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Abstract

Robots are expected to be more and more present in our everyday environ-
ment. They are likely not only to share physical spaces with humans but also
to interact with them. In this context, robots are expected to understand both
verbal and non-verbal cues, some of which being ambiguous, routinely used
in natural human-to-human interactions. In particular, gaze direction (where
are people looking at?), and visual focus of attention or VFOA (to whom or
to what are people looking at?), are very valuable sources of information to
understand the social behavior of each person, as well as the inter-person in-
teraction dynamics. To estimate the VFOAs, the robot must solve multiple
tasks. (a) Find and keep people in its camera field of view. The robot needs
a suitable gaze control strategy, i.e. a strategy that uses sensory information
to move its camera. (b) Estimate people gaze directions. The participants
are expected to frequently look either at each other or at an object of interest;
therefore their eyes are not always visible. Gaze estimation based on eye im-
age patch is unreliable. However, the correlation between eye gaze and head
movements can be exploited. (c) Locate the objects of interest. When the
locations of objects of interest are unknown and outside the camera field of
view, the presence of such objects can only be detected by following the gaze
of participants. (d) Combine these data to derive the VFOAs.

In this thesis, we address the problem of simultaneously estimating the vi-
sual focus of attention of multiple people involved in a social interaction, from
the point-of-view of an active humanoid robot. Along the way, we address the
problem of robot gaze control, and the detection of out-of-view objects from
gaze following. The proposed contributions are data-driven and are detailed as
follows.First, we suppose that the locations of objects of interest are known.
In this context, we model the gaze behavior with a Bayesian network, using
findings from psychophysics. More precisely, we introduce a temporal model
that describes the dependency between head poses, object locations, eye-gaze
directions, and VFOAs. The proposed formulation is based on a switching
linear dynamical system. It leads to a tractable learning procedure and to an
efficient algorithm that simultaneously tracks gaze and VFOA. Second, we
propose a model able to locate objects by combining people’s gaze directions
over time. The sequence of head poses is encoded into a heat-map represen-
tation adopting a top-view perspective. We propose several encoder/decoder
convolutional neural networks that predict object locations and compare them
with heuristics and simpler learning approaches. Third, We propose a novel
reinforcement learning method for robotic gaze control. The model is based
on a recurrent neural network architecture to learn a value function. The robot
autonomously learns a strategy for moving its head (and camera) using audio
and visual observations. It is able to focus on groups of people in a changing
environment. Finally, all contributions have been tested on publicly available
datasets. Moreover, two methods that simulate synthetic scenarios are pro-
posed for data augmentation, and are used for training and test.
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Résumé

Les robots sont de plus en plus présents dans l’environnement quotidien. Il ne
suffit plus de partager l’espace avec des humains, mais aussi d’interagir avec
eux. Dans ce cadre, il est attendu du robot qu’il comprenne un certain nom-
bre de signaux ambigus, verbaux et visuels, couramment utilisés pour com-
muniquer entre humains. En particulier, la direction du regard (où les gens
regardent-ils?) et la cible d’attention visuelle (qui ou quoi les gens regardent-
ils?) contiennent beaucoup d’informations sur le comportement social indi-
viduel ainsi que sur la dynamique de groupe à l’oeuvre. Afin d’estimer la (ou
les) cible d’attention visuelle, désignée par l’acronyme anglais VFOA pour vi-
sual focus of attention, le robot doit résoudre plusieurs tâches. (a) Trouver les
gens et les garder dans le champ de vision. Le robot a besoin d’une stratégie
appropriée de pilotage du regard pour orienter la caméra en fonction de ses
données sensorielles. (b) Estimer la direction du regard de chacun. Les gens
sont libres d’orienter la tête à leur convenance, ainsi les yeux ne sont pas tou-
jours clairement visibles. Il n’est pas fiable de compter sur des images des
yeux pour deviner l’orientation du regard. Toutefois, les mouvements de la
tête et des yeux sont souvent liés, et cette corrélation peut être utilisée. (c)
Repérer les objets d’intérêt. Un objet d’intérêt peut être en dehors du champ
de vision de la caméra. Détecter la présence d’un tel objet peut seulement se
faire en suivant les regards. (d) Combiner ces informations pour estimer les
VFOAs.

Dans cette thèse, nous proposons une méthode pour estimer simultanément
la cible d’attention visuelle (VFOA) de plusieurs personnes engagées dans un
processus d’interaction sociale, depuis le point de vue d’un robot humanoı̈de.
De plus, deux problèmes rencontrés en chemin ont attiré notre attention: pi-
loter le regard du robot, et suivre le regard des gens pour détecter les po-
sitions des objets en dehors du champ de vision. Les différentes contribu-
tions, décrites en détail ci-après, reposent sur l’apprentissage automatique à
partir de données. Premièrement, nous supposons connues les positions des
objets d’intérêt. Dans ce cadre, nous modélisons la dynamique du regard
avec un réseau Bayésien, en s’inspirant d’observations psychophysiques. Plus
précisément, nous introduisons un modèle temporel qui décrit, dans un groupe
de plusieurs personnes, les dépendances entre les têtes, les objets, les regards
et les VFOAs. Ce modèle, basé sur un système Markovien à dynamiques
multiples, permet d’obtenir une méthode d’apprentissage des paramètres ainsi
qu’un algorithme efficace pour estimer, en continu, la direction du regard et
le VFOA. Deuxièmement, nous proposons d’estimer la position des objets
d’intérêt en combinant les regards au cours du temps. La succession des
mouvements de tête de chacun est encodée sous forme de carte de chaleur
vue du dessus. Nous avons élaboré et entraı̂né plusieurs réseaux de con-
volution de type encodeur/décodeur pour prédire les positions qui contien-
nent vraisemblablement des objets d’intérêt. D’autres méthodes plus sim-
ples sont présentées pour comparaison. Troisièmement, nous présentons une
méthode d’apprentissage par renforcement pour piloter le regard du robot. Un
réseau de neurones récurrents est entraı̂né pour prédire la valeur d’action. Le
robot utilise ses observations audio et visuelles pour apprendre de manière
autonome une stratégie efficace pour orienter sa tête. Cela lui permet de
cibler des groupes de personnes dans un environnement évolutif. Enfin, toutes
les contributions sont validées sur des jeux de données disponibles publique-
ment. De plus, deux méthodes de simulation de scénarios synthétiques ont
été développées afin d’enrichir les jeux de données. Les scénarios générés
peuvent être utilisés pour l’entraı̂nement ou la validation.
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CHAPTER 1

INTRODUCTION

1.1 GENERAL CONTEXT

In recent years, there has been a growing interest in human-robot interaction (HRI), a
research field dedicated to designing, evaluating and understanding robotic systems able
to communicate with people. Such a robot can be used in many situations. In commercial
places, the robot can serve as a waiter, a receptionist or a vendor that looks after clients’
requests. There may also be a need for a companion robot that assists patients or elder
people in their everyday life, or helps socially impaired people – like autistic children
– experiment with social interaction. The evaluation of how good the robot is depends
on objective criteria, e.g. the time required to address the client’s request, and subjec-
tive criteria, like how natural did the interaction feel. The quality of human-robot social
interactions depends on the robot taking actions that are appropriate to the situation. Un-
derstanding the environment, including implicit social and cultural cues, is the basis of
an efficient decision making. In particular, mimicking human behavior is important for
the robot so that people merely have to apply prior knowledge about human-to-human
interactions. These challenges are addressed under a field named social robotics. Inter-
estingly, we often imagine a social robot to be humanoid by similarity with actual human
interaction, but this is not a hard constraint. For instance, a home automation system con-
nected to a social artificial intelligence would be interesting to study. However, this would
introduce an asymmetry between the robot and the people, and we would rather avoid to
insert unnecessary bias in the interactions. From now on, unless specified otherwise, the
term robot is used for humanoid robot.

In interpersonal communication, participants exchange messages using verbal and
non-verbal signals, depending on the context. For a sighted person, a significant part
of the external information processed by the brain comes from the visual system. Gaze
direction, defined as the line between the eyes of the observer and the region he/she is
focusing on, is a very informative visual cue. The interest of studying the gaze direction
in social robotics is threefold. First, knowing the region of the space in which some-
one is interested helps understanding and predicting his/her actions, and more generally

15



16 CHAPTER 1. INTRODUCTION

gives strong insight on the context. For instance, a typical behavior is to look at the cur-
rent speaker in a group or at the object currently being discussed. Second, switching
gaze direction modifies the visual field. This is a very natural strategy to account for a
lack of information. Third, human beings – even when still a toddler – are very efficient
in estimating other people’s gaze direction. This skill is used to communicate e.g. in
joint attention mechanisms. For all these reasons, gaze direction is very useful for a so-
cial robot, either to better comprehend the environment, or to optimize its own decisions
about where to look at.

In practice, for a robot, understanding the environment consists in being able to an-
alyze data from its sensors and extract relevant information. Sensors typically include
one or several of the following: RGB camera(s), microphones, depth sensor, self-motion
sensor and/or force sensor. Analyzing multimodal data, and especially visual data, is a
very complicated task to perform manually. The relationship between a set of pixels and
a specific object is impossible for a human to handcraft. Indeed, the same thing can be
represented by a prohibitively large number of images, sometimes very different from
each other, depending on e.g. orientation, lighting, or background. For this reason, ma-
chine learning has been used for a long time to address this limitation. Machine learning
is a research field whose goal is to extract patterns (learn) from data. It is used to solve
different categories of problems.

• Supervised learning is when we have observations along with their associated ex-
pected decisions, and we want to predict the correct decision associated with new
observations. In social robotics, it can be used for many tasks, e.g. predict whether
there is a human in the field of view, which action he/she is doing or which direction
he/she is facing. A training set of annotated examples is required for each of these
problems. When the training labels are incomplete, noisy or partially missing, this
is referred to as semi-supervised learning.

• Unsupervised learning, on the other hand, consists in modeling the underlying struc-
ture of the data without labels. A classical usage is clustering, i.e. grouping individ-
uals given features. Robots sometimes need it in anomaly detection. It can also be
used in the first stages of semi-supervised learning to complete or correct unreliable
labels.

• Reinforcement learning is a particular weakly supervised learning method, popular
in robotics. The true label is unknown but the decision can be evaluated a posteriori
with a reward; the task is learned with trial-and-error. This is particularly relevant
when evaluating the result of a sequence of actions. There are too many possible
decision for the human supervisor to know the optimal one. This is useful e.g. for
playing chess, or for some control problems.

Machine learning problems fall into different categories and can be tackled with various
mathematical tools. The field has deeply and quickly evolved for the last few years with
the impressive achievements of deep neural networks. Still, probabilistic formulations
remain popular either alone or in conjunction with deep learning.
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In this thesis, we have been interested in providing tools for a humanoid robot to
progress toward a natural social interaction with humans by addressing several comple-
mentary challenges. In particular, we focus on determining which regions and which tar-
gets are interesting in a natural social scene along time, as well as the direction the robot
should be looking at. The designed methods rely on mechanisms associated with gaze
direction and operate in a data-driven framework using various machine learning tech-
niques. Of course, understanding what is happening in social interactions is broader in
scope than social HRI. It has applications in various domains such as video-surveillance,
advertising or automatic reporting. A discussion about human and societal aspects of
these topics is available in section 5.3.

1.2 VOCABULARY

There is an abundant literature studying gaze, both from the psychophysical and computer
vision communities. However, even within a community, researchers often associate dif-
ferent meanings to the same word. We propose in this section to explicitly define the
terms used throughout this thesis and their actual meanings.

We present first some geometrical terms, taking place in a fixed, global coordinate
frame. Position and Location are generally synonyms and refer to the coordinates of a
point in a predefined system. When speaking about a non-punctual object, they refer to
the coordinates of its center of mass. In this work, we make a slight distinction between
them. Location is used to speak about 3D coordinates while Position describes the 2D
projection e.g. into an image or a top-view map. Inline clarifications (like 2D position)
may be found when the context is ambiguous. The term Orientation refers to pan, tilt
and roll angle of a rigid body. Direction represents a 3D unit vector and has two degrees
of freedom. In general, direction and orientation are incompatible variables. However, in
most cases detailed below, we do not need the roll angle; then the orientation is homoge-
neous to the direction spanned by two points of the rigid body’s roll axis. As an example,
see the relationship between head orientation and gaze direction explained below.

As seen before, Gaze direction is defined as the direction spanned by the line from the
eyes of the observer to the region of space he/she is focusing on. It is sometimes called
Eye-gaze to emphasize the role of the eyes. The object or person that lies in this region is
the Visual Focus of Attention (VFOA) of the observer, also called the object of interest.
Head orientation are the pan and tilt angle of the head (we drop the roll angle) with
respect to a default orientation in the global 3D coordinate system. It is generally equated
to the direction from the center of the head through the nose. An illustration of these
concepts is available in Fig. 2.1 using notations from section 2.3.1. Then, gaze direction
and head orientation can be expressed in the same space. The difference between them is
entirely due to the orientation of the eyes w.r.t. the head. This difference is called eyeball
orientation. Additionally, the term Head pose is often found in the literature and is short
for joint head location and orientation.

Alternatively, a few other concepts are related to gaze. First, we use the term Gaze
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following when we are interested in the position or location of the region being stared.
This corresponds to the location of the VFOA. A particular case of gaze following is
on-screen gaze following, when predicting the on-screen position of a person’s focus.
For instance, a smart-phone application could adapt to the user’s gaze, knowing which
pixels of the screen are being looked at. On a different note, Gaze control is a field of
research from the neuroscience literature that studies all the mechanisms involved when a
human or an animal switches gaze. Applied to robotics, Gaze control refers to the robot
strategies for moving its cameras, and depends on the task.

Finally, the term Full body pose refers to the location and orientation of all limbs of
a person. In practice, given constraints on the human body, it is considered sufficient to
have the locations of the joints.

1.3 OVERVIEW

Hans Moravec wrote in the 1980’s “it is comparatively easy to make computers exhibit
adult level performance on intelligence tests or playing checkers, and difficult or impos-
sible to give them the skills of a one-year-old when it comes to perception and mobil-
ity” [82]. For more than 50 years, computer vision researchers have been working on ex-
tracting information from images and videos, yet machines still have not achieved human
performance on many problems, for instance recognizing an object that has only been
seen once. The most successful results have been achieved when combining computer
vision with machine learning. Indeed, it is much easier to train a machine to recognize
some patterns than to design a huge set of handcrafted rules for all possible pixel config-
urations. Traditionally, approaches using handcrafted visual features [72, 126] combined
with a generic classifier or regressor [26] achieved satisfying results while making use of
training data and prior information [108, 138]. With the advent of big data and highly
powerful GPUs, deep neural networks (DNN) have managed to achieve human-level per-
formance in many computer vision problems (image recognition [61, 114], image seg-
mentation [102], full body pose estimation [19]). In general, convolutional layers play
the role of a trainable feature extractor, while some fully connected layers do the regres-
sion/classification part. This kind of networks are called convolutional neural networks
(CNNs or ConvNets) and can be trained end-to-end with stochastic gradient descent, as
long as there are enough data. When dealing with ordered sequences, recurrent neural
networks (RNN) provide a structure to model sequential dependencies. Besides computer
vision, other domains use machine learning to interpret various types of data, and have
benefited from the rise of deep learning. Examples include audio [121], natural language
processing [25, 71], or even multi-modal e.g. audio-visual data [23].

Human robot interaction (HRI) is an interdisciplinary field. First, it features a robot,
i.e. a mechanical system with sensors, able to perform a set of tasks. It needs to per-
ceive and analyze sensor signals, take a decision and then move appropriately. Robotics
is at the intersection of many fields: multimedia analysis (including computer vision),
artificial intelligence, mechatronics, control theory, etc. Applications for robots include
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industrial assemblies, intervention in hostile environment, domestic use, or as a compan-
ion. Most robots may or must interact with humans during normal activity for one reason
or another. HRI addresses the problems that arise in this context, ranging from the design
of robot-guiding interfaces to dealing with human intrusion into an autonomous robot
working space [43]. In social HRI, interacting with people is the very purpose of the
robotic system. Some social robots have already been used e.g. to help autistic children
develop social skills [101] or as a bellboy in a hotel [93]. Social HRI uses results from
psychophysics and neuroscience to model human behavior. Indeed, human-to-human in-
teractions involve many complex, and often unconscious, communication processes that
are very difficult for a robot to understand and accurately replicate.

In particular, gaze is a very prominent social cue. In a social interaction like a cocktail
party or a meeting, it conveys a large quantity of information about relative social status,
mental and emotional states, or interaction dynamics [18, 39]. Inferring gaze direction
may often be necessary to predict the speech turn taking in a discussion [87]. In parallel,
some non-social tasks can also benefit from gaze prediction. While driving a car, visual
attention can help predict whether the driver should take a break [116]. On another note,
determining the visual attention of people confronted to advertising banners or posters
has business applications [103]. In this context, there exists a wide range of methods
to infer gaze direction in miscellaneous contexts [47]. First, inferring eye gaze from an
eye’s patch image requires to take into account the variety of possible appearances. In
general, eye-gaze methods work best when applied on a near frontal face. For this rea-
son, head-mounted camera systems provide the most precise estimates of eye gaze [50].
Combined with a head-pose tracker, this provides reliable and consistent gaze estimations
over time. However, for many social scenarios, setting up and calibrating a head-mounted
system is impractical and cumbersome, and may even significantly impact people’s be-
havior. There is a category of problems that cannot use a head-mounted system yet still
manage to obtain near frontal faces: on-screen gaze following on smartphones and lap-
tops. Embedded frontal cameras are designed to capture the face of the user watching
the screen. The pervasiveness of camera-equipped devices has provided the opportunity
for large-scale datasets [59, 139] and efficient algorithms [59, 139, 140]. Gaze-controlled
computer interfaces have several applications e.g. for people with a motor disability [75],
or more generally as a new tool in human-computer interface design [60]. Finally, in
many unconstrained settings e.g. fixed cameras in a cocktail party, the head does not re-
main oriented towards the cameras and the eyes may even not be visible. Most work in
this area use head orientation as an approximation of gaze direction [27, 83, 109]. Indeed,
eyeball stays within 35° away from head orientation [118], and even less than that most
of the time.

Gaze direction inference in itself is generally not the final objective. The decision
process is better guided by the VFOA, i.e. who or what is being visually targeted. For
example, a social robot must be able to make a difference between people roughly looking
in the robot direction, and people that are purposively looking at the robot in order to
interact with it [96]. Many works exist on the subject of VFOA inference [6, 32, 56, 76,
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89, 110, 119, 135]1. In more complex scenarios, e.g. as a museum guide [54], people
jointly targeting an object provides a cue that the object is the topic of interest. The robot
can decide to speak about the focused object of interest. In a multi-party discussion, like
a stand-up conversation [56] or a meeting [6, 32, 89, 119], the participants VFOAs give
strong insights on the conversation conduct. The focused person may be the one speaking
or expected to speak next. A robot participating in the discussion can infer the speech-
turn dynamics and possibly take the floor. The role of gaze in human-robot interaction is
extensively discussed in [1].

Obviously, the VFOA cannot always be inferred directly. It requires to be aware that
the target exists, and to know its location. When there is no prior information, a first
strategy is to look for potential objects of interest. In a social interaction, people inherently
are potential targets. Furthermore, finding regions that attract human’s visual attention
within the visual field is known as the saliency problem [33]. In parallel, gaze following
consists in inferring the location of someone’s VFOA. This skill appears during infancy
and participates actively in development through joint attention [11, 17]. Recent works in
computer vision combine gaze following and saliency [99, 100, 135] to simultaneously
estimate the location of VFOA candidates and someone’s actual VFOA. This bypasses
the lack of prior information as long as both the person and his/her VFOA are within the
visual field of view.

1.4 CONTRIBUTIONS

In this thesis, we address three successive problems that arise when a robot with limited
field of view needs to estimate over time the Visual Focus of Attention of people involved
in a social interaction, possibly including the robot itself. The problems can be described
as follows. First, the robot needs a strategy to have and keep people in its field of view,
since gaze is a visual cue. Second, it must locate the objects of interests; they may be too
far away from people for the robot to see everything at once. Third, knowing the location
of people and objects, the robot can start to guess people’s VFOA on every camera frame.
All these problems have been addressed with learning-based approaches.

In more detail, the contributions are the following:

• In order for the robot to keep people in its field of view, we propose a framework to
learn a gaze control strategy based on audio-visual inputs. We use a recurrent neural
network to map the sequence of audio and visual data into an action for moving the
head. The network is trained using reinforcement learning (RL), with a reward based
on the number of visible people. Hence, the robot autonomously learns to focus its
attention to regions with multiple people, without the need for human supervision
or external sensors. In addition to this framework, we introduce a synthetic envi-
ronment that simulates a set of people moving and speaking to pre-train the model.

1Please note that the vocabulary in the literature is not standardized, some papers use for instance “gaze”
or “eye-gaze” for VFOA
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This avoids the need to spend hours in front of the robot for training. The model
has been validated on the publicly available AVDIAR dataset, on our synthetic data,
and on the Nao robot through transfer learning. Quantitative experiments allow to
analyze the role of different hyper-parameters on the performance, as well as the
respective importance of visual and auditory data. This work was done in common
with Stéphane Lathuilière and led to the following publications:

– Stéphane Lathuilière, Benoit Massé, Pablo Mesejo, and Radu Horaud. Neural
network based reinforcement learning for audio-visual gaze control in human-
robot interaction. Pattern Recognition Letters, 2018 [65],

– Stéphane Lathuilière, Benoit Massé, Pablo Mesejo, and Radu Horaud. Deep
reinforcement learning for audio-visual gaze control. In IROS, 2018 [64].

• People often look at an object that is not immediately visible to others. Yet, it is pos-
sible to approximately guess where this object stands. We propose a method to esti-
mate the location of objects of interest solely based on the fact that they repeatedly
are the target of someone’s gaze direction. In practice, we use a heat-map embedding
to represent the set of people’s directions of interest, a gaze heat-map, and another
one to represent the set of object locations, an object heat-map. This formulation
allows us to take into account any number of people and objects. We combine the
gaze heat-maps over time and train different versions of an encoder/decoder neural
network to predict the object heat-map, as well as several baselines. The list of ob-
ject locations is then retrieved by extracting local maxima on the object heat-map.
We propose a synthetic data generator to have data diverse enough for training. The
method has been validated on our synthetic data and, through transfer learning, on
the publicly available Vernissage dataset. This work has not been published yet.

• In many social interactions, reacting appropriately often requires to know when
someone changes his/her visual focus of attention. We propose to estimate and track
jointly the VFOAs of a group of people over time, based on their head poses. To
do so, we formulate a generative bayesian switching linear dynamical system that
makes explicit the dependencies between head poses, gaze directions and VFOAs,
as well as their dynamics. We address the inference problem on this model by ex-
tending the switching Kalman filter algorithm and propose a learning procedure for
all parameters. All algorithms are computationally tractable. The method has been
trained on the Vernissage dataset and tested on both the Vernissage dataset (using
cross validation) and on the LAEO dataset. These two datasets are publicly avail-
able. This work led to the following publications:

– Benoit Massé, Silèye Ba, and Radu Horaud. Simultaneous estimation of gaze
direction and visual focus of attention for multi-person-to-robot interaction. In
IEEE ICME, Seattle, WA, July 2016 [77],

– Benoit Massé, Silèye Ba, and Radu Horaud. Tracking gaze and visual focus of
attention of people involved in social interaction. IEEE TPAMI, 2017 [78],
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It should be noted that, in this document, the contributions have been reported in re-
versed order since we believe it would help the reader better understand how they depend
on one another.

1.5 RESOURCES

The work was performed in the Inria center in Grenoble 2, in the Perception team 3 under
the supervision of Dr. Radu Horaud. This context helped me on several aspects. First,
I benefited greatly from the co-supervision of Dr. Silèye Ba up to 2016, and later from
Dr. Pablo Mesejo. It also gave me the opportunity to collaborate with Stéphane Lath-
uilière. Besides, the team has a lot of equipment to assist research on machine learning
and robotics. A Nao robot [45] has been available for use, with engineers designing proper
interfaces. The robot has been used in chapter 4. Other robots have been available in the
team for a variety of uses but they will not be presented in this document. Additionally,
there is a dummy head called Popeye, shown in Fig. 1.1(c). Popeye is a molded silicon
reproduction of a human head on which are fixed a stereo camera and microphones. The
goal is to mimic the acoustic properties of the human head.

The following datasets have been used in this thesis:

• The Vernissage dataset [54] is composed of ten recordings lasting ten minutes each.
Each sequence contains two people interacting with a Nao robot and discussing
about three wall paintings (see Fig. 1.1(a)). The robot plays the role of an art
guide, describing the paintings and asking questions to the people in front of it.
Each recording is split into two roughly equal parts. First, the robot describes the
painting, leading to a one-way interaction. In the second part, the participants and
the robot chat to answer a quiz. The scene was recorded with an RGB camera em-
bedded into the robot head, and with a VICON motion capture system consisting of
a network of infrared cameras. The VICON system providing accurate estimations
for paintings’ locations and for people and robot’s head poses. Finally, the visual
focus of attention of the participants are annotated over time. It has been used in
chapters 2 and 3.

• The LAEO dataset [76] (dataset of people Looking At Each Other) is an extension of
the TVHID (TV Human Interaction Dataset) [92]. It consists of 300 videos extracted
from TV shows (see Fig. 1.1(b)). At least two actors appear in each video engaged
in one of the following human-human interactions: handshake, highfive, hug, and
kiss. There are 50 videos for each interaction and 100 videos with no interaction.
LAEO is further annotated, namely some of these videos are split into shots which
are separated by cuts. There are 443 shots in total, and each frame is manually
annotated whether two people are looking at each other. All the faces in the dataset

2https://www.inria.fr/centre/grenoble
3https://team.inria.fr/perception/

https://www.inria.fr/centre/grenoble
https://team.inria.fr/perception/
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are annotated with a bounding box and with a coarse head-orientation label: frontal-
right, frontal-left, profile-right, profile-left, backward. It has been used in chapter 2.

• The AVDIAR dataset [40] (dataset for Audio-Visual Diarization) is a set of scenarios
in which one to six people were asked to perform natural actions and speak. It is
composed of dozens of videos with two high-resolution (1920×1080) video streams
from a wide angle stereo camera, and six audio tracks. It was recorded in the team
using the Popeye dummy head presented earlier, on which six microphones were
fixed(see Fig. 1.1(c)). I personally participated in the making of this dataset, both in
the recording and the annotation. It has been used in chapter 4.

(a) Sample from Vernissage dataset (b) Sample from LAEO dataset

(c) sample from AVDIAR dataset, showing the Popeye dummy head

Figure 1.1: Illustration of the three datasets mentioned in this manuscript

Additionally, several GPUs with high computational power (Titan Xp, GTX 1070, etc.)
were available to perform computationally expensive neural network training.
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1.6 MANUSCRIPT STRUCTURE

This manuscript is organized as follow. In chapter 2, we propose a bayesian model to
infer frame-by-frame visual focus of attention when the locations of objects of interest are
known. In chapter 3, we present our method to estimate regions of interest from people
gaze. In chapter 4, we describe our framework for training a robot to achieve an efficient
gaze control strategy. Then, chapter 5 gives a perspective on the accomplished work,
opens the discussion about some non-scientific aspects, and propose future developments.

In appendix A, the exhaustive set of training equations from chapter 2 are reported;
then some details about the classes given during the PhD are presented in appendix B.



CHAPTER 2

TRACKING GAZE AND VISUAL FOCUS

OF ATTENTION OF PEOPLE INVOLVED

IN SOCIAL INTERACTION

2.1 INTRODUCTION

During a social interaction, people communicate by sending and receiving messages.
Most explicit messages are transmitted through speech, but the communication process
is facilitated by a large variety of non-verbal cues, e.g. prosody, hand gestures, body
movements, head nodding, eye gaze, and facial expressions. In this chapter we are inter-
ested in estimating the visual focus of attention (VFOA), or who is looking at whom or at
what, which has been recognized as one of the most prominent social cues. It is used in
multi-party dialog to establish face-to-face communication, to respect social etiquette, to
attract someone’s attention, or to signify speech-turn taking, thus complementing speech
communication.

The VFOA characterizes a perceiver/target pair. It is determined either by the line
from the perceiver’s face to the perceived target, or by the perceiver’s direction of sight
or gaze direction (which is often referred to as eye gaze or simply gaze). Indeed, one
may state that the VFOA of person i is target j if the perceiver’s gaze is aligned with the
perceiver-to-target line. From a physiological point of view, eye gaze depends on both
eyeball orientation and head orientation. Both the eye and the head are rigid bodies with
three and six degrees of freedom respectively. The head location (three coordinates) and
the head orientation (three angles) are jointly referred to as the head pose. With proper
choices for the head- and eye-centered coordinate frames, one can assume that gaze is
a combination of head pose and of eyeball orientation, and the VFOA depends on head
pose, eyeball orientation, and target location.

In this chapter we are interested in estimating and tracking jointly the VFOAs of a
group of people that communicate with each other and with a robot, or multi-party HRI

25
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(human-robot interaction), which may well be viewed as a generalization of single-user
HRI. From a methodological point of view the former is more complex than the latter.
Indeed, in single-user HRI the person and the robot face each other and hence a camera
mounted onto the robot head provides high-resolution frontal images of the user’s face
such that head pose and eye orientation can both be easily and robustly estimated. In
the case of multi-party HRI the eyes are barely detected since the participants often turn
their faces away from the camera. Consequently, VFOA estimation methods based on eye
detection and eye tracking are ineffective and one has to estimate the VFOAs, indirectly,
without explicit eye detection.

We propose a Bayesian switching dynamic model for the estimation and tracking gaze
directions and VFOAs of several persons involved in social interaction. While it is as-
sumed that head poses (location and orientation) and target locations can be directly de-
tected from the data, the unknown gaze directions and VFOAs are treated as latent ran-
dom variables. The proposed temporal graphical model, that incorporates gaze dynamics
and VFOA transitions, yields (i) a tractable learning algorithm and (ii) an efficient gaze-
and-VFOA tracking method.1 The proposed method may well be viewed as a computa-
tional model of [37, 38]. The method is evaluated using two publicly available datasets,
Vernissage [54] and LAEO [76]. These datasets consist of several hours of video con-
taining situated dialog between two persons and a robot (Vernissage ) and human-human
interactions (LAEO ). We are particularly interested in finding participants that either gaze
to each other, gaze to the robot, or gaze to an object. Vernissage is recorded with a motion
capture system (a network of infrared cameras) and with a camera placed onto the robot
head. LAEO is collected from TV shows.

The remainder of this chapter is organized as follows. Section 2.2 provides an overview
of related work in gaze, VFOA and head-pose estimation. Section 2.3 introduces the
mathematical notations and definitions, states the problem formulation and describes the
proposed model. Section 2.4 presents in detail the model inference and Section 2.5 de-
rives the learning algorithm. Section 2.6 provides implementation details and Section 2.7
describes the experiments and reports the results.

2.2 RELATED WORK

As already mentioned, the VFOA is correlated with gaze. Several methods proceed in
two steps, in which the gaze direction is estimated first, and then used to estimate VFOA.
In scenarios that rely on precise estimation of gaze [123, 133] a head-mounted camera,
like the one in [50], can be used to detect the iris with high accuracy. Head-mounted
eye trackers provide extremely accurate gaze measurements and in some circumstances
eye-tracking data can be used to estimate objects of interest in videos [62]. Nevertheless,
they are invasive instruments and hence not appropriate for analyzing social interactions.

1Supplementary materials are available at https://team.inria.fr/perception/
research/eye-gaze/.

https://team.inria.fr/perception/research/eye-gaze/
https://team.inria.fr/perception/research/eye-gaze/
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Gaze estimation is relevant for a number of scenarios, such as car driving [116] or
interaction with smartphones [59]. In these situations, either the field of view is limited,
hence the range of gaze directions is constrained (car driving), or active human participa-
tion ensures that the device yields frontal views of the user’s face, thus providing accurate
eye measurements [50, 79, 88, 116]. In some scenarios the user is even asked to limit
head movements [73], or to proceed through a calibration phase [74, 88]. Even if no
specific constraints are imposed, single-user scenarios inherently facilitate the task of eye
measurement [79]. To the best of our knowledge, there is no gaze estimation method that
can deal with unconstrained scenarios, e.g. participants not facing the cameras, partially
or totally occluded eyes, etc. In general, eye analysis is inaccurate when participants are
far away from the camera.

An alternative is to approximate gaze direction with head pose [85]. Unlike eye-based
methods, head pose can be estimated from low-resolution images, i.e. distant cameras
[20, 95, 98, 132, 137]. These methods estimate gaze only approximately since eyeball
orientation can differ from head orientation by ±35° [118]. Gaze estimation from head
orientation can benefit from the observation that gaze shifts are often achieved by syn-
chronously moving the head and the eyes [37, 38, 44]. The correlation between head pose
and gaze has also been exploited in [119]. More recently, [63] combined head and eye
features to estimate the gaze direction using an RGB-D camera. The method still requires
that both eyes are visible.

Several methods were proposed to infer VFOAs either from gaze directions [5], or
from head poses [6, 76, 110, 135]. For example, in [76] it is proposed to build a gaze
cone around the head orientation and targets lying inside this cone are used to estimate
the VFOA. While this method was successfully applied to movies, its limitation resides in
its vagueness: the VFOA information is limited to whether there are two people looking
at each other or not.

An interesting application of VFOA estimation it the analysis of social behavior of
participants engaged in meetings, e.g. [6, 32, 89, 119]. Meetings are characterized
by interactions between seated people that interact based on speech and on head move-
ments. Some methods estimate the most likely VFOA associated with a head orientation
[89, 119]. The drawback of these approaches is that they must be purposively trained
for each particular meeting layout. The correlation between VFOA and head pose was
also investigated in [6] where an HMM is proposed to infer VFOAs from head and body
orientations. This work was extended to deal with more complex scenarios, such as par-
ticipants interacting with a robot [110, 111]. An input-output HMM is proposed in [111]
to enable to model the following contextual information: participants tend to look to the
speaker, to the robot, or to an object which is referred to by the speaker or by the robot.
The results of [111] show that this improves the performance of VFOA estimation. Nev-
ertheless, this method requires additional information, such as speaker identification or
speech recognition.

The problem of joint estimation of gaze and of VFOA was addressed in a human-robot
cooperation task [135]. In such a scenario the user doesn’t necessarily face the camera
and robot-mounted cameras have low-resolution, hence the estimation of gaze from direct
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Figure 2.1: This figure illustrates the principle of our method and displays the observed and latent variables
associated with a person (left-person indexed by i). The two images were grabbed with a camera mounted
onto the head of a robot and they correspond to frames t − n (left image) and t (right image), respectively.
The following variables are displayed: head orientation (red arrow), Hi

t−n,Hi
t (observed variables), as well

as the latent variables estimated with the proposed method, namely gaze direction (green arrow), Gi
t−n,Gi

t ,
VFOA, Vi

t−n,Vi
t , and head reference orientation (black arrow), Ri

t−n,Ri
t (that coincides with upper-body

orientation). In this example left-person gazes towards the robot at t − n, then turns her head to eventually
gaze towards right-person at t, hence her VFOA switches from Vi

t−n = robot to Vi
t = right-person.

analysis of eye regions is not feasible. [135] proposes to learn a regression between the
space of head poses and the space of gaze directions and then to predict an unknown gaze
from an observed head pose. The head pose itself is estimated by fitting a 3D elliptical
cylinder to a detected face, while the associated gaze direction corresponds to the 3D line
joining the head center to the target center. This implies that during the learning stage,
the user is instructed to gaze at targets lying on a table in order to provide training data.
The regression parameters thus estimated correspond to a discrete set of head-pose/gaze-
direction pairs (one for each target); an erroneous gaze may be predicted when the latter
is not in the range of gaze directions used for training.

2.3 PROPOSED MODEL

The proposed mathematical model is inspired from psychophysics [37, 38]. In uncon-
strained scenarios a person switches his/her gaze from one target to another target, possi-
bly using both head and eye movements. Quick eye movements towards a desired object
of interest are called saccades. Eye movements can also be caused by the vestibule-ocular
reflex that compensates for head movements such that one can maintain his/her gaze in
the direction of the target of interest. Therefore, in the general case, gazing to an object is
achieved by a combination of eye and head movements.

In the case of small gaze shifts, e.g. reading or watching TV, eye movements are pre-
dominant. In the case of large gaze shifts, often needed in social scenarios, head move-
ments are necessary since eyeball movements have limited range, namely ±35° [118].
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Therefore, the proposed model considers that gaze shifts are produced by head move-
ments that occur simultaneously with eye movements.

2.3.1 PROBLEM FORMULATION

We consider a scenario composed of N active targets and M passive targets. An active
target is likely to move and/or to have a leading role in an interaction. Active targets
are persons and robots.2 Passive targets are objects, e.g. wall paintings. The set of all
targets is indexed from 0 to N + M , where the index 0 designates “no target”. Let i be
an active target (a person or a robot), 1 ≤ i ≤ N , and j be a passive target (an object),
N + 1 ≤ j ≤ N + M . A VFOA is a discrete random variable defined as follows: Vi

t = j
means person (or robot) i looks at target j at time t. The VFOA of a person (or robot) i
that looks at none of the known targets is Vi

t = 0. The case Vi
t = i is excluded. The set of

all VFOAs at time t is denoted by Vt =
(
V1

t , . . . ,VN
t

)
.

Two continuous variables are now defined: head orientation and gaze direction. The
head orientation of person i at t is denoted with Hi

t = [φi
H,t, θ

i
H,t]
>, i.e. the pan and tilt

angles of the head with respect to some fixed coordinate frame. The gaze direction of
person i is denoted with Gi

t and is also parameterized by pan and tilt with respect to the
same coordinate frame, namely Gi

t = [φi
G,t, θ

i
G,t]
>. Although eyeball orientation is neither

needed nor used, it is worth noticing that it is the difference between Gi
t and Hi

t . These
variables are illustrated on Fig. 2.1.

Finally, to establish a link between VFOAs and gaze directions, the target locations
must be defined as well. Let Xi

t = [xi
t, y

i
t, zi

t]> be the location of target i. In the case of a
person, this location corresponds to the head center while in the case of a passive target, it
corresponds to the target center. These locations are defined in the same coordinate frame
as above. Also notice that the direction from the active target i to target j is defined by the
unit vector Xi j

t = (X j
t − Xi

t )/‖X
j
t − Xi

t ‖ which can also be parameterized by two angles,
Xi j

t = [φi, j
X,t, θ

i, j
X,t]
>.

As already mentioned, target locations and head orientations are observed random
variables, while VFOAs and gaze directions are latent random variables. The problem to
be solved can now be formulated as a maximum a posteriori (MAP) problem:

V̂t, Ĝt = argmax
Vt,Gt

P(Vt,Gt |H1:t,X1:t ). (2.1)

Since there is no deterministic relationship between head orientation and gaze direc-
tion, we propose to model it probabilistically. For this purpose, we introduce an additional
latent random variable, namely the head reference orientation, Ri

t = [φi
R,t, θ

i
R,t]
>, which

we choose to coincide with the upper-body orientation. We use the following genera-
tive model, initially introduced in [6], linking gaze direction, head orientation, and head

2Note that in case of a robot, the gaze direction and the head orientation are identical and that the latter
can be easily estimated from the head motors.
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reference orientation:

P(Hi
t |Gi

t,Ri
t ; α,ΣH) = N (Hi

t ; µi
H,t,ΣH), (2.2)

with µi
H,t = αGi

t + (I2 − α)Ri
t, (2.3)

where ΣH ∈ R
2×2 is a covariance matrix, I2 ∈ R

2×2 is the identity matrix and α =
Diag (α1, α2) is a diagonal matrix of mixing coefficients, 0 < α1, α2 < 1. Also it is as-
sumed that the covariance matrix is the same for all the persons and over time. Therefore,
head orientation is an observed random variable normally distributed around a convex
combination between two latent variables: gaze direction and head reference orientation.

2.3.2 GAZE DYNAMICS

The following model is proposed:

P(Gi
t |Gi

t−1, Ġ
i
t−1,V

i
t = j,Xt ) = N (Gi

t ; µ
i j
G,t, ΓG), (2.4)

P(Ġi
t |Ġi

t−1) = N (Ġi
t ; Ġi

t−1, ΓĠ), (2.5)

with:

µi j
G,t =




Gi
t−1 + Ġi

t−1 dt, if j = 0,
βGi

t−1 + (I2 − β)Xi j
t + Ġi

t−1 dt, if j , 0,
(2.6)

where Ġi
t = dGi

t/dt is the gaze velocity, ΓG, ΓĠ ∈ R
2×2 are covariance matrices, and

β = Diag (β1, β2) is a diagonal matrix of mixing coefficients, 0 < β1, β2 < 1. Therefore,
if a person looks at one of the targets, then his/her gaze dynamics depends on the person-
to-target direction Xi j

t at a rate equal to β, and if a person doesn’t look at one of the
targets, then his/her gaze dynamics follows a random walk.

The head reference orientation dynamics can be defined in a similar way:

P(Ri
t |Ri

t−1, Ṙ
i
t−1) = N (Ri

t ; µi
R,t, ΓR), (2.7)

P(Ṙi
t |Ṙi

t−1) = N (Ṙi
t ; Ṙi

t−1, ΓṘ), (2.8)

with µi
R,t = Ri

t−1 + Ṙi
t−1 dt,

where Ṙi
t = dRi

t/dt is the head reference orientation velocity and ΓR, ΓṘ ∈ R
2×2 are

covariance matrices. The dependencies between all the model variables are shown as a
graphical representation in Fig. 2.2.

It is assumed that the gaze directions associated with different people are indepen-
dent, given the VFOAs V1:t . The cross-dependency between different people is taken into
account by the VFOA dynamics as detailed in section 2.3.3 below. Similarly, head orien-
tations, and head reference orientations associated with different people are independent,
given the VFOAs. By combining the above equations with this independence assumption,
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Gt−1 Gt

Ht−1 Ht

Rt−1 Rt

Xt−1 Xt

Vt−1 Vt

Figure 2.2: Graphical representation showing the dependencies between the variables of the proposed
Bayesian dynamic model. The discrete latent variables (visual focus of attention) are shown with squares
while continuous variables are shown with circles: observed variables (head poses and target locations) are
shown with shaded circles and latent variables (gaze and reference directions) are shown with white circles.

we obtain:

P(Ht |Gt,Rt ) =
∏

i

N (Hi
t ; µi

H,t,ΣH) (2.9)

P(Gt |Gt−1, Ġt−1,Vt,Xt ) =
∏
i, j

N (Gi
t ; µ

i j
G,t, ΓG)δ j (V

i
t ) (2.10)

P(Rt |Rt−1, Ṙt−1) =
∏

i

N (Ri
t ; µi

R,t, ΓR) (2.11)

where the dependencies between variables are embedded in the variable means, i.e. (2.3)
and (2.6). The covariance matrices will be estimated via training. While gaze directions
can vary a lot, we assume that head reference orientations are almost constant over time,
which can be enforced by imposing that the total variance of gaze is much larger than the
total variance of head reference orientation, namely:

Tr(ΓG) � Tr(ΓR), (2.12)

The trace of a covariance matrix is used here as an approximation of the variance for mul-
tidimensional variables. As the reference orientation is more stable than gaze direction,
its variance is lower.

2.3.3 VFOA DYNAMICS

Using a first-order Markov approximation, the VFOA transition probabilities can be writ-
ten as:

P(Vt |V1:t−1) = P(Vt |Vt−1), (2.13)
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Notice that matrix P(Vt |Vt−1) is of size (N+M)N×(N+M)N . Indeed, there are N persons
(active targets), and N + M + 1 targets (one ”no” target, N active targets and M passive
targets) and the case of a person that looks to him/herself is excluded. For example, if
N = 2 and M = 4, matrix (2.13) has (2 + 4)2×2 = 1296 entries. The estimation of this
matrix would require, in principle, a large amount of training data, in particular in the
presence of many symmetries. We show that, in practice, only 15 different transitions are
possible. This can be seen on the following grounds.

We start by assuming conditional independence between the VFOAs at t:

P(Vt |Vt−1) =
∏

i

P(Vi
t |Vt−1). (2.14)

Let’s consider V i
t , the VFOA of person i at t, given Vt−1, the VFOAs at t − 1. One can

distinguish two cases:

• V i
t−1 = k where k is either a passive target, N < k ≤ N + M , or it is none of the

targets, k = 0; in this case V i
t depends only on V i

t−1, and

• V i
t−1 = k, where k , i is a person 1 ≤ k ≤ N ; in this case V i

t depends on the both
V i

t−1 and V k
t−1.

To summarize, we can write that:

P(Vi
t = j |Vt−1) =




P(Vi
t = j |Vi

t−1 = k,Vk
t−1 = l) if 1 ≤ k ≤ N,

P(Vi
t = j |Vi

t−1 = k) otherwise.
(2.15)

Additionally, we assume that, when switching VFOA to a new target without any
special role, all such targets have an equal probability to be selected. Based on this, it
is now possible to count the total number of possible VFOA transitions. With the same
notations as in (2.15), we have the following possibilities:

• k = 0 (no target): there are two possible transitions, j = 0 and j , 0.

• N < k ≤ N + M (passive target): there are three possible transitions, j = 0, j = k,
and j , k.

• 1 ≤ k ≤ N, l = 0 (active target k looks at no target): there are three possible
transitions, j = 0, j = k, and j , k.

• 1 ≤ k ≤ N, l = i (active target k looks at person i): there are three possible transi-
tions, j = 0, j = k, and j , k.

• 1 ≤ k ≤ N, l , 0, i (active target k looks at active target l different than i): there are
four possible transitions, j = 0, j = k, j = l and j , k, l.
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Therefore, there are 15 different possibilities for P(Vi
t = j |Vt−1), i.e. appendix A.1.

Moreover, by assuming that the VFOA transitions don’t depend on i, we conclude that the
transition matrix may have up to 15 different entries. Moreover, the number of possible
transitions is even smaller if there is no passive target (M = 0), or if the number of active
targets is small, e.g. N < 3. This considerably simplifies the task of estimating this matrix
and makes the task of learning tractable.

2.4 INFERENCE

We start by simplifying the notation, namely Lt = [Gt ; Ġt ; Rt ; Ṙt] where [·; ·] denotes
vertical concatenation. The emission probabilities (2.9) become:

P(Ht |Lt ) =
∏

i

N (Hi
t ; µi

H,t,ΣH), (2.16)

with µi
H,t = CLi

t, (2.17)

where matrix C is obtained from the definition of Lt above and from (2.3):

C =
(
α1 0 0 0 1 − α1 0 0 0
0 α2 0 0 0 1 − α2 0 0

)
.

The transition probabilities can be obtained by combining (2.10) and (2.11) with (2.5)
and (2.8):

P(Lt |Vt,Lt−1,Xt ) =
∏

i

∏
j

N (Li
t ; µ

i j
L,t, ΓL)δ j (V

i
t ), (2.18)

with µi j
L,t = Ai j

t Li
t−1 + bi j

t (2.19)

and ΓL =
*...
,

ΓG
ΓĠ

ΓR
ΓṘ

+///
-

, (2.20)

where Ai j
t is an 8 × 8 matrix and bi j

t is an 8 × 1 vector. The indices i, j and t cannot be
dropped since the transitions depend on Xi j

t from (2.6).

The MAP problem (2.1) can now be derived in a Bayesian framework for the VFOA
variables:

P(Vt |H1:t,X1:t ) =
∫

P(Vt,Lt |H1:t,X1:t )dLt . (2.21)

We propose to study the filtering distribution of the joint latent variables, namely
P(Vt,Lt |H1:t,X1:t ). Indeed, Bayes rule yields:

P(Vt,Lt |H1:t,X1:t ) ∝ P(Ht |Lt )P(Lt,Vt |H1:t−1,X1:t ). (2.22)
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Now we can introduce Vt−1 and Lt−1 using the sum rule:

P(Lt,Vt |H1:t−1,X1:t ) =
∑
Vt−1

∫
P(Lt,Vt,Lt−1,Vt−1 |H1:t−1,X1:t )dLt−1

=
∑
Vt−1

∫
P(Lt |Vt,Lt−1,Xt )P(Vt |Vt−1)

× P(Lt−1,Vt−1 |H1:t−1,X1:t−1)dLt−1, (2.23)

where unnecessary dependencies were removed. Combining (2.22) and (2.23) we obtain a
recursive formulation in P(Vt,Lt |H1:t,X1:t ). However, this model is still intractable with-
out further assumptions. The main approximation used in this work consists of assuming
local independence for the posteriors:

P(Lt,Vt |H1:t,X1:t ) '
∏

i

P(Li
t,Vi

t |H1:t,X1:t ). (2.24)

2.4.1 SWITCHING KALMAN FILTER APPROXIMATION

Several strategies are possible, depending upon the structure of P(Lt,Vt |H1:t,X1:t ). Com-
monly used strategies to evaluate this distribution include variational Bayes or Monte-
Carlo. Alternatively, we propose to cast the problem into the framework of switching
Kalman filters (SKF) [84]. We assume the filtering distribution to be Gaussian,

P(Lt,Vt |H1:t,X1:t ) ∝ N (Lt ; µt,Σt ). (2.25)

From (2.24) and (2.25) we obtain the following factorization:

P(Lt,Vt |H1:t,X1:t ) ∝
∏

i

∏
j

N (Li
t ; µ

i j
t ,Σ

i j
t )δ j (V

i
t ) . (2.26)

Thus, (2.23) can be split into N components, one for each active target i:

P(Li
t,Vi

t = j |H1:t,X1:t ) ∝ P(Hi
t |Li

t )

×
∑
Vt−1

∫
N (Li

t ; Ai j
t Li

t−1 + bi j
t )P(Vi

t |Vt−1)

×
∏

k

N (Li
t−1; µik

t−1,Σ
ik
t−1)δk (Vi

t−1)dLi
t−1, (2.27)

or, after several algebraic manipulations:

P(Li
t,Vi

t = j |H1:t,X1:t ) ∝
∑

k

w
i j k
t−1,tN (Li

t ; µ
i j k
t ,Σ

i j k
t ). (2.28)

In this expression, µi j k
t and Σi j k

t are obtained by performing constrained Kalman filtering
on µik

t−1, Σik
t−1 with transition dynamics defined by Ai j

t and bi j
t , emission dynamics defined
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by C, and observation Hi
t , i.e. [113]. The weights wi j k

t−1,t are defined as P(Vi
t−1 = k | Vi

t =

j,H1:t,X1:t ). The constraint comes from the fact that

| |Gi
t −Hi

t | | < 35° (2.29)

and is achieved by projecting the mean (refer to [113] for more details).

This can be rephrased as follows: from the filtering distribution at time t − 1, there are
N + M possible dynamics for Li

t . The normal distribution at time t − 1 then becomes a
mixture of N + M normal distributions at time t as shown in (2.28). However, we expect
a single Gaussian such as P(Li

t,Vi
t = j |H1:t,X1:t ) ∝ N (Li

t ; µ
i j
t ,Σ

i j
t ). This can be done by

moment matching:

µi j
t =

∑
k

w
i j k
t−1,tµ

i j k
t (2.30)

Σ
i j
t =

∑
k

w
i j k
t−1,t (Σ

i j k
t + (µi j k

t − µ
i j
t )(µi j k

t − µ
i j
t )>). (2.31)

Finally, it is necessary to evaluate w
i j k
t−1,t . Let’s introduce the following notations:

ci j k
t−1,t = P(Vi

t = j,Vi
t−1 = k |H1:t,X1:t ), (2.32)

ci j
t = P(Vi

t = j |H1:t,X1:t ). (2.33)

It follows that

ci j
t =

∑
k

ci j k
t−1,t and w

i j k
t−1,t =

ci j k
t−1,t

ci j
t

.

Applying Bayes formula to ci j k
t−1,t yields:

ci j k
t−1,t ∝ P(Ht |Vi

t = j,Vi
t−1 = k,H1:t−1,X1:t )

×cik
t−1P(Vi

t = j |Vi
t−1 = k,H1:t−1,X1:t−1). (2.34)

Then, cik
t−1 is obtained from ci j k

t−2,t−1 calculated at the previous time step. The last factor
in (2.34) is either equal to

∑
l ckl

t−1P(Vi
t = j |Vi

t−1 = k,Vk
t−1 = l) if k is an active target, or

P(Vi
t = j |Vi

t−1 = k) otherwise. Both cases are straightforward to compute. Finally, the
first factor in (2.34), the observation component, can be factorized as P(Hi

t |Vi
t = j,Vi

t−1 =
k,H1:t−1,X1:t ) ×

∏
n,i

∑
m
∑

p P(Hn
t |Vn

t = m,Vn
t−1 = p,H1:t−1,X1:t ). By introducing the

latent variable L, we obtain:

P(Hn
t |Vn

t = m,Vn
t−1 = p,H1:t−1,X1:t )

=

∫
P(Hn

t |Ln
t ) P(Ln

t |Ln
t−1,V

n
t = m,Xt )

× P(Ln
t−1 |V

n
t−1 = p,H1:t−1,X1:t−1)dLn

t−1dLn
t . (2.35)

All the factors in (2.35) are normal distributions, hence it integrates in closed-form. In
summary, we devised a procedure to estimate an online approximation of the joint filtering
distribution of the VFOAs, Vt , and of the gaze and head reference directions, Lt .
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2.5 LEARNING

The proposed model has two sets of parameters that must be estimated: the transition
probabilities associated with the discrete VFOA variables, and the parameters associated
with the Gaussian distributions. Learning is carried out using Q recordings with annotated
VFOAs. Each recording is composed of Tq frames, 1 ≤ q ≤ Q and contains Nq active
targets (the robot is the active target 1 and the persons are indexed from 2 to Nq) and
Mq passive targets. In addition to target locations and head poses, it is worth noting that
the learning algorithm requires VFOA ground-truth annotations, while gaze directions are
still treated as latent variables.

2.5.1 LEARNING THE VFOA TRANSITION PROBABILITIES

The VFOA transitions are drawn from the generalized Bernoulli distribution. Therefore,
the transition probabilities can be estimated with P(Vi

t = j |Vt−1) = Et−1[δ j (Vi
t )], where

δ j (i) is the Kronecker delta function. In Section 2.3.3 we showed that there are up to
15 different possibilities for the VFOA transition probability. This enables us to derive
an explicit formula for each case, see appendix A.2. Consider for example one of these
cases, namely p14 = P(Vi

t = l |Vi
t−1 = k,Vk

t−1 = l), which is the conditional probability
that at t person i looks at target l, given that at t − 1 person i looked at person k and that
person k looked at target l. This probability can be estimated with the following formula:

p̂14 =

Q∑
q=1

Nq∑
i=2

Tq∑
t=2

Nq∑
k=1
k,i

∑
l,i,k

δl (Vq,i
t )δk (Vq,i

t−1)δl (Vq,k
t−1)

Q∑
q=1

Nq∑
i=2

Tq∑
t=2

Nq∑
k=1
k,i

∑
l,i,k

δk (Vq,i
t−1)δl (Vq,k

t−1)

2.5.2 LEARNING THE GAUSSIAN PARAMETERS

In Section 2.4 we described the derivation of the proposed model that is based on SKF.
This model requires the parameters (means and covariances) of the Gaussian distributions
defined in (2.16) and (2.18). Notice however that the mean (2.17) of (2.16) is parameter-
ized by α. Similarly, the mean (2.19) of (2.18) is parameterized by β. Consequently, the
model parameters are:

θ = (α, β, ΓL,ΣH), (2.36)

and we remind that α and β are 2 × 2 diagonal matrices, ΓL is a 8 × 8 covariance and
ΣH is a 2 × 2 covariance, and that we assumed that these matrices are common to all the
active targets. Hence the total number of parameters is equal to 2 + 2 + 36 + 3 = 43.

In the general case of SKF models, the discrete variables are unobserved both for
learning and for inference. Here we propose a learning algorithm that takes advantage of
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the fact that the discrete variables, i.e. VFOAs, are observed during the learning process,
namely the VFOAs are annotated. We propose an EM algorithm adapted from [14]. In the
case of a standard Kalman filter, an EM iteration alternates between a forward-backward
pass to compute the expected latent variables (E-step), and between the maximization of
the expected complete-data log-likelihood (M-step).

We start by describing the M-step. The complete-data log-likelihood is:

ln P(L1,H1, . . . ,LQ,HQ |θ)

=

Q∑
q=1

Nq∑
i=2

Tq∑
t=2

ln P(Lq,i
t |L

q,i
t−1, β, ΓL)

+

Q∑
q=1

Nq∑
i=2

Tq∑
t=1

ln P(Hq,i
t |L

q,i
t , α,ΣH). (2.37)

By taking the expectation w.r.t. the posterior distribution P(L1, . . . ,LQ |H1, . . . ,HQ, θ),
we obtain:

Q(θ, θold) = EL1,...,LK |θold

[
ln P(L1,H1, . . . ,LQ,HQ |θ)

]
, (2.38)

which can be maximized w.r.t. to the parameters θ, which yields closed-form expressions
for the covariance matrices

ΓL =

Q∑
q=1

Nq∑
i=2

Tq∑
t=2
E[(Lq,i

t − µ
q,i j
L,t )(Li

t − µ
q,i j
L,t )>]

Q∑
q=1

(Nq − 1)(Tq − 1)

, (2.39)

where µq,i j
L,t = Aq,i j

t Lq,i
t−1 + bq,i j

t , i.e. (2.19), and:

ΣH =

Q∑
q=1

Nq∑
i=2

Tq∑
t=1
E[(Hq,i

t − µ
q,i
H,t )(Hq,i

t − µ
q,i
H,t )
>]

Q∑
q=1

(Nq − 1)Tq

, (2.40)

where µq,i
H,t = CLq,i

t , i.e. (2.17).

The estimation of α and of β is carried out in the following way. ∂Q(θ, θold)/∂ β1 = 0
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and ∂Q(θ, θold)/∂ β2 = 0 yield a set of two linear equations in the two unknowns for β

Q∑
q=1

Nq∑
i=2

Tq∑
t=2
E

[
(Lq,i

t − µ
q,i j
L,t )>Γ−1

L
∂

∂ β1
(Lq,i

t − µ
q,i j
L,t )

]
= 0,

Q∑
q=1

Nq∑
i=2

Tq∑
t=2
E

[
(Lq,i

t − µ
q,i j
L,t )>Γ−1

L
∂

∂ β2
(Lq,i

t − µ
q,i j
L,t )

]
= 0,

(2.41)

and similarly: for α

Q∑
q=1

Nq∑
i=2

Tq∑
t=1
E

[
(Hq,i

t − µ
q,i
H,t )
>Σ−1

H
∂

∂α1
(Hq,i

t − µ
q,i
H,t )

]
= 0,

Q∑
q=1

Nq∑
i=2

Tq∑
t=1
E

[
(Hq,i

t − µ
q,i
H,t )
>Σ−1

H
∂

∂α2
(Hq,i

t − µ
q,i
H,t )

]
= 0,

(2.42)

where as above, the expectation is taken w.r.t. to the posterior distribution. Once the
formulas above are expanded and once the means µq,i j

L,t and µq,i
H,t are substituted with

their expressions, the following terms remain to be estimated: E[Lq,i
t ], E[Lq,i

t Lq,i
t
>

] and
E[Lq,i

t Lq,i
t−1
>

].

The E-step provides estimates of these expectations via a forward-backward algorithm.
For the sake of clarity, we drop the superscripts i (active target index) and q (record-
ing index) up to equation (2.49) below. Introducing the notation P(Lt |H1, . . . ,Ht ) =
N (Lt ; µt,Pt ), the forward-pass equations are:

µt = Atµt−1 + bt +Kt (Ht − C(Atµt−1 + bt )) (2.43)
Pt = (I −KtC)Pt,t−1, (2.44)

where

Pt,t−1 = AtPt−1A>t + ΓL, (2.45)

Kt = Pt,t−1C>(CPt,t−1C> + ΣH)−1. (2.46)

The backward pass estimates P(Lt |H1, . . . ,HT ) = N (Lt ; µ̂t, P̂t ) and leads to

µ̂t = µt + Jt (µ̂t+1 − (At+1µt + bt+1)), (2.47)

P̂t = Pt + Jt (P̂t+1 − Pt+1,t )J>t , (2.48)

where

Jt = PtA>t+1(Pt+1,t )−1. (2.49)
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The expectations are estimated by performing a forward-backward pass over all the per-
sons and all the recordings of the training data. This yields the following formulas:

E[Lq,i
t ] = µ̂q,i

t (2.50)

E[Lq,i
t Lq,i

t
>

] = P̂q,i
t + µ̂

q,i
t µ̂q,i

t
>

(2.51)

E[Lq,i
t Lq,i

t−1
>

] = P̂q,i
t Jq,i

t−1
>
+ µ̂q,i

t µ̂q,i
t−1
>

(2.52)

2.6 IMPLEMENTATION DETAILS

The proposed method was evaluated on the Vernissage dataset [54] and on the Looking At
Each Other (LAEO) dataset [76]. We describe in detail these datasets and their annota-
tions. We provide implementation details and we analyse the complexity of the proposed
algorithm.

2.6.1 THE Vernissage DATASET

The Vernissage scenario can be briefly described as follows, e.g. Fig. 2.3: there are three
wall paintings, namely the passive targets denoted with o1, o2, and o3 (M = 3); two
persons, denoted left person (left-p) and right person (right-p), interact with the robot,
hence N = 3. The robot plays the role of an art guide, describing the paintings and asking
questions to the two persons in front of him. Each recording is split into two roughly equal
parts. The first part is dedicated to painting explanation, with a one-way interaction. The
second part consists of a quiz, thus illustrating a dialog between the two participants and
the robot, most of the time concerning the paintings.

Figure 2.3: The Vernissage setup. Left: Global view of an “exhibition” showing wall paintings, two
participants, i.e. left-p and right-p, and the NAO robot. Right: Top view of the room showing the Vernissage
layout.

The scene was recorded with a camera embedded into the robot head and with a VI-
CON motion capture system consisting of a network of infrared cameras, placed onto
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the walls, and of optical markers, placed onto the robot and people heads. Both were
recorded at 25 frames per second (fps). There is a total of ten recordings, each lasting
ten minutes. The VICON system provided accurate estimates of head locations, X1:T and
head orientations, H1:T . Head locations and head orientations were also estimated using
from the RGB images gathered with the camera embedded into the robot head. The RGB
images are processed as follows. We use the OpenCV version of [126] to detect faces and
their bounding boxes which are then tracked over time using [9]. Next, we extract HOG
descriptors from each bounding box and apply the head orientation estimator from [31].
This yields H̃1:T . The 3D head locations, X̃1:T , can be estimated using the line of sight
through the face center and the bounding-box size, which provides a rough estimate of
the depth along the line of sight.

In the remaining of this chapter, X1:T and H1:T are referred to as Vicon Data; X̃1:T and
H̃1:T as RGB Data. Because the whole setup was carefully calibrated, both Vicon and
RGB Data are represented in the same coordinate frame.

In all our experiments we assumed that the passive targets are static and their locations
are provided in advance. The location of the robot itself is also known in advance and
one can easily estimate the orientation of the robot head from motor readings. Finally, the
VFOAs of the participants were manually annotated in all the frames of all the recordings.

2.6.2 THE LAEO DATASET

The LAEO dataset [76] is an extension of the TVHID (TV Human Interaction
Dataset) [92]. It consists of 300 videos extracted from TV shows. At least two actors
appear in each video engaged in four human-human interactions: handshake, highfive,
hug, and kiss. There are 50 videos for each interaction and 100 videos with no interac-
tion. The videos have been grabbed at 25 fps and each video lasts from five seconds to
twenty-five seconds. LAEO is further annotated, namely some of these videos are split
into shots which are separated by cuts. There are 443 shots in total which are manually
annotated whenever two persons look at each other, [76].

While there is no passive target in this dataset (M = 0), the number of active targets
(N) corresponds to the number of persons in each shot. In practice N varies from one
to eight persons. All the faces in the dataset are annotated with a bounding box and
with a coarse head-orientation label: frontal-right, frontal-left, profile-right, profile-left,
backward. As with Vernissage , we use the bounding-box center and size to estimate the
3D coordinates of the heads, X1:T . We assigned a pan angle to each one of the five coarse
head orientations, H1:T . We also computed finer head orientations, H̃1:T , using [31].

2.6.3 ALGORITHMIC DETAILS

The INFERENCE procedure is summarized in Algorithm 1. This is basically an iterative
filtering procedure. The UPDATE step consists of applying the recursive relationship,
derived in Section 2.4, to µi j

t , Σi j
t and ci j

t , using µi j k
t , Σi j k

t and ci j k
t−1,t as intermediate
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variables. The VFOA is chosen using MAP, given observations up to the current frame,
and the gaze direction is the mean of the filtered distribution (the first two components of
µi j

t are indeed the mean for the pan and tilt gaze angles).

Data: X1:T , H1:T
Result: G1:T , V1:T

c1, µ1,Σ1 ← INITIALIZATION(H1,X1)
for i = 1..N do

Vi
1 ← argmax j ci j

1
Gi

1 ← µi j
1 [1..2]

end
for t = 2..T do

ct, µt,Σt ← UPDATE(Ht,Xt, ct−1, µt−1,Σt−1)
for i = 1..N do

Vi
t ← argmax j ci j

t

Gi
t ← µi j

t [1..2]
end

end
Algorithm 1: INFERENCE

Let’s now describe the INITIALIZATION procedure used by Algorithm 2. In a prob-
abilistic framework, parameter intialization is generally addressed by defining an initial
distribution, e.g. P(L1 |V1). Here, we did not explicitly define such a distribution. Ini-
tialization is based on the fact that, with repeated similar observation inputs, the algo-
rithm reaches a steady-state. The initialization algorithm uses a repeated update method
with initial observation to provide an estimate of gaze and of reference directions. Con-
sequently, the initial filtering distribution P(L1,V1 |H1,X1) is implicitly defined as the
expected stationary state.

Data: X1, H1
Result: cinit, µinit,Σinit

µinit ← [H1; 0; H1; 0]
Σinit ← I
cinit ←

1
N+M ; // Uniform

while Not Convergence do
cinit, µinit,Σinit ← UPDATE(H1,X1, cinit, µinit,Σinit )

end
Algorithm 2: INITIALIZATION



42 CHAPTER 2. TRACKING GAZE AND VFOA IN SOCIAL INTERACTION

2.6.4 ALGORITHM COMPLEXITY

The computational complexity of Algorithm 1 is

C = (T + TI )CU, (2.53)

where T is the number of frames in a test video, TI is the number of iterations needed
by the Algorithm 2 (initialization) to converge and CU is the computational complexity
of UPDATE. Let’s detail the cost of CU . From Section 2.4 one sees that the following
values need to be computed: P(Hi

t |Vi
t = j,Vi

t−1 = k,H1:t−1,X1:t−1), ci j k
t−1,t , µ

i j k
t , Σi j k

t , and

then ci j
t , µi j

t and Σi j
t , for each active target i, and for each combination of targets j and k

different from i. There are N possible values for i and (N + M) possible values for j and
k. Then,

CU = K × N (N + M)2, (2.54)

where K is a factor whose complexity can be estimated as follows. The most time-
consuming part is the Kalman Filter algorithm used to estimate µi j k

t and Σi j k
t from µik

t
and Σik

t . These calculations are dominated by several 8×8 and 2×8 matrix inversions and
multiplications. By neglecting scalar multiplications and matrix additions, and by denot-
ing with CKF the complexity of the Kalman filter, we obtain that K ≈ CKF and hence
CU ≈ CKF × N (N + M)2.

Additionally, the way the algorithm has been designed makes it possible to be used
online, i.e. receiving observations Ht and Xt one by one. In that case, we are interested in
the computational cost of one iteration of algorithm 1

Ct = CU + CO, if t > 1 (2.55)

where CO is the cost required to obtain observations. It mostly consists in head pose
detection and tracking. For most recent algorithms that rely on deep learning architecture,
CO � CU .

2.7 EXPERIMENTAL RESULTS

2.7.1 Vernissage DATASET

We applied the same experimental protocol to the Vicon and RGB data. We used a leave-
one-video-out strategy for training. The test is performed on the left out video. We used
the frame recognition rate (FRR) metrics to quantitatively evaluate the methods. FRR
is person-wise and corresponds to the percentage of frames for which his/her VFOA is
correctly estimated. One should note however that the ground-truth VFOAs were obtained
by manually annotating each frame in the data. This is subject to errors since the annotator
has to associate a target with each person.

The VFOA transition probabilities and the model parameters were estimated using
the learning method described in Section 2.5. Appendix A.2 provides the formulas used
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Table 2.1: FRR scores of the estimated VFOAs for the Vicon data for the left and right persons (left-p and
right-p).

Recording Ba & Odobez [6] Proposed
left-p right-p left-p right-p

09 51.6 65.1 59.8 61.4
10 64.3 74.4 76.5 65.0
12 53.5 67.6 61.6 63.2
15 67.1 46.2 64.8 67.6
18 37.5 28.3 62.0 53.7
19 56.7 45.4 54.5 60.4
24 44.9 49.0 59.7 54.7
26 40.3 32.9 43.6 43.1
27 65.8 72.0 79.8 78.3
30 69.1 49.1 72.0 63.9

Mean 54.5 62.6

for estimating the VFOA transition probabilities given the annotated data. Note that the
fifteen transitions probabilities thus estimated are identical for both data, Vicon and RGB.

The Gaussian parameters, i.e. (2.36), were estimated using the EM algorithm of Sec-
tion 2.5.2. This learning procedure requires head-pose estimates as well as the targets
locations, estimated as just explained. Since these estimates are different for the two
kinds of data (Vicon and RGB) we carried out the learning process twice, with the Vicon
data and with the RGB data. The EM algorithm needs initialization. The initial parameter
values for α and β are α0 = β0 = Diag (0.5, 0.5). Matrices ΣH and ΓL defined in (2.20)
are initialized with isotropic covariances: Σ0

H = σI2, Γ0
G = Γ

0
Ġ = γI2, and Γ0

R = Γ
0
Ṙ = ηI2

with σ = 15, γ = 5, and η = 0.5. In particular, this initialization is consistent with (2.12).
In practice we noticed that the covariances estimated by training remain consistent with
(2.12).

2.7.2 RESULTS WITH VICON DATA

The FRR of the estimated VFOAs for the Vicon data are summarized in Table 2.1. A few
examples are shown in Fig. 2.5. The FRR score varies between 28.3% and 74.4% for [6]
and between 43.1% and 79.8% for the proposed method. Notice that high scores are ob-
tained by both methods for recording #27. Similarly, low scores are obtained for recording
#26. Since both methods assume that head motions and gaze shifts occur synchronously,
an explanation could be that this hypothesis is only valid for some of the participants. The
confusion matrices for VFOA classification using Vicon data are given in Fig. 2.4. There
are a few similarities between the results obtained with the two methods. In particular,
wall painting #o2 stands just behind Nao and both methods don’t always discriminate be-
tween these two targets. In addition, the head of one of the persons is often aligned with
painting #o1 from the viewpoint of the other person. A similar remark holds for painting
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Figure 2.4: Confusion matrices for the Vicon data. Left: [6]. Right: Proposed algorithm. Row-wise:
ground-truth VFOAs. Column-wise: estimated VFOAs. Diagonal terms represent the recall.

#o3. As a consequence both methods often confuse the VFOA in these cases. This can
be seen in the third image of Fig. 2.5. Indeed, it is difficult to estimate whether the left
person (left-p) looks at #o1 or at right-p.

Finally, both methods have problems with recognizing the VFOA “nothing” or gaze
aversion (Vi

t = 0). We propose the following explanation: the targets are widespread in
the scene, hence it is likely that an acceptable target lies in most of the gaze directions.
Moreover, Nao is centrally located, therefore the head orientation used to look at Nao
is similar to the resting head orientation used for gaze aversion. However, in [6] the
reference head orientation is fixed and poorly suited for dynamic head-to-gaze mapping,
hence the high error rate on painting #o3. Our method favors the selection of a target,
either active or passive, over the no target (nothing) case.

2.7.3 RESULTS WITH RGB DATA

The RGB images were processed as described in section 2.6.1 above in order to obtain
head orientations, H̃1:T , and 3D head locations, X̃1:T . Table 2.2 shows the accuracy of
these measurements (in degrees and in centimeters), when compared with the ground
truth provided by the VICON motion capture system. As it can be seen, while the head
orientation estimates are quite accurate, the error in estimating the head locations can be
as large as 0.8 m for participants lying in between 1.5 m and 2.5 m in front of a robot, e.g.
recordings #19 and #24. In particular this error increases as a participant is farther away
from the robot. In these cases, the bounding box is larger than it should be and hence the
head location is, on an average, one meter closer than the true location. These relatively
large errors in 3D head location affect the overall behavior of the algorithm.

The FRR scores obtained with the RGB data are shown in Table 2.3. As expected
the loss in accuracy is correlated with the head location error: the results obtained with



45

Figure 2.5: Results obtained with the proposed method on Vicon data. Gaze directions are shown with
green arrows, head reference directions with dark-grey arrows and observed head directions with red arrows.
The ground-truth VFOA is shown with a black circle. The top row displays the image of the robot-head
camera. Top views of the room show results obtained for the left-p (middle row) and for the right-p (bottom
row). In the last example the left-p gazes at “nothing”.

recordings #09 and #30 are close to the ones obtained with the Vicon data, whereas there
is a significant loss in accuracy for the other recordings. The loss is notable for [6] in
the case of the right person (right-p) for the recordings #12, #18 and #27. The confusion

Table 2.2: Mean error for head pose estimations from RGB data, for the left person (left-p) and the right
person (right-p). The errors in head location (centimeters) and orientation (degrees) are computed with
respect to values provided by the motion capture system. Recordings #10 and #15 have been omitted
because some annotations are missing and the comparison would be biased.

Video Location error (cm) Pan error Tilt error
left-p right-p left-p right-p left-p right-p

09 18.1 20.8 4.4° 4.8° 3.7° 3.2°
12 35.7 41.5 4.8° 5.5° 2.6° 3.8°
18 36.9 12.8 6.8° 3.7° 5.8° 2.5°
19 86.0 87.4 4.0° 5.8° 2.7° 3.7°
24 86.5 73.9 3.3° 3.5° 2.8° 2.7°
26 50.2 56.9 7.4° 9.0° 4.1° 5.2°
27 64.5 58.3 4.1° 5.8° 3.2° 4.4°
30 16.7 13.3 2.8° 2.9° 1.8° 2.7°

Mean 46.4 5.0° 3.3°
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Figure 2.6: Confusion matrices for the RGB data. Left: [6]. Right: Proposed algorithm. Row-wise:
ground-truth VFOAs. Column-wise: estimated VFOAs. Diagonal terms represent the recall.

matrices obtained with the RGB data are shown on Fig. 2.6.

In the case of RGB data, the comparison between our method and the method of [111]
is biased by the use of different head orientation and 3D head location estimators. Indeed,
the RGB data results reported in [111] were obtained with unpublished methods for esti-
mating head orientations and 3D head locations, and for head tracking. Moreover, [111]
uses cross-modal information, namely the speaker identity based on the audio track (one
of the participants or the robot) as well as the identity of the object of interest. We also
note that [111] reports mean FRR values obtained over all the test recordings, instead of
an FRR value for each recording. Table 2.4 summarizes a comparison between the aver-
age FRR obtained with our method, with [6], and with [111]. Our method yields a similar
FRR score as [111] using the Vicon data (first row) in which case the same head pose
inputs are used.

Table 2.3: FRR scores of the estimated VFOAs obtained with [6] and with the proposed method for the
RGB data. The last two columns show the 3D head location errors of Table 2.2 for reminder. The high
reported errors in location or pan estimation from recordings #19, #24 and #26 led to an ongoing inconsis-
tency of the geometric model; they have been ignored in the evaluation.

Video Ba & Odobez [6] Proposed Head pos. error
left-p right-p left-p right-p left-p right-p

09 50.3 59.8 58.1 55.9 18.1 20.8
12 54.2 14.8 59.0 46.5 35.7 41.5
18 39.0 16.1 64.2 33.1 36.9 12.8
27 38.2 17.1 53.3 55.1 64.5 58.3
30 61.6 44.6 54.7 66.6 16.7 13.3

Mean 39.0 54.7
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Figure 2.7: Results obtained with the proposed method on RGB data. Gaze directions are shown with green
arrows, head reference directions with dark-grey arrows and observed head directions with red arrows. The
ground-truth VFOA is shown with a black circle. The top row displays the image of the robot-head camera.
Top views of the room show results obtained for the left person (left-p, middle row) and the right person
(right-p, bottom row).

Table 2.4: Mean FRR scores obtained with [6], with [111] and with the proposed method. Recording
#26 was excluded from the FRR means as reported in [111]. Moreover, [111] uses additional contextual
information.

Ba & Odobez [6] Sheikhi [111] Proposed
Vicon data 56.5 66.6 64.7
RGB data 39.0 62.4 54.7

2.7.4 LAEO DATASET

As already mentioned in Section 2.6.2 above, the LAEO annotations are incomplete to
estimate the person-wise VFOA at each frame. Indeed, the only VFOA-related annotation
is whether two people are looking at each other during the shot. This is not sufficient to
know in which frames they are actually looking at each other. Moreover, when more than
two people appear in a shot, the annotations don’t specify who are the people that look at
each other. For these reasons, we decided to estimate the parameters using Vicon data of
the whole Vernissage dataset, i.e. cross-validation.

We used the same pipeline as with the Vernissage RGB data to estimate 3D head lo-
cations, X̃1:T , from the face bounding boxes. Concerning head orientation, there are two
cases: coarse head orientations (manually annotated) and fine head orientations (esti-
mated). Coarse head orientations were obtained in the following way: pan and tilt values
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Figure 2.8: This figure shows some results obtained with the LAEO dataset. The top row shows results
obtained with coarse head orientation and the bottom row shows results obtained with fine head orientation.
Head orientations are shown with red arrows. The algorithm infers gaze directions (green arrows) and
VFOAs (blue circles). People looking at each others are shown with a dashed blue line.

were associated with each head orientation label, namely the pan angles −20°, 20°, −80°,
80°, and 180° were assigned to labels frontal-left, frontal-right, profile-left, profile-right,
and backwards respectively, while a tilt angle of 0° was assigned to all five labels. Fine
head orientations were estimated using the same procedure as in the case of the Vernissage
RGB data, namely face detection, face tracking, and head orientation estimation using
[31]. Algorithm 1 was used to compute the VFOA for each frame and for each person
thus allowing to determine who looks at whom, e.g. Fig. 2.8.

We used two shot-wise, not frame-wise, metrics since the LAEO annotations are for
each shot: the shot recognition rate (SRR), e.g. Table 2.5, and the average precision (AP),
e.g. Table 2.6. We note that [76] only provides AP scores. It is interesting to note that
the proposed method yields results comparable with those of [76] on this dataset. This
is quite remarkable knowing that we estimated the model parameters with the Vernissage
training data.

Table 2.5: Average shot recognition rate (SRR) obtained with [6] and with the proposed method.
Ba & Odobez [6] Proposed

Coarse head orientation 0.535 0.727
Fine head orientation 0.363 0.479

Table 2.6: Average precision (AP) obtained with [76], with Ba & Odobez [6] and with the proposed method.
Marin-Jimenez et al. [76] [6] Proposed

Coarse head orientation 0.925 0.916 0.923
Fine head orientation 0.896 0.838 0.890
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2.8 CONCLUSIONS

In this chapter we addressed the problem of estimating and tracking gaze and visual fo-
cus of attention of a group of participants involved in social interaction. We proposed
a Bayesian state-space model that exploits the correlation between head movements and
eye gaze on one side, and between visual focus of attention and eye gaze on the other side.
We described in detail the proposed formulation. In particular we showed that the entries
of the large-sized matrix of VFOA transition probabilities have a very small number of
different possibilities for which we provided closed-form formulae. The immediate con-
sequence of this simplified transition matrix is that the associated learning doesn’t require
a large training dataset. We showed that the problem of simultaneously inferring VFOAs
and gaze directions over time can be cast in the framework of a switching Kalman filter
which, in our case, yields tractable learning and inferring algorithms.

We applied the proposed method to two datasets, Vernissage and LAEO. Vernissage
contains several recordings of a human-robot interaction scenario. We experimented both
with motion capture data gathered with a VICON system and with RGB data gathered
with a camera mounted onto a robot head. We also experimented with the LAEO dataset
that contains several hundreds of video shots extracted from TV shows. A quite re-
markable result is that the parameters obtained by training the model with the Vernissage
data have been successfully used for testing the method with the LAEO data, i.e. cross-
validation. This can be explained by the fact that social interactions, even in different
contexts, share a lot of characteristics. We compared our method with three other meth-
ods, based on HMMs [6], on input-output HMMs [111], and on a geometric model [76].
The interest of these methods (including ours) resides in the fact that eye detection, un-
like many existing gaze estimation methods, is not needed. This feature makes the above
methods practical and effective in a very large number of situations, e.g. social interac-
tion.

Our method however has several limitations. First, the model is not robust to errors
in the premises. Indeed, when people look at an object which existence is unknown, the
method can at best output “unknown” (this case happens a lot with the LAEO dataset), but
may also be flexible enough to consistently mistake the associated VFOA. Overcoming
this limitation requires the possibility to dynamically change the set of objects. The next
chapter will provide some clues for future research in this direction. Second, the VFOA
transitions are sometimes guided by unobtainable data, e.g. the subject of the discussion.
At last, we can note that gaze inference from head orientation is an ill-posed problem.
Indeed, the correlation between gaze and head movements is person dependent as well
as context dependent. It is however important to infer gaze whenever the eyes cannot be
reliably observed in images and properly analyzed. We proposed to solve the problem
based on the fact that alignments often occur between gaze directions and several targets,
which is a sensible assumption in practice.

Contextual information could considerably improve the results. Indeed, additional in-
formation such as speaker recognition (as in [111]), speaker localization [67], speech
recognition, or speech-turn detection [40] may be used to learn VFOA transitions in
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multi-party multimodal dialog systems. In parallel, with the recent breakthroughs in deep
learning, we would soon expect to be able to directly estimate eye-gaze in quite difficult
conditions, leading to more robust models. Finally, one could argue that an adapted neu-
ral network architecture may be more efficient in capturing the complex dynamics of gaze
and visual focus of attention. We will see in the next chapter a deep learning formula-
tion including dependencies between gaze direction, head orientation and VFOA. A deep
learning formulation for this chapter could be based on the same ideas. However, mix-
ing such a formulation with the expert knowledge introduced in the current probabilistic
model is a difficult problem.



CHAPTER 3

UNCONSTRAINED GAZE-FOLLOWING IN

VIDEOS: DETECTION OF OUT-OF-VIEW

OBJECTS

3.1 INTRODUCTION

Humans have the ability to estimate where other people are looking at by following their
direction of gaze, and to infer which object or person they are looking at. For example,
in the Vernissage dataset, the VFOAs are correctly annotated, although they lie outside
the camera field of view most of the time. In chapter 2, we proposed a method to con-
tinuously estimate people’s VFOAs, under the assumption that we know the location of
each object of interest. In many scenarios, there is no reason to have this information a
priori. However, humans are capable of intuiting the focused region of space from the
gaze direction of an observer. This skill is called gaze following.

Gaze following is used very early in human development; infants use it to achieve
joint attention and quickly improve learning language [11]. More generally, it helps un-
derstanding the actions other people are performing in a scene and, even, predict what
they might do next. An accurate estimation of where one or several persons look has
an enormous potential in order to determine which are the objects of interest in a scene,
predict the actions and movements of the participants and, in general terms, advance to-
wards a better visual scene understanding. Depending on the application, this skill can
be used to build an empirical saliency map, i.e. a probability map of each region to be
looked at during a specific scenario. It can also be used to analyze the social behavior of
a group and, in the case of a robot, exploit its knowledge to decide an interaction strategy.
In the case of a personal-assistant robot, this ability could enable the robot to adequately
respond to simple requests, such as “Give me the house keys”, simply by looking at the
keys and without explicitly pointing to them or providing additional information. Previ-
ous works, e.g. [15] have also highlighted that gaze direction is a strong attentional cue
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(a) Gaze detection [99] (b) Visual Focus of Attention (c) Unconstrained Gaze-following

Figure 3.1: A comparison of gaze-related computer vision problems. In the standard formulation of gaze-
following (a), the problem consists in localizing the objects that people are likely to be looking at (and
both observer and objects are visible in the input image). Visual focus of attention estimation (b) consists
in associating which person is looking at what object at a certain moment (considering that the objects
locations are known). In unconstrained gaze-following (or visual regions of attention detection) (c), we aim
at localizing objects of interest even if they are not visible in the video image.

in guiding eye movements, complementing low-level saliency cues, and have concluded
that it should be considered in constructing more predictive visual attention models.

This chapter addresses the detection of visual regions of attention, which are expected
to contain objects of interest. People in a video generally either look at other people or
at an object of interest. Such an object can be indistinctly located inside or outside the
current image. In the standard gaze-following problem, addressed e.g. in [99], both the
observer and the targeted object are within the same image. An example is provided on
Fig. 3.1(a). This is significantly different from the problem of estimating the visual focus
of attention from chapter 2 in which object locations are known, but potentially non-
visible (occluded or outside the field of view, see Fig. 3.1(b)). Both formulations ignore
that an object may not be visible within the image, and its location is most probably
unknown in an unconstrained scenario. All the more in a social interaction, an object is
not “of interest” until people actually start paying attention to it. In this chapter, we deal
with unconstrained gaze-following on videos, e.g. Fig 3.1(c), meaning that we tackle the
more general problem of predicting the location of objects of interest whose number and
locations are not known a priori, and that are not necessarily visible.

Our method takes as input a video sequence containing a group of people, and outputs
a set of estimated locations for the objects of interest. This work makes the assumption
that objects do not move across the video sequence. As in chapter 2, we propose to use
the head orientation as a strong cue for the gaze direction. The pipeline, illustrated in
Fig. 3.2, is as follow. First, from each video image, a bounding box for each detected
face is extracted. The location and orientation of each face is computed in a fixed global
system. Head pose (orientation and location) information are combined to obtain a top-
view representation of the scene encoded in a set of heat-map embeddings. We feed that
information to a convolutional neural network based on an encoder/decoder architecture
to estimate a probability heat-map, i.e. a grid containing the likelihood for each region
of space that an object of interest is located here. Finally, the set of object locations is
obtained by performing local maxima detection on the probability heat-map.
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Figure 3.2: Outline of the proposed model. For every frame and detected face, orientation and 3D loca-
tion are estimated, and both sources of information are combined to obtain a top-view representation of
the scene encoded in a heat-map. The sequence of heat-maps is then given to a neural network with an
encoder/decoder architecture. The network outputs a heat-map that predicts the position of the objects of
interest in the top-view domain.

The reasons for using heat-map embeddings are multiple. Indeed, the exact number
of people and objects is not known a priori and may vary within and between video se-
quences. Heat-map structures are independent of the number of participants (people and
objects of interest). Additionally, the problem addressed is fundamentally geometric, and
heat-maps intrinsically encode the geometry of the scene. Moreover, convolutional neural
networks are able to efficiently extract this structured information in order to obtain a de-
scriptive input representation. A drawback of the heat-map representation is the difficulty
to predict an object outside the modeled area. Nevertheless, for indoor scenarios, the area
containing the objects is bounded. It is then possible to adapt the heat-map size for the
current setup and train the model using scaled simulated scenarios (see Section 3.4). For
all these reasons, we decided to use heat-map embeddings.

The contribution of this chapter is threefold. First, we propose a novel formalism
for embedding the spatial representation of directions of interest and regions of attention.
They are modeled as a top-view heat-map, i.e. a discrete grid of spatial regions from a top-
view perspective. Contrary to previous work, this formalism is not limited to representing
locations within the field of view. Second, we propose several different convolutional
encoder/decoder neural network architectures that learn to predict object locations from
head poses in the heat-map domain. Third, since a large amount of data is required to
train a deep neural network, we propose an algorithm based on a generative probabilistic
framework that can sample an unlimited number of synthetic conversational scenarios,
involving people and objects of interest.

The remainder of this chapter is organized as follows. A state of the art is presented
in Section 3.2. Then, the details of the proposed heat-map representations and neural
network architectures are respectively given in Sections 3.3.1 and 3.3.2. The synthetic
data generation process is described in Section 3.4. Section 3.5 is dedicated to experi-
mental results, both on synthetic and real data. To conclude, Section 3.6 discusses the
perspectives and limitations of this work.
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3.2 RELATED WORK

Finding objects of interest generally requires to analyze the visual field of view and look
for highly contrasting regions. Indeed, an object or a person is likely to look different
from the background, thus highly contrasting regions have higher chance of containing
something interesting. This approach, similar to the human brain pipeline [124], is studied
in computer vision under the term saliency [53]. A salient region is one that attracts
the visual attention of an observer. There is a large community working on proposing
efficient saliency models [48, 70, 90, 105, 127]. Moreover, when the objects of interest
are expected to have a particular appearance e.g. faces, it is possible to run an adapted
detector [66, 126].

However, saliency is different from gaze-following [34]. Indeed, since the point of
view of people inside the image is different from the camera (and from each other), there
is a discrepancy between fields of view. The problem of gaze-following overlaps with
VFOA. In both cases, the goal is to match the gaze of a person with a location containing
a region of interest. The difference lies in the fact that the potential regions of interest
are known a priori. Indeed, the locations are obtained through a separate process, using
external sensor, manual annotations, or an adapted detector [6, 32, 76, 89, 111, 119].
In chapter 2, we did the experiments using face information both from a face detector
and from annotated data. Nevertheless, in the Vernissage dataset, the paintings never are
within the field of view of the robot camera, and we had to rely on the annotated data. As
opposed to these works, in gaze-following, the goal is to estimate the location of objects
of interest. It is neither known a priori, nor is it delegated to an external module.

Gaze-following requires to find regions that are salient i.e. that attract gaze, from
another point of view. However, a salient region is most likely salient from most points of
view. Based on this remark, [99] combines a saliency model with a gaze direction model
to find salient objects at the intersection of the image and the person’s field of view. The
attention predictor in [129] also uses both saliency and gaze. By combining multiple gaze
directions, [35] estimates shared attention of multiple people, but still within the image.
In [100], the authors further investigate this problem based on the idea that the gaze target
of a person inside a video may be visible in another video frame. Their method still relies
on a saliency model. Finally, [29, 107] merge the problems of saliency and gaze-following
in the context of human-robot interactions. Indeed, the robot is both an active member of
the scenario, and an observer behind the camera. Both papers are based on saliency and
gaze direction, as well as additional data such as pointing gesture and speech. However,
all works based on saliency require that the object of interest lies within the field of view.
By contrast, we wish to be able to locate out-of-view objects; we cannot rely on this
category of methods.

Apart from saliency-based gaze-following, a few other methods have been published,
addressing the gaze following problem in the 3D space instead of the image plane. [117]
proposes to estimate 3D regions of attention using only the location of people. They
model social group structures that constrain the set of candidate locations. In this frame-
work, they learn to locate regions of attention independently of visual saliency. Their
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method only needs people locations and can work in complex scenarios, using only spa-
tial data from first person cameras. However, it fails when some people are undetected and
the group structures are wrongly estimated, or when a person is isolated and should not be
integrated into a group structure. By contrast, both [24] and [16] independently propose to
use 3D intersection of gazes in a probabilistic framework to estimate locations of objects
of interest, possibly outside the camera field of view. The methods achieve good levels of
performance – even though [24] lacks quantitative evaluation. In both cases, no training
data have been used. Each method is designed with strong geometric assumptions so that
location inference can be performed without any prior learning phase. At the time this
thesis was written, the data on which the methods have been tested were not released yet
for comparison.

In this chapter, we combine a learning-based model with a geometric formulation to
address the gaze-following problem, without the restriction of being limited to the image
plan. Only few works exist in this direction [24, 117], and use strong social or geometric
assumptions.

3.3 DEEP LEARNING FOR UNCONSTRAINED GAZE-FOLLOWING

We note Nt the number of persons at time t ∈ {1 . . .T }. For each person, we suppose
that we can estimate its corresponding 3D head location Xn

t = [xn
t , y

n
t , zn

t ]>, n ∈ {1 . . . Nt },
and head orientation Hn

t = [φn
H,t, θ

n
H,t]
> in a common scene-centered coordinate frame.

This fits the modeling used in chapter 2. However, we additionally choose to drop the z-
coordinate (the height) and the head tilt angle as in [24], projecting every object and every
person in the same horizontal plane. As we will see later, this simplification drastically
reduces the complexity of the model while still representing plausible scenarios. In the
remaining of the chapter, the term position refers to 2D coordinates xn

t = [xn
t , y

n
t ]> in the

horizontal plane (top-view perspective), and head orientation refers to the head pan angle
φn

H,t , abbreviated as φn
t from now on.

3.3.1 HEAT-MAP REPRESENTATION

We employ heat-map representations of the scene from a top-view perspective. The scene
is discretized into a 2D grid of dimension SU × SV . Therefore, each position in the scene
x = (x, y) is associated to a grid cell p = (u, v) ∈ {1 . . . SU } × {1 . . . SV }. As stated
previously, x is bounded in both dimensions: x ∈ [xmin, xmax] and y ∈ [ymin, ymax]. With
these notations, p = (u, v) is obtained from x as




u = dSU ×
x−xmin

xmax−xmin
e

v = dSV ×
y−ymin

ymax−ymin
e

(3.1)

where d·e is the ceiling function. The grid cell associated to xn
t = (xn

t , y
n
t ), the position of

a person n at time t, is written pn
t .
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In this formalism, a heat-map Λ is a 2D map of SU × SV elements that attaches to
each cell p of the grid a value Λ(p) between 0 and 1. The meaning of this value depends
on what the heat-map represents. In this chapter, there are two different categories of
heat-map. First, a gaze heat-map Γ is an embedding for head pose information. A value
close to one indicates a region of space situated in front of someone’s head. Second, an
object heat-map Ω embeds the likelihood for each region of space to contain an object of
interest.

Gaze heat-map representation Γ. Motivated by the use of cones for modeling the de-
pendency between head pose and gaze [76], we compute a heat-map Γn

t ∈ [0, 1]SU×SV for
each person n ∈ {1 . . . Nt } by considering a cone whose axis is the direction spanned by
the head pan angle φn

t . Formally, the value of Γn
t at any grid cell p is given by:

Γn
t (p) =




1 if |φ(p) − φn
t | < ε

0 otherwise
(3.2)

where φ(p) is the angle corresponding to the direction of vector
−−→
pn

t p. The parameter
ε controls the aperture of the cone. We obtain the total gaze heat-map illustrated in
Fig. 3.3(b), 3.3(e) and 3.3(h):

Γt =
1
Nt

Nt∑
n=1
Γn

t . (3.3)

It is sometimes useful to aggregate the gaze heat-maps through time into a mean gaze
heat-map (see Fig. 3.3(c)) to have a compact representation of the scenario:

Γ =
1
T

T∑
t=1
Γt . (3.4)

Object heat-map Ω. Considering a scenario with M objects (e.g. Fig. 3.3(f)), we com-
pute a heat-map Ω ∈ [0, 1]SU×SV (Fig. 3.3(i)) whose value at grid cell p is given by:

Ω(p) = max
1≤m≤M

exp *
,
−
||p − pm

obj | |
2
2

2σ2
Ω

+
-

(3.5)

where pm
obj is the grid cell corresponding to the scene position of the mth object. The

variance σΩ controls the spread of the peaks. As objects do not move,Ω remains constant
during a scenario.

Now, let us suppose we have been able to obtain an estimate Ω̂ of Ω from Γ1 . . . ΓT .
Finally, to obtain an actual list of object positions, we extract the local maxima from
Ω̂ and discard local maxima that are too low compared to the global maximum. More
precisely, given a candidate position pC , a neighborhood of this position N (pC) and a
shrinking function α(·) such that α(x) ≤ x, we consider that pC contains an object if

pC = argmax
p∈N (pC )

Ω̂(p) and Ω̂(pC) ≥ α
(
max

p
Ω̂(p)

)
. (3.6)
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(a) Camera Image at t = 10 (b) Gaze heat-map Γ10 (c) Mean gaze heat-map

(d) Camera Image at t = 30 (e) Gaze heat-map Γ30 (f) Object positions

(g) Camera Image at t = 80 (h) Gaze heat-map Γ80 (i) Object heat-map Ω

Figure 3.3: Illustration of the heat-map representations using a sequence extracted from the Vernissage
dataset. As can be seen from Fig. 2.3 on page 39, the camera on the Nao robot is located close to the
bottom left corner of the gaze heat-maps. Heat-map colors range from blue to red to indicate number from
0 to 1. (a), (d), (g) are camera images at different time step from the video. (b), (e), (h) represent the
corresponding gaze heat-maps. Cone origins in the gaze heat-maps indicate people positions; cone axes
represent head orientations. (c) is the mean of the Gaze heat-maps over the sequence 1

T

∑T
t=1 Γt . It has been

normalized between 0 and 1 to make shades more visible. The object ground truth positions are represented
in the heat-map system (f). This provides the ground truth Object heat-map (i) used for training and MSE
evaluation.
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The section 3.3.2 below is dedicated to propose a neural network that learns to predict
an estimate Ω̂ of the object heat-map from the set of gaze heat-maps Γ1 . . . ΓT .

3.3.2 OBJECT HEAT-MAP INFERENCE

Now, we address the problem of estimating Ω̂, on which the local maxima detection
algorithm can be run. We propose several baselines with justification for their relevance.
Then, we present our architectures based on convolutional encoder/decoder.

Heuristics without learning. First, we propose two heuristics with no training. The
local maxima detection is performed directly on a combination of the gaze heat-maps.
Indeed, the regions that are activated (close to one) in multiple gaze heat-maps are consis-
tently in front of someone’s head and have a high chance of containing an object. Previous
works [24, 76] already used geometric features based on cone intersections. The heuris-
tics are as follow.

• Cone: The local maxima extraction is performed directly on the mean gaze heat-map
Γ = 1

T
∑T

t=1 Γt .

• Intersect: We define a gaze intersection heat-map Γinter
t per time frame, by setting

regions to one only if they are at the intersection of multiple cones. More formally,

Γinter
t (p) =




1 if
∑Nt

n=1 Γ
n
t (p) ≥ 2

0 otherwise
(3.7)

The local maxima extraction is performed on Γinter = 1
T
∑T

t=1 Γ
inter
t .

Learning-based Baselines. We define some simple regression models. They learn a
regression from the mean gaze heat-map Γ = 1

T
∑T

t=1 Γt to the Object heat-map Ω̂. Both
the input and output are considered as vector of SU × SV components.

• Linear Reg.: We learn a linear regression model from Γ to Ω̂. Interestingly, the
output of a linear regression is not constrained to lie between 0 and 1, contrary to the
definition ofΩ. The local maxima extraction is performed after Ω̂ has been rescaled
in [0, 1].

• d-FC: The regression is performed by a network composed of d ∈ {1, 3} fully con-
nected hidden layers of SU × SV units, with ReLU activations. The last hidden layer
is fully connected to the output object heat-map with sigmoid activations.

Encoder/Decoder Architectures have been used for many computer vision tasks where
the goal is to perform a regression between high dimensional spaces [8, 52]. Such archi-
tectures are composed of two sub-networks, where the first reduces the spatial resolu-
tion of the input to obtain a compact description of it, and the second alternates between
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up-sampling and fully-connected layers until recovering a high dimensional output. In
our particular problem, we use convolutional layers instead of fully-connected layers to
model the spatial connections. Moreover, as the input is a sequence, several encoder ar-
chitectures can be employed. We propose to use a decoder composed of three successive
up-sampling and convolutional layers with 3×3 kernels. The last convolution layer of the
decoder employs sigmoid activations. The whole network is trained employing the Mean
Squared Error (MSE) loss. We propose the four following architectures that represent a
progressively increasing complexity. Graphical representations of the proposed networks
are given in Fig. 3.4:

• Mean-2D-Enc (Fig. 3.4(a)): This is the simplest model. We use the mean gaze
heat-maps Γ as in the baselines. It is fed to a standard 2D convolutional encoder
composed of three successive convolutional and down-sampling layers.

• 2D-Enc (Fig. 3.4(b)): In this model, we consider that time plays the role of the
color-axis in standard 2D convolutions. Γ1 . . . ΓT are concatenated along the third
dimension to obtain the sequence gaze heat-map Γ1:T . Therefore, the first layer
kernels have dimension 3 × 3 × T instead of 3 × 3 × 1 like in Mean-2D-Enc.

• 3D-Enc (Fig. 3.4(c)): Inspired by [55], that shows that 3D convolutions are able
to extract reliable features from both the spatial and the temporal dimensions, we
propose a 3D-Encoder network on Γ1:T . By performing 3D convolutions, the model
can capture orientation changes and people motion in successive frames. The time
dimension is reduced, from T to 1 after three convolutional and max-pooling layers,
before feeding it to the 2D-Decoder.

• 3D/2D U-Net (Fig. 3.4(d)): This variant of the 3D-Enc architecture is inspired from
the U-Net architecture [102]. In our specific case, since we have a 3D encoder, we
need to squeeze the time dimension. To do so, we combine over time the feature
maps of the encoder with max-pooling, before concatenation to the decoder.

3.4 SYNTHETIC SCENARIO GENERATION FOR NETWORK TRAINING

A large amount of data is required to train deep networks. Unfortunately, obtaining such a
dataset is difficult, since, in practice, we would need to know the true object locations for
every sequence. For instance, in Vernissage [54], objects outside the field of view have
been annotated employing infrared cameras. This setting is well-suited for our problem
but it would be difficult to obtain a sufficiently large and diverse dataset of object locations
to train deep networks. Consequently, Vernissage is used only to test our model and not
to train it.

To face this issue, we propose to use synthetically generated data. More precisely,
we simulate scenarios involving people and objects, and generate their corresponding
input sequences and associated true object locations. We define a probabilistic model that
relates the object 2D positions and the head poses, and generate samples according to
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(a) Mean-2D-Enc

(b) 2D-Enc

(c) 3D-Enc

(d) 3D/2D U-Net

Figure 3.4: Proposed architectures. More details in section 3.3.2
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the underlying distribution. We now aim at generating a scenario of length T involving a
constant number N of people with respective positions xn

1:T and orientations φn
1:T , given

1 < n < N ; and M objects located at positions xm
obj, 1 < m < M . To this aim, we define

the joint distribution P(φ1:N
1:T , x

1:N
1:T , x

1:M
obj ) considering the following factorization:

P(φ1:N
1:T , x

1:N
1:T , x

1:M
obj ) = P(φ1:N

1:T |x
1:N
1:T , x

1:M
obj )︸                 ︷︷                 ︸

Head orientation
distribution

× P(x1:N
1:T |x

1:M
obj )︸          ︷︷          ︸

People motion
distribution

× P(x1:M
obj )︸   ︷︷   ︸

Object position
distribution

(3.8)

The object position distribution P(x1:M
obj ) is based on a uniform distribution within the

top-view grid, since we want to have a high variety of settings. However, some settings
are too difficult even for a human to distinguish between objects. For this reason, the
generator can choose to resample an object under two criteria. First, the closest two
objects are from each other, the highest the chance one of them is resampled. Therefore,
we impose that objects have a minimal physical size and that two objects cannot be one
above the other. Then, objects too far from the heat-map edges also have a high chance
of being resampled. Indeed, in many scenarios, objects of interest tend to be close to
the walls, e.g. posters, computer screens, paintings in a museum. Moreover, this tends
to reduce the number of ambiguous cases in which several objects are aligned from the
point of view of someone.

Importantly, in a human-robot interaction scenario, people may look at the robot, but
we want to avoid our model to predict the presence of an object at the robot camera
position. Therefore, as the camera position xcamera is known, we propose to add a blank
object at the corresponding grid cell pcamera in all sequences. The blank object behaves
like normal objects – constant position, can be gazed at – but does not appear in the object
heat-map at training time and thus should be ignored at prediction time. Also, it cannot
be resampled while generating the objects.

Concerning the people motion distribution, P(x1:N
1:T |x

1:M
obj ), we describe first how the

initial positions x1:N
1 are sampled, and then how each xn

t+1 is sampled iteratively from
xn

t . This makes the assumption that people motions are roughly independent. First, the
initial positions of people are obtained similarly to object positions. Namely, they are
sampled uniformly within the boundaries, and can be resampled when too close to an
object, another person, or (contrary to objects) too close to the edges. Concerning the
motion, we consider that people can either stay still for a random period of time, or move
linearly short distances. In practice, there is a high probability that the person stay still
xn

t+1 = xn
t . Otherwise, xn

t+τ is sampled from a normal distribution centered on xn
t , and

possibly resampled as long as xn
t+τ is outside the boundaries or too close to another target.

In the latter case, xn
t+1 . . . x

n
t+τ−1 are linearly interpolated.

Finally, for the head orientation distribution, we propose to adapt the model from
chapter 2. Indeed, equations (2.2) to (2.15) represent a generative model that is later
transformed with Bayes theorem to achieve an inference algorithm. In the current prob-
lem, we know all head and object positions. By setting them all at a constant height, we
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obtain 3D locations Xn
t . Then, for each person n at each time step t, we can define his/her

VFOA Vn
t , gaze direction Gn

t and head reference direction Rn
t . Instead of treating these

hidden variables as latent for inference, we choose to sample them. Finally, equation (2.2)
gives a distribution that leads to a plausible head orientation sequence Hn

1:T from the sam-
pled gaze directions Gn

1:T and reference directions Rn
1:T . In this case, only the head pan

angles φn
1:T are needed, the tilt angles are discarded (In practice, they are not even com-

puted). Concerning the details of sampling the initial time step, Vn
1 is sampled uniformly

among the possible targets so that Vn
1 = j, then Gn

1 and Rn
1 are set to Xn j

1 , the direction
from person n to target j. For subsequent time steps, the sampling of the hidden variables
is based on their respective transition probabilities (2.15), (2.10), (2.11). Finally, if the
constraint from (2.29) is violated, Rn

t and then Hn
t can be resampled.

Fig. 3.5, 3.6 and 3.7 represent synthetic scenarios, with different setups, generated
using this process. In practice, a wide variety of scenarios can be obtained with this
approach. For instance, there is no limit to the number of people and/or objects that could
be generated in one scenario, except the plausibility of such a scenario with respect to the
physical space.

3.5 EXPERIMENTS

Experiments have been performed both on synthetic data, generated online as described
in section 3.4, and on the Vernissage dataset [54], described in section 2.6.1 from previous
chapter. In particular, for the Vernissage dataset, we use head poses either from Vicon data
or RGB data. For recall, Vicon data come from calibrated external infrared cameras. RGB
data are obtained by detecting faces from the images, estimating head poses in a camera-
centered coordinate frame, and projecting back into the scene-centered coordinate frame.
Note that, we do not use the datasets employed in [24] and [16] since they are not
publicly available.

Implementation details. The heat-map dimensions are set to SU = SV = 32, to repre-
sent a room of size 3m×3m. The cone aperture ε is set to 2°. We fixed the input sequence
size to T = 200 time steps. On the Vernissage dataset, the videos are subsampled to 5 fps,
then the duration of a sequence is 40s and we can extract several sequences from each
video sequence. By using a sliding window and 50% overlap, we extract a total of 224
sequences. We use the visual focus of attention annotations to obtain the true objects of
interest for each sequence. Consequently, the number of objects can vary from 1 to 3 in
the test sequences. We employ the adam optimizer [57] for 10 epochs. For all neural net-
work architectures employed in the experiments, the batch size is set to 32. In all cases,
we perform the exact same local maxima extraction method as in (3.6) after estimating Ω̂
to obtain the list of object positions. The neighborhood N (·) in eq. (3.6) is defined as a
sliding region of 5× 5 pixels, and the shrinking function α : x 7→ ln(1+ x) . In all our ex-
periments, we report Precision and Recall, and these two metrics are combined to obtain
the f1-score. Precision measures the percentage of detected objects that are true objects.
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(a) Object heat-map (b) Gaze heat-map (c) Mean gaze heat-map

Figure 3.5: Heat-maps from a synthetic scenario generated randomly, with 2 people (N = 2) and 3 objects
(M = 3). (a): the ground truth Object heat-map Ω used for training or evaluation. (b): a Gaze heat-map
randomly chosen among the sequence. (c): the mean gaze heat-map over the sequence.

(a) Object head-map (b) Gaze heat-map (c) Mean gaze heat-map

Figure 3.6: Heat-maps from a synthetic scenario generated randomly, similar to Fig. 3.5, but with a different
setup: 2 people (N = 2) and 1 object (M = 1).

(a) Object head-map (b) Gaze heat-map (c) Mean gaze heat-map

Figure 3.7: Heat-maps from a synthetic scenario generated randomly, similar to Fig. 3.5, but with a different
setup: 3 people (N = 3) and 5 objects (M = 5).
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Recall measures the percentage of true objects correctly detected. In order to compute
these metrics, we employ a Hungarian algorithm that matches the detections with the real
objects positions based on their respective distances. Importantly, the detection is consid-
ered as a success if the distance between the estimated and annotated distances is lower
than 50cm in the real-world space. For all learning-based approaches, we also report the
MSE between the predicted and true object heat-maps.

Results and Discussion. In Table 3.1, we report the results obtained employing all meth-
ods described on both synthetic and real data.

It has to be noted that many different recurrent architectures have been considered,
either alone or in conjunction with one of the proposed convolutional Encoder/Decoder
architectures e.g. adapted from the convolutional LSTM [30]. All of them converged to
networks predicting always the same (or almost the same) object heat-map. We believe
that, in this formulation, the ability to combine information from distant time frame is im-
portant, and this is difficult to achieve with RNN (or LSTM) processing data sequentially
[91].

First, we notice that using computer vision head pose estimator or the more accurate
Vicon data changes only marginally the final result. There is even a small drop in per-
formance when using accurate head poses, mostly on methods that are insensitive to time
order. In this cases, the noise from head pose estimations may randomly add some direc-
tions corresponding to an undetected object. Anyway, since both results are very similar,
we conclude that the method is robust to slight noise in head pose estimation. We now
indistinctly refer to Vernissage results for experiments on Vernissage dataset using either
RGB or Vicon data.

From the experiments, we observe that learning-based approaches clearly outperform
those based on cone intersections inspired from [24]. Indeed, even on the synthetic
datasets, their precision and recall do not reach better than 18.8% and 53.9% respectively,
whereas a simple linear regression reaches considerably higher scores (50.5% and 76.9%
respectively). The same remark stands for the Vernissage dataset. Increasing the network
complexity by simply adding fully-connected layers does not bring any improvement and
even reduce the performance. Then, we observe that all proposed encoder/decoder models
clearly outperform other methods by a substantial margin on the synthetic dataset. There,
we obtain a 22.3% gain in terms of f1-score when employing the 3D/2D U-Net with re-
spect to the linear regression model. On the Vernissage dataset, a 5.1% gain is obtained in
terms of f1-score when employing the Mean-2D-Enc with respect to the linear regression
model. These experiments validate the use of the encoder/decoder architecture.

We notice that the performance on the synthetic dataset increases with encoder com-
plexity. However, the inverse phenomenon is observed on Vernissage, where the best
performances are obtained using the simplest encoder architecture (that does not model
time). Our guess for this observation is that there is a significant discrepancy between
the distribution of Vernissage data and the synthetic data distribution sampled according
to (3.8). Therefore, more complex models probably tend to over-fit the synthetic data
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Dataset Synthetic

Method MSE Precision Recall f1-score

Cone - 18.8 53.9 27.8
Intersect - 21.1 35.0 26.3

Linear Reg. 1.25 ± 0.02 50.5 ± 2.2 76.9 ± 1.0 60.9 ± 1.8
1-FC 1.06 ± 0.03 64.9 ± 1.6 61.5 ± 1.5 63.1 ± 1.1
3-FC 1.05 ± 0.01 65.9 ± 0.6 59.9 ± 2.2 62.8 ± 1.2

Mean-2D-Enc 1.00 ± 0.03 74.5 ± 2.4 59.5 ± 1.7 66.1 ± 1.3
2D-Enc 0.98 ± 0.02 76.8 ± 2.2 62.2 ± 1.5 68.7 ± 1.7
3D-Enc 0.85 ± 0.06 88.2 ± 3.9 71.4 ± 2.1 78.9 ± 2.4
3D/2D U-Net 0.75 ± 0.01 89.0 ± 1.2 78.0 ± 0.6 83.2 ± 0.8

Dataset Vernissage Vicon data

Method MSE Precision Recall f1-score

Cone - 16.7 34.8 22.5
Intersect - 17.1 17.6 17.3

Linear Reg. 1.49 ± 0.03 36.4 ± 3.7 51.9 ± 2.6 42.8 ± 3.4
1-FC 1.50 ± 0.02 33.4 ± 1.6 35.3 ± 2.3 34.3 ± 1.7
3-FC 1.49 ± 0.03 30.0 ± 3.5 30.1 ± 1.6 30.0 ± 2.5

Mean-2D-Enc 1.39 ± 0.03 54.8 ± 1.4 39.7 ± 1.8 46.0 ± 1.6
2D-Enc 1.42 ± 0.03 50.0 ± 5.0 38.7 ± 3.2 43.6 ± 3.8
3D-Enc 1.44 ± 0.03 51.2 ± 3.3 38.5 ± 3.5 43.9 ± 3.4
3D/2D U-Net 1.47 ± 0.04 47.1 ± 4.4 41.3 ± 1.5 44.0 ± 2.6

Dataset Vernissage RGB data

Method MSE Precision Recall f1-score

Cone - 20.7 35.8 26.2
Intersect - 34.9 27.2 30.6

Linear Reg. 1.48 ± 0.04 37.0 ± 4.9 53.7 ± 5.0 43.7 ± 4.6
1-FC 1.49 ± 0.02 29.9 ± 3.2 35.2 ± 2.5 32.3 ± 2.8
3-FC 1.49 ± 0.02 28.0 ± 3.5 29.9 ± 1.5 28.8 ± 2.4

Mean-2D-Enc 1.37 ± 0.02 60.1 ± 1.5 41.1 ± 1.0 48.8 ± 1.2
2D-Enc 1.39 ± 0.03 54.9 ± 4.2 40.5 ± 1.6 46.6 ± 2.5
3D-Enc 1.43 ± 0.05 49.9 ± 8.1 37.1 ± 9.0 42.5 ± 8.7
3D/2D U-Net 1.44 ± 0.04 45.1 ± 4.8 38.5 ± 2.2 41.5 ± 3.3

Dataset Brau et al. [16]

Method MSE Precision Recall f1-score

Brau et al. [16] - 59.0 48.0 52.9

Table 3.1: Results obtained on the proposed synthetically generated dataset and on the Vernissage dataset
[54]. MSE values reported were multiplied by 102 to facilitate reading. Precision, recall and f1-score
represent percentages. For learning-based approaches, we report the mean and standard deviation over five
runs. Results from [16] on their own dataset are reported for comparison.
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(a) Object heat-map Ω

(b) Ω̂ - Mean-2D-Enc (c) Ω̂ - 3D/2D U-Net (d) Ω̂ - Linear Reg.

(e) Objects - Mean-2D-Enc (f) Objects - 3D/2D U-Net (g) Objects - Linear Reg.

Figure 3.8: Application of three methods on the sequence from Vernissage dataset, illustrated in Fig. 3.3.
The object heat-map (a) is duplicated from Fig. 3.3(i) for better readability. (b), (c), (d): Estimates of
the object heat-map Ω̂ using three different architectures. (e), (f), (g): Corresponding objects positions,
obtained as the highest local maxima from Ω̂. Black pixels in (d) indicate negative values.
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(a) Object heat-map Ω

(b) Ω̂ - Mean-2D-Enc (c) Ω̂ - 3D/2D U-Net (d) Ω̂ - Linear Reg.

(e) Objects - Mean-2D-Enc (f) Objects - 3D/2D U-Net (g) Objects - Linear Reg.

Figure 3.9: Application of three methods on the synthetic sequence illustrated in Fig. 3.5. The object heat-
map (a) is duplicated from Fig. 3.5(a) for better readability. (b), (c), (d): Estimates of the object heat-map
Ω̂ using three different architectures. (e), (f), (g): Corresponding objects positions, obtained as the highest
local maxima from Ω̂. Black pixels in (d) indicate negative values.
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distribution, and thus transfer less well on the Vernissage dataset. More realistic training
data could lead to further improvements. This could be obtained by gathering a dataset of
real-life scenarios which could be use either as training data or to improve the quality of
the generative model.

The only methods from the literature that we are aware of are [24] and [16]. In both
cases, neither the data nor the code have been made available online. Moreover, the
papers lack information about parameters or hyperparameters that prevented us to test it.
Additionally, [16] explicitly discarded the Vernissage dataset in their experiments. Results
on their dataset (59% precision and 48% recall) are comparable to ours on Vernissage.
Note that, [16] employed a larger success threshold (1.0m in the real-world space for
50cm in our case) and consequently would obtain lower scores according to our evaluation
protocol. We wish to test our method on their dataset in the future. We do not compare
to [24] since they did not report any quantitative results on location estimation.

In Fig. 3.8, the predicted gaze heat-maps Ω̂ for several learning-based approaches ap-
plied on the scenario from Fig. 3.3 are displayed. The architectures Mean-2D-Enc and
Linear Reg. use the average gaze heat-map 1

T
∑T

t=1 Γt as input, whereas 3D/2D U-Net
takes the whole concatenated sequence Γ1:T . All three approaches are approximately able
to predict the positions of two objects of interest. The third object is probably not tar-
geted enough during the sequence to be found. The black pixels in the Linear Regression
indicate negative values. All other approaches end with a sigmoid activation so each
pixel value is homogeneous to a probability. The lower number of falsely proposed ob-
ject positions for the Mean-2D-Enc is consistent with the higher mean precision reported.
Comparatively, we show in Fig. 3.9 the same approaches, with the same training weights,
applied on the synthetic scenario from Fig. 3.5. We observe in this case that the 3D/2D
U-Net yields an object heat-map Ω̂ closer to the expected one Ω than the other models,
and lead to a higher precision.

We also report experiments to measure the impact in performance of the sequence
length T in Fig 3.10. Precisely, we selected Mean-2D-Enc (as best model on Vernissage)
and 3D/2D U-Net (as best model on synthetic) and compute the f1-score evolution for
these two networks varying T from 10 to 450. Both networks behave similarly to the
results reported before: 3D/2D U-Net is consistently better on synthetic data than Mean-
2D-Enc, and consistently worse on the Vernissage dataset. We observe that the perfor-
mances of both networks tend to increase with the sequence length on synthetic data,
though quite slowly for T > 150. However, when the networks are transfered to be used
on the Vernissage dataset, the f1-score stops increasing past T = 200 or 250. Moreover,
the variances are sometimes quite higher, which could indicate a more unstable training
process. This validates the choice of T = 200 for our experiments.

3.6 CONCLUSIONS

We defined the problem of unconstrained gaze-following as finding the locations of ob-
jects of interest solely from gaze direction of visible people. Importantly, this allows
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Figure 3.10: Performance obtained on the synthetic and Vernissage datasets with RGB data. We measure
the f1-score with different values of sequence length T .

for finding objects outside the field-of-view. In this context, we propose a novel spa-
tial representation for head poses (approximating gaze direction) and object locations.
This representation is based on probability heat-maps, and uses a top-view perspective
instead of the image plane as in most previous works. We have presented a framework
that takes advantage of convolutional encoder/decoder architectures to learn the spatial
relationship between head poses and object locations. We compare nine different meth-
ods on synthetic and real data and conclude that learning-based approaches outperform
geometry-based ones. We also demonstrate that the necessary training examples can be
quickly and easily obtained through a synthetic data generation process.

We believe this work will open new perspectives for research. In particular, several
decisions were taken to obtain an end-to-end method (e.g. heat-map representation or el-
evation coordinate omission), which makes it hardly suitable in some situations. The un-
constrained gaze-following problem would benefit greatly from a benchmark of different
representations and inference models, and of the influence of each simplifying hypothesis.
In parallel, the availability of suitable datasets would ease future research on this topic.
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CHAPTER 4

DEEP REINFORCEMENT LEARNING FOR

AUDIO-VISUAL ROBOT GAZE CONTROL

IN HUMAN-ROBOT INTERACTION

4.1 INTRODUCTION

Human-robot interaction (HRI) is a growing field that combines perception and action for
the robotic agent. In the previous chapter, we described a method to determine where
objects of interest are situated solely from gaze direction of people. However, it is as-
sumed people are visible most of the time, so that the head pose can be tracked. In an
actual interaction, people may not be nor stay in front of the robot. For instance, when the
robot plays the role of an art guide, as simulated in the Vernissage dataset, visitors may
approach from different paths. People are sometimes too far from each other for the robot
to see everyone at once. More complicated scenarios, e.g. having the role of a waiter,
require the robot to move and follow some complicated strategy to maximize information
along the way.

Until now, we have mainly focused on visual data. Let’s recall that the robot also
possesses other sensors. In particular, robots are generally equipped with microphones
and proprioceptive sensors. Audio information is specially interesting since it is comple-
mentary with visual data. For instance, using multiple microphones, it is possible to infer
the origin of a specific sound, like someone speaking, even when the sound source lies
outside of the camera field of view or is occluded. On the other hand, audio information
is sparse and subject to intrinsic noise from reverberation. Proprioceptive sensors, also
called self-motion sensors, provide the motor state of robotic joints. This helps the robot
correct for its own displacement while analyzing other kind of data. Since people being
outside of the field of view is often a problem, it is promising to combine data from other
sensors to help vision accuracy. Nevertheless, balancing the role of each sensor is not an
easy task, for instance when they provide contradictory information, and can hardly be
handcrafted. Indeed, handling all the possible situations with a set of handcrafted rules
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Figure 4.1: Overview of the proposed deep RL method for controlling the gaze of a robot. At each time
index t, audio and visual data are represented as binary maps which, together with motor joint angles, form
the set of observations Ot . A motor action At (rotate the head left, right, up, down, or stay still) is selected
based on past and present observations via maximization of current and future rewards. The rewards R are
based on the number of visible persons as well as on the presence of speech sources in the camera field of
view. We use a deep Q-network (DQN) model that can be learned both off-line and on-line. Please refer to
Sections 4.3.1 and 4.3.2 for the mathematical notations and detailed problem formulation.

would be laborious and most-likely sub-optimal. Moreover, it is very difficult to predict
how the decision process will change e.g. with the illumination or the acoustics of the
room.

Gaze Control represents the set of strategies in which a person moves the head and the
eyes to shift his/her gaze [46]. Applied to robotics, it denotes the way the robot turn its
visual sensor along time. It makes the robot actively decide where to look at, therefore
controlling how it perceives the environment. To do so, the robot moves its own motor
joints and so modifies the environment. Actually, it is known that the robot’s gaze behavior
has a strong effect on the turn-taking conduct of the participants [115] and can be used to
communicate.

In this chapter, we address the problem of robotic gaze control for social HRI. In
particular, we want the robot to control the orientation of its head (and the associated
camera) to behave properly during informal group gatherings. We propose a methodol-
ogy for the robot to autonomously learn strategies that lead to focusing group of people
using audio-visual information. More specifically, we want a robot to learn to find people
in the environment, hence maximize the number of people present in its field of view, and
favor people who speak. We believe this could be useful in many real scenarios, such
as a conversation between a companion robot and a group of persons, where the robot
needs to learn to look at people, in order to behave properly. The reason for using multi-
ple sources of information can be found in recent HRI research suggesting that no single
sensor can reliably serve robust interaction [94]. Importantly, when it comes to the em-
ployment of several sensing modalities in complex social interactions, it becomes difficult
to implement an optimal policy based on handcrafted rules that take into consideration all
possible situations that may occur. On the contrary, we propose to follow a data-driven
approach to face such complexity. We address this problem using a reinforcement learn-
ing (RL) approach [120]. RL is a machine learning paradigm in which agents learn by
themselves by trial-and-error to achieve successful strategies. As opposed to supervised
learning, there is no need for optimal decisions at training time, only a reward, i.e. a
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unidimensional value that evaluates how good a decision is. This paradigm, inspired from
behavioral psychology, may enable a robot to autonomously learn a policy that maximizes
accumulated rewards. In our case, the agent, a robot companion, autonomously moves its
head depending on its knowledge about the environment. This knowledge is called the
agent state, and it is defined as a sequence of audio-visual observations, motor readings,
actions, and rewards. In practice the optimal policy for making decisions is learned from
the reward computed using detected faces of participants and sound sources being lo-
calized. The use of annotated data is not required to learn the best policy as the agent
learns autonomously by trial-and-error in an unsupervised manner. Moreover, using our
approach, it is not necessary to make any assumption about the number of people as well
as their locations in the environment.

The use of RL techniques presents several advantages. First, training using optimal
decisions is not required since the model learns from the reward obtained from previ-
ous decisions. The reward may well be viewed as a feedback signal that indicates how
well the robot is doing at a given time step. Second, the robot must continuously make
judgments so as to select good actions over bad ones. In this sense, the model can keep
training at test time and hence it benefits from a higher adaptation ability. Finally, we
avoid the need to resort to an annotated training set or calibration data. In our opinion,
it seems entirely natural to use RL techniques to “educate” a robot, since recent neuro-
scientific studies have suggested that reinforcement affects the way infants interact with
their environment, including what they look at [3], and that gazing at faces is not innate,
but that environmental importance influences the gazing behavior.

The contributions of this chapter are the followings. First, robot gaze control is for-
mulated as a reinforcement learning problem, allowing the robot to autonomously learn
its own gaze control strategy from multimodal data. Second, we use deep reinforcement
learning to model the action-value function, and suggest several architectures based on a
recurrent neural network model called Long Short-Term Memory (LSTM) that allow us to
experiment with both early- and late-fusion of audio and visual data. Third, we introduce
a simulated environment that enables us to learn the proposed deep RL model without the
need of repeatedly spending hours of tedious interaction. Finally, by experimenting with
both a publicly available dataset and with a real robot, we provide empirical evidence that
our method achieves state-of-the-art performance.

4.2 RELATED WORK

The concept of gaze control has its roots in active vision [2], or more generally in active
perception [10]. These research fields are interested in how an agent (human [36], robot,
animal, etc.) use its sensing feedback to take actions that will enhance its perception of
the environment. Many robotic applications exist [21]. Gaze control is closely related
to active vision, but is preferred when perception is not the only matter. For instance,
in a social situation, moving the head can have several interpretations besides perception
augmentation. Robotic gaze control has been addressed in the framework of sensor-based
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servoing. In [13] an ad-hoc algorithm is proposed to detect, track, and involve multi-
ple persons into an interaction, combining audio-visual observations. In a multi-person
scenario, [12] investigated the complementary nature of tracking and visual servoing that
enables the system to track several persons and to visually control the gaze to keep a
selected person in the camera field of view. Also, in [136], a system for gaze control of
socially interactive robots in multiple-person scenarios is presented. This method requires
external sensors to locate human participants.

Reinforcement Learning has been successfully employed in different domains, includ-
ing robotics [58]. The RL goal is to find a function, called a policy, which specifies which
action to take in each state, so as to maximize some function (e.g., the mean or expected
discounted sum) of the sequence of rewards. Therefore, learning the suitable policy is the
main challenge, and there are two main categories of methods to address it. First, policy-
based methods define a space from the set of policies, and sample policies from this space.
The reward is then used, together with optimization techniques, e.g. gradient-based meth-
ods, to increase the quality of subsequent sampled policies [130]. Second, value-based
methods consist in estimating the expected reward for the set of possible actions, and the
actual policy uses this value function to decide the suitable action, e.g. choose the action
that maximizes the value-function. In particular, popular value-based methods include
Q-learning [128] and its deep learning extension, Deep Q-Networks (or DQNs) [81].

There are several RL-based HRI methods relevant to our work. In [41] an RL algorithm
is used for a robot to learn to play a game with a human partner. The algorithm uses vision
and force/torque feedback to choose the motor commands. The uncertainty associated
with human actions is modeled via a Gaussian process model, and Bayesian optimization
selects an optimal action at each time step. In [80] RL is employed to adjust motion
speed, timing, interaction distances, and gaze in the context of HRI. The reward is based
on the amount of movement of the subject and the time spent gazing at the robot in one
interaction. As external cameras are required, this cannot be easily applied in scenarios
where the robot has to keep learning in a real environment. Moreover, the method is
limited to the case of a single human participant. Another example of RL applied to HRI
can be found in [122], where a human-provided reward is used to teach a robot. This
idea of interactive RL is also exploited in [28] in the context of a table-cleaning robot.
Visual and speech recognition are used to get advice from a parent-like trainer to enable
the robot to learn a good policy efficiently. An explicit reward is used in [104] to learn
how to point a camera towards the active speaker in a conversation. Audio information
is used to determine where to point the camera, while the reward is provided using visual
information: the active speaker raises a blue card that can be easily identified by the
robot. The use of a multimodal deep Q-network (DQN) to learn human-like interactions
is proposed in both [96] and [97]. The robot must choose an action to shake hands with
a person. The reward is either negative, if the robot tries unsuccessfully to shake hands,
positive, if the hand-shake is successful, or null otherwise. In practice, the reward is
obtained from a sensor located in the hand of the robot and it takes fourteen training
days to learn this skill successfully. Finally in [125], the authors use an RL approach
to learn good policies to control the orientation of a mobile robot during social group
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conversations. The robot learns to turn its head towards the speaking person. However,
their model is learned on simulated data that are restricted to a few predefined scenarios
with static people and a predefined spatial organization of the groups.

In contrast to all these works, we aim at learning an optimal gaze control behavior us-
ing minimal supervision provided by a reward function, instead of adopting a handcrafted
gaze control strategy. Importantly, our model requires neither external sensors nor human
intervention to compute the reward, allowing the robot to autonomously learn where to
gaze.

4.3 REINFORCEMENT LEARNING FOR GAZE CONTROL

4.3.1 PROBLEM FORMULATION

We consider a robot whose goal is to have a behavior that maximizes the social infor-
mation extracted from its sensors. In this work, we simplify the problem with two sim-
plifying hypotheses. First, most social information comes from people faces; second, all
people are important, in particular speaking ones. In this case, the goal becomes looking
at a group of people. Hence, the robot must learn by itself a gazing strategy via trials
and errors. The desired robot action is to rotate its head (endowed with a camera and
four microphones) to maximize the number of persons lying in the camera field-of-view.
Moreover, the robot should prefer to look at speaking people instead of silent ones. The
terms agent and robot will be used indistinctly.

Random variables and their realizations are denoted with uppercase and lowercase
letters, respectively. Vectors and matrices are in bold italic. At each time index t, the
agent gathers motor joint Θt , visual V t , and audio W t observations and performs an action
At ∈ A from an action set according to a policy π, i.e. controlling the two head motors
such that the robot gazes in a selected direction. Once an action is performed, the agent
receives a reward Rt , as explained in detail below.

Without loss of generality we consider the companion robot Nao whose head has two
rotational degrees of freedom: motor readings correspond to pan and tilt angles, Θt =

(φt, θt ). The values of these angles are relative to a reference head orientation, e.g. aligned
with the robot body. This reference orientation together with the motor limits define the
robot-centered motor field-of-view (M-FOV).

We use the multiple person detector of [19] to estimate two-dimensional visual land-
marks, i.e. image coordinates, for each detected person, namely the nose, eyes, ears, neck,
shoulders, elbows, wrists, hip, knees and ankles, or a total of J = 18 possible landmarks
for each person. Based on the detection of these landmarks, one can determine the num-
ber of (totally or partially) observed persons, Nt , as well as the number of observed faces,
Ft . Note that in general the number of faces that are present in the image (i.e. detection of
nose, eyes or ears) may be smaller than the number of detected persons. Since the camera
is mounted onto the robot head, the landmarks are described in a head-centered reference
system. Moreover, these landmarks are represented by J binary maps of size Kv × Lv,
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namely V t ∈ {0, 1}Kv×Lv×J , where 1 (resp. zero) corresponds to the presence (resp. ab-
sence) of a landmark. Notice that this representation gathers all the detected landmarks
associated with the Nt detected persons.

Audio observations are provided by the multi audio-source localization method de-
scribed in [69]. Audio observations are also represented with a binary map of size Ka×La,
namely W t ∈ {0, 1}Ka×La . A map cell is set to 1 if a speech source is detected at that cell
and 0 otherwise. The audio map is robot-centered and hence it remains fixed whenever the
robot turns its head. Moreover, the audio map spans an acoustic field-of-view (A-FOV),
which is much wider than the visual field-of-view (V-FOV), associated with the camera
mounted onto the head. The motor readings allow us to estimate the relative alignment
between the audio and visual maps and to determine whether a speech source lies within
the visual field-of-view or not. This is represented by the binary variable Σt ∈ {0, 1}, such
that Σt = 1 if a speech source lies in the visual field-of-view and Σt = 0 if none of the
speech sources lies inside the visual field-of-view.

Let Ot = {Θt,V t,W t } and let St = {O1, . . . ,Ot } denote the state variable. Let the set of
actions be defined byA = {∅ ,← , ↑ ,→ , ↓}, namely either remain in the same position
or turn the head by a fixed angle in one of the four cardinal directions. We propose to
define the reward Rt as follows:

Rt = Ft+1 + αΣt+1, (4.1)

where α ≥ 0 is an adjustment parameter. Large α values return high rewards when speech
sources lie within the camera field-of-view. We consider two types of rewards which are
referred to in Section 4.4 as Face reward (α = 0) and Speaker reward (α = 1). Notice
that the number of observed faces, Ft , is independent of the speaking state of each person.
Upon the application at hand, the value of α allows one to weight the importance given to
speaking persons.

In RL, the model parameters are learned on sequences of states, actions and rewards,
called episodes. At each time index t, an optimal action At should be chosen by maximiz-
ing the immediate and future rewards, Rt, Rt+1, . . . , RT . We make the standard assumption
that future rewards are discounted by a factor γ that defines the importance of short-term
rewards as opposed to long-term ones. We define the discounted future return R̄t as the
discounted sum of future rewards, R̄t =

∑T−t
τ=0 γ

τRτ+t . If γ = 0, R̄t = Rt and, consequently,
we aim at maximizing only the immediate reward whereas when γ ≈ 1, we favor poli-
cies that lead to better rewards in the long term. Considering a fixed value of γ, we now
aim at maximizing R̄t at each time index t. In other words, the goal is to learn a policy,
π(at, st ) = P(At = at |St = st ) with (at, st ) ∈ A × S, such that if the agent chooses its
actions according to the policy π, the expected R̄t should be maximized. The Q-function
(or the action-value function) is defined as the expected future return from state St , taking
action At and then following any given policy π:

Qπ (st, at ) = Eπ[R̄t |St = st, At = at]. (4.2)

Learning the best policy corresponds to the following optimization problem Q∗(st, at ) =
max
π

[Qπ (St = st, At = at )]. The optimal Q-function obeys the identity known as the
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Bellman equation:

Q∗(st, at ) = ESt+1,Rt

[
Rt + γ max

a
(Q∗(St+1, a))���St = st, At = at

]
. (4.3)

This equation corresponds to the following intuition: if we have an estimator Q∗(st, at )
for R̄t , the optimal action at is the one that leads to the largest expected R̄t . The recur-
sive application of this policy leads to equation (4.3). A straightforward approach would
consist in updating Q at each training step i with:

Qi (st, at ) = ESt+1,Rt

[
Rt + γ max

a
(Qi−1(St+1, a))��St = st, At = at

]
. (4.4)

Following equation (4.4), we estimate each action-value Qi (st, at ) given that we follow,
for the next time steps, the policy implied by Qi−1. In practice, we approximate the true
Q function by a function whose parameters must be learned. In our case, we employ a
network Q(s, a,ω) parametrized by weights ω to estimate the Q-function Q(s, a,ω) ≈
Q∗(s, a). We minimize the following loss:

L(ωi) = ESt,At,Rt,St+1

[
(Yi−1 −Q(St, At,ωi))2

]
(4.5)

with Yi−1 = Rt + γ max
a

(Q(St+1, a,ωi−1)). This may be seen as minimizing the mean
squared distance between approximations of the right- and left-hand sides of (4.4). In
order to compute (4.5), we sample quadruplets (St, At, Rt, St+1) following the policy im-
plied by Qi−1:

at = argmax
a∈A

Q(st, a, ωi−1). (4.6)

However, instead of sampling only according to (4.6), random actions at are taken in
ε percents of the time steps in order to explore new strategies. This approach is known as
epsilon-greedy policy. L is minimized over ωi by stochastic gradient descent. Refer to
[81] for more technical details about the training algorithm.

4.3.2 NEURAL NETWORK ARCHITECTURES FOR Q-LEARNING

The Q-function is modeled by a neural network that takes as input part of the state vari-
able St , that we define as S∆t

t = {Ot−∆t ...Ot }. The output is a vector of size #A that
corresponds to each Qπ (s∆t

t , at ), at ∈ A, where Qπ (s∆t
t , at ) is built analogously to (4.2).

Following [81], the output layer is a fully connected layer (FCL) with linear activations.
We propose to use the long short-term memory (LSTM) [49] recurrent neural network to
model the Q-function since recurrent neural networks are able to exhibit dynamic behav-
ior for temporal sequences. LSTM are designed such as to prevent the back propagated
errors from vanishing or exploding during training. We argue that LSTM is well suited for
our task as it is capable of learning temporal dependencies better than other recurrent neu-
ral networks or than Markov models. In fact, our model needs to memorize the position
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and the motion of the people when the robot turns its head. When a person is not detected
anymore, the network should be able to use previous detections back in time in order to
predict the direction towards which it should move. Batch normalization is applied to the
output of LSTM. The J channels of V t are flattened before the LSTM layers.

Four different network architectures are described in this section and are evaluated in
Section 4.4. In order to evaluate when the two streams of information (audio and video)
need to be fused, we propose to compare two architectures: early fusion (EFNet) and
late fusion (LFNet). In early fusion, the audio and visual features are combined into a
single representation before modeling time dependencies, e.g. Fig. 4.2(a). Conversely,
in late fusion, audio and visual features are modeled separately before fusing them, e.g.
Fig. 4.2(b). In order to measure the impact of each modality, we also propose two more
network architectures using either audio (AudNet) or vision (VisNet) information. Fig.
4.2(c) displays AudNet and Fig. 4.2(d) displays VisNet. Fig. 4.2 employs a compact
network representation where time is not explicitly shown, while Fig. 4.3 depicts the
unfolded representation of EFNet where each node is associated with one particular time
instance. Both figures follow the graphical representation used in [42].

(a) EFNet (b) LFNet (c) AudNet (d) VisNet

Figure 4.2: Proposed architectures to model the Q-function. Dashed lines indicate connections only used
in the last time step. Black squares represent a delay of a single time step. Encircled crosses depict the
concatenation of inputs.

Figure 4.3: Unfolded representation of EFNet to better capture the sequential nature of the recurrent model.
Encircled crosses depict the concatenation of inputs.
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Figure 4.4: Diagram showing all fields used in the proposed simulated environment. The robot’s field of
view (in red) can move within the reachable field (in blue), whereas the participants can freely move within
a larger field (in black).

4.3.3 PRETRAINING ON SIMULATED ENVIRONMENT

Training from scratch a DQN model can take a long time (in our case ∼150000 time steps
to converge), and training directly on a robot would not be convenient for two reasons.
First, it would entail a long period of training, since each physical action by the robot takes
an amount of time that cannot be reduced neither by code optimization nor by increasing
our computational capabilities. Second, in the case of HRI, participants would need to
move in front of the robot for several hours or days (like in [96]). For these two reasons,
we propose to use a transfer learning approach. The Q-function is first learned on a
simulated environment, where we simulate people moving and talking, and it is then used
to initialize the network employed by the robot. Importantly, the network learned from
this simulated environment can be successfully used in the robot without the need of fine-
tuning in real data. In this simulated environment, we do not need to generate images and
sound signals, but only the observations and rewards the Q-Network receives as input.

We consider that the robot can cover the field [−1, 1]2 by moving its head, but can
only visually observe the people within a small rectangular region Ft ⊂ [−1, 1]2 centered
in position vector Θt . The audio observations cover the whole reachable region [−1, 1]2.
In each episode, we simulate one or two persons moving with random speeds and accel-
erations within a field [−ξ, ξ]2 where ξ > 1. In other words, people can go to regions
that are unreachable for the robot. For each simulated person in the current episode, we
consider the position and velocity of their head at time t, ht = (uh

t , v
h
t ) ∈ [−ξ, ξ]2 and

ḣ = (u̇h
t , v̇

h
t ) ∈ R2, respectively. At each frame, the person can keep moving, stay without

moving, or choose another random direction. The details of the simulated environment
generator are given in Algorithm 3. In a real scenario, people can leave the scene so,
in order to simulate this phenomenon, we consider two equally probable cases when a
person is going out horizontally of the field (vh

t < [−ξ, ξ]). In the first case, the person
is deleted and instantly recreated on the other side of the field (vh

t+1 = −v
h
t ) keeping the

same velocity (v̇h
t+1 = v̇h

t ). In the second case, the person is going back towards the center
(vh

t+1 = vh
t and (v̇h

t+1 = −v̇
h
t )). A similar approach is used when a person is going out
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Figure 4.5: Illustrative sequence taken from the simulated environment and employed to pretrain our neural
network-based RL approach. The moving square represents the camera field-of-view Ft of the robot. The
colored circles represent the joints of a person in the environment. The large white circle represents a person
speaking and, therefore, producing speech that can be detected by the speech localization system. Frames
are displayed from top to bottom and left to right.

vertically except that we do not create new persons on top of the field because that would
imply the unrealistic sudden appearance of new legs within the field. Fig. 4.4 displays
a visual representation of the different fields (or areas) defined in our simulated environ-
ment, and Fig. 4.5 shows an example of a sequence of frames taken from the simulated
environment and used during training.

Moreover, in order to favor tracking abilities, we bias the person motion probabilities
such that a person that is faraway from the robot head orientation has a low probability
to move, and a person within camera field-of-view has a high probability to move. Thus,
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when there is nobody in the camera field-of-view, the robot cannot simply wait for a
person to come in. On the contrary, the robot needs to track the persons that are visible.
More precisely, we consider 4 different cases. First, when a person has never been seen by
the robot, the person does not move. Second, when a person is in the robot field of view
(ht ∈ Ft), they move with a probability of 95%. Third, when the person is further than a
threshold τ ∈ R from the camera field-of-view (| |ht−Θt | |2 > τ), the probability of moving
is only 25%. Finally, when the person is not visible but close to the camera field-of-view
(| |ht − Θt | |2 < τ and ht < Ft), or when the person is unreachable (ht ∈ [−ξ, ξ]\[−1, 1]),
this probability is 85%. Regarding the simulation of missing detections, we randomly
ignore some faces when computing the face features. Concerning the sound modality, we
randomly choose between the following cases: 1 person speaking, 2 persons speaking,
and nobody speaking. We use a Markov model to enforce continuity in the speaking
status of the persons, and we also simulate wrong audio observations.

From, the head position, we need to generate the position of all body joints. To do so,
we propose to collect a set P of poses from an external dataset (the AVDIAR dataset [40]).
We use a multiple person pose estimator on this dataset and use the detected poses for
our simulated environment. This task is not trivial since we need to simulate a realistic
and consistent sequence of poses. Applying tracking to the AVDIAR videos could provide
good pose sequences, but we would suffer from three major drawbacks. First, we would
have a tracking error that could affect the quality of the generated sequences. Second, each
sequence would have a different and constant size, whereas we would like to simulate
sequences without size constraints. Finally, the number of sequences would be relatively
limited. In order to tackle these three concerns, we first standardize the output coordinates
obtained on AVDIAR . Considering the pose pn

t of the nth person, we sample a subset
PM

t ⊂ P of M poses. Then, we select the closest pose to the current pose: pn
t+1 =

argmin
p∈Π

d(p, pn
t ) where
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This distance is designed to face poses with different number of detected joints. It can
be interpreted as an L2 distance weighted by the number of visible joints in common.
The intuition behind this sampling process is that when the size M of PM

t increases, the
probability of obtaining a pose closer to pn

t increases. Consequently, the motion variability
can be adjusted with the parameter M in order to obtain a natural motion. With this
method we can obtain diverse sequences of any size.

4.4 EXPERIMENTS

4.4.1 EVALUATION WITH A RECORDED DATASET

The evaluation of HRI systems is not an easy task. In order to fairly compare different
models, we need to train and test the different models on the exact same data. In the
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Data: P: a set of poses, δ: time-step
σ: velocity variance, M: pose continuity parameter

Randomly chose N in [1..3].
for n ∈ [1..N] do

Initialize (hn
0, ḣ

n
0) ∼ U ([−1, 1])2 ×U ([−1,−0.5]

⋃
[0.5, 1])2.

Randomly chose pn
0 in P.

end
for t ∈ [1..T − 1] do

for n ∈ [1..N] do
Randomly chose motion ∈ {Stay, Move}
if motion = Move then

if hn
t < [−ξ, ξ]2 then
The person is leaving the scene.
See section 4.3.3.

else
hn

t+1 ← hn
t + δ(ḣ

n
t +N ((0, 0), σ)).

ḣ
n
t+1 ←

1
δ (hn

t+1 − hn
t )

end
else

hn
t+1 ← hn

t
ḣ

n
t+1 ∼ U ([−1,−0.5]

⋃
[0.5, 1])2

end
Draw PM

t , a random set of M elements of P
pn

t+1 ← argmin
p∈PM

t

d(p, pn
t )

end
end

Algorithm 3: Generation of simulated moving poses for our simulated environment.

Figure 4.6: Example of a sequence from the AVDIAR dataset. The speech direction binary map is superim-
posed on the image, and the visible landmarks are displayed using a colored skeleton. The camera field of
view (in red) is randomly initialized (far left), speech emitted by one of the persons is detected and hence
the gaze is controlled (left). The agent is able to get all the persons in the field of view (right), and it gazes
at a group of three persons while two other persons move apart (far right).

context of RL and HRI, this is problematic because the data, i.e. what the robot actu-
ally sees and hears, depends on the action taken by the robot. Thus, we propose to first
evaluate our model with the AVDIAR dataset [40]. This dataset was recorded with four
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Figure 4.7: Example of a live sequence with two persons. First row shows an overview of the scene,
including the participants and the robot. Second row shows the images gathered with the camera mounted
onto the robot head. The robot head is first initialized in a position where no face is visible (first column),
and the model uses the available landmarks (elbow and wrist) to find the person onto the right (second
column). The robot detects the second person by looking around while keeping the first person in its field
of view (third column), and gazes the two people walking together (fourth column).

microphones and one high-resolution camera (1920 × 1080 pixels). These images, due to
their wide field of view, are suitable to simulate the motor field of view of the robot. In
practical terms, only a small box of the full image simulates the robot’s camera field of
view. Concerning the observations, we employ visual and audio grids of sizes 7 × 5 in all
our experiments with the AVDIAR dataset.

We employ 16 videos for training. The amount of training data is doubled by flipping
the video and audio maps. In order to save computation time, the original videos are
down-sampled to 1024 × 640 pixels. The size of the camera field of view where faces
can be detected is set to 300 × 200 pixels using motion steps of 36 pixels each. These
dimensions approximately correspond the coverage angle and motion of Nao. At the
beginning of each episode, the position of the camera field of view is selected such that
it contains no face. We noticed that this initialization procedure favors the exploration
abilities of the agent. To avoid a bias due to the initialization procedure, we used the same
seed for all our experiments and iterated three times over the 10 test videos (20 when
counting the flipped sequences). An action is taken every 5 frames (0.2 seconds).

Fig. 4.6 shows a short sequence of the AVDIAR environment, displaying the whole field
covered by the AVDIAR videos as well as the smaller field of view captured by the robot
(the red rectangle in the figure). However, it is important to highlight that transferring the
model learned using AVDIAR to Nao is problematic and did not work in our preliminary
experiments. First, faces are almost always located at the same position (around the image
center). Second, all videos are recorded indoors using only two different rooms, and
participants are not moving much. Finally, the audio setting is unrealistic for a robotics
scenario, e.g. absence of motor noise. Therefore, the main reason for using the AVDIAR
dataset is to compare our method with other methods in a generic setting.
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4.4.2 LIVE EXPERIMENTS WITH NAO

In order to carry out an online evaluation of our method, we performed experiments with
a Nao robot. Nao has a 640 × 480 pixels cameras and four microphones. This robot
is particularly well suited for HRI applications because of its design, hardware specifica-
tions and affordable cost. Nao’s commercially available software can detect people, locate
sounds, understand some spoken words, synthesize speech and engage itself in simple and
goal-directed dialogs. Our gaze control system is implemented on top of the NAOLab
middleware [7] that synchronizes proprioceptive data (motor readings) and sensor infor-
mation (image sequences and acoustic signals). The reason why we use a middleware is
threefold. First, the implementation is platform-independent and, thus, easily portable.
Platform-independence is crucial since we employ a transfer learning approach to trans-
fer the model parameters, obtained with the proposed simulated environment, to the Nao
software/hardware platform. Second, the use of external computational resources is trans-
parent. This is also a crucial matter in our case, since visual processing is implemented
on a GPU which is not available on-board of the robot. Third, the use of middleware
makes prototyping much faster. For all these reasons, we employ the remote and modular
layer-based middleware architecture named NAOLab. NAOLab consists of four layers:
drivers, shared memory, synchronization engine and application programming interface
(API). Each layer is divided into three modules devoted to vision, audio and propriocep-
tion, respectively. The last layer of NAOLab provides a general programming interface in
C++ to handle the sensory data and to manage its actuators. NAOLab provides, at each
time step, an image and the direction of the detected sound sources using [68, 69].

We now provide some implementation details specifically related to the Nao imple-
mentation. The delay between two successive observations is ∼0.3 seconds. The rotating
head has a motor field-of-view of 180◦. The head motion parameters are chosen such that
a single action corresponds to 0.15 radians (∼9°) and 0.10 radians (∼6°) for horizontal and
vertical motions, respectively. Concerning the observations, we employ a visual grid of
size 7×5 and an audio grid of size 7×1 in all our experiments with Nao. Indeed, Nao has
a planar microphone array and hence sound sources can only be located along the azimuth
(horizontal) direction. Therefore the corresponding audio binary map is one-dimensional.

Fig. 4.7 shows an example of a two-person scenario using the LFNet architecture.
As shown in our recorded experiments 1 , we were able to transfer the exploration and
tracking abilities learned using the simulated environment. Our model behaves well in-
dependently of the number of participants. The robot is first able to explore the space
in order to find people. If only one person is found, the robot follows the person. If the
person is static, the robot keeps the previously detected person in the field but keeps ex-
ploring the space locally aiming at finding more people. When more people appear, the
robot tries to find a position that maximizes the number of people. The main failure cases
are related to quick movements of the participants.

1A video showing offline and online experiments is available at https://team.inria.fr/
perception/research/deep-rl-for-gaze-control/

https://team.inria.fr/perception/research/deep-rl-for-gaze-control/
https://team.inria.fr/perception/research/deep-rl-for-gaze-control/
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Table 4.1: Comparison of the final reward obtained with different architectures. The best results obtained
are displayed in bold.

AVDIAR Simulated
Face Speaker Face Speaker

Network Training Test Training Test
AudNet 1.50 ± 0.03 1.47 ± 0.04 1.92 ± 0.02 1.82 ± 0.03 0.21 ± 0.01 0.33 ± 0.01
VisNet 1.89 ± 0.03 1.85 ± 0.02 2.32 ± 0.04 2.23 ± 0.03 0.37 ± 0.04 0.45 ± 0.06
EFNet 1.90 ± 0.03 1.81 ± 0.04 2.40 ± 0.02 2.22 ± 0.03 0.41 ± 0.03 0.53 ± 0.03
LFNet 1.96 ± 0.02 1.83 ± 0.02 2.43 ± 0.02 2.29 ± 0.02 0.42 ± 0.01 0.52 ± 0.03

4.4.3 IMPLEMENTATION DETAILS

By carefully selecting the resolution used to perform person detection along the method
of [19], we were able to obtain visual landmarks in less than 100 ms. Considering that
NAOLab gathers images at 10 FPS, this landmark estimator can be considered as fast
enough for our purpose. Moreover, [19] follows a bottom-up approach, which allows us
to speed-up landmark detection by skipping the costly association step.

The parameters of our model are based on a preliminary experimentation. We set
∆T = 4 in all scenarios, such that each decision is based on the last 5 observations. The
output size of LSTM is set to 30 (since a larger size does not provide an improvement
in performance), and the output size of the FCL is set to 5 (one per action). We use
a discount factor (γ) of 0.90. Concerning the training phases, we employed the Adam
optimizer [57] and a batch size of 128. In order to help the model to explore the policy
space, we use an ε-greedy algorithm: while training, a random action is chosen in ε%
of the cases; we decrease linearly the ε value from ε = 90% to ε = 10% after 120000
iterations. The models were trained in approximately 45 minutes on both AVDIAR and
the simulated environment. It is interesting to notice that we obtain this training time
without using GPUs. A GPU is only needed for person detection and estimation of visual
landmarks (in our case, a Nvidia GTX 1070 GPU).

In the simulated environment, the size of field in which the people can move is set
to ξ = 1.4. In the case of Nao, the audio observations are provided by the multiple
speech-source localization method described in [69].

In all our experiments, we run five times each model and display the mean of five runs
to lower the impact of the stochastic training procedure. On AVDIAR , the results on both
training and test sets are reported in the tables. As described previously, the simulated
environment is randomly generated in real time, so there is no need for a separated test
set. Consequently, the mean reward over the last 10000 time steps is reported as test score.

4.4.4 ARCHITECTURE COMPARISON

In Table 4.1, we compare the final reward obtained while training on the AVDIAR dataset
and on our simulated environment with the two proposed rewards (Face reward when
α = 0, and Speaker reward when α = 1). Four different networks are tested: EFNet,
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Figure 4.8: Evolution of the reward obtained while training with the two proposed rewards on the AV-
DIAR dataset and on the simulated environment. We average over a 5000 time-step window for a cleaner
visualization.

LFNet, VisNet, and AudNet. The y-axis of Fig. 4.8 shows the average reward per episode,
with a clear growing trend as the training time passes (specially in the experiments with
the AVDIAR dataset), meaning that the agent is learning (improving performance) from
experience. On the simulated environment, the best results are indistinctly provided by
the late and early fusion strategies (LFNet and EFNet), showing that our model is able
to effectively exploit the complementarity of both modalities. On AVDIAR, the late fu-
sion performs slightly better than the early fusion model. Globally, we observe that the
rewards we obtain on AVDIAR are higher than those obtained on the simulated envi-
ronment. We suggest two possible reasons. First, the simulated environment has been
specifically designed to enforce exploration and tracking abilities. Consequently, it poses
a more difficult problem to solve. Second, the number of people in AVDIAR is higher
(about 4 in average), thus finding a first person to track would be easier. We notice that,
on the AVDIAR dataset using the Face reward, we obtain a mean reward greater than 1,
meaning that, on average, our model can see more than one face per frame. We also ob-
serve that AudNet is the worst performing approach. However, it performs quite well on
AVDIAR compared to the simulated environment. This behavior can be explained by the
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fact that, on AVDIAR, the speech source detector returns a 2D heatmap whereas only the
angle is used in the simulated environment. As conclusion, we select LFNet to perform
experiments on Nao.
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Figure 4.9: Evolution of the training reward obtained when using as visual observation the result of either
the full-body pose estimation or the face location information.

Fig. 4.9 displays the reward obtained when using only faces as visual observation
(dashed lines) in contrast to using the full-body pose estimation (continuous lines). We
observe that on the simulated data, the rewards are significantly higher when using the
full-body pose estimator. This figure intends to respond empirically to the legitimate
question of why a full-body pose estimator is used instead of a simple face detector. From
a qualitative point of view, the answer can be found in the type of situations that can solve
one and the other. Let’s imagine that the robot looks at the legs of a user; in case of using
only a face detector, there is no clue that could help the robot to move up its head in order
to see a face; however, if a human full-body pose detector is used, the detection of legs
implies that there is a torso over them, and a head over the torso. Incidentally, we remark
that the difference when using full-body pose and only the head is quite small on the
AVDIAR dataset. Since this dataset has not been designed to be challenging for this task,
an explanation lies in the fact that the tilt angle required to see the faces is almost always
the same. Then, the robot moves its head to until it reaches the best tilt angle, whether it
has seen legs or not.

4.4.5 PARAMETER STUDY

In this section, we describe the experiments devoted to evaluate the impact of some of the
principal parameters involved. More precisely, the impact of three parameters is analyzed.
First, we compare different values for the discount factor γ that defines the importance
of short-term rewards as opposed to long-term ones (see Section 4.3). Second, we com-
pare different window sizes. It corresponds to the number of past observations that are
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Table 4.2: Comparison of the final reward obtained using different discounted factors (γ). The mean and
standard deviation over 5 runs are reported. The best average results obtained are displayed in bold.

AVDIAR Simulated
γ Training Test
25 1.96 ± 0.02 1.85 ± 0.02 0.33 ± 0.09
50 1.96 ± 0.02 1.86 ± 0.03 0.35 ± 0.08
75 1.96 ± 0.02 1.85 ± 0.02 0.43 ± 0.11
90 1.94 ± 0.02 1.83 ± 0.02 0.42 ± 0.12
99 1.95 ± 0.01 1.84 ± 0.02 0.42 ± 0.12

used to make a decision (see Section 4.3.2). Finally, we compare different sizes for the
LSTM network that is employed in all our proposed architectures (see Section 4.3.2). It
corresponds to the dimension of the cell state and hidden state that are propagate by the
LSTM.

In Table 4.2, different discount factors are compared. With AVDIAR, high discount
factors are prone to overfit as the difference in performance between training and test is
large. With the simulated environment, low discount values perform worse because the
agent needs to perform several actions to detect a face, as the environment is rather com-
plex. Consequently, a model that is able to take into account future benefits of each action
performs better. Finally, in Table 4.3, we compare different LSTM sizes. We observe
that increasing the size does not lead to significantly better results, which is an interesting
outcome since, from a practical point of view, smaller LSTMs faster the training.

Different window sizes are compared in Table 4.4. We can conclude that the worst
results are obtained when only the current observation is used (window size of 1). We also
observe that, on AVDIAR , the model performs well even with short window lengths (2 and
3). In turn, with a more complex environment, as the proposed simulated environment, a
longer window length tends to perform better. We interpret that using a larger window size
helps the network to ignore the noisy observations and to remember the position of people
that left the field of view. We report the training time for each window length. We observe
that, using a smaller time window speeds up training since it avoids back-propagating the
gradient deeply in the LSTM network.

Table 4.3: Comparison of the final reward obtained using different LSTM sizes. The mean and standard
deviation over 5 runs are reported. The best average results obtained are displayed in bold.

LSTM size AVDIAR Simulated
Training Test

30 1.96 ± 0.01 1.85 ± 0.03 0.42 ± 0.11
60 1.95 ± 0.02 1.86 ± 0.02 0.43 ± 0.12

120 1.92 ± 0.04 1.87 ± 0.02 0.41 ± 0.10
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Table 4.4: Comparison of the final reward obtained using different window lengths (∆T ). The mean and
standard deviation over 5 runs are reported. The best average results obtained are displayed in bold. The
training time is reported for each configuration.

AVDIAR Simulated
∆T + 1 Training Test Time(s×103) Test Time(s×103)

1 1.92 ± 0.03 1.82 ± 0.03 3.05 ± 0.22 0.26 ± 0.04 3.07 ± 0.15
2 1.94 ± 0.02 1.85 ± 0.02 2.25 ± 0.99 0.36 ± 0.04 3.09 ± 0.17
3 1.93 ± 0.01 1.84 ± 0.01 2.95 ± 0.38 0.42 ± 0.02 2.98 ± 0.27
5 1.94 ± 0.02 1.84 ± 0.02 3.30 ± 0.46 0.43 ± 0.01 3.40 ± 0.14

10 1.94 ± 0.02 1.84 ± 0.02 2.05 ± 0.22 0.40 ± 0.02 3.85 ± 0.36
20 1.96 ± 0.01 1.82 ± 0.02 3.00 ± 0.00 0.42 ± 0.02 5.35 ± 0.36

128 1.94 ± 0.02 1.82 ± 0.03 18.90 ± 0.77 0.41 ± 0.03 52.98 ± 5.23

4.4.6 COMPARISON WITH THE STATE OF THE ART

We perform a comparative evaluation with the state of the art. To the best of our knowl-
edge, no existing work addresses the problem of finding an optimal gaze policy in the
HRI context. In [13] a heuristic that uses an audio-visual input to detect, track and in-
volve multiple interacting persons is proposed. Hence we compare our learned policy
with their algorithm. On the simulated environment, as the speech source is only local-
ized in the azimuthal plane (see section 4.4.2), we randomly gaze along the vertical axis
in order to detect faces. In [12] two strategies are proposed to evaluate visually controlled
head movements. A first strategy consists of following a person and rotating the robot
head in order to align the person’s face with the image center. A second strategy consists
in randomly jumping every 3 seconds between persons. Obviously, the second strategy
was designed as a toy experiment and does not correspond to a natural behavior. There-
fore, we compare our RL approach with their first strategy. Unfortunately, the case where
nobody is in the field of view is not considered in [12]. To be able to compare their method
in the more general scenario addressed here, we propose the following handcrafted policy
in the case no face is detected in the visual field of view: (i) Rand: A random action is
chosen; (ii) Center: Go towards the center of the acoustic field-of-view; (iii) Body: If a
limb is detected, the action ↑ is chosen in order to find the corresponding head, otherwise,
Rand is followed, and (iv) Audio: Go towards the position of the last detected speaker.

Importantly, in our model the motor speed is limited, since the robot can only select
unitary actions. When implementing other methods, one could argue that this speed limi-
tation is inherent to our approach and that other methods may not suffer from it. However,
it is not realistic to consider that the head can move between two opposite locations of the
auditory field in two consecutive frames with an infinite speed. Therefore, we report two
scores, first using the same speed value than the one used in our model (referred to as
equal), and second by making the unrealistic assumption that the motor speed is infi-
nite (referred to as infinite). This second evaluation protocol is therefore biased towards
handcrafted methods. The results are reported in Table 4.5.

First, we notice that none of the handcrafted methods can compete with ours when
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Table 4.5: Comparison of the final rewards obtained with different handcrafted policies. The performances
of competitor methods are reported considering the two speed assumptions (equal/infinite) described in the
text.

AVDIAR Simulated
Face reward Speaker reward Face reward Speaker reward

Ban et al.[12]+Rand 1.19/1.21 1.45/1.59 0.25/0.26 0.40/0.37
Ban et al.[12]+Center 1.62/1.68 1.95/2.01 0.14/0.11 0.28/0.29
Ban et al.[12]+Body 1.23/1.20 1.40/1.52 0.27/0.26 0.39/0.37
Ban et al.[12]+Audio 1.54/1.63 1.84/2.06 0.32/0.39 0.43/0.48
Bennewitz et al.[13] 1.56/1.55 2.07/2.05 0.30/0.42 0.35/0.50
LFNet 1.83 ± 0.02 2.29 ± 0.02 0.42 ± 0.01 0.52 ± 0.03

considering the same motor speed. On both environments, LFNet largely outperforms
all handcrafted models. This clearly justifies policy learning and the use of RL for gaze
control. Concerning [12], Center obtains the best result among the [12]’s variances on
AVDIAR and the worst on Simulated according to the Face reward metric. This can be
explained by the fact that, as mentioned in Section 4.4.1, most persons are located around
the image center and, therefore, this dummy strategy works better than more sophisti-
cated ones. A similar behavior can be observed with the Speaker reward metric. We
observe that in both environments using audio information, when no face is detected, im-
proves the performance with respect to Rand. The second best performance on AVDIAR
is obtained by [13] with Speaker reward. On the simulated environment, [13] equals
the score obtained by our proposal when making the unrealistic assumption of infinite
motor speed. In that case, [13] is marginally inferior to our proposal according to the
Speaker reward. When considering equal speed limit, our RL approach significantly out-
performs the handcrafted policy of [13] (26% and 48% higher according to Face reward
and Speaker reward, respectively). All these results highlight the crucial importance of
audio-visual fusion in the framework of RL and in the context of gaze control.

4.5 CONCLUSIONS

In this chapter, we presented a neural network-based reinforcement learning approach to
solve the gaze robot control problem. In particular, our agent is able to autonomously
learn how to find people in the environment by maximizing the number of people present
in its field of view while favoring people that speak. A simulated environment is used
for pre-training prior to transfer learning to a real environment. Neither external sensors
nor human intervention are necessary to compute the reward. Several architectures and
rewards are compared on three different environments: two offline (real and simulated
datasets) and real experiments using a robot. Our results suggest that combining audio and
visual information leads to the best performance, as well as that pre-training on simulated
data can even make unnecessary to train on real data. By thoroughly experimenting on
a publicly available dataset and with a robot, we provide empirical evidence that our RL
approach outperforms handcrafted strategies.

This approach shows an original adaptive solution for a complex problem, yet its ap-
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plication in actual scenarios may still be limited. The action space is too restrictive for
a real usage with simultaneously low speed and unnatural robot head movement. Future
work may need to introduce head rotation velocity, and/or a continuous action space, and
may require changing the reinforcement learning paradigm used. On another note, the
robot objective, as defined by the reward, is to find groups of people. This behavior may
lead to maximizes the social information (still debatable, for instance in the case of a pre-
senter speaking to an audience), but can appear unnatural, e.g. when the robot head looks
like it points in between two persons. Even though this framework allows to pre-train the
behavior of a robot that may then continue to adapt in situ, many details must be care-
fully designed to fit the desired scenario. Instead, future work could be centered on actual
applications, and may combine this approach with inverse reinforcement learning [4].
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CHAPTER 5

CONCLUSION

5.1 SUMMARY

There are countless processes involved in a social interaction. Some cues are emitted and
perceived, consciously or not, and it helps communicate more efficiently. A social hu-
manoid robot must be able to detect and analyze cues that are valuable for understanding
what is currently happening. In parallel, the robot can reproduce human-like cues to op-
timize the communication process. In this thesis, we studied how a robot that participates
in a social interaction can infer to whom or what each person is looking at, i.e. their Visual
Focus of Attention (VFOA). We encountered three sub-problems that we addressed using
data-driven approaches, either employing existing datasets or simulated data.

First, we addressed frame-by-frame VFOA inference during a social interaction, in
a favorable setting, i.e. knowing the location of objects of interest and being able to
evaluate people head poses. Our formulation uses a switching linear dynamical system
to characterize the dependency between VFOA, gaze direction and head pose. It leads to
an online inference and a training algorithm. Results are competitive with the state of the
art, and the method still works when directly transferred to a new dataset.

Second, we address the more realistic setting in which the locations of objects of in-
terest are not known a priori. By using a top-view representation to model the region of
interaction, we propose to estimate the location of objects of interest from a sequence of
head poses. The mapping is done by training a convolutional encoder/decoder on simu-
lated data. Tests on both simulated data and a real dataset show the interest of learning-
based approaches. In a wider sense, we demonstrated that the detection of out-of-view
objects from gaze following is a challenging problem.

Third, we focused on controlling the robot gaze direction to have people in the robot’s
field of view. Indeed, previous tasks require to see people’s head within the robot cam-
era image. We achieve an efficient gaze control strategy using reinforcement learning.
The robot can autonomously evaluate its reward from audio and visual observations and
does not need human supervision. The audio-visual observations are associated to a head
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movement action using an LSTM Recurrent neural network. A synthetic environment is
used to speed up training, and the weights of the network are then transferred to a real Nao
robot that is able to successfully find and follow people. Extensive experiments on syn-
thetic data and on a recorded dataset show the advantage of our learning-based approach
comparatively to handcrafted strategies.

5.2 FUTURE RESEARCH DIRECTIONS

In this section, we present several promising research directions for improving each task
separately. Later, we suggest some perspectives for combining them or solving related
problems using the presented methodologies.

In chapter 2 and 3, gaze direction is not directly used but replaced with head orienta-
tion. The reason for this is that eye-gaze estimators tend to be unreliable with non-frontal
faces. In particular, all publicly available eye-gaze datasets are composed of near-frontal
faces and/or are only labeled with on-screen gaze following. The design and recording
of an unconstrained gaze direction dataset would provide a better basis for gaze-based
scene understanding methods. However, it is difficult to create a dataset including 3D
gaze direction labels. A small dataset could be recorded by filming people looking at ob-
jects whose location is known a priori. This dataset could potentially be augmented with
synthetically generated images, e.g. using [51, 131]. The methods that rely on head pose
instead of gaze direction can be improved by means of gaze direction with some minor
adaptations.

In chapter 3, several simplifying hypotheses have been adopted to release the con-
straints commonly employed on gaze following problems. First, the elevation coordinate
from 3D location has been discarded. However, there is no conceptual reason why a
similar formulation replacing 2D heat-maps with 3D ones, and adding one dimension to
the convolutions, would not achieve similar results (at the cost of significantly increasing
computing time). Moreover, the grid discretization has advantages, e.g. invariance to the
number of people and objects, but also drawbacks, e.g. it is not applicable to unbounded
environments. Finally, a benchmark of other spatial models and their constraints for this
problem would be valuable.

In chapter 4, the robotic agent learns to move its head so that the camera is directed
towards the maximal number of people, favoring people who speak. When the field of
view is too narrow to see everyone at once, isolated persons tend to be ignored. Looking
alternatively all people to know everybody’s location with high confidence is a different
problem that requires a specific modeling. In particular, an audio-visual identity model
should be introduced and remain consistent over time (as in [12]). The hurdle comes
from introducing a person-wise representation into a method that is independent from the
number of people. Preliminary experiments have been done as reported in appendix B.
Independently, results from group psychology (e.g. F-formations [27, 109]) could be
introduced as prior information to improve the model capabilities over a pure learning-
based approach.
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It is important to note that the three aforementioned contributions employ different
frameworks that can hardly be combined together. It is possible to develop a software that
uses them in a sequential pipeline. The robot controls its gaze to find people; people in the
field of view are used to estimate locations of objects of interest; when objects’ locations
are known, the frame-wise VFOA can be computed. However, this pipeline completely
ignores the complementarity of the three tasks, since jointly solving the tasks can benefit
all of them. For instance, people often look at each other, so an object of interest out
of the field of view may actually be another person that the robot should look at. On
the other hand, we can compute in parallel the estimated locations of objects of interest
and VFOAs given those estimates. This would check that the proposed locations are
meaningful. Combining the three tasks in a single framework would require rethinking
their formulation, but could provide far better results than optimizing each one separately.

The detection of out-of-view objects in chapter 3 cannot use vision analysis since, by
definition, objects are outside the image. However, robotic gaze control, as in chapter 4,
can be used to turn the camera towards a person’s VFOA. The gaze direction from the
initial image, before turning the camera, could be combined with a saliency algorithm on
the final image (as in [100]) to estimate the location of the object of interest, and possibly
guess what it is. This could be referred as gaze-based active saliency.

Finally, an important milestone for the work presented in this thesis (and its potential
extensions) would be the design of a scenario in which the robot has to autonomously
interact with unguided people in unrehearsed social situations. This would validate the
robot skills for each task, and improve fault tolerance in the pipeline. An example of such
a scenario has been designed in [115], in which they focus on slightly different problems.
For our tasks, a possible scenario could be based on the Vernissage setup [54], adapted to
take place in a real museum with actual visitors.

5.3 REFLECTIONS

During a PhD thesis in computer science, there is little or no incentive to think about so-
cietal and moral applications of the research. I suspect this is not different for other fields
such as physics or chemistry. In this section, I want to detail some commonly expressed
issues and open some prospects. Please note that this is not sociological research, but
rather a short discussion over some interesting questions related to the thesis.

The study of non-verbal cues, like gaze direction as reported in this manuscript, has
applications in human-robot interaction. Nonetheless, since a lot of non-verbal cues are
unconsciously emitted or perceived, it is possible to use them for manipulative purposes.
For instance, the message in an advertisement can be received in a completely different
manner depending on the visual display. Of course, companies and political movements
are aware of this in their communication strategy. An interactive advertisement could
analyze the person currently looking at it, and formulate the message to maximize the
person’s receptiveness. In this context, the gaze trajectory can help to figure out the
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importance hierarchy of objects in the image for the observer, and model his/her state of
mind.

More widely, there are many concerns on Artificial Intelligence (AI) since its
widespread usage from digital companies raises questions. The most debated topic con-
cerns privacy. Indeed, machine learning, the sub-field of AI responsible for most recent
breakthrough, requires training data. In many fields, data are sensitive yet necessary to
progress. For instance, some medical conditions, political opinions, or criminal records
are associated with social stigmas and should not be made publicly available. Addition-
ally, data anonymization is often not reliable enough [86]. Moreover, databases must be
secured to avoid leaks. Since security measures often come at the expense of usability,
there may be huge security breaches in many computer systems. The high number of se-
curity flaws discovered in connected devices is a recent example [134]. Also, even when
there are legitimate reasons to collect some data, it is questionable to use them for another
task later, without asking again for the permission of the concerned people. Legislation
has adapted to protect individual privacy, but may only be selectively enforced. In partic-
ular, security and privacy sometimes directly contradict each other, and authorities may
be inclined to favor security, with the risk of power abuse e.g. against political opponents.

Besides the data-related concerns, it should be noted that AI is a very efficient and
versatile technology and some applications are debatable. First, AI-controlled weapons
(sometimes called intelligent weapons) blur the moral responsibility associated to killing,
and are feared by public opinions, as it could be turned against the populations. Another
application, for which the issues are a bit sneakier, is the use of AI to assist human deci-
sions. Indeed, the use of AI to help taking good decision based on data may reproduce
human bias and discrimination, without hindsight. For example, in the US, a judiciary
decision assisting program tend to overestimate recidivism of black people [22], strength-
ening their social determinism. Finally, society recently realized that social networks –
using AI-based algorithms – can be used to manipulate the public opinion. More widely,
covertly manipulating the population by capitalizing on the widespread use of data-based
algorithms in our ultra-connected world may be the fastest path towards a totalitarian sys-
tem (similar to the ones described in A brave new world by Aldous Huxley, Nineteen
Eighty-Four by Georges Orwell, or recently La zone du dehors by Alain Damasio). More
generally, AI is a powerful technology, and similarly to other technologies, e.g. nuclear
fission, it is certainly not intrinsically dangerous. Problems come when it is used by
careless, malicious and/or insatiable people.

A common fear in the general public is the concept of a sentient machine that chooses
to harm humans or to take control of the society. In the same category, the technological
singularity [106] is the hypothetical advent of a machine that surpasses human intelli-
gence. It is thus able to create an even more powerful machine, recursively leading to
an “intelligence explosion”. I believe these scenarios still belong to the realm of science-
fiction. Indeed, as far as I know, there is no recent peer-reviewed scientific paper claiming
to know how or when a sentient machine could be achieved. This should not prevent us
from thinking about what would happen if the time comes, and a lot of fiction stories
propose a reflection on these topics (Remarkable examples include Frankenstein or the
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modern Prometheus by Mary Shelley, the Robot series by Isaac Asimov, 2001, A Space
Odyssey by Stanley Kubrick and Arthur C. Clarke or also Blade Runner by Ridley Scott
from an original novel by Philip K. Dick). However, as explained above, non-sentient
machines already provide concerning issues.

On a different note, an underestimated matter of AI is its energy consumption. Indeed,
deep learning requires massive computation on energy demanding graphic cards, and their
use is getting more and more widespread. In a climate changing world, it should be
reminded that electricity is still massively generated using fossil fuels. Obviously, other
activities like crypto-currency mining are extremely energy expensive, but it should not
exempt AI users and creators from taking into account the energy consumption factor.

As a conclusion, there are many activities that benefit and will benefit from Artifi-
cial Intelligence in the upcoming years [112]. Yet there are downsides, and researchers
are too seldom prompted to question moral and ethical aspects, or to stand up against
objectionable uses of their scientific findings.
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CHAPTER A

ADDITIONAL MATERIAL CHAPTER 2

A.1 VFOA TRANSITION PROBABILITIES

Using the notations introduced in Section 2.3.3, let i, 1 ≤ i ≤ N , be an active target. In
Section 2.3.3 we showed that in practice the entries of the probability transition matrix
can have up to 15 different expressions. For completeness, these expressions are listed
below.

• The VFOA of i at t − 1 is neither an active nor a passive target (k = 0):

p1 =P(Vi
t = 0|Vi

t−1 = 0)

p2 =P(Vi
t = j |Vi

t−1 = 0)

• The VFOA of i at t − 1 is a passive target (N < k ≤ N + M):

p3 =P(Vi
t = 0|Vi

t−1 = k)

p4 =P(Vi
t = k |Vi

t−1 = k)

p5 =P(Vi
t = j |Vi

t−1 = k)
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• The VFOA of i at t − 1 is an active target (1 ≤ k ≤ N, k , i):

p6 =P(Vi
t = 0|Vi

t−1 = k,Vk
t−1 = 0)

p7 =P(Vi
t = k |Vi

t−1 = k,Vk
t−1 = 0)

p8 =P(Vi
t = j |Vi

t−1 = k,Vk
t−1 = 0)

p9 =P(Vi
t = 0|Vi

t−1 = k,Vk
t−1 = i)

p10 =P(Vi
t = k |Vi

t−1 = k,Vk
t−1 = i)

p11 =P(Vi
t = j |Vi

t−1 = k,Vk
t−1 = i)

p12 =P(Vi
t = 0|Vi

t−1 = k,Vk
t−1 = l)

p13 =P(Vi
t = k |Vi

t−1 = k,Vk
t−1 = l)

p14 =P(Vi
t = l |Vi

t−1 = k,Vk
t−1 = l)

p15 =P(Vi
t = j |Vi

t−1 = k,Vk
t−1 = l)

A.2 VFOA LEARNING

This appendix provides the formulae allowing to estimate the 15 transitions probabilities
as explained in Section 2.5.1.

p̂1 =

Q∑
q=1

Nq∑
i=2

Tq∑
t=2

δ0(Vq,i
t )δ0(Vq,i

t−1)

Q∑
q=1

Nq∑
i=2

Tq∑
t=2

δ0(Vq,i
t−1)

p̂2 =

Q∑
q=1

Nq∑
i=2

Tq∑
t=2

∑
j,i

δ j (Vq,i
t )δ0(Vq,i

t−1)

Q∑
q=1

Nq∑
i=2

Tq∑
t=2

δ0(Vq,i
t−1)

p̂3 =

Q∑
q=1

Nq∑
i=2

Tq∑
t=2

Nq+Mq∑
k=Nq+1

δ0(Vq,i
t )δk (Vq,i

t−1)

Q∑
q=1

Nq∑
i=2

Tq∑
t=2

Nq+Mq∑
k=Nq+1

δk (Vq,i
t−1)
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p̂4 =

Q∑
q=1

Nq∑
i=2

Tq∑
t=2

Nq+Mq∑
k=Nq+1

δk (Vq,i
t )δk (Vq,i

t−1)

Q∑
q=1

Nq∑
i=2

Tq∑
t=2

Nq+Mq∑
k=Nq+1

δk (Vq,i
t−1)

p̂5 =

Q∑
q=1

Nq∑
i=2

Tq∑
t=2

Nq+Mq∑
k=Nq+1

∑
j,i,k

δ j (Vq,i
t )δk (Vq,i

t−1)

Q∑
q=1

Nq∑
i=2

Tq∑
t=2

Nq+Mq∑
k=Nq+1

δk (Vq,i
t−1)

p̂6 =

Q∑
q=1

Nq∑
i=2

Tq∑
t=2

Nq∑
k=1
k,i

δ0(Vq,i
t )δk (Vq,i

t−1)δ0(Vq,k
t−1)

Q∑
q=1

Nq∑
i=2

Tq∑
t=2

Nq∑
k=1
k,i

δk (Vq,i
t−1)δ0(Vq,k

t−1)

p̂7 =

Q∑
q=1

Nq∑
i=2

Tq∑
t=2

Nq∑
k=1
k,i

δk (Vq,i
t )δk (Vq,i

t−1)δ0(Vq,k
t−1)

Q∑
q=1

Nq∑
i=2

Tq∑
t=2

Nq∑
k=1
k,i

δk (Vq,i
t−1)δ0(Vq,k

t−1)

p̂8 =

Q∑
q=1

Nq∑
i=2

Tq∑
t=2

Nq∑
k=1
k,i

∑
j,i,k

δ j (Vq,i
t )δk (Vq,i

t−1)δ0(Vq,k
t−1)

Q∑
q=1

Nq∑
i=2

Tq∑
t=2

Nq∑
k=1
k,i

δk (Vq,i
t−1)δ0(Vq,k

t−1)
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p̂9 =

Q∑
q=1

Nq∑
i=2

Tq∑
t=2

Nq∑
k=1
k,i

δ0(Vq,i
t )δk (Vq,i

t−1)δi (Vq,k
t−1)

Q∑
q=1

Nq∑
i=2

Tq∑
t=2

Nq∑
k=1
k,i

δk (Vq,i
t−1)δi (Vq,k

t−1)

p̂10 =

Q∑
q=1

Nq∑
i=2

Tq∑
t=2

Nq∑
k=1
k,i

δk (Vq,i
t )δk (Vq,i

t−1)δi (Vq,k
t−1)

Q∑
q=1

Nq∑
i=2

Tq∑
t=2

Nq∑
k=1
k,i

δk (Vq,i
t−1)δi (Vq,k

t−1)

p̂11 =

Q∑
q=1

Nq∑
i=2

Tq∑
t=2

Nq∑
k=1
k,i

∑
j,i,k

δ j (Vq,i
t )δk (Vq,i

t−1)δi (Vq,k
t−1)

Q∑
q=1

Nq∑
i=2

Tq∑
t=2

Nq∑
k=1
k,i

δk (Vq,i
t−1)δi (Vq,k

t−1)

p̂12 =

Q∑
q=1

Nq∑
i=2

Tq∑
t=2

Nq∑
k=1
k,i

∑
l,i,k

δ0(Vq,i
t )δk (Vq,i

t−1)δl (Vq,k
t−1)

Q∑
q=1

Nq∑
i=2

Tq∑
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Nq∑
k=1
k,i

∑
l,i,k

δk (Vq,i
t−1)δl (Vq,k

t−1)
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Nq∑
i=2

Tq∑
t=2

Nq∑
k=1
k,i

∑
l,i,k

δk (Vq,i
t )δk (Vq,i

t−1)δl (Vq,k
t−1)

Q∑
q=1

Nq∑
i=2

Tq∑
t=2

Nq∑
k=1
k,i

∑
l,i,k

δk (Vq,i
t−1)δl (Vq,k

t−1)
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p̂14 =
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t=2

Nq∑
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k,i

∑
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p̂15 =

Q∑
q=1

Nq∑
i=2

Tq∑
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Nq∑
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∑
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CHAPTER B

TEACHING, INTERNSHIP

During the second and third years of the PhD, I taught computer science and mathematics
at Grenoble IUT2 1, under the supervision of Francis Brunet-Manquat. Grenoble IUT2
is an institute that delivers job-centered diplomas. Most students are registered to the
two-years training, corresponding to the first two years of the license/bachelor (L1 and
L2). Additionally, students can candidate to a third year (L3) specialization that leads to
a license degree. In parallel, a special one-year training course called “Année spéciale”
(AS) is available to non-computer science students that want to switch their field of study.
I taught the following courses over two years to students from various levels:

• Advanced database design (24h, L2)

• Android programming (24h, L2 + 24h, AS)

• Distributed systems (16h, L3)

• Discrete mathematics (32h, L1)

After the three year funding ended, I decided to apply to a one-year teaching assistant
position called ATER (Attaché Temporaire d’Enseignement et de Recherche) at Grenoble
INP Ensimag 2. ATER positions are especially designed for last year PhD students. En-
simag is a french “École d’ingénieur” in mathematics and computer science. It proposes
three-years training courses; the corresponding academic years are the end of license (L3),
and master (M1 and M2). I taught the following courses in one year:

• Introduction to programming (22h, L3)

• Algorithmic and data structures (33h, L3)

• Object-oriented programming (36h, M1)
1https://iut2.univ-grenoble-alpes.fr/en/
2http://www.grenoble-inp.fr/welcome/
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• Statistics (19h L3)

• Formal languages (14h, L3)

• Algorithmic and programming, Refresher course (32h, M1)

• Software engineering project in C (28h, L3)

Each year, approximately 100 students register to first year at IUT2, and 250 at En-
simag. Since it is obviously too large for good tutoring, I taught to one or two groups
of 25-30 students per subject. Different teachers taught to the other groups. To ensure
the homogeneity among courses, most of the teaching materials had been made by each
course main supervisor. Yet in all courses, besides teaching, I had to grade my students.
This either consisted in marking exams, evaluating student projects, or sometimes both.
Additionally, I participated in the making of the exams, and in some courses, I updated
or created some teaching materials. In total, during the PhD, I gave around 300 hours of
lectures.

Finally, I co-advised with Dr. Radu Horaud the internship of Victor Bros during sum-
mer 2018. Victor, an Ensimag student, worked on the extension of the autonomous gaze
control from chapter 4. He adapted the method to work on another robot, and started
some experiments to give the robot a better representation of people position based on
audio-visual tracking [12]. Results are promising for the future but are not mature enough
to be integrated into this manuscript.



REFERENCES

[1] Henny Admoni and Brian Scassellati. Social eye gaze in human-robot interaction:
a review. Journal of Human-Robot Interaction, 6(1):25–63, 2017.

[2] John Aloimonos, Isaac Weiss, and Amit Bandyopadhyay. Active vision. Interna-
tional Journal of Computer Vision, 1988.

[3] Michael J. Arcaro, Peter F. Schade, Justin L. Vincent, Carlos R. Ponce, and Mar-
garet S. Livingstone. Seeing faces is necessary for face-domain formation. Nature
Neuroscience, 20(10):1404–1412, 2017.

[4] Saurabh Arora and Prashant Doshi. A survey of inverse reinforcement learning:
Challenges, methods and progress. arXiv preprint arXiv:1806.06877, 2018.

[5] Stylianos Asteriadis, Kostas Karpouzis, and Stefanos Kollias. Visual focus of atten-
tion in non-calibrated environments using gaze estimation. International Journal
of Computer Vision, 107, 2014.

[6] Sileye O Ba and Jean-Marc Odobez. Recognizing visual focus of attention from
head pose in natural meetings. IEEE Trans. Syst., Man, Cybern. B, Cybern., 2009.

[7] Fabien Badeig, Quentin Pelorson, Soraya Arias, Vincent Drouard, Israel Gebru,
Xiaofei Li, Georgios Evangelidis, and Radu Horaud. A distributed architecture for
interacting with nao. In ACM ICMI, pages 385–386, 2015.

[8] Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla. Segnet: A deep convo-
lutional encoder-decoder architecture for image segmentation. IEEE TPAMI, 2017.

[9] Seung-Hwan Bae and Kuk-Jin Yoon. Robust online multi-object tracking based on
tracklet confidence and online discriminative appearance learning. In IEEE CVPR,
2014.

[10] Ruzena Bajcsy. Active perception. Technical report, University of Pennsylvania,
1988.

[11] Dare A Baldwin. Understanding the link between joint attention and language.
Joint attention: Its origins and role in development, pages 131–158, 1995.

107



108 REFERENCES

[12] Yutong Ban, Xavier Alameda-Pineda, Fabien Badeig, Sileye Ba, and Radu Horaud.
Tracking a varying number of people with a visually-controlled robotic head. In
IEEE/RSJ IROS, 2017.

[13] M. Bennewitz, F. Faber, D. Joho, M. Schreiber, and S. Behnke. Towards a hu-
manoid museum guide robot that interacts with multiple persons. In IEEE-RAS,
pages 418–423, 2005.

[14] C M. Bishop. Pattern Recognition and Machine Learning. Springer-Verlag, 2006.

[15] Ali Borji, Daniel Parks, and Laurent Itti. Complementary effects of gaze direction
and early saliency in guiding fixations during free viewing. Journal of vision, 2014.

[16] Ernesto Brau, Jinyan Guan, Tanya Jeffries, and Kobus Barnard. Multiple-gaze
geometry: Inferring novel 3d locations from gazes observed in monocular video.
In ECCV, 2018.

[17] Rechele Brooks and Andrew N Meltzoff. The development of gaze following and
its relation to language. Developmental science, 8(6):535–543, 2005.

[18] Judee K Burgoon, Deborah A Coker, and Ray A Coker. Communicative effects
of gaze behavior: A test of two contrasting explanations. Human Communication
Research, 12(4):495–524, 1986.

[19] Zhe Cao, Tomas Simon, Shih-En Wei, and Yaser Sheikh. Realtime Multi-Person
2D Pose Estimation using Part Affinity Fields. In IEEE CVPR, 2017.

[20] Isarun Chamveha, Yusuke Sugano, Daisuke Sugimura, Teera Siriteerakul, Takahiro
Okabe, Yoichi Sato, and Akihiro Sugimoto. Head direction estimation from low
resolution images with scene adaptation. Computer Vision and Image Understand-
ing, 117, 2013.

[21] Shengyong Chen, Youfu Li, and Ngai Ming Kwok. Active vision in robotic sys-
tems: A survey of recent developments. International Journal of Robotics Re-
search, 30(11):1343–1377, 2011.

[22] Alexandra Chouldechova. Fair prediction with disparate impact: A study of bias in
recidivism prediction instruments. Big data, 2017.

[23] Joon Son Chung, Andrew W Senior, Oriol Vinyals, and Andrew Zisserman. Lip
reading sentences in the wild. In CVPR, pages 3444–3453, 2017.

[24] M. Cohen, I. Shimshoni, E. Rivlin, and A. Adam. Detecting Mutual Awareness
Events. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012.

[25] Alexis Conneau, Holger Schwenk, Loıc Barrault, and Yann Lecun. Very deep
convolutional networks for natural language processing. arXiv preprint, 2016.

[26] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine learning,
20(3):273–297, 1995.



109

[27] Marco Cristani, Loris Bazzani, Giulia Paggetti, Andrea Fossati, Diego Tosato,
Alessio Del Bue, Gloria Menegaz, and Vittorio Murino. Social interaction dis-
covery by statistical analysis of f-formations. In BMVC, volume 2, page 4, 2011.

[28] Francisco Cruz, German I Parisi, Johannes Twiefel, and Stefan Wermter. Multi-
modal integration of dynamic audiovisual patterns for an interactive reinforcement
learning scenario. In IEEE/RSJ IROS, pages 759–766, 2016.

[29] Joris Domhof, Aswin Chandarr, Maja Rudinac, and Pieter Jonker. Multimodal
joint visual attention model for natural human-robot interaction in domestic envi-
ronments. In IROS, 2015.

[30] Jeffrey Donahue, Lisa Anne Hendricks, Sergio Guadarrama, Marcus Rohrbach,
Subhashini Venugopalan, Kate Saenko, and Trevor Darrell. Long-term recurrent
convolutional networks for visual recognition and description. In IEEE CVPR,
2015.

[31] Vincent Drouard, Radu Horaud, Antoine Deleforge, Silèye Ba, and Georgios Evan-
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[131] Erroll Wood, Tadas Baltrušaitis, Louis-Philippe Morency, Peter Robinson, and An-
dreas Bulling. Gazedirector: Fully articulated eye gaze redirection in video. In
Computer Graphics Forum, 2018.

[132] Yan Yan, Elisa Ricci, Ramanathan Subramanian, Gaowen Liu, Oswald Lanz, and
Nicu Sebe. A multi-task learning framework for head pose estimation under target
motion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38,
2016.

[133] L. H. Yu and M. Eizenman. A new methodology for determining point-of-gaze in
head-mounted eye tracking systems. IEEE Transactions on Biomedical Engineer-
ing, 51, Oct 2004.

[134] Tianlong Yu, Vyas Sekar, Srinivasan Seshan, Yuvraj Agarwal, and Chenren Xu.
Handling a trillion (unfixable) flaws on a billion devices: Rethinking network se-
curity for the internet-of-things. In Proceedings of the 14th ACM Workshop on Hot
Topics in Networks, HotNets-XIV, New York, NY, USA, 2015. ACM.

[135] Z. Yucel, A. A. Salah, C. Mericli, T. Mericli, R. Valenti, and T. Gevers. Joint
attention by gaze interpolation and saliency. IEEE Transactions on System Men
and Cybernetics. Part B., 2013.



117

[136] Sang-Seok Yun. A gaze control of socially interactive robots in multiple-person
interaction. Robotica, 35(11):2122–2138, 2017.

[137] Xenophon Zabulis, Thomas Sarmis, and Antonis A Argyros. 3D head pose estima-
tion from multiple distant views. In BMVC, 2009.

[138] Hao Zhang, Alexander C Berg, Michael Maire, and Jitendra Malik. Svm-knn:
Discriminative nearest neighbor classification for visual category recognition. In
Computer Vision and Pattern Recognition, 2006 IEEE Computer Society Confer-
ence on, volume 2, pages 2126–2136. IEEE, 2006.

[139] Xucong Zhang, Yusuke Sugano, Mario Fritz, and Andreas Bulling. Appearance-
based gaze estimation in the wild. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 4511–4520, 2015.

[140] Xucong Zhang, Yusuke Sugano, Mario Fritz, and Andreas Bulling. It’s written
all over your face: Full-face appearance-based gaze estimation. In 2017 IEEE
Conference on Computer Vision and Pattern Recognition Workshops (CVPRW),
pages 2299–2308. IEEE, 2017.


	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	General context
	Vocabulary
	Overview
	Contributions
	Resources
	Manuscript Structure

	Tracking Gaze and Visual Focus of Attention of People Involved in Social Interaction
	Introduction
	Related Work
	Proposed Model
	Problem Formulation
	Gaze Dynamics
	VFOA Dynamics

	Inference
	Switching Kalman Filter Approximation

	Learning
	Learning the VFOA Transition Probabilities
	Learning the Gaussian Parameters

	Implementation Details
	The Vernissage Dataset
	The LAEO Dataset
	Algorithmic Details
	Algorithm Complexity

	Experimental results
	Vernissage Dataset
	Results with Vicon Data
	Results with RGB Data
	LAEO Dataset

	Conclusions

	Unconstrained Gaze-Following in Videos: Detection of Out-of-View Objects
	Introduction
	Related work
	Deep Learning for Unconstrained Gaze-Following
	Heat-Map Representation
	Object heat-map inference

	Synthetic Scenario Generation for Network Training
	Experiments
	Conclusions

	Deep Reinforcement Learning for Audio-Visual Robot Gaze Control in Human-Robot Interaction
	Introduction
	Related Work
	Reinforcement Learning for Gaze Control
	Problem Formulation
	Neural Network Architectures for Q-Learning
	Pretraining on Simulated Environment

	Experiments
	Evaluation with a Recorded Dataset
	Live Experiments with Nao
	Implementation Details
	Architecture Comparison
	Parameter Study
	Comparison with the State of the Art

	Conclusions

	Conclusion
	Summary
	Future research directions
	Reflections

	Additional material Chapter 2
	VFOA Transition Probabilities
	VFOA Learning

	Teaching, Internship

