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Résumé
Les travaux présentés dans ce mémoire concernent le développement de méthodes de pronostic à base de modèles.

Le pronostic à base de modèles a pour but d’estimer le temps qu’il reste avant qu’un système ne soit défaillant, à
partir d’un modèle physique de la dégradation du système. Ce temps de vie restant est appelé durée de résiduelle
(RUL) du système.

Le pronostic à base de modèle est composé de deux étapes principales : (i) estimation de l’état actuel de la
dégradation et (ii) prédiction de l’état futur de la dégradation. La première étape, qui est une étape de filtrage,
est réalisée à partir du modèle et des mesures disponibles. La seconde étape consiste à faire de la propagation
d’incertitudes. Le principal enjeu du pronostic concerne la prise en compte des différentes sources d’incertitude
pour obtenir une mesure de l’incertitude associée à la RUL prédite. Les principales sources d’incertitude sont les
incertitudes de modèle, les incertitudes de mesures et les incertitudes liées aux futures conditions d’opération du
système. Afin de gérer ces incertitudes et les intégrer au pronostic, des méthodes probabilistes ainsi que des méthodes
ensemblistes ont été développées dans cette thèse.

Dans un premier temps, un filtre de Kalman étendu ainsi qu’un filtre particulaire sont appliqués au pronostic
de propagation de fissure, en utilisant la loi de Paris et des données synthétiques. Puis, une méthode combinant
un filtre particulaire et un algorithme de détection (algorithme des sommes cumulatives) a été développée puis
appliquée au pronostic de propagation de fissure dans un matériau composite soumis à un chargement variable.
Cette fois, en plus des incertitudes de modèle et de mesures, les incertitudes liées aux futures conditions d’opération
du système ont aussi été considérées. De plus, des données réelles ont été utilisées. Ensuite, deux méthodes de
pronostic sont développées dans un cadre ensembliste où les erreurs sont considérées comme étant bornées. Elles
utilisent notamment des méthodes d’inversion ensembliste et un observateur par intervalles pour des systèmes
linéaires à temps discret. Enfin, l’application d’une méthode issue du domaine de l’analyse de fiabilité des systèmes
au pronostic à base de modèles est présentée. Il s’agit de la méthode Inverse First-Order Reliability Method (Inverse
FORM).

Pour chaque méthode développée, des métriques d’évaluation de performance sont calculées dans le but de
comparer leur efficacité. Il s’agit de l’exactitude, la précision et l’opportunité.

Mots clés : Pronostic à base de modèles, filtrage, propagation d’incertitudes, filtres stochastiques,

méthodes ensemblistes, analyse de fiabilité, propagation de fissure.

Abstract
In this manuscript, contributions to the development of methods for on-line model-based prognosis are presented.

Model-based prognosis aims at predicting the time before the monitored system reaches a failure state, using a
physics-based model of the degradation. This time before failure is called the remaining useful life (RUL) of the
system.

Model-based prognosis is divided in two main steps: (i) current degradation state estimation and (ii) future
degradation state prediction to predict the RUL. The first step, which consists in estimating the current degradation
state using the measurements, is performed with filtering techniques. The second step is realized with uncertainty
propagation methods. The main challenge in prognosis is to take the different uncertainty sources into account in
order to obtain a measure of the RUL uncertainty. There are mainly model uncertainty, measurement uncertainty
and future uncertainty (loading, operating conditions, etc.). Thus, probabilistic and set-membership methods for
model-based prognosis are investigated in this thesis to tackle these uncertainties.

The ability of an extended Kalman filter and a particle filter to perform RUL prognosis in presence of model and
measurement uncertainty is first studied using a nonlinear fatigue crack growth model based on the Paris’ law and
synthetic data. Then, the particle filter combined to a detection algorithm (cumulative sum algorithm) is applied to
a more realistic case study, which is fatigue crack growth prognosis in composite materials under variable amplitude
loading. This time, model uncertainty, measurement uncertainty and future loading uncertainty are taken into
account, and real data are used. Then, two set-membership model-based prognosis methods based on constraint
satisfaction and unknown input interval observer for linear discete-time systems are presented. Finally, an extension
of a reliability analysis method to model-based prognosis, namely the inverse first-order reliability method (Inverse
FORM), is presented.

In each case study, performance evaluation metrics (accuracy, precision and timeliness) are calculated in order
to make a comparison between the proposed methods.

Keywords: Model-based prognosis, filtering, uncertainty propagation, stochastic filter, set-membership

framework, reliability analysis, fatigue crack growth.





À mon père, ma mère, mes frères, et ma moitié.

«Le hasard gouverne un peu plus de la moitié
de nos actions, et nous dirigeons le reste.»

Nicolas Machiavel

iii





Remerciements

Je tiens tout d’abord à remercier les rapporteurs de ma thèse, Louise Travé-
Massuyès et Vicenç Puig, dont les conseils et remarques m’ont permis d’améliorer
celui-ci et de préparer ma soutenance avec confiance. Merci également aux autres
membres de mon jury dont les remarques et questions ont permis de souligner l’intérêt
de mon travail ainsi que les perspectives d’améliorations de celui-ci. Merci donc
à Didier Theilliol pour ses remarques très intéressantes mais également pour avoir
présidé mon jury de thèse, merci à Philippe Goupil pour son point de vue qui a
permis de raccrocher mon travail aux enjeux industriels actuels, et enfin merci à
Kamal Medjaher pour ses précieux conseils grâce à son expérience approfondie dans
le domaine du pronostic.

Je me dois ensuite de remercier Pascal Paulmier, Jean-François Maire, Myriam
Kaminski et Jean-Michel Roche, chercheurs au département Matériaux et Structures
DMAS de l’Onera. Grâce aux données que vous m’avez fournies et à votre expertise
dans le domaine des matériaux, j’ai pu compléter ma thèse avec une application très
intéressante.

Je tiens ensuite à exprimer ma gratitude envers mon directeur de thèse Tarek
Raïssi, et mon encadrant de thèse Julien Marzat, duo sans lequel tout ce travail
n’aurait jamais vu le jour. Merci à vous pour votre présence, vos conseils, votre
confiance et votre patience qui m’ont permis de commencer, de continuer, et de
terminer ces trois années de thèse dans une très bonne ambiance. Je vous suis
également très reconnaissante car à votre contact, mon intérêt pour la recherche s’est
développé petit à petit, et grâce à vous j’ai pris confiance en moi, qui ne me voyait
même pas faire une thèse il y a quelques années. Merci !

Merci également aux doctorants et stagiaires de l’ONERA avec qui j’ai vécu de
bons moments durant la thèse. Un spécial merci à Romain et Vincent, avec qui j’ai
partagé ces trois années.

Enfin, merci à mes proches, c’est à dire mes parents, mes frères, mon chéri, et à
ma grande famille, pour leur soutien sans lequel je n’aurais pas pu accomplir tout
cela.

v





Contents

Remerciements v

Contents vii

List of Figures xi

List of Tables xv

Publications of the author 1

Introduction 3

1 Prognosis and uncertainty propagation 9
1.1 Prognosis approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.1.1 Data-driven approaches . . . . . . . . . . . . . . . . . . . . . 11
1.1.2 Model-based approaches . . . . . . . . . . . . . . . . . . . . . 15
1.1.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.2 Model-based prognosis . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.2.1 Principle of model-based prognosis . . . . . . . . . . . . . . . 24
1.2.2 Uncertainty in model-based prognosis . . . . . . . . . . . . . . 25

1.3 Performance evaluation metrics . . . . . . . . . . . . . . . . . . . . . 28
1.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2 Filtering methods for prognosis with stochastic assumptions 31
2.1 Recursive Bayesian filtering . . . . . . . . . . . . . . . . . . . . . . . 31

2.1.1 Stochastic methods . . . . . . . . . . . . . . . . . . . . . . . . 32
2.1.2 Recursive Bayesian estimation principle . . . . . . . . . . . . . 32

2.2 Extended Kalman filter . . . . . . . . . . . . . . . . . . . . . . . . . . 33

vii



Contents

2.2.1 Current degradation state estimation with the EKF . . . . . . 34
2.2.2 Future degradation state estimation with the EKF . . . . . . 34

2.3 Particle filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.3.1 Current degradation state estimation with the PF . . . . . . . 36
2.3.2 Future degradation state estimation with the PF . . . . . . . 37

2.4 Fatigue crack growth prognosis using an EKF and a PF . . . . . . . . 37
2.4.1 Fatigue crack growth model . . . . . . . . . . . . . . . . . . . 37
2.4.2 Simulation settings . . . . . . . . . . . . . . . . . . . . . . . . 38
2.4.3 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3 Particle filter for fatigue crack growth prognosis in composite ma-
terials 49
3.1 Future loading uncertainty in fatigue crack growth prognosis . . . . . 50
3.2 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2.1 Material and experimental procedures . . . . . . . . . . . . . . 52
3.2.2 Description of the crack propagation model . . . . . . . . . . . 55

3.3 Fatigue crack growth prognosis with a particle filter for joint parameter-
state estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.3.1 Two-sided CUSUM algorithm . . . . . . . . . . . . . . . . . . 58
3.3.2 Prognosis methodology with the particle filter and the detection

algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.4 Numerical applications . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.4.1 Unknown model parameters m and C . . . . . . . . . . . . . . 60
3.4.2 Unknown loading parameters ∆σa and ∆P . . . . . . . . . . . 65

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4 Set-membership framework for model-based prognosis 73
4.1 Set-membership methodology using constraint satisfaction . . . . . . 74

4.1.1 Interval techniques . . . . . . . . . . . . . . . . . . . . . . . . 75
4.1.2 Damage estimation and RUL prediction . . . . . . . . . . . . 76
4.1.3 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.1.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.2 Unknown input interval observer for prognosis of discrete-time linear
systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

viii



Contents

4.2.1 Unknown input interval observer for joint state and unknown
input estimation . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.2.2 Interval observer design for state and unknown input estimation 89
4.2.3 Model-based prognosis using an unknown input interval observer 95

4.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5 Reliability method for prognosis 109
5.1 From reliability analysis to prognosis . . . . . . . . . . . . . . . . . . 110

5.1.1 Basics of reliability analysis . . . . . . . . . . . . . . . . . . . 110
5.1.2 RUL calculation: an uncertainty propagation problem . . . . . 111

5.2 Inverse First-Order Reliability Method for RUL calculation . . . . . . 113
5.2.1 First-order reliability method (FORM) . . . . . . . . . . . . . 113
5.2.2 Inverse FORM for RUL calculation . . . . . . . . . . . . . . . 116

5.3 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
5.3.1 Explicit model of the RUL . . . . . . . . . . . . . . . . . . . . 118
5.3.2 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

Conclusion and perspectives 125

References 129

Appendix 145

A Appendix of Chapter 4 145

B Résumé français 149
B.1 Filtre de Kalman étendu et filtre particulaire pour le pronostic . . . . 151

A Filtre de Kalman étendu et filtre particulaire . . . . . . . . . . 152
B Application au pronostic de propagation de fissure avec la loi

de Paris . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
B.2 Pronostic de propagation de fissure dans un matériau composite soumis

à un chargement inconnu d’amplitude variable . . . . . . . . . . . . . 157
A Modèle de propagation de la fissure . . . . . . . . . . . . . . . 157
B Pronostic de propagation de fissure avec un chargement constant158

ix



Contents

C Pronostic de propagation de fissure avec une variation brusque
de chargement . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

B.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

x



List of Figures

1.1 Prognosis process scheme . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.2 Timeliness metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.1 Principle of the SIR particle filter . . . . . . . . . . . . . . . . . . . . 36
2.2 Results obtained with the EKF at Np = 1200 cycles . . . . . . . . . . 41
2.3 1000 particle trajectories for Np = 1200 cycles . . . . . . . . . . . . . 42
2.4 Results obtained with the PF with Npart = 100 particles and Np = 1200

cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.5 Results obtained with the PF with Npart = 500 particles and Np = 1200

cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.6 Results obtained with the PF with Npart = 1000 particles and Np =

1200 cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.7 RUL PDF obtained with the PF with Npart = 1000 particles and

Np = 1200 cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.8 Results of 100 experiments obtained with an EKF . . . . . . . . . . 45
2.9 Results of 100 experiments obtained with a PF . . . . . . . . . . . . 45
2.10 EKF RUL PDF for 100 experiments . . . . . . . . . . . . . . . . . . . 46
2.11 PF RUL PDF for 100 experiments . . . . . . . . . . . . . . . . . . . 46

3.1 Schematic of the specimen showing the dimensions and the loading
axis parallel to fiber direction . . . . . . . . . . . . . . . . . . . . . . 53

3.2 Photography of the specimen with a crack perpendicular to fiber
direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3 The closure pressure in the crack wake . . . . . . . . . . . . . . . . . 54
3.4 Crack growth prognosis with the EKF at Np = 1.198 × 105 cycles . . 63
3.5 Crack growth prognosis with the EKF at Np = 2.794 × 105 cycles . . 63
3.6 Crack growth prognosis with the EKF at Np = 3.542 × 105 cycles . . 63

xi



List of Figures

3.7 Crack growth prognosis with the PF at Np = 1.198 × 105 cycles . . . 64
3.8 Crack growth prognosis with the PF at Np = 2.794 × 105 cycles . . . 64
3.9 Crack growth prognosis with the PF at Np = 3.542 × 105 cycles . . . 64
3.10 Crack length evolution at Np = 7.702 × 106 cycles . . . . . . . . . . . 66
3.11 Estimation of ∆P and ∆σa at Np = 7.702 × 106 cycles . . . . . . . . 66
3.12 Evolution of the crack length at different prediction cycles Np without

the detection algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.13 Evolution of the crack length at different prediction cycles Np without

the detection algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.14 Abrupt change in ∆σa and ∆P after load variation . . . . . . . . . . 69
3.15 Evolution of the crack length at different prediction cycles Np with

the detection algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.16 Evolution of the crack length at different prediction cycles Np with

the detection algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.1 Estimation of the feasible domain of m and log(C) with VSIVIA . . . 80
4.2 Crack size bounds estimation with the measurements . . . . . . . . . 80
4.3 Crack size bounds prediction and estimation . . . . . . . . . . . . . . 82
4.4 Quarter-car suspension model . . . . . . . . . . . . . . . . . . . . . . 96
4.5 Road surface excitation . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.6 State estimation (vertical displacements x1 and x2) . . . . . . . . . . 100
4.7 Estimation of the bounds of the unknown input d . . . . . . . . . . . 101
4.8 Estimation of the bounds of the stiffness degradation k1 . . . . . . . . 102
4.9 Zoom on k1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.10 Estimation of the bounds of the degradation ξ . . . . . . . . . . . . . 103
4.11 Estimation of ξ bounds with the measurements . . . . . . . . . . . . 104
4.12 Degradation ξ bounds estimation and prediction at time cycle Np =

0, 20 × 106 cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.13 Degradation ξ bounds estimation and prediction at time cycle Np =

1, 90 × 106 cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.14 Degradation ξ bounds estimation and prediction at time cycle Np =

2, 99 × 106 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.1 CDF and Inverse CDF . . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.2 Computation of a RUL CDF value with both FORM and Inverse FORM115

xii



List of Figures

5.3 RUL CDF generated with values of Pf from 0.001 to 0.99 every 0.001
steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.4 RUL CDF generated with values of Pf from 0.001 to 0.99 every 0.05
steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.5 RUL CDF generated with values of Pf from 0.001 to 0.99 every 0.1 steps122
5.6 Evolution of the RUL in time with the 99% bounds . . . . . . . . . . 122
5.7 Results of 100 experiments obtained with Inverse FORM . . . . . . . 123

B.1 Prognosis process scheme . . . . . . . . . . . . . . . . . . . . . . . . . 150
B.2 Résultats pour l’EKF . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
B.3 Résultats pour le PF . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
B.4 Tracé des trajectoires des 1000 particules . . . . . . . . . . . . . . . . 156
B.5 Estimation et prédiction de la longueur de fissure et des paramètres

de chargement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
B.6 Estimation et prédiction de la longueur de fissure et des paramètres

de chargement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
B.7 Estimation et prédiction de la longueur de fissure et des paramètres

de chargement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

xiii





List of Tables

2.1 True model parameters to generate the synthetic data . . . . . . . . . 38
2.2 Initial distribution of the random variables . . . . . . . . . . . . . . . 39
2.3 Performance evaluation results . . . . . . . . . . . . . . . . . . . . . . 47

3.1 Crack growth trajectories dataset provided by ONERA/DMAS . . . . 54
3.2 Distributions of random parameters for the estimation of m and C . . 61
3.3 Performance evaluation results for the estimation of m and C . . . . 62
3.4 Distributions of random parameters for the estimation of ∆σa and ∆P 65
3.5 Performance evaluation results for the estimation of ∆σa and ∆P . . 71

4.1 Calculated RUL interval . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.2 Performance evaluation results . . . . . . . . . . . . . . . . . . . . . . 82
4.3 Values of the model parameters . . . . . . . . . . . . . . . . . . . . . 98
4.4 Calculated RUL intervals . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.5 Performance evaluation results . . . . . . . . . . . . . . . . . . . . . . 107

5.1 Performance evaluation results . . . . . . . . . . . . . . . . . . . . . . 123

B.1 True model parameters to generate the synthetic data . . . . . . . . . 155
B.2 Initial distribution of the random variables . . . . . . . . . . . . . . . 155
B.3 Evaluation des performances . . . . . . . . . . . . . . . . . . . . . . . 157

xv





Publications of the author

Journal

1. Robinson, E., Marzat, J., and Raïssi, T. (2018). Filtering and uncertainty
propagation methods for model-based prognosis of fatigue crack growth in
unidirectional fiber-reinforced composites. In ASCE-ASME Journal of Risk
and Uncertainty in Engineering Systems.

2. Robinson, E., Marzat, J., and Raïssi, T. (Submitted in 2018). Prognosis of
uncertain linear time-invariant discrete systems using unknown input interval
observer. Submitted to International Journal of Control.

International conferences

1. Model-based prognosis algorithms with uncertainty propagation: application
to fatigue crack growth. Robinson, E., Marzat, J., and Raïssi, T. (2016). In
3rd Conference on Control and Fault-Tolerant Systems (SysTol’16), 443-450.
Barcelona, Spain.

2. Model-based prognosis using an explicit degradation model and Inverse FORM
for uncertainty propagation. Robinson, E., Marzat, J., and Raïssi, T. (2017).
In 20th IFAC World Congress, 50(1), 14242-14247. Toulouse, France.

3. Interval observer design for unknown input estimation of linear time-invariant
discrete-time systems. Robinson, E., Marzat, J., and Raïssi, T. (2017). In 20th
IFAC World Congress, 50(1), 4021-4026. Toulouse, France

4. Model-based prognosis of fatigue crack growth under variable amplitude loading.
Robinson, E., Marzat, J., and Raïssi, T. (2018). In 10th IFAC Symposium on
Fault Detection, Supervision and Safety for Technical Processes (SAFEPRO-
CESS 2018)

1





Introduction

Context

With the increasing competition in aircraft industry, manufacturers engaged in
a fierce commercial battle which drove them to find an optimum balance between
aircraft performance and cost-effectiveness. However, users safety and mission success
remain of prime importance and should be taken into account as well. To this end,
the implementation of optimized maintenance strategies under cost, availability and
safety constraints has become a priority for many industrials.

There exist two major types of maintenance strategies: reactive maintenance and
proactive maintenance. Reactive maintenance is performed after the occurrence of
failures, while proactive maintenance is performed before the onset of failures.

Reactive maintenance, also known as corrective maintenance, consists in repairing
or replacing the failed equipment. Therefore, costs and investment required to
implement a maintenance program are minimized. However, unexpected failures
can lead to a significant loss of revenue because of downtime, equipment, and labor
costs. Moreover, it is an inefficient use of time as maintenance staff is forced to work
overtime or to stop their current activities in order to fix the problem. For all these
reasons, this kind of maintenance strategy is restricted to inexpensive components
that are easy to replace and whose failure does not involve safety issues.

Proactive maintenance is particularly used on the critical components of the
system and is performed while the latter is still working. The risk of failures are
anticipated and eliminated to avoid unexpected system breakdown. With such a
strategy, the cost and safety issues encountered by applying a reactive maintenance
strategy could be minimized [Mobley 2002]. Proactive maintenance policies can be
classified into three categories: preventive maintenance, condition-based maintenance
and predictive maintenance. Each of these policies is governed by a decision variable
that is used to trigger the maintenance procedure.

Preventive maintenance is regularly performed following a predefined schedule,
time is therefore the decision variable. Periodic inspections, repairs or replacement
are realized on equipments that were previously selected, even if no fault has been
detected. The planning is established from equipment history, reliability analysis
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and mean time between failures (MTBF). It may be noted that even if time is the
most frequently used unit of measurement, depending on the situation this may be
the number of cycles, the distance traveled, the number of flights, etc. However,
this maintenance approach is not optimal because in some cases the equipments ar
replaced either too early or too late, therefore increasing the costs.

Condition-based maintenance relies on condition-monitoring which consists in
monitoring indicators that reflect the current health state of in-service equipment. It
allows to determine if the performance of one or more components is deteriorating,
which is a sign of future failure. The system is maintained in-service until one or
more indicators reach a predefined threshold, which triggers maintenance actions.
Each of these thresholds correspond to a decision variable. The indicators depend
on the system and can be observed through different processes: vibration analysis,
oil analysis (measure the number and size of particles), acoustic measurements
(detection of gas or liquid leaks), electrical measurements (motor current), etc.
Therefore, condition-based maintenance enables one to repair faulty equipment and
not prematurely as in preventive maintenance. However, the moment at which a
failure occurs is uncertain, if not unknown. It would be more efficient to know this
time in order to keep equipments working as long as possible.

Predictive maintenance also involves condition-monitoring and solves the afore-
mentioned problem related to condition-based maintenance. Indeed, it takes a step
further by forecasting the evolution of the health indicators and estimating when
they will cross a critical threshold causing the system failure. The time available
until the monitored component no longer behaves properly is its remaining useful
life (RUL). Maintenance is triggered depending of the estimated RUL, which is thus
the decision variable. In this way, maintenance staff could schedule when exactly an
operation shall be initiated, which means neither too early nor too late. This allows
to reduce unnecessary preventive actions and to increase system reliability. Therefore,
predictive maintenance is the perfect candidate for an optimized maintenance strategy
under cost, availability and safety constraints.

Predicting the evolution of the system degradation and estimating its RUL is the
core of predictive maintenance, and is referred to as prognosis [Vachtsevanos et al.
2006]. The work presented in this thesis is a contribution to this research field.

Problem statement
Prognosis methods are usually classified into three categories [Liu et al. 2009]:

knowledge-based, data-driven and model-based. In the knowledge-based approaches,
expert judgment, historical and empirical failure data are used to deduce the RUL.
Data-driven approaches extract features from operating data such as current, tem-
perature, or vibration signals, and then employ statistical and machine learning
techniques to estimate the RUL. Finally, model-based prognosis approaches compute
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an estimation of the RUL by using a physics-based mathematical model of the system
degradation.

Based on the available knowledge about the system, one can choose among these
three approaches or combine them. Moreover, various prognosis approaches can even
be applied within the same system, depending on the considered subsystem. Data-
driven approaches are the most used ones in the literature [Lee et al. 2017]. Indeed,
the degradation models are built on the basis of available data and machine learning
methods (neural networks, Gaussian processes, support vector regressions, fuzzy
logic, etc.). Therefore, whatever the system or subsystem under study, data-driven
techniques can always be applied as long as enough sensors and data are accessible.
However, when a physics-based model of the system is available, a model-based
approach is recommended. Indeed, the ability of model-based methods to adapt the
model to the evolution of the system degradation ensures an accurate prognosis when
more information about the degradation becomes available. Moreover, it avoids the
recording and storage of a massive amount of data. In this context, this thesis is
focused on model-based prognosis approaches.

One major challenge in model-based prognosis is the measure of the uncertainty
affecting RUL prediction [Sankararaman 2015]. Indeed, because of cost and safety
issues, the predicted RUL must be as reliable as possible to allow risk-based decisions.
For this purpose, prognosis methods should account for the different uncertainty
sources that affect the estimation of the current and future health state of the system.
The main types of uncertainty that inevitably influence RUL prediction are measure-
ment uncertainty, modeling uncertainty and future loading uncertainty. Measurement
uncertainty is due to sensor inaccuracy, modeling uncertainty is characterized by the
difference between the degradation model and its real behavior, and future loading
uncertainty is caused by various environmental factors that could possibly affect the
evolution of the degradation. In order to deal with these uncertainties, appropriate
uncertainty representation and uncertainty propagation techniques should be chosen.
Depending on the desired modeling and simulation framework, one can choose among
various approaches [Ayyub and Klir 2006] which are for example based on interval
analysis, fuzzy set theory, probability theory, etc.

In the literature, modeling and measurement uncertainty are mainly handled
with probabilistic methods. The random variables are represented using probability
distributions. Particle filtering-based techniques are commonly used as they can deal
with nonlinearities. However, Monte-Carlo simulation-based approaches require huge
computational efforts and are not therefore practicable for online RUL prediction.

As regards future loading conditions uncertainty, they are not always taken into
account. When it is the case, high computational time methods such as finite element
models are involved. Moreover, in order to reduce computational time, the models
are often linearized or simplified through the use of a surrogate model. However,
these procedures tend to increase modeling uncertainty.
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Objective and outline of the thesis
Based on the aforementioned insights, the objective of this thesis is to adapt

different uncertainty propagation methods to model-based prognosis. These methods
are suitable for online RUL prediction and the problem of future loading uncertainty
is handled without any computational expensive technique. To demonstrate the
efficiency of the proposed methodologies, various degradation mechanisms from linear
to nonlinear ones are considered.

In order to highlight the contributions of this work, the following outline was
adopted:

• Chapter 1: A detailed presentation of prognosis principles is given. The ob-
jective of this chapter is to provide a comprehensive overview of the main issues
and challenges to consider when developing model-based prognosis methods.

• Chapter 2: Two classical filtering-based methods, namely an extended Kalman
filter (EKF) and a particle filter (PF), are investigated in the framework of
nonlinear fatigue crack growth prognosis based on the Paris’ law and synthetic
data. This example is widely used in the literature as it is an interesting test
case for aerospace industry. Although the chosen case study and methods are
classical, the aim of this chapter is to:

1. clearly establish each step of the prognosis process,
2. understand how to implement and to interpret the proposed prognosis

performance evaluation metrics (accuracy, precision and timeliness),
3. identify the challenges involved in RUL prediction, both when estimating

the current degradation state and during its future state prediction.

Generally speaking, this chapter has allowed the establishment of an improved
model-based prognosis method based on particle filtering that takes loading
uncertainty into account.

• Chapter 3: Based on the knowledge gained in Chapter 1, a more realistic case
study that takes loading uncertainty in addition to modeling and measurement
uncertainty is presented. Two scenarios where the system is subject to both
constant and variable unknown and unmeasured input loading is considered.
The proposed methodology allows to jointly estimate the degradation state and
the loading parameters. For this purpose, a particle filter and a cumulative
sum (CUSUM) algorithm are combined to deal with potential abrupt changes
in the estimated loading parameters values. To illustrate the efficiency of the
method, fatigue crack growth prognosis in fiber-reinforced composite materials
is performed and real data from fatigue tests are used. The contributions in
this chapter are interesting not only for the prognosis research field but also
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for the aerospace industry. Indeed, composite materials are widely used for
aircraft structures, and the estimation and prediction of unmeasured loading
conditions is an essential task that considerably improves the applicability of a
prognosis algorithm. Moreover, neither computationally expensive technique
such as finite element method nor surrogate models that leads to additional
uncertainty were introduced. Although the results obtained with the particle
filtering-based method are satisfactory, another kind of uncertainty propagation
method is investigated in the next chapter.

• Chapter 4: In this chapter, two set-membership state estimation techniques
based on interval analysis are applied to the problem of RUL prognosis. In
this context, uncertainty propagation is performed without any stochastic
assumption and only the bounds of the noises and disturbances are required.
This allows the estimation of the degradation state in a guaranteed way.
In the first approach, a set-membership methodology using constraints satisfac-
tion is adopted to estimate and then forecast the degradation state. For this
purpose, the feasible domain of the model parameters is first estimated based
on the available measurements and the Waltz filtering algorithm. Then, using
the natural inclusion function of the degradation model and the projection of
the outer approximation of the feasible domain of the parameters, the future
degradation behavior is predicted and the interval that contains the RUL of
the system is finally computed. The proposed methodology is illustrated using
the same nonlinear crack growth example as in Chapter 2.
The second method belongs to the category of set-membership observers. In
this case, the degradation cannot be directly measured. It is considered as a
disturbance that affects the system dynamics and is referred to as an unknown
input. Thus, an unknown input interval observer for linear time-invariant
discrete systems is proposed for the first time to tackle joint state and unknown
input estimation. Once the bounds of the degradation state are reconstructed,
they are propagated through time to obtain the interval containing the RUL
of the system. The efficiency of the prognosis method is demonstrated on
a suspension system subject to crack propagation that affects its stiffness
constant.

• Chapter 5: In this chapter, another kind of uncertainty propagation method
based on probability theory is presented. Indeed, Monte Carlo simulation-based
approaches require huge computational efforts and are time consuming. An
alternative to sampling-based methods, namely the inverse first-order reliability
method (Inverse FORM), is then proposed. This is an analytical method
originally developed in the structural reliability analysis field, which aims at
evaluating the failure probability of a structure. Here, a method to compute the
RUL probability density function (pdf) based on the Inverse FORM algorithm
is proposed. This methodology can be applied if an expression of the RUL
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derived from the explicit dynamical degradation model is available. In a first
step, a filter is employed for the estimation of the current degradation state with
the available measurements. Then, the Inverse FORM algorithm is used to find
for which parameter values the system fails, with reference to a specified failure
probability level. Finally, these parameter values and the explicit expression
of the RUL allow to calculate the desired percentiles of the RUL pdf in terms
of the cumulative distribution function according to the user’s requirements.
The proposed methodology is less time consuming as the computation of the
entire pdf of the RUL is not required, and there is no need to propagate the
model equation step by step until the threshold is reached. For the sake of
illustration, the crack growth model presented in Chapter 2 is used again.

• Chapter 6: A general conclusion which can be drawn from the work presented
in this thesis and discusses potential future work arising from this research is
proposed in this last chapter.
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Chapter 1

Prognosis and uncertainty
propagation

Critical systems such as an aircraft or a spacecraft are made of complex compo-
nents whose malfunction and failure could have unacceptable impacts on the users
safety, the mission success and the costs related to maintenance operations. To
address these safety and cost issues, a prognosis module should be integrated to
these systems in order to continuously assess their state of health and estimate their
remaining useful life (RUL). Thus, prognosis is gaining more and more importance
in structural and health monitoring (SHM) systems, in condition-based maintenance
(CBM) systems and more recently in prognosis and health management (PHM)
architectures [Tinga and Loendersloot 2014].

In this chapter, a review on existing prognosis approaches is provided first. Then,
a focus on model-based prognosis methods is made. Finally, performance evaluation
metrics that are used all along this thesis to evaluate the proposed prognosis methods
are given.

1.1 Prognosis approaches

Prognosis aims at estimating the remaining useful life (RUL) of a system, which
is the time available until this latter reaches a failure state. Because of the safety
and cost benefits involved in adopting a predictive maintenance strategy, prognosis
has become an increasingly popular research field. Thus, prognosis methods arising
from various research areas have emerged these last few decades. Although all of
these methods aim at computing the RUL of a system, they can be distinguished by
the type of tools and models that are used.

Many prognosis methods classifications have been proposed, but the one that is
both the oldest and the most common identifies three main prognosis approaches
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Chapter 1. Prognosis and uncertainty propagation

[Lebold and Thurston 2001; Liu, Yu, Zhang, and Li 2009]: knowledge-based
approaches, data-driven approaches and model-based approaches.

In knowledge-based approaches [Biagetti 2004], the actual situation is compared
to historical failure database or design recommendations of the system considered
under similar operating conditions in order to predict the RUL of the system. For this
purpose, expert and fuzzy systems are commonly used. Data-driven approaches [Si,
Wang, Hu, and Zhou 2011] explore data collected from sensors (current, temperature,
vibration signals, etc.) to extract features which will then be used to model the
degradation behavior. Statistical and artificial intelligence techniques are used to
track, approximate and forecast the evolution of the degradation state. Finally,
model-based approaches [Luo, Namburu, Pattipati, Qiao, Kawamoto, and Chigusa
2003] rely on a physics-based model of the degradation to assess the RUL of the
system.

Each of these approaches has its advantages and drawbacks. Knowledge-based
approaches are easy to implement, but frequent updates are required as new forms of
faults that are not yet listed in the database can occur. Moreover, it could be difficult
in some cases to convert expert domain knowledge into rules. Data-driven approaches
have the ability to transform high-dimensional noisy data into lower-dimensional
information for prognosis decisions. However, they are highly-dependent on the
quantity and quality of operational data and therefore require a significant storage
space. Model-based prognosis approaches can be difficult to set up as a physics-based
degradation model is seldom available. However, when it is the case, they can be
particularly effective. Indeed, their ability to incorporate physical knowledge of
the system (operational conditions such as temperature, etc.) allows continuous
observation of their effect on the system behavior.

The choice of the approach to use will depend on the knowledge about the system
behavior, its degradation mechanisms, the available data, or also on the knowledge
domains of the user. Depending on the available information, it may be interesting
to combine different prognosis approaches in order to benefit from the advantages of
each. Such strategy has led to the introduction of a new class of prognosis approaches,
namely hybrid approaches. As a matter of fact, a new classification of prognosis
approaches has been increasingly considered by the PHM community [Lee, Wu,
Zhao, Ghaffari, Liao, and Siegel 2014; Medjaher 2014]: data-driven approaches,
model-based approaches and hybrid approaches.

A review of the prognosis methods developed in the context of data-driven and
model-based approaches is given in the following. Hybrid approaches are not discussed
as they are not yet widespread in the literature, but the interested reader may for
example consult [Zio and Di Maio 2012] or [Daroogheh, Baniamerian, Meskin, and
Khorasani 2015] to have an overview of such approaches.
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1.1.1 Data-driven approaches

Data-driven methods use condition monitoring data and historical run-to-failure
data in order to track, estimate and predict the degradation state. It is performed
by first learning the degradation model with a so-called training dataset. Then, the
learned model is used to estimate the current degradation state and predict the
RUL of the system. For this purpose, statistical and artificial intelligence techniques
can be used. Statistical techniques mainly include Hidden Markov Models (HMM)
and regression models based on relevance/support vector machine (RVM/SVM) or
Gaussian Process (GP) regression, while for artificial intelligence techniques, Neural
Networks (NN) is the most commonly used one for data-driven prognosis [An, Kim,
and Choi 2015].

In the following, some data-driven prognosis methods are presented in order
to have an overview of how data-driven prognosis is performed. As data-driven
prognosis is not the main topic of this thesis, the interested reader may refer to [Si,
Wang, Hu, and Zhou 2011] or [An, Choi, and Kim 2013a] to have a detailed review
of the existing data-driven prognosis approaches.

SVM and RVM. In [Caesarendra, Widodo, and Yang 2010], a methodology
combining logistic regression (LR) and RVM is developed for the prognosis of bearing
degradation, using vibration data. The first step consists in extracting a feature
that characterizes the degradation evolution. Kurtosis of the vibration data was
chosen. After feature calculation, LR is applied to estimate the failure probability
of run-to-failure bearing data. Then, RVM is trained by input data obtained from
kurtosis and target vector of failure probability. For this purpose, Gaussian kernel
and appropriate kernel-width are used to achieve optimized training process and
thus obtain the best model of RVM. Finally, RVM is employed to predict the failure
time of the bearing. Simulated and experimental data downloaded from Prognostics
Center of Excellence (PCoE) are used to validate the performance of the proposed
method, which gives satisfactory results.

[Patil, Tagade, Hariharan, Kolake, Song, Yeo, and Doo 2015] proposed a two-
stage approach (classification and regression) for Li-ion battery state pf health (SOH)
prognosis. The first stage consists in giving a rough estimate of the RUL using a
SVM classification model. Then, based on the results obtained during this first stage,
an accurate RUL estimate is computed using a regression model based on support
vector regression (SVR). In order to build the classification and regression models, a
reduced set of features extracted from voltage and temperature data is used as input
variable. Moreover, a multi-layer perceptron based kernel is chosen. The performance
of the proposed approach is demonstrated with the PCoE battery cycling data. The
results are satisfactory because the the addition of the classification stage enabled the
authors to obtain a more accurate RUL estimate and to reduce computational time
as the regression is performed on a reduced number of data. Moreover, the algorithm
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allows simultaneous RUL estimation of multiple batteries. However, the authors
have highlighted some drawbacks of the method: the accuracy highly depends on
the number of data available for training, and the model is trained off-line. Indeed,
developing an on-line learning strategy could improve the model when new data is
collected.

In the literature, other data-driven prognosis approaches using SVM or RVM have
been applied to various systems. For example, [Benkedjouh, Medjaher, Zerhouni,
and Rechak 2015] have used nonlinear feature reduction and SVR to predict the
RUL of cutting tools in order to maintain a high quality of the manufactured pieces.
In [Chang, Kang, and Pecht 2017], a RVM regression model was used to predict the
RUL of light-emitting diodes (LEDs).

Gaussian Process (GP). In [Liu, Pang, Zhou, and Peng 2012], a methodology
for lithium-ion battery prognosis based on GP regression is presented. The authors
proposed first to tackle the self-recharge phenomena during the battery lifetime.
For this purpose, they selected a covariance function which is a combination of
the periodic and diagonal squared exponential covariance functions. Then, they
addressed the problem of improving the precision of the prediction when only few
data are available. Thus, they adopted a dynamic model approach which consists
in updating the GP model when new data are recorded. The methodology was
tested using datasets from the PCoE, and its effectiveness in battery health prognosis
was demonstrated. The authors somehow suggested to use methods other than the
conjugate gradient to estimate the hyper-parameters.

[Richardson, Osborne, and Howey 2017] investigates the ability of GP to perform
battery capacity forecasting using datasets from PCoE and data extracted from
previous works. First, a classical GP is studied in order to highlight the importance
of choosing a suitable kernel function. For this purpose, different combinations of
three stationary kernels are considered (squared exponential, Matérn and periodic),
and the negative log marginal likelihood of the GP is used to evaluate them. Thus,
the additive kernel composed of Matérn3/2 and Matérn5/2 was chosen. The simulation
results of RUL evaluation showed that GP with the considered additive kernel
gives the best results. However, it is suitable for short-term predictions but not for
long-term predictions, i.e when there are limited training data available. In order
to improve the long-term prediction capacity, the authors proposed in a second
study to use a GP with an explicit mean function based on a battery degradation
model. The results showed that this second approach could improve the prediction
performance of the basic GP. Finally, it was illustrated in a third case study that
using a multi-output GP which considers data from multiple cells could improve the
forecasting performance. However, the computational cost is increased. Even if the
authors studied various advantages of GP for RUL estimation, they proposed other
possible improvements such as considering regime changes in a real-time procedure.
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[Liu, Pang, Zhou, Peng, and Pecht 2013] applied a linear Gaussian process
functional regression (LGPFR) model to perform multi-step-ahead SOH prognosis
of lithium-ion battery while taking the regeneration phenomena into account. [Li
and Xu 2015] proposed a method based on mixture of GP and particle filtering for
lithium-ion battery SOH prognosis.

Hidden Markov Models (HMM). In [Zhang, Xu, Kwan, Liang, Xie, and Haynes
2005], a methodology for bearing health monitoring is developed. Three main
components are combined to achieve the RUL computation: principal component
analysis (PCA), HMM and an adaptive prognosis model. PCA is a multivariate
statistical approach that analyzes a set of data and catches patterns in order to convert
the initial set into a reduced one containing only the most important information, i.e
the principal components [Smith 2002]. Thus, PCA has allowed the authors not only
to obtain a reduced number of data, but also to generate residual models that can be
used for anomaly detection. Then, the features extracted by PCA are used by HMM
to generate the state sequence estimate which provides on-line information about the
current degradation state. Moreover, the HMM also generates the degradation index
which is used by the adaptive prognosis model to perform RUL prediction. For this
purpose, a stochastic model of the fault progression that depends on the degradation
index was established, then the adaptive algorithm updates the model parameters
based on the received degradation index. Real bearing vibration data were used to
demonstrate the efficiency of the method, however the authors suggested that more
data intensive validation and performance evaluation should be performed.

[Tobon-Mejia, Medjaher, Zerhouni, and Tripot 2012] also proposed a data-driven
method for bearing RUL prediction. This time, wavelet packet decomposition (WPD)
is used for feature extraction and Mixture of Gaussians HMM (MoG-HMM) allows the
continuous assessment of the degradation state of the component and the estimation
of its RUL. MoG-HMM was used rather than HMM because of its ability to deal with
condition monitoring data that are continuous signals. First, during an off-line phase,
the WPD technique is used to extract the energy in the different spectrum bands
[Zarei and Poshtan 2007] from vibration measurements. The resulting features are
then used to learn several MoG-HMM, each one corresponding to different initial
states and operating conditions. Finally, the parameters and the temporal parameters
(stay duration in each state) of the MoG-HMM are estimated and the learned MoG-
HMM are stored in a database as references of degradation patterns. Then, during
the on-line phase, the processed data and the extracted features are continuously
fed to the learned models, then model selection is performed to estimate the current
degradation state. Using the current state and the corresponding stay duration
learned off-line, the RUL and its confidence value are estimated. Data provided by
NASA are used to prove the efficacy of the proposed methodology.

[Dong and He 2007], proposed a prognosis method based on Hidden Semi-Markov
Model (HSMM) where the stay duration in each state is variable, and is estimated
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during the learning phase. [Zaidi, Aviyente, Salman, Shin, and Strangas 2011]
proposed a method based on HMM for gear fault prognosis in DC machines with
sparse motor current data.

Neural Networks (NN). In [Wang, Golnaraghi, and Ismail 2004], the ability of
two data-driven prognosis methods based on NN to perform prognosis of machine
health condition is evaluated. These methods are referred to as recurrent neural
networks (RNN) and neuro-fuzzy (NF) systems. First, two popular datasets in
the field of time-series prediction are used to compare two methods. One of the
datasets is non-linear, non-Gaussian and non-stationary while the other is chaotic
and non-periodic. The simulation results highlighted that if the NF system was
trained with sufficient data, it can give better forecasting performance than the
RNN. Then, the two algorithms were compared through an on-line fault prognosis
in a rotary machinery example. The results showed that the NF still gives higher
forecasting accuracy than the RNN.

[Vachtsevanos, Lewis, Roemer, Hess, and Wu 2006] proposed a data-driven
prognosis method that uses dynamic wavelet NN (DWNN). The method is based
on two main components that both use a DWNN model as a mapping tool: a
virtual sensor that performs fault evaluation (fault dimension, location, etc.) from
measurements, and a predictor which forecasts the fault growth using the output
of the virtual sensor as inputs. In order to illustrate the feasibility of the proposed
method, RUL prognosis of a rolling-element bearing fault was performed. The results
were satisfactory, however the authors suggested that more failure data should be
used for validation.

More recently, [Vatani, Khorasani, and Meskin 2015] proposed two methods
based on NN for degradation prognosis of gas turbine engines. The first one uses a
RNN architecture and the second one uses a nonlinear autoregressive neural network
(NARNN). The main challenge highlighted by the authors concerns the choice of
the parameters required to implement both algorithms (number of input and output
delays, percentage of data for training and testing, etc.). The NARNN needs more
parameters but less training data than the RNN. The simulation results showed that
the NARNN gives better prediction performance because the predicted output of
the neural network is closer to the real data with lower error levels.

Many NN-based data-driven prognosis methods have been developed in the
literature. In [Parthasarathy, Menon, Richardson, Jameel, McNamee, Desper, Gorelik,
and Hickenbottom 2008], model reduction technique based on dynamic NN was
applied for RUL estimation of engines while taking the actual operating conditions
(temperatures and stresses) into account. [Zhang, Wang, and Wang 2013] used
a combination of WPD, Fourier transform and NN for fault prognosis in critical
components of machines.
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Summary

To conclude, data-driven approaches might be very effective to perform on-line
RUL prognosis. Indeed, no physical model is required, only data related to the
studied system are used. However, these techniques highly rely on the availability
of a significant amount of run-to failure data set containing several degradation
modes to be learned. Thus, when a physical model of the system behavior and its
degradation state are available, model-based prognosis methods can be used.

1.1.2 Model-based approaches

When a physics-based degradation model of the system or component is available,
model-based prognosis approaches may be used to estimate the current degradation
state with measurements and then predict the RUL of the system.

The degradation model contains parameters (e.g. material properties) that might
be unknown. Therefore, model-based prognosis methods involve state and parameter
estimation. Moreover, real-time estimation and update of the degradation state
is required for an accurate RUL prognosis. Thus, taking these requirements into
account, most of the methods developed for model-based prognosis are based on
stochastic filtering techniques. Indeed, stochastic filters allow joint state-parameter
estimation, and they are based on Bayesian inference [Box and Tiao 2011] which
uses prior knowledge and measurement data in order to estimate the degradation
state pdf. Model-based prognosis methods mainly include Kalman filters [Kalman
1960], particle filters [Arulampalam, Maskell, Gordon, and Clapp 2002], and their
derivatives such as unscented Kalman filter [Wan and Van Der Merwe 2000] and so
on. The Kalman filter is suitable for linear systems with Gaussian noise terms. If
nonlinear systems are concerned, an extended Kalman filter can be used. However,
when nonlinear systems with non-Gaussian noise terms are studied, the particle filter
is best suited.

Sometimes, the degradation may not be directly measured, but its influence
on the system’s behavior can be tracked. In this case, models that simultaneously
describe the system and the degradation states are adopted. [Chelidze, Cusumano,
and Chatterjee 2001] proposed to consider the degradation as a hidden state which
evolves slower than the system dynamics. Therefore, the goal of the methods
developed in this framework is to track the hidden degradation state in order to
estimate its current state and then predict the RUL of the system. They are mainly
based on interactive multiple models (IMM) [Phelps, Willett, and Kirubarajan 2002]
and unknown input observers (UIO) [Darouach, Zasadzinski, and Xu 1994].

Finally, another kind of model-based prognosis methods based on reliability
analysis drew the attention of some researchers. Indeed, as RUL prognosis is
naturally associated to system reliability, the methods developed in this research
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field were therefore exploited [Lemaire 2009].
In the following, an overview of the above mentioned model-based prognosis

methods that can be found in the literature is given. As particle filter-based methods
are the most prevalent ones, they will be reviewed in more details.

Stochastic filtering

Particle filter. Because of its ability to deal with nonlinear systems and non-
Gaussian noises, the particle filter (PF) is the most used tool in model-based prognosis.

A complete study of the use of PF for on-line failure prognosis was first introduced
in the PhD thesis [Orchard 2007]. The same author proposed in [Orchard and
Vachtsevanos 2007] a methodology using a PF for real-time failure prognosis in
two stages. The first one consists in projecting the current particle population in
time without any new measurements. The state equation was simply propagated by
considering particles with unchanged weights. Then, during the second stage, the
RUL probability density function (pdf) was computed by combining the weights of
the predicted trajectories and the specifications for the hazard zone containing the
failure threshold. Fatigue crack growth prognosis on a turbine engine blade using
real data was used to demonstrate the efficiency of the proposed method and to show
the effects of model uncertainty on the algorithm performance.

Later, the authors extended their method in [Orchard and Vachtsevanos 2009]
by proposing a new approach to predict the future degradation state without new
measurements. In order to take uncertainty in future state transitions into account,
they suggested to use Epanechnikov kernels to approximate the state pdf and then
to resample this predicted pdf at each future time instants. Thus, information about
the future state pdf is given by the position of the particles and not their weights
anymore. This procedure allowed them to reduce the impact of model errors.

[Zio and Peloni 2011] proposed a PF-based method to estimate accurately
the RUL of a system. Biased estimators using credibility weights (interval weights,
likelihood weights and RMSE weights) to measure the credibility of the RUL estimates
were introduced. The addition of these estimators to the PF algorithm allowed the
authors to obtain more precise RUL predictions. A fatigue crack growth prognosis
case study based on the Paris’law was used to demonstrate the efficiency of the
method.

[Daigle and Goebel 2011a] presented a method for pneumatic valves RUL
prediction with a PF. First, a detailed physics-based nominal model of a pneumatic
valve was established. Then, the relevant damage mechanisms were modeled, and
the model parameters that evolve with the damage were selected. Finally, a PF
was used for joint state-parameter estimation. A sequential importance resampling
(SIR) PF with systematic resampling was chosen, and the parameter evolution was
described by a Gaussian random walk. In order to compute the RUL pdf, the state
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equation was propagated with unchanged particle weights until the failure threshold
was reached. The proposed methodology was demonstrated with historical pneumatic
valve data from the refueling system, and gave satisfactory results. However, the
authors have assumed a single known future input trajectory, which is not the case
in general. Moreover, the case where only a single damage mode is progressing was
considered.

This latter issue was treated by the authors in [Daigle and Goebel 2011b].
Indeed, they developed a PF-based method for multiple damage progression paths
prognosis. In addition, they developed a variance control technique to maintain an
uncertainty bound around the parameters that are jointly estimated with the state in
order to reduce prediction uncertainty. The methodology was demonstrated through
simulation-based experiments aiming at performing multiple damage prognosis in a
centrifugal pump.

In [Olivares, Munoz, Orchard, and Silva 2013], a PF-based approach for simul-
taneous SOH and RUL estimation in energy storage devices was proposed. The
authors implemented a PF-based detection and prognosis algorithm [Orchard, Tang,
Saha, Goebel, and Vachtsevanos 2010] capable of detecting and including the effect
of self-regeneration phenomena in long-term predictions. Experimental data from
accelerated degradation tests were used to demonstrate the efficiency of the proposed
approach.

[Miao, Xie, Cui, Liang, and Pecht 2013] proposed a method to tackle particle
impoverishment and to obtain a more accurate state pdf estimate by using an
unscented particle filter (UPF). The choice of the proposal distribution which allows
the computation of the posterior probability when a new measurement is available
can have significant impact on the accuracy and computational efficiency of the PF.
Usually, the prior distribution is chosen as proposal distribution. In this paper, the
authors considered the output of an unscented Kalman filter (UKF) as proposal
distribution. Thus, the UPF algorithm is based on two steps: (i) application of
UKF algorithm to compute the proposal distribution and (ii) application of standard
PF algorithm to obtain the results. The proposed methodology was tested with
battery capacity data from the Center for Advanced Life Cycle Engineering (CALCE)
of University of Maryland. The results showed that the prediction error with the
UPF-based method is lower than the one obtained with a classical PF.

As the use of the PF algorithm for on-line failure prognosis is gaining more
and more popularity, a complete Matlab tutorial for model-based prognosis using a
PF was given in [An, Choi, and Kim 2013b]. The authors detailed the PF-based
prognosis framework and proposed two case studies: battery SOH prognosis and
fatigue crack growth prognosis. The authors aimed at helping the beginners in
prognosis by providing a standard of PF-based prognosis.

In [Daroogheh, Meskin, and Khorasani 2014], a method to propagate the degrada-
tion equation in future time instants without any new measurements while updating
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the particle weights and perform particle resampling is proposed. For this purpose,
future observation profiles are generated using a fixed-lag dynamic linear model
(DLM) structure [West 1993] with adaptive length moving window. More precisely,
the fixed-lag DLM model aims at fitting the historical measurements in each time
window to a linear autoregressive moving average (ARMA) model which is then
used to forecast the future observations. The DLM is updated every time new
measurements are collected. In order to highlight the benefits of such strategy, it
was compared to PF-based RUL prediction approach with invariant particle weights
through a gas turbine failure prognosis example. The resulting percentage RMSE
showed the effectiveness of the proposed methodology.

[Hu, Baraldi, Di Maio, and Zio 2015] proposed a solution to deal with particle
parameter impoverishment when joint-state parameter estimation is performed, by
introducing a kernel smoothing (KS) technique. Usually, instead of considering
unchanged parameter distributions, a Gaussian random walk is added to the pa-
rameters evolution equation in order to avoid particle impoverishment and obtain
more accurate parameter estimates. However, such a strategy tends to increase
the parameters covariance and thus decrease the precision of the estimated values.
Moreover, the variance of this artificial noise must be set up, which is in most cases
done with a trial and error procedure. When complete degradation trajectories are
not available, as in the presented work, this strategy can not be adopted. Therefore,
to bypass these two issues; the authors used a KS algorithm which consists in two
steps: (i) shrinkage to force the particle parameters to move toward their estimated
values, and (ii) perturbation to increase their variance and thus maintain a desired
particle parameters covariance. For RUL prediction, the degradation equation was
propagated in time with invariant particle weights. The proposed algorithm was
applied to the prognosis of lithium-ion battery degradation and its performance was
evaluated in terms of precision, accuracy and steadiness indexes. The results showed
that the use of the KS algorithm lead to better results than the Gaussian random
walk strategy or the classical PF algorithm with unchanged parameter distributions.

[Wang, Yang, Tsui, Zhou, and Bae 2016] developed a strategy other than the
one presented in [Miao, Xie, Cui, Liang, and Pecht 2013] to improve the choice
of the proposal distribution. This time, a spherical cubature PF (SCPF) was used
for lithium-ion battery degradation prognosis, i.e a PF which takes the results of a
SC Kalman filter (SCKF) as proposal distribution. The method based on spherical
cubature [Särkkä 2013] is able to give more weights to the recent measured data
when updating the proposal distribution. Capacity degradation from [Park, Baek,
Jeong, and Bae 2009] were used to compare the proposed method to classical PF.
The results allowed the authors to conclude that RUL predictions are improved with
this method.

More recently, [Mo, Yu, Tang, and Liu 2016] proposed a PF-based method
that handles both high observation noise and particle impoverishment during the
estimation step. The authors integrated a Kalman filter (KF) to the basic PF
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algorithm to obtain an optimal state pdf estimate in the presence of high observation
noise. In order to deal with particle impoverishment, they used the particle swarm
optimization (PSO) algorithm. PSO forces the particles to move toward optimal state
space regions before the update of the particle weights when a new measurement
arrives, then resampling is performed. This PSO-PF based approach was introduced
in [Zhang, Cheng, Yang, and Pan 2008]. Battery degradation datasets from NASA
AMES Center [Saha and Goebel 2007] were used. Two batteries were first used as
training data to estimate the degradation model parameters. Then, a third dataset
was used to perform RUL prediction by propagating the degradation equation in
time with unchanged particle weights. Results with the proposed KF-PSO-PF, the
PSO-PF and the classical PF were compared. The calculated RMSE showed the
KF-PSO-PF gives more precise and accurate RUL predictions than the two other
methods.

The same authors developed later in [Yu, Mo, Tang, Liu, and Wan 2017] a
quantum PSO-based PF (QPSO-PF) to predict the RUL of lithium-ion batteries. A
QPSO algorithm [Sun, Feng, and Xu 2004] was used instead of a PSO algorithm, and
no Kalman filtering algorithm was included. The QPSO algorithm aims at obtaining
a global optimum at a faster convergence. Moreover, fewer particles and tuning
parameters are required. The proposed QPSO-PF method was tested with the same
NASA AMES Center battery dataset, and joint state-parameter estimation with a
Gaussian random walk to describe the parameter evolutions was performed. The
results showed that higher precision and accuracy than the PSO-PF and classical
PF were obtained. Moreover, the authors concluded that the real-time computation
could be accelerated with such strategy. However, further investigations should help
to learn much about the control and determination of the parameter involved in the
QPSO algorithm.

There exist several papers that present PF-based model-based prognosis algo-
rithms, and a more complete review can be found in [Jouin, Gouriveau, Hissel, Péra,
and Zerhouni 2016] as it is not the purpose of this chapter. However, regarding the
PF-based prognosis methods that have been reviewed above, some conclusions can
be drawn:

• Particle filter is the most widely used tool in model-based prognosis;

• Most of the case studies concern battery degradation and fatigue crack growth
prognosis. Indeed, physics-based degradation models were widely developed in
these two areas;

• The more accurate the state and parameter estimations are at the prediction
time, the more accurate the RUL prediction will be. Various solutions have
been provided to obtain the most accurate pdf estimates as possible:

– Optimize the proposal distribution (UPF, SCPF, etc.);
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– Choose a suitable particle parameters evolution equation (Gaussian ran-
dom walk, kernel smoothing, etc.) when joint state-parameter estimation
is involved;

– Move the particles into an optimal state space region before the update
and resampling steps (PSO, QPSO, etc.);

• Most of the time, the particle weights are considered unchanged when propagat-
ing the degradation equation in future time instants. Even if such a strategy can
help to obtain correct results, RUL predictions can be improved by adopting a
particular method when predicting the future degradation state without any
new measurements:

– Use Epanechnikov kernels to approximate the state pdf and then resample
the predicted pdf in the future time instants;

– Generate future observations profiles with available historical measure-
ments and time series forecasting methods.

Although the PF was widely used in model-based prognosis mainly because of
its ability to deal with nonlinear degradation models, other approaches based on
Bayesian recursive estimation have, however, been developed.

Kalman filter. The use of KF-based methods for RUL prognosis is limited due to
the fact that they cannot deal with high nonliearities and non-Gaussian noises.

[Celaya, Saxena, and Goebel 2012] discussed the ability of the Kalman filter
(KF) to represent uncertainty in model-based prognosis of electronic components.

[Daigle, Saha, and Goebel 2012] compared three nonlinear filtering-based tech-
niques, namely Daum filter, unscented KF and PF for damage prognosis in a
centrifugal pump.

[Lim and Mba 2015] used a switching KF for degradation prognosis of a helicopter
gearbox bearing. It was assumed that the degradation could evolve through time and
each degradation process was therefore modeled with a KF. The SKF was used to
infer the underlying process and apply the most probable filter for RUL prediction.

In [Ompusunggu, Papy, and Vandenplas 2016], an extended KF (EKF) was used
to predict the RUL of wet friction clutches used in vehicles equipped with automatic
transmissions.

[Bressel, Hilairet, Hissel, and Bouamama 2016b] performed RUL prognosis of a
Proton Exchange Membrane Fuel Cell with an EKF.

In [Wang, Gogu, Binaud, Bes, Haftka, and Kim 2018], the authors proposed a
fatigue crack growth prognosis method that combines an EKF for current degradation
state estimation, and first-order perturbation (FOP) [Yiwei, Christian, Binaud,
Christian, Haftka, et al. 2017] to predict the future damage distribution.
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In the previous studies, the authors concluded that the KF-based methods could
give satisfactory prognosis results. However, this is true as long as the models remain
close to linear conditions, and only a few number of unknown model parameters are
involved. Moreover, the Gaussian noise assumption may not always be accurate.

Hidden damage

Model-based prognosis methods were developed for the case where a hidden
damage process is evolving in the system. The tracking of the degradation state
relies on the assumption that the damage process is growing slowly in a directly
observable dynamic system with a fast behavior.

In [Chelidze and Cusumano 2004], a procedure for hidden damage tracking and
RUL prediction is presented. First, based on phase space reconstruction data from
the system, a damage tracking algorithm is used to compute a damage tracking
metric. This latter is then used as input to a nonlinear filtering algorithm (unscented
filter) together with the damage evolution model in order to forecast the future
degradation state and finally predict the RUL. The proposed algorithm was applied
to an electromechanical oscillator, and the battery discharge was considered to be a
hidden damage process.

In [Luo, Pattipati, Qiao, and Chigusa 2008], another model-based prognosis
method for hidden damage tracking is proposed. First, a degradation model of the
system combining the fast-time system behavior and the slow-time damage evolution
is build. Then, using this model and Monte Carlo simulations under different load
conditions, a prognosis model combining multiple models is built. Finally, an IMM
filter is used on-line to track the degradation measure which is a hidden variable, and
the RUL of the system is estimated. They illustrated their method on an automotive
suspension system subject to a hidden damage evolution which is a crack growing in
the suspension spring.

Another kind of model-based prognosis methods that are used in the context
where the degradation of the system is not directly measured are based on unknown
input observers (UIOs). In this case, the degradation is considered as a perturbation
that affects the system behavior, and is referred to as an unknown input. Therefore
model-based prognosis methods based on UIOs aim at reconstructing the degradation
signal and predict the RUL of the system. In [Gucik-Derigny, Outbib, and Ouladsine
2011a], a methodology to perform RUL prognosis with UIOs is introduced. A
nonlinear unknown input high-gain observer for state and unknown input estimation
was synthesized, and then used to predict the RUL of an electromechanical oscillator.
The same authors compared the ability of two types of UIO to perform RUL prognosis
in [Gucik-Derigny, Outbib, and Ouladsine 2016a], namely unknown input high-gain
observer and unknown input sliding-mode observer. Both methods were tested
on an electromechanical system with one battery then with two batteries. The
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results showed that the high-gain UIO gives more accurate RUL predictions than
the sliding-mode UIO.

Reliability analysis methods

In the context of reliability analysis, dedicated methods are used to estimate a
failure probability which characterizes the safe/unsafe behavior of a system regarding
the uncertainties affecting the input variables. Recently, some researchers have
extended these methods to model-based prognosis.

[Sankararaman, Daigle, Saxena, and Goebel 2013] investigated the use of three
reliability analysis methods within a state-space framework and then extended them
to the problem of RUL prognosis. These methods are the first-order second moment
method (FOSM) [Madsen, Krenk, and Lind 1986], the first-order reliability method
(FORM) [Lemaire 2009] and the Inverse FORM [Der Kiureghian, Zhang, and Li
1994]. They are referred to as analytical methods, as opposed to sampling-based
methods such as adaptive sampling, Latin hypercube sampling and so on. Indeed,
they are able to quantify uncertainty in RUL predictions with a reduced number
of calculations. FOSM can be used to calculate the first two moments (mean and
variance) of the RUL distribution. However, it cannot be used to calculate tail
probabilities as it does not estimate the type of probability distribution of the RUL.
FORM aims at computing any value of the cumulative distribution function (CDF)
at a particular RUL value. In other words, it calculates the probability that the RUL
is smaller than a given value. However, it is difficult to guess this RUL value as the
RUL distribution is not known in advance. Rather, the authors suggested to use the
Inverse FORM algorithm which allows the calculation of the RUL value corresponding
to a given probability level. Inverse FORM can be used to compute only the desired
RUL CDF values (median, probability bounds) or the entire RUL CDF by applying
it as many times as required. The efficiency of the proposed Inverse FORM algorithm
was demonstrated by calculating the median and the 95% probability bounds of the
RUL of a lithium-ion battery. The results were compared to those obtained with
1000 Monte Carlo simulations (MCS) and showed that maximum difference between
the two CDFs is less than 0.5%. Moreover, the computational cost of the Inverse
FORM is about 10% of the cost of MCS.

The same authors have discussed in more details the practical challenges involved
in RUL prediction with inverse FORM in [Sankararaman, Daigle, and Goebel 2014b].
They have especially included a time-invariant process noise uncertainty which was
not considered in their previous work. The same lithium-ion battery model was used
to illustrate their methodology which gave accurate RUL estimated in comparison
with MCS.

In [Bressel, Hilairet, Hissel, and Bouamama 2016a], the Inverse FORM was
applied for RUL prognosis of Proton Exchange Membrane Fuel Cell.
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More recently, [Chiachío, Chiachío, Sankararaman, Goebel, and Andrews 2017]
proposed an adaptation of a sampling-based reliability analysis method to RUL
prognosis. Their strategy combines a particle filter for state estimation until the
prediction time and then, the use of Subset Simulation (SubSim) algorithm [Au and
Beck 2001] to propagate uncertainties from the current state to the failure threshold.
The authors’ starting point was the fact the uncertainty affecting multi-step ahead
predictions with the particle filter due to particle approximation is propagated in
time and thus increases the uncertainty in RUL prediction. The longer this multi-step
ahead prediction is, the larger the RUL uncertainty gets. Thus, the authors proposed
to consider intermediate failure domains between the current state and the failure
threshold. The SubSim algorithm was then applied to adaptively draw samples over
the nested sequence of intermediate failure domains until the failure threshold was
reached. The basic idea of SubSim is, in the reliability context, to efficiently estimate
a small failure probability (thus, difficult to estimate) by considering nested failure
events associated to a product of stronger probabilities (thus, easier to estimate).
The authors applied their methodology to fatigue damage prognosis of carbon-fibre
composite coupons. They obtained satisfactory results, but highlighted that this
method is especially efficient is the case of rare-event prediction.

1.1.3 Conclusion

Examples of data-driven and model-based prognosis approaches that can be
found in the literature were given in this section. The main criteria that determines
the use of one or other of these approaches is the availability or not of data and a
degradation model. The main drawback of data-driven approaches is the need of a
significant amount of data to train the prognosis model that will be used for on-line
RUL prognosis. As for model-based prognosis methods, a degradation model is not
always available depending on the case study.

In this thesis, the case where a physics-based model of the degradation is available
is considered. Thus, in the following, the principle of model-based prognosis is
presented, as well as the main challenges involved in the development of such
methods.

1.2 Model-based prognosis

Model-based prognosis methods rely on the availability of a mathematical model
of the degradation. The main advantage of this approach is its precision since the
predictions are achieved based on a mathematical model of the degradation. Indeed,
the models include the operational conditions of the system and therefore the effect
of their variability on the degradation evolution.
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In this section, the general principle of model-based prognosis methods and the
challenges associated to their development, mainly concerning uncertainty prop-
agation, are presented. Finally, the performance evaluation metrics that will be
considered all along this manuscript are given.

1.2.1 Principle of model-based prognosis

The central idea of model-based prognosis is to use a dynamic mathematical
model that describes the evolution of a degradation within a system or a component.
Usually, a discrete state-space representation of the model is adopted for simulation
purpose.

The RUL calculation procedure can be divided into two main steps: (i) current
degradation state estimation and (ii) future degradation state prediction for RUL
calculation. The model-bases process, which is described in what follows, is illustrated
in Figure 1.1.

Current degradation state estimation: a filtering problem

The first step consists in estimating the current degradation state using the model
and the measurements from sensors. This procedure is referred to as state estimation
and is addressed with filtering, which is based on the use of two equations, namely
the state equation and the measurement equation.

The state equation is the discretized mathematical model of the degradation and
therefore describes its evolution according to the following expression:

xk = f(xk−1, θk−1, uk, wk) (1.1)

where x ∈ Rn denotes the degradation state, u ∈ Rq is the input vector, θ contains
the model parameter vector that are possibly unknown and k ∈ N is a discrete time
step. The function f describes the evolution of the state which may be nonlinear,
and w is the process noise which represents the model uncertainties.

As for the measurement equation, it relates the measurements to the state
according to:

yk = h(xk, vk) (1.2)

where y ∈ Rp is the measurement vector and h describes the evolution of the
measurements over time and may be nonlinear. The variable v is the measurement
noise which represents the measurements uncertainty.

There exist various filtering techniques for state estimation. Based on the literature
review in the previous section, the most used one is the particle filter because of
its ability to handle nonlinear systems and non-Gaussian noises. If linear systems
and Gaussian noises are involved, the Kalman filter gives optimal solutions, and the
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extended Kalman filter can be used for nonlinear systems with Gaussian noises.
Thus, using these two equations and appropriate filtering techniques, the current

degradation state is estimated from the initial time step k0 until the so called
prediction time step kp. The time interval between k0 and kp is referred to as the
observation interval.

Future degradation state prediction and RUL computation: an uncer-
tainty propagation problem

From the prediction time kp, the future degradation state must be predicted until
the critical degradation state, i.e the failure threshold, is reached. When the failure
threshold is finally crossed, the failure time kf is obtained. The time interval between
the prediction time kp and the failure time kf is called the prediction interval. Finally,
when the failure time kf is obtained, the RUL at time step kp can be computed as:

RUL(kp) = kf − kp (1.3)

The difficulty in this step is that the degradation state prediction is performed
without any new measurements. Moreover, the forecasting process is naturally
affected by uncertainty. There is therefore a need to use uncertainty propagation
techniques to take input uncertainty into account in order to compute a measure
of the uncertainty in the RUL prediction, in the form of a probability distribution
function (pdf) or an interval. As new measurements are collected, predictions are
improved via model parameters and degradation state estimates updating. Thus,
the uncertainties are reduced over time.

The main uncertainty sources and their impact on the prognosis process will be
discussed in the next section. Moreover, uncertainty propagation techniques to tackle
RUL prediction problem will be presented.

1.2.2 Uncertainty in model-based prognosis

Because of economic and human safety challenges, the prediction of the RUL must
be as reliable as possible to allow risk-based decisions. For this purpose, prognosis
methods should account for the different uncertainty sources that affect both the
current and future degradation state, and thus provide a measure of the uncertainty
affecting the predicted RUL [Tang et al. 2009; Baraldi et al. 2013].

The main types of uncertainty that inevitably influence RUL prediction are
measurement uncertainty, model uncertainty and future uncertainty [Gu et al. 2007].
Measurement uncertainty is due to sensor inaccuracy, model uncertainty is charac-
terized by the difference between the degradation model and its real behavior, and
future uncertainty is caused by unknown or uncertain environmental and operating
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Figure 1.1: Prognosis process scheme

conditions. Moreover, another source of uncertainty that is not negligible is the
current state uncertainty at the prediction time kp as the future predictions depend
on this current state estimation.

Model uncertainty. A physics-based model of the degradation is used to estimate
and forecast the degradation state. However, it is impossible to accurately represent a
physical phenomena, the model that are used are therefore approximations. Usually,
to take model uncertainty into account, a noise is added to the state equation. Model
uncertainty can also include parameter uncertainty. Indeed, the degradation model
can contain unknown or uncertain parameters to be estimated. Model uncertainty
can be quantified as long as measurement are available until the prediction time kp,
it is however more challenging to know their values in the prediction interval.

Measurement uncertainty. The measured output yk at time step k ≤ kp differs
from the real value of the measured quantity due to sensor inaccuracy. It is difficult to
quantify measurement uncertainty, however, in some cases, they can be known from
the calibration of the measurement devices. Measurement uncertainty are generally
taken into account by adding a noise to the measurement equation.

Current state uncertainty. The predicted state at future time instants and thus
the predicted RUL highly depend on the state estimate xkp at the prediction time.
Indeed, the more accurate xkp is, the more accurate RUL predictions will be. The
uncertainty in xkp is mainly due to the model and measurement uncertainty discussed
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above, and can be handled by choosing an appropriate estimation technique. It is
important to have a precise estimation of xkp as the uncertainty at time kp will be
propagated in time through the state equation.

Future uncertainty. The main challenge in prognosis is to deal with future
uncertainty. Indeed, the future loading and future operating conditions of the system
are unknown or uncertain, making future state and RUL predictions very uncertain.
Thus, taking these uncertainties into account while propagating the state equation
until the failure threshold will improve RUL predictions.

To conclude, the choice of appropriate filtering and uncertainty propagation
techniques is the core of prognosis, whose goal is to combine the effect of the
uncertainty sources in order to measure the uncertainty in RUL prediction.

Usually, model-based prognosis methods represent and propagate uncertainty
in a probabilistic framework [Saha and Goebel 2008], in order to compute the
RUL PDF. As stated in section 1.1.2, the main filtering techniques that are used
to estimate the current degradation state with the measurements while taking
uncertainty into account are based on particle filters and Kalman filters. As for
the uncertainty propagation techniques, improved versions of PF-based methods
were largely employed. However, the main drawback when choosing a probabilistic
representation is that assumptions on the form of the PDF are made a priori, which
can be inaccurate or misleading.

In order to avoid this problem, uncertainty representation within the set-membership
framework could be adopted. In this case, any stochastic assumptions are required
and RUL uncertainty is included in an interval. The main advantage of using set-
membership techniques is that the predicted interval is guaranteed to contain the
RUL. However, such approaches are limited to the cases where only a few number
of parameters to be estimated is involved. In the field of model-based prognosis,
set-membership methodologies are not yet very widespread. [Gucik-Derigny, Outbib,
Ouladsine, and Basualdo 2011b] proposed a continuous interval observer for state
and unknown input estimation. The reconstructed unknown input was the damage
variable, but the authors did not perform damage prognosis.

In this thesis, stochastic filtering and unknown input observers are used to estimate
the current degradation state with the measurements. Uncertainty propagation
methods using stochastic filtering methods, reliability analysis methods and interval-
based methods are employed. The main requirements regarding the developed
prognosis methods concern uncertainty quantification and on-line implementation.
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1.3 Performance evaluation metrics
It is essential to evaluate the ability of prognosis methods to perform RUL

prognosis. For this purpose, performance evaluation metrics can be used.
There is no strict agreement about which appropriate and acceptable set of

metrics should be used in prognosis applications. However, it is widely admitted
that accuracy and precision indicators are relevant to examine the performance of
prognosis algorithms [Edwards, Orchard, Tang, Goebel, and Vachtsevanos 2010].
These metrics derive from the prediction error performed at time kp which is expressed
as e(kp) = RULtrue(kp) − RUL(kp) where RULtrue(kp) is the reference RUL value at
time kp.

The three considered metrics are presented in the following:

• Accuracy is a measure of the degree of closeness of predicted failure time kf

to the actual failure time kfT rue. This metric provides an exponential weight
of the errors in RUL predictions over several experiments. The accuracy of
a prognosis algorithm at a specific prediction time kp is defined here as in
[Vachtsevanos, Lewis, Roemer, Hess, and Wu 2006]:

A(tp) = 1
Ns

Ns∑
n=1

exp
(

− |en(kp)|
RUL(kp)

)
(1.4)

where Ns is the number of experiments and en(kp) is the prediction error of
the nth experiment. The range of the accuracy is between 0 and 1, where 1
gives the best accuracy.

• Precision is a measure of the narrowness of the interval in which the RUL
predictions fall and is expressed as [Butler 2012]:

P (kp) = exp
(

− R

R0

)
(1.5)

where R is the width of the confidence interval of the prediction given by
R = 2 × 3σRUL where σRUL is the standard deviation of the RUL pdf. R0 is a
normalizing factor. The precision value varies between 0 and 1, where 1 reflects
the highest precision.

• Timeliness indicates the relative position of the predicted RUL pdf along the
time axis with respect to the occurrence of the actual failure event. There are
three cases (Fig. 1.2): (a) the failure occurs after the predicted failure time
kf , (b) the failure occurs at the same time as the predicted failure time, and
finally, (c) the failure occurs earlier than predicted. This last case must be
absolutely avoided. To compute the timeliness metric, the following function is
used [Saxena, Celaya, Balaban, Goebel, Saha, Saha, and Schwabacher 2008]:
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T = 1
N

Ns∑
n=1

Tn (1.6)

Tn =

⎧⎨⎩ exp(− en(kp)
Rmin

) − 1 , if en(kp) ≤ 0
exp( en(kp)

Rmax
) − 1 , if en(kp) > 0

(1.7)

[Rmin, Rmax] represents the interval around the ground-truth RUL (Fig. 1.2).
The values of this timeliness function are in the interval [0; +∞] and the perfect
score for timeliness is 0.

Figure 1.2: Timeliness metric

1.4 Conclusion
In this chapter, an overview of the different prognosis approaches that can be found

in the literature was given. Prognosis approaches can be classified into data-driven
approaches, model-based approaches and hybrid approaches which combines both.
Data-driven methods mainly use statistical techniques (HMM, RVM/SVM, etc.) and
artificial intelligence techniques (mainly NN). Model-based prognosis methods are
most of the time based on particle filters which are powerful tools able to properly
deal with non-Gaussian noises and nonlinear systems.

Model-based prognosis is divided in two main steps: (i) current degradation state
estimation and (ii) future degradation state prediction and RUL computation. The
first step is a filtering problem as it aims at estimating the current degradation
state using measurements. The second step is an uncertainty propagation problem
as the current degradation state is propagated in time until the failure threshold
any new measurements. Thus, the main challenge while developing model-based
prognosis methods is to include the different uncertainty sources in order to compute
a measure of the uncertainty affecting the predicted RUL. The main uncertainty
sources are model uncertainty, measurement uncertainty and future uncertainty
(loading, operating conditions, etc.).

29





Chapter 2

Filtering methods for prognosis
with stochastic assumptions

The primary focus of this chapter is to present in more detail the principle
of model-based prognosis methods through an application example. As it was
highlighted in section 1.2.1 of Chapter 1, there are two main steps in prognosis: (i)
current degradation state estimation, (ii) future degradation state prediction and
RUL computation.

However, these two steps are subject to uncertainty. Thus, the main challenge
when developing a prognosis method is to take model, measurement and future
loading uncertainty into account. In this chapter, only modeling and measurement
uncertainty are addressed for clarity and ease of explanation.

To address this challenge, two stochastic filtering-based methods, namely an
extended Kalman filter (EKF) and a particle filter (PF), are investigated. For the
sake of illustration, the prognosis algorithms are applied to a nonlinear fatigue crack
growth problem based on the Paris’ law. The model used in this chapter are from [An,
Choi, and Kim 2013b]. In addition, the performance evaluation metrics presented
in Chapter 1 are used to compare the efficiency of the EKF and the PF in terms of
accuracy, precision and timeliness. This first study has led to the publication of an
international conference paper [Robinson, Marzat, and Raïssi 2016].

2.1 Recursive Bayesian filtering

In order to solve the dynamic degradation state estimation problem, two mathe-
matical equations are needed: a first one describing the evolution of the degradation
state (1.1) and a second one relating the state and the noisy measurements (1.2). Here,
the input vector u is not considered, the following discrete state-space representation
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is therefore adopted:

xk = f(xk−1, θk−1, wk) (2.1)
yk = h(xk, vk) (2.2)

As a reminder, x ∈ Rn denotes the degradation state, y ∈ Rp is the measured outputs
and k ∈ N is a discrete time step. The functions f and h describe respectively the
nonlinear evolution of the state and the measurements over time. The variables w
and v are respectively the process and measurement noises which represent the model
and measurements uncertainties.

2.1.1 Stochastic methods

The objective of stochastic filtering is to estimate the pdf p(xk|y0:k) which gives
statistical information about the degradation state xk, based on the set of all
measurements y0:k = Yk = {y0, · · · , yk}. The state equation (2.1) characterizes the
state transition pdf p(xk+1|xk), whereas the measurement equation (2.2) describes
the pdf p(yk|xk) which is further related to the measurement noise model.

Concerning the unknown parameter vector θ, it is appended to the state vector
x ∈ Rn to form an augmented state vector X =

[
x θ

]
in order to perform the

identification of the model parameters in conjunction with state estimation.
Given p(X0), p(Xk+1|Xk) and p(yk|Xk), the recursive Bayesian estimation pre-

sented below is used to solve the stochastic filtering problem.

2.1.2 Recursive Bayesian estimation principle

In Bayesian theory, the uncertainties are treated as random variables. Moreover,
a recursive filtering approach means that received data can be processed sequentially
rather than as a batch so that it is not necessary to store the complete data set nor
to reprocess existing data if a new measurement becomes available.

First of all, it is assumed that: (i) the state vector is a first-order Markov process
such that p(Xk|X0:k−1) = p(Xk|Xk−1) and (ii) the observations are independent of
the states. Combining these two assumptions and the Bayes rules, the following
equation is obtained [Chen et al. 2003]:

p(Xk|Yk) = p(yk|Xk)p(Xk|Yk−1)
p(yk|Yk−1)

(2.3)

The posterior density p(Xk|Yk) is defined through the combination of three terms:

• The prior density p(Xk|Yk−1) which is the prediction density of the state at
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time k obtained via the Chapman-Kolmogorov equation:

p(Xk|Yk−1) =
∫

p(Xk|xk−1)p(Xk−1|Yk−1)dXk−1 (2.4)

where p(Xk|xk−1) is the state transition density defined by the state equation
(2.1);

• The Likelihood density p(yk|Xk) which is defined by equation (2.2);

• A normalizing constant p(yk|Yk−1) which depends on the likelihood and the
prior such that:

p(yk|Yk−1) =
∫

p(yk|Xk)p(Xk|Yk−1)dXk . (2.5)

Bayesian filtering handles the computation or approximation of these three terms
to deduce the pdf of the degradation state p(Xk|Yk). It is based on two steps:
prediction and update. First, the required pdf p(Xk−1|Yk−1) is supposed to be
available. During the prediction step, using the previous pdf and the system model
(2.1), the prior p(Xk|Yk−1) is approximated with equation (2.4). Then comes the
update step at time k when a measurement yk becomes available, the likelihood pdf
p(yk|Xk) is obtained with the measurement equation (2.2). Finally, the posterior
density p(Xk|Yk) is deduced from equation (2.3).

Based on this Bayesian filtering algorithm, many types of filters have been
developed [Chen et al. 2003]. In this chapter, an EKF and a PF are used, since
they can handle nonlinear dynamical systems.

2.2 Extended Kalman filter
The EKF is an extended version of the original Kalman filter (KF) [Kalman

and Bucy 1961] developed for nonlinear systems. In this filtering approach, the
state pdf p(Xk|Yk) is approximated by a Gaussian distribution. To achieve this, the
nonlinear degradation model is linearized around the last predicted degradation state
estimate and the conventional KF algorithm is applied to the linearized dynamics.
To linearize the nonlinear functions f and h which are assumed to be differentiable,
their respective Jacobian matrices F and H are computed at each time step with
the predicted degradation state:

Fk = ∂f

∂x

⏐⏐⏐⏐⏐
X̂k−1

(2.6)

Hk = ∂h

∂x

⏐⏐⏐⏐⏐
X̂k
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2.2.1 Current degradation state estimation with the EKF

To solve the prognosis problem, the first step consists in the estimation of the
current degradation state, while measurements are available. Hence, the classical
EKF algorithm [Jazwinski 2007] expressed as follows is used:

Prediction step

X̂k|k−1 = f(X̂k−1|k−1, wk = 0) (2.7)
Pk|k−1 = FkPk−1|k−1F

T
k + Qk

Update step

ŷk = yk − HkX̂k|k−1 (2.8)
Kk = Pk|k−1H

T
k (HkPk|k−1H

T
k + Rk)

Pk|k = (I − KkHk)Pk|k−1

X̂k|k = X̂k|k−1 + Kkŷk

where P , Q and R are covariance matrices, respectively of the estimation error,
the process noise and the measurements noise. K is the Kalman gain.

2.2.2 Future degradation state estimation with the EKF

In this part, the previous estimation X̂kp−1|kp−1 is used as the initial degradation
state while the prediction step remains the same. The update step is changed
because the innovation term ŷk = yk − HkX̂k|k−1 is no more available. Instead, the
degradation state at step k ∈ {kp, · · · , kpf} is updated with the state transition model
(2.1) using the standard deviation of the previous degradation state to approximate
the distribution of the noise w. The algorithm for the estimation of the future
degradation step from step kp to step kpf is given by the following equations:

Prediction step

X̂k|k−1 = f(X̂k−1|k−1, wk = 0) (2.9)
Pk|k−1 = FkPk−1|k−1F

T
k + Q

Update step

Pk|k = Pk|k−1 (2.10)
ŵk ∼ N(0, Pk|k)

X̂k|k = f(X̂k|k−1, ŵk)
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The EKF generally provides satisfying results and is easy to implement. But
as the desired state pdf is approximated by a Gaussian distribution, it may have
significant deviation from the true distribution causing divergence in the case where
the degradation model is highly nonlinear. In order to deal with more complex
degradation models, particle filters can be used.

2.3 Particle filter
In the particle filter approach, the state pdf at time instant k is approximated by

a set of Npart particles {X i
k}Npart

i=1 representing points in the state space, and a set of
associated weights {ωi

k}Npart

i=1 denoting discrete probability masses:

p(Xk|y0:k) ≈
Npart∑
i=1

ωi
kδ(Xk − X i

k) with
Npart∑
i=1

ωi
k = 1 (2.11)

where δ is the Dirac delta function.
There exist several PF algorithms [Arulampalam et al. 2002]. One of the most

used is the sequential importance resampling (SIR) particle filter. It is based on
three main steps that are prediction, update and re-sampling, which are described in
the following and represented in Figure 2.1:

0. Initialization at time instant k = 1

• Draw particles X i
0 ∼ p(X0)

• Compute the initial weights ωi
k = 1

Npart

• Repeat the three following steps until the last available measurement

1. Prediction

• Simulate the state equation (2.1) to generate a new set of Np particles
X

i=1:Npart

k which are realizations of the predicted pdf p(Xk|y0:k−1).

2. Update

• Each sampled particle is assigned a weight based on the likelihood p(yk|Xk):

ωi
k = ωi

k−1p(yk|X i
k−1) = ωi

k−1
p(yk|X i

k)p(X i
k|X i

k−1)
p(X i

k|X i
k−1, yk) (2.12)

• Normalize the weights:

ωi
k = ωi

k

⎛⎝Npart∑
i=1

ωi
k

⎞⎠−1

(2.13)
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Prediction
posterior

prior

Update

Resampling

Figure 2.1: Principle of the SIR particle filter

3. Re-sampling

• Degeneracy problem: the weight variance increases and after a few iter-
ations all but one particle may have a negligible weight [Daum 2005].
Particles with small weights are eliminated so that the computational
efforts are concentrated in those having large ones.

• Re-sampling condition: if the effective sample size Neff is under some
threshold Nth, a re-sampling procedure is done. An estimate of Neff is

N̂eff =
⎛⎝Npart∑

i=1
(ωi

k)2

⎞⎠−1

(2.14)

In this work, systematic resampling is performed.
• Using the inverse cumulative distribution function method [Arulampalam

et al. 2002] and the current set {Xk}Npart

i=1 , a new set {X̃k}Npart

i=1 is drawn
to replace the current one. Finally, with ω̃i

k = N−1
part, the state is given by:

X̂ i
k =

Npart∑
i=1

ω̃i
kX̃k

i (2.15)

2.3.1 Current degradation state estimation with the PF

This basic SIR particle filter algorithm is applied during the first step of the
prognosis process which consists in jointly estimating the model parameters and the
current degradation state using the recorded data. This step is realized as long as
measurements are available, i.e until the prediction time kp, from which a prediction
of the future degradation state is performed.
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2.3.2 Future degradation state estimation with the PF

To apply the PF algorithm and to obtain the degradation state pdf, the weight
of each particle should be updated at every step. However, these weights depend on
the acquisition of new measurements, which are inexistent in the prediction interval.
To overcome this difficulty, the state is propagated only using the state model (2.1)
while the current particle weights are propagated in time without any changes. In
other words, only the prediction step is repeated until the threshold is reached,
allowing to obtain the RUL pdf. Such a methodology can be applied as one can
consider that the error induced while not changing the particle weights is negligible
in comparison to the other sources of error involved in the prognosis process [Orchard
and Vachtsevanos 2009].

2.4 Fatigue crack growth prognosis using an EKF
and a PF

In this section, the two model-based prognosis methods presented are applied to
estimate the evolution of a nonlinear fatigue crack growth process. The simulation
results are shown and compared using performance metrics that are accuracy, precision
and timeliness.

2.4.1 Fatigue crack growth model

In order to demonstrate the use of a PF and an EKF for prognosis, a crack
evolving in a fuselage panel of an aircraft is considered as the system degradation.
When a crack forms in a component, its size and propagation speed must be estimated
in order to calculate the RUL of this component. For this purpose, the knowledge of
the equation governing the crack growth is first required. A crack growing in the
center of a fuselage panel is commonly treated as a through-thickness center crack in
an infinite plate. Thus, the well-known Paris’ law can be used to assess the crack
size as a function of the cycle number [Paris and Erdogan 1963]:

da

dN
= C(∆K)m , ∆K = ∆σ

√
πa (2.16)

where a is the crack size, N is the number of cycles, ∆K is the range of stress intensity
factor and ∆σ is the stress range. C and m are the unknown model parameters to
be estimated jointly with the crack length a.

Once a degradation model is available, the goal is now to estimate the state of
the degradation and to compute the RUL using the PF and the EKF.
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2.4.2 Simulation settings

Whether for crack growth prognosis with the PF or with the EKF, the following
procedure is common to both methods.

Model discretization. First of all, for simulation purpose, the crack growth model
(B.9) is discretized using an Euler direct scheme:

ak = eCk(∆σ
√

πak−1)mk∆N + ak−1 (2.17)

As the parameter C has a very small value, log(C) is considered instead for
numerical tractability.

The objective here is to jointly estimate and forecast the crack length a and the
two unknown parameters m and log(C). Therefore the augmented state vector is
defined as:

X⊤
k =

[
ak log(Ck) mk

]⊤
, (2.18)

and the evolution equations are:

⎧⎪⎪⎨⎪⎪⎩
ak = ak−1 + eCk(∆σ

√
πak−1)mk∆N

log(Ck) = log(Ck−1)
mk = mk−1

(2.19)

Synthetic data generation. This model is used to create the reference crack size
data. For this purpose, the values listed in Table 2.1 are chosen. The synthetic crack
size measurements are then generated by adding a Gaussian noise with a standard
deviation of 0.001.

Table 2.1: True model parameters to generate the synthetic data

∆σ ∆N atrue log(Ctrue) mtrue

78 50 0.01 -22.62 3.8

Filter tuning. The model is randomized in order to take the different uncertainty
sources into account. Modeling and measurement uncertainty are integrated by
adding zero-mean Gaussian noises to the state and measurement equations, that are
respectively w ∼ N (0, σ2

w) and v ∼ N (0, σ2
v). Moreover, the unknown parameters m

and C are considered as Gaussian random variables such that m ∼ N (µm, σ2
m) and

log(C) ∼ N (µlog(C), σ2
log(C)).
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Therefore, the following process noise and observation noise covariance matrices,
respectively denoted as Q and R, are obtained:

Q =

⎡⎢⎣σ2
w 0 0
0 σ2

log(C) 0
0 0 σ2

m

⎤⎥⎦ , R = σ2
v (2.20)

The determination of these two covariance matrices is essential and refers to as
filter tuning. It is the most challenging step when using a PF or an EKF.

In this work, filter tuning was performed off-line on the basis of a trial and error
procedure. On-line filter tuning was not addressed as it is a complex problem and
the main purpose here is to explain the prognosis process. In the literature, some
references have treated this problem outside the context of prognosis. In [Kontoroupi
and Smyth 2015], an online strategy to jointly estimate, through the formulation
of an augmented vector, the state vector, the model parameters and the statistical
parameters (covariance and mean) of the process and observation noises is proposed.
They assume some conjugate prior distributions for both mean and covariance matrix
of noises and perform Bayesian updating using an unscented Kalman filter (UKF).
However, they point out the possible limitations of such a method due to the curse
of dimensionality.

The variances of the stochastic variables that were used for the implementation
of the PF and of the EKF algorithms are listed in Table 2.2.

Table 2.2: Initial distribution of the random variables

Variance σ2
log(C) σ2

m σ2
w σ2

v

Value 10−2 10−3 (10−4)2 (10−3)2

Initialization of the algorithms. The values of the initial state vector have to
be determined for the initialization of the filtering algorithms. The initial crack
length a0 is supposed to be known because the prognosis module is launched only if
a crack growth is detected in the monitored component. In this example, this value
is a0 = 0.01m. Concerning m and C, as they are material constants, their order of
magnitude can be a priori known to initialize the algorithms. In this case, we have
chosen m0 = 3.5 and log(C) = −22.33.

Concerning the parameters that are specific to each filter, they are defined as
follows.
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Extended Kalman filter The initial estimation error covariance matrix is
chosen here as:

P0 =

⎡⎢⎣10−2 0 0
0 10−2 0
0 0 10−2

⎤⎥⎦ (2.21)

This initial covariance matrix is chosen arbitrarily based on the information
available about the initial state estimate. One should take P0 large enough if the
initial estimate is assumed to be not very close. On the contrary, if the initial state
estimate is supposed to be close enough from its real value, a smaller P0 can be
defined. Here, the initial value of the state is supposed to be approximately known
as the prognosis module is launched when a crack is detected. Therefore, a small
value of P0 was chosen.

Particle filter As for the particle filter, the number of particles should be
provided. Here, a set of Npart = 1000 particles is considered. The number of
particles can be chosen based on a trial and error procedure, according to the user’s
requirements. Indeed, the higher Npart is, the more precision can be gained. However,
this is done at the expense of the computational time which is obviously increased.
The influence of the number of particles is illustrated in the next subsection in
Fig. 2.4, Fig. 2.5 and Fig. 2.6.

2.4.3 Simulation results

To simulate the experiment, crack length measurements were generated every
∆N = 50 cycles, from cycle 0 to cycle 1200. In other words, a crack length
measurement is available every 50 cycles and the prediction time Np from which
no more data is recorded and the forecasting of the crack length is performed is
Np = 1200 cycles. From this time instant, the estimation of the crack size in the
future without new measurements was realized until the threshold fixed at 0.0463 is
reached (according to [An, Choi, and Kim 2013b]). Using the reference crack size
dataset, for Np = 1200 cycles, the true RUL value is 1450 cycles.

Extended Kalman filter. The measurements and the discretized model 2.4.2 are
used in the EKF algorithm to estimate the current crack size in the observation
interval from cycle 0 to cycle 1200. Then, the evolution of the crack length in the
future is predicted according to the process described in Section 2.2.2. The crack
growth prognosis with the EKF is illustrated in Fig. 2.2.

Once the threshold is reached, the failure time cycle is recorded, allowing to com-
pute the RUL distribution. Indeed, the EKF supposes that Gaussian distributions are
involved, and gives estimates of the mean and covariance of the RUL. Thus, the RUL
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distribution that was obtained is a Gaussian distribution N ∼ (µRUL EKF , σRUL EKF )
with µRUL EKF = 950 cycles and σRUL EKF = 1, 96 × 10−3 cycles.

As is can be seen in Fig. 2.2, the predicted crack size and therefore the predicted
RUL are far from the references.

0 500 1000 1500 2000 2500 3000
0

0.01

0.02

0.03

0.04

0.05

N (cycle number)

C
ra
ck

si
ze

(m
)

EKF for Np=1200 cycles

Reference crack size
Measurements
Estimated crack size
Predicted crack size
Threshold

Figure 2.2: Results obtained with the EKF at Np = 1200 cycles

Particle filter. In the same way as for the EKF, the estimation of the current
crack length with the measurements is realized from cycle 0 to cycle 1200. Then, the
crack growth model is used to forecast the crack size until the threshold is reached.

As it was said before, the output of the EKF at each time step is a Gaussian
distribution, and only the mean and covariance of the estimations are propagated.
However, the PF propagates each particle through the state transition equation at
each time step. This allows to obtain a number of Npart crack length trajectories as
illustrated in Fig. 2.3 in only 1 simulation run. In this way, the RUL distribution
can be obtained by recording the failure time of each particle.

Different number of particles were tested in order to show the influence of Npart.
In Fig. 2.4, Fig. 2.5 and Fig. 2.6, Npart respectively equals 100, 500 and 1000 particles.
Only the median trajectories were plotted for the sake of clarity. These figures
highlight the fact that the more particles are used, the closer to the reference
the estimated crack length is. Thus, Npart = 1000 particles was selected for the
experiments as it is sufficiently small to keep a reasonable computational time.

The RUL distribution that was obtained with 1000 particles is given in Fig. 2.7.
One can see that the computed RUL distribution gives satisfactory results with
respect to the reference RUL value.
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Figure 2.3: 1000 particle trajectories for Np = 1200 cycles
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Figure 2.4: Results obtained with the PF with Npart = 100 particles and Np = 1200
cycles
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Figure 2.5: Results obtained with the PF with Npart = 500 particles and Np = 1200
cycles
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Figure 2.6: Results obtained with the PF with Npart = 1000 particles and Np = 1200
cycles
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Figure 2.7: RUL PDF obtained with the PF with Npart = 1000 particles and
Np = 1200 cycles

Performance evaluation metrics. The capability of the EKF and of the PF to
compute the RUL distribution was investigated in the previous results. However,
one can have a more precise performance evaluation using metrics such as accuracy,
precision and timeliness, whose expressions were given in Chapter 1. As for the
parameters of the metrics, they were chosen here as R0 = Rmin = Rmax = 700 cycles.
This corresponds to the admissible prediction error, i.e the acceptable margin for
maintenance decisions.

For this purpose, the simulation to compute the RUL distribution with both the
EKF and the PF is run 100 times to have a large enough sample for the performance
evaluation. The 100 crack length trajectories are shown in Fig. 2.8 for the EKF and
in Fig. 2.9 for the PF. Only the median trajectory was plotted for each of the 100
simulation runs of the PF.

A distribution of the mean RUL values of each simulation run was obtained for
the EKF (Fig. 2.10) and the PF (Fig. 2.11). Moreover, the numerical values of the
performance metrics are depicted in Table 2.3.
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Figure 2.8: Results of 100 experiments obtained with an EKF
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Figure 2.9: Results of 100 experiments obtained with a PF
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Figure 2.10: EKF RUL PDF for 100 experiments
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Figure 2.11: PF RUL PDF for 100 experiments
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2.5. Conclusion

Table 2.3: Performance evaluation results

Method Accuracy Precision Timeliness
EKF 0.7150 0.7630 1.0084
PF 0.9511 0.7030 0.1132

The results show that the EKF based method is less performant than the PF in
terms of accuracy and timeliness. The lower performance of the EKF for prognosis
has already been reported in [Saha, Goebel, and Christophersen 2009]. However, it
was not quantified precisely with metrics.

The only disadvantage of the PF is that it requires a more complex implementation
and has to propagate the entire distribution at each step, which tends to increase
the computational time compared to the EKF algorithm.

2.5 Conclusion
Two stochastic methods for model-based prognosis that take modeling and mea-

surement uncertainty have been presented. Both methods are able to generate a
pdf associated to the RUL prediction. The two algorithms were compared using a
classical fatigue crack growth example and synthetic data. It was shown that the PF
method outperforms the EKF one in terms of accuracy and timeliness.

This chapter has allowed to explain in more detail all the steps to compute the
RUL pdf in a model-based framework. This work also shows the interest of using
the metrics for evaluating prognosis performance.

In the next chapter, a more realistic fatigue crack growth prognosis scenario
involving a highly nonlinear model is considered. Moreover, in addition to modeling
and measurement uncertainty, future loading uncertainty is treated as well.
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Chapter 3

Particle filter for fatigue crack
growth prognosis in composite
materials

Based on the model-based prognosis steps presented in Chapter 1, a more realistic
fatigue crack growth problem is considered in this chapter. Fatigue crack growth
prognosis in structural elements made of unidirectional fiber-reinforced composites
is performed. The considered real test case is an interesting application as fiber
reinforced composites are gaining importance for use in structural elements. Indeed,
the components last longer because composite materials have a high strength and are
corrosion-resistant. Moreover, in addition to modeling and measurement uncertainty,
future loading uncertainty is treated as well.

First of all, a physics-based model is required to perform fatigue crack growth
prognosis is such materials. Indeed, the Paris’ law that was used in Chapter 1 is
no longer valid. Thus, the effort was focused on deriving a crack growth model for
fiber-reinforced titanium matrix composite materials. Various models are available in
the literature, but they induce important computational time and efforts as Fredholm
integrals or finite element method are involved. There was therefore a need to adapt
these models to perform on-line fatigue crack growth prognosis. Although simplified,
the model that was finally obtained is highly nonlinear. The model contains fixed
model parameters that depend on material and loading parameters that may vary or
not depending on the applied load. Thus, this has allowed to perform crack growth
prognosis where model uncertainty and measurement uncertainty are included, but
future loading uncertainty is taken into account as well.

Both cases of constant amplitude loading and variable amplitude loading (block
loading) are treated in this chapter. Because of its ability to handle uncertainties,
high nonlinearities and to perform joint parameter-state estimation (as shown in
Chapter 2), a particle filter is used. In a first part, fatigue crack growth prognosis
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under constant amplitude loading is realized. The loading parameters are constant
and known a priori, while the model parameters are jointly estimated along with the
crack length. Then, in a second part, fatigue crack growth prognosis under variable
amplitude loading is performed. This time, the loading parameters are unknown
and change abruptly at unknown time-steps in accordance with the applied variable
block loading. A two-sided cumulative sum (CUSUM) algorithm is implemented
to detect abrupt load variations and help the particle filter to adapt and learn the
new loading parameter values. With the combination of these two techniques, the
prognosis module could be informed of the sudden crack length increase, and will
correct the predicted remaining useful life. In both case studies, real data from
fatigue tests on unidirectional fiber-reinforced titanium matrix composites is used.

The work presented in this chapter has led to the publication of a journal
paper [Robinson, Marzat, and Raïssi 2018a] and an international conference paper
[Robinson, Marzat, and Raïssi 2018b].

3.1 Future loading uncertainty in fatigue crack
growth prognosis

The focus is placed on an application of particular interest which is the crack
growth prognosis. Indeed, this is a common issue for critical systems as fatigue
damage occurs when a structure is subject to repeatedly applied loads. Even if
the applied stress values are relatively low, the fact that they are cyclically applied
tends to weaken the material and cause its failure. In order to avoid catastrophic
events, the crack propagation must be carefully monitored in order to constantly
evaluate the remaining useful life of the considered structure. In the literature,
the problem of crack growth prognosis was treated for different models and with
various methods. A hybrid data-driven and model-based approach based on RVM
and model fitting was implemented in [Zio and Di Maio 2012] and applied to an
academic fatigue crack growth process based on the Paris’ law. Using the same test
case, the crack growth prognosis was solved with a particle-filter based algorithm in
[Zio and Peloni 2011]. [Corbetta, Sbarufatti, Manes, and Giglio 2015] proposed a
particle filter sequentially updated via a Metropolis-Hastings (MH) algorithm for
crack growth prognosis on helicopter fuselage panels. A machine learning approach
based on artificial neural networks was used to estimate the stress intensity factor
(SIF) range, which is required to calculate the crack growth at each cycle. In [Zárate,
Caicedo, Yu, and Ziehl 2012], the SIF range was modeled by a polynomial equation
with stochastic coefficients that were computed through Bayesian inference. The
future crack length was then predicted using a Markov Chain Monte Carlo algorithm.
The ability of these methods to predict the RUL of components subject to fatigue
crack growth under measurement and modeling uncertainty has been proved through
numerical examples. However, they have assumed known values of current and future
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loading, which is usually not the case in real life scenario.
In order to address the estimation of the loading amplitude, other researchers have

introduced crack growth prognosis methods based on structural health monitoring
data. The main idea is to use real-time monitoring data to build models that
characterize fatigue loading history, and then based on these models, the future
loading can be predicted. In [Ling and Mahadevan 2012], both flight parameters data
related to acceleration and mass and data recorded from strain gauges were used to
estimate and predict loading sequence through an autoregressive integrated moving
average (ARIMA) modeling method and a Bayesian approach for the update process.
The evaluation of the SIF range required for the crack growth calculation was made
with a Gaussian process surrogate model that was previously trained with data from
a finite element analysis. In [Pais and Kim 2015], usage monitoring data from an
aircraft (acceleration, airspeed, angle of attack, fuel quantity and Mach number)
were converted into a stress time history which was then transformed into a cyclic
stress history via a rain-flow counting algorithm. The resulting cyclic stress history
was used to consider the effects of variable amplitude loading in the determination
of the crack growth direction. However, it was suggested that it could be used as the
input into a prognosis method. What these proposed methodologies have in common
is that real-time monitoring data related to the loading or flight parameters are
required to build a model that characterizes the stress history. Such data may not
be available, and if it is the case, the precision of the model depends on the quantity
of data. Moreover, a finite element model was needed for the calculation of the SIF
range or to train its surrogate model, which highly increases the computational time
and efforts.

In this work, the SIF range ∆K is used to characterize the evolution of the crack
length in the considered fiber-reinforced composite material. It is assumed that only
crack length measurements are available, and no finite element model is used. Indeed,
the effort was focused on the derivation of an analytical model of the SIF range. The
obtained model contains model parameters that depend on material properties but
also loading parameters that depend on external applied loads.

Therefore, fatigue crack growth prognosis under known value of applied load
is first considered in order to estimate the model parameters. For this purpose, a
joint parameter-state estimation is performed with a particle filter because of its
ability to handle uncertainties and the high nonlinearities of the SIF range model.
The use of an extended Kalman filter (EKF) to solve the same fatigue crack growth
prognosis problem was also investigated as it is easy to implement and requires lower
computational time [Wang, Hu, and Armstrong 2017]. The results were compared
to those obtained with the particle filter using prognosis metrics.

In a second study, the problem of fatigue crack growth prognosis under unknown
constant and then unknown variable amplitude loading is addressed. Variable
amplitude loading can be divided into three categories [Laseure, Schepens, Micone,
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and De Waele 2015]: random loading, block loading and simple loading. In this
work, block loading is considered, which means that loading parameters vary stepwise
in time. Thus, using the model parameters estimated in the first study, the joint
estimation of the crack length and of the unknown loading parameters was performed
with a particle filter. However, if a significant abrupt load variation happens, the
particle filter is not able to track the abrupt change in loading parameters values.
To solve this problem, a detection algorithm, namely the two-sided cumulative
sum (CUSUM), is implemented in parallel with the particle filter to catch any
sudden deviation of loading parameters. This way, the particle filter will receive
the information and then reinitialize the previous estimates in order to learn the
new loading parameter values. This detection step enables to adapt the prognosis
algorithm to the changes in crack length evolution and therefore give a more accurate
prediction of the RUL. Indeed, an increase in the amplitude loading can significantly
accelerate the crack growth rate and lead to the critical crack length causing the
failure of the component.

In both studies, real crack length trajectories provided by ONERA/DMAS
(Département Matériaux et Structures/Materials and Structures Department) were
used, and the prognosis metrics that were used to validate the ability of the particle
filter to perform fatigue crack growth prognosis in such materials are accuracy,
precision and timeliness (previously defined in Chapter 1).

3.2 Problem statement
The problem of fatigue crack growth prognosis in fiber-reinforced titanium matrix

composite materials is addressed. This will allow to continuously assess the RUL of
a structure made of such composite material in which a fatigue crack growth has
occurred. As a model-based prognosis approach is used, the first requirement is to
establish an analytical model to assess dynamic crack propagation in such materials.
Before introducing this model, the experimental procedure to collect the real crack
growth data used in this work is described.

3.2.1 Material and experimental procedures

A composite material is the combination of two or more different materials
in order to create a superior material with different properties (stronger, lighter,
etc.). Composites are mainly made up of two constituent materials: matrix and
reinforcement. There are three main kinds of materials that are used for the matrix
(polymer, metal and ceramic) and also different forms of reinforcement material
(particles, fibers or laminates). In this work, the proposed methodology is applied
to fatigue crack growth prognosis in titanium metal matrix composites with silicon
carbide fibers used as reinforcement materials. The fatigue test data were provided
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by ONERA/DMAS, and were previously used in [Maire, Levasseur, and Paulmier
2000] to establish and validate a model to describe the fatigue crack growth in the
concerned specimens, but the problem of RUL prognosis was not addressed. For
consistency, the experimental protocol is summarized in what follows.

The titanium-matrix composite studied was SCS-6/Ti-6242. Ti-6242 is a near
alpha titanium alloy with the composition Ti-6Al-2Sn-4ZR-2Mo (percent by weight),
and this matrix was reinforced with 140 µm diameter SCS-6 Textron fibers. The
fibers are regularly spaced in the matrix in such a way as to obtain a unidirectional
composite. A parallelepiped notched specimen (Fig. 3.1) with a nominal width of 8
mm, thickness of 2.1 mm and length of 160 mm was machined from the composite
material in a manner that the length of the specimen is parallel to fiber axis. An
elliptic notch was drilled in the middle of the specimen in order to initiate the crack
growth.

2a0 2a2c

L

∆σa∆σa

Fiber

Matrix

Figure 3.1: Schematic of the specimen showing the dimensions and the loading axis
parallel to fiber direction

During the experiment performed at ONERA/DMAS, crack growth trajectories
of 7 samples of different notch lengths were recorded. Some specimens were tested
under constant amplitude loading, while the others were subjected to load variations.
The Table 3.1 gathers the information about the fatigue tests. For every specimen,
a uniaxial cyclic loading oriented along the fiber direction was applied. The stress
ratio R = σmin/σmax was equal to 0.1. The fatigue tests were performed at room
temperature and at 400◦C under a frequency of 50 Hz. In order to measure the
crack length, photographs of the crack extension were recorded by a digital camera
monitored by a computer. The reader may refer to [Thurner 2015] to be more
informed about the real-time detection and measurement of cracks. As shown in
Fig. 3.2, the typical cracking geometry involved the propagation of a crack in the
matrix on each side of the notch, propagating perpendicularly to the loading direction.

The crack propagated through all the thickness of the specimens and across their
entire width without causing the rupture of the composite material. This phenomena
is due to unbroken fibers that have bridged the matrix crack. Indeed, as the fiber
stress level did not exceed the value of the fiber strength, no fiber broke during
the experiments. The constraints of these bridging fibers can be modeled by the
distribution of a closure pressure P acting in the direction opposite to the applied
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Table 3.1: Crack growth trajectories dataset provided by ONERA/DMAS

Specimen Notch length (mm) Number of data Loading ∆σa (MPa)
1 1,175 228 Constant 326, 25

2 2,88 5910

Block 1 194, 4
Block 2 243
Block 3 303, 75
Block 4 379, 62

3 0,75 2314 Block 1 360
Block 2 450

4 2, 86 584 Constant 196, 2
5 0, 73 386 Constant 278, 1
6 0, 76 565 Constant 221, 4

7 0,75 1740

Block 1 199, 8
Block 2 249, 66
Block 3 312, 03
Block 4 389, 88
Block 5 487, 35
Block 6 560, 34
Block 7 652, 68

stress σa in the bridged zone (Fig. 3.3). In this case, the bridged zone is equivalent
to the crack length minus the notch length 2a0.

Figure 3.2: Photography of the specimen with a crack perpendicular to fiber direction

Figure 3.3: The closure pressure in the crack wake
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3.2.2 Description of the crack propagation model

It is assumed that the composite has a linear elastic behavior except in a very small
region at the crack tip, therefore the principles of linear elastic fracture mechanics
can be applied. The following modified Paris’ law that was previously used in [Maire,
Levasseur, and Paulmier 2000] to study the same fatigue test dataset can then be
used to model the Mode I crack propagation:

da

dN
= C(∆Km − Kth)m (3.1)

where a is the crack size, N is the number of cycles. Since the crack growth observed
in the composite material was limited to the matrix cracking, the effective crack-
driving force is assumed to be the SIF range ∆Km experienced by the matrix. The
constants C, m and Kth depend on matrix properties. Kth is the threshold value of
the SIF below which no crack growth occurs.

The calculation of the SIF range ∆Km is the main challenge in this modeling
stage. A simple expression of the SIF range can be available. However, in more
complex structures as composite materials, an analytical closed form of the SIF does
not always exist or is too complicated to establish. In these cases, finite element
simulations can be run to calculate the SIF values associated to different crack lengths.
Then, based on the obtained database of SIFs, a regression model is used to allow
the evaluation of the SIF for any crack length. This technique was used in [Corbetta,
Sbarufatti, Manes, and Giglio 2015] where a machine learning approach based on
artificial neural networks was used to provide estimates of SIFs. In [Neerukatti, Liu,
Kovvali, and Chattopadhyay 2014], two regression techniques were used, namely least
absolute shrinkage and selection operator (LASSO) and relevance vector machine.
Although very efficient to obtain good estimations of the SIF, the main drawback of
such an approach is that the learning phase can be time consuming and a significant
amount of data is required. In this work, an analytical expression of the stress
intensity factor for bridged cracks in composite materials was established, based on
different studies found in [Johnson, Larsen, and Cox 1996].

The first step to determine ∆Km is to relate it to the continuum SIF range ∆Ktip

which is the homogenized composite stress intensity factor. Many discrete-continuum
relationships were proposed, and three of them were compared in [Bakuckas and
Johnson 1993]. In their study, the one that gave the best results in the modeling of
fiber-bridging effect on ∆Km was established by [McMeeking and Evans 1990]:

∆Km = ∆Ktip (3.2)

In order to calculate ∆Ktip, the weight function technique proposed by [Bueckner
1970] that allows to calculate a stress intensity factor for arbitrary stress distributions
is applied. In this case study, the applied stress range on the crack surface is
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∆σbr = ∆σa − ∆P (x), therefore we have:

∆Ktip = 2
∫ a

0
(∆σa − ∆P (x))G(x, a, c)dx (3.3)

where G(x, a, w) is a weight function that depends on the geometry of the specimen,
c is the specimen width and 2a is the crack length.

For a center crack configuration in a finite width specimen, the following expression
of ∆Ktip is finally obtained [Zheng and Ghonem 1996]:

∆Ktip = F∆σa

√
πa − 2F

√
a

π

∫ a

a0

∆P (x)√
a2 − x2

dx (3.4)

where F is a geometric factor that depends on the specimen width (various expressions
can be found in [Tada, Paris, and Irwin 1973]), 2a0 is the length of the unbridged
zone (i.e. notch length) and x is the distance from the crack center. It can be noted
that this expression of ∆Ktip takes into account both the contribution of the applied
remote stress ∆σa and the contribution of the bridging stress ∆σbr produced by
unbroken fibers in the crack wake.

Finally, the model that describes crack growth propagation in the studied speci-
mens is given by:

da

dN
= C

(
F∆σa

√
πa − 2F

√
a

π

∫ a

a0

∆P (x)√
a2 − x2

dx − Kth

)m

(3.5)

The determination of the change in closure pressure ∆P (x) is the critical issue
of the fatigue crack propagation problem in fiber reinforced composites. In the
literature, two types of analytical models have been widely used to calculate ∆P (x):
(i) the shear-lag model and (ii) the fiber pressure model. For more details about
these two approaches, the reader may refer to [Ghosn, Kantzos, and Telesman 1992].
As an alternative to these methods, [Davidson 1992] have used a uniform closure
pressure over the entire bridged zone and obtained satisfying results for SCS-6/Ti-
6Al-4V composite materials. This approach was considered in this paper as it allows
to avoid the integration of ∆P (x) to calculate ∆Ktip, which highly decreases the
computational time. Indeed, this is an important criteria for on-line RUL prognosis.

Adopting this constant approximation of the closure pressure leads to the following
model:

da

dN
= C

(
F∆σa

√
πa − 2F

√
a

π
∆P

∫ a

a0

1√
a2 − x2

dx − Kth

)m

(3.6)

where ∫ a

a0

1√
a2 − x2

dx = π

2 − arcsin
(

a0

a

)
. (3.7)
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Finally, the model that is used for crack growth prognosis in the studied fiber-
reinforced titanium matrix composite material is:

da

dN
= C

(
F∆σa

√
πa − 2F

√
a

π
∆P

(
π

2 − arcsin
(

a0

a

))
− Kth

)m

(3.8)

The model (3.8) that was obtained involves two different types of parameters.
One needs to distinguish between model parameters and loading parameters:

• m and C are constant model parameters which depend on the material under
study and various testing conditions (stress ratio R, temperature, etc.). They
can be estimated for a given specimen and considered to have the same values
for the other similar test specimens;

• ∆σa and ∆P are loading parameters directly related to the external loading
applied to each specimen. Their values may therefore vary according to the
loading conditions. The estimation of these two loading parameters is an
interesting feature as most of the existing prognosis methods have assumed
known values of current and future loading conditions, which is not the case
in real life scenarios. Their real-time monitoring would allow the prognosis
system to catch any abrupt load variation and update the RUL estimation.
Indeed, depending on the load variation suffered by the structure, the crack
growth rate may rapidly increase and cause its sudden failure.

Because of their different nature (constant or time-varying), these two sets of pa-
rameters will not be estimated at the same time for the fatigue crack prognosis in
the studied composite material. Firstly, a dataset of crack growth trajectory from a
specimen tested under a known constant amplitude loading will be used to estimate
the model parameters m and C and perform fatigue crack growth prognosis. Then,
using these estimated values of m and C, the case of fatigue crack growth prognosis
under variable amplitude loading where ∆σa and ∆P are unknown will be considered.
In both studies, the parameters are jointly estimated along with the crack length with
a particle filter. However, in the second case study, ∆σa and ∆P are time-varying
parameters that change abruptly with the applied load. A CUSUM algorithm is then
used to detect load variations and help the particle filter to adapt and learn the new
loading parameters values.

3.3 Fatigue crack growth prognosis with a particle
filter for joint parameter-state estimation

A particle filter was chosen to perform the joint estimation of the unknown
parameters along with the crack length in order to calculate the RUL of the composite
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specimens subjected to fatigue crack growth. The ability of the particle filter to
perform uncertainty propagation but also to deal with the high nonlinearities of the
fatigue crack growth analytical model (3.8) has motivated this choice. Indeed, the
performances of the particle filter were investigated in Chapter 2. Moreover, as the
particle filter is a Bayesian filtering method, the RUL predictions are updated and
improved as new crack length data is collected.

When specimens were tested under variable amplitude loading (block loading),
loading parameters are piecewise constant functions of time. In order to detect
load variations and to keep an accurate estimate of these loading parameters, a
two-sided CUSUM algorithm is added to the particle filter so it can keep on tracking
the time-varying parameters. The idea is to jointly estimate the unknown loading
parameters along with the crack length using the particle filter, while monitoring their
estimations with the two-sided CUSUM algorithm to detect abrupt load variations.
If a load variation happens, the CUSUM algorithm informs the particle filter which
has then to reinitialize its previous estimates of the loading parameters and learn
their new values.

The principle of the joint parameter-state estimation using the particle filter was
exposed in Chapter 2. In this section, the CUSUM algorithm is given, then, it will
be explained how the particle filter and a detection algorithm can be combined to
correctly estimate the crack length in a structure subjected to variable amplitude
loading.

3.3.1 Two-sided CUSUM algorithm

A two-sided CUSUM algorithm is used for the detection of load variation. It is
the combination of two CUSUM algorithms, where one is for the detection of an
increase in the mean of the monitored variable, and the other one to detect a decrease
in the mean. The general idea is to calculate a cumulative sum Sk that depends on
the monitored process ∆x, on its initial mean value µ0 and on the minimal size of
change to detect denoted by ν. And when the value of the sum exceeds a defined
threshold value Sth, a change in the mean value is detected. Therefore, the two-sided
CUSUM algorithm is based on the following equations:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
S+

k = max
(
0, S+

k−1 + ∆xk − µ0 − ν
2

)
S−

k = max
(
0, S−

k−1 − ∆xk − µ0 − ν
2

)
Ndetect = min{k : S+

k ≥ Sth ∪ S−
k ≥ Sth}

(3.9)

where Ndetect is the time at which the detection is made. There are two parameters
that have to be chosen in this algorithm: Sth and ν. This choice depends on how the
signal to process looks like, and for a Gaussian distribution, one can set Sth = 2σ∆x

ν
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where σ∆x is the standard deviation of ∆x. Further information about the two-sided
CUSUM algorithm can be found in [Blanke, Kinnaert, Lunze, Staroswiecki, and
Schröder 2006].

3.3.2 Prognosis methodology with the particle filter and the
detection algorithm

The general methodology that was presented above is adopted when the constant
model parameters m and C are jointly estimated along with the crack length. In the
case where the crack is propagating under unknown variable amplitude loading (block
loading), the loading parameters are unknown and time-varying (piecewise constant
functions of time). However, the SIR particle filter itself cannot handle sudden
change in loading parameters. Indeed, between two load variations, the loading
parameters have constant values. The marginal posterior parameter distributions
become increasingly concentrated around the true parameters values as more data is
available. Thus, if some abrupt load variation occurs, the new loading parameters
values may fall far into the tails of the parameter distributions, leading to particles
with negligible weights. The particle filter is not able to estimate the new parameters
values and a reinitialization of the particle system is then needed. The two-sided
CUSUM algorithm is thus implemented to detect load variations and trigger the
re-initialization of the particle filter for the learning of the new loading parameters
values.

The constant monitoring of loading parameters with the detection algorithm
allows not only to detect abrupt load variations but also to reinitialize the parameters
values right after the alarm. This would help the particle filter to converge more
quickly and more easily to the actual crack length. This procedure leads to the
introduction of a new uncertain parameter which is the initial loading parameters
values after load variation. In most cases this value is unknown, but the user may
have an order of magnitude of it. Indeed, depending on the monitored system,
the critical input value that can accelerate the degradation state evolution can be
obtained from expert knowledge. Therefore, because of the uncertainty associated to
this value, it is included in an interval L = [L, L].

3.4 Numerical applications

The aim of this section is to show how on-line fatigue crack growth prognosis with
a SIR particle filter can be assessed in fiber-reinforced titanium matrix composite
materials. The case of a fatigue crack prognosis with unknown model parameters
m and C but known loading parameters ∆σa and ∆P is first presented. For this
purpose, dataset #4 of Table 3.1 where the specimen was tested under constant
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amplitude loading is used. In order to justify the choice of a particle filter rather
than an extended Kalman filter (EKF) which is easier to implement and is less time
consuming, the performance of these two stochastic filters will be compared. Then,
in a second part, a more complex and realistic case of fatigue crack growth prognosis
where the loading parameters ∆σa and ∆P are unknown is considered. In this second
example, dataset #3 of Table 3.1 from a specimen tested under variable amplitude
loading is used.

In order to evaluate the performance of the particle filter and of the EKF in
estimating the RUL of the considered composite materials, the three prognosis metrics
(accuracy, precision and timeliness) presented in Chapter 1 are calculated. Accuracy
measures the degree of closeness of the predicted RUL to the actual RUL, and its
values are between 0 and 1 where 1 gives the best accuracy. Precision evaluates the
narrowness of the interval in which the RUL predictions fall, and ranges between 0
and 1 which reflects the highest precision. Finally, timeliness indicates the relative
position of the predicted RUL pdf along the time axis with respect to the occurrence
of the actual failure event. There are three cases: (i) the failure occurs after the
predicted failure time, (ii) the failure occurs at the same time as the predicted failure
time, and finally, (iii) the failure occurs earlier than predicted. This last case must
be absolutely avoided, that is why the timeliness function allows to penalize late
predictions. Timeliness has positive values and 0 is the best score.

For both case studies, the input parameters required for the implementation of the
algorithms are provided, then the simulation results are shown. Finally, the prognosis
methods are compared using the performance metrics that have been defined above.
The following discrete-time form of the crack growth model (3.8) is used:

ak+1 = ak + C∆N
[
F∆σak

√
πak − 2F

√
a

π
∆Pk

(
π

2 − arcsin
(

a0

ak

))
− Kth

]m

(3.10)

3.4.1 Unknown model parameters m and C

In this first case study, a crack growth trajectory dataset where the loading
amplitude is maintained constant is used (dataset #4). The loading parameters ∆σa

and ∆P are then constant and equal to 196, 2 MPa. The objective here is to jointly
estimate and forecast the crack length and the two unknown material parameters m
and C, therefore the augmented state vector is defined as X⊤

k =
[
ak Ck mk

]
.

Filter tuning. The variances of the stochastic variables that were used for the
implementation of the PF and the EKF algorithms are listed in Table 3.2. Filter
tuning was performed off-line on the basis of a trial and error procedure, as it was
described in Chapter 2. The process noise w is assumed to be additive and the
measurements noise v is unknown.
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Table 3.2: Distributions of random parameters for the estimation of m and C

Parameter log(C) m w v
Variance (10−2)2 (10−3)2 (10−3)2 (10−3)2

Initialization of the algorithms. The values of the initial state vector have to
be determined for the initialization of the filtering algorithms. The initial crack
length a0 is supposed to be known because the prognosis module is launched only
if a crack growth is detected in the monitored component. In the tested specimen,
this value is a0 = 3.1mm. Concerning m and C, as they are material constants, their
order of magnitude can be a priori known to initialize the algorithms. In this case,
we have chosen m0 = 2.4 and log(C) = −23.65. Finally, crack length measurements
were collected every ∆N = 1172 cycles and a total number of 500 particles was used
by the particle filter. This number of particles was chosen after a trial and error
procedure, it was the best compromise between computational time and precision of
the estimation. In the figures presented in the next subsections, the plotted curves
correspond to the median trajectory.

The crack growth prognosis has been done for different prediction time cycles Np,
which means that the number of available measurements in the observation interval
has been increased over cycles, as in on-line prognosis. From prediction time cycle Np,
the forecasting of the future crack length was performed without any measurements
until the threshold was reached in order to deduce the RUL value. This critical crack
length was fixed at 7.5 mm.

Performance evalutation metrics. As it was done in the case study of Chapter 2,
100 simulation runs of the filtering algorithms were performed in order to evaluate
the performance of the algorithms in terms of accuracy, precision and timeliness.
Concerning the choice of the performance metrics parameters [Imin,Imax] and I0
defined in Chapter 1, they depend on the material and user requirements. They can
be derived from prior knowledge about the fatigue behavior of the material under
study characterized by its S − N curve [Kawai and Itoh 2014]. Based on these
considerations, the user can define an allowable margin as a decision criterion. In
this case, we have chosen I0 = 2 × 105 cycles. As for the interval [Imin,Imax], its
width equals I0 = 2 × 105 cycles.

The evolution of the crack growth prognosis for different values of Np are shown
from Fig. 3.4 to Fig. 3.6 for the EKF and from Fig. 3.7 to Fig. 3.9 for the PF. The
performance metrics values for both methods are listed in Table 3.3. The results
show that the EKF did not manage to predict correctly the future crack length until
time cycle Np = 2.794 × 105 cycles. Indeed, the EKF gives reliable results only if
the system is locally linear and is not highly nonlinear, or when there is no joint
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parameter-state estimation as in [Wang, Hu, and Armstrong 2017]. The only way to
obtain satisfactory results with the EKF was to decrease the standard deviation of
the exponent parameter m to σm = 10−6, however it is not a realistic value because
the parameter m generally varies by 10% from one specimen to another. As regards
the particle filter, even at only Np = 1.198 × 105 cycles, the RUL prognosis gives
appropriate results in terms of accuracy, precision and timeliness, and the metric
values improve as more measurements are available.

Table 3.3: Performance evaluation results for the estimation of m and C

Prediction time Method Accuracy Precision Timeliness

1.198 × 105 PF 0.88 0.72 0.77
EKF 0.67 0.93 4.83

2.370 × 105 PF 0.95 0.82 0.17
EKF 0.71 0.95 2.04

3.542 × 105 PF 0.96 0.85 0.08
EKF 0.72 0.95 0.91

The high performance of the particle filter for the fiber-bridged crack prognosis
was highlighted in the results and confirms the results obtained in Chapter 2 on an
academic test case with a Paris’ law. Moreover, the choice of the constant value of
the closure pressure is appropriate in this case. Thus, the proposed model for fatigue
crack growth propagation in fiber-reinforced composites can be validated.
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Figure 3.4: Crack growth prognosis with the EKF at Np = 1.198 × 105 cycles
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Figure 3.5: Crack growth prognosis with the EKF at Np = 2.794 × 105 cycles
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Figure 3.6: Crack growth prognosis with the EKF at Np = 3.542 × 105 cycles
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Figure 3.7: Crack growth prognosis with the PF at Np = 1.198 × 105 cycles
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Figure 3.8: Crack growth prognosis with the PF at Np = 2.794 × 105 cycles
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Figure 3.9: Crack growth prognosis with the PF at Np = 3.542 × 105 cycles
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3.4.2 Unknown loading parameters ∆σa and ∆P

This second case study is based on dataset #3 where the cracked specimen was
subjected to variable loading amplitude. A joint input-state estimation will allow
the constant monitoring of external loads while estimating the crack length. The
augmented state vector is then defined as X⊤

k =
[
ak ∆σak

∆Pk

]
.

Filter tuning. The variances of the stochastic variables that were used for the
implementation of the particle filter algorithm are listed in Table 3.4. As in the
previous subsection, filter tuning is based on a trial and error procedure. Moreover,
the process noise w is supposed to be additive and the measurements noise v is
unknown.

Table 3.4: Distributions of random parameters for the estimation of ∆σa and ∆P

Parameter ∆σa ∆P w v
Variance (0.07)2 (0.07)2 (10−3)2 (5 × 10−3)2

Initialization of the algorithm. The initial crack length a0 is supposed to be
known because the prognosis module is launched only if a crack growth is detected
in the monitored component. In the tested specimen, this value is a0 = 0.7mm.
Concerning the loading parameters ∆σa and ∆P , their initial values are assumed to
be included in the interval L = [300, 400] MPa.

In this part, the material parameters m and C are assumed to be constant
variables as the focus is placed on the estimation of the unknown loading parameters.
They have already been calculated in the previous case study using dataset #4, and
we have m = 2.4 and C = 5.4 × 10−11. Finally, a total number of 500 particles was
used and crack length measurements were collected every ∆N = 1172 cycles.

Fatigue crack growth under unknown constant amplitude loading

The first step of prognosis consists in jointly estimating the current crack length
a and the unknown loading parameters ∆σa and ∆P using the crack growth model
and the collected crack length data at each time step k corresponding to a cycle
number N . Then, from a prediction time cycle Np, the forecasting of the future state
vector is performed without any new measurements.

First of all, in order to demonstrate the robustness of the proposed particle filter
to the initial unknown loading parameters values, the prognosis results for different
initial values of ∆σa and ∆P in L0 have been plotted in Figure 3.10.

It can be seen that despite the uncertainty on the initial loading input values,

65



Chapter 3. Particle filter for fatigue crack growth prognosis in composite
materials

0 2.5 5 7.5 10

x 10
6

0

1

2

3

4

5

6

N (cycle number)

C
ra
ck

si
ze

(m
m
)

Np = 7.702 × 106 cycles

Reference crack size

Estimated crack size

Predicted crack size

Threshold

Figure 3.10: Crack length evolution at Np = 7.702 × 106 cycles
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Figure 3.11: Estimation of ∆P and ∆σa at Np = 7.702 × 106 cycles

the particle filter always manages to converge to the actual crack length. This is an
important feature of the proposed joint input-state estimation algorithm because in
real-time prognosis, this value is unknown.

Moreover, one can notice that the crack length does not increase and the estimated
unknown loading parameters remain constant after the transient state (Figure 3.11).
Indeed, the crack growth stops after some extension because of the fiber bridging
phenomenon mentioned in Section 3.2. Therefore, the crack growth reaches a steady-
state and the failure threshold will not be reached.

In the following, a case of crack growth under variable amplitude loading is
treated to study the ability of the proposed methodology to jointly estimate the
crack length and the unknown loading parameters even in these circumstances.
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Fatigue crack growth under unknown variable amplitude loading

In this subsection, crack growth prognosis under unknown variable amplitude
loading is considered. The crack length measurements are from the real dataset
obtained during fatigue test on fiber-reinforced titanium matrix composite materials
presented in Section 3.2.

As a first step, the estimation of the crack length and the unknown loading
parameters is performed using the available measurements. Then, the forecasting
step is realized from the prediction time cycle Np. Before load variation, the prognosis
results are the same as described in the previous subsection. After load variation, the
forecasting of the future crack growth without new measurements is made at different
prediction time cycles Np. The evolution of the future crack length predictions are
depicted in Figure 3.12 and Figure 3.13. The first part of the crack length evolution
is not shown as it is the same as in Figure 3.10.

The higher amplitude of the external applied load has led to an increase in
the crack length, which indicates that the critical stress has been attained. The
results show that the particle filter has some difficulties to converge even after several
time cycles of estimation using the measurements. Indeed, the particle filter needs
more data in order to estimate the unknown loading parameters whose values have
significantly increased after this abrupt load variation. This problem might be
addressed by increasing the number of particles. In this study, 500 particles were
used, and a test with 3000 particles was realized. The results were almost the same,
and this number cannot be further increased because the computational time would
be too important, which is not suitable for online applications.

In order to circumvent this issue, the two-sided CUSUM algorithm is integrated
to the particle filter. The unknown loading parameters ∆σa and ∆P are constantly
monitored to detect the sudden load variation. Indeed, as these parameters are
related to the applied load, when the loading amplitude changes, their values change
as well (Figure 3.14). It can be seen that this monitoring must start after the
transient state to avoid any false detection.

The parameter µ0 of the CUSUM algorithm is the mean value of the estimated
parameters in the transient state. The minimal size of change to detect in the
unknown loading parameters variables was fixed to ν = 2 MPa. This value was
chosen based on the parameter estimations shown in Fig. 3.11. The two-sided
CUSUM algorithm has detected the variation at Ndetect = 10.881 × 106 cycles while
the actual load variation time is Nload = 10.868 × 106 cycles.

After the detection of load variation, the values of ∆σa and ∆P are reinitialized.
The choice of the interval L is based on the a priori knowledge of the necessary
load amplitude that may cause a rapid propagation of the crack in the considered
specimen. The values ∆σacrit

and ∆Pcrit associated to the critical load are known to
be around 450 MPa. Therefore, in order to take the uncertainty associated to this
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Figure 3.12: Evolution of the crack length at different prediction cycles Np
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without the detection algorithm
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Figure 3.14: Abrupt change in ∆σa and ∆P after load variation

value into account, it was considered that the reinitialized values of ∆σa and ∆P
belong to the interval L = [400, 500]. This has allowed to estimate and then forecast
an interval that contains the estimated crack length after load variation. The bounds
of this interval are derived from two extreme loading cases. The evolution of this
interval for different prediction cycles Np is shown in Figure 3.15 and in Figure 3.16.

First of all, the gain of the detection algorithm and the reinitialization of the
loading parameters values is highlighted in these figures. It can be seen that even if
the loading parameter values after the load variation are uncertain, the interval that
was derived from the interval L still gives an accurate prediction of the future crack
length. Moreover, the predictions improve as more data is available.

Performance evaluation metrics. Even if the plotted results give an idea about
the efficiency of the proposed methodology, a more precise performance evaluation
using metrics such as accuracy, precision and timeliness is performed. The metrics
were calculated for several reinitialization values of ∆σa and ∆P included in L.
Indeed, it allows to take the uncertainty related to these values into account. Thus,
for each value of ∆σa and ∆P included in L, 100 RUL pdf computations were
simulated to calculate the metrics. Then, the mean values and the standard deviation
of each metrics in the predicted interval are given in Table 3.5.
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Figure 3.15: Evolution of the crack length at different prediction cycles Np with
the detection algorithm
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Figure 3.16: Evolution of the crack length at different prediction cycles Np with
the detection algorithm
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Table 3.5: Performance evaluation results for the estimation of ∆σa and ∆P

Prediction time Accuracy Precision Timeliness
11.058 × 106 0.59 (±0.04) 0.62 (±0.02) 4.56 (±1.05)
11.197 × 106 0.65 (±0.04) 0.75 (±0.02) 2.74 (±0.73)
11.335 × 106 0.81 (±0.08) 0.86 (±0.04) 0.92 (±0.46)
12.337 × 106 0.87 (±0.15) 0.59 (±0.07) 207.12 (±486.04)

The calculated metrics confirm that the proposed methodology gives satisfactory
results in terms of accuracy, precision and timeliness despite the high uncertainty
on the reinitialized values of the unknown loading parameters after load variation.
Moreover, the obtained values show the usefulness of the timeliness metric. Indeed, we
can see that the highest value of timeliness is at the prediction cycle Np = 12.337×106.
This is explained by the fact that a significant part of the predicted RUL have fallen
after the actual RUL value. Thus, even if the accuracy is the highest one, the
timeliness value must be taken into account carefully to optimize maintenance
decisions and avoid catastrophic events. As for the case of the particle filter without
the detection algorithm, the metrics could not even be calculated. Indeed, the particle
filter did not manage to estimate the increase in crack length after the load variation.
Therefore, the crack growth was so slow that the critical crack length could never be
reached, making the calculation of the metrics impossible.

3.5 Conclusions

In this chapter, fatigue crack growth prognosis in unidirectional fiber-reinforced
composites using real data from fatigue tests on titanium matrix composites has
been considered. First of all, the model that describes fatigue crack growth in
such materials has been derived. For this purpose, the model that was previously
developed in [Maire, Levasseur, and Paulmier 2000] has been simplified. Indeed, the
problem in model-based prognosis is to make a compromise between a very accurate
model that induces very high computational time, and a simplified model that will
reduce computational time and effort. This simplified model was obtained by making
assumptions on the physics-based model, and the resulting modeling uncertainties
were represented with uncertain parameters and additive noise.

Then, using this nonlinear model and real crack growth data, two cases of fatigue
crack prognosis in fiber-reinforced composite materials were treated. In a first study,
the joint estimation of model parameters that depend on material in conjunction with
the crack length was performed while assuming known value of the applied load. The
performances of a particle filter and an extended Kalman filter (EKF) for the crack
growth prognosis were compared using three prognosis metrics (accuracy, precision
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and timeliness). The results highlighted the high performance of the particle filter
and the difficulty of the EKF to predict the future crack growth in presence of high
nonlinearities. It was also shown that the more measurements are collected, the more
the performance metrics of both filters were improved. However, the particle filter
needed much less measurements to obtain a predicted RUL value close to the real
one, which also proves the efficiency of the particle filter over the EKF in the studied
crack growth prognosis.

In a second case study, a real crack growth dataset recorded under variable
amplitude loading was used to perform fatigue crack growth prognosis in unidirectional
fiber-reinforced composites under unknown applied load. A model-based on-line
prognosis method that is able to estimate and forecast unknown loading parameters
was proposed. A particle filter was used for the joint parameter-state estimation and a
two-sided CUSUM algorithm was integrated to detect load variations. Indeed, it was
noted that after an abrupt load variation, the particle filter had some difficulties to
converge to the degradation state whose trajectory had suddenly changed. Therefore,
the role of the CUSUM algorithm is to monitor the unknown loading parameters
values, and to give an alert when a load variation is detected. Once the particle filter
has received this alert, the estimated values of the unknown loading parameters are
reinitialized in an interval that is chosen from a priori knowledge. The association of
these two algorithms have enabled to keep the RUL predictions accurate even after
load variation.

Finally, the simplified crack growth model that was proposed for fatigue crack
growth prognosis in unidirectional fiber-reinforced composite materials can be vali-
dated. Indeed, even when considering that the absolute value of the closure pressure
is equal to the applied load, the crack growth prognosis results were satisfactory.
That is an important aspect in on-line prognosis because the computational time
must be minimized.
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Chapter 4

Set-membership framework for
model-based prognosis

In this chapter, two set-membership state estimation techniques based on interval
analysis are applied to the problem of RUL prognosis. In this context, uncertainty
propagation is performed without no stochastic assumption and only the bounds of
the state and measurement noises are required. This allows the estimation of the
degradation state in a guaranteed way.

In the first approach, a set-membership methodology using constraint satisfaction
is adopted to estimate and then forecast the degradation state. For this purpose,
the feasible domain of the model parameters is first estimated based on the available
measurements.Then, using the natural inclusion function of the degradation model
and the projection of the outer approximation of the feasible domain of the parameters,
the future degradation behavior is predicted and the interval that contains the RUL
of the system is finally computed. The proposed methodology is illustrated using
the same nonlinear crack growth example as in Chapter 2.

The second method belongs to the category of set-membership observers. The
case where the degradation cannot be directly measured (inaccessible or difficult to
measure) is considered. However, it can be detected through the drift of a model
parameter. This parameter drift is viewed as an unknown input, whose reconstruction
allows the estimation of the degradation signal by solving an inverse problem. Thus,
in order to estimate and forecast the bounds of the degradation state, the bounds
of the degradation signal should be reconstructed first. The RUL calculation is
composed of three main steps. First, the bounds of the state and the unknown input
are estimated, while taking the model and measurement noises into account. For
this purpose, a novel methodology to synthesize an interval unknown input observer
(UIO) for linear time-invariant (LTI) discrete-time systems is proposed. The bounds
of the degradation signal are then deduced by solving an inverse problem based on
interval arithmetics. The second step consists in estimating the feasible domain of
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the parameters of the degradation model based on a set-membership methodology
using constraint satisfaction. Finally, as a third step, the natural inclusion function of
the degradation model is used to compute the bounds of the future degradation state
until failure threshold is reached, allowing the deduction of RUL interval. In order
to demonstrate the efficiency of the proposed model-based prognosis methodology,
the degradation of a suspension system is studied. A crack that cannot be directly
measured is evolving in the suspension spring, and is affecting its stiffness constant,
which is a parameter of the suspension dynamical model.

This work has led to the publication of an international conference paper [Robin-
son, Marzat, and Raïssi 2017b].

4.1 Set-membership methodology using constraint
satisfaction

In this section, a set-membership methodology is proposed based on a guaranteed
estimation and prediction of models described by (2.1), (2.2) where only the bounds of
the noises and disturbances are available without any additional stochastic assumption.
Disturbances w and noises v satisfy |vk|≤ V , |wk|≤ W for some positive bounds V
and W . Since w and v belong to intervals, the parameter vector θ and the degradation
state x cannot take single values but they also belong to some compact domains.
The proposed set-membership methodology to compute the RUL is based on two
steps:

1. The available measurements over the time step interval [k0, kp] are used to
estimate the feasible domain of the parameter vector θ given by

Θ =

⎧⎪⎨⎪⎩
θ ∈ Rq | xk = f(xk−1, θ, wk),
h(xk, vk) ∈ [ym

k − V, ym
k + V ],

∀k ∈ [k0, kp], ∀xk−1 ∈ [xk−1], ∀|wk|≤ W

⎫⎪⎬⎪⎭ (4.1)

where ym
k are the measurements and [ym

k − V, ym
k + V ] is the domain of the

output taking the noises into account.

2. The estimated feasible parameter domain is used to predict the degradation
behavior for time steps k > kp in order to estimate the remaining useful life of
the system.

The estimation and prediction steps are based on interval tools to deal with the
bounded uncertainties.
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4.1.1 Interval techniques

Interval analysis techniques represent a powerful tool to tackle uncertainty propa-
gation without no stochastic assumption. Indeed, the evaluation of the whole set of
possible model outputs could be performed using only one interval evaluation. A
real interval [a] = [a, a] is a connected and closed subset of R. The set of all real
intervals of R is denoted by IR. Real arithmetic operations are extended to intervals
(see [Moore 1966]). Consider an operation ◦ ∈ {+; −; ∗; /} and [a], [b] two intervals,
then:

[a] ◦ [b] = {x ◦ y | x ∈ [a], y ∈ [b]}
The width of an interval [a] is defined by w[a] = a − a and its midpoint by mid[a] =
(a + a)/2. The midpoint represents a point estimation of a variable and the radius is
the uncertainty.

Let f : Rn → Rm be a vector function and [x] an interval vector (also called a
box) of Rn. An inclusion function, denoted by [f ], aims at computing an interval
[f ]([x]) that contains the images of f over the box [x], and can be defined as:

[f ]([x]) ⊂ {f(x) | x ∈ [x]}, (4.2)

or equivalently, an interval function [f ] : IRn → IRm is an inclusion function for f if:

∀[x] ∈ IRn, f([x]) ⊆ [f ]([x]) (4.3)

An inclusion function of f could be obtained by replacing each occurrence of a real
variable by its corresponding interval and by replacing each standard function by its
interval evaluation. Such a function is called the natural inclusion function.

A constraint satisfaction problem (CSP) is defined by a set of n variables x =
x1, x2, . . . , xn and a set of m constraints C1, C2, . . . , Cm. Each variable xi has an initial
nonempty domain Di of possible values. Each constraint Ci involves a subset of the
variables and specifies the possible combinations of values for such subset. A state
of the problem is defined by an assignment of values to some or all of the variables,
xi = vi, . . . , xj = vj. An assignment that does not violate any constraint is called
a consistent assignment. A complete assignment is one in which every variable is
mentioned, and a solution to a CSP is a complete assignment that satisfies all the
constraints. In contrast to conventional techniques, interval methods do not suffer
from local convergence and the computed set is guaranteed to contain the global
solutions. In addition, an empty set is returned if the CSP has no solution in the
initial searching domain. The goal of propagation techniques is to reduce as much
as possible the domains for the variables without losing any solution. The most
popular approach is based on the Waltz filtering algorithm [Waltz 1975] which
has initially been proposed to reduce the combinatory associated with line labeling
of three-dimensional scenes. It has proved its effectiveness in solving some control
problems such as identification, filtering and robust control.
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A contractor associated to a set X is an operator C which associates to a box
[x] ∈ Rn another box C([x]) ∈ Rn such that the two following properties are always
satisfied [Jaulin, Kieffer, Didrit, and Walter 2001]:

{
C([x]) ⊂ [x] (contractance property)
C([x]) ∩ X = [x] ∩ X (completeness property)

4.1.2 Damage estimation and RUL prediction

In the sequel, we propose to use interval techniques for estimating the parameters
of system (4.1). Thus, the following CSP is formulated:

C :
{

Ck : xk = f(xk−1, θ, wk), yk = h(xk, uk), k = k0, . . . kp

θ ∈ [θ, θ] (4.4)

The characterization of the solution set Θ defined by the above CSP is based
on set inversion techniques and is performed here with a Matlab R⃝ toolbox called
VSIVIA.

In the following, the general methodology for damage estimation and RUL
prediction is given, as well as the basic notions of set inversion and VSIVIA.

Methodology. During the first step which consists in estimating the parameters of
the current degradation state with the measurements, inner and outer approximations
of the parameter set Θ defined by (4.1) are computed. They are respectively denoted
as Θin and Θout and satisfy:

Θin ⊆ Θ ⊆ Θout (4.5)

In the second step, the degradation prediction is computed with the natural inclusion
function of the degradation state equation (2.1), where [θ] is computed through a
projection of Θout on the axes θi. This inclusion function is given by

[xk] = [f ]([xk−1], [θ], [−W, W ]) (4.6)

where [−W, W ] is the feasible domain of the disturbances w. A consistency check
of the predicted intervals [xk] (k > kp) and the degradation threshold is used to
estimate the remaining useful life. Due to uncertainty propagation, it is not possible
to compute a reliable point estimation of the RUL. In the following, we propose to
define lower and upper bounds of the RUL (i.e. kRUL ∈ [kRUL, kRUL]) as:{

kRUL = kf − kp

kRUL = kf − kp
(4.7)

Similarly to the stochastic case where the RUL is characterized by a probability
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density function, in the set-membership context, the RUL can be considered as a
random variable with an uniform pdf within the bounds [kRUL, kRUL].

Set inversion and VSIVIA. Set inversion is one of the most used technique that
was developed in the context of set characterization [Moore 1966; Jaulin and Walter
1993].

Set inversion of a given box Y by a vector function f aims at characterizing the
set defined by:

X = f−1(Y) = {x ∈ Rn | f(x) ∈ Y} (4.8)

Usually, the Set Inverter via Interval Analysis (SIVIA) [Jaulin and Walter 1993]
algorithm is used to approximate the inner and outer approximations Xin and Xout

of the set X defined by equation (4.8), given a set Y ∈ Rm, an inclusion function
[f ](·) : IRn → IRm for f , and an inclusion test [t](·) defined by:

[t](x) =

⎧⎪⎨⎪⎩
true if [f ]([x]) ⊂ Y,
false if [f ]([x]) ∩ Y = ∅,

undecided otherwise.
(4.9)

The characterization of the set X with SIVIA is based on three main steps: (i)
choice of an initial box [x]0 supposed to contain at least a part of X, (ii) inclusion
tests and (iii) bisection.

The inclusion test aims at checking if the considered box [x]0 belongs or not to
X, in function of the output of the inclusion test [t], and classifies [x]0 into one of
these three categories:

• [x]0 is feasible if [t](x) = true,

• [x]0 is infeasible if [t](x) = false,

• [x]0 is indeterminate if [t](x) = undecided.

At the end of this inclusion test, the interval box [x]0 is stored into a list. In
SIVIA, the list that contains the feasible boxes is denoted S, the infeasible boxes
are stored into N . As for the indeterminate boxes, they are bisected, stored into a
list L and are subject to inclusion test and bisections until their size gets smaller
than ϵ, which defines the precision of the outer approximation Xout. They are then
stored into the list of ambiguous boxes E such that Xout = Xin ∪ E . This procedure is
repeated until the list L of indeterminate boxes whose size is bigger than ϵ becomes
empty. The computational complexity of SIVIA algorithm exponentially increases
with the parameter vector dimension. In order to reduce the number of bisections,
SIVIA is used with interval constraint propagation techniques.
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In this work, a Matlab R⃝ toolbox called VSIVIA was used instead of SIVIA.
VSIVIA is a vector implementation of SIVIA, which was designed so as to benefit from
the advantages of Matlab R⃝ in terms of vectorization. Therefore, the basic principle
of VSIVIA is the same as SIVIA, except that VSIVIA performs the calculations
vectorially. Indeed, VSIVIA evaluates all the boxes of the list L in a vector way
instead of processing them one by one. Thus, the vector inclusion test [t](L) is
defined by:

[t](L) =

⎧⎪⎨⎪⎩
in if [f ](L) ⊂ Y
out if [f ](L) ∩ Y = ∅

undecided ¬in ∧ ¬out
(4.10)

The reader may refer to [Herrero, Georgiou, Toumazou, Delaunay, Jaulin, et al.
2012] to have a detailed algorithm of VSIVIA as well as application examples.

Each time VSIVIA is used in this chapter, the set of inputs required by the
algorithm will be defined as:

Inputs = {[x]0,Y, ϵ} (4.11)

where [x]0 is the initial box that contains the set to characterize, Y is the set to be
inverted and ϵ defines the precision of the algorithm.

In the next section, the proposed methodology is applied to the academic test case
presented in Chapter 2 where the prognosis of a fatigue crack growth with the Paris’
law is performed. The same performance evaluation metrics are used to evaluate the
algorithm and to compare it to the EKF and PF presented in Chapter 2.

4.1.3 Simulation results

In this section, the degradation that is considered is a fatigue crack propagation in
an infinite rectangular plate. The case study is exactly the same as the one presented
in Chapter 2. Indeed, the same measurement data and the same following discretized
model are used:

ak = eCk(∆σ
√

πak−1)mk∆N + ak−1 (4.12)

where a is the crack size, N is the number of cycles and ∆σ is the stress range
whose value is known. C and m are the unknown model parameters.
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Estimation of the current degradation state using available measurements

In this case, the degradation state is the crack length a and it is directly measured.
The crack size measurements from initial time cycle 0 to prediction time cycle
Np = 1200 are used to estimate the current degradation state. First, the feasible
domain Θ of the parameter vector θ =

[
log(C) m

]
is estimated using a set inversion

technique. Then, the bounds of the current crack size are computed with the natural
inclusion function and the estimated set Θ. For this purpose, VSIVIA is used.

Estimation of Θ using VSIVIA. To estimate Θ, an initial box containing the
parameter set should be specified first. The values of the parameters m and C
may differ from one specimen to another due to material and operating conditions
variability. However, they have known range values that depend on the considered
material. Here, aluminium plates are considered, therefore, according to [Steadman,
Carlson, and Kardomateas 1995], m ∈ [2, 5] and log(C) ∈ [−27, −19].

Thus, the set of input parameters of the VSIVIA algorithm is:

Inputs = {[x]0 = [2, 5]× [−27, −19] , Y = {[yk −V, yk +V ], ∀k ∈ [k0, kp]} , ϵ = 0, 1}

The obtained set is shown in Figure 4.1 where Θint appears in red, Θext in white and
the part that do not belong to the solution set is in blue.

Estimation of the bounds of the current crack length using VSIVIA.
Then, using the estimated Θ, the bounds of the current crack length are com-
puted. The estimated bounds are shown in Figure 4.2, and it can be seen that the
measurements are all contained in these bounds.
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Figure 4.1: Estimation of the feasible domain of m and log(C) with VSIVIA
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Figure 4.2: Crack size bounds estimation with the measurements
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Estimation of the future degradation state

As it was explained in Section 4.1.2, the natural inclusion function of the state
equation is used to compute the prediction of the degradation bounds:

[ak] = e[Ck](∆σ
√

π[ak−1])[mk]dN + [ak−1] (4.13)

where [m] and [log(C)] are derived from the projection of Θout on the axes m and
log(C).

Figure 4.3 shows the estimated bounds from time cycle 0 to prediction time cycle
1200, and the predicted bounds until the threshold is reached.

In both steps (estimation and prediction), the estimated bounds include the actual
reference crack size. Indeed, the interval analysis techniques allow a guaranteed
estimation.

The results of the estimated bounds of the RUL, as well as the true RUL value
are depicted in Table 4.1. Performance evaluation metrics were used to evaluate the
efficiency of the proposed algorithm and to compare it to the results obtained in
Chapter 2 with the EKF and the PF.

Table 4.1: Calculated RUL interval

Prediction time RUL lower bound kRUL True RUL RUL upper bound kRUL

1200 1150 1450 1950

Performance evaluation metrics

The same metrics (accuracy, precision and timeliness) are calculated here, using
the same parameter values as in Chapter 2, R0 = Rmin = Rmax = 700 cycles. The
metrics values that are obtained are listed in Table 4.2 and compared to those
obtained previously with the PF and the EKF.

As expected by looking at Figure 4.3, the precision of the interval-based method is
lower than the PF and EKF. However, the estimated interval is guaranteed to contain
all the uncertainty associated to the predicted RUL, while the precision metrics
obtained with the stochastic filters are based on a truncated Gaussian distribution.
Here, the distributions were truncated to the range (−3σ, 3σ), and with other values
the precision would have not been the same.

Nevertheless, in terms of accuracy and timeliness, the interval method can be
compared to the PF method, and largely outperforms the EKF.

The computational time of the interval method remains reasonable as long as the
precision parameter ϵ is not chosen too small. Thus, based on the required precision,
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Figure 4.3: Crack size bounds prediction and estimation

the user may choose between the two methods, knowing that the interval method is
easier to implement despite its lower precision.

Table 4.2: Performance evaluation results

Method Accuracy Precision Timeliness
Interval 0.9334 0.4493 0.1536

EKF 0.7150 0.7630 1.0084
PF 0.9511 0.7030 0.1132

4.1.4 Conclusion

The proposed methodology based on interval techniques allows a guaranteed
estimation and prediction of the degradation state. Its efficiency was demonstrated
with an illustration example, which is a nonlinear fatigue crack growth.

This method can be applied directly in the case where the degradation state is
measured. However, this is not always the case. Thus, an interval based methodology
that allows damage prognosis when the degradation state is not directly measurable
is presented in the next section.
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4.2 Unknown input interval observer for progno-
sis of discrete-time linear systems

In some cases, the degradation of a system may not be directly measurable. In
this context, [Gucik-Derigny et al. 2011a] has introduced a model-based prognosis
methodology that consists in considering the hidden degradation as a disturbance
that affects the system dynamics, and is therefore referred to as an unknown input.
The authors have used a nonlinear high gain unknown input observer to estimate the
state and the unknown input which is the degradation state. Then, the parameters
of the degradation model were identified with a least mean square algorithm. Finally,
based on a known future input model, the RUL of the system was deduced when the
failure threshold was reached. The authors have illustrated their methodology on an
electromechanical oscillator. However, uncertainties were not considered.

Based on this previous study, this section considers the case where the degradation
cannot be directly measured but only detectable through the drift of a model parame-
ter. This parameter drift is viewed as an unknown input, whose reconstruction allows
the estimation of the degradation signal by solving an inverse problem. Moreover,
model and measurement uncertainties are considered in a set-membership framework.
The RUL calculation is composed of three main steps. First, the bounds of the
state and the unknown input are estimated, while taking the model and measure-
ment noises into account. For this purpose, a novel methodology to synthesize an
interval unknown input observer (UIO) for linear time-invariant (LTI) discrete-time
systems is proposed. The bounds of the degradation signal are then deduced by
solving an inverse problem based on interval arithmetics. The second step consists
in estimating the feasible domain of the parameters of the degradation model based
on a set-membership methodology using constraint satisfaction. Finally, as a third
step, interval propagation is performed to estimate the bounds that include the
future degradation state until failure threshold is reached, allowing the deduction of
RUL interval. In order to demonstrate the efficiency of the proposed model-based
prognosis methodology, the degradation of a suspension system is studied. A crack
that cannot be directly measured is evolving in the suspension spring, and is affecting
its stiffness constant, which is a parameter of the suspension dynamical model.

4.2.1 Unknown input interval observer for joint state and
unknown input estimation

In this section, the methodology to synthesize an interval UIO for LTI discrete
systems is presented.
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Consider the following system:⎧⎨⎩x(k + 1) = Ax(k) + Bu(k) + Fd(k) + ω(k)
y(k) = Cx(k) + δ(k)

(4.14)

where x ∈ Rn, u ∈ Rm and y ∈ Rp are respectively the state, the input and the
measurement vectors; d ∈ Rq is the unknown input vector which does not affect the
outputs. A, B, C and F are constant matrices of appropriate dimensions. Finally,
ω ∈ Rn and δ ∈ Rp are the state and measurement noises which are assumed to be
bounded with a priori known bounds |ω|≤ ω and |δ|≤ δ where ω ∈ Rn and δ ∈ Rp

are constant component-wise positive vectors and |·| is the component-wise absolute
value for vectors. Moreover, it is assumed that n ≥ q and p ≥ q.

In order to solve the problem of state and unknown input estimation, unknown
input observers (UIO) have been developed since 1970’s [Meditch and Hostetter
1974; Hostetter 1973; Wang et al. 1975], and are mostly used in the field of fault
detection [Frank and Ding 1997; Chen et al. 1996]. However, in presence of
measurement noise or uncertain parameters, classical Luenberger-based observers
face some limitations. This is why interval observers have been proposed, to cope
with uncertainties by evaluating the set of admissible values of the state at each time
instant and computing the lower and upper bounds.

The problem of state estimation without unknown inputs using interval observers
has been widely studied. In [Gouzé et al. 2000], it was shown that in the particular
case of asymptotically stable and cooperative systems (i.e systems where the Jacobian
matrix of the state vector field has non-negative off-diagonal elements), interval
observers can be designed directly. This assumption of cooperativity is the main
limitation of interval observers as most of the systems are not cooperative. However,
in the case of LTI systems this hypothesis can be relaxed by using a time-varying
change of coordinates [Mazenc and Bernard 2011] or by time-invariant ones [Raïssi
et al. 2012].

In the set-membership framework, joint state and unknown input estimation has
been considered but only for continuous-time systems [Gucik-Derigny et al. 2016b].
Standard discrete-time UIOs have already been used for state estimation in the
presence of unknown inputs [Valcher 1999; Darouach 2004], and also for unknown
input estimation [Maquin et al. 1994]. Based on these works, the goal of this section
is to establish an interval observer to jointly estimate the state and the unknown
input of systems described by (4.14). The idea is to use the results from [Maquin et al.
1994] to obtain an unknown input-free subsystem. A second state transformation
using a time-invariant change of coordinates is performed in order to ensure the
cooperativity property of the observation error in the new coordinates. Then, an
interval observer is designed in the new coordinates and allows to deduce lower and
upper bounds for the state in the original basis. Finally, the bounds of the unknown
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input are computed. An extension of these results to the case where the known and
unknown inputs also affect the measurement equation is available in Appendix A.

4.2.1.1 Preliminaries

Notations and definitions

• Given a matrix M ∈ Rn×m, define M+ = max(0, M), M− = M − M+ ,

M∗ = [M+ M−] and M =
[
M 0
0 M

]
.

• For two vectors x1, x2 ∈ Rn or matrices M1, M2 ∈ Rn×n, the operators ≤, <, >
are understood component-wise.

• For x, x ∈ Rn with x ≤ x, define X
T =

[
x x

]
and XT =

[
x x

]
.

• A matrix M ∈ Rn×n is called Schur stable if its spectral radius is less than one.

• A matrix M ∈ Rn×n is called nonnegative if all its elements are nonnegative.

Lemma 1 [Hirsch and Smith 2005]; Consider the linear system

x(k + 1) = Ax(k) + ω(k) (4.15)

where ω ∈ Rn
+ and A is a nonnegative matrix. Then, ∀k > 0, x(k) ≥ 0 provided that

x(0) ≥ 0. Such dynamical systems are called cooperative.

The following lemma was stated and proven in the continuous-time case in Gouzé
et al. [2000] and is derived here in the discrete-time context.

Lemma 2 Consider the system described by (4.15) and suppose that the following
assumptions are fulfilled:

• The matrix A is Schur stable and nonnegative;

• ω is bounded by a fixed positive vector Ω;

• x(0) ≤ x(0) ≤ x(0).

Then, the state vector x is asymptotically lower than the positive vector

ρx = (I − A)−1Ω (4.16)

85



Chapter 4. Set-membership framework for model-based prognosis

Proof Starting from (4.15), it is shown that

x(k) = Akx(0) +
k−1∑
i=0

Aiω(k − 1 − i) (4.17)

Then, as ω ≤ Ω, we can deduce that ∀k ∈ Z+:

x(k) ≤ Akx(0) +
k−1∑
i=0

AiΩ (4.18)

A is Schur stable, therefore the term Akx(0) converges to 0. Moreover, using
classical results on the convergence of geometric series, the fact that A is Schur stable
allows to deduce the convergence of

k−1∑
i=0

Ai to

∞∑
i=0

Ai = (I − A)−1 (4.19)

Finally, we can conclude that ∀k ∈ Z+:

x(k) ≤ (I − A)−1Ω. (4.20)

□

Interval observers and cooperative discrete-time linear systems

Consider the following system without unknown inputs:⎧⎨⎩x(k + 1) = Ax(k) + Bu(k)
y(k) = Cx(k)

(4.21)

The aim of an interval observer is to compute two trajectories x(k) and x(k)
such that x(k) ≤ x(k) ≤ x(k) for all k ∈ Z+ with an initial condition verifying
x(0) ≤ x(0) ≤ x(0). The upper and lower bounds could be obtained with Luenberger-
based observers defined by:⎧⎨⎩x(k + 1) = (A − LC)x(k) + Bu(k) + Ly(k)

x(k + 1) = (A − LC)x(k) + Bu(k) + Ly(k)
(4.22)

The dynamics of the errors e(k) = x(k) − x(k) and e(k) = x(k) − x(k) are given
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by: ⎧⎨⎩e(k + 1) = (A − LC)e(k)
e(k + 1) = (A − LC)e(k)

(4.23)

Based on Lemma 1, the observation errors (4.23) are always positive and bounded
if and only if the matrix (A − LC) is Schur stable and nonnegative (Smith [1995];Efi-
mov et al. [2013b]).

In the following sections, interval observers whose structures are similar to (??)
will be designed to compute lower and upper bounds for the state vector even in the
presence of noise and disturbances. It will also be shown that the assumption on
the non-negativity of (A − LC) can be relaxed by using some changes of coordinates.
Finally, an original approach will be presented to estimate the bounds of the unknown
inputs.

4.2.1.2 Problem statement

The methodology proposed to jointly estimate the state and the unknown inputs
of a LTI discrete-time system is splitted in two steps. First, two bounds xk,xk ∈ Rn

for the state are estimated. Then, a technique to build the lower and upper bounds
dk,dk ∈ Rq for the unknown input is described.

The unknown input interval observer developed here is based on the UIO proposed
in Maquin et al. [1994] whose methodology is extended to systems with bounded
disturbances and noise. Following a change of coordinates, the state is divided into
two subsytems, one affected by the unknown input and the second one is unknown
input-free. This allows to design an interval observer in the new coordinate basis to
estimate the upper and lower bounds of the state. Then, by returning into the initial
coordinates, the upper and lower bounds for the unknown input can be computed.
First of all, the following assumption is required.

Assumption 1 C is a full row rank matrix and F is a full column rank matrix.

Under Assumption 1, there exists an orthogonal matrix H ∈ Rn×n and matrices
R0 ∈ Rq×q and K ∈ Rq×q such that:

F = H

[
R0
0

]
K⊤ (4.24)

This leads to the transformation of the system (4.14) into an equivalent one:
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⎧⎪⎪⎪⎨⎪⎪⎪⎩
z(k + 1) = Ãz(k) + B̃u(k) +

⎡⎣R0

0

⎤⎦ d̃(k) + ω̃(k)

y(k) = C̃z(k) + δ(k)
(4.25)

where:

H =
[
H11 H12
H21 H22

]
, Ã = H⊤AH =

[
Ã11 Ã12
Ã21 Ã22

]
, B̃ = H⊤B =

[
B̃1
B̃2

]
, C̃ = CH =

[
C̃1 C̃2

]
z(k) = H⊤x(k) =

[
z1(k)
z2(k)

]
, d̃(k) = K⊤d(k), ω̃(k) = H⊤ω =

[
ω̃1(k)
ω̃2(k)

]

H⊤ is supposed to be bounded, therefore |ω̃|≤ ω̃ where ω̃ is a constant positive
vector. The system (4.25) is decomposed into an unknown input depending subsystem
and an unknown input-free subsytem described by:

⎧⎪⎪⎨⎪⎪⎩
z1(k + 1) = Ã11z1(k) + Ã12z2(k) + B̃1u(k) + R0d̃(k) + ω̃1(k)
z2(k + 1) = Ã21z1(k) + Ã22z2(k) + B̃2u(k) + ω̃2(k)
y(k) = C̃1z1(k) + C̃2z2(k) + δ(k)

(4.26)

where C̃1 ∈ Rp×q and C̃2 ∈ Rp×(n−q).
C̃1 is supposed to be a full column rank matrix [Hou and Muller 1992] and can

be decomposed as:

C̃1 = H1

[
R1
0

]
K⊤

1 (4.27)

with H1 =
[
H011 H012

]
(H011 ∈ Rp×q and H012 ∈ Rp×(p−q)) and ỹ(k) = H⊤

1 y(k);
the measurements equation can be decomposed as⎧⎨⎩ỹ1(k) = R1K

⊤
1 z1(k) + H⊤

011C̃2z2(k) + H⊤
011δ(k)

ỹ2(k) = H⊤
012C̃2z2(k) + H⊤

012δ(k) = C2z2(k) + H⊤
012δ(k)

(4.28)

As ỹ1(k) = G⊤
s ỹ(k) with G⊤

s =
[
Iq Oq×(p−q)

]
, the expression of z1 is extracted

from (4.28):
z1(k) = E(y(k) − C̃2z2(k) − δ(k)) (4.29)

with E = K1R
−1
1 G⊤

s H⊤
1 .
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By replacing this expression of z1(k) in the second equation of (4.26) we obtain:

z2(k + 1) = Ã21E[y(k) − C̃2z2(k) − δ(k)] + Ã22z2(k) + B̃2u(k) + ω̃2(k) (4.30)

Finally we have the following dynamical system:

⎧⎨⎩z2(k + 1) = A2z2(k) + B2u(k) + F2y(k) − F2δ(k) + ω̃2(k)
ỹ2(k) = C2z2(k) + H⊤

012δ(k)
(4.31)

where A2 = Ã22 − Ã21EC̃2 , B2 = B̃2, C2 = H⊤
012C̃2 and F2 = Ã21E.

In order to be able to design an interval observer for the discrete-time system
(4.31), the following assumption which is standard in the field of observer design is
required [Hou and Muller 1992].

Assumption 2 The pair (A2, C2) is detectable.

Based on Assumption 2 the following lemma allows to transform (4.31) into a
suitable form for interval observer design [Efimov et al. 2013a].

Lemma 3 There exists a gain L ∈ R(n−q)×(p−q) and a transformation matrix P of
appropriate dimensions such that (A2−LC2) is Schur stable and R = P (A2−LC2)P −1

is nonnegative.

Such a transformation always exists, and in the case where the eigenvalues of
(A2 − LC2) are real, R can be chosen as diagonal or as Jordan form of A2 − LC2
[Efimov et al. 2013a]. After the change of coordinates r2 = Pz2, the system (4.31)
is described in the new coordinates by:

⎧⎨⎩r2(k + 1) = Rr2(k) + PB2u(k) + My(k) − Mδ(k) + Pω̃2(k)
ỹ2(k) = C2P

−1r2(k) + H⊤
012δ(k)

(4.32)

where M = P (F2 + LH⊤
012).

4.2.2 Interval observer design for state and unknown input
estimation

In this section, an interval observer is designed for state estimation and then for
unknown input estimation.
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4.2.2.1 State estimation

The state estimation is first performed in the coordinates r2. In the sequel, we
define ∆⊤ =

[
δ −δ

]
, ∆⊤ =

[
−δ δ

]
and Ω⊤ =

[
ω −ω

]
, Ω⊤ =

[
−ω ω

]
.

The following theorem allows to carry out an interval state estimation in the
coordinates r2.

Theorem 1 Assume that r2(0) ≤ r2(0) ≤ r2(0). Then, for all k ∈ Z+ the estimates
r2(k) and r2(k) given by⎧⎨⎩r2(k + 1) = Rr2(k) + PB2u(k) + My(k) + (−M)∗∆ + P ∗Ω̃2

r2(k + 1) = Rr2(k) + PB2u(k) + My(k) + (−M)∗∆ + P ∗Ω̃2
(4.33)

are bounded and verify

r2(k) ≤ r2(k) ≤ r2(k) (4.34)

In addition, if the gain L is chosen such that (A2 − LC2) is Schur stable, then r2 and
r2 are bounded.

Proof There are two results to prove:

1. ∀k ∈ Z+, r2(k) ≤ r2(k) ≤ r2(k) i.e the upper and lower observation errors are
positive.

2. Stability of the interval observer.

Step 1: Positivity of the observation errors.
The upper and lower observation errors are defined as⎧⎨⎩er2(k) = r2(k) − r2(k)

er2(k) = r2(k) − r2(k)

The dynamics of the errors are given by⎧⎨⎩er2(k + 1) = Rer2(k) + V1(k)
er2(k + 1) = Rer2(k) + V2(k)

where

V1(k) = (−M)+(δ − δ(k)) − (−M)−(δ + δ(k)) + P +(ω̃2 − ω̃2(k)) − P −(ω̃2 + ω̃2(k))
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and

V2(k) = (−M)+(δ + δ(k)) − (−M)−(δ − δ(k)) + P +(ω̃2 + ω̃2(k)) − P −(ω̃2 − ω̃2(k))

According to Lemma 3, the matrix R = P (A2 − LC2)P −1 is nonnegative.
For a given matrix M ∈ Rn×m we have defined in Section 3.2 that M = M+ +M−,

therefore M+ and −M− are nonnegative matrices. Moreover, |δ|≤ δ and |ω̃2|≤ ω̃2.
Therefore, as V1 and V2 are the sums of positive terms, we can deduce that ∀k ∈
Z+, V1(k) ≥ 0 and V2(k) ≥ 0.

Adding to that, as r2(0) ≤ r2(0) ≤ r2(0), we have er2(0) ≥ 0 and er2(0) ≥ 0.
Therefore Lemma 1 allows to conclude that the upper and lower observation errors
are always positive.

Step 2: Stability and convergence of the interval observer.
Defining E⊤

r2 =
[
er2 er2

]
leads to the following dynamics:

Er2(k + 1) = REr2(k) + V (k) (4.35)

where R is defined in Section ?? as R = P (A2 − LC2)P −1 and V ⊤ =
[
V1 V2

]
.

As |δ|≤ δ and |ω̃2|≤ ω̃2, it is straightforward to prove that V1 ≤ V and V2 ≤ V
with:

V = 2((−M)+ − (−M)−)δ + 2(P + − P −)ω̃2

Moreover, Lemma 3 states that R is Schur stable and nonnegative, therefore we
can ensure the stability of the observation error dynamics (4.35).

Finally, with Lemma 2, we can deduce that Er2 is asymptotically lower than the
non-negative vector

ρr2 = (I − R)−1V . (4.36)

□

Furthermore, since r2 = Pz2, the bounds of z2(k) are given by the following
corollary.

Corollary 1 Under the conditions of Theorem 1, we have z2(k) ≤ z2(k) ≤ z2(k)
with ⎧⎨⎩z2(k) = (P −1)+r2(k) + (P −1)−r2(k)

z2(k) = (P −1)+r2(k) + (P −1)−r2(k)
(4.37)
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Proof We have P −1z2(k) = ((P −1)+ + (P −1)−)z2(k). If ∀k ∈ Z+, r2(k) ≤ r2(k) ≤
r2(k), then

((P −1)+r2(k) + (P −1)−r2(k) ≤ (P −1)r2(k) ≤ (P −1)+r2(k) + (P −1)−r2(k)

which is equivalent to z2(k) ≤ z2(k) ≤ z2(k). Finally, as r2(k) and r2(k) are
bounded, z2(k) and z2(k) are bounded as well. □

The last step consists in computing the bounds for the whole state in the original
coordinates x⊤ =

[
x1 x2

]
and x⊤ =

[
x1 x2

]
. Based on Theorem 1 and Corollary 1,

the following theorem ensures the interval estimation of the state x.

Theorem 2 Assume that the conditions of Theorem 1 are satisfied and x(0) ≤
x(0) ≤ x(0). Then, for all k ∈ Z+ the estimates x(k) and x(k) given by⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

x1(k) = H11Ey + (H12)∗Z2(k) + (−E1)∗Z2(k) + (−H11E)∗∆
x1(k) = H11Ey + (H12)∗Z2(k) + (−E1)∗Z2(k) + (−H11E)∗∆
x2(k) = H21Ey + (H22)∗Z2(k) + (−E2)∗Z2(k) + (−H21E)∗∆
x2(k) = H21Ey + (H22)∗Z2(k) + (−E2)∗Z2(k) + (−H21E)∗∆

(4.38)

are bounded and verify
x(k) ≤ x(k) ≤ x(k) (4.39)

with E1 = H11EC̃2 and E2 = H21EC̃2.

Proof We have x = Hz:[
x1
x2

]
=
[
H11 H12
H21 H22

] [
E(y(k) − C̃2z2(k) − δ(k))

z2(k)

]

=
[
H11Ey(k) + H12z2(k) − E1z2(k) − H11Eδ(k)
H21Ey(k) + H22z2(k) − E2z2(k) − H21Eδ(k)

]

The observation errors relative to the state x are given by:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ex1(k) = x1(k) − x1(k)
ex1(k) = x1(k) − x1(k)
ex2(k) = x2(k) − x2(k)
ex2(k) = x2(k) − x2(k)
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and in a developed form we get:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ex1(k) = (H+
12 + (−E1)+)ez2(k) − (H−

12 + (−E1)−)ez2(k)
+(−H11E)+(δ − δ(k)) − (−H11E)−(δ + δ(k))

ex1(k) = (H+
12 + (−E1)+)ez2(k) − (H−

12 + (−E1)−)ez2(k)
+(−H11E)+(δ + δ(k)) − (−H11E)−(δ − δ(k))

ex2(k) = (H+
22 + (−E2)+)ez2(k) − (H−

22 + (−E2)−)ez2(k)
+(−H21E)+(δ − δ(k)) − (−H21E)−(δ + δ(k))

ex2(k) = (H+
22 + (−E2)+)ez2(k) − (H−

22 + (−E2)−)ez2(k)
+(−H21E)+(δ + δ(k)) − (−H21E)−(δ − δ(k))

(4.40)

With the same reasoning as in the proof of Theorem 1, it can be deduced from (4.40)
that the state observation errors are positive. Therefore, x(k) ≤ x(k) ≤ x(k) , ∀k ≥
k0.

By defining the compact error Ex as

Ex =
[
e⊤

x1 e⊤
x1 e⊤

x2 e⊤
x2

]⊤
and the matrices

J1 =

⎡⎢⎢⎢⎣
H+

12 + (−E1)+ H−
12 + (−E1)−

H−
12 + (−E1)− H+

12 + (−E1)+

H+
22 + (−E2)+ H−

22 + (−E2)−

H−
22 + (−E2)− H+

22 + (−E2)+

⎤⎥⎥⎥⎦

J2 =

⎡⎢⎢⎢⎣
(−H11E)+ − (−H11E)−

−(−H11E)− + (−H11E)+

(−H21E)+ − (−H21E)−

−(−H21E)− + (−H21E)+

⎤⎥⎥⎥⎦
it can be deduced that

Ex ≤ J1Ez2 + 2J2δ.

Moreover, from Corollary 1, we have Ez2 = REr2 with R =
[

(P −1)+ −(P −1)−

−(P −1)− (P −1)+

]
.

It follows that Ex ≤ J1REr2 + 2J2δ.
Finally, it is shown that Ex is asymptotically element-wise lower than the non-

negative vector ρx = J1Rρr2 + 2J2δ. □

4.2.2.2 Unknown input estimation

In this subsection, the upper and lower bounds of the unknown input d will be
estimated. The expression of d is expressed from the first equation of (4.26):
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(4.41)d(k) = KR−1
0 [z1(k + 1) − Ã11z1(k) − Ã12z2(k) − B̃1u(k) − ω̃1(k)]

By replacing z1 with its expression in (4.29), equation (4.41) becomes:

(4.42)d(k) = KR−1
0 [Ey(k + 1) − EC̃2z2(k + 1) − Eδ(k + 1)

− Ã11(Ey(k) − EC̃2z2(k) − Eδ(k)) − Ã12z2(k) − B̃1u(k) − ω̃1(k)]

The following theorem ensures the interval estimation of the unknown input d.

Theorem 3 Assume that the conditions of Theorem 1 are satisfied. Then, for all
k ∈ Z+ the estimates d(k) and d(k) given by⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

d(k) = QEy(k + 1) − QÃ11Ey(k) − QB̃1u(k) + G∗
1Z2(k + 1) + G∗

2Z2(k)
+G∗

3∆ + G∗
4∆ + G∗

5Ω̃1

d(k) = QEy(k + 1) − QÃ11Ey(k) − QB̃1u(k) + G∗
1Z2(k + 1) + G∗

2Z2(k)
+G∗

3∆ + G∗
4∆ + G∗

5Ω̃1

(4.43)

are bounded and verify
d(k) ≤ d(k) ≤ d(k) (4.44)

With Q = KR−1
0 , G1 = −QEC̃2, G2 = Q(Ã11EC̃2 − Ã12), G3 = −QE, G4 = QÃ11E

and G5 = −Q.

Proof The lower and upper observation errors of the unknown input d are:⎧⎨⎩ed(k) = d(k) − d(k)
ed(k) = d(k) − d(k)

By developing these expressions we obtain:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ed(k) = G+
1 ez2(k + 1) − G−

1 ez2(k + 1) + G+
2 ez2(k) − G−

2 ez2(k)
+G+

3 (δ − δ(k + 1)) − G−
3 (δ + δ(k + 1)) + G+

4 (δ − δ(k)) − G−
4 (δ + δ(k))

+G+
5 (ω̃1 − ω̃1(k)) − G−

5 (ω̃1 + ω̃1(k))
ed(k) = G+

1 ez2(k + 1) − G−
1 ez2(k + 1) + G+

2 ez2(k) − G−
2 ez2(k)

+G+
3 (δ + δ(k + 1)) − G−

3 (δ − δ(k + 1)) + G+
4 (δ + δ(k)) − G−

4 (δ − δ(k))
+G+

5 (ω̃1 + ω̃1(k)) − G−
5 (ω̃1 − ω̃1(k))

(4.45)

With the same reasoning as in the proof of Theorem 1, it is deduced from (4.45)
that the unknown input observation errors are positive.

As ez2 , ez2 , δ and ω̃1 are bounded, then d and d are bounded as well.
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If we define E⊤
d =

[
ed ed

]
and:

N1 =
[

G+
1 −G−

1
−G−

1 G+
1

]
, N2 =

[
G+

2 −G−
2

−G−
2 G+

2

]
,

N3 = G+
3 − G−

3 , N4 = G+
4 − G−

4 , N5 = G+
5 − G−

5 ,

then it can be deduced that

Ed ≤ (N1 + N2)Ez2 + 2(N3 + N4)
[
δ
δ

]
+ 2N5

[
ω̃1
ω̃1

]
.

As Ez2 = REr2 , we obtain

Ed ≤ (N1 + N2)REr2 + +2(N3 + N4)
[
δ
δ

]
+ 2N5

[
ω̃1
ω̃1

]
.

Using the upper bound ρr2 of the observation error Er2 , we can deduce that Ed is
asymptotically lower than the non-negative vector:

ρd = (N1 + N2)Rρr2 + 2(N3 + N4)
[
δ
δ

]
+ 2N5

[
ω̃1
ω̃1

]
.

□

4.2.3 Model-based prognosis using an unknown input inter-
val observer

In this section, a prognosis methodology using the previous unknown input interval
observer is presented. This methodology could be applied to various linear systems
for which a model is available. Here, remaining useful life prognosis is performed on
a suspension system.

4.2.3.1 Presentation of the model

A passive suspension system is composed of springs that absorb the shocks by
oscillating, and dampers that limit excessive suspension movement by reducing
the oscillations of the springs. The suspension model that is used in this work is
represented in Figure 4.4, and the corresponding mathematical model that describes
the system dynamics was obtained from the Newton’s second law:⎧⎨⎩m1ẍ1 = −b1ẋ1 + b1ẋ2 − k1x1 + k1x2

m2ẍ2 = b1ẋ1 − b1ẋ2 + k1x1 − k1x2 − b2ẋ2 − k2x2 + b2ẋr + k2xr

(4.46)
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m1

m2

x1

x2 k1

k2

b1

b2

Figure 4.4: Quarter-car suspension model

where x1 and x2 are the vertical displacements of sprung and unsprung weight,
m1 and m2 are their respective mass. While k1, k2, b1 and b2 are the stiffness and
damping coefficients of the suspension and tire respectively. Finally, xr denotes the
irregular excitations from the road surface.

During its lifetime, a suspension spring is subject to repeated bending and
sometimes overloading that tend to weaken it and eventually cause cracks. A crack
evolving in the suspension spring may cause the system failure if a critical crack
length is reached. Therefore, estimating and forecasting the crack length will allow
to calculate the RUL of the system. The problem is that this crack length is not
directly measurable. However, the propagation of this crack affects the value of
the suspension stiffness k1, which tends to decrease when the length of the crack
increases. Therefore, the degradation induced by the crack propagation can be
tracked by estimating the evolution of the decrease of the suspension stiffness k1.

In order to take the degradation of k1 into account, the following equation is
introduced:

k1 = kN
1 + δk1 (4.47)

where kN
1 is the nominal value of k1 and δk1 is the decrease in the suspension stiffness

value.
After replacing this expression of k1 in (4.46), the new equations that consider
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the evolution of k1 are:⎧⎨⎩m1ẍ1 = −b1ẋ1 + b1ẋ2 − kN
1 x1 + kN

1 x2 − δk1(x1 − x2)
m2ẍ2 = b1ẋ1 − b1ẋ2 + kN

1 x1 − kN
1 x2 − b2ẋ2 − k2x2 + b2ẋr + k2xr + δk1(x1 − x2)

(4.48)

A discrete-time state-space representation of the system is adopted. The state
vector is defined as x =

[
x1 x2 ẋ1 ẋ2

]⊤
and the input vector is u =

[
ẋr xr

]⊤
.

Moreover, modeling and measurement uncertainties are taken into account in the
form of additive noises that are respectively denoted as ω and δ. Therefore, (4.48)
can be rewritten in the following state-space form:⎧⎨⎩x(k + 1) = Ax(k) + Bu(k) + Fd(k) + ω(k)

y(k) = Cx(k) + δ(k)
(4.49)

where

A =

⎡⎢⎢⎢⎣
0 0 1 0
0 0 0 1

−kN
1 /m1 kN

1 /m1 −b1/m1 b1/m1
kN

1 /m2 −(kN
1 + k2)/m2 b1/m2 −(b1 + b2)/m2

⎤⎥⎥⎥⎦ , B =

⎡⎢⎢⎢⎣
0 0
0 0
0 0

b2/m2 k2/m2

⎤⎥⎥⎥⎦

C =

⎡⎢⎣1 −1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎦ , F =

⎡⎢⎢⎢⎣
0
0

−1/m1
1/m2

⎤⎥⎥⎥⎦
and the unknown input d is given by:

d(k) = δk1(k)(x1(k) − x2(k)) (4.50)

4.2.3.2 Estimation of the RUL of the suspension system

The degradation of the suspension system is caused by the crack evolving in the
spring of stiffness k1. Therefore, in order to estimate the RUL of the suspension
system, the evolution of this crack should be estimated and then predicted. The
crack length is not directly measurable, however it is related to the stiffness k1 by a
polynomial expression:

k1(ξ) =
deg∑
i=0

αiξ
i (4.51)
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where ξ ∈ [0, 1] is the degradation measure, which is a quantity derived from the
normalization of the crack length, and is described by a Paris’ law. This polynomial
allows to reflect the stiffness degradation which evolves slowly at the crack initiation
and then at a faster rate when the crack approaches its critical length. The procedure
to estimate the degree and the coefficients of this polynomial is described in [Sobczyk
and Trebicki 2000].

Therefore, the goal is to track and predict the evolution of the degradation
measure ξ. For this purpose, k1 should be estimated. This can be done using:

k1 = kN
1 + δk1 (4.52)

where the expression of δk1 is derived from equation (4.50):

δk1(k) = d(k)
x1(k) − x2(k) (4.53)

Thus, the first step consists in estimating the unknown input d and the states
x1 and x2. The linear discrete-time unknown input interval observer synthesized in
Section ?? is used for this. Moreover, it is considered that x1 ̸= x2 and that the
slowly evolving variable δk1 is independent of x1 and x2 in order to keep a linear
framework.

Estimation of x and d with the UIO

The numerical values of the model parameters were taken from [Alvarez-Sanchez
and Lopez-Velazquez 2013]. They are listed in Table 4.3.

Parameter Value Unit
Sprung mass (m1) 315 kg
Unsprung mass (m2) 51 kg
Suspension stiffness (k1) 43.3 kN/m
Tire stiffness (k2) 210 kN/m
Suspension damping coefficient (b1) 3.9 kN·s/m
Tire damping coefficient (b2) 1.1 kN·s/m

Table 4.3: Values of the model parameters

The input of the system u =
[
ẋr xr

]⊤
which reflects the road excitation is

modeled as a stochastic process (Figure 4.5).
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Figure 4.5: Road surface excitation

The state and measurement noises are assumed to be uniformly distributed and
bounded with δ = 10−3[1 1 1]⊤ and ω = 10−4[1 1 1]⊤.

Finally, the bounds of the initial state vector are chosen as x0 = [−1 − 1 − 1]⊤
and x0 = [1 1 1]⊤.

State estimation. Assumption 1 is verified since D is a full column rank matrix
and C is a full row rank matrix. In addition, Assumption 2 holds as the pair
(A2, C2) is observable. The gain L is chosen with a Schur stable pole assignment

{0.94 , 0.93 , 0.95} and is given by LT =

⎡⎢⎣−0.0004 −0.0246
0.0572 0.3237
0.0015 0.0786

⎤⎥⎦.

Finally, Lemma 1 is satisfied with a transformation matrix P given by:

P =

⎡⎢⎣−2.9140 −0.2053 −0.1865
2.8473 0.0600 2.8023
0.0668 0.1453 −1.6158

⎤⎥⎦ (4.54)

allowing to obtain a Schur stable and nonnegative matrix R = P (A2 − LC2)P −1.
The results for state x1 and x2 bounds estimation are depicted in Fig. 4.6.
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Figure 4.6: State estimation (vertical displacements x1 and x2)

The results show that the proposed interval UIO is well suited for state estimation
in discrete-time with the presence of bounded noises and unknown input.

In the following, the results obtained for the computation of the lower and upper
bounds of the unknown input are presented.

Unknown input estimation. The estimation of the bounds of the unknown input
d are required to estimate the stiffness degradation δk1. These bounds are computed
using (4.43) and the results are shown in Figure 4.7, where a zoom is done in order to
highlight the fact that the bounds actually contain the reference. It can be seen that
the older the suspension system gets, the greater is the amplitude of the unknown
input d. This indicates that a degradation is actually evolving.
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Figure 4.7: Estimation of the bounds of the unknown input d

Once the bounds of the unknown input are obtained, the stiffness degradation
δk1 is estimated in the following.

Estimation of the stiffness degradation δk1 and k1

Interval arithmetics is applied to compute the bounds of δk1 from the bounds of
d and equation (4.53). This calculation is done in 3 steps:

1. Denote x12 = x1 − x2, then: ⎧⎨⎩x12 = x1 − x2

x12 = x1 − x2
(4.55)

2. Denote xinv
12 = 1

x1−x2
, then:

⎧⎨⎩xinv
12 = min( 1

x12
, 1

x12
)

xinv
12 = max( 1

x12
, 1

x12
)

(4.56)

3. Finally we have:⎧⎨⎩δk1 = min(d × xinv
12 , d × xinv

12 , d × xinv
12 , d × xinv

12 )
δk1 = max(d × xinv

12 , d × xinv
12 , d × xinv

12 , d × xinv
12 )

(4.57)
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The computation of δk1 and δk1 requires numerical treatment. Indeed, their
values will diverge when x12 → 0 or x12 → 0, which happens frequently as x1 and x2
are the vertical displacements of the suspension system. To overcome this problem,
it is verified at each time step if 0 ∈ [x12, x12], and if it is the case, the point is
eliminated.

Then, the bounds of the stiffness k1 are deduced with k1 = kN
1 + δk1 as the

degradation measure ξ depends on k1 and not on δk1. Figure 4.8 shows the evolution
of k1.

A zoom of Figure 4.8 is displayed in Figure 4.9 to show that the reference is
included in the estimated bounds. The effect of the numerical treatment to avoid
the divergence of the bounds clearly appears.
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Figure 4.8: Estimation of the bounds of the stiffness degradation k1

Reconstruction of the degradation signal ξ

Using the reconstructed signal of k1, the bounds of the degradation signal ξ can
be estimated with a polynomial whose expression was adapted from [Luo et al. 2008]:

k1(ξ) = kN
1 − 8.84 × ξ + 4.34 × ξ2 − 1.66 × ξ3 + 2.53 × ξ4 − 1.38 × ξ5 (4.58)

where kN
1 = 43.3 × 103 N/m in this work.

Here, the bounds of ξ are computed at each time step k with VSIVIA. The inputs
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of the VSIVIA algorithm are:

Inputs = {[x]0 = [0, 1] , Y = [k1(k), k1(k)] , ϵ = 0, 1}

The resulting bounds of the degradation signal are shown in Figure 4.10.
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Figure 4.10: Estimation of the bounds of the degradation ξ
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Estimation and prediction of the bounds of the degradation state

Once the bounds that contain the degradation signal are available, the method-
ology presented in Section ?? to estimate and then forecast the bounds of the
degradation state is finally applied.

For this purpose, a model that describes its evolution is required. The model
that is used for the fatigue crack growth is a Paris’ law, where ξ is the normalized
crack length. Therefore, the discretized model is:

ξk+1 = ∆NeCk(∆σ
√

πξk)mk + ξk (4.59)

where ∆N = 50 cycles and ∆σ = 78 MPa as in Section 4.1.
The first step consists in estimating the bounds of the current degradation state.

The feasible domain of the parameter vector θ = [m C] is estimated based on the
bounds of the degradation signal computed with the measurements recorded until the
prediction time kp or equivalently time cycle Np. It can be considered that m ∈ [2, 5]
and log(C) ∈ [−27 − 19] as the spring is a metallic component.

Therefore, the set of input parameters of the VSIVIA algorithm required to
characterize the parameter set Θ is:

Inputs = {[x]0 = [2, 5] × [−27 − 19] , Y = {[ξ
k
, ξk]∀k ∈ [k0, kp]} , ϵ = 0, 1}

In the same way as in Section 4.1, the bounds of the degradation state ξ are
estimated with VSIVIA until the prediction time Np (Figure 4.11).
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Figure 4.11: Estimation of ξ bounds with the measurements
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4.2. Unknown input interval observer for prognosis of discrete-time linear systems

Then, the natural inclusion function of the degradation state equation (4.59) is
used to compute the bounds of the future degradation state:

[ξk+1] = ∆Ne[Ck](∆σ
√

π[ξk])[mk] + [ξk] (4.60)

where [m] and [log(C)] are derived from the projection of Θout on the axes m and
log(C).

The prediction of the degradation state ξ was performed for different prediction
time cycles Np in order to highlight the fact that the more data is available, the more
the predicted interval tends to shrink. The results are depicted from Figure 4.12 to
Figure 4.14.

In can be seen that the estimated and predicted bounds of the degradation state
ξ include the reference degradation state, and the interval is shrinking when more
data is available.

The values of the interval bounds containing the RUL are depicted in Table 4.4.
It can also be concluded that the bounds actually include the reference RUL value,
and they tend to shrink over time.

Table 4.4: Calculated RUL intervals

Prediction time RUL lower bound kRUL True RUL RUL upper bound kRUL

0, 20 × 106 2, 29 × 106 4, 22 × 106 5, 15 × 106

1, 90 × 106 1, 56 × 106 2, 52 × 106 3, 25 × 106

2, 99 × 106 1, 29 × 106 1, 43 × 106 1, 59 × 106
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Figure 4.12: Degradation ξ bounds estimation and prediction at time cycle Np =
0, 20 × 106 cycles
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Figure 4.13: Degradation ξ bounds estimation and prediction at time cycle Np =
1, 90 × 106 cycles
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Figure 4.14: Degradation ξ bounds estimation and prediction at time cycle Np =
2, 99 × 106

The performance of the proposed methodology is evaluated next in terms of
accuracy, precision and timeliness.

Performance evaluation metrics

In this case, we have chosen R0 = Rmin = Rmax = 0.5 × 106 cycles. The obtained
metrics values are shown in Table 4.5.

Table 4.5: Performance evaluation results

Prediction time Accuracy Precision Timeliness
0, 20 × 106 0.8891 0.0572 1.6950
1, 90 × 106 0.9544 0.1847 0.2657
2, 99 × 106 0.9936 0.7467 0.0185

The same conclusion as before can be drawn concerning the fact that the more
measurements are available, the better the metrics values get.

4.3 Conclusion
In this chapter, two set-membership methodologies adapted to model-based

prognosis were presented.
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In the first section, the case were the degradation state is directly measured was
considered. The available measurements, the degradation model and an interval tech-
nique named set inversion were used to estimate the current degradation state. Then,
from prediction time, the inclusion function and the estimated feasible parameter
domain were used to prediction the future degradation state. The same academic
fatigue crack growth case study presented in Chapter 2 was used to demonstrate the
efficiency of the method.

In the second section, an interval observer for LTI discrete-time systems was
proposed for the estimation of state and unknown input in the presence of bounded
process and measurement noises. All the steps to design the interval UIO were
described and the proofs of the main results were given. Finally, the use of the
proposed interval UIO in the context of model-based prognosis was demonstrated
on a suspension system subject to a fatigue crack growth. The obtained results
have highlighted the efficiency of the method to perform on-line prognosis as the
computational time is reasonable and the data received incrementally allow to update
the predictions which get more and more precise.

To conclude, the ability of set-membership methods to perform on-line model-
based prognosis while taking uncertainty into account was demonstrated in this
chapter.
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Chapter 5

Inverse First-Order Reliability
method for prognosis

In this chapter, another kind of uncertainty propagation method based on proba-
bility theory is presented. This method is an alternative to sampling-based methods
and is called the inverse first-order reliability method (Inverse FORM). It is an
analytical method originally developed in the structural reliability analysis field,
which aims at evaluating the failure probability of a structure. Here, a method to
compute the RUL probability density function (pdf) based on the Inverse FORM
algorithm is presented. This methodology can be applied if an expression of the RUL
or an algorithm whose output is the RUL is available.

In a first step, a filter is employed for the estimation of the current degradation
state with the available measurements. Then, the Inverse FORM algorithm is used
to find for which parameter values the system fails, with reference to a specified
failure probability level. Finally, these parameter values and the explicit expression
of the RUL allow to calculate the desired percentiles of the RUL pdf in terms of the
cumulative distribution function according to the user’s requirements. Indeed, one
may compute only some points of the RUL pdf and then reconstruct the entire pdf
by interpolation if needed. In the cases where only the mean of the RUL pdf and
the 95% probability bounds are required, the Inverse FORM can be very efficient.

Therefore, the proposed methodology does not require huge computational efforts
and is not time consuming. Indeed, the computation of the entire pdf of the RUL
is not required, and there is no need to propagate the model equation step by step
until the threshold is reached. Only the desired RUL pdf points can be computed,
for example the mean value, the 5% bounds and so on.

For the sake of illustration, the crack growth model using the Paris’ law presented
in Chapter 2 is used again. This work has led to the publication of an international
conference paper [Robinson, Marzat, and Raïssi 2017a].
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5.1 From reliability analysis to prognosis

5.1.1 Basics of reliability analysis

During its lifetime, a system is subject to various solicitations that can degrade
its performance and in time, can cause its failure. In order to ensure the safety,
serviceability and durability of the system, reliability analysis was introduced to
evaluate the probability that the system does not behave as desired during a given
period of time, whilst taking uncertainties into account. This probability is referred
to as probability of failure or failure probability of the system. The basic principle of
reliability analysis which is required for the understanding of this chapter is briefly
described in what follows, but the reader may refer to [Sudret 2007; Lemaire 2009]
to have more details.

Uncertainty propagation in reliability analysis. Reliability analysis aims at
studying the impact of the input uncertainties (material properties, geometry, loading
conditions, etc.) on the behavior of a system with respect to a certain failure scenario.

The input uncertainties are usually described within a probabilistic framework by
a s-dimensional continuous random vector X containing the input variables affected
by uncertainties.

The system is modeled by a function M : Rs → R, X ↦→ Y = M(X) whose
output is supposed to be scalar. This function can be either analytical or a black-box
computer code (e.g., a finite element code) which can be only known pointwise. Due
to the presence of uncertainties affecting the input variables, the output Y ∈ R is a
random variable too. Thus, the goal is to compute the pdf of Y through uncertainty
propagation from the input to the output of the model.

Finally, for reliability assessment, the quantity of interest is the relative behavior
of the output Y with respect to a failure criterion (e.g., a threshold overrun). To
characterize this failure criterion, a so-called limit-state function G is introduced:

G(X) = yth − M(X) = yth − Y (5.1)

where yth ∈ R is a safety threshold value characterizing the behavior of the system.
If the realization y of Y equals or exceeds the threshold, the system is considered in
a failure state. In this way, if x denotes the realizations of the input vector X, this
limit-state function G separates the variable space in two domains:

• Ds = {x : G(x) > 0} defines the safety domain;

• Df = {x : G(x) ≤ 0} defines the failure domain.
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Failure probability estimation. If fX is the joint pdf of X, then computing the
failure probability of the system is equivalent to evaluating the probability that the
output Y exceeds the threshold yth, or also to evaluating the probability that the
realizations x of the input vector X are in the failure domain:

Pf = P (Y ≥ yth) = P (G(X) ≤ 0) =
∫

G(x)≤0
fX(x) dx. (5.2)

Therefore, for a given threshold value yth, the corresponding value of Pf can be
computed. Moreover, the relationship between Pf and the CDF of Y , denoted by
FY , evaluated at a given yth, is given by:

FY (yth) = P (Y ≤ yth) = 1 − Pf (5.3)

In this way, with several threshold values yth, the entire CDF FY can finally be
reconstructed.

If required, the pdf of Y (denoted fY ) can be obtained with the following
relationship:

d

dy
FY (y) = fY (y) (5.4)

The integral in equation (5.2) can be calculated analytically only in some simple
academic cases, therefore numerical methods have been developed to approximate it.
Available techniques for failure probability estimation can be split into two categories:
one the one hand, the simulation methods, relying on the use of Monte Carlo
simulations to compute the integral. Among others, one can cite the crude Monte
Carlo sampling, importance sampling, subset sampling [Robert and Casella 2013].
On the other hand, a class of approximation methods, more specific to structural
reliability analysis, has been proposed. They are known as the first and second-order
reliability methods (FORM/SORM) [Ditlevsen and Madsen 1996]. In this case, the
function G(·) is approximated by its first/second-order Taylor series expansion so as
to simplify the estimation problem and to reduce it to a geometric problem.

In this work, the first-order reliability method (FORM) is of interest for RUL
calculation. Before presenting the methodology, the relationship between solving
a reliability analysis problem and RUL computation is highlighted in the next
subsection.

5.1.2 RUL calculation: an uncertainty propagation problem

In this section, the problem of RUL calculation is formulated as an uncertainty
propagation problem in order to make a connection with reliability analysis.

During the current state estimation, sensor data are available for a specific
observation interval whose size depends on the prediction time step kp. Then, from
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this time instant, the forecasting of the degradation state in the future is carried
out for time instants k > kp without new measurements. The main challenge in this
prediction step lies in the fact that future operational conditions of the system are
unknown. Therefore, the forecasting of the degradation state must be performed by
taking uncertainties into account.

The future state is predicted until the failure threshold is reached, giving the
predicted failure time kf . Finally, the RUL at time kp which is denoted by R(kp) can
be calculated as:

R(kp) = kf − kp. (5.5)

For better readability, the dependency in kp will be omitted in the following and the
RUL simply denoted by R.

However, as the future state prediction is uncertain, the predicted failure time kf

is uncertain, making the RUL a random variable that depends on:

• Present degradation state: xkp ;

• Future operating conditions: {ukp , ukp+1 , . . . , ukf
};

• Future parameter values: {θkp , θkp+1 , . . . , θkf
};

• Future noises {wkp , wkp+1 , . . . , wkf
} and disturbances {vkp , vkp+1 , . . . , vkf

}.

If the vector X contains all of the uncertain quantities mentioned earlier i.e X =
[xkp , ukp , ukp+1, . . . ] ∈ Rs where s is the number of uncertain parameters, and M is
a function M : Rs → R, X ↦→ M(X) that allows to compute the RUL, then we
have:

R = M(X). (5.6)

The model M can be a known function defined by a mathematical expression of the
RUL, or may be a black-box function that takes input values and provides a result.

Thus, RUL calculation can be considered as an uncertainty propagation problem.
Indeed, computing the RUL pdf fR is equivalent to propagating the uncertainty in
X through M.

Therefore, uncertainty propagation methods issued from the field of reliability
analysis can be adapted to the problem of RUL computation.
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5.2 Inverse First-Order Reliability Method for RUL
calculation

5.2.1 First-order reliability method (FORM)

FORM is one of the most commonly used approximation methods. Indeed, its
ease of implementation and low computation time make it a valuable tool.

Main steps of the FORM algorithm. One first needs to transform the uncertain
parameters vector X into a vector of standard normal variables U and to work in
this new standard normal space.

Then, the idea is to proceed to the linearization of the function G using a first-
order Taylor series approximation. This linearization is done around the so-called
Most Probable Point (MPP), which is the point on the limit-state surface closest to
the origin in the standard normal space. The MPP is found by solving an optimization
problem aiming at minimizing the distance between the origin and the limit-state
surface.

Once the MPP is identified, the reliability index β which is equal to the distance
from the origin of the standard normal space to the MPP is computed.

Finally, the failure probability is obtained with:

Pf ≈ Pf,F ORM = Φ(−β) (5.7)

where Φ(·) denotes the standard normal CDF. If the true limit-state function G is
linear, then this equation is exact. In the case where the true G function is nonlinear,
the failure probability obtained from the above formula is only an approximation.

In the following, the use of the FORM algorithm to compute the RUL CDF/PDF
is described.

Computation of the RUL CDF. As it was explained in Section 5.1.1, one needs
to apply the following steps to calculate the failure probability Pf of a system and
to deduce the CDF/PDF of the system output Y :

1. General case: define the computational model M that allows to calculate
the quantity of interest Y .
⇒ RUL calculation: here, the quantity of interest is the RUL R and the
model M may be an analytical expression of the RUL or a black-box function.

2. General case: identify the vector of random variables X which contains the
model input uncertainties (material properties, geometry, loading, etc.).
⇒ RUL calculation: the uncertain inputs involved in the RUL calculation
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problem at the prediction time kp are mainly the current degradation state
estimate and the model parameter estimates at time kp, future loading, future
process and measurement noises.

3. General case: choose a failure scenario, i.e define a threshold value yth. This
allows to define the limit-state function G such that G(X) = yth − M(X) =
yth − Y .
⇒ RUL calculation: in this case, the threshold value is denoted rth, then
the limit-state function is defined as:

G(X) = rth − M(X) = rth − R (5.8)

4. General case: calculate Pf,F ORM and deduce the corresponding CDF value
FY (yth).
⇒ RUL calculation: the above FORM algorithm is applied to compute one
value of Pf,F ORM for a particular value rth:

Pf,F ORM(rth) = P (G(X) ≤ 0) = P (R ≥ rth) (5.9)

Then, the corresponding RUL CDF value FR(rth) is deduced according to
equation (5.3):

FR(rth) = P (R ≤ rth) = 1 − Pf,F ORM(rth) (5.10)

Thus, the FORM algorithm should be applied for multiple values r (instead of
one particular value rth) to compute the corresponding values of Pf,F ORM (r). At this
point, one should notice that the values r under consideration can be seen either as
varying threshold values, or as possible realizations of the random variable R (i.e.
the unknown RUL). The values of FR(r) are then deduced using equation (5.10)
to finally obtain the entire RUL CDF FR after a certain number of repetitions of
FORM.

However, choosing the values of r for the calculation of Pf,F ORM (r) is difficult as
the RUL distribution is not known a priori. Yet, the values of Pf,F ORM (r) are assumed
to be included in the interval [0, 1] by definition, and so is η = 1 − Pf,F ORM (r). Thus,
an inverse strategy can be applied (Fig. 5.1): starting from different probability
values of Pf,F ORM (or CDF values η = FR(r) = 1 − Pf,F ORM(r)), one can find the
corresponding r values. This strategy is known in reliability literature as Inverse
FORM algorithm.
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Figure 5.1: CDF and Inverse CDF

From FORM to Inverse FORM. FORM is a forward reliability method, whereas
Inverse FORM is used to solve an inverse reliability problem. Indeed, reliability
analysis aims at computing the failure probability Pf of a system. In the case
of inverse reliability analysis, the goal is to find the vector of uncertain inputs X
associated to a given failure probability Pf .

The main steps of both forward and inverse reliability problems in the context of
RUL PDF/CDF computation are illustrated in Fig. 5.2 for clarity:

RUL CDF computation with FORM

— Generation of one realization
x ∈ Rs ofX at time kp

— Choice of a threshold value r
FORM

Computation of the RUL CDF
value FR(r) = 1 − Pf,FORM(r)

x ∈ Rs, r Pf,FORM(r)

RUL CDF computation with Inverse FORM

Choice of a value η = FR(r) ∈ [0, 1] Inverse FORM
— Computation of r =M(x)
— r is the RUL CDF value such

that F−1R (η) = r

Pf = 1− η x ∈ Rs

Figure 5.2: Computation of a RUL CDF value with both FORM and Inverse FORM

The principles of Inverse FORM for RUL calculation are developed in the next
section.
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5.2.2 Inverse FORM for RUL calculation

In this section, a methodology to compute the RUL with the Inverse FORM is
presented.

The methodology can be applied if any type of solution to calculate the RUL
from the dynamical degradation model is found. The solution may be analytical, and
in the case where no analytical expression is available, a numerical or an approximate
solution can be used.

Therefore, the first step to perform RUL prediction with the Inverse FORM is
to establish a computational model M whose output is a RUL value. For example,
in [Bressel, Hilairet, Hissel, and Bouamama 2016a], RUL estimation of a Proton
Exchange Membrane Fuel Cell (PEMFC) has been performed. A simple mathematical
expression of the RUL in function of the state of health (SoH) of the PEMFC and
its degradation speed was obtained using experimental data. In their work, the
random state variable X contained the SoH and the degradation speed variables.
In [Sankararaman, Daigle, and Goebel 2014a], the RUL was computed using a
computational code, i.e an implicit model M. Indeed, the random state variable X
contained the future loading (considered constant but random) and especially the
process noise generated from the prediction time step kp to the time kf at which the
degradation threshold is reached. Thus, the size of X depends on kf , making the
RUL computation model implicit. Here, the RUL computational model is derived
from a physics-based model of the degradation.

Once this model is available, the Inverse FORM algorithm is applied to find the
input parameters vector X for a given failure probability Pf = 1 − η where η = FR(r)
is a RUL CDF value.

For the numerical search of the uncertain parameter vector X, the following
constraints must be satisfied:

C :

⎧⎪⎪⎨⎪⎪⎩
a : Pf = Φ(−β)
b : ||u||= βtarget

c : u + ||u|| ∇uG(u)
||∇uG(u)|| = 0

(5.11)

where β is the reliability index as defined in Section 5.2.1, u is a realization of U
which is the random vector X expressed in the standard normal space and ||·|| is
the Euclidean norm. To find the optimum solution to (5.11.c), a numerical search
is required (see Der Kiureghian et al. [1994] for more details). The steps that are
followed for each iteration j of the algorithm are:

1. Setting j to 0 and initial guess of the realizations of the uncertain parameter
vector xj = [xj

0, . . . , xj
s] where s is the number of uncertain parameters.

2. Transformation into the standard normal space. In the case of Gaussian
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variables we have:
uj

i = xj
i − µi

σi

(5.12)

where µ and σ are respectively the mean and the standard deviation of the
uncertain variables. These quantities can be derived from the estimation step,
as an output of the filtering algorithm (e.g. a Kalman filter).

3. Calculation of the gradient vector of G:

αi = ∂G

∂ui

= ∂G

∂xi

× ∂xi

∂ui

. (5.13)

4. Calculation of the next point uj+1:

uj+1 = −β
α

||α|| (5.14)

where β = −Φ−1(Pf ).

5. Transformation into original space to compute xj+1.

The steps from 3 to 5 are repeated until the following convergence criteria within
thresholds δ1 and δ2 are satisfied:

(i) The solution belongs to the limit-state surface:

|G(xj) − rth|≤ δ1. (5.15)

(ii) The solution is almost constant between two iterations:

|xj+1 − xj|≤ δ2. (5.16)

The values δ1 and δ2 are very small and are fixed by the user. Here, they are equal
to 10−4, which is the value that is usually chosen.

The above procedure can be repeated for different values of Pf . According to
the needs of the user, the entire CDF can be computed with Pf = {0.1, 0.2, . . . , 0.9},
or only the 95% probability bounds and the mean can be computed with Pf =
{0.05, 0.5, 0.95}.

[Sankararaman, Daigle, Saxena, and Goebel 2013] have proved that the pdf
computed using Inverse FORM is is included in confidence bounds generated with
1000 Monte Carlo simulations.

117



Chapter 5. Reliability method for prognosis

5.3 Numerical results

In this section, the academic fatigue crack growth case study presented in Chap-
ter 2 is used again. The filtering algorithm applied to estimate the current crack
length with measurements is the EKF algorithm. Then, the proposed Inverse FORM
methodology is used to compute the RUL at the prediction time cycle when there is
no more crack length data.

5.3.1 Explicit model of the RUL

The value of the RUL calculated at a prediction time cycle Np is given by the
following expression:

R(Np) = Nf − Np (5.17)

where Nf is the failure time cycle i.e the cycle at which the crack size reaches its
critical value af . Thus, in order to obtain an analytical expression of the RUL, the
expression of Nf is required.

First of all, the degradation model of the system is needed. In this case, the
degradation is the fatigue crack growth and the Paris’ law presented in Chapter 2 is
used:

da

dN
= C(∆K)m , ∆K = ∆σ

√
πa (5.18)

where a is the crack size, N is the number of cycles, ∆K is the range of stress intensity
factor and ∆σ is the stress range. C and m are the unknown model parameters.

The RUL is calculated from the prediction time cycle Np where the crack length
is ap until the failure time cycle Nf where the crack length is af . Therefore, the
differential equation 5.18 is solved in the intervals [ap, af ] and [Np, Nf ] to obtain the
expression of Nf :

This differential equation is solved to find the expression of the crack length a
with respect to the cycle number N :

C(∆σ
√

π)mdN = 1
(
√

a)m
da

C(∆σ
√

π)mdN = a− m
2 da∫ Nf

Np

C(∆σ
√

π)mdN =
∫ af

ap

a− m
2 da

C(∆σ
√

π)m(Nf − Np) =
( 2

2 − m

)(
a

( 2−m
2 )

f − a
( 2−m

2 )
p

)
.

118



5.3. Numerical results

This yields:

Nf =
( 2

2 − m

)⎛⎜⎝a
( 2−m

2 )
f − a

( 2−m
2 )

p

C(∆σ
√

π)m

⎞⎟⎠+ Np. (5.19)

Finally, the following expression of the RUL calculated at the prediction time Np

is obtained:

R(Np) =
( 2

2 − m

)⎛⎜⎝a
( 2−m

2 )
f − a

( 2−m
2 )

p

C(∆σ
√

π)m

⎞⎟⎠ (5.20)

The next step consists in identifying the random variables of the problem. Here,
it is considered that the values of the parameters m and C at time cycle Np are
uncertain. Moreover, the estimated crack length at time cycle Np is also a source of
uncertainty. Therefore, the uncertain parameters vector is X = [ap, Cp, mp].

As explained in the previous section, the Inverse FORM is used to find for which
parameter values the system fails, with reference to a specified failure probability
level.

5.3.2 Simulation results

Synthetic data generation. The parameters used to generate data to simulate
crack length measurements are exactly the same as those presented in Section 2.4.2.
Thus, a new crack length data is obtained every ∆N = 50 cycles.

Estimation of the current crack length. The first step consists in estimating
the current crack size with the available measurements until the prediction time cycle
Np. Here, an EKF is used because of the low computational time and effort required
for the implementation. Moreover, its efficiency as long as there are measurements
was demonstrated in Section 2.4.3. The variances used for the tuning of the EKF
are the same as in Section 2.4.2.

RUL computation. From time cycle Np, the Inverse FORM algorithm described
in Section 5.2.2 is applied to compute the RUL:

1. Setting j to 0 and initial guess of the realizations of the uncertain parameter
vector xj = [xj

0, . . . , xj
s] where s is the number of uncertain parameters.

⇒ The vector X⊤ =
[
a C m

]⊤
estimated by the EKF at time cycle

Np is used as the initial guess.

2. Transformation into the standard normal space. In the case of Gaussian
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variables we have:
uj

i = xj
i − µi

σi

(5.21)

where µ and σ are respectively the mean and the standard deviation of the
uncertain variables.
⇒ These quantities are derived from the values obtained with the
EKF at time cycle Np.

3. Calculation of the gradient vector of G:

αi = ∂G

∂ui

= ∂G

∂xi

× ∂xi

∂ui

. (5.22)

4. Calculation of the next point uj+1:

uj+1 = −βtarget
α

||α|| (5.23)

where βtarget = −Φ−1(Pf ).
⇒ The user specifies the value of Pf and the value of βtarget is deduced.

5. Transformation into original space to compute xj+1.

6. Steps 3 to 5 are repeated until the convergence criteria defined in Section 5.2.2
are satisfied.

This whole algorithm is repeated for each value of Pf needed by the user. For
example, one may require only the mean RUL value associated to Pf = 0.5 or to
choose several values of Pf to reconstruct the entire RUL CDF. Examples of the
RUL CDF calculated at Np = 1200 cycles obtained with different values of Pf are
depicted from Fig. 5.3 to Fig. 5.5.
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Figure 5.3: RUL CDF generated with values of Pf from 0.001 to 0.99 every 0.001
steps
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Figure 5.4: RUL CDF generated with values of Pf from 0.001 to 0.99 every 0.05
steps

Here, the mean RUL value and the 1% and 99% bounds are computed at different
prediction time cycle Np. Therefore we have Pf = {0.01, 0.5, 0.99}. The evolution of
the mean RUL and the 99% probability bounds is shown in Fig. 5.6.
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Figure 5.5: RUL CDF generated with values of Pf from 0.001 to 0.99 every 0.1 steps
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Figure 5.6: Evolution of the RUL in time with the 99% bounds

The 1% and 99% bounds are large at the beginning, which means that the
uncertainty in the RUL is high initially. However, these bounds tend to shrink as
more data is available and the estimation becomes more and more accurate.

The use of the Inverse FORM to compute the mean RUL value and its confidence
interval is very concluding because the computational time is very low and there was
no need to compute the entire RUL pdf as with the particle filter. Moreover, with
the particle filter, the crack propagation equation was propagated step by step from
the prediction time cycle Np until the critical crack length was reached, increasing
the computational time and effort.

Performance metrics are calculated to evaluate the accuracy, precision and timeli-
ness of the Inverse FORM.

122



5.3. Numerical results

Performance evaluation metrics. The simulation to compute the mean RUL
value associated to Pf = 0.5 at Np = 1200 cycles is run 100 times to have a large
enough sample for the performance evaluation and to compare with the results
obtained with the PF and the EKF in Section 2.4.3 with the same test case.

The distribution of the mean RUL values of each simulation run is shown in
FIg. 5.7. Moreover, the numerical values of the performance metrics are depicted in
Table 5.1.
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Figure 5.7: Results of 100 experiments obtained with Inverse FORM

Table 5.1: Performance evaluation results

Method Accuracy Precision Timeliness
IFORM 0.8989 0.3251 0.2716

PF 0.9511 0.7030 0.1132
Interval 0.9334 0.4493 0.1536

EKF 0.7150 0.7630 1.0084

The results show that the Inverse FORM outperforms the EKF for RUL com-

123



Chapter 5. Reliability method for prognosis

putation in terms of accuracy and timeliness. However, the Inverse FORM is less
successful than the interval method concerning the three metrics.

Nevertheless, although the EKF was used for the estimation of the current
degradation state, the performance metrics of the Inverse FORM remain acceptable,
especially if a high precision is not required.

Even if the particle filter has the best results, its main drawback is its complex
implementation and its higher computational time as the entire pdf of the RUL must
be computed. Moreover, a large number of the whole trajectories of the degradation
state until the threshold is reached have been generated to deduce the failure time
and then compute the RUL pdf (Fig. 2.3).

The Inverse FORM only needs to compute a few values of RUL associated to to
Pf={0.01,0.5,0.99}. This is sufficient to obtain the mean value of the RUL with the
99% probability bounds. Therefore, the computational time with the Inverse FORM
is much lower, and the performance metrics are satisfying and although lower than
the particle filter and the interval method.

5.4 Conclusion
In this chapter, a general methodology to compute the RUL with the Inverse

FORM was presented, then evaluated and compared to filter-based methods through
different performance metrics. The results have highlighted that in terms of accuracy
and timeliness the Inverse FORM gives better results than the EKF. Even if the
Inverse FORM does not outperform the interval method and the PF, the calculated
metrics remain reasonable. Moreover, it presents a significant advantage in terms of
computational time.

Therefore, the Inverse FORM can be an alternative to PF-based methods and
interval methods for RUL prognosis in the case where low computational cost
algorithms are needed, and a high precision is not required. However, if highly
nonlinear and complex models are involved, the particle filter remains the best
approach to choose.

124



Conclusion and perspectives

Conclusion

In this thesis, different methods for model-based prognosis were developed. The
main purpose was the inclusion of uncertainty sources in order to measure the
uncertainty in the predicted RUL. The main uncertainty sources that were considered
are model uncertainty, measurement uncertainty and future uncertainty related to
loading conditions. In order to deal with these uncertainty sources, probabilistic
methods, interval methods and reliability analysis methods were extended to model-
based prognosis. In order to compare the proposed methods with performance
evaluation metrics (accuracy, precision and timeliness), they were each time applied
to nonlinear fatigue crack growth prognosis based on the Paris’ law, which is referred
to as the Paris case study.

A literature review was first conducted in Chapter 1 in order to be aware of
the existing model-based approaches, and to better identify the main challenges
while developing model-based prognosis methods. It was concluded that filtering and
uncertainty propagation techniques capable of quantifying model, measurement and
future uncertainty into account are required to perform an accurate RUL prediction.
Particle filter-based methods are the most widespread because of their ability to
tackle different uncertainty sources, nonlinear systems and non-Gaussian noises.
Moreover, performance evaluation metrics, namely accuracy, precision and timeliness,
aiming at evaluating and comparing the performances of prognosis methods were
presented.

In Chapter 2, all the steps of RUL prognosis using an extended Kalman filter
(EKF) and a particle filter (PF) were described. Joint state-parameter estimation
was used to estimate the model parameters in conjunction with the degradation
state. The Paris case study was used as an illustration example. Synthetic data
generated with the Paris’ law were considered, and only model and measurement
uncertainty were included in the study. The performance evaluation metrics showed
the superiority of the PF over the EKF.

Chapter 3 considered a more realistic case study in order to validate the perfor-
mances of the PF for prognosis. Indeed, fatigue crack growth prognosis under variable
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amplitude loading (block loading) in composite materials was performed. Thus, in
addition to model and measurement uncertainty, future loading uncertainty was also
considered. The proposed methodology combined a PF with a detection algorithm,
namely the two-sided cumulative sum (CUSUM). The proposed methodology was
illustrated using real data from fatigue tests on composite materials realized at
ONERA/DMAS. The performance evaluation metrics results showed the ability of
the PF to handle highly nonlinear models and the different uncertainty sources.

Another framework for uncertainty representation and propagation was proposed
in Chapter 4. This time, set-membership methods based on interval analysis were
used. Only the bounds of the state and measurement noises are required without
any stochastic assumption. This allows the estimation of the degradation state
in a guaranteed way. Two different case studies were considered. In the first
approach, a set-membership methodology using constraint satisfaction and set-
inversion techniques was adopted to estimate and then forecast the degradation
state, based on the Waltz filtering algorithm and the Matlab R⃝ toolbox VSIVIA. The
method was applied to the Paris case study and compared to the results obtained
with the PF and EKF in terms of accuracy, prediction and timeliness. The PF-based
method remains the most efficient one, however, the interval method outperforms
the EKF algorithm in terms of accuracy and timeliness. As for the precision, which
measures the width of the interval that contains the predicted RUL, the results
are lower than the EKF and the PF. Indeed, the interval computed with the set-
membership method contains all the possible solutions, whereas the distributions
obtained with the stochastic methods were truncated to the range (−3σ, 3σ).

In the second study of Chapter 4, the case of a hidden degradation state which
cannot be directly measured was considered. A discrete-time linear time-invariant
interval UIO was synthesized to jointly estimate the bounds of the system and of the
degradation states in the context of bounded process and measurement noises. Then,
the bounds of the future degradation state were predicted using the same interval
propagation method as in the first study of Chapter 4. A suspension system subject
to a crack growing in the suspension spring was used to illustrate the proposed
method which has proven to be efficient.

Finally, the use of a reliability analysis method, namely the Inverse first-order
reliability method (FORM) was investigated in Chapter 5. Inverse FORM allowed
the calculation of the RUL cumulative distribution function (CDF) at desired points
(median, probability bounds) at a low computational time and effort. The Inverse
FORM was applied to the Paris case study and the performance evaluation metrics
were computed. The Inverse FORM provided lower performance than the PF and the
interval methods. However, it can be an alternative to PF-based methods and interval
methods for RUL prognosis in the case where low computational cost algorithms are
needed, and a high precision is not required.

This thesis has focused on the development of model-based prognosis methods
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that take uncertainty into account and compute a measure of the RUL uncertainty.
It was shown that uncertainty propagation can be tackled within various uncertainty
representation frameworks. The choice of the method to use is mainly driven by the
user requirements who can perform on-line RUL prognosis in the probabilistic, in
the set-membership or in the reliability analysis framework. However, when highly
nonlinear degradation models are considered, the PF-based methods have been found
to be the most efficient ones for the application considered.

Perspectives

Based on the work presented in this thesis, some future investigations could be
proposed to improve the presented model-based algorithms.

A key area for future work concerns the tuning of the filtering techniques. In
this thesis, trial and error procedures were used to set the initial noise covariances.
However, such method is not realistically feasible when data are not a priori available.
Therefore, on-line estimation of the noise covariances would be a significant upgrade
of the filtering method used in this work.

Although the particle filter has proved to be a powerful tool to handle model,
measurement and future loading uncertainty, the various improvements (e.g. choice
of proposal distribution) that can be found in the literature review of Chapter 1 can
be applied to obtain more accurate state pdf estimations and thus more accurate
RUL predictions.

In the case where future loading uncertainty is considered, more advanced de-
tection algorithm such as the leave-out sign-dominant correlation regions (LSCR)
algorithm [Weyer, Ko, and Campi 2009]. With this algorithm, a region in parameter
space which has a guaranteed probability of containing the true parameters can be
identified.

The proposed interval UIO could be adapted to the case of nonlinear systems in
order to extend its application domain as real systems are often nonlinear. [Gucik-
Derigny, Outbib, Ouladsine, and Basualdo 2011b] has developed a continuous
nonlinear interval observer for state and unknown input estimation. The authors
suggested that it could be applied to prognosis but did not presented this part.
However, the proposed observer is not adapted to the kind of nonlinear models
presented in this thesis. Therefore, there is a need to develop an observer for state
and unknown input estimation which is discrete-time, interval-based, and able to
handle the type of nonlinearities involved in the models used for fatigue or structural
monitoring in particular.

Stochastic and set-membership methods for prognosis were proposed and com-
pared. The advantages of each kind of method have been highlighted. Thus, based
on [Abdallah, Gning, and Bonnifait 2008], where an extension of the particle filter
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algorithm using interval analysis and constraint satisfaction techniques was proposed,
a similar prognosis method could be developed.

With the emergence of technologies increasing the availability of data from the
degrading systems, the proposed model-based prognosis methods could be combined
with data-driven methods in order to obtain more accurate models and thus improve
the RUL predictions.

Finally, some possible extensions of this work concern the interpretation and
translation of the prognosis results into actions. Indeed, prognosis information could
be very useful for maintenance decisions or control reconfiguration to ensure mission
success and users safety.
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Appendix of Chapter 4

Extension of the interval UIO

Consider the following LTI discrete-time system:⎧⎨⎩x(k + 1) = Ax(k) + Bu(k) + Fd(k) + ω(k)
y(k) = Cx(k) + Du(k) + Gd(k) + δ(k)

(A.1)

Step 1: Unknown input-free state vector

As it was done in Section 4.2.1, the state vector in eq. (A.1) is decomposed into
an unknown input depending subsystem and an unknown input-free subsystem using
the transformation x = Hz:

⎧⎨⎩z1(k + 1) = Ã11z1(k) + Ã12z2(k) + B̃1u(k) + R0d̃(k) + ω̃1(k)
z2(k + 1) = Ã21z1(k) + Ã22z2(k) + B̃2u(k) + ω̃2(k)

(A.2)

Step 2: Unknown input-free measurement vector

Similarly to the procedure applied in Section 4.2.1 to decompose the state vector,
the measurement vector is divided into an unknown input depending subsystem and
an unknown input-free subsystem.

Assumption 3 C is a full row rank and G is a full column rank matrix.

Under Assumption 3, there exists an orthogonal matrix Hy =
[
Hy1 Hy2

]
∈ Rp×p
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and matrices R0y ∈ Rq×q and Ky ∈ Rq×q such that:

G = Hy

[
R0y

0

]
K⊤

y (A.3)

This leads to the transformation of the measurement equation of system (A.1)
into an equivalent one:

⎧⎨⎩ỹ1(k) = H⊤
y1Cx(k) + D̃1u(k) + R0yd̃(k) + δ̃1(k)

ỹ2(k) = H⊤
y2Cx(k) + D̃2u(k) + δ̃2(k)

(A.4)

where:

D̃1 = H⊤
y1D, D̃2 = H⊤

y2D, d̃(k) = K⊤
y d(k), δ̃1(k) = H⊤

y1δ(k) and δ̃2(k) = H⊤
y2δ(k).

Finally, with x = Hz, we obtain the following unknown input-free subsystem:

⎧⎨⎩z2(k + 1) = Ã21z1(k) + Ã22z2(k) + B̃2u(k) + ω̃2(k)
ỹ2(k) = C̃y1z1(k) + C̃y2z2(k) + D̃2u(k) + δ̃2(k)

(A.5)

where C̃y1 ∈ R(p−q)×q and C̃y2 ∈ R(p−q)×(n−q).

Step 3: Eliminate z1 from system (A.5)

C̃y1 is supposed to be a full column rank matrix and can be decomposed as:

C̃y1 = HC

[
RC

0

]
K⊤

C (A.6)

with HC =
[
HC1 HC2

]
(HC1 ∈ R(p−q)×q and HC2 ∈ Rq×q) and ˜̃y2 = H⊤

C ỹ2, we
can decompose ỹ2(k) as:

⎧⎨⎩˜̃y21(k) = RCK⊤
C z1(k) + H⊤

C1C̃y2z2(k) + H⊤
C1D̃2u(k) + H⊤

C1δ̃2(k)
˜̃y22(k) = H⊤

C2C̃y2z2(k) + H⊤
C2D̃2u(k) + H⊤

C2δ̃2(k)
(A.7)

As ˜̃y2(k) = G⊤
y ỹ2(k) with G⊤

y =
[
Iq 0

]
, the expression of z1 can be extracted
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from (A.7):
z1(k) = RK [ỹ2(k) − C̃y2z2(k) − D̃2u(k) − δ̃2(k)] (A.8)

where RK = K−1
C R−1

C G⊤
y H⊤

C .
Finally, we have the following dynamical system:

⎧⎨⎩z2(k + 1) = Ā2z2(k) + B̄2u(k) + Ē2ỹ2(k) − Ē2δ̃2(k) + ω̃2(k)
˜̃y22(k) = H⊤

C2C̃y2z2(k) + H⊤
C2D̃2u(k) + H⊤

C2δ̃2(k)
(A.9)

where Ē2 = Ã21RK , Ā2 = Ã22 − Ē2C̃y2, B̄2 = B̃2 − Ē2D̃2,
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Résumé français

Introduction

Les systèmes critiques sont des systèmes complexes pour lesquels les anomalies
de fonctionnement et la dégradation des composants peuvent avoir un impact con-
sidérable sur la sécurité des utilisateurs, la réussite des missions et les coûts liés
à la maintenance. Les procédures de surveillance actuelles intègrent des outils de
diagnostic pour la détection, la localisation et l’identification des défauts survenus
sur le système. Selon leur nature, ces défauts altèrent lentement ou subitement
le fonctionnement normal du système jusqu’à entraîner sa défaillance partielle ou
totale (panne). Il est donc primordial de pouvoir suivre l’évolution de ces défauts et
agir sur le système (reconfigurer les lois de commande, entreprendre une action de
maintenance) avant sa défaillance.

De ce besoin est né il y a une dizaine d’années un domaine de recherche, le
pronostic, qui consiste à calculer le temps qu’il reste avant que le système ou le
composant où se trouve le défaut naissant ne soit défaillant. Ce temps est appelé durée
de vie résiduelle du système (RUL : Remaining Useful Life). Ainsi, le pronostic
permettra de développelr une stratégie de maintenance prédictive, qui consiste
à surveiller et prédire l’état du système afin d’agir au plus près de son moment
de défaillance. Cette maintenance prédictive permettra la disponibilité maximale
du système et la minimisation des coûts qui peuvent être élevés dans le cas des
maintenances classiques, tout en garantissant un système fiable et sécurisé.

Les méthodes de pronostic peuvent être classées en trois catégories principales
[Liu et al. 2009] : les approches à base de données, les approches à base de modèles
et enfin les approches hybrides combinant les deux précédentes. Pour le pronostic à
base de données, des données en ligne (température, pression, courant, ...) ainsi que
des connaissances a priori sont utilisés pour extraire des caractéristiques permettant
d’évaluer et de prédire l’état de santé du système. Pour cela, des méthodes basées
sur l’intelligence artificielle et l’apprentissage statistique sont utilisées. Le pronostic
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à base de modèles fait appel à un modèle physique qui décrit l’évolution de la
dégradation du système. Enfin, les méthodes hybrides combinent à la fois les données
disponibles sur le système et le modèle physique de la dégradation. Les travaux de
cette thèse s’inscrivent dans le cadre des méthodes de pronostic à base de modèles.
Cette catégorie de méthodes peut s’avérer difficile à mettre en place car un modèle
physique de la dégradation n’est pas toujours disponible. Cependant, lorsque c’est le
cas, les méthodes de pronostic à base de modèles sont très précises car elles intègrent
non seulement la connaissance des conditions d’opération du système mais aussi
l’effet de leur variabilité sur son comportement.

Le pronostic à base de modèle est composé de deux étapes principales (Figure B.1) :
(i) estimation de l’état actuel de la dégradation et (ii) prédiction de l’état futur de
la dégradation. La première étape, qui est une étape de filtrage, est réalisée à
partir du modèle et des mesures disponibles. La seconde étape consiste à faire de
la propagation d’incertitudes. Le principal enjeu du pronostic concerne la prise en
compte des différentes sources d’incertitude pour obtenir une mesure de l’incertitude
associée à la RUL prédite [Sankararaman 2015]. Les principales sources d’incertitude
sont les incertitudes de modèle, les incertitudes de mesures et les incertitudes liées
aux futures conditions d’opération du système. Afin de gérer ces incertitudes et de
les intégrer au pronostic, il est nécessaire de choisir des méthodes de représentation
et de propagation d’incertitudes appropriées. Parmis les approches existantes, il y a
par exemple celles basées sur l’analyse par intervalles, la théorie des ensembles flous,
ou encore les approches probabilistes.

Time

Degradation state

Threshold

kf (failure time)kp (prediction time)

Observation
interval

Prediction
interval

RUL
distribution

Figure B.1: Prognosis process scheme

Le système dynamique suivant modélisant l’évolution de l’état de dégradation
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B.1. Filtre de Kalman étendu et filtre particulaire pour le pronostic

ainsi que la relation entre les observations et l’état est considéré :

xk = f(xk−1, θk−1, wk) (B.1)
yk = h(xk, vk) (B.2)

x ∈ Rn est le vecteur d’état de la dégradation, y ∈ Rp est le vecteur de mesures
représentant la sortie du système et k ∈ N est un pas de temps discret. Les fonctions
f et h représentent respectivement l’évolution (linéaire ou non-linéaire) de l’état et
des mesures au cours du temps. Enfin, les variables w et v sont repectivement les
bruits d’état et de mesures traduisant les incertitudes de modèle et de mesures.

In the literature, modeling and measurement uncertainty are mainly handled
with probabilistic methods. The random variables are represented using probability
distributions. Particle filtering-based techniques are commonly used as they can deal
with nonlinearities. However, Monte-Carlo simulation-based approaches require huge
computational efforts and are not therefore practicable for online RUL prediction.

As regards future loading conditions uncertainty, they are not always taken into
account. When it is the case, high computational time methods such as finite element
models are involved. Moreover, in order to reduce computational time, the models
are often linearized or simplified through the use of a surrogate model. However,
these procedures tend to increase modeling uncertainty.

B.1 Filtre de Kalman étendu et filtre particulaire
pour le pronostic

Ce chapitre a pour objectif de présenter plus en détail le principe et les principaux
enjeux du pronostic à base de modèles à travers un exemple d’application. Le
pronostic à base de modèles se compose de deux grandes étapes : (i) l’estimation de
l’état de degradation actuel et (ii) la prédiction de l’état futur de la dégradation.

Cependant, ces deux étapes sont entachées d’incertitudes. Ainsi, le principal enjeu
du pronostic est de tenir compte des incertitudes de modèle, de mesures et sur les
futures conditions d’opération du système. Dans ce chapitre, seules les incertitudes
de modèle et de mesures sont considérées.

Afin de traiter ces incertitudes, deux méthodes basées sur le filtrage stochastique
sont utilisées : le filtre de Kalman étendu et le filtre particulaire. Les méthodes
proposées sont appliquées au pronostic de propagation de fissure utilisant la loi de
Paris.
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A Filtre de Kalman étendu et filtre particulaire

Le filtrage stochastique a pour objectif d’estimer la densité de probabilité p(xk|y0:k)
qui donne des informations statistiques sur l’état de dégradation xk, basé sur les
mesures y0:k = Yk = {y0, · · · , yk}. L’estimation conjointe de l’état et des paramètres
du modèle est effectuée en formant un vecteur d’état augmenté X =

[
x θ

]
contenant

l’état et les paramètres.
Le filtre de Kalman étendu (EKF) est une adaptation du filtre de Kalman classique

aux systèmes non linéaires. La densité de probabilité (pdf) de l’état de dégradation
p(Xk|Yk) est approximée par une distribution Gaussienne.

En ce qui concerne le filtre particulaire (PF), la pdf de l’état de dégradation à
l’instant k est approchée par un ensemble de Npart particules qui ont chacune un
poids associé {ωi

k}Npart

i=1 :

p(Xk|y0:k) ≈
Npart∑
i=1

ωi
kδ(Xk − X i

k) avec
Npart∑
i=1

ωi
k = 1 (B.3)

où δ est la fonction de Dirac.
Il existe de nombreux algorithmes de PF [Arulampalam et al. 2002], et celui qui

a été considéré ici est le filtre à rééchantillonnage par importance (SIR : sequential
importance resampling).

A.1 Estimation de l’état actuel de dégradation avec l’EKF

Pour l’étape de filtrage avec le filtre de Kalman étendu, on retrouve les équations
d’un filtre de Kalman étendu classique avec les étapes de linéarisation, prédiction et
correction à partir des mesures relevées.

Prédiction

X̂k|k−1 = f(X̂k−1|k−1, wk = 0) (B.4)
Pk|k−1 = FkPk−1|k−1F

T
k + Qk

Correction

ŷk = yk − HkX̂k|k−1 (B.5)
Kk = Pk|k−1H

T
k (HkPk|k−1H

T
k + Rk)

Pk|k = (I − KkHk)Pk|k−1

X̂k|k = X̂k|k−1 + Kkŷk

où P , Q et R sont les matrices de covariance, respectivement de l’erreur d’estimation,
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et des bruits de modèle et de mesure. K est le gain de Kalman.

A.2 Prédiction de l’état futur de dégradation avec l’EKF

Pour l’estimation de l’état futur de la dégradation, plus aucune mesure n’est
disponible. Ainsi pour l’étape de correction, le bruit d’état est généré à partir de la
matrice de covariance à l’instant k puis est injecté dans l’équation du modèle. Cette
étape est réalisée jusqu’à atteindre le seuil de dégradation.

Prédiction

X̂k|k−1 = f(X̂k−1|k−1, wk = 0) (B.6)
Pk|k−1 = FkPk−1|k−1F

T
k + Q

Correction

Pk|k = Pk|k−1 (B.7)
ŵk ∼ N(0, Pk|k)

X̂k|k = f(X̂k|k−1, ŵk)

A.3 Estimation de l’état actuel de dégradation avec le PF

Pour l’étape de filtrage avec le filtre particulaire, un algorithme de filtre particulaire
classique avec une étape de ré-échantillonnage a été utilisé, le poids des particules
est mis à jour à chaque nouvelle mesure :

A.4 Prédiction de l’état futur de dégradation avec le PF

Puis pour l’étape de propagation d’incertitudes, comme il n’y a plus de mesures
disponibles, il a été considéré que le poids des particules était invariant à partir de
l’instant de prédiction jusqu’à atteindre le seuil de dégradation.

p(Xkp+n|Ykp) ≈
Np∑
i=1

ωi
kp

δ(Xkp+n − X i
kp+n) (B.8)

Cette approximation peut être considérée car l’erreur induite est négligeable
[Orchard and Vachtsevanos 2009].
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B Application au pronostic de propagation de fissure avec
la loi de Paris

Dans un premier temps, ces deux méthodes ont été appliquées au pronostic de
propagation de fissure en utilisant la loi de Paris.

B.1 Modèle de propagation de fissure

L’objectif était de calculer le temps de vie restant d’une structure dans laquelle
une fissure se propage, c’est-à-dire calculer le temps qu’il reste avant que la fissure
n’atteigne une longueur critiques. La loi de Paris-Erdogan qui est très utilisée dans
la littérature pour le pronostic de propagation de fissure a été utilisée :

da

dN
= C(∆K)m , ∆K = ∆σ

√
πa (B.9)

Ce modèle décrit l’évolution de la longueur de fissure a en fonction du nombre de
cycle N . Le chargement appliqué δσ est connu et vaut 78 MPa et les paramètres du
modèle m et C sont inconnus.

B.2 Paramètres de la simulation

Les étapes sont les mêmes pour l’EKF et pour le PF.

Discrétisation du modèle Le modèle est discrétisé de la manière suivante :

ak = eCk(∆σ
√

πak−1)mk∆N + ak−1 (B.10)

Comme le paramètre C a une valeur très faible, log(C) est considéré ici.
Le vecteur d’état augmenté permet l’estimation conjointe de la longueur de fissure

et des paramètres m et C :

X⊤
k =

[
ak log(Ck) mk

]⊤
, (B.11)

Génération des données de mesure synthétiques Le modèle a été utilisé pour
générer la longueur de fissure de référence ainsi que les mesures en y ajoutant un
bruit. Les valeurs suivantes ont été utilisées :
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Table B.1: True model parameters to generate the synthetic data

∆σ ∆N atrue log(Ctrue) mtrue

78 50 0.01 -22.62 3.8

Les valeurs pour régler les filtre EKF et PF sont les suivantes :

Table B.2: Initial distribution of the random variables

Variance σ2
log(C) σ2

m σ2
w σ2

v

Value 10−2 10−3 (10−4)2 (10−3)2

Un nombre total de 1000 particules a été considéré pour le PF.

B.3 Résultats numériques

L’état actuel de la dégradation est estimé en utilisant les mesures jusqu’au cycle
de prédiction Np = 1200.

Les résultats obtenus avec l’EKF sont représentés sur la Figure B.2. L’étape de
filtrage permet d’estimer la longueur de la fissure (en bleu) en utilisant les mesures
et l’étape de propagation d’incertitudes permet de prédire la longueur de la fissure
(en vert) dans le futur jusqu’au seuil de dégradation.
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Figure B.2: Résultats pour l’EKF
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Les résultats obtenus avec le PF sont représentés dans la Figure B.3. Les courbes
tracées correspondent à la trajectoire médiane obtenue à partir des trajectoires des
1000 particules utilisées par le filtre particulaire (Figure B.4).
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Figure B.3: Résultats pour le PF
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Figure B.4: Tracé des trajectoires des 1000 particules

Graphiquement on peut constater que la méthode utilisant un EKF est moins
performante que les deux autres. Mais des métriques ont été utilisées pour en
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chargement inconnu d’amplitude variable

avoir une évaluation numérique plus précise. L’exactitude mesure la proximité de
la RUL prédite par rapport à la vraie RUL. La précision mesure la largeur de
l’intervalle contenant les RUL prédites. L’opportunité mesure la position relative
de la RUL prédite par rapport à la vraie RUL, c’est-à-dire si c’est trop tôt ou trop
tard. L’exactitude et la précision sont compris entre 0 et 1, où 1 reflète la meilleure
performance. Plus l’opportunité est grande, plus on s’éloigne de la vraie distribution
de la RUL, et les prédictions en retard ont un poids plus fort afin de les pénaliser.
L’évaluation des performances a été réalisée sur 100 simulations. Les valeurs de ces
métriques sont résumées dans le Tableau B.3.

Table B.3: Evaluation des performances

Method Accuracy Precision Timeliness
EKF 0.7150 0.7630 1.0084
PF 0.9511 0.7030 0.1132

Le filtre particulaire donne de meilleurs résultats que l’EKF en terme de précision
et d’exactitude. Ceci peut être principalement dû aux approximations linéaires
effectuées par l’EKF.

B.2 Pronostic de propagation de fissure dans un
matériau composite soumis à un chargement
inconnu d’amplitude variable

Dans ce chapitre, le matériau dans lequel se propage la fissure est un matériau
composite renforcé avec des fibres. Le chargement est cette fois inconnu et la structure
est soumise à des variations brusques de chargement, par exemple dues à un choc.
Un cas plus réaliste qui n’avait pas encore été traité dans la littérature a donc
été considéré. De plus, des données réelles issues de tests de fatigue réalisés au
département matériaux et structures de l’Onera (DMAS) ont été utilisées.

A Modèle de propagation de la fissure

Comme c’est un problème de pronostic qui n’avait pas encore été traité dans la
litérature, il faut tout d’abord établir le modèle de propagation de la fissure.

Une loi de Paris modifiée a été utilisée :

da

dN
= C(∆K − Kth)m (B.12)
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où Kth est la valeur de ∆K à partir de laquelle la fissure commence à se propager.
L’expression de ∆K fait intervenir un terme qui permet de modéliser la tension

exercée par les fibres :

∆K = F∆σa

√
πa − 2F

√
a

π

∫ a

a0

∆P (x)√
a2 − x2

dx (B.13)

où ∆P représente la force exercée par les fibres.
Ainsi, le modèle de propagation de fissure est :

da

dN
= C

(
F∆σa

√
πa − 2F

√
a

π

∫ a

a0

∆P (x)√
a2 − x2

dx − Kth

)m

(B.14)

La principale difficulté dans ce modèle concerne l’estimation de ∆P qui se fait
généralement par la méthode des éléments finis. Cependant ce n’est pas adapté au
pronostic en ligne à cause des temps de calcul beaucoup trop importants. Dans
la littérature, il a été proposé de considérer delta P comme étant uniforme. Cette
hypothèse a été retenue pour simplifier le modèle et l’adapter au pronostic.

Finalement, le modèle de propagation de fissure utilisé dans ces travaux est le
suivant :

da

dN
= C

(
F∆σa

√
πa − 2F

√
a

π
∆P

(
π

2 − arcsin
(

a0

a

))
− Kth

)m

(B.15)

Ce modèle est fortement non linéaire et contient deux types de paramètres : (i)
les paramètres de modèle constants qui sont m et C qui dépendent du matériau, et
(ii) les paramètres de chargement ∆P et ∆σ qui dépendent du chargement appliqué
à la structure et peuvent donc varier. Ainsi, dans un premier temps, un jeu de
données a été utilisé pour estimer les paramètres constants m et C, puis d’autres
jeux de données ont été considérés pour le pronostic de propagation de fissure avec
les paramètres ∆P et ∆σ à estimer conjointement avec la longueur de la fissure.

B Pronostic de propagation de fissure avec un chargement
constant

Dans un premier temps, le chargement appliqué au matériau composite est
constant. La Figure B.5 représente les estimations et prédictions de la longueur de
la fissure et des paramètres ∆P et ∆σ.
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Figure B.5: Estimation et prédiction de la longueur de fissure et des
paramètres de chargement

Les trois variables restent constantes car le chargement appliqué ne varie pas.

C Pronostic de propagation de fissure avec une variation
brusque de chargement

Durant les essais, le chargement appliqué au matériau composite est augmenté
brusquement, ce qui a pour effet d’accélérer la propagation de la fissure. Cependant,
le filtre particulaire n’arrive pas à estimer et prédire la longueur de la fissure après la
variation brusque même avec plus de données (Figure B.6).
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Figure B.6: Estimation et prédiction de la longueur de fissure et des
paramètres de chargement

En effet, le filtre particulaire diverge lorsqu’il y a une variation brusque de
paramètres. On pourrait envisager dans un premier temps de laisser le filtre particu-
laire corriger ses estimations avec plus de données. Cependant ce n’est pas possible
car on risque d’atteindre le seuil de dégradation. On pourrait également augmenter
le nombre de particules, ce qui n’est pas possible car cela va considérablement aug-
menter le temps de calcul, ce qui n’est pas approprié au pronostic en temps réel.
Finalement, un algorithme de détection a été ajouté afin de réinitialiser le filtre
lorsque le chargement brusque a été détecté pour le faire converger vers les valeurs
réelles des paramètres.

Pour la détection, l’algorithme CUSUM (CUmulative SUm) a été utilisé. C’est un
algorithme très utilisé pour la détection de changement de moyenne d’une distribution
gaussienne. Afin de détecter le changement que ce soit dans le cas d’une diminution
ou d’une augmentation, un algorithme CUSUM bilatéral (two-sided CUSUM) est
considéré. L’idée générale est de calculer le temps d’arrêt Ndetect de l’algorithme qui
correspond au moment où le changement de moyenne du paramètre ∆xk surveillé est
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détecté :

Ndetect = min{k : S+
k ≥ Sth ∪ S−

k ≥ Sth} (B.16)

où S+
k et S−

k sont respectivement les fonctions de décision correspondant aux tests
d’augmentation et de diminution de la moyenne de ∆xk, et Sth est un seuil de
détection.

Les expressions des sommes cumulatives S+
k et S−

k sont les suivantes :⎧⎨⎩S+
k = max

(
0, S+

k−1 + ∆xk − µ0 − ν
2

)
S−

k = max
(
0, S−

k−1 − ∆xk − µ0 − ν
2

) (B.17)

où µ0 est la valeur initiale de la moyenne de ∆xk et ν correspond à l’amplitude
du changement de moyenne à détecter.

Ainis, lorsqu’un changement est détecté, les valeurs des paramètres estimés est
réinitialisée pour que le filtre particulaire converge vers les vraies valeurs après la
variation. Les valeurs de réinitialisation sont déterminées à partir de la connaissance
de la valeur de chargement critique ∆σcrit au-delà de laquelle la longueur de la fissure
risque d’augmenter plus rapidement. Dans ce cas, ∆σcrit = 450 MPa. Afin de tenir
compte de l’incertitude sur cette valeur, ∆σa et ∆P après la variation brusque sont
réinitialisés dans un intervalle L = [400, 500] MPa contenant ∆σcrit.

Les résultats d’estimation et de prédiction de la longueur de la fissure après la
variation brusque de chargement avec le filtre particulaire combiné à l’algorithme de
détection two-sided CUSUM sont représentés sur la Figure B.7.

Un intervalle contenant les paramètres réinitialisés après la variation de charge-
ment a été considéré, ainsi, un intervalle contenant la longueur de fissure en utilisant
les valeurs extrêmes des paramètres a ou être obtenu. Plus il y a de données, plus les
estimations et prédictions se rapprochent de la longueur de fissure de référence.

Ainsi, le filtre particulaire combiné à l’algorithme two-sided CUSUM a per-
mis de traiter le cas où les chargement extérieurs sont inconnus et peuvent varier
brusquement.
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Figure B.7: Estimation et prédiction de la longueur de fissure et des
paramètres de chargement

B.3 Conclusion

Dans cette thèse, différentes méthodes de pronostic à base de modèle ont été
développées. Le principal enjeu concernait l’intégration et le traitement des dif-
férentes sources d’incertitudes afin d’évaluer l’incertitude autour de la RUL prédite.
Il y a principalement les incertitudes de modèle, les incertitudes de mesures et les
incertitudes liées aux futures conditions d’opération du système. Afin de gérer ces
incertitudes, des méthodes de pronostic probabilistes et ensemblistes ont été dévelop-
pées. Afin d’illustrer le fonctionnement des méthodes, le pronostic de propagation de
fissure a été considéré. Les performances de ces méthodes ont ensuite été évaluées et
comparées à travers trois métriques : l’exactitude, la précision et l’opportunité.

Dans un premier temps, un filtre de Kalman étendu ainsi qu’un filtre particulaire
sont appliqués au pronostic de propagation de fissure, en utilisant la loi de Paris
et des données synthétiques. Puis, une méthode combinant un filtre particulaire et
un algorithme de détection (algorithme des sommes cumulatives) a été développée
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puis appliquée au pronostic de propagation de fissure dans un matériau composite
soumis à un chargement variable. Cette fois, en plus des incertitudes de modèle et
de mesures, les incertitudes liées aux futures conditions d’opération du système ont
aussi été considérées. De plus, des données réelles ont été utilisées. Ensuite, deux
méthodes de pronostic sont développées dans un cadre ensembliste où les erreurs
sont considérées comme étant bornées. Elles utilisent notamment des méthodes
d’inversion ensembliste et un observateur par intervalles pour des systèmes linéaires
à temps discret. Enfin, l’application d’une méthode issue du domaine de l’analyse de
fiabilité des systèmes au pronostic à base de modèles est présentée. Il s’agit de la
méthode Inverse First-Order Reliability Method (Inverse FORM).

Les résultats obtenus ont permis de montrer que la propagation d’incertitude peut
être effectuée avec différentes méthodes de représentation d’incertitude. Le choix
de la méthode à utiliser dépend principalement du domaine d’étude de l’utilisateur
qui peut effectuer le pronostic avec des méthodes probabilistes à base de filtres
stochastiques, des méthodes ensemblistes basées sur l’analyse par intervalles ou
encore des méthodes issues du domaine de la fiabilité des systèmes. Cependant,
lorsque des modèles de dégradation fortement non-linéaires sont en jeu, les méthodes
à base de filtre particulaire restent les mieux adaptées pour les cas qui ont été traités
dans cette thèse.
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Résumé 
      Les travaux présentés dans ce mémoire concernent le développement de méthodes de pronostic à base de modèles. Le 
pronostic à base de modèles a pour but d'estimer le temps qu'il reste avant qu'un système ne soit défaillant, à partir d'un 
modèle physique de la dégradation du système. Ce temps de vie restant est appelé durée de résiduelle (RUL) du système. 
Le pronostic à base de modèle est composé de deux étapes principales : (i) estimation de l'état actuel de la dégradation et 
(ii) prédiction de l'état futur de la dégradation. La première étape, qui est une étape de filtrage, est réalisée à partir du 
modèle et des mesures disponibles. La seconde étape consiste à faire de la propagation d'incertitudes. Le principal enjeu 
du pronostic concerne la prise en compte des différentes sources d'incertitude pour quantifier l'incertitude associée à la 
RUL prédite. Les principales sources d'incertitude sont les incertitudes de modèle, les incertitudes de mesures et les 
pronostic, des méthodes probabilistes ainsi que des méthodes ensemblistes ont été développées dans cette thèse. 
       Dans un premier temps, un filtre de Kalman étendu ainsi qu'un filtre particulaire sont appliqués au pronostic de 
propagation de fissure, en utilisant la loi de Paris et des données synthétiques. Puis, une méthode combinant un filtre 
particulaire et un algorithme de détection (algorithme des sommes cumulatives) a été développée puis appliquée au 
pronostic de propagation de fissure dans un matériau composite soumis à un chargement variable. Cette fois, en plus des 
incertitudes de modèle et de mesures, les incertitudes liées aux futures conditions d'opération du système ont aussi été 
considérées. De plus, des données réelles ont été utilisées. Ensuite, deux méthodes de pronostic sont développées dans un 
cadre ensembliste où les erreurs sont considérées comme étant bornées. Elles utilisent notamment des méthodes d'inversion 
ensembliste et un observateur par intervalles pour des systèmes linéaires à temps discret. Enfin, l'application d'une méthode 
issue du domaine de l'analyse de fiabilité des systèmes au pronostic à base de modèles est présentée. Il s'agit de la méthode 
Inverse First-Order Reliability Method (Inverse FORM). Pour chaque méthode développée, des métriques d'évaluation de 
performance sont calculées dans le but de comparer leur efficacité. Il s'agit de l'exactitude, la précision et l'opportunité. 

Mots-clés : Pronostic à base de modèles, filtrage, propagation d'incertitudes, filtres stochastiques, méthodes ensemblistes, 
analyse de fiabilité, propagation de fissure. 

 

Abstract 
       In this manuscript, contributions to the development of methods for on-line model-based prognosis are presented. 
Model-based prognosis aims at predicting the time before the monitored system reaches a failure state, using a physics-
based model of the degradation. This time before failure is called the remaining useful life (RUL) of the system. 
Model-based prognosis is divided in two main steps: (i) current degradation state estimation and (ii) future degradation 
state prediction to predict the RUL. The first step, which consists in estimating the current degradation state using the 
measurements, is performed with filtering techniques. The second step is realized with uncertainty propagation methods. 
The main challenge in prognosis is to take the different uncertainty sources into account in order to obtain a measure of 
the RUL uncertainty. There are mainly model uncertainty, measurement uncertainty and future uncertainty (loading, 
operating conditions, etc.). Thus, probabilistic and set-membership methods for model-based prognosis are investigated in 
this thesis to tackle these uncertainties.                                                                                                                              .         
       The ability of an extended Kalman filter and a particle filter to perform RUL prognosis in presence of model and 
measurement uncertainty is first studied using a nonlinear fatigue crack growth model based on the Paris' law and synthetic 
data. Then, the particle filter combined to a detection algorithm (cumulative sum algorithm) is applied to a more realistic 
case study, which is fatigue crack growth prognosis in composite materials under variable amplitude loading. This time, 
model uncertainty, measurement uncertainty and future loading uncertainty are taken into account, and real data are used. 
Then, two set-membership model-based prognosis methods based on constraint satisfaction and unknown input interval 
observer for linear discrete-time systems are presented. Finally, an extension of a reliability analysis method to model-
based prognosis, namely the inverse first-order reliability method (Inverse FORM), is presented. In each case study, 
performance evaluation metrics (accuracy, precision and timeliness) are calculated in order to make a comparison between 
the proposed methods.  

Keywords: Model-based prognosis, filtering, uncertainty propagation, stochastic filter, set-membership framework, 
reliability analysis, fatigue crack growth. 
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