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Résumé

Cette thèse est une exploration du comportement universel de parois de domaines magné-
tiques dans des films ferromagnétiques minces à anisotropie perpendiculaire. Elle comporte
un état de l’art sur la dynamique des parois puis une description des méthodes expéri-
mentales utilisées pour observer et déplacer les parois. Les résultats expérimentaux sont
présentés dans les trois chapitres suivants. Nous résumons ici les principales études présen-
tées dans le manuscrit : transition de dépiégeage, effets de tailles finies sur le régime de
déplacement activé thermiquement (reptation) et criticalité de la dynamique des parois
sous courant électrique.

Transition de dépiégeage

Nous avons exploré les comportements universels de la transition dépiégeage. La vitesse
des parois de domaine dans un film de Pt/Co/Pt a été mesurée sur presque deux ordres de
grandeur en température et sur une gamme magnétique couvrant les régimes de reptation
(creep), dépiégeage et flow. Nos résultats ont été comparés à des données trouvées de la
littérature pour des films de Au/Co/Au et de CoFeB. Nous montrons tout d’abord que
la dynamique des parois est compatible avec les variations en loi de puissance attendues
pour la vitesse et la rugosité et en bon accord avec les prédictions pour les exposants
universels (ψ = 0.15 et β = 0.25). Pour aller au-delà de l’analyse habituelle des exposants
critiques, nous proposons un modèle auto-consistant qui décrit les régimes de reptation et
de dépiégeage et qui permet de distinguer les comportements universels et non-universels.
Grâce à ce modèle, nous avons pu extraire la fonction universelle du régime de dépiégeage
reflétant les effets thermiques et les effets du champ magnétique sur la vitesse des parois.
Nous avons également mis en évidence une corrélation forte entre les paramètres effectifs
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(dépendant de la température et des matériaux) qui contrôlent la dynamique de reptation
et de dépiégeage. Ainsi, nous avons montré que la dynamique de parois est essentiellement
contrôlée par trois paramètres dépendants du matériau et de la température et des fonctions
universelles. De manière plus générale, notre étude montre que le comportement universel
de dynamique de parois couvre une grande gamme de champ magnétique appliqués, qui
s’étend de la limite à force nulle jusqu’au-dessus du seuil de dépiégeage. Sur toute cette
gamme de champ magnétique, la dynamique de paroi en présence d’un désordre figé peut
être décrite par l’équation de Edwards Wilkinson qui suppose une compétition en le désordre,
l’activation thermique et l’élasticité de paroi.

Effets de taille finie

Nous avons étudié les effets de taille finie sur le mouvement des parois dans des films
magnétiques de (Ga, Mn)As et (Ga, Mn)(As,P) d’épaisseurs comprises entre 12 et 80nm.
L’exposant de vitesse et l’exposant de rugosité ont été mesurés en fonction du champ mag-
nétique appliqué, pour différentes températures. Les courbes obtenues systématiquement
des discontinuités pour les mêmes valeurs de champ magnétiques seuil. Au-dessous du
seuil, le mouvement est compatible avec les exposants µ = 1/4 et ζ = 2/3, prédits pour
le mouvement d’une ligne élastique dans un milieu à deux dimensions. Au-dessus du seuil,
les résultats sont compatibles avec les exposants µ = 1/2 et ζ = 2/5, correspondant au
mouvement d’une surface dans un milieu tridimensionnel. Ces résultats sont compatibles
avec la variation sous champ magnétique de la longueur de saut thermique optimale qui
provoque l’avancée des parois. Au-dessous du champ magnétique seuil, la longueur de saut
est supérieure à l’épaisseur. Les sauts de parois sont confinés par l’épaisseur des couches.
Au-dessus du seuil, la longueur de saut devient inférieure à l’épaisseur et la paroi se com-
porte comme une surface se déplaçant dans un milieu à trois dimensions. Nous avons donc
mis en évidence le mouvement de reptation en trois dimensions.

Criticalité de la dynamique des parois sous courant élec-
trique

Dans ce chapitre, nous discutons de la criticalité du mouvement de paroi produit par courant
électrique. Nous proposons une analyse comparée de la dynamique de paroi dans des films
de (Ga, Mn) (As, P) sous champ magnétique et sous courant. Nous montrons que la
différence essentielle entre les deux types de forces est la directionnalité de la force associée
au courant. Un champ magnétique agit de manière isotrope comme une pression. Au
contraire, nous montrons que la force associée au courant est proportionnelle au produit
scalaire entre la densité de courant et le vecteur normal à la paroi de domaine. Cette
directionnalité est l’origine de la formation de facettes. Pour un angle d’inclinaison différent
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de zéro, nous montrons que l’équation de mouvement peut être écrite par le modèle minimal
de Kardar-Parisi-Zhang. Pour un angle d’inclinaison égal à zéro, les exposants critiques sont
compatibles à ceux qui sont obtenus pour un déplacement sous champ magnétique. Ceci
indique que la dynamique de parois sous courant en présence d’ancrage faible suit le modèle
minimal d’Edwards-Wilkinson.
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Abstract

Understanding magnetic domain walls dynamics (DW) is crucial in order to develop tech-
nological applications like high density memories in ferromagnets. From the fundamental
point of view, domain walls are described as interfaces moving in a pinning potential and
exhibit universal behaviors shared by different physical systems as diverse as propagation
of fractures in solids, combustion fronts, ferroelectric domain walls, to name a few.

In the first part of the thesis we address the universal behavior of the depinning tran-
sition in domain walls driven by field. For this purpose we measure the DW velocity driven
by field in an ultrathin Pt/Co/Pt film and then compare our results with other published
in the literature. We reveal a universal scaling function, and obtain a consistent description
for both the depinning transition and the thermally activated creep regime.

In a second part of the manuscript, we study the finite size effects on DW dynamics
in the thermally activated creep regime. We use ferromagnetic (Ga, Mn)(As,P) films with
different thicknesses. We find a discontinuity in the roughness exponent (ζ) and the slope in
the field driven DW velocity within the creep regime. This evidences a dimensional crossover
and a change in criticality in the quenched Edward-Wilkinson model: from the motion of
an elastic line (d = 1) moving in a 2D medium to the motion of an elastic interface (d = 2)
moving in a 3D medium at low and high drive, respectively.

In the last part we compare the thermally activated creep dynamics on domain walls
driven by magnetic field and electric current in a (Ga,Mn)(As,P) thin film. We measure the
creep exponent µ and the roughness exponent ζ for field and current driven DW motion. We
find that when the angle between the current and the normal to the DW is sufficiently small,
the current induced DW motion belongs to the quenched Edward-Wilkinson universality
class as field induced DW creep.
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CHAPTER 1

Introduction

“Je me propose de montrer ici que l’on peut
fonder une théorie du ferromagnétisme sur
une hypothèse extrêmement simple concernant
ces actions mutuelles. Je suppose que chaque
molécule éprouve de la part de l’ensemble des
molécules environnantes une action égale à
celle d’un champ uniforme NI proportionnel à
l’intensité d’aimantation et de même direction
qu’elle. On pourrait donner à NI le nom de
champ intérieur pour marquer l’analogie avec la
pression intérieure de van der Waals.”

Pierre Weiss. -L’hypothèse du champ moléculaire et la propriété ferromagnétique.

The idea of magnetic recording of information has emerged since the last decades of
the 19th century. At the 1900 Paris exhibition Valdemar Poulsen showed a recording
of the voice of Emperor Franz Joseph in a magnetic wire warped around a drum.

Approximately 30 years latter, commercial applications were available. Ever since, magnetic
recording has played a crucial role in information storage. There is hardly any aspect of our
lives (from work to leisure) where magnetic recording devices are not present [21].
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Introduction

Nowadays, the engineering of magnetic materials and the manipulation of their prop-
erties caused a lot of scientific interest and new questions arise on the basic physics of
magnetism. For a long time only magnetic field was used to manipulate the magnetization
and magnetic domain structure in ferromagnetic materials. However in recent years the
development of nanotechnologies has allowed the use of electrical current to manipulate
the magnetization, through spin-transfer torque mechanisms [89, 106, 62]. Technological
applications based on the manipulation of magnetic structures as magnetic domain walls
or Skyrmions were proposed. My thesis falls within this context, and aims at a better
understanding of the magnetic domain wall’s dynamics.

On the other hand, magnetic domain walls are well known to be strongly sensitive to
the pinning caused by local defects or inhomogeneities in the host materials. Even a weak
pinning produces stochasticity and a roughening of domain walls (DWs). The understanding
on how weak pinning affects DW dynamics is important for applications. This issue is also
relevant on a wider context. Pinning dependent dynamics is observed in a vast variety
of physical systems: magnetic domain walls [70, 73, 112], ferroelectric domain walls [107],
wetting contact lines [78], fractures [87], vortex lattices [7] to name a few. Even though these
systems have a priori, completely different physical properties at the microscopic scale, they
present common universal behaviors, which are of interest for several areas of physics.

The interplay between the interface elasticity, weak pinning disorder, thermal activa-
tion, and a driving force leads to very rich physics. The variation of interface velocity with
the magnitude of the driving force f is particularly interesting. At zero temperature, the
DWs are pinned until the driving force f reaches the depinning threshold fd. Just above
the threshold, the interface is predicted to present a universal depinning transition with a
velocity v varying as a power law with the force (v ∼ (f − fd)β). At finite temperature,
thermal activation favours the interface motion and a so-called creep motion is observed
below the threshold. Close to zero drive (f → 0), the velocity follows an Arrhenius law
(ln v ∼ −∆E/kBT ), where kBT is the thermal activation energy. The effective pinning
barrier height ∆E presents a power law variation with the drive (∆E ∼ f−µ), where µ is
universal exponent. At high drive the motion of interfaces is controlled by dissipation and
is expected to vary linearly with the driving force.

For magnetic domain walls driven by magnetic field, the creep motion was first evi-
denced in Pt/Co/Pt ultrathin films with perpendicular anisotropy by Lemerle et al. [70].
In particular, the measured value of the critical exponent µ was found compatible with
theoretical predictions µ = 1/4 [14] for an elastic line with short range elasticity moving in
a short range pinning disorder. Since this seminal experimental work, significant progress
has been made for the understanding of pinning dependent phenomena. To name a few,
the depinning transition was observed in ultrathin films [73], finite size effects producing a
change of universal behavior was evidenced in nanowires [58], the contribution of long range
interactions to universal behaviors [30, 8] were investigated.

However, as this subject has been explored, new questions have arisen. The critical
behaviors of current induced domain wall motion are controversial, since different values
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of critical exponents are reported in the literature [112, 67, 76, 31]. The contribution of
DW chirality on the creep motion also remains an open question [66, 109, 65]. Universal
behaviors of the depinning transition, and the links between the depinning and creep motion
are not well understood [12].

This thesis explores the universal behaviors of DW dynamics. In particular, we propose
an analysis of the depinning transition, the criticality of current driven DW motion, and
the contribution of finite thickness effects of magnetic films on the DW criticality. For each
study, we try to go beyond the usual power law analysis and access the universal function
catching both the thermal and drive effects on the dynamics.

The manuscript is organized as follows: chapter 2 brings a general overview on magnetic
domains, domain walls and their micromagnetic description. Next, we present the state of
the art on magnetization dynamics, the dissipation and pinning dependent regimes of DW
motion. Chapter 3 focuses on the experimental methods and details the measuring protocols
used in this work. Our results are presented in chapters 4 to 6. The universal behaviors of
the depinning are discussed in chapter 4. In chapter 5 we report experimental evidences of
the dimensional crossover of universal behavior due to the finite thickness of ferromagnetic
films. In chapter 6, we compare the criticality of current and magnetic field induced DW
creep motion. Finally chapter 7 contains the global conclusions and perspectives.
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CHAPTER 2

Magnetic domains and domain wall dynamics

“La hipótesis de los dominios de Weiss ha recibido
una confirmación evidente mediante una serie de
experimentos inaugurados por Bitter y particular-
mente trabajado por Backer y Elmore... Microfo-
tografías de estos depósitos muestran la existencia
de líneas bien definidas sobre la superficie, dibu-
jadas por la acumulación de las partículas en lu-
gares definidos por la intersección de las super-
ficies límites de los dominios. Tales dibujos se
producen sólo en los cuerpos ferromagnéticos.”

Blas Cabrera.- El magnetismo de la materia

In this chapter we present a state of the art on magnetic field and electric current induced
domain wall (DW) motion. We start by giving a general overview on ferromagnetism
in Pt/Co/Pt and (Ga,Mn)As, magnetic energies, magnetic domains and domain walls.

Then we describe dynamical regimes for field and current induced DW motion without
pinning. Finally we illustrate with more detail the dynamical regimes for a DW seen as an
elastic interface moving in a weak random pinning potential and summarize a selection of
reported experimental results that are relevant for our investigations.
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2.1 General concepts on magnetic thin films

In this section we describe briefly the origin of ferromagnetism in the two materials we will
discuss throwout this thesis: (Ga,Mn)As and Pt/Co/Pt. Pt/Co/Pt is studied in Chapter
4 where we analyze the depinning transition. The criticality and universal behaviors at
the creep regime in this material are well studied and, therefore we will be able to explore
universal behaviors at the depinning transition and compare them with the ones already
known at the creep regime. We use several samples of (Ga,Mn)As in chapters 5 and 6. In
spite of it’s low Curie temperature, this material is convenient to study current induced
domain wall dynamics since the efficiency of the spin transfer torque is relatively high and
therefore we are able to observe the end of the creep regime.

We also present the micromagnetic description of ferromagnetism, which is used to
describe magnetic domains and domain walls.

2.1.1 Origin of ferromagnetism

Ferromagnets are materials that exhibit spontaneous magnetization, meaning that have a
net magnetic moment in the absence of an external magnetic field. Even in the demagnetized
state, a ferromagnet is divided into a number of small regions called domains. Each of
this regions is magnetized with a Ms saturation magnetization but cancel each other and
therefore the total magnetization is zero. This spontaneous magnetization vanishes at what
is known as the Curie temperature, TC , above which a material is no longer ferromagnetic
and becomes paramagnetic [18, 61].

The spin of electrons in atoms is the most basic origin of magnetism. The spins are
confined to two states "up" or "down". When the spins are aligned, their tiny magnetic
moments add to form a larger magnetic moment. Spins fill the energy levels in an atom
following Hund rules [61, 5]. In atoms with filled electron shells the total magnetic moment
is zero. So materials with unfilled atomic shells present magnetic response, i.e. they align
with external magnetic fields. But this is not enough to explain spontaneous magnetization.

Ferrmomagnets remained puzzling materials until 1906 when Pierre Weiss proposed the
existence of a molecular field. This field acts in a ferromagnetic substance below its Curie
temperature and it is strong enough to magnetize the material even in the absence of an
applied field. This means that the substance is spontaneously magnetized [111].

The physical origin of the molecular field is the exchange forces between atoms. This is
a consequence of spins being fermions, and therefore, they obey Pauli’s exclusion principle.
Two electrons with the same spin cannot approach indefinitely. In consequence, their electric
charge in space are farther apart when the spins are parallel than when they are antiparallel.
This difference of energy is the origin of exchange energy for which Heisenberg proposed a
Hamiltonian for localized spins [46] which will be described in more detail in the magnetic
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2.1. General concepts on magnetic thin films Magnetic domains and domain wall dynamics

Figure 2.1: GaMnAs structure and properties. (A) Mn randomly occupy sites in the
zincblende structure of the host semiconductor GaAs. (B) remanent magnetization and
inverse magnetic susceptibility vs T for (Ga,Mn)As with a nominal Mn concentration of 12
%. (C) Calculated total Density of States (solid line) for (Ga,Mn)As with 5% of Mn and
partial DOS for d-type electrons. We observe the spin unbalance in the Fermi energy giving
as a result a ferromagnetic character in (Ga,Mn)As. Adapted from [32, 105]

energies section.

Metallic ferromagnets fulfill the Stoner criteria which establishes that the product of the
potential energy U between the charges in two electrons in the same site, but with opposite
spin, times the density of states at the Fermi energy, should be larger than 1 (Ug(EF ) > 1)
[101]. For example, the ferromagnetism of Fe, Co, and Ni is due to spin unbalance in the
3d band.

There are however, ferromagnetic materials for which the magnetic properties cannot
be explained in terms of direct exchange like in the transition metals referred above. In this
thesis, one of the materials we use is the magnetic semiconductor (Ga1−xMnx)As in which
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ferromagnetism is related to a long distance exchange.

In this material Mn atoms substitute Ga atoms in a GaAs zincblende structure lattice
as illustrated in Fig. 2.1 (A). In this case Mn atoms have an electronic configuration d5 + h
where d are strongly localized and the acceptor nature of the substitutional Mn ensures
there are charge carriers and therefore charge mobility [32]. (Ga,Mn)As is one of the most
studied ferromagnetic semiconductors due to its relatively high Curie Temperature that has
been reported to be as high as 180K [32, 110] as it is shown in Fig. 2.1 (B).

The presence of defects in this system, like interstitial Mn, is determinant for the
magnetic properties. Since the concentration x of Mn is normally bellow ≈ 10% [24, 23],
the distance between Mn atoms is relatively large for there to be direct interaction between
them. There are intermediaries between this 3d5 localized moments. This intermediaries
are both the conduction electrons e− and the holes h, in the valence band [3, 49]. However
this mechanism is dominated by the interaction between the localized S = 5/2 Mn spins
and the holes h since its exchange integral is almost one order of magnitude larger than the
exchange integral of localized Mn spins and conduction electrons [83].

Dietl, et al. showed that the exchange mechanism between delocalized charge carriers
and localized 3d electrons was similar to the exchange proposed by Zener for antiferromag-
nets [114]. Since the distance between carriers rh is larger than the distance between localized
spins rm, the interaction between them was equivalent to the long distance Ruderman-Kittel-
Kasuya-Yosida (RKKY) coupling mechanism [24, 15, 105].

In a general way, in RKKY coupling, localized nuclear magnetic moments or localized
inner d− or f− shell electron spins in a metal, interact with the conduction electrons through
hyperfine interactions [108, 113]. The sign of the interaction between localized spins may
oscillate with distance [15, 105]. This gives as a result a spin unbalance in the Fermi energy
as shown in Fig. 2.1 (C) which, originates the ferromagnetic behavior.

In the case of ultra thin Pt/Co/Pt films like the one we use in this thesis, the electrons
in the d5 configuration have a total angular momentum L = 0, so there cannot be spin-
orbit coupling. The orbital moment enhancement, and strong 3d − 5d hybridization are
highly localized at the interface, and this is the main cause of the perpendicular magnetic
anisotropy. As the Co layer gets thinner, its orbital moment morb increases, and magnetic
moments are induced on Pt atoms by the strong Pt 5d-Co 3d hybridization across the
interface.

2.1.2 Magnetic energies

The structure of magnetic domain walls and magnetic domains is controlled by different
energy terms that are described in this section.

8
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Zeeman energy

When a magnetic field ~Happ is applied in a magnetic substance, the magnetization ~M is
submitted to a torque. The Zeeman energy expresses this interaction and is written as [2]:

EZ = −µ0

∫
V

~M · ~HappdV (2.1)

where, µ0 = 4π × 10−7H/m [42] is the permeability of free space.

Exchange energy

The exchange energy describes the interaction between the magnetic moments. W. Heisen-
berg showed that for two atoms i and j with spins angular momentum ~~Si and ~~Sj the
exchange energy between them is:

HHeisenberg = −
∑
i 6=j

2Jij ~Si · ~Sj, (2.2)

where Jij is the exchange integral which has energy units. J > 0 indicates a ferromagnetic
interaction leading to the parallel spin alignment and J < 0 indicates an antiferromagnetic
interaction preferring the anti parallel spin alignment.

The micromagnetic version of the exchange energy is commonly written as:

Eex =
∫
V
A[(∇mx)2 + (∇my)2 + (∇mz)2]dV, (2.3)

where A is the exchange stiffness coefficient, and mx, my, mz, the components of reduced
magnetization. This energy term tends to reduce the magnetization gradient.

Magnetic dipolar energy

The magnetization of a sample creates a magnetic field ~Hd. Directly from Maxwell’s equa-
tions, we find the divergence of this stray field as the divergence of magnetization of the
material: ∇ ~Hd = −∇ ~M . The magnetic dipolar energy describing the interaction between
the stray field and the magnetization can be written as [2, 72]:

Ed = −µ0

2

∫
V

~Hd · ~MdV. (2.4)
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The calculation of the stray field can pose certain difficulties in practice depending on
the shape and the magnetization distribution. The stray field in a uniformly magnetized
ellipsoid for example is ~Hd = −N · ~M where N is the symmetrical demagnetizing tensor.

In order to minimize the demagnetization energy, ferromagnetic materials break the
uniform magnetization into domains with different magnetization directions.

Anisotropy energy

Another energy term that has an important role in ferromagnetism is the anisotropy energy,
which reflects the energy variation on the relative alignment of magnetization with respect
to the sample structural axes. The anisotropy may have different origins such as the crystal
structure, the geometry of a specific sample, the presence of an interface...

The simplest example is the case of uniaxial anisotropy, which can be described by [2,
34]:

EK =
∫
V
Ku sin2 θdV, (2.5)

where θ is the angle between magnetization ~M and the easy axis, and Ku is the first order
anisotropy constant.

For the Pt/Co/Pt thin films used in this thesis, the uniaxial anisotropy can be writ-
ten as Ku = Kv + 2Ks/t, where t is the thickness of the ferromagnetic layer, Kv is the
volume anisotropy and Ks is the surface anisotropy. For the ferromagnetic semiconductor
(Ga,Mn)As, the anisotropy is controlled by the band structure and the strains. Thin films
grown along the [001] axis on a GaAs crystal usually present in-plane anisotropy. In con-
trast, perpendicular anisotropy is obtained by inserting phosphorous in the crystal structure
[68]. Other ferromagnetic semiconductors also present a small in-plane anisotropy. However,
the uniaxial anisotropy is usually sufficient to describe the domain wall structure and their
dynamics.

The ferromagnetic semiconductor films used in this thesis are bilayers of (Ga,Mn)As/
(Ga,Mn)(As,P). They present perpendicular anisotropy, which results from competition be-
tween the in-plane and out-of-plane anisotropies. A more detailed description of anisotropy
can be find in the references Dietl et al. [24, 82].

2.1.3 Magnetic domains and domain walls

The main issue of micromagnetism is to minimize the total energy (E = EZ+Eex+Ed+EK)
in order to determine structure of domains and domain walls.
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We can define a domain wall (DW) as an interface between two regions where sponta-
neous magnetization has different directions. Inside the DW, spins rotate progressively from
the first to second direction of magnetization. The magnetic structure of a DW results from
the competition between anisotropy EK and exchange energy Eex. The exchange energy is
minimized when adjacent spins are parallel, so this term will try to make the domain wall
as wide as possible. On the other hand the anisotropy energy is minimized when spins are
aligned along the easy anisotropy axis. So the anisotropy term will try to make the DW as
narrow as possible. As a result of this competition, the wall finds a finite equilibrium width,
and a well defined structure. The simplest description of the DW energy per unit volume
can be written as [72]:

wDW = wex + wK = A

[(∂θ
∂y

)2
+
(

sin θ∂φ
∂y

)2
]
−Ku sin2 θ, (2.6)

where θ and φ are the magnetization’s polar and azimuthal angles of (see figure 2.3). A is
the exchange stiffness, Ku is the anisotropy constant in uniaxial anisotropy. The equilibrium
structure of the domain wall can be deduced from a variational minimization of the energy,
which leads to:

θ(y) = ±2 arctan(exp[y/∆]), and φ = cte (2.7)

Here, ∆ =
√
A/Ku is the DW thickness parameter. The corresponding DW energy per unit

surface is σ = 4
√
AKu.

The DWs can be classified into two groups depending on the way the magnetization
turns from one domain to another (as shown in figure 2.2). For φ = 0 or −π, the DW has
the so-called Bloch structure. The magnetization rotates in the plane of the domain wall as
it is shown in figure 2.2 (A). For φ = ±π/2, the magnetization rotates in the plane of the
sample and outside the plane of the DW. This type of DW is known as a Néel wall and it
is illustrated in figure 2.2 (B).

Note that there are also topologically non trivial domain wall structures such as vortex
domain walls and skyrmions, which are not discussed here [38, 97, 48].

2.2 Domain wall dynamics

So far we have presented the origin and structure of magnetic domain walls when they
are static, but we have not discussed their dynamics. In the following section we present
a state of the art on magnetic DWs motion driven by magnetic field and electric current.
DWs follow different dynamical regimes depending on the strength of driving force. For
low drives, below the depinning threshold (a depinning field Hd or a depinning current Jd)
the motion is thermally activated and controlled by pinning. Well above the depinning
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Figure 2.2: Types of magnetic domain walls. Schematic representation of Bloch (A)
and Néel (B) magnetic domain walls.

threshold DW dynamics is limited by dissipation. We will briefly describe the dynamical
flow regimes and then consider the thermally activated regime controlled by pinning, as well
as the depinning transition.

2.2.1 Flow dynamic regimes

In the absence of pinning, the motion of magnetic moments inside the DW is caused by the
torques exerted by the applied magnetic field. The description of magnetization dynamics
is based on the Landau-Lifschitz-Gilbert equation, which establishes that the magnetization
time rate is equal to the sum of torques exerted on the magnetization ~M [72].
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Figure 2.3: Dynamics of the magnetization ~M when a magnetic field ~H is applied.
(A) ~M precesses around ~H while dissipating energy until both vectors are parallel. The
orange arrow indicates the precession of ~M around ~H and the pink arrow indicates the
damping term. (B-top) Bloch DW at rest with no external field (B-bottom) After the
magnetic field ~H is applied parallel to the easy axis of magnetization (z axis) induces a
rotation in the xy plane of ~M which produces a demagnetizing field ~HD. Finally ~HD

induces a rotation of ~M in the xz plane and the motion of the DW.

Field induced flow regime

The Landau-Lifsthitz-Gilbert (LLG) equation can be written [72, 64, 41]:

∂ ~M

∂t
= −µ0γ ~M × ~Heff + α

Ms

~M × ∂ ~M

∂t
, (2.8)

where γ is the gyromagnetic ratio (γ = 1.76 × 1011Hz/T ). The parameter α is known as
the Gilbert’s damping parameter, ~M is the local magnetization, Ms = | ~M | the saturation
magnetization, and ~Heff the effective magnetic field. The first term on the right side corre-
sponds to the precession of magnetization ~M around ~Heff (see figure 2.3), and the second
term corresponds to the dissipation. The effective field, defined by functional differentiation
of the total energy can be written as:
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~Heff = − 1
µ0

δw( ~M(~r))
δ ~M

(2.9)

where w is the total free energy per unit volume.

In 1974, Walker and Schryer [98] developed a model to describe the motion of domain
walls under applied magnetic field. The model considers an infinite medium with uniaxial
anisotropy. The magnetization ~M is assumed to depend only on the position y and to
remain constant along the x direction, as it is shown in Fig. 2.3 (B). It also assumes that
the static structure of DWs (see Eq. 2.7 ) is conserved during the motion. They rewrote the
LLG equations and deduce the time variation of the velocity and angle φ (further reference
in [72]).

The mechanism by which an applied magnetic field produces the motion can be ex-
plained qualitatively. Let us consider a Bloch wall as it is shown in figure 2.3 (B). The
rotation of the magnetization vector under a field along the z axis takes place in a "two
step" process: the field induces magnetization rotation in the xy plane generating an un-
balance of magnetic charges which produces a demagnetizing field ~HD along the y axis.
Then the demagnetizing field ~HD produces a rotation of magnetization in the xz plane and
therefore DW motion.

When the external field increases two different regimes are predicted as shown in figure
2.4: the steady and precessional regime. If the field is smaller than the so-called Walker
field (H < HW ), the domain wall moves in the steady state regime where the azimuthal
angle φ is constant, i.e., φ̇ = 0. In this regime the average velocity is given by:

v̄ = γ∆H
α

. (2.10)

The Walker limit corresponds to the maximum value of the torque exerted by the demag-
netizing field. The Walker field and the associated velocity are given by:

HW = αMs

2 and vW = γ∆
2 µ0Ms (2.11)

For a thin film we also need to take into account the demagnetizing factors Nx, Ny and
Nz along the axis x, y and z respectively. For a thin film with perpendicular anisotropy, we
consider the z axis perpendicular to the thin film’s plane. In this case the Walker field is
approximately expressed as:

Hfilms
W = (α/2)Ms|Ny −Nx|. (2.12)

For H > HW , the torque exerted by the demagnetizing field Hd cannot compensate the
drag term γH, and φ continues to precess, and thus no dynamical equilibrium is reached.
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Figure 2.4: Predicted DW velocity as a function of field for the flow regimes. For
H < HW the DW moves in a steady regime until a maximum velocity is reached at the
Walker field HW . For H � Hd the velocity decreases until the asymptotic precessional flow
regime is reached and the velocity recovers a linear behavior. The plot corresponds to Eqs.
2.11 - 2.14.

The DW does not move at constant velocity anymore and there is a periodic oscillation of
the azimuthal angle φ from 0 to π/2. This implies that the domain wall oscillates between
Néel and Bloch wall configurations. During this precession regime the average velocity is
given by:

v̄ = γµ0∆
α

H −
√
H2 −H2

W

1 + α2

. (2.13)

In the limit of large drive (H � HW ), φ precesses as γH, and the periodic torque terms
average out. In this regime, the only torque contributing to the net velocity is the damping
torque term. The average velocity is expressed as:

v̄ ≈ γ
α∆

1 + α2µ0H. (2.14)

Therefore, the model developed by Walker and Schryer [98] predicts (see figure 2.4 and
Eq. 2.13), two linear variations of the velocity separated by an intermediate regime with a
negative mobility.
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Experimentally, the flow regimes and in particular the steady flow is observed for sam-
ples that present sufficiently weak pinning strengths.

Figure 2.5: Experimental observations of the flow regimes driven by magnetic
field. (A) Domain wall velocity v vs magnetic field H for 600 nm wide Permalloy tracks
[6]. (B) DW velocity for a (Ga,Mn)As film at T = 80K. The dashed blue lines represent
the linear velocity in the steady and precessional regimes with mobility µst = γ∆/α and
µprec = γ∆α/(1 + α2), respectively [26].

Beach et al. [6] observed the predicted steady and precessional regimes in permalloy
(Py) nanowires with in-plane anisotropy (See figure 2.5 (A)). They show that the DW
velocity v vs field H presents two dynamical regimes separated by a peak followed by a
region of negative differential mobility and highly irregular wall motion. At lower fields
they identify the steady regime where the velocity is proportional to the field. At higher
fields they observe the linear precessional flow regime, shown in figure 2.5 (A).

Also Dourlat et al. [27] observed the steady and precessional flow regimes in (Ga,Mn)As
films (see figure 2.5 (B)). This paper is the first report on the observation of the Walker
breakdown in films with perpendicular anisotropy. The pinning dependent dynamics will
be described in detail in the next sections.

Current induced flow regime

In this subsection we provide a brief description of the adiabatic and non-adiabatic terms
of the spin transfer torque (STT) and their effects on magnetic domain wall displacement.

The effect of an electrical current on the magnetization is commonly described by the
modified LLG equation [103]:
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∂ ~m

∂t
= −|γ|µ0 ~m× ~Heff + α~m× ∂ ~m

∂t
− (~u · ~∇)~m+ β ~m× ((~u · ~∇)~m), (2.15)

where ~m = ~M/MS is the reduced local magnetization, γ is the gyromagnetic constant, ~Heff

is the effective field. The parameter u is called the spin drift velocity and is proportional to
the current density J and its P polarization:

|~u| = JPgµB
2eMs

, (2.16)

where, e is the electron charge.

The first term (−(~u · ~∇)~m) was proposed by Slonczewski, in 1996, to describe the
interaction between the polarized spins of flowing electric charges and the localized spins of
atoms in a ferromagnet [99]. It was renamed the adiabatic STT term since it represents a
perfect angular momentum transfer.

The second term β ~m × ((~u · ~∇)~m) was proposed by Zhang and Li [115] and Thiaville
et al. [103], independently. It is known as the β term and acknowledges the non-adiabatic
effects due to relaxation of spin carriers. Without this non-adiabatic term, the integrated
equation of 2.15 leads to two possible regimes: at low currents the spin transfer torque
is balanced by internal restoring torques, the magnetization of the DW is tilted from the
easy plane but the wall does not move under current. Above a certain threshold the in-
ternal torque cannot balance the STT anymore and thus, the DW motion takes place, as
well as the magnetization precession. Without the β term the threshold currents obtained
with micromagnetic calculations, is 10 times larger than the threshold deduced from the
experiments.

Note that the terms −(~u · ~∇)~m and β are introduced phenomenologically. There is
still debate concerning their physical origin but this discussion is beyond the content of this
thesis.

Let us now discuss the current induced DW dynamics. There are two linear velocity v
versus current density J regimes. They are separated by a complex transient regime. The
Walker threshold JW is: [77]:

JW = 4παeM2
s

gµBP

γ∆
|β − α|

. (2.17)

For thin films we need to include the demagnetizing factors and JW is approximately written
as:

JW = 4παeM2
s

gµBP

γ∆
|β − α|

|Ny −Nx| (2.18)
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where |Ny−Nx| is a geometrical factor with Nx and Ny being the demagnetization constants
along the x and y directions considering that we have a thin sample in the xy plane with
anisotropy perpendicular to the plane. For a current density lower than the threshold
(J < JW ), the DW velocity moves in the steady flow regime and it is given by:

v̄ = β

α
u (2.19)

This expression is equivalent to the velocity obtained with the Walker theory [98]. If
the ratio β/α is smaller than 1, the DW velocity is less than the characteristic velocity of
polarized charge carriers.

Figure 2.6: Current driven DW velocity. (A) Domain wall velocity v vs current density
J in (Ga,Mn)(As,P) tracks at different T . Inset: Semilogarithmic plot of v measured at 95
K for the lowest current densities (Adapted from [20]). (B) Comparison between measured
velocity v vs current density J at 104 K for (Ga,Mn)As tracks and prediction of the 1D
model for different values of β/α with current polarization P adjusted. Theoretical threshold
current (Jth) for β = 0 and the current density correspondent to the Walker breakdown takes
place (JW ) are indicated (Adapted from [4].)

Analogous to field induced DW motion, when the current density is larger than JW the
magnetization angle in the domain wall φ precesses and the DW alternates between Bloch
and Néel DW structures and the mobility is negative. The DW average velocity follows a
negative velocity regime and is generally expressed as [103]:

v̄ = β

α
u− ∆

α(1 + α2)

(β − α
∆

)2
u2 − (αγ0HK)2

4

1/2

, (2.20)

where HK = 2K
µ0Ms

. For much larger current (J � JW ) the velocity recovers a linear behavior
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and it is expressed as:

v = αβ

1 + α2u+ u

1 + α2 . (2.21)

Experimentally there has been progress in studying current induced domain wall mo-
tion. Adam et al. [4] were able to measure the domain wall velocity v as a function of
the current density J in (Ga,Mn)As nanotracks close to the Curie temperature (see figure
2.6 (B)). They show that the domain walls move under a steady state regime when driven
by low currents. This is only possible if there is a non-adiabatic contribution in the spin
transfer torque. Moreover, they are able to estimate the value of the non-adiabatic term β
which has a comparable magnitude (β ∼ 0.25) to the adiabatic term α.

Later Curiale et al. [20] performed measurements of domain wall velocity driven by
current density in (Ga,Mn)As nanotracks close to 0K (see figure 2.6 (A)). They found that
the DW velocities are proportional to the spin drift velocity of the current carriers: they
observed the steady state regime and found β/α ≈ 1.

2.2.2 Domain wall dynamics in the presence of pinning

At very low drive and in the presence of pinning, magnetic domain walls follow a non-linear
dynamical behavior known as the creep regime. Within the creep regime, the magnetic
domain wall (DW) can be considered as an elastic line moving in a random pinning potential,
as illustrated in figure 2.7. The microscopic details of DW’s magnetic structure are usually
ignored.

In this section we will explain useful concepts on the theory of magnetic domain wall
creep. We will start with a phenomenological approach inspired in type II superconductor
vortices as historically occurred. Then we will present necessary concepts from the theory
of disordered elastic interfaces moving in random media. We will also define the concept
of Universality Class and critical exponents focusing in the quenched Edward-Wilkinson
and Kardar-Parisi-Zhang universality classes. Finally we will discuss selected experimental
results in DW creep that are relevant for our investigations.

Phenomenological approach to the creep regime.

A useful schematic description of the pinning dependent dynamical regimes is illustrated
in figure 2.8. At low drives DW dynamics is controlled by pinning. The physical origin of
the pinning sites varies on each material. For example in Pt/Co/Pt ultrathin films, it has
been proposed that defects arise from fluctuations on the number of atomic Co layers [70],
which produces anisotropy fluctuations. For (Ga,Mn)As the pinning could originate from
the density fluctuations of the Mn atoms. When pinning is present the motion is thermally
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Figure 2.7: Elastic DW in a pinning potential for a 2D sample. (A) The out-of-plane
magnetic field H favors the growth of up magnetization regions thus driving the domain wall
(represented by the yellow string) in the direction y. Theoretically, the creep domain wall
dynamics in a thin film can be modeled by the displacement of a one-dimensional elastic
line coupled to an effective two-dimensional random pinning. (B) Presents the same surface
view from above. The domain wall displacement is u(x) where x is the coordinate of some
point along the DW. The length ξi is the disorder correlation length and L is the length of
a segment of the DW.

activated and increases rapidly with drive following an Arrhenius law ln(v) ∼ f−µ, where µ
is the creep exponent (illustrated in Fig. 2.8 in purple), known as the creep law.

At the T → 0 limit, the DW velocity is zero until the driving force reaches a depinning
threshold fd. Above the threshold, the velocity increases as v(f, T → 0) ∼ (f − fd)β. This
behavior is analogous to an Ising crystal type second order transition called the depinning
transition, except that the dependent parameter is the velocity and not the magnetization,
and the control parameter is the driving force (magnetic field or current) and not the
temperature.

At finite temperatures the depinning transition is rounded [12]: at the depinning thresh-
old, the velocity follows a power law with temperature v(fd, T ) ∼ Tψ which is known as
thermal rounding. If the driving force is increased even more f � fd, the DW velocity
reaches the linear fast flow regime, where the velocity depends linearly on the driving force
f as discussed previously.
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Figure 2.8: Predicted domain wall dynamics in the presence of pinning. The
velocity v vs driving force f curve presents three different regimes: the creep (purple), the
depinning transition (green) including the T → 0 limit and thermal rounding, and the fast
flow regime (blue). (Adapted from [36]).

Simplified domain wall creep model

The creep law can be derived from a simple model, which considers the total free energy
of a DW segment of length L moving under a driving force (in this case magnetic field H)
[70]. The elementary displacement covered by the DW at a given coordinate x is defined by
u(x) as it is shown in figure 2.7 (B). The total free energy of the DW is written as for :

F (u, L) = εel
u2

L
elasticity

− fpinξ
√
niξiL

pinning

− fu
Zeeman

. (2.22)

Here, f 2
pinniξi is the pinning strength of the disorder, ni ≈ 1/ξ2

i is the pinning center density,
fpin is the local pinning force, and ξi is the characteristic length of the pinning potential
as it is shown in figure 2.7 (B). The first term corresponds to the elastic energy, Eel(L, u),
the second to the pinning energy, Epin(L, u), and the third to the Zeeman energy, EZ(L, u),
with a driving force, f = µ0MsHtL, where t is the magnetic layer thickness.

Eq. 2.22 allows to define two important parameters related to pinning: the Larkin
length Lc and the depinning field Hd. At the depinning transition the elementary displace-
ment is expected to be of the same order as the average distance of the disorder u ' ξ since
we consider that the driving force at fd is large enough to move the DW from one stable
energetic configuration to the next one which are approximately a distance ∼ ξ away from
each other. When the elastic energy, Eel(Lc, ξ), is equal to the pinning energy, Epin(Lc, ξ),
the maximum length for which the wall moves without deformation, is constrained by the
DW’s elasticity. This maximum length is known as the Larkin-Ovchinikov length:
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Lc = ξ
(
εel
fpin

)2/3
(2.23)

For a DW, we have εel = σt ' 4t
√
AK, the domain wall energy density per unit of

length where σ is the surface energy, K is the anisotropy and t is the film thickness. The
Larkin-Ovchiniknov length is also related to the distance at which the DW is correlated,
since the DW can be viewed as a succession of segments of length Lc that move independently
one from the other.

We have already mentioned the depinning threshold fd in the previous section. In this
case we will refer to it as depinning field Hd, since we are assuming that the driving force is
a magnetic field. At T → 0, we obtain this critical field Hd from the Zeeman energy needed
to depin a DW. Therefore it can be deduced from the equality: Epin(Lc, ξi) = EZ(Lc, ξi)
and Eq. 2.23, an expression for the depinning field [69]:

Hd =
 εelξ
Mst

 1
L2
c

(2.24)

This is the value of the depinning threshold below which the DW will not move for
T → 0. At finite temperature there is DW motion at fields H < Hd.

Now we discuss the concept of geometrical roughness. In the creep regime where the
DW motion is sensitive to pinning, a DW segment of length L > LC , the DW is not flat and
therefore it becomes rough. This model assumes that there are scaling relations that connect
the displacement, u, to the length of the DW segment L. This is known as self affinity, i.e.
a segment L of DW presents self affinity when its displacement u can be rescaled as L′ = aL
and u′ = a−ζu. With this rescaling, we obtain a statistically equivalent DW u′(L′) where a
and ζ are a scaling constant and exponent such that u(aL) ∼ aζu(L) [1, 36].

The geometrical roughness of a self affine interface can be quantified by the root-mean-
square fluctuations around its mean value, or the global width of the interface: W (R) =
〈[u(x)− 〈u〉]2〉1/2, where R is the total length of the DW. The global width of saturated
interfaces scales asW (R) ∼ Rζ [33, 36, 45] where ζ is also known as the roughness exponent,
sometimes written α [90] or χ [71]. This is known as the Family-Vicsek ansatz.

Experimentally the scaling of the global width is very difficult to determine. For
self-affine surfaces, local measurements of the interface fluctuations over a smaller win-
dow L < R (as shown in figure 2.7 (B)) have a power law behavior as a function of L
with the same roughness exponent. This quantities are both the local width w ∗ (L) =
〈[u(x)− 〈u〉L]2〉L1/2 ∼ Lζ and the displacement-displacement correlation function:

w(L) = 〈[u(x)− u(x+ L)]2〉1/2 ∼ Lζ (2.25)
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In many cases the displacement-displacement correlation function (Eq. 2.25) and the
local width are equivalent to the global width W (R), however it is not always true, for
example when ζ > 1 [71]. However those cases are not found in the systems we study
through this thesis.

We note that the roughness exponent carries information about the way the roughness
evolves when increasing the system size R or the length scale L.

In order to relate this formalism with the phenomenological approach of the creep
regime, we assume that the DW is self-affine. Subsequently, for segments where the length
L > Lc, we can rescale the displacement u(L) as u(L) ∝ uc( LLc )

ζ for L > Lc, where uc is
some scaling constant and Lc is the previously defined Larking length. If we substitute this
in the free energy equation 2.22 we get:

F (u, L) = Uc

 L

Lc

2ζ−1

− 2fLc
L

 L

Lc

ζ+1

(2.26)

Minimizing this expression with respect to the segment length L we obtain the optimal
length Lopt to overcome the energy barriers separating two stable DW configurations. In
another way Lopt is the optimal DW length that triggers the thermally activated events
between energy barriers:

Lopt = Lc

UC(2ζ + d− 2)
(ζ − d)

− 1
2−ζ
 1

2MSLcucH

− 1
2−ζ

(2.27)

Replacing L = Lopt in the expression for the energy, we obtain the smallest possible
energy barrier, which can be written as:

∆E = kBTd

( f
fd

)−µ (2.28)

where fd is the depinning threshold driving force, µ is the creep exponent and Td is the
depinning temperature. If we simplify the DW motion as a one dimensional phenomena
or a particle in a pinning potential, ∆E represents an effective height of energy barrier,
which should be overcome in order to produce any DW motion. From expressions 2.26 and
2.28 we obtain the scaling relation between ζ and µ that for 1d surfaces in 2D media is
µ = (2ζ − 1)/(2− ζ) and can be generalized for any dimension d:

µ = d+ 2ζ − 2
2− ζ (2.29)
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As mentioned before the DW velocity in the creep regime (f � fd) follows an Arrhenius
law. With the energy barrier expression (Eq. 2.28) we can rewrite the DW velocity as [70]:

ln v(f, T ) ∝
−∆E
kBT

 (2.30)

Numerical simulations: universality classes and critical exponents.

Theoretical models describing the motion of magnetic domain walls when there is pinning
present, often treat the domain wall as an independent system and ignore the microscopic
details of the sample. Very generally DWs are described by elastic interfaces moving in a
disorder media. A very naive way to understand this concept is thinking that the elastic
surface moving in the absence of disorder would adopt a straight configuration in order to
minimize its energy. However, in the presence of disorder, the interface adopts a configu-
ration that accommodates around the pinning sites, therefore the interface adopts a rough
configuration rather than a straight one [40].

The interplay between elasticity and disorder in driven interfaces gives rise to univer-
sal dynamical properties. The latter can be contained in relatively simple models which
describe a large variety of phenomena such as: propagating interfaces, for example surface
growth [1], fractures in solid materials [87], combustion fronts [79] and domain walls in
ferromagnetic and ferroelectric materials [70, 85], periodic systems like vortex lattices in
type-II superconductors [7] or Wigner crystals [17]...

In order to define what a universality class is, we recall some concepts of phase transition
theory. As a system approaches a second order phase transition, the control variable reaches
a critical value fd, some physical quantities of the system present singularities at this critical
point. The dependence in the order parameter as a function of the control parameter can be
described as a power law. For instance in the Ising model, the magnetizationM is the order
parameter, and the temperature T is the control parameter when the system approaches the
paramagnetic-ferromagnetic transition and it follows a power law M ∼ (TC − T )β [84, 86].

Close to the critical value fd (the driving force for our purposes), the system’s degrees
of freedom start to couple among them. The size region where these degrees of freedom
are coupled is characterized by a given correlation length. As the system approaches the
phase transition, this correlation length diverges, and therefore the system becomes scale
invariant. For this reason, thermodynamical observables are described as homogeneous
functions through the whole physical system, and exhibit power law variations characterized
by critical exponents [13].

These critical exponents are shared by groups of different physical systems with very
diverse microscopic properties. In that sense, the exponents are universal and the set of
physical systems sharing the same critical exponents belong to the same universality class.
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These universality classes are determined by general properties of the systems like dimen-
sionality, symmetry of the order parameters, range of interactions and type of disorder
[84, 13].

Uniformly driven elastic interfaces as DWs moving in quenched disorder, i.e. when
the disorder does not evolve with time, are described by the so-called quenched Edward-
Wilkinson (qEW) equation that constitutes itself a universality class. In this case the order
parameter is the velocity of the interface and the control parameter is the driving force (the
magnetic field). The qEW universality class can be minimally described by the overdamped
dynamic equation [36]:

γ
∂u(x, t)
∂t

= c
∂2u(x, t)
∂x2 + Fp(u, x) + f + η(x, t), (2.31)

where u(x, t) is the scalar displacement of position x of the interface, as it is shown in figure
2.7. We define the equation term by term. The first term on the right side of the Eq. 2.31
describes the elasticity. It assumes only small deformations and short range interactions
with stiffness constant c. This model ignores overhangs, loops and assumes that u(x, t) is
single valued.

The second term Fp(u, x) is the pinning force which originates from the inhomogeneities
in host materials and it is characterized by its disorder correlator: Fp(u, x)Fp(u′, x′) =
ρ(u−u′)δ(x−x′), where ρ(u) is a short-ranged function. Let us discuss further this concept.
Generally speaking the disorder describes inhomogeneities in a given material, that can be
complex in real samples. Analytically we can describe them as a stochastic variable V (x, y)
with a statistical distribution P [V ]. We can distinguish two different types of pinning, a
few individual pinning centers or the strong pinning limit and the collective action of many
weak inhomogeneities or weak pinning [52].

Further on, depending on the range of spatial correlations, two universality classes can
be further defined for weak collective pinning. Random bond disorder (RB), originally de-
scribing an Ising model with randomly varying site-site (exchange) interaction, corresponds
to short-ranged correlations. This type of disorder corresponds to impurities that directly
attract or repel the interface. The corresponding pinning force is Fp(u, x) = −∂uV (u, x)
where V (u, x) is a random potential, and therefore

∫
u ρ(u) = 0 [14].

In contrast, random field disorder (RF), associated with an Ising model with randomly
varying magnetic field at each site, is long-ranged, i.e. the pinning energy is affected by all
the randomness that the interface has encountered in its previous path. The corresponding
pinning potential is V (u(x), x), a random walk as a function of u with a diffusion constant∫
u ρ(u) > 0 [80].

Even though, for the purposes of this thesis, we are concerned only in the weak pinning
random bond qEW universality class with anharmonic corrections in the elasticity , all these
different universality classes (with different critical exponents) share the same basic physics
of the qEW model discussed in the following sections [36].
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The last two terms in Eq. 2.31 are a uniform driving force f and the thermal bath
at temperature, T , which is modeled by the Langevin noise 〈η(x, t)η(x′, t′)〉 = 2kBTγδ(x−
x′)δ(t− t′).

The first historical variation of the Edward-Wilkinson equation was proposed by Mehran
Kardar, Giorgio Parisi and Yi-Cheng Zhang, and it is known as the KPZ equation [1, 56, 55].
They assumed that a local growth (vδt) occurs normal to the interface, which generates a
displacement δu(x) along the y axis (see Fig. 2.7 (B)). From the Pythagorean theorem
δu = [(vδt)2 + (vδt∇u)2]1/2, it is obtained vδt[1 + (∇u)2]1/2 ≈ vδt[1 + (1/2)(∇u)2] for
|∇u| � 1. Therefore, they proposed a new equation:

γ
∂u(x, t)
∂t

= c
∂2u(x, t)
∂x2 + λ

2

∂u(x, t)
∂x

2

+ Fp(u, x) + f + η(x, t), (2.32)

which is the qEW equation with an additional non linear term ((λ/2)(∂u/∂x)2). The
quenched Kardar-Parisi-Zhang (qKPZ) equation constitutes a different universality class
from the quenched Edward Wilkinson equation [1]. Moreover the sign of the λ constant
in the non linear term plays an important role in the behavior of the surface growth. It
induces growth when (λ > 0) and decay if (λ < 0) [76].

Now that we have defined the universality classes we are interested in, we will discuss
the critical exponents. They reflect the geometry of the system and its dynamical properties.
The value of the critical exponents depends on the magnitude of the drive, and on the scale
at which the system is observed, as illustrated in figure 2.9.

Figure 2.9: Characteristic crossover lengths. (A) Crossover lengths: Lopt represents
the optimal excitation length and Lav the deterministic avalanches. (C) Crossover lengths
vs driving force at different temperature T . (Adapted from [36])

The roughness exponent ζ does not vary continuously when increasing the driving
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force f . As it is shown in Fig. 2.9 (B) there is a characteristic roughness exponent for each
one of the dynamical regimes (creep, depinning and fast flow) presented in the previous
subsection. Each one of these regimes is self affine at asymptotically large length scales.
The universal behaviors are characterized by a different roughness exponent (ζeq, ζdep and
ζff , respectively) [36] and separated by two crossover lengths Lopt and Lav that we define
now.

Within the creep regime (f � fd), at small but finite temperature (T � Td), the
interface dynamics results from a sequence of uncorrelated jumps around metastable con-
figurations [37]. The typical size of this activated rearrangements is Lopt. Close to the
depinning threshold fd, the interface motion is jerky and DW moves in large and abrupt
events called avalanches. The characteristic length of the avalanches is Lav. The variation
of Lopt and Lav with the drive f are illustrated in Fig. 2.9. As it can be observed, the
predicted critical exponent is expected to depend on the length scale at which the system
is observed and on the magnitude of the driving force.

Table 2.1 summarizes the predicted exponents for the creep and depinning regimes:

ζeq ζdep µ β ψ

qEW (1d) 2/3 [70, 91, 63] ∼ 1.25 [63], 0.63∗ [91] 1/4 [70] 0.25 [10, 12, 35] 0.15 [10, 12, 35]
qEW (2d) ∼ 2/5 [70] 0.45 [91] 1/2 0.6536± 0.026 (RF) [94] 2.336± 0.2 (RF)[94]

qKPZ (λ < 0) 0.997(5) [75] 0.515(20)[75] 1 - -

Table 2.1: Summary of numerical results. Critical exponents for the quenched Edward-
Wilkinson universality class for a 1d and a 2d interface and the negative KPZ universality
class of a 1d interface. The first two columns show the roughness equilibrium ζeq and
depinning ζdep exponents. Next we show the creep exponent determined from the scaling
relation 2.29. The last two columns show the critical exponents for the velocity v in the
depinning transition: β (for T = 0) and ψ (for f = fd). The symbol (*)indicates that this
critical exponent was calculated taking into account anharmonic corrections in the elasticity.

Depinning transition: scaling approach.

At the depinning threshold f = fd, the moving interface is self-affine, both in space and
in time. As we mentioned before, just above the depinning threshold f ≥ fd, the velocity
follows a power law in the T = 0 limit, more precisely:

v(f, T ) ∝ (f − fd)β (2.33)

When the temperature is finite, there is no sharp transition between zero- and finite-
velocity regimes. Even below the critical force, fd, the interface is able to move since
thermal activation is enough to overcome the effective energy barriers generated by the
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disorder. This thermal rounding of the depinning transition can be characterized, at the
critical force f = fd, by a power-law vanishing of the velocity with temperature as:

v(fd, T ) ∝ Tψ (2.34)

with ψ the thermal rounding exponent [74, 12]. Following the more general scaling argu-
ments, the velocity can be described as a generalized homogeneous function [88, 100]:

y = g
(
x

x0

)
(2.35)

where x = [(H − Hd)/Hd]β(T/Td)−ψ and y = (v/vT )(T/Td)−ψ are the scaled field and
velocity respectively.

Using Langevin dynamics numerical simulations, Bustingorry et al. [10] calculated a
value of ψ = 0.15± 0.01 for a 1d interface moving in a random-bond disorder environment
with short-range correlations and short-range elasticity. The β exponent was predicted to
have a value of β = 0.245±0.006 through non steady dynamics simulations of the continuum
displacement qEW equation [35]

At the threshold (with T = 0), the motion is characterized by avalanches of a divergent
typical size Lav (see figure 2.9 (B)), which also follows a power law Lav ∼ (f − fd)−νdep . The
velocity of the interface depends also on the characteristic time of the avalanche t ∼ L

zdep
av .

All this exponents are constrained by scaling relations. In particular β, νdep, zdep are related
by the hyperscaling relation β = νdep(zdep − ζdep) [63].

Field induced domain wall creep

In 1998, Lemerle et al. verified that the DWs velocity in ultrathin ferromagnets followed the
predicted creep law with a creep exponent µ = 1/4, and measured the roughness exponent
ζ = 0.69±0.07, which is close to ζ = 2/3 [70]. This experiments agree with predictions from
functional renormalization group theory [14] and numerical simulations for 1d elastic lines
moving in a random bond weak pinning potentials [36, 92]. Therefore, it was experimentally
shown that the creep motion of DWs in ultrathin ferromagnetic films with pinning disorder
belonged to the qEW universality class. The logarithmic plot of the velocity v vs H−µ
obtained is shown in figure 2.10 (A). In this experiment only the creep regime is observed
since it was possible to obtain samples with reduced pinning strengths.

Almost ten years later, Metaxas et al. [73], increased the velocity range explored for
a similar samples changing the thickness of the Co layer. They were able to observe the
linear fast precessional flow regime and showed qualitatively, that the domain wall shape
was more "rough" within the creep regime and became smoother as the velocity increased
entered in the fast flow regime, [73]. This work also shows for the first time the shape of
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Figure 2.10: Experimental observation of the creep regime in Pt/Co/Pt thin
films.(A) Log-scale of the mean domain wall velocity vs H−1/4 at room temperature [70].
(B) Domain-wall velocity v vs applied magnetic field H, for different Co thicknesses tCo =
0.5nm and tCo = 0.8nm samples. At high field v = mH fit to the flow data (dashed line)
and at low field, the creep law fits the data points (solid line). The insets show domain
images in the tCo = 0.8nm film at fields, which lie within the creep and flow regimes. The
white scale bars are 5 µm long [73].

the depinning transition that varied with the Co layer thickness, as it can be observed in
figure 2.10.

Regarding the pinning energy barrier, it was evidenced by Jeudy et al. [51], that the
magnetic domain wall motion is controlled by a unique universal reduced energy barrier
function (see figure 2.11). They measured the velocity vs field in (Ga,Mn)(As,P) and TbFe
thin films. They deduced the pinning barrier height ∆E from the velocity curves and
show that all the reduced energy barrier curves ∆E/kBTd(T ) collapse well onto a single
master curve over the full field-range of existence of the creep regime 0 < H/Hd < 1 [51].
Afterwards, they compared with the data published for other materials and showed that
the reduced energy barrier for other materials, could be plot into the same master curve.
Finally they concluded that the full thermally activated creep motion, observed below the
depinning threshold, is described by a unique universal energy barrier function which is
written as:

∆E = kBTd

( f
fd

)−µ
− 1

. (2.36)

As we mentioned before, the universality class depends, among other things, on the
system’s dimensionality. There is experimental evidence showing the change in universality
class due to a dimensional transition in a paper authored by Kim, et al., where they change
the width of Ta/Pt/CoFe /Pt tracks. Figure 2.12 shows the DW velocity in semilogarithmic
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Figure 2.11: Universal energy barrier of the creep regime. The variation of the
reduced energy barrier height ∆E/Ed, with Ed = kBTd, is reported as a function of the
reduced force H/Hd, for five different magnetic materials and for temperatures ranging
from 10 to 315 K. The solid line is a plot of Eq. 2.36. The black circles correspond the
predictions of Ref. [63]. The dashed line is the linear variation of the energy barrier close to
the depinning field (H = Hd). Inset: Universal barrier presented in semi-log scale showing a
good quantitative agreement with Eq. 2.36 over more than 3 orders of magnitude. (adapted
from [51])

scale vs H−1/4. It is shown that for tracks narrower than 600 nm the semi-logarithmic
velocity deviates from the expected creep law for 1d elastic DW. In comparison, the domain
wall velocity in the wider tracks agree with the creep law predicted for a 1d elastic line with
a creep exponent µ = 1/4. When the width of tracks becomes smaller than Lopt, the DWs
move like stochastic particles hopping back and forth in a quenched disorder potential. This
belongs to a different criticality.

Current induced domain wall creep

R. A. Duine and C. Morais Smith [29] present a theoretical model for current driven DW
motion moving perpendicular to the direction of electric current in one dimension (1d) in
the presence of disorder and thermal fluctuations. They took into account the chirality of
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Figure 2.12: Criticality of DW speed along ferromagnetic Ta/Pt/CoFe/Pt
nanowires. Data are shown for different wire widths: 4.2µm (A), 1.4 µm (B), 756 nm
(C), 499 nm (D), 392 nm (E), 270 nm (F), 199 nm (G) and 159 nm (H). The red lines are
the best fit to the 1d elastic line criticality (µ = 1/4 is used) and the green lines are the
best fit to the 0d criticality (Adapted from [58]).

the domain wall and model it as an overdamped vortex line. They introduced an extrinsic
pinning potential, and calculated the energy barrier. They obtained a creep exponent of
µ = 1/4 when the β term, in the non-adiabatic term of the spin transfer torque, is different
from zero. Also Ryu et al. [96] studied theoretically the current and field driven creep regime
in a nanowire. They conclude that when the tilting angle of the DW is small, and only the
non adiabatic contributions of STT are taken into account, the creep regime induced by
current and field belong to the same universality class.

Experimentally, Moon et al. [76] reported domain wall motion in the creep regime
in Pt/Co/Pt ultra thin films driven by current and magnetic field as it is shown in figure
2.13. They generated a straight domain wall and then applied constant magnetic field
(1 mT ). Then, separately, they applied constant current density (1010A/m2). When the
magnetic field is applied, the DW shape does not change significantly and the velocity
remains constant at every time step (Figure 2.13 (B)). In contrast, when electric current
density is biased perpendicular to the DW, the linear DW develops the shape of mountains
with a constant slope. The average velocity of the DW decreases strongly when the faceting
is present (Figure 2.13 (A)).

31



2.2. Domain wall dynamics Magnetic domains and domain wall dynamics

Figure 2.13: Sequence of magnetic domain walls driven by current and field. (A)
Time-resolved DW lines superimposed sequentially with a constant time step (3 min) driven
by a current density of 1010A/m2 and by magnetic field 1.0mT (B). The circles indicate the
position of strong pinning sites that appeared in the current driven motion. (Adapted from
[76]).

Moon et al. analyzed the roughness exponent in domain walls driven by current density
and compared them with the ones driven by magnetic field. In figure 2.14 (A) is shown
typical correlation functions for field and current induced DW motion. From this plots, the
slope in the linear part is two times the roughness exponent. They obtained different values
for current (J) and field (H) driven DW motion: ζJ = 0.99 ± 0.01 and ζH = 0.64 ± 0.04
correspondingly. This suggested that the DW motion induced by different drives belongs
to different universality classes. Their results for current induced DW motion agree with
theoretical predictions for the quenched Kardar-Parisi-Zhang equation of motion (Eq.2.32)
when λ < 0 [56, 76]. Moon et al. concluded that the current induced DW motion belongs
to the negative qKPZ universality class (λ < 0) since for a negative λ, the interface forms a
typical roughness called facets. However they also measured ζJ in the direction normal to
the DW and find ζJ⊥ = 0.69 ± 0.04 [76] which is similar to the roughness exponent found
for field driven DW motion, and predicted for the quenched Edward-Wilkinson universality
class.

Yamanouchi et al. [112] compared the creep exponent in (Ga,Mn)As tracks for magnetic
field and current driven DW motion. They obtained µH = 1.2± 0.01 for field induced DW
motion and µJ = 0.33 ± 0.06 and argue that the discrepancy to other values reported
previously is caused by random field disorder in (Ga,Mn)As.

Another work comparing the universality class between magnetic field and current
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Figure 2.14: Measured critical exponents for current induced DW motion.(A)
Log-log scaling plot between the DW segment length L along the x axis and the roughness
amplitude w along the h axis for DWs driven by the current (red) and field (blue). w
is defined as the standard deviation of the roughness fluctuation over the length L [76].
(B) Creep exponent µ for field- and current-driven DW creep. Broken lines show different
universality classes. Error bars come from the fitting error of the velocity curves [31].

driven DW motion is the one published by DuttaGupta et al. [31] for CoFeB/MgO metallic
tracks. They obtained the velocity v vs drive f = H, J for current and field, plotted
the velocity logarithm vs f−µ (f = H, J) and extracted the value of the creep exponent
µ. In figure 2.14 (B) we show the results they obtained for field and current at different
temperatures.

For field induced DW motion, the measured creep exponent µH = 0.23 ± 0.07 is in
good agreement with other experimental results and the predicted value from the Edward-
Wilkinson universality class [70, 7]. For current induced DW motion, they measure µJ =
0.39 ± 0.06, which suggests a different universality class. The current through the stacks
with structural inversion asymmetry gives rise to Spin Orbit Torque (SOT) which has an
effect on the DW if it is Néel type wall. However they found that the non-adiabatic STT
and SOT with the anti-damping symmetry are not dominant for the current induced DW
motion. Moreover, they estimated that the contribution of the field-like component of SOT
is estimated to be less than ±0.12mT . As this value is much smaller than the typical
magnetic field scale for which DW motion is observed.

They attribute the change of universality class mainly to the adiabatic STT as the most
dominant factor driving the DW [31]. However there is still not a theoretical model that
predicts this value.

Therefore, the issue of universality class in current induced DW motion is still contro-
versial. Several measurements of power law exponents are contradictory. Particularly, it
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would be interesting to discuss the universal nature of the measured exponents through test
of compatibility with predicted scaling laws.

2.3 Chapter summary

In this chapter we made a brief introduction of the state of the art in order to understand
dynamical properties of magnetic domain walls driven by magnetic field or electric current in
the presence of pinning. We began by discussing the origin of ferromagnetism in (Ga,Mn)As
and Pt/Co/Pt. We presented the hole mediated long distance exchange as key ingredient in
the spin unbalance at the Fermi level resulting in the ferromagnetic behavior in (Ga,Mn)As.
In the case of Pt/Co/Pt the hybridization at the interface causes the perpendicular magnetic
anisotropy. Afterwards we summarized the energy terms that give rise to the magnetic
domains and domain wall structures when the total energy is minimized.

Next, we gave a summary in magnetic domain wall dynamics when there is no pinning
present. We discussed the main characteristics of the LLG equation as well as the predictions
for the velocity as a function of field. As a result we expect the velocity to present two
different linear regimes (the steady and the precessional) separated by the Walker breakdown
and an intermediate regime with negative mobility. We then extended the discussion to
current driven DW dynamics, introducing the LLG equation with the adiabatic and non-
adiabatic terms of the spin transfer torque. We showed that there is an equivalent Walker
like current that separated two linear regimes. We also showed some experimental results
that confirmed these theoretical predictions.

In the last part we summarized some relevant results in order to understand DW dy-
namics in the presence of disorder. We began with an empirical model proposed by Lemerle
et al. [70]. From this model it is possible to obtain the Arrhenius law followed by the
velocity in the thermally activated creep regime and the scaling relation between the creep
and the roughness exponent.
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CHAPTER 3

Experimental techniques

“The chief cause for my perplexity was what I may
truly call the exquisite delicacy of the magnetic
mirror as a test for fixing the positions of the
plane of polarization of the incident light.”

John Kerr. On Rotation of the Plane of Polarization by Reflection from the Pole of a Magnet

In this section we describe the experimental techniques, measurement protocols and the
samples used in this thesis. The first part focuses on the Magneto-Optical Kerr effect
(MOKE) microscopy and the experimental setup. Next, we present the main character-

istics of samples used throughout this thesis: namely (Ga,Mn)(As,P) and Pt/Co/Pt films.
Finally we explain in detail the methods used to measure the domain wall (DW) velocity,
the correlation function of displacements, and the roughness exponent.

3.1 MOKE microscopy

For the studies performed in this thesis we used essentially MOKE microscopy. In this
section we explain briefly the fundamental principles in MOKEmicroscopy and then describe
in detail the experimental setup designed to observe magnetic domains in magnetic thin films
with perpendicular anisotropy.
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Figure 3.1: Geometry of polar magneto-optical rotation.Geometry of polar magneto-
optical Kerr effect. Polar rotation for a film with perpendicular magnetic anisotropy for
opposite magnetization direction.

3.1.1 Magneto-Optical Kerr effect

The Kerr effect was discovered by John Kerr in 1877 [57]. The magneto-optic Kerr effect
(MOKE) is the phenomenon by which polarized light reflected from a magnetized material
has a slightly rotated plane of polarization [2]. The change in the polarization of reflected
wave with respect to the incident one is characterized by an angle θ and an ellipticity
ε = b/a as shown in figure 3.1. There are three possible MOKE configurations according
to the magnetization direction with respect to the sample surface: polar, longitudinal and
transverse.

In our experiments we use the polar Kerr configuration. Here, the magnetization is
perpendicular to the sample’s surface. The incident light beam polarization plane is also
perpendicular to the sample’s surface as shown in figure 3.1. Depending on the direction
of the magnetization Ms or −Ms, the polarization vector, the polarization vector εr of the
reflected beam is deviated an angle θ or −θ with respect to the polarization vector of the
incident beam εi [2].

3.1.2 Experimental setup

The Kerr microscope uses the so-called Köhler illumination technique in order to obtain an
homogeneous lightning of the sample. To improve the quality of the image, it is important
to separate well the conjugated planes of the sample and light source.

36



3.1. MOKE microscopy Experimental techniques

Figure 3.2: Experimental setup. Description of the components of microscope.

In figure 3.2 we show a schematic representation of our experimental setup. In the
set up, the monochromatic light produced by a LED (see figure 3.2 (1)) passes through a
converging lens L1 (2) that collects the maximum amount of light, then through a linear
polarizer (3). Next, the beam goes through a second lens L2 which is used to focus the
beam into the focal plane of the objective (6). Therefore, the transmitted beam is parallel,
which produces an homogeneous lightning of the sample. The pinhole (PH) diaphragm is
in the same conjugated plane as the sample. In this way we can control the field of view.
Since it is placed in the parallel beam, the diaphragm also controls the light received by
the sample. The light reflected by the sample passes through the objective, the analyzer
and it is focused into the camera by a third lens L3. We can add a Bertrand lens between
the analyzer and the beam splitter in order to focus the illumination plane. This allows to
control the illumination in the back focal plane of the objective [43].

We now describe the technical details of each element in our setup and its main char-
acteristics.
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1. For the light source we use LED light source at ∼ 630 nm controlled and stabilized
by a DC power supply CLES 60-3. This allows a stable light intensity and emission
in time. For the (Ga,Mn)(As,P), the red light corresponds to the maximum contrast
[25]. A good Kerr contrast is also obtained for Pt/Co/Pt.

2. Focalizing lens. L1, L2 and L3 have focal distances of 7, 25 and 30 cm, respectively.

3. Polarizer and analyzer. The polarizers used are Glan-Taylor CasixPGT515.

4. CMOS camera. We used a ORCA-Flash Digital complementary metal-oxide semicon-
ductor (CMOS) Camera C11440 V2. In the CMOS camera, the image sensor is cooled
down by a Peltier element to reduce the dark current. It has 6.5 µm × 6.5 µm pixel
sizes. It is possible to make both low noise and high speed readout (100 frames/s with
2048 × 2048 pixels). For our experiments we use two different operation modes: the
free running mode, for which the exposure and readout timing are controlled by the
microprocessor and a set of preset parameters; and the external trigger mode, where
the exposure and readout timing are controlled by an external trigger.

5. Beam splitter. The optical axes of the calcite crystals are aligned parallel to the plane
of reflection. As a result, the s-polarized light is reflected and the p-polarized light is
transmitted.

6. Objective. We use two different achromatical objectives with magnification ×5 and
×20 Olympus LM Plan F1. The ×5 objective has a numerical aperture of 0.13 mm
and an optimal working distance of 22.5 mm and the ×20 has a numerical aperture
of 0.4 mm and an optimal working distance of 12 mm. They have a maximum field of
view of 5.3 mm and 1.1 mm respectively.

7. Cryostat. We use an open-cycle gas flow optical cryostat KONTI-Cryovac-Micro.
The sample is placed inside the cryostat against a cold finger. For low temperature
measurements we used helium (down to ∼ 4K) or nitrogen (down to ∼ 80K)
To achieve ∼ 10−5 − 10−6 mbar as insulator vacuum, we have used a Edwards TIC
pumping station turbo pump.
In order to control the temperature of the cold finger inside the cryostat, we used a
proportional-integral-derivative (PID) temperature controller system.

8. Large coil. A large coil generating a magnetic field in the direction of the optical axis
was placed in front of the sample. The generated magnetic field is 2.62 mT for 1 A of
applied current.

9. Microcoils. The microcoils used through the thesis are typically made of 60-100 turns
of 100 µm wire. Their interior diameter is ∼ 1.0mm. Their resistance is between
2.5-3.0 Ω and rise times between 200-500 ns.

For field driven velocity measurements (performed with the Pt/Co/Pt ultrathin films
and the 12 nm, 50 nm and 80nm thick (Ga,Mn)As samples discussed in chapters 4 and 5), the
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samples were glued on the cold finger using silver paint. For (Ga,Mn)As, the microcoil was
fixed on the sample using GE7031 varnish. In order to avoid any damage of the Pt/Co/Pt
film, the coil was fixed in the proximity using a plastic holder made in a 3D printer.

Figure 3.3: Cold finger (sample holder) designed for simultaneous field and cur-
rent studies. To avoid any contact between the wire injecting the current and the magnetic
field microcoil, the latter had to be placed in the cold finger below the sample. The cold
finger was sliced in order to reduce heating due to eddy current.

For current and field measurements performed with the 4 nm thick (Ga,Mn)(As,P)
sample (see chapter 6), the microcoil was placed inside the cold finger under the sample to
avoid contact with the micro bonding used to inject current. Figure 3.3 shows the sample
holder or cold finger. It contains a hole in the middle that is large enough to place the
microcoil. The sample holder was sliced in order to reduce the eddy current generated by
the magnetic field variations.

Figure 3.4 shows a comparison of the current pulse proportional to the magnetic field,
for a microcoil inside and outside of the hole of a sliced cold finger. We found that the
rise time increases ∼ 10% and the current amplitude decreases ∼ 5% when the microcoil is
placed inside the cold finger. This is caused by the generation of eddy current. Moreover,
as it is observed in figure 3.4, after 3 µs, the amplitude continues to increase. This is due to
the long relaxation time of the eddy current. After ∼ 60µs the voltage amplitude measured
for the microcoil outside and inside the sample holder is the same. For the calibration of
magnetic field these characteristics were taken into account.
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Figure 3.4: Comparison of the current pulse in a microcoil placed inside and out-
side of the cold finger. The current is proportional to the magnetic field. Its magnitude
is smaller when the microcoil is set inside the sample holder (black curve) than when it is
placed outside (red curve). This is due to eddy currents in the sample holder. The blue
and yellow dashed lines are fits used to obtain the rise time τ . After 3µs the eddy current
induced in the sample holder is not yet damped.

3.2 Samples

We used two different kind of samples: a metallic Pt/Co/Pt ultrathin film and ferromagnetic
semiconducting (Ga,Mn)(As,P) films with different thicknesses. Their main characteristics
are described in the following subsections.

3.2.1 Ultrathin Pt/Co/Pt metallic film

The experimental results on the depinning transition were obtained with a sputter grown
ultra-thin film of Pt(3.5nm)/Co(0.45nm)/Pt(4.5nm) deposited on a Si/SiO2 substrate. The
sample was synthesized by B. Rodmacq at Spintec laboratory. It has a Curie temperature
TC = 415◦C, a saturation magnetization MS = 910 ± 10% kAm−1. Out of plane PMOKE
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and SQUID hysteresis loops were used to determine the sample’s saturation magnetization.
First and second order effective perpendicular anisotropy fields were determined using po-
lar magneto-optic Kerr effect (PMOKE) anisotropy measurements. To estimate the wall
width, these two fields where integrated into a total effective anisotropy field. The effective
anisotropy field is Heff = 0.71T and the domain wall width is ∆ = 6.2nm. The damping
parameter α = 0.27± 20%was obtained from the slope of the precessional flow regime and
compared with similar samples. Other properties of this sample are reported by Metaxas et
al. [73].

3.2.2 Ferromagnetic semiconducting (Ga,Mn)(As,P) films

The experiments discussed in chapter 4 were performed with (Ga,Mn)(As,P) films of thick-
ness 12.5 and 50 nm grown by A. Lemaître at the C2N (CNRS), and a (Ga,Mn)As 80 nm film
grown by W. Schoch at the Ulm University and lent respectively by L. Thevenard (INSP,
CNRS). All of them were presenting an perpendicular magnetic anisotropy. The films were
grown by molecular beam epitaxy. The (Ga,Mn)(As,P) was directly deposited onto a GaAs
(001) buffer. For (Ga,Mn)As, a (Ga,In)As interlayer was used to ensure an perpendicular
magnetic anisotropy. After annealing, the Curie temperature of the films were 74, 130, and
126 K, respectively [68].

The sample used for current induced DW dynamics in chapter 6 is shown in figure 3.5.
It relies on a 4 nm thick (Ga,Mn)As/(Ga,Mn)(As,P) bilayer grown on a (001) GaAs/AlAs
buffer and covered by a GaAs cap. The bilayer and the GaAs cap were grown at ∼ 220◦C.
The rest of the structure at ∼ 550◦C [82]. A post-growth annealing was performed to remove
interstitial Mn ions. After the annealing the Curie temperature of the films is TC ≈ 65KThe
stack was then patterned by lithography in a set of rectangles with three different sizes: 133
x 210, 228 x 302, and 323 x 399 µm2. An insulating 55 nm thick SiO2 gate-oxide layer was
deposited by plasma-enhanced chemical vapor deposition at 200◦C. Then it was covered by
an evaporated film of Ti/Au serving as the gate (see Fig. 3.5 (B)).

For the experiments presented in chapter 6, this gate was not connected. The motion
of domain walls in the bilayer was observed through the square part of the Ti/Au gate
which has the smallest thickness. Finally, Ti (20 nm)/Au (200 nm) electrode bars of width
40 µm were deposited onto the GaAs cap on both sides of the rectangle to connect the
ferromagnetic (Ga,Mn)As/(Ga,Mn)(As,P) bilayer. Those electrodes were used to generate
an homogeneous current density along the direction of the largest side of rectangles.

3.3 Domain wall velocity and roughness measurement.

In this section we describe the procedure used to generate magnetic domains in the samples
and to induce motion of domain walls. Then, we discuss the measurement of DW velocity
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Figure 3.5: Optical image and schematic drawing of the (Ga,Mn)(As,P) sample
used to study current induced DW motion. (A) Optical image of a set of devices
showing the rectangular (Ga,Mn)As/(Ga,Mn)(As,P) bilayer of three different sizes, the con-
necting Ti/Au electrodes (in yellow) used to generate current pulses and an example of the
location were domain wall motion is observed. (B) Schematic of the stack in the direction of
the red arrow of Fig. (A). The DW motion is observed through a SiO2 layer and the thinest
part of a Au/Ti electrode deposited above. The latter is not connected for the experiments
discussed in this thesis.

and roughness.

3.3.1 Field induced domain wall velocity.

The protocol used to measure the domain wall velocity in the Pt/Co/Pt sample is detailed in
figure 3.6. In order bring the sample to its saturation magnetization, it first was submitted
to a ∼ 18 mT magnetic field pulse during 1s produced with the large coil (H > 10mT ). An
image recorded after the saturation pulse constitutes the background and can be used to
enhance the contrast.

Then, a magnetic field pulse generated by the microcoil in the opposite direction was
used to nucleate small magnetic domains. The DW displacement was produced by magnetic
field pulses of fixed amplitude and duration (∆t). Images were recorded after each pulse.
The conversion factors are 1 pixel = 0.162 µm for the 20× objective, and 1 pixel = 0.787 µm
for the 5× objective. The successive images were subtracted to highlight DW displacements
(u(x)).

In order to make sure that we can define an average DW velocity, which is independent
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Figure 3.6: Protocol for DW velocity measurements in the Pt/Co/Pt ultrathin
film. The rectangular steps along the t axis represent the time variation of magnetic field
H applied perpendicular to the sample. Here we show a typical example at T = 225K
First, the magnetization of the film is saturated using a "negative" magnetic field. Next, we
apply a short "positive" pulse to nucleate magnetic domains with opposite magnetization
direction and record an image of the domains. Finally we apply a field pulse and record an
image when the pulse is finished (∆t = 1µs and H ∼ 100mT in the example shown here).
We then subtract the last two images taken and measure the displacement u(x) like it is
shown in the inset. We define the velocity as the ratio between the displacement and the
pulse duration v = u(x)

∆t .

of the rise time of the microcoil, displacements were recorded for different pulse duration
and magnitude, as shown in figure 3.7. The velocity v corresponds to the slope of the linear
part of the plot u(x) vs ∆t. Once we obtained the DW velocity v as a function of magnetic
field H, we smoothed the velocity curve using a rolling average over 5 successive points.

The protocol used to measure the field induced DW velocity in the 12.5, 50 and 80 nm
thick (Ga, Mn)(As,P) films is identical to the one described for the Pt/Co/Pt ultrathin film
except for the chosen temperature range, which is limited by the sample’s TC . The velocity
curves where measured between 6 and 96 K.
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Figure 3.7: Protocol used for DW velocity measurements in the Pt/Co/Pt ul-
trathin film. We measure the DW displacement for different magnetic fields H. The
straight lines are the best linear fits for each magnetic field and its slope is the obtained
DW velocity.

For the 4 nm thick (Ga,Mn)(As,P) film study reported in chapter 6, we use a similar
protocol. The only difference is that we nucleated a single, almost straight domain wall
instead of several, as illustrated in figure 3.8 (B). The protocol to generate one straight DW
is the following: we apply a "negative" pulse with the large coil to saturate the magnetization.
Next, we apply simultaneously a short ("positive") field and current pulse. The amplitude
and pulse duration of those pulses are chosen empirically, and depend on the temperature.
For instance for T = 55K we apply a simultaneous 2µs pulse of 3.5 mT and 7.9 GA/m2.
Then we apply simultaneous short pulses of field and current until the DW reaches the
chosen location in the sample.

The shape of the domains nucleated in the 4 nm thick (Ga, Mn)(As,P) film is different
when we nucleate a magnetic domain by applying only field pulses and when we apply a
combination of current and field pulses due to the geometry of the golden electrodes through
which the current flows into the sample in a certain direction and the combined effect of the
field and current. In figure 3.8 we show two different ways to nucleate magnetic domains
in the same sample at T ∼ 25K. In 3.8 (A) we nucleate oval domains applying only a
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Figure 3.8: Different magnetic domain nucleation processes in a 4 nm thcik
(Ga,Mn)(As,P) film. We show two different magnetic domain nucleation processes in a
4 nm (Ga,Mn)(As,P) film. (A) Nucleation produced only by a ∼ 10mT field pulse of with
a 20µs duration at T = 25K. (B) Nucleation produced by a combination of simultaneous
field and current pulses at T = 24K. (J = 9.7GA/m2, H = 5mT and ∆tH = ∆tJ = 2µs).

magnetic field pulse (∼ 10mT , ∆t = 20µs). In 3.8 (B), we produce a unique flat DW with
a combination of simultaneous field and current pulses (J = 9.7GA/m2, H = 5mT and
∆tH = ∆tJ = 2µs).

Figure 3.9: Measurement of DW displacement for (Ga,Mn)(As,P) 4nm thick film.
The domain wall velocity was deduced from the average value 〈u(x)〉 of the whole DW
displacements as indicated in (C).

The velocity was deduced from the mean displacement in the direction of growth as
indicated in figure 3.9. With a program written in Python 2.7 we binarized the images by
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taking the average between the maximum and minimum intensity recorded in the image.
The region with intensity below (above) this average value corresponds to opposite directions
of magnetization. The frontier defines the domain wall position. In this way, we can
measure the DW displacement u(x) between consecutive images for each pixel of the DW,
and calculate the average value 〈u(x)〉 for the whole DW. Then we define the velocity as
v = 〈u(x)〉/∆t, where ∆t is the field pulse duration. For current induced DW motion we
used the same protocol.

3.3.2 Current induced domain wall velocity measurements

Figure 3.10: Critical time tC to reach TC for different current densities J. For a
fixed initial temperature Ti = 45K we obtain the critical pulse duration ∆tC needed to heat
the sample until TC is reached. This critical time is measured for different current densities.

The flow of an electric current in the (Ga,As)/(Ga,Mn)(As,P) bilayer produces Joule
heating. Since the temperature gradients may affect the magnetic properties of ferromagnets
and they contribute to magnetization reversal, we have to analyze the contribution of Joule
heating to DW motion.

In order to estimate the temperature rise due to Joule heating, we used a procedure
similar to one proposed by Curiale et al. [19]. For each measurement, we prepare an initial
magnetic state consisting in a domain surrounded by an homogeneous reversed magnetiza-
tion. First, we determine the critical (Curie) temperature at which the contrast of polar
Magneto-Optical Kerr effect vanishes (TC ≈ 65K) by increasing progressively the temper-
ature. The experimental protocol used to measure the temperature rise is the following
one:
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Figure 3.11: Temperature rise produced by Joule heating. (A) Temperature rise ∆TC
in a 228 × 302 µm2 device produced by current pulses of different magnitude J (as indicated
in the legend) vs pulse duration ∆tC . (B) Temperature rise ∆TC(∆tc, J) divided by J2 and
normalized to J = 1GA/m2.The current density is relatively low so it takes longer pulse
durations to reach TC in comparison with similar experiments in (Ga,Mn)(As,P) tracks for
example [19].
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1. We set an initial sample temperature Ti which determines the temperature rise ∆TC
required to reach TC , i.e. ∆TC = TC − Ti.

2. We choose a given current density J and a given pulse duration ∆t which induces a
temperature increase ∆T (J,∆t) that depends on the current density J and on the
duration of the applied current pulse ∆t. If ∆T (J,∆t) < ∆TC the magnetic domains
are still be visible after the we apply the pulse, i.e. the sample has remained in a
ferromagnetic state during the pulse. If ∆T (J,∆t) > ∆TC , the magnetic domains are
no longer visible after the pulse is applied: the Joule heating has produced a transition
between ferro- and paramagnetic state.

3. For a fixed current density J , we estimate the critical pulse duration ∆tC at which
∆T (J,∆tC) = ∆TC by progressively increasing the pulse duration ∆t until the domain
vanishes.

4. We repeat the last two steps for a different current densities J . What we obtain obtain
the necessary time (the critical pulse duration ∆tC) that a current density should be
applied (J) in order to increase the temperature of our sample from the fixed initial
temperature Ti to the Curie temperature TC . A typical example is shown in figure 3.10
where we show the critical current pulse duration ∆tC to reach TC for different current
densities. In this example, the initial fixed temperature is Ti = 45K and therefore
∆TC ≈ 20K.

5. Steps 1 to 4 are repeated for a different initial temperature Ti.

This procedure enables us to associate the necessary time (pulse duration ∆tC) that a
current density (J) should be applied to the sample in order to increase the temperature
from an initial Ti to TC , i.e. (∆T (∆tC , J)). The results are shown in figure 3.11 for different
initial temperatures Ti. The temperature rise ∆TC is found (see figure 3.11 (A)) to increase
with increasing current density.

For a given current pulse, the temperature rise ∆T should be proportional [19] to the
power produced by Joule heating per unit time and volume:

dP

dV
= ρJ2, (3.1)

where ρ is the resistivity. In order to verify the compatibility of our results with Joule heat-
ing, we have divided the measured ∆TC (see figure 3.11 (A)) by J2, in order to renormalize
the data. The results are reported on figure 3.11 (B). As we can observe, the data points
collapse in one single curve, thus confirming the signature of Joule heating.

In order to check that the disappearance of the magnetic domain is not due to a fast
DW motion induced by the current, we performed a similar temperature rise measurement
on a device located ∼ 1mm away from the one where current was injected. In this case, the
heat is transfered through the substrate. The results are shown in figure 3.12. The curve
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Figure 3.12: Normalized temperature rise produced by Joule heating. Normalized
temperature rise ∆TC(∆tc, J = 1GA/m2) vs pulse duration ∆tC measured for a 228 × 302
µm2 device connected to current source (circles) and located ∼ 1mm away (diamonds). The
solid blue and black lines are the best fit of the function ∆T (∆t, 1GA/m2) = a(∆tC)b for
t < 50s. Inset: Optical image of the devices.

∆TC(∆tC , 1GA/m2) vs ∆tC is very similar as the one obtained for device with the current.
This confirms that the disappearance of the magnetic domain is due to Joule heating.

As it can be observed in figure 3.12, the temperature rise presents a strong variation for
short durations (t < 50s). For longer duration (t > 50s), the temperature tends to saturate,
which suggests that a quasi-thermal equilibrium has been achieved between the Joule power
produced by the current, the cooling power and the temperature regulation of the cryostat.

Let us now discuss the contribution of Joule heating to domain wall dynamics. For
short current pulses (∆t < 50s) used in the DW dynamics study, the contribution of Joule
heating can be easily estimated. The normalized temperature rise can be accurately fitted
by an empirical function:

∆T (∆t, J = 1GA/m2) = a(∆t)b, (3.2)

with a = 0.78±0.13 and b = 0.69±0.05. Since the Joule effect is proportional to the square
of the current density, we can therefore write:

∆T (∆t, J) = J2∆T (∆t, J = 1GA/m2) = aJ2(∆t)b (3.3)
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and calculate ∆T for any current pulse amplitude and duration. For the whole set of
pulses used to measure DW velocity in chapter 6, the maximum temperature rise we find
is ∆T ≤ 0.3K. The corresponding velocity variation is v(J,T )−v(J,T+0.3K)

v(J,T ) ≈ 3%. As this is
smaller than the typical error bars for the measurement of DW velocity, the Joule heating
can be neglected.

3.3.3 Correlation function and estimation of the roughness exponent

In this section we detail the procedure followed for the statistical study of DW roughness.
The roughness exponents for magnetic field (ζH) and current (ζJ) driven DW motion were
determined systematically from consecutive images of DW displacements separated by a
constant time step ∆t as illustrated in figure 3.13.

Figure 3.13: DW displacement. Schematics of the displacements u(x) and u(x + L) of
two DW positions separated by a distance L, which are used to calculate the displacement-
displacement correlation function. The darker part of the image shows initial DW position,
the middle gray is the region covered by the DW during its motion in a time step ∆t.

For each position x along the initial DW we compute the displacement-displacement
correlation function: w(L) = 〈[u(x)− u(x+ L)]2〉 for ∼ 1µm < L < R, where L is the
length of an arbitrary segment and R is the length of the whole DW. The terms u(x) and
u(x + L) are the displacement of DW at positions x and x + L respectively after the field
or current was applied during ∆t = (typically ∆t is equal to 1.0 or 0.5s). We choose u(x)
and u(x+ L) as the closest positions between x and x+ L and the subsequent DW.

The next step is plotting log(w(L)) vs L as the example shown in figure 3.14. We
obtain the plot with a code written in Python 2.7.

In order to obtain a value of the roughness exponent, we follow the next procedure:
we consider the region of the plot log(w(L)) vs L where a linear behavior is observed,
(1µm < L . 10 − 15µm) as it is illustrated in figure 3.14. Below this value there is
correlation present in the DW. The upper limit of the linear fit is determined by the offset
of the divergence between the linear behavior and the experimental data. We calculate the
mean square weighted deviation χ2 between the liner fit and the experimental data, when
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Figure 3.14: Typical displacement-displacement correlation function. Example of
a w(L) vs L plot in log-log scale for current driven DW motion at T = 14K. In order to
determine the roughness exponent ζ, we fit a line (see the dashed line) up to the limit where
the behavior is no longer linear. The slope corresponds to 2ζ.

χ2 & 10% of the slope value m = 2ζ we stop the linear fit. It is an arbitrary criterion, how
ever, we use it consistently through the roughness exponent measurement in all our data.
This fit is done with the software Origin2015 (64bit)Sr1. We recall that according to Eq.
2.25, the slope of this linear part, is two times the roughness exponent, ζ.

For the exploration of the time variation of the roughness, we made movies of the DW
displacement for constant field or current values. We have repeated the same procedure for
each time step ∆t. As discussed in chapter 6, we could evidence a transient creep regime
and verify that for a steady motion, the exponent ζ remains constant.

3.4 Chapter summary

In this chapter we described the experimental setup used to study the magnetic domain
wall dynamics. We described in detail the Kerr microscope, along with the coils used to
generate the magnetic field, and the cryostat used to control the temperature. This setup
allowed us to observe the motion of magnetic domain walls in two different kind of sam-
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ples with perpendicular anisotropy: a Pt/Co/Pt metallic ultra thin film and ferromagnetic
semiconducting (Ga,Mn)(As,P) films with different thicknesses.

We obtained information of the magnetic domain shape, velocity and geometry under
the effects of magnetic field and electric current varying in a wide range of amplitudes and
time duration. In the last section of this chapter we explained in detail the procedure to
systematically process this information from the images stored with the CCD camera: we
established protocols to measure the DW velocity from the subtraction of consecutive images
obtained after field or current pulses were applied to the sample.

In the case of current pulses, we quantified the temperature rise due to Joule effect.
For the current amplitudes and pulse duration used in our experiments, the temperature
fluctuations were found to be negligible.

We developed a Python code to compute the correlation function w(L) and to extract
the roughness exponent ζ. We performed a time resolved analysis of the roughness exponent.
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CHAPTER 4

Depinning transition

“Owl explained about pinning and creep. He had
explained this to Pooh and Christopher Robin
once before, and had been waiting ever since for
a chance to do it again, because it is a thing you
can easily explain twice before anybody knows
what you are talking about.”

A. A. Milne . Winnie the Pooh (Adapted by G. Blatter et al.)

In this chapter we present a quantitative and comparative study of magnetic-field-driven
domain wall (DW) depinning transition in ultrathin ferromagnetic films made of differ-
ent materials over a wide range of temperature.

At sufficiently low drive f , the competition between elasticity, weak random pinning
and thermal fluctuations results in the creep motion over effective pinning barriers. In this
dynamical regime, the velocity follows an Arrhenius law. Close to zero drive (f → 0), the
phenomenological scaling theory [7, 81] and functional renormalization group [14] calcula-
tions for an elastic line moving in a random pinning disorder, predict that effective pinning
barriers present universal power-law variations. This has been observed in experimental
systems as well [70, 44]. It has been well established that the whole thermally activated
creep regime can be universal, and controlled by a unique pinning energy barrier function
[51]. On the other hand at sufficiently large drives, the DW velocity follows a linear behavior
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that characterizes the flow regime.

Between the creep and the flow regimes, at the depinning transition, it has been shown
that at low temperature limits, the velocity follows a critical power-law behavior [39, 74, 36].
In experimental works the shape of the depinning transition has been observed and seems to
be compatible with the power law that predicts the velocity to behave like v ∼ Tψ [73, 51].
Similar behavior is expected also for other physical systems such as random-field Ising model
[93], and charge density waves models [74].

Some of the open questions regarding the depinning transition are listed next. Does the
depinning transition of DWs in ferromagnetic ultrathin films present universal behaviors?
Theoretical predictions suggest that at the depinning transition the domain wall velocity
presents two asymptotic behaviors, one at T → 0 where v(H,T = 0) ∼ (H − Hd)β and
the other at the depinning threshold v(H = Hd) ∼ Tψ. Is the DW dynamics compatible
with these asymptotic behaviors? and, can we characterize the depinning transition beyond
the asymptotic behavior? What are the links between the creep and the depinning regime?
How is the crossover between the depinning transition and the flow regime?

More technically, can we determine the depinning threshold when applied field and
thermal effects are present? How can the universal behavior be distinguished from non-
universal behavior?

From the experimental point of view it has been challenging to go beyond critical
exponent analysis [87, 53, 16] due to the characteristics of the velocity when there are thermal
effects present [10, 11]. This complicates a straightforward determination of the depinning
threshold and the distinction between material-dependent and universal behaviors.

In order to address these questions we study the motion of domain walls (DW) driven
by magnetic field in an Pt/Co/Pt ultrathin film with perpendicular anisotropy [73, 44]
in a wide range of temperatures [4.4 - 300 K] and compare them to results published in
the literature for Au/Co/Au [60] and Ta/CoFeB/MgO [9] ultrathin films, which presents
different strengths of pinning disorder.

4.1 Domain Wall dynamics

Here, we propose a phenomenological description of the observed DW dynamics at different
temperatures in a Pt(3.5nm)/Co(0.45nm)/Pt(4.5nm) film. We analyze the creep regime in
order to deduce the depinning threshold Hd(T ) and other material dependent parameters:
v(Hd(T )), vd(T ) and Td(T ).

In figure 4.1 (A), we show the DW velocity v as a function of applied magnetic field H
for different temperatures in the range 4.4 to 300 K. For every one of them we observe an
inflection point (Hd(T ), v(Hd(T ))) indicated by solid diamonds that separate the low drive
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Figure 4.1: Domain wall dynamics. (A) DW velocity v in Pt/Co/Pt vs field H measured
for different temperatures. The inflection points (Hd(T ), v(Hd(T ))) are indicated by solid
diamonds. (B) DW velocity v vs H−1/4 in semi-log plot. The solid diamonds indicate the
coordinates of the inflection points in the linear scale.

creep regime (H < Hd) from the depinning regime. The linear variation observed at higher
drives (v > 30m/s) is only reached for the highest temperatures (300 and 225 K). It extends
over the magnetic field range of 110-155 mT. The straight dashed line indicated in figure
4.1 (A) extrapolates the flow regime to low drives and has a slope m which corresponds to
the mobility. The measured mobility (m = v/H = 0.29±0.03m/smT ) is in good agreement
with the reported value [73, 51] for the precessional flow regime in similar samples where
the mobility was obtained from the velocity curves as well.

Within the creep regime (H < Hd), the DW velocity v increases several orders of
magnitude over a narrow applied magnetic field interval as it can be observed in the semi-
log scale in the velocity curves in figure 4.1 (B). The shape of the velocity v vs H−1/4 curves
is found to be a straight smooth line within the creep regime for different temperatures in
good agreement with previous works [73, 51].

Between the creep and the linear flow regime lies the depinning transition, which covers
a narrow range in the field compared with the creep and flow regimes. This regime, until
now it has not been easy to delimit and fully characterize. In order to discuss the depinning
transition we first analyze quantitatively the creep regime. For that we recall the equation
characterizing the creep regime:

v(H,T ) = v(Hd, T ) exp(−∆E/kBT ), (4.1)

where the parameters Hd and v(Hd, T ) are the coordinates of the upper boundary of the
creep regime indicated with diamonds in figures 4.2, and
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Figure 4.2: Analysis of domain wall dynamics. DW velocity in Pt/Co/Pt measured
for different temperatures and presented in linear (A) and semilog (B) scales to show the
high and low drive regimes, respectively. The fit for the creep regime [0 < H < Hd(T )] is
shown by the black dotted curves and ends for velocities v(Hd(T ), T ) indicated by black
diamond symbols. The depinning regime extends from the depinning threshold H = Hd(T )
to the universality limit Hu(T ) (indicated by black solid spheres). The depinning velocities
vT (Hd(T ), T ) correspond to empty diamonds. The dashed curves are the predictions of
equation 4.4 for a unique value of x0 = vT/vH = 0.65 and match with part of all velocity
curves as indicated by solid segments, here vH is the prefactor for the T → 0 asymptotic
behavior (see Eq. 4.4). The linear flow regime, indicated by a straight dashed-dotted line,
is reached for high drives (and only for T > 50K). Inset: universal reduced energy barrier
as a function of reduced field deduced from velocity curves.

∆E = kBTd

( H
Hd

)−µ
− 1

, (4.2)

is the effective pinning energy barrier. Here, kBTd is a characteristic energy that measures
the pinning strength. The exponent µ = 1/4 corresponds to the creep exponent for the
motion of an elastic line in a 2-dimensional disordered medium.

The parameters v(Hd(T ), T ), Td(T ) and Hd(T ) were determined using the following
method:

• Step 1: We assumed the coordinates of the upper boundary of the creep regime
(Hd, v(Hd)) correspond to the inflection point of the velocity v vs field H curves.
As discussed in Chapter 2, section 2.2, the curvature is predicted to be positive for the
creep regime (H < Hd) and to become negative for the depinning regime (H > Hd).

• Step 2: An estimate of Td is then deduced from a fit of v(H) with equations 4.1 and
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Figure 4.3: Analysis of DW dynamics for Au/Co/Au and CoFeB. Domain-wall
dynamics observed (A) in Au/Co/Au for different temperatures and (B) in Ta/CoFeB/MgO
for different cobalt and iron concentrations and for as-grown (ag) and annealed (an) films.
The data are taken from [60] and [9], respectively. The diamond symbols represent the
upper boundaries of the creep regime [Hd(T ), v(Hd, T )]. The black solid spheres correspond
to the universality limit Hu(T ). The dotted lines are fits for the creep regime. The solid and
dashed curves correspond to the T → 0 asymptotic predictions of the depinning transition
for x0 = 0.65 and is obtained without adjustable parameter. The solid curve is the range in
which the asymptotic behavior agrees with the experimental data.

4.2 over the range 0 < H < Hd.

• Step 3: In order to improve the accuracy of the estimated Hd and v(Hd) values, we
fit equation 4.1 and the effective pinning energy barrier for increasing values of H
as shown in figure 4.2 by dotted curves. The upper boundary of the creep regime
(Hd, v(Hd)) was defined as the set off of the divergence between the data points and
the fit of the creep law.

• Steps 2 and 3 were then repeated in order to provide a fine tuning of the values of Hd,
v(Hd) and Td.

In figure 4.2, we show the v vs H curves and the fit of equation 4.1 which are in good
agreement over the whole creep regime below the depinning field Hd (see figure 4.2 (B)).
The coordinates (Hd(T ), v(Hd, T )) are also indicated with solid diamonds in figure 4.2. The
set of temperature-dependent parameters Hd, v(Hd), and Td are reported in Table 4.1.

In order to verify that the parameters Hd and Td are compatible with the universal
behavior, we plot the reduced energy barrier height E

kBTd(T ) = T
Td(T ) ln

[
v(Hd(T ),T )
v(H,T )

]
, as a

function of the reduced force H/Hd(T ). In the inset of figure 4.2 (B) we show that this
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transformation collapses all the velocity curves onto a single master curve which reflects
the universal behavior of the pinning energy barrier [51]. The good agreement of data with
the equation 4.2 for µ = 1/4 indicates that the whole creep dynamics indeed belongs to
the universality class described by the quenched Edward-Wilkinson equation for an elastic
line with short-range elasticity moving in a random-bond short-range correlated microscopic
pinning potential [51].

Material T (K) Td(K) Hd(mT ) v(Hd)(m/s) vT (m/s) Hu(mT ) v(Hu)(m/s)
Pt/Co/Pt 4.4 450(100) 136(3) 20.0(1.0) 40.0(1.0) 151(3) 18.5(1)
(0.5 nm) 10 660(70) 130(1) 21.0(2.0) 39.3(1.0) 138(2) 29(1)

50 2860(150) 120(2) 19.5 (0.5) 35.8(1.0) 133(3) 31(2)
100 3090(280) 107(2) 18.7 (0.5) 31.3(1.0) 117(2) 27(1)
150 2700(150) 101(1) 14.8(1.0) 28.7(1.0) 116(2) 27(1)
225 2750(120) 75(1) 18.6 (1.0) 21.5(1.0) 96(3) 24(1)
300 2650(20) 57(1) 12.0(1.5) 16.6(1.0) 73(2) 18.5(1)

Au/Co/Au 150 25800(1000) 123.5(1.0) 10.7(0.5) 23.1(1.0) 126.5(0.5) 15.8(0.6)
(1.0 nm) 183 28800(1500) 115.0(1.0) 11.3(0.2) 23.9(1.0) 121.5(0.5) 16.7(0.6)

213 29400(1500) 110.0(1.0) 10.8(0.2) 22.8(1.0) 116.0(0.5) 16.9(0.6)
243 29300(1500) 102.5(1.0) 11.2(0.5) 23.0(1.0) 108.5(0.5) 16.5(0.6)
273 29000(1500) 96.5(1.0) 10.2(0.3) 20.5(1.0) 102.0(0.5) 15.5(0.6)
318 28400(1500) 88.0(1.0) 9.4(0.1) 18.5(1.0) 90.5(0.5) 12.2(0.6)

Co20Fe60B20 an 293 1800(100) 6.6(0.2) 1.6(0.3) 2.4(0.5) 27.0(7.0) 4.9(0.4)
Co20Fe60B20 ag 1800(100) 4.8(0.2) 2.2 (0.8) 3.3(0.5) 16.0(3.0) 6.4(0.6)
Co40Fe40B20 an 1400(100) 5.0(0.2) 1.9(0.5) 2.8(0.5) 12.6(3.0) 4.9(0.6)
Co40Fe40B20 ag 2000(100) 4.3(0.2) 5.2(0.8) 8.1(0.5) 8.9(2.0) 12.2(2.0)
Co60Fe20B20 an 2200(100) 3.5(0.5) 2.6(0.4) 3.7(0.5) 10.7(2.0) 6.5(0.5)
(1.0 nm)

Table 4.1: Material and temperature dependent parameters. For each material we
show the sample thickness (nm) (written below the sample name), the temperature of the
experiment (T (K)), the fitted parameters in the following order: depinning temperature
(Td(K)), depinning magnetic field (Hd(mT )), velocity on the depinning field (v(Hd)(m/s))
and depinning velocity (vT (m/s)). The coordinates (Hu, v(Hu)) correspond to the upper
boundary of the universal behavior. Quantities between parenthesis are the errors associated
to each parameter. The data depicted for Au/Co/Au and Ta/CoFeB/MgO are deduced from
results reported in references [60] and [9] respectively.

4.2 Universality of the depinning transition

Let us now address the universality of the depinning transition. We recall the predicted
asymptotic behavior for the variation of velocity with temperature at the depinning thresh-
old (H = Hd) [74, 10]:

v(Hd, T ) = vT (Hd, T )
 T

Td

ψ (4.3)
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Figure 4.4: Depinning critical exponent. Depinning critical exponent ψ deduced from
experimental v vs H curves as a function of temperature for the Pt/Co/Pt v vs H curves.

In the case of applied magnetic field H for T � Td:

v(H,T � Td) = vH(H,T )
H −Hd

Hd

β. (4.4)

Here, Hd and Td are respectively, the depinning field and temperature obtained from
the fit described in the previous section, and displayed in table 4.1. Equations 4.3 and 4.4
define the depinning velocities vT and vH . In order to identify the magnetic field range over
which the depinning transition could present universal behavior, we assume ψ = 0.15 and
β = 0.25. Those values correspond to the numerical predictions of the elastic line model
with short-range elasticity in a random-bond short-range correlated weak pinning potential,
previously shown to be compatible with the observed creep behavior [74, 10]. As it can
be observed in figure 4.2, the predictions of Eq. 4.4 present a good agreement with the
measurement over a narrow field range for all the explored temperatures. Let us analyze
the depinning transition in more detail.

59



4.2. Universality of the depinning transition Depinning transition

4.2.1 Universality at the depinning threshold.

We can determine the depinning velocity vT at H = Hd(T ) from equation 4.3 for different
T . As it can be observed in figure 4.2, this parameter vT (T ) presents good agreement with
the velocity corresponding to the asymptotic flow regime. This suggest that vT corresponds
to the velocity that the DW would have in the absence of pinning. The values of vT are also
shown in table 4.1.

Moreover, in order to estimate the value of ψ directly from the velocity curves at
H = Hd, we take vT = mHd, where m is the measured slope of the flow regime, and
substitute it in equation 4.3. We show the obtained values of ψ in figure 4.4 from where we
see that ψ is temperature independent. The average value is ψ = 0.154± 0.006. This value
is in very good agreement with previous experimental reports [44] and numerical predictions
[10], and gives a first signature of the universality of the depinning transition.

The velocity v vs magnetic field H curves for Au/Co/Au and Ta/CoFeB/MgO films [9,
60] (see Fig. 4.3), also present an inflection point corresponding to the depinning threshold
(Hd(T ), v(Hd(T ))). However, the linear flow regime is not observed at high drive. Therefore,
we cannot determine the value of ψ from those results.

4.2.2 Upper boundaries of the depinning transition.

The next step to analyze universal behaviors of the velocity vs field, above the depinning
threshold (Hd, v(Hd)). We aim to find a criterion to set the upper limit of the depinning
transition Hu. In table 4.1 we observe that the depinning temperature Td is at least one
order of magnitude larger than the experimental T in every curve, i.e. (T � Td). For
this reason, part of velocity curves should follow the predictions for low temperature limit
T � Td, only with β = 0.25 (see Eq. 4.4).

In order to find this upper limit Hu, the values of the prefactor vH were adjusted
so that the predictions by Eq. 4.4 present the largest possible matching region with the
experimental velocity curves (see the solid part of the curves in figure 4.2 (A)). As expected,
a good agreement is only obtained over a limited field range. In every case the agreement
between Eq. 4.4 and the experimental data starts slightly above Hd due to thermal effects.
The onset of the divergence between the experimental curve and the fit of equation 4.4, can
define the upper boundary of the depinning regime (Hu, v(Hu)). The obtained values are
reported in table 4.1. Above Hu(T ), the DWs follow a non-universal crossover to the linear
flow regime observed at larger drive, since it seems to be material dependent.
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4.2.3 Universal depinning function.

Once we set the boundaries of the depinning transition, we investigate the universality of
the entire regime (Hd < H < Hu) beyond power laws and critical exponents.

Following a more general scaling hypothesis [100], the DW velocity at the depinning
transition can be described as a generalized homogeneous function [11, 88], which implies
the following scaling form:

y = g

 x

x0

 (4.5)

where the dimensionless variables: scaling field (x) and scaling velocity (y), are defined as:

x = [(H −Hd)/Hd]β(T/Td)−ψ, (4.6)

and
y = (v/vT )(T/Td)−ψ. (4.7)

Here, x0 = vT/vH is the ratio [88] between depinning parameters. In this model, the function
g is expected to be universal within a given class of universality, as it is the case for the
critical exponents. The shape of the function g should be consistent with the two asymptotic
behaviors in equations 4.3 and 4.4. The ratio x0 is a priori a non-universal parameter.

Let us first discuss the variations of the ratio x0 = vT/vH as a function of the reduced
temperature Td/T . Figure 4.5 shows that x0 is found to be temperature independent (x0 =
0.64±0.02). As a direct consequence, a unique value of x0 allows the predictions of equation
4.4 to describe the full set of velocity curves as shown in figure 4.2.

Furthermore, an identical analysis can be performed for other ferromagnetic ultrathin
films (see figure 4.3). The obtained results present a particularly good agreement for CoFeB
[9] (x0 = 0.64± 0.02) and a slightly lower value x0(= 0.62± 0.02) for Au/Co/Au [60]. Since
the mean values vary by less than 5 % over wide explored range of reduced temperature (10 <
Td/T < 170), x0 can be reasonably considered as material and temperature independent.
This suggests that the temperature-dependent parameters (vT = x0vH , Hd, and Td), are
sufficient to describe the whole domain-wall glassy (extremely slow) dynamics in a universal
way.

Let us now discus the universal depinning function g. For the depinning parameters
Hd, vT and Td, we can deduce the values of the scaling variables x and y. In figure 4.6
we show the variation of experimental values for the scaled velocity y as a function of the
scaled driving field x (see Eqs. 4.6 and 4.7). For this curve we plot only the data points
(H, v(H)), for Hd < H < Hu.

We observe that all the experimental velocity curves collapse onto a single master
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Figure 4.5: Universal velocity ratio x0. Universal velocity ratio x0 = vT/vH as a function
of the reduced temperature Td/T for different ferromagnetic materials. The solid and dashed
lines indicate the average value and standard deviation deduced from a fit of the curve in
Fig. 4.2 and 4.3, respectively.

curve, indicating that the reduced variables x and y describe the depinning transition and
lead to the universal function g. The expected linear asymptotic behavior for T → 0, and
y = g(x/x0) → x/x0 is observed for x > 0.8. Following Eq. 4.6, this indicates that over
the magnetic field range Hd[1 + 0.8( T

Td
)ψ] < H < Hu, the velocity is well described by the

asymptotic limit for T → 0 given by Eq. 4.4.

For x < 0.5, the scaled field y remains almost constant, and the data for x → 0 (for
H → Hd), can be extrapolated to y = 1 in agreement with Eq. 4.3.

Therefore, the universal g function essentially displays two linear asymptotic behaviors
and a narrow crossover region (0.5 < x < 0.8) centered around x = x0 ' 0.65. This is in
qualitative agreement with predictions deduced from numerical simulations, which found
x0 ∼ 1 [11, 12].

An accurate empirical description of data (see the solid lines in figure 4.6) is given by:

g(x) = [1 + (x− x0)n]1/n, (4.8)

where n reflects the width of the crossover between the two asymptotic limits. The best fit
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Figure 4.6: Universal depinning scaling function Universal depinning function ob-
tained using the scaled domain-wall velocity y as a function of the scaled field x. The data
points correspond only to the depinning transition (Hd < H < Hu). The solid curve is the
empirical function g(x/x0) describing the data. The dashed-dotted straight line is the linear
asymptotic limit of this function.

is obtained for x0 = 0.65± 0.04, n = 8.7± 0.4.

As it is shown in figure ??, this equation is also found to be relevant for other magnetic
materials. For Au/Co/Au [60] and CoFeB [9] the data taken from the v vs H curves
collapse into an identical single curve as the one for Pt/Co/Pt with the same values for
the parameters n, and x0. This confirms that the depinning transition exhibits a universal
behavior, which can be described by a unique universal function. This function includes
both the field and thermal effects.

4.2.4 Thermal effects on the depinning velocity.

The shape of the universal depinning function allows to go beyond the usual asymptotic
analysis. In particular, we adress in this section the thermal rounding of the depinning
transition.

In figure 4.8 we present a comparison of the velocity curves in reduced coordinates
(v/vT vs H/Hd) for increasing values of the reduced temperature Td/T covering a large
range (9− 172). For the creep regime (H/Hd < 1), the velocity presents a strong variation
with temperature associated to the thermal activated nature of the motion.
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Figure 4.7: Universal depinning scaling function for different materials. Scaled
domain-wall velocity y as a function of scaled field x for Pt/Co/Pt, Au/Co/Au and
Ta/CoFeB/MgO.

For the depinning transition, just above the depinning threshold (H/Hd ' 1), the
thermal effects are still important as shown in the area of figure 4.8 highlighted in gray.

The magnetic field interval for which thermal effects are relevant increases when the
ratio Td/T & 1. For Td/T � 1, the interval where thermal effects are observable is almost
negligible.

As described in the previous paragraph, the thermal effects are expected to play a
role in the depinning transition only when the scaled driving force is x < 0.8. Following
the definition of the scaled dimensionless variables (Eqs. 4.6 and 4.7), this corresponds
to H/Hd / 1 + [0.8(T/Td)ψ]1/β which is the upper magnetic field boundary below which
thermal effects are observed in the depinning transition. In consequence, there is an upper
limit for the velocity v ≈ vT 0.8/x0.

Figure 4.8 shows that the reduced velocity curves agree with the predictions of equation
4.4 for a range ofH/Hd that decreases as Td/T increases. Moreover, for the explored reduced
temperature range, no more thermal effects are observed above H/Hd ≈ 1.1. Above this
limit, the reduced velocity displays explicit temperature independence as reflected by the
merging of the curves on predictions of equation 4.3.

The crossover between the depinning transition and the flow regime is also shown
in figure 4.8. The upper limit of the depinning transition Hu/Hd depends strongly on
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Figure 4.8: Domain wall dynamics in reduced coordinates. Domain-wall velocity
in reduced coordinates for different reduced temperatures Td/T and materials. The ver-
tical dashed-dotted line corresponds to the depinning threshold which separates the creep
regime (H/Hd < 1) from the depinning transition (H/Hd > 1). The inclined dashed line
corresponds to the linear flow regime (v/vT = H/Hd ). The solid curve corresponds to
the zero-temperature depinning curve. The gray surface area is the magnetic and velocity
ranges over which thermal effects contribute to the velocity. At higher drive, the reduced
velocity becomes independent of temperature as reflected by the merging of velocity curves
on the solid curve. Eventually, velocity curves quit the universal depinning transtion at a
magnetic field Hu which depends on temperature and material and undergo a crossover to
the flow regime

temperature and materials properties. In the case of Pt/Co/Pt, Hu/Hd varies between 1.1
and 1.3 over the reduced temperature range Td/T = 9 − 102 and it is significantly smaller
than for CoFeB (Hu/Hd = 3 − 4). The variation of Hu/Hd and of xu = 1.1 − 2.0 suggests
that the limit of universality Hu is not a universal parameter.

4.3 Chapter summary

In this chapter we provided a self-consistent phenomenological framework for analyzing the
sub-threshold thermally activated creep regime and the depinning transition of domain walls
in magnetic thin films. This whole dynamics are controlled by only three material dependent
parameters: Hd, vT , and Td. In figure 4.9 we summarize the detailed analysis for all the
dynamics in a typical v vs H curve in Pt/Co/Pt at room temperature.
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Figure 4.9: Universal and non-universal behaviors of magnetic field driven domain
walls. DW velocity (v) vs field (H) in Pt/Co/Pt at room temperature. The universal and
non-universal dynamics are separated by the boundary field Hu, which corresponds to the
upper limit of the depinning transition. Within the non-universal dynamics, DWs present
a crossover between the depinning transition and the linear flow regime. The threshold
H = Hd separates the creep regime (H < Hd) from the depinning transition (Hd < H < Hu).
The solid black straight line corresponds to the linear extrapolation of the flow regime. The
dashed blue curve is a fit of the creep regime. The dashed black curve is a fit for the
depinning transition using x0 = vT/vH ' 0.65. The part that matches with experimental
data is underlined by black solid segments. The blue diamond and star points are the velocity
at depinning v(Hd) and the depinning velocity vT . The parameter v(Hd) corresponds to
the inflection point separating the creep regime from the depinning transition and Hflow

corresponds to the beginning of the flow regime. Inset: log-log plot of the velocity curve
highlighting the creep regime.

We evidenced the universal behavior of the depinning transition for three different
materials and more than one order of magnitude of reduced temperature variation (T/Td).
The depinning transition is characterized by a universal scaling function g of the rescaled
field, temperature, and velocity. The shape of this function governs the domain-wall velocity
including its asymptotic scaling law behaviors.

We also found that the parameter x0 = vT/vH in the function g, is material independent,
and has an experimental value of x0 = 0.64 ± 0.02, which was a priori not expected to be
universal.
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Finally, we showed that the universal behavior extends over the whole creep regime and
the depinning transition, as it is shown in figure 4.9.

This work opens new questions regarding the material and temperature dependent
parameters, such as their relation with micromagnetic parameters and microscopic pinning
properties (coherence length of the disorder and pinning strength).
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CHAPTER 5

Dimensional cross-over of the creep motion

“...but Alice had got so much into the way of expecting
nothing but out-of-the-way things to happen, that
it seemed quite dull and stupid for life to go on in
the common way....”

Lewis Carrol.- Alice’s adventures in Wonderland

In this chapter we analyze the motion of magnetic domain walls driven by magnetic field
in ferromagnetic (Ga,Mn)(As,P) films of different thickness.

As discussed in chapter 2, DW motion in the creep regime results from a series of
events where the DW overcomes a series of energy barriers and passes from one stable con-
figuration until it reaches the next stable configuration passing through several metalstable
configurations, this series of events are known as avalanches. The characteristic length of
the excitation that triggers the avalanches producing DW motion [36] is known as optimal
length Lopt(f), which decreases as the driving force is increased (Lopt(f) ∼ f−1/(2− ζ)).
Finite size effects are expected to occur when Lopt(f) has the same order of magnitude as
one length-scale of the medium embedding the DW [63, 37].

A well known example of finite size effects is the DW motion in ultra thin films [70].
As Lopt(f) always remains larger than the film thickness t, the DWs behave as elastic lines
(d = 1) moving in a two dimensional medium (D = 2). Another evidence of finite size effect
was reported in narrow tracks (of width w < 600nm) made from ultrathin films by Kim et
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al. [58]. The motion was shown to present a crossover between a 1d elastic line criticality
(Lopt(f) < w) at high drive and a 0d hopping behavior (Lopt(f) > w) at low drive. In this
chapter, we explore the crossover between a 1d and a 2d creep motion of a DW.

Figure 5.1: Dimensional crossover of creep motion. Variation of the optimal length
Lopt(H) with magnetic field for two different temperatures (T2 > T1). At low drive Lopt(H) >
t, where t is the sample thickness, the DW behaves like a line (d = 1) moving in a 2D film.
At larger drives (Lopt(H) < t), the DW can be considered as a surface (d = 2) moving in a
3D film. The solid curve indicates the region where Lopt is larger than t and therefore the
DW presents a line (d = 1) behavior. The dashed line indicates where Lopt is smaller than
t and analogously, the DW behaves like a surface (d = 2). At H = Hc(T, t) the sample
thickness is the same as the avalanche size are (Lopt = t).

In figure 5.1 we illustrate the predicted variation of Lopt with magnetic field H. The
optimal length Lopt decreases with increasing magnetic field. For a given film thickness t,
a dimensional crossover should occur at a critical magnetic field H = Hc(T, t) for which
Lopt ≈ t. Above Hc(T, t), as Lopt < t, the DW should behave as an elastic surface (d = 2)
moving in a three dimensional medium (D = 3). In contrast, below Hc(T, t), as Lopt > t, the
DW should behave as an elastic line (d = 1) moving in a two dimensional medium (D = 2).

Some of the questions we try to unravel in this chapter are following. What are the
experimental parameters (critical field and film thickness) allowing to observe the creep
motion of two dimensional wall (d = 2)? How can we obtain non-ambiguous signatures of
the expected dimensional cross-over?
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Theoretically, the equilibrium roughness exponent for a d = 1 elastic line is predicted
to be ζ = 2/3 according to analytical calculations [14]. In contrast, for an elastic surface
(d = 2), theoretical calculations, including anharmonic contributions for the elastic energy
and assuming that the elasticity is isotropic, predict ζeq ≈ 2/5 the equilibrium and ζdep =
0.45 as depinning exponents [70, 91]. Accordingly, the creep exponent should vary between
µ = 1/4, for 1d elastic lines [14, 70], and µ = 1/2 for a 2d elastic surface [80, 14]. To our
best knowledge, experimental evidences of such variations of critical exponents has no yet
been reported in the literature.

In order to answer these questions we compare the velocity v vs magnetic field H curves
for (Ga,Mn)(As,P) films with different thicknesses: 12, 50 and 80 nm. We show that a single
exponent is not sufficient to describe the whole creep regime. We measure the roughness
exponent for the three samples at different fields and we compare the experimental velocity
curves with the predictions for the quenched Edwards-Wilkinson (qEW) model for an elastic
line (d = 1) and an elastic surface (d = 2).

5.1 Domain Wall dynamics and dimensionality

In figure 5.2 we show magnetic field (H) driven domain wall (DW) velocity (v) curves
at different temperatures for 12.5 and 80 nm thick (Ga,Mn)(As,P) samples with out of
plane magnetization. An inflection point (Hd(T ), v(Hd(T )) is systematically observed and
corresponds to the depinning threshold which separates the thermally activated creep regime
(H < Hd(T )) from the depinning transition (H > Hd(T )).

For the 80 nm thick sample, we observe the linear variation observed at high drive
(v > 5m/s) corresponds to the precessional flow regime. Indeed, the straight dashed lines
indicated in figure 5.2 extrapolate the flow regime to low drives. The measured mobility,
corresponding to the slope (m = v/H = 0.38± 0.02), is close to the reported value [26] for
the precessional flow regime in similar samples. For the 12.5 nm thick sample, we observe the
beginning of the linear flow regime as indicated by the dashed line in figure 5.2 (B), however
for this sample, the measured mobility corresponds to the slope (m = v/H = 0.60± 0.04).

In the creep regime (0 < H < Hd(T )), the velocity is strongly dependent on tempera-
ture, as reported in figure 5.3. It varies over several orders of magnitude in a relatively small
range of magnetic field, as expected for a thermally activated motion. However, the shape
of curves for the thickest sample is strongly different from those reported for ultrathin films
for which the log of the velocity varies linearly with H−1/4. In contrast, as shown in figure
5.3 (A), the curves present "kinks" (indicated by the filled diamonds). An agreement with
the H−1/4 law is only observed for the lowest drives. Moreover, part of the velocity curves
present a better agreement with a H−1/2 (see figure 5.3 (B)), which is the prediction for the
motion of an elastic surface.

In our system, however, a "kink" (indicated by filled diamonds in 5.3) that breaks the
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Figure 5.2: Domain wall velocity vs field at different temperature. (A) DW ve-
locity v as a function of magnetic field H measured for a 80 nm and (B) a 12.5 nm thick
(Ga,Mn)(As,P) film. The inflection points, indicated by open diamonds, correspond to the
depinning threshold (Hd(T ), v(Hd(T ), T )) separating the creep regime (H < Hd) from the
depinning transition. At higher fields we show the linear flow regime (highlighted by the
dashed straight line).

linearity in the semi-log v vs H−µ curve is systematically observed at well defined coordinates
(Hc(T ), v(Hc(T ), T )). In order to characterize quantitatively the origin of this "kink" we fit
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Figure 5.3: Domain wall velocity vs Hµ. (A) DW velocity v as a function of magnetic
field H−1/4 in semi-log scale measured for a 80 nm thick (Ga,Mn)(As,P) films. The dashed
line is the range of field where the experimental data is compatible d = 1 and µ = 1/4.
We indicate the dimensional crossover (filled diamonds) as the point where the linear fit
deviates from experimental data. (B) DW velocity vs H−1/2 in semi-log plot. The dashed
lines is the range of field where the experimental data is compatible with d = 2 and µ = 1/2:
from the dimensional crossover (filled diamonds) until the depinning threshold (indicated
by open diamonds).

the creep equation:

v(H,T ) = viexp

(
− kBTd
kBT

[(
H

Hi

)−µ
− 1

])
, (5.1)
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Figure 5.4: Logarithmic domain wall velocity vs field H. Logarithmic DW velocity v
as a function of magnetic field H for a 80 nm thick (Ga,Mn)(As,P) film. The dotted line
is the best fit of Eq. 5.1 d = 1 and µ = 1/4. We indicate the dimensional crossover (filled
diamonds) as the point where the linear fit deviates from experimental data. The dashed
line for HC < H < Hd indicates the best linear fit for d = 2 and µ = 1/2 ranging from the
dimensional crossover (filled diamonds) until the depinning threshold (indicated by open
diamonds).

where kBT is the thermal activation energy, and µ the universal creep exponent. In
equation 5.1, the material and temperature dependent pinning parameters are the character-
istic pinning energy scale (kBTd) and the coordinates (Hi, vi) is the set-of of the divergence
between the experimental velocity curve and the creep equation.

This is illustrated in figure 5.4 where the logarithmic DW velocity is plotted for the 80
nm thick sample. Below the field where the "kink" is found (0 < H < Hc(T )), the curves
in figure 5.4 are fitted with a critical creep exponent µ = 1/4 and a first set of parameters
(vi = v(Hc(T ), T ), Hi = Hc(T ), Ti = Tc(T )) (dotted curve). Above this threshold in
(Hc < H < Hd(T )) the fit was done with a different creep exponent (µ = 1/2) and another
set of parameters (Hi = Hd(T ), vi = v(Hd, T ) and Ti = Td), used in order to find an accurate
fit of the experimental curves with the creep equation (dashed curve).

The compatibility of velocity curves with the predicted creep exponents µ = 1/4 for
H < Hc(T ), and µ = 1/2 for Hc(T ) < H < Hd(T ) suggests a dimensional crossover
between a line (d = 1) and a surface (d = 2) behavior of DWs. In table 5.1 we report
the crossover parameters that corresponds to the coordinates where the creep equation,
for d = 1 (µ = 1/4) and the experimental curve diverge. We also show the material and
temperature depinning parameters used for fitting the creep equation for d = 2 (µ = 1/2)
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between (Hc < H < Hd).

t(nm) T (K) dynamicsHc(mT ) roughnessHc(mT ) Hd(mT ) Td(K)
80 6 (0.1) 6.3 (0.5) 14.9 (1) 110 (20)

15 (0.1) 4.5 (0.5) 5.0 (0.4) 11.2 (1) 224 (20)
39 (0.1) 2.5 (0.4) 2.5 (0.3) 11.5 (1) 315 (20)

50 30 (0.1) 3.3 (0.4) 3.3 (0.4) 1119 (100)
60 (0.1) 1.2 (0.2) 1.4 (0.1) 3.2 (0.2) 855 (50)
90 (0.1) 0.6 (0.1) 0.8 (0.2) 3.2 (0.4) 564 (20)
96 (0.1) 0.2 (0.1 ) 3.1 (0.2) 547 (50)

12 4.3 (0.1) 3.8 (0.5) 8.2 (0.5) 324 (40)
10 (0.1) 3.7 (0.3) 7.9 (0.4) 713 (50)
30 (0.1) 2.6 (0.3) 7.2 (0.3) 1041 (40)
50 (0.1) 5.2 (0.3) 5.7(0.4) 5.8 (0.3) 1041 (40)

Table 5.1: Material and temperature dependent crossover and depinning param-
eters. For each (Ga,Mn)(As,P) sample with different thickness (nm) the temperature of
the experiment (T (K)) is indicated. Then we show the fitted crossover field (Hc(T )) for
the creep law with µ = 1/4 and the crossover field (Hc(T )) identified by the roughness
exponent shift. In the last two columns we show fitted parameters for the creep equation
with µ = 1/2: the depinning magnetic field (Hd) and the depinning temperature (Td).

5.2 Roughness exponent

In order to confirm that the variation of the creep exponent is associated to a dimensional
crossover, we have investigated the roughness scaling properties of domain walls [70]. We
have calculated the displacement-displacement correlation function of domain wall displace-
ments u(x) defined by:

w(L) = 〈|u(x+ L)− u(x)|2〉 (5.2)

where x corresponds to a position on the DW (in this case a point in the inner red contour
as shown in figure 5.5 (A)), the parameter L is the length of a segment. The symbol 〈〉
corresponds to an average of measurements over all the positions x.

The displacements u(x) were deduced from the subtraction of two consecutive Kerr
images as it is illustrated in figure 5.5 (A). In this case, u(x) corresponds to the shortest
distance between the two red contours and L is the length of the curve segment in the inner
contour. In figure 5.5 (B) we present typical examples of computed correlation function
w(L) vs L in log-log scales for different magnetic fields in the 80 nm sample. In each case
we observe a linear behavior for L < 10 µm.

The linear behavior in the correlation functions of figure 5.5 (B) implies that the ex-
pected power law variation w(L) ∼ L2ζ is present. We fit a line within the range (1− 5µm)
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Figure 5.5: Displacement-displacement correlation function for different field val-
ues. (A) Typical image of a domain wall displacement (in light gray) deduced from dif-
ferential Kerr imaging showing two successive domain wall positions (indicated by the red
contours). (B) Displacement correlation function w(L) vs segment length L along the do-
main wall in log -log scale obtained for different applied magnetic field values with the 80
nm thick film and T = 15 K. The solid lines are fits for the lowest L -values of the scaling
relation w ∼ L2ζ . Two separated sets of curves are presenting a different slope (empty
symbols and crossed symbols). The slope change is observed for H = 5.1 − 6.55 mT and
corresponds to step of the roughness exponent ζ.

over which the universal scaling is observed. The slope of the linear fit corresponds to twice
the roughness exponent 2ζ. The lower limit (L > 1µm) is fixed above the microscope reso-
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Figure 5.6: Roughness exponent (ζ) as a function of the reduced magnetic field.
Roughness exponent ζ as a function of the reduced magnetic field H/Hd for three film thick-
nesses and different temperatures. The step between the two ζ-values reflect a dimensional
crossover between 1d and 2d behavior. The curved lines are a visual guide.

lution and width of the Gaussian filter used during the image processing, which corresponds
to 3-4 times the length of the microscope resolution. The upper limit is simply where the
linear fit and the experimental curve diverge. This range is rather narrow compared to usual
measurements [70, 85]. This, most probably originates from the anisotropy of domain wall
displacements, which is due to the small in-plane magnetic anisotropy [28].

In figure 5.5 (B) we can observe that the curves are grouped in two groups according to
their slopes: at low field (H ≤ 5.1mT ) the w(L) curves present a larger slope than at large
field (H ≥ 6.55mT ). Therefore we can expect that the crossover is somewhere between the
field values (5.1mT < Hc < 6.55mT ) and that the roughness exponent presents different
values for the two ranges of applied magnetic field. Indeed for the analyzed temperature
(T = 15K) we found in the previous section that the crossover field was Hc = 4.6± 0.5 mT
.

In order to determine more precisely the value of the magnetic field at which the
crossover is observed, ζ was measured systematically as a function of applied magnetic
field. Typical results are reported in figure 5.6 for the three film thicknesses, and different
temperatures. As it can be seen, the curves present a sigmoid shape. The high level is close to
ζ1d = 2/3 and the low level value close to ζ2d = 2/5, which is compatible with a dimensional
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crossover. By taking into account the measurements performed sufficiently away from the
crossover, we obtain the global average values ζ1d = 0.62 ± 0.02 and ζ2d = 0.45 ± 0.04,
respectively.

In figure 5.6 we can also see that the range in which the crossover occurs in rather
narrow (between 0.1 − 0.2H/Hd). This allows us to define more accurately the crossover
field Hc as the inflection point of the curves. The obtained values are reported in table 5.1
for different sample thicknesses and temperatures. The values of the field in the inflection
point of the ζ-curves (figure 5.6) and the "kink" in the v vs H (figure 5.2) are found to
coincide within experimental error bars. This confirms that the DW present a dimensional
crossover between a 1d and a 2d universal behavior, which is highlighted by a change of
critical exponent values.

5.3 Critical exponents

In this section we compare our measurements of critical exponents to theoretical predictions.

Below the critical field Hc, the measured average roughness exponent ζ1d = 0.62± 0.02
and the creep exponent (µ = 1/4) used to fit the velocity curves are in good agreement
with previously reported results (ζ = 0.69± 0.07) and (µ = 0.24± 0.04) obtained for ultra-
thin films presenting an isotropic growth [70]. This confirms that the domain wall can be
considered as an elastic line (d = 1) in a 2D medium.

For an elastic line (d = 1), analytical calculations [14] and numerical simulation [92, 91]
including an-harmonic contributions for the elastic energy in the q-EW equation predict
ζ1d
eq = 2/3, close to equilibrium (f ≈ 0) and ζ1d

dep = 0.635 close to the depinnning transition
(f ≈ fd). Both values are found in good agreement with our experimental findings (ζ1d =
0.62±0.02). Moreover, as it is discussed in references [37] and [63], if we want to compare the
predicted exponents (ζeq or ζdep) with experimental findings, we need to take into account
the scale LMOKE at which the domain wall motion is observed, in our case LMOKE ≈ 1µm is
the resolution of our MOKE microscope. Indeed, fluctuations are expected to be described
by the equilibrium roughness exponent ζeq for LMOKE < Lopt and by the depinning exponent
ζdep for LMOKE > Lopt. This means that experimentally we have access to the roughness
exponent at the depinning ζdep.

Close to the crossover field Hc we are in a case where (L ≈ Lopt ≈ t ∈ [12 − 80nm])
while the roughness exponent is determined for lengths in the micrometer scale (L = 1 −
5µm). Therefore, our result presents a good agreement with the predicted critical depinning
roughness exponent ζ1d

dep for the quenched Edward-Wilkinson (qEW) Universality class.

Above the critical field Hc, the obtained roughness exponent value is ζ2d = 0.45± 0.04.
For an elastic surface (d = 2), the predictions including an an-harmonic contribution for
the elastic energy are ζ2d

eq = 0.41 and ζ2d
dep = 0.45, for equilibrium and depinning roughness
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[92, 91] exponent, respectively. Both values are pretty close to the experimental findings.
However, as the observation length-scale L is larger than Lopt, our results are in agreement
the predictions for depinning roughness exponent ζ2d

dep = 0.45.

On the other hand, the corresponding creep exponent is given by the scaling relation
µ = (d+2ζeq−2)/(2− ζeq) which leads to µ2d = 0.52±0.07. This is in good agreement with
the creep exponent (µ = 1/2) used to describe the velocity curves. Therefore, our results
are compatible with the predicted scaling relation.

5.4 Optimal length

Figure 5.7: Temperature variation of Hc/Hd. Hc/Hd vs T deduced from the kink in the
velocity curves (filled symbols) and from the "step" in the value of the measured roughness
exponent ζ (empty symbols). The dimensional crossover is shifted towards the depinning
transition (Hc/Hd = 1) for decreasing film thickness.

We now discuss the variation of the optimum length with the drive H and with tem-
perature. In figure 5.7, we report the ratio Hc/Hd between the critical and the depinning
field as function of temperature for the three different film thicknesses. The curve obtained
for each film thickness separates the reduced magnetic field range corresponding to a d = 1
(H/Hd < Hc/Hd, i.e. Lopt(T ) > t) and a d = 2 (H/Hd > Hc/Hd, i.e.Lopt(T ) < t) behavior.

As it can be observed in figure 5.7, for a fixed temperature (for example T = 40K), the
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range over which the 2d-creep is observed, i.e. (H/Hd > Hc/Hd), decreases with decreasing
film thickness. As the crossover is expected to occur for Lopt(H) ≈ t, the results reported
in the same figure are in qualitative agreement with the predicted variation of Lopt(H)
(∼ H−1/(2− ζ)) with drive the H.

Moreover, for a fixed ratioHc/Hd, Lopt(H,T ) is decreasing with increasing temperature.
This strongly suggests that the maximum size of the activated events (≈ Lopt(H,T )) which
overcome the energy barriers and ultimately, controls the average DW velocity in the creep,
decreases with increasing temperature.

5.5 Chapter summary

In conclusion, we have evidenced the two dimensional creep behavior of magnetic domain
wall motion in the thermally activated creep regime. We were able to determine the variation
of the crossover field Hc with film thickness and temperature. At low drive, below the
crossover field (H < Hc(T, t)), the velocity curves follow the well studied 1d creep law: the
DW behaves as an elastic line moving in a 2D medium (µ1d = 1/4). Above the crossover
field and below the depinning field (Hc(T, t) < H < Hd) the experimental velocity curves
follow the creep law predicted for a 2d elastic surface moving in a 3D medium (µ2d = 1/2).

This scenario was confirmed by an independent DW roughness analysis. At the same
critical field Hc(T, t), we observed a step of the measured roughness exponent from ζ1d =
0.62 ± 0.02 to ζ2d = 0.45 ± 0.04, which is a clear signature of the dimensional crossover.
Indeed, the measured roughness exponent values were found in good agreement with the-
oretical predictions (ζ1d

dep = 0.635 and ζ2d
dep = 0.45 [37, 63]). Additionally we show that the

maximum avalanche size Lopt(H,T ) decreases with increasing drive and temperature.

Our analysis should shed light on interface dynamics in weakly disordered systems
whose dimensions are larger than the optimal triggering events. Moreover, as the 1d and
2d creep motion is described by the same quenched Edwards-Wilkinson equation with an-
harmonic elasticity corrections, the dimensional crossover should also present a universal
character.
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CHAPTER 6

Current driven domain wall motion

“It is this new property of current-driven exchange
which implies the novel mesoscopic magneto-
dynamics illustrated below. These motions due
to spin transfer can dominate over those due to
precession about the magnetic field....”

J.C. Slonczewski - Current-driven excitation of magnetic multilayers.

This chapter, presents a study of current induced domain wall (DW) motion. We
analyze the temporal evolution of the shape of DWs, their roughness and dynamics.
We discuss in particular, the thermally activated creep regime, and address the

question of universality class of current induced DW motion. An interesting starting point
of this study is the comparison with the well documented magnetic field induced DWmotion.

We recall briefly the main results of the previous studies on the compared criticality
of current and magnetic field induced DW motion in the creep regime. For CoFeB/MgO
tracks, DuttaGupta et al. [31] determined different values of the creep exponent for current
(µj = 0.39 ± 0.06) and field (µH = 0.23 ± 0.07) induced DW motion. For Pt/Co/Pt films,
Moon et al.[76] observed a very strong faceting of DWs and measured different roughness
exponent for current (ζj = 0.99±0.01) and field (ζH = 0.68±0.04) induced DWmotion. The
difference between critical exponents suggests that current and field induced DW motion
belong to different universality classes. Moon et al. propose that current induced DW
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motion belongs to the negative quenched Kardar-Parisi-Zhang (q-KPZ) universality class.
However, the results are not compared to theoretical predictions. Moreover, the onset of
the facets close to strong pinning centers suggests that different pinning disorder control the
motion of DWs.

As only few studies have been published on this topic, several issues remain to be
addressed. We list here some important questions we try to answer in this chapter. Can
we observe the faceting of domain walls in other materials than Pt/Co/Pt? What is the
origin of the facets? How could the contribution of spin transfer torque (STT) be described
as a driving force? To what extent the current induced creep regime presents universal
behaviors? Do we confirm the strong difference between the criticality of current and field
induced DW motion? Is there a strong difference between the pinning processes as suggested
by Moon et al.?

In order to discuss those questions, we proposed several experimental improvements.
We choose to study an ultra-thin (Ga,Mn)(As,P) film. In this material, the depinning
current and field are sufficiently low for all the dynamical regimes to be observed (from
the creep to the flow regimes). Therefore we have access to the whole creep regime, while
previous studies were restricted to the low [31] and ultra-low creep regimes [76]. This
also increases substantially the flexibility of experiments since the faceting of DWs can be
observed in less than a minute, while for Pt/Co/Pt ultra-thin films around four hours are
needed. Moreover, the motion of DW is observed in extended geometry. This eliminates
possible contributions of edge pinning, which may modify DW dynamics [47], and allows
a combined measurement of the roughness and creep exponents. Finally, previous studies
are made at room temperature [76] or cover a narrow range of temperature [31, 112]. Our
measurements cover more than one order of magnitude in temperature, which allows to
distinguish temperature dependent and universal behaviors.

6.1 Evolution of domain wall shape

Typical sequences showing successive DW shape and position driven by current and mag-
netic field are reported in Fig. 6.1. The sample is a (Ga,Mn)(As,P) 4nm thick film as
we described in detail in chapter 3. In particular we choose a 200µm window where the
ferromagnetic part of the sample is visible. In figure 6.1 (A), a constant magnetic field
(H ∼ 0.2 mT ) is applied perpendicularly to the plane of the film. The images are taken
each ∆t = 0.5s. For figure 6.1 (B), the experiment is performed with a constant current
density (J ∼ 0.5 GA/m2), at the same location of the sample. The images are taken each
∆t = 0.5s.

For the magnetic field drive, the initial DW shape is relatively well conserved during
the motion. Close to strong pinning centers (see red triangles in figure 6.1 (A)), the DWs
become curved, when they pin, and flat again when they depin. This is typical of an interface
whose motion is described by the quenched Edward-Wilkinson (qEW) model.
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Figure 6.1: Magnetic field and current induced DW motion. Successive position
of a DW driven by a constant (A) magnetic field H = 0.16mT . The time step between
images is ∆t = 0.5s, and the total duration is 60s and (B) current density J = 0.45 GA/m2

(∆t = 0.5s, total duration 16s). The direction of the field and current density are indicated
by a cross ⊗ and an arrow, respectively. In both cases, DWs are moving upwards from an
initial underlined by the red dashed line. The red and blue triangles indicate strong pinning
sites. Both succession of images were taken in the same location of the film.

For current induced DW motion the situation is different. The initial DW shape is not
conserved during the motion. Facets are formed when the DW encounters strong pinning
centers.

We define a strong pinning center one section of the DW does not move (stays pinned)
during ≈ 4 times the duration of the time step ∆t and there is distortion of the DW. In
other words, when we look at the DW trajectory through the successive DW positions driven
by field or current density, we define a strong pinning center when 4 or more DWs overlap
on the same position and the shape of the DW is distorted when it passes through the
center. This is an arbitrary criteria and depends on the used time step (∆t), however we
used similar time steps in all our experiments (∆t = 0.5µs and 1µs).

As it can be observed in figure 6.1 (B), there is a clear correlation between the dis-
placement of DW and its relative orientation to the current density direction ~J . The largest
displacements are observed when the normal direction to the DW ~n is parallel to ~J . As the
angle between ~n and ~J increases, the mean DW displacement 〈u(x)〉 decreases. The shape
of the current induced DW motion is strongly different to the case of magnetic field which
acts an isotropic force. For a limit facet angle (≈ 45◦), the DW velocity tends to decrease,
as expected for a motion described by the negative quenched Kardar-Parisi-Zhang model
(qKPZ) [56, 92]. The velocity measurements described in later are only performed for ~n ‖ ~J .
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6.2 Domain Wall roughness

In this section, we compare the roughness of DWs driven by current and magnetic field. We
analyze their variation with time and temperature. The estimation of roughness exponents
is deduced from computing the correlation function of the DW displacement.

6.2.1 Statistical quantities in surface roughening

For both driving forces, H and J , we measure the displacement-displacement correlation
function at different times after the driving force H, or J , is applied:

w(L) = 〈|u(x+ L)− u(x)|2〉. (6.1)

In our case, L is the length of a DW segment along the x axis, and u(x) is the dis-
placement perpendicular to the DW as it is shown in figure 6.2 (A). Typical examples of
displacement-displacement correlation functions obtained for the magnetic field and electri-
cal current driven DWs are shown in log-log plots in figure 6.2 (B).

As it can be observed, above the spatial resolution of the microscope (∼ 0.5µm), the
displacement-displacement correlation function presents a linear variation over a DW length
L ≈ 10 µm, clearly reflecting the self-affinity of DWs. In order to obtain a value of ζ, we
perform a linear fit fixing the lower and upper limit in the following way: the lower limit
starts just above the spatial resolution of the microscope (0.5 µm) or, when it is the case,
above the length of the averaged section of the image (we use Gaussian filter in the image
processing). The size of the filter is usually 2-3 times the spatial resolution of the microscope.
Below this limit, the correlation function w(L) depends exclusively on image properties and
image processing procedures and not on the actual correlations in the DW. The upper limit
is established simply as the divergence point between the linear fit and the experimental
correlation function w(L).

We obtained a linear fit from this section of the w(L), and from the relation w(L) ∼ L2ζ ,
we obtain the roughness exponent ζ as half of the slope in the linear fit.

As it can be observed in figure 6.2, the slope of the curves are similar for current and
field induced DW motion. Consequently, the values of the roughness exponent are close
(ζH = 0.70± 0.01 for the field and ζj = 0.71± 0.01 for the current). For field induced DW
motion, the measured roughness exponent is close to the prediction of the qEW model (ζeq =
2/3 and ζdep = 0.63). For current induced DW motion, the measured roughness exponent
is significantly lower than the value reported by Moon et al. (ζj = 0.99 ± 0.01). In order
to obtain an accurate value of the roughness exponent, we performed the same procedure
for succession of DW positions, as shown in figure 6.1, and repeated the experiment over a
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Figure 6.2: Correlation function definition. (A) Subtraction of consecutive domain
images where the current induced DW displacement u(x) of the coordinate x is indicated
in the beginning and the end of a segment u(x+L) of lenght L along the DW. (B) Typical
correlation function w(L) vs DW segment L in log-log scale, for current driven DW motion
(red diamonds) and field induced DW motion (blue triangles) for T = 14K. The dashed
lines indicate the linear section from which the roughness exponent is estimated. In this
example the obtained values for current and field induced motion are ζj = 0.71± 0.01 and
ζH = 0.70± 0.01 correspondingly.

temperature range covering one decade (from 6 to 59K).

6.2.2 Roughness exponent and temperature

Let us now examine the variation of the roughness exponent ζ as a function of time and
temperatures. In figures 6.3 to 6.5, we show the temporal evolution of the roughness expo-
nents deduced from successive DW positions, as presented in figure 6.1 for magnetic field
H and current density J , correspondingly.

For magnetic field driven domain wall, figure 6.3 shows the temporal variation of
ζH(H,T ) for different values of H and temperature T varying over a decade (T = 6−59K).
Each point was deduced from a fit of the correlation function as discussed in the previous
subsection. As it can be observed, ζH(T ) is globally independent of time except at short
times (t < 7s ) for some experiments (See figure 6.3 (C), (E), (I), (J), and (K)). The origin
of this variation can be discussed from figure 6.4, which compares the time evolution of the
mean DW velocity < v(t) > and the roughness exponent ζH(t).
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Figure 6.3: Roughness exponents ζH vs time. ζH as a function of time for different
temperature and applied magnetic field values. For the curves C, E, I, J, and K, ζH initially
increases with time and then becomes constant, reflecting the transient and steady creep
regimes. For all the other curves, ζH remains constant within experimental fluctuations.
The average ζH value for the steady creep with standard deviation is indicated below each
curve. The corresponding temperature and the constant magnetic field H are shown for
each experiment.
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Figure 6.4: Transient Regime. Time variation of mean DW velocity (blue open circles)
and the roughness exponent (red diamonds) with a constant magnetic field H = 0.7mT at
a fixed temperature T = 17K.

As it can be observed, the velocity < v(t) > increases until it reaches a constant value
(for t > 7s). The variation of the roughness exponent ζH is found to be strongly correlated to
the velocity. This curve evidences an increase of the roughness exponent during the transient
creep regime (t < 7s in figure 6.4). The reason why transient creep is not systematically
observed is not well understood. It probably depends on the way initial DW state was
prepared, and the time elapsed since its preparation.

Let us only consider the values obtained in the steady creep regime. Figure 6.6 reports
the variation of time average values of ζH(T ). As it can be seen, ζH(T ) remain constant
within experimental error, over the decade of explored temperature, as expected for a uni-
versal critical exponent. The value of the roughness exponent, corresponding to an average
over all the measurements (∼ 350 curves) is ζH = 0.60± 0.04. This is consistent with mea-
surements reported in the literature for Pt/Co/Pt (ζH = 0.69± 0.07 and ζH = 0.68± 0.04,
in references [70] and [76], respectively). This value of the roughness exponent is also com-
patible with the theoretically predicted equilibrium value of ζH = 2/3, and the anharmonic
depinning value (ζdep = 0.63) for the Edward-Wilkinson Universality class [91].

For current induced DW motion, the time variation of the roughness exponent ζJ(J, T )
for different values of J , and a temperature T vaying over a decade (T = 6−59K) is reported
in figure 6.5. As it can be observed, ζJ remains independent of time and temperature.
The mean values obtained for each temperature present no variation over one decade of
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Figure 6.5: Roughness exponents ζj vs time. ζJ vs time for different temperatures T
with a constant current density J . In each subplot we indicate the temperature at which
each experiment was performed, the value of the constant current density and the average
roughness exponent found for each experimental T .

temperature (see Fig. 6.6). The global average value (over ∼ 350 values) is ζJ = 0.61±0.05.

We now compare our measurements of the roughness exponent to those published by
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Figure 6.6: Roughness exponents for field ζH and current ζJ induced DW motion as a
function of temperature. The error bars correspond to the standard deviation of the average
roughness exponent at each T .

Moonet al. [76]. First, we obtain compatible values for field driven DW motion ((ζH =
0.68 ± 0.04) for Moon et al., and ζH = 0.60 ± 0.04). This indicates that both the different
methods used for the determination of ζ (via the correlation function of the displacement,
for us) lead to compatible results.

For current driven DW motion we obtain a value (ζJ = 0.61±0.05) significantly smaller
than the one reported by Moon et al. [76] (ζJ = 0.99±0.01). The result from Moon was ob-
tained from the determination of the standard deviation of displacement u(x) (with respect
to a flat base line) along a direction parallel to current ~J , and not from the displacement-
displacement correlation function. Even for the highest faceting angles, we do not recover
the value obtained by Moon et al.

Interestingly, Moon et al. obtained another value of the roughness exponent for a
measurement along the normal to the DWs (~n). The reported value (ζJ⊥ = 0.69± 0.04) is
compatible with our result (ζJ = 0.61± 0.05).

This set of results suggests that the self-affinity measured in the direction of the current
depends on the tilting angle between the current and the direction normal to the DW. For
the largest tilting angle (θmax ≈ 80◦ for Pt/Co/Pt), the roughness exponent is significantly
larger. For the lowest tilting angles (here θmax ≈ 45◦), the roughness exponent is similar for
current and field driven DW motion.
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For a measurement of the roughness in the direction normal to the DW or for sufficiently
low tilting angles, the self-affinity is compatible with the predicded roughness exponent (ζ =
0.63) for the positive qKPZ and the qEW whith anharmonic corrections on the elasticity
[92, 75].

This suggests that for sufficiently low faceting angles, DWs driven by magnetic field and
current present a self-affinity corresponding to the quenched Edward-Wilkinson universality
class. There, according to the scaling relation µ = (2ζeq − 1)/(2 − ζeq) with ζeq = 2/3, the
expected creep exponent should be close to µ = 1/4.

6.3 Current driven domain wall motion

In this section, we compare the field and current driven DW dynamics. As discussed in
chapter 3, the contribution of Joule effect on current induced DW can be neglected. (The
maximum variation of velocity due to Joule heating is ≈ 3%, which corresponds to a tem-
perature rise of 0.3K.) In order to eliminate any contribution of tilting angle to current
induced DW dynamics (see figure 6.1), the velocity was always measured from an almost
straight DW aligned perpendicularly to the current.

6.3.1 Creep exponent

The velocity curves for current and field driven DW are reported in Fig. 6.7. Here we only
present results obtained in a narrow temperature range (T = 49 − 59K). Above 59 K the
DWs were not stable enough to measure accurately the displacement since we approach the
Curie temperature (TC ≈ 65) and therefore the Kerr contrast is very weak. Below 49 K, we
were not able to reach the depinning transition, which is important for a precise analysis of
the creep regime.

At low drive (H < Hd and J < Jd), the velocity presents a strong non-linear variation
with drive and temperature which characterizes the thermally activated creep regime (see
the inset of Figs. 6.7 A and B). At the depinning threshold (H = Hd and J = Jd),
the curves present inflection points (indicated by diamond signs in Fig. 6.7). The linear
variation observed well above the threshold corresponds to the beginning of the flow regime.

In order to discuss the velocity curves more quantitatively, we fit the creep law and
proceed to extract the depinning parameters. The velocity in the creep regime is described
by the empirical law:

v(x, T ) = v(xd, T ) exp
[
− ∆E
kBT

]
, (6.2)
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Figure 6.7: Domain wall dynamics. Domain wall velocity vs (A) magnetic field H and
(B) current density J for different temperatures. The insets in figure (A) and (B) are the
log-log scales highlighting the creep regime. The solid diamonds indicate the end of the
creep regime, being (Hd, v(Hd)) and (Jd, v(Jd)) the coordinates of the depinning field and
current density correspondingly. The dotted lines are the fit of the creep equation.

with
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∆E = kBTd

[(
x

xd

)−µ
− 1

]
, (6.3)

where x = J or H. kBT is the thermal activation energy, kBTd the characteristic height of
the effective pinning barriers and µ the universal creep exponent.

For magnetic field driven DW motion (x = H), a global fit of Eqs. 6.2 and 6.3 of all
the velocity curves (see Fig. 6.7 (A, B)) was done using the procedure detailed in chapter
4 [51, 22]. The depinning parameters Hd(T ) and v(Hd, T ) are fixed and correspond to
the inflection point’s coordinates. The depinning temperature Td(T ) was taken as a free
temperature dependent parameter, and creep exponent µ as a free shared parameter. The
fitted creep law is shown in figure 6.7 and presents a good agreement with experimental data.
The pinning parameters (Hd(T ), v(Hd, T ), and Td(T )) are reported in Table 6.1. For the
creep exponent, the best global fit gives µH = 0.247±0.011. This value is in good agreement
with values reported in the literature [70, 44], and with the predictions for the quenched
Edwards-Wilkinson universality class µH = 1/4 [63], with random bond and short-range
pinning.

Driving force T (K) Hd(mT ) v(Hd, T )(m/s) Td(K)
Magnetic Field 49 32.4 (0.4) 7.6 (0.4) 310 (10)

54 20.5 (0.4) 5.2 (0.2) 323 (20)
59 19.7 (0.5) 5.0 (0.4) 329 (12)

T (K) Jd(GA/m2) v(Jd, T )(m/s) Td(K)
Current density 49 8.4 (0.6) 5.1 (0.5) 439 (35)

54 4.9 (0.4) 3.5 (0.4) 349 (25)
59 3.5 (0.3) 2.3 (0.2) 296 (30)

Table 6.1: Depinning parameters of DW dynamics. Fitting parameters of Eqs. 6.2
and 6.3 for different temperature T (K). Hd and Jd are the depinning threshold for the
magnetic field and current driven DW motion, respectively. v(Hd, T ) and v(Jd, T ) are the
velocities at depinning and Td the depinning temperature.

For the current driven DW motion (x = J), the same procedure was used to fit the
velocity curves. µ = µJ was also set as a shared free parameter. The best fits (see Fig. 6.7
(B)) are obtained for the depinning parameters reported in table 6.1. The obtained creep
exponent is µJ = 0.259± 0.004. This value is in very good agreement with the one deduced
for field driven motion (µH = 0.247 ± 0.011) and with the predictions for qEW model.
Therefore, for sufficiently small tilting angle between the current direction and the normal
of the DW, the current and magnetic field driven DW motion present similar universal
behaviors which can be described by the quenched Edward-Wilkinson universality class.

Here, it is important to note that our results are strongly different from the creep
exponent reported Yamanouchi et al. [112], and DuttaGupta et al. [31], for current induced
DW motion (Ga,Mn)As and CoFeB/MgO tracks, respectively.
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For (Ga,Mn)As, the reported values are µH = 1.2 ± 0.1, and µj = 0.33 ± 0.06. The
authors argue that in this material the value of µH is compatible with random field disorder
and not with random bond disorder implying that the universality class is a different one.
However, for almost the same material (Ga,Mn)(As,P), it has been shown (See Jeudy et
al. [51] supplementary material) that the DW dynamics in the creep regime is compatible
with µH = 1.2 ± 0.1 only over a small magnetic field range while the value predicted for
a random bond disorder µH = 1/4 is compatible with experiments over the whole creep
regime. Therefore, one cannot exclude that a similar problem arises for µJ . In other words,
in order to improve the estimation of the creep exponent, it is necessary to measure the DW
velocity through the whole creep regime and, if possible be able to obtain the depinning
parameters.

For CoFeB/MgO, the value µH = 0.23 ± 0.07 is compatible with q-EW with random
bond, short range disorder. Our study indicates we should have a similar value for current
induced DW motion, while a different value is reported (µJ = 0.39±0.06). A possible origin
of the differences could be found in the methods for the determination of the exponent
(too narrow temperature and magnetic field range, fit of the data with a creep law which
only describes the very low drive regime, undiscussed fitting parameters, etc.), or in the
contribution of edge pinning, which diminishes the velocity in the creep regime and leads
to overestimation of the creep exponent [47].

6.3.2 Universal energy barriers

In order to analyze the criticality of current induced DW dynamics beyond the asymptotic
power law variation, we deduce the effective height of the pinning barrier ∆E(x, T ) from
the depinning parameters of Table 6.1. We can rewrite Eq. 6.3 as:

∆E(x) = kBT ln[v(xd, T )/v(x, T )].

In Fig. 6.8, we compare the reduced energy barrier ∆E(x)/kBTd as a function of reduced
drive (x/xd) for x = H and J .

As it can be observed, all the data collapse onto a single master curve over the whole
explored range of driving forces, (0.01 < H/Hd < 1) and (0.01 < J/Jd < 1).

This demonstrates that beyond sharing the same asymptotic behavior close to zero
drive, the criticalities of current and field induced DW motion share an equivalent universal
reduced energy barrier which describes the whole creep regime up to the depinning threshold.

6.3.3 Domain wall pinning and faceting process

We now discuss the contribution of pinning disorder to current induced creep motion and
its contribution to the faceting of DWs (see Fig. 6.1). In their letter, Moon et al. write that
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Figure 6.8: Universal energy barrier height. Reduced energy barrier height ∆E/kbTd is
a function of reduced driving forces x/xd: magnetic field H/Hd (solid symbols) and current
density J/Jd (empty symbols). The solid curve is a plot of equation 6.3 with µH = µJ = 1/4.
Inset: Universal barrier presented in semi-log scale presenting a good agreement over 3 orders
of magnitude.

"the shape of the mountains is developed by the pinning of DWs at several strong pinning
sites", which "suggests that the DW responds differently to pinning sites depending on what
the driving force is." Let us now discuss these issues.

From the values of the effective energy barrier heights kBTd, we can extract statistical
information of the pinning disorder. Indeed, kBTd reflects an average of the barriers over all
the pinning sites covered by the DW during it’s motion. As it can be observed in Table 6.1,
the values of kBTd are pretty similar for magnetic field and current density DW motion.
This suggests that the same statistical disorder controls both current and field driven DW
motion. In other words, no difference is observed in the response of DW due to pinning
disorder for the DWs aligned perpendicular to the direction of current.

For the formation of facets, figure 6.1 suggests that the "strong pinning centers" play
an important role. Here, we show that the formation of facets may occur without any
contribution of "strong" pinning centers. Let us consider the experiment summarized in Fig.
6.9.

We start from straight DWs with a normal direction −→n submitted to a current density−→
J (see Fig. 6.9 (E)). The tilting angle θ is defined by cosθ = −→n · −→J /J . The depinning
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Figure 6.9: Facet formation and critical angle. Time evolution of an initialy almost
rectangular domain (A) driven by pulses of current density of amplitude J = 11.2GA/m2

and duration ∆t = 6µs in the direction shown by the arrow. Figs. (B-E) show the successive
domain shapes after 1, 2, 3, and 4 pulses, respectively. Figs. (F-G) show the superposition
of all the DW shapes. The DW on the left, whose normal direction remains close to the
direction of the current, presents similar displacements after each current pulse (see shades
of blue in F). For the front of the rectangle, the tilting of DW increases (see shades of red in
G) without any contribution of a "strong" pinning site. At a maximum tilting angle ≈ 50◦
(see the indications in Fig. E), the DW is stopped. The difference between the velocities of
the back and the front DWs causes the collapse of the domain (not shown). This experiment
was done at T = 45K, the effective depinning current is JC = 8.4± 0.6GA/m2

condition for the DW can be deduced from a balance between a pinning force −→f d and a
driving force −→f j. The pinning force −→f d acts in the direction opposite to DW displacement
and is proportional to the effective depinning current density JC :

−→
f d ∼ −JC−→n . The
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Figure 6.10: DW displacement along the current direction. Two successive images
of domains driven by an homogenous DC current (J = 11.1GA/m2). We show in (A) the
DW normal in comparison with the direction of the current and the angle θ between the
two. (B) The successive image after applying a J = 11.1GA/m2 current pulse of duration
∆t = 1µm. We show the displacement along the direction of the current.

contribution of the electrical current is proportional to the torque exerted by STT [103],
−→
f j ∼

−→
J .

In this simple model, the variation of STT efficiency is neglected with the tilting angle
[102]. In the direction −→n , the tilting of the DW reduces the driving force (∼ Jcosθ). As a
small tilting is sufficient to reduce the DW velocity, therefore the DW orientation such that
it’s normal is parallel to the current (−→n ‖ −→J ) is unstable, i.e., no strong pinning center is
required to trigger the instability. Moreover, for a fixed bias current density J , there is a
critical angle θC defined by cosθC = JC/J above which the driving current is not sufficient
to overcome the pinning so that DW cannot move. This scenario is in qualitative agreement
with the experimental observations reported in Fig. 6.9.

In order to discuss the issues presented above in quantitative terms, we measure the
DW displacements (∆xn) in the direction −→n as a function of the tilting angle θ for a set
of images as it is shown in figure 6.10. The displacements along the direction parallel to
the current −→J and to the DW normal −→n are shown in figure 6.11 (A). We observe that the
displacement u in the direction of the current does not fluctuate from the main value more
than ∼ 2µm. In contrast, when we plot the displacement ∆xn along the DW normal, we
observe a behavior that resembles a linear decrease with the tilting angle.

In figure 6.11 (B) we show the displacement (∆xn) in the direction of −→n varying with
the difference between the cosine of the tilting angle θ and the cosine of the limit angle
θC . We observe that we can fit a straight line for the experimental curve. This result
supports the hypothesis that the force excreted over the DW behaves like the dot product
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Figure 6.11: DW displacement along the current and the DW normal direction.
(A) For the experiment shown in figure 6.10, we plot the DW’s displacement parallel to the
current density’s direction −→du (pink diamonds) and normal to the DW −−→∆xn (gray squares)
vs the local tilting angle θ between the current density −→J and the normal to the DW −→n .
(B) Displacement of tilted DWs ∆xn vs local tilting angle cosine cos(θ). The dotted line is
a linear fit of the experimental points.

of the current and the DWs normal (f ∼ −→J · −→n ). The driving force can be written as
f = Fext(J)cosθ.

97



6.4. Chapter summary Current driven domain wall motion

Moreover, for small tilting angles, we can write tgθ ' θ ' du
dx

and cosθ ' 1 − θ2/2,

and thus f ' Fext(1 − 1
2

(
∂u
∂x

)2
). At the zero order in tilting angle θ, the force is simply

f = Fext and the current driven DW motion can be described by the q-EW equation. At
second order, i.e. f ' Fext(1− 1

2

(
∂u
∂x

)2
) the equation of motion can be written as:

η
∂u

∂t
= c

∂2u

∂2x
+ Fpin + χ+ Fext −

Fext
2

(
∂u

∂x

)2
, (6.4)

which corresponds to negative q-KPZ model with λ = Fext
2 . For higher tilting angles the

motion equation should take into account the full cosine variation of the force. Neither
q-EW nor negative q-KPZ model may describe accurately current induced DW motion for
large tilting angle.

6.4 Chapter summary

We made an exhaustive study of two critical exponents: the roughness ζ and creep exponent
µ on the same sample for both magnetic field and current induced DW motion. In both
cases we obtained very close values for the two driving forces, as it is shown in table 6.2.

Driving force Roughness exponent ζ Creep exponent µ
H 0.60 ± 0.04 0.247 ± 0.011
J 0.61 ± 0.10 0.259 ± 0.004

Table 6.2: Critical exponents. Average roughness exponents ζH and ζJ over a wide range
of temperatures and creep exponents µH and µJ obtained from fitting the creep law.

The obtained critical exponents for magnetic field DW motion µH = 0.247 ± 00.011
and ζH = 0.60 ± 0.04 are in very good agreement with the theoretical predictions for the
quenched Edward-Wilkinson universality class with anharmonic corrections on the elasticity,
and with previous experimental results reported in [76, 31].

On the other hand, the critical exponents obtained for current induced DW motion are
in good agreement with the theoretical predictions for the Edward-Wilkinson universality
class. However they strongly disagree with previous experimental results. The current
driven roughness exponent obtained by Moon et al. in ref [76] (ζJ(Moon)= 0.99 ± 0.01)
agrees with the roughness exponent obtained by simulations for negative KPZ universality
class(ζnegqKPZ ∼ 1) [75]. We measured a smaller roughness exponent (ζJ = 0.61 ± 0.10).
This is in better agreement with the one measured by Moon et al. in the direction of the
DW normal (ζJ⊥ = 0.69± 0.04). The main difference between our experiment and theirs is
that the limit faceting angle in our sample is much smaller (45◦ ± 7◦) in comparison with
the one measured in Pt/Co/Pt (> 80◦) caused mainly by the interaction between the DW
elasticity and the directionality of the applied current density.
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The obtained current driven creep exponent (µJ = 0.259 ± 0.004) disagrees with the
one measured by DuttaGupta et al. (µJ(DuttaGupta)= 0.39 ± 0.06) [31]. We covered a
wider range of orders of magnitude for the current induced DW velocity and we were able
to observe the end of the creep regime in the v vs J curves, which is not observable in the
experiment performed in reference [31]. We also determined empirically the temperature
rise due to the current flow in our device. In every case (for the current densities and pulse
durations used throughout the entire v vs J curves) we determined that ∆T is negligible
for the velocity vs driving force x measurements.

As a conclusion of this section, we observe that for small faceting angles in the case of
current driven DW motion we recover the Edward-Wilkinson universality class with short
range elasticity and pinning disorder, as in the well known case of magnetic driven DW
motion.
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CHAPTER 7

Conclusions and perspectives

“Everything has to come to an end, sometime.”

L. Frank Baum, The Marvelous Land of Oz.

This thesis explores the universal behaviors of magnetic domain wall (DW) dynamics in
thin ferromagnetic films with perpendicular anisotropy. In this section we summarize
the main conclusions of the explored subjects.

7.1 Depinning transition.

We have studied the universal behaviors of the depinning transition. The DW velocity in a
Pt/Co/Pt film was measured in the range of almost two magnitude orders in temperature,
and over a magnetic field range covering the creep, depinning, and precessional flow regimes.
Our results were compared to data taken from the literature for Au/Co/Au and CoFeB films.
The DW dynamics was shown to be compatible with the predicted power law variations for
the velocity and predicted universal exponents (ψ = 0.15, and β = 0.25).

In order to go beyond the usual critical exponent analysis, we have constructed a
self-consistent model describing both the creep and depinning regimes. This model allows
distinguishing, accurately, universal from non-universal behaviors. In particular, we were
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able to extract the universal function of the depinning transition, catching both thermal
and drive effects on the domain wall velocity.

Moreover, the whole glassy dynamics (including both regimes) was shown to rely only
on three material and temperature dependent pinning parameters (Hd, vT and Td), and on
two universal functions.

Therefore, the universal behavior of domain wall dynamics covers the creep and de-
pinning regimes, i.e., from zero drive up to an upper boundary, which was found to be
non-universal. Over this magnetic field range, the dynamics can be described by the com-
petition between disorder, thermal activation, and elasticity and, therefore, it belongs to
the quenched Edwards-Wilkinson universality class.

Perspectives

The clear discrimination between universal and non-universal behaviors opens new perspec-
tives for a better understanding of pinning effects on the glassy dynamics. Indeed, our work
suggests that variations of the material pinning properties should only manifest through the
variations of effective pinning parameters (Hd, vT , and Td).

More precisely, it would be particularly interesting to explore the correlations between
the effective pinning parameters, the micromagnetic parameters (the saturation magnetiza-
tion, domain wall surface energy and thickness parameter and the Gilbert damping factor),
and the microscopic pinning parameters characterizing the weak pinning disorder (the pin-
ning strength and correlation length of the disorder). For example, obtaining an estimation
of the microscopic pinning parameters, which are not directly accessible experimentally,
would be particularly valuable for the understanding of the He+ and Ga+ ion irradiation
effects on domain wall pinning.

Moreover, a recent topic is the contribution of the Dzyaloshinskii-Moriya interaction and
of chirality of domain walls on their dynamics. Results published in the literature suggest
that the universal behavior of the creep motion is conserved [50, 54], or used [59, 65], to
accurately describe the data. In particular, the creep exponent µ remains equal to 1/4,
which means that there is no change of universality class due to chirality. Therefore, our
analysis, which is based on this universal behavior can be used to analyze the motion of
chiral domain walls. In particular, it would be interesting to study the variation of effective
pinning parameters with an in-plane magnetic field, which modifies the magnetic structure
of domain walls, typically neglected in the 1d elastic line model.
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7.2 Dimensional crossover

We have analyzed finite size effects on domain wall motion for (Ga,Mn)As and (Ga,Mn)(As,P)
magnetic films of different thicknesses ranging between 12 and 80 nm. The DW dynamics
and the roughness exponent were measured as a function of the applied magnetic field, for
different temperatures. Velocity and roughness measurement are observed to present discon-
tinuities for the same magnetic field thresholds. Below threshold, the motion is compatible
with the exponents (µ = 1/4, ζeq = 2/3 and ζdep(anh) = 0.63) predicted for the motion
of an elastic line moving in a two dimensional medium. Above threshold the results are
compatible with the exponents (µ = 1/2, ζeq = 2/5 and ζdep(anh) = 0.45) corresponding to
the motion of a surface in three dimensional medium.

This change of criticality is expected since the effective domain wall dimensionality
depends on the respective values of the film thickness and optimal length-scale (Lopt), which
decreases with increasing magnetic field. Below (Above) a magnetic field threshold, the
optimal length-scale is larger (smaller) than the film thickness and the domain wall to
behave as an elastic line (surface) in a two (three) dimensional medium.

We therefore evidenced a creep motion in three dimensions and a dimensional crossover
of the domain wall dynamics.

Perspectives

As a perspective, it would be interesting to study the depinning transition of thick films. At
zero temperature, the typical length-scale of the avalanches is predicted to diverge [95] and
then to decrease as the applied magnetic field is increased. This could lead to a dimensional
crossover of the depinning transition [95].

7.3 Current driven domain wall motion

We have addressed the controversy on criticality of current driven domain wall motion. We
performed a compared analysis of current and magnetic field driven domain wall motion
in (Ga,Mn)(As,P) films. We showed that the essential difference between the two drives is
the directionality of the driving force. A magnetic field acts as an isotropic pressure. In
contrast, when we apply an electric current, we show that the driven force is proportional
to the scalar product between the current density and the vectors normal to domain wall.
This directionality results in the formation of faceted DWs.

For a non-zero tilting angle, we showed that the equation of motion can be written
as Kardar-Parisi-Zhang minimal model. For a zero tilting angle, the critical exponents are
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similar to those obtained for magnetic field induced domain wall motion. Therefore, this
indicates that the current driven dynamics can be described by the quenched Edwards-
Wilkinson equation of motion.

Perspectives

This work shows that the directionality of force associated to the spin transfer torque plays
an important role in a universal behaviors. It would be interesting to extend the those
results to other torques, such as the spin Hall torque [104]. Another interesting topic is
the simultaneous bias with magnetic field and current. The control of domain wall motion
would allow comparing the magnitude of the force associated to a current, and to magnetic
field.

Last, we show evidences of the transient creep regime. The transient creep is also
observed in other experiments (see Yamanouchi et al. [112], for example). The transient
creep has important implications for potential application based on the controlled motion
of domain walls. However, the physics of transient creep is largely ignored.
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Titre : Comportements universels des parois de domaines magnétiques dans les ferromagnétiques minces.

Mots clés : Dynamique des parois magnétiques, régime de reptation, spintronique

Résumé : Comprendre la dynamique des parois
magnétiques est essentiel pour le développement de
technologies comme les mémoires magnétiques à
haut densité. D’un point de vue fondamental, les pa-
rois de domaines peuvent être décrites comme des
interfaces élastiques qui se déplacent dans un faible
désordre d’ancrage. Leur dynamique, dite de repta-
tion, présente des comportements universels qui sont
caractérisés par des exposants critiques dépendant
notamment de la dimensionnalité. Plus généralement,
les comportements universels sont observés dans
différents phénomènes aussi diverses que la propa-
gation des fractures en solides, des fronts de com-
bustion, des parois de domaines ferroélectriques...
La première partie de la thèse propose une ana-
lyse des comportements universels de la transi-
tion de dépiegage de parois de domaines sous
champ magnétique. La dynamique de paroi a été
étudiée sur une large gamme de températures, dans
une couche ferromagnétique ultramince de Pt/Co/Pt.
Nous avons comparé nos résultats avec ceux obte-
nus pour d’autres matériaux. Nous avons pu mettre
en évidence la fonction universelle de la transition
de dépiégeage qui rend compte des effets de champ
magnétiques et des effets thermiques.
La deuxième partie présente une étude des effets de

taille finie sur les régimes de reptation. Nous avons
mesuré les exposants critiques pour des couches de
(Ga,Mn)(As,P) de différentes épaisseurs. Nous avons
pu observer une discontinuité des exposants dits de
rugosité et de reptation. Cette discontinuité est la si-
gnature d’un changement criticité de la dynamique
qui est associé à une transition de dimensionna-
lité. Au-dessous d’un champ critique dépendant de
l’épaisseur de la couche et de la température, une pa-
roi se comporte comme une ligne élastique (d = 1) se
déplaçant dans un milieu 2D. Au-dessus du champ
critique, le mouvement de paroi correspond à celui
d’une surface (d = 2) dans un milieu 3D.
Dans la dernière partie, nous analysons la criticité du
mouvement de paroi déplacé par courant électrique
dans une couche mince de (Ga,Mn)(As,P). Nous
étudions comment varie la dynamique de paroi avec
l’angle entre la direction du courant et la normale à
la paroi. Pour un courant perpendiculaire à la pa-
roi, les exposants critiques de rugosité et de rep-
tation mesurés sont similaires à ceux obtenus sous
champ magnétique. Cela indique une compatibilité
avec la classe d’universalité dite quenched Edward-
Wilkinson. Pour un angle non-nul, la croissance de
facettes révèle une compatibilité avec la classe d’uni-
versalité quenched Kardar-Parisi-Zhang négative.



Title : Universal behaviors of magnetic domain walls in thin ferromagnets.

Keywords : Magnetic domian wall dynamics, creep regime, spintronics

Abstract : Understanding magnetic domain walls dy-
namics (DW) is crucial in order to develop technolo-
gical applications like high density memories in ferro-
magnets. From the fundamental point of view domain
walls are described as interfaces moving in a weak
pinning potential. Below the depinning threshold, DWs
move in what it is known as the creep regime, which
exhibit universal behaviors characterized by critical
exponents who depend, among other things on the di-
mensionality and geometry of the interface. More ge-
nerally, these universal behaviors are shared by dif-
ferent physical systems as diverse as propagation of
fractures in solids, combustion fronts, ferroelectric do-
main walls...
In the first part of the thesis, we address the universal
behavior of the depinning transition in domain walls
driven by magnetic field. For this purpose we mea-
sure the DW velocity as a function of magnetic field
in an ultrathin Pt/Co/Pt film and then compare our re-
sults with other materials. We reveal a universal sca-
ling function and obtain a consistent description for
both the depinning transition and the thermally activa-
ted creep regime.
In the second part of the manuscript, we study the
sample size effects on the critical exponents within the

creep regime. We use ferromagnetic (Ga, Mn)(As,P)
films of different thicknesses. We observe a disconti-
nuity in the roughness ζ and the creep µ exponents.
This discontinuity evidences a dimensional crossover
and a change in criticality in the quenched Edward-
Wilkinson model. Below a certain critical field Hc, the
DW behaves as an elastic line (d = 1) moving in a 2D
medium. Above Hc the DW motion corresponds to an
elastic interface (d = 2) moving in a 3D medium.
In the last part, we compare the thermally activa-
ted creep dynamics in domain walls driven by ma-
gnetic field and by electric current separately in a
(Ga,Mn)(As,P) thin film. We study the DW dynamical
response with the angle between the current and the
normal to the DW. When the angle between the cur-
rent and the normal to the DW is sufficiently small, the
critical exponents measured for current induced DW
motion are very similar than for field induced DW mo-
tion. This result indicates agreement with the quen-
ched Edward-Wilkinson universality class. When the
angle between the DW and the current is not negli-
gible, the DW faceting reveals compatibility with the
quenched negative Kardar-Parisi-Zhang universality
class.
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