactly), because ak /∈ A0. Lemma 5.4.22
tells us that, since A1 = · · · = Al−1 = ∅ and A0 contains at least two elements,
al and some element in A0 ∩ Ap different from al, we necessarily have that
l = 1. Moreover, we also have the following:

– if p > 1, then there exists e ∈ Σ verifying a2 = · · · = ap = e and
A0 ∩ Ap = {e};

– A0 ⊆ Ap ∪ {a1};

besides the following:

– if p < k − 1, then there exists d ∈ Σ verifying ap+1 = · · · = ak−1 = d and
Ap ∩ Ak = {d};

– Ak ⊆ Ap ∪ {ak}.

So in this very last case, we have

L =



A∗
0a1e

p−1A∗
pd
k−1−pakA

∗
k when 1 < p < k − 1

A∗
0a1e

p−1A∗
pakA

∗
k when 1 < p = k − 1

A∗
0a1A

∗
pd
k−1−pakA

∗
k when 1 = p < k − 1

A∗
0a1A

∗
pakA

∗
k when 1 = p = k − 1 .
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As in the previous subsubcases, we can show that if we let

K1 =


⋂k−2−p
i=0

⋂
c∈Ap\{d}

(
(Σ \ {ak})∗

cdiak(Σ \ {c})∗
){ when p < k − 1

Σ∗ otherwise (p = k − 1) ,

K0 =


⋂p−2
i=0

⋂
c∈Ap\{e}

(
(Σ \ {c})∗a1eic(Σ \ {a1})∗

){ when 1 < p

Σ∗ otherwise (1 = p) ,

and

K =


(
(Σ \ {ak})∗a1A≤k−3

p ak(Σ \ {a1})∗
){ when 1 < k − 1

Σ∗ otherwise (1 = k − 1) ,

we have

L =A∗
0a1A

∗
pakA

∗
k ∩K1 ∩K0 ∩K

=(Σ \ {ak})∗akA∗
k ∩ A∗

0a1(Σ \ {a1})∗ ∩ (Ap ∪ {a1, ak})∗ ∩K1 ∩K0 ∩K ,

because A∗
0a1A

∗
p ⊆ (Σ \ {ak})∗ and A∗

pakA
∗
k ⊆ (Σ \ {a1})∗.

By inductive hypothesis, we have that the Boolean combinations ϕ(A∗
0) and

ϕ
(
(Ap ∪ {a1, ak})∗

)
of Zouave languages are both left- and right-convenient

and verify, respectively, L(ϕ(A∗
0)) = A∗

0 and L
(
ϕ
(
(Ap ∪ {a1, ak})∗

))
= (Ap ∪

{a1, ak})∗.

By Lemma 5.4.11 (and its reversed version), and since

– when p < k − 1, for each i ∈ [[0, k − 2 − p]] and c ∈ Ap \ {d}, no word of
A∗

0a1A
∗
pakA

∗
k has (cdiak)

2 as a subword,

– when 1 < p, for each i ∈ [[0, p−2]] and c ∈ Ap\{e}, no word of A∗
0a1A

∗
pakA

∗
k

has (a1e
ic)2 as a subword,

– when 1 < k − 1, for each u ∈ Ak−3
p , no word of A∗

0a1A
∗
pakA

∗
k has (a1uak)

2

as a subword,

if we let

ψ1 =

∩k−2−p
i=0 ∩c∈Ap\{d} [cd

iak]Σ,2
{ when p < k − 1

Σ∗ otherwise (p = k − 1) ,
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ψ0 =

∩p−2
i=0 ∩c∈Ap\{e} [a1e

ic]Σ,2
{ when 1 < p

Σ∗ otherwise (1 = p)

and

ψ =

∩
u∈A≤k−3

p
[a1uak]Σ,2

{ when 1 < k − 1

Σ∗ otherwise (1 = k − 1) ,

we have that

ϕ(T ) =[ak]Σ,2 ∩ [ak]Σ,2 ∗ ϕ(A
∗
k) ∩ [a1]Σ,2 ∩ ϕ(A

∗
0) ∗ [a1]Σ,2∩

ϕ
(
(Ap ∪ {a1, ak})∗

)
∩ ψ1 ∩ ψ0 ∩ ψ

is the desired Boolean combination of Zouave languages.

This eventually concludes the proof of the proposition.

5.4.5 Technical lemmata needed for the main proof

As announced before giving the main proof of Proposition 5.4.2, we now state and prove
all the technical lemmata used in that proof. The only proof that is quite tricky is the
one of Lemma 5.4.22, that gives the exact characterisation of NSUMTs for languages of
dot-depth one.

Using the equational characterisation of J ∗ D, we can trivially show the following.

Lemma 5.4.19. Any SUM A∗ over an alphabet Σ is in L(J ∗ D).

Given a SUM that belongs to L(J ∗ D) and a SUMT that is a decomposition of it, we
show that any SUM that can actually be decomposed as a subtree of that SUMT does
also belong to L(J ∗ D), a result used several times in the proof of Proposition 5.4.2.

Lemma 5.4.20. Let A∗
0a1A

∗
1a2 · · ·A∗

k−1akA
∗
k (k ∈ N>0) be a SUM over an alphabet Σ in

L(J ∗ D) and

ai

∆0 ∆1

some decomposition of it where i ∈ [k], ∆0,∆1 are SUMTs over Σ, and the red edge is
either full or dashed while the blue one is of the opposite type. Then, L(∆0) and L(∆1)

are both also SUMs over Σ in L(J ∗ D).
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Proof. Let L = A∗
0a1A

∗
1a2 · · ·A∗

k−1akA
∗
k.

Assume that the red edge is dashed while the blue one is full. We have that for any
w ∈ (Σ \ {ai})∗, w ∈ L(∆0) if and only if wai · · · ak ∈ L. Similarly, for any w ∈ Σ∗, w ∈
L(∆1) if and only if a1 · · · aiw ∈ L. This means that L(∆0) = L(ai · · · ak)−1 ∩ (Σ \ {ai})∗

and L(∆1) = (a1 · · · ai)−1L. As L(J ∗ D) is an ne-variety of languages and both L and
(Σ \ {ai})∗ belong to it (by virtue of Lemma 5.4.19), L(∆0) and L(∆1) do also belong to
it.

When the red edge is full and the blue one is dashed, everything goes through in the
symmetric way.

Corollary 5.4.21. Let L be a SUM over an alphabet Σ in L(J ∗ D) and T a SUMT over
Σ that is a decomposition of it. Then, for any SUMT ∆ over Σ that is a subtree of T ,
L(∆) is also a SUM over Σ in L(J ∗ D).

Proof sketch. Given a non-empty subtree ∆ of T (that is a SUMT over Σ), simply apply
Lemma 5.4.20 repeatedly following the unique path from the root ot T to the root of
∆.

The fundamental lemma used in the proof of Proposition 5.4.2, intuitively presented
at the end of Subsection 5.4.1, exactly characterises, given a SUM and an NSUMT that
is a decomposition of it, what conditions this NSUMT should verify so as for the SUM to
belong to L(J ∗ D). We now state it formally and eventually prove it.

Lemma 5.4.22. Let A∗
0a1A

∗
1a2 · · ·A∗

k−1akA
∗
k (k ∈ N) be a SUM over an alphabet Σ and

T an NSUMT over Σ that is a decomposition of it. Then, A∗
0a1A

∗
1a2 · · ·A∗

k−1akA
∗
k is a

language of L(J ∗ D) if and only if:

• T only consists of a root;

• when T is a straight right NSUMT of the form
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ai1

∆0 ai2

∆1

∆j−1 ak

∆j A∗
k

aij

where ∆0,∆1, . . . ,∆j−1,∆j (j ∈ N) are straight left NSUMTs over Σ and the edges
between the nodes labelled ai1 to aij are all full, we have that

L(∆0)ai1L(∆1)ai2 · · · L(∆j−1)aijL(∆j) ∈ L(J ∗ D)

and for all p ∈ [[0, k−1]], using the convention that i0 = 0 and ij+1 = k, Ap∩Ak 6= ∅
implies that {ap+1, . . . , ak} * Ak or, if we take q ∈ [j + 1] to be the unique integer
in [j + 1] verifying iq−1 ≤ p < iq, the following conditions are verified:

– for all ι ∈ [[q, j]], there exists Bι ⊆ Σ such that ∆ι = B∗
ι and Ak ⊆ Bι∪{aiι+1};

– if p + 1 < iq, then there exists b ∈ Σ verifying ap+1 = · · · = aiq−1 = b and
Ap ∩ Ak = {b};

– Ak ⊆ Ap ∪ {aiq}.

• when T is a straight left NSUMT, the symmetric conditions are verified.

• when T is a bent right NSUMT of the form

Θ0

Θ1

A∗

where
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∆0 =

Θ0

A∗

is a straight right NSUMT and

∆1 =

Θ1

A∗

is a straight left NSUMT, L(∆0) and L(∆1) both belong to L(J ∗ D);

• when T is a bent left NSUMT, the symmetric conditions are verified.

Proof. Let L = A∗
0a1A

∗
1a2 · · ·A∗

k−1akA
∗
k (k ∈ N) be a SUM over an alphabet Σ and T an

NSUMT over Σ that is a decomposition of it. We consider each of the possible cases of
the statement, one after the other.

Case 1. Assume first that T only consists of a root. Then, it is trivial to see that
L ∈ L(J ∗ D).

Case 2. Assume now that T is a bent right NSUMT of the form
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ai1,1

∆1,0 ai1,2

∆1,1

∆1,j1−1 ap

∆1,j1
ai2,j2

∆2,j2
ai2,j2−1

∆2,j2−1

∆2,1ap+1

∆2,0A∗
p

ai1,j1

ai2,1

where ∆1,0,∆1,1, . . . ,∆1,j1−1,∆1,j1 (j1 ∈ N) are straight left NSUMTs over Σ, ∆2,0,∆2,1,

. . . ,∆2,j2−1,∆2,j2 (j2 ∈ N) are straight right NSUMTs over Σ, p ∈ [[1, k− 1]] and the edges
between the nodes labelled ai1,1 to ai1,j1 and ai2,1 to ai2,j2 are all full. We let

∆0 =

ai1,1

∆1,0 ai1,2

∆1,1

∆1,j1−1 ap

∆1,j1 A∗
p

ai1,j1
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and

∆1 =

ai2,j2

∆2,j2
ai2,j2−1

∆2,j2−1

∆2,1ap+1

∆2,0A∗
p

ai2,1

.

We also let L0 = L(∆0) and L1 = L(∆1). Our goal now is to prove that L ∈ L(J ∗ D) if
and only if L0, L1 ∈ L(J ∗ D).

Suppose first that L ∈ L(J ∗ D). We have that for any w ∈ Σ∗, w ∈ L0 if and only
if wap+1 · · · ak ∈ L. Similarly, for any w ∈ Σ∗, w ∈ L1 if and only if a1 · · · apw ∈ L. This
means that L0 = L(ap+1 · · · ak)−1 and L1 = (a1 · · · ap)−1L. As L(J ∗ D) is an ne-variety
of languages and L belongs to it, L0 and L1 do also belong to it.

Suppose now that L0, L1 ∈ L(J ∗ D). We shall prove that L belongs to L(J ∗ D) using
the equational characterisation of J ∗D. Let ηL, ηL0 and ηL1 be the syntactic morphisms
of L, L0 and L1 respectively and ∼L, ∼L0 and ∼L1 the syntactic congruences of L, L0

and L1 respectively. Let ωL, ωL0 and ωL1 be the idempotent powers of M(L), M(L0) and
M(L1) respectively (which are the syntactic monoids of L, L0 and L1 respectively).

Let e, s, f, t, u, v ∈ Σ+ such that ηL(e) and ηL(f) are idempotents. Then

(esfte)ωL(eufve)ωL ∼L (esfte)ωLesfve(eufve)ωL

if and only if

(eω
′
sfω

′
teω

′
)ωLω

′
(eω

′
ufω

′
veω

′
)ωLω

′

∼L(e
ω′
sfω

′
teω

′
)ωLω

′
eω

′
sfω

′
veω

′
(eω

′
ufω

′
veω

′
)ωLω

′ ,

where ω′ ∈ N>0 is any multiple of both ωL0 and ωL1 . We shall fix ω′ more precisely later
on. We set ω = ωLω

′, e′ = eω
′ and f ′ = fω

′ . Note that then, ηL0(e
′) and ηL0(f

′) as
well as ηL1(e

′) and ηL1(f
′) are idempotents and ω is a multiple of both ωL0 and ωL1 . Let
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α, β, γ ∈ Σ+ such that α = e′sf ′te′, β = e′uf ′ve′ and γ = e′sf ′ve′. We are now going to
prove that αωβω ∼L α

ωγβω.

Let x, y ∈ Σ∗ such that w = xαωβωy ∈ L. Let w′ = xαωγβωy; we want to prove
that w′ does also belong to L. We do this through a careful analysis of how w and w′

can be decomposed according to T . Let ι ∈ [|w|] be the minimum integer in [|w|] such
that w1 · · ·wι contains ai1,1 · · · ai1,j1ap as a subword, and ι′ ∈ [|w′|] the minimum integer
in [|w′|] such that w′

1 · · ·w′
ι′ contains ai1,1 · · · ai1,j1ap as a subword. Let δ ∈ [|w|] be the

maximum integer in [|w|] such that wδ · · ·w|w| contains ap+1ai2,1 · · · ai2,j2 as a subword, and
δ′ ∈ [|w′|] the maximum integer in [|w′|] such that w′

δ′ · · ·w′
|w′| contains ap+1ai2,1 · · · ai2,j2

as a subword. We now distinguish between four different cases.

• If ι corresponds to a position in the factor x of w, say position κ ∈ [|x|], then ι = ι′

and we have that x1 · · ·xκ ∈ L0 and xκ+1 · · ·x|x|αωβωy ∈ L1. But since ηL1(e
′)

and ηL1(f
′) are idempotents and ω is a multiple of ωL1 , we have w′

ι′+1 · · ·w′
|w′| =

xκ+1 · · ·x|x|αωγβωy ∈ L1. Hence, xαωγβωy ∈ L, because w′
1 · · ·w′

ι′ = x1 · · ·xκ ∈ L0.

• If ι corresponds to a position in one of the factors α of w, then taking ω′ to be a
big enough multiple of ωL0 and ωL1 verifying ω > j1 + j2 +2, this position is in one
of the j1 + 1 first factors α of w by minimality and we have ι = ι′. Moreover, we
also have that δ corresponds to a position that is at least in one of the j2 + 1 last
factors α of w by maximality, which implies that Ap contains all letters appearing
in α, so as wι+1 · · ·w|w| ∈ L1, it follows that αωβωy ∈ L1. But since ηL1(e

′) and
ηL1(f

′) are idempotents and ω is a multiple of ωL1 , we have αωγβωy ∈ L1. From
what we know about δ, we can deduce that δ′ also corresponds to a position that
is at least in one of the j2 + 1 last factors α of w′ by maximality, hence we get that
w′
ι′+1 · · ·w′

|w′| must belong to L1 for αωγβωy to belong to L1, as ι′ < δ′. Therefore,
since w′

1 · · ·w′
ι′ ∈ L0, we have that xαωγβωy  ∈ L.

• If δ corresponds to a position in one of the factors β of w, we can prove symmetrically
to the previous case that we have xαωγβωy  ∈ L.

• If δ corresponds to a position in the factor y of w, we can prove symmetrically to
the first case that we have xαωγβωy ∈ L.

There are no other cases to consider, since when ι correponds to a position in one of the
factors β of w or in the factor y of w, then δ necessarily corresponds to a position in one
of the factors β of w or in the factor y of w.
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Let x, y ∈ Σ∗ such that xαωγβωy ∈ L. In a way similar to above, we can show that
then, xαωβωy ∈ L.

This finishes to show that

(esfte)ωL(eufve)ωL ∼L (esfte)ωLesfve(eufve)ωL .

Since this holds for any e, s, f, t, u, v ∈ Σ+ such that ηL(e) and ηL(f) are idempotents,
it follows that L ∈ L(J ∗ D).

Case 3. Assume now that T is a straight right NSUMT of the form
ai1

∆0 ai2

∆1

∆j−1 ak

∆j A∗
k

aij

where ∆0,∆1, . . . ,∆j−1,∆j (j ∈ N) are straight left NSUMTs over Σ and the edges
between the nodes labelled ai1 to aij are all full. We let

L′ = L(∆0)ai1L(∆1)ai2 · · · L(∆j−1)aijL(∆j) .

Let ηL and ηL′ be the syntactic morphisms of L and L′ respectively and ∼L and ∼L′ the
syntactic congruences of L and L′ respectively. Let ωL and ωL′ be the idempotent powers
of M(L) and M(L′) respectively (which are the syntactic monoids of L and L′ respectively).
Our goal is to prove the necessity and then the sufficiency of the conditions given in the
statement of the lemma for L to belong to L(J ∗ D).

Necessity of the conditions. Suppose first that L ∈ L(J ∗ D).
We shall first prove that L′ belongs to L(J ∗ D) using the equational characterisation
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of J ∗ D. Let e, s, f, t, u, v ∈ Σ+ such that ηL′(e) and ηL′(f) are idempotents. Then

(esfte)ωL′ (eufve)ωL′ ∼L′ (esfte)ωL′esfve(eufve)ωL′

if and only if

(eω
′
sfω

′
teω

′
)ωL′ω′

(eω
′
ufω

′
veω

′
)ωL′ω′

∼L′(eω
′
sfω

′
teω

′
)ωL′ω′

eω
′
sfω

′
veω

′
(eω

′
ufω

′
veω

′
)ωL′ω′ ,

where ω′ ∈ N>0 is any multiple of ωL. We shall fix ω′ more precisely later on.
We set ω = ωL′ω′, e′ = eω

′ and f ′ = fω
′ . Since ηL(e′) and ηL(f ′) are idempotents and

ω is a multiple of ωL, we have

(e′sf ′te′)ω(e′uf ′ve′)ω ∼L (e′sf ′te′)ωe′sf ′ve′(e′uf ′ve′)ω .

Let α, β, γ ∈ Σ+ such that α = e′sf ′te′, β = e′uf ′ve′ and γ = e′sf ′ve′. We are now going
to prove that αωβω ∼L′ αωγβω.

Let x, y ∈ Σ∗ such that w = xαωβωy ∈ L′. Then, xαωβωyak ∈ L and so w′ =

xαωγβωyak ∈ L. We want to prove that xαωγβωy does belong to L′; we do this through
a careful analysis of how w and w′ can be decomposed according to T . Let ι ∈ [|w|] be
the minimum integer in [|w|] such that w1 · · ·wι contains ai1 · · · aij as a subword, and ι′

the minimum integer in [|w′|] such that w′
1 · · ·w′

ι′ contains ai1 · · · aij as a subword. There
are several cases to examine, but in any of them, we can prove that |w′| is the smallest
integer δ in [|w′|] such that w′

1 · · ·w′
δ contains ai1 · · · aijak as a subword, which implies

that xαωγβωy = w′
1 · · ·w′

|w′|−1 ∈ L′, as w′ ∈ L.

• If ι corresponds to a position in the factor x of w, then ι = ι′ and since wι+1 · · ·w|w| ∈
L(∆j), we in particular have that all letters in x appearing after position ι, all
letters appearing in α, β, y and hence γ are different from ak. Therefore, we reach
the aforementioned conclusion.

• If ι corresponds to a position in one of the factors α of w, then taking ω′ to be a big
enough multiple of ωL verifying ω > j, this position is in one of the j first factors
α of w by minimality and we have ι = ι′ and, since wι+1 · · ·w|w| ∈ L(∆j), that all
letters appearing in α, β, y and hence γ are different from ak. Therefore, we reach
the aforementioned conclusion.

• If ι corresponds to a position in one of the factors β of w, then taking ω′ to be a
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big enough multiple of ωL verifying ω > j, ι′ corresponds to a position in the factor
ve′ of γ of w′ or one of the factors β of w′ by minimality (otherwise, the minimality
condition would be violated as ι would correspond to a position in one of the factors
α of w). The position given by ι must be in one of the j first factors β of w
by minimality, so we moreover have, since wι+1 · · ·w|w| ∈ L(∆j), that all letters
appearing in β, y and hence in ve′ are different from ak. Therefore, we reach the
aforementioned conclusion.

• If ι corresponds to a position in the factor y of w, say position κ ∈ [|y|], then ι′ also
corresponds to position κ in the factor y of w′, otherwise it would violate minimality
of ι when we take ω′ to be a big enough multiple of ωL verifying ω > j. This
means that yκ+1 · · · y|y| ∈ L(∆j), so that yκ+1 · · · y|y| does not contain the letter ak.
Therefore, we reach the aforementioned conclusion.

Let x, y ∈ Σ∗ such that xαωγβωy ∈ L′. In a way similar to above, we can show that
then, xαωβωy ∈ L′.

This finishes to show that

(esfte)ωL′ (eufve)ωL′ ∼L′ (esfte)ωL′esfve(eufve)ωL′ .

Since this holds for any e, s, f, t, u, v ∈ Σ+ such that ηL′(e) and ηL′(f) are idempotents,
it follows that L′ ∈ L(J ∗ D).

We now prove that the technical condition for each p ∈ [[0, k−1]] given in the lemma’s
statement is verified.

Let p ∈ [[0, k−1]], let us use the convention that i0 = 0 and ij+1 = k and take q ∈ [j+1]

to be the unique integer in [j + 1] verifying iq−1 ≤ p < iq. Assume that Ap ∩ Ak 6= ∅ and
{ap+1, . . . , ak} ⊆ Ak. We have to check that three properties are verified.

The first property says that for all ι ∈ [[q, j]], there exists Bι ⊆ Σ such that ∆ι = B∗
ι

and Ak ⊆ Bι ∪ {aiι+1}. Let b ∈ Ap ∩ Ak and for each ι ∈ [[q, j]] some wι ∈ (Ak \ {aiι+1})∗.
We have

a1 · · · ap(bωLap+1 · · · aiq · · · akbωLap+1 · · · aiqwqaiq+1wq+1 · · · aijwjakbωL)ωL

∼La1 · · · ap(bωLap+1 · · · aiqwqaiq+1wq+1 · · · aijwjakbωLap+1 · · · aiq · · · akbωL)ωL

by virtue of the fact that L ∈ L(J ∗ D). Since the first word belongs to L, the second does
also, so we can conclude that wι ∈ L(∆ι) for all ι ∈ [[q, j]]. Therefore, as this is true taking,
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for each ι ∈ [[q, j]], any wι ∈ (Ak \ {aiι+1})∗ and in particular the empty word ε, we get
that for each ι ∈ [[q, j]], ∆ι must be restricted to a sole root (because L(∆ι) contains the
empty word) verifying that there exists Bι ⊆ Σ such that ∆ι = B∗

ι and Ak ⊆ Bι∪{aiι+1}.
The second property says that if p + 1 < iq, we have ap+1 = · · · = aiq−1 = b and

Ap ∩ Ak = {b}. Assume that p + 1 < iq and suppose there would exist d ∈ (Ap ∩ Ak) \
({ap+1} ∩ · · · ∩ {aiq−1}). We would have

a1 · · · ap(dωLap+1 · · · akdωLaiq · · · akdωL)ωL ∼L a1 · · · ap(dωLaiq · · · akdωLap+1 · · · akdωL)ωL

by virtue of the fact that L ∈ L(J ∗ D). Nevertheless, the first word belongs to L while
the second one does not (because since p + 1 < iq, there is at least one letter among
ap+1, . . . , aiq−1 that is different from d and should appear between the first factor a1 · · · ap
and the first letter aiq after it in the second word, which is not the case): contradiction.
Hence, as b ∈ Ap ∩ Ak, we must have ap+1 = · · · = aiq−1 = b and Ap ∩ Ak = {b}.

The third and last property says that Ak ⊆ Ap∪{aiq}. Suppose now there would exist
c ∈ Ak \ (Ap ∪ {aiq}). We would have

a1 · · · ap(bωLap+1 · · · akbωLbαcap+1 · · · akbωL)ωL

∼La1 · · · ap(bωLbαcap+1 · · · akbωLap+1 · · · akbωL)ωL

for α ∈ N the smallest non-negative integer such that ωL + α ≥ p − iq−1, by virtue of
the fact that L ∈ L(J ∗ D). Nevertheless, the first word belongs to L while the second
one does not: a contradiction. To see that the second word, that we will denote by u,
does not belong to L, suppose for a contradiction that it does: this would necessarily
mean that we cannot have iq−1 = p = iq − 1, because c /∈ Ap. Then, there would only
be two possibilities for u to belong to L. Either we would have that p > iq−1 and in the
unique decomposition of u according to T , the first occurrence of c would be the letter
corresponding to the node labelled by the letter ap in T . But then there would necessarily
exist some ι ∈ [[iq−1, p− 1]] verifying that b ∈ Aι ∩ Ak and aι+1 = · · · = ap−1 = b ∈ Ak, so
that since ap = c ∈ Ak and {ap+1, . . . , ak} ⊆ Ak, we would have ap = b by what we have
just proven above, which is not possible as ap = c /∈ Ap. Or we would have that p+1 < iq

and in the unique decomposition of u according to T , the first occurrence of c would appear
in the factor corresponding to the subtree of T corresponding to ap+1A

∗
p+1 · · · aiq−1A

∗
iq−1.

Because then ap+1 = · · · = aiq−1 = b by what we have proven just above, the first
occurrence of c in that decomposition would in fact appear in a factor corresponding
to one of the leaves labelled by A∗

p+1, . . . , A
∗
iq−1 respectively in T . But then there would
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necessarily exist some ι ∈ [[p+ 1, iq − 1]] verifying that b ∈ Aι, contradicting the fact that
the word a1 · · · apbι−p+1aι+1 · · · ak ∈ L has a unique decomposition w0a1w1a2 · · ·wk−1akwk

where wi ∈ A∗
i for all i ∈ [[0, k]]. Therefore, u cannot belong to L. Hence, to conclude,

Ak ⊆ Ap ∪ {aiq}.

Therefore, all conditions listed in the lemma’s statement are verified.

Sufficiency of the conditions. Now suppose that L′ ∈ L(J ∗ D) and for all p ∈
[[0, k − 1]], using the convention that i0 = 0 and ij+1 = k, Ap ∩ Ak 6= ∅ implies that
{ap+1, . . . , ak} * Ak or, if we take q ∈ [j + 1] to be the unique integer in [j + 1] verifying
iq−1 ≤ p < iq, the following conditions are verified:

• for all ι ∈ [[q, j]], there exists Bι ⊆ Σ such that ∆ι = B∗
ι and Ak ⊆ Bι ∪ {aiι+1};

• if p + 1 < iq, then there exists b ∈ Σ verifying ap+1 = · · · = aiq−1 = b and
Ap ∩ Ak = {b};

• Ak ⊆ Ap ∪ {aiq}.

We shall prove that L belongs to L(J ∗ D) using the equational characterisation of
J ∗ D. Let e, s, f, t, u, v ∈ Σ+ such that ηL(e) and ηL(f) are idempotents. Then

(esfte)ωL(eufve)ωL ∼L (esfte)ωLesfve(eufve)ωL

if and only if

(eω
′
sfω

′
teω

′
)ωLω

′
(eω

′
ufω

′
veω

′
)ωLω

′

∼L(e
ω′
sfω

′
teω

′
)ωLω

′
eω

′
sfω

′
veω

′
(eω

′
ufω

′
veω

′
)ωLω

′ ,

where ω′ ∈ N>0 is any multiple of ωL′ . We shall fix ω′ more precisely later on.
We set ω = ωLω

′, e′ = eω
′ and f ′ = fω

′ . Let α, β, γ  ∈ Σ+ such that α = e′sf ′te′,
β = e′uf ′ve′ and γ = e′sf ′ve′. We are now going to prove that αωβω ∼L α

ωγβω.

Let x, y ∈ Σ∗ such that w = xαωβωy ∈ L. We also let w′ = xαωγβωy; we want to
prove that w′ does also belong to L. We do this, as before in the present proof, through
a careful analysis of how w and w′ can be decomposed according to T . Let ι ∈ [|w|] be
the minimum integer in [|w|] such that w1 · · ·wι contains ai1 · · · aijak as a subword, and ι′

the minimum integer in [|w′|] such that w′
1 · · ·w′

ι′ contains ai1 · · · aijak as a subword. We
now distinguish between four different cases; one of them is really tricky.
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• If ι corresponds to a position in the factor x of w, then ι = ι′ and since wι+1 · · ·w|w| ∈
A∗
k, we in particular have that all letters in x appearing after position ι, all letters

appearing in α, β, y and hence γ belong to Ak. Therefore, w′
ι′+1 · · ·w′

|w′| ∈ A∗
k and

as w′
1 · · ·w′

ι−1 = w1 · · ·wι−1 ∈ L′, we have that xαωγβωy ∈ L.

• If ι corresponds to a position in one of the factors α of w, then taking ω′ to be a big
enough multiple of ωL′ verifying ω > j + 1, this position is in one of the j + 1 first
factors α of w by minimality and we have ι = ι′ and, since wι+1 · · ·w|w| ∈ A∗

k, that all
letters appearing in α, β, y and hence γ belong to Ak. Therefore, w′

ι′+1 · · ·w′
|w′| ∈ A∗

k

and as w′
1 · · ·w′

ι−1 = w1 · · ·wι−1 ∈ L′, we have that xαωγβωy ∈ L.

• If ι corresponds to a position in one of the factors β of w, then taking ω′ to be a big
enough multiple of ωL′ verifying ω > j+1, ι′ corresponds to a position in the factor
ve′ of γ of w′ or one of the factors β of w′ by minimality (otherwise, the minimality
condition would be violated as ι would correspond to a position in one of the factors
α of w). The position given by ι must be in one of the j + 1 first factors β of w by
minimality, so we moreover have, since wι+1 · · ·w|w| ∈ A∗

k, that all letters appearing
in β, y and hence in ve′ belong to Ak.

Let q ∈ [j + 1] be the smallest integer in [j + 1] such that xαω does not con-
tain ai1 · · · aiq as a subword. Let now δ0 ∈ [[0, |w| ]] be the minimum integer in
[|w|] such that w1 · · ·wδ0 contains ai1 · · · aiq−1 as a subword or 0 if q − 1 = 0, and
δ′0 ∈ [[0, |w′| ]] the minimum integer in [|w′|] such that w′

1 · · ·w′
δ′0

contains ai1 · · · aiq−1

as a subword or 0 if q − 1 = 0. Similarly, let δ1 ∈ [|w|] be the minimum in-
teger in [|w|] such that w1 · · ·wδ1 contains ai1 · · · aiq as a subword, and δ′1 ∈ [|w′|]
the minimum integer in [|w′|] such that w′

1 · · ·w′
δ′1

contains ai1 · · · aiq as a sub-
word. The strategy we follow to prove that w′ ∈ L is to prove that, on the
one hand, w′

1 · · ·w′
δ′1−1 ∈ L(∆0)ai1L(∆1) · · · aiq−1L(∆q−1), and on the other hand,

w′
δ′1+1 · · ·w′

|w′| ∈ L(∆q)aiq+1 · · · L(∆j)akA
∗
k. The idea is that we exploit our hypo-

thesis that the conditions given in the statement of the lemma for L to belong to
L(J ∗ D) are true by:

1. finding some p ∈ [[iq−1, iq − 1]] such that Ap ∩Ak 6= ∅ and {ap+1, . . . , ak} ⊆ Ak,
which implies that the three properties of the statement hold for p;

2. showing that xαω belongs to A∗
0a1A

∗
1 · · · apA∗

p;

3. concluding that xαω(e′e′f ′e′e′)ωaiq · · · ak−1 belongs to L′ by the equational
characterisation of J ∗ D and showing that this means there exists some
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σ ∈ [[δ′0 + 1, δ′1 − iq + p]] verifying that σ + 1 corresponds to a position in
the factor f ′ of γ of w′ and that w′

1 · · ·w′
σ belongs to A∗

0a1A
∗
1 · · · apA∗

p;

4. showing that w′
σ+1 · · ·w′

δ′1−1 belongs to A∗
pap+1A

∗
p+1 · · · aiq−1A

∗
iq−1, which fin-

ishes to prove that w′
1 · · ·w′

δ′1−1 ∈ L(∆0)ai1L(∆1) · · · aiq−1L(∆q−1);

5. showing eventually that w′
δ′1+1 · · ·w′

|w′| ∈ L(∆q)aiq+1 · · · L(∆j)akA
∗
k.

We now give the details.

Looking at the way q was defined and ω′ was fixed, we can see that δ0 = δ′0 and,
when q−1 > 0, that they both correspond to the same position in the factor x of w
and w′ respectively, or both correspond to the same position in one of the q−1 first
factors α of w and w′ respectively. Moreover, we can also see that δ1 corresponds
to a position in the first factor β of w and that δ′1 corresponds to a position in the
factor ve′ of γ of w′ or the first factor β of w′. Further, δ1 corresponds to a position
at least at a position in the first factor u of βω of w. Let w = v0a1v1a2 · · · vk−1akvk

where vλ ∈ A∗
λ for all λ ∈ [[0, k]] be the unique decomposition of w according to T .

By construction, we have wδ0 = aiq−1 when q − 1 > 0, as well as wδ1 = aiq .

Step 1. Taking ω′ to be a big enough multiple of ωL′ verifying |e′| > k − 1 and
|f ′| > k − 1, we first show there exists p ∈ [[iq−1, iq − 1]] such that Ap ∩ Ak 6= ∅
and {ap+1, . . . , ak} ⊆ Ak. We have that δ1 corresponds to a position in the first
factor β of w and all letters appearing in β and y do belong to Ak, so it follows
that aiqviq · · · akvk = wδ1 · · ·w|w| ∈ A∗

k and consequently that {aiq , . . . , ak} ⊆ Ak.
Moreover, because δ0, when different from 0, corresponds to a position in the factor
xαω of w and δ1 corresponds to a position at least in the first factor u of βω of w,
the word viq−1aiq−1+1viq−1+1 · · · aiq−1viq−1 = wδ0+1 · · ·wδ1−1 is guaranteed to have as
a suffix a prefix of β of length at least k ≥ iq− iq−1, that contains only letters of Ak,
so that there must exist some p ∈ [[iq−1, iq − 1]] verifying that vp contains at least
one letter of Ak and {ap+1, . . . , aiq−1} ⊆ Ak. This entails there necessarily exists
p ∈ [[iq−1, iq − 1]] such that Ap ∩ Ak 6= ∅ and {ap+1, . . . , ak} ⊆ Ak; we then take
the smallest such p. Let us also set ρ ∈ [[iq−1, iq − 1]] to be the biggest integer in
[[iq−1 + 1, iq − 1]] verifying aρ /∈ Ak or iq−1 if it does not exist: by definition of p, we
necessarily have ρ ≤ p. By hypothesis, the following conditions are verified:

– for all κ ∈ [[q, j]], there exists Bκ ⊆ Σ such that ∆κ = B∗
κ and Ak ⊆ Bκ∪{aiκ+1};

– if p + 1 < iq, then there exists b ∈ Σ verifying ap+1 = · · · = aiq−1 = b and
Ap ∩ Ak = {b};
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– Ak ⊆ Ap ∪ {aiq}.

This implies in particular that if p + 1 < iq, Ak = {b, aiq}, so that e′ and f ′ both
contain only the letter b, since they do not contain the letter aiq by definition of
q. We also observe that, if p + 1 < iq, none of Ap+1, . . . , Aiq−1 contains the letter
b, because if there would exist some κ ∈ [[p + 1, iq − 1]] verifying that b ∈ Aκ, it
would contradict the fact that the word a1 · · · apbκ−p+1aκ+1 · · · ak ∈ L has a unique
decomposition u0a1u1a2u2 · · ·uk−1akuk where uλ ∈ A∗

λ for all λ ∈ [[0, k]].

Step 2. The second step is to prove that xαω belongs to A∗
0a1A

∗
1 · · · apA∗

p. By the
way it was defined, if ρ > 0, the letter aρ in w’s decomposition is at a position at
most in the last factor t of αω of w, as the letter aiq−1 in w’s decomposition is at
a position in one of the q − 1 first factors α of w when ρ = iq−1 and e′βωy ∈ A∗

k.
Moreover, if p is different from ρ, then as none of Aρ, . . . , Ap−1 contains a letter of
Ak by minimality of p and as, in w, the last factor t of αω is followed by a factor e′

containing only letters in Ak and of length at least k − 1 ≥ p− ρ, we have that the
letter ap in w’s decomposition is at a position at most at the position p − ρ of the
last factor e′ of αω of w. Since the letter aiq in w’s decomposition is at position δ1

in w, which is at least at a position in the first factor u of βω of w, it follows that,
if p + 1 < iq, all letters ap+1, . . . , aiq−1 in w’s decomposition are at positions in the
first factor β of w. This is because otherwise, as there is a factor e′ of length at least
k−1 ≥ iq−1−p preceding the first factor u of βω of w, at least one of vp+1, . . . , viq−1

would contain the letter b. All in all, this means we have xαω ∈ A∗
0a1A

∗
1 · · · apA∗

p.

Step 3. Since ηL′(e′) and ηL′(f ′) are idempotents and ω is a multiple of ωL′ , we
have

(e′sf ′te′)ω(e′e′f ′e′e′)ω ∼L′ (e′sf ′te′)ωe′sf ′e′e′(e′e′f ′e′e′)ω

by hypothesis, using the equational characterisation of J ∗ D. Obviously,

x(e′sf ′te′)ω(e′e′f ′e′e′)ωaiq · · · ak−1 = xαω(e′e′f ′e′e′)ωaiq · · · ak−1 ∈ L′

by the simple fact that all letters of both e′ and f ′ are in Ap (because they are in Ak
and are different from aiq by definition of q) and, when p + 1 < iq, ap+1, . . . , aiq−1

are equal to the sole letter b in e′ and f ′. We thus have

z = xαωe′sf ′e′e′(e′e′f ′e′e′)ωaiq · · · ak−1 ∈ L′ .

Let z = u0a1u1a2 · · ·uk−1akuk where uλ ∈ A∗
λ for all λ ∈ [[0, k]] be the unique de-
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composition of z according to T . In a way similar to the previous case, we can
show that if ρ > 0, then the letter aρ in z’s decomposition is at a position at most
in the last factor s of z, that if p is different from ρ, then the letter ap in z’s de-
composition is at a position at most at the position p− ρ of the factor f ′ after the
last factor s of z, and that if p + 1 < iq, then all letters ap+1, . . . , aiq−1 in z’s de-
composition are at positions in the last factor e′ of z. Putting all together, we can
deduce that xαωe′sf ′

1  · · · f ′
p−ρ = x(e′sf ′te′)ωe′sf ′

1 · · · f ′
p−ρ ∈ A∗

0a1A
∗
1 · · · apA∗

p. Let-
ting σ =

∣∣xαωe′sf ′
1  · · · f ′

p−ρ
∣∣, we indeed have that w′

1 · · ·w′
σ = xαωe′sf ′

1  · · · f ′
p−ρ ∈

A∗
0a1A

∗
1 · · · apA∗

p, where σ + 1 corresponds to a position in the factor f ′ of γ of w′

(because p+ 1 ≤ k ≤ |f ′|) and σ is at least δ′0 + 1 and at most δ′1 − iq + p (because
δ′1 cannot correspond to a position that is before the first factor v of w′, so that
δ′1 − σ > |f ′| − p+ ρ ≥ k − p+ ρ ≥ iq − p).

Step 4. The fourth step is to prove that w′
σ+1 · · ·w′

δ′1−1 belongs to A∗
papA

∗
p+1 · · ·

aiq−1A
∗
iq−1. We have that w′

σ+1 · · ·w′
δ′1−1 does only contain letters belonging to Ak

(because it only contains letters appearing in β by the fact that σ + 1 corres-
ponds to a position in the factor f ′ of γ of w′) that are different from aiq (since
δ′0 < σ) and hence belong to Ap ∩ Ak, as Ak ⊆ Ap ∪ {aiq}. This means that
w′
σ+1 · · ·w′

δ′1−1 ∈ A∗
papA

∗
p+1 · · · aiq−1A

∗
iq−1 as either p + 1 = iq and then all letters

in w′
σ+1 · · ·w′

δ′1−1 straightforwardly belong to A∗
p, or p + 1 < iq and then b is the

sole letter in w′
σ+1 · · ·w′

δ′1−1 since it is the sole one in Ap ∩ Ak and the word is long
enough to contain ap+1, . . . , aiq−1, all equal to b. Hence, we have eventually shown
that w′

1 · · ·w′
δ′1−1 ∈ A∗

0a1A
∗
1  · · · aiq−1A

∗
iq−1 = L(∆0)ai1L(∆1) · · · aiq−1L(∆q−1).

Step 5. We finally show that w′
δ′1+1 · · ·w′

|w′| ∈ L(∆q)aiq+1 · · · L(∆j)akA
∗
k. We

know that δ′1 corresponds to a position in the factor ve′ of γ of w′ or the first
factor β of w′, that all letters appearing in ve′, β and y do belong to Ak, that
{aiq+1 , . . . , ak} ⊆ Ak and that for all κ ∈ [[q, j]], there exists Bκ ⊆ Σ such that
∆κ = B∗

κ and Ak ⊆ Bκ∪{aiκ+1}. So, as w′
δ′1+1 · · ·w′

|w′| contains aiq+1 · · · aijak as a sub-
word because wδ1+1 · · ·w|w| does, it follows that w′

δ′1+1 · · ·w′
|w′| ∈ B∗

qaiq · · ·B∗
j akA

∗
k =

L(∆q)aiq+1 · · · L(∆j)akA
∗
k.

In the end, we can conclude that xαωγβωy = w′ ∈ L.

• If ι corresponds to a position in the factor y of w, say position κ ∈ [|y|], then ι′ also
corresponds to position κ in the factor y of w′, otherwise it would violate minimality
of ι when we take ω′ to be a big enough multiple of ωL′ verifying ω > j + 1. Since
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ηL′(e′) and ηL′(f ′) are idempotents and ω is a multiple of ωL′ , we have

(e′sf ′te′)ω(e′uf ′ve′)ω ∼L′ (e′sf ′te′)ωe′sf ′ve′(e′uf ′ve′)ω

by hypothesis, using the equational characterisation of J ∗ D. So as w1 · · ·wι−1 =

xαωβωy1 · · · yκ−1 ∈ L′, we have w′
1 · · ·w′

ι′−1 = xαωγβωy1 · · · yκ−1 ∈ L′. Therefore, as
w′
ι′+1 · · ·w′

|w′| = yκ+1 · · · y|y| = wι+1 · · ·w|w| ∈ A∗
k, we have that xαωγβωy ∈ L.

Let x, y ∈ Σ∗ such that xαωγβωy ∈ L. In a way similar to above, we can show that
then, xαωβωy ∈ L.

This finishes to show that

(esfte)ωL(eufve)ωL ∼L (esfte)ωLesfve(eufve)ωL .

Since this holds for any e, s, f, t, u, v ∈ Σ+ such that ηL(e) and ηL(f) are idempotents,
it follows that L ∈ L(J ∗ D).

Case 4. Symmetric to case 2.

Case 5. Symmetric to case 3.

We derive the following corollary, that shows we can “cut off” a given right part of
the right branch of a straight right NSUMT and still stay in L(J ∗ D). This corollary is
used twice in the inductive construction of the proof of Proposition 5.4.2 and once in the
lemma that is stated and proved just after this corollary.

Corollary 5.4.23. Let A∗
0a1A

∗
1a2 · · ·A∗

k−1akA
∗
k (k ∈ N, k ≥ 2) be a SUM over a finite

alphabet Σ in L(J ∗ D) and
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ai1

∆0 ai2

∆1

∆j−1 ak

∆j A∗
k

aij

some decomposition of it where ∆0,∆1, . . . ,∆j−1,∆j (j ∈ N>0) are straight left NSUMTs
over Σ and the edges between the nodes labelled ai1 to aij are all full. Then, for all q ∈ [j],
L(∆0)ai1L(∆1)ai2 · · · L(∆q−1)aiqL(∆q) and L(∆0)ai1L(∆1)ai2 · · · L(∆q−1)aiqA

∗
iq are also

SUMs over Σ in L(J ∗ D).

Proof sketch. The SUMT
ai1

∆0 ai2

∆1

∆j−1 ak

∆j A∗
k

aij

is a straight right NSUMT, so that since the SUM A∗
0a1A

∗
1a2 · · ·A∗

k−1akA
∗
k it is a de-

composition of belongs to L(J ∗ D), Lemma 5.4.22 tells us that L(∆0)ai1L(∆1)ai2 · · ·
L(∆j−1)aijL(∆j) is also a SUM over Σ in L(J ∗ D). When ∆j is restricted to the root
A∗
iq , we obviously directly have that L(∆0)ai1L(∆1)ai2 · · · L(∆j−1)aijA

∗
ij

is also a SUM
over Σ in L(J ∗ D). Otherwise, the SUMT
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ai1

∆0 ai2

∆1

∆j−1 ∆j

aij

is a decomposition of L(∆0)ai1L(∆1)ai2 · · · L(∆j−1)aijL(∆j) where ∆j is a straight left
NSUMT not restricted to a sole root, which means the former is a bent right NSUMT.
Hence, by Lemma 5.4.22 again, we have, too, that L(∆0)ai1L(∆1)ai2 · · · L(∆j−1)aijA

∗
ij

is
also a SUM over Σ in L(J ∗ D).

We then just have to apply Lemma 5.4.22 repeatedly in that way to prove the lemma
for all q ∈ [j].

The next lemma in turn shows that under some conditions, we can even “cut off” a
given right part of the right branch of a straight right NSUMT, but keeping the initial
rightmost leaf, and still stay in L(J ∗ D). We use this result once in one of the subsubcases
of the third subcase of the second case in the proof of Proposition 5.4.2.

Lemma 5.4.24. Let A∗
0a1A

∗
1a2 · · ·A∗

k−1akA
∗
k (k ∈ N, k ≥ 2) be a SUM over an alphabet

Σ in L(J ∗ D) and

ai1

∆0 ai2

∆1

∆j−1 ak

∆j A∗
k

aij

some decomposition of it where ∆0,∆1, . . . ,∆j−1,∆j (j ∈ N>0) are SUMTs over Σ and the
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edges between the nodes labelled ai1 to aij are all full. Let q ∈ [j] such that {aiq+1, . . . , ak} ⊆
Ak. Then L(∆0)ai1L(∆1)ai2 · · · L(∆q−1)aiqA

∗
k is also a SUM over Σ in L(J ∗ D).

Proof. Let L = A∗
0a1A

∗
1a2 · · ·A∗

k−1akA
∗
k.

As L ∈ L(J ∗ D), by Corollary 5.4.23 when q > 1 and Lemma 5.4.20 otherwise (q = 1),
we get that

L(∆0)ai1L(∆1) · · · aiq−1L(∆q−1)

belongs to L(J ∗ D) as well.
Now, for all p ∈ [[0, iq − 1]], using the convention that i0 = 0, when Ap ∩ Ak 6= ∅

and {ap+1, . . . , aiq} ⊆ Ak, if we take q′ ∈ [q] to be the unique integer in [q] verifying
iq′−1 ≤ p < iq′ , since {aiq+1, . . . , ak} ⊆ Ak, using Lemma 5.4.22 gives us in particular that
the following conditions are verified:

• for all ι ∈ [[q′, q − 1]], there exists Bι ⊆ Σ such that ∆ι = B∗
ι and Ak ⊆ Bι ∪ {aiι+1};

• if p + 1 < iq′ , then there exists b ∈ Σ verifying ap+1 = · · · = aiq′−1 = b and
Ap ∩ Ak = {b};

• Ak ⊆ Ap ∪ {aiq′}.

Putting all together, by Lemma 5.4.22 again, we can conclude that

L(∆0)ai1L(∆1)ai2 · · · L(∆q−1)aiqA
∗
k

is in L(J ∗ D).

The two following lemmata show that, under different assumptions, in a given SUM
A∗

0a1A
∗
1a2 · · ·A∗

k−1akA
∗
k, we can replace an alphabet Ap by ∅ and still stay in L(J ∗ D),

the essential difference between the two of them being that in the first one we assume
that ap ∈ Ap when p > 0 and in the second one that ap /∈ Ap when p > 0, which requires
different additional hypotheses for the conclusion to hold. Each of them is used once in
the first subcase of the second case in the proof of Proposition 5.4.2.

Lemma 5.4.25. Let A∗
0a1A

∗
1a2 · · ·A∗

k−1akA
∗
k (k ∈ N) be a SUM over an alphabet Σ in

L(J ∗ D) and let p ∈ [[0, k]] such that Ap ∩ Ai = ∅ for all i ∈ [[p+ 1, k]] and ap ∈ Ap when
p > 0. Then A∗

0a1 · · ·A∗
p−1apap+1A

∗
p+1 · · · akA∗

k is also a SUM over Σ in L(J ∗ D).

Proof. Let us fix an alphabet Σ.
The proof goes by induction on k.
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Base case k = 0. Trivial.

Induction. Let k ∈ N>0 and assume the lemma is true for all SUMs of degree less than
k over Σ.

Let L = A∗
0a1A

∗
1a2 · · ·A∗

k−1akA
∗
k be a SUM over Σ of degree k. Let us take some

p ∈ [[0, k]] verifying Ap ∩ Ai = ∅ for all i ∈ [[p + 1, k]] and ap ∈ Ap when p > 0. Let us
finally consider T some NSUMT over Σ that is a decomposition of L. We consider four
different cases, one for each of the possible shapes of T .

Case 1. T is a bent right NSUMT of the form

Θ0

Θ1

A∗
p′

where p′ ∈ [[1, k − 1]],

∆0 =

Θ0

A∗
p′

is a straight right NSUMT and

∆1 =

Θ1

A∗
p′

is a straight left NSUMT. By Lemma 5.4.22, L(∆0) = A∗
0a1A

∗
1a2 · · ·A∗

p′−1ap′A
∗
p′ and

L(∆1) = A∗
p′ap′+1A

∗
p′+1ap′+2 · · ·A∗

k−1akA
∗
k both belong to L(J ∗ D). Now, if p ≤ p′, it

is easily seen that, by inductive hypothesis,

A∗
0a1 · · ·A∗

p−1apap+1A
∗
p+1 · · · ap′A∗

p′

does also belong to L(J ∗ D) and if p ≥ p′, it is as easily seen that, by inductive hypothesis,

A∗
p′ap′+1 · · ·A∗

p−1apap+1A
∗
p+1 · · ·A∗

k−1akA
∗
k
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does belong to L(J ∗ D) as well. Using Lemma 5.4.22, we can then conclude that

A∗
0a1 · · ·A∗

p−1apap+1A
∗
p+1 · · · akA∗

k

is in L(J ∗ D).

Case 2. T is a bent left NSUMT. This case is treated symmetrically to the previous
one.

Case 3. T is a straight right NSUMT of the form
ai1

∆0 ai2

∆1

∆j−1 ak

∆j A∗
k

aij

where ∆0,∆1, . . . ,∆j−1,∆j (j ∈ N) are straight left NSUMTs over Σ and the edges
between the nodes labelled ai1 to aij are all full. We use the convention that i0 = 0 and
ij+1 = k.

Lemma 5.4.22 tells us that L(∆0)ai1L(∆1)ai2 · · · L(∆j−1)aijL(∆j) is in L(J ∗ D).
When p = k, it is obvious that for all p′ ∈ [[0, k − 1]], we have Ap′ ∩ ∅ = ∅. Therefore,

by Lemma 5.4.22, L(∆0)ai1L(∆1)ai2 · · · L(∆j−1)aijL(∆j)ak is in L(J ∗ D).
Otherwise, when p < k, by inductive hypothesis, it is readily seen that

A∗
0a1 · · ·A∗

p−1apap+1A
∗
p+1 · · · ak−1A

∗
k−1

belongs to L(J ∗ D). Let q ∈ [j+1] be the unique integer in [j+1] verifying iq−1 ≤ p < iq.
When p > 0, as ap ∈ Ap and Ap∩Ak = ∅, we have ap /∈ Ak. Hence, for all p′ ∈ [[0, p−1]], we
have Ap′ ∩Ak = ∅ or {ap′+1, . . . , ak} * Ak. Obviously, ∅ ∩Ak = ∅ and, by Lemma 5.4.22,
for all p′ ∈ [[p + 1, k − 1]], Ap′ ∩ Ak 6= ∅ implies that {ap′+1, . . . , ak} * Ak or, if we take
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q′ ∈ [j + 1] to be the unique integer in [j + 1] verifying iq′−1 ≤ p′ < iq′ , the following
conditions are verified:

• for all ι ∈ [[q′, j]], there exists Bι ⊆ Σ such that ∆ι = B∗
ι and Ak ⊆ Bι ∪ {aiι+1};

• if p′ + 1 < iq′ , then there exists b ∈ Σ verifying ap′+1 = · · · = aiq′−1 = b and
Ap′ ∩ Ak = {b};

• Ak ⊆ Ap′ ∪ {aiq′}.

We observe that, for each p′ ∈ [[p + 1, k − 1]], all these conditions are still verified for L
in which Ap has been replaced by ∅, because they do not imply anything on Ap since the
associated q′ is at least as big as q. Therefore, by Lemma 5.4.22, we can conclude that

A∗
0a1 · · ·A∗

p−1apap+1A
∗
p+1 · · · akA∗

k

is in L(J ∗ D).

Case 4. T is a straight left NSUMT of the form
aij

∆j+1aij−1

∆j

∆2a1

A∗
0 ∆1

ai1

where ∆1,∆2, . . . ,∆j,∆j+1 (j ∈ N) are straight right NSUMTs over Σ and the edges
between the nodes labelled ai1 to aij are all full. We use the convention that i0 = 1 and
ij+1 = k + 1.

Lemma 5.4.22 tells us that L(∆1)ai1L(∆2) · · · aij−1
L(∆j)aijL(∆j+1) is in L(J ∗ D).

When p = 0, it is obvious that for all p′ ∈ [[1, k]], we have ∅ ∩ Ap′ = ∅. Therefore, by
Lemma 5.4.22, a1L(∆1)ai1L(∆2) · · · aij−1

L(∆j)aijL(∆j+1) is in L(J ∗ D).
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Otherwise, when p > 0, by inductive hypothesis, it is readily seen that

A∗
1a2 · · ·A∗

p−1apap+1A
∗
p+1 · · · akA∗

k

belongs to L(J ∗ D). Let q ∈ [[0, j]] be the unique integer in [[0, j]] verifying iq ≤ p < iq+1.
As ap ∈ Ap, we have that for any p′ ∈ [[iq+1, k]], A0 ∩ Ap′ = ∅ or {a1, . . . , ap′} * A0,
otherwise we would have, by Lemma 5.4.22, that there exists Bq+1 ⊆ Σ such that ∆q+1 =

B∗
q+1 while we know ∆q+1 is not restricted to a sole root because iq < p (as otherwise it

would mean that ap = aiq /∈ Ap), a contradiction. Obviously, A0 ∩ ∅ = ∅ and, following
the same reasoning as in the previous case, for all p′ ∈ [[1, iq+1 − 1]] \ {p}, the conditions
of Lemma 5.4.22 are verified. Therefore, by Lemma 5.4.22, we can conclude that

A∗
0a1 · · ·A∗

p−1apap+1A
∗
p+1 · · · akA∗

k

is in L(J ∗ D).

Lemma 5.4.26. Let A∗
0a1A

∗
1a2 · · ·A∗

k−1akA
∗
k (k ∈ N>0) be a SUM over an alphabet Σ in

L(J ∗ D) and

ai1

∆0 ai2

∆1

∆j−1 ak

∆j A∗
k

aij

some decomposition of it where ∆0,∆1, . . . ,∆j−1,∆j (j ∈ N) are straight left NSUMTs
over Σ and the edges between the nodes labelled ai1 to aij are all full. Using the convention
that i0 = 0 and ij+1 = k, let p ∈ [[0, k− 1]] such that Ap+1 = · · · = Aiq−1 = ∅, Ap ∩Aι = ∅
for all ι ∈ [[iq, k]], {aiq+1, . . . , ak} ⊆ Ak and ap /∈ Ap when p > 0, where q ∈ [j + 1] is the
unique integer in [j + 1] verifying iq−1 ≤ p < iq. Then A∗

0a1 · · ·A∗
p−1apap+1A

∗
p+1 · · · akA∗

k

is also a SUM over Σ in L(J ∗ D).
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Proof. Since A∗
p ∩ L(∆q)aiq+1 · · · L(∆j)akA

∗
k = ∅, we have that

A∗
0a1 · · ·A∗

p−1apap+1A
∗
p+1 · · · akA∗

k

=A∗
0a1A

∗
1a2 · · ·A∗

k−1akA
∗
k ∩

⋂
c∈Ap

[ai1 , . . . , aiq−1 , cap+1 · · · aiq−1aiq ]Σ
{ .

As L(J ∗ D) is an ne-variety of languages and A∗
0a1A

∗
1a2 · · ·A∗

k−1akA
∗
k as well as the lan-

guages [ai1 , . . . , aiq−1 , cap+1 · · · aiq−1aiq ]Σ for any c ∈ Ap belong to it,

A∗
0a1 · · ·A∗

p−1apap+1A
∗
p+1 · · · akA∗

k

does also belong to it.

Finally, this last lemma shows that, under some assumptions, in a SUM A∗
0a1A

∗
1a2 · · ·

A∗
k−1akA

∗
k, we can restrict all alphabets at the right of some letter ap to contain only those

letters belonging to Ak and still stay in L(J ∗ D). This result is used once in one of the
subsubcases of the third subcase of the second case in the proof of Proposition 5.4.2.

Lemma 5.4.27. Let A∗
0a1A

∗
1a2 · · ·A∗

k−1akA
∗
k (k ∈ N, k ≥ 2) be a SUM over an alphabet

Σ in L(J ∗ D) and
ai1

∆0 ai2

∆1

∆j−1 ak

∆j A∗
k

aij

some decomposition of it where ∆0,∆1, . . . ,∆j−1,∆j (j ∈ N>0) are straight left NSUMTs
over Σ and the edges between the nodes labelled ai1 to aij are all full. Let q ∈ [j] such that
{aiq+1, . . . , ak} ⊆ Ak. Then A∗

0a1 · · ·A∗
iq−1aiq(Aiq ∩ Ak)∗ · · · ak−1(Ak−1 ∩ Ak)∗akA∗

k is also
a SUM over Σ in L(J ∗ D).

Proof. We have that

A∗
0a1 · · ·A∗

iq−1aiq(Aiq ∩ Ak)∗ · · · ak−1(Ak−1 ∩ Ak)∗akA∗
k
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=A∗
0a1A

∗
1a2 · · ·A∗

k−1akA
∗
k ∩

⋂
b/∈Ak

[ai1 , . . . , aiq , b]Σ
{ ,

where we write b /∈ Ak instead of b ∈ Σ \ Ak. As L(J ∗ D) is an ne-variety of languages
and A∗

0a1A
∗
1a2 · · ·A∗

k−1akA
∗
k as well as the languages [ai1 , . . . , aiq , b]Σ for any b /∈ Ak belong

to it, A∗
0a1 · · ·A∗

iq−1aiq(Aiq ∩ Ak)∗ · · · ak−1(Ak−1 ∩ Ak)∗akA∗
k does also belong to it.
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Conclusion

In this thesis, we essentially made two contributions to the strand of research in com-
putational complexity theory aiming for non-uniform complexity measure lower bounds
within AC1:

1. a formal, measure-independent, treatment and study of Nečiporuk’s lower bound
method;

2. a better understanding of the computational power of programs over monoids taken
from small varieties of finite monoids.

Section 2.8 of Chapter 2 provides concluding remarks concerning our study of Nečipo-
ruk’s method, to which Chapter 2 is dedicated.

Concerning programs over monoids, in Section 3.4 of Chapter 3, we introduced a
new notion of tameness for varieties of finite monoids that strengthens a similar notion
introduced by Péladeau Péladeau [1990]. While the latter was equivalent, for a given
variety of finite monoids V, to an optimal separation of P(V) from all other classes of
languages P(W) defined by p-recognition over a variety of finite monoids W not contained
in V, it did not necessarily imply a characterisation of the class of regular languages
in P(V). Our notion of tameness ensures additionally that P(V) ∩ Reg ⊆ L(QV),
and we even know that equality holds when V is local. Thus, this notion serves as a tool
to better understand the fundamental link between regular languages and programs over
monoids, an understanding that provably holds the key to answering most open questions
about the internal structure of NC1.

A fundamental example of a tame variety of finite monoids is A. Its tameness can
be proven using the celebrated result of Furst, Saxe and Sipser, and, independently,
Ajtai, that MODm is not in AC0 for all m ∈ N,m ≥ 2; in fact, the tameness of A is
even equivalent to this result. However, reproving this result using new finite-semigroup-
theoretic techniques directly in the framework of p-recognition by finite aperiodic monoids



remains one of the major unresolved challenges when it comes to the program-over-monoid
formalism.

We managed to use such techniques in Chapter 4 to prove tameness of DA, a much
smaller variety of finite monoids well within A. As a corollary, we obtained that P(DA)∩
Reg = L(QDA). This proof of tameness in that restricted setting may or may not
help to prove the same for the unrestricted case of A, but at least it suggests a clear
(though probably difficult) path towards this goal. For F a class of regular languages,
we denote by B(F) the Boolean closure of F , i.e. the inclusion-wise smallest class of
regular languages containing F and verifying that for each alphabet Σ, F(Σ∗) is closed
under Boolean operations. We now define a hierarchy of classes of regular languages
V0,V1/2,V1,V1+1/2,V2, . . . in the following way:

• V0 is such that V0(Σ
∗) = {∅,Σ∗} for each alphabet Σ;

• V1/2 is such that V1/2(Σ
∗) = {Σ∗aΣ∗ | a ∈ Σ} for each alphabet Σ, and V1 =

B
(
V1/2

)
;

• for any n ∈ N>0, Vn+1/2 is such that

Vn+1/2(Σ
∗) = {L0a1L1 · · · akLk | k ∈ N, a1, . . . , ak ∈ Σ, L0, L1, . . . Lk ∈ Vn(Σ∗)}

for each alphabet Σ, and Vn+1 = B
(
Vn+1/2

)
.

The so-called full levels Vk for k ∈ N happen to be varieties of star-free languages and
verify SF =

⋃
k∈N Vk. When we consider the hierarchy of varieties of finite monoids

V0,V1,V2, . . . respectively associated to V0,V1,V2, . . . through Eilenberg’s correspond-
ence, we get that A =

⋃
k∈N Vk. This hierarchy of classes of regular languages, a slightly

twisted version of the Straubing-Thérien hierarchy (analogous and linked to the dot-depth
hierarchy, see Pin [2017]) where the level 1 is a bit restricted, was introduced by Bar-
rington and Thérien who showed that, for all k ∈ N, p-recognition by monoids from Vk

corresponds to the restriction of AC0 to Boolean combinations of languages decided by
sequences of AC0-type circuits of depth at most k (see Barrington and Thérien [1988]).
In light of all the properties of that hierarchy of varieties of finite monoids and knowing
that DA is included in its lowest levels, we therefore think it makes particular sense to
attack the question of the tameness of A by looking at the question of the tameness of
Vk for increasing k ∈ N. We observe that V1 = J1, which is not tame by Lemma 3.4.13,
but we guess that Vk is tame for all k ∈ N, k ≥ 2.
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Finally, in Chapter 5, we made progress towards an exact algebraic characterisation
of the class of regular languages p-recognised by finite J-trivial monoids. In fact, J is
not tame and its monoids are unexpectedly powerful when it comes to p-recognition of
regular languages: while a result by Maciel, Péladeau and Thérien as well as our result
of Chapter 4 together show that, in any case, P(J)∩Reg ⊆ L(Q(J ∗ D))∩L(QDA), we
presented good evidence that equality holds (this is Conjecture 2). Indeed, we observed
that although programs over monoids in J cannot recognise languages requiring detection
of the presence or absence of a word as a factor (basically dot-depth one languages), they
can recognise such languages with the additional guarantee that this word does appear
at most a constant number of times as a subword. The definition of threshold dot-depth
one languages is based on this principle, and we proved that all the latter belong to P(J).
Our intuition is that the class of threshold dot-depth one languages is in fact equal to
L(J ∗ D ∩ 〈DA〉S), but we were only able to prove that any SUM that is also of dot-
depth one is in fact a threshold dot-depth one language. This is a first step towards
a proof of Conjecture 1, that states that any language in L(J ∗ D ∩ 〈DA〉S) is in fact
p-recognised by a finite J-trivial monoid, a conjecture whose truth would, we believe,
rather easily imply the truth of Conjecture 2. However, we must admit that our proof of
this particular case of Conjecture 1 is not satisfactory, because of its unreasonable length
and complexity; we feel the final complete proof of Conjecture 1, if it exists, should be
reasonably short and simple (in view of what was done by Knast in Knast [1983] for the
algebraic characterisation of dot-depth one languages).

Future directions Below we give some ideas of lines along which one could conduct
research in continuation of this Ph.D. thesis.

• One could explore even more general versions of Nečiporuk’s method, as suggested
in Section 2.8 of Chapter 2: for instance, one could consider a version of Nečipo-
ruk’s method where the bound given by any Nečiporuk function should only hold
for a restricted class of Boolean functions or partitions of those.

• Obviously, one direction to follow would be to search for a full and reasonably short
and simple proof of Conjecture 1. If one can find such a proof, then an algebraic
characterisation of P(J) ∩Reg, Conjecture 2, should not be far.

• As explained just above, in view of reproving MODm is not in P(A) for all m ∈
N,m ≥ 2 (or equivalently that A is tame) using novel semigroup-theoretic methods,
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one path to follow would be to progressively prove, for growing k ∈ N, k ≥ 2, that
Vk is tame, if true.

• More generally, carrying on with the exhaustive study of exactly which varieties of
finite monoids are tame would definitely be interesting, because of the tight link
between this question and many of the questions about the internal structure of
NC1. As this thesis focused on small varieties of finite aperiodic monoids, one place
to continue would be to consider small varieties of finite non-aperiodic monoids (or
even groups).

• Some questions about the general properties of tameness as we defined it still remain
and could be investigated. For instance, for local and tame varieties V of finite
monoids, we have shown that the regular languages recognised by programs over V
are exactly those in L(QV). It is not clear whether locality is necessary, but we
don’t have any example of a tame variety V of finite monoids for which L(QV) is
not included into P(V).

• One could imagine that throwing in randomness as well as non-determinism in the
program-over-monoid formalism could give rise to interesting and tractable ques-
tions concerning derandomisation and the power of non-determinism for small com-
plexity classes inside NC1.

• Benjamin Rossman recently started to develop a wealth of new techniques to prove
small-depth circuit lower bounds (see e.g. Li et al. [2014]). It is unclear whether
those could help in the realm of programs over monoids, or even if those could be
generalised in some direction (in terms of languages or models for which we can
prove lower bounds using the technique), but it could be worth putting some effort
into trying to see if it is the case or not.
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Appendix A

Résumé substantiel en langue
française

Le cadre global. Cette thèse s’inscrit globalement dans le contexte de la recherche de
minorants pour des modèles de calcul non uniformes : étant donné un langage, un modèle
de calcul et une mesure de complexité, on cherche un minorant serré du coût donné par
cette mesure pour la décision de ce langage dans ce modèle.

On s’intéresse tout particulièrement au modèle des programmes de branchement. Un
programme de branchement sur mots binaires de longueur n est un graphe orienté acy-
clique avec un sommet source et deux sommets puits, l’un étiqueté 0, l’autre étiqueté 1,
chaque sommet non puits étant étiqueté par une position dans l’entrée et ayant exacte-
ment deux arcs sortants, l’un étiqueté 0 et l’autre étiqueté 1. Un certain mot en entrée
donne ensuite lieu à un unique chemin dans ce programme de branchement qui arrive soit
au sommet puits étiqueté 0 (rejet), soit au sommet puits étiqueté 1 (acceptation). La me-
sure de complexité la plus fondamentale associée à ce modèle est, pour un langage donné,
la fonction donnant pour chaque taille d’entrée possible la taille minimum, en nombre de
sommets non puits, d’un programme de branchement décidant la restriction de ce lan-
gage aux mots de cette longueur donnée. Elle est fondamentale parce qu’elle capture la
mesure de complexité en espace pour les machines de Turing de la manière suivante : tout
langage décidé par une machine de Turing en espace s(n) peut être décidé par une suite
de programmes de branchement de taille majorée par 2α·s(n), où α est une constante dé-
pendant seulement de la machine de Turing. Ainsi, un minorant fort pour la taille des
programmes de branchement nécessaire pour décider un certain langage implique directe-
ment un minorant fort pour l’espace nécessaire à une machine de Turing pour décider ce
même langage. Par « fort », on entend « super-polynomial », puisqu’un tel minorant pour la



taille des programmes de branchement donnerait lieu à un minorant super-logarithmique
pour l’espace des machines de Turing, ce qui est exactement ce que l’on vise pour séparer
la classe L des langages décidables en espace logarithmique par une machine de Turing de
la classe P des langages décidables en temps polynomial par une machine de Turing. La
question de la relation entre L et P est une question ouverte centrale en théorie de la com-
plexité algorithmique : il est bien connu que L ⊆ P, mais presque rien n’est connu à propos
de l’inclusion inverse, bien qu’il soit largement admis qu’elle n’est pas vraie. L’importance
de cette question est comparable à celle de la question fondamentale de la théorie de la
complexité algorithmique, à savoir celle de la relation entre P et la classe NP des langages
décidables en temps polynomial par une machine de Turing non déterministe.

La méthode de Nečiporuk. Le problème est que, dans l’état actuel de la recherche,
séparer L de P de cette manière (ou, d’ailleurs, de quelque autre manière que ce soit)
semble totalement hors d’atteinte. En effet, le meilleur minorant connu pour la taille des
programmes de branchement est toujours, au moment d’écrire cette thèse, celui démontré
par Nečiporuk il y a plus de 50 ans Nečiporuk [1966], qui est en Θ(n2/ log2 n). Nečiporuk
utilisa implicitement une technique qui a plus tard été identifiée explicitement, définie et
appliquée à plusieurs autres mesures de complexité pour différents modèles de calcul, et
qui a également été exposée dans plusieurs livres de référence Savage [1976], Wegener
[1987, 2000], Jukna [2012]. La première contribution de cette thèse, tirée d’un article
coécrit avec Paul Beame, Pierre McKenzie et Luc Segoufin Beame et al. [2016], est une
formulation de la méthode de minoration de Nečiporuk en amont de toute mesure de
complexité spécifique (ce qui n’a jamais été fait systématiquement auparavant) et l’analyse
des limites de cette méthode (en termes de meilleur minorant que l’on puisse obtenir)
induites par des majorants pour la complexité de décision d’un langage spécifique. Ce
cadre est ensuite utilisé pour appliquer la méthode et montrer ses limitations à la fois
pour des modèles de calcul classiques avec les mesures de complexité associées et pour des
variantes de ceux-ci jamais étudiées auparavant. Au bout du compte, dans ce cadre un peu
plus général, des résultats de minoration et de limitation bien connus sont redémontrés
et de nouveaux tels résultats sont prouvés.

Programmes sur monoïdes. Étant donné que l’on sait maintenant que la méthode
de Nečiporuk ne permet pas d’obtenir de meilleurs minorants pour la taille des pro-
grammes de branchement qu’en Θ(n2/ log2 n) et puisque personne ne sait vraiment com-
ment démontrer ne serait-ce qu’un minorant quadratique, que devrait-on faire ? Ce que
les chercheurs firent une fois ce constat fait fut de commencer à chercher des minorants
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pour la taille de variantes restreintes de programmes de branchement avec les mesures de
complexité associées, en espérant que les connaissances acquises en démontrant de tels
minorants aideraient à démontrer de meilleurs minorants pour le modèle non restreint.
Parmi les restrictions étudiées, on trouvera le fait de restreindre le nombre de fois qu’une
certaine position dans l’entrée peut être lue le long d’un chemin du sommet source à un
sommet puits, ou encore de restreindre la largeur d’un programme de branchement. Les
programmes de branchement de largeur bornée se sont révélés être particulièrement inté-
ressants, surtout à partir du moment où Barrington Barrington [1989] prouva le résultat
inattendu que les programmes de branchement de largeur bornée et de taille polynomiale
permettent de décider tous les langages de NC1. NC1 est la classe des langages décidés
par des circuits de taille polynomiale, profondeur logarithmique avec des portes NON et
des portes OU, ET de degré entrant 2, une « petite » classe de complexité centrale et très
étudiée. Son inclusion dans L lorsque l’on considère une variante uniforme appropriée est
probablement stricte, mais il n’est, dans l’état actuel des connaissances, toujours pas exclu
que NP ⊆ NC1. En tant que suite directe de ce résultat et de sa démonstration, Barrington
et Thérien Barrington and Thérien [1988] introduisirent le modèle des programmes sur mo-
noïdes. Étant donné un monoïde fini (M, ∗) et un alphabet fini Σ, un (M, ∗)-programme
P sur Σ pour la longueur d’entrée n est simplement une suite d’instructions finie

(i1, f1)(i2, f2) · · · (il, fl) ,

où pour tout j, ij indique une position dans l’entrée et fj associe un élément de M à tout
élément de Σ. De cette manière, à tout mot w de longueur n sur Σ en entrée, P associe
un unique élément de M ,

P (w) = f1(wi1) ∗ f2(wi2) ∗ · · · ∗ fl(wil) .

Un langage de mots de Σn est ensuite reconnu par P si et seulement s’il est égal à
l’ensemble de mots dans Σn auxquels le programme P associe un élément dans un certain
sous-ensemble F de M . Un langage de mots de longueur arbitraire est, quant à lui, reconnu
par une suite de (M, ∗)-programmes.

Ce modèle de calcul et cette notion de reconnaissance peuvent être vus comme une
généralisation de la notion de reconnaissance par morphismes dans des monoïdes finis, à
la base même de la théorie algébrique des automates. D’une manière similaire au cas de la
reconnaissance classique par de tels morphismes, on s’intéresse habituellement à la classe
de langages reconnus par une suite de (M, ∗)-programmes de longueur polynomiale où
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(M, ∗) est un monoïde fini tiré d’une certaine variété de monoïdes finis V (une telle variété
étant une classe de monoïdes finis close par produit direct et division, deux opérations
basiques sur les monoïdes). Le résultat frappant montré par Barrington et Thérien (et dans
quelques articles suivants) est que NC1 et presque toutes ses sous-classes bien connues (à
l’exception notable de TC0) peuvent chacune être caractérisée comme une certaine classe
P(V) de langages reconnus par des suites de programmes de longueur polynomiale sur
monoïdes issus d’une telle variété V. Par exemple, considérons AC0, la classe des langages
décidés par des circuits de taille polynomiale, profondeur constante avec des portes NON
et des portes OU, ET de degré entrant non borné, et ACC0 la même classe avec l’ajout
de portes de comptage modulaire — deux des plus importantes sous-classes de NC1.
Alors, on a que NC1, ACC0 et AC0 contiennent, respectivement, exactement les langages
reconnus par des programmes, de longueur polynomiale, sur monoïdes de la variété de
tous les monoïdes finis, des monoïdes finis résolubles et des monoïdes apériodiques finis.
En théorie algébrique des automates, beaucoup de techniques ont été développées depuis
les années 1960 pour caractériser algébriquement les classes de langages réguliers par les
variétés de monoïdes finis les reconnaissant par morphismes. L’espoir était, et est toujours,
que celles-ci puissent être généralisées à la reconnaissance par programmes et aider à
aborder des questions ouvertes de théorie de la complexité algorithmique liées à NC1 et sa
structure interne ; ou, tout du moins, amener à de nouvelles démonstrations de résultats
connus dans ce domaine en utilisant la théorie des semi-groupes finis. Le plus célèbre et
fondamental de ces résultats est celui affirmant que pour tout entier m ≥ 2, le langage
MODm des mots sur {0, 1} contenant un nombre de 1 non divisible par m n’est pas dans
AC0.

Mais aucun de ces espoirs ne s’est concrétisé pour le moment, à l’écriture de cette thèse.
Comme expliqué pour le cas des minorants de la taille des programmes de branchement
(non restreints), une approche que l’on pourrait avoir face à de telles difficultés serait de se
concentrer sur des modèles encore plus restreints et essayer d’accumuler des connaissances
et des techniques qui pourraient être utiles dans le cadre non restreint. Le formalisme des
programmes sur monoïdes offre une façon directe de restreindre la puissance du modèle,
simplement en restreignant la « puissance algébrique » à disposition en considérant des
programmes sur monoïdes pris d’une certaine « petite » variété (au sens de l’inclusion) ;
l’espoir est de pouvoir ensuite réutiliser ce que l’on apprend en étudiant la puissance
des programmes sur monoïdes pris de ces « petites » variétés lorsque l’on mène cette
étude avec des variétés plus grandes, comme celles données juste au-dessus. L’étude de
l’expressivité des programmes sur monoïdes issus de « petites » variétés de monoïdes finis
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amène également des questions intéressantes en tant que telles, souvent liées à la théorie
algébrique des automates et la logique. Un nombre non négligeable de travaux précédents
ont été faits dans ce contexte (par exemple Barrington et al. [1990], Gavaldà and Thérien
[2003], Lautemann et al. [2006], Maciel et al. [2000], McKenzie et al. [1991], Tesson and
Thérien [2001]).

La seconde contribution de cette thèse, qui correspond à des travaux en partie exposés
dans un article de conférence co-publié avec Pierre McKenzie et Luc Segoufin Grosshans
et al. [2017], se décompose en deux volets : à un niveau général, l’examen d’une propriété
générale de la classe des langages réguliers contenus dans P(V) pour toute variété de
monoïdes finis V ; à un niveau plus spécifique, l’étude de chacun des cas des variétés
de monoïdes finis DA et J, deux « petites » sous-variétés bien connues de celle des mo-
noïdes apériodiques finis, importantes en théorie algébrique des automates et domaines
connexes. Caractériser exactement la classe des langages réguliers dans P(V) alors que
l’on fait varier V parmi toutes les variétés de monoïdes finis possibles est une tâche fon-
damentale car, comme il est montré dans McKenzie et al. [1991], deux classes P(V) et
P(W) sont égales si et seulement si elles contiennent exactement les mêmes langages
réguliers. En s’inspirant du travail de Péladeau, Straubing et Thérien Péladeau et al.
[1997] concernant les programmes sur semi-groupes issus de variétés de semi-groupes finis
d’une certaine forme, une nouvelle notion de docilité d’une variété de monoïdes finis V
est introduite, capturant essentiellement la propriété que, sur les monoïdes issus de cette
variété, la reconnaissance par programmes de longueur polynomiale ne permet pas de re-
connaître imprévisiblement plus de langages réguliers que la reconnaissance classique par
morphismes.

Le reste de la thèse s’attache ensuite d’abord à montrer que DA est docile, dérivant
de cette propriété une caractérisation algébrique exacte de la classe des langages réguliers
appartenant à P(DA). En outre, d’autres propriétés à propos de P(DA) intéressantes
en elles-mêmes sont montrées. Cette thèse se tourne en dernier lieu vers J, la variété
des monoïdes finis appelés J-triviaux, un exemple notable d’une variété de monoïdes finis
prouvée non docile. Ceci signifie, avant tout, que les programmes de longueur polynomiale
sur monoïdes de J peuvent reconnaître « beaucoup plus » de langages réguliers qu’en
considérant seulement la reconnaissance classique par morphismes sur monoïdes de J. Le
dernier chapitre de cette thèse, assez considérable, développe des résultats partiels (non
publiés à ce jour) pour la caractérisation algébrique de la classe des langages réguliers
appartenant à P(J) (en plus de quelques petits résultats à part concernant P(J)).
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Orientations futures. Voici enfin quelques idées de sujets de recherche en continuité
avec cette thèse sur lesquels l’on pourrait travailler.

• On pourrait explorer des versions de la méthode de Nečiporuk encore plus générales
que celle proposée dans cette thèse, dont les limitations sont en grande partie dues
au fait qu’elle doive s’appliquer à tout langage binaire.

• Bien évidemment, une piste à suivre serait de chercher une preuve complète et à la
fois raisonnablement courte et simple de la caractérisation algébrique exacte de la
classe des langages réguliers contenus dans P(J) conjecturée dans cette thèse.

• Il y a une hiérarchie infinie de variétés de monoïdes finis entre DA et celle des
monoïdes apériodiques finis. Si quelqu’un devait un jour redémontrer que MODm

n’est pas dans AC0 pour tout entier m ≥ 2 en utilisant des méthodes de théorie des
semi-groupes finis, une voie à suivre serait de montrer progressivement, si vraie, la
docilité de chacun des niveaux de cette hiérarchie, dans l’ordre croissant des niveaux.

• La docilité pour les variétés de monoïdes finis semble être une notion intéressante,
puisque, entre autres, la conjecture bien connue qu’ACC0 est strictement incluse dans
NC1 est équivalente au fait que la variété des monoïdes résolubles finis est docile. Ceci
motive la poursuite de l’étude exhaustive de la docilité des variétés de monoïdes finis
débutée dans cette thèse. Comme cette dernière s’est concentrée sur des petites
variétés de monoïdes apériodiques, un angle d’attaque possible serait d’examiner de
petites variétés de monoïdes non apériodiques (ou même des groupes). Par ailleurs,
cette thèse soulève aussi quelques questions à propos des propriétés générales de la
docilité qu’il reste à résoudre.

• L’on pourrait imaginer qu’introduire des comportements probabilistes ainsi que non
déterministes dans le formalisme des programmes sur monoïdes pourrait donner
lieu à des questions intéressantes et accessibles concernant la déprobabilisation et
la puissance du non déterminisme pour des petites classes de complexité dans NC1.

• Benjamin Rossman a récemment commencé à développer une foule de techniques
nouvelles pour prouver des minorants pour les circuits de faible profondeur (voir par
exemple Li et al. [2014]). Il n’est pas clair si celles-ci pourraient aider dans le domaine
des programmes sur monoïdes, ou même si celles-ci pourraient être généralisées dans
une certaine direction (en termes de langages ou de modèles pour lesquels on peut
démontrer des minorants en utilisant ces techniques), mais des efforts pour savoir
ce qu’il en est pourraient s’avérer profitables.
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Titre : Les limites de la méthode de Nečiporuk et le pouvoir des programmes sur monoïdes issus de petites variétiés de monoïdes finis

Mots-clés : Complexité algorithmique, minorants, Nečiporuk, programmes sur monoïdes, DA, J

Résumé : Cette thèse porte sur des minorants pour des mesures de complexité liées à des sous-classes de la classe P de langages pouvant être décidés
en temps polynomial par des machines de Turing. Nous considérons des modèles de calcul non uniformes tels que les programmes sur monoïdes et
les programmes de branchement.
Notre première contribution est un traitement abstrait de la méthode de Nečiporuk pour prouver des minorants, indépendamment de toute mesure
de complexité spécifique. Cette méthode donne toujours les meilleurs minorants connus pour des mesures telles que la taille des programmes de
branchements déterministes et non déterministes ou des formules avec des opérateurs booléens binaires arbitraires ; nous donnons une formulation
abstraite de la méthode et utilisons ce cadre pour démontrer des limites au meilleur minorant obtenable en utilisant cette méthode pour plusieurs
mesures de complexité. Par là, nous confirmons, dans ce cadre légèrement plus général, des résultats de limitation précédemment connus et exhibons
de nouveaux résultats de limitation pour des mesures de complexité auxquelles la méthode de Nečiporuk n’avait jamais été appliquée.
Notre seconde contribution est une meilleure compréhension de la puissance calculatoire des programmes sur monoïdes issus de petites variétés de
monoïdes finis. Les programmes sur monoïdes furent introduits à la fin des années 1980 par Barrington et Thérien pour généraliser la reconnaissance
par morphismes et ainsi obtenir une caractérisation en termes de semi-groupes finis de NC1 et de ses sous-classes. Étant donné une variété V de
monoïdes finis, on considère la classe P(V) de langages reconnus par une suite de programmes de longueur polynomiale sur un monoïde de V :
lorsque l’on fait varier V parmi toutes les variétés de monoïdes finis, on obtient différentes sous-classes de NC1, par exemple AC0, ACC0 et NC1 quand
V est respectivement la variété de tous les monoïdes apériodiques finis, résolubles finis et finis. Nous introduisons une nouvelle notion de docilité
pour les variétés de monoïdes finis, renforçant une notion de Péladeau. L’intérêt principal de cette notion est que quand une variété V de monoïdes
finis est docile, nous avons que P(V) contient seulement des langages réguliers qui sont quasi reconnus par morphisme par des monoïdes de V. De
nombreuses questions ouvertes à propos de la structure interne de NC1 seraient réglées en montrant qu’une variété de monoïdes finis appropriée est
docile, et, dans cette thèse, nous débutons modestement une étude exhaustive de quelles variétés de monoïdes finis sont dociles. Plus précisément,
nous portons notre attention sur deux petites variétés de monoïdes apériodiques finis bien connues : DA et J. D’une part, nous montrons que DA
est docile en utilisant des arguments de théorie des semi-groupes finis. Cela nous permet de dériver une caractérisation algébrique exacte de la classe
des langages réguliers dans P(DA). D’autre part, nous montrons que J n’est pas docile. Pour faire cela, nous présentons une astuce par laquelle des
programmes sur monoïdes de J peuvent reconnaître beaucoup plus de langages réguliers que seulement ceux qui sont quasi reconnus par morphisme
par des monoïdes de J. Cela nous amène à conjecturer une caractérisation algébrique exacte de la classe de langages réguliers dans P(J), et nous
exposons quelques résultats partiels appuyant cette conjecture. Pour chacune des variétés DA et J, nous exhibons également une hiérarchie basée
sur la longueur des programmes à l’intérieur de la classe des langages reconnus par programmes sur monoïdes de la variété, améliorant par là les
résultats de Tesson et Thérien sur la propriété de longueur polynomiale pour les monoïdes de ces variétés.

Title: The limits of Nečiporuk’s method and the power of programs over monoids taken from small varieties of finite monoids

Keywords: Computational complexity, lower bounds, Nečiporuk, programs over monoids, DA, J

Abstract: This thesis deals with lower bounds for complexity measures related to subclasses of the class P of languages that can be decided by
Turing machines in polynomial time. We consider non-uniform computational models like programs over monoids and branching programs.
Our first contribution is an abstract, measure-independent treatment of Nečiporuk’s method for proving lower bounds. This method still gives the
best lower bounds known on measures such as the size of deterministic and non-deterministic branching programs or formulæ with arbitrary binary
Boolean operators; we give an abstract formulation of the method and use this framework to prove limits on the best lower bounds obtainable using
this method for several complexity measures. We thereby confirm previously known limitation results in this slightly more general framework and
showcase new limitation results for complexity measures to which Nečiporuk’s method had never been applied.
Our second contribution is a better understanding of the computational power of programs over monoids taken from small varieties of finite monoids.
Programs over monoids were introduced in the late 1980s by Barrington and Thérien as a way to generalise recognition by morphisms so as to obtain
a finite-semigroup-theoretic characterisation of NC1 and its subclasses. Given a variety V of finite monoids, one considers the class P(V) of languages
recognised by a sequence of polynomial-length programs over a monoid from V: as V ranges over all varieties of finite monoids, one obtains different
subclasses of NC1, for instance AC0, ACC0 and NC1 when V respectively is the variety of all finite aperiodic, finite solvable and finite monoids. We
introduce a new notion of tameness for varieties of finite monoids, strengthening a notion of Péladeau. The main interest of this notion is that when
a variety V of finite monoids is tame, we have that P(V) does only contain regular languages that are quasi morphism-recognised by monoids from
V. Many open questions about the internal structure of NC1 would be settled by showing that some appropriate variety of finite monoids is tame,
and, in this thesis, we modestly start an exhaustive study of which varieties of finite monoids are tame. More precisely, we focus on two well-known
small varieties of finite aperiodic monoids: DA and J. On the one hand, we show that DA is tame using finite-semigroup-theoretic arguments.
This allows us to derive an exact algebraic characterisation of the class of regular languages in P(DA). On the other hand, we show that J is not
tame. To do this, we present a trick by which programs over monoids from J can recognise much more regular languages than only those that are
quasi morphism-recognised by monoids from J. This brings us to conjecture an exact algebraic characterisation of the class of regular languages
in P(J), and we lay out some partial results that support this conjecture. For each of the varieties DA and J, we also exhibit a program-length-
based hierarchy within the class of languages recognised by programs over monoids from the variety, refining Tesson and Thérien’s results on the
polynomial-length property for monoids from those varieties.
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