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Titre : Accouplements de Hauteur sur les 1-Motifs

Résumé

L’objectif de ce travail est la généralisation, dans le contexte des 1-motifs, des accouple-
ments de hauteurs construits par B. Mazur et J. Tate [MT83] sur les variétés abéliennes.
Suite a leur approche, nous considérons de p—splittings de la biextension de Poincaré
d’un 1-motif et nous demandons qu’ils soient compatibles avec la linéarisation canonique
associée a la biextension. Nous établissons donc des résultats concernant ’existence de
tels p—splittings. Quand p est non-ramifié, celle-ci est garanti si ’accouplement de mono-
dromie du 1-motif pris en considération est non-dégénéré. Pour p ramifié, le p—splitting
se construit a partir d’une paire de scindages des filtrations de Hodge des réalisations
de de Rham du 1-motif et de son dual. Ceci généralise des résultats précédents di R.
Coleman [Col91] and Y. Zarhin [Zar90] pour les variétés abéliennes. Ces p—splittings
sont ensuite utilisés pour définir un accouplement global entre les points rationnels d’un
1-motif et de son dual. Egalement, nous fournissons des accouplements locaux entre
les zéro-cycles et les diviseurs sur une variété, qui est fait en appliquant les résultats
précédents a ses 1-motifs de Picard et d’Albanese.

Mots clés : 1-motif, accouplement, hauteur, biextension.



Title : Height Pairings of 1-Motives
Abstract

The purpose of this work is to generalize, in the context of 1-motives, the height pair-
ings constructed by B. Mazur and J. Tate on abelian varieties (see [MT83]). Following
their approach, we consider p—splittings of the Poincaré biextension of a 1-motive and
require that they be compatible with the canonical linearization associated to the biex-
tension. We establish results concerning the existence of such p—splittings. When p is
unramified this is guaranteed if the monodromy pairing of the 1-motive considered is
non-degenerate. For ramified p, the p—splitting is constructed from a pair of splittings
of the Hodge filtrations of the de Rham realizations of the 1-motive and its dual. This
generalizes previous results by R. Coleman [Col91] and Y. Zarhin [Zar90] for abelian
varieties. These p—splittings are then used to define a global pairing between rational
points of a 1-motive and its dual. We also provide local pairings between zero cycles and
divisors on a variety, which is done by applying the previous results to its Picard and
Albanese 1-motives.

Keywords : 1-motive, pairing, height, biextension.



Titulo : Accoppiamenti di Altezza degli 1-Motivi
Abstract

Lo scopo di questo lavoro ¢ la generalizzazione, nel contesto degli 1-motivi, degli accop-
piamenti di altezza costruiti da B. Mazur e J. Tate [MT83] sulle varieta abeliane.
Seguendo il loro approccio, consideriamo p—splittings della biestensione di Poincaré de
un 1-motivo e richiediamo che siano compatibili con la linearizzazione canonica associata
alla biestensione. Stabiliamo quindi risultati riguardanti ’esistenza di tali p—splittings.
Quando p & non ramificato, tale risultato segue se ’accoppiamento di monodromia dell’1-
motivo preso in considerazione ¢ non degenere. Per p ramificato, il p—splitting si costru-
isce a partire da una coppia di scissioni delle filtrazioni di Hodge delle realizzazioni di de
Rham dell’l-motivo e del suo duale. In questo modo generalizziamo precedenti risultati
di R. Coleman [Col91] and Y. Zarhin [Zar90] sulle varieta abeliane. Questi p—splittings
vengono poi usati per definire un accoppiamento globale sui punti razionali di un 1-
motivo e del suo duale. Infine forniamo accoppiamenti locali tra i zero-cicli e i divisori
di una varieta, applicando i risultati precedenti ai suoi 1-motivi di Picard e d’Albanese.

Parole chiave : 1-motivo, accoppiamento, altezza, biestensione.
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Accouplements de hauteur sur les
1-motifs

Accouplements a travers de biextensions

Dans [MT83], Mazur et Tate ont construit des accouplements globaux entre les points
rationnels d’un couple de variétés abéliennes sur un corps global, et aussi des accouple-
ments locaux entre zéro-cycles et diviseurs avec support disjoint d’une variété abélienne
sur un corps local. Cette construction généralise I’accoupplement de hauteur de Néron
(voir [MT83, Prop. 2.3.1]). Leur approche emploie la notion de p—splittings d’une
biextension d’un couple de groupes par K*, ot p: K* — Y est un homomorphisme des
éléments non-nuls du corps de base dans un groupe abélien arbitraire Y. Ces p—splittings
sont fondamentalement des fonctions bi-homomorphes de la biextension dans Y satis-
faisant la compatibilité avec les actions naturelles de K* (voir Définition 2.1.1 pour une
définition précise).

Un résultat clé concernant ’existence de p—splittings est le Théoreme 2.1.6 ci-dessous
(voir aussi [MT83, §1.5]). Fixons des varétés abéliennes A et B sur un corps K complet
par rapport a une place v, archimédienne ou discrete, et une biextension P de (A, B)
par G,,. Etant donné un groupe abélien Y et un homomorphisme p: K* =Y, ilest
possible de construire des p—splittings canoniques

Y, P(K) =Y
dans les trois cas suivants:
1) v est archimédienne et p(c) = 0 pour tout ¢ tel que |c|, = 1;
2) v est discrete, p est non-ramifié et Y est uniquement divisible par N; et

3) v est discrete, le corps résiduel de K est fini, A a réduction semi-stable ordinaire
et Y est uniquement divisible par M,

ou N est un entier dépendant de A et M est un entier dépendant de A et B. Si 2) et 3)
tiennent, ils donnent le méme 1),,.
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Maintenant, considérons le cas d’un corps global F' et soient A et B des variétés abéliennes
sur F'. Pour chaque place v, soit F,, la complétion de F' par rapport a v, et pour v discrete
soit R, son anneau d’entiers. Désignons par Ar ’anneau des adeles de F' et considérons
un homomorphisme

p=(p): Ap =Y (1)

qui annule I'image de R}, pour presque toutes les places discretes v, et qui satisfait la
“formule de somme” )" p,(c) = 0, pour tout ¢ € K*. Supposons de plus que, pour
chaque place v, le p,—splitting canonique v, de P(F}) existe. Dans cette situation nous
avons le fait suivant, qui est établi dans le Lemme 2.3.1 (voir aussi [MT83, Lemma 3.1]).
Il y a un accouplement canonique

(-,-): A(F)x B(F) =Y (2)

tel que si z € P(F) se trouve au-dessus de (a,b) € A(F) x B(F) alors

(a,0) = (),
v
ou z, € P(F,) est 'image de z par 'inclusion F' C F,.

Accouplements a travers de scindages de la filtration de
Hodge

Soit K une extension finie d’un corps des nombres p—adiques Q,, et considérons un homo-
morphisme continu ramifié p : K* — Q,. Dans ce cas, il y a une autre facon de construire
des p—splittings de la biextension de Poincaré P4 associée a une variété abélienne A sur
K. Cela est fait en considérant un scindage de la filtration de Hodge de la premiere co-
homologie de de Rham de A comme suit (voir [[W03] et 'explication dans le Chapitre 3).

Rappelons que, associé au premier espace de cohomologie de de Rham de A, nous avons
une extension canonique

0 — HY(A, Q) /5) = Hig(4) = H'(4,04) = 0 (3)

fournie par la filtration de Hodge de Hi(A). L’extension vectorielle universelle (ou
UVE pour abréger) de la variété abélienne duale AV, que nous désignons ici par AVA se
place dans la suite exacte

0—V(AY) =AY — A -0, (4)

ou V(AY) est le groupe vectoriel associé au faisceau des différentiels invariants sur A.
Nous savons que la suite exacte d’algebres de Lie résultant de (4) correspond a la filtration
de Hodge de A montrée par (3) (voir [MMT74, §4]). Cela nous permet d’obtenir un
scindage (uniquement déterminé) n : AY(K) — AVI(K) au niveau des groupes a partir

ii
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d'un scindage r : H'(A,04) — Hiz(A) de (3). Comme AY% représente le foncteur
Extrig(A, G,,), n nous donne une fagon multiplicative d’associer une rigidification &
chaque extension de A par G,,. En effet, choisissons un point a¥ € AY(K) et soit Py v
I'extension correspondante. Alors n(a") est Pextension Py ,v dotée d’une rigidification,
laquelle est equivalente & un scindage

tyv : LiePA’av(K) — Lie K*.

De nouveau, en étendant ces homomorphismes d’algébres de Lie en des homomorphismes
des groupes correspondants, nous pouvons construire un A—splitting

v:Ps(K) = K,

ou A est une branche du logarithme p—adique. En utilisant le fait que chaque homo-
morphisme ramifié se factorise a travers une branche du logarithme, il est possible de
construire le p—splitting desiré.

Dans [Col91], Coleman a démontré que quand A a bonne réduction ordinaire le A—splitting
canonique de P4(K) construit par Mazur et Tate vient du scindage de (3) induit par le
sous-espace racine d’unité, c’est-a-dire le sous-espace de HéR(A) sur lequel le Frobenius
agit avec pente 0 (voir Section 3.1). Dans [IW03], Iovita et Werner ont généralisé ce
résultat aux variétés abéliénnes A avec réduction semi-stable ordinaire (voir Section 3.3).
Ceci est fait en utilisant I’extension de Raynaud de A, lequel peut étre vue comme un
1-motif dont la partie abéliénne a bonne réduction ordinaire (voir aussi [Wer98]).

Accouplements des 1-motifs

L’objectif de ce travail est la généralisation des constructions précédentes dans le contexte
des 1-motifs (ceci est le contenu du Chapitre 4). Rappelons la définition suivante (voir
[Del74, §10.1] et aussi Chapitre 1). Un I-motif M sur un corps K consiste en:

i) un réseau L sur K, i.e. un schéma en groupes qui est, localement pour la topologie
étale sur K, isomorphe a un groupe constant abélien libre finiment engendré;

ii) un schéma semi-abélien G sur K lequel est une extension d’une variété abélienne
A par un tore T; et

iii) un morphisme de schémas en groupes u : L — G.

Associé & M, nous avons un I-motif dual MV = [LY u, GY], ou GV est une extension
de la variété abélienne duale de A par le dual de Cartier de L, et LY est le dual de
Cartier de T. La biextension de Poincaré P4 de (A4, AY) par G,, induit par pullback
une biextension P de (G,G) par G,,, lequel est dotée de trivialisations sur L x GV
et G x LV qui coincident sur L x LY. Avec la définition de biextension de complexes
donnée par Deligne (voir [Del74, §10.2] et aussi Définition 1.2.4), cela dit que P est
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une biextension de (M, M) par G,,, lequel est aussi appelé biextension de Poincaré et
exprime la dualité entre M et M.

Afin de généraliser les constructions précédentes, nous aurons besoin de définir le groupe
des K—points d’un 1-motif M sur K (voir Section 4.1). Nous faisons cela en posant

M(K) := Ext'(MY,G,,).

Noter que cette définition généralise la formule de Weil-Barsotti pour les variétés abéliennes.
Les trivialisations de P sur L x G et G x LY induisent une L(K) x LY (K )—linéarisation
canonique de la biextension P(K) constituée des sections de P (voir Section 4.2).
Sous certaines conditions, cette linéarisation a son tour induit une biextension quo-
tient Qp(K) de (M(K),MY(K)) par K*. Nous concluons alors que pour un homo-
morphisme p : K* — Y de groupes abéliennes, les p—splittings de P(K) qui peuvent
étre descendus a Qpr(K) correspondent aux p—splittings qui sont compatibles avec la
L(K) x LY(K)—linéarisation canonique de P(K) (voir Définition 4.2.9).

Nous considérons d’abord un corps K qui est la complétion d’un corps de nombres par
rapport & une valuation v. Dans ce situation, nous définissons un v—splitting de P(K) a
partir du v—splitting canonique de P4 (K) construit par Mazur et Tate et nous analysons
les conditions sous lequelles il descend a un v—splitting de Qr(K). (voir Section 4.3).
A savoir, si A a bonne réduction et ’accouplement de monodromie associé a M (voir
[Ray94] et aussi Section 1.5) est non-dégénéré, le v—splitting de P(K) défini en induit
un de Qp/(K); ceci est le contenu du Théoreme 4.3.2. Cela va dans le méme sens que
la construction de v—splitting de la biextension de Poincaré d’une variété abélienne
avec réduction semi-stable ordinaire a partir de son extension de Raynaud donnée dans
[Wer98].

Nous sommes également intéressés & donner une construction de A—splittings de Qs (K),
pour X une branche du logarithme p—adique, analogue des variétés abéliennes qui utilise
la filtration de Hodge du premier groupe de cohomologie de de Rham (voir Section 4.4).
Pour ceci, nous devons considérer la réalisation de de Rham des 1-motifs, qui emploie
aussi la notion d’extension vectorielle universelle.

L’extension vectorielle universelle (UVE) d’un 1-motif M sur K est un complexe & deux
termes de schémas en groupes

M= (L G,

lequel est une extension de M par un groupe vectoriel V(M)

0 0 L——L——0 (5)
Ll ]
0—— V(M) Gh G 0.

iv
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Il est bien connu que l'extension vectorielle universelle d’un 1-motif existe toujours.
Deligne définit ensuite la réalisation de de Rham de M comme étant

Tar(M) = LieG*

(voir [Del74, §10.1.7] et aussi Définition 1.3.2). La filtration de Hodge de Tqr(M) est
défini comme
Tar(M) ifi=—1,
FiTqr(M)=1{ V(M) ifi=0,
0 ifi £ —1,0.

En choisissant un couple de scindages (r,7") des filtrations de Hodge de Tqr(M) et
Tar (M) qui sont duaux par rapport a ’accouplement de Deligne

(o ) Tar(M) ® Tar(MY) — G,

nous pouvons construire un A—splitting ¢ de P(K) (voir Théoréme 4.4.8). De plus,
nous prouvons dans le Théoreme 4.4.9 que si (r,rY) peut étre relevé en un couple de
scindages des extensions vectorielles universelles de M et MV, alors ¢ descend & un
A—splitting de Qs (K). Ce résultat peut étre généralisé & un homomorphisme continu
ramifié arbitraire p : K* — Q, (voir Corollaire 4.4.10). Cette construction généralise
celle donnée par Coleman pour les variétés abéliennes (voir [Col91]).

Nous pouvons maintenant utiliser les p—splittings de Q7 (K) construits précédemment
pour définir des accouplements globaux et locaux des 1-motifs. Premierement, dans la
Section 4.5 nous utilisons ces p—splittings, pour p ramifié ou non-ramifié, pour fournir
des accouplements locaux entre ensembles de zéro-cycles et de diviseurs sur une variété
X sur un corps local K, lorsque X est propre, lisse ou une courbe. Ceci est fait en
appliquant les résultats précédents au 1-motif de Picard de X et son dual, qui est le
1-motif d’Albanese de X. Finalement, dans la Section 4.6 nous considérons un corps
global F' doté d’un ensemble de places et d'un homomorphisme p comme dans (1). Dans
ce cas nous pouvons construire un accouplement global sur les points rationnels d’'un 1-
motif M sur F et de son dual MV & condition que les p,—splittings 1), pour p, ramifié,
soient compatibles avec la L(F),) x LY (F,)—linéarisation canonique de P(F,). Ceci est
le Corollaire 4.6.2. L’accouplement est défini de maniere analogue au cas des variétés
abéliennes, et donc généralise (2).
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Introduction

Parings via biextensions

In [MT83], Mazur and Tate provided constructions of global pairings on the rational
points of a pair of abelian varieties over a global field, and also local pairings on the set
of divisors and zero cycles with disjoint support on an abelian variety over a local field.
This construction generalizes Néron’s height pairing (see [MT83, Prop. 2.3.1]). Their
approach involves the use of p—splittings of the set of sections of a biextension over a
field K, where p : K* — Y is a homomorphism from the non-zero elements of K to
an abelian group Y. These p—splittings are basically bi-homomorphic maps which are
compatible with the natural actions of K™* (see Definition 2.1.1 for a precise definition).

A key result concerning the existence of p—splittings is the following, which is Theorem
2.1.6 below (see also [MT83, §1.5]). Fix abelian varieties A and B over a field K which
is complete with respect to a place v, either archimedean or discrete, and a biextension
P of (A, B) by G,,. Given an abelian group Y and a homomorphism p : K* — Y it is
possible to construct canonical p—splittings

Yy Pr(K) =Y
in the following three cases:
1) v is archimedean and p(c¢) = 0 for all ¢ such that |c|, = 1;
2) v is discrete, p is unramified and Y is uniquely divisible by N; and

3) v is discrete, the residue field of K is finite, A has semistable ordinary reduction
and Y is uniquely divisible by M,

where N is an integer depending on A and M is an integer depending on A and B. If
both 2) and 3) hold, they yield the same 1),.

Now consider the case of a global field F' and let A and B be abelian varieties over
F'. For each place v, let F, denote the completion of F' with respect to v, and for v
discrete let R, be its ring of integers. Denote A the ring of adeles of F' and consider a
homomorphism

p=1(p): Ap =Y (1)

1



INTRODUCTION

which annihilates the image of R}, for almost all discrete places v, and is such that the
“sum formula” ) p,(c) = 0 holds, for all ¢ € K*. Suppose, moreover, that for each
place v the canonical p,—splitting 1, of P(F),) exists. In this situation we have the
following fact, which is stated in Lemma 2.3.1 (see also [MT83, Lemma 3.1]). There is
a canonical pairing

(+, Y:A(F)x B(F) =Y (2)
such that if x € P(F) lies above (a,b) € A(F) x B(F') then

(a,b) = 3 du(a),

where x,, € P(F),) is the image of x under the inclusion F' C F,.

Pairings via splittings of the Hodge filtration

Let K be a field which is the completion of a number field with respect to a discrete
place v over a prime p and consider a continuous, ramified homomorphism p : K* — Q,,.
In this case, there is another way to construct p—splittings of the Poincaré biextension
P4 associated to an abelian variety A over K. This is done by considering a splitting
of the Hodge filtration of the first de Rham cohomology of A as follows (see IW03] and
the explanation in Chapter 3).

Recall that for the first de Rham cohomology K —vector space of A we have a canonical
extension

0 — HY(A, Q) /5) = Hig(4) = H'(4,04) = 0 (3)

provided by the Hodge filtration of HéR(A). The universal vectorial extension (or UVE
for short) of the dual abelian variety AV, which we here denote AVE, sits in the exact
sequence

0= V(AY) - AVF = AY =0, (4)
where V/(AY) is the vector group associated to the sheaf of invariant differentials on A.
We know that the resulting exact sequence of Lie algebras induced by (4) corresponds
to the Hodge filtration of A displayed by (3) (see [MMT74, §4]). This allows us to
obtain a (uniquely determined) splitting n : AY(K) — AY3(K) at the level of groups
from any splitting r : H'(A, O4) — Hig(A) of (3). Since AY® represents the functor
Extrig(A, Gy,), then a splitting of (4) gives us a multiplicative way of associating a
rigidification to every extension of A by G,,. Indeed, take a point a" € AY(K) and let
P4 v be the extension corresponding to it. Then 7n(a”) is the extension P4 ,v together
with a rigidification, which is equivalent to a splitting

tav : LiePAﬂv(K) — Lie K*.

Again, extending these homomorphisms of Lie algebras to homomorphisms of the cor-
responding groups, we are able to construct a A—splitting

v:Py(K) = K,
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where A is a branch of the p—adic logarithm. Using the fact that every ramified ho-
momorphism factors through a branch of the logarithm, we are able to construct the
desired p—splitting.

In [Col91], Coleman proved that, when A has good ordinary reduction, the canonical
A—splitting of P4(K) constructed by Mazur and Tate comes from the splitting of (3)
induced by the unit root subspace, which is the subspace of H(liR(A) on which the Frobe-
nius acts with slope 0 (see Section 3.1). In [IWO03], Iovita and Werner generalized this
result to abelian varieties A with semistable ordinary reduction (see Section 3.3). This is
done using the Raynaud extension of A, which can be seen as a 1-motive whose abelian
part has good ordinary reduction (see also [Wer98]).

Pairings of 1-motives

The purpose of this work is to generalize the previous constructions in the context of
1-motives (and this is the content of Chapter 4). Recall the following definition (see
[Del74, §10.1] and also Chapter 1). A 1-motive M over a field K consists of:

i) a lattice L over K, i.e. a group scheme which, locally for the étale topology on K,
is isomorphic to a finitely generated free abelian constant group;

ii) a semi-abelian scheme G over K which is an extension of an abelian scheme A by
a torus T'; and

iii) a morphism of group schemes v : L — G.

u\/

Associated to M, we have a dual 1-motive MV = [LY — G"], where GV is an extension
of the dual abelian variety AV by the Cartier dual TV of L, and LV is the Cartier dual
of T. The Poincaré biextension P4 of (4, AY) by G,, induces by pullback a biextension
P of (G,G") by G,, which is endowed with trivializations over L x GV and G x LV that
coincide on L x LY. Under the definition of biextension of complexes given by Deligne
(see [Del74, §10.2] and also Definition 1.2.4), this says that P is a biextension of (M, M")
by G,.

In order to construct analogs of the previous constructions, we will need to define the
group of K—points of a 1-motive M over K (see Section 4.1). We do this by setting

M(K) = Ext'(M",G,,).

Notice that this generalizes Weil-Barsotti formula for abelian varieties. We
have that the trivializations of P over L x GV and G x LY induce a canonical
L(K) x LY(K)-linearization on the K*—torsor P(K) (see Section 4.2). Under
certain conditions, this linearization in turn induces a quotient biextension Qnr(K) of
(M(K), MY (K)). We then have that for any morphism p : K* — Y of abelian groups,
giving a p—splitting of P(K) which is compatible with the L(K) x LV (K)—linearization

3
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is equivalent to giving a p—splitting of the quotient biextension Qs (K).

We first consider a field K which is the completion of a number field with respect to a
discrete valuation v and analyze the conditions under which the canonical v—splitting
of P4(K) constructed by Mazur and Tate induces a v—splitting of Qs(K) (see Section
4.3). Namely, if A has good reduction and the monodromy pairing associated to M (see
[Ray94] and also Section 1.5) is non-degenerate, we can obtain a v—splitting of Qas(K)
from the canonical v—splitting of P4(K); this is the content of Theorem 4.3.2. This
goes along the same lines as the construction of v—splittings of the Poincaré biextension
of an abelian variety with semistable ordinary reduction from its Raynaud extension
given in [Wer98].

We are also interested in giving a construction of A—splittings of Qs (K), for A a branch
of the p—adic logarithm, analogous to the one of abelian varieties which uses the Hodge
filtration of the first de Rham cohomology group (see Section 4.4). For this, we have to
consider the de Rham realization of 1-motives which also uses the concept of universal
vectorial extension.

The universal vectorial extension (UVE) of a 1-motive M over K is a two term complex
of group schemes

M= (L% G

which is an extension of M by a vector group V(M)

0 0 L=——L——0 (5)
| |
0—— V(M) G" G 0.

It is well known that the universal vectorial extension of a 1-motive always exists. Deligne
then defines the de Rham realization of M as

Tar(M) = LieG*

(see [Del74, §10.1.7] and also Definition 1.3.2). The Hodge filtration of Tgr (M) is defined
as
| Tar(M) ifi=—1,
FiTgr(M)={ V(M) ifi=0,
0 if i £ —1,0.

We prove in Theorems 4.4.8 and 4.4.9 that we can obtain a A—splitting of Q@ (K) from
a pair of splittings n : G(K) — GHK), n: GV(K) — GV4(K) of (5) which are dual with
respect to Deligne’s pairing

(o ) Tar(M) ® Tar(MY) — Gy,
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This can be generalized to an arbitrary ramified continuous homomorphism p : K* — Q,
(see Corollary 4.4.10).

As an application, in Section 4.5 we use these p—splittings, for ramified or unramified
p, to provide local pairings between zero cycles and divisors on a variety over a local
field in the following three cases: proper varieties, smooth varieties and curves.

Finally, in Section 4.6 we consider a global field F' endowed with a set of places and
a homomorphism p as in (1). In this case we can construct a global pairing on the
rational points of a 1-motive M(F) and its dual M"Y (F) under the condition that the
py—splittings v, for ramified p,,, are compatible with the L(F,) x LY (F,)—linearization.
This is Corollary 4.6.2. The pairing is defined analogously to the case of abelian varieties,
and therefore generalizes (2).



Chapter 1

1-motives

Let S be a scheme and consider the fppf site Sg,pr on S. Remember that, by Yoneda’s
lemma, we have a fully faithful embedding

CommGrpSch/S — AbSh(Sgpe)
G — G :=Homg(-,G),

from the category of commutative group schemes over S to the category of abelian
sheaves on the fppf site of S. On the other hand, for any additive category A, we can
consider the category CP (A) of bounded chain complexes of A. We have a fully faithful
embedding

A< CP(A)

A— A0]=...0-A—0...,

which associates to an object A in A the complex concentrated in degree 0 whose compo-
nent in this degree is A. These embeddings clearly make the following diagram commute

CommGrpSch/S « AbSh(Sppr)

/ [

CP(CommGrpSch/S) —— CP(AbSh(Stppe)) =: CP(Stppt) 5

so we can, and will, identify an object in one of these categories with its image under
any of the previous functors. Notice that composing the functor

CommGrpSch/S < CP(Sgypr)
resulting from the diagram with the canonical functor
C"(Stppt) — D (AbSh(Sgype)) =: D" (Sgppe)

we get an embedding as well. So we will also identify a commutative group scheme G
over S with the element in the derived category having G[0] as representative.
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1.1 Deligne’s 1-motives

The definiton of 1-motive is due to Deligne. In [Del74, §10.1] he defines a 1-motive
over an algebraically closed field K and constructs several realization functors, which
associate to a 1-motive a vector space over K endowed with Hodge and weight filtrations.
Namely, he constructs the Hodge realization for K = C, and the [—adic and de Rham
realizations for K of characteristic 0, and gives comparison isomorphisms relating them
which are compatible with the filtrations. We will take here as definition of 1-motive
what Deligne calls I-motif lisse (see Definition 1.1.1). This generalizes the previous
definition of 1-motives to arbitrary base schemes. In this case, we also have an [—adic
realization functor, for [ a prime invertible in S, and a de Rham realization. We will
concentrate on the de Rham realization; this will be defined in Section 1.3.

Definition 1.1.1 ([Del74, §10.1.10]). Let S be a scheme. A I-motive M over S consists
of:

i) a lattice L over S, i.e. an S—group scheme which, locally for the étale topology
on S, is isomorphic to a finitely generated free abelian constant group;

ii) a semi-abelian scheme G over S which is an extension of an abelian scheme A by
a torus T over S ; and

iii) a morphism of S—group schemes u: L — G.
A 1-motive is represented in a diagram as follows
L

N

0 T G A 0.

A 1-motive can be considered as a complex of S—group schemes or of the associated
representable fppf sheaves on S. Using Raynaud’s convention ([Ray94, §2]), we will

consider L in degree -1 and G in degree 0. If M = [L % G] and M’ = [L’ “, G'] are two
1-motives we define a morphism ¢ : M — M’ as a morphism of the associated complexes
of S—group schemes, i.e. ¢ is given by a pair of S—homomorphisms f : L — L' and
g : G — G’ such that

L——G

b

J AN
commutes. This says that the category M (S) of 1-motives over S is a full subcategory
of the category of complexes of fppf sheaves on S. Notice that M;j(S) has kernels and

cokernels but, in general, images and coimages do not coincide, so M;(S) is not an
abelian category.
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Associated to M, we have an increasing weight filtration by sub-1-motives defined as
follows:

0 i <=3,
' ) 0=T1] i=-2,
WiM) = 0—G] i=-1,
M i >0.
The graded pieces defining pure 1-motives are:
0 1< —=3orz>1,
o M =93 054 i= -1,
[L—0] i=0.

We will also consider, for a 1-motive M, the induced object ¢(M) in the derived
category Db(Sfppf), providing a functor

L: Ml(S) — Db(Sfppf).
The following proposition states that this functor is fully faithful.

Proposition 1.1.2 ([Ray94, Prop. 2.3.1]). Let M and M’ be two 1-motives over S.
Then

Homy, (5)(M, M') = Hompp g o (e(M), o(M)).

Stppt
Corollary 1.1.3 ([Ray94, Cor. 2.3.3]). Two S— I-motives whose images in D°(Sgyp)
are isomorphic, are isomorphic as 1-motives.

1.2 Cartier duality

Given a 1-motive M over S we can construct another 1-motive MV called the Cartier
dual of M. This association in fact defines a contravariant functor on the category of
1-motives

()" Mi(8) = My(S)

with the property that there exist canonical isomorphisms M"Y = M which are natural
in M. This construction generalizes duality of abelian schemes, given by the functor
Exti(-,G,,), and Cartier duality of commutative groups schemes taking tori to lattices
and viceversa, which is given by Homg(-,G,,) (see (1.2)). As in the case of abelian
schemes we have a canonical biextension of (M, MV) by G,,,, named Poincaré biextension
by analogy with the case of abelian varieties, which expresses the duality relation. In
Section 1.2.1, we will remember the theory of biextensions and give a generalization of
this notion due to Deligne to be applied on 1-motives; then in Section 1.2.2 we will give
the construction of the dual of a 1-motive.
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1.2.1 Biextensions

We recall some general facts about torsors which can be found in [Gir71, §III]. We fix a
site S and work in the topos Sh(S) of sheaves on S. Let S, H € Sh(S) with H a sheaf of
abelian groups over S. By an H—torsor over S we will mean a sheaf P over S endowed
with an H—action m : H xg P — P such that:

i) the morphism

H XSP—>P Xsp
(h,e) = (m(h,e),e)

is an isomorphism, and
ii) the structural morphism P — S is an epimorphism.

A morphism of torsors is a morphism of the corresponding sheaves which is compatible
with the actions. The trivial H—torsor is just H with the action given by multiplication.

Condition i) is an algebraic condition and is equivalent to the following:

") for any T € Sh(S), the action of H(T) = Homg(7T, H) on P(T) = Homg(T, P) is
simply transitive.

Condition ii) is more of a topological condition and can be rephrased as:

ii’) there exists an epimorphic family {S; — S} such that

P(SZ) = HOHIS(SZ', P) 7é @;

or equivalently,

ii”) there exists an epimorphic family {S; — S} such that P x g S; is isomorphic to the
trivial H x g .S;—torsor over S;.

Definition 1.2.1 ([SGAT7-I, Def. 2.1]). Let H, A, B be sheaves of abelian groups on a
site. A biextension of (A, B) by H is an H4xp—torsor P over A x B which is endowed
with a structure of extension of B4 by H4 and a structure of extension of Ag by Hp,
such that both structures are compatible.

Formally, this means the following. For T' € Sh(S) and morphisms a € A(T),
b € B(T), denote by P, the fiber of P over (a,b) € (A x B)(T), that is, the pullback
of P along the morphism (a,b) : T'— A x B. Then the structure of extension of B4 by
H 4 is given by a system of isomorphisms

Casbpt + Pap N Popr — Py
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where P, A P,y denotes the contracted product, for every T' € Sh(S) and morphisms
a € A(T) and b,b' € B(T). These are functorial in 7" and satisfy associativity and
commutativity conditions expressed by the following commutative diagrams

Soa;b,b’ Nd (pa;b,b’
Pyy NPy N Popr —— Py piy N\ Py Pyy NPy ————— Py pyy
Id/\goa;b/,b//l l@a;bb/’bu gl
cpa;b,b’b” Pab! b
Poy N Py Py pyry Poy N Popy ————FPopp »

for a € A(T) and b,¥',b" € B(T).

Symmetrically, the structure of extension of Ap by Hp is given by a system of
isomorphisms
wa,a’;b : Pa,b A Pa’,b — Paa’,b )

for every T' € Sh(S) and morphisms a,a’ € A(T) and b € B(T). These are functorial
in T" and satisfy associativity and commutativity conditions expressed by the following
commutative diagrams

¢a,u/:b/\]d wa,a’:b
Popy N Porp N Parrp —————— Poarp N Parr p Pop N Porp ————— Paar p
Id/\wa/,a”;bJ/ J{waa/ﬂ//;b El
wa,a/a“;b wa/,a;b
Pa,b A Pa/a”,b Paa’a“,b Pa’,b A Pa,b ? Pa’a,b 3

for a,a’,a” € A(T) and b € B(T).

These structures are said to be compatible if for every T' € Sh(S) and a,d’ € A(T),
b,/ € B(T) the following diagram commutes

@a;b,b/ /\Spa’;b,b’ ,wa,a/;bb’
Pa,b A Pa,b’ A Pa’,b A Pa’,b’ ? Pa,bb’ A Pa’,bb’ ? Paa’,bb’ (11)
J’ wa,a/;b/\wa,a’;b/ Soaa/;b,b’

Pa,b/\Pa’,b/\Pa,b//\Pa’,b’ >Paa’,b/\Paa/,b/ >iDaa/,bb’ .

Example 1.2.2. A biextension of abelian groups is a biextension on the punctual topos,
i.e. the category of sheaves on the site with one object *, one morphism Id, : * —
and one covering {Id.}. So, for abelian groups H, A, B, a biextension of (A, B) by H is
given by a set P endowed with a simply transitive H—action and a surjective function
P — A x B such that the fibers P,, for every a € A, have the structure of extension of
B by H, and the fibers Py, for every b € B have the structure of extension of A by H .

Example 1.2.3. Fix a scheme S and consider the fppf site of S. Let Ag be an abelian
scheme over S. The dual abelian variety of Ag is characterized by a pair (A, Pag), where
AY is an abelian scheme over S and Py is a biextension of (Ag, A¢) by Gy, g, called the

10
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Poincaré biextension. We have a canonical isomorphism Ag = Eﬂ‘ /s of fppf sheaves (see
[FC90, Thm. 1.9]). When composing with the isomorphism Pic)) /¢ = Extg(As, Gin,s)
taking an invertible sheaf to the group of its nonzero sections we get the Weil-Barsotti
formula AY = Ext§(Ag, Gy,s), which maps a section a” € AY, to the fiber Py, v of
Py over aV.

It will be useful to note that since G,, s is affine over S then P, is representable.
Moreover, since Gy, g is also smooth over S then P, is already locally trivial with
respect to the étale topology on S, i.e. Pag is a G, g—torsor over Ag x AY for the étale
topology on S.

If S = Spec(K), where K is a discrete valuation field with ring of integers R, then Py,
extends canonically to a biextension Py of (A% AY) by Gm,r, where AY denotes the
identity component of the Néron model of Ax and A" denotes the Néron model of A}..
In particular, its generic fiber is P4, (see [SGAT-I, Exposé VIII, Thm. 7.1 (b)]).

In [Del74, §10.2], Deligne intoduced a generalization of the notion of biextension in
which he considered complexes of sheaves. The theory developed can then be applied to
1-motives to obtain results analogous to those regarding biextensions of abelian varieties.

Definition 1.2.4. [Del74, §10.2.1] Let C; = [A1 — Bij] and Cy = [As — Bs] be two
complexes of sheaves of abelian groups concentrated in degrees 0 and -1. A biextension
of (C1,C9) by a sheaf of abelian groups H consists of:

i) a biextension P of (By, B2) by H,

ii) a trivialization (biadditive section) of the biextension of (Bj, As) by H, obtained
as the pullback of P over By x As, and

iii) a trivialization of the biextension of (Aj, B2) by H, obtained as the pullback of P
over A1 x Bs.

We require the trivializations in ii) and iii) to coincide on A; x As.

1.2.2 Construction of the dual 1-motive

First, we set the notation used in this section regarding Hom and Ext sheaves. Let
F* and G* be objects in DP(Sppr). We have an internal Hom in DP(Sg,p¢) denoted
RHomg(F*,G*). This complex induces abelian sheaves on the site Sgpe

Extl(F®, G*) = H'(RHomg(F*, G*)). (1.2)
This Mg—sheaf is just the sheafification of the presheaf
(Stppt) P — Ab
(T L 8) = Extip(F*|p, G*|r)
with respect to the fppf topology on S, where

Exty(F*®, G*) := Hompp g, (F®, G®li]) = Hompp g, (F®[—i], G*).

PP ppf

11
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Sometimes we will consider the restriction of the fppf sheaf qu to the small Zariski
site Sy, on S. The Zariski sheaf on Sy, thus obtained will be denoted M&ZM.

Now we proceed to the construction of the Cartier dual. Let M = [L % G] be
a l-motive over a locally noetherian scheme S where G is an extension of an abelian
variety A by a torus T, and denote M4 = [L % A]. The dual of M will be a 1-motive

MY =[LY “, GV], with GV an extension of AY by T, defined as follows.

i)

ii)

iii)

iv)

12

The lattice LV is the Cartier dual of T, i.e. the group scheme which represents the
sheaf Homg(T', Gy, s).

The torus TV is the Cartier dual of L, i.e. the group scheme which represents the
sheaf Homg(L, Gy, 5).

The abelian variety AV is the dual abelian variety of A. Remember that, by the
Weil-Barsotti formula, AV represents the sheaf ME(A,GWS). Denote P4 the
Poincaré biextension of (A, AY) by Gy, s.

To construct GV, consider the exact sequence of complexes
0—+A— My— L[1] = 0. (1.3)
Applying the d—functor Extg( -, Gy, s) to (1.3) we get a long exact sequence

...Homg(A, Gy 5) — Homg(L, Gy 5) — ExtE(Ma, Gy 5)
— Ext§(A,G,s) = Extg(L,Gpys) - ...

The sheaf mg(M 4,Gy,s) happens to be representable and we denote G the
group scheme that represents it. Since Homg(A, Gy, 5) = 0, because A is proper
and geometrically connected and Gy, g is affine, and Ext§(L, G, s) = 0 then GV
is a semi-abelian scheme which is an extension of A by TV. This construction
gives in fact an isomorphism of sheaves on Spyp¢

Homg(L, A) — Extg(AY, T) (1.4)

which is functorial in both components and in S, and whose evaluation at .S sends
v:L— AtoGV.

We have a Poincaré biextension P’ of (M4, G") by G,,, which is obtained from Py
by pullback.

To obtain the morphism u" : LY — GV we proceed as follows. Consider the exact
sequence of complexes

0—-T—>M—Msy—0. (1.5)
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vi)

Then the sequence (1.3) and the connecting morphism of (1.5) gives the following
diagram in the derived category Db(Sfppf)

which after applying ExtL(-,G,,.s) gives

LV
N
wY
0 T GV AY 0.

Finally, we need to construct the Poincaré biextension P of (M, M) by Gy, s.
Again, by pullback, we have that P’ induces a biextension P” of (M,G") by
Gum,s- To prove that this induces a biextension of (M, M) by Gy, s it remains to
prove that P” has a trivialization over G x LV and that, on L x LV, it coincides
with the trivialization over L x GV.

Take zV € LY. If we interpret z¥ as a morphism x : T — Gy, s then the image of
z" under u" corresponds to the extension of My by G,, g obtained as the pushout
of (1.5) along —x (see [ABO05, §1.2])

0 T > M y Mpo —— 0

ok

0 — Gy g — P;v(xv) —s My —— 0.

The morphism & gives a trivialization of the pullback P, (wvy of P;v(xv) to M

~
o

0 — Gpg — P{L’V(wv) S

ez

0 — Gpg — P{Lv(xv) — s My —— 0.

Since the pullback of P” to G x {z"} is isomorphic to P, (x> We see that P’ has

indeed a canonical trivialization over G x LV. Therefore, the biextension P is just
P’ endowed with the trivialization on G' x LY.

13
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EXTENSION (UVE)

1.2.3 Symmetric avatar

By the previous discussion, we see that the Poincaré biextension of (M, M") by G,.s
is the pullback of the Poincaré biextension P4 of (A, AY) by G, to G x GV, which is
endowed with trivializations on Lx G and G x LY coinciding on Lx L". In particular, the
biextension P4 has a trivialization 7 : Lx LY — P4 on Lx LY, and in fact this is necessary
and sufficient information to construct the liftings of v: L —+ A and vV : LY — AY to G
and GV, respectively ([Bar07, §2.8]). So, the data of a 1-motive M and its dual MV is
determined by the data

(LS ALY Y5 AV Lx LV T Py).

We can construct a category, denoted M3P™, whose objects are such tuples and whose
morphisms (v, vy, 71) = (v2, vy, 72) are given by maps fr, : L1 — Lg and fa : Ay — Ao,
together with their duals f) : Ly — Ly and f) : Ay — A}, making the following
diagrams commute

v
fLJ/ lfA fZT TfX

and such that the trivializations 7 and 7 are compatible, i.e. they satisfy that
(Id x f)*11 = (fa x Id)*7s.

P1 — (Id X fX)*Pl = (fA X Id)*PQ —_— P2

d
7
T1 / T2
/
Idx fY

fAXId

A1><A\1/ AIXA\Q/ AQXA\2/
/{qxvf / /I11><112v / /v;xvzv
Ly x LY Taxfy Ly x Ly i Ly x Ly
X fy L

1.3 de Rham realization via the universal vectorial exten-
sion (UVE)

We define a vector group scheme over S as an S—group scheme that is locally isomorphic
(for the Zariski topology) to a finite product of G,’s endowed with an action of the
group ring A! which is compatible with said local isomorphisms. If V is a vector
group over S then the sheaf Homg(-,V') is a locally free Og—module of finite rank.
Conversely, every locally free Og—module £ of finite rank induces a vector group W
whose sections over an S—scheme 7" are W(T') = I'(T, Or ®o4 £). We will often identify

14
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a vector group with the Og—module it represents.

Given a group scheme G over S such that Homg(G, V') = 0 for all vector groups V/,

we can consider the problem of finding a group scheme F(G) that is an extension of G
by a vector group V(G)

0—-V(G)— EG) —-G—0 (1.6)

with the property that the map from morphisms of Og—modules to extensions of com-
mutative group schemes

Homoe, (V(G),V) — Ext(G, V) (1.7)

induced by pushout is an isomorphism for all vector groups V. In case such E(G) exists,
this group is called the universal vectorial extension (UVE) of G and we can see that
E(G), as well as V(G), are determined up to canonical isomorphism. In [MM74, §1.7]
it is proved that if the following conditions are satisfied:

l) HomS’Zar(G, Ga’s) = 0, and
ii) mg’Zar(G, Gyq,s) is a locally free Og—module of finite rank,

then
V(G) = m@g (M}S’,Zar(Gv Ga,s)v OS)

is a vector group that satisfies

mAls',Zaur(G7 V) = mAls',Zaur(va Ga,s) ®og Vv
= Hom (V(G), Os) ®os V
= Hom  (V(G),V);

and thus E(G) is the extension corresponding to the identity morphism on V(G). In
particular, a semi-abelian scheme has a universal vectorial extension.

This definition can be generalized to 1-motives as follows (see [Del74, §10.1.7]).

Definition 1.3.1. Let S be a scheme and M a 1-motive over S. The universal vectorial
extension (UVE) of M is a two term complex of S—group schemes

Mi=[L % &)

which is an extension of M by a vector group V(M) over S as complexes of S—group
schemes

0 0 L——L——0 (1.8)
L
0—— V(M) G’ G 0,

15
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such that (1.8) is universal in the sense that the map
Home (V(M),V) — Extg(M,V) (1.9)
induced by pushout is an isomorphism for all vector groups V.
If the following conditions are satisfied:

i) Homg ., (M, Gqy,s) = 0, that is, the extensions of M by G, s do not have auto-
morphisms, and

ii) ngar(M, Gq,s) is a locally free Og—module of finite rank,

then
V(M) = m@g (m}g,Zar(Mv Ga,s)a OS)

is a vector group and
m}g,Zar(M7 V) = m}?,Zar(M’ GU«,S) ®OS 4
= Homy (V(M), Os) ®os V
— Hom, (V(M),V).

Therefore, (1.9) is an isomorphism and M has a universal vectorial extension.
To prove that condition i) is satisfied, observe that Homg 7., (G, Gq,5) = 0 implies
Homg 7,,(M,Gg,s) = 0. Now, to prove ii) consider the exact sequence
0— I—Ioilns,Zar(L? Ga,S) — m}g,zal‘(M7 Gays) - mAls’,Zar(CTu Ga,s) — 07
which is obtained from the exact sequence of complexes
0—-G—-M-—L[1]—0 (1.10)

once we notice that Homg z,,.(G,Gas) = ngar(L,Gays) = 0. Then we have that
M}QZH(M ,Gq,5) will be a locally free sheaf of Og—modules of finite rank if both
Homg 7., (L, Ga,s) and ml&Zar(G,GG,S) have finite rank. Clearly, Homg 7., (L, Ga,s)
is as desired. For MQZM(G, Gq,s), notice that the exact sequence

0T —->G—-A—=0, (1.11)

induces an isomorphism M,lg,Zar(A7Ga,S) = ngar(G,Ga,g), since we have that
Homg 7., (T, Ga,5) = ME’ZM(T, Gq,5) = 0. Thus, mgyZar(G, Gq,s) also has finite rank.

Definition 1.3.2. The de Rham realization of M is defined as the sheaf
Tar (M) = LieG".
The Hodge filtration of Tqr (M) is defined as

FiTqr(M)=1{ V(M) ifi=0,
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1.3.1 Relation between UVE of subquotients of M

The exact sequence (1.11) induces the following commutative diagram of group schemes
with exact rows and columns, where we are denoting G# the universal vectorial extension
of the semi-abelian scheme G

0 0 (1.12)
T# —=T
0—— V(Q) G# G 0

0——V(4) A# A 0

Remember that we have Homg 7, (T, G s5) = M}Q,Zar('ﬂ Gq,5) = 0; this implies that
V(T) =0, and V(G) = V(A).

Similarly, the exact sequence (1.10) induces the following commutative diagram of
complexes of group schemes with exact rows and columns

0 0 0
0 V(Q) G#* G 0
0—— V(M) M M 0
0—— V(L[1]) L[1]? L[1] 0
0 0 0

17
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whose degree 0 level is given by the following diagram

0 0 (1.13)
0 V(G) G* G 0
0 V(M) ¥e G——0
V(L[1]) == V(L[1])
0 0

Notice that V(L[1]) is given by
V(L[1)) = Home, (Extl 7, (L[1], Gy,s), Os)
= 7H0m(95 (7HomS,Zar(Lv Ga,S)a OS)
=L® Ga,S‘

Moreover, for V' = V(L[1]) and M = L[1], the isomorphism (1.9) sends the identity to
the evaluation map in Exty(L[1], L ® G,s) = Homg(L, L ® G, s):

ev: L — Homy (Homg 7, (L, Ga,5),05) = L @ G,

ev(x)

T (mS,Zar(L7GCL,S) — OS) ]
f= fz)

This implies that L[1]* = [L <5 L ® G, g].

In order to give an equivalent description of V/(M), we will recall the following

Definition 1.3.3. Let B be a commutative group scheme over S. We say that w € Q%/S
is invariant if 7 (w) = w for all b € B, where 7, denotes translation by b. For i =1, we
denote by wp the sheaf of invariant differentials on B.

Remember that, for B as above, wp = 6*9119/57 where e : S — B is the zero section
(see [BLR90, §4.2]). By [Ber09, Prop. 2.3], we know that

Ext§ 7 (M, Ga,5) = Extg g (Ma, Gas5) = LieG"
and therefore V(M) = Homy (Lie(G"), Os) = wgv. So, we have that

0—— V(@) V(M) V(L]1]) ——0

WAV Wav Wrv

18
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is the exact sequence of invariant differentials induced by duality from the exact sequence
of Lie algebras obtained from

0TV 5GY = AV —0.

1.3.2 Interpretation of UVE via j—extensions

Let X be an S—scheme and consider the diagonal map A : X — X x ¢ X. The subscheme
A(X) C X xg X is the closed subscheme corresponding to the ideal sheaf J C Oxxx
generated by elements of the form 1®z—r®1. We denote by Al(X) the first infinitesimal
neighborhood of A(X), that is, the closed subscheme corresponding to J?2. For i = 1,2,

denote by ‘
pi i AMX) > X xg X X4 x

the morphisms induced by the usual projections pr;.

In what follows we will be considering torsors in the étale site.

Definition 1.3.4. Let H be a smooth commutative group scheme over S and P
an Hy—torsor over X. A connection on P is an isomorphism V : pjP — p5P of
H 1 (x)—torsors which restricts to the identity on X.

Torsors endowed with connections (P, V) are the objects of a category whose mor-
phisms Hom((P, V), (Q,V’)) are given by morphisms ¢ : P — @ of Hx—torsors that
make the following diagram commute

piP % e

VJ( JV'
>k p*(z) k
PP — Q.
A morphism (P, V) — (Q, V') in this category is called horizontal.

A connection on an Ox—module € is an Oa1(y)—isomorphism V : pi€ — p3&
restricting to the identity on X. From this, we can obtain an Og—linear homomorphism

Vi€ = Qx5 Qo €

as follows. For ¢ = 1,2, denote by j; : Ox — pixOa1(x) the homomorphism of sheaves
of rings obtained from p; : A'(X) — X and by ji(§) : € — pip;E the corresponding
morphism of Ox —modules. Define

V=V o)) = j1(€).
This morphism V satisfies the “Leibniz rule”
V(fs)=fV(s) +df ®s,
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1.3. DE RHAM REALIZATION VIA THE UNIVERSAL VECTORIAL
EXTENSION (UVE)

where f and s are sections of Og and &, respectively, and d : Og — Qk /s is the exterior
derivative. A horizontal morphism (£,V) — (F,V') is a morphism ¢ : &€ — F of
Og—modules inducing a commutative diagram

£ ¢ Ra

o &

I1d®¢
Q%{/s ®os € >Q%{/s ®og F -

When H = G,, g, the previously defined map V V gives a one to one correspondence
between connections on a Gy, x—torsor P and connections on the invertible sheaf
associated to P.

Let V be a connection on the Hx—torsor P. We define the curvature of V, which will
be an element of I'( X, Q_QX/S ® Lie(H)), as follows. First we consider the case P = Hx
the trivial torsor. In this case, V is just an automorphism of Ha1(x) over A'(X) which

restritcts to the identity over X

Hy ——— Hpix

1d \ VE\

X A(X)

S 7

HX e HAl(X)

Therefore, V is determined by the image of the zero section of Hai(y) over AY(X),
which in turn is determined by an element ¢ € I'(A'(X), H). By the commutativity of
the diagram, we see that in fact ¢ is zero when precomposed with X — A!(X). Now
observe that

Ker((A!(X), H) = D(X, H)) = Homoy (wr @05 Ox, 2k /o)
= F(Xv Q,lX/S ®OS @(H))a

where the second equality comes from the duality between wy and Lie(H). We
define the curvature of V as the image of ¢ in I'(X, Q%(/S ®og Lie(H)) under

d® Id: Qg ®og Lie(H) = Q% g ®o, Lie(H).

To define the curvature of a connection V on an arbitrary Hx—torsor P we
consider its pullback to some base X', along an epimorphic étale map f : X' — X,
over which P becomes trivial. Choosing an isomorphism f*P = Hyx/ we can
construct the curvature of f*P by the procedure just described and obtain an el-
ement in F(X’,Qg(,/s ®og Lie(H)) = F(X’,f*Q?X/S ®og Lie(H)) (the isomorphism
comes from the fact that f is étale). Now, by applying descent we get an element
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inT'(X, Qﬁ(/s ®ogLie(H)), which we define to be the curvature of P (see [MM74, §3.1.4]).

When considering a connection V on a Og—module &, the curvature of V is defined
as the Og—linear map
K :=V10V:E&— 0%/ 00 &,

where V; : Qﬁ(/s ®og € — Q%{/S ®og € is defined as
Vilw®s) =dw®s—wAV(s),
on sections w and s of Qﬁ( /s and &, respectively.

Definition 1.3.5. A connection V is called integrable if it has zero curvature. A f§ —
Hx—torsor on X is an Hx—torsor endowed with an integrable connection.

The trivial f — Hx—torsor is the torsor Hx endowed with the connection AVARE
Id : Havxy — Haix). A trivialization of a §f — Hx—torsor (P, V) is an isomorphism
(P, V) — (Hx,V") in the category of Hy—torsors endowed with connections, i.e. an
isomorphism P — Hx of Hx—torsors which is horizontal with respect to the connections
V and VO.

Definition 1.3.6. Let B be a group scheme over S and denote p : B x¢ B — B
the group law. A p—extension is a § — Hg—torsor (P,V) endowed with a horizontal
isomorphism

B :piP ApsP — pu*P.

We will also say that P is endowed with a j—structure when there is no ambiguity.

Notice that, in the previous definition, § defines a group structure on P and makes
it an extension of B by H. The following proposition gives a description of j—extensions
of B by Gm,S-

Proposition 1.3.7. Let B be a commutative group scheme over S and E an extension
of B by Gy,,5. Then there is a bijection between connections V on E such that (E,V)
is a j—extension of B by Gy, 5 and invariant differentials on E whose pullback to G, s
is dz/z.

Proof. See [Ber09, Prop. 3.4] and [Col91, Prop. 0.2.1]. O

Definition 1.3.8. Let P be a biextension of (Bj, Bs) by H and consider the morphisms
defining the partial group structures

081 (p1 X Id)*P/\ (pg X Id)*P—> (Ml X Id)*P on By xg By Xg Bo,
Bo : (Id Xpl)*P/\ (Id X pg)*P — (Id X /LQ)*P on By Xg By Xg Bo,

where u; : B; Xg B; — By, for i = 1,2, are the group laws.
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i) We say that P is a §—biextension of (By, By) by H if it is a § — Hp, x B, —torsor
such that 51 and (9 are horizontal. We will also say that P is endowed with a
f—structure when there is no ambiguity.

ii) A g—1—structure on P is a connection V1 on P which endows P with the structure
of h—extension of By, by Hp, such that (5 is horizontal. Analogously, a § —
2—structure on P is a connection V5 on P which endows P with the structure of
n—extension of By g, by Hp, such that ; is horizontal.

Notice that P is a j—biextension if and only if it is endowed with a f§ — 1—structure
and a f—2—structure. If Vy is a j—1—structure on P then (; is automatically horizontal
with respect to V1. Similarly, if Vg is a fj — 2—structure on P then s is automatically
horizontal with respect to Vs.

Definition 1.3.9. i) A f—eatension of a complex [A — B]| by H is a f—extension
(P,V) of B by H endowed with a trivialization of the pullback of (P, V) to A.

ii) A g—biextension of complexes ([A1 — Bi],[As — Bs]) by H is a f—biextension
(P,V) of (B1, Bz) by H endowed with trivializations of the pullback of (P, V) to
A1 Xg By and By xg Ay which coincide on A xg As.

We have the following description of the group scheme G appearing in the universal
vectorial extension of a 1-motive in terms of j—extensions of complexes.

Proposition 1.3.10. Let M = [L % G| be a 1-motive over S with dual MY = [LV u,
G"] and P the Poincaré biextension of (M, M"). Then the group scheme G represents
the presheaf

Sfppf — Ab

SN (9, V)| g€ G(S) and V is a §—structure on
the extension [L — Py] of MY by Gy s

Proof. See [Ber09, Prop. 3.8]. O

1.3.3 Deligne’s pairing

Let P% be the biextension of (M?% M) by G,, obtained as the pullback of P. We use
the following notation

0= wev =G5 G =0,
Yo Aavg P A
0=>wg—G*"—G" —=0.

Denote P, the pullback of P to G xg GV; this is a biextension of (M? M V) by
Gm,s. By Proposition 1.3.10, the identity map in GY%(G%) induces a connection Vs on
the torsor P, endowing it with the structure of j—extension of M}, by G,, c:. Notice
that the pullback of P, along p¥ equals P?: we will see that p¥*Vs endows P? with a
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§ — 2—structure. First, we have that (P, p¥*V3) is a j—extension of Géuh by G, ga- It
remains to prove that

B1: (p1 X Id)*P* A (py x Id)*P* — (pgy x Id)* P

is horizontal on G xg G xg GV4. Notice that p; + py = Hae in GH(GH Xg Gh). The
f—extension of M, by G,, gixg: induced by p;, for i = 1,2, is

(pi X 1d)"(E,, V2) = (Bpop, (pi x 1d)"V2),
and the one induced by pgy is

((MGh X Id)*(Ppa v?) = (PpoluGh,(/Jagh X Id)*VQ)

Pulling back along I'd x Id x p¥ we obtain the horizontality of 3.

In a similar way, we obtain a connection Vi on P,v which endows P! with a
g — 1—structure. The connections Vi and Vy then makes P! into a f—biextension of
(M?®, MV?) by G,,. The following proposition generalizes this fact and gives the unique-
ness of this j—structure when Hom(G#, Gq) = Hom(Gf, Gq) =0.

Proposition 1.3.11. Let My = [L4 B G1] and My = [Ly 22 Ga| be a pair of 1-motives
over S. Let P be a biextension of (My, M) by G, s and denote by Pt its pullback to
(ME,MQH) Then P? is a h—biextension of (Mlu,Mg) by G5 in a canonical way. This
is the unique §—structure on P? if Hom(GfE, Gq,5) = Hom(G#, Gq,5) = 0.

Proof. Clearly, P is a biextension of (Mf, Mg) by G,,s. Notice that by [SGAT-I, Exposé
VIII, Cor. 3.5] we have an isomorphism

Biext(G1, [LQ — AQ]; (Gmﬁ) = Biext(G1, My; vas)
induced by pullback along the nattiral morphism My — [Le — Ag]. This means that
P is the pullback of a biextension P of (G1,[Ly — As3]) by Gy, By [SGAT-I, Exposé
VIII, §1.4], P induces a morphism
Y : G — Ext'([Ly — As],Gp.5) = Gy

satisfying that P is the pullback along ¢ x Id of the Poincaré biextension of (GY,[Ly —
As]). We define the group scheme C' as the pullback

0 QGQ CYJ Gl 0
)
0 we, Gy GY 0,
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from which we can see that C' is an extension of G1 by wg,. From Proposition 1.3.10,
we see that

o(s) = (9,V) | g€ Gi(S) and V is a g—structure on
N the extension Ly — P,] of My by Gy, 5 |-

Define uc : L1 — C as uc(z) = (wi(z), Vo), where Vy is the trivial connection on
[L2 = Py (2)]- Then we have that [uc : L1 — C] is an extension of M by w¢,. By the
universal property of the universal vectorial extension of M, we see that [u¢ : L1 — C]|
is the pushout of Mlu along a morphism wgy — wg,. The morphism Gu1 — C thus

obtained is an element in C (Gi) and therefore induces a connection on the extension of

M, o» by G . induced by P. This connection in turn induces a j — 2—structure on
I Pl |

P!. In a similar way, we obtain a §—1—structure and hence the desired j—structure on P4

To show uniqueness it is enough to consider the trivial G, g—torsor on Gli Xg Ghz.
Let V be a connection inducing a structure of §—biextension of (Mlh, Mg) by G, s on

Gm,s % gGi X gGg. The connection V is determined by a global differential w € QlGti <Gi/S
1

GixGh /G’ corresponding to the
§ — 1—structure, and a global invariant differential wy € QL, .

GixGh/GY
the i — 2—structure. Working (Zariski) locally on S we may assume that the sheaf of

which is the sum of a global invariant differential w; € Q2

corresponding to

differentials of G? is free over S. Since Q1 >~ Ol we may express wi =
G §. 8 cixai/ay — P13 g y exp 1
d aj

> ajvj, where {v;} is the pullback of a basis of invariant differentials on Qén /g Al
1

is the pullback of a global section of Gg. From the horizontality of 82 we get that a;

corresponds to a morphism of S—group schemes Gg — Gg,5. Since we have an extension

0—>G§£—>Gg—>L2®Ga75—>O

and every morphism of group schemes G’; — Gy, 5 is trivial then a; induces a homomor-
phism @; : Lo®G — Gg4 9. Now the condition that the pullback of w to Gi X Lo is trivial

is equivalent to the condition that the pullback of w; to Gli X Lo is trivial, since wsy is

automatically trivial because Lo is étale over S and therefore Q! . = 0. Notice
G1><L2/G1

that the pullback of w; to Ghl X Ly has the expression ) a;v;; since this is trivial, then

a; = a;j = 0 and therefore w; = 0. Similarly, we see that ws = 0, which proves that
w = 0. O

In the situation of Proposition 1.3.11, let V be the connection on P? inducing the
canonical f—structure. The curvature of V is an invariant 2-form on Gi X Gg and so
induces an alternating pairing R on @Gi X @GE with values in LieG,, s. Since the
restriction of R to @Gi and @Gg is zero, it induces a pairing

® : LieG} x LieG} — LieGyp,s.
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Deligne’s pairing on the de Rham realizations of M; and Ms is then defined as (see
[Del74, p. 66])

(-, ) = =@ Tar(My) x Tar(Ma) — LieG,, .

1.4 Albanese and Picard 1-motives

We define Albanese and Picard 1-motives following [BS01]. Let X be an equidimen-
sional variety over an algebraically closed field K of characteristic 0. Let § C X
be the singular locus and f : X — X a resolution of singularities of X. Denote
S := f~1(S) the reduced inverse image. We consider a smooth compactification X of
X with boundary ¥ = X — X, which we assume to be a divisor on X. Denote S the
Zariski closure of S in X. We can choose the resolution X and compactification X of
X so that X is projective and S + Y is a reduced normal crossing divisor in X; we
call such a compactification a good normal crossing compactification of the resolution X.

For a K—scheme V and a closed subscheme ¢ : Z < V consider the group
Pic(V, Z) = HY(V, G,y — i+Gpm. 2)

which consists of isomorphism classes of pairs (£, ¢) where £ is an invertible sheaf on V'
and ¢ : L|z = Oy is a trivialization on Z. We have that the fpqc-sheaf

T+ Pic(X xg T,Y xgT)

is representable by a K'—group scheme which is locally of finite type over K and whose
group of K —points is Pic(X,Y") (see [BS01, Lemma 2.1]). We have the following proposi-
tion describing the structure of its identity component, which we will denote PicO(X Y.

Proposition 1.4.1 ([BS01, Prop. 2.2]). Let Y = UY;, where Y; are the (smooth) irre-
ducible components of Y. Then Pic®(X,Y) fits in the exact sequence

0 T(X,Y) = Pic®(X,Y) = AX,Y) =0,
where:
i) T(X,Y) is the torus
T(X,Y) := Coker ((1%):G,, x = (7y)«Gmy) ,

where w5 : X — Spec K and my : Y — Spec K are the structure morphisms; and

i) A(X,Y) is the abelian variety
A(X,Y) = Ker” (Pic"(X) — @, Pic"(V7)),
which is the identity component of the kernel.
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Consider the group of Weil (or equivalently Cartier) divisors Div(X) on X. Denote
Div(X,Y) the subgroup consisting of divisors on X such that supp(D) NY = 0.
If D € Div(X,Y) then O(D) has a section trivializing it on X — D (and hence
also on Y), therefore (Og(D),1) determines an element [D] € Pic’(X,Y). Denote
Div?(X,Y) C Div(X,Y) the subgroup of divisors D such that [D] € Pic’(X,Y). We
will say that an element in Div®(X,Y) is algebraically equivalent to 0 relative to Y.

Denote Divg(X,Y) C Div(X,Y) the subgroup consisting of divisors D on X
such that supp(D) C S and supp(D) NY = (. Consider the push-forward of Weil
divisors f, : Div§(X) — Divg(X) and denote DiVS/S(X,Y) its kernel. We denote
by Div%/S(X,Y) the intersection of Div§/s()~(,Y) and Div%(X,Y), i.e. the group of
divisors on X which are linear combinations of compact divisorial components in S
which have trivial push-forward under f and which are algebraically equivalent to zero
relative to Y.

Definition 1.4.2. [BS01, Def. 2.3] The homological Picard 1-motive of X is defined as
Pic™(X) = [u: Divg ¢(X,Y) = Pic’(X, V)],

where u(D) = [D]. The cohomological Albanese 1-motive Alb™(X) of X is defined as
the Cartiel dual of Pic™ (X).

The Albanese and Picard 1-motives defined above are generalizations of a construc-
tion of Deligne regarding the “motivic cohomology” of a curve; we remember his con-
struction here (see [Del74, §10.3]). Let Cj be a curve over K, i.e. a purely 1-dimensional
variety. We have the following commutative diagram

cr I e
cl0

<|

Co

where C is the semi-normalization of Cj, C’ is the normalization of C' (and hence of Cp),
(" is a smooth compactification of C' and C is a compactification of C. Denote S the
set of singular points of C, S’ := 77 1(S) and F := C' — C" = C' — C. In this case, we
have
Pic™(Co) = [u: Divg, o(C', F) — Pic®(C', F)]
and
AlbT(Cp) = [u” : Divi(C") — Pic®(C)].
Notice that Pic™ (Cy) = Pic™(C) and Alb™(Cy) = AlbT(C).
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We have a canonical identification with Deligne’s definition of the motivic H* of Cj
(see [BSO1, Prop. 3.2])
H,,(Co)(1) = AIb*(Co).

Remark 1.4.3. This constructions can also be done over an arbitrary field of characteristic

0 (cf. [BSO1, §7]).

1.5 Good and semistable reduction of 1-motives

Let K be a field which is complete with respect to a discrete valuation v. We denote
K the algebraic closure, R the ring of v—integers, m a uniformizer and k¥ = R/7R the
residue field of characteristic p > 0.

First, we remember some concepts concerning reduction of abelian varieties ([ST68]).
Let Ax be an abelian variety over K and denote A its Néron model over R. Then Ag
has good reduction over R if A is an abelian scheme and semi-stable reduction if the
connected component of the special fiber of A is a semi-abelian variety over k. We also
say that Ax has potentially good reduction over R if it acquires good reduction over a
finite extension of K.

Now we give some definitions regarding reduction of particular types of commutative
groups schemes due to Raynaud [Ray94].

Definition 1.5.1. We say that:

1) A lattice Ly over K has good reduction over R if it is an unramified finite repre-
sentation of Gal(K/K) on Z", where 1 is the rank of Lk, i.e. the inertia subgroup
of Gal(K /K) acts trivially on Z". In this case, Lx extends to a lattice L over R.

2) A torus Tk over K has good reduction over R if its group of characters has good
reduction over R. In this case, Tk extends to a torus over R.

3) A semi-abelian variety Gx over K has:

i) good reduction over R if it extends to a semi-abelian scheme G over R;

ii) potentially good reduction if it acquires good reduction over a finite extension
of K; and

iii) semi-stable reduction if it extends to a smooth scheme over R whose connected
component of the special fiber is semi-abelian.

For locally constant group schemes and tori, the concept of potentially good reduction
becomes trivial, since such group schemes always acquire good reduction over a finite
extension of K. Observe that if Gx is a semi-abelian variety over K, extension of Ay
by Tk, such that Ax and Tk have good reductions A and T over R then Gx also
extends to a semi-abelian scheme G over R, which is an extension of A by T. This is
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because the good reduction of Tx and Ak imply good reduction of L}, and A, and of

the morphism vy, : Ly, — AY,, which extends to a morphism v : LY — AY over R.

Then the isomorphism (1.4) induces an abelian scheme G over R. By functoriality, G is

indeed an extension of G to R, as we can see by the following commutative diagram
Homp (LY, AY) —— ExtL(A, T) M —

v G
Hompg (L}, AY,) = Extl (Ax, Tx) v —— Gk .

Notice that the left vertical arrow is an isomorphism because of the universal
property of Néron models. Therefore, we see that G has good reduction if and
only if T and Ag have good reduction. Observe also that Gx having semi-stable re-
duction is equivalent to Tk having good reduction and A having semi-stable reduction.

In [Ray94, §4], Raynaud gives the following definitions generalizing the concept of
good reduction to 1-motives.

Definition 1.5.2. Let Mg = [ux : Lx — Gk| be a 1-motive over K. We say that:

1) Mg has good reduction over R if it extends to a 1-motive M = [u : L — G| over
R.

2) Mg has potentially good reduction over R if it acquires good reduction after a finite
extension of K.

3) Mx has semi-stable reduction over R if Lx has good reduction and Gk has semi-
stable reduction.

4) My is strict if Gk has potentially good reduction.

Notice that My having good reduction over R is equivalent to Lg, Tk and Ag
having good reduction and ug : Ly — Gk extending to a morphism w : L — G over
R. In this case, if M is the extension of Mk over R then this is unique up to unique
isomorphism. Also notice that Mg has potentially good reduction if and only if Agx
has potentially good reduction and, over a finite extension K’ of K, ugs : Lg: — Gk
extends to a morphism over R’ where R’ is the ring of integers of K’.

We have a GAGA type functor that associates to any K —scheme X locally of finite
type a rigid analytic space X,i; over K. This functor is flat, it maps exact sequences
of K—group schemes (for the fppf, étale topology, resp.) to exact sequences of rigid
K —groups (for the fppf, étale topology, resp.). Thus, for every l-motive Mg = [ux :
Lix — Gk] we have a rigid 1-motive Mg yig = [UK rig : LK rig — GKrig] over K. This
functor is compatible with the weight filtration.
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Theorem 1.5.3 ([Ray94, Thm. 4.2.2]). There is a canonical way to associate to a
I-motive Mg = [ux : Lx — Gg| a strict 1-motive M}, = [u} : L'y — G%]|. This
association is functorial. Furthermore, we have a canonical morphism of rigid 1-motives

/
can : MKJig — Mg rig,

which is an isomorphism in the derived category of bounded complexes of fopf sheaves
on the small rigid site of Spec(K).

1.5.1 Geometric monodromy of 1-motives

Consider a strict 1-motive Mg = [ux : Lx — Gg] with dual M), = [u}, : L}, — G}
Let Px be the Poincaré biextension of (Mg, M) by Gy, k. Remember that the
I-motive M is described by its symmetric avatar (vg : Ly — Ak, vy, : LY, — AY, 7k -
Ly % L}/( — PK)

If Ag has good reduction then Py, extends to a biextension P4 of (A, AY) by Gy g.
Suppose that Lg and Gk have good reduction. Then taking the valuation of 7 we get
a canonical bilinear map

po: L x LY — 7,

which is compatible with the Galois actions on Lx and LY,. Notice that it can be
considered as a morphism on the tensor product po : Lxg ® LY, — Z. In the general
case where Li and G only have potentially good reduction, we canonically extend the
valuation from K to K taking values in Q. Again, taking the valuation of T we get a
canonical bilinear map

p:Lg x Ly —Q

which is compatible with the Galois actions on Lg and LY,. We can also consider p as
a morphism on the tensor product u: Lx ® LY, — Q, since p is bilinear. When Ly and
Gk have good reduction, u factors through Z, recovering pg. We call p the geometric
monodromy of M.

If we replace K by a finite extension K’ with ramification index e, then the geometric
monodromy of Mg+ becomes eu. In particular, if Lx and Gk acquire good reduction
after a finite extension of K with ramification index e then ey takes values in Z.

Proposition 1.5.4 ([Ray94, Prop. 4.3.1]). Let Mg = [ux : Lx — Gg] be a strict
1-motive.

i) Mg has potentially good reduction if and only if the geometric monodromy u of
My is zero.

it) Suppose Li and Gy have good reduction. Then My has good reduction if and
only if uo is zero.
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Proof. 1t is enough to prove 2. Let L and G be the extensions of Lx and G over R.
Then Mg has good reduction if and only if ug : Lxg — Gk extends to a morphism
u: L — G over R. This happens if and only if the trivialization 7x : Lx x LY, — Pa,
extends to a morphism 7 : L x LY — P4 over R, and this is equivalent to p being
Z€ero. O

Let Mk be a strict 1-motive whose monodromy factors through Z. Defining

ML v
EK — Ker LK — HomK(LK,Z)
re (¥ = p(x,zY))

LY := Ker Li = Hom ¢ (L, Z)
Y = (v p(r,z))

and Ly := Coker(Lg < L), L}, := Coker(L}, < LY.) we get exact sequences
0—Lxk—Lg—Lg—0 and 0— Ly — Ly — L}, — 0. (1.14)

Note that Lx and f% are lattices, since Lx and LY. are. Also, Lk is a lattice because,
being the image of pup, it injects into Homy (L),,Z), which is a lattice. Similarly,
LY. is a lattice. We have that Li and L}, have the same rank. Finally, notice that
the morphism /i : Lxg X DI/( — 7, which is obtained by restricting p, is zero. The
monodromy thus induces a map ji: Lx x L}, — Z.

If we define T := Hom (LY, G i) and Ty := Homy (LY., G, ), and analogously
for Ty, and T, we also get exact sequences of tori

0Tk »Tx =Tk =0 and 0—TY — TY — Ty —0. (1.15)

We have a commutative diagram

0 Ly Ly Ly 0
0 Tx Tk Tk 0,

where the maps are induced by 7 : Lx x L} — Gy i, 7 : Ly x E% — Gk and
7P L x L}, — Gy, k. Observe that since fi = 0 then Lx — Ty is the constant map
with value 1. Therefore, this is saying that the middle map Ly — Tk is trivial on Lx
and factors through Ly — Tk.

Notice that we have a 1-motive MK,l = [u : L — Gk with 4y := u|;. This
is the “biggest” sub-1-motive of M whose monodromy is zero and therefore has good
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reduction. Its dual is of the form ]\Zf[\é’l = [aY : LY, — GY.], where GY. is the pushout

0 0
Ty =—=Ty
0——TY, GY —— AY ——0
0 T "GV AV 0
K K K
0 0

and 4} is the composition of u¥ with the projection G} — GY.. We have the following
short exact sequences of 1-motives

0— Mgy — Mg — Lg[l] -0 and 0— Ty — My — My, — 0.
The pullback of Py, along Gk X G — Af x A}, gives the biextension of (G, GY %) by

Gm,x underlymg the Poincaré blextensmn PK 1 of (M K1 MY, X, 1)- The trivializations TL
and 7 TLV of PK,l make the following diagram commute

Ll x GV

PK TLV

~1

GV<—>LK><GV%GK><GV Gk x LY,
s =

L x QY L x QY ———— G x QY +———Gg x LY,

We also have a 1-motive MKQ = [uy : Lg — GK] where G is the pushout of Gx
along T — T K and 19 is the composnzlon of u with the projection G — Gy. Its dual
is My, oo = (U3 : LV — GY] with @Y := u"|;,. As before, we have the following short
exact sequences of 1-motives

0— Tk — Mg — Mg —0 and 0— My, — My — Li[1] = 0.

The biextension of (é i, GY) by G,k underlying the Poincaré biextension 15K,2 of
(M 2, My, 5) is given by the pullback of Py, along the projection Gk x G — Ax x Af..
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The trivializations %]% and %I%V of ]—Z’KQ make the following diagram commute

Tvlgxiv

K

Lg X GY ———— G x G ¢———— Gg x LY, «+—— Gy x L},
Theorem 1.5.5 ([Ray94, §4.5.1]). Let Mg = [ux : Lx — Gk| be a strict 1-motive such
that the monodromy factors through Z and fiz a uniformizer m of R. Then we have a

canonical decomposition
1 2
Ug = Uy + Uy,

where u%{ factors through the torus Tx and M3 = [u}( : Lx — G| has potentially good
reduction.

Proof. Consider the 1-motive Mg = [ux : Lxg — Gg| and its dual
My = [uj, : L, — GY]. Let Pg be the Poincaré biextension of (Mg, M;.) by
G,k With trivialization 7 : Lx x LY, — Pk.

If 4 : Lg x L}, — Z is the monodromy of Mg then we modify the trivialization 7x
to obtain a new morphism

Tk : L X L — P

(z,2") W_u(x’mv)TK($, zV).

This trivialization corresponds to a 1-motive M} = [uk- : Lx — G| whose monodromy
is zero and thus has potentially good reduction.

Define u%( =Uug — u}( : Lx — Gg. This morphism factors through Tk and is given
by the following formula

u¥e : L — T = Hom (LY, Gy i)

S A W“(m’xv)).
Moreover, with the previously used notation, we have that u%( factors through
u%(:LK%EK—)TK—)TK,

where the middle morphism Ly — Tk is given by Z — (z¥ — aA(@:Z7)), O
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Chapter 2

Pairings via biextensions

In [MT83], Mazur and Tate introduced the notion of p—splittings associated to homo-
morphisms p : K* — Y from the non-zero elements of a field to an abelian group. We
review this definition, as well as important results concerning p—splittings in Section
2.1. These p—splittings are then used to define local pairings on the set of divisors and
zero cycles with disjoint support, whose construction is given in Section 2.2, and also
global pairings on the K —rational points of a pair of abelian varieties over K, which is
the content of Section 2.3.

2.1 p-—splittings of biextensions

We fix abelian groups U, V, W and a biextension X of (U, V) by W.

Definition 2.1.1. Let p: W — Y be a homomorphism. A p—splitting of X is a map
1 : X = Y such that

i) Y(w+z) = p(w) + YP(z), for w e W, z € X, and

ii) for each u € U (resp. v € V) the restriction of ¢ to X,, (resp. X,) is a group
homomorphism,

where X, (resp. X,) denotes the part of X above {u} x V (resp. U x {v}).

Remark 2.1.2. Observe that the restriction of 1 to X, provides a trivialization of the
pushout Y, of X, along p, seen as an extension of V by Y, and similarly for X,
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The following lemmas tells us about some situations in which we can extend
p—splittings uniquely. These will be used in the proof of Theorem 2.1.6. As before,
consider a biextension X of (U, V) by W. For an integer m we have a map

(m,1): X - X

which is defined on the fibers X, for v € V, as multiplication by m. Similarly, we have
a map
(ILn): X - X

defined on fibers X,,, for u € U, as multiplication by n. Denote
(m,n) :==(m,1)o(1,n) =(1,n)o(m,1) : X — X.
Notice that (m,n) takes the fiber X, , to Xy ne. This map also satisfies
(m/,n’) o (m,n) = (m'm,n'n)
and, for w € W,
(m,n)(w+ z) = mnw + (m,n)x.

Moreover, if p: W — Y is a homomorphism and ¢ a p—splitting then

P((m, n)x) = mny(z).

Lemma 2.1.3. Let U° C U and V° C V be subgroups and denote X° the pullback
of X over U x VO. If n,m are positive integers such that mU C U° and nV c V°
and p : W — Y is a homomorphism into a group Y uniquely divisible by mn then a
p—splitting 1o : X° =Y extends uniquely to a p—splitting 1 : X — Y.

Proof. The relation (m,n)X C X forces 9 to take the value

(@) = ——o((m, n)e)

mn

on z € X. One can easily check that this indeed defines a p—splitting. O

Lemma 2.1.4. Let W/ C W be a subgroup and X' C X a subset such that X' is
a biextension of (U, V) by W'. Consider a homomorphism p : W — Y and denote
o' = plwr. Then a p'—splitting ' of X' extends uniquely to a p—splitting ¢ of X.

Proof. Expressing W as a disjoint union W = |J(w; + W) of cosets of W' gives us an
expression of X as a disjoint union X = [J(w; + X’) of sets (the equality being true on
each fiber over U x V). Then every x € X is of the form x = w; + 2/, for some 2’ € X’.
This forces ¥ to take the value

Y(x) = p(wi) +9'(2")

on an arbitrary element z € X. One can check that this defines a p—splitting. O
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In what follows, we will work with biextensions of abelian varieties over fields. Let
K be a field which is complete with respect to a place v which is either archimedean or
discrete. Consider an abelian variety Ax over K. If v is archimedean, we set A := Af.
If v is discrete, denote R the ring of v—integers in K, m a uniformizer in R and k =
R/7mR the residue field. We denote by A the Néron model of Ax over R. We will also
denote by A° the identity component of A, i.e. the open subgroup scheme of A whose
closed fiber A := A% x i Spec(k) is connected. For a scheme U over R, we will denote
Uy := U x g Spec(k).

Definition 2.1.5. An abelian variety Ax over a field K which is complete with respect
to a discrete valuation is said to have semistable ordinary reduction if the residue field
k has characteristic p > 0 and its closed fiber A satisfies the following equivalent
conditions:

i) the formal completion A£ of Ay, at the origin is isomorphic to a product of copies

of an over the algebraic closure k of k,

ii) the connected component of the kernel of the homomorphism “multiplication by

97

p
p:A) — A)

is the dual of an étale group scheme over k,
iii) Ag is an extension over k of an ordinary abelian variety by a torus T4.

Observe that if Ax has semistable ordinary reduction then in particular it has
semistable reduction, and it has good reduction if and only if the torus T4y = 0.

If Bk is a second abelian variety over K then giving a biextension P of (Ax, Bx)
by G, k is equivalent to giving a morphism ¢ : Bx — A}, and Pk corresponds to
the pullback of the Poincaré biextension P4, along (Id, k) : Ax Xk Bk — Ag X A},
(see [SGAT-I, Exposé VIII, §1.4]). Notice that if v is discrete then, by the Néron
mapping property, @k extends to a morphism ¢ : B — AY between the Néron models
of Bg and Ag. In this case, we will denote P the pullback of the biextension P4 of
A% xp AV to A° x g B, which is a biextension of (A%, B) by G, g (see Example 1.2.3).
Similarly as before, if v is archimedean we set P := Pk.

We fix abelian varieties Ax and By over K and a biextension Pk of (Ax, Bx) by
G, k- Given an abelian group Y and a homomorphism p : K* — Y we can construct
canonical p—splittings 1, : Px(K) — Y in some particular cases. We introduce
the necessary notation. Suppose that v is discrete. We denote m, the exponent of
Ak (k)/AY(K), i.e. the smallest positive integer such that ma(Ax(k)/A%(k)) = 0. Now
suppose also that k is finite and let Ty denote the maximal torus in A;. We denote ny4
the exponent of A%(k)/Ta(k). We define mp and np analogously.
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Theorem 2.1.6 ([MT83, §1.5]). There exists a canonical p—splitting
Yy Pk(K) =Y
in the following three cases:
1) v is archimedean and p(c) = 0 for ¢ such that |c|, = 1;
2) v is discrete, p(R*) =0, i.e. p is unramified, and Y is uniquely divisible by m4;

3) v is discrete, k is finite, Ax has semistable ordinary reduction and Y is uniquely
divisible by mampnang.

If both 2) and 3) hold, they yield the same 1),,.
Proof. Case 1): In this case, K = R or C and we have a factorization
p K* S R2 v,

where v : K* — R is the homomorphism defined as v(c) = —log|c|. We can then define
the p—splitting as
Yy Pr(K) Y5 RSy

where 1, is the unique v—splitting of P (K) that is continuous.

Case 2): We have the following commutative diagram, where P°(K) is the pullback
of Pi(K) over A°(R) x By (K):

R* < K* « K*
| I l
(K) » P (K)

P(R) ——«—— P
| } |
) X

A%R) x B(R) == A%R) x Bg(K) — Ag(K) x Bx(K) .

Notice that p|g- = 0. Then the constant function 0 is a p|r+—splitting of P(R). By
Lemma 2.1.3 and 2.1.4 we can uniquely extend this p|r-—splitting to a p—splitting 1,
of PK(K)

Explicitly, ¥, is defined as follows. Let 2 € Px(K). Then (ma,1)z € P°(K) and so
there exists an integer r such that 77" + (ma, 1)z € P(R). Hence, 1, is given by the
formula

Case 3): We will denote the ring R as R when viewed as an adic-ring. We will also
be considering the formal completion of G,, r along its special fiber G, 1, which we will
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denote @m. Let T4 and T denote the maximal tori in the special fibers of A and B,
respectively. Denote A! (resp. B') the formal completion of A (resp. B) along T4 (resp.
Tg). From P we can obtain a biextension P! of (A, BY) by G,, in the category of formal
groups over R as the formal completion of P along the inverse image of T4 x Tp in P.
Since Ag has semistable ordinary reductlon P? has a unique trivialization v : P — G
(see [MT83, §5.11.1]). Taking points in R we get a biextension P'(R) of (AY(R), Bt(R))
by G(R) = R* with trivialization ¢z : Pt(R) — R*. So, we can define a p—splitting
of Pt(}A%) as the composition

plre o g : PY(R) = R* > Y.

We can add a smaller biextension to the diagram of case 2)

R i

I |

Pi(R) — P(R)
| |

AY(R) x Bt(R) — A(R) x B(R)

in which the bottom square is a pullback.  Since nyA%(R) C AY(R) and
mpnpB(R) C Bt(R)/z then Lemma 2.1.3 and 2.1.4 allow us to uniquely extend
the p—splitting of P'(R) to a p—splitting ¢, of Px(K).

As before, we can give an explicit formula for v,. Let x € Px(K). There exists an
integer r such that y := 77" +(ma, 1)z € P(R) and we have that (na, mpng)y € P!(R).

Therefore,
r 1

Y(r) = mfAP(W) + WP\R* o Yr((na,mpnp)y).

If we are simultaneously in cases 2) and 3) then p|gr. o g = 0 and it is clear from
the explicit formulas of v, that both p—splittings coincide. O

The canonical p—splittings satisfy the following functorial properties. In each situa-
tion considered we suppose that the canonical splittings exist, i.e. that we are in one of
the cases of Theorem 2.1.6.

1) Change of value group: Let ¢ : Y — Y’ be a homomorphism. Then
Yep = iy .
2) Linearity in p: Let p/ : K* - Y and ¢: Y — Y be homomorphisms. Then
Veptp = Chp + Py .
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3) Change of field: Let o : K — L be a continuous homomorphism of local fields and,
for this case, we consider a homomorphism p : L* — Y. Then

¢poaz¢poa,

i.e, the following diagram is commutative

wpoal

4) Change of abelian variety: Let A, Bj. be a second pair of abelian varieties over
K and f : A} — Ak, g : By — Bk homomorphisms over K. Denote Pj the
biextension of (A%, Bj) by Gy, k obtained as the pullback of Pk along f x g

P Py

I
A/KXB}(%AKXBK .
If 97, denotes the canonical p—splitting of P (K) then
Yy =Pp00.

5) Symmetry: The biextension Pk induces a biextension *Pg of (Bk, Ax) by Gp, k-
We have a canonical bijection *Pg(K) = Pg(K), switching the two extension
structures in Definition 1.2.1. So, any p—splitting of Px(K) is a p—splitting of
$Pi(K).

2.2 Local pairings on abelian varieties

In this section, we will omit the subscript indicating the base field. We will review the
construction of local pairings on zero cycles and divisors from p—splittings given in
[MT83, §2].

Let K be any field, A an abelian variety over K, AV its dual and P, the Poincaré
biextension. Denote Zy(A)g the group of zero cycles of degree 0 of A over K and Div®(A)
the group of (Cartier) divisors of A. Remember that any element a € Zy(A)o is a formal
finite sum a = > n;(a;), where > n; = 0 and a; € A(K) for all i. We also have a
morphism

S : Zo(A)O — A(K)

Z nz(az) — Z n;a;

38



CHAPTER 2. PAIRINGS VIA BIEXTENSIONS

induced by the group structure of A(K), and a morphism
Cl:Div(A) = AY(K)

induced by the isomorphism AY(K) = Pic’(A) = Div’(A)/Prin(A), where Prin(A)
denotes the group of principal divisors of A. Denote (Zy(A)o x Div?(A)) C Zy(A)y x
DivY(A) the subset consisting of pairs (a, D) such that supp(a) Nsupp(D) = (). We have
a function

[, -, ]: (Zo(A)g x DivP(A)) x K* — PA(K)
(a,D,c) — c+ ZnisD(ai) ,

where, if d := Cl(D) € AV(K), then sp is a rational section of the invertible sheaf on A
corresponding to P4 4 (sp is determined up to multiplication by an element in K* and
its domain is A — supp(D)). There is the following

Proposition 2.2.1 ([MT83, §2.1]). [-, -, -] is well-defined and surjective.

The previous result says that every element in P4(K) can be expressed as [a, D, c],
although not in a unique way.

The function |-, -, -] satisfies the following properties (see [MT83, §2.1]):
1) p([a, D,c]) = (S(a),Cl(D)), where p : P4o(K) — A(K) x AY(K) is the structural
morphism.
2) [a,D,c] =c+[a,D,1].
3) [a, D1, 1] + [a, D2, 1] = [a, D1 + D2, 1].
4) [a1,D,1] + [ag, D, 1] = [a1 + ag, D, 1].
5) If f is a rational function on A such that supp(f) Nsupp(a) = () then

[a,(f), 1] = [a,0, f(a)] ,
where f(a) :=[] f(a:)" if a =3 ng(a;).
6) For each D € Div’(A) and each ag € (A —supp(D))(K) there is a K — morphism
9ao.p : A —supp(D) — P

a—|[(a) — (ap),D,1].

7) For a € A(K) we have
[Cla,Da,C] = [aaDvc]v

where a, and D, denote the images of a and D, respectively, under translation by
a.
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Notice that properties 2, 3 and 4 imply that multiplication on Py ,(K), for a := S(a),
is given by
[a, D1, 1] + [a, D2, c2] = [a, D1 + D2, c1¢2]

with unit [a, 0, 1], and that multiplication on P;(K), for d := CI(D), is given by
[a1, D, c1] + [ag, D, co] = [a1 + ag, D, c1c9]
with unit [0, D, 1].
Proposition 2.2.2. Properties 1-6, for K and its algebraic extensions, characterize the
function [+, -, -].

Proof. Suppose [+, -, -]1 and [+, -, - ]2 are two functions satisfying properties 1-6 above
and define

§: (Zo(A)g x DivP(A)) x K* — K*
(a,D,c) — [a,D,c]; — [a,D,cla.

Indeed, §(a, D,c) € K* because [a, D, cl1,[a, D,cla € p~1({S(a)} x {CI(D)}) = K* and
so there is a unique ¢ € K* such that [a, D, c]; = [a, D,cl]a + ¢.

Notice that properties 3 and 4 make § additive on a and D. Property 2 implies that
d(a,D,c) =06(a,D, 1), and so 6(a, D, ¢) is independent of c¢. By property 5, we also have
that d(a, D, c) only depends on the class of D and not on D itself. To verify this, let
D € DivY(A) be a divisor and f a rational function on A such that D, as well as (f),
have support disjoint from a. Then we have

d(a,D+(f),1)=0(a,D, 1)+ (a,(f),1)
0(a, D, 1)+ d(a,0, f(a)).

But 6(a,0, f(a)) = 6(a,0,1) = 0, since both [a,0,1]; and [a,0,1]y are the unit of
Py o(K), where a := S(a).

Now choose divisors D; such that Cl(D;) = CI(D), 0 belongs to (A — supp(D;))(K)
and [(supp(D;) = 0. For each i we define

h; = g(l),Di — gg,Di : A —supp(D;) — Gy,
a ‘— 5((@) - (0)7 Di) 1) )

where gé’ p, is the morphism in property 6 associated to [,,];- As we have noted, ¢
depends only on the class of D, so the h; fit together to define a morphism h : A — Gy,.
Since A is proper and G, is affine then & is constant. But we know that h(0) = 0, so h
must be the zero morphism. Finally, since the cycles (a) — (0) generate Zy(A)o and 9 is
additive on the first term, we have that § = 0. O
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Now consider a homomorphism p : K* — Y, with Y an arbitrary abelian group.
From a p—spltting ¢ : Po(K) — Y of P4(K) we can define a function

[', ']w : (Zo(A)O X DiVO(A))/ —Y
(@, D) = 4([a, D, 1]).

This map satisfies the following properties:
a) [+, - |y is biadditive.
b) [a, ()] = p(f(a)).

¢) [aa, Daly = [a, D]y,

Conversely, from a function [-, -] : (Zo(A)g x Div?(A)) — Y which satisfies a)-c) we
can obtain a p—splitting

Wi PA(K) > Y
[a,D,c] — p(c) + [a, D].

These two constructions are inverses of each other.

If K is a field which is complete with respect to an archimedean or discrete valua-
tion and we are in one of the cases of Theorem 2.1.6 in which there exists a canonical
p—splitting 1, then we define the canonical p—pairing as

[5-]p: (Zo(A)o x DiVO(A))’ Y
(a,D) — ¥,([a, D, 1]).

Remark 2.2.3. If v(z) = —log|z| then the canonical v—pairing [a, D], coincides with
Néron’s symbol (D, a), (see [MT83, Prop. 2.3.1]).

2.3 Global pairing on abelian varieties

Let F' be a global field endowed with a set of places which are either archimedean or
discrete satisfying that |c|, = 1, for every ¢ € F* and almost all places v. For each place
v let F,, denote the completion of F' with respect to v; for v discrete denote R, the ring
of integers of F,. Consider a homomorphism p = (p,) : A}, = Y from the invertible
elements of the ring of adeles Ar of F' to an abelian group Y which annihilates the
image of R}, for almost all discrete places v, as well as the image of F* under the
canonical homomorphisms, and satisfies the “sum formula” )" p,(c) = 0 for all ¢ € F™*.

Let Ar and Bp be abelian varieties over ' and Pr a biextension of (A, Br) by
G, F. Suppose we are given, for each place v, a p,—splitting ¢, of P, (F),) such that
Yy (P(Ry)) = 0, for almost all v. In this situation we have the following result.
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2.3. GLOBAL PAIRING ON ABELIAN VARIETIES

Lemma 2.3.1 ([MT83, Lemma 3.1]). With the above notation, there is a pairing
(+,): Ap(F) x Bp(F) > Y
such that if x € Pp(F) lies above (a,b) € Ap(F) x Bp(F) then

(a,8) = 3 tu(a).

where x,, € Pr,(F,) is the image of x under the inclusion F' C F,.

Proof. First, we check that the sum defining (-, -) is finite. We have that for every
x € Pp(F) we can find a finitely generated subring S C F' satisfying the following:
there exist abelian schemes Ag, Bg over S and a biextension Pg of (Ag, Bg) by Gy, s
whose pullbacks along Spec F' — Spec S are Ap, Br and Pp, respectively, and such that
x € Pg(S). Fix x € Pp(F) and let ¢1,...,¢, € F* be the generators of the subring S
satisfying the previous property. Then S C R, for almost all v, since |¢;|, = 1 for all i
and almost all v. This means that we can define a map ¢ : Pp(F) — Y by

Y(x) = Z¢v($v) ‘

Notice that v is constant on each fiber of Pr(F) over Ap(F) x Bp(F) because of
the sum formula: for all ¢ € F'* we have

Y@ +e) =Y oz +c)
= (o) + Y pulc)
= Zwv(«rv)

= ().

Then 1 induces a map from the image of Pp(F') — Ap(F) x Bp(F') to Y. Since Pr is a
line bundle on Ar X Br minus its zero section, we have local sections, which implies that
Prp(F) — Ap(F)x Bp(F) is surjective. Therefore, ¢ defines a map Ap(F)x Bp(F) =Y
which must be additive because each 1, is a p,—splitting. O

If, in the situation of Lemma 2.3.1, the p,—splitting ¢, is the canonical p,—splitting,
for all v, then the pairing (-, -) is called the canonical p—pairing.
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Chapter 3

Pairings via splittings of the
Hodge filtration

Let K be a field which is the completion of a number field with respect to a non-
archimedean valuation v over a prime p. Consider an abelian variety Ax over K with
dual A), and let P4, be the Poincaré biextension of (Ag, AY,) by G, k. Recall that
the Hodge filtration of Hx (Af) is given by the following extension

0 — HY(Ak, Q) = Hag(Ax) = H' (Ak, Oa,) = 0,

which can be identified with the exact sequence of Lie algebras associated to the universal
vectorial extension of A}, (see [MM74, §4])

0— V(AY)) = A = A} — 0.

By Proposition 1.3.10, we know that A?g represents a sheaf whose global sections
are extensions of Ag by Gy, x endowed with an integrable connection. By [MMT74,
§3] these in turn correspond to rigidified extensions, i.e. extensions E of Ax by G, k
together with an homomorphism Inf'(Ax/K) — E of K —pointed K —schemes making
the following diagram commute

0 —— Gk FE Agk 0
T T
Infl(Ag/K) =——= Inf'(Ax/K) ,

where Inf'(Ax/K) denotes the first infinitesimal neighborhood of the zero section of
Ag over K. We have that a rigidification of E is the same as a splitting of the induced
sequence of Lie algebras

t

I\g S
0 —— LieG,, x — LieF —— LieAx —— 0.
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From now on, we will also call rigidification such a morphism of Lie algebras.

Let p : K* — Qp be a morphism of Lie groups. Then from a rigidification ¢ : Lie &' —
Lie G,k as before we can obtain a morphism v : E(K) — Q, of Lie groups extending
p in such a way that Liey = Lie p o t; moreover, this is the unique morphism with these
properties (see [Zar90, Thm. 3.1.7]). We have two cases:

i) p is an unramified morphism, i.e. p(R*) = 0, where R is the ring of v—integers
of K: Then p = p(m)v, where 7 is a uniformizer and v : K* — Q is the valuation
map (see [Zar90, p. 318]). Since Q is a discrete Lie group then Liev = 0 and also
Liey = Liepot = 0. Therefore, v : E(K) — Q) is the unique morphism of Lie
groups extending p. In particular, v does not depend on the rigidification t.

ii) p is a ramified morphism: Then p = § o A, where A : K* — K is a branch of the
p—adic logarithm and 6 : K — Q, is a Q,—linear map (see [Zar90, p. 319]). By
uniqueness we have that v = § oy, where v, : F(K) — K is the unique morphism
of Lie groups extending A such that Liey, = Lie Aot. Notice that since Lie A is an
isomorphism, we can recover the rigidification ¢ from ~y as t = (Lie \) ™! o Lie,.
This gives us a bijection between rigidifications ¢ : Lie # — Lie G, x of F and
morphisms 7 : F(K) — K of Lie groups extending A such that Liey, = Lie A o t.

Now, consider a splitting r : H(Ag, O, ) — Hig(Ak) of the Hodge filtration of
Higr(Ag). As we said before, this is the same as a splitting of

0 — Lie(V(AY)) — Lie(A}f) — Lie(A}%) — 0

which, again by [Zar90, Thm. 3.1.7], comes from a splitting 7 : A} (K) — AVKH(K) at
the level of groups. Therefore, for each a¥ € AY,(K) we have a splitting ¢,v of the exact
sequence of Lie algebras

ta\/

I ~<
0 —— LieG,,,x — Lie Py, ov — LieAgx —— 0

which can be extended to a morphism ~gv : Pa, ov(K) — Qp. This allows us to define
a p—splitting of Py, (K) as

Y Pa (K)— Qp (3.1)

x = v (),

where a¥ is such that z € Py, ,v(K) (see [IW03, p. 7]). Observe that in the case that
p is ramified we have that ¢ = § o ¢y, where 9y : Pq, (K) — K is the A—splitting of
Py, (K) obtained from n : A} (K) — Aﬁ(K)

Notice that case i) above implies the uniqueness of p—splittings in the unramified
case, which is Mazur and Tate’s result (see Theorem 2.1.6, case 2). On the other hand,
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case ii) says that, in general, when p is ramified different splittings of the Hodge filtration
give rise to different p—splittings. A natural thing would be to wonder what splitting
of the Hodge filtration of H(ljR(AK) induces Mazur and Tate’s canonical p—splitting in
the ramified case. Section 3.1 is devoted to give an answer to this question; we follow
Coleman [Col91] in proving that the unit root splitting of the Hodge filtration induces
Mazur and Tate’s canonical A—splitting when Ag has good ordinary reduction. Case ii)
above could also suggest that there is even a bijection between splittings n : A} (K) —
A?(K) of the Hodge filtration of H}y (Af), endowing each fiber Pa,. v (K) of Pa, (K)
with a rigidification, and A—splittings ¢ : P4, (K) — K. However, this is not true in
general and only happens under certain conditions. To see what these conditions are,
consider a A—splitting ¢ : P4, (K) — K and define

n: AY(K) = A (K) (3.2)
a’ — (PAK,aV;taV)7
where t,v is the rigidification

tov = (LieA) " o Lie(y|p, . (x)) : Lie Pagv(K) = Lie K =, Lie K*.

We can see that 1 is indeed a section of the projection A?(K) — AY(K). If n were
analytic then it would induce a morphism of Lie algebras

Lien : Lie A, — Lie A}

and hence a splitting of the Hodge filtration of HéR(AK). In this case, this construction
would be the converse of the previous one r — 1. In Section 3.3 we follow the proof
in [IW03] that the unit root splitting of the Hodge filtration induces Mazur and Tate’s
canonical A—splitting also when Ax has semistable ordinary reduction. For this, it is
necessary to prove first that the map n : A).(K) — A}h (K) obtained from Mazur and
Tate’s canonical A—splitting is analytic, and then to show that Lien is the unit root
splitting.

3.1 Comparison with Mazur and Tate’s construction for
the case of good ordinary reduction

When the abelian variety has good ordinary reduction, Mazur and Tate’s canonical
pairing corresponds to the splitting of the Hodge filtration given by the unit root
subspace. This is proved in [Col91]. We explain the proof in this section.

We will fix a base scheme S for the entirety of this section. Let A be an abelian
scheme over S and A its dual. Let A% and AY? be the universal vectorial extensions of
A and AV, respectively. They fit into exact sequences of group schemes

0wy — AT S A0, (3.3)
0w, =AY 4Y o, (3.4)
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3.1. COMPARISON WITH MAZUR AND TATE’S CONSTRUCTION FOR THE
CASE OF GOOD ORDINARY REDUCTION

where w, and w4v are the sheaves of invariant differentials on A and AV, respectively.
Notice that we have a canonical isomorphism w4 = 6*9}4 /s where e : S — A is the zero
section, and similarly for AY (see [BLR90, §4.2]).

We will be working with special types of differentials, which we define next.

Definition 3.1.1. Let X be a scheme over S and H, P schemes over X such that P is
an H—torsor for the fppf topology on X. Let m : H xx P — P be the H—action on P
and denote by pr; : H xx P — H and pry : H xx P — P the projections.

i) We say that a differential n € Q}J/S is H—invariant if m*(n) — pri(n) is a global
section of pry (Q}{/S).

ii) When H = G, x and 7 is a Gy, x—invariant differential it follows that m*(n) —
pry(n) = fdz/z, for some f € Ox(X), where z is the standard parameter on
G, x. In this case, f is called the residue of n and if f = 1 then 7 is called normal
invariant differential.

Let A, B and H be commutative group schemes over S and P a scheme over S which
has the structure of biextension of (A, B) by H in the category of algebraic groups over
S, formal groups over S or Lie groups over Spec(C,); in particular, P is an H 4 p—torsor
over Ax B. Let eq: A — P and eg : B — P denote the zero sections.

iii) We say that n € Q}D/S is bi-invariant if it is H ox p—invariant, its images in Q}D/A
and Q}D /p Are invariant and dn € Q%D /s is the pullback of an invariant 2-form on
A x B (see Definition 1.3.3).

iv) When H is the multiplicative group in the category considered, then 7 € Q}D /5 is
called normal bi-invariant differential if it is bi-invariant, it has residue one, i.e.
it is a normal invariant differential, and both €* (n) € Q} /s and ep (n) € O /g are
ZEro.

We consider the Poincaré biextension P4 of (A, AV). Denote p: P4 — A x AV the
associated morphism and p? : Pi — A% x AV? its pullback to A% x AV4. There exists a

canonical connection on P,Ex whose curvature is the pullback of the invariant 2-form ~
on A% x A% which gives Deligne’s pairing (-, ')ﬁ)el on the one-dimensional de Rham
cohomology. Associated to this connection, there is a canonical normal bi-invariant
1-form n € Q}Dh /s such that dn = p*~. Notice that Deligne’s pairing in this case is

A
perfect; this motivates the following definition.
As in Section 2.1, we will denote X7 the formal completion at the identity of a smooth
commutative group scheme X over S. We have that Pj; is a biextension of (Af, AVf) by
G

46
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Definition 3.1.2. Let r: Af — AW, ¢V . AV/ — AV be a pair of formal splittings of
(3.3) and (3.4), respectively. We will say that (r,7") are dual if

(-, )7% o (Lier x LierY) = 0.

Theorem 3.1.3. There is a bijection between pairs of formal splittings of (3.3) and (3.4)
and normal bi-invariant differentials on Pj;. Moreover, dual formal splittings correspond
to closed differentials.

Proof. Let r: AF — A and vV : AVS — AVH be formal splittings of (3.3) and (3.4),
respectively. From these we obtain a morphism of biextensions ¢/ : Pj; — PE‘, which is
a formal section of PE‘ — Py

tf

! y
P P Py

| R

rxrY

AF s AVE 205 AR AVE—— A x AV
Then t/*7 is a normal bi-invariant differential on P,Z;-

Now suppose that w is a normal bi-invariant differential on Pj;. Denote by ¢ : Af — A
and 1V : AY/ — AV the natural immersions. Let P4, be the pullback of P4 to A/ x AY

Py Pa, Py

Lo Lo

\2
AF s AVFIE A o qv I gAY

The image of w € QL in Q1
& Pi/s Pl/As

Q}DA,L/Af’ We have that wy pulls back to dz/z € Qém/s, since this is true for w. Then wo

extends uniquely to an invariant differential wo €

is a normal invariant differential and endows P4, with a § — 2—structure. This gives an
element of A(A7), i.e. a map r: Af — A% Since 7 : A%(A") — AY(AS) maps Id — r
then the pullback of 1, € Q1 4z along 7 x Id is ws.

Pao/
PA,L PA
p — | P = l
A0 l A
| A7 v it | Ax A
l rxId l =
S x AV Al x AY T Ax AV

Notice that the pullback of P4, to S x A is trivialized by e4v : AY — P4, and that
the pullback of wy to G, x (S x AY) is dz/z, because e* (w2) = €’ (n2) = 0. Since
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the differential dz/z corresponds to the trivial j—structure then this means that the
morphism A%(Af) — A%(S) sends r to the zero section of A%, that is, the composition
S — Al — AP equals the zero section and therefore r factors through A%,

We follow the same procedure to obtain a map r¥ : AV — AV, Similarly, if

1 . . . . . 1
wi € OQp AV JAVS denotes the differential extending the image of w in QP/f; Jav then the
pullback of 71 € Q}DA o JAVE along Id x ¥ : A x AYf — A x AV? coincides with w;. It

remains to prove that r and r¥ are homomorphisms. This follows from the fact that
T*Wan s CWarys, T wave g Cwyvs g and [Col9l, Lemma 2.3].

To prove the last part, observe that from the equalities

dwe = d(r x Id)*ng = (r x Id)*dnq,
dwy = d(Id x r¥)*m = (Id x r¥)*dn;

we obtain that
dw = dtf*ﬁ = tf*dn = tf*ph*W = pf*(r x V).

Since pf is faithfully flat, w is closed if and only if (r x ¥)*y = 0, which is equivalent to
r and rV being dual with respect to (-, - )Q¢. O

In the case that S is a scheme over QQ, the homomorphisms of commutative formal
groups over S are in one-to-one correspondence with homomorphisms of their Lie alge-
bras, which yields the following proposition. Here, dual splittings of the Hodge filtration
on the one-dimensional de Rham cohomology of A and AV are defined in a manner
analogous to that of Definition 3.1.2.

Proposition 3.1.4. If S is a Q—scheme, there is a bijection between formal splittings
of (3.3) and (3.4) and splittings of the Hodge filtration
0 — wyv — Hig(A) = R'7,(04) — 0, (3.5)
0—wy — Hig(AY) = R'7Y(Oqv) — 0,

where m : A — S and 7w : AV — S are the structural morphisms, and under this
correspondance dual formal splittings correspond to dual splittings.

Proof. This follows from the fact that morphisms of formal group schemes are in bijection
with morphisms of their Lie algebras; and from the fact that if X is a commutative group
scheme which is an extension of an abelian variety by a vector group then Lie(X7) =
Lie(X) (see [Iov00, Lemma 2.2]). O

Let Log : (G}fn — G£ be the formal logarithm; this is the unique homomorphism
over Q satisfying dLog(z) = dz/z. We have that Log is an isomorphism with inverse
exp : G£ — G&. We have the following

Proposition 3.1.5. If S is a Q—scheme, there is a bijection between:

48



CHAPTER 3. PAIRINGS VIA SPLITTINGS OF THE HODGE FILTRATION

i) closed normal bi-invariant differentials on Pj;,
i1) Log —splittings of Pj;, and
i) splittings of Pj‘c.

Proof. i) = i): Let w be a closed normal bi-invariant differential on P,{l' We
will prove that the formal solution 7 : Pj: — GJ of dr = w such that 7(e) = 0 is a
Log —splitting of Pj;. Let m : G,,, X P4 — P4 be the map giving the G,,—action on P4
and my : P4 x4 P4 — Pa, myv : P4 Xxyv P4 — P4 the partial group structures. The
fact that w is a G,,—invariant differential with residue one implies that there exists a
global section ¢ € I'(S, Og) such that

Tom = Logopy + 7o ps + ¢, (3.7)

where p1 : G, X P4 — Gy, and po : G,, Xx P4 — P4 are the projections. On the
other hand, the fact that w is bi-invariant implies that there exist global sections c4 €
(A7, 0,) and cqv € T(AYF, O 4vs) such that

TOMA=TOPAL+TOPAa2+ Ca, (3.8)
TOMAV =TOpav1+Topava+cav, (3.9

where pa; : PAXaPa — Paand pav; : Pax v Py — P4 are the projections. Evaluating
romat (1,z) € G, x Pj; and from (3.7) we get that

T(z) =1om(1,x)
= Log(1) + 7(z) + ¢
=7(z) +c,

and therefore ¢ = 0. Now notice that d(1oeq) = e’ yw = 0 and 7(e) = 0 implies Toe4 = 0.
Evualuating (3.8) at (e4,e4) we get that

0=7oma(ea,en)
=Toeg+TOoes+ca
= CA;
and so ¢4 = 0. Similarly, from (3.9) we get that c4v = 0. Therefore, 7 equals Log when

restricted to an and is compatible with the partial group structures, which proves our
claim.

i) = i): If 7 is a Log —splitting of P£ then exp(7) is the desired formal splitting
of Py.

i11) = 1i): Let o : P}; — G, be a formal splitting of P4. Then o*dz/z is a closed
normal bi-invariant differential on Pj. O
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We can summarize the previous results in the following diagram

Dual splittings of the Splittings of the
Hodge filtration —— ¢ Hodge filtration
(3.5) and (3.6) (3.5) and (3.6)
Prop. 3.1.4] IProp. 3.14
Dual formal splittings of Formal splittings of
the universal vectorial — the universal vectorial
extension (3.3) and (3.4) extension (3.3) and (3.4)
Thm. 3.1.3I IThm. 3.1.3 (3.10)
Closed normal bi-invariant Normal bi-invariant
differentials on Pj; differentials on Pj:

Prop. 3.1.5I
{Log —splittings of Pj;}
Prop. 3.1.5]

{Splittings of Pj;}

Let R, denote the ring of integers of C,,. We will now focus on the case S = Spec(R,).
We define the unit root subspace of HéR(ARp) as the subspace on which the Frobenius
operator acts with slope 0.

Proposition 3.1.6. If A is an abelian variety over C, with good ordinary reduction over
R, then there exists a unique formal splitting r of (3.3) which induces the splitting of

0 — wyv(Ry) — Hig(Ar,) — H'(Ag,,04) — 0 (3.11)

determined by the unit root subspace ofHéR(ARp). Similarly, there exists a unique formal
splitting v of (3.4) which induces the splitting of

0= wa(Rp) = Hig(Ag) = H' (4 ,04v) =0 (3.12)
determined by the unit root subspace of HéR(AI\ép)- These splittings are dual.

Proof. This is a consequence of the fact that A7, and similarly AV/, is of multiplicative
type (since the residue field of C, is algebraically closed then Al and AVS are in fact
split formal tori, ¢.e. isomorphic to a product of G{;) So, the category of biextensions
of (Af ,AVT) by an is equivalent to the punctual category, that is, there is a unique
biextension of (Af, AVf) by an, which is the trivial one, and this has a unique trivi-
alization. By Proposition 3.1.5 and Theorem 3.1.3, this corresponds to a pair of dual
splittings of the universal vectorial extensions (3.3) and (3.4), and by Proposition 3.1.4
these correspond in turn to dual splittings of the Hodge filtration (3.11) and (3.12). O
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This proposition implies that, in the case that A has ordinary good reduction, all
the sets appearing on the left row in diagram (3.10) contain exactly one element. This
uniqueness result is the formal analog to the one given by Mazur and Tate, which is
stated in Theorem 2.1.6, case 3 (see [MT83, §1.5.3]). To see this correspondance, we
will have to work in the category of rigid analytic group schemes over C, and obtain
similar constructions.

By [Col91, Lemma 3.1.1], we can uniquely extend the splittings of (3.11) and (3.12)
given by the unit root subsapce to splittings

S
L= =

0wy (Cp) —— AH(C,) —— A(Cp) —— 0

SV

0w, (Cp) — AVE(C,) —— AY(C,) —— 0.

Notice that we can also take the unique formal splittings » and rV of the universal
vectorial extensions of A and A given by Proposition 3.1.6 and extend them to split-
tings A(C,) — A%(C,) and AY(C,) — AVE(C,), respectively. These extensions are also
uniquely determined and by construction they coincide with the previous ones, s and s".

From s and s¥ we obtain a morphism ¢ of biextensions in the category of Lie groups
over C, that is rigid analytic locally and extends t/, which is the pullback of r x 7V along

Pi————Fj Pa(Cp) ————— P4(Cy)

/| I | |

rxrY

AF x AT AR AR A(Cy) X AV(C,) 5 AR(C,) x AVE(C,) .

By [Col91, Prop. 3.1.2], t*n is a closed normal bi-invariant differential on P4(C,) that
extends the closed normal bi-invariant differential t/*7 on Pj.

Let A : C;, = Cp be a branch of the p-adic logarithm, i.e. a locally analytic homomor-
phism extending Log : (an((Cp) — Cp. Then the Log —splitting 77/ : Pj;((Cp) — G%(Cp)
corresponding to t/*1n by Proposition 3.1.5 can be uniquely extended to a locally analytic
A—splitting 7 : P4(Cp,) — C,, such that dr = t*n (see [Col91, Prop. 3.2.1]).

Proposition 3.1.7. Suppose A has good ordinary reduction. Then the A—splitting 1 :
Py(C,) — C, constructed by Mazur and Tate in [MT83, §1.5] is equal to .

Proof. Let o : Pj; — an be the unique formal splitting of P4. By construction, ¢ =
Log oo on P£ (Cp). From the bijections defined in Proposition 3.1.5 we see that o*dz/z =
t/*1n. Since d Log(z) = dz/z then, on P,{:((Cp)a we have that dy) = d(Logoo) = o*dz/z =
t’*n = dr. By the uniqueness of the formal solution of dr = t/*1 we obtain the equality
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Y =T on PIZ;((CP). Since ¢(e) = 7(e) = 0 and they are both analytic then by uniqueness
of extensions we conclude that i) = 7 (see [Col91, Prop. 3.2.1]). O

3.2 Local p—adic height pairings on Jacobians of curves

In this section we give the construction of the p—adic height pairings on pairs of zero
cycles on curves described in [CG89] using splittings of the Hodge filtration. When
the curve has good ordinary reduction and the splitting of the Hodge filtration is
the unit root splitting this corresponds to the local pairing on zero cycles and di-
visors defined in Section 2.2, and thus provides a geometric interpretation of said pairing.

Let p be a prime and Q, the field of p-adic numbers. As before, we consider a non-
archimedean local field K of characteristic 0 with valuation ring R, uniformizer m and
residue field k = R/m R of order q. We fix a continuous homomorphism

p: K*— Q.

If p does not divide g then p is trivial on R*, i.e. p is unramified. In this case, p
is determined by its value on m, since the subgroup (7) x R* has finite index in K™*.
Precisely, p is given by

p = p(m)v,
where v is the valuation on K (see [Zar90, p. 318]).

Let C' be a complete non-singular, geometrically connected curve over K, and
assume that C' has a K —rational point. We have two cases.

If p does not divide ¢ then there is a unique function
[-,]: {(a, b) ‘ a, b are relatively prime divisors of degree 0 on C} — Qp
which is continuous, symmetric, bi-additive (when all the terms are defined) and satisfies

[(£), 6] = p(£ (D))

for f € K(C)* (see [CG89, Prop. 1.2]). The uniqueness of this function gives the
equality with the Mazur and Tate’s pairing in the unramified case.

The rest of this section will be devoted to studying the case where p divides gq.

3.2.1 Splittings and normalized differentials
Definition 3.2.1. A differential on C over K is called:

i) of the first kind if it is regular everywhere;
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ii) of the third kind if it is regular everywhere, except possibly for simple poles with
integral residues; and

iii) logarithmic if it is of the form df/f, for f € K(C)*.
We have a short exact sequence corresponding to the Hodge filtration of Hig (C)
0 — HY(C) — Hig(C) — HY(C,00) — 0, (3.13)

where H0(C) = HY(C, QIC/K) is the group of differentials of the first kind on C' over K.
Denote T'(K) the group of differentials of the third kind on C' and T;(K) the subgroup of
T(K) consisting of logarithmic differentials. Then the residual divisor homomorphism
gives rise to the exact sequence

0 — HY(C) = T(K) 2% Div0(C) — 0. (3.14)

Since T}(K) NHYY(C) = {0} and Res(df /f) = (f), we have an induced exact sequence
0— HYC) - T(K)/Ti(K) = J(K) = 0, (3.15)

where J is the Jacobian of C. Sequence (3.15) may be identified with the K —rational
points of the exact sequence corresponding to the universal vectorial extension of J

0—=V(J)—= JF—J =0, (3.16)

where V'(.J) is the vector group associated to the vector space Hl’O(C’) = HO(C, Qé/K).
Since Lie(J?) = Higz (C) (see [MMT74, Prop. 4.1.4]), Lie V(J) = V(J)(K) = HY(C) and
Lie J = HY(C,O¢), because H'(C, O¢) can be canonically identified with the tangent
space at the origin of J, then the resulting exact sequence of Lie algebras associated to
(3.16) is sequence (3.13).

For any commutative p-adic Lie group G we have a logarithmic homomorphism
from an open subgroup of G(K) to LieG. When G = J% or J this open subgroup has
finite index, so it can be uniquely extended to the whole group log. : G(K) — LieG.
The following proposition relates the universal vectorial extension of J with the Hodge
filtration of C' via the logarithm.

Proposition 3.2.2. There is a canonical homomorphism
W T(K)/Ti(K) — Hig (C)

which is the identity on differentials of the first kind and makes the following diagram
commute

0—— V(J)(K) JYK) J(K) 0

J{‘P:log‘,h J{log‘]

0 —— HY(C) ——H}R(C)——H(C,00) —0 .
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Notice that a splitting o : Hiz (C) — H(C) of (3.13) is equivalent to a direct sum
decomposition Hig (C) = HY(C)@ W, where W = ker(c). We have the following result.

Proposition 3.2.3. The choice of W gives a section

Div’(C) — T(K)
a— wy

of the residual divisor homomorphism Res : T(K) — Div'(C). Moreover, if (f) is a
principal divisor then wq = df / f, i.e. it defines a section of T'(k)/Ti(k) — J(k).

Proof. We define w, € T'(K) as the differential of the third kind such that Res(wq) = a
and ¥(w,) € W. Indeed, w, exists and is uniquely determined by these two conditions
because Res™'(a) is a principal homogeneous space for H"%(C). O

We will call normalized differentials the differentials wy of the third kind of Propo-
sition 3.2.3 associated to divisors a on C. Notice that the section Div’(C) — T(K) of
Proposition 3.2.3 is the one obtained by lifting the splitting o/ : H*(C, O¢) — Hig(C)
to the upper row of the diagram

0—— HY(C) T(K)—2%, Div0(C) —— 0
0—— V(J)(K) JHK) J(K) 0

J{WlOgE J}Og‘]

0 —— HY(C) ——HR(C) ——H(C,00) — 0.
- “«_ _ -

g 0'/

3.2.2 The local pairing

Assume that C has good reduction modulo 7, i.e. there exists a smooth and proper
scheme over Spec R whose generic fiber is C. We fix a direct sum decomposition
Hiz(C) = HM(C) @ W. Since p : K* — Q, takes values in a torsion-free group,

its restriction to R* factors as
plr*
RF———Q,
QJ /
K ;

where log : R* — K is the unique homomorphism extending the convergent series for
log(1 4+ x) on 1 4+ 7R (see [Zar90, p. 319]). The map § is @Q,—linear and uniquely
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determined by p. We fix an extension A : C; — C,, of log which satisfies \(K*) C K and
makes the following diagram commute

K*—>Qp
W\ A

To construct the pairing between relatively prime divisors of degree 0 on C, we
will need to integrate the normalized differentials previously constructed. Consider a
differential w of the third kind on C, denote a := Res(w) its residue and let Y be an
affinoid obtained from C' by removing finitely many residue disks whose union contains
supp(a). In [CG89, Prop. 4.1] it is stated the existence of a locally analytic function
F :Y(C,) — C, satisfying dF' = w. Using this function, we can define the integral of w

" /bw = Z(ordyb)F

where b is a divisor of degree 0 on Y and the sum is taken over y € Y(Cp,). We can
generalize this definition to divisors b that are relatively prime to a = Res(w) but
that may not be supported on any Y'; these integrals will depend on the branch of the
p—adic logarithm chosen.

Let a,b be relatively prime divisors of degree 0 on C and let w, be the normalized
differential of the third kind determined by W. We define

[a,b]:é(/bwa)

Proposition 3.2.4. The function
[-,]: {(a, b) ‘ a, b are relatively prime divisors of degree 0 on C} — Qp
s continuous, biadditive and satisfies

[(£), 6] = p(f(b))

for f € K(C)*. It is symmetric if W is isotropic with respect to the cup product pairing
on the first de Rham cohomology group of C.

Proof. The continuity and bilinearity follow from construction. Symmetry follows from
the reciprocity law for differentials of the third kind (see [CG89, Prop. 4.5]). O

By [Col91, Thm. 3.3.1], we have that if C' has good ordinary reduction and W is the
unit root subspace then this is the local pairing on zero cycles and divisors constructed
as in Section 2.2 from Mazur and Tate’s canonical p—splitting Py(K) — Q, of the
Poincaré biextension of the Jacobian J of C (see also Proposition 3.1.7). In this case,
the local pairing is symmetric.
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CASE OF SEMISTABLE ORDINARY REDUCTION

Remark 3.2.5. The hypothesis of good reduction is necessary for the existence of the
locally analytic function F' : Y(C,) — C, used to define the integral of a normalized
differential. Ordinary reduction is used in the comparison to Mazur and Tate’s pairing.

3.3 Comparison with Mazur and Tate’s construction for
the case of semistable ordinary reduction

When the abelian variety has semistable ordinary reduction, Mazur and Tate’s canon-
ical pairing corresponds to the splitting of the Hodge filtration given by the unit root
subspace, generalizing what we know in the case of good ordinary reduction. In this
section we follow the proof of this result as given in [IWO03].

3.3.1 Splittings of the Hodge filtration

Let K be a field which is the completion of a number field with respect to a non-
archimedean place v over a prime p. Denote R the ring of integers of K and k its residue
field. Consider an abelian variety Ax over K with semistable ordinary reduction, let
AY. be its dual and Py, the Poincaré biextension. Denote A, A the Néron models of
A, AY,, respectively, and suppose that the maximal tori in Ag and AZO are split.

We recall some facts about the rigid analytic uniformization of Ax and A},. There
is an extension of algebraic groups over K

0—>TK1>GK1>BK—>O,

such that Tk is a split torus of dimension d over K and By is an abelian variety over
K with good reduction. We also have a short exact sequence in the category of rigid
analytic groups

0— Frig i) Grig l) Arjg — 0,
where I'i is the constant group scheme corresponding to a free Z—module of rank d.
Dually, we have an exact sequence of algebraic groups

3 q’
0— Ty ~— Gy, — B} — 0,
where T} is a split torus and B), an abelian variety over K with good reduction; and a

short exact sequence of rigid analytic groups

v \
0= Iy — Gy — A}, — 0.
These objects are related in the following way. I}, is the character group of Tk,
and I'k is the character group of T}; thus T} also has dimension d. The extension

-\ Vv
Gk corresponds to the homomorphism T}, = G} <5 B}, and the extension G

corresponds to the homomorphism I'g SNVe! K -5 Bg. This means that, when considered
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as rigid 1-motives, [i" : T}, — Gyj,] is the dual of [i : I'vig — Ghig-

Let Xx be a commutative group variety over K. As in the previous sections,
we denote by wy, = e*Q}(K /K the space of invariant differentials of Xg, where
e : Spec(K) — Xk is the zero section. We have the following commutative diagrams

with exact rows and columns, with the rows induced by the Hodge filtration (H is defined
as the vector space making the horizontal sequence exact)

0——wp, (K) — Hig (Bx) — H'(Bk, Op) —— 0

q* EJﬁ

0—— we, (K) — Hig (Gk) H 0

Wy (K)—— HéR(TK)

0 0
0 0
Homg (', K) == Homg (T, K)

With these diagrams we can lift any splitting » : H'(Bg, Op) — Hlg(Bk) of the
Hodge filtration of Hig(Bk) to a splitting L(r) : H'(Ag,04) — Hig(Ak) of the
Hodge filtration of Hig(Ax). L(r) is then the unique splitting of the Hodge filtration
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of H (Ak) that makes the following diagram commutative

L(r)

Hir(Ag) «—— H'(AK, 04) (3.17)
Hir (Grx) H

For X = Ak, Gg or Bk, the K—vector space H(liR(XK) can be endowed with
a Frobenius operator ¢x : Hig(Xg) — Hig(Xrk). Let Wx C Hliz(Xk) be the unit
root subspace, i.e. the subspace on which px acts with slope 0. We put H(Xg) := H
if X = G and H(Xg) := HY(Xg,Ox) if X = A or Bg. Then we define rx :
H(Xk) — Hig(Xk) to be the unique splitting such that Im(rx) C Wx. We denote by
Sx : H(llR(XK) — wx, (K) the retraction induced by ry. Either ry or sx will be called
“the unit root splitting” of Xx. An important property of rp is the following.

Theorem 3.3.1. Let rp : H'(Bg,Op) — Hlig (Bk) be the unit root splitting of B. Then
L(rg) is equal to 74, the unit root splitting of Hig (Ak).

Proof. See [IW03, Thm. 2.2]. O

3.3.2 Mazur-Tate height pairing and the unit root splitting

We fix a continuous, ramified homomorphism p : K* — @Q,. By [Zar90, p. 319], p
factors as p = § o A\, where A : K* — K is a branch of the p—adic logarithm and § is a
Qp—linear map. Now, let 74 and 75 denote the canonical A—splittings of Py, (K) and
Pp,. (K), respectively, constructed in Theorem 2.1.6, which exist since Bg has good
ordinary reduction and Ax has semistable ordinary reduction. Then ¥4 = § o 74 and
g = 0 o T are the canonical p—splittings inducing the Mazur-Tate height pairings on
Ak and By, respectively. Notice that since Bx has good ordinary reduction then, by
Proposition 3.1.7, 75 (resp. ¥p) is the A—splitting (resp. p—splitting) induced by the
unit root splitting 75 as in (3.1).

The uniformization maps 7 and 7V induce isomorphisms on rigid analytic open sub-
groups
Grig DG AC Ariga
Gig D GV = AV C A},
where X denotes the rigid generic fiber of the formal completion of X along its spe-
cial fiber Xj. By [Wer98, Prop. 3.1], we have a uniquely determined isomorphism of
biextensions of (Ghig, Gl\/ig) by Gy ig

6 : (7 x Wv)*PXg — (g x qv)*ng.
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Let a¥ € AY(K). Denote ¢ : Pj—;i{av} — (7 x ﬂv)*PgiAv the map induced by A = G <

G and AV =2 GV — GV, and pr: (g x qv)*ng — ng the projection. The map 6 relates
74 and 7p by the following formula

TB(profoi(x)) = Ta(x), (3.18)

where x € P, vy (K).

We are interested in the section 14 : Ay, (K) — A?(K) of A}u (K) — A}, (K) which
is induced by the Mazur-Tate A—splitting 74 as in (3.2). Equation (3.18) helps us give
a description of 14 on rational points of A}, as follows. Let ng : BY(K) — B[v<u (K)
be the unique splitting on K—points of the universal vectorial extension of B}, such
that Lieng = rp. For a¥ € AY,(K), denote the corresponding point in G}, by ¢g" and
put ¥ :=¢"(g"). Then n4(a’) is the extension P4, v together with the rigidification
induced via 6 by the one on Pp, ;v given by np(b¥). Notice that, since Axu is an
extension of AY, by a vector group, 74 corresponds to the unique extension to A} (K)
of the map just described on AY,(K). As mentioned at the beginning of this chapter, we
need to prove that 14 is an analytic map.

Lemma 3.3.2. The A\—splitting 74 : Pa,. (K) — K is an analytic map.
Proof. See [IW03, Lemma 3.1]. O

Proposition 3.3.3. Let 7 : P4(K) — K be an analytic A\—splitting o la Mazur-Tate
and let n : A} (K) — A}/(h(K) be the section of A?‘(K) — AJ(K) induced by T as in
(3.2). Then n is an analytic map.

Proof. See [IW03, Prop. 3.2]. O
Corollary 3.3.4. The section ng : A} (K) — A? (K) is analytic.

Theorem 3.3.5. The Mazur-Tate height pairing on Ax coincides with the height pairing
defined by the unit root splitting r4 on Hig (Af).

Proof. Since by Corollary 3.3.4, n4 is an analytic map, it induces a map of Lie algebras
Lien4 which corresponds to a splitting of the Hodge filtration of Ax. Then, by Theorem
3.3.1, it suffices to show that Lieny = L(rp), i.e. that Lien, is the unique splitting that
makes a diagram like (3.17) commute. This is Theorem 3.6 of [IWO03]. O
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Chapter 4

Pairings of 1-motives

In this chapter we focus on giving generalizations of the previous results to 1-motives. In
order to do this, first we define the set of rational points of a 1-motive, which is done in
Section 4.1. Then in Section 4.2 we proceed to study linearizations of biextensions and
their compatibility with p—splittings, since this will be relevant to subsequents sections.
In Section 4.3 and 4.4 we analyze the conditions under which it is possible to obtain
p—splittings of the Poincaré biextension of a 1-motive in the unramified and ramified
case, respectively. Finally, in Section 4.5 and 4.6 we show how to construct local and
global pairings, respectively, from p—splittings.

4.1 Rational points of 1-motives

Let Mg = [ug : Lg — Gg] be a 1-motive over S and MY = [u§ : LY — G¢] its dual.
The following definition is inspired by [Del79, §4.3] (see also [BB]).

Definition 4.1.1. We define the group of S—points of Mg as
Mgs(S) := Extg(MY,Gp.s).

By exactness of Cartier duality (see [BK16, Prop. 1.13.5 (c)]) we have canonical
isomorphisms

Mgs(S) :=Extg(M,Gpm.s)
=~ Homg (MY, Gm,s[—1])
>~ Homg(Z, Mg)
>~ Exty(Z[1], Ms)
=~ HY,¢(S, Ms),

where the Hom and Ext! groups are considered in the derived category DP(Sgpf) of
abelian sheaves on the fppf site of S. Note that for Mg = [0 — Ag] an abelian scheme
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over S, the previous isomorphisms reduce to Weil-Barsotti formula
Mg(S) := Extév(Ag, Gm,s)
= Homg (Z7 AS)
=As(5).

Notice that the short exact sequence of complexes

0——0—— LY LY ——0

e

0—TY ——GY— A ——0

induces a long exact sequence
0 — Homg(MY,Gp.s) — Ls(S) — Gs(S) = Ms(S) — Extg(T¢,Gms) — - ...

Now consider the case S = Spec(K), for K a field. If T}/ is split, or equivalently if Lx
is split, then by the previous exact sequence we have that

Mk (K) = Gg(K)/Im(ug (K)), (4.1)

where ug (K) is the morphism on K —points induced by ug. In the rest of this chapter
we will assume that all tori and lattices are split.

4.2 Linearizations of biextensions

In this section we consider a field K and commutative group schemes over K.

Definition 4.2.1. Let C = [u: A — B],C’' = [u/ : A” — B’| be complexes of commuta-
tive group schemes over K. Let

c:AxB—B (4.2)

(a,b) = u(a) +b (4.3)

be the A—action on B induced by u, and let ¢’ : A’x B" — B’ be defined analogously. An
A x A’'—linearization of a biextension P of (B, B’) by G, is given by an A x A’'—action
on P

a:(AxA)yxP—P

satisfying the following conditions:
i) G,,—equivariance: the following diagram commutes

(AxA’)x(GmeiGmx(AxA’)xPMGme

o] |

(Ax A) x P - P
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Equivalently, for a € A, d’ € A, c€ G,;, and w € P,
ala,d,c+w) =c+ ala,d,w).

ii) Compatibility with o and o’: the diagram

(Ax A)x P . > P

o |

(AxA’)xBxB’i(AxB)x(A’xB’)%BxB’

is a pullback, where p is the natural projection. In particular, fora € Aand a’ € A’,
if w € P lies above (b,0') € B x B’ then a(a,d’,w) lies above (o(a,b),o’(a’,1)).

iii) Compatibility with the partial group structures of P: the following diagrams com-

mute
axXoa

(AXx A" x P)xaxp (Ax A’ x P) —— P xpP

E

Ax (A" x A")x (P xpP) +1
IdX+A/><+1l
Ax A x P = > P

(Ax A X P) xgrypp (Ax A’ x P) 2% Pxp P

E

(Ax A) x A" x (P xp P) +2
+A><Id><+2l
Ax A x P @ y P

9

where +1 and +2 denote the partial group structures on the fibers of P. Equiva-
lently, for a € A, a},a, € A" and wy,ws € P lying above b € B,

a(a, all + a/27 w1 +1 w2) = Oé((l, alla wl) +1 a(a7a,27w2)>
and for aj,as € A, a’ € A’ and wy,wy € P lying above ¥’ € B/,
alay + ag,a’,wy +2 wa) = alar,d’,wy) +2 alas, d’, we).

Conditions i) and ii) are equivalent to o being an A x A’—linearization of the line
bundle P in the sense of Definition 1.6 in [MFK94, p. 30]; this can be interpreted as
saying that « is a “bundle action” lifting the group actions o and ¢’. In the rest of
this chapter, we will only use the term linearization in the sense of Definition 4.2.1.
Notice that ¢ is a group homomorphism and, moreover, every A—action on B which is
a homomorphism is induced by a homomorphism u : A — B as in (4.2); and similarly
for o’. Condition iii) may then be interpreted as a lifting to P of the compatibility of o
and o’ with the group structures of B and B’.
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Proposition 4.2.2. Let C = [u : A — B|,C' = [/ : A — B’] be complezes of
commutative group schemes over K, P a biextension of (B, B') by G,, and 0,0’ be the
actions induced by u,u' as in (4.2), respectively. Given a biextension structure of (C,C")
by G, on P with trivializations

Ta:Ax B — P
T4 :Bx A — P
7T:AxA =P

we can define an A x A'—linearization of P as

ar : (AxAYyxP—P
(a,a’,w) = [Tar(b,a') +2 7(a, a)] +1 [w +2 7a(a, V)],

where w € P lies above (b,V') € B x B'.

Proof. Notice that by diagram (1.1), which expresses the compatibility between +; and
49, we have the equality

ar(a,a ,w) = [ta(b,a") +1 w] +2 [7(a,a’) +1 7a(a,b)]. (4.4)

First, we prove that «, is an action. Let aj,as € A, a},a}, € A" and w € P lying
above (b,b') € B x B'. Then

ar(ar,al, ar(az,ay, w)) = ar(ar,al, [Ta (b, ab) +1 w] +2 Ta(az,u (ah) + 1))
= 7 (u(ar) + u(az) + b,a}) +1 {[Tar(b, ay) +1 w]
+2 Ta(ag, v (ab) + b') +2 Ta(ar,u'(ah) + V)}
= {7a(b,a}) +2 (a1 + az,a})} +1 {[Ta (b, ab) +1 w]
+2 7a(a1 + ag,u'(ay) + )}
= {7a(b,a} + a) +1 w} +2 Ta(a1 + az, v (a} + ab) + b')

= a;(a1 + ag, a} + ay, w),
a-(0,0,w) = [ra/(b,0) +2 7(0,0)] +1 [w +2 74(0, b/)]
=w.
Now we prove that a, satisfies conditions i)-iii) of Definition 4.2.1.
i) For c € Gy, a € A, o/ € A" and w € P lying above (b,b') € B x B’ we have

ar(a,d,c+w) = [ra(b,a) +2 7(a,d)] +1 [c + w +2 Ta(a, V)]
=c+ [ta(b,ad) +2 7(a,a")] +1 [w +2 Ta(a, V)]

=c+a,(a,d,w).
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ii) Notice that

preopoar(a,a’,w) = prgop(ra(b,ad)+27(a,ad’))
=u(a)+b
= o(a,b).
This equality and the alternate definition of a,; given by equation (4.4) allows us

to conclude that
poay(a,d,w) = (o(a,b),d’ (d',V)).

iii) Let wy,we € P lying over (b, b)), (b,b,) € B x B’, respectively. Then
ar(a,ay + ag, wy +1w2) = T4 (u(a) +b,a) 4 ay) +1 [{wr +1 wa}
+2 7a(a, by + by)]
= rar(u(a) + b, a} + db) +1 [{w1 +1 wa}
+2 {7a(a, b)) +1 7a(a, b3)}]
= Ta(u(a) +b,a}) +1 74 (u(a) + b, ah)
+1 {w1 +2 7a(a, b))} +1 {wa +2 7a(a, by)}

= aT(a7a,17w1) +1 Oé‘,-((l, (1/2, w2)-

Using the alternate definition of « given by equation (4.4), it becomes clear from
the previous calculations that we also have

ar(ar + az,d’,wy +2 we) = ar (a1, d’,wr) +2 ar(az, a', ws).

O

Remark 4.2.3. The previous definition of an A x A’—linearization of P from its biexten-
sion structure of (C,C’) by G,, follows [Wer98, p. 306].

Proposition 4.2.4. Let C = [u : A — B|,C' = [/ : A — B’] be complezes of
commutative group schemes over K, P a biextension of (B, B") by G, and 0,0’ be the
actions induced by u, v’ as in (4.2), respectively. Given an A x A’'—linearization

a:(AxA)yxP—P

of P we can define a biextension structure of (C,C") by G,, on P as the one determined
by the trivializations

Tad: AXx B — P
(a,b") = a(a,0,0y)

Ta,A/:BXA/—>P
(b,a’) — (0,d’,0p),

where Oy, 0y are the zero elements in the groups (Py,+1), (Py,+2), respectively.
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Proof. Since P is already a biextension of (B, B’) by G, then 7, As Ta,Ar determine a

,LL/

biextension structure on P of ([A % B],[A’ %5 B']) by Gy, if and only if they are
biadditive sections of the corresponding pullbacks of P which coincide on A x A’.
i) Ta,a and T, 4 are biadditive: For a,a1,a2 € A and V', b}, b5 € B’ we have
Ta,A(a1 + az,b") = a(ar + az,0,0y)
= a(a1,0,0p) +2 a(az,0,0y)
- TOc7A(a17 b,) +2 Ta,A(CLQa bl)?

Ta,A(a, by + b)) = a(a, 0, Ob’1+b’2)
()z(a,O,Ob/1 +1 Obfz)
= a(a, 0, Ob’l) +1 a(a,0, Ob’z)

= Ta,A(a,01) +2 Ta,a(a, ).

We remark the use of the equality

Opr o1, = Opy 41 Opy- (4.5)
This comes from the fact that +; induces an isomorphism Py A Py = Py .y,
since P is a biextension of (B, B’) by G,,. This means that every w € Py 4y
is of the form w = wy +1 ws, for some wy € Pb’l and wy € Pbé, from which it
is immediate that Opr +1 Ogy satisfies the characterizing property of the identity
Oy, 1o, Of (P 4115 +2)-
In a similar way, we see that 7, 4/ is biadditive.

ii) poTaa =uxIdandpot,a =Idxu': Clearly, we have

poTaalab) ZP(Oé(a 0,0y))
) '(0,0))

ux I )(a, ).
Similarly, we see that po 7, 4 = Id x v

iii) 7q,4 0 (Id x v') = 7o 4 © (u X Id): First, notice that the identity 0; of the group
(Poyx > +1) is equal to the identity Oz of (Ppy{oy,+2). Indeed, we have

02 +1 02 = 02 = 09 +7 04,

where the first equality comes from (4.5), which clearly implies 0; = 02. We will
use the notation 0p := 0; = 0. Notice also that property iii) of Definition 4.2.1
implies that

a(a,0, -) : (Pioyxnrs +1) = (Ppu(a)yxn’> +1)
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is a group homomorphism. In particular,

a(a,0,00) = 0y(q)-
By the same reasoning, we also get that

a(0,d’,00) = Oy (1)
From this, we are able to do the necessary calculations:

Ta,a 0 (Id x u')(a,a") = 74,4(a,u'(a’))
= a(a 0 0 "(a /))
= a(a,0,a(0,d’,0p))

a(a,a’,00)
a(0,d,a(a,0,00))

= a(0,d’, 0,a))

= T,/ (u(a), a’)

= Toa o (ux Id)(a,d).

O]

Proposition 4.2.5. Let C = [u : A — B|,C" = [v' : A — B'] be complezes of
commutative group schemes over K and P a biextension of (B,B’) by G,,. Then the
map

(TA, TA/) — O

from biextension structures on P of (C,C") by G, to A x A'—linearizations of P defined
in Proposition 4.2.2 is a bijection. Moreover, its inverse is the map

a = (Ta,As Ta,A)
defined in Proposition 4.2.4.
Proof. Let

Ta:Ax B — P,
T4 :Bx A — P

be the trivializations associated to a biextension structure on P of (C,C") by G,,. We
will prove that

Tar,A = TA,

TaT,A’ = TA’.
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Indeed, for all a € A and b’ € B’ we have

Tar A, V) = ar(a,0,0y)
= [74/(0,0) +2 7(a,0)] +1 [0 +2 7a(a, V)]
= 7a(a,V)
and, similarly, 7, 4/(b,a’) = 74/(b,a’), for all b € B and o’ € A’.
Now, let
a:(AxA)YxP—P

be an A x A’—linearization of P. We will prove that

ar = Q.

e

First, notice that for all a € A and w € P lying over (b,V') € B x B’ we have

Qr, (a7 0, ’U}) = [Ta,A’(b; O) +2 Ta<aa 0)] +1 [’U) +2 Ta,A(ay b/)]
= OZ(O, 07 w) +2 Oé((l, Oa Ob')

= afa,0,w)
and, similarly, o (0,d’,w) = «(0,d',w), for all @’ € A" and w € P. Then

ar, (a,d ,w) = ar,(a,0,a.,(0,d,w))
= Oé((l, 0, 06(0, alv ’l,U))

= afa,d,w).

O]

Proposition 4.2.6. Let C =[u: A — B],C" = [u' : A" — B’] be complexes of commuta-
tive group schemes over K, with u and u’ injective, P a biextension of (B, B') by G, and

o,0’ the actions induced by u,u’, respectively, as in (4.2). Then an A x A'—linearization
of P canonically induces a biextension Q(K) of (B(K)/Im(u(K)), B'(K)/Im(u/'(K)))

by K*.

Proof. Let a be the A x A’—linearization of P. We know that P(K) is a biextension of
abelian groups of (B(K), B'(K)) by K*. Furthermore, it is endowed with the A(K) x

A'(K)—linearization
a(K) : (A(K) x A/(K)) x P(K) — P(K)

coming from «, lifting the actions
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Notice that these actions are induced by the morphisms u(K) : A(K) — B(K), v/(K) :
A'(K) — B'(K). We define Q(K) as the set consisting of the orbits

[w] := {a(a,d',w)|a € A(K),d € A(K)}

of elements w € P(K) under a(K). Since the set of orbits B(K)/A(K) of B(K) under
the A(K)—action o(K) is isomorphic to the quotient of groups B(K)/Im(u(K)), and
similarly B'(K)/A'(K) = B'(K)/Im(u/(K)), we see that Q(K) is naturally a K*—torsor
over B(K)/Im(u(K)) x B'(K)/Im(u/'(K)). To see that it is a biextension it is then
enough to prove that +; and +2 induce partial group structures on Q(K). For this, take
elements wy, we € P(K) lying above (b1, b)), (b2,b}) € B(K) x B'(K), respectively, and
satisfying that the orbits of b; and bs under o are equal. This is equivalent to having

b1 = o(a,b2) = u(a) + ba, (4.6)

for an a € A(K) (notice that this a is unique, because of the injectivity of w). Then w;
and a(a,0,w2) project to the same element in B(K) and we define

[w1] 41 [we] := [w1 +1 a(a, 0, ws)].
Since

[we +1 a(—a,0,w1)] = [a(a,0,ws +1 a(—a,0,w))]

= [a(a, 0, wy) +1 wi]

we see that this definition is commutative. To prove that it is well defined, let a1, a9 €
A(K) and df,d, € A/(K). If a € A(K) is the element satisfying (4.6) then, since

u(ay) + by

u(ay) + (u(a) + be)

=u(a+ a1 —az) + (u(az) + ba)
— o

a+a; —az,o(az, b)),

o(ay,by)

we have

[a(ala allv wl)] +1 [a(a27a,27w2)] a+ay — a0, Oz((lg, (1/2,11.)2)]

(
(

ay al,wl) +1 alay, aby, ala,0,ws))]

ar,ay,wr) +1 ala+ ag, ay, ws)]

Therefore, the definition of [wi] +1 [w2] does not depend on the representatives chosen.
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Analogously, if w1, wy € P(K) lie over (b1, b)), (b2,b,) € B(K) x B'(K), respectively,
and the orbits of b} and b, under ¢’ are equal then we define

[w1] +2 [wa] = [w1 +2 (0, d’, wy)],

where o/ € A'(K) is the unique element satisfying b} = o/(a’,05). In the same way as
before, we see that this defines an abelian partial group structure on Q(K). O

Corollary 4.2.7. Let M = [u: L — G] and M' = [/ : L' — G'] be two 1-motives over
K, with w and v’ injective, and P a biextension of (M, M') by G,,. Then there is a
canonical biextension Q(K) of (M(K), M'(K)) by K*.

Proof. Let o, be the L x L'—linearization of P induced by its biextension structure of
(M, M") by G,,, as constructed in Proposition 4.2.2. Then «a, induces by Proposition
4.2.6 a quotient biextension Q(K) of (M(K), M'(K)) by K* (remember that under our
hypothesis, equality (4.1) holds). O

When considering a 1-motive M = [u : L — G] and its dual MY = [u" : LY — GV]
we have a canonical biextension of (M, MV) by G,,, which is the Poincaré biextension
P. Thus, by the previous corollary, we have an induced biextension of (M (K), MV (K))
by K*, in the case that u and «" are injective.

Definition 4.2.8. If v and v are injective, we denote by Qs(K) the canonical biex-
tension of (M (K), MY (K)) by K* induced by the Poincaré biextension P of (M, M").

Definition 4.2.9. Let C = [u: A — B|,C" = [/ : A’ — B’] be complexes of commu-
tative group schemes over K, P a biextension of (B, B’) by G,,. Let Y be an abelian
group and p : K* — Y a homomorphism. We will say that a p—splitting ¢ : P(K) — Y
of P(K) is compatible with an A x A’—linearization « of P if

w(a(a,a/) ('LU)) = w(w)7
for all a € A(K), ' € A/(K) and w € P(K).

Notice that, assuming u and v’ injective, v is compatible with an A x A’—linearization
if and only if it induces a p—splitting on the quotient biextension Q(K).

Proposition 4.2.10. Let C = [u : A — B],C' = [/ : A" — B’| be complezes of
commutative group schemes over K and P a biextension of (B, B’) by G,. LetY be
an abelian group and p : K* —'Y a homomorphism. Then a p—splitting ¢ of P(K) is
compatible with an A x A'—linearization o of P if and only if

P OTa,A(K) = OTa,A’(K) = 0.
Proof. Suppose 1) is compatible with the A x A’—linearization «. For all a € A(K) and
b € B'(K) we have
P(Ta,a(a,b)) = ¢(a(a,0,0y))
= (0y)
=0,
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and similarly for 7, a.

Conversely, suppose 1 0 7o a4(K) = ¢ o 74 4/(K) = 0. Then for all a € A(K),
a' € A(K) and w € P(K) we have

w(a(a,a ( ))

U(Ta,a(u(a) + b,a’) +1 [w +2 74,4(a,b')])

(
(Ta A/(U(CL) + b? (L/)) + ¢(w +2 Ta,A(aa b/))
(
(

Ta,ar(w(a) +b,d") + ¥(w) + 9(7a,4(a, b))

w).

Y
Y
G

4.3 p—splittings: unramified case

Let K be a field which is complete with respect to a discrete place, with ring of integers
R, and let 7 be a uniformizer. We consider a 1-motive Mg = [ug : Lx — G| over K
with dual M}, = [u}, : LY, — G}/

L Ly

0—Tx —-Gr—Ax —0 0— T} — Gy, - AY, —0

In what follows we will assume that My is strict. Denote the valuation map as
v : K* — Q. Since the canonical v—splittings are well behaved under finite field
extensions, we will even assume that G g has good reduction in the sense of Definition
1.5.2. This implies that M)} is also strict and, moreover, that G}, has good reduction.

We denote by 14 the canonical Mazur-Tate v—splitting of P4, (K'), which exists by
Theorem 2.1.6, case 2. We continue to denote p the monodromy of My, which we have
defined as the composition

i Li(K) x Li(K) 5 Pa (K) 245 Q,

where 7 is the trivialization appearing in the symmetric avatar of Mg (see Section 1.5).
Notice that under our assumptions p factors through Z, since Lx and Gi have good
reduction. Denote by v the composition

¥ Pr(K) = Pa, (K) 24 Q.

We readily see that this is a v—splitting of Px(K), since it is the composition of a
morphism of biextensions and a v—splitting.
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Lemma 4.3.1. Let Mk be a 1-motive with good reduction over R. Then 1) is compatible
with the Li(K) x L}, (K)—linearization of Px(K) if and only if Lk = LY, = 0.

Proof. Notice that the Poincaré biextensions Px and P4, , as well as the trivializations
71, and 77v of Pk, extend to R, since My has good reduction. This yields the following

commutative diagram

0
P(R) ————— P4(R) ——— Q

| |

G(R) x GY(R) —— A(R) x AY(R)

7(R)

L(R) x GV (R) 4

The isomorphism Ag (K) = A(R) induces an isomorphism between the quotients
T (K) ., Gk (K)
TV(R) GY(R)
Since the restriction of ¢ o 77, to Li (K) x TY(K) is the map given by Cartier duality

Li(K) x TH(K) =2 Homg (TV,G,,) x TY(K) <5 K* 5 Q,

where ev denotes the evaluation map, then for every nonzero x € Lg (K) we can always
find ¢g¥ € G} (K) such that ¢ o 71.(x,g") # 0. Therefore, Li # 0 implies that ¢ is not
compatible with the Lg(K) x L}, (K)—linearization, by Proposition 4.2.10. Since we
have the similar statement for L}, we get that compatibility of ¢ with the Ly (K) x
LY (K)—linearization implies that Lx = L}, = 0. The converse is clear. O

Recall the short exact sequences of lattices (1.14) as defined in Section 1.5.1
0—Lx— L —Lxk—0 and 0— Ly — LY, — L}, — 0.

Let {Z1,...,Z,} and {zY,..., )} be basis of Lx(K) and Ly (K), respectively. Choose
a preimage z; € Lx(K) of Z; € Lx(K) and x/ € LY(K) of 7} € LY(K), for every i.
Notice that the set {z1,...,2,} | Lk (K) generates L(K) as a Z—module and, similarly,
{=¥,..., 2y} UL} (K) generates LV(K). Define the matrix

2 = (u(wi f))ig.

Notice that it depends only on the i‘i,if'}/ and not on their preimages. Observe also
that it is invertible in M, (Q) because it is the matrix associated to the non-degenerate
pairing induced by p on Lg x LY,. Thus, we can define a map

w = P(w) = (Yo (g,2)); B (Yorr(eig”))]

where w € Pg(K) lies above (g,g") € Gx(K) x GY;(K). This definiton follows [Wer98,
Prop. 42].
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Theorem 4.3.2. The map ¥y : Pr(K) — Q is a v—splitting of P (K) which is com-
patible with the L (K) x LY, (K)—linearization of Pk (K) if and only if the monodromy
pairing  is non-degenerate. In particular, if ux and uj, are injective then it induces a

v—splitting of Qp(K).
Proof. First we prove that 1, is a v—splitting. If ¢ € K* and w € Pg(K) lies above
(9,9") € Gr(K) x G} (K) then

dar(e+w) =Ple+w) = (o) (g,x]); S (Yorr(ig”)]
= p(e) + (Y(w) = W or)(g,2})); E7" (Wor(zi,g")])
= p(c) + Ym(w).
If w,w' € Pg(K) map to (9,9"),(¢',9") € G (K) x Gy, (K), resp., then

Uar(w +w') = Ylw+w') = (por(g+4,a))); 7 (Y orr(rig")]
= P(w) +y(w') - (1/)°TL(97 xy)
+ TL (9/71} )) <onL(xiagv))?

= (Y(w) — (W o1)(g,2;)); B~ (¥ orr(zig"))i
+ W) = Wor(g,2)); T (Worr(zig")))
= p(w) + P (W').

The case where w,w’ belong to the same fiber over Gk (K) is proved in the same way.
Therefore, 1) is indeed a v—splitting.

We only prove that 1y; o 77, = 0, the case s o 71v = 0 being analogous. Consider
the following commutative diagram

I:KXTI\é‘—>[:KXGvK*»EKXéX

I I I

Lg x T —— Lg x GY, — Lk x G}
EKXT%‘%EKXG%*»EKXG%.
We first prove that ¢y o 7, = 0 on elements of the form (z;,¢V) € L(K) x GY(K).
Indeed, the equality
Yoy (u(x), ) = aor(x,a)) = ple, )
yields
g oTL(wy,9Y) = orr(m,gY) — (o) (u(m),z))); 7" (Worr(ws,g"))]
=yorp(z,g") — (u(z,z))); 7" (W orr(wi,gY)))
)

=orp(a,9”) —orp(z,g’
— 0,
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since (pu(wr, ), ¥ =1 is the [—th unit vector. Remember that the images of x; generate
E(I{), so this implies that ¢ o 77, = 0 on Lg(K) x G} (K) if and only if ¢pr o 77, = 0
on Lg(K) x GY(K).

Now, we have that ¢y o 77, = 1 o 7, on Li(K) x GY,(K). This follows from the
equality

(o (u(@),x})); S (orr(zi,g")] = (u(x,x})); 7" (orr(wi,g"))]

and the fact that p(z, ) = 0 for z € L(K). Observe that this implies that 157 o1, = 0
on LK( ) x GY(K) if and only if 1 o7, = 0 on EK(K) x GY(K).

Let ¢ € Ty (K). Recall that ¢ restricted to Ly x Ty is Cartier duality. Then since
every ¢ € Ly (K) maps to zero on Li(K), we have

Yorp(z,t’) =0,

for all x € I~1K(K).~ Therefore, the restriction of ¢ o 77, to Lk (K) x GY.(K) induces a
bilinear map ¢ on Li(K) x G} (K)

Lg(K) x TY(K) — Lg(K) x G, (K) — Lg(K) x G} (K)
\ \L¢O’TL /,/’///
Q¢

This implies that 1) o 7, = 0 on L (K) x G¥%(K) if and only if ¢ = 0.

Now, consider the 1-motive My = [I~/K — Gk, which has good reduction over K
with dual M}, = [LY, — GY,] (see Section 1.5.1). By the commutativity of the diagram

L x GY, —— Lg x GY —— Gg x GY, — Ag x A},

| | } H

Lk x GYy «—— L x GY, —— Gg x Gy, —» Ag x A},
we see that the pullback along G x G~% — G X @% of the Poincaré biextension
Pr of (Mg, M},) is the biextension of (Mg, M).) by G, x obtained from the Poincaré

biextension Py of (M, M),) by restricting the trivializations. So, if we denote ¢ the
v—splitting of Pr(K') defined as the composition

b Pr(K) — Pa, (K) 25 Q,

we have that 1; o7 = ®, where 7, : I:K X CNJ% — 15[5 denotes the trivialization.
Therefore, 1) o 77, = 0 on Li(K) x GY,(K) if and only if ¢) o 7, = 0. By Lemma 4.3.1,
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this happens if and only if Lk =0.

Putting everything together, we see that s o 77, = 0 if and only if Lk = 0. The
desired result is then obtained by applying Proposition 4.2.10. 0

Corollary 4.3.3. If the monodromy pairing i is non-degenerate then for any unramified
morphism p : K* — Q we can construct a p—splitting of Pk (K) which is compatible with
the Lk (K) x LY, (K)—linearization. In particular, if ux and uy, are injective then there
is a canonical p—splitting of Qar(K).

Proof. Since p(R*) = 0 then p factors through the valuation v

K— " .0

N

Let 1 be the v—splitting of Px (K) constructed in Theorem 4.3.2, which is compatible
with the L (K) x LY, (K)—linearization. Then clearly é o 95 is a p = § o v—splitting
which is compatible with the linearization and thus induces a p—splitting of Qs (K). O

4.4 p—splittings: ramified case

Let K be a finite extension of Q, and consider a branch A : K* — K of the p—adic
logarithm. For a commutative algebraic group H over K we will denote by Ay : H(K) —

Lie H the uniquely determined K —analytic homomorphism extending A as constructed
u

n [Zar96). Let M = [L % G] be a 1-motive over K and MV = [LV “ GV] its dual.

ult uVi . . . .
Let M% = [L > G% and MV% = [L Y= GV¥] be their corresponding universal vectorial
extensions. Remember that we have exact sequences

0—>gGv—>G“—>G—>O, (4.7

0= we— G =GV =0

For the rest of this section, we fix splittings of the following exact sequences of vector
group schemes over K

0 2wy = wg = wp —0, (4.9)
0— WAV — Wav —> Wpv — 0. (410)

These induce the following isomorphisms:
1) weg Zwy X wp and wev = wyv X wpy of vector group schemes.
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i) Gf 2 wpv x G and GV8 22w, x GV# of commutative group schemes, obtained by
defining o := 70 and ¢ as the induced retraction in diagram (4.11), and similarly

for G'VE:
0 0
0 W 4v Gt 0, ¢q 0
K N& H
| L |
//I r /I
0 wov —— s @ 0
g /Y ™ \50'
/¢ /
Wy ——— Wpv
0 0

(4.11)

iii) LieG = LieA x LieT and LieGY = LieAY x LieT" as Lie algebras, obtained from

i) by duality:

f e
IS N LTS
0 LieT LieG —— LieA —— 0
Y eV
k=TT TS RN

0 —— LieTV —— LieGY —— LiedY —— 0.

To fix notations, we recall diagram (1.12):

0 0
T—T
i* J
0 Wpv G# 0 G 0
_
it q
00— wy A# 44 0
0 0

The morphisms in the diagram for GV# are denoted analogously.

We will continue to denote Deligne’s pairing associated to M and its dual as

('7 : )]\D/[el : TdR(M) X TdR(MV) = @Gh % vah — Gy
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Deligne’s pairing associated to A and its dual will be denoted as
(-, )R Tyr(A) x Tqr(AY) = LieA" x LieAV# — G,.
We will also be considering a pairing on the toric parts, defined as follows.

Definition 4.4.1. Define T% := wyv x T and TV% := wy x TV. Let apv be the invariant
differential of TV over wpv which corresponds to the identity map on wpv, and define ar
analogously. Denote by ®r the pairing on LieT? x LieT"V? determined by the curvature
of the invariant differential apv + . We define

()1 = —&p : LieT? x LieT"? — G,.
The following lemma gives an explicit description of (-, -)r.

Lemma 4.4.2. Let L 2 7" and T = GY,, so that LY = 79 and TV = G’,. Then the
pairing

(-, )r: LieT? x LieTV% = (G7 x G%) x (G x G) — G,

s given by the matriz

d r
——
0 0 -1 0
r
. 0 0 -1
1 0 0 0
d
0 1 0 0

Proof. In this case we have that the global differential apv + o on T x TV = (G}, x
GL) x (G¢ x G”)) equals

T d

dt; dz;
R M S S
=1

where z; (resp. y;) are the parameters of G (resp. GY) and t; (resp. z;) are the
parameters of G, (resp. G%,) (see [Ber09, Ex. 4.4]), and its curvature is

" dt; d dz;
d(apv + ar) = Zdl’l z—I—Zd j.

This 2-form corresponds to the following alternating bilinear map on (@Tu X @T\/b) X
(LieT*® x LieTV%)
Ry : (G" x G x G x G") x (G" x G x G¢ x GT) — G,
dz; . T
{aidwiti, {0,515, {cjdy;} {ei%}‘ . D2 @€ = )2, €i
{ajdzi}i, {b, Z] }]’ {C dy;}j, {6, S +Zj Cjb;‘ - Zj bJC;
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Therefore, the bilinear map on LieT? x LieT"V? induced by d(apv + ar) is
dz; dt; fadas}i, {;%5,0,0\
Or({aidw;}i, {bj—"};,{cjdy;}j, {ei——}i) = Rr A
ey 0,0, {c;dy;};, {¢; T }i

= g ae, — E bjcz-
i J

and we see that (-, - )p = —®7 is indeed given by the matrix X. O

Define
= Tdx j7 T = wpy x T — wpy x GF =G,
¢Fi=n"05:G - A¥,

and similarly for jV%, ¢V2. Notice that the exactness of the upper and lower rows in the

diagram
0 0
0 Tt o T g 0
|
0 ;” 7’ C;” T, A% 0
Wrv = Wpv
0 0

induces the exactness of the middle row. We also define
f4:=1d x (f o Lief) : LieG* = wpv x LieG# — LieT" = wyv x LieT,

and similarly for f¥4. We have that f% splits the exact sequence of Lie algebras

Fh
PN
0 —— LieT" — LieGY —— Lie A#* —— 0,
Liej Liegq

since (f o Lief) o Lie j# = f o Liej = Id, and we have a similar statement for fVA.

Consider the morphisms
by FVi ie ¢! x Lie gVt
LieT" x LieT" & LieG? x LieG* M LieA# x LieAV#.

We have the following
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Lemma 4.4.3. For all (h,h") € LieG? x LieG"? we have
(h, )5 = (f2(h), fY4(hY))r + (Lieg*(h), Lie g*(h")) 5.

Proof. The split exact sequence

0 G# y G “wpy —— 0

induces an isomorphism
GH(G) = wyv (GF) @ GH(GY)
Ild— m®0.

Notice that & € G#(G?) and Id € A#(A#) map to the same element in A% (G%), namely
[
q*:

ogh
G*(G?) e » A*(GY) i A#(A#)
ot y 1 0G = ¢ < 1 Id
I I l
(LG = @ Pasrav], ¢V a2) (6" Pastxcav, @7V az) (Pa#xav,sVaz) -

Let Bpv be the invariant differential of GV over G? corresponding to (o € Wav (Gh),
and define fr analogously. Then the identity in G#(G%) corresponds to the extension
[L&s = Pgixgv] of [Lhy — Gl by G, o= endowed with a connection Vy which can be
expressed as a sum

Va = Brv +¢"Vaa.
Since we have the dual statement, then the canonical connection V of P? can be expressed
as a sum

V = (Brv + Br) + (¢ x ¢"*)*V 4.
This together with the split exact sequence
f e

RN =TT

Liey Liegq

gives the desired result. O
Definition 4.4.4. Let n : G(K) — G*(K) and 1V : GY(K) — GY%(K) be a pair of

splittings of the exact sequences
0= wev(K) = GHK) — G(K) =0, (4.12)
0— we(K) = GVH(K) = GY(K) — 0. (4.13)
We say that (n,n"), or also that (Lien, Lien"), are dual with respect to Deligne’s pairing
( Ty )]\D/[el if
( Tyt )]\D/[EZ ° (Lienv Lie 77\/) =0.

We define dual splittings with respect to (-, -)5¢ and (-, - )7 in a similar way.
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In order to prove Proposition 4.4.6 below, we will need the following

Lemma 4.4.5. Let V, G and H be commutative group schemes over K, with V a vector
group, such that we have an exact sequence

0=V -—->G—H—=0.
Let r : Lie H — Lie G be a splitting of
0 — LieV — LieG — Lie H — 0.
Then there exists a canonical homomorphism n : H(K) — G(K) which is a splitting of
0—-V(K)—>GK)— HK)—0
and satisfies that Lien = r.

Proof. By functoriality of the logarithm and the fact that Ay, = Id, because V is a vector
group (see [Zar96]), we have the following commutative diagram

ToAG n

LT TN K ~~
00— V(K) —— G(K) —2— H(K) —— 0

N

. . Lie .
0 y LieV —2° 5 TLieG —2 5 LieH ——— 0,
oo F -t Yoo p -

where 7 : LieG — LieV is the retraction induced by r and n : H(K) — G(K) is the
section induced by 7 o A\g. Since
Lie(7 o A¢) = Lie7 o Lie A¢
=rold

Il
=

we have that Lien = r. Finally, to prove that it is a splitting notice that

(Folg)oi=roliei
= Id.

Therefore, we also have pon = Id. O

Proposition 4.4.6. Let n : G(K) — GYK) and nY : GV(K) — GY*(K) be a pair of
splittings of the exact sequences (4.12) and (4.13), respectively. Then we can define new
splittings 7 : G(K) — GA(K) and 71V : GV (K) — G4 K) of (4.12) and (4.13), splittings
nr: T(K) — TY(K) and n}. : TV(K) — TV3(K) of the exact sequences
TH(K) = T(K) =0,
— TYA(K) = TV(K) =0

0—>LUT\/( )

0 — wp(K) —
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and splittings na : A(K) — A#(K) and nY : AY(K) — AV#(K) of the exact sequences

0— wyv(K) = A*(K) = A(K) — 0,
0— wy(K) = AY#H(K) - AY(K) = 0

such that the following diagram commutes

fxfy Lie gxLie ¢V

LieT x LieTV +———— LieG x LieGY Lie A x Lie AV
Lie nr x Lie n}/wl lLie fix Lie 7}V lLie naxLien)

b Vvh el ie Vi
LieT! x Lie TV! 17 156Gl x Lie GVE ZeCXLCa0 1100 A# « Lie AV#
(4.14)

Moreover, if (Lien, Lien") are dual with respect to (-, - )D¢ then (Lienr, Lien}) are dual

with respect to (-, ), (Liena,Lieny) are dual with respect to (-, )R and therefore

(Lie 7}, LieqV) are also dual with respect to (-, - )P

Proof. Define r4 : Lie A — Lie A# and rp : LieT — Lie T? such that they make the
following diagram commute

. Liej . .
LieT —23 LieG +%— Lie A
| |
T lLien 'TA

!

<+ ~

i ie gl
LieTt <1 LieG! 2% Lie A# |

Notice that 77 : LieT — LieT? is given by rp(z) = (Lie(w o n o j)(z),z). From the
following equalities

pTgOTT:pT‘QOquLieT]OLiej
= foLiefoLied oLieno Liej
= foLiefo Lieno Liej
= foliej
=1Id

and

Liefq ory = Lief4 o Lieg” o Lienoe
= Lief4 o Lien” oLieg o Lienoe
= LiegoLiefoLieg o Lienoe
= LieqoLiefolLienoe
= Liegoe
=1d
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we have that rp and ra are splittings of
0 = wpv(K) = LieT? 22 Lie T — 0,
0= wyv(K) — Lie A* 4 Lie A — 0,
respectively. By Lemma 4.4.5 there exist canonical homomorphisms 77 : T'(K) — T K)
and n4 : A(K) — A% (K) which are splittings of
0= wpv(K) — THK) — T(K) — 0,
0= wyv(K) = AF(K) = A(K) — 0,
respectively, satisfying Lieny = rp, Lieng = ra. Notice that ny : T(K) — THK)

is given by nr(t) = (7 ono j(t),t). We define ny : TV(K) — TVi(K) and
nY : AY(K) — AV#(K) analogously.

Now suppose that (Lien, Lien) are dual with respect to (-, -)P¢l. We will first

prove that (Lienp, Lien}) are dual splittings. For any z € LieT and zV € LieT" we
have

0 = (Lie(n 0 j)(=), Lie(n" 0 j¥) (")) 3"
= (f*oLie( 0 j)(2), f'% o Lie(n” 0 j*)("))r
+ (Lie(g* 010 j)(2), Lie(q"* o " 0 j¥) (")) 3
= (Lienr(2), Lienp(z"))r
+ (Lie(n# 0 5010 j)(2), Lie(r"# 0.5V 0" 0 1¥)(:¥)) 3.
Notice that Lie(n# o & oo j)(z) € Lie A is such that
Lief4 o Lie(n# 0 G ono j)(z) = Lie(gofodono j)(z)
= Lie(qofonoj)(z)
= Lie(q 0 j)(2)
=0,

and similarly Lie % o Lie(7¥# 05" on" 0;V)(zV) = 0. Here we use the fact that § = 6o,
which holds because of the way that we have defined &. This means that

Lie(n® 05 onoj)(z) = (w,0) € Lie A%

is the trivial extension of AV by G, endowed with a j—structure coming from an invariant
differential w € w4v; and in the same way

Lie(mV# 05 on¥ 0 jV)(2") = (w’,0) € Lie AV#,
for an invariant differential w" € w,. Therefore,

0 = (Lienr(2), Lieni(z"))r + ((w,0), (w",0) 3
= (Lienr(z), Lienf(2¥)r,
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i.e. (Lienr,Lieny.) are dual splittings with respect to (-, +)7.

)7¢ consider

To prove that (Liena,Lien}) are dual splittings with respect to (-, -
b€ Lie A and bV € Lie AY. Then we have

0 = (Lien o e(b), Lien" o e¥ (b")) P
= (ffoLienoe(b), f'*oLien" o e (b"))r
+ (Lie(q* o) o e(b), Lie(q"* 0 n¥) 0 e (b"))
— (ff o Lienoe(b), £ o Lien” o e’ (B¥)r + (Lie na(b), Lieny(b)) 2%

Observe that f%o Lien o e(b) € Lie T? is such that

proo (ffoLienoe)(b) = foLie(@oaon)oe(b)
= foLie(#on)oe(b)
~ foelb)
=0,

and similarly pro o f¥3 0 LienY o e¥(b¥) = 0. This means that
ffoLienoe(b) = (w,0) € LieT",
fYoLienY oeV(b) = (w¥,0) € LieT"",
for invariant differentials w € wpv and w" € wy. Therefore,
0= (fh o Lien o e(b), V8o LienY o eV (bY))r + (Liena(b), Lien (b¥)) 7
b

= ((w,0), (@, 0))r + (Liena(b), Lien}(b")) 5
= (Liena(b), Liens (b)) 3,

. )Del

i.e. (Lienga,Lieny) are dual splittings with respect to (-, - )7

If we define

7:LieG 2 LieT x Lie A — Lie G? & Lie T? x Lie A%
h=(2,0) = (rr(z),74(b)),

and similarly for 7, then these are sections of Lie§ and Lie 0", respectively, they make

diagram 4.14 commute and are dual with respect to (-, -)]\D/fl. We can now define

i+ G(K) — G%K) as the uniquely determined section of # such that Lie7j = 7, and
similarly for V. O
We will use the following result in the proof of Theorem 4.4.8.
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Proposition 4.4.7. Let na : A(K) — A#(K) and nY : AV(K) — AV#(K) be a pair of
splittings of the exact sequences

0— wyv(K) = AP (K) = A(K) — 0,

0— wy(K) = AV#(K) - AY(K) =0,

respectively, such that they are dual with respect to (-, -)Qel. Then the following
A—splittings of Po(K) are equal:

i) Define ¥4 as the A—splitting extending the Log —splitting of Pj; induced by
(Liena,LienY) by applying Theorem 3.1.3 and Proposition 3.1.5 (see diagram
(3.10)).

ii) Lety € PA(K) lie above (a,a") € A(K) x AY(K) and denote s,v the rigidification
).

of Paqv corresponding to n}(a"). Then we define

1[)114(9) = Sqv © )\PA,(LV (y)

Kr— 2> LK

j \[”( SV
|
Ap /

Paov(K) —2%% Lie Py ov

J J

A(K) x {a"} ~ M Ted

iii) Let y € Ps(K) lie above (a,a") € A(K) x AV(K) and denote s, the rigidification
of Py av corresponding to na(a). Then we define

V() = 540 AP, 4 (¥)-

K — 2 LK

\[ \[’I Sa
)\p AV /

Pa’Av (K) L) Lie Pa7Av

! !

{a} x AY(K) 27 Lie A

Proof. We will prove that ¥4 = 1/)%. As always, denote (PEUVA) the canonical
h—biextension of (A#, AV#) by G,,. This is equivalent to endowing P! with canoni-

cal j — i—structures, for 7 = 1,2, given by connections V4 ;, respectively. Then V4

#
A#Y

—extension of Aj;\; by G, a#. Now, let w € Q

gives Pﬁl the structure of j—extension of A by G,, g4#v and V42 the structure of

1

. .. be the closed normal bi-invariant
Pi/K
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differential corresponding to V 4 (see Section 3.1) and wy € Q* resp. wo € QL

P JAV#’ Pl JA#
the closed normal invariant differential corresponding to V 4 1, resp. V4. Remember
that ¢4 is the uniquely determined locally analytic A—splitting satisfying diy 4 = p*w.

Pa(K) . P4 (K)
Lo !
A(K) x AV(K) ™% A#(K) x AV#(K)
Let a € A(K) and consider the fiber P, 4v of P4 over {a} x AY. Denote by 14, the

restriction of ¢4 to P, 4v (k). Since the restriction of p*w to P, 4v equals the restriction
of p*wy to Py av, which we will denote a*p*wsa, then 14 , is the unique solution to

da. = a"pws. (4.15)

Finally observe that n4(a) = (P,.av,n4(a)*V4,2), where n4(a)*V 4 is the restriction of
Va2 to Pyq) av. This connection corresponds to the closed normal invariant differential
na(a)*wy, which equals a*p*ws. Thus we see that equation (4.15) is equivalent to

Lieva q = 3q4.

j H YAa \[’7} Lieva o=5a
Pa(K) — 4 K Py av(K) > Lie Py av
| l o
A
A(K) x AY(K) {a} x AY(K) —2 Lie AY
Therefore,
VA(Y) = sa 0 Ap, ()
= Lie ?!)A,a ° APa,Av (y)
= Vaaly):
By an analogous argument we see that 1[1}‘ =14. O

Theorem 4.4.8. Letr : LieG — Lie G? and rY : Lie GY — Lie GV? be a pair of splittings
of the exact sequences
0 — wev(K) — LieG* — LieG — 0,
0 — we(K) = LieGY* = LieGY — 0,
respectively, which are dual with respect to (-, - )ffl. Then we have an induced
A—splitting
Y : P(K)— K.
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Proof. From the splittings of the exact sequences of vector groups (4.9) and (4.10) fixed
at the beginning of the section, we also get the following isomorphisms of Lie algebras
for every g € G(K) and gV € GY(K)

Lie P, 2 LieT" x Lie P, 4v,
Lie P)v 2 LieT x Lie Py 4v,

where we are denoting by a € A(K) the image of g, a” € AV(K) the image of g" and
P, av the pullback of P4 to {a} x AY. These are obtained from iii) by pullback:

J
gl ]_ci e’

~ 1 N ~

0 —— {g} x LieTV o {g} x Lie GV e’ {a} x LieAY —— 0

~

0 0

i
<

and similarly for Lie Pyv.

By 4.4.5, there exist homomorphisms 7 : G(K) — G%(K) and ¥ : GV (K) — GV¥(K)
such that Lien = r and Lien" = r¥. Let np, 0y, na, 0y, 7 and 77" be as in Proposition
4.4.6. Consider the following diagram with the previously introduced notation

G(K)
wpv (K) <5 GHEK) —7 G#(K) = A#(K) .
\_/
e

Take g € G(K) mapping to a € A(K). Then wo7(g) € wpv(K) is an invariant differential
and we denote by s; : LieTV — K the corresponding morphism of Lie algebras. On
the other hand, by 1.3.10, we have ¢" o 7i(g) = (a,V,) € A¥(K), with V, an integrable
connection on P, 4v. By 1.3.7, V, corresponds to a normal invariant differential on
P, 4v which in turn corresponds to a homomorphism 53 : Lie P, ov — K. We define

sq : Lie Py 2 LieT" x Lie Py gv — K

z=(z4,2%) — s;(zl) + 53(22).
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This is a rigidification of Py, considered as an extension of GV by G,,. We define the
rigidification syv : Lie Ppv — K of P,v analogously as

Sgv : Lie ng = LieT x Lie PA@\/ — K
z=(2',2%) — s;v(zl) + 83\/(22),

1

where s oV LieT — K is the morphism corresponding to the invariant differential

" 07"(g") € wp(K) and s : Lie Py ov — K is the morphism corresponding to the
integrable connection on Py ,v given by ¢"% 07" (g") € A#(K).

Let y € P(K) lie above (g,g9") € G(K) x GY(K). Then we define

Y(y) = sg 0 Ap, (). (4.16)

K— A K

R sg
1

I

/

Ap, i
Py(K) ——"— LieP, (4.17)

| l

{9} x G¥(K) 2% LieGY

Notice that we could also have defined v as

$(y) = sp 0 Ap, (9). (4.18)

K — 2 K

Y
1
|

Ap /

Py (K) —2 Lie P (4.19)

| J

G(K) x {g"} —2% LieG
Claim. Both definitions (4.16) and (4.18) of ¢y : P(K) — K are equal.

Proof. Denote (zj,22) := Ap,(y) € LiePy = LieT" x Lie P, ov and (z;v,zgv) =

)\pgv (y) € LiePyv = LieT x Lie Py ov. To prove the claim it suffices to show that

s;(z;) = S;V(Z;v) and 53(23) = ng (zgv).

a) sy(z5) = spv(2,v): Consider (foXa(g), f¥ oAgv(gY)) € LieT x LieT". Then

Lienr(f o Aa(9)) = f*o Liedi(Ac(9))
= (mon(g), fola(g)) € wpv(K) x LieT = LieT?,
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and similarly Lieny.(f¥ oAgv(gY)) = (7¥onY(g"), f¥ o Agv(g")). Then by Lemma
4.4.2 we have
(Lienr(f o A (9)), Lienp(f* o Aav(g")))r = s4(f* 0 Aav(9")) = sgv (f © A (9))-
Noticing that Z;v = foAg(g) and z; = fYoAgv(gY) we get the desired equality.

(25

v =

~—
I

sgv (zgv): Let ya € Pa(K) be the image of y. Then zg = Ap, ,v(ya) and

Qe N
>

s
z P, .v (ya). Notice that we have

Lieg* o Liei(Ac(g)) = Liena o Lieq(Ac(9)) = Liena(Aa(a)),
and similarly Lie ¢¥% o Lie7}Y(\(g)) = Lien}{(A(a")). Therefore, if we denote by s,
the rigidification corresponding to 14(a) and s,v the rigidification corresponding
to ny(a’) then s, = sg and s,v = ng. Finally, by Proposition 4.4.7, we get that
s3(25) = sa 0 Ap, 4 (ya)
= SCLV © A1:71470‘\/ (yA)
= Sg\/ (ZZV).
O

It only remains to check that 1) is in fact a A—splitting. Using, for example, definition
(4.16) we get that for all c € K* and y € P(K) lying above (g,9") € G(K) x G¥(K)
P(e+y) =sg0Ap,(c+y)
=540 Ap,(c) + 550 Ap,(y)
= Ale) +¢(y),

where the last equality holds because of the commutativity of diagram (4.17). Also, for
yv y/ € Pg (K)a

Yy +y)=sg0Ap,(y+19)

=540 /\pg (y) +sg0 )\Pg(y/)
=1(y) +¥().

Finally, from definition (4.18) it follows that v is also compatible with the group structure
of P(K) relative to GY(K). O

Theorem 4.4.9. In the situation of Theorem 4.4.8, assume that n and 1V make the
following diagrams commute

L(K) == L(K) LY(K) == L"(K)
w(K) () V() }M(K)
G(K) — GA(K) GV (K) -1 GVE(K)
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and, moreover, that n = 7, n¥ = 1V, where 7j and 77V are the morphisms of Proposition
4.4.6. Then the A\—splitting ¢ : P(K) — K constructed in Theorem 4.4.8 is compatible
with the L(K) x LY(K)—linearization. In particular, it induces a \—splitting of the
biextension Qp(K) of (M(K), MV (K)) by K* if u and u" are injective.

Proof. We have to prove that the A—splitting ¢ : P(K) — K constructed in Theorem
4.4.8 is compatible with the L(K) x LY(K)—linearization. By Proposition 4.2.10, this
happens if and only if ¥ o 77, = ¢ o v = 0.

Let z € L(K) and denote x : TV — G,,, the homomorphism corresponding to it. We
have the following diagram with exact rows

0 > TV > GV > AY 0
=] |
0 y G, > Pyz),Av » AY 0
| T ]
0 y G Pu(a:) y GV 0,

where P,y av denotes the pullback of P4 to {v(z)} x A, which induces the following
diagram whose rows are split exact sequences of Lie algebras

13 S~ k- S~
0 —— LieTV ——— LieGY ——— LieAY —— 0

TN
K~ . K~ s

0 —— LieG,, —— Lie P,(;) v —— LieAY —— 0

H RN T RN T

0 —— LieG,, — Lie Py, — LieGY —— 0.

By Proposition 1.3.10, u?(z) € G*(K) corresponds to the extension [LY — Py of
MY by G,, induced by —y endowed with a fj—structure Vu(z)- Notice that 7o uu(x) €
wpv (K) corresponds to Lie x € Homp, (LieT", G,), since

ev : Homg (TY, Gp,) — Home, (Homg (L, G,), Ok) = Home,. (LieT", G,)
X — (ev(z) : Homg (L, G,) — Ok ) = Liey.

On the other hand, by Proposition 1.3.7, ¢?ouf(z) € A#(K) corresponds to the extension
Py(z),av of AV by G,, together with the normal invariant differential given by pry :
LieP, ;) 4v = LieGp, x LieAY — LieGy, = G,. We have by hypothesis that nou = u?,
SO

si(x) = Liey : LieT" — K,
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since this is the morphism induced by 7 o n(u(z)) = m o uf(z), and

Si(m) = pry : Lie Pv(x),AV ~ K x LieAY — K,
since this is the one induced by g% o n(u(x)) = ¢° o ul(x).

Let ¢ € GY(K) and denote ya € P4(K) the image of 77(z,g") € P(K). We have
the following split exact sequence coming from the previous diagrams

L
0 —— LieTV —————— LieP,(;) —— Lie Py 4v ——— 0
2 )\Pu(z) (t(z,9Y)) —— )\Pv(m)yAv (ya)

Notice that, under the isomorphism Lie P,,) 4v = K X Lie AV,
AP,y av (ya) = (= Liex(z), Aav (a”)).
Therefore, we get that v o 77(x,g") equals
Yo TL(£7 gV) = Su(zx) © )‘Pu(z) (TL(IB, g\/))
= Si(x)(z) + Si(x)()\Pvm,Av (ya))
— Lie x(2) + pri(— Lie x(2), Aav (a"))

= Lie x(z) — Lie x(2)
=0.

The fact that 1 o 77v(g,2Y) = 0 is implied from the previous arguments, using the
equivalent definition (4.18) of 1. O

Corollary 4.4.10. Let p : K* — Q, be a ramified homomorphism and consider r :
Lie G — Lie G? and r¥ : Lie GY — Lie GV¥ a pair of splittings of the exact sequences

0 — wev (K) — LieG? — LieG — 0
0 — we(K) = LieGY" = Lie GY — 0,
respectively, which are dual with respect to (-, ')]\D/[el. Then:
i) There is a p—splitting 1 : P(K) — Q.

i) Let n : G(K) — GYK) and ¥ : GV(K) — GVI(K) be the morphisms such that
) Let n U P
Lien = r and LienY = vV, given by Lemma 4.4.5. If the following diagrams

commute
L(K)——L(K) LY(K)=——=LY(K)
u(K) ul(K) uV(K) luvh(K)
G(K) —" GA(K) GV (K) -1 GVA(K)
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and n = 7, n¥ = 7V, where 7 and 7V are the morphisms of Proposition 4.4.6,
then the p—splitting v : P(K) — Q, of i) is compatible with the L(K) x
LY(K)—linearization. In particular, if uw and u" are injective then it induces a
p—splitting of the biextension Qp(K) of (M(K), MY (K)) by K*.

Proof. 1) By [Zar90, p. 319], we know that p factors through a branch A : K* — K
of the p—adic logarithm

Kv Qy

Let ¢ : P(K) — K be the A—splitting constructed as in Theorem 4.4.8. Then
tp =001 : P(K)— Qp is a p—splitting of P(K).

ii) We have that
YpoTp =d09 o1y =0,

and similarly for 7v. By Proposition 4.2.10, v, is compatible with the L(K) x
LY(K)—linearization and thus induces a p—splitting of Qy/(K), in the case that
u and u" are injective.

O]

4.5 Pairings on divisors and zero cycles

Let K be a finite extension of Q,. We fix a continuous homomorphism p : K* — Q,
and consider a p—splitting ¢ : P(K) — Q, which is compatible with the canonical
linearization, where P denotes in each of the cases below the Poincaré biextension of
the 1-motives considered. We will use the notation Z"(X) (resp. Z,(X)) for the group
of cycles of codimension (resp. dimension) n on a variety X over K, and Z"(X)o (resp.
Zn(X)p) for its subgroup of cycles of degree 0. We can define pairings on Weil divisors
and zero cycles with disjoint support as follows.

4.5.1 Case of proper varieties

Suppose X is an irreducible proper variety over K, so that X = X, S=SandY = 0.
In this case we have

Pic™(X) = [u: Div%,(X) = Pic®(X,Y)]

3/
and Alb*(X) = Pic™(X)V is the semi-abelian variety
0— T(S/S) — AlbT(X) — Alb(X) — 0
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PK) — Y K

|

uxlId
DIVS/S( X) x Alb*(X) 225 Pic®(X) x Alb*(X)

Consider the Albanese mapping a} : Xyeg — AlbT(X) defined in [BSO01, §3.2]. Define
[+, ]2 Div?(X) x Zo(Xreg)o)' = Qp
D, njx;) = Y njospoay(z;),

where sp is a rational section associated to D. Since the trivialization 77, of the Poincaré

biextension P over {D} x Alb™(X), for D € Div" 5/ (X X), is given by the rational section

sp associated to D and ¥ o7, = 0, we have that (D, n;z;) = 0 when D € Div%, (X).

S/s

D—>K

TL,D=SD

l

{D} x Alb*(X) —— {O(D)} x Alb*(X)

We have the following commutative diagram, where f : X — X denotes the resolu-
tion of singularities considered and Div®(X) is defined as the pushout,

0 0

D1V~ (X) == D1V~ (X)

0 —— Div%(X) —— Div?(X) —— Div?(Xyeg) — 0
: & |

0 — Dive(X) —— Div0(X) — Div?(Xpeg) — 0

Coker(f,) === Coker(f)
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Whenever Coker(f,) is torsion we get an exact sequence

DiVOg/S(X) ®Q — Div(X)® Q — Div’(X) ® Q — 0.

Extending the coefficients of divisors on X to Q we get a pairing on

(DIVO(X) ®Q x ZO(Xreg)O)/

which is zero on Div% y S(X ), yielding a pairing on

(DiVO(X) & @ X ZO(Xreg)O),-
Finally, restricting to integer coefficients we get

[ ] s (DIVO(X) X Zo(Xreg)o) — Qp.

4.5.2 Case of smooth varieties

Suppose X is a smooth and connected equidimensional variety, so that S = 0. In this
case, Pic™ (X) is the semi-abelian variety

0—T(X,Y) = Pic®(X,Y) = AX,Y) — 0.
Since X is connected then so is X. Therefore, with the notations of Section 1.4, we have
ZX =7 and so ZXY) .= Ker(y : ZY — Z) is generated by classes [Y7] — [Y;], where Y7

and Y are connected components of Y (in the case that the connected components are
the same, this is just the cycle 0). The Albanese 1-motive of X is

. % Alb(X)
A1+X:P XV: \/:Z(X,Y)
b™(X) ic” (X) [u %—Im(@Alb(Yg)) ,
where u" is induced by the Albanese mapping a g : Zo(X)o — Alb(X). Define

. > S/
[, ]: (DX, Y) x Zo(X)o) — Qp
(D,> njaj) =Y njospoag(w)),
where sp is a rational section associated to D. Since the trivialization 7zv of the
Poincaré biextension P restricted to {O(D)} x Z(X:¥) is given by the rational section
sp and ¢ o 7pv = 0 then [-, -] is zero on the image of Z(*Y),
Denote ¢ : Y <+ X the closed immersion. We have the following exact sequence

Z()(Y)o L—*> Z()(X)O — Z[)(X)o — 0,
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where the first map is pushforward by ¢. Notice that Zp(Y')o is generated by cycles of
the form y — 3/, for y,y € Y. If Y7, Y, are the connected components of Y such that
y € Yr,y €Yy, then

Alb(X)
Im(® Alb(Y;))
ag oty —y') = ux([Y1] — [Y5)).

Alb(X) —»

(X,Y)

Since |-, -] is zero on the image of Z this yields a pairing

[+, - ]x : (DIVY(X,Y) x Zo(X)o) — Qp.

4.5.3 Case of curves

Let X = C be a semi-normal irreducible curve over K. We have the following commu-
tative diagram

c e

ﬂl 7

C%C‘,

where C’ is the normalization of C, C’ is a smooth compactification of C’ and C is
a compactification of C. Denote S the set of singular points of C, S’ := 7~1(S) and
F:=(C"—-(C"=C - C. In this case, we have

Pic™(C) = [u: Divg, 4(C", F) — Pic(C", F)]

and

AlbT(C) = Pic (C)" = [u" : Divi(C") — Pic’(CO)].
Consider the Albanese mapping ag; : Zo(Creg)o — Pic’(C). Define
[+, ] (DV(C", F) x Zo(Chreg)o) = Qp
(D, Z njmj) — Z nﬂb o0Spo ag(:cj),

where sp is a rational section associated to D. Since 77, 01 = 77v 01 =0 then [-, -] is
zero on the image of Divg,/S(C’, F) and Div%(C").

Since F' C C’reg is closed we have the following exact sequence

Z()(F)() — ZO(Creg)O — Z()(Creg)() — 0.

Notice that Div(C’) = Zy(F)o, because C is irreducible. So we have that [-, -] is zero
on Zy(F)o, giving us a pairing

[, -] DIVY(C', F) x Zo(Creg)o) — Qp.
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We have the following commutative diagram
Ker(7,) ® Q ——= Ker(m,) @ Q

~

Zo(F)o®Q —— Zp(C")o®Q —— Zp(C")o®Q —— 0

Tk T
Vv

Zo(F)o®Q —— Zg(C)o®Q —— Zp(C)g®Q —— 0

~ ~

0 0

Since every closed point in C” is also closed in C’, we have a map Zy(C")g — Div?(C’, F)
which maps Ker(m,) to Div%,/S(C”, F)

Ker(m,) — DivY, 15(C',F)

] I

Zo(C"g —— DiVY(C", F) .

By composing [ -, -]’ with Zy(C")g — Div®(C’, F) and extending coefficients to Q we get
a pairing on

(Zo(C")o ® Q x Zo(Creg)o)'-
Since it must be zero on Ker(7,) ® Q, this yields

(-5 -le = (Zo(C)o x Zo(Creg)o)” — Qp

by restricting to integer coefficients.

4.6 Global pairing

Let F be a global field endowed with a set of places V which are either archimedean or
discrete satisfying that |c|, = 1, for every ¢ € F* and almost all places v. For each place
v let F,, denote the completion of F' with respect to v; for v discrete denote R, the ring
of integers of F, and 7, a uniformizer. Consider a homomorphism p = (p,) : A}, = Y
from the invertible elements of the ring of adeles Arp of F' to a a torsion-free divisible
group Y (this is equivalent to Y being a Q—vector space) which annihilates the image
of R}, for almost all discrete places v, as well as the image of F* under the canonical
homomorphisms, and satisfies the “sum formula” )" p,(c) = 0 for all ¢ € F*. Denote
Vun the set of places v with p, unramified; note that V,,, consists only of discrete places
and that V — V,,, is finite.
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Let Mp = [Lp ir, Gr| be a l-motive over F' such that Mp, is strict for every
v € Vun (see Definition 1.5.2). In particular, this implies that Ag, has potentially good
reduction for all v € V,,,,. Notice that we can always find a finite extension F’ of I’ such
that Aps has good reduction for all valuations w of F' extending a valuation in Vy,;
we will assume that we are in this situation, i.e. that Ap, has good reduction for all
v € Vyn. We are also assuming that Ly and Tr are split; this always happens over a
finite extension of F' as well.

Assume that the canonmical p,—splitting 94, : Pa, (Fy) — Y of P4, given in
Theorem 2.1.6 exists for all v and denote by 1, the composition

by P(K) = Pa (K) 220y,

We have the following

Proposition 4.6.1. For every 2V € LY.(F) and g € Gp(F) there exists t € Tp(F) such
that
Zﬂ’voTLg(g,ﬂ?v) = Z ¢UOTLX(t_197$v),
v

VEV—Vun
and similarly for every x € Lp(F) and g¥ € G}.(F).
Proof. Suppose LY. = Z%. and let ¥ = (mq,...,m,) € L} (F). Notice that this implies

that Tp = (G’”W p- Consider a finite place v in V,,. Since G, has good reduction then
Ap,(F,) = A(R,) and we have isomorphisms

TFU(FU) ~ GFU(Fv)
T(Ry,) — G(R)

Let g € Gp(F). Any representative t, € Tp,(F,) corresponding to the class of g €
G, (F,) satisfies

thy o LY (tvaxv) =1y o LY (g’l,\/)‘

We may choose as representative an element of the form ¢, := (7717} o Ty "*). In this

way, t, belongs to Tr(F') and for every place w # v in Vy,, we have
Yuw o TLY (to, ") = pu(my™ . ..y™r) = 0,

since w(mt™ ... w7™) = 0. Defining

te= [ to=C]] =", m"") € Tr(F)

VEVyn VEVyn v€EVun

we get from the previous equalities that t satisfies
T% OTLY (97 x\/) - 1% OTLY (t7 1,\/)7
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for every v € Vy,. So we obtain

Z%OTLX(Q#UV): Z Yy oTLy(9,2 Z%OTLV g,2")

vEV—Vun vE€Vun

= Y porylga)+ Y vporny(taY)
VEV—Vun vEVun

= Z vaTLV g,x Z vaTLVtm)
vEV—Vuyn vEV—Vyn

= Z Wy 0 TLY (t_lg, :UV).
VEV—Vun

O]

Corollary 4.6.2. Suppose that up and uf. are injective. If the p,—splittings 1, are
compatible with the Lg, X le,ﬂv—lz'nearization of Pr,, for every place v € V — Vypn, then
the pairing (-, -) of Lemma 2.3.1 induces a pairing on Mp(F) x M} (F).

Proof. For g € Gp(F) and 2V € LY.(F) let t € Tp(F) be the element constructed in
Lemma 4.6.1. We have

Zwv oTLY (ngv) - Z w’u OTLY (tilga xV) = 0.

vEV—Vun

Since we also have an analogous equality for every x € Lp(F') and ¢g¥ € GY.(F) then the
composition

Gr(F) x GL(F) — Ap(F) x AL(F) 2y

induces a pairing
(+, Y Mp(F) x Mp(F) =Y.
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