
HAL Id: tel-01936697
https://theses.hal.science/tel-01936697v1

Submitted on 27 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

New Protection Strategies for Integrated Circuits
Jean-Michel Cioranesco

To cite this version:
Jean-Michel Cioranesco. New Protection Strategies for Integrated Circuits. Cryptography and Se-
curity [cs.CR]. Université Panthéon-Sorbonne - Paris I, 2014. English. �NNT : 2014PA010022�. �tel-
01936697�

https://theses.hal.science/tel-01936697v1
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT

Discipline : Informatique

présentée par

Jean-Michel CIORANESCO

Nouvelles Contre-Mesures pour la
Protection de Circuit Intégrés

New Protection Strategies for
Integrated Circuits

dirigée par David NACCACHE

Soutenue le 18 décembre 2014 devant le jury composé de :

M. David NACCACHE Université Paris 1 directeur
M. Christof PAAR RUB
M. Pierre PARADINAS CNAM
M. Jean-Jacques QUISQUATER UCL rapporteur
M. Christophe ROSENBERGER ENSICAEN rapporteur
M. Camille SALINÉSI Université Paris 1
M. Marc WATIN-AUGOUARD Général d’Armée

Jean-Michel Cioranesco| Thèse de doctorat | Décembre 2014

Remerciements

Cela a été un grand honneur pour moi de travailler sous la direction de David Nac-
cache. Je le remercie de m’avoir accordé sa confiance en acceptant la direction de cette
thèse et me faisant découvrir le monde si passionnant de la cryptographie. Merci de
m’avoir donné les clés pour comprendre quelques-uns de ses secrets. L’aide, les encou-
ragements et les conseils que David n’a pas cessé de me prodiguer tout au long de mon
travail de recherche ont été essentiels dans l’élaboration de cette thèse. Je lui exprime
toute ma reconnaissance.

Je remercie chaleureusement Messieurs Jean-Jacques Quisquater et Christophe Rosen-
berger qui ont bien voulu accepter de rapporter sur ce travail.

Mes plus vifs remerciements s’adressent aussi à Monsieur Camille Salinési pour avoir
accepté de présider le jury, ainsi qu’à Messieurs Christof Paar, Pierre Paradinas et le
Général Marc Watin-Augouard qui me font l’honneur de participer au jury.

Je voudrais maintenant me tourner vers mes collègues et vers mes coauteurs. Merci à
tous pour votre amitié et collaboration !

Toute ma reconnaissance, pour sa confiance et ses conseils, à Monsieur Yazid Sabeg sans
qui ma vie professionnelle n’aurait pas pris l’orientation qu’elle a aujourd’hui.

Ma gratitude va aussi à Altis Semiconductor, fonderie française de semi-conducteurs,
qui a permis de donner un caractère appliqué à mes recherches. Je remercie tout particu-
lièrement l’équipe des doctorants, Roman Korkikian, Guilherme Ozari, Nicolas Cham-
petier, Elhadi Amirouche, Rodrigo Portella et Simon Cogliani pour leur soutien. Je tiens
à remercier Fabrice Nogueira et Fabien Lepape de l’équipe du failure analysis pour
leurs conseils, ainsi que Laurent Dulau, Raymond Ribas et Raymond Fillipi pour nos
échanges autour du design analogique. Une pensée également pour les managers d’Al-
tis, Franck Morier, Brahim Belgacem, Arnaud Salomon, Gianmaria Mazzucheli et Pascal
Louis. Je tiens également à adresser mes remerciements à l’équipe de Secure IC, dont
Sylvain Guilley et Jean-Luc Danger, pour leur collaboration. Une mention particulière
pour Hervé Chabanne et Vincent Despiegel de la société Morpho que je remercie pour
nos échanges. Une pensée pour tous ceux que je n’ai pas pu nommer mais qui se recon-
naîtront.

Mes vifs remerciements à la société Rambus et son département Cryptography Re-
search, pour l’opportunité professionnelle qu’ils m’ont donnée. Je remercie Ron Black
et Craig Hampel pour leur confiance.

Enfin, je voudrais remercier mes parents pour leur soutien sans failles, ma femme Chloé
et mon fils Joseph à qui cette thèse est dédiée.

- 3/223 -

- 4/223 -

Jean-Michel Cioranesco| Thèse de doctorat | Décembre 2014

Résumé :

La sécurité matérielle, préoccupation primordiale de nos jours, concernait au départ cer-
taines applications très spécifiques, essentiellement bancaires, grâce à l’avènement des
cartes à puce. Mais aujourd’hui, les domaines d’application de la cryptographie embar-
quée sont très divers et de plus en plus nombreux. Ils vont des domaines très spécialisés
comme par exemple, le domaine médical, à ceux grand public avec, comme cas parti-
culier universellement connu, les téléphones intelligents. Ces derniers se retrouvent au
croisement de toutes les applications personnelles, avec un besoin évident de confiden-
tialité des données et également de sécurité d’accès des moyens de paiement.
Les attaques matérielles invasives (celles qui ont comme résultat des circuits modifiés,
souvent de façon irrémédiable) ont fait de tous temps partie de l’environnement in-
dustriel. La recherche d’innovation associée à la compétition, a constamment poussé les
industriels à analyser les produits de leurs concurrents et à en faire une retro-conception
pour comprendre leur fonctionnement. Ce qui fut vrai pour la mécanique, l’est égale-
ment pour l’électronique. La retro-conception de circuits électroniques permet d’identi-
fier des solutions technologiques ou des conceptions de circuits spécifiques, afin de les
implémenter.
Dans le cas de la sécurité embarquée et des algorithmes cryptographiques utilisés, le
secret à récupérer est double. En premier lieu, trouver de quelle façon a-t-on conçu
et implémenté un circuit spécifique à un algorithme cryptographique ; deuxièmement
trouver les clés secrètes utilisées pour le chiffrement ou la signature. Il s’agit donc de
comprendre une architecture mais également de récupérer des données. Ces clés se-
crètes sont le plus souvent gravées dans une mémoire non volatile, ce qui permet à un
attaquant capable de sonder cette mémoire ou de l’analyser optiquement, de récupérer
le secret, on parle alors d’attaques invasives. Une deuxième classe d’attaques permet-
tant de récupérer le secret d’une puce électronique, est celle des attaques par canaux
cachés. Ces attaques, afin de récupérer des secrets, utilisent l’analyse de certaines gran-
deurs physiques, telle que la consommation de courant par exemple.
Les attaques invasives (qu’on peut caractériser comme sophistiquées) requièrent non
seulement des attaquants experts en semi-conducteurs mais aussi un matériel haute-
ment spécialisé et (par conséquent) onéreux. Ces attaques sont généralement réservées
aux laboratoires de fonderies de silicium ou aux centres de recherche qui possèdent les
équipements nécessaires pour les réaliser. Les techniques employées pour cette classe
d’attaques découlent de celles utilisées dans les laboratoires d’analyses de défauts et
de tests des circuits intégrés. Le but premier de ces laboratoires est la mise en évidence
de défauts dans les circuits lors de la production, le deuxième étant de tester leur bon
fonctionnement et de les déboguer si nécessaire.
L’équipement des laboratoires d’analyses de défauts permet la mise à nu des circuits
encapsulés sans les affecter, d’enlever la couche de passivation ou de certaines couches

- 5/223 -

de métaux pour l’analyse optique, ou même d’enlever ou d’ajouter certaines parties
d’un circuit grâce à l’utilisation d’un FIB. Ces techniques, destinées à l’origine à des
tests de qualité lors de la production de semi-conducteurs, ont été détournées de leur
utilisation première et servent désormais aux attaques invasives. La première utilisa-
tion malveillante de ces outils est la retro-conception. Dans un univers technologique
très compétitif, les différents acteurs d’un même marché analysent des produits concur-
rents afin de comprendre les solutions utilisées pour résoudre un problème donné et
de détecter d’éventuelles violations des droits de brevet. Dès lors que les produits sé-
curisés sont apparus, l’intérêt des ingénieurs et observateurs pour la retro-conception a
fortement augmenté. Prenons l’exemple des cartes téléphoniques à unités qui étaient la
norme de la fin du siècle précédent. Les unités étaient représentées physiquement sur le
circuit de la carte par des fusibles d’une échelle d’une centaine de micromètres. Au fur et
à mesure de la conversation téléphonique, les fusibles étaient grillés en leur appliquant
un courant nominal donné. La possibilité de modifier le circuit et de court-circuiter un
fusible permettrait de créer une carte à utilisation illimitée. Bien heureusement, les ou-
tils nécessaires à un tel exploit sont réservés à des entités de grande ampleur. Mais la
menace, bien réelle, continue de grandir avec la généralisation des cartes à puce.
Les laboratoires de tests, quant à eux, ont pour mission de déboguer les circuits sor-
tant de la production. Les circuits peuvent être testés au niveau des tranches des semi-
conducteurs, ils ne sont alors pas découpés et sont sondés directement. Les tests inter-
viennent également après la mise en boitier où divers logiciels peuvent être téléchargés
dans le circuit. Les techniques de tests peuvent être biaisées à des fins malveillantes
puisqu’elles permettent de sonder un circuit sur des lignes de métaux qui ne sont pas
destinées à communiquer vers l’extérieur. Ceci peut par exemple, permettre de sonder
une ligne transportant les clés secrètes de l’algorithme de chiffrement. Un test de fa-
brication d’une puce requiert l’inclusion d’un circuit spécifique, la chaîne de scan, qui
permet au testeur d’accéder à toutes les portes logiques du circuit afin de vérifier leur
bon fonctionnement. Bien sûr, cette fonctionnalité constitue une menace pour la sécu-
rité embarquée si elle n’est pas implémentée correctement. Un concepteur de circuit
peut par exemple, concevoir un algorithme de chiffrement avec une clé secrète archivée
dans une mémoire non volatile à laquelle seul l’algorithme pourrait accéder. Mais plus
tard, dans l’intégration des différents blocs formant le circuit intégré, un autre ingénieur
peut insérer une chaîne de scan par un logiciel, sans se soucier des contraintes de sécu-
rité d’une partie du circuit, en rendant ainsi les clés secrètes accessibles par la chaîne de
scan. De nombreuses attaques utilisant ce vecteur ont été rapportées. Il faut remarquer
que l’inclusion d’une chaîne de scan dans un circuit sécurisé fait partie des problèmes
les plus difficiles à résoudre. Une solution consiste notamment à utiliser un BIST pour
scanner la partie sécurisée du circuit.
Contrairement au cas des attaques invasives, la mise en place d’attaques utilisant une
chaîne de scan est facile à mettre en œuvre car généralement, elle ne nécessite pas de
matériel très onéreux. Par ailleurs, très souvent les chaînes de scan sont désactivées

- 6/223 -

Jean-Michel Cioranesco| Thèse de doctorat | Décembre 2014

après les tests, au moyen de fusibles. Dans cette situation, la reconnexion de la chaîne
de scan est rendue possible soit en appliquant du courant aux deux bouts du fusible,
soit en utilisant une machine à faisceau d’ions focalisés (FIB) pour effectuer un dépôt
de métal et reconnecter ainsi la partie brulée du fusible.
Les attaques par canaux cachés furent introduites à la fin du dernier siècle sous la forme
d’analyse de la consommation de courant d’un circuit intégré et d’analyse temporelle
de l’exécution d’un algorithme. Les attaques par canaux cachés font référence à l’utili-
sation de différentes grandeurs physiques comme source d’information. L’exemple de
la consommation de courant illustre bien cette classe d’attaques. La technique actuelle
des semi-conducteurs est caractérisée par le fait que les données qui ont été manipu-
lées peuvent être corrélées avec la consommation de courant. Une observation de cette
consommation permet donc d’obtenir certaines informations sur l’opération cryptogra-
phique qui a eu lieu. L’utilisation de la technique de filtrage analogique ou/et digitale,
des techniques statistiques et des transformées de Fourier, rend l’analyse de la consom-
mation de courant particulièrement efficace.
Un exemple « frappant », illustrant bien le concept de canal caché cette fois-ci dans le
monde physique et non pas dans celui des circuits, est l’utilisation des sons émis par les
différentes touches d’un clavier pour déchiffrer des frappes. Chaque touche a un son
correspondant à une fréquence particulière. Si un attaquant peut enregistrer et transfé-
rer dans le domaine fréquentiel les sons émis par les touches d’un clavier en créant une
bibliothèque de ces sons, il sera par la suite capable de lire ce qu’un utilisateur tape sur
ce clavier !
Il existe différents canaux cachés dans un circuit intégré, exploitables avec plus ou
moins d’efforts. Il est intéressant de mentionner que ces vulnérabilités peuvent concer-
ner la couche matérielle dans le cas d’un circuit à application spécifique (ASIC) ou
programmable (FPGA), mais également la couche logicielle embarquée. Ceci est vrai
pour la consommation de courant, les émanations électromagnétiques, les injections de
fautes, l’analyse des temps d’exécution et autres canaux cachés.
Les méthodes pour contrer les attaques invasives et les attaques par canaux cachés sont
nombreuses et nécessitent différentes stratégies en fonction de la menace à contrer. On
parle de contre-mesures pour désigner les actions défensives visant à empêcher l’utili-
sation malveillante d’un circuit imprimé.
Dans le cas des attaques invasives, les méthodes mises en place pour contrer un atta-
quant sont généralement coûteuses en surface de puce. Certaines solutions d’encapsu-
lations sécurisées permettent de rendre les attaques plus difficiles à mettre en œuvre
mais elles ne font que complexifier la tâche sans éliminer la vulnérabilité. Une autre
technique est l’utilisation d’un morceau de circuit fictif visant à perturber l’attaquant
dans son effort de retro-conception, en dissimulant les fonctions de la porte logique au
niveau de la configuration. La solution la plus répandue pour lutter contre le sondage
de certaines lignes logiques dans le circuit est l’utilisation d’un bouclier actif. Un bou-
clier est composé d’un capteur et d’un petit circuit logique ; le capteur est formé d’un

- 7/223 -

ou plusieurs fils en forme de serpentin s’étendant sur une ou plusieurs couches métal-
liques supérieures du circuit. Le circuit du bouclier actif détecte toute modification du
capteur et est ainsi capable de déceler une éventuelle attaque invasive du circuit intégré
en déclenchant un signal d’erreur.
Les contre-mesures concernant les attaques par canaux cachés sont très variées. Elles
peuvent être redondantes lorsque l’origine physique de la fuite d’informations est la
même, c’est le cas pour la consommation de courant et les émanations électromagné-
tiques. La stratégie choisie est bien sûr, la mise en place de moyens supprimant cette
fuite. Dans le cas de la consommation de courant, les stratégies sont multiples, on peut
bien évidemment recourir à l’utilisation d’un brouilleur (sorte de générateur de bruits)
et de filtrer la consommation à l’aide d’une alimentation régulée interne à la puce, mais
l’efficacité reste limitée. Une autre solution consiste en l’utilisation d’une porte logique
balancée, qui consomme la même quantité de courant quelle que soit la donnée mani-
pulée, cette contre-mesure engendre une forte augmentation de la surface du circuit.
La meilleure solution reste toujours et encore, la suppression des vulnérabilités à un
niveau algorithmique en utilisant par exemple, des techniques de masquage.
L’objectif de cette thèse est de proposer de nouvelles solutions pour protéger les circuits
intégrés contre ces attaques physiques.
La première partie décrit les notions d’attaques par canaux cachés, d’attaques invasives
et de retro-conception. Plusieurs exemples de ces types d’attaques ont pu être mis en
œuvre pendant le travail de recherche de cette thèse, ils sont présentés en détail dans
cette partie.
La deuxième partie est consacrée à des propositions de différentes contre-mesures pour
contrer des attaques par canaux cachés ayant pour vecteur la consommation de courant.
La troisième partie est dédiée à la protection contre les attaques invasives en utilisant
divers types de boucliers et capteurs. Nous conclurons ce manuscrit de thèse par la
proposition d’un bouclier actif cryptographique inviolable ayant pour but premier de
contrer le sondage, mais aussi celui de détecter l’injection de fautes et d’être immunisé
contre les analyses par consommation de courant.

Descripteurs :

Attaques par canaux cachés, attaques invasives, attaques par fautes, analyse par consom-
mation de courant, circuit intégré, bouclier actif, émanations électromagnétiques, chif-
frement sécurisé, sécurité embarquée

- 8/223 -

Jean-Michel Cioranesco| Thèse de doctorat | Décembre 2014

Abstract :

Hardware security awareness was at first limited to very specific applications, mainly
focused on the banking industry through the generalization of smart cards. Embedded
security applications are now much more diverse, going from medical applications to
general public applications. Products such as smartphones, which are at the center of all
personal embedded applications, introduced an obvious need for data confidentiality
and security in general.
Invasive attacks on hardware have always been part of the industrial scene. Constant
research on innovation associated with high competition pushed circuit manufacturers
to analyze competitors’ products by reverse-engineering and to investigate their func-
tioning. Reverse engineering enables circuit architects to understand technological or
design solutions, and eventually to implement them.
In the case of embedded security and cryptography, there are two secrets to recover.
First, there is the way designers implemented a specific cryptographic functions, and
second, which secret keys are used for encryptions or signatures. There is both an ar-
chitecture to understand and data to be retrieved. Secret keys are very often stored in a
non-volatile memory, which allows an attacker to probe this memory or in some cases
to read keys optically. These attacks are called invasive attacks. A second class of attacks
is that of side-channel attacks. These ones are using physical manifestations of a crypto
algorithm, such as power consumption, to retrieve a secret.
Invasive attacks form an advance class of attacks that requires a skilled attacker and
very specialized and expensive hardware. These attacks are usually only performed by
foundry failure analysis lab or research labs that have the tools to perform them. Re-
cently, the business of counterfeiting chips became so profitable that some companies
offer as service to reverse engineer and analyze integrated circuits, which is perfectly
legal. Techniques used in this class of attacks come from foundries’ failure analysis or
test laboratory techniques. The goal of these foundries departments is to detect and
understand the defects in circuits during manufacturing, then test and debug circuits
afterwards.
Laboratory analysis equipments enable to depackage an integrated circuit without al-
tering its functioning, to remove the passivation layer, to remove some metal layers for
optical analysis or even to edit circuitry using FIB. These techniques were at first de-
dicated to the quality tests during manufacturing, but have been diverted to serve in-
vasive attacks. The first malicious use of these tools was done for reverse-engineering.
In a very competitive industry environment, different actors of a same market analyze
competitive products to understand which solutions have been used to solve a given
problem and detect possible patent violations. Since smart cards appeared, the interest
in reverse engineering got really higher. Let us take the example of the French phone
smart cards that were based on the concepts of credit units, physically represented on
the card by fuses of a few hundred micrometer scales. While using the phone card, cre-

- 9/223 -

dits are consumed on the card using a fuse controller that burns fuses one by one. If
an attacker would be able to short-circuit one of these fuses, the card would become
an unlimited credit card as the fuse could not be burned. Fortunately, the tools nee-
ded for such an exploit are reserved for large entities, nevertheless the invasive attack
threat exists and will keep growing with the smart card reign. Foundries’ test labora-
tory’s mission is to debug circuits exiting production. Circuits can be tested directly on
wafers, dies have not been cut-out and they get directly probed on the wafer. Tests are
also performed after dies are packaged. Techniques used during the test can be skewed
to serve a malicious purpose since they allow an attacker to probe metal lines which
are carrying secrets. For example, an attacker could probe a key management system
(KMS) key delivery bus carrying keys for an encryption algorithm, which is usually
composed of a single wire in case of serial bus, and could read the key out. The test
phase of chip manufacturing requires the inclusion of a specific circuit dedicated for
testing the correct functioning of logic gates. This functionality is of course, a threat to
embedded security if not implemented carefully. A circuit designer can for example, de-
sign a cipher algorithm using a secret key stored on a non-volatile memory embedding
several countermeasures, but having a DFT engineer inserting a scan-chain into his de-
sign without paying attention to security constraints. Then an attacker entering debug
mode could read out the secret key. Several attacks using this vector have been docu-
mented, and integrating DFT in a secure circuit is a very hard problem to solve. One
solution is to build a BIST at the design phase to scan the secure part of the design. On
the contrary of invasive attacks, attacks using scan-chain are easier to implement since
they do not usually require expensive material. Very often scan-chains are deactivated
after test using dedicated fuses. In this case, reconnecting the scan-chain is possible ei-
ther if a current can be applied on each side of the fuse, or by using a focused ion beam
machine (FIB) to reconnect the burnt fuse.
Side-channel attacks were introduced at the end of the last century with power and ti-
ming analysis. Side-channel attacks refer to the use of physical parameters to deduce
information on a system’s architecture and the data being processed. Power analysis
is the most studied examples of this class of attacks. The actual CMOS semiconductor
technology presents the characteristic that the data which are handled can be correlated
with power consumption. An observation of power consumption can reveal informa-
tion on the cryptographic operation that took place and thus, threaten strong protocols
and algorithms. The use of analog filtering, demodulation and digital signal processing
combined with statistical methods renders power analysis a very efficient tool to break
a cryptosystem.
A very good example of side-channel attacks is the use of sounds to analyze keyboard
strokes. On a given keyboard, each stroke creates a different sound in the frequency
domain. If an attacker can record sounds of each keystroke and can create a library of
these sounds, then he is able to deduce what a user is typing by recording the key-
board sound. Different side-channels can be used on an integrated circuit, accessible

- 10/223 -

Jean-Michel Cioranesco| Thèse de doctorat | Décembre 2014

with more or less effort. It is interesting to note that these leakages concerns the hard-
ware layer in the case of an ASIC or FPGA implementation as well as the software layer.
This is true in the case of power analysis, electromagnetic emanation, fault injection,
timing analysis and other side channels. Countermeasures design specific defensive ac-
tions aiming to prevent certain attacks on a chip. Many hardware countermeasures exist
against invasive and side-channel attacks and they are very different depending on the
threat they address.
In the case of invasive attacks, countermeasures are costly in the chip area. Some pro-
ducts use tempered packaging, which can make attacks more difficult but without eli-
minating the threat. Another technique is the use of fake circuitry to make reverse en-
gineering harder and hiding logic gate functions at layout level. The most common
protection against probing is the use of active shields. A shield is composed of a sensor
and a small digital or analog circuit, the sensor is composed of one or several meander
shaped wires spreading on one or several metal layers. The active shield circuit purpose
is to detect any modification in the sensor and to trigger an error signal.
Side-channel hardware countermeasures are very diverse and can sometimes address
different threats when the physical origin of the leak is shared as it is the case for power
consumption and electromagnetic analysis. The chosen strategy is of course, to sup-
press the information leakage. In the case of power consumption, there are multiple
strategies ; we can for example, use noise generators. Another solution consists in using
balanced logic gates that consumed the same amount of power regardless of the data
being processed, this countermeasure induces a significant increase in the chip’s area.
But the best solution remains to suppress leaks at an algorithmic level by using masking
techniques, in this case designers need to pay attention how they handle the mask and
the data.
The aim of this thesis is to propose new solutions in order to protect embedded cir-
cuits against some physical attacks described above. In a first part of the manuscript,
we detail the techniques used to achieve side-channel, invasive attacks and reverse-
engineering. I could implement several of these attacks during my thesis research, they
will be detailed extensively. In the second part we propose different hardware coun-
termeasures against side-channel attacks. The third part is dedicated to protection stra-
tegies against invasive attacks using active shielding and we conclude this work by
proposing an innovative cryptographic shield which is faulty and dpa resistant.

Keywords :

Side-channel attacks, invasive attacks, differential power analysis, integrated circuit,
active shield, embedded security, cryptography, fault attack

- 11/223 -

- 12/223 -

Jean-Michel Cioranesco| Thèse de doctorat | Décembre 2014

Abreviations

2D 2 Dimensions (circuit)
3D 3 Dimensions (circuit)
AES Advanced Encryption standard
ASIC Application Specific Integrated Circuit
BIST Built In Self Test
CMOS Complementary Metal Oxide Semiconductor
CFG Clock Fault Generator
CPU Central Processing Unit
CRT Chinese Remainder Theorem
DFA Differential Fault Attacks
DFT Default and Fault Tolerance
DIY Do It Yourself
DLL Delay-Locked Loop
ECC Error-Correcting Code
EDC Error-Detecting Code
EMA Electromagnetic Analysis
EMC Electromagnetic Compatibility
FIB Focused Ion Beam
FPGA Field Programmable Gate Array
GCD Great Common Divisor
GEC General Error Counter
HD Hamming Distance
HF hydrofluoric Acid
HNO3 fuming Nitric Acid
HODPA High Order Differential Power Analysis
HW Hardware
HW Hamming Weight
IC Integrated Circuit
KMS Key Management System
LASER Light Amplification by Stimulated Emission of Radiation
LED Light-Emitting Diode
LFSR Linear Feedback Shift Register
LUT Look-up table
Nd :YAG Neodymium-doped Yttrium Aluminium Garnet
NMOS N-channel Metal Oxide Semiconductor
NVM Non Volatile Memory
PA Power Analysis
PLL Phase Locked Loop
PUF Physical Unclonable Function

- 13/223 -

PMOS P-channel Metal Oxide Semiconductor
PRNG Pseudo Random Generator
RAM Random Access Memories
RNG Random Number Generator
RTL Register Transfer Level
SCA Side-Channel Attack
SEM Scanning Electron Microscopy
SEU Single Event Upset
SiP System in Package
SRAM Static Random Access Memory
SW Software
TC Target Circuit
PCB Printed Circuit Board
PCC Pearson Correlation Coefficient
UV Ultra Violet

- 14/223 -

Jean-Michel Cioranesco| Thèse de doctorat | Décembre 2014

Table of contents

Introduction 21

I State Of The Art 25

1 Hardware Attacks 27
1.1 Power and Electromagnetic Analysis . 27

1.1.1 Power Analysis . 27
1.1.1.1 Introduction . 27
1.1.1.2 Setting-up a DPA bench . 29
1.1.1.3 Simple Power Analysis - Timing Analysis 30
1.1.1.4 Differential Power Analysis 31
1.1.1.5 Correlation Power Analysis 32

1.1.2 Example of Attack on AES . 34
1.1.2.1 Correlation Frequency Analysis 38
1.1.2.2 High Order Power Analysis 38

1.1.3 Electromagnetic Analysis . 39
1.2 Fault Attacks . 39

1.2.1 Simple luminous radiations . 41
1.2.2 Laser (Light Amplification by Stimulated Emission of Radiation) . 42

1.2.2.1 Generalities . 42
1.2.2.2 Mounting a Laser Fault injection bench 44
1.2.2.3 Implementation of an attack 46

1.2.3 Voltage Glitch . 50
1.2.4 Clock Glitch . 50
1.2.5 Clock Errors . 51
1.2.6 Temperature . 54
1.2.7 Probing Fault Attacks . 55
1.2.8 Electromagnetic Perturbations . 56

1.3 Invasive Attacks . 57
1.3.1 Reverse Engineering . 57
1.3.2 Optical Analysis . 61

- 15/223 -

1.3.3 FIB Circuit Editing . 62

2 Hardware Security Sensors and Countermeasures 65

2.1 Security Error Management . 65
2.1.1 Global Errors . 65
2.1.2 Integrity Errors . 66
2.1.3 Protective actions . 66

2.2 Side-Channel Countermeasures Taxonomy 67
2.2.1 Power Scrambling . 68
2.2.2 Balancing . 68
2.2.3 Dummy Cycles . 69
2.2.4 Parallelism . 69
2.2.5 Filtering . 69
2.2.6 Power Jamming . 69
2.2.7 Protocol . 70
2.2.8 Atomicity . 70
2.2.9 Homomorphism . 70
2.2.10 Permutation . 70
2.2.11 Masking . 70

2.3 Protection against faults . 71
2.3.1 Fault attacks taxonomy . 71

2.3.1.1 Spatial control . 71
2.3.1.2 Temporal control . 71
2.3.1.3 Number of bits . 72
2.3.1.4 Fault probability . 72
2.3.1.5 Fault duration . 72
2.3.1.6 Effect on bits . 72

2.3.2 Protection against permanent fault 73
2.3.3 Protection against transient faults 73
2.3.4 Protection against frequency or voltage manipulations 73

2.3.4.1 Protection against frequency manipulations 74
2.3.4.2 Protection against voltage manipulations 74
2.3.4.3 Protections against light attacks 74
2.3.4.4 Generic faults countermeasures 75

2.4 Protection Against Invasive Attacks . 76
2.4.1 Impacting spatial localization . 76
2.4.2 Active shield mechanisms . 76
2.4.3 Silicon sensitivity . 76

- 16/223 -

Jean-Michel Cioranesco| Thèse de doctorat | Décembre 2014

II DPA and EMA Countermeasures 79

3 Buying AES design resistance with speed and energy 81
3.1 Introduction . 81
3.2 The Proposed AES Design . 82
3.3 Energy and Security . 83

3.3.1 Power Analysis . 83
3.3.2 Power Scrambling . 84
3.3.3 Transient Fault Detection . 88
3.3.4 Permanent Fault Detection . 88
3.3.5 Runtime Configurability . 89

3.4 Halving the Memory Required for AES Decryption 91
3.5 Implementation Results . 92
3.6 Conclusion . 94

4 A Low-Cost Noise Generator 95
4.1 Proposed Design . 95
4.2 FPGA implementation . 96

5 Antagonist registers to reduce data leakage 101
5.1 Principle of antagonist register . 101
5.2 FPGA Implementation . 102
5.3 Experimental Results . 103

III Protections Against Invasive Attacks 107

6 The Sandwich Capacitors Shield 109
6.1 Introduction . 109
6.2 Description of the shield . 110

6.2.1 Sandwich Capacitor’s Grid . 110
6.2.2 Evaluation circuit . 111

6.3 Implementation . 115
6.3.1 Sandwich Capacitor Design . 115
6.3.2 Simulation Results . 116
6.3.3 Going to Silicon . 117

7 Random Shielding 119
7.1 Introduction . 119
7.2 Overview of Shielding . 120
7.3 Requirements of Shielding . 124

7.3.1 Manufacturability Requirements for the Shielding 124

- 17/223 -

7.3.1.1 Metal extension beyond a via at end of lines 125
7.3.1.2 Metal maximal parallel run length 125
7.3.1.3 Density considerations . 125
7.3.1.4 Antennae rules check . 125

7.3.2 Security Requirements for the Shielding 127
7.4 Solution : Dense Random Spaghetti Active Shield 127

7.4.1 Rationale . 127
7.4.2 Comments on the Approach . 128
7.4.3 A Small Example . 130
7.4.4 Performance on Larger-Scale Circuits 130

7.4.4.1 Shield Quality . 133
7.4.4.2 Genetic Algorithms . 133

7.5 Conclusions and Perspectives . 136

8 Reconfigurable Digital Shielding 139
8.1 Introduction . 139
8.2 Generating Random 3D Hamiltonian Circuits 140

8.2.1 General Considerations . 140
8.2.2 Odd Size Cubes . 141

8.3 A Toolbox for Generating 3D Hamiltonian Cycles 143
8.3.1 From Two to Three Dimensions . 143
8.3.2 Random Cube Association . 148
8.3.3 Cycle Stretching . 150
8.3.4 Constraining Existing Hamiltonian Circuitfinding Algorithms . . . 151
8.3.5 Branch-and-Bound . 154
8.3.6 Rewriting 3D Moore Curves . 155

8.4 Silicon Experiments . 156
8.4.1 Experimental Pre-Silicon Models . 156
8.4.2 Going To Silicon . 157

8.5 Dynamically Reconfigurable 3D Hamiltonian Circuits 161
8.5.1 Reconfigurable 3D Mazes . 161
8.5.2 Description of the Dynamic Grid and the Integrity Verification

Scheme . 163
8.5.3 Vulnerability to Focused Ion Beam (FIB) Attacks 166
8.5.4 Vulnerability to backside FIB attacks 166
8.5.5 Improvement thanks to SIP technology 168
8.5.6 Manufacturing constraint . 168

8.6 Perspectives and Open Problems . 170

9 Cryptographic Shielding 173
9.1 Introduction . 173

- 18/223 -

Jean-Michel Cioranesco| Thèse de doctorat | Décembre 2014

9.2 Cryptographically Secure Shield . 174
9.2.1 Rationale . 174
9.2.2 Structure . 176

9.2.2.1 Logic Level . 176
9.2.3 Connexion to the System . 178

9.3 Test chip and Performances . 179
9.3.1 Layout Level . 179
9.3.2 Area . 182
9.3.3 Power . 183

Conclusion 185

Table of Figures 194

Appendix 195

A Using Hamiltonian Totems as Passwords 197
A.1 Visual passwords . 197
A.2 Hamiltonian Totems . 198
A.3 Recognition Algorithm . 200
A.4 Tests on Synthetic Data . 202
A.5 Prototyping . 204
A.6 Further Research . 204

B Communicating Covertly through CPU Monitoring 205
B.1 History . 205
B.2 Description . 206
B.3 Implementation . 206
B.4 CPU-load-messenger . 210
B.5 Improvements . 211
B.6 Conclusions . 212

Bibliography 213

- 19/223 -

- 20/223 -

Jean-Michel Cioranesco| Thèse de doctorat | Décembre 2014

Introduction

- 21/223 -

Jean-Michel Cioranesco| Thèse de doctorat | Décembre 2014

Nowadays, hardware trust and security play a important role because integrated cir-
cuits (IC) are present in many critical infrastructures as financial, military, health, etc.
Many cryptographic IPs are integrated to assure the security of ICs. But, these crypto-
graphic IPs, in their turn, can be attacked.
Side-channel attacks (SCA) on an integrated circuit performing cryptographic opera-
tions are a hot topic of embedded security. These threats can be classified in three cate-
gories : non-invasive, semi-invasive and invasive attacks.

• Non-invasive attacks are characterized by the fact that the chip does not suffer
any physical modification, its functionality remains intact. These attacks require
very little hardware and are fairly inexpensive to achieve, therefore, they are a
huge problem of IC security. Such an attack can take several forms. It can use the
implantation of the algorithm to monitor the timing of certain executions (example
timing). Another very common threat that we will develop extensively relates to
power consumption and electromagnetic emanation observation. Other form of
non-invasive attacks relates to injecting fault through the chips pads (input, clocks,
power supply) by glitching the signals at precise timing. The goal is to perturb the
functioning of the system by external means as for instance, peaks of tension in
power supply or changes of temperature [8].

• In the case of semi invasive attacks, the chips packaging is removed on its surface
but the silicon remains untouched. The attacker does not have any direct contact
with the surface of the integrated circuit. In this class of attacks one can find tech-
niques allowing reading the contents of a memory cell without direct probing [84].
Some attack scenarios by fault injection are also considered to be semi-invasive
[90, 89]. Semi-invasive attacks require less competence and less investment in ma-
terial than the invasive ones but they still require access to chemicals and advance
knowledge on decapsulation. This scenario is also very common in electroma-
gnetic analysis, where decapsulating the chip allows near field probe to capture
emissions in a more localized manner. On the other hand, on a modern integrated
chip, it is not obvious to locate the best place for performing an attack.

- 23/223 -

• Invasive attacks are a less common attack scenario as they require very advan-
ced knowledge and equipment on integrated circuits. An attack is invasive when
the attacker has the possibility to modify physically the chip. Thus the attacker
can gain direct access to the cryptographic system at various stage of its computa-
tion. An invasive attack begins usually by removing circuits packaging, technique
known as « depackaging » (see Figure 7). The package serves as a protection for
the IC and its bonding, allowing simple connections to the PCB. Very often one
uses fuming nitric acid (HNO3) to dissolve the packaging without damaging the
chip inside and hydrofluoric acid (HF). Then, thanks to a probing station, the at-
tacker can have direct access to top layer metal lines of the circuit and observe
directly the signals which transport the data. Recently advanced techniques ba-
sed on focused ion beam (FIB) have been used to modify a circuitry [46]. Invasive
attacks are generally very efficient but in return, they require not only a high com-
petence of the attacker but also very expensive equipment [60, 89]. They also serve
to clone chips which contain PUFs.

This thesis is organized in three chapters. In the first chapter we will review the state
of the art in hardware attacks. In the second chapter we will then propose some HW
DPA countermeasures. And in the third chapter we will propose invasive attacks coun-
termeasures.

- 24/223 -

Jean-Michel Cioranesco| Thèse de doctorat | Décembre 2014

Part 1

State Of The Art

- 25/223 -

Jean-Michel Cioranesco| Thèse de doctorat | Décembre 2014

1 Hardware Attacks

1.1 Power and Electromagnetic Analysis

1.1.1 Power Analysis

1.1.1.1 Introduction

Differential Power Analysis (DPA) is a non-invasive attack that uses the biases power
consumption of hardware devices to access keys and other secret information. Effective
countermeasures are needed to protect keys and prevent attackers from using DPA for
fraud, piracy, cloning, reverse engineering and espionage. In this paper we will present
a protection circuit aiming using amplitude and time domain noise generation to hide
the cryptographic algorithm signature. Power analysis was first introduced by P. Ko-
cher [59], he discovered that the analysis of computers or microchip power consump-
tion provide information about the operation they process. This is precisely one of the
reasons why an hardware implementation of a cryptosystem might be vulnerable.

FIGURE 1.1 – schematic principle of power analysis

- 27/223 -

Side channel attacks have proven that a hardware implementation of a strong algo-
rithm does not necessarily imply a secure cryptosystem, many studies [58, 59, 66] have
shown that information leaks through power consumption or electromagnetic emana-
tions. Transistors are voltage controlled gates, when a current is applied to the gate,
current flows across the substrate and thecharge is delivered to the rest of the circuit.
Arrangement of transistors is forming logic gates, and arrangement of gates forms a
complex circuit ; transistors also serve to create registers which are the mean to store
data in the circuit between operations. Whenever a register is changing state, switching
from 1 → 0 or 0 → 0, it involves a certain power consumption.

FIGURE 1.2 – Power consumption of a register for the four different possible switches

Figure 1.2 presents the differences in power consumption when a register is switching
states. We simulate a one bit register with reset in a 130nm library, and we observe that
the power consumption is different according to the value which is stored.
As registers switches are directly linked to the data manipulated by the cryptographic
algorithm, an attacker can use statistical tools on the power signatures to retrieve the
secret key of a cryptographic algorithm. The overall power consumption of the chips
reflects the activity of all individual transistors, including registers, and is correlated to
the computation being performed. In this paper we will investigate the idea of using se-
cured registers in cryptosystems, I.E. registers that consume the same power regarding
the data manipulated. Secured register would suppress the power leakage source and
thwart Power Attacks.

- 28/223 -

Jean-Michel Cioranesco| Thèse de doctorat | Décembre 2014

1.1.1.2 Setting-up a DPA bench

A dpa platform can be set-up with regular lab equipment. For our setup we are using
the following equipment :

• A computer for data acquisition and post-processing
• An FPGA board or a micro controller to load HW and SW designs to analyze. De-

velopment boards have usually their power supply pins easily accessible on the
PCB, a common practice is to analyze the current flowing through a shunt resistor
placed on the power supply. It is a better practice to measure power consump-
tion after the power regulator as it is filtering part of the meaningful information.
The board will be programmed by the computer through USB interface, but it
also needs to receive encryption command. We achieved this using serial interface
(RS232) and a UART interface in the FPGA.

• An oscilloscope with a sampling rate higher than the device operating frequency
and trigger capability 1.3. In our setup, when encryption is launched on the FPGA,
a trigger signal is issued in the RTL on one pin which is connected to the oscillo-
scope trigger input. This enables to start data acquisition at the same exact point
of encryption, we thus avoid the need of aligning traces during post-processing.
In device analysis, misalignment is a major issue which is overcome in our setup.

• A voltage probe that enable us to measure the current passing through the shunt
resistor. (or an EM probe)

FIGURE 1.3 – DPA bench using an oscilloscope to acquire power traces from a HW cryptosystem running on FPGA

- 29/223 -

The DPA analysis is performed in two distinct steps :

• Data Acquisition : The bench computer is running an acquisition software. This
software is composed of several part. First it contains the FPGA compiler and pro-
grammer that enables programming the HW design to the FPGA using USB and
then the JTAG debug chain. This tool allows us to synthesize our design to the
FPGA.
The second part is composed of a C code which send an encryption request to the
FPGA through RS232. For instance our AES design was receiving as input the 128
bit plain-text appended to the 128 bit key. Once the encryption is terminated, the
design is sending back the cipher through this same RS-232. In the RTL design,
we create a state for starting encryption which triggered a flag on a pin of the
FPGA board. We connected this pin to the trigger input of an oscilloscope. When
the oscilloscope receives an input trigger, he starts the acquisition of the measured
signals for a defined number of sample. We adjusted the number of samples plus
an offset to match the region of the encryption we want to capture. Once acquired
the trace is dumped to the PC, in our case the oscilloscope was using a GPIB in-
terface.
This process achieves the acquisition of one sample composed of a plain-text, a
key, a cipher-text and a power trace. This process is automated to be repeated
again and again to achieve several hundred of thousands of encryptions.

• Data Post Processing : Once the captured a sufficient number of traces, this data
needs to be post processed. The first thing to do is needed is to realign traces. For-
tunately, due to our HW trigger, traces were sufficiently aligned to post-process
them without realignment. Realignment is a complex process, first a reference
trace is chosen and some characteristic points are selected, usually peaks of po-
wer related to an operation. According to these characteristic, traces are analyzed
one by one, and offset so that the chosen points are aligned.
After alignment, one needs to build a power model to correlate power with com-
puted data. The principle of power modeling is to predict the power consumption
given a key guess, for each trace correspond one value of predicted power. This
power model is then correlated with actual power consumption. We can also sort
traces according to a selected bit and a key guess.
Correlation curve or dpa curve that will present a spike are of course very likely
to correspond to a correct key bit or byte guess. The process is then iterated to
retrieve the all keys.

1.1.1.3 Simple Power Analysis - Timing Analysis

Simple power Analysis is based on the sole observation of a cryptographic device power
consumption. It can be performed using very little equipment, a simple oscilloscope

- 30/223 -

Jean-Michel Cioranesco| Thèse de doctorat | Décembre 2014

and voltage probe to monitor a chip’s power consumption. It is a first approach on
a black box attack to identify the type of algorithm or implementation we’re dealing
with by counting the number of rounds. On simpler algorithm SPA allows to disclose
secret data by direct observation of power curves and identifying meaningful patterns.
SPA involves understanding data being manipulated by the sole observation of power
consumption over time.

For unprotected implementation, a single trace can be enough to get information on a
cryptosystem. The famous example of RSA modular exponentiation [58] shows that a
single power trace of an unprotected information can potentially reveal the secret key.
This information can be done by observing the amplitude of the power consumption,
or as in the RSA example it can be done by using the timing of an execution.

1.1.1.4 Differential Power Analysis

Differential Power Analysis as it was introduced is a rather simple but efficient way of
showing a power leakage. The principle is to capture a certain amount of power traces
from a given crypto operation using the same secret. DPA is traditionally operated on
input bits, but there are many other ways power leakage can be proved. Let us take
a given algorithm, we perform a certain amount of operations using the same secret,
usually a secret key, and we capture the corresponding power traces. We then select one
of the input bits of the algorithm and we separate the traces in two subsets according to
the value of this input bit, "0" or "1". We then take the difference of the mean of the two
subsets, and we obtain what is called a DPA trace. This trace is flat but presents some
spikes where the selected input bit is used, this allows us to prove there is a leak and
tells us where and how the input bit is used.

This principle allowed us to prove there is information leaked in the power trace, but
it can also be used to retrieve the secret key. Let us use the same principle but with a
key hypothesis. We take the example of AES 128bit. We have a set of traces T and a
ciphertext C encrypted using the same unknown key K. Let us make an hypothesis on
a key byte Ki, in the last round of AES the last operation is Sbox and then XOR Key, we
call D the input of the Sbox, they verify the following equation :

Ci = Sbox(Di) ⊕ Ki.

We know the ciphertext C and we guessed the i-th byte of the key i. We can then revert
the equation and compute the corresponding intermediate byte Di according to our key
guess,

Di = Sbox−1(Ci ⊕ Kj)

We select one bit in the byte i of the intermediate, and we separate traces in two subsets
according to the values of this bit. We then trace the DPA curve, and if a spike is present,

- 31/223 -

P[0]

plaintext

P[1] ⊕

K[0]

key

K[1]

C[0] C[1]

ciphertext

FIGURE 1.4 – Simple cipher example

there is a chance we guessed correctly the byte or parts of the bits of the key. With
iteration, and guessing all bytes of the key, we can then retrieve the overall AES key.

1.1.1.5 Correlation Power Analysis

Correlation Power Analysis is based on the same principle, but uses a statistical test to
determine correlation between power and data. To understand how CPA works, it is
important to spend some time on power modeling. Let us take the example of a simple
padding encryption, the key is simply XORed to the text 1.4.

In sequential circuits, data intermediates and outputs are stored in registers. When data
is written to C[i] it will consume power proportionally to the data value. Depending on
attacker’s knowledge on the preceding state of the register, different power models are
used. The most used power models are the Hamming Weight model and the Hamming
Distance model. The Hamming Weight is very useful when the preceding states of the
register are unknown. It is basically counting the number of ones in a set of registers.
Figure 1.5 represents this power model applied to our simple XOR encryption example.
On the contrary, when the preceding state of registers is known or can be guessed, we
use the Hamming Distance, which computes the number of changing bits in a set of
registers. An example of use of Hamming Distance to compute a power model is given
in section 1.1.2.

We then apply this simple power model to the example given on Figure 1.4. We start
with a key guess of K = {0, 0}, it is necessary to build a different power model for every
key guess. We obtain the power model displayed on Figure 1.6.

Given a key guess, the Power Model we obtain predicts the power consumption of the
encryption operation (Figure 1.4) according to the input plaintext. The goal is now to
correlate the predicted power consumption with the real power consumption acquired
through an oscilloscope. In some case when the preceding state of registers is known,
we can use the Hamming Distance between the preceding state and the predicted state
to mount a power model (cf. 1.1.2).

- 32/223 -

Jean-Michel Cioranesco| Thèse de doctorat | Décembre 2014

power

time

{1, 1}

{1, 0}, {0, 1}

{0, 0}

Plaintext Cyphertext Power Model
{0, 0} {1, 0} 1ε
{1, 0} {1, 1} 2ε
{0, 1} {0, 0} 0ε
{1, 1} {0, 1} 1ε

FIGURE 1.5 – Building a power model based on Hamming weight

Plaintext Plaintext ⊕ K Power Model
1 {0, 0} {0, 0} 0
2 {0, 1} {0, 1} 1
3 {1, 0} {1, 0} 1
4 {1, 1} {1, 1} 2

FIGURE 1.6 – Power model corresponding to key guess K = {0, 0}

A single trace contains too much noise to be correlated as is, we need to use a batch
of multiple encryptions to perform an efficient attack. Multiple statistical tools exist to
correlate real power consumption with the predicted one, they are called distinguisher.
We will introduce here the most used distinguisher which is the Pearson correlation co-
efficient. The following formula gives the Pearson correlation between two population
x and y :

ρxy =
cov(x, y)

σxx.σyy

=
E(xy) − E(x).E(y)

σx.σy

,

where cov is the covariance, σx is the standard deviation of x , µx is the mean of x , and
E is the expectation.
If we apply the formula to a batch of n samples, we obtain

ρxy =
n

n∑
i=1

xiyi −
n∑

i=1
xi

n∑
i=1

yi

√
n

n∑
i=1

x2
i − (

n∑
i=1

xi)2

√
n

n∑
i=1

y2
i − (

n∑
i=1

yi)2

Let us apply this formula to our batch of samples, we acquired n traces of p points
corresponding to n encryptions. We build a first vector V1 composed of n elements, each
element corresponds to the power model computed for the corresponding trace. We
then build a second vector of size n*p, containing the n values of each point in time for
all acquisitions. We then compute the Pearson coefficient for each point in time resulting
on a Pearson vector of size n. The point of highest correlation among all traces indicates

- 33/223 -

the best candidate for a correct guess. Other distinguisher than Pearson coefficient are
used to correlate data with power consumption. Statistical test as Mutual Information
Analysis [41] taken from the information theory, or the Kolmogorov-Smirnov test has
been used for power analysis. There is a constant debate in the research community on
what distinguisher is the most efficient and this is mostly depending on the attacked
implementation.

1.1.2 Example of Attack on AES

We implemented a basic 128bits AES in hardware, the code is following the FIPS-197
standard document [73]. The first clock is used to write plaintext ⊕ key to register RS,
the next ten rounds are conventional AES rounds. In this implementation we use one
128 bits register noted RS, we note RSi the register state at round i. It is the rewriting of
this register that we will attack.

FIGURE 1.7 – Block Diagram of our fisrt AES version

The AES blocks are functions operating on arrays of 16 elements of one byte, the 128
bit input is split into words of 4 bytes being the four lines of the array. The SubByte
function is a substitution of each element of the array using a look-up table, each byte
in the array is updated using an 8-bit substitution box, the Rijndael S-box.

- 34/223 -

Jean-Michel Cioranesco| Thèse de doctorat | Décembre 2014

a0,0 a0,1 a0,2 a0,3

a1,0 a1,1 a1,2 a1,3

a2,0 a2,1 a2,2 a2,3

a3,0 a3,1 a3,2 a3,3

a1,1 SubBytes

s0,0 s0,1 s0,2 s0,3

s1,0 s1,1 s1,2 s1,3

s2,0 s2,1 s2,2 s2,3

s3,0 s3,1 s3,2 s3,3

s1,1

Rijndael Sbox
s1,1 = Sbox(a1,1)

a0,0 a0,1 a0,2 a0,3

a1,0 a1,1 a1,2 a1,3

a2,0 a2,1 a2,2 a2,3

a3,0 a3,1 a3,2 a3,3

ShiftRows

a0,0

a1,0

a2,0

a3,0

a0,1

a1,1

a2,1

a3,1

a0,2

a1,2

a2,2

a3,2

a0,3

a1,3

a2,3

a3,3

a0,0 a0,1 a0,2 a0,3

a1,0 a1,1 a1,2 a1,3

a2,0 a2,1 a2,2 a2,3

a3,0 a3,1 a3,2 a3,3

a0,1

a1,1

a2,1

a3,1

MixColumn

b0,0 b0,1 b0,2 b0,3

b1,0 b1,1 b1,2 b1,3

b2,0 b2,1 b2,2 b2,3

b3,0 b3,1 b3,2 b3,3

b0,1

b1,1

b2,1

b3,1

Polynomial multiplication
over GF(28)

- 35/223 -

a0,0 a0,1 a0,2 a0,3

a1,0 a1,1 a1,2 a1,3

a2,0 a2,1 a2,2 a2,3

a3,0 a3,1 a3,2 a3,3

a1,1 AddRoundKey

b0,0 b0,1 b0,2 b0,3

b1,0 b1,1 b1,2 b1,3

b2,0 b2,1 b2,2 b2,3

b3,0 b3,1 b3,2 b3,3

b1,1

b1,1 = a1,1 ⊕ key1,1

We will here present an attack on the last round of AES, our primary target for the
attack is the register RS. At the last round, RS gets rewritten from RS10 to ciphertext.
This operation consumes power and some information is leaked through that power.
We will first build a basic power model on a single key byte.

target

Ciphertext

A
d

d
R

ou
nd

K
ey

−
1

target

Sh
if

tR
ow

s−
1

target

Sb
ox

−
1

target

Register at beginning of Round 10

We are building our power model on the operation O(RS10 ← C) which consumes a
power P ∝ HD(RS10, C).
Or HD(RS10, C) = HW (RS10 ⊕ C)
So we choose one byte of the key that we guess among the 28 possibilities, and we build
a power model for this guess. We then correlate the power model we have created with
the power traces of the corresponding encryptions, we compute the Pearson correlation
coefficient for each point of the graph and we look for a correlation on the 10th round.
Most of the correlation curves are flat or do not present any significant spike, but for
one key guess we find a correlation indicating a correct key guess (see Figure 1.8).

- 36/223 -

Jean-Michel Cioranesco| Thèse de doctorat | Décembre 2014

FIGURE 1.8 – Highest correlation point according to the different key guesses for a batch of 200 traces

For this unprotected implementation, only 200 traces were needed to have a serious key
candidate among all possibilities. Figure 1.9 represents the correlation of this correct key
guess over time, we can see the moment in time where the correlation happens, and as
expected, it is happening during the tenth round of AES.

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 0 20 40 60 80 100 120 140 160 180 200

P
o

w
e

r
c
o

m
s
u

m
p

ti
o

n
 (

m
V

)

Time (ns)

AES encryption
Correlation

FIGURE 1.9 – AES power trace versus time (in green) and correlation versus time (in red) for a batch of 5000 traces

- 37/223 -

1.1.2.1 Correlation Frequency Analysis

Analyzing a power trace in the power domain presents the drawback of capturing the
entire spectrum of frequencies, which contains several undesired signals. To realize
DPA, we actually do not need to analyze the entire spectrum of frequencies, but only the
frequencies that are carrying meaningful operation. Using Fast Fourier Transform we
can convert power traces from power domain to the frequency domain. Once in the fre-
quency domain, unwanted frequencies can be filtered. In synchronous designs, clocks
are re-written at every positive clock edge, thus the clock frequency is carrying the regis-
ter signal. After removing unwanted frequencies, we can then flip back from frequency
to the power domain by using FFT and perform correlation of the cleaned power traces.
We will obtain a much better attack result after operating this post-processing.

FIGURE 1.10 – AES power trace in frequency domain (in red) and correlation versus time (in blue) for a batch of 1000 traces

1.1.2.2 High Order Power Analysis

High order power analysis is targeted towards protecting implementation by using
masking techniques. The statistical techniques used are similar to the one we descri-
bed, but HODPA implies more post-processing of the traces and so requires more time
to be achieved. We refer the reader to [76] for further information on this technique.

- 38/223 -

Jean-Michel Cioranesco| Thèse de doctorat | Décembre 2014

1.1.3 Electromagnetic Analysis

The principle of electromagnetic analysis is the same as power analysis. Both attacks
are using the same post processing techniques, the difference lies on the source of the
leakage. Current and the electromagnetic field are linked through the Maxwell’s equa-
tion ; when a current flows, it creates a proportional local electromagnetic field.
Instead of measuring power consumption of the target circuit through a shunt resis-
tor, we will measure local electromagnetic variations using an EM probe. Professional
probes exist on the market, they were at first intended to help Electromagnetic Com-
patibility (EMC) by measuring local magnetic field emission. Those professional EMC
probes are a perfect match for recording power traces, but anyone can build homemade
probes by using a little coil, a filter and an amplifier. In Figure 1.11 one can see a very
small coil made of insulated copper wire, that we rolled around a toothpick. The results
obtained with this DIY setup were pretty decent.

FIGURE 1.11 – 0.5cm wide coil that serves as an local EM probe

1.2 Fault Attacks

The first observation of induced faults in an electronic system was accidental. It was no-
ticed that radioactive particles produced by elements, which were naturally present in
chips’ packaging [67], induced errors in their functioning. More precisely, the residuals
of Uranium-235, Uranium 238 and of Thorium-230 which are present in packaging, de-
cay in Plumb-206 by radiating alpha particles. It was observed that these particles create

- 39/223 -

charges that cause bits flipping in the memory. Even if the particles are present at low
rates of two or three parts by a million, these tiny quantities are sufficient to affect chip’s
behavior. It happened that the research and the simulation of the effect of cosmic rays
on the semi-conductors started at the same time [106]. Cosmic rays are very weak at
ground level because of the protective effect of the terrestrial atmosphere but their ef-
fect increases in the upper atmosphere and in space. This is worsened by the fact that
the error probability in a system highly increases with the number of RAM cells. This
stimulated research in this field by entities as NASA or Boeing. The origin of this re-
search on fault tolerance was related to counter electronic circuits’ weaknesses in face
of charged particles.

Significant efforts in engineering have been made in order to harden electronic devices
supposed to work in hostile environments. They have been done mainly by using simu-
lations allowing to design circuits while studying the effects of random faults. Several
methods for injecting faults in hardware were discovered and experimented. All these
faults cause similar behavior for the affected chips. An example that we will detail later
on is the use of lasers in order to imitate the effect of charged particles on a chip and flip
bits in a much localized manner [44].

Fault injection is an active attack, it modifies the behavior of a chip, either temporarily
or permanently. If an attacker is able to modify the contents of a memory space or inject
a fault during a cryptographic algorithm execution, some errors in the computation will
almost certainly occur. If a final erroneous result, depending on the value of the secret,
is furnished to the attacker, he might obtain some information from this result by com-
paring it with a correct result for the same operation.

This class of attacks represents a real threat for the embedded devices and often com-
mercial products suffered frauds subsequent to fault attacks.

There are many ways to produce faults on an electrical circuit [8]. The malicious exploi-
tation of such faults injection is also various : exploitation going from a simple alteration
of the number of rounds in a symmetric cryptographic algorithm execution [29], to dif-
ferential fault attacks (DFA) which are mathematical in nature. We will now detail very
briefly some of the most used attack methods against secure devices which require pro-
tections.

In a malicious context, faults can be caused by a large range of intrusive and non-
intrusive methods such as lasers, electromagnetic perturbations, voltage variations, clock
glitches, or temperature modification. In this section, we will describe the most common
fault injection techniques.

- 40/223 -

Jean-Michel Cioranesco| Thèse de doctorat | Décembre 2014

FIGURE 1.12 – Attack Bench of a white light attack. Notice the presence of a simple flash of an commercial camera. (photo courtesy
of Gemplus)

1.2.1 Simple luminous radiations

In 2002, Skorobogatov [90] proposed to use a concentrated light ray for injecting faults.
A simple camera flash was used as a white light source. Attackers employed afterwards
a microscope and aluminum foil for concentrating light rays. The attack allows modi-
fying chosen bits in SRAM memory contents. The chip has to be decapsulated in order
to let the light rays reach the targeted zone. Nevertheless, this attack is very powerful
since the attacker has control over targeted bits in the memory. All the electronic cir-
cuits are sensitive to photoelectric effects. The current induced by photons can provoke
faults if the circuit is exposed to an intense light during a short period of time. This is a
low-cost way for injecting faults [91].

- 41/223 -

WL
Word Line (Row Line)

BL
Bit Line (Column Line)

BL
Bit Line (Column Line)

__

FIGURE 1.13 – Typical architecture of a SRAM cell

1.2.2 Laser (Light Amplification by Stimulated Emission of Radia-

tion)

1.2.2.1 Generalities

A laser is an electromagnetic radiation in the visible or invisible domain. The laser light
is monochromatic, unidirectional, coherent and artificial. A laser beam can be very nar-
row (only some micrometers wide). The beam can pass through various obstacles before
impacting a target for a very short period of time.

It is well-known that lasers alter circuits’ functioning. The nowadays foundry techno-
logy node is in the nanometer range. This very narrow beam added to the temporal
precision of lasers, makes them a particularly strong attack vector.

The photoelectric effect of laser on the silicon can be resumed as follows : the exposure
of SRAM (Static Random Access Memory) to a laser causes bits to flip [91, 34, 8, 26], phe-
nomenon known under the name of Single Event Upset (SEU). By adjusting the beam
energy below the destruction threshold of the circuit, the target can perturb the chip’s
functioning without inducing permanent faults.

A conventional SRAM bit cell (see Figure 1.13) is composed by two inverters. Each cell
has two additional transistors which control the access to the content of the cell during
the reading and writing operations. Each inverter is composed of two transistors, so a
basic SRAM cell is composed of six MOS.

Every state of the four transistors corresponds to a register value. By construction, the
cell admits only two stable states, 1 or 0. In each stable state two transistors are ON
whereas the two others are OFF.

If a laser beam reaches the drain junction of the PN junction of the blocked transistor
1.14, the charge induced by the beam in the junction creates a temporary current that

- 42/223 -

Jean-Michel Cioranesco| Thèse de doctorat | Décembre 2014

WL
Word Line (Row Line)

BL
Bit Line (Column Line)

BL
Bit Line (Column Line)

__

0 1

1 0

FIGURE 1.14 – SRAM cell state shifting due to a laser hit

makes the transistor flowing and inverts the logical output value of the inverter [34, 8].

From an adversary point of view, another advantage of laser fault injection is the re-
producibility. Identical faults can be reproduced by automating the laser trigger and
parameters and having control over the target.

In a laser attack, the attacker usually controls the diameter of the beam, its wavelength,
the quantity of the emitted energy, the impact coordinates (i.e., area of the chip where
we want to induce faults) as well as the exposure duration. Sometimes, the attacker can
also control the timing of the attack (laser trigger synchronization with a precise clock
cycle), the target clock frequency, Vcc and the target temperature.

Finally, the laser can be targeted from the top of the die but also from the backside,
where some more localized faults can be induced in the substrate. It is important to no-
tice that the two faces of the chip have very different behaviors once exposed to a laser
beam,

• Front side attacks are particularly appropriate for green lasers (�532 nm wave-
length). The optical visibility of a target’s logical block makes front side attacks
much easier than the backside. Light reflection and diffraction of top-metal lines
make it hard to aim a chip with a good precision. Moreover IC contains mul-
tiple metal layers depending on the technology and the transistor size keeps on
shrinking. As a consequence, it becomes harder and harder to shoot precisely at a
targeted area of an IC.

• Since a laser has to cross a thick silicon substrate from the back of a chip, backside
attacks are very effective using infra-red lasers (�1064 nm wavelength). The lack
of visibility renders the positioning harder, but on the other hand backside attacks
allow getting rid of the reflection on top-layer metal lines.

- 43/223 -

To put it in a nutshell, lasers can induce a large variety of faults from transient to perma-
nent modifications [40, 80]. Faults induced by lasers are similar to the ones produced by
white light, but with the advantage of precision, a laser beam allowing to aim at much
smaller areas of a target.

1.2.2.2 Mounting a Laser Fault injection bench

Our goal here was to mount a LASER fault injection bench using an equipment we sca-
venged from the failure analysis laboratory. Table 1.15 provides the list of the equipment
we used to mount our fault attack bench.

Instrument Model Manufacturer
LASER Nd :YAG L-211-G1 HOYA Candeo Optronics Corporation
LASER pulse controller L-211-P1 HOYA Candeo Optronics Corporation
XYZ Table CPC-3DN CHUO Corporation Precision Industrial
CCD Camera DXC-101P Sony Corporation
Microscope BH2-UMA Olympus Corporation

FIGURE 1.15 – List of equipment forming the fault attack bench

Once the all equipment has been assembled, we needed to create the proper software
to control the XYZ table and trigger the LASER shooting. The XYZ Table has a GPIB
interface (IEEE-488.2), that we connected to the computer by using NI GPIB-USB-HS
(USB controller for GPIB interface). After installing the proper GPIB libraries on Linux
and understanding the Japanese command manual of the CHUO XY table, the position
of where the laser could shoot on the chip could be controlled by using a C++ SW.

The LASER we are using in the fault injection bench is a pulsed Neodymium-doped
Yttrium Aluminium Garnet LASER. Pulse duration is 8ns and the LASER emits light
with a wavelength of 1064nm in the infrared spectrum. A shutter mechanism allows
to increase or reduce the area we are shooting at, we are always careful not to close
the shutter completely to avoid diffraction effect. The LASER power supply allows to
control the supply voltage in the range of 300V to 900V, enabling to control the pulse
energy. The LASER shoot is manually controlled via a trigger that we needed to auto-
mate. Our first attacked device is a Texas Instrument MSP430g2231 µcontroller with a
socket mounted development board [48] that allows to easily decapsulate and replace
damaged chips, we decided to use this same µcontroller to trigger the LASER while it
would launch cryptographic computations. We created a simple circuit using an electri-
cal relay 1.16 that on one side, we soldered to a pin of the MSP430 development board
and on the other side, we connected to the LASER power supply, L-211-P1, trigger in-

- 44/223 -

Jean-Michel Cioranesco| Thèse de doctorat | Décembre 2014

FIGURE 1.16 – Simple relay circuit automating the LASER shooting from the MSP430 development board

FIGURE 1.17 – We prepared two development board, one for frontside attack, one for backside attack.

put. The L-211-P1 is launching a LASER pulse when the voltage on the trigger input is
raised to 3,5V. It seems the shoot is triggered on the falling edge.

At the beginning we were aiming using an optical sight but the precision was low, the
area shot was not corresponding to the targeted area of the chip. The LASER offers the
possibility of using a white light input for accurate targeting 1.18, so we employed a
HOYA-SCHOTT HL100R for precisely targeting a die area without the use of an optical
sight. The visualization of the die on camera can be done using a CRT monitor, but we
got better results by using a digital video acquisition card. This capability has been very
useful when targeting on chip-memory.

- 45/223 -

FIGURE 1.18 – Overall view of the complete fault injection bench

1.2.2.3 Implementation of an attack

We will now describe how we used for successfully injecting faults in the targeted
µcontroller and the Bellcore attack we mounted. In order to successfully mount the
LASER fault injection attack, we could not just shoot randomly in the chip. We needed
to do some reverse engineering in order to decapsulate the chip and understand where
the on-chip memory is located. The decapsulation process and the optical localization
of the SRAM on the MSP µcontroller is described in section 1.3.1.

Depending on the energy carried by the LASER, we distinguish three different cases :

• The energy is too important and the memory cell is destroyed. The result is a
permanent fault.

• The energy is high enough to induce gate transition but low enough not to destroy
them. We achieved a transient fault.

• The energy is too low to flip a gate, no fault is created.

Once we located the memory on the µcontroller, we started by researching which vol-
tage would give us a transient fault. To achieve that purpose, we wrote a simple SW
that filled the memory with a integer table [i,j], where i is the index of the table and j is
the value we write to it, and we checked after every LASER shoot if the memory content
has been modified. As the voltage control is changed manually between 300 and 900 V,
we blinked the green LED if no fault is detected and the red LED if a fault is detected.
Using this method we were able to identify the threshold voltage for inducing transient

- 46/223 -

Jean-Michel Cioranesco| Thèse de doctorat | Décembre 2014

fault for front-side LASER shooting, which is 567V. It is interesting to notice that several
shooting attempts at the same location in the SRAM with slightly different voltages will
produce different faults. Table 1.19 gives results of three different attempts, the values
[i, j] in the table gives the index of the memory cell and the value it contains.

Once we could successfully inject a fault in the µcontroller’s SRAM, we mounted a
simple attack on a cryptographic algorithm, the Bellcore attack [22]. This attack is based
on the RSA signature, attacking the part of the scheme by using the Chinese remainder
theorem (CRT).

Let us recall the RSA textbook signature.

- Generation of keys

• p and q two prime numbers sufficiently big,
• let n = p q

(

ϕ(n) = (p − 1)(q − 1)
)

,
• let e be a prime number with ϕ(n) and d such that ed = 1(mod ϕ(n)),
• private key= (p, q, d) and public key =(n, e),

- Signature

• Compute s ≡ md [n],

- Verification

• recover m ≡ se [n].

Let now recall the Chinese remainder theorem.

Theorem Suppose n1, n2, . . . , nk are positive integers that are pairwise coprime. Then
one has the following isomorphism between a ring and the direct product :

Z

n1n2 . . . nkZ
� Z

n1Z
× . . . ×

Z

nkZ
.

The isomorphism is given by

a [n1n2 . . . nk] �−→
(

a[n1], . . . , a[nk]
)

.

The following steps are done in the signature process for the RSA-CRT :

• let dp ≡ d [ϕ(p)] and dq ≡ d [ϕ(q)],
• let sp ≡ mdp [p] and sq ≡ mdq [q],
• let p−1 mod q be the modular inverse of p modulo q,

- 47/223 -

SRAM 1st attempt 2nd attempt 3rd attempt
Initialization (567V) (567V) (568V)

[0 :0] [0 :6] [0 : 6] [0 : 6]
[1 :1] [1 : 6] [1 : 6] [1 : 6]
[2 :2] [2 : 6] [2 : 6] [2 : 6]
[3 :3] [3 : 6] [3 : 6] [3 : 6]
[4 :4] [4 : 6] [4 : 6] [4 : 6]
[5 :5] [5 : 6] [5 : 6] [5 : 6]
[6 :6] [6 : 6] [6 : 6] [6 : 6]
[7 :7] [7 : 6] [7 : 6] [7 : 6]
[8 :8] [8 : 14] [8 : 14] [8 : 12]
[9 :9] [9 : 14] [9 : 14] [9 : 12]

[10 :10] [10 : 14] [10 : 14] [10 : 12]
[11 :11] [11 : 14] [11 : 14] [11 : 12]
[12 :12] [12 : 14] [12 : 14] [12 : 12]
[13 :13] [13 : 14] [13 : 14] [13 : 12]
[14 :14] [14 : 14] [14 : 14] [14 : 12]
[15 :15] [15 : 14] [15 : 14] [15 : 12]
[16 :16] [16 : 22] [16 : 22] [16 : 18]
[17 :17] [17 : 22] [17 : 22] [17 : 18]
[18 :18] [18 : 22] [18 : 22] [18 : 18]
[19 :19] [19 : 22] [19 : 22] [19 : 18]
[20 :20] [20 : 22] [20 : 22] [20 : 18]
[21 :21] [21 : 22] [21 : 22] [21 : 18]
[22 :22] [22 : 22] [22 : 22] [22 : 18]
[23 :23] [23 : 22] [23 : 22] [23 : 18]
[24 :24] [24 : 30] [24 : 30] [24 : 26]
[25 :25] [25 : 30] [25 : 30] [25 : 26]
[26 :26] [26 : 30] [26 : 30] [26 : 26]
[27 :27] [27 : 30] [27 : 30] [27 : 26]
[28 :28] [28 : 30] [28 : 30] [28 : 26]
[29 :29] [29 : 30] [29 : 30] [29 : 26]
[30 :30] [30 : 30] [30 : 30] [30 : 26]
[31 :31] [31 : 30] [31 : 30] [31 : 26]
[32 :32] [32 : 32] [32 : 32] [32 : 32]
[33 :33] [33 : 33] [33 : 33] [33 : 33]

FIGURE 1.19 – Results of the fault injection of the table stored in SRAM of the MSP µcontroller

- 48/223 -

Jean-Michel Cioranesco| Thèse de doctorat | Décembre 2014

• using the Chinese remainders theorem the signature s is computed as follows :

s = sp + p
(

sq − sp

) (

p−1 mod q
)

,

• for the proof, observe that making a modulo p at each side, one has

• s mod p = sp mod p + p
(

sq − sp

)(

p−1 mod q
)

mod p,

• s mod p = sp mod p + p � T mod p,

• s mod p = sp mod p,

• s mod p = sp,

• and making a modulo q at each side, one obtains

• s mod q = sp mod q + p
(

sq − sp

)(

p−1 mod q
)

mod q,

• s mod q = sp mod q + p
(

sq − sp

)(

p−1 mod q
)

,

• s mod q = sp mod q +
(

sq − sp

)

� 1 mod q,

• s mod q = sq mod q,

• s mod q = sq.

The Bellcore attack works in the following way. One knows that the exact execution of
the RSA-CRT algorithm gives the value

s = sp + p
(

sq − sp

)(

p−1 mod q
)

.

Principle. The Bellcore attack is based on the introduction of a fault in the computation
of

s ≡ mdq [q].

Therefore

s� = sp + p
(

s�
q − sp

)(

p−1 mod q
)

,

with

s� = mdp [p] and s� �= mdq [q].

Finally, one can find with just one fault the prime number p,

s − s� ≡ 0 [p] and s − s� �= 0 mod q =⇒ gcd (s − s�, pq) = p.

- 49/223 -

We ran RSA-CRT on the integer table stored in SRAM. Using the protocol we described,
we started to inject a transient fault in the SRAM but we could not achieve the proper
timing to get the fault in the cell just before it got used. Nevertheless, we could suc-
cessfully inject a permanent fault in the signature, which lead us to recover the secret
exponent p.
We stopped here the development of this bench, the continuation of this task would
have been to modify the fault injection timing to increase its randomness and run the
test during several hours to get a successful hit. We also could have continued resear-
ching on other attacks as the Piret-Quisquater on AES-128-ECB [79], and get an socket-
mounted FPGA board to start testing the fault resistance of the designs we implemen-
ted.

1.2.3 Voltage Glitch

The power source of a smart card is externally driven and can be easily manipulated by
an attacker ; he can control the external voltage source plugging in the voltage pin. Big
current variations in brief intervals of time (impulse or glitch) can be sent to the card.
These current spikes produce either memory errors, or changes in the code’s execution,
jumping from an instruction to another. This last property may allow modifications of
a loop counter or a conditional jump in the code. There are many descriptions in the
literature of fault attacks using of this technique, we refer the reader to [20, 16, 21, 7,
17, 105]. Voltage variations during code’s execution can corrupt the data, corrupt the
executed instruction or provoke a jump of some instructions.

1.2.4 Clock Glitch

Let us take the example of a smart card. As for the power source, smart cards receive
their clock signals externally. The card reader provides the clock signal for the smart
card, so that the attacker has the possibility to alter it. Smart cards often work at 3,57
MHz frequency. Rapid frequency variations can be sent to the chip in order to perturb
its functioning. These perturbations are similar to those caused by voltage spikes. This
method, like the preceding one, does not require advanced hardware to be implemen-
ted, and therefore is widely used in practice [6, 15, 78].
Clock glitches can

• Either create errors in memory read accesses. The circuit tries to read a value from
the bus before the memory had time to stabilize RAM flip-flops output.

• Or can provoke an instruction jump causing the circuit to perform instruction n+1
before finishing instruction n.

- 50/223 -

Jean-Michel Cioranesco| Thèse de doctorat | Décembre 2014

1.2.5 Clock Errors

In a clock fault injection attack, an adversary can have access to the clock of the target.
The clock faults violate the circuit’s synchronism, a basic hypothesis underlying the
functioning of traditional IC. Most ICs perform computations by treating data output-
ted by the combinatorial logic blocks separated by D-flip-flops register barriers which
share the same clock (see Figure 1.20).

Q

Q
SET

CLR

D

D Flip-Flop

Q

Q
SET

CLR

D

D Flip-Flop

Combinational
Logic

data

clock

Propagation delay

n n m m

FIGURE 1.20 – Synchronous representation of digital circuits

Usually data are stored by clocked registers. Computed data travel among registers and
undergo modifications by intermediate combinatorial blocks. The time required in or-
der to propagate data through combinatorial logic is called « propagation delay ».
The propagation delay, as well a second delay, inherent to the use of D-flip-flops, cal-
led« set-up time », defines the circuit’s maximal operational frequency (or the nominal
circuit period). Indeed, in order to guarantee a normal functioning of the circuit, the
clock period has to be strictly greater than the maximal propagation delay of the circuit
(this maximal propagation delay is called « critical path ») plus registers set-up time,
namely

tclock > tcritical + tset−up

Actually, each bit of data stored in a register is the result of computation depending on
the combinatorial computation function of several input bits of data. The time between
the output of the previous registers and the input of next registers determines the de-
lay. This delay will depend on performed logical operations, as well as the propagation
time which varies with temperature and voltage source.
Overclocking consists in reducing the clock period (or in other words increasing the
clock frequency). If set-up delays time is not respected, D flip-flop’s input signal might
not have enough time to reach the flip-flop. This leads to a potential set-up of false data
at the entry of the flip-flop. Several authors used overclocking as a method for fault in-
jection [43, 88].

- 51/223 -

FIGURE 1.21 – Normal clock signal (clock) and a perturbed clock signal (faulty_clock)

FIGURE 1.22 – Generation of a faulty_clock

A reduced clock period can also potentially affect logical paths whose propagation time
is greater than the clock period minus the set-up time. From the attacker’s point of view,
the possibility of controlling in a precise way the clock period is crucial in order to intro-
duce controlled faults. It is worth mentioning that changes in temperature and voltage
variations can also be used for such fine-tuned controls.
Faults attacks consist in injecting faults at very precise moments. In order to avoid in-
jecting faults continuously, glitch timing has to be brief and discreet. Fault injections
examples that we will describe later on carry these two properties.
To inject controlled fault using clock variations, the attacker does control two parame-
ters : the precise moment when a fault occurs and the clock glitch duration. This time
period has to be controlled with high resolution, typically several dozens of picose-
conds.
Figure 1.21 shows a normal clock signal (clock) and a perturbed clock signal whose aim
is to provoke faults faulty_clock.

The two curves differ only within 20ns and 30ns. During this interval of time, the
faulty_clock period is reduced by Δns. This time reduction of Δ causes a fault due
to violation of flip-flop set-up time. Let mention that reducing clock cycle before the
low state has no harmful effects on the computations carried down. This shows that the
perturbing clock at very precise and narrow period of time is a key to a successful fault
injection.
Generating a faulty_clock with enough precision is a hard task. To do it, generally
it is recommended to use a Delay Locked Loop (DLL) from recent FPGA families.
Two delayed clocks (clock_delayed_i) can be generated from clock. The delayed signal
clock_delayed_i, delayed by Δi from clock, are programmable. Then faulty_clock is ob-
tained by switching between the two clock_delayed_i signal using a trigger. Figure 1.22
describes this procedure.

If clock_delayed_2 is delayed with Δ2 units of time, then clock_delayed_1 has to be de-
layed with Δ1 = Δ2/2 in order to preserve a cyclical rate of 50% during the narrow

- 52/223 -

Jean-Michel Cioranesco| Thèse de doctorat | Décembre 2014

FIGURE 1.23 – faultyclock (high signal) and AES_start (low signal) (photo courtesy [2])

fault interval of faulty_clock.

faultyclock is made by combining the rising edge of clock_delayed_2 with the falling
edge of clock_delayed_1. The switch timing between the two signals is controlled using
a trigger signal which positions the clock perturbation in time. faulty_clock resolution
can be controlled (35ps in the example given here) depending on Δt, which the minimal
elementary delay that a DLL is able to perform.

Here the period of clock (10ns) was reduced at [t1, t2] = 49Δt ≈ 8.2ns in faultyclock.
The high level of the low signal indicates the beginning of the attacked operation (an
AES here).

Today, any commercial FPGA development platform is fairly inexpensive and range
this attack in the « DIY in your garage » type of attacks as DPA.

The attack platform (Figure 1.24) is composed of a target circuit (TC), a clock faults
generator (CFG) and a PC.

Algorithm running on the TC is targeted in the attack (our example present an AES
executed on FPGA). The TC’s clock is supplied by CFG. The secret key, the plaintext
and the starting signal of the encryption (TRIGGER) arrives to TC from a PC via a serial
port (RS232). After the encryption is completed, the result, called ciphertext, is read via
the serial port.

The TC furnishes a TRIGGER signal to the CFG in order to indicate the precise be-
ginning of encryption. This information, absent in reality, is added here facilitate the
positioning in time the faulty period. If the chip is badly protected against side-channel
attacks, a power analysis can help identifying the beginning of encryption.

The CFG generates a continuous clock of 100 MHz which synchronize the TC. When
TRIGGER is high, it indicates that encryption starts and a decrementing counter is tur-
ned on. When this counter reaches zero, a faulty period is produced. The serial port

- 53/223 -

FIGURE 1.24 – External FPGA board feeding the faulty clock to the main FPGA board running cryptographic algorithms (photo
courtesy [2])

between CFG and PC is used to control the exact Δ value for which the faulty period
will be introduced.

A way to overcome this kind of attack in a secure element is to implement an internal
clock in the SoC. Thus it is impossible for an attacker to hijack the clock at a PCB level.
To modify the clock an attacker needs to perform an invasive attack in the SoC.

1.2.6 Temperature

In their component specifications, electronic circuits’ manufacturers define an operating
temperatures range in which their circuit works correctly. An attacker might want to go
out from the normal temperatures range to see if the circuit will behave abnormally.
This might be done using an alcohol cooler.
The aim of this attack is double : provoke a discharge of RAM cells whose sensitivity to
heat is known, and exploit the fact that in the majority of non-volatile memories(NVM)
the operating range differs according to which operation is carried out. For instance,
on a same chip, one can have a write operation in a range P1, and an erase operation
in a range P2, which doesn’t overlap P1. By controlling temperature, it is sometimes

- 54/223 -

Jean-Michel Cioranesco| Thèse de doctorat | Décembre 2014

possible to inhibit one operation without inhibiting the other one, and doing so to put
the chip in a state that it was not designed for.

1.2.7 Probing Fault Attacks

A probe station is a laboratory device that allows acquiring hardware signals from in-
ternal nodes of a chip. They originated from the test department of production in a
foundry where chips are tested on wafers. Some needles are used to retrieve signals
and other are used to power-up the chip, thus a station allows to inject perturbed si-
gnals in a target circuit.

These operations are done by positioning thin needles (or probes) on the surface of the
chip, either automatically, or with the help of automated manipulating tools activated
by an operator. If the probed surface of the chip is stimulated electrically, the signal car-
ried by the needle is amplified and acquired. The device shown in Figure 1.25 can be
programmed to explore automatically a surface XY (surface of 200 × 200mm) with a re-
solution of 0.5µm and a precision of ±1.5µm. Most of probe stations are able to perform
several simultaneous probing by using multi-probe cards.

Simultaneously, the device can be used to modify signals inside the target circuit. This
is done by coupling the station to a FPGA (e.g. Xilinx 550) programmed for injecting
pulses with different lengths of time at particular moments via the probe needles.

An optical probing station (Figure 1.25) allow an attacker to feed and collect signals
from a target chip through its input and output pins. It enables an attacker to imple-
ment the fault injections we described in section 1.2.

(a) (b)

FIGURE 1.25 – A decapsulated chip with an exposed pad ring (a) and an optical probing station (b).

- 55/223 -

To probe directly metal lines (Figure 1.26b), an attacker must use more sophisticated
tools. Using a probing station installed in a SEM (Figure 1.26a), it is possible to probe
apparent metal lines. To probe hidden metal lines, a FIB must be used to remove layers
and create new connections.

(a) (b)

FIGURE 1.26 – A probing station mounted in a SEM and a tilted SEM view of circuit lines being probed.

1.2.8 Electromagnetic Perturbations

Electromagnetic perturbations are experimented today in some laboratories. Given the
relatively important dispersion of electromagnetic radiations, this technique is rarely
used or sometimes used in an ad-hoc manner. For instance, by bringing closer an os-
cillating circuit to a random number generator based on an oscillating loop, one can
impose an oscillating frequency to the generator by a simple electromagnetic coupling
effect.

Nonetheless recent significant advances in EM probe design allow injecting faults in a
very local manner.

- 56/223 -

Jean-Michel Cioranesco| Thèse de doctorat | Décembre 2014

FIGURE 1.27 – Different Layers of a Silicon Chip

1.3 Invasive Attacks

1.3.1 Reverse Engineering

A chip is composed of several layers as described on Figure /reflayers (from the top-
most to the lowest) :

• a polymer layer that is protecting the passivation layer from packaging component
or glue

• the passivation layer usually made of silicon oxide (SiO2), or eventually silicon
nitride Si3N4. This layer protects the circuit from impurities after manufacturing
in the clean room.

• N metal layers with interconnections (vias) between layers. We refer the topmost
metal layer as "top-layer", he is usually carrying signals to the pad-ring but depen-
ding on the technology and the application, the top-layer can have different use.
In a security chip, the top-layers will be used to create an active shield, usually in
copper since it allows a smaller etching. In an RF chip the top-layer will usually be
aluminum, with a much thicker etch to create antennas and other MEMS device.

• The polysilicon layer, which forms transistor’s gates.
• And finally the silicon substrate with some diffusion layers.

The die is encapsulated in a plastic packaging, and the different in/out are wired using
gold wire and recently copper wire in cheaper packaging to diminish the cost. We will
point out that copper wired pad-rings are harder to decapsulate on from topside wi-
thout altering any connection.

The decapsulation of a die can be achieved in several manners :

• Use of a miniature milling machine on the back-side
• Use of a computer-controlled micro-polishing machine on the back-side
• Use of chemicals on the front-side

- 57/223 -

FIGURE 1.28 – Fuming Nitric Acid (HNO3) and Hydrofluoric Acid (HF)

• Use of an automated decapsulation machine

In order to reveal the die, the plastic covering it, has to be removed but without altering
the chip bonding. We are using heated fuming nitric (Figure 1.28) acid at 60 degrees
Celsius to attack the packaging. We rinse the chip every minute and iterate the opera-
tion until the die appears. We then clean the chip with acetone and leave the cheap in
an ultrasonic bath of acetone that removed all plastic residues. We got very good results
with this technique, but the bonding was very often damaged due to a long exposition
to acid. One of the chips we decapsulated had a copper bonding, and made the opera-
tion very complicate since the bonding was getting damaged during decapsulation.

Fortunately, some machines exist on the market that allows to decapsulate precisely a
chip depending on its packaging (Figure 1.29). These machines are also using fuming
nitric acid, as manual decapsulation, but enable a very precise control over the time
of exposure and the temperature of the acid. They decapsulate any kind of packaging,
using different masks for the acid exposure, and the results are stunning. Figure 1.30
represents a Texas Instrument MSP4302231 microprocessor decapsulated with this ma-
chine to perform fault injection on embedded software.

After decapsulating the chip, the surface is rather dirty, with lots of plastic leftovers
and other residues. An ultrasonic bath (Figure 1.31) in isopropyl helps removing all
imperfections, and offers a clean surface for microscope optical observation.

- 58/223 -

Jean-Michel Cioranesco| Thèse de doctorat | Décembre 2014

FIGURE 1.29 – Hamamatsu PA103 Automated Decapsulation Machine

(a) (b)

FIGURE 1.31 – TI MSP4302231 in an ultrasonic bath after depacking (a) and close-up (b)

At this point somebody analyzing a circuit will be willing to capture sections of the die
layers after layers. The top-layer is usually helpful to understand the overall layout of
the chip. It allows to distinguish memories, logic blocks and analog blocks. To unders-
tand the architecture at a lower level of detail, we need to observe the die layer after
layers.

This process can be done mechanically or chemically. We can use a polisher (Figure 1.32)
to remove the layers little by little but the result is usually not good as it is very hard to
maintain the sample perfectly horizontal.

- 59/223 -

(a) (b)

FIGURE 1.30 – TI MSP4302231 microprocessor (a) and the same chip decapsulated ready for fault injection(b)

(a) (b)

FIGURE 1.32 – A Mecapol polishing machine (a) and an attempt of mechanically remove the active shield of a SMART CARD die(b)

Using a plasma etching machine (Figure 1.33), we can remove layers in a much more
controlled way.

- 60/223 -

Jean-Michel Cioranesco| Thèse de doctorat | Décembre 2014

(a) (b)

FIGURE 1.33 – A plasma etching machine (a) and a sample being processed(b)

Finally, a bath of hydrofluoric acid will remove all layers, leaving the silicon substrate
with the different implants visible.

1.3.2 Optical Analysis

After decapsulation, the die is exposed and can be observed. In order to successfully
inject faults in a circuit, one can scan a die surface using a XY table, searching for an in-
jection point. A more efficient way of successfully injecting faults, is to spatially resolve
the fault location so that only the right timing is to be determined. Figure 1.34 is the po-
lysilicon layer of a Texas Instrument MSP4302231 microprocessor. This optical analysis
provides us a better understanding of the transistor configuration, and we can easily
infer where the SRAM is located on the die. Some companies based their business on
optically reverse-engineer chips, offering their customers to recreate the netlist of a gi-
ven product. This activity that help counterfeiting is not illegal, and automated tools are
identifying logic cells to recreate netlist for their user. These tools are very helpful when
the security is based on some secret logic, and they are somehow the motivation for the
rise of physically unclonable functions (PUF). We also refer the reader to research on
photon optical emissions, which is another failure analysis technique which has been
tuned to be used for attacks, where we can literally observe bits in a circuit.

- 61/223 -

(a) (b)

FIGURE 1.34 – TI MSP4302231 polysilicon layer (a) and a zoom on SRAM cells(b)

1.3.3 FIB Circuit Editing

Focused Ion Beam (FIB) is a machine used in failure analysis to analyze and modify the
faulty circuit. FIB enables to dig trench in a device to observe the connections between
layers at a nanometer scale (Figure 1.35), but also to deposit metal layer to create new
connections. On the contrary of SEM, FIB is destructive and can damage the circuit.

FIGURE 1.35 – Faulty device under FIB analysis where a connection problem is identified

- 62/223 -

Jean-Michel Cioranesco| Thèse de doctorat | Décembre 2014

FIB became of great interest regarding attacks as they enable to modify circuitry. A very
well known use of FIB regarding invasive attacks relates to fuses. In security chips,
fuses are used to program keys in the fab or to deactivate scan chains. They are very
costly in terms of area and require the use of a fuse controller block, to prevent the
fuses from being over burnt. Some attacks based on re-burning the same fuse multiple
times successfully re-open fuse path. FIB allows an attacker to bypass the fuse controller
protection, and re-open fuses. This is especially achievable since fuses are based on the
large technology node, usually 130nm and higher, and are very large instance easily
located on a die. If such a fuse can be reconnected (Figure 1.36), it would reopen the
scan chain access that might let the user read or program keys and other secrets.

FIGURE 1.36 – Blown polysilicon fuse reconnected using FIB (Photoś courtesy of O.Kömmerling)

- 63/223 -

- 64/223 -

Jean-Michel Cioranesco| Thèse de doctorat | Décembre 2014

2 Hardware Security Sensors and
Countermeasures

In this Chapter, we present a full range of hardware security sensors. Some part of
the sensor might be implemented in software but we will only consider sensors and
countermeasures that rely on a hardware piece. To each sensor is associated a protective
action taken whenever the sensor is triggered.

2.1 Security Error Management

The state of each sensor can be checked by software verifications (the operating system
is monitoring each sensor state) or by a wired piece of logic (if the alarm triggers, the
chip enters automatically in a defined secure state). In case of software verification, the
state of hardware sensors should be checked by the operating system before any critical
operation. In case of wired sensors monitoring, one should make sure that the operating
system is programmed to react to every alarm coming from the security sensors.

2.1.1 Global Errors

An important part of the sensor hardware implementation relates to error monitoring ;
it is common to have a counter at each sensor level and a global counter to monitor
errors. In a secure system, every error coming from a security sensor will generate an
interrupt, so in some case one might want to increment a counter to allow a certain
amount of normal functioning errors and set a threshold to trigger a global error.

- 65/223 -

2.1.2 Integrity Errors

In a secure system memory is usually split into different domains which have different
security levels regarding their integrity and protection requirements :

• non-protected memories containing data whose alteration while only affect non
sensitive information. No specific protection is required for such use,

• sensitive memory containing sensitive user information that we do not want to be
modified. A typical checksum is sufficient at this level of integrity requirement,

• critical memory contains critical information for the system. It can range from
configuration information, secure boot code, cryptographic keys, credit-card num-
ber and such. This type of memory will be protected with cryptographic hashing
or redundancy and continuous hardware verification.

2.1.3 Protective actions

Depending on the global error counter value and on the type of alarm that triggered
errors, one or several protective actions can be taken from the following list :

• Passage to an infinite loop. The component will pass in an infinite loop until the next
power-on.

• Erasement of the RAM. The chip will erase all the contents of the RAM by activating
a hardware port provided to this end.

• Temporizing. The chip will write an error flag in Flash at T=1. Afterwards, it will
start a counting of a number T of cycles. When the counter reaches T, the chip will
write the flag in Flash at 0 and will go back to normal modes of operation.

• Erasement of the non-volatile memory. This action consists of deleting the whole of
the contents of the Flash to protect secret content from being retrieved such as
cryptographic keys.

• Suicide. This action consists of placing a “Suicide” bit in NVM and launching a
RAM and Flash erasement.

• Deactivating. This operation consists of positioning a deactivation flag at 1, so no
operation is anymore allowed.

- 66/223 -

Jean-Michel Cioranesco| Thèse de doctorat | Décembre 2014

2.2 Side-Channel Countermeasures Taxonomy

Counter-

Measures

Scrambling

in time

domain

Jumping

Clock

Unstable

Clock

Random

Delays

Scrambling

in power

domain

Protocols

Hide

Permutat-

ion

Masking

Homo-

morphism

Reduce
Parallel-

ism

Balancing
Atomicity

Filtering

Dual

Logic

Asymmetric

Symmetric

Linear

HW

SW

Digital
HW

Analog
HW

Noise

Generator

Random

delays in

SoftwareSW

Discrete
HW

Continuous
HW

.

FIGURE 2.1 – Taxonomy of Side Channel Attacks Countermeasures

Since 1998, when the notion of attacking a crypto algorithm based on power analysis
was introduced, chip manufacturers introduced several security mechanisms to prevent
correlation of SMART CARDS operations and power consumption.
A first way to decorrelate these two variables that we will investigate later on, consists
in introducing temporal delays in the code execution. So, replaying the same opera-
tion will not produce identical power consumption. The number of clock cycles taken
to complete a computation will be different (alternatively, some implementations will
change the clock frequency irregularly in order to create this temporal delay).
A second way of hardening a chip against attacks is to use power jammers which add
random noise to the power consumption.
All these mechanisms will make the synchronization of a fault injection trigger very

- 67/223 -

hard. Obviously, the smaller is the number of cycles which have to be perturbed, the
bigger will be the benefits of side-channel countermeasures to prevent fault injections.

Thus, activation of specific peripherals, such as cryptographic coprocessors or charge
pumps is hard to dissimulate. Also, one will take care that such events could not serve
as a reference point for triggering fault injections.

There are eleven main categories of countermeasures against side-channel attacks. Each
countermeasure has different protection feature and impact the overall system perfor-
mance differently (increasing area, power, throughput, frequency, a.s.o).

2.2.1 Power Scrambling

Power scrambling in time domain consists in interrupting and restarting the protected
algorithm in order to spread the power leakage randomly in time. Thus when acquiring
a batch of power traces, an attacker cannot correlate power traces as is. He needs first
to pre-process traces to realign the different part of the attacked operation among the
batch of traces. This countermeasure is usually implemented as follows :

• A dedicated hardware block is randomly sending pulses to the CPU in the case of
a SW implantation or to the hardware crypto module.

• The internal clock is presenting instabilities in frequency or duty cycle.
• A dedicated process will control the computation output timing by inserting ran-

dom delays.

2.2.2 Balancing

Balancing power consumption consists in physically duplicating signals or part of a cir-
cuit in order to equilibrate the overall circuit power consumption and ensure the same
amount of registers are changing states for every operation. Balancing power consump-
tion is typically implemented as follows :

• Physical signals are encoded to carry the hamming weight and balance register
transition (01 represents a 0 and 10 represents a 1). Encoding signals in this manner
also brings the benefit of being fault tolerant, if a signal takes the value 11 or
00, one can design the HW in order to propagate that signal and trigger an error
signal.

• The HW core or SW is representing and handling some sensitive data in a redun-
dant format.

• In HW part of the algorithm may be implemented twice in order to present the
same input capacitance to the duplicated registers.

- 68/223 -

Jean-Michel Cioranesco| Thèse de doctorat | Décembre 2014

2.2.3 Dummy Cycles

Dummy cycles are a sophisticated power scrambling technique in time domain where
operations or instructions are randomly executed instead of simply delaying them.

• The device is executing automatically fake operations or opcode during pauses.
• Dummy cycle is executed randomly in the code to confuse the attacker.

2.2.4 Parallelism

Parallelism consists in executing simultaneously several operations which are meaning-
ful for the ongoing operation to make side channel analysis harder. For instance, if the
crypto algorithm is using look-up tables (LUT), we will access different LUT simulta-
neously rather than sequentially (if the algorithm allows it). Parallelism is usually only
implemented in hardware.

2.2.5 Filtering

Filtering consists in averaging or concentrate power consumption over a defined win-
dow of time in order to make instantaneous power consumption measurements harder.
Filtering is usually achieved using embedded capacitor or filters which are blocking
power consumption on high frequency (corresponding to the system frequency where
gates are switching).

2.2.6 Power Jamming

Power jamming consists in adding random noise to the device power consumption.
Power jamming is usually implemented in the following manner :

• Connect (in serial or parallel) to the circuit or the CPU a block consuming power
randomly.

• Pre-charge randomly buses and lines before use.
• Randomly activate different part of the chip (co-processor, charge pump, external

I/Os, etc).

- 69/223 -

2.2.7 Protocol

Protocol solutions can be implemented to limit power leakage or make it unusable. This
class of countermeasures consists usually in :

• Limiting the number of encryption done with a given key. A counter or an external
module can revoke a key and load a new one periodically.

• Include a random field in every cipher or signature.
• Update keys continuously.

2.2.8 Atomicity

Atomicity consist in avoiding conditional jumps in a code. Atomicity is usually only ap-
plicable to software. It consists in coding the algorithm so that the different controls and
operations taken are independent from the data being processed. Most of symmetric ci-
phers and hashing algorithms are naturally respecting this principle, but he famous
example of RSA modular exponentiation shows its importance.

2.2.9 Homomorphism

Homomorphism consists in using arithmetical properties of some public key crypto-
graphic algorithm in order to compute their results in a manner chosen among several
ways of computing the same output. For instance, the RSA algorithm consists in com-
puting the quantity c = md. It is possible to generate a nonce r and computec = mrmd−r

thus hiding the use of number d.

2.2.10 Permutation

Permutation consists in randomly rearrange different subprocesses which are not inter-
dependent, so that different acquired power traces of the exact same computation will
differ.

2.2.11 Masking

Masking is an algorithm level countermeasure. It consists in rewriting an algorithm,
usually a LUT like an Sbox, in a random manner before running the code. Masking is
heavily used to protect LUT based algorithm as DES or AES.

- 70/223 -

Jean-Michel Cioranesco| Thèse de doctorat | Décembre 2014

2.3 Protection against faults

2.3.1 Fault attacks taxonomy

Faults attacks can be subdivided into different classes according to several criteria. For
each parameter, we will describe the attacker scenarios from the weaker to the most
severe one.

Counter-

Measures

Spatial

Control

Temporal

Control
Bits

Control

Fault

Probability

Fault

Duration

Effects
on bits

.

FIGURE 2.2 – Fault Attack Taxonomy

2.3.1.1 Spatial control

The attacker must have certain control on the position where faults occur :

• the attacker can modify only a given datum,
• the attacker can modify only precise bits of a variable,
• the attacker has no control over which variable will be modified.

2.3.1.2 Temporal control

This control of the fault injection is a crucial parameter, since

• either the attacker can choose the exact moment when a fault will be injected regar-
ding the target circuit algorithm time-line, this fault can affect a block of different
operations,

• or the attacker does not have any temporal control.

- 71/223 -

2.3.1.3 Number of bits

The number of bits an attacker can modify determines the fault injection efficiency, de-
pending on the ability of the attacker to modify

• a single bit,
• a single byte,
• or an unknown number of bits in a variable.

2.3.1.4 Fault probability

Injecting a fault does not necessarily have an effect on the circuits behavior, or at least
not the effect expected by the attacker. To assess the dangerousness of fault attack, one
has to consider the success probability of a fault.
For instance, suppose that the attack requires fault injection in a precise portion of the
memory but the attacker is only able to inject faults in random places. Obviously, this
will affect the success probability of the attack.

2.3.1.5 Fault duration

A fault can affect a circuit for more or less time. One considers three types of faults
according their duration : transient, permanent or destructive.

• A transient fault has a very short effect in time before that the circuit recovers its
normal behavior. Generally, this interval of time is very short. Thus, if a transient
fault is injected in a variable during computation, at the next operation time, the
variable will recover its original value.

• A permanent fault affects a variable until the algorithm finishes, or it is explicitly
crushed by another value being used.

• A destructive fault destroys definitively a part of the circuit by fixing some precise
bits to a given value.

2.3.1.6 Effect on bits

A fault can affect a set of bits in the memory in various ways as follows :

• bits can be fixed at an arbitrary value thanks to a destructive or permanent fault

- 72/223 -

Jean-Michel Cioranesco| Thèse de doctorat | Décembre 2014

• bits can take an opposite value, i.e., if a bit has the value 1, then the fault will
transform it into 0 (and conversely too)

• bits can take random values, then an attacker has no control on the variable value
after the fault.

2.3.2 Protection against permanent fault

One calls « permanent faults », faults on an attacked chip which are irreversible. They
can affect either memories (NVM or RAM cell blocked permanently at a constant) or
logical functions. In both cases, countermeasures allow the detection of an alteration.

• UV detectors prevent exposing NVM (EEPROM or Flash) to an anomalous quan-
tity of UV radiations and react as soon as an exposition threshold is reached. Let
mention that the X-rays and ion-beams can serve as faults sources (however this is
less common). This operating mode has the advantage of allowing injecting faults
without depacking the chip. We refer the reader to [31] for more details.

• Error-correcting code (ECC) mechanisms and/or error-detecting codes (EDC or
checksum) detect the moment when a value contained in the memory changes its
initial (correct) state. According to the implementation and to the number of bits
used for ECC or checksum, some faults could be detected or even corrected.

2.3.3 Protection against transient faults

Transient faults are induced only for a limited period of time in a given process. Since
these faults can occur at any moment anywhere in the target circuit, it is rather hard for
circuit designers to develop efficient universal countermeasures.

Therefore, instead of detecting faults themselves, designers develop methods enabling
to detect effects of faults or extreme physical conditions liable to provoke these faults.

2.3.4 Protection against frequency or voltage manipulations

The cheapest way to provoke faults in a secure chip consists in manipulating input
signals. Usually, input, output and reset to zero signals are designed in a robust way.
Thus, attackers will most often try to inject perturbations using the chips power supply
or via an external clock.

- 73/223 -

2.3.4.1 Protection against frequency manipulations

This threat has to be taken into account in any chip using an external clock, the best
countermeasure being the use of internal clock.
In case of an external clock, high frequency faults detectors and low frequency ones
(against step by step clock sequencing) will be implemented to detect clocks frequencies
outside of the design range. A specific detector can be added for detecting anomalous
pulses on the clock signal (clock glitches), as well as cyclical reports not in accordance
with the normal conditions of functioning.

2.3.4.2 Protection against voltage manipulations

Manipulating the power supply is a very common way to perturb a chips functioning.
To prevent faults induced via Vcc and Vss voltage modifications, a pulse detector can
be added to the chip.
Moreover, if the chip is supplied by a voltage regulator (which is the case in all tech-
nologies under 0.35µm) a detector for internal voltage manipulations (abnormally high,
low or pulse) should be implemented.

2.3.4.3 Protections against light attacks

All ASICs are sensitive to light at different degrees. This is why an attacker can induce
faults into a chip by injecting a sufficient quantity of energy using lasers or even a white
light source (e.g. camera flashed triggered by an FPGA).

• Metal plate shielding

A first protection against light exposure consists in covering sensitive parts of the
circuit by a metallic shield.
Note that some metal shields are not opaque to light. Therefore, experiments on
the required metal thickness are needed to validate this countermeasure.

• Individual light detectors

It is also possible to implement light detectors directly embedded in silicon by de-
signing some transistors of the circuit in such a manner that light exposure causes
them to cease functioning.

• Distributed light detectors

In a distributed system, light detectors are spread in the circuit in order to avoid lo-
cal light attacks (as lasers). Generally, if an attacker performs reverse-engineering

- 74/223 -

Jean-Michel Cioranesco| Thèse de doctorat | Décembre 2014

on the chip he will identify those detectors with the help of a simple optical mi-
croscope, unless a specific design method is used.

2.3.4.4 Generic faults countermeasures

• Dual logic

As mentioned in section 5, a countermeasure method preventing at the same time
the side-channels attacks and fault attacks consist in designing some parts of the
circuit in dual logic. This logical coding mode obliges the attacker to manipulate
two signals at once ; the back draw is that it is doubling the area and power of the
circuit protected.

• Redundant logic

Another method of protection against fault injections consists in designing the cir-
cuit in a redundant way. This technique is usually applied only to sensitive parts
of a circuit since it implies increasing the chips area. You then have a voting sys-
tem between the different redundant outputs, usually the best out of three. This
method is commonly in critical systems as an aircraft.

Redundancy is useful for sensitive logical functions as well as RAM cells or regis-
ters (as for example, the pointer stacks).

• Memory protection

In order to protect the memory against faults, it is possible to perform systematic
reads after any writes to verify that the operation took place. This can be done
through both SW and HW.

There are several options in order to protect read operations. A first option consists
in adding redundancy to the operation as, for instance, doubling it. The result
of the two reads is compared to be sure that there were no faults. In the case of
RAM, two real reads will be distributed on four read operations ; two of them will
address one decoy data. So the attacker will not have any certainty which one was
the retrieved data, even if he succeeds to corrupt two reads over four.

Another solution to protect a chip against faults is the use of canaries ; one could
permanently read the canaries addresses in which test data have been placed. The
corruption of a read test datum will serve as a fault detector.

• Detection of illegal opcodes

Each CPU core is designed with an instruction set (opcodes). A CPU has the pos-
sibility to detect illegal opcodes. Thus a chip will provoke an error (augmentation
of a GEC) if the execution of an illegal opcode is attempted.

- 75/223 -

2.4 Protection Against Invasive Attacks

2.4.1 Impacting spatial localization

Attacking a secure circuit by using a simple light beam requires very precise spatial lo-
calization of the targeted function or, at least, a control of the position of the beam with
respect to the different blocks forming the chip.
There are different strategies of countermeasures against direct observation of the chip
(using an optical microscope) in order to make difficult such a spatial localization. Let
us mention in particular, the use of glue logic 1, or of shielding making an identifica-
tion of specific zone more complex. Shields on top metal layers hide the buried layers
and render the navigation on different layer depths very difficult (different layers can
be observed optically by focusing a microscope to different depth). Such a shield also
serves as a function of anti-probing device since it prevents an attacker to reach metal
lines located underneath. Part of this thesis work will be focused on active shielding
techniques on secure ICs.
In recent semi-conductors technologies, chemical etching or infrared observation of the
backside of the chip is necessary to localize basics functional blocks of the chip.

2.4.2 Active shield mechanisms

Active shields are implemented in many security chips requiring temper resistance
against invasive attacks such as probing. Most basic active shields are composed of
a metal wire in a meander shape, covering the top surface of the chip, and a control
circuit which permanently verifies that the wire is not modified or disconnected.
An active shield protects a chip against physical probing and the most of fault attacks.
Indeed, fault injection attempts will cause perceptible modification of the electrical res-
ponse of the wire and will be detected by the protected circuit. We refer the reader to
section 6 and 7 to a detail analysis showing how active shield can be implemented, and
on novel implementations of active shields using an cryptographic algorithm to detect
modification.

2.4.3 Silicon sensitivity

Transistors sizes are in constant diminution, which entails the increase of circuits sensi-
tivity with respect to the faults. Indeed the number of electrical charges representing a

1. Technique allowing to mix different logical functions in order to route them with standard cells.

- 76/223 -

Jean-Michel Cioranesco| Thèse de doctorat | Décembre 2014

bit is also decreasing. Consequently, a low level perturbation will be sufficient to flip a
bit. This forces hardware designers to implement fault detections and correction algo-
rithms on full scale.
However, if a technology is too sensitive, it becomes harder and harder to choose spe-
cific transistors or to find appropriate operating conditions to inject faults. This is pro-
perty is interesting and deserves to be studied and optimized during circuit concep-
tions.

- 77/223 -

- 78/223 -

Jean-Michel Cioranesco| Thèse de doctorat | Décembre 2014

Part 2

DPA and EMA Countermeasures

- 79/223 -

Jean-Michel Cioranesco| Thèse de doctorat | Décembre 2014

3 Buying AES design resistance with
speed and energy

3.1 Introduction

The Advanced Encryption Standard (AES) algorithm, also known as Rijndael, is a wi-
dely used block-cipher standardized by NIST in 2001 [73]. Compared with its prede-
cessor DES [3], the AES features longer keys, larger plaintexts and more involved basic
binary transformations [12].

Despite the fact that AES is mathematically safer than the DES, straightforward AES im-
plementations are not necessarily secure and several authors [59, 58, 66] have exhibited
ways of exploring information that leaks from AES implementations. Such leakage is
typically power consumption, electromagnetic emanations or the time required to pro-
cess data. Additional constraints such as fault-resistance, chip technology, performance,
area, power consumption, and even patent compliance further complicate the design of
real-life AES coprocessors.

This article addresses resistance against two physical threats : power and fault attacks.
The proposed AES architecture leverages the algorithm’s structure to create low-cost
protections against these attacks. This allows very flexible runtime configurability wi-
thout significantly affecting performance.

The remaining of the paper is organized as follows : Section 3.2 recalls the AES’ main
features and proposes an architecture for implementing it. Section 3.3 explains how to
add power scrambling and fault detection to the proposed implementation. The result
is a chip design allowing 29 different software-controlled runtime configurations. Sec-
tion 3.4 introduces an idea of reducing the memory required to store state keys in the
decryption mode. Section 3.5 compares simulation and synthesis results between an
unprotected AES and our protected implementations. While Section 3.6 concludes this
implementation study.

- 81/223 -

P AddRoundKey

K [r] C

SubBytes ShiftRows MixColumns

(Nr times)

FIGURE 3.1 – AES Encryption Flowchart.

C AddRoundKey

K [r] P

InvMixColumns InvSubBytes InvShiftRows

(Nr times)

FIGURE 3.2 – AES Decryption Flowchart.

3.2 The Proposed AES Design

The AES is a symmetric iterative block-cipher that processes 128-bit blocks and supports
keys of 128, 192 or 256 bits [73]. Key length is denoted by Nk = 4, 6, or 8, and reflects the
number of 32-bit words in the key. At start, the 128-bit plaintext P is split into a 4 × 4
matrix S of 16 bytes called state. The state goes through a number of rounds to become
the ciphertext C.

The number of rounds Nr is a function of Nk. Possible {Nr, Nk} combinations are {10, 4},
{12, 6} and {14, 8}. A particular round 1 ≤ r ≤ Nr takes as input a 128-bit state S[r] and a
128-bit round key K [r] and outputs a 128-bit state S[r+1]. This is done by successively ap-
plying four transformations called SubBytes, ShiftRows, MixColumns and AddRoundKey.

The AES encryption starts with an initial AddRoundKey transformation followed by Nr

rounds consisting of four transformations, in the following order : SubBytes, ShiftRows,
MixColumns and AddRoundKey. MixColumns is skipped in the final round (r = Nr). If
during the last round MixColumns is by-passed, we can look upon the AES as the 4-
block iterative structure shown in Figure 3.1.

Decryption has a similar structure in which the order of transforms is reversed (Fi-
gure 3.2) and where inverse transformations are used (Note that AddRoundKey is idem-
potent). In both designs, a register barrier at the end of each transformation block is
used to save intermediate results. Therefore the intermediate information that even-
tually yields S[r] is saved four times during each AES round. It takes 4Nr + 1 clock
cycles to encrypt (or decrypt) a data block using this design.

Figure 3.1 and Figure 3.2 show that during each clock cycle, only one block of the chain
actually computes the state, while the other three blocks are processing useless data.

- 82/223 -

Jean-Michel Cioranesco| Thèse de doctorat | Décembre 2014

This is potentially risky, as the three concerned blocks “chew” computationally useless
data related to P (or C) and K [r] and thereby expose the design to unnecessary side-
channel attacks. This computation is shown in Figure 3.3 where red arrows represent
the path of usefully active combinatorial logic.

3.3 Energy and Security

3.3.1 Power Analysis

We assume that the reader is familiar with the power [66] and fault [54] attacks that we
do not recall here.

To benchmark our design the AES was implemented on FPGA. Power was measured
at 1GS/s sampling rate with 250MHz bandwidth using PicoScope 3407A oscilloscope.
To guarantee the identical conditions every new plaintext was given to the FPGA at the
same clock after the reset.

We performed a Correlation Power Attack (CPA) on the first AES Sbox output since
Sbox operation is generally considered as the most power gluttonous. Our power model
was based on the number of flipped register’s bits in the Sbox module when the initial
register’s barrier R0 is rewritten with the Sbox output as follows :

HD(Sbox[P ⊕ K0], R0) = HW(Sbox[P ⊕ K0] ⊕ R0) (3.1)

where R0 is the previous register’s state ; P is a given plaintext ; K0 is the AES master
key.

The value R0 was assumed to be constant since all the encryptions were performed at
the same clock after the reset. When R0 could not be computed then all possible 256
values were tried. Pearson correlation coefficient was used to link the model and the
genuine consumed power.

The following section presents a reference evaluation of the unprotected AES imple-
mentation showing its vulnerability compared to two (LFSR and tri-state buffers) side-
channel countermeasures introduced later.

- 83/223 -

FIGURE 3.3 – Flow of Computation in Time.

3.3.2 Power Scrambling

It is a natural idea to shut down unnecessarily active blocks. To do so, each block re-
ceives a new 1-bit input named ready activating the block when ready = 1. If ready = 0,
the block’s pull-up resistors are disconnected using a tri-state buffer connected to the
power source. This saves power and also prevents the circuit from leaking “unnecessa-
ry” side-channel information.

Logically the pipeline architecture that we have just described has to be less vulnerable
against First Order DPA attacks. Its four register barriers introduce additional noise, so
we expect that the correlation shall be at least smaller that for the AES design with one
round per clock computation.

To asses the security of each proposed design, we will compare an incorrect key byte
correlation to a correct key byte correlation. Figure 3.4 shows these two coefficients. As
expected, the correct key is correlated to the power traces, however even for 500,000
traces Pearson correlation coefficient is smaller than 0.015. Anyway, this implementa-
tion is vulnerable.

- 84/223 -

Jean-Michel Cioranesco| Thèse de doctorat | Décembre 2014

FIGURE 3.5 – Power Scrambling with a PRNG.

FIGURE 3.4 – Unprotected implementation : Pearson correlation value of a correct (red) and an incorrect (green) key byte guess.
500,000 power traces.

To exploit the unused blocks to hide the device’s power signature even better we pro-
pose two modifications. The first consists in injecting (pseudo) random data into the
unused blocks, making them process that random data. Subsequently, three of the four
blocks will consume power in an unpredictable manner. Note that because we use the
exact same gates to compute and to generate noise, the expected spectral and amplitude
characteristics of the generated noise should mask the leakage quite well. Although any
random generator may be used as a noise source, we performed our experiments by
using a 128-bit LFSR. An LFSR is purely coded in digital HDL, making tests easier to
implement.

Figure 3.5 shows that a multiplexer controlled by the ready signal selects either the
useful intermediate state information or the pseudo-random LFSR output. For the Ad-
dRoundKey block, LFSR data replace the key. Therefore when AddRoundKey’s ready = 0,

- 85/223 -

pseudo-random data (unrelated to the key) are xored with the state coming from the
previous block (MixColumns if encrypting, InvShiftRows if decrypting). For the other
blocks, the pseudo-random data replaces the state when ready = 0.

FIGURE 3.6 – LFSR implementation : Pearson correlation value of a correct (red) and an incorrect (green) key byte guess. 1,200,000
power traces.

Attacks performed on this implementation revealed that this countermeasure increases
key lifetime. Figure 3.6 is the equivalent of Figure 3.4 for the protected implementation
using an LFSR. The correct key correlation can not be distinguished from the incorrect
key correlation even with 1,200,000 traces. However, we assume that this implemen-
tation still might be vulnerable if more traces are acquired or if Second Order DPA is
applied.

Real-life implementations must use true random generators. Indeed, if a determinis-
tic PRNG seed is used the noise component in all encryptions becomes constant and
cancels-out when computing differential power curves.

A second design option interleaves tri-state buffers between blocks to hide power consump-
tion. By shutting down the three useless blocks, we create a scrambled power trace
where one block computes meaningful data while the other three “process” high im-
pedance inputs, which means that these blocks “compute” the leakage current coming
from their inputs.

As illustrated in Figure 3.7, the input signal readyi determines which blocks are tri-stated
and which block is computing the AES state. In other words, the readyi signal “jumps”
from one block to the next, so that only one block is computing while the other three are
scrambling the power consumption. Although this solution has a smaller overhead in

- 86/223 -

Jean-Michel Cioranesco| Thèse de doctorat | Décembre 2014

P

ready1

AddRoundKey

K [r]

C

ready2

SubBytes

ready3

ShiftRows

ready4

MixColumns

(Nr times)

FIGURE 3.7 – Power Scrambling with Tri-State Buffers.

terms of area (as it does not require random number generation) tri-state buffers tend
to be slow. Furthermore, the target environment (FPGA or IC digital library) must offer
tri-state cells.

The experimental results we obtained on FPGA were surprising, we couldn’t attack the
design with 800,000 power traces. The correlations shown in Figure 3.8 do not allow to
visually distinguish the correct key from a wrong guess. As before we assume that this
implementation can be still attackable if more power traces are acquired or if Second
Order DPA is applied.

A full study of this solution would require an ASIC implementation with real tri-state
buffers, as an FPGA emulates these buffers and may turn out to be resistant because of
an undesired CLB mapping side effects.

FIGURE 3.8 – Tri-state buffers implementation : Pearson correlation value of the correct key byte (green) and a wrong key byte guess
(red). 800,000 power traces.

- 87/223 -

3.3.3 Transient Fault Detection

We will now use idle blocks to check for transient faults. Each block in the chain can
"stutter" during two consecutive clock cycles to recompute and check its own calcula-
tion. For instance, as shown in Figure 3.9, at clock t, a given block Bi receives a readyi

signal, computes the state and saves it in the register barrier Ri. At clock t + 1, the result
enters the next block Bi+1 mod 4 which is now working, while Bi reverts to checking, i.e.,
Bi recomputes the same output as at clock t and compares it to the saved Bi value. This
process is repeated for the other blocks in the chain. If any transient fault happens to
cause a wrong result at the output of any block, the error will be detected within one
clock cycle.

Clock = t

Clock = t + 1

WORKING

CHECKING ⊕

FIGURE 3.9 – Transient Fault Detection Scheme for AES.

3.3.4 Permanent Fault Detection

The AES structure of Section 3.2 also allows us to use one block of the chain to compute a
pre-determined plaintext or ciphertext. The encryption (or decryption) of a chosen input
(e.g. the all-zero input Z) is pre-computed once for all and hardwired (let W = AES(Z)
denote this value). While the system processes the actual input through one block (out
of four) during any given clock cycle, another block is dedicated to recompute W . One
clock after the actual C emerges, AES(Z) can be compared to the hardwired reference
value W . If W �= AES(Z), a transient or a permanent fault occurred.

In this scenario, the system starts by computing AES(Z) in the first clock cycle, followed
by the actual computation of C. This allows the implementation to check up all the
blocks during the execution and make sure that no permanent fault occurred. In the last
clock cycle, while C is being processed in the last block, the correctness of AES(Z) is
compared with the hardwired value before outputting C.

In Figure 3.10, the red arrows represent data flow through the transformation blocks.
After the initial clock cycle, the first block starts computing C. The WORKING blocks re-
present the calculation of C. The CHECKING blocks represent the calculation of AES(Z).

- 88/223 -

Jean-Michel Cioranesco| Thèse de doctorat | Décembre 2014

While AES(Z) will be calculated in 4Nr + 1 clock cycles, C will be calculated in 4Nr +
2 cycles. If the fault needs to be caught earlier, the solution described in [13] can be
adapted. Yet another option consists in comparing intermediate Z encryption results
(i.e. intermediate state values) to hardwired ones. Note that our design differs from [13]
where a the decryption block is used for checking the encryption’s correctness [12].

Clock = t CHECKING IDLE IDLE IDLE

Clock =
t + 1 WORKING CHECKING IDLE IDLE

Clock =
t + 2 IDLE WORKING CHECKING IDLE

Clock =
t + 3 IDLE IDLE WORKING CHECKING

FIGURE 3.10 – Permanent Fault Detection Scheme for AES.

3.3.5 Runtime Configurability

The proposed AES architecture is a 4-stage pipeline where each stage can be used inde-
pendently of the others. As already noted, blocks can perform five different tasks :

• Compute a meaningful state ;
• Be in idle state to save energy ;
• Scramble power consumption ;
• Check for transient faults by recomputing previous calculation ;
• Check for permanent faults by computing a known input.

To explore all possible combinations, we proceed as follows : first, we generate all
54 = 625 combinations (5 operations for 4 transformation blocks). We can consider a
subset of these combinations if we work with 4 operations only, and remember that
each E entry represents two actual options (tri-state or idle). This reduces the number
of combinations to 44 = 256. We eliminate all configurations that are circular permuta-
tions of others, i.e. already counted configurations shifted in time. We also eliminate the
meaningless configurations in which there does not exist even one block computing.
All configurations having more than one permanent fault protection block at a time, are
removed as they do not add any extra protection. Finally, we eliminate the cases where
a transient fault checking is not preceded by a computing block or by a permanent fault
verification.

Table 3.1 shows that the design can perform 29 different task combinations, where C
stands for computing, E stands for energy (power scrambling, idleness or any combina-

- 89/223 -

TABLE 3.1 – 29 Possible Configurations.

Block 1 Block 2 Block 3 Block 4
C C C C
C C C E
C C C T

’ C C C P
C C E E
C C E T
C C E P
C C T T
C C T P
C C P E
C C P T
C E C E
C E C T
C E C P
C E E E
C E E T
C E E P
C E T T

� C E T P
C E P E

� C E P T
C T C P
C T T T
C T T P

� C T P E
C T P T

� C P E E
C P E T
C P T T

TABLE 3.2 – Number of Configurations.

C E P T Configurations
4 1
3 1 1
1 3 1
3 1 1
3 1 1
1 3 1
2 2 1
1 1 2 1
1 2 1 1
2 2 2
1 1 2 2
2 1 1 3
1 2 1 3
1 1 2 3
2 1 1 3
1 1 1 1 4

- 90/223 -

Jean-Michel Cioranesco| Thèse de doctorat | Décembre 2014

0

1

2
3

4

sk6

sk7

sk8

sk9

sk10

sk6

sk7

sk8

sk9

sk1

sk6

sk7

sk8

sk2

sk1

sk6

sk7

sk3

sk2

sk1

sk6

sk4

sk3

sk2

sk1

sk5

sk4

sk3

sk2

sk1

sk6

sk4

sk3

sk2

sk1

sk6

sk7

sk3

sk2

sk1

sk6

sk7

sk8

sk2

sk1

sk6

sk7

sk8

sk9

sk1

FIGURE 3.11 – Memory Halving for AES Decryption When Nr = 10.

tion of these two if there are more than two Es in the considered configuration), T stands
for transient fault checking and P stands for permanent fault checking. These options
can be activated during runtime according to the system’s constraints such as power
consumption or speed. If there are no specific requirements, we recommend any of the
four best configurations protecting against all attacks at once. These are singled-out in
Table 3.1 by a �.

Table 3.2 shows the number of configurations per protection goal. Note that for a given
protection goal, different configurations can be alternated between executions without
any performance loss.

3.4 Halving the Memory Required for AES Decryption

As we have seen, it takes 4Nr + 1 clock cycles to encrypt or decrypt an input. The first
block of the chain, AddRoundKey xors the state with the subkey. Therefore, the key expan-
sion block is designed to deliver a new 32-bit subkey chunk at each clock cycle.

When decrypting, the AES uses subkeys in the reverse order, so all subkeys need to be
expanded and stored in memory before decryption starts. For that, decryption requires
a 128Nr-bit buffer. These 128Nr bits are stored in a register having Nr records of 128 bit
each. Nevertheless, it is possible to halve the number of records by using the following
idea : let skNr

be the subkey required at round Nr. All subkeys are computed but only
the last Nr/2 subkeys are stored in memory. After the first 4 clock cycles, AddRoundKey
block uses skNr

(the first AddRoundKey uses the initial key sk0 which we assume to be
already recorded). After 4 more cycles, sk1 is saved in the record previously occupied
by skNr

. The buffer continues to be used in such a way that each previously used (i.e.
read) subkey is replaced by a new subkey of rank smaller than Nr/2. By the time that AES
decryption requires skNr/2, the subkeys sk1 to skNr/2−1 would have already been replaced
subkeys skNr

to skNr/2.

As shown in Figure 3.11, only 5 records are required when Nr = 10. Analogously, {6, 7}
records are required for Nr = {12, 14}. The red positions are subkeys being used at each

- 91/223 -

AESREADY_IN
RESET_IN

CLOCK_IN

TEXT_IN[127 :0]
KEY_IN[127 :0]

TEXT_OUT[127 :0]
READY_OUT

FIGURE 3.12 – AES Design’s Inputs and Outputs.

AddRoundKey operation, from left to right. Note that we assume that the initial key sk0

is known and does not need to be stored.

The algorithm is formally defined as follows : Create a buffer of Nr/2 records denoted
r[0], . . . , r[Nr/2 − 1]. Place in each r[i] the subkey ski+1+Nr/2.

Define the function f as

f(i) =
|2i − Nr − 1| − 1

2

When ski is needed, fetch it from r[f(i)]. After this fetch operation update the record
r[f(i)] by writing into it skNr−i+1.

3.5 Implementation Results

A 128-bit datapath AES encryption core was coded and tested in Verilog and compiled
using Cadence irun tool. Cadence RTL Compiler was used to map the design into a 45nm
FreePDK open cell digital library. Figure 3.12 represents the inputs and outputs of the
AES core. The module contains a general clock signal called CLOCK_IN, an asynchro-
nous low-edge reset called RESET_IN and a READY_IN signal that flags the beginning
of a new encryption. Plaintext is fed into the device via the 128-bit bus TEXT_IN, while
the 128-bit key is fed to the system through the input called KEY_IN. The module out-
puts two signals : TEXT_OUT, which contains the resulting plaintext and READY_OUT,
that represents a valid output.

Table 3.3 compares an unprotected AES core to the countermeasures described in this
paper. The increase in terms of area is ∼ 6% for the LFSR implementation and ∼ 4% for
the tri-state design. The LFSR implementation showed almost no increase in terms of
power consumption. Since tri-state buffers shut down three out of four blocks per clock,
we expect a reduction in the power consumption. The tri-state design saves roughly 20%
of power compared to the unprotected AES. As tri-state buffers tend to be slower, this

- 92/223 -

Jean-Michel Cioranesco| Thèse de doctorat | Décembre 2014

TABLE 3.3 – Unprotected AES, LFSR and Tri-State Buffer Designs Synthesized to the 45nm FreePDK Open Cell Library.

Unprotected LFSR Tri-state

Area (µm
2) 61,581 65,194 64,243

Number of cells 10,643 11,035 11,162
sequential 783 911 787
inverters 1,483 1,614 1,493
logic 8,375 8,506 8,368
buffers 2 4 2
tri-state buffers 0 0 512
Total power (mW) 2.10 2.16 1.68
leakage power 1.20 1.28 1.26
dynamic power 0.89 0.87 0.41
Timing (ps) 645 645 806
Frequency (GHz) 1.55 1.55 1.24
Throughput (Gbit/s) 4.84 4.84 3.87

TABLE 3.4 – Spartan3E-500 Utilization Summary Report.

Unprotected LFSR Tri-state

Number of Occupied Slices 1,994 2,290 2,296
Number of Flip Flops 1,142 1,270 1,146
Number of LUTs 3,521 4,106 4,031
Timing (ns) 10.789 10.714 11.580
Frequency (MHz) 92.68 93.33 86.35
Throughput (Mbit/s) 289.3 291.3 269.6

design lost 20% in terms of clock frequency and throughput, while the LFSR version
showed no speed loss, as expected.

Table 3.4 shows the three designs benchmarks in FPGA. They were coded in Verilog
and synthesized to the Spartan3E-500 board using the Xilinx ISE 14.7 tool. LFSR and
tri-state designs showed an area overhead of ∼ 15% compared to the unprotected AES
implementation. In terms of performance, LFSR design showed no loss, while the tri-
state core lost ∼ 7%.

- 93/223 -

3.6 Conclusion

We described an unprotected AES implementation sliced in four clock cycles per round.
Making use of this approach, we built on top of the unprotected core two power scram-
bling ideas to thwart side-channel attacks, such as CPA. We demonstrated how the de-
sign can also prevent fault injection by recomputing its internal state values or by com-
promising one out of four blocks at each clock to compute the encryption of a known
plaintext. We then exhibited simulation results and showed the comparison of the un-
protected against the protected cores. The results confirm that the overhead in terms of
area, power and performance is small, making this countermeasure attractive.

Moreover, the proposed AES architecture provides different options to tune the design
into the user’s need. Among 29 different configurations, examples include : to make
the proposed AES a 4-stage pipeline (i.e., compute four different plaintexts per execu-
tion), to use three blocks to generate noise against power attacks, or to use one inactive
block in the chain to recompute for encryption correctness. In addition to the proposed
AES implementation, we presented a simple scheme to halve the number of memory
positions required for storing subkeys when AES is performing decryption.

- 94/223 -

Jean-Michel Cioranesco| Thèse de doctorat | Décembre 2014

4 A Low-Cost Noise Generator

4.1 Proposed Design

The countermeasure is based on the use of asynchronous noise generation, basically we
will be using a generic circuit to create random noise and blur the encryption’s power
consumption. This circuit can be formed of several LFSR initiated with random values,
but our idea is not limited to a specific design. We aim to protect an encryption circuit
running on a clock frequency of F1, to do so we use at least one second clock F2 so that
F1 and F2 are co-primes (PGCD (F1, F2)=1).
We then use a PLL to generate several sub-clocks F1,i so that F1,i runs at a higher mul-
tiple frequency than F2, in addition, F1,i and F1 are chosen as co-primes. We use these
i clocks F1,i to feed i protection circuits containing several registers that are re-written
at each clock, we thus create an asynchronous random noise. The integrated circuit
should have a verification circuit that checks that the clock frequencies are not modified
to ensure that an attacker is not bypassing the countermeasure by disabling or giving a
wrong value to clock F2.

The simplest circuit to create random noise are LFSR, Linear Feedback Shift Register
(Figure 4.1). An LFSR is a basic Pseudo Random Number Generator, PRNG, composed
of an internal state updated with a linear boolean function. LFSR are very efficient in
hardware as they can operate at very high frequencies and are used as primitives for
many stream ciphers.

32 31 30 27 26 25 1

FIGURE 4.1 – 32 bits Galois LFSR

Let S1, ..., SL ∈ F2 be the L bits of the initial states, L being the length of the LFSR.
Let c1, ..., cL ∈ F2 be the feedback coefficients generating the output sequence by the
following binary recursion :

SL+i = c1.Si + ... + CL.SL+i−1

- 95/223 -

The output sequence is clearly ultimately periodic with a period lower than 2L. So the
security of a single LFSR is rather low as it is possible to recover the internal state via
the knowledge of L consecutive outputs, there is a safety-period after which the LFSR
has to be stopped and re-seeded.
This is why we need to use a combination of several LFSR. Moreover, to ensure the
randomness of the noise, we need to use a pseudo RNG to provide the initial seed for
the startup position of the register along with the control sequence of the register (see
Figure 4.5). Basically, we will start to access one of the registers in a random position
and we will switch randomly at a random time between the register starting from a
random position. The goal is to create a purely non deterministic system that will be
immune from library attacks.
At each new encryption or safety-period the LFSRs are re-seeded by the PRNG. There
is no need for a high entropy RNG, just a non deterministic, non Gaussian one will be
sufficient. Depending on the size of the LFSR we may want to stop them running after
encryption to save energy. We will be testing this solution with Galois LFSRs, but many
other kinds of LFSR exist such as Fibonacci or non-linear ones that could fulfill this role
as well.

4.2 FPGA implementation

To prove our idea we will implement the countermeasures on an FPGA, the ciphering
algorithm we use is an unprotected implementation of a 128 bits AES [73] (see Figure
4.2), the throughput of the design is 128 bits which means that it is performing one
round of AES at every clock. We implemented the design on an Altera Cyclone II stater
board [5], the AES is running on the main clock of F1 = 50MHz.

FIGURE 4.2 – Block schematic of the implemented AES

- 96/223 -

Jean-Michel Cioranesco| Thèse de doctorat | Décembre 2014

The implemented AES is unprotected and is very vulnerable to DPA, the secret key can
be extracted with only few hundreds encryptions. We realize a ciphertext-based attack
on the last round of encryption and we correlate power model and traces using Pearson
correlation coefficient.

Figure 4.3 shows in red the power consumption of the FPGA, we can clearly distinguish
the ten rounds of the encryption. The absolute value of the Pearson correlation coeffi-
cient is shown in blue, it is correlating at the tenth round when registers are rewritten.
As we are using the correct key guess, the correlation is very high. This maximum of
the Pearson coefficient in time gives the point where the leak occurs.

FIGURE 4.3 – DPA correlating one correct byte of the key for 1000 encryptions

To implement the countermeasure, we integrated three Galois LFSRs in our design. The
three LFSRs have different lengths, they are seeded with random values and never stop
running even between different encryptions. So it is a kind of worst-case implementa-
tion as the ideal solution would be re-initiated for each new encryption.
We used the second clock of the board running at F2 = 27MHz in combination with
three PLLs to generate different frequencies. We verified that PGCD(F1, F2) = 1, this
insure that the two clocks feeding the aes and the noise generator will be completely de-
synchronized. The noise generator is using three different LFSRs, which have different
sizes and are all connected to different PLL, they are implemented as described in Table
4.4.

- 97/223 -

LFSR Size Taps Positions PLL Frequency Phase Offset
Galois n1 32-bit (32, 30, 26, 25) 27 ∗ 5 = 135Mhz 0 deg
Galois n2 48-bit (48, 44, 41, 39) 27 ∗ 6 = 162Mhz 45 deg
Galois n3 64-bit (64, 63, 61, 60) 27 ∗ 15 = 405Mhz 67.5 deg

FIGURE 4.4 – Characteristics of the three implemented LFSRs

FIGURE 4.5 – Block schematic of the countermeasure

We performed a comparative DPA attack guessing one byte of the key on an unprotec-
ted version and the one carrying our countermeasure (Figure 4.6). The countermeasure
provides a fairly good level of protection against first order DPA.

- 98/223 -

Jean-Michel Cioranesco| Thèse de doctorat | Décembre 2014

FIGURE 4.6 – DPA unprotected AES for 200000 encryptions

Electromagnetic analysis (EMA) allows an attacker to perform a more targeted attack
by measuring a near field emission. In the FPGA floor planning the AES and the LFSRs
are physically in different regions of the chip which allows us to extract more informa-
tion by placing the electromagnetic probe on top of the encryption circuit. This concept
proved to be right in reality as we were able to guess the correct byte of the key much
faster by using EMA rather that DPA (Figure 4.7). To prevent this flaw we can take a
special care of the floor planning during the synthesis to intricate the LFSRs within the
encryption design.

- 99/223 -

FIGURE 4.7 – DPA versus EMA correlation on the hardened design for 200000 encryptions

Another limitation of such countermeasure is the filtering in the frequency domain. To
prevent this we want to choose two frequencies F1 and F2 carefully.
If g = gcd(F1, F2), we want to choose f1 = F1/g and f2 = F2/g as close as possible, so
that the filtering of unwanted frequencies will be hard to perform without loosing part
of the meaningful information.

- 100/223 -

Jean-Michel Cioranesco| Thèse de doctorat | Décembre 2014

5 Antagonist registers to reduce data
leakage

5.1 Principle of antagonist register

The idea is to compensate the register switch power leakage by creating a couple of
antagonist registers, R1 and R2. R1 is used for the output value of the algorithm and R2

is storing R2 = R1.

The power consumption for a register depends on switching its state during clock
edges, so cutting this dependence prevents the register to leak information about sto-
ring value by power consumption analysis. Since it is not possible to avoid all state
switching on a register, the solution is to make the register switch its state during all
clock edges even when the stored value keeps the same.
One register can not keep and switch its value at the same time, hence it must be imple-
mented as a pair of flip-flops, one is the main flip-flop responsible for storing the value
and the other is the antagonist. The principle of antagonist is to provide a state switch
power consumption when the main one does not switch its state.

R1

R2

IN

OUT

+V

FIGURE 5.1 – Antagonist Registers

- 101/223 -

IN R1 R2 OUT Switch
0 0 - 0 R2

0 1 - 0 R1

1 0 - 1 R1

1 1 - 1 R2

TABLE 5.1 – Truth Table of the first Design

Figure 5.1 presents the schematic circuit for an antagonist register. The main flip-flop is
connected to circuit input and output, it stores the input signal and drives the output
signal, switching its state during a clock edge when the input switches. Also, an XOR
gate is connected to input and output to detect if the main flip-flop switches, enabling
and disabling the antagonist. When the flip-flop input and output are the same (0 xor 0,
1 xor 1), the XOR gate output is zero.
The antagonist consist of another flip-flop with inverted feedback that makes it to switch
its state during a clock edge when enabled. If the main flip-flop does not switch during
a clock edge, the antagonist is enabled to switch. Both flip-flops must have the same
load on the output to generate the same power consumption when switching, that is
the reason for using just XOR gates to create a balanced circuit.

5.2 FPGA Implementation

As a case study, we chose to test the antagonist registers on the Advanced Encryption
Standard [73] (ı.e. AES). We will then attack our unprotected implementation & pro-
tected implementation with the first order DPA. We hope to see a great improvement
in the security meaning that a much greater number of encryption will be necessary to
retrieve the secret key.

Figure 1.7 presents the structure of our AES hardware implementation, we will run our
experimentation on an Altera cyclone II FPGA board [5]. The register Ri rewrites itself
after each round to store the new current value until all rounds are completed. The
protected implementation (Figure 5.2) presents the same structure except that registers
are replaced by the antagonist registers.

- 102/223 -

Jean-Michel Cioranesco| Thèse de doctorat | Décembre 2014

FIGURE 5.2 – Structure of our FPGA Implementation

5.3 Experimental Results

To assess the efficiency of our protected registers, we will perform a first order DPA on
the unprotected VS protected implementations. We will perform a Correlation Power
Attack (I.E. CPA) on the last round of AES. Our primary target for the attack is the
register RS, at the last round it gets rewritten from RS10 to ciphertext. This operation
consumes power and some information is leaked through that power. We will first build
a basic power model on only one byte of the key.

target

Ciphertext

A
d

d
R

ou
nd

K
ey

−
1

target

Sh
if

tR
ow

s−
1

target

Sb
ox

−
1

target

Register at beginning of Round 10

We are building our power model on the operation O(RS10 ← C) which consumes a
power P ∝ HD(RS10, C).

- 103/223 -

Or HD(RS10, C) = HW (RS10 ⊕ C)
So we choose one byte of the key that we guess among the 28 possibilities, and we build
a power model for this guess. We then correlate the power model we have created with
the power traces of the corresponding encryptions, we compute the Pearson correlation
coefficient for each point of the graph and we look for a correlation on the 10th round.

FIGURE 5.3 – Correlation Power Attack (CPA) on antagonist register versus unprotected register using 5000 traces

Figure 5.3 presents a correlation power attack using a correct byte of the key to build a
power model. For the unprotected register, the correlation is very sharp, showing the
exact moment the register is rewritten. The antagonist register in the contrary brings a
much smaller correlation, and the correlation is spread over all rounds. The balanced
registers are hiding the manipulated data, and it is almost like the registers are using the
same power consumption for every possible set of transitions. Unfortunately, the output
load of the antagonist register is not really the same as the "normal register" , so the
consumption is a little unbalanced which causes the register to leak some information.
But the solution brings a significant improvement in terms of security.

Figure 5.4 represents a key guess of all possible key bytes using 100 000 traces. We
kept the highest correlation value for each possible byte and compare them. On the
unprotected implementation we get a pike at 0,39 whereas the antagonist registers give
a correlation at 0,22. We can thus deduce that the antagonist diminishes significantly
the power leakage without modifying the throughput of the device.

- 104/223 -

Jean-Michel Cioranesco| Thèse de doctorat | Décembre 2014

FIGURE 5.4 – CPA guessing key bytes on antagonist registers versus unprotected implementation using 100000 traces

- 105/223 -

- 106/223 -

Jean-Michel Cioranesco| Thèse de doctorat | Décembre 2014

Part 3

Protections Against Invasive Attacks

- 107/223 -

Jean-Michel Cioranesco| Thèse de doctorat | Décembre 2014

6 The Sandwich Capacitors Shield

6.1 Introduction

Invasive attacks are a major threat to IC security. These attacks allow an opponent to
extract secret information from a chip without destroying it. Digital shielding is widely
used in the smart-card industry to prevent invasive attacks. Digital shielding consists in
using top-metal layer wires carrying logic signals to protect an IC. Attackers have been
able to defeat such protections by using laser cutting, micro-probing and focused ion
beams (FIB) [95]. Amongst the other solutions devised against such attacks, a number
of authors explored the use of capacitance measurements [61, 51].
This paper presents a circuit protection mechanism using capacitive sensors to detect
chip modifications. This countermeasure makes the IC tamper resistant to invasive phy-
sical attacks attempted from above. When the protected circuit senses the intrusive at-
tack it reverts into an emergency mode and takes protective steps such as the erasure of
sensitive data.

Reference

MUX Drive For
Switches And Array

Of Input Capa-
citors α Forming

Secure Shield

Non-Overlapping
Clock Gene-
rator Φ & Φ

Switch-Capacitor
Amplifier & Feed-
back Capacitor β

Detector

FIGURE 6.1 – Functionnal block schematic of the countermeasure

- 109/223 -

6.2 Description of the shield

The sandwich capacitor’s grid spread on the IC’s top layer covering the protected cir-
cuit underneath. The circuit measures the capacitance values along the grid and detects
changes caused by invasive attacks. Figure 6.1 represents a possible implementation of
the countermeasure using solely capacitive sensors, while Figure 6.2 proposes an exten-
sion using complementary sensors and detectors to resist a wider range of attacks.

It uses the capacitor measurement along with thermal monitoring to address tempera-
ture attacks and and light detection to counter laser fault injection.

Reference

MUX Drive For
Switches And Array

Of Input Capa-
citors α Forming

Secure Shield

Non-Overlapping
Clock Gene-
rator Φ & Φ

Switch-Capacitor
Amplifier & Feed-
back Capacitor β

Light
Sensors

PTAT
Sensors

Active shield
Detector

Light Detector

Temperature
Detector

FIGURE 6.2 – Shielding with other sensors

We use a switched-capacitor circuit to compare the measured capacitor to a reference ca-
pacitor 1. As all capacitors on the grid are multiplexed, we only need a unique detection
circuit for the sensor evaluation.

6.2.1 Sandwich Capacitor’s Grid

Metal to metal fringe capacitors (Figure 6.8) are known in the industry under many
names such as VPP, for vertical parallel plate capacitors, MOM, for metal on metal ca-
pacitor, they are also sometimes referred to as sandwich capacitors.
This type of capacitor presents major advantages for our application ; they can be im-
plemented in one metal layer and cover a specified area efficiently. Moreover, due to
their fingers shape, each small modification on this capacitor will affect its value dra-
matically (cf. Section 6.3.1). To avoid a trivial bypass of the countermeasure by feeding
the proper capacitance value to the switched-capacitor circuit accessible from top-layer

1. We refer to reference capacitor as the feedback capacitor in the switched-capacitor circuit.

- 110/223 -

Jean-Michel Cioranesco| Thèse de doctorat | Décembre 2014

metal lines, Figure 6.3 proposes a layout implementation of a two layer fringe capacitor
with a single finger for each plate A and B.

FIGURE 6.3 – Alternative two layer fringe cap with a single finger for each plate A and B

By placing an array of metal to metal fringe capacitors α (Figure 6.4) forming a shield
directly above the circuits that one desires to secure, we protect them against invasive
attacks.
The feedback capacitor β must not to be placed on the top layer of the metal stack to
avoid any external modification as it is connected to the detector, this would easily allow
an attacker access to the detector. So the feedback capacitor β is to be placed on a lower
metal layer. This precaution also prevents an invasive attack by adding capacitance to
the feedback capacitor thus reducing the gain of the circuit to a negligible level and
allowing attacks through on the other input capacitors to the lower metal layers to go
potentially undetected.

6.2.2 Evaluation circuit

The array of α capacitors would be connected to a switched-capacitor circuit (6.5),
whose output is connected to a detector that measures a change in output voltage.

- 111/223 -

Protected circuit that in-
cludes the feedback ca-
pacitor α (metal layers 1

to N − 2)

Second β capacitors’ grid
(metal layer N − 1)

First β capacitors’ grid
with different orientation
(metal layer N)

FIGURE 6.4 – Two layer metal to metal fringe capacitors array covering the protected circuit

Switched-capacitor amplifier circuit design techniques for detectors have been propo-
sed in [81]. The output voltage will be affected by any change in the capacitor values at
the input caused by an invasive attack on the IC, where the attack intends to eavesdrop
with a probe through a hole in the capacitor metal shield to access signals on the metal
tracks of the circuits below.

The switched-capacitor circuit we are using for capacitance measurement can have
many multiplexed inputs so only single amplification circuit is needed to be used to
protect a large secure area in the IC. Further embodiments based on multiple switched-
capacitor amplifiers can be used, but would be wasteful of silicon area. The switched
capacitor topology used can be singled ended or differential 2, both will give results
which detect a change in the capacitor input values. The gain of the switched-capacitor
amplifier is set by the ratio of the input capacitor and the feedback capacitor, we will
adjust those parameters within the technology constraints to obtain a proper sensitivity
for our purpose.

2. For the sake of conciseness we will only consider a single ended switched-capacitor amplifier em-
bodiment in the rest of the paper.

- 112/223 -

Jean-Michel Cioranesco| Thèse de doctorat | Décembre 2014

α

β

Φ

Φ

Φ

AUTO-ZERO (1)

α

β

Φ

Φ

Φ

NON-
OVERLAPING

PHASE OF
CLOCK (2)

Drive
α

β

Φ SAMPLE &
AMPLIFY (3)

FIGURE 6.5 – Single ended switched-capacitor circuit (α being the measured capacitor and β the feedback capacitor)

(1)

H CLOSED

L OPEN

(3)

(2)

Φ

Φ

FIGURE 6.6 – Non-Overlapping Clocks

The switched-capacitor circuit is controlled by two non-overlapping clocks (Figure 6.6).

- 113/223 -

In the auto-zero phase (1) (Figure 6.5), the measured and feedback capacitors are di-
scharged. In the sampling phase (3), we drive the input of the circuit and the detector
samples the output and checks its value. If this voltage drop (Figure 6.9) exceeds a cer-
tain voltage range, the detectors trigger the safety mode. The preferred embodiment is
a differential switched capacitor amplifier. As such an amplifier will amplify the diffe-
rence between the two input capacitors, that are to be charged by the common reference
level.

The gain ratio between the feedback capacitor β and the input capacitors α is desirable
to be large, this will increase the sensitivity, as we do not care if the amplifier output
hits the supply rails.

In order to select any capacitor for evaluation, the device incorporates a multiplexer
to scan the plurality of input capacitors αi together, so that they can be used with a
single amplifier. Additional amplifiers could be used but it is more efficient to have a
single multiplexer to select a plurality of switches and capacitors with a single amplifier
feedback capacitor β.

α1 Φ

β

Φ

Φ

Φ

α2 ΦΦ

Φ

αn ΦΦ

Φ

FIGURE 6.7 – Single ended switched-capacitor circuit measuring a network of n capacitors(αi being the measured capacitors and β
the feedback capacitor)

The security of the arrangement can be further increased by incorporating a sequen-
cer to the multiplexer that controls the switches. This has the advantage that the multi-
plexed input capacitors are switched so that it is not the same pair of capacitors αi being
compared in respective measurement cycles. Thus, an attacker is not aware which ca-
pacitor is being compared at any given time. The sequencing of the multiplexer can also
be changed or can be pseudo-random. This would further enhance the security against

- 114/223 -

Jean-Michel Cioranesco| Thèse de doctorat | Décembre 2014

a sophisticated adversary, who was prepared to invest significant time and resources in
planning the attack. With the sequencer applied to the multiplexer the adversary would
not know at what instant which pairs of capacitors in the array where being paired for
comparison measurements.

As shown in Figure 6.7, an additional switch is provided in series with the switched
capacitor amplifier and the feedback capacitor β so that the feedback capacitor terminal
is not directly available for access via a probe on the capacitor array αi. It prevents an
adversary from direct access to the feedback capacitor terminal.

6.3 Implementation

6.3.1 Sandwich Capacitor Design
The choice of the sandwich capacitor design has to deal with several constraint, first
the sensitivity of the sensor, if the capacitor is too small, then parasitic capacitors with
the circuit will not be negligible and modification in the capacitor value will be too
small 3. We also have manufacturing constraint for metal lines spacing. Each sandwich
capacitor spreads on a square of 10µm × 10µm.

We evaluate the capacitor value through layout extraction on a 130nm technology, we
get a value of 160fF. To evaluate the sensitivity of this sandwich capacitor, we cut one
finger of this capacitor and we got a capacitance value of 99,8fF (37,6% change).
If an attacker cut a piece of a fringe capacitor on the top layer to reach the transistor
underneath, one piece of the capacitor will be floating and may even be charged if the
attacker cut it while the IC is in function. We extracted the parasitic capacitance of such a
floating capacitor to evaluate the impact on the sensitivity, but the phenomena revealed
to be negligible.

(a) (b)

FIGURE 6.8 – 2D & 3D view of a single 160 fF top layer fringe cap (10µm×10µm)

3. Note that the parasitic capacitor between a sandwich capacitor and the protected circuit still have
to be evaluated

- 115/223 -

6.3.2 Simulation Results

For simulation purposes we evaluate the fringe capacitor value from a layout extraction
capacitor value on a 130nm for a full capacitor of 160fF and an attacked one of 99,8fF (as
described in the previous section). We took a feedback capacitor of 80fF, giving a ratio of
2 for the output gain. We run the simulation over a single switched-capacitor amplifier,
a differential would provide much more sensitivity to trim the sensors threshold to a
lower level and determine the detector sensitivity. The transfer function gives us an
output proportional to the ratio of the measured capacitor and the feedback capacitor
so that we can adjust the second one to get the desired sensitivity (Vout ∝ Cα

Cβ
).

0,18V

FIGURE 6.9 – Voltage values outputted by the switch-capacitor amplifier for full and cut fringe capacitor

We drive the input of the circuit with a 1 to 2V step voltage, changing the measured
capacitance. We then evaluate the output and measure the voltage drop (We obtained a
0,18V drop, corresponding to a 10,25 % change in the output voltage value). Once the
circuit is fully designed, we will have to take in consideration the capacitance added by
the multiplexing wires.

- 116/223 -

Jean-Michel Cioranesco| Thèse de doctorat | Décembre 2014

6.3.3 Going to Silicon

A high scanning frequency is not required to measure the capacitance along the grid
and we are using a unique switched-capacitor circuit, so the countermeasure’s power
consumption will be small regarding the overall chip consumption. The countermea-
sure will cost two or three masks depending on the embodiment of the sandwich capa-
citor chosen. We have to consider the capacitance value spread among different wafers
to design the detector properly.

- 117/223 -

- 118/223 -

Jean-Michel Cioranesco| Thèse de doctorat | Décembre 2014

7 Random Shielding

7.1 Introduction

Cryptographic circuits must be protected against attacks that aim at extracting the in-
formation they conceal. Probing is a popular way to read or write data using a port
(the probe tip) normally unavailable to the attacker. Thus, shielding protections were
devised and implemented on top of most secure chips.

At the early ages of smart cards, their integrated nature had been already a good protec-
tion. It was believed that it is a priori harder for the average hackers to look into integra-
ted circuits. Progressively, test tools, such as probing stations, normally used to debug
live circuits, became increasingly available. Naturally, they turned to be relevant attack
penetration tools. In the meantime, the circuits were using more and more advanced
CMOS technologies, so that the feature size decreased and the number of interconnect
layers increased. This deterred the probing, and has been indeed taken advantage of
by designers to further obfuscate the circuit by doing a random placement and rou-
ting of sensitive gates. Thanks to recent technological advances, we witness since 2010
a revived interest in probing attacks. Especially, they have been aided by the increased
popularity of the possibility to draw artificial pads that conduct directly into the inner
parts of the circuit, thanks to a focused ion beam (FIB) tools. The shielding of circuits is
thus still mandatory, and especially relevant nowadays.

This article is structured as follows. The motivation for an active shield is given in
Sec. 7.2, along with an overview of known attacks. The specification of a feasible and
secure shielding geometry is given in Sec. 7.3. A new solution, aimed at deterring trivial
reconstruction of the shield, is explained in Sec. 7.4, and conclusions and perspectives
are drawn in Sec. 7.5.

- 119/223 -

Probe

tip

Sensitive lines

FIGURE 7.1 – Probing of a circuit thanks to prober tip, to read or force sensitive variables (courtesy of [42], Figure 4.1 of §4.2. at page
31).

7.2 Overview of Shielding

The goal of shielding is to prevent attacks that consist in

• either placing a probe on a resource (wire, gate, memory cell), for a subsequent
probing (read and/or inject data into the device) during execution ;

• or modifying a chip (using a FIB), and then running it.

The first attack typically allows to spy data on a bus, or change access rights during
memory writing, or alter opcodes read from program memory (Figure 7.1). The second
attack can be used to unlock resources (Figure 7.2).

Conversely, shielding does not protect against reverse-engineering using methods such
as layout recognition algorithms [98, 92]. While optical imaging allows to identify in-
terconnect lines and gate functions, it usually fails to read non-volatile memory (NVM)
contents (e.g. EEPROM cells). So, it is a safe practice to store keys in NVM memory.

Thus the general principle of shielding is to cover a sensitive area by metal lines, meant
to detect intrusions. Secure logic is thus sandwiched between the shield (top) and the
substrate (bottom) 1. Backside attacks are more chancy, since the layout does not clearly
stand out. Furthermore, some encapsulation techniques in the module do not allow

1. The optical PUFs [101] make use of the same strategy ; they consist of a transparent material contai-
ning randomly distributed scattering particles allowing to deviate the laser light. Nonetheless, this optical
PUF technology requires light sources and detectors, and the depositions of specific materials. It is thus
not compatible with mainstream CMOS processes.

- 120/223 -

Jean-Michel Cioranesco| Thèse de doctorat | Décembre 2014

Added

connection

Opened

connection

FIGURE 7.2 – Edition of a circuit thanks to a FIB, in a view to unlock the access to a memory (courtesy of [42], Figure 4.2 of §4.2. at
page 31).

an accurate backside probing. Also, technologies such as SOI (Silicon on Insulator) are
expected to forbid backside attacks. as well as other means of shielding, like 3D cana-
ries [24]. The kind of protection we thus consider is sketched in Figure 7.3. The sensitive
circuit is covered by metal line segments that guarantee the circuit is not functional if
the shield is tampered with.

Passive shielding uses an analogue shield integrity measurement. For instance, the ca-
pacitive load of a line can serve as a signature. Passive shielding can however be de-
feated because it must tolerate some variations on the quantity being monitored. Thus,
digital shielding (called active shielding) can be preferred. This consists in injecting ran-
dom sequences of bits in a topmost metal circuit and checking that they arrive unaltered
after their journey.

Nowadays threats are the attack of the active shield with the FIB. This protection can be
defeated if the meaning of the lines is disclosed, since their geometry can be changed
while keeping the functionality invariant (Figure 7.4). We refer to this kind of alteration
by the term shield rerouting attack.

In practice, the identification of the identical lines is more complex than in the case of
the single serpentine of Figure 7.4. But, it is often possible to recognize the equipotential
lines with well structured shields (Figure 7.5).

- 121/223 -

M1
M2

M4
M3

M5
M6

Area to protect

Shield lines

Bulk silicon (i.e. substrate)

FIGURE 7.3 – General structure of a shield (sagittal view).

Source

Sink

equality
check

Protected / unprotected area

Source

Sink

equality
check

Protected area

FIGURE 7.4 – Area protected by a snake active shield (left), and shrunk protected area (right) by shield extension reduction (with
cuts // and connections • introduced by FIB), at constant functionality (view of the top of the shield).

- 122/223 -

Jean-Michel Cioranesco| Thèse de doctorat | Décembre 2014

T
his

area
is
unprotected!

This area is unprotected!

FIGURE 7.5 – Zoom at 15,000 magnification of shield structures by Infineon (left) and STMicroelectronics (right). On the bottom
annotated picture, equipotential lines are underlined with the same color. [Source : [32]]. The rerouting attack principle is illustrated
in cyan superimposed comments.

- 123/223 -

7.3 Requirements of Shielding

Little information is generally available publicly about shielding specifications. The
main reason is that this topic is usually disregarded by the scientific community. As
a matter of fact, researchers preferably look for other “secure by the design” protec-
tions, or consider that if an adversary has the power to probe lines, then most efforts
to attempt to hamper him will only delay (but not prevent) a successful attack. The
industry usually keeps the countermeasures secret, since, from a regulation point of
view, it improves the attacks quotations (in terms of Common Criteria – CC [39]), and
actually decreases the chance of a real-world attack once the product is on the field.
Nonetheless, some companies patent shielding ideas, e.g. analog passive [61] or digital
active [11] shield structures. Or we can also come across commercial brochures about
active shielding [49], that explain some performance figures but not the protection ratio-
nale. Eventually, pirates sometimes disclose attacks, e.g. Tarnovsky (from FlyLogic [97])
on the Infineon SLE66 [32].

From this limited state-of-the-art, we nevertheless see that shielding is an industry re-
quirement and a target of attacks. Here, we intend to explain the specification of shiel-
ding and provide a rigorous ground for design practices. The two main challenges when
devising a shield are manufacturability and security. Cost and power consumption ef-
ficiencies are other constraints, but it appears in practice that shielding uses only scarce
resources (compared to the principal factors for area and power, that are memory and
their accesses, and the IO for power). We detail both aspects in the following subsec-
tions.

7.3.1 Manufacturability Requirements for the Shielding

The shield must comply with some design rules checks (DRCs), that are described in
the following subsections. For the sake of illustration, we consider a 0.13 µm techno-
logy from STMicroelectronics, with 6 levels of metal. They are called M1 to M6, and
can be connected respectively by the vias V12, V23, . . ., V56. We recall that modern rou-
ting practices [104] consist in aligning the metal wires on a grid, that coincides with
the possible positions for the vias. Thus the connectivity in the horizontal 2D plane is
achieved by metal segments, whereas vertically, between Mi and Mj (where j = i ± 1),
it is achieved by a via Vij.

- 124/223 -

Jean-Michel Cioranesco| Thèse de doctorat | Décembre 2014

7.3.1.1 Metal extension beyond a via at end of lines

The metal lines cannot stop dead after a via : an extension is required by the design
rules. Therefore, either one routing site is skipped after each via, or the width of the wire
is increased to absorb the extension. These two strategies are illustrated in Figure 7.6.
Here is a more accurate description of it :

(a) The extension after a via is a mandatory design rule, that makes up for possible
masks misalignments during the fabrication process.

(b) The extension forbids to use all the possible slots available for vias.
(c) One solution, for instance used by automatic routers, is to forbid the use of the via

next to the extension.
(d) Another solution is to make an abstraction of this extension by incorporating it

into a new site placement grid (depicted in dotted fat gray lines in the figure).

7.3.1.2 Metal maximal parallel run length

Another design rule to consider is the maximum parallel run length. This rule aims
at preventing two adjacent lines from being merged during fabrication. Thus the lines
must be constrained to a given length. To respect this rule, some sites for M6 can be
removed.

7.3.1.3 Density considerations

Lastly, the density rules must be verified. They state that the density must be neither
too low nor too high, otherwise the chemical-mechanical planarization process will not
manage to flatten the layer just deposited. However, by design, we are not concerned
with this rule. Indeed, by using minimally (or near minimally) sized metal lines, we
cannot reach the upper bound, due to the space between the wires. And as we wish to
have most sites populated, we do not fall into the minimal density rule either.

7.3.1.4 Antennae rules check

During fabrication, the wires collections (charged particles) from plasmas used in che-
mical vapor depositions fabrication stages. These charges can accumulate at the CMOS
transistor gates and irreversibly damage them by perforating the oxide. Therefore, it is
required that a maximal area of metal is exposed on transistor gates while not being
connected to a drain. This situation is, by design, avoided, as the shield makes many
zigzags (which coincides with the silicon founder recommended advice to reduce the

- 125/223 -

Minimal M6-M6 space

DRC

OK

error

DRC

(a) Mandatory extension after a via

(b) One via site is lost at every via

(c) Solution #1: skip a via

(d) Solution #2: fatten the wire and space the vias

V56

Minimal V56-V56 space Minimal M6-M6 space

M6

Minimal V56-V56 space Minimal M6-M6 space

OK

DRC

FIGURE 7.6 – Management of metal line extension beyond via end of line (extension).

- 126/223 -

Jean-Michel Cioranesco| Thèse de doctorat | Décembre 2014

antenna effect) between levels of metals, thus preventing large area wires to be connec-
ted directly to a few transistor gates.

7.3.2 Security Requirements for the Shielding

The shield feature size must be as small as possible, since FIBs have an edition capability
of greater accuracy than the fabrication technology. Indeed, FIBs are intended to repair
circuits, and must thus be able to alter them with a precision at least equal to that of the
layout. This is normal because FIBs use a naively finer process : ions accelerated by FIBs
have a smaller wavelength than the light used in lithographic fabrication processes.
Thus, minimally-spaced M6 lines are employed for the chip protection.

Two other properties that an active shield must enjoy are

1. it must cover the circuit uniformly, and

2. it must resist against alteration. From Figure 7.5, it is clear that the greater the num-
ber the equipotentials, the more difficult “rerouting attacks” (that were sketched
in Figure 7.4). Also, altering the geometry without modifying the connectivity will
be all the harder as the shield seems more entropic.

7.4 Solution : Dense Random Spaghetti Active Shield

7.4.1 Rationale

The idea of dense random spaghetti active shield consists in

• defining a set of vertices and edges, that correspond to a set of M6 and M5 sites
that are encapsulated in the area over the module(s) to protect,

• such that whatever subgraph (provided the smallest non-convex components are
not singletons) is DRC compliant.

Then, for the compactness property of the shield (absence of holes), it must be ensured
that all the vertices are visited once (and at most once, so as to avoid short circuits),
hence a Hamiltonian path. The complete algorithm is detailed in Alg. 1.

- 127/223 -

Algorithm 1 Dense Random Spaghetti Routing.

1: Input N : number of different interleaved equipotentials.
2: Step1 Build a graph whose vertices consist in free via slots and edges in the free

routing slots.
3: Step2 Label each edge by a random number.
4: Step3 Solve the Traveling Salesman Problem (TSP) to get one Hamiltonian circuit.
5: Step4 Cut the Hamiltonian circuit into N subpaths, and return those.
6: Output A random shield made up of N equipotentials.

7.4.2 Comments on the Approach

At step 1, the graph typically uses the available top-most layers, like M5 and M6. At step
3, The TSP can be run until an exact solution is found, or it can be used to yield only
an approximation. Indeed, our requirement is to end up with a Hamiltonian circuit, but
not necessarily optimal in terms of length. At the end of step 3, the shield consists in a
single equipotential, that can thus easily be cut and shunted at will by an attacker. Thus
the need for step 4, that consists in segmenting the found Hamiltonian circuit into many
(N) subpaths, that are interleaved, because the graph is randomly annotated.

The number N of segments must be defined in accordance with the expected number
of tries an attacker is willing to make in order to successfully edit the routing (of course
without changing the connectivity !). Random shielding thus does not deter better than
regular shielding (such as that displayed on the right side of Figure 7.5) against an atta-
cker that knows its layout. But random shielding is a deterrent if its layout is unknown
(for instance because its random routing makes it painful to unravel, as illustrated on
Figure 7.7). Indeed, an attacker needs to recognize all the N equipotentials as a preli-
minary phase to start with a rerouting attack. Said differently, random shielding makes
the identification phase hard. But once the shield topology is exposed, its exploitation is
easy. It can be argued that this protection belongs to “security by obscurity” techniques.
It is indeed ; but in the light of CC, it is valid : the identification phase is also quoted, and
difficult identification improves the overall score of an evaluation. So, having admitted
that the goal is merely to make the identification hard, we can assert that the spaghetti
routing generated our Alg. 1 is efficient.

We focus in the sequel on special types of graphs, that we call cuboids. They consist in
a juxtaposition of Nx, Ny, Nz cubes in the three dimensions. We consider the case where
at least two dimensions exist (i.e. at least two sizes in Nx, Ny, Nz are greater or equal to
two – otherwise no Hamiltonian circuit can exist because one vertex has degree one).
For a cuboid to be Hamiltonian, Nx × Ny × Nz must be even, that is to say that at least
one amongst (Nx, Ny, Nz) must be even. Indeed, the value of x + y + z and x� + y� + z� of

- 128/223 -

Jean-Michel Cioranesco| Thèse de doctorat | Décembre 2014

Attacker’s viewDesigner’s view

area to
open

FIGURE 7.7 – The figure on the left illustrates the N segments making up an active random shield. The connectivity of these
segments is unknown to the attacker ; the figure on the right shows the vision of an attacker who discovers the shield.

Ny > 1

N
x
(even

)

zigzag zone

(a) (b)

fold

Nz ×Ny (here: 2×Ny) (c)
NyNz

Nx

FIGURE 7.8 – Constructive Hamiltonian paths when Nx is even.

two adjacent vertices have different parity. Thus, any cycle must have a length of even
parity ; such cycle cannot pass through all the vertices of the graph if the total number
of vertices (Nx × Ny × Nz in our case) is odd. The reciprocal assertion is also true : if
Nx × Ny × Nz is even, then the graph is Hamiltonian. Without loss of generality, we
assume that Nx is even. Then Figure 7.8(a) shows one solution in the case of Nz = 1.
When Nz > 1, a Hamiltonian circuit can be derived from a Nx, Nz × Ny, 1 cycle built
as previously (see Figure 7.8(b)), by folding the structure Nz times (see Figure 7.8(c)).
Obviously, the algorithm 1 will find better randomized Hamiltonian circuits.

Lastly, we underline that in Alg. 1, it is important that a Hamiltonian path is found first
and cut afterwards. Proceeding the other way around, no guarantee on the existence of
solutions would exist. For instance, a subcycle (that passes only through some vertices)
could be found ; but when removing it, the remaining graph might be separated in two
unconnected parts, which is not wanted security-wise. Indeed, it creates isolated areas
of the shield, while the goal is to try and spread the wires around the whole graph (not
locally).

- 129/223 -

7.4.3 A Small Example

The result of an execution of Alg. 1 is shown in Figure 7.9. The plot (a) illustrates the
non-planar graph. It is made up of a 4 × 6 sites area for the topmost metal (say M6),
represented as squares, and the equivalent 4 × 6 sites area in M5, represented as dots.
In this example, the vias are possible everywhere. To summarize, this graph has 48
vertices (24 drawn as squares and as many drawn as dots) and 100 edges. In plot (b),
one Hamiltonian path, obtained by step 3 of Alg. 1, is drawn in purple. Eventually, the
final results is shown in plot (c). The previous Hamiltonian path is cut in N = 3 paths
(drawn in red, green and blue) at positions indicated by arrows (always in the lower
level, i.e. M5). Here, it can be seen that the three equipotentials are well interleaved.

The generated layout is shown in Figure 7.10, where metal M6 is orange (resp. cyan), M5
yellow, and via V56 cyan (resp. gray) for CADENCE VIRTUOSOS (resp. GNU/ELECTRIC).
These layouts are drawn in HCMOS9GP 130 nm technology (STMicroelectronics). Gi-
ven the DRC rules to be obeyed (see Sec. 7.3.1), the shield drawing pitch is 97 nm, which
is one order of magnitude smaller than the typical probe tip diameter (� 1 µm being the
minimum achievable).

This kind of spaghetti routing fosters long lines, and is thus very difficult to unravel
for 10+ different signals. Indeed, even if two equipotential wires are found, the overall
cost to drill through a 10 × 10 pitch area requires nearly a complete shield reverse-
engineering. Thus, we can assume this is not the primary attack path from a prospective
attacker.

Incidentally, we notice that the shield lines can be heavily loaded. Indeed, at every via,
that are massively instantiated (about for half of the connections in the shield), a resis-
tance of about 1 Ω is added. However, the active shield does not require a speedy test.
A functioning at 10 times the nominal frequency is still enough in most cases to ensure
its usefulness. Additionally, as the capacitive load is high, this shield could also bene-
fit from a passive integrity check. In this article, we leave this consideration as further
research.

7.4.4 Performance on Larger-Scale Circuits

The high performance of the shield circuit generation is of utmost importance. Namely,
step 3 of Alg. 1 is known to be NP-complete. Nonetheless, we actually do not need
the shortest Hamiltonian path, but only one. In this case, some heuristic algorithms
exist. For instance, the LKH software (based on [47]) allows to find a Hamiltonian path,
but the graphs cannot be weighted. Said differently, it solves the TSP where edges are
weighted only by 0 or 1. This method is quite fast, and allows to find Hamiltonian

- 130/223 -

Jean-Michel Cioranesco| Thèse de doctorat | Décembre 2014

M6 plane

V56 interconnect

M5 plane

cut

cut

cut

(a)

(b)

(c)

FIGURE 7.9 – Compact shielding, obtained by the execution of Alg. 1. In the final shield layout (c), the N = 3 segments are fed with
unrelated random bit sequences.

- 131/223 -

FIGURE 7.10 – Shield design under the CADENCE VIRTUOSO and GNU/ELECTRIC layout editors.

- 132/223 -

Jean-Michel Cioranesco| Thèse de doctorat | Décembre 2014

circuits for up to several thousand vertices. However, we observed that the result was
not intricate enough.

Two key points for a scalable solution are thus to quantify the quality of a shield, and to
find Hamiltonian circuits generation algorithms faster than those derived from the TSP.

7.4.4.1 Shield Quality

One feature to distinguish a random shield from a non-random one is the average iso-
tropy of the routing. According to this criterion, the shield is all the better as the lines go
almost equally in all directions. For this reason we propose the entropy of the directions
as a metric. It is estimated as

H(C) =
∑

d∈{x,y,z}

−P (d) · log2 P (d) , (7.1)

where P (d) is the probability for the circuit to take this direction, evaluated as the ratio
between the number of edges in that direction on the total number of edges (that is
equal to the total number of vertices). When the shield is only 2D, P (z) = 0, thence we
employ the limit −P (z)·log2 P (z) = lim�−→0+ −�·log2 � = 0. As along one direction, there
are as many edges going forward and backward, we intentionally neglect the notion of
orientation for d. The optimal values are 1.000 bit for a 2D shield and approximately
1.585 bit for a 3D shield. To the authors’ best knowledge, the question whether those
bounds are tight for Hamiltonian circuits is open. We also underline that for a finite
shield, the Eqn. (7.1) is approximate, since vertices on the borders cannot have edges in
all directions. However, in practical cases (see Tab. 7.2), this metric is usable.

7.4.4.2 Genetic Algorithms

Genetic algorithms are random algorithms meant to approach an optimization problem
by hybridizing solutions. In our case, they constitute a way to improve the Hamiltonian
circuit’s entropy. They are also interesting since we can start them from an existing Ha-
miltonian path (e.g. the one described in Figure 7.8), and not from a hard-to-generate
one obtained by exact or approximate TSP. Our mutation consists in randomly finding
two pairs of adjacent lines, and to switch the connections, as illustrated in Figure 7.11.
This method requires a “bootstrap” Hamiltonian circuit (step 1). Then, it breaks the cir-
cuit into two circuits (step 2) twice. Eventually, the circuits are merged (step 3). The last
step hopefully increases the Hamiltonian circuit’s entropy. It is repeated until a suffi-
cient entropy level is reached. For the sake of clarity, the same transformation is also
shown in Figure 7.12. The Hamiltonian cycle is represented in an abstract way (there is
no grid), and the pair of 4 neighbor sites is represented by squares and by diamonds :

- 133/223 -

exchange

twice

Step 2: invariant transform Step 3: apply it randomlyStep 1: build a trivial circuit

FIGURE 7.11 – Diversification of Hamiltonian circuits.

Before the transformation used in the genetic algorithm:

After the transformation:

➊ ➋ ➌ ➍

➊ ➋ ➌ ➍

FIGURE 7.12 – Diversification process of Figure 7.11, seen topologically.

topologically speaking, it is possible to jump from one square (or diamond) to its neigh-
bor with one hop. The original circuit uses the paths labeled ➊, ➋, ➌ & ➍ in this order
(➊,➋,➌,➍). After transformation of the routing, the new circuit, (➊,➍,➌,➋), remains Ha-
miltonian. It requires that the squares and the diamonds be pairwise interleaved.

The table 7.1 shows that the genetic algorithm has indeed managed to increase the en-
tropy. It is illustrated on 10 iterations (from left to right, and from top to bottom), where
it is also apparent that the entropy (c.f. Eqn. (7.1)) appears to be a suitable metric to
measure the entanglement of the N segments making up the active shield.

The performance of the shield generation has been prototyped on three examples of
interest for the smart card industry

- 134/223 -

Jean-Michel Cioranesco| Thèse de doctorat | Décembre 2014

TABLE 7.1 – Evolution of a x = 16, y = 16, z = 2 shield with N = 10 segments (printed in different colors). Indicated are the
entropy H and the time T for generation.

H = 0.550 bit, T = 37 ms. H = 0.673 bit, T = 129 ms.

H = 0.783 bit, T = 213 ms. H = 0.903 bit, T = 316 ms.

H = 1.014 bit, T = 438 ms. H = 1.126 bit, T = 599 ms.

H = 1.240 bit, T = 940 ms. H = 1.349 bit, T = 1381 ms.

H = 1.454 bit, T = 2228 ms. H = 1.556 bit, T = 4303 ms.

1. a register containing a 128 bit key,

2. a 1 kB ROM, and

3. a DES cryptoprocessor.

In all cases, a z = 2 layer shield has been considered. The generation software is a pro-
totype application, and thus written in a script language, without optimizations and
all the “assertions checks” enabled. More precisely, it is a script PERL (version 5.10.1),
executed on an Intel Xeon CPU cadenced at 2.13 GHz running GNU/Linux 2.6.32. The
results are provided within Tab. 7.2. By rewriting the software with optimizations in
mind, we could expect a two order of magnitude decrease in the execution time. The
purpose of Tab. 7.2 is to show that with a limited memory footprint (less than 100 MB)
and straightforward code, the active shield of large sizes can be generated by genetic
algorithms. Eventually, Figure 7.13 illustrates the convergence speed to a solution of hi-
ghest entropy (or its vicinity). The progression sometimes stalls, as for instance for the
DES shield in the early minutes. The reason is that when choosing a first transformation
site (step 2 of Figure 7.11), this selection can leave few choices for the second transfor-
mation site, hence numerous trials-and-errors. Also, it can be seen that the curves stop
when a maximal value (for our version of a genetic algorithm) is reached and no other
positive mutation can be found. It is remarkable to notice that the final value of the
entropy is very close to the maximal theoretic one, which proves the mutation method
presented in Figure 7.11 is relevant. We also notice that genetic algorithms allow for a
trade-off security versus computation time. A less entropic shield can be found faster than
an optimal (or near optimal) one, by stopping the genetic algorithm if the entropy is
considered high enough (for instance, a threshold of 1.550 bit can be set).

Even larger circuits can be protected at a lower computational cost by abutting several
instances of the smaller active shield problem. Although less elegant, this solution still
is provided with an increased security level since the instance is a priori one from each

- 135/223 -

TABLE 7.2 – Computation time to generate a Hamiltonian circuit that can serve as shield for several sensitive modules of a smartcard.

Circuit Area Number of vertices Time for the generation Entropy — Eqn. (7.1)
128-bit register file 10, 000 µm2 17, 200 1 h 45 min 1.574 bit
1 kB ROM 15, 000 µm2 25, 760 2 h 43 min 1.564 bit
DES crypto-accelerator 21, 000 µm2 33, 792 3 h 54 min 1.554 bit

0.000

0.200

0.400

0.600

0.800

1.000

1.200

1.400

1.585

 0 50 100 150 200

E
n

tr
o

p
y
 [

b
it
]

Time [min]

Maximal limit
128-bit register file (x=86, y=100, z=2)

1 kB ROM (x=112, y=115, z=2)
DES cryptoprocessor (x=128, y=132, z=2)

FIGURE 7.13 – Convergence rate of three real-world random active shields.

other, making artificial FIB rerouting connections chancy.

7.5 Conclusions and Perspectives

The adequate shielding of secure integrated circuits is of great importance, in regard
with current exploits, for instance from FlyLogic. Active shielding is a known tech-
nique, that consists in injecting random data through top-metal wires and checking
that they arrive uncorrupted. However, most publicly disclosed active shields are struc-
tured, hence their topology can be inferred by attentive attackers. In this article, we
propose a method to achieve intricate spaghetti routing of a dense mesh of wires. The
density is actually optimal in the sense that no routing site is left empty. This is achie-
ved by computing a Hamiltonian circuit. The entanglement comes from randomized
constraints given in the Hamiltonian circuit generation algorithm.

- 136/223 -

Jean-Michel Cioranesco| Thèse de doctorat | Décembre 2014

It is worthwhile to notice that we have employed graph-agnostic algorithms (only the
genetic one requires an initial Hamiltonian circuit). However, most of the time, the
graphs are highly structured, for instance, they are often “lattices”, i.e. a (finite) repe-
tition of a fixed pattern. Certainly the algorithms can be guided to converge faster if
they are aware of the graph’s topology. But given that general (graph-agnostic) algo-
rithms finish rapidly 2, this refinement is left as a perspective for future incremental
improvement on top of Alg. 1.

Eventually, we notice that the active shield presented in this paper is statically random.
An improvement could consist in changing the division of the Hamiltonian circuit into
several N segments, depending on a “shield configuration” random variable. The fea-
sibility of this dynamically random routing is of interest for the future generations of
active shields.

2. As compared with other CAD tools used in ASIC design.

- 137/223 -

- 138/223 -

Jean-Michel Cioranesco| Thèse de doctorat | Décembre 2014

8 Reconfigurable Digital Shielding

3D integration is a promising advanced manufacturing process offering a variety of new
hardware security protection opportunities. This chapter presents a way of securing 3D
ICs using Hamiltonian circuits as hardware integrity verification sensors. As 3D inte-
gration consists in the stacking of many metal layers, one can consider surrounding a
security-sensitive circuit part by a wire cage.

After exploring and comparing different cage construction strategies (and reporting
preliminary implementation results on silicon), we introduce a "hardware canary". The
canary is a spatially distributed chain of functions Fi positioned at the vertices of a 3D
cage surrounding a protected circuit. A correct answer (Fn ◦ . . . ◦ F1)(m) to a challenge
m attests the canary’s integrity.

8.1 Introduction

3D integration is a promising advanced manufacturing process offering a variety of new
hardware security protection opportunities. This paper presents a way of securing 3D
ICs using Hamiltonian circuits 1 as integrity verification sensors. 3D integration consists
in the stacking of many metal layers. Hence, one can consider surrounding a security-
sensitive circuit part by a wire cage, for instance a Hamiltonian circuit connecting the
vertices of a cube (Fig. 8.1). In this paper, different algorithms to construct cubical Ha-
miltonian structures are studied ; those ideas can be extended to other forms of suffi-
ciently dense lattices.
Since 3D integration is based on the vertical stacking of different dies, a Hamiltonian
cage can surround the whole target and protect its content from physical attacks. 3D
ICs are relatively hard to probe due to the tight bonding between layers [102]. Moreo-
ver, the 3D circuit can even penetrate the protected circuit and connect points in space
between the protected circuit’s transistors.

1. A Hamiltonian circuit (hereafter "cage" or simply "path" for the sake of conciseness) is an undirected
path passing once through all the vertices of a graph.

- 139/223 -

FIGURE 8.1 – Hamiltonian cycle passing through the vertices of a 4 × 4 × 4 cube

A circuit running through different metal layers and different dies can thus serve as a
digital integrity verification sensor allowing the sending and the collecting of signals.
In addition, the wire can be used to fill gaps in empty circuit parts to increase design
compactness and make reverse-engineering harder.

Such a protection proves challenging in terms of design as it requires devising new ma-
nufacturing and synthesis tools to fit the technology used [1, 4]. However the resulting
structures prove very helpful in protecting against active probing (cf. Section 1.2.7).

Throughout this paper n will represent the number of points forming the edge of a
cubical Hamiltonian structure. We will focus our study on cubical structures, but the
algorithms and concepts that are presented hereafter can in principle be extended to
many types of sufficiently dense lattices of points.

8.2 Generating Random 3D Hamiltonian Circuits

8.2.1 General Considerations

The problem of finding a Hamiltonian circuit in arbitrary graphs (HAMPATH) is NP-
complete. Membership in NP is easy to see (given a candidate solution, the solution’s
correctness can be verified in quasi-linear time). We refer the reader to [18] for more
information on HAMPATH.

If a graph contains a Hamiltonian circuit, then it contains a Hamiltonian path, obtained
for instance by removing one vertex. In the applications we consider, we are looking
for Hamiltonian paths whose ends are close one from each other. Thus, we focus on
Hamiltonian paths resulting from the opening of Hamiltonian circuits. A quick glance

- 140/223 -

Jean-Michel Cioranesco| Thèse de doctorat | Décembre 2014

reveals that a cube’s n3 vertices, potentially connectible by a mesh of 3n2(n − 1) edges,
break-down into four categories, illustrated in Figure 8.2 2 :

• (n − 2)3 vertices corresponding to the cube’s innermost edges (i.e. not facing the
outside) can be potentially connected in any of the possible 3D directions (right,
left, up, down, front, rear).

• 6(n − 2)2 vertices, facing the cube’s outside in exactly one direction, can be poten-
tially connected in five possible directions.

• 12(n − 2) vertices, facing the cube’s outside in exactly two directions, can be po-
tentially connected in four possible directions.

• 8 extreme corner vertices can be connected in only three possible manners.

Indeed : (n − 2)3 + 6(n − 2)2 + 12(n − 2) + 8 = ((n − 2) + 2)3 = n3

3

4

5

6(invisible)

FIGURE 8.2 – Potential edge connectivity

We observe that for HAMPATH to be solvable in a cube, n must be even. If we depart
from point the (0, 0, 0) and reach a point of coordinates (x, y, z) after visiting i vertices,
then x + y + z and i have the same parity. Given that the path must collect all the n3

cube’s vertices, the parity of 0 (circuit start) and of n3 (index of the circuit after traveling
back to the origin) must be the same. Thus n must be even.

8.2.2 Odd Size Cubes

The above observation excludes the existence of odd-size cubes unless one skips in such
cubes an edge (x, y, z) such that x + y + z ≡ 1 mod 2. To extend the construction to odd
n = 2k + 1 while preserving symmetry, we arbitrarily decide to exclude the central
vertex (i.e. at coordinate (k, k, k)) when n is odd.

2. The depicted cube is shown as a solid opaque object for the sake of clarity.

- 141/223 -

Assume that we color vertices in black and white alternatingly (the cube’s 8 extreme
vertices being black) with black corresponding to even-parity x + y + z and white cor-
responding to odd parity x+y + z. Here 0 ≤ x, y, z ≤ 2k. In other words, a (2k +1)-cube
has 4k3 + 6k2 + 3k white vertices and 4k3 + 6k2 + 3k + 1 black vertices.

The coordinate of the cube’s central vertex is (k, k, k) which parity is identical to the
parity of k. When k is even, vertex (k, k, k) is black and when k is odd vertex (k, k, k) is
white. If we remove vertex (k, k, k) it appears that :

• When k is even, (i.e. n = 2k+1 = 4�+1) we have as many black and white vertices
(namely 4k3 + 6k2 + 3k).

• When k is odd, we have 4k3 + 6k2 + 3k + 1 black vertices and 4k3 + 6k2 + 3k − 1
white vertices.

Noting that each edge causes a color switch, we see that Hamiltonian circuits in cubes
of size 4� + 3 cannot exist. Note that if one extra black vertex is removed 3 then (the now
asymmetric) construction becomes possible for all k.

It remains to prove that cubes of size n = 4�+1 exist for all � �= 0 . This is seen to be true
given the extensible structure shown in Figure 8.3. If � is increased, the structure can be
re-scaled by enlarging each floor by four units and piling up four additional floors (two
at the top and two at the bottom).

As a purely theoretical side-note, although we have not fully analyzed the constructi-
bility problem in higher dimensions, it seems that 4D cubes of all sizes are "construc-
tible". A hypercube of dimension d has nd vertices with a central vertex at coordinate
(dk, . . . , dk). Hence when d is even the parity issue seems to vanish.

3. e.g. one of the cube’s extreme edges which is necessarily black.

- 142/223 -

Jean-Michel Cioranesco| Thèse de doctorat | Décembre 2014

FIGURE 8.3 – Constructive proof that cubes of size n = 4� + 1 exist for all � �= 0

8.3 A Toolbox for Generating 3D Hamiltonian Cycles

8.3.1 From Two to Three Dimensions

We start by presenting a first algorithm for constructing random Hamiltonian cycles in
graphs having a minimum degree equal to at least half the number of their vertices. The
entropy of a random Hamiltonian circuit generator G(n) for cubes of size n is difficult
to estimate, it is given by :

H(G(n)) = −
un∑

i=1

pi log2(pi)

Where un denotes the number of distinct circuits constructible within a cube of size n
and pi is the probability that, when queried, G(n) will output circuit number i. This de-
finition is however of little use given that we know of no estimates of un in the literature
(let alone estimates the pi’s for the algorithms proposed in this paper).

Our application requires an efficient algorithm that outputs cycles passing through a
very large number of vertices. The first algorithm reduces the problem’s complexity by
using smaller cycles that we will progressively merge to form the final bigger cycle.
Consider the elementary Hamiltonian cycle forming a simple 2 × 2 square. To combine
two such squares all we need are two parallel edges. Merging (denoted by the operator

- 143/223 -

�) can be done in two ways as shown Figure 8.4. Note that this association not only
preserves Hamiltonicity but also extends it.

a b → a � b

a

b

→

a
�

b

FIGURE 8.4 – Association of squares along the x axis (leftmost figure), or the y axis (rightmost figure)

In other words, at each step two different Hamiltonian cycles in adjacent graphs are
merged, and a new Hamiltonian cycle is created. The process is repeated until only one
Hamiltonian cycle remains. We implemented this process in C. As explained previously,
our program cannot find Hamiltonian cycles for odd cardinality values simply because
such cycles do not exist (see Algorithm 2). The code starts by filling the lattice with 2×2
squares, and then associates them randomly. The program ends when only one cycle is
left (Figure 8.5).

FIGURE 8.5 – Rewriting 125 squares filling a 50 × 10 lattice as a Hamiltonian cycle using Algorithm 1

- 144/223 -

Jean-Michel Cioranesco| Thèse de doctorat | Décembre 2014

Algorithm 2 Cycle Merging

1: Input p, q ∈ 2N.
2: let Q = Q1, ..., Qv be the v = pq

4
squares of size 2 filling the lattice of p × q points.

3: while Card(Q) �= 1 do
4: choose randomly {a, b} ∈ Q2 with a �= b.
5: if a and b have at least one couple of neighbouring parallel edges then
6: Break a randomly chosen couple of parallel neighbouring edges, verify that

they form a single Hamiltonian circuit and merge c = a � b.
7: let Q = Q ∪ {c} − {a, b}
8: else
9: goto line 4

10: end if
11: end while

The algorithm is pretty fast, and we were able to build Hamiltonian cycles of 105 points
using a laptop 4 within few seconds. For some p and q values, we observed some run-
time spikes in single measurements due to convergence issues. Figure 8.6 shows the
average runtime over 100 measurements as well as the standard deviation at each point
in red.

5

15

0 15 30 45 60 75 90

Ti
m

e
(s

)

FIGURE 8.6 – Cycle Merging runtime as a function of the number of points ×103 (average over 100 measurements)

To transform a rectangular 2D Hamiltonian cycle into a 3D one, we run Algorithm 1 for
{p, q} = {p, p2} to get a p × p2 rectangle L similar in nature to the one shown in Figure
8.5.

Then, letting (xi, yi) denote the Cartesian coordinates of points in L, with the first point
being (0, 0), we fold L into a 3D structure of coordinates (x�

i, y�
i, z�

i) using the following
transform where j = �xi

p
� and � ≡ j mod 2 :

4. MacBook Air 1.8 GHz Intel Core i7.

- 145/223 -

ϕ =

x�
i = (−1)�(xi − jp) + �(p − 1)

y�
i = yi

z�
i = j

The result is shown in Figure 8.8.

FIGURE 8.7 – 10 × 100 Hamiltonian rectangle L prepared to be folded

FIGURE 8.8 – 10 × 10 × 10 Hamiltonian cube ϕ(L) obtained by folding Fig. 8.7

It remains to destroy the folded nature of the construction while preserving Hamilto-
nicity. This is done as follows : identify anywhere in the generated structure the red
pattern shown at the leftmost part of Figure 8.9 where at positions a, b, c, d edges take
any of the blue positions, iteratively apply this rewriting rule along any desired axis

- 146/223 -

Jean-Michel Cioranesco| Thèse de doctorat | Décembre 2014

until the resulting structure gets "mixed enough" to the designer’s taste. Evidently, this
is only one possible rewriting rule amongst several.

b
a

x−
x−

z−
z−

z+

z+
y+

y−
d

c
x+

x+

z−
z−

z+

z+
y+

y−
b

a
x−

x−

z−
z−

z+

z+
y+

y−
d

c
x+

x+

z−
z−

z+

z+
y+

y−

FIGURE 8.9 – Rewriting rule

Note that the zig-zag folding ϕ is only one among many possible folding options as ϕ
may be replaced by any 2D (preferably random) plane-filling curve of size p × p (e.g. a
Peano curve [71]).

- 147/223 -

8.3.2 Random Cube Association

Another approach consists in generalizing Algorithm 1 to the associating of elementary
3D cubes. As shown in Figure 8.11, one can fill the target lattice by a random sampling
of six elementary Hamiltonian cubes (Figure 8.10), associate them randomly and further
randomize the resulting structure by rewriting.

FIGURE 8.10 – The six elementary Hamiltonian cubes of size 2

FIGURE 8.11 – Elementary 2 × 2 cubes filling the lattice of points forming a cube of size n = 10

- 148/223 -

Jean-Michel Cioranesco| Thèse de doctorat | Décembre 2014

FIGURE 8.12 – An n = 10 Hamiltonian circuit obtained by randomly associating Fig. 8.11

The algorithm proves very efficient (Figure 8.13) and takes a few seconds 5 to compute
a random Hamiltonian cube of size 50 (125 000 points).

5
10
15
20
25

0 15 30 45 60 75 90 105 120

Ti
m

e
(s

)

FIGURE 8.13 – Random Cube Association runtime as a function of the number of points ×103 (average over 100 measurements)

The algorithm picks random parallel edges from different Hamiltonian cycles and at-
tempts to associate them in one new structure. By opposition of the 2D case, the 3D case
presents a new difficulty which is that in some cases associable parallel edges suddenly
cease to exist. To force termination we abort and restart from scratch if the number of
iterations executed without finding a new association exceeds the upper bound p3. To

5. MacBook Air 1.8 GHz Intel Core i7.

- 149/223 -

compute structures over huge lattices (e.g. n = 100), one might need to introduce addi-
tional association rules (e.g. the rule shown in Figure 8.14) to avoid such deadlocks.

�

FIGURE 8.14 – An additional association rule (example)

8.3.3 Cycle Stretching

Our third algorithm maintains and extends a set of edges E initialized with the four
edges defined by the square of vertices (0, 0, 0), (0, 1, 0), (1, 1, 0) and (1, 0, 0). At each
iteration, the algorithm selects a random edge e ∈ E and one of the four extension
directions shown in Figure 8.15. If such an extension is possible (in other words, by
doing so we do not bump into an edge already in E) then E is extended by replacing e
by three new edges (one parallel to e and two orthogonal to e in the chosen extension
direction). If e cannot be replaced, i.e. none of the four extensions is possible, we pick a
new e� ∈ E and try again.

e e

FIGURE 8.15 – Extension options

The algorithm keeps track of a subset of E, denoted B, interpreted as the set of poten-
tially stretchable edges of E. B avoids trying to stretch the same e over and over again.

At each stretching attempt the algorithm picks a random e ∈ B. As the algorithm tries
to stretch e, e is removed from B (no matter if the stretching attempt is successful or
not). If stretching succeeded, e is also removed from E and three new edges replacing e
are added to B and E.

- 150/223 -

Jean-Michel Cioranesco| Thèse de doctorat | Décembre 2014

The algorithm halts when B = ∅. If upon halting |E| = n3 − (n mod 2) then the algo-
rithm succeeds, otherwise the algorithm fails and has to be re-launched. Since at most
3n2(n − 1) vertices can be added to B, the algorithm will eventually halt.

A non-optimized implementation running on a typical PC found a solution for n = 6 in
about a minute and a solution for n = 8 in 30 hours. The same code was unable to find a
solution for n = 10 in three weeks. An empirical human inspection of the obtained cubes
shows that the resulting structures seem very irregular. Hence, an interesting strategy
consists in generating a core cube of size n = 8 by cycle stretching, surrounding it by
elementary size 2 cubes and proceeding by random cube association and rewriting.

Algorithm 3 Edge Stretching

1: let E = the four vertices defined by the square (0, 0, 0), (0, 1, 0), (1, 1, 0), (1, 0, 0).
2: let B = E.
3: while B �= ∅ do
4: let e ∈R B, we denote the vertices of e by e = [e1, e2].
5: let B = B − {e}
6: let dir = {←, →, ↑, ↓, �, �}
7: while dir �= ∅ do
8: let d ∈R dir
9: let dir = dir − {d}

10: if d and e are not aligned and stretching is possible then
11: E = E − {e}.
12: E = E ∪ {[e1, v1], [v1, v2], [v2, e2]}.
13: break
14: end if
15: end while
16: end while

In the above algorithm the sentence "stretching is possible" is formally defined as the
fact that no edges in E pass through the two vertices v1,v2 such that the segment [v1, v2] is
parallel to e in direction d. Arrows represent right, left, up, down, front and backwards
directions, i.e. ↑ �

← →
� ↓

8.3.4 Constraining Existing Hamiltonian Circuitfinding Algorithms

A fourth experimented approach consisted in adapting existing HAMPATH solving stra-
tegies. (Dharwadker) [36] presents a polynomial time algorithm for finding Hamilto-
nian circuits in certain classes of graphs. Assuming that the graphs that we are inter-
ested in are in such a class, we tweaked [36]’s C++ code to find Hamiltonian cycles in

- 151/223 -

cubes. The resulting code succeeded in finding solutions, but these had a too regular
appearance and had to be post-processed by re-writing.

We hence constrained the algorithm to work in a randomly chosen subgraph E of the
full n3 cube. We define a density factor γ ≤ 1 allowing to control the number of edges in
E to which we apply [36]. The ratio of edges in E and n3 is expected to be approximately
γ. Note that because of the heuristic corrective step (9), meant to reduce the odds that
certain points remain unreachable, E’s density is expected to be slightly higher than γ.
The corresponding algorithm is the following :

Algorithm 4 Edges Selection Routine

1: E = ∅
2: for each vertex v = (x, y, z) of the full cube do
3: for each move dv = (dx, dy, dz) in {(1, 0, 0), (0, 1, 0), (0, 0, 1)} do
4: generate a random r ∈ [0, 1]
5: if r < γ and (0, 0, 0) ≤ v + dv ≤ (n − 1, n − 1, n − 1) then
6: add edge [v, v + dv] to E
7: end if
8: end for
9: if loop 3 didn’t add to E any edge having v as en extremity then

10: goto line 3
11: end if
12: end for

- 152/223 -

Jean-Michel Cioranesco| Thèse de doctorat | Décembre 2014

FIGURE 8.16 – A n = 10 Hamiltonian cycle obtained by a modified version of Dharwadker’s algorithm [36]

Practical experiments show indeed that as γ diminishes, the generated Hamiltonian
cycles seem increasingly irregular (for high (i.e. � 1) γ values the algorithm fills the
cube by successive "slices"). Finding solutions becomes computationally harder as γ
diminishes, but using a standard PC, it takes about a second to generate an instance
for {γ = 0.8, n = 6} and an hour to generate a {γ = 0.86, n = 10} one. Figure 8.17 is
presenting several experimental results.

- 153/223 -

γ = 1.00 γ = 0.95

γ = 0.90 γ = 0.85

FIGURE 8.17 – Structures obtained for several γ values.

8.3.5 Branch-and-Bound

Another experimented approach was the use of branch-and-bound : Using a recursive
function, we can try all different cycles. Given a connected portion of a potential Ha-
miltonian circuit, this function tries to add all the possible new edges and calls itself
recursively. If the function is called with a complete circuit, the job is done.

We added several heuristic improvements to this method :

1. If the set of vertices unlinked by the current circuit is disconnected, it is clear that
we won’t be able to find any Hamiltonian circuit, and thus we can stop searching.

2. If this set is not connected to the extremities of the current circuit, we can also halt.

3. The existence of an Hamiltonian circuit containing a given sub-circuit only de-
pends on the extremities and on the set of vertices in the circuit. We can hence use
a dynamic programming approach to avoid redundant computations.

4. We tried multiple heuristics to chose the order of recursive calls.

However, those approaches proved much slower than cycle stretching : it appears that

- 154/223 -

Jean-Michel Cioranesco| Thèse de doctorat | Décembre 2014

the branch-and-bound algorithm makes decisive choices at the beginning of the circuit
without being able to re-consider them quickly. We tried to count all the Hamiltonian
cycles when n = 4 using this algorithm, but the code proved too slow to complete this
task in a reasonable time.

Those results suggest a meta-heuristic approach that would be intermediate between
branch-and-bound and stretching : we can make a cycle evolve using meta-heuristics
until we obtain an Hamiltonian cycle. Using this method (that we did not implement)
we should be able to re-consider any previous choice without restarting the search pro-
cess.

8.3.6 Rewriting 3D Moore Curves

Finally, one can depart from a know regular 3D cycle (e.g. a 3D Moore curve as shown
in Figure8.18) and rewrite it. Moore curves are particularly adapted to such a strategy
given that the maze entrance and exit are two adjacent edges. However, as shown in
Figure8.18c (a top-down view of Figure8.18b), Moore curves are inherently regular and
must be re-rewritten to gain randomness.

(a) (b) (c)

FIGURE 8.18 – Example of Moore Curves [37]

- 155/223 -

8.4 Silicon Experiments

8.4.1 Experimental Pre-Silicon Models

Having obtained several construction plans, we decided to try and construct concrete
examples using copper supplies before migrating to silicon. We used an industrial robot
to cut 12mm∅ copper segments of various sizes. A measurement of the dimensions of
off-the-shelf right angle connectors (Figure 8.19) revealed that if a 1-unit segment is h
millimeters long, then an i-unit segment has to measure (h + 16) × i − 16 millimeters.

FIGURE 8.19 – Angle connector

Layering and visualizing the prototypes (and chip metal layers) was done using an ad-
hoc software suite written in C and in Processing 6. The software allows decomposing a
3D structure into layers and rotating it for inspection.

3 1 1 2

floor 0 floor 1

13 1

1 1

2

1 1

11

1 1

1 1

1

1

floor 2 floor 3

FIGURE 8.20 – Layering, visualizing and constructing the prototypes.

Segments were assembled using several techniques ranging from soldering to super-
glue. The disadvantage of welding was the risk of unsoldering an angle connector while

6. http://processing.org/

- 156/223 -

Jean-Michel Cioranesco| Thèse de doctorat | Décembre 2014

soldering the nearby one (and this indeed happened at times). Super-glue happened to
be less risky but called for dexterity as the glue would harden in a couple of seconds and
thereby make any further correction impossible. All in all super-glue was preferred and
allowed the generation of a variety of experimental pre-silicon cubes shown in Figure
8.21. 3D printing using stereolitography or thermoplastic extrusion (fused deposition
modeling) were considered as well.

FIGURE 8.21 – Experimental pre-silicon cubes

When assembling a 3D cage with glue (or soldering) it is very easy to make mistakes
that add-up. A small angular deviation in the assembly of an angle along the x axis will
mix with a small angular deviation along the y axis and quickly result in a distorted
cage. To avoid this, we assembled structures using a process that consists in slicing the
generated structure along the three axes and identifying the longest planar (2D) parts in
the target construction. Each planar part is laid on a table and is hence glued according
to two axes only (i.e. with a lesser degree of freedom). This makes 2D angular errors
avoidable (in theory) or at least much smaller (in practice). As the 2D parts are dry and
ready, they are glued to each other to form the final cage. As it turns out, this indeed
yields much straighter constructions.

8.4.2 Going To Silicon

To test manufacturability in silicon we created a first passive cage meant to protect an
8-bit register. We notice that the compactness of the cage provides a very good reverse-
engineering protection.

- 157/223 -

FIGURE 8.22 – 3D layout of a cage of size 6 (130nm, 6 Metal Layers Technology)

The implemented structure (Figure 8.22) is a 6 × 6 × 6 Hamiltonian cube stretching
over six metal layers, the first four metal layers are copper ones, and the last two metal
layers are thicker and made of aluminum (130nm RF technology, Figure 8.23). The cube
is 26µm wide and covers an 8 bit register.
As will be explained in the next Section, this first prototype is not dynamic, the Hamilto-
nian circuit is not connected to transistors. The implementation of a simplified dynamic
structure as described in section 8.5 is underway and does not seem to pose insurmoun-
table technological challenges. Moreover, all layers of the prototype are processed in
one side of the silicon, so this implementation does not prevent backside attack. Back-
side metal deposit and back to back wafer stacking must thus be investigated to thwart
backside attacks as well.

(a) (b)

FIGURE 8.23 – Top layer view (a) and tilted SEM view (b) of a 26µm wide 6 × 6 × 6 cage
implemented in a 130nm technology (×2500) 7

This preliminary structure was handmade and the covered area is very samll. As the
area to protect on a full cryptoprocessor will be very large, creating a DRC-compliant

7. The structure implemented in silicon is surrounded by fill shapes used as a gaps filler, due to ma-
nufacturing constraints (polishing).

- 158/223 -

Jean-Michel Cioranesco| Thèse de doctorat | Décembre 2014

shield layout by hand over several metal layers is unpractical. In order to automate this
shield generation and integrate it in the design flow, we integrate our algorithm in the
analog CAD tools. We’ve been using Cadence Virtuoso[25] scritpting language SKILL
to generate our Hamiltonian structure on several metal layers. Using skill commands
we can select the metal layer, define the path of the wire, define the type ofcontacts
between layers and set the width of the wires. This is gonna be extremely usefull to
custom a shield to an IC need. This is also allowing us to generate the mesh between
spaces of the other layers, thus using existing layers for shielding and saving mask cost.

FIGURE 8.24 – Simple Hamiltonian Path Spreading Over Metal 6 (130nm, 6 Metal Layers Technology)

Figure 8.24 is represents a first simple to generate a unique wire over the top metal
layers. Instead of building a Hamiltonian cycle, we build an Hamiltonian path to be
able to send a signal in the wire, probably it will simply be carrying VDD at first. We
then increase the complexity by generating this wire on a much larger surface, and this
time spreading over two metal layers (Figure 8.25 and 8.26).

- 159/223 -

FIGURE 8.25 – Large Hamiltonan Path Spreading Over Metal 5 and Metal 6 (130nm, 6 Metal Layers Technology)

FIGURE 8.26 – Close-up view of The Hamiltonian Path Running Over Metal 5 And Metal 6 (contacts are not displayed for better
clarity)

- 160/223 -

Jean-Michel Cioranesco| Thèse de doctorat | Décembre 2014

8.5 Dynamically Reconfigurable 3D Hamiltonian Circuits

A canary is a binary constant placed between a buffer and stack data to detect buffer
overflows. Upon buffer overflow, the canary gets corrupted and an overflow exception
is thrown. The term "canary" is inherited from the historic practice of using canaries
in coal mines as toxic gas biological alarms. The dynamic structures presented in this
section are hardware equivalents of biologic canaries : our "hardware canary" is for-
med of a spatially distributed chain of functions Fi positioned at the vertices of a 3D
cage surrounding a protected circuit. In essence, a correct answer (Fn ◦ . . . ◦ F1)(m) to a
challenge m will attest the canary’s integrity. The device described in this section relies
on a library of circuits precomputed using the toolbox of algorithms described in the
previous section.

8.5.1 Reconfigurable 3D Mazes

The construction of a 3D dynamic grid begins with the description of a Network On
Silicon (NOS) with speed, power and cost constraints [50, 103]. As described in [55, 82],
metal wires are shared, or made programmable, by introducing switch-boxes, that serve
as the skeleton of the dynamic Hamiltonian circuit. Each switch-box is an independent
cryptographic cell that corresponds to a vertex of the graph. The switch-boxes are recon-
figurable and receive reconfiguration information as messages flow through the Hamil-
tonian circuit during each session c. All boxes are clocked 8, and able to perform basic
cryptographic operations. Six cell-level parameters are used to define each switch-box :

• A coordinate identifier i is a positive integer representing the ordinal number of
the box’s Cartesians coordinates : i.e. i = x + ny + n2z.

• A session identifier c is an integer representing the box’s configuration : this value
is incremented at each new reconfiguration session.

• A key ki shared with the protected processor located inside the cage.
• A routing configuration wi,c chosen between the thirty possible routing positions

of a 3D bi-directional switch (Figure 8.27) 9.
• A state variable si,c computed at each clock cycle from the incoming data mi,c (see

hereafter) and the preceding state, si,c−1. The state si,c is stored in the switch-box’s
internal memory 10.

8. We denote by t the clock counter.
9. For switch-boxes depicted in red, blue and green (Figure 8.2) the number of possible configurations

drops to (respectively) 6, 12 and 20.
10. Upon reset si,0 = 0 for all i.

- 161/223 -

{

mi+1,c = F (mi,c, ki, wi,c, si,c)
si,c+1 = G(mi,c, ki, wi,c, si,c)

(8.1)

The output data mi+1,c is computed within box i using the input data mi,c and an inte-
grated cryptographic function F , serving as a lightweight MAC. The final output mn3,c

attests the cage’s integrity during session c.

z+

x−

y−

z−

x+

y+
mi,c

mi+1,c

wi � x+ x− y+ y− z+ z−

x+ - 00 01 02 03 04

x− 10 - 05 06 07 08

y+ 11 15 - 09 0A 0B

y− 12 16 19 - 0C 0D

z+ 13 17 1A 1C - 0E

z− 14 18 1B 1D 1E -

signal output

si
gn

al
in

pu
t

FIGURE 8.27 – Example of a 3D switch-box programmed with a routing configuration wi = 0x13

Each switch-box comprises five logic parts (Figure 8.28) that serve to route the integrity
attestation signal through the box’s six IOs and successively MAC the input values mi,c :

• Two multiplexers routing IOs, with three state output buffers to avoid short-circuits
during re-configuration.

• A controller commanding the two multiplexers’ configuration.

• A MAC cell for processing data and a register for storing results.

• A register storing the state variable si,c, the key ki, the present configuration wi,c,
the next box configuration wi,c+1 and the clock counter t.

The input message m0,c, sent through the Hamiltonian circuit, is composed of two parts
serving different goals (Figure 8.29) :

- 162/223 -

Jean-Michel Cioranesco| Thèse de doctorat | Décembre 2014

input
pins

6 to 1
Multi-
plexer

Controller

CLK

MAC and
registry

CLK

1 to 6
Multi-
plexer
with

three-state
buffers

output
pins

z−z+
y−y+
x−x+

z−z+
y−y+
x−x+

FIGURE 8.28 – Logic diagram of a 3D switch-box

w0,c+1 w1,c+1 wi,c+1 wn3−1,c+1 cryptographic payload

reconfiguration information

FIGURE 8.29 – Structure of message m0,c

• The first message part is dedicated to reconfiguring the grid. For a cube of size
n, the reconfiguration information has n3 parts, each containing the next routing
configuration wi,c+1 of switch-box i. As the routing information of each switch-box
can be coded on 5 bits, the reconfiguration information is initially 5n3 bits long 11.
Basically, this message part carries the position of all switches for the next Hamil-
tonian circuit of session c + 1.

• The second message part (cryptographic payload) is used to attest the circuit’s
integrity, the 64-bits payload will be successively MACed by all switch-boxes and
eventually compared to a digest computed by the protected circuit. If possible,
one should select a function F that simplifies after being composed with itself to
reduce the protected circuit’s computational burden.

8.5.2 Description of the Dynamic Grid and the Integrity Verification

Scheme

Upon reset, each switch-box is in a default configuration wi,0 corresponding to an initial
predefined hardwired Hamiltonian circuit for session c = 0. The input and the output
boxes (S0 and Sn3−1) are only partially reconfigurable ; namely, the routing of S0’s input
and the routing of Sn3−1’s output cannot be changed. To clarify the reconfiguration dy-
namics, we denote by t the number of clock ticks elapsed since system reset assuming a

11. Note that the reconfiguration information part of the mi,c’s gets shorter and shorter as i increases,
i.e. as the message approaches the last switch-box.

- 163/223 -

one bit per clock tick throughput ; given that 5 bits are dropped at each "station", a full
reconfiguration route (session) claims

5
n3−1∑

j=0

(n3 − j) =
5

2
n3(n3 + 1)

clock ticks, which is the time needed for the reconfiguration information to flow through
all n3 switch-boxes i.e. the number of clock ticks elapsed between the entry of the first
bit of m0,c into S0 and the exit of the last bit of mn3,c from Sn3−1. Note that this figure
does not account for the time necessary for payload transit 12.

At t = 0 : A new session c starts and the first bit of m0,c is received by S0 form the pro-
tected processor.

For 5
∑i−1

j=0 (n3 − j) = 5
2
i(2n3 + 1 − i) ≤ t ≤ 5

∑i
j=0 (n3 − j) − 1 = 5

2
(i + 1)(2n3 − i) − 1 : All

switch-boxes except Si−1 and Si are inactive (dormant). Si−1 sends the message
mi−1,c to Si which performs the following operations :

• Store the reconfiguration information wi,c+1, for the next Hamiltonian route
of session c + 1.

• Compute mi+1,c and update si,c+1 as defined in formula (8.1).

At t = 5
∑n3−1

j=0 (n3 − j) = 5
2
n3(n3 + 1) : The first bit of message mn3,c emerges from the

grid (from Sn3−1) and all switch-boxes re-configure themselves to the new Hamil-
tonian circuit c+1. mn3,c is received by the protected processor who compares it to
a value computed by its own means. At the next clock tick a new message m0,c+1

is sent in, and the process starts all over again for a new route representing session
number c + 1.

12. p(n3 + 1) where p is the payload size in bits.

- 164/223 -

Jean-Michel Cioranesco| Thèse de doctorat | Décembre 2014

Switch-Box 0
(w0, k0, m0, s0)

Switch-Box 1
(w1, k1, m1, s1)

Switch-Box 2
(w2, k2, m2, s2)

Switch-Box 3
(w3, k3, m3, s3)

Switch-Box 4
(w4, k4, m4, s4)

Switch-Box 5
(w5, k5, m5, s5)

Switch-Box 6
(w6, k6, m6, s6)

Switch-Box 7
(w7, k7, m7, s7)

Switch-Box 8
(w8, k8, m8, s8)

Switch-Box 9
(w9, k9, m9, s9)

Switch-
Box 10

(w10, k10, m10, s10)

Switch-
Box 11

(w11, k11, m11, s11)

Switch-
Box 12

(w12, k12, m12, s12)

Switch-
Box 13

(w13, k13, m13, s13)

Switch-
Box 14

(w14, k14, m14, s14)

Switch-
Box 15

(w15, k15, m15, s15)

m0,c

m0,c+1

m16,c

m16,c+1

at session c

at session c + 1

FIGURE 8.30 – 4 × 4 dynamic switch-box grid routed at c and c + 1 (illustration)

If one of the switch-boxes is compromised then the digest output by the circuit will be
altered with high probability and the fault will be detected by the mirror verification
routine implemented in the protected processor (Figure 8.31). The device could then
revert to a safe mode, and sanitize sensitive data.

challenge m0,c

MAC using the
Hamiltonian circuit

MAC using the
co-processor

if 1 then
revert to

safe mode

FIGURE 8.31 – Device integrity verification scheme

The verification circuit’s size essentially depends on the MAC’s size and complexity.
Note that the XOR gate is a weak point : if it is bypassed the entire canary becomes
pointless. Luckily, the XOR is spatially protected by the Hamiltonian circuit that sur-
rounds it.

- 165/223 -

8.5.3 Vulnerability to Focused Ion Beam (FIB) Attacks

The proposed dynamic structure complies with the Read-Proof Hardware requirements
described in [100] : the structure is easy to evaluate, relatively cheap (in some case no
additional masks would be required) and can’t be easily removed without damaging
the chip.

Even though an attacker might modify some switch-box interconnections using FIB
equipment, one cannot bypass a switch-box without modifying the digest computation
logic and thus triggering the canary. In theory, an attacker may microprobe the input of
the first switch-box to get the reconfiguration circuit, feed it into an FPGA simulating
the grid and re-feed the MAC into the target, thus bypassing the canary. The state func-
tion si implemented in each switch-box should prevent such attacks by keeping state
information. Moreover, switch-boxes are defined at transistor level (first metal level) :
to microprobe each cell the attacker has to bypass many interconnections, making such
an attack very complex. Figure 8.32 describes schematically the dynamic grid concept.

S1 S2 S3

FIGURE 8.32 – Three switch-boxes embedded at substrate level with interconnections over the top layers

The successive grid configurations are precomputed by an external Hamiltonian circuit
generator using the strategies described in Section 8.3. This configuration data should
be stored in a non-volatile memory located under the cage.

8.5.4 Vulnerability to backside FIB attacks

Despite reported hacks [95], conventional digital shielding provides a good protection
against probing and FIB attacks, but is actually inefficient regarding backside attacks.
Backside attacks have been known for a long time, they consist in performing optical
analysis, probing and injecting faults the back of the circuit (i.e. from the silicon sub-
strate end) without altering its function.

- 166/223 -

Jean-Michel Cioranesco| Thèse de doctorat | Décembre 2014

Backside access requires a special chip preparation. There are several techniques [33]
that can be used to perform controlled backside thinning of silicon circuit without da-
maging the chip ; it can be thinned up to 10 µm depending on the nature of the FIB that
will be used for the edit.

FIGURE 8.33 – A backside trench performed on an thick die[83]

Once the circuit is thinned, the attacker can observe backside photons emission [86], he
can perform localised fault injection, eavesdrop signal and even modify the circuitry
using FIB. Some recent works have shown that circuit edit is even possible on thick
silicon devices [83], thus avoiding the advanced thinning process normally needed in
backside attacks (Figure 8.33).

Top-layer active shield

probed line

P Substrate P Substrate

N+ N+ P+ N+ P+

FIGURE 8.34 – Side view of a thinned substrat probed on backside

Figure 8.34 is presenting a piece of circuitry where an attacker has gained physical ac-
cess to metal lines using backside FIB attack, after thinning the substrate and identifiyng
the targeted line, the attacker digs a funnel using FIB to probe the inverter input. The
attacker has succesfully bypassed the top layer active shield and has gained physical
access to metal lines, where he can read data and inject faults in a fully working circuit.

- 167/223 -

DIE 1

DIE 2

Hamiltonian paths on top layer of the second die

Top metal layer

substrate
bonding
substrate

Top metal layer

S1

protected circuit
S3

S2 TSVs

FIGURE 8.35 – 3D active shield spreading over several dies

8.5.5 Improvement thanks to SIP technology

In order to improve active shield’s protection, we can extend our dynamic active shield
design towards 3D integration. Conventional active shields are inefficient regarding
backside attacks, but if our serpentines are spreading over several dies then we can
protect a whole chip stack against all kinds of probing attacks.

3d integration technology also offers a very good protection against micro probing ; it
is not possible to tear down a chip stack and maintain the overall chip functionning,
the glue used to bond dies together and the vias will be irreversibly damaged. As FIB
attacks are still possible, we need to consider protecting the chip furthermore by sprea-
ding meshes over several layers.

There are several types of 3d technologies and depending on the one we are using, we
can create different ways of shielding the chip stack. Figure 8.35 presents a back to back
embodiement. Each die’s top-layer is used to create a cage around the circuit. We can
also think of an embodiment using face-to-back wafer stacking.

8.5.6 Manufacturing constraint

In addition to usual DRC rules, we have to pay a particular attention to the so-called
antenna effect 13 as our hamiltonian wires’ surfaces are very large. To avoid damage of
transistors connected to Hamiltonian pathes during manufacturing, we need to comply
with the design rule check known as antenna rule. We will make sure that any CMOS
gate is connected to a diffusion before Metal 1 is processed.

13. plasma induced gate oxyde damage

- 168/223 -

Jean-Michel Cioranesco| Thèse de doctorat | Décembre 2014

A
P

N

Hamiltonian path
P

N

B

VDD

VSS

FIGURE 8.36 – Representation of the gates connected to our serpentine

Figure 8.36 represents the gates surrounding our serpentine, we need to protect those
gates by connecting the floating grids of inverter A and B before Metal 1 is processed.
For that purpose we use NAC diodes(I.E. Net Area Check diodes). NAC diodes are
usually picked as small as possible to minimize leakage but depending on the techno-
logy and the floating wires surfaces, we may have to increase the diode’s value.

It is important to mention that those antenna diodes are to the grid’s well. Depending
on the 3D technology being used, the exposition of TSVs on back of the wafer during
process may cause some antenna effect as well [57].

- 169/223 -

8.6 Perspectives and Open Problems
Hardware canaries present an advantage with respect to analog integrity protection
such as PUFs and sensors : being purely digital, hardware canaries can be integrated
at the HDL-level design phase be portable across technologies. The proposed solution
would, indeed, increase manufacturing and testing complexity but, being purely digi-
tal, would also increase reliability in unstable physical conditions, a common problem
encountered when implementing analog sensors and PUFs.

The previous sections raise several sophistication ideas. For instance, instead of having
the processor simply pick a reconfiguration route in a pre-stored table, the processor
may also re-write the chosen route before configuring the canary with it. Devising more
rewriting rules and developing lightweight heuristics to efficiently identify where to
apply such rules is an interesting research direction.

Another interesting generalization is the interleaving in space of several disjoint Hamil-
tonian circuits. Interleaved canaries will force the attacker to overcome several spatial
barriers. It is always possible to interleave a cube of size n−1 in a cube of size n without
having the two cubes intersect each other 14 as illustrated in Figure 8.37.

FIGURE 8.37 – A size 4 cube interleaved with a size 3 cube (3D and front view)

Figure 8.38 shows the result of such a (laborious !) physical interleaving for a cube of
size 4 and a cube of size 5. Note that interleaving remains compatible with a dynamic
evolution of both cubes as canaries do not touch each other nor share any hardware
(edges or vertices).

FIGURE 8.38 – Interleaving a Hamiltonian cube of size 4 and a Hamiltonian cube of size 5

Finally, functions F for which the evaluation of F (x) = (Fn3−1 ◦ . . . ◦ F0)(x) is faster
than n3 individual evaluations of Fi are desirable for efficiency reasons. XOR, bit per-
mutation, addition, multiplication and exponentiation (e.g. modulo 251) all fall into this

14. Remove the (k, k, k) point from the center of the odd cube as explained before.

- 170/223 -

Jean-Michel Cioranesco| Thèse de doctorat | Décembre 2014

category 15. Note that Fi(x) = ki × xk�
i mod p works as well.

In the first dynamic prototype the Fi’s will be formed of XORs and bit permutations.
Devising computational shortcuts taking into account an evolving internal state si,c are
also desirable.

15. Evidently, input should be nonzero for multiplication, nonzero and �= 1 for exponentiation etc.

- 171/223 -

- 172/223 -

Jean-Michel Cioranesco| Thèse de doctorat | Décembre 2014

9 Cryptographic Shielding

9.1 Introduction

Using the probing attack, the attacker can come to read the data of the circuit, extract
the cryptographic key hence breaking the IC security (Figure 9.1). It is because of this
problem, that shields were created. It is formed by a mesh of metal lines on the top most
metal layer of IC, which can prevent the reading and writing of attacker via probing
attack. But with the innovation of attack techniques, the shield can be still attacked.
Recently with a technology called Focused Ion Beam (FIB), attackers can draw artificial
pads that conduct directly into the inner parts of the circuit and hence spy data of ICs.
So we should provide a countermeasure for this kind of attack.

Actually, we can classify the shields into two categories : either passive or active. Passive
shielding uses an analogue shield integrity and then use capacitor load as the signature
of the shield. In [62], P. Laackmann and H. Taddiken present an analog passive shield.
This method is based on an analog transmitter, an analog receiver, a drive and eva-
luation device. Then it uses a capacitive measurement method to evaluate the shield.
But this shield covers partially IC so it is possible for an attacker for attack. Another
problem with passive shield is : some variations can be monitored on passive shield.
To mitigate this problem, the digital (active) shielding was created. It consists in injec-
ting random sequences of bits in a topmost metal circuit and checking that they arrive
unaltered after their journey. For active shields, we can find some propositions in [11]
and [49]. But these shields are menaced using FIB technique [32]. Recently, a new ac-
tive shield structure (called random active shield) has been proposed [23, 30, 24]. This
method achieves intricate spaghetti routing of a dense mesh of wires hence making the
geometry of the shield difficult to recognize. But it requires two top most metal layers
for creation of mesh wires. In a compact IC, it could give a big problem for IC routing.
Another problem of this method is that the nature of random numbers is not detai-
led and it is predictable if these numbers are proceeded by an LFSR. In this research,
we present another active shield structure that requires only one metal layer for mesh
wires and random numbers is generated by a cipher block. Moreover, we show a me-

- 173/223 -

Probe

tip

Sensitive lines

FIGURE 9.1 – Probing attack ([42], Fig. 4.1 of §4.2. at page 31).

thodology for preventing backside attacks with 3D hardware canaries.

9.2 Cryptographically Secure Shield

9.2.1 Rationale

As observed above, the current active shields, presented in Section 9.1, can not assure
the IC’s security. The attackers can attack these shield thanks to FIB technique. The prin-
ciple of this attack is to short-circuit the equipotential lines of the shields thus creating
unprotected areas on the circuit [23].

To mitigate this problem, our active shield will use on a SIMON block in Cipher Block
Chaining (CBC) mode to generate random numbers and independent shield mesh lines.
The Figure 9.2 shows our shield’s structure (Note that both ALICE and BOB parts are
located behind the shield mesh). It is composed of 3 parts :

• ALICE (Transmitter) which has a SIMON block to generate n random bits and is
located behind the shield mesh.

• BOB (Receiver) which has a SIMON block and a n bits comparator and is located
behind the shield mesh.

• Shield mesh which is composed of n lines on the last metal layer, used as a commu-
nication channel between ALICE and BOB, protect the integrated circuit inside.

- 174/223 -

Jean-Michel Cioranesco| Thèse de doctorat | Décembre 2014

SIMON

ALICE

COMP

n Bits

SIMON

BOB

ALICE

n

BOB

n

n

Shield mesh on Metal 7

al
ar

m

Assets to protect

FIGURE 9.2 – Cryptographically secure shield

The idea of our shield is simple. We use 2 SIMON block on CBC mode (one of ALICE
and other of BOB). These SIMONs realize the same computation (same key and plain-
text on the beginning) to generate n random bits. These random bits are the results of
some successive ciphertexts. After, n random bits of ALICE will be sent to BOB via n
shield lines. BOB, in its turn, receives these n bits and compare them with n random
bits generate by its own SIMON block. If these 2 n random bits are the same so the
alarm will be ’0’. If these 2 n random bits are not the same so the alarm will be ’1’ which
indicate that there is a problem with the shield lines.

In the Figure 9.2, we use 2 SIMON blocks to well separate ALICE (on the left of the
circuit) and BOB (on the right of the circuit). This separation is done to minimize the
routing of the active shield on the circuit. It is routed using only the last metal layer (M7
on our case) thus there is no lines that pass through the circuit in the lower metal. It will
facilitate the placement and routing of the final circuit because we must place and route
all others IPs before insert the shield.

The advantages of this shield are the following :

- 175/223 -

• The bit sequences exchanged in the shield’s lines are the cipher results of SIMON
so there is no reuse of the random bits because cipher text change after each en-
cryption computation. If an attacker wants to know these bits, he must attack SI-
MON to extract the cipher key.

• Each line of the shield presents one bit of cipher message. Theoretically, there are
no equipotential lines on shield mesh. So it is very difficult for an attacker to attack
the circuit with FIB. We could say that IC’s security will be improved with this
shield.

• This method is very low cost in entropy. The SIMON block is a lightweight cipher
block regarding AES block. With the CBC mode, we need chose only the key and
we start with a plain text ’0’.

9.2.2 Structure

9.2.2.1 Logic Level

This section describes the logic path of our cryptographic shield. By optimizing, we
found another structure of the shield which present the same function of the one on
Figure 9.2. Its function is presented in Fig. 9.3. It is composed of three paths :

• Shield interface : composed of a SIMON 128 bits block, a Finite-State Machine
(FSM) and one 128 bits comparator.

• ALICE block : composed of buffers.
• BOB block : composed of buffers and one n × 128 bits multiplexer.

Figure 9.3 represents each component in a separated area, whereas in the actual layout,
all the logic (including that driving the shield) is located behind the shield mesh.

The operating of our shield is the following : At the beginning, we send the a crypto-
graphic key of 128 bits to the shield via an Application Programming Interface (API).
When the FSM receives this key. It will send it to the SIMON block and start the cipher
computation with the plaintext ’0’. When SIMON finishes his computation, its 128 bits
cipher text will be sent to BOB block. BOB, in his turn, will connect these 128 bits to the
n packet of 128 lines of the shield (for example in our case, the last metal layer of the
circuit is filled with 5 packets of 128 lines). These n packets of 128 lines will arrive to
ALICE block. ALICE, with a multiplexer n x 128 bits, will choose one packet between
n packets (thanks to index sent from FSM block) and send it to SHIELD INTERFACE.
SHIELD INTERFACE will compare the packet come from ALICE and the packet sent
to BOB via a comparator 128 bits. If theses packets are the same so the result of the
comparator is ’0’ (alarm = ’0’). If theses packets are not the same so the result of the
comparator will be ’1’ which indicate that there is a problem with the shield. At the

- 176/223 -

Jean-Michel Cioranesco| Thèse de doctorat | Décembre 2014

...

SIMON
COMP

128 BITS

FSM

...

M
U

X

n
 x

 1
2
8

n
rs

t

cl
k

w
r

rd
at

a

w
d
at

a

ad
d
r

1
0

8

8

128

128

128

128

128

128

128

128

128

128

128

128

128

128

128

k
ey index

SHIELD INTERFACE

ALICE BOB

al
ar

m

Assets to protect

FIGURE 9.3 – Optimized cryptographically secure shield

- 177/223 -

TABLE 9.1 – API of cryptographically active shield

Instructions Function description
Set_key write cryptographic key to SIMON block of the shield

Enable/Disable enable or disable shield block
Get_status Read alarm register of the shield
Set_clock Configure clock frequency of the shield

same time, SIMON continues to calculate using the cipher text as plaint ext. After each
computation, we repeat the loop between SHIELD INTERFACE, BOB and ALICE. For
each time, "index" will be changed to assure that all lines packets will be sampled.

The active shield, in the Section 9.2.1, has 3 separated parts to minimize its routing
on lower metal layers to avoid the problem with the routing of final circuit. But this
new shield structure can be routed automatically without problem by using Encounter
Cadence scripts. Moreover, this one has 2 advantages over the other :s

• It use only one SIMON block.
• The new one update alarm after each cipher computation while other update

alarm after n/128 cipher computation.

9.2.3 Connexion to the System

We communicate and control our shield via an Application Programming Interface
(API). The table 9.1 presents all abilities of the API for our shield. It allows us to write
(or to change) the cipher key of SIMON. We can enable or disable our shield. We can
read our alarm register which contains the comparison values of each packet of 128 bits
and can help us to locate the modifications on the shield (if it exist). For example, the
shield mesh of our circuit has 640 lines which are divided in 5 packets of 128 lines so
our alarm register has 5 bits. Reading this register, we can know which packet of 128
lines has a problem (which alarm register bit is "1"). The alarm register verification can
be done by hardware or software via API. We can also configure the shield clock to a
desired value via this API to reduce its power consumption. This topic will be explained
in Section 9.3.3.

- 178/223 -

Jean-Michel Cioranesco| Thèse de doctorat | Décembre 2014

9.3 Test chip and Performances

9.3.1 Layout Level

To evaluate our shield, we created an ASIC which is composed of 8 IPs using the tech-
nology 65 nm. Circuit size is (1000 µm × 1000 µm). For the chosen technology, there is
7 metal layers available. The 7th metal layer is used for shield mesh. We use Encounter
Cadence for the placement and routing of our ASIC circuit. The placement and routing
of the shield is done by scripts.

Ont the layout level, there are 640 topmost metal layers parallel, of minimal width and
with minimal spacing, as allowed by the design rules. The Figure 9.4 shows the logic
part of our circuit. The image (a) of Figure 9.5 presents the circuit layout of the first
cryptographically secure shield structure presented in 9.2. We can find that ALICE part
(in yellow on the left) and BOB part (in yellow on the right) are well separated from this
structure.

The image (b) of Figure 9.4 shows the circuit layout with the optimized shield structure
Section 9.3. ALICE part is on the left. BOB part and Shield interface part are on the right
of the circuit.

The logic part of the shield is presented in yellow. We can notice that the area occu-
pied by the optimized shield smaller than the other shield structure. We notice also that
shield logic area takes a small area in the circuit for both two layouts. The shield parallel
lines are driven by the output of one SIMON [10] operating in CBC mode.

The Figure 9.5 shows the size and the location of each shield part. Image (c) on the
Figure 9.5 presents the shield interface block. It is composed as follows :

• SIMON block with the key and message of 128 bits, 32 computation rounds
• Comparator 128 bits.
• wrapper to communicate with UART.

ALICE (the emitter) is made up of

• 128 registers with enable ;
• 5 × 128 buffers HS65_LS_BFX18 to drive the lines.

The image (a) on the Figure 9.5 shows the location of ALICE block. We can notice that
a vertical line (on the left side of the circuit), is 640 buffers HS65_LS_BFX18 which are
placed manually via scripts.

BOB, image (b) on the Figure 9.5,(the receiver) is made up of :

• 5 × 128 buffers HS65_LS_BFX2 ;

- 179/223 -

(a) (b)

Shield AES PUF Digital Sensor Others

FIGURE 9.4 – Logic part of final circuit (a) and Shield mesh on 7th metal layer (b) (1000 µm × 1000 µm) with 30% core utilization
rate

- 180/223 -

Jean-Michel Cioranesco| Thèse de doctorat | Décembre 2014

(a) (b)

(c) (d)

FIGURE 9.5 – Shield logic part in yellow (1000 µm × 1000 µm) (a) ALICE block, (b) BOB block, (c) Shield Interface block, (d) Shield
mesh lines on Top most Metal layer (M7)

- 181/223 -

(a) (b)

FIGURE 9.6 – ALICE & BOB buffers placement and routing with 30% core utilization rate (a) ALICE Buffers (b) BOB Buffers

• 128 registers with enable ;
• Multiplexers to choose 128 bits amongst the 640 (5 → 1).

In the image (b) on the Figure 9.5, we observe the same vertical line of 640 buffers.
This buffers placement will facilitate the routing of shield mesh. Others logics parts are
placed automatically with Encounter.

The image (d) on the Figure 9.5 shows the shield mesh lines (in violet) of our shield.
We notice that it fills the circuit area on the top most metal layer (7th layer) and then
protect all IP inside the circuit (Shield logic part including)

The Figure 9.6 shows the placement and routing of ALICE buffers (on the left), BOB
buffers (on the right), and shield mesh creation. Theses buffers are placed vertically by
packet of 3. Then parallel lines (shield mesh) on the topmost layer (M7 in violet color)
are drawn from ALICE buffers to BOB buffers with a minimal width (0.4 µm) and with
minimal spacing (0.4 µm). All placements and routing are done by scripts. We notice
that ALICE buffers are bigger than BOB buffers because we use HS65_LS_BFX18 for
ALICE and HS65_LS_BFX2 for BOB.

9.3.2 Area

To created the shield, we must sacrifice the topmost metal layer (Metal 7 in our study
case). That is the cost for all shield structure. The table 9.2 gives an overview of the
size and surface area occupied by some IPs of our ASIC circuit. For shield, ALICE block
needs 768 cells, BOB needs 1032 cells and shield interface need 1858 cells. In total, we
need 3658 cells to create our cryptographically secure shield. It is still small comparing
with other IPs in our circuit (example AES needs 10203 cells). The shield takes less than
10 % of the final circuit (Figure 9.5). Note that the size of our circuit is 1000 µm ×
1000 µm so it is a small circuit. The average density of the circuit is around 30 % With

- 182/223 -

Jean-Michel Cioranesco| Thèse de doctorat | Décembre 2014

TABLE 9.2 – Size and area occupied by IPs

Instance Cells Cell Area Net Area Total Area
shield_inst 3658 18357 14525 32882

shield_interface_inst 1858 10463 7270 17733

simon_inst 1083 5351 3761 9113

dp_i 1051 5177 3469 8645

zgen 21 97 62 159

ctrl_i 32 175 123 297

BOB 1032 4300 3249 7549

ALICE 768 3594 1120 4714

aes_inst 10203 39591 50685 90276

secure_clock_inst 104 356 399 755

TABLE 9.3 – Power consumption of IPs

Instance Internal Switching Leakage Total Percentage
Power Power Power Power (%)
(mW) (mW) (mW) (mW)

shield 0.521 0.07643 0.008701 0.6061 16

shield interface 0.3476 0.05406 0.003984 0.4057 10.71

BOB 0.07959 0.01035 0.001839 0.09177 2.422

ALICE 0.09332 0.009351 0.002863 0.1055 2.785

aes 1.039 0.7332 0.0151 1.787 47.16

puf 0.3368 0.08735 0.005215 0.4293 11.33

others 0.4532 0.50945 0.010984 0.973634 25.51

a bigger circuit and a bigger density, the percentage will be decreased because shield
interface is the same for every circuit and only ALICE and BOB blocks will increase (the
number of buffers-used for creating shield mesh-and multiplexer).

9.3.3 Power

The Table 9.3 gives an overview of the circuit power consumption using Encounter
Cadence. We notice that, for a frequency of 100 MHz, the shield consumption is 16 % of
the total consumption.

Ptotal = Pdynamic + Pstatic

- 183/223 -

Pdynamic = pt · (Cout · V DD2 · Fclk + tsc · Isc · V DD)

Pstatic = IDDQ · V DD

The formulas above show the power computations of ICs. We notice that the clock
frequency has an important role in dynamic power consumption of a circuit. For our
shield, it does not need to turn at 100 MHz. It must only generate the random bits
and realize the check for a convenient time interval. So we can reduce considerably the
shield frequency (a few hundred kHz) via our API presented in Section 9.2.3 to reduce
its power consumption.

As it could be operated at a very low frequency, there is no critical part in the shield.
So we can replace all shield standard cells by a low- power standard cells to reduce the
power consumption.

Another possibility is that we can disable the shield all the time and activate it only
when making critical computations (for example cryptographic computations) via API
Sec. 9.2.3.

For this first shield version, we did not make specific efforts to optimize the shield
structure and synthesis. The shield clock tree was made with the same constraints of
the protected circuit (100 MHz). With another relaxed constraints, we can reduce the
numbers of buffers used for this clock tree. For instance, the comparator on BOB’s side
is either on 128 or on 5 × 128 bits, but it could clearly be made smaller by trading si-
licon area for more time. So with these approaches and optimizations, we can reduce
considerably the shield area and consumption.

- 184/223 -

Jean-Michel Cioranesco| Thèse de doctorat | Décembre 2014

Conclusion And Perspectives

- 185/223 -

Jean-Michel Cioranesco| Thèse de doctorat | Décembre 2014

In this thesis we investigated different classes of countermeasures and protections rela-
ted to side-channels and invasive attacks, our aim being to propose some new ones.
In the first chapter, we had an overlook on the state of the art of hardware attacks and
the countermeasures against them. We saw in particular, that other solutions than the
traditional boolean masking exist for protecting integrated circuits. as balancing circuit
logics and also by adding random noises. We also presented some researches concer-
ning the protection again invasive attacks.
Thanks to latest fab techniques, these attacks become more and more powerful, accor-
dingly the chip industry needs for continuously improving solutions to protect secure
circuits. If conventional shields worked for years, nowadays, in the face of recent sophis-
ticated attacks, they revealed to be insufficiently efficient, thus the need for countermea-
sures became an imperative requirement. Digital shielding seems to offer an attractive
solution as it combines two worlds. One one hand, that of analog anti-tampering robust
solutions which can only be overcome through a great amount of efforts and machinery.
On the other hand, the digital signatures that prove the integrity of the different nodes
of the shield. We introduced a cryptographically active shield architecture. This shield,
based on a SIMON cipher lightweight block, insures the hardware security against pro-
bing and FIB attacks.
We also demonstrated the implementation of this shield on a ASIC circuit 1000 µm ×
1000 µm. The extra cost in terms of surface is less than 10 % and the extra cost in terms
of power consumption could be smaller at a low frequency. Therefore, the implementa-
tion cost is acceptable. With a bigger circuit, these costs should be smaller.
In addition to cryptographically securing of the shield, various types of detectors can be
integrated in such a network as for example, light detectors, FIB detectors, temperature
sensors, a.s.o. Of course, a part of a circuit can be tampered by using FIB without detec-
tion, but if the shield is used as a a PUF with a high sensitivity to any modification, then
the offered protection is really high. Most of the work done in this work is still open
to research since there is not a perfect (ideal) solution for protection of an IC, mainly
because any protection depends on the attack models taken into consideration.

Some of the ideas we introduced in this thesis, have not been implemented in hard-
ware. Actually, It would be interesting for applications to implement them and offer
afterwards to the best IC hackers out there. The cost of such a solution is rather high the
mask cost is not negligible in smaller technology nodes. Moreover, the area and the po-
wer used for the shield canary logic and sensors will obviously, impact the overall chip
specifications. Nevertheless, if a chip needs security certifications, such protections are
required to pass evaluations.

- 187/223 -

- 188/223 -

Jean-Michel Cioranesco| Thèse de doctorat | Décembre 2014

Table of Figures

1.1 schematic principle of power analysis . 27
1.2 Power consumption of a register for the four different possible switches . 28
1.3 DPA bench using an oscilloscope to acquire power traces from a HW

cryptosystem running on FPGA . 29
1.4 Simple cipher example . 32
1.5 Building a power model based on Hamming weight 33
1.6 Power model corresponding to key guess K = {0, 0} 33
1.7 Block Diagram of our fisrt AES version . 34
1.8 Highest correlation point according to the different key guesses for a

batch of 200 traces . 37
1.9 AES power trace versus time (in green) and correlation versus time (in

red) for a batch of 5000 traces . 37
1.10 AES power trace in frequency domain (in red) and correlation versus

time (in blue) for a batch of 1000 traces . 38
1.11 0.5cm wide coil that serves as an local EM probe 39
1.12 Attack Bench of a white light attack. Notice the presence of a simple flash

of an commercial camera. (photo courtesy of Gemplus) 41
1.13 Typical architecture of a SRAM cell . 42
1.14 SRAM cell state shifting due to a laser hit 43
1.15 List of equipment forming the fault attack bench 44
1.16 Simple relay circuit automating the LASER shooting from the MSP430

development board . 45
1.17 We prepared two development board, one for frontside attack, one for

backside attack. 45
1.18 Overall view of the complete fault injection bench 46
1.19 Results of the fault injection of the table stored in SRAM of the MSP

µcontroller . 48
1.20 Synchronous representation of digital circuits 51
1.21 Normal clock signal (clock) and a perturbed clock signal (faulty_clock) . . 52
1.22 Generation of a faulty_clock . 52
1.23 faultyclock (high signal) and AES_start (low signal) (photo courtesy [2]) 53

- 189/223 -

1.24 External FPGA board feeding the faulty clock to the main FPGA board
running cryptographic algorithms (photo courtesy [2]) 54

1.25 A decapsulated chip with an exposed pad ring (a) and an optical probing
station (b). 55

1.26 A probing station mounted in a SEM and a tilted SEM view of circuit
lines being probed. 56

1.27 Different Layers of a Silicon Chip . 57
1.28 Fuming Nitric Acid (HNO3) and Hydrofluoric Acid (HF) 58
1.29 Hamamatsu PA103 Automated Decapsulation Machine 59
1.31 TI MSP4302231 in an ultrasonic bath after depacking (a) and close-up (b) . 59
1.30 TI MSP4302231 microprocessor (a) and the same chip decapsulated ready

for fault injection(b) . 60
1.32 A Mecapol polishing machine (a) and an attempt of mechanically remove

the active shield of a SMART CARD die(b) 60
1.33 A plasma etching machine (a) and a sample being processed(b) 61
1.34 TI MSP4302231 polysilicon layer (a) and a zoom on SRAM cells(b) 62
1.35 Faulty device under FIB analysis where a connection problem is identified 62
1.36 Blown polysilicon fuse reconnected using FIB (Photoś courtesy of O.Kömmerling) 63

2.1 Taxonomy of Side Channel Attacks Countermeasures 67
2.2 Fault Attack Taxonomy . 71

3.1 AES Encryption Flowchart. 82
3.2 AES Decryption Flowchart. 82
3.3 Flow of Computation in Time. 84
3.5 Power Scrambling with a PRNG. 85
3.4 Unprotected implementation : Pearson correlation value of a correct (red)

and an incorrect (green) key byte guess. 500,000 power traces. 85
3.6 LFSR implementation : Pearson correlation value of a correct (red) and

an incorrect (green) key byte guess. 1,200,000 power traces. 86
3.7 Power Scrambling with Tri-State Buffers. 87
3.8 Tri-state buffers implementation : Pearson correlation value of the correct

key byte (green) and a wrong key byte guess (red). 800,000 power traces. . 87
3.9 Transient Fault Detection Scheme for AES. 88
3.10 Permanent Fault Detection Scheme for AES. 89
3.11 Memory Halving for AES Decryption When Nr = 10. 91
3.12 AES Design’s Inputs and Outputs. 92

4.1 32 bits Galois LFSR . 95
4.2 Block schematic of the implemented AES 96
4.3 DPA correlating one correct byte of the key for 1000 encryptions 97
4.4 Characteristics of the three implemented LFSRs 98

- 190/223 -

Jean-Michel Cioranesco| Thèse de doctorat | Décembre 2014

4.5 Block schematic of the countermeasure . 98
4.6 DPA unprotected AES for 200000 encryptions 99
4.7 DPA versus EMA correlation on the hardened design for 200000 encryp-

tions . 100

5.1 Antagonist Registers . 101
5.2 Structure of our FPGA Implementation . 103
5.3 Correlation Power Attack (CPA) on antagonist register versus unprotec-

ted register using 5000 traces . 104
5.4 CPA guessing key bytes on antagonist registers versus unprotected im-

plementation using 100000 traces . 105

6.1 Functionnal block schematic of the countermeasure 109
6.2 Shielding with other sensors . 110
6.3 Alternative two layer fringe cap with a single finger for each plate A and B111
6.4 Two layer metal to metal fringe capacitors array covering the protected

circuit . 112
6.5 Single ended switched-capacitor circuit (α being the measured capacitor

and β the feedback capacitor) . 113
6.6 Non-Overlapping Clocks . 113
6.7 Single ended switched-capacitor circuit measuring a network of n capacitors(αi

being the measured capacitors and β the feedback capacitor) 114
6.8 2D & 3D view of a single 160 fF top layer fringe cap (10µm×10µm) 115
6.9 Voltage values outputted by the switch-capacitor amplifier for full and

cut fringe capacitor . 116

7.1 Probing of a circuit thanks to prober tip, to read or force sensitive va-
riables (courtesy of [42], Figure 4.1 of §4.2. at page 31). 120

7.2 Edition of a circuit thanks to a FIB, in a view to unlock the access to a
memory (courtesy of [42], Figure 4.2 of §4.2. at page 31). 121

7.3 General structure of a shield (sagittal view). 122
7.4 Area protected by a snake active shield (left), and shrunk protected area

(right) by shield extension reduction (with cuts // and connections • in-
troduced by FIB), at constant functionality (view of the top of the shield). . 122

7.5 Zoom at 15,000 magnification of shield structures by Infineon (left) and
STMicroelectronics (right). On the bottom annotated picture, equipoten-
tial lines are underlined with the same color. [Source : [32]]. The rerouting
attack principle is illustrated in cyan superimposed comments. 123

7.6 Management of metal line extension beyond via end of line (extension). . 126

- 191/223 -

7.7 The figure on the left illustrates the N segments making up an active
random shield. The connectivity of these segments is unknown to the
attacker ; the figure on the right shows the vision of an attacker who dis-
covers the shield. 129

7.8 Constructive Hamiltonian paths when Nx is even. 129
7.9 Compact shielding, obtained by the execution of Alg. 1. In the final shield

layout (c), the N = 3 segments are fed with unrelated random bit sequences.131
7.10 Shield design under the CADENCE VIRTUOSO and GNU/ELECTRIC layout

editors. 132
7.11 Diversification of Hamiltonian circuits. 134
7.12 Diversification process of Figure 7.11, seen topologically. 134
7.13 Convergence rate of three real-world random active shields. 136

8.1 Hamiltonian cycle passing through the vertices of a 4 × 4 × 4 cube 140
8.2 Potential edge connectivity . 141
8.3 Constructive proof that cubes of size n = 4� + 1 exist for all � �= 0 143
8.4 Association of squares along the x axis (leftmost figure), or the y axis

(rightmost figure) . 144
8.5 Rewriting 125 squares filling a 50 × 10 lattice as a Hamiltonian cycle

using Algorithm 1 . 144
8.6 Cycle Merging runtime as a function of the number of points ×103 (ave-

rage over 100 measurements) . 145
8.7 10 × 100 Hamiltonian rectangle L prepared to be folded 146
8.8 10 × 10 × 10 Hamiltonian cube ϕ(L) obtained by folding Fig. 8.7 146
8.9 Rewriting rule . 147
8.10 The six elementary Hamiltonian cubes of size 2 148
8.11 Elementary 2 × 2 cubes filling the lattice of points forming a cube of size

n = 10 . 148
8.12 An n = 10 Hamiltonian circuit obtained by randomly associating Fig. 8.11 149
8.13 Random Cube Association runtime as a function of the number of points

×103 (average over 100 measurements) . 149
8.14 An additional association rule (example) 150
8.15 Extension options . 150
8.16 A n = 10 Hamiltonian cycle obtained by a modified version of Dharwad-

ker’s algorithm [36] . 153
8.17 Structures obtained for several γ values. 154
8.18 Example of Moore Curves [37] . 155
8.19 Angle connector . 156
8.20 Layering, visualizing and constructing the prototypes. 156
8.21 Experimental pre-silicon cubes . 157
8.22 3D layout of a cage of size 6 (130nm, 6 Metal Layers Technology) 158

- 192/223 -

Jean-Michel Cioranesco| Thèse de doctorat | Décembre 2014

8.23 Top layer view (a) and tilted SEM view (b) of a 26µm wide 6 × 6 × 6 cage
implemented in a 130nm technology (×2500) 1 158

8.24 Simple Hamiltonian Path Spreading Over Metal 6 (130nm, 6 Metal Layers
Technology) . 159

8.25 Large Hamiltonan Path Spreading Over Metal 5 and Metal 6 (130nm, 6
Metal Layers Technology) . 160

8.26 Close-up view of The Hamiltonian Path Running Over Metal 5 And Me-
tal 6 (contacts are not displayed for better clarity) 160

8.27 Example of a 3D switch-box programmed with a routing configuration
wi = 0x13 . 162

8.28 Logic diagram of a 3D switch-box . 163
8.29 Structure of message m0,c . 163
8.30 4 × 4 dynamic switch-box grid routed at c and c + 1 (illustration) 165
8.31 Device integrity verification scheme . 165
8.32 Three switch-boxes embedded at substrate level with interconnections

over the top layers . 166
8.33 A backside trench performed on an thick die[83] 167
8.34 Side view of a thinned substrat probed on backside 167
8.35 3D active shield spreading over several dies 168
8.36 Representation of the gates connected to our serpentine 169
8.37 A size 4 cube interleaved with a size 3 cube (3D and front view) 170
8.38 Interleaving a Hamiltonian cube of size 4 and a Hamiltonian cube of size 5 170

9.1 Probing attack ([42], Fig. 4.1 of §4.2. at page 31). 174
9.2 Cryptographically secure shield . 175
9.3 Optimized cryptographically secure shield 177
9.4 Logic part of final circuit (a) and Shield mesh on 7th metal layer (b)

(1000 µm × 1000 µm) with 30% core utilization rate 180
9.5 Shield logic part in yellow (1000 µm × 1000 µm) (a) ALICE block, (b) BOB

block, (c) Shield Interface block, (d) Shield mesh lines on Top most Metal
layer (M7) . 181

9.6 ALICE & BOB buffers placement and routing with 30% core utilization
rate (a) ALICE Buffers (b) BOB Buffers . 182

A.1 The three steps of the token generation . 200
A.2 Selected image. Binarized image after rectification. Gradient image after

rectification . 202
A.3 Snapshot from one the acquisition campaign’s video 203
A.4 Some examples of totem prototypes generated by our 3D-printer 204

B.1 CPU cores communicating through work load monitoring 206

- 193/223 -

B.2 Client Alice and client Bob covertly communicating via CPU load modu-
lation . 207

B.3 Overall CPU load monitoring of a 12-core CPU where one core is running
a malicious software . 208

B.4 CPU load monitoring of a single core running a malicious software 209
B.5 CPU load monitoring of a single CPU-core running a malicious software . 210
B.6 CPU load monitoring of a single core running a malicious software 211
B.7 Malicious software having more than 51% of the overall load 212

- 194/223 -

Jean-Michel Cioranesco| Thèse de doctorat | Décembre 2014

Appendix

- 195/223 -

Jean-Michel Cioranesco| Thèse de doctorat | Décembre 2014

A Using Hamiltonian Totems as
Passwords

Physical authentication brings extra security to software authentication by adding real-
world input to conventional authentication protocols. Existing solutions such as textual
and graphical passwords are subject to brute force and shoulder surfing attacks, while
users are reluctant to use biometrics for identification, due to its intrusiveness. This pa-
per uses Hamiltonian tokens as authentication means. The proposed token structure
offers many possible configurations (i.e., passwords) and is small enough to be carried
on a physical keychain. After presenting our general idea, we describe an efficient algo-
rithm to produce these tokens. Our procedure was validated by running a recognition
campaign on a wide batch of synthetic samples, and experimented on prototypes ma-
nufactured using a commercial 3D-printer.

A.1 Visual passwords

This paper introduces a new user authentication method well-suited for mobile de-
vices such as smartphones. In some sense, the concept described here can been seen as
the illegitimate child between biometric recognition and passwords. From the first, it
borrows the pattern matching algorithms that handle data, and from the second, their
secrecy. The concept, called visual passwords, is also less privacy intrusive than biome-
trics while keeping most of their characteristics. Biometric systems rely on physical cha-
racteristics of an individual to identify him amongst a large population [52]. As physical
characteristics are generally considered public and impossible to renew, this can raise
some privacy issues as the link between the individual and the application using this
biometric must be protected.

Our visual password authentication proposal relies on freely chosen objets. The under-
lying principle of visual passwords is quite simple :

• At registration, the user chooses something as password and takes a photography

- 197/223 -

of it. In reference to the movie Inception, we call this image a totem. The user freely
choose something that he has under his hand. Obviously, the choice of the totem
has to remain secret. Once chosen, the totem is sent to the authentication service,

• when the user wants to authenticate, he takes another photography of his totem
for a comparison image vs image with the reference.

To increase the totem’s entropy, totems can be chosen among a great variety of objects
[65] or be objects that lend themselves to a sufficient diversity. We decided to take the se-
cond option for two reasons : it enables us to develop specialized recognition algorithms
for the kind of totems we chose and is that we do not want to get back the passwords
drawback with hard to remember totems.

There are other attemps related to our visual passwords scheme. For instance, with gra-
phical passwords [94], the user is asked to select a certain number of images from a set
of random pictures. He then must select them among some decoy pictures (see [38] for
a detailed analysis of graphical passwords on mobile devices). In [53], the user creates
a password by clicking on several arbitrary pixels of an image where some tolerance is
accepted to correct his inaccuracy in the selection of pixels. The main difference with
our visual passwords scheme is that we rely on an effective image processing algorithm
for the verification step, i.e. we want to determine the degree of similarity between the
image stocked during the enrollment step and the fresh one taken for the authentication
purpose. This enables us to more diversity in the choice of our visual passwords.

The paper is organized as follows : Section 2 describes the Hamiltonian totems which
are the main contribution of this article. Section 3 details our recognition algorithms.

A.2 Hamiltonian Totems

A Hamiltonian circuit is a circuit running through all the vertices of a graph. The high
entropy provided by Hamiltonian graphs makes them a very suitable totem candidates.

The problem of finding a Hamiltonian circuit in arbitrary graphs (HAMPATH) is known
to be NP-complete. Membership in NP is easy to verify (given a candidate solution, the
correctness of a solution can be verified in linear time). We refer the reader to [56] for
more information on HAMPATH.
Solving the HAMPATH problem is a special case of the famous traveling salesman pro-
blem. However, generating Hamiltonian paths for specific structures, e.g. cubes, can
bedone efficiently [24, 36].

At the beginning we have thought of creating a Hamiltonian cube but the recognition
algorithm did not detect inner layers when plunging inside the cube. We hence decided
to limit the Hamiltonian circuit to the cube’s surface, namely to its four vertical faces.

- 198/223 -

Jean-Michel Cioranesco| Thèse de doctorat | Décembre 2014

Dirac’s theorem on Hamiltonian cycles states that an n-vertex graph in which each ver-
tex has degree at least n/2, must have a Hamiltonian cycle. In our particular case, the
only constraint to obtain a solution to HAMPATH is to choose an even sized cube.

Algorithm 5 Random Hamiltonian Circuit Generator

1: Input n size of the cube
2: Output Hamiltonian Totem
3: Let Q = Q1, ..., Qv be the v = n(n − 1) squares of size 2 filling the lattice of 4n(n − 1)

points.
4: while Card(Q) �= 1 do
5: Choose randomly {a, b} ∈ Q2 with a �= b.
6: if a and b have at least one couple of neighboring parallel edges then
7: Break a randomly chosen couple of parallel neighboring edges, verify that they

form a single Hamiltonian circuit and merge c = a � b.
8: Let Q = Q ∪ {c} − {a, b}
9: else

10: goto line 4
11: end if
12: end while

The Algorithm 5 solves HAMPATH for our structure in a very short time by associating
elementary Hamiltonian squares mapped on the four vertical faces of the cube. At each
step two different Hamiltonian cycles in adjacent graphs and a new Hamiltonian cycle
are created. The process is repeated until only one Hamiltonian cycle remains. We im-
plemented this process in C. The code starts by filling the lattice with 2 × 2 squares, and
then associates them randomly. The program ends when only one cycle is left.
The Hamiltonian cycle spreads on the cube’s four vertical faces and we place two plates
on the upper and lower faces to increase the structure’s rigidity. This causes a loss in
entropy for recognition but in return, we succeed to create a solid totem structure.
The entropy of a random Hamiltonian circuit generator G(n) for cubes of surface of size
n is difficult to estimate, and is given by the following formula :

H(G(n)) = −
un∑

i=1

pi log2(pi),

where un denotes the number of distinct circuits constructible within a cube of size n
and pi is the probability that, when queried, G(n) will output the circuit number i. Ho-
wever, this definition is of little use since to the best of our knowledge, there are no
estimates of un in the literature. An efficient security analysis of our solution requires
an estimation of the key space, i.e., of the number of possible Hamiltonian circuit confi-
gurations.

- 199/223 -

FIGURE A.1 – The three steps of the token generation

Figure A.1 shows the three steps of the token generation, we used OPENSCAD [75] for
generating 3D-printable files of our totems.
We first filled the four vertical faces with elementary squares, then we associated them
randomly using the square association algorithm [24]. Finally, we added the upper and
lower faces of the cube to improve totem rigidity.

A.3 Recognition Algorithm

A generic feature extraction (FE) algorithm could be implemented to encode Hamilto-
nian cubes. A generic FE algorithm classically relies on extracting characteristics points.
These points are usually located on high gradient areas. The nature of the descriptors
extracted at these points could vary but they must usually have the following proper-
ties : relative invariance to scale, rotation, translation and illumination. The literature is
extremely rich on this topic, see for instance, [64, 70, 99]. Points must be discriminant
and their relative positions must be compared using classical algorithms that compute
the deformation between clouds of points.

Nevertheless, better performances should be obtained by resorting to FE algorithms
specific to the problem to be solved. Hamiltonian cubes are objects with multiple constraints
that could be leveraged to improve robustness to the extraction process.

The FE problem on Hamiltonian cubes in a video can be decomposed as follow :

• Select of the best representative for each side of the cube and geometry correction.
• Binarize each and every side of the cube
• Error correction considering constraints on the Hamiltonian path

As we are working with a synthetic data (the background is stable, the movement of
the cube is regular and controlled), the first FE step is relatively simple. A combination
of Hough transform on the gradient map computed by using Sobel filter and a simple

- 200/223 -

Jean-Michel Cioranesco| Thèse de doctorat | Décembre 2014

frame binarization using Otsu’s algorithm [77] combined with a morphological opera-
tion (closing filter to remove noise), is used to determine on which frame each face of
the cube should be extracted. Similar tricks such as those used for QR codes (patterns
easily detected, specific colours used for the corners and the connection on the edges of
the cube) [96] could be used to ease the rectification process in real conditions.

As soon as the face’s corner is accurately detected, a homograhy is calculated to rectify
the face to its frontal view by using DLT algorithm [45].

A grid is set on the cube to try and determine if each grid element of the grid is filled
or not. The result of Otsu’s algorithm rectified with the homography is used to vote for
each element.

- 201/223 -

FIGURE A.2 – Selected image. Binarized image after rectification. Gradient image after rectification

The Hamiltonian path that we want to extract is not random. This means that not every
configuration is possible. Masks of possible configurations are used to correct wron-
gly detected elements. In particular, every vertex should be connected to exactly two
neighbors. A greedy algorithm is used to vote for edges which are unambiguous and
determine which remaining edges are impossible and which ones are still possible. Am-
biguous edges are determined at the end of the process when only a few possibilities
remain.

More sophisticated algorithms could employed and the choice could be made to balance
between object entropy and robustness of the feature extraction process.

As soon as the Hamiltonian paths are extracted on each face of the cube, we have extrac-
ted 4 binary vectors that can be compared using Hamming distance. In real conditions,
to tolerate occlusion, the chosen comparison function could be the one used classically
to compare iris codes [35], taking only into account only good quality areas where the
cube was robustly extracted.

A.4 Tests on Synthetic Data

We run an acquisition campaign on 100 samples (Figure A.3), to avoid printing each
token, we generated videos of the rotating samples. An algorithm has been developed
using the opencv function to evaluate the approach’s validity. On synthetic data, the
algorithm developed in the previous section leads to perfect extraction performances.
No error on the Hamiltonian path extracted was observed on a synthetic database of
100 different samples. This mean that in this specific campaign, a threshold of 0 on the
hamming distance could be used to separate perfectly genuine and impostor tests and
lead to a False Reject Rate of 0% compared to a False Accept Rate of 0%. However, the
difficulty of the extraction process should be evaluated in real conditions to determine

- 202/223 -

Jean-Michel Cioranesco| Thèse de doctorat | Décembre 2014

FIGURE A.3 – Snapshot from one the acquisition campaign’s video

the real performances and find out how to customize the tokens to improve robust-
ness in difficult real-life acquisitions conditions (e.g. uncontrolled lights, non-uniform
background, uncontrolled acquistion scenarios).

- 203/223 -

FIGURE A.4 – Some examples of totem prototypes generated by our 3D-printer

A.5 Prototyping

A.6 Further Research

The experiments done so far merely use the cube as a collection of four independent QR-
codes. This does not exploit all the potential complexity of 3D structures. The authors
are currently working on how to design hamiltonian cubes to be able to extract more
information than the surface. This could be done by playing on the transparency, the
thickness and the color of the edges as a function of the depth.

Further ideas could be the generation of opaque keys containing a complex 3D form
that could be detected using x-rays or other 3D scanning techniques. We can also think
to extend our work from Hamiltonian totems to artifical fingerprints [27, 28] (not neces-
seraly with a realistic fingerprint texture, i.e. which corresponds to a real human finger-
print) to exploit the fingerprint sensor technology which comes with new smartphones.
Whenever the texture artificially generated (ridges frequency, precense of bifurcations
and endings) is sufficiently similar to real fingerprints, then the underlying feature ex-
tractor and comparison algorithm will enable us to replace fingerprint authentication
by authentication with these new totems. We here assume that we can find a suitable
material [9] in order to counter the integrated liveness detection technology to have an
image of the totem inside the smartphone of sufficient quality.

- 204/223 -

Jean-Michel Cioranesco| Thèse de doctorat | Décembre 2014

B Communicating Covertly through
CPU Monitoring

As the number of applications running simultaneously on an operating system is in-
creasing, more and more interest is given to the central processing unit (CPU) moni-
toring. Since modern computers architectures are build around multi-cores processors,
softwares are running on one or several cores depending on their implementation, gi-
ving unbalanced work-loads among the CPU cores.
In this section we will be considering CPU work load monitoring as a potential covert
channel on multi-core architecture, and we will study how malicious softwares may
leak information through CPU usage, and could be use for steganography.

B.1 History

Covert channels, introduced by Lampson [63] are communication channels not inten-
ded for information transfer. [63] was the first to point out that varying the input/output
computing ratio of a CPU could allow covert information exchange.
Recently Okamura and Oyama presented a CPU load covert channel between Xen vir-
tual machines [74] where clients are connecting to different virtual machines running on
the same physical CPU-core. This covert channel exploits the fact client Alice is paused
when client Bob is scheduled, allowing Bob to know if Alice is computing something.
In this column we investigate CPU load covert channels between clients running on a
multi-core machine. We will show that how covert channels using CPU load are also
possible between clients connected to a multi-core remote server.

- 205/223 -

client Alice

increases/decreases

load to modu-

late a message

client Bob

measures load to

infer Alice’s message

FIGURE B.1 – CPU cores communicating through work load monitoring

B.2 Description

Due to an increasing demand in computing ressources and necessities of managing
costs, companies turned to a business model where they centralize or outsource their
computing ressources. In the case of a client connected through a virtual machine, the
host is transparent. All users are partitionned in their own environment and shouldn’t
be aware of other clients performing tasks on the same computation grid.
But this principle is questioned in the case of remote connection to a server, where dif-
ferent cores of a same computation grid are shared by different remote users. Users can
indeed communicate through CPU usage monitoring. Figure B.1 represents how two
CPU-cores can communicate : the first core is running Alice’s malicious software that
modulates a message through CPU usage, while Bob retreives information by monito-
ring Alice core’s load by running an application on the second core.

B.3 Implementation

To validate this idea we need to implement it on a remote server. To monitor CPU per-
formance in a Linux system we used SYSSTAT packages’s SAR shell command [85], it
allows any remote user to measure the CPU workload core by core in real time without

- 206/223 -

Jean-Michel Cioranesco| Thèse de doctorat | Décembre 2014

administrator privilege. It allows an update rate of one second for CPU usage monito-
ring. Figure B.2 presents the covert communication channel’s general idea, Alice and
Bob are connecting to the remote server as clients.

FIGURE B.2 – Client Alice and client Bob covertly communicating via CPU load modulation

Alice runs the malicious software to send a message and Bob monitors CPU load on
all cores separately to receive a potential message. We looked over different ways of
coding each character ; the conventional way is to code each character on a byte using
the ASCII encoding, but at first we chose to use Morse code for illustration purposes,
we will the use ASCII encoding for the software implementation.

A B C D E F G H I J
• — — • • • — • — • — • • • • • — • — — • • • • • • • • — — — —
N O P Q R S T U V W

— • — — — • — — • — — • — • — • • • • — • • — • • • — • — — —

TABLE B.1 – Morse code

Morse code converts characters into as a series of short and long pulses, in our case
the CPU usage over a certain period of time. It is based on a succession of shorter and
longer events corresponding to specific letters as presented in Table B.1. The malicious
program will control the CPU-load to send a message.

- 207/223 -

 0

 2

 4

 6

 8

 10

 12

 14

 6500 6550 6600 6650 6700 6750

O
v
e
ra

ll
C

P
U

 u
s
a
g
e
 (

%
)

Timestamp (s)

St
ar

tS
ig

na
l

• • • •

H
•

E
• — • •

L
• — • •

L
— — —

O

FIGURE B.3 – Overall CPU load monitoring of a 12-core CPU where one core is running a malicious software

To perform the dots and bars of the Morse code, we simply need to run shorter and
longer computation tasks. Let p be the duration of a dot in the morse code and b = 3p
be the bar’s division. The spacing between two elements in the same character is p,
between two letter in the same word 3p and between two words 7p.

Figure B.3 shows an implementation of the idea where p = 4 seconds. Alice is laun-
ching processes that use a single CPU-core to create load patterns. In this case overall
CPU load amplitude is low compared to Alice’s load, making message transmission
possible.
Monitoring the overall CPU consumption has the drawback that the message may not
be readable. To counter this problem we can monitor solely the core that runs the mali-
cious software, thus we get a clear signature of the message independently of the other
tasks that are taking place in the CPU (Figure B.4).

- 208/223 -

Jean-Michel Cioranesco| Thèse de doctorat | Décembre 2014

 0

 20

 40

 60

 80

 100

 44350 44400 44450 44500 44550

S
in

g
le

 C
o
re

 C
P

U
 u

s
a
g
e
 (

%
)

Timestamp (s)

S
ta

rt
S

ig
n

a
l

• • • •

H
•

E
• — • •

L
• — • •

L
— — —

O

FIGURE B.4 – CPU load monitoring of a single core running a malicious software

The use of ASCII encoding is of course more interesting as it allows to use way more
characters than Morse.
The malicious key-logger software is trying to send the user password’s "BOB" through
the CPU work load in ASCII format. The sequence is initiated by five one-second full
CPU load followed by two seconds of pause and terminated by a five one-second full
CPU load preceded by two second pause. The bit sequence is composed of zeros corres-
ponding to a two second pause, and ones corresponding to a two seconds of full load,
spaced by two seconds silence. The message "BOB" encoded in ASCII gives "01000010
01001111 01000010", it has a length of 24 bits so it will take about a minute to transfer
this message (Figure B.5).

- 209/223 -

S
ta

rt
S

ig
n

a
l

01000010
B

01001111
O

01000010
B

S
to

p
S

ig
n

a
l

FIGURE B.5 – CPU load monitoring of a single CPU-core running a malicious software

B.4 CPU-load-messenger

The CPU-load-messenger is a Linux software that allows to send and receive a message
through CPU load covert-channel (the source code can be found here [69]). It allows
a user to send an ASCII message on a multi-core system, the user is able to select the
core on which he’ll run the covert channel and the system is returning him the time
necessary to transmit his message.
The sender and receiver need to agree on the application or the core that is going to
carry the message. The communication protocol is composed of three phase.

• Initializing sequence composed of five 2p seconds full CPU load spaced by 2p
seconds load

• Transmission of the message
"1" bits are transmitted using a p seconds load followed by a p seconds pause
"0" bits are transmitted using a 2p seconds pause

• Terminating sequence composed of a 6p seconds load, 2p seconds load and 6p
seconds load spaced by 2p seconds load

- 210/223 -

Jean-Michel Cioranesco| Thèse de doctorat | Décembre 2014

For this implementation we took p = 2 seconds but this parameter is adjustable, Figure
B.6 shows the message "Hello World!" being transmitted, the overall transmission
takes 280 seconds, including start and stop message sequence. An other user is running
the CPU-load-messenger but in receiver mode. The only input he has to give in is for
how long is willing to monitor the system for a message. The software will monitor all
cores of the system and will detect if one is carrying a message.

 0

 20

 40

 60

 80

 100

 4050 4100 4150 4200 4250 4300

S
in

g
le

 C
o
re

 C
P

U
 u

s
a
g
e
 (

%
)

Timestamp (s)

S
ta

rt
S

ig
n

a
l

01001000 01100101 01101100 01101100 01101111 00100000 01010111 01101111 01110010 01101100 01100100 00100001

H e l l o W o r l d !

S
to

p
S

ig
n

a
l

FIGURE B.6 – CPU load monitoring of a single core running a malicious software

B.5 Improvements

The covert channel we discussed in this column is presenting two serious backdraws :
Firstly signal to ratio loss to kept under a certain level for the covert channel to be
possible. The malicious software needs to have at least 51% of the targeted core available

- 211/223 -

to send a clear signal. Figure B.7 is representing this limit, the malicious software has
over 51% of the CPU-core computing capability to send a message, the message is still
extractable from the other task running. During a transmissionany CPU load under 51%
is considered as a “0” and over 51% is a “1”.

 0

 20

 40

 60

 80

 100

 38660 38680 38700 38720 38740 38760 38780

S
in

g
le

 C
o
re

 C
P

U
 u

s
a
g
e
 (

%
)

Timestamp (s)

S
ta

rt
S

ig
n

a
l

51% Threshold

MESSAGE

FIGURE B.7 – Malicious software having more than 51% of the overall load

Secondly the throughpu

B.6 Conclusions

In this column we discussed the idea of using CPU load monitoring as a covert chan-
nel. In this first approach, we set on purpose a malicious software that leaks informa-
tion spied on the system. But as hardware evolves, CPUs’ monitors update rates and
precision increase, getting closer from a real-time CPU monitoring making this covert

- 212/223 -

Jean-Michel Cioranesco| Thèse de doctorat | Décembre 2014

channel more feasible. In the future CPU, usage may become an important source of
leakage, giving information of the actual data being computed.

- 213/223 -

- 214/223 -

Jean-Michel Cioranesco| Thèse de doctorat | Décembre 2014

Bibliography

[1] Cristinel Ababei, Yan Feng, Brent Goplen, Hushrav Mogal, Tianpei Zhang, Kia
Bazargan, and Sachin S. Sapatnekar. Placement and routing in 3d integrated cir-
cuits. IEEE Design and Test, 22, 2005.

[2] Michel Agoyan, Jean-Max Dutertre, David Naccache, Bruno Robisson, and Assia
Tria. When Clocks Fail : On Critical Paths and Clock Faults. Lecture notes in
computer science, Volume 6035/2010 :182–193, April 2010.

[3] M. Akkar and C. Giraud. An Implementation of DES and AES, Secure Against Some
Attacks. In Lecture Notes in Computer Science, pages 309–318. Cryptographic Hard-
ware and Embedded Systems (CHES), Springer, 2001.

[4] Michael J. Alexander, James P. Cohoon, Jared L. Colflesh, John Karro, Edward L.
Peters, and Gabriel Robins. Placement and Routing for Three-Dimensional FP-
GAs, 1996.

[5] Altera. Cyclone ll fpga starter development kit.

[6] Ross Anderson and Markus Kuhn. Low cost attacks on tamper resistant devices.
In Security Protocols, pages 125–136. Springer, 1998.

[7] Christian Aumüller, Peter Bier, Wieland Fischer, Peter Hofreiter, and J-P Seifert.
Fault attacks on rsa with crt : Concrete results and practical countermeasures. In
Cryptographic Hardware and Embedded Systems-CHES 2002, pages 260–275. Sprin-
ger, 2003.

[8] Hagai Bar-El, Hamid Choukri, David Naccache, Michael Tunstall, and Claire
Whelan. The sorcerer’s apprentice guide to fault attacks. Proceedings of the IEEE,
94(2) :370–382, 2006.

[9] Claude Barral and Assia Tria. Fake fingers in fingerprint recognition : Glycerin
supersedes gelatin. In Formal to Practical Security, volume 5458 of Lecture Notes in
Computer Science, pages 57–69. Springer Berlin Heidelberg, 2009.

[10] Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark, Bryan Weeks,

- 215/223 -

and Louis Wingers. The simon and speck families of lightweight block ciphers.
Cryptology ePrint Archive, Report 2013/404, 2013. http://eprint.iacr.

org/.

[11] Andrea Beit-Grogger and Josef Riegebauer. Integrated circuit having an active
shield. In United States Patent number 6,962,294A, 2005.

[12] G. Bertoni, L. Breveglieri, I. Koren, P. Maistri, and V. Piuri. Error analysis and
detection procedures for a hardware implementation of the advanced encryption
standard. In IEEE Transactions on Computers, volume 52, April 2003.

[13] G. Bertoni, L. Breveglieri, I. Koren, and V. Piuri. Fault detection in the advanced
encryption standard. In Massively Parallel Computing Systems, pages pp. 92–97,
2002.

[14] Guido Bertoni, Luca Breveglieri, Israel Koren, Paolo Maistri, and Vincenzo Piuri.
On the propagation of faults and their detection in a hardware implementation of
the advanced encryption standard. In ASAP, pages 303–, 2002.

[15] Ingrid Biehl, Bernd Meyer, and Volker Müller. Differential fault attacks on ellip-
tic curve cryptosystems. In Advances in CryptologyCRYPTO 2000, pages 131–146.
Springer, 2000.

[16] Eli Biham and Adi Shamir. Differential fault analysis of secret key cryptosystems.
In Advances in CryptologyCRYPTO’97, pages 513–525. Springer, 1997.

[17] Johannes Blömer and Jean-Pierre Seifert. Fault based cryptanalysis of the advan-
ced encryption standard (aes). In Financial Cryptography, pages 162–181. Springer,
2003.

[18] B. Bollobás. Graph Theory, An Introductory course. Springer-Verlag, New York,
Heidelberg, Berlin, 1 edition, 1979.

[19] D. Boneh, R. DeMillo, and R. Lipton. On the Importance of Checking Cryptographic
Protocols for Faults. In Springer-Verlag, editor, Advances in Cryptology : Proceedings
of EUROCRYPT’97, pages 37–51, May 1997.

[20] Dan Boneh, Richard A DeMillo, and Richard J Lipton. On the importance of
checking cryptographic protocols for faults. In Advances in CryptologyEURO-
CRYPT97, pages 37–51. Springer, 1997.

[21] Dan Boneh, Richard A DeMillo, and Richard J Lipton. On the importance of elimi-
nating errors in cryptographic computations. Journal of cryptology, 14(2) :101–119,
2001.

[22] Dan Boneh, RichardA. DeMillo, and RichardJ. Lipton. On the importance of che-
cking cryptographic protocols for faults. In Walter Fumy, editor, Advances in Cryp-

- 216/223 -

Jean-Michel Cioranesco| Thèse de doctorat | Décembre 2014

tology EUROCRYPT 97, volume 1233 of Lecture Notes in Computer Science, pages
37–51. Springer Berlin Heidelberg, 1997.

[23] Sebastien Briais, Jean-Michel Cioranesco, Jean-Luc Danger, Sylvain Guilley, Da-
vid Naccache, and Thibault Porteboeuf. Random active shield. 2013 Workshop on
Fault Diagnosis and Tolerance in Cryptography, 0 :103–113, 2012.

[24] Sébastien Briais, Stéphane Caron, Jean-Michel Cioranesco, Jean-Luc Danger, Syl-
vain Guilley, Jacques-Henri Jourdan, Arthur Milchior, David Naccache, and Thi-
bault Porteboeuf. 3d hardware canaries. In In Cryptographic Hardware and Embed-
ded Systems CHES, pages 41–57. LNCS Volume 7428, 2012.

[25] Cadence. Virtuoso analog design environment.

[26] G. Canivet. Analyse des effets d’attaques par fautes et conception sécurisée sur plate-
forme reconfigurable. 2009.

[27] Raffaele Cappelli, A Erol, D Maio, and D Maltoni. Synthetic fingerprint-image
generation. In Pattern Recognition, 2000. Proceedings. 15th International Conference
on, volume 3, pages 471–474. IEEE, 2000.

[28] Raffaele Cappelli, Dario Maio, and Davide Maltoni. Synthetic fingerprint-
database generation. In Pattern Recognition, 2002. Proceedings. 16th International
Conference on, volume 3, pages 744–747. IEEE, 2002.

[29] Hamid Choukri and Michael Tunstall. Round reduction using faults. FDTC, 5 :13–
24, 2005.

[30] Jean-Michel Cioranesco and David Naccache. Protection of an integrated circuit
against invasive attacks. In Patent EP 2624296 A1, August 7 2013.

[31] Jim Colvin. Functional failure analysis by induced stimulus. In INTERNATIONAL
SYMPOSIUM FOR TESTING AND FAILURE ANALYSIS, pages 623–630. ASM In-
ternational ; 1998, 2002.

[32] Christopher Tarnovsky Infineon / ST Mesh Comparison.

[33] E. I. Jr. Cole D. L. Barton and K. Bernhard-Höfer. Flip-chip and backside sample
preparation techniques. In Microelectronics Failure Analysis, Desk Reference, 5th Ed.,
pages 42–48, 2004.

[34] F. Darracq, T. Beauchene, V. Pouget, H. Lapuyade, D. Lewis, P. Fouillat, and
A. Touboul. Single-event sensitivity of a single sram cell. Nuclear Science, IEEE
Transactions on, 49(3) :1486–1490, Jun 2002.

[35] John Daugman. How iris recognition works. IEEE Transactions on Circuits and
Systems for Video Technology, 14 :21–30, 2002.

- 217/223 -

[36] A. Dharwadker. The Hamiltonian Circuit Algorithm. In Proceedings of the Institute of
Mathematics, page 32. Springer, 2011.

[37] R. Dickau. Hilbert and Moore 3D Fractal Curves.
http://demonstrations.wolfram.com/HilbertAndMoore3DFractalCurves.

[38] Paul Dunphy, Andreas P. Heiner, and N. Asokan. A closer look at recognition-
based graphical passwords on mobile devices. In Proceedings of the Sixth Sympo-
sium on Usable Privacy and Security, SOUPS ’10, pages 3 :1–3 :12, New York, NY,
USA, 2010. ACM.

[39] Common Criteria for Information Technology Security Evaluation
(ISO/IEC 15408).

[40] P. Fouillat. Contribution à l’étude de l’interaction entre un faisceau laser et un milieu
semiconducteur : applications à l’étude du latchup et à l’analyse d’états logiques dans les
circuits intégrés en technologie CMOS. 1990.

[41] Benedikt Gierlichs, Lejla Batina, Pim Tuyls, and Bart Preneel. Mutual information
analysis. In Cryptographic Hardware and Embedded Systems–CHES 2008, pages 426–
442. Springer, 2008.

[42] Christophe Giraud. Attaques de cryptosystèmes embarqués et contre-mesures
associées, 2007.

[43] Sylvain Guilley, Laurent Sauvage, J-L Danger, Nidhal Selmane, and Renaud Pa-
calet. Silicon-level solutions to counteract passive and active attacks. In Fault
Diagnosis and Tolerance in Cryptography, 2008. FDTC’08. 5th Workshop on, pages 3–
17. IEEE, 2008.

[44] Donald H Habing. The use of lasers to simulate radiation-induced transients
in semiconductor devices and circuits. Nuclear Science, IEEE Transactions on,
12(5) :91–100, 1965.

[45] R. I. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Cam-
bridge University Press, ISBN : 0521540518, second edition, 2004.

[46] Clemens Helfmeier, Dmitry Nedospasov, Christopher Tarnovsky, Jan Starbug
Krissler, Christian Boit, and Jean-Pierre Seifert. Breaking and entering through the
silicon. In Proceedings of the 2013 ACM SIGSAC Conference on Computer & ; Com-
munications Security, CCS ’13, pages 733–744, New York, NY, USA, 2013. ACM.

[47] Keld Helsgaun. An effective implementation of the lin-kernighan traveling sales-
man heuristic. In European Journal of Operational Research, pages 106–130, 200.

[48] Texas Instrument. Launchpad msp430 development board.

[49] digital IP INVIA Active Shield IP and analog IP that detects invasive attacks.

- 218/223 -

Jean-Michel Cioranesco| Thèse de doctorat | Décembre 2014

[50] I. Verbauwhede J. Kim and M.-C. F. Chang. Design of an Interconnect Architecture
and Signaling Technology for Parallelism in Communication. IEEE Trans. VLSI Syst.
15(8), 1 edition, 2007.

[51] M Smola J. Otterstedt, M Richter and M. Eisele. Protection circuit for an integrated
citcuit. Patent No. US 6,496,119 B1, December 2002.

[52] A.K. Jain, P. Flynn, and A.A. Ross. Handbook of Biometrics. Springer, 2007.

[53] Nebojsa Jojic, Darko Kirovski, and Paul Roberts. Click passwords, July 10 2007.
US Patent 7,243,239.

[54] Marc Joye and Michael Tunstall, editors. Fault Analysis in Cryptography. Informa-
tion Security and Cryptography. Springer, 2012.

[55] A. Peeters K. Goossens, J. van Meerbergen and P. Wielage. Networks on Silicon :
Combinig Best-Effort and Guaranteed Services. In Proceedings of Design Automation
and Test Conference (DATE), pages 423–425. Springer, 2002.

[56] RichardM. Karp. Reducibility among combinatorial problems. In RaymondE.
Miller, JamesW. Thatcher, and JeanD. Bohlinger, editors, Complexity of Computer
Computations, The IBM Research Symposia Series, pages 85–103. Springer US,
1972.

[57] G. Katti, A. Mercha, J. Van Olmen, C. Huyghebaert, A. Jourdain, M. Stucchi,
M. Rakowski, I. Debusschere, P. Soussan, W. Dehaene, K. De Meyer, Y. Travaly,
E. Beyne, S. Biesemans, and B. Swinnen. 3d stacked ics using cu tsvs and die to
wafer hybrid collective bonding. In Electron Devices Meeting (IEDM), 2009 IEEE
International, pages 1–4, 2009.

[58] P. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other
Systems. In Advances in Cryptology - CRYPTO’96, volume 1109 of LNCS, pages
104–113, 1996.

[59] P. Kocher, J. Jaffe, and B. Jun. Differential Power Analysis. In Advances in Cryptology
- CRYPTO’99, volume 1666 of LNCS, pages 388–397, 1999.

[60] Oliver Kömmerling and Markus G. Kuhn. Design principles for tamper-resistant
smartcard processors. In Proceedings of the USENIX Workshop on Smartcard Techno-
logy on USENIX Workshop on Smartcard Technology, WOST’99, pages 2–2, Berkeley,
CA, USA, 1999. USENIX Association.

[61] P. Laackmann and H. Taddiken. Apparatus for protecting an integrated circuit formed
in a substrate and method for protecting the circuit against reverse engineering. Patent
No. US 6,798,234 B2, September 2004.

[62] Peter Laackmann and Hans Taddiken. Apparatus for protecting an integrated

- 219/223 -

circuit formed in a substrate and method for protecting the circuit against reverse
engineering. In United States Patent number 6,798,234, February 19 2003.

[63] Butler W. Lampson. A note on the confinement problem. Commun. ACM,
16(10) :613–615, October 1973.

[64] David G. Lowe. Distinctive image features from scale-invariant keypoints. Int. J.
Comput. Vision, 60(2) :91–110, November 2004.

[65] madmoizelle.

[66] S. Mangard, E. Oswald, and T. Popp. Power Analysis Attacks - Revealing the Secrets
of Smart Cards. Springer, 2007.

[67] Timothy C May and Murray H Woods. A new physical mechanism for soft errors
in dynamic memories. In Reliability Physics Symposium, 1978. 16th Annual, pages
33–40. IEEE, 1978.

[68] A. Menezes, P. van Oorschot, and S. Vanstone. Handbook of Applied Cryptography.
CRC Press, 1996.

[69] CPU Load Messenger.

[70] Krystian Mikolajczyk and Cordelia Schmid. Scale and affine invariant interest
point detectors. International Journal of Computer Vision, 60(1) :63–86, 2004.

[71] E. H. Moore. On Certain Crinkly Curves. Trans. Amer. Math Soc., 1 edition, 1900.

[72] National Bureau of Standards. Data Encryption Standard, January 1977.

[73] National Institute of Standards and Technology (NIST). Announcing the Advan-
ced Encryption Standard (AES), November 2001.

[74] Keisuke Okamura and Yoshihiro Oyama. Load-based covert channels between
xen virtual machines. In Proceedings of the 2010 ACM Symposium on Applied Com-
puting, SAC ’10, pages 173–180, New York, NY, USA, 2010. ACM.

[75] OPENSCAD.

[76] Elisabeth Oswald, Stefan Mangard, Christoph Herbst, and Stefan Tillich. Prac-
tical second-order dpa attacks for masked smart card implementations of block
ciphers. In David Pointcheval, editor, Topics in Cryptology CT-RSA 2006, volume
3860 of Lecture Notes in Computer Science, pages 192–207. Springer Berlin Heidel-
berg, 2006.

[77] Nobuyuki Otsu. IEEE Transactions on Systems, Man and Cybernetics, (1) :62–66.

[78] Dan Page and Frederik Vercauteren. A fault attack on pairing-based cryptogra-
phy. Computers, IEEE Transactions on, 55(9) :1075–1080, 2006.

- 220/223 -

Jean-Michel Cioranesco| Thèse de doctorat | Décembre 2014

[79] Gilles Piret and Jean-Jacques Quisquater. A differential fault attack technique
against spn structures, with application to the aes and khazad. In Cryptographic
Hardware and Embedded Systems-CHES 2003, pages 77–88. Springer, 2003.

[80] V. Pouget and Université de Bordeaux I. Simulation expérimentale par impulsions
laser ultra-courtes des effets des radiations ionisantes sur les circuits intégrés. 2000.

[81] K. W. Martin R. Gregorian and G. C. Temes. Switched-capacitor circuit design. In
Proceedings of the IEEE, pages 941–966. Springer, 1983.

[82] E. Rijpkema, K. G. W. Goossens, A. Rdulescu, J. Dielissen, J. van Meerbergen,
P. Wielage, and E. Waterlander. Trade offs in the design of a router with both
guaranteed and best-effort services for networks on chips. In Proceedings of Design,
Automation and Test Conference in Europe - DATE, pages 350–355, 2003.

[83] Chad Rue, Steven Herschbein, and Carmelo Scrudato. Backside circuit edit on
full-thickness silicon devices. In Proc. 34th Int. Symp. Test and Failure Analysis -
ISTFA, page 141, 2008.

[84] D. Samyde, S. Skorobogatov, R. Anderson, and J.-J. Quisquater. On a new way
to read data from memory. In Security in Storage Workshop, 2002. Proceedings. First
International IEEE, pages 65–69, Dec 2002.

[85] Linux User Command Manual sar(1).

[86] Alexander Schlösser, Dmitry Nedospasov, Juliane Krämer, Susanna Orlic, and
Jean-Pierre Seifert. Simple photonic emission analysis of aes. In In Cryptographic
Hardware and Embedded Systems CHES, pages 41–57. LNCS Volume 7428, 2012.

[87] B. Schneier. Applied Cryptography : Protocols, Algorithms, and Source Code in C. John
Wiley & Sons, Inc., 1996.

[88] Nidhal Selmane, Sylvain Guilley, and J-L Danger. Practical setup time violation
attacks on aes. In Dependable Computing Conference, 2008. EDCC 2008. Seventh Eu-
ropean, pages 91–96. IEEE, 2008.

[89] Sergei P Skorobogatov. Semi-invasive attacks-a new approach to hardware secu-
rity analysis. Technical report, University of Cambridge, Computer Laboratory, 2005.

[90] Sergei P Skorobogatov and Ross J Anderson. Optical fault induction attacks. In
Cryptographic Hardware and Embedded Systems-CHES 2002, pages 2–12. Springer,
2003.

[91] Sergei P Skorobogatov and Ross J Anderson. Optical fault induction attacks. In
Cryptographic Hardware and Embedded Systems-CHES 2002, pages 2–12. Springer,
2003.

[92] Martin Schobert GNU software DEGATE.

- 221/223 -

[93] W. Stallings. Cryptography and Network Security Principles and Practices. Prentice
Hall, 2005.

[94] Xiaoyuan Suo, Ying Zhu, and G. Scott. Owen. Graphical passwords : A survey.
Computer Security Applications Conference, Annual, 0 :463–472, 2005.

[95] C. Tarnovsky. Hacking the smartcard chip.
https://www.blackhat.com/html/bh-dc-10/bh-dc-10-archives.html.

[96] ISO/IEC 18004 :2006 Information technology. Qr code 2005 bar code symbology
specification.

[97] Christopher Tarnovsky How to Reverse-Engineer a Satellite TV Smart Card.

[98] Randy Torrance and Dick James. The state-of-the-art in ic reverse engineering.
In In Cryptographic Hardware and Embedded Systems CHES, pages 363–381. LNCS
Volume 5747, 2009.

[99] Zhuowen Tu and AlanL. Yuille. Shape matching and recognition using gene-
rative models and informative features. In Tomá Pajdla and Jií Matas, editors,
Computer Vision - ECCV 2004, volume 3023 of Lecture Notes in Computer Science,
pages 195–209. Springer Berlin Heidelberg, 2004.

[100] Pim Tuyls, Geert jan Schrijen, Boris Skori, Jan Van Geloven, Nynke Verhaegh, and
Rob Wolters. Read-proof hardware from protective coatings. In In Cryptographic
Hardware and Embedded Systems CHES, pages 369–383. Springer, 2006.

[101] Pim Tuyls, Boris Skoric, and Tom Kevenaar. Security with noisy data : Private
biometrics, secure key storage and anti-counterfeiting. In 1st Edition, ISBN 978-1-
84628-983-5. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2007.

[102] Jonathan Valamehr, Ted Huffmire, Cynthia Irvine, Ryan Kastner, Çetin Kaya Koç,
Timothy Levin, and Timothy Sherwood. A qualitative security analysis of a new
class of 3-d integrated crypto co-processors. In Festschrift Jean-Jacques Quisquater,
LNCS vol. 6805, pages 364–382. Springer, 2011.

[103] I. Verbauwhede and M.-C. F. Chang. Reconfigurable interconnect for next gene-
ration systems. In The Fourth IEEE/ACM International Workshop on System-Level
Interconnect Prediction - SLIP, pages 71–74. Proceedings, 2002.

[104] Neil H.E. Weste and David Harris. Cmos vlsi design : A circuits and systems
perspective. In 3rd edition. Addison Wesley, 2004.

[105] Sung-Ming Yen, Sangjae Moon, and Jae-Cheol Ha. Hardware fault attack on rsa
with crt revisited. In Information Security and CryptologyICISC 2002, pages 374–388.
Springer, 2003.

- 222/223 -

Jean-Michel Cioranesco| Thèse de doctorat | Décembre 2014

[106] J. F. Ziegler and W. A. Lanford. Effect of cosmic rays on computer memories.
Science, 206(4420) :776–788, November 1979.

- 223/223 -

